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Resum

Aquesta tesi doctoral estudia la microagregació com a tècnica per al con-
trol de la divulgació estadística. La investigació té com a objectiu mil-
lorar l’eficiència i la qualitat de la microagregació de mida fixa i variable
mitjançant l’ús de l’algorisme del problema del venedor ambulant (TSP).
L’estudi presenta quatre contribucions: (1) microagregació de mida fixa
basada en TSP, (2) microagregació de mida variable basada en TSP (3)
tècniques de postprocessament de dades per a l’optimització de conjunts
de dades microagregades i (4) estratègies de reducció de conjunts de dades
per a microagregació basada en TSP. Els mètodes proposats s’avaluen mit-
jançant experiments i es comparen amb les tècniques existents. Els resultats
de la investigació revelen que els mètodes basats en TSP proposats superen
els existents en termes d’utilitat de dades i temps de càlcul. Aquesta tesi
proporciona un estudi integral de l’estat de l’art al control de divulgació
estadística i ofereix solucions pràctiques per millorar el rendiment de la mi-
croagregació per a la publicació de dades preservant la privadesa.
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Resumen

Esta tesis doctoral se centra en la microagregación como técnica para el
control de la divulgación estadística. La investigación tiene como objetivo
mejorar la eficiencia y la calidad de la microagregación de tamaño fijo y
variable mediante el uso del algoritmo del problema del vendedor ambulante
(TSP). El estudio presenta cuatro contribuciones: (1) microagregación de
tamaño fijo basada en TSP, (2) microagregación de tamaño variable basada
en TSP, (3) técnicas de postprocesado de datos para optimización de con-
juntos de datos microagregados y (4) estrategias de reducción de conjuntos
de datos para microagregación basada en TSP. Los métodos propuestos se
evalúan a través de experimentos y se comparan con las técnicas existentes.
Los resultados de la investigación revelan que los métodos basados en TSP
propuestos superan a los existentes en términos de utilidad de datos y tiempo
de cálculo. Esta tesis proporciona un estudio integral del estado del arte
en el control de divulgación estadística y ofrece soluciones prácticas para
mejorar el rendimiento de la microagregación para la publicación de datos
preservando la privacidad.
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Abstract

This PhD dissertation focuses on microaggregation as a technique for sta-
tistical disclosure control. The research aims to enhance the efficiency and
quality of fixed-size and variable-size microaggregation through the use of
the Travelling Salesman Problem (TSP) algorithm. The study presents four
contributions: (1) TSP-based fixed-size microaggregation, (2) TSP-based
variable-size microaggregation, (3) data postprocessing techniques for opti-
mization of microaggregated datasets and (4) dataset reduction strategies for
TSP-based microaggregation. The proposed methods are evaluated through
experiments and compared with existing techniques. The research findings
reveal that the proposed TSP-based methods outperform the existing ones
in terms of both data utility and computation time. This dissertation pro-
vides a comprehensive study of the state-of-the-art in statistical disclosure
control, and offers practical solutions to enhance the performance of mi-
croaggregation for privacy-preserving data publishing.
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Chapter 1

Introduction

This chapter introduces the issues faced in this doctoral thesis. In addition,
it briefly describes the solutions we propose to tackle those issues. Finally,
the structure and organisation of the thesis are outlined.

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organisation . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Motivation

The massive use of information technologies, pervasive electronic devices,
and telecommunications in all areas of our society has opened the door to
gather huge amounts of data. To obtain information and knowledge from
these data [35], new disciplines focused on data analysis have been created,
namely Data Science, Data and Process Mining [3], Big Data Analytics,
Deep Learning, and so on. Although the collected data might include only
small portions of personal and private data, they must be protected. Other-
wise, due to the capabilities of big-data-based technologies, sensible informa-
tion, trends, patterns, and behaviours could be revealed, thus, endangering
people’s privacy.

The Internet of Things (IoT) is paving the way for the deployment of
large and complex, highly-sensorised scenarios that aim to provide a wide
range of services: from efficient monitoring and control of the environment
to smart transportation, including ambient assisted living, smart buildings,
cognitive health and other areas that will become a reality in the coming
years. At the bottom level of an IoT application, the perception layer: i.e.
a layer of sensors that collect data at a high rate. At the top- level, the con-
cept of cloud stores and provides access to the data while offering a variety of
services. 5G communication technologies are the icing on the cake: beyond
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2 Chapter 1. Introduction

providing smartphone users with low-latency, high-bandwidth communica-
tions, they will enable the rapid interconnection of virtually thousands of
devices. As a result, the IoT ecosystem will generate an unprecedented
amount of Big Data, typically in the form of multivariate microdata.

Microdata can be defined as a set of records that contain information
about individual respondents or business entities. Consider a microdata set
D with p continuous numerical attributes and n records (i.e. the result
of observing p attributes on n individuals). The attributes in the original
microdata set D can be classified into four categories:

• Direct Identifiers are variables that uniquely identify statistical the
respondent, such as social insurance number, full name, passport,etc.

• Key variables are defined as a set of variables that, in combination,
can be linked with external information to re-indentify respondents in
the microdata set D. Key variables are also called quasi-identifiers
or indirect identifiers. For example, gender, nationality or occupa-
tion variables may not reveal the identity of any respondent in a big
city, but in a small town, in combination, they may uniquely identify
respondents.

• Sensitive variables are attributes whose values contain confidential
information on the respondent, the concept of confidential is often
subject to legal and ethical concerns. Examples are salary, religion,
sexual behaviour,etc.

• Non-confidential variables are attributes which contain non-
sensitive information about the respondent.

These categories, shown in Figure 1.1, are not necessarily disjoint. Note
that the variables may be categorical variables where the attribute takes
values over a finite set, such as gender, or continuous variables that can be
used to perform arithmetic operations on real numbers, such as salary or
weight.
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1.1. Motivation 3

Figure 1.1: Microdata variables categories

Ongoing advances in information and communication technologies (ICT)
and efficient processing of data enable the extraction of new knowledge
through the discovery of non-obvious patterns and relationships. Neverthe-
less, such knowledge extraction procedures may threaten individual privacy
if proper measures are not taken to protect them [23,43,45]. For instance, an
attacker can use publicly available datasets to gain insights about individu-
als and extract knowledge by exploiting correlations that were not obvious
when examining a single dataset [2].

Notwithstanding, per se, datasets are not useful unless they are analysed
using techniques like data mining (e.g. to determine the behaviour of at-
tributes, to identify patterns), process mining (e.g. to discover processes, to
check the conformance between existing process models and those reflected
in the data) and, ultimately, feeding machine learning systems. Companies
can analyse their data on their own, but they can also delegate (i.e. release)
datasets to third parties. Note that sensitive information can be inferred
from records and values in the dataset: consumer habits, location tracking,
health issues, etc. In order to mitigate the Big Brother effect, data pro-
tection regulations aim at protecting against data misuse, especially those
related to individuals. In this line, individuals must be informed about the
use and lifecycle of the data. In addition, techniques like anonymisation
or pseudonymisation, i.e. replacing personally identifiable information (e.g.
name, car plate number, electrical supply contract numbers) by artificial
identifiers, must be applied before releasing data [47]. A wide variety of
privacy models and protection mechanisms have been proposed in the liter-
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4 Chapter 1. Introduction

ature to guarantee anonymity (at different levels depending on the utilised
model) when disclosing data [47]. Since most privacy protection methods
are based on modifying/perturbing/deleting original data, their main draw-
back is that they negatively affect the utility of the data. Hence, there is a
need to find a proper trade-off between data utility and data privacy.

Recognising the aforementioned risks, governments have reformed exist-
ing regulations to legally guarantee people’s privacy. For example, consider
the General Data Protection Regulation (GDPR), which regulates the pro-
cessing of personal data of individuals in the EU. Once data are collected,
they have to be anonymised before Big Data analytics techniques are ap-
plied.

One of the best-known disciplines dealing with methods to protect pri-
vate information is Statistical Disclosure Control (SDC), which aims to
anonymise microdata sets in such a way that it is not possible to re-identify
the respondent corresponding to a particular record in the published micro-
data set [9].

SDC is a set of techniques and procedures used to protect the confi-
dentiality of sensitive data in statistical analyses: It aims to ensure that
statistical outputs do not reveal any information about individual respon-
dents or entities in the dataset while maintaining the data accuracy and
usefulness for analysis. By applying various methods (e.g. data suppres-
sion, aggregation, and randomisation), these techniques reduce the risk of
disclosure while preserving the overall utility of the data and, therefore, can
be commonly used in official statistics, public health, finance and the like.

Among these privacy preserving techniques, microaggregation is one of
the most consolidated and used because it guarantees the property of k-
anonymity. This means that each record in the dataset cannot be distin-
guished from other k − 1 records. As a result, the unique identification
of a single respondent/individual is impossible [32]. Microaggregation [42]
perturbs microdata sets by aggregating the attribute values of groups of
k records (fixed-size microaggregation) or at least k records (variable-size
microaggregation) to reduce the risk of re-identification by achieving k−
anonymity. It is one of the most commonly used methods of SDC. It is
typically applied by statistical agencies to limit disclosure of sensitive mi-
crodata and has been used to protect data in a variety of domains, namely
healthcare [37], smart cities [21] or collaborative filtering applications [4], to
name a few.

Although the univariate microaggregation problem can be optimally
solved in polynomial time, optimal multivariate microaggregation is an NP-
hard problem [10]. Thus, finding a solution for the multivariate problem
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1.2. Contributions 5

requires heuristic approaches that aim to minimise the amount of data dis-
tortion (often measured in terms of information loss), whilst guaranteeing a
desired privacy level (typically determined by a parameter k that defines the
cardinality of the aggregated groups). Note that the word cluster and group
will be used interchangeably throughout the text. In this context, a cluster
is a group of data points that share similar characteristics or features.

1.2 Contributions

The main contributions of this dissertation are the following:

1. Contributions to fixed-size microaggregation: As mentioned
earlier, optimal multivariate microaggregation is an NP-hard problem.
This type of problem is significant in computer science and mathe-
matical research because many practical optimisation problems can
be reduced to an NP-hard problem, such as microaggregation, where
the goal is to maximise the statistical utility of the information pub-
licly disseminated in the microdata sets while minimising the risk of
identifying a respondent. In Chapter 3, a new heuristic for solving the
microaggregation problem is proposed, which is inspired by the well-
known Travelling Salesman Problem and reduces the information loss
compared to other known approaches for a fixed cluster size.

2. Contributions to Variable-size Microaggregation: Although no
optimal solution exists for the multivariate microaggregation problem,
there is an optimal solution to the univariate version, known as Hansen
and Mukherjee’s algorithm. This algorithm requires a set of sorted
records to obtain the optimal solution. This sorting for the univariate
case is solved in polynomial time. However, for the multivariate case,
it becomes an NP-hard problem. There are several proposals in the lit-
erature on how to sort a set of records in a multidimensional space and
then apply the Hansen and Mukherjee microaggregation algorithm. In
Chapter 4, a novel solution for the multivariate microaggregation prob-
lem is proposed, inspired by the heuristic solutions of the Travelling
Salesman Problem and the use of Hansen and Mukherjee’s optimal
univariate microaggregation algorithm. We propose that a possible
ordering for the records in Rp is determined by the Hamiltonian path
resulting from the solution of the Travelling Salesman Problem (TSP),
where the goal is to find the path that traverses all elements of a set
only once while minimising the total length of the path. Our intuition
is therefore that good heuristic solutions of the TSP (i.e. those with
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6 Chapter 1. Introduction

shorter path lengths) would yield a Hamiltonian path that can be used
as an ordered vector for Hansen and Mukherjee’s optimal univariate
microaggregation algorithm, leading to a good multivariate microag-
gregation solution.

3. Contributions to Dataset Reduction Strategies:

NP-hard problems, such as microaggregation, are decision problems
that require a number of operations that grow exponentially with the
size of the input, making the solution impossible for large instances.
Therefore, researchers often focus on developing efficient algorithms
and heuristics to solve or approximate NP-hard problems. However,
in many cases, solving these problems can still require significant com-
putational resources and time. Dataset reduction strategies are tech-
niques that can reduce the size or complexity of a dataset while main-
taining its integrity and usefulness for analysis. The choice of dataset
reduction strategy depends on the specific requirements of the analysis
and the nature of the dataset. It is important to carefully consider the
potential benefits and limitations of each strategy before applying it.

In Chapter 5, we present a method to compress a microdata set, which
can be used to solve the Travelling Salesman Problem (TSP), allowing
us to optimise its resolution cost. This strategy involves compressing
the data to reduce its size while preserving the relevant information. To
the best of our knowledge, this is the first time that an optimisation
method for TSP-based microaggregation heuristics (i.e. optimising
both the computational time and the quality of the groups) is presented
in the literature.

4. Contributions to Microaggregation Optimisation:

Optimisation problems involve finding the best solution among a set
of possible solutions to a problem. The goal is to maximise or min-
imise a certain objective function while satisfying constraints. In many
cases, optimisation problems can be solved using various optimisation
algorithms, such as gradient descent, simulated annealing, and genetic
algorithms.

A common problem that can arise when solving optimisation problems
is the occurrence of a local minimum. A local minimum is a solution
that is the best solution in the immediate vicinity of the current so-
lution, but is not the overall best solution for the problem. This can
occur when the optimisation algorithm is stuck in a particular region

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO STATISTICAL DISCLOSURE CONTROL: ENHANCING MULTIVARIATE MICROAGGREGATION 
USING GRAPH THEORY 
Armando Maya-López



1.3. Organisation 7

of the search space instead of exploring the entire space of possible
solutions.

When an optimisation algorithm falls into a local minimum, recovering
and finding the true global minimum may be difficult. One common
way to address this issue is to use techniques such as random restarts,
which involve starting the optimisation algorithm multiple times from
different initial points. Another approach is to use more advanced
optimisation techniques that are less likely to get stuck in local minima,
such as particle swarm optimisation, differential evolution, or Bayesian
optimisation.

Falling into a local minimum is a major obstacle in solving optimisation
problems, and it is crucial to recognise this issue and utilise effective
strategies to mitigate it. Chapter 6 presents a novel post-processing
technique specifically aimed at improving the results of a well-known
microaggregation technique (MDAV, Maximum Distance to Average
Vector) and preventing local minima.

1.3 Organisation

This thesis has been organised as follows:

• Chapter 2 provides the reader with fundamental knowledge on Sta-
tistical Disclosure Control and microaggregation. Also, it introduces
the basics of the Travelling Salesman Problem and an overview of the
existing heuristics to solve it.

• Chapter 3 is dedicated to fixed-size microaggregation. A TSP-inspired
method to solve the microaggregation problem is described. The new
heuristic proposed is illustrated using a microdata set that simulates
a study at a hospital. Finally, two datasets were used as benchmarks
to show the overall performance.

• Chapter 4 is dedicated to variable-size microaggregation. A TSP tour
construction heuristic is used as input to Hansen and Mukherjee’s op-
timal univariate microaggregation algorithm. To practically validate
the usefulness of the multivariate microaggregation proposal, it was
thoroughly tested on six datasets that serve as benchmarks. A study
on the stability of the solutions was carried out using box plot dia-
grams. Furthermore, the Pearson correlation between the Hamiltonian
path length obtained by all the heuristics studied and the SSE of the
resulting microaggregation is thoroughly analysed.
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8 Chapter 1. Introduction

• Chapter 5 presents a dataset reduction strategy for microaggrega-
tion. A compression strategy for efficient TSP-based microaggregation
is described. Moreover, the approach’s efficacy was tested on three
datasets that serve as benchmarks. The analysis included aspects of
the method’s computational time and data utility.

• Chapter 6 presents a microaggregation optimisation strategy, Ran-
dom Cluster Shuffling (RCS), a post-processing technique to improve
microaggregation results. This technique is tested using GPS traces
collected from two cities, Barcelona and Madrid.

• Finally, Chapter 7 summarises our contributions and describes possible
future research lines.
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Chapter 2

Background and State of the
Art

This chapter provides the reader with the essential context needed to un-
derstand the topics covered in this dissertation. Section 2.1 introduces the
needs that led to the development of the field of Statistical Disclosure Control.
Section 2.2 provides the reader with some basic knowledge about microaggre-
gation. Finally, the metrics commonly used to compare different microag-
gregation methods and the datasets used for benchmarking are presented.

