
 
 
 

 
 

 

 
 
 
 
 

 
 
 

  
 

 

Holographic Phase Transitions  
and Gravitational Waves 

 
Mikel Sanchez Garitaonandia 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement 4.0. Espanya de Creative 
Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento 4.0.  España de Creative 
Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution 4.0. Spain License.  
 



Tesi doctoral

Holographic Phase Transitions
and Gravitational Waves

Mikel Sanchez Garitaonandia





Holographic Phase Transitions and
Gravitational Waves

Memòria presentada per optar al grau de doctor per la Universitat de Barcelona

Programa de doctorat en Física

Autor: Mikel Sanchez Garitaonandia
Director: David Julian Mateos Solé

Tutor: Joan Soto Riera





Acknowledgements

My P.h.D. is compiled of more than just the last four years of my life. From the day I got
actively interested in science the journey to where I am today every step has been important.
This includes all my choices, from the one of becoming an engineer to eventually wanting
something more and moving on to physics, but also people that crossed my path. When people
is what we talk about, a number of them deserve to be mentioned, as this was not a journey I
could have done on my own. Even if some of the people might not be around anymore, their
effect on my life is certainly permanent.

I would like to start first with those that have been there from the beginning of my existence,
my family. Both my mom and dad, for their unconditional love and support in every single
way since the very beginning. Special mention goes for my mom, with whom I have connected
even more over the last few years. Strong woman in character and mind but loving and caring
like no one. My older brother Iñigo, who has always played such a role and made me feel like
everything was going to be fine one way or the other. I have always looked up to you and today
is not an exception. His wife Virginia, her family and the new recruitment Iñiguin, bringing joy
and making home even more home. My grandma, that could only see the start of this thesis,
but I know how proud she would be and I am surely proud of being her grandchild. Her sister,
my uncle Javi with his curiosity for physics and his family. All of you deserve nicer words than
what my skills allow me to express and I will always be grateful for being part the family I
belong to.

Over the years in the field I had the chance of meeting very unique people.I could not start
with any one else than David, my advisor, mentor and much more than that. You have guided
me through the field, always had nice words for me and your support has been essential for my
success. You have showed me how to think in simple terms about very complicated physics and
taught me important lessons about academia too. I am very glad to have shared four years of
my live with you and I really hope we continue exploring physics together for many more years.
Jorge, who I consider my co-mentor, also supporting me when I needed it. Your way of viewing
physics, sometimes orthogonal to David’s, has brought very rich and fun discussions from which
I could not have benefited more and I would love to continue doing so. Special thanks go
also to Yago, who I see as my old brother in the field and whose presence in Barcelona was
extremely helpful during my first year, while I was still trying to understand what was going
on. Even today you still offer yourself to help me with anything. Oscar, for all the support and
knowledge about numerical relativity I got from you. Roberto, whose love for explaining made
me feel like what I was saying about black holes was not an atrocity (even if it was) and for
your support even when you did not know me that well. Tomeu and Enric, my first contacts
in the field, for being always very encouraging as they looked convinced that I could make it.
Miguel, for teaching me the rest of what I know about numerics and giving me the chance to
spend a wonderful month in Lisbon. Mark, Niko, Oscar and the whole Finnish group, who
taught me a lot about phase transitions and made my stay in Finland a bit warmer, if such a
thing is possible. And how could I forget the rest of the people that contributed in one way
or another to my development and a good group environment: Jaume, Xandre, Antonia, Aron,
Jorge, Federico, Ryotaku, Benson, Chris and Jacob, thank you all.

I could not refer to this as acknowledgements if I forget about the many people with whom I
have spent my free time and have provided me with a way of resting my brain from physics with
joy, fun and support too. From all of them I must start with my friends from San Sebastian:
Ignacio, Goñi Martin, Manu, Xabi, Yago, Asier, Pablo, Miguel, Sesio, Julen, Gaizka, Josue,
Kourt, Maria, Andrea, Ane and Eva. I feel very lucky to know you for so long. You always

i



make me forget the worst I can be going through with randomness, laughs and insane meals.
For many years already and many to come.

Since I left my home town I met a series of people who also made a difference. Guillermo,
Iñigo, Diego, Cristian, Ivan, Paula, Aniol, Marc, Carlos, Thanasis, Sascha, Fabian, Lais, Robert,
Rafa, Julieta, Jairo, Javi, Alan, Nikos, Albert, Ana, Quim and Jordi, all of you are very different
but each of you have brought your own speciality to my life. I also bring with me the names
Zoran and Zorica, always so warm and welcoming for the cheap price of getting fatter eating
delicious food while listening to bad jokes.

I am already starting to run out of names but there is one left before the end, probably
because I do not really know how to write words out of what I feel. You have taught me in
every possible sense of life, including physics. Your intensity in feelings when you are happy,
angry, sad, compassionate and empathic, all define the unique person you are and how you have
impacted me. All the absurd discussions we had about almost everything, all the impulsive fun,
all the love and tender you gave me and even all the fights are moments that I will look back to
with the warmest of feelings. Many things that you already know could be said, but one that
you might not seems very appropriate right now. At the time that I was sick and upset with
the world, determined to leave the field once the thesis was done it was you that insisted time
and again until you finally pushed me back to enjoying physics as I used to do when I firstly
moved into the field. Knowing myself no one but you could have made it. Only time will decide
whether I make it in this field, but for the moment you are one of the main persons to blame
for me being where I am standing today. Hvala ti puno, Marija.

ii



Resumen

En esta tesis doctoral nos centramos en el estudio de la física asociada a las transiciones de
fase y la emisión de ondas gravitacionales en el universo primitivo en teorías cuánticas de campos
fuertemente acopladas. El estudio se realiza mediante la dualidad AdS/CFT, traduciendo los
problemas de teoría cuántica de campos a problemas de gravedad clásica y dinámica de agujeros
negros.

Para ello comenzamos introduciendo Jecco: la herramienta de programación desarrollada
durante la tesis y que realiza simulaciones de evolución temporal en una teoría de gravedad
deformada con un campo escalar que introduce transiciones de fase.

Una vez explicado el algoritmo empleado, comenzamos a estudiar la física asociada a las
transiciones de fase. En el capítulo 3 encontramos el espacio de soluciones inhomogéneas pre-
sentes en toda transición de fase de primer orden a volumen finito, estableciendo la preferencia
termodinámica. En el capítulo 4 estudiamos la dinámica de colisiones de un tipo de solución
inhomogénea encontrada previamente, dominios de fase. Mediante simulaciones con diferentes
velocidades de colisión encontramos tres regímenes diferentes según incrementamos la velocidad:
colisión con estado cuasi-estático previo, colisión y relajación del dominio resultante sin estado
cuasi-estático y, finalmente, colisión y desfragmentación del dominio resultante.

El capítulo 5 pone su atención en el estudio de la dinámica de burbujas, de crucial impor-
tancia en la emisión de ondas gravitacionales en la colisión de estas. Obtuvimos la burbuja
crítica y la velocidad terminal de la burbuja para distintas temperaturas de nucleación. Con
este estudio observamos una relación lineal sencilla para la velocidad terminal de gran interés
y de difícil obtención mediante otros métodos de cálculo.

Finalmente, el capítulo 6 estudia el escenario en el que la nucleación de burbujas está
suprimida y en donde la dinámica sigue otra vía, la de la inestabilidad espinodal. Realizamos
la simulación completa de dicha inestabilidad y computamos el espectro de emisión de ondas
gravitacionales. Llegamos a la conclusión de que dicho espectro es muy diferente del de la
colisión de burbujas, pudiendo identificar correctamente el origen de la posible detección de
ondas gravitacionales en los interferómetros de próxima generación.
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Abstract

Cosmological thermal first-order phase transitions are assumed to proceed via the nucleation
of bubbles and subsequent expansion and collision. The out-of-equilibrium physics involved
during the collision of bubbles is expected to emit Gravitational Waves (GW) detectable by
future generation interferometers like the Laser Interferometer Space Antenna (LISA). The
Standard Model of Particle Physics (SM) as we know it does not exhibit any first order thermal
phase transitions, meaning that the detection of such GW emission would imply the direct
observation of new physics beyond the SM. For this reason, a good theoretical understanding of
the features of the GW spectrum emitted during first order thermal phase transitions, together
with an exploration of possible alternative mechanisms to bubble collisions is needed more than
ever. An accurate study of such emission implies knowing out-of-equilibrium properties of the
underlying Quantum Field Theory, which is known to be challenging even at weak coupling.

In this thesis we will employ the AdS/CFT, which has proven to be very useful in the study of
out-of-equilibrium physics at strong coupling, to investigate the properties of first order thermal
phase transitions and its application to the emission of GW in the early universe.

We start in by introducing Jecco, a program written in Julia and freely available. It evolves
in time Einstein’s Equations in a gravity theory with a simple scalar field that provides with
first order thermal phase transitions. The simulations are done in 3+1 dynamical dimensions
and, therefore the dual Quantum Field Theory has dynamics in 2+1. Jecco has been crucial
for the results shown in chapters 5 and 6.

Chapter 3 studies the space of non-uniform states at finite volume in a theory with a first
order thermal phase transition. This family of solutions is expected in generic first order transi-
tions. We studied their thermodynamic properties and dominance in different thermodynamic
ensembles. We additionally studied their dynamical (in-)stability and obtained the end state of
the time evolutions. We additionally observed that in the infinite volume limit the dominant
states tend to the well-known phase separated configurations.

In chapter 4 we went ahead and study the collision dynamics of phase domains. These
collisions where first observed in the full-time evolution of the spinodal instability. In this
chapter we set as initial data two identical phase domains with some velocity that we varied.
For low speeds we observed that the domains enter a quasi-static regime in which they moved
almost undeformed. Eventually the collision takes place, and the result is a larger phase domain
that relaxes by oscillating. For larger velocities the quasistatic regime disappears and for large
enough speeds the collision leads to a fragmentation. The eventual end state of all collisions is
a phase separated configuration.

Chapter 5 analyzes bubbles, their expansion and the critical one. We observed that the late
time expanding bubble profile is self-similar, and that hydrodynamics is applicable everywhere
but at the walls. Furthermore, we observed a possible simple relation for the wall velocity,
challenging to compute from first principles and important to estimate the GW emission in
collisions. We also obtained the critical bubble for a given nucleation temperature, relevant for
the nucleation temperature.

Finally in chapter 6 we argued that for theories with enough bubble nucleation probability
suppression, the universe might get into the unstable, spinodal branch before nucleating bub-
bles. At this point the exponential growth of unstable modes dominates the dynamics. We
performed the full-time evolution of the instability and computed the sourced GW spectrum.
The resulting spectrum seems qualitatively different to the bubble collision one and opens the
exciting possibility of being distinguishable in future interferometers.
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Chapter 1

Introduction

Little of what was lying ahead was suspected when a fundamental force of nature was successfully
quantized for the first time. Humans came up with more than just Quantum Electro Dynamics
(QED): a methodology for quantizing classical field theories was engineered, which subsequently
gave rise to the framework of Quantum Field Theory (QFT). As a result, the twentieth century
turned out to be one of the most exciting eras in physics. In a matter of a hundred years, human
kind went from discovering the electron1 all the way to the discovery of the Higgs boson back
in 2012 [1], the last missing piece of the well-known Standard Model of Particle Physics (SM).
During this period, theory and experiments walked along hand to hand producing success after
success. Theoretical physicists would not stop coming with predictions while experimentalists
learned that smashing particles against each other at speeds practically that of the light would
allow them to uncover a whole universe of new particles.

With the completion of the SM, this frenetic era seems to have taken a break. Experiments
currently conducted at the Large Hadron Collider (LHC) do not seem to spot radical deviations
from the theory. Even if some of the data indicates that we might be in front of new physics
(like the recent muon g− 2 anomaly [2])), a big discovery comparable to the direct observation
of a new particle is not expected any time soon. Nevertheless, that the SM has been completed
does not mean that we are done with fundamental physics. Among other unsolved questions
we find: the Higgs mass naturalness problem, the need to account for neutrino masses, dark
matter and dark energy, matter-antimatter asymmetry and, last but not least, the quantization
of gravity. Even within the SM, important questions remain unanswered. A clear example is
our ignorance about the phase structure of Quantum Chromodynamics (QCD), the theory of
strong interactions. This means, for instance , that we cannot say much about the state of the
universe around 10−6 after the Big Bang.

This is the context in which two new type of experiments are creating a lot of excitement
in the field. These are the Heavy Ion Collision (HIC) and Gravitational Wave (GW) detection.
The former hopes to explore the properties of the QCD matter in extreme conditions while the
latter will hopefully give us information about some regions of the QCD diagram as well as
directly observing new physics beyond the SM.

1.1 QCD in extreme conditions

The theory of strong interactions as we know it was developed during the 70s, being an extension
of the Yang-Mills theory [3]. The main qualitative difference with QED is the fact that the force
carriers, the gluons, are charged under the same force. In more technical terms, QCD is a non-
Abelian theory, which has important consequences, as we will see. The Lagrangian for this this

1Although this discovery was a pre-QED one
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Chapter 1 Introduction

theory with a single quark looks very simple,

L =
3∑

i,j=1
ψ̄iiγ

µ
(
∂µδij − ig(Ta)ijAaµ

)
ψj −mψ̄iψi −

8∑
a=1

1
4G

a
µνG

µν
a , (1.1)

with ψ being the quark field, Aaµ the gluon ones, with field strength Gaµν . The coupling constant
is g while i and a are color charge index for the quark and the gluon respectively. The gluon
quark indices run from 1 to 8 when the number of colors Nc = 3 because they belong to a
different representation of the SU(Nc) symmetry group. For general Nc, quarks will have Nc

color degrees of freedom while gluons N2
c − 1.

In spite of its apparent simplicity, obtaining meaningful results from this Lagrangian has
proven to be a great challenge. The theory becomes strongly coupled for low energies, so
perturbation theory is not helpful. Perturbation theory is one of the few approaches with which
we know how to extract results out of QFTs, and it is based on the possibility of thinking
of the theory as a set of asymptotically free particles that come closer to feebly interact and
produce another set of asymptotically free particles. Mathematically, everything boils down to
the possibility of performing an expansion around g = 0.

At high energies, the coupling g becomes smaller and tends to zero and perturbation theory
becomes a good approximation for energy scales considerably bigger than the characteristic scale
QCD possess, ΛQCD = 210MeV2. This scale is small enough to study the high energy collisions
at accelerators with perturbation theory, whose predictions have been well corroborated by the
data. As a consequence, QCD became a huge success and was accepted as the theory to explain
strong interactions, beating string theory along the way3.

Despite the success at colliders, some of the interesting physics encoded in (1.1), expected
to happen at around ΛQCD, is yet to be uncovered fifty years after its formulation.

1.1.1 Phase Diagram

It is said that the universe today is a cold place. Cold for whom? The center of the sun, with
a temperature of Tsun ∼ 107K, looks like an extremely hot place. For nuclear matter,

Tsun � TQCD = ΛQCD
kB

∼ 1012K, (1.2)

the center of the sun is a freezing spot. As a consequence, all quarks and gluons of the universe
are confined inside hadrons, like protons and neutrons, unable of setting themselves free. This,
however, was not the case throughout the history of our universe. Looking back, the universe
was denser and hotter and, at sufficiently early times, its temperature was comparable to TQCD.
Around this temperature, a transition that sets the quarks and gluons free from the nucleons
is expected, also known as deconfinement. The motivation to think so is that at very high
temperatures thermal fluctuations are strong enough to break apart the hadrons, deconfining
the quarks and gluons inside, and the transition should happen somewhere near ΛQCD. This
high temperature soup of deconfined quarks and gluons was baptised Quark-Gluon-Plasma
(QGP).

A very interesting question is how did the universe cool down from a QGP phase to a
hadronic one. Was it smooth or abrupt, i.e. was there any phase transition? And if so, what
kind of phase transition was it? More generally one could ask how does the QCD phase diagram
look like. Perturbation theory cannot say much because most of the transitions are expected to
happen when either the temperature or the baryon charge is of the order of ΛQCD, for which

2This scale, not present in (1.1), appears when quantizing the theory and its value has to is extracted from
experiments. It is present even for the Yang-Mills theory, where there is no energy scale present in its Lagrangian.
The appearance of ΛQCD is the reason why g will change with the energy scale of interest even if it is dimensionless

3Of course string theory became much more than an attempt to study strong interactions

4



Chapter 1 Introduction

g & 1. There are two more tools to try to tackle this issue. We either use effective theories,
which will be not covered here, or one turns to a lattice formulation of QCD. This formulation
of QCD, or simply Lattice QCD, is simple in spirit. We just take the QCD Lagrangian and
perform the path integral in euclidean signature,

Z =
∫
DψDA exp

[
−
∫ β

0
dτd3xLEQCD

]
, (1.3)

with discretized spatial directions. Here τ is the compactified euclidean time with period re-
lated to the temperature, β = 1/T . We can view this formula as a sum over all possible field
configurations whose probability is given by the exponential term. Discretization maps field
configurations to a finite set of randomly generated variables following said probability distri-
bution. This approach is completely valid as long as we consider vanishing baryonic chemical
potential, µB. Turn it on and we need to add a term to the action that can evaluate to complex
values in euclidean signature, so we can no longer interpret the exponential of the action as a
probability distribution. This is essentially the sign problem. Nevertheless, the community is
able of computing observables at finite baryon charge perturbatively in µB/T by obtaining high
order derivatives with respect to µB for µB = 0.

Figure 1.1: Hypothesized QCD phase diagram, taken from [4]. At low temperatures and baryon
densities we find hadrons, while at high temperatures and densities we transition to the QGP. In the
cold but dense region the phase present in the inside of neutron stars is expected.

With this tool the transition for small baryon charge was computed and a crossover was
discovered, as shown in Fig. 1.1. Breaking up the proton into its constituents is a rapid but
smooth process. For slightly larger baryonic chemical potential a more rapid crossover is found,
suggesting a possible second order phase transition at finite µB. Additional intuition from other
models [5] suggest that there is a critical point from where a first order phase transition line
arises. Observable signatures of the critical point are expected to become relevant when matter
is in the vicinity of it, see e.g. [6, 7], so experiments that try to generate conditions nearby the
critical point are of high interest.

How do we get to such hot and dense conditions? In a similar way to how we uncovered
a whole spectrum of subatomic particles, by smashing particles against each other in colliders.
However, a phase is a thermodynamic concept, meaning that its properties manifest themselves
when considering a large enough amount of particles; indeed, we cannot even define a tem-
perature when considering a handful of them. In practice, heavy ions are collided, where a
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Chapter 1 Introduction

larger amount of particles take part per collision, and the baryonic charge can be controlled by
controlling the energy at the collision. At high energies the valence quarks, the baryon number
carriers, barely interact with each other while the virtual sea of gluons and quark anti-quark
pairs are the ones that collide, giving rise to a QGP at very low baryon density. As the energy
at the collision drops the valence quarks interact more strongly, increasing the baryonic charge
of the resulting QGP. Evidence of the discovery of a QGP-like phase was announced at the
Relativistic Heavio Ion Collider (RHIC) back in the early 2000s.

The RHIC Beam energy scan is already producing higher µB collisions and the Nuclotron-
based Ion Collider fAcility (NICA), Compressed Baryonic Matter Experiment (CBM) and the
J-PARC heavy ion project (J-PARC-HI) will also produce high µB collisions that will hopefully
allow us to observe the predicted critical point together with the first order phase transition
line.

Finally, the reader might be wondering how could we explore the high charge density, low
temperature regime if in collisions a lot of energy is deposited ino the QGP by construction. The
answer is that gravity does the job by creating neutron stars out of certain dying stars. Neutron
stars are known to consist of neutrons in their crust, but many hypothesis turn around the core
state of matter, whose conditions are more or less where the question marks lie in Fig. 1.1. The
challenge relies in extracting information out of the core of a neutron star. Fortunately, gravity
has the answer again.

In 2015, the first ever detection of Gravitational Waves was announced at the Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO) [8]. This detection came from the merger
of two black holes. Later, in 2017, a new kind of detection was made, namely one sourced by a
neutron star binary system [9], and not long ago a black hole neutron star merger was observed
[10]. Detections like this will help us determine the properties of the core of neutron stars.

1.2 Gravitational Waves from Cosmological Phase Transtitions

The huge hype that the advent of Gravitational Wave astronomy has brought is not only due to
study of astrophysical processes; there is also chance of directly discovering new physics. While
direct evidence of new physics at colliders in the traditional way (by new particle observation)
possibly means building a collider of unknown scale, the early universe naturally offers a high
energy state. In the previous section we mentioned the hadron deconfinement in the early
universe, but any other similar transition could have happened in other sectors of matter at
even earlier times.

The difficulty relies in accessing the information of the early universe. The Cosmic Microwave
Background (CMB) represents the oldest light that we can receive. Earlier in time the universe
was too hot for atoms to form and photons were insatiably scattered, so the universe was opaque.
Hence, the farthest we can look back is the time of the CMB. Back then the universe was at
a temperature of TCMB ∼ 0.25eV , which is a very low temperature for QCD, even lower for
the Electro-Weak (EW) sector (TEW ∼ 100GeV) and ridiculously low for some proposed new
physics. Hence, the CMB does not contain what we look for4. Gravitational Waves, on the
contrary, can travel from the time of emission all the way to us in the present even if they were
sourced in the very early universe. The limit is presumably when the universe temperature was
at the Planck scale, Tp ∼ 1019GeV.

Some cosmological events might be capable of producing a stochastic gravitational wave
background. One such event is thermal first order phase transitions.

4Gravitational waves can leave an imprint in the polarization of the CMB light, but this corresponds to a
restricted amount of the information they carry
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Figure 1.2: Schematic temperature dependence of the energy for a generic theory with a first order
thermal phase transition. For Ts < T < T ′s the energy is multivalued. In solid-blue we have the
thermodynamically preferred states, in dashed-brown the metasteable states and in dash-dotted-red the
thermodynamically unstable ones.

1.2.1 New physics from first order phase transition Gravitational Waves

Let us consider a generic theory with a thermal, first order phase transition. Fig. 1.2 shows the
typical relation between the energy of the different thermodynamic states and their temperature.
The transition comes from the fact that, for a given temperature between Ts and T ′s, the system
has more than a single available state. The state that thermodynamically dominates for each
temperature is the one with lowest free energy. Such analysis leads to the conclusion that at
high temperatures high energy states are favored while at low temperatures the low energy
states are preferred. In solid-blue we represent the thermodynamically preferred states. In
dashed-brown we depict those states that are locally stable but not globally, i.e. metastable,
and in dash-dotted-red those that are additionally locally unstable. The transition happens at
a critical temperature Tc in a discontinuous way, jumping from A to B.

Now assume the universe was cooling down following the high energy branch in Fig. 1.2.
At some temperature Tc < T < T ′s, the universe has two locally stable states available. This
idea is clearly seen in the concept of the effective potential, which is a function that depends in
some (family of) parameter that distinguishes among phases and its extrema correspond to the
different equilibrium states of our system. The parameter can be an order parameter or some
thermal expectation value that takes different values in different phases. The two minima are
the high and low energy phases at a given temperature while the maxima is the intermediate,
locally unstable one. At the equilibrium points the value of the potential coincides with the free
energy.

For Tc < T < T ′s, the effective potential looks like the blue curve in Fig. 1.3, the universe
being in the high energy branch, or the global minima. As the universe continues expanding it
cools down locally, the difference in free energy between both minima diminishes and eventually
acquires the same value at Tc. From this moment on, the universe no longer finds itself in the
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Figure 1.3: Effective potential for the theory Fig. 1.2 different temperatures. At T = Tc the both
minima are equally favoured and for lower T the second minima is preferred.

global minima, as seen in the green curve in Fig. 1.3.
Due to the local stability of the state, small thermal fluctuations will not take the universe

out of the local minima, they will be reabsorbed. However, given enough time the fluctuation
will be large enough to surpass the barrier in between the two minima. These fluctuations are
bubbles, and the minimal fluctuation that overcomes the barrier is called the critical bubble.
Anything smaller will collapse while bigger ones will drive the universe out of the metastable
state towards the global minima. The critical bubble is an unstable solution then.

The probability of such fluctuation happening is exponentially suppressed. To be more
precise, the probability per unit time and volume for the critical bubble to be nucleated is5 [11],

Γ
V
∼ T 4e−SCB(T ), (1.4)

where SCB is the action of the critical bubble configuration at temperature T . The exponent
can be interpreted as the difference in free energies between the bubble and the metastable state
of same temperature.

The relevant question is, can at least one bubble nucleate , for a given characteristic cooling
rate given by the Hubble constant H ∼ T 2/Mp. We will take a close look into it in chapter 6

If nucleation occurs, some bubbles will expand while others collapse. Those expanding will
accelerate and grow in size until the terminal velocity, imposed by the friction outside the wall, is
reached. This process is, despite small fluctuations, spherically symmetric and no gravitational
wave emission is expected. However, whenever two or more bubbles encounter each other and
collide, the symmetry of the fluid motion breaks sourcing a large amount of gravitational waves.

Studying bubble collisions from first principles is a great challenge, but one can hope that,
due to the big size of bubbles in a typical collision, gradients are very diluted and hydrodynamics
is applicable. By simulating the bubble collisions one can take use the hydrodynamic stress
tensor and use it as a source for linearized gravity equations. See a recent example in [12]
together with videos of the simulations in https://vimeo.com/showcase/5968055 .

With the intuition acquired from hydrodynamic simulations, a model that allows for fast
estimation of the gravitational wave spectrum given some parameters of the theory can be found
in equation (8.24) of [11]. We do not need to display it here for our purposes. We just want
to point out that all required parameters but one, the bubble wall velocity, are equilibrium

5In ~ = kB = c = 1 units for the rest of the chapter
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Figure 1.4: Estimation GW spectrum emitted by the bubble collision and comparison with LISA
sensitivity. The spectrum is peaked at the relevant macroscopic scale, the mean bubble separation at
the time of collision. Figure taken from [18].

properties. Determination of the wall velocity is difficult even at weak coupling [13–15]. The
fact that the spectrum is specially sensitive to it (see e.g. [16, 17]) makes its computation
not just challenging but pressing. Moreover, the determination of a heuristic, simple relation
between the velocity and equilibrium properties of the theory could be of substantial help when
performing estimations.

The qualitative shape of the spectrum is shown in Fig. 1.4. It grows with a certain power law
until a peak and then it falls with a different power law. A spectrum consisting on two different
power laws is denoted a broken power law. The peak location is set by the main macroscopic
scale of the problem, the mean bubble separation at the time of collision. This quantity can be
computed estimating the density of bubbles in the universe using the nucleation rate (1.4), see
(7.21) in [11] for details.

Where does the new physics come around in all of this story? From the fact that the Standard
Model as we know it exhibits no phase transition at all. We already saw that hadronization
happens smoothly for low µB while Fig. 1.5 shows that for the value of the Higgs mass we
measure, mH ∼ 125GeV, the Electro-Weak transition is a smooth one too. Therefore, if any
stochastic background coming from a first-order phase transition is detected it must be from
physics beyond the Standard Model.

The sector responsible for the phase transition may range from an extension of the Standard
Model to a hidden sector coupled only gravitationally to the former. In the first case, the
transition could take place at any scale between the Electroweak scale and the Planck scale
∼ 1019 GeV. For example, the Electroweak crossover turns into a first-order phase transition
even in minimal extensions of the Standard Model [19–29], resulting in a GW frequency in the
mHz range potentially observable by LISA [18]. In the second case, the transition could take
place virtually at any scale. As an example, string theory compactifications often feature a
large number of hidden sectors that are only gravitationally coupled to the Standard Model
degrees of freedom. Phase transitions in these sectors can lead to a sizeable gravitational wave
background [30–33] whose frequency can span the whole range of parameter space that will
be explored by current and future interferometers. This includes the high-frequency range &
30 kHz, where new technologies are necessary [34], but also where conventional astrophysical
foregrounds are absent.

One can rightfully wonder if the inevitability of bubble nucleation means that the story we
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Figure 1.5: Electro-Weak phase diagram. For a the value of the Higgs meassured the transition was a
smooth crossover. Figure taken from [11].

just told is the only possible fate of the universe as it cools down across a first order phase
transition. The answer lies once again in how fast the universe cools down and if it can get out
of the metastable branch while bubbles did not have time to grow enough. If that is the case,
the instability of the red branch in Fig. 1.2 will dictate the resulting dynamics. This instability
is called the spinodal instability. For this to happen is easy to believe that the nucleation rate
should be highly suppressed. This is the main motivation for chapter 6 and we will go into
details there. The conclusion for now is that there is an alternative way in which a phase
transition can occur in the early universe, that it also sources gravitational waves and that it is
important to know if it can be distinguished from the spectrum of colliding bubbles shown in
Fig. 1.4.

1.3 Why Holography?

So far it has become clear that trustworthy theoretical predictions for next generation exper-
iments require the knowledge of out-of-equilibrium properties of QFTs. Obtaining them is
intrinsically difficult even at weak coupling and in the case of HIC experiments, strong coupling
cannot be overlooked. Perturbation theory fails at strong coupling while Lattice QCD is finding
a big obstacle with the sign problem. New approaches are welcome.

Fortunately, a duality of particular interest for our purposes was spotted around twenty
years ago [35], the AdS/CFT duality. Roughly speaking the duality is between string theory
in Anti de Sitter (AdS) spacetime, of constant negative curvature, in d + 1 dimensions6 and
N = 4 SU(Nc) Super-Yang-Mills theory in d dimensions, a supersymmetric generalization of
the Yang-Mills theory mentioned earlier. The latter is a theory known as a Conformal Field
Theory (CFT), a QFT with no intrinsic scales. At this stage it might not look very useful for
our purposes, the theories we are interested in are neither string theory nor CFTs. Even before

6AdSd+1×S5, but we will forget about the sphere from now on. We can imagine we did dimensional reduction
of the sphere and the result is a tower of massive fields that live in AdSd+1.
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getting to that point, we do not really know how to deal with strings in AdS.
The relation between the parameters in both sides of the duality is,

g2Nc ∼
(
`

`s

)4
, g2 ∼ 4πgs, (1.5)

where gs is the string coupling, `s its length, ` the radii of AdS and g the SYM coupling. By
taking g → 0 but Nc →∞ in such a way that g2Nc →∞, the string theory dual corresponds to
weakly interacting strings of size much smaller than the AdS radius. This limit of string theory
is a classical theory of gravity7. In other words, we are considering a strongly coupled CFT
with a large number of colors as to be described by General Relativity in a higher spacetime
dimension. We already start seeing the potential of such duality. We can map out-of-equilibrium
problems of a quantum theory to a classical one. Everything boils down to time evolving Einstein
Equations with appropriate asymptotic conditions, which, fundamentally speaking, should not
be an obstacle. In mathematical terms, the duality means that the partition function of each
side of the duality matches,

ZCFT [J ] = Zgravity[φ|∂AdS = J ] ∼ exp
{
−Son−shellgravity [φ|∂AdS = J ]

}
. (1.6)

Sources J on the CFT side are identified with the boundary conditions of fields φ|∂AdS on the
gravity set up (φ is a generic field, not necessarily a scalar one) and we use the saddle point
approximation in the last step.From the equation we can also interpret that the CFT lives on
the AdS boundary. We can obtain point functions of the boundary theory by making variations
with respect to its sources, the boundary conditions for the fields living in the gravity side (the
bulk),

〈Tµν〉 = − 2√
−g0

δSon−shellgravity

δgµν0
, (1.7)

where the 0 subscript means the boundary value. Specific expressions will be given in chapter
2, but one can imagine how we could compute arbitrary point functions of boundary operators.

An immediate question is, what are black hole states dual to? From the bulk perspective,
black holes are thermal states that have huge entropy. A deconfined state on the CFT has
N2
c − 1 ∼ N2

c color degrees of freedom (recall gluons), which is also enormous in our limit. It is
then tempting to say that black holes are dual to deconfined thermal states. The computation
leads to,

S ∼ N2
c T

3, 〈Tµν〉 ∼ N2
c T

4, (1.8)

for a black hole of temperature T . The temperature and entropy are not computed as the rest
of the quantities, they are identified with the horizon properties. These results are what we
expect for a SU(Nc) CFT, where the only energy scale is the temperature of the state. This
is true for very large black holes compared to `, which is our case, as we will work in the so
called Poincare patch. In this patch black holes do not look compact, they are black branes
that extend indefinitely along the boundary directions.

We are now in position of computing out-of-equilibrium properties of a CFT. We just need
to consider classical black brane dynamics. And how do we break conformal invariance? We
add classical matter fields to our gravity theory, bringing the scale to the setup. We will do
it in a phenomenological way, meaning that we will deform the bulk gravity theory by adding
matter in the simplest possible way so that the resulting theory exhibits a desired property.
These kind of models are referred to as bottom-up models. In this thesis we only add a scalar
field that breaks the conformal symmetry (details in chapter 2), but one can add other type of
fields, like Maxwell fields, which turn on a chemical potential on the boundary.

7Supergravity to be precise.
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One should note that the community has already applied the duality to study all sorts of
strongly coupled QFT setups: HIC [36–45], neutron stars [46–54], confinement and its possible
diagnosis [55], RG flows [56–58], the QCD critical point models [59, 60], hydrodynamics in the
presence of phase transitions [36, 61–65] and condensed matter systems among others [66–74].

1.3.1 Just a tool?

Despite treating the duality as a tool so far, one should avoid thinking of AdS/CFT in such way;
after all it contains a universe in itself. AdS/CFT is a precise realization of a more general, and
diffuse principle known as holography. Holography is the principle stating that the fundamental
degrees of freedom of gravity are encoded in a lower dimensional surface. A simple place where
motivation for this principle can be found is in the Bekenstein-Hawking entropy formula for a
black hole of area A,

SBH = A

4G, (1.9)

which suggests that the information hidden by black holes scale with their area instead of their
volume, as we are used to.

We could very well spend the rest of this thesis discussing holography, but that would be
beyond our purposes. In few words we can say that holography is a quantum theory of grav-
ity. It has helped us understand many non-classical features of gravity. As an example, new
progress has been made recently in the black hole information paradox, the interpretation of
quantum gravity as an ensemble average of theories or information about dynamically formed
singularities, see e.g. [75–78].

The content of this thesis is distributed as follows. In chapter 2 we will introduce the tech-
nical details we use to evolve in time Einstein’s Equations and a motivation for the model we
use will be given, based on section section 2 of [79], where our newly developed code Jecco is
introduced. We will then proceed to study the physics of phase transitions with this model. We
start by discussing families of inhomogeneous solutions in chapter 3 [80] and then move to study
the collision dynamics of phase domains in chapter 4 [81], an important inhomogeneous config-
uration in theories with phase transitions. We will then move into the realm of gravitational
waves from cosmological phase transitions. We will start by discussing the dynamics bubbles
in 5, namely its expansion and wall velocity and the determination of the critical bubble. This
chapter is based on the work in [82] and section 3 of [79]. Finally, in chapter 6, we will explain in
detail the possibility of getting gravitational waves out of an alternative process in theories with
first order phase transitions and we will obtain such spectrum out of our time evolution [83].
Finally, we will give some general conclusions together with some possible interesting future
directions.

Chapters 3 and 4, and section 5.4.1 study setups with dynamics along one spatial dimension.
For them, Jecco’s predecessor, SWEC, was used. It was already existing at the time this thesis
began and only the gravity model had to be slightly modified. Its time evolution algorithm is
analogous to what will be exposed in chapter 2.

12



Chapter 2

Holographic model and time
evolution algorithm: Jecco

In this chapter we will introduce both the holographic model we will use throughout the thesis
together with the techniques that are employed to do full, non-linear time evolution of the
Einstein’s Equations. We will start by motivating the family of models under consideration
and we will then move on to describe how to derive the equations of motion, what possible
redefinitions are needed and a rough view of the details needed to numerically implement these
equations. We will also provide with the expressions that one gets when applying the holographic
dictionary to obtain the boundary one point functions in terms of the bulk metric and fields on
our coordinates. The resulting numerical code arising from this chapter was named Jecco and
can be found at github https://github.com/mzilhao/Jecco.jl and Zenodo [84].

The explanation given here intends to be a conceptual framework of the procedure we follow
so that the picture of what Jecco does is clear. More detailed explanation can be found in [79].

We will work in the Poincare patch of AdS and we will use the so called characteristic
formulation. This formulation is different to the usual Cauchy one in the sense that we will
provide initial data on a null slice instead of a space-like one. Given some initial data, plus the
usual boundary data required in AdS-like spacetimes, we will evolve in time from null slice to
null slice, each of them attached at a different time coordinate of the boundary. See Fig. 2.1 for
a schematic representation of the process. The boundary is located at r =∞.

The advantage of this formulation is double fold. First, the equations end up in a very
nice nested structure of radial Ordinary Differential Equations (ODE) for each grid point (x, y)
where we can almost sequentially solve for the different functions. Second, our initial data
includes a few bulk functions plus some boundary ones and no constraint has to be satisfied, in
contrast with Cauchy formulations. The drawback is that the Characteristic formulation tends
to form caustics (light rays that cross each other in two points) under time evolution..

Our black holes are non-compact, they are black branes, and whatever happens beyond the
event horizon is of little interest as it is causally disconnected from the outside. We will cut
out and not consider anything beyond some rmin < rEH , where the latter is the event horizon
position. Instead of the Event Horizon (EH) , which is of tautological definition, we will consider
the Apparent Horizon (AH), which is always inside the EH under classical evolution. We will
only consider a patch like the one in brown in Fig. 2.1. One could expect that under reasonable
conditions, caustics will tend to form deep beyond the horizon, which is precisely not described
by our numerical grid. As a consequence, the Characteristic formulation is widely used for
applied holography problems while abandoned for other numerical relativity ones. Caustics do
not seem to be putting up any problems. Nevertheless, it might be that for more unconventional
evolutions caustics end up forming within the grid.

By giving some initial data in the null t0-slice of Fig. 2.1, together with boundary conditions
for all boundary times (like the boundary background metric) we perform the numerical time
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Figure 2.1: Penrose diagram of the evolution procedure, at constant x, y slices. The shaded
region represents the region covered by the computational domain.

integration of the Einstein’s Equations and use the holographic dictionary to obtain the desired
one point functions at the boundary theory as a function of (t, x, y). The expression we will
find are well defined regardless of our system being out-of-equilibrium. Our approach is similar
to that of [85] and generalises the code presented in [38] to the 3+1 dimensional case.

In what follows we will go into the details of how to implement this procedure and the
equations in question. Tests for our code are also summarized here. We use G = c = ~ = kB = 1
units throughout.

2.1 Model

We consider a five-dimensional action (3+1 boundary theory) consisting of gravity coupled to
a scalar field φ with a non-trivial potential V (φ). The action for this Einstein-scalar model is

S = 2
κ2

5

∫
d5x
√
−g

[1
4R−

1
2 (∂φ)2 − V (φ)

]
, (2.1)

where κ2
5 is the 5D gravitational coupling constant, κ2

5 = 8π. Our potential V (φ) comes from a
superpotential W (φ) with the form

`W (φ) = −3
2 −

φ2

2 + λ4 φ
4 + λ6 φ

6 , (2.2)

being ` is the AdS5 radius. The existence of a superpotential is not mandatory and it was
considered here as it brings technical conveniences, namely the horizonless problem reduces to
first order ODEs. The potential is then derived via

V = −4
3W

2 + 1
2W

′2,
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resulting in

`2V (φ) = −3− 3
2φ

2 − 1
3φ

4 +
(4λ4

3 + 8λ2
4 − 2λ6

)
φ6 +

(
−4λ2

4
3 + 4

3λ6 + 24λ4λ6

)
φ8

+
(

18λ2
6 −

8
3λ4λ6

)
φ10 − 4

3λ
2
6 φ

12 . (2.3)

In these equations λ4 and λ6 are freely specifiable dimensionless parameters related to the
parameters φM and φQ used in e.g. [58, 80] through

λ4 = − 1
4φ2

M

, λ6 = 1
φQ

. (2.4)

The dual gauge theory is a non-conformal theory obtained by deforming a conformal field
theory (CFT) with a dimension-three scalar operator Oφ of source Λ,

S4D ∼ SCFT +
∫
d4xΛOφ (2.5)

The source Λ is an intrinsic energy scale for the gauge theory that will set the characteristic
scale of much of the physics of interest. On the gravity side, Λ appears as a boundary condition
for the scalar φ (we will refer to it as φ0). When setting λ6 = 0, the sextic term in W is absent
and the model reduces to that studied in the past in [36, 61, 63].

The motivation for our choice of model is that it is possibly the simplest one with a number
of desirable features. The presence of the scalar φ breaks conformal invariance. The first two
terms in the superpotential are fixed by the asymptotic AdS radius and by the dimension of
the dual scalar operator, O. The quartic term in the superpotential is the simplest addition
that will allow for thermal phase transition in the gauge theory (for appropriate values of λ4
and λ6). The sextic term in the superpotential guarantees that the five-dimensional geometry
is regular even in the zero-temperature limit.

Throughout this work we will set λ6 = 0.1 for convenience and we will play with the value
of λ4. This provides us with a full family of theories with a critical value of λ4, λ∗ ' −0.17.
When λ4 < λ∗ the theory manifests a first order phase transition, for λ4 > λ∗ the transitions
is a crossover and precisely at λ4 = λ∗ the transition is second order. As it will become clear
in the following chapters, different choices of λ4 within the first range give raise to manifestly
different first order phase transitions. This differences are both quantitative and qualitative and
the set up under consideration will motivate us to take different values for λ4.

Let us point out that even if we will always make use of the particular potential (2.3), the
code implementation is such that more generic potentials can be used provided that, for low
values of the scalar field, they behave as

`2V (φ) = −3− 3
2φ

2 − φ4

3 +O
(
φ6
)
. (2.6)

The constant term is fixed by the 4+1 dimensional AdS asymptotics and the quadratic one is
in correspondence with the scaling dimension of the dual scalar operator Oφ. The quartic term,
determined by the other two in our case, ensures the absence of a conformal anomaly, which
would give rise to logarithms in the asymptotic expansions. A change in this near boundary
behaviour of the potential would alter the hard-coded asymptotic expansions together wit the
convenient variable redefinition introduced later.

Unless otherwise stated let us set ` = 1 from now on.
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2.2 Equations of motion and characteristic formulation

The dynamical equations of motion resulting from (2.1) read,

Eµν ≡ Rµν −
R

2 gµν − 8πTµν = 0,

Φ ≡ �φ− ∂φV (φ) = 0,
(2.7)

where
8πTµν = 2∂µφ∂νφ− gµν

(
gαβ∂αφ∂βφ+ 2V (φ)

)
.

As usual we need an ansatz in order to solve the problem. We will work in ingoing Edington-
Finkestein (EF) coordinates. The reader should be aware that we will denote the ingoing null
direction by t, instead of the usual v. The reason is that t coincides with a boundary observer
time. The ansatz looks as follows,

ds2 = gµνdx
µdxν = −Adt2 + 2dt (dr + Fxdx+ Fydy) + S2

[
e−B1−B2 cosh(G)dx2

+ eB1−B2 cosh(G)dy2 + 2e−B2 sinh(G)dxdy + e2B2dz2
]
,

(2.8)

where all functions depend on the radial coordinate r, t and transverse directions x and y.
Nothing depends on the coordinate z, so this is effectively a 3+1 system. From the boundary
point of view, r = ∞, the functions only depend on (t, x, y), so we have a system with 2+1
dynamics. The (x, y, z) part of the metric, dt = dr = 0, might look cumbersome but it has a
motivation. It is the shape it acquires once we impose that S should capture the volume of this
slices, √

g|dt,dr=0 = S3.

In chapters 3 and 4 we will restrict ourselves to dynamics in 2+1 (1+1 at the boundary). This
is achieved by setting,

Fy = G = 0, B1 = 3
2B, B2 = 1

2B, or

Fx = G = 0, B1 = −3
2B, B2 = 1

2B,
(2.9)

for non-trivial dependence only along the x or y direction respectively. If we now denote the
dynamical direction as z and use Σ for S we make contact with the notation in [38]. There is
still a residual diffeomorphism, or gauge, symmetry that will play an important role,

r → r̄ = r + ξ(t, x, y) ,
S → S̄ = S ,

B1 → B̄1 = B1 ,

B2 → B̄2 = B2 ,

A→ Ā = A+ 2∂tξ(t, x, y) ,
Fx → F̄x = Fx − ∂xξ(t, x, y) ,
Fy → F̄y = Fy − ∂yξ(t, x, y) .

(2.10)

This corresponds to radially shifting r-constant slices in a different way for each x and y. It
will be useful to set the AH at a constant r coordinate for convenience. Upon substitution of
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ansatz (2.8) in the equations of motion (2.7), we obtain a set of coupled radial ODEs for the
functions to solve and their dotted version, defined as,

ḟ ≡
(
∂t + A

2 ∂r
)
f. (2.11)

If we solve them we could use this definition to immediately obtain the ∂t of all required functions
and evolve to the next time step. However, by taking specific combinations of the equations,
shown in Table 2.1, we can decouple the equations to great extent. This is the nested structure
we were mentioning earlier, equations are fairly decoupled and can be solved sequentially. Each
of the equations is a linear ODE that looks like,

[
A(t, u, x, y) ∂2

u + B(t, u, x, y) ∂u + C(t, u, x, y)
]
f(t, u, x, y) = −S(t, u, x, y), (2.12)

where u ≡ 1/r, f is the corresponding function to be solved for and the coefficients A, B, C and
S are fully known at each step of the nested scheme.

Table 2.1: Nested structure of the equations of motion.
Function(s) Combination

S Err
Fx Erx − gtxErr
Fy Ery − gtyErr
Ṡ Etr − 1

2gttErr
φ̇ Φ
A Ezz

gzz
+ (grygty + grxgtx)Err + 2grx (Erx − gtxErr) + 2gry (Ery − gtyErr)
−4
(
Etr − 1

2gttErr
)

+ 2Exygxy
+ gxxg

xx
(
Eyy
gyy

+ Exx
gxx
− 2Exygxy

)
Ḃ2 Ezz
Ġ Exy
Ḃ1 Eyy

S̈ Ett − 1
2gttEtr −

1
2gtt

(
Etr − 1

2gttErr
)

Ḟx Etx − 1
2gttErx − gtx

(
Etr − 1

2gttErr
)

Ḟy Ety − 1
2gttEry − gty

(
Etr − 1

2gttErr
)

Those equations that are grouped in pairs are coupled and have to be solved simultaneously
for both functions. The only difference will be that in (2.12), the coefficients will become
matrices.

The explicit form of the equations is not illuminating and are very long, so they are collected
at the appendix, see (A.2-A.10).

