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Abstract

Decentralized computing is a growing paradigm that distributes computing tasks
and decision making across a network. It brings forth numerous advantages,
including resilience, scalability, privacy, and reduced dependence on central au-
thorities. The rise of blockchain technology and other decentralized solutions,
such as peer-to-peer networks, distributed ledger technologies, and decentralized
file systems, has fueled the expansion of the field.

For example, decentralized computing can provide a solution to the tension that
arises between the General Data Protection Regulation (GDPR) and big data
analytics, which comes from the conflicting goals of privacy protection and data-
driven insights. The GDPR aims to protect the privacy rights of individuals and
ensure the responsible handling of personal data. It imposes strict requirements
on organizations that collect, process, and analyze personal data, including the
principles of lawfulness, transparency, purpose limitation, data minimization, and
data subjects’ rights. Big data analytics, on the other hand, involves processing
and analyzing large volumes of diverse data to extract valuable insights and pat-
terns. It often requires collecting and processing large amounts of personal data
to uncover correlations, trends, and predictive models. The use of big data ana-
lytics has the potential to deliver significant societal benefits, such as improving
healthcare, enhancing cybersecurity, and optimizing business operations.

Decentralized protocols such as Federated Learning or Fully Decentralized Ma-
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chine Learning offer a solution to this dilemma by eliminating the need to send
data from client devices to global servers. Instead, the raw data on edge devices
are used to train the models locally, thereby increasing data privacy.

This thesis focuses on one of the most important issues in decentralized protocols:
how to ensure that all agents involved perform as expected. Nodes that deliber-
ately deviate may do so to attack the system or simply to take advantage of it
without contributing.

Based on the notion of co-utility, we have designed several ethics-by-design frame-
works to solve the conflict among privacy and some security properties in three
different decentralized and privacy-preserving computing scenarios: i) Federated
learning; ii) Fully decentralized learning; and iii) Multi-party computation. These
types of protocols facilitate collaboration among multiple parties or entities to
achieve a common goal and operate under certain trust assumptions.
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Resum

La computació descentralitzada és un paradigma creixent que distribueix les
tasques informàtiques i la presa de decisions mitjançant una xarxa. Aporta nom-
brosos avantatges, com resistència, escalabilitat, privadesa i menys dependència
d’entitats centrals. L’expansió de la tecnologia de les cadenes de blocs (blockchain)
i d’altres solucions descentralitzades, com les xarxes entre iguals, les bases de
dades distribuïdes o els sistemes de fitxers descentralitzats, ha impulsat l’expansió
d’aquest camp.

Per exemple, la computació descentralitzada pot aportar una solució a la tensió
que sorgeix entre el Reglament General de Protecció de Dades (RGPD) i l’anàlisi
de dades massives, a causa dels objectius contraposats de protecció de la privadesa,
d’una banda, i d’extracció del coneixement de les dades, de l’altra. El RGPD
pretén protegir els drets de privadesa de les persones i garantir el tractament re-
sponsable de les dades personals. Imposa requisits estrictes a les organitzacions
que recopilen, processen i analitzen dades personals, inclosos els principis de lic-
itud, transparència, limitació de la finalitat, minimització de dades i drets dels
interessats. L’anàlisi de dades massives, per la seva banda, implica el tractament
i l’anàlisi de grans volums de dades diverses per extreure’n informació i patrons
valuosos. Sovint requereix recopilar i processar grans quantitats de dades per-
sonals per descobrir correlacions, tendències i models predictius. L’ús de l’anàlisi
de dades massives pot reportar beneficis socials importants, com ara la millora
de l’assistència sanitària, la millora de la ciberseguretat i l’optimització de les
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operacions empresarials.

Els protocols descentralitzats com l’aprenentatge federat (Federated Learning) o
l’aprenentatge automàtic totalment descentralitzat (Fully Decentralized Machine
Learning) ofereixen una solució a aquest dilema en eliminar la necessitat d’enviar
dades des dels dispositius client cap als servidors globals. En comptes d’això, les
dades dels dispositius perifèrics es fan servir per entrenar els models localment,
cosa que n’augmenta la privadesa.

Aquesta tesi se centra en una de les qüestions més importants en aquest tipus
de protocols: com garantir que tots els agents implicats actuïn com s’espera.
Els nodes que es desvien deliberadament podrien fer-ho per atacar el sistema o
simplement per aprofitar-se’n sense contribuir-hi.

Basant-nos en la noció de coutilitat, hem dissenyat diversos protocols per resoldre
el conflicte entre la privadesa i algunes propietats de seguretat en tres escenaris
diferents de computació descentralitzada i preservadora de la privadesa: i) apre-
nentatge federat; ii) aprenentatge totalment descentralitzat; i iii) computació mul-
tipart. Aquests tipus de protocols faciliten la col·laboració entre múltiples parts
o entitats per assolir un objectiu comú i operen sota certs supòsits de confiança.
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Resumen

La computación descentralizada es un paradigma en auge que distribuye las tar-
eas informáticas y la toma de decisiones a través de una red. Aporta numerosas
ventajas, como resistencia, escalabilidad, privacidad y menor dependencia de en-
tidades centrales. El auge de la tecnología de las cadenas de bloques (blockchain)
y de otras soluciones descentralizadas, como las redes entre pares, las bases de
datos distribuidas o los sistemas de archivos descentralizados, ha impulsado la
expansión de este campo.

Por ejemplo, la computación descentralizada puede aportar una solución a la
tensión que surge entre el Reglamento General de Protección de Datos (RGPD) y
el análisis de datos masivos, debido a los objetivos contrapuestos de protección de
la privacidad, por un lado, y extracción del conocimiento de los datos, por el otro.
El RGPD pretende proteger los derechos de privacidad de las personas y garantizar
el tratamiento responsable de los datos personales. Impone requisitos estrictos a
las organizaciones que recopilan, procesan y analizan datos personales, incluidos
los principios de licitud, transparencia, limitación de la finalidad, minimización
de datos y derechos de los interesados. El análisis de datos masivos, por su parte,
implica el tratamiento y análisis de grandes volúmenes de datos diversos para
extraer ideas y patrones valiosos. A menudo requiere recopilar y procesar grandes
cantidades de datos personales para descubrir correlaciones, tendencias y modelos
predictivos. El uso del análisis de datos masivos puede reportar importantes
beneficios sociales, como la mejora de la asistencia sanitaria, la mejora de la
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ciberseguridad y la optimización de las operaciones empresariales.

Los protocolos descentralizados como aprendizaje federado (Federated Learning) o
aprendizaje automático totalmente descentralizado (Fully Decentralized Machine
Learning) ofrecen una solución a este dilema al eliminar la necesidad de intercam-
biar datos desde los dispositivos cliente a los servidores globales. En su lugar, los
datos de los dispositivos periféricos se utilizan para entrenar los modelos local-
mente, lo que aumenta la privacidad.

Esta tesis se centra en una de las cuestiones más importantes en este tipo de
protocolos: cómo garantizar que todos los agentes implicados actúen como se
espera. Los nodos que se desvían deliberadamente podrían hacerlo para atacar al
sistema o simplemente para aprovecharse de él sin contribuir.

Basándonos en la noción de co-utilidad, hemos diseñado varios protocolos para
resolver el conflicto entre la privacidad y algunas propiedades de seguridad en
tres escenarios diferentes de computación descentralizada y preservadora de la
privacidad: i) aprendizaje federado; ii) aprendizaje totalmente descentralizado; y
iii) computación multiparte. Estos tipos de protocolos facilitan la colaboración
entre múltiples partes o entidades para alcanzar un objetivo común y operan bajo
ciertos supuestos de confianza.
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Chapter 1

Introduction

1.1 History of decentralized computing

The history of computing is characterized by a succession of centralization and
decentralization periods. At the dawn of computing, no one imagined a global
market larger than a thousand devices. Mainframes were purchased by govern-
ments and big companies to execute complex managerial and operational tasks.
These computers had the size of rooms or small buildings and, at the very be-
ginning, only single users could access them at a time, using punched cards or
paper tapes. Due to those constraints, both computation and access to com-
puting resources were extremely centralized. As new computer systems evolved,
electronic devices for entering data into the mainframes appeared. These dumb
terminals (essentially a keyboard and a monitor) allowed multiple users to work
with mainframes concurrently but were still totally dependent on the mainframes’
computing resources.

In the 80s, the appearance of personal computers led to the first taste of decen-
tralization in computing. Instead of dumb terminals, each user got their own
computer at home, with their own CPU and their own memory. However, most
home computers were not connected to each other, and could only communicate by

1
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2 Chapter 1. Introduction

sharing physical memory devices such as tapes or floppy disks. Thus, applications
were more independent, split, or disconnected rather than actually decentralized.

It was not until the early 2000s that decentralization certainly arose. With the
widespread deployment of the Internet, peer-to-peer (P2P) systems for file trans-
fer and cooperative computation appeared. P2P file-sharing projects like Napster
or BitTorrent or distributed computing projects like the Great Internet Mersenne
Prime Search (GIMPS) or SETI@Home showed the great potential of decentral-
ized applications.

However, the evolution of computing and the reduction of costs in storage space
hampered or reversed this path of decentralization. People and (a few) organiza-
tions took advantage of cheap computation and storage resources to build large,
centralized services on which very popular applications were built: social media
sites such as Facebook, LinkedIn, Twitter, or Instagram, file-sharing services such
as Dropbox, Google Drive, or One Drive, and instant messaging services such as
WhatsApp, Telegram, Messenger, etc. The rise of massively distributed (but not
decentralized) data centers and systems and the availability and general access
to them made it easier than ever to create applications that can serve millions
of users. Most of the content we create and the data we generate today is again
centralized in resources owned by just a few companies.

This scenario, while most certainly convenient for users, is also quite lucrative
for these (few) companies. Access and control over user data have allowed the
birth of a new kind of economy, based on access and analysis of personal data
to profile users to, on the one hand, provide personalized services and second,
and more important for these companies, to serve targeted ads that maximize
their economic returns. In time, it has been demonstrated with cases such as the
Facebook–Cambridge Analytica data usage scandal1 that placing trust in these
centralized services might not be in the best interest of users.

In response to this scenario and its associated technical and ethical issues, a
pushback to computational and storage resources to the edge of the networks,
involving decentralized architectures, has gained momentum lately2. In the field
of information and communication technologies, a system is called decentralized
when multiple, different, and independent authorities control different system
components so that no authority has full control of the whole system and no full

1https://en.wikipedia.org/wiki/Facebook-Cambridge_Analytica_data_scandal
2https://redecentralize.org/
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1.2. Motivation 3

trust is required in any of the authorities. They are not just network topologies
but systems with a purpose, which execute protocols to achieve some specific
goal. These protocols are run by passing messages between nodes, with other
nodes often serving as intermediaries to relay the messages.

One of the most, if not the most, promising and disruptive technology is blockchain,
a distributed ledger that maintains a continuously growing list of linked ordered
records, called “blocks”, and with distributed consensus protocols in place to main-
tain the integrity and consistency of the database. Blockchains, in addition to
cryptocurrency transactions, support mechanisms such as smart contracts that
can be used to build a new ecosystem of distributed applications (DApps) and
services. Among those are decentralized identity management, user content stor-
age, networking, computing services, etc., which combined may bring forth new
communication paradigms such as Web3. Although this ecosystem is still very
young and no standards have been defined yet, DApps and Web3 have the poten-
tial to allow users to recover control of their data and to empower them against
powerful corporations.

