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Agräıments

Voldria començar agräınt la confiança que el meu director de tesi, el Dr. Jordi Ort́ın
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les bases de la redacció del treball cient́ıfic.
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de molt de temps. També vull esmentar el Fèlix, l’Ivan, el Marc o l’Isaac amb qui
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Resum en català





Caṕıtol 1

Introducció, resum de resultats i

conclusions

Aquesta tesi s’emmarca dins de l’estudi de les inestabilitats hidrodinàmiques [Drazin 02;

Chandrasekar 81]. Aquesta àrea de recerca té molt d’interès en moltes disciplines

(meteorologia, oceanografia, astrof́ısica, aeronàutica). L’interès en inestabilitats hi-

drodinàmiques es remunta possiblement al segle XV, quan Leonardo da Vinci descriu

i dibuixa el fluxe turbulent de l’aigua. En general la inestabilitat hidrodinàmica és

el resultat de la competició de forces estabilitzadores amb forces desestabilitzadores.

James Clerk Maxwell va expressar clarament el concepte d’inestabilitat hidrodinàmica

[Drazin 02]: un fluxe es considera inestable si una pertorbació infinitament petita de

l’estat present del fluxe el porta a un estat diferent en un temps finit. Al segle XIX,

gràcies a la feina de Helmholtz, Kelvin, Rayleigh i Reynolds els problemes fonamen-

tals de l’estabilitat hidrodinàmica es van formular.

En aquesta tesi ens ocuparem de l’estudi de l’estabilitat de dos sistemes molt

diferents. El primer d’ells és el dit de Saffman–Taylor, sobre el que s’han publicat

nombrosos treballs [Pelcé 88]. Nosaltres ens vam centrar en aplicar pertorbacions a

l’estat estacionari del dit. Aquest estudi està inclòs en el problema més general de

formació d’estructures en interf́ıcies: formació de dendrites en solidificació direccional,

fractures...[Pelcé 88].

També ens vam centrar en caracteritzar el fluxe oscil·latori d’un fluid viscoelàstic.

La fenomenologia que s’observa en fluids complexos [Bird 87] és molt sovint molt

diferent de la que s’observa en fluids Newtonians. L’estabilitat hidrodinàmica pot

veure’s fortament afectada per la reologia complexa dels fluids no Newtonians, donant

lloc a noves inestabilitats que actualment són subjecte d’estudi experimental i teòric

[Morozov 05; Groisman 00; Berret 97].



4 Introducció, resum de resultats i conclusions

En els nostres experiments vam observar que l’estructura del fluxe en el règim

laminar es veia fortament afectada per les propietats viscoelàstiques del material. I

que, com a resultat, el fluxe es desestabilitzava fins i tot a valors molt petits del

nombre de Reynolds.

Aquesta tesi ha comportat l’estudi experimental d’inestabilitats interficials en

fluids Newtonians i d’inestabilitats en fluxes viscoelàstics. Això va requerir l’apre-

nentatge de tècniques experimentals diverses, cosa que constitueix una formació ex-

perimental excel·lent per a treballs futurs.

1.1 Introducció

1.1.1 Dits de Saffman–Taylor

Des que va ser observada per primera vegada per Saffman i Taylor el 1958 [Saffman 58],

molts autors han estudiat el fenomen de digitació viscosa (veure [Pelcé 88; Couder 00;

Bensimon 86-b] per un estudi bibliogràfic complert) . En un principi, la recuperació

de petroli va motivar l’estudi del fenomen però més tard la inestabilitat de Saffman–

Taylor va atreure l’atenció de cient́ıfics interessats en la formació d’estructures. El

sistema experimental que es necessita per estudiar la inestabilitat és relativament

senzill d’implementar. D’altra banda, encara que la inestabilitat de Saffman–Taylor

és un fenomen altament no lineal i no local és encara suficientment simple com per a

permetre algun estudi anaĺıtic.

Una cel·la de Hele–Shaw [Hele–Shaw 1898] és un sistema format per dues plaques

de vidre paral·leles separades una distància b molt més petita que qualsevol altra

distància caracteŕıstica del sistema. El fluxe promig d’un fluid a la cel·la de Hele–

Shaw és potencial i està governat per la llei de Darcy [Darcy 1856]:

〈vx〉 =
1

b

∫ b

0

vxdz = − b2

12η

dp

dx
. (1.1)

h1
h2 b

W

U

x

yz

Figura 1.1: Esquema d’una cel·la de Hele Shaw plena de dos fluids amb viscositats η1 i η2.
La interf́ıcie que separa ambdós fluids es fa inestable quan el menys viscós desplaça el més
viscós.
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on η és la viscositat del fluid i dp/dx el gradient de pressions al qual està sotmès

el fluid. La inestabilitat de Saffman–Taylor es dóna a la interf́ıcie entre dos fluids

que omplen la cel·la (Fig. 1.1) quan el més viscós és desplaçat pel menys viscós. El

camp de velocitats a cada fluid està governat per la llei de Darcy i dues condicions

de contorn. La primera és una condició cinemàtica i implica la continüıtat de la

component normal de la velocitat a través de la interf́ıcie: v1 · n = v2 · n ≡ U · n.

L’altra és una condició dinàmica i relaciona la curvatura de la interf́ıcie amb el salt

de pressions que hi ha a través de la mateixa (llei de Young–Laplace):

δp = σκ = σ

(
1

r‖
+

1

r⊥

)
, (1.2)

on σ és la tensió superficial entre els dos fluids, 1/r‖ és la curvatura de la interf́ıcie en

el pla x–y de la cel·la i 1/r⊥ és la curvatura de la interf́ıcie a la direcció z. Aquesta

condició de contorn dinàmica fa que la resolució del problema de digitació viscosa

sigui molt complexa.

L’estabilitat lineal de la interfase entre dos fluids1 en la cel·la de Hele–Shaw s’es-

tudia a partir de la evolució d’una pertorbació a la interfase plana de molt baixa

amplitud i nombre d’ona k. La taxa de creixement σ de la pertorbació ve donada per

la relació de dispersió lineal [Pelcé 88]:

ω = U |k|
(

1− b2

12Ca
k2

)
, (1.3)

on apareix el nombre de capil·laritat Ca = ηU/σ, que compara les forces viscoses amb

la tensió superficial entre els dos fluids. La longitud d’ona més inestable del sistema

ve donada per la longitud capil·lar: lc = πb/
√

Ca. La interfase entre dos fluids en un

canal d’amplada W és inestable per valors del nombre de capil·laritat modificat 1/B

[Tabeling 86]:

1

B
= 12

(
W

b

)2

Ca > (2π)2. (1.4)

Un cop la interfase es desestabilitza el creixement de la pertorbació és exponencial

i ja no podem estudiar la evolució amb un model lineal. En el sistema té lloc un

fenomen de competició en el que un dit d’amplada λW sobreviu i viatja pel centre

del canal a una velocitat U (Fig. 1.2). Aquest és l’anomenat dit de Saffman–Taylor.

L’amplada del dit depèn només de 1/B [Tabeling 87].

1Considerarem a partir d’ara que un dels dos fluids és aire, amb η1 ' 0.
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Inestabilitats en dits de Saffman–Taylor no pertorbats

Estudis numèrics i teòrics sobre l’estabilitat de dits de Saffman–Taylor amb tensió

superficial finita van trobar que els dits eren linealment estables a pertorbacions

indüıdes per un possible soroll present al sistema [Bensimon 86] per 1/B → ∞.

Els experiments han trobat sistemàticament que els dits a 1/B alts són inestables

[Park 85; Lajeunesse 00; Kopf–Sill 88].

Experiments fets en cel·les llargues amb una relació d’aspecte W/b alta van tro-

bar una inestabilitat lateral en els dits de Saffman–Taylor [Moore 02]. En aquests

experiments s’observà que l’amplitud de la pertorbació decreixia a mesura que aug-

mentava el nombre capil·lar seguint una llei de potències Ca−2/3. Els autors van

descartar les possible inhomogeneitats en l’espaiat de la cel·la com a responsables de

la inestabilitat.

Pertorbació de dits de Saffman–Taylor

En aquesta secció parlarem de treballs en els quals els autors van afegir una pertor-

bació controlada als dits viscosos [McCloud 95]. Alguns dels exemples de pertorba-

cions són:

• Gradient en l’espaiament entre plaques. A la ref. [Zhao 92], es va provo-

car un gradient uniforme en l’espaiament entre plaques. Quan el gradient era

positiu la punta del dit era més plana i més inestable, per gradients negatius es

va observar el comportament contrari.

• Cel·les angulars. Quan l’ample de la cel·la no és constant, no es poden formar

dits estacionaris [Thomé 89]. En aquestes cel·les s’observen dits viatjant pel

centre del canal que es fan inestables per valors de 1/B menors que per al cas

de costats paral·lels [Lajeunesse 00].

• Fils, ranures i bombolles: Dits de Saffman–Taylor anòmals.

V 8 U
W lW

Figura 1.2: Notació usada pels paràmetres importants del problema: velocitat del fluxe
lluny de la punta V∞, velocitat del dit U , amplada de la cel·la W , amplada del dit λW .
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Quan la pertorbació que s’aplica està localitzada i és molt propera a la punta,

es pot accedir experimentalment a una familia de dits amb una amplada subs-

tancialment menor de la meitat del canal que no s’observen mai en absència

d’anisotropia. Aquests dits s’han observat experimentalment per dits pertor-

bats amb bombolles a la punta [Couder 86], també per dits en cel·les amb dues

ranures al centre [Rabaud 88]. Els dits pertorbats amb un fil només es veien

afectats si el fil intersectava el dit a prop de la punta [Zocchi 87; Rabaud 88].

Es va observar que aquests dits eren estables fins a valors més alts de 1/B que

els dits no pertorbats.

• Pertorbacions periòdiques.

A la ref. [Gland 03], l’estabilitat d’una interf́ıcie oli–aire en una cel·la circular

es va incrementar mitjançant un forçament periòdic.

Dits de Saffman–Taylor en fluids complexos

Actualment, una part important dels estudis que es fan sobre digitació viscosa es fan

per fluids complexos. La fenomenologia que s’observa és diferent de la que s’observa

per a fluids Newtonians. Per exemple, quan el fluid desplaçat presenta una forta

plasticitat els dits es fan més estrets [Corvera–Poiré 98; Ben Amar 99; Lindner 00b;

Lindner 00c]

Quan entra en joc la elasticitat el que passa és el contrari, els dits es fan més

amples i el valor constant λ = 0.5 que s’assoleix a altes velocitats per als fluids

Newtonians és significativament més alt per als fluids elàstics [Lindner 00; Bonn 97],

fins i tot quan els fluids elàstics també presenten plasticitat [Bonn 95].

El forçament periòdic de dits de Saffman–Taylor en fluids complexes també prediu

que les propietats reològiques complexes del fluid tenen un efecte important en els

dits desenvolupats [Folch 01; Corvera–Poiré 04]

1.1.2 Fluids complexos

El terme fluid complex es fa servir per definir diferents classes de materials que es

comporten com un fluid (es deformen cont́ınuament quan se’ls aplica un esforç) però

no presenten les caracteŕıstiques d’un fluid Newtonià. Per exemple, trobem fluids que

tenen una viscositat menor sota velocitats de deformació grans (moltes dissolucions

polimèriques presenten aquest comportament; el comportament contrari el presenten

només uns pocs materials). També existeixen materials que es comporten com a

sòlids quan se’ls sotmet a esforços petits, mentre que flueixen a esforços grans. Altres
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Figura 1.3: Esquema de les diferents respostes a un esforç aplicat: Newtoniana (vermella),
pseudoplàstica (blava), dilatant (negra), yield–stress (verda). σ és l’esforç de cisalla aplicat i
γ̇ és la velocitat de cisalla resultant.

materials tenen un comportament a mig camı́ entre el d’un sòlid de Hooke (elàstic) i

el d’un fluid Newtonià (dissipatiu); aquests fluids es coneixen amb el nom de fluids

viscoelàstics. Hi ha més tipus de fluids complexos i també hi ha materials que poden

presentar més d’una de les propietats descrites aqúı a la vegada. Una descripció

detallada del tema es pot trobar a les Refs. [Larson 99; Bird 87; Gelbart 96].

Fluids Newtonians, viscoelàstics i Newtonians generalitzats

La propietat principal dels fluids Newtonians és la seva viscositat. Aquesta viscosi-

tat és una constant del material que dóna compte de la dissipació d’energia en el

fluid deguda a friccions internes [Guyon 94]. El moviment d’un fluid Newtonià está

governat per les equacions de Navier–Stokes [Batchelor 90].

Els fluids no Newtonians tenen un comportament molt diferent. Per exemple, els

fluids viscoelàstics presenten un comportament que es troba entre el d’un sòlid elàstic

i el d’un fluid viscós. Els esforços aplicats al fluid no relaxen instantàniament, com

en el cas dels fluids Newtonians sinó que triguen un cert temps en decaure. Hi ha dos

paràmetres que mesuren l’elasticitat en els fluids viscoelàstics: el nombre de Deborah

De (que compara l’escala de temps caracteŕıstica del fluid amb l’escala de dissipació

viscosa caracteŕıstica del fluxe) i el nombre de Weissenberg Wi (que compara l’escala

de temps caracteŕıstica del fluid amb l’escala de temps caracteŕıstica de deformació

d’un element del fluid).

Un gran diferència entre els fluids Newtonians i els no Newtonians és la presència

d’esforços normals en els fluids viscoelàstics [Bird 87] que fa que aparegui una força

extra en la direcció normal al fluxe i que és responsable de molts fenomens observats

en fluids viscoelàstics.

Els fluids Newtonians generalitzats són fluids no elàstics que tenen una viscosi-
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tat depenent dels esforços aplicats al fluid. En general les cisalles provoquen una

orientació de les molècules del fluid que fan que el material flueixi més fàcilment a

esforços de cisalla alts; aquesta propietat s’anomena plasticitat.

Fluids de Maxwell

Un tipus particular de fluid viscoelàstic són les dissolucions aquoses de surfac-

tant (mol·lècules anfif́ıliques que contenen un grup hidròfob i un d’hidròfil) que a

determinades concentracions formen micel·les ciĺındriques [Rehage 88]. En el rang de

concentracions on es formen micel·les, el comportament del fluid ve molt ben descrit

per l’equació constitutiva2:

τ + tm
∂tau

∂t
= −ηγ̇, (1.5)

que relaciona l’esforç τ amb la velocitat de deformació γ̇ per un fluid de Maxwell amb

una viscositat constant η i un temps de relaxació tm.

Inestabilitats elàstiques

L’existència d’esforços normals en els fluids viscoelàstics fa que la fenomenologia

observada en fluxes viscoelàstics sigui en molts casos diferent de l’observada en flux-

es Newtonians. Un exemple d’aquest diferent comportament són les inestabilitats

elàstiques que són causades pels esforços normals en fluxes on la inèrcia és molt

petita (Re ¿ 1) [Groisman 00; Pakdel 96].

Permeabilitat dinàmica

La teoria lineal presentada a la Ref. [del Rı́o 98] descriu la resposta dinàmica d’un

fluid de Maxwell en un tub. Fent servir l’equació de moment linealitzada, la incom-

pressibilitat i l’equació constitutiva del fluid de Maxwell (Eq. (1.5)), aquesta teoria

prediu una resposta ressonant del sistema a freqüències determinades per les propie-

tats del fluid i la geometria del sistema. Per contra, la resposta del fluid Newtonià

decreix monotònicament amb la freqüència.

A la Figura 1.4 es mostra la resposta adimensional d’un fluid Newtonià (esquerra)

i un fluid de Maxwell (dreta) [Castrejón-Pita 03b] per al cas particular d’un forçament

periòdic. Es pot veure que la teoria lineal prediu molt bé la posició dels pics.

2Equació que relaciona la distribució d’esforços amb el camp de velocitats de deformació.
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Figura 1.4: Cercles: Mesures a l’eix del tub de la resposta dinàmica d’un fluid sotmès a un
forçament periòdic. Ĺınies: predicció teòrica. La permeabilitat s’adimensionalitza dividint-la
per k(0) = −a2/8. Esquerra: Mesures per un fluid Newtoniá: glicerina. Dreta: Mesures
per un fluid de Maxwell: CPyCl/NaSal 100/60 mM. Les dues extretes de [Castrejón-Pita 03b].

1.2 Inestabilitats laterals en dits de Saffman–Taylor

Els dits viscosos que s’observen en cel·les amb anisotropia tenen sempre una amplada

major que la meitat del canal i fins fa molt poc no s’havia observat cap inestabilitat

en els costats plans d’aquests dits. Recentment Moore et al. [Moore 02] van estudiar

dits en canals molt amples que presentaven una inestabilitat lateral.

Més tard, un estudi numèric de la inestabilitat lateral en dits de Saffman-Taylor

[Ledesma-Aguilar 05; Quevedo–Reyes 06] va predir el desenvolupament d’una inesta-

bilitat lateral en dits de Saffman–Taylor sotmesos a petites pertorbacions. Aquest

estudi va motivar gran part dels experiments presentats en aquesta tesi.

1.2.1 Muntatge experimental

Els experiments es van realitzar en una cel·la de Hele–Shaw horitzontal (Fig. 1.5)

formada per dues plaques de vidre de longitud L = 1300 mm separades per un

espaiador de llautó. Es van realitzar experiments en un canal d’amplada W = 24

mm en el cas del desordre estàtic i d’amplada W = 25 mm en el cas de la pertorbació

periòdica. L’entrada d’aire i la sortida d’oli consistien en dues obertures situades als

extrems de la placa inferior. La sortida d’oli es va connectar a una bomba de xeringa

que podia injectar o extreure oli a velocitat constant en el rang (−1.1, 1.1) cm3/s.

La cel· es va il·luminar des de sota amb una làmpada fluorescent d’alta freqüència.

Imatges de la cel·la es capturaven amb una CCD situada sobre la cel·la que podia

viatjar al llarg del canal a velocitats en el rang −20 a 20 mm/s i capturar fins a 60
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Figura 1.5: Esquerra: Esquema del muntatge experimental utilitzat en els experiments de
digitació viscosa. (a) Placa inferior, (b) placa superior, (c) espaiador de llautó, (d) taula
antivibració, (e) difusor, (f) fluorescent d’alta freqüència, (g) suports, (h) bomba, (i) sortida
d’oli, (j) entrada d’aire, (k) càmera CCD, (l) rail, (m) PC. Dreta: Esquema de les plaques i
l’espaiador de metall de la cel·la de Hele–Shaw

imatges de 640× 480 ṕıxels cada segon.

En tots els experiments es van generar dits d’aire penetrant en oli de silicona

(Rhodorsil 47V500) amb una viscositat dinàmica η = 0.518 ± 0.002 Pa·s a 20◦C,

densitat ρ = 975 ± 10 Kg/m3 i tensió superficial oli–aire σ = 20.7 mN/m. Per tal

d’incrementar el contrast aire–oli, l’oli es va colorejar amb Oil Blue N (Aldrich) sense

canvis apreciables en les propietats de l’oli.

Desordre congelat

El desordre congelat es va generar fixant una placa de fibra de vidre a la placa

inferior de la cel·la. El desordre consistia en unes illes de coure de dimensions fixes

(1.5 × 1.5 mm i alçada h = 0.06 mm) distribüıdes aleatòriament sobre la fibra de

vidre [Soriano 03]. Els experiments es van fer amb dos tipus de plaques: plaques amb

alta ocupació (35% de l’àrea total ocupada per illes de coure) i plaques amb baixa

ocupació (10% de l’àrea total ocupada per illes de coure). Es van fer experiments

amb un espaiament efectiu entre plaques (mesurat com la distància entre la fibra de

vidre i la placa superior) de 0.8 i 1.3 mm.
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Figura 1.6: Exemple d’un dit generat en els experiments amb desordre estàtic amb b = 0.8
mm, 10% de l’àrea total ocupada per illes de coure. La velocitat promig del dit era U = 2
mm/s. La regió brillant del dit és la zona on es va estudiar la inestabilitat.

Pertorbació periòdica

En els experiments amb un dit sotmès a un forçament periòdic l’espaiat entre plaques

era b = 1 mm. El forçament periòdic es va fer mitjançant una bomba que es va

connectar a l’entrada d’aire. La bomba admetia aire quan el volum d’aire dins la

bomba era màxim, per tal de permetre que el dit avancés. La bomba funcionava a

freqüències fins a 1.5 Hz.

Mètodes experimentals

Per començar introduirem dues escales de temps presents al sistema en absència de

pertorbacions que tenen molta importància en el sistema. La primera escala temporal

ens dóna una freqüència del dit caracteŕıstica:

νfinger =
V∞

λ2W
, (1.6)

on W és l’amplada del canal, V∞ la velocitat d’extracció de l’oli i λ l’amplada adi-

mensional promig del dit. L’altra freqüència caracteŕıstica és:

ν∞ =
V∞
W

, (1.7)

Es va mesurar la longitud d’ona Λ de la inestabilitat com la distància entre dos

màxims adjacents; a cada longitud d’ona se li va associar una freqüència:

νout =
V∞
λΛ

(1.8)

En el cas dels dits en cel·les amb desordre congelat, es va identificar una regió on

la inestabilitat era estacionària i es van reconstruir imatges de dits llargs mitjançant

fotografies preses amb la càmera viatjant al llarg del canal. A la figura 1.6 es mostra

una imatge d’un d’aquests dits.

Per als dits sotmesos a una pertorbació periòdica es va estudiar com evolucionava

la inestabilitat lateral en una regió fixa de la cel·la. En el sistema de referència del dit

això correspondria a estudiar l’evolució de la inestabilitat a mesura que s’allunyava
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Figura 1.7: Exemple d’un dit generat en els experiments amb un forçament periòdic. La
freqüència de forçat era 0.22 Hz i V∞ = 1.42 mm/s. La regió brillant correspon a la zona que
es va analitzar.

de la punta. Els resultats que presentem aqúı corresponen a estats estacionaris que

assolia la inestabilitat lateral. Vam fer cinc repeticions de cada experiment per tal de

millorar la nostra estad́ıstica. A la figura 1.7 es mostra un exemple dels dits observats

al laboratori.

A banda de la freqüència de la inestabilitat lateral també es van mesurar les

fluctuacions en l’amplada del dit. Es va digitalitzar la regió d’anàlisi i es va mesurar

l’amplada local del dit λ(xi). D’aquesta amplada local es va mesurar l’amplada

promig λ = 1/N
∑

i λ(xi) i es van calcular les fluctuacions a través de la desviació

estàndard de λ(xi):

δλ =

√
1

N − 1

∑
i

(λ− λ(xi))2. (1.9)

1.2.2 Principals resultats

La inestabilitat lateral que es va mesurar en els dits sotmesos als dos tipus de per-

torbació periòdica tenia una longitud d’ona llarga i una amplitud baixa.

Desordre estàtic

Es va estudiar l’efecte de les propietats del desordre en la inestabilitat variant la

intensitat del desordre (o l’espaiat entre plaques) i el cobriment (tant per cent d’àrea

total de la cel·la ocupat per illes de coure). Es va observar que com més intens

era el desordre més gran era l’amplitud de la inestabilitat, mentre que la intensitat

del desordre no afectava a la distribució de freqüències de la inestabilitat lateral.

L’amplitud de la inestabilitat també creix amb el cobriment.

També es va estudiar la relació entre la inestabilitat i el nombre de capil·laritat

modificat 1/B per a un espaiat b = 1.3 mm i una ocupació del 10%. Es va comparar

l’amplada mitja del dit amb l’amplada de dits sense pertorbacions (Fig. 1.8) i es

va veure que els resultats tenien un bon acord amb els resultats del cas estacionari

[Tabeling 86].
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Figura 1.8: Amplada mitja del dit en funció de 1/B. La ĺınia correspon als valors teòrics
de McLean i Saffman [McLean 81]. Els quadrats són els valors experimentals resultat de
promitjar sobre quatre configuracions de desordre diferents.

Es va estudiar la relació entre l’amplitud de la inestabilitat lateral i el nombre

de capil·laritat modificat. Com es pot veure a la Figura 1.9, la relació entre Ca

i l’amplitud de les fluctuacions és clarament no monotònica mentre que a valors

moderats de 1/B (per sota de 250) l’amplitud de les fluctuacions escala amb 1/B:

δλ = (0.034 ± 0.008)(1/B)(−0.30±0.13). A valors de 1/B més alts l’amplitud de la

inestabilitat creix.

També es va mesurar la distribució de freqüències de la inestabilitat en funció de
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Figura 1.9: Fluctuacions a l’amplada del dit vs 1/B. Els quadrats són els resultats exper-
imentals resultat de promitjar sobre quatre realitzacions diferents del desordre. La ĺınia de
punts és el millor ajust al comportament a la zona de velocitats baixes (1/B des de 0 a 250).
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Figura 1.10: Freqüència de la inestabilitat lateral en funció de νin per a una velocitat d’ex-
tracció de l’oli V∞ = 1.42 mm/s. ¤: Estats estacionaris. 4: Transformada de Fourier de
dits llargs. • i H: Estats no estacionaris. Les ĺınies grises marquen la posició de ν∞. Les
bandes grises horitzontal i vertical marquen el rang on estan compreses les freqüències carac-
teŕıstiques del dit (νfing−min, νfing−max). Tambè es pinten y = x i y = x/2 com a guies per
l’ull.

1/B. Es va veure que tant el valor mig com l’amplada de la distribució de freqüències

de la inestabilitat creixien linealment amb el nombre de capil·laritat modificat.

Finalment, l’estudi de la distribució de longituds d’ona de la inestabilitat ens va

mostrar que per a totes les velocitats la longitud d’ona preferida pel sistema era molt

propera a l’amplada de la cel·la.

Pertorbació periòdica

Es va observar una inestabilitat simètrica i periòdica per a totes les freqüències de

forçat. Es van fer experiments a dos velocitats diferents (V∞ = 1.42 i 2.83 mm/s).

Es va observar que l’amplitud de la pertorbació no tenia una relació monotònica

amb la freqüència del forçat. Per a les dues velocitats d’extracció es va observar que

l’amplitud de la pertorbació era molt petita a freqüències de forçat altes. També

es va veure que l’amplada del dit no era uniforme, de manera que es va definir una

banda de freqüències caracteŕıstiques al sistema:

νfing−min =
V∞

〈λ〉2maxW
, (1.10)

νfing−max =
V∞

〈λ〉2minW
, (1.11)

Les primeres etapes de la inestabilitat eren molt similars a tots els experiments:

la inestabilitat apareix a prop de la punta del dit, poc desprès de que la bomba d’aire
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fos encesa. L’efecte de la bomba és un canvi instantani en la velocitat de la punta del

dit que avança a una velocitat més alta o més baixa. Com a resultat, l’amplada del

dit es modula al voltant d’un valor mig amb una freqüència en el rang (0.4νin, νin).

Lluny de la punta observem tres tipus de comportament a diferents freqüències

de forçat (Fig. 1.10):

• Règim depenent de la freqüència del forçat (ν < νfingmin
): En aquesta

regió la freqüència resposta νout és completament periòdica i l’estat estacionari

s’assoleix molt a prop de la punta. La freqüència resposta depèn fortament de

la freqüència de forçat: evoluciona suaument des de νout ' νin a molt baixes

freqüències fins a νout ' νin/2 a freqüències de l’ordre de νfing−min.

• Règim de resposta no saturada: Per a una petita banda de freqüències

la freqüència observada molt a prop de la punta es desestabilitzava però no

arribava a un estat estacionari. En alguns dels casos la inestabilitat lateral

evolucionava cap a un estat amb una longitud d’ona molt més gran que la de

l’estat inicial.

• Règim de selecció: A freqüències per sobre de νfing−max, el perfil observat

molt a prop de la punta evolucionava cap a un perfil estacionari amb una

longitud d’ona molt més gran que la de prop de la punta. Aquesta longitud

d’ona era de l’ordre de l’amplada del canal.

