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Abstract

The Intensive Care Units (ICUs) are specialized hospital services that provide in-
tensive and intricate care to critically ill patients. The patients admitted in the ICU
require constant monitoring and care from a dedicated team of healthcare profes-
sionals, primarily comprising physicians and nurses. The patients are treated in the
ICU until their medical condition and parameters stabilize to a level where they can
be safely moved to other hospital services or discharged.

Multiple factors are involved in ICU planning, including bed management, staff
availability, medical equipment and organization of support services, among others.
Each of these factors are crucial for the care of patients in the ICU and the lack of
adequate planning can lead to a decrease in the quality of care, delays in care and
increased morbidity and mortality of patients.

This thesis proposes a hybrid model for the prediction of the date of discharge of
ICU patients, based on a combination of Machine Learning techniques. The model
can be used to support the planning activities of the intensive care personnel, as it
identifies which patients have a higher probability of early hospital discharge and
which ones will still require the use of ICU services for more time. The main novelty
of this prediction model is the ability to make a daily adjustment of the number of
days to discharge, instead of the current models that are only applicable at admis-
sion time. This updated information is crucial to improve the efficiency of the ICU
services as well as the quality of patient’s care.

The first study in this thesis was done with a private dataset of critical patients
from Joan XXIII Hospital in Tarragona. Later, we extended the analysis to an open
public dataset called eICU, which includes patients from multiple centers at USA.
Therefore, it has been possible to train and test the model with a very heterogeneous
groups of patients from different populations, obtaining much reliable conclusions.

The first contribution addresses the difficulties in prediction of the days to dis-
charge (DTD) for patients in intensive care due to their high heterogeneity. Both
healthcare practitioners and computers struggle with making accurate predictions
when dealing with such diverse medical conditions. To improve DTD prediction ac-
curacy, it is crucial to have tools for analyzing patient heterogeneity. This thesis pro-
poses four measures to quantify patient heterogeneity. These measures were tested
on patients admitted in Hospital Joan XXIII over four years. The results provide a
deeper understanding of ICU patients and serve as a foundation for improving DTD
predictors.

The second contribution presents two approaches to the analysis of the DTDs of
ICU patients from different perspectives: biomarker identification and phenotype
recognition. Several machine learning methods are constructed for each approach
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and tested with the data patients admitted at ICU of Hospital Joan XXIII. The results
in of this study confirm the complexity of calculating the days to discharge with in-
telligent data analysis methods.

The last contribution addresses the challenge of predicting the date of discharge
of ICU patients accurately. Currently, a single prediction of the duration of stay is
made at admission time, known as Length of Stay (LOS) measure. However, de-
pending on the patient’s evolution at ICU, the final number of days deviates from
the initial LOS value. This thesis proposes the use of Machine Learning methods to
calculate a new measure called DTD (Days to Discharge), which takes into account
the patient’s state at each of the days of stay. Given the previous findings about
heterogeneity, three groups were identified for studying the DTD. Three algorithms
(Random forest, XGBoost and lightGBM) were used to generate DTD and LOS pre-
dictive models on the large and diverse and public eICU database. A comparative
study shows that combining these models into a hybrid model can improve the ac-
curacy of the predictions. The LOS model is effective at the beginning of the stay,
while after some initial days, the DTD model becomes much more effective till the
end of the stay. The results achieved a root mean square error (RMSE) and mean
average error (MAE) below one day on the eICU dataset.
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Chapter 1

Introduction

1.1 Motivation

According to the World Federation of Societies of Intensive and Critical Care Medi-
cine, intensive care units (ICU) are "organized systems for the provision of care to
critically ill patients that provides intensive and specialized medical and nursing
care, an enhanced capacity for monitoring and multiple modalities of physiologic
organ support to sustain life during a period of acute organ system insufficiency"
(Marshall et al., 2017). Due to a serious illness, injury or medical condition that
threatens his life and/or vital organs, patients attended in ICU require continuous
monitoring and the need for a multidisciplinary team of medical professionals, in-
cluding nurses, doctors and other specialists.

Patients cases in ICUs use to be heterogeneous and it may include diverse type of
patient inside an ICU. For example, we can find critical patients, who are often intu-
bated and mechanically ventilated, trauma patients who have experienced a severe
injury, such as a head injury or multiple fractures, post-operative patients that have
undergone major surgery or neurological patients with severe neurological condi-
tions, such as a stroke or brain injury and many other types.

Due to their critical conditions, these patients require constant medical atten-
tion and monitoring to ensure that their vital signs remain stable. To achieve this,
healthcare professionals connect them to multiple monitoring devices, such as ECG
machines, arterial and central venous catheters and pulse oximeters among others.
These devices allow the healthcare team to keep a close eye on the patient’s heart
function, blood pressure, oxygen saturation and other critical vital signs. By contin-
uously monitoring the patient’s condition, healthcare professionals can adjust their
treatment to maintain stable respiratory and hemodynamic status. This helps to
ensure that the patient receives the best possible care and has the best chance of a
successful recovery.

Patients in the ICU also require constant medication to help manage their medi-
cal conditions and maintain stable hemodynamic and respiratory status. These med-
ications can range from painkillers and sedatives to antibiotics and blood thinners, as
well as vasopressors or neuromuscular blocking agents, which help maintain blood
pressure or muscle relaxation respectively. The goal of medication management in
the ICU is to provide the necessary treatment while minimizing any potential side
effects and optimizing the patient’s chances of recovery.
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It was estimated that in the US the mean ICU cost and length of stay were $31,574
± 42,570 and 14.4 days ± 15.8 ($2,193 per day in average) for patients requiring me-
chanical ventilation and $12,931 ± 20,569 and 8.5 days ± 10.5 ($1,521 per day in aver-
age) for those not requiring mechanical ventilation (J. Dasta, 2005). A multi-country
study in Europe showed that ICU direct costs ranged, in average, from †1168 to
†2025 per patient and day (Tan, 2012). The European Hospital and Health Care Fed-
eration parencite that, in 2014, the average length of stay in acute care hospitals was
6.4 bed days in the EU-28 countries, ranging from 5.2 to 7.0 days. These important
daily costs urge governments and ICU managers in a effort to reduce the length of
stay of ICU patients without compromising healthcare quality.

In order to have control of medical personnel, necessary medication and avail-
ability of beds for future admissions, a proper planning is required. The availability
of nurses and doctors as well as the number required can be modified depending on
the workload of each patient. In the case of medication, a control of all the necessary
medication is required during the day as well as for the following days depending
on the patient’s stay. The number of beds is also important as it requires long-term
planning to know availability and possible relocations in case of shortage. For all
this, the forecast of the number of days of stay of each patient plays an essential role.

In recent years, methods based on Artificial Intelligence (AI) have emerged as
powerful tools for analyzing patient data and making predictions about their health
outcomes. Machine Learning algorithms can identify patterns in large datasets and
use them to make accurate predictions about future events. At ICUs, the constant
monitoring of the critical patient plays a very important role in the discharge predic-
tion, since it allows to know the evolution of the patient throughout his stay. Nowa-
days, the clinical information collected at the ICUs is saved daily for all patients,
therefore, we can get a database large enough to make good predictions. These data
can be categorized as demographic, constant and variable data:

• Demographic data includes information such as the patient’s name, gender,
ethnicity and medical history. This information can help healthcare profession-
als to better understand the patient’s background and risk factors for certain
conditions. Demographic data is typically collected at the time of admission
and is used throughout the patient’s stay in the ICU.

• Constant data refers to the patient’s physiological characteristics that remain
relatively stable over time, such as age and height.

• Variable data refers to physical characteristics that fluctuate over time, such as
heart rate, blood pressure and oxygen saturation. The collection and analysis
of variable data can provide valuable insights into the patient’s condition and
help healthcare professionals to make timely and informed decisions about
their care.

The hypothesis of this doctoral thesis is that with previous processing of the
available collected data, it is possible to create prediction models to predict each pa-
tient’s length of stay at an ICU. Concretely, with the application of Machine Learning
(ML) techniques, we aim to create prediction models for the duration of a patient’s
stay in the ICU.
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ICUs receives patients who are severely ill and may suffer from different com-
plications during their recovery process. As a result, it becomes a hard task for
prediction models to precisely approximate the length of stay. When an ICU patient
is admitted, doctors usually try to predict an approximation of how long this pa-
tient will stay. This approximation is called Length of Stay or LOS. The quality of
the number of days prediction can be increased if we approach the problem from
another point of view. The prediction of the LOS value is based on the data collected
during the first 24-48 hours since the admission. But this method does not take into
account how the patient’s condition may change over time. In this thesis, we pro-
pose a new approach in which we’re tracking the patient’s evolution each day and
recalculate our prediction accordingly thanks to all the variable data collected daily.
By looking at how the patient is evolving each day, we can create a more accurately
prediction model and obtain better results in order to predict the number of days
of discharge or DTD. This approach gives us a more exact and personalized way to
predict how long a patient will need to stay in the ICU, helping healthcare profes-
sionals plan their resources and care for the patient more effectively.

Obtaining a high accuracy in the days to discharge prediction with machine
learning is a challenging task, with only a limited number of papers available on
this topic. There are only a few studies that have focused on this variable, making
it difficult to assess its effectiveness and reliability. One of the main reasons for the
lack of research on the days to discharge variable is the complexity of predicting
the discharge date of critically ill patients. Furthermore, the data required for train-
ing machine learning models to predict the days to discharge variable is not always
readily available. Collecting and organizing data from electronic health records and
other sources can be time-consuming and resource-intensive, making it challenging
to conduct large-scale studies on this variable.

With proper data preprocessing, we can obtain a robust database for making pre-
dictions of DTD and LOS. Both parameters have clinical, management and adminis-
trative impact since they can help clinicians to detect deviation from standards and,
therefore, implement corrective actions. DTD prediction brings some additional
benefits in the organization, facilitating decision making for the efficient use and
planning of resources in ICUs, such as bed occupancy (Ruyssinck et al., 2016), com-
plex surgeries requiring ICU (Bing-Hua, 2014), or transfers to other centers (Droogh
et al., 2015), if a saturation is expected.

In this thesis, Machine learning techniques have been used in the creation of pre-
dictive models for LOS and DTD, with methods such as regression models, Random
Forest, Support Vector Machine and Artificial Neural Network being employed.

To evaluate the effectiveness of these predictive models, two different indicators
are commonly used: coefficient of determination (R2) and root mean square error
(RMSE). They are used to compare new results with previous studies to ensure that
models are performing better. A literature search shows that the best R2 obtained
by previous studies is 0.81 and the smallest RMSE is 1.79. After analyzing the re-
sults with medical personnel, we discovered that a forecast error of 1 or 2 days is not
acceptable if the purpose is to improve ICU planning. Patients in the ICU can expe-
rience rapid fluctuations in their condition and immediate action is often necessary.
Therefore, we decided to work on reducing such large forecast errors.
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At this point, we defined the main challenge of the thesis: to obtain a Root
Mean Squared Error (RMSE) below 1 day. Achieving an RMSE below 1 day would
mean that the forecasts were highly accurate, providing valuable information for
ICU planning and resource allocation.

This challenge highlights the importance of precision in ICU planning and man-
agement. Even small errors in forecasting can have significant consequences for pa-
tients and healthcare providers. Therefore, it is crucial to develop accurate and reli-
able models that can provide timely and relevant information for ICU planning. This
goal can be achieved through rigorous research and collaboration between medical
professionals and data analysts, as was done in this thesis.

Thanks to the ICU patient database provided by Hospital Joan XXIII in Tarrag-
ona, we have trained and tested our Machine Learning models for predict the num-
ber of days of stay and improved the current results. We have also used the eICU
database which has enabled us to analyze data from a large number of patients with
different conditions, as well as varying locations. Patients in the Joan XXIII Hospi-
tal database are Spanish, while those in the eICU databases come from the United
States. By leveraging these databases, we can work with a diverse range of patients
and different types of health systems, which enhances the accuracy of our predictive
models.

1.2 Objectives

Predicting the number of days that patients will spend in the ICU is important for
managing patient care, beds and medication. While many papers have explored the
length of stay, focusing on the first 24-48 hours only, there is potential for improve-
ment by considering each day of the patient’s stay and their evolving condition. This
could lead to increased accuracy in predicting how long patients will need to stay in
the ICU.

The objective of this thesis is to achieve an accurate prediction of the day of dis-
charge of an ICU patient. To attain this main goal, the following sub-objectives must
be accomplished:

• This study has been initially conducted using data provided by Hospital Joan
XXIII in Tarragona. Our first task is to construct a comprehensive and reliable
database that will help us enhance the current results of LOS prediction and
expand our investigation by including the DTD prediction. This database will
contain every parameter from all patients admitted in the ICU and obtained by
the constant monitoring during their stay. Once the database is completed, we
must clean it by identifying any unusual or abnormal variables, fill in any miss-
ing data and remove the outliers that might affect the accuracy of the results.
It is also essential to use feature importance techniques to identify the most
significant parameters and exclude the less important ones from the dataset.

• Using the database collected, structured and prepared, we will examine the
intricacy of ICU patients characteristics of this local hospital. New approaches
will be suggested to measure the diversity among critically ill patients, with
the focus on identifying groups that help to determine the length of their hos-
pital stay.
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• Finally, we will expand the analysis with the use of a larger database: eICU.
By having a larger number of patients, greater heterogeneity and a completely
different type of patient (mainly as they are from another country and from
another health system), we will be able to study how to build Machine Learn-
ing models to achieve our ultimate goal of obtaining a good prediction of the
number of days remaining till the date of discharge, during the stay of a given
patient in the ICU.

1.3 Contributions

By working on the different objectives previously described, this doctoral thesis con-
tributes mainly in the following three topics, for which we have produced the fol-
lowing three research publications:

1. Development of four methods and their corresponding measures to quantify
the heterogeneity of the patient in the Intensive Care Unit. Published at:

Cuadrado D, Riaño D, Gómez J, Rodríguez A, Bodí M. (2021). Methods and
measures to quantify ICU patient heterogeneity. Journal of Biomedical Infor-
matics. May;117:103768. doi: 10.1016/j.jbi.2021.103768. Epub 2021 Apr 9.
PMID: 33839305.

ISI-JCR journal, 1st decile. (2021)

2. Proposal of four methods to analyze DTD from different perspectives: quan-
tification of heterogeneity based on the previous article, identification of biomark-
ers, phenotype recognition and an initial basic prediction of DTD based on a
small set of ICU patients. Published at:

Cuadrado, D., Riaño, D. (2021). ICU Days-to-Discharge Analysis with Machine
Learning Technology. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira
Rodrigues, P., Riaño, D. (eds) Artificial Intelligence in Medicine. AIME 2021.
Published at: Lecture Notes in Computer Science, vol 12721. Springer, Cham.
https://doi.org/10.1007/978-3-030-77211-6-11

CORE A conference. (2021)

3. Proposal of a hybrid model that integrates the predictive models carried out
with Random Forest, LightGBM and XGBoost. This hybrid model improves
the predictions due to the effectiveness of the prediction of LOS at the begin-
ning of a patient’s stay and of DTD at the end of your stay. Submitted at the
following journal:

Mathematics. Special Issue "Advances of Applied Probability and Statistics",
MDPI: Cuadrado, D., Riaño, D., Valls, A. (2023). Predicting ICU patients dis-
charge with a hybrid model that combines Length of Stay and Days to Dis-
charge.

ISI-JCR journal, 1st quartile. (2022)
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14 Chapter 1. Introduction

1.4 Document organization

After this introduction that presented the motivation of this work and the goals, the
rest of the PhD thesis document is structured as follows.

