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ABSTRACT

Air Traffic Management (ATM) is formally defined as the dynamic, integrated
management of air traffic and airspace safely, economically and efficiently, through
the provision of facilities and seamless services in collaboration with all parties
and involving airborne and ground-based functions. This implies a complex socio-
technical system with several layers and sub-systems. The performance of these
layers is measured through various Key Performance Areas (KPAs), of which some
of the most important are safety, capacity, cost-efficiency and the environmental
impact. Although part of ATM structure, each of the layers have different objectives
which in practice compete to maximize their own goals. A similar situation can be
expected for Unmanned Aerial Systems (UAS), where the development of different
UAS traffic management systems is being guided with a similar approach to that
of ATM. In this thesis, we envision air traffic complexity to be the framework
through which a common understanding among stakeholders making decisions at
the different ATM layers is enhanced. Furthermore, we focus on automated Conflict
Detection and Resolution (CD & R) to investigate how Multi-Agent Reinforcement
Learning (MARL) can facilitate the progress to autonomous ATM and UAS traffic
management systems.
To achieve these goals, we first define air traffic complexity in such a way that
provides elaborate information efficiently to different stakeholders. As an initial
step, we provide a generic definition of pairwise interdependencies between aircraft,
which is based on the distance at a time step and is adaptive to the use-case and
context. We use graph theory to model air traffic as a dynamic graph and define
four complexity indicators that combine different topological information and the
severity of the interdependencies to give a detailed and nuanced evolution of traffic
complexity in a certain airspace. These indicators are extended to introduce the
concept of single aircraft complexity, through which complex spatio-temporal areas
in a given airspace are identified. Moreover, we investigate the effectiveness of these
complexity indicators in the domain of UAS, to show how the same definition of air
traffic complexity can be used in different domains.
Focusing on CD & R, we approach this problem through MARL, which is a paradigm
of Machine Learning (ML) where multiple agents interact with an environment and
themselves to maximize some notion of accumulated reward. We first extend existing
work by proposing a model that not only solves conflicts but also show that it is
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possible to consider several other factors that affect efficiency and the environmental
impact. This approach is further enhanced by the use of Graph Neural Networks
(GNNs), which facilitate cooperation and communication. We show that through
cooperation it is possible for autonomous agents to learn resolution strategies that
are similar to known strategies by human controllers, which existing work using
GNNs has not been able to achieve.
While these two goals might seem separate, in this thesis we argue that a unified air
traffic complexity management system with the application of AI can move aviation
further to its quest for autonomy. This thesis is concluded with a vision for AI in
aviation that considers meaningful human control and value alignment as the most
imperative directions for future research.
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RESUMEN

La Gestión del Tráfico Aéreo (ATM) se define formalmente como la gestión dinámica
e integrada del tráfico y el espacio aéreo de forma segura, económica y eficiente,
mediante la disposición de infraestructuras y servicios integrados en colaboración
con todas las partes e involucrando funcionalidades en el lado aire y en el lado
tierra. Se trata de un sistema socio-técnico complejo estructurado en varios niveles
y subsistemas interrelacionados. El rendimiento en cada nivel se mide a través de
varias áreas clave de rendimiento (KPA), de entre las cuales, algunas de las más
importantes son la seguridad, la capacidad, la rentabilidad y el impacto ambiental.
Aunque forman parte de la misma estructura ATM, cada una de los niveles tiene
diferentes objetivos que en la práctica compiten entre sí, para maximizar sus propias
metas. Se espera un escenario similar para los sistemas aéreos no tripulados (UAS),
donde el desarrollo de diferentes sistemas de gestión de tráfico de UAS obedecen a
un enfoque similar al de ATM. En esta tesis, concebimos la complejidad del tráfico
aéreo como el marco de referencia para tener una comprensión única y compartida
entre los actores que toman decisiones en los diferentes niveles del sistema ATM. Por
otro lado, también hemos trabajado en la Detección y Resolución de Conflictos (CD
& R) automatizada para investigar cómo el Aprendizaje por Refuerzo de Múltiples
Agentes (MARL) puede facilitar avanzar hacia los sistemas autónomos de gestión
de tráfico ATM y UAS.
Para abordar ambos objetivos, primero definimos la complejidad del tráfico aéreo
de tal manera que proporcione eficientemente una información elaborada a los
diferentes actores interesados. Como primer paso, proporcionamos una definición
genérica de las interdependencias entre pares de aeronaves, que se basa en la distancia
en tiempos discretizados y se adapta al caso de uso y al contexto. Hemos utilizado la
teoría de grafos para modelar el tráfico aéreo como un gráfico dinámico y definimos
cuatro indicadores de complejidad que combinan diferente información topológica y
la severidad de las interdependencias para dar una evolución detallada y peculiar de
la complejidad del tráfico en un espacio aéreo determinado. Estos indicadores se han
ampliado para introducir el concepto de complejidad de aeronave, a través del cual
se identifican áreas espacio-temporales complejas en un espacio aéreo determinado.
Además, se ha investigado la efectividad de estos indicadores de complejidad en el
dominio de los UAS, para mostrar cómo la misma definición de complejidad del
tráfico aéreo se puede utilizar en diferentes dominios.
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Centrándonos en el CD & R, abordamos este problema a través de MARL, que es un
paradigma de Aprendizaje Automático (ML) donde múltiples agentes interactúan
con el entorno y entre ellos mismos para maximizar alguna noción de recompensa
acumulada. Primero ampliamos el trabajo existente al proponer un modelo que no
solo resuelve conflictos sino que también muestra que es posible considerar diversos
factores que afectan la eficiencia y el impacto ambiental. Este enfoque se ve
reforzado por el uso de Graph Neural Networks (GNN), que facilitan la cooperación
y la comunicación. Mostramos que a través de la cooperación es posible que
los agentes autónomos aprendan estrategias de resolución que son similares a las
estrategias conocidas por los controladores humanos. Dichos resultados no habían
sido reportados en la literatura de GNN.
Si bien estos dos objetivos pueden parecer separados, en esta tesis argumentamos que
un sistema unificado de gestión de la complejidad del tráfico aéreo con aplicaciones
de la IA puede contribuir a avanzar mas en los sistemas autónomos en el sector
aeronáutico. Esta tesis concluye con una visión de la IA en la aviación que considera
significativo el humano en el lazo de control y la alineación de valores como esencia
de las líneas de investigación futura.
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RESUM

La Gestió del Trànsit Aeri (ATM) es defineix formalment com la gestió dinàmica i
integrada del trànsit i l’espai aeri de forma segura, econòmica i eficient, mitjançant
la disposició d’infraestructures i serveis integrats en col·laboració amb totes les parts
i involucrant-hi funcionalitats del costat aire i del costat terra. Es tracta d’un sistema
socio-tècnic complex estructurat en diferents nivells i subsistemes interrelacionats.
El rendiment a cada nivell es mesura a través de diverses àrees clau de rendiment
(KPA), d’entre les quals, algunes de les més importants són la seguretat, la capacitat,
la rendibilitat i l’impacte ambiental. Tot i que formen part de la mateixa estructura
ATM, cadascun dels nivells té diferents objectius que a la pràctica competeixen
entre si, per maximitzar les seves pròpies metes. S’espera un escenari similar per
als sistemes aeris no tripulats (UAS), on el desenvolupament de diferents sistemes
de gestió de trànsit d’UAS obeeixen a un enfocament semblant al d’ATM. En aquesta
tesi, concebem la complexitat del trànsit aeri com el marc de referència per tenir una
comprensió única i compartida entre els actors que prenen decisions als diferents
nivells del sistema ATM. D’altra banda, també hem treballat en la Detecció i Res-
olució de Conflictes (CD & R) automatitzada per investigar com l’Aprenentatge per
Reforç de Múltiples Agents (MARL) pot facilitar avançar cap als sistemes autònoms
de gestió de trànsit ATM i UAS.
Per abordar tots dos objectius, primer definim la complexitat del trànsit aeri de
manera que proporcioni eficientment una informació elaborada als diferents actors
interessats. Com a primer pas, proporcionem una definició genèrica de les interde-
pendències entre parells d’aeronaus, que es basa en la distància en temps discretitzats
i s’adapta al cas d’ús i context. Hem utilitzat la teoria de grafs per modelar el trànsit
aeri com un gràfic dinàmic i definim quatre indicadors de complexitat que combinen
diferent informació topològica i la severitat de les interdependències per donar una
evolució detallada i peculiar de la complexitat del trànsit en un espai aeri determi-
nat. Aquests indicadors han estat ampliats per introduir el concepte de complexitat
d’aeronau, a través del qual s’identifiquen àrees espai-temporals complexes en un
espai aeri determinat. A més, s’ha investigat l’efectivitat d’aquests indicadors de
complexitat al domini dels UAS, per mostrar com la mateixa definició de complex-
itat del trànsit aeri es pot utilitzar en diferents dominis.
Centrant-nos en CD & R, abordem aquest problema a través de MARL, que és
un paradigma d’aprenentatge automàtic (ML) on múltiples agents interactuen amb
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l’entorn i entre ells mateixos per maximitzar alguna noció de recompensa acumu-
lada. Primer ampliem el treball existent en proposar un model que no sols resol
conflictes, sinó que també mostra que és possible considerar diversos factors que
afecten l’eficiència i l’impacte ambiental. Aquest enfocament és reforçat per l’ús
de Graph Neural Networks (GNN), que faciliten la cooperació i la comunicació.
Mostrem que a través de la cooperació és possible que els agents autònoms apren-
guin estratègies de resolució que són semblants a les estratègies conegudes pels
controladors humans. Aquests resultats no havien estat reportats a la literatura de
GNN.
Si bé aquests dos objectius poden semblar separats, en aquesta tesi argumentem que
un sistema unificat de gestió de la complexitat del trànsit aeri amb aplicacions de
la IA pot contribuir a avançar més en els sistemes autònoms al sector aeronàutic.
Aquesta tesi conclou amb una visió de la IA a l’aviació que considera significatiu
l’humà en el llaç de control i l’alineació de valors com a essència de les línies de
recerca futura.
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C h a p t e r 1

INTRODUCTION

1.1 Air Traffic Management
In the early days of aviation, the density of traffic was low enough such that the pilot
alone was responsible for the safety of the aircraft. They needed to take measures
in order to avoid other aircraft, terrain or the ground. However, the tremendous
increase in traffic demand has resulted in the captain gradually losing the ability to
carry out all maneuvers required for a safe flight [1]. These developments lead to the
creation of Air Traffic Control (ATC). Little progress was made on ATC until after
World War II, when governments were forced to take actions to ensure the safety
and efficiency of flights. According to Cook [1], this lead to better route structures,
more advanced and efficient radios and navigation aids and to the establishment of
procedures and standards that most national administrations subscribed to by the
International Civil Aviation Organisation (ICAO).

ATM Structure
Nowadays, air transportation has grown into a complex system comprising of numer-
ous actors encompassing different aspects of air traffic. Broadly speaking, there are
five families of services that allow for air transportation to be possible: Communi-
cation, Navigation and Surveillance (CNS), Search and Rescue (SAR), Aeronautical
Information Service (AIS), and Meteorological services for air navigation (MET)
and Air Traffic Management (ATM) [2], which is also the focus of the work in this
thesis.

ATM is formally defined as the dynamic, integrated management of air traffic and
airspace safely, economically and efficiently, through the provision of facilities
and seamless services in collaboration with all parties and involving airborne and
ground-based functions [3]. Such a system implies a complex socio-technical
systems, which at present is comprised by three main layers: air space management
(ASM), air traffic flow management (ATFM) and air traffic services (ATS), as shown
in Figure 1.1

ASM determines the structure of the airspace, while ATFM groups en-route aircraft
into flows. It is worth noting that in Europe, ATFM has expanded into air traffic
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Figure 1.1: Organisation of ATM into several several layers. The full figure with all
components and inter-relations between them can be found in Chapter 3.

flow and capacity management (ATFCM) [4]. The purpose of ATFCM is to avoid
the overloading of parts of the airspace (same as ATFM), while ensuring that the
capacity is fully exploited, which is crucial in dense and busy airspace.

ATS is entrusted with providing decision making and advisory services and is itself
comprised of several parts: alerting service (ALS), flight information service (FIS)
and air traffic controle service (ATC). As the name suggests, ALS must notify the
appropriate stakeholders regarding aircraft in need of search and rescue. On the
other hand, FIS’ purpose is to give advice and information for the safe and efficient
conduct of flights. Finally, ATC must prevent separation minima infringements and
facilitate an orderly flow of air traffic.

Performance of ATM layers
While all these layers are part of the ATM structure, they have different objectives,
which in practice compete to maximize their own goals. The performance of these
layers of ATM is measured through various Key Performance Areas (KPAs), where
some of the most important are safety, capacity, cost-efficiency and environment
[5], shown in Figure 1.1.

The relationship and interdependencies between these KPAs have been subject of
study for several SESAR projects such as STREAM [6] and APACHE [7]. Never-
theless, these projects claim that further research is necessary to fully understand
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these interdependencies. Consequently, the aeronautic community has accepted the
term emergent dynamics, which comes as a result of the un-modelled behavioural
dynamics between the aforementioned KPAs.

Air Traffic Complexity
Air traffic complexity has been a prominent research topic since the early days of
ATC operations. However, there still is no definitive answer to what constitutes a
complex situation in the context of ATM. Initially, the majority of the work related
air traffic complexity with the workload of controllers, but this proved to be very
difficult, due to the subjective nature of this measure. More recent work has focused
on providing more objective indicators for air traffic complexity that are based on
purely the geometry of the traffic, or combine the geometrical approach with the
more subjective complexity scores.

Complexity of air traffic is one of the key topics of this work, and we show how it can
be used to smoothen the different Key Performance Indicators (KPIs) that comprise
the KPAs elaborated in the previous subsection. A more thorough overview of
existing work on complexity can be found in Chapters 2,3 and 4.

1.2 Conflict Management
A large portion of this work is focused on Conflict Detection & Resolution (CD &
R), thus it is worthwhile to give an overview of conflict management in ATM.

According to ICAO Doc9854 [8], the goal of conflict management is to limit, to an
acceptable level, the rist of collision between aircraft and hazard, where a hazard can
be: other aircraft, terrain, weather, wake turbulence, incompatible airspace activity
and surface vehicles and other obstructions when the aircraft is on the ground. As
defined by ICAO, conflict management consists of Strategic Conflict Management,
Tactical Conflict Management and Collision Avoidance, as shown in Figure 1.2.

Strategic Conflict Management
As specified by ICAO Doc9854 [8], the first layer of conflict management is Strategic
Conflict Management. This is realized through airspace organization and manage-
ment, demand and capacity balancing and traffic synchronisation components. In
this first layer, the majority of actions will occur prior to departure. However, there
are cases that strategic actions might be required after take-off, particularly in long
duration flights. The goal of the strategic layer is to reduce the need to apply the
second layer (next section) to an appropriate level as determined by the ATM system
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Figure 1.2: Time frames of ATM conflict management. Taken from Omeri et al.[9]

design and operation.

Tactical Conflict Management
At the tactical level, conflict management is performed by ATC, which provides
guidance and information to the pilots through Air Traffic Control Operators (ATCo).
ATCos are responsible for sectors which are controlled airspace volumes. In Europe,
each sector has a pair of ATCos: the executive controller and the planner [1]. Some
of the responsabilities of the planner are to coordinate and approve the entry and
exit of flights into the sector, identify flight paths which are least likely to generate
conflicts and monitor additional frequencies. On the other hand, the executive
controller is responsible for communicating with the pilots, accepting aircraft into
the sector, monitoring the progress of aircraft and attaining separation management.

There has been considerable effort in the community to develop advanced automated
tools to assist controllers in their duties. One of such areas of interest has been the
development of CD & R tools. A framework for CD & R decision support tools
has been introduced in [10]. They argue that such a support tool should have three
fundamental processes: detect the conflict, communicate the detected conflict to the
ATCos, assist in the resolution of the conflict.

The airspace is monitored and appropriate state information is gathered by various
sensors. The state must provide an estimate of the current traffic situation. It is
important to consider also uncertainties in the state estimation as a result of the type
of sensors used, or sensor errors. The trajectories are projected into the future as
per some dynamic trajectory model. These predictions are combined with some
metrics (e.g., minimum pairwise separation) in order to determine if the ATCo
needs to be informed or not. Moreover, resolutions must be generated by the tool
and then presented to the controller. However, in the case of fully automated conflict
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resolution, the (now autonomous) system must implement the resolution.

Collision Avoidance
In the event of an emerging collision, the Collision Avoidance System is activated
seconds before the closes point of approach (CPA). Standard CA systems for most
commercial aircraft are Traffic Collision Avoidance System (TCAS) and Airborne
Collision Avoidance System (ACAS) [11] and Airborne Collision Avoidance System
(ACAS) [12]. The goal of these systems is pairwise (or multi-threat [13]) collision
avoidance and factors that affect their performance are encounter geometry, closure
rate and flight level. Finally, the principle of See and Avoid also serves as a CA
method, specifically for operations in uncontrolled airspace and in general cases
where aircraft are not equipped with TCAS or similar systems.

1.3 UAS Traffic Management
Part of the work in this thesis has been applied in the context of safety for unmanned
aircraft systems (UAS). The expected increase of commercial and civil applications
of UAS will be followed by increased density and new challenges mainly related
to safety, reliability and efficiency of airspace management. Thus, crucial to the
deployment of UAS operations with be the development and implementation of a
UAS Traffic Management (UTM) systems. Several system architectures and models
have been developed in the last few years. Among them, we distinguish NASA-
UTM developed by the Federal Aviation Administration (FAA) and the National
Aeronautics and Space Administration (NASA) in the USA and U-Space in Europe
where Single European Sky ATM Research Joint Undertaking (SESAR JU) is
leading the efforts1.

Similar to manned aviation, a conflict refers to a state or situation where a predeter-
mined separation minima has been compromised by two or more aircraft [8]. The
event when a separation is infringed is referred to as a loss of separation (LOS). To
prevent LoS, UAS make use of separation provision, which is the tactical process
for keeping aircraft away from hazards, which could be implemented as a UTM
service.

The self-separation function is carried by the Detect and Avoid (DAA) system of
the UAS, which is intended to comply with regulatory requirements to remain well
clear of other airborne hazards [14]. A nominal DAA should comprise of three

1We note that the work in this thesis is not specific to any of them
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main modules: conflict detection, alerting and conflict resolution.

Conflict Management
In this thesis, the UAS conflict management framework is the one proposed by
Omeri et al.2 [9], which aligns with SESAR/NASA-UTM concepts [15, 16].

This framework follows a similar conflict management structure as ATM: strategic
conflict management, tactical conflict management (i.e., separation provision) and
collision avoidance. It spans four stages that assess the aforementioned safety layers.

Stage 1 - Strategic Conflict Mitigation: conflicts are detected and resolved before
take-off, based on their flight plans submitted to the UTM. It involves removing
intersecting trajectories on spatio-temporal basis and then re-planning to satisfy
various constraints such as no-fly zones, weather or other obstacles

Stage 2 - Separation Provision Service: Similar to ATC duties, UTM must offer
as a service for in-flight separation, in case that flight plans are still not conflict-
free3. The aircraft that are subscribed to this service will get early awareness (e.g.,
through alarms) for possible LoS between other aircraft, which may be manned or
unmanned, and guidance for safe and efficient resolutions.

Stage 3 - Self-Separation: Self-Separation is derived from the concept of Free
Flight [17] and relies on the capabilities of the aircraft to maintain a safe separation
minima from other airspace users (AUs). This functionality could be carried out
by the remote pilot (i.e., manually), assisted or fully automated. It removes the
responsibility from the UTM and delegates it to the aircraft.

Stage 4 - Collision Avoidance: provides a final safety layer in order to prevent mid-
air collisions. It is characterized by imminent and sharp maneuvers 4. Similarly to
Stage 3, it can be managed by the pilot or autonomously.

The framework for managing UAS conflicts is illustrated in Figure 1.3. Stage 2 is
seen as a ground based service, requiring reliable communication between the UAS
and the UTM. In cases when the encounter with the mid-air intruder is not resolved
by Stage 2, the aircraft must use DAA capabilities to resolve the conflict. A typical
DAA is composed of CNS subsystems, sensors, conflict detection module, alerting
and guidance algorithms, ground control station and command and control (C2C)
subsystems.

2We note that this is joint work conducted in the context of this thesis
3After the Stage 1 service has been invoked
4Could also transition to a hovering state, depending on the capabilities of the aircraft
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Figure 1.3: UAS conflict management framework. Taken from Omeri et al.[9]

In case of autonomous flights, the navigation and maneuvers are made possible by
the use of a flight computer, referred to as the autopilot (AP).

1.4 A Brief Introduction to Artificial Intelligence
This section serves to give an overview of the field of Artificial Intelligence (AI).
Owing to the structure of this thesis, the specific methods of AI utilized here will be
formally introduced in subsequent chapters.

Knowledge Base AI
The idea of a "thinking machine" has long been part of human imagination. When
programmable computers were first formulated, people wondered whether they
might become intelligent [18]. AI is one of the newest fields in science and engi-
neering. Today, AI is a thriving field with many practical applications and active
research topics. Nevertheless, there is not one single definition of what AI is. In their
book, Russell and Norvig [19] give a summary of several definitions, which they
group along several dimensions. Some of the definitions are concerned with thought
processes and reasoning, where others address behavior. Each of these perspectives
has been followed through different approaches. For instance, a human-centered
approach is in part empirical science, while a more rationalist approach involves a
combination of mathematics and engineering.

During its infancy, AI was focused on tackling problems that were intellectually
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difficult for humans, but could be described by formal, mathematical rules. Many of
the early successes happened in these sterile and formal settings, where the AI did
was not required to have or gain much knowledge about the world it was operating
in5. These early AI projects hard-coded the knowledge about the world in formal
languages. The AI then reasoned about statements in these formal languages using
logical inference rules. Such systems were known as knowledge base approaches
to AI. However, the knowledge and facts required for such an approach to work had
to be devised and entered into the model by human supervisors. Quickly it became
clear that people struggled to accurately describe complex information about the
world in the proposed formal languages and knowledge base AI failed to have any
major breakthroughs [18, 20, 19].

Machine Learning
The shortcomings of AI models that relied on hard-coded knowledge indicated that
such systems needed to have the ability to learn (i.e., acquire their own knowledge),
through the extraction of patterns from raw data. Such a capacity is known as ma-
chine learning (ML) [18]. Machine learning algorithms improve their performance
by making observations about the world6. There are three main reasons why an AI
system should be able to learn [19]:

• When dealing with a complex problem, the designers of the AI might not be
able to anticipate all scenarios the AI might find itself in.

• When the AI needs to make predictions for a certain problem, the designers
might not be able to accurately make the prediction themselves

• The designers of the AI are unable to solve the problem they are tackling. A
typical example includes creating a computer program that recognizes faces.
The best performing programs are those that use learning algorithms.

Currently, there are three paradigms of machine learning algorithms, classified by
the type of feedback that the AI receives [19]:

• Unsupervised learning (UL) The AI model must learn patterns in the input
even though no explicit feedback is supplied.

5A typical example is IBM’s Deep Blue chess system, which beat world champion Garry
Kasparov

6Here observation can be through interacting with the environment or analysing historical data
from the environment
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• Supervised learning (SL) The AI model observes some input-output pairs
and learns a function that maps the input to the output.

• Reinforcement learning (RL) The AI model learns through interacting with
the environment. It receives a series of rewards which indicate how the model
is performing

However, there are other paradigms, which arise in situations when the distinc-
tions between the aforementioned paradigms are not clear. For instance, in semi-
supervised learning, the model is given a few labeled (i.e., the output for the cor-
responding input) and it must learn what it can from a large number of unlabeled
examples. Another layer of complexity is added when the labels are not always
correct. As such, the lack and noise of labels create a hybrid between supervised
and unsupervised learning.

The performance of machine learning algorithms largely depends on the represen-
tation of the data they are given. For instance, when a ML algorithm is tasked
with determining the type of an aircraft, it does not observe the aircraft directly.
Instead, it must be fed relevant pieces of information such as, the number of engines,
wingspan etc. Such pieces of information are known as features. For instance, a
simple logistic regression algorithm learns how each of the features of the aircraft
correlates with the outcomes (i.e., type of aircraft). There is a large number of tasks
that can be solved by ML algorithms by extracting the right set of features.

Deep Learning
Nevertheless, there are many tasks where it is difficult to know which features are
useful. To illustrate, let us imagine writing a program that detects aircraft in a
photograph. One could imagine that a feature could the presence of wings, however,
it is not clear how to describe exactly what wings are in terms of pixel values. The
solution to this problem is to use ML algorithms to not only create a mapping from
input to output, but also to learn a meaningful representation of the input itself. This
approach is known as representation learning. Such an algorithm is able to discover
an appropriate of features from simple to complex tasks. ML algorithms based on
this approach have proven to perform much better than traditional ML [18].

The goal of representation learning is to determine the "factors of variation" that
explain the observed data [18]. In the previously used example of detecting aircraft
in a photograph, such factors include the position of the aircraft, the brightness and
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angle of the sun. Many real-world applications of AI have many factors of variance
that influence every piece of the observed data and thus most applications require
discarding factors that are not relevant. However, the extraction of such abstract
features from raw data can be very difficult and representation learning is not able
to solve this problem.

Figure 1.4: A Venn diagram showing the different disciplines of AI.

Deep learning (DL) is such an attempt to solve this problem, by introducing rep-
resentations that are expressed in terms of simpler representations. That is, deep
learning allows the AI model to build complex concepts out of simpler ones. The
typical example of a deep learning model is the multilayer perceptron (MLP)7. An
MLP is a mathematical function that maps input values to output values, but the
function is composed by many simpler functions. Applications of these different
functions provide new representations of the input. These methods discover intricate
structures in large data sets by using the backpropagation algorithm (or variants of)
to indicate how the machine should change its internal parameters that are used to
compute the representation in each layer from the representation in the previous
layer [21]. For instance, the use of convolutional networks has resulted in break-
throughs in image and video processing, recurrent neural networks have been used
on sequential data such as text and speech, whereas graph neural networks have

7Also called a feedforward network
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made possible to use conventional DL algorithms in non-Euclidean data such as
social networks.

A summary of the different disciplines of AI is shown in Figure 1.4

1.5 Objectives of the Dissertation
The main research goal of this thesis has been to advance the state of the art in air
traffic complexity and automated air traffic CR.

Both of these topics have been heavily investigated in the aeronautic community and
have been subject to numerous research projects. Nevertheless, there are several
issues that are not treated in the current literature. These issues form the objectives
of this thesis and will be presented in detail:

• Provide a generic definition for pairwise interdependencies

We define pairwise spatiotemporal interdependencies between aircraft by con-
sidering the (horizontal and vertical) distance at a time step. The interdepen-
dency is weighed between 0 and 1 and the evolution in a time window is
considered (Chapter 3). This definition is generic in the sense is adaptive to
the use-case and context. For instance, in Chapter 3 the interdependencies are
specific to the sector, while in Appendix A we show how it can be adapted for
the case of UAS.

• Define air traffic complexity in such a way that provides elaborate infor-
mation efficiently to different stakeholders

We use graph theory to model air traffic as a dynamic graph8 and define four
complexity indicators that combine different topological information and the
severity of the interdependencies to give a detailed and nuanced evolution
of complexity in a certain airspace (Chapter 3). The effectiveness of the
proposed indicators in a different domain is shown by applying them to high
density sUAS scenarios (Appendix A).

• Develop a methodology that identifies high complexity spatiotemporal
areas in a sector

The proposed indicators are extended to define the concept of single aircraft
complexity. This concept is in turn used to define complex communities
(Chapter 4).

8A dynamic graph is a graph that evolves through time
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• Formalize CR as an AI problem and investigate how learning affects the
resolution of conflicts

CR is modelled as a Multi-Agent Reinforcement Learning (MARL) problem
where conflicting aircraft are modelled as agents capable of decision making
(Chapter 5).

• Provide an AI model that goes beyond simply solving conflicts

A reward function is designed that considers the interests of different stake-
holders and includes factors such as fuel consumption, time to LOS, complex-
ity etc.

• Investigate the scalability of MARL algorithms in the context of auto-
mated CR

MARL based on Graph Neural Networks (GNNs) has been used to develop a
model that considers many conflicting agents (Chapter 6).

1.6 Overview
The remainder of this dissertation beyond Chapter 2, which provides a summary of
the most relevant work regarding the topics of interest, is organized as a compendium
of research articles written as part of the work in this thesis. Chapter 3 presents
"Spatiotemporal Indicators for Air Traffic Complexity Analysis"9 which provides
the definition of air traffic complexity based on graph theory. In Chapter 4, we
present "From Single Aircraft to Communities: A Neutral Interpretation of Air
Traffic Complexity Dynamics"10, where the concepts of single aircraft complexity
and complex community are defined. Chapter 5 is "Towards Conflict Resolution with
Multi-Agent Reinforcement Learning"11 where we define CR as a MARL problem.
Furthermore, a reward function is designed that considers the interests of different
stakeholders. In Chapter 7, we show "Multi-UAV Conflict Resolution with Graph
Convolutional Reinforcement Learning"12 which models CR as a MARL problem
based on GNNs in order to tackle scalability. Finally, Chapter 7 contains a detailed
account of the contributions of this thesis and future work based on the developed
ideas.

9published in MDPI Aerospace
10submitted to MDPI Aerospace
11This article was originally submitted to ATM Seminar 2021, where it won the best paper

award for the Separation track. As a result, an extended version was published in Journal of Air
Transportation, which is shown here

12published in MDPI Applied Sciences
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C h a p t e r 2

STATE OF THE ART

Due to the structure of this thesis, relevant related work will be discussed in each
chapter. Nevertheless, in this chapter we will summarize results from three research
directions pertinent to our work.

2.1 Air Traffic Complexity
Complexity as a measure of ATCo workload
As previously mentioned, air traffic has been a common research topic in the ATM
community, with the first papers on the topic written in the 1960s [22]. Since
then, the majority of works have related air traffic complexity with its influence
on controllers [23, 24], where two basic complexity factors were identified: sector
complexity and traffic complexity. Further work [25] laid out the hypothesis that
complexity causes the cognitive workload of controllers to change.

The most common metric in this group is Aircraft Density [26, 27], defined as the
number of aircraft at the time of measurement, however as other work has suggested
[28], this measure only weakly correlates to the workload.

Schmidt [29] introduced the control difficulty process, which is calculated sum of
the expected frequency of occurrence of events that affect the controller workload.
Each event is weighted by the amount of time needed to deal with it.

Dynamic Density (DD) [30, 31] was introduced in order to measure the workload
of ATCos by considering traffic density and several factors that were supposed to
contribute to traffic complexity (e.g., number of ascending or descending aircraft).
DD is defined as a weighted sum of these attributes, which makes it suitable for
predicting future workload. Interval Complexity [32], is similar to DD but is
calculated as the average over a 5–10 min window.

Chaboud et al. [33] investigated the influence of complexity on workload and
services costs, while Flynn et al. [34] studied complexity in the context of sector
categorisation. The relationship between complexity and workload remains actual
[35, 36] with more recent works focusing on measuring the cognitive workload of
controllers directly. They include methods such as measuring ocular activity [37],
brain imaging [38] and electroencephalography [39].
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Andraši et al. [40] propose a model based on ML that can be used to determine
subjective traffic complexity with a similar accuracy to linear models. Human-in-
the-loop experiments were conducted with air traffic controllers which concluded
that the variance in the subjective complexity scores cannot be explained by traffic
characteristics. Furthermore they state that inconsistent ATCo ratings were one of
the sources of errors.

Objective Methods for Complexity
Another group of works define complexity only on objective factors such as structure
of air traffic. Delahaye et al. [41] propose two distinct ways of measuring air traffic
complexity. Firstly, they consider geometrical properties in order to build a new
complexity coordinate system in which sector complexity through time is presented.
Secondly, they represent air traffic as a dynamic system in order to yield an intrinsic
measure of complexity through Kolmogorov entropy.

Another metric that measures complexity through geometrical features is Fractal
Dimension [42]. Complexity is calculated through the degrees of freedom of an air-
craft given its route and constraints. Nonetheless, it comes with strong dependencies
on airspace structure, requiring it to be made up of piece-wise linear segments.