1.3 Fluxe oscil·latori d’un fluid de Maxwell en un

tub

L’acoblament entre el fluxe i les propietats del fluid fa que la resposta dinàmica dels

fluids no Newtonians (complexos) sigui molt més rica que la dels fluids Newtonians

(simples) [Larson 99]. En particular, i depenent de l’escala temporal rellevant del sis-

tema, els fluids viscoelàstics presenten un comportament dissipatiu propi dels fluids

viscosos ordinaris i un comportament elàstic caracteŕıstic dels sòlids. El comporta-

ment elàstic fa que siguin uns candidats potencials a presentar fenòmeNs ressonants

en diferents condicions de fluxe.

La resposta d’un fluid viscoelàstic a un gradient de pressió oscil·lant ha estat

analitzaDA teòricament (veure Sec. 1.1.2 per detalls). La resposta, mesurada com

la velocitat a una amplitud del gradient de pressió donada, excedeix la d’un fluid

ordinari en varis ordres de magnitud a diverses freqüències. Aquesta amplificació de
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Figura 1.11: Esquerra: Esquema del sistema de PIV: (a) Càmera de PIV, (b) Làser PIV,
(c) Processador del PIV, (d) full de llum, (e) pistó de tefló, (f) motor, (g) fluid estudiat, (h)
glicerina, (i) cilindre acŕılic. Dreta: Imatge del sistema experimental.

la resposta s’atribueix a un efecte ressonant degut a les propietats elàstiques del fluid

i a la geometria del contenidor [López de Haro 96; del Rı́o 98; Tsiklauri 01].

Aquest efecte ressonant va ser comprovat experimentalment [Castrejón-Pita 03b]

però el model conté encara moltes prediccions interessants que no s’havien comprovat

experimentalment (l’estructuració del fluxe en regions de velocitat alternant, la de-

pendència dels pics de ressonància amb els paràmetres experimentals) que nosaltres

vam desenvolupar en els nostres experiments. A més, també vam caracteritzar una

inestabilitat del fluxe viscoelàstic a amplituds de forçament per les quals el fluxe

Newtonià era completament laminar.

1.3.1 Muntatge experimental

En la caracterització del fluxe oscil·lant d’un fluid de Maxwell en un tub es van fer

servir quatre tècniques experimentals diferents: anemometria de làser Doppler (LDA),

deflectometria Òptica (OD) [Fermigier 92], velocimetria d’imatge de part́ıcules (PIV)

[Adrian 91] i birrefringència[Lerouge 00].

El sistema experimental (Fig. 1.11) consistia en un cilindre vertical fet amb un
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material acŕılic transparent, de radi interior a = 25 mm i alçada 500 mm, ple del fluid

a estudiar. Per tal d’evitar aberracions òptiques, el cilindre es va col·locar dintre d’un

segon recipient acŕılic de secció quadrada, ple de glicerol (que té un ı́ndex de refracció

molt similar al del material acŕılic). Un pistó de tefló a la part inferior del cilindre,

mogut per un motor de freqüència variable, prodüıa oscil·lacions harmòniques del

gradient de pressions a la columna de fluid. L’amplitud de l’oscil·lació podia ser

modificada canviant l’eccentricitat de la roda que movia el pistó. Es van estudiar

amplituds d’oscil·lació z0 = 0.8, 1.2, 1.6, 2.0 i 2.5 (±0.05) mm.

Els camps de velocitat en un pla vertical que tallava l’eix de simetria del tub

es van mesurar per PIV 2–d. El nostre sistema PIV tenia una unitat làser de dos

polsos Nd-Yag, que inclöıa un arranjament òptic per produir un full de llum en un

pla vertical del cilindre (Fig. 1.11). Una CCD (Kodak E1.0, resolució 1008 × 1016

ṕıxels), perpendicular al full de llum, es va fer servir per capturar imatges digitals. La

càmera capturava parelles d’imatges, cadascuna en un dels polsos del làser. La càmera

capturava a una velocitat màxima de 1.5 Hz. Un processador Dantec FlowMap 1100

s’ocupava de la sincronització del làser i la CCD. El processat de les imatges es va

fer amb el programa comercial Dantec FlowMap v5.1 software. Com a part́ıcules

traçadores es van fer servir esferes de poliamida de 20–µm Dantec.

Els fluids Newtonians usats en els experiments (oli de silicona de densitat ρ = 973

Kg/m3 i viscositat η = 56 Pa·s i glicerina de densitat ρ = 1250 Kg/m3 i viscositat

η = 1 Pa·s ) es van fer servir per comparar el seu comportament amb el comportament

dels fluids Maxwelians.

Les dissolucions viscoelàstiques es van preparar dissolent Cetylpiridinium Chloride

(CPyCl) i Salicilat de Sodi (NaSal) (els dos de Sigma) en aigua destil·lada. La major

part dels experiments es van fer amb una dissolució de concentració [100/60] mM

(de densitat ρ = 1050 Kg/m3, viscositat η = 60 Pa·s i temps de Maxwell tm = 1.8

s). En els altres es va fer servir la dissolució CPyCl/NaSal [40/40] mM (de densitat

ρ = 1005 Kg/m3, viscositat η = 30 Pa·s i temps de Maxwell tm = 1.25 s).

1.3.2 Principals resultats

Permeabilitat dinàmica per diferents fluids de Maxwell

Vam fer mesures de LDA al centre del tub amb una amplitud de forçat z0 = 0.8

mm per tal de reproduir la corba presentada a [Castrejón-Pita 03b] amb un fluid de

Maxwell diferent, amb l’objectiu de verificar la relació entre la posició dels pics i el

nombre de Deborah [del Rı́o 98]. Els resultats (Fig. 1.12) mostren que efectivament
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Figura 1.12: Funció de resposta adimensional al centre del cilindre, com a funció de la
freqüència adimensionalitzada, per dos concentracions diferents de la dissolució de surfactant.
Les ĺınies verticals donen la posició de les freqüències ressonants predites per una teoria lineal

la posició dels pics escala com τ ∝ tmDe−
1
2 .

Perfils de velocitat laminars

Mesures PIV dels perfils de velocitat a diferents distàncies de la interf́ıcie (6,10 i 25

cm) i z0 = 0.8 mm ens van permetre veure que la forma dels perfils és independent

de la distància a la interf́ıcie. D’altra banda, es va veure que l’amplitud dels perfils

de velocitat era més baixa més a prop de la interf́ıcie. Les mesures es van fer per als

tres primers màxims de la resposta dinàmica (2.0, 6.5 i 10.5 Hz) i per als tres primers

mı́nims de la resposta dinàmica (3.5, 8.2 i 11.5 Hz).

La dependència dels perfils de velocitat amb la freqüència del forçat és molt més

forta per al cas del fluid Maxwelià. A freqüències baixes (2.0, 3.5 Hz), els perfils de

velocitat no tenen estructura, mentre que a freqüències creixents (Fig. 1.13 dreta)

el fluxe s’organitza en regions de fluxe alternant separades per punts quiescents.

Cada màxim de la resposta dinàmica presenta un parell més de punts quiescent que

l’anterior. La posició d’aquests punts quiescents depèn de la geometria del sistema i

de les propietats del fluid.

Per al fluid Newtonià, en canvi, els perfils de velocitat són molt similars a totes

les freqüències i no s’observa en cap cas l’estructuració del fluxe (Fig. 1.13 esquerra).

Mitjançant mesures OD de la interf́ıcie aire/fluid caracteritzat es va veure que la

posició d’aquests punts quiescents es mantenia constant a diferents distàncies de la

superf́ıcie lliure de fluid. D’altra banda, els perfils de velocitat mesurats a la interf́ıcie

van ser sistemàticament més baixos que els mesurats en el gruix del fluxe.
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Figura 1.13: Mesures de PIV a z0 = 0.8 mm, ν = 6.5 Hz a 6 cm de la interf́ıcie lliure. La
predicció teòrica es presenta amb una ĺınia cont́ınua i les mesures experimentals amb punts.
Esquerra: Glicerina, t = 0.115 s. Dreta: 100/60 CPyCl/NaSal, t = 0.038 s.

Inestabilitat hidrodinàmica

Per a un fluid Newtonià amb viscositat i densitat similars a les del fluid viscoelàstic

CPyCl/NaSal 100/60 mM es van mesurar camps de velocitat a freqüències en el rang

2.0 fins a 11.5 Hz. Es va veure que els camps de velocitat eren laminars fins a forçats

d’amplitud 10 mm a totes les freqüències.

En el fluid viscoelàstic es va estudiar com afectava un increment de l’amplitud del

forçat als camps de velocitat. Es van aplicar amplituds de forçat z0 = 0.8, 1.2, 1.6, 2.0

i 2.5 mm i es van estudiar les freqüències corresponents als tres primers màxims de

la resposta dinàmica (2.0, 6.5 i 10.5 Hz) i per als tres primers mı́nims (3.5, 8.2 i 11.5

Hz).

Per al primer màxim i primer mı́nim de la resposta dinàmica es va observar que

els camps de velocitats eren laminars a totes les amplituds de forçat. Els camps de

velocitat de freqüències que presentaven regions quiescents eren inestables a amplituds

de forçat creixents. La simetria axial del camp de velocitats encara es preservava en

aquest estadi del fluxe i la inestabilitat donava lloc a vòrtex toröıdals estacionaris

amb una intensitat que seguia la periodicitat del forçat (Fig. 1.14). Aquests vòrtex

toröıdals es van observar a freqüències 6.5, 8.2, 10.5 i 11.5 Hz. A amplituds altes del

forçat(z0 = 2.0 i 2.5 mm) es perdia la simetria axial dels vòrtex.

Es van mesurar les fluctuacions en la velocitat del sistema tant per al component

horitzontal (σvx =
√

1/N
∑

i[vx(x, yi)− vx(x)]2) com per al component vertical de la

velocitat (σvy

√
1/N

∑
i[vy(x, yi)− vy(x)]2). Tot i que la magnitud de σvy era sensible-

ment major que la de σvx la informació que donaven era essencialment la mateixa. Es

va calcular el promig espacial i temporal de les fluctuacions per obtenir una mesura
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global de l’estabilitat del fluxe. Aquestes fluctuacions es van fer adimensionals amb

la velocitat màxima del pistó: σ̃vy = σvy/(2πνz0) i es van representar en termes d’un

paràmetre adimensional constrüıt a partir del nombre de Weissenberg.

Com ja s’ha dit a la introducció, el nombre de Weissenberg compara l’escala

de temps caracteŕıstica del fluid amb la velocitat de deformació caracteŕıstica d’un

element de fluid. En el nostre sistema aquesta velocitat de deformació caracteŕıstica

es construeix a través de la velocitat màxima del pistó i la posició del punt quiescent

del fluxe més proper al centre del tub rq:

Wi = tmγ̇char = tm
2πνz0

rq

. (1.12)

Com que la dinàmica observada en el sistema té un comportament periòdic amb

un peŕıode T = 1/ν ¿ tm és molt probable que ν sigui una escala de temps molt

més rellevant que tm. Es defineix un nou paràmetre χ = Wi/(νtm) i s’observa que

les fluctuacions en la velocitat col·lapsen (Fig. 1.15). El pas de mapes de velocitat

estables a inestables es dona per un valor de χ ' 1.
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Figura 1.14: Dissolució 100:60 CPyCl/NaSal: resultats PIV per ν = 8.2 Hz i z0 = 1.2 mm.
Es mostren imatges a temps t=0, 1/(4ν), 1/(2ν), 3/(4ν) i 1/ν. Superior: camp de velocitats.
Inferior: component azimutal de la vorticitat. Les escales corresponents es donen al peu de
la figura.
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Figura 1.15: Dissolució 100:60 CPyCl/NaSalpromig espacial i temporal de les fluctuacions
de la component y de la velocitat, en funció del paràmetre adimensional χ ≡ Wi

tmν , a les
diferents freqüències de forçat (en Hz): 2.0 (¥), 3.5 (◦), 6.5 (?), 8.2 (M), 10.5 (H), i 11.5 (+).

1.4 Conclusions

1.4.1 Inestabilitats laterals en dits de Saffman–Taylor

Vam estudiar l’estabilitat dels costats plans del dit de Saffman–Taylor. Vam aplicar

pertorbacions de dos tipus: desordre espacial estàtic i una pertorbació periòdica de

la velocitat de la punta del dit.

Ambdues pertorbacions van produir una pertorbació de gran longitud d’ona i

baixa amplitud als dos costats del dit. Als dos casos es va observar un fenomen

de selecció que portava a una freqüència aproximadament igual a la meitat de la

freqüència caracteŕıstica del dit.

En els experiments amb desordre congelat, la inestabilitat es va caracteritzar en un

rang de velocitats molt ampli. Vam observar que l’amplitud de la inestabilitat dequeia

amb la velocitat (o el nombre de capil·laritat en el nostre cas) amb un exponent

δλ ∝ Ca−1/3. A velocitats molt altes, l’amplitud de la inestabilitat tornava a créixer.

Modulacions periòdiques de la velocitat del dit es van estudiar per a dues velocitats

diferents, en un ampli rang de velocitats de forçament. La inestabilitat resposta que

vam observar al dit va ser sempre simètrica i per la major part dels dits arribava

a un estat estacionari. A freqüències baixes la forma de la inestabilitat lateral era

fortament depenent de l’entrada, mentre que a freqüències altes s’observà un procés

de selecció. En aquest procés, l’estat final al que arribava el dit estava caracteritzat

per una freqüència molt menor que la freqüència d’entrada.
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1.4.2 Fluxe oscil·latori d’un fluid de Maxwell en un tub

Vam usar quatre tècniques òptiques diferents (LDA, PIV, OD i birefringència) per

caracteritzar el fluxe oscil·latori d’un fluid de Maxwell (una solució de CPyCl/NaSal

en aigua) contingut en un tub vertical. Dos fluids Newtonians (glicerina i oli de

silicona) van ser estudiats per a comparar el seu comportament amb el del fluid

complex.

Les mesures per al centre del tub mostraren que el model lineal presentat a la Sec.

1.3 prediu acuradament la posició dels pics de ressonància en relació a les propietats

reològiques del fluid.

Mesures de PIV del mapa de velocitats al gruix del fluxe mostraren que els perfils

per al fluid Newtonià no tenien estructura, contràriament al que s’observà per al

fluid complex. Aquest presentava regions de velocitat alternant separades per punts

quiescents del fluxe. El nombre d’aquests punts quiescents augmentava a mesura que

augmentava la freqüència del forçat i la seva posició era predita molt acuradament

pel model lineal. Mesures a diferent distàncies de la interfase lliure (incloent mesures

OD a la pròpia interfase) mostraren que la posició radial d’aquests punts quiescents

era independent de la distància a la interfase lliure.

També vam realitzar mesures de PIV per al fluxe oscil·latori d’un fluid Newtonià

i un Maxwelià amb viscositat i densitat similars a vàries amplituds de forçat. Men-

tre el fluxe Newtonià va resultar ser estable en tot el rang de paràmetres explorat,

el de Maxwell es desestabilitzava quan s’augmentava l’amplitud del forçat, inclús

mantenint Re molt petit. La primera inestabilitat observada donava lloc a vòrtex

estacionaris toröıdals amb simetria axial. A mesura que augmentava l’amplitud del

forçat, aquests vòrtex simples es desestabilitzaren donant pas a estructures més i més

complexes. Aquests resultats són potencialment rellevants en la cerca de l’observació

experimental d’una inestabilitat subcŕıtica en fluxes de cisalla amb ĺınies de corrent

paral·leles.

1.5 Perspectives futures

1.5.1 Inestabilitats laterals en dits de Saffman–Taylor

La caracterització de la inestabilitat lateral en funció de la velocitat es va fer només

per als experiments amb desordre estàtic. En el cas de la pertorbació periòdica una

mesura interessant i que ens donaria informació similar seria l’estudi de la longitud

d’ona seleccionada a diferents velocitats.
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També seria interessant realitzar experiments amb nous amples de cel·la per amb-

dues pertorbacions. Això permetria generar dits més llargs, determinar l’estat final

dels punts propers a la freqüència caracteŕıstica del dit i també veure la dependència

dels resultats amb 1/B.

La combinació dels dos mecanismes de pertorbació és un altre punt interessant

que no es va explorar en aquesta tesi. Vam observar que la inestabilitat lateral tenia

una freqüència preferida, que coincidia aproximadament amb l’obtinguda en els casos

de pertorbació periòdica. Una qüestió que va quedar sense resposta va ser l’efecte

del soroll en el fenomen de selecció per un dit sotmès a una pertorbació periòdica.

Sembla clar que la freqüència seleccionada seria la mateixa, però el procés dinàmic de

selecció es podria veure afectat pel soroll. Per exemple, podria passar que el temps

necessari per arribar a l’estat seleccionat final for significativament més curt gràcies

a la presència del soroll.

1.5.2 Fluxe oscil·latori d’un fluid de Maxwell en un tub

La caracterització del perfil de velocitats laminar es va fer exhaustivament mitjançant

vàries sèries d’experiments. Es va explorar un ample rang de freqüències i també es

van canviar les propietats dels fluids. Una mesura interessant que encara quedaria

pendent seria veure l’efecte que tindria canviar el radi del tub mantenint constants les

propietats del fluid per tal de verificar l’escalament de les freqüències de ressonància

predit a la Ref. [del Rı́o 98]. També seria interessant fer mesures a baixes amplituds

i freqüències altes per tal de poder determinar el màxim nombre de punts quiescents

que podria presentar el mapa de velocitats.

D’altra banda, l’estudi de la inestabilitat encara té algunes preguntes obertes

que no es van abordar durant aquesta tesi. Per començar, seria molt important

determinar si el comportament pseudoplàstic té algun paper en el desenvolupament

de la inestabilitat. Això es podria saber reemplaçant el fluid que es va fer servir en

els experiments per un fluid no elàstic que presenti pseudoplasticitat o fent servir un

fluid purament elàstic (fluid de Boger [Boger 96]).

El llindar de la inestabilitat no es podia caracteritzar amb el dispositiu experi-

mental descrit en aquesta tesi. Per tal de determinar la mı́nima amplitud necessària

per desestabilitzar el fluxe a una freqüència fixada es va dissenyar un nou dispositiu

experimental que es descriu a l’Apèndix B. Aquest dispositiu permet el canvi continu

de l’amplitud del forçat a freqüència fixada.

Les nostres mesures estaven dirigides a caracteritzar la primera inestabilitat ob-

servada al sistema. L’estudi a forçats de major amplitud i freqüència seria interessant



1.5 Perspectives futures 25

per tal de caracteritzar bifurcacions secundàries, que ja s’observaven en alguns dels

nostres experiments. L’estudi d’aquests estadis més avançats, en els quals vam ob-

servar una pèrdua de simetria axial, requeriria noves tècniques de caracterització.
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Part II

Thesis





Chapter 1

Framework

This thesis fits in the area of hydrodynamic instabilities [Drazin 02; Chandrasekar 81],

This research area has great interest in many disciplines (meteorology, oceanography,

aeronautics, astrophysics). The interest in hydrodynamic instability begins possibly

as early as the XVth century, when Leonardo da Vinci describes and draws the

turbulent flow of water. Generally speaking, hydrodynamic instability arises from

the competition between stabilizing forces and destabilizing forces. James Clerk

Maxwell expressed clearly the qualitative concept of hydrodynamic instability as

follows [Drazin 02]: a flow is said to be unstable when an infinitely small variation

of the present state of the flow brings it to a different state in a finite time. In the

XIXth century, thanks to the work of Helmholtz, Kelvin, Rayleigh and Reynolds the

fundamental problems of hydrodynamic instabilities were formulated.

An important part of this thesis concerns the experimental study of the stability of

an stationary Saffman–Taylor finger in a Hele–Shaw cell [Hele–Shaw 1898], subjected

to perturbations. This study is included in the more general problem of pattern for-

mation of interfaces: dendrite formation in directional solidification, fracture shape...

[Pelcé 88]

We want to explore the effect of disordered media on unstable interfaces, which

has not been much explored [Decker 99]. On the contrary, the growth of interfaces in

disordered media has been studied extensively in the case of rough, macroscopically

stable interfaces both experimentally and theoretically [Alava 04].

Our study is related to side branching in the problem of crystal growth. When

an undercooled melt solidifies, the solid front has a parabolic shape and lateral pro-

trusions called side branches. These ones grow in amplitude as they are advected

away from the parabolic tip. This phenomenon has been widely investigated in solid-

ification, both experimentally [Dougherty 87] and theoretically [Pieters86], with the



30 Framework

conclusion that side branching results from selective amplification of natural noise.

Also, we want to study the effect of a time–dependent perturbation of the station-

ary Saffman–Taylor finger. The aim of studying frequency dependent flows of fluids

in confined media is that they can be found in a wide variety of fields. Oscillatory

flows have been proposed for reducing wetting layers of viscoelastic fluids, and also

for the treatment of ground water aquifers contaminated by organic liquids, using

elastic waves [Lambert 04]. Oscillatory flows are also present in the circulatory and

breathing system of living creatures [Aarts 98], where it has been suggested that the

pumping frequency of blood is selected to provide maximum power [Lambert 04].

Many of these systems imply the presence of more than one fluid. In order to have a

basic understanding of many phenomena observed in frequency-dependent situations

of two-fluid flow in confined media it is necessary to take a simple model system. Due

to its relative simplicity, the Saffman-Taylor finger is an archetype of two-phase flow

in confined media [Pelcé 88; McCloud 95; Couder 00].

Some of the problems which motivate the study of a frequency–dependent per-

turbation to a flow deal with complex fluids. The study of complex fluids has a

great interest given that complex fluids can be found almost everywhere [Larson 99]

and often present a a phenomenology much different than the one observed for New-

tonian fluids. Time–dependent viscoelastic flows are expected to present interesting

dynamical phenomena resulting from the interaction between the characteristic relax-

ation time scales of the viscoelastic fluid and the time scale of a parametric forcing.

Hydrodynamic stability may be strongly affected by the complex rheology of non–

Newtonian fluids, giving rise to new instabilities which are currently being subjected

to experimental and theoretical analysis [Morozov 05; Groisman 00; Berret 97].

In the second part of this thesis we present a detailed experimental study of the

oscillatory flow of a complex fluid. We show that the structure of the flow in the

laminar regime is strongly affected by the viscoelastic properties of the fluid. And

that, as a result, the flow becomes unstable even at low Reynolds numbers.

The thesis comprises experimental studies of interfacial instabilities of Newtonian

fluids and of bulk instabilities of non–Newtonian fluids. This required the learning

of different experimental techniques which will result in an excellent experimental

background for future studies.

The thesis is organized as follows:

The first part of the thesis presents an introduction to Saffman–Taylor instability

and to the current status of experiments regarding the stability of perturbed and

non perturbed Saffman–Taylor fingers (Ch. 2), a description of Newtonian and non–
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Newtonian fluids and a brief explanation of the phenomenology observed in complex

flows (Ch. 3). Chapters 4, 5, 6, 7, and 8 are dedicated to the description of the

experiments performed in the Hele–Shaw cell. The experimental characterization of

an oscillating viscoelastic flow is presented in Chapters 9, 10, 11, 12, and 13.





Chapter 2

Saffman–Taylor instability

Since it was first observed by Saffman and Taylor in 1958 [Saffman 58], many authors

have studied viscous fingering instability both theoretically and experimentally. For

a review see [Pelcé 88; Couder 00; Bensimon 86-b]. The interest on this problem

was first motivated by the oil recovery industry, but later the instability attracted

the attention of physicists interested in pattern formation. The experimental device

required to study the instability is relatively easy to implement. On the other hand,

although Saffman–Taylor instability is a highly non–linear, non local problem it is

still simple enough to allow some analytical research.

Saffman–Taylor instability is a viscosity driven instability that occurs at the

interface between two fluids. When the less viscous fluid displaces the most vis-

cous one, the interface is destabilized giving rise to the formation of viscous fingers

([Pelcé 88; Bensimon 86-b; Couder 00] and references therein).

In this chapter we will introduce the Hele–Shaw cell and characterize the flow in

this almost-two dimensional medium. The mechanism which leads to the destabiliza-

tion of a fluid–air interface in this kind of geometry will also be reviewed, as well as

the stationary viscous finger. We will finish by describing some examples of viscous

fingering subjected to perturbations.

2.1 Hele–Shaw Cell

A Hele–Shaw cell is a simple system in which the flow of a viscous fluid is potential

and it is governed by Darcy’s law, as in real porous media. The cell is formed by two

glass plates separated by a gap spacing b which is much shorter than any other length

scale of the system (Fig. 2.1). For conditions where inertia can be neglected (Re ¿ 1)

the flow can be considered quasistationary. Due to the small gap spacing, vz can be
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Figure 2.1: Poiseuille velocity profile developed in a Hele–Shaw cell.

safely neglected and the pressure gradient ∇p 1 can be considered independent of

z. The no–slip boundary condition at the glass plates (z = 0, b) causes that the

components of the velocity in the plane of the cell (x–y plane) change smoothly with

respect to variations in the vertical direction. Considering a pressure gradient in the

longitudinal (x) direction, the equation of motion reads:

η
∂2vx

∂z2
=

dp

dx
, (2.1)

where η is the dynamic viscosity of the fluid which fills the cell.

The velocity profile (Fig. 2.1) obtained when this equation is solved with the no

slip boundary condition (vx(z = 0) = vx(z = b) = 0) reads:

vx(z) =
1

2η

dp

dx
z (z − b) . (2.2)

The depth–averaged x–component of the velocity is:

〈vx〉 =
1

b

∫ b

0

vxdz = − b2

12η

dp

dx
. (2.3)

This expression of the mean velocity is the expression of Darcy’s law (derived phenom-

enologically by Darcy in 1856 [Darcy 1856]) in the Hele–Shaw geometry. Considering

that the flow is nearly two dimensional, this z-averaged velocity can be safely equated

to the local velocity at each point of the cell.

Due to the simplicity of the experimental device required and the 2-dimensional

nature of the flow developed, the Hele–Shaw geometry is used to study several phe-

nomena. Besides viscous fingering the Hele–Shaw cell is also used to study interface

growth in disordered media [Soriano 05], two–dimensional Kelvin–Helmholtz insta-

bility [Gondret 97], two–dimensional bubbles [Tanveer 87; Kopf–Sill 88-b], etc.

1The effect of gravity is taken into account by considering the pressure field p′ = p + ρg · r.
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Figure 2.2: Scheme of a linear Hele–Shaw cell filled with two fluids of viscosities η1 and η2.
The interface between both fluids becomes unstable when the less viscous fluid is pushing the
more viscous one.

2.2 Saffman–Taylor instability in a linear horizon-

tal channel

We will consider a linear horizontal channel2 (Fig. 2.2) filled with fluids 1 and 2

(η1 < η2). When the less viscous fluid is displacing the more viscous one, the interface

between both fluids is destabilized, giving rise to a viscous fingering instability.

The equation of motion in the channel has been already presented. The velocity of

each viscous fluid in the cell is described by Darcy’s law (Eq. ( 2.3)). Assuming that

both fluids are incompressible (∇ · v = 0), we can write down Laplace’s equation:

∇2pi = 0, (2.4)

for each fluid (i = 1, 2). From now on, we will consider that the less viscous fluid is

air (η1 ' 0).

In order to have a complete description of the system, two boundary conditions

are required. The first one is a kinematic condition that, given that the fluids are

immiscible, at the interface v1 ·n = v2 ·n ≡ U ·n. The other condition is a dynamical

condition for the pressure jump across the interface (Young–Laplace’s law):

δp = σκ = σ

(
1

r‖
+

1

r⊥

)
, (2.5)

where σ is the surface tension between the two fluids, 1/r‖ is the curvature of the

interface in the x–y plane of the cell and 1/r⊥ is the curvature of the interface in the

z direction.

Although the formulation of the Saffman–Taylor problem seems quite simple, its

resolution is very complex due to the boundary conditions at the interface, which are

continuously changing with the evolution of the system (moving boundary problem).