Chapter 2 presents some background knowledge in the topic of this thesis. First,
we revise the previous related works on prediction of length of stay.

The databases used for this study are detailed, with a characterization of the pa-
tients parameters available, along with the data pre-treatment. The creation of the
database is a critical component of the study as it is the foundation upon which the
research is built. In the second chapter, the thesis will provide a more comprehen-
sive explanation of how the database was constructed, including the variables that
were included and the methods used for data collection.

Next, we refer to a previous study that we conducted in 2018. This preliminary
study focused on predicting the discharge of patients from an ICU, was the first ap-
proach to the main objective of this thesis. The chapter presents the initial results
obtained from the study, which have formed the basis for the development of the
current thesis. By examining the previous study in detail, the thesis aims to build
upon its findings and contribute further insights into the prediction of patient dis-
charge from ICU.

The Chapter 3 of the thesis focuses on the first contribution. This article deals
with a common problem in the field of intensive care: the great heterogeneity of pa-
tients. In other words, patients in the ICU vary significantly in terms of their medical
history, underlying conditions and severity of illness, among other factors. This het-
erogeneity makes it difficult to predict outcomes and plan treatment strategies.

The chapter proposes a set of methodologies to address this problem, with the
aim of identifying subsets of patients that are more homogeneous and therefore eas-
ier to study and predict outcomes for. By creating more homogeneous groups of
patients, it becomes possible to develop more accurate predictive models and to tai-
lor treatment strategies to individual patient needs.

The specific methodologies proposed in the chapter are likely to be discussed in
detail in the chapter. Machine learning methods were used to cluster patients based
on certain variables, such as age, gender, commodities, or vital signs.

Chapter 4 focuses on the second scientific contribution of this thesis, which fo-
cuses on developing four different approaches to analyze the prediction of the days
to discharge and improve the accuracy of their prediction.

Two different kinds of data are formalized and studied in order to detect possi-
ble relations with the duration of the stay at an ICU. First, Biomarker Identification,
which involves identifying specific biomarkers (indicators) that are associated with
the disease being studied.

Second, Phenotype Recognition, which is based on identifying patterns or clus-
ters within the DTD data that are indicative of particular phenotypes (characteris-
tics) of the disease.
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In Chapter 5, the knowledge obtained from the two previous chapters is used
to develop a final proposal. This proposal takes the form of a hybrid model, which
combines two different predictions: the prediction of LOS (length of stay) and DTD
(time to discharge). These predictions are particularly effective depending on when
they are made during the patient’s stay, i.e. at the beginning or the end.

The development of this hybrid model is an important contribution to the field
of study, as it represents an innovative and practical application of the knowledge
gained from the previous research articles. The chapter goes into detail about the
specific methods used to develop the hybrid model, as well as the results of testing
and validation to demonstrate its effectiveness.

Finally, chapter 6 summarizes the conclusions of this work and propose several
interesting lines of research for future work.

UNIVERSITAT ROVIRA I VIRGILI 
MACHINE LEARNING METHODS FOR PREDICTING DAYS TO DISCHARGE IN INTENSIVE CARE UNITS PATIENTS 
David Cuadrado Gómez



UNIVERSITAT ROVIRA I VIRGILI 
MACHINE LEARNING METHODS FOR PREDICTING DAYS TO DISCHARGE IN INTENSIVE CARE UNITS PATIENTS 
David Cuadrado Gómez



17

Chapter 2

Medical background and data
preparation

2.1 Related Work

The daily management of an Intensive Care Unit (ICU) is a complex task for its daily
planning due to the diverse range of critically ill patients that require constant med-
ical attention. ICU patients may have a large variety of pathologies with an affecta-
tion of one or more threatened vital functions, which are potentially reversible. The
Working Group on Quality Improvement of the European Society of Intensive Care
Medicine classified these patients (Valentin, Ferdinande, and Quality Improvement,
2011) into two groups: those ones "requiring monitoring and treatment because one
or more vital functions are threatened by an acute (or an acute on chronic) disease
[...] or by the sequel of surgical or other intensive treatment [...] leading to life-
threatening conditions" and those with "already having failure of one of the vital
functions [...] but with a reasonable chance of a meaningful functional recovery".
Patients in their end-stages of untreatable terminal diseases were left out of these
groups.

More specific classifications distinguish between ICU patients requiring close
monitoring, patients facing critical lung issues, patients with severe cardiac prob-
lems, and patients with serious infections. All this variability in admission extends
throughout the patient’s stay in the ICU, and is reflected in the great disparity in
patient’s evolution, treatments (Kross et al., 2014), outcomes, and costs (Rossi et al.,
2006; Jacobs et al., 2022). Moreover, ICU resources (i.e. beds) are usually quite lim-
ited and when there is an unexpected increase of demand (i.e. in COVID-19 pan-
demics, in earthquakes or other catastrophes) a good knowledge and planning of
the patient’s occupation (i.e. days to discharge) becomes crucial for a good health
service.

Constant monitoring is crucial not only for planning purposes, but also to en-
sure that patients receive appropriate medication and nursing care and that their
vital signs remain stable until they are discharged to another ward.

In this context, it is desirable to have reliable computer tools to predict the du-
ration of patients in ICU, in order to accurately estimate the availability of beds,
medications, and health personnel required to care for each patient. In the literature,
there are two approaches to such predictive tools: static and dynamic.

• Static tools predict the length of stay (LOS). The LOS is a measure of the num-
ber of days a patient stays in the ICU from the moment they are admitted until
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18 Chapter 2. Medical background and data preparation

the day of discharge. This indicator is considered static because its value re-
mains constant once it is calculated and it is obtained from data collected dur-
ing the first 24-48 hours of the patient’s admission. Some studies found that
physicians are not good at predicting ICU-LOS statically and they are poor
at predicting stays longer than five days (Nassar and Caruso, 2016; Gusmão
Vicente, 2004). Moreover, a systematic review analyzed 31 ICU-LOS predic-
tive models and concluded that they suffer from serious limitations (Verburg
et al., 2017). Statistical and machine learning approaches (e.g., (Kramer, 2010;
Livieris, 2018)) provide moderate predictions of short term LOS (1-5 days), but
are unable to correctly predict long-term LOS (> 5 days). Therefore, while
LOS is essential for resource allocation during a patient’s initial admission,
it becomes less informative as their stay progresses and their medical needs
change.

• Dynamic tools make predictions in a daily basis. These tools predict the days
to discharge (DTD), a dynamic indicator that changes over time as the patient
is treated in the ICU. DTD represents the number of days remaining until the
patient is considered ready for transfer to another hospital or unit. This indi-
cator differs from length of stay (LOS) in that it takes into account the patient’s
evolving medical condition and progress towards recovery. DTD is an impor-
tant tool for ICU staff because it provides daily information on the expected
time of transfer for each patient. This information can be used to plan for bed
availability, medication needs and ensuring that resources are allocated ap-
propriately and that patients receive the highest quality of care. By monitoring
changes in DTD over time, ICU staff can gain insights into the patient’s medical
progress and identify any potential delays or complications that may require
additional interventions. This information can highly improve the prediction
models as it provides more information than LOS. DTD is closely related to the
concept of length of stay (LOS) but, unlike this, DTD is not a constant parame-
ter and it is not predicted on the patient condition in the first 24-48 hours after
admission, but on the evolving condition of the patient.

There is a long tradition of LOS prediction with machine learning methods (Awad,
Bader–El–Den, and McNicholas, 2017; Verburg et al., 2017; Peres et al., 2021). How-
ever, some studies have focused on patients suffering from a certain specific disease.
For example, some works a related to ICU patients with cardiac surgery (Rowan et
al., 2007; Hachesu et al., 2013; LaFaro et al., 2015; Mollaei et al., 2021), traumatic pa-
tients (Van Houdenhoven et al., 2007; Gholipour et al., 2015), cancer diseases (Muh-
lestein et al., 2019), or patients with post-surgical problems (Su et al., 2021). Other
authors, in order to overcome the low predictive capacity in short stays, some works
concentrate only on stays longer than five days, such as (Gusmão Vicente, 2004; Nas-
sar and Caruso, 2016).

The problem of estimating the LOS for any patient admitted at an ICU, has been
also approached using different kinds of statistical and machine learning methods.
Table 2.1 shows the number of patients, number of parameters and the prediction
methods used in the related works for LOS prediction.

The oldest works used some statistical techniques and different kinds of regres-
sion models (Moran and Solomon, 2012; Verburg et al., 2014; Li et al., 2019; Huang
et al., 2013). Some other approaches use traditional machine learning methods, such
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as Random Forest, Support Vector Machine or Neural Network (Caetano, Laureano,
and Cortez, 2014; Abd-ElrazekaAhmed et al., 2021; Verburg et al., 2014; Gholipour
et al., 2015; Chrusciel et al., 2021; Alghatani et al., 2021; Houthooft et al., 2015). Some
more recent works, have also included advanced neural networks and deep learning
(Ayyoubzadeh, 2020; Ma et al., 2020; Wu et al., 2021).

The prediction of DTD has awaken much less interest, possibly due to the added
difficulties of collecting ICU data in a daily basis (Artis et al., 2019) or to the sophisti-
cation of the technologies for longitudinal data analysis (Caruana et al., 2015). Table
2.2 shows the same information from the previous mentioned articles for DTD pre-
diction for the two existing works (to the best of our knowledge), (Temple, Lehmann,
and Fabbri, 2015; Ruyssinck et al., 2016) These two works make a quite reduced
study, with a small number of parameters, and focusing on some concrete values of
DTD.

From this study of the related work, we can see that although there are numerous
articles focused on the LOS in the ICU, there is still a significant unexplored territory
in the field of DTD.

In order to build a good prediction model with Machine Learning methods, it is
mandatory to have a large and representative dataset. In the next section, the two
datasets used in this work are described and the data preparation is detailed.

2.2 Private database

2.2.1 Introduction

The first database used in this doctoral thesis was provided by the main reference
public hospital in Tarragona (Catalonia, Spain). Thanks to the remarkable system
for patient care through the efforts of its nurses in the Intensive Care Unit (ICU) and
their commitment to monitoring patients and meticulously recording daily data,
Hospital Joan XXIII has successfully created a comprehensive database that stores
health information in a structured way.

The continuous monitoring performed by the nursing staff plays a pivotal role
in ensuring the accuracy and reliability of the data within the database. By closely
observing patients, noting vital signs, administering treatments, and documenting
every pertinent detail, the nurses contribute significantly to the collection of reliable
knowledge available for analysis and research.

The data analyzed in this study correspond to patients who were admitted to
the Intensive Care Unit (ICU) between January 2016 and November 2019. In a pre-
liminary research conducted before the development of this thesis, all patients were
included in the dataset, regardless of their outcome upon leaving the ICU. It was
in this initial phase of our research that we considered the possibility of patients
leaving the ICU either alive or deceased. However, we later decided to exclude this
possibility from our analysis due to the negative impact it could have on the pa-
tient’s discharge prediction. We understood that a patient’s death during their stay
in the ICU would be considered as an interruption in terms of providing adequate
medical treatment and healing, and we wanted to avoid such an interpretation.
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Reference Patients Parameters Methods Results

(Ruyssinck et al., 2016) 4,693 26 Random Forest

For DTD =2
AUC=0.749

and for DTD =10
AUC=0.614

(Temple, Lehmann, and Fabbri, 2015) 4,023 19 Random Forest
and baseline Best: MAE = 1.4

TABLE 2.2: Description of the number of patients, parameters, meth-
ods and prediction models used in articles related to DTD prediction

The decision to exclude deceased patients from the analysis was not solely based
on the concern that their inclusion might disrupt the discharge process and poten-
tially affect the effectiveness of the predictive models. It was also driven by the belief
that cases involving patient mortality should be treated separately, using specialized
methods for mortality prediction.

By focusing on patients who survived their ICU stay, the study aims to develop
predictive models that are specifically tailored to forecast outcomes for this partic-
ular group. This allows for a more targeted approach to improving patient care
strategies and delivering accurate predictions within the context of ICU survival.

2.2.2 Data pretreatment

To establish a robust and dependable foundation, the data underwent a meticulous
treatment process. The initial stage involved scrutinizing all the available parame-
ters and eliminating any outliers present. Outliers refer to values that greatly deviate
from the average and can be considered anomalous. By removing these outliers, the
risk of distorting the results of subsequent analyzes was mitigated. This step en-
sured that the data used for further analysis remained reliable and free from any
potentially misleading values.

In addition, consultations were held with medical professionals to identify any
additional anomalous data that may have been overlooked during the outlier re-
moval process. Recognizing the importance of these data points for the predictive
models, it was crucial to ensure their proper inclusion in the data analysis. The ex-
cluded anomalous data can be characterized by the following traits:

• Given that a portion of the database consists of manually entered data by medi-
cal staff, it is important to address human errors that may inadvertently impact
the predictive model. These errors primarily manifest as decimal omissions
(e.g., recording a patient’s body temperature as 374 ºC instead of 37.4 ºC), acci-
dental addition of values (e.g., a saturation level of 199 % instead of a plausible
range), or the inadvertent substitution of one value with another (e.g., record-
ing a glucose level of 927 mg/dL instead of 127 mg/dL).
To identify and mitigate these errors, a method involving the detection of out-
liers was implemented. By eliminating the 5 % of values located at the ex-
tremes, it became possible to pinpoint these extreme values, which often cor-
responded to the aforementioned human errors. Consequently, these extreme
values were effectively removed from the database, ensuring a cleaner and
more reliable dataset for further analysis and modeling.
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• Another scenario in which outliers were found involved cases where the val-
ues, although within the accepted range of normality, were ultimately deemed
invalid. This situation was particularly evident on the day when patients are
discharged from the ICU. It was considered necessary to exclude such values,
as it was expected that a patient would only be discharged when their medical
records were considered valid and they no longer required constant monitor-
ing by medical personnel. For instance, a patient with a blood glucose level
exceeding 400 on the last day of their ICU stay would be considered an invalid
value. To identify and remove these types of values, a meticulous examination
of each parameter was conducted in collaboration with the medical staff, and
a set of rules was established for each parameter.

• Among the parameters included in the dataset, there are binary variables that
may contain anomalous data that cannot be easily identified through the tra-
ditional outlier detection approach. However, a similar process was employed
to address this issue. With the assistance of the medical staff, a set of rules was
established to identify and eliminate values that were incompatible with the
patient’s duration of stay. By applying these predefined rules to the binary pa-
rameters, any values that violated these rules were identified and subsequently
removed from the dataset.

As part of the data preprocessing phase for developing the predictive models, a com-
prehensive examination was conducted to identify variables that contained missing
values. This missing data can appear from various causes, including errors in ex-
tracting information from medical equipment into the database or inaccuracies in
manually inputting data by healthcare professionals.

To handle these missing values, two primary strategies were employed: imputa-
tion and repetition of values:

• The first approach used to handle missing values involved replacing them with
the average of the existing values within the same variable. This technique en-
sures that a representative value is obtained, minimizing the impact on the
subsequent analysis. Given that the database comprises daily values pertain-
ing to each patient, the average was calculated using the value from the previ-
ous day and the value from the following day. By considering these neighbor-
ing values, a more accurate estimation of the missing data was achieved.

• In situations where a missing value is encountered either on the first or last day
of a patient’s stay, the standard procedure of calculating the average cannot be
employed. Instead, a technique known as value repetition is applied. This
method involves substituting the missing value with the same value observed
in one of the neighboring time points. Specifically, if the missing value is on the
first day, the value from the following day is replicated, while if the missing
value is on the last day, the value from the previous day is duplicated. This
approach ensures that the dataset remains consistent and avoids introducing
gaps or inconsistencies caused by missing values in the temporal sequence.