Contents
2.1 Statistical Disclosure Control . . . . . . . . . . . . . 9

2.1.1 Disclosure Taxonomy . . . . . . . . . . . . . . . . . . . 10
2.1.2 Disclosure Risk . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Principles of k-anonymity, l-diversity and SUDA . . . 13

2.2 Microaggregation . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Microaggregation Techniques . . . . . . . . . . . . . . 18
2.2.2 Methods Based on Optimal Univariate Microaggrega-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Path construction based on TSP heuristics . . . . . . 21

2.3 Metrics and Benchmarking . . . . . . . . . . . . . . 25

2.1 Statistical Disclosure Control

Statistical Disclosure Control (SDC) is a cornerstone of data privacy, partic-
ularly when publishing sensitive information in a statistical context. SDC
methods aim to protect the confidentiality of individuals and organisations
by controlling the risk of identifying sensitive information released in statis-
tical outputs.

SDC aims to preserve the statistical properties of datasets whilst mini-
mizing the privacy risks related to the disclosure of confidential information

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO STATISTICAL DISCLOSURE CONTROL: ENHANCING MULTIVARIATE MICROAGGREGATION 
USING GRAPH THEORY 
Armando Maya-López



10 Chapter 2. Background and State of the Art

from individual respondents. SDC is a critical issue in releasing statistical
data, as it seeks to protect the confidentiality of sensitive information. One
of the most widely used techniques for SDC is microaggregation, which in-
volves aggregating individual-level data into groups or clusters. This method
reduces the risk of identification by reducing the precision of the data while
preserving its statistical properties. The usual practice in SDC is for data
protectors to apply microaggregation to a restricted set of attributes rather
than to entire records in a microdata set. From a mathematical point of view,
one can say that what is microaggregated are the projections of records on
this restricted set of attributes, which may include key attributes and con-
fidential attributes [8].

This chapter provides an overview of microaggregation algorithms, their
applications in SDC and their strengths and limitations. The aim of this
chapter is to provide a comprehensive understanding of microaggregation as
an SDC method and to lay the groundwork for the subsequent chapters of
this thesis, in which we examine the latest developments and advances in
the field.

2.1.1 Disclosure Taxonomy

Suppose a hypothetical snoop has access to some public microdata and at-
tempts to identify a particular respondent. If the intruder can reveal previ-
ously unknown information about a respondent, a disclosure has occurred.
disclosure, also called re-identification, can be divided into three categories,
as follows:

• Identity Disclosure happens when the snooper manages to link a
known person to the microdata record. For example, suppose that a
microdata set for the city of Tarragona contains an attribute called ’oc-
cupation’ whose value is ’mayor’, this will certainly lead to disclosure.
Even more, unusual combinations of key attributes in public micro-
data records pose a potentially high risk. For example, if a respondent
in Tarragona has the combination nationality = German, occupation
= GP and gender = male, this person is likely to be unique in the
population and therefore at high risk of disclosure.

• Attribute Disclosure occurs when the snooper is able to determine
some new characteristics of a person from the information available
in the disclosed data. For example, imagine a hospital that publishes
a microdata set showing that all male patients aged 60 to 63 have
COVID -19, then a snooper knows the medical condition.
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2.1. Statistical Disclosure Control 11

• Inferential Disclosure occurs when the snooper is able to determine
the value of a sensitive characteristic of a person from the data released.
Inferential disclosure occurs when the sensitive characteristics of an
individual can be well predicted from a good model applied to the
microdata set released. For example, if a snooper applies a predictive
regression model, he could infer an employee’s salary.

In the following toy example, we have used functions of the mathematical
software R to show how an intruder can infer the value of any feature of a
respondent with some accuracy using a linear regression model. For this
purpose, we use the Tarragona dataset, a set of real data that includes
the numbers of 834 companies. In particular, our attacker wants to infer
the variable named ’PAID.UP. CAPITAL’ of a company with the following
characteristics:

1 > library("sdcMicro")
2 > intrudersTarragona <- data.frame(Tarragona [10,])
3 > intrudersTarragona [,-5]
4 > t(intrudersTarragona)
5

6 FIXED.ASSETS 91
7 CURRENT.ASSETS 183865
8 TREASURY 22670
9 UNCOMMITTED.FUNDS 34555

10 SHORT.TERM.DEBT 149402
11 SALES 637815
12 LABOR.COSTS 4085
13 DEPRECIATION 0
14 OPERATING.PROFIT 8504
15 FINANCIAL.OUTCOME 0
16 GROSS.PROFIT 3117
17 NET.PROFIT 1955
18

19 >

Listing 2.1: Information known by snooper

In Listing 2.1 we have taken the company data corresponding to the
microdata with position 10 in the Tarragona dataset as data from a company
not present in the dataset. For this reason, we have removed the record from
the dataset. Once we have taken a microdata from the dataset, we remove
the parameter that we want to derive. So we have removed column 5 of the
microdata which corresponds to ’PAID.UP. CAPITAL’.

1 > Tarragona <- Tarragona [-10,]
2 > mod1 <- lm(log(PAID.UP.CAPITAL) ~ CURRENT.ASSETS
3 + TREASURY
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12 Chapter 2. Background and State of the Art

4 + UNCOMMITTED.FUNDS
5 + LABOR.COSTS
6 + SHORT.TERM.DEBT
7 + SALES
8 + DEPRECIATION
9 + OPERATING.PROFIT

10 + FINANCIAL.OUTCOME
11 + GROSS.PROFIT
12 + NET.PROFIT ,
13 data=Tarragona[Tarragona[,"PAID.UP.CAPITAL"] > 0, ])
14 > s1 <- summary(mod1)
15 > s1$r.squared
16 [1] 0.2847402
17 > exp(predict(mod1 , intrudersTaragona))
18 9977.568
19 > data(Tarragona)
20 > Tarragona [10, "PAID.UP.CAPITAL"]
21 [1] 10000

Listing 2.2: Snooper’s Estimate.

We see that inferential disclosure is possible in this scenario, because
with a model with a value R2 = 0.2847 we can predict the value of the
variable of 9977.568, where the real value is 104, so we have an accuracy of
99.775%.

2.1.2 Disclosure Risk

Disclosure risk is defined based on assumptions about disclosure scenarios,
i.e. how the intruder could exploit the released data to reveal information
about the respondent. For example, an intruder could do this by linking the
released file to another data source that contains the same respondents and
identifying variables. Disclosure risk arises when a given dataset is released.
The risk r is assumed to take a non-negative real value (r ≥ 0), and a risk
of zero (r = 0) means no risk.

One of the most important tasks in SDC is to estimate the disclosure
risk of individuals and a global risk for the entire dataset. The concept of
uniqueness and the concept of k-anonymity and l-diversity are important and
will be outlined first. Special Uniques Detection Algorithm (SUDA) extends
the concept of k-anonymity. It also searches for uniqueness in subsets of key
variables.

Risk measures are important in deciding whether the dataset is suffi-
ciently protected to be released. Certain anonymisation methods can re-
duce the risk of disclosure if the dataset is not sufficiently protected. In
general, methods for determining disclosure risk differ between categorical
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2.1. Statistical Disclosure Control 13

and continuous key variables. The calculation of frequency counts serves as
the basis for many disclosure risk estimation methods. The frequency count
can be calculated for a combination of q variables that gives the distribution
of frequency counts.

2.1.3 Principles of k-anonymity, l-diversity and SUDA

Assuming that sample uniques are more likely to be re-identified, one way to
protect confidentiality is to ensure that each distinct pattern of key variables
is possessed by at least k record in the sample. Formally, a microdata set
satisfies k-anonymity for k > 1, if, for each combination of values of key
attributes, at least k records exist in the dataset with that combination [8].
A typical practice is to set k = 3, which ensures that the same pattern of key
variables is possessed by at least three records in the sample. Using the above
notation, 3-anonymity means that at least 3 records in the microaggregated
microdata set share the same value for their variables.

In R, the sdcMicro package provides the function freqCalc(), which
can be used to compute an estimate of the sample and population fre-
quency counts. EIA (a well-known benchmarking microdata set composed of
4092 observations with 15 variables), of which three are categorical variables
(STATE, YEAR, MONTH). If we apply freqCalc() on the EIA categori-
cal variables, we obtain the results shown below, where we can see that 24
objects violate 3-anonymity.

1 > freqCalc(EIA , keyVars = c("STATE","YEAR", "MONTH"))
2

3 --------------------------
4

5 0 obs. violate 2-anonymity
6

7 24 obs. violate 3-anonymity
8

9 --------------------------
10

11 >

Listing 2.3: Frequency Counts.

The concept of l-diversity addresses the limitations of k-anonymity. It
was introduced as a stronger notion of privacy where a group of observations
with the same pattern of key variables is l-diverse if contains at least l
distinct values for each group of observations with the same pattern of key
variables. There are three different l-diversity types of measures:

• Distinct l-diversity as the simplest definition that ensures that at
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14 Chapter 2. Background and State of the Art

least l distinct values for the sensitive field in each key.

• Entropy l-diversity as the most complex definition, which defines
entropy of a key where the fraction of observations that have a sensitive
value.

• Recursive l-diversity as a compromise definition that ensures the
most common sensitive value does not appear too often in a key while
less common sensitive values are ensured not to appear too infrequently
in the same key.

An alternative approach for defining disclosure risk is based on special
uniqueness. An observation is a special unique concerning a variable set Q, if
it is a sample unique on Q and a subset of Q. A set of computer algorithms,
SUDA, was designed to detect and grade special uniques comprehensively.
SUDA take a two-step approach. In the first step, all unique attributes set
up to a user-specified size are located for each observation. SUDA considers
onlyMinimal Sample Uniques (MSUs), which are unique variable sets with-
out any unique subsets within a sample. Once all MSUs have been found,
a SUDA score is assigned to each observation indicating the risk using the
size and distribution of MSUs within each observation. The potential risk
of the records is determined based on two issues:

1. The smaller the number of variables spanning the MSU within an
observation, the higher the risk of the observation.

2. The larger the number of MSUs in an observation, the higher the risk
of the observation.

The concept of uniqueness might not apply to continuous key variables,
especially those with an infinite range, since almost every dataset record
will be identified as unique. In this case, a more applicable method is to
assess risk based on record linkages. Essentially, the record linkage approach
assesses to what extent records in the perturbed data file can be correctly
matched with those in the original data file.
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2.2. Microaggregation 15

2.2 Microaggregation

Microaggregation is a family of SDC methods for microdata, which use data
perturbation as a protection strategy. The general idea is that, given an
original microdata file D and a privacy parameter k, a microaggregation
process consists in constructing a k- partition of the dataset, i.e. a set of
disjoint clusters (whose cardinality is between k and 2k − 1) and replacing
each original data record by the centroid (i.e. the average vector) of the
cluster to which it belongs, hence creating a k-anonymous dataset D′, this is
a dataset where for each combination of values, at least k records exist int the
dataset sharing that combination. With the aim to reduce the information
loss caused by the aggregation, the clusters are created so that the records
in each cluster are similar.

Formally, microaggregation can be defined as follows: Consider a mi-
crodata set D with p continuous numerical attributes and n records (i.e.
the result of observing p attributes on n individuals). Groups (also called
clusters or subsets in this context) of D are formed with ni records in the
i-th group (ni ≥ k and n =

∑g
i=1 ni), where g is the number of resulting

groups, and k a cardinality constraint. Optimal microaggregation is defined
as the one yielding a k- partition maximizing the within- groups homogene-
ity. Optimal microaggregation is an NP -hard problem [10] for multivariate
data and it requires heuristic approaches, which can be classified into two
main families:

• Fixed-size microaggregation. These heuristics yield k-partitions where
all subsets/groups have size k, except perhaps one group which has
size between k and 2k − 1, when the total number of records is not
divisible by k.

• Variable-size microaggregation. These heuristics yield k-partitions
where all groups have sizes in (k, 2k − 1). Note that, it is easy to
show that any group with size larger than (2k − 1), could be divided
in several smaller groups of size between k and 2k − 1 whose over-
all within-group homogeneity is better than that of the single larger
group.

The fixed-size microaggregation heuristic is very computationally effi-
cient due to its simplicity. In contrast, variable-size heuristics can obtain
less information loss, since they can adapt the size of the clusters to the
structure of the dataset.
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16 Chapter 2. Background and State of the Art

Figure 2.1: Fixed and variable size microaggregation.

Toy example. In this example, we can see the use of microaggregation
for k-anonymity [8] [10]. Table 2.1 shows an original microdata set with the
name, the surface and the number of employees of 11 companies in a given
town.
The 3-anonymous version of this dataset is shown in Table 2.2. The identifier
‘Company name’ has been deleted, and optimal bivariate microaggregation
with k = 3 was used on the key attributes ‘Surface’ and ‘Number of em-
ployees’. Both attributes were standardised to have mean 0 and variance 1
before microaggregation to give them equal weight.

Company Name Surface(m2) Employees

Com1 790 55

Com2 710 44

Com3 730 32

Com4 810 17

Com5 950 3

Com6 510 25

Com7 400 45

Com8 330 50

Com9 510 5

Com10 760 52

Com11 50 12

Table 2.1: Original microdata set used for the toy example
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2.2. Microaggregation 17

Finally, we can see in Table 2.2, that the 11 records were microaggregated
into three groups.

Surface(m2) Employees

747.5 46

747.5 46

747.5 46

756.67 8

756.67 8

322.5 33

322.5 33

322.5 33

756.67 8

747.5 46

322.5 33

Table 2.2: 3-anonymous version of microdata set for the toy example

In this toy example, there are two attributes that can make a graphical
representation in R2. Figure 2.2 shows the results of three groups created.

Figure 2.2: Optimal 3-partition of dataset
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18 Chapter 2. Background and State of the Art

2.2.1 Microaggregation Techniques

There is a wide variety of heuristics to solve the multivariate microaggre-
gation problem in the literature. One of the most well-known methods is
the Maximum Distance to Average Vector (MDAV), proposed by Domingo-
Ferrer et al. [8]. This method iteratively creates clusters of k members
considering the furthest records from the dataset centroid. A variant of
MDAV was proposed by Laszlo et al., namely the Centroid-Based Fixed
Size method (CBFS) [17], which also has optimised versions based on kd-
tree neighbourhood search, such as KD-CBFS and KD-CBFSapp [40]. The
Two Fixed Reference Points (TFRP) method was proposed by Chang et.
al [6]. It uses the two most extreme points of the dataset at each iteration
as references to create clusters. Differential Privacy-based microaggregation
was explored by Yang et al. [44], which created a variant of the MDAV
algorithm that uses the correlations between attributes to select the min-
imum required noise to achieve the desired privacy level. Also, V-MDAV,
a variable group-size heuristic based on the MDAV method was introduced
by Solanas et al. in [38] with the aim to relax the cardinality constraints of
fixed-size microaggregation and allow clusters to better adapt to the data.

Laszlo and Mukherjee [17] approached the microaggregation problem
through minimum spanning trees, aimed at creating graph structures that
can be pruned according to each node’s associated weights to create the
groups. Lin et al. proposed a Density-Based Algorithm (DBA) [19], which
first forms groups of records in density descending order, and then fine-tunes
these groups in reverse order. The successive Group Selection based on se-
quential Minimization of SSE (GSMS) method [30], proposed by Panagio-
takis et al., optimises the information loss by discarding the candidate cluster
that minimises the current SSE of the remaining records. Some methods are
built upon the HM algorithm. For example, Mortazavi et al. proposed the
IMHM method [26]. Domingo-Ferrer et al. [8] proposed a grouping heuristic
that combines several methods such as Nearest Point Next (NPN-MHM),
MDAV-MHM, and CBFS-MHM.

Other approaches have focused on the efficiency of the microaggregation
procedure, for example, the Fast Data-oriented Microaggregation (FDM)
method proposed by Mortazavi et al. [25] efficiently anonymises large mul-
tivariate numerical datasets for multiple successive values of k. The inter-
ested readers can find more detailed information about microaggregation
in [11,47].

Finally, methods based on the advantages of Hansen and Mukherjee’s
technique for optimal microaggregation of univariate data are further devel-
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2.2. Microaggregation 19

oped next.

2.2.2 Methods Based on Optimal Univariate Microaggrega-
tion

A number of methods are built upon the Hansen and Mukherjee algorithm
for optimal univariate microaggregation (HM). In a nutshell, they work as
follows: addressing the multivariate records in the dataset (with p columns
or variables) as if they were points in a p-dimensional space, first, use a tech-
nique to create a path traversing all the records. This path is a permutation
of the records in the dataset, which are now reduced to univariate data be-
cause only the distance between the records is considered. Afterwards, use
this permutation to feed the HM technique, that will create the k-partition.
This technique is known as the Multivariate Hansen-Mukherjee (MHM) and
is described in [13].