2In this particular configuration density contrast plays no role in the interface destabilization.
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Air
Viscous fluid

Dpmax

Figure 2.3: Left: Deformation of the isobaric lines due to a perturbation of the air-fluid
interface for air pushing a viscous fluid. The pressure field in the viscous fluid is laplacian.
The pressure field in air is constant, because ηair = 0. Right: Linear dispersion relation,
giving the growth rate of an small perturbation to an air–viscous fluid interface as a function
of the wavenumber of the perturbation, according to Eq. (2.6).

2.2.1 Linear stability analysis

The earlier stages of this instability can be understood studying the stability of a

flat interface ζ between fluids 1 and 2 moving at a constant velocity U . When a

perturbation is applied to the flat interface the competition between two mechanisms

determines the decay or growth of the perturbation. The stabilizing mechanism is

surface tension, which tends to smooth the interface, while the destabilizing mecha-

nism is viscosity contrast.

Fig. 2.3 can help to understand this destabilizing mechanism. Given that the

viscosity in the air is considered null, the pressure field in air is constant, while for

the viscous fluid depends only on the distance to the free interface. Thus, the isobaric

lines are parallel to the interface. When the interface is perturbed, air displaces the

viscous fluid and isobaric lines are deformed (Fig. 2.3). As a consequence, the pressure

gradient in the perturbed region increases. The increase of the pressure gradient

causes an increase of the velocity in the perturbed region (Eq. (2.3)), which causes

the local pressure gradient to increase further and further. On the contrary, when

the more viscous fluid pushes the less viscous one, the deformation of the isobaric

lines causes the pressure gradient to decrease. This slows down the interface and the

perturbation decays.

The growth (or decay) rate of a perturbation of the interface can be evaluated for

an small perturbation δζ of the interface ζ, with small amplitude ε and wavenumber

k. The perturbation of the interface δζ = εeiky+ωt has growth rate ω. By solving
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the equations of motion (2.4), considering the boundary conditions of continuity of

the normal velocity across the interface and pressure jump, we obtain the following

linear dispersion relation (Fig. 2.3):

ω = U |k|
(

1− b2

12Ca
k2

)
, (2.6)

where Ca = Uη/σ is the capillary number, which compares the relative magnitude

of viscous forces to surface tension. At small k (long wavelengths) the destabilizing

effect of the interface displacement is dominant, while the stabilizing effect of the

surface tension is more important at large k. This stabilizing effect allows only the

growth of modes with k in the range (0, kmax =
√

12Ca/b2), being the most unstable

mode kc = kmax/
√

3.

The most unstable wavelength of the system defines a length scale called the

capillary length of the system:

lc =
πb√
Ca

. (2.7)

This length scale allows us to determine wether a front will be stable or unstable

to small perturbations. For a channel of width W the largest allowed wavelength

is λ = W . As a consequence, if the smallest unstable wavelength is greater than

the channel width the interface would be linearly stable. In terms of the capillary

number, one obtains that the flat interface is unstable for values of the modified

capillary number 1/B [Tabeling 87]:

1

B
= 12

(
W

b

)2

Ca > (2π)2. (2.8)

The modified capillary number compares the cell width with the capillary length.

This parameter can also be understood as the inverse of a dimensionless surface

tension B. At large values of this dimensionless surface tension the interface is linearly

stable, while at small B surface tension is not able to suppress the perturbation and

the instability develops.

2.2.2 The stationary Saffman–Taylor finger

Once the interface has destabilized, several fingers develop. The linear stability analy-

sis allows us to predict the growth rate of each mode at the earliest stages of the

instability but, quickly after the finger has formed, this analysis becomes invalid.

When a set of fingers is formed at the earliest stages of the instability (Fig. 2.4)
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Figure 2.4: Evolution of the interface as a function of time for air penetrating oil. From
[Tabeling 87].

they compete with each other until a single finger survives and propagates through

the center of the cell. This finger is characterized by its width w, which is usually

measured in channel width units: λ = w/W (Fig. 2.5). The only parameter that

determines this width is 1/B [Tabeling 87], as can be seen in Fig. 2.6. At low 1/B,

when surface tension is important, the finger tends to fill most of the channel. As

1/B is increased, viscous forces are more important and finger width decreases until

it stabilizes at a constant value λ = 0.5 at high 1/B.

The relative width of the finger also determines the shape of the finger tip.

The shape of Saffman–Taylor fingers was first calculated by Saffman and Taylor

[Saffman 58] without surface tension. They found a family of exact uniparametric

solutions with a characteristic shape given by (see Fig. 2.7):

V 8 U
W lW

Figure 2.5: Notation used for important parameters: velocity of the flow far from the finger
tip V∞, finger tip velocity U , cell width W , finger width λW .
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Figure 2.6: Relative finger width as a function of modified capillary number. From
[Tabeling 87].

x =
(1− λ)

π
ln

1

2

[
1 + cos

πy

λ

]
. (2.9)

At high velocities (low surface tension) this equation describes accurately the

shape of the stationary fingers, whereas at low velocities there is a large mismatch

between predicted and measured finger profiles (Fig. 2.8). These fingers are slightly

better fitted by a relation found by Pitts [Pitts 80].

Since the air finger leaves a wetting layer behind [Tabeling 87], it actually fills only

a fraction of the total gap spacing. The disagreement between theoretical predictions

and experimental results may be explained at low 1/B by the presence of this wetting

layer [Tabeling 86].

 

 

0.80.5

0.2

Figure 2.7: Shape of fingers with different widths calculated using Eq. (2.9) [Saffman 58].
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Figure 2.8: Left: Air penetrating silicone oil at high velocity. Right: Water penetrating
oil at low velocity. From [Saffman 58].

2.3 Instabilities in non–perturbed Saffman–Taylor

fingers

Theoretical and numerical studies on the stability of Saffman–Taylor fingers in the

presence of surface tension have found the fingers linearly stable to eventual noise

present in the system [Bensimon 86] for high 1/B. The amplitude of the perturbation

necessary to destabilize the finger decreases at increasing 1/B. The experiments find

the finger to be unstable in this same limit [Park 85; Lajeunesse 00].

A tip–splitting instability has been observed in Saffman–Taylor fingers in linear

channels [Park 85; Kopf–Sill 88]. The experiments were performed in cells with an

aspect ratio much higher than the one used by Saffman and Taylor in their original

setup [Saffman 58], allowing the authors to achieve large modified capillary numbers

at moderate Ca.

Experiments in long cells (Fig. 2.10) performed by Moore et al. [Moore 02] showed

that long fingers in cells with high aspect ratio W/b presented a lateral instability.

They observed that the amplitude of the lateral instability decayed at increasing

Ca with a power law ∼ Ca−2/3. Inhomogeneities in the gap spacing were measured

and resulted to be very small (below 1% in all channels). The authors discarded

inhomogeneities in the cell spacing and proposed long time relaxations of the interface

in the back of the channel to be responsible for this lateral instability.

2.4 Perturbation of Saffman–Taylor fingers

As the fingers were demonstrated to be nonlinearly unstable to eventual perturba-

tions [Bensimon 86], several authors have added controlled perturbations to the ideal

system in order to determine the effect of such perturbations in the dynamics of the

system. For a review, see [McCloud 95]. In particular, several studies focused in

the addition of anisotropy to the isotropic cell. Li et al. predicted the formation of
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Figure 2.9: Left: Fingers of nitrogen penetrating heavy paraffin oil with a positive gap
gradient. The upper photography corresponds to a low velocity and the one at the bottom
to a high velocity. From [Zhao 92]. Right: Superposition of four fingers of air penetrating
into oil in a wedge with angle 30◦. From [Lajeunesse 00].

side–branching in perturbed fingers [Li 86]. Some examples of the mechanisms used

to create an anisotropy in the cell and the effect observed in the fingers are:

• Gradient in gap spacing. When the gap spacing between the plates of the

Hele–Shaw cell is not uniform, both the equations of motion and boundary con-

ditions are different from those in the parallel plate system. In Ref. [Zhao 92],

an uniform gap gradient is applied to the cell. For positive gap gradients (Fig.

2.9) the finger tip is flatter and more unstable than for the constat gap config-

uration, whereas for negative gap gradients the tip is sharper and more stable.

• Sector–shaped cells. When a variation in the cell width is imposed in the

cell, translational invariance is lost and stationary fingers cannot be formed

[Thomé 89]. The observed pattern is a single finger travelling trough the center

of the channel (Fig. 2.9). These fingers are unstable for lower 1/B than in

the channel geometry. The minimum value for which the fingers are unstable

decreases as the angle of the cell increases [Lajeunesse 00].

• Wires, wedges and bubbles: Anomalous Saffman–Taylor fingers.

The family of solutions obtained by Saffman and Taylor [Saffman 58] without

surface tension (Eq. (2.9)) allows values of the finger width 0 < λ < 1, but

fingers with λ < 0.5 are not observed in experiments. Later, calculations of

the finger shape taking into account surface tension showed that selection of

solutions with λ < 0.5 with non zero surface tension presented a cusp–like
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Figure 2.10: Left: Finger of nitrogen penetrating oil, perturbed by a bubble. The crosses
are points of the theoretical profile (2.9) from Saffman–Taylor for λ = 1/2 and the dots are
calculated from Pitt’s relation [Pitts 80] for λ = 0.32. From [Couder 86]. Right: Steady
states of air penetrating oil with a wire inside the channel. From [Zocchi 87].

singularity at the tip. It was also predicted that an anisotropic surface tension

in Saffman–Taylor fingers can suppress this singularity to allow narrow fingers

[Dorsey 87].

These fingers have been observed experimentally in anisotropic cells [Couder 86;

Zocchi 87; Rabaud 88]. Fingers perturbed with bubbles at the tip narrowed

[Couder 86] (Fig. 2.10) as well as fingers in cells with two grooves at the center

[Rabaud 88]. Fingers perturbed with a thread narrowed only if the thread

intersected the interface near the finger tip [Zocchi 87; Rabaud 88] (Fig. 2.10).

All the fingers were found to be stable to 1/B higher than the unperturbed ones.

The destabilization observed at high 1/B was characterized by the formation

of lateral undulations.

• Periodic perturbations.

In Ref. [Gland 03], the stability of the the fluid–air interface in a circular Hele–

Shaw cell was increased by periodic modulations of the pressure–air injection.
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2.5 Viscous fingering in complex fluids

Currently an important part of the studies of viscous fingering are centered in complex

fluids, as the competition between viscous and capillary forces is affected by fluid

rheological properties.

For instance, when the displaced fluid exhibits shear–thinning the fingers are

predicted to sharpen with λ → 0 as 1/B increases [Corvera–Poiré 98; Ben Amar 99].

The sharpening of viscous fingers in shear–thinning fluids has been experimentally

verified [Lindner 00b; Lindner 00c] for strong shear thinning fluids, whereas for weak

shear–thinning fluids the results collapse in the universal curve for Newtonian fluids.

Some air fingers displacing polymeric solutions exhibiting extreme shear–thinning

[Vlad 99] develop a velocity–jump instability when driven at high velocities.

The behavior of viscous fingering in elastic fluids is completely different [Lindner 00;

Bonn 97]. The finger width plateau reached at high velocities is significantly higher

than the classical limit 0.5 even for elastic fluids exhibiting shear–thinning [Bonn 95].

The authors conclude that normal stresses (not present in non elastic fluids) are re-

sponsible for the widening of the fingers. Widening of the fingers was also observed

in surfactant solutions [Bonn 95]. The widening mechanism proposed is the presence

of surfactant molecules in the interface, which induces a dynamic surface tension at

the tip of the finger increasing at increasing values of the velocity.

Periodic forcing in complex viscous fingering has been studied theoretically in

linear channels [Corvera–Poiré 04], predicting resonant effects at frequencies fixed by

cell geometry and fluid properties. Folch et al. [Folch 01] showed experimentally and

theoretically that the periodic forcing of fingers of a nematic liquid crystal in a radial

Hele–Shaw cell induced lateral waves to the fingers, as a result of the acceleration

and deceleration of the tip of the fingers.





Chapter 3

Complex fluids

The term complex fluid is used to define different classes of materials which behave as

a fluid (continuously deform under an applied stress) but do not present the behavior

of a Newtonian fluid. In Fig. 3.1, this idea is made clear: for a Newtonian fluid (water,

oil) there is a linear relation between the applied stress and the deformation rate. In

the same figure some non–Newtonian responses are displayed. For instance, shear

thinning fluids flow easier at high shear stresses. Polymeric solutions of long chains

are good examples of shear thinning materials. There are a few materials which

present the opposite behavior, and are called shear–thickening materials. Finally,

materials presenting yield stress do not flow for applied stresses below a threshold

value. There are also materials which have a behavior between that of a Newtonian

fluid (dissipative) and that of an elastic solid. These fluids are called viscoelastic.

Some materials can also present more than one non–Newtonian property at the same

time. A thorough review on the topic can be found in Refs. [Larson 99; Bird 87;

Gelbart 96].

g

s

Figure 3.1: Scheme of the different responses to an applied stress: Newtonian (red), pseudo-
plastic or shear–thinning (blue), dilatant or shear–thickening (black), yield–stress (green). σ

is the applied shear stress and γ̇ is the resulting shear strain rate.
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Figure 3.2: Geometry of a simple shear experiment.

In this chapter, the main properties of Newtonian fluids are reviewed and com-

pared to some complex materials. A particular kind of viscoelastic fluid, a surfactant

micellar solution, is also described. Finally, several phenomena observed in the flow

of complex fluids are enumerated.

3.1 Newtonian fluids

Hydrodynamics of Newtonian fluids have been studied long time ago [Batchelor 90;

Guyon 94]. The main property of these simple fluids (water, oil, glycerol) is that they

continuously deform (flow) under an arbitrary shear stress. The internal resistance

of the fluid to deform is characterized by the viscosity of the fluid, which can be

understood by means of a simple shear flow experiment [Guyon 94].

An sketch of the experiment is shown in Fig. 3.2. A fluid is confined by two

horizontal parallel plates separated a distance d. The upper plate is displaced at a

constant velocity V , while the plate at the bottom remains at rest. At the stationary

regime, the observed velocity profile changes linearly from vx(y = 0) = 0 to vx(y =

d) = V . The friction force per unit area opposed to the relative motion of two fluid

layers is proportional to the variation of velocity between adjacent layers:

F

S
= −η

∂vx

∂y
. (3.1)

η is the viscosity, a constant which is a material property. We have also introduced

the stress F/S ≡ π which has pressure units and is an expression of the internal

motions and interactions of the fluid. Eq. (3.1) is Newton’s law for viscosity and has

been experimentally verified for many simple fluids.

The stress introduced in Eq. (3.1) is in general a tensor. It measures the internal

distribution of forces per unit area acting across a surface. For a given surface, the
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stresses can be divided into normal stresses and shear stresses. Shear or tangential

stresses measure the friction forces between adjacent fluid layers and are equal to zero

for a fluid at rest. Normal stresses in a Newtonian fluid are isotropic and are equal

to the hydrostatic pressure. The stress tensor can be separated in two contributions:

π = pδ + τ, (3.2)

where τ is associated with the viscosity of the fluid and will be called the stress tensor1.

An equation which assigns a value to the stress tensor is a constitutive equation. The

constitutive equation for a Newtonian incompressible fluid is a generalization of Eq.

(3.1):

τ = −ηγ̇, (3.3)

where γ̇ is the rate of strain tensor, defined as γ̇ij = 1
2
(∂vi/∂xj + ∂vj/∂xi).

For a simple shear experiment defined by:

vx = γ̇, vy = 0 vz = 0, (3.4)

the stress tensor has the following form:

τ =




0 −ηγ̇ 0

−ηγ̇ 0 0

0 0 0


 (3.5)

and the total stress tensor is expressed by:

π = pδ + τ =




p −ηγ̇ 0

−ηγ̇ p 0

0 0 p


 (3.6)

3.2 Viscoelastic fluids

A fluid is called viscoelastic when it presents both elastic and viscous properties.

This behavior is due to the molecular composition of the fluid. In general viscoelas-

tic fluids are formed by very large elastic molecules with long relaxation processes.

These relaxation processes affect the macroscopic dynamics of the fluid, leading to

a phenomenology which can be dramatically different from the one of a Newtonian

fluid.

There are two important dimensionless parameters measuring the importance

of elasticity in viscoelastic flows: the Deborah and the Weissenberg number. The

1From now on, π will be called the total stress tensor
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Deborah number compares the magnitude of elastic forces and viscous forces. It is

defined as the ratio of two characteristic times:

De =
te

tflow

, (3.7)

where te is usually the largest characteristic time of the fluid and tflow is a character-

istic flow time. When De → 0, viscous forces are very important compared to elastic

ones and the viscoelastic fluid will behave as a Newtonian one. The limit De → ∞
implies that the elastic forces are dominant and the fluid will behave as a Hookean

solid.

The Weissenberg number is a dimensionless shear rate defined as:

Wi = teγ̇c. (3.8)

The inverse of the shear rate γ̇c is a characteristic time scale for the local deformation

of a fluid element. When Wi becomes large, elastic stresses become important.

For most viscoelastic materials, it is not possible to obtain a single constitutive

equation describing an arbitrary flow. In order to obtain an expression of the stresses

it is necessary to define simple flows. For instance, the stress tensor for a simple shear

flow (Eq. (3.4)) can be generalized for a viscoelastic fluid. Due to the symmetry of the

stress tensor, there are only six components of the stress tensor to be determined. The

number of independent components can be further reduced if we consider that the

stress must be invariant under rotations around the z–axis. Thus, the most general

expression for the stress tensor is:

π = pδ + τ =




p + τxx τyx 0

τxy p + τyy 0

0 0 p + τzz


 . (3.9)

For incompressible flows, the quantities experimentally accessible are:

Shear stress: τyx,

First normal stress difference: τxx − τyy,

Second normal stress difference: τyy − τzz.

While in a Newtonian fluid normal stress differences are null, for a non–Newtonian

fluid they can be very large. The first normal stress difference is in general neg-

ative.This means that the viscoelastic fluid is subjected to an extra volume force

perpendicular to the streamlines. This extra volume force is responsible for interest-

ing phenomena observed in viscoelastic flows (elastic instabilities, rod climbing)that
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will be briefly discussed in Sec. 3.3. The second normal stress difference is in general

much smaller than the first normal stress difference.

The shear stress τyx is showing the viscous behavior of the fluid. The viscosity of

a viscoelastic fluid is defined by analogy with Newton’s law, Eq. (3.3):

η(γ̇) ≡ τyx

γ̇
. (3.10)

3.2.1 Generalized Newtonian fluids

This term is used to define fluids which are purely viscous but have a non constant

viscosity. The constitutive equation for these fluids is the same than for Newtonian

ones (Eq. (3.10)), where η = η(γ̇), and they do not present normal stress differences.

Most generalized Newtonian fluids present shear–thinning response. This means that

they flow easier at increasing shear rates. Solutions of rigid polymers are a good

example of shear–thinning fluids. The initial isotropic configuration is modified by

the shear, which induces the alignment of the molecules with the direction of the

shear. This results in a decrease of the effective viscosity.

There are several phenomenological models which try to reproduce the decrease

in viscosity at increasing shear rates [Carreau 97; Bird 87]. The most simple of them

assigns a power–law relation between effective viscosity and shear rate:

η = η0γ̇
−m. (3.11)

3.2.2 Maxwell fluids. Living Polymers

In this section we will study a family of viscoelastic solutions which behave as a

Maxwell fluid. The Maxwell linear model is the simplest model that includes both

elastic and viscous effects2. The fluid is described by the constitutive equation:

τ + tm
∂τ

∂t
= −ηγ̇. (3.12)

This is the constitutive equation for a Newtonian fluid plus a memory term. tm

is the characteristic Maxwell time and defines a characteristic time scale: for times

shorter than tm elastic behavior is dominant, whereas for times longer than tm viscous

behavior is dominant.

Despite its high level of simplicity, the Maxwell model describes very accurately

the behavior of some viscoelastic fluids, in a range of low shear rates. The most

2The rheology of a Maxwell fluid is described in Appendix A.
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Water

Air

Tail

Head

Figure 3.3: Left: Adsorption of surfactant molecules at an air–water interface. Right:

Scheme of the entangled regime of cylindrical micelles.

common example of materials exhibiting this Maxwellian behavior are some concen-

trations of surfactant solutions [Rehage 88; Clausen 92; Berret 93; Fischer 97; Ali 97;

Méndez-Sánchez 03a].

Surfactants are amphiphilic molecules [Larson 99; de Gennes 04]: they are formed

by a hydrophilic (water loving) group bounded to a lyophilic (oil loving) group. The

lyophilic group consists on a hydrocarbon chain which is called the “tail” of the

molecule, whereas the hydrophilic part is usually shorter and bulky and it is called

the “head” of the molecule. Depending on the net charge of the head of the molecule,

surfactants can be classified into ionic or non–ionic.

Surfactant molecules are also called tensoactive. This is due to the behavior of the

molecules when solved in water: the head will tend to maximize its contact with water

while the tail will try to minimize it. As a result surfactant molecules accumulate

at the air–water interface (Fig. 3.3) decreasing the surface tension between air and

water. At increasing concentrations of surfactant the molecules assemble reversibly

into aggregates (spherical or cylindrical micelles, vesicles and bilayers) or, at even

higher concentrations, the surfactant can form ordered phases.

Maxwellian behavior is observed in the range of concentrations for which the

molecules assemble into semi–flexible cylindrical micelles [Rehage 88], in the entan-

gled regime (Fig. 3.3) where the behavior of the micelles is equivalent to flexible

polymers (for length scales below the persistence length) [Cates 90].

Cates [Cates 87] proposed a model which would explain the viscoelastic behavior

of micellar surfactant solutions in the entangled regime. The model considers an en-

tangled regime of chains with an average length. These chains break and recombine

with a typical breakage time τbreak which is inversely proportional to the average

length of the chain. Each chain relaxes by reptation [de Gennes 79]: since it cannot

cross the other chains, it changes its conformation by sliding back and forth with a

characteristic time τrep. In the limit τbreak ¿ τrep the chain has broken and recom-
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Figure 3.4: Left: Rod–climbing effect in a polymeric viscoelastic solution. From
“http://www.mie.utoronto.ca/labs/rheology”. Right: Schematic representation of a non-
monotonic constitutive relation linking the stress and the shear rate. From [Berret 97].

bined many times before it has completed the reptation and the relaxation process

is characterized by a single time scale τ defined as:

τ = (τbreakτrep)
1/2 . (3.13)

This time scale τ coincides with the characteristic Maxwell time tm of the Maxwell

linear model (Eq. (3.12)).

3.3 Phenomena in complex flows

There are many situations in which the flow developed for a complex fluid is com-

pletely different from the flow developed for a Newtonian one in the same conditions.

This different behavior is rather characteristic of solutions containing macromolecules

or large structures (micelles, for instance).

An interesting effect observed in many viscoelastic micellar solutions is shear

banding [Berret 97; Britton 99; Lerouge 00; Méndez-Sánchez-03b]. It is observed in

the nonlinear regime, at high shear rates. There is a band of shear rates for which

the stress is multivalued (Fig. 3.4). An initially homogeneous flow is unstable and

separates into two phases: one of them of low viscosity, supporting a high shear rate,

and the other one of high viscosity, supporting a low shear rate. This mechanical

instability is observed at long times (t ≥ τm). At short times the response is the one

observed in the linear regime.

Other effects are purely due to the elasticity of the fluid. Consider for instance

the Weissenberg or rod–climbing effect [Weissenberg 47]. The experiment is very
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simple: when a rotating rod is inserted in a recipient containing a Newtonian fluid,

the centrifugal force pushes the fluid outwards the rod. On the contrary, when the

rotating rod is inserted into a recipient containing a viscoelastic fluid, the fluid moves

toward the center and climbs the rod (Fig. 3.4). This phenomenon is due to the first

normal stress difference, which creates a volume force in the direction of the curvature

contrary to centrifugal and gravitational force .

3.3.1 Elastic instabilities

In this section, we will present a new destabilization mechanism which has been

observed in viscoelastic flows in conditions for which Newtonian flows are laminar. We

will refer to polymeric solutions, given that most of the studies on elastic instabilities

have been performed for this kind of viscoelastic fluids.

The motion of a Newtonian (simple) fluid is governed by Navier–Stokes equations

[Batchelor 90]. These equations include a non linear term which is due to inertia.

Reynolds number is the dimensionless parameter which compares the importance of

inertial forces to viscous dissipation:

Re =
|v · ∇V|
|ν∇2v| =

LV

ν
, (3.14)

where ν = η/ρ is the kinematic viscosity of the fluid (a diffusion coefficient of mo-

mentum), L is the characteristic length, and V is the characteristic velocity. This

dimensionless number controls inertial instabilities: at high Reynolds number inertial

effects are important and the flow may become turbulent. The Poiseuille pipe flow

of a Newtonian fluid has been found to be linearly stable for all Re and nonlinearly

unstable at Re > 103 [Drazin 02].

In viscoelastic flows without inertia (Re ¿ 1) elastic stresses have been found

able to induce an instability which, in some cases, can lead to a turbulent state

[Groisman 00]. The origin of the instability comes from the constitutive equation de-

scribing the state of stress in flowing polymeric materials, which includes a nonlinear

relation with the rate of deformation tensor γ̇ = (∇v)+(∇v†). This complex relation

plays a destabilizing role in the momentum equation in the absence of inertial terms.

The importance of elastic to viscous forces is measured by the Weissenberg number

Wi = λγ̇c for a fluid characteristic time λ and a flow characteristic shear rate γ̇c which

is the inverse of the local deformation time scale.

The mechanism of the destabilization in flows with curved streamlines is well

understood. As a matter of fact, the destabilizing mechanism is the same that cre-

ates rod–climbing. Normal stresses produced by the stretching of molecules of the
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fluid create a pressure gradient in the direction of the curvature (hoop stress) which

can destabilize the flow. There are several examples of elastic instabilities in flows

with curved streamlines [Pakdel 96; Groisman 97; Groisman 98; Arora 02], whereas

elastic turbulence has been thoroughly characterized by Groisman and Steinberg

[Groisman 00; Groisman 04].

Although flows with straight streamlines are known to be linearly stable, recently

it was shown that a finite amplitude perturbation of the straight streamlines can

create a local curvature which would destabilize the flow at moderate values of the

Weissenberg number [Meulenbroek 04; Morozov 05].

3.3.2 Dynamic permeability

As shown in this section, the differences in the behavior of a complex and a Newtonian

fluid can be dramatic. In particular, a time–dependent viscoelastic flow may exhibit

resonant behavior, while a Newtonian one responds monotonically.

A frequency dependent viscoelastic flow in a porous medium can be described by

the dynamic permeability of the medium [Avellaneda 91; López de Haro 96] which re-

lates the flow rate through a porous medium with the local pressure drop [del Rı́o 98;

Tsiklauri 01; Corvera–Poiré 04].

In this context, we will review the problem of the flow of a linearized Maxwell

fluid in a tube [del Rı́o 98; Tsiklauri 01] at vanishingly small Reynolds number. The

tube is vertical and is considered to have infinite length (Fig. 3.5). The mean flow

rate through the tube for a constant pressure drop (i.e. for ω = 0) is the same for the

Newtonian and Maxwell fluids and is given by Darcy’s law. For a time–dependent

pressure drop, the different constitutive equations of a Newtonian fluid (Eq. (3.3))

and a Maxwell fluid (Eq. (3.12)) play an important role in the flow.

The laminar flow of an incompressible fluid (∇ · v = 0) is described by the lin-

earized momentum equation:

ρ
∂v

∂t
= −∇p−∇ · τ , (3.15)

when the inertial contribution is negligible (Re ¿ 1). For Maxwell and Newtonian

fluids, the constitutive equations are known (Eqs. (3.12) and (3.3)) and can be com-

bined with the linearized momentum equation to give a closed relation between veloc-

ity, pressure drop and fluid properties (density ρ, viscosity η, and Maxwell relaxation

time tm for the Maxwell fluid). In the range of parameters considered in the prob-

lem, the flow is strictly parallel to the axis of the tube and preserves axial symmetry.