2.2.1 Near the boundary

As it is customary in asymptotically AdS spacetimes, we are interested in how the metric
and matter fields behave near the AdS boundary. In the first place because the way different
functions approach the boundary will give us the field theory observables and, secondly, because
some of the functions vanish and others blow up at the boundary, which is not numerically
convenient. We will expand in powers of u and solve order by order the differential equations.
This will give us the relations between coefficients, which ones are truly independent and what
constraints are they forced to obey. With this we will later obtain the boundary one point
functions and we will perform appropriate variable redefinitions so that functions that diverge
or vanish at the boundary are replaced by others that remain always of order one.
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The resulting boundary expansions are,

A(t, u, x, y) = 1
u2 + 2

u
ξ + ξ2 − 2∂tξ −

2φ2
0

3 + u2a4

− 2
3u

3 (3ξa4 + ∂xfx2 + ∂yfy2 + φ0∂tφ2) +O
(
u4
)
, (2.13a)

B1(t, u, x, y) = u4b14 +O
(
u5
)
, (2.13b)

B2(t, u, x, y) = u4b24 +O
(
u5
)
, (2.13c)

G(t, u, x, y) = u4g4 +O
(
u5
)
, (2.13d)

S(t, u, x, y) = 1
u

+ ξ − φ2
0

3 u+ 1
3ξφ

2
0u

2 + 1
54u

3
(
−18ξ2φ2

0 + φ4
0 − 18φ0φ2

)
+ φ0

90u
4
(
30ξ3φ0 − 5ξφ3

0 + 90ξφ2 − 24∂tφ2
)

+O
(
u5
)
, (2.13e)

Fx(t, u, x, y) = ∂xξ + u2fx2

− 2
15u

3 (15ξfx2 + 6∂xb14 + 6∂xb24 − ∂yg4 − 2φ0∂xφ2) +O
(
u4
)
, (2.13f)

Fy(t, u, x, y) = ∂yξ + u2fy2

− 2
15u

3 (15ξfy2 − 6∂yb14 + 6∂yb24 − ∂xg4 − 2φ0∂yφ2) +O
(
u4
)
, (2.13g)

φ(t, u, x, y) = φ0u− ξφ0u
2 + u3

(
ξ2φ0 + φ2

)
+ u4

(
∂tφ2 − 3ξφ2 − ξ3φ0

)
+O

(
u5
)
, (2.13h)

Ḃ1(t, u, x, y) = −2b14u
3 +O

(
u4
)
, (2.13i)

Ḃ2(t, u, x, y) = −2b24u
3 +O

(
u4
)
, (2.13j)

Ġ(t, u, x, y) = −2g4u
3 +O

(
u4
)
, (2.13k)

Ṡ(t, u, x, y) = 1
2u2 + ξ

u
+ ξ2

2 −
φ2

0
6 + 1

36u
2
(
10a4 − 5φ4

0 + 18φ0φ2
)

+O
(
u3
)
, (2.13l)

Ḟx(t, u, x, y) = ∂t∂xξ − ufx2 +O
(
u2
)
, (2.13m)

Ḟy(t, u, x, y) = ∂t∂yξ − ufy2 +O
(
u2
)
, (2.13n)

φ̇(t, u, x, y) = −φ0
2 + u2

(
φ3

0
3 −

3
2φ2

)
+O

(
u3
)
. (2.13o)

Note that φ0 is a constant, freely specifiable, while the remaining variables in this expansion
are functions of (t, x, y). By knowing ξ, a4, φ2, fx2, fy2, b14, b24 and g4 all asymptotic series
are determined. Furthermore, these quantities are all we need to determine the boundary
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expectation values. They are not fully independent, bounded to fulfill,

∂ta4 = −4
3 (∂xfx2 + ∂yfy2 + φ0∂tφ2) , (2.14a)

∂tfx2 = −1
4∂xa4 − ∂xb14 − ∂xb24 + ∂yg4 + 1

3φ0∂xφ2, (2.14b)

∂tfy2 = −1
4∂ya4 + ∂yb14 − ∂yb24 + ∂xg4 + 1

3φ0∂yφ2, (2.14c)

which is dual to the stress energy conservation on the boundary theory.

2.2.2 Redefinitions and boundary conditions

As advanced before, it is useful to redefine variables. We will split our holographic numerical
grid into two kind of grids: inner and outer. Inner means to close to the boundary, where some
functions diverge or vanish and it is good to look at the asymptotic behavior of the functions
to create redefine variables g1 that will remain finite. For the outer grid functions evaluate to
reasonable values, so minimal redefinitions useful to keep track of the AH are needed and will
be assigned the g2 subscript.

The redefinitions are,

A(t, u, x, y) = 1
u2 + 2

u
ξ(t, x, y) + ξ2(t, x, y)− 2∂tξ(t, x, y)− 2φ2

0
3 + u2Ag1(t, u, x, y)

= −2∂tξ(t, x, y) +Ag2(t, u, x, y)

B1(t, u, x, y) = u4B1g1(t, u, x, y)

= B1g2(t, u, x, y),

B2(t, u, x, y) = u4B2g1(t, u, x, y)

= B2g2(t, u, x, y),

G(t, u, x, y) = u4Gg1(t, u, x, y)

= Gg2(t, u, x, y),

S(t, u, x, y) = 1
u

+ ξ(t, x, y)− φ2
0

3 u+ 1
3ξφ

2
0u

2 + u3Sg1(t, u, x, y)

= Sg2(t, u, x, y),

Fx(t, u, x, y) = ∂xξ(t, x, y) + u2Fxg1(t, u, x, y)

= ∂xξ(t, x, y) + Fxg2(t, u, x, y),

Fy(t, u, x, y) = ∂yξ(t, x, y) + u2Fyg1(t, u, x, y)

= ∂yξ(t, x, y) + Fyg2(t, u, x, y),

φ(t, u, x, y) = φ0u− ξ(t, x, y)φ0u
2 + u3φ3

0φg1(t, u, x, y)

= φg2(t, u, x, y),

Ḃ1(t, u, x, y) = u3Ḃ1g1(t, u, x, y)

= Ḃ1g2(t, u, x, y),
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Ḃ2(t, u, x, y) = u3Ḃ2g1(t, u, x, y)

= Ḃ2g2(t, u, x, y),

Ġ(t, u, x, y) = u3Ġg1(t, u, x, y)

= Ġg2(t, u, x, y),

Ṡ(t, u, x, y) = 1
2u2 + ξ(t, x, y)

u
+ ξ2(t, x, y)

2 − φ2
0

6 + u2Ṡg1(t, u, x, y)

= Ṡg2(t, u, x, y),

φ̇(t, u, x, y) = −φ0
2 + u2φ3

0φ̇g1(t, u, x, y)

= φ̇g2(t, u, x, y).

The boundary conditions for the inner grid become,

Sg1|u=0 = 1
54
(
−18ξ2φ2

0 + φ4
0 − 18φ0φ2

)
, (2.15a)

∂uSg1|u=0 = φ0
90
(
30ξ3φ0 − 5ξφ3

0 + 90ξφ2 − 24∂tφ2
)
, (2.15b)

Fxg1|u=0 = fx2, (2.15c)

∂uFxg1|u=0 = − 2
15 (15ξfx2 + 6∂xb14 + 6∂xb24 − ∂yg4 − 2φ0∂xφ2) , (2.15d)

Fyg1|u=0 = fy2, (2.15e)

∂uFyg1|u=0 = − 2
15 (15ξfy2 + 6∂yb14 + 6∂yb24 − ∂xg4 − 2φ0∂yφ2) , (2.15f)

Ṡg1|u=0 = 1
36
(
10a4 − 5φ4

0 + 18φ0φ2
)
, (2.15g)

Ḃ1g1|u=0 = −2b14, (2.15h)

Ḃ2g1|u=0 = −2b24, (2.15i)

Ġg1|u=0 = −2g4, (2.15j)

φ̇g1|u=0 = 1
3 −

3φ2
2φ3

0
, (2.15k)

Ag1|u=0 = a4, (2.15l)

∂uAg1|u=0 = −2
3 (3ξa4 + ∂xfx2 + ∂yfy2 + φ0∂tφ2) . (2.15m)

which are obtained upon identification of the redefined variables with the expansions in (2.13).
For the outer grid we simply impose continuity and differentiability at the boundary between
inner and outer grids.

2.2.3 Fixing the location of the AH

So far we have not mentioned what criteria we want to follow to fix the free parameter ξ(t, x, y).
We will demand that the AH lies, at all times, at a constant radial coordinate u = uAH , making
everything very comfortable. How do we do this? We could very well impose, at each time
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step, that the outgoing congruence of light rays has vanishing expansion, θl (see Appendix B
for information about the AH finder), and then switch to coordinates in which u = uAH , from
where ξ(t, x, y) would get determined. This is not efficient. It is better to do what was described
for the initial time and then impose an evolution equation for ξ(t, x, y) that ensures that the
AH will remain at u = uAH in the next time step. We achieve it by imposing the diffusion
equation,

∂tΘ + κΘ = 0 (2.16)

for the expansion of null rays for the hypersurface u = uAH , Θ = θl|uAH=const. The explicit
expression can be found in Appendix B. The free parameter κ that plays the role of the diffusion
constant. (2.16) has the virtue that Θ = 0 is a stable fixed point. If we start with Θ = 0 at
the specified u = uAH , then (2.16) keeps the AH location where it is. If for any reason, the AH
location changes, the equation will push it back to u = uAH as time progresses.

An evolution equation for ξ is obtained from (2.16) by expanding (2.16) and using (B.6)
together with the equations of motion for both S̈ and Ḟx,y. Then we substitute all the variables
by their outer grid redefinitions, g2, and evaluate them at constant u = uAH .The end point is
a Partial Differential Equation (PDE) of the type,

(
A(ξ)
xx∂

2
x +A(ξ)

xy ∂x∂y +A(ξ)
yy ∂

2
y + B(ξ)

x ∂x + B(ξ)
y ∂y + C(ξ)

)
∂tξ(t, x, y) = −S(ξ) , (2.17)

whose solution allow us to evolve ξ to the next time step ensuring that the AH is being pushed
to the location we specified.

2.2.4 Evolution procedure

The procedure in which we can perform the time evolution is quite straight forward.

We start with some initial bulk data, consisting of B1, B2, G and φ for all (u, x, y) and
some t = t0. No constraint is needed, only that the asymptotic expansion of these functions is
compatible with AdS, i.e. with (2.13). At the boundary we need to specify the functions a4,
fx2, fy2 and some ξ(t0, x, y).

With this we can solve the nested scheme to obtain all the bulk variables, and with it find
the location of the AH. We update ξ to the value for which the AH lies at the specified u = uAH .

We solve again the nested scheme and use (2.11) to obtain the time derivative bulk functions.
We additionally solve (2.14) and (2.17) to get the time derivative of the boundary functions.

We evolve the functions needed as initial data to the next time step t1 and repeat the whole
process to move forward in time. The only exception is that we do not need to locate the AH
again.
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2.2.5 Boundary one point functions

The gauge theory expectation values can be obtained from the asymptotic behaviour of the
bulk variables in a way similar to [38]. The result is:

E = κ2
5

2`3 〈T
tt〉 = −3

4a4 − φ0φ2 +
( 7

36 − λ4

)
φ4

0,

Px = κ2
5

2`3 〈T
xx〉 = −a4

4 − b14 − b24 + φ0φ2
3 +

(−5
108 + λ4

)
φ4

0,

Pxy = κ2
5

2`3 〈T
xy〉 = −g4,

Py = κ2
5

2`3 〈T
yy〉 = −a4

4 + b14 − b24 + φ0φ2
3 +

(−5
108 + λ4

)
φ4

0,

Pz = κ2
5

2`3 〈T
zz〉 = −a4

4 + 2b24 + φ0φ2
3 +

(−5
108 + λ4

)
φ4

0,

Jx = − κ2
5

2`3 〈T
tx〉 = fx2,

Jy = − κ2
5

2`3 〈T
ty〉 = fy2,

V = κ2
5

2`3 〈Oφ〉 = −2φ2 +
(1

3 − 4λ4

)
φ3

0.

(2.18)

For a SU(Nc) gauge theory the prefactor κ2
5/2`3 typically scales as N−2

c , whereas the stress
tensor scales as N2

c . The rescaled quantities are therefore finite in the large-Nc limit. The stress
tensor and the expectation of the scalar operator are related through the Ward identity

〈Tµµ 〉 = −Λ〈O〉, (2.19)

which can be seen as a measure of the magnitude of conformal symmetry breaking.

2.3 Numerical implementation

In this section we will briefly summarize the numerical implementation that allows for solving
the time evolution problem. The goal is not to give a very precise picture of the numerics, but
to provide with a good enough conceptual picture. For more details the reader is asked to check
the detailed information we offer at [79].

Jecco is a numerical time evolution code writen in Julia from scratch. Julia is a fairly new
programming language that looks promising given its good performance while being intuitive
to code in. Our code is divided into two main parts. On the one hand, we have all the model
independent infrastructure, consisting of modules that build the spatial numerical grid, the
corresponding derivative operator matrices, the input/output routines etc. On the other hand
we have all the model dependent modules. These include the specific equations to use, the
scalar potential, the initial data routines, the AH finder, the specific variables to be considered,
etc. As a result it is very simple to change among theories by implementing small changes to
the code.

2.3.1 Radial ODEs

In order to solve the nested scheme we start by imposing periodic boundary conditions on
x and y, a.k.a. our boundary a torus. We discretize our three dynamical spatial directions
distinguishing between the holographic u grid and the gauge ones x and y.
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We will discretize the latter by using a uniform grid, where derivatives are computed using
finite difference methods, while for the holographic direction we will employ a Lobatto-Chebyshev
grid. The Lobatto-Chebyshev is a non-uniform grid where points are mapped from a uniform
grid through

ui = umax + umin
2 − umax − umin

2 cos
(
πi

Nu

)
(i = 1, . . . , Nu). (2.20)

The resulting grid is one in which a big portion of the points are located near the boundaries
and convergence is known to be very good. Derivative matrices are computed by approximating
the functions in a basis of Chebyshev polynomials.

Once the grids are created, we can transform the ODEs into matrix equations by replacing
the functions of u by an array of points where the entries correspond to the value of the functions
at the grid points. We get an equation per boundary grid point (x, y). Therefore, given a grid
of Nu ×Nx ×Ny each ODE transforms into NxNy matrix equations of dimension Nu ×Nu. In
order to get the matrix we simply substitute the differential operators in (2.12) by their matrix
counterparts.

For the case of the PDE, the idea is almost identical, we just need to be a bit mroe careful.
Upon discretization, a function of (x, y) became a matrix of dimensions Nx × Ny. To convert
this matrix into a variable of a PDE, we flatten the matrix into an array as follows,

Avec =



A1,1
A2,1
.
.
.

ANx,1
A1,2
.
.
.

ANx,Ny



, (2.21)

and the appropriate derivative operators are then constructed by taking Kronecker products of
the derivative operators that act in each of the grids x or y separately,

D̂x = INy×Ny ⊗Dx, D̂y = Dy ⊗ INx×Nx ,

D̂xx = INy×Ny ⊗Dxx, D̂yy = Dyy ⊗ INx×Nx ,
(2.22)

where D̂xy = D̂xD̂y. The result is that (2.17) becomes another matrix equation, this time of
dimension NxNy×NxNy. Due to the big amount of vanishing entries on the derivative operators
it is useful to use the Julia package SparseArrays, where all zero entries will not be stored and
a considerable amount of memory can be saved.

Once we have all relevant equations in matrix form, we can solve them fast by direct inversion
of matrices. Jecco does this by LU decomposing the matrix operator and performing a left
division operation. The fact that the nested scheme has to be solved for each (x, y) grid point
independently prompts parallelization.

2.3.2 Time evolution

Performing time evolution is simple. Our problem is of the kind,

∂v

∂t
= f(v, x, y), (2.23)
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where f(v, x, y) is a very complicated function, consisting in solving all the nested scheme in the
way described earlier given the initial bulk and boundary data at t. Problems like the current
one can be solved by using a time evolution method like Runge-Kutta. Specifically we use the
Juliaa routine ODEProblem from DifferentialEquations.jl package. The only thing that we need
to do is to cast all of our variables to be evolved in a single vector v.

Only one additional issue remains, high order modes of too short wavelength to be properly
described by our grid spacing. Once again we discriminate among grids. For the finite difference
grids we make use of Kreiss-Oliger dissipation [86], while for the spectral grid we directly damp
high frequency modes by multiplying their Fourier coefficients by an exponential factor that
decays with the momenta k.

2.4 Testing the code
Testing an implementation is crucial for obvious reasons. Of course most of the applications of
the code will involve non-linear physics that is very hard to check explicitly. However, we can at
least check the code where there is a benchmark coming from other methods, either analytical
or numerical. The tests performed are collected in Appendix A of [79], and they will be briefly
summarized here.

We started by studying equilibrium, uniform black branes. The easiest setup, in which
analytic expressions are obtainable is the conformal case. For that we simply turn off our scalar
source φ0 = 0 and the equations take care of the rest. Moreover we added a small sinusoidal
perturbation to the fall-off a4 and let the system relax back to the uniform black brane. The
results matched the analytic expressions and convergence with increasing number of points
along the radial direction u was as expected.

Next step was to jump into the non-conformal tests. For that we can no longer rely on
analytic expressions as reference. We obtained the thermodynamic properties of equilibrium
uniform black branes for the theory with λ4 = −0.25 and λ6 = 0.1, for which there is a first order
thermal phase transition. We initialized the code with a configuration close to equilibrium, let
it relax, and measure the properties of the black brane at late times. We then compared these
results with the ones obtained by numerically integrating the ODEs that arise when assuming
static, black brane ansatz. The results were good once again.

For out of equilibrium tests we proposed two complementary ones: Quasi Normal Modes
(QNM) and Hydrodynamics.

The QNM test was engineered by initializing the code with all equilibrium properties but the
bulk scalar field profile and non vanishing, constant B1 and B2. The deviation from equilibrium
is independent of x and y. As we will deal with the relaxation of a perturbation of momenta
k = 0 it must be a QNM. We let the system relax and extracted the frequency ω of the
perturbation, which evolves like eiωt. We then compared the measured valued with the one that
is obtained using the QNMspectral Mathematica package [87] for the late time geometry. The
results where compatible.

Finally, we performed a test using first order hydrodynamics. Knowing the dual of a theory
we can compute, independently of Jecco, the first order transport coefficients (viscosities) easily.
We initialize Jecco in an equilibrium configuration on top of which we add a long wave length
perturbation, k/T � 1. This is the regime in which hydrodynamics should be applicable. We
let the system relax back to equilibrium and, by reading off the boundary stress tensor as a
function of (t, x, y), we checked that the evolution is compatible to a great precision with the
transport coefficients we obtained by other means.

All of this tests show the robustness of the code and that it is ready to be used.
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Chapter 3

Crossing a Large-N Phase Transition
at finite volume

Phase coexistence is an essential feature of systems with a first-order phase transition. Consider
for example Fig. 3.1. This shows the energy density as a function of the temperature, in the
infinite-volume limit, for the four-dimensional gauge theory that we will study in this paper.
The blue curve indicates homogeneous states with energy density E , which we measure in units
of the microscopic scale in the gauge theory Λ. In the canonical ensemble there is a first-
order phase transition at a critical temperature Tc indicated by the dashed, vertical line. The
thermodynamically preferred, lowest-free energy states at T > Tc lie on the upper branch and
have energies above that of point D. Similarly, at T < Tc the preferred states are on the lower
branch with energies below that of point E. States between points A and D, and between B
and E, are locally but not globally thermodynamically stable. Finally, states between points A
and B are locally thermodynamically unstable. The region between A and B is known as the
“spinodal region".

In the canonical ensemble, setting T = Tc does not select a unique state. For this reason,
it is convenient to work in the microcanonical ensemble, in which the control parameter is the
energy instead of the temperature. In this case the preferred, maximum-entropy configuration
for energy densities between points D and E is well understood in the infinite-volume limit: it
is a phase-separated state in which part of the volume is in the phase associated to point D and
the other part is in the phase associated to point E (see Sec. 3.1.4). The fraction of volume
occupied by each phase is determined by the average energy density E , which lies between D
and E. The two phases are separated by a universal interface, i.e. by an interface whose spatial
profile is independent of the way in which the phase-separated configuration is reached. Since
the temperature is constant and equal to Tc across the entire volume, these states lie on the red,
vertical segment DE in Fig. 3.1. We conclude that, at infinite volume in the microcanonical
ensemble, the sequence of preferred states as the energy density decreases is that indicated by
the black arrows in Fig. 3.1.

The thermodynamic statements above have dynamical counterparts. Since the total energy
is conserved under time evolution, it is again convenient to think of the system in the micro-
canonical ensemble. Imagine preparing the system in a homogeneous state. If the energy density
lies above point D or below point E then this state is dynamically stable against small or large
perturbations. If instead the energy density is between points A andD or between B and E then
we expect the system to be dynamically stable against small perturbations but not against large
ones. This means that, if subjected to large enough a perturbation, the system will dynamically
evolve to a phase-separated configuration. The average energy density in this inhomogeneous
configuration will be the same as in the initial, homogenous state, but the entropy will be higher.
Finally, if the initial energy density is between A and B then the state is dynamically unstable
even against small perturbations. This instability, known as “spinodal instability", implies that
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Figure 3.1: Phase diagram in the infinite-volume limit. The dashed, vertical line indicates
the critical temperature T = Tc. The blue curve corresponds to homogeneous states. The
red line corresponds to inhomogeneous, phase-separated states. Solid segments indicate locally
dynamically stable states; dashed segments indicate unstable ones. The black curves with arrows
indicate the sequence of maximum-entropy states as the average energy density E decreases. In
the canonical ensemble there is one first-order phase transition at which the system jumps
betweens points D and E. In the microcanonical ensemble there are two second-order phase
transitions at points D and E between homogeneous and inhomogeneous states.
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the slightest perturbation will trigger an evolution towards a phase-separated configuration of
equal average energy but higher entropy.

If the system of interest is an interacting, four-dimensional quantum field theory then fol-
lowing the real-time evolution from an unstable homogeneous state to a phase-separated con-
figuration can be extremely challenging with conventional methods. For this reason, in [61, 63]
holography was used to study this evolution in the case of a four-dimensional gauge theory with
a gravity dual (see also [88, 89] for a case in which the gauge theory is three-dimensional). In or-
der to regularise the problem, Refs. [61, 63] considered the gauge theory formulated on R1,2×S1

with periodic boundary conditions on a circle of size L. For simplicity, translational invariance
along the non-compact spatial directions was imposed, thus effectively reducing the dynamics
to a 1+1 dimensional problem along time and the compact direction. The compactness of the
circle makes the spectrum of perturbations discrete and simplifies the technical treatment of
the problem. Ref. [61] provided a first example of the time evolution from a homogeneous state
to an inhomogeneous one. A systematic study was then performed in [63]. In this reference
the focus was on the infinite-volume limit, understood as the limit in which L is much larger
than any other scale in the problem such as the microscopic gauge theory scale Λ, the size of
the interface, etc. It was shown that, if slightly perturbed, an initial homogeneous state with
energy density between A and B always evolves towards a phase-separated configuration, and
that the latter is dynamically stable.

In addition to its implications for gauge theory dynamics, the spinodal instability of states
between A and B is interesting also on the gravity side, where it implies that the corresponding
black branes are afflicted by a long-wavelength dynamical instability. Although this is similar
[90–92] to the Gregory-Laflamme (GL) instability of black strings in spacetimes with vanishing
cosmological constant [93], there is an important difference: In the GL case all strings below
a certain mass density are unstable, whereas in our case only states between points A and
B are unstable. Having clarified this, since the term “GL-instability" is familiar within part
of the gravitational community, in this paper we will use the terms “spinodal instability" and
“GL-instability" interchangeably to refer to the dynamical instability between points A and B.

The purpose of this paper is to extend the analysis of the equilibrium states summarised
in Fig. 3.1, as well as the systematic analysis of their dynamical stability properties of [63],
to the case of finite volume. In particular, we would like to: (i) classify all possible states,
homogeneous or inhomogeneous, available to the system; (ii) determine which ones are thermo-
dynamically preferred; (iii) establish the local dynamical stability or instability of each state;
and (iv) investigate the time evolution from unstable states to stable ones. For this purpose we
will place the system in a box, impose translational invariance along two of its directions and
vary the size L of the third direction. We will then see that the results depend on the value of
L compared to a hierarchy of length scales

LK < LΣ1 < LΣ2 . (3.1)

These three scales are an intrinsic property of the system at finite volume that cannot be
determined through an infinite-volume analysis. Depending on the ratio of L to these scales we
will uncover: (i) a large configuration space of inhomogeneous states, both stable and unstable;
(ii) a rich set of first- and second-order thermodynamic phase transitions between them; and
(iii) the possible time evolutions from dynamically unstable to dynamically stable states. Note
that the existence of phase transitions is not in contradiction with the finite volume of the gauge
theory because we work in the planar limit, Nc →∞, which effectively acts as a thermodynamic
limit.
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Chapter 3 Crossing a Large-N Phase Transition at Finite Volume

3.1 Nonconformal lumpy branes: nonlinear static solutions

3.1.1 Setup of the physical problem and general properties of the system

During the following section let us recover ` in the expressions. We will choose the values
λ6 = 0.1 and λ4 = −1/4 for the potential 2.3. The reason for this choice is that the resulting
model exhibits a first order thermal phase transition where all quantities are order 1 in units of
Λ, in contrast to the large hierarchies that where found when studying models with vanishing
λ6 = 0, see [36, 61, 63]. For this specific choice of parameters, the potential (2.3) and the
superpotential (2.2) take the form shown in Fig. 3.2. In this case both functions have a minimum
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Figure 3.2: Superpotential (left) and potential (right) of our model.

at φmin ≈ 1.54, corresponding to an infrared (IR) fixed point of the gauge theory. The potential
has an additional maximum at φmax ≈ 3.65 and diverges negatively, i.e. V (φ) → −∞, as
φ→ +∞. However, values of φ larger than φmin will play no role in our analysis.

We are interested in finding static, “lumpy" black brane solutions of (2.1) that can break
translational invariance along a spatial gauge theory direction x̃ while being isometric along the
remaining two spatial directions x2 and x3 directions. The most general ansatz compatible with
such symmetries is

ds2 =−Q1(x̃, Z)dt2 +Q2(x̃, Z)dZ2 + 2Q3(x̃, Z)dx̃dZ +Q4(x̃, Z)dx̃2

+Q5(x̃, Z)dx2
2 +Q6(x̃, Z)dx2

3 + 2Q7(x̃, Z)dx2dx3 , (3.2a)

φ =Q8(x̃, Z) , (3.2b)

where Z is the holographic coordinate. We shall be interested in solutions which are isotropic
in x2 and x3, so we take Q5 = Q6 and Q7 = 0 . To fix the gauge completely we demand Q3 = 0,
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Chapter 3 Crossing a Large-N Phase Transition at Finite Volume

and

Q1(x̃, z) = `2q1(x̃, Z)2

Z2

(
1− Z4

Z4
+

)
, (3.3a)

Q2(x̃, Y ) = `2

Z2 q2(x̃, Z)

(
1− Z4

Z4
+

)−1

, (3.3b)

Q4(x̃, Y ) = `2

Z2 q2(x̃, Z) q3(x̃, Z) , (3.3c)

Q6(x̃, Y ) = `2

Z2 q1(x̃, Z) , (3.3d)

Q8(x̃, Y ) = Z

`
q4(x̃, Z) , (3.3e)

together with the condition
q1(x̃, Z+)2 q2(x̃, Z+) = αΛ , (3.3f)

where αΛ > 0 is a positive constant whose physical significance will be discussed later; see (3.23).
The coordinate x̃ is periodic with period L, and we take x̃ ∈ [−L/2, L/2] and Z ∈ [0, Z+]. The
translationally invariant directions x2,3 have arbitrary periods L2 and L3. These will play
essentially no role in our discussion, since only densities per unit area in the 23-plane will
matter. Thus we will take them to be the same, i.e. L2 = L3 ≡ L and x2,3 ∈ [0,L].

We shall also be interested in solutions which are Z2-symmetric around x̃ = 0, which means
that we can restrict our domain of integration to x̃ ∈ [0, L/2], at the expense of imposing
∂x̃qj

∣∣
x̃=0 = 0, for j = 1, 2, 3, 4. In order to vary L in a numerically efficient manner, we further

change to a new coordinate
x = 2x̃

L
, (3.4)

and take all functions to take values in x ∈ [0, 1]. Note that our ansatz (3.5) together with our
periodicity conditions further imply that ∂xqj

∣∣
x=1 = 0 (j = 1, 2, 3, 4).

Putting everything together brings (3.2) to the following simplified form

ds2 = `2

Z2

[
− q1(x, Z)2

(
1− Z4

Z4
+

)
dt2 + 1

q2(x, Z)

(
1− Z4

Z4
+

)−1

dZ2

+
(
L

2

)2
q2(x, Z) q3(x, Z)dx2 + 1

q1(x, Z)
(
dx2

2 + dx2
3

) ]
, (3.5)

φ = Z

`
q4(x, Z) .

Our gauge choice is such that the determinant of the metric along the Killing directions (t, x2, x3)
is fixed and defines the radial (holographic) direction Z. The conformal boundary is located at
Z = 0 where we demand

q1 = q2 = q3 = 1 . (3.6)

In this sense we can denote this gauge choice as the “double Wick rotation Schwarzschild gauge"
and, as far as we are aware, this is the first time it is introduced. The advantage of this gauge
choice (at least in the present system) is that the fields qj (j = 1, 2, 3, 4) have an asymptotic
power law decay without irrational powers (nor logarithmic terms; more below), unlike e.g. the
DeTurck gauge.1

1This feature is particularly important when finding qj numerically using pseudospectral collocation methods
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Chapter 3 Crossing a Large-N Phase Transition at Finite Volume

Our gauge choice — condition (3.3f) — reveals that Z = Z+ is a null hypersurface, where
the norm of the Killing vector field ∂/∂t vanishes.2 Thus, Z = Z+ is a Killing horizon, and αΛ
controls its associated surface gravity or, equivalently, temperature. In fact, we find

T =
√
αΛ
π

1
Z+

. (3.7)

Our solutions have two important scaling symmetries. The first one is

{t, Z, xi} → {λ1t, λ1Z, λ1xi}, {q1,2,3, q4} → {q1,2,3, λ
−1
1 q4}, {`, Z+} → {λ1`, λ1Z+} (3.8)

where xi = {x, x2, x3}. This leaves the equations of motion and scalar field invariant and rescales
the line element as ds2 → λ2

1 ds2, namely gµν → λ2
1 gµν . It follows that we can use this scaling

symmetry to fix the AdS radius to ` ≡ 1. In other words, under the scaling gµν → λ2
1 gµν , the

affine connection Γγµν , and the Riemann (Rαβµν) and Ricci (Rµν) tensors are left invariant. It
follows from the trace-reversed equations of motion that the AdS radius must scale as `→ λ1`
and we can use this scaling symmetry to set ` ≡ 1.

The second scaling symmetry (known as a dilatation transformation, one of the conformal
transformations) is

{t, Z, xi} → {λ2t, λ2Z, λ2xi}, {q1,2,3, q4} → {q1,2,3, λ
−1
2 q4}, {`, Z+} → {`, λ2Z+} . (3.9)

This leaves the metric, scalar field and equations of motion invariant. It follows that we can
use this symmetry to set the horizon radius at Z = Z+ ≡ 1 or, equivalently, the temperature
(3.7) to

T =
√
αΛ
π

. (3.10)

We will see below that this is just a convenient choice of units with no effect on the physics.
Let us turn now our attention to the scalar field. It follows from (2.6) that the scalar field

has a mass µ2 = V ′′(0) = −3/`2. According to AdS/CFT, the conformal dimension of the dual
operator is simply given by

∆± = 2±
√

4 + µ2`2 ⇔ ∆− = 1 or ∆+ = 3, (3.11)

and these give the two independent asymptotic decays Z∆± of the scalar field. Actually, since
∆± are integers, the nonlinear equations of motion might also generate logarithmic decays of
the form

∑
n=3 cnZ

n lnZ where the coefficients cn depend exclusively on the amplitude of the
two independent terms. When this is the case, the conserved charges depend on c3. However,
for the potential we use (only with even powers of φ and double Wick rotation Schwarzschild
gauge choice) it turns out that logarithmic terms are not generated by the equations of motion.
So, for our system, the scalar field decays asymptotically as

φ
∣∣∣
Z→0

∼ ΛZ∆− + φ2Z
∆+ + · · · = Z

(
Λ + φ2Z

2
)

+ · · · (3.12)

where Λ and φ2 are two arbitrary integration constants and · · · represent higher order powers
of Z (with no logarithms) whose coefficients are fixed in terms of Λ and φ2 by the equations
of motion. The fact that ∆− = 1 motivates our choice of ansatz for the scalar field in (3.5).

to discretize the numerical grid, as we will do. Due to the absence of the irrational powers near the conformal
boundary, the numerical scheme will exhibit exponential convergence when reading asymptotic charges. This is
unlike e.g. the DeTurck gauge that has power law decays also with irrational powers and therefore does not have
exponential convergence in the continuum limit [94, 95].

2Strictly speaking, in order to prove this we need to introduce regular coordinates at the horizon located
at Z = Z+. This can be achieved if we use ingoing (or outgoing) Eddington-Finkelstein coordinates of the
Schwarzschild brane.
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Chapter 3 Crossing a Large-N Phase Transition at Finite Volume

The Breitenlöhner-Freedman (BF) bound of the system is µ2
BF`

2 = −4 and thus µ2`2 = −3
coincides precisely with the unitarity bound µ2

BF`
2 + 1. It follows that only the mode Z∆+ with

the faster fall-off is normalizable. In the AdS/CFT correspondence, the non-normalizable mode
Λ is the source of a boundary operator Oφ since it determines the deformation of the boundary
theory action. On the other hand, the normalizable modes φ2 are identified with states of the
theory with φ2 being proportional to the expectation value 〈Oφ〉 of the boundary operator (in
the presence of the source Λ). ∆+ = 3 is then the (mass) conformal dimension of the boundary
operator Oφ dual to φ. Under the scaling symmetries (3.8)-(3.9) the scalar source transforms
as Λ → λ1λ2Λ. As a consequence, the ratio T/Λ is left invariant by these scalings. Since the
physics only depends on this ratio, setting T = √αΛ/π as we did above is just a convenient
choice of units with no effect on the physics. In general, throughout this paper we will measure
all dimensionful physical quantities in units of Λ.

The undeformed boundary theory — a CFT — corresponds thus to the Dirichlet boundary
condition Λ = 0, and we have a pure normalizable solution. For this reason the planar AdS5
Schwarzschild solution (3.5) with q1,2,3 = 1, q4 = 0 is often denoted as the (uniform) “confor-
mal" brane of the theory (2.1). In contrast, if we turn-on the source the dual gauge theory is
no longer conformal. In particular, there are such solutions (3.5) with q1,2,3,4(Z, x) = q1,2,3,4(Z)
(and q4(0) = Λ) that are translationally invariant along x, x2, x3. These are often denoted as the
“uniform nonconformal" branes of the theory. This is one family of solutions that we will con-
struct in this manuscript. Still with Λ 6= 0, we can then have solutions that break translational
invariance along x (while keeping the isometries along the other two planar directions). Our
main aim is to construct these nonuniform solutions, which we denote as “lumpy nonconformal
branes", and study their thermal competition with the uniform nonconformal branes in a phase
diagram of static solutions of (2.1), both in the micro-canonical and canonical emsembles. Of
course there are also nonconformal branes that break translation invariance along the other two
directions x2,3. These are cohomogeneity-4 solutions that we will not attempt to construct.
Fortunately, the cohomogeneity-2 lumpy branes that we will find seem to already allow us to
understand the key properties of the most general system.

3.1.2 Setup of the boundary-value problem

Finding the nonconformal brane solutions necessarily requires resorting to numerical methods.
For that, we find it convenient to change our radial coordinate into

y = Z2

Z+
, and define y+ ≡

1
Z+

, (3.13)

so that the ansatz (3.5) now reads

ds2 = 1
y

[
− y2

+ q1(x, y)2(1− y2)dt2 + 1
q2(x, y)

dy2

4y(1− y2)

+
(
L

2

)2
y2

+ q2(x, y) q3(x, y)dx2 +
y2

+
q1(x, y)

(
dx2

2 + dx2
3

) ]
, (3.14)

φ =
√
y

y+
q4(x, y) ,

with compact coordinates y ∈ [0, 1] and x ∈ [0, 1]. The horizon is located at y = 1 and the
asymptotic boundary at y = 0. Note, that we used the two scaling symmetries (3.8)-(3.9) to
set ` ≡ 1 and y+ ≡ 1.

In these conditions we now need to find the minimal set of Einstein-scalar equations —
the equations of motion (EoM) — that allows us to solve for all qj(x, y) while closing the full
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system of equations, gµν = Tab and 2φ = 0, of the action (2.1). This is a nested structure of
PDEs. This structure motivates also in part our original choice of gauge in the ansätze (3.5)
and (3.14). For this reason, rather than presenting the final EoM, it is instructive to explain
their origin and nature. Prior to any gauge choice and symmetry assumptions, the differential
equations that solve (2.1) are second order for all the fields. The symmetry requirements we
made fix some of these fields. Additionally, the fact that we have chosen to fix the gauge freedom
of the system using the ‘double Wick rotation Schwarzschild’ gauge means that our system of
equations should have the structure of an ADM-like system but with the spacelike coordinate x
playing the role of “time". Of course, our problem is ultimately an elliptic problem. However,
it is instructive to analyse our EoM adopting the above “time-dependent" viewpoint. In doing
so, one expects that the equations of motion take a nested structure of PDEs that include a
subset of “evolution” equations (to be understood as evolution in the x-direction) but also a
subset of non-dynamical (“slicing” and “constraint”) equations. We now describe in detail this
nested structure.

We have a total of five equations of motion. Two of these EoM are dynamical evolution
equations for q1 and q4. The main building block of these equations is the Laplacian operator
∂2
x + ∂2

y (acting either on q1 or q4) that describes the spatial dynamics as the system evolves in
x. With respect to the familiar ADM time evolution in the Schwarzschild gauge, this Laplacian
replaces the wave operator ∂2

t −∂2
y . Additionally, we have two (first-order) slicing EoM for ∂yq2

and ∂yq3 that can be solved at each constant-x spatial slice for q2 and q3. Besides depending
on ∂yq2,3 and q2,3 — but, quite importantly, not on ∂xq2,3 — these equations also depend on
q1,4 (that are determined “previously” by the evolution equations) and on their first derivatives
(both along x and y). This means that we can integrate the slicing equations of motion along
the radial direction to find q2,3 at a particular constant-x slice. Finally, the EoM still includes
a fifth PDE that expresses ∂xq2 as a function of (q1,2,3,4, ∂xq1,4, ∂yq1,4). Let us schematically
denote it as C(x, y) = 0. This is a constraint equation. To see this note that, after using the
evolution and slicing EoM and their derivatives, the Bianchi identity ∇µ(Rµν − gµνR/2) = 0
implies the constraint evolution relation3

∂y
(√
−g C

)
+ F (x, y)

√
−g C = 0 , (3.15)

where F (x, y) is a function that is regular at the horizon whose further details are not relevant.4
It follows from this constraint evolution relation that if the constraint equation is obeyed at a
given y, say at the horizon C(x, y)

∣∣
y=1 = 0, then it is obeyed at any other y ∈ [0, 1]. In practice,

this means that we just need to impose the constraint as a boundary condition at y = 1, say. It
is then preserved into the rest of the domain.

Altogether, the strategy to solve the EoM is thus the following. There are effectively four
EoM, two second order PDEs for q1,4(x, y) and two second order PDEs for q2,3(x, y). We need
to solve these equations for q1,2,3,4(x, y) as a boundary-value problem. One of the boundary
conditions is imposed at the horizon and takes the form C(x, y)

∣∣
y=1 = 0, whereas the others are

the physically motivated boundary conditions discussed next.
Our integration domain is a square bounded in the radial direction by y = 0 (the asymptotic

boundary) and y = 1 (the horizon). Along the x-direction the boundaries are at x = 0 and
x = 1. The angular coordinate x is periodic in the interval [0, 1]. We can thus use this symmetry

3Note that in standard ADM time-evolution problems the constraint relation that must vanish involves the
time derivative, i.e. it is schematically of the form ∂t

(√
−g C̃

)
+ F̃ (t, y)

√
−g C̃ = 0, where y is a radial coordinate.

Interestingly, in our ‘double Wick rotation of the ADM gauge’ — where x is the evolution coordinate — it is the
radial derivative ∂y (and not ∂x) that appears in the vanishing constraint relation.

4Let Ĉ ≡
√
−g C. Solving ∂yĈ + F (x, y) Ĉ = 0 yields Ĉ(x, y) = Ĉ(x, 1) exp

(∫ y
1 F (x, Y )dY

)
which converges if

F (x, y) is regular at the horizon y = 1.
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to impose Neumann boundary conditions for all qj at x = 0 and x = 1:

∂xqj(x, y)
∣∣
x=0 = 0 , for j = 1, 2, 3, 4 , (3.16)

∂xqj(x, y)
∣∣
x=1 = 0 , for j = 1, 2, 3, 4. (3.17)

Consider now the asymptotic UV boundary at y = 0. The invariance of the EoM under
dilatations (3.9) guarantees that asymptotically our PDEs are of the Euler type and thus y = 0
is a regular singular point. The order of our PDE system (two second-order and two first-order
PDEs) is 6. It follows that we have a total of 6 free UV independent parameters. We have
explicitly checked that, for our gauge choice and scalar potential, all our functions qj admit a
Taylor expansion in integer powers of y (in particular, without logarithmic terms) that contains
precisely 6 independent parameters. In this Taylor expansion, at a certain order (as expected
due to the fact that we fixed the gauge and our system is cohomogeneity-2) we need to use a
differential relation that is ultimately enforced by the Bianchi identity:

q
(1,2)
2 (x, 0) = 8

3 Λ q(1,1)
4 (x, 0). (3.18)

The requirement that our nonconformal branes asymptote to AdS fixes two of the six UV
integration constants to unity, namely q1(x, 0) and q3(x, 0) at the boundary (it then follows
directly from the EoM that q2(x, 0) = 1). We complement these boundary conditions with
a Dirichlet boundary condition for the scalar field function q4 which introduces the source Λ.
This will be a running parameter in our search for solutions. Altogether we thus impose the
boundary conditions at the UV boundary:

qj(x, y)
∣∣
y=0 = 1 , if j = 1, 2, 3; q4(x, y)

∣∣
y=0 = Λ. (3.19)

Finally, we discuss the boundary conditions imposed at the horizon, y = 1. It follows directly
from the four equations of motion that q1,2,3,4(x, 1) are free independent parameters and q1,2,3,4
must obey a set of four mixed conditions that fix their first radial derivative as a function of
q1,2,3,4(x, 1) and ∂xq1,2,3,4(x, 1) that is not enlightening to display. When assuming a power-law
Taylor expansion for

qj(x, y)
∣∣
y∼1 =

∑
k=0

cj(k)(x)(1− y)k (3.20)

we are already imposing boundary conditions that discard two integration constants that would
describe contributions that diverge at the horizon.

Having imposed the boundary conditions, we must certify that we have a well-defined elliptic
(boundary-value) problem. For that, we need to confirm that the number of free parameters
at the UV boundary matches the IR number of free parameters. Recall that, before imposing
boundary conditions, we have 6 integration constants at the UV and another 6 in the IR. A
power-law Taylor expansion about the asymptotic boundary,

qj(x, y)
∣∣
y∼0 =

∑
k=0

aj(k)(x)yk , (3.21)

concludes that, after imposing the boundary conditions (3.19) that fix a1(0) = 1, a3(0) = 1 and
a4(0) = Λ (a2(0) is not a free parameter since it is fixed by the equations of motion), we are
left with three free UV parameters, namely a1(2)(x), a2(2)(x), a4(1)(x). Note that we will give
Λ as an input parameter so the boundary-value problem will not have to determine it. As we
shall find later, the energy density depends on these three parameters, whereas the expectation
value of the dual operator sourced by Λ is proportional to a4(1)(x). On the other hand, at the
horizon, after imposing the aforementioned boundary conditions that eliminate two integration
constants, one finds that there are 4 free IR parameters.
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So we have 3 UV free parameters but 4 IR free parameters. In order to have a well-defined
boundary value problem (BVP) the number of free UV parameters must match the IR number.
Note however that in our discussion of the boundary conditions we have not yet imposed the
constraint equation C(x, y) = 0. As described above we just need to impose it at the horizon
y = 1, where C(x, 1) = 0 simply reads

2q2(x, 1)∂xq1(x, 1)2 + q1(x, 1)∂xq2(x, 1) = 0 . (3.22)

This is solved by q1(x, 1) = √αΛ/
√
q2(x, 1) where αΛ is a constant to be fixed below. It

follows that, if we impose this Dirichlet condition together with the three aforementioned mixed
conditions for q2,3,4 at the horizon

q1(x, y)
∣∣
y=1 =

√
αΛ√

q2(x, 1)
; ∂yqj

∣∣
y=1 = ∂yqj (q1,2,3,4, ∂xq1,2,3,4)

∣∣
y=1 if j = 2, 3, 4, (3.23)

then we have just three free IR parameters, namely q2,3,4(x, 1). We fix the value of αΛ as follows.
For a given source Λ, the lumpy nonconformal branes that we seek merge with the uniform
nonconformal branes at the onset of the Gregory-Laflamme-type instability of the latter. We
use this merger (where the fields of the two solutions must match) to fix the constant αΛ to be
the value of q1(y)2q2(y)

∣∣
y=1 (no x-dependence) of the nonuniform solution when it merges with

the uniform brane.
This discussion can be complemented as follows (which also allows us to set the IR boundary

condition we impose to search for the uniform branes). Note that when looking for uniform
branes, the PDE system of EoM reduces to an ODE system without any x-dependence. In
particular, the constraint equation C(x, 1) = 0 reduces to C(1) = 0 and is trivially obeyed, since
all of its terms involve terms with partial derivatives in x. So when searching for uniform branes
we use the IR boundary conditions (3.23) but with the first condition replaced by the Dirichlet
condition q1(y)

∣∣
y=1 = 1:

q1(y)
∣∣
y=1 = 1 ; ∂yqj

∣∣
y=1 = ∂yqj (q2,4)

∣∣
y=1 if j = 2, 3, 4; (if uniform branes). (3.24)

This is a choice of normalization that does not change physical thermodynamic quantities.
Solving the EoM for a given source Λ we then find, in particular, the value of q2(y) at y = 1.
We can then read the constant αΛ = q1(y)2q2(y)

∣∣
y=1 = q2(y)

∣∣
y=1 of the uniform brane with

source Λ. This value of αΛ(Λ) is then the one we plug in the boundary condition (3.23) to find
the non-uniform branes with the same source Λ. The UV boundary conditions for the uniform
branes is still given by (3.19) (with the replacement qj(x, y)|y=0 → qj(y)|y=0).