1.2 Motivation

As we have briefly discussed above, we are currently in the middle of a techno-
logical revolution. On one side, we witness the emergence of a new generation of
increasingly sophisticated technologies and Internet services allowing new forms
of communication. On the other side, every day more and more devices are being
connected to the Internet, not only smartphones, laptops, or powerful computers
but also new Internet of Things (IoT) devices such as cars, smart home devices,
and industrial or e-health equipment. The development of faster and more reliable
networks, especially with the extensive roll-out of 5G, accelerates the pace with
which IoT deployment occurs. This massive ecosystem produces colossal amounts
of data every day3 and most of them are collected, processed, stored, and ana-
lyzed in huge data centers with a serious impact on the environment. From the
very beginning, companies have examined their own big data to extract mean-
ingful insights4 such as hidden patterns, unknown correlations, market trends,
and customer preferences, leading to a profound transformation of the traditional

3https://financesonline.com/how-much-data-is-created-every-day/
4https://www.nytimes.com/2012/02/19/magazine/shopping-habits.html
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4 Chapter 1. Introduction

business model and our society. Moreover, most of the new Internet services cap-
italized on the collection of user private data, which has become a new currency
of the digital era, exchanging and merging them for secondary uses in a global
and enormous data market.

The aforementioned behaviors imply evident threats to users’ privacy. On May
2018, the European General Data Protection Regulation (GDPR) came into force
and quickly became adopted as a de facto global privacy standard by Internet
companies. It limits the collection, processing, and sharing of personally iden-
tifiable information (PII) and guarantees specific privacy rights to data subjects
(physical or legal entities to which the personal data belongs) ensuring that per-
sonal data “can only be gathered legally, under strict conditions, for a legitimate
purpose”. Furthermore, data controllers (the entity that determines the purposes
and means by which personal data is processed) must implement privacy-by-design
techniques to protect PII against intruders.

Hence, there is currently an intense tension between two opposing interests: on
the one side, the GDPR and its goal to provide greater protection and rights to
individuals. On the other side, the extremely valuable analysis of the data and
the promotion of data sharing between organizations and public authorities to
advance research and hence the welfare of humankind in many fields.

Regarding big data analysis, for example, the traditional approach is to have
a centralized entity that holds big datasets gathered and merged from different
sources which can be used, for example, to train machine learning models. This
method leads to high efficiency and accuracy but puts the privacy of users at risk.
Users are willing to benefit from accurate and better predictions but may not
want to share their own raw data. Hence, some privacy-preserving techniques are
needed in order to protect the user’s data while training a model. Some (rather
limited and computationally expensive) techniques allow training ML models with
encrypted datasets so users can encrypt their sensitive data before uploading them
to the servers where the analyses are carried out. Other techniques rely on the
use of data perturbation methods and assume that the users can provide mod-
ified values for sensitive attributes so as to keep the real value private. These
techniques are largely based on statistical disclosure control techniques. An al-
ternative approach to cope with this dilemma is to never send the sensitive data
directly to the server and leverage decentralized computing to build a common,
robust machine learning model.

UNIVERSITAT ROVIRA I VIRGILI 
CO-UTILE PROTOCOLS FOR DECENTRALIZED COMPUTING 
Jesús Alberto Manjón Paniagua 



1.3. Aims of the research 5

The main benefits of computing in decentralized scenarios come from the lack of a
central authority. First, by removing the central node, we have a system with no
real single point of failure. Second, the scalability and flexibility improve because
the computational resources are spread among all the nodes and more computing
power can be added at any moment. Finally, without a central authority, no node
in the network needs to collect and manage the data of the rest of the nodes. The
trust that a node needs to place in third parties can be reduced or even removed.

However, decentralized computing is not free of problems. Due to the lack of a
central coordinator, decentralized systems require more complex management of
routing, naming, and consistency. These systems may prevent some conventional
attacks but introduce new threats: as data go through several nodes between the
sender and the receiver, data integrity might be compromised and the analysis of
traffic and/or metadata might jeopardize privacy. Nevertheless, one of the major
hurdles for decentralization to become widespread is how to guarantee that all
agents involved perform as expected. Nodes that intentionally deviate may do
so to attack the system (malicious behavior) or just to benefit from the system
without contributing to it (selfish behavior).

The most usual approach when designing protocols for decentralized computing is
to assume a behavior that is semi-honest (agents will honestly follow the protocol
rules, although perhaps they will try to learn more than they should about other
agents) or malicious (agents may arbitrarily deviate from the prescribed rules).
As a result, although decentralized computing can in principle lead to more ethical
solutions than centralized computing, correct behavior from all agents cannot be
taken for granted, because they are autonomous and their motivations might not
be aligned with the general purpose. In this case, artificial incentives should be
added to compensate for the influence of negative utilities and to compel agents
to behave as they should.

1.3 Aims of the research

The main objective of this thesis is to design ethics-by-design protocols for decen-
tralized computing in the rational model, that court rational agents into adhering
to them, in order to solve the conflict between some ethical values and security
properties. These features are captured by the notion of co-utility[1], a design
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6 Chapter 1. Introduction

paradigm to build self-enforcing protocols that make mutual help between ratio-
nal agents the best strategy.

Three different decentralized and privacy-preserving computing scenarios are con-
sidered, where protocols enable collaboration between multiple parties or entities
to achieve a common goal under specific trust assumptions:

• Federated learning (FL, [2]) is a machine learning technique where each
federated device shares its local model parameters with a model manager
instead of sharing the whole dataset used to train it. By design, federated
learning is more privacy-friendly than the traditional approach because the
private data used for training the models are not uploaded to the model
manager. However, information on the user’s private data may still be leaked
by the model update returned by the user. A major security problem of FL
is that it is vulnerable to Byzantine attacks, aimed at preventing the model
from converging, and to poisoning attacks, aimed at causing convergence to
a wrong model.

• Fully decentralized machine learning (FDML, [3]) is the extreme form
of federated learning. Unlike FL, in this scenario each peer is its own model
manager and uses other peers as workers that compute model updates based
on their respective private data, exchanging messages without any central
coordination.

• Multiparty computation (MPC, [4]) protocols allow several parties to
compute a joint function in such a way that each party’s inputs and outputs
remain private to that party. Example applications include secure statisti-
cal analysis, financial oversight, electronic voting, secure machine learning,
auctions, biomedical computations (in particular those involving highly sen-
sitive data, such as genetic information), etc.

1.4 Contributions of the research

Our contributions are ethics-by-design protocols to solve the conflict between some
ethical values and security properties in the above three scenarios.

In the first contribution, we build a co-utile federated learning framework that
offers both privacy to the participating peers and security against Byzantine and
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1.5. Thesis outline 7

poisoning attacks. The framework consists of several protocols designed in such a
way that no rational party is interested in acting maliciously. This makes our pro-
tocols robust against security attacks. The protocols also provide strong privacy
to the participating peers via unlinkability between peers and their updates, and
without requiring the aggregation of model updates. In this way, peer updates
reach the model manager individually, while being, at the same time, perfectly ac-
curate. This provides an optimum balance between security, privacy, and learning
accuracy.

Our second contribution presents a co-utile approach to fully decentralized ma-
chine learning that allows perfectly accurate individual updates to be returned by
peers to the model manager in a privacy-preserving manner. Rational (that is,
self-interested) peers can be expected to follow the protocol we propose without
deviating, thanks to a tit-for-tat mechanism that renders the protocol naturally
co-utile. This makes our proposal sustainable and robust against rational security
attacks.

Finally, in the third contribution, we propose an MPC protocol that is agnostic to
the specific computation to be performed (that is, any function can be computed).
Our method assumes a P2P community is available, makes a minimalistic use of
cryptography, and leverages co-utile computation outsourcing using anonymous
channels and a decentralized reputation mechanism.

1.5 Thesis outline

The remainder of this thesis is organized as follows. In Chapter 2, we discuss the
necessary background on peer-to-peer networks, co-utility, machine learning, and
multiparty computation. In Chapter 3, we present our first contribution, a co-
utile framework for federated learning. The fully decentralized machine learning
scenario is addressed in Chapter 4. In Chapter 5, we then propose a general-
purpose co-utile MPC protocol. Finally, concluding remarks and some guidelines
for future research are given in Chapter 6.
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Chapter 2

Background

In order to make the understanding of the upcoming chapters easier, this chapter
provides some required background information: Section 2.1 provides an overview
of peer-to-peer networks, including Distributed Hash Tables, and an introduc-
tion to incentive and reputation systems, focusing on the EigenTrust algorithm.
Section 2.2 gives some background on co-utility. Section 2.3 presents the decen-
tralized paradigms for machine learning and some related security and privacy
attacks. Finally, Section 2.4 introduces the concept of Multiparty Computation
(MPC) and the evolution of MPC protocols.

2.1 Peer-to-peer networks
A peer-to-peer network is a computer network that enables peers to share network
resources, computational power, and data storage, without relying on a central
authority. Unlike traditional client-server networks, where servers only provide
content, and clients only consume content, in P2P networks each peer is equally
privileged, both a client and a server. Peers act autonomously responding to a
common communication and consensus protocol. In this way, the members of
the network can exchange information directly and without intermediaries. P2P
networks are the natural architecture for decentralized computing protocols.

Peer-to-peer networks generally implement some form of virtual overlay network
on top of the physical network topology, where the nodes in the overlay form a

8
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2.1. Peer-to-peer networks 9

subset of the nodes in the physical network. Overlays are used for indexing and
peer discovery, and make the P2P system independent from the physical network
topology. Based on how the nodes are linked to each other within the overlay
network, and how resources are indexed and located, we can classify networks as
unstructured or structured. In unstructured networks, connections among peers
are formed arbitrarily without a particular structure. In order to discover other
peers in the network, these query data using some techniques such as flooding
or random walking. However, in structured networks, peers organize themselves
in specific network topologies and maintain information about the resources that
their neighbors possess. Some of these networks impose constraints both on node
(peer) topology and on data placement to enable efficient discovery of data. The
most common indexing system is the Distributed Hash Table (DHT). Similar to a
hash table, a DHT provides a lookup service with (key, value) pairs that are stored
in the DHT. Any participating peer can efficiently retrieve the value associated
with a given unique key. Different DHT-based systems such as Chord [5], Pastry
[6], or CAN [7] differ in their routing strategies and their organization schemes
for the data objects and keys. For example, Chord uses a variant of consistent
hashing [8] to assign keys to nodes. In the basic variant of a DHT, when a peer
joins or leaves a P2P network, the lookup tables stored by each of the peers
have to be recomputed to assign pieces of data to the new peers, which is an
expensive operation. In contrast, consistent hashing is designed to let peers enter
and leave the network with minimal overhead. When a peer leaves the network,
only the data that were mapped to that peer need to be reassigned. We use a
similar mechanism in our second contribution to disseminate the models in the
fully decentralized machine learning scenario.

2.1.1 Incentives and trust in peer-to-peer networks

Lack of cooperation (free riding) is one of the key problems in P2P systems.
The anonymous and open nature of these networks often results in many peers
selfishly benefiting from the network resources while not contributing any of their
own resources. Peers have natural disincentives to cooperate because cooperation
consumes their own resources and may degrade their own performance. As a
result, users attempting to maximize their own utilities effectively lower the overall
utility of the network and, eventually, make the system collapse.

The main theoretical framework to study these possibly conflicting interactions
in the literature is game theory [9], which often models P2P systems as a Pris-
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10 Chapter 2. Background

oners’ Dilemma [10]. Two classes of incentive schemes have been considered:
soft schemes, which use a reputation system to model the peers’ behavior allow-
ing peers to determine their decisions depending on the reputations of the other
peers; and hard schemes, which use monetary payments to compensate peers con-
tributing to the P2P network [11]. These methods also provide the P2P network
with a level of robustness against malicious nodes.