Thus, we can safely take v = v(r)âz. For both fluids the result is a linear differential
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Figure 3.5: Scheme of the geometry defined in the linear model.

equation which can be Fourier transformed in time3 to give:

ρ(ω2tm + iω)V + η∇2V = (1− iωtm)∇P, (3.16)

for a Maxwell fluid4.

This equation can be solved in cylindrical coordinates with no–slip condition at

the walls (i.e. V (a) = 0, where a is the radius of the tube) [del Rı́o 98]:

V = −(1− iωtm)

ηβ2

(
1− J0(βr)

J0(βa)

)
∂P

∂z
, (3.17)

β =

√
ρ

ηtm
((ωtm)2 + iωtm). (3.18)

This rather complicated expression is actually a relation between the velocity of the

fluid and the pressure drop. Both magnitudes are related by a function which depends

on system geometry, fluid properties and frequency. Assuming that the pressure drop

depends neither on the radius nor on the azimuthal position, the expression of the

flow rate through a tube section is a generalization of Darcy’s law:

〈V 〉r = −K(a, ω, η, ρ, tm)

η

∂P

∂z
. (3.19)

3The definition of Fourier transform used is: F (r, ω) = 1
2π

∫∞
0

f(r, t)eiωtdt
4The solution for a Newtonian fluid can be recovered by carefully applying the limit tm → 0 in

the equations for the Maxwell fluid.



3.3 Phenomena in complex flows 55

Figure 3.6: Open circles: Measurements at tube axis of the dimensionless dynamic response
of a fluid to periodic forcing. Solid lines: theoretical prediction. The permeability is made
dimensionless by comparison with k(0) = −a2/8. Left: Measurements for a Newtonian fluid:
glycerol. Right: Measurements for a Maxwellian fluid: CPyCl/NaSal 100/60 mM. Notice
the different scales. Both from [Castrejón-Pita 03b].

Oscillatory pressure drop

An experimental measurement of the response function K(ω) was performed for the

particular case of a periodic pressure drop of angular frequency ω and amplitude

z0 [Castrejón-Pita 03a; Castrejón-Pita 03b]. The pressure drop can be written as

∂p/∂z = −ρz0ω
2eiωt, and relation (3.19) can be transformed to time domain:

v(r, t) = −iωz0

(
1− J0(βr)

J0(βa)

)
eiωt. (3.20)

Fig. 3.6 shows an example of the different response functions of a Newtonian and

a Maxwellian fluid. For a Newtonian fluid, the dynamic permeability decreases at

increasing frequency whereas for the Maxwellian fluid there is a resonant behavior

and the dynamic response for some of the frequencies exhibits peaks one order of

magnitude higher than for the background.





Chapter 4

Lateral instabilities in

Saffman–Taylor fingers:

Background

Viscous fingers appear when an inviscid fluid displaces a viscous fluid in a Hele-Shaw

cell [Hele–Shaw 1898], a pair of glass plates parallel to each other that form an almost

two-dimensional channel in which the flow takes place. After a dynamic process of

finger competition, a single-finger steady state is reached. This one is called Saffman-

Taylor finger [Saffman 58]. In the absence of anisotropy Saffman-Taylor fingers are

always greater than half of the channel width, and are called normal in order to

differentiate them from narrow fingers obtained in the presence of anisotropy, called

anomalous [Couder 86; Rabaud 88]. While lateral instabilities in anomalous fingers

are known already for two decades, normal Saffman-Taylor fingers were considered

for a long time to have stable flat sides. Recently, lateral fluctuations on normal

Saffman-Taylor fingers have been reported for wide channels [Moore 02].

Later, a numerical study of the stability of normal Saffman-Taylor fingers sub-

jected to small perturbation [Ledesma-Aguilar 05; Quevedo–Reyes 06] predicted the

development of a lateral instability in viscous fingers subjected to small perturbations,

comparable to the eventual noise present in experimental systems. These studies mo-

tivated our experiments in a long Hele-Shaw cell and are briefly reviewed next.
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4.1 Numerical study of lateral instabilities in nor-

mal Saffman-Taylor fingers

The numerical studies presented in this section were developed by Ledesma–Aguilar

et al. [Ledesma-Aguilar 05] and Quevedo–Reyes et al. [Quevedo–Reyes 06]. These

authors report simulations of normal Saffman–Taylor fingers (λ > 0.5) in 2–d cells

using a Phase-Field model modified in order to introduce one of the following desta-

bilization mechanisms:

• Anisotropy in the cell [Quevedo–Reyes 06]. In a 3–d cell the anisotropy is in gen-

eral obtained by creating a non constant gap spacing [Couder 86; Kopf–Sill 87;

Rabaud 88; Zhao 92]. In a 2–d cell this can be done by the generation of an

anisotropic permeability in the cell. Thus, the permeability of the cell was mod-

ified by choosing sites where the value of the permeability was different than

in other sites of the cell. The changes in the mobility were chosen to be very

small, in order to allow normal Saffman–Taylor fingers to develop.

• Dynamic boundary condition [Ledesma-Aguilar 05]. The constant pressure gra-

dient was modified to allow for dynamic pressure drops. These pressure drops

were chosen to be very small compared to the constant pressure gradient. The

perturbation was applied to a fully developed stationary Saffman–Taylor finger.

The results for both destabilization mechanisms were closely related to two time

scales characteristic of the steady problem. The finger characteristic frequency was

defined as:

νfinger =
U

λW
, (4.1)

where W is the width of the channel, U the finger velocity, and λ the dimensionless

finger width.

The other characteristic frequency was defined for the flow very far from the finger

tip:

ν∞ =
V∞
W

, (4.2)

where V∞ is the velocity of the flow very far from the finger tip.

The wavelength of the lateral instability Λ was measured as the distance between

two adjacent maxima of the lateral instability. The corresponding frequency of the

lateral instability was calculated as:

ν =
U

Λ
, (4.3)



4.2 Anisotropy in the cell 59

4.2 Anisotropy in the cell

The anisotropy of the cell was designed to reproduce persistent anisotropy in the

flow direction (a parabolic variation of the gap spacing or a distribution of stripes

in the longitudinal direction of the cell) and variations in the gap spacing randomly

distributed.

The instability generated by a parabolic profile was qualitatively equivalent to the

one produced for a stripe profile in the flow direction (Fig. 4.1). For small variations

in the permeability the fingers developed a periodic instability, whereas for high

variations the instability was non periodic. The fingers generated where slightly but

systematically out of center, as was also observed in Refs. [Couder 86; Rabaud 88].

In the range of parameters for which the developed instability was strictly periodic,

small variations in the permeability of the cell produced a symmetric instability,

whereas for higher variations the instability was asymmetric. The response frequency

of the lateral instability increased monotonically with the magnitude of the variations

in the permeability. For all the fingers studied the response frequency was between

the characteristic frequencies of the flow, ν∞ and νfing.

The instability observed for cells with a permeability randomly varying between

two values (Fig. 4.1) was strictly non periodic. The observed instability had a low

amplitude and was developed even for cells with extremely low variations in the

permeability (as low as 10% of the total area of the cell presenting a permeability

different in a 1% from the rest of the cell). The coverage of the cell was defined as

the percentage of sites in the cell presenting a permeability different from the rest of

the cell.

The disorder in the cell generated a wave close to the tip that destabilized the

flat sides of the finger when travelling away from the tip. The instability grew and

reached an almost constant amplitude far from the finger tip. Near the finger tip

the anisotropy of the cell produced a perturbation of the finger tip with several

modes. Far from the finger tip, some of those modes decayed and other grew. The

frequency distribution of the lateral instability presented a well defined single peak

at a frequency slightly higher than ν∞.

A study of the dependence of these results with the properties of the disorder

was performed by varying the coverage and the intensity of the disorder. The results

showed that none of these two parameters had a quantifiable effect on the lateral

instability.
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Figure 4.1: Top: Finger propagating in a cell with 10% coverage. Note that the scale
has been compressed in the horizontal direction in order to better appreciate the instability.
Bottom: Finger propagating in a cell with a stripe profile. From [Quevedo–Reyes 06].

4.3 Time dependent boundary condition

In the simulations with a time dependent boundary condition, most of the developed

fingers were subjected to an oscillating pressure drop. When subjected to perturba-

tion, the tip of the finger generated a wave which propagated away from the finger

tip. Near the finger tip, the frequency of this new generated lateral instability was

always the same as the imposed frequency. On the other hand, far from finger tip the

relation between forcing frequency and response frequency was not so simple (Fig.

4.2). The amplitude of the lateral instability increased up to a saturation value at a

distance ds from the finger tip which was strongly dependent on forcing frequency.

For frequencies below ν∞ the frequency of the lateral instability was the same as

the forcing frequency (Fig. 4.3) and ds ∼ Λ. In the range of frequencies (ν∞, νfinger)

the response frequency corresponded to half the incident frequency and ds ∼ 2Λ (Fig.

4.3). The surface tension in this region was enough to suppress driving frequency but

not its first harmonic. Last, for driving frequencies larger than νfinger there was

a mode that grew faster than the others and was selected. These selected mode

was independent of driving frequency in a wide range of frequencies. The selected

frequency was slightly higher than ν∞ and the lateral instability reached its saturation

amplitude very far from the finger tip: ds ∼ 5Λ.
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Figure 4.2: Response frequency measured far from the fingertip plotted against incident
frequency. For a wide range of frequencies mode selection occurs. The natural frequencies of
the flow ω∞ (N) and ωfinger (¥) are indicated in the abscissa axis. From [Ledesma-Aguilar 05].

Simulations with a random signal added to the constant pressure drop were also

reported in Ref. [Ledesma-Aguilar 05]. The response was essentially the same as the

one described for the static disorder. These authors report fingers with non–periodic

response undergoing a selection progress far from finger tip. The selected frequency

was slightly below ν∞.

4.4 Summary

Summarizing, all the destabilization mechanisms produced a lateral instability which

presented a preferred frequency. For the persistent anisotropy experiments, this fre-

quency depended on properties of the anisotropy. On the contrary, for the random

stationary and dynamic disorder and for the oscillating pressure drop the selected

Figure 4.3: The profile at the top corresponds to an driving frequency that falls in the linear
region of the ωL2 vs ω (Fig. 4.2), whereas the profile at the bottom corresponds to a frequency
that falls in the transition region of the same curve. The distance ds at which the amplitude
saturates is of the order of ds < L and ds > 2L, respectively. These are regimes that would
be easier to observe experimentally than the selection regime. From [Ledesma-Aguilar 05].
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frequency depended only on the characteristic frequencies of the system. For these

three last perturbations the selected frequency was roughly equal to ν∞.

A natural objection to these results is the lack of experiments confirming the

predictions. In real systems, at velocities for which an stationary stable finger (λ ≥
0.5) is formed, no lateral instability has been reported, except for Ref. [Moore 02].

Let us show that there is no contradiction between experimental and simulation

results. The selected wavelength was Λ ' W/λ. Thus, it was of the order of the chan-

nel width. On the other hand, the saturation distance was of the order of the channel

width and increased as the amplitude of the external perturbation (the eventual noise

of the experimental device) decreased. This would explain why the experimental fin-

gers reported in the literature did not present this lateral instability. Most of them

were generated in cells too short to allow for the instability to develop (for instance,

in Refs. [Saffman 58; Pitts 80] the length of the cell was roughly 3W ).

Our goal was the development and characterization of the lateral instability, even

in the selection regime. Thus, we used the numerical results in order to design an

experimental device where the low amplitude lateral instability could be observed and

characterized. For instance, the selected wavelength in the simulations with random

anisotropy was of the order of the channel width. In addition, the instability was

observed when the finger tip had travelled a distance ' W . It was necessary to design

a channel for which L/W À 1. This was specially important in the experiments with

an oscillating pressure drop, as the saturation distance in the selection regime was

of the order of 10W . The designed experimental device, as well as the experimental

results and concluding remarks are presented in Chapters 5, 6, 7 and 8.



Chapter 5

Lateral instability in

Saffman–Taylor fingers:

Experimental methods

The aim of our experiments in a Hele-Shaw cell was the study of a lateral instability

of normal Saffman-Taylor fingers. The main objectives of our experiments were the

destabilization of the flat sides of the finger by two different physical mechanisms

(quenched disorder and periodic pressure oscillations) and the characterization of the

instability developed in the finger. These experiments required very long fingers.

A long channel was designed to generate fingers long enough to our experiments.

The instability showed typical wavelengths similar to the channel width W . We

designed experiments with fingers 20W long for quenched disorder experiments and

40W long for periodic perturbation experiments.

5.1 The Hele–Shaw cell

We performed our experiments in a horizontal linear Hele-Shaw cell (Fig. 5.1) formed

by two glass plates separated by a narrow gap spacing. The glass plates were 1300 mm

long and 19 mm thick. Their width was 75 for the top plate mm and 120 mm for the

bottom plate. The cell was placed on six stainless steel supporters. The supporters

were carefully machined to provide a uniform height and were placed symmetrically

along the cell. Doing this, we avoided possible bending effects in the channel direction

of the cell.

The air inlet and the oil outlet consisted of two openings in the bottom plate.

They were placed at 5.5 mm of each end of the plate, the effective length of the
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Figure 5.1: Left: Scheme of the experimental device for the study of lateral instabilities in
Saffman-Taylor fingers. (a) Bottom plate, (b) top plate, (c) brass spacer, (d) anti-vibration
table, (e) light diffuser, (f) high frequency fluorescent lamp, (g) supporters, (h) syringe pump,
(i) oil outlet, (j) air inlet, (k) CCD camera, (l) rail, (m) PC. Right: Scheme of the glass
plates and brass spacer of the Hele shaw cell.

channel between both openings being 1150 mm. The oil outlet was connected to

a syringe pump which could inject or withdrawn oil at selectable flow rates. The

configuration of the experimental setup allowed flow rates in the range (−1.1, 1.1 )

cm3/s.

The cell was illuminated from below with a 35 kHz fluorescent lamp, 1200 mm

long, covered with a white plastic to diffuse light. Images of the cell were recorded

by a CCD camera placed above the cell (Fig. 5.1). The CCD could travel along the

cell at velocities from −20 to 20 mm/s. The maximum acquisition rate of the CCD

was 60 frames/s of size 640× 480 pixels. The resolution of the frames captured was

between 0.077 mm/pixel and 0.16 mm/pixel.

5.1.1 Quenched disorder

The disorder in our experiments was generated by fixing a fiber glass plate (printed

circuit board) on top of the bottom glass plate. The disorder consisted on copper

islands of fixed dimensions randomly distributed on the fiber glass plate (Fig. 5.2).

The idea of using printed circuits boards as disorder plates in our Hele-Shaw cell

was taken from J. Soriano PhD thesis [Soriano 03]. Details on design and generation

of the disorder distribution can be found in [Soriano 03].

The dimensions of our fiber glass plates were 24 × 500 mm, and 1.7 mmm high.
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Figure 5.2: Left: Example of a disorder plate with an occupation rate of 10%. Right:

Lateral view of the Hele-Shaw cell with quenched disorder experiments. The brass frame is
not displayed. b: Effective gap spacing. h: Copper islands height.

The copper islands had lateral size of 1.5 × 1.5 mm and a height h = 60 µm. We

used two kinds of disorder plates: low occupation ratio (10% of the total area filled

by copper islands) and high occupation ratio (35% of the total area filled by copper

islands).

The gap spacing was controlled by means of a brass frame 1300 mm long. The

frame was designed to provide a channel of width 55 mm. The channel width could

be modified by brass strips (1200 mm long, 20 mm width) placed parallel to one of

the sides of the frame by means of brass wedges. For quenched disorder experiments

the width of the channel was W = 24 mm.

We performed experiments with two different gap spacings 2.5 and 3.0 mm. With

this purpose we combined two brass frames (and two brass strips) for each gap spacing

of thickness: 2.0 and 0.5 mm for the first, 2.0 and 1.0 mm for the second. The frames

were carefully aligned and the disorder plate was then fixed to the bottom plate.

The effective gap spacing b in these experiments was measured as the distance

between the fiber glass plate (thickness 1.7 mm) and the upper glass plate. Thus, we

used effective gap spacings of 0.8 and 1.3 mm. The relative variations in gap spacing

due to copper islands were 7.5% and 4.6%, small variations.

5.1.2 Periodic perturbation

For periodic perturbation experiments we connected an air pump to the air inlet

(Fig. 5.3). The air pump consisted of a mobile piston placed inside a plastic cylinder.

The piston had a cross section of 4400 mm2 and oscillated at frequencies up to 1.5

Hz. The air pump was designed to admit air in order to allow the air finger advance

towards the end of the cell. The air entered freely the pump when the volume of air

inside the pump was maximum. The volume of air in the cylinder oscillated between
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Figure 5.3: Air pump system for performing periodic perturbations in the velocity of the
finger tip. (a) Motor, (b) piston, (c) air entrance (d) Hele–Shaw cell.

220 cm3 and 100 cm3.

The gap spacing between both plates was controlled by a brass frame of dimensions

1300 × 120 mm and thickness b = 1 mm. The channel width was W = 25.0 ± 0.1

mm. The long sides of the frame were very wide to avoid lateral flexion and ensure

a constant channel width.

5.2 Fluid properties

For all the experiments we used silicone oil Rhodorsil 47V500 as viscous fluid. This

fluid has a dynamic viscosity η = 0.518 ± 0.002 Pa·s at 20◦C, density ρ = 975 ± 10

kg/m3, and oil–air surface tension σ = 20.7 mN/m. The color contrast between

air and oil was increased by coloring the oil with Oil Blue N (from Sigma-Aldrich),

without a measurable change in viscosity, as verified by rheological tests (Fig. 5.4).

We also measured the surface tension of the colored sample and found that the

difference in surface tension between the colored sample and the uncolored sample

was below 5%.
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Figure 5.4: Dynamic viscosity of silicone oil Rhodorsil 47V500 at different temperatures.
Filled squares correspond to uncolored oil and open circles to colored oil.

5.3 Experimental procedures and data analysis

5.3.1 Quenched disorder experiments

The disorder in the cell induces a lateral instability in the flat sides of the Saffman–

Taylor finger. The typical wavelength of this instability has a value close tho the

cell width W . In order to obtain an statistical measurement of this disorder–induced

lateral instability, the experiments were performed with several different disorder re-

alizations: 4 disorder plates in the experiments with b = 1.3 mm and 10 % occupation

ratio, and 3 disorder plates in the other experiments.

Although the disorder plate had a length of 500 mm, we only used a part of the

finger in our measurements. We observed that each finger presented three different

regions (Fig. 5.5). The regions identified were:

• Head: the front part of the finger. In the head the lateral instability does not

reach its full amplitude.

• Tail: the part that stays far away from the finger tip. The shape of the tail is

strongly dependent on time.

• Body: the part of the finger where the amplitude of the instability has satu-

rated and, thus, pictures of the finger at different times are identical.

In order to determine the size of the tip region, pictures of tips at different times

were superimposed to each other. For the body and tail regions, we left the camera
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Figure 5.5: Example of a finger generated in quenched disorder experiments for b = 0.8 mm,
10% coverage. The average velocity of the finger was U = 2 mm/s. The bright region is the
body of the finger and the dark regions correspond to the tip (left end) and the tail (right
end).

fixed in space and captured pictures during the course of the whole experiment. Once

the pictures awere overimposed, it was possible to determine the spatial extent of each

region. The length of the tail was found to be almost independent of the velocity

of the finger, and the length of the tip did show a nonmonotonic dependence with

velocity. Care was taken to distinguish the three regions in each case and the results

presented in this thesis correspond exclusively to the finger body.

We restricted to the body because of the low amplitude of the instability, which

made necessary to increase the resolution of our images. We captured pictures at a

resolution of 0.077 mm/pixel (0.003 W/pixel), which was enough for the instability

to be characterized. On the other hand, each frame displayed a short part of the

finger. The images of long fingers (Fig. 5.5) were obtained following the steps:

1. The CCD camera was placed at the end of the disorder plate.

2. The finger was generated by withdrawing oil at a constant velocity V∞.

3. Once the finger tip had advanced a distance L À W , the CCD travelled towards

the air inlet at a high velocity and took pictures at 2 frames per second.

The image of a long finger (Fig. 5.5) was obtained by mounting several frames.

For each finger, we analyzed only the body (the stationary part) of the finger. The

range of finger velocities U studied in quenched disorder experiments was (0.11, 15.00)

mm/s.

Fluctuations in finger width

The body of the finger was digitized. For each finger we obtained the profiles of the left

side of the finger yleft(xi) and the right side yright(xi). From these two measurements

we calculated the width of the finger λ(xi) = (yleft(xi)− yright(xi))/W and the mean

finger width λ:

λ =
1

N

∑
i

λ(xi), (5.1)
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typically for N ' 3000 values of the width.

Fluctuations in finger width were characterized by the standard deviation of the

finger width δλ along the finger:

δλ =

√
1

N − 1

∑
i

(λ− λ(xi))2. (5.2)

Last, for each velocity we generated 4 (or 3, in some of the configurations) inde-

pendent fingers. The final value of λ and δλ was calculated as the weighted average

of these quantities.

Frequency distribution of the lateral instability

We measured the wavelength Λ of the lateral instability as the distance between two

maxima of the finger width. The corresponding frequency of the lateral fluctuations

was calculated as follows:

νout =
U

Λ
=

V∞
λΛ

, (5.3)

where withdrawal velocity far from finger tip V∞, and finger tip velocity U , are used.

For each finger, frequencies of the lateral fluctuations were determined indepen-

dently at each side of the finger, since fluctuations in both sides do not seem to

be correlated in an obvious way. The results for different disorder plates were also

considered as independent measurements.

5.3.2 Periodic perturbation experiments

The fingers were generated by withdrawing oil at constant rate V∞. Once the finger

had reached its stationary width and advanced by the center of the channel (a dis-

tance 6W from the air inlet), the pump was switched on. As a result, the velocity of

the tip of the finger oscillated around the mean value imposed by the withdrawal ve-

locity. The resolution was fixed to 0.16 mm/pixel (0.006 W/pixel) and the withdrawal

velocities used were V∞ = 1.42 mm/s and V∞ = 2.83 mm/s.

Pictures of long fingers in periodic perturbation experiments were generated with

the same procedure described in Section 5.3.1. However, we observed that the sta-

tionary region of the finger at high forcing frequencies was reached very far from

finger tip. In addition, the maximum velocity at which our CCD could travel along

the cell was comparable to the finger velocities. Thus, at high forcing frequencies the

stationary part of the finger was very small. Although at lower forcing frequencies the
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Figure 5.6: Example of a long finger generated in periodic perturbation experiments. The
forcing frequency was 0.22 Hz and V∞ = 1.42 mm/s. The bright region is the ROI analized
in time evolution experiments.

stationary region was close to the finger tip (Fig. 5.6), we performed measurements

of the time evolution of the sides of the finger at a fixed distance of the air inlet for

all forcing frequencies except the two lowest ones.

Measurements of the stationary frequency of the lateral instability.

The section of the finger we captured (our region of interest or ROI) had dimensions

W × 4W . First, it was important to decide the position of the ROI (Fig. 5.6). We

located the ROI following two criteria:

• It was important to set the CCD far enough from the oil outlet to allow for the

lateral instability of the finger to reach its stationary state.

• It was important to discard possible transient effects due to switching on the

forcing.

Consequently, the ROI was placed at 12.5W of the air inlet. The capture began

when the finger tip entered the ROI (at time 0) and ended when the tip of the finger

had advanced a distance of approximately 30W from the ROI (at time T ).

The wavelength of the lateral instability was measured in the same way than in

quenched disorder experiments. Differently from the lateral instability in quenched

disorder experiments, the lateral instability at each side of the finger under periodic

forcing was strongly correlated. Thus, we measured the lateral instability of only one

side of the finger.

To find out wether an stationary state had been reached, we compared the wave-

length of the lateral instability at times 0.8T , 0.9T and T . If the difference between

the wavelengths measured at 0.9T and T were below our experimental resolution, we

concluded that the lateral instability had reached an stationary value. When this

happened, the mean value of the measured wavelength at time T , Λ, was taken as

the wavelength of the lateral instability.
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The width of the finger λ(x) was measured as in quenched disorder experiments,

and only for the ROI. The mean finger width λ was obtained as an average over 640

values.

Last, the frequency of the lateral instability was calculated using Eq. (5.3) and

the fluctuations in finger width were calculated following Eq. (5.2).

As the measurements were performed in a small region of the finger, we could

measure only a few Λ in each finger. We performed 5 independent runs of each

experiment. The value of νout and λ were obtained as weighted averages over the five

independent runs. For the smaller frequencies we considered both the instrumental

uncertainty and the standard deviation of the measurements to compute the final

uncertainty. For the middle and high frequencies, since the number of measurements

in each run increased, it sufficed to consider only the instrumental uncertainty of the

measurements.

Low frequencies: long fingers

For the two lowest forcing frequencies studied (0.02 and 0.03 Hz) the typical wave-

length of the pattern was longer than the ROI lateral size. The ROI could not be

enlarged because of the low amplitude of the lateral instability. In principle, since the

wavelength evolved as it propagated far from the tip, an image reconstruction of the

finger made of pictures taken at different times was not possible. However, for very

small forcing frequencies, the structure that was born close to the finger tip persisted

along the finger as this one advanced. We therefore decided to analyze these fingers

by making the camera travel above the well-developed finger and by making an image

reconstruction of the whole finger.

At low forcing frequencies, the shape of the finger sides did not have a sinusoidal-

like profile. Instead, it was characterized by a saw-tooth wave profile. We applied

a fast Fourier transform (FFT) analysis to the two lowest frequencies studied in the

following way: we carried out three realizations of the experiment for each forcing

frequency and we obtained a reconstruction of a long finger for each realization.

The reconstructions were digitized and a FFT transform was applied to repeated

structures on one of the finger sides. The position of the largest peak of the FFT was

associated with the wavelength, Λ, for each realization. This, together with the mean

finger width, λ, allowed for the calculation of the response frequency. We obtained

the final response frequency as the weighted average over the three realizations.

In order to check that this method gave reasonable results, we applied both types

of data analysis to the lowest four forcing frequencies for which the regular data
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Figure 5.7: Frequency of the lateral instability νout as a function of forcing frequency νin

for V∞ = 1.42 mm/s at low forcing frequencies. The graph contains νout measured with
two different experimental procedures: (¤) time evolution measurements and (4) long finger
measurements (FFT).

analysis was possible. We confirmed that the results of the FFT analysis of the

reconstructed image leaded to the same response frequencies than the regular analysis

applied for the higher forcing frequencies (Fig. 5.7).



Chapter 6

Quenched disorder

In all the series of experiments, the aspect ratio of the cell W/b was chosen to be ' 10,

which is small compared to the aspect ratios explored by the long fingers reported

in [Moore 02]. The sides of the fingers reported in [Moore 02] presented spontaneous

fluctuations, while our intention was to induce the instability in fingers which would

present flat sides in the absence of perturbations.

The lateral instability measured both for quenched disorder and for periodic per-

turbation experiments, was a long wavelength, low amplitude instability. As com-

mented in Ch. 10, for both kinds of experiments we were interested in the frequency

νout and the amplitude δλ of the lateral instability.

The first noticeable result was to find out that the lateral instability was developed

with a very weak disorder in the gap spacing (even for variations in the gap spacing

below 5%, the finger sides developed the instability). The lateral instability had a

very low amplitude and a wide spectra of wavelengths (Fig. 6.1) .