The Conflict Activity Level (CAL) was introduced by Wee et al. [43] as a dynamic
tactical complexity model. CAL evaluates the likely aircraft flight shape profile
based on their current and projected position and trajectory, through which the
complexity values are calculated. The authors report some level of consistency with
existing complexity metrics in terms of ranking air traffic scenarios.

Several methods based on ML have also been proposed. Work done by Gianazza
and colleagues [44, 45, 46] uses tree search and neural networks for predicting
complexity. Their methods share the assumption that complexity in historical flight
data increased prior to the splitting of the collpased sector into two smaller ones and
decreased prior to collapsing the sectors into a larger one. The neural network could
then predict the future increase in complexity. Tree search was ultimately used to
determine the airspace configuration which yielded the lowest complexity for the
given air traffic scenario.

Wang et al. [47] propose describing air traffic situations using the theory of complex
networks. They provide a complexity vector, which is comprised from several
indicators. Situations are then classified as ’low-complexity’, ’medium-complexity’
and ’high-complexity’ depending on vector values. Their approach bears some
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similarities to the one of this thesis; however, as we will explain in Chapter 3, there
are some key differences.

The majority of previous work on complexity have produced metrics that generally
lack elaborated information for a proper understanding in a multi-stakeholder con-
text. Furthermore, existing metrics in large reduce complexity into one score which
loses some of the granularity of the information. Lastly, existing metrics do not
investigate the implications of detailed information in the level of single aircraft.

2.2 Methodologies for Conflict Resolution
Similar to air traffic complexity, CR has also been an important topic of research
in the community. There are several works that give an excellent overview of the
existing research [48, 10, 49] based on more traditional approaches such as Mixed-
Integer Nonlinear Programming (MINP), Monte Carlo simulations, spatiotemporal
regions and Voltage Potential methodology. However, in this chapter we will sum-
marize some works that focus on CR (for manned and unmanned aviation) using
(single or multi agent) RL.

The earliest work we could find was that of Yang et al. [50], which used a heuristic
based Q-algorithm for CR in UAS. This work was not based on Deep Reinforcement
Learning (DRL).

The work of Ribeiro et al. [51] uses DRL to improve the resolutions given by the
Modified Voltage Potential (MVP) algorithm. The work of Wen et al. [52] uses
the same algorithm as that of [51], however it directly generates heading changes
using a continuous action space. On the other hand, Hermans [53], trains a DRL
model to solve conflicts based on demonstrations by human controllers. This can
be considered as Inverse Reinforcement Learning (IRL).

Several works have been published by Brittain and Wei [54, 55, 56]. They tackle CR
from different points of view using single and multi agent settings, which has resulted
in several algorithms that consider centralized and decentralized architectures.

Pham et al. [57] train a single agent RL model which operates under uncertainties
in actions. This means that when an agent takes an action, there is some uncertainty
in which state it will end up.

Wang et al. [58] propose K-Control Actor-Critic in order to guide an intruder to
make a fixed number of maneuvers for CR in the free flight scenario. Zhao et al.
[59] introduce a model which integrated prior physics understanding and generates
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human-explainable results for decision making.

Figure 2.1: Training process for a single or multi agent generic RL problem.

DRL has also been used for CA, such as the work of Li et al. [60], which was
shown to operate more efficiently than traditional methods in dense airspace while
maintaining satisfactory levels of safety.

The use of GNNs has also been observed in some works. For instance, Mollinga
et al. [61] propose a model that guides an arbitrary number of aircraft across
unstructured airspace, which is similar to the work of Dalmau et al. [62], which
envision a tool to support ATCos in complex traffic scenarios.

Through DRL, agents improve their abilities by interacting with the environment.
This process, shown in Figure 2.1, is the same for all of the previously mentioned
methods, including the work to be presented in the following chapters. Training is
composed of training steps. In each step, the environment is in a certain state (e.g.,
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aircraft positions, velocities etc). This state is observed by the agent(s)1 through
some mechanism, which in the simplest case could be sensors. The agent then
generates an action according to its policy, which results in the environment to
transition to another state. In turn, the environment sends to the agent a scalar
reward, which indicates the agent how well they are doing in that state. Finally, the
agents updates its policy according to the learning algorithm, and the whole process
repeats. Ideally, the trained model would be then validated through some rigorous
procedure to ensure the quality of the resolutions.

The majority of existing work on CR with RL takes a traditional view, in the sense
that the main goal of the model is to simply solve conflicts. However, in this thesis we
show that it is possible (and in fact necessary) to consider several other factors that
affect efficiency and the environmental impact. Furthermore, we show that through
cooperation it is possible for autonomous agents to learn resolution strategies that
are similar to known strategies by human controllers, which existing work using
GNNs has not been able to achieve.

Other Applications of AI in ATM
Recently, there have a been number of projects supported by SESAR that have
focused on applying ML/DL in various areas of ATM. These applications have been
applied to better understand the underlying patterns of traffic and ATCo instructions.

The AI Situational Awareness Foundation for Advancing Automation (AISA) project
(e.g. [63]) investigated how to increase automation in air traffic management. They
aimed to explore the effects of human-machine distributed situational awareness and
opportunities for automation of monitoring tasks in en-route operation.

The INTUIT project (e.g. [64] developed visual analytics and ML techniques to
understand the trade-offs between key performance areas2.

Moreover, DART (e.g. [65]), tackled the problem of trajectory prediction based
on ML, in order to esitmate aircraft performance before or during the flight. The
models were trained on previously recorded trajectories.

On the other hand The BigData4ATM project (e.g. [66]) investigated how different
passenger-centri geo-located data can be anaylsed in order to identify patterns in
passenger behavior, choice of travel of mode etc. The overarching goal of this

1Depending if the setting is with single or multiple agents
2This is a topic tackled in this thesis, in Chapter 4
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project was to enable optimised decision making for the benefit of passengers and
goods.

The MALORCA project (e.g. [67]) investigated speech application for various uses
at an airport. For instance, ATCos give most of their instructions to pilots via voice
communications. This requires that controllers make manual inputs to keep the
system data correct. MALORCA used automatic speech recognition by converting
speech to text for input into the system.

Finally, the E-Pilots (e.g. [68]) proposed a cockpit-deployable machine learning
system to support flight crew go-around decision-making based on the prediction of
a hard landing event.
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C h a p t e r 3

SPATIOTEMPORAL INDICATORS FOR AIR TRAFFIC
COMPLEXITY ANALYSIS

There has been extensive research in formalising air traffic complexity, but ex-
isting works focus mainly on a metric to tie down the peak air traffic controllers
workload rather than a dynamic approach to complexity that could guide both
strategical, pre-tactical and tactical actions for a smooth flow of aircraft. In this
paper, aircraft interdependencies are formalized using graph theory and four
complexity indicators are described, which combine spatio-temporal topolog-
ical information with the severity of the interdependencies. These indicators
can be used to predict the dynamic evolution of complexity, by not giving one
single score, but measuring complexity in a time window. Results show that
these indicators can capture complex spatio-temporal areas in a sector and give
a detailed and nuanced view of sector complexity.

3.1 Introduction
The mission of air traffic management (ATM) is to make air traffic possible by means
of efficient, environmentally friendly and socially valuable systems [69, 70]. At the
heart of the current ATM system at the tactical level are human air traffic controllers
(ATCo) who control airspace units known as sectors. The biggest responsibility of
ATCos is guaranteeing safety, which means they must issue instructions to pilots,
monitor traffic to maintain safety distances and so on. The ability of controllers
to effectively fulfill these duties is constrained by their workload, which can be
defined as the mental and physical work done by controllers to manage traffic [71].
Therefore, it is important to keep ATCo workload at acceptable levels.

Controller workload is not easy to predict or estimate and is related to various
factors which can be qualitative and quantitative [41, 72]. However, several studies
[72, 73, 31] state that airspace complexity accounts for a large portion of workload.
Complexity has been a prominent topic of research in ATM (see Section 3.2 for a
more detailed review). A predictor of complexity is key not only to support ATCos,
but also for a more sustainable and efficient air traffic management system in which
complexity effects could be mitigated at early stages. However, there are several
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drawbacks to already existing metrics. First of all, the majority of metrics do not
give a detailed view of complexity. For instance, the most widely used metric is
Aircraft Density [26, 27], which measures the number of aircraft flying in a sector.
This metric however is shown not to be adequate in capturing ATCo workload. For
instance, Delahaye and Puechmorel [41] take the example of sector capacity, which
is defined as the maximum number of aircraft that can be accommodated in a given
time period [74]. They observe cases where controllers accept more than the actual
capacity and cases where they refuse traffic even if capacity has not been reached.

Other methods attempt to measure ATCo workload directly [37, 38, 39]. These
methods, however, tend to be intrusive to the workflow of controllers, in addition to
having huge computational costs, which make them not suitable for practical uses.
The majority of these metrics do not consider how complexity evolves in time.

Another area where complexity metrics can impact ATCo workload and as a con-
sequence ATM capacity, are conflict detection and resolution (CD & R) [75, 76,
77, 78] decision support tools. A desirable characteristic of such solvers will be the
quality of solutions in terms of complexity, which means that a conflict resolution
that leaves the sector in a more complex state should be discouraged in favor of
solutions that ideally lead to lower complexity, while preserving safety.

In this work, air traffic is modelled through graph theory and complexity is defined as
the connectivity of the graph. Four indicators are proposed that represent different
aspects aircraft interaction. The indicators measure several structural properties
of the (traffic as a) graph, thus giving different insights into complexity. Edge
density measures the size of the graph with respect to a fully connected graph with
maximal weights, which identifies the aircraft that will create interdependencies.
Strength measures the severity of the interdependencies, as aircraft that are closer
present a more complex situation. The Clustering Coefficient provides information
regarding the neighbourhood of each aircraft and the Nearest Neighbour Degree
identifies if interdependent aircraft point to neighbours that may also have various
interdependencies. As results show, each of the indicators is necessary and the
information gathered from them can capture different shapes of interdependencies.
This is an important step towards tackling hotspots, which are complex spatio-
temporal areas in a sector, rather than simply solving conflicts. Furthermore, the
evolution of complexity through time is considered, which gives a detailed view of
how aircraft interactions change in time.

The rest of this paper is organizes as follows: in Section 3.2, we elaborate on
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existing complexity metrics and discuss some of their drawbacks. The theoretical
background and modeling of air traffic using graph theory is presented in Section
3.3. In section 3.4, we present the proposed complexity indicators. We evaluate
the indicators in illustrative examples in section 3.5, while results obtained from
real traffic are presented and discussed in Section 3.6. In section 3.7, we draw
conclusions and propose steps for further research.

3.2 Related Work
First of all, there have been previous works that model air traffic as a graph. Koca et
al. [79] effectively transform traffic to a graph representation by identifying relevant
aircraft to a conflict by means of spatio-temporal regions. However, their work is
applicable only to conflict resolution. Furthermore, their graph analysis requires the
presence of pairwise conflicts and is not intended to provide a dynamic complexity
metric that considers traffic evolution.

There are many different ATM complexity metrics used in literature. As is the case
with this paper, the bulk of them focus on measuring sector complexity at the tactical
level.

The complexity of a certain unit of airspace has been usually linked to controller
workload [73]. This seems quite intuitive, the more work a controller has to do, the
more complex the situation is. However, measuring it is not trivial. Workload is
highly subjective and there is no definite consensus as to what constitutes it [37].
Research on complexity metrics can be generally put into two groups: metrics that
correlate workload with certain physical attributes of the airspace and metrics that
attempt to measure directly the workload on the controller.

The most common metric from the first group is Aircraft Density [26, 27], defined
as the number of aircraft at the time of measurement. Another common metric is
Dynamic Density (DD) [80, 30, 24]. There are several ways DD has been defined in
literature, but the underlying core idea is to define complexity as the weighted sum
of several attributes. Examples of such attributes include the number of aircraft,
number of cruising, ascending and descending aircraft, speed, heading change,
number and time to conflicts etc. Interval Complexity [32], is similar to DD but is
calculated as the average over a 5-10 minute window. However, they do not give an
evolution of complexity in time.

Another metric that measures complexity through geometrical features is Fractal
Dimension [42]. Complexity is calculated through the degrees of freedom of an air-
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craft given its route and constraints. Nonetheless, it comes with strong dependencies
on airspace structure, requiring it to be made up of piece-wise linear segments.

Delahaye et al. [41]. propose two distinct ways of measuring air traffic complexity.
Firstly, they consider geometrical properties in order to build a new complexity
coordinate system in which sector complexity through time is presented. Secondly,
they represent air traffic as a dynamic system in order to yield an intrinsic measure
of complexity through Kolmogorov entropy.

Wang et al. [47] propose describing air traffic situations using the theory of complex
networks. They provide a complexity vector, which is comprised from several
indicators. Situations are then classified as ’low-complexity’, ’medium-complexity’
and ’high-complexity’ depending on vector values.

Their approach bears some similarities to this paper, however, as we will explain,
there are some key differences. First of all, they consider two aircraft interdependent
only if there is a potential conflict between them. While conflicts affect the com-
plexity of a situation, they are not the only source of it [79, 41, 26, 31]. Furthermore,
they do not consider the severity of interdependencies. In this work, two aircraft are
interdependent if they are close enough horizontally and vertically. Additionally, we
consider the severity of interdependencies with a conflict having maximal severity
(see Section 3.3 for a detailed description).

The second group of complexity metrics consists of approaches that measure the
cognitive workload controllers experience. They include methods such as measuring
ocular activity [37], brain imaging [38] and electroencephalography [39].

COTTON [81] is a project funded by SESAR JU that investigates many aspects that
affect complexity (geometric and cognitive), which they call complexity generators.
Different airspace configurations and time horizons are considered. They identify
the most influencing generators and combine them. Furthermore, they consider
uncertainty which they model through Bayesian networks.

Both groups of approaches have several drawbacks. Most of the metrics in the first
group take a very simple point of view (e.g. aircraft density). While this means
that those metrics can be computed quickly, it also means that the information they
provide is not comprehensive. These metrics are not sufficiently expressive, as
providing only a complexity score does not give the controllers a detailed reasoning
why a situation is complex or not. The geometrical approach by Delahaye et al.
overcomes these drawbacks, however it is not clear how to interpret the proposed
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coordinate system. Furthermore, their second approach based on dynamic system
theory requires a calibration time and suffers from higher computational costs.
Moreover, it is more suited for measuring flow complexity.

On the other hand, the second group of approaches tends to use methods that are quite
intrusive to the workflow of the controller. Additionally, they measure workload
on each controller individually, which will require an unknown calibration time to
specific controllers. Finally, many of these approaches show complexity only for a
fixed point in time. This is another drawback of such approaches, as the evolution
of traffic through time is an important indicator of how complex a situation is.

Automation in ATM requires a better understanding of potential threats that can
impact traffic and as such, complexity metrics should provide elaborated insights
about the right mitigation measures to apply.

3.3 Air Traffic Modelled as a Graph
In this section, a formal definition of graphs is given and some basic attributes
important to this paper are introduced [82].

Some Definitions of Graph Theory
An undirected graph 𝐺 = (𝑉, 𝐸) is a mathematical structure that consists of a set
𝑉 of elements called vertices and a set 𝐸 of pairs of vertices called edges. Let
𝑒 = (𝑎, 𝑏) be an edge of 𝐺. Then 𝑒 joins the two vertices 𝑎, 𝑏 ∈ 𝑉 and is called
incident of 𝑎 and 𝑏. In turn, those vertices are called the endpoints of 𝑒 and they are
adjacent to each other.

The degree of a vertex of a graph is the number of edges that are incident to the
vertex.

The order of a graph 𝐺 = (𝑉, 𝐸) is |𝑉 |, while the size of the graph is |𝐸 |.

A triplet is a group of three vertices that are fully connected, i.e. any pair of the
three vertices are connected by an edge. We denote with T the set of all triplets in
the graph.

𝐻 = (𝑈, 𝐹) is a subgraph of 𝐺 if the vertices and edges of 𝐻 are subsets of the
vertices and edges of 𝐺, i.e. 𝑈 ⊆ 𝑉 and 𝐹 ⊆ 𝐸 .

Similar to undirected graphs, directed graphs (digraphs) can also be defined. The
difference in definition, is that in the case of directed graphs, 𝐸 is now a set of
ordered edges. All attributes can be adapted.
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Graphs can be weighted or unweighted. In the case of weighted graphs, each edge
is assigned a number (the weight), for example between 0 and 1. If no edge connects
two vertices, the weight is 0.

An important attribute of weighted graphs is the strength of a vertex. Its definition
is analogous to the degree, but it takes into consideration the weights:

𝑠(𝑖) =
𝑁∑︁
𝑗=1
𝑤𝑖, 𝑗 (3.1)

In addition to the visual representation of a graph, there are several ways a graph
can be described. The most common way is the adjacency matrix 𝐴, which for
unweighted graphs is:

𝐴 =

©­­­«
𝑎1,1 𝑎1,2 . . . 𝑎1,𝑛
...

...
...

...

𝑎𝑛,1 𝑎𝑛,2 . . . 𝑎𝑛,𝑛

ª®®®¬ 𝑎𝑖, 𝑗 =


1, if (𝑣𝑖, 𝑣 𝑗 ) ∈ 𝐸

0, otherwise
(3.2)

The idea behind this representation is this: build a matrix with all possible edges
between all vertex pairs of a graph. If an edge is actually present in the graph, then
the entry in the matrix is 1, otherwise it is 0. Similarly, a weighted graph can also
be represented with an adjacency matrix:

𝐴𝑤 =

©­­­«
𝑎1,1 𝑎1,2 . . . 𝑎1,𝑛
...

...
...

...

𝑎𝑛,1 𝑎𝑛,2 . . . 𝑎𝑛,𝑛

ª®®®¬ 𝑎𝑖, 𝑗 =

𝑤𝑖, 𝑗 , if (𝑣𝑖, 𝑣 𝑗 ) ∈ 𝐸

0, otherwise
(3.3)

In the weighted case, the entries for the edges present in the graph correspond to the
weight 𝑤𝑖, 𝑗 of the edge.

In the case of an undirected graph, the adjacency matrix is symmetric, while for
directed graphs this does not hold.

Modelling Aircraft Spatio-Temporal Interdependencies Using Graphs
In this section, we describe the model that formalizes spatio-temporal interdepen-
dencies of en-route traffic as a weighted undirected graph.

A correct definition of a graph requires having a set of vertices and a set of edges.
In our case, vertices are the set of aircraft present in a sector at a certain time
step. Therefore, we extend graph attribute to the time domain, by defining each
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of them per time step. The set of edges will be the interdependencies between
each pair of aircraft for the time step. We define these interdependencies based on
the distance between two aircraft. More concisely, if two aircraft are closer than a
certain threshold, then there will be an edge between these two aircraft. The closer
these aircraft are, the bigger the effect they have on each other will be, i.e. the
stronger the weight of the edge connecting the pair of aircraft. If the two aircraft are
in a conflict, which means they are closer than the standard safety distance (5 NM
horizontally and 1000 feet vertically) the effect they have on each other is maximal.

In this work, the weights are set following this rationale. We calculate horizontal
and vertical distance (weight) between all pairs of aircraft. An interdependency
will be added only when two aircraft are close enough horizontally and vertically.
Weights are normalized to be between 0 and 1 and the final weight is the average of
the horizontal and vertical interdependency. Formally, this is:

𝑤ℎ𝑖, 𝑗 (𝑡) =


1 if 𝑑ℎ𝑖, 𝑗 (𝑡) ≤ 𝐻

0 if 𝑑ℎ𝑖, 𝑗 (𝑡) ≥ 𝑡ℎ𝑟𝑒𝑠ℎℎ
𝑡ℎ𝑟𝑒𝑠ℎℎ−𝑑ℎ𝑖, 𝑗 (𝑡)
𝑡ℎ𝑟𝑒𝑠ℎℎ−𝑚𝑖𝑛ℎ otherwise

(3.4)

𝑤𝑣𝑖, 𝑗 (𝑡) =


1 if 𝑑𝑣𝑖, 𝑗 (𝑡) ≤ 𝑉

0 if 𝑑𝑣𝑖, 𝑗 (𝑡) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑣
𝑡ℎ𝑟𝑒𝑠ℎ𝑣−𝑑𝑣𝑖, 𝑗 (𝑡)
𝑡ℎ𝑟𝑒𝑠ℎ𝑣−𝑚𝑖𝑛𝑣 otherwise

(3.5)

𝑤𝑖, 𝑗 (𝑡) =

𝑤ℎ𝑖, 𝑗 (𝑡)+𝑤𝑣𝑖, 𝑗 (𝑡)

2 if 𝑤ℎ𝑖, 𝑗 (𝑡) > 0 & 𝑤𝑣𝑖, 𝑗 (𝑡) > 0

0 otherwise
(3.6)

where 𝑤ℎ𝑖, 𝑗 (𝑡) and 𝑤𝑣𝑖, 𝑗 (𝑡) are the horizontal and vertical weights at time 𝑡, 𝑑ℎ𝑖, 𝑗 (𝑡)
and 𝑑𝑣𝑖, 𝑗 (𝑡) are the horizontal and vertical distance of two aircraft at time 𝑡, 𝐻
and 𝑉 are the horizontal and vertical safety distances and 𝑡ℎ𝑟𝑒𝑠ℎℎ and 𝑡ℎ𝑟𝑒𝑠ℎ𝑣 are
the horizontal and vertical thresholds. Such a definition of the interdependencies
implies that they are undirected, which means that also the graph they define is
undirected. Furthermore, the interdependencies are defined for a time step, therefore
through their evolution in time, we are able to capture directional information such as
heading. For instance, if the two aircraft that have an interdependency between them
are moving towards each other, the weight of the interdependency would increase.
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3.4 Complexity Indicators
There is a wealth of research present on graph complexity[83, 84, 85, 86, 87, 88,
89, 90]. Many different definitions of complexity exist, depending on what aspects
of graphs are being studied.

In this work, graph complexity and in turn sector complexity, is defined as the
connectivity of the graph. Furthermore, by modeling traffic as a weighted graph,
we inherently take into consideration the severity of interdependencies.

There are several ways the connectivity of a graph can be measured. Research that
applies graph theory to practical problems [89, 90] shows that connectivity indicators
that combine topological information with the weight distribution of the graph are
able to provide broad and detailed information. In this work, four indicators are
formally defined and illustrated: edge density, strength, clustering coefficient and
nearest neighbor degree.

Edge Density
Edge density (ED) measures how many edges the graph has, compared to the number
of edges in a fully connected graph of the same size. As we are dealing with weighted
graphs, the weights are considered. Formally, ED is given as follows:

𝐸𝐷 (𝐺, 𝑡) =
∑
(𝑖, 𝑗)∈𝐸 𝑤𝑖, 𝑗 (𝑡)
𝐴(𝑉𝑡)

, 𝐴(𝑉𝑡) =
|𝑉𝑡 | ( |𝑉𝑡 | − 1)

2
(3.7)

|𝑉𝑡 | denotes the number of vertices in the graph (i.e. the number of aircraft present
in the sector) at time step 𝑡 and 𝐴(𝑉𝑡) is the number of all possible edges. From the
definition, it follows that this indicator can take values from 0 to 1.

ED refers to the whole graph, and not specific vertices, making it a global connec-
tivity measure. It relies on the concept that traffic geometries tend to be complex
when there are more interdependencies between aircraft.

Figure 3.1 shows an arbitrary sector. The only interdependecy exists between 𝐴𝐶3

and 𝐴𝐶4. However, as there are four aircraft in the sector, the potential number of
interdependecies is six, therefore the ED score for this sector is 1

6 .

Strength
In graph theory, the definition of strength is obtained by extending the definition
of vertex degree to account for the weights of the edges. This indicator gives each
aircraft its own score, and a global score is measured by taking the average of all
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Figure 3.1: The edge density indicator.

aircraft in the graph. Formally, it is given as follows:

𝑠(𝑖, 𝑡) =
𝑁∑︁
𝑗=1
𝑤𝑖, 𝑗 (𝑡) (3.8)

Strength is a natural measure of the importance or centrality of a vertex in the graph.
This indicator measures the strength of the vertices in terms of the total weight of
their connections. In the proposed model, it quantifies how tight interdependencies
of each aircraft are. The "stronger" an aircraft is, the more interdependent it is
with other aircraft, the more complex it can be considered. This indicator is shown
in Figure 3.2 where an arbitrary sector is shown in different time steps, There are
three aircraft in the sector. 𝐴𝐶1 and 𝐴𝐶2 are moving closer while 𝐴𝐶1 and 𝐴𝐶3 are
moving away from each other. As a result, the strength of AC3 decreases through
time, however as 𝐴𝐶1 and 𝐴𝐶2 are getting closer, their strength score increases.
With 𝐴𝐶1 having an increasingly stronger interdependency with 𝐴𝐶2, while its
interdependency with 𝐴𝐶3 grows slightly weaker, strength increases in time for the
whole sector. Strength can take values from 0 to |𝑉𝑡 | − 1, which happens in the case
of a fully connected graphs with maximal weights.

Clustering coefficient
The clustering coefficient (CC) measures the local cohesiveness. This indicator
provides information regarding the neighborhood of each vertex. It takes into
account the weight of the clustered structure found in triplets. For each vertex 𝑖,
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Figure 3.2: The strength indicator.

CC counts the number and the weight of triplets (see: Section 3.3) formed in the
neighbourhood of 𝑖. Formally, the clustering coefficient of a vertex 𝑖, is calculated
as follows:

Figure 3.3: The CC indicator.

𝐶𝐶 (𝑖, 𝑡) =
∑
𝑗 ,𝑘 (𝑤𝑖, 𝑗 (𝑡) + 𝑤 𝑗 ,𝑘 (𝑡))

2 · (𝑠(𝑖, 𝑡) (𝑑𝑒𝑔(𝑖, 𝑡) − 1) ,∀(𝑖, 𝑗 , 𝑘) ∈ T (𝑡) (3.9)

where 𝑠(𝑖, 𝑡) is the strength of the current vertex, 𝑑𝑒𝑔(𝑖, 𝑡) is the degree of the vertex
at time step 𝑡 and T (𝑡) is the set of triplets present at time 𝑡. CC scores range from
0 to 1.

If aircraft that are very tight with each other form clusters, then the situation will
be more complex than if the clusters were formed by aircraft that form edges with
smaller weights.
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The clustering coefficient indicator is illustrated in Figure 3.3. In 𝑡1, the three aircraft
form a cluster. Such a configuration of aircraft represents a situation where they are
tightly connected. It can be observed that 𝐴𝐶3 is moving away from the two other
aircraft, thus breaking the cluster. In the first timestep, the controller would need
to be concerned with all of the aircraft present in the sector, while in the second
timestep, an interdependency exists only between 𝐴𝐶1 and 𝐴𝐶2. This illustration
shows how only measuring the strength is not enough to give a rich picture of
complexity, but different topological characteristics need to be examined.

Nearest Neighbor Degree
Nearest Neighbor Degree (NND) calculates a local weighted average of the nearest
neighbor degree of each aircraft according to the edge weights. Formally, it is
defined as:

𝑁𝑁𝐷 (𝑖, 𝑡) =
∑𝑁
𝑗=1 𝑤𝑖, 𝑗 (𝑡)𝑑𝑒𝑔( 𝑗 , 𝑡)

𝑠(𝑖, 𝑡) (3.10)

Such a definition implies that when edges with larger degrees are pointing to neigh-
bors with higher degrees, the situation is more complex. Similar to Strength and
CC, NND is also a local measure, and the global measure is calculated by averaging
over all vertices. The NND scores range from 0 to |𝑉𝑡 | − 1. In the case of sector
complexity, the more tightly connected a neighbour of an aircraft is to other aircraft,
the more likely it is for a situation to arise that requires closer monitoring or potential
ATCOs interventions. This indicator is illustrated in Figure 3.4.

Figure 3.4: The NND indicator.
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In 𝑡2, 𝐴𝐶4 joins the sector, and immediately creates an interdependency with 𝐴𝐶1.
The strength of 𝐴𝐶4, is therefore equal to its interdependecy with 𝐴𝐶1. This would
indicate that its complexity is quite low, however 𝐴𝐶1 forms interdependencies with
the rest of aircraft in the sector. As such, any potential maneuvers applied to 𝐴𝐶4

could affect 𝐴𝐶1, which in turn would affect the rest of the aircraft. Such a situation
illustrates how interdependencies between aircraft where at least one has a high
degree can lead to a highly complex situation. In this case, no clusters are formed,
therefore the CC indicator does not change its value. This shows how clustering is
not the only topological characteristic that captures the complexity of a situation,
but all indicators are required to give a nuanced view of complexity.

Algorithm 4 shows the pseudocode of the procedure to calculate the complexity of
a given airspace. The inputs are the airspace (e.g. coordinates of sector boundary),
the time window for which to calculate the complexity, sampling time (e.g. measure
complexity every 15 seconds) and the thresholds to determine interdependencies.
The scores of the indicators are initialized as empty lists. Then, for each sampling
time, until the duration of the time window has been reached, a snapshot of the
traffic in the airspace is taken. After that, the graph is generated taking into account
the threshold values for interdependencies. Then the indicator values for the current
time are calculated using Equations 7,8,9 and 10 and the values for each indicator
are returned.

3.5 Test Scenarios
In this section, we illustrate how the indicators behave by means of synthetic tra-
jectories. After that, Miles-in-Trail scenarios and real traffic are used to verify the
expected benefits.

Illustrative Examples
To provide a better understanding of the complexity indicators, three synthetic
scenarios are shown.

Figure 3.5 shows a graph with relatively high connectivity, while Figure 3.6 shows
a less connected graph. Both graphs have the same number of vertices and common
edges have the same weight. 𝐺1 has more edges.

Table 3.1 shows the indicator scores for 𝐺1, while Table 3.2 shows them for 𝐺2. As
expected, because 𝐺1 has more edges, it has a higher ED score.

In the case of CC, there are no clusters formed for 𝐺2 Therefore, CC for each of
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Algorithm 1 Calculate Complexity Algorithm
procedure COMPLEXITY(𝑎𝑖𝑟𝑠𝑝𝑎𝑐𝑒, 𝑡𝑤𝑖𝑛𝑑𝑜𝑤, 𝑡𝑠𝑎𝑚𝑝𝑙𝑒, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

𝐸𝐷 ← ∅
𝐶𝐶 ← ∅
𝑁𝑁𝐷 ← ∅
𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ← ∅
𝑡𝑐𝑢𝑟𝑟 ← 0
while 𝑡𝑐𝑢𝑟𝑟 <= 𝑡𝑤𝑖𝑛𝑑𝑜𝑤 do

𝑡𝑟𝑎 𝑓 𝑓 𝑖𝑐𝑡𝑐𝑢𝑟𝑟 ←GET-TRAFFIC(𝑡𝑐𝑢𝑟𝑟 , 𝑎𝑖𝑟𝑠𝑝𝑎𝑐𝑒)
𝑔𝑟𝑎𝑝ℎ←GENERATE-GRAPH(traffic𝑡𝑐𝑢𝑟𝑟 , 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
𝐸𝐷𝑡𝑐𝑢𝑟𝑟 ← 𝐶𝐴𝐿𝐶 − 𝐸𝐷 (𝑔𝑟𝑎𝑝ℎ)
𝐶𝐶𝑡𝑐𝑢𝑟𝑟 ← 𝐶𝐴𝐿𝐶 − 𝐶𝐶 (𝑔𝑟𝑎𝑝ℎ)
𝑁𝑁𝐷𝑡𝑐𝑢𝑟𝑟 ← 𝐶𝐴𝐿𝐶 − 𝑁𝑁𝐷 (𝑔𝑟𝑎𝑝ℎ)
𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑡𝑐𝑢𝑟𝑟 ← 𝐶𝐴𝐿𝐶 − 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑔𝑟𝑎𝑝ℎ)
𝐸𝐷 ← 𝐸𝐷 ∪ 𝐸𝐷𝑡𝑐𝑢𝑟𝑟

𝐶𝐶 ← 𝐶𝐶 ∪ 𝐶𝐶𝑡𝑐𝑢𝑟𝑟
𝑁𝑁𝐷 ← 𝑁𝑁𝐷 ∪ 𝑁𝑁𝐷𝑡𝑐𝑢𝑟𝑟

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ← 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ ∪ 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑡𝑐𝑢𝑟𝑟
𝑡𝑐𝑢𝑟𝑟 ← 𝑡𝑐𝑢𝑟𝑟 + 𝑡𝑠𝑎𝑚𝑝𝑙𝑒

end while
return 𝐸𝐷,𝐶𝐶, 𝑁𝑁𝐷, 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ

end procedure

Table 3.1: Complexity indicators for 𝐺1

ED Strength CC NND
AC1 0.2 0 4
AC2 1.1 0.2 2.63
AC3 1.1 0.33 3.27
AC4 1.2 0.33 3.33
AC5 1.4 0.33 3.14
Average 0.25 1.0 0.24 3.28

its vertices is 0. This is not the case for 𝐺1, where there are several triplets, i.e.
clusters, thus the average CC is not zero, specifically 0.24.