Reputation systems have been used from the very beginning mainly in the context
of packet forwarding [12] and file sharing, one of the main applications of P2P
networks in the early days. Many reputation systems were proposed for these
kinds of P2P networks [13], being EigenTrust [14] one of the most cited and
adapted systems.

2.2 Co-utility

Domingo-Ferrer et al. proposed the notion of co-utility in [1, 15, 16], as a type
of interaction between rational agents in which the best option for each agent to
reach her own goal is to help other agents reach theirs.

2.2.1 Self-enforcing protocols

A protocol specifies a precise set of rules that govern the interaction between
agents performing a certain task; that is, it details the expected behavior of each
agent involved in the interaction for the task to be successfully completed. For
protocols to be effective, they must be adhered to. This is not problematic when
the participating agents cannot deviate by design, but it becomes an issue when
the agents are free to choose between following the protocol or not. Although
free agents cannot be forced to follow a protocol, rational free agents can be
persuaded to do it if the protocol is properly designed. These protocols are called
self-enforcing protocols.

With rational agents in mind, game theory [17] is the natural way to formalize the
concept of protocol because this theory models interactions between self-interested
agents that act strategically. In [15], a game is used to model all the possible inter-
actions among agents in the underlying scenario. In particular, the game includes
also those interactions among agents that are not desired. Then, a protocol is
regarded as a prescription of a specific behavior in the underlying scenario, that
is, a sequence of desired interactions.

UNIVERSITAT ROVIRA I VIRGILI 
CO-UTILE PROTOCOLS FOR DECENTRALIZED COMPUTING 
Jesús Alberto Manjón Paniagua 



2.2. Co-utility 11

Domingo-Ferrer et al. focused on sequential games with perfect information be-
cause this is quite a common and basic type of interaction between agents. We
say that a game is sequential if, at the time of choosing a move, previous moves
made by other agents are known (at least to some extent), and a sequential game
is said to be a perfect information game if the agent about to make her move has
complete knowledge on the previous moves made by the other agents.

A perfect information game G can be represented in extensive form as a tree
where:

• Internal nodes represent decision-making points and are labeled with the
name of the agent making the move;

• Leaf nodes are labeled with the utility each of the agents gets if the leaf is
reached;

• Outgoing edges in a node represent the actions available to the agent making
the decision.

A protocol Π on a game G is either a path from the root to a leaf or a subtree
from the root to several leaves. Π is self-enforcing if, at each successive node of the
protocol path, an agent selects a move that yields an equilibrium of the remaining
subgame, that is, of the portion of the game that remains to be played. Nash
equilibrium in game theory is a situation in which each player, after taking into
consideration the opponent’s strategy, has no incentive to deviate from her own
because she could not increase her expected utility and would not have anything
to gain.

For example, let us find Nash equilibria in the sequential version of the well-known
Battle of the Sexes (BoS) game introduced by R. Duncan Luce and Howard Raiffa
in [18] and represented by Figure 2.1. Such equilibria are usually found by means
of backward induction [17]. The backward induction algorithm assumes that, at
each node, the agent making the move selects the action that gives her the best
outcome. The algorithm starts evaluating the decision nodes that are parents
of terminal nodes. Once the moves have been selected, the algorithm proceeds
backwards by evaluating the choice of the predecessor nodes. In the BoS game,
M is the agent making the last choice. In the left branch, the best option for
M is O, which leads her to utility (3, 2). In the right branch, the best option
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12 Chapter 2. Background

Figure 2.1: Sequential version of the Battle of the Sexes game. The woman (W)
chooses between going to the opera (O) or to a football match (F); then the man
(M), does the same. The utility is how much they enjoy themselves: both would
like to go together, but W prefers opera and M football.

for M is F , which leads her to utility (2, 3). Because W knows that M will
seek to maximize his own utility, W can simplify the original tree to get a tree
with a single decision node (hers) in which choosing 0 leads to utility (3,2) and
choosing F leads to utility (2,3). Thus W should select O in the first place, which
maximizes her own utility, and M should then also select O. As (O,O) is a Nash
equilibrium of the BoS game, and (O) is a Nash equilibrium of the game that
remains after the first action, protocol P = (O,O) is self-enforcing. But it is not
the only one as you can see in Figure 2.2. Protocol (F, F ) is also self-enforcing
because no agent can improve her utility by deviating from the protocol provided
that the other agent sticks to it. Of course, since in the sequential version W
chooses the move first, she is most likely to favor (O,O) over (F, F ).

2.2.2 Co-utile protocols

We say that a protocol is co-utile if it results in a mutually beneficial collaboration
between the participating agents. More specifically, a protocol P is co-utile if and
only if the three following conditions hold:

• P is self-enforcing;

• the utility derived by each agent participating in Π is strictly greater than
the utility the agent would derive from not participating;
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Figure 2.2: Self-enforcing protocols in the Battle of Sexes game

• there is no alternative protocol Π′ giving greater utilities to all agents and
strictly greater utility to at least one agent.

The first condition ensures that if participants engage in the protocol, none of
them can increase their utility by deviating. The second condition is needed
to ensure that engaging in the protocol is attractive for everyone. The third
condition ensures that there is no alternative protocol whereby participants could
get a better outcome; hence, Π is Pareto-optimal.

Co-utility may arise naturally, but, unfortunately, in most real-life cases, “neg-
ative” incentives (like costs, privacy loss, fear of strangers, etc.) may override
positive incentives for the agents to follow the rules. Hence, artificial positive in-
centives may need to be added to compensate for negative incentives and thereby
spark co-utility.

2.2.3 Co-utile reputation management

As we mentioned in section 2.1.1, P2P systems do not have a centralized node
that acts as an authority and that monitors, rewards, and punishes the peers
according to their behavior. Therefore, a reputation scheme can be introduced in
order to “guide” the interaction between peers. These reputations would help to
corner malicious peers and would also work as an artificial positive incentive to
achieve co-utility.

It turns out, though, that managing the reputations of peers in a distributed
way constitutes itself a protocol that requires collaboration (e.g., to compute,
update and spread reputations); hence, it is crucial that reputation management

UNIVERSITAT ROVIRA I VIRGILI 
CO-UTILE PROTOCOLS FOR DECENTRALIZED COMPUTING 
Jesús Alberto Manjón Paniagua 
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is designed to be co-utile itself so that the collaboration it implies is rationally
sustainable.

In [16], authors adapt and extend the well-known Eigentrust reputation calcula-
tion mechanism so that: (i) it can be applied to a variety of scenarios and het-
erogeneous reputations needs and, (ii) as a result, it is itself co-utile, and hence
selfish peers are interested in following it.

EigenTrust [14] was originally designed to filter out inauthentic content in peer-to-
peer file-sharing networks. Its basic idea is to compute a global reputation for each
peer based on aggregating the local opinions of the peers that have interacted with
such peer. If we represent the local opinions by a matrix whose component (i, j)
contains the opinion of peer i on peer j, the distributed calculation mechanism
computes global reputation values that approximate the left principal eigenvector
of this matrix.

The resulting adapted protocol is itself strictly co-utile, robust against several
attacks, and compatible with peer anonymity. In this way, a virtuous circle can
be achieved by which the reputation mechanism is self-enforcing, and, in turn,
enables co-utility in protocols that would not be co-utile without reputation. This
provides a key tool that we have applied in our second and third contributions.
Some adapted concepts have also been used in our first contribution.

2.3 Decentralized computing and machine learning

As we discussed in Section 1, decentralized computing has notable advantages
over centralized approaches in terms of scalability, flexibility, security, and pri-
vacy. This is particularly interesting for machine learning. The standard methods
require the collection and aggregation of massive volumes of data by a server from
several edge devices like smartphones or personal computers, but new paradigms
are emerging lately.

Federated learning (FL, [19]) is a distributed approach to machine learning. A
model manager initializes a global model, such as a neural network. The model
manager then sends the model to multiple edge devices acting as workers. Each
worker has a private data set (that she does not share with the model manager)
on which she trains the global model; then she returns this updated model (or
the difference between the global model and the updated model trained on the
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2.3. Decentralized computing and machine learning 15

peer’s private data) to the model manager. Based on all received model updates,
the model manager updates the global model, and this process is repeated several
times (called epochs) until the global model converges.

Fully decentralized machine learning (FDML) is the extreme form of decentralized
machine learning [20, 21, 22]. Unlike in FL, where there is a distinction between
workers and the model manager, in FDML all nodes are equally privileged and
train their own model. In their role as model managers, each peer periodically
sends their current model to other peers, who return model updates based on the
private data they hold.

2.3.1 Privacy and security attacks on federated learning

In this section, we will discuss the main privacy and security attacks on federated
learning. For recent and exhaustive surveys, see [23, 24].

Privacy attacks

Machine learning models can be vulnerable to privacy attacks that aim at infer-
ring information about the training data. Among privacy attacks we find model
inversion attacks [25], which exploit information leaked by the machine learning
model about the training data to (partially) reconstruct the potentially private
data used for training; membership inference attacks, which attempt to deter-
mine whether some particular data points are part of the training data [26]; and
attribute inference attacks, which attempt to estimate confidential attributes of
individuals whose data is present in the training data [27]. Some of the above
attacks are applicable both to conventional centralized machine learning and fed-
erated learning.

Privacy attacks on federated learning can exploit the updates sent by peers to
infer information on those peers’ private data in a white-box setting (where the
attacker has access to the model parameters). For example, Hitaj et al. [28]
present a powerful data inference attack against federated deep learning that relies
on GANs (Generative Adversarial Networks). This attack assumes an attacker
that can see and use internal parameters of the learned model. The attacker
participates as an honest peer in the collaborative learning protocol, but she tries
to extract information about a class of data she does not own. To that end,
the attacker builds a GAN locally and crafts gradient updates before returning
them in order to influence other participating peers to leak more information on
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their data. If the attacker is the model manager rather than a peer, she can do
more: the model manager can isolate the shared model trained by the victim peer.
The victim peer’s update trained on the victim’s data is used to train the model
manager’s GAN, that can eventually re-create the victim’s data. As explained
in [28], not even differential privacy, used as proposed in [29], can protect against
the proposed GAN attack.

A common requirement of all data inference attacks in federated learning is that
the attacker must be able to link the successive updates submitted by a certain
peer.

Security attacks

Security attacks on federated learning aim at disrupting model convergence and
thereby the learning process. They can be subdivided into Byzantine and poison-
ing attacks.

In a general sense, a Byzantine fault, from the Byzantine General’s Problem, refers
to the problem of reaching consensus in a distributed system [30]. In the context
of machine learning, Byzantine attacks consist of malicious peers submitting de-
fective updates in order to prevent convergence of the global model [31].

Subtler than Byzantine attacks are model poisoning attacks. Rather than prevent-
ing convergence, the latter aim at causing federated learning to converge towards
a false global model, normally one that misclassifies a specific set of inputs. For
example, if the goal is to collaboratively learn a movie recommendation model, a
poisoned model might be learned that always recommends a certain movie to all
subscribers.

In [32] it is shown that a single, non-colluding malicious peer is enough to mount
a poisoning attack. Yet, security attacks can also be mounted by collusions of
peers or by a single peer masquerading as several peers (Sybil attack).

Countermeasures against Byzantine or poisoning attacks require accessing the
exact values of the individual updates, in order to assess their goodness. This is
why some techniques that are good to protect the privacy of peers, such as secure
aggregation of peer updates via homomorphic encryption [33], may impair the
model manager’s ability to thwart security attacks.

There are many approaches in the literature that a model manager can use to
decide whether a received update is good or bad. They fall into three main
classes:
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• Detection via model metrics [34]. The model manager updates her current
model mi with each single received update u and compares the updated
model mu

i with mi in terms of accuracy and possibly other performance
metrics. If mu

i offers poorer performance than mi, then u is probably bad
and mi should be kept rather than mu

i . This detection approach requires a
validation data set on which the two models can be compared and it takes
significant computation for each received update.