The static disorder was feeble enough to allow normal Saffman-Taylor fingers

to develop. The tip of a finger generated in our Hele-Shaw cell resembled the tip

of a normal Saffman-Taylor finger and was stable to the presence of the quenched

disorder. On the contrary, the flat sides of the finger were unstable and developed a

lateral instability which propagated away from the finger tip (in the finger frame of

reference). The amplitude of the instability increased to a saturation value. Once the

saturation amplitude was reached, and in the laboratory frame of reference, the shape

of the finger was stationary. For fixed experimental parameters (b, V∞, and disorder

plate) the fingers were identical. Clearly, the details of the fluctuations on the finger

sides differed for different configurations of static disorder, but the statistical behavior

was the same.
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Figure 6.1: Detail of the lateral instability observed in quenched disorder experiments. The
image corresponds to a finger with a mean velocity U = 7.84 mm/s in a cell with b = 1.3 mm
and 10% coverage.

Geometry A B C

Coverage % 10 10 35

Effective gap spacing b (mm) 0.8 1.3 1.3

Cell width W (mm) 24 24 24

Relative variations in gap spacing h/b (%) 7.5 4.6 4.6

Withdrawal velocity V∞ (mm/s) 1.12 1.22 1.22

Characteristic frequency at infinity ν∞ (Hz) 0.047 0.051 0.051

Table 6.1: Experimental parameters of the three geometries studied.

6.1 Effect of the static disorder

The properties of the static disorder were controlled by two variables: the coverage

and the gap spacing b, while flow rates were chosen to give equal finger velocities

up to two significant figures. Experimental parameters for the tree configurations

studied are shown in Table 6.1.

Representative fingers for each geometry are displayed in Fig. 6.2. The distribu-

tions displayed in Fig. 6.3 are results of the different configurations of static disorder

for each geometry. A summary of the main results for each geometry is shown in

Table 6.2.

The properties of the disorder were related to the statistical properties of the

lateral instability in the following way:

• Effect of the intensity of static noise

We compared the results of two geometries with the same coverage (10%) vary-

ing only the gap spacing (geometries A (h/b = 7.5%) and B (h/b = 4.6%)).
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The smallest the gap, the larger the intensity of the noise. Top and middle

fingers in Fig. 6.2 are two examples of fingers for each geometry. In the top and

middle graphs of Fig. 6.3 we show the corresponding distributions.

In both cases, most of the frequencies of the lateral instability were contained

in a band ν∞ < ν < νfing. The smallest frequencies observed were close to

ν∞. At high frequencies the behavior in both geometries was also similar: a

tail that decayed to zero at frequencies few times larger than the characteristic

frequency of the finger. The width of the distributions was also similar. The

standard deviations of the data, 0.052 Hz and 0.046 Hz for the 0.8 mm and 1.3

mm gaps, respectively, and the means of the distributions, 0.124 Hz and 0.116

Hz for the 0.8 mm and 1.3 mm gaps, respectively, also indicated that there was

not an obviously quantifiable difference in the distributions.

• Effect of the coverage

We also compared the results of two geometries with the same intensity of noise

(4.6% variation of gap spacing) and different coverage (geometries B and C).

The frequency distributions for coverage of 10% and 35% are displayed in the

middle and bottom graphs of Fig. 6.3. At low frequencies the behavior was the

same as described above. At high frequencies, the tail for high coverage reached

larger frequencies than the tail for small coverage. This indicated that high

coverage induced the presence of fluctuations of small wavelength in the lateral

instability. Nevertheless, in both cases the tail of the distribution decayed

to zero at frequencies few times larger than the characteristic frequency of the

finger. The standard deviations of the data, 0.046 Hz and 0.090 Hz for coverages

of 10% and 35%, respectively, and the means of the distributions, 0.116 Hz and

10 mm

10 mm

Figure 6.2: Images of fingers obtained at fixed finger velocity (U = 2 mm/s) in the three
different geometries described in table 6.1 A, B, and C (from top to bottom).
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Figure 6.3: Distributions of frequencies of the lateral instability corresponding to the three
different geometries described in Table 6.1. Vertical lines are the characteristic frequencies
of the system (left: ν∞, right: νfing). The geometries A, B and C are ordered from top to
bottom.

0.164 Hz, also indicated that the range of frequencies that grew in the lateral

instability was larger for the high coverage case, and that the distribution was

slightly shifted towards high frequencies which correspond to short wavelengths.

Table 6.2 describes the properties of the fingers developed in each geometry. We

observe that the rms fluctuations of finger width increased with the intensity of the

static noise and with the coverage. Since these fluctuations provide a measure of the
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Geometry A B C

U (mm/s) 2.01 2.03 2.01 (±0.05 mm/s)

λ 0.56 0.60 0.58

νfing (Hz) 0.15 0.14 0.15 (±0.03 Hz)

δλ (mm) 0.0185 0.0064 0.0115 (±0.0012 mm)

N 53 74 65

Table 6.2: Measured finger properties for the geometries described in Table 6.1. U : Mean
finger velocity. λ: Mean finger width. νfing: Characteristic frequency of the finger. δλ: rms
fluctuations in finger width. N : Total number of measurements.
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Figure 6.4: Mean finger width as a function of 1/B. The solid line correspond to the
theoretical values of McLean and Saffman [McLean 81]. Solid squares are the experimental
values of the mean width averaged over four different disorder configurations.

amplitude of the lateral instability, we concluded that fluctuations increased with the

two possible mechanisms of increasing the static noise in the cell.

Summarizing, the frequency distribution of the lateral instability was very similar

in all the geometries. Most of the frequencies were contained in the range (ν∞, νfing)

pointing to a possible preferred frequency which did not seem to depend on the

properties of the static noise. On the other hand, rms fluctuations of the finger width

increased with increasing the intensity of static noise.

6.2 Relation with capillary number

We studied the finger instability with static disorder for different flow rates. A plot

of the average finger width as a function of capillary number (Fig. 6.4) shows that,
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for all of our experiments, we had normal Saffman-Taylor fingers. Agreement with

the McLean and Saffman curve is similar to results for the steady state reported in

the literature [Tabeling 86].

We studied fingers in a wide range of capillary numbers 1/B. Figs. 6.5 and 6.6

show six typical fingers obtained at different 1/B (fingers appear compressed in the

horizontal axis, in order to facilitate the visual appreciation of the fluctuations).

6.2.1 Fluctuations in finger width

We studied the relation between the capillary number 1/B and the amplitude of the

lateral instability. These experiments were performed at a fixed aspect ratio W/b.

Thus, all the variations of 1/B corresponded to variations of Ca.

In some sense, our analysis was similar to the one carried out by Moore et al.

[Moore 02]. But, differently from their measurements, we were interested on spatial

variations in finger width instead of temporal variations. As can be appreciated in

Figs. 6.5 and 6.6, the relation between the amplitude of the lateral instability and

the capillary number was clearly non-monotonic. Fig. 6.7 shows the relation between

1/B and δλ.

Our results are qualitatively similar to those of [Moore 02], in the sense that

δλ decreases as Ca increases and scales as a power law. At larger values of the

capillary number δλ increases at increasing Ca, similarly to what happened in the

experiments mentioned. Our results for the rms fluctuations of the finger width scale

at low capillary number as Ca−1/3 or, equivalently in our experiments, as 1/B−1/3.

A B C

100 mm

1
0
 m

m

Figure 6.5: Plot of fingers in a cell with a 10% of area filled by copper islands, gap spacing
b = 1.3 mm at several velocities. Each finger is marked in figure 6.7. A: 1/B = 18, B:

1/B = 88, C: 1/B = 198.
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Figure 6.6: Plot of fingers in a cell with a 10% of area filled by copper islands, gap spacing
b = 1.3 mm at several velocities. Each finger is marked in figure 6.7. D: 1/B = 339, E:

1/B = 1091, F: 1/B = 1300.
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Figure 6.7: Fluctuations in the finger width vs 1/B. Solid squares are the average fluctua-
tions over four different disorder configurations. Dotted line is the best fit for the low velocity
regime (1/B from 0 to 250).

Specifically δλ = (0.034± 0.008)(1/B)(−0.30±0.13), for values of 1/B from 0 to 250.

6.2.2 Frequency distribution of the lateral instability

The particular properties of the disorder (coverage and intensity) did not affect the

frequency distribution of the lateral instability (Section 6.1). Most of the frequencies

of the lateral instability were contained in the range (ν∞, νfing). But these two
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characteristic frequencies depended on the velocity of the finger. Thus, we also studied

the distribution of frequencies for fingers in a wide range of velocities.

Figs. 6.9 and 6.8 show these results. Fig. 6.8 displays frequency distributions

for different velocities, while Fig. 6.9 shows variations of the mean and standard

deviations for the data contained in the distributions as a function of Ca. From both

figures, it is clear that the velocity of the finger determined the frequency distribution

of the lateral instability. The frequency that dominated the pattern of the lateral

fluctuation increased with increasing Ca (increasing U , in our experiments) indicating

that, at large Ca, short wavelength fluctuations were more and more favorable. Also,

the width of the distribution increased with increasing Ca, indicating that the range

of frequencies that were not suppressed by surface tension increased with increasing

Ca.

The mean frequency of the distribution increased linearly with Ca (Fig. 6.9):

νmean = (4.9± 0.4) · 10−4(1/B)(1.02±0.04) Hz. The standard deviation of the distribu-

tions also presented this linear behavior.
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Figure 6.8: Histogram of the distribution of frequencies of the lateral fluctuations at different
velocities. The symbols are: ¥ 1/B = 23, ◦ 1/B = 39, N 1/B = 63, O 1/B = 82, ? 1/B = 118,
× 1/B = 198, ¤ 1/B = 254, • 1/B = 339, 4 1/B = 435, H 1/B = 558, + 1/B = 925, ¦
1/B = 1268.
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Figure 6.9: Top: Mean of the frequency distribution of the lateral instability vs 1/B. Dotted
line is the best fit for the experimental values of the frequencies of the lateral instability.
Bottom: Standard deviation of the frequencies of the lateral instability as a function of
1/B.
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Chapter 7

Periodic perturbation

The instability developed in fingers subjected to periodic forcing had also a low

amplitude and a long wavelength, but a simple look to the typical fingers developed

in each series of experiments (Figs. 6.1 and 7.1) shows that both instabilities are

very different. Fingers periodically forced display a symmetric instability, whereas

the instability observed in fingers perturbed with static disorder is not symmetric at

all. Another noticeable difference is the spatial periodicity of the lateral instability

displayed for fingers periodically forced, which was not observed in quenched disorder

experiments, where the instability had several wavelengths associated.

We performed measurements for two different withdrawal velocities V∞ = 1.42

and 2.83 mm/s. As an example, a picture of the ROI of a finger at the lowest

velocity is displayed in Fig. 7.1.

5 mm

5
 m

m

Figure 7.1: Image of the ROI studied in periodic perturbation experiments. The image
corresponds to the stationary state of the lateral instability for a finger with a withdrawal
velocity V∞ = 1.42 mm/s and a forcing frequency νin = 0.19 Hz.
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Figure 7.2: Top: Finger width as a function of forcing frequency: ¥: λmax, O: λ, and
◦: λmin. Bottom: Fluctuations in finger width as a function of forcing frequency. Vertical
lines, from left to right, correspond to ν∞, νfing−min, and νfing−max. Left: Results for a
withdrawal velocity V∞ = 1.42 mm/s. Right: Results for a withdrawal velocity V∞ = 2.83
mm/s.

7.1 Finger width and fluctuations in finger width

The measures of the mean finger width λ, the maximum and minimum finger width

λmax and λmin, and fluctuations in finger width δλ are displayed in Fig. 7.2 for both

withdrawal velocities.

For each velocity, we observed that the mean finger width λ was not constant

over the whole range of νin studied. Both for V∞ = 1.42 mm/s and for V∞ = 2.83

mm/s, λ(νin 6= 0) < λ(νin = 0). For the lowest velocity, the mean finger width

decreased considerably (from 0.54 for the unperturbed finger to a nearly constant

value of 0.50 for the highest forcing frequencies). For the highest velocity, the finger

width decreased from 0.51 to 0.50, which was a relatively small variation in finger

width.

Considering that λ is not constant, we could not associate a single characteristic

finger frequency to the experiment. Instead of a single νfing, we associated a band of

characteristic finger frequencies (νfing−min, νfing−max) to each velocity:

νfing−min =
V∞

〈λ〉2maxW
, (7.1)

νfing−max =
V∞

〈λ〉2minW
, (7.2)

where 〈λ〉max and 〈λ〉min correspond to the maximum and minimum value of the

mean finger width λ measured over all the forcing frequencies. The range of finger
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V∞ (mm/s) ∆λ ν∞ (Hz) ∆νfing (Hz)

1.42 0.498− 0.535 0.057 0.197− 0.234

2.83 0.492− 0.504 0.114 0.449− 0.470

Table 7.1: Withdrawal velocities, range of values of average finger width, frequency charac-
teristic of infinity, range of frequencies characteristic of the finger.

widths, velocities and the corresponding characteristic frequencies for each finger tip

velocity are detailed in Table 7.1.

The behavior of λmin and λmax was strongly correlated: the highest value of λmax

corresponded to the minimum λmin. Thus, although the width of the finger was

locally subjected to strong variations, variations in λ were not dramatic. This was

true for both withdrawal velocities. For V∞ = 1.42 mm/s, and for forcing frequencies

νin À νfig−max, both widths approached the value of λ. For the higher velocity,

the range of high frequencies (ν À νfing−max) was not reached but the behavior of

the amplitude of the instability was consistent with the one observed at the lowest

velocity.

A direct measurement of the amplitude of the instability was δλ (Fig. 7.2). For

both withdrawal velocities we found a forcing frequency for which the amplitude of

the perturbation was maximum. For V∞ = 1.42 mm/s this forcing frequency roughly

coincided with ν∞ whereas for V∞ = 2.83 mm/s the maximum amplitude was slightly

displaced to higher forcing frequencies.

The fluctuations in finger width at high frequencies were almost constant and very

small for the lower velocity.

7.2 Lateral instability

In all experiments the first stage of the instability was similar: the lateral instability

appeared near the finger tip, shortly after the air pump was switched on. The effect

of the pump was an instantaneous change in finger tip velocity which advanced at

a higher or a lower velocity. As a result, the finger width was modulated around a

mean value with a typical frequency in the range (0.4νin, νin).

As the finger tip travelled along the cell, this first stage could be stable or could

be unstable and evolve to a new stage. We divided the experimental results in three

different regimes, considering the modulations to the finger width very far from the

finger tip (Figs. 7.3 and 7.4):



86 Periodic perturbation

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.1

0.2

 

 

ν ou
t (

H
z)

ν
in
 (Hz)

Figure 7.3: Frequency of the lateral instability as a function of forcing frequency for a
withdrawal velocity V∞ = 1.42 mm/s. ¤: Stationary states 4: FFT of reconstructed fingers.
Solid symbols: Non stationary states. Horizontal and vertical grey lines correspond to ν∞.
Horizontal and vertical grey colored bands correspond to the band of frequencies (νfing−min,
νfing−max). Functions y = x and y = x/2 are also plotted as guidelines.

• Frequency dependent regime (νout < νfing−min)

• Non stationary response region

• Selection regime (νout > 1.5νfing−max)

In Fig. 7.4 we have plotted the response frequency for the two velocities studied in
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Figure 7.4: Frequency of the lateral instability as a function of forcing frequency for with-
drawal velocities V∞ = 1.42 mm/s and V∞ = 2.83 mm/s. Open circles correspond to sta-
tionary states of V∞ = 2.83 mm/s, the rest of the symbols are the same as in Fig. 7.3.
Characteristic frequency of the flow and the band of finger characteristic frequencies are
displayed for each one of the withdrawal velocities.
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order to show that, as long as the forcing frequency is below the band of frequencies

characteristic of the finger, the response frequency is independent of the withdrawal

velocity. To study the selection regime at this higher velocity, one would need to

apply frequencies much higher than the ones used in our experiment.

7.2.1 Frequency dependent regime (νout < νfing−min)

At low forcing frequencies, the response frequency increased monotonically as a func-

tion of forcing frequency up to forcing frequencies of the order of the characteristic

band. Response frequencies in this zone seem to be bounded by the forcing frequency

and half of the forcing frequency. The slope of the response frequency decreases sys-

tematically. At very low forcing frequencies the response was linear and, as the forcing

frequency increased, the response approached νout = νin/2.

Fingers forced with a frequency below ν∞ developed a lateral instability for which

νout = νin within experimental error. The lateral instability was symmetric but

the sides of the finger did not present a sinusoidal-like profile. Actually, there were

several frequencies present in the interface profiles. However, the dominant frequency

(νout) always matched the forcing frequency. Finger profiles evolved from triangular

periodic structures at very low frequencies (Fig. 7.5, left) to almost sinusoidal profiles

as we approached ν∞ (Fig. 7.5, right).

Fingers forced with a frequency in the range ν∞ < νin < νfing−min presented a

sinusoidal-like symmetric profile. The amplitude of the instability saturated near the

finger tip (Figs. 7.6 and 7.7). As commented before, the results for both velocities

were equivalent.

5
 m

m

100 mm

Figure 7.5: Long fingers for a withdrawal velocity V∞ = 1.42 mm/s in the frequency depen-
dent regime. Left: νin = 0.03 Hz. Right: νin = 0.06 Hz.
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Figure 7.6: Typical fingers for a withdrawal velocity of V∞ = 2.83 mm/s in the frequency
dependent regime (νin = 0.36 Hz). Left: time evolution of the ROI (shown in the long finger
at right). The images are separated 12.5 s (1/10 of the total duration of the experiment).
Right: picture of a long finger obtained by mounting together several images captured while
the CCD camera travelled from the tip of the finger to the air inlet.

7.2.2 Non stationary response regime

At the lower velocity (V∞ = 1.42 mm/s) we found a band of frequencies for which

the finger did not reach a stationary final state (Fig. 7.3). A possible reason for

this could be that the dynamics of the instability within this band was too slow. In

that case the finger tip should advance a longer distance than the total length of our

experimental setup to reach a stationary state.

For these frequencies we observed two kind of profiles. At early and interme-
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Figure 7.7: Typical fingers for a withdrawal velocity of V∞ = 1.42 mm/s in the frequency
dependent regime (νin = 0.11 Hz). Left: time evolution of the ROI (shown in the long finger
at right). The images are separated 25 s (1/10 of the total duration of the experiment).
Right: picture of a long finger obtained by mounting together several images captured while
the CCD camera travelled from the tip of the finger to the air inlet.
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Figure 7.8: Images of the ROI for fingers with a withdrawal velocity V∞ = 1.42 mm/s. The
frames are separated 25 s (1/10 of the total duration of the experiment). Left: Last stages
for a finger in the non stationary response regime (νin = 0.29 Hz). Right: Middle stages of
a finger in the selection regime (νin = 0.41 Hz).

diate times the finger presented a sinusoidal-like response like the one observed for

frequencies below νfing−min. The response frequency was calculated as usual, for the

last image presenting a sinusoidal–like profile. The results, shown as inverted black

triangles in Fig. 7.3, follow the trend of the results in the frequency dependent regime.

On the other hand, for some of the experimental realizations the sinusoidal-like

profile of the fingers evolved into a structure with a much longer wavelength (Fig.

7.8). Although the stationary state was not reached, we can associate a wavelength

to the emerging structure and compute the corresponding response frequency. The

results, shown as black circles in Fig. 7.3, are consistent with the results found for the

stationary states in the selection regime. So the black symbols indicate two things,

that a stationary state was not reached and that structures seem to be evolving from

shapes characteristic of the frequency dependent regime to shapes characteristic of

the selection regime.

In addition, a comparison of the final state observed at these frequencies with the

state measured at intermediate times of the selection regime showed that they were

equivalent (Fig. 7.8). This points to the possibility that, for longer cells, the final
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Figure 7.9: Typical fingers for a withdrawal velocity V∞ = 1.42 mm/s in the selection regime
(νin = 0.36 Hz). Left: time evolution of the ROI (shown in the long finger at right). The
images are separated 25 s (1/10 of the total duration of the experiment). Right: picture of
a long finger obtained by mounting together several images captured while the CCD camera
travelled from the tip of the finger to the air inlet.
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Figure 7.10: Time evolution of the lateral instability for a withdrawal velocity V∞ = 1.42
mm/s in the selection regime (νin = 0.47 Hz). The frames are separated 25 s (1/10 of the
total duration of the experiment).

state reached at these frequencies would be a stationary state of the selection regime.

7.2.3 Selection regime (νout > 1.5νfing−min)

The lateral instability for fingers in the selection regime was strongly dependent on

the distance to the finger tip (Figs. 7.9 and 7.10). We could distinguish three different

stages in the evolution of the lateral instability:



7.3 Dynamics and saturation distance 91

• Sinusoidal high frequency response. Near the finger tip, the interface

evolved similarly than in the transient regime. The frequency of the lateral

instability at these times was consistent with the one of the transition regime.

The second frame in Fig. 7.10 corresponds to this behavior.

• Destabilitzation of the high frequency profile. As the finger tip advanced,

the high frequency profile presented peak suppression, and the lateral instability

evolved to a lower frequency profile. We could not associate a single frequency

to this stage of the lateral instability. Frames from 3 to 5 in Fig. 7.10 are good

examples of this behavior.

• Low frequency stationary response. Very far from the finger tip the sides

of the finger presented a periodic modulation with a frequency much smaller

than the input frequency. As the finger tip advanced, the new frequency re-

mained constant until the end of the experiment. This frequency was almost

independent of forcing frequency. The three last frames in Fig. 7.10 are good

examples of the stationary finger profiles in the selection regime.

Although the selected frequency of the lateral instability was not constant with

forcing frequency, the finger always evolved to a selected frequency much smaller than

the forcing frequency (Fig. 7.3). A fit of the selected frequency gives:

νsel = (0.077± 0.009) + (0.05± 0.02)νin, (7.3)

which shows that νsel increases slightly with νin.

7.3 Dynamics and saturation distance

As it has been explained before, the instability was born at the finger tip and a

wave was propagated far away from the tip as the finger advanced. There was a

dynamic process as the wave propagated and, in many cases, the instability reached

a stationary state with a wavelength that no longer changed in the course of the

experiment.

First, for fingers in the frequency dependent regime the instability was born with

a wavelength very close to the one in which the shape saturated. This happened at

a distance from the finger tip dsat ' 2.5W .

Second, for fingers in the selection regime the instability was born with a wave-

length much shorter than the one of the stationary state. As the wave propagated far

from the tip, this wavelength was unstable and, for some time, it was impossible to
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associate a single wavelength to the lateral instability. However, when the wave had

travelled even further from the tip, a new wavelength, much larger than the previous

one, dominated the pattern. This wavelength evolved rapidly into the stationary

one. The distance, dsat at which the shape saturated was nearly constant in all the

selection regime and was given by dsat ' 14W .



Chapter 8

Lateral instability in

Saffman–Taylor fingers: Summary

and discussion

In our experiments we verified experimentally the destabilization of the flat sides of

the Saffman–Taylor finger predicted by simulation results. We observed a low am-

plitude long wavelength instability both for fingers in a non-homogeneous Hele-Shaw

cell and in fingers subjected to periodic driving. Differently from the experiments

reported in Refs. [Couder 86; Rabaud 88], all the fingers studied here had a width

λ ≥ 1/2.

Both perturbations induced a lateral instability in the initially flat sides of the

finger. For fingers periodically driven, this instability was symmetric and periodic,

while fingers in cells with non uniform gap spacing developed a non symmetric, non

periodic instability.

• Fingers in cells with quenched disorder

We studied the effect of the quenched disorder on the lateral instability and we

concluded that the main effect was on the amplitude of the instability, which increased

as the magnitude of the disorder increased . This explains why the sides of the fingers

are flat for typical Saffman-Taylor experiments despite the fact that any experiment

has, inevitably, some static noise present in the cell. Another possible explanation is

the long wavelength of the lateral instability (∼ W ) that would require long channels

to allow the instability to develop.

On the other hand, the capillary number (or the velocity, in our experiments)

had a strong effect on the lateral instability. We observed that the amplitude of the

instability decayed as a power law of Ca, at low Ca, and increased for large values of
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Ca. This behavior was qualitatively similar to the one observed in Ref. [Moore 02]

and was obtained for a low aspect ratio (W/b ' 25),in contrast with the large as-

pect ratios explored in Ref. [Moore 02] (W/b > 50). Distributions of frequencies at

different capillary numbers indicated that the frequency that dominated the lateral

fluctuation increased linearly with Ca. Also, the width of the distribution increased

with increasing Ca.

• Fingers subjected to periodic forcing

The lateral instability observed in periodically driven fingers near the finger tip

was symmetric. We observed that Saffman-Taylor fingers responded to periodic forc-

ing by generating a wave on its tip. As the finger advanced, this wave propagated

away from the tip towards the finger sides.

At low forcing frequencies the instability quickly reached a stationary state. The

response frequency of the stationary state increased monotonically as a function of

forcing frequency νin, up to forcing frequencies of the order of νfing−min. On the

other hand, the ratio νout/νin decreased from νout/νin ' 1 at low forcing frequencies

to νout/νin ' 0.6 as the forcing frequency approached the finger characteristic fre-

quency. Also, we observed that for forcing frequencies below the band of frequencies

characteristic of the finger, the response frequency was independent of the withdrawal

velocity.

An important result was obtained at forcing frequencies larger than any char-

acteristic frequency of the finger. Near the finger tip, the frequency of the lateral

instability was consistent with the behavior observed at lower frequencies. As the

wave propagated far from the tip, this frequency became unstable and, for some

time, the lateral instability presented a non periodic profile. However, at long dis-

tances from the finger tip the lateral instability reached a stationary state which was

periodic, symmetric and for which νout ¿ νin. More details of this regime will be

discussed in Sec. 8.2

The lateral instability in fingers forced at some intermediate frequencies over the

characteristic finger frequency never reached an stationary state. For these forcing

frequencies, the structures observed on the finger sides appear to be evolving from

shapes characteristic of the lower frequency regime to shapes characteristic of the

highest frequencies. It is possible that, with a longer cell, a stationary state with

νout ¿ νin would have been reached. It is also possible that for these forcing frequen-

cies two different response frequencies are equally likely, since we did not observe this

shape evolution for all of the experimental realizations.

We also observed that periodic forcing modulated the average finger width in a
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Figure 8.1: Fingers in cells with static disorder: Histogram of the distribution of the wave-
length of the lateral instability at different velocities. The symbols are: ¥ 1/B = 23, ◦
1/B = 39, N 1/B = 63, O 1/B = 82, ? 1/B = 118, × 1/B = 198, ¤ 1/B = 254, •
1/B = 339, 4 1/B = 435, H 1/B = 558, + 1/B = 925, ¦ 1/B = 1268. The vertical dotted
line corresponds to the cell width.

non monotonic way. We noticed that the average finger width was always smaller

than the steady-state finger width. The amplitude of the lateral instability had also

a non monotonic behavior as a function of forcing frequency.

8.1 Wavelength of the lateral instability

Although all the results presented in this work have been explained in terms of

the frequency of the lateral instability, it would have been more natural to talk

about the wavelength of the lateral instability. Our choice was motivated by the

simulation results [Ledesma-Aguilar 05] that we wanted to compare directly with our

experiments. In addition, the results of the periodic perturbation experiments are

more clear when they are presented in terms of the frequency.

Let us now consider our direct measurements of the wavelength of the lateral

instability. A plot of the histogram of the wavelength of the lateral instability in

a wide range of withdrawal velocities (Fig. 8.1) provides an interesting result: the

wavelength of the lateral instability is almost independent of 1/B. This result was

already shown in Chapter 6, where we observed that the mean frequency of the

distribution increased linearly with 1/B (the velocity). Given that νout depends

linearly on the mean velocity of the finger (νout = U/Λ) it can be seen that this result

is equivalent to the direct measurement displayed in Fig. 8.1. From this result, we
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Figure 8.2: Wavelength of the lateral instability of the stationary state in fingers periodically
forced as a function of νin for a withdrawal velocity V∞ = 1.42 mm/s. The horizontal dotted
line corresponds to the cell width.

can affirm that W is the relevant length scale of the system (in quenched disorder

experiments). Computing the mean wavelength of the distributions we find that is

slightly below the channel width for most experiments (only for the lowest velocity

it is slightly higher).