The MHM algorithm can be defined as, let X = {x1, x2, ..., xn} be an
ordered dataset with n records where each record xi contains the values of
p attributes. Let k be an integer group size such that 1 ≤ k < n. Then, a
graph Gn,k is constructed as follows:

1. For each value xi in X, create a node with label i. An additional node
with label 0 is created.

2. For each pair of graph nodes (i, j) such that i+ k ≤ j < i+ 2k, create
a directed arc(i, j) from node i to node j.

3. Map each arch(i, j) to the group of values C(i,j) = {xh : i < h ≤ j}.
Let the length Li,j of the arc be the within group sum squares for
C(i,j), that is;

L(i,j) =

j∑
h=i+1

(xh − x̄(i,j))′(xh − x̄(i,j)) (2.1)

where x̄(i,j) is a p-dimensional record computed as the centroid of
records in C(i,j).

Like in the univariate HM algorithm, the k -partition output by MHM
is computed as the one whose groups correspond to the arcs in the shortest
path between nodes 0 and n.

Lemma 1. For a fixed path traversing a dataset of multivariate points, MHM
yields the best k-partition compatible with the ordering of points induced by
the path.
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20 Chapter 2. Background and State of the Art

Proof. The lemma follows from the optimality of the univariate Hansen-
Mukherjee algorithm proven in [13]

Several ways of constructing a path traversing a multivariate dataset
can be found in the literature, where each records contain the values of p
numerical attributes and are represented as points in Rp. Two main groups
of techniques exist for path construction:

1. Method based on connecting nearby points as those proposed by
Domingo-Ferrer et al. [8]. In this set of path construction method,
except for the first one, namely Nearest Point Next (NPN), the rest of
methods are essentially existing fixed-size microaggregation heuristics
used for ordering multivariate points, i.e. Maximum Distance, MDAV
and CBFS.

2. Method based on graph theory, where each record in the dataset rep-
resents a vertex in a graph. For the construction of the path, it will be
necessary to apply algorithms that connect all vertices, in other words,
obtaining a Hamiltonian path over the graph.

The Nearest Point Next method will be described below, since its simplic-
ity allows its use as an example of path construction. The path is constructed
as follows:

1. The dataset centroid x̄ is computed.

2. Select the most distant record r from x̄, which is taken as the first
point in the path.

3. The next record selected is the closest to the previous record, and so
on until all n records have been added to the path.

Figure 2.3 illustrates the NPN construction on a toy dataset in R2, where
one can be seen that the path constructor starts in the record more distant
from the centroid of all records in the dataset.

The NPN construction orders multivariate records based on p-
dimensional Euclidean distance without making any assumption on the min-
imum group size k to be used later by MHM for microaggregation. It can
be proved that both, MDAV and CBFS, with k = 1 are equivalent to NPN.

In the second group of methods, those based on graph theory, we high-
light those that use solutions to the Travelling Salesman Problem. These
methods, due to their importance for this thesis, will be detailed in Section
2.2.3.
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2.2. Microaggregation 21

Figure 2.3: Nearest Point Next path constructor

2.2.3 Path construction based on TSP heuristics

The Travelling Salesman Problem (TSP) [34] consists of finding a particular
Hamiltonian cycle on a weighted graph. The problem can be stated as
follows: a salesman leaves from one city and wants to visit (exactly once)
each other city in a given group, and finally return to the starting city. The
salesman wonders in what order these cities must be visited so as to travel
the shortest possible total distance.

In terms of graph theory, the TSP can be modelled by a graph G =

(V,E), where cities are the nodes in set V = {v1, v2, ..., vn} and each edge
eij ∈ E has an associated weight wij representing the distance between nodes
i and j. The goal is to find a Hamiltonian cycle, i.e, a cycle which visits each
node in the graph exactly once, with the least total weight. An alternative
approach to the Hamiltonian cycle to solve the TSP is finding the Shortest
Hamiltonian path through a graph (i.e. a path which visits each node in the
graph exactly once). As an example, Figure 2.4 shows a short Hamiltonian
path for the Eurodist dataset which contains the distance (in km) between
21 cities in Europe.
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Figure 2.4: A Hamiltonian path for the Eurodist dataset.

Finding an optimal solution to the TSP is known to be NP-Hard. Hence,
several heuristics to find good but sub-optimal solutions have been devel-
oped. TSP heuristics typically fall into two groups: those involving minimum
spanning trees for tour construction, and those with edge exchanges to im-
prove existing tours. There are numerous heuristics to solve the TSP [1,31].
We have selected a representative sample of heuristics including well-known
approaches and top performers from the state-of-the-art.

Within the group tour construction heuristics, it is necessary to mention
the following:

• Nearest Neighbour algorithm: The algorithm starts with a tour con-
taining a randomly chosen node and appends the next nearest node
iteratively.

• Repetitive Nearest Neighbor: The algorithm is an extension of the Near-
est Neighbor algorithm. In this case, the tour is computed n times,
each one considering a different starting node and then selecting the
best tour as the outcome.
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• Insertion Algorithms: All insertion algorithms start with a tour that
originated from a random node. In each step, given two nodes already
inserted in the tour, the heuristic selects a new node that minimises the
increase in the tour’s length when inserted between such two nodes.
Depending on the way such the next node is selected, one can find
different variants of the algorithm. For instance, Nearest Insertion,
Farthest Insertion, Cheapest Insertion and Arbitrary Insertion.

• Concorde: This method is currently one of the best implementations
for solving the symmetric TSP. It is based on the Branch-and-Cut
method to search for optimal solutions.

Tour improvement heuristics are simple local search heuristics which try
to improve an initial tour, the most important heuristics in this group are:

• k-Opt heuristics. The idea is to define a neighborhood structure
on the set of all admissible tours. Typically, a tour t′ is a neighbor
of another tour t if t′ can be obtained from t by deleting k edges and
replacing them by a set of different feasible edges (a k-Opt move). The
resulting tour represents a local optimum which is called k-optimal.
Typically, 2-Opt and 3-Opt heuristics are used in practice.

• LK heuristic. This heuristic [20] does not use a fixed value for k for
its k-Opt moves, but tries to find the best choice of k for each move.
The heuristic uses the fact that each k-Opt move can be represented
as a sequence of 2-Opt moves.

In figure 2.5, the different heuristics are compared through the calcula-
tion of the path length for the Eurodist dataset. A more in-depth study can
be found in the work done by Hashsler and Hornik at [12].
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Figure 2.5: Comparison tour lengths for Eurodist dataset

TSP-based microaggregation focus on using the TSP heuristics to gener-
ate an ordered sequence in Rn of the records in a dataset. Such sequence can
be used to create a k-partition (by using e.g. the MHM method). Heaton
and Mukherjee [14] used the TSP tour optimisation heuristics (e.g. 2-opt,
3-opt) to refine a path created with the information of a multivariate mi-
croaggregation method (e.g. MDAV, MD, CBFS).
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2.3 Metrics and Benchmarking

Once the microaggregation method has been applied, the original dataset is
modified searching for low the disclosure risk, but the data must retain their
statistical properties with a low information loss, this is what is known as
data utility. In order to conduct tests aiming at comparing techniques and
assessing their validity, we need to establish a set of measures. Moreover,
tests must be conducted on benchmarking datasets.

The sum of squared errors (SSE) is commonly used for measuring the
homogeneity in each group. In terms of sums of squares, maximising within-
groups homogeneity is equivalent to finding a k-partition minimising the
within-groups sum of square error (SSE) [38] defined as:

SSE =

g∑
i=1

ni∑
j=1

(xi,j − x̄i)(xi,j − x̄i)′ (2.2)

, where xi,j is the j-th record in group i, and x̄i is the average record of
group i. The total sum of squares (SST), an upper bound on the partitioning
information loss, can be computed as follows:

SST =
n∑

i=1

(xi − x̄)(xi − x̄)′ (2.3)

, where xi is the i-th record in D and x̄i is the average record of D. Note
that all the above equations use vector notation, so xi ∈ Rp.

The microaggregation problem consists in finding a k-partition with min-
imum SSE, this is, the set of disjoint subsets of D so that D =

⋃g
m=1 sm,

where sm is the m-th subset and g is the number of subsets, with mini-
mum SSE. However, a normalised measure of information loss (expressed in
percentage) is also used:

Iloss =
SSE

SST
× 100 (2.4)

In terms of information loss, the worst case scenario for microaggregation
would happen when all records in D are replaced in D′ by the average of the
dataset (i.e. SSE = SST −→ Iloss = 100), and the best case scenario implies
that D = D′ (i.e. k = 1, no aggregation) which leads to SSE = Iloss = 0.
Obviously, the latter case is optimal in terms of information loss but it offers
no privacy protection, at all. Hence, values for the protection parameter k
are greater than one, typically: k = 3, 4, 5, or 6, and are chosen by privacy
experts in statistical agencies so as to adapt to the needs of each particular
dataset.
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We used six datasets as benchmarks for our experiments. We can classify
those datasets into two main groups: The first group comprises three well-
known SDC microdata sets that have been used for years as benchmarks in
the literature, namely “Census”, “EIA” and “Tarragona”. The second group
comprises three mobility datasets containing real GPS traces from three
Spanish cities, namely “Barcelona”, “Madrid” and “Tarraco”1. The features
of each dataset are next summarised:

The Census dataset was obtained using the public Data Extraction Sys-
tem of the U.S. Bureau of the Census. It contains 1,080 records with 13
numerical attributes. The Tarragona dataset was obtained from the Tar-
ragona Chamber of Commerce. It contains information on 834 companies
in the Tarragona area with 13 variables per record. The EIA dataset was
obtained from the U.S. Energy Information Authority and it consists of 4092
records with 15 attributes. More details on the aforementioned datasets can
be obtained in [41].

The Barcelona, Madrid and Tarraco datasets consist of Open-
StreetMap [28] GPS traces collected from those cities: Barcelona contains
the GPS traces of the city of Barcelona within the area determined by the
parallelogram formed by latitude (41.3726866, 41.4078446) and longitude
(2.1268845, 2.1903992). The dataset has 969 records with 30 GPS locations
each. Madrid contains the GPS traces of the city of Madrid within the area
determined by the parallelogram formed by latitude (40.387613, 40.483515)
and longitude (-3.7398145, -3.653985). The dataset has 959 records with 30
GPS locations each. Tarraco contains the GPS traces of the city of Tar-
ragona within the area determined by the parallelogram formed by latitude
(41.0967083, 41.141174) and longitude (1.226008, 1.2946691). The dataset
has 932 records with 30 GPS locations each. In figure 2.6 a set of GPS traces
obtained in the area around Puerta de Atocha station in Madrid published
by OpenStreetMap [28] for public use can be seen. In the image on the left
we see a satellite photo obtained by GoogleMaps and on the right, each line
represents the trajectory of an object collected by OpenStreetMap [28] over
the same area.

1Notice that we use the term “Tarraco” – old Roman name for the city of Tarragona,
in other to avoid confusion with the classic benchmark dataset “Tarragona”.
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Figure 2.6: OpenStreetMap GPS trace around Madrid Puerta Atocha
Station

In all trajectories datasets, each record consists of 30 locations repre-
sented as (latitude and longitude), figure 2.7 shows an example of a tra-
jectory represented in a two-dimensional space where the axes represent
latitude and longitude and each point represents an object traveling in a
plane. Hence, each record has 60 numerical values. These locations were
extracted from each corresponding parallelogram according to the amount
of recorded tracks and their length. Due to their different density, we con-
sidered a subset of the locations collected by each track, so that we could
create datasets with the same dimensionality. In the case of Barcelona, we
allowed one point every 100 meters. In Madrid, we collected one point every
150 meters. Finally, in Tarraco, due to the lack of tracks, we considered one
point every 5 meters.

Figure 2.7: Trajectory-based microdata
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Chapter 3

Contributions to Fixed-size
Microaggregation

As stated in previous chapters, optimal multivariate microaggregation is an
NP-hard problem. This type of problem is significant in computer science
and mathematical research because many practical optimisation problems
can be reduced to an NP-hard problem, such as microaggregation, where the
goal is to maximise the statistical utility of the information that is publicly
distributed in the microdata sets, minimising the risk of identifying a re-
spondent. This chapter proposes a new heuristic inspired by the well-known
Travelling Salesman Problem to solve the microaggregation problem, which
reduces the information loss with respect to other well-known approaches for
a fixed cluster size.

Contents
3.1 TSP for Fixed-size Microaggregation . . . . . . . . 29

3.2 Our Proposal . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Running Example . . . . . . . . . . . . . . . . . . . . 36

3.4 Experimental Setup . . . . . . . . . . . . . . . . . . . 39

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 TSP for Fixed-size Microaggregation

The content of this Chapter is related to Multivariate Microaggregation
with fixed k-partitions size (Chapter 2). In the next sections, we propose a
novel approximation to microaggregation, which is based on the Travelling
Salesman Problem (TSP). Therefore, given a microdata set, we apply a TSP
heuristic to create a set of paths, which will then be processed iteratively
to create a neighbourhood matrix, reflecting the proximity of each record.
Next, we apply a clustering process to such microdata to generate a set of
groups of at least k records. Finally, the values each group’s records of each
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30 Chapter 3. Contributions to Fixed-size Microaggregation

group will be substituted by the average value of each corresponding group.
At the end of this process, each record will be indistinguishable from at least
k − 1 others.

This is the first work that formally proposes the use of TSP to process
an input microdata set and generate a neighbourhood matrix. Moreover,
the clustering process that we apply to such data has been adapted to the
particularities of the TSP method. The adaptations required to characterise
the multivariate microaggregation problem are explained and justified. A
running example on a dataset will be shown for a synthetic dataset.

3.2 Our Proposal

In this section, we present our microaggregation algorithm based on the
TSP, named Multivariate Fixed-size TSP (MF-TSP). The algorithm has
two differentiated steps:

1. The creation of a neighborhood matrix by finding the Shortest Hamil-
tonian Paths and aggregating their corresponding adjacency matrices.

2. The clustering process.

Due to a microdata dataset is a multivariate dataset consisting of n
records and p numerical attributes which can be represented as n points
x1, ..., xn in Rp, MF-TSP represents the records as a graph with the following
properties:

• Each microdata are represented as nodes in a weighted and complete
graph.

• The weight of each edge represents the Euclidean distance between its
nodes.

As we have seen in Chapter 2, finding a Shortest Hamiltonian Path on a
graph is a NP-hard problem. Therefore, we will use heuristics to approach
the solution. Such heuristics are susceptible to changes in the initial con-
ditions, resulting in variations in the order of the nodes when computing a
Hamiltonian path to solve the TSP. For instance, we can modify the initial
conditions by starting the TSP solver in a different node at each iteration.
The method provides us with the probability that an edge will be visited to
create the TSP path.

The new microaggregation heuristic proposed in this paper, described in
Algorithm 1, works as follows:
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3.2. Our Proposal 31

1. The first step is the standardization of the original dataset D to give
all variables at the same statistical weight.

2. Next, we compute a distance matrix considering each pair of nodes in
the original dataset. This matrix represents the adjacency matrix A of
the complete weighted graph W = (W (V ),W (E)) where each edge’s
weight wi,j represents the distance between nodes i and j. This is a
preprocessing step required to calculate the TSP solution, in which the
original dataset is represented as a graph (line 2 Algorithm 1).

3. For each node,and given a TSP heuristic, we find the Hamiltonian path
that traverses the rest of nodes (i.e. n − 1) in W . At the end of this
iteration, a set of n Hamiltonian paths is obtained, namely Hpath. For
instance, Hpath(i) is the permutation of {1, 2, . . . , n} expressing the
order in which the nodes are traversed by the ith Hamiltonian path
(line 3-5 Algorithm 1).

4. Given a Hpath set, build a neighbourhood matrix C, so that C is a
squared matrix n×n, where each element ci,j represents the number of
times a node i is connected to a node j in the path. More concretely,
we can define matrix C as a summation of a set of adjacency matrices
AH, where each adjacency matrix AHi is created using the ith ele-
ment of Hpath. Such procedure is graphically described in Figure 3.1.
To build the adjacency matrices, the following possibilities have been
considered:

• If the adjacency matrix represents a Hamiltonian path, all its
nodes have degree 2, except the starting node and the ending
node which have degree 1, resulting in a semi-eulerian graph. Al-
ternatively, if the adjacency matrix represents a hamiltonian cy-
cle, all its nodes have degree 2. In this case, the starting node and
the ending node are connected, resulting in an Eulerian graph.

