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Abstract

Recent architectures in Deep Convolutional Neural Networks (DCNNs) have a very

high number of trainable parameters and, consequently, require plenty of hardware

and time to run. It’s also commonly found in the literature that most parameters in a

DCNN are redundant. This thesis presents two methods for reducing the number of

parameters and floating-point computations in existing DCNN architectures applied

for image classification. The first method reduces parameters in the first layers of a

neural network, while the second method reduces parameters in deeper layers.

The first method is a modification of the first layers of a DCNN that splits the

channels of an image encoded with CIE Lab color space in two separate branches, one

for the achromatic channel and another for the remaining chromatic channels. We

modified an Inception V3 architecture to include one branch specific for achromatic

data (L channel) and another branch specific for chromatic data (AB channels).

This modification takes advantage of the decoupling of chromatic and achromatic

information. Besides, splitting branches reduces the number of trainable parameters

and computation load by up to 50% of the original figures in the modified layers.

We achieved a state-of-the-art classification accuracy of 99.48% on the PlantVillage

dataset. This thesis also shows that this two-branch method improves image

classification reliability when the input images contain noise.

Besides the first layers in a DCNN, in deeper layers of some recent DCNN

architectures, more than 80% of the parameters come from standard pointwise

convolutions. The parameter count in pointwise convolutions quickly grows due

to the multiplication of the filters and input channels from the preceding layer.

The second optimization method introduced in this thesis is making pointwise

convolutions parameter-efficient via parallel branching to handle this growth. Each

branch contains a group of filters and processes a fraction of the input channels.

To avoid degrading the learning capability of DCNNs, we propose interleaving the

filters’ output from separate branches at intermediate layers of successive pointwise

convolutions. We tested our optimization on an EfficientNet-B0 as a baseline

architecture and made classification tests on the CIFAR-10, Colorectal Cancer
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Histology, and Malaria datasets. For each dataset, our optimization saves 76%, 89%,

and 91% of the number of trainable parameters of EfficientNet-B0, while keeping its

test classification accuracy.

Keywords: EfficientNet, Deep Learning, Computer Vision, Image

Classification, Convolutional Neural Network, CNN, DCNN, Grouped Convolution,

Pointwise Convolution, Neural Network Optimization, Parameter Reduction,

Parallel Branches, Channel Interleaving.
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CHAPTER1

Introduction

This introductory chapter comments on some major scientific achievements in

artificial intelligence relevant to this thesis. The datasets used in this thesis are

detailed. This chapter also presents this thesis’s scientific dissemination via already

published papers. Finally, the thesis organization is described.

1.1 Deep learning

Fukushima (1980) devised a layered artificial neural network inspired by the visual

cortex structure for image classification. Such a network showed that the first layer

contains neurons detecting simpler patterns with a small receptive field. Deeper

layers detect more complex patterns with wider receptive fields by composing

patterns from previous layers.

1

UNIVERSITAT ROVIRA I VIRGILI 
EFFECTIVE APPROACHES FOR IMPROVING THE EFFICIENCY OF DEEP CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE CLASSIFICATION 
Joao Paulo Schwarz Schuler 



2

LeCun et al. (1989a) devised the first Convolutional Neural Network (CNN),

which mimicked the organization of neural cells in the visual cortex as convolutional

filters. This new type of neural network could accurately recognize 10 digits in

hand-written text.

Krizhevsky et al. (2012) achieved a breakthrough in the ImageNet Large Scale

Visual Recognition Challenge with their AlexNet architecture. Since then, many

other CNN architectures have been introduced: ZFNet Zeiler (2014), VGG Simonyan

and Zisserman (2015), GoogLeNet Szegedy et al. (2015), ResNet He et al. (2016a),

DenseNet Huang et al. (2017) and others. Since the number of layers has increased

from 5 to more than 200, those models are called “deep learning”.

1.2 CNNs and color spaces

Most existing CNNs are trained with the basic Red-Green-Blue (RGB) color values of

input pixels. Despite this being the obvious choice taking into account that digital

images are usually encoded in RGB, it is curious that very few researchers have

attempted to train their networks on images encoded with other color spaces such

as Hue-Saturation-Lightness (HSL) or CIE-LAB, the definition of which are vastly

known and long-standing in the fields of color perception Robertson (1992) and

colorimetry Wyszecki et al. (1982).

1.3 Pointwise convolutions

Pointwise convolutions have 1x1 kernels with one trainable parameter per input

channel. These kernels do not consider neighboring positions such for example, 3x3

filters. Each filter in typical pointwise convolutions has one trainable parameter per

input channel. It is important to note that more than 80% of the parameters in the

most recent CNN architectures are found in pointwise convolutions.
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1.4. Pruning methods 3

1.4 Pruning methods

Most parameters in DCNNs are redundant Denil et al. (2013); Cheng et al. (2015);

Yang et al. (2019); Kahatapitiya and Rodrigo (2021); Liebenwein et al. (2021).

Existing pruning methods remove connections and neurons found irrelevant

by different techniques. After training the original network with the full set of

connections, the removal is done LeCun et al. (1989b); Reed (1993); Zhuang et al.

(2018); Han et al. (2016); Baykal et al. (2019); Liebenwein et al. (2020).

1.5 Thesis objectives

The main objective of this thesis is to reduce the number of parameters and

floating-point operations in DCNNs while maintaining or improving classification

accuracy.

Our working hypothesis is that such reduction can be achieved effectively through

filter grouping inside some specific layers. This means that all filters (neurons)

in the target layer are split into parallel branches, each dealing with a subset of

the input channels. This prevents many neural connections from being formed,

which is not convenient. However, the reduced set of connections in each branch

can specialize in recognizing specific features, which leads to a functional DCNN

that needs significantly fewer resources (fewer parameters and fewer floating point

calculations).

In this thesis, we exploit filter grouping in the first filters of the DCNNs, based on

the color separation into achromatic and chromatic channels and the deeper pointwise

convolutional layers.

The approaches proposed in this thesis differ from existing pruning as we reduce

the number of connections before the training starts, while pruning does after

training. Therefore, our methods can save computing resources during training time.
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1.6 Scientific dissemination

The work presented in this thesis has been disseminated via 5 open access papers,

three journal papers, and two conference papers.

1.6.1 Journal articles

One paper was published in the Entropy Journal, and another two papers were

published in Mendel Journal.

The following paper was published in the Entropy journal:

Joao Paulo Schwarz Schuler, Santiago Romani, Domenec Puig, Hatem Rashwan,

Mohamed Abdel-Nasser An Enhanced Scheme for Reducing the

Complexity of Pointwise Convolutions in CNNs for Image

Classification Based on Interleaved Grouped Filters without

Divisibility Constraints, Entropy. (Schwarz Schuler et al. (2022a)).

According to ISI-JCR, the entropy journal has an impact factor of 2.738 (Q2,

Physics, multidisciplinary).

Two papers were published in the Mendel journal:

1. Joao Paulo Schwarz Schuler, Santiago Romani, Mohamed Abdel-Nasser,

Hatem Rashwan, Domenec Puig, Grouped Pointwise Convolutions

Reduce Parameters in Convolutional Neural Networks, Mendel.

(Schwarz Schuler et al. (2022c))

2. Joao Paulo Schwarz Schuler, Santiago Romani, Mohamed Abdel-Nasser,

Hatem Rashwan, Domenec Puig, Color-Aware Two-Branch DCNN for

Efficient Plant Disease Classification, Mendel. (Schwarz Schuler et al.

(2022b)).

According to SJR Scimago, the Mendel journal has an SJR of 0.2 (Q4, Artificial

Intelligence).
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1.7. Thesis organization 5

1.6.2 Conference Papers

Two papers were presented at 23rd International Conference of the Catalan

Association for Artificial Intelligence (CCIA2021):

1. Joao Paulo Schwarz Schuler, Santiago Romani, Mohamed Abdel-Nasser,

Hatem Rashwan, Domenec Puig, Reliable Deep Learning Plant Leaf

Disease Classification Based on Light-Chroma Separated Branches,

Artificial Intelligence Research and Development, pp. 375-382, IOS Press, 2021.

(Schuler et al. (2021b))

2. Joao Paulo Schwarz Schuler, Santiago Romani, Mohamed Abdel-Nasser,

Hatem Rashwan, Domenec Puig, Grouped Pointwise Convolutions

Significantly Reduces Parameters in EfficientNet, Artificial

Intelligence Research and Development, pp. 383-391, IOS Press, 2021.

(Schuler et al. (2021a))

1.7 Thesis organization

The thesis is outlined as follows. In chapter 2, we analyze a CNN classifying the

CIFAR-10 dataset encoded in the RGB, HSV, HSL, and CIE-LAB color spaces. We

show that CNNs can learn filters dedicated to chromatic and achromatic patterns.

We devised a modification of the first layer that splits the channels of an image

encoded with HSL, LAB, or similar color space into two separate paths, one for the

achromatic channel and another for the remaining chromatic channels. This change

reduces DenseNet-BC L40 forward pass floating point computations by 33% while

maintaining the baseline classification accuracy. This chapter gives the basis for the

following two chapters.

In chapter 3, inspired on chapter 2, we modified an Inception V3 to process

CIE Lab encoded images. We created one branch specific for achromatic data (L

channel) and another for chromatic data (AB channels). In the modified layers, we

reduced the number of trainable parameters and computation load by up to 50%.

We achieved a state-of-the-art classification accuracy of 99.48% on the PlantVillage
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dataset and 76.91% on the Cropped-PlantDoc dataset. The results of this chapter

are published in Schwarz Schuler et al. (2022b).

In chapter 4, we show that the two-branch Inception V3 introduced in chapter 3

provides better classification reliability when perturbing the images with noise (salt

and pepper, blurring, motion blurring, and occlusions). We hypothesize that the

filters in the AB branch provide noise resistance due to their relatively low frequency

in the image-space domain. The results of this chapter are published in Schuler et al.

(2021b).

In chapters 2, 3 and 4, we show an optimization done along the first layers of a

CNN. In contrast, chapter 5 shows an optimization done in deeper layers of a CNN.

In some well-known CNN architectures, most parameters are found in pointwise

convolutions. The number of parameters in pointwise convolutions quickly grows

due to the multiplication of the filters and input channels from the preceding layer.

To mitigate this growth by grouping filters, chapter 5 proposes a new technique that

makes pointwise convolutions parameter-efficient. We tested this optimization with

EfficientNet, DenseNet-BC L100, MobileNet, and MobileNet V3 Large architectures.

The results of this chapter are published in Schwarz Schuler et al. (2022b).

Chapter 6 refines the algorithm shown in chapter 5 so groups of filters can

cope with non-divisible numbers of input channels and filters. This refined method

further reduces the number of floating-point computations (11%) and trainable

parameters (10%) achieved in the previous chapter. We made classification tests on

the CIFAR-10, Colorectal Cancer Histology, and Malaria datasets. For each dataset,

our optimization saves 76%, 89%, and 91% of the number of trainable parameters

of EfficientNet-B0, while keeping its test classification accuracy. Most results of this

chapter are published in Schwarz Schuler et al. (2022a).

Chapter 7 presents the thesis’s conclusion and future research lines.

References are presented at the end of the thesis.
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CHAPTER2

L+AB branches - Introductory example

In this chapter, we have experimented with minimal CNN architectures to analyze

their behavior in front of different color encoding of input images. Specifically, we

have tested the CIFAR-10 classification task on images encoded with Grayscale and

RGB, HSV, HSL, and CIE-LAB color spaces. Our aim is not to find an optimal

classification network but to acquire insights into how CNNs deal with color-related

information. As one of the main contributions, we show that CNNs can learn some

filters dedicated to achromatic patterns independently from other filters dedicated to

chromatic patterns, achieving similar results in all color spaces. We have also devised

a modification of the first layer that splits the channels of an image encoded with HSL,

LAB, or alike color space in two separate paths, one for the achromatic channel

and another for the remaining chromatic channels, which reduces DenseNet-BC

L40 forward pass floating-point computation in 33% while maintaining the baseline

classification accuracy.

7
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2.1 Introduction

The work of Zeiler (2014) is interesting to this thesis as they performed an in-depth

study of the content of the convolutional filters of all layers after training the AlexNet

and their ZFNet for the ImageNet dataset. Visualizing the obtained weights gave

clues for understanding which features are learned by the convolutional filters, from

small details in the first layer (yet pointed out in Krizhevsky et al. (2012)) to object

parts in the top layers.

The rationale behind trying other color spaces than RGB is based on the evidence

that the human color vision transforms the initial neural signals from cones and rods

into an opponent color model Hering (1920), where several layers of neurons convert

the Short (CS), Medium (CM) and Large wavelength (CL) neural signals, loosely

related to blue, green and red hues, into other neural signals, symbolically stated in

equation 2.1:

GR = α1 · CM − α2 · CL

BY = β1 · CS − β2 · CM − β3 · CL

WB = γ1 · CS + γ2 · CM + γ3 · CL

(2.1)

Equation 2.1 is an empiric model of the reinforcement (addition) and inhibition

(subtraction) of neural signals, which results in two chromatic signals contrasting

green against red features (GR) and blue against yellow features (BY) of a color

stimulus. An achromatic channel (WB) combines all primary signals to obtain

brightness information (white and black). From the point of view of human color

perception Robertson (1992), these opponent signals are further processed and

converted into perceptual color components named Hue, Saturation, and Lightness.

Several computational models convert RGB into HSL-related components, for

example, Smith’s HSI Smith (1978) and Yagi’s HSV Nakatani (1942).

From the point of view of colorimetry Wyszecki et al. (1982), CIE Lab is one of

the most common color coordinates where color differences appreciated by humans

are uniform throughout the color space. From a mathematical point of view, RGB

components are highly correlated. An increase in light intensity affects all three RGB
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2.1. Introduction 9

channels proportionally. Therefore, we can search for a linear transformation that

maps RGB values into another 3D space defined by uncorrelated eigenvectors. For

example, Otha et al. Ohta et al. (1980) defined the I1-I2-I3 color space utilizing a

Karhunen-Loewe analysis of some RGB color samples extracted from eight natural

images. The obtained transformation is expressed in equation 2.2, where the first

uncorrelated direction, I1, is defined by the diagonal (light) of the RGB space:

I1 = (R +G+B)/3

I2 = (R−B)/2

I3 = (2G−R−B)/4

(2.2)

In general, we can observe that most color representations based on

human perception or mathematical significance of color information provide a

three-component color space, where one of the components is achromatic (WB, L, V,

I1). The other two carry the chromaticity of the color (GR/BY, H/S, A/B, I2/I3).

Therefore, it seems evident that any CNN design may be improved by transforming

the RGB channels of an input image into achromatic/chromatic channels. Hence the

filters may specialize in achromatic/chromatic features of the images, similar to the

human visual system.

The hypothesis behind this proposal is that CNNs may work more efficiently in

learning objects in the input images when dealing with these two types of information

separately since they respond to different types of visual phenomena: variations in

the achromatic channel usually stand for light intensity changes due to shadows,

shading or texture, while variations in the chromatic channels usually stand for the

intrinsic color of the object surfaces (materials), which may indicate the limits of

object parts or the limit of one object in front of another object or background

Shafer (1992); Romańı (2006); Gevers et al. (2012).

Few papers have addressed the design and evaluation of CNNs learning color

components like HSL or LAB Sutherland (1982); Napoletano (2017); Bianco et al.

(2017); Mody et al. (2017). Besides, only a tiny subset evaluates the performance

under several color spaces. For example, Cheng et al. Cheng and Guo (2017) modeled
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a CNN for rock granularity classification using either HSV, YCbCr, or RGB pixel

values. They reported very high accuracies (above 98%) in all three color spaces,

with a slight improvement of 1.9% of HSV over RGB. Still, it is not conclusive proof

for our hypothesis since we suspect that texture features are more relevant than color

in the given image dataset. Hence the referred CNN may have worked similarly with

gray-level images. Gowda and Yuan (2019) experimented with CIFAR-10 image

classification with RGB, HSV, YUV, YIQ, XYZ, YPbPr, YCbCr, HED, and LCH

and CIE Lab color spaces and achieved higher classification accuracy with CIE Lab

color space.