• Detection via update statistics. In this approach, the model manager ob-
serves the statistics of the magnitude of the received updates [35]. As the
model converges, the update magnitudes tend to zero. Even before conver-
gence, any update that lies far from the other updates is suspicious. Hence,
a way to detect bad updates is to use distances [32, 31]: given a batch of
updates, an update u is classified as bad if it is much more distant than
the other updates from the centroid θ of the batch. One possible way to
quantify what “much more distant” means is as follows: if the distance be-
tween u and θ is greater than the third quartile (or greater than a small
multiple of the third quartile, say 1.5 times) of the set of distances between
updates in the batch and θ, then u is classified as a bad update. Note that
this distance-based procedure can only be run after a peer has received a
batch of updates. This can be accommodated if Pi waits until the end of
the epoch before evaluating her updates.

• Neutralization of bad updates via special aggregation. This approach con-
sists in ignoring bad updates rather than seeking to explicitly detect them.
It combines the above intuitions of distance-based detection and majority
voting. The authors of [31] propose to aggregate the received updates using
an aggregation function called Krum that is resilient against up to f bad up-
dates. Basically, the Krum aggregation of a set of updates is the most central
update, where the centrality of each update u is computed by taking into
account all the other updates in the set except the f most distant updates
from u. Alternative aggregation functions that are also resistant against
outlying updates are the coordinate-wise median and the coordinate-wise
trimmed mean, proposed in [35]. The former returns the median for ev-
ery dimension of the received updates, whereas the latter returns the mean
for every dimension after removing a fraction of the smallest values and a
fraction of the largest values.
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2.4 Multiparty computation
Multiparty computation (MPC) consists in several parties engaging in joint com-
putation in such a way that each party’s input and output remain private to that
party. As phrased in [36], MPC can be viewed as a cryptographic method for
providing the functionality of a trusted party —whose role would be to accept
private inputs from a set of participants, compute a function and return the out-
puts to the corresponding participants— without the need for mutual trust among
participants.

MPC can be used to solve a variety of problems that require using the data of
participants without compromising their privacy. Example applications include
secure statistical analysis, financial oversight, electronic voting, secure machine
learning, auctions, biomedical computations (in particular those involving highly
sensitive data, such as genetic information), etc. See [37, 38, 36] for more details
and related references on MPC applications.

The most central security properties required in MPC are as follows:

• Privacy. No party should learn anything more than its prescribed output. In
particular, nothing should be learned about the other parties’ inputs except
what can be derived from the output itself.

• Correctness. Each party should receive its prescribed output and this output
should be correct.

There are different security models to characterize the assumptions on the adver-
sarial behavior of parties in MPC. In the honest-but-curious model (also called
semi-honest), parties are assumed to correctly follow the protocol specification,
but they may try to learn other parties’ inputs or outputs. In the malicious
model, parties can arbitrarily deviate from the protocol specification. As pointed
out in [37], the honest-but-curious model is very weak and it underestimates the
power of realistic adversaries in most scenarios. The malicious model, in contrast,
is very strong but only a small subset of MPC protocols in the literature can cope
with it [39].

Since the 1980s, when the seminal MPC protocols [4, 40, 41, 42] were proposed,
and until very few years ago, practical MPC protocols existed only for specific
computations. The appearance of general-purpose compilers enabling MPC for
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2.4. Multiparty computation 19

arbitrary functions is a recent breakthrough; see [36] for a state of knowledge on
such compilers. Most MPC compilers translate ordinary high-level programming
code expressing the computation to be performed into a Boolean or an arithmetic
circuit. Once at the circuit level, they use several cryptographic primitives, such as
secret sharing, oblivious transfer, garbled circuits, and others to generate the MPC
protocol for the target computation (see [37] for descriptions of such primitives).

As noted in [36], using state-of-the-art compilers requires substantial programming
effort and skill on the user’s side, due inter alia to the inherent constraints of
the circuit representation. In particular, loops and recursive calls in the original
computation code must be unrolled, which forces programmers to (often manually)
define loop bounds and hardly use recursion.
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Chapter 3

Secure and Privacy-Preserving
Federated Learning via
Co-Utility

3.1 Introduction
Federated learning [19, 33], is a decentralized machine learning technique that
allows training a model with the collaboration of multiple peer devices holding
private local data sets that include class labels. This approach favors privacy
because the peers do not need to upload their private data to a centralized server.
It is also naturally scalable, because the computational load is split among the
peers, which may be edge devices such as idle smartphones, and thus widely
available. Unfortunately, as we discussed in Section 2.3.1, the decentralized nature
of federated learning makes it vulnerable to attacks against privacy and security.

3.2 Contributions
In this chapter we build a federated learning framework that offers both privacy to
the participating peers and security against Byzantine and poisoning attacks. Our
framework consists of several protocols designed in such a way that no rational
party is interested in acting maliciously. This makes our protocols robust against

20
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security attacks. Our protocols also provide strong privacy to the participating
peers via unlinkable anonymity and without requiring the aggregation of model
updates. In this way, peer updates reach the model manager individually, while
being, at the same time, perfectly accurate. This provides an optimum balance
between security, privacy and learning accuracy.

To be rationally sustainable, our protocols are based on the co-utility property
presented in Section 2.2. We also use reputation as a utility to reward well-behaved
peers and punish potential attackers. In order to properly integrate reputations
in the federated learning scenario, our reputation management is decentralized
and itself co-utile.

We report empirical results that show the effectiveness of our protocols at miti-
gating security attacks and at motivating rational peers to refrain from deviating.

Section 3.3 introduces a co-utile protocol suite for privacy-preserving and secure
federated learning. Section 3.4 shows that the proposed protocol suite achieves
co-utility (and hence is rationally sustainable), and Section 3.5 does the same
regarding privacy and security. Experimental results are presented in Section 3.6.
Finally, Section 3.7 summarizes conclusions.

3.3 A co-utile framework for privacy-preserving and
secure federated learning

The foundations of our proposed protocol suite are: i) the notion of co-utility ap-
plied to protocol design and ii) the use of reputations (computed themselves in a
decentralized and co-utile manner) to motivate all rational players to behave hon-
estly. In Section 2.2 we gave some background on co-utility. Also, for convenience
Table 3.1 summarizes the notation used in the rest of this chapter.

In the next sections we describe a framework based on co-utility that ensures that
peers can keep their private data sets confidential and, at the same time, makes
them rationally interested in returning honest updates to the model manager.

3.3.1 Players and security model

The players in our framework and their security properties are as follows:

• Model manager. The model manager M is a player who wants to train a
machine learning model on the private data of the peers in a peer-to-peer
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Table 3.1: Notation in this Chapter

Notation Concept
M Model manager
AM Accountability manager
P Peer
m Number of AMs per peer
δ Reputation reward/punishment
U Federated learning update

NU
Random nonce encrypted with up-
date U

gi Peer Pi’s reputation

PKM (·) Public key encryption under M ’s
public key

SP (·)
Digital signature under P ’s private
key

H(·) Cryptographic one-way hash func-
tion

α Flexibility parameter (Note 1)
p Forwarding probability

p0
Probability of discarding an update
from a peer with zero reputation

b
Size of a batch of non-discarded up-
dates

C Centroid of a batch of updates

T
Reputation threshold s.t. if a peer’s
reputation is at least T , her updates
are never discarded
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(P2P) network. Her interest is to obtain a good quality model, but she
might be curious to learn as much as possible on the peers’ private data
sets. Hence, M can be viewed as rational-but-curious: rational to adhere to
her prescribed function, but curious on the peers’ private data.

• Peers. They are participants in the network who compute model updates
based on their local private data sets. Peers want to preserve their private
data confidential. We assume that a majority of peers are rational-but-
curious: like M , they are interested in obtaining a good quality model,
but they also want to influence the model based on their own respective
data; further, they might be curious to learn as much as possible on the
other peers’ private data sets. On the other hand, there may be a minority
of malicious peers that wish to impair the learning process, because they
do not have the same utility function and/or do not respond to the same
incentives as the rest of peers.

• Accountability managers. Accountability managers (AMs) are randomly
chosen peers that manage the reputations of other peers. Being peers them-
selves, most accountability managers are rational-but-curious, but a minor-
ity may be malicious.

3.3.2 Requirements
The assumption that peers are rational rather than honest calls for incentives to
make honest behavior attractive to them. We will use reputation as an incentive to
reward or punish peers. In order for this to be effective, the following requirements
need to be fulfilled:

• Reward. If a peer contributes a good update, her reputation must increase.

• Punishment. If a peer contributes a bad update, her reputation must de-
crease.

• Unlinkable anonymity. Peers contributing good updates must stay not only
anonymous, but their successive updates must be unlinkable.

• Reputation utility. Having high reputation must be attractive for peers.
Specifically, it must be easier for peers with higher reputation to contribute
their updates while preserving their privacy. Thus reputation translates to
influence without privacy loss.
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Unlinkability is our approach to thwarting the privacy attacks sketched in Sec-
tion 2.3.1 while perfectly retaining the accuracy of the updates. On the other
hand, reward, punishment and reputation utility are our tools to protect against
the security attacks described in Section 2.3.1. This will become clear in this
section and in Sections 3.4 and 3.5 below.

3.3.3 Co-utile decentralized reputation

Whereas we assume that a majority of peers want to learn a good model, we still
need to incentivize rational peers to abstain from free-riding: if they find greater
utility in deviating from the federated learning protocol, they might seriously
impair the overall quality of the learned model. Also, we need a way to stig-
matize/recognize malicious peers in order to mitigate their attacks. To meet the
above purposes, we will use reputation management. In this section we present a
reputation management system that does not require direct interaction between
peers and has the following interesting properties: pseudonymity of peers, decen-
tralization, resistance to tampering with reputations, proper management of new
peers (to discourage whitewashing bad reputations as new identities and creating
fake peers in Sybil attacks) and low overhead.

One of the fundamental changes of this reputation protocol with respect to the
EigenTrust based protocol presented in [16] is that peers do not maintain local
opinions of the other peers, since they do not see the rest of the updates and they
do not know how other peers have behaved. Only the model manager is able to
know whether an update was good or bad. Therefore, the distinction between
local and global reputation is meaningless.

Our reputation protocol maintains a public reputation for each peer P that is the
result of updating P ’s previous reputation according to the behavior of P reported
by the model manager M . Next we explain how the above interesting properties
are satisfied:

• Pseudonymity of peers. Only the pseudonym of peers is known, rather than
their real identity. Furthermore, updates that are sent over the network
cannot be linked to the peers that generated them.

• Decentralization. The reputation of every peer P is redundantly managed by
a number m of peers that act as accountability managers for P . Typically,
m is an odd number at least 3 and the (pseudonymous) identities of P ’s
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accountability managers are (pseudo)randomly determined by hashing the
peer’s pseudonym P . In this way, P cannot choose her m accountability
managers, which makes the latter more likely to perform their duty honestly.

• Tamper resistance. Since M does not know the identity of peers nor is able
to link the updates to peers, M cannot leverage her position to promote
or slander any particular peer M likes or dislikes. As a consequence, M ’s
rational behavior is to exclusively base her reports on the quality of the re-
ceived model updates. Regarding tampering by accountability managers, it
is thwarted by their redundancy (see the previous item on decentralization).

• Proper management of new peers. Reputations take values in the range
[0, 1]. New peers start with reputation 0, which makes whitewashing and
also Sybil attacks unattractive.