• If the graph that represents each element of Hpath is directed,
the adjacency matrix keep memory of the order of the nodes by
each permutation, result an asymmetric adjacency matrix. On
the opposite, if it is desired to count the adjacent nodes, a non-
directed graph must be considered by each permutation existing
in Hpath.

Therefore, C can be defined as an adjacency meta-matrix of a new
graph C = (C(V ), C(E)), where microdata are the nodes set C(V ) =
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{1, 2, . . . , n} and each edge ci,j ∈ C(E) represents the probability that
the nodes (i, j) will be visited in the set Hpath of Hamiltonian paths.
As described in algorithm 1, lines: 6 - 10

5. Given a graph C, while ∃ ci,j 6= 0 ∈ C(E), generate clusters of nodes
of size k (i.e. k-partition groups). The procedure starts by finding the
maximum value ci,j ∈ C(E), and assigning the nodes (i, j) to the first
cluster. Next:

• The maximum edge value max(ci,x, cy,j) ∈ C(E),∀(X 6= J, Y 6=
I) ∈ C(V ) is found and node x or y, as appropriate, is added
to the cluster. In other words, the next most frequent node con-
nected with i or j is added to the cluster.

• Next, this procedure is repeated (k−2) times more to create each
cluster. Every time that a node is added to a cluster, we delete
it from C − {C(V )} graph to create disjunct groups.

As seen in algorithm 1, lines: 12-24

6. When @ ci,j 6= 0 ∈ E, the connectivity cannot be guaranteed for the
resulting graph C − {C(V )}, because every time a node is added to a
cluster, then the node is removed from the graph C and the edges that
connect the node. Therefore the disconnected nodes can be found in
one of the situations described as follows:

• Nodes with degree 0 can appear, that is, nodes isolated that do
not have edges connecting them to other nodes.

• Subgraphs with less than k nodes can appear, so they form clus-
ters of less than k elements.

To assign the disconnected nodes to a cluster, we proceed as follows:

• Let R(i) be the vector containing the unassigned records, i.e,
isolated nodes and clusters of size less than k.

• The C matrix, which was deleted each time a node was added to
a group, is restored. The elements in vector R(i) are prevented
from being grouped together by assigning a zero value in the
matrix C for each pair nodes in R to represented that the nodes
are disconnects.

• Elements in R are added to the groups of k-elements that were
created in the previous stage, creating groups of (2k−1) elements.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO STATISTICAL DISCLOSURE CONTROL: ENHANCING MULTIVARIATE MICROAGGREGATION 
USING GRAPH THEORY 
Armando Maya-López
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As described algorithm 1, lines: 25

7. Finally, to obtain a microaggregated dataset D′ from D, we compute
the centroid (i.e. the average vector) of each cluster and replace each
record di in D by each corresponding centroid d̂g of the cluster to
which it belongs. In algorithm 1, lines: 26

Note that, since all clusters have at most (2k − 1) records, the latter
does not affect the size constraint imposed by microaggregation (i.e. in an
optimal k-partition, each cluster must contain a number of records between
k and 2k− 1). Finally, figure (3.2) shows the process described in algorithm
1 using a flowchart.
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3.3 Running Example

The new method, decribed in Algorithm 1, is illustrated by the next running
example. The table 3.1 show an illustrative microdata dataset from a study
at a fictitious hospital to relate patients’ lifestyles to their heart problems.
To do this, continuous monitoring is performed by means of an smartwatch
that periodically takes the Heart Rate(HR), in the table HR is represented
with its maximum and minimum values.

Name Gender Age Height Weight Min Max ZipCode Salary State

Alice Adams female 59 169 56 50 84 99001 21000 M

Barbara Brown female 68 181 94 74 86 99002 35000 W

Claire Cooper female 39 175 78 63 99 99003 42000 M

Destiny Davis female 32 176 69 61 84 99004 28000 S

Evelyn Evans female 63 173 74 55 83 98456 24000 W

Fiona Foster female 56 184 83 67 97 98610 53000 M

Grace Green female 45 179 61 57 81 98543 80000 S

Hayden Holland female 27 178 90 62 91 98789 39000 M

Ivy Italy female 74 165 68 53 82 99009 22000 W

Table 3.1: Cardiac arrhythmia patient monitoring dataset

The records in cardiac arrhythmia microdata dataset can be classified in
three categories, as seen in Chapter 1:

1. Identifiers. These are attributes that unambiguously identify the re-
spondent. In our example the attribute ’Name’ is a identifier, these
data must be pre-processed and eliminated.

2. Key attributes. Also called quasi-identifiers are a set of attributes that
can be linked with external information to identify the responders. In
the Cardiac arrhytmia dataset, key attibutes are: Gender, Age, Height,
Weight, Minimun Heart Rate, Maximun Heart Rate and ZipCode.

3. Confidential outcome attributes. These are attributes which contain
sensitive information on the respondent, in Table 3.1 are: Annual
Salary and Marital Status.

As indicated in Chapter 2, microaggregation is defined for continuous
variables, therefore we will apply our algorithm to the following key at-
tributes: Age, Height, Weight, Minimun Heart Rate and Maximun Heart
Rate.

In this section, we will compute the MF-TSP solution for k = 3, looking
for a 3-anonymous version of the original dataset. To do this, we will apply
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Algorithm 1 to the Cardiac Arrhythmia dataset for the different heuristics
to solved the TSP that we have presented in Chapter 2.

If we focus on the ’Concorde’ algorithm to solve TSP, the MF-TSP
heuristic operate in the next steps:

1. Find a Hamiltonian path Hpath(n) traversing all n microdata in
dataset, starting in city n. The result matrix is shown above.

Hpath =



1 9 5 7 8 3 4 6 2

2 6 3 4 7 1 9 5 8

3 8 4 7 9 1 5 6 2

4 8 3 7 1 9 5 6 2

5 9 1 7 3 6 2 4 8

6 2 3 1 9 5 7 4 8

7 6 3 8 4 1 9 5 2

8 3 5 9 1 7 4 6 2

9 1 5 2 6 7 4 3 8


(3.1)

2. Search the neighbors that are visited in order, resulting a matrix Wij

described in section 3.2, where the term i, j represents the number of
time that i appears as a neighbour of j. The W matrix is presented
below:

W =



0 0 0 0 2 0 2 0 5

0 0 1 1 0 2 0 0 0

1 0 0 2 1 1 1 3 0

1 0 1 0 0 2 2 3 0

0 2 0 0 0 2 2 1 2

0 6 2 0 0 0 1 0 0

2 0 1 3 0 1 0 1 1

0 0 3 2 0 0 0 0 0

4 0 0 0 5 0 0 0 0


(3.2)

3. The group generation starts searching the maximum value in Ni,j , that
representing two neighboring cities that appear along the path. To
find a k-partition, we search the maximum value in row and maximum
value in column, select the largest and add it to the group.

Groups MF − TSPConcorde


G1 = {1, 5, 9}
G2 = {2, 3, 6}
G3 = {4, 7, 8}

(3.3)
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The result Iloss are shown in Table 3.2 :

Method Iloss

MF-TSP(Nearest Insertion) 0.507721

MF-TSP(Farthest Insertion) 0.551541

MF-TSP(Cheapest Insertion) 0.479268

MF-TSP(Arbitrary Insertion) 0.634988

MF-TSP(Nearest Neighbor) 0.390691

MF-TSP(Repetitive NN) 0.523018

MF-TSP(2-Opt) 0.367941

MF-TSP(Concorde) 0.367941

Table 3.2: Measurement of Iloss for different TSP calculation algorithms

We can appreciate that the information loss value Iloss for MF-TSP us-
ing the ’Concorde’ and ’2-Opt’ algorithms are the best solution. It is worth
mentioning the result offered by MF-TSP when the algorithm to compute
the TSP is ’Nearest Neighbor’, where MF-TSP performs a variable size mi-
croaggregation with 2k-1 element in cluster, being the worst result in table
3.2. The cluster created are:

Max(Iloss) cluster

{
G1 = {6, 2, 3, 5, 8}
G2 = {7, 4, 1, 9} (3.4)

Table (3.3) presents the microaggregate dataset.

Gender Age Height Weight Min Max ZipCode

female 65.33 169 66 52.66 83 9****

female 54.33 180 85 68 94 9****

female 54.33 180 85 68 94 9****

female 34.66 177.66 73.33 60 85.33 9****

female 65.33 169 66 52.66 83 9****

female 54.33 180 85 68 94 9****

female 34.66 177.66 73.33 60 85.33 9****

female 34.66 177.66 73.33 60 85.33 9****

female 65.33 169 66 52.66 83 9****

Table 3.3: Cardiac arrhythmia patient microaggregate dataset
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In figure (3.3) shows the results of three groups created for Cardiac
arrhythmia patient monitoring dataset:

Figure 3.3: Optimal 3-partition for Cardiac Arrhythmia dataset

Note that Cardiac Arrhythmia dataset is a multivariate dataset, hence
to have a R2 representation the principal components must be used.

3.4 Experimental Setup

In this section, we present the experimental results of MF-TSP heuris-
tics to microaggregate microdata disseminated in statistical databases. We
have compared our approach with a well-known microaggregation algorithm
called MDAV (described in Chapter 2) over two real microdata set which
are described in section2.3, on one side Census, on the other side Tarrag-
ona . Representing each record as a node in a graph in a multidimensional
space R13, allows us to analyse which techniques to solve TSP problem
obtains the minimum Hamiltonian path length.

Our method is a fixed-size microaggregation heuristic. Therefore, to
study the information loss for several group sizes, we have varied k in the
range [3, 4, 5, 10] (which are the typical values used for statistical agencies),
and we compared the results with those obtained by MDAV and V-MDAV,
for the same values of k.

The results are shown in Table 3.4, it can be observed that our approach
performs better than MDAV and V-MDAV for k = 3 in Census and Tarrag-
ona and, for k = 4 for Tarragona. In a nutshell, we have an initial indication
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that our method could lead to better solutions for small values of k while it
yields to worse results for larger cardinalities.

3.5 Conclusions

We have proposed a new fixed-size multivariate microaggregation method
inspired in the heuristic solutions of the TSP, that helps to guarantee indi-
viduals privacy through k-anonimity.

After introducing the basics on Microaggregation and the TSP, we have
described our algorithm and we have empirically shown that it performs
better than off-the-shelf, well-known microaggregation methods for low car-
dinalities over benchmark datasets frequently used in the literature. Our
proposal represents the first step towards the creation of a more solid TSP-
based microaggregation algorithm that would outperform current methods,
not only for small cardinalities but for any k as well, and it opens the door
to a fruitful research line in the field of SDC.
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Algorithm 1 Multivariate Microaggregation with Fixed Group Size Based
TSP
1: function Multivariate Fixed-size TSP(D Dataset with n records,

k Minimum cardinality constraint)
2: W = Compute_Distances_Matrix(D)

3: for i = 1 to length(D) do
4: Hpath(i) = Compute_TSP_Starting_In(di);
5: end for
6: for i = 1 to n do
7: for j = 1 to n do
8: C = Search_Neighbords_inPaths(Hpath(i), j)

9: end for
10: end for
11: while Points_To_Assign > (2k − 1) do
12: maxi,j = The_position_of_maximum_value(C)

13: gcluster = Build_Group_From_Max(maxi,j)

14: for i = 1 to (k − 2) do
15: row_maxi,j = The_position_max_row_value(C)

16: col_maxi,j = The_position_max_col_value(C)

17: if (row_maxi,j > col_maxi,j) then
18: gcluster = Extend_The_Group(row_maxi,j)
19: else
20: gcluster = Extend_The_Group(col_maxi,j)
21: end if
22: end for
23: C = Delete_Assigned_Points(gcluster, C)

24: end while
25: Assign_Remaining_Points(C, gcluster)
26: D′ = Compute_centroid_Dataset(D, gcluster)

return D′

27: end function
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Chapter 4

Contributions to Variable-size
Microaggregation

Although no optimal solution exists for the multivariate microaggregation
problem, an optimal solution exists for the univariate version and is known
as the Hansen and Mukherjee algorithm. This algorithm needs a set of sorted
records to obtain the optimal solution. This sorting for the univariate case
is solved in polynomial time. However, for the multivariate case, it becomes
an NP-hard problem. In the literature, several proposals exist on how to sort
a set of records in a multidimensional space and then apply the Hansen and
Mukherjee microaggregation algorithm. In this Chapter, a novel solution for
the multivariate microaggregation problem has been proposed, inspired by the
heuristic solutions of the Travelling Salesman Problem and the use of the op-
timal univariate microaggregation algorithm of Hansen and Mukherjee. Our
intuition is that well-performing heuristic solutions of the TSP (i.e. those
with shorter path lengths) would provide a Hamiltonian path that could be
used as an ordered vector for the Hansen and Mukherjee optimal univariate
microaggregation algorithm, resulting in a good multivariate microaggrega-
tion solution.
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4.1 TSP for Variable-size Microaggregation

In this Chapter, we propose a heuristic solution to the multivariate mi-
croaggregation problem inspired by the TSP and the optimal univariate
microaggregation solution HM. Given a multivariate dataset, first, we apply
a TSP-tour construction heuristic to generate a Hamiltonian path through
all dataset records. Next, we use the order provided by this Hamiltonian
path (i.e. a given permutation of the records) as input to the HM algo-
rithm, virtually transforming it into a multivariate microaggregation solver
we call Multivariate Hansen-Mukherjee (MHM). Our intuition is that good
solutions to the TSP would yield Hamiltonian paths allowing the HM algo-
rithm to find good solutions to the multivariate microaggregation problem.
We have tested our method with the well-known benchmark datasets de-
fined on section 2.3. Moreover, with the aim to show the usefulness of our
approach to protecting location privacy, we have tested our solution with
real-life trajectories datasets, too. We have compared the results of our al-
gorithm with those of the best performing solutions, and we show that our
proposal reduces the information loss resulting from the microaggregation.
Overall, results suggest that transforming the multivariate microaggregation
problem into its univariate counterpart by ordering microdata records with
a proper Hamiltonian path and applying an optimal univariate HM solu-
tion, leads to a reduction of the perturbation error whilst keeping the same
privacy guarantees.

The rest of the Chapter aims to answer the research questions above,
and it is organised as follows: Section 4.2 describes our proposal, which is
later thoroughly tested and compared with well-known classical and state
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4.2. Our Proposal 45

of the art microaggregation methods in Section 4.3. Section 4.4 discusses
the research questions and the main benefits of our proposal. The Chapter
concludes in Section 4.5 with some final remarks.

4.2 Our Proposal

Our proposal is built upon two main building blocks: a TSP tour construc-
tion heuristic (H), and the optimal univariate microaggregation algorithm
HM. As we have already explained in Chapter 2, the HM algorithm is ap-
plied to univariate numerical data, because it requires the input elements to
be in order. However, we virtually use it with multivariate data and, thus,
when we do that we refer to it as Multivariate Hansen-Mukherjee (MHM),
although in practice the algorithm is univariate. Since our proposal is based
on a Heuristic (H) to obtain a Hamiltonian Path and the MHM algorithm,
we have come to call it HMHM-microaggregation or (HM)2-Micro for short.

Given a multivariate microdata set (D) with p columns and r rows, we
model it as a complete graph G(N,E), where we assume that each row is
represented by a node ni ∈ N (or a city, if we think in terms of the TSP)
and each edge eij ∈ E represents the Euclidean distance between ni and
nj (or the distance between cities in TSP terms). Hence, we have a set of
nodes N = {n1, n2, . . . nr} each representing rows of the microdata set in a
multivariate space Rp.

In a nutshell, we use H over G to create a Hamiltonian path (Hpath) that
travels across all nodes. Hpath is a permutation (ΠN = {πN1 , πN2 , . . . πNr })
of the nodes in N , and de facto it determines an order for the nodes (i.e.
it provides a sense of precedence between nodes). Hence, although D is
multivariate, its rows represented as nodes in N can be sorted in a univariant
permutation Hpath that we use as input to the MHM algorithm. As a result,
the MHM algorithm returns the optimal univariate k-partition of Hpath,
this is, the set of disjoint subsets S = {s1, s2, . . . st} defining the clusters
of N . Hence, since each node ni represents a row in D, which is indeed
multivariate, we have obtained a multivariate microaggregation of the rows
in D and provided a solution for the multivariate microaggregation. Notice
that, although MHM returns the optimal k-partition of Hpath, it does not
imply that the resulting microaggregation of D is optimal1. A schematic of
our solution is depicted in Figure 4.1.