Lastly, another data treatment was conducted, similar to the previous outlier
analysis, but specifically targeting the length of stay of patients. While the typi-
cal duration of ICU stays ranges from around 2 to 7 days, there exists a subset of
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patients whose stays extend significantly longer. Although these prolonged stays
are less frequent, they can have a detrimental impact on the accuracy of discharge
prediction. To address this issue, all patients with stays surpassing 14 days were ex-
cluded from the analysis. This approach ensured that the predictive models would
focus on more typical lengths of stay, enhancing their effectiveness in forecasting
patient discharges.

2.2.3 Parameter types

The set of parameters comprising the database can be classified into five different
types, depending on their nature: demographic, categorical, Boolean, dynamic and
scale:

• Demographic data: They encompass various characteristics of a patient that
are closely linked to their cultural and socioeconomic background. These vari-
ables, such as age and gender, play a significant role in determining the like-
lihood of patient recovery and their resilience against specific complications.
Age, for instance, can influence the body’s ability to heal and combat diseases,
with younger patients often exhibiting higher resistance to certain health chal-
lenges. Similarly, gender may contribute to the prevalence of specific diseases,
as biological and societal factors can impact susceptibility and resilience.

• Categorical data: These parameters refers to patient characteristics that can
be categorized into a set of options based on their respective groups. Those
groups can be the admission type of the patient (Emergency, Urgent, etc.) or
treatment type (Surgical, Intensive, etc.) for example. These variables can
be represented by text values or numeric variables that represent the specific
group to which a patient belongs. It’s important to note that categorical vari-
ables do not follow a numerical scale and all values within a category carry
equal importance. Typically, categorical variables remain constant throughout
a patient’s stay and provide valuable insights into their specific group affilia-
tions.

• Boolean data: The boolean data refers to parameters that can only have two
possible options. While these variables can be represented in either numeric
or text format, for the latter case, it was converted into a numeric value (0 or
1) to ensure compatibility with predictive models that exclusively accept nu-
meric variables. Throughout a patient’s entire stay, certain boolean variables
may vary (e.g., the presence of a central venous catheter or CVC), whereas
others remain fixed, such as gender, which is categorized as demographic in-
formation. These variables play a crucial role in assessing the likelihood of a
patient’s imminent discharge from the ICU. For instance, in cases involving
mechanical ventilation, a patient cannot be discharged from the ICU while still
relying on mechanical ventilation.

• Dynamic data: It refers to parameters that exhibit changes over the course of
a patient’s stay, providing valuable insights into their progression. These data
points can be collected through devices connected to the patient during their
hospitalization, as well as inputted into the database by the medical staff at
the conclusion of their shifts. Dynamic data encompasses individual parame-
ters, such as temperature or blood pressure, as well as score variables derived
from calculations involving a combination of variables not explicitly stored
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in the database. These score variables offer a representation of the patient’s
progression based on the overall outcome or result of a specific operation or
assessment.

• Scale data: Scale variables are parameters that reflect the patient’s health status
using other variables. They provide insights into the severity or gravity of a
patient’s condition, either through a predefined set of values or a calculation
involving other variables. An example of a scale variable is the Sequential
Organ Failure Assessment (SOFA), which assesses the severity of the patient.
By analyzing the patient’s health status using indicators such as bilirubin or
creatinine levels, a final value is derived. Another example is the APACHE-II,
a classification system used to measure the severity or gravity of diseases.

2.2.4 Time treatment

The main objective behind creating these models is to forecast the day of patient
discharge. That is why the data needs to be disaggregated on a daily basis. Each
day of a patient’s stay is considered as an independent clinical case from the rest of
the days. The only variable that indicates the temporal progression is the number of
days since admission (referred to as "Times Since Admission" or TSA). This enables
the model to predict the day of discharge based on variables that describe the pa-
tient’s clinical condition, rather than the specific day they are taken. This approach
involves excluding variables that are not constant and are recorded every day.

Name Sort Mean Stdev Min Max Explanation
Age DE 58.95 15.5 18 99 Age of the patient at ICU admission
PrefHospDays N,CP 2.28 5.93 0 35 Days in hospital before ICU admis.
APACHEII CP 21.45 8.82 0 51 APACHE-II score evaluated at ICU admis.
MAP CP 71.87 15.49 20 137 Mean arterial pressure in the day
HR CP 114.18 23 45 200 Heart rate mean value in the day
Tmp CP 36.92 0.72 32.4 41.3 Body temperature mean value in the day
Glu(min) CP 108.23 26.29 20 300 Glucose minimum value in the day
Glu(max) CP 151.98 48.11 63 330 Glucose maximum value in the day
Glu(stdev) CP 18.54 16.11 0 82.73 Glucose variation value in the day
STRATIFY CP 2.67 1.12 0 5 Scale for identifying falll risk factors
SOFA-Cardio CP 0.76 1.19 0 4 SOFA SCORE (cardiovascular system)
SOFA-CNS CP 1.13 1.29 0 4 SOFA SCORE (nervous system)
SOFA-Cong CP 0.33 0.76 0 4 SOFA SCORE (coagulation)
SOFA-Liver CP 0.14 0.52 0 4 SOFA SCORE (Liver)
SOFA-Renal CP 0.27 0.75 0 4 SOFA SCORE (Kidneys)
SOFA-Resp CP 0.56 0.88 0 4 SOFA SCORE (respiratory system)
SOFA-Total SC 3.21 2.82 0 20 Addition of all the SOFA Scores
NAS SC 52.14 17.09 0 148 Nursing Activity Score (NAS)
EMINA SC 8.51 2.82 0 15 Risk of developing pressure ulcers

TABLE 2.3: Description of the patient in the heterogeneity study for
numerical values (N: numerical, DE: demographic, CP: clinical pa-

rameter, SC: scale.

2.2.5 Final description

All the information has been anonymized to respect patient privacy. There is no ID
by which to track them, nor have their names or surnames been added, as well as
data related to their country of origin or address. After pre-treatment of the data
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Name Type Proportion Explanation
AdmWard C,AD ER:42.57% Surgery:19.09%

Scheduled:18.52% Others:19.81
%ICU admission type

APACHEAdm C,AD Postoperative:16.82% HF:16.55%
Trauma:11.04% RF:10.12%

Neurological:8.18% Other:37.7%

APACHE admission group

CHE C,CP 5:21.66% 0:15.28% 3:14.12% 6:12.45%
2:11.49% Rest:25%

Charlson score

Gender CB,DE Male:67.33% Female:32.67% Gender of the ICU patient
PatType CB,DE Surgical:54.85% Medical:45.15% Type of ICU patient
AdmType CB,DE Urgent:64.15% Scheduled:35.85% ICU admission type
AE CB,CP 0:97.2% 1:2.8% Adverse event
CA CB,CP N:62.89% Y:37.11% Arterial catheter
SU CB,CP Y:80.92% N:19.08% Urinary catheter
CVC CB,CP Y:51.87% N:48.13% Central Venous catheter
Insuline CB,CP Y:53.29% N:46.71% Insuline
VA CB,CP N:80.25% Y:19.15% Vasoactive drugs
SA CB,CP N:58.75% Y:41.25% Sedative analgesics
ATF CB,CP N:94.08% Y:5.92% Antifungicals
VMI CB,CP N:58.46% Y:41.51% Invasive mechanical vent.
VMNI CB,CP N:95.71% Y:4.29% Non-Invasive mechanical vent.
Isol CB,AD N:82.19% Y:17.81% Isolation
LTSV CB,AD N:97.84% Y:2.12% Life support limitation

TABLE 2.4: Description of the patients in the heterogeneity study for
categorical and binary values (C: categorical, CB: categorical binary,

DE: demographic, CP: clinical parameter, AD: administrative.

and discarding the patients whose parameters did not meet the need to have the
data broken down by days, a database of 3973 patients discharged alive between
2016-19 at the Joan XXIII hospital is available.

The database is composed of 5 categorical variables (Type of patient, Type of
admission, Admission room, APACHE admission group and Main diagnosis), 11
Boolean variables (Arterial catheter, Urinary catheter, Central Venous catheter, In-
sulin, Vasoactive drugs , Sedoanalgesia, Antifungals, Antibiotics, Invasive mechan-
ical ventilation, Non-invasive mechanical ventilation, Isolated) 4 demographic vari-
ables (Age, gender, Year and previous days of admission), 12 dynamic variables
(Blood pressure, Heart rate, Temperature, Minimum glucose, Glucose maximum,
Glucose standard deviation, Days from admission and Days until discharge) and 13
scale variables (APACHE-II, Comorbidity, Adverse elements, Stratify, NAS, EMINA,
SOFA Cardio, SOFA CNS, SOFA Coagulant, SOFA Liver, SOFA Renal , SOFA Respi-
ratory and SOFA Total). Table 2.3 shows a description of the numerical and Table 2.4
shows a description of the categorical and binary variables of the database.

2.3 Public database

2.3.1 Introduction

The database provided by the Hospital Joan XXIII was used in the first study for
training the ICU patient discharge prediction algorithm. However, due to the lim-
ited number of patients in the database, there was a lack of progress in improving the
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26 Chapter 2. Medical background and data preparation

predictions. As a result, the potential use of a larger database was considered. There
are many public database that provide access to a vast amount of real world ICU
patient data. Some of the most used databases that are widely used in this domain
are:

• MIMIC-IV: The Medical Information Mart for Intensive Care (MIMIC-IV) is
a widely-used database that provides access to anonymous health records of
over 40,000 patients admitted to the intensive care unit between 2008 and 2019.
It encompasses a diverse range of information, including vital signs, laboratory
measurements, medications, demographics, and clinical outcomes.

• MIS Database: The Medical Information System (MIS) Database is a compre-
hensive ICU database that contains clinical data from patients admitted to the
ICU. It includes information such as vital signs, laboratory results, medica-
tions, and outcomes. The database is designed for research purposes and can
be accessed by researchers to study various aspects of critical care.

• eICU: The eICU Collaborative Research Database is a comprehensive database
focused on intensive care clinical information. It is employed for research pur-
poses and enhancing medical care in intensive care units (ICUs). It contains
extensive details about patients admitted to ICUs, encompassing demographic
data, diagnoses, treatments, and clinical outcomes. The eICU database was
developed as part of the Philips eICU project, which is a remote monitoring
system implemented in ICUs across hospitals worldwide. It comprised in-
formation on over 200,000 patients admitted to ICUs in hospitals across the
United States between 2014 and 2015.

The eICU database offers extensive ICU patient data and an ease of data pro-
cessing in a daily format that aligns with the research objectives of this thesis. The
database obtains data from electronic medical record systems employed in the ICU
to capture patient information throughout their stay. This comprehensive database
is utilized for clinical research purposes, including studying critical illness epidemi-
ology, forecasting patient outcomes, and enhancing the quality of ICU treatment.

However, it is important to note that access to the database is subject to regula-
tion and limitations due to ethical considerations and privacy concerns. Stringent
restrictions and ethical regulations have been implemented to ensure the protection
of patients’ privacy and the confidentiality of the information stored in the database.
We followed all the required conditions to get access to this database for the purpose
of this research.

2.3.2 Data pretreatment

Data extraction follows the same scheme as the previous database, that is, trans-
forming the data to obtain a single daily line for each day the patient is in the ICU.
To this end, a set of treatments has been done as described below:

• Only variables that had daily data available will be used. This implies that the
laboratory samples were discarded because they were specific data. Variables
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2.3. Public database 27

with gaps of more than two days were also discarded since they did not allow
the same treatment to be carried out as with the previous base of interpolation
or repetition of values depending on the day of stay in which the missing value
is found.

• Another new feature of the private database is the ability to determine the
patient’s destination on the day of discharge. This information allows us to
determine whether the patient is transferred to a different ward or, alterna-
tively, if they are transferred to the operating room or another location that
does not necessarily indicate their recovery. In such cases, only the duration
of the patient’s stay in the recovery ward is considered, as being transferred to
the operating room is viewed as an interruption of the stay and could poten-
tially introduce confusion to the algorithm.

• Similar to the transfer of a patient to an operating ward, mortality is consid-
ered an interruption in the patient’s progress towards recovery. As a result, all
patients who have passed away have been excluded from the analysis.

2.3.3 Parameter types

The variables were categorized into five distinct types as done in the public database
(Section 2.2):

• Demographic data: The variables that describe the cultural and socioeconomic
profile of a patient are much more extensive in this database. In addition to
age or gender, others such as ethnicity or occupation are also included.

• Categorical data: The variables used to classify patients into specific groups
based on a predefined set of options have been expanded. Alongside variables
such as admission type or prior treatment, we now also consider the patient’s
destination, enabling us to differentiate between those who were transferred
to the ward and those whose treatment was interrupted due to surgery or a
similar procedure.

• Boolean data: A boolean variable refers to a data that can have two possible
values: "true" or "false." It represents a binary condition or state related to a
specific aspect of the patient’s condition or treatment.

• Dynamic data: Dynamical data refers to patient information that changes over
the course of their hospital stay.

• Scale data: Scale data reflects patient’s health based on a numerical value.
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2.3.4 Time treatment

To ensure accurate prediction for patients upon their discharge from the ICU, all pa-
tient data is analyzed on a daily basis. To have more information, in addition to the
average daily values, two new variables have been introduced: the maximum and
minimum values for both boolean and numerical variables.

Initially, the numerical value for each patient in the private database was an av-
erage of the daily values throughout their stay. In this database the maximum and
minimum values attained on each day are also included. It should be noted that
these values are obtained after removing outliers, which improves the accuracy of
the data.

Regarding boolean variables, the maximum and minimum values represent the
highest and lowest values, respectively, recorded for each day of a patient’s stay.
This information allows us to determine if there has been a change in the patient’s
condition or if it has remained stable.

As part of the daily treatment process, certain variables that did not meet the
requirement of evolving throughout the patient’s stay, such as laboratory variables
(test results that do not change), were excluded.

Upon analyzing variables broken down by the hour, it was discovered that the
last day of a patient’s stay in the ICU typically corresponds to the final hours rather
than the entire day. Consequently, due to the lack of medical input during these
hours, the patient’s last day of stay was eliminated.

2.3.5 Final description

All the information is anonymized and it is impossible to identify the patient. The
internal IDs corresponding to the different tables that compose the database incor-
porate IDs to link the tables between them but do not allow further investigation.

After pretreatment of the data and discarding the patients whose parameters did
not meet the need for data broken down by days, a database of 16,585 discharged-
alive patients is available.

The database is composed of 2 categorical variables (APACHE admission group
and Unit Type), 6 Boolean variables (Mean, Minimum and Maximum non-invasive
mechanical ventilation and Mean, Minimum and Maximum invasive mechanical
ventilation), 3 demographic variables (Age, Gender and Ethnicity), 12 dynamic vari-
ables (Mean, Minimum and Maximum Temperature, Mean, Minimum and Maxi-
mum SpO2, Mean, Minimum and Maximum Blood Pressure, Mean, Minimum and
Maximum Heart Rate) and 6 scales (Mean, Minimum Pain Scale and Maximum,
Glasgow Comma Score Mean, Minimum and Maximum).

Table 2.5 shows a description of the variables variables of which the database is
composed.
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2.4 Preliminary analysis of DTD

An initial study was conducted using the database provided by the Hospital Joan
XXIII, presented in Section 2.2. This database contains information on patients who
have been admitted in the ICU. From the time a patient is admitted, the team of
healthcare professionals provides continuous care 24 hours and 7 days per week.

The Hospital Joan XXIII database contains a total of 3,973 patients who were ad-
mitted between January 2016 and November 2019. The database has been provided
with a collection of initial treatments, which are outlined and described as follows:

• All patients with a stay of more than 14 days have been discarded. This is
because in some cases the length of stay can take months, so we avoid similar
cases by limiting the stay to two weeks. This allows training the model with
cases in which a faster evolution of the patient is shown.