3.1.3 Thermodynamic quantities

Having found the nonconformal solutions (3.14) that obey the boundary conditions (3.16)-
(3.23), we will now implement the holographic renormalization procedure in order to obtain the
relevant thermodynamic quantities (recall that ` ≡ 1 and y+ ≡ 1). Our (non)uniform branes are
asymptotically AdS5 solutions with a scalar field with mass µ2 = −3. In these conditions, the
holographic renormalization procedure to find the holographic stress tensor Tab and expectation
value 〈Oφ〉 of the operator dual to the scalar field φ was developed in [96, 97]. We apply it to
our system. We first need to introduce the Fefferman-Graham (FG) coordinates (z, χ) that are
such that the asymptotic boundary is at z = 0 and gzz = 1/z2 and gza = 0 (with a = t, χ, w2,3)
at all orders in a Taylor expansion about z = 0. In terms of the radial and planar coordinates
(y, x) of (3.14) the FG coordinates are

y = z2 + Λ2

3 z4 + 1
12z

6
(

Λ4 − 3 + 3
2q

(0,2)
2 (χ, 0)

)
+O(z8);

x = χ− q
(1,2)
2 (χ, 0)

96L2 z6 +O(z8). (3.25)
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The expansion of the gravitational and scalar fields around the boundary up to the order that
contributes to the thermodynamic quantities is then

ds2 = 1
z2

[
dz2 + ds2

∂ + z2 ds2
(2) + z4 ds2

(4) +O(z6)
]

(3.26)

where

ds2
∂ = g

(0)
ab dxadxb = −dt2 + L2dχ2 + dx2

2 + dx2
3,

ds2
(2) = g

(2)
ab dxadxb = −Λ2

3 ds2
∂ ,

ds2
(4) = g

(4)
ab dxadxb = 1

36

(
27− Λ4 − 36 q(0,2)

1 (χ, 0) + 9
2 q

(0,2)
2 (χ, 0)

)
dt2

+L2

36

(
9− 7Λ4 + 27

2 q
(0,2)
2 (χ, 0)− 72 Λ q(0,1)

4 (χ, 0)
)
dχ2

+ 1
36

(
9 + Λ4 − 18 q(0,2)

1 (χ, 0)− 9
2 q

(0,2)
2 (χ, 0)

)(
dx2

2 + dx2
3

)
; (3.27)

φ = Λ z + φ2 z
3 +O(z5) , (3.28)

φ2 =
(

Λ3

6 + q
(0,1)
4 (χ, 0)

)
. (3.29)

The holographic quantities can now be computed using the holographic renormalization pro-
cedure of Bianchi-Freedman-Skenderis [96, 97].5 At the end of the day, for our system, the
expectation value of the holographic stress tensor is given by

〈Tab〉 = 2`3

κ2

[
g

(4)
ab + g

(0)
ab

(
Λφ2 −

Λ4

18 + λ4Λ4
)]

, (3.30)

where the metric components g(0)
ab , g

(4)
ab and the scalar decay φ2 can be read directly from (3.26)-

(3.29), and we recall that λ4 is a parameter of the superpotential (2.2) that we will eventually
set to
lambda4 = −1/4. Similarly, the expectation value of the dual operator sourced by Λ is

〈Oφ〉 = 2`3

κ2

(
− 4λ4Λ3 − 2φ2

)
. (3.31)

The trace of the expectation value yields the expected Ward identity associated to the conformal
anomaly

〈T a
a 〉 = −Λ〈Oφ〉 , (3.32)

which reflects the fact that our branes are not conformal.6 Furthermore, after using the Bianchi
relation (3.18), we confirm that the expectation value of the holographic stress tensor is con-
served, i.e.

∇a〈Tab〉 = −〈Oφ〉∇bΛ = 0 . (3.33)

In (3.30) and (3.31) we have reinstated the appropriate power of ` in order to remind the reader
that, as seen in the previous chapter, the prefcator in the expectation values of the boundary

5Note however that we use different conventions for the Riemann curvature, that is to say, with respect to [96,
97] our action (2.1) has the opposite relative sign between the Ricci scalar R and the scalar field kinetic term
(∇φ)2.

6Note that the holographic gravitational conformal anomaly contribution Agrav [96, 97] and the scalar con-
formal anomaly contribution Ascalar vanish for our system.
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theory typically scales as N2
c . In the rest of the paper we will work with rescaled quantities

obtained by multiplying the stress tensor and the scalar operator by the inverse of this factor.
In other words, we will measure boundary expectation values in units of N2

c .
Evaluating (3.30) explicitly we find the following expressions for the energy density E , the

longitudinal pressure PL (along the inhomogenous direction x) and the transverse pressure PT
(along the homogenous directions x2 and x3):

E(χ) = Λ4

4

(
−4λ4 −

5
9

)
+ 1

4

(
3− 4 q(0,2)

1 (χ, 0) + 1
2 q

(0,2)
2 (χ, 0)

)
− Λ q(0,1)

4 (χ, 0) , (3.34)

PL = Λ4

4

(
−4λ4 + 1

3

)
− 1

4
(
1 + 3 q(0,2)

2 (χ, 0)
)

+ Λ q(0,1)
4 (χ, 0) , (3.35)

PT (χ) = Λ4

4

(
−4λ4 −

5
9

)
− 1

4
(
1− 4 q(0,2)

1 (χ, 0)− q(0,2)
2 (χ, 0)

)
− Λ q(0,1)

4 (χ, 0) . (3.36)

Note that PL is the pressure conjugate to the dimensionful coordinate x̃, not to the dimensionless
coordinate x. Moreover, for static configurations, conservation of the stress tensor implies that
PL is constant along the inhomogeneous direction, i.e. independent of χ. The temperature T
and the entropy density s of the nonconformal branes can be read simply from the surface
gravity and the horizon area density of the solutions (3.14), respectively:

T =
√
αΛ
π

,

s = π
√
αΛ

√
q3(χ, 1)

(
q1(χ, 1)

)−2
, (3.37)

where have already used the boundary condition (3.23) that introduces the constant αΛ (that
we read from the uniform solutions; see discussion below (3.23)). The Helmoltz free energy
density is F = E − Ts. The total energy E, entropy S and free energy F are obtained by
integrating over the total volume:

E = L2 L

∫ 1

0
dχ E(χ) , S = L2 L

∫ 1

0
dχ s(χ) , F = L2 L

∫ 1

0
dχF(χ) , (3.38)

where we have made use of the fact that the system is homogeneous in the transverse directions.
It will also be useful to define average densities by dividing the integrated quantities by the total
volume:

E = E

LL2 , s = S

LL2 , f = F

LL2 . (3.39)

For uniform branes these averages coincide with the corresponding densities, since the latter
are constant, but for nonuniform branes they do not. A quantity that will play a role below is
an analogous integral for the expectation value of the scalar operator:

O = L2 L

∫ 1

0
dχ 〈Oφ〉(χ) . (3.40)

Because of the translational invariance in the transverse directions it will also be convenient
to work with densities in the transverse plane, namely with quantities that are only integrated
along the inhomogeneous direction. Thus we define the energy, the entropy, the free energy and
the expectation value densities per unit area in the transverse plane as

ρ = E

L2 , σ = S

L2 , f = F

L2 , ϑ = O
L2 . (3.41)

We will refer to these type of quantities as “area densities" or “Killing densities". In order to write
the first law we will also need the integral of the transverse pressure along the inhomogeneous
direction. We therefore define

pL = PL , pT = L

∫ 1

0
dχPT (χ) . (3.42)
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Note that pL and pT have mass dimension 4 and 3, respectively. Finally, we will choose to
measure all dimensionful quantities in units of the only gauge theory microscopic scale Λ.
We will use a “ˆ" symbol to denote the corresponding dimensionelss quantity obtained by
multiplying or dividing a dimensionful quantity by the appropriate power of Λ, thus:

L̂ = ΛL , T̂ = T

Λ , Ê = E
Λ4 , Ê = E

Λ4 , ρ̂ = ρ

Λ3 , f̂ = f

Λ3 , etc. (3.43)

We are now ready to write down the first law. In order to do this, we first note that the
extensive thermodynamic variables of the system are the total energy E, the total entropy S,
the scalar source Λ, and the three lengths L, L2 ≡ L, L3 ≡ L of the planar directions. It follows
that the first law for the total charges of the system is:

dE = T dS +O dΛ + pL L2 dL+ 2 pT L dL . (3.44)

We see that T , O, pLL2 and pTL are the potentials (intensive variables) conjugate to S,Λ, L
and L, respectively. Since the system is translationally invariant along the x2 and x3 directions,
under the associated scale transformation x2,3 → λ0 x2,3 the energy transforms as E(x2,3) →
λ2

0E(x2,3) and thus it is a homogeneous function of λ0 of degree 2. This means that for any
value of λ0 one has:

E
(
λ2

0 S,Λ, L, λ0 L2, λ0 L3
)

= λ2
0E (S,Λ, L, L2, L3) . (3.45)

We can now apply Euler’s theorem for homogeneous functions to write the energy as a function
of its partial derivatives:7

2S∂E
∂S

+ L2
∂E

∂L2
+ L3

∂E

∂L3
= 2E (S,Λ, L, L2, L3) . (3.46)

The relevant partial derivatives in (3.46) can be read from (3.44) and, recalling that we are
taking L2 = L3 ≡ L, this yields the Smarr relation for the total charges of the system

E = TS + pTL2 . (3.47)

Dividing by L2 we obtain a Smarr relation for the area densities along the transverse plane:

ρ = Tσ + pT . (3.48)

Rewriting the first law (3.44) in terms of these densities and using (3.48) we find the first law
for the area densities:

dρ = T dσ + pL dL+ ϑ dΛ . (3.49)

Since we will measure all dimensionful quantities in units of Λ, it will be useful to find a first
law and a Smarr relation for the dimensionless densities ρ̂, σ̂, etc. In order to do this we first
use the dilatation transformation (3.9). Under this scale transformation xµ → λ2 x

µ the energy
density ρ transforms as ρ(xµ)→ λ3

2 ρ(xµ) and thus it is a homogeneous function of λ2 of degree
3, i.e.

ρ
(
λ2

2 σ, λ2 Λ, L/λ2
)

= λ3
2 ρ (σ,Λ, L) . (3.50)

Applying Euler’s theorem for homogeneous functions we get

2σ ∂ρ
∂σ

+ Λ ∂ρ

∂Λ − L
∂ρ

∂L
= 3ρ (σ,Λ, L) . (3.51)

7Essentially, in the present case, Euler’s theorem amounts to take a derivative of the homogeneous relation
(3.45) with respect to λ0 and then sending λ0 → 1.
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Reading the associated derivatives from the first law (3.49) we find (another) Smarr relation for
the dimensionful densities:

3 ρ = 2T σ − pL L+ ϑΛ . (3.52)

Dividing this relation by Λ3 we get the Smarr relation for the dimensionless densities:

3 ρ̂ = 2 T̂ σ̂ − p̂L L̂+ ϑ̂ . (3.53)

Finally, we can now rewrite the first law (3.49) in terms of the dimensionless area densities and
use (3.53) to find the desired first law

dρ̂ = T̂ dσ̂ + p̂L dL̂ (3.54)

that nonconformal branes with two Killing planar directions x2,3 must obey. In a traditional
thermodynamic language the first law (3.54) and the Smarr relation (3.53) are also known as
the Gibbs-Duhem and Euler relations, respectively. In our case they provide valuable tests of
our numerical results. Moreover, they will be useful to discuss the dominant thermal phases
in the microcanonical and canonical ensembles. Indeed, in the microcanonical ensemble the
dominant phase will be the one that maximises σ̂ for fixed values of ρ̂ and L̂. Similarly, in the
canonical ensemble the dominant phase will be the one that minimises f̂ for fixed T̂ and L̂.

3.1.4 Perturbative construction of lumpy branes

In the previous sections we have setup the BVP that will allow us to find the uniform and
nonuniform nonconformal branes (3.14) that obey the boundary conditions (3.16)-(3.23). This
nonlinear BVP can be solved in full generality using numerical methods. In the uniform case we
have a system of coupled quasilinear ODEs that can be solved without much effort. However,
in the nonuniform case the ODEs are replaced by PDEs and it is harder to solve the system.
We will do this numerically in Sec. 3.1.5. In the present section we will complement this full
numerical analysis with a perturbative nonlinear analysis that finds lumpy branes in the region
of the phase diagram where they merge with the uniform branes. This perturbative analysis
will already provide valuable physical properties of the system. Additionally, these perturbative
results will also be important to test the numerical results of Sec. 3.1.5. We solve the BVP in
perturbation theory up to an order in the expansion parameter where we can distinguish the
thermodynamics of the uniform and nonuniform branes.

We follow a perturbative approach that was developed in [98] (to find vacuum lattice branes)
and that has its roots in [99–101] (to explore the existence of vacuum nonuniform black strings).
More concretely, our strategy to find perturbatively the lumpy branes has three main steps:

1. The first step is to construct the uniform branes.

2. Then, at linear (n = 1) order in perturbation theory, we find the locus in the space
of uniform branes where a zero-mode, namely a mode that is marginally stable, exists.
We will refer to this mode as the GL-mode. In practice, we will identify this locus by
finding the critical length L = LGL (wavenumber kGL = 2π/LGL) above (below) which
uniform branes become locally unstable (stable). As expected from the discussion in in
the introduction of the current chapter, this critical length only exists for energy densities
between points A and B.

3. The third step is to extend perturbation theory to higher orders, n ≥ 2, and construct
the nonuniform (lumpy) branes that bifurcate (in a phase diagram of solutions) from the
GL merger curve of uniform branes.

We describe in detail and complete these three steps in the next three subsections.
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Chapter 3 Crossing a Large-N Phase Transition at Finite Volume

Uniform branes: O(0) solution

The first step is to construct the uniform branes. We solve the system of four coupled ODEs
for qj(x, y) ≡ Qj(y) (here and below, j = 1, . . . , 4) subject to the boundary conditions (3.19)
and (3.24), as described in Sec. 3.1.2. This can be done only numerically: we use the numerical
methods detailed in the review [102].

There is a 1-parameter family of uniform nonconformal branes. We can take this parameter
to be the scalar field source Λ. This is actually how we construct these solutions since Λ is
an injective parameter: we give the source Λ via the boundary condition (3.19) and find the
associated brane; then we repeat this for many other values of Λ. The dimensionless energy
density Ê = E/Λ4 decreases monotonically as Λ grows, so this procedure maps out all possible
uniform branes. Recall that, once we have found qj(x, y) ≡ Qj(y), the thermodynamic quantities
of the solution follow straightforwardly from Sec. 3.1.2.
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Figure 3.3: Dimensionless energy density (left) and free energy density (right) as a
function of the dimensionless temperature for uniform nonconformal branes in our
model. The curve between A and B is the spinodal region and we will refer to it
as the “intermediate branch". At T̂c ' 0.3958945 (vertical dashed line) there is a
first order phase transition in the canonical ensemble (see right panel). For reference
here and in future plots, (T̂ , Ê)A ' (0.387944, 1.076417), (T̂ , Ê)B ' (0.405724, 0.650227),
(T̂ , Ê)C ' (0.3958945, 0.867956), (T̂ , Ê)D ' (0.3958945, 1.37386) and
(T̂ , Ê)E ' (0.3958945, 0.452754).

The properties of uniform branes are summarized in Figs. 3.3 and 3.4. In the left panel of
Figs. 3.3 we plot the dimensionless energy density Ê ≡ E/Λ4 as a function of the dimensionless
temperature T̂ ≡ T/Λ. We see the familiar S-shape associated to the multivaluedness of a first-
order phase transition. Specifically, for a given temperature T̂ in the window of temperatures
T̂A ≤ T/Λ ≤ T̂B there are three distinct families or branches of uniform branes with different
values of Ê . We will refer to these families as the “heavy", “intermediate" and “light" branches.
The heavy branch (with higher energy density) starts in the conformal T/Λ → ∞ limit and
then extends through point D all the way down to point A as the temperature T̂ decreases. The
intermediate branch extends from point A, passes though point C, towards point B. This branch
has negative specific heat and is both thermodynamically and dynamically locally unstable. A
general discussion of these features can be found in Sec. 2 of Ref. [63]. In the present paper
we will analyse the zero-mode properties of this instability in Sec. 3.1.4, and its timescale in
Sec. 3.1.7. Finally, the light branch (with lower energy density) starts at point B, passes thought
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Figure 3.4: (Left) Dimensionless expectation value 〈Oφ〉/Λ3 of the operator with source Λ as a
function of the dimensionless temperature T̂ of the uniform branes. (Right) Value of the scalar
field of the uniform branes at the horizon φH as a function of T̂ .

point E and extends all the way down towards T/Λ → 0. We do not show the plots of ŝ(T̂ )
and p̂L,T (T̂ ) because they are qualitatively similar to the plot of Ê(T̂ ).

The relevant phase diagram for the canonical ensemble, namely the dimensionless free energy
F̂ ≡ F/Λ4 as a function of the dimensionless temperature T̂ , is displayed in the right panel of
Fig. 3.3, where we see the expected swallow-tail shape. For a given T̂ , the solution with lowest
F̂ is the preferred thermal phase. So, as anticipated above, there is a first-order phase transition
at T̂ = T̂c ≈ 0.3958945. This critical temperature is indicated with a vertical dashed line in the
plots of Figs. 3.3 and 3.4, as well as in subsequent ones whenever appropriate. For T̂ < T̂c the
light uniform branch (the lower branch in the left panel of Fig. 3.3) is the preferred thermal
phase, while for fixed T̂ > T̂c the heavy uniform branch (the upper branch in the left panel)
dominates the canonical ensemble. In particular, the intermediate uniform branch (between A
and B) is never the preferred thermal phase.

For completeness, in Fig. 3.4 we show how the dimensionless expectation value 〈Oφ〉/Λ3 of
the operator with source Λ changes with the dimensionless temperature T̂ (left panel) and how
the value of the scalar field at the horizon φH varies with T̂ (right panel).

In the microcanonical ensemble, the relevant phase diagram is the average entropy density
ŝ ≡ s/Λ3 as a function of the average energy density Ê ≡ E/Λ4. It is important to consider
averaged quantities (which involve integration along the x direction) because inhomogeneous
state will play a role. The qualitative form of the function ŝ(Ê) is shown in Fig. 3.5. The key
features are as follows. ŝ is convex (ŝ′′ > 0) in the region between A and B. This indicates
local thermodynamical instability, since the system can increase its total entropy by rising the
energy slightly in part of its volume and lowering in another so as to keep the total energy fixed.
In the regions EB and AD the entropy function is concave (ŝ′′ < 0) but there are states with
the same total energy and higher total entropy, namely phase-separated configurations in which
the phases E and D coexist at the critical temperature. These states are characterised by the
fractions 0 ≤ ν, (1− ν) ≤ 1 of the total volume occupied by each phase, so their total entropy is
of the form ŝE + (ŝD − ŝE)ν, as indicated by the red segment in Fig. 3.5. Therefore the regions
EB and AD are locally but not globally thermodynamically stable. Finally, all states outside
the region ED are globally stable. For our system, these qualitative features are difficult to
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Figure 3.5: Qualitative form of the entropy density in the microcanonical ensemble. The solid red
segment corresponds to the average entropy density of phase-separated configurations, as explained in
the text. The dashed red segment indicates that the slope of the tangent at point C is the same as that
of the solid red segment. This follows from the fact that the temperature at point C is precisely Tc.

appreciate directly on a plot of ŝ versus Ê because the curve ŝ(Ê) is very close to a straight line.
For this reason we show the convexity/concavity property (the second derivative) in Fig. 3.6(left)
and the difference between the phase-separated configurations and the homogeneous solutions
in Fig. 3.6(right).

Gregory-Laflamme physics: O(1) solution and the spinodal zero-mode

The intermediate uniform branes with ÊB < Ê < ÊA (see left panel of Fig. 3.3), and only these,
can be Gregory-Laflamme (GL) unstable. Roughly speaking, we expect this to happen if their
dimensionless length LΛ (along the x direction) is bigger than the dimensionless thermal scale
Λ/T of the system. This linear instability is ultimately responsible for the nonlinear existence
of the lumpy solutions. Therefore, our second step is to consider static perturbations about
the uniform branes, qj(x, y) = Qj(y) + ε q

(1)
j (x, y), that break the U(1) symmetry along x

(see Sec. 3.1.7 for time-dependent perturbations). Here, ε � 1 is the amplitude of the linear
perturbation and, ultimately, it will be the expansion parameter of our perturbation theory to
higher order.

We adopt a perturbation scheme that is consistent with our nonlinear ansatz (3.14) — where
we recall that x ∈ [0, 1] — since we want to simply linearize the nonlinear equations of motion
that we already have (Sec. 3.1.2) to get the perturbative EoM. In this perturbation scheme we
assume an ansatz for the perturbation of the form8

q
(1)
j (x, y) = q

(1)
j (y) cos(π x). (3.55)

This means that the length L of the periodic coordinate x is given in terms of the wavenumber
k of the perturbation by L = 2π/k, and it will change as we climb the perturbation ladder (this

8The superscript (n) here and henceforth always denotes the order n of the perturbation theory, not order of
derivatives.
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Figure 3.6: (Left) Second derivative ŝ′′(Ê) of the entropy density with respect to the energy
density, showing the convexity/concavity properties discussed in the text. (Right) Difference
between the average entropy density of the phase-separated configurations and the entropy
density of the homogeneous solutions, showing that the former are preferred in the region
between A and B.

is because k, and thus L, will be corrected at each order; see Sec. 3.1.4). Since the EoM depend
on L, this relation L = 2π/k introduces the zero mode wavenumber k in the problem.9

Under these circumstances the linearized EoM become a simple eigenvalue problem in k2

of four coupled ODEs. Henceforth, we denote this leading-order wavenumber by kGL. So we
need to solve our eigenvalue problem to find the eigenvalue kGL as well as the associated four
eigenfunctions q(1)

j (y). Note however that we “just" need to solve an ODE system of four
coupled equations (not PDEs) subject to the linearized versions of the boundary conditions
(3.19)-(3.23). For example, when we linearize (3.19) using qj |y=0 = Qj |y=0 + ε q

(1)
j |y=0 we

find that the linear perturbations q
(1)
j (y) must obey the UV Dirichlet boundary conditions

q
(1)
j

∣∣
y=0 = 0. On the other hand, linearizing the IR boundary conditions (3.23) we find that the

linear perturbations q(1)
j (y) must obey the condition q

(1)
1
∣∣
y=1 = 1

2αΛ
q

(1)
2
∣∣
y=1 and mixed boundary

conditions for q
(1)
2,3,4

∣∣
y=1. Of course, in this linearization procedure about the uniform brane,

we insert the boundary conditions (3.19) and (3.24) of the leading solution; in particular, we
impose Q1

∣∣
y=1 = 1 and Q2

∣∣
y=1 = αΛ.

Summarizing this second step, the above perturbation procedure at O(ε) finds the critical
zero mode of the Gregory-Laflamme (GL) instability of uniform branes with energy densities
ÊB < Ê < ÊA. That is to say, it finds the dimensionless critical wavenumber k̂GL = kGL/Λ
for the onset of the GL instability, and thus the minimum length LGLΛ = 2π/k̂GL above which

9We have some freedom in the choice of the perturbation scheme. For example, an alternative perturbation
scheme would be to keep the length L fixed by absorbing the L factor in the metric component gxx of the
ansatz (3.14) into a new coordinate x̃. That is to say, we would change the x ∈ [0, 1] coordinate of (3.14) into
x̃ = xL2 ∈ [0, L2 ]. In this case, the U(1) dependence of the perturbation would be cos(k x̃) which would introduce
the wavenumber k = 2π

L
in the problem. These two schemes are equivalent. This follows from the observation

that the two sets of Fourier modes are equivalent: cos(η k x̃) = cos
(
η 2π
L
L
2 x
)

= cos(η π x). Further recall from the
discussion above (3.5) that our solutions have Z2 symmetry: the solution in x̃ ∈ [−L/2, 0[ can be obtained by
simply flipping our solution over the x = 0 axis (computationally this is useful/efficient since we deploy a given
number of grid points to study the range [0, L/2] instead of [−L/2, L/2]). This is why we have just a factor of π
and not 2π in the arguments of our Fourier cosines.
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the uniform brane is unstable. This critical value k̂GL = k̂GL(T̂ ) is only a function of the
dimensionless temperature T̂ = T/Λ and is plotted in Fig. 3.7. We see that k̂GL = 0 at the
endpoints A and B of the intermediate uniform branch where T̂ = T̂A and T̂ = T̂B. These two
branes are effectively stable since L̂GL →∞ at these two temperatures. However, intermediate
branes with T̂A ≤ T̂ ≤ T̂B are unstable if their length satisfies L̂ > L̂GL = 2π/k̂GL.
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Figure 3.7: Zero mode of the GL or spinodal instability, i.e. its onset wavenumber k̂GL as a
function of the temperature T̂ . For reference (T̂ , k̂GL, L̂GL)C ' (0.3958945, 1.322508, 4.750961),
and the maximum of the instability occurs for (T̂ , k̂GL, L̂GL)K ' (0.397427, 1.332306, 4.716021).

So L̂GL is parametrized by T̂ , and the energy density of uniform branes is also only a function
of the temperature, Ê = Ê(T̂ ). It follows that we can identify the onset GL curve of uniform
branes in a plot Ê vs L̂. This is done in Fig. 3.8. This plot is effectively a stability phase diagram
for the uniform branes since the black dotted GL onset curve separates the region where the
uniform branes are unstable — namely, the parabola-like shaped interior region ÊB < Ê < ÊA
with L̂ > L̂GL — from its complementary region where branes are stable against the spinodal
instability. In this figure note that the energy density Ê = ÊA and Ê = ÊB corresponds to the
energy densities of the uniform solutions A and B in Fig. 3.3 and note that L̂GL →∞ when the
energy density of the black dashed GL onset curve approaches ÊA or ÊB.

To summarize, Fig. 3.8 shows that intermediate uniform branes with a given energy density
ÊB < Ê < ÊA are unstable if their dimensionless length is higher that the GL critical length,
L̂ > L̂GL. Not less importantly, in a phase diagram of solutions, the GL onset curve also signals
a bifurcation to a new family of solutions that describes nonuniform or lumpy branes. That is to
say, the GL onset curve is a merger line between the uniform and lumpy nonconformal branes.
Perturbation theory at order O(ε) identifies this merger or intersection line (see Fig. 3.8) of
two distinct surfaces in a 3D phase diagram but it cannot describe the properties of the lumpy
brane surface as we move away from the merger line (roughly speaking, it cannot describe the
“slope of the lumpy surface" in a 3D phase diagram). For that, we need to proceed to higher
order O(εn) in the perturbation theory, as we do in in the next subsection.
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Figure 3.8: Stability diagram for uniform nonconformal branes. The interpreta-
tion of the two yellow square points Σ1 and Σ2 will be given when discussing
Fig. 3.10. For reference, (T̂ , L̂GL, Ê)Σ1 ' (0.390817, 5.618133, 0.950579) and (T̂ , L̂GL, Ê)Σ2 '
(0.404645, 6.592316, 0.717060) and (T̂ , L̂GL, Ê)K ' (0.397427, 4.716021, 0.846337).
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Lumpy branes: perturbative solution at O(n)

To find the solution at order O(εn) we expand the metric functions and wavenumber in powers
of ε:

qj(x, y) = Qj(y) +
∞∑
n=1

εn q
(n)
j (x, y); (3.56a)

k =
∞∑
n=1

εn−1k(n−1) ≡ kGL +
∞∑
n=2

εn−1k(n−1), with L = 2π
k
. (3.56b)

In this expansion we have made the identification k(0) ≡ kGL and we have already found the
n = 1 contribution in the previous section. Recall that this {kGL, q

(1)
j } contribution was found

by solving a homogeneous eigenvalue problem for kGL. The expansion (3.56) is such that at
order O(εn) we solve the BVP to find the coefficients {k(n−1), q

(n)
j }.

Further note that, as explained above, our choice of perturbation scheme is such that the
length L is corrected at each order n (see also footnote 9). That is, one has

L = LGL +
∞∑
n=2

εn−1L(n−1) , (3.57)

where the coefficients L(n−1) can be read straightforwardly from (3.56b). This also means that
in our choice of scheme, the periodicity of the x circle allows us to introduce a separation ansatz
for the perturbation coefficients q(n)

j (x, y) whereby they are expressed as a sum of Fourier modes
(with harmonic number η) in the x direction as

q
(n)
j (x, y) =

n∑
η=0

q
(n,η)
j (y) cos(η π x). (3.58)

So here and onwards, 0 ≤ η ≤ n identifies a particular Fourier mode (harmonic) of our expansion
at order O(εn).

At order n ≥ 2, the perturbation EoM are no longer homogeneous. Instead, they describe
an inhomogeneous boundary value problem with a source S(n,η). Not surprisingly, this source
is a function of the lower order solutions {k(i−1), q

(i)
j }, i = 1, . . . , n − 1 (and their derivatives):

S(n,η)(k(i−1), q
(i)
j ). This source can always be written as a sum of Fourier modes of the system.

We find that at order n ≥ 2, the maximum Fourier mode harmonic that is excited in the source
is η = n. This is due to the fact that at linear order we start with the single η = 1 Fourier
mode and the nth polynomial power of this linear mode, after using trigonometric identities to
eliminate powers of trigonometric functions, can be written as a sum of Fourier modes with
the highest harmonic being η = n. This property of our source implies that the solution of the
O(n) EoM can only excite harmonics up to η = n and this explains why we capped the sum in
(3.58) at η = n.

To proceed, at each order O(n), we have to distinguish the Fourier modes η = 1 from the
other, η 6= 1. This is because this particular Fourier mode η = 1 is the only one that is already
excited at linear order n = 1.

Start with the generic case η 6= 1. Then the differential operator — call it LH — that
describes the associated homogeneous system of equations, LH q

(n,η)
j = 0, is the same at each

order n and for any Fourier mode η: it only depends on the uniform brane Qj(y) we expand
about and kGL. The ODE system of 4 inhomogeneous equations is thus of the form

LH q
(n,η)
j = S(n,η), if n ≥ 2 and η 6= 1. (3.59)
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It follows that the complementary functions of the homogeneous system are the same at each
order n ≥ 2 and η. But, we also need to find the particular integral of the inhomogeneous
system and this is different for each pair (n, η) since the sources S(n,η) differ. The general solu-
tion q

(n,η)
j (y) is found by solving (3.59) subject to vanishing UV Dirichlet boundary conditions

q
(n,η)
j

∣∣
y=0 = 0 — since the full solution (3.56) must obey (3.19) — and regularity at the horizon

y = 1. This gives mixed boundary conditions for q(n,η)
2,3,4 and a Dirichlet condition for q(n,η)

1 , all
of which follow from (3.23).

Consider now the exceptional case η = 1. In this case, at order n ≥ 2, our BVP becomes
a (non-conventional10) eigenvalue problem in k(n−1). That is to say, the ODE system of 4
inhomogeneous equations is now of the form

LH q
(n,1)
j = k(n−1) kGLKjmq

(1)
m

2y(1− y2)Q2
2Q3

+ S(n,1), if n ≥ 2 and η = 1. (3.60)

where Kjm is a diagonal matrix whose only non-vanishing components are K11 = 1 = K44.
Recall that LH is an operator that describes two second-order ODEs for q1, q4 and two first-
order ODEs for q2, q3 and this justifies the presence of this particular Kjm in our eigenvalue
term. We now have to solve (3.60) (subject to boundary conditions that are motivated as in
the η 6= 1 case) to find the eigenvalue k(n−1) and the eigenfunctions q(n,1)

j (y).
To have a full understanding of the EoM of our perturbation problem one last observation

is required. As pointed out above, the highest Fourier harmonic that is excited in our system at
order O(εn) is η = n. This is because the nth polynomial power of the single Fourier mode that is
present at linear order, after using trigonometric identities to eliminate powers of trigonometric
functions, can be written as a sum of Fourier modes with the highest harmonic being η = n.
But this trigonometric operation also indicates (as we explicitly confirmed) that not all Fourier
modes with η ≤ n are excited. More concretely, for even n ≥ 2 we find that only even 0 ≤ η ≤ n
modes are present in our system. And for any odd n ≥ 3, only odd 0 ≤ η ≤ n modes are excited.
Therefore, up to order n = 5 we find that the modes that are excited in our system are:

q
(2)
j (x, y) = q

(2,0)
j (y) + q

(2,2)
j (y) cos(2π x), (3.61a)

q
(3)
j (x, y) = q

(3,1)
j (y) cos(π x) + q

(3,3)
j (y) cos(3π x), (3.61b)

q
(4)
j (x, y) = q

(4,0)
j (y) + q

(4,2)
j (y) cos(2π x) + q

(4,4)
j (y) cos(4π x), (3.61c)

q
(5)
j (x, y) = q

(5,1)
j (y) cos(2π x) + q

(5,3)
j (y) cos(3π x) + q

(5,5)
j (y) cos(5π x). (3.61d)

This last property of our system, together with the previous observation — see the discussion of
(3.60) — that Fourier modes with η = 1 are those that give the wavenumber correction k(n−1)

at order n, immediately allows us to conclude that k(n−1) = 0 if n is even. At even n order the
cos (π x) Fourier mode is not excited by the source and thus the only solution of (3.60) is the
trivial solution.

Finally, note that the η = 0 harmonics are of particular special interest. Indeed note that
modes with η 6= 0 do not contribute (since the integral of a cosine vanishes) to the total thermo-
dynamic quantities of the solution such as the energy E, the entropy S, etc. It follows from the
discussion of (3.61) that odd order n modes do not contribute to correct these thermodynamic
quantities.

We can finally summarize the key aspects of the general flow of our perturbation theory as
the order n grows:

1. even orders O(εn) introduce perturbative corrections to thermodynamic quantities like
energy, entropy, pressure, etc., but they do not correct the wavenumber, k(n−1) = 0 (and
thus do not correct L).

10It is not a standard eigenvalue problem because the eigenvalue k(n−1) is not multiplying the unknown eigen-
function q

(n,η)
j . Instead, it multiplies an eigenfunction that was already determined at previous n = 1 order.

46



Chapter 3 Crossing a Large-N Phase Transition at Finite Volume

2. odd orders O(εn) give the wavenumber corrections k(n−1) but do not change the energy,
entropy and pressure.

We complete this perturbation scheme up to order O(ε5): this is the order required to find a
deviation between the relevant thermodynamics of the lumpy branes and the uniform phase.

Once we have found all the Fourier coefficients q(n,η)
j (y) and wavenumber corrections k(n−1)

up to n = 5, we can reconstruct the four fields qj(x, y) using (3.56). We can then substitute these
fields in the thermodynamic formulas of Sec. 3.1.2 to obtain all the thermodynamic quantities
of the system up to O(ε5). We find that all of them, as well as the wavenumber, have an even
expansion in εn, with the only exception of the temperature that is simply given by (3.37).

Now that we have the thermodynamic description of lumpy branes up to O(ε5), we can
compare it against the thermodynamics of uniform branes and find which of these two families
is the preferred phase. We are particularly interested in the microcanonical ensemble, so the
dominant phase is the one that has the highest σ̂ for a given pair (L̂, ρ̂). Let Qu and Qnu
denote thermodynamic quantities Q for the uniform and nonuniform branes, respectively. When
comparing these two solutions in the microcanonical ensemble, one must have

L̂nu = L̂u, and ρ̂nu = ρ̂u. (3.62)

Given a lumpy brane with (L̂nu, ρ̂nu) we must thus identify a uniform brane whose Killing
density ρ̂u satisfies (3.62). Equivalently, we can impose that the energy density of the uniform
brane obeys

Eu = ρ̂nu

L̂nu
. (3.63)

Both sides of this equation are known as a perturbative expansion in ε. This is because the
energy density Eu is a function of the dimensionless temperature T̂u which is corrected at each
order as T̂u = T̂0 + ε2 T̂(2) + ε4 T̂(4) + O(ε6) in our perturbation expansion. Similarly, the
Killing energy density ρ̂nu(ε) and the length L̂nu(ε) of lumpy branes are also known as a Taylor
expansion in ε. Therefore, in practice equation (3.63) becomes

Eu(τ̂0) + ε2 τ̂(2) E ′u(τ0) + ε4
(
τ̂(4) E ′u(τ0) + 1

2 τ̂
2
(2) E

′′
u (τ0)

)
+O(ε6) = ρ̂nu(ε)

L̂nu(ε)
. (3.64)

Taking the Taylor expansion of ρu(T̂u) we must impose

ρnu = ρu(T̂0) + ε2 T̂(2) ρ
′
u(T0) + ε4

(
T̂(4) ρ

′
u(T0) + 1

2 T̂
2
(2) ρ

′′
u(T0)

)
+O(ε6) , (3.65)

Given a lumpy brane with known L̂nu(ε) and ρ̂nu(ε), equation (3.65) allows us to find the
temperature coefficients T(i) of the uniform brane that has the same length and Killing energy
density as the lumpy solution, i.e. the temperature of the uniform brane T̂u up to O(εn) that
satisfies (3.62).

Having this T̂u we can now compute the entropy density of the uniform brane ŝu(Tu) and
the Killing entropy density σ̂u(Tu) = L̂u ŝu(Tu). More concretely, a Taylor expansion in ε of this
equality yields

σ̂(0)
u + ε2 σ̂(2)

u + ε4 σ̂(4)
u +O(ε6) =

[
L̂nu(0) + ε2 L̂nu(2) + ε4 L̂nu(4) +O(ε6)

]
(3.66)

×
[
ŝu(T̂0) + ε2 T̂(2) ŝ

′
u(T0) + ε4

(
T̂(4) ŝ

′
u(T0) + 1

2 T̂
2
(2) ŝ

′′
u(T0)

)
+O(ε6)

]
,

which allows us to find the entropy correction coefficients σ̂(i)
u and thus the Killing entropy

density σ̂u(T̂u) up to order O(ε6) of the uniform brane that has the same (L̂, ρ̂) as the particular
lumpy brane we selected. This procedure (3.62)-(3.65) can now be repeated for all lumpy branes.
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Figure 3.9: Wavenumber corrections k(2) (left panel) and k(4) (right panel), as defined in (3.56b),
as a function of the uniform brane temperature. For reference, T̂C ' 0.3958945 and the maxi-
mum of the instability occurs for T̂K ' 0.397427.

We are now ready to discuss our higher-order perturbative findings. First, in Fig. 3.9 we
plot the wavenumber corrections k(2) (left panel) and k(4) (right panel), as defined in (3.56b).
The fact that these higher order quantities grow large as one approaches T̂A and T̂B tells us
that our perturbation theory breaks down in these regions. We will come back to this below.

Second, in order to determine the dominant phase, we are interested in the entropy difference
between a nonuniform and a uniform brane when the two have the same length L̂ and Killing
energy density ρ̂. This is given by

∆σ̂(ε)
∣∣
same L̂,ρ̂ =

[
σ̂nu(ε)− σ̂u(ε)

]
same L̂,ρ̂

=
(
σ̂(0)

nu − σ̂(0)
u

)
+ ε2

(
σ̂(2)

nu − σ̂(2)
u

)
+ ε4

(
σ̂(4)

nu − σ̂(4)
u

)
+O(ε6) (3.67)

≡ ∆σ̂(0) + ε2∆σ̂(2) + ε4∆σ̂(4) +O(ε6) .

By construction ∆σ̂(0) ≡ 0 since the leading order of our perturbation theory describes the
merger line of lumpy branes with uniform branes. Moreover, the first law for the Killing
densities (3.54) can be rewritten, in the perturbative context, as ∂ερ̂ = T̂ ∂εσ̂ + p̂L ∂εL̂ and
has itself an expansion in ε that must be obeyed at each order. The leading-order term of this
expansion implies that ∆σ̂(2) ≡ 0, a condition that we actually use to test our numerical results.
Therefore the first non-trivial contribution to ∆σ̂(ε) occurs at fourth order, namely

∆σ̂(ε)
∣∣
same L̂,ρ̂ =

[
σ̂nu(ε)− σ̂u(ε)

]
same L̂,ρ̂

= ε4∆σ̂(4) +O(ε6) . (3.68)

This is the reason why we have to extend our perturbation analysis up to O(ε5).
We conclude that, for given (L̂, ρ̂), if ∆σ̂(4) > 0 then the lumpy branes are the preferred

phase; otherwise the uniform branes are the dominant phase. We should thus plot the coefficient
∆σ̂(4) of (3.67) as a function of L̂ and ρ̂. However, we find it clearer to plot instead ∆σ̂(4) as
a function of the temperature T̂u of the uniform brane that has the same (L̂, ρ̂) as the lumpy
brane we compare it with. This is done in Fig. 3.10. Recall that uniform branes can be GL-
unstable only in the range T̂A ≤ T̂ ≤ T̂B and ÊB < Ê < ÊA, see Fig. 3.3. It follows that lumpy
branes bifurcate from the uniform branch at the GL zero mode for temperatures in the range
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Figure 3.10: Perturbative identification of the dominant microcanonical phase. The horizontal
axis shows the temperature T̂u of the uniform brane that has the same (L̂, ρ̂) as the lumpy brane
we compare it with. The vertical axis shows the difference between the Killing entropy densities
of the lumpy and the uniform branes. Thus lumpy branes (uniform branes) dominate if ∆σ̂(4) >
0 (∆σ̂(4) < 0). For reference, T̂c ' 0.3958945 (vertical black dashed line), (T̂ , Ê , L̂GL)Σ1 '
(0.390817, 0.950579, 5.618133) and (T̂ , Ê , L̂GL)Σ2 ' (0.404645, 0.717060, 6.592316).
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T̂A ≤ T̂ ≤ T̂B. Fig. 3.10 plots this range of temperature and shows that for T̂Σ1 < T̂ < T̂Σ2 ,
where the values of T̂Σ1 and T̂Σ2 are identified in the caption, the lumpy branes are the preferred
thermodynamic phase since ∆σ̂(4) > 0. However, for T̂A < T̂ < T̂Σ1 and T̂Σ2 < T̂ < T̂B, we have
∆σ̂(4) < 0 and thus uniform branes dominate over the lumpy phase when they have the same
dimensionless length L̂ and Killing energy density ρ̂. Going back to Fig. 3.8, for completeness
we have also identified these points Σ1 and Σ2 in the associated GL merger curve.

Figs. 3.9 and 3.10 also illustrate the regime of validity of our perturbative expansion. For
example, in Fig. 3.10 we see that ∆σ̂(4) grows arbitrarily negative as we approach the endpoints
A and B of the intermediate branes with temperature T̂A ' 0.387944 and T̂B ' 0.405724
(see also Fig. 3.3). But once the associated entropy correction becomes of the order of our
expansion parameter, ∆σ̂(4)ε4 ∼ ε, perturbation theory breaks down. So we should not trust
our perturbative results close to the endpoints A and B.

Even away from T̂A and T̂B, our perturbation theory is certainly valid only for ε � 1.
Therefore we expect it to describe accurately the properties of lumpy branes close to their GL
merger line with the uniform branes (where ε = 0) but not far away from this merger. To learn
what happens further away, we need to solve the full nonlinear BVP using numerical methods.
This is what we do in the next subsection.

3.1.5 Full nonlinear solutions and phase diagram of nonconformal branes

To find accurately the lumpy branes and thus their thermodynamics in the full phase space
where they exist, one needs to resort to numerical methods to solve nonlinearly the associated
BVP, which was set up in Sec. 3.1.2. It consists of a coupled set of four quasilinear PDEs —
two second-order PDEs for q1,4(x, y) and two second-order PDEs for q2,3(x, y) — that allow us
to find the brane solutions (3.14) that obey the boundary conditions (3.16)-(3.23).

We solve our BVP using a Newton-Raphson algorithm. For the numerical grid discretization
we use a pseudospectral collocation with a Chebyshev-Lobatto grid and the Newton-Raphson
linear equations are solved by LU decomposition. These methods are reviewed and explained
in detail in the review [102] and used in e.g. [103–107]. As explained in Sects. 3.1.1 and 3.1.2
(see in particular footnote 1 and the associated discussion) our gauge was judiciously chosen
to guarantee that our solutions have analytical polynomial expansions at all the boundaries of
the integration domain. In these conditions the pseudospectral collocation guarantees that our
numerical results have exponential convergence with the number of grid points. We further use
the first law and the Smarr relations (3.54)-(3.53) to check our numerics. In the worst cases, our
solutions satisfy these relations with an error that is smaller than 1%. As a final check of our
full nonlinear numerical results, we compare them against the perturbative expansion results of
Sec. 3.1.4.

As usual, to initiate the Newton-Raphson algorithm one needs an educated seed. We use the
perturbative solutions of Sec. 3.1.4 as seeds for the lumpy branes near the GL merger line with
the uniform branes. The uniform branes are a 1-parameter family of solutions parametrized by
the dimensionless temperature T/Λ. In contrast, the lumpy branes are a 2-parameter family of
solutions that we can take to be T/Λ and the dimensionless length LΛ. This means that we
need to scan a 2-dimensional parameter space. Our strategy to do so follows two routes. In
one of them we follow lines of constant-temperature lumpy branes as their length LΛ changes.
The temperature T is given by (3.37) where the constant αΛ and Λ (to build the dimensionless
ratio T/Λ) are read from the uniform solution at the GL merger. The minimum length of these
branes is the GL length L̂GL computed in Sec. 3.1.4, and constant-temperature branes exist for
arbitrarily large LΛ. In a second route, we generate curves of lumpy branes that have fixed
dimensionless length LΛ. In this path the temperature T/Λ of the branes changes but at the
GL merger with the uniform branes, see e.g. Fig. 3.7, we know both the temperature T̂ and the
associated GL length L̂GL(T̂ ). Altogether these two solution-generating procedures allow us to
construct a grid of two “orthogonal-like" lines of solutions that span the phase space of lumpy
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branes. Further, recall that once we have the numerical solutions qj(x, y), the thermodynamic
quantities of the lumpy branes are read straightforwardly from the expressions discussed in
Sec. 3.1.3.

After these preliminaries we are ready to discuss our numerical nonlinear findings. A first
important plot is shown in Fig. 3.11, where we show the dimensionless average energy density
Ê = E/Λ4 as a function of the dimensionless temperature T̂ = T/Λ. Recall that for uniform
branes Ê coincides with the dimensionless energy density, Ê , which is constant across the entire
system. This plot contains again the uniform-brane spinodal curve (blue circles) already shown
in Fig. 3.3 but this time we also show some representative examples of lumpy brane solutions
(all other lines/curves).

As illustrated in Fig. 3.11, a first non-trivial conclusion of our study is that lumpy branes
exist only in the temperature window T̂A ≤ T̂ ≤ T̂B where T̂A ' 0.387944 and T̂B ' 0.405724.
That is, they exist only in the temperature range where the GL-unstable, intermediate branch
of uniform solutions (the curve ACB) exists. Of course, we should have anticipated that lumpy
branes merge with the uniform branes of the intermediate branch and thus in the window
T̂A ≤ T̂ ≤ T̂B. However, it was a logical possibility that, away from this merger, lumpy
branes might exist also for temperatures outside the range T̂ ∈ [T̂A, T̂B]. We have generated
considerably more solutions than those shown in Fig. 3.11 in order to test this possibility and,
as stated above, we have found that it is not realised.