As it has been previously mentioned, NND measures how connected the neighbors
of a vertex are. Let us consider 𝐴𝐶2. By removing an edge between 𝐴𝐶3 and 𝐴𝐶5

(which has a relatively big weight), we can see the difference in NND score. The
NND impacts the measures taken to lower complexity. If 𝐴𝐶2 and 𝐴𝐶3 are moving
closer to each other, the strength of their interdependency will increase. Moreover,
given that there is an interdependency between 𝐴𝐶3 and 𝐴𝐶5, the situation will be
more complex. Having this information, a change in trajectory would be proposed
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Figure 3.5: A complex graph 𝐺1.

Figure 3.6: A simpler graph 𝐺2.

in order to decrease complexity.

Figure 3.7 shows a more realistic example scenario. There, four aircraft are moving
towards each other. In this example, they are all A320, flying at 30000 feet, with
a speed of 300 kts. The distance between the furthest aircraft is around 240 NM,
while the distance between the closer aircraft is around 120 NM. The threshold for
interdependencies is set to 100 NM. The simulation is run for 20 minutes. The
figure shows snapshots of the traffic in different time staps, at the beginning, at 8
minutes and at 16 minutes. At each point in time, the graph and the indicator scores
are shown. While evaluating the merits of the proposed indicators is paramount,
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Table 3.2: Complexity indicators for 𝐺2

ED Strength CC NND
AC1 0.2 0 3
AC2 0.9 0 1.44
AC3 0.3 0 3
AC4 1.0 0 1.8
AC5 0.6 0 2
Average 0.15 0.6 0 2.25

an important aspect to investigate is the way the information is presented to the
controllers. In this instance, we present a simple and intuitive way which presents
the most crucial aspects of the graph. However, more research is needed to determine
the best way such information must be presented.

Figure 3.8 shows the evolution of indicator in the simulation time. For the first
3 minutes, the scores are all zero, as the aircraft have not yet started creating
interdependencies amongst them. The first interdependencies are created between
𝐴𝐶1 − 𝐴𝐶3 and 𝐴𝐶2 − 𝐴𝐶4. In this example, there was no intervention to separate
the aircraft, therefore the peak for ED and Strength is reached around the 15 minute
mark, where all aircraft are in conflict with each other, as demonstrated by the ED
value of 1, which is the theoretical maximum. Interestingly, the peak values of CC
and NND are reached around the 10 minute mark. Such a result indicates that all
aircraft now have interdependencies with each other, shown by the value of NND
being 3. This example illustrates how complex scenarios can occur even before the
start of conflicts, as evidenced by the peak of CC and NND happening before the
peak of ED and Strength.

Miles-In-Trail
A realistic example is the intersection of two Miles-in-Trail (MiT) flows. This
way of traffic organisation is well accepted among controllers to reduce air traffic
complexity. In MiT, traffic is structured into flows of aircraft following the same
path. Flights in the same path are separated by a certain distance and their speed
is regulated. These flows create queues of aircraft that are easier to manage by
controllers [76]. In this section, we show different conflict scenarios and how they
would be solved by different CR algorithms and we will illustrate how the values of
each complexity indicator evolve during that time.

To do so, we adapt the scenario of Breil et al. [76]. They consider a flow that goes
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Figure 3.7: A more realistic example scenario.
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Figure 3.8: Indicator scores for the example scenario.

through waypoints LMG, MEN, MRM and another that goes through waypoints
TOU, MEN and LYS. Aircraft are generated every 100 s from LMG and TOU at
20000 ft. The distance between aircraft in the same flow is kept at 14.14 NM. The
interdependency threshold is set at 15 NM, so aircraft at the same flow always form
interdependencies amongst them. Using these parameters, conflicts are induced in
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crossing aircraft from different flows.

In their work, Breil et al. [76] model air traffic as a multi-agent system and propose
an algorithm to solve conflicts by local speed changes (henceforth referred to as
MAS Speed). The goal of the algorithm is to choose an action from the action
space to either solve a conflict, or which leads to the latest start time of a conflict.
Furthermore, they extend it to include heading changes as well (henceforth referred
to as MAS Heading). Differently from their work, we consider the speed changes
separately from heading changes, and do not combine the two different ways of
regulating a MiT network. For a more detailed description of the algorithm, we
refer the reader to [76].

Furthermore, we adapt the Modified Voltage Potential (MVP) conflict resolution
algorithm proposed in [77]. The MVP algorithm models conflicting aircraft as
identically charged particles that repel each other in such a way that the conflict does
not occur. The result is a displacement vector that is used to compute changes in the
speed of conflicting aircraft. We refer the reader to [77] for a detailed description.
Finally, we also show the case where no intervention is made, for reference.

Figure 3.9 shows the MiT network we consider. In the case of MAS Speed, aircraft
must decide between three actions: cruise, accelerate, decelerate. Such a decision
must be made every 5 seconds and the algorithm is validated greedily for each
aircraft in parallel. Acceleration and deceleration are fixed to ±4000𝑁𝑀/𝑚2. For
the MVP algorithm, whenever there is a conflict pair, speed changes are applied to
solve the conflict.

The scenario of MAS Heading is shown in Figure 3.10. In this scenario, aircraft can
be put on parallel track to enable them to cross the intersection conflict free. Each
flow is divided into three tracks separated by 5 NM. Aircraft must choose which
track they must take. Finally, the sub-flows are merged into a single outgoing flow.

In this section, we consider 4 different scenarios: 2 aircraft per flow, 4 aircraft
per flow, 8 aircraft per flow and 16 aircraft per flow. Four intervention methods are
examined: MAS Speed, MAS Heading, MVP and a reference case (no intervention).
Figure 3.11 shows the indicators for the case with 2 aircraft per flow. When an
action is chosen to reduce the effect of the conflict, the CC and NND scores drop
dramatically. This result indicates that our metric might be able to capture perceived
controller complexity. Nevertheless, we see a huge spike for edge density and
strength in the case of MAS Speed. This is attributed to the fact that the algorithm is
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Figure 3.9: Miles-in-Trail scenario for the case of speed changes.

not able to solve this conflict. The MVP algorithm has a similar ED score to when
there are no interventions, but the strength score behaves differently, which is due
to the fact that the conflict is solved once it is detected. This is further confirmed
from the comparison between MAS Speed and MVP.

Figure 3.12 shows the indicators for the case of 4 aircraft per flow. The results here
are similar to the previous case. However, we note that in this scenario, MAS Speed
does not lead to a spike in ED and strength. Nevertheless, MVP leads to a higher
ED and strength score. MAS Heading leads to a more complex solution of the MiT
scenario when 4 aircraft per flow are present, with only the NND not resulting in a
spike.

Figures 3.13 and 3.14 provide similar information. In these two scenarios, where
the number of aircraft per flow is quite high, the speeding changes algorithms lead
to a noticeably lower scores for CC and NND. With many present aircraft, changing
the heading might lead to a more chaotic situation. There is a bigger possibility of
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Figure 3.10: Miles-in-Trail with heading changes.

aircraft creating interdependencies with other aircraft that they would not have if the
traffic was regulated by speed changes. Furthermore, we note that in all scenarios,
the spike in the MAS Heading algorithm happens later then in the case of MAS
Speed and MVP. This is an indicator that the bigger interpendencies happen when
traffic is rerouted to its original flow. The indicators provide elaborate information
to controllers, as they can be alerted that a complex situation will start. In situations
with many present aircraft, heading changes are more difficult for a controller to
handle, which is further evidence that our indicators are suitable to be used in real
traffic. This analysis shows that the indicators can be used to assess how conflict
resolution algorithms affect the complexity of the airspace, which is a dimension
traditional CR algorithms do not consider.

Moreover, the proposed indicators can be used to decide appropriate solution tech-
niques for given scenarios. For example, in cases with fewer aircraft, heading
changes lead to lower complexity, while in scenarios with many aircraft, speeding
changes might be preferred. Finally, the indicators can be used to design novel con-
flict resolution algorithms. Such algorithms can be used to not only solve conflicts,
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Figure 3.11: Miles-in-Trail with 2 aircraft per flow.

0 10 20 30 40
0

0.1

0.2

0.3

0 10 20 30 40
0

0.2

0.4

0.6

0.8

0 10 20 30 40
0

0.1

0.2

0 10 20 30 40
0

1

2

No intervention
MAS Speed
MAS Heading
MVP

Time (minutes) Time (minutes)

Time (minutes) Time (minutes)

ED Strength

CC NND

Figure 3.12: Miles-in-Trail with 4 aircraft per flow.

but also improve the quality of solutions. For instance, an algorithm based on the
indicators could propose solutions that at best improve the complexity of the sector
and at worse do not increase complexity, in addition to solving the present conflicts.

3.6 Evaluation on Real Traffic
Data
We evaluate these indicators on a day of flights taken from DDR2 (m3 file format
consisting of actual trajectories). We take sector configurations of that day and
eventually end up with 178 sectors, all in the European Civil Aviation Conference
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Figure 3.13: Miles-in-Trail with 8 aircraft per flow.
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Figure 3.14: Miles-in-Trail with 16 aircraft per flow.

(ECAC)1 area. Sector borders are kept unchanged throughout the day. The flights
and sectors that are used in this work are en-route, i.e. active at 25000 feet and
higher.

In order to determine the horizontal and vertical thresholds through which we define
interdependencies, we do a system wide analysis of pairwise aircraft horizontal
and vertical distances. As such, for each individual sector, we compute the average
pairwise horizontal and distance based on data from the previous day. The thresholds

1https://www.ecac-ceac.org/



40

are then set as the mean pairwise distance (horizontal and vertical). In this way
we adapt the thresholds for each sector, expecting that historical data can be useful
to identify some traffic features if the operational context is similar. To those
distances, we add as a buffer a value of 5 NM horizontally and 1000 feet vertically.
Interdependencies should not be defined universally, as sector size plays a role in the
distances or aircraft. Using such a method, we ensure that horizontal and vertical
thresholds are set for each sector differently.

To get the complexity scores for the indicators, we sample the data every 30 seconds
for the whole day.

Complexity Indicators
In this section, we visualize the complexity indicators for an hour of operations. The
sector we chose had, on average, the most aircraft present at the same time. In Figure
3.15, we also visualize the occupancy in the the sector at each time step. This can
be thought of as an extension of this metric into the time domain. Occupancy is one
of the simplest yet most used classical complexity metrics. This section presents a
comparison of this metric with the proposed indicators and we show that occupancy
cannot capture nuances in aircraft interdependencies and thus complexity.
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Figure 3.15: Number of flights present in the sector.

In Figure 3.16, ED of the hour of operations is shown. The ED score is relatively
low, with the highest being around 0.6, which occurs when the number of aircraft
is around 8. This means that the majority of aircraft do not get close enough to
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each other to be considered interdependent. Such a result further confirms initial
statement, that the number of aircraft does not present a full picture of complexity.
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Figure 3.17: Clustering Coefficient.

Figure 3.17 shows the clustering coefficient throughout the hour. The overall dis-
tribution is similar to that of ED, which suggests that there is an area in the sector
where aircraft tend to cluster. Nevertheless, one can see that such clusters do not
last long (in this case around 5 minutes).

The NND score, shown in Figure 3.18, provides similar information. There is a
peak around the 20 and 50 minute marks, which corresponds to a peak in the other
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Figure 3.18: Nearest Neighbor Degree.

indicators as well as the number of aircraft. However, in the beginning, when the
CC and ED score quite high, NND is at its lowest. This is due to a small graph size,
which is further supported by a small number of aircraft. Between the two peaks,
a steady decline and increase of NND is observed. Such a behavior is evidence of
the shape of the graph during that time, meaning that even though clusters are not
formed, interdependencies are not just pairwise, but span multiple aircraft. This
shows that relatively complex situations can arise even when the graph is small (as
evidenced by ED), with a group of aircraft needing special attention.

The strength indicator for the hour of operations is visualized in Figure 3.19. Simi-
larly to the rest of the indicators, there are peaks around the 20 and 50 minute marks.
However, the shape of the distribution is akin to that of NND, which supports our
claim in the previous paragraph about the nature of interdependencies. On top of
that, the similarity between NND and strength further suggests that in this particular
case, not only do interdependecies span multiple aircraft, they are also quite strong,
which adds to the complexity of the situation.

Correlation between number of aircraft and the indicators
In this section, we show that the combination of the proposed indicators can capture
more detailed information than the number of aircraft, which is the simplest com-
plexity indicator. To do this, we calculate the Pearson correlation coefficient for all
sectors. Table 3.3 shows the mean correlation for each indicator.

We notice that the Pearson correlation coefficient for ED is 0.39 value which means
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Figure 3.19: Strength.

Table 3.3: Mean correlation of each indicator with the number of aircraft

ED Strength CC NND
0.39 0.86 0.64 0.88

Table 3.4: Mean correlation between indicators

ED Strength CC NND
ED 0.65 0.54 0.61
Strength 0.65 0.83 0.98
CC 0.54 0.65 0.82
NND 0.61 0.98 0.82

there is low correlation. This result is further evidence that number of aircraft does
not account well for sector complexity.

The correlation of aircraft count and CC and NND is higher. Especially, in the case
of NND the correlation coefficient is more than 0.88, indicating high correlation.
This behavior is consistent with results from the previous section, which means that
when there are more aircraft in the sector, interdependencies tend to span multiple
aircraft, while being less likely to form clusters.

A relevant result is that CC correlates to the number of aircraft more than ED.
When a sector is more densely populated, clusters tend to form even when only a
fraction of present aircraft are interdependent. This shows that even when a high
number of aircraft correlates with more complex situations, our indicators give more
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information about the nature of this complexity.

As previously stated, the evolution of strength through time demonstrates that when
there is a high number of aircraft present in the sector, interdependencies tend to be
stronger. The results shown in Figure 3.19 verify this claim.

Correlation between indicators
In order to show that all indicators are needed, we calculate how they correlate with
each other and interpret these results, shown in Table 3.4

We notice that correlation between CC and ED is low, an expected result from the
results of the previous section. This is additional evidence that even small graphs
can be quite complex. The mean correlation between ED and NND serves are
further confirmation.

The correlation between NND and CC is high. Both of these indicators are defined
to give higher scores to more interconnected graphs, thus this is an expected re-
sult. Nevertheless, these indicators inherently account for different topologies, as
evidenced by Figure 3.18 and Figure 3.17.

The results indicate low correlation between the ED and strength indicators. As
we have noted before, graph size (which ED measures), shows that not all aircraft
present in the sector contribute to the overall complexity. Strength adds a layer
of information by measuring the severity of interdependencies. The strength-ED
correlation implies the presence of bigger graphs with loosely interdependent aircraft
and smaller graphs with tightly interdependent aircraft.

The strength-NND and strength-CC correlations are quite high. This suggests that in
the presence of tighter interdependencies, clusters and other forms of multi-cluster
interdependencies are very likely to form. However, as shown in the MiT example,
very different geometries with the same strength can emerge. Therefore, to capture
such topological information and combine it with the severity of interdependencies,
it is important to consider all indicators.

3.7 Conclusions and Future Work
In this paper, we formalize four indicators based on graph theory to measure sector
complexity. These indicators combine topological information gathered from inter-
dependency geometries with the severity of interdependencies to present a full and
nuanced picture of complexity. Furthermore, we consider the evolution of complex-
ity in time and do not simply give one single sector complexity score. Simulation
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results indicate that the proposed indicators give detailed information on complexity
and overcome drawbacks of existing metrics.

We evaluate the indicators in synthetic traffic geometries, as well as in a standard
situation such as Miles-in-Trail. For the latter, we adapt several conflict resolution
algorithms and show how different resolution strategies can affect the overall com-
plexity. We argue that complexity is a factor conflict resolution algorithms should
consider and through results show different strategies might be preferred depending
on the number of aircraft.

Furthermore, the proposed indicators are assessed using a day of flights taken from
DDR2 data. Sector configuration of that day is taken and we monitor 178 sectors
in the ECAC area. Results show that the indicators are more effective in capturing
geometrical complexity than aircraft density. The information obtained from using
the indicators can provide the controllers with a better understanding of complex
areas inside the sector. On top of that, we demonstrate that the four indicators
express different facets of complexity, confirming that all indicators are needed.

The indicators are evaluated using real traffic by taking a one hour window with
samples every 30 seconds which results in a stable output. Nevertheless, the length
of the time window must be investigated further. Several factors must be considered
when deciding on the length of the window. One of the most important factors
is including uncertainty in trajectory prediction, which we do not consider in this
work. As such, suitable time windows might be smaller, or might require different
sampling strategies.

As previously stated, the indicators provide a new framework in the design of conflict
resolution algorithms in order to preserve safety while reducing traffic complexity.
Complexity is usually not taken into account in designing such algorithms, which
can lead to solutions that can make the situation difficult for the controller to handle.
Additionally, by using the indicators, algorithms can be tuned to encourage resolu-
tions that lead to lower complexity and discourage those that increase complexity.
Such algorithms can be used to improve the quality of resolutions, in addition to
solving the present conflicts. For instance, Isufaj et al. [91] propose a multi-agent
reinforcement learning approach to conflict resolution which considers airspace
complexity as one of the factors that the model must optimize in addition to solving
conflicts. The indicators proposed in this work could allow for a more granular
optimization of complexity by providing more detailed information.
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In addition, by modeling traffic as a graph, we open the door to further applications
of graph theory in aviation. First of all, this work should be a baseline for designing
complexity indicators based on graph theory. As such, future work should consider
different methods for the definition of interdependencies and the value of thresholds.
For instance, machine learning methods can be used to generate the graph [92].
Furthermore, U-Space [93, 94] is envisioned to be a set of services to provide ATM
to unmanned aviation in Europe. One of its key services will be dynamic capacity
management [93], used to for strategic conflict resolution. The indicators proposed
in this work, can be adapted to this use-case and serve as an implementation of this
service.

Finally, a very important continuation would be the mapping between the indicators
and controller workload, which is an ongoing topic in the ATM community. Ways
of measuring the workload could be through subjective scores or more sophisticated
methods such as EEG [38, 39]. Such a work would investigate if the proposed
indicators are a good predictor of the measured workload. Last but not least, it is
very important to consider how the information provided by the indicators should
be presented to the controllers. In this work, we make a simple attempt by showing
the interdependencies and the indicator scores at various points in time. However,
more research is needed which takes into account controller preferences and other
various factors.



47

C h a p t e r 4

FROM SINGLE AIRCRAFT TO COMMUNITIES: A NEUTRAL
INTERPRETATION OF AIR TRAFFIC COMPLEXITY

DYNAMICS

Present air traffic complexity metrics are defined considering the performance
indicators of different management layers of ATM. These layers have different
objectives which in practice compete to maximize their own goals, which leads
to fragmented decision making. This fragmentation together with competing
KPAs requires transparent and neutral air traffic information to pave the way
for an explainable set of actions. In this paper, we introduce the concept of
single aircraft complexity, to determine the contribution of each aircraft to
the overall complexity of air traffic. Furthermore, we describe a methodol-
ogy extending this concept to define complex communities, which are groups
of interdependent aircraft that contribute the majority of the complexity in a
certain airspace. In order to showcase the methodology, a tool that visualizes
different outputs of the algorithm is developed. Through use-cases based on
synthetic and real historical traffic, we first show that the algorithm can serve
to formalize controller decisions as well as guide controllers to better deci-
sions. Further, we investigate how the provided information can be used to
increase transparency of the decision makers towards different airspace users,
which serves also to increase fairness and equity. Lastly, a sensitivity analy-
sis is conducted in order to systematically analyse how each input affects the
methodology.

4.1 Introduction
Air Traffic Management (ATM) is a complex socio-technical system comprised
by three main layers; air space management (ASM), air traffic flow management
(ATFM) and air traffic control (ATC) [95], whose performance is measured through
various Key Performance Areas (KPAs), of which some of the most important
are safety, capacity, cost-efficiency and environment [5]. Although part of ATM
structure, each of these layers have different objectives which in practice compete to
maximize their own goals. Several authors point out that complex interdependencies
among the decision layers can cause unnecessary penalization on some KPAs to
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improve others. In [96] authors claim as a result of early SESAR projects such
as STREAM [6] that the exact relationship among these KPAs is still not well
understood and should be further studied in future research. Moreover, recent
finalized projects such as APACHE [7] targeting the analysis of the interdependencies
between the different KPAs by capturing the Pareto-front of ATM, still claims that
further research is needed to uncover the inter-dependencies between the different
KPAs [97]. An important challenge that must be overcome to reach such a Pareto-
front of ATM KPAs is the lack of an effective coordination mechanism (i.e., system
behaviour) among ATM subsystems and corresponding Decision Support Systems
(DSS).

Figure 1 illustrates a conceptual framework for ATM-related quality of services
based in [98, 99]. The idea is to visualize all the components (i.e., subsystem, KPA,
DSS) and mark the inter-relations between them. The distinction of components is
done by color-coding based on their functions and definitions. Each component is
connected to one or other components. The component that is attached to the arrow-
head indicates that it is the one which is affected by the other. Note that connectors
have different colours, based on the origin of the subsystems (e.g., ATC). Accord-
ing to [100], the represented interactions can be considered as complex adaptive
systems (CAS), which typically include multiple loops and multiple feedback paths
between many interacting entities, as well as inhibitory connections and preferential
reactions.

Furthermore, an illustrative example highlights the interactions among the DSS that
target the airspace management (AM) and the trajectory management (TM) and
capacity management. This is a common example to highlight how these decisions
can cause a chain of reactions resulting in en-route ATC inefficiency, delays at
airport (taking-off and landing) and en-route ATFM inefficiency [101]. To date,
the lack of a formal analysis between these control mechanisms leads to a lack
of transparency and coordination between different DSS that could improve ATM
performance.

Complex interdependencies among the mentioned KPAs have been key for the aero-
nautic community to accept the confusing term emergent dynamics which in fact
is justified by the un-modelled behavioural dynamics among these objectives (i.e.,
capacity, safety, and efficiency). For instance, consequences of a small reduction
of a sector capacity (considering ground weather conditions) usually is tackled by
over-conservative ATM actions to avoid safety issues at a cost of penalizing flight
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Figure 4.1: Conceptual Framework for ATM-related quality of services.

efficiency. In the other hand, other solutions with better information (weather infor-
mation at flight deck) could improve flight efficiency. In [102] a difference between
weak emergence dynamics and strong emerge dynamics is introduced to differentiate
between micro-level interactions among subsystems (weak) and emergence caused
by irreducible macro causal mechanisms (strong). Authors of this paper, accept
that unpredictable decision-making processes carried by a human actor (i.e. aircraft
pilot, air traffic controller) justify the term of strong emergent dynamics in ATM
which can be observed in several ATM socio-technical subsystems [103].

To avoid an ATM system dynamics ruled by strong emergent dynamics due to abrupt
human behaviour, in this paper a new methodological framework to enhance a com-
mon understanding among the different stakeholders is proposed. Worthwhile to
highlight that as a result of the implemented methodology, the framework allows
ANSP work closely with the rest of stakeholders avoiding over constraining solu-
tions. Moreover, the proposed framework paves the way for a shared situational
awareness in which the effects of unpredictable decision-making processes carried
by human actors is mitigated by the consensus reached among the different actors,
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transforming the strong emergent dynamics into weak emergent dynamics of ATM.

The core idea behind the proposed methodology, lies in understanding complexity
evolution of the overall air traffic. In this paper we extend the complexity notion
and indicators proposed in [104], by introducing single aircraft complexity concept.
We define single aircraft complexity as the contribution that individual aircraft have
to the overall sector complexity. Furthermore, we identify groups of interdepen-
dent aircraft that form high complex spatio-temporal areas. This method identifies
the individual and community (i.e., groups of aircraft) contributions in an on-line
fashion and gives information about the creation, evolution and disappearance of
communities. This information could enhance equity, fairness at aircraft or airline
granularity level together with NM and ANSP service performance. The proposed
method could make an immediate impact in the smooth transition between ATM
layers and DSS tools. In other words, each subsystem should comply with their
operational performance specifications (e.g., ATC must prevent loss of separations),
while decreasing mutual penalization.

The rest of this work is structured as follows: In Section 4.2, we describe in detail
the methodology. Section 4.3 provides an overview of the experimental setup. In
Section 4.4, we present and discuss several use cases based on synthetic and real
traffic, as well as an extensive sensitivity analysis. We draw conclusions and discuss
future steps in Section 4.5.

4.2 Methodology
Spatiotemporal Graph-based Complexity Indicators
While there have been many different definitions for airspace complexity, in this
work we will extend the one introduced in [104]. There, the authors focus on
defining complexity for a certain volume of space (e.g., a sector) during a time
window of interest and model air traffic as a dynamic graph 𝐺 (𝑡) = (𝑉 (𝑡), 𝐸 (𝑡)).
The set of vertices 𝑉 (𝑡) for time 𝑡 is comprised of the aircraft present in the sector
at the time, while the set of edges 𝐸 (𝑡) are the interdependencies between each
pair aircraft at time 𝑡. Interdependencies are defined based on the distance between
aircraft, more specifically, if two aircraft are closer than a certain threshold then
there will be a weight between these two aircraft. The closer the aircraft are, the
bigger will be the weight of the edge between these two aircraft, which means that
the graph is weighted and undirected. Weights are normalized to be between 0 and
1.
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In their work, they are interested for en-route traffic at the tactical level, therefore
they define the weight of the edge to be maximal (i.e., 1) when there is a loss of
separation between a pair of aircraft (5 NM horizontally and 1000 feet vertically).
Horizontal and vertical interdependencies are calculated separately and the overall
interdependency between two aircraft is the average of the two. Formally, this is
defined as:

𝑤ℎ𝑖, 𝑗 (𝑡) =


1 if 𝑑ℎ𝑖, 𝑗 (𝑡) ≤ 𝐻

0 if 𝑑ℎ𝑖, 𝑗 (𝑡) ≥ 𝑡ℎ𝑟𝑒𝑠ℎℎ
𝑡ℎ𝑟𝑒𝑠ℎℎ−𝑑ℎ𝑖, 𝑗 (𝑡)
𝑡ℎ𝑟𝑒𝑠ℎℎ−𝑚𝑖𝑛ℎ otherwise

(4.1)

𝑤𝑣𝑖, 𝑗 (𝑡) =


1 if 𝑑𝑣𝑖, 𝑗 (𝑡) ≤ 𝑉

0 if 𝑑𝑣𝑖, 𝑗 (𝑡) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑣
𝑡ℎ𝑟𝑒𝑠ℎ𝑣−𝑑𝑣𝑖, 𝑗 (𝑡)
𝑡ℎ𝑟𝑒𝑠ℎ𝑣−𝑚𝑖𝑛𝑣 otherwise

(4.2)

𝑤𝑖, 𝑗 (𝑡) =

𝑤ℎ𝑖, 𝑗 (𝑡)+𝑤𝑣𝑖, 𝑗 (𝑡)

2 if 𝑤ℎ𝑖, 𝑗 (𝑡) > 0 & 𝑤𝑣𝑖, 𝑗 (𝑡) > 0

0 otherwise
(4.3)

where 𝑤ℎ𝑖, 𝑗 (𝑡) and 𝑤𝑣𝑖, 𝑗 (𝑡) are the horizontal and vertical weights at time 𝑡. Fur-
thermore, 𝑑ℎ𝑖, 𝑗 (𝑡) and 𝑑𝑣𝑖, 𝑗 (𝑡) are the distances, 𝐻 and 𝑉 are the safety distances
and 𝑡ℎ𝑟𝑒𝑠ℎℎ and 𝑡ℎ𝑟𝑒𝑠ℎ𝑣 are the thresholds.

Airspace complexity is treated as a multifaceted notion and the authors propose four
indicators that quantify topological information and combine it with the severity of
the interdependencies. We will briefly describe these indicators, however we refer
the reader to [104] for a detailed overview.

Edge Density (ED) measure how many edge the graph has compared to the number
of edges in a fully connected graph of the same size with maximal edge. Formally:

𝐸𝐷 (𝐺, 𝑡) =
∑
(𝑖, 𝑗)∈𝐸 𝑤𝑖, 𝑗 (𝑡)
𝐴(𝑉𝑡)

, 𝐴(𝑉𝑡) =
|𝑉𝑡 | ( |𝑉𝑡 | − 1)

2
(4.4)

where |𝑉𝑡 | is the number of vertices in the graph at time t and 𝐴(𝑉𝑡) is the maximal
number of edges.

Strength measures the severity of pairwise interdependencies. It is obtained by
extending the definition of vertex degree to account for edge weights:

𝑠(𝑖, 𝑡) =
𝑁∑︁
𝑗=1
𝑤𝑖, 𝑗 (𝑡) (4.5)
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Clustering Coefficient (CC) measures the local cohesiveness and gives information
regarding the local neighbourhood of each vertex (i.e., aircraft). Formally, it is
calculated as follows:

𝐶𝐶 (𝑖, 𝑡) =
∑
𝑗 ,𝑘 (𝑤𝑖, 𝑗 (𝑡) + 𝑤 𝑗 ,𝑘 (𝑡))

2 · (𝑠(𝑖, 𝑡) (𝑑𝑒𝑔(𝑖, 𝑡) − 1) ,∀(𝑖, 𝑗 , 𝑘) ∈ T (𝑡) (4.6)

Nearest Neighbor Degree (NND) calculates a local weighted average degree of the
nearest neighbour for each aircraft:

𝑁𝑁𝐷 (𝑖, 𝑡) =
∑𝑁
𝑗=1 𝑤𝑖, 𝑗 (𝑡)𝑑𝑒𝑔( 𝑗 , 𝑡)

𝑠(𝑖, 𝑡) (4.7)

The first indicator is inherently a global measure, while the remaining three indi-
cators are turned into global measures by taking the average across vertices in the
graph.

The overall complexity of the sector is chosen to be given as the evolution in time
of each indicator and the authors argue that this results in a more nuanced overview
of complexity.

Single Aircraft Complexity
While the previously described methodology gives a more nuanced view of com-
plexity than simpler metrics (e.g., dynamic density [30]), it still suffers from a
common drawback of the majority of existing complexity metrics: a lack of in-
terpretability of the complexity scores. More specifically, given a certain traffic
configuration, existing methods cannot provide information as to which areas of the
sector are causing most of the complexity and how much of it they are causing.
Furthermore, [104] do not discuss ways how to combine the information provided
by each indicator.

In this work, we exploit an inherent characteristic of complexity defined based
on graph theory to overcome this major drawback. As previously mentioned,
three of the four indicators described, which will be in the focus of our work,
can be defined in terms of single aircraft, with the overall being the average across
aircraft. This means that we can generate a complexity score for every single aircraft
present in the sector in time 𝑡 and for every indicator without loss of information.
However, this is not sufficient, as single scores would simply induce an order
between aircraft for every indicator without providing any information regarding
the overall situation of complexity in the sector. Another issue with this method
is that it contains redundant information, as interdependencies are undirected, e.g.,
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𝐴 → 𝐵 and 𝐵 → 𝐴. Finally, it is not clear how to interpret the scale and value
of the complexity scores. Furthermore, since the indicators have a different range
of possible values that they can take, it is not trivial how to combine the individual
absolute scores of every aircraft.