• The initial database has multiple variables to identify the evolution of the pa-
tient. However, not all variables are important and this can negatively impact
the result of the predictions. That is why, using Feature Importance technique,
we can identify those parameters that are most related to patient discharge.
The four techniques used to define the importance of variables are Informa-
tion Gain, Correlation, Gini Index and SVM.

• Another important factor to address is how to handle scale variables. These
variables consist of scores derived from formulas that incorporate several pa-
rameters. As these variables already capture the overall value and were al-
ready included in the initial database provided by the hospital, they are re-
moved from the database to prevent duplicated values. This case can be clearly
seen in the SOFA scale where data such as creatinine or bilirubin intervene.

In total, there are 49 important variables that are clinically relevant. These vari-
ables include demographic data, laboratory results (such as creatinine, platelet count,
and blood sugar level), clinical information (like oxygen saturation and primary and
secondary diagnoses), and pharmaceutical data (such as the use of sedatives, vaso-
pressors, and insulin). Additionally, the daily values of 15 scales that encompass
other patient parameters like APACHE-II, CaM-ICU, SOFA, EMINA, NAS, CHE,
and NAS have also been incorporated into the database.

2.4.1 Machine Learning for a basic DTD prediction model

The task of predicting the discharge day for critically ill patients in the ICU is a sig-
nificant challenge. To face this problem, Machine Learning tools, specifically the
Random Forest model, have been employed.

Random Forest enables the construction of multiple decision trees using the pro-
vided training data and some parameters. Each decision tree is trained indepen-
dently and generates a prediction for the desired outcome. During the training pro-
cess, the bootstrap technique is employed, which involves selecting random samples
from the training data with replacement. This means that some data points may ap-
pear multiple times, while others may not appear at all. Additionally, only a random
subset of features is considered at each split of every decision tree. Ultimately, the
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Random Forest combines the predictions from all the decision trees and produces
an averaged output as the final prediction. This approach reduces variance and en-
hances accuracy compared to using a single decision tree.

To properly train the Random Forest model, a 10-fold cross validation was uti-
lized. This technique assesses the model’s predictive capability by dividing the
dataset into ten equal parts. The model is trained using nine of these parts and
validated using the remaining one. This method helps prevent overfitting, which
occurs when the model becomes overly specific to the training data and fails to gen-
eralize to new data.

Once the model was trained, its performance was evaluated using three metrics:
mean absolute error (MAE), root mean square error (RMSE), and coefficient of de-
termination (R2). These metrics offer a comprehensive and accurate assessment of
the model’s effectiveness. The MAE measures the average absolute difference be-
tween the predictions and the actual values, indicating the average deviation of the
predictions from the true values. On the other hand, the RMSE calculates the square
root of the difference between the predictions and the actual values, assigning higher
weight to larger deviations. Lastly, the R2 is a statistical measure that indicates the
proportion of data variability that can be explained by the model.

2.4.2 Analysis of results

Out of the total 3973 patients included in the database, 67.33 % of them are male. The
average age of the patients is 58.95 years, with a standard deviation of 15.5 years.
The mortality rate is extremely low, and 85 % of the patients were hospitalized for a
duration ranging from 2 to 7 days. Table 2.3 and table 2.4 shows the results obtained
in detail. When examining the distribution of DTD for each patients we notice that
some parameters demonstrate similarities, as depicted in figure 2.1.

FIGURE 2.1: Distribution of LOS for different parameters
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FIGURE 2.2: Progression of RMSE mean (dotted line) and RMSE
mean ± st.dev (straight lines) for different cases.

In the process of applying the 10-fold cross-validation, we obtained certain val-
ues for Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared
(R2) which were 1.34, 1.73, and 0.61, respectively. These results show an improve-
ment compared to previous studies. Specifically, if we focus on the progression of
RMSE and examine figure 2.2, we can observe that as we include more cases, the re-
sults continue to improve. Overall, the root mean square error RMSE values suggest
predictions of less than a day for stays shorter than 10-11 days and less than two
days for stays ranging from 11 to 13 days.

In this previous work, published in (Cuadrado et al., 2019), we did not break
down our patient data by race or gender, nor did we create initial patient groups.
This was primarily due to the limited amount of data that was available to us. As a
result, we could not analyze at the beginning the impact that race or gender might
have on patient outcomes or develop targeted interventions that could benefit spe-
cific patient groups.

Although we were unable to consider these factors in our analysis, our research
still provided valuable insights into the care process and outcomes of ICU patients.
Our initial approach helped us to focus on the key factors that impact the length of
stay and days to discharge, which allowed us to identify areas for improvement in
the care process, which motivated the work presented in the rest of chapters of this
doctoral thesis.
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Chapter 3

Methods and measures to quantify
ICU patient heterogeneity

3.1 Introduction

In ICUs, it is essential to find comprehensive patterns or to develop predictive mod-
els to differentiate among patients with different DTDs. But, before we can identify
those patterns or make accurate DTD predictors, it is important to know more about
ICU patient heterogeneity and gain insight on the clinical parameters that could help
identifying patients with different DTDs.

Focused on patients discharged alive, in this work, we developed four alterna-
tive methods and their corresponding measures to quantitatively ascertain the het-
erogeneity of ICU patients with regard to their DTD values.

The first method (clinical parameter analysis) assumes that, as time passes, the
values observed for some (or all) clinical parameters converge to "normality"1 val-
ues, which justify patient’s discharge from the ICU. On the other hand, the variabil-
ity of values of these clinical parameters decreases as the patients approach to their
discharge day.

The second method (severity scales analysis) assumes that some clinical scales
measuring patient’s condition severity or care needs, such as SOFA (Moreno et al.,
1999; Lambden et al., 2019), NAS (Miranda et al., 2003), or EMINA (Roca-Biosca et
al., 2015), tend to normality values as the ICU patient stabilizes and improves along
the consecutive days in the ICU.

The third method (confusion analysis) uses a similarity function between pa-
tients to calculate how many ICU patients discharged in x days are similar to ICU
patients discharged in y days. If these measures are expressed as percentages, we
obtain that if x = y, 100% of the patients are similar, if x < y, the percentage de-
scribes the risk of premature discharges, if x > y, the risk of overdue discharges,
and if x 6= y, the risk of wrong patient discharges in x days. Here, patient hetero-
geneity is seen as the proportion of cases not discharged in x exact days, that are
indistinguishable from cases that are discharged exactly in x days.

The fourth method (cluster analysis) borrows internal evaluation methods from
the theory of cluster analysis to calculate the quality of DTD groups. Three of the
most common indices to calculate grouping quality are Davies-Bouldin (Davies and

1Here, normality must be understood in the context of an ICU.
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Bouldin, 1979), Dunn (Dunn, 1974), and silhouette (Rousseeuw, 1987). These mea-
sures can be modified to describe the level of heterogeneity among cases which are
clustered according to their DTD values.

The formalization of these four methods and metrics is done in section 3.2.2. An
study about the heterogeneity of patients at Joan XXIII Hospital is presented. The
results are exposed and discussed in section 3.3. All the studies confirmed the large
heterogeneity of ICU patients in this reference hospital.

3.2 Methods

Four methods to measure ICU patient heterogeneity with regard to their respective
days to discharge are formalized in this section.

3.2.1 Formal definition of the base concepts

Our analysis of heterogeneity is based on the study of N ICU patients discharged
alive, with Pi (i = 1, ..., N) being a sequence of daily descriptions of the patient in
terms of m clinical parameters; i.e., Pi = (di1, ..., di`i), with `i the length of stay (total
days of stay) of the i-th patient, dij = (vij1, ...,vijm) the description of the i-th patient
in her j-th day before ICU discharge (DTD), and vijk the value of the k-th parame-
ter of patient Pi in her j-th DTD. We assume dij structures do not contain missing
vijk values. This is a reasonable assumption when dealing with ICU patients, whose
clinical parameters are either automatically taken by ICU devices or systematically
recorded by ICU staff. Parameters which are measured several times along the day
can be replaced by one or more alternative parameters representing aggregated val-
ues such as the minimum, maximum, average, or the standard deviation in the day.

All m clinical parameters have a minimum value and a maximum value (see
Eq.3.1 and Eq.3.2) that are used to normalize the vijk values in an interval [0, 1] with
the min-max normalization Eq.3.3.

mink = min
i = 1, ..., N
j = 1, ..., `i

{vijk} (3.1)

maxk = max
i = 1, ..., N
j = 1, ..., `i

{vijk} (3.2)

vijk =
vijk � mink

maxk � mink
(3.3)
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Patient descriptions dij are used to define DTD groups. A group DTDj is de-
fined as the set of all the patient descriptions corresponding to the j-th day be-
fore discharge; see Eq.3.4. The number of patient descriptions in a DTDj group is
nj = #DTDj. Notice that, if j < j0, then nj � nj0 because some patients could have a
length of stay between j and j0 days.

DTDj =
[

i=1,...,N
{dij} (3.4)

Clinical parameters can be numerical or categorical. The similarity between
two normalized values v and v‘ of a given numerical parameter is simj(v, v‘) =
1 � (v � v‘)2. If the parameter is categorical, the similarity between two categories v
and v0 is simj(v, v‘) = 1, if v = v0, or 0, otherwise.

Using these parameter similarity functions, we define the similarity between any
two patient descriptors dij and di0 j0 as their root mean square resemblance (Eq.3.5).

sim(dij, di0 j0) =

s
1
m

·
m

Â
k=1

simk(vijk, vi0 j0k) (3.5)

Based on the previous concepts, we can formally describe the four methods and
related metrics that we propose to calculate DTD-based heterogeneity of patients in
an ICU. For the sake of simplicity, we consider DTD groups as DTDi = {di1, ..., dini}
(i = 1, ..., `), with ` the largest observed LOS, and the patient descriptors in the DTDi
group as dij = (vij1, ..., vijm), with vijk the normalized value of the k-th clinical param-
eter for the patient description dij of a patient that is in her i-th day before discharge.

3.2.2 Method 1: clinical parameters analysis

The clinical parameters should converge to normality values as the patients’ day of
discharge alive approaches. Simultaneously, the variability of the observed values
should decrease as the discharge day is closer. Heterogeneity here corresponds to
how much the average value of the parameters in a DTDi group deviates from the
normality values or normality range and, alternatively, how much the variability of
these values for patients within a DTDi group decreases as i approaches to one.

In order to measure these values, we use the mean and standard deviation Eq.3.6
and Eq.3.7 of the clinical parameter k for the patients in DTDi, and represent the
functions fk(x) = mean(k, x) and gk(x) = stdev(x, k) (k = 1, ..., m), for each one of
the m clinical parameters.

mean(k, i) =
1
ni

·
nk

Â
j=1

vijk (3.6)
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stdev(k, i) =

vuut 1
ni

·
nk

Â
j=1

(vijk � mean(k, i))2 (3.7)

The graphical representations of fk(x) and gk(x) show the evolution of the aver-
age value and variability of each clinical parameter as the discharge day is nearer.
This allows visual analysis of the patients’ heterogeneity with regard to their DTD.

3.2.3 Method 2: severity scales analysis

Several clinical scales or scores, such as SOFA, NAS, or EMINA, are frequently used
in ICU to measure different dimensions of the patient complexity, condition severity,
or care requirements. These scales simplify medical interpretation of the patient’s or-
gan failure (SOFA), the percentage of nursing activity required (NAS), or the risk of
developing pressure ulcers as a combined assessment of mental state, mobility, in-
continence, nutrition and activity (EMINA).

When treated as these medical parameters, the graphical representation of means
and standard deviations of scales in a DTDi group, as i evolves, provides informa-
tion to analyze patient heterogeneity in terms of the evolution of the patient com-
plexity. Intuitively, as a patient approaches to the discharge day, alive, scales should
get closer to their respective normality values and the fluctuation of scale values
among people in the same DTD group should reduce. Any other behaviour implies
a greater heterogeneity between ICU patients.

3.2.4 Method 3: confusion analysis

The patient similarity function in Eq.3.5 can be used to identify which patients in
DTDi are similar to which patients in DTDj (i, j = 1, ..., `).

We use the similarity function defined in Eq.3.5 in combination with a threshold
parameter d 2 [0, 1], such that Sd(i, j) in Eq.3.8 represents the set of all the patients
in DTDi which have a degree of similarity d or higher to some patient in DTDj. As d
approaches to one, similarity is more demanding and less patient descriptions d0 in
DTDi are similar to the pivoting descriptions d in DTDj.

Sd(i, j) =
[

d2DTDj

{d0 2 DTDi : sim(d, d0) � d} (3.8)

The number of patient descriptions in Sd(i, j) is nd(i, j) and the total number of
patient descriptors similar to patients in DTDi is calculated as sd(i) = Â`

j=1 nd(j, i) in
Eq.3.8.

In Figure 3.1, each block represents one of the ` DTD groups DTD`, ..., DTD1,
with DTDi the pivoting group. The dark areas are the patients in each group that
are similar to some patients in the pivoting group. The table at the bottom shows
some properties of the DTD groups: the number of patients in the group (nj) and the
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subset (Sd(j, i)), the number (nd(j, i)), and the proportion ( nd(j,i)
nj

) of patients in the
group who are similar to some of the DTDi cases.

FIGURE 3.1: Confusion-based analysis of patient heterogeneity.

With Eq. 3.9 and Eq. 3.10, we can also calculate the average number of patients
which are similar to other patients who were discharged n days before (or after).

bd(n) =
1

`� n
·

`

Â
i=n+1

nd(i, i � n)
ni�n

(3.9)

ad(x) =
1

`� n
·
`�n

Â
i=1

nd(i, i + n)
ni+n

(3.10)

The next values are used to define the following indicators and four confusion
ratios to measure heterogeneity as a degree of confusion, premature discharge, over-
due discharge, and feasible discharge error, respectively:

• The proportion of cases in DTDi which can be confused with patients in DTDj
(i.e., patients that are discharged in i days who are similar to patients dis-
charged in j days) (Eq.3.11).

cd(i, j) =
nd(i, j)

ni
(3.11)

• The proportion of cases similar to DTDi patients which are discharged in less
than i days (i.e., premature discharges) (Eq.3.12)

pd(i) =
1

s(i)
· Â

j<i
nd(i, j) (3.12)
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• The proportion of cases similar to DTDi patients which are discharged in more
than i days (i.e., overdue discharges) (Eq.3.13)

od(i) =
1

s(i)
· Â

j>i
nd(i, j) (3.13)

• The proportion of cases similar to DTDi patients which are discharged in a
number of days different from i (feasible discharge errors) (Eq.3.14)

ed(i) =
1

s(i)
· Â

j 6=i
nd(i, j) (3.14)

3.2.5 Method 4: cluster analysis

In statistical classification, cluster analysis is based on the premise that elements in
the same cluster are similar and elements in different clusters are dissimilar. Com-
bining these intra-cluster similarity and inter-cluster dissimilarity concepts, there
are several indices to assess the quality of a given clustering. Among them, Davies-
Bouldin (Davies and Bouldin, 1979), Dunn (Dunn, 1974), and average silhouette
(Rousseeuw, 1987) are some of the most used. The definition of these distance-based
indices on the basis of ICU patient similarity indices is done with Eqs. (3.15), (3.16),
and (3.17).