Also, we plotted the wavelength of the lateral instability for fingers periodically

driven (Fig. 8.2). The selected wavelength is slightly above the channel width for all

the frequencies in the selection regime. The selected wavelength is not completely

independent of driving frequency, as we observed for the selected frequency. It is

interesting to notice that wavelengths much shorter than the channel width were not

stable in our system.

8.2 Selection regime

Both in periodic perturbation and in quenched disorder experiments we observed

a selection process in which the system selected a particular frequency for the lat-

eral instability. Our results were in good agreement with the simulation results of

Ledesma–Aguilar et al. [Ledesma-Aguilar 05]. The selected frequency in both series

of experiments fell between the two characteristic frequencies of the system.

In quenched disorder experiments the selected frequency corresponds to a wave-

lenght close to the cell width for all driving velocities.

In fingers subjected to periodic forcing, when the frequency is made dimensionless

in terms of νfing we obtain a selected frequency which is independent of forcing
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Figure 8.3: Dimensionless selected frequency as a function of dimensionless forcing frequency
for a withdrawal velocity of V∞ = 1.42 mm/s. The inbox shows in more detail the selection
regime. The average dimensionless selected frequency is given by the red line.

frequency (Fig. 8.3) in a wide range of forcing frequencies. The result is:

νsel = (0.440± 0.008)νfing. (8.1)

This linear relation between νsel and νfing points to the fact that finger width λW

and the mean finger tip velocity U are the relevant parameters of the periodically

driven lateral instability. The other natural frequency of the system, ν∞, does not

play a relevant role in the selection process for fingers under periodic forcing.





Chapter 9

Oscillating flow of a Maxwell fluid

in a tube: Background

Coupling between flow and liquid structure makes the dynamic response of non–

Newtonian (complex) fluids much richer than that of Newtonian (simple) fluids

[Gelbart 96; Larson 99]. In particular, depending on the relevant time scale of the

flow, viscoelastic fluids exhibit the dissipative behavior of ordinary viscous liquids

and the elastic response of solids. Due to their elastic properties, these fluids are

potential candidates to exhibit interesting resonance phenomena under different flow

conditions.

In this respect, the response of a viscoelastic fluid to an oscillatory pressure gra-

dient has been analyzed theoretically in some detail (see Sec. 3.3.2 for details). The

response, measured in terms of the velocity for a given amplitude of the pressure gra-

dient, exceeds that of an ordinary fluid by several orders of magnitude at a number

of resonant frequencies. The remarkable enhancement in the dynamic response of the

viscoelastic fluid is attributed to a resonant effect due to the elastic behaviour of the

fluid and the geometry of the container [López de Haro 96; del Rı́o 98; Tsiklauri 01].

In Ref. [Castrejón-Pita 03b] Laser Doppler Anemometry (LDA) measurements

were used to study the response of a Maxwell fluid to an oscillatory pressure gradient

(measured by the flow velocity at the the tube axis, for a given amplitude of the

pressure gradient). They observed that the dynamic response exhibited very large

resonance peaks at particular driving frequencies while a purely dissipative behavior

was observed for a Newtonian fluid. However, the linear model (Eq. (3.18)) had

several interesting predictions which were still open. For instance, the shape of the

velocity profiles was not measured, as the experimental study performed in Ref.

[Castrejón-Pita 03b] was focused on the dynamic response at the tube axis.
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Figure 9.1: Left: Theoretical velocity profiles for a Maxwell fluid with η = 60 Pa·s, ρ = 1050
kg/m3, tm = 1.8 s in a tube of radius a = 25 mm. Right: Theoretical velocity profiles for
a Newtonian fluid with η = 1 Pa·s, ρ = 1250 kg/m3 in a tube of radius a = 25 mm. Three
different driving frequencies are displayed for each fluid: 4 Hz (dots), 7 Hz (dash) and 11.5
Hz (dash-dot).

A natural extension of the characterization of the flow was the study of the stabil-

ity of the laminar flow. We were interested in explore experimentally in which ways

the basic parallel shear flow described in Sec. 3.18 became unstable as the fluid was

subjected to a harder oscillatory driving, by increasing the forcing amplitude and/or

the forcing frequency. We focused on driving frequencies that corresponded to either

maxima or minima of the viscoelastic fluid response. In all instances the Reynolds

number remained very small (Re < 10−1), ensuring that the increasing complexity of

the flow (in the case of the viscoelastic fluid) was due to the rheological properties of

the fluid, not to inertial effects.

In this Chapter, we will present the main objectives of our experimental study:

the full characterization of the laminar velocity profiles as well as the stability of the

complex oscillating flow.

9.1 Laminar flow velocity profiles

The linear model presented in Sec. 3.18 predicts velocity fields which depend on the

radial position (Fig. 9.1):

v(r, t) = −iωz0

(
1− J0(βr)

J0(βa)

)
eiωt, (9.1)

β =

√
ρ

ηtm
((ωtm)2 + iωtm). (9.2)
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Figure 9.2: Diagram showing the theoretical location of the quiescent flow points along the
radial coordinate of the cylinder, r, as a function of driving frequency, ν, for a Maxwell fluid.
The dashed horizontal lines separate the frequency axis in intervals of constant number of
quiescent flow points. For calculations the parameters for the Maxwell fluid were η = 60 Pa·s,
tm = 1.8 s and ρ = 1050 kg/m3, the radius of the tube was a = 25 mm.

For a Newtonian fluid (tm = 0) there is only one node of the velocity profile, at

r = a, which accounts for the non–slip condition at the wall. Remarkably, if tm 6= 0

(Maxwellian fluid) the velocity profile may present several nodes. These nodes de-

fine quiescent points of the flow. For given material and geometrical parameters,

the location of the nodes depends on the driving frequency (Fig. 9.2). At low fre-

quencies the profiles have only a pair of quiescent flow points at the tube walls. As

driving frequency increases, quiescent flow points detach from the tube wall and ap-

proach the tube axis. Thus, the 3–d flow is structured in cylinders of alternating

upward/downward motion separated by quiescent flow cylindrical surfaces.

The linear model is calculated for an infinite fluid column and does not consider

the effect of the fluid-air interface. As a result, there is no dependence on the z-

coordinate for the velocity profiles. But real systems are finite and the effect of a

fluid-air interface can be important. An approximation of the shape of the interface

can be calculated from the linear model if oil–air/maxwell fluid–air surface tension

is neglected. The position of a fluid volume element in the tube is obtained by time

integration of Eq. 9.2, and corresponds to the real part of:

h(r, t) = h0 + δh(r, t) = h0 − z0

(
1− J0(βr)

J0(βa)

)
eiωt, (9.3)

where we have already considered that the velocity profile is independent of the

vertical position z in the tube. Since the position of a fluid volume element can be
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Figure 9.3: Theoretical deformation profiles for a Maxwell fluid driven at 2 Hz (dashed line)
and at 6.5 Hz (solid line). For calculations the parameters for the Maxwell fluid were η = 60
Pa·s, tm = 1.8 s and ρ = 1050 kg/m3, the radius of the tube was a = 25 mm, and the
amplitude of the driving was z0 = 0.8 mm.

described by Eq. 9.3 for any vertical position, the shape of the fluid–air interface

hi(r, t) is also described by h(r, t).

In our experiments, we could measure the deformation profiles of the interface φi

by means of an optical technique (Optical Deflectometry, described in Ch. 10). These

deformation profiles are related to the shape of the interface as φi = ∂hi(r, t)/∂r. The

linear model provides us with a theoretical prediction of the deformation profiles in

the bulk of the flow (which in absence of fluid–air surface tension would correspond to

the deformation profiles of the interface) φ = ∂h(r, t)/∂r. The theoretical predictions

for a Maxwell fluid in a tube for two different driving frequencies and the same

driving amplitude are displayed in Fig. 9.3. The profiles are very different. While

the deformation profile at 2 Hz is monotonic and very smooth, the profile at 6.5 Hz

shows a more complex behavior: instead of a single central node, it presents three

nodes which, in the velocity profile, correspond to a maximum at the tube center

and a minimum near the tube wall. The maximum deformation between these nodes

corresponds to an inflection point of the velocity profile, very close to the quiescent

flow point.

9.2 Hydrodynamic instabilities

A natural extension of the characterization of the laminar flow is to explore ex-

perimentally in which ways the basic parallel shear flow generated at low driving

amplitudes is distorted, as the fluid is subjected to a harder oscillatory forcing by
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increasing its amplitude and/or its frequency.

This experimental study can be compared with the study performed in Refs.

[Hino 76; Eckmann 91] on the transition to turbulence in an oscillatory pipe flow. The

onset of the instability occurs at values of the Reynolds number around Reosc ∼ 700, a

value which is¿ Re in the stationary unidirectional Poiseuille flow [Drazin 02]. How-

ever, Reosc À 1, indicating that inertial forces are necessary to the destabilization of

the flow. Both stationary and oscillatory flows are laminar for values of the Reynolds

number for which inertial forces are comparable to viscous dissipative forces.

We are more interested in the study of the stability of the flow at Re < 1. In

this regime, the Newtonian flow is stable [Hino 76] but the viscoelastic flow may

be unstable. This study is important in the field of elastic instabilities [Arora 02;

Groisman 98; Groisman 00]. As described in Section 3.3.1, although parallel shear

flows of viscoelastic fluids are acknowledged to be linearly stable [Pakdel 96], Mo-

rozov and van Saarloos have demonstrated very recently that plane Couette flow

undergoes a purely elastic subcritical instability, by which a small finite–size per-

turbation is sufficient to create a secondary flow [Morozov 05]. The oscillatory flow

of the viscoelastic–fluid–pipe system is a parallel shear flow in which shear stresses

accumulate near the quiescent cylindrical boundaries and, as such, it is a promising

candidate to exhibit the same kind of nonlinear elastic instability.

The flow of a Maxwell fluid (viscosity η, density ρ, Maxwell time tm) in a tube

(radius a) under periodic driving (frequency ν, amplitude z0) is characterized by the

dimensionless numbers:

• Reynolds number: Re = ρ2πνz0a/η. The maximum velocity of the piston 2πνz0

is chosen characteristic velocity and the radius of the tube a is the characteristic

length scale. It is necessary to work at Re ¿ 1 according with the assumptions

of the linear model, where inertial terms are neglected.

• Deborah number: De = tmη/(a2ρ). Where the characteristic time of the fluid

is compared to the characteristic dissipation time scale. In order to observe

elastic effects, it is necessary to set De À 1. The amplitude of the resonant

peaks of the dynamic response is actually a function of De

• Weissenberg number: Wi = tmγ̇. This is the usual definition for Weissenberg

number. As characteristic fluid time we select the Maxwell time of the fluid.

The characteristic shear rate for the oscillating flow in the tube is defined a ratio

between a characteristic velocity (the maximum velocity of the piston) and a

characteristic length scale for variations in the velocity profile (the distance rq
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between the tube axis where the velocity is maximum and the first quiescent

point of the flow where the velocity is zero):

γ̇char ≡ 2πνz0

rq

. (9.4)

The resulting Weissenberg number is Wi = 2πνtmz0

rq
.

• Stokes parameter: For an oscillatory viscous flow in a tube, the Stoke’s para-

meter measures the ratio of the tube radius to the viscous penetration depth

Λ = a/δν , where δν =
√

η/(ρπν). [Hino 76].

The experimental device used in the experiments is described in Ch. 10 and the

main results for the laminar profiles and the hydrodynamic instability are presented

in Ch. 11 and 12. We will finish with a dicussion presented in Ch. 13.



Chapter 10

Oscillating flow of a Maxwell fluid

in a tube: Experimental methods

In order to characterize the velocity fields of Maxwell and Newton fluids in a tube, we

used three different techniques: Optical Deflectometry, Particle Image Velocimetry

and Birefringence. In this Chapter we will describe these techniques and we will also

present the experimental device we used in the experiments with complex fluids.

10.1 Techniques used

10.1.1 Optical Deflectometry (OD)

Optical Deflectometry is a technique commonly used to measure deformations of the

surface of transparent thin films [Fermigier 92]. However, for small surface deforma-

tions, the technique can be used to measure deformations in the surface of transparent

fluids, not necessarily thin films.

This technique can be understood by means of simple optics laws. When a light

ray crosses perpendicularly a flat interface separating two media it is not deviated.

As the interface is deformed, the incident ray does not enter the interface perpendic-

ularly anymore (Fig. 10.1). As a consequence, the ray will be deviated from its initial

trajectory when entering the new medium. The displacement of this ray allows mea-

suring the local slope of the interface, from which the deformations of the interface

between both media can be calculated.

In our case we used a liquid column as a variable–thickness lens. In the bottom

part of the liquid column we placed a plastic sheet with a regular array (grid spacing

d = 5.0 or 5.5 mm). The grid was imaged trough the liquid column using a CCD



106 Oscillating flow of a Maxwell fluid in a tube: Experimental methods

f

qf-q

d

n
1

n
2

h

Figure 10.1: Sketch of the path followed by a light ray in the system.

camera (640 × 480 pixels) placed on top of the column (Fig. 10.2). As the fluid-air

interface was distorted, each point was displaced a certain distance δ(x, y) of its initial

position, depending on the slope of the interface φ(x, y) (Fig. 10.1). An example of

the recorded deformations is displayed in Fig. 10.3.

The relation φ(δ) was obtained by simple optical relations. According to Snells’

refraction law for small angles n1θ = n2φ. From Fig. 10.1 it is clear that:

tan(φ− θ) =
δ

h
. (10.1)

Therefore, the relation between φ and δ reads:

φ =
1

1− n2/n1

arctan

(
δ

h

)
. (10.2)

In our setup the height of the liquid column (H = 240 mm) was much larger than

the local height variations produced by the deformation of the interface (of the order

of mm), and we could safely take h ' H in Eq. (10.2).

As Eq. (10.2) shows, deflection of the points of the grid increased with the depth

of the layer. This increases the resolution of the measurement, but is also limiting

the use of the technique to smooth interfaces. For highly deformed interfaces, the

image of different points of the grid can mesh or strongly deform the points.
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Figure 10.2: Scheme of the experimental device used in OD measurements.

Experimental procedure and data analysis

We used grid spacings of d = 5.0 and 5.5 mm. The refractive indices of our materials

were n = 1.33407(01) for Maxwell-A fluid (measured by Abbé refractometry), and

n = 1.473 for glycerol (nominal).

Once the deformation map π(x, y.t) of the interface was obtained, we averaged it

in the azimuthal direction, considering that the flow preserved axial symmetry. Thus,

from the initial map φ(x, y, t), we obtained the deformation profile of the interface

φ(r, t). This profile could be simply related to the local height of the column by

φ(r, t) = ∂h(r, t)/∂r. Hence:

Figure 10.3: A typical picture recorded in Optical Deflectometry measurements. The image
of a regular array of black dots (grid spacing d = 5.0 mm) is distorted by the interface
deformation.
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h(r, t) = h(r0, t) +

∫ r

r0

φ(r, t) dr. (10.3)

We chose for r0 a position where the interface was motionless, because the reference

height h(r0, t) was then a constant taken equal to 0.

Finally, the velocity profile of the interface was obtained from the time derivative

of the local height, v(r, t) = ∂h(r, t)/∂t. For the numerical calculation of the time

derivative at time t we used the height profiles at three time phases (t−, t and t+):

v(r, t) =
h(r, t+)− h(r, t)

t+ − t
+

h(r, t)− h(r, t−)

t− t−
− h(r, t+)− h(r, t−)

t+ − t−
. (10.4)

10.1.2 Particle Image Velocimetry (PIV)

PIV is a non intrusive measurement technique used to study flows in transparent flu-

ids, and it can be used for flows in a wide range of velocities. A detailed description of

the technique can be found at Ref. [Adrian 91]. The following is a simple explanation

of the technique. Naively, the technique consists on identifying the motion of fluid

particles with the motion of density–matched seeding particles in the fluid.

PIV systems capture pairs of images of the seeding particles. From one pair of

images, a flow velocity map is generated. The procedure is simple. For a pair of

images A and B, the images are divided in interrogation subareas lA and lB. These

subareas must be small enough to provide a detailed flow map and large enough to

contain several seeding particles (typically > 10 [Adrian 91]). In our experiments the

size of the subareas was around 16 × 16 pixels (1 cm2). The interrogation areas of

each image are cross-correlated pixel by pixel:

C(s) =

∫ ∫
lA(x)lB(x + s)dx, (10.5)

where s is a two–dimensional vector. The correlation produces a peak for a given

displacement vector s. This displacement vector is associated with the displacement

of all the particles of the interrogation subarea lA. The velocity associated to the

interrogation subarea lA is calculated as follows:

v =
s

∆t
, (10.6)

where ∆t is the time between images in a pair.

The size of the interrogation area (dA × dA) and the time between images in

a pair (∆t) are related, and strongly depend on the experiment we are performing.
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The highest velocity measurable in an experiment will be clearly smaller dA/∆t. This

constraint combined with the spatial resolution that we require for each experiment,

will guide the choice of dA and ∆t.

Experimental procedures and data analysis

The measurements were performed in an interrogation plane of 50 × 50 mm, at

different distances from the neutral position of the fluid-air interface. In all cases

this distance was far enough from both the fluid–air interface (top) ant the piston

(bottom) to ensure that the flow in the interrogation plane did not felt the proximity

of these two discontinuities.

The 2d PIV technique provided only the two in–plane components of the actual

3d velocity field in the interrogation plane, in a vertical section of the tube. This

information was complete only if the velocity field was contained within the interroga-

tion plane and the flow was axisymmetric. We investigated whether this was the case

in our experiments by checking whether the velocity field in the interrogation plane

satisfied ~∇ ·~v = 0 (within experimental error), meaning that the velocity component

perpendicular to the interrogation plane was negligible. The background (zero) level

of ~∇ ·~v was determined by the laminar base flow, for which the radial and azimuthal

components of ~v are 0 and the vertical component of ~v depends only on the radius.

Velocities measured in cartesian coordinates (x, y, vx, vy) are mapped into cylin-

drical coordinates (rcos(θ), z, vrcos(θ), vz). For an interrogation plane passing for

the axis of the tube the relation is very simple: (±r, z, ±vr, vz) . For convenience,we

will use vx and vy.

The analysis of the velocity maps was automatized with an algorithm written in

C++ for this purpose. We were interested mainly in the evaluation of the fluctuations,

the vorticity map of the flow, and the correlations in the radial component of the

velocity.

An integrated measure of the destabilization of the basic laminar flow can be

obtained by the rms fluctuations of the x and y components of the velocity along the

vertical direction. We define:

σvx(x, t) =

√
1

N

∑
i

[vx(x, yi)− vx(x)]2, (10.7)

σvy(x, t) =

√
1

N

∑
i

[vy(x, yi)− vy(x)]2, (10.8)

where vx(x), vy(x) correspond to the velocity components averaged along the vertical

(y) direction and N to the number of velocity measurements in the interrogation plane



110 Oscillating flow of a Maxwell fluid in a tube: Experimental methods

along the vertical direction. To make the rms fluctuations comparable for different

magnitudes of the forcing we make them dimensionless in the form:

σ̃vx(x, t) =
σvx(x, t)

2πνz0

(10.9)

σ̃vy(x, t) =
σvy(x, t)

2πνz0

(10.10)

The time dependence of the velocity fluctuations is computed by averaging σ̃vx(x, t)

and σ̃vy(x, t) along the radial direction x. Similarly, the spatial dependence of the

velocity fluctuations is computed by averaging σ̃vx(x, t) and σ̃vy(x, t) in a time period.

In order to study the destabilization of the laminar base flow by the generation

of vortices, we calculate the azimuthal (θ) component of the vorticity. It is easy to

check that the calculation of the azimuthal component of the velocity is the same in

cylindrical than in cartesian coordinates:

w =
∂vx

∂y
− ∂vy

∂x
. (10.11)

10.1.3 Birefringence

Birefringence or double refraction is an optical property of some anisotropic materials.

In anisotropic materials the speed propagation of a light wave is a function of the

direction of propagation and the polarization of the light. When a ray of light enters

a birefringent medium, it splits in two different rays linearly polarized, and with

orthogonal polarizations. If the material is uniaxial (has a single anisotropy axis), we

can describe birefringence by associating a refractive index to each polarization: nO

and nE. The ordinary refractive index nO corresponds to the wave which propagates

following Snell’s law, and has a polarization perpendicular to the anisotropy axis.

The extraordinary refractive index nE corresponds to the wave with a polarization

parallel to the anisotropy axis. Birefringence can be quantified by the difference

between both refractive index: ∆n = nO − nE.

Stress induced birefringence

Some isotropic materials subjected to mechanical stresses become optically anisotropic

and thus birefringent. This is the so called stress induced birefringence, the effect

observed in our experiments. The relation between the stresses and the birefringence

can be expressed in terms of the stress-optic law [Lerouge 00]:

∆n ∝ σ1 − σ2, (10.12)
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Figure 10.4: Left: PIV system scheme: (a) PIV camera, (b) PIV laser, (c) PIV processor,
(d) laser sheet, (e) teflon piston, (f) motor, (g) test fluid, (h) glycerol, (i) acrylic cylinder.
Right: Picture of the actual experimental device.

where σi are the principal stresses at a point in the material.

10.2 Experimental setup

The experimental device (Fig. 10.4) consisted on a vertical cylinder made of transpar-

ent acrylic, of inner radius a = 25 mm and height 500 mm, filled with the test fluid. In

order to avoid optical aberrations, this cylinder was placed inside a second recipient

of transparent acrylic, of square section, filled with glycerol to match the refractive

index of the acrylic walls. A Teflon piston at the bottom end of the cylinder, driven

by a motor of variable frequency, produced harmonic oscillations of the pressure gra-

dient in the liquid column. The amplitude of the oscillation could be modified by

changing the eccentricity of the driving wheel. Amplitudes of z0 = 0.8, 1.2, 1.6, 2.0,

and 2.5 (±0.05) mm were studied.

The velocity fields in a vertical plane, along the symmetry axis of the tube, were

measured by 2d particle imaging velocimetry (PIV) [Adrian 91]. Our PIV system

contained a two pulsed Nd-YAG laser unit, that included an optical array to produce

a laser light sheet in a vertical plane of the acrylic cylinder (Fig. 10.4). A CCD
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camera (Kodak E1.0, spatial resolution 1008 × 1016 pixels), perpendicular to the

laser light sheet, was used to record the digital images. The camera recorded two

consecutive frames, one corresponding to each laser light pulse. The acquisition rate

was limited by the camera to three pairs of images every two seconds (1.5 Hz). A

Dantec FlowMap 1100 processor took care of the synchronization between the laser

pulses and the camera trigger. Post–processing of the data, to determine velocity

maps, was carried out by the Dantec FlowMap v5.1 software. Dantec 20–µm polyamid

spheres were used as seeding particles in all the experiments. These particles were

small enough to follow the flow with minimal drag, but sufficiently large to scatter

enough light to obtain good particle images.

This experimental setup was designed to measure the dynamic permeability of a

Maxwell fluid under periodic forcing [Castrejón-Pita 03a; Castrejón-Pita 03b]. We

performed new series of measurements using three different techniques: Particle Im-

age Velocimetry (PIV), Optical Deflectometry (OD) and Birefringence. These mea-

surements required slight modifications of the original setup:

• Simultaneous measurement of bulk and interface velocity profiles (PIV and

OD).

The simultaneous measurements of PIV and OD were performed in perpendic-

ular sections of the tube. In OD measurements the illumination consisted on

white light. PIV required laser illumination; we used a laser which emitted in

the green band. In the OD pictures, laser illumination produced a bright band

in the center of the tube. To avoid this effect, we placed an orange optical

filter on top of the tube and suppressed the bright central band. For these

experiments, the height of the fluid column was approximately 240 mm.

• Destabilization of the periodic flow (PIV and Birefringence).

Some of these experiments were performed with a polarizer placed between the

PIV camera and the measurement area. By this simple modification of the

experimental device we eliminated noise in the PIV images and, in addition, we

visualized birefringence bands in the measurement area.

10.3 Fluid properties

In our experiments we used several fluids: silicone oil, glycerol and viscoelastic sur-

factant solutions. A summary of the main properties is shown in Table 10.1.
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Fluid ρ η tm

(kg/m3) (Pa·s) (s)

Silicone Oil 973 56 —

Glycerol 1250 1 —

Maxwell-A 1050 60 1.9

Maxwell-B 1005 30 1.25

Table 10.1: Summary of the physical properties of the fluids used in the experiments. ρ :
density, η : viscosity, tm : Maxwell relaxation time.

The Newtonian fluids used in these experiments (Silicone Oil and Glycerol) were

used as test fluids, to compare the behavior of Newtonian fluids with the behavior

of maxwelian fluids. We used the nominal values of their material parameters as the

correct ones.

The viscoelastic solutions were prepared by solving Cetylpiridinium Chloride

(CPyCl) and Sodium Salicylate (NaSal) (both from Sigma) in distilled water. The

solutions were left on a dark chamber for three days. Most of the experiments were

performed using CPyCl/NaSal [100/60] mM (Maxwell-A). The others used a solution

of CPyCl/NaSal [40/40] mM (Maxwell-B).

The complete rheological characterization of fluid Maxell-A is presented in Ap-

pendix A.





Chapter 11

Laminar regime

In this chapter and newt, our results for the oscillating flow of a Maxwell fluid in

a tube are presented. The behavior of a Maxwell fluid and that of a Newtonian

fluid showed dramatic differences. These differences were observed in the laminar

velocity profiles (Sections 11.2 and 11.3) and in the destabilization of the laminar

flow (Chapter 12).

We studied the velocity profiles of the Maxwell-a viscoelastic fluid at driving

frequencies that coincided with the three first maxima of the dynamic response of

the system (Eq. 9.2): 2.0, 6.5 and 10.5 Hz. Some of the measurements were also

carried out for the three first minima of the dynamic response of the system: 3.5, 8.2

and 11.5 Hz.

In our experiments we also varied the driving amplitude. It is important to

mention the range of relevant dimensionless numbers in our measurements:

• Reynolds number. For the values of ν and z0 explored in the present experi-

ments Re was very small, in the range 4 · 10−3 to 8 · 10−2, ensuring that inertia

was not responsible for the destabilization of the basic flow. If the decrease in

η due to shear thinning was taken into account, Re increased about two orders

of magnitude but remained much smaller than the critical value for which a

Newtonian fluid would show an unstable flow [Hino 76].

• Deborah number. In our case De = 174 À 1, so that elasticity of the

viscoelastic fluid was important enough for resonances to occur. The decrease

in η due to shear-thinning led still to a minimum DeÀ1.

• Weissenberg number. For the experiments reported, Wi lied between 0.7

and 60.
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• Stokes parameter. For all the experiments reported here Λ < 2. That means

that all the flow is influenced by the tube wall, i.e. viscous oscillatory boundary

layers occupy all the tube.

For all the driving frequencies the PIV acquisition rate was very low compared to

the driving frequency. Actually, we could not acquire a significative number of image

pairs in a single oscillation period for none of the driving frequencies. In practice, we

acquired pairs of images at the maximum affordable rate. Time series were generated

by folding PIV measurements back to the first period during data post processing.

This strategy optimised the temporal resolution of our experiments within a driving

period, assuming that the flow followed exactly the periodicity of the driving, and it

was adopted in all the PIV and OD measurements presented in this chapter.

11.1 Dynamic permeability for different Maxwell

fluids

The amplitude of the velocity field given by the linear model presented resonance

peaks at several resonance frequencies. As mentioned, this phenomenon was demon-

strated experimentally and compared to the purely dissipative behavior of a New-

tonian fluid in Ref. [Castrejón-Pita 03b]. These results showed that the linear theory

gave a good prediction of the resonance frequencies but overestimated the amplitude

of the resonance peaks.