In this paper, we propose to slightly change perspective and calculate the contribution
of each aircraft to the overall sector complexity. This results not in an absolute score,
but in a percentage that is relative to what is currently happening in the sector at the
time. Without loss of generality, we will show how the contribution is calculated for
the strength indicator. Let us consider an arbitrary sector which at time 𝑡 is occupied
by the aircraft shown in Figure 4.2. Following Equation 5, we can determine the
individual strengths of the aircraft, shown in Table 4.1.

The individual contributions are calculated as which part of the whole strength each
aircraft is responsible for. Differently from the original definition of the overall
strength (the average), in this work we slightly modify this definition and take the
whole as the sum of all aircraft. In this case, the overall strength would be:

𝑠(𝑡) =
𝑁∑︁
𝑖=1

𝑠(𝑖, 𝑡) (4.8)

The contribution of aircraft 𝑖 to the overall strength would then be:

𝑐𝑠 (𝑖, 𝑡) =
𝑠(𝑖, 𝑡)
𝑠(𝑡) (4.9)

Using this formula, we can now determine the contribution of each aircraft to
the overall strength as shown in Table 4.1. Following a similar method we can
generalize how to calculate the contribution of an aircraft for every complexity
indicator relevant to our work (strength, CC, NND):

𝑐I (𝑖, 𝑡) =
I(𝑖, 𝑡)
I(𝑡) ∀I ∈ [𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ, 𝐶𝐶, 𝑁𝑁𝐷] (4.10)

This method allows us to meaningfully combine the contributions for all three
complexity indicators. As we are considering the contributions relative to the
current situation in the sector, we can observe what percentage of the overall sector
complexity each aircraft is responsible for. While there are different ways this can be
achieved depending on the use case, in this work we choose the average of non-zero
valued indicators at the sector. Only the indicators that have a non-zero value are
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Figure 4.2: Example of an arbitrary sector.

Indicator Value Percentage

𝑠1 1.1 22%
𝑠2 1.4 28%
𝑠3 1.3 26%
𝑠4 1.1 22%
𝑠5 0.1 2%

Table 4.1: Individual contributions for the strength indicator.

used, as we are interested in showing the contribution to the existing complexity
in the sector as quantified by the indicators. For instance, if 𝐶𝐶 (𝑡) = 0 then this
indicator is not a source of complexity for the sector at time 𝑡, therefore aircraft
should not be attributed with contributing to this indicator. This is formalised as:

𝑐(𝑖, 𝑡) =
∑
I∈[𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ,𝐶𝐶,𝑁𝑁𝐷] 𝑐I (𝑖, 𝑡)

|{I ∈ [𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ, 𝐶𝐶, 𝑁𝑁𝐷] : I > 0}| × 100 (4.11)

where the denominator is the cardinality of the set of non-zero valued indicators at
time 𝑡.

This methodology is illustrated with the example in Figure 4.3, and the results in
Table 4.2. As it can be seen, aircraft 2 contributes the most to the overall complexity
with 20.45%. This example shows that the methodology successfully combines
the information of all complexity indicators, as aircraft 2 is part of a cluster with
1 and 4 and also has a strong interdependency with aircraft 4 which increases its
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Figure 4.3: More complex example.

strength and NND scores. The topology of the subgraph comprised of aircraft
1-4 is mirrored from the subgraph formed of aircraft 5-8. However, we note that
the interdependencies in the latter are weaker, which is correctly reflected in the
contributions of these aircraft.

Nevertheless, we note again that the method of combining the contributions from
each complexity indicator can depend on the use-case, using a weighted average
instead. For instance, let us assume that this methodology will be used by the ATC.
In that case, it could be reasonable that the most important indicator is strength, as it
directly informs about the distance of the aircraft and how close they are to a loss of
separation. Such information could be provided by weighing more the contributions
from the strength indicator, while maintaining some of the information provided by
the other two indicators.

Detection of Complex Spatiotemporal Communities
Using the concept of single aircraft complexity introduced in the previous section,
it is possible to find groups of interdependent aircraft that contribute the majority
of the complexity in the sector. Finding tightly interdependent groups of nodes
in a graph (i.e., communities) is a well known problem in graph theory, with
many existing algorithms providing high quality communities efficiently, such as
the Louvain and Leiden algorithms [105, 106]. However, these algorithms optimize
for modularity, which is a quantity that measures the density of connections within
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Aircraft Contribution

1 18.76%
2 20.45%
3 11.61%
4 14.23%
5 9.01%
6 11.12%
7 11.85%
8 10.22%

Table 4.2: Contribution to complexity from each aircraft in Figure 4.3

a community. Graphs with a high modularity score will have many connections
within a community but only few pointing outwards to other communities. Briefly,
the algorithms explore for every node if its modularity score might increase if it
changes its community to one of its neighboring nodes.

Given the definition of modularity, it could be reasonable to expect that the commu-
nities that these algorithms find could coincide to high complexity communities, but
the verification of this assumption will simply increase the runtime of the algorithm.
Nevertheless, the more important issue of the aforementioned algorithms is that
communities tend to share at least some edges between them. For the application in
this paper, it is unclear how this situation ought to be treated.

To illustrate this point, let us take the graph in Figure 4.3. In this case, the Lou-
vain and Leiden algorithms output two communities: one comprised of aircraft
{1, 2, 3, 4} and the other comprised of aircraft {5, 6, 7, 8}. However, these commu-
nities are connected, as there is an edge between 4 and 5. It is non-trivial to determine
what weight is big enough to consider both communities together. Therefore, in
this work we choose to be more conservative, considering always such communities
together. In fact, this is also a known problem in graph theory known as connected
component detection [107]. In graph theory, a connected component of a graph
is a connected subgraph that is not part of any larger connected subgraph. Such
components separate the vertices into disjointed sets. In the case of Figure 4.3, there
is one connected component, i.e., the whole graph. An advantage of this choice is
that connected components can be determined in linear time O(𝑛) [107] where n is
the number of vertices, while the Louvain algorithm runs in O(𝑚) where m is the
number of edges, which is typically considered slower as the number of edges is
higher than the number of vertices [108]. In this work, we filter out communities
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with one aircraft.

Following Equation 11, we can determine the contribution of the community to
the overall sector complexity, which we define as the sum of contributions for the
individual aircraft in the community. Determining when a community is in fact a
complex community is not trivial. Complexity has often been linked to the workload
of controllers [73], which can be subjective [37, 38, 39]. In this work, we do not
attempt to make any claims to relate the complexity indicators with the workload of
controllers, we merely present a methodology that provides granular information of
complexity given the definition of the aforementioned complexity indicators (which
are objective). Therefore, in this work, we propose setting a contribution threshold
above which a community is deemed to be a complex community. In such a way
we maintain some flexibility in defining complex communities to better fit decision
makers at the present structure of ATM, allowing each user to set a particular
threshold. Formally, for a community C in time step 𝑡, we have:

𝑐𝑜𝑚𝑝𝑙𝑒𝑥(C, 𝑡) =

𝑇𝑟𝑢𝑒 if

∑
𝑖∈C 𝑐(𝑖, 𝑡) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ

𝐹𝑎𝑙𝑠𝑒 else
(4.12)

where 𝑡ℎ𝑟𝑒𝑠ℎ is the user/problem specific threshold.

So far, we have defined complex communities only for one time step 𝑡. However, as
we are looking at a time window (here we assume that the time window is a series
of discrete time steps), the continuous evolution of traffic complexity should be
analyzed. We have determined three generic events that could happen: appearance,
disappearance and evolution.

Appearance and disappearance of a complex community are defined as the time steps
in which the community started being and stopped being a complex community.
These two events can be trivially determined by applying Equation 12 for the length
of the time window. On the other hand, the evolution of complex communities
requires more consideration. During the period of time when a complex community
exists, new aircraft might join it, i.e., at least one existing aircraft of the community
forms an interdependency with an aircraft outside of it; or leave it, i.e., an existing
aircraft stops having any interdependencies with the other aircraft of the community.
In such cases, the community should be considered the same, which in this work
we will refer to as having the same label. Therefore, the problem of community
evolution can be seen as determining how community labels are maintained in time.
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In order to formalize the evolution of complex communities we propose an algorithm
based on the Jaccard similarity. This method, formally defined below for two
arbitrary sets A and B:

J (𝐴, 𝐵) = |𝐴 ∩ 𝐵 ||𝐴 ∪ 𝐵 | (4.13)

measures similarity of sets as the size of intersection between the size of the union of
these sets. The range of J is between 0 and 1, with 0 meaning that the intersection
is empty, i.e., the sets have no common elements. In this work, we utilize Jaccard
similarity to determine the evolution of complex communities through time. For an
arbitrary community C in time 𝑡, we determine if there are communities in 𝑡 − 1
that are similar to it. If in fact there are multiple communities that have a non-zero
similarity to C, then the one with the biggest similarity score is determined to have
the same label as community C. In more concise terms, if communities share some
members in consecutive time steps, they are defined to share the same label feature
of this algorithm is that it is only necessary to look in the previous time step, as
labels can be propagated through time. Furthermore, it is trivial to determine at
what time step aircraft joined or left an existing community.

If there are no similar communities in 𝑡 − 1 then community C is a new label in
the set of complex communities for time window we are studying. Consequently,
we can define all three generic events for complex communities in terms of labels:
appearance is the first time when a label is present and disappearance is the last time
when the label is present. The whole algorithm is described in Algorithm 2.

Figure 4.4: Illustration of complex community detection algorithm.

Let us illustrate this algorithm through the example in Figure 4.4. There, an arbitrary
sector in two time steps is shown. In 𝑡1, there are three communities, namely the
community labelled C1 with aircraft 1-4, then community C2 with 5-7 and the last
one is community C3 with a single aircraft, 8, which is filtered out. Let us assume
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Algorithm 2 Detection of Complex Communities
𝑡 ← [1, ..., 𝑇] ⊲ Time window that we are studying

𝐶𝑜𝑚𝑚𝑐𝑜𝑚𝑝𝑙𝑒𝑥 ← {} ⊲ Set of complex communities, initialized as empty

while 𝑡 ≤ 𝑇 do
Require: 𝐺 𝑡 ⊲ Assume we have the graph induced by the traffic in t

𝐶𝑜𝑚𝑚𝑡 ← 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠(𝐺 𝑡) ⊲ Find all communities for the current time step

For Each 𝐶 ∈ 𝐶𝑜𝑚𝑚𝑡 do
if 𝑐𝑜𝑚𝑝𝑙𝑒𝑥(𝐶, 𝑡) then ⊲ Equation 12

Require: 𝐶𝑜𝑚𝑚𝑐𝑜𝑚𝑝𝑙𝑒𝑥 [𝑡 − 1] ⊲ Get complex communities in t-1

For Each 𝐶𝑡−1 ∈ 𝐶𝑜𝑚𝑚𝑐𝑜𝑚𝑝𝑙𝑒𝑥 [𝑡 − 1] do
𝑠𝑖𝑚𝑖𝑙𝑎𝑟 ← J(𝐶,𝐶𝑡−1)

end for
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑚𝑎𝑥 ← 𝑎𝑟𝑔𝑚𝑎𝑥(𝑠𝑖𝑚𝑖𝑙𝑎𝑟) ⊲ Find most similar community

if thenNo 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑚𝑎𝑥 ⊲ No similar communities found

Add C to 𝐶𝑜𝑚𝑚𝑐𝑜𝑚𝑝𝑙𝑒𝑥 ⊲ Add new label to complex communities

else
Update 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑚𝑎𝑥 ⊲ Most similar community gets data from C with

⊲ added, removed members and time step when this happened

Update 𝐶𝑜𝑚𝑚𝑐𝑜𝑚𝑝𝑙𝑒𝑥
end if

end if
end for

end while
return 𝐶𝑜𝑚𝑚𝑐𝑜𝑚𝑝𝑙𝑒𝑥

that in 𝑡1 community C1 is complex while the other are not. As we are at the initial
time step, there are no previous time steps, thus the set of complex communities
would have C1 with members 1-4 all added at 𝑡1.

In 𝑡2, the communities have changed in terms of membership. Community C4 with
members 1-5 is a complex community. As per the algorithm, the previous time step
would be queried to find any other existing complex communities, where C1 would
be found. Then, the Jaccard similarity would be calculated with J (C1, C4) = 0.8.
Therefore, there exists one complex community in the previous time step that has
a non-zero similarity score with C4. This means that C4 received C1 as the label
and the original community is updated to contain the new information. Thus, C1

now contains aircraft 1,2,3,4,5 with the former 4 aircraft being added in 𝑡1 and
aircraft 5 being added in 𝑡2. For the sake of completeness, let us investigate what
happens to community C2 in 𝑡2. As it can be observed, the remaining aircraft that
comprised C2 have no interdependencies with any other aircraft. Therefore, there
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are no communities with non-zero similarity to C2. In this case, if C2 was indeed a
complex community we would be able to say that it appeared in 𝑡1 with members
5,6,7 and disappeared in 𝑡2.

4.3 Experimental Setup
In order to effectively showcase the algorithm, a tool was built to visualize the
results. This tool was developed as a web application in Python using Dash 1 as a
frontend. There are four main plots that are the outputs of the tool:

• Complexity animation For every time step in the window of interest, the
positions, interdependencies and complexity contributions for each aircraft are
shown. This information is shown as an animation through the time window.
The goal of this output is to clearly convey the evolution of complexity during
a particular time window. In order to visually indicate when a community
is complex, the interdependencies between aircraft of this community are
colored in red.

• Strength indicator animation This plot provides similar information as the
previous one. However, in this only the strength indicator is shown. More
specifically, for each aircraft we provide the value of the maximal weight of
the pairwise interdependencies that it is part of. As the strength indicator is
defined through pairwise distances, it is directly linked to conflicts and losses
of separation. Thus, the goal of this plot is to show specific safety related
information.

• Heatmap of complex communities This output shows as a heatmap the con-
tribution of every complex community that has existed through the duration
of the time window. As the x-axis is time, the coexistence or any other time
relation between complex communities can also be inferred. We also keep
track of the aircraft in the sector that do not belong to a complex community,
which we refer to as "Pool". All aircraft that are responsible for some of the
complexity in the sector are shown there. These aircraft are also part of com-
munities that are responsible for less than the complexity threshold. When no
complex communities exist, the Pool is responsible for 100 % of complexity.

• Summary table This table shows a detailed summary of every complex com-
munity that has existed in the time window. We show relevant information

1https://plotly.com/dash/
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such as start and end time, all members that have been part of the community
and when each member was added and removed.

Lastly, there is also the possibility to generate and download a summary file for the
current log file. This summary file contains the values of the input parameters, as
well as statistical information regarding the number, size, duration and percentage of
communities. The statistical information comprises of the mean, standard deviation
and minimum and maximum values. However, such a functionality could be easily
adapted or extended with respect to the needs of the practitioners.

The workflow to use the tool is shown in Figure 4.5. In this work, we use BlueSky
[109] as the simulation platform for the trajectories. From BlueSky the tool requires
as input a file that for every time step logs the positions of every aircraft. We note
that it is not a requirement to use BlueSky and the tool is not dependent on it. The
file with the logged information is, however, a requirement. Furthermore, there
are three more inputs to the tool, namely the minimal and maximal thresholds in
order to form the interdependencies and the complexity threshold for a community
to be considered complex. As this tool has been written in Python, it will be
straightforward to extend the functionalities of the tool and also integrate it with
other existing tools, services and infrastructure. The tool has been open sourced2.

Single Aircraft 

Complexity 

Tool

Flight Trajectories

Minimal Threshold

Maximal Threshold

BlueSky

Complexity Threshold

Complexity Animation

Strength Indicator Animation

Heatmap

Summary Table

Figure 4.5: Workflow for visualization tool.

4.4 Results
Synthetic Traffic
In this section, we will describe several scenarios based on synthetic traffic to
showcase how the information provided by the methodology and the tool can be

2https://github.com/risufaj/Single-Aircraft-Complexity
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utilized. First of all, we will show a scenario where we analyze ATC decisions. In
another scenario, we illustrate how ATFM decisions can affect KPAs.

Pairwise Conflicts

In this scenario, shown in Figure 4.6, we start with an arbitrary sector and 5 present
aircraft and the simulation lasts for 15 minutes. The trajectories have been generated
in such a way, that there will be a conflict between AC2-AC3 and AC4-AC5 at some
time 𝑡. Furthermore, the conflict between AC4-AC5 starts slightly earlier, but both
conflicts will co-exist in time.

AC1

AC2

AC3

AC5

AC4

AC1

AC2

AC3

AC4

AC5

Figure 4.6: Initial state of scenario.

In such a situation, the ATCo will have to solve two conflicts that are happening
around the same time and we assume that they are unable to solve them simultane-
ously. It is also assumed that there is enough time for ATCos to prevent losses of
separation in pairwise conflicts.

In Figure 4.8 the state of the aircraft when the ATCo should have been alerted by the
present Conflict Detection method is illustrated. This is shown in the tool through the
Strength indicator, which directly correlates with the relative state between aircraft.
The Strength of AC2, AC3 is 0.55 and AC4 and AC5 is around 0.6 (1 is a loss of
separation). Typically, ATCos would solve the earlier conflict first, i.e, AC4-AC5.
However, the presence of AC1 complicates this decision. Following the evolution
of trajectories, AC1 will eventually create a compound conflict [110] with AC2 and
AC3. This is not shown yet by using only the Strength indicator, however, when
measuring single aircraft complexity as previously described, we can observe the
following complexity situation shown in Figure 4.7. There, it can be seen that the
community created by AC1, AC2 and AC3 is a complex community.
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AC3
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Figure 4.7: Complexity of aircraft.

The provided information should affect the decision of the ATC by considering three
different KPAs.

• Safety - First of all, if the conflict between AC4 and AC5 is solved first, it is
not guaranteed that it will be done before AC1 is in conflict with AC2 and
AC3. This means that the ATCos would have to solve a compound conflict.
The algorithm quantifies this information and the tool presents it in such a
way that clearly illustrates which aircraft form the compound conflicts and
complex communities. Therefore, using the information provided by the tool,
the ATCo should make the decision of to solve the pairwise conflict between
AC2 and AC3 first. Furthermore, the conflicts could be resolved in such a way
that at best reduces the overall complexity and at worst just avoids secondary
conflicts. This information could be acquired by running the algorithm again
after a resolution is proposed.
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AC1

AC2

AC3

AC5

AC4

Figure 4.8: Conflict State.

• Efficiency - However, the controllers might still be able to solve the compound
conflict. One way to solve it could be to force one of the aircraft to have a
large deviation from its original trajectory. This solution effectively would
reduce the compound conflict to a pairwise conflict. However However such
a resolution would not be preferred as the aircraft that is deviated will incur
delays that result in inefficient use of time and fuel.

• Capacity - Nevertheless, delays to one of the aircraft might be unavoidable.
Another option could for the controller to determine that they are not able
to solve these conflicts in time. Let us assume that in this case, ATC would
make a request for one of these aircraft to be delayed. The ATCos will have
the information that which aircraft are in conflict and which aircraft form a
complex community. Consequently, delaying one of the aircraft could be done
by maintaining some fairness and therefore one of the aircraft of the complex
community should be delayed. Determining which of them would depend on
the capabilities of the ATCos to solve two pairwise conflicts around the same
time.

Deconstructing Complex Communities

In this scenario, we are studying the same sector as in the previous section. There
will be 7 aircraft present in total through the simulation which lasts 20 minutes.
AC1 is present throughout the simulation and forms various interdependencies with
the other aircraft. The other aircraft were generated in such a way that they intersect
with the trajectory of AC1 at different time steps. There were no restrictions on
whether the other aircraft can form interdependencies amongst themselves. This is
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illustrated in Figures 4.9, 4.10 and 4.11 where the sector is shown in three different
time steps; initial 𝑡0 where AC1 has interdependencies with AC2 and AC3 but not
with AC4 and AC5.

AC1

AC2

AC3

AC4

AC5

Figure 4.9: Initial state of the sector 𝑡0.

AC1
AC2

AC3

AC4

AC5

AC6

Figure 4.10: Sector in 𝑡1.

In 𝑡1 where AC1 has created interdependencies with AC4 and AC5, while the re-
maining aircraft have also created interdendencies amongst themselves. In 𝑡2 the
evolution when AC1 has travelled through the sector enough to create interdepen-
dencies with AC6 and AC7.

The complexity evolution is shown in Figure 4.12. As it can be seen, one complex
community is detected that lasts from 𝑡 = 130s to 𝑡 = 1200s and is comprised of all
the members that have passed through the sector during the simulation time. The
community starts with AC1, AC2 and AC3 and during the simulation, AC1 forms
interdependencies with AC4-AC7 which causes the initial community to evolve.
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AC1
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AC3

AC4
AC5

AC6
AC7

Figure 4.11: Sector in 𝑡2.

According to Algorithm 2 communities in consequent time steps will be considered
the same if they are similar enough. In this case, from Figure 4.10 we observe that
the community is comprised of AC1 - AC5 while in Figure 4.11 the community
is comprised of AC1-AC7 with the exception of AC3. Thus, AC1 is a permanent
member of the complex community which causes the community to last so long.

Figure 4.12: Complexity evolution.

The situation illustrated above could be problematic for the ATC as it demands
its continous attention throughout the time window as a result of the nature of
the interdependencies. Therefore, it is reasonable to expect that the ATM system
should intervene to make this situation more manageable. The information that the
algorithm provides through the tool could be used to better formalize and understand
the consequences of the decisions. For instance, let us assume the absence of AC1 in
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the sector during the window of the simulation (e.g., delay, flight plan change). This
is illustrated in Figures 4.13, 4.14 and 4.15. Furthermore, the complexity evolution
in this case is shown in 4.16.

AC3

AC4
AC5

AC6
AC7

AC2

AC3

AC4

AC5

AC6

Figure 4.13: Initial state of the sector 𝑡0 without AC1.

AC4 AC5

AC6

AC7

AC2

AC3

Figure 4.14: Sector in 𝑡1 without AC1.

In this situation the absence of AC1 has resulted in the previous complex community
to be split in 3 smaller but still complex communities. It can also be noted that these
communities do not overlap in time. The communities have only 2 members which
causes only Strength to be a non-zero complexity indicator. This situation is less
complex than the previous one where several different topologies were present in
the sector.

The lack of understanding of how and why the complex situation arises, may lead
the different ATM subsystems to make arbitrary decisions which can clearly affect
efficiency and fairness. Let us assume that both ATFM and ATC agree that some sort
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Figure 4.15: Sector in 𝑡2 without AC1.

Figure 4.16: Complexity evolution without AC1.

of regulation needs to be made. However, each of them could propose regulations
that affect one or more aircraft. Using the information provided from the tool,
the aircraft that needs to be affected from the regulations becomes evident. As
previously stated, the absence of AC1 results in a more manageable situation. This
is evidence that the use of the methodology proposed in this work leads to better
equity and fairness at the aircraft or airline level. The objectiveness of the provided
information results in a neutral tool that increases transparency and explainability
of decisions made by ATM subsystems with regards to AUs.
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Flown Trajectories
Data

We will evaluate the algorithm using real historical traffic from 17.08.2019 provided
by CRIDA. The available data contained flown trajectories in several sectors over
Spain starting from noon and lasting for about 7 hours. In total there were 485
flights in the dataset. Furthermore, the dataset contained a list of flights that were
regulated for the Pamplona Upper ATC Sector (LECMPAU), shown in Figure 4.17.
The type of regulations were time delays issued from ATC due to airspace capacity.
Preliminary analysis of the data showed that ouf the 485 flights, 329 had crossed
the LECMPAU sector and 82 out of those were regulated (24.9 %). The mean delay
was 14.8 minutes with a standard deviation of 11.2 minutes. The minimum delay
was 1 minute while the maximum was 59 minutes.

Using the information available, we simulated two scenarios in Bluesky, one with
the applied regulations and the other without the applied regulations.

Figure 4.17: Pamplona Upper ATC Sector.

The Effect of Regulations on Complex Communities

In this section we will inspect how complex communities are affected by the regu-
lations present in the data set. In order to do so, we simulate the two scenarios for
the total duration of 7 hours. The trajectories with the regulations applied are the
actual flown trajectories. However, we are not aware of how and when the delays
were applied exactly. Thus, in order to create the trajectories without the regulations
applied, we always remove the delay from the initial point of the trajectory.
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Figure 4.18: Complex communities for
the first time window with regulations.

Figure 4.19: Complex communities for
the first time window without regulations.

In order to visualize the effects, we identified three windows lasting 30 minutes
each. The input parameters for the minimal and maximal distance thresholds and
the complexity thresholds were set to 5 NM, 33 NM and 60% respectively. The
complex communities for the first time window are shown in Figures 4.18 and 4.19.
As it can be observed, in the scenario where the regulations were not applied there
exists only one community throughout the time window. Compared to the scenario
where the regulations were applied, we observe 5 total complex communities. As
a result of the complexity threshold being set to 60%, these communities do not
co-exist in time. This result provides evidence that the delayed aircraft were key
in keeping the community in Figure 4.19 together, similar to the synthetic scenario
elaborated in Section 4.4. The presence of only one complex community indicates
that all relevant aircraft in the sector have interdependencies with them, which is
also suggested by the colour of the heatmap, with the community being responsible
for 100% of the complexity for the majority of the time window. This topology is
evidence of a very complex situation. Through the regulations, we can observe that
the complexity is divided in time between several communities. Communities 1,2
and 3 have a relatively short duration, however they are responsible for all of the
complexity in the sector. This suggests that the controller is provided elaborated
information about which areas of the sector are causing the complexity present in
the sector. Such information is further supported by the other outputs of the tool,
e.g., the animation of single aircraft complexity contributions. This scenario serves
to further illustrate two advantages of the proposed methodology: it increases the
transparency of decisions made by different sub-systems of ATM and provides a
framework through which to formalize the need for regulations (in this case from
the point of view of ATC).

However, as it can be seen in the second (Figures 4.20 and 4.21) and third (Figures
4.22 and 4.23) time windows, this is not the full story. There, we can observe that the
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Figure 4.20: Complex communities for
the second time window with regulations.

Figure 4.21: Complex communities for
the second time window without regula-
tions.

Figure 4.22: Complex communities for
the third time window with regulations.

Figure 4.23: Complex communities for
the third time window without regula-
tions.

regulations change the composition of complex communities only slightly. These
results suggest that complexity largely remains the same in both scenarios (i.e., with
and without regulations applied). Furthermore, it is interesting to note that during
these time window the difference in occupancy between the two scenarios was the
highest. In the scenario without the applied regulations there were consistently 5-7
more aircraft than in the one with the regulation applied. Such a result echoes
claims made in other works [104, 41] that the occupancy of sectors does not provide
elaborated information about the complexity of the traffic.

Moreover, it is worth noticing that in the scenarios without the regulations applied,
the Pool tends to be responsible for more complexity. This means that the delayed
aircraft were largely not present in the complex communities, but in the surrounding
traffic. Such a distribution of complexity is evidence of the granularity of the
information provided by the proposed algorithm, as it is able to capture subtle
differences in sector complexity, which could explain in a nuanced way why the
particular regulations were applied, something that sector occupancy cannot provide.
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Sensitivity Analysis
The algorithm proposed in this work has 3 main parameters: minimal and maximal
interdependency thresholds and the threshold for a community to be considered
complex. These parameters should depend on the problem setting and also the
individual user, however it is important to understand how they affect the output
of the algorithm. We conduct a sensitivity analysis, which investigates how the
output of a system can be attributed to its inputs. More specifically, we use the
Sobol method [111, 112] which is a variance-based global sensitivity analysis. The
variance of the output is decomposed into fractions which are attributed to the
inputs. The main advantage of using this method lies in the fact that it deals with
nonlinear responses and it can measure the interactions between input parameters.
In order to perform a Sobol analysis, a parameter sequence is generated, which in
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Figure 4.24: The Total Sensitivity Analysis using the Sobol Method .

this work returns a Sobol sequence using Saltelli’s sampling scheme [112]. A Sobol
sequence is a quasi-randomized, low-discrepancy sequence that samples the space
more uniformly than a completely random sequence. The Saltelli scheme extends
this sequence in a way that reduces the error rates in the calculations. To understand
how the variance of the output can be attributed to the input tarameters and the
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interaction between each of them, the total order, first and second order sensitivity
indices are calculated. The first order sensitivity indices are used to measure the
fractional contribution of a single parameter to the output. Second order sensitivity
anaylsis are used to measure the contribution of parameter interactions to the output
variance. The total sensitivity indices take into account all the previous indices.

In this work, the sensitiviy analysis will be conducted using the regulated data
described in Section 4.4. In order to reduce the computational burden of the analysis,
motivated furthermore by the fact that this data has been of particular importance
for the ATC, we keep a fixed minimal distance threshold of 5 NM. The ranges for
the maximal distance threshold and the complexity threshold were [15, 75] NM and
[40%, 100%] respectively. To perform the analysis 6200 different combinations
were generated. Lastly, measured the response of three different outputs of the
algorithm: number of communities, median size of communities (number of total
members) and median duration of the communities.
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Figure 4.25: Number of communities for
different distance thresholds.
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Figure 4.26: Size of communities for dif-
ferent distance thresholds.

The results of the sensitivity analysis are shown in Figure 4.24. As it can be
observed, for all outputs, the total sensitivity Sobol indices indicate that the the
maximal distance threshold for the interdependencies is the input that affects the
output the most. In this work, the graph and in turn the communities are generated
by considering the distance threshold in order to build the edges. Thus, it is evident
that this should affect the number of communities and size of communities the most.
For instance, when the distance is large enough, then at time 𝑡 it is reasonable to
expect that the traffic graph is fully connected. In such a scenario, the complexity
threshold would be irrelevant, as the community induced by the fully connected
graph is always responsible for 100% of the complexity at time 𝑡. A similar example
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could be used also to illustrate why this happens for the size of the communities. A
large (or small) enough distance threshold will largely dictate which aircraft form
interdependencies. In either extreme value, it is clear to see that the relevant aircraft
would be forming the complex communities, thus determining also the size of the
communities. Figures 4.25 and 4.26 are further evidence of this. As it can be
seen, the number and size of communities is strongly dependent on the distance
threshold. The number of communities is inversely proportional with the threshold,
while the size of the communities is proportional. We also observe a correlation
between the size of communities with the complexity threshold, shown in Figure
4.27. Nevertheless, as the sensitivity analysis suggests, this is as a result of the
correlation between the two input parameters. In order for a community to be
responsible for 100% of the complexity, it should contain all aircraft that have at
least one interdependency, which can be the case for bigger distance thresholds.
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Figure 4.27: Size of communities for different complexity thresholds.

From Figure 4.24, it can be observed that the median duration is also affected
mostly from the distance threshold, further evidenced in Figure 4.28. There, we
can see that when the distance threshold is low, communities tend to last less. This
happens because smaller distance thresholds are very sensitive towards the changes
in the aircraft positions, as evidenced also from Figure 4.25, where smaller distance
thresholds lead to many present communities.

To give some insight on how the median duration is affected by the complexity
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Figure 4.28: Duration of communities for different distance thresholds.

threshold, we show Figures 4.29 and 4.30. When the distance threshold is less than
25 NM, we observe that the duration decreases with increased complexity threshold.
Such a result can be explained by the fact that with such a small distance threshold,
it is more likely to have communities that are comprised of a subset of the aircraft
co-existing in time in the sector. Consequently, aircraft can join communities and
allow for communities to exist for longer. Nevertheless, this interpretation does
not tell the whole story, as it can be observed that in such a setting the longest
community existed for around 400s. On the other hand, when the distance threshold
is bigger than 25 NM, the duration of communities is affected less by the complexity
threshold. In this setting, we can observe that most communities last less than 17
minutes (less than 1000 s). The different response for different distance thresholds
explains the Sobol index for the complexity threshold in Figure 4.24.

While we show that the algorithm is mostly affected by the distance threshold, this
does not indicate what input values different ATM subsystems should use. In fact,
the analysis that we conducted in this section should serve for practitioners (e.g.,
NM, ATC etc.) to determine what values are more suitable for their use-case.
For instance, a similar analysis could be used as a baseline to quantify controller
preferences, whether that be in the topology of the graph the traffic induces, or any
of the other outputs provided by the propsoed algorithm in this paper. Finally, while
we do not expect the behavior of the algorithm to fundamentally change with other
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Figure 4.29: Duration of communities for
different complexity thresholds (Distance
threshold < 25 NM).
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Figure 4.30: Duration of communities for
different complexity thresholds (Distance
threshold > 25 NM).

datasets, the analysis conducted in this section also heavily depends on the sector
(or any other division of airspace) that is being investigated.