2.2 Methodology

To check our hypothesis, we will perform image classification experiments on the

CIFAR-10 dataset Krizhevsky (2009), which consists of 60k 32x32 RGB labeled

images belonging to 10 different classes: airplane, automobile, bird, cat, etc. These

images are taken in natural and uncontrolled lighting environments and contain only

one prominent instance of the object to which the class refers. The object may be

partially occluded or seen from an unusual viewpoint.

Firstly, we aim to explore a small CNN able to obtain a reasonable test accuracy

(above 80%) in the CIFAR-10 image classification task to compare its behavior

(accuracy variation, patterns in first layer filters, etc.) with various color encodings

from the basic RGB to HSL or LAB, as well as the bare gray level value of pixels

(colorless images). Secondly, we aim to retest our hypothesis with a DenseNet

architecture Huang et al. (2017) as it promotes feature reuse and provides good

classification accuracy.

2.2.1 Small architecture

As a baseline, we defined a single-branch CNN architecture small enough to classify

the CIFAR-10 dataset with at least 80% test accuracy in less than one hour. This

single-branch architecture is described in section 2.2.1.1. In section 2.2.1.2, we
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2.2. Methodology 11

describe a two-branch CNN architecture that separates achromatic from chromatic

components. Common settings for both architectures are described in section 2.2.1.3.

2.2.1.1 Baseline single-branch CNN architecture

We have tested several configurations for our baseline CNN: 2, 4, 8, and 12 inner

convolutional layers with 2, 4, 8, and 12 inner fully connected layers. The number of

filters in each convolutional layer has also been scanned with 16, 32, 64, 96, and 128

filters per layer. We have found that the results are good enough for our purposes

with only 2 inner convolutional layers and 2 inner fully connected layers. Therefore,

we propose to analyze the outputs of a basic CNN composed of the layers detailed

in table 2.1 and shown in figure 2.1.

Figure 2.1: Graphical representation of the single-branch baseline CNN architecture

Stage
Input
size

Filter
size

Stride Padding
Number
of filters

Activation
function

1st conv. 32x32x{3,1} 5x5 1x1 0 64 ReLU
Max. pool. 28x28x64 4x4 4x4 0 – –
2nd conv. 7x7x64 3x3 1x1 1 64 ReLU
3nd conv. 7x7x64 3x3 1x1 1 64 ReLU
1st dense 3136 – – – 32 ReLU
2nd dense 32 – – – 32 ReLU
3nd dense 32 – – – 10 Softmax

Table 2.1: Single-branch baseline CNN detailed architecture layer by layer. The input size is given
as height x width x number of channels. Padding is given as the number added to each side. Filter
size is given as height x width pixels.

We tested this architecture with RGB, HSV, HSL, and CIE-LAB color
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components, as well as with the gray-scale (GRAY) transformation of the input

images. GRAY images contain one single channel, while, for color components,

images contain three channels. Since the number of channels processed by the first

layer filters must adapt to the input, the first convolution input size is set accordingly

to 32x32x1 or to 32x32x3 (see table 2.1).

2.2.1.2 Two-branch chromaticity-aware architecture

Inspired by Deep Roots Ioannou et al. (2017), multipath convolutional neural

networks Wang (2015) and dual path neural networks Chen et al. (2017), we create

parallel branches for better learning of color features, so we split the first layers of

our CNN into two parallel branches, one dedicated to achromatic data (L) and the

other to chromatic data (AB). We intend to take advantage of separated chromatic

and achromatic channels, which are readily available in color spaces such as CIE

Lab.

To this aim, we propose to create two separate paths for the first convolutional

layer, each one dedicated to each type of pixel information (achromatic/chromatic),

to specialize the first layer filters of the CNN to the mentioned aspects of the scene

(light variations, object boundaries). We hypothesize that this specialization may

lead to better object identification due to a more object-related representation of the

image.

The chromatic channels (such as the AB channels in the CIE Lab) should not be

further split into separate channels because the chromaticity of the pixels is encoded

in both coordinates simultaneously.

Figure 2.2 shows the proposed two-branch architecture, where the top branch

processes the single achromatic channel while the bottom branch processes the two

chromatic channels. For example, we can convert RGB into CIE-LAB color encoding.

Hence the L channel is fed into the top branch, while the AB channels are fed into

the bottom branch. In the case of the HSL/HSV color spaces, the L or V channel

goes to the top branch, while the HS channels go to the bottom branch.

In this framework, any input image is split into a 32x32x1 achromatic volume
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2.2. Methodology 13

Figure 2.2: Graphical representation of the two-branch CNN architecture.

and a 32x32x2 chromatic volume. Achromatic filters have 5x5x1 weights, while

chromatic filters have 5x5x2 weights. We define M achromatic and N chromatic

filters, keeping the sum of M plus N equal to 64 for coherence with the baseline

model. The activation maps generated by each type of filter are max pooled into

7x7xM and 7x7xN volumes, respectively, which are then concatenated into a single

7x7x64 volume. Experimenting with various M and N values allows us to find

an optimal distribution of the CNN’s representational power for achromatic and

chromatic information.

2.2.1.3 Implementation Details

We trained our CNNs from scratch and stopped the training at 350 epochs, as

training and test accuracies/losses used to plateau after 300 epochs. We picked

128 samples per batch and Momentum Gradient Descent with γ = 0.9 following

the AlexNet approach Krizhevsky et al. (2012). The learning rate is initialized to

0.001 in all layers, multiplied by 0.6 every 50 epochs. Learning rate initialization

and decay parameters were found via experimentation. We used 40,000 images for

training, 10,000 images for validation, and another 10,000 for testing, with a balanced

distribution of classes in all subsets, as it is split in the original database.

In all color spaces, values in image channels were scaled into the interval [-2, 2]
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using 32 bits of single floating-point values. To combat overfitting, we have used

several data augmentation methods on the training subset:

• Images are flopped (mirror-reversed across the vertical axis) with a probability

of 50%. This procedure doubles the points of view of the training objects.

• Images are randomly cropped and then resized back to the original size of 32x32

pixels. For each axis, a random number of pixels (from 0 to 8) is cropped.

Hence, we may find images with sizes such as 32x24, 27x30, or 26x26. When

resizing back to 32x32, images might look stretched on one axis and expanded

on the other. The initial position from where the original image is cropped is

also random. This procedure provides slight re-scaling of training objects in

both axes, fostering a certain degree of scale-invariance for object detection.

• Images are made gray with a probability of 25%. This procedure turns off color

information from the training images, which enforces the learning of achromatic

features. Other probabilities such as 0% (gray transformation disabled), 12%,

and 50% have been tested, but 25% has provided the best results.

2.2.2 DenseNet

We’ve chosen a small DenseNet-BC L40 with data augmentation for CIFAR-10

classification as a baseline so we could run experiments quickly. Our DenseNet

parameters are growth rate k = 12, bottleneck B = 48, compression C = 0.5 and 24

filters in the first convolutional layer.

2.2.2.1 Two-path DenseNet-BC L40

We replaced all convolutions before the first transition block with two branches:

the achromatic branch has a first layer with 16 filters followed by convolutions with

growth rate k = 6 and bottleneck B = 24. The chromatic branch has 8 filters in the

first layer, followed by convolutions with k = 6 and B = 24. Both branches are then

concatenated before the first transition block.
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2.3. Results 15

2.3 Results

We first collected results from our small architecture as we could run it in less than

one hour, allowing us to analyze our hypothesis faster. Our DenseNet implementation

takes longer to run; therefore, we analyze it as a second step.

2.3.1 Small single-branch baseline

Figure 2.3 shows the 64 first layer filters obtained by our single branch CNN trained

with LAB values (fig. 2.3a and 2.3b) and with the original RGB values (fig. 2.3c).

Figure 2.3: Full sets of 64 filters: a) L channel from LAB filters represented in grayscale; b) AB
channels from LAB filters. c) Baseline RGB filters.

While in fig. 2.3c each filter is visualized using the obtained 3-channel weights

as RGB colors; for LAB filters, we have separated the visual representation of the

L weights (fig. 2.3a) from the AB weights (fig. 2.3b), to make it clear the patterns

learned by the filters in each subspace (achromatic and chromatic). In fig. 2.3a, the

L weights are rendered as gray levels. In fig. 2.3b, the AB weights are concatenated

with the maximum value for the L range and then converted back to RGB to enhance

its visualization.

In this way, it is clear that some neurons (filters) converge towards color pattern

detection, while other neurons converge to gray-level geometric pattern detection,

similar to Gabor filters Glorot and Bengio (2010). For example, in fig. 2.3b, filters

E1 (green), H3 (red), A7 (bluish), and E7 (yellowish) have converged into one-color

filters. In contrast, filters C0, H1, C2, F3, and A4 have converged into two-opponent
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color filters, similar to the human eye’s opponent color perception. Looking at the

same filters in the corresponding cells of fig. 2.3a, the weights in the L channel are

generally neutral (uniform mid-level gray) when the weights in the AB channels are

active (see E1, H3, A4, and A7 in fig. 2.3a). Conversely, filters in fig. 2.3 clearly

shows a strong edge/texture detector in the achromatic channel, like B0, G1, D2,

or D7, rendering neutral values in the corresponding cells from fig. 2.3b. In some

cases, however, both achromatic and chromatic channels show distinctive patterns,

like C2, C4, and H7.

Besides, one can find similar filters in figures 2.3a and 2.3b with respect to figure

2.3c. For example, achromatic filter A3 in fig. 2.3a is equivalent to filter A6 in

fig. 2.4c, while chromatic filter C0 in fig. 2.3b is fairly equivalent to filter H1 in

fig. 2.3c. Most filters do not have a counterpart between RGB and LAB runs,

but they represent functional subsets of possible edge and color patterns in different

orientations. For example, filter H1 in fig. 2.3b is the opposite color contrast than

filter H5 in fig. 2.3c, hence they can measure the same low-level visual feature but

with opposite signs in the neural activation.

Branches Color space 1st layer filters 1st layer weights Flops Val. acc.
1 GRAY 64 (1ch) 1600 2.8M 80.9%
1 RGB 64 (3ch) 4800 8.5M 84.4%
1 HSV 64 (3ch) 4800 8.5M 83.7%
1 HSL 64 (3ch) 4800 8.5M 82.5%
1 LAB 64 (3ch) 4800 8.5M 84.7%
2 LAB 3(1ch)+61(2ch) 3125 5.5M (123k+5.4M) 79.3%
2 LAB 11(1ch)+53(2ch) 2925 5.2M (484k+4.7M) 84.0%
2 LAB 22(1ch)+42(2ch) 2650 4.7M (1.0M+3.7M) 84.1%
2 LAB 32(1ch)+32(2ch) 2400 4.3M (1.4M+2.9M) 84.7%
2 LAB 42(1ch)+22(2ch) 2150 3.9M (1.9M+2.0M) 84.8%
2 LAB 53(1ch)+11(2ch) 1875 3.3M (2.3M+1.0M) 84.1%
2 LAB 61(1ch)+3(2ch) 1675 3.0M (2.7M+267k) 83.1%

Table 2.2: Small Single branch and two-branches configurations.

As stated in table 2.2, the validation accuracy obtained with LAB is 84.7%,

which is very similar to the 84.4% obtained with RGB. Experiments with HSV and

HSL have reported similar results in filter appearance (chromatic and achromatic

patterns) and validation accuracy (83.7% and 82.5%, respectively), although some

performance decay is appreciated. We think this decay may be due to the
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2.3. Results 17

non-linearity problems of the HSL-like spaces since Hue is circular (highest and

lowest values are similar colors) and is also very unstable for low saturation values.

In general, we can say that the baseline architecture has found an optimal set of

filters in every color space. Most importantly, the filters in RGB space have naturally

specialized into chromatic and achromatic filters, as in LAB, HSV, and HSL spaces.

Therefore, the fact that RGB components are correlated with each other is not a

problem for CNNs, which can learn achromatic, chromatic, and hybrid patterns.

2.3.2 Small Two-branch L+AB CNN architecture

Figure 2.4 shows two sets of achromatic/chromatic filters obtained by our two-branch

architecture (see section 2.2.1.2) trained with LAB values transformed from the

original RGB values.

Figure 2.4: Two sets of L+AB filters: a) 22 L + 42 AB; b) 42 L + 22 AB.

In both fig. 2.4a and fig. 2.4b, the visualization of achromatic and chromatic

filters have been joined into a single matrix of 64 cells for compactness, although both

types of filters do not share the weights of the other type because they are located in

different branches. Hence, it is not possible to generate inactive weights in the other

subset of channels, as in the case of the one-branch architecture (section 2.3.1). For
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this reason, almost all filters in figure 2.4 are active, besides rare exceptions like C3

in Fig. 2.4a.

Figure 2.4 renders patterns similar to the ones shown in figure 2.3 for both

achromatic and chromatic features. For example, the achromatic subset presents

the typical Gabor-like patterns for edges and texture detection, like G0, G1, and

D2 in fig. 2.4a, which are also present in G2, B2, and B5 in fig. 2.4b, and also in

G1, D2, and A5 in fig. 2.3a, respectively. We could also find some similar filters in

fig. 2.3c (RGB filters), as F6, D4, and D7, although the last one is a hybrid filter,

sensitive to the achromatic pattern and a chromatic bluish shade.

In figure 2.4a, we find one-chromatic filters, like A4, A5, and A6, which are similar

to C7, E6, and F5 in fig. 2.4b. In the case of two-opponent chromaticity filters, H5

in fig. 2.4a is similar to B7 in fig. 2.4b, and also to F3 in fig. 2.3b.

We have checked different splits of L and AB filters in the first layer of the

two-branch architecture to find the best balance for achromatic/chromatic filters at

the CIFAR-10 classification task. The visual comparison of subsets of filters in fig.

2.4a and fig. 2.4b is not conclusive, although it seems that 42 chromatic filters may

be too many because some patterns in fig. 2.4a are similar or color-inverted, like

D4:H2, B7:E7, and E4:G5 (inverted colors). On the other hand, we can also detect

some degree of repetition in the achromatic filters of fig. 2.4b, like E3:G3.

According to the validation accuracies reported in table 2.2, the 42 L + 22

AB configuration is slightly superior (+0.7%) to the 22 L + 42 AB configuration.

Increasing the proportion of L filters does not improve the accuracy, nevertheless.

An equal number of filters for L and AB (32) provides the second best accuracy

(84.7%), but it needs 250 more weights than the 42 L + 22 AB configuration. Hence

the latter is optimal.

Besides, the best accuracy obtained with the two-branch architecture is similar to

that obtained with the one-branch architecture (64 LAB). Still, the former only uses

45% of the number of weights needed in the latter, thus saving 55% of them. This

weight reduction does not decrease the performance since we are getting rid of the

neutral weights that appear in typical one-branch RGB-based approaches (LeNet,
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2.4. Conclusion 19

AlexNet, VGGNet), as well as in our one-branch LAB filters approach.

The two-branch experiments were also made with the HSV and HSL color spaces,

obtaining equivalent results (similar accuracies with fewer weights). However, the

maximum accuracies are slightly below the ones obtained in the LAB space.

2.3.3 DenseNet-BC L40

As shown in table 2.3, required forward pass floating point operations have decreased

by nearly 33% while maintaining the validation accuracy. In our tested hardware,

we observed that the actual training time decreased by more than 33%, possibly

because each path has smaller memory structures avoiding memory bottlenecks.

Branches Color space 1st layer filters Weights Flops Val. acc.
1 RGB 24(3ch) 176k 144M 92.0%
2 LAB 16(1ch)+8(2ch) 150k 97M 91.9%

Table 2.3: DenseNet-BC L40 results.

2.4 Conclusion

From our experiments, we conclude:

• Any CNN dealing with color images easily finds achromatic and chromatic

patterns; the former are Gabor-like filters sensitive to edge/texture features,

while the latter are single or opponent color features sensitive to colored areas

and their boundaries.