Although the foundation of our proposal described above is pretty
straightforward, it has the beauty of putting together complex mathematical

1Actually, in most cases it is not.
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building blocks from the multivariate and univariate worlds in a simple yet
practical manner. Also, our solution is very flexible, since it allows the use
of any heuristic H to create the Hamiltonian path Hpath, and it allows for
comprehensive studies such as the one we report in the next section.

Note that most TSP heuristics output a Hamiltonian cycle. However,
since we need a Hamiltonian path we use the well-known solution of adding
a dummy node in the graph (i.e. a theoretical node whose distance to all
other nodes is zero) and we cut the cycle by eliminating this node, so as to
obtain a Hamiltonian path.

For the sake of completeness, we summarise our proposal step-by-step
in Algorithm 2, and we next comment on it. Our solution can be seen as
a meta-heuristic to solve the multivariate microaggregation problem, since
it can accommodate any Heuristic (H) able to create a Hamiltonian cycle
from a complete graph (G), and it could deal with any privacy parameter (k).
Thus, our algorithm receives as input a numerical multivariate microdata set
D with p columns (attributes) and r rows, that have to be microaggregated,
a Heuristic H, and a privacy parameter k (see Algorithm 2 : line 1). In
order to avoid bias towards higher magnitude variables, the original dataset
D (understood as a matrix) is standardised by subtracting to each element
the average of its column and dividing it by the standard deviation of the
column. The result is a standardised dataset Dstd in which each column
has zero mean and unitary standard deviation (see Algorithm 2 : line 2).
Next the distance matrix Mdist is computed. Each element mij ∈ Mdist

contains the Euclidean distance between row i and row j in Dstd, hence
Mdist is a square matrix (r × r) (see Algorithm 2 : line 3). In order to be
able to cut the Hamiltonian Cycle and obtain a Hamiltonian path, we add
a dummy node to the dataset by adding a zero column and a zero row to
Mdist and generate Mdum

dist , which is a square matrix (r + 1 × r + 1) (see
Algorithm 2 : line 4). Mdum

dist is, in fact, a weighted adjacency matrix that
defines a graph G(N,E) with nodes N = {n1, . . . , nr+1} and edges E =

{e11, . . . ei,j . . . er+1,r+1} = {Mdum
dist 1,1, . . .M

dum
dist r+1,r+1}. With this matrix

as an input, we could compute a Hamiltonian Cycle Hcycle on G by applying
a TSP heuristic H (see Algorithm 2 : line 5)2. After obtaining Hcycle,
we cut it by removing the dummy node (see Algorithm 2 : line 6) and
we obtain a Hamiltonian path Hpath that defines a permutation (ΠN =

{πN1 , πN2 , . . . πNr }) of the nodes in N , and determines an order for the nodes
that can be inputted to the MHM algorithm to obtain its optimal k-partition

2Notice that this Heuristic H could be anyone that gets as input a weighted graph
and returns a Hamiltonian cycle. Some examples are: Concorde, Nearest Neighbour,
Repetitive Nearest Neighbour, and Insertion Algorithms.
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48 Chapter 4. Contributions to Variable-size Microaggregation

(S) (see Algorithm 2 : line 7). S is a set of disjoint subsets S = {s1, s2, . . . st}
defining the clusters of nodes in N . Hence, with S and D we could create
a microaggregated dataset D′ by replacing each row in D by the average
vector of the k-partition subset to which it belongs (see Algorithm 2 : line
8).

After applying the algorithm, we have transformed the original dataset
D into a dataset D′ that has been microaggregated so as to guarantee the
privacy criteria established by k.

Algorithm 2 (HM)2-Micro

1: function (HM)2-micro( Microdata set D, TSP-Heuristic H, Privacy
Parameter k)

2: Dstd = StandardiseDataset(D)
3: Mdist = ComputeDistanceMatrix(Dstd)
4: Mdum

dist = InsertDummyNode(Mdist)
5: Hcycle = CreateHamiltonianCycle(Mdum

dist , H)
6: Hpath = CutDummyNode(Hcycle)
7: S = MHM(Hpath, Dstd, k)
8: D′ = BuildMicroaggregatedDataSet(D, S);
9: return D′

10: end function
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4.3 Experiments

With the aim to practically validate the usefulness of our multivariate mi-
croaggregation proposal, we have thoroughly tested it on six datasets (de-
scribed in Section 2.3) that serve as benchmarks. Also, we are interested in
knowing (if and) to what extend our method outperforms the best perform-
ing microaggregation methods in the literature. Hence, we have compared
our proposal with these methods (described in Section 4.3.1), and the results
of all these tests are summarised in Section 4.3.2. Overall, considering four
different values for the privacy parameter k ∈ {3, 4, 5, 6}, ten microaggrega-
tion algorithms, 50 repetitions per case and six datasets, we have run over
12.000 microaggregation tests, which allow us to provide a statistically solid
set of results.

4.3.1 Compared methods

We have selected a representative set of well-known and state-of-the-art
methods to assess the value of our approach. We have selected two classic
microaggregation methods (i.e. MDAV and V-MDAV), as baselines3.
Although some other newer methods might have achieved better results,
they are still landmarks that deserve to be included in any microaggregation
comparison.

For newer and more sophisticated methods, we have considered the work
of Heaton and Mukherjee [14], in which they study a variety of microaggre-
gation heuristics, including methods such as CBFS and MD. Thus, instead of
comparing our proposal with all those methods, we have taken the method
that Heaton and Mukherjee reported as the best performer, namely the
MDAV-LK-MHM method. This method, which is based on MDAV, first
creates a path using the microaggregation method MDAV, next improves the
result of MDAV by applying the LK heuristic, and it finally applies MHM
to obtain the resulting microaggregation (cf. [14] for further details on the
algorithm).

Regarding our proposal (i.e. (HM)2-Micro), as we already discussed, it
can be understood as a meta-heuristic able to embody any heuristic H that
returns a Hamiltonian Cycle. Hence, with the aim to determine the best
heuristic, we have analysed seven alternatives, namely Nearest Neigh-
bour, Repetitive Nearest Neighbour, Nearest Insertion, Farther
Insertion, Cheapest Insertion, Arbitrary Insertion, and (our sugges-

3In the case of V-MDAV, the method was run for several values of γ ∈ {0, 2} and the
best result is reported.
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tion) Concorde. Table 4.1 summarises some features of all selected meth-
ods, including the reference to the original article where the method was
described. For our method, each reference points to the article describing
the TSP heuristic.

The implementation of all these methods have used the R package sd-
cMicro [41], the TSP heuristics implemented in [12], and the LK heuristics
implemented in [15]. LK has been configured so that the algorithm runs once
at each iteration4 until a local optimum is reached. This same criteria was
followed for the other TSP heuristics. In this regard, the heuristics we used
consider a random starting node at each run. Hence, each experiment has
been repeated 50 times to guarantee statistically sound outcomes regardless
of this random starting point.

4.3.2 Results overview

By using the datasets and methods described above, we have analysed the
Information Loss (expressed in percentage), as a measure of data utility
(cf., Chapter 2 for details). It is assumed that given a privacy parameter
k that guarantees that the microaggregated dataset is k-anonymous, the
lower the Information Loss the better the result and performance of the
microaggregation method. The results are reported in Tables 4.2-4.7 with
the best (lowest) information loss highlighted in green.

Overall, it can be observed that, our method, (HM)2-Micro, with the
Concorde heuristic is the best performer in 79% of the experiments, and it
is the second best in the remaining 21% (for which the MDAV-LK-MHM
outperforms it by a narrow margin of less than 2%). Interestingly enough,
although (HM)2-Micro, with both Nearest Insertion and Farthest-Insertion,
is not the best performer in any experiment, it outperforms MDAV-LK-
MHM 50% of the times. The rest of the methods obtain less consistent
results and highly depend on the dataset.

When we analyse the results more closely for each particular dataset,
we observe that in the case of the “Census” dataset (cf., Table 4.2), our
method with Concorde outperforms all methods for all values of k. Also,
despite the random nature of TSP-heuristics, the values of σ are very stable,
denoting the robustness of all methods, yet slightly higher on average in the
case of the methods with higher Information Loss. It is worth emphasising
though, that in all runs, our method with Concorde and the MDAV-LK-
MHM method obtained better results than MDAV and V-MDAV (i.e. the
max values obtained in all runs are lower than the outcomes obtained by

4parameter RUN=1.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO STATISTICAL DISCLOSURE CONTROL: ENHANCING MULTIVARIATE MICROAGGREGATION 
USING GRAPH THEORY 
Armando Maya-López



52 Chapter 4. Contributions to Variable-size Microaggregation

C
en

su
s

k
=

3
k
=

4
k
=

5
k
=

6

M
eth

o d
a verage

σ
m
in

m
ax

a verage
σ

m
in

m
ax

a verage
σ

m
in

m
ax

a verage
σ

m
in

m
ax

M
D
A
V

5.6922
N
A

N
A

N
A

7.4947
N
A

N
A

N
A

9.0884
N
A

N
A

N
A

10.3847
N
A

N
A

N
A

V
-M

D
A
V

5.6619
N
A

N
A

N
A

7.4947
N
A

N
A

N
A

9.0070
N
A

N
A

N
A

10.2666
N
A

N
A

N
A

M
D
A
V
-L
K
-M

H
M

5.1085
0.0398

5.0256
5.1877

6.9131
0.0526

6.7774
7.0227

8.5199
0.0842

8.3100
8.7030

9.9752
0.1284

9.7675
10.2527

N
earest

In
sertion

-
M
H
M

5.6561
0.1369

5.3596
6.0695

7.4818
0.1579

7.1946
7.9318

8.9617
0.2539

8.5190
9.4727

10.3005
0.2927

9.7624
11.2086

F
arth

est
In
sertion

-
M
H
M

5.5638
0.0956

5.3300
5.8995

7.3485
0.0990

7.1723
7.5853

8.8234
0.1322

8.5784
9.1748

10.1250
0.1932

9.6970
10.7363

C
h
eap

est
In
sertion

-
M
H
M

5.7044
0.0719

5.5669
5.8766

7.4625
0.1155

7.2674
7.8052

9.0340
0.1236

8.7212
9.3847

10.3787
0.1305

10.1706
10.9089

A
rb
itrary

In
sertion

-
M
H
M

5.5883
0.0976

5.4235
5.8763

7.3723
0.1438

7.1272
7.8250

8.8696
0.1788

8.5072
9.2867

10.2011
0.2475

9.7081
10.7794

N
earest

N
eighb

ou
r-M

H
M

6.9718
0.3508

6.1978
7.7291

9.2433
0.3702

8.6744
10.2246

11.3287
0.3854

10.5230
12.3958

13.1357
0.4053

12.4711
13.9421

R
ep

etitive
N
N

-
M
H
M

6.2888
0.2192

5.8811
6.6841

8.6779
0.2799

7.9941
9.3345

10.7518
0.2472

10.3421
11.4554

12.5882
0.3143

11.9360
13.2915

C
on

cord
e
-
M
H
M

5.0563
0.0377

4.9917
5.1169

6.8846
0.0555

6.7895
7.0217

8.4576
0.0903

8.2372
8.6614

9.8440
0.1232

9.5542
10.2517

T
able

4.2:
Inform

ation
Loss

obtained
on

the
C
ensus

dataset.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO STATISTICAL DISCLOSURE CONTROL: ENHANCING MULTIVARIATE MICROAGGREGATION 
USING GRAPH THEORY 
Armando Maya-López



4.3. Experiments 53

MDAV and V-MDAV).
For the “EIA” dataset (cf., Table 4.3), MDAV-LK-MHM is the best per-

former for all values of k except k = 5, for which our proposal with Concorde
performs better. In this case, the results obtained by these two methods are
very close. Similarly to the results in “Census”, the max values obtained by
these two methods outperform MDAV and V-MDAV. In the case of “Tar-
ragona”, (cf., Table 4.4), our method with Concorde outperforms all other
methods. Surprisingly, both MDAV and V-MDAV obtain better results than
MDAV-LK-MHM, which performs poorly in this dataset.

So, it can be concluded that the overall winner for the classical bench-
marks (i.e. Census, EIA and Tarragona) is our method, (HM)2-Micro, with
the Concorde heuristic, that is only marginally outperformed by MDAV-LK-
MHM in the EIA dataset.

Regarding the other three datasets containing GPS traces (i.e.
Barcelona, Madrid and Tarraco) our method, (HM)2-Micro, with the Con-
corde heuristic, is the best performer in 83% of the cases, and comes second
best in the remaining 17%. For the Barcelona dataset (cf., Table 4.5) MDAV-
LK-MHM and (HM)2-Micro, with the Concorde heuristic, perform very well
and similarly. The methods with the worst Information Loss are MDAV and
V-MDAV. Our method, (HM)2-Micro, with the Insertion heuristics have a
remarkable performance, obtaining values similar to those of MDAV-LK-
MHM and Concorde. Nevertheless, it is worth noting that the max (worst)
values obtained by MDAV-LK-MHM and Concorde are still better than the
averages obtained by the other methods. In the case of the Madrid dataset
(cf., Table 4.6) our method, (HM)2-Micro, with the Concorde heuristic
achieves the minimum (best) value of Information Loss for all values of
k. We can also observe that our method with Insertion heuristics offers
higher performance than MDAV-LK-MHM. Finally, the results for the Tar-
raco dataset (cf., Table 4.7) show that the minimum (best) Information Loss
value is obtained by our method with the Concorde heuristic in all cases.
In this case, MDAV-LK-MHM performs poorly and for k = 3 and k = 4,
MDAV and V-MDAV are better.

4.3.3 Information Loss variability box plots

We have already discussed that all studied methods (with the exception of
MDAV and V-MDAV) have a non-deterministic component emerging from
the random selection of the initial node. This random selection affects the
performance of the final microaggregation obtained. With the aim to analyse
the effect of this non-deterministic behaviour we have studied the standard
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deviation of all methods for all values of k and for all datasets. Also, we have
visually inspected the variability of the results by using box plot diagrams.

Since the results are quite similar and consistent across all datasets, for
the sake of clarity we only reproduce here the box plots for the “Census”
dataset (see Figures 4.2-4.5).

In Figures 4.2-4.5, we can observe that the Information Loss values in-
crease with k but all methods have the same behaviour regardless of the
value of k. Also, it is clear that the most stable methods are (HM)2-Micro
with Concorde, and MDAV-LK-MHM. The same behavior can be observed
for the rest of dataset (see Figures 4.10-4.25).

Overall, we observe some expected differences depending on the datasets.
However, the behaviour of the best performing methods is stable. Particu-
larly, the datasets with GPS traces (i.e. Barcelona, Madrid, and Tarraco)
show more stable results. In summary, the best method was our (HM)2-
Micro with Concorde, exhibiting the most stable results across all datasets.
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Figure 4.2: Information Loss variability for k = 3 over the Census dataset.

Figure 4.3: Information Loss variability for k = 4 over the Census dataset.
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Figure 4.4: Information Loss variability for k = 5 over the Census dataset.

Figure 4.5: Information Loss variability for k = 6 over the Census dataset.
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Figure 4.6: Information Loss variability for k = 3 over the EIA dataset.

Figure 4.7: Information Loss variability for k = 4 over the EIA dataset.
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Figure 4.8: Information Loss variability for k = 5 over the EIA dataset.

Figure 4.9: Information Loss variability for k = 6 over the EIA dataset.
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Figure 4.10: Information Loss variability for k = 3 over Tarragona dataset.

Figure 4.11: Information Loss variability for k = 4 over Tarragona dataset.
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Figure 4.12: Information Loss variability for k = 5 over Tarragona dataset.

Figure 4.13: Information Loss variability for k = 6 over Tarragona dataset.
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Figure 4.14: Information Loss variability for k = 3 over Madrid dataset.

Figure 4.15: Information Loss variability for k = 4 over Madrid dataset.
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Figure 4.16: Information Loss variability for k = 5 over Madrid dataset.

Figure 4.17: Information Loss variability for k = 6 over Madrid dataset.
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Figure 4.18: Information Loss variability for k = 3 over Barcelona dataset.

Figure 4.19: Information Loss variability for k = 4 over Barcelona dataset.
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Figure 4.20: Information Loss variability for k = 5 over Barcelona dataset.

Figure 4.21: Information Loss variability for k = 6 over Barcelona dataset.
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Figure 4.22: Information Loss variability for k = 3 over Tarraco dataset.

Figure 4.23: Information Loss variability for k = 4 over Tarraco dataset.
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Figure 4.24: Information Loss variability for k = 5 over Tarraco dataset.