To continue interpreting Fig. 3.11, it is convenient to discuss separately the regions T̂A ≤ T̂ < T̂c
and T̂c < T̂ ≤ T̂B, i.e. the regions to the left and to the right, respectively, of the vertical dashed
line DCE. Recall that this auxiliary line identifies the critical temperature T̂ = T̂c at which
the first-order phase transition for uniform branes takes place (see right panel of Fig. 3.3).

So consider first lumpy branes that exist in the window T̂A ≤ T̂ < T̂c:

1. For a given temperature T̂ in this range, lumpy branes exist with a dimensionless length
that satisfies L̂GL ≤ L̂ ≤ ∞. In particular, the vertical lines of orange circles of Fig. 3.11
are lumpy branes at constant T̂ that have L̂ = L̂GL(T̂ ) when they bifurcate from the
intermediate uniform-brane branch AC. Then they extend for arbitrarily large L̂. More
precisely, for T̂ < T̂c, constant-T̂ lumpy branes extend upwards (i.e. towards higher Ê)
as L̂ grows. However, we find that for a given step increase in L̂, the increase in Ê gets
smaller and smaller as L̂ grows, i.e. (∂Ê/∂L̂)

∣∣
T̂
is a monotonically decreasing function of

L̂. This is explicitly observed in the vertical lines that we display: away from the merger
each two consecutive orange circles are separated by the same step in L̂ but the step
increase in Ê is significantly decreasing as we move upwards. Due to the large hierarchy of
scales that develops it is difficult to construct lumpy branes with L̂→∞. But the above
behaviour strongly suggests that lumpy branes with T̂ < T̂c are precisely bounded by the
heavy uniform branch segment AD when L̂→∞, i.e. we conjecture that

lim
L̂→∞

∂Ê
∂L̂

∣∣
T̂
→ 0 and lim

L̂→∞
Ê
∣∣
const T̂

→ ÊADu (T̂ ) . (3.69)

2. The other six curves (with O, �, �,©,4,⊗) in Fig. 3.11, that intersect the vertical lines,
describe six families of lumpy branes at constant L̂. Concretely, the chosen fixed L̂
increases as the curves go from the bottom to the top (for T̂ < T̂c), i.e. L̂O < L̂� <
L̂� < L̂© < L̂4 < L̂⊗. We find that constant-L̂ lumpy branes always bifurcate from
the intermediate uniform brane branch AC at a temperature/point that matches the
temperature already found independently in Fig. 3.7, {T̂ , L̂} = {T̂ , L̂GL(T̂ )}. This is thus
a test of our numerics. In particular, curves with (constant) higher L̂ bifurcate from the
intermediate uniform brane with lower T̂ , i.e. the merger is closer to the endpoint A. In
the limit L̂→∞, this bifurcation occurs exactly at {T̂ , Ê} = {T̂A, ÊA} i.e. at point A, in
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Figure 3.11: Phase diagram of Fig. 3.3 now with both uniform branes (blue circles) and
some nonuniform brane solutions at constant temperature T̂ (orange circles) or constant
length L̂. The eleven constant-temperature vertical lines have (from left to the right):
T̂ ' {0.388292, 0.389219, 0.390711, 0.392677, 0.394948, 0.397308, 0.399547, 0.401511, 0.403112,
0.404320, 0.405141}. The six lumpy-brane curves at constant L̂ have (from bottom to
top on the left): L̂O ' 5.299674, L̂� ' 6.004224, L̂� ' 6.900924, L̂© ' 11.501849,
L̂4 ' 17.906849, L̂⊗ ' 24.311849. The inset plot is a zoom in around the region that
contain C and K (see also Fig. 3.7) and here we plot the uniform-brane curve and just the
four constant-L̂ curves {L̂O, L̂�, L̂�, L̂©}. For reference, (T̂ , Ê)Σ1 ' (0.390817, 0.950579),
(T̂ , Ê)Σ2 ' (0.404645, 0.717060) and (T̂ , Ê)K ' (0.397427, 0.846337).
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agreement with the GL linear results of Fig. 3.7. As L̂ decreases, the bifurcation occurs
at temperatures that are increasingly closer to T̂ = T̂c. For T̂ < T̂c, constant-L̂ curves do
not intersect further the uniform branch AC.

Let us now follow these constant-L̂ curves as they flow into the second relevant region,
namely T̂ > T̂c. Fig. 3.11 shows that, if this was not already happening for smaller T̂ , all these
curves have a drop in their Ê as they approach T̂c from the left. For very large L̂ this drop
is dramatic with an almost vertical slope (see e.g. the magenta, ⊗ curve). Therefore, as best
illustrated in the inset plot of Fig. 3.11 that zooms in the region around point C, all constant-L̂
curves pile up around point C in a way such that:

1. As T̂ → T̂−c (approaching from the left) all curves have Ê > ÊC . In particular, this means
that these curves do not intersect the uniform branch AC near C.

2. Once at T̂ > T̂c, all constant-L̂ curves that bifurcated from the uniform branes in the
trench AC cross the uniform brane branch curve between C and K. Recall that K
describes the uniform brane solution that has the largest GL wavenumber kGL or, equiva-
lently, that has the lowest L̂GL = 2π/kGL; see Fig. 3.7. After this crossing, the constant-L̂
lumpy branes keep extending to higher T̂ with an energy density lower that the inter-
mediate uniform brane with the same T̂ . This keeps happening until they merge again
with the uniform brane in the trench KB at a critical temperature that is again the one
predicted by the GL zero-mode analysis, i.e. at the highest T̂ that satisfies the condition
L̂ = L̂GL(T̂ ), see again Fig. 3.7. Lumpy-brane curves with higher constant L̂ merge with
the uniform branch KB at a point that is closer to B. In the limit where L̂ → ∞ this
merger occurs precisely at point B in Fig. 3.11, in agreement with the GL linear results
of Fig. 3.7.

3. There are constant-L̂ lumpy branes with very small L̂ that bifurcate from the uniform
brane branch only in the trench CK (instead of AC). Then they extend to higher T̂ ,
initially with Ê higher that the uniform branes with same T̂ before they cross the uniform
branch CK at a temperature T̂ < T̂K and proceed to higher T̂ below point K until they
merge again with the uniform brane branch but this time in the trench KB (at a point
very close to K). This happens for fixed-L̂ branes whenever L̂GL(T̂K) < L̂ < L̂GL(T̂C).

The three features of the lumpy branes just listed are compatible with the following in-
terpretation that merges our nonlinear findings, summarized in Fig. 3.11, with the GL linear
results of Sec. 3.1.4, summarized in Fig. 3.7. Indeed, let us go back to Fig. 3.7 and consider
an auxiliary horizontal line at constant k̂GL, i.e. at constant L̂GL. This line intersects the curve
k̂GL(T̂ ) at two points. These are the two merger points of constant L̂ lumpy branes with the
uniform brane that we identify in Fig. 3.11. One of the mergers — let us denote it simply as the
“left" merger — has T̂A ≤ T̂ ≤ T̂K and the other — the “right" merger — has T̂K ≤ T̂ ≤ T̂B.
Since the maximum of the GL wavenumber occurs at a temperature that is higher than the
one of the first-order phase transition of the uniform system, T̂K > T̂c, it follows that the
“left" mergers of lumpy branes with constant L̂GL(T̂K) < L̂ < L̂GL(T̂C) are in the trench CK
of Fig. 3.11. But, for L̂ > L̂GL(T̂C), the “left" merger is located in the trench AC, with the
L̂ → ∞ “left" merger being at A. On the other hand, the “right" merger is always located in
the trench KB of Fig. 3.11, with the “right" merger of the L̂ → ∞ lumpy branes being at B.
Our nonlinear results summarized in Fig. 3.11 further conclude that there are no lumpy branes
with L̂ < L̂GL(T̂K). As L̂ approaches L̂GL(T̂K) from above, lumpy branes exist only in a small
neighbourhood around point K in Fig. 3.11, with the characteristics described in item 3 in the
list above.11

11Note that for other values of the (super)potential parameters φM and φQ in (2.2) (we have picked φM = 1
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We stress again that lumpy branes exist only in the temperature range T̂A ≤ T̂ ≤ T̂B.
Our nonlinear results of Fig. 3.11 give strong evidence that constant-T̂ < T̂c branes extend to
arbitrarily large L̂ with

lim
L̂→∞

Ê
∣∣
const T̂

→ ÊADu (T̂ ) , (3.70)

see the heavy uniform brane trench AD in Fig. 3.11. On the other hand, our results also strongly
indicate that constant-T̂ > T̂c branes extend to arbitrarily large L̂ with

lim
L̂→∞

Ê
∣∣
const T̂

→ ÊEBu (T̂ ) , (3.71)

see the light uniform brane trench ED in Fig. 3.11. Moreover, as L̂ grows arbitrarily large,
the constant-L̂ lumpy branes intersect (without merging with) the intermediate uniform brane
branch AB at a point that is arbitrarily close (from the right) to point C in Fig. 3.11 and with
a slope (∂Ê/∂T̂ )

∣∣
T̂c

that grows unbounded, that is

lim
L̂→∞

∂Ê
∂T̂

∣∣∣∣∣∣
T̂c

→∞ . (3.72)

In the limit L̂ → ∞ we thus conjecture that lumpy branes are limited by the curve ADCEB
with two cusps connected by the vertical DCE line in Fig. 3.11. To argue further in favour of
this conjecture, it is important to explore better the properties of the system in this L̂ → ∞
limit and the associated limiting curve ADCEB. For that it is instructive to look at the energy
density profile Ê(x) of the lumpy branes as a function of the inhomogeneous direction x.

In Fig. 3.12 we first consider lumpy branes with the same T̂ but different lengths L̂.12 In the
left panel we have the profile of 3 lumpy branes with T̂ ' 0.394948 < T̂c; in the middle panel
we have the profile of 3 lumpy branes with T̂ ' 0.395894 . T̂c (i.e. almost at T̂c ' 0.3958945);
and, finally, in the right panel we show the profile of 3 lumpy branes with T̂ ' 0.397308 > T̂c.
In all panels, the blue diamond lines have a length only slightly above L̂GL(T̂ ). Therefore, the
profile of these lumpy branes is almost flat and very close to the horizontal dashed line that
represents the intermediate uniform brane with ÊACu (T̂ ) (left/middle panels) or ÊCBu (T̂ ) (right
panel). Then, the green square curves have a length of roughly L̂ ∼ 1.25L̂GL(T̂ ). We see that
the profile starts becoming considerably deformed with one of the “halves" pulling well above
(below) the uniform brane profile with the same T̂ . Finally, the red disk curves represent lumpy
branes that have a length L̂(T̂ ) that is considerably higher than L̂GL(T̂ ) (exact values in the
caption). We see that the profile of lumpy branes with T̂ ' 0.394948 < T̂c (left panel) is, in
a wide range of x (x . 0.7), very flat with Ê(x) ∼ ÊADu (T̂ ), i.e. with an energy density that is
the same as the one of the heavy uniform brane in the trench AD that has the same T̂ (upper
horizontal dashed line). Then, for x & 0.7, Ê(x) falls considerably towards the energy density
Ê lightu (T̂ ) of the light uniform brane that has the same temperature (lower horizontal dashed
line). Still in Fig. 3.12, the middle panel shows that as T̂ approaches T̂c and for large L̂ (red
disks), the profile Ê(x) describes a domain-wall solution that interpolates between ÊADu (T̂ ) (for
small x) and Ê lightu (T̂ ) (for large x). On the other hand, for T̂ ' 0.397308 > T̂c (right panel
of Fig. 3.12) the roles of the heavy and light uniforms get reversed: for x . 0.7 the red disk

and φQ = 10), or in similar spinodal systems, it might well be the case that T̂c > T̂K or, for a fine-tuned choice
of potential, even T̂c = T̂K . If that is the case our conclusions should still apply with the appropriate shift of K
to the left of C in Figs. 3.7 and 3.11. Note that for this exercise we only need to find the uniform branes of the
system and solve for static linear perturbations of these branes which determine the zero-mode GL wavenumber
and thus the location of its maximum K with respect to T̂c. That is to say, we just need to complete the tasks
described in sections 3.1.4 and 3.1.4.

12When interpreting these figures recall, from the discussion above (3.5), that our solutions have Z2 symmetry:
the range x ∈ [0, 1] describes only the brane’s half x̃ = xL/2 ∈ [0, L/2]. To get the other half extension,
x̃ ∈ [−L/2, 0], we just need to flip the profiles of Figs. 3.12-3.13 along their vertical axis.
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Figure 3.12: Energy density profile Ê(x) for three lumpy branes at the same temperature
T̂ .12 (Left) Lumpy branes at constant T̂ ' 0.394948 (this is the first vertical line of orange
circles to the left of C in Fig. 3.11). For reference, at the merger the lumpy brane with this
temperature has L̂ = L̂GL ' 4.808993 and L̂� ' 4.819793, L̂� ' 5.996993, L̂• ' 37.208993.
For this temperature the heavy, intermediate and light uniform branes have energy densities
Êheavy ' 1.350615, Ê inter ' 0.881537 and Ê light ' 0.443756, respectively. These energy densities
are indicated by the dashed horizontal lines in the plot. (Middle) Lumpy branes at constant
T̂ ' 0.395894 . T̂c (so, very close to T̂c ' 0.3958945). For reference, L̂ = L̂GL ' 4.750995 and
L̂� ' 4.761845, L̂� ' 5.944495, L̂• ' 46.523495, and the energy densities of the relevant uniform
branes (dashed horizontal lines) are Êheavy ' 1.373843, Ê inter ' 0.867966, Ê light ' 0.452747.
(Right) Lumpy branes at constant T̂ ' 0.397308 (this is the first vertical line of orange circles to
the right of C in Fig. 3.11). For reference, at the merger the lumpy brane with this temperature
has L̂ = L̂GL ' 4.716232 and L̂� ' 4.727157, L̂� ' 5.917982, L̂• ' 34.759982, and the
energy densities of the relevant uniform branes (dashed horizontal lines) are Êheavy ' 1.407521,
Ê inter ' 0.848014, Ê light ' 0.467119.
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lumpy curve is almost flat with an energy density close to the one of the light uniform brane
with the same T̂ , Ê(x) ∼ ÊEBu (T̂ ) (lower horizontal dashed line), while for x & 0.7, Ê(x) starts
increasing towards the energy density Êheavyu (T̂ ) of the heavy uniform brane with the same T̂
(upper dashed horizontal line).
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Figure 3.13: Lumpy branes at constant L̂ ' 11.501849. (Left) Ê as a function of T̂ . This
figure reproduces Fig. 3.11 but this time it singles out only the relevant lumpy brane with
L̂ = L̂© ' 11.501849 (orange circles) and the uniform branes (blue circles) and zooms in on the
relevant region. It also identifies 7 solutions whose energy density profiles are then plotted on
the right panel. From left to right these are given by: (T̂ , Ê)4 ' (0.388085, 1.047078), (T̂ , Ê)N '
(0.393560, 1.123216), (T̂ , Ê)� ' (0.395846, 0.988820), (T̂ , Ê)© ' (0.3958945, 0.914833),
(T̂ , Ê)� ' (0.395941, 0.831460), (T̂ , Ê)H ' (0.400765, 0.637410), (T̂ , Ê)O ' (0.405648, 0.667817).
(Right) Energy density profile Ê(x) for the 7 lumpy branes pinpointed in the left panel.12 The
same shape/colour code is used.

The L̂ → ∞ limit of lumpy branes and its association with the limiting curve ADCEB is
further revealed when we complement Fig. 3.12 with an analysis of the energy density profile
Ê(x) of a constant-L̂ family of branes for different values of the temperature. One such analysis
is done in Fig. 3.13 where we fix L̂ ' 11.501849: this picks the fourth constant-L̂© curve (from
bottom-left) in the plot of Fig. 3.11. For clarity we single out this curve and reproduce it — this
time only the relevant zoomed in region of Fig. 3.11 — in the left panel of Fig. 3.13. We pinpoint
a total of seven solutions with seven different temperatures (each one with its own distinctive
plot marker shape and colour). The first (4) and the last (O) solutions are the two mergers with
the intermediate uniform brane, the second (N) and sixth (H) solutions are the two extrema of
Ê(T̂ )

∣∣
L̂
, and the third (�), fourth (◦) and fifth (�) plot markers identify three solutions with T̂

at or very close to T̂c. As in Fig. 3.12, we see that the profile of the two lumpy branes at the
merger is flat: they coincide with the uniform branes. As we move to the “extrema” solutions
with plot markers N and H we see, like for similar solutions in Fig. 3.12, that the profile is
considerably deformed. More important for our purposes are the solutions with T̂ ∼ T̂c, e.g. �,
◦, �. We see that for such cases the profile reaches its maximum deformation in the sense that
the solution clearly interpolates between to regions that are fairly flat. Importantly, the small-x
flat region is approaching the energy density ÊDu (T̂c) of the heavy uniform brane that has T̂ = T̂c
(see the upper, horizontal, dashed, blue line labelled by D). Similarly, the large-x flat region
is approaching the energy density ÊEu (T̂c) of the light uniform brane that has T̂ = T̂c (see the
lower, horizontal, dashed, blue curve labelled by E). We further see that the closer we are to
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T̂−c (T̂+
c ), the closer we get to ÊDu (T̂ ) (ÊEu (T̂ )). The plot of Fig. 3.13 is for a moderate value of

L̂. Combined with the findings of the discussion of Fig. 3.12 we conclude that as L̂ grows large
and T̂ → T̂c, the flat regions get more extended in x and the domain wall that interpolates
between them at Ê ∼ ÊDu (T̂c) and Ê ∼ ÊEu (T̂c) gets narrower.

Altogether, the findings summarized in Fig. 3.12 and Fig. 3.13 lead to the following conclu-
sion/conjecture. In the double limit L̂ → ∞ and T̂ → T̂c our results support the conjecture
that

lim
L̂→∞

∂Ê
∂T̂

∣∣∣∣∣
T̂c

→∞ . (3.73)

That is, in this double limit we have a family of lumpy branes that fills up the segment DCE
of Fig. 3.11. All this segment describes infinite-length lumpy branes that are sharp/narrow
domain wall solutions interpolating (along 0 ≤ x̃ ≤ ∞) between two flat regions: one with
Ê(x̃) = ÊDu (T̂c) and the other with Ê(x̃) = ÊEu (T̂c). These are the phase-separated configurations
discussed above. As we move up from C to D, the region of x̃ with Ê(x̃) = ÊDu increases while
as we move down from C to E, the region of x̃ with Ê(x̃) = ÊEu increases. We have infinite
domain wall solutions that interpolate between the two uniform phases of the system at T = Tc.
Moreover, keeping the limit L̂→∞, but relaxing the condition T̂ → T̂c, the results summarized
in Figs. 3.12 and 3.13 give evidence to conjecture that infinite-length lumpy branes exist only
for T̂A ≤ T̂ ≤ T̂B and are exactly at the line ADCEB of Fig. 3.11.

We will now discuss the thermal competition between lumpy and uniform nonconformal
branes in the microcanonical ensemble. Recall that we keep the dimensionless length L̂ and the
Killing energy density ρ̂ fixed and the relevant thermodynamic potential is the Killing entropy
density σ̂. Again, uniform and lumpy branes co-exist for temperatures T̂A ≤ T̂ ≤ T̂B. So in the
microcanonical ensemble, given a lumpy brane with (L̂, ρ̂), our first task is to find the uniform
brane (i.e. the temperature T̂ which parametrizes this family) that has the same (L̂, ρ̂) as the
chosen lumpy brane. Once this is done, we can compare the Killing entropy densities σ̂ of the
two solutions at the same selected (L̂, ρ̂) pair. As for the perturbative analysis of Sec. 3.1.4 —
see e.g. the discussion of (3.67) — we compute the entropy difference between the two phases
when they have the same L̂ and ρ̂:

∆σ̂
∣∣
same L̂,ρ̂ =

[
σ̂nu − σ̂u

]
same L̂,ρ̂

. (3.74)

As before, the subscript “nu” stands for the nonuniform (lumpy) brane and “u” denotes the
uniform brane. From our perturbative analysis recall that at the merger curve (ACB in
Fig. 3.11 or the black dotted line in Fig. 3.8) between uniform and lumpy branes one must
have ∆σ̂

∣∣
same L̂,ρ̂ = 0. Moreover, in the perturbative analysis leading to Fig. 3.10 we found

that lumpy branes that bifurcate from uniform branes in the trench Σ1Σ2 of Figs. 3.11 or 3.8
do so with a positive entropy difference slope. In other words, slightly away from the merger
curve we have ∆σ̂

∣∣
same L̂,ρ̂ > 0. This means that lumpy branes emanating from the GL merger

dominate over the uniform branes with the same L̂, ρ̂, at least “initially". On the other hand,
in the complement of Σ1Σ2, i.e. for lumpy branes bifurcating from AΣ1 or Σ2B in Fig. 3.11, the
perturbative analysis of Fig. 3.10 shows that ∆σ̂

∣∣
same L̂,ρ̂ < 0. That is, in this case for a given

(L̂, ρ̂) lumpy branes have less Killing entropy density than the uniform solutions and thus the
latter are the preferred phase in the microcanonical ensemble.

Now that we have the full nonlinear solutions, our first task is to naturally compare these
results with the perturbative results of Sec. 3.1.4 that led to Fig. 3.10. On the one hand this
will check our numerical results. On the other hand it will identify the regime of validity of
the perturbative analysis, i.e. how “far away" from the merger curve it holds. To illustrate this
comparison, in Fig. 3.14 we show ∆σ̂

∣∣
same L̂,ρ̂ as a function of ρ̂ for a family of lumpy branes that

have a fixed temperature T̂ . Note that, as ρ̂ changes, so does L̂ in order to keep T̂ fixed (this
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Figure 3.14: Difference ∆σ̂
∣∣
same L̂,ρ̂ between the Killing entropy densities of lumpy and uniform

branes with the same (L̂, ρ̂) as a function of the Killing energy density ρ̂ for three constant-T̂
families of lumpy branes with T̂ ' 0.390711 < T̂Σ1 (top-left), T̂ ' 0.405141 > T̂Σ2 (top-right)
and T̂Σ1 < T̂ ' 0.399547 < T̂Σ2 (bottom). Recall that T̂Σ1 ' 0.390817 and T̂Σ2 ' 0.404645.
The blue dots are the numerical results for the lumpy branes. The dashed, red curves are the
perturbative result (3.67). The horizontal blue line indicates the uniform-brane family.
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effect is better illustrated in Fig. 3.15, as we explain below). The plots in the top row of Fig. 3.14
illustrate what happens for T̂ < T̂Σ1 (left) and T̂ > T̂Σ2 (right). In these cases the perturbative
analysis summarized in Fig. 3.10 predicts that lumpy branes bifurcate from the GL merger with
∆σ̂
∣∣
same L̂,ρ̂ < 0, as indicated by the dashed red curves in Fig. 3.14. The numerical nonlinear

results, shown as blue dots, indeed confirm this, and they are in excellent agreement with the
perturbative results near the merger with the uniform brane. The numerical nonlinear results
then show the regime where the perturbative analysis ceases to be valid and that ∆σ̂

∣∣
same L̂,ρ̂

decreases monotonically with ρ̂ (we have extended the computation to much higher values of
ρ than those shown in the plot). The plot in the bottom row of Fig. 3.14 illustrates what
happens for a constant-T̂ lumpy brane family that bifurcates from an intermediate uniform
brane with T̂Σ1 < T̂ < T̂Σ2 . In this case the perturbative analysis (see Fig. 3.10) tells us that
the bifurcation occurs with ∆σ̂

∣∣
same L̂,ρ̂ > 0. Again the full nonlinear analysis confirms this is

the case and is in excellent agreement with the perturbative results near the merger. However,
in this case the nonlinear analysis provides new crucial information away from the merger: it
shows that, although ∆σ̂

∣∣
same L̂,ρ̂ initially grows away from the GL merger, at a certain point it

reaches a maximum and then it starts to decrease until it becomes negative. We have extended
the computation to much larger values of ρ̂ than those shown in the plot and we have found
that, beyond this point, ∆σ̂

∣∣
same L̂,ρ̂ becomes more and more negative as ρ̂ becomes larger and

larger. Since both σ̂nu and σ̂u are non-negative, the reason for this is clearly that σ̂u becomes
arbitrarily large. In turn, this is due to the fact that, on a constant-T curve, L̂ becomes larger
and larger as ρ̂ increases (see Fig. 3.15), which causes the integral over the x-direction of the
entropy density ŝ to diverge. At the value of (ρ̂, L̂) where ∆σ̂ crosses zero, there is a phase
transition between lumpy and uniform branes. This is a first-order phase transition since,
for example, the temperature changes discontinuously. We emphasize that, at the qualitative
level, this behaviour is the same for all constant-T̂ families of lumpy branes that bifurcate from
uniform branes in between points Σ1 and Σ2 in Fig. 3.11.

To further understand this phase transition, in Figs. 3.15 and 3.16 we reproduce again the
stability diagram of Fig. 3.8, but this time we also plot a few constant-T̂ or constant-L̂ lumpy
branes that depart from the GL merger curve. We use two plot marker codes: The solid
blue markers, no matter their shape, represent the trench where ∆σ̂

∣∣
same L̂,ρ̂ > 0, while the

empty orange markers, no matter their shape, describe the region where ∆σ̂
∣∣
same L̂,ρ̂ < 0. For

reference, recall that

(T̂ , L̂GL, Ê)Σ1 ' (0.390817, 5.618133, 0.950579) ,
(T̂ , L̂GL, Ê)Σ2 ' (0.404645, 6.592316, 0.717060) ,
(T̂ , L̂GL, Ê)K ' (0.397427, 4.716021, 0.846337) . (3.75)

For brevity, henceforth we will use the notation

L̂Σ1 ≡ L̂GL

∣∣
Σ1
, L̂Σ2 ≡ L̂GL

∣∣
Σ2
, L̂K ≡ L̂GL

∣∣
K
. (3.76)

The main conclusions from Figs. 3.15 and 3.16 are as follows:

1. Recall that lumpy branes that bifurcate from the GL merger line at a temperature T̂ < T̂Σ1

(i.e. above Σ1 in the figures) or at a temperature T̂ > T̂Σ2 (i.e. below Σ2 in the figures)
have ∆σ̂

∣∣
same L̂,ρ̂ < 0 no matter how large L̂ is, as pointed out when discussing Fig. 3.14

(recall that Σ1 and Σ2 were introduced in Fig. 3.10). In Fig. 3.15 we display one family
of lumpy branes in each of these classes. One has constant T̂× ' 0.390711 < T̂Σ1 and is
always described by empty orange colour markers, which means that the solutions indeed
have ∆σ̂

∣∣
same L̂,ρ̂ < 0. All the curves that bifurcate from the GL merger above Σ1 have

this feature and they always bifurcate towards higher Ê and higher L̂ with respect to the
merger point (ÊGL, L̂GL). The other family has constant T̂⊗ ' 0.405141 > T̂Σ2 and is

59



Chapter 3 Crossing a Large-N Phase Transition at Finite Volume

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●

◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇

◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆◆

●
● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

□ □ □ □ □

■ ■ ■ ■■
■

■
■

■
■

■
■

■
■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

△△△△△△△△△△△△△△△△△△△△

▲▲
▲
▲
▲
▲
▲
▲
▲
▲
▲▲▲▲▲▲▲▲▲▲

×
×
×
×
×
×
× × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × ×

⊗ ⊗⊗⊗ ⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗

� �� �� �� ��

���

���

���

���

���

���

�

�

�

■

■

◆

Σ�

Σ�

�

_

Figure 3.15: Same stability diagram as in Fig. 3.8 with the inclusion of some lumpy-brane
curves that bifurcate from the GL merger curve. These curves have constant T̂ given by
{T̂×, T̂⊗, T̂�, T̂•, T̂�, T̂N} ' {0.390711, 0.405141, 0.395420, 0.395894, 0.396367, 0.397307}. Solid
blue markers (empty orange markers), no matter their shape, indicate positive (negative)
∆σ̂
∣∣
same L̂,ρ̂.
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Figure 3.16: Same stability diagram as in Fig. 3.8 with the inclusion of some lumpy-brane
lines that bifurcate from the GL merger curve. These lines have constant L̂ given by
{L̂H, L̂�, L̂�, L̂•} ' {5.299674, 6.004224, 6.900924, 11.501849}. Solid blue markers (empty or-
ange markers), no matter their shape, indicate positive (negative) ∆σ̂

∣∣
same L̂,ρ̂. Note that some

orange circles are on top of some blue disks. This describes the region around the cusps of
Fig. 3.17 and 3.18.
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Chapter 3 Crossing a Large-N Phase Transition at Finite Volume

again always described by empty orange markers, which means that the solutions indeed
have ∆σ̂

∣∣
same L̂,ρ̂ < 0. All the curves that bifurcate from the GL merger below Σ2 have

this feature and they always bifurcate towards lower Ê and higher L̂ with respect to the
merger point (ÊGL, L̂GL).

2. The situation is less monotonous for lumpy branes that bifurcate from a point on the GL
merger curve that lies between Σ1 and Σ2. Recall that these have, close to the merger,
∆σ̂
∣∣
same L̂,ρ̂ > 0. In Fig. 3.15 we display four curves in this class, namely: the family

with constant T̂� ' 0.395420 < T̂c; the family with constant T̂• ' 0.395894 . T̂c (so, very
close to T̂c ' 0.3958945); the family with constant T̂� ' 0.396367 > T̂c; and the family
with constant T̂N ' 0.397307 > T̂c (slightly below T̂K ' 0.397427). These curves with
T̂Σ2 < T̂ < T̂Σ2 bifurcate towards L̂ > L̂GL with ∆σ̂

∣∣
same L̂,ρ̂ > 0. Then, if T̂Σ1 < T̂ < T̂c

(e.g. the curve with diamond plot markers �) they typically move to higher Ê as L̂ increases
and ∆σ̂

∣∣
same L̂,ρ̂ changes from positive into negative when the plot markers change from

solid blue � into empty orange �. On the other hand, if T̂c < T̂ < T̂Σ2 (e.g. the curves
initially with � and N), the constant T̂ -curves typically plunge into lower Ê as L̂ increases
and ∆σ̂

∣∣
same L̂,ρ̂ changes from positive into negative when the plot markers change from

solid blue into empty orange (i.e. � → � or N→4).

3. When T̂ ∼ T̂c the properties described in the two previous points hold but the constant-T̂
curves do not escape to large Ê (if T̂ . T̂ ) or small Ê (if T̂ & T̂ ) so quickly as L̂ grows. A
good example is given by the dotted (•) curve with T̂• ' 0.395894 . T̂c. The closer one
is of T̂c the longer L̂ must be for the constant-T̂ curve to cross the GL merger line again
and then acquire ∆σ̂

∣∣
same L̂,ρ̂ < 0. Our results suggest that in the exact limit T̂ → T̂c the

curve extends to L̂→∞ without ever leaving the window of energy densities [ÊB, ÊA].

To complete our understanding of the microcanonical phase diagram, in Fig. 3.17 we plot
the Killing entropy density difference ∆σ̂

∣∣
same L̂,ρ̂ between lumpy and uniform branes with the

same (L̂, ρ̂) as a function of the Killing energy density ρ̂ for three families of lumpy branes that
have constant L̂. Note that L̂K < L̂Σ1 < L̂Σ2 (see e.g. Fig. 3.16). The three panels of Fig. 3.17
describe representative examples of the following three possible cases: (1) L̂K < L̂ < L̂Σ1 (top-
left panel), (2) L̂Σ1 < L̂ < L̂Σ2 (top-right panel), and (3) L̂ > L̂Σ2 (bottom panel). Together
with those in Fig. 3.14, the plots in Fig. 3.17 are the most important ones in our analysis of the
phase diagram. The three panels of Fig. 3.17 encode the following conclusions:

1. The top-left panel is for constant L̂ ' 5.299674 solutions and illustrates what happens in
the three-dimensional microcanonical phase diagram ∆σ̂

∣∣
same L̂,ρ̂ versus (ρ̂, L̂) when the

lumpy branes have L̂K < L̂ < L̂Σ1 . We see that in this range of L̂, lumpy branes (yellow
inverted triangles) bifurcate from the uniform brane (blue line) at low ρ̂ with ∆σ̂

∣∣
same L̂,ρ̂ >

0 and, as ρ̂ increases, the entropy difference grows until it reaches a maximum and then
it decreases monotonically until the lumpy brane merges again with the uniform brane at
higher ρ̂. Since in this range of (L̂, ρ̂) one always has ∆σ̂

∣∣
same L̂,ρ̂ > 0, lumpy branes are

the preferred phase in the microcanonical ensemble.

2. The top-right panel is for constant L̂ ' 6.004224 solutions and illustrates what happens
in the 3-dimensional microcanonical phase diagram ∆σ̂

∣∣
same L̂,ρ̂ versus (ρ̂, L̂) when the

lumpy branes have L̂Σ1 < L̂ < L̂Σ2 . As in the previous case, in this range of L̂, lumpy
branes (brown diamonds) also bifurcate from the uniform brane (blue line) at low ρ̂ with
∆σ̂
∣∣
same L̂,ρ̂ > 0 and, as ρ̂ increases, the entropy difference grows until it reaches a maxi-

mum. Then it again decreases monotonically but, this time, ∆σ̂
∣∣
same L̂,ρ̂ becomes negative
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Figure 3.17: Microcanonical phase diagram: Killing entropy density difference ∆σ̂
∣∣
same L̂,ρ̂

between lumpy and uniform branes with the same (L̂, ρ̂) as a function of the Killing energy
density ρ̂ for 3 families of lumpy branes that have constant L̂ given by L̂ ' 5.299674 < L̂Σ1 (top-
left), L̂ ' 6.004224 which is in the range L̂Σ1 < L̂ < L̂Σ2 (top-right) and L̂ ' 11.501849 > L̂Σ2

(bottom). For reference, L̂Σ1 ' 5.618133 and L̂Σ2 ' 6.592316. The three families are those with
constant {L̂H, L̂�, L̂•} already displayed in Fig. 3.11; we use the same shape/colour coding for
the markers execpt that here they are all solid. The horizontal blue line with ∆σ̂

∣∣
same L̂,ρ̂ = 0

describes the uniform brane family.
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at a certain ρ̂. This first-order phase transition point is best seen in the inset plot that
zooms into this region. The entropy difference keeps decreasing as ρ grows until it reaches
a cusp. Then, as ρ̂ decreases, ∆σ̂

∣∣
same L̂,ρ̂ becomes less negative until the lumpy brane

with constant L̂ merges again with the uniform brane.

3. Finally, the bottom panel is for constant L̂ ' 11.501849 solutions (whose energy density
profile was discussed in Fig. 3.13). It illustrates how the 3-dimensional microcanonical
phase diagram ∆σ̂

∣∣
same L̂,ρ̂ versus (ρ̂, L̂) looks like when the lumpy branes have L̂ > L̂Σ2 .

In this range of L̂, at both GL mergers with the uniform brane (blue line), lumpy branes
(orange disks) bifurcate with ∆σ̂

∣∣
same L̂,ρ̂ < 0. Then, as we move along the constant-L̂ line

away from the merger points, there are first two cusps (the left one is shown in more detail
in the inset plot) and two first-order phase transition points where ∆σ̂

∣∣
same L̂,ρ̂ changes

sign and becomes positive. For ρ̂ in between these two transition points, one has a lumpy
brane with ∆σ̂

∣∣
same L̂,ρ̂ > 0 and thus these lumpy branes are the preferred microcanonical

phase. Otherwise, uniform branes dominate the microcanonical ensemble.

To complement this discussion, it is useful to plot the Killing entropy density difference
∆σ̂
∣∣
same L̂,ρ̂ between lumpy and uniform branes with the same (L̂, ρ̂) as a function of the average

energy density Ê for some families of lumpy branes that have constant L̂. Recall that the average
energy density and the Killing energy density are related through Ê = ρ̂/L̂. This means that
comparing the entropy of uniform and nonuniform brane at the same (L̂, ρ̂) is the same as
comparing them at the same (L̂, Ê). Fig. 3.18 shows this comparison for the four constant-L̂
families {L̂H, L̂�, L̂�, L̂•} that were plotted in Fig. 3.16. Fig. 3.18, together with the projections
to the (L̂, Ê)-plane shown in Fig. 3.16, is the key figure to understand the microcanonical phase
diagram because it provides four representative slices of this plot at constant L̂. Gluing slices of
this type together along the Ê-axis one obtains the three-dimensional plot of ∆σ̂

∣∣
same L̂,ρ̂ versus

(L̂, Ê). The L̂→∞ limit of the curves of Fig. 3.18 is the curve in Fig. 3.6(right).
So far we have discussed the lumpy branes only in the microcanonical ensemble. This is the

most interesting ensemble because nonuniform branes can dominate this ensemble for certain
windows of the parameter space and in a time evolution we typically fix the length and the
average energy density of the solutions (i.e. the latter is conserved). But we may also ask about
the role played by the lumpy branes in the canonical ensemble. In this case, we want to fix the
length LΛ and the temperature T/Λ of the solutions and the dominant solution is the one that
has the lowest Killing free energy density f/Λ3.

To address this question it is useful to first recall what happens when we consider only
the uniform brane solutions. In the right panel of Fig. 3.3 we have already seen that the
light uniform branch (the lower branch in the left panel of Fig. 3.3) is the preferred thermal
phase for T̂ < T̂c, while for fixed T̂ > T̂c the heavy uniform branch (the upper branch in the
left panel of Fig. 3.3) dominates the canonical ensemble. The intermediate uniform branch
(between A and B in Fig. 3.3) is never a preferred thermal phase of the canonical ensemble.
For this reason it is sometimes stated in textbooks that, at T̂ = T̂c ∼ 0.3958945, there is a first-
order phase transition at which the system jumps discontinuously between the light and heavy
uniform branes. However, at infinite volume there is actually a degeneracy of states at T̂ = T̂c
because the average free energy density of any phase separated state is the same as that of the
homogeneous states at T̂ = T̂c. The reason for this is that the interface between the two phases
in a phase-separated configuration gives a volume-independent contribution. This contribution
is therefore subleading in the infinite-volume limit with respect to those of the two coexisting
phases, whose free energy densities are equal to each other and to those of homogeneous states
at T̂ = T̂c. Therefore, in the infinte-volume limit the system can transition between points D
and E along a sequence of constant-temperature, constant free-energy, phase-separated states.
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Figure 3.18: Killing entropy density difference ∆σ̂
∣∣
same L̂,ρ̂ between lumpy and uniform branes

with the same (L̂, ρ̂) or, equivalently, with the same (L̂, Ê), as a function of the aver-
age energy density Ê . We show the same four families of lumpy branes with constant
{L̂H, L̂�, L̂�, L̂•} ' {5.299674, 6.004224, 6.900924, 11.501849} already displayed in Fig. 3.11. We
use the same shape/colour coding for the markers as in Fig. 3.11 except that here they are all
solid. The families with H,�, • were also shown in Fig. 3.17, but the family � was not. The
horizontal blue line with ∆σ̂

∣∣
same L̂,ρ̂ = 0 describes the uniform brane family. The grey vertical

lines indicate the turning points A and B in the phase diagram of Fig. 3.3. The labels “a" and
“b" indicate the lumpy solutions with L̂• ' 11.501849 that lie away from the merger curve but
have the same entropy density as the corresponding uniform branes. In other words, these are
the points away from the merger curve at which ∆σ̂

∣∣
same L̂,ρ̂ crosses zero. The average energy

densities at these points are Êa ' 1.09879 > ÊA and Êb ' 0.645861 < ÊB.
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Figure 3.19: Canonical phase diagram: Dimensionless Killing free energy density difference
∆f̂
∣∣
same L̂,T̂ as a function of the dimensionless temperature T̂ for the six lumpy-brane families

at constant L̂ already shown in Fig. 3.11 (with the same colour/shape code). Namely, from the
bottom to the top the length of the curves are: L̂O ' 5.299674, L̂� ' 6.004224, L̂� ' 6.900924,
L̂© ' 11.501849, L̂4 ' 17.906849, L̂⊗ ' 24.311849. The black dashed vertical line with
T̂ = T̂D = T̂E ≡ T̂c ∼ 0.3958945 represents the critical temperature first identified in the
right panel of Fig. 3.3 and the grey vertical dashed lines represent T̂ = T̂A ∼ 0.387944 and
T̂ = T̂B ∼ 0.405724 between which lumpy branes coexist with uniform branes. The horizontal
blue line with ∆f̂ = 0 represents the light uniform brane for T̂ < T̂c, and the heavy uniform
brane for T̂ > T̂c.
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The fact that all these states have the same free energy is the content of Maxwell’s construction.
In contrast, at finite volume the inhomogenous, phase-separated states are never thermody-

namically favoured. To show this, in Fig. 3.19 we compare the free energy of lumpy branes with
the light uniform branes if T̂ < T̂c, and with the heavy uniform branch if T̂ > T̂c. More con-
cretely, we compute the difference between the Killing free energy of the nonuniform brane f̂nu
and the light (heavy) uniform Killing free energy f̂u when T̂ < T̂c (T̂ > T̂c) that has the same
length LΛ and temperature T/Λ, i.e. ∆f̂

∣∣
same L̂,T̂ =

(
f̂nu− f̂u

)
same L̂,T̂ . Fig. 3.19 shows that for

any temperature T̂A ≤ T̂ ≤ T̂B where nonuniform branes exist, one always has ∆f̂
∣∣
same L̂,T̂ > 0.

That is to say, the Killing free energy density of the lumpy branes is always higher than the free
energy of the relevant (light or heavy) uniform brane and thus lumpy branes never dominate
the canonical ensemble.13

3.1.6 Excited static lumpy branes: beyond the ground state solutions

So far we have discussed only the “ground state" lumpy branes of our spinodal system. The
profile, for example that of the energy density E(x), of these fundamental branes has a single
maximum and a single minimum, see Figs. 3.12 and 3.13. The phase diagram of the theory
also contains infinitely many more lumpy brane phases whose profiles E(x) have η maxima and
η minima for natural integer η. However, these are “excited states" of the theory in the sense
that, as we will show below, for given (L̂, ρ̂) they always have lower Killing entropy density σ̂
than the ground state lumpy branes that we have constructed above. In other words, lumpy
branes with η > 1 are subdominant phases of the microcanonical ensemble. In particular, this
suggests that they should be dynamically unstable and evolve towards the fundamental lumpy
brane if slightly perturbed. In the case of large L̂ this was explicitly verified in [63].

In principle, excited lumpy branes can be constructed using the perturbative method of
Secs. 3.1.4 and 3.1.4. At linear order we would have to start with a Fourier mode that describes
the ηth harmonic of the system, namely with

q
(1)
j (x, y) = q

(1)
j (y) cos(η π x) , for η = 2, 3, 4, · · · (3.77)

instead of the η = 1 case of (3.55). However, it is not necessary to perform this construction
since the properties of these excited states can be obtained from those of the fundamental ones
using extensivity.14 Indeed, given a solution with η = 1 in a box of size L̂ we can obtain a
solution with η > 1 in a box of size ηL̂ by taking η copies of the initial solution. Once we
know all solutions with η = 1 in boxes of any size, as we do, this procedure gives us all possible
solutions with η > 1 maxima and minima in all possible boxes. Clearly, if the Killing energy
and entropy densities of the initial solution are ρ̂ and σ̂, respectively, then those of the new
solution are ηρ̂ and ησ̂. In contrast, the average energy density Ê = ρ̂/L̂ remains invariant. We
must now compare the Killing entropy density of the solution with η maxima and minima with
that of the corresponding η = 1 brane in a box of size ηL̂. Since the average energy density
is invariant when taking copies of the initial solution, this comparison is most easily done by
considering σ̂ as a function of Ê and L̂. Therefore we must compare the entropy of the excited
brane σ̂η(Ê , ηL̂) ≡ η × σ̂(Ê , L̂) with that of the fundamental brane σ̂(Ê , ηL̂). It follows that if
the entropy at fixed Ê grows with L̂ faster than linearly then the fundamental brane always

13For completeness, we have verified that the Killing free energy density f̂ of lumpy branes is always lower
than the Killing free energy density of the intermediate branes AB, and that they become equal to one another
precisely when the merger of these two branches occurs. In any case neither branch is ever preferred at finite
volume in the canonical ensemble.

14Similar arguments where used to find the thermodynamics of excited nonuniform black strings of the original
GL system [108, 109]). We can also start our linear order analysis with two (or more) harmonics with different
amplitudes. This allows to construct lumpy branes with two (or more) maxima that have different amplitudes
(in the spirit of [110]).
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has higher entropy than the excited brane. This is indeed the case, as can be seen by taking
constant-Ê slices of Fig. 3.18. For example, in Fig. 3.20 we do this for Ê = 0.85 and we compare
∆σ̂η=1 of the fundamental (η = 1) nonuniform brane (orange •) against ∆σ̂η=2 and ∆σ̂η=3 of
the η = 2 (blue �) and η = 3 (green �) excited branes. For a given (L̂, ρ̂) or, equivalently, for
a fixed (L̂, Ê), we see that the Killing entropy density decreases as η grows: in agreement with
the most naive intuition, the fundamental lumpy brane has the highest Killing entropy density
and therefore it dominates the microcanonical ensemble over any excited brane.
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Figure 3.20: Killing entropy density difference ∆σ̂
∣∣
same L̂,ρ̂ (between lumpy and uniform branes

with the same (L̂, ρ̂)) as a function of the length L̂ for solutions with Ê = 0.85 for: (1) the
fundamental (η = 1) lumpy brane (orange disks), (2) the η = 2 excited lumpy brane (blue
diamonds), and (3) η = 3 excited lumpy branes (green squares).

The discussion above applies to excited states that can be obtained as copies of a single
configuration. Therefore states of this type with η maxima and minima have a Zη discrete
symmetry. There exist more general excited states with maxima and minima of different heights,
but we expect these to be subdominant too. In the case of large L̂ this was explicitly verified
in [63].

3.1.7 The spinodal (Gregory-Laflamme) timescale

In Sec. 3.1.4 we saw that intermediate uniform branes with ÊB < Ê < ÊA (see left panel of Fig.
3.3) can be GL-unstable. To find when the instability appears, we took the uniform branes
Qj(y) of section 3.1.4 and considered static Fourier perturbations of the form (3.55) about this
background, namely qj(x, y) = Qj(y) + ε q

(1)
j (y) cos(πx). This allowed us to find the minimum

length LGLΛ = 2π/k̂GL (see Figs. 3.7 and 3.8) above which the uniform brane is unstable. This
was enough for our purposes of Sec. 3.1, where we were just interested in finding the static
lumpy branes. In particular, we found large regions of the microcanonical phase diagram where
lumpy branes coexist with and are favoured over uniform branes. This suggests that, if we start
with initial data that consists of a uniform brane that is GL unstable plus a perturbation, the
system should evolve towards a lumpy brane with the same length L̂ and Killing energy density
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ρ̂, and hence also the same Ê = ρ̂/L̂. The initial stages of this time evolution should be well
described by the linear GL frequencies. It is thus important to compute the GL timescales of
the system.