• A CNN dealing only with the achromatic component of images (gray level)

is capable of achieving a workable degree of performance (more than 80%

in validation accuracy), but including chromatic information increases this

performance enough (by almost 4%) to consider color as a relevant cue for

object recognition.

• The chromatic filters tend to find a set of single colors (red, green, blue, yellow,

etc.) and opponent-color contrasts (green-magenta, blue-yellow, red-cyan, etc.,

in several orientations) well spread within the color space.
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• When dealing with 3-channel RGB filters, a CNN can adapt to the RGB high

correlation and find pure achromatic, pure chromatic, and hybrid filters.

• When dealing with 3-channel LAB filters or alike (HSV, etc.), a CNN tends

to focus on the achromatic channel or into the chromatic channels, letting the

other subset of filter channels neutral (inactive); this is because LAB channels

are uncorrelated; thus the learning process places the chromatic/achromatic

patterns into the corresponding subset of weights.

• By splitting LAB filter values into two branches, one for L and another for AB,

we can force a CNN to find prototypical sets of achromatic/chromatic filters

but avoid the effect of inactive channels. In this way, the first layer of any

CNN can be optimized by reducing more than 50% of the original number of

weights. Our DenseNet implementation experienced a reduction in 33% of the

required forward pass computation.

• According to our experiments, it seems that achromatic patterns are more

relevant to object recognition than chromatic patterns; this is logical because

object shape tends to be independent of object color (e.g., cars are painted

in many different colors); however, some objects and backgrounds may render

intrinsic colors (e.g., deers are usually brown, the sky and the sea are usually

blue).

In essence, we have devised a modification of the first layer of a CNN into

two branches, which optimizes the number of weights when dealing with a color

encoding that separates achromatic from chromatic channels, such as LAB, HSL,

etc. Although the proposed architecture does not increase the validation accuracy

significantly, it eases the image classification learning of any CNN.
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CHAPTER3

Color-aware two-branch DCNN for

efficient plant disease classification

In the previous chapter, we devised a modification of the first layer that splits the

channels of an image encoded with HSL, LAB, or alike color space into two separate

paths, one for the achromatic channel and another for the remaining chromatic

channels. In this chapter, we modified an Inception V3 architecture to include one

branch specific for achromatic data (L channel) and another for chromatic data (AB

channels). This modification takes advantage of the decoupling of chromatic and

achromatic information. Besides, splitting branches reduces the number of trainable

parameters and computation load by up to 50% of the original figures using modified

layers. We achieved a state-of-the-art classification accuracy of 99.48% on the

PlantVillage dataset and 76.91% on the Cropped-PlantDoc dataset.

21
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3.1 Introduction

Automating plant disease control is essential for early-stage symptom detection

and continuous monitoring of crops. Such automation has a high impact on

improving efficiency and productivity, especially in large fields Zambon et al. (2019).

To automatically recognize plant leaf diseases, emerging AI technologies such as

computer vision and deep convolutional neural networks (DCNNs) have been recently

employed.

Initial studies used handcrafted features from leaf images Ngugi et al. (2021).

Shallow classifier algorithms were proposed: the K-Nearest-Neighbors (KNN),

Support Vector Machines (SVMs), decision trees, and shallow nonconvolutional

neural networks Ngugi et al. (2021). Later, the trend switched to DCNN architectures

capable of automatically extracting features and performing efficient classification

Ngugi et al. (2021). Many CNN architectures, including LeNet Amara et al. (2017),

CaffeNet Sladojevic et al. (2016), AlexNet Krizhevsky et al. (2012), GoogLeNet

Ngugi et al. (2021); Mohanty et al. (2016); Ferentinos (2018), Inception V3 Ngugi

et al. (2021); Ramcharan et al. (2017); Wang et al. (2017); Toda and Okura (2019);

Maeda-Gutiérrez et al. (2020) and DenseNet Ngugi et al. (2021) have been applied

to plant disease image classification.

Mohanty et al. (2016) worked with AlexNet and GoogLeNet models for the

PlantVillage dataset classification. They trained both models from scratch and with

transfer learning. They also experimented with feeding their models with RGB and

grayscale images. They found better results feeding RGB images to both tested

models. Their best result without transfer learning was 98.37%. G. and J. (2019)

classified the PlantVillage dataset with 3 convolutional, 2 max poolings, and 2 dense

layers achieving 96.46% of accuracy. Toda and Okura (2019) working with a trimmed

Inception V3 showed that DCNNs can learn the colors and textures specific to plant

leaf diseases resembling human-made classification.

Most previous architectures applied to plant leaf disease identification use the

Red-Green-Blue (RGB) color values of input pixels. However, RGB components are

highly correlated Pouli et al. (2013). Specifically, intensity variations induced by
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illumination changes, edges, or texture modify the three RGB values by the same

proportion.

In the previous chapter 2, we proposed a modification of the first layer that

splits the channels of an image encoded with CIE Lab in two separate paths, one for

the achromatic channel and another for the remaining chromatic channels. In this

chapter, we investigate the influence of each branch on classification accuracy. For

this aim, we created an Inception V3 Szegedy et al. (2016) based architecture that

has two branches (paths) along the first three convolutional layers. One branch

is fed from the L component, while the other is fed from the AB components.

Furthermore, we test extreme cases by feeding our DCNN from only one of the

two branches to check what our network can do with a single cue (chromatic or

achromatic information) and without the other. In this respect, dealing with only

the L channel makes our system compared with other methods that purely work on

grayscale images.

For this work, we tested our DCNNs on the PlantVillage dataset Hughes and

Salath’e (2015), which contains samples of 12 healthy crops and 26 crop diseases.

We also tested our DCNNs on the Cropped-PlantDoc dataset Singh et al. (2020),

which has 13 plant species and 27 classes of healthy and diseased crops.

The key contributions of this chapter to image-based plant leaf disease diagnostics

can be summarized as follows:

• We present a feasible plant leaf image classification method based on an

efficient DCNN architecture with separate branches dedicated to chromatic

and achromatic information.

• We provide detailed performance analysis of several variants of our DCNN

architecture, tested on the PlantVillage dataset Hughes and Salath’e (2015)

and Cropped-PlantDoc dataset Singh et al. (2020).

• Our DCNN variants have achieved state-of-the-art plant leaf disease

classification with 30% to 50% fewer filter weights and floating point

computations along the first three convolutional layers.

The remainder of this chapter is structured as follows: section 3.2 presents and
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discusses relevant work regarding DCNNs and image-based plant disease diagnostics.

Section 3.3 presents our modified two-branch Inception V3 architecture. The results

and discussion are given in sections 3.4 and 3.5. Section 3.6 summarizes the main

conclusions.

3.2 Related Work

A number of machine learning methods have been proposed specifically for

image-based plant disease diagnosis Ferentinos (2018); Sladojevic et al. (2016),

including methods specifically designed for cucumbers Fujita et al. (2016), bananas

Amara et al. (2017), cassavas Ramcharan et al. (2017), tomatoes Fuentes et al.

(2017); Wang et al. (2017); Maeda-Gutiérrez et al. (2020) and wheat Johannes et al.

(2017).

Ferentinos (2018) tested 5 existing architectures with a 58-class image dataset

with healthy and sick plants: AlexNet, AlexNetOWTBn, GoogLeNet, Overfeat and

VGG. Ferrentinos found test accuracies ranging from 99.06% with AlexNet to 99.48%

with VGG. Despite the enormous difference in the number of trainable parameters

in these architectures, the test accuracy was always above 99%.

Maeda-Gutiérrez et al. (2020) studied the application of 5 existing architectures,

including: AlexNet, GoogleNet, Inception V3, ResNet-18 and ResNet-50, to tomato

diseases. In this study, test accuracies were also found to be above 99%. Despite

these excellent results, Ferentinos (2018) noted that there are problematic situations

for images captured in the field, such as shading and leaves not centered in the

image. Processing field images in the experiments drastically reduce the classification

accuracy.

Chaudhary et al. (2012) studied plant disease spot segmentation in YCbCr, HSI,

and CIE Lab color spaces. For all color channels, they experimentally found that

feeding their segmentation model from the CIE Lab’s A channel provides more

accurate results than other channels. In their work, the A channel is a chromatic

channel, providing better results than the achromatic L channel.
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3.2. Related Work 25

Amara et al. (2017) applied a plain LeNet architecture with 60x60 pixels images

for banana leaf disease classification. Interestingly, they achieved an 85.94% test

accuracy with grayscale images and a 92.88% test accuracy with RGB images.

Mohanty et al. Mohanty et al. (2016) studied plant leaf diseases using grayscale

and RGB color images processed with AlexNet and GoogLeNet (Inception V1)

architectures. Their architectures were trained with the PlantVillage dataset Hughes

and Salath’e (2015). Their best results were found with 80% of the image samples

allocated for training while 20% of the samples were allocated for testing. The only

architectural modifications are the number of classes and the input size set at 256x256

pixels for GoogLeNet. All experiments described at Mohanty et al. (2016) done

with RGB images achieved higher accuracies than experiments done with grayscale

images. Results obtained in Amara et al. (2017); Mohanty et al. (2016) indicate that

chromatic information is essential for plant leaf disease classification.

Previous DCNN works from Ferrentinos Ferentinos (2018), Maeda et al.

Maeda-Gutiérrez et al. (2020), Amara et al. Amara et al. (2017), and Mohanty

et al. Mohanty et al. (2016) utilized off-the-shelf architectures with minor changes

in the number of classes and the input layer.

G. and J. (2019) propose a DCNN with 3 convolutional layers, 2 max-pooling

layers, and 2 dense layers trained with the PlantVillage dataset using data

augmentation. After several batch size experiments and data augmentation

experiments, they achieved a 96.46% classification accuracy. They distributed the

dataset into 91%, 6%, and 3% of the samples for training, validation, and testing,

respectively.

Toda and Okura (2019) proposal is based on the Inception V3 architecture

Szegedy et al. (2016). The authors adjusted the last layer of the original network to

fit in the 38 classes of the PlantVillage dataset. They distributed the dataset into

60%, 20%, and 20% of the samples for training, validation, and testing. Additionally,

they performed an ablation study to determine the optimal number of mixed layers

in the inception module, successively trimming the layers from the deepest to the

shallowest. They found that with just the 6 former mixed layers, the network
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provides very similar accuracy to the original network with 11 mixed layers (97.14%

vs. 97.15%) while saving approximately 3/4 of the memory for storing the neuron

weights (5.17 million vs. 21.88 million weights).

Ngugi et al. (2021) also worked with the PlantVillage dataset, but they used

transfer learning. Since we train our networks from scratch, our results cannot be

compared with their results. Transfer learning is a technique that uses the learned

data from a related domain to improve the learning in a target domain Weiss et al.

(2016). We prefer to focus on analyzing the impact of our architectural modifications

and not care about the effect of improving the accuracy with the use of parameters

transferred from another domain. Therefore, comparing our results with other works

that apply transfer learning is unfair because they take advantage of pre-trained

values. In contrast, we compare our test accuracies and F1 scores directly with those

provided in Toda and Okura (2019), G. and J. (2019) and Mohanty et al. (2016) as

those papers also use training from scratch.

Singh et al. (2020) created the Cropped-PlantDoc dataset, which has 13 plant

species and 27 classes. Similar to the PlantVillage dataset, the original PlantDoc

dataset includes pictures of individual leaves. However, those images also show

complex backgrounds, and the area covered by the target leaves varies, which makes

it a much more complex problem to classify than the PlantVillage images. To address

this drawback, the authors manually crop the image regions containing target leaves.

This provides conveniently framed leaves while significantly increasing the number

of samples (approximately 9K) because they may extract several samples from each

original PlantDoc image (approximately 2.6K).

3.3 Methodology

Figure 3.1 shows two designs of CNNs that analyze RGB pictures of plant leaves for

plant disease classification. The design on the left corresponds to Toda & Okura’s

proposal, which we have chosen as our reference baseline model.

The design shown at the right of figure 3.1 corresponds to our proposal, which
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Figure 3.1: Graphical representation of worked network architectures: at the left, the Toda &
Okura’s single-branch (baseline) approach fed from an RGB image; at the right, our two-branch
approach fed from L+AB images. Expressions containing x define a varying number of filters in L
and AB branches. When x/2 is not an integer number, we use the floor function to round it.

splits the first three convolutional layers of the baseline into two branches, one for the

L channel and another for the AB channels, computed from the input RGB image.

Then, the output from each branch is concatenated to follow the rest of the network

as in the baseline.

Another relevant remark is that we use a hyperparameter x to determine the

distribution of the original number of filters among the L and AB branches. This

allows us to determine the optimal contribution of each branch to the classification

task. In the original Inception V3 implementation, the first 3 convolutional layers
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have 32, 32, and 64 filters, respectively. We have mainly checked three variants for

our proposal, named after the percentage of filters dedicated to achromatic (L) and

chromatic (AB) branches: 20%L+80%AB, 50%L+50%AB, and 80%L+20%AB. For

these variants, the value of x is set to 13, 32 and 51, respectively. Thus, the number

of L|AB filters in the first two layers will be 6|26, 16|16, and 26|6, respectively, for

each variant. In the third layer, the number of L|AB filters will be 13|51, 32|32, and

51|13, respectively, for each variant.

To compare our proposal with the baseline reasonably, we have imposed that

the sum of the filters of the two branches in each layer must be the same as in the

Inception V3 design. However, our filters carry a fraction of the original number of

weights (from 1/3 to 2/3).

model
1st layer
weights

2nd layer
weights

3rd layer
weights

baseline 0.8k 9k 18k
20%L + 80%AB 0.5k 6k 13k
50%L + 50%AB 0.4k 5k 9k
80%L + 20%AB 0.3k 6k 13k

Table 3.1: Number of weights for each of the first 3 convolutional layers, for baseline and our
variants.

model
1st layer
flops

2nd layer
flops

3rd layer
flops

baseline 21M 227M 453M
20%L + 80%AB 12M 158M 315M
50%L + 50%AB 10M 113M 226M
80%L + 20%AB 8M 158M 315M

Table 3.2: Number of required forward pass floating point operations for each of the first 3
convolutional layers, for baseline and our variants.

The implementation details of our approach are generally based on Toda and

Okura (2019) which is Inception V3 based (see figure 3.1). Each convolutional layer

is composed by a 2D convolution, batch normalization, and a ReLU as the activation

function. All convolutional filters from Conv1 to Conv5 are 3× 3 except for Conv4,

which is 1 × 1. In Conv1, there is a stride of 2. All convolutional layers from

Conv1 to Conv5 do not have padding except for Conv4, which is zeroed padded by
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1px. We do not use data augmentation as we study the net effect of the proposed

architecture (L/AB separate branches) on the accuracy, beyond extra refinements

(data augmentation, transfer learning) that may lead to some degree of improvement

but not due to the proposed architecture. The training data is shuffled before each

epoch. The optimization method is stochastic gradient descent. The loss function

is the categorical cross entropy function. The batch size is 32. The test accuracy is

obtained with the parameters from the epoch with the highest validation accuracy.

All models have been trained from scratch without transfer learning.

All experiments were implemented with K-CAI Schuler (2021) and Keras Chollet

et al. (2015) on top of Tensorflow 2 Abadi et al. (2015), with various underlying

hardware configurations including NVIDIA 1070, 1080, K80, T4 and V100 video

cards. Our virtual machines have up to 64GB of RAM. The implementation details of

our approach are strongly based on the reference paper Toda and Okura (2019). Each

convolutional layer comprises a 2D convolution, a batch normalization, and a ReLU

activation function. All convolutional filters from Conv1 to Conv5 are of the size 3×3

except for Conv4, which is 1 × 1. The optimization method is stochastic gradient

descent, and the loss function is weighted categorical cross entropy to compensate for

an unbalanced number of samples among classes. The batch size is 32, and we store

the weights that obtain the best validation accuracy in 30 epochs. We trained all

models from scratch. The noise injection module has not been used for training since

this module is only intended to verify the reliability of the models under controlled

perturbation of the test images.