DB =
1
`

`

Â
i=1

max
1j 6=i`

2 � (mi(Ci) + mj(Cj)

1 � sim(Ci, Cj)
(3.15)

D =
1 � max1i<j`{sim(Ci, Cj)}

1 � min1i`{mi}
(3.16)

silhouette =
1

Â`
i=1 ni

·
`

Â
i=1

Â
d2DTDi

mi(d)� m(d)
1 � min{m(d), mi(d)}

(3.17)

These are based on the identification of one representative patient description Ci
for each DTDi group, with Eq.3.18. This representative is the patient in the DTDi
group with the greatest average similarity to the rest of cases in DTDi.

Ci = arg max
d2DTDi

mi(d) (3.18)
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The average similarity of any patient description d to a DTDi group is calcu-
lated with Eq.3.19, after removing d from DTDi, if d 2 DTDi. The average similarity
within a DTDi group is defined by Eq.3.20, and m(d) = maxj 6=i mj(d) is the greatest
average similarity of any patient description d in DTDi to any other DTD group.

mi(d) =
1
ni

· Â
d02DTDi

sim(d, d0) (3.19)

mi =
1
ni

· Â
d2DTDi

mi(d) (3.20)

The Davies-Bouldin, Dunn, and silhouette indices can be used to summarize the
quality of the DTD groups according to the similarity of the patient descriptions that
they contain, and therefore, provide information on the degree of heterogeneity of
the patients in the DTD groups.

3.2.6 UCI patient heterogeneity analysis

All the adult patients admitted in the ICU of the University Hospital Joan XXIII,
Spain, in the years 2016-2019 were taken to quantify the patient heterogeneity within
that service. Only patients discharged alive were considered. The daily information
of these patients in the 21 days previous to discharge was used in the analysis. Ta-
ble 2.3 from summarizes the mean, standard deviation, min, and max values of the
19 numerical clinical parameters, and table 2.4 summarizes the proportions of the
categories of the 18 categorical parameters. A distinction is made between numeri-
cal (N), categorical (C), and binary (CB) parameters, and also between demographic
(DE), clinical (CP), scales (SC)2, and administrative (AD) parameters. Both tables
can be found in section 2.2.

A total number of 3,973 patients were involved in the study, with a mean LOS of
8.56 days per patient (6.95 after trimming the data to 21 days). The total number of
daily patient descriptions was 27,611.

3.3 Results and discussion

The four methods proposed in this thesis chapter were applied to the data about
the ICU patients described in section 3.2.6, to measure patient heterogeneity among
these patients with regard to their days to discharge.

3.3.1 Patients heterogeneity based on clinical parameters analysis

Figure 3.2 describe the evolution of the mean and standard deviation of all the clin-
ical parameters in the different DTD groups (f(x) and g(x) normalized to 0-1). The
horizontal axes represent the number of days to discharge. In the first figure, most

2Scales different from SOFA, NAS, and EMINA were considered as clinical parameters in the anal-
ysis.
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of the parameters remain stable as patients move from DTD21 to the day before dis-
charge (DTD1). Some others, such as SOFA-Cardio, SOFA-CNS, and SOFA-Resp,
show a clear decrease from (denormalized) mean values 1, 2, and 1, down to nor-
mality value 0. Minimum and maximum mean daily glucose values also decrease
from 159-111 to 143-104 mg/dl, and mean heart rate from 118 to 111 bpm. On the
contrary, the mean arterial pressure (MAP) increases from 66 to 77 mmHg.

FIGURE 3.2: Clinical parameter of ICU patient heterogeneity for
mean values.

FIGURE 3.3: Clinical parameter of ICU patient heterogeneity for stan-
dard deviation.

Figure 3.3 describes variability of the clinical parameter values as the discharge
day approaches. Decrease of variability is evident for several parameters, particu-
larly in the last 10 days before discharge. For previous days, most of the parameters
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show continuous oscillations in variational peaks and instability. The largest vari-
ability reductions are observed for SOFA-Cardio, SODA-CNS, and SOFA-Resp.
Except for patient temperature, whose variability is always at a reasonable level,
and SOFA-Cardio and SOFA-CNS whose variability is above 25% until the day be-
fore discharge, the rest of clinical parameters show a variability in the last 10 days
between 10% and 25%. Among them, SOFA-Resp drastically reduces variability in
the last days, but the rest keep a smooth oscillation that concludes with STRATIFY
and Glu-std above 20%, Glu-max SOFA-Renal, SOFA-Coag, and SOFA-Cardio with
17%, and HR, Glu-min, SOFA-Resp, MAP, SOFA-Liver between 11% and 14%, the
day before discharge.

These high variabilities explain the great heterogeneity of patients with regard
to their clinical parameters, even if we only consider their conditions the day before
discharge.

3.3.2 Patients heterogeneity based on scales analysis

When we focus on the scale parameters of the clinical conditions of the patients, we
can observe some interesting patterns. Figure 3.4 shows the reduction of mean val-
ues of SOFA-Total, NAS, and EMINA scores in the last days before patient discharge,
with a trend towards normality values 2, 44, and 7, respectively.

Their variability in figure 3.5 stabilizes in a decreasing trend in the last five days,
with SOFA-Total and NAS reaching the lowest mean variation close to 10%. Such
variations are considered high, particularly for patients in their previous day to dis-
charge, and they reflect patient heterogeneity, concerning severity scales.

FIGURE 3.4: Scale analyses of ICU patient heterogeneity for mean
values.
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FIGURE 3.5: Scale analyses of ICU patient heterogeneity for standard
deviation.

3.3.3 Patients heterogeneity based on confusion analysis

Table 3.1 shows the nd(i, j) matrix and the confusion measures for d = 0.9. This value
of d states that two patient descriptions are similar only if a similarity of 0.9 or higher
is reached on a similarity scale from 0 to 1. The matrix shows that the largest values
are in the diagonal nd(i, i), since obviously all the ni patient descriptors in DTDi are
similar to some descriptor of a patient that will be discharged in i days. We also
observe that the values close to the diagonal are also large and that they decrease as
we move away from the diagonal. This means, that there is a degree of confusion
between patients that are discharged in close days, and this confusion decreases as
the difference between days to discharge gets larger. For example, position (4, 5)
indicates that 715 patient descriptions, out of the 2488 descriptions of the patients 4
days before discharge, resemble 90% to some patients who are discharged in 5 days.
Similarly, there are 416 patients to be discharged in 4 days that are similar to some
patients that are discharged in one day (see position (4, 1)).

In table 3.2 we have the confusion measures defined in this chapter (for = d 0.9).
Columns pd and od measure premature and overdue discharges. For example, in
average, 19% of the patients who resemble some patients discharged in two days,
are in fact discharged in one day, 29% of the cases similar to patients discharged in
three days, are discharged in less than three days, and 32% of those similar to pa-
tients to be discharged in four days are discharged in less than four days. Similarly
for column od, 47% of the patients looking like patients to be discharged in one day,
are in fact, discharged in two or more days, and 35% of patients similar to patients
discharged in two days are discharged in more than two days. Adding the values in
both columns we calculate the feasible average discharge error, which is represented
in column ed. That is to say, the number of patients not discharged in i days who re-
semble some cases discharged in i days.

If we analyze these results in terms of patient heterogeneity, we can confirm that
a large proportion of patients (37% on average) closely resemble the patients who
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TABLE 3.1: nd = 0.9(i, j) matrix similarity for d = 0.9

were discharged earlier, and that a non inconsiderable number of patients (26% on
average) are very similar to patients who were discharged later. In total, 63% of the
patients discharged one day resemble patients who where discharged other days,
on average. This represents a high heterogeneity in terms of DTD prediction since
patients who share practically the same clinical description may have different dis-
charge days.

Finally, columns bd and ad calculate equations 3.9 and 3.10, for n = 1, ..., 10. They
represent the average proportion of patients that resemble other patients that are
discharged n days before or after. For example, in average 28% of the patients are
similar to patients who are discharged one day before the first ones, and 16% are
similar to patients who are discharged two days before. Similarly, 32% of the pa-
tients are equivalent to the patients discharged one day later.

3.3.4 Patients heterogeneity based on cluster analysis

All patient descriptions in the dataset define a clustering which is determined by the
days to discharge of each patient description. These clusters correspond to the DTDi
groups (i = 1, ..., 21). The elements in DTDi describe patients who are i days before
discharge, and they are expected to be mutually more similar than patient descrip-
tions in different DTD groups.

Results in Table 3.3 shows that when calculating Davies-Bouldin, Dunn, and sil-
houette indices for DTD groups we obtain the values 11.43, 0.037, and -0.054. Ac-
cording to (Halkidi, Batistakis, and Vazirgiannis, 2001; Pakhira, Bandyopadhyay,
and Maulik, 2004; Kaufman and Rousseeuw, 1990), these values suggest that the
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TABLE 3.2: Confusion measures of ICU patient heterogeneity:
DTDi = l cardinalities ni, and confusion indices pd(i), od(i), ed(i),

bd(n), ad(n) (n = 1, ..., 10) for d = 0.9.

DTD clusters provide ’no substantial structure’. In other words, patients with a sim-
ilar DTD value are not necessarily similar, and patients with different DTD values
are not necessarily different, in clinical terms. This heterogeneity could be partially
attributed to the inclusion of patients with a large number of stay at ICU in the study.
For example, it would be natural for the patients in the DTD21 group to be very dif-
ferent from each other and thereby affect the final value of the indices. However,
when we consider exclusively the patients during their last week in the ICU, the
values obtained are 16.60, 0.03767 and -0.0403. And if only patients in the last three
days are considered, the values are 1.806, 4.21 and -0.0133, still very far from those
that describe a good classification. The Davies-Bouldin, Dunn and silhouette indices
therefore confirm the heterogeneity of the patients, according to their DTDs.

Group All periods Last 7 days Last 3 days
Davies-Bouldin 11.43 16.60 1.806
Dunn 0.037 0.03767 4.21%
Silohuette -0.054 -0.0403 -0.0133

TABLE 3.3: Results for patient heterogeneity based on cluster analy-
sis.

UNIVERSITAT ROVIRA I VIRGILI 
MACHINE LEARNING METHODS FOR PREDICTING DAYS TO DISCHARGE IN INTENSIVE CARE UNITS PATIENTS 
David Cuadrado Gómez



3.4. Conclusions 45

3.4 Conclusions

In this chapter, several measures of patient’s heterogeneity have been defined, each
measure takes a different perspectives of heterogeneity, using different indicators to
establish a procedure for evaluating the differences between patients at ICU. This
work contributes with a new set of methods and metrics to quantify patient het-
erogeneity in ICUs with a focus in the prediction of the days to discharge. These
methods and metrics come to cover a gap on the current available tools for patient
heterogeneity analysis.

The proposed metrics have been tested on the dataset of the ICU of the Univer-
sity Hospital Joan XXIII. Results confirm a high heterogeneity of conditions of the
patients within the same DTD group and also confusion between patients with dis-
tant DTDs, which may contain very similar patients. This is a clear indicator of the
complexity of making accurate DTD predictors, and it might be one of the reasons
for such few published works on this relevant ICU issue.

Even the results concern an ICU of a single hospital, instead of evaluating a
multi-center dataset, the inclusion of all the clinical cases seen in the ICU of the
reference hospital in the Tarragona province in Spain, providing ICU services to a
population of 750,000 inhabitants and including all the survival cases in four con-
secutive years, makes the study possibly representative of many other ICUs.

Due to this large coverage of this hospital, its ICU receives a great variety of pa-
tient types. Therefore, we can consider that the study done involves all the types
of ICU patients, making the analysis of heterogeneity very relevant. Constraining
our study to concrete patient types (e.g., surgical, scheduled, or emergency) would
naturally decrease the heterogeneity values. However, this is not the purpose of the
work on this doctoral thesis, which is develop a general method to predict the days
to discharge for any ICU patient. In fact, other ICU studies such as (Vranas et al.,
2017) use to involve all the ICU population in their works.

Other factors with a possible influence in the results are the internal organization
of the ICU, which may have decided some patient discharges based on organiza-
tional reasons rather than pure clinical reasons. This information is not available, so
it has not been possible to take it into account in this study.
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Chapter 4

Proposing derived variables for
Days-to-Discharge prediction

4.1 Introduction

In order to confront the long-term prediction limitation of static methods, dynamic
tools propose a day by day prediction of the days to discharge (DTD). So, a patient
with total LOS = x, in day y < x is expected to have a DTD prediction of x � y days.
This dynamic approach presents some conceptual benefits: (1) predictive errors in
day y can be fixed in subsequent days and clinical decisions readjusted, (2) predic-
tions are current and not based on the patient condition at the admission time days
ago, (3) as patients approach discharge, their clinical parameters tend to be normal1,
and it is expected that the accuracy of dynamic predictions may improve with re-
spect to the static predictions in the admission day.

However, not many works have been published on the prediction of DTD for
ICU patients. As demonstrated in Chapter 2, our preliminary study (Cuadrado et
al., 2019), Random Forest was applied to construct a DTD predictor for general ICU
patients which achieved an average root mean square error of 1.73 days, but patients
has a maximum stay of 7 days at the ICU. If we want to extend the study to include
more critical patients who stay at ICU for a longer time, we must take into account
the problem of heterogeneity identified in Chapter 3. Patients heterogeneity may
explain the reason why two clinically similar patients have very different discharge
days, and also why clinically different patients may have the same discharge day. To
try to reduce heterogeneity, we must study other kinds of indicators that may help
in the estimation of DTD.

In this chapter we present a series of studies with Artificial Intelligence tech-
niques that may be useful for the analysis and understanding of DTD in ICU. In
particular, we have focused on two other dimensions: biomarkers and phenotype
recognition.

• Identification of biomarkers for DTD prediction: In ICUs, multiple clinical signs
from patients are continuously recorded. Some of these values are aggregated
to provide a daily clinical summary of the patient’s condition, when combined
with other data that are captured once a day. These could be the subject of a

1This is only true for patients discharged alive for whom ICU discharge is due to stabilization of
their vital signs.
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feature selection process to determine which clinical parameters are more rel-
evant to determine the DTD of ICU patients, thus acting as DTD biomarkers.

• DTD phenotype recognition: A consequence of ICU patient heterogeneity is that
similar patients may have very different DTDs, and the opposite. This defines
DTD prediction in ICUs as a complicated task that could be simplified by the
identification of patient phenotypes representing subgroups of patients, all of
them with identical DTD. Technically, these phenotypes should have DTD pre-
cisions close to one, and DTD recalls as high as possible.

In section 4.2, we describe the methods that we followed for the analysis of these
new types of indicators. In section 4.3, we discuss about the clinical implications and
benefits that these results can entail. The conclusions are exposed in section 4.4.

4.2 Methods and Results

In this section, we address DTD-related information whose analysis can contribute
to a better understanding and management of patients in ICUs. For each one of these
issues, we describe the methods and Artificial Intelligence techniques that we have
used to deal with them, and the results obtained. All the studies were made on the
public dataset described in Section 2.3.

4.2.1 The data

Important information about patients admitted in the University Hospital Joan XXIII
in Spain was captured in a database providing daily description of all the ICU cases
in terms of demographic, clinical, and treatment features which are essential in the
professional decision of discharging patients from ICUs.

All the 3,973 patients discharged alive in 2016-19 were considered in this study.
The average LOS was 8.6 days, with 1 and 159 days the minimum and maximum
LOS. Only information of patients in their seven last days in the ICU was consid-
ered. The average age was 59.9, with all patients between 18 and 99 years, and 1,424
(35.8%) being women. There were 2,878 (72.4%) medical cases and 1,095 (27.6%) sur-
gical.