Consider again the uniform branes constructed in Sec. 3.1.4 in the regime ÊB < Ê < ÊA (see
left panel of Fig. 3.3). Denote the collective fields by ψ̄(y) = {ḡµν(y), φ̄(y)}. We will now allow
for time-dependent perturbations of this background. More concretely, we will use the fact that
∂t and ∂x̃ are Killing vector fields of the uniform brane background to Fourier decompose the
time dependent perturbations as

ψ(t, x, y) = ψ̄(y) + ε δψ(1)(y)ei k x̃e−i ω t . (3.78)

This introduces the wavenumber k conjugate to the spatial direction x̃ = xL2 ∈ [0, L/2] and
the frequency ω of the perturbation. Let δgµν ≡ hµν be the metric perturbations and δφ the
scalar field perturbation. Perturbations δψ(1)(y) = {hµν(y), δφ(y)} that break the symmetries
indicated in (3.78) excite a total of 8 fields, namely: δφ, htt, hty, htx̃ hyy, hx̃y, hx̃x̃ and hx2x2 =
hx3x3 .

We have not yet fixed the gauge freedom of the problem. Instead of doing so we construct two
gauge invariant-quantities that encode the most general perturbations of the form (3.78) as de-
scribed in [111]. The linearized Einstein equations then reduce to (and are closed by) a coupled
system of two linear, second-order ODEs for these two gauge-invariant variables. The perturba-
tions must be regular at the horizon in ingoing Eddington-Finkelstein coordinates and preserve
the asymptotic AdS structure of the uniform background. This is a non-polynomial eigenvalue
problem for the frequency ω where we give the uniform background and the wavenumber k and
find ω. The GL modes of the uniform brane system have purely imaginary frequency.

In Fig. 3.21, as an illustrative example, we plot the dimensionless dispersion relation ω̂(k̂)
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Figure 3.21: Dispersion relation of GL modes for a uniform brane with (τ̂ , Ê) '
(0.395894, 0.867966). Red circles, blue diamonds and green squares correspond to harmon-
ics with η = 1, 2 and 3, respectively. For reference the maximum of the instability occurs for
(τ̂ , k̂GL)K ' (0.397427, 1.332306), i.e. (τ̂ , L̂GL)K ' (0.397427, 4.716021). The GL zero mode was
identified in Fig. 3.7.

for a particular uniform brane with (τ̂ , Ê) ' (0.395894, 0.867966) that is very close to point C
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in Fig. 3.3, for which (τ̂ , Ê)C ' (0.3958945, 0.867956).15 In Fig. 3.21, the red circle © curve
describes the dispersion relation of the fundamental harmonic η = 1. Not surprisingly, this
curve starts at (k̂, ω̂) = (0, 0) and, as k̂ increases, the dimensionless frequency Imω/Λ first
grows until it reaches a maximum and then starts decreasing. Precisely at the GL critical
wavenumber k̂ = k̂GL = 1.322499, as computed independently in Fig. 3.7, one has Imω/Λ = 0
and for k̂ > k̂GL the uniform brane is stable. For 0 < k̂ < k̂GL the uniform brane is GL unstable
and the maximum of the instability occurs at (k̂, ω̂)|max ' (0.626902, 0.120249 i).

Besides the fundamental GL mode, the uniform brane has an infinite tower of integer η
spatial Fourier harmonics. Uniform branes are also unstable to these higher harmonics but the
minimum unstable GL length L̂GL,η for the ηth harmonic increases with η or, equivalently, the
critical GL wavenumber k̂GL,η decreases with η. As examples, in Fig. 3.21 we also plot two
other curves that describe the dispersion relation of the second (η = 2, blue �) and third (η = 3,
green �) harmonics. Note that the dispersion relation of these higher harmonics can be obtained
straightforwardly from that of the fundamental harmonic. Indeed, note that we can unwrap the
S1 and change the periodicity of its coordinate x̃ from L to Lη = η L, for integer η [108, 109].
This also changes the wavenumber from k = 2π

L into kη = k
η . Altogether this leaves the phase

of the Fourier mode eikx̃ invariant. But this means that the frequency ωη of the ηth harmonic is
related to the frequency of the fundamental harmonic simply by ωη(k) = ω(k/η) and that the
critical GL zero mode of the ηth harmonic is L̂GL,η = η L̂GL or k̂GL,η = k̂GL/η. These properties,
namely

ωη(k) = ω(k/η) , k̂GL,η = k̂GL/η , (3.79)

are indeed observed in Fig. 3.21.
The linear results of Fig. 3.21 also provide a guide to the full nonlinear time evolution of

nonconformal branes. In a microcanonical ensemble experiment, imagine that we start with a
uniform brane in the regime ÊB < Ê < ÊA where it can co-exist with lumpy branes, for example
with Ê ' 0.867966. We want to perturb it to drive it towards a lumpy brane with the same L̂ and
ρ̂ and thus same Ê . What should we do? We certainly have to consider a Fourier perturbation
with k̂ < k̂GL as read from Fig. 3.21 or from Figs. 3.7 and 3.8. In these circumstances we still
have different options that will result in substantially different time evolutions. Indeed, if we
start with a k̂GL,2 < k̂ < k̂GL where only the fundamental harmonic is unstable then the system
will evolve “quickly" towards an η = 1 lumpy brane (the quickest evolution should occur if
k̂ ∼ k̂|max). More generically this will still be the case also for a k̂ < k̂GL,2 as long as it is higher
than the critical k̂ ∼ 0.4205 where the curves for η = 1 (•) and η = 2 (�) meet, see the right-most
dotted vertical line in Fig. 3.21. (In this discussion we assume that the initial amplitudes of all
modes are similar.) If instead 0.2513 . k̂ . 0.4205, i.e. in between the two vertical dotted lines
of Fig. 3.21, then the time evolution of the uniform brane should first approach an η = 2 lumpy
brane before finally moving towards the fundamental η = 1 lumpy brane, which has a higher
Killing entropy density. Finally, if the uniform brane is perturbed with a k̂ . 0.2513 mode
then the system will first evolve towards an η ≥ 3 lumpy brane before being driven towards its
fundamental lumpy brane endpoint. These expectations were explicitly verified in the case of
large boxes in [63].

3.2 Real-time dynamics
Above we have constructed inhomogeneous static solutions using purely static methods to solve
the Einstein equations. We will now examine several aspects of these solutions using real-time
dynamical methods. We will first reproduce the static solutions obtaining excellent agreement.
Then we will use the dynamical methods to address two novel aspects not studied above: the

15This corresponds to the same temperature used in the lumpy branes of the top-right panel of Fig. 3.12 and
in the disk lumpy curve Ê(L̂) of Fig. 3.15.
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local dynamical stability of the inhomogeneous static solutions, and the full time evolution,
including the end state, of the unstable solutions. The reader interested in the numerical
methods that we use can consult e.g. [36, 61, 63, 112, 113].

3.2.1 Reproducing the static solutions from real-time dynamics

In Fig. 3.22 we compare the Killing entropy density of the static inhomogeneous solutions ob-
tained with dynamical methods (black dots) and with static methods (orange dots) for a system
with L̂ ' 11.501849. In Fig. 3.23 we compare the average energy density-versus-temperature
relation. As is clear from the figures we find excellent agreement.
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Figure 3.22: Comparison of the entropy density of the static inhomogeneous solutions obtained
with dynamical methods (black dots) and with static methods (orange dots) for a system with
L̂ ' 11.501849. Blue (red) curves indicate locally stable (unstable) solutions. Orange dots are
exactly as in Fig. 3.17(bottom). Grey vertical lines indicate the location of the mergers and
the cusps. The representative solutions Xa,Xb and Xc have average energies Êa ' 0.831460,
Êb ' 1.091 and Ê ' 0.651, respectively.
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Figure 3.23: Average energy density versus temperature for static inhomogeneous solutions
obtained with dynamical methods (black dots) and with static methods (orange dots) for a
system with L̂ ' 11.501849. Blue (red) curves indicate locally stable (unstable) solutions.
Orange dots are exactly as in Fig. 3.13(left).
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The process that we follow to reproduce the static inhomogeneous solutions from real-time
dynamical evolution makes it natural to distinguish three cases:

(I) Lumpy branes whose (L̂,ρ̂) lies inside the GL merger curve of Figs. 3.15 and 3.16. An
example is given by the solution labelled as Xa in Fig. 3.22.

(II) Lumpy branes that are outside the merger curve and have the largest entropy among
lumpy branes with the same (L̂,ρ̂). An example is given by the solution labelled as Xb in
Fig. 3.22.

(III) Lumpy branes outside the merger curve with the smallest entropy for a given (L̂,ρ̂). An
example is given by the solution labelled as Xc in Fig. 3.22.

We follow different strategies to find each of these types of solutions. Solutions of type I
are reproduced by following the full evolution of the spinodal instability, as in [61, 63]. The
initial state is a homogeneous brane with the same (L̂,ρ̂) of the lumpy brane that we want to
obtain plus a small sinusoidal perturbation corresponding to the lowest Fourier mode that fits
in the box. As this solution lies inside the GL merger, this perturbation is unstable and grows
with time.16 Upon dynamical evolution the system eventually enters the nonlinear regime and
finally relaxes to the inhomogeneous solution. In Fig. 3.24 we show an example of one of these
evolutions (top-left) and the comparison of the solution at asymptotically late times with the
solution obtained via static methods (top-right), with excellent agreement.

The previous procedure fails to produce solutions of type II because the homogeneous system
is locally stable, so small perturbations decay in time and the system returns to the initial
homogeneous state. Indeed, we consider a uniparametric family of perturbations, not necessarily
sinusoidal, with the parameter given by the amplitude A of the perturbation, and find that if
A is smaller than a certain critical value A∗ then the system evolves back to the homogeneous
state. In order to obtain a lumpy brane as a final state we must start with a homogenous brane
plus a perturbation that is so large that the system finds itself directly in the non-linear regime.
This is indeed what happens if A > A∗. In this case the system evolves in time towards the
globally preferred state, namely towards a lumpy brane like the one labelled Xb in Fig. 3.22.
An example of this evolution is illustrated in Fig. 3.24(middle-left).

Finally, if the amplitude of the perturbation is tuned to be exactly A∗ then the system
evolves in time towards a type III solution like the one labelled as Xc in Fig. 3.22. An example
of this evolution is illustrated in Fig. 3.24(bottom-left). The fact that A must be precisely tuned
in order to reach the type III solution suggests that these solutions are locally dynamically
unstable. We will verify this explicitly below. Since numerically it is impossible to tune A with
infinite precision, this means that if we were to evolve the configuration in Fig. 3.24(bottom-left)
for sufficiently long times we would see that either it falls back to the homogeneous state (if A
is slightly smaller than A∗) or it evolves towards a type II configuration (if A is slightly larger
than A∗). We will confirm this in Fig. 3.28.

3.2.2 Local stability

In this section we study the local stability of the static inhomogeneous solutions by using real-
time dynamical methods. We consider an initial state given by the static inhomogeneous solution
plus a small perturbation and study its time evolution. The system is said to be locally stable if
all possible linear perturbations decay in time. If at least one of the perturbations grows in time,
then the system is said to be locally unstable. In order to establish which is the case one must
decouple, i.e. diagonalise, the full set of linearized equations around the inhomogeneous solution
(note that all Fourier modes are indeed coupled to one another because the inhomogenous state

16There could be other unstable harmonics. However, by considering a sufficiently large amplitude for the first
mode the system can always be driven to the fundamental lumpy brane with η = 1.
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Figure 3.24: Real-time evolution leading to a type I (top-left), a type II (middle-left) and
a type III (bottom-left) lumpy brane with L̂ ' 11.501849, labelled Xa,Xb and Xc in Fig. 3.22,
respectively. On the right panels we compare the energy density profiles at late times (continuous
black lines) with those obtained by static methods (orange dots).
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breaks translational invariance). Each eigenmode then evolves in time as e−iωt, with ω the
corresponding eigenfrequency. If the imaginary part of all the eigenfrequencies is negative the
system is locally stable. If at least one of the eigenfrequencies has a positive imaginary part
then it is locally unstable.

Rather than performing the exercise above, we will use our numerical code to obtain the
time evolution of a generic small initial perturbation of the inhomogeneous state. Since the
perturbation is generic we expect that it will be a linear combination of all the eigenmodes of
the system. Thus, after some characteristic time, the eigenmode with the largest imaginary
part of omega will dominate the evolution leading to a well defined exponential evolution. We
have identified this region of exponential behaviour in all the time evolutions of the perturbed
system that we have studied, and we have obtained the real and imaginary parts of omega
for the dominant mode by performing fits. Note that this will not result in a mathematical
proof of local stability. For example, our generic perturbations may accidentally have a very
small projection on some unstable mode, or the positive imaginary part of the frequency of this
mode may be exceedingly small and hence go unnoticed, etc. While these possibilities cannot
be excluded with absolutely certainty, the detailed searches that we have performed, together
with the consistent emergent physical picture, make us confident that they are highly unlikely.

Let us illustrate the procedure with the two examples in Fig. 3.25. The top panel corresponds
to the relaxation to equilibrium at late times of the simulation presented in Fig. 3.24(top-left).
Specifically, we take the spatial profile of the energy density at some late time, we subtract
from it the profile of the inhomogeneous static solution (which we denoted as Xa in Fig. 3.22),
and we decompose this difference into Fourier modes. The time-dependent amplitude of the
first few of these Fourier modes is shown in Fig. 3.25(top). We see that all of these modes
oscillate and decay exponentially in time with the same frequency. This is as expected since
the evolution is dominated by the single eigenmode with the slowest decay. The fact that
there is no growing mode indicates that the type I, inhomogeneous, static solution to which
this configuration asymptotes at late times (namely, Xa in the current simulation) is locally
dynamically stable.

The second example shown in Fig. 3.25(bottom) corresponds to the evolution presented in
Fig. 3.24(bottom-left), but extended to longer times. Here we plot the Fourier modes corre-
sponding to the difference between the spatial energy profile at a given time and the spatial
energy profile of the inhomogeneous, static configuration that we denoted as Xc in Fig. 3.22.
We observe a first relaxation in which the stable modes decay but, this time, at later times
the system is dominated by an exponential growth of an unstable mode. This confirms that
the type III lumpy branes such as Xc are locally dynamically unstable, as anticipated above.
Recall that the initial state in this time evolution is a homogeneous brane plus a large pertur-
bation of amplitude A that is tuned to be close to a critical value A∗. This tuning is what
suppresses the initial amplitude of the unstable mode, hence allowing the time evolution to
drive the system close to Xc for some time. Thus, intuitively, this solution behaves like a saddle
point in configuration space with some stable and some unstable directions (i.e. a metastable
configuration).

We have performed a scan to determine the real and imaginary parts of omega for the
dominant mode of static inhomogeneous solutions with L̂ ' 11.501849 and varying energy
densities. The result is shown in Fig. 3.26. We find that type I and II solutions have negative
imaginary parts of omega, and so they are locally stable, while the type III solutions have
positive imaginary parts of omega, and so they are locally unstable. The imaginary part of
omega crosses zero precisely at the “cusps" of Fig. 3.22, that is, at the static solutions lying
precisely at the boundary between type II and III solutions. The real part of omega is non-
vanishing in the locally stable cases, whereas it vanishes in the locally unstable cases, going to
zero also at the cusps. In Figs. 3.22, 3.23 and 3.26 we show locally stable solutions in blue and
locally unstable solutions in red.
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Figure 3.25: (Top) Time evolution of some Fourier modes of a perturbation around the type
I, inhomogeneous, static configuration Xa of Fig. 3.24(top-right) with Ê ' 0.831460, L̂ '
11.501849. The dashed horizontal line indicates the average energy density of the box. The
region with clear exponentially damped oscillations corresponds to times where the subdominant
modes have decayed sufficiently, and the dominant mode has leading amplitude. The dotted line
corresponds to a fit to the envelope, from which we extract the imaginary part of omega. The
fact that no mode grows in time indicates that Xa is locally dynamically stable. (Bottom) Time
evolution of some Fourier modes of a perturbation around the type III, inhomogeneous, static
configuration Xc of Fig. 3.24(bottom-right) with Ê ' 0.651, L̂ ' 11.501849. In this case the
leading mode grows exponentially in time, indicating that Xc is locally dynamically unstable.

76



Chapter 3 Crossing a Large-N Phase Transition at Finite Volume

0.6 0.7 0.8 0.9 1.0 1.1

0.00

0.05

0.10

0.15

0.20

0.6 0.7 0.8 0.9 1.0 1.1

-0.10

-0.05

0.00

0.05

Figure 3.26: Real part (top) and imaginary part (bottom) of the frequency of the dominant
linear mode of the perturbations around static inhomogeneous solutions with L̂ ' 11.501849
and varying energy densities. The real part of omega goes to zero at the cusps and vanishes for
locally unstable solutions. The imaginary part of omega goes to zero at the cusps and at the
mergers. Vertical lines indicate the location of the mergers and the cusps, as in Fig. 3.22. Blue
(red) curves correspond to locally stable (unstable) solutions.
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In this section we have discussed the (in)stability of what we called “ground-state" or “fun-
damental" solutions in Sec. 3.1.6, namely of solutions whose spatial energy density profile has
a single maximum and a single minimum. Here we have not explicitly investigated the case of
“excited" solutions, namely those with multiple maxima and minima. However, some configura-
tions of this type were studied in [63], and in all cases they were found to be locally dynamically
unstable. As discussed in Sec. 3.1.6 and Sec. 3.1.7 the reason is that the entropy density can
be continuously increased by moving two of these maxima or minima towards each other. Since
this seems to be a generic feature, we expect all excited configurations to be locally dynamically
unstable.

3.2.3 Full time evolution of the unstable solutions

In the previous section we studied the local stability properties of the inhomogeneous static
solutions, finding some regions of local instability. A natural question is therefore what is the
end state of the evolution if these locally unstable solutions are perturbed. In this section we
perform the full time evolution of the system and determine the end state.

Given a locally unstable solution there are two natural possibilities for the end state of
the evolution. In Fig. 3.27 we present a concrete example where we show the three static
solutions with the same (L̂,Ê) ' (11.501849, 0.651): Xc, Xd and Xe, where Xc is the static
solution presented in Fig. 3.24(bottom-right). For the locally unstable solution Xc, the two
possible candidates for the end state of the evolution are the homogeneous solution Xd and the
inhomogeneous solution Xe, since both of these have larger entropy than Xc. By performing full
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Figure 3.27: Zoom-in on the left region of Fig. 3.22, where L̂ ' 11.501849. Xc, Xd and Xe
are the three static solutions with the same average energy density Ê ' 0.651. The nonlinear
time evolution of Fig. 3.28(left) corresponds to an evolution from Xc to Xd, and Fig. 3.28(right)
corresponds to an evolution from Xc to Xe.

time evolution we confirm that both solutions Xd and Xe can be the end state of the evolution,
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and that which one is reached depends on the initial perturbation.
In order to illustrate this we essentially extend the range of the time evolution shown in

Fig. 3.24(bottom-left). Recall that in that figure we dynamically generated a solution very close
to Xc by fine-tuning the amplitude of the initial perturbation to be close to the critical value
A∗. Since the amplitude we choose is close but not exactly equal to A∗, the result of this time
evolution at intermediate times is not exactly the solution Xc but Xc plus a small perturbation.
Since the perturbation is small the system spends a sizeable amount of time in a very slowly
evolving configuration close to Xc, as can be seen from the intermediate-time behaviour in
Fig. 3.28. However, if the exact amplitude is slightly smaller than the critical one then further
time evolution eventually drives the system back to the homogeneous solution labelled as Xd
in Fig. 3.27. This is the case in Fig. 3.28(left). If instead the amplitude is slightly larger than
the critical one then the system eventually evolves towards the stable, inhomogeneous solution
labelled as Xe in Fig. 3.27. This is the case in Fig. 3.28(right). Note that the evolution from
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Figure 3.28: Extension to longer times of the time evolution shown in Fig. 3.24(bottom-left),
whose initial state is a homogeneous configuration plus a large perturbation of amplitude A.
At intermediate times this generates the unstable solution Xc plus a small perturbation. (Left)
If the amplitude of the initial perturbation A is slightly smaller than the critical value A∗ then
the system eventually evolves back to the homogeneous solution labelled as Xd in Fig. 3.27.
(Right) If the amplitude of the initial perturbation A is slightly larger than the critical value
A∗ then the system eventually evolves towards the stable, inhomogeneous solution labelled as
Xe in Fig. 3.27.

the unstable to the stable solutions can be viewed as a long, approximately linear regime (when
the unstable solution is perturbed), followed by a fast non-linear regime, further followed by
another long, approximately linear regime (when the system relaxes to the corresponding stable
solution). We have verified that, at the qualitative level, these results apply to all the unstable
solutions with L̂ ' 11.501849 and varying energy densities that we have studied.

3.3 Discussion

By placing our holographic model (2.1) in a box with translational invariance only along two
boundary directions, we have varied the volume by changing the size L̂ = ΛL of the third side,
where Λ is the microscopic scale of the gauge theory. We have then constructed what we believe
is the complete set of all possible homogeneous or inhomogeneous equilibrium states at finite
L̂. On the gravity side these correspond to uniform or lumpy branes, respectively. Although we
do not have a mathematical proof that this set is indeed complete, we have found no evidence
to the contrary in our extensive investigations based both on static and dynamical methods.
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The first effect of the finite volume is that some homogeneous states between points A and
B in Fig. 3.1 become locally dynamically stable, as illustrated in Fig. 3.8. The reason for
this is that the spinodal instability is a long-wavelength instability. If L̂ is below a certain
energy-dependent value, then the potentially unstable mode does not fit in the box and the
corresponding homogeneous state is actually stable. The unstable states are those in the region
inside the parabola in Fig. 3.8. We see that as L̂→∞ we recover the fact that all states with
energy densities between A and B are unstable, but that at finite L̂ some of them are stable. In
particular, there is a value L̂ = L̂K below which all homogeneous states are locally dynamically
stable since none of them can accommodate an unstable mode.

The parabola in Fig. 3.8 is a curve of marginal stability. Therefore we expect a branch
of static, inhomogeneous states to emanate from each point on this curve. One should think
of the extra direction in which these branches emanate as the entropy relative to that of the
homogeneous state, ∆σ̂. The union of all such inhomogeneous branches is therefore a surface in
the three-dimensional space parametrized by the average energy density in the box E , the size
of the box L̂, and the entropy ∆σ̂. We will refer to this surface as the “entropy surface". The
intersection of this surface with the Ê-L̂ plane contains the parabola in Fig. 3.8 (as well as other
points such as the points a and b of Fig. 3.18). The curves in Fig. 3.15 are the projections on
this plane of constant-T̂ slices of the entropy surface. Similarly, the vertical lines in Fig. 3.16
are the projections on this plane of constant-L̂ slices. The same slices projected onto the Ê-T̂
plane are shown in Fig. 3.11. This last figure makes it clear that inhomogeneous states only
exist in the range of temperatures T̂A ≤ T̂ ≤ T̂B.

The structure of the entropy surface is most easily understood by thinking of it as the union
of constant-L̂ slices for all L̂ > L̂K . The shape of each of these slices as a function of the energy
density is shown in Figs. 3.17 and 3.18. We see that, at the qualitative level, there are three
possibilities depending on the value of L̂ in relation to the following hierarchy

L̂K < L̂Σ1 < L̂Σ2 . (3.80)

These three length scales are an intrinsic property of the theory at finite volume and their
values are given in (3.75). If L̂K < L̂ < L̂Σ1 < L̂Σ2 , then ∆σ̂ is always positive for all the
values of the energy for which inhomogeneous states exist. This is the case illustrated by
Fig. 3.17(top-left) and by the bottom curve with beige inverted triangles in Fig. 3.18. If instead
L̂K < L̂Σ1 < L̂ < L̂Σ2 then the ∆σ̂ curve becomes negative and develops a cusp near its endpoint
on the right-hand side. This is the case illustrated by Fig. 3.17(top-right) and by the second-
from-the-bottom curve with brown diamonds in Fig. 3.18. Finally, if L̂K < L̂Σ1 < L̂Σ2 < L̂
then the ∆σ̂ curve becomes negative and develops cusps near both of its endpoints. This is the
case illustrated by Fig. 3.17(bottom) and by the two top curves with orange circles and green
squares, respectively, in Fig. 3.18.

The shape of the entropy surface that we have just described determines the structure of
phase transitions in the microcanonical ensemble. Recall that in the limit L̂ → ∞ the set
of globally preferred, maximum-entropy states are those indicated by the black curves (with
arrows) in Fig. 3.1 (see also the discussion around Figs. 3.5 and 3.6). The direction of the
arrows in Fig. 3.1 indicates what happens as the energy decreases from an arbitrarily high
value. As the energy density decreases towards point D the preferred states are homogeneous
branes of decreasing temperature. At D there is a phase transition into inhomogeneous states of
constant temperature Tc. Since L̂ → ∞ these are phase-separated configurations in which the
homogeneous phases D and E coexist. At E there is another phase transition, in this case from
inhomogeneous to homogeneous states. The fact that the fraction of the total volume occupied
by each phase varies continuously between 0 and 1 as the energy density varies between D and
E suggests that these transitions are continuous in the microcanonical ensemble. Continuity
can also be seen more formally as follows. For fixed length and source, the first law (3.44) takes
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the form
1
T

= dS

dE
. (3.81)

In the microcanonical ensemble the total entropy S is the relevant thermodynamic potential,
the total energy E is the control parameter and T is a derived quantity. At the points D and E
the temperature is continuous, but its derivative dT/dE is not, because this is positive on the
homogeneous branch but it vanishes on the inhomogeneous one.

This picture is modified at finite L̂. Note that in this case the system may still exhibit phase
transitions since the planar limit that we work in, Nc →∞, acts effectively as a thermodynamic
limit. Consider first Fig. 3.29 which illustrates the structure of phase transitions for a length
L̂ ' 11.501849 such that L̂K < L̂Σ1 < L̂Σ2 < L̂ (this is the value corresponding to the
orange circles in Fig. 3.11). In this case the preferred states lie on the homogeneous branch
until the energy density reaches that of point a in Fig. 3.18. At this point a first-order phase
transition takes place between the homogeneous state and the state a on the inhomogeneous
branch, as indicated by the top horizontal arrow in Fig. 3.29. Note that this transition can
take place before (as in the case of the orange circles in Fig. 3.11) or after (as in the case of the
green squares Fig. 3.11) the turning point A is reached. The reason that this is a first-order
transition is that the temperature changes discontinuously. As the energy decreases further, the
preferred states are those on the inhomogeneous branch until the energy density reaches that
of point b in Fig. 3.18. At this point another first-order phase transition takes place between
the inhomogeneous state and a state on the homogeneous branch with the same average energy
density, as indicated by the bottom horizontal arrow in Fig. 3.29. Note that this state is below
the turning point B (i.e. Êb < ÊB). As the energy is further decreased the preferred state
remains on the homogenous branch.

Thinking of the infinite-volume case as the limit L̂ → ∞ of the situation described in
Fig. 3.29 sheds light on the order of the phase transition at infinite volume. As L̂ increases
the point a in Fig. 3.29 moves up and to the right. This means that the homogeneous and the
inhomogeneous states between which the transition takes place become closer to one another.
In the limit L̂ → ∞ the point a tends to the point D (of Figs. 3.1 or 3.3) and the transition
takes place between two states at the same temperature T̂ = T̂c. Since the discontinuity in T̂
disappears the phase transition becomes second-order.

Consider now Fig. 3.30, which illustrates the structure of phase transitions for a length
L̂ ' 5.299674 such that L̂K < L̂ < L̂Σ1 < L̂Σ2 (this is the value corresponding to the inverted
beige triangles in Fig. 3.11). In this case the preferred states lie on the homogeneous branch
until the merger point with the inhomogeneous branch is reached. At this point a transition
between the homogeneous and the inhomogeneous branches takes place. Since the transition
happens at the merger point, the temperature is continuous and the transition is second-order.
As the energy is further decreased the preferred states remain on the inhomogeneous branch
until this merges again with the homogeneous branch. At this point another second-order phase
transition takes place. Below this point the preferred state lies on the homogeneous branch.

In the intermediate range of lengths L̂K < L̂Σ1 < L̂ < L̂Σ2 the structure of transitions is a
hybrid between those described in Figs. 3.29 and 3.30. As the energy decreases there is first a
first-order phase transition between the homogeneous branch and the inhomogeneous branch.
In our model the point on the homogeneous branch lies between A and Σ1, and the point
on the inhomogeneous branch is the analog of point a in Fig. 3.29. As the energy is further
decreased the preferred state remains on the inhomogeneous branch until this merges with the
homogeneous one. At this point a second-order phase transition occurs in which the preferred
state becomes the one on the homogeneous branch. This second transition is analogous to that
in Fig. 3.30. Below this point the preferred state remains on this branch.

Finally, for lengths such that L̂ < L̂K < L̂Σ1 < L̂Σ2 , no inhomogeneous states exist and all
the homogeneous ones are dynamically stable. In this case no phase transitions occur as the
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Figure 3.29: Phase diagram in the microcanonical ensemble for a length L̂ ' 11.501849 such
that L̂K < L̂Σ1 < L̂Σ2 < L̂. The blue and the orange curves correspond to homogeneous and
inhomogeneous states, respectively. The orange curve is the same as the curve of orange circles
in Fig. 3.11. Solid segments indicate locally dynamically stable states; dashed segments indi-
cate unstable ones. The black curves with arrows indicate the sequence of globally preferred,
maximum-entropy states as the average energy density decreases. The points a and b corrre-
spond to those in Fig. 3.18. The first and fourth (from top to bottom) dashed horizontal lines
indicate the energy densities at these points, whereas the second and third lines indicate the en-
ergy densities at the turning points A and B. The phase transitions between the homogeneous
and the inhomogeneous branches, indicated by the horizontal arrows, are first-order.
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Figure 3.30: Phase diagram in the microcanonical ensemble for a length L̂ ' 5.299674 such
that L̂K < L̂ < L̂Σ1 < L̂Σ2 . The blue and the beige curves correspond to homogeneous and
inhomogeneous states, respectively. The beige curve is the same as the curve of beige inverted
triangles in Fig. 3.11. Solid segments indicate locally dynamically stable states; dashed segments
indicate unstable ones. The black curves with arrows indicate the sequence of globally preferred,
maximum-entropy states as the average energy density decreases. The phase transitions between
the homogeneous and the inhomogeneous branches take place at the points where these branches
merge and they are second-order.
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energy decreases from infinity to zero, as illustrated in Fig. 3.31.
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Figure 3.31: Phase diagram in the microcanonical ensemble for a length L̂ such that L̂ < L̂K <
L̂Σ1 < L̂Σ2 .

In the figures above we have used continuous and dashed segments to distinguish between
locally dynamically stable and locally dynamically unstable states. In the case of homogeneous
states these properties can be established via a perturbative analysis. In the case of inhomo-
geneous states we used a numerical code for time evolution to study the behaviour of small
perturbations. The results are shown in Fig. 3.22 and can be succinctly summarised as follows:
all states on the upper part of the curve, shown in blue, are stable, whereas those on the lower
part, shown in red, are unstable (see also a relevant zoom in Fig. 3.27). Once an unstable state
is slightly perturbed, its full time evolution and its end state depend on the perturbation. For
example, the locally dynamically unstable state Xc in Fig. 3.22 and Fig. 3.27 can decay to either
of the stable states Xd or Xe. The corresponding time evolutions are shown in Figs. 3.28(left)
and 3.28(right), respectively.

For completeness, note that, unlike in the microcanonical ensemble, at finite volume lumpy
branes are never the dominant thermodynamic phase in the canonical ensemble, as illustrated
by Fig. 3.19.
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In our analysis we have benefited from two simplifying assumptions. The first one is that we
imposed translational invariance along two of the three spatial directions of the box. Lifting this
restriction will generically allow for inhomogeneities to develop in all three directions. It would
be interesting to study this more general setup, in particular the possible interplays between
different length scales in different directions. Hopefully, the “one-dimensional building blocks"
that we have investigated will be useful to understand the three-dimensional case.

The second simplifying assumption is the fact that we have worked in the Nc → ∞ limit,
which ensures that the system is in the thermodynamic limit despite the finite volume. In
particular, it guarantees that true phase transitions may occur. At finite Nc these transitions
will turn into cross-overs. However, the latter can be made arbitrarily rapid by making Nc

sufficiently large. This means that our results should be a good approximation to the physics
at finite but large Nc.
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Chapter 4

Domain Collisions

In the previous chapter we took a first look into the dynamical generation of inhomogeneous
states in a theory with a first order thermal phase transition. The goal there was to obtain, as
fast as possible, the desired inhomogeneous solution, thence the initial conditions were specifi-
cally designed. As a consequence, our time evolution lack rich physics that is uncovered when
more generic initial conditions are considered.

Imagine placing the theory in an initial homogeneous state with an energy density in the
unstable, spinodal region (see Fig. 4.1). If this state is perturbed, the system will evolve to
a final state that will necessarily be inhomogeneous. The evolution consists of four generic
stages [63] visible in Fig. 4.2: A first, linear stage in which the instability grows exponentially;
a second, non-linear stage in which peaks and/or phase domains are formed; a third stage in
which these structures collide and merge; and a fourth stage in which the system finally relaxes
to a static, phase-separated configuration. In any given evolution of this type, the velocities of
the different domains are a complicated function of the perturbation of the initial, homogeneous
state. This makes it difficult to perform a systematic study of the physics of the collision as a
function of the domain velocities. In this chapter we will overcome this difficulty by directly
preparing initial states consisting of domains moving towards each other at a wide range of
velocities.

On the gravity side the above dynamics translates into the physics of a time-dependent,
inhomogeneous horizon. Understanding this physics provides one motivation for our work. For
example, we will examine in detail how the area of the horizon changes as two domains merge.
Another motivation comes from the possible relevance of the spinodal instability in experiments
trying to observe the first order phase transition of QCD.

We emphasize from the start that the domains we consider here should not be confused with
the bubbles created via a nucleation process in first-order phase transitions. The expansion of
those bubbles is driven by a pressure difference between the inside and the outside of the bubble.
Instead, in our case the domains move simply because they are created with some initial velocity.
In fact, if a number of bubbles are nucleated in a large – but finite-size – box, and if the average
energy density in the box is between Ehigh and Elow, then the endpoint of the evolution will be
a phase-separated state with two domains with energies Ehigh and Elow.

4.1 The model

We will choose the same potential parameters for (2.3) as in the previous chapter, λ4 = −1/4
and λ6 = 0.1. The fact that this choice was giving us a model with all quantities of O(1)
in units of Λ, in particular is highly convenient when numerically simulating the formation
of a phase separation. The phase diagram of such model is shown in Fig. 4.1 and we recall
that Tcritical/Λ = 0.3959, Pcritical/Λ4 = 0.1124, Ehigh/Λ4 = 1.3739 and Elow/Λ4 = 0.4527. For
simplicity, we will allow for dynamics only along one of the three spatial directions of the gauge
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Figure 4.1: Energy as a function of temperature for the theory considered in this paper, with intrinsic
scale Λ. Stable, metastable and unstable states are represented by solid, dashed and dot-dashed curves,
respectively. The vertical grey line corresponds to the phase transition temperature.

102 E/Λ4

Figure 4.2: Evolution of the energy density as a function of time and space for an initial homogeneous
state in the spinodal region that is slightly perturbed at t = 0. Figure taken from [63].

theory, which we call z. In other words, we impose translational symmetry along x, y. We will
also refer to z as the longitudinal coordinate and to x, y as the transverse directions. We will
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decompose the gauge theory stress tensor accordingly and work with the rescaled quantities

(E , PT , PT , PL,J ) = κ2
5

2`3 (−T tt , T xx , T yy , T zz , T tz) , (4.1)

where E is the energy density, PL and PT are the longitudinal and transverse pressures, and
J is the momentum density in the z-direction. In addition, as we already did previously, we
compactify the z-direction on a circle of length L. This infrared cut-off is technically convenient
since it reduces the number of unstable modes of homogeneous states in the spinodal region
to a finite number. In addition, compactifying the z-direction on a circle also brings about
interesting new effects even for a single, boosted domain. We will start by analyzing this case in
Sec. 4.2 and then we will move to collisions of two domains in Sec. 4.3. Note that we are slightly
abusing the word “domain” in the following sense. At the end of the evolution in Fig. 4.2 there
are two domains with energy densities Ehigh and Elow. Nevertheless, we will often use the word
“domain” to refer specifically to the high-density phase. In this sense, we will sometimes think
of the end state of Fig. 4.2 as a domain surrounded by a low-density bath.

4.2 Domains in motion
In a domain collision, each of the participants is initially moving independently of the other,
surrounded by a low-density bath. In this section we will study the dynamics of such a single
domain. We will construct an initial, out-of-equilibrium state with a non-uniform fluid velocity
in the z-direction and watch it evolve into a steady-state with uniform velocity. In addition to
its intrinsic interest, this will also help us understand the construction of initial states in the
case of domain collisions.

We start with a single, static domain obtained as the end-state of a simulation like that in
Fig. 4.2. We then modify the near-boundary fall-offs of the metric functions on the initial time
slice on the gravity side1 so as to add a finite momentum density along the z-direction, J (z).
We keep the total energy fixed as we inject this momentum; as we will see below this results in
a decrease in the entropy of the system. The specific z-dependence is chosen to be

J (z) = j
(
E(z)− Elow(Tc)

)
, (4.2)

where j is an appropriately chosen constant. At this initial step the momentum density has
vanishing support on the low-density region. In order to be able to initialise our numerical code
the initial value of j cannot be too large. However, choosing a small value, letting the system
evolve for a few time steps, increasing the value of j, and iterating this procedure, allows us
to eventually reach high velocities. The reason for the iterations is that, after each change in
the near-boundary fall-offs, a few time steps of evolution allow the bulk functions to adapt to
the new near-boundary fall-offs. In particular, this allows our code to find the new horizon
within our numerical grid. We will define as the initial time, tΛ = 0, the time at the end of
this iterative process. At each step in the iteration process a fraction of the total momentum
gets transferred to the low-density bath. As a consequence, at the end of the process the bath
will not be completely at rest, as illustrated by the blue curve in Fig. 4.3(top). Nevertheless,
at this time most of the momentum density is still in the domain, where the fluid flow velocity
is larger than in the bath. It is precisely this feature that tells us that the resulting state at
tΛ = 0 is out of equilibrium.

After tΛ = 0 we do not inject any more momentum into the system. The subsequent
evolution is characterized by a significant energy and momentum transfer between the domain
and the bath. The initial state is so far from equilibrium that it splits into several fragments
that eventually merge back to form a single domain, as illustrated in Fig. 4.4. The stationary

1Specifically the subleading terms, which determine the expectation values.
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Figure 4.3: Time evolution of the fluid velocity (top) and of the energy density profile (bottom) for a
domain in motion. To facilitate the comparison, each profile has been shifted by a constant amount to
match the domain midpoint with zΛ = 0. The maximum of the fluid velocity at tΛ = 0 is vmax = 0.66.

state is reached around tΛ ∼ 400. At this and at later times the fluid velocity field is constant
along the z-direction with value v = 0.364, as seen in Fig. 4.3(top). In other words, the “system
moves as a whole”. This is illustrated in Fig. 4.5, where we see that the energy density profile
remains constant in time once the steady state is reached to a precision better than 1%. This
steady-state energy profile is narrower than that of the out-of-equilibrium state at tΛ = 0, as
can be seen in Fig. 4.3(bottom), and it is also narrower than that of the static, equilibrium state
with the same total energy, as illustrated in Fig. 4.6 for two different velocities.

We see in the figure that the domains become narrower as the velocity increases, and that the
energy densities in the domain and in the bath are higher than Ehigh(Tc) and Elow(Tc), respec-
tively. These features are consistent with the fact that, by construction, all these configurations
have the same total energy.

In the steady state, a comoving observer traveling with velocity v sees a fluid configuration at
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Figure 4.4: Plots of the energy density for the evolution of an initial, single-domain state that splits
into several fragments that subsequently merge back into a single domain.

rest. This observer uses coordinates t′, z′ related to t, z through the usual Lorentz transformation

t′ = γ(t− vz) , z′ = γ(z − vt) , γ = (1− v2)−1/2 . (4.3)
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Figure 4.5: (Left) Snapshots of the energy density at late times for the same initial state as in Fig. 4.3.
(Right) The same profiles shifted by an appropriate constant. (Bottom) Relative difference between the
profiles.

The original identification (t, z) ∼ (t, z + L), translates into a non-trivial identification for the
comoving observer

(t′, z′) ∼ (t′ − γvL, z′ + γL) . (4.4)
In other words, for the co-moving observer the identification is not purely along the spatial
direction but it involves time as well. This imposes a non-trivial constraint on any physical
configuration seen by this observer, since any such configuration must be invariant under (4.4).
However, for configurations that are static with respect to the comoving observer this condition
reduces to periodicity along the z′-direction with period L′ = γL. This is the case for the fluid
configuration obtained by applying the Lorentz transformation (4.3) to the configurations of
Fig. 4.6. In particular, the energy density in the comoving frame takes the form

E ′ = γ2
(
E + v2Pz − 2vJ

)
, (4.5)

and the average energy in this frame is

Ē ′ = Ē − vJ̄ . (4.6)

The result of applying (4.5) to the v = 0.187 case of Fig. 4.6 is shown by the dashed, red curve
in Fig. 4.7. As expected, this matches the solid blue curve, corresponding to a profile obtained
directly as an inhomogeneous, static configuration with average energy (4.6) in a box of size L′.

We see that, in the case of a single domain, we could have obtained the steady states of
Fig. 4.6 by applying the inverse Lorentz transformation to the corresponding static configura-
tions. In contrast, in the case of two domains moving towards each other that we will consider
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Figure 4.6: Steady-state energy profiles of domains with different velocities. The total energy in the
box is the same in all cases. The average energy is Ē/Λ4 = 0.817 and the box has size LΛ = 42.0719.
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Figure 4.7: Comparison of the energy profile obtained by Lorentz-transforming the curve in Fig. 4.6
(dashed, red curve) with a configuration obtained directly as an inhomogeneous, static configuration
with the same average energy (4.6) in a box of size L′ = γL (solid, blue curve).

in the next section, it will be crucial to be able to construct the moving domains via the method
described around (4.2), because in that case we will need to match two baths with opposite
velocities.

4.3 Domain collisions

We now turn to the construction of initial states whose evolution will result in the collision of
two domains. We start with a configuration consisting of two static domains separated by some
distance from one another, like the one described by the dashed, red curve in Fig. 4.8(left).
This can be constructed, for example, by gluing together two individual domains along the low-
energy bath. We place the two domains at antipodal points of the z-circle, in which case the
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Figure 4.8: (Left) Initial configuration (dashed red) used to generate two domains in motion (solid
blue) that will collide with each other. (Right) Fluid velocity for the domains in motion on the left.

resulting configuration is unstable but static [63]. If this configuration is slightly perturbed then,
upon time evolution, the domains will approach each other and eventually collide. However,
this collision will typically happen at low relative velocity [63]. Therefore, in order to explore
the collision physics over a significant range of relative velocities, we will modify the initial
configuration following the procedure described around (4.2). The crucial difference is that now
we inject momentum densities of equal magnitudes but opposite signs in each domain. As in
the case of a single domain, at the end of the iteration procedure some of the momentum is
contained in the bath but most of it is in the domains, as illustrated in Fig. 4.8(right). Also,
the shape of the domains, described by the solid, blue curve in Fig. 4.8(left), is modified with
respect to the static situation. Note that, by symmetry, the fluid velocity must vanish at the
two middle points in between the domains, i.e. at zΛ = 0 and zΛ = L/2. This is the reason
why this initial state cannot be obtained by gluing together two individual steady states of
the previous section moving towards each other, since at the middle points the baths would be
moving with non-zero, opposite velocities, and hence the velocity field would be discontinuous.
One may think that an alternative method would be to use superposition instead of gluing.
Specifically, we recall that, in the characteristic formulation that we use on the gravity side
(see [38] for details), the data on the initial time slice is free. We can therefore superpose the
initial data corresponding to two individual domains moving towards each other. Although this
procedure is conceptually sensible, it is technically challenging to find the apparent horizon in
the resulting geometry. For this reason we followed the procedure described around (4.2).

We performed a series of identical simulations except for the fact that we varied the maximum
velocity of the fluid in the initial state in the range vmax ∈ (0, 0.73). We use this velocity as one
possible characterization of the initial state. In all cases we fixed the distance between the mid
points of the domains to dΛ ' 42. We found three qualitatively different dynamical regimes.
For low values vmax . v1 ' 0.09 the domains initially slow down, enter a quasi-static regime,
and eventually collide and merge. For intermediate values v1 . vmax . v2 ' 0.2 the quasi-static
phase is absent. For high values vmax & v2 the domains collide but do not merge. Instead they
break apart and merge only in subsequent collisions.

We emphasize that there is no sharp transition between these regimes and hence the dif-
ferences are qualitative in nature. For the specific simulations with the domains of Fig. 4.8 we
found the quoted values v1 ' 0.09, v2 ' 0.2. Repeating these simulations for different initial
domains we found that the values of v1, v2 depend on the choice of initial domains. However,
the existence of three qualitatively different regimes persisted, suggesting that it is a robust
property of the collision dynamics.

94



Chapter 4 Domain Collisions

4.3.1 Low velocity

Fig. 4.9 shows the evolution of the energy density and the fluid velocity for a simulation with
vmax = 0.08. We can distinguish several stages of the evolution: the initial slowing down of
the domains, the quasi-static regime, the merging into a single domain and the subsequent
relaxation to equilibrium.

In the first stage, tΛ . 100, the domains slow down as they transfer momentum to the
low-energy bath in between them. This results in an increase of the energy density and of the
longitudinal pressure at the center, as shown at early times in Fig. 4.10. We use the area density
of the apparent horizon on the gravity side as a proxy for the entropy density of the system.
As shown in Fig. 4.11, the dissipation in the initial phase causes a considerable increase in the
entropy of the system, meaning that it is comparable to the entropy increase in the final merger.

In the period 100 . tΛ . 500 the energy density (the pressure) at the centre increases
(decreases) slowly. The quasi-static nature of this regime can be clearly seen in the entropy,
which displays a plateau that extends up to tΛ ∼ 500. Note that the entropy of the plateau
coincides with that of the initial two-domain configuration (dashed, red curve in Fig. 4.8(left)),
which is static. Presumably, this agreement is due to the fact that the velocity of the two
domains in the quasi-static regime is extremely low, as can be seen in Fig. 4.9(bottom). This
is consistent with the fact that the domains move as rigid bodies whose profiles are very well
approximated by the equilibrium profile, as shown in Fig. 4.12(left). The right plot in this figure
also shows that the dynamics is driven by a small pressure deficit in the region in between the
domains.