For the PlantVillage dataset, we trained all DCNNs for 30 epochs with a constant

learning rate of 0.01. We split the PlantVillage Dataset into 60% of samples for

training, 20% for validation, and 20% for testing. After a random dataset is split

into the training, validation, and testing subsets, this splitting will be used in all

experiments to ensure that results from different experiments are not affected by

the sample splitting. For this dataset, we weight the loss function according to the

number of samples per class to give the same relevance to each class. This gives

similar classification accuracy across all classes. For the Cropped-PlantDoc dataset,
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we trained all DCNNs for 240 epochs, starting with a learning rate of 0.01 and

decaying 1% per epoch. We split the Cropped-PlantDoc dataset into 65% of the

samples for training, 15% for validation, and 20% for testing.

Our source code for these experiments and their raw result files is publicly

available at https://github.com/joaopauloschuler/two-branch-plant-disease/.

3.4 Results

We have assessed the performance of several models: the original Toda et al.

single-branch architecture for RGB images, which we refer to as the baseline,

and three variants of our two-branch architecture for L—AB channels. For these

experiments, we computed the classification accuracy for the testing subset, and the

multiclass F1 score Rijsbergen (1979).

Table 3.3 collects the results for the PlantVillage dataset. It shows that our

two-branch 20%L+80%AB variant provides the best test accuracy and F1 score. It

renders a modest but clear improvement (1.11% in accuracy and 0.87% in F1) over

the best pre-existing model, Mohanty’s GoogleLeNet. This 20%L+80%AB variant

is slightly better than the other two-branch variants (up to 0.4% test accuracy). The

baseline underperforms our worst variant (two-branch 80%L+20%AB) with a gap of

almost 2 percentage points in test accuracy.

The worst models (Mohanty’s AlexNet and Mohanty’s GoogLeNet) are both fed

Gray images. The other RGB-based architectures achieve test accuracies ranging

from 96.46% to 98.37%. In short, we can sort these results into 3 groups: LAB-fed

two-branch models (highest accuracy), RGB-fed models (middle accuracy), and

gray-level fed models (lowest accuracy). Our worst two-branch variant has a

0.71% higher accuracy and a 0.32 higher F1 score than the best performing RGB

implementation.

We have also tested our DCNNs on the Cropped-PlantDoc dataset Singh et al.

(2020). On this dataset, we reproduced the experiment from Toda et al. regarding

trimming the number of Inception V3 mixed layers using our 20%L+80%AB variant.
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author architecture color space parameters accuracy F1
Schuler 20%L+80%AB L—AB 5M 99.48% 0.9923
Schuler 50%L+50%AB L—AB 5M 99.11% 0.9866
Schuler 80%L+20%AB L—AB 5M 99.08% 0.9867
Mohanty GoogLeNet RGB 5M 98.37% 0.9836
Mohanty AlexNet RGB 60M 97.82% 0.9782
Toda Inception V3 RGB 5M 97.15% 0.9720
Geetharamani 9 layers CNN RGB 0.2M 96.46% 0.9815
Mohanty GoogLeNet Gray 5M 96.21% 0.9621
Mohanty AlexNet Gray 60M 94.52% 0.9449

Table 3.3: Test accuracy and F1 score of several DCNN models on PlantVillage dataset
classification. The results extracted from other papers are those obtained without transfer learning
(not their best ones) for a fair model comparison with our results since we do not use transfer
learning.

Table 3.4 shows the obtained results. In this experiment, we concluded that the ideal

number of mixed layers is 6.

architecture color space
mixed
layers

max. val.
accuracy

test
accuracy

20%L + 80%AB L—AB 1 74.12% 72.50%
20%L + 80%AB L—AB 2 77.27% 76.97%
20%L + 80%AB L—AB 4 77.19% 74.68%
20%L + 80%AB L—AB 6 78.77% 77.08%
20%L + 80%AB L—AB 8 77.12% 73.90%
20%L + 80%AB L—AB 10 75.62% 73.84%
20%L + 80%AB L—AB 11 73.14% 74.23%

Table 3.4: Max validation and test accuracies when trimming the number of mixed layers, trained
on Cropped-PlantDoc dataset.

Once we decided to use just 6 mixed layers, we trained all our variants on the

Cropped-PlantDoc dataset from scratch again. Our next results outperformed all

previous models from Singh et al., as shown in table 3.5. Interestingly, we have not

used transfer learning; while Singh et al. used transfer learning, we could not find

any other proposal using this dataset to train from scratch. It is also vital to note

that our variants have less than 10% of the trainable parameters used by Singh et

al.’s best model while exceeding its test accuracy by more than 6 percentage points.

In table 3.5, we have also included two extreme variants of our model: 0%L +

100%AB and 100%L + 0%AB. In those variants, the DCNN is fed pure chromatic

or achromatic information; hence, the DCNN operates with a single branch. The
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author architecture color space parameters accuracy F1
Schuler 0%L + 100%AB L—AB 5M 71.55% 0.71
Schuler 20%L + 80%AB L—AB 5M 76.58% 0.76
Schuler 50%L + 50%AB L—AB 5M 76.91% 0.76
Schuler 80%L + 20%AB L—AB 5M 75.85% 0.75
Schuler 100%L + 0%AB L—AB 5M 64.67% 0.66
Singh InceptionResNet V2 RGB 55M 70.53% 0.70
Singh InceptionV3 RGB 22M 62.06% 0.61
Singh VGG16 RGB 138M 60.41% 0.60

Table 3.5: Test accuracy and F1 score with the Cropped-PlantDoc dataset.

test accuracy from these experiments indicates that color is more important than

gray-level information for classifying samples from this dataset. However, achromatic

information also plays a role in plant disease classification since our best result has

been obtained with a combination of both image cues in the same proportion.

3.5 Discussion

Typical first layer filters of DCNNs specialize in gray level features (Gabor-like filters)

or in color-opponent filters, as in Krizhevsky et al. (2012) and Zeiler (2014). In our

design, our L filters only need one channel to learn the spatial patterns defined by

the gray-level component. In addition, RGB filters replicate the same weights in

their three channels to represent those gray-level patterns. Hence, L filters save 2/3

of the weights used by RGB filters. Similarly, for the case of color-opponent filters,

our AB filters learn them using only two chromatic channels, while regular RGB

filters employ three channels for the same task. Therefore, AB filters save 1/3 of the

weights. Our design saves from 1/3 to 1/2 of the weights in the first three layers.

Also, it achieves similar savings in the computational floating point operations for

carrying those convolutions, as shown in tables 3.1 and 3.2.

Table 3.3 shows that the two-branch approach 20%L + 80%AB is slightly better

than the classical RGB single-branch approach. This indicates that separating

filters for achromatic-chromatic features enhances the classification ability of DCNNs.

However, the difference in classification accuracy concerning the baseline architecture
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is slight because the DCNN optimization procedure can decorrelate the features

encoded in the RGB channels. With a sufficient number of training epochs, an

RGB single-branch DCNN will identify filters sensitive to lightness (Gabor-like

grayscale filters) and other filters sensitive to color contrasts (see examples of RGB

filters in Krizhevsky et al. (2012) and Zeiler (2014)). Nevertheless, our two-branch

methodology obtains similar accuracy with 30% to 50% fewer filter weights and

floating point operations along the first 3 convolutional layers. This proves that the

extra weights encoded in the first three layers of the RGB single-branch approach are

redundant. All grayscale experiments have lower classification accuracy than their

RGB counterparts, corroborating that chromatic information is essential for plant

leaf disease identification.

The results in table 3.4 show that a trimmed version of Inception V3, with

less than 25% of the original parameters (5 million vs. 22 million), is capable of

performing significantly better (5% in test accuracy) than the full-fledged version.

We think that the extra number of parameters may become a drawback for training

due to overfitting.

Finally, table 3.5 corroborates the advantage of our proposal. The results of these

experiments show more significant differences than the results in table 3.3 because

most of the methods obtained truly high test accuracy on the PlantVillage dataset,

leaving little room for improvement. Since the Cropped-PlantDoc dataset is much

more difficult to classify, our simple but effective methodology shows its advantage

over single-branch RGB-based approaches.

3.6 Conclusion

In this chapter, we proposed a two-branch DCNN for plant disease classification,

where the first three convolutional layers specialize in learning chromatic and

achromatic features from the CIE Lab color space.

The experiments conducted empirically prove that our approach can perform

better than the classic one-branch RGB images fed DCNN while saving a portion
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of learnable parameters and floating point operations, reducing the numbers from

1/3 to 1/2 in those initial three layers. This is feasible because the RGB channels

are highly correlated; working in a decor-related color space avoids redundant filter

weights.

Concerning the optimal distribution of filters among achromatic and chromatic

branches for plant disease classification, our experiments show that approximately

50% to 80% of the filters should enter the chromatic branch. This indicates that

color is essential for this task.
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CHAPTER4

Noise Resistant Plant Leaf Disease

Classification

In chapter 2, the two-branch approach is introduced. In chapter 3, we modified

an Inception V3 to process CIE Lab encoded images achieving state-of-the-art

classification accuracy of 99.48% on the PlantVillage dataset. This chapter

shows that this two-branch architecture provides better classification reliability when

perturbing the original RGB images with several types of noise (salt and pepper,

blurring, motion blurring, and occlusions). These types of noise simulate common

image variability found in the natural environment. We hypothesize that the filters

in the AB branch provide better resistance to these types of variability due to their

relatively low frequency in the image-space domain.

35
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4.1 Introduction

Plant leaf images taken in the field and away from controlled laboratory conditions

frequently suffer from blurring, motion blurring, occlusion, and illumination

variations. Automated detection systems frequently suffer from these common

adverse effects. In this chapter, we show that the two-branches architecture described

in the previous chapter provides more resistance to adverse effects such as blurring.

4.2 Methodology

In this chapter, we use the same two-branch architecture described in the previous

chapter and shown in figure 3.1. In addition to this architecture, to verify the

reliability of this architecture, we have included one module for noise injection. This

allows us to perturb the original RGB images with different types of artifacts and

varying degrees of severity of those artifacts. It must be observed that the noise

injection is previous to the RGB-to-LAB transformation.

As explained in chapter 2, RGB channels are highly correlated among each other

Pouli et al. (2013) in the sense that shading and shadows render a set of different

RGB values from the intrinsic color(s) of a surface. Specifically, intensity variations

induced by illumination variation, edges, and texture modify the three RGB values

simultaneously. We also have mentioned that transforming RGB channels into some

sort of achromatic-chromatic space, like CIE Lab, effectively isolates the gray-level

features in the L channel and the color-related features in the AB channels. Due

to our two-branch architectures, we are forcing the filters in each branch to learn

features related to the nature of each cue. Therefore, we expect that L filters will

focus on intrinsic shape, damaged leaf areas, etc., while the AB filters will focus

on lesions, general color of the leaf, etc. We hypothesize that noise will not affect

chromatic and achromatic branches with the same severity as the noise is decoupled

into achromatic and chromatic information and loaded into its branch.
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model weights (Saving) flops (Saving)
baseline 28512 701M

20%L + 80%AB 19746 (31%) 485M (31%)
50%L + 50%AB 14256 (50%) 350M (50%)
80%L + 20%AB 19566 (31%) 481M (31%)

Table 4.1: Weights and required forward pass floating point operations along the first 3
convolutional layers in baseline and our variants.

4.3 Results

Figure 4.1 shows the evolution of test accuracy in the studied models, baseline,

two-branch 20%L-80%AB, 50%L-50%AB, and 80%L-20%AB, for different types of

noise and a range of noise amount.

In Salt and Pepper experiments, the range of noise indicates the percentage of

input image pixels that have been changed to either white or black pixels (see Fig.

4.2 for an example). This type of noise simulates spuriously saturated values in

the input signal. The corresponding plot depicts the 20%L-80%AB variant as the

most reliable when the percentage of noisy pixels is above 3% as the classification

accuracy is up to 10% more accurate than the baseline. Nevertheless, the baseline

performs better than the other two branched models in the range of noise used for

these experiments.

In Blur experiments, a Gaussian distribution of a given sigma in image space

coordinates (distance in pixels) is convolved with the input RGB image values

producing the typical blurring effect (check Fig. 4.2). This type of noise simulates

unfocused snapshots or dirty lenses. In the corresponding plot, our 20%L-80%AB

variant proves the most reliable under the tested range of sigmas. From σ = 1.25 to

σ = 1.75, this best model overcomes the baseline by 10% of test accuracy. Moreover,

the 50%L-50%AB variant also overcomes the baseline, albeit slightly different.

Motion blur is similar to blur (also check Fig. 4.2), but instead of a Gaussian

distribution, we use a sparse matrix of a given size with all cells equal to zero except

for one line of cells, which is filled with ones divided by the number of cells in that

line. By convolving the image pixel values with such a matrix (kernel), it is possible

to simulate the blurring due to sudden camera shifts. The direction of movement is
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Figure 4.1: Result plots showing the test accuracy evolution of four approaches under a range of
perturbation with four types of noise.
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Figure 4.2: Noise injection in a portion of a test image (Apple Black Rot num.5), in RGB, L, and
AB spaces: Salt & Pepper noise in 4% of the image pixels; Blur by convolving a Gaussian bell with
σ = 2 pixels; Motion Blur in up-left direction with 8 pixels of kernel width.
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parallel to the line of cells different from zero. The extent of movement is equivalent

to the length of that line. The corresponding plot depicts similar behavior to the

blurring plot. However, it is necessary to use a 9 pixels-side kernel to degrade the

test accuracy of the 20%L-80%AB variant as much as with a σ = 1.5 in the blurring

experiment.

Occlusion is performed by overlapping a square of gray pixels of a given size in

a random image position. This type of noise simulates the occlusion of the target

leaf by other non-interesting objects such as tree branches, fruits, etc. For these

experiments, the model that renders the best reliability in the corresponding plot is

our 50%L-50%AB variant with a remarkable difference of 5% above the second best

model, the 20%L-80%AB variant, which in turn is also 5% above baseline and the

80%L-20%AB variant when the side of the masking square is beyond 100 pixels.

4.4 Discussion

All results are highly determined by the fact that the leaf shape and their lesions

are less varying in AB channels than in RGB and L channels, as can be seen in the

example of Figure 4.2. In other words, the leaf representation in AB channels renders

broad areas of similar colors. This low-frequency nature of the AB channels makes

the color-trained filters inherently take into account a wider field of view. Therefore,

more erroneous pixels are needed to mislead the classification. In contrast, the same

leaf surface renders more frequent variations in RGB channels which provokes that

their trained filters will have a smaller field of view. Specifically, high-frequency

noise affects more gray-level filters, which are the ones projected into the L channel.

These observations may explain why focusing 80% of the filters on the AB branch

provides the best results in the presence of most types of noise.

For salt and pepper noise, the effect of spurious pixels in AB channels is

noticeable, but the larger field of view of corresponding filters allows to overcome

those perturbed values. On the other hand, the field of view of L and RGB filters

is closer to the area of each erroneous pixel. However, the baseline is more reliable
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than 50%L-50%AB and 80%L-20%AB configurations because its filters can better

treat the spurious changes in the 3D RGB space than the combination of the split L

and AB filters.

In contrast to salt and pepper, blurring is a perturbation of low-frequency nature.

Despite this fundamental difference, our 20%L-80%AB configuration becomes again

the most reliable. In this case, the smoothing of pixel values degrades more the

features encoded in the L and RGB channels than the features encoded in the AB

channels. The 50%L-50%AB configuration is also more potent than the baseline.

Regarding motion blurring, the 20%L-80%AB and 50%L-50%AB configurations are

again the most reliable.

For the occlusions experiment, the 50%L-50%AB and 20%L-80%AB variants are

the most resilient, especially for mask sizes above 1/4 of the total image area. Again,

the reasoning for this effect is that a prominent occlusion in the AB image removes

less relevant details than the same occlusion in L and RGB images, as the key features

in AB channels are wider in image space than in L or RGB channels.