Let us describe the dynamics of reputation. Call epoch the period between two
successive changes of the global model by M . During an epoch, peers generate
and send model updates based on their private data, with the aim of influencing
the next global model change. Depending on their actions, peers can earn or lose
reputation. Generating a good update increases the generator’s reputation by a
certain quantum δ/2 fixed by the model manager; furthermore, helping a good
update reach the model manager in a way unlinkable to the generator brings a δ/2
reputation increase to one of the helping peers. Thus, every good update results
in a total δ reputation increase. On the other hand, generating a bad update
decreases the generator’s reputation by δ. Thus, the overall reward for a good
update equals the punishment for a bad update.

Some peer reputations may become negative and some may become greater than
1 as an epoch progresses. At the epoch’s end, reputations are re-normalized
into the range [0, 1] as follows. First, accountability managers reset any negative
reputation to 0. Then, if there are reputations above 1, all reputations are divided
by the largest reputation. To that end, when a peer’s reputation becomes larger
than 1, the peer’s accountability managers broadcast that reputation, which allows
all accountability managers to compute the maximum reputation reached in that
epoch and thereby normalize all reputations into the interval [0, 1].

Normalization has the beneficial effect of deterring free-riding: even if a peer has
attained high reputation, she will lose it gradually if she stops participating. In-
deed, any peer’s reputation will decrease due to normalization unless she continues
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to generate good updates or helps routing them. This addresses the second con-
dition of the co-utility definition: the utility derived from participating must be
greater than the utility derived from not participating. Fulfillment of the other
two conditions for co-utility will be justified in Section 3.4 below.

3.3.4 Downstream: from update generator to model manager

We call downstream operation the submission of model updates from the peers to
the model manager M . In order to preserve privacy and encourage security, we
propose Protocol 1. In Section 3.4, we will show that it is co-utile.

The idea of Protocol 1 is that a peer, say P1, does not directly send her update to
M . Rather, P1 asks another peer, say P2, to do so. P2 randomly decides whether
to submit P1’s update to M or forward it to another peer, say P3, who stands the
same choice as P2. Forwarding continues until a peer is found that submits the
update to M .

Protocol 1 (Update submission). 1. Let P1 be a peer that generates an update
U . Then P1 encrypts U along with a random nonce NU under the model
manager’s public key, to obtain PKM (U,NU ) (we assume the message U,NU

to have a certain format that allows distinguishing it from gibberish at de-
cryption). In this way, only M will be able to recover the update U . The
generator P1 never submits her own update to the manager M ; rather, P1

builds an update message that takes the form

U1→2 = ⟨P1, P2,

PKM (U,NU ),

H(H(H(U,NU ))),

SP1(PKM (U,NU ), H(H(H(U,NU ))), P2)⟩ (3.1)

and forwards it to P2 = Select(g1), where function Select() is explained
below. In Expression (3.1), H is a one-way hash function and SP1 is P1’s
signature.

2. If P1’s reputation g1 is such that g1 < min(g2, T )−α, where g2 is P2’s repu-
tation, T is a parameter such that updates submitted by peers with reputation
T or above are never discarded, and α is a flexibility parameter discussed in
Note 1, then P2 discards the received update.
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Otherwise, P2 makes a random choice: with probability 1 − p, she submits
U2→M to M and with probability p she forwards U2→3 to another peer P3 =
Select(g2).

3. If P2’s reputation g2 is below min(g3, T ) − α then P3 discards the received
update. Otherwise, P3 makes a random decision as to submit or forward.
If it is forward, P3 will use the Select() function and there may be more
peers involved: P4, P5, etc.

4. Eventually M receives an update Ui→M from a peer Pi. Upon this, M does:

(a) Directly discard the update with probability p0(1−min(gi/T, 1)), where
p0 is a parameter indicating the probability of discarding an update
submitted by a peer with 0 reputation, and gi is Pi’s reputation.

(b) If the update has not been discarded, decrypt PKM (U,NU ), obtain U ,
check that the nonce NU was not received before (to make sure U
is not a replay of a previously received update) and check the hash
H(H(H(U,NU ))).

(c) Wait until a batch of b non-discarded updates has been received in order
to be able to decide whether U is good or bad (see Section 2.3.1 on how
to detect bad updates).

(d) Change the model with the good updates in the batch and publish the
updated model.

(e) Publish the value δ = 1/b.

(f) For every good non-discarded update U , publish H(H(H(U,NU ))).

(g) For every bad non-discarded update U , call Punish(Pi) where Pi is the
peer having submitted U and Punish() is Protocol 2 in Section 3.3.5.

Function Select(gi) is used by a peer Pi to select a forwardee. There are several
ways in which this can be accomplished. However, the rational choice is for Pi to
select a forwardee Pj with a sufficient reputation so that M does not reject the
update should Pj submit it directly to M . Hence, if Pi’s reputation is gi ≥ T −α,
Pi can randomly pick any of the peers whose reputation is T or above, because
none of those peers risks update discarding. However, if gi < T − α, Pi chooses
the peer with the maximum reputation that does not exceed gi + α, because no
peer with reputation above that value will accept to forward Pi’s update.

UNIVERSITAT ROVIRA I VIRGILI 
CO-UTILE PROTOCOLS FOR DECENTRALIZED COMPUTING 
Jesús Alberto Manjón Paniagua 



28 Chapter 3. Secure and Privacy-Preserving FL via Co-Utility

Note 1 (On the flexibility parameter α). In Protocol 1 a peer accepts to for-
ward updates from peers that have at least her own reputation minus a flexibility
amount α. Using a small value α > 0 introduces some flexibility and helps new
peers (that start with 0 reputation) to earn reputation as generators or first for-
wardees of good updates. Large values of α are not acceptable from the rational
point of view: high-reputation peers have little to gain by accepting updates from
peers who are much below them in reputation, because the latter are likelier to
convey bad updates or to fail to reward the first forwardee in case of good updates.

Note 2 (On loops, multiple paths and other misbehaviors). Nothing is gained
by any peer if loops arise accidentally or intentionally in Protocol 1. As it will
be seen below (Protocol 3 and Note 4) only the first peer chosen by the update
generator is rewarded. Hence, forwarding twice or more times the same message
brings no additional benefit. On the other hand, a generator P might send the
same good update through several paths to increase the reputation of several first
peers. However, by promoting more peers than necessary, P may experience a
decrease of her own reputation, because reputations are normalized when any peer
reaches a reputation above 1 (see Section 3.3.3). Finally, update generators could
systematically choose themselves as first forwardees of good updates to collect
additional reward; but if they do so, they weaken their privacy.

Note 3 (Key generation). In Protocol 1, peers sign the messages they send. To
that end, each peer needs a public-private key pair. At least the two following al-
ternative key generation procedures are conceivable: i) identity-based signatures,
in which the peer’s pseudonym is her public key and the peer’s private key is
generated by a trusted third-party [43]; ii) blockchain-style key generation [44], in
which the peer generates her own key pair without the intervention of any trusted
third-party or certification authority, and then obtains her pseudonym Pi (her
address in the blockchain network) as a function of her public key.

3.3.5 Upstream: from model manager to update generator

By upstream operation we denote the punishment of bad updates and the reward
of good updates. Let us start with Protocol 2 that seeks to penalize the generator
of a bad update by retracing the reverse path from M to the generator. The peer
Pi who submits an update found to be bad by the manager can escape punishment
if Pi can show to her accountability managers that she received the bad update
from a previous peer, say Pi−1.
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Protocol 2 (Punish(Pi)).
Every accountability manager AM of Pi’s does:

1. Ask Pi whether Pi can prove she did not generate U .

2. If Pi can show to AM a message

SPi−1(PKM (U,NU ), H(H(H(U,NU ))), Pi)

then

(a) Do not punish Pi (the peer’s reputation is left intact);
(b) Call Punish(Pi−1).

Otherwise, punish Pi by decreasing her reputation by δ.

The punishment protocol must be initiated by M , because the model manager is
the only party that can detect bad updates and that is interested in punishing
them. However, the punishment is actually executed by the guilty peer’s account-
ability managers. Hence, M cannot track which peer is actually punished for that
bad update, which prevents M from identifying the generator of an update by
(falsely) claiming that the update is bad.

Unlike the punishment protocol, the rewarding protocol is initiated by the peer
who submitted a good update, because that peer is the one interested in the
reward. As we will later justify, the first peer (and only the first peer) who is
asked by the generator to submit or forward a good update is also entitled to a
reward. We will call that peer the “first forwardee”.

Protocol 3 (Reward(U)). 1. When M publishes H(H(H(U,NU ))) for a good
update, then the update generator, say P1, sends to the first forwardee, say
P2, SP1(H(H(U,NU )), P2).

2. P2 checks that the hash of H(H(U,NU )) matches H(H(H(U,NU ))) pub-
lished by M . If it is so, P2 returns a receipt SP2(H(H(U,NU )), P1) to the
generator P1.

3. P1 proves to her accountability managers that she is the generator by showing
H(U,NU ) to them and proves that she has acknowledged her first forwardee
by showing the receipt SP2(H(H(U,NU )), P1).
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4. Every accountability manager AM of P1’s checks P2’s receipt and checks that
the double hash of H(U,NU ) received from P1 matches H(H(H(U,NU )))
published by M . If both checks are fine, AM increases P1’s reputation by
δ/2.

5. P2 sends SP1(H(H(U,NU )), P2) to her accountability managers to claim her
reward.

6. Every accountability manager AM of P2’s checks that the hash of H(H(U,NU ))
matches H(H(H(U,NU ))) published by M . If it is so, AM increases P2’s
reputation by δ/2.

Note 4 (On rewarding the first forwardee only). In Protocol 3 only the first
forwardee is rewarded, rather than all forwardees. The reason is that we want
the total budget to reward a good update to be fixed and equal to the budget δ
used to punish a bad update. We also want the reward share for the generator of
a good update to be fixed, say δ/2, and independent of the number of hops the
update travels before reaching M . Hence, if we chose to reward all forwardees,
the fixed reward share δ/2 for forwardees ought to be distributed among them.
Therefore, every forwardee would be better off by submitting the update to M
rather than forwarding it to another forwardee who would take part of the reward.
As a consequence, there would be only one forwardee, who would know that the
previous peer is the generator of U . This would break privacy. Rewarding only
the first forwardee avoids this problem and is a sufficient incentive, because any
forwardee can hope to be the first (due to the protocol design, a forwardee does
not know whether she receives an update from the generator or from another
forwardee) and thus has a reason to collaborate.

Note 5 (On peer dropout). Accidental (due to power or network failure) or in-
tentional peer dropout does not affect the learning process: on the one hand, once
an update has been generated/forwarded, the generator/forwarder can disappear;
on the other hand, the next forwardee is chosen among the peers who are online.
Reputation management is also resistant to dropout of accountability managers,
because there are m of them for each peer; m just needs to be increased if dropout
is very likely. Punishment is not affected: even though a peer drops out, he will
be punished with a reputation decrease all the same. However, rewarding may be
problematic in the very specific case that either the update generator P1 or the
first forwardee P2 drop out before rewarding is complete: the one of the two that
remains online may not receive her/his reward.
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3.4 Co-utility analysis
In this section, we demonstrate that the framework formed by Protocols 1, 2 and 3
is co-utile, that is, that those protocols will be adhered to by the players defined
in Section 3.3.1.

To argue co-utility for Protocols 1, 2 and 3, we must show that following them is
a better option for M and the peers than deviating.