The fact that the entropy of the system at times tΛ . 100 is lower than the entropy of
two static domains means that the procedure by which we inject momentum into the system at
constant total energy decreases the entropy. This can be easily understood on the gravity side,
where this procedure increases the total momentum of the dual black brane while keeping its
mass fixed. If one performs a Kaluza-Klain reduction along the z-direction, this corresponds to
increasing the electric charge of the resulting, lower-dimensional black brane while keeping its
mass fixed. Just in a Reissner-Nordström black hole, this procedure is expected to reduce the
entropy.

The collision takes place around tΛ ∼ 500. The two domains merge into a single, out-of-
equilibrium, larger domain that will eventually reach equilibrium through damped oscillations.
At sufficiently late times we expect to be able to describe the dynamics in terms of an equilibrium
profile plus small deviations, δE/E � 1, so that we can apply a linear analysis. Following [63],
we model the system at late times as two phases of energies Elow and Ehigh separated by two
interfaces or walls that can move as a whole but whose shapes are rigid. Since the system is
symmetric under z → −z we will often focus only on z > 0 and speak of “the” wall. We define
the positions of the wall as the point at which the energy density is the average between Ehigh
and Elow, namely we require that E(t, zwall) = (Ehigh + Elow)/2. The size of the high-energy
phase is then `1 = 2zwall and the size of the low-energy phase is `2 = L − `1. Rigidity implies
that the perturbations of each phase must vanish at the wall, meaning that the only allowed
perturbations are odd cosine harmonics of wavelength λi = 2`i. In general there could also be
sine harmonic of wavelength λi = `i, but these are excluded in our particular case because of the
reflection symmetry. As both subsystems are coupled and the wall is rigid we expect the two
phases to oscillate in time as a whole, with identical frequencies. Since translation invariance
is broken, all the modes in the Fourier decomposition of δE = E(t, z) − Eeq(z), with Eeq(z) the
equilibrium profile at asymptotic times, will mix with one another. Thus, at late times they
should all oscillate with the frequency of the longest-lived mode (as we saw in Fig. 3.25). We
verified this for modes up to n = 14, i.e. for modes with momentum up to k = 14 × 2π/L.
Fig. 4.13 illustrates the result for the four lowest modes. This result motivates the following
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Figure 4.9: Evolution of the energy density (top) and of the fluid velocity (bottom) for a simulation
with vmax = 0.08.

ansatz for the perturbations of each phase at late times:

δEi(t, z) =

eω1(t−t0)∑∞
n=0 a

i
n cos

[
ω2(t− t0) + γin

]
cos

[
(2n+1)π

`i

(
z − zi0

) ]
,
∣∣z − zi0∣∣ ≤ `i

2

0, otherwise,
(4.7)

where the index i refers to each of the two phases and zi0 refers to their midpoints. The form of
the energy density at late times is then

E(t, z) = Eeq
(
z ∓ ∆`1(t)

2

)
+ δEhigh(t, z) + δElow(t, z), (4.8)

where ∓ means that we use − (+) if z > 0 (z < 0). The second and third terms on the right-
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Figure 4.10: Energy density (left) and longitudinal pressure (right) as a function of time at zΛ = 0
for the collision of Fig. 4.9.
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Figure 4.11: Time evolution of the total entropy (per unit transverse area) for the collision of Fig. 4.9.
S2 is the entropy of a static configuration with two domains (the dashed, red curve in Fig. 4.8). S1 is
the entropy of a static configuration with the same total energy but a single domain.
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Figure 4.12: (Left) Energy profiles (shifted by an appropriate amount) of the domains during the
quasi-static phase for the collision of Fig. 4.9. (Right) Snapshot of the longitudinal pressure distribution
at tΛ = 350.

hand side describe the oscillation in time and space of the two phases. The first term is due to
the rigid motion of the walls as the phase domains oscillate. If we call ∆`1(t) = −∆`2(t) the
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Figure 4.13: Time evolution of the spatial Fourier modes of δE = E(t, z) − Eeq(z) after the
merging. All modes evolve as δEn ∼ exp(ω1t) cos(ω2t) with the same (ω1, ω2) = (−0.012, 0.063).

changes in the sizes of the two phases caused by the motion of the walls, then mathematically
this means that the oscillations happen on top of phases with sizes `i + ∆`i(t), whose energy
density can be written approximately as the first term in (4.8). The form of this term is just
a simple way of “stretching” (for positive ∆`i) or “compressing” (for negative ∆`i) the domain
profile by “gluing in” or “cutting out” a small piece at the centre of each phase, taking advantage
of the fact that the energy density is almost exactly constant there. In order to determine ∆`1
as a function of time, we simply impose conservation of energy, namely that the energy change
associated to the rigid shift of the walls is exactly compensated by the energy change associated
to the oscillations of the phases:

2 (Ehigh − Elow) ∆`1(t) +
∫ L/2

−L/2
dz
[
δEhigh(t, z) + δElow(t, z)

]
= 0 . (4.9)

The approximation (4.8) becomes applicable soon after the merger, as illustrated by Fig. 4.14.
To describe correctly the perturbations of the high-energy phase it is enough to truncate the
series (4.7) at n = 1, whereas in order to obtain a good result for the low-energy phase we
included the second mode, n = 2. The values that we found for the fit parameters in (4.7) are

ω1/Λ = −0.0048, ω2/Λ = 0.032, t0Λ = 800,
LhighΛ = 33.33, LlowΛ = 50.82, LΛ = 84.14,

zhigh0 = 0, zlow0 = ±L/2, ahigh1 /Λ4 = 0.0375,
γhigh1 = 0.227, alow1 /Λ4 = 0.0142, γlow1 = 2.346,

alow2 /Λ4 = −0.0022, γlow2 = −0.244.

(4.10)

4.3.2 Intermediate velocity

A simulation in this regime with vmax = 0.11 is shown in Fig. 4.15. In this case there is no
quasi-static regime, as seen by the absence of an intermediate plateau in the entropy density in
Fig. 4.16. The overall increase in the entropy is greater than in the low-velocity case, confirming
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Figure 4.14: Oscillations of the high- and low-energy phases during the relaxation period after the
merger.

the intuition that this is a more violent collision. The rest of the evolution is qualitatively
similar to the low-velocity case: there is an initial excess of pressure between the domains that
slows them down and they merge to form a domain that relaxes to equilibrium through the same
kind of oscillations, see Fig. 4.17. Applying (4.8) leads to a good description of the oscillations
at times soon after the collision, see Fig. 4.18. The parameters in this case are

ω1/Λ = −0.0047, ω2/Λ = 0.032, t0Λ = 200,
LhighΛ = 33.33, LlowΛ = 50.82, LΛ = 84.14,

zhigh0 = 0, zlow0 = ±L/2, ahigh1 /Λ4 = 0.1065,
γhigh1 = 2.09, alow1 /Λ4 = −0.0397, γlow1 = 1.306,

alow2 /Λ4 = −0.0082, γlow2 = 1.26 .

(4.11)

Note that, up to fitting errors, the frequencies in this case and in the low-velocity case are the
same. The reason is that the final equilibrium state is the same in both cases, and therefore the
frequencies of the linear perturbations around it are identical. The only difference between the
simulations is therefore in the amplitudes of the oscillations. The following table collects the
ratios of the coefficients for the n = 1, 2 modes, ai2/ai1, for both phases for various simulations:

vmax low intermediate
low− energy phase −0.158 0.2058
high− energy phase −0.043 −0.044

(4.12)

We see that they are of the same order for different simulations, and that the ratio is smaller
in the high-energy phase, consistently with our neglect of the n = 2 (and higher) modes in this
phase.

4.3.3 High velocity

For velocities vmax ≥ v2 = 0.2 the domains collide but do not merge in the first collision. Instead,
the excited state that results from the collision breaks apart into pieces that will subsequently
collide again until they finally merge. Fig. 4.19 shows two illustrative cases. As shown by
Fig. 4.20, the peak energy density right after the first collision increases significantly with vmax,
meaning that the resulting configuration is a large deviation from an equilibrium domain. The
maximum relative deformations are Epeak/Ehigh ' 1.071, 1.096, 1.762, 3.966, respectively, for
the increasing velocities shown in Fig. 4.20. As a consequence, non-linear dynamics becomes
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Figure 4.15: Evolution of the energy density (top) and of the fluid velocity (bottom) for a simulation
with vmax = 0.11.

important and the excited state breaks apart into smaller components rather than relaxing to
a single equilibrium domain as in previous sections.

In both cases shown in Fig. 4.19, the initial excited state first “emits” perturbations that
travel away from the central blob, and subsequently it splits into two fragments. The perturba-
tions travel away from the central blob, colliding with each other on the other side of the box, at
zΛ ' 42. We will refer to this as the second collision. This collision creates an excitation that
quickly becomes a new domain smaller than the central fragments, as illustrated in Fig. 4.21.
Note from the horizontal axis in this figure that the new domain is shown in the center of the
figure and the central fragments on the sides of it. At later times the two central fragments
reach the location of the new domain and a third collision, this time a three-body one, takes
place. In cases with vmax & v2, such as the one in Fig. 4.19(top), this third collision results
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Figure 4.16: Time evolution of the total entropy (per unit transverse area) for the evolution in Fig. 4.15.
S2 is the entropy of a static configuration with two domains (the dashed, red curve in Fig. 4.8). S1 is
the entropy of a static configuration with the same total energy but a single domain.
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Figure 4.17: (Left) Energy density E/Λ4 and (Right) longitudinal pressure Pl/Λ4 as a function of time
for constant coordinate zΛ = 0 for the evolution in Fig. 4.15.
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Figure 4.18: Oscillations of the high- and low-energy phases during the relaxation period after the
merger for the evolution in Fig. 4.15.

in the formation of a single domain that then relaxes to equilibrium as described in previous
sections.

In contrast, in cases with large enough vmax, such as the one of Fig. 4.19(bottom), the
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Figure 4.19: Evolution of the energy density for simulations with vmax = 0.25 (top) and vmax = 0.73
(bottom).

excitations emitted by the initial excited state, as well as the fragments to which it decays,
travel faster to the opposite side of the box and do not have time to relax to domains, as shown
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Figure 4.20: Snapshots of the energy density at the times at which the maximum energy is reached
for collisions with different vmax.

0 20 40 60 80

0.4

0.6

0.8

1.

1.2

1.4

1.6

Figure 4.21: Snapshots of the energy density for the collision of Fig. 4.19(top) with vmax = 0.25.
The blue curve corresponds to a time soon after the fragmentation of the excited state. Note that the
horizontal axis in this figure has been shifted to show the new domain at the center of the figure and the
central fragments on the sides of it.

in Fig. 4.22(top). As above, the perturbations collide in what we call the second collision.
However, in this case the third collision, i.e. the collision between the resulting new structure and
the fragments from the first excited state, is again a high-velocity collision. As a consequence, it
results in the emission of new perturbations plus fragments that in this case travel from zΛ ' 42
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Figure 4.22: Snapshots of the energy density for the evolution in Fig. 4.19(bottom) with vmax = 0.73.
The top (bottom) plot corresponds to a time shortly after the second (fourth) collision. The blue curve
corresponds to a time soon after the fragmentation of the excited state.

towards zΛ = 0. These products now have time to relax to approximate domains, as illustrated
in Fig. 4.22(bottom). The perturbations merge in a fourth collision at zΛ = 0, and finally a fifth
collision occurs, again a three-body collision, which results in the formation of a single domain
that relaxes to equilibrium as in previous sections.

The entropy production in Fig. 4.23 reflects the qualitative differences described above
between the two evolutions of Fig. 4.19. On the left plot we can identify three different regimes
corresponding to the three different collisions. In contrast, no such clear distinction is apparent
on the right plot. In both cases, however, the relative amount of entropy increase is much larger
than in the low- and intermediate-velocity collisions. For comparison, the relative entropy
production in the evolutions with vmax = 0.11, vmax = 0.25 and vmax = 0.73 are 2, 9 and 45
times larger than in the vmax = 0.08 case, respectively.

4.4 Discussion

The time evolution of the spinodal instability in a theory with a first-order phase transition
typically results in the creation of phase domains that subsequently collide with one another
[63]. The velocities of the different domains are a complicated function of the perturbation of
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Figure 4.23: Time evolution of the total entropy (per unit transverse area) for the evolutions of
Fig. 4.19 with vmax = 0.25 (left) and vmax = 0.73 (right). S1 is the entropy of a static configuration
with the same total energy but a single domain. The vertical dashed lines represent the approximate
time of each collision.

the initial, homogeneous, unstable state. This makes it difficult to perform a systematic study
of the physics of the collision as a function of the domain velocities. In this chapter we have
overcome this difficulty by directly preparing initial states consisting of domains moving towards
each other at velocities 0 ≤ vmax ≤ 0.73, where vmax is the maximum fluid velocity in the initial
state. Going to higher velocities becomes challenging due to numerical issues. Nevertheless, the
above range sufficed to uncover three qualitatively different dynamical regimes.

For low velocities the domains initially slow down, enter a period of quasi-static evolution,
and finally collide and merge into a single domain that then relaxes to equilibrium through
damped oscillations. The quasi-static period is clearly visible as a plateau in the entropy of
the system, which we computed from the area of the dual horizon on the gravity side. For
intermediate velocities the evolution is qualitatively identical except for the fact that no quasi-
static period is present. For high velocities the domains can collide several times before they
eventually merge into a final, single domain that then relaxes to equilibrium. Our investigations
suggest that, while the precise values of the velocities that distinguish these three regimes depend
on the size of the domains in question, the existence of these regimes is a robust property of
the collision dynamics.

105





Chapter 5

Bubbles: Expanding, Collapsing and
Critical

Once studied the properties and formation dynamics of inhomogeneous solutions we will turn
now to a very important aspect of first order phase transitions: bubble dynamics. As it was
explained in Chapter 1, bubble nucleation, expansion and collision play a crucial role in the
dynamical realization of a first order phase transition. Moreover, it is a source of stochastic
emission of Gravitational Waves whose potential discovery requires and accurate understanding
of bubble properties.

Although we will start studying the dynamics of planar bubbles, dynamics in 1+1 dimen-
sions, where we will see that the stationary expansion state only depends on the nucleation
temperature and we will observe a very interesting relation for the wall velocity. We will then
use Jecco for the first time in this thesis, which extends the dynamics to one additional di-
mension. Thus, the effective dynamics will be 2+1 dimensional in the gauge theory and 3+1
dimensional on the gravity side. This will allow us to study cylindrical bubbles, which intu-
itively we can think of as circular bubbles in 2+1 dimensions in a theory with one extra spectator
direction.

The extension from planar to circular bubbles brings about two new physical aspects. The
first one is that the surface tension now plays a role. In particular, we will be able to identify a
critical bubble in which the inward-pointing force due to the surface tension exactly balances the
outward-pointing force coming from the pressure difference between the inside and the outside
of the bubble. The second one is that the asymptotic, self-similar profile of an expanding bubble
possesses a richer structure than in the planar case.

We will also compare the holographic result with the hydrodynamic approximation in both
planar and cylindrical bubbles. As expected, we will find that hydrodynamics provides a good
approximation everywhere except at the bubble wall.

5.1 Model and thermodynamics

For the first time in this work we will choose to work with a different choice of paramenters,
namely λ4 = −0.346021 while keeping λ6 = 0.1 in (2.3). The reason behind the change to
smaller values of λ4 is that it corresponds to a model of greater pressure jump across the phase
transition, leading to a sizeable bubble wall velocity as we will see in Sec. 5.4.2.

The thermodynamics of the gauge theory can be extracted from the homogeneous black
brane solutions on the gravity side (see e.g. [114]). Figure 5.1 shows the result for the energy
density as a function of temperature, where we see the usual multivaluedness associated to a
first-order phase transition. At high and low temperatures there is only one phase available
to the system. Each of these phases is represented by a solid, blue curve. At the critical
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Figure 5.1: Energy density as a function of temperature for the gauge theory dual to the
holographic model (2.1-2.3) with λ4 = −0.346021 and λ6 = 0.1. The squares Bc and Ac
correspond, respectively, to the states inside and outside of the closest-to-critical bubble studied
in Sec. 5.3. The dots B and C correspond to the initial states inside and outside the expanding
bubble studied in Sec. 5.4.2, respectively. At late times, the state B inside the bubble evolves
into C, and a heated region is created in front of the bubble that can be characterized in terms
of the point D in the phase diagram.
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temperature
Tc = 0.418Λ

the state that minimizes the free energy moves from one branch to the other. The first-order
nature of the transition is encoded in the non-zero latent heat, namely in the discontinuous
jump in the energy density given by

Elatent = Ehigh − Elow , Elow = 0.225Λ4 , Ehigh = 2.123Λ4 . (5.1)

Note that the phase transition is a transition between two deconfined, plasma phases, since
both phases have energy densities of order N2 and they are both represented by a black brane
geometry with a horizon on the gravity side.

In a region
Ts = 0.3879Λ < T < T ′s = 0.4057Λ (5.2)

around the critical temperature there are three different states available to the system for a
given temperature. The thermodynamically preferred one is the state that minimizes the free
energy, namely a state on one of the blue curves. The states on the dashed, brown curves are
not globally preferred but they are locally thermodynamically stable, i.e. they are metastable.
This follows from the fact that specific heat

cv ≡
dE
dT

(5.3)

is positive on this branches. At the temperatures Ts and T ′s the metastable curves meet the
dotted-dashed, red curve, known as the “spinodal branch”. States on this branch are locally
unstable since their specific heat is negative and have energies comprised between

E ′s = 0.717Λ4 , Es = 1.141Λ4 . (5.4)

Note that the characteristic scale for all the quantities above is set by the microscopic scale
in the gauge theory, Λ, given holographically by Λ = φ0 in terms of the leading term in the
near-boundary fall-off of the scalar field in (2.13).

5.2 Initial data
As any other thermal system with a first order phase transition, the gauge theory can be over-
cooled past the critical temperature Tc. The homogeneous, overcooled state, represented by
a point on the upper, brown branch in Fig. 5.1, is stable against small fluctuations, including
thermal ones, but not against sufficiently large fluctuations. A particular class of large fluc-
tuations are bubbles, namely inhomogeneous configurations in which the energy density of a
certain region of space within the overcooled homogeneous phase is reduced. For sufficiently
large bubbles, the energy density in the centre of this region lies in the stable branch of the phase
diagram, represented by the lower, blue curve in Fig. 5.1, and the bubble smoothly interpolates
between the stable and the metastable phases.

In a homogeneous and isotropic thermal system it is expected that the nucleated bubbles are
spherical. However, given our symmetry restrictions we will study (almost) cylindrical bubbles.
When we get to the planar bubble simulations the initial data is built in the analogous way,
but all configurations we play with are inhomogeneous along only one of the gauge directions.

Our first task is to construct initial data corresponding to a bubble. By definition, this
is a configuration consisting of a circular region filled with the stable phase (the inside of the
bubble) connected to an asymptotic region filled with the metastable phase (the outside of the
bubble) through an appropriate interface. The stable and metastable phases correspond to the
points labeled B and A in Fig. 5.1, respectively, and both have T < Tc. As we will now explain,
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Figure 5.2: Phase-separated configurations in a box of size LxΛ = LyΛ = 20 with average
energy densities Ē/Λ4 = 1.0 (top), Ē/Λ4 = 1.6 (middle) and Ē/Λ4 = 1.8 (bottom).
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our strategy to construct these bubbles will be to start with a phase-separated state, which has
T = Tc, and to rescale it appropriately.

Phase-separated states are configurations in which the two homogeneous phases with energy
densities Ehigh and Elow coexist in equilibrium at T = Tc. This is possible because at this
temperature the free energy densities, and hence the pressures, are equal in the two phases.
Three examples of such configurations in a box of constant size are shown in Fig. 5.2. The
difference between the three cases is the relative fraction of the total volume occupied by each
phase. For a box of fixed size, changing this relative fraction is equivalent to changing the
average energy density in the box, Ē . The larger the average energy density, the larger the size
of the high-energy region, and vice-versa. We will use this fact to our advantage when we search
for the critical bubble below.

Strictly speaking, phase-separated states only exist in infinite volume, since only in that
case the two coexisting phases become arbitrarily close to being homogeneous sufficiently far
away from the interface. The middle and bottom panels of Fig. 5.2 correspond to states that
are fairly close to this limit, but deviations can still be seen with the naked eye. For example,
the energy density in the region outside the bubbles is slightly below 2Λ4, whereas the energy
density in the high-energy phase at T = Tc has Ehigh above 2Λ4, as given in (6.4). The state in
Fig. 5.2(top) is even more affected by finite box-size effects because the size of the low-energy
region is comparable to the size of the box. In any case, these deviations this will have no
implications for our purposes, since we are not interested in phase-separated states per se but
only in using them to construct initial data for bubble configurations.

The value of Ē in a box of fixed size is conserved upon time evolution. Therefore, phase-
separated states with an average energy density in the region E ′s ≤ Ē ≤ Es can be generated
by starting with a homogeneous state in the spinodal region of Fig. 5.1, perturbing it slightly,
and letting evolve until it settles down to a phase-separated configuration, find examples in [63]
and chapter 6. To initialize the code we specify some φ2 that is not too far away from the
value of the thermal state and generate a simple bulk profile for the scalar, φ(t = 0, u), given
by the truncated series in (2.13h) to third order. This is not the geometry associated to the
black brane of such energy density, but it would relax fast to the true static solution. The value
for a4 is obtained by using the energy expression in (2.18). On top of it we add a sinusoidal
perturbation, so the final a4 reads

a4(t = 0, x, y) = ā4

[
1 + δa4

(
cos

(2π
Lx

(x− xmid)
)

+ cos
(

2π
Ly

(y − ymid)
))]

, (5.5)

where ā4 is the value we obtained above, Lx and Ly are the lengths of the box, xmid and ymid
correspond to the central point and δa4 represents the amplitude of the perturbation, equal for
both x- and y-directions. The fastest way to arrive at a phase-separated configuration is to
assign the largest possible value to δa4 compatible with keeping the apparent horizon within
our grid. We have found that δa4 ∼ 10−3 is a convenient choice. The state in Fig. 5.2(top) was
generated following this method with φ2 = 0.3Λ3. After a time tΛ = 300 the system has settled
down to the configuration shown in the figure.

Phase-separated configurations with average energy densities in the regions

Es ≤ Ē < Ehigh and Elow < Ē ≤ E ′s (5.6)

also exist, but they cannot be found directly via time evolution of an initial state in the spinodal
region. Instead, to obtain them we follow what we did in chapter 3. We take initial data
corresponding to a phase-separated state with Ē in the spinodal region, and we modify it by
increasing or decreasing the value of ā4 so that the new Ē takes the desired value. We then let
the system evolve. In a time around t = 100/Λ the system relaxes to a new inhomogeneous,
static configuration. The phase-separated configurations in the middle and bottom panels of
Fig. 5.2 have Es ≤ Ē ≤ Ehigh and were obtained with this procedure.
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The phase-separated states interpolate between the energy densities Elow and Ehigh. To
construct initial data for bubble configurations that interpolate between two energy densities
EB and EA we proceed as follows. Let fPS be any of the functions specifying the initial data of
a phase-separated state. This could be one of the metric components in the bulk or the scalar
field, in which case fPS = fPS(u, x, y), or one of the boundary functions such as a4, in which
case fPS = fPS(x, y). We assume that the centre of the region with energy density Elow is at
x = y = 0, and that the point at the edge of the box x = y = L/2 lies in the region energy
density Ehigh. Let fA and fB be the corresponding functions for the states A and B. Since these
states are homogeneous, fA and fB depend on u for a bulk function and are just constants for
a boundary function. We then define the corresponding initial data for a bubble through the
rescaling

fbubble(u, x, y) = fB(u) +
(
fA(u)− fB(u)

) [ fPS(u, x, y)− fPS(u, 0, 0)
fPS(u, L/2, L/2)− fPS(u, 0, 0)

]
. (5.7)

If f is a boundary function then there the dependence on u is absent. At any fixed value of
u, the term in square brackets interpolates smoothly between 0 at the centre of the low-energy
region and 1 at the edge of the box. As a consequence, fbubble(u, x, y) interpolates smoothly
between fB and fA, as desired. A state generated with this procedure is shown in Fig. 5.3. If
the subsequent time evolution leads to an expansion of the bubble, it is convenient to further
enlarge the size of the box before starting the evolution, in order to prevent the bubble from
reaching the boundary of the box before it has reached an asymptotic state. This can be done
simply by “adding” more metastable bath outside the initial box.
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Figure 5.3: Initial energy density profile of a bubble.

Variations of an initial bubble state can be obtained in a simple way. For example, we
can choose different states B for a fixed A. We could also multiply the bulk metric functions
B1 and B2 in (2.8) by some factor, thus changing the pressure distribution (the anisotropy)
along the wall but not the energy profile. We could further consider initial bubbles that are
not perfectly cylindrically symmetric by starting with an initial phase-separated state whose
low-energy region is comparable to the size of the box, as in Fig. 5.2(top).
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5.3 Critical bubbles
It was argued in chapter 1 that the on-shell action of critical bubbles is directly connected to
the nucleation probability and therefore to the avergae number density of bubbles during the
dynamical realization of the phase transition in the early universe. Its importance is clear. In
this section we will attempt to study such bubbles for one nucleation temperature.

Consider a circular bubble of radius ρ such that the states inside and outside the bubble
correspond to the points marked as Bc and Ac in Fig. 5.1, respectively. The pressure difference
between these states generates an outward-pointing force on the bubble wall. In turn, the surface
tension of the bubble wall results in an inward-pointing force on the wall. A critical bubble is
one for which these two forces exactly balance each other. Since these bubbles are static, they
correspond to equilibrium states. As a consequence, the temperature must be constant across
the entire system and, in particular, it must be equal to TAc . It follows that the state Bc is
determined by Ac. If the radius of the bubble is large compared to the width of the interface
between Ac and Bc, then the radius of the critical bubble takes the form

ρc = γ

PBc − PAc
. (5.8)

This follows from approximating the interface by a zero-width surface with free energy density
γ, assigning a well defined pressure PBc , and hence a free energy density −PBc , to the interior
of the bubble, and requiring that the critical bubble locally extremizes the free energy. The fact
that this extremum is a maximum means that the critical bubble is in unstable equilibrium.
This expression for the critical radius is only valid for large critical bubbles, which are realized
when TAc is close to the phase transition temperature Tc, namely for TAc . Tc. This is the
reason for our choice of the point Ac in Fig. 5.1. If the bubble is not large enough then the
phase inside the bubble is not approximately homogeneous and it cannot be clearly separated
from the interface. In this case one cannot assign a meaningful surface tension to the interface
or a well defined pressure to the interior of the bubble. This situation is realized when TAc is
sufficiently close to the turning point at T = Ts, namely when Ts . TAc . In this paper we will
only discuss large critical bubbles; small bubbles will be analysed elsewhere.

The fact that critical bubbles are unstable means that supercritical bubbles expand, whereas
undercritical bubbles collapse. Critical bubbles are therefore the static configurations that
separate these two sets of large, inhomogeneous, circularly-symmetric fluctuations of the plasma.
This is precisely the feature that will allow us to identify the critical bubbles with Jecco.

Following the procedure outlined in Sec. 5.2, we generate a family of initial circular bubbles
with different radii and we numerically evolve them with Jecco. As expected from the discussion
above, large bubbles expand and small bubbles collapse. This is illustrated in Fig. 5.4, where
we plot the radius of each bubble, defined as the position of the inflection point of the energy
density profile, as a function of time. We see that bubbles with initial radius Λρc ≥ 3.75
eventually expand, whereas bubbles with radius Λρc ≤ 3.69 eventually collapse. This means
that the critical radius must be in between these two values. Substituting into (5.8) we then
obtain an estimate for the surface tension γ. Thus,

3.69 < Λρc < 3.75 , 0.116 < γ

Λ3 < 0.118 .

As we approach the critical bubble, the dynamics becomes slower and slower. This feature
can be seen in the contour plots of Fig. 5.5 and in the energy density snapshots of Fig. 5.6.
In these figures the bubbles in the bottom row evolve more slowly than those in the top row
because their initial radii are closer to ρc. By fine-tuning the radius of the initial bubble we
can get closer and closer to the critical bubble. Fig. 5.7 shows that, as we approach this limit
both from above and from below, the bubble profile converges to a single profile. In this figure
we evaluate the profiles at Λt = 20 so that the result is not contaminated by the fast-decaying,
transient oscillations present around Λt = 0 in Fig. 5.4.
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Figure 5.4: Time evolution of the wall position for several different initial bubbles. The critical
bubble radius has to be 3.69 < Λρc < 3.75.

The fact that we can approach the critical bubble by fine-tuning a single parameter is con-
sistent with the fact that the critical bubble should possess a single unstable mode (see e.g. [115,
116]). Indeed, the latter property means that, in the infinite-dimensional space of configurations
around the critical bubble, the hypersurface of stable perturbations has codimension one. As
we change a single parameter in our initial data, we trace a curve in the space of configurations
that will generically intersect this hypersurface. If we were to start the time evolution exactly
on this hypersurface, we would remain within it and we would be attracted to the exact, static
critical bubble solution. By tuning the radius of the bubble in our initial data we come close to
this situation and therefore the dynamics becomes slower and slower.

Since the critical bubble is a static solution, an alternative method to determine it would
be to solve an elliptic problem in two dimensions in AdS, along the lines of what was done in
chapter 3.

5.4 Expanding bubbles

We now turn to the analysis of expanding bubbles, which play an important role in the dynamics
of first order phase transitions. At sufficiently late times, the wall of these bubbles is expected
to move with a constant velocity, which results from the balance between the friction that the
plasma exerts on the wall and the pressure difference between the inside and the outside of
the bubble. Moreover, the energy density profile should approach a characteristic and time-
independent self similar behaviour. In this section we will use holography to determine both
the bubble wall velocity and the asymptotic profile.

We will proceed in increasing difficulty level. We will start by studying bubbles with SWEC
in 1+1 dynamical dimensions, i.e. planar wall bubbles, and we will then use Jecco to study
bubbles in 2+1 dynamical directions, which are cylindrical. In the second scenario we will see
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Figure 5.5: Time evolution of bubbles with different initial radii. The black curves represent
the position of the wall, defined as the inflection point in the energy density profile. The radius
of the critical bubble lies in the interval 3.69 < Λρc < 3.75. The bubbles on the left column
are supercritical and they expand. The bubbles on the right column are subcritical and they
collapse. The bubbles in the bottom row are closer to the critical bubble than those on the
top row and hence they evolve more slowly. Videos of each of the evolutions can be found at
https://youtube.com/playlist?list=PL6eUQq2UUQ4JJTD_pRfJt-ShPGKxGBRW9
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Figure 5.6: Snapshots of the energy density profile of bubbles with different initial radii. The
radius of the critical bubble lies in the interval 3.69 < Λρc < 3.75. The bubbles on the left
column are supercritical and they expand. The bubbles on the right column are subcritical and
they collapse. The bubbles in the bottom row are closer to the critical bubble than those on
the top row and hence they evolve more slowly.
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Figure 5.7: Relative difference between the energy density profiles at tΛ ∼ 20 of bubbles with
different initial radii. We take as a reference the profile for a bubble with initial radius Λρ = 3.75,
which is close to the critical radius. We see that, as this value is approached both from above
and from below, the profiles converge to a single profile.

how the self similar profile is richer in structure.

5.4.1 Planar bubbles

For clearness we show again the phase diagram for the theory in question in Fig. 5.8 with those
states that are relevant for this subsection.

We now imagine that the system has been supercooled to some state A on the upper
metastable branch, and that at this point a bubble corresponding to some state B on the
lower stable branch is nucleated. The nucleation temperature is therefore TN = TA. On general
grounds we expect a non-zero probability to nucleate bubbles with different initial wall profiles
and with different initial sizes. We will therefore vary these parameters and determine their
effect on the subsequent post-nucleation dynamics. We will also vary the initial state B inside
the bubble. Although this is often assumed to have the same temperature as A, the initial-
value problem with TB 6= TA is perfectly well-defined on the gravity side. These parameters do
not completely determine the initial quantum state of the bubble. On the gauge theory side
they only specify the one-point function of the stress-tensor in the initial state, for example the
profile of the energy density. On the gravity side they only specify the fall-off of the metric
near the asymptotic AdS boundary. A complete determination of the initial quantum state
requires knowledge of all the higher correlation functions in the gauge theory or, equivalently,
the complete metric on the gravity side. Therefore we will also scan over different metrics in
the initial data.

We begin with a bubble of size 14Λ−1 and a state B inside the bubble with temperature
TB = TA = 0.374Λ, as indicated in Fig. 5.8. The initial energy profile, shown as a dashed blue
curve in Fig. 5.9, is arbitrarily chosen except for the fact that it must interpolate between the
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Figure 5.8: Energy density as a function of temperature and (inset) speed of sound for λ6 = 0.1, λ4 =
−0.346021. The grey vertical line on the right indicates the critical temperature at which the PT takes
place. The grey vertical line on the left indicates that A and B have the same temperature. Stable states
are shown in solid blue, metastable ones in dashed brown, and unstable ones in dotted-dashed red.
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Figure 5.9: Different initial energy profiles for the same nucleation temperature TA. In this and in
subsequent plots we only show positive values of z because we only consider states invariant under
z → −z.
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energy EB inside the bubble and the energy EA outside the bubble.
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Figure 5.10: Snapshots of the energy density profile at different times for the initial state with TB = TA
shown as a dashed blue curve in Fig. 5.9.

Since the pressure in B is higher than in A, the initial wall is accelerated towards the right.
Fig. 5.10 shows several snapshots of the resulting energy density at different times. The wall
starts at rest and reaches a terminal velocity vAwall ' 0.24 in a time of order ∆t ∼ 50Λ−1. As
illustrated by the solid blue curve in Fig. 5.10, in this time the wall profile relaxes to a preferred
shape. This shape remains constant at subsequent times, as shown by Fig. 5.11. In addition,
in this time the energy density inside the wall evolves to that of the state marked as C in
Fig. 5.8. As time progresses, energy conservation implies that an intermediate “hot” region
develops in between the wall and the asymptotic A-region. We have dubbed this region Dboosted

in Fig. 5.10. The reason is that the fluid velocity in this intermediate region is constant and
given by vD ' 0.22, so Dboosted is the state D in Fig. 5.8 boosted to the right with velocity vD.
The interface between the Dboosted- and the A-regions moves at constant velocity vint ' 0.57.
This means that the size of Dboosted grows linearly with time. The width of the interface also
grows, but more slowly than linearly. As a consequence, if we plot the energy profile in terms of
ξ = z/t for different fixed times, the interface between Dboosted and A approaches a discontinuity
at late times, as illustrated in Fig. 5.12. In this limit the profile becomes a function of ξ alone,
as it is commonly assumed.

The features of the late-time state such as the wall profile, the wall velocity, and the C-
and D-states, are determined dynamically and are independent of the bubble initial conditions.
We illustrate this for the wall profile in Fig. 5.13. To obtain this plot we take the set of initial
conditions above and vary one initial condition at a time to obtain a new set of wall profiles.
Specifically, we change the initial state B inside the bubble to the states B′ and B′′ in Fig. 5.8,
whose corresponding energy profiles are shown in Fig. 5.9. We also vary the initial size of
the bubble to the larger and smaller values shown by the corresponding curves in Fig. 5.9. In
addition, the wall profile for the smaller bubble is different from that of the original bubble.
Finally, we change the initial bulk metric so as to increase or decrease the initial pressure
anisotropy between the longitudinal and the transverse directions by an order of magnitude. As
we see in Fig. 5.13, all these changes result in the same late-time wall profile.

We now turn to the dependence on the nucleation temperature. The states C and D and
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Figure 5.11: Same wall profiles as in Fig. 5.10, each shifted in z by a different amount, to show that
the wall profile remains constant in time.
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Figure 5.12: Energy profile at as a function of ξ = z/t for different values of t.
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Figure 5.13: Wall profiles for the same nucleation temperature TN = TA but different initial conditions,
each shifted in z by a different amount to show that the wall profile is independent of the initial conditions.

the wall velocity vary monotonically with TN . Indeed, as TN approaches Tcrit from the left the
states C and D approach the vertical line at T = Tcrit, the wall velocity goes to zero and the
system approaches a static, phase-separated configuration in which the states inside and outside
the bubble coexist at the critical temperature [63]. In the opposite limit, as TN decreases from
Tcrit towards the end of the metastable branch, labelled as A1 in Fig. 5.8, the states C and D
move to the left and approach C1 and D1, respectively. Similarly, the wall velocity increases
monotonically from zero to a maximum value vA1

wall ' 0.29.
We have explored the dependence of vwall on different properties of the state A. The most

suggestive result is shown in Fig. 5.14, which seems to imply a linear dependence on the ratio
between the pressure difference inside and outside the bubble and the energy density outside
the bubble. Heuristically, this relation seems plausible given that the force trying to accelerate
the bubble increases with the pressure difference, whereas the resisting force grows with the
energy density outside the bubble.

Changing the nucleation temperature also changes the wall profile. However, we empirically
observe that, up to a rescaling, the latter is well approximated by the interface of a phase-
separated configuration at T = Tcrit [63]. Specifically, the wall profile for any TN is given by

E(z) = EC + (ED − EC)f(Λz) , (5.9)

where the energies of the C- and D-states depend on TN but f is a TN -independent, universal
function that only depends on the theory. In particular, taking TC = TD = Tcrit, this formula
gives the profile of the phase-separated configuration. The latter is shown in Fig. 5.15, where
we also compare the exact wall profiles for several nucleation temperatures with those predicted
by Eq. (5.9).

Hydrodynamics

As the bubble expands the gradients away from the wall get diluted. Therefore the late-time
state is expected to be well described by ideal hydrodynamics everywhere except in the region
near the wall. This is confirmed by Fig. 5.16, where we compare the exact result for the
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Figure 5.14: The points show the wall velocity for different nucleation temperatures. The line is a fit
as a function of the ratio between the pressure difference inside and outside the bubble and the energy
density outside the bubble.
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Figure 5.15: Comparison between the exact wall profiles for several nucleation temperatures with the
results of applying Eq. (5.9). The case TN = Tcrit corresponds to a static, phase-separated configuration.
The universal function f is shown in the inset.
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longitudinal pressure with the prediction of both ideal and first-order viscous hydrodynamics
at late times. We see that none of the hydrodynamic curves describe the wall region correctly.
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Figure 5.16: Comparison between the holographic longitudinal pressure at late times and the ideal and
the first-order hydrodynamic predictions.

Nevertheless, at asymptotically late times the size of the wall becomes negligible and we
can use ideal hydrodynamics to constraint the properties of the bubble. At those times we
can treat both the wall and the interface between the Dboosted- and A-regions as discontinuities
and assume that the physics only depends on ξ. Requiring that the energy and momentum
fluxes are the same on both sides of these discontinuities leads to a set of matching conditions
(see e.g. [117]). In combination with the hydrodynamic equations away from the wall, these
conditions determine the C- and D-states, the fluid velocity in D, and the velocity of the
interface in terms of the nucleation temperature and the wall velocity. This means that, for a
given nucleation temperature, the entire system is controlled by the wall velocity.

5.4.2 Cylindrical bubbles

We will now study a single case of a expanding cylindrical bubble thanks to Jecco.

Wall profile, wall velocity and hydrodynamics

For computational reasons, it is easier to identify the late-time limit for bubbles that expand at
high velocity, since for these configurations the evolution is faster and we need to run our code
for a shorter time to reach the late-time, asymptotic limit. Based on the mechanical picture we
described above we expect that, as the pressure difference between the inside and the outside of
the bubble grows, the wall velocity will grow too. Therefore, we will focus on bubbles formed
in the large overcooling limit, when the metastable phase is close to the limit of local stability
and the pressure difference between the inside and outside of the bubble is the largest. For this
reason we will choose the state A outside the bubble as indicated in Fig. 5.1, whereas for the
state inside we choose the one indicated as B. Following Sec. 5.2, we then construct a bubble
that interpolates monotonically between the states B inside and A outside, as in Fig. 5.3. This
is our initial state at t = 0.

In Fig. 5.17(top) we show snapshots of the subsequent evolution of the energy density of
the bubble and in https://youtu.be/wFLp0FSeO8Q we show a video of the full time evolution.
As time progresses, the energy density in the interior of the bubble evolves until it reaches the
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Figure 5.17: (Top) Snapshots of the energy density profile (top) and of the fluid velocity (bot-
tom) for an expanding bubble. The bubble at t = 0 interpolates monotonically between the
states B inside and A outside, as in Fig. 5.3. At late times the state inside the bubble evolves
dynamically to C. The states A,B and C are indicated by black dots in Fig. 5.1. A full time
evolution video of the energy density can be found at https://youtu.be/wFLp0FSeO8Q
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value corresponding to the state C in Fig. 5.1. This means that, as in the planar case, this state
is dynamically determined.

While the initial configuration at Λt = 0 interpolates monotonically between the stable and
meta-stable branches of the phase diagram, the expanding bubbles quickly develop a non-
monotonic energy density profile. As illustrated in Fig. 5.17, the propagation of the bubble
leads to an overheating of the region in front of the bubble that gradually decreases back to
EA sufficiently far away from the bubble front. This overheated region possesses non-vanishing
energy and momentum fluxes, which allows us to define a flow velocity via the Landau matching
condition,

T νµuµ = −Elocu
ν , (5.10)

with Eloc the energy density of the fluid in the local rest frame. The flow velocity v = uρ/u0, with
uρ the radial component of the flow field, for this configuration is shown in Fig. 5.17(bottom).
As we can see in these figures, the region between the bubble wall and the asymptotic metastable
state grows linearly with time as the bubble expands. As a consequence, we expect that, at
late times, the gradients of the bubble profile decrease and most of the dynamics is captured
by hydrodynamics. We can test this expectation by checking the validity of the hydrodynamic
constitutive relations for the stress tensor in the Landau frame. After extracting the rest
frame energy density and the fluid velocity from the holographic stress tensor, we can predict
the rest of the components of the stress tensor via the constitutive relations with or without
viscous corrections. The result of this comparison at Λt = 110 is shown in Fig. 5.18. We see
that hydrodynamics becomes a very good approximation for the dynamics of the entire system
except for the bubble wall, where the failure of hydrodynamics is expected on general grounds.

Despite its non-hydrodynamic nature, the dynamics of the bubble wall becomes remarkably
simple at sufficiently late times: it moves almost rigidly at constant velocity. The velocity
v ' 0.31 can be extracted from Fig. 5.17 via a linear fit to the wall position of the form

ρwall(t) = ρwall,0 + vwallt . (5.11)

To illustrate the rigidity, in Fig. 5.19 we compare the bubble wall profiles at several different
times. To facilitate the comparison, we shift the position of each curve such that the inflexion
point of the different walls at different times coincide with one another. We see that the way
that the wall deviates from the inner region C is identical for all sufficiently late times. In
contrast, the maximum value of the energy density at the end of the wall grows slowly with
time. As we will explain in the next section, this growth indicates that, in the times covered
by our simulation, the bubble has not yet reached the asymptotic late-time form. Despite this,
Fig. 5.19 shows that the wall has a fixed size set by the microscopic scale of the theory, Λ. In
particular, the size of the wall does not grow with time, in contrast with the overheated region
in front of the bubble wall.

In the case of planar bubbles, we showed that the late-time wall profile only depends on
the asymptotic metastable state A. In other words, the profile is independent of the initial
conditions used to generate the bubble in the first place, as long as they lead to an expanding
bubble. We expect the same conclusion to hold for the circular bubbles considered here, but
it would be interesting to verify it explicitly. Assuming this, it is interesting to check how the
wall profile of an expanding bubble compares to those of (almost) static walls. For this purpose,
in Fig. 5.20 we compare the profile of the expanding wall of Fig. 5.17 with that of the critical
bubble of Sec. 5.3 and with the walls of phase-separated planar and circular configurations.
Following analogous steps to the planar bubble case, to facilitate the comparison we shift and
rescale each profile appropriately so that it interpolates between 0 on the left of the wall and 1
on the right. We achieve this by plotting not just the energy density E(ρ) but the combination
(E(ρ)− EL)/(ER − EL), with EL and ER the values of the energy density on the left and on the
right of the wall, respectively. In the case of the expanding bubble, we define ER as the value
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Figure 5.18: Comparison of the holographic stress tensor with the ideal and viscous hydro-
dynamic approximations based on the constitutive relations at a time Λt = 110 at which the
bubble wall is located at Λρ = 40.7. Pz,Pρ,Pϕ and Pρϕ are the stress tensor components in
the zz−, ρρ−, ϕϕ− and ρϕ−directions, respectively.
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Figure 5.19: Comparison of the bubble wall profiles at several different times for the expanding
bubble of Fig. 5.17. To facilitate the comparison, we shift the position of each curve such that
the inflexion point of the different walls at different times coincide with one another.
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Figure 5.20: Comparison of wall profiles for several configurations. “Critical” refers to the
bubble of Fig. 5.5 with Λρ0 = 3.75. “Expanding” refers to the bubble of Fig. 5.17. “Phase
sep.” refers to phase-separated configurations, be they planar or circular. Each profile has been
shifted and rescaled so that it interpolates between 0 on the left of the wall and 1 on the right.
In the case of the expanding bubble, we define ER as the value of the energy density at the
maximum located right in front of the wall.
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Figure 5.21: Expanding bubble profile at late times and inflection points, marked with vertical
grey lines, used to define the size of the overheated region.

of the energy density at the maximum located right in front of the wall. We see from the figure
that, while all profiles are fairly similar, differences can be seen with the naked eye. These are
more pronounced in the regions where the second derivative is larger, where they are of the
order of 9%.

Late-time self-similar solution

As we have seen, for sufficiently late time the bubble wall becomes rigid and moves at a constant
velocity vwall. This implies that the radius of the region inside the bubble grows linearly with
time. Since the energy density in this region is lower than that in the asymptotic, metastable
phase, this linear growth of the bubble radius must be compensated by a linear growth in the
size of the overheated region in front of the bubble. At very late times, when all the microscopic
scales become irrelevant, this behaviour leads to a self-similar solution for the bubble that only
depends on the ratio ρ/t, as described in e.g. [117]. In this section we study how our numerical
solutions approach this late-time self-similar solution. For this purpose, we shift the time and
radial coordinates by appropriate amounts tshift and ρshift that we will define below. In other
words, we define

ξ = ρ− ρshift
t− tshift

. (5.12)

These shifts are motivated by the fact that our initial configuration has a finite size, and that it
takes a certain amount of time for the configuration to become sufficiently close to the late-time
asymptotic solution. While at asymptotic times these shifts become irrelevant, we find that this
procedure accelerates the convergence to the self-similar regime in our finite-time simulations.