We repeated this same kind of measurements, to check the dependence of the

resonance frequencies on the rheological properties of the Maxwell fluid. To this

purpose the driving frequency ω was made dimensionless by a characteristic time τ .

This characteristic time was related to Deborah number:

τ ∝ tmDe−
1
2 . (11.1)

As it was shown in Ref. [del Rı́o 98], the location of the resonance peaks became

universal (independent of fluid parameters and system dimensions) if ω was made

dimensionless in the form ωτ .

Then, we rewrited Eq. (9.2) in the form

V (r, ω) = ξ(r, ω)
dP

dz
, (11.2)

and we plotted the dimensionless response function ξ(r, ω)/ξ(r, 0) as a function of the

dimensionless driving frequency ωτ . The results at the center of the tube (r = 0), for
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Figure 11.1: Dimensionless response function at the centre of the cylinder, as a function of
dimensionless driving frequency, for two concentrations of the CPyCl/NaSal solution. The
vertical dashed lines give the location of the resonance frequencies predicted by a linear theory.

the two different concentrations of the CPyCl/NaSal solution used, are shown in Fig.

11.1. Comparison with the linear theory is given by the vertical dashed lines, which

give the resonance frequencies corresponding to maxima of ξ(r = 0, ω). The figure

shows that the dimensionless frequency ωτ suggested by the linear theory leads to a

satisfactory reproducibility of the resonance frequencies independently of viscoelastic

fluid parameters.

The magnitude of the response function at the resonance peaks for the surfactant

solution of concentration 100/60 (Maxwell-a) was considerably lower in our measure-

ments than in the previous ones of Ref. [Castrejón-Pita 03b]. The reason was that

the reported measurements were carried out at 6 cm of the free air–liquid interface,

while the previous ones had been taken at 10 cm. The different measured velocities

provided a first evidence of the damping influence of the free interface on the flow.

11.2 Deflection of the air–liquid interface

The results obtained by Optical Deflectometry for a forcing amplitude of z0 = 0.8

mm are presented on top of Figs. 11.2 (2.0 Hz), and 11.3 (6.5 Hz). We performed

measurements also at 10 Hz. These measurements are not shown because, at this

driving frequency, the deformations of the free interface of the Maxwellian fluid were

so large that the technique was not applicable. Each figure displays measurements

at two different time–phases.

The experimental deformation profiles of the interface at 2.0 and 6.5 Hz (top

of Figs. 11.2 and 11.3) for the viscoelastic fluid can be compared to the theoretical
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Figure 11.2: OD measures at two different time–phases within an oscillation for a driving
amplitude z0 = 0.8 mm and driving frequency ν = 2.0 Hz. Left: Glycerol. Right: 100/60
CPyCl/NaSal solution.

ones (computed for the bulk) displayed in Fig. 9.2. We observed that their shapes

were fully coincident for each of the two driving frequencies. This showed that the

quiescent flow points of the velocity profiles did not change their position along the

vertical direction, and thus their location in the bulk could be used as reference to

compute the velocity profiles at the interface from the deformation profiles.

For the calculation of h(r, t), we chose r0 as the radial coordinate of the quiescent

flow point (in the bulk) closest to the cylinder axis. Implicitly, we assumed that the

stagnation points predicted by Eq. (9.2) for the bulk did not change their position as

the interface was approached. This assumption was confirmed by our OD and PIV

results (Section 11.3). We performed measurements for a viscoelastic fluid (Maxwell-

a) and a Newtonian one (glycerol).
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Figure 11.3: OD measures at two different time–phases within an oscillation for a driving
amplitude z0 = 0.8 mm and driving frequency ν = 6.5 Hz. Left: Glycerol. Right: 100/60
CPyCl/NaSal solution.

The velocity profiles are presented on the bottom of Figs. 11.2 and 11.3. The

magnitude of the interfacial velocities was in all cases much lower than the one mea-

sured in the bulk of the fluid. This was mostly due to the stabilizing role of surface

tension, as confirmed by PIV measurements (Section 11.3).

It is interesting to note that the velocity profiles of the interface depended also

on the direction of motion of the driving piston. The magnitude of the velocity was

systematically lower for positive displacements of the piston (liquid displacing air)

than for negative ones (air displacing liquid). We attribute this asymmetry to the

fact that the large viscosity contrast across the interface stabilized the displacement

of a nearly inviscid fluid (air) by a viscous liquid, and destabilized the opposite

displacement.
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Figure 11.4: PIV results at 2 Hz (dots), measured at 6 cm from the upper free interface,
and the corresponding theoretical prediction (solid line) for a driving amplitude z0 = 0.8 mm.
Left: Glycerol at t = 0.125 s. Right: 100/60 CPyCl/NaSal solution at t = 0.375 s.

11.3 Bulk velocity profiles

The results presented in this section provide measurements of the whole velocity

profile, instead of measurements at a single point in the flow [Castrejón-Pita 03b].

The velocity profiles were measured in the bulk of the fluid, and can be compared to

the ones obtained at the fluid-air interface (Section 11.2). For bulk measurements,

we obtained velocity profiles at three distances from the air-fluid interface: 60, 100

and 250 mm. As Newtonian test fluids we used glycerol and silicone oil.

The following set of figures presents the velocity profiles in the bulk of the fluid

column, determined by PIV measurements, together with the theoretical profiles

given by Eq. (9.2) at coincident time–phases, for comparison. The profiles were

determined at the driving frequencies of 2 Hz (Fig. 11.4), 6.5 Hz (Fig. 11.5), and 10

Hz (Fig. 11.6) at 60 mm of the fluid-air interface for a driving amplitude z0 = 0.8

mm. The time–phases were selected by the criterion that the velocity at the tube

axis was a maximum.

The first observation to make is that the instantaneous velocity profiles of the

Maxwell fluid, driven at 2 Hz, presented a single defined sign of velocity (single di-

rection of motion) along the whole radius of the tube. As the driving frequency was

increased to 6.5 and 10 Hz, however, the instantaneous profiles displayed a progres-

sively more complex structure, revealing the presence of annular regions within the

tube with alternating upward/downward motion. Notice that this complexity is in-

herent to the viscoelastic properties of the Maxwell fluid. For the Newtonian fluid

(glycerol) the instantaneous flow in the tube followed the same direction for the three

driving frequencies tested and for all the radial positions of the tube.
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Figure 11.5: PIV results at 6.5 Hz (dots), measured at 6 cm from the upper free interface,
and the corresponding theoretical prediction (solid line) for a driving amplitude z0 = 0.8mm

Left: Glycerol at t = 0.115 s. Right: 100/60 CPyCl/NaSal solution at t = 0.038 s.

For the viscoelastic fluid the boundaries between consecutive annular regions with

alternating signs of the velocity did not move. They correspond to the stagnation

regions of the flow which were already discussed in Section 9. The PIV results showed

that the number of quiescent flow points along the radial direction of the tube in-

creased with the driving frequency, in agreement with the theoretical prediction (Fig.

9.2).

Some of the measured profiles of the viscoelastic fluid showed regions near the walls

with vanishingly small velocities and near zero velocity gradients, most noticeably the

one at 2 Hz shown in Fig. 11.4. These profiles were reminiscent of velocity profiles

obtained for systems that display shear–banding. Indeed, the CPyCl/NaSal solution
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Figure 11.6: PIV results at 10 Hz (dots), measured at 6 cm from the upper free interface,
and the corresponding theoretical prediction (solid line) for a driving frequency z0 = 0.8 mm.
Left: Glycerol at t = 0.075 s. Right: 100/60 CPyCl/NaSal solution at t = 0.025 s.
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Figure 11.7: 100/60 CPyCl/NaSal solution: PIV results at 2 Hz, measured at 6 cm from
the upper free interface and at different time phases within a driving period for a driving
amplitude z0 = 0.8 mm.

is commonly known to exhibit shear-banding [Méndez-Sánchez-03b], but we have

enough evidence to discard this effect in our experiments. We did not observe an

increase in turbidity in the region of the fluid close to the walls, nor changes in

the local intensity of the scattered light that could be attributed to inhomogeneities.

Furthermore, we monitored possible changes on the polarization state of the scattered

light, an indication of banding [Lerouge 00]. No changes in the optical properties

were observed for the amplitude and frequency range explored in laminar flows. In

addition, Fig. 11.7 demonstrates that the velocity near the walls took values distinctly

different from zero at different phases within an oscillation period.

Performing PIV measurements at two different heights of the liquid column al-

lowed the study of the influence of the upper free interface on the velocity profiles.

Thus, it is interesting to compare the results presented above, which were performed

at 6 cm from the upper interface, to the results shown in Fig. 11.8, which have been

performed at 10 cm from the upper interface. The first conclusion to draw from

corresponding measurements at different heights is that the location of the quies-

cent flow points was not affected by the presence of the upper free interface. The

second conclusion is that the magnitude of the velocity profile was smaller when

the measurement was carried out closer to the free interface. The damping effect of

the free interface, disregarded in the theory, originated from the air–liquid surface

tension. This observation applied equally to the two fluids investigated (Newtonian

and Maxwellian) and was also confimed by the asymmetry measured in the fluid-air
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Figure 11.8: Left: 100/60 CPyCl/NaSal solution: PIV results at 6.5 Hz (dots), obtained
at 10 cm from the upper free interface, and the corresponding theoretical prediction (solid
line) at t = 0.057 s for a driving amplitude z0 = 0.8 mm. Right: 100/60 CPyCl/NaSal
solution: PIV results at 10 Hz (dots), obtained at 10 cm from the upper free interface, and
the corresponding theoretical prediction (solid line) at t = 0.022 s for a driving amplitude
z0 = 0.8 mm.

interface velocity profiles.

The oscillating flow was also studied at a higher distance of the fluid-air interface

(25 cm), for driving frequencies 2.0, 6.5 and 10.5 Hz (maxima of dynamic response)

and 3.5, 8.2 and 11.5 Hz (minima of the dynamic response). For the two lowest

frequencies, we measured laminar velocity profiles up to driving amplitudes z0 = 2.5

mm (Fig. 11.9). For the rest of the frequencies explored, the velocity profile was

laminar at a driving amplitude of z0 = 0.8 mm . The experimental velocity profiles

were in reasonable agreement with the theoretical ones. The number of quiescent flow

points was the same, and their location very similar. As a general trend, however, the

theory overestimated the measured velocity. Possible reasons for it will be discussed

in Sec. 13.

Although for laminar flows the information provided by the velocity profiles and

the velocity maps (x, y, vx, vy) is the same, it is interesting to look at the velocity

maps and the vorticity maps of the flow. Since the flow has an strong dependence on

the radial position, even for structureless laminar profiles (ν = 2.0 and 3.5 Hz), the

vorticity of the flow is important. We performed experiments for driving amplitudes of

0.8, 1.2, 1.6, 2.0 and 2.5 mm. For the lowest driving frequencies, results at all driving

amplitudes were equivalent (Figs. 11.10, 11.11). As driving frequency increased, the

number of annular regions increased and so did the vorticity (Fig. 11.12). At a driving

amplitude of 0.8 mm, however, the flow still remained laminar for all the frequencies
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Figure 11.9: Left: 100/60 CPyCl/NaSal solution: PIV results at 2.0 Hz (dots) obtained
at 25 cm from the upper free interface, for a driving amplitude z0 = 2.5 mm, and the
corresponding theoretical prediction (solid line) at t = 0.2 s. Right: 100/60 CPyCl/NaSal
solution: PIV results at 3.5 Hz (dots) obtained at 25 cm from the upper free interface for
a driving amplitude of 2.5 mm, and the corresponding theoretical prediction (solid line) at
t = 0.037 s.

explored. The azimuthal vorticity contours reveal that the vorticity, as expected,

concentrated near the regions where the flow was quiescent.

We also studied the behavior of a Newtonian fluid with a viscosity very similar

-20 -10 0 10 20

30

40

50

 y
 (

m
m

)

 x (mm)

 

-20 -10 0 10 20

 x (mm)

  

-20 -10 0 10 20

 

 x (mm)

 

(1/s)

-20 -10 0 10 20

 x (mm)

  

-30.00 -18.00 -6.000 6.000 18.00 30.00

30

40

50

 y
 (

m
m

)

-20 -10 0 10 20

  

  x (mm)

80 mm/s

Figure 11.10: 100:60 CPyCl/NaSal solution: PIV results for ν = 2.0 Hz and z0 = 2.5 mm
(Re = 10−2, Wi = 2.4). Top: velocity vector field. Bottom: azimuthal vorticity contours.
The corresponding scales are given by the little arrow and the grey level scale at the bottom
of the figure.
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Figure 11.11: 100:60 CPyCl/NaSal solution: PIV results for ν = 3.5 Hz and z0 = 0.8 mm
(Re = 8 · 10−3, Wi = 1.3). Top: velocity vector field. Bottom: azimuthal vorticity contours.
The corresponding scales are given by the little arrow and the grey level scale at the bottom
of the figure.
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Figure 11.12: 100:60 CPyCl/NaSal solution: PIV results for ν = 11.5 Hz and z0 = 0.8 mm
(Re = 3 · 10−2, Wi = 18.6). Top: velocity vector field. Bottom: azimuthal vorticity contours.
The corresponding scales are given by the little arrow and the grey level scale at the bottom
of the figure.
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Figure 11.13: Silicone oil: PIV results for ν = 8.2 Hz and z0 = 1.2 mm (Re = 3 · 10−2).
Top: velocity vector field. Bottom: azimuthal vorticity contours. The corresponding scales
are given by the little arrow and the grey level scale at the bottom of the figure.

to the viscosity of the viscoelastic fluid: a silicone oil of η = 56 Pa·s. From our

experimental results we could conclude that the Newtonian laminar flow of the silicone

oil was stable up to a driving amplitude of 10 mm in the range of frequencies explored

in our experiments. As an example, Fig. 11.13 presents the velocity vector field of

the silicone oil at different time–phases within an oscillation period, for a driving

amplitude of 1.2 mm and a driving frequency of 8.2 Hz. The results show that a

laminar parallel shear–flow was established. The fluid oscillated in the tube following

the periodicity of the driving. All fluid elements in the interrogation plane moved

instantaneously in the same direction, the velocity approaching zero near the tube

boundaries.



Chapter 12

Hydrodynamic instabilities

The measurements presented in this section were all carried out at a distance of about

5 tube radius (12.5 cm) from the neutral position of the piston and 25 cm from the

upper interface. By covering the fluid surface at the top end of the tube with a cover

lid, we verified that oscillations of the free surface did not had any measurable effect

on the flow in the region of interest. The experiments were performed at driving

amplitudes and frequencies detailed in Table 12.1.

The results for the basic (laminar) flow of the viscoelastic fluid (Ch. 11) show

that this flow consisted of annular regions of alternating upward/downward motion,

separated by quiescent boundaries. Shear stresses concentrated at these quiescent

boundaries and increased as the magnitude of the driving increased, until the laminar

flow became unstable.

A linear theory [del Rı́o 98], which is expected to be valid at low driving ampli-

tudes, predicted that the number of annular regions increased with driving frequency

but did not depend on driving amplitude. This is why, according to Table 12.1, the

viscoelastic flow was laminar at all amplitudes for the two lower driving frequencies

explored, 2.0 and 3.5 Hz. (Figs. 11.10 and 11.11)

As already discussed, the PIV measurements of the Newtonian fluids (silicone oil

and glycerol) showed a laminar flow in the whole range of driving parameters explored.

This was not the case for the viscoelastic fluid. Table 12.1 provides a summary of the

flow structures observed at different values of the driving parameters. Laminar flows

have been already described in Section 11.3. The viscoelastic flow became unstable at

ν = 6.5 Hz (second resonance frequency), z0 = 1.2 mm, and at all higher frequencies

and amplitudes.

At the onset of instability (ν = 6.5 Hz, z0 = 1.2 mm) the laminar flow exhibited

modulations of the vertical streamlines, although in Fig. 12.1 these modulations are
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z0 (mm) 0.8 1.2 1.6 2.0 2.5

Dynamic response Nr. of nodes ν (Hz) Flow structure

Maximum 0 2.0 L L L L L

Minimum 0 3.5 L L L L L

Maximum 2 6.5 L F–L V–s V–s V–ns

Minimum 2 8.2 L V–s V–s V–ns V–ns

Maximum 4 10.5 L F–L V–s V–ns V–ns

Minimum 4 11.5 L V–s V–s V–ns V–ns

Table 12.1: Summary of PIV results for the 100:60 CPyCl/NaSal solution. z0, ν are driving
amplitude and frequency. At each driving frequency, the behaviour of the dynamic response
of the viscoelastic–fluid–tube system and the number of nodes observed in the laminar regime
(away from the tube wall) are also indicated. (L) : Laminar flow, (F–L): Fluctuating Laminar,
(V–s): Symmetric vortices, (V–ns): Non–symmetric vortices.

hardly visible. At ν = 10.5 Hz, z0 = 1.2 mm, i.e. at the next resonance frequency

and same amplitude, an additional pair of nodes had formed. Even so, the same

modulations of the vertical streamlines were observed.

Interestingly, at the intermediate frequency ν = 8.2 Hz and at the same amplitude

z0 = 1.2 mm, the flow presented two stationary symmetric vortices (V–s) (Fig. 12.2).
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Figure 12.1: 100:60 CPyCl/NaSal solution: PIV results for ν = 6.5 Hz and z0 = 1.2 mm
(Re = 2 · 10−2, Wi = 11.4). Top: velocity vector field. Bottom: azimuthal vorticity contours.
The corresponding scales are given by the little arrow and the grey level scale at the bottom
of the figure.
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Figure 12.2: 100:60 CPyCl/NaSal solution: PIV results for ν = 8.2 Hz and z0 = 1.2 mm
(Re = 3 · 10−2, Wi = 19.3). Top: velocity vector field. Bottom: azimuthal vorticity contours.
The corresponding scales are given by the little arrow and the grey level scale at the bottom
of the figure.

The two vortices were centered at the two nodes of the base flow closer to the tube

axis, and changed their rotation direction every half-period of the driving.

By taking low resolution PIV measurements in a larger image area, we found that

several equidistant vortices formed along the tube, with a centre–to–centre separation

of about 2.5 tube radius for a forcing frequency of 8.2 Hz, and of 1.25 tube radius for

a forcing frequency of 11.5 Hz. Figure 12.3 shows an example.

The cylindrical symmetry of the flow was still preserved at the onset of instability.

This was verified by repeating the measurements several times from the state of

repose. Therefore Fig. 12.2 is actually showing a transverse cut of a toroidal vortex

around the symmetry axis of the tube. This was also true for the experiments at a

driving amplitude of 1.6 mm (Figs. 12.4, 12.5, 12.6, 12.7), and for the experiment at

2.0 mm and 6.5 Hz (Fig. 12.8).

For stationary symmetric vortices the radial coordinate of the vortex center was

independent of driving amplitude (Fig. 12.9) but strongly dependent on driving fre-

quency. As the driving frequency increased the vortex center approached the center

of the tube, following the behavior of the quiescent flow points (Fig. 12.9). It is also

interesting to notice that the presence of these symmetric vortices did not modify the

location of the quiescent flow points.

As the driving increased further, the vortices got distorted and led to more com-
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Figure 12.3: Low resolution azimuthal vorticity contours for the 100:60 CPyCl/NaSal solu-
tion driven at ν = 8.2 Hz and z0 = 1.2 mm (Re = 3 · 10−2, Wi = 19.3), showing that several
toroidal vortices form along the tube.
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Figure 12.4: 100:60 CPyCl/NaSal solution: PIV results for ν = 6.5 Hz and z0 = 1.6 mm
(Re = 3 · 10−2, Wi = 15.1). Top: velocity vector field. Bottom: azimuthal vorticity contours.
The corresponding scales are given by the little arrow and the grey level scale at the bottom
of the figure.



131

-20 -10 0 10 20

10

20

30

40

50

 y
 (

m
m

)

 x (mm)

 

-20 -10 0 10 20

 x (mm)

  

-20 -10 0 10 20

 

 x (mm)

 

(1/s)

-20 -10 0 10 20

 x (mm)

  

-200.0 -120.0 -40.00 40.00 120.0 200.0

10

20

30

40

50

 y
 (

m
m

)

 

-20 -10 0 10 20

  

  x (mm)

200 mm/s

Figure 12.5: 100:60 CPyCl/NaSal solution: PIV results for ν = 8.2 Hz and z0 = 1.6 mm
(Re = 4 · 10−2, Wi = 25.7). Top: velocity vector field. Bottom: azimuthal vorticity contours.
The corresponding scales are given by the little arrow and the grey level scale at the bottom
of the figure.
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Figure 12.6: 100:60 CPyCl/NaSal solution: PIV results for ν = 10.5 Hz and z0 = 1.6 mm
(Re = 5 · 10−2, Wi = 32.9). Top: velocity vector field. Bottom: azimuthal vorticity contours.
The corresponding scales are given by the little arrow and the grey level scale at the bottom
of the figure.
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Figure 12.7: 100:60 CPyCl/NaSal solution: PIV results for ν = 11.5 Hz and z0 = 1.6 mm
(Re = 5 · 10−2, Wi = 37.2). Top: velocity vector field. Bottom: azimuthal vorticity contours.
The corresponding scales are given by the little arrow and the grey level scale at the bottom
of the figure.

-20 -10 0 10 20

10

20

30

40

50

 y
 (

m
m

)

 x (mm)

 

 

-20 -10 0 10 20

 x (mm)

 

 

 

-20 -10 0 10 20

 

 

 x (mm)

 

(1/s)

-20 -10 0 10 20

 x (mm)

  

 

-100.0 -60.00 -20.00 20.00 60.00 100.0

10

20

30

40

50

 y
 (

m
m

)

     

 

 

-20 -10 0 10 20

  

 

  x (mm)

80 mm/s

Figure 12.8: 100:60 CPyCl/NaSal solution: PIV results for ν = 6.5 Hz and z0 = 2.0 mm
(Re = 4 · 10−2, Wi = 18.9). Top: velocity vector field. Bottom: azimuthal vorticity contours.
The corresponding scales are given by the little arrow and the grey level scale at the bottom
of the figure.
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Experimental measure

¤ Quiescent flow points (z0 = 0.8 mm)

• Maximum of the vortex sheet
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Figure 12.9: Solid lines: theoretical radial location of the quiescent flow points along the
radial coordinate of the cylinder x. The dashed horizontal lines correspond to minima of the
permeability. The parameters ρ, η and tm used to calculate the diagram are the ones listed
for CPyCl/NaSal 100:60 in Ch. 10, together with the cylinder radius a = 25 mm.

plex nonsymmetric structures (V–ns). At forcings of 2.0 mm, 8.2 Hz (Fig. 12.10),

10.5 Hz and 11.5 Hz, and at forcings of 2.5 mm, 8.2 Hz the vortices formed very

close to the tube axis and were heavily distorted, but their center did not move in

time. At this same amplitude (2.5 mm) and at forcing frequencies of 6.5, 10.5 and

11.5 Hz we observed nonsymmetric and non-stationary vortices. Figure 12.11 shows
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Figure 12.10: 100:60 CPyCl/NaSal solution: PIV results for ν = 8.2 Hz and z0 = 2.0 mm
(Re = 5 · 10−2, Wi = 32.1). Top: velocity vector field. Bottom: azimuthal vorticity contours.
The corresponding scales are given by the little arrow and the grey level scale at the bottom
of the figure.
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Figure 12.11: 100:60 CPyCl/NaSal solution: PIV results for ν = 6.5 Hz and z0 = 2.5 mm
(Re = 4 · 10−2, Wi = 40.1). (a) Local divergence, (b) velocity vector field, (c) azimuthal
vorticity contours. The corresponding scales are given by the little arrow and the grey level
scales.

that the flow lost its axial symmetry and, furthermore, the non-negligible magnitude

of the local divergence at the vortices revealed that the velocity field at the vortices

presented an azimuthal component.

12.1 Velocity fluctuations

We observed that velocity fluctuations as defined by Eqs. (10.9) and (10.10) were very

small in all the laminar velocity maps. The instability caused a noticeable increase

of the velocity fluctuations in both the vertical and horizontal components of the

velocity.
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Figure 12.12: Left: 100:60 CPyCl/NaSal solution: x-averaged rms dimensionless fluctua-
tions of the y component of the velocity, σ̃vy (t), as a function of time, for the viscoelastic
fluid driven at 8.2 Hz and amplitudes z0 = 0.8 (N), z0 = 1.6 (◦) and 2.0 mm (¥). Right:

100:60 CPyCl/NaSal solution: time-averaged rms fluctuations of the y component of the ve-
locity, σ̃vy (x), as a function of the radial coordinate, x, for the viscoelastic fluid driven at an
amplitude (a) 0.8 mm, (b) 1.2 mm, and (c) 1.6 mm. The symbols correspond to the different
driving frequencies (in Hz): 2.0 (¥), 3.5 (◦), 6.5 (?), 8.2 (M), 10.5 (H), and 11.5 (+). Notice
the different magnitude of the vertical scales.

12.1.1 Space averages

If a velocity component follows the periodicity of the driving, its rms fluctuations are

periodic as well, with a frequency two times the driving frequency. This is visible in

Fig. 12.12 left, which shows the dimensionless x-averaged rms fluctuations of the y

component of the velocity vs. time, σ̃vy(t), for the viscoelastic fluid driven at 8.2 Hz.

The correlation between adjacent points validates the procedure of folding the PIV

data back to the first oscillation period, thus confirming that even this non–laminar

flow followed the periodicity of the basic flow.

12.1.2 Time averages

The spatial dependence of the velocity fluctuations was computed by averaging

σ̃vx(x, t) and σ̃vy(x, t) in a time period. Figure 12.12 (right) shows the latter result,
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Figure 12.13: Left: 100:60 CPyCl/NaSal solution: time-averaged rms fluctuations of the x

component of the velocity, σ̃vx(x), as a function of the radial coordinate, x, for the viscoelastic
fluid driven at an amplitude of 2.5 mm. Right: 100:60 CPyCl/NaSal solution: time-averaged
rms fluctuations of the y component of the velocity, σ̃vy (x), as a function of the radial coordi-
nate, x, for the viscoelastic fluid driven at an amplitude of 2.5 mm. The symbols correspond
to the different driving frequencies (in Hz): 2.0 (¥), 3.5 (◦), 6.5 (?), 8.2 (M), 10.5 (H), and
11.5 (+). Notice the different magnitude of the vertical scales.

σ̃vy(x), for different driving amplitudes.

At the lowest driving amplitude, 0.8 mm (a), for which the flow was always

laminar, σ̃vy(x) was nearly structureless and had a small magnitude at all driving

frequencies. Fluctuations were slightly larger for the weakest forcing, simply because

of the experimental uncertainty in the velocity measurements. At 1.2 mm (b), σ̃vy(x)

was still very small for the two lowest frequencies (laminar flow); for the second and

third resonance frequencies it had a similar value than for 0.8 mm; for the second

and third minima of the dynamic response, instead, it became large and peaked at

the tube axis . Finally, at 1.6 mm (c), σ̃vy(x) exhibited similar trends than at the

previous driving amplitude for the three higher driving frequencies.

Although the magnitude of σvy was higher than σvx for most of the experiments,

they behaved very similarly for all the driving frequencies and amplitudes (Fig. 12.13).

The time-averaged rms fluctuations of the velocity could also be integrated in

space, to obtain a global magnitude σ̃vy that behaved as an order parameter for the

instability. Fig. 12.14 shows how rms fluctuations increased abruptly at the onset of

the instability for the different driving frequencies.
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Figure 12.14: 100:60 CPyCl/NaSal solution: space– and time–averaged rms fluctuations of
the y component of the velocity, as a function of driving amplitude z0, at the different driving
frequencies (in Hz): 2.0 (¥), 3.5 (◦), 6.5 (?), 8.2 (M), 10.5 (H), and 11.5 (+).