Forty-five parameters were considered: 5 categorical, 11 Boolean, and the rest
numeric. Eleven were static in the sense that they remained constant during all
the ICU stay of the patient. These were: "Age", "Gender", "DisYear", "PatType",
"AdmType", "AdmWardGroup", "PrevHospDays", "APACHE_Adm_Group", "Pinci-
pal_Diag_G", "APACHEII", and "CHE"2. Other parameters were taken at the rate of
once a day, including signs (e.g., platelets, bilirubin, or creatinine), scales (e.g., NAS -

2"Age": age of the patient at admission time, "Gender": female or male, "DisYear": year of ICU
diagnosis, "PatType": patient type as medical or surgical, "AdmType": either scheduled or urgency,
"AdmWardGroup": source among ER, surgery, other hospital areas, or other hospital, "PrevHos-
pDays": number of days in hospital previous to ICU admission, "APACHE_Adm_Group": post-
operations, heart failure, respiratory failure, trauma, etc., "Pincipal_Diag_G": principal diagnosis
group (e.g., respiratory system, infection, external injuries, etc.), "APACHEII": APACHE II score value
at ICU admission, and "CHE": Charlson comorbidity index.
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nursing work load, EMINA - pain scale, STRATIFY - risk of falling, or SOFA scores),
and treatment actions (most of them Boolean; e.g. arterial catheter, urinary catheter,
central venous catheter, insulin treatment, vasoactive drugs, analgesics, antibiotics,
mechanical ventilation -either invasive or not, etc.). The remaining five parameters
whose frequency of observation was below one day were aggregated per day and
represented by their mean, standard deviation, min, or max daily values (e.g., heart
rate, temperature, or glucose). As presented in Chapter 2, Table 2.5 describes the
dynamic numeric variables in the data set used.

4.2.2 Identification of DTD Biomarkers

The complexity of DTD analysis may be not only related to the heterogeneity of ICU
patients. Consequently, a different approach could be taken, based on the clinical pa-
rameters used to describe the ICU patients. To confirm this hypothesis, the relevance
of these parameters in relation to the DTD was analyzed with several supervised
feature selection methods. These methods were also used to identify low-relevant
features.

Two approaches were followed: one which considered DTD as a n-ary variable
and calculated the relevance of all parameters respect to this variable, and another
one that binarized the DTD variable by applying dummy coding without compari-
son group. In this last one, n DTD binary new parameters DTDx (x = 1, ..., n) were
obtained, such that DTDx was 1 for patients with DTD= x, and 0 for patients with
DTD 6= x.

For the first method, filter-type feature selection was applied with five selection
functions (Jović, Brkić, and Bogunović, 2015): information gain, information gain
ratio, correlation, Chi square, and Gini index. The results were min-max normalized
to allow cross comparison. The ten best parameters were kept as the most significant
in the study of DTD. They were:

• SOFA-CNS

• EMINA

• sedative/analgesic

• SOFA-Resp

• arterial catheter

• SOFA-Cardio

• SOFA-Total

• vasoactive drugs

• central venous catheter

• NAS

For the second method, we obtained the list of the most significant parameters
of every DTD value considered as an individual group . The normalized relevance
of these features was used to select those which were among the 30% best ones to
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TABLE 4.1: Significant biomarkers for each of last 7 DTD with a 30%
threshold.

DTD group Most significant parameters for biomarkers
DTD = 1 EMINA, SOFA-Total, SOFA-CNS, SOFA-Resp
DTD = 2 EMINA, SOFA-Total, SOFA-CNS, SOFA-Resp, STRATIFY, Tmp
DTD = 3 EMINA, SOFA-Total, SOFA-CNS, SOFA-Resp, STRATIFY, Tmp, TSA
DTD = 4 EMINA, SOFA-CNS, SOFA-Total, TSA, Tmp, SOFA-Resp, STRATIFY
DTD = 5 Tmp, TSA, SOFA-CNS, EMINA, SOFA-Total, SOFA-Resp, STRATIFY
DTD = 6 TSA, Tmp, Glucose min
DTD = 7 EMINA, Glucose min, HR, TSA, NAS, APACHE-II, Sofa-Resp

be considered for biomarkers. Table 4.2 shows the resulting features for each DTD
group.

The level of overlapping of values of the top three DTD possible biomarkers (i.e.,
EMINA, SOFA_Total, and SOFA_CNS) is represented with the boxplots in Figure
4.1.

FIGURE 4.1: Overlapping of EMINA, SOFA_Total, and SOFA_CNS
values among DTD groups.

4.2.3 Phenotype Extraction

The diversity of ICU patients in every DTD group limits the possibility of finding
general DTD prediction models. In order to alleviate this problem of finding general
descriptions for all patients in a DTD, we worked to identify patient phenotypes as
descriptions of subgroups of patients with the same DTD who cannot be confused
with patients with other DTDs.

To this end, we followed two methods. The first method applied subgroup dis-
covery (Herrera, 2011; Helal, 2016) in order to find interesting associations among
different variables with respect to the DTD, our property of interest. The second
method combined feature selection (Chandrashekar, 2014) and unsupervised clus-
tering, focused on numeric parameters, in order to first reduce the dimension of the
problem, and then, based on the selected features, find out interesting subgroups of
patients (i.e., phenotypes), with the use of k-means.

The first method, which used all the parameters of the dataset, discovered a sub-
group of patients for each DTD, each one with a possibly different feasible pheno-
type. The second method selected the most relevant numerical parameters for every
DTD group (i.e., group of patients with the same DTD). These are the ones contained
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in Table 4.2.

TABLE 4.2: Feasible phenotype for patients in their last seven DTD

DTD group Feasible phenotype
DTD = 1 SOFA-CNS = 0, SOFA-Resp = 0
DTD = 2 SOFA-CNS = 0, SOFA-Resp = 0
DTD = 3 SOFA-Resp = 0
DTD = 4 SOFA-Resp = 0
DTD = 5 SOFA-Liver = 0, TSA<2
DTD = 6 SOFA-Liver = 0, SOFA-Total = [2:4]
DTD = 7 SOFA-Total = [4:6]

During construction of phenotypes, the k-means algorithm was used to obtain
three subclusters per DTD group. The selection of k = 3 for each group of patients
with DTD=x attends to our intention to separate those patients who are closer to
patients with DTD < x (i.e., patients in a better health condition), and patients who
are closer to patients with DTD > x (i.e., patients in a worst health condition), from
those which are dissimilar to these (i.e., patients with a health condition that justi-
fies their discharge in x days), and therefore define a proper subgroup of patients
for DTD = x. For these proper groups (x = 1, ..., 7) and for their respective selected
features, a 95% confidence interval was calculated, in order to define one phenotype
per DTD group.

As a result we obtained 21 feasible phenotypes, one for each one of the k = 3
subgroups of each one of the seven DTD groups. To evaluate the quality of the phe-
notypes, the dataset was split in two subsets: patients admitted from 2016 to 2018
were used to obtain the phenotypes as previously explained, and patients admitted
in 2019 were used to make the testing.

We applied a Random Forest method to create a prediction model using the phe-
notypes. A a 10-fold cross validation was used, obtaining an accuracy of 75%, a
sensitivity of 23%, and a F1-value of 24%. We can see that these are low quality
scores for a prediction model, indicating that these phenotypes are not able to prop-
erly represent the knowledge required for DTD estimation. There results confirm
the complexity of generating clinical decision models for the problem of the stay du-
ration in ICU.

4.3 Discussion

Our experiences in the analysis of the days to discharge of patients in an ICU have
shown that this is a complex area of work. We explored four different DTD-related
issues with multiple methods and the help of a database on all the patients dis-
charged alive in an interval of six years from an ICU.

The study of patient heterogeneity can confirm the complexity of the field, and
having metrics to quantify this heterogeneity is not only good for benchmarking but
also to gain insight on different interpretations of what heterogeneity in ICU-DTD
means. When we gather all the patients in their x-th day before discharge in a DTDx
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group, the longitudinal analysis of the progression of the means (and standard de-
viations) of their clinical parameters contributes to identify whether there are some
parameters that we have to look at in order to determine if a patient is close to dis-
charge or not. In (Cuadrado et al., 2021), we found that SOFA-Cardio, SOFA-CNS,
and SOFA-Resp are scores playing this role. Alternative scores such as SOFA-Total
and NAS are also good at this purpose. An alternative interpretation of heterogene-
ity uses a distance function between ICU patients in order to calculate how confusing
is to predict discharge for the patients in a DTDx group by computing the quantity of
patients in DTDx who are similar to patients in other DTD groups. Our experiments
showed that the degree of confusion is extremely high, which hinders the possibility
of making good global DTD predictors, even for patients who are close to discharge.

The second issue analyzed concerns the identification of DTD biomarkers (Selleck,
2017). That is to say, measurable indicators concerning some biomedical condition
of the ICU patients that could simplify the "diagnosis" of the patients’ DTD group.
Our application of several feature selection techniques identified SOFA-CNS, EM-
INA, and sedative/analgesic as best general biomarkers, but these may change if
we focus on concrete DTD groups. For example, for patients in their 1, 2, 3, or 4 days
to discharge EMINA, SOFA-Total, and SOFA-CNS seem to be the best biomarkers,
but patient temperature (Tmp) becomes the most important for patients 5 or 6 days
before discharge. According to (Selleck, 2017), for an indicator to become a good
biomarker, it must meet (1) analytical validity (i.e., be accurate and reproducible),
(2) clinical validity (i.e., be medically meaningful and useful differentiating between
groups), (3) clinical utility (i.e., improve health care), and (4) other validities (e.g.,
cost-effectiveness, psychological implications, or ethical implications). Currently,
the indices out of our study fail to satisfy clinical validity due to the high level of
overlapping between DTD groups (see Fig. 4.1).

The third issue addressed in this work is the extraction of phenotypes from the
data that could identify subgroups of patients with a positive day to discharge. Our
first approach with subgroup discovery techniques obtained phenotypes based on
SOFA_CNS, SOFA_Resp, SOFA_Liver, TSA, and SOFA_Total. In the same way as
for biomarkers, the number of patients with different DTDs in the same phenotype
is high. Our attempt to overcome this problem with the generation of biomarkers
for each DTDx group by means of a binary analysis of all patients with DTD = x,
versus all patients with DTD 6= x, obtained low-sensitive DTD phenotypes that re-
quire futher improvement before they can be of practical use.

Our final issue concerned the application of supervised machine learning to con-
struct predictive models of DTD for ICU patients. Our first approach with regular
algorithms such as decision trees, naïve Bayes, or logistic regression were soon dis-
carded in favor of ensemble methods such as Random Forest, which so far, is the best
approximation that we have obtained for the analysis and prediction of the days to
discharge from the ICU (Cuadrado et al., 2019).
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4.4 Conclusion

Predicting DTDs of patients is essential to ICU management. Optimal prediction
with models achieving an average error below one day is still far from being a real-
ity. The high heterogeneity of ICU patients makes this a difficult objective. Here, we
proposed two ways to analyze the DTD problem from different perspectives.

These methods will be applied and tested using real data from ICU patients in
the next chapter. In addition, we discovered that before applying these methods, it
might be helpful to filter out certain patients to reduce the overall diversity of cases,
which could improve the accuracy of the predictions
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Chapter 5

Predicting ICU patients discharge
with a hybrid Machine Learning
model

5.1 Introduction

We have seen in previous chapters that ICU patients may have a large heterogeneity,
due to the diversity of their pathologies with an affectation of one or more threatened
vital functions, which are potentially reversible. All this variability in admission ex-
tends throughout the patient’s stay in the ICU, and is reflected in the great disparity
in patient’s evolution. Consequently, the days to discharge (DTD) prediction is a
difficult task, although it is essential for the proper management of an ICU in terms
of bed occupancy, pharmacological and non-pharmacological stock availability, staff
provision, flow of patients to and from other hospital units, etc. (Bai et al., 2018).

We have also seen that ICU patients are assessed in terms of demographic pa-
rameters such as gender or age at the ICU admission, in addition to some clinical
measures. During their ICU stage, some other clinical parameters such as tempera-
ture (T), heart rate (HR), mean arterial pressure (MAP), or peripheral oxygen satura-
tion (SpO2) are systematically monitored, some of them continuously, some others
at different discrete times during the day. These measurements are collected in the
health information systems and are used for medical decision making (McKenzie et
al., 2015). The hypothesis of this work is that these values can also be used to foresee
the days to discharge (DTD) of the patient.

Most existing studies seen in Chapter 2 focused on the prediction of LOS at
the admittance day. These LOS prediction methods reach root mean square errors
(RMSE) of 0.47-8.74 days and mean absolute errors (MAE) of 0.22-4.42 days (Cae-
tano, Laureano, and Cortez, 2014; Verburg et al., 2014; Li et al., 2019; Muhlestein
et al., 2019). It is worth to note that the study that obtained the best results (Caetano,
Laureano, and Cortez, 2014) applied the concept of tolerance, meaning that errors
which were proportionally below the tolerance level were discarded in the calcu-
lation of the average errors (i.e., LOS errors below 0.4⇥LOS did not count). The
second study with best results (Li et al., 2019) (RMSE 0.88 and MAE 0.87) worked
with a dataset with multiple covariates with 44-50% of missing values, whose man-
agement forcing a replacing value could have a high impact in LOS predictions.

In fact, some recent works (Kramer, 2017) question the capacity of computer-
based predictive models based only on the condition of the patient in the first 24-48
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hours after admission. Therefore, there is still a need to produce good, robust, and
generic models to predict DTD in ICUs. A good DTD model must have a low av-
erage error and must be robust in front of ICU patient heterogeneity. In (Cuadrado
et al., 2021), four methods to measure ICU patient heterogeneity respect to the DTD
were described. Among them, the DTD confusion matrix determines the number
of patients discharged in i days who are clinically indistinguishable from other pa-
tients who are discharged in j days (j 6= i). The results on 3,973 ICU patients with
a mean stay of 8.56 days admitted to a tertiary hospital in Spain showed that, on
average, 37% of the patients were clinically very similar to other patients who were
discharged before, and 26% to patients who were discharged later (Cuadrado et al.,
2021). Hence the difficulty of obtaining good DTD predictors and, perhaps, one of
the reasons that DTD prediction has not received the same amount of attention as
LOS prediction. Moreover, the only study we are aware of in this area obtained DTD
predictive models with an average error above one day (Cuadrado and Riaño, 2021).

In this chapter we will use machine learning techniques with the public dataset
described in Chapter 2, which has a population of highly heterogeneous ICU pa-
tients, with the aim to obtain a DTD predictive model with a mean absolute error
below one day (i.e., almost perfect prediction).

5.2 Methods and Technologies

5.2.1 ICU Data Cohort

In this chapter, in order to consider the most difficult case of diversity in patients, we
take the eICU Collaborative Research Database (Pollard, 2018), a public dataset that
includes patients admitted in the ICUs of hospitals across the United States between
years 2014 and 2015.

Only patients discharged alive were considered. Patients discharged on the same
day of their admission were not considered. These inclusion criteria took into con-
sideration other previous studies such as (Alghatani et al., 2021; Moitra et al., 2016;
Hachesu et al., 2013). In eICU, this cohort encompasses 16,585 patients with a total
of 84,032 rows corresponding to each of the days of treatment. From the data avail-
able, due to the need to have daily values, some covariates were discarded. The rest
were selected based on previous studies (Cuadrado and Riaño, 2021).

Table 5.1 gives some descriptors of the data in the column All. In general, the
average age is 63 years, with all patients between 18 and 90 years. A 45.61% are
women. A 46.07% of patients are admitted in Medical-Surgical Intensive Care Unit
(MSICU), 13.67% in Neurological Intensive Care Unit (NICU), 11.07% in Medical
Intensive Care Unit (MICU) and 29.19% are under other ICU (e.g., CCU-CTICU,
SICU, Cardiac ICU, etc.). Regarding duration, 26.30% remains one day, 11.08% two
days,9.98% three days, 9.41% four days, 8.37% five days, 7.91% six days, 6.31% seven
days and 20.65% remains eight days or more. The average length of stay is 5 days.