4.5 Conclusions
In this work, we propose a methodology that extends existing air traffic complex-
ity indicators based on dynamic graphs to provide highly granular and nuanced
information. As such, the concept of single aircraft complexity is proposed which
measures the individual contribution of each aircraft to the overall sector complex-
ity. Furthermore, the algorithm provides complex communities, which are connected
components of the air traffic graph in order to determine complex spatio-temporal
areas in the sector.

To effectively illustrate the algorithm, a web application was developed which
visualizes several outputs of the algorithm, namely: a complexity animation, a
strength indicator animation, a heatmap of complex communities and a summary
table of complex communities. Furthermore, the tool also provides the user with
the possibility to download a summary file for the scenario being investigated. The
tool (and the underlying algorithm) are envisioned as neutral aids that can ease the
smooth functional transition between ATM layers and DSS tools that should be used
in union with existing tools. Furthermore, the information provided could enhance
equity, fairness at the aircraft of airline granularity level.

In order to support our claims, we provide detailed use cases based on synthetic
traffic, as well as real historical traffic. We first show that the algorithm can serve
to formalize controller decisions as well as guide controllers to better decisions in
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situations where multiple pairwise conflicts co-exist in time. Further, we investigate
how the provided information can be used to increase transparency of the decision
makers towards different AUs, which serves also to increase fairness and equity.
Moreover, the algorithm was evaluated using historical traffic, which was regulated
through delays to several aircraft as a result of ATC capacity. We constructed two
scenarios: one with the regulations applied and the other without the regulations
applied and showed how the complex communities were affected in three 30 minute
time windows. Finally, an extensive sensitivity analysis for two of the inputs to
the algorithm (maximum distance threshold to form interdependencies and the
complexity threshold for a community to be considered complex) was conducted.
The sensitivity analysis was conducted for three outputs of the system: number of
communities, median size of communities and median duration communities. We
found that the maximum distance threshold affected these outputs the most. To
fully understand this result, the response of each output to the different input values
was studied. We argued how a similar analysis could be used to quantify controller
preferences for graph topologies in the sector.

Nevertheless, the proposed algorithm should be extended and further refined. Most
importantly, as one of the inputs to the tool are trajectories in time, a way to consider
uncertainties should be investigated. As previously mentioned, the tool is envisioned
to be used alongside existing tools, therefore one way to consider uncertainty would
be for the inputs to the tool to have modelled uncertainty beforehand. However, it
could be interesting to extend the definition of the graph to contain not a weight for
any interdependency, but a distribution of weights.

Moreover, the input parameters of the algorithm are envisioned to be tuned according
to the problem and preferences of the practitioners. Nevertheless, the tool could
have several "modes" when given a certain value for the distance and complexity
thresholds. For instance, a more conservative mode could involve considering larger
inputs that would lead to bigger communities that last longer, but visually provide
more information about aircraft that are further in the community. Through the
animation output, the practitioner could still visualize the core of the community. A
less conservative mode would instead only consider the core of the communities, in
order to provide only crucial members of the communities.

The information provided should be evaluated by practitioners in a user study in
order to optimize how and what information is shown. Finally, the tool should be
further developed into a mature DSS, in order to be used alongside existing tools
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and methodologies.
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C h a p t e r 5

TOWARDS CONFLICT RESOLUTION WITH MULTI-AGENT
REINFORCEMENT LEARNING

Safety in Air Traffic Management at the tactical level is ensured by human
controllers. Automatic Detection and Resolution tools are one way to assist
controllers in their tasks. However, the majority of existing methods do not
account for factors that can affect the quality and efficiency of resolutions.
Furthermore, future challenges such as sustainability and the environmental
impact of aviation must be tackled. In this work, we propose an innovative
approach to pairwise conflict resolution, by modelling it as a Multi-Agent
Reinforcement Learning to improve the quality of resolutions based on a com-
bination of several factors. We use Multi-Agent Deep Deterministic Policy
Gradient to generate resolution maneuvers. We propose a reward function that
besides solving the conflicts attempts to optimize the resolutions in terms of
time, fuel consumption and airspace complexity. The models are evaluated on
real traffic, with a data augmentation technique utilized to increase the variance
of conflict geometries. We achieve promising results with a resolution rate
of 93%, without the agents having any previous knowledge of the dynamics
of the environment. Furthermore, the agents seem to be able to learn some
desirable behaviors such as preferring small heading changes to solve conflicts
in one time step. Nevertheless, the non-stationarity of the environment makes
the learning procedure non-trivial. We argue ways that tangible qualities such
as resolution rate and intangible qualities such as resolution acceptability and
explainability can be improved.

5.1 Introduction
The mission of air traffic management (ATM) is to make air traffic possible by
means of efficient, environmentally friendly and socially valuable systems [69, 70].
At the heart of the current ATM system at the tactical level are human air traffic
controllers (ATCo) who control airspace units known as sectors. The main duty of
ATCos is to guarantee safety, which is accomplished by communicating and issuing
instructions to pilots, monitoring traffic to maintain safety distances etc. The ability
of controllers to guarantee efficient solutions that include different quality factors
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is constrained by their workload which can be defined as the mental and physical
effort required to manage traffic [71].

In the current situation, challenges such as sustainability, the environmental impact
and fuel consumption have to be tackled. As a result, these factors must be also
accounted in conflict resolution, to not only solve them but to assure efficiency and
quality in the resolutions. Conflict detection and resolution (CD&R) tools are a way
to assist ATCos in their conflict resolution duties. Conflict resolution algorithms
have been a prominent research within the ATM community, with many models
being proposed. For a comprehensive review we refer the reader to [113]. Early
works, such as [114] prescribe fixed maneuvers for particular geometries to conflict
aircraft. However such approaches are not preferred as they are not flexible and
result in inefficient resolutions. In more recent approaches, various mathematical
formulations are used to calculate more efficient maneuvers. For instance, Pallottino
et al. [115] employ mixed integer programming to solve conflicts where they
consider speed and heading changes separately. However speed changes alone
cannot solve all conflicts (e.g. head-on situation). Furthermore, they consider
immediate heading changes, which is not realistic. The Model Voltage Potential
(MVP) algorithm proposed by Hoekstra [116] considers airspace as a potential field
and aircraft as particles navigating it. The predicted future positions of conflict
aircraft at the closest point of approach (CPA) are used to repel each other and
thus displace the predicted positions at CPA. The avoidance vector is calculated as
the vector starting at the future positions and ending at the edge of the intruder’s
protected zone. Peyronne et al. [75] use b-splines to smoothly and minimally
change trajectories to solve conflicts at the tactical level. Their approach, however,
has several limitations, as they assume constant speed of aircraft and evaluate
their approach only on academic examples. The approach proposed in [117] uses
probability reach sets to represent aircraft locations and resolution is performed by
separating these sets. This model suffers when the number of present aircraft is
increased and they only consider that aircraft will be at their intermediate waypoint
of the resolution maneuver at the same time. A multi-agent approach is considered
by Breil et al.[76]. There, they model each conflict aircraft as an agent, which has to
solve its local conflicts through speed changes. First of all, as previously mentioned,
not all conflicts can be solved only through speed changes. Furthermore, an agent in
this approach can only choose to cruise, accelerate or decelerate at fixed rates, which
is not flexible and can lead to inefficient solutions. They extend their approach to
also include heading changes, but also there they only allow for fixed changes.
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While these approaches are successful, the majority of them have limits due to
the assumptions they make about the airspace. Most discretize space to maintain
computational feasibility, which means that they have fixed maneuvers that they
issue. This lowers the flexibility of the solutions which may lead to inefficiencies
in terms of quality of the resolution. Whereas a method that can handle a bigger or
continuous resolution space could find more efficient solutions. Furthermore, most
algorithms make some assumptions about the dynamics of the environment causing
such methods to fail when faced with conflicts that do not adhere to those assump-
tions. Finally, a majority of existing methods optimize only for resolution, and might
not consider the effects of the solution on surrounding traffic, fuel consumption etc.

Reinforcement learning (RL) and especially deep reinforcement learning (DRL)
have recently emerged as a very successful method to tackle decision-making prob-
lems. They have achieved super-human level at playing Atari games [118] and Go
[119], as well as impressive performance in practical problems such as autonomous
driving [120]. These methods can inherently represent high dimensional state and
continuous action-spaces. There are several works that model conflict resolution
as a RL problem. Pham et al.[57] propose a similar approach. However, they do
not consider a multi-agent environment and have a less specialized reward function.
Ribeiro et al. [121] consider a single agent approach to conflict resolution through
RL for unmanned aerial vehicles (UAVs). However, they do not use their model
to issue maneuvers, but to enhance a current resolution algorithm. In this work,
we attempt to overcome these drawbacks by modelling the resolution of pairwise
conflicts as a multi-agent reinforcement learning (MARL) problem. We use Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) [122] to train two agents,
representing each aircraft in a conflict pair, that are capable of efficiently solving
conflicts in the presence of surrounding traffic by considering heading and speed
changes. We formalize the underlying Markov Decision process (MDP) by propos-
ing a novel state representation which contains information such as position, heading
and speed. Furthermore, we propose a highly specialised reward function that en-
courages efficient solutions and discourages solutions that are too conservative by
considering several factors, such as time until loss of separation, closest point of
approach, fuel consumption and airspace complexity. The designed reward function
can serve as a template on how to include the interests of different stakeholders in a
resolution. The agents are trained and tested on real traffic (i.e. flown trajectories),
with a data augmentation technique to increase the variance of employed scenarios.
Each scenario lasts 20 minutes, which is a common length for algorithms in the
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tactical level [75, 57]. Agents act on a 15-second time step and are able to solve
the majority of conflicts in only one time step. The agents are able to handle a
continuous action space, with heading changes being capped at ±45𝑜 and speed
changes at [𝑣 − 6%, 𝑣 + 3%] [76].

The rest of this paper is organized as follows: in Section 5.2, we elaborate on the
theoretical background necessary for this paper. In Section 5.3, the experimental
setup is presented. Results are presented and discussed in Section 5.4, while in
Section 5.5 we draw conclusions and propose steps for further research.

5.2 Theoretical Background
Reinforcement Learning
Reinforcement Learning (RL) is a paradigm of machine learning which deals with
sequential decision making[123]. In RL, an agent makes decision in an environment
to optimize a certain notion of cumulative reward. The agent improves incrementally
by modifying its behaviour according to previous experience. Furthermore, the RL
agent does not require complete knowledge of the environment, it only needs to
interact with it and gather information [124].

A given RL problem is usually formalized by a Markov Decision Process (MDP),
which is a discrete time stochastic control process [125] that consists of a 4-tuple
(𝑆, 𝐴, 𝑇, 𝑅), where:

• 𝑆 is the state space,

• 𝐴 is the action space,

• 𝑇 : 𝑆 × 𝐴 × 𝑆 → [0, 1] is the transition function which is a set of conditional
transition probabilities between states,

• 𝑅 : 𝑆 × 𝐴 × 𝑆 → R is the reward funtion

Practically, the agent starts at an initial state 𝑠0 ∈ 𝑆. At each time step 𝑡, the agent
has to take an action 𝑎𝑡 ∈ 𝐴. Once this happens, the agent gets a reward 𝑟𝑡 ∈ 𝑅 from
the environment. The state transitions to 𝑠𝑡+1 ∈ 𝑆. The agent stops interacting with
the environment when it reaches a defined goal state.

The cumulative reward is defined as follows:

𝐺 𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ... =
∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 (5.1)
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where 𝛾 is a discount factor between 0 and 1 which informs the agent how relevant
immediate rewards are in relation to future rewards.

The agent’s behaviour is encoded into a policy 𝜋 which is a function that maps states
to actions. Policies can be deterministic or stochastic.

The goal of a RL algorithm is to find a policy which maximizes the total future
discounted reward. There are two common ways that are used to do this: the value
function 𝑉𝜋 and the action-value function 𝑄𝜋 which are defined as follows:

𝑉𝜋 (𝑠) = E𝜋 (𝑅𝑡 |𝑠𝑡 = 𝑠) (5.2)

𝑄𝜋 (𝑠, 𝑎) = E𝜋 (𝑅𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) (5.3)

The value function quantifies the future expected reward in the current state if the
policy 𝜋 is followed. On the other hand, the Q action-value function represents the
expected rewards for the state-action pairs if policy 𝜋 is followed.

The most notable algorithm for solving MDPs (and in turn the RL problem) is
Q-learning. In Q-learning, an agent learns to estimate the optimal action-value
function which is represented as a table with as many state-action pair entries as
possible[123]. However, this is not feasible for a number of real life applications,
where the state and action spaces are large or continuous. As a result there can
be an infinite number of state-action pairs. In such instances, the Q-function must
be approximated by another function. Typically, the approximator function with
parameters 𝜇 is optimized through the Bellman equation [125].

Deep Q-Networks (DQN)[118] uses neural networks as Q function approximators.
Nevertheless, the original implementation of DQN had several issues, which have
been adressed in several ways. To begin with, the rewards in a RL problem can be
sparse or delayed. This is a problem for neural networks as they rely on directly
gained feedback. Furthermore, the data in a RL problem are typically highly
correlated as they come from continuous interactions with the environment. Also,
as the policy changes, the distribution of the data changes as the agent interacts
differently with the environment (i.e. takes a different action for the same state which
can lead to a previously unseen state). As a result, the data becomes non-stationary
which typically makes the training of neural networks unstable. Consequentially
undesired phenomena such as catastrophic forgetting, where the agent suddenly
cannot solve the task anymore after apparently learning an adequate policy.

The non-stationarity issue is usually solved using target networks, which are identical
neural networks to the ones used for learning the Q-function that are held constant
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for several training steps to serve as a stable training target. Sample correlation
has been solved using experience replay [118]. This technique stores the agent’s
experience at each time step in a replay buffer. Random samples from the memory
are used to update the networks. When the buffer becomes full several methods can
be employed, however the simplest (and often the most successful one by empirical
evidence) is to discard the oldest samples.

Multi-Agent Reinforcement Learning
Multi-Agent Reinforcement Learning (MARL) is an extension of classical RL where
there are more than one agents in the environment. This is formalized through
partially observable Markov games [126], which are decision processes for 𝑁 agents.

Similar to MDPs, Markov games have a set of actions. However, in this case, the
environment is not fully observable by the agents. Therefore, the Markov game has
a set of observations𝑂1, ...𝑂𝑁 for each agent. Every agent takes an action according
to their policy and obtains a reward. Agents aim to maximize personal and total
expected reward.

Multi-Agent Deep Deterministic Policy Gradient
As mentioned, Q-learning and DQN attempt to maximize the expected value of the
total reward for a given and all successive steps [123, 118]. However, it has been
noted that this method often suffers in high dimensional action and state spaces and
can fail to converge [127, 122].

Policy Gradient methods are a group of methods that model and optimize the policy
directly. The policy is modelled with a parametrized function with respect to
parameters 𝜃, 𝜋𝜃 (𝑎 |𝑠). The goal of the methods is then to optimize the parameters
𝜃 for the best reward. Formally this is given as:

𝜃𝑖+1 = 𝜃 + 𝛼▽𝐽 (𝜃𝑖) (5.4)

where 𝜃 are the policy weights, 𝛼 is the step size and 𝐽 (𝜃) is a loss function to measure
how well the model is performing. Usually, the loss function uses the value function
with the policy estimation to take the action. Such methods are commonly known
as actor-critic methods. The actor uses the policy to determine which action to take,
while the critic evaluates how rewarding it is to be in a certain state. According to
the Policy Gradient Theorem [123] there is a direct relation between the gradient
of the loss function and the gradient of the policy. This allows for improvement
of the policy accordingly. These methods have several advantages over DQN. First
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of all, Policy Gradient methods have been found to outperform DQN methods (i.e.
better convergence) in environments with stable dynamics [127]. Furthermore, these
methods are inherently more effective in handling high dimensional or continuous
action spaces. The predictions of DQN assign a maximum expected future reward
for each possible action at each time step given a state. In cases of continuous action
spaces it would not be feasible to calculate a value for each action. However, in
Policy Gradient methods the parameters of the policy are adjusted directly.

Deterministic Policy Gradient (DPG) methods work in a similar way, with the
distinction that actions are selected using a deterministic policy, not a stochastic
one. As a drawback, if there is no noise in the action selection, exploration will be
poor, which usually hinders the overall performance of a RL method. Therefore, the
most effective way to use DPG is with off-policy actor-critic algortihms that learn a
deterministic target policy from trajectories that have been generated by a stochastic
policy (we refer the reader to [128] for a more complete explanation).

Deep Deterministic Policy Gradient (DDPG) is an actor-critic algorithm. It uses off-
policy data to learn the Q-function and uses the Q-function to learn the policy. As in
DQN, DDPG uses neural networks as function approximators. Consequentially, it
suffers from several of the same issues of DQN (discussed in the previous section).
DDPG employs many of the same techniques to overcome the issues. Furthermore,
as it is a deterministic method, exploration is added to the agent by constructing an
exploration policy 𝜋′. This policy adds some noise to the actor policy:

𝜋′ = 𝜋(𝑠 |𝜃𝜋) + N (5.5)

where 𝜋 is the policy, 𝜃 are the policy’s parameters and N is an arbitrary noise
distribution.

In this work we will use Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG)[122], which is an extension of single agent DDPG[129], where multiple
agents must complete their tasks with only local information. For each agent, the
environment is non-stationary as the policies of other agents are unknown. This
leads to learned policies that only use individual observations of agents and no
model of the dynamics of the environment.

MADDPG uses an actor-critic architecture, with agents and the critic being modelled
as a neural network. The critic learns the value function (i.e. Q-learning), meaning
that it is used to criticize the actions that are being taken. The network is updated
from a Temporal Differences (TD) error. In MADDPG, the critic learns a centralized
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action-value function 𝑄𝜋𝑖 (𝑜1, ..𝑜𝑁 , 𝑎1, ..., 𝑎𝑁 |𝜃𝑄) for an agent 𝑖. Each Q function
is learned separately for all agents. This means that the critic is augmented with
information about the policies of other agents.

The actor network 𝜋𝑖 (𝑜1, ..𝑜𝑁 , 𝑎1, ..., 𝑎𝑁 |𝜃𝜋) learns the policy, meaning that it out-
puts an action in regard to its output. The actor only has access to local information
and does not know the policies of other agents. Actors are encouraged to explore
beyond their learned policies at each time step through Gaussian noise, which means
that at each time step each actor has a probability of not following its policy but
taking a random action. This step has been shown to improve the learned policies as
actors can overfit their learned policies leading to worse overall performance [123,
126].

A known problem in MARL settings is the high variance caused by the interaction
between agents present in the environment. MADDPG solves this by introducing
policy ensembles. A collection of different sub-policies are trained for each agent.
For every training episode, one particular sub-policy is randomly selected. Finally,
the gradient update is done by taking all these sub-policies.

5.3 Experimental Setup
Data and Parameters Used
The model is evaluated using traffic data from Eurocontrol’s DDR II which contains
high fidelity data of flown trajectories, from 12.02.2019 [130]. Conflicts were
detected using a simple state based method [10]. If at any point during this time a
horizontal and vertical separation infringement occurred (5 NM, 1000 feet at tactical
level) the pair of aircraft were considered in a conflict. As we are only considering
en-route traffic, filter was used to discard conflicts below FL250. Furthermore,
except the conflict pair, we also keep several surrounding aircraft. A scenario
contains a pairwise conflict and some surrounding traffic, which is an assumption
we make for computational feasbility. Each agent is assigned to one of the conflicting
aircraft. The trajectories of the present aircraft were projected in the future using a
lookahead time of 300s, assuming constant speed and heading. The agents can only
observe the 5 closest aircraft (including ownship). We utilize the method proposed
in [78, 79] to identify relevant aircraft. The algorithm is described in Algorithm 4.
The functions to identify conflicting and non-conflicting aircraft, as well as creating
a conflicting aircraft for some given settings were taken from Bluesky [109]. This
procedure resulted in a total of 188 conflict scenarios.
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Algorithm 3 Data Augmentation Algorithm
procedure AUGMENT(𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)

𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑛𝑒𝑤 ← ∅
ℎ𝑑𝑔𝑠𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡 ← [0, 30, 45, 60, 90]
𝑐𝑝𝑎 ← [1, 2, 4]
𝑡𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡 ← [60, 120, 300, 600, 1200]
𝑎𝑐𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡 ← 𝐼𝐷𝐸𝑁𝑇𝐼𝐹𝑌 − 𝐶𝑂𝑁𝐹𝐿𝐼𝐶𝑇 (𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)
𝑎𝑐𝑛𝑜𝑛𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡 ← 𝐼𝐷𝐸𝑁𝑇𝐼𝐹𝑌 − 𝑁𝑂𝑁𝐶𝑂𝑁𝐹𝐿𝐼𝐶𝑇 (𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)
𝑎𝑐𝑐ℎ𝑜𝑠𝑒𝑛 ← 𝑅𝐴𝑁𝐷𝑂𝑀 (𝑎𝑐𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡)
ℎ𝑑𝑔𝑐ℎ𝑜𝑠𝑒𝑛 ← 𝑅𝐴𝑁𝐷𝑂𝑀 (ℎ𝑑𝑔𝑠𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡)
𝑐𝑝𝑎𝑐ℎ𝑜𝑠𝑒𝑛 ← 𝑅𝐴𝑁𝐷𝑂𝑀 (𝑐𝑝𝑎)
𝑡𝑐ℎ𝑜𝑠𝑒𝑛 ← 𝑅𝐴𝑁𝐷𝑂𝑀 (𝑡𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡)
𝑎𝑐𝑛𝑒𝑤 ← 𝐶𝑅𝐸𝐴𝑇𝐸 − 𝐶𝑂𝑁𝐹𝐿𝐼𝐶𝑇 (𝑎𝑐𝑐ℎ𝑜𝑠𝑒𝑛, ℎ𝑑𝑔𝑐ℎ𝑜𝑠𝑒𝑛, 𝑐𝑝𝑎𝑐ℎ𝑜𝑠𝑒𝑛, 𝑡𝑐ℎ𝑜𝑠𝑒𝑛)
𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑛𝑒𝑤 ← 𝑎𝑐𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡 ∪ 𝑎𝑐𝑛𝑒𝑤 ∪ 𝑎𝑐𝑛𝑜𝑛𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡
return 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑛𝑒𝑤

end procedure

As machine learning methods in general are sensitive to the data they are trained on,
we employ a data augmentation technique to synthetically increase the variance of
conflicts the model is trained on. For each scenario, we remove one of the conflict
aircraft and create another one in conflict that has a different intrusion angle (i.e.
conflict angle), closest point of approach (CPA) and time of separation loss than
the removed conflict aircraft, while keeping surrounding non-conflict traffic. The
values for the intrusion angle are in [0, 30, 45, 60, 90], while those for CPA and
time of separation loss are in [1, 2, 4] NM and [60, 120, 300, 600, 1200] seconds,
respectively. These values are based on the geometries we encountered from the
original 188 scenarios with some values to test more extreme situations, such as a
head-on conflict with a CPA of 1 NM.This augmentation method is applied to each
scenario and each conflict aircraft. We note that the scenarios are not augmented with
all possible permutations of these values, resulting in around 1000 total scenarios.
This is done in order to maintain a reasonable training time for the model.

The resulting scenarios are then divided into training and test sets with a ratio of
80%/20%. Training and test scenarios are kept apart in order to test the model in
scenarios that it has never seen before.

Scenarios ran for 20 minutes and the agents had to make decisions every 15 seconds.
The agent stops being active, i.e. does not make decisions anymore, if the conflict
was resolved and it was back on track, or the scenario lasted longer than 20 minutes.
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State Representation

Figure 5.1: Position information of each aircraft in a scenario required to represent
the state.

One of the most important factors that can impact the learning capabilities and
eventual performance of agents is how states in the given environment are formalized.
Usually, the state is represented through a vector of a certain dimensionality, which
should provide necessary information about the environment in order to facilitate
the agents to be successful in their task. However, while providing more information
in the state might result in an overall better performance [121], it is also followed by
an increase in computational effort required to train a performant model.

Furthermore, the environment is highly non-stationary, as both conflict aircraft will
change their policies in order to solve the conflict. This adds another layer of
complexity to the representation of the state, which will need to be considered.

This work represents the first steps to applying MARL to conflict resolution, there-
fore we opt for a more simple representation of the state. More specifically, the state
is formalized through each present aircraft’s position information. As we are only
dealing with horizontal resolutions, we only use horizontal positions, i.e. latitude
and longitude, heading and speed. This representation is shown in Figure 5.1, where
5 aircraft are present. Given a conflict pair present in the scenario, each conflict
aircraft will observe the state information of the remaining aircraft.

The Reward Function
There is a wealth of research that outlines the importance of a suitable reward
function in RL, especially applied to practical problems [127, 131, 122, 132, 133,
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134]. Ribeiro et al. [121] and Pham et al. [57] use a reward function solely based on
the number of conflicts and number of losses of separation present in the scenario.
However, not only are we concerned with solving the conflicts, we want to solve
them as efficiently as possible. Thus, we take several factors into consideration to
build the reward function:

Time until loss of separation and CPA

The model is encouraged to solve conflicts as soon as possible, in order to avoid
dangerous situations. Time until loss of separation and closest point of approach
(CPA) are used to penalize the agents from slow solutions of conflicts with smallers
CPAs. However, if, for example, the conflicting aircraft are almost in parallel, the
agents will be penalized less if they take longer to solve the conflict.

Difference from track and optimal speed

To solve conflicts through minimal maneuvers, the agents are penalized for making
big heading and speed changes. In order to achieve that, we give the aircraft negative
reward the further they are from their track. Furthermore, as we assume aircraft to
fly at their optimal speed, we penalize agents for deviating too much from it.

Fuel consumption

In order to discourage the model from taking actions that lead to big fuel consump-
tion, we use the aircraft performance model OpenAP [135]. As per this model, the
aircraft receives a negative reward for the amount of fuel it consumes each time step.

New conflicts

An undesirable behaviour of CDR algorithms is the inducing of new conflicts as
a side effect of the resolution. Therefore, if the resolution proposed by the model
induces a new conflict, for the given lookahead time, it is severely punished.

Airspace complexity

Airspace complexity is usually not an aspect that CDR algorithms take into con-
sideration. However, complexity accounts for a large majority of ATCo workload
[31, 73]. While we implicitly consider complexity by measuring if the resolution
causes new conflicts, this alone is not informative enough in terms of complexity
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[31]. Complexity has been defined in several ways. The simplest and most used
of them is aircraft density,defined by [26] as the number of aircraft co-existing in
the airspace that is being studied. This however, has been shown not to give a full
picture of complexity [79]. Furthermore, in this paper scenarios always have the
same number of aircraft, which would result in the same complexity for all scenarios
if we were to use this metric.

In this work, we consider the complexity formulation of Koca et al. [79]. They
propose a hierarchical ecosystem structure, where relevant aircraft to the conflict are
determined based on spatio-temporal interdependencies. Such interdependencies
are defined on space-time regions, which in turn are areas where an aircraft can be
conflict-free. If the regions of two aircraft intersect, then they are interdependent
[79]. Let us assume that there is a conflict between aircraft. The set of aircraft
involved in this conflict is denoted by 𝐶 and the hierarchy over this traffic is denoted
by 𝐻𝐶 . The members of 𝐶 form the members of the first order of 𝐻𝐶 . Members
of the 𝑖𝑡ℎ order are the aircraft that are not members of a lower order, but have an
interdependency with a member of the (𝑖 − 1)𝑡ℎ order. Formally, this is defined:

𝐻𝐶 (1) = 𝐶

𝐻𝐶 (𝑖) = 𝐴𝐶 ∈ 𝐹 |𝐴𝐶 ∈ 𝐻−𝐶 (𝑖) ∧ (∃𝐴𝐶
′ ∈ 𝐻𝐶 (𝑖 − 1) : 𝐴𝐶 ⊥⊥ 𝐴𝐶′)

(5.6)

where F is the set of all aircraft to consider, 𝐻−
𝐶
(𝑖) = 𝐹 \⋃ 𝑗−1

𝑗=1 𝐻𝐶 ( 𝑗) and⊥⊥ denotes
interdependency.

To turn the information of the ecosystem into a single score, we do a weighted sum of
the number of interdependencies for each order. This means that interdependencies
get less and less important the further down the orders. In this way, we discourage
resolutions that leave the airspace in a more complex situation.

All rewards are negative, as positive rewards can lead to the agent simply attempting
to collect as much reward and solving the conflict in an inefficient way [121]. The
final reward is a weighted sum of all the single factors mentioned above.

The Model
In this work, we train two agents that represent each aircraft of the conflict pair.
Figure 5.2 is a visual representation of the model. Each scenario consists of a
conflict which needs to be resolved. When the conflict is detected, agents are
randomly assigned to the conflict aircraft. The agents then must attempt to resolve
the conflict by maximizing their individual and global rewards (accumulative reward
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Figure 5.2: Model for conflict resolution.

of single agents). At each time step while the conflict is not solved, each agent takes
an action that is a combination of a heading and speed change. At the next time step,
the agents receive a reward on how well the actions they took is perceived from the
environment. The agents gain experience after each scenario they encounter and
we ensure that agents have roughly the same experience by having only one initial
conflict in the scenario.

The actor networks of each agent dictate what actions they have to take at every
step. As only horizontal resolutions are considered in this work, the actor network
outputs three values in the range [−1, 1] (i.e. we apply the tanh activation function
to the output layer), where two outputs are the 𝑠𝑖𝑛 and 𝑐𝑜𝑠 of the heading change
angle 𝛼. The angle is then 𝑡𝑎𝑛−1(𝛼) = 𝑠𝑖𝑛(𝛼)/𝑐𝑜𝑠(𝛼). We put a maximum heading
change of ±45◦ per time step. The other output value is used to determine the new
speed of the aircraft. In this work, we consider en-route traffic, therefore we assume
that aircraft are initially flying at optimal speeds. As a result we limit speed change
in an interval [𝑣 − 6%, 𝑣 + 3%] [76, 136].

As mentioned previously, the critic network is learned jointly for both agents.
Furthermore, given that agents have the same reward structure, we can assume agents
to be cooperative. However, no communication between agents is considered, which
means that the only way agents are aware of the other agents’ policy is through the
critic network.
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Simulation Environment
Simulations were run on the air traffic simulator BlueSky [109]. The simulator was
chosen primarily because it is an open source tool, which allows for more trans-
parency in the development and evaluation of the model proposed in this work. Fur-
thermore, BlueSky has an Airborne Separation Assurance System (ASAS), which
can support different CD&R methods. This allows for different resolution algo-
rithms to be evaluated under the same conditions and scenarios.

5.4 Simulation Results
Conflict Resolution
The algorithm was trained on the Google Cloud Platform1 using an NVIDIA Tesla
K80 GPU. The algorithm was then tested on 195 conflict scenarios with intrusion
angles ranging from 0𝑜 to around 140𝑜. Furthermore, scenarios had different CPAs,
and time until the conflict started.

The model shows great promise with around 93% of conflicts solved using real
traffic and considering as objective function a non-linear combination of reward
factors. This means that the vast majority of conflicts are solved with both agents
being involved in the solution and having no knowledge of the dynamics of the
environment. Nevertheless, with such a big success rate, it is more informative to
analyse different aspects of the resolutions such as, number of steps needed to solve
the conflicts, maneuvers taken etc.

As previously mentioned, the agents must take an action at every time step they are
active, which means that at each time step the conflict aircraft must make a heading
and speed change. Figure 5.3 shows the number of steps required to solve the
conflicts. Scenarios where there were between 2 and 5, and 6 and 10 steps needed
are grouped together, while scenarios that needed 1 step and more than 10 steps
were shown separately. As shown in the figure, 63% of solved conflicts needed only
1 time step. This is a promising result, which shows the model can learn by itself
that the preferred behavior is to solve conflicts in one attempt.