4.5 Conclusion

In this chapter, we verified that our two-branch CNN for plant disease classification

proposed in the previous chapter is more reliable in front of different noise

sources than a typical CNN based on RGB. Besides classifying images with fewer

weights than the baseline model, our experiments show that our 20%L-80%AB and

50%L-50%AB models better classify input images under salt and pepper, blurring,

motion blurring, and occlusion by margins up to 10%.

With regards to the optimal distribution of filters among achromatic and

chromatic branches, our experiments show that about 80% of the filters should go

into the chromatic branch to provide maximum reliability in front of different sources

of noise. The reason behind this conclusion is based on the fact that color filters

have a wider field of view than lightness or RGB filters. Another reason is the color

cue portrays highly relevant features for plant disease classification.
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CHAPTER5

Grouped Pointwise Convolutions Reduce

Parameters in Convolutional Neural

Networks

In Deep Convolutional Neural Networks (DCNNs), the parameter count in pointwise

convolutions quickly grows due to the multiplication of the filters and input channels

from the preceding layer. To handle this growth, we propose a new technique that

makes pointwise convolutions parameter-efficient via parallel branching. Each branch

contains a group of filters and processes a fraction of the input channels. To avoid

degrading the learning capability of DCNNs, we propose interleaving the filters’ output

from separate branches at intermediate layers of successive pointwise convolutions.

To demonstrate the efficacy of the proposed technique, we apply it to various
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state-of-the-art DCNNs, namely EfficientNet, DenseNet-BC L100, MobileNet, and

MobileNet V3 Large. The performance of these DCNNs with and without the proposed

method is compared on CIFAR-10, CIFAR-100, Cropped-PlantDoc, and Oxford-IIIT

Pet datasets. The experimental results demonstrated that when trained from scratch,

DCNNs with the proposed technique obtained similar test accuracies to the original

EfficientNet and MobileNet V3 Large architectures while saving up to 90% of the

parameters and 63% of the floating-point computations.

5.1 Introduction

A grouped convolution in DCNNs divides input channels and filters into groups. Each

group of filters can be understood as an independent (parallel) path for information

to flow. Instead of processing all input channels, in a grouped convolution, each filter

processes only input channels belonging to the same group. This grouping reduces

the number of weights in each filter and consequently the number of floating-point

computations. Notably, 1x1 filters with one trainable parameter per input channel

compose pointwise convolutions. Unlike (spatial) 3x3 convolutional filters, these

filters do not consider surrounding positions.

This chapter proposes an efficient method to optimize any DCNN architecture

by grouping pointwise convolutions found in its original design. Besides, we

propose interleaving the filters’ output from separate groups at intermediate levels

of successive pointwise convolutions to prevent diminishing the learning power of

DCNNs. The resulting architecture is highly parameter-efficient and performs well

at training from scratch with datasets that contain few image samples. This

architecture also requires fewer floating point operations. For instance, in the context

of plant disease classification, the Cropped-PlantDoc dataset Singh et al. (2020)

contains less than 10 thousand images.

It should be noted that the Cropped-PlantDoc dataset is prone to overfitting

when using classical heavy DCNN architectures as a consequence of the small sample

count. We demonstrate that the proposed pointwise convolution optimization can
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significantly reduce the number of parameters of DCNNs while performing better

than the baseline models when training them with low sample count datasets.

This chapter demonstrates that the proposed pointwise convolution optimization

technique can be applied to most state-of-the-art DCNN architectures. It is

worth noting that achieving state-of-the-art classification accuracy on any image

classification dataset is out of the scope of this chapter, as we focus on DCNN

optimization.

This is how this chapter is organized: Section 5.2 introduces and examines

relevant work, parameter-efficient DCNNs, and the datasets used in this chapter. The

proposed pointwise convolution optimization is explained in Section 5.3. Sections 5.4

and 5.5 provide results and discussion, respectively. The chapter is summarized in

Section 5.6.

5.2 Related work

In 2013, Min Lin et al. introduced the Network in Network architecture (NiN)Lin

et al. (2014). This architecture contains 3 spatial convolutional layers with 192

filters, interspersed with pairs of pointwise convolutional layers. The pairs of

pointwise convolutions allow the network to learn complex patterns without the

computational cost of a spatial convolution. When their work was released, they

attained state-of-the-art classification accuracies in the CIFAR-10 and CIFAR-100

datasets Krizhevsky (2009).

In 2016, ResNet was introduced. Resnet He et al. (2016b) stacks up to 152

layers with similar topology. Inspired on VGG Simonyan and Zisserman (2015), all

ResNet spatial convolutions have 3x3 filters. The authors of ResNet conjectured that

deeper CNNs have exponentially low convergence rates. To tackle this problem, they

propose to skip connections every 2 convolutional layers.

Ioannou et al. (2017) tested grouped convolutions with various groups per layer

(2, 4, 8, and 16) with the image classification using the CIFAR-10 dataset. Working

towards optimization for the NiN architecture, Ioannou et al. showed that grouping
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3x3 and 5x5 spatial convolutions could decrease the number of parameters by more

than 50% when optimizing the NiN architecture. They also demonstrated that their

proposed architectures, divided into numerous paths (i.e., groups), may maintain or

slightly increase the classification accuracy. Of note, their study did not attempt to

separate the 1x1 pointwise convolutional layers. Ioannou et al. also worked on an

optimized ResNet-50 variant by replacing the original spatial convolutions with up to

64 parallel groups. This reduces the number of parameters by 27% and the number

of floating-point operations by 37% while keeping similar classification accuracy on

the ImageNet dataset. They observed that it is unlikely that every filter depends on

all output channels coming from the previous layer. This observation is fundamental

to this thesis, as we use it to support the idea that grouped convolutions can be as

effective as non-grouped filters connected to all incoming channels.

Also in 2017, an improvement for ResNet called ResNeXt Xie et al. (2017) was

introduced. However, ResNeXt replaces the spatial convolutions with parallel paths,

thus reducing the number of parameters. When ResNeXt variants are configured

to a similar number of parameters to their original ResNet architectures, ResNeXt

variants achieve higher classification accuracy on the ImageNet Russakovsky et al.

(2015) dataset. In the ResNeXt architecture, the building blocks follow a

split-transform-merge paradigm. Although the transforming step is done via parallel

spatial convolutions, the splitting and the merging are done by standard (ungrouped)

pointwise convolutions.

Howard et al. (2017) proposed an architecture called MobileNet. The depthwise

separable convolution is an essential component of MobileNet. A depthwise

convolution precedes a pointwise convolution in this building block. In comparison to

prior models, MobileNets are parameter efficient. MobileNet-160, for instance, has

roughly 45 times fewer parameters than AlexNet but achieves equal classification

performance when using the ImageNet dataset. MobileNet-224 has roughly 40%

fewer parameters than GoogLeNet yet obtained greater accuracy. According to

Howard et al., their smaller models need minor data augmentation. An observation

of MobileNet models crucial to our approach is that pointwise convolutions account
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for almost 75% of the parameters and 95% of floating-point computations. This

architecture is an excellent candidate for our proposal as our proposal saves

parameters and computations along pointwise convolutions. Later, in 2019, Howard

et al. (2019) an improved version of MobileNet was introduced, named V3, still

based on depthwise and pointwise convolutions, but pointwise convolutions remained

ungrouped.

Zhang et al. (2017) mixed grouped convolutions with interleaving layers.

Specifically, they proposed a grouped spatial convolution followed by an interleaving

layer and a grouped pointwise convolution. The main difference between Zhang et al.

(2017) and our technique is that we target replacing pointwise convolutions.

In Tan and Le (2019), Tan et al. proposed the EfficientNet architecture. Their

EfficientNet-B7 model was 8.4 times more parameter-efficient and 6.1 times faster

than the best architecture at the time, with an ImageNet top-1 accuracy of 84.3%.

More than 80% of the parameters in EfficientNets come from standard pointwise

convolutions and MobileNets, which allows for a significant decrease in the number

of parameters and floating-point operations, which we have taken advantage of in

this thesis.

It should be noted that the following four image classification datasets are

considered in this chapter:

• The Oxford-IIIT Pet dataset Parkhi et al. (2012): it includes images of 25

breeds of dogs (i.e., 25 classes) and 12 breeds of cats (i.e., 12 classes). There are

a total of 37 image classes. There are approximately 200 images in each class.

Of note, all images come in various sizes and contain intricate backgrounds and

lighting patterns.

• The CIFAR-10 dataset Krizhevsky (2009): as described in chapter 2, it has

60 thousand 32x32 images of 10 classes (dog, airplane, truck, cat, automobile,

bird, horse, deer, frog, and ship). These images were captured in a natural,

uncontrolled lighting condition. They only have one visible instance of the

object the class refers to. The objects are sometimes partially obscured or

viewed from an unexpected angle.
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• The CIFAR-100 dataset Krizhevsky (2009): it is similar to the CIFAR-10

dataset, but it has 100 classes instead of 10. It contains 60 thousand 32x32

images representing the 100 classes (e.g., machines, plants, animals, and

people).

• The Cropped-PlantDoc dataset Singh et al. (2020): as described in chapter

3, it was developed for conducting research on plant leaf disease classification.

It was formed by cropping individual leaves from the PlantDoc dataset that

includes multiple leaves per image. The Cropped-PlantDoc dataset contains

13 plant species and 27 classes. In this dataset, images have heterogeneous

backgrounds, and the leaves significantly differ in size.

Together, the above 4 datasets bring a variety of object classes that help assess

the efficacy of the proposed technique. They are compact datasets and enable easy

replication of our proposal using low-cost technology and little computation time.

Some of our experiments output class activation maps (CAMs) Zhou et al. (2016).

The class activation map method finds image regions used by a CNN to classify an

image. Regions relevant for the classification are shown from red (more relevant) to

blue (less relevant). This method can be used when the last two layers of a CNN

are a global average pooling and a dense layer. The CAM is calculated from the

activation maps preceding the global average pooling and the weights related to the

activated image class (filter).

5.3 Methodology

The parameters count P in layer i is computed from the channel count of the prior

activation map Ci−1 and the filters count Fi as expressed in Eq. 5.1, where Fi is

the total number of filters as found in the original monolithic pointwise convolution

layer:

Pi = Ci−1 · Fi (5.1)

We propose a method to make pointwise convolutions parameter-efficient. Figure

5.1 presents the architecture of our proposed optimization. This architecture starts
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with a pointwise grouped convolution layer K (composed by filter groups K1 to

KNi
) followed by a channel interleaving layer that fuses channels for the subsequent

pointwise grouped convolution layer L (filter groups L1 to LNi
). At the right of our

architecture, all channels from groups K1 to KNi
are concatenated into one path. It

is worth noting that the same process occurs for the L layer. The K and L layers’

concatenated outputs are summed channel by channel, making the L layer act as a

residual convolution.

Indeed, grouped convolutions inherently face a limitation: each parallel group of

filters computes its output from its own set of input channels, preventing channels

connected to different groups from being combined. To alleviate this limitation, we

interleave the channels computed by the first grouped pointwise convolution K. This

allows each group of the secondary grouped convolution L to compute data from

more than one group from the preceding K layer.

Besides, we propose that the output of both grouped convolutions K and L be

joined via a summation. Summation does not raise the number of output channels

compared to concatenation. It also allows the network to learn patterns straight on

the first convolution K, skipping the L convolution filters.

Let us note the number of groups in layer i as Ni for grouped convolutions. This

number is calculated according to our algorithm, which will be stated below. Each

group is fed a subset of Ci−1/Ni input channels. The number of filters per group is

Fi/Ni. Accordingly, the multiplication of the number of filters per group and the

number of channels per group (Fi/Ni) · (Ci−1/Ni) gives the number of parameters

per group. The total number of parameters of a grouped convolutional layer can

be calculated by multiplying (Fi/Ni) · (Ci−1/Ni) by the number of groups Ni, as

expressed in Eq. 5.2:

Pi = (Ci−1 · Fi)/Ni (5.2)

Eq. 5.2 shows that the number of trainable parameters is inversely proportional

to the number of groups. It should be mentioned that we follow the constraints listed

below when calculating the number of groups per convolution Ni:

• Each group must have a minimum number of input channels ch. This is the
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minimum number of input channels that can be operated together by each

parallel group across all optimized pointwise convolutions.

• The greatest common divisor of Ci−1 and Fi determines the number of groups

Ni, as long as it respects the previous constraint (Ci−1/Ni ≥ ch).

• The number of groups must be bigger than 1 (Ni ≥ 1).

For each pointwise convolutional layer in the original architecture, if there is no

solution to the above constraints, then the original layer is left as is without applying

the optimization.

An interleaving layer is added when there are two or more output channels (filters)

per group (Fi/Ni ≥ 2). The interleaving is intended to mix channels from the L

convolution, so any two channels from the same group are not placed together.

A grouped pointwise convolutional layer L is added after the interleaving layer

when the number of input channels (Ci−1 ≥ Ci) is greater than or equal to the

number of output channels. The result of both grouped convolutional layers K and

L, are then added. When the number of input channels is smaller than the number of

output channels, there is less chance of input information being lost due to a lack of

output channels. In this case, the extra learning capacity supplied by the secondary

L grouped convolution is not as important. As a result, we do not utilize an L layer

in this case.

To understand how the proposed technique can reduce the number of parameters,

let us assume that we have a monolithic pointwise convolution with Ci−1 = 1, 024 and

Fi = 512, which produces Pi = 524, 288 parameters. By substituting this pointwise

convolution with the proposed sub-architecture, employing 16 channels per group,

the number of groups will be the number of input channels (1,024) divided by the

number of channels per group (16), resulting in Ni = 64 groups. In this example, the

K grouped convolutional layer will have 1, 024 · 512/64 = 8, 192 parameters. In the

L grouped convolutional layer, the numbers of groups and channels are 64 and 512,

respectively. Consequently, the parameters will be 512 ·512/64 = 4, 096. When these

values are added, the total number of parameters for the entire sub-architecture is

8, 192 + 4, 096 = 12, 288, representing a parameter saving of 97.7%.
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The proposed DCNNs variants are deeper than their original counterparts as we

initially add up to 2 convolutions where we initially find one. Contrary to the work of

Ting Zhang et. al. Zhang et al. (2017), we do not have special convolutions; we sum

the outputs of both grouped convolutions via a skip connection. This added skip

connection counterbalances the difficulty for gradients to flow in deeper architectures.

We also calculate the number of parallel groups in a way that can be applied to any

pointwise convolution from any existing architecture. In our proposal, the number of

parallel groups varies according to the number of input channels and filters instead

of being a constant number.

We tested our optimization by replacing original pointwise convolutions in the

EfficientNet-B0, DenseNet-BC L100, Inception V3, MobileNet, and MobileNet V3

Large architectures. We name our modified versions as kEffNet-B0, kDenseNet-BC

L100, kMobileNet, kMobileNet V3, respectively. EfficientNet-B0, DenseNet-BC

L100, and MobileNets were selected for their parameter efficiency to test our ideas

on already efficient architectures. In the original architectures, when the last

convolutional layer has a 1x1xC activation map as input shape, it is left unmodified

as it behaves as a dense layer for the final classification. For the kEffNet-B0, we

tested an additional modification that skips the first 4 convolutional strides, which

allows input images with 32x32 pixels instead of the original resolution of 224x224

pixels.

We performed our experiments with various hardware configurations

with NVIDIA graphics cards. Regarding software, we worked with

K-CAI/Keras/Tensorflow 2 Schuler (2021); Chollet et al. (2015); Abadi et al.

(2015) and RMSProp optimizer. All experiments have a cyclical learning rate of

25 epochs and data augmentation. For the CIFAR-10 and CIFAR-100 datasets, we

used 50 epochs. For the Oxford-IIIT Pet and the Cropped PlantDoc datasets, we

trained for 150 and 75 epochs, respectively. To compensate for the limited number

of images in these datasets, we trained the DCNNs for over 50 epochs. It is worth

noting that the number of epochs is a multiple of our learning rate cycle, which is

25. In this chapter, we did not employ transfer learning as our main objective is to
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assess the learning capacity of parameter-efficient DCNN models.