5.2.2 Patient Grouping

In order to achieve a good DTD prediction, we propose to divide the patients into
three subgroups in order to reduce their heterogeneity. The subgroups proposed
are based on the number of days staying in the ICU: short, medium and long stays.
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model

Short stays encompasses patients with a length of stay up to seven days. Medium
stays encompasses patients with a length of stay up to fourteen days (which in-
cludes all patients from short stays and also patients with a length of stay between
eight and fourteen days). Long stay encompasses patients with a length of stay up
to twenty one days (which includes all patients from short and medium stays and
also patients with a length of stay between fifteen and twenty one days). Patients
with a discharge on the same day as the admission (DTD=1) were excluded for not
being clinically relevant.

For the eICU database, short stays encompasses 8,799 patients, medium stays
11,432 patients and long stays 11,981 patients. The average LOS for short stays is
4.21 days, for medium stays is 5.54 days and for long stays is 6.07 days.

5.2.3 Measuring patients heterogeneity

The whole cohort was subject to an heterogeneity analysis in order to contextualize
the quality of the DTD predictive models obtained. Root mean square resemblance
was used to measure the pairwise clinical similarity between ICU patient conditions
in different days. Patient conditions with a resemblance value of 99% or above were
considered clinically equivalent. Following the heterogeneity measures introduced
in Chapter 3, we calculated the risk of discharging patients before (or after) time as
the average percentage of patients discharged in i days (i = 1, ..., 7) who have an
equivalent clinical condition to other patients that were discarded from the ICU in
more (or less) than i days.

Additionally, Davies-Bouldin (DB), Dunn (D), and average silhouette (S) were
also calculated for the each group using Eqs. (5.1), (5.2), and (5.3), in order to quan-
tify the degree of heterogeneity of the clinical conditions of the patients that are
discharged in the same number of days.

The heterogeneity measures are based on the number of remaining days, RDi,
with i = 1..`, being ` the maximum number of days of stay in the analysed group.
Let us denote as Ci the representative patient of the set RDi (i.e. the one with greatest
similarity to the rest of patients with the same number of remaining days); and let
us define mi(d) as the average similarity sim of a patient description d to any other
patient in the group. As similarity function, we have used the root mean squared
resemblance. Then, the indices can be defined as follows:

DB =
1
`

`

Â
i=1

max
1j 6=i`

2 � (mi(Ci) + mj(Cj)

1 � sim(Ci, Cj)
(5.1)

D =
1 � max1i<j`{sim(Ci, Cj)}

1 � min1i`{mi}
(5.2)
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S =
1

Â`
i=1 ni

·
`

Â
i=1

Â
d2RDi

mi(d)� m(d)
1 � min{m(d), mi(d)}

(5.3)

Davies-Bouldin index provides a positive value which is higher as heterogeneity
increases (Cuadrado et al., 2021). Dunn index also takes positive values. The higher
the value, the most heterogeneous are the groups. Silhouette values are in the range
[-1, +1], with values below 0.25 considered to reflect a high heterogeneity in the data.
The higher the degree of heterogeneity in a group, the more difficult is to obtain a
high predictive capacity of the data models constructed with machine learning.

5.2.4 Constructing DTD and LOS Prediction Models

In order to construct DTD and LOS prediction models with Artificial Intelligence,
we used three of the most successful machine learning algorithms. These algorithms
were Random Forest (Breiman, 2001), XGBoost (Chen and Guestrin, 2016), and light-
GBM (Ke et al., 2017). The prediction methods were implemented using the libraries
sklearn, lightgbm and xgboost. All models were constructed using 10-fold cross val-
idation method for testing and training with the covariate described in Table 5.1.

For LOS predictions, the methods were trained with the data of the patients in
their first 24 hours in the ICU for all patients together and also for the three sub-
groups separately. However, for DTD prediction, models have been trained not only
on the patient conditions after 24-48h ICU admission, but also on the daily clinical
condition of patient along their full ICU stay.

Each day of stay in the database is treated as an independent patient with a set
of parameters, therefore temporal patterns have not been captured.

For validation, we calculated the mean absolute error (MAE) and the root mean
square error (RMSE) of these three algorithms to predict DTD for the whole data set
and also for the three subgroups separately.

5.3 Results

This section presents the results of the different steps of the analysis done to build
a model of prediction of DTD. Firstly, we begin with the definition of the groups
of patients and its parameters. Secondly, we study the patient heterogeneity within
those groups. Thirdly, we build the DTD prediction model as well as a LOW pre-
diction model and we compare them and integrate them into the final hybrid model
proposed in this thesis as solution to the problem of predicting the duration of the
stay at ICU.

5.3.1 Groups of Patients

The resulting groups of patients are described in table 5.2. Column "N" is the total
number of days of data available for the patients in the group. The average lentgh
of stay is given in the last column. As expected, the amount of data is larger for the
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60 Chapter 5. Predicting ICU patients discharge with a hybrid Machine Learning
model

Long Stay group as patients spend more time at the ICU.

The parameters of the patients for the groups based on the number of days at
ICU are summarized in table 5.1. Column "All" of this table shows the mean, stan-
dard deviation, min and max values of the 13 numerical variables (type N), the 6
scales variables (type S) and the percentages of the most frequent values of the 4
categorical (type C) variables of the 84,032 days of treatment of the whole set of all
the patients. These values allow cohort comparison of the different groups of ICU
patients (Short, Medium and Long stays) with the whole set of days of treatment in
the ICU, from a population point of view.

Group Interval Patients N Avg. LOS
Short stay LOS >1 and LOS 7 8,799 37,014 4.21

Medium stay LOS >1 and LOS 14 11,432 63,298 5.54
Long stay LOS >1 and LOS 21 11,981 72,761 6.07

TABLE 5.2: Subgroups based on LOS. N is the total number of days
for the patients in the group. Last column shows the average LOS.

From the descriptive table of the groups (table 5.1), we obtain the following re-
sults in terms of characterization of the different groups. With respect to the numer-
ical variables, in general, all the groups display similar values to the ones observed
for the whole population of patients. Scales covariates shows the same similarities
with some exceptions in the average values of GCS_avg, GCS_min and GCS_max
(higher than the rest of subgroups and column All).

Categorical covariates shows more variations between column All and subgroups.
The three subgroups present lower number of patients admitted in Medical-Surgical
Intensive Care Unit (MICU) and a higher number admitted in Neurological Inten-
sive Care Unit (Neuro ICU) and Medical Intensive Care Unit (MICU) respect to
column All. Mechanical ventilation invasive (MVI) also shows difference between
all columns. Short stays present higher values (3 points above column All) while
Medium and Long stays present lower values (2 and 4 points respectively below
column All). Non-invasive mechanical ventilation (MVNI) also shows lower values
for medium and long stays (2 points below column All in both cases).

5.3.2 Patients Heterogeneity

Heterogeneity with respect to the DTD is measured for the whole data set and also
within each one of the three subgroups defined in table 5.2. The heterogeneity val-
ues obtained are included in table 5.3.

We obtained a high heterogeneity of treatment days with respect to DTD: 9.10%
the days of treatment, patients are 99% similar to other patients that were discharged
later, and 7.40 % of the days, patients are similar to other patients discharged earlier.
A Davies-Bouldin value of 63.61 and a silohuette value of -0.26 confirms the high
heterogeneity in ICU patients.

High heterogeneity is also present in the three subgroups. For example, 17.36%
of the days, patients are similar to other patients discharged later in Short stays,
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Metric All Short stay Medium stay Long stay
premature discharge 9.10 % 17.36 % 13.01 % 9.84 %
overdue discharge 7.40 % 12.43 % 10.00 % 9.81 %
Davies-Bouldin 63.61 49.93 67.07 81.34
Dunn 0.0007 0.0012 0.0011 0.001
Silhouette -0.26 -0.02 -0.04 -0.07

TABLE 5.3: Data and subgroup heterogeneity values.

and 12.43% to patients discarged before. However, the heterogeneity in terms of the
Davies-boulding, Dunn and Silhouette is smaller in Short Stays than in the rest of
groups. Silhouette index is the one that finds more cohesion when working with
three subgroups in comparison of having the all dataset as a whole. As expected, we
obtained the highest heterogeneity in the Long stay group, as it includes any patient
with a DTD below 22 days, with scores of 81.34 in Davis-Boulding and Silohuette of
-0.07. The more compactness of Short and Medium groups is encouraging for find-
ing appropriate models of DTD for these groups.

5.3.3 DTD Prediction

DTD predictive models for patients in ICU were obtained using the patient descrip-
tions of 84,032 days of treatment in the eICU dataset and also for the three subgroups
(see table 5.2). An hyperparameter optimization was performed for all algorithms.
The parameter used for the prediction models are described in table 5.4.

Models Parameters
Random Forest n.estimators=170, max.depth=80,

max.features=5, min.samples split=5
LightGBM boosting type=’gbdt’, num.leaves=131, max.depth=-1,

learning rate=0.1, n.estimators=100,
subsample for bin=2000, min.split gain=0.0,

min.child weight=0.001, min.child samples=20,
subsample=1.0, subsample freq.=0,

colsample bytree=1.0, importance type=’split’
XGBoost base score=0.3, booster=’gbtree’, n.estimators=208,

max.depth=5, learning rate=0.1, n.jobs=1,
objective=’reg: squarederror’, verbosity=1

TABLE 5.4: Parameters optimized for the prediction models.

A 10-fold-cross validation method was used to obtain the corresponding mean
predictive errors RMSE and MAE in their i-th day before discharge (i.e. remaining
days from i = 2, ..., 21) for all patients and for every subgroup, which are gathered
in table 5.5, 5.6 and 5.7. In bold, we highlighted the best predictions for each day of
stay (i.e. each row).
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R.D. All Short stay Medium stay Long stay
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

2 1.15 0.9 0.56 0.4 0.96 0.74 1.23 0.97
3 0.98 0.68 0.41 0.31 0.77 0.54 1.04 0.75
4 0.85 0.58 0.48 0.37 0.65 0.47 0.89 0.62
5 0.79 0.59 0.71 0.57 0.66 0.51 0.8 0.59
6 0.86 0.66 0.98 0.84 0.83 0.64 0.82 0.62
7 1.06 0.82 1.25 1.12 1.11 0.87 0.99 0.76
8 1.32 1.02 1.44 1.18 1.26 0.96
9 1.66 1.33 1.81 1.54 1.6 1.27
10 2.02 1.69 2.16 1.89 1.95 1.62
11 2.4 2.05 2.53 2.24 2.33 1.99
12 2.82 2.46 2.91 2.6 2.76 2.4
13 3.22 2.84 3.33 2.99 3.15 2.78
14 3.55 3.15 3.54 3.2 3.49 3.09
15 3.95 3.51 3.88 3.45
16 4.37 3.91 4.3 3.84
17 4.7 4.22 4.64 4.16
18 5.21 4.69 5.15 4.63
19 5.75 5.19 5.64 5.09
20 6.23 5.62 6.02 5.46
21 6.42 5.83 6.22 5.64

TABLE 5.5: RMSE and MAE of the Random forest model for DTD
prediction for each number of remaining days (R.D.)

R.D. All Short stay Medium stay Long stay
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

2 1.4 1.13 0.53 0.37 1.12 0.89 1.49 1.22
3 1.17 0.86 0.44 0.32 0.89 0.66 1.22 0.92
4 1.08 0.82 0.5 0.37 0.82 0.63 1.08 0.82
5 1.14 0.9 0.68 0.49 0.92 0.72 1.09 0.85
6 1.32 1.05 0.88 0.67 1.13 0.88 1.22 0.96
7 1.61 1.27 1.12 0.89 1.44 1.14 1.48 1.17
8 1.92 1.53 1.77 1.42 1.78 1.44
9 2.3 1.86 2.15 1.76 2.17 1.81
10 2.68 2.22 2.51 2.1 2.54 2.15
11 3.09 2.62 2.87 2.49 2.96 2.51
12 3.59 3.08 3.25 2.88 3.44 2.96
13 3.96 3.45 3.72 3.3 3.8 3.32
14 4.3 3.77 3.87 3.48 4.15 3.62
15 4.75 4.18 4.58 4.02
16 5.18 4.6 5.01 4.43
17 5.45 4.88 5.29 4.73
18 6.02 5.43 5.9 5.31
19 6.79 6.15 6.57 5.96
20 7.11 6.46 6.88 6.28
21 7.39 6.64 7.08 6.36

TABLE 5.6: RMSE and MAE of the LightGBM model for DTD predic-
tion for each number of remaining days (R.D.)
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R.D. All Short stay Medium stay Long stay
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

2 2.09 1.75 1.64 1.59 1.76 1.46 2.24 1.91
3 1.78 1.34 0.98 0.87 1.39 1.07 1.88 1.45
4 1.59 1.21 0.5 0.4 1.21 0.96 1.63 1.24
5 1.57 1.28 0.76 0.62 1.32 1.09 1.54 1.24
6 1.78 1.49 1.42 1.28 1.68 1.39 1.67 1.39
7 2.22 1.85 2.13 1.97 2.21 1.87 2.07 1.71
8 2.73 2.29 2.79 2.45 2.58 2.16
9 3.36 2.92 3.44 3.12 3.23 2.8
10 4.02 3.59 4.07 3.78 3.88 3.46
11 4.72 4.31 4.72 4.43 4.58 4.18
12 5.5 5.09 5.39 5.11 5.36 4.97
13 6.23 5.84 6.07 5.77 6.1 5.73
14 6.79 6.38 6.13 5.79 6.68 6.27
15 7.53 7.1 7.36 6.95
16 8.26 7.83 8.1 7.67
17 8.74 8.32 8.58 8.16
18 9.6 9.16 9.48 9.05
19 10.5 10.03 10.29 9.84
20 11.02 10.51 10.6 10.09
21 10.96 10.14 10.54 9.77

TABLE 5.7: RMSE and MAE of the XGBoost model for DTD predic-
tion for each number of remaining days (R.D.)
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Random Forest is the algorithm that obtains the best DTD predictors in all sub-
groups, with the exception of short stays (LOS up to 7 days) where MAE and RMSE
values in lightGBM model outperform for days 2, 5, 6 and 7 days. XGBoost is the
worst DTD modeller in all subgroups, producing models with a MAE and RMSE
above 1 day for short stays, above 6 days in medium stays and above 10 days for
long stays.

For the RMSE values, the average difference between Random Forest and Light-
GBM is 0.06 for short stays (with LightGBM outperforming above 5 days), 0.22 for
medium stays and 0.30 for long stays (with Random Forest outperforming every day
in both groups).

For the MAE values, the average difference between Random Forest and Light-
GBM is 0.09 for short stays (with LightGBM outperforming above 5 days), 0.19 for
medium stays and 0.27 for long stays (with Random Forest outperforming every
day in both groups). The whole data set (group All) shows MAE and RMSE values
below 1 day between days 3 and 6 but there is always a MAE and RMSE value in
some of the other subgroups that outperforms the results obtained when using the
whole dataset.

Broadly speaking, results show that Random Forest and lightGBM are good pro-
ducing ICU patient DTD predictors for patients with a length of stay up to 7 days
which are optimal in the sense that their root mean square error (RMSE) and their
mean absolute predictive error (MAE) are always below one day (with the exception
of the seventh day). Random Forest is also good producing DTD predictions for pa-
tients with a length of stay up to 14 and up to 21 days with RMSE and MAE values
below one day in the last 7 days before discharge. This last week is the most crucial
in the planning of at the ICUs, because gives the opportunity to know in advance,
with quite small error, the date of discharge and therefore make a proper scheduling
of beds, personnel and other resources, in addition to having the possibility of ad-
vancing the planning of the transfer of the patient to any other hospital unit.