Furthermore, we observe that conflicts that needed between 2 and 5 time steps to be
solved represent around 27% of all solved conflicts. The other two groups represent
less than 10% each. While these behaviors are not preferred, it is encouraging to
see that the majority of conflicts are solved in less than 5 time steps. This means

1https://cloud.google.com
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Figure 5.3: Number of steps required to solve the conflict. A time step is 15 seconds
long.
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Figure 5.4: Relation between number of steps needed to solve the conflict and time
before conflict starts.

that the majority of conflicts are solved in around 1 minute from when the conflict
was detected.

Figure 5.4 shows the relation between the number of time steps needed to solve the
conflict and the time before the loss of separation (LOSS) occurred. Furthermore,
the Pearson correlation coefficient between the two is calculated and resulted to be
−0.43. This result indicates moderate negative correlation, which can also be seen
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Figure 5.5: Distance of each agent from track in nautical miles when the conflict is
resolved.

from the figure. However, from the figure it is clear to see that the majority of
conflicts that took multiple time steps to solve had a very low time until LOSS. This
means that for the majority of the time, the agents were trying to solve a LOSS. This
is a surprising result, as one would expect that given the formulation of the reward
function, the agents would react more when a LOSS is imminent. However, the
agents have no model of the dynamics of the environment, except for the reward they
receive. As a result, the big negative reward the agents get when the LOSS starts is
not informative to the agents, and does not help them solve the conflict. To further
support this claim, the agents were tested on 15 different scenarios, where the LOSS
had already occurred when the agents were active. Out of those, they failed to solve
the conflict 12 times. These new scenarios were handcrafted and are not part of the
original 195 test scenarios. Those were initialized prior to LOSS and the agents
practically had to avoid LOSS. In the other 15 scenarios, the agents essentially had
to get out of a LOSS. These results show that when given informative rewards from
the environment, the agents are generally successful in solving the conflicts.

Figure 5.5 shows the distance from track at the end of the conflict for each agent. As
one can see, both agents can solve around 65% of conflicts within 0.5 NM of their
original track and around 70% within 1 NM. This result is promising, as resolutions
that minimally displace the aircraft from their track are preferred. Both agents show
a similar performance, which indicates the resolution would be likely acceptable by
both aircraft. However, in this paper we assume cooperative agents, which cannot
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Figure 5.6: Average heading change needed to solve each conflict.

always be expected in practice. The Pearson correlation coefficient between number
of time steps required to solve the conflict and final distance from track is 0.78,
which indicates high correlation. This shows that agents will increasingly deviate
from track the longer they are not able to solve the conflict. While they eventually
manage to solve the conflict, this resolution cannot be accepted in practice, as it
would require a huge deviation, which will result in major delays.

Actions Taken to Solve the Conflicts
In this section, we visualize and and discuss the actions taken by the agents to solve
the conflicts. As mentioned previously, at each time step the agent could make a
heading change of at most ±45𝑜 and a speed change in the range [𝑣 − 6%, 𝑣 + 3%].

Figure 5.6 shows as a box plot the heading change made by each agent to solve
each conflict. For conflicts that required more than one time step to be solved, the
average of all time steps is shown. Figure 5.7 shows the same information for the
speed changes, with changes being the difference in percentage to the flight speed
of the time step (which is assumed to be optimal). It is interesting to note that speed
changes are almost 0, with each agent having an average decrease of −0.01%. This
is a relevant result, as speed changes in this time frame are known to not be as
efficient [75] and are not able to solve all conflicts. Furthermore, the penalization
for bigger heading or speeding changes for the agents were of the same magnitude,
meaning that no preference of actions was induced to the agents. As such, this result
shows the agents’ ability to learn desirable behavior with no previous knowledge
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Figure 5.7: Average speed change needed to solve each conflict.

of the environment. We also note that the majority of changes decrease the speed,
which can be an indication from the performance model that the optimal speed can
be improved, however this would need further investigation.

For heading changes, results show each Agent 1 makes an average change of around
20𝑜, while Agent 2 makes an average change of around 31𝑜. An interesting result
is the fact that big heading changes are made rarely by agents, with the maximum
change being taken only once by each agent. This further shows the effect of the
reward function in the behavior of the agents, as each prefer small changes that
solve the conflict quickly. However, we note that Agent 2 makes on average a bigger
heading change. Nevertheless, the heading changes are still relatively small, which
is preferred.

Furthermore, the fact that the majority of conflicts are solved only in one time step
shows that the learned behavior of the agents can give resolutions that optimize
several factors at once. Additionally, the agents were penalized heavily if the
resolution they proposed would increase the complexity of the airspace, or even
create a new conflict with one of the surrounding aircraft. We do not observe new
conflicts that were created as a result of a resolution. This is further evidence of
agents being able to learn positive behaviors, as ATCos do not issue maneuvers that
create new conflicts.
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Figure 5.8: Correlation between final reward and time steps needed to solve the
conflict for each agent.

Agent behavior
In this work, we assume cooperative agents. As such, both agents have the exact
reward structure and furthermore, must maximize a global notion of reward.

Given the non-linear nature of neural networks, one cannot expect a linear correlation
between the factors that take part in the reward function and the actions taken to solve
the conflict. For instance, results indicate no correlation between the magnitude of
heading change with the CPA and time until LOSS. Such a conclusion, however,
speaks in favor of the model, as it shows that the agents are capable of extracting more
complicated relations between reward factors rather than being highly influenced by
one of them. Nevertheless, the effects of individual factors in the reward function can
be observed through the results. For instance, in Figures 5.6 and 5.7, we see that the
model learns to prefer heading changes as opposed to speed changes, which cannot
solve all conflicts. Furthermore, given that in this work we assume that aircraft are
flying at optimal speed, the strategy of small heading changes and not changing
speed comes as a result of penalising high fuel consumption in the reward function.
Figure 5.8 shows the correlation between final reward and number time of time steps
needed to solve the conflict. The results indicate a clear negative correlation, which
suggests that the longer it takes for the agents to solve the conflict, the more they
will be penalized by the reward. While this is an expected result, it is an important
one, as it further confirms the non-linear relation between reward factors that the
neural networks induce. Furthermore, this result shows why the agents tend to solve
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ios.

conflicts so quickly. The behavior, which is influenced by the reward, coincides with
usual controller behavior, as they usually issue one maneuver to solve the conflict.

Another interesting aspect of the heading changes is the direction of the change.
To measure it, we compare the direction of the average heading change for all
solved conflict scenarios. Results show that in 83% of the cases the agents solve
the conflicts by going in the same direction, while in 16% of the cases they go in
different directions. Figure 5.9 shows the heading changes made by each agent in 5
example scenarios. As it can be noted, Agent 2 in all cases makes a bigger change,
even in cases where the aircraft go in different directions. This result is unexpected
and does not reflect how conflicts are generally solved in practice. Nonetheless,
this result explains the difference in average heading between Agent 1 and Agent 2
shown in Figure 5.6. In this case, Agent 2 has to make a bigger turn to solve the
conflicts in the majority of cases.

In the setting of this paper, where we assume cooperative agents that do not com-
municate, this does not affect the effectiveness of the algorithm, as the ultimate goal
is to solve the conflicts. Furthermore, the agents have no model on the dynamics
of the environments, thus they have no concept of how conflicts are usually solved.
Additionally, a known problem with MARL algorithms is the high non-stationarity
of the environment. Each agent takes an action at each time step and they do not
know the policy of the other agent. Thus, they observe the actions taken by the
other agent as a constant change in the environment. As a result, injecting more



99

expert knowledge into the state representation of the environment, it can be expected
that these peculiarities in agents’ behavior can be resolved. Furthermore, commu-
nication between agents, in the form of knowledge of each other’s policies can be
expected to do the same.

Finally, an important result is the fact that both agents are actively attempting to
solve the conflicts. In fact, in only 1% of the seen scenarios it happens that one
of the agents makes a turn of less than 5𝑜 and the other makes a turn of bigger
than 5𝑜. This result shows that the agents successfully avoid "freeloading", which
is undesirable behavior.

5.5 Conclusions
Contributions
In this paper, we tackle the problem of conflict resolution at the tactical level in the
presence of surrounding traffic by modeling it as reinforcement learning problem.
We utilize MADDPG, which is a multi-agent reinforcement learning algorithm. It
consists of an actor-critic architecture, where an actor corresponds to an agent taking
actions and the critic models the Q-values. To the best of our knowledge, this is
the first work that uses a multi-agent reinforcement learning approach to conflict
resolution.

We propose a novel state representation consisting of position information, heading
and current speed. Furthermore, we propose a reward function that not only opti-
mizes for number of conflicts solved, but encourages efficient solutions. Factors that
are included in the reward function are fuel consumption, CPA, time to LOSS, the
creation of new conflicts and airspace complexity. The reward function evaluated in
this work, can serve as a template for other research that goes in the same direction.

The model is trained and tested on conflict scenarios from real traffic, with a data
augmentation technique applied to increase the variance of encountered conflict
geometries. Each scenario lasts 20 minutes, in which each aircraft within the conflict
pair is assigned an agent taking actions every 15 seconds. In this work, agents are
able to handle continuous actions space, which means that we do not prescribe
fixed maneuvers to solve the conflict. This overcomes a common limitation of
exisitng research, where fixed maneuvers are usually issued. Each action consists
of a heading (±45𝑜) and speed change ([𝑣 − 6%, 𝑣 + 3%]).

Results indicate an impressive resolution success rate of 93%. Furthermore, the
agents are able to learn several desired behaviors, while having no model of the
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dynamics of the environment. First of all, the majority of conflicts are solved only
in one time step, which emulates how conflicts are solved in practice. Furthermore,
the majority of conflicts are solved with heading changes smaller than the allowed
maximum. This indicates that the proposed reward function directs the agents not
only to solve the conflicts as soon as possible but as efficiently as possible. Further
evidence to this is the fact that the speed changes the agents make are negligible,
with the average being −0.01%. This is an interesting result, as speed changes are
generally considered to be less efficient and are not able to solve all conflicts.

Challenges and Future Steps
Nevertheless, there are several challenges to be considered to our initial approach.
First of all, the agents are not able to solve all conflicts. Results are promising, but a
safety-critical machine learning approach should come with resolution guarantees.
Furthermore, there are cases where agents behave in peculiar ways. For instance, in
the majority of cases where they have little time before LOSS, the agents are not able
to solve the conflicts. This is somewhat counterintuitive, as one would expect the
agents to make a bigger heading change to solve the conflict. A possible explanation
to this can be the calibration of the reward function. Further investigation to the
failed cases indicates that in the aforementioned scenarios, the agents get penalized
too much. As a result, the other factors in the reward function are unable to guide
the agents out of the conflict.

Additionally, in most cases, agents make their heading changes in the same direction.
To this effect, Agent 1 makes on average a turn of 20𝑜 while Agents 2 makes a turn
of 30𝑜, This is not a natural way of solving conflicts. Furthermore, such resolutions
might not be accepted by ATCos. One possible solution to this issue could be
the inclusion of a more informative and expressive complexity metric. Such a
metric should give more detailed and multi faceted complexity information. As
a result, agents will be discouraged from taking actions that increases complexity.
In addition, in this work, after the resolution of the conflict, aircraft are sent back
on their tracks with the angle opposite heading and speed change used to solve the
conflict. An interesting addition to this approach would be to let the agents learn
what the best way back could be. After resolution, positive reinforcement could be
used to incentivize agents to quickly and safely go back on track.

In this work we assume cooperative agents. While this is a valid approach, it
might not reflect the whole reality of the situation. In practice, aircraft might not
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be willing to make certain maneuvers. Another interesting approach would be to
model different behaviors of the agents, such as competitive behavior. In such an
approach, agents would not have the same reward structure and would have certain
preferences towards certain resolution methods. This would make for a valuable
comparison in terms of local and global reward optimization. Furthermore, one
way to improve resolutions would be to take feedback from controllers. In such
approaches, the agents get a reward not only from the environment but also from a
teacher, which can help alleviate issues from the non-stationarity of the environment
and eventually make convergence easier. In addition, the models are trained and
tested on a specific dataset. This dataset is not representative of all possible conflicts
scenarios and geometries and when the agents are presented with unseen conflict
situations, they may fail to solve them. A solution to this is to introduce lifelong
learning, which is an approach to machine learning that retrains itself when faced
with unseen data.

Ultimately, a conflict resolution tool that is based on machine learning will still
need to be monitored by ATCOs. Such methods need to have a high degree of
explainability. More specifically, agents need to be able to show some reasoning
on how they picked actions. Ways how these explanations can be informative in a
meaningful way presents a very interesting research question.
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C h a p t e r 6

MULTI-UAV CONFLICT RESOLUTION WITH GRAPH
CONVOLUTIONAL REINFORCEMENT LEARNING

Safety is the primary concern when it comes to air traffic. In-flight safety be-
tween Unmanned Aircraft Vehicles (UAVs) is ensured through pairwise sep-
aration minima, utilizing conflict detection and resolution methods. Existing
methods mainly deal with pairwise conflicts, however, due to an expected
increase in traffic density, encounters with more than two UAVs are likely to
happen. In this paper, we model multi-UAV conflict resolution as a multia-
gent reinforcement learning problem. We implement an algorithm based on
graph neural networks where cooperative agents can communicate to jointly
generate resolution maneuvers. The model is evaluated in scenarios with 3
and 4 present agents. Results show that agents are able to successfully solve
the multi-UAV conflicts through a cooperative strategy.

6.1 Introduction
Commercial and civil unmanned aircraft systems (UAS) applications are projected
to have significant growth in the global market. According to SESAR, the European
drone market will exceed 10 billion annually by 2035, and over 15 billion annually
by 2050 [137]. Furthermore, considering the characteristics of the missions and
application fields, it is expected that most market value will be in operations of
small UAS (sUAS) and at the very-low-level airspace (VLL). Such a growing trend
will be accompanied by an increase in traffic density and new challenges related to
safety, reliability, and efficiency. Therefore, the development and implementation
of conflict management systems are considered preconditions of integrating UAS in
the civil airspace. Most notably, the National Aeronautics and Space Administration
(NASA) in the USA aims to create a UAS Traffic Management (UTM) system that
will make it possible for many UAS to fly at low altitudes along with other airspace
users [138]. Europe is leading efforts to develop an equivalent UTM concept,
referred to as U-space. It will provide a set of services (and micro-services) that
would accommodate current and future traffic (mainly but not limited to) at VLL
airspace [139]. Similar approaches are followed also in China and Japan [140].
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Considering airspace under UTM services, UAS must be capable of avoiding static
conflicts such as buildings, terrain, and no-fly zones and dynamic conflicts such as
manned or unmanned aircraft. Here, a pairwise conflict is defined as a violation
of the en-route separation minima between two UAVs [141]. To ensure operations
free of conflict, UTM provides Conflict Detection and Resolution services, which
comprise three layers of safety depending on the time-horizon (i.e., look-ahead
time) [142]: Strategic and Tactical Conflict Mitigation and Collision Avoidance
(CA) [141, 142]. In this work, we will focus on tactical CR applicable for small
UAS missions. This function is typically treated in two ways: self-separation
and Collision Avoidance [142, 143]. The former is a maneuver executed seconds
before the loss of separation minima, characterized by a slight deviation from the
initial flight plan, and aims to prevent CA activation. The latter provides a last-
resort safety layer characterized by imminent and sharp escape maneuvers. Both
functions above are encompassed within what is widely recognized as Detect and
Avoid capability [144, 145]. Aligning with the up-to-date state-of-the-art, a loss of
separation minima is referred to as Loss of Well Clear (LoWC). While there is no
standard definition of Well Clear (WC), two related functions are associated with
this state: Remain Well Clear (RWC), and Collision Avoidance (CA) [146]. In terms
of tactical CD&R, RWC is equivalent to the self-separation function. Defining and
computing RWC thresholds are an open research works, but they are mainly viewed
as protection volume around UAS [147, 148, 149]. This volume can be specified
by spatial thresholds, temporal thresholds, or both at the same time. We follow
the hockey-puck model [150, 151] characterized by distance-based thresholds. In
addition, the near-mid-air-collision (NMAC) represents the last safety volume. As
the name suggests, a distance smaller than NMAC represents a very severe loss of
well clear that could result in a collision in the worst case. This distance is usually
defined based on the dimensions of the UAS and its navigation performance [152].

Therearemanyexistingworks thatproposeconflict resolutionalgorithms (seeSection 6.2
for a more detailed overview). However, the majority of these works focus mainly
on pairwise conflicts. Nevertheless, with the expected increase in traffic density
[137] multi-UAV conflicts (i.e., involving more than 2 UAVs) are expected to occur.
In this paper, multi-UAV conflict resolution is modeled as a multiagent reinforce-
ment learning problem (MARL). More specifically, we utilize graph convolutional
reinforcement learning [153], where air traffic is modeled as a graph. The present
UAV are the set of nodes, and single pairwise conflicts form the set of edges in the
graph. The model used in this paper provides a communication mechanism between
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connected nodes in the graph. Such a mechanism facilitates learning and allows for
the agents (in this work, an agent is an abstraction of a UAV. An agent must learn
how to achieve a policy that solves conflicts through training in several multi-UAV
conflict scenarios. The generated maneuvers are then forwarded to the UAVs in the
actual scenario) to develop cooperative strategies. Multi-UAV conflicts are formally
defined as compound conflicts, where multiple pairwise conflicts have tight spatial
and temporal boundaries. In this work, we pose two research questions:

• RQ1 Can multi-UAV conflicts be solved by modeling conflict resolution as a MARL
problem?

• RQ2 Do the agents learn any strategies in the conflict resolution process?

In this work, we first train a model in scenarios with three UAVs. After that, the
same model is retrained to solve compound conflicts with four UAVs. This technique
allows us to reuse the previously learned policies and refine them to a new set of
scenarios, while efficiently training the new agent from scratch. Results show that
agents are successfully able to solve compound conflicts in both cases.

The rest of the paper is organized as follows: some existing works are discussed
in Section 6.2. Section 6.3 describes the theoretical background necessary for this
paper. In Section 6.4, the experimental setup is presented. Results are presented
and discussed in Section 6.5, while in Section 6.6, we draw conclusions and propose
steps for further research.

6.2 Related Work
There are many essential contributions in the area of conflict resolution methods
in aviation. These methods are widely classified into the geometric, force field
methods, optimized trajectory, and Markov Decision Process (MDP) approaches
(probabilistic) [154]. For detailed and comprehensive information on CD&R prac-
tices, we suggest Kuchar and Yang’s review study [10] and this review paper [155]
for more up-to-date content. We will focus only on the MDP method and provide a
summary discussion below, as our work aligns with this group of methods. Aircraft
and especially UAS operations are characterized by uncertain environments and
stochastic events such as weather, multiple intruders, and Communication, Naviga-
tion, and Surveillance (CNS) failures; therefore, decision-making methods that adapt
under such conditions are necessary. MDP and more recent Partial Observable MDP
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(POMDP) are methods that can have significant performance in such domains. Dif-
ferent techniques are used to solve MDP and/or POMDP problems, and most notable
are reinforcement learning (RL) and deep reinforcement learning (DRL) methods.
In Ref. [156], the authors present an efficient MDP-based algorithm that provides
self-separation functions for UAS in free airspace. A similar approach is followed
here [157], where the authors give a scalable multiagent computational guidance
for separation assurance in Urban Air Mobility. In addition, they use RL techniques
to solve the MDP problems. In a previous work [158], a conflict resolution sys-
tem is applied to mitigate conflicts between UAS. Ribeiro et al. [121] consider a
single-agent approach to conflict resolution through RL for unmanned aerial ve-
hicles (UAVs). Furthermore, recent works saw the engagement of DRL methods,
which behave better in multiagent environments and consider uncertainties. In this
paper [91], the authors model pairwise conflict resolutions as a multiagent rein-
forcement learning (MARL) problem. They use Multiagent Deep Deterministic
Policy Gradient (MADDPG) [122] to train two agents, representing each aircraft in
a conflict pair, capable of efficiently solving conflicts in the presence of surrounding
traffic by considering heading and speed changes. In Ref. [57], the authors use
the Deep Deterministic Policy Gradient (DDPG) technique to mitigate conflicts in
high density scenarios and uncertainties. Brittain et al. [55] used a deep multia-
gent reinforcement learning framework to ensure autonomous separation between
aircraft. Dalmau et al. [62] used Message Passing Neural Networks (MPNN) to
model air traffic control as a multiagent reinforcement learning system where agents
must ensure conflict free flight through a sector.

While these papers consider a multiaircraft (manned or unmanned) setting, they do not
particularly consider small UAS performance capabilities (i.e., high yaw rate). Also,
a common assumption is that the flight trajectories should be within a predefined
airspace sector. In a UTM environment airspace is not necessarily segregated into
sectors. Additionally, small UAS characteristics can directly effect how the action
space is modelled. Moreover, approaches with a multi-UAV setting do not consider
the effects of cooperation on the resolution manoeuvres. In this work, we propose
a multi-UAV conflict resolution method suitable for sUAS operations and attempt to
achieve cooperation between the agents.

These methods (RL and DRL) are considered very important for the development
of the Aircraft Collision Avoidance System (ACAS-X), which will be extended into
ACAS-Xu, ACAS-sXu, and so on, to accommodate all airspace users [159].
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6.3 Theoretical Background
In this section, we will briefly describe the main theoretical background necessary
for our work. However, it is not feasible to properly cover all necessary details.
Therefore, we refer the readers to some works that give a comprehensive explanation
of the concepts used in our work [123, 160, 161].

Reinforcement Learning
Reinforcement Learning (RL) is a paradigm of machine learning which deals with
sequential decision making [123]. A given RL problem is formalized by a Markov
Decision Process (MDP), which is a discrete time stochastic control process [125]
that consists of a 4-tuple (𝑆, 𝐴, 𝑇, 𝑅), where:

• 𝑆 is the state space,

• 𝐴 is the action space,

• 𝑇 : 𝑆 × 𝐴 × 𝑆 → [0, 1] is the transition function which is a set of conditional
probabilities between states,

• 𝑅 : 𝑆 × 𝐴 × 𝑆 → R is the reward function

In RL, an agent makes decisions in an environment to maximize a certain notion of
cumulative reward G, defined as follows:

𝐺 𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ... =
∞∑︁
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 (6.1)

where 𝛾 is a discount factor between 0 and 1. Its task is to inform the agent
how relevant immediate rewards are in relation to rewards further in the future.
The higher 𝛾 is the more the agent will care about future consequences.

The agent improves incrementally by modifying its behavior according to previous
experience. The agent does not strictly require complete information or knowledge
of the environment; it only needs to interact with it and gather information [124].

The RL agents starts at an initial state 𝑠0 ∈ 𝑆 and at each time step 𝑡 must take an
action 𝑎𝑡 ∈ 𝑇 . Then, the agent gets a reward 𝑟𝑡 ∈ 𝑅 from the environment. The states
then transitions to 𝑠𝑡+1 ∈ 𝑆, which is dictated by the taken action and the dynamics
of the environment. Finally, the agent stops interacting with the environment when
it reaches a defined goal state.
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The agent’s behavior is encoded into a policy 𝜋, which can be deterministic 𝜋 : 𝑆 →
𝐴, or stochastic 𝜋 : 𝑆 × 𝐴→ [0, 1].

There are two ways that are used to predict the total future discounted reward: the
value function 𝑉𝜋 and the action-value function 𝑄𝜋, defined as follows:

𝑉𝜋 (𝑠) = E𝜋 (𝑅𝑡 |𝑠𝑡 = 𝑠) (6.2)

𝑄𝜋 (𝑠, 𝑎) = E𝜋 (𝑅𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) (6.3)

The value function represents the future expected reward in the current state if the
policy 𝜋 is followed, while action-value function represents expected rewards for
state-action pairs following policy 𝜋. Ultimately, the goal of all RL algorithms is to
solve either of these functions.

Q-learning is one most prominent algorithms for solving RL problems. There, an
agent must learn to estimate the optimal action-value function in the form of a table
with as many state-action pair entries as possible [62]. However, in cases where the
state space or action space (or both) are continuous, there are infinitely many state-
action pairs, which makes it unfeasible to store the values in table. In those cases, a
function is used to approximate the Q function. Such a function with parameters 𝜇,
is optimized through an objective function based on the Bellman equation [125].

In the case of Deep Q-Networks (DQN) [118], the Q function approximators are
neural networks. However, several issue arise when applying deep learning directly
on a RL problem. First, in RL rewards can be sparse or delayed, which hinders
neural networks, as they rely on directly gained feedback. Additionally, the data
that are obtained from an RL problem are highly correlated and lastly, the data
distribution changes as the policy does, making it nonstationary, which further
impairs the learning capabilities of neural networks. To overcome these issues,
several modifications must be. Experience replay is used to mitigate the issue of
sample autocorrelation [118]. In this technique, the agent’s experience is stored at
each time step in a replay buffer. the memory is sampled randomly and is used to
update the networks. When the replay buffer becomes full, the simplest solution is
to discard the oldest samples. The nonstationarity of the data makes the training
unstable, which can lead to undesired phenomena such as catastrophic forgetting,
where the agent suddenly “forgets” how to solve the task after apparently having
learned a suitable policy. Such an issue can be mitigated using target networks,
which is an identical network to the one used to learn the Q function, that is held
constant to serve as a stable target for learning for a fixed number of time steps.
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Multiagent Reinforcement Learning
Multiagent Reinforcement Learning (MARL) is an extension of classical RL where
there are more than one agents in the environment. This is formalized through
partially observable Markov games [126], which are decision processes forN agents.

Similarly to MDPs, Markov games have a set of actions. However, in this case, the
environment is not fully observable by the agents. Therefore, the Markov game has
a set of observations 𝑂1, ..., 𝑂𝑁 for each agent. Similarly to single agent RL, in
the MARL setting agents take actions according to their policy and obtain rewards.
The goal of the agents is to maximize personal and total expected reward.

Graph Convolutional Reinforcement Learning
While deep learning proved effective in capturing patterns of Euclidean data, there
are a number of applications where data are represented as graphs [162]. The com-
plexity of graph data has imposed significant challenges on existing deep learning
algorithms. A graph can be irregular and dynamic, as it can have a variable number
of nodes and the connections between nodes can change over time. Furthermore,
existing deep learning algorithms largely assume the data to be independent, which
does not hold for graph data.

Recently, there was an increasing number of works that extend deep learning ap-
proaches to graph data, called Graph Neural Networks (GNNs). Variants include:
Graph Attention Networks (GATs) [163], Graph Convolutional Networks (GCNs)
[164] and Message Passing Neural Networks (MPNNs) [165]. We refer the reader
to [162], for a comprehensive review of GNNs.

In the case of MARL, communication is often cited as a key ability for cooperative
agents [153, 62]. In such a setting, agents exchange information before taking an
action.

In this work, we will use Graph Convolutional Reinforcement Learning [153]
(dubbed DGN by its authors), which is a GNN algorithm for cooperative agents.

In DGN, the multiagent environment is modeled as a graph G = (V, E), whereV
is the set of nodes and E is the set of edges. Each agent is a node and the local
observation of the agent are the features of the node. Each node 𝑖 has a set of
neighbors B𝑖, where (𝑖, 𝑗) ∈ E, ∀ 𝑗 ∈ B𝑖. The set of neighbors is defined according
to some criteria, depending on the environment and changes over time. In DGN,
neighbor nodes can communicate with each other. Such a choice leads to the agents
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only considering local information when making their decisions. Another option
would be to consider all agents in the environment, however, this comes with higher
computational complexity.

DGN has three modules: an observation encoder, convolutional layer and Q network.
The observation of an agent 𝑖 at time step 𝑡, 𝑜𝑖𝑡 is encoded into a feature vector ℎ𝑖𝑡
by a Multi Layer Perceptron (MLP). The convolutional layer combines the feature
vectors in the local region and generates a latent feature vector ℎ′

𝑖𝑡
. The receptive

field of the agents increase by stacking more convolutional layers on top of each
other. An important property of the convolutional layer is that it should be invariant
from the order of the input feature vectors. Furthermore, such a layer must be
effective in learning how to abstract the relation between agents as to combine the
input features.

DGN uses multihead dot-product attention [166], which is an implementation of
attention which runs the attention mechanism several times in parallel, to compute
interactions between agents (we refer the reader to [153, 166] for a detailed overview
of the attention mechanism). Let us denote with B+𝑖 the set of neighbors B𝑖 and
agent 𝑖. The input features of the agent 𝑖 are projected into query𝑄, key 𝐾 and value
𝑉 representation by every attention head. For an attention head 𝑚 the relation for
𝑖, 𝑗 ∈ B+𝑖 is as follows:

𝛼𝑚𝑖 𝑗 =
𝑒𝑥𝑝(𝜏 ·𝑊𝑚

𝑄
ℎ𝑖 · (𝑊𝑚

𝐾
ℎ 𝑗 )𝑇 )∑

𝑎∈B+𝑖 𝑒𝑥𝑝(𝜏 ·𝑊𝑚
𝑄
ℎ𝑖 · (𝑊𝑚

𝐾
ℎ𝑎)𝑇 )))

(6.4)

where 𝜏 is a scaling factor and 𝑊𝑚
𝑄

and 𝑊𝑚
𝐾

are the weight matrices of the query
and key for attention head 𝑚. The representations of the input features are weighted
by the relation and summed together, which is done for each head 𝑚. The outputs
of all attention heads for an agent 𝑖 are concatenated and then fed into a MLP 𝜎 as
follows:

ℎ′𝑖 = 𝜎(𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(
∑︁
𝑎∈B+𝑖

𝛼𝑚𝑖 𝑗𝑊
𝑚
𝑉 ℎ𝑎,∀𝑚 ∈ 𝑀)) (6.5)

The graph representing the agents and the interactions between them is formalized
through and adjacency matrix 𝐶, where the 𝑖th row contains a 1 for each agent in B𝑖
and 0 for any agents not in the neighborhood of 𝑖. The feature vectors are merged
into a feature matrix 𝐹 with size 𝑁 × 𝐿 where 𝑁 is the number of agents and 𝐿 is
the length of the feature vector. The feature vectors in the local region of agent 𝑖 are
obtained by 𝐶𝑖 × 𝐹.
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The Q network in DGN is a common network as described in II.B. However, in
DGN, the outputs of the graph convolution layer are concatenated and fed into the
network. At each time step, the tuple (𝑂, 𝐴,𝑂′, 𝑅, 𝐶) is stored in the replay buffer,
where𝑂 and𝑂′ are the current and next observations, 𝐴 is the set of actions, 𝑅 isthe
set of rewards and 𝐶 is the adjacency matrix. During training, a random minibatch
of size S is sampled from the buffer and the loss is minimized as follows:

L(𝜃) = 1
𝑆

∑︁
𝑆

1
𝑁

𝑁∑︁
𝑖=1
(𝑦𝑖 −𝑄(𝑂𝑖,𝐶,𝑎𝑖 ; 𝜃))2 (6.6)

where 𝑦𝑖 indicates the return. Another factor that can impact the training of the Q
network is the dynamic nature of the graph, which can change from one time step
to the other. To mitigate this, the adjacency matrix (𝐶) is kept unchanged in two
successive time steps when computing the Q values in training. Finally, the target
network with parameters 𝜃′ is updated from the Q network with parameters 𝜃 as
follows:

𝜃′ = 𝛽𝜃 + (1 − 𝛽)𝜃′ (6.7)

where 𝛽 indicates the importance of the new parameters in the target network.

6.4 Experimental Setup
Compound Conflicts
In this work, we consider multi-UAV conflicts. However, multiple pairwise conflicts
can have varying spatial and temporal boundaries, i.e., their overlap in space and
time. Koca et al. [130], introduce the concept of a compound ecosystem, with an
ecosystem being the set of aircraft affected by the occurrence of a conflict. They
propose that multiple ecosystems can be considered together if they have at least one
common member and the conflicts overlap in time more than 10% of their duration. For
this work, we relax the requirements by not considering surrounding traffic, therefore
proposing the concept of a compound conflict. As such, multiple pairwise conflicts can
be considered collectively if and only if they share a common aircraft. We keep the
temporal requirement the same as in [130].

Traffic as a Graph
In this work, the multiagent environment is represented as a graph. Therefore, we
must define how the graph is created for a given traffic scenario. To have a correct
definition of a graph G = (V, E), the set of nodes and edges is required.
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In DGN, the nodes are the agents present in the environment. We keep the same
approach by considering the UAVs as nodes in a given traffic scenario. An edge
is created between two UAVs if and only if a conflict between them was detected.
This choice is motivated by the fact that in DGN, agents communicate with their
neighbors first and foremost. Therefore, we make this choice to facilitate cooperation
between UAVs that are in conflict.