The shifts in question are defined as follows. Consider the overheated region in front of the
bubble wall. This region is connected with the asymptotic region A by an interface. We begin
by locating the inflection point on this interface, indicated by a vertical line at ρ = ρinterface
in Fig. 5.21. We then consider sufficiently late times such that both the wall and the interface
positions move with constant velocity. In this regime ρwall(t) is given by (5.11) and

ρinterface(t) = ρinterface,0 + vinterfacet . (5.13)
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We then impose that, as soon as this regime starts, the values of ξ at the positions of the wall
and of the interface immediately agree their late-time limits. In other words, we adjust the two
parameters tshift and ρshift so that the following two conditions are satisfied:

ξwall = vwall , ξinterface = vinterface . (5.14)

In Fig. 5.22 we show the energy density and fluid velocity profiles for different simulation
times as a function of ξ. In both plots we see two regions of fast change that separate three
smooth regions. The first region of fast change occurs around ξ = vwall and connects the state
C in the interior of the bubble, at rest and with a fixed energy density, with the overheated
boosted region in front of the bubble. This abrupt behaviour is associated to the presence of
the bubble wall. Since the size of the wall remains approximately constant in time, its width
in the ξ-coordinate decreases with time. As a consequence, the wall becomes a discontinuity at
asymptotically late times. The shape of the overheated region in front of the wall is not constant
in time. In particular, its slope in the ρ-coordinate decreases with time. However, going to the
ξ-coordinate enhances this slope, since at late times dE/dξ ∼ t dE/dρ. The curves in Fig. 5.22
indicate that these two effects exactly cancel each other at asymptotically late times, resulting
in a constant, non-zero value of the slope in the ξ-coordinate in this limit. The second abrupt
region occurs at ξ ' 0.52 and corresponds to the interface between the overheated region and
the asymptotic metastable region A. In the times covered by our simulations, the width of this
interface grows with time, but this growth is slower than linear. However, it is possible that,
at sufficiently late times, the width of this interface approaches a constant value. It would be
interesting to verify this in the future through longer simulations. In any case, this interface also
approaches a discontinuity in the ξ-coordinate at late times. Despite this, both the interface
and the overheated region are well described by hydrodynamics at late times, as we saw in
Fig. 5.18.

This discussion suggests that, at asymptotically late times, the bubble profile should consist
of a static inner region C and an outer static region A connected through discontinuities with
an intermediate overheated region with non-zero fluid velocity. This behaviour agrees with
hydrodynamic analysis of large bubbles, as performed for example in [117]. At very late times,
when the bubble profile depends only on the scaling variable ξ, the ideal hydrodynamic equations
lead to the following equation for the energy density and the velocity field of a circular bubble

γ2
[
1− ξ v(ξ)

][
c2
sµ

2 − 1
]
v′(ξ)− v(ξ)

ξ
= 0 , (5.15)

c2
s

W

[
1− ξv(ξ)

]
E ′loc(ξ)− γ2

[
ξ − v(ξ)

]
v′(ξ) = 0 , (5.16)

where γ = 1/
√

1− v2 is the Lorentz factor, cs is the speed of sound, Eloc is the energy density
in the local rest frame of the fluid,

W = Eloc + Peq(Eloc) (5.17)

is the enthalpy density, and
µ = ξ − v

1− ξv . (5.18)

It is well known that the ideal hydrodynamic equation (5.15) for the fluid velocity does not
posses non-trivial continuous solutions with zero velocity in the interior and exterior of the
bubble. Therefore, in this approximation the description of an expanding bubble requires the
introduction of discontinuities in the hydrodynamic fields. These discontinuities are constrained
by energy-momentum conservation: although the local energy density or the fluid velocity may
be discontinuous, the energy-momentum flux across the discontinuity must be continuous. For
each value of the wall velocity, these “junction conditions” at the discontinuities, together with
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Figure 5.22: Energy density (top) and fluid velocity (bottom) profiles for different simulation
times as a function of the scaling variable (5.12). The black solid curves correspond to the ideal
hydrodynamic prediction.
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the hydrodynamic equations elsewhere, determine the entire bubble profile in terms of the energy
density in A. This is the reason why a microscopic model is needed in order to determine the wall
velocity. In our case, this model is provided by holography. Using the holographic prediction
for vwall as an input, we have solved the hydrodynamic equations plus the junction conditions
and we have determined the profiles represented by the black solid lines in Fig. 5.22. The result
is consistent with the holographic profiles at late times in the sense that the holographic curves
approach the black curves more and more as time progresses.

Incidentally, these results allow us to define an analogue of “the state in front of the bubble
wall” for planar bubbles. In the planar case the entire overheated region in front of the bubble
has constant energy density and moves with constant fluid velocity vD. Using this velocity one
can boost the overheated region to its rest frame and thus define a state in the phase diagram of
Fig. 5.1. This state was dubbed D, and the state in the overheated region was dubbed Dboosted.
The difference between A and D gives an intuitive idea of the intensity of the overheating in
front of the wall, since in the absence of it we would have A = D. In the circular case we can
obtain a similar idea by defining the state Dboosted in terms of the maximum values of the black
solid curves in Fig. 5.22 as we approach the bubble wall discontinuity from the right. The values
we obtain are

EDboosted = 2.26Λ4 , vD = 0.292 , ED = 2.06Λ4 . (5.19)

The state D is represented by a black dot in Fig. 5.1.

5.5 Discussion
In this chapter we have presented a study of the dynamics of both planar and cylindrical bubbles
in a strongly-coupled four-dimensional gauge theory. We have shown that our numerical code
allows us to construct configurations that are arbitrarily close to this critical bubble. The fact
that we can do this with a time evolution code by fine-tuning a single parameter (which we
chose to be the radius of the bubble) is compatible with the fact that the space of perturbations
of a critical bubble has only one unstable direction. Nevertheless, since the critical bubble is
static, it would be interesting to find it by solving an elliptic 2D problem in AdS along the
lines of Chapter 3. This would allow for an efficient exploration of the bubble properties for the
entire range of temperatures on the metastable branch.

We have seen how both planar and cylindrical bubbles tend to a self similar profile at asymp-
totically late times, just as expected, veryfying that the cylindrical self similar profile possesses
a richer structure than in the planar case. We have verified this by plotting our holographic
result for the gauge theory stress tensor at late times as a function of the appropriate scaling
variable. We have also compared the holographic result with the hydrodynamic approximation.
As expected, we have found that hydrodynamics provides a good approximation everywhere
except at the bubble wall.

For the planar case we have observed two very interesting features. The wall looks unique
for a given theory up to trivial rescaling and the wall velocity depends linearly on the pressure
jump across the bubble divided by the energy density asymptotically far. The latter quantity
can be interpreted as the force leading the expansion divided by the resistance. As a future work
it would be very interesting to check these features for cylindrical bubbles and try to conclude
its possible generality in any number of dimensions.
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Chapter 6

A new mechanism for Gravitational
Wave production

In this last chapter we will explore in detail the possibility of the universe not undergoing the
first order phase transition via the usual bubble nucleation, expansion and collision. On the
contrary, we will argue that under certain conditions the universe will overcool all the way
until it enters the spinodal, locally unstable region of the phase diagram. This will completely
change the subsequent dynamical evolution, now dominated by the local instability, and, as
a consequence, the Gravitational Wave spectrum that one would expect to detect by next
generation interferometers.

6.1 The theory

6.1.1 Gauge theory thermodynamics

For this chapter we turn back to our original choice of parameters for the gravity scalar potential
(2.3): λ4 = −1/4 and λ6 = 0.1. We have already derived all the thermodynamics previously,
but we will nevertheless summarize the main results in what follows, giving emphasis to the
features that will be relevant for the rest of the chapter.

In the gauge theory we use Cartesian coordinates {t, xi} = {t, x, y, z} and work with energy
density E and pressures Pi obtained by rescaling the stress tensor according to

E = − κ
2
5

2`3 〈T
t
t 〉 , Pi = κ2

5
2`3 〈T

i
i 〉 , (6.1)

with no sum over i on the right-hand side. In thermal equilibrium all pressures are equal,
Pi = P, and the free energy density is F = −P. The stress tensor and the expectation of the
scalar operator are related through the Ward identity

〈Tµµ 〉 = −Λ〈O〉 . (6.2)

In treatments of the Electroweak transition it is common to separate the scalar degree of freedom
associated to the expectation value of the Higgs field from the plasma degrees of freedom. In
our treatment this is neither necessary nor natural, since the holographic stress tensor that we
will determine in Sec. 6.3 includes the contribution of all degrees of freedom in the theory.

The thermodynamics of the gauge theory can be extracted from the homogeneous black
brane solutions on the gravity side (see e.g. [114]). Fig. 6.1 shows the results for the free energy
density (top) and the energy density (bottom) as a function of temperature. In Fig. 6.1(top) we
see the familiar swallow-tail behaviour characteristic of the free energy for a first-order phase
transition. In Fig. 6.1(bottom) this leads to the usual multivaluedness of the energy density as
a function of temperature. At high and low temperatures there is only one phase available to
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Figure 6.1: Free energy density (top) and energy density (bottom) of the four-dimensional
gauge theory dual to (2.1-2.4). States on the solid, blue curves are thermodynamically stable.
States on the dashed, brown curves are metastable. States on the dashed-dotted, red curve are
unstable. The black circle with T = 0.3908Λ indicates the initial state on which we will focus
in this paper.
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the system. Each of these phases is represented by a solid, blue curve. In Fig. 6.1(top) these
two curves cross at a critical temperature

Tc = 0.396Λ . (6.3)

At this point the state that minimizes the free energy moves from one branch to the other.
The first-order nature of the transition is encoded in the non-zero latent heat, namely in the
discontinuous jump in the energy density in Fig. 6.1(bottom) given by

Elatent = Ehigh − Elow = 0.92 Λ4 . (6.4)

Note that the phase transition is a transition between two deconfined, plasma phases, since
both phases have energy densities of order N2 and they are both represented by a black brane
geometry with a horizon on the gravity side.

In a region
Ts = 0.3879Λ < T < T ′s = 0.4057Λ (6.5)

around the critical temperature there are three different states available to the system for a
given temperature. The thermodynamically preferred one is the state that minimizes the free
energy, namely a state on one of the blue curves. The states on the dashed, brown curves are
not globally preferred but they are locally thermodynamically stable, i.e. they are metastable.
This follows from the convexity of the free energy, which indicates a positive specific heat

cv ≡
dE
dT

. (6.6)

This can be more clearly seen from the positive slope of the dashed, brown curves in Fig. 6.1(bot-
tom). At the temperatures Ts and T ′s the metastable curves meet the dotted-dashed, red curve.
States on the latter are locally unstable since their specific heat is negative. This region is
known as the spinodal region.

In terms of an effective potential for the expectation value of the scalar operator, 〈O〉, the
region outside the range (Ts, T ′s) corresponds to temperatures for which the potential has only
one minimum and therefore there is a unique available state. In contrast, for temperatures
within the range (Ts, T ′s) the effective potential has two minima and one maximum. The global
minimum corresponds to a stable state on a blue curve, the local but not global minimum
corresponds to a metastable state on a brown curve, and the maximum corresponds to an
unstable state on the red curve.

As anticipated, we see that the phase diagram in Fig. 6.1 is generic in the sense that there
are no large ratios of energy densities, in contrast to e.g. [61, 63], where Ehigh and Elow differed
by more than two orders of magnitude.

6.1.2 Spinodal instability

States on the dashed-dotted red curves of Fig. 6.1 are locally thermodynamically unstable since
the specific heat is negative, cv < 0. These states are also dynamically unstable. The connection
with the dynamic instability was pointed out in an analogous context in [90] and it arises as
follows. The speed of sound is related to the specific heat cv and the entropy density s through

c2
s ≡

dP
dE

=
(
dP
dT

)(
dE
dT

)−1
= s

cv
. (6.7)

Since the entropy density is positive everywhere, c2
s is negative on the dashed-dotted, red curves

of Fig. 6.1, as shown in Fig. 6.2(top), and consequently cs is purely imaginary. The amplitude
of long-wave length, small-amplitude sound modes behaves as

A ∼ e−iω(k)t , (6.8)

135



Chapter 6 A new mechanism for Gravitational Wave production

0.385 0.39 0.395 0.4 0.405

-0.2

-0.1

0.

0.1

0.2

0.385 0.39 0.395 0.4 0.405

0.

0.5

1.

1.5

2.

2.5

3.

Figure 6.2: Speed of sound squared (top) and ratio of the bulk viscosity over the shear viscosity
(bottom) versus temperature for the gauge theory dual to (2.1-2.4). The color coding is as in Fig. 6.1.
The dotted, green curve in the top figure corresponds to the approximation (6.19).
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Figure 6.3: Hydrodynamic approximation to the growth rates γ(k) for different states on the spinodal
region of Fig. 6.1.

with a dispersion relation given by (see e.g. Appendix A of [63] for the derivation)

ω±(k) = ± csk −
i

2Γk2 +O(k3) . (6.9)

We emphasize that, as indicated, this expression is an expansion valid at low momentum. In
other words, it is a hydrodynamic approximation to the exact dispersion relation; we will come
back to this point in Sec. 6.3. The plus sign corresponds to an unstable mode, while the minus
sign leads to a stable mode. In this expression

Γ = 1
T

(4
3
η

s
+ ζ

s

)
(6.10)

is the sound attenuation constant, and η and ζ are the shear and bulk viscosities, respectively.
In our model η/s = 1/4π [118]. We compute ζ numerically following [119] and we show the
result in Fig. 6.2(bottom).

An imaginary value of cs leads to a purely real value of the growth rate

γ(k) ≡ −iω(k) . (6.11)

For small momenta (6.9) yields for the unstable mode

γ(k) = |cs| k −
1
2Γk2 +O(k3) . (6.12)

We see that, in this hydrodynamic approximation, the dispersion relation gives rise to the
familiar parabolas displayed in Fig. 6.3. As illustrated by this figure, these curves depend on
the energy density E of the state under consideration because both cs and Γ depend on E .
Working to order k2 we see that the growth rate is positive for momenta in the range 0 < k < k∗
with

khyd
∗ ' 2 |cs|

Γ , (6.13)

137



Chapter 6 A new mechanism for Gravitational Wave production

0.387 0.392 0.397 0.402 0.407

0.

0.2

0.4

0.6

0.8

1.

1.2

0.387 0.392 0.397 0.402

0.

0.02

0.04

0.06

0.08

0.1

0.12

Figure 6.4: Comparison between the hydrodynamic values of k∗ (top) and γmax (bottom) given by
(6.12) (solid curves) and the ball-park estimates (6.16) (dashed curves).

where the superscript is to emphasize that this is the hydrodynamic approximation to the exact
value. We see that the spinodal instability is an infrared instability, since only modes with
momentum below a certain threshold are unstable. The most unstable mode, namely the mode
with the largest growth rate, has momentum and growth rate given by

khyd
max '

|cs|
Γ , γhyd

max '
|cs|2

2Γ . (6.14)

A ballpark estimate for these quantities can be obtained by using η/s = 1/4π and approximating
ζ/η ∼ 2 in the spinodal region, which implies

Γ ∼ 1
πT

. (6.15)

Under these conditions

khyd
∗ ∼ 2 |cs|πT , khyd

max ∼ |cs|πT , γhyd
max ∼

1
2 |cs|

2 πT . (6.16)
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Note that
γhyd

max = 1
2 |cs| k

hyd
max . (6.17)

As mentioned above, these quantities depend on the energy density E of the state under con-
sideration. In particular, they all go to zero as the state on the spinodal branch approaches one
of the turning points at T = Ts, T

′
s, since at those points cs = 0. As the state moves away from

these points towards the interior of the spinodal region these quantities increase and reach a
maximum. This is illustrated in Fig. 6.4, where we compare the values of k∗ and γmax given
by (6.12) with those given by the estimates (6.16). We see that the latter provide a reasonable
approximation in the entire range, and that this is better close to the turning points, which will
be a particularly important region below. The maxima of, and the points where, the curves
in Fig. 6.3 cross the horizontal axis are consistent with the values of k∗ and γmax in Fig. 6.4.
Rotating Fig. 6.1 ninety degrees we see that, close to the turning point at Ts, the temperature
has a minimum as a function of the energy density. This means that, close to this point,

T − Ts ∼ (E − Es)2 . (6.18)

Inverting this relation, computing the specific heat (6.6), and substituting in (6.7) we find that,
close to Ts,

c2
s '

1√
Ts

√
T − Ts + · · · , (6.19)

where we have estimated the prefactor based on dimensional analysis. This approximation to
the function c2

s(T ) is shown as a green, dashed curve in Fig. 6.2(top).
We emphasize again that the analysis in this section is based on a hydrodynamic approx-

imation to the dispersion relation. In Sec. 6.3 we will determine the exact dispersion relation
and, in particular, the exact values of k∗, kmax and γmax. For concreteness, in several places in
the paper we will use the hydrodynamic dispersion relation γ(k) since it has the advantage that
it is analytically known. Nevertheless, most final results will only depend on khyd

∗ , khyd
max, γ

hyd
max

and |cs|. In these cases one can obtain the exact result by simply replacing

khyd
∗ → k∗ , khyd

max → kmax , γhyd
max → γmax , |cs| →

2γmax
kmax

. (6.20)

To summarize this section, states on the dashed, red curves of Fig. 6.1 are afflicted by a
dynamical instability, known as spinodal instability, whereby long-wave length, small-amplitude
perturbations in the sound channel grow exponentially in time. The growth rate of the unstable
modes is zero at the turning points and increases as the state moves deeper into the spinodal
region.

6.2 Dynamics of a first-order phase transition

We will now discuss the conditions for the phase transition to take place via the spinodal
instability. An important observation is that the expansion of the Universe may not be driven
by the same sector that undergoes the phase transition. In particular, the temperatures in
these two sectors may be vastly different. This may happen if the phase transition takes place
in a hidden sector. If the hidden sector couples weakly to the inflaton, then the energy density
injected into this sector at the end of reheating, and hence its temperature, may be vastly
smaller than in the visible, SM sector. Therefore in the following we will distinguish between
the temperature T of the sector undergoing the phase transition and the radiation temperature
Trad driving the expansion of the Universe. If the phase transition takes place in the sector
driving the expansion then these two temperatures coincide, otherwise they may differ.
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6.2.1 Suppressed bubble nucleation

We imagine that the sector where the phase transition will take place starts off in the high-
temperature, stable branch represented by the upper blue, solid curve in Fig. 6.1(bottom). As
the Universe cools down the temperature falls below Tc and we enter the metastable branch.
Bubbles of the stable phase represented by the lower blue, solid curve in Fig. 6.1(bottom) can
then begin to nucleate. This process requires thermal fluctuations large enough to decrease the
energy density from the metastable phase to the stable phase in a finite region of space with a
volume equal to that of the critical bubble. The larger the number of degrees of freedom that
participate in the transition the more unlikely these fluctuations are, the more suppressed the
bubble nucleation rate becomes, and the closer to Ts bubbles begin to be effectively nucleated.
Under these circumstances there are two crucial aspects that are often overlooked in usual
treatments. First, the nucleated bubbles are very small both in size and in amplitude and hence
they need time to grow to the point where the energy density in their interior reaches that of the
stable phase. Second, there is a finite available time for the transition. Under these conditions
the arguments usually employed to compute the duration of the transition are misleading. We
will therefore repeat the standard calculation paying attention to these two aspects. In order
to be concrete about the large number of degrees of freedom involved in the transition we will
assume that the theory in question is a large-N gauge theory. We will see that if N is sufficiently
large then the transition cannot be completed via bubble nucleation. Instead, the temperature
eventually reaches Ts and the Universe enters the spinodal region. Recent analyses of bubble
dynamics in large-N gauge theories include [120, 121].

We follow the discussion in Sec. 7.1 of [11]. The starting point is the expression for the
fraction of the volume of the Universe that remains in the metastable phase of the sector
undergoing the phase transition. Let tc the time at which the temperature of this sector crosses
Tc. Then at a time t > tc this fraction is

h(t) = e−I(t) , (6.21)

with
I(t) =

∫ t

tc
dt′

4π
3 v3(t− t′)3 Γ(t′)

V
. (6.22)

In this expression v is the bubble wall terminal velocity. The integrand is the volume of a bubble
nucleated at time t′ < t multiplied by the bubble nucleation rate per unit volume, which takes
the form

Γ(T )
V
∼ T 4 e−S(T ) . (6.23)

Here S(T ) is the action of the instanton that mediates the transition, namely the critical bubble,
and Γ(T ) should not be confused with the sound attenuation constant (6.10). Eqn. (6.22)
assumes that the interior of a nucleated bubble is instantaneously in the stable phase, and that
the bubble wall instantaneously begins to move with the corresponding terminal velocity v. We
will come back to this below.

Let ts be the time at which the temperature in the sector undergoing the phase transition
reaches Ts. Below we will be interested in evaluating the fraction h(t) at the latest possible
time, namely at t = ts. A crucial point is that the instanton action must vanish at the turning
point, since there the barrier to nucleate bubbles disappears. Therefore, close to this point we
have

S(T ) ∼ N2
(
T − Ts
Ts

)x
, (6.24)

where x is a constant with typical values x ∼ 3/2 [122] and we have explicitly displayed the
N2 scaling of the action expected for a large-N gauge theory. Unless T is very close to Ts this
scaling makes the instanton action very large, which in turn makes Γ and I exponentially close
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to zero, which makes h exponentially close to one. Let us define the nucleation temperature,
Tn, as the temperature at which this suppression disappears, namely the temperature at which

S(Tn) ∼ 1 . (6.25)

This is given by
Tn = Ts + Ts

N2/x . (6.26)

Up to logarithmic corrections, this is also the temperature at which one bubble per Hubble time
per Hubble volume is nucleated, namely the temperature such that

Γ(Tn)
V

∼ H4 . (6.27)

As the Universe cools down, the temperature drops below Tc, but the phase transition does not
start until the time θ(n) at which the temperature reaches Tn < Tc. The remaining available
time for the phase transition to take place is therefore

∆t = ts − θ(n) = 1
HTs

(Tn − Ts) ∼
1

HN2/x , (6.28)

where we have used the usual relation to translate between time and temperature

dt

dT
= − 1

TH
. (6.29)

Note that the Hubble rate H is controlled by Trad through the Friedmann equation

H2 ∼ GT 4
rad ∼

T 4
rad
M2
p

, (6.30)

where G is the four-dimensional Newton’s constant andMp is the (reduced) Planck mass. Recall
that Trad may or may not coincide with T .

The key point is that, because Tn is parametrically close to Ts, the bubbles that get nucleated
are small bubbles that do not have the stable phase at their center. On the contrary, as Tn
approaches Ts, the energy density at the centre of the nucleated bubbles approaches the energy
density of the metastable phase [122]. These bubbles need a certain time to grow in size and in
amplitude until the energy density at their centre reaches that of the stable phase. If this time
is too long compared to the available time (6.28) then no volume will be occupied by the stable
phase when the system reaches the spinodal region. Since the critical bubbles are unstable,
we expect their growth to be of the form exp(γt). A natural estimate for the growth rate is
γ ∼ Ts ∼ Tc, since we expect this to be set by a microscopic scale. Comparing the growth
time γ−1 to ∆t we see that the condition that the transition does not take place, γ−1 & ∆t,
translates into

N2/x &
Tc
H
∼ TcMp

T 2
rad

, (6.31)

where in the second equation we have used (6.30).
Before we analyse the condition (6.31), we note that, if it is not satisfied, then the transition

does take place via bubble nucleation. In this case the growth time of the bubbles is short
compared to ∆t and we can neglect it. We can also neglect the time it takes the bubbles to
accelerate to their terminal velocity v, since presumably this time is also of order 1/Tc. We
can then evaluate what fraction of the volume has been converted to the stable phase between
the times θ(n) and ts. For this purpose we use (6.23) and (6.24) in (6.22) and we change the
integration variable from time to temperature according to

ts − t′ =
1

HTs
(T ′ − Ts) . (6.32)
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The result is

I(Ts) =
(4π

3 v3
)(

Ts
H

)4 ∫ Tn

Ts

dT ′

Ts

(
T ′ − Ts
Ts

)3
exp

[
−N2

(
T ′ − Ts
Ts

)x ]
. (6.33)

Because of the exponential suppression we can extend the integral to Tn → ∞. Changing
variables through

y = T ′ − Ts
Ts

(6.34)

we then get

I(Ts) =
(4π

3 v3
)(

Ts
H

)4 ∫ ∞
0

dy y3 exp
(
−N2yx

)
. (6.35)

The integral can be performed explicitly and we arrive at

I(Ts) =
(4π

3 v3
)(

Ts
H

)4 1
N8/x

Γ(4/x)
x

. (6.36)

Focussing on the parametric dependence we see that the condition for I(Ts) . 1 is the same as
(6.31).

Eqn. (6.31) shows that the transition via bubble nucleation can always be prevented if N
is sufficiently large. This is simply a consequence of the fact that the time available for the
transition decreases parametrically with N and that the nucleated bubbles near Ts need a finite
amount of time to grow to the stable phase. To estimate the value of N we must distinguish
two cases. If the expansion of the Universe is driven by the same sector undergoing the phase
transition then Trad = Tc. This results in a fairly large value of N unless Trad is close toMp. For
example, for a phase transition at a GUT scale this ratio is Mp/Tc ∼ 102, which gives N & 7,
whereas for a transition at the electroweak scale we have Mp/Tc ∼ 1016, resulting in N & 106.
Suppose instead that the transition takes place in a hidden sector at a temperature Tc < Trad,
as would be the case if this sector couples to the inflaton more weakly than the SM degrees of
freedom. In this case the condition to suppress bubble nucleation results in mild constraints on
the parameters of the hidden sector for two reasons. First, large values of N are natural, since
string theory compactifications can give rise to gauge-group ranks as large as O(105) [123–126].
Second, even if N is of order unity the condition (6.31) only requires Tc . T 2

rad/Mp, which still
results in a huge range of possible values for Tc.

6.2.2 Thermal inflation

When the Universe enters the metastable branch it is initially undergoing decelerated expansion,
since it is radiation-dominated. We have seen that if N is large enough then the Universe will
supercool along the metastable branch until it enters the spinodal branch. Along this process
the Universe may or may not enter a period of thermal inflation [127, 128], namely a period of
accelerated expansion. Although in our model (2.1)-(2.2) with the choice of parameters (2.4)
this does not happen, we will now show that it would happen for other choices of the parameters.

Whether thermal inflation takes place depends on the equation state of the model, specif-
ically on the sign of the combination E + 3P. If this becomes negative along the metastable
branch then the acceleration of the Universe becomes positive and we enter a period of inflation.
This can be equivalently characterized in terms of the ratio w = P/E . If w < −1/3 then the
Universe inflates. Further, if w = −1 then the Universe inflates exponentially.

The combination E+3P for the model (2.1-2.2) with the choice of parameters (2.4) is shown
in Fig. 6.5. We see that it is positive everywhere and hence there is no period of thermal inflation.
Nevertheless, this same model can lead to thermal inflation for other choices of the parameters.
In other words, by varying these parameters we can continuously interpolate between models
with and without thermal inflation. To see this let us keep λ6 = 0.1 fixed and vary λ4, as in
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Figure 6.5: Energy density plus three times the pressure for the four-dimensional gauge theory dual
to (2.1-2.2) with the choice of parameters (2.4).

[58]. The results for λ4 = −0.39, λ4 = −0.61 and λ4 = −0.74 are illustrated in Figs. 6.6, 6.7
and 6.8, respectively.

In Fig. 6.6 we see that E + 3P attains a smaller value than in the case λ4 = −0.25, but it
remains positive. Similarly, w remains above −1/3. In contrast, Fig. 6.7 shows that E + 3P
becomes negative in the lowest part of the upper metastable branch, which would lead to a
period of thermal inflation. In fact, at the end of the metastable branch w comes close to
the value that would lead to exponential inflation. Finally, in Fig. 6.8 the metastable branch
extends all the way down to T = 0. This indicates that this theory possesses two vacua, a
stable one with zero energy and a metastable one with non-zero energy. Since both are Lorentz-
invariant, the pressure at the metastable one is exactly P = −E 6= 0 and therefore w = −1.
The appearance of this metastable vacuum in the gauge theory is due to the appearance of an
additional minimum in the scalar potential (2.3) on the gravity side [58].

The spinodal regions in Figs. 6.7 and 6.8 are slightly peculiar in that the specific heat
becomes positive in the central region (the red, dotted part). This may seem to indicate that
this region is locally stable. However, analysis of the quasi-normal modes on the gravity side
reveals that this region is actually dynamically unstable [129], along the lines of [130]. In any
case, this peculiar feature could be removed by considering a more general potential with more
parameters while still interpolating between models with and without thermal inflation.

The two main messages from this section are as follows. First, supercooling does not nec-
essarily lead to a period of thermal inflation. The former requires that bubble nucleation be
sufficiently suppressed, whereas the latter requires that the metastable branch extend sufficiently
close to T = 0. Our model illustrates this distinction clearly. Since it corresponds to a large-N
gauge theory supercooling is always present, but whether thermal inflation takes place depends
on the choice of parameters. Second, irrespectively of whether thermal inflation does or does
not take place, the phase transition can still be completed, since the Universe can eventually
enter the spinodal branch, whose dynamics we describe in the following section.
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Figure 6.6: E (top), E + 3P (middle) and P/E (bottom) for the four-dimensional gauge theory dual
to (2.1-2.2) with the choice of parameters λ4 = −0.39, λ6 = 0.1 (Plots reproduced from [58].)

6.3 Initial state and time evolution

We have argued above that, if the bubble nucleation rate is sufficiently suppressed, then the
Universe will roll down the metastable branch and enter the spinodal region. Slightly past this
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Figure 6.7: E (top), E+3P (middle) and P/E (bottom) for the four-dimensional gauge theory dual to
(2.1-2.2) with the choice of parameters λ4 = −0.61, λ6 = 0.1 Note that the region close to Ts is smooth,
not a cusp, as shown by the insets. (Plots reproduced from [58].)

point unstable modes can begin to grow. However, their growth rate, which is bounded from
above by γmax, is initially very small compared to the expansion rate of the Universe, since
precisely at T = Ts we have cs = 0 and hence γmax = 0 – see Fig. 6.4. Thus, the growth
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Figure 6.8: E (top), E + 3P (middle) and P/E (bottom) for the four-dimensional gauge theory dual
to (2.1-2.2) with the choice of parameters λ4 = −0.74, λ6 = 0.1 (Plots reproduced from [58].)

becomes important when the Universe has moved far enough along the spinodal branch so that
γmax ∼ H. Let Tg be the “growth temperature” at which this happens. Since in the next few
paragraphs we are only interested in parametric estimates we will not distinguish between the
exact γmax, kmax, etc and their hydrodynamic approximations. Using the parametric dependence

146



Chapter 6 A new mechanism for Gravitational Wave production

(6.16) we then have that Tg is determined by the condition

γmax(Tg) ∼ |cs(Tg)|2 Tg ∼ H . (6.37)

In order to proceed we must distinguish three cases depending on the hierarchy between Tg
and H. We recall again that Tg refers to the temperature in the sector undergoing the phase
transition, which may or may not coincide with the temperature in the sector driving the
expansion, Trad.

If H � Tg then the unstable modes do not have time to grow unless |cs|2 is parametrically
large. This means that the Universe can traverse the spinodal region without the instability
having a significant effect, so we will not consider this case further.

If Tg ∼ H then we must have |cs(Tg)| ∼ 1 and the modes that will dominate the exponential
growth will have momenta kmax that, by virtue of (6.16), is given by

kmax ∼ Tc ∼ H , (6.38)

where on the right-hand side we have approximated Tg ∼ Tc. A necessary condition for this
case to occur is that the transition takes place in a hidden sector with Tc ∼ H � Trad.

If the transition takes place in the sector driving the expansion then Tg ∼ Trad and H � Tg.
In this case |cs(Tg)|2 � 1 and we can use in (6.37) the approximation for the speed of sound
(6.19) to obtain

Tg − Ts '
H2

Ts
. (6.39)

The time it takes for this change in temperature is parametrically small, since using (6.29) we
can translate (6.39) into

tg − ts '
H

T 2
s

. (6.40)

Using again the parametric dependence (6.16) we see that in this case the modes that will
dominate the exponential growth will have momenta

kmax '
√
H

Tc
Tc , (6.41)

which satisfies
H � kmax � Tc . (6.42)

where on the right-hand side of the last two equations we have approximated Tg ∼ Tc.
In order to simulate the evolution numerically we need to choose a specific value of Tg.

As we will discuss below, we expect the results to be qualitatively similar for any choice. We
will choose the value Tg = 0.3908Λ, which differs from Ts by about 1%. In other words, we
choose the initial state to be the one indicated by the black circle in Fig. 6.1. For this state the
hydrodynamic values of the key quantities introduced in Sec. 6.1.2 are

khyd
∗ = 0.81Λ , khyd

max = 0.41Λ , γhyd
max = 0.073Λ . (6.43)

We then imagine that small thermal fluctuations on top of this homogeneous state trigger
the instability. Since the dynamics is dominated by the unstable modes, and since their typical
momentum is k . T according to (6.38) and (6.42), we will ignore the Boltzmann factor
exp(−k/T ) and assume that fluctuations with any k are equally likely in the initial state. For
simplicity, in this paper we will assume that all initial fluctuations start off with the same small
amplitude δE/E = 10−4. We will come back to this point in Sec. 6.5.
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Figure 6.9: Allowed momenta in the (kx, ky)-plane. The solid curves indicate the exact values of
k∗ (black) and kmax (red) for the initial state under consideration, given in (6.47). The dashed curves
indicate the hydrodynamic approximations to these quantities, khyd

∗ and khyd
max = 0, given in (6.43). Modes

inside the black, solid circle are unstable. Within these, those with the largest growth rate are those on
the solid, red circle.

We will allow for dynamics only along two of the three spatial directions of the gauge theory,
which we call x, y. In other words, we impose translational symmetry along z. In addition, we
compactify the x- and the y-directions on circles of equal lengths

L = 63.6Λ−1 , (6.44)

namely we impose periodic boundary conditions on these coordinates. This infrared cut-off
is technically convenient because it reduces the number of unstable sound modes to a finite
number, since excitations along the x- and y-directions must have quantized momenta

(kx, ky) = 2π
L

(nx, ny) , (6.45)

with nx, ny integer numbers. This means that the allowed momenta lie on a two-dimensional grid
in the (kx, ky)-plane, as shown in Fig. 6.9, where the circles indicate the values k∗ and kmax for
the initial state under consideration. Although only modes with n ≤ 10 are shown in the figure,
we have included modes with up to n = 50 in the fluctuations of the initial state, all of them with
amplitude δE/E = 10−4. We have determined the corresponding time evolution by numerically
evolving the Einstein-plus-scalar equations that follow from (2.1-2.4) using our new code [131].
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From the near-boundary fall-off of the bulk fields we have extracted the boundary stress tensor.
Snapshots of the resulting energy density are shown in Fig. 6.10. The interested reader can also
find a video of this evolution at https://www.youtube.com/watch?v=qIhbpchr3gE.

Figure 6.10: Spacetime evolution of the energy density for the initial homogeneous state in the spinodal
region indicated by a black circle in Fig. 6.1, perturbed with small fluctuations. A video of the evolution
can be found at https://www.youtube.com/watch?v=qIhbpchr3gE.

As explained above, the initial state includes high-momentum fluctuations with momenta
up to

|k| = 50× 2π
L
' 5k∗ . (6.46)
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Figure 6.11: Time evolution of the amplitudes of several Fourier modes corresponding to the run in
Fig. 6.10. The different momenta are labelled by integers (nx, ny) as in (6.45).

Most of these modes are outside the black, solid circle in Fig. 6.9, i.e. they are stable. Since the
initial perturbation is small, the first stage of the evolution is well described by a linear analysis
around the initial homogeneous state. According to this, the stable modes decay exponentially
fast as soon as the simulation begins, on a time scale of order T−1

s ∼ Λ−1. For the unstable
modes, linear theory predicts a behavior which is the sum of two exponentials, precisely the
two solutions of the sound mode (6.9). In the spinodal region, one of these modes decays with
time while the other one grows. After some time the latter dominates. This physics can be
seen in Fig. 6.11, which shows the time evolution of the amplitudes of several Fourier modes
corresponding to the run in Fig. 6.10. The straight lines at early times correspond to the regime
of exponential growth. At late times some of these slopes can change due to resonant behaviour,
namely to the coupling between different modes [63].

In Fig. 6.12 we compare the growth rates predicted by the hydrodynamic approximation
with those extracted from a fit to the slopes of the straight lines in Figs. 6.11 at early times. We
see that the hydrodynamic approximation captures the correct qualitative shape everywhere,
and that it provides a good approximation at the quantitative level at low k, as expected. The
exact values of the key parameters,

k∗ = 0.96Λ , kmax = 0.51Λ , γmax = 0.086Λ , (6.47)

are slightly larger than their hydrodynamic counterparts.
Once the amplitudes of some modes grow large enough, the evolution enters a non-linear

regime. The dynamics here is rich and involves several phases. The interested reader can find
a thorough discussion in [63]. In a nutshell, the initial exponential growth gives rise to peaks
and valleys. These are initially separated from each other by a distance of order k−1

max, but they
eventually merge with one another until the system reaches a maximum-entropy state which,
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Figure 6.12: Comparison between dispersion relations. The continuous black curve shows the growth
rates predicted by the hydrodynamic approximation (6.12) for the state under consideration. The black
dots show the growth rates extracted from a fit to the early-time slopes in Fig. 6.11. The dashed black
curve is an interpolation of these points.

in large enough a box, is a phase-separated state at a constant, homogeneous temperature
T = Tc. This dynamics can be observed by following the different snapshots in Fig. 6.10. In
particular, the bottom-right plot shows a configuration that is close to a phase-separated state,
in which the total volume is divided in two regions with energies precisely equal to Ehigh and
Elow, respectively, separated by an interface of thickness ∼ T−1

c ∼ Λ−1.
Note that in our simulations we have ignored the expansion of the Universe. We will come

back to this point in Sec. 6.5.

6.4 Gravitational wave spectrum

We will consider GWs as metric perturbations around flat space, which ignores the expansion
of the Universe. We will come back to this approximation in Sec. 6.5. A GW in flat space is
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described by a metric perturbation h of the form

ds2 = −dt2 + (δij + hij) dxidxj . (6.48)

Indices on hij are raised and lowered with δij . In the purely transverse traceless (TT) gauge,
its evolution is governed by the perturbed Einstein equations

ḧij(t,xxx)−∇2hij(t,xxx) = 16πGΠij(t,xxx) , (6.49)

where Πij is the TT part of the stress tensor. In momentum space (along the spatial directions)
the equation of motion becomes

ḧij(t,kkk) + k2hij(t,kkk) = 16πGΠij(t,kkk) . (6.50)

The fact that Πij is TT guarantees that it only sources the GW components of h, namely the
spin-two, tensor component. Given the stress tensor, its TT part is given by

Πij(kkk) = Λmnij (k̂kk)Tmn(kkk) , (6.51)

where
Λmnij (k̂kk) = Pmi (k̂kk)Pnj (k̂kk)− 1

2Pij(k̂
kk)Pmn(k̂kk) (6.52)

and
Pij(k̂kk) = δij − k̂ik̂j . (6.53)

We have imposed translation invariance along the z-direction, so Πij(t,kkk) vanishes when kkk
points along this direction. Through (6.50) this means that we cannot produce GWs along this
direction. Therefore, let us consider GWs propagating along a direction in the xy-plane at an
angle θ with the x-axis. In this case

kkk = (kx, ky, 0) (6.54)

and therefore the projector takes the form

Pij =
(
M 0
0 1

)
, M = 1

k2

(
k2
y kxky

kxky k2
x

)
. (6.55)

In our case the stress tensor is

Tij =

 Txx Txy 0
Txy Tyy 0
0 0 Tzz

 . (6.56)

Projecting with P we obtain

Πij = A×
(
M 0
0 −1

)
, (6.57)

where
A = 1

2k2

(
k2
y Txx + 2kxky Txy + k2

x Tyy − k2Tzz
)
. (6.58)

The tensor Πij will source the GW components hxx, hxy, hyy and hzz. These will only propagate
in the xy-plane, namely their dependence will be of the form eikxx+kyy.

Once h has been found, the GW energy density is given by

ρGW = 1
32πGL3

∫
d3x ḣij(t,xxx) ḣij(t,xxx) , (6.59)
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where L3 is the volume over which the energy is averaged. Integrating in z and Fourier-
trasforming in x, y we get

ρGW =
∫
dkx dky

dρGW
dkxdky

, (6.60)

where the energy density per unit two-momentum is

dρGW
dkxdky

= 1
32πGL2

1
(2π)2 ḣ

ij(t, kx, ky) ḣ∗ij(t, kx, ky) . (6.61)

Changing to polar coordinates (k, ϕ), we define the differential energy density per unit logarith-
mic momentum as

dρGW
d log k = k

dρGW
dk

= 1
32πGL2

k2

(2π)2

∫ 2π

0
dϕ ḣij(t, k, ϕ) ḣ∗ij(t, k, ϕ) . (6.62)

It is often convenient (see e.g. [132]) to make use of the fact that the relation between Πij

and Tij , as well as the equation of motion for hij , are both linear. This means that, instead of
evolving (6.50) for the variable h, we can evolve the following equation of motion

üij(t,kkk) + k2uij(t,kkk) = 16πGTij(t,kkk) (6.63)

for the auxiliary variable u, which is nothing but (6.50) but sourced by the full stress tensor
instead of by its TT part. This is useful because projecting requires going to Fourier space,
which is time-consuming. Then we can obtain the GW metric at any desired time by applying
the projector to the solution,

hij(kkk) = Λmnij (k̂kk)umn(kkk) , (6.64)

and the differential energy density takes the form

dρGW
d log k = 1

32πGL2
k2

(2π)2

∫ 2π

0
dϕ u̇ij(t, k, ϕ) Λmnij (k̂kk) u̇∗mn(t, k, ϕ) . (6.65)

6.4.1 Sound waves

Since the modes that drive the spinodal instability are sound modes, we expect that the evolution
at early times may be well described by hydrodynamics. In the next section we will perform a
quantitative analysis of the GW production in the hydrodynamic approximation. In order to
develop some intuition, in this section we will analyse the production when only two isolated
sound waves collide.

Consider a small perturbation around a system in thermal equilibrium. Assume that the
perturbation can be described within the hydrodynamic approximation, namely that it is con-
trolled by fluctuations δT and δvi of the hydrodynamic variables. In the case of the velocity
field we have δvi = vi since the velocity is zero in static equilibrium. Then the fluctuation in
the (spatial part) of the stress tensor takes the form

δT ij = δij c2
scv δT + ω0 v

ivj , (6.66)

where ω0 = E0 + P0 is the enthalpy of the unperturbed state, cv is the specific heat (6.6),
and cs is the speed of sound (6.7). In writing (6.66) we have worked only to second order in
the fluctuations, in particular in velocities. This means that, in addition to the hydrodynamic
expansion in gradients, we are further expanding in the amplitude of the fluctuations. We
expect this to be justified at sufficiently early times.

The first term in (6.66) is a pure trace and therefore it does not contribute to the TT part
of the stress tensor. This can be seen explicitly in (6.57), since in this case

Txx = Tyy = Tzz , Txy = 0 , (6.67)
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and therefore the prefactor in this equation vanishes. Thus only the second term in (6.66) can
contribute to the production of GWs at leading order. The velocities can be extracted from the
T 0i components, since at leading order

δT 0i = ω0v
i . (6.68)

The fluctuations in the velocity field decompose into two decoupled channels. The longitu-
dinal or sound channel is the one for which the momentum of the perturbation is aligned with
the velocity field, namely kkk is parallel to vvv. The transverse or shear channel is the one in which
the momentum of the perturbation is orthogonal to the velocity field. We will focus on the
sound mode because this is the one that is unstable in the spinodal region. Before we proceed
note that we need a superposition of at least two sound waves in different directions in order to
produce GWs. Indeed, suppose we have a single sound wave with momentum qqq. Without loss
of generality we can assume that it propagates along the x-direction. Then

vvv = (vx, 0, 0) , qqq = (qx, 0, 0) . (6.69)

This means that the only non-zero component of the second term in (6.66) is δT xx. Moreover,
the momentum of the resulting gravitational wave is kkk = 2qqq, which also points along the x-
direction. Therefore in (6.54) we have ky = 0. Substituting this in (6.58) we see that A = 0.
Physically, the reason for this is that a sound wave has spin zero and hence it only induces
fluctuations in the pressure along its direction of propagation, whereas a GW is transverse and
therefore it is only sourced by fluctuations in the transverse components of the pressure.

Consider therefore a superposition of two sound waves with momenta ppp and qqq, and with
velocities uuup and uuuq parallel to the respective momenta. Then the velocity field takes the form

vvv(t,xxx) = uuup e
γpt eippp·xxx + uuuq e

γqt eiqqq·xxx , (6.70)

where we have assumed that the time dependence is the one dictated by the spinodal instability
with the corresponding growth rates γp = γ(p) and γq = γ(q). This velocity field can source a
GW with momentum along kkk = ppp + qqq. Without loss of generality, let us assume that ppp points
along the x-direction and that θ is the angle in the xy-plane between ppp and qqq. Then

ppp = (p, 0, 0) , (6.71)
uuup = (up, 0, 0) , (6.72)
qqq = q(cos θ, sin θ, 0) , (6.73)
uuuq = uq(cos θ, sin θ, 0) , (6.74)
kkk = (p+ q cos θ, q sin θ, 0) . (6.75)

The second term in (6.66) has three contributions proportional to uuu2
p, to uuu2

q and to the crossed
term uuupuuuq. The first two terms do not produce GWs for the same reason as with a single wave.
Only the third one contributes. The corresponding non-zero components of the stress tensor
become

δTxx = ω0 e
(γp+γq)teikkk·xxx upuq cos θ , (6.76)

δTxy = ω0 e
(γp+γq)teikkk·xxx upuq sin θ . (6.77)

The prefactor in (6.57) is then

A = 1
2 ω0 e

(γp+γq)teikkk·xxx upuq f(r, θ) , (6.78)

where r = q/p and

f(r, θ) = r sin2 θ(2 + 3r cos θ)
1 + r2 + 2r cos θ . (6.79)
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Figure 6.13: The function f(r, θ) (left) and its derivative df/dθ (right).

The function f(r, θ) and its derivative df/dθ are shown in Fig. 6.13. We see that f vanishes
at θ = 0 regardless of the value of r. This is expected since in this case ppp and qqq are collinear.
If r 6= 1 then f also vanishes at θ = π. However, if r = 1 then f → −1 as θ → π. This case
corresponds to the limit k → 0, which is approached as ppp and qqq become antiparallel.

(6.78) contains a crucial insight about the spectrum of GWs in the early-time part of the
evolution. The key point is that the time dependence at a given GW momentum kkk is controlled
by the exponent γp + γq. The largest possible value of this exponent is 2γmax, with γmax the
maximum growth rate in Fig. 6.12. This maximum value can only be realised by composing
two sound-wave momenta ppp and qqq such that their moduli satisfy p = q = kmax. In other words,
ppp and qqq must lie on the red, solid circle in Fig. 6.9. By adding two such momenta one can only
obtain momenta kkk with modulus in the range

0 ≤ k ≤ 2kmax . (6.80)

As a result, the GW spectrum (6.62) will be exponentially suppressed for k ≥ 2kmax. The fact
that f does not vanish in the opposite limit, kkk → 0, means that the TT part of the stress tensor
is not suppressed in this limit. Therefore we expect that the only suppression of the differential
energy density dρGW/d log k in the limit k → 0 will be due to the k2 factor in (6.62).