Model Measure All Short stay Medium stay Long stay
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Random Forest avg. 3.0 2.6 0.7 0.6 1.7 1.5 2.9 2.5
std.dev. 1.9 1.8 0.3 0.3 1.0 1.0 1.9 1.8
avg. 2-6 0.9 0.7 0.6 0.5 0.8 0.6 1.0 0.7
st.dev. 2-6 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2

LightGBM avg. 3.6 3.1 0.7 0.5 2.0 1.7 3.5 3.0
std.dev. 2.2 2.0 0.3 0.2 1.1 1.0 2.1 1.9
avg. 2-6 1.2 1.0 0.6 0.4 1.0 0.8 1.2 1.0
st.dev. 2-6 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.2

XGBoost avg. 5.5 5.1 1.2 1.1 3.2 2.9 5.4 5.0
std.dev. 3.4 3.4 0.6 0.6 1.8 1.8 3.3 3.3
avg. 2-6 1.8 1.4 1.1 1.0 1.5 1.2 1.8 1.4
st.dev. 2-6 0.2 0.2 0.5 0.5 0.2 0.2 0.3 0.3

TABLE 5.8: RMSE and MAE average and standard deviation for DTD
prediction for each model

The average and deviation of the MAE for each of the 4 groups is given in ta-
ble 5.8 taking into account all the days of each group (blue), and also considering
only the remaining days below 7 in each group (green). We can see that Random
Forest gives the lowest errors. The best average of the MAE is 2.5 with a deviation of
1.8 for the All and Long groups for the Random Forest model, but it is much smaller
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for the Short stay (mean of 0.6, stdev of 0.3 and the Medium stay (mean of 1.5, stdev
of 1.0. This indicates that using different prediction models for each case would lead
to better results in general. Considering only the last week of stay at ICU, the predic-
tions made are much better. The mean MAE obtained for Random Forest is between
0.5-0.7 with a maximum standard deviation of only 0.2.

5.3.4 DTD versus LOS Prediction

In order to have a global perspective of the predictive capacity of DTD models for
ICU patients, we also constructed models for LOS prediction by training the Ran-
dom Forest, the XGBoost, and the lightGBM algorithms using only the data of the
patients in their first 24 hours in the ICU. The average errors (RMSE and MAE) after
10-fold cross validation are shown in tables 5.9, 5.10 and 5.11. Each row corresponds
to the number of remaining days of stay at ICU.

R.D. All Short stay Medium stay Long stay
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

2 1.2 0.9 0.95 0.84 1.45 1.26 1.63 1.4
3 1.16 0.8 0.59 0.49 1.18 0.98 1.43 1.16
4 0.99 0.69 0.29 0.21 0.87 0.65 1.14 0.84
5 0.99 0.72 0.41 0.31 0.67 0.47 1.01 0.69
6 0.95 0.73 0.79 0.68 0.54 0.42 0.8 0.57
7 1.13 0.87 1.25 1.12 0.78 0.6 0.8 0.62
8 1.31 0.98 1.06 0.83 0.98 0.75
9 1.63 1.25 1.44 1.2 1.27 0.98
10 1.95 1.57 1.84 1.6 1.59 1.29
11 2.27 1.88 2.25 1.99 1.95 1.63
12 2.77 2.37 2.71 2.43 2.44 2.11
13 3.27 2.84 3.25 2.93 2.94 2.58
14 3.46 3.04 3.53 3.19 3.16 2.79
15 4.04 3.58 3.73 3.33
16 4.36 3.9 4.09 3.67
17 4.7 4.22 4.41 3.99
18 5.03 4.52 4.83 4.36
19 5.77 5.22 5.52 5
20 6.25 5.68 5.89 5.35
21 6.47 5.85 6.19 5.62

TABLE 5.9: RMSE and MAE of the Random forest model for LOS
prediction for each number of remaining days (R.D.)

The best results, which are marked in bold, are for the Random Forest algorithm.
We can see that Random Forest method generally outperforms the other methods in
all the days. Short stay subgroup results shows that LightGBM slightly outperforms
for the last day of stay in ICU while Random Forest shows better results for every
day in the other subgroups.

In general, results for DTD prediction models are better than LOS prediction
models when applied in the last days of stay.
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R.D. All Short stay Medium stay Long stay
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

2 1.45 1.14 0.94 0.8 1.62 1.44 1.87 1.66
3 1.36 0.99 0.62 0.46 1.27 1.03 1.53 1.24
4 1.24 0.94 0.39 0.29 0.96 0.71 1.23 0.91
5 1.3 1.02 0.5 0.37 0.8 0.59 1.09 0.78
6 1.38 1.1 0.81 0.64 0.77 0.6 0.99 0.75
7 1.67 1.32 1.12 0.89 1.06 0.83 1.14 0.9
8 1.94 1.5 1.36 1.06 1.36 1.07
9 2.28 1.78 1.72 1.38 1.68 1.32
10 2.65 2.13 2.11 1.76 2.02 1.6
11 2.99 2.45 2.49 2.14 2.36 1.92
12 3.63 3.08 3.02 2.64 2.92 2.44
13 4.28 3.69 3.69 3.28 3.54 3.02
14 4.29 3.69 3.83 3.39 3.5 2.95
15 5.09 4.48 4.25 3.67
16 5.37 4.77 4.55 3.94
17 5.57 5.01 4.75 4.16
18 6 5.41 5.24 4.61
19 7.11 6.51 6.15 5.5
20 7.59 7 6.48 5.82
21 7.88 7.1 6.88 6.12

TABLE 5.10: RMSE and MAE of the LightGBM model for LOS pre-
diction for each number of remaining days (R.D.)

Differences between DTD and LOS prediction models become more evident when
they are used to predict the discharge times of patients in their i-th day before dis-
charge (i = 2, ..., 21), separately.

Figures 5.1, 5.2 and 5.3 show that DTD models have better performance (with
lower values in both RMSE and MAE) when the stay arrives at its end. In particu-
lar, DTD models should be used in the last 1-3.5 days for short stays, 1-5 days for
medium stays and 1-6 days for long stays. We observed that these values corre-
spond to the average length of stay for every subgroup (i.e., 4.21 for shot stays, 5.54
for medium stays and 6.07 for long stays).

Since DTD models have been trained not only on the patient conditions after
24-48h ICU admission, but also on the daily clinical condition of patient along their
full ICU stay, the amount of data to train the model is larger than in LOS models,
resulting in better results for DTD models at the end of stay.
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R.D. All Short stay Medium stay Long stay
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

2 2.04 1.69 1.64 1.59 2.52 2.42 2.84 2.7
3 1.92 1.43 0.98 0.87 1.95 1.76 2.37 2.1
4 1.67 1.28 0.5 0.4 1.39 1.1 1.83 1.46
5 1.68 1.38 0.76 0.62 1.07 0.83 1.52 1.13
6 1.76 1.47 1.42 1.28 1.02 0.85 1.26 1.02
7 2.19 1.81 2.13 1.97 1.51 1.26 1.49 1.26
8 2.6 2.09 2.03 1.71 1.9 1.55
9 3.14 2.58 2.68 2.36 2.45 2.05
10 3.78 3.28 3.36 3.1 3.1 2.75
11 4.3 3.81 4 3.75 3.68 3.31
12 5.2 4.74 4.8 4.55 4.54 4.2
13 6.15 5.69 5.76 5.48 5.47 5.11
14 6.3 5.85 6.05 5.77 5.71 5.34
15 7.49 7.07 6.77 6.42
16 8.01 7.56 7.35 6.96
17 8.29 7.83 7.68 7.31
18 8.92 8.48 8.44 8.05
19 10.33 9.92 9.66 9.29
20 10.98 10.53 10.17 9.81
21 11.09 10.34 10.12 9.47

TABLE 5.11: RMSE and MAE of the XGBoost model for LOS predic-
tion for each number of remaining days (R.D.)
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FIGURE 5.1: Prediction errors for Short Stays
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FIGURE 5.2: Prediction errors for Medium Stays
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FIGURE 5.3: Prediction errors for Long Stays
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5.4 Date of discharge prediction system

The most spread approach of predicting patient stays in ICU with the use of Artifi-
cial Intelligence models that consider only the data captured in the first 24-48h after
admission does not give enough accuracy. Without undermining the importance of
this type of prediction, it does not seem justified that, as the clinical condition of
the patients evolve, the new information about the patient’s state is not taken into
account to dynamically predict the DTD of the corresponding patients.

In this chapter, we have empirically proven that the dynamic prediction models
of DTD improve the quality of static prediction of LOS for the last 4-6 days of stay at
ICU. We have also seen that building different prediction models for 3 different sub-
groups of patients improves the RMSE and MAE. The creation of three subgroups
based on the number of days of stay of an ICU patient (short, medium and long)
allow us to determinate when the DTD model prediction obtains better results than
LOS model prediction since DTD model is trained with daily clinical condition of
patient along their full ICU stay.

Therefore, a hybrid model could drastically improve the results in prediction
models for ICU patients using LOS models at the beginning of stay and DTD mod-
els at the end of the stay.

Consequently, considering that we have built the LOW and DTD models with
Random Forest, the proposal we make consists of the following steps:

• When a patient is addmitted at ICU, calculate LOS with the All model.

• if LOS  7 days use the LOS-Short prediction model the first days, and the
DTD-Short model in the last 4 days until discharge.

• if LOS > 7and  14 days use the LOS-Medium prediction model the first days,
and the DTD-Medium model in the last 5 days until discharge.

• if LOS > 14 days (Long stay) use the LOS-Long prediction model the first
days, and the DTD-Long model in the last 6 days until discharge.

This combination of models should give the date of discharge to the ICU person-
nel with enough advance to make a proper planning of the end of the patient’s stay
at this critical hospital unit, since the Mean Absolute Error is below 1 day in most of
the predictions, and below 0.5 in the last days of stay.
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Chapter 6

Conclusions and future work

6.1 Conclusions

This doctoral thesis has addressed the complex problem of calculating the duration
of the stay of any patient admitted at an Intensive Care Unit.

While there have been many studies conducted on estimating the length of stay,
there has been a lack of articles focusing on days to discharge in a dynamic way. This
lack of references was an additional handicap of this thesis, since we had no security
about the potential of dynamic DTD calculation to predict ICU patient discharge.
Addressing this gap in the literature, makes this work even more interesting for the
medical community as well as for the point of view of an Artificial Intelligence doc-
torate.

With the thesis aim to obtain a prediction for ICU patient discharge below 1 day,
this manuscript has described the work done during these years of doctorate study.

Chapter 2 made a review of related works and then focused on analyzing the
various parameters of patients in the intensive care unit. This analysis serves as a
foundation for evaluating the potential accuracy of predicting when patients will be
discharged. Additionally, the conclusive outcomes of our research make it possible
to apply our findings to both studies on length of stay and days to discharge. The
chapter ended presenting a preliminary analysis to predict the days to discharge in
a small hospital. Although the study had limitations because of the small number
of patients, the initial findings emphasized the significant value of the investigation.
The difficulty in developing predictors for days to discharge is the reason why there
is a lack of articles addressing this topic.

Chapter 3 highlights the complexity of predicting DTD for heterogeneous pa-
tients in ICUs. To improve DTD prediction accuracy, four methods and their cor-
responding measures were proposed for analyzing patient heterogeneity and tested
on patients admitted in Hospital Joan XXIII. Results confirmed high heterogeneity of
conditions of the patients within the same DTD group and also confusion between
patients with distant DTDs. The study involved all the types of ICU patients mak-
ing the analysis of heterogeneity very relevant and improves the understanding of
the heterogeneity in the ICU and the development of a more accurate DTD predictor.

Chapter 4 addressed the issue of heterogeneity’s complexity by studying the for-
mation of patient groups based on some derived variables, as second contribution.
By categorizing patients according to their DTD biomarkers and identifying poten-
tial phenotypes, results shows that the complexity remains high, although it seems
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that the creation of distinct groups of patients may help to build more specific pre-
diction models.

Chapter 5 brought together the previously discussed ideas and implemented
them in a different hospital that had a larger number of patients. The main contribu-
tion of the thesis is give in this chapter. The first step was to analyze the differences
among patients in terms of how long they stayed in the intensive care unit, which
led to the identification of three separate groups based on their duration of stay. Af-
terward, predictive models were used to forecast the patient outcomes. The findings
indicated that models focusing on length of stay produced superior results for pa-
tients with shorter stays, whereas models concentrating on days to discharge were
more effective for patients with longer stays. Therefore, a hybrid model combining
days to discharge and length of stay is proposed in order to improve the results in
prediction of the date of discharge.

6.2 Future work

Given the lack of articles focusing on days to discharge in the literature, it is crucial
to continue exploring its potential contributions to predicting ICU patient discharge.
This can involve conducting more extensive studies with larger sample sizes to val-
idate and refine the initial findings. As mentioned in Chapter 4, the study faced
limitations due to the small number of patients in the initial analysis for the private
database. Conducting further research with a larger sample size would enhance
the reliability and statistical power of the predictive models. It would also enable
a more comprehensive examination of patient subgroups, leading to more accurate
predictions for days to discharge. The study carried out with the public database has
made it possible to observe that a greater number of patients improve the prediction
results, so the expansion of the private database will favor the prediction results in
hospitals.

The thesis also highlighted the challenges encountered in creating predictors for
days to discharge, which might explain the lack of research in this domain. To ad-
dress this, future efforts can concentrate on enhancing the accuracy of days to dis-
charge prediction models by integrating a wider range of patient data, exploring in-
novative variables or biomarkers, and harnessing advanced machine learning meth-
ods. With the constant evolution of healthcare, new biomarkers and medical data
are likely to emerge. By incorporating these novel factors into the predictive mod-
els, their precision and predictive abilities could be significantly improved. Con-
sequently, ongoing research should focus on incorporating up-to-date and relevant
biomarkers into the analysis to enhance the predictive capacity of days to discharge
models.

Future work should focus on translating the research findings into practical ap-
plications in clinical settings, aiming for real-world implementation and impact.
Collaborating with healthcare professionals is essential to ensure that the predic-
tive models are effectively integrated into the existing healthcare workflow. By
involving them, the research can be focused to address specific clinical needs and
challenges. The development of decision support tools or guidelines based on the
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predictive models could empower healthcare providers to make well-informed de-
cisions regarding patient discharge from the ICU. Such tools could consider various
factors, including patient vitals, medical history, and response to treatment, to gener-
ate timely and accurate predictions. Ultimately, the successful deployment of these
tools would not only enhance patient care by facilitating optimized discharge de-
cisions but also improve resource allocation within the ICU, ensuring that critical
resources are efficiently used.

Finally, the future work of this thesis should focus on addressing the consider-
ation of temporal treatment in the database to significantly improve the predictive
models. Predicting the discharge of a patient from the ICU implies a deep under-
standing of the evolution of their health status over time. Therefore, it is crucial
to adequately capture and analyze the temporal sequences of medical events and
treatments that the patient underwent during their stay in the ICU. Incorporating
this temporal dimension into the data will allow the models to detect more precise
patterns and trends, which will translate into more accurate predictions about the
appropriate time to discharge a patient. The focus on time sequence analysis could
also help identify which specific treatments have had a significant impact on patient
recovery, which would be of great use to medical staff in making informed deci-
sions about hospital discharge. Consequently, this focus on temporal treatment in
the database represents a promising opportunity to improve the efficacy and rele-
vance of predictive models in the ICU setting and, ultimately, to improve the quality
of care and outcomes for critical patients.
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