Training Environment
To model compound conflict resolution as a MARL problem, the underlying Markov
decision process must be formalized. Thus, we have to determine the state space,
action space, and reward function. As we are considering cooperative agents, the
ultimate goal is to maximize the joined reward. Therefore, all agents have the same
reward structure.

State Space

The representation of the states of the environment is one of the most critical factors
that can impact the learning capability and performance of the agents. Typically,
the state is formalized through a vector of a certain dimensionality, which should
provide enough information to facilitate learning. Nevertheless, representations
with higher dimensionality will suffer from a higher computational effort to train an
effective model.

Therefore, in this work we take the state representation proposed by Isufaj et al. [91],
where the state is formalized through the agents’ position and speed information.
More specifically the state 𝑠𝑖 of an agent is the vector 𝑠𝑖 = [𝑙𝑎𝑡, 𝑙𝑜𝑛, ℎ𝑑𝑔, 𝑠𝑝𝑑], i.e.,
latitude, longitude, heading, and speed. These values are normalized into the range
[0, 1] to make it easier for the model to be trained.

Action Space

In this work, we only consider solutions through heading changes, thus speed and
altitude changes are ignored. As such, agents can choose to take on of three actions
at each decision time step: turn left, turn right, do nothing, where each track change
corresponds to a heading change of 15◦ in either direction. Agents must make a
decision every 2 s.
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Reward Function

Once the agents take an action according to their policy, they will receive a reward
from the environment 𝑟𝑖,𝑡 for the current time step, which indicates the quality of the
action. Thus, a carefully constructed reward function is crucial in achieving desirable
performance [91].

In our case, the reward consists of three terms. First, the number of conflicts term
punishes agents according to the number of conflicts. The more conflicts the agent
is in, the more it will have the incentive to solve the conflicts. Furthermore, the
deviation term penalizes the agents for solutions that drift the agent from its original
track. In this work, if an agent has deviated more than 90◦ from the original route,
it is penalized heavily. In cases where it has not, it is penalized as a fraction of
the current deviation to the maximal deviation.This fraction is proportional to the
maximal deviation. Such a term indirectly also incentivizes the agents to solve the
conflicts as soon as possible, as the quicker the conflicts are solved, the less of a
negative reward the agent will get. Lastly, through the severity term, the agents are
encouraged to solve the most severe conflicts first. This term considers more severe
conflicts, i.e., smaller distance at CPA, as more important to solve first. Formally,
the reward function is as follows:

𝑟𝑖,𝑡 = 𝑤1
∑︁
E(𝑖)
−1 + 𝑤2


− |𝜇−𝜇

′ |
90 if |𝜇 − 𝜇′| < 90

−10 otherwise

+(−𝑤3(1 − 𝑒𝑥𝑝(1 −
1

( 𝑑𝑐𝑝𝑎
𝑑𝑡ℎ𝑟𝑒𝑠ℎ

)1/2
)))

(6.8)

where 𝑤1, 𝑤2, 𝑤3 are positive weights that indicate the importance of each term,
E(𝑖) indicates all the agents that have an edge with 𝑖, 𝜇 and 𝜇′ are the original
and current heading and 𝑑𝑐𝑝𝑎 and 𝑑𝑡ℎ𝑟𝑒𝑠ℎ are the distance at CPA self-separation
distance. The formulation of the severity term is used to exponentially penalize
conflicts with higher severities. It ranges from 0 to 1. In this paper, 𝑤1, 𝑤2, 𝑤3 are
kept equal, however in future work these can be extended to be learnable parameters.
The total reward for a given time step 𝑡 is:

𝑅𝑡 =

𝑁∑︁
𝑖

𝑟𝑖,𝑡 (6.9)

where 𝑁 is the total number of agents.
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Simulation Environment
Simulations were run on the Air Traffic Simulator BlueSky [109]. The simulator
was chosen primarily because it is an open-source tool, allowing for more trans-
parency in developing and evaluating the proposed model. Furthermore, BlueSky
has an Airborne Separation Assurance System (ASAS), supporting different CD&R
methods. This allows for different resolution algorithms to be evaluated under the
same conditions and scenarios.

Data Generation
Algorithm 4 describes the procedure to generate the training scenarios. In this
work, we consider compound conflicts with 3 and 4 UAVs. To create the multi-
UAV conflict, first, a reference aircraft is initialized, with a heading sampled from
a uniform distribution from 0◦ to 360◦. Then, this aircraft is added to the set of
created aircraft. To generate the rest of the conflicting UAVs, we sample from the set
of the created ones. Then, a conflict angle is chosen from the list [0◦, 45◦, 90◦, 90◦,
135◦, 180◦, −135◦, −45◦]. Next, to add some variance to the intrusion headings, a
variance in the range [−10◦, 10◦] is added to each case. After that, the severity of
the conflict is decided by sampling from a uniform distribution between 0.1 and 1.
Finally, we set the time the new aircraft enters in conflict with the randomly chosen
aircraft to 15 s. The CRECONF function is taken from the BlueSky simulator, and it
provides the location and speed of a new conflicting aircraft. However, as compound
conflicts have temporal boundaries, no accidental conflicts are added in one look-
ahead time, which is set to 8 s. This is checked by the CONFLICT function, also
taken from BlueSky. To define the metrics for self-separation, we follow a similar
approach as in [167, 168]. This threshold depends on the UAV maneuverability and
its maximum airspeed. Whereas the innermost layer will be modeled according to
the Near Mid Air Collision concept, as a circle with radius: 𝑅𝑁𝑀𝐴𝐶 = 2 ×Maximum
Wing Span + Total System Error (TSE). The self-separation can be calculated by
(10).
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Algorithm 4 Data Generation Algorithm
procedure GENERATE(𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠𝑝𝑑𝑚𝑖𝑛, 𝑠𝑝𝑑𝑚𝑎𝑥 , 𝑡𝑙𝑜𝑠𝑠, 𝑡𝑙𝑎)

𝑐𝑟𝑒𝑎𝑡𝑒𝑑 ← ∅
ℎ𝑑𝑔𝑠𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡 ← [0, 45, 90, 135, 180,−45,−135,−90]
𝑣𝑎𝑟 ←10
𝑙𝑎𝑡𝑟𝑒 𝑓 ← 41.4
𝑙𝑜𝑛𝑟𝑒 𝑓 ← 2.15
𝑠𝑝𝑑𝑟𝑒 𝑓 ←UNIFORM(𝑠𝑝𝑒𝑒𝑑𝑚𝑖𝑛, 𝑠𝑝𝑒𝑒𝑑𝑚𝑎𝑥)
ℎ𝑑𝑔𝑟𝑒 𝑓 ←UNIFORM(1, 360)
𝑎𝑐𝑟𝑒 𝑓 ←AIRCRAFT(𝑙𝑎𝑡𝑟𝑒 𝑓 , 𝑙𝑜𝑛𝑟𝑒 𝑓 , 𝑠𝑝𝑑𝑟𝑒 𝑓 , ℎ𝑑𝑔𝑟𝑒 𝑓 )
𝑐𝑟𝑒𝑎𝑡𝑒𝑑 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 ∪ 𝑎𝑐𝑟𝑒 𝑓
while SIZE(𝑐𝑟𝑒𝑎𝑡𝑒𝑑) < 𝑡𝑎𝑟𝑔𝑒𝑡 do

𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 ←False
while 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 is False do

ℎ𝑑𝑔 ←SAMPLE(ℎ𝑑𝑔𝑠𝑐𝑜𝑛 𝑓 𝑙𝑖𝑐𝑡)+UNIFORM(-𝑣𝑎𝑟 , 𝑣𝑎𝑟)
𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ←UNIFORM(0.1,1)
𝑐𝑝𝑎 ← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 × 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦)
𝑐ℎ𝑜𝑠𝑒𝑛←SAMPLE(𝑐𝑟𝑒𝑎𝑡𝑒𝑑)
𝑎𝑐𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 ←CRECONF(ℎ𝑑𝑔, 𝑐𝑝𝑎, 𝑡𝑙𝑜𝑠𝑠, 𝑐ℎ𝑜𝑠𝑒𝑛)
𝑖𝑛𝑐𝑜𝑛 𝑓 ←CONFLICT(𝑐𝑟𝑒𝑎𝑡𝑒𝑑, 𝑎𝑐𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 , 𝑡𝑙𝑎)
if 𝑖𝑛𝑐𝑜𝑛 𝑓 is False then

𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 ←True
𝑐𝑟𝑒𝑎𝑡𝑒𝑑 ∪ 𝑎𝑐𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

end if
end while

end while
return 𝑐𝑟𝑒𝑎𝑡𝑒𝑑

end procedure

𝑅𝑡 = 𝑅𝑁𝑀𝐴𝐶 +𝑉𝑚 × 𝑡𝑚 +
𝑉𝑚

𝜔𝑚
(6.10)

where 𝑉𝑚 and 𝜔𝑚 are maximum airspeed and maximum yaw rate, respectively,
while 𝑡𝑚 is the time needed for the UAV to make an avoidance maneuver. The self-
separation threshold was set to 240 m, taking into account 𝑅𝑁𝑀𝐴𝐶 = 4 m, maximum
airspeed 15 m/s, and a maximum yaw rate of 90◦/s As we are attempting to solve
conflicts at the tactical level, a duration of 1 min per scenario was deemed suitable.
The time metrics (i.e., tactical CD&R maneuver and look-ahead time) mentioned
above are synthesized from the state of the art of CD&R in small UAS [169, 148,
170].
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6.5 Simulation Results
Conflict Resolution Performance
The model (the code can be found at https://github.com/risufaj/bluesky,
Accessed on 08/01/2022) was trained for 10,000 episodes with scenarios of com-
pound conflicts with 3 UAVs. Then, it was trained for a further 10,000 episodes with
scenarios of compound conflicts with 4 UAVs. In this way, we utilize the learned
policies of the previous agents to fine-tune them in the four-agent case and train the
new agent from scratch. The models were trained on the Google Cloud Platform
(https://cloud.google.com, Accessed on 08/01/2022) using an NVIDIA Tesla
K80 GPU. The training lasted around 10 h.

Figure 6.1 shows the evolution of the cumulative reward for both cases. As the
agents are cooperative, we are interested in the overall reward that is gained per
episode and do not concern ourselves with the individual rewards. In this work, we
utilize negative rewards, so the maximum the agents can get is 0. In the case of the 4
agents the reward seems a bit lower, however this comes a result of there being one
more agent present, which takes actions to solve the conflicts thus inflicting itself
some negative rewards for going away from track.

Figure 6.1: Evolution of cumulative reward per episode.

According to the figure, the model converges on both occasions. This means that
the agents are successfully able to improve their policies with gained experience.
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However, in the case with 3 present agents, the convergence happens around 2000
episodes, while around 4000 episodes are required for the 4 agent case. In the latter
case, there are more possible scenarios that can be generated, therefore increasing
the variance of situations that the agents are presented with. Furthermore, in the
beginning of training the already present agents employ their learned policies, while
the new agent is exploring the possible actions, which reduces the overall reward
the agents get.

In Figure 6.2 the number of losses of separation (LOSS) is shown. The number of
LOSS of the average unmitigated case (for both 3 and 4 agents) is shown with the
dashed line. The reward performance translates directly to successfully avoiding
LOSS. In the case with 3 present agents, after convergence the average LOSS per
episode is less than 1. This indicates that the agents are able to successfully solve
conflicts before violating the self-separation distance. In the case of the 4 agents
compound conflict, the average is around 1 LOSS per episode. However, through
our results, we note that the model manages to always avoid near misses in both
cases, as the NMAC distance is never breached.

Figure 6.2: Number of losses of separation in comparison with average unmitigated
case.

We can observe a similar evolution in Figure 6.1, with the retrained model perform-
ing slightly worse. In general, the case with four agents had more pairwise conflicts
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present, which makes the problem more difficult.

Table 6.1 shows in how many episodes the compound conflict was solved, meaning no
LOSS has occurred. The difference is similar to the number of extra epochs the 4 agents
model needed to converge. As such, once the model converges it can generally manage
to solve the compound conflict, thus fulfilling its task successfully. This result shows
that the agents are able to solve conflicts through communicating with their neighbors.

Table 6.1: Number of episodes compound conflicts solved.

3 Agents 4 Agents

5650 4461

In addition to solving conflicts, it is desirable for agents not to spend too much
in a LOSS, as this can increase the risk of collisions. Such information is shown
in Figure 6.3. The results shown there further confirm that the agents are able to
improve their performance. In a similar trend, the case of the 3 agents compound
conflict seems simpler to solve successfully, as the agents spend less than 5 s in
a LOSS, with 5650 episodes not experiencing a LOSS (therefore no time steps in
LOSS) Through the results presented in this section, RQ1 can be answered. In both
problem settings, agents can improve and eventually solve the majority of conflicts.
Furthermore, even in cases where there are still conflicts present at the end of an
episode, we observe that there are no NMACs present. Nevertheless, an approach
where hard-coded maneuvers (i.e., Collision Avoidance) as a second layer of safety
can be included.
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Figure 6.3: Number of time steps spent in LOSS.

Agent Behavior
The results shown so far indicate that the agents manage to successfully learn how to
solve the task. The model converges fast and maintains its knowledge of the system,
thus avoiding the common forgetting issues.

However, it is important to understand what strategies they learned. This information
is shown in Figures 6.4 and 6.5. For the sake of simplicity, we only show the
frequency of actions for the last 200 episodes.

We note that in both settings, the agents take the go left action in the majority of
cases. While the direction of the action might not be as important, the learned
strategy suggests that agents take the same action. This results in agents increasing
the distance between them, as taking the same action head-on or crossing scenarios
results in them going in different directions. However, in overtaking scenarios such
a strategy does not immediately solve the conflict. Nevertheless, through the reward
agents must learn that the conflict with the smallest CPA distance is the most urgent.
As such, it can happen that agents prefer to delay the solution in an overtaking
scenario, by taking several small changes in the same direction. While this is not
immediately desirable, attempting to make a heading change to the opposite direction
could create a more severe conflict with the head-on or crossing agents.

In this work, we do not put any restrictions to the agents and do not inject expert
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knowledge in them, thus they start learning from a blank state. The results show
that the agents are able to learn a strategy that successfully solves the compound
conflicts in scenarios with 3 and 4 agents. These results answer RQ2.

Figure 6.4: Frequency of actions for last 200 episodes of compound conflict with 3
agents.

Figure 6.5: Frequency of actions for last 200 episodes of compound conflict with 4
agents.
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6.6 Conclusions and Future Work
In this paper, we tackle multi-UAV conflict resolution by modeling it as a MARL
problem with cooperative agents. Air traffic is represented as a graph with aircraft
as nodes. An edge is created between every two aircraft in a pairwise conflict. We
use graph convolutional reinforcement learning, which provides a communication
mechanism between connected agents. This means that conflicting aircraft are
allowed to communicate with each other and develop cooperative strategies. To
formally define a multi-UAV conflict, we propose the concept of compound conflicts,
which are conflicts that have tight spatial and temporal boundaries.

We first train a model that learns how to solve compound conflicts with 3 agents.
After that, the same model is retrained to to solve compound conflicts with 4 agents.
As a result, we are able to refine the policies learned in the previous setting, while
added agent learns a desirable policy.

Results show that the agents are able to improve their policies and thus solve the
task. For both settings, we observe an improvement both in number of LOSS present
and duration of LOSS with the majority of scenarios after convergence having no
LOSS (i.e., the compound conflict is solved). Furthermore, the agents are able to
discover a strategy that increases the overall distance between them. As such, they
effectively learn to solve the most severe conflicts first and then solve the remaining
conflicts while making sure that no new conflicts are created.

However, there are several aspects that must be further researched. For instance, in
this work we use a maximum of 4 agents in the scenario. In reality, the number of
agents in a compound conflict can not be always decided beforehand, thus a solution
that adapts to N agents must be sought. Furthermore, the reward function could be
further elaborated to include terms that deal with the quality of solutions, such as
optimizing for battery usage or number of actions taken. Finally, the action space
can be extended to include solutions by speed or altitude changes.
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C h a p t e r 7

CONCLUSIONS

7.1 Contributions
The contributions made in this thesis can be grouped in two topics: air traffic com-
plexity and Multi-Agent Reinforcement Learning (MARL) for conflict resolution.
For each topic, several key topics were identified which were not covered by existing
research. This section serves to summarize all individual contributions.

Air Traffic Complexity through Graph Theory
Contribution: Air traffic complexity has been defined in terms of graph connectivity

First of all, air traffic has been modelled as a dynamic graph. The present aircraft
in a given airspace volume in time 𝑡 are the set of vertices for the graph at that
time, while the interdependencies between the aircraft are the set of the edges.
We formalized four indicators based on graph theory to measure the complexity
of air traffic. These indicators combine topological information gathered from the
geometries of interdependencies, with the severity of interdependencies to present
a full and nuanced picture of complexity. Furthermore, we consider the dynamic
evolution of complexity and do not simply give one single complexity score. The
achieved results (see Chapter 2 for a complete overview of the results) show that
the proposed indicators give detailed information and thus overcome drawbacks of
existing metrics. Furthermore, these indicators were also applied to high density
scenarios for sUAS (see Appendix A)

Contribution: The concept of single aircraft complexity

An important feature of three of the four indicators is that they can be measured
for every aircraft separately. Thus, our previous work was further developed by
extending the existing indicators to introduce the concept of single aircraft com-
plexity. Given a certain airspace, we define the complexity of an aircraft as the
average contribution of this aircraft to each indicator. Therefore, we are able to
calculate the percentage that each aircraft contributes to the overall complexity of
the airspace. As with all the indicators, this percentage can be computed along
time, providing a dynamic view of the complexity of each aircraft. Such a definition
allows for a comparative analysis of which aircraft present at a particular time is the
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most complex, as well as an evolution of this complexity.

Contribution: Defining complex communities using single aircraft complexity

Furthermore, using this concept, we are able to identify complex spatiotemporal
areas in a sector by defining complex communities. A community is defined as a
connected component of a graph, while a complex community must be responsible
for more than a certain threshold of the overall complexity. The complexity con-
tribution of a community is the sum of the individual contributions of the aircraft
that are members of the community. In order to deal with the evolution of these
communities, we introduce an algorithm that is able to persist communities in time
by using the Jaccard similarity in consecutive time steps between communities.
Some parameters, such as the threshold when interdependencies start forming or
when a community is complex are modelled to be specific to the problem or even the
user. As such, different ATM actors can set different thresholds depending on the
problem they are tackling using the proposed methodology. An extensive sensitivity
analysis was conducted to quantify how each input affects the different outputs of
the methodology.

Contribution: Developed a web application as a tool to showcase the developed
methodology

To showcase how the methodology developed in this work can be used, a web
application was developed. This web application visualizes different outputs of the
methodology and a summary containing a statistical information can be downloaded.
Through the different use cases, We first show that the algorithm can serve to
formalize controller decisions as well as guide controllers to better decisions in
situations where multiple pairwise conflicts co-exist in time. Further, we investigate
how the provided information can be used to increase transparency of the decision
makers towards different airspace users, which serves also to increase fairness and
equity.

Conclusion: Our work on air traffic complexity shows through use cases and
empirical results the effectiveness of modelling air traffic as a graph. The use
of graph theory as proposed in this work can give a full and nuanced view of
complexity while inherently allowing for the definition of desirable characteristics
such as the subjectivity of complexity.
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Conflict Resolution as MARL
While machine learning methods have been used for conflict resolution, we improve
on the application of these methods. Air traffic is a highly dynamic environment
with different actors participating in it. These actors have different interests. In our
work, this is modelled as a Multi-Agent Reinforcement Learning (MARL) problem.
In such a setting, which is an extension of single agent RL, several agents interact
with an environment and amongst themselves in order to maximize some notion
of cumulative reward. The behaviour of each agent is encoded in a policy, which
maps states to actions. Initially, applied MARL for the purpose of tackling conflict
resolution in the context of en-route traffic at the tactical level. In our approach we
considered pairwise conflicts together with surrounding traffic.

Contribution: State representation based on the properties of deep learning

In order to model conflict resolution as a MARL problem, we have to formalize the
underlying MDP. In order to do so, we have to model an environment, define the
action and state space for each agent as well as the reward function. In this work,
we make no assumptions about the discretization of space, therefore we consider a
continuous state space. Consequently, it is impossible to use traditional RL methods,
where the reward is stored for each visited state. In our work, this requires storing
rewards for a potentially infine number of states. Therefore, it is necessary to turn
to Deep Reinforcement Learning (DRL), where the policy is represented by neural
networks, which attempt to approximate the optimal policy. Such a decision allows
us to avoid the lengthy process of feature engineering. Thus, we propose a novel
state representation consisting of position information, heading and current speed.

Contribution: Reward function that considers multiple factors and the interests of
different ATM actors

We propose a reward function that not only optimizes for number of conflicts solved,
but encourages efficient solutions that consider the preferences of different actors.
The reward function contains factors such as fuel consumption, CPA, time to LOSS
etc. As a result, our work in this thesis should also be seen as a baseline for other
research that goes in the same direction.

Contribution: Continuous action space

Another important aspect in formalizing the underlying MDP is the modelling of
the action space. Related works often consider a discrete action space and only
solve conflicts using either heading changes, speed changes or altitude changes. In
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our work, we propose a model that can handle continuous action spaces and we
enable solutions to be possible via speed and heading changes combined. We avoid
altitude changes for two reasons: first, they are usually not preferred by ATCos and
to decrease the computational burden to train our model.

Contribution: Conflict resolution using MARL with real historical traffic

The model was trained and tested using real historical traffic taken from Euro-
control’s DDR II dataset. In order to increase the variance of the data, a data
augmentation technique was developed (detailed in Chapter 4). The achieved re-
sults have been very positive (see Chapter 4 for a complete overview of the results).
Most importantly we outline that the model could solve the vast majority of con-
flicts while showing desirable behavior such as solving the conflicts quickly and
preferring heading changes.

Nevertheless, several limitations were identified. First of all, with the increase of
traffic and the level of automation in ATM, it is desirable that ML handle also
situations with more than 2 agents. This proved to be very difficult using the
previously used model as introducing new agents resulted in the model not being
able to converge. Furthermore, we identified several cases where the agents behaved
in peculiar ways; for instance, if agents were unable to resolve the conflict quickly
it was very likely the conflict could turn into a loss of separation. Finally, further
investigation showed that while continuous action spaces provide more freedom in
what action agents can take, it comes with increased computational needs, resulting
in longer training times.

Contribution: Graph Neural Networks to overcome limitations of early MARL
model

Contribution: Scalable conflict resolution

We attempted to overcome these shortcomings by utilizing GNNs. They are a recent
advance in DL which have proved very effective in graph data. To employ them in a
MARL setting, we use Graph Convolutional Reinforcement Learning. In this work,
we tackle multi-UAV conflict resolution with cooperative agents in situations with 3
and 4 present agents. Similar to our other work, air traffic is represented as a graph
with aircraft as nodes. Edges are created between aircraft of a pairwise conflict.
By using GNNs, which provide a communication mechanism between connected
agents, the development of cooperative strategies is facilitated. To formally define
a multi-aircraft conflict, we propose the concept of compound conflicts, which are
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conflicts that have spatial and temporal interdependencies.

We maintain several modelling choices as in our previous work (e.g., air traffic as a
graph, using DRL, multi-factor reward function), while overcoming the shortcom-
ings of our previous work (see Chapter 5 for a complete overview of the results).
In our view, the most important result of this particular work is in showing that we
are able to scale up MARL methods while enabling the agents to learn meaningful
cooperative strategies. More specifically, agents effectively learn to solve the more
severe conflicts first and then solve the remaining conflicts while making sure that
no new conflicts are created. Such a strategy is replicated when more agents are
added in the environment.

Conclusion: Through the work in this thesis we show the effectiveness of using
MARL for conflict resolution. Several contributions in terms of designing complex
reward functions, continuous action spaces and scalability through the use of GNNs
have been made. This work opens the door to the application of this paradigm of
AI in aviation.

7.2 Future Work
Given the breadth of the research conducted during this thesis, there are several
different directions through which our work can be extended. We will list some of
these directions and outline the work required.

Different sources of uncertainty
Throughout the work of this thesis, no sources of uncertainty in the positions of the
aircraft are considered. However, in realistic traffic, there are several factors that
can affect the trajectory or the velocity of aircraft. For instance, wind, uncertainty
from sensors, communication delays and so on are factors that should not be ig-
nored in real practical scenarios. There are several ways our work can account for
such uncertainties. First of all, these uncertainties can be modelled as probability
distributions. When considering the effects of uncertainties in air traffic complexity,
we propose Monte Carlo simulations as a way to approximate the expected value
of each indicator. The concept behind Monte Carlo simulations is to sample some
distribution to solve problems that might be deterministic in principle. If the num-
ber of simulations is high enough, we can provide a distribution of each complexity
indicator over time which takes into account different sources of uncertainty in the
input.
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On the other hand, such uncertainties could be used by the MARL models to
provide valuable information about the robustness of these models. For instance,
when uncertainties are considered, an action can take an agent to a different position
than originally planned. Thus, agents must be capable of making decisions that
account for this uncertainty and are still able to maintain safety.

Considering self-interested and heterogeneous agents
In this thesis, we have only considered MARL models for conflict resolution.
Through the achieved results, it has been shown that these models are in fact
capable of solving difficult conflicts that involve multiple aircraft. Therefore, we
believe that these methods should be further investigated in bigger time windows.
Such a change in setting has important implications for the goals and behaviors of
the trained agents. For instance, in our work, the agents have been working with
a single common goal: safety. This is an acceptable assumption given the short
window that we have been considering. However, when extending this window, it
will be necessary to consider not just a common goal, but the individual goals of
agents.

Let us take the scenario of dynamic re-routing in the case of UAS. In such a
scenario, the goal is to modify the trajectory of some UAS in order to optimize some
performance indicator: be that safety, capacity, complexity etc. If this problem is
modelled as MARL, individual agents must be able to reach their destinations while
considering common goals. Furthermore, there could also be some restricted areas
which the agents cannot access. On the other hand, such a scenario might violate
another common assumption of our work: cooperativity. While in the case of one
common goal, this is a completely reasonable assumption, in a scenario with longer
time windows and more complex goal definitions, this assumption might not hold.

There are several differences in problem setting that can have a big impact on the
underlying MARL problem. A possible difference could be that not all agents
are willing to communicate or are limited in the information they share (or wrong
information in the case of malicious agents). Several issues arise in this case.
First of all, we must account for the fact that the agents in the environment are
no longer homogeneous. A possible way to tackle this issue would be to consider
hereogeneous graphs1, where there can be different types of vertices and edges.
There is already work in applying GNNs to these types of graphs, but not in the

1We believe that GNNs and air traffic as a graph in general, are important tools that should
further investigated in the field
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context of RL. Therefore, we believe it could be an important direction to follow.
In the same vein, keeping the same example of dynamic re-routing, agents can
choose when they cooperate and with which agents they cooperate. Let us consider
a scenario where aircraft of the same operator can communicate with other fellow
aircraft of that operator. In such a scenario, which can be driven by the competition
between operators, Thus, they can view the reward between them and other aircraft
as a zero-sum game, resulting in competitive behaviour between agents. Such a
behaviour is rarely investigated in literature, but can naturally arise in the context of
aviation.

On the other hand, agents might not be able to perform the same actions, for example
in the case of different types of aircraft in the airspace. In such a case, it is not
enough to model the different types of edges between the aircraft, the underlying
MDP must be modelled differently. While there are several works that consider such
cases, to the best of our knowledge, there are no previous works that combine this
with GNNs.

While we only consider the example of dynamic re-routing, we believe that particular
characteristics of any given problem in aviation can result in important questions
also for MARL. Thus, to summarize, it is necessary to investigate what strategies
self-interested, heterogeneous and competitive agents can learn.

Air traffic complexity as a basis for designing better CR algorithms
The indicators provide a new framework in the design of conflict resolution algo-
rithms in order to preserve safety while reducing traffic complexity. Complexity is
usually not taken into account in designing such algorithms (see results of our work
in Appendix A), which can lead to solutions that can make the situation difficult for
the controller to handle. Additionally, by using the indicators, algorithms can be
tuned to encourage resolutions that lead to lower complexity and discourage those
that increase complexity. Such algorithms can be used to improve the quality of
resolutions, in addition to solving the present conflicts. Furthermore, the concepts
of single aircraft complexity and complex communities, could allow for a more
granular optimization of complexity providing more detailed information.

Industrialisation
We believe the work performed in this thesis has the potential to be used in industry
in two different contexts: airspace complexity and MARL applications. For the
former, the results achieved in different stages of our work have shown that graph
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applications in airspace complexity can give a high degree of granular information
(up to the level of single aircraft) while being fast. Furthermore, they can give real-
time results even in a modest machine. On the other hand, through our results, we
can observe that MARL can tackle problems in aviation from different perspectives.
While in this thesis, we have envisioned our work to be in the ground, there is
no inherent limitation to where it could be actually deployed, however adaptions
would have to be made. In the case of MARL, there is a considerably higher
computational burden to be considered. Training a model can take several days, but
once trained, deploying it and getting a response from the model can be done in real
time. Training is usually conducted in dedicated servers, which are also offered by
companies such as Google or Amazon. Indeed, crucial issues such as transparency,
safety guarantees and quality of the model are issues that need further investigating.
Finally, the certification of AI models in daily operations is an open problem, which
will need extensive and careful research.

For both directions, significant effort has to be made to validate and verify the
approaches extensively in order to make them compatible with existing requirements
and infrastructure. Furthermore, there are important questions to be answered in
terms of user friendliness and what would be the best way to present the information
to the users.

Involving humans
With aviation being safety critical, it is crucial that progress in automation or
autonomy be designed with the humans that must interact with these systems in
mind. This is true also for our work. While the purpose of our work has been to
improve upon existing works regarding complexity and conflict resolution, moving
forward one has to consider the impact of these methods. We will discuss this for
each subsection of our work.

Complexity in ATM has been historically linked with the workload of controllers
[72, 73, 31]. This often is a intuitive connection to make, but workload is a
highly subjective concept, and formalizing the link between the two has proven to
be a non-trivial task. As such, we believe it is of utmost importance to validate
the proposed indicators through ATCos. Such a validation can be in the form of
a survey in which controllers are given different traffic geometries and asked to
assess if, in their experience, this is a complex situation or not. Evidently, it is
necessary that this survey be completed by a sufficient number of ATCos in order
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to reach statistically meaningful results. The results of such a survey could be used
to establish connections between complexity as quantified by the graph indicators
and the ATCo’s perceptions of complexity. Nevertheless, this presents a significant
hurdle, as getting enough and relevant expert opinions can be a strenuous task.

We attempt to embrace the subjectivity of complexity, by allowing the complexity
threshold for communities to be an input parameter which can be set according to
the user and task. Nevertheless, this is not the complete picture. In addition to
evaluating the indicators, it will be important to present the information provided
by our work in a meaningful way. Thus, the tool proposed in our work should be
further elaborated and research into human-computer interfaces (HMIs) could be
conducted to establish the best way to present this information.

On the other hand, an AI roadmap proposed European Union Aviation Safety Agency
(EASA) [171] emphasizes the importance of a human-centric approach to AI in
aviation. Crucially, in order to increase trustworthiness, AI needs to be transparent,
fair and non-discriminative and explainable. AI is not completely reliable as it is
inherently non-deterministic. Moreover, AI systems and especially DL systems are
often considered as “black boxes”, meaning that it is not easy to understand how it
works and why it produces certain outputs. Safety in AI has been researched from
different angles such as avoiding unintentional harm [172] and ethics [173] and the
need for transparency, interpretability and explainability has been often emphasized
[174]. In [175] the importance of these characteristics to increase trustworthiness
is outlined. There, it is argued that in order to increase trust in AI models it is
crucial to understand why it makes the decisions it does make. Furthermore, it is
crucial that these explanations are tailored to the human who must interact with
them. Additionally, these characteristics are important in understanding the system
retrospectively, e.g., to understand a wrong or even harm-causing decision and
proactively e.g., to predict and prevent any future harm-causing decisions.