12.2 Birefringence measurements

We performed simultaneous PIV measurements and birefringence visualization in our

system, at forcing frequencies of 8.2 and 11.5 Hz, and a forcing amplitude of z0 = 1.2

mm. Fig. 12.15 shows the images obtained at ν = 8.2 Hz and z0 = 1.2 mm. The time

phase of each image corresponds approximately to the time phases of the velocity

and vorticity maps in Fig. 12.2.

Near the tube walls the stresses aligned vertical and were rather large at all time

phases. On the contrary, the stress field at the central part of the flow depended

strongly on the time phase. The stresses were not homogeneously distributed in the

vertical direction. The bands were wider at the center of the vortices at time phases

T/4, 3T/4, when the vorticity was large. At time phases when the vorticity was small

(0, T/2, T ) the stress field relaxed and the bands brooked into small birefringent

zones.

The time evolution of the birefringence map from an stage close to the repose

state to an stage for which periodic stationary vortices were fully developed is also

10 mm

1
0

 m
m

Figure 12.15: Birefringence map for ν = 8.2 Hz and z0 = 1.2 mm. Time phases: 0, T/4,
T/2, 3T/4 and T .
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Figure 12.16: Birefringence map for ν = 11.5 Hz and z0 = 1.2 mm. The time between
frames (from left to right and from top to bottom) is 2.667 s.

shown for ν = 11.5 Hz, z0 = 1.2 mm (Fig. 12.16). In the first images, for which

the instability was not still developed, the stresses were homogeneous in the vertical

direction. It is also noticeable that the number of birefringence bands increased before

the destabilization of the flow took place. In the last images of the time evolution,

the behavior was similar to the behavior described for Fig. 12.15.



Chapter 13

Oscillating flow of a Maxwell fluid:

Summary and discussion

13.1 Dynamic permeability

LDA measurements of the fluid velocity at the symmetry axis of the cylinder as a

function of driving frequency, for two different compositions of the surfactant solu-

tion, enabled us to show that the frequencies of the resonance peaks can be pre-

dicted accurately in terms of the fluid rheological properties by a simple linear theory

[del Rı́o 98]. This theory neglects inertial effects, and makes use of a linear Maxwell

model as constitutive relation for the viscoelastic fluid.

13.2 Laminar base flow

The laminar oscillating flow of Maxwell and Newtonian fluids in a tube was char-

acterized by two optical techniques: PIV and OD. Systematic PIV measurements

of the radial velocity field in the bulk of the fluid were performed at six different

driving frequencies. While the velocity profile of Newtonian fluids along the radial

direction did not change sign, this was not the case for the Maxwellian fluid. The

profiles measured at 6.5, 8.2, 10.5 and 11.5 Hz presented regions with alternating

signs of the velocity, separated by quiescent flow points. The number of quiescent

flow points increased with the driving frequency, revealing the increasing complexity

of the flow. Measurements within the fluid column at different heights showed that

these quiescent flow points did not shift as one moved along the vertical direction,

and that their radial location was accurately reproduced by the linear theory.

The linear theory also predicts that the shape of the laminar velocity profiles is
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Figure 13.1: 100/60 CPyCl/NaSal: Velocity at the tube axis at the different driving ampli-
tudes for a driving frequency ν = 3.5 Hz measured at 25 cm of the free interface.

independent of driving amplitude. For some driving frequencies (2.0 and 3.5 Hz) we

obtained laminar velocity profiles at different driving amplitudes. The magnitude of

the velocity at the center of the tube showed a linear dependence with driving am-

plitude (Fig. 13.1) in agreement with the theoretical predictions. The dimensionless

velocity profiles were found to be independent of driving amplitude for 3.5 Hz (Fig.

13.2, right), whereas for 2.0 Hz, however, there was a noticeable difference on the

velocity profile corresponding to the lowest driving amplitude (Fig. 13.2, left).

We also observed that the theoretical magnitude of the velocity was systematically

larger than the measured one. There are several possible reasons for this disagree-

ment:

• A first explanation would be that the theory disregarded nonlinearities, and

these tended to limit the attainable values of the velocity. Nonlinearities could

arise from either the hydrodynamic equations or the constitutive relation of

the fluid. In our case, however, since the small amplitude of the piston oscilla-

tions ensured that Re was vanishingly small, the linearized momentum equation

was a very good approximation. On the other hand, taking into account the

cylindrical symmetry of the problem and assuming that the velocity depended

only on the radial coordinate (as our results confirmed to a very good approx-

imation), it turned out that the first nonlinear correction to the constitutive

equation of the fluid cancelled out exactly.

• This quantitative mismatch between theory and experiment was probably due

to shear–thinning of the viscoelastic fluid. As shown in Ref. [Méndez-Sánchez 03a],
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our fluid is properly described by a Maxwell model up to shear rates γ̇ ' 0.1

s−1, and experiences shear–thinning beyond that value. A close inspection of

Figs. 11.4, 11.5, and 11.6 reveals that the shear rate actually experienced by the

fluid in some phase intervals of the oscillation was larger [Castrejón-Pita 03b].

In these conditions the viscosity of the fluid decreased with shear (Appendix

A). The theory predicted that the dynamic response of the system at the res-

onant frequencies becomes smaller as the viscosity is reduced [del Rı́o 98], and

thus would support the view that the measured velocity profiles were system-

atically smaller than the theoretical ones for the viscoelastic fluid (and not for

the Newtonian fluid) because of shear–thinning.

• Finally, the presence of a free interface on top of the liquid column had a

damping effect on the velocity amplitude. This observation was visible, both

with LDA and PIV, when the results of measurements carried out at different

heights within the liquid column were compared.

In addition, Optical Deflectometry measurements of the free interface confirmed

that the velocity field was severely damped by the surface tension of the air–liquid

interface, compared to the velocity field within the bulk. Interestingly, the deflec-

tometry results showed also that the oscillations of the velocity field at the interface

were asymmetric, the profiles corresponding to positive displacements of the piston

having a slightly but systematically smaller amplitude than those corresponding to

negative displacements. We attribute this asymmetry to the fact that the upward
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Figure 13.2: 100/60 CPyCl/NaSal solution: dimensionless velocity profiles measured at a
distance h = 25 cm from the air-fluid interface. Different symbols correspond to driving
amplitudes: (¥) z0 = 0.8 mm, (◦) z0 = 1.2 mm, (N) z0 = 1.6 mm, (M) z0 = 2.0 mm, (?)
z0 = 2.5 mm. Left: ν = 2.0 Hz. Right: ν = 3.5 Hz.
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motion of the interface (liquid displacing air) was stabilized by the viscous pressure

gradient in the liquid.

13.3 Hydrodynamic instabilities

The periodic flow of a Newtonian fluid in a vertical pipe, driven by an oscillatory

pressure gradient, is stable in the whole range of driving frequencies and amplitudes

explored in our experiments [Hino 76]. Our experiments with silicone oil showed

indeed that a relatively simple parallel shear flow was stablished, in which all the

fluid moved in the same direction following the periodicity of the driving.

The behaviour of the wormlike micellar solution CPyCl/NaSal 100:60 mM was

rather similar at low driving frequencies for all driving amplitudes. At higher driving

frequencies, however, the laminar base flow turned to be unstable at increasing driving

amplitudes. The Reynolds number was small in all the experiments, but the Weis-

senberg number reached high values for some of the Maxwell flows.

The structure of the laminar base flow was important to the development of the

first instability. At the lowest driving amplitudes that made the flow unstable two

symmetric vortices (actually a cut of a single toroidal vortex) appeared always where

the shear rate was maximum in the laminar velocity profiles, in radial positions for

which the velocity was relatively low. Indeed, vortices were only present at driving

frequencies for which the laminar velocity profiles displayed alternating regions of

upward/downward motion. This pointed to the large shear rates experienced by the

fluid, at the quiescent points of the flow, as responsible for the first instability of the

laminar base flow.

Since the driving amplitude z0 in our experimental setup could not be modified

in a continuous way, we cannot answer the question whether the instability observed

presented hysteresis. This information is relevant to ascertain the critical or subcrit-

ical nature of this first bifurcation. A modification of the setup that will allow to

modify z0 (and thus the Weissenberg number) in a continuous way is nearly completed

(Appendix B).

Since high shear rates were reached in most of our measurements, we cannot

discard that shear-thinning played a role in making the base flow unstable. The

instability in this case would not be purely viscoelastic. We believe however that the

essential ingredient to render the laminar flow unstable was its complex structure of

alternating, stationary regions of upward/downward motion, which was entirely due

to the elasticity of the fluid. In particular, it is worth noting that the location of the
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quiescent flow points was accurately predicted by a theory based on the constitutive

equation of a purely viscoelastic fluid. More experimental work using complex fluids

of different rheological behaviour is needed to elucidate the importance of shear–

thinning.

Assuming that the instabilities observed in our system were essentially due to the

viscoelastic nature of the fluid (and shear–thinning played only a secondary role), they

represented a first experimental observation of an elastic instability in parallel shear

flow at very low Reynolds number. This is quite relevant, since elastic instabilities of

this kind have been reported only for flows with curved streamlines. In these flows

elastic normal stresses destabilize the flow, ultimately leading to elastic turbulence

(or turbulence without inertia) [Groisman 00; Groisman 98]. Pakdel and McKinley

[Pakdel 96] showed that this linear instability disappears when the curvature of the

streamlines goes to zero, so that shear flows with parallel streamlines would not

undergo linear elastic instabilities. However, Morozov and Van Saarloos have shown

theoretically that parallel shear flows of purely viscoelastic fluids might be nonlinearly

unstable [Morozov 05]. In the framework of these predictions, we have presented an

experimental scenario that allowed the generation of parallel shear flows with large

shear rates (high Wi) at small Re. This has been achieved by the oscillatory driving,

that made the elastic properties of the fluid very important even in the laminar

regime.
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The time-averaged rms fluctuations of the velocity can be integrated in space, to

obtain a global magnitude σ̃vy that behaves as an ‘order parameter’ for the instability.

The corresponding control parameter should be the Weissenberg number, given the

elastic nature of the instability. However, since we are driving the flow at periods

much shorter than tm (the relaxation time of the fluid) the driving period (1/ν)

is possibly a more relevant time–scale for the formation of the vortices than tm.

Considering this, we define a dimensionless control parameter

χ ≡ Wi

tmν
=

2πz0

rq

. (13.1)

Figure 13.3 shows the behaviour of σ̃vy as a function of χ at the different driving

frequencies. The onset of a secondary flow on top of the basic parallel–shear flow

is made manifest by a noticeable increase in this magnitude as vortices develop.

Interestingly, the onset of the instability occurs at a value χ ' 1.



Chapter 14

Conclusions

• Lateral instabilities in Saffman–Taylor fingers

We studied the stability of the flat sides of long normal Saffman–Taylor fingers

to external perturbations. We perturbed the fingers by two different mecha-

nisms: quenched disorder in the Hele–Shaw cell and periodic modulation of the

finger tip velocity.

For both perturbations we observed a low amplitude–long wavelength lateral

instability at both sides of the finger. A selection process took place for both

destabilization mechanisms, leading to a preferred frequency which was roughly

a half of the characteristic finger frequency.

The amplitude of the instability was characterized in a wide range of velocities

for the quenched disorder experiments. We observed a decay in the amplitude

of the instability as velocity (or capillary number) increased, following a power

law δλ ∝ Ca−1/3. At even higher velocities (Ca > 0.05), the amplitude of the

instability increased.

Periodic modulations of the finger tip velocity were studied at two velocities, in

a wide range of forcing frequencies. The response of the finger was always sym-

metric and for most fingers reached a stationary state. At low frequencies the

frequency of the lateral instability was strongly dependent on forcing frequency,

whereas at high frequencies we observed the selection process mentioned above.

In this process, the final state of the system selected a frequency much lower

than the forcing frequency.

• Oscillating flow of a Maxwell fluid in a tube

We used four different optical techniques (LDA, PIV, OD and birefringence) to

characterize the oscillating flow of a viscoelastic fluid (a solution of CPyCl/NaSal
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in water) contained in a vertical cylinder and subjected to an oscillating pres-

sure gradient. Two Newtonian fluids (glycerol and silicone oil) were also studied

for the sake of comparison.

Our LDA measurements in the tube axis showed that the linear model presented

in Sec. 3.3.2 predicts accurately the position of the resonance peaks in terms of

the rheological properties of the fluids.

PIV measurements of the velocity maps at the bulk showed structureless ve-

locity profiles for a Newtonian fluid, while the velocity profiles observed for

the Maxwell fluid presented regions of alternating velocity separated by quies-

cent flow boundaries. The number of quiescent flow points increased as driving

frequency increased, and its location was accurately predicted by the linear

model. Measurements at different distances of the free interface (including OD

measurements at the free interface) showed that the radial location of these

quiescent flow points was independent of the distance to the free interface.

We also carried out PIV measurements of the oscillatory flow at different driving

amplitudes. The oscillatory flow of the Newtonian fluid was stable in the whole

range of parameters explored. The oscillatory flow of the Maxwell fluid was

unstable at large drivings, even though Re remained very small. The first

instability observed gave rise to a stationary toroidal vortex with axial symme-

try. At increasing driving amplitudes these simple vortices were unstable and

more complex structures were found. These results are potentially relevant in

the search for experimental observations of a subcritical instability in parallel

viscoelastic shear flows.



Chapter 15

Future perspectives

• Lateral instabilities in Saffman–Taylor fingers

For the quenched disorder experiments the characterization of the lateral insta-

bility was performed at different velocities and gap spacings. For the periodic

perturbation we studied the curve νout(νin, V∞, W, b) at fixed W and b, and we

performed experiments for two different V∞. It would be very interesting to

explore a curve at fixed frequency varying the velocity (this would allow study

the effect of the velocity in the selected frequency, for instance) and also to

explore the effect of varying the gap spacing.

It would be also interesting to perform measurements with new cell widths, both

for quenched disorder experiments and for periodic perturbation experiments.

This would allow to generate longer fingers and determine the stationary state

of the fingers forced with frequencies close to the characteristic finger frequency.

The combination of both perturbation mechanisms is another interesting point

that was not explored in this thesis. We observed that the lateral instability

had a preferred frequency, which was roughly the same than the one obtained

in periodic perturbation experiments. The unanswered question is the effect

of noise in the selection process for a periodically forced finger. It seems quite

clear that the selected frequency would be the same, but the dynamic process of

selection may be affected by the presence of the noise. Thus, the time needed

for the system to reach the final stage could be significantly shorter thanks

to the presence of the noise, which would help the system to select the final

wavelength.

• Oscillating flow of a Maxwell fluid in a tube

The characterization of the laminar velocity profiles was thoroughly performed
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in several series of experiments. We explored a wide range of frequencies and we

varied the fluid properties. It would be interesting to perform measurements in

a tube with a different radius. This would allow to confirm the scaling with the

geometry of the system predicted by [del Rı́o 98]. Also, it would be interesting

to perform measurements at low amplitudes and high frequencies in order to

determine the maximum number of quiescent flow points which the velocity

maps could support.

The study of the instability of the fluid has still some open questions that were

not addressed in this thesis. First, it would be very important to determine if the

shear–thinning behavior of the fluid plays an important role in the instability.

This point could be solved by replacing our elastic shear–thinning fluid by a

non–elastic shear–thinning fluid (for instance Xhanthane [Lindner 00c]) or by

a purely elastic fluid (Boger fluid [Boger 96]).

As commented in Chapter 13, the onset of the instability could not be charac-

terized accurately with our experimental setup. In order to determine (i) the

minimum amplitude required to destabilize the flow at a fixed frequency, and

(ii) the possibility of an hysteretic behavior at the bifurcation point we have

designed a new experimental setup. This new setup is described in Appendix

B. It allows the continuous change of driving amplitude at fixed frequency by

ramping the driving amplitude back and forth, this setup will allow to elucidate

the sub- or supercritical character of the bifurcation.

Our measurements were mostly directed to the characterization of the first

instability observed in the system. The study of higher driving frequencies

and amplitudes would be interesting to study secondary bifurcations of the

oscillatory flow, already observed in some of our experiments, and eventually

viscoelastic turbulence. The characterization of these new stages of the insta-

bility, for which we observed a loss of the axial symmetry, would require new

techniques of characterization.
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A. Hernández–Machado. Lateral instability in normal viscous fingers.

Phys. Rev. E 71, 016312 (2005).

[Lerouge 00] S. Lerouge, J.P. Decruppe and J.F. Berret. Correlations between rheo-

logical and optical properties of a micellar solution under shear banding

flow. Langmuir 16, 6464 (2000).



154 BIBLIOGRAPHY

[Li 86] G. Li, D. Kessler and L. Sander. Side branching of the Saffman–Taylor

finger. Phys. Rev. A 34, 3535 (1986).

[Lindner 00] A. Lindner, D. Bonn and J. Meunier. Viscous fingering in complex

fluids. J. Phys. Cond. Matt. 12, A477 (2000).

[Lindner 00b] A. Lindner, D. Bonn and J. Meunier. Viscous fingering in a shear–

thinning fluid. Phys. Fluids. 12, 256 (2000).
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Appendix A

Rheological characterization of a

cetylpiridinium chloride sodium

salicylate aqueous solution: linear

and non linear response

A.1 Introduction

The rheological behavior of a cetylpyridinium chloride (CPyCl) sodium salicylate

(NaSal) aqueous solution [100/60] mM has been studied by several groups [Rehage 88;

Méndez-Sánchez 03a; Berret 93]. This surfactant solution behaves as a Maxwell fluid

at small shear rates, but exhibits shear thinning at higher shear rates. It is also known

that the fluid can present shear banding [Salmon 03; Berret 97; Méndez-Sánchez-03b].

Other micellar solutions [Fischer 97; Ali 97; Clausen 92] also behave as a Maxwell

fluid at small shear rates. This is also true for some polymer solutions [Cáthebras 98;

Séréro 98]. The advantage of CPyCl/NaSal is that is very easy to prepare, and also

that the elasticity of the material is very high for a relatively low viscosity.

A.1.1 Maxwell Model

When a stress1 τ is applied to a purely elastic material, the response of the material

(a strain γ) is in-phase with the applied stress. The shear modulus G0 characterizes

1Although the stress and the strain are tensors we will consider flows for which the stress and
the strain can be treated as scalars.
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the elasticity of the material:

τ = G0γ. (A.1)

On the contrary, when a stress τ is a applied to a purely viscous material the re-

sponse is in quadrature with the applied stress. The stress creates a flow (with a

characteristic shear rate γ̇). The viscosity η0 characterizes the dissipative properties

of the material:

τ = η0γ̇. (A.2)

But there are many materials that do not correspond to any of these two limits.

When a stress is applied to the material the response is out of phase to the stress but

neither the viscous nor the elastic effects can be discarded. These are the so called

viscoelastic materials: they exhibit both a dissipative and an elastic behavior (silly

putty, blood, plastics).

The simplest mechanical model that includes elasticity and viscosity of a material

is called Maxwell model (see Sec. 3.2.2). Maxwell relaxation time tm is related with

the shear modulus and the viscosity by:

tm =
η0

G0

. (A.3)

There are several methods to measure the rheological properties of a fluid. Pe-

riodic experiments are the most usual choice to measure the linear viscoelasticity of

fluids. In periodic measurements, a sinusoidal stress is applied to the fluid. The

response of the sample will be out of phase with the stress. From the phase angle

between stress and strain, we can calculate the storage modulus G′ (which describes

the elastic properties of the fluid) and the loss modulus G′′ (which corresponds to the

viscous or dissipative properties of the fluid). For a Maxwell fluid, in particular, the

response of the material to harmonic oscillations of angular frequency w is described

by [Rehage 88]:

G′(w) =
G0w

2t2m
1 + w2t2m

, (A.4)

G′′(w) =
G0wtm

1 + w2t2m
. (A.5)

From Eqs. (A.4) and (A.5), a relation between the storage modulus and the loss

modulus can be derived:
(

G′(w)− G0

2

)2

+ (G′′(w))
2

=

(
G0

2

)2

, (A.6)

which is the equation of a circle of radius G0/2 centered at (0, G0/2). The plot of

G′′ as a function of G′ is called the Cole-Cole plot and is useful to determine if the
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Figure A.1: Cole-Cole plot for the solution of CPyCl/NaSal 100/60 mM at T = 25◦C. The
range of frequencies explored is ω = (0, 90) rad/s.

fluid we are studying behaves as a Maxwell fluid. The Cole-Cole plot for our fluid

(see figure A.1) shows that our CPyCl/NaSal solution behaves as a Mawxell fluid in

the whole range of frequencies we are reporting.

A.2 Experimental

The surfactant solution is prepared by solving commercial cetylpyridinium chloride

and sodium salycylate (both from Sigma) in distilled water. The solution is let in a

dark chamber at a constant temperature of 20◦C for three or four days. Measurements

of the fluid properties at different days show that aging effects are not important in

the first two weeks after the fluid has been prepared.

The CPyCl/NaSal solution has been used as a ”standard” Maxwell fluid for several

reasons. First, it is very easy to prepare. The properties of the solution remain

constant for long times. The viscosity of the material is much smaller than the

viscosity of other viscoelastic solutions [Fischer 97; Ali 97; Clausen 92; Mu 01]. The

relaxation time is also very long compared with other solutions. Lastly, in the linear

regime the solution is very well described by a Maxwell linear model, as can be verified

with the Cole-Cole plot (Fig. A.1).

The rheological measurements are carried out by means of a Haake RheoStress

1 rheometer with the cone and plate geometry (60 mm in diameter and 1◦). This

geometry is one of the most frequently used to determine the rheological character-

ization of viscoelastic flows. It has the advantage of presenting a simple flow with

uniform shear rate and uniform shear stress throughout the gap. The use of this
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Figure A.2: (N) Storage modulus G′, and (M) loss modulus G′′, as a function of the angular
frequency ω, for the solution of CPyCl/NaSal 100/60 mM at T = 25◦C.

experimental arrangement is limited to moderate shear rates, since for high shear

rates a stationary flow cannot be developed and the viscoelastic sample may present

fractures or degradation.

We undertook both oscillatory and rotating tests. For the rotating tests we per-

formed:

(i) Controlled stress experiments. We increased the stress from 1 Pa to 25 Pa with

logarithmic ramps of durations from 600 s to 2400 s.

(ii) Controlled rate experiments. We increased the rate from 0.2 s−1 to 20 s−1 with

a logarithmic ramp of 2400 s.

A.3 Results

A.3.1 Linear regime

The linear viscoelastic behavior is consistent with the behavior reported by other

authors [Rehage 88; Méndez-Sánchez 03a]. The measured shear modulus is G0 = 32

Pa and the longest relaxation time (or Maxwell time) is tm = 1.8 s (Fig. A.2). From

rotating experiments, zero shear viscosity is η0 = 60 Pa·s, in fair agreement with the

relation η0 ' G0tm.
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A.3.2 Nonlinear regime

The results summarized in the previous section are true if the fluid is subjected to

small shear rates (linear regime). At increasing stresses and shear rates, our surfactant

solution presents a different behavior [Méndez-Sánchez 03a]. At high shear rates the

fluid is shear thinning. This means that the viscosity of the fluid decreases as shear

rate increases.

For this reason, we also performed rotating experiments in order to determine the

range where the fluid behaves as a pure Maxwell fluid. The results for the controlled

stress measurements are shown in Figs. A.3 and A.4. From these figures we can

observe that the viscosity of the fluid is constant for shear rates up to 0.1 s−1. As

the shear rate increases above this value, the fluid presents strong shear thinning. As

usual in shear thinning fluids, the behavior of η in the shear thinning region can be

fitted with a relation of the kind η = Kγ̇−n. We obtain:

η ' 20γ̇−1. (A.7)

It is interesting to mention that the curves for the different ramps (Fig. A.4) and

for the controlled shear rate tests (Fig. A.5) are equivalent at the linear and early

nonlinear stages. For shear rates up to 0.6 s−1 (τ ' 23 Pa) the results are the same

for all the ramps. At shear stresses higher than 23 Pa the resulting γ̇ depends on the

ramp. We compare these results to the one obtained for the controlled shear rate tests.
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Figure A.3: Shear viscosity of a sample of CPyCl/NaSal 100/60 mM as a function of the
applied shear rate for controlled stress ramps at T = 25◦C. Different symbols correspond to
ramps of duration: (¥) t = 600 s, (◦) t = 1200 s, (+) t = 1800 s, (×) t = 2400 s.
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Figure A.4: Shear stress vs. shear strain rate, in controlled stress measurements of a sample
of CPyCl/NaSal 100/60 mM at T = 25◦C. The symbols correspond to ramps of duration:
(¥) t = 600 s, (◦) t = 1200 s, (+) t = 1800 s, (×) t = 2400 s.

At small γ̇ the relation is linear; for γ̇ of approximately 0.6 s−1 the stress reaches a

maximum of 20 Pa, and then decreases to a plateau value around 18 Pa. We conclude

that the results for the linear regime are equivalent for all the tests performed and

the results in the nonlinear regime depend strongly on the test performed.
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Figure A.5: Shear stres vs. shear strain rate in controlled shear rate measurements of
CPyCl/NaSal 100/60 mM at T = 25◦C.



Appendix B

Setup for the characterization of

the onset of instability for an

oscillating flow in a tube

The experimental device used in the study of the flow of a complex fluid in a tube

was initially designed for the study of the dynamic permeability of a Maxwell fluid in

a tube [Castrejón-Pita 03b]. As commented in Ch. 10, we performed slight modifica-

tions in this experimental setup in order to study the destabilization of the flow. We

observed that the flow became unstable at moderately high driving amplitudes, but

we could not determine the minimum driving amplitude for which the flow became

unstable because of the design of the experimental device.

Thus, important questions such as the minimum value of the control parameter

Wi/(tmν) needed for the destabilization of the flow, or the presence of hysteresis in the

system, could not be answered. In order to fully characterize the onset of instability

for an oscillating viscoelastic flow in a tube, we have designed a new experimental

device (Fig. B.1).

This new experimental device is essentially the same than the one described in

Ch. 10. The main difference between both systems is the mechanism to produce the

vertical oscillations of the piston (Fig. B.2). In the original device, the displacement is

originated by a crankshaft mechanism and the amplitude of the driving is determined

by the eccentric wheel. Thus, each new amplitude of driving requires a new eccentric

wheel.

In the new experimental device a long bar is used to produce the vertical dis-

placement (Fig. B.2). One of the ends of the bar is firmly subjected, and the other

end rests on top of an eccentric wheel connected to a motor of variable frequency.
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Figure B.1: Image of the experimental device designed for the characterization of the onset
of the instability for an oscillating viscoelastic flow in a tube.

The system is carefully aligned to provide the horizontal position of the bar at the

neutral position of the eccentric wheel. The amplitude (z0) of the vertical oscillations

provided by the driving wheel in the new device is different at different distances (d)

from the fixed end of the bar. By simple trigonometric relations this amplitude can

be related with the maximum amplitude of the oscillation (Zmax):

z0 = Zmax
d

L
. (B.1)

The piston is connected to the horizontal bar by a rod which has a ball–bearing at the

end. This allows the relative displacement of the motor–eccentric wheel–bar system

from the tube, even at high oscillation frequencies. As a consequence, the setup is

able to work at continuously varying vertical oscillation amplitudes. We control the

relative displacement by mounting the motor–eccentric wheel–bar system on a mobile

platform. The platform is controlled by means of a stepper motor and thus, different

displacement velocities can be fixed.
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Figure B.2: Left: Scheme of the crankshaft mechanism of the original experimental setup.
Right: Scheme of the new experimental device. (P) Piston, (E) eccentric wheel, (B) ball–
bearing, (z0) driving amplitude, (Zmax) maximum driving amplitude, (L) bar length, (d)
distance to the fixed end of the bar.

Summarizing, the new experimental setup produces driving amplitudes in the

range 0 to 5 mm. The driving amplitude can be ramped in a continuous way at

different time rates. The onset of instability can be determined as a function of

driving frequency and amplitude. Given that the instability may present hysteresis,

our experimental setup its ready for its characterization, as it allows both increasing

and decreasing driving amplitudes.
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