Figure 4.25: Information Loss variability for k = 6 over Tarraco dataset.
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4.4 Discussion

Over the previous sections, we have presented our microaggregation method,
(HM)2-Micro, its rationale, and its performance against other classic and
state-of-the-art methods on a variety of datasets. In the previous section, we
have reported the main results and we will discuss them next by progressively
answering the research questions that we posed in the Introduction of the
Chapter.

Q1: How to create a suitable ordering for a univariate microag-
gregation algorithm, when the records are in Rp.

A main takeaway of this Chapter is that by using a combination of TSP
tour construction heuristics (e.g. Concorde) and an optimal univariate mi-
croaggregation algorithm, we are properly ordering multivariate datasets in
a univariate fashion that leads to excellent multivariate microaggregation so-
lutions. Other approaches to order Rp points might consider projecting them
over the principal component. However, the information loss associated with
this approach makes it unsuitable. Also, other more promising approaches,
like the one used in MDAV-LK-MHM, first create a k-partition and set an
order based on maximum distance criteria. Although this approach might
work well in some cases, we have clearly seen that Hamiltonian paths created
by TSP-Heuristics like Concorde, outperform this approach. Hence, based
on the experiments of Section 4.3 we can conclude that TSP-heuristics like
Concorde provide an order for elements in Rp that is suitable for an optimal
univariate microaggregation algorithm to output a consistent multivariate
microaggregation solution with low Information Loss (i.e. high data utility).
Moreover, from all analysed heuristics, it is clear that the best performer is
Concorde, followed by insertion heuristics.

Q2: Are the length of the Hamiltonian path and the information
loss of the microaggregation related?, or Do shorter Hamiltonian
paths lead to microaggregation solutions with lower information
loss?

When we started this research, our intuition was that good heuristic so-
lutions of the TSP (i.e. those with shorter path lengths) would provide a
Hamiltonian path, that could be used as an ordered vector for the HM opti-
mal univariate microaggregation algorithm, resulting in a good multivariate
microaggregation solution. From this intuition, we assumed that shorter
Hamiltonian paths would lead to lower Information Loss in microaggregated
datasets.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO STATISTICAL DISCLOSURE CONTROL: ENHANCING MULTIVARIATE MICROAGGREGATION 
USING GRAPH THEORY 
Armando Maya-López



4.4. Discussion 73

In order to validate (or disproof) this intuition we have analysed the
Pearson correlation between the Hamiltonian path length obtained by all
studied heuristics (i.e. Nearest Neighbour, Repetitive Nearest Neighbour,
Nearest Insertion, Farther Insertion, Cheapest Insertion, Arbitrary Inser-
tion, and Concorde) and the SSE of the resulting microaggregation. We
have done so for all studied datasets and k values. The results are sum-
marised in Table 4.8, and all plots along with a trend line are available in
Appendix B.

Dataset k = 3 k = 4 k = 5 k = 6

Census 0.48 0.39 0.32 0.28
EIA 0.62 0.67 0.74 0.76
Tarragona 0.70 0.72 0.82 0.71
Barcelona 0.83 0.81 0.81 0.80
Madrid 0.84 0.81 0.80 0.78
Tarraco 0.80 0.82 0.82 0.80

Table 4.8: Summary of the Pearson correlation between Path Length and
SSE

From the correlation analysis, it can be concluded that there is a positive
correlation between the Hamiltonian path length and the SSE. This is, the
shorter the path length the lower the SSE. This statement holds for all k
and for all datasets (although Census exhibits a lower correlation). Hence,
although this result is not a causality proof, it can be safely said that good
solutions of the TSP problem lead to good solutions of the multivariate
microaggregation problem. In fact, the best heuristic (i.e. Concorde) always
results in the lowest (best) SSE.

Interested readers can find all plots in next section 4.4. However, for
the sake of clarity, let us illustrate this result by discussing the case of the
Madrid dataset with k = 6, depicted in Figure 4.26. In the figure, the
positive correlation is apparent. Also, it is clear that heuristics tend to
form clusters. In a nutshell, the best heuristic is Concorde, followed by
the insertion family of methods (i.e. Nearest Insertion, Furthest Insertion,
Cheapest Insertion and Arbitrary Insertion), followed by Repetitive Nearest
Neighbour and Nearest Neighbour.

Although Figure 4.26 clearly illustrates the positive correlation between
the path length and the SSE, it also shows that heuristics tend to cluster and
might indicate that not only the path but the heuristic (per se) plays a role
in the reduction of the SSE. This indication leads us to our next research
question.
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Figure 4.26: Relation between SSE and Path Length for Madrid and k = 6.

Q3: Is the length of the Hamiltonian path the only factor affect-
ing information loss or does the particular construction of the
path (regardless of the length) affect the information loss?

In the previous question, we have found clear positive correlation between
the path length and the SSE. However, we have also observed apparent
clusters suggesting that the very heuristics could be responsible for the min-
imisation of the SSE. In other words, although the path length and SSE
are positively correlated when all methods are analysed together, would this
correlation hold when heuristics are analysed one at a time? In order to an-
swer this question we have analysed the results of each heuristic individually
and we have observed that, there is still positive correlation between path
length and SSE, but it is very weak or almost non-existent (i.e., very close
to 0), as Figure 4.27 illustrates.

Figure 4.27: Correlation between path length and SSE for each individual
method (from top to bottom: Cheapest Insertion, Concorde, and Nearest

Neighbour) for k = 3 over the Madrid dataset.
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Figure 4.28: Correlation between path length and SSE for each individual
method (from top to bottom: Cheapest Insertion, Concorde, and Nearest

Neighbour) for k = 3 over the Madrid dataset.

Figure 4.29: Correlation between path length and SSE for each individual
method (from top to bottom: Cheapest Insertion, Concorde, and Nearest

Neighbour) for k = 3 over the Madrid dataset.

The results shown in Figure 4.27 are only illustrative, and a deeper anal-
ysis that is out of the scope of this Chapter would be necessary. However,
our initial results indicate that although there is positive correlation be-
tween path length and SSE globally, this correlation weakens significantly
when analysed on each heuristic individually. This result suggests that it is
not only the length of the path but the way in which this path is constructed
what affects the SSE. This would explain why similar methods (e.g. those
based on insertion) behave similarly in terms of SSE although their paths’
length varies.

Q4: Does (HM)2-Micro provide better solutions (in terms of in-
formation loss) than the best performing microaggregation meth-
ods in the literature?

This question has been already answered in Section 4.3.2. However, for
the sake of completeness we summarise it here: The results obtained after
executing more than 12,000 tests suggest that our solution (HM)2-Micro
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obtains better results than classic microaggregation methods such as MDAV
and V-MDAV. Moreover, when (HM)2-Micro uses the Concorde heuristic
to determine the Hamiltonian path, it outperforms the best state-of-the-
art methods consistently. In our experiments, (HM)2-Micro with Concorde
was the best performer 79% of the times and was the second best in the
remaining 21%.

Q5: Do TSP-based microaggregation methods perform better
than current solutions on trajectories datasets?

(HM)2-Micro with Concorde is the best overall performer. Moreover, if
we focus on those datasets with trajectory data (i.e. Barcelona, Madrid and
Tarraco) the results are even better. It is the best performer in 83% of the
tests and the second best in the remaining 17%. This good behaviour of the
method could result from the very foundations of the TSP, however, there
is still plenty of research to do in this line to reach more solid conclusions.
Location privacy is a very complex topic that encompasses many nuances
beyond k-anonymity models (such as the one followed in this article). How-
ever, this result is an invigorating first step towards the analysis of novel
microaggregation methods applied to trajectory analysis and protection.
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Correlation Analysis between “Path Length” and “SSE”

Figure 4.30: Relation between SSE and Path Length for Census and
k ∈ {3, 4, 5, 6}.
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Figure 4.31: Relation between SSE and Path Length for EIA and
k ∈ {3, 4, 5, 6}.
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Figure 4.32: Relation between SSE and Path Length for Tarragona and
k ∈ {3, 4, 5, 6}.
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Figure 4.33: Relation between SSE and Path Length for Barcelona and
k ∈ {3, 4, 5, 6}.
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Figure 4.34: Relation between SSE and Path Length for Madrid and
k ∈ {3, 4, 5, 6}.
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Figure 4.35: Relation between SSE and Path Length for Tarraco and
k ∈ {3, 4, 5, 6}.

4.5 Conclusions

Although finding the optimal microaggregation is NP-Hard and a
polynomial-time microaggregation algorithm has not been found, steady im-
provements over microaggregation heuristics have been made. Hence, after
such a long research and polishing process, finding new solutions that im-
prove the best methods is increasingly difficult. In this Chapter, we have
presented (HM)2-Micro, a meta-heuristic that leverages the advances in
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TSP solvers and combines them with the optimal univariate microaggrega-
tion to create a flexible and robust multivariate microaggregation solution.

We have studied our method and thoroughly compared it to classic and
state-of-the-art microaggregation algorithms over a variety of classic bench-
marks and trajectories datasets. Overall, we have executed more than 12.000
tests, and we have shown that our solution embodying the Concorde heuris-
tic outperforms the others. Hence, we have shown that our TSP-inspired
method could be used to guarantee k-anonymity of trajectories datasets
whilst reducing the Information Loss and hence increasing data utility. Fur-
thermore, our proposal is very stable, this is, it does not change significantly
its performance regardless of the random behaviour associated with initial
nodes selection.

In addition to proposing (HM)2-Micro, we have found clear correla-
tions between the length of Hamiltonian Paths and the SSE introduced
by microaggregation processes, and we have shown the importance of the
Hamiltonian Cycle construction algorithms over the overall performance of
microaggregation.
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Chapter 5

Contributions to Dataset
Reduction Strategies

NP-hard problems, like microaggregation, are decision problems that require
a number of operations that grows exponentially with the size of the input,
making it infeasible to solve for large instances. As a result, researchers
often focus on developing efficient algorithms and heuristics to solve or ap-
proximate NP-hard problems. However, in many cases, these problems may
still require significant computational resources and time to solve. Dataset
reduction strategies are techniques used to reduce the size or complexity of
a dataset while maintaining its integrity and usefulness for analysis. The
choice of dataset reduction strategy will depend on the specific requirements
of the analysis and the nature of the dataset. It is important to carefully con-
sider each strategy’s potential benefits and limitations before implementing
them. In this Chapter, we present a method to compress a microdata dataset,
which can be used to solve the Travelling Salesman Problem, allowing us to
optimise its time cost. This strategy involves compressing the data to re-
duce its size while preserving the relevant information. To the best of our
knowledge, this is the first time that an optimisation method for TSP-based
microaggregation heuristics (i.e. optimising both the computational time and
the quality of the groups) is presented in the literature.
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5.1 Dataset Reduction Strategies for Microaggre-
gation

The computational cost of the heuristics grows in runtime with the size of
the dataset on which we want to operate. Consequently, when dealing with
large datasets or using computationally demanding methods, techniques like
dataset splitting [33] or dimensionality reduction [18] must be contemplated.

Notwithstanding, these approaches entail several shortcomings, such as
the “noise” introduced by dimensionality reduction methods when dealing
with high-dimensional data [5,16], and the fact that splitting strategies (and
hence the risk of grouping similar records into different subsets) may have a
great impact on the usability of data and their statistical properties [4, 36].

A baseline strategy for dataset splitting is to use clustering algorithms
to generate smaller subsets. Nevertheless, clustering algorithms such as K-
means may create partitions that separate the records erroneously according
to data distribution, thus introducing noise and dramatically hindering the
quality of the groups, as seen in Figure 5.1.

Aiming at avoiding the split of natural clusters, in [36], authors applied
MDAV in a two-step partitioning strategy. First, they used MDAV with a
low value of k to ensure that close elements will not be separated; next, they
generated partitions by using a higher value of k over the dataset created
in the first step. While this strategy may be efficient for clustering-based
algorithms, it is not efficient for TSP-based methods since they require all
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(a) Non zero covariance dataset

(b) Uniform distribution dataset

Figure 5.1: Example of K-means inefficient partition strategies over two
different datasets.

the dataset records to compute the optimal path by exploring all the possible
connections.

5.2 Our Proposal

The TSP is a well-known NP-Hard problem in the literature, whose complex-
ity depends on the amount of “cities" (in our case, the records in the dataset)
considered to compute the path traversing all records (i.e. the Hamiltonian
path). This is a common step of all TSP-based microaggregation heuristics,
as extensively reported in [22].

In the words of the researchers who designed an implementation for solv-
ing the TSP, “At the current time, our notion of very large refers to problems
having over 10,000 cities” [1]. Therefore, a strategy should be considered to
calculate this type of dataset with more than 10,000 records. In this ar-
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ticle, however, we show that optimisation strategies can be used in both
small and large datasets according to the application scenario, contrary to
the assumption stated above. Moreover, in addition to focusing only on
the computational time perspective, our optimisation strategy can preserve,
and sometimes improve, the quality of the clusters in a microaggregation set-
ting. In what follows, we describe our proposal to leverage the performance
of TSP-based microaggregation, and we analyse the benefits of the group
protecting strategies in the context of TSP methods. Intuitively, methods
that may reduce the computational time of TSP-based heuristics may incur a
higher information loss. Nevertheless, in this Chapter, we propose a method
that improves the performance of TSP-based heuristics and can be used
in both small and large datasets effectively. Moreover, instead of focusing
only on the computational time perspective, our method can preserve and
sometimes reduce the information loss resulting from the microaggregation.
Extensive experiments with the different benchmarks dataset described in
section 2.3 show how our method is able to outperform the current state
of the art, considering the trade-off between information loss and computa-
tional time.

The TSP [34] (i.e. finding the shortest hamiltonian path over a graph)
has been extensively used in different types of applications [29, 46], yet it
has been much less explored in the SDC field due to its computational
cost [14, 22]. In this Chapter, we present a method to improve the effi-
ciency of microaggregation (i.e. a family of SDC techniques) that utilises
the TSP to create a path over the multivariate records. To the best of our
knowledge, this is the first time that an optimisation method for TSP-based
microaggregation heuristics (i.e. optimising both the computational time
and the quality of the groups) is presented in the literature. The remain-
der of the Chapter is organised as follows: First, we describes our proposal,
which is later thoroughly tested and compared with well-known classical and
state-of-the-art microaggregation methods in Section ’Experiments’. Sec-
tion ’Discussion’ analyses the benefits and limitations of our approach. The
Chapter concludes in Section ’Conclusions’ with some final remarks.

5.2.1 A Compression Strategy for Efficient, TSP-based Mi-
croaggregation

Algorithm 3 describes our compressed, TSP-based microaggregation process,
to microaggregate a dataset D with r records and p columns, with a privacy
parameter k (i.e. to create a k-anonymous version of datasetD). Essentially,
it is divided into four phases:
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• Phase 1. Compression. A compressed version Dcomp of the dataset is
generated.

• Phase 2. TSP Path Finding. The TSP is performed to find a Hamilto-
nian path HPcomp over the compressed dataset, regarded as a graph.

• Phase 3. Decompression. It consists of using HPcomp to create a new
Hamiltonian path HPdec over the original dataset.

• Phase 4. Microaggregation. The Multivariate Hansen and Mukherjee
technique is applied using the Hdec path to create the k-partition.

Next, we focus on some details of the algorithm. As an initial step
and, to avoid bias towards higher magnitude variables, D is standardised
(Algorithm 3: line 2). To this end, each value of the dataset is subtracted
the average of its column and divided by the standard deviation of this
column.

The first step of Phase 1 (Algorithm 3: line 3) consists in obtaining
Cc, a c-partition of Dstd using a microaggregation method m with a car-
dinality constraint parameter c (i.e. the compression ratio). Thus, Cc =

{c1, c2, . . . cr/c} describes the clusters in the c-partition (e.g. c3 = {7, 32, 94}
indicates that cluster number three is composed by rows 7, 32 and 94 of D).

In the second step of Phase 1 (Algorithm 3: line 4), the compressed
datasetDc is built, using the set of r/c centroids Cc generated in the previous
step. Following the previous example, the third row in Dc is the centroid of
cluster c3, i.e. the average of records 7, 32, and 94.

Phase 2 consists of finding a Hamiltonian path over Dc. First (Algo-
rithm 3: line 5), we model Dc as a complete graph G(N,E), where we
assume that each row of Dc is represented by a node ni ∈ N and each edge
eij ∈ E represents the Euclidean distance between ni and nj . Thus, we
have a set of nodes N = {n1, n2, . . . nr/c} each representing rows of the com-
pressed microdata set in a multivariate space Rp. Next (Algorithm 3: line
6), we apply a TSP path construction heuristic over G to create a Hamilto-
nian path HPC , i.e. a permutation (ΠN = {πN1 , πN2 , . . . πNr/c}) of the nodes
in N , which, de facto determines a specific order.