6.4.2 Hydrodynamics

We will now provide a more detailed analysis of the GW production in the early-time part of
the evolution based on hydrodynamics. In this approximation, the part of the perturbed stress
tensor that gives rise to the TT component is the second term in (6.66), namely

δTij(t,xxx) = ω0 vi(t,xxx)vj(t,xxx) . (6.81)

In Fourier space, this leads to

δTij(t,kkk) = ω0

∫
d2q

(2π)2 vi(t,kkk − θ) vj(t, θ) . (6.82)

Note that, in this and in some subsequent equations, boldface symbols such as xxx,kkk, . . . refer to
two-dimensional vectors.

Since the excitations of interest are sound waves, the velocity is longitudinal, which means
that

vvv(t, θ) = v(t, θ) θ̂ . (6.83)
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Using the hydrodynamic equations of motion, we can relate the modulus of the velocity field to
the time derivative of the energy density fluctuation:

v(t, θ) = i

q ω0
∂t δE(t, θ) . (6.84)

In our simulation the initial velocity at t = 0 vanishes, and the amplitude of the energy density
perturbation is a small number εθ. This initial value arises as a combination of the growing and
the decaying sound modes. Imposing the condition vvv(t, θ) = 0 fixes the relative coefficient in
such a way that

δE(t, q) = εθ
2

[(
1 + q̃

2

)
eγqt +

(
1− q̃

2

)
e−γ̃qt

]
, (6.85)

where γq and γ̃q are the growth rates of the unstable and stable modes, respectively, and

q̃ = q

kmax
. (6.86)

Note that both δE(t, q) and εθ have dimensions of (mass)2 because of the Fourier transform. In
hydrodynamics the growth rates are given by

γq = |cs|2 q̃(2− q̃) kmax , γ̃q = |cs|2 q̃(2 + q̃) kmax . (6.87)

Hereafter we will only consider the unstable mode, since it dominates as soon as the stable
mode has decayed. With this approximation we can write

δTij(t,kkk) = −|cs|
2

4ω0

∫
q dq dθ

(2π)2 εθεθ′

(
1− q̃2

4

)(
1− q̃

′2

4

)
qi
q

q′j
q′
e(γq+γq′ )t , (6.88)

where θ is the angle between kkk and θ and

θ′ = kkk − θ , q′ =
√
k2 + q2 − 2kqx , x = cos θ , q̃′ = q′

kmax
. (6.89)

Without loss of generality we assume that kkk points along the x-direction. The exponent con-
trolling the time growth in the integrand of (6.88) takes the form

tγtot(k, q, x) = t
(
γq + γq′

)
= t kmax

|cs|
2
[
q̃(2− q̃) + q̃′(2− q̃′)

]
. (6.90)

If
k ≤ 2kmax (6.91)

then, for fixed k, this exponent has a maximum at

q̃M = 1 , xM = k̃

2 , (6.92)

and at this point we have
q̃′M = 1 , γtot,M = 2γmax . (6.93)

These equations mean that, for momenta kkk in the range (6.80), the exponent achieves its
largest possible value 2tγmax and the integral is dominated by sound waves with momenta of
equal moduli,

q = q′ = kmax , (6.94)

lying at angles θM and −θM with respect to kkk. This reproduces the conclusion anticipated in the
paragraph of (6.80). In this range we can evaluate the integral via a saddle-point approximation.
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For this purpose, we expand the exponent to quadratic order around its maximum. The Hessian
in variables

∆q = q − qM , ∆x = x− xM (6.95)

is not diagonal. Therefore, to facilitate the Gaussian integration we introduce the variables
(α, β) defined through

∆q = kmax (α cos Ψ + β sin Ψ) , ∆x = −α sin Ψ + β cos Ψ , (6.96)

with
tan 2Ψ = 4k̃(2− k̃2)

(8− 8k̃2 + k̃4)
. (6.97)

With these variables we can write the exponent up to quadratic order as

tγtot(k, α, β) ' t|cs|kmax −
α2

2σ2
α

− β2

2σ2
β

, (6.98)

with

σ2
α = 1

t|cs|kmax

(
1 + k̃4

8 +
√

1− k̃2 + k̃4

4 + k̃8

64

) , (6.99)

σ2
β = 1

t|cs|kmax

(
1 + k̃4

8 −
√

1− k̃2 + k̃4

4 + k̃8

64

) . (6.100)

For generic values of k̃ these widths become arbitrary narrow as time increases and therefore
we can replace their exponentials by δ-functions with appropriate normalizations. However, for
small k̃ the width of the β-variable scales as

σ2
β ∼

1
t|cs|kmax k̃2 . (6.101)

Therefore, the δ-function approximation is only valid for

klow � k < 2kmax , (6.102)

where

klow ≡
√
kmax
|cs|t

(6.103)

and the upper bound comes from the condition (6.91) for the existence of the saddle. Under
these conditions, we can write the stress tensor as

δTij = − 9
64π εθM εθ

′
M

|cs|
ω0 t

kmax

k̃
√

4− k̃2
q̃M i q̃

′
M j e

2γmaxt
[
klow � k ≤ 2kmax

]
, (6.104)

where

q̃M i =

 k̃
2 ,

√
1− k̃2

4 , 0

 , q̃′M j =

 k̃
2 ,−

√
1− k̃2

4 , 0

 , k̃ = k

kmax
, (6.105)

and we recall that we have assumed that kkk points along the x-direction.
For sufficiently small k we see from (6.97) that Ψ→ 0 and hence ∆q ' kmaxα and ∆x ' β.

In this limit we can still perform the Gaussian approximation for the integral over k. This
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localises the integrand at q = q′ = kmax. Assuming that εθ, εθ′ are θ-independent, the only θ
dependence in the integrand is in the vectors

qi/q = (cos θ, sin θ, 0) , q′j/q = (− cos θ,− sin θ, 0) . (6.106)

Integrating over θ we then find that, at leading order in k in the limit k → 0, the stress tensor
approaches a finite, k-independent value

δTij = − 9
256π3/2 εθM εθ′M

|cs|3/2

ω0

k
3/2
max√
t
q′M i qM j e

2γmaxt
[
k → 0

]
, (6.107)

where
q̃M i q̃

′
M j = −diag(π, π, 0) . (6.108)

We emphasize again that, as the vector kkk approaches zero, it does so along the x-direction.
For k > 2kmax the exponent in (6.88) must be smaller than 2γmax since k cannot be obtained

by adding two vectors of modulus kmax. The fact that the growth rate γ(k) is a concave function
of k, meaning that γ′′(k) < 0, implies that the maximum value of γtot is obtained by taking
θ and θ′ to be almost parallel to each other and to k and to have equal moduli q = q′ = k/2.
They cannot be exactly parallel because then the TT component of te resulting stress tensor
would vanish identically, but they can be exponentially close to being parallel. In this case the
growth rate is given by

γtot ' 2 γ
(
k

2

)
< 2γmax . (6.109)

Therefore, for k > 2kmax, we expect the GW production to be exponentially suppressed with
respect to the case k < 2kmax by a factor

ρGW(k > 2kmax)
ρGW(k < 2kmax) ' exp

{
− 4t

(
γmax − γ (k/2)

)}
. (6.110)

Using the stress tensors above we can compute the spectrum of GWs. For concreteness let
us focus on the case (6.104). Substituting this in (6.63) we find that, neglecting subleading
terms in 1/t, the solution is

uij(t,kkk) = −9
4 εθM εθ

′
M

1
k̃
√

4− k̃2

1
|c2
s|+ k̃2

G|cs|
ω k3

maxt
q̃M i q̃

′
M j e

2γmaxt . (6.111)

We now need to compute the contraction associated to the projector Λmnij in (6.65). If we assume
that εθM , εθ′M are independent of the angle then uij(t,kkk) only depends on k and we can assume
that kkk points along the x-direction. In this case the projector (6.53) becomes

Pij = diag (0, 1, 1) . (6.112)

Since u∗ij(t,kkk) = uij(t,−kkk) we obtain

q̃iM (kkk) q̃
′j
M (kkk) Λmnij (k̂kk) q̃Mm(−kkk) q̃′M n(−kkk) = 1

4

√
4− k̃2 . (6.113)

Substituting in (6.65) we finally arrive at

dρGW
d log k = G

32π2L2

( 9
16

)2
εθM εθ′M ε−θM ε−θ

′
M

1− k̃2

4(
|cs|2 + k̃2

)2
|cs|4k2

max
ω2

0 t
2 e4γmaxt , (6.114)

where we have made use of the fact that

θM (−kkk) = θ′M (kkk) . (6.115)
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Recall that (6.114) is only valid in the range (6.102). To obtain an estimate for the total energy
we proceed as follows. First, we note that, in an statistical ensamble characterised by a white
noise, we expect that 〈

εθM εθ′M ε−θM ε−θ
′
M

〉
= 〈εθM ε−θM 〉

2 = κ (kmax)2 , (6.116)

where κ(q) is the strength of the noise and we have made use of (6.94). Second, the relevant
integral is given by∫

dk̃
1
k̃

1− k̃2

4(
|cs|2 + k̃2

)2 = 1
8|cs|4

(
|cs|2(4 + |cs|2)
|cs|2 + k̃2 + 4 log k̃2

cs|2 + k̃2

)
. (6.117)

Assuming that

|cs|2 �
√

1
|cs|kmaxt

� 2 (6.118)

we can expand the integral for small |cs|. In this case the integral is dominated by the lower
cut-off, and to leading order in the cut-off we get∫ 4

√
1/(|cs|kmaxt)

dk̃
1
k̃

1− k̃2

4(
|cs|2 + k̃2

)2 '
1
4
(
|cs|kmaxt

)2
. (6.119)

The energy density is thus given by

ρGW = G

32π2L2

( 9
32

)2
ε4θ
|cs|6k4

max
ω2

0
e4γmaxt . (6.120)

The end of the exponential regime is determined by the condition that the amplitudes of the
growing modes become of the same order as the latent heat (6.4) [63]. Thus

εθ e
γmaxt ∼ Elatent

k2
max

. (6.121)

Substituting into the expression for the energy we arrive at

ρGW = G

32π2L2

( 9
32

)2 E4
latent |cs|6

ω2
0 k

4
max

. (6.122)

The parametric dependence of this equation can be understood as follows. Conservation of the
stress tensor implies that, at the end of exponential evolution, the velocity field is

v(x) ∼ |cs|
Elatent
ω0

, (6.123)

where we have used the fact that ∂t ∼ |cs|kmax. The relevant part of the stress tensor is then

Tij(x) ∼ ω0 v(x)2 ∼ E
2
latent
ω0

|cs|2 . (6.124)

It follows that the metric fluctuation scales as

hij(x) ∼ G

k2
max

E2
latent
ω0

|cs|2 , (6.125)

where we have used that the charateristic size of Tij is 1/kmax. Therefore

ḣ(x)2
ij ∼

G2

k2
max

E4
latent
ω2

0
|cs|6 . (6.126)

Since the characteristic size of ḣ is also 1/kmax, integrating over space and dividing by GL2 we
get

ρGW ∼
G

L2 k4
max

E4
latent
ω2

0
|cs|6 , (6.127)

as in (6.122).
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Figure 6.14: GW energy density per unit two-momentum (6.61) at early times. The different momenta
are labelled by integers (nx, ny) as in (6.45). Except for the mode with nx = ny = 15, all the other modes
shown have k < 2kmax and therefore at early times they grow approximately as e4γmaxt, as indicated by
the dotted, diagonal lines.

6.4.3 Full result

In the previous section we estimated the GW emission in the regime of exponential growth.
Once some modes become large enough this regime ends and the non-linear evolution begins
[63]. In this section we will present the exact results for the GW production for both the linear
and the non-linear regimes.

The behaviour of the differential energy density per unit two-momentum at early times is
shown in Fig. 6.14. We see that the energy density in modes with k < 2kmax grows at early
times approximately as e4γmaxt, as predicted by (6.114). The deviations from this behaviour,
which begin around 60 . tΛ . 80, indicate the end of the linear regime.

The differential energy density per unit logarithmic momentum is shown in Figs. 6.15 and
6.16. In Fig. 6.15 we have marked the two values corresponding to the range (6.102). In
Fig. 6.16 we zoom into this range. At each time we show with a dotted curve in the same color
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Figure 6.15: GW differential energy density per unit logarithmic momentum at early times. From left
to right, the grey, vertical lines lie at klow ' 0.15Λ (computed according to (6.103) with Λt = 70) and
2kmax.

the k-dependence predicted by (6.114), except for an overall factor that we fix by requiring
agreement at k/Λ = 0.2. The need to fix this factor comes from the fact that the real evolution
includes effects that were not included in the derivation of (6.114), such as initial excitations
of quasi-normal modes or the decaying exponential in (6.85). Once this factor is fixed, we see
that (6.114) agrees fairly well with the exact result for intermediate values of k at the times
around the end of the linear regime, namely for 40 . Λt . 70. For values k > 2kmax we see in
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Figure 6.16: GW differential energy density per unit logarithmic momentum at early times for momenta
approximately in the range (6.102). For each color, the dotted curve corresponds to the k-dependence
predicted by (6.114), except for an overall factor that we fix by requiring agreement at k/Λ = 0.2.

Fig. 6.15 that the energy density decreases exponentially in k, as expected. We will comment
on the behaviour at k < klow in Sec. 6.5.

Performing the integral over k in (6.61) or (6.62) we obtain the total energy density radiated
into GWs. The result at early times is shown in Fig. 6.17. We see that the exponential growth
of the individual modes with k < 2kmax results in an analogous growth of the total energy, as
indicated by the dashed line.

The exponential growth ceases when the non-linear regime begins at around tΛ ∼ 70.
Fig. 6.18 shows the differential energy density for the entire evolution. We see that the en-
ergy density keeps increasing in the non-linear phase until it saturates at late times. Fig. 6.19
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Figure 6.17: Total energy density radiated into GWs at early times. The black, dashed line corresponds
to ρGW ∝ e4γmaxt.

shows the corresponding total energy density on a linear scale. In this figure we can see the
oscillations in the late time behaviour expected for the energy density of a wave. We also note
that most of the energy is radiated in the short reshaping period [63] that takes place right after
the linear regime, around 100 . Λt . 150. In this period the energy density increases from
about 0.1 to about 0.7 on the scale of the plot. We will come back to this point in Sec. 6.5.

6.5 Discussion

Cosmological, first-order, thermal phase transitions are usually assumed to take place via the
nucleation of bubbles of the stable phase inside the metastable phase. However, if the nucleation
rate is sufficiently suppressed, then the Universe can cool down all the way to the end of the
metastable phase and enter the spinodal region. Under these circumstances the transition
proceeds via the exponential growth of unstable modes and the subsequent formation, merging
and relaxation of phase domains. We have performed the first calculation of the GW spectrum
produced by this mechanism.

The conditions for the nucleation rate to be sufficiently suppressed depend on whether the
transition takes place in the sector driving the expansion of the Universe or in a hidden sector
that couples weakly, in some cases only gravitationally, to the former. The crucial point is that,
as a result of the different amounts of energy injected into each sector by the reheating process,
the temperature of the hidden sector may be parametrically smaller than that in the sector
driving the expansion. For concreteness we have assumed that both sectors ar described by a
non-Abelian gauge theory. Under these circumstances, we have shown that the constraint on
the rank of the gauge group is fairly stringent if the transition takes place in the sector driving
the expansion of the Universe, whereas it is fairly weak if it takes place in a hidden sector.
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Figure 6.18: GW differential energy density per unit logarithmic momentum over the entire evolution.

Once the system enters the spinodal region, the physics at early times can be understood via
a linear analysis around the unstable state. This makes two characteristic predictions. First,
an exponential growth in time of the energy radiated into GWs, as illustrated by Fig. 6.17.
Second, as shown by Figs. 6.15 and 6.16, a specific spectrum for the differential energy density
per unit logarithmic momentum, dρGW/d log k. The fact that this is qualitatively different from
the spectrum in transitions mediated by bubble nucleation opens the exciting possibility of
distinguishing them experimentally. Note from (6.3) that, up to a factor of order unity, the

164



Chapter 6 A new mechanism for Gravitational Wave production

0 100 200 300 400 500 600

0.

0.2

0.4

0.6

0.8

Figure 6.19: GW total energy density over the entire evolution.

scale Λ in this and other figures coincides with the critical temperature of the phase transition,
Tc.

Interestingly, most of the radiated energy is produced in the short reshaping period that
takes place right after the linear regime, as illustrated by Fig. 6.19. Presumably, the intuition
for this is as follows. When a lump of energy is accelerated, the amount of GW radiation
that is emitted increases both with the amount of energy in the lump and with the acceleration.
During most of the linear regime the acceleration is large because of the exponential dependence
in time, but the amount of energy being displaced is small since the initial state is homogeneous.
During this regime peaks and valleys of increasing height and depth, respectively, get formed.
The end of the linear regime takes place precisely when these peaks and valleys are close to
their maximum values. At this point the accelerations involved in reshaping these structures are
still large. This is the phase in which most of the GW emission takes place. At later times the
energies being displaced are still large but the acceleration decreases as the system approaches
the final, equilibrium state.

We are currently improving the simulation presented in this paper in two ways. First, we
are running simulations on bigger boxes. This is important in order to be able to explore the
low-k behaviour. Since the TT stress tensor attains a non-zero limit as k → 0, we expect that
in this limit

dρGW
d log k ∼ k

2 . (6.128)

At the moment our infrared cutoff is 2π/L ' 0.1Λ, which is not sufficiently smaller than klow
to verify this expected behaviour. Second, in our simulation we assumed that all modes have
equal amplitudes at t = 0. In order to simulate a stochastic background, we are running
several simulations in which the amplitudes of these fluctuations follow a normal distribution.
This Gaussianity is justified by the fact that, in a large-N gauge theory, n-point connected
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correlators with n > 2 are 1/N -suppressed. In addition, since the second central moment of
the random distribution is also 1/N -suppressed with respect to the square of the mean energy
density, the variance of the Gaussian distribution is also small in the large-N limit. This
motivated our choice of a small δE/E = 10−4 in the simulation presented here. Our preliminary
results indicate that the stochasticity does not change our conclusions at the qualitative level.

In our time evolution we assumed that the boundary geometry where the gauge theory
lives is flat space. In other words, we ignored the expansion of the Universe. The growth rate
of the unstable modes in the linear regime is comparable to the Hubble rate, see (6.37), and
the subsequent non-linear dynamics is slower, but not parametrically slower. Therefore, while
it is reasonable to expect that neglecting the expansion of the Universe may provide a good
approximation at the qualitative level, it would nevertheless be interesting to perform more
sophisticated simulations including the expansion of the Universe. If the phase transition takes
place in a hidden sector that is reacting to, but not affecting the, expansion of the Universe, then
this would amount to fixing the boundary metric to be time-dependent but not dynamical, as in
e.g. [133–140]. If the transition takes place in the sector driving the expansion of the Universe,
then a more rigorous calculation should include the backreaction of the degrees of freedom
undergoing the transition on the spacetime metric, along the lines of [141]. In both cases we
expect that the behaviour of the system at sufficiently late times will be modified. The reason
is that, in flat space, the system will tend at late times to a phase-separated state in which
two phases with energy densities Ehigh and Elow coexist. In this way the spinodal instability
leads to a redistribution of the total energy in a given volume from a homogeneous state with
energy density E ' Es to two approximately homogeneous regions with smaller volumes and
with energy densities Elow < Es < Ehigh. In an expanding Universe the energy density will keep
decreasing everywhere, so the region with energy density Ehigh will cool down and eventually
enter the spinodal phase again, leading to a repetition of the dynamics that we have discussed
here. The volume of the region with energy density Ehigh decreases with each repetition. When
this volume reaches a scale ∼ Λ−3 the spinodal instability no longer leads to a phase-separated
configuration [63] and the process stops, leading to the completion of the phase transition.
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Final remarks

In this thesis we have explored the features and consequences of first order phase transitions in
strongly coupled gauge theories with the help of holography. In order to capture the physics of
phase transitions we used a bottom-up model consisting of Hilbert-Einstein gravity plus a self
interacting scalar field in a 4+1 asymptotically AdS spacetime. The scalar field potential is a
simple polynomial with two free parameters whose tuning give rise to a family of non-conformal
boundary theories characterized by a unique energy scale Λ and its associated dimension three
scalar operator.

Chapter 2 presented the techniques used to perform the numerical time evolution of Ein-
stein’s equations. We use the characteristic formulation, whose despite its potential problems
it has proven to be very convenient to simulate infinitely extended black brane dynamics. The
outcome is a freely accessible numerical code, named Jecco, written in the Julia programming
language.

Chapters 3 and 4 will study setups whose dynamics is 1+1 dimensional. For them we
will use Jecco’s predecesor, SWEC, already developed at the time this thesis started. The only
modification required was the gravitational model change. In chapter 5 and 6 we moved on to
using Jecco.

In chapter 3 we studied the set of inhomogeneous solutions present in a large-Nc theory with
a first order thermal phase transition. Analogous families are expected to be present in generic
first order phase transitions due to the spinodal instability. We obtained the thermodynamic
properties of the states at finite size L and observed inhomogeneous-inhomogeneous together
with inhomogeneous-homogeneous phase transitions of first and second order. As L → ∞ the
thermodynamically preferred set of solution tends to the well known phase separated configu-
rations. Non-uniform states are dual to horizons that break the translational invariance along
one of the boundary directions.

In chapter 4 we investigated the collision dynamics of phase domains, which are part of
the familiy of non-uniform states found in the previous chapter for large enough L. This
collisions were found in the past as an intermediate during the full time evolution of the spinodal
instability.

We scanned over initial domain speeds while fixing the rest of the parameters of the problem.
We uncovered three regimes of collision dynamics. For low velocities, the domains initially slow
down and enter a quasistatic regime in which they move towards each other slowly. Eventually
the merge takes place and the result is a excited phase domain whose small perturbations
oscillate as said by linear theory until equilibrium is reached. Intermediate domain speeds
result in a similar merge but with no initial quasistatic regime. For high speeds the dynamics
becomes much richer. The collision turns into a highly excited blob that breaks down into two
small pieces that travel away in opposite directions. Due to the periodic boundary conditions,
the fragments merge again on the other side of the system. The dissipaive nature of the system
implies that at each merge domains move slower until it falls into the category of intermediate

167



Chapter 7 Final Remarks

or low speed merger.
We then moved to understand a crucial part in the dynamical realization of first order

phase transitions, bubble dynamics. Chapter 5 shows the results found for expanding planar
bubbles first (SWEC) and for cylindrical ones after (Jecco). We found that there is a unique late
time bubble for each nucleation temperature, including the value of its wall velocity. As it is
assumed in the literature the profile is self similar, being richer for cylindrical ones, and ideal
hydrodynamics is applicable everywhere except at the wall. For planar bubbles the wall seems
unique only dependent on the theory, but this is not the case for cylindrical bubbles. Moreover,
we observed a plausible linear relation between the wall speed and the pressure jump across
the bubble compared to the energy of the metastable state. More research might be required,
including its validity for cylindrical bubbles, but this could be a very powerful tool to sensibly
estimate the wall speed from the equilibrium properties of a theory.

Additionally, we studied the critical bubble for a unique nucleation temperature. Its im-
portance resides in its direct connection with the bubble nucleation rate, which affects the
subsequent expected bubble number density in the early universe. By tuning the initial condi-
tions we managed to obtain bubbles close to the critical, bounding its radius within a 2% range.
Further study of the critical bubble would be interesting. By using similar techniques to the
ones employed in 3, a more systematic study could be conducted.

Finally, in chapter 6, we analyzed the possibility of the early universe avoiding the bubble
nucleation, expansion and collision. We concluded that, for theories that have sufficient degrees
of freedom (Nc) or for hidden sectors (where the its temperature is decoupled from the one
driving the expansion) with a moderate number of degrees of freedom this is the case. In
this scenario the universe would cool down all the way out of the metastable branch, into the
spinodal, locally unstable one. Due to the instability, the slightlest thermal fluctuations will be
exponentially enhanced.

We numerically followed the full, non-linear, time evolution of the instabilit. We computed
the gravitational wave spectrum along the way by using the holographic stress tensor directly
as a source for the linearized Einstein’s Equations. The main conclusion is that one can also
identify a linear regime in the gravitational wave emission with the same growth rate for a wide
range of frequencies and exponentially suppress for high frequencies. Although the emission
rate is fastest during the linear regime, the biggest amount of radiation is produced right after
the linear regime. The frequency dependence of the emitted energy is manifestly different to a
broken power law, the one arising in bubble collisions, which opens the exciting possibility of
distinguishing them in next generation experiments.

7.1 Future directions

In what follows we expose some of the relevant projects we are pursuing at the moment and
that represent an extension of this thesis.

First, it would be interesting to start by doing a deeper exploration of the cylindrical bubble
expansion. More precisely we want to explore the dependence of different features of the bubbles
as a function of the nucleation temperature, as it was done for planar bubbles; where there is
particular interest on checking the validity of the linear relation found for the wall speed of
planar bubbles. Additionally, so far we have only obtained bubble wall velocities up to v ∼ 0.3,
which is lower than the speed of sound of the fluid ahead of the wall. This is referred to
as a deflagrations, while those in which the velocity is greater thatn the speed of sound is a
detonation. The features predicted by hydrodynamics for detonations are substantially different,
so an extension of our study to such case is of great interest.

Going further into a systematic way of studying the bubble properties, junction conditions
could be the answer. At late times the bubble profile consists of multiple, in local equilibrium
regions of size much bigger than the connecting surfaces, the wall and the interface. The dual
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to this picture is that of different geometries joined by presumably thin walls. In this kind of
setups one has to impose certain conditions on the separating hypersurfaces so that properties
transition consistently from one side to the other. This conditions are expected to restrict
the velocity wall to a unique value, given the geometries under consideration. In other words,
the holographic direction is the microscopic information we require to link the velocity to the
nucleation temperature. Such an approach is considerably more efficient when wanting to scan
over several theories and nucleation temperatures.

Regarding the collision of bubbles, its direct simulation is of great interest. In a similar
fashion to what was done in chapter 6, we will follow the full time evolution of the collision
of bubbles and use the read off boundary energy-stress tensor as a source for gravitational
waves. In this study not only the direct computation of the emission and the applicability of
hydrodynamics is of great interest. We would like to identify the relevance of the emission
coming from turbulence, how does it compared to the emission from sound waves and to what
extent the estimations done in the literature are justified.

In another order of things, we are making steps towards the extension of previous Heavy
Ion Collisions to non-conformal theories at finite baryonic charge. In the literature we find
simulations in either non-conformal theories or conformal ones at finite charge density. The
proposed setup would get holographic collisions one step closer to the experiments. We will
explore the behavior of the plasma near the hypothesized critical point and obtain important
lessons to have in mind in next generation experiments. Additionally, Jecco, being a code with
dynamics along 2+1 directions, will allow us to study collisions other than head on, where the
effect of angular momentum on the phase transition can be investigated.

Finally, a longer term project is to deep ourselves into the gravitational wave emission from
neutron stars. Holography provides us with many possible strongly coupled theories whose
equation of state and transport coefficients can be extracted and used for neutron star colli-
sion simulation. Thanks to the possibility of playing with many holographic models, numerous
different simulations can be performed, from where we can infer the implications in the gravi-
tational wave signal and the imprint left by the QCD transport properties.

Over the years holography has shown to be a powerful approach to treating strongly cou-
pled QFTs and/or out-of-equilibrium physics. This thesis represents yet another step into the
understanding of the physics involved in two of the most exciting experiments of our era. With
the development of the new code, Jecco, we sure expect this to be the beginning of a period of
novel results.
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Nested Scheme of ODEs

We list the radial equations obtained from ansatz (2.8). It is useful to introduce the following
variables,

f ′ = ∂rf ,
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)
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+ 8ŜS̃ sinh(G)

)
+ e2B1+B2

(
S2(

2 sinh(G)
(
G̃
(
2B̃1 + B̃2 − F ′x

)
−G′F̃x + Ḡ
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Ĝ
(
−2B̂1 + B̂2 − F ′y

)
− F̂yG′ +G?

)
+ cosh(G)

(
2
((
B′1 −B′2

)
F̂y −B?

1 +B?
2 − F̂y
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Ŝ
(
4B̂1 − 4B̂2 + F ′y

)
+ 4F̂yS′ − 4S?

))
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Ŝ
(
F ′x − B̃2

)
+ S̃

(
F ′y − B̂2

)
+ S×

)
− S′

(
F̃y + F̂x

))
+2 cosh(G)

(
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2 sinh(G)

(
Ĝ
(
2
(
B̂1 + B̂2

)
+ F ′y

)
+ F̂yG

′ −G?
)

− cosh(G)
(
2
((
B′1 + 2B′2

)
F̂y −B?

1 − 2B?
2 − F̂y

′ + Ĝ2 + 2φ̂2
)

+ 2
(
B̂1 + 2B̂2

)
F ′y

+2
(
B̂1

2 + 2B̂2B̂1 − B̂2
2
)

+
(
F ′y

)
2
))

+ S
(
2 cosh(G)

(
Ŝ
(
B̂1 + 2B̂2 − 2F ′y

)
+ F̂yS

′ − S?
)

−2ĜŜ sinh(G)
)

+ 4Ŝ2 cosh(G)
)

+ 18eB1S3
(
Ḃ2S

′ + ṠB′2

)
= 0

(A.6)

8eB1S3φ̇′ + eB1+B2
(
S
(
4 sinh(G)

(
φ̂
(
F ′x − B̃2

)
+ φ̃

(
F ′y − B̂2

)
+ φ′

(
F̃y + F̂x

)
− 2φ×

)
− 4 cosh(G)(

φ̂G̃+ Ĝφ̃
))
− 4 sinh(G)

(
φ̂S̃ + Ŝφ̃

))
+ e2B1+B2

(
4S
(
cosh(G)

(
φ̃
(
B̃1 + B̃2 − F ′x

)
−φ′F̃x + φ̄

)
+ G̃φ̃ sinh(G)

)
+ 4S̃φ̃ cosh(G)

)
+ eB2

(
S
(
4Ĝφ̂ sinh(G)− 4 cosh(G)(

φ̂
(
B̂1 − B̂2 + F ′y

)
+ F̂yφ

′ − φ?
))

+ 4Ŝφ̂ cosh(G)
)

+ eB1
(
12S2

(
φ̇S′ + Ṡφ′

)
−4S3V ′(φ)

)
= 0

(A.7)

6eB1S4A′′ + eB1+B2
(
S2
(
6 cosh(G)

((
B̂2 − B̂1

)
G̃+ Ĝ

(
B̃1 + B̃2

)
−G′

(
F̃y + F̂x

)
+ 2G×

)
+6 sinh(G)

(
−B′2

(
F̃y + F̂x

)
+ 2B×2 + 4B̂2B̃2 + 2ĜG̃+ 4φ̂φ̃− F ′xF ′y

))
+ 24S (sinh(G)(

B̂2S̃ + ŜB̃2 − S′
(
F̃y + F̂x

)
+ 2S×

)
+ cosh(G)

(
ŜG̃+ ĜS̃

))
− 24ŜS̃ sinh(G)

)
+ e2B1+B2

(
S2
(
3 cosh(G)

((
F ′x
) 2 − 2

(
−
(
B′1 +B′2

)
F̃x + B̃1

2 + 2B̃2
2 + B̄1 + B̄2 + B̃1B̃2

+G̃2 + 2φ̃2
))
− 6 sinh(G)

((
2B̃1 + B̃2

)
G̃−G′F̃x + Ḡ

))
+ S (−24 cosh(G)((

B̃1 + B̃2
)
S̃ − S′F̃x + S̄

)
− 24G̃S̃ sinh(G)

)
+ 12S̃2 cosh(G)

)
+ eB2

(
S2
(
6 sinh(G)

((
2B̂1 − B̂2

)
Ĝ+ F̂yG

′ −G?
)

+ 3 cosh(G)((
F ′y

)
2 − 2

((
B′1 −B′2

)
F̂y + B̂1

2 + 2B̂2
2 −B?

1 +B?
2 − B̂1B̂2 + Ĝ2 + 2φ̂2

)))
+S

(
24 cosh(G)

((
B̂1 − B̂2

)
Ŝ + F̂yS

′ − S?
)
− 24ĜŜ sinh(G)

)
+ 12Ŝ2 cosh(G)

)
+ eB1

(
S4
(
6
(
Ḃ1B

′
1 cosh2(G) + 3Ḃ2B

′
2 + ĠG′ + 4φ̇φ′ + 4

)
− 2(4V (φ) + 12)

)
− 72S2ṠS′

)
= 0

(A.8)
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6eB1S̈S3 + eB1+B2
(
S2
(
sinh(G)

(
−A′

(
F̃y + F̂x

)
+ B̂2

(
Ã+ 2Ḟx

)
+ B̃2

(
Â+ 2Ḟy

)
+ 2A× + 2 ˜̇Fy

+2 ˆ̇Fx
)

+ cosh(G)
(
Ĝ
(
Ã+ 2Ḟx

)
+ G̃

(
Â+ 2Ḟy

)))
+ S sinh(G)

(
Ŝ
(
Ã+ 2Ḟx

)
+S̃

(
Â+ 2Ḟy

)))
+ e2B1+B2

(
S2
(
G̃ sinh(G)

(
−
(
Ã+ 2Ḟx

))
− cosh(G)

(
−A′F̃x

+
(
B̃1 + B̃2

) (
Ã+ 2Ḟx

)
+ Ā+ 2 ˜̇Fx

))
− SS̃ cosh(G)

(
Ã+ 2Ḟx

))
− eB1+2B2

(
F̂x − F̃y

)2

+ eB2
(
S2
(
cosh(G)

(
A′F̂y +

(
B̂1 − B̂2

) (
Â+ 2Ḟy

)
−A? − 2 ˆ̇Fy

)
− Ĝ sinh(G)

(
Â+ 2Ḟy

))
−SŜ cosh(G)

(
Â+ 2Ḟy

))
+ eB1

(
S4
(
Ḃ1

2 cosh2(G) + 3Ḃ2
2 + Ġ2 + 4φ̇2

)
− 3S3ṠA′

)
= 0

(A.9)

4eB1S3Ḟx
′ + eB1

(
2S3

((
Ã+ 2Ḟx

) (
B′1 cosh2(G) +B′2

)
+ 2Ã′ + 2 ˜̇B1 cosh2(G)

+2Ḃ1
(
B̃1 cosh2(G) + G̃ sinh(2G)

)
+ 2 ˜̇B2 + 6Ḃ2B̃2 + 2ĠG̃+ 8φ̇φ̃−A′F ′x

)
+ 4S2(

−S′
(
Ã+ 2Ḟx

)
+ 3S̃

(
Ḃ1 cosh2(G) + Ḃ2

)
+ 4 ˜̇S + 3ṠF ′x

)
− 16ṠSS̃

)
+ eB1+B2(

4S sinh(G)
(
F̂x
(
F ′x − 2B̃2

)
+ 2B̃2F̃y − F̃xF ′y − F×x + F̄y

)
+ 4S̃ sinh(G)

(
F̂x − F̃y

))
+ eB2

(
4S cosh(G)

(
2B̂2

(
F̂x − F̃y

)
+ F̃yF

′
y − F×y − F̂yF ′x + F ?x

)
+ 4Ŝ cosh(G)

(
F̃y − F̂x

))
+ S3

(
−
(
Â+ 2Ḟy

) (
B′1 sinh(2G) + 2G′

)
+ 4B̂1Ġ− 2 ˆ̇B1 sinh(2G) + 2Ḃ1

(
B̂1 sinh(2G)

−2Ĝ cosh(2G)
)
− 4 ˆ̇G

)
− 6ŜS2

(
Ḃ1 sinh(2G) + 2Ġ

)
= 0

4S3Ḟy
′ + eB1

(
S3
((
Ã+ 2Ḟx

) (
B′1 sinh(2G)− 2G′

)
− 4ĠB̃1 + 2 ˜̇B1 sinh(2G) + 2Ḃ1

(
B̃1 sinh(2G)

+2G̃ cosh(2G)
)
− 4 ˜̇G

)
+ 6S2S̃

(
Ḃ1 sinh(2G)− 2Ġ

))
+ eB2

(
4S sinh(G)

(
2B̂2

(
F̂x − F̃y

)
+F̃yF ′y − F×y − F̂yF ′x + F ?x

)
+ 4Ŝ sinh(G)

(
F̃y − F̂x

))
+ eB1+B2

(
4S cosh(G)

(
F̂x
(
F ′x − 2B̃2

)
+2B̃2F̃y − F̃xF ′y − F×x + F̄y

)
+ 4S̃ cosh(G)

(
F̂x − F̃y

))
+ 2S3

(
−A′F ′y −

(
Â+ 2Ḟy

)
(
B′1 cosh2(G)−B′2

)
+ 2Â′ − 2 ˆ̇B1 cosh2(G) + 2Ḃ1

(
B̂1 cosh2(G)− Ĝ sinh(2G)

)
+ 2 ˆ̇B2 + 6Ḃ2B̂2

+2ĠĜ+ 8φ̇φ̂
)

+ 4S2
(
−S′

(
Â+ 2Ḟy

)
+ 3Ŝ

(
Ḃ2 − Ḃ1 cosh2(G)

)
+ 3ṠF ′y + 4 ˆ̇S

)
− 16ṠŜS

= 0
(A.10)
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Tracking the Apparent Horizon

We find the Apparent Horizon by imposing that the outgoing null-ray congruence has vanishing
expansion while the ingoing one has negative. In other words, we find the marginally trapped
surface . We can construct the tangent vector to such outgoing congruence using the ingoing
null rays, n, together with the form perpendicular to the AH, s,

= Ns (−∂tσdt− ∂yσdy − ∂yσdy + dr) ,
= −Nn∂r,

(B.1)

The normalisation factors, Ns and Nn, can be computed by imposing s2 = 1 and s ·n = −1/
√

2.
Outgoing light ray tangent vector is then,

lµ =
√

2sµ + nµ, (B.2)

with normalization, l · n = −1. The expansion then follows,

θl = hµν∇µlν , (B.3)

where
hµν = gµν + lµnν + lνnµ (B.4)

is the induced metric over hypersurfaces normal to both in- and out-going null rays. The AH
should be the surface σ(t, x, y) such that it vanishes the expansion r = θl,

2eB2 (Fy + ∂yσ)
(
S
(
eB1 cosh(G)

(
G̃+G′ (Fx + ∂xσ)

)
+ eB1 sinh(G)

(
B̃2 +B′2 (Fx + ∂xσ)

)
+ cosh(G)

(
B′1 (Fy + ∂yσ) + B̂1

)
− cosh(G)

(
B′2 (Fy + ∂yσ) + B̂2

)
− sinh(G)

(
G′ (Fy + ∂yσ) + Ĝ

))
+eB1 sinh(G)

(
S̃ − 2S′ (Fx + ∂xσ)

)
− cosh(G)

(
S′ (Fy + ∂yσ) + Ŝ

))
− 2eB1+B2 (Fx + ∂xσ)(

S
(
eB1

(
cosh(G)

(
B̃1 +B′1 (Fx + ∂xσ)

)
+ cosh(G)

(
B̃2 +B′2 (Fx + ∂xσ)

)
+ sinh(G)

(
G̃+G′ (Fx + ∂xσ)

))
− sinh(G)

(
B′2 (Fy + ∂yσ) + B̂2

)
− cosh(G)

(
G′ (Fy + ∂yσ) + Ĝ

))
+eB1 cosh(G)

(
S̃ + S′ (Fx + ∂xσ)

)
− sinh(G)

(
S′ (Fy + ∂yσ) + Ŝ

))
+ S

(
eB1

(
2eB2 sinh(G)(

F̃y + F ′y (Fx + ∂xσ) + ∂xyσ
)
− 2eB1+B2 cosh(G)

(
F̃x + F ′x (Fx + ∂xσ) + ∂xxσ

)
+ 6SṠ

)
+2eB1+B2 sinh(G)

(
F ′x (Fy + ∂yσ) + F̂x + ∂xyσ

)
− 2eB2 cosh(G)

(
F ′y (Fy + ∂yσ) + F̂y + ∂yyσ

))
+ 3e2B1+B2 cosh(G)S′ (Fx + ∂xσ) 2 + 3eB2 cosh(G)S′ (Fy + ∂yσ)2 = 0,

(B.5)
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where every function is evaluated at the r = σ(x, y). If, on the contrary, we want to impose
zero expansion at constant coordinate r we simply do σ(t, x, y) = r = constant,

Θ = −2eB1+B2Fx
(
S
(
eB1

(
cosh(G)

(
B̃1 +B′1Fx

)
+ cosh(G)

(
B̃2 +B′2Fx

)
+ sinh(G)

(
G̃+ FxG

′
))

− sinh(G)
(
B′2Fy + B̂2

)
− cosh(G)

(
FyG

′ + Ĝ
))

+ eB1 cosh(G)
(
S̃ + FxS

′
)
− sinh(G)

(
FyS

′ + Ŝ
))

+ 2eB2Fy
(
S
(
eB1 cosh(G)

(
G̃+ FxG

′
)

+ eB1 sinh(G)
(
B̃2 +B′2Fx

)
+ cosh(G)

(
B′1Fy + B̂1

)
− cosh(G)

(
B′2Fy + B̂2

)
− sinh(G)

(
FyG

′ + Ĝ
))

+ eB1 sinh(G)
(
S̃ − 2FxS′

)
− cosh(G)

(
FyS

′ + Ŝ
))

+ S
(
eB1

(
2eB2 sinh(G)

(
F̃y + FxF

′
y

)
− 2eB1+B2 cosh(G)

(
F̃x + FxF

′
x

)
+ 6SṠ

)
+2eB1+B2 sinh(G)

(
FyF

′
x + F̂x

)
− 2eB2 cosh(G)

(
FyF

′
y + F̂y

))
+ 3e2B1+B2F 2

x cosh(G)S′

+ 3eB2F 2
y cosh(G)S′

(B.6)
This new expansion is the one involved in (2.16).

Solving the differential equation (B.5) for the AH location means solving a non-linear PDE
of the form,

L
(
σ, ∂σ, ∂2σ

)
= αxx(t, σ, x, y)∂xxσ + αxy(t, σ, x, y)∂xyσ + αyy(t, σ, x, y)∂yyσ

+ βxx(t, σ, x, y) (∂xσ)2 + βxy(t, σ, x, y)∂xσ∂yσ + βyy(t, σ, x, y) (∂yσ)2

+ γx(t, σ, x, y)∂xσ + γy(t, σ, x, y)∂yσ + δ(t, σ, x, y) = 0,

(B.7)

where

αxx = −eB1+B2S cosh(G),
αxy = 2eB2S sinh(G),
αyy = −eB2−B1S cosh(G),

βxx = 1
2e

B1+B2
(
cosh(G)S′ − 2S

(
B′1 cosh(G) +B′2 cosh(G) +G′ sinh(G)

))
,

βxy = eB2
(
2S
(
B′2 sinh(G) +G′ cosh(G)

)
− sinh(G)S′

)
,

βyy = 1
2e

B2−B1
(
2S
(
B′1 cosh(G)−B′2 cosh(G) +G′(− sinh(G))

)
+ cosh(G)S′

)
,

γx = eB2
(
S
(
−eB1G̃ sinh(G)− eB1B̃1 cosh(G)− eB1B̃2 cosh(G)− 2eB1FxG

′ sinh(G)

−2eB1B′1Fx cosh(G)− 2eB1B′2Fx cosh(G)− eB1 cosh(G)F ′x + 2B′2Fy sinh(G) + B̂2 sinh(G)

+2FyG′ cosh(G) + sinh(G)F ′y + Ĝ cosh(G)
)
− eB1S̃ cosh(G) + eB1Fx cosh(G)S′

−Fy sinh(G)S′ + Ŝ sinh(G)
)
,

γy = eB2−B1
(
S
(
eB1B̃2 sinh(G) + eB1G̃ cosh(G) + 2eB1FxG

′ cosh(G) + 2eB1B′2Fx sinh(G)

+eB1 sinh(G)F ′x + 2B′1Fy cosh(G)− 2B′2Fy cosh(G) + B̂1 cosh(G)− B̂2 cosh(G)

−2FyG′ sinh(G)− cosh(G)F ′y − Ĝ sinh(G)
)

+ eB1S̃ sinh(G)− eB1Fx sinh(G)S′

+Fy cosh(G)S′ + Ŝ(− cosh(G))
)
,

δ = −eB2−B1S
(
−Fy

(
eB1B̃2 sinh(G) + eB1G̃ cosh(G) + 2eB1FxG

′ cosh(G) + 2eB1B′2Fx sinh(G)

+eB1 sinh(G)F ′x + B̂1 cosh(G)− B̂2 cosh(G)− cosh(G)F ′y − Ĝ sinh(G)
)

+ eB1Fx
(
eB1G̃ sinh(G)

+eB1B̃1 cosh(G) + eB1B̃2 cosh(G) + eB1 cosh(G)F ′x − B̂2 sinh(G)− sinh(G)F ′y − Ĝ cosh(G)
)
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+e2B1 cosh(G)F̃x − eB1 sinh(G)F̃y + e2B1F 2
x

(
B′1 cosh(G) +B′2 cosh(G) +G′ sinh(G)

)
+F 2

y

(
−B′1 cosh(G) +B′2 cosh(G) +G′ sinh(G)

)
− eB1F̂x sinh(G) + F̂y cosh(G)

)
+ 1

2e
B2−B1

(
−2Fy

(
Ŝ cosh(G)− eB1 sinh(G)

(
S̃ − FxS′

))
+ eB1Fx

(
2Ŝ sinh(G)

−eB1 cosh(G)
(
2S̃ − FxS′

))
+ F 2

y cosh(G)S′
)

+ 3ṠS2,

We solve it by using relaxation methods. We linearize the equation around a guess, solve it and
iterate until we converge to the solution. Expanding the operator L around σ0(t, x, y),

L
(
σ, ∂σ, ∂2σ

)
=
(
L+ ∂L

∂σ
+ ∂L
∂(∂xσ)∂x + ∂L

∂(∂yσ)∂y + ∂L
∂(∂xxσ)∂xx + ∂L

∂(∂xyσ)∂xy

+ ∂L
∂(∂yyσ)∂yy

)
σ=σ0

δσ +O
(
δσ2

)
= 0,

(B.8)

where δσ = σ(x, y)− σ0(x, y). The associated linear problem for the correction δσ is,

[αxx(σ0)∂xx + αxy(σ0)∂xy + αyy(σ0)∂yy + (γx(σ0) + 2βxx(σ0)∂xσ0 + βxy(σ0)∂yσ0) ∂x
+ (γy(σ0) + 2βyy(σ0)∂yσ0 + βxy(σ0)∂xσ0) ∂y + ∂σL(σ0)] δσ = −L(σ0, ∂σ0, ∂

2σ0),
(B.9)

which is a linear PDE already described how to solve during the thesis.
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