3.4.1 Co-utility for the model manager

The model manager’s goal is to train a model based on the peers’ private data
sets. For that reason, M is interested in encouraging good updates and punishing
bad updates. On the other hand, M ’s role is limited to Step 4 of Protocol 1. Let
us examine in detail the actions of M in that step and whether M could gain by
deviating from them or skipping them:

1. In Step 4a, M directly discards an update with a probability that is inversely
proportional to the reputation of the submitting peer. Discarding is only
based on reputation, without examining whether the update is an outlier.
M is interested to perform this step at least for two reasons: first, it reduces
M ’s computational overhead, and second, it allows M to make reputation
attractive for peers (only high-reputation peers, those with reputation at
least T , are sure of getting their updates examined). At the same time,
if M wants to keep the peer community alive, M should allow a nonzero
probability 1 − p0 of examining an update submitted by a new peer (that
has 0 reputation). Also, setting up a threshold T above which updates are
examined for sure is a way for M of not losing too many good updates.

2. Step 4b consists of decrypting the update, checking its freshness and check-
ing that the hash is correct. Obviously, M is interested in carrying out these
steps. Without the updates, M cannot train the model.

3. Step 4c is about deciding whether an update is good or bad. M clearly
needs to make this decision, in order to use good updates to improve the
model and punish bad updates to discourage them.

4. Step 4d is about changing the model using the good updates. This is exactly
M ’s main goal.
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5. Step 4e publishes δ that determines the amount whereby reputations must
be increased/decreased by the accountability managers. M is interested in
publishing δ to facilitate a correct reputation management that keeps peers
incentivized. In fact, if the number b of updates per batch is fixed, then δ
is also fixed and does not need to be published at each protocol execution.

6. Step 4f publishes information that peers can use to claim rewards for good
updates. If M deviates and does not publish this information, then peers
cannot claim rewards. This would discourage peers from submitting good
updates and would be against M ’s interests.

7. Step 4g launches the punishment procedure for each bad update. If M did
not perform this step, bad updates would go unpunished, which would fail
to discourage them.

3.4.2 Co-utility for the update generator

In Protocol 1, the update generator only works in Step 1. Let us analyze the
actions in this step:

1. Update generation and encryption. The generator, say P1, generates an
update and encrypts it together with a random nonce so that only M can
decrypt the update and check its freshness:

(a) The intrinsic motivation for P1 to generate an update is to have an
influence on the model being learned: a rational peer wants to help ob-
tain an accurate model that is socially beneficial in some sense, whereas
a malicious peer wants to poison the learned model.

(b) The motivation for P1 to generate a good update U is to keep her
reputation high. A high reputation brings more influence on the model
learning. Specifically, a high g1 allows P1 to find P2 such that g1 ≥
g2 − α, which means that P2 does not discard P1’s update, and with
g2 high enough for P1 to be confident that P2 can be entrusted with
relaying U towards M with little or no probability of U being discarded
by M without examination (see description of the Select() function in
Section 3.3.4). If U eventually reaches M , this brings P1 influence and
further reputation increase, which means more influence in the future.
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(c) The motivation for P1 to encrypt U under M ’s public key is to prevent
anyone else from claiming the reward for that update, should U be
good. The motivation for P1 to sign the forwarded message is that the
forwardee P2 will not accept an unsigned message, because P2 will need
that signed message to escape punishment in case U is bad.

2. Update forwarding. In terms of privacy, it is bad for P1 to submit her
generated update directly to M , as it could leak information on her private
data set. It is still bad if P1 directly submits with probability 1 − p and
forwards with probability p, like in the Crowds system [45]. If we used the
Crowds algorithm, from the point of view of M the most likely submitter
of an update would be the update generator: U would be submitted by P1

with probability 1− p, whereas it would be submitted by the i-th forwardee
with probability (1 − p)pi < 1 − p. Hence, P1 is interested in looking for
a forwardee P2 who takes care of her update, rather than submitting her
update herself. Specifically, P1 wants a forwardee P2 such that: a) P2

will accept to forward P1’s update; b) P2 does not risk update discarding
(g2 ≥ T ) or risks it with the smallest possible probability (see the description
of the Select() function in Section 3.3.4). Further, if P1 can choose among
several possible P2 with g2 ≥ T , P1’s best option is to pick P2 randomly for
the sake of unlinkability of successive updates to each other. Here we see
a second benefit of a high reputation for P1: the higher g1, the more peers
with reputation at least T P1 can choose from and the higher is unlinkability.

In Protocol 2, the update generator P1 has a role only if her update is bad. The
generator’s role in this case is a passive and inescapable one: when P1 is asked
by her accountability managers to show that P1 received the bad update from
someone else, P1 cannot show it and is punished.

In Protocol 3, the generator P1 of a good update is clearly interested in running
Step 1 of the protocol to claim a reward. In Step 1, P1 is forced to give the first
forwardee P2 the necessary information H(H(U,NU )) so that P2 can claim his
reward. The reason is that, without P2’s receipt, P1 cannot claim her own reward
at Step 3 (this latter step is also self-enforcing if P1 wants her reward).

P1 could certainly decide to favor a false first forwardee P ′
2 of her choice, rather

than the real first forwardee P2. This would still work well for P1, because P ′
2

would return a signed receipt for the same reasons that P2 would do it. However,
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if P1 wants to favor P ′
2, it entails less risk (of being discovered) for P1 to use P ′

2

as a real first forwardee. Thus, there is no rational incentive to favor false first
forwardees.

3.4.3 Co-utility for the update forwardees

In Protocol 1, the forwardees P2, P3, . . . work in Steps 2 and 3, which are analogous
to each other. Let us examine the actions expected from a forwardee:

1. Update acceptance or discarding. The incentive for a forwardee Pi to accept
to deal with an update U is to be rewarded in case U is good and Pi is
the first forwardee (note that Pi does not know whether she is the first, but
hopes to be). Thus, if Pi receives the update from a previous peer Pi−1 with
high reputation, Pi’s rational decision is to accept that update: there are
chances that U is good, which will bring reward if Pi turns out to be the first
forwardee. In contrast, if U comes from a peer Pi−1 with low reputation, it
is less likely that the update is good, so Pi’s rational decision is to discard
U to avoid working and spending bandwidth for nothing.

2. Update submission or forwarding. It takes about the same effort for a for-
wardee Pi to submit an update to M or to forward it to some other peer
Pi+1. Hence, it is rational for Pi to make the decision randomly according
to the prescribed probabilities (1− p for submission and p for forwarding).
In case of forwarding, Pi’s rational procedure is like the generator’s: look
for a forwardee with reputation at least T if gi ≥ T − α or the maximum
possible reputation that does not exceed gi + α otherwise (as per the Se-
lect() function. Also, no matter whether forwarding or submitting, Pi has
to replace the previous signature of the update by her own signature: nei-
ther the model manager nor any forwardee will accept from Pi a message
that is not signed by Pi, because they will need the signed message in case
U turns out to be bad and punishment is launched.

In Protocol 2, if Pi did not generate a bad update U , Pi will rationally do her
best to avoid punishment (reputation decrease) by showing a message signed by
whoever sent U to her.

In Protocol 3, P2’s best option is to return the receipt at Step 2, because P1

could otherwise blacklist P2 and never make P2 a first forwardee in future epochs.
Finally, P2 is obviously interested in claiming her reward in Step 5.
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3.4.4 Co-utility for the accountability managers

The accountability managers are a keystone in Protocols 1, 2 and 3. In our
security model (Section 3.3.1) a majority of them is assumed to be rational and
to be interested in obtaining a well-trained model. Hence, a majority of the m
accountability managers pseudorandomly assigned to each peer can be expected
to behave honestly, which in turn means that the reputation of every peer can be
expected to be honestly managed.

In Protocol 1, there is no direct intervention of accountability managers. It suffices
that they honestly maintain and supply the reputations gi of all involved peers Pi

as described in Section 3.3.3.

As to Protocol 2, it is launched at the request of M in the last step of Protocol 1.
In Protocol 2, the accountability managers have the lead role. Most of each
peer’s accountability managers can be assumed rational and therefore they can
be assumed to discharge their role as described in the protocol.

Finally, in Protocol 3, the accountability managers of the generator reward the
latter in Step 4. Then in Step 6 the first forwardee is rewarded by her accountabil-
ity managers. Again, since for each peer a majority of accountability managers
can be assumed rational, we can expect them to honestly perform those two steps
as described in Protocol 3.

Note 6 (Non-collusion scenario). In fact, given that the accountability managers
assigned to a peer are randomly chosen, it is reasonable to assume that in general
they do not know each other and hence they do not collude. In the non-collusion
scenario, not even a majority of honest accountability managers is needed. If
malicious accountability managers do not collude, each of them is likely to report
different reputation results. Hence, as long as two of the peer’s accountability
managers act rationally and follow the protocol, their correct result is likely to be
the most frequent one and thus to prevail.

3.5 Privacy and security
In this section, we will show that the protocols satisfy the requirements of Sec-
tion 3.3.2, and thereby preserve the confidentiality of the users’ private data and
protect the learned model from Byzantine and poisoning security attacks.
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3.5.1 Privacy

As mentioned in Section 2.3.1, ensuring the unlinkability of updates goes a long
way towards guaranteeing that the private data sets of peers stay confidential.
We can state the following proposition.

Proposition 1. If the forwarding probability is p > 0 and there is no collusion
between the model manager M and peers, the private data set of each peer remains
confidential versus the model manager and the other peers. Confidentiality is based
on update encryption and unlinkability, and unlinkability increases with p and the
generator’s reputation.

Proof. The privacy guarantee is based on unlinkability and update encryption.

Let us first consider linkability by M . By the design of Protocol 1, M knows that
the submitter of an update U is never the update generator. At best, M knows
that the probability that U was submitted by the i-th forwardee is (1 − p)pi−1,
and hence that the most likely submitter is the first forwardee. However:

• The larger p, the greater the uncertainty about the number of hops before
the update is submitted, and hence the harder for M to link a received
update to its generator.

• The next forwardee is selected using the Select() function, described in
Section 3.3.4. If ggen ≥ T−α, then Pgen chooses the first forwardee randomly
among the set of peers with reputation at least T , and this set depends on the
current reputations and varies over time; hence, as long as there are several
peers with reputation T or above, the fact that two updates were submitted
by the same peer does not tell M that both updates were generated by the
same peer. If ggen < T − α, then Pgen chooses as a first forwardee the peer
with the maximum reputation that does not exceed gi + α: if reputations
do not change between two successive updates, Pgen would choose the same
first forwardee for both updates; yet, M cannot be sure that the submitter
of both updates is really the first forwardee, and hence M cannot be sure
that both updates were generated by the same Pgen. Hence, in no case can
two different updates by the same generator be unequivocally linked, even
if the probability of correctly linking them is lower when ggen ≥ T − α.
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On the other hand, neither the reward nor the punish protocols allow M to learn
who generated a good or a bad update. Thus, M can neither link the updates he
receives nor unequivocally learn who generated a certain update U . Therefore,
M cannot obtain any information on the private data set of any specific peer P .

Consider now linkability by a peer Pi:

• If Pi is a forwardee for two different updates from Pi−1 and p > 0, Pi does
not know whether Pi−1 generated any of the updates or is merely forwarding
them. Pi’s uncertainty about Pi−1 being the generator is Shannon’s entropy
H(p), which grows with p for p ≤ 0.5; for p > 0.5, what grows with p is
Pi’s certainty that Pi−1 is not the generator. In summary, Pi can only guess
right that Pi−1 is the generator if p is very small: in this case, forwarding
hops after the first mandatory hop from generator to first forwardee are very
unlikely.

• The only exception is when Pi is the first forwardee for two good updates
from the same generator (because in this case he receives a message from
the generator in Step 1 of Protocol 3). However, in this case Pi can only link
the encrypted version of updates (that is, PKM (U,NU ) and PKM (U ′, NU ′)),
but has no access to the clear updates U , U ′. Hence, Pi gets no information
on Pi−1’s private data set.