Phase 3, aims at creating a new Hamiltonian path HPD, but in this
case considering all the records/nodes of Dstd, whilst preserving the specific
order determined in HPC . This process consists of iterating all the nodes
of HPC and, for each node HPc(i), insert as nodes in HPD all the records
its corresponding cluster in the c-partition Cc (Algorithm 3: line 9). The
order of insertion of each cluster’s records is determined by the distance to
dataset’s centroid according to Dstd (Algorithm 3: line 8).
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(a) Original records (left), clusters and their corresponding centroids (center),
and resulting Hamiltonian Path (right).

(b) From left to right, decompression of each centroid by
replacing it with the records of the original cluster. Inner nodes

are ordered according to their distance to the dataset’s
corresponding centroid.

Figure 5.2: Illustration of the compression (a) and the decompression (b)
processes.

After this decompression process, the result is a new HPD that includes
the permutation of all elements existing in the original dataset.

Finally, in Phase 4 the original dataset is microaggregated. HPD is
used as input to the MHM method, together with the privacy parameter
k, to create the k-partition (Algorithm 3: line 11). It returns the optimal
univariate k-partition of Dstd, which is used to build the microaggregated
dataset, i.e. each record in the group is substituted by the group’s centroid
(Algorithm 3: line 12).

For the sake of clarity, we provide an overview of the compression and
the decompression steps in Figure 5.2
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Algorithm 3 Function Compress-TSP-MHM that microaggregates the
dataset D.
1: function Compress-TSP-MHM(microdata set D, microaggregation

method m, TSP method t, privacy parameter k, compression ratio c)
2: Dstd ← standardizeDataset(D)

// Phase 1: Compression
3: Cc ← microaggregation(Dstd,m, c)
4: Dcomp ← getCentroids(Cc, Dstd)

// Phase 2: TSP Path Finding
5: G← createGraph(Dcomp)
6: HPcomp ← computeTSP(G)

// Phase 3: Decompression
7: for i = 1 to length(HPcomp) do
8: c← sortRecords(Cc(HPcomp(i)), Dstd)

9: HPdec ← addRecords(c)

10: end for

// Phase 4: Microaggregation
11: Ck ←MHM(HPdec, Dstd, k)

12: M ← buildMicroaggregatedDataSet(Ck, D)
return M

13: end function

5.2.2 Path Length and Microaggregation

One of the primary keys supporting the feasibility of our method is the fact
that a shorter path length does not guarantee the creation of better group-
ing strategies than using longer paths, as observed in the literature [7]. The
latter becomes more evident when applying an optimisation method such
as MHM, as noted later in Section ’Microaggregation Results’. In fact,
given a strategy that protects the groups according to some parameters, the
resulting path may generate a more appropriate grouping strategy for mi-
croaggregation. An example of the latter is illustrated in Figure 5.3. As it
can be observed, paths b and c are longer than path a, mainly due to the
long diagonal connection emerging from their rightmost node. Despite that,
we can observe that path b can protect groups, especially for a cardinality
value k > 4, in a more efficient way than path a since the latter would
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(a) Path a (b) Path b (c) Path c

Figure 5.3: Example of different grouping protection strategies. Note that
paths b and c may generate better microaggregation strategies despite

describing longer paths than path a.

generate groups with more separated elements. A further group protection
strategy can be seen in path c, in which groups of k > 4 will be gener-
ated more efficiently than with path a, thus improving the microaggregation
outcomes. Note that different protection strategies may exhibit different
outcomes according to each dataset and its inherent data distribution.

5.3 Experiments

In this section, we provide different experiments to showcase the efficacy of
our approach by testing it on three datasets that serve as benchmarks. More
concretely, we first analyse different aspects related to the computational
time of our method in section ’Computational Time and Data Distribution’.
Next, by using the benchmark datasets, we analyse the Iloss (expressed in
percentage), as a measure of data utility (cf., Section 2.3 for details). Note
that given a privacy parameter k that guarantees that the microaggregated
dataset is k-anonymous, the lower the Iloss the better the result and per-
formance of the microaggregation method. Therefore, we compare our pro-
posal to current state-of-the-art methods, and the results of all these tests
are summarised in Section ’Microaggregation Results’. Finally, we analyse
the trade-off between Iloss and computational time of our method in Section
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’Trade-off Analysis of TSP-based Methods’.
We used three datasets as benchmarks for our experiments, defined in

section 2.3, “Census”, “EIA” and “Tarragona”. These SDC microdata sets
have been used for years as benchmarks in the literature [9, 41].

In the implementation, we selected MDAV due to its efficiency (i.e. the
complexity of MDAV is quadratic with respect to the number of records in
the dataset [9]). For solving the TSP we used the Concorde approach [1],
which is currently one of the best approaches, as seen in Chapter 2.

For the sake of brevity, we refer to the application of TSP without the
compression/decompression phases (hence, performing the TSP over the
original, r-records dataset) as C-MHM. Accordingly, the application of our
compression proposal, i.e. executing compression/decompression phases of
Algorithm 3, is labelled as Cc-C-MHM, where c denotes the compression fac-
tor. For comparison purposes, we have used MDAV [9] and V-MDAV [38].

In the experiments related to running time, we have used an implemen-
tation in R with RStudio IDE version 1.3.1093 and the packages TSP version
1.1 and sdcMicro version 5.5.1, running on a computer with 4 x 2.2GHz Intel
Core i7 CPU and 16GB of RAM.

5.3.1 Computational Time and Data Distribution

As defined in [24], the computational cost of Concorde is O(Mbd), where
M is a bound on the time to explore subproblems and is tied to the num-
ber of nodes, b is a branching factor, and d is a search depth. To study
the impact of a dataset’s number of records and the distribution of its el-
ements on the Concorde method, we created two sets of datasets in R2

with [100, 500, 1000, 5000, 10000] records, namely normal set and uniform
set, where:

• In the normal set, the rnorm() function from R-Project was used,
which generates random elements with a normal distribution N(0, 1).

• In the uniform set, the runif() function from R-Project was used, which
generates random elements with a uniform distribution U(0, 1).

Next, we applied the C-MHM method to each dataset and depicted the
corresponding times in Figure 5.4. As observed, there is a relationship be-
tween the number of elements of a dataset and the computational time of the
method, which follows an exponential growth path. Moreover, note there
are no distinguishable differences between both data distributions (cf. Fig-
ure 5.4). Notably, in datasets with a low number of elements, the difference
is almost negligible since most of the time corresponds to system overhead.
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Figure 5.4: Time (in seconds) required by our method to create a TSP
path according to different data distributions.

The next experiment analyses the efficiency due to compression/decom-
pression compared to the original Concorde-MHM method. Table 5.1 shows
the time required to compute the TSP path according to each strategy and
benchmark dataset. As observed, the time required by the original Concorde
approach is always higher than the one required when including our com-
pression proposal. Moreover, the higher the value of c, the lower the time,
which decreases exponentially as seen in Section ’Computational Time and
Data Distribution’.

5.3.2 Microaggregation Results

Compression aims to reduce the computational time required by the TSP
methods to compute a path while minimising the Iloss. In this regard, the
outcomes of the experiments denote that applying the compression succeeds
at fulfilling that objective with more or less efficacy according to their input
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Table 5.1: Computational times (in seconds) of each combination of
compression parameter and benchmark.

Methods

Dataset C-MHM C2-C-MHM C3-C-MHM C4-C-MHM C5-C-MHM

Census 6.58 1.81 0.9 0.56 0.39

Tarragona 4.75 1.71 0.89 0.6 0.44

EIA 75.26 18.28 8.05 4.97 3.19

parameter and the characteristics of the dataset under evaluation. In all
cases, compression increases the path length compared to the original Con-
corde approach. However, they achieve lower, and thus better Iloss outcomes
in some cases, following the observations described in Section ’Path Length
and Microaggregation’. In the case of Census (cf Table 5.2) we can observe
that the C2-C-MHM strategy obtains similar values as C-MHM, especially
for k > 3, and outperforms it for k > 5. Similarly, the rest of the compres-
sion ratios obtain better values as k increases. C5-C-MHM is the strategy
that obtains the best outcomes for k = 10, despite the notable increase in
path length.

The outcomes obtained in the case of Tarragona are depicted in Table
5.3. The behaviour of applying compression in Tarragona is not as efficient
as in Census in terms of Iloss. For k > 5, we achieve values close to these
obtained by the C-MHM method, outperforming them in the case of k = 8

with C2-C-MHM, and C3-C-MHM with k = 10.
Finally, Table 5.4 shows the outcomes obtained in the case of EIA. Again,

the outcomes between C-MHM and the application of compression are closer
the higher the value of k is, especially for k > 6. In the particular case of k =

8, C3-C-MHM outperforms the original C-MHM. We can also observe that in
the case of C5-C-MHM, the Iloss obtained is remarkably worse, indicating
that such compression is hindering the inherent group distribution of the
dataset. More concretely, due to the particular data distribution of EIA’s
records, we can observe that some values of k enforce the creation of groups
that break such natural disposition. The latter, however, can be remarkably
overcome by using variable-sized heuristics.

5.3.3 Trade-off Analysis of TSP-based Methods

To better illustrate the efficacy of our proposal in the context of TSP-based
heuristics, we created an additional experiment analysing the trade-off be-
tween the Iloss and the computational time, as we aimed to enhance both.
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Table 5.2: Percentage of Iloss obtained on the Census dataset. Highlighted
values denote the best outcome for each k.

Census
Method Path Length k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

MDAV N/A 5.6922 7.4947 9.0884 10.3847 11.6688 12.3916 13.3368 14.1559
V-MDAV N/A 5.6619 7.4947 9.0070 10.2666 11.5999 12.2985 13.3368 14.0730
C-MHM 1173.23 5.0321 6.9691 8.4681 9.7646 11.0744 12.4255 13.7720 14.9954
C2-C-MHM 1308.05 5.2541 6.9869 8.5187 9.4894 10.7869 11.9158 12.8477 13.8309
C3-C-MHM 1531.64 5.6821 7.8676 8.9504 9.5073 11.1161 12.118 12.7336 13.7258
C4-C-MHM 1607.55 6.9922 7.4893 9.7413 10.8816 11.7034 12.096 13.4572 14.1274
C5-C-MHM 1689.13 7.8868 8.8086 9.0884 11.4911 12.2091 12.9724 13.4921 13.6916

Table 5.3: Percentage of Iloss obtained on the Tarragona dataset.
Highlighted values denote the best outcome for each k.

Tarragona
Method Path Length k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

MDAV N/A 16.9326 19.5460 22.4619 26.3252 27.5184 29.6929 31.2146 33.1929
V-MDAV N/A 16.6603 19.5460 22.4619 26.3252 27.5184 29.6929 31.2146 33.1929
C-MHM 772.62 14.8835 18.0649 21.6954 25.0690 27.6827 29.5296 30.7770 32.3488
C2-C-MHM 885.02 15.7625 18.1403 22.5123 25.5584 28.1538 29.4089 31.9773 33.7297
C3-C-MHM 990.96 16.9326 19.6913 22.2274 25.8644 29.1273 30.8186 31.5190 32.3006
C4-C-MHM 1020.69 18.7037 19.5460 23.7335 26.8053 29.9042 30.1385 31.7141 32.7920
C5-C-MHM 1068.95 20.8067 22.3369 22.4616 28.1803 30.9707 32.2069 32.7667 33.0026

Table 5.4: Percentage of Iloss obtained on the EIA dataset. Highlighted
values denote the best outcome for each k.

EIA
Method Path Length k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

MDAV N/A 0.4829 0.6713 1.6667 1.3078 2.2141 2.9910 3.4086 3.5474
V-MDAV N/A 0.4829 0.6713 1.2771 1.2320 2.2038 2.9193 3.2835 2.7478
C-MHM 740.69 0.3704 0.5166 0.7606 1.0554 1.6652 1.8448 1.9348 2.1129
C2-C-MHM 928.97 0.4159 0.6309 0.9423 1.1263 1.6821 1.8587 2.0378 2.1869
C3-C-MHM 992.1 0.4645 0.8101 0.9318 1.0674 1.6948 1.8359 2.0205 2.1734
C4-C-MHM 1049.04 0.5554 0.6443 1.1502 1.2983 1.7335 1.8831 2.0982 2.1756
C5-C-MHM 1271.74 1.3066 1.4934 1.6076 2.2107 2.4945 2.7590 2.9181 2.9567

Figure 5.5 shows, for each dataset, the trade-off analysis of each TSP-based
method. Overall, all the outcomes remain close in the x-axis (i.e. denoting
a similar range of Iloss values, with a clear exception in the case of C5-C-
MHM and EIA). In contrast, all compression strategies require less time
to be computed. In the case of Census, we can observe that the outcomes
of C2-C-MHM and C3-C-MHM are almost aligned in the x-axis with these
obtained by the C-MHM method (i.e. the circular markers denoting the
values for each value of k are almost vertically aligned). Moreover, applying
compression we always obtain lower Iloss values the higher the value of k,
which is particularly obvious for k = 10. In the latter case, the original
C-MHM obtains a value that is isolated from the rest, both in terms of Iloss
and time. The outcomes of Tarragona resemble those obtained by Census,
yet in this case, only C2-C-MHM seems to obtain similar values to C-MHM
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in terms of Iloss. However, as seen in Census, these values get closer the
higher the value of k is. Finally, the outcomes of the EIA dataset show that
almost all strategies but C5-C-MHM obtain similar values to those achieved
by C-MHM, yet with much more efficiency.

In summary, these outcomes justify the applicability of our compression
method both in small and big datasets, despite being the latter the ones
that reflect the trade-off gain in a more evident manner. However, different
datasets may exhibit different behaviours and thus require careful analysis to
select the most appropriate strategy according to the trade-off optimisation
criteria.
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Figure 5.5: Trade-off between Iloss and computational time of the
TSP-based methods. The circular markers of the series denote the values

obtained from k = 3 to k = 10 (i.e. left to right).
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5.4 Discussion

The search for optimal microaggregation is NP-hard. Hence, researchers
have devoted extensive efforts to find good but suboptimal solutions [47].
As a result, it is becoming increasingly difficult to find new solutions that
improve the state of the art, not to mention that we want to improve both
the Iloss and the efficiency of such solutions.

Despite providing the lowest Iloss values, TSP-based microaggregation
methods suffer from scalability issues [22]. Therefore, developing strategies
to reduce the computational time of TSP heuristics is crucial. Going a
step beyond, we aimed to develop a strategy that can be applied regardless
of the dataset’s size and improve the outcomes provided by classical TSP
approaches.

As observed in Section ’Computational Time and Data Distribution’,
all compression strategies succeed in reducing the computational time of
C-MHM. Moreover, as discussed in Section ’Microaggregation Results’, and
especially for high values of k, compression strategies enhance the Iloss val-
ues, which sometimes are close or even better than the ones achieved by the
original C-MHM. In this regard, different compression values are combined
with different k to study the impact of different configurations according to
different types of datasets. Overall, as seen in Section ’Trade-off Analysis of
TSP-based Methods’, the trade-off between Iloss and computational time is
always beneficial when applying Compress strategies, especially those with
lower parameter values. Moreover, the larger the number of dataset records,
the more significant the compression’s impact on reducing the computational
time.

Therefore, our approach enables the application of different configura-
tions to satisfy an optimisation criteria (i.e. balancing Iloss and computa-
tional time according to each application context). However, the capability
of our method to improve both the Iloss and the computational time depends
on the particularities of each dataset.