Finally, previous research has emphasised [20, 176] that AI models must be aligned
with the preferences and values of humans, while being allowed to explore other
solutions (see 7.3 for a more detailed argument). It is reasonable to expect humans
to have some preferences over outcomes of certain situations. Furthermore, while
preferences can be hidden or implicit, evidence could be found in the choices that
the human has made. In this case, the machine would attempt to solve its task while
maximizing the human preference. More specifically, the AI model would need to
interact with the human by asking questions [177] or additional feedback in order
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to reduce its uncertainty about the human preferences. In such a scenario, it is not
necessary to put a fixed purpose to the model, but the model acts in such a way that
it avoids potentially important but unknown preferences. As such, we believe it will
be important to further condition the MARL models proposed in this thesis to be
further fine tuned by aligning them with human preferences. For instance, ATCos
tend to prefer resolutions based on heading changes, rather than solutions based on
speed changes. Furthermore, pilots prefer heading changes to altitude changes. A
possible solution could be Preference-based Reinforcement Learning (PbRL) [176],
where the reward function is learned through following more preferred trajectories2
Trajectories are labelled according to the preference of a human demonstrator, and
then RL agents must learn to make decisions that satisfy this preference. Another
possible solution could in the form of Cooperative Inverse Reinforcement Learning
[178] where AI agents to learn human preferences directly.

7.3 A Vision of AI in Aviation
In this section, we will attempt to summarize some important lessons learned through
applying AI to (manned and unmanned) aviation. According to a roadmap laid out
by SESAR JU [179], there are 5 levels of automation depending to the extent of
involvement of the automated tool. Most of the work about AI in aviation (including
the work of this thesis) can be classified as a level 1 or 2. In order to achieve higher
levels of automation, as mentioned in the previous section, we believe a crucial
aspect will be the alignment with human preferences and values [20, 171, 179],
which will improve the acceptability and trustworthiness of AI in aviation. It might
be worth elaborating on the reasons behind such a claim.

We briefly reiterate that DL methods allow computational models that are composed
of multiple processing layers to learn representations of data with multiple level of
abstractions [21]. These methods discover intricate structures in large data sets by
using the backpropagation algorithm (or variants of) to indicate how the machine
should change its internal parameters that are used to compute the representation
in each layer from the representation in the previous layer [21]. For instance, the
use of convolutional networks has resulted in breakthroughs in image and video
processing, recurrent neural networks have been used on sequential data such as text
and speech, whereas graph neural networks have made possible to use conventional
DL algorithms in non-Euclidean data such as social networks. However, the majority
of problems that have been solved by AI so far are characterized by clear rules, a

2A trajectory is any finite sequence of state-action pairs.
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clearly defined objective function and usually are close ended, i.e., have definitive
answers. Thus, these models work best when they are entirely certain about their
objectives. Such characteristics have been described as the standard model of AI
where one builds an optimizing machine, inputs the objective and trains it [20].
Training these models is typically an expensive operation, as it can take large
amounts of time and computational resources on sometimes very specific hardware
such as Graphics Processing Unit (GPU) or Tensor Processing.

Why alignment is important
As we show in our work, the standard model of AI, and more specifically, the
paradigm of MARL, seems to be perfectly suited for Conflict Resolution at the
tactical level. More specifically, there is a clear objective function: safety; clear
rules: physical capabilities of the aircraft and operational requirements; close-
ended: safety is either achieved or not. Furthermore, MARL algorithms do not
strictly require knowledge about the dynamics of the environment, as the agents
interact with the environment in a trial-and-error fashion. On the other hand, as
previously mentioned, there can be scenarios where agents are self-interested and
are not only working towards a common goal. A typical examples is competing
delivery companies operating in an urban areas using sUAS. In this setting, agents
can have different, private reward function and the goal of cooperation is to achieve
also some common sub-goal such as safety. Therefore, agents can be heterogeneous
in their preferences, actions and rewards. In the former case of only a common
goal, models are usually centralized where there exists a central controller that can
aggregate information from the agents in the form of joint actions, observations
and rewards and can also design policies for all agents. In the latter case, there is
no central controller. Agents can be connected via a time-varying communication
protocol such that local information can be spread across agents. In an extreme case,
there can not be any communication protocol and each agents makes its decision
only based on its local observations without coordination.

However, in different scenarios where some sort of long term planning is required,
things become less clear. While safety remains important, there can also be different
Key Performance Areas (KPAs) such as capacity or flight-efficiency that need to be
considered. This results in a vague objective function to be optimized. As Russell
states in ([20]) “If the objective is wrong, we might be lucky and notice the machine’s
surprisingly objectionable behavior and be able to switch it off in time”. Thus, the
use of AI in different levels of ATM, where planning is required could come with
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dire consequences. In fact, this is a known problem in AI, outlined in various works
([180],[181]) with researchers emphasizing the importance of aligning the actions of
the machine with our own goals in situations where our goals are not entirely clear.
As stated, we need to put in the right goal or purpose. In ([20]) this is called the
King Midas problem: Midas got exactly what he asked for, namely, that everything
he touched would turn to gold but, he discovered the drawbacks of drinking liquid
gold and eating solid gold. An AI tasked with planning trajectories could delay or
never allow aircraft to reach their goals if it is penalized too heavily for safety.

Finally, the ethical and legal implications of an autonomous ATM system must be
considered. With ATM being safety critical, the nondeterministic nature of AI is
simply too big of a problem to be ignored. The simplest question to ask in this case
is: What should happen if the AI is not able to avoid a collision? According to
other researchers [20, 181] the most straightforward solution is for the AI to have
a mechanism through which it relinquishes control to the human. In such a way,
a trained ATCo, for example would be able to take control of the situation and
issue maneuvers that would ensure safety. Another example can be a version of
the famous "trolley problem" where a drone, through some foreseen event, has to
choose between to hit one of two objects, as it can’t avoid both. A possible solution
to these issues can be for the AI to relinquish control to the human operator [20,
181]. In such instances, the human can use their judgement in the case of collision
between two aircraft, or common ethical principle such as consequentialism [182]:
that the right thing to do iswhatever leads to the best results. However, we argue
that this is not enough for a fully autonomous system. Such systems must have the
ability to learn from these difficult situations in order to internalize ethical principles
that drive humans. However, such principles are notoriously hard to quantify fully.
Therefore, we argue that alignment with human values as suggested in the previous
subsections should be guiding research in autonomous ATM systems.

The quest for autonomy
While the concerns expressed in this section might seem far fetched, the inclusion
of more automated systems and the quest for autonomy will require AI models
that function not only in ideal environments, but are able to handle all sorts of
noisy information and implicit goals. As such, all future directions presented
in the previous section, can be thought of as going towards the same direction:
autonomous agents. Therefore, in order to reach this goal, we believe that more so
than the answers provided by this thesis, the questions raised by our work provide the



133

backbone for realizing that goal. From uncertainties, to meaningful human control,
the answers of those questions must build on top of each other to reach a level of
automation where autonomous agents can operate alongside humans, and where
finally such systems can be trusted and transparent.
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A p p e n d i x A

ANALYSING AIR TRAFFIC COMPLEXITY IN HIGH DENSITY
SUAS OPERATIONS

In this chapter, we present some relevant results achieved from applying the com-
plexity indicators introduced in Chapter 3 in high density operations for sUAS1.

A.1 Spatiotemporal Interdependencies for sUAS
The airspace graph is defined at a certain time as an undirected weighed graph
where each drone represents a vertex on it. The edges of the graph will represent
interdependencies between UAS, more precisely, they will represent the time to
closest point of approach (tCPA). We decided to use a time-based framework as
most of the works on UAS have a time-based approach for conflict management. A
threshold thresh will be defined, so if the tCPA value between two aircraft is less
than that value, there will be an edge between them. The smaller the tCPA below
the threshold value, the higher would be the edge weight value. Another threshold,
H, is defined as the tCPA value which would result in the maximum weight. If the
tCPA is less than H, the weight of the edge would always be the maximum weight
value. The weights are normalized between 0 and 1 and their formal mathematical
definition is:

𝑤𝑖, 𝑗 (𝑡) =


1 if 𝑡𝑐𝑝𝑎𝑖, 𝑗 (𝑡) ≤ 𝐻

0 if 𝑡𝑐𝑝𝑎𝑖, 𝑗 (𝑡) ≥ 𝑡ℎ𝑟𝑒𝑠ℎℎ
𝑡ℎ𝑟𝑒𝑠ℎ−𝑡𝑐𝑝𝑎𝑖, 𝑗 (𝑡)

𝑡ℎ𝑟𝑒𝑠ℎ
otherwise

(A.1)

Where 𝑡𝑐𝑝𝑎𝑖, 𝑗 (𝑡) is the tCPA value between aircrafts i and j at time t. The definition
of the weights leaves the graph as an undirected graph. As the edges and their
weights are defined at each time step, the graph is extended to the temporal domain,
so we will be able to take into account information like the aircraft heading, as if
two aircrafts are moving towards each other, the weight of the edge connecting them
will increase over time.

Another usual way of computing the weights of the graph representing the air traffic
is using the distance between aircraft instead of the tCPA. In Figure A.1 a comparison

1This is joint work with Javier Garcia Ca𝑛̃adillas and Marsel Omeri in the context of the former’s
master thesis



149

Figure A.1: Weights computed using tCPA and the distance between aircraft in a
simulation consisting on two aircraft going towards each other. The velocities of the
aircraft were 40 m/s, they were initially separated 200 meters. The thresholds for
the tCPA weights were threshtcpa = 2.5 and Htcpa = 0, and for the ones computed
using the distance were threshd = 200 and Hd = 0.

between the weights computed with tCPA and distance (as in Chapters 3 and 4) is
shown. The situation is two aircraft going towards each other, beginning separated
at a distance of 200 meters going at speeds of 40 m/s. The thresholds were chosen
so both weighed were triggered in the beginning of the simulation and took their
maximum values when the aircraft reach each other. In the computation of the
weights, the absolute value of the tCPA was used. An advantage of using tCPA
is that the value of the weights when decrease faster when the aircraft are moving
away from each other than in the distance-based approach, as it can be shown in
Figure A.1. This is an advantage of using tCPA for computing the weights because
interdependencies should lose relevance when the aircraft are moving away as they
can’t no longer get in conflict with each other. Another benefit of using the tCPA is
that it takes into consideration the speed of the aircraft, which is relevant to detect
the severity of an intrusion and it is not contemplated by distance-based weights.

A.2 Experimental Setup
As with the rest of the work in this thesis, we used BlueSKy to simulate the scenarios
and log the results. Each scenario consists of a number of aircraft that must go from
one point in the airspace to the other, while passing through some waypoints. The
chosen airspace was a circle with a radius of 0.5NM. The simulations were done
varying two parameters: the number of aircraft (50, 70, 200) the tCPA threshold (25,
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20 and 15 seconds). For each combination of parameters, 1000 total simulations
were performed, half with conflict resolution (the CR algorithm used in this work
was MVP). All the aircraft were generated at the same height (300 ft) in order to
reduce the variability of simulations and in turn execution time. Based on the sUAS
typical size and speed we have chosen 15 seconds for the look-ahead time for CD.
The following paragraphs will explain the procedure to generate a scenario:

• Waypoints creation: a waypoint is a specific geographical point on a flight
route that the aircraft is required to pass. In the beginning of the simulation,
three waypoints (blue dots in Figure A.2) are generated: One at the centre
of the circle and the other two aligned with it, separated from the centre
by 10the waypoints are created is to force the aircraft to go through some
common points so conflicts can be generated. If the UAS were generated
with completely random headings, it would be very unlikely to observe any
conflict.

• Airspace initialization a chosen number of drones are created with random
positions inside the circle perimeter. Each aircraft trace a route with two
points: the first one is one of the three created waypoints, chosen randomly,
and the second one is one random point chosen from the circle perimeter.
The aircraft first go towards the center of the circle where the waypoints are,
and then return somewhere in the circle’s perimeter. BlueSky directs aircraft
through waypoints with the autopilot system LNAV, which stands for lateral
navigation. The system measure the aircraft’s position and compares it to the
desired flight path. If the aircraft strays from the desired path, the system
automatically makes corrections to keep the drone on track. The drones were
generated with randomly selected speeds extracted from a uniform distribution
between 10 m/s and 20 m/s.

• Main loop: the airspace began to be simulated inside the main loop, where all
the necessary computations and logs are made and the airspace get updated
right before the next iteration. The duration of the simulation was chosen
depending on the radius of the circle. It was chosen so the slowest aircraft
(with a speed of 10 m/s) could manage to travel a distance equivalent to the
diameter of the radius.

The schematic flowchart of the simulation process is shown in Figure. BlueSky
managed all the operations related to conflict detection and resolution and was also
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Figure A.2: In the first image of the airspace configuration in the middle of a
simulation is shown. In the second one, an example of the path that an aircraft goes
by in a simulation is displayed.

responsible of updating the state of the scenario after each iteration i.e. updating
the positions and velocities of every aircraft based on their routes or the MVP
instructions (if it is active). The rest of the computations were:

• Number of drones control: to keep the number of aircraft constant, at every
timestep a function checks if there is any aircraft beyond the circle limits.
If so, this aircraft is erased and another one is randomly created inside the
circle’s perimeter in the same way that the original ones were created.

• Graph creation: at each timestep, two different graphs were created using a
Graph object from the Networkx2 library in Python. In both the nodes were
the aircraft at that timestep and the difference was the way the edges were
constructed:

– Complexity graph: this is the main graph representing the airspace
through which the complexity of the scenario is measured using the
indicators. The tCPA was computed using BlueSky conflict detection
module and then equation A.1 was applied to create the edges between
nodes.

– Conflict graph: this is an auxiliary graph to find the compound conflicts.
It is created when a conflict is detected. The edges connecting aircraft

2https://networkx.org/
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have no weights and they exist if there is a conflict between them. The
way to compute the compound conflicts, as previously described, was to
use Networkx library to find all the connected subgraphs in the graph.
By selecting those with a size bigger than 2 we get the list of compound
conflicts.

Figure A.3: Flowchart of the simulation code.

A.3 Results
In this section the simulation results are analysed. The code was parallelized, which
results in a 10 fold speedup from the serial version.

Conflict distribution analysis
In this first part of the analysis of the results, a study of the amount and characteristics
of the conflicts detected in the simulations has been done. Also, the effect that the
resolution method has had on this values is studied, as well as the correlation between
the conflicts and the number of aircrafts.
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Effect of CR

In the logged data we can find the number of pair-wise conflicts, the number of
Losses of Separation, the amount of compound conflicts and their sizes (the size
of the biggest compound conflict if several were detected). Figure A.4a shows the
number of conflicts depending on the number of aircraft and MVP. It can be seen
that the total number of pair-wise conflicts is slightly higher in the case where we are
using the Conflict Resolution method, which might seem counterintuitive but has
several explanations. The first remark on this come from the definition of conflict.
As it was stated in previous sections, a conflict is declared when a Loss of Separation
is predicted to happen within a certain look-ahead time. The goal of a CR method
is to solve conflicts in order to avoid a LoS, but it won’t prevent drones from going
into conflicts. In Figure A.4b the total amount of detected Losses of Separation is
plotted and it can be noticed how this number is lower when a conflict resolution
method is used. The fact that we get a higher number of total conflicts when MVP
is active in the simulations can be explained as follows: when a conflict is detected,
both aircraft execute a manoeuvre in order to solve it. If the aircraft density is high,
this can make the UAS to cause secondary conflict with surrounding drones. This
increases the expected number of conflicts compared to the situation where MVP
is not used, as the aircraft follows straight paths most of the time. This is a first
indication of MVP poor performance in high-density airspace, as it is likely to create
more conflicts after solving one.

We can also expect the number of compound conflicts to decrease when we are
using a CR method. In Figure A.4c the percentage of time that we measure at least
one conflict is shown. It can be seen that in the case without MVP this percentage
is significantly higher. When no CR method is used, conflicts last till the involve
drones are separated from each other beyond their safety distance. However, when
MVP is used conflicts get solved as soon as they are detected, which is reflected
in the low percentage of time during which conflicts are present. This also can
be noticed in the amount of compound conflicts, as it can be seen in Figure A.4d.
This number is significantly lower when a conflict resolution method is being used
because conflicts are not prolonged long enough for their to become complex. For
example, if two aircraft get into a conflict and a third one is going to get in conflict
with one of them, a conflict resolution method would most likely solve the first
conflict before the second one occurs, avoiding the creation of a compound conflict
of size 3.
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Figure A.4: Plots extracted from the study of the conflict distribution. In every
figure, the purple color represents the simulations in which no conflict resolution
method was applied while the blue color stands for those in which MVP was active.
Total number of conflicts detected depending on the number of aircraft (a). Total
number of Losses of Separation detected depending on the number of aircraft (b).
Percentage of the simulation time during which conflicts were detected (c). Average
number of compound conflict detected in every timestep (d).

Figure A.5: Bar plot of the proportion of total conflicts that presented a certain
size, separated by the present of Conflict Resolution methods in the simulations (a).
Average size of the biggest compound conflict detected in every timestep depending
on the number of aircraft (b).
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Table A.1: Results of the Correlation test performed between different conflict
characteristics (Pearson Correlation Coefficient and p-value)

One more difference that can be found in the conflict distribution between the
simulations that use MVP and the ones that don’t is the size of the compound
conflicts. Figure A.5a, shows the distribution of the compound conflict sizes. It can
be seen that the compound conflicts tend to be smaller when using MVP, for the
same reason stated before: the conflicts get resolved before they get the chance to
evolve into more complex structures.

Correlation between conflicts and UAS density

In Figures A.4 and A.5 the different variables has been shown as a function of the
number of aircraft. The effect of the number of drones present the airspace on the
occurrence and characteristic of conflicts has been studied. To do so, a Pearson
Correlation test has been carried out between the number of aircraft 𝑛𝑎𝑐 and the
number of pair-wise conflicts 𝑛𝑐𝑜𝑛 𝑓 , the number of compound conflicts 𝑛𝑐𝑜𝑚𝑝𝐶𝑜𝑛 𝑓
and the mean size of the compound conflicts confsize.

Looking at the figures, a monotonically increasing relation between 𝑛𝑎𝑐 and both
𝑛𝑐𝑜𝑚𝑝𝐶𝑜𝑛 𝑓 and 𝑛𝑐𝑜𝑚𝑝𝐶𝑜𝑛 𝑓 can be deduced. The Pearson correlation coefficient
between these variables can be founded in Table A.1. For the number of conflicts
we got a coefficient of 0.99 for both cases (with and without CR), which mean that
there exist a nearly perfect linear relation. As we are dealing only with three values
(the total number of conflicts per number of aircraft) we should attend at the p-value
of the test to check how certain can we be about this. In this case the p-value is 0.06,
which under a typical 0.05 significance level would make us reject the hypothesis of
both variables being linearly related. However, given the low number of data used in
this test, we will accept it as true. When looking at the correlation between 𝑛𝑎𝑐 and
the number of compound conflicts we get a coefficient value of 0.98 with a p-value
of 0.1. Again, a strong linear dependency is suggested by a Pearson coefficient value
close to 1.0, but in this case the p-value is not small enough to accept it.However, it
can be noticed in Figure A.4d that there might be a quadratic relationship between
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these variables, more than a linear one. To test this, we have repeated the Pearson
test but taking the square root of 𝑛𝑐𝑜𝑚𝑝𝐶𝑜𝑛 𝑓 , because if they really follow a quadratic
relation, taking the square root would cancel it out, leaving it a linear one. In this
case, the correlation coefficient was 0.99 with a p-value of 0.02 for the case where
no CR method is used and 0.04 for the case where MVP is active. We can accept the
linear relation hypothesis under a 0.05 significance level, which allows us to accept
as valid the idea that there is a quadratic relationship between the number of aircraft
and the number of compound conflicts.

In Figure A.5b, the mean of the conflict sizes is shown. The correlation between
nac and the size of the compound conflicts is not clear in this figure. A Pearson test
reveals a correlation coefficient of -0.13 with a p-value of 0.91 for the case without
CR and 0.39 with a p-value of 0.74 for the case with CR. No linear correlation can
be deducted between these variables from these tests. This might be due to the fact
that compound conflicts of sizes greater than 3 are very unlikely to happen, as it can
be seen in Figure 13a, giving us very few data to study this relation.

Effect of CR on complexity
In this section the results on the study of the complexity in the simulations are
shown. The changes in the complexity indicators depending on different factors as
the use of MVP, the interdependencies time thresholds and the number of drones
has been studied.

Figure A.6: Distributions of the complexity indicators separated by the use of a
CR method. From left to right Clustering Coefficient, Strength, Nearest Neighbor
degree and Edge Density are shown. The top row correspond to the simulations
where no CR method was applied and the bottom row are the ones with MVP. The
distributions were extracted by computing the histogram of each indicator.



157

One of the main objectives of this work was to study how the application of a
conflict resolution method affects complexity in a high-density airspace. In this
subsection, the results from this analysis are shown. The goal is to see whether the
complexity indicators have higher or lower values when the MVP conflict resolution
method is applied with respect to the case where it is not. To do so, we have
extracted the histograms of each indicator to study their distributions. Figure 14
shows the distribution of each indicator separated into the cases where MPV is being
used (second row) and when it’s not (first row). Comparing each pair of distribution
(column by column in the figure) nothing can be deducted at first sight. The indicator
values seems to be very similar with some minor changes in the distribution shapes.
In order to detect some difference we have needed to apply a statistical test named
Wilcoxon-Mann-Whitney test, also known as U-test.

Usually to compare two distributions we would compare their means using a t-
test, but this requires that the data follows a normal distribution and that it doesn’t
present any asymmetry. In our case, the complexity indicator distributions don’t
adjust to any of those requirements, so other test must be applied. The U-test is a
non-parametric ranking test designed as an alternative to the t-test for this type of
situations. It does not require the data to be normally distributed nor symmetric.
The test goal is to look for any significant difference between two samples and it is
based on the following: if both samples are similar and we add all the observations
together and order them from smaller to larger, we would expect the observations
of one and the other sample to be randomly interspersed. Otherwise, if one of the
samples present lower or higher values than the other sample, when ordering the
observations, they will tend to be grouped so that those of one sample are above
those of the other. The null and alternative hypothesis that we are testing in this
case are the following:

𝐻0 : 𝑃(𝑁𝐶𝑅 > 𝐶𝑅) = 𝑃(𝐶𝑅 > 𝑁𝐶𝑅)
𝐻0 : 𝑃(𝑁𝐶𝑅 > 𝐶𝑅) = 0.5

(A.2)

𝐻𝑎 : 𝑃(𝑁𝐶𝑅 > 𝐶𝑅) > 𝑃(𝐶𝑅 > 𝑁𝐶𝑅)
𝐻𝑎 : 𝑃(𝑁𝐶𝑅 > 𝐶𝑅) > 0.5

(A.3)

Where NCR and CR are the distributions of a certain complexity indicator for
the cases where there are no conflict resolution method and for the ones there is,
respectively. 𝐻0 would be the probability that a randomly selected value from the
indicator distribution when not using MVP being greater than a value extracted
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Table A.2: Results of the U-test performed to compare the distributions of each
indicator when using MVP and when not to test the effect of a conflict resolution
method on the complexity of the airspace. The shown p-value corresponds to the
probability of the null hypothesis from equations A.2 and A.3 being true. The
alternative in this case is that the indicator values for the case with CR are higher
than the ones for the cases without it.

from the distribution where we apply it is equal to the reciprocal statement. The
alternative hypothesis Ha is these two probabilities being different.

In Table A.2 the U-tests results can be found. The p-value was computed to check
if the values from the distributions using CR are higher than the ones from the
distribution without it. As it can be seen, under a confidence level of 0.05 the
null hypothesis can be rejected: the use of MVP actually increases the airspace
complexity, contrary to what might have been expected. This might be explained
the same way the increment of conflicts caused by MVP was explained. When the
conflict resolution manoeuvre is executed by the aircraft in a high-density airspace,
the aircraft are likely to increase the interdependencies with surrounding aircraft.
This is also an indicator of the bad behaviour of MVP when it is applied in high-
density scenarios as it doesn’t take complexity into consideration, which can be
concluded as a requirement for any CR algorithm to make sense in high-density
airspaces.

Effects of the interdependencies threshold on complexity
The tCPA threshold value is a problem specific variable to be chosen. It is therefore
important to study how the choice of the threshold affects complexity, so that the
appropriate value can be chosen for each situation. Figure A.3 shows the average
time evolution of each indicator over the simulations, separated by tCPA threshold.
It can be seen that the higher the threshold value, the higher the complexity seems
to be. If the threshold value is increased, more interdependencies will be created
between aircraft and thus the situation will be more complex. The values in the
figure show the mean of each indicator at every simulation timestep so we need a
different representation to study the time when each indicator reaches its maximum
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and its value for each studied threshold.

Figure A.7: Evolution of the complexity indicator separated by the tCPA threshold
used in the scenario. Each plot shows the mean of the indicator for each simulation
timestep when the simulations are filtered by tCPA threshold.

Figure A.8 shows a scatter plot of the maximum value reached by each indicator
in every simulation and the simulation time when it occurs. The points have been
separated by tCPA threshold. It can be seen that both the maximum complexity
values and the time when they are reached tend to be higher with higher thresholds.
The explanation for this could be that although interdependecies are detected later
for the smaller thresholds, their duration are shorter so the maximum is reached
before.

Effect of density on complexity
In this section, the effect of the number of aircraft on the airspace complexity
is studied. Intuitively we would expect the complexity of the system to increase
with the number of aircraft. The Figure A.3 shows the average time evolution of
each indicator over the simulations, separated by number of aircraft (nac). What
is observed for the case of Strength and the Nearest Neighbors Degree is a clear
increase in complexity with the number of aircraft, as the curves are on top of each
other throughout the simulation.

This makes sense as these indicators are not normalized and their values increases
naturally with the total amount of edges created between drones. However, the plots
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Figure A.8: Maximum value reached by each indicator in every simulation.

Figure A.9: Evolution of the complexity indicator separated by the number of aircraft
in the scenario. Each plot shows the mean of the indicator for each simulation
timestep when the simulations are filtered by number of aircraft. For Clustering
Coefficient and Edge Density the curves are shown but they are mostly overlapped.

for the Clustering Coefficient and the Edge Density have their curves overlapped,
indicating that there is no appreciable difference between the values of the indicators
when varying the number of aircraft. Just like it was done to study the effect of
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Figure A.10: Distributions of the Clustering Coefficient and the Strength when
fixing the number of aircraft.

MVP on complexity, we have to apply a statistical test to the indicators distributions
to find out if there is any meaningful difference between them. Figure A.10 shows
the distribution of both indicators split by number of aircraft. No difference can be
found at simple sight on this plots. Usually, to compare three or more distribution
we would apply an ANOVA test, but it requires the data to be normally distributed
and symmetric, which is not our case. An alternative to ANOVA that can be used
in this situation is the Kruskal-Wallis test. The requirements for this test are that the
data are ordinal and that all populations have the same type of asymmetry (rightward
skewness in our case). It is a ranking method like the Wilcoxon-Whitney-Mann test:
it orders all the data from lowest to highest and assign ranks to each point. If all
samples come from the same population, the sum of the rankings of each sample
should give similar numbers. The test measures the degree of deviation from this
fact. The null 𝐻0 and alternative 𝐻𝑎 hypothesis that we are testing in our case are
the following:

• 𝐻0: All groups come from the same distribution and thus present similar
values

• 𝐻𝑎: At least one of the three groups has a different distribution
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Table A.3: Values extracted from the Kruskal-Wallis test or H-test performed on
the distributions of the Clustering Coefficient and Edge Density when each on is
separated in 3 groups according to the number of aircraft in the simulation. The
p-value corresponds to the probability of the 3 groups to come from the same
population and have similar values.

Table A.4: Results of the Wilcoxon-Mann-Whitney test carried out on the 3 groups
obtained by separating the distribution of the Clustering Coefficient indicator by
number of aircraft. The test has been carried out pair-wised to find out if there was
any difference between some of the groups.

Performing the test on each of the 3 groups that can be seen in Figure 13 we get the
statistic and p-value that can be found in Table A.3. As we can see, the p-value for
the Edge Density case is high enough for the null hypothesis Therefore, the values
of the Edge Density are similar regardless the number of aircraft in the simulation.
The number of aircraft does not affect this complexity indicator. As it has been
explained, the Edge Density is the ratio between edges in the graph and the total
number of edges that the graph would have if it were a fully connected graph. The
test results shows that this ratio does not change with the amount of aircraft.

However, the p-value for the Clustering Coefficient case is of the order of 10−11,
which indicates that at least one of the three groups present different values from
the rest of the groups. In order to find which groups are different from each other,
we have performed a Wilcoxon-Mann-Whitney (U-test) between the case with 50
and 70 aircraft, the case with 70 and 100 and the case with 50 and 100. The results
of these test can be found out in Table A.4. The p-value indicates the probability
of each pair of groups to have similar values while the alternative hypothesis is the
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first group having lower values than the second one. When comparing the 50 and
70 aircraft distributions we get a p-value of 0.30, which allows us to accept the
null hypothesis and say that the Clustering Coefficient has similar values in these
two groups. But, when comparing the 70 and 100 and the 50 and 100 we obtained
p-values of the order of 10−9 and 10−10 respectively. The conclusion extracted from
these results is that the complexity measured through the Clustering Coefficient does
not change significantly when we have less than a 100 drones. However, for a large
enough number of aircraft we obtain higher values for the Clustering Coefficient,
indicating that the UAS tend to cluster more in this situation.

We can relate this last conclusion with the results we obtained when measuring how
the number of compound conflicts changed with the amount of aircraft, as they can
also be used as an indicator of clustering in the airspace. If this relationship had been
linear, we would have expected the difference in Clustering Coefficient values to be
either undetectable between 50 and 70 and 70 and 100 aircraft or noticeable between
the two pairs of groups. But, as the relationship turned out to be quadratic, it makes
sense that the difference in clustering between groups become more noticeable as
the number of aircraft increases.

Complexity evolution in time
Figures and show how complexity evolves over time. It can seen the moment when
the aircraft are grouped together in the centre of the stage, reaching maximum
complexity and then moving away, decreasing it. If we plot the distribution of the
indicators fixing all the parameters that have been varied in the simulations (number
of aircraft, interdependencies threshold and the use of MVP) we obtain something
like Figure A.11a, where the histogram of the Strength is shown for the case where
𝑛𝑎𝑐 = 50, 𝑡ℎ𝑟𝑒𝑠ℎ𝑡𝐶𝑃𝐴 = 25s and no CR is being used. What can be seen in the figure
is how this distribution appears to be made up of three different distributions, as if
three different cases can be distinguished in the simulation.

The study of this phenomenon has revealed that every simulation can be decomposed
into three different stages. In Figure A.11b, the same histogram is computed but
is filtered by some time intervals corresponding to each stage. It can be seen how
the three independent distributions that give rise to the histogram in the Figure
A.11a appears. The three different stages in the simulations and their estimated time
intervals are:

• t < 40s: This first stage is the beginning of the simulation. All the aircraft
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Figure A.11: Histogram of Strength for the case where 𝑛𝑎𝑐 = 50, 𝑡ℎ𝑟𝑒𝑠ℎ𝑡𝐶𝑃𝐴 =
25s and no CR is being used (a). In (b) the same histogram is computed filtered
by different simulation time to show the three stages that each simulation can be
decomposed into. Each color indicates a different time interval.

are distributed along the circle perimeter and they are the most separated
from each other that they will be in the simulation. This gives the minimum
complexity, as it can be seen in the figure (orange distribution).

• 40s < t < 80s: The second stage corresponds to the moment where all drones
begin to gather in the center of the circle. Is the moment of the simulation
when the aircraft are the closest as possible and the complexity increases up
to its maximum (green distribution in the figure)

• t > 80s: After the aircraft pass through the waypoints located in the circle
center, they go back to the perimeters. Meanwhile, others are created to
substitute the ones that left the circle and it creates a situation where some
aircraft are going towards the center and some of them are going away from
the center. In this stage, the aircraft are more or less uniformly distributed
across the circle and this results in intermediate values of the complexity (red
distribution in the figure).
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