• If Pi is an accountability manager of a generator Pj , Pi can link all encrypted
good updates originated by Pj . However, since those updates are not in the
clear, Pi gets no information on Pj ’s private data set.

Note that assuming there are no collusions is plausible because peers are pseudony-
mous: normally people collude only with those they know.

A successful collusion must include one or more first forwardees (who know the
pseudonyms of the update generators) and M (who can decrypt the updates). In
this way, M can attribute updates and perhaps link those corresponding to the
same generator; then M can infer whatever information on the generator’s private
data set is leaked by the generator’s updates.
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However, to allow update linkage, a collusion requires a malicious model manager
and a significant proportion of malicious peers, whereas in our security model
(Section 3.3.1) we assume M and a majority of peers to be rational-but-curious.
A collusion of M with a substantial number of peers is hard to keep in secret,
and if it becomes known that M is malicious, peers will be unwilling to help M
to train the global model. Therefore, M ’s rational behavior is to abstain from
collusion.

3.5.2 Security

Guaranteeing security means thwarting Byzantine and poisoning attacks (Sec-
tion 2.3.1), which consist of submitting bad model updates. In the aforementioned
section we presented the approaches that have been proposed in the federated
learning literature for the model manager to defend against bad updates. In brief:

• Detection via model metrics. An update is labeled as bad if incorporating
it to the model degrades the model accuracy. This approach requires a
validation data set on which the model with the update and the model
without the update can be compared. Also, the computation needed to
make a decision on each received update is significant.

• Detection via update statistics. An update is labeled as bad if it is an outlier
with respect to the other updates.

• Neutralization via aggregation. Updates are aggregated using operators that
are insensitive to outliers, such as the median, the coordinate-wise median,
or Krum aggregation. In this way, updates too different from the rest have
little or no influence on the learning process.

In our protocol, we want to explicitly detect bad updates in order to avoid inter-
action with the malicious peers generating them. Hence, we discard methods in
the third class (neutralization).

Any detection method in the two other classes can be used with our approach,
including new methods that may appear in the future. Yet, detection based on
model metrics is quite costly and requires validation data. For this reason, in the
experimental work we have instantiated our implementation with a method based
on update statistics, more specifically a distance-based method in line with [31,
32]. Given a batch of updates, this method labels as bad an update U if U is much
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more distant than the rest of updates in the batch from the batch centroid C. One
possible way to quantify what “much more distant” means is to check whether the
distance between U and C is greater than the third quartile (or greater than a
small multiple of the third quartile, say 1.5 times) of the set of distances between
updates in the batch and C.

Protocols 1, 2 and 3 are designed to incentivize the submission of good updates.
Thus, we can state the following proposition.

Proposition 2. Provided that the model manager can detect bad updates, the
rational behavior for generators and forwardees in Protocol 1 is to submit good
updates.

Proof. See discussion on co-utility for generators and forwardees in Section 3.4.

As to collusions of irrationally malicious peers, they can only disrupt the learning
process if they are sufficiently large so that the majority of updates received by
M are bad ones and coordinated in the same direction. Note that uncoordinated
bad updates are likely to cancel each other to some extent. Such large collusions
seem hard to mount for the reasons explained in the previous section.

3.5.3 Computation and communications overhead

Let us compare the computation and communications overhead of the proposed
method against alternatives based on homomorphic encryption (HE), which offer
a comparable level of privacy (but cannot detect bad updates, as argued below).

HE has been used in federated aggregation mechanisms to prevent the model
manager and the rest of peers in the network from having access to the individual
updates of peers. In HE-based mechanisms, peers first encrypt their respective
updates using an additive HE scheme (e.g. Paillier, [46]). Several protocols have
been proposed in the literature to aggregate HE updates and decrypt the aggre-
gated HE update [47]. Let us focus on a protocol that minimizes the number of
required messages and the amount of computation (which is the most challenging
benchmark when comparing with our proposed method): (i) assume a sequence
of peers is defined such that the first peer sends her HE update to the next peer,
who aggregates it with her own HE update and so on; (ii) after the last peer has
aggregated her HE update, she sends the encrypted update aggregation to the
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manager, who can decrypt it to obtain the cleartext update aggregation. In this
protocol, each peer sends only one message per update, just as in plain federated
learning.

Whatever the protocol used, HE-based solutions offer privacy (no one other than
the peer sees the peer’s cleartext update), but they do not allow the model man-
ager to detect bad updates, because the manager does not see the individual
updates. In this respect, HE-based solutions are inferior to our proposed method,
which offers privacy without preventing bad update detection.

Even so, let us compare HE-based systems and our system in terms of computa-
tional overhead. HE-based systems require the peers to encrypt, using a public-key
HE scheme, each individual model parameter at each training epoch (an update
contains values for all parameters). The authors of [48] report an encryption time
of 3111.14 seconds for a model with 900, 000 parameters (6.87 MB) using 3072-bit
Paillier (a key size of 3072 bits in factorization-based public-key cryptosystems
offers equivalent security to 128-bit symmetric key schemes [49]). Expensive mod-
ular operations (with 3072-bit long moduli in the case of Paillier) for each model
parameter are required to aggregate the update of each peer.

In contrast, our approach requires each peer to compute an encryption of her up-
date using a regular non-homomorphic public-key cryptosystem, three hashes and
one digital signature. With the usual digital envelope approach, regular public-
key encryption amounts to encrypting a symmetric (e.g. AES) session key under
the manager’s public key, and then encrypting the bulk of the update parame-
ters using the much faster symmetric cryptosystem under the session key. The
encryption time of AES on current smartphones using AES-128-GCM is around
0.29 seconds for a model of the same size as reported above1, to be compared with
the aforementioned 3111.14 seconds of HE. Finally, the model manager just needs
to decrypt the received updates and aggregate them in cleartext as in plain fed-
erated learning mechanisms (this is much faster than homomorphic aggregation
in ciphertext).

Regarding the communication overhead, we first refer to the message expansion
incurred by HE-based mechanisms and our proposal. As stated above, HE-based
mechanisms require peers to encrypt each model parameter using an additive HE
scheme. Model parameters are usually 32-bit floating point values that, when en-
crypted using Paillier with sufficiently strong keys, become 3072-bit integers. This

1AES performance per CPU core https://calomel.org/aesni_ssl_performance.html
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implies an increase in the message size of two orders of magnitude. The proposal
in [48] substantially reduces the communication requirements, but it is still one
order of magnitude above plain federated learning with cleartext updates. In our
proposal and thanks to the digital envelope technique, updates are encrypted us-
ing a symmetric encryption scheme, which does not expand the plaintext models
(save for potential paddings, which are negligible for messages of the size we are
considering). Additionally, our messages include the session key encrypted under
the model manager’s public key, a triple hash of the model, and a signature. This
additional information increases the size of the message by approximately 6.5 KB
with standard key and hash sizes, which, if we consider the example given before,
amounts to a 0.09% increase in the total size of the messages.

Finally, in the HE-based protocol considered the number of messages exchanged
among participants does not increase with respect to plain federated learning, i.e.
for each training epoch there is one broadcast of the global model from the model
manager to the peers and one message from each peer containing her update. In
contrast, our proposal includes a forwarding mechanism, which implies that for a
forwarding probability p every encrypted model hops across an expected number
of forwardees equal to

(1− p)

∞∑
i=1

ipi−1 =
1

1− p
.

For example, if p = 1/2 there are 2 additional hopping messages with respect to
plain federated learning. Additionally, if each peer has m accountability managers:

• 2m+1 messages containing one hash of the update and one digital signature
of a hash value are required by the reward protocol;

• 2m messages, of which m are short polling messages and m contain the
signed encrypted update, are required in the punishment protocol when a
peer wishes to avoid punishment.

All in all, our approach requires more messages per epoch than plain and HE-based
federated learning. However, whereas the message expansion in our approach
is almost negligible (as the bulk of encryption is symmetric key), the HE-based
approach increases message length by one or two orders of magnitude with respect
to plain federated learning. In particular, if we take say m = 3 and p = 1/2, the
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overall communications overhead of our approach stays below that of HE-based
federated learning.

In summary, our method achieves much less computation overhead and less com-
munication overhead than HE-based methods. Add to this performance advan-
tage the functionality advantage: our method offers both privacy for peers and
detection of bad updates for the manager, whereas the latter feature is lacking in
HE-based methods.

3.6 Experimental results
In this section we report the results of the experiments we conducted to test how
the reputations of peers evolve over time depending on whether they submit good
or bad updates.

First, let us explain the expected system behavior. If our protocols are well de-
signed, a peer’s reputation should highly correlate with the probability that she
generates good updates. Furthermore, the reputation of the peer who submits an
update to the model manager M should also highly correlate with the probabil-
ity that the peer who generated that update generates good updates. Since the
submitting peer’s reputation is used by M to decide on processing or discarding
an update, M will only process a fraction of the received updates. This reduces
M ’s overhead related to detection and punishment of bad updates.

Now, let us go to the actual empirical results. We bounded the range of reputa-
tions between 0 and 1. Then we built a peer-to-peer network with 100 peers whose
initial reputations were set to 0. We let the network evolve for 500 iterations (or
global training epochs). At each epoch, the model manager received one update
from each peer. Thus, the batch size was b = 100 and the reward/punishment
quantum was δ = 1/b = 0.01. We then experimented with two test scenarios,
depending on the proportion of honest peers:

• Scenario 1. Every peer is assigned a random goodness probability πg ∈R

[0, 1]. With probability πg the peer generates a good update and with prob-
ability 1− πg she generates a bad update. Reputation management is used
by peers to decide on accepting or rejecting a forwarded update and to
choose forwardees. That is, a peer Pj accepts a forwarded update only if
the requesting peer’s reputation is at least gj −α, where we set α = 0.03. In
turn, a peer Pi chooses a forwardee based on reputations as described when
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explaining the function Select() in Section 3.3.4. Additionally, reputation
management is also used by the model manager M to decide on processing
or directly discarding an update submitted by a peer Pk. That is, M di-
rectly discards the update with probability p0(1−min(gk/T, 1)), where we
set p0 = 0.5 and T = 0.5.

• Scenario 2. 90% of peers always generate good updates whereas the remain-
ing 10% have probability 0.2 of generating good updates and probability 0.8
of generating bad updates. Hence we can say that 90% of peers have good-
ness probability πg = 1 and 10% of peers have goodness probability πg = 0.2.
Like in the previous scenario, reputation management is set up by taking
α = 0.03, p0 = 0.5 and T = 0.5.

3.6.1 Test scenario 1
In large real federated learning networks with, say several thousands or hundreds
of thousands of peers (e.g. smartphones), a small proportion of malicious peers
(even smaller than in Scenario 2) is the most realistic assumption. Nevertheless,
let us study an extreme scenario with even proportions of good and bad updates.
This will allow us to demonstrate that the goodness probability of a peer correlates
with her reputation and with the reputations of the peers submitting her updates.

Let us assign a random goodness probability in the interval [0, 1] to each of the 100
peers. Thus, on average we can expect peers to generate good updates only half of
the time. Reputations are computed after each of the 500 global training epochs
and are used to decide, on the one hand, on update acceptance and forwarding
(peers accept updates from and forward updates to other peers depending on the
flexibility parameter α = 0.03), and on the other hand, on update processing and
discarding by the model manager (it directly discards updates with probability
p0(1−min(gi/T, 1)), with p0 = 0.5 and T = 0.5).

Figure 3.1 displays the goodness probability versus the reputation of every peer
after the 500 global training epochs. The goodness probability is represented in
the abscissae and the reputation in the ordinates. It can be seen that both the
goodness probabilities and their corresponding reputations spread over the entire
[0, 1] range. Furthermore, the peers’ goodness probabilities and their reputations
are highly correlated (0.977).