5.5 Conclusion

Microaggregation heuristics have been extensively explored in the past, often
with the aim to improve their data utility. However, considering the advent
of Big Data and more accurate yet costly methods such as TSP, heuristics
aiming to reduce the computational time of microaggregation procedures
are crucial. In this Chapter, we proposed an efficient Compression-based
TSP heuristic for microaggregation, which outperforms the state of the art
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in terms of trade-off between Iloss and computational time, according to
extensive experiments and comparisons. Moreover, in some cases, our Com-
pression heuristic is able to preserve the natural distribution of data more
efficiently than the original method and thus, generate groups that increase
the utility while reducing the computational time. Notably, the performance
of the Compress method could be extended to other areas further than mi-
croaggregation.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO STATISTICAL DISCLOSURE CONTROL: ENHANCING MULTIVARIATE MICROAGGREGATION 
USING GRAPH THEORY 
Armando Maya-López



Chapter 6

Contributions to
Microaggregation Optimisation

Optimisation problems involve finding the best solution among a set of pos-
sible solutions to a problem. The goal is to maximise or minimise a certain
objective function while satisfying a set of constraints. In many cases, opti-
misation problems can be solved using various optimisation algorithms, such
as gradient descent, simulated annealing, and genetic algorithms. One com-
mon issue that can arise when solving optimisation problems is falling into
a local minimum. A local minimum is a solution that appears to be the
best solution in the immediate vicinity of the current solution but is not the
overall best solution for the problem. This can occur when the optimisation
algorithm is stuck in a particular search space region rather than explor-
ing the entire space of possible solutions. When an optimisation algorithm
falls into a local minimum, recovering and finding the true global minimum
may be difficult. One common way to address this issue is to use techniques
such as random restarts, which involve starting the optimisation algorithm
multiple times from different initial points. Another approach is to use more
advanced optimisation techniques that are less likely to get stuck in local min-
ima, such as particle swarm optimisation, differential evolution, or Bayesian
optimisation. Falling into a local minimum is a major obstacle in solving
optimisation problems, and it is crucial to recognise this issue and utilise
effective strategies to mitigate it. A novel post-processing technique is pre-
sented in this Chapter, which aims to enhance the results of MDAV and pre-
vent local minimums. The proposed methodology involves two steps: firstly,
microaggregation will be performed using MDAV on the dataset; secondly, a
post-processing approach will be implemented to refine the microaggregation
outcomes.
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6.1 Microaggregation Optimisation through Ran-
dom Cluster Shuffling

Datasets, per se, are not useful, unless they are analysed using techniques like
data mining (e.g., to determine behaviour of attributes, to identify patterns,
etc.), process mining (e.g. to discover processes, to check the conformance
between existing process models and those reflected in the data, etc.) and,
ultimately, feeding machine learning systems. Companies can analyse their
data on their own, but they can also delegate (i.e. release) datasets to
third parties. Note that sensitive information can be inferred from records
and values in the dataset: consumer habits, location tracking, health issues,
etc. This Chapter presents Random Cluster Shuffling (RCS), a new post-
processing technique aiming at improving MDAV’s results. Hence, in a first
step, the dataset will be microaggregated using MDAV; in a second step,
RCS will be applied to improve microaggregation. Section 6.2 describes
the post-processing method. Preliminary results are shown in Section 6.3.
Finally, Section 6.4 concludes the Chapter.

6.2 Our Proposal

Cluster optimisation is a topic widely explored in the literature; specifically,
its application to the microaggregation problem (where cluster size is con-
strained), has been explored in [39], in which the Step 1 of our proposal
is inspired. The main disadvantage of cluster post-processing techniques is
their fast convergence into local minima, a fact related to their greedy na-
ture. RCS modifies the basic algorithm to overcome such disadvantage by
creating an event that, with a certain probability of occurrence, modifies the
clusters created during the initial post-processing step to minimise the SSE.
RCS, described in Algorithm 4, consists of the following steps:
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1. For each element of the k-partition, the algorithm evaluates if extract-
ing it from its current cluster C and assigning it to the nearest one
improves the SSE. According to C’s cardinality, two situations can
occur: if card(C) = k, we dissect the whole cluster and perform the
previous evaluation for each of its records; if card(C) > k, we will only
evaluate the current record1.

2. After the evaluation of each record, and given a shuffling probability
and a maximum number of events, a shuffling event may occur. If such
event occurs, one of the clusters created is randomly selected (Ci).

3. The cluster whose centroid is nearest to Ci is selected. Both clusters
will be merged into a single cluster, in which the records will be sorted
with respect to the centroid of the new cluster.

4. The new cluster can contain between 2k and 4k-2 records and, thus, the
cluster will be divided into new clusters, so as to satisfy the cardinality
constraints of optimal microaggregation. The resulting formed clusters
replace the merged ones.

5. The stopping condition of the algorithm evaluates the SSE improve-
ment at each iteration and, if it is below 0.0001, the algorithm finishes.

1Our method differs from [39] in the order in which clusters are evaluated. In the
former, clusters are selected sequentially, while in the latter, the next cluster is the one
with the highest SSE.
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104 Chapter 6. Contributions to Microaggregation Optimisation

Algorithm 4 Random Cluster Shuffling
D : Dataset with n p-dimensional data points
k : Minimum cardinality constraint
C : Matrix with clusters from microaggregated dataset
S : Shuffling event probability
N : Shuffling event maximum number
repeat

for record in D do
Ci(record)← SearchRecordCluster(C, record)
if card(Ci(record)) < k then

DeleteRecord(C, record)
cent← ComputeCentroid(C)
C ← AddRecordToNearestCentroid(C, cent, record)

else
ci ← BreakCluster(Ci(record))
cent← ComputeCentroids(C)
C′ ← AssignElementsToNearestCentroids(C, cent, ci)
if SSE(C) ≥ SSE(C′) then

C ← C′

end if
end if
if RandomEvent(S) And EventCount ≤ N then

Ci ← SelectRandomCluster(C)
Cj ← SelectNearestCluster(C,Ci)
Cm ← MergeClusters(Ci, Cj)
Cm ← SortElementsFromCentroid(Cm)
Cs ← SplitIntoClustersOfSizeCloseToK(Cm, k)
C ← ReplaceByNewCluster([Ci, Cj ], Cs)
EventCount++

end if
end for

until NoSignificantImprovement
D′ ← ReplaceClustersByCentroid(D,C) return (D′)

6.3 Experiments

We used three benchmark datasets in our experiments, see in section 2.3.
The Census dataset and two datasets composed of OpenStreetMap GPS
traces collected from two different cities, Barcelona and Madrid. More de-
tails on the datasets can be obtained in [41] and [22].

The R package sdcMicro [41] has been used for the MDAV implementa-
tion. Since our optimisation algorithm randomly selects the clusters which
will shuffle elements, the experiments have been repeated 5 times. The out-
comes of our post-processing approach are reported in Table 6.1.

From the results in Table 6.1 we can affirm that post-processing always
improves the solution offered by the traditional MDAV method, since it al-
lows the creation of clusters of variable size that are able to better capture
the structure of the data. For k = 3, we observe that random events can neg-
atively affect the configuration of the clusters, influencing the local minimum
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6.3. Experiments 105

Table 6.1: Outcomes of the different settings of RCS applied after the
MDAV clustering. The “average” column denotes the percentage of Iloss
(the best results for each k and dataset are highlighted in green). Gray

rows correspond to the outcomes of the original MDAV method.

Shuffling Max k = 3 k = 5 k = 10

Dataset Method probability events Average σ Average σ Average σ

Census

MDAV NA 5.692 NA 9.088 NA 14.156 NA

MDAV - RCS

0 0 5.483 NA 8.450 NA 12.774 NA
1/1000 10 5.538 0.051 8.299 0.032 12.446 0.028
1/1000 20 5.617 0.066 8.401 0.068 12.918 0.064
10/1000 10 5.559 0.050 8.513 0.052 12.775 0.050
10/1000 20 5.485 0.057 8.328 0.055 12.708 0.056
100/1000 10 5.530 0.056 8.512 0.020 12.750 0.064
100/1000 20 5.691 0.043 8.555 0.057 12.885 0.052

Barcelona

MDAV NA 2.567 NA 4.285 NA 7.699 NA

MDAV - RCS

0 0 1.682 NA 2.723 NA 4.849 NA
1/1000 10 1.697 0.025 2.725 0.067 4.779 0.034
1/1000 20 1.690 0.053 2.718 0.020 4.745 0.031
10/1000 10 1.701 0.051 2.714 0.021 4.824 0.053
10/1000 20 1.705 0.042 2.734 0.042 4.957 0.054
100/1000 10 1.723 0.025 2.749 0.055 4.755 0.072
100/1000 20 1.752 0.049 2.753 0.028 4.969 0.066

Madrid

MDAV NA 3.188 NA 5.288 NA 8.611 NA

MDAV - RCS

0 0 2.634 NA 4.218 NA 7.591 NA
1/1000 10 2.700 0.077 4.154 0.036 6.690 0.065
1/1000 20 2.663 0.039 4.251 0.060 7.323 0.046
10/1000 10 2.642 0.011 4.294 0.060 7.233 0.034
10/1000 20 2.672 0.023 4.215 0.027 7.260 0.033
100/1000 10 2.668 0.055 4.248 0.045 7.135 0.024
100/1000 20 2.585 0.028 4.274 0.060 7.006 0.065

where the solution fall. For k = 5 and k = 10, the cluster’s configuration
allows the impact of these modifications to be diminished. Apparently, the
algorithm improves the results of the base post-processing method in con-
figurations with higher cardinality, although this preliminary results should
be extended by using different microaggregation methods to analyze if this
effect is also related to the dataset distribution of records (e.g. if data are
clustered or scattered), as seen in [39].

In general, we can observe that, while the SSE of Census and Madrid
was improved substantially, the effect of the RCS post-processing method in
the Barcelona dataset was outstanding, with improvements of approximately
40% over the original MDAV. Overall, we can conclude that a low probability
in the occurrence of the shuffling events allows the algorithm to continue
improving the SSE values without falling into a local minimum. If these
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106 Chapter 6. Contributions to Microaggregation Optimisation

events occur with a high probability, the number of cluster modifications
in the early stages of post-processing is drastically increased, resulting in a
potentially unrecoverable SSE increase.

6.4 Conclusion

In this chapter, we have proposed a novel post-processing method that ap-
plies a heuristic to reduce the SSE of a clustered dataset. Given a shuffling
probability and a maximum number of events, our approach exchanges el-
ements between a randomly selected cluster and its closest one to find an
alternative k-partition with lower SSE. As observed in our preliminary ex-
periments, the outcomes support the potential of our approach.

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO STATISTICAL DISCLOSURE CONTROL: ENHANCING MULTIVARIATE MICROAGGREGATION 
USING GRAPH THEORY 
Armando Maya-López



Chapter 7

Conclusions

This chapter summarises the contributions of this thesis. It also outlines
some lines for future work, either resulting from partially achieved goals or
expected improvements.

Contents
7.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . 108

The topics covered in this dissertation focus on the problem of microag-
gregation. First, we provide an extensive background on Statistical Disclo-
sure Control. In addition, the basics of the Travelling Salesman Problem
are presented. Second, we investigated various dimensions that affect this
problem, such as pre- and post-processing of the dataset, and propose two
methods for solving the fixed- and variable-size microaggregation problem.
Moreover, extensive experiments show that our methods achieve stable re-
sults and outperform the current literature.

7.1 Publications

The main publications that support the content of this work are the follow-
ing:

Journals

2021 Armando Maya-López, Fran Casino, and Agusti Solanas, “Improving
Multivariate Microaggregation through Hamiltonian Paths and
Optimal Univariate Microaggregation", Symmetry 13, no.6: 916.
https://doi.org/10.3390/sym13060916

2022 Armando Maya-López, Fran Casino, and Antoni Martínez-Ballesté, “A Com-
pression Strategy for an Efficient TSP-based Microaggregation", Ex-
pert Systems With Applications. https://doi.org/10.1016/j.eswa.2022.118980
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Conferences

2020 Maya López, A., Solanas, A., “Multivariate Microaggregation with
Fixed Group Size Based on the Travelling Salesman Problem.", In:
Saponara, S., De Gloria, A. (eds) Applications in Electronics Pervading In-
dustry, Environment and Society. ApplePies 2019. Lecture Notes in Electrical
Engineering, vol 627. Springer, Cham.

2021 Maya-López, A., Casino, F., Solanas, A., Martínez-Ballesté, A., “Microag-
gregation Optimisation Through Random Cluster Shuffling.", In:
Saponara, S., De Gloria, A. (eds) Applications in Electronics Pervading In-
dustry, Environment and Society. ApplePies 2021. Lecture Notes in Electrical
Engineering, vol 866. Springer, Cham.

7.2 Future Work

The Internet of Things facilitates the collection of large amounts of data:
sensors, smartphones, and even home appliances, generate a data deluge
about individuals, their context and the events in their daily life. Providers
can analyse these data to extract patterns and increase knowledge about
their services independently or by transferring datasets to third parties. To
mitigate the Big Brother effect, i.e. to preserve the individuals’ right to
privacy, techniques in the scope of Statistical Disclosure Control must be
applied. Microaggregation is a powerful technique for preserving data anal-
ysis privacy while maintaining data utility. By using clustering algorithms,
microaggregation can effectively mask sensitive information in datasets by
grouping data points together, thus protecting the privacy of individuals
while still allowing for meaningful analysis. Additionally, various modifica-
tions and extensions of microaggregation have been developed to enhance
its effectiveness and address specific privacy concerns.

However, there are still some limitations to microaggregation that need to
be considered. For example, data quality can be compromised by the loss of
granularity that results from grouping data points. In addition, the security
of the method may be compromised by attacks from sophisticated attackers
who can reverse engineer the original data from the masked dataset.

This thesis has explored the intersection of microaggregation and the
travelling salesman problem (TSP), demonstrating how these two techniques
can be combined to solve problems of privacy preservation. Through exten-
sive experimentation, this study has shown that multivariate microaggre-
gation through Hamiltonian paths and optimal univariate microaggregation

UNIVERSITAT ROVIRA I VIRGILI 
CONTRIBUTIONS TO STATISTICAL DISCLOSURE CONTROL: ENHANCING MULTIVARIATE MICROAGGREGATION 
USING GRAPH THEORY 
Armando Maya-López
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can provide a higher level of data privacy than traditional microaggregation
methods. The combination of these two approaches allows for the creation a
new dataset that preserves the statistical characteristics of the original data
while ensuring that individual-level information is obscured.

Furthermore, this work has investigated the development of a com-
pression strategy for efficient TSP -based microaggregation. The proposed
method provides a novel approach to anonymising data that preserves pri-
vacy while reducing the size of the dataset so that it can be processed more
efficiently. One of the main advantages of this approach is its scalability,
as the method can be applied to large datasets without compromising the
accuracy of the anonymised data.

The findings of this thesis have important implications for data privacy
in various fields, including healthcare, finance, and social sciences. The
following paragraphs summarise the main contributions of this thesis to
microaggregation:

1. In Chapter 3, we have described our algorithm and empirically shown
that it performs better than off-the-shelf, well-known microaggregation
methods for low cardinalities over benchmark datasets frequently used
in the literature. Our proposal represents the first step towards cre-
ating a more solid TSP-based microaggregation algorithm that would
outperform current methods, not only for small cardinalities but for
any k as well, and it opens the door to a fruitful research line in the
field of SDC. As further work, we plan to improve our clustering algo-
rithm over Hamiltonian paths permutations and test alternative TSP
heuristics.

2. In Chapter 4, despite these relevant results, there is still much to be
done in the study of microaggregation and data protection. Future
work will focus on scaling up(HM)2-Micro to high-dimensional and
very- large datasets. Considering the continuous growth of Big Data
and cloud computing, adapting our solution to a distributed computa-
tion environment is paramount. Moreover, splitting-based approaches
and modifying such TSP heuristics to leverage more lightweight
microaggregation-based approaches are interesting research paths to
follow. Even though the privacy parameter k is typically low (i.e.
3,4,5,6), we plan to investigate the impact of larger values of k on
our solution. Since microaggregation is essentially a data-, we will
explore how our solution can be adapted to data structures from spe-
cific domains such as healthcare, transportation, energy, etc. With
(HM)2-Micro, we have set the ground for the study of multivariate
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microaggregation meta-heuristics from a new perspective that might
continue in the future.

3. Chapter 5 has presented a heuristic to reduce the SSE of a clustered
dataset. Given a shuffling probability and a maximum number of
events, our approach exchanges elements between a randomly selected
cluster and its closest one to find an alternative k-partition with a
lower SSE. As observed in our preliminary experiments, the outcomes
support the potential of our approach. Future work will focus on study-
ing the impact of a more extensive set of parameter configurations and
using other benchmark datasets.

4. In Chapter 5, we presented an efficient Compression-based TSP heuris-
tic for microaggregation, which outperforms the state of the art re-
garding the trade-off between IL and computational time, according
to extensive experiments and comparisons. Moreover, in some cases,
our Compression heuristic can preserve the natural distribution of data
more efficiently than the original method and, thus, generate groups
that increase utility while reducing the computational time. It is note-
worthy that the performance of the Compress method could be ex-
tended beyond microaggregation to other areas. The latter, along
with the analysis of other group protection heuristics, is part of our
future work.
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