Our source code is publicly available at https://github.com/joaopauloschuler/

kEffNetV1/ .

Split

K1
(Fi /Ni)

K2
(Fi /Ni)

L1
(Fi /Ni)

L2
(Fi /Ni)

Interleave

Hi-1·Wi-1·Ci-1 /Ni

Hi·Wi·Ci /Ni

Concat

Hi·Wi·Ci

Hi-1·Wi-1·Ci-1

Concat

Sum

Hi·Wi·Ci

KNi
(Fi /Ni)

...

LNi
(Fi /Ni)

...

...

Hi·Wi·Ci

Hi·Wi·Ci /Ni

M
(Fi)

Hi-1·Wi-1·Ci-1

Hi ·Wi ·Ci

K

L

Figure 5.1: Diagram of the proposed pointwise convolution optimization. (Left) a classic
monolithic layer M with Fi pointwise filters. (Right) our proposed replacement for M. It comprises
two grouped pointwise convolutional layers (K and L) with Ni groups, where each group consists
of Fi/Ni filters. H, W, and C represent the channels’ height, width, and number. The size of the
activation maps (represented by arrows) equals H ×W ×C. In some cases, the activation map size
is divided by the number of groups Ni. The i subindex stands for the layer depth. In the case of
pointwise convolutions, Hi=Hi−1, Wi=Wi−1 and Ci=Fi.

5.4 Results

In this section, we analyze test classification accuracy and class activation maps.

https://github.com/joaopauloschuler/kEffNetV1/
https://github.com/joaopauloschuler/kEffNetV1/
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5.4.1 Analyzing Classification Accuracy

Table 5.1 compares test accuracies, the number of trainable parameters, the number

of floating-point computations, and a percentage of the original number of trainable

parameters and computations with the CIFAR-10 experiments. Our variant names

always start with a character, k. We add the minimum number of input channels per

group to the end of the name of our implementations. For example, kEffNet-B0 32ch

has a minimum of 32 input channels per group. Regarding test accuracy, at least one

of our variants for EfficientNet, Inception V3, and MobileNet V3 Large achieve higher

accuracy than their respective baseline models. For the MobileNet, we have a close

result to its baseline. Our DenseNet variants underperform the original DenseNet-BC

L100. Our variant with the smallest number of parameters outperforming its baseline

is MobileNet V3 Large 32ch. It has a significant reduction of 83% of the trainable

parameters and requires 54% of the computations of the original model. Our second

small architecture outperforming its baseline is the kEffNet-B0 32ch with 32x32

pixels input resolution. It has 26% of the original parameters and requires 35% of

the original computations.

Table 5.1: CIFAR-10 testing results after 50 epochs. % columns indicate parameters and
computation percentages to their original models.

architecture input size params % computations % test acc.
EfficientNet-B0 224x244 4.02M 389.9M 93.52%
kEffNet-B0 16ch 224x224 0.64M 16% 129.0M 33% 92.24%
kEffNet-B0 32ch 224x224 1.06M 26% 174.5M 45% 93.75%
kEffNet-B0 16ch 32x32 0.64M 16% 84.8M 22% 92.46%
kEffNet-B0 32ch 32x32 1.06M 26% 138.4M 35% 93.61%

DenseNet-BC L100 32x32 0.77M 288.0M 92.38%
kDenseNet-BC L100 12ch 32x32 0.35M 45% 138.2M 48% 90.83%
kDenseNet-BC L100 24ch 32x32 0.38M 50% 159.6M 55% 90.63%

Inception V3 224x224 21.79M 2.8B 88.29%
kInception V3 16ch 224x224 14.88M 68% 2.3B 81% 91.10%
kInception V3 32ch 224x224 15.01M 69% 2.3B 81% 91.22%

MobileNet 224x224 3.22M 567.8M 93.15%
kMobileNet 16ch 224x224 0.24M 8% 92.0M 16% 89.81%
kMobileNet 32ch 224x224 0.40M 13% 153.8M 27% 91.27%
kMobileNet 64ch 224x224 0.72M 22% 251.8M 44% 92.08%
kMobileNet 128ch 224x224 1.32M 41% 201.4M 35% 93.02%

MobileNet V3 Large 224x224 4.21M 217.5M 92.80%
kMobileNet V3 Large 16ch 224x224 0.40M 10% 81M 37% 92.74%
kMobileNet V3 Large 32ch 224x224 0.71M 17% 117.3M 54% 93.26%
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In table 5.1, overall, our variant that achieves highest classification accuracy is

kEffNet-B0 32ch with 224x224 pixels input image resolution. It achieves slightly

higher classification accuracy than its baseline, which empirically proves that our

reduction algorithm is working as well as its baseline with a fraction of the original

resources, i.e., 26% of the trainable parameters and 45% of the computations. The

proportion of computations/trainable parameters differs across layers. In general,

convolutional layers have more floating-point computations per parameter than dense

layers. Also, in convolutional layers, the number of computations is proportional to

the input resolution. This is why a parameter saving doesn’t necessarily result in a

proportional calculation saving.

Table 5.2: CIFAR-100 results after 50 epochs. % columns indicate parameters and computations
percentages to their original models.

architecture input size params % computations % test acc.
EfficientNet-B0 224x244 4.14M 390.1M 74.23%
kEffNet-B0 16ch 224x224 0.75M 18% 129.1M 33% 71.92%
kEffNet-B0 32ch 224x224 1.17M 28% 174.6M 45% 73.93%

MobileNet V3 Large 224x224 4.33M 217.6M 70.73%
kMobileNet V3 Large 16ch 224x224 0.52M 12% 81.1M 37% 71.36%
kMobileNet V3 Large 32ch 224x224 0.83M 19% 117.4M 54% 73.24%

The two best performing variants kEffNet-B0 and kMobileNet V3 in table 5.1

were retested with CIFAR-100, Cropped PlantDoc and Oxford-IIIT Pet datasets as

per tables 5.2, 5.3 and 5.4 respectively.

In our Cropped PlantDoc experimentation shown in the table 5.3, we obtained

the highest accuracy with kEffNet-B0 32ch (65.74%) followed by kMobileNet V3

Large 32ch (65.34%). In this table, all of our variants achieved higher test accuracies

than their baselines. Our kMobileNet V3 Large 16ch has only 10% of the original

trainable parameters, 37% of the original computations, and achieves higher accuracy

by a margin of 15%. Our kEffNet-B0 16ch has 16% and 33% of the original trainable

parameters and computations, respectively. It achieves higher accuracy than its

baseline by a margin of 0.5%.

In our Oxford-IIIT Pet dataset experimentation shown in table 5.4, we obtained

highest accuracy with kEffNet-B0 16ch (64.56%) followed by kMobileNet V3 Large

32ch (63.09%). We speculate that this result results from overfitting due to a small
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Table 5.3: Cropped PlantDoc testing results after 75 epochs. % columns indicate parameters and
computations percentages to their original models.

architecture input size params % computations % test acc.
EfficientNet-B0 224x244 4.04M 390.0M 63.50%
kEffNet-B0 16ch 224x224 0.66M 16% 129.0M 33% 64.04%
kEffNet-B0 32ch 224x224 1.08M 27% 174.5M 45% 65.74%

MobileNet V3 Large 224x224 4.24M 217.5M 46.45%
kMobileNet V3 Large 16ch 224x224 0.43 10% 81.0M 37% 61.65%
kMobileNet V3 Large 32ch 224x224 0.74M 17% 117.3M 54% 65.34%

training dataset. In all other tested datasets, the 32ch variant achieves higher

accuracy than its 16ch-related variant.

Table 5.4: Oxford-IIIT Pet testing results after 150 epochs. % columns indicate parameters and
computations percentages to their original models.

architecture input size params % computations % test acc.
EfficientNet-B0 224x244 4.11M 390.0M 62.05%
kEffNet-B0 16ch 224x224 0.67M 17% 129.0M 33% 64.56%
kEffNet-B0 32ch 224x224 1.09M 27% 174.53M 45% 62.92%

MobileNet V3 Large 224x224 4.24M 217.5M 52.21%
kMobileNet V3 Large 16ch 224x224 0.36M 10% 81.0M 37% 60.39%
kMobileNet V3 Large 32ch 224x224 0.74M 18% 117.3M 54% 63.09%

5.4.2 Class Activation Maps

Figure 5.2 shows CAMs made with the Oxford-IIIT Pet dataset. Our kEffNet-B0

focuses on the face, ears, and the top of the head. In turn, the EfficientNet-B0

baseline has its focus more frequently in the background.

Figure 5.3 shows the CAMs of the baseline and our kEffNet-B0. In these cat

images, both models have some focus on areas of the background, although kEffNet

still does a better job at focusing on the cat.

5.5 Discussion

Indeed, the best-performing optimized architectures are based on EfficientNet,

MobileNet, and MobileNet V3. These 3 architectures share a characteristic in

common that explains why our optimization fits well: in the original architectures,
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Figure 5.2: CAMs for images taken from the Oxford-IIIT Pet dataset. (left) CAMs produced by
kEffNet-B0 with the proposed pointwise optimization technique. (right) CAMs produced by the
EfficientNet-B0 baseline.

the main convolutions are parameter efficient depthwise convolutions and parameter

inefficient pointwise convolutions. Given that our replacement is explicitly designed

to reduce excess connections in pointwise convolutions, we apply our optimization

at the precise, weak point of the original architectures.
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Figure 5.3: CAMs showing image samples which architectures do not focus on the cat. (left)
CAMs produced by kEffNet-B0 with the proposed pointwise optimization technique. (right) CAMs
produced by the EfficientNet-B0 baseline.

The variants derived from DenseNet-BC L100 underperformed the original model.

In DenseNet-BC, most pointwise convolutions are followed by standard convolutions

intermix all input channels. The added complexity from our architecture to intermix

channels becomes redundant as this is done via standard convolutions in the

original architecture. This extra redundancy adds complexity and parameters, which

becomes a drawback more than an advantage for the training process.

The proposed pointwise replacement does not directly explain why we obtained

better classification accuracy with Cropped-PlantDoc or the Oxford-IIIT Pet

datasets. As we have less trainable parameters, our modified kEffNets are likely less

prone to overfitting. In the case of CIFAR-10, the baseline and our modified kEffNet

models obtained approximately the same test classification. Our optimization
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technique effectively saves unnecessary connections along the original pointwise

convolutions. In contrast, with CIFAR-10, both models (baseline and reduced

version) are not excessively degraded by overfitting.

Generated CAMs demonstrated that the baseline tends to focus attention on the

background of the images, which may not necessarily be a consequence of overfitting.

It may be possible that background features appear more frequently in some image

classes than others. The extra parameters of the baselines might be used for these

background features.

5.6 Conclusion

This chapter presented a parameter and computationally efficient replacement

for pointwise convolutions. Specifically, we proposed substituting pointwise

convolutions with a sub-architecture comprising two grouped convolutions (K

and L) with interleaving and summation layers. For example, the pointwise

convolution optimization of EfficientNet-B0, called kEffNet-B0 32ch, saves 74% of

the trainable parameters and 55% of the floating-point computations compared

to its baseline. On the CIFAR-10 dataset, our optimized architecture achieves a

slightly higher classification accuracy than the baseline when trained from scratch.

In light of this and other results shown above, we conclude that the number of

connections (parameters) in pointwise convolutions can be significantly reduced

without sacrificing the original learning capacity. Therefore, we can deduce that

most of the original connections in pointwise filters are redundant.

In other specific experiments, we obtained higher accuracy with the

Cropped-PlantDoc (+2.24%) and Oxford-IIIT Pet datasets (+1.04%) compared to

our baselines. On the CIFAR-100 dataset, our kEffNet-B0 32ch achieved slightly

lower classification accuracy (-0.3%) with significantly less parameters (-72%) and

floating-point computations (-55%). These results indicate that our optimization

works better on architectures with depthwise and pointwise convolutions such as

MobileNet, MobileNet V3 Large, and EfficientNet architectures.
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Our experiments confirmed our working hypothesis: to achieve a reasonable

degree of pattern recognition, and not all input channels need to be connected

in every pointwise filter. Parallel groups of pointwise filters can gather subsets of

features for proper and efficient image classification.
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CHAPTER6

Grouped Pointwise Convolution

Refinement

In the previous chapter, we showed a subnetwork that replaces pointwise

convolutions with significantly fewer parameters and floating-point computations

while maintaining the learning capacity. Our subnetwork utilizes grouped pointwise

convolutions, in which each group processes a fraction of the input channels. In the

present chapter, we refine the previous algorithm so that groups can have several

filters to cope with non-divisible numbers of input channels, output channels, and

groups. In this case, our previous method overlooked and did not replace the

original pointwise convolutions. Thus, the new method further reduces the number of

floating-point computations (11%) and trainable parameters (10%) achieved by the

previous method. We tested our optimization on an EfficientNet-B0 as a baseline

architecture and made classification tests on the CIFAR-10, Colorectal Cancer
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Histology, and Malaria datasets. For each dataset, our optimization saves 76%, 89%,

and 91% of the number of trainable parameters of EfficientNet-B0, while keeping its

test classification accuracy.

6.1 Introduction

In the previous chapter, we proposed replacing standard pointwise convolutions with

a sub-architecture that contains two grouped pointwise convolutional layers (K and

L), an interleaving layer that mixes channels from layer K before feeding layer L,

and a summation at the end that sums the results from both convolutional layers.

Our original method accepts a hyperparameter Ch, which denotes the number of

input channels fed to each group of filters. Then, our method computes the number

of groups of filters and filters per group according to the division of original input

channels and filters by Ch. Our original method avoided substituting the layers

where the divisions were not exact.

In this chapter, we propose an enhanced scheme to allow flexible computing of

the number of groups, so the divisibility constraints do not have to be considered

anymore. By applying our method to all pointwise convolutional layers of an

EfficientNet-B0 architecture, we can reduce a considerable amount of resources

(trainable parameters, floating-point computations) while maintaining the learning

capacity.

This chapter is structured as follows: Section 6.2 details our improved solution for

grouping pointwise convolutions while skipping the constraints of divisibility found

in our previous method. Section 6.3 details the experiments carried out for testing

our solution. Section 6.4 summarizes the conclusions and limitations of our proposal.
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6.2 Methodology

6.2.1 Mathematical ground for regular pointwise

convolutions

Let X i = {xi
1, x

i
2, . . . , x

i
Ici
} be a set of input feature maps (2D lattices) for a

convolutional layer i in a DCNN, where Ici denotes the number of input channels

for this layer. Let W i = {wi
1, w

i
2, . . . , w

i
Fi

} be a set of filters containing the weights

for convolutions, where Fi denotes the number of filters at layer i, which is also the

number of output channels of this layer. Following the notation proposed in Wang

et al. (2019), a regular DCNN convolution can be mathematically expressed as in

equation 6.1:

X i+1 = W i
⊗

X i

= {wi
1 ∗X i, wi

2 ∗X i, . . . , wi
Fi
∗X i}

(6.1)

where the
⊗

operator indicates that filters in W i are convolved with feature maps

in X i, using the ∗ operator to indicate a 3D tensor multiplication and shifting of a

filter wi
j across all patches of the size of the filter in all feature maps. For simplicity,

we are ignoring the biased terms. Consequently, X i+1 will contain Fi feature maps

that will feed the next layer i + 1. The tensor shapes of involved elements are the

following:

X i ∈ RH×W×Ici

W i ∈ RFi×S×S×Ici → wi
j ∈ RS×S×Ici

X i+1 ∈ RH×W×Fi

(6.2)

where H × W is the size (height, width) of feature maps, and S × S is the size of

a filter (usually square). In this chapter, we work with S = 1 because we focus on

pointwise convolutions. In this case, each filter wi
j carries Ici weights. The total

number of weights Pi in layer i is obtained with a simple multiplication:

Pi = Ici · Fi (6.3)
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6.2.2 Definition of grouped pointwise convolutions

For expressing a grouped pointwise convolution, let us split the input feature

maps and the set of filters in Gi groups, as X i =
{
X i

1, X
i
2, . . . , X

i
Gi

}
and W i ={

W i
1,W

i
2, . . . ,W

i
Gi

}
. Assuming that both Ici and Fi are divisible by Gi, the elements

in X i and W i can be evenly distributed through all their subset X i
j and W i

j . Then,

equation 6.1 can be reformulated as equation 6.4:

X i+1 =
{
W i

1 ⊗X i
1,W

i
2 ⊗X i

2, . . . ,W
i
Gi

⊗X i
Gi

}
(6.4)

The shapes of the subsets are the following:

X i
m ∈ RH×W× Ici

Gi

W i
m ∈ RFgi×1×1× Ici

Gi → wi,m
j ∈ R1×1× Ici

Gi

(6.5)

where Fgi is the number of filters per group, namely, Fgi = Fi/Gi. Since each

filter wi,m
j only convolves on a fraction of input channels (Ici/Gi), the total number

of weights per subset W i
m is (Fi/Gi) · (Ici/Gi). Multiplying the last expression by the

number of groups provides the total number of weights Pi in a grouped pointwise

convolutional layer i:

Pi = (Ici · Fi)/Gi (6.6)

Eq. 6.6 shows that the number of trainable parameters is inversely proportional

to the number of groups. However, the grouping has the evident drawback that it

prevents the filters from being connected with all input channels, which reduces the

possible connections of input channels for learning new patterns. As it may lead

to a lower learning capacity of the DCNN, one must be cautious with using such a

grouping technique.
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6.2.3 Improved scheme for reducing the complexity of

pointwise convolutions

Two major limitations of our previous method were inherited from constraints found

in most deep learning APIs:

• The number of input channels Ici must be multiple of the number of groups

Gi.

• The number of filters Fi must be multiple of the number of groups Gi.

The present work circumvents the first limitation by replicating channels from the

input. The second limitation is circumvented by adding a second parallel path with

another pointwise grouped convolution when required. Figure 6.1 shows an example

of our updated architecture. Details of this process are described below, which

is applied to substitute each pointwise convolutional layer i found in the original

architecture. To explain the method, we start detailing the construction of layer K

shown in Figure 6.1. For simplicity, we drop the index i and use the index K to

refer to the original hyperparameters, i.e., we use IcK instead of Ici, FK instead of

Fi. Also, we will use the indexes K1 and K2 to refer to the parameters of the two

parallel paths that may exist in layer K.

First of all, we must manually specify the value of the hyperparameter Ch.

In the graphical example shown in Figure 6.1, we set Ch = 4. The rest of the

hyperparameters, such as the number of groups in layers K and L, are determined

automatically by the rules of our algorithm, according to the chosen value of Ch,

the number of input channels IcK and the number of filters FK . We do not have a

procedure to find the optimal value of Ch. Hence we must apply ablation studies

on a range of Ch values, as shown in the results section. For the example in Figure

6.1, we have chosen the value of Ch to obtain a full variety of situations that must

be tackled by our algorithm, i.e., non-divisibility conditions.
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6.2.4 Definition of layer K

The first step of the algorithm is to compute the number of groups in branch K1, as

in equation 6.7:

GK1 =

⌈
IcK
Ch

⌉
(6.7)

Since the number of input channels IcK may not be divisible by Ch, we use

the ceiling operator on the division to obtain an integer number of groups. In the

example, GK1 = ⌈14/4⌉ = 4. Thus, the output of filters in branch K1 can be defined

as in 6.8:

K1 =
{
WK1

1 ⊗XK
1 ,WK1

2 ⊗XK
2 , . . . ,WK1

GK1
⊗XK

GK1

}
(6.8)

The subsets XK
m are composed of input feature maps xj, collected in a sorted

manner, i.e., XK
1 = {x1, x2, . . . , xCh}, XK

2 = {xCh+1, xCh+2, . . . , x2Ch}, etc.

Equation 6.9 provides a general definition of which feature maps xj are included

in any feature subset XK
m :

XK
m = {xa+1, xa+2, . . . , xa+Ch} , a = (m− 1) · Ch (6.9)

However, if IcK is not divisible by Ch, the last group m = GK1 would not have

Ch channels. In this case, the method will complete this last group by replicating

Ch− b initial input channels, where b is computed as stated in equation 6.10:

XK
GK1

= {xa+1, xa+2, . . . , xa+b, x1, x2, . . . , xCh−b} ,

a = (GK1 − 1) · Ch,

b = GK1 · Ch− IcK

(6.10)

It can be proved that b will always be less or equal than Ch, since b is the excess

of the integer division IcK/Ch, i.e., GK1 · Ch will always be above or equal to IcK ,

but less than IcK+Ch, because otherwise GK1 would increase its value (as a quotient

of IcK/Ch). In the example, b = 2, hence XK1
4 = {x13, x14, x1, x2}.
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Then, the method calculates the number of filters per group FgK1 as in 6.11:

FgK1 =

⌊
FK

GK1

⌋
(6.11)

To avoid divisibility conflicts, we have chosen the floor integer division this time.

For the first path K1, each of the filter subsets shown in 6.8 will contain the following

filters:

WK1
m =

{
wK1,m

1 , wK1,m
2 , . . . , wK1,m

FgK1

}
wK1,m

j ∈ R1×1×Ch
(6.12)

For the first path of the example, the number of filters per group is FgK1 =

⌊10/4⌋ = 2. So, the first path has 4 groups (GK1) of 2 filters (FgK1), each filter

being connected to 4 input channels (Ch).

If FK is not divisible by Ch, a second path K2 will provide as many groups as

filters not provided in K1, with one filter per group, to complete the total number

of filters FK :

GK2 = FK − FgK1 · GK1

FgK2 = 1
(6.13)

In the example, GK2 = 2. The required input channels for the second path is

Ch · GK2. The method obtains those channels reusing the same subsets of input

feature maps XK
m shown in 6.9. Hence, the output of filters in path K2 can be

defined as in 6.14:

K2 =
{
wK2

1 ∗XK
1 , wK2

2 ∗XK
2 , . . . , wK2

GK2
∗XK

GK2

}
(6.14)

where wK2
j ∈ R1×1×Ch

. Therefore, each filter in K2 operates on the same subset of

input channels as the corresponding subset of filters in K1. Hence, each filter in the

second path can be considered as belonging to one of the groups of the first path.

It must be noticed that GK2 will always be less than GK1. This is true because

GK2 is the reminder of the integer division FK/GK1, as can be deduced from 6.11
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and 6.13. This property warrants that there will be enough subsets XK
m for this

second path.

After defining paths K1 and K2 in layer K, the output of this layer is the

concatenation of both paths:

K = {K1, K2} (6.15)

The total number of channels after the concatenation is equal to FK = GK1 ·

FgK1 +GK2.

6.2.5 Interleaving stage

As mentioned above, grouped convolutions inherently face a limitation: each parallel

group of filters computes its output from its subset of input channels, preventing

combinations of channels connected to different groups. We propose to interleave

the output channels from the convolutional layer K to alleviate this limitation.

The interleaving process simply consists in arranging the odd channels first and

the even channels last, as noted in equation (16):

IK ={k1, k3, k5, . . . , k2c−1,

k2, k4, k6, . . . , k2c}

c =⌊FK/2⌋

(6.16)

Here we are assuming that FK is even. Otherwise, the list of odd channels will

include an extra channel k2c+1.

6.2.6 Definition of layer L

The interleaved output feeds the grouped convolutions in layer L to process data

from more than one group from the preceding layer K.

To create layer L, we apply the same algorithm for layer K, but now the number

of input channels is equal to FK instead of IcK .

The number of groups in path L1 is computed as:
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GL1 =

⌈
FK

Ch

⌉
(6.17)

Note that GL1 may not be equal to GK1. In the example, GL1 = ⌈10/4⌉ = 3.

Then, the output of L1 is computed as in 6.18, where the input channel groups

IKm come from the interleaving stage. Each group is composed of Ch channels, whose

indexes are generically defined in 6.19:

L1 =
{
WL1

1 ⊗ IK1 ,WL1
2 ⊗ IK2 , . . . ,WK1

GL1
⊗ IKGL1

}
(6.18)

IKm =
{
iKa+1, iKa+2, . . . , i

K
a+Ch

}
,

a = (m− 1) · Ch
(6.19)

Again, the last group of indexes may not contain Ch channels due to a non-exact

division condition in 6.17. Similar to path K1, for path L1, the missing channels

in the last group will be supplied by replicating Ch− b initial interleaved channels,

where b is computed as stated in equation 6.20:

IKGL1
=

{
iKa+1, iKa+2, . . . , i

K
a+b, i

K
1 , i

K
2 , . . . , iKCh−b

}
,

a = (GL1 − 1) · Ch,

b = GL1 · Ch − FK

(6.20)

The number of filters per group FgL1 is computed as in 6.21:

FgL1 =

⌊
FK

GL1

⌋
(6.21)

In the example, FgL1 = ⌊10/3⌋ = 3. Each group of filters WL1
m shown in 6.18 can

be defined as in 6.22, each one containing FgL1 convolutional filters of Ch inputs:

WL1
m =

{
wL1,m

1 , wL1,m
2 , . . . , wL1,m

FgL1

}
wL1,m

j ∈ R1×1×Ch
(6.22)

It should be noted that if the division in 6.21 is not exact, the number of output

channels from layer L may not reach the required FK outputs. In this case, a second
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path L2 will be added, with the following parameters:

GL2 = FK − FgL1 · GL1

FgL2 = 1
(6.23)

In the example, GL2 = 1. The output of path L2 is computed as in 6.24, defining

one extra convolutional filter for some initial groups of interleaved channels declared

in 6.18 and 6.19, taking into account that GL2 will always be less than GL1 according

to the same reasoning done for GK2 and GK1:

L2 =
{
wL2

1 ∗ IK1 , wL2
2 ∗ IK2 , . . . , wL2

GL2
∗ IKGL2

}
(6.24)

The last step in defining the output of layer L is to join the outputs of paths L1

and L2:

L = {L1, L2} (6.25)

6.2.7 Joining of layers

Finally, the output of both convolutional layers K and L are summed to create the

output of the original layer:

X i+1 = K + L (6.26)

Compared to concatenation, summation has the advantage of allowing residual

learning in the filters of layer L because gradient can be backpropagated through L

filters or directly to K filters. In other words, residual layers provide more learning

capacity with a low degree of downsides due to increasing the number of layers

(i.e., overfitting, longer training time, etc.) Table 6.5 shows an ablation study that

contains experiments done without the interleaving and the L layers (rows labeled

with ”no L”). These experiments empirically prove that the interleaving mechanism

and the secondary L layer help improve the low-impact sub-architecture accuracy.

It is worth mentioning that we only add layer L and the interleaving when the
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number of input channels is bigger or equal to the number of filters in layer K.

6.2.8 Computing the number of parameters

We can compute the total number of parameters of our sub-architecture. First,

equation 6.27 shows that the number of filters in layer K is equal to the number of

filters in layer L, which in turn is equal to the total number of filters in the original

convolutional layer Fi:

FgK1 · GK1 +GK2 = FgL1 · GL1 +GL2 = Fi (6.27)

Then, the total number of parameters Pi is twice the number of original filters

multiplied by the number of input channels per filter:

Pi = 2(Fi · Ch) (6.28)

Therefore, comparing equation 6.28 with 6.3, it is clear that Ch must be

significantly less than Ici/2 to reduce the number of parameters of a regular pointwise

convolutional layer. Also, comparing equation 6.28 with 6.6, our sub-architecture

provides a parameter reduction similar to a plain grouped convolutional layer when

Ch is around Ici/2Gi. However, we cannot specify a general Gi term because of the

complexity of our pair of layers with possibly two paths per layer.

The requirement for a low value of Ch is also necessary to ensure that divisions

in equations 6.7 and 6.17 provide quotients above one. Otherwise, our method will

not create a grouping. Hence, Ch must be less or equal to Ici/2 and Fi/2. These

are the only two constraints that our method is restricted by.

As shown in Table 6.1, pointwise convolutional layers found in real networks

such as EfficientNet-B0 have significant Figures for Ici and Fi, either hundreds or

thousands. Therefore, values of Ch less or equal to 32 will ensure a good ratio of

parameter reduction for most of these pointwise convolutional layers.

EfficientNet is one of the most complex (but efficient) architectures found in the

literature. To our method, the degree of complexity of a DCNN is mainly related
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to the maximum number of input channels and output features in any pointwise

convolutional layer. Our method does not care about the number of layers, in-depth

or parallel, because it works on each layer independently. Therefore, the complexity

of EfficientNet-B0 can be considered significantly high, considering the values shown

in the last row of Table 6.1. Arguably, other versions of EfficientNet (B1, B2, etc.)

and other types of DCNN can exceed those values. In such cases, higher values of

Ch may be necessary, but we cannot provide any rule to forecast its optimum value

for any pointwise convolutional layer configuration.

Table 6.1: For a standard pointwise convolution with Ic input channels, F filters, P parameters,
and a given number of channels per group Ch, this Table shows the calculated parameters for layers
K and L: the number of groupsG<layer><path> and the number of filters per group Fg<layer><path>.
The last 2 columns show the total number of parameters and their percentage concerning the original
layer.

Original Settings Layer K Layer L K+L Params
Ic F P Ch GK1 FgK1 GK2 GL1 FgL1 GL2 Total %
14 10 140 4 4 2 2 3 3 1 80 57.14%

160 3,840 614,400 16 10 384 0 0 0 0 61,440 10.00%
32 5 768 0 0 0 0 122,880 20.00%

192 1,152 221,184 16 12 96 0 0 0 0 18,432 8.33%
32 6 192 0 0 0 0 36,864 16.67%

1,152 320 368,640 16 72 4 32 20 16 0 10,240 2.78%
32 36 8 32 10 32 0 20,480 5.56%

3,840 640 2,457,600 16 240 2 160 40 16 0 20,480 0.83%
32 120 5 40 20 32 0 40,960 1.67%

6.2.9 Activation Function

In 2018, Prajit et. al. Ramachandran et al. (2017) tested many activation functions.

In their experimentation, they found that the best performing one was the so-called

”swish,” shown in equation 6.29.

f(x) = x · sigmoid(βx) (6.29)

In previous chapters, we used the ReLU activation function. In this work, we

use the swish activation function. This change gives us better results in our ablation
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experiments shown in Table 6.5.

6.2.10 Implementation Details

We tested our optimization by replacing original pointwise convolutions in the

EfficientNet-B0 and named it ”kEffNet-B0 V2”. With CIFAR-10, we tested an

additional modification that skips the first 4 convolutional strides, allowing input

images with 32x32 pixels instead of the original resolution of 224x224 pixels.

In all our experiments, we saved the trained network from the epoch that achieved

the lowest validation loss for testing with the test dataset. Convolutional layers are

initialized with Glorot’s method Glorot and Bengio (2010). All experiments were

trained with RMSProp optimizer, data augmentation Shorten and Khoshgoftaar

(2019), and cyclical learning rate schedule Smith (2017). We worked with various

configurations of hardware with NVIDIA video cards. Regarding software, we did

our experiments with K-CAI Schuler (2021) and Keras Chollet et al. (2015) on the

top of Tensorflow Abadi et al. (2015).

Our source code is publicly available at https://github.com/joaopauloschuler/

kEffNetV2/ .

6.2.11 Horizontal Flip

In some experiments, we run the model twice with the input image and its

horizontally flipped version. The output from the softmax from both runs is

summed before class prediction. In these experiments, the number of floating-point

computations doubles, although the number of trainable parameters remains the

same.

6.3 Results and Discussion

In this section, we present and discuss the results of the proposed scheme with three

image classification datasets: CIFAR-10 dataset Krizhevsky (2009), Malaria dataset

Rajaraman et al. (2018), and colorectal cancer histology dataset Kather et al. (2016).
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6.3.1 Results on the CIFAR-10 dataset

This CIFAR-10 dataset originally had 50k images for training and 10k for testing.

We picked 5k images for validation and left the training set with 45k images. We

run experiments with 50 and 180 epochs.

On Table 6.2 we compare kEffNet-B0 V1 (our previous method) and V2 (our

current method), for two values of Ch. We can see that our V2 models have slightly

more reduction in both numbers of parameters and floating-point computations than

the V1 counterpart models while achieving slightly higher accuracy. Specifically, V2

models save 10% of the parameters (from 1,059,202 to 950,650) and 11% of the

floating-point computations (from 138,410,206 to 123,209,110) of V1 models. All of

our variants obtain similar accuracy to the baseline with a remarkable reduction of

resources (at least 26.3% of trainable parameters and 35.5% of computations).

Table 6.2: Comparing EfficientNet-B0, kEffNet-B0 V1 and kEffNet-B0 V2 with CIFAR-10 dataset
after 50 epochs.

Model Parameters % Computations % Test acc.
EfficientNet-B0 baseline 4,020,358 100.0% 389,969,098 100.0% 93.33%
kEffNet-B0 V1 16ch 639,702 15.9% 84,833,890 21.8% 92.46%
kEffNet-B0 V2 16ch 623,226 15.5% 82,804,374 21.2% 92.61%
kEffNet-B0 V1 32ch 1,059,202 26.3% 138,410,206 35.5% 93.61%
kEffNet-B0 V2 32ch 950,650 23.6% 123,209,110 31.6% 93.67%

As the scope of this work is limited to small datasets and architectures,

we only experimented with the smallest EfficientNet variant (EfficientNet-B0)

and our modified variant (kEffNet-B0). Nevertheless, Table 6.3 provides the

number of trainable parameters of the other EfficientNet variants (original and

parameter-reduced). Equation 6.3 indicates that the number of parameters grows

with the number of filters and input channels. Equation 6.6 indicates that the number

of parameters decreases with the number of groups. As we create more groups when

the number of input channels grows, we expect to find bigger parameter savings on

larger models. This saving can be seen in Table 6.3.

We also tested our kEffNet-B0 with 2, 4, 8, 16, and 32 channels per group for 50

epochs, as shown in Table 6.4. As expected, the test classification accuracy increases

when allocating more channels per group: from 84.26% for Ch=2 to 93.67% for
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Table 6.3: Number of trainable parameters for EfficientNet, kEffNet V2 16ch, and kEffNet V2
32ch with a 10 classes dataset.

variant EfficientNet kEffNet V2 16ch % kEffNet V2 32ch %
B0 4,020,358 623,226 15.50% 950,650 23.65%
B1 6,525,994 968,710 14.84% 1,389,062 21.29%
B2 7,715,084 983,198 12.74% 1,524,590 19.76%
B3 10,711,602 1,280,612 11.96% 2,001,430 18.68%
B4 17,566,546 1,858,440 10.58% 2,911,052 16.57%
B5 28,361,274 2,538,870 8.95% 4,011,626 14.14%
B6 40,758,754 3,324,654 8.16% 5,245,140 12.87%
B7 63,812,570 4,585,154 7.19% 7,254,626 11.37%

Ch=32. Also, the resource-saving decreases as the number of channels per group

increase: from 7.8% of parameters and 11.4% of computations for Ch=2 to 23.6% of

parameters and 31.6% of computations for Ch=32 (compared to the baseline). For

CIFAR-10, if we aim to achieve an accuracy comparable to the baseline, we must

choose at least 16 channels per group. If we add an extra run per image sample with

horizontal flipping when training kEffNet-B0 V2 32ch, the classification accuracy

increases from 93.67% to 94.01%.

Table 6.4: Ablation study done with the CIFAR-10 dataset for 50 epochs, comparing the effect
of varying the number of channels per group. It also includes the improvement achieved by double
training kEffNet-B0 V2 32ch with original and horizontally flipped images.

Model Parameters % Computations % Test acc.
EfficientNet-B0 baseline 4,020,358 100.0% 389,969,098 100.0% 93.33%
kEffNet-B0 V2 2ch 311,994 7.8% 44,523,286 11.4% 84.36%
kEffNet-B0 V2 4ch 354,818 8.8% 49,487,886 12.7% 87.66%
kEffNet-B0 V2 8ch 444,346 11.1% 60,313,526 15.5% 90.53%
kEffNet-B0 V2 16ch 623,226 15.5% 82,804,374 21.2% 92.61%
kEffNet-B0 V2 32ch 950,650 23.6% 123,209,110 31.6% 93.67%
kEffNet-B0 V2 32ch + H Flip 950,650 23.6% 246,418,220 63.3% 94.01%

Table 6.5 replicates most of the results shown in Table 6.4 but compares the

effect of not including layer L and interleaving substituting the swish activation

function with the typical ReLU. As can be observed, disabling layer L has a noticeable

degradation in test accuracy when the values of Ch are smaller. For example, when

Ch=4, the performance drops more than 5%. On the other hand, when Ch=32,

the drop is less than 0.5%. This is logical, considering that the more channels are

included per group, the more chances are to combine input features in the filters.
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Therefore, a second layer and the corresponding interleaving are not as crucial as

when the filters of layer K are fed with fewer channels.

The same effect can be appreciated in comparing activation functions: the swish

function works better than the ReLU function. Still, it provides less improvement for

a larger number of channels per group. Nevertheless, the gain in the least difference

case (32 ch) is still profitable, with more than 1.5% of extra test accuracy when using

the swish activation function.

Table 6.5: Extra experiments made for kEffNet-B0 V2 4ch, 8ch, 16ch and 32ch variants. Rows
labeled with ”no L” indicate experiments using only layer K, i.e., disabling layer L and interleaving.
Rows labeled with ”ReLU” replace the swish activation function by ReLU.

Model Parameters % Computations % Test acc.
EfficientNet-B0 baseline 4,020,358 100.0% 389,969,098 100.0% 93.33%
kEffNet-B0 V2 4ch 354,818 8.8% 49,487,886 12.7% 87.66%
kEffNet-B0 V2 4ch no L 342,070 8.5% 48,064,098 12.3% 82.44%
kEffNet-B0 V2 4ch ReLU 354,818 8.8% 47,595,914 12.2% 85.34%
kEffNet-B0 V2 8ch 444,346 11.1% 60,313,526 15.5% 90.53%
kEffNet-B0 V2 8ch no L 422,886 10.5% 57,466,370 14.7% 89.27%
kEffNet-B0 V2 8ch ReLU 444,346 11.1% 58,421,554 15.0% 88.82%
kEffNet-B0 V2 16ch 623,226 15.5% 82,804,374 21.2% 92.61%
kEffNet-B0 V2 16ch no L 584,934 14.6% 77,356,802 19.8% 91.52%
kEffNet-B0 V2 16ch ReLU 623,226 15.5% 80,912,406 20.8% 91.16%
kEffNet-B0 V2 32ch 950,650 23.6% 123,209,110 31.6% 93.67%
kEffNet-B0 V2 32ch no L 879,750 21.9% 112,684,706 28.9% 93.21%
kEffNet-B0 V2 32ch ReLU 950,650 23.7% 121,317,142 31.1% 92.00%

Table 6.6 shows the effect in accuracy when classifying the CIFAR-10 dataset

with EfficientNet-B0 and our kEffNet-B0 V2 32ch variant for 180 epochs instead of

50 epochs. The additional training epochs assign slightly higher test accuracy to

the baseline than our core variant. When adding horizontal flipping, our variant

has slightly surpassed the baseline results. Nevertheless, all three results can be

considered similar, but our variant offers a significant saving in parameters and

computations. Although the H flipping doubles the computational cost of our core

variant, it remains only a fraction (63.3%) of the baseline computational cost.
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Table 6.6: Results obtained with the CIFAR-10 dataset after 180 epochs.

Model Parameters % Computations % Test acc.
EfficientNet-B0 baseline 4,020,358 100.0% 389,969,098 100.0% 94.86%
kEffNet-B0 V2 32ch 950,650 23.6% 123,209,110 31.6% 94.45%
kEffNet-B0 V2 32ch + H Flip 950,650 23.6% 246,418,220 63.3% 94.95%

6.3.2 Results on the Malaria dataset

The Malaria dataset Rajaraman et al. (2018) has 27,558 cell images from infected

and healthy cells separated into 2 classes. There is the same number of images for

healthy and infected cells. From the original 27,558 images set, we separated 10% of

the images (2756 images) for validation and another 10% for testing. On all training,

validation, and test subsets, there are 50% of healthy cell images. We quadruplicated

the number of validation images by flipping these images horizontally and vertically,

resulting in 11,024 images for validation.

On this dataset, we tested our kEffNet-B0 with 2, 4, 8, 12, 16, and 32 channels

per group and the baseline architecture, as shown in Table 6.7. Our variants

have from 7.5% to 23.5% of the trainable parameters and from 15.7% to 42.2%

of the computations allocated by the baseline architecture. Although the worst

classification accuracy was found with the smallest variant (2ch), its classification

accuracy is less than 1% inferior to the best performing variant (16ch) and only

0.69% below the baseline performance. With only 8 channels per group, our method

equals the baseline accuracy with a small portion of the parameters (10.8%) and

computations (22.5%) required by the baseline architecture. Curiously, our 32ch

variant is slightly worse than the 16ch variant but better than the baseline. It

is an example that a relatively low complexity of the input images may require

fewer channels per filter (and more parallel groups of filters), to capture the relevant

features of images optimally.

6.3.3 Results on the Colorectal cancer histology dataset

The collection of samples in the colorectal cancer histology dataset Kather et al.

(2016) contains 5000 150x150 images separated into 8 classes: adipose, complex,
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Table 6.7: Results obtained with the Malaria dataset after 75 epochs.

Model Parameters % Computations % Test acc.
EfficientNet-B0 baseline 4,010,110 100.0% 389,958,834 100.0% 97.39%
kEffNet-B0 V2 2ch 301,746 7.5% 61,196,070 15.7% 96.70%
kEffNet-B0 V2 4ch 344,570 8.6% 69,691,358 17.9% 96.95%
kEffNet-B0 V2 8ch 434,098 10.8% 87,725,254 22.5% 97.39%
kEffNet-B0 V2 12ch 524,026 13.1% 106,199,566 27.2% 97.31%
kEffNet-B0 V2 16ch 612,978 15.3% 124,672,934 32.0% 97.61%
kEffNet-B0 V2 32ch 940,402 23.5% 164,422,950 42.2% 97.57%

debris, empty, lympho, mucosa, stroma, and tumor. Similar to what we did with the

Malaria dataset, we separated 10% of the images for validation and another 10% for

testing. We also quadruplicated the number of validation images by flipping these

images horizontally and vertically.

On this dataset, we tested our kEffNet-B0 with 2, 4, 8, 12, and 16 channels per

group and the baseline architecture, as shown in Table 6.8. Similar to the Malaria

dataset, higher values of channels per group do not lead to better performance. In this

case, the variants with the highest classification accuracy are 4ch and 8ch, achieving

98.02% of classification accuracy, outperforming the baseline accuracy in 0.41%. The

16ch variant has obtained the same accuracy as the 2ch variant but doubles the

required resources. Again, it indicates that the complexity of the images plays a

role in selecting the optimal number of channels per group. In other words, simpler

images may require fewer channels per group. Unfortunately, the only method we

know to find this optimal value is performing these scanning experiments.

Table 6.8: Results obtained with the colorectal cancer dataset after 1000 epochs.

Model Parameters % Computations % Test acc.
EfficientNet-B0 baseline 4,017,796 100.0% 389,966,532 100.0% 97.61%
kEffNet-B0 V2 2ch 355,064 8.8% 61,203,768 15.7% 97.62%
kEffNet-B0 V2 4ch 397,888 9.9% 69,699,056 17.9% 98.02%
kEffNet-B0 V2 8ch 487,416 12.1% 87,732,952 22.5% 98.02%
kEffNet-B0 V2 12ch 531,712 13.2% 106,207,264 27.2% 97.22%
kEffNet-B0 V2 16ch 620,664 15.4% 124,680,632 32.0% 97.62%
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6.4 Conclusion

This chapter presents an efficient scheme for decreasing the complexity of pointwise

convolutions in DCNNs for image classification based on interleaved grouped filters

with no divisibility constraints. From our experiments, we can conclude that

connecting all input channels from the previous layer to all filters is unnecessary:

grouped convolutional filters can achieve the same learning power with a small

fraction of resources (1/3 of floating-point computations, 1/4 of parameters). Our

enhanced scheme avoids the divisibility constraints, further reducing the required

resources (up to 10% less) while maintaining or slightly surpassing the accuracy of

our previous method.

We have made ablation studies to obtain the optimal number of channels per

group for each dataset. For the colorectal cancer dataset, this number is surprisingly

low (4 channels per group). Conversely, CIFAR-10’s best results require at least 16

channels per group. This fact indicates that the input images’ complexity affects our

sub-architectures optimal configuration.
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CHAPTER7

Concluding remarks

Not all input channels need to be connected in every convolutional filter. Parallel

groups of filters can learn all the required features for image classification. We tested

this idea in the first layers of a DCNN via separating achromatic and chromatic

branches and pointwise grouping filters.

7.1 Thesis highlights

In chapter 2, by converting RGB images to CIE Lab images and then loading

chromatic and achromatic values into their separated branches, one for L and another

for AB, we show that the first layer of any CNN can be optimized by reducing

more than 50% the original number of weights while keeping or even improving the

classification accuracy.

Instead of separating only the first layer, in chapter 3, the first three convolutional
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layers of a modified Inception V3 were split into chromatic and achromatic branches.

This architecture reduces learnable parameters and floating point operations from

1/3 to 1/2 in these initial three layers. This architecture achieves state-of-the-art

classification accuracy with the PlantVillage dataset. For this dataset, our

experiments indicate that from 50% to 80% of the filters should enter the chromatic

branch indicating that color is essential for this task.

In chapter 4, we showed that our two-branch CNN for plant disease classification

proposed in chapter 3 is more reliable than a typical CNN based on RGB when

input images suffer from noise. Our 20%L-80%AB and 50%L-50%AB models better

classify input images with noise by margins up to 10%.

In chapter 5, we introduced a parameter and computationally efficient

replacement for pointwise convolutions. For example, our optimized EfficientNet-B0,

named kEffNet-B0 32ch, achieves a slightly higher classification accuracy while

saving 74% of the trainable parameters and 55% of the floating-point computations.

Our pointwise optimization works better on architectures containing depthwise and

pointwise convolutions.

In chapter 6, we further reduced the required floating-point computations and

trainable parameters (up to 10% less) while keeping or slightly improving the

accuracy found in chapter 5. We did ablation studies to obtain the optimal number

of channels per group for each tested dataset. We found that the input images’

complexity affects our optimization’s optimal configuration.

From chapter 2 to chapter 6 of this thesis, our experiments show that not all input

channels need to be connected in every convolutional filter. In image classification,

parallel filters can learn the relevant features while significantly reducing the number

of parameters and floating-point computations.

7.2 Future research lines

Chapters 2, 3 and 4 shown an optimization that separates achromatic and chromatic

information up to 3 layers deep. How many layers deep the two-branch approach
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could go remains as an open and interesting question.

Chapter 4 shows that the two-branch approach provides better noise resistance

with the PlantVillage dataset. Although this approach would likely work with other

datasets and baseline architectures, these experiments are yet to be made.

Chapters 5 and 6 show an optimization for pointwise convolutions. A similar

architecture could possibly be used for optimizing spatial convolutions on existing

architectures.

Also, in chapters 5 and 6, we currently cannot determine the optimal number

of channels per group Ch automatically, according to the complexity of each

pointwise convolutional layer and the training dataset. At this moment, Ch is a

hyperparameter that requires tuning for each application. Finding an automatic

method to discover Ch would make the usage of our optimization easier.

The scope of this thesis is limited to image classification. Considering that the

optimizations shown in this thesis would work in other problem domains such as

semantic image segmentation and image generation is plausible. Other fields not

related to image processing that apply CNNs, such as natural language processing,

might also benefit from approaches similar to the approaches detailed in this thesis.
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