Figure 3.2 displays, for every update during the 500 global training epochs (50,000
updates), the goodness probability of the update generating peer versus the rep-
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Figure 3.1: Scenario 1. Goodness probability vs reputation for each peer. Cor-
relation: 0.977.

utation of the submitting peer. It can be seen that both values are also highly
correlated (0.833). In fact, this correlation is even higher for peers with repu-
tation below T = 0.5; for submitting peers with reputations T = 0.5 or above,
the precise reputation of the submitter is not that relevant, because the model
manager will process all updates submitted by peers with reputation T or above.

3.6.2 Test scenario 2

The previous scenario is highly unlikely in the real world. As said above, in large
real federated learning networks a small proportion of malicious peers is the most
realistic assumption.

In Scenario 2, a clear majority of 90% of peers are completely honest (goodness
probability πg = 1), whereas the remaining 10% have a goodness probability of
only πg = 0.2. Reputations are computed after each epoch and are used to decide,
on the one hand, on update acceptance and forwarding, and on the other hand,
on update processing and discarding by the model manager.

Figure 3.3 displays the goodness probability against the reputation of every peer
after 500 global training epochs. Malicious peers (those with πg = 0.2) are cor-
rectly assigned low reputations, because most of the updates they generate are
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Figure 3.2: Scenario 1. Generating peer’s goodness probability vs submitting
peer’s reputation, for all updates. The color scale indicates the number of peers
in each 2-dimensional interval. Correlation: 0.838.

bad and they are punished when their updates reach the model. Besides that, it
is hard for such peers to be selected as forwardees of good updates and thereby
improve their reputation. On the other side, all honest users (those with πg = 1.0)
achieve high reputation values that correspond to their good behavior. Peers with
a reputation T = 0.5 or above are part of a “community” whose members improve
the reputations of each other, by forwarding or submitting their respective up-
dates.

The evolution of the reputations of good peers (with πg = 1.0) and bad peers
(πg = 0.2) is shown in Figure 3.4. The average reputations of both types of peers
swiftly diverge from the very beginning.

Figure 3.5 displays, for every update during the 500 global training epochs (50,000
updates), the goodness probability of the generator versus the reputation of the
submitter. Both values are highly correlated (0.799). However, the correlation
is higher after the system stabilizes (0.9854 from epoch 100 onwards) and all
good peers reach high reputations. Initially, reputations have not yet adjusted
and hence the updates generated by good peers can be submitted by peers with
reputation only slightly above or even slightly below T .
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Figure 3.3: Scenario 2. Goodness probability vs reputation for each peer. Honest
peers are shown in green while bad peers are shown in red. Correlation: 0.998.

Figure 3.4: Scenario 2. Evolution of the average (depicted as a line) and the
standard deviation (depicted as a gray band) of the reputations of good peers
and bad peers as a function of the epoch.

Finally, observe in Figure 3.6 the effectiveness of making reputation-based deci-
sions to filter out bad updates. Out of the 50,000 updates generated over the
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Figure 3.5: Scenario 2. Generating peer’s goodness probability vs submitting
peer’s reputation, for all updates. The color scale indicates the number of peers
in each 2-dimensional interval. Correlation: 0.799.

500 epochs, around 46,000 are good, while around 4,000 are bad. Based on the
submitting peer’s reputation, the model manager M discards 2,831 updates. The
figure shows that, when the system stabilizes, on average 80% of the updates
discarded by M are bad. This is the right proportion, because malicious peers
do not always generate bad updates (they generate bad updates with probability
1− πg = 0.8).

Note that reducing the proportion of bad updates processed by the model manager
is also a good security defense. Indeed, the fewer the bad updates processed by
the model manager, the more those bad updates are likely to stand out as outliers,
which will enable M to detect and discard them. Additionally, fewer bad updates
processed by M also mean less detection overhead for M and, especially, less
punishment and tracing overhead for peers (both normal peers and accountability
managers).

Finally, we considered the case of newcomers by introducing two new peers im-
mediately after iteration 100: A good one and a bad one. Figure 3.7 shows that
the reputation of the good newcomer gradually increases to the level of the other
good peers, while the reputation of the bad newcomer remains as low as the other
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Figure 3.6: Scenario 2. Ratio of bad updates discarded by the model manager
as a function of the training epoch.

bad peers in the network. Therefore, a bad peer does not gain anything by leaving
the system and rejoining with a new pseudonym (whitewashing).

Figure 3.7: Scenario 2. Evolution of the reputation of newcomers.
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3.7 Summary
We have presented protocols to improve privacy and security in federated learning
while perfectly preserving the model accuracy. Our protocols rely on the notion
of co-utility, that is, they are self-enforcing if players are rational. We use a
decentralized reputation management scheme that is itself co-utile to incentivize
peers to adhere to the prescribed protocols.

In this way, peers do not need to be honest-but-curious per se: as long as they
are rational they will behave honestly, and even a minority of malicious peers
that do not respond to the same incentives as the other peers can be tolerated.
Confidentiality of the peers’ private data is guaranteed by the unlinkability of
updates: when a peer generates an update, neither the model manager nor the
other peers can identify the update generator. This way to provide privacy is
superior to the state-of-the-art alternatives:

• Unlike privacy protection via differential privacy [28], our protection mech-
anism does not alter the value of updates and hence does not affect the
accuracy of the learned model. Furthermore, our privacy notion based on
unlinkability is also strong.

• Unlike privacy protection based on update aggregation, our solution is com-
patible with punishing the peers that generate bad updates. Also, our solu-
tion entails less computational overhead than aggregation based on homo-
morphic encryption.

Security, i.e. protection against bad updates, is pursued in our approach via rep-
utation. Whereas state-of-the-art security countermeasures do nothing to reduce
the number of bad updates that are processed by the model manager, we address
this issue in a way to achieve two beneficial effects: first, to decrease the overhead
for the model manager and the peers related to processing, tracing and punish-
ing bad updates; and, second, to make the (fewer) bad updates processed by the
model manager more identifiable as outliers. The design of our protocols also
renders whitewashing and Sybil attacks ineffective.

UNIVERSITAT ROVIRA I VIRGILI 
CO-UTILE PROTOCOLS FOR DECENTRALIZED COMPUTING 
Jesús Alberto Manjón Paniagua 



Chapter 4

Secure, Accurate and
Privacy-Aware Fully
Decentralized Learning via
Co-Utility

4.1 Introduction
Fully decentralized learning (FDML) is the extreme form of decentralized machine
learning [20, 50, 51, 21, 52]. In FDML, each peer in a peer-to-peer (P2P) network
trains a deep learning model with the help of the other peers. In her role as a
model manager, each peer periodically sends the current model to other peers and
the latter return model updates based on the private data they hold.

Unlike in the related federated learning (FL, [2]), where there is a fixed split be-
tween a model manager and the workers computing model updates based on their
private data, in FDML all nodes may be managers of their own models and work-
ers for others’ models and exchange messages without any central coordination.

The strong point of FDML is that it is more robust and scalable as the number of
nodes increases. Note that in centralized machine learning, respectively in FL, an

50

UNIVERSITAT ROVIRA I VIRGILI 
CO-UTILE PROTOCOLS FOR DECENTRALIZED COMPUTING 
Jesús Alberto Manjón Paniagua 



4.2. Contributions 51

attacker who wants to disrupt the learning process only needs to “intoxicate” the
model manager with bad data, respectively bad updates. In contrast, in FDML it
is harder for the attacker to disrupt a significant proportion of learning processes.

In FDML a conflict between accuracy, security and privacy arises. On the one
hand, model updates returned by a peer can leak some of the peer’s private
data [27]. A countermeasure that can be implemented by the peers themselves to
protect their privacy is to distort their updates via, e.g., differential privacy [29].
Alas, this distortion works against accuracy of the trained model. Another coun-
termeasure consists in securely aggregating the updates of several peers (i.e., via
secure multiparty computation) and then sending only the update aggregation
to the model manager [33]. However, this goes against security, because the
model manager cannot filter out individual bad updates. Additionally, peers are
autonomous and it cannot be taken for granted that they will help the model man-
ager by supplying honest model updates. This may compromise the sustainability
of the network.

4.2 Contributions
In this chapter we present a co-utile approach (see Section 2.2) to fully decentral-
ized machine learning that has the following properties:

• Perfectly accurate individual updates can be returned by peers to the model
manager in a privacy-preserving manner.

• Rational (that is, self-interested) peers can be expected to follow the FDML
protocol we propose without deviating, thanks to a tit-for-tat mechanism
that renders the protocol naturally co-utile. This makes our proposal sus-
tainable and robust against rational security attacks.

In the previous chapter we presented a co-utile protocol for federated learning. In
order to preserve the peer-to-peer (P2P) computing paradigm, global reputations
were also computed in a P2P decentralized way and their correctness was ensured
by co-utility as well. However, decentralized management of global reputations
complicates protocols and entails a significant cost: in Chapter 3 reputation man-
agement requires any reputation updates for a peer to be sent to the peer’s set
of AMs. Moreover, to obtain consistent global reputations, values are normalized
into the range [0, 1] by dividing them by the largest reputation in the network; to
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that end, at each epoch AMs need to broadcast all reputation values greater than
1.

The fact that we tackle here fully decentralized machine learning, makes the com-
plexity of the above reputation management even more unaffordable.

Our experiments show that peers receive good updates for their respective models
from other peers if and only if they compute good updates for the other peers’
models. Furthermore, our approach based on tit-for-tat incurs less overhead to
achieve co-utility than protocols based on decentralized global reputation.

The chapter is organized as follows: Section 4.3 introduces a co-utile protocol for
FDML. Section 4.4 justifies that the proposed protocol suite achieves co-utility
(and thus is rationally sustainable). Section 4.5 shows that it satisfies privacy
for the inputs and the outputs, and that correct computation is the best option
for rational peers. Section 4.6 presents experimental results. Finally, Section 4.7
summarizes conclusions and future research avenues.

4.3 Co-utile FDML based on tit-for-tat
Global reputation-based incentives for workers are needed in federated learning,
due to the divide between the model manager and workers: since all workers con-
tribute to a single model, there should be a common –global– way to account for
their behavior. However, in fully decentralized learning peers can be managers of
their own models and at the same time be workers for other peers’ models. In this
symmetric setting, co-utility can be attained in a more efficient way, specifically
using tit-for-tat and local reputations. This is the idea underlying Protocol 1.
Before starting the protocol description, we summarize in Table 4.1 the notation
used in the rest of this chapter.

In Protocol 1, every time a peer Pi receives a model mk from another peer Pk, Pi

computes her update uki on mk. Such an update can be viewed as a “currency”
that can be redeemed at Pi against an update on Pi’s model mi. It is important to
note that, when Pi sends her model mi, mi carries Pi’s identity so that every peer
receiving mi knows it is managed by Pi. In contrast, when Pi returns an update
uki on mk, uki carries Pk’s identity but not the identity of the update generator
Pi. In fact, the protocol prevents Pk from directly receiving uki from Pi, in order
to protect the update generator’s privacy. Indeed, uki might leak information on
Pi’s private data, and hence dissociating uki from Pi’s identity protects the latter
peer’s privacy.
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Table 4.1: Notation in this Chapter

Notation Concept Notation Concept

Pi, Pk, Pl, Pℓ Peers i, k, l, ℓ
Pseudonyms of
Pi, Pk, Pl, Pℓ, respectively

mi
Model managed and
learned by Pi

u, u∗∗ Model updates

mu Model m after updating it
with update u

uki
Update on Pk’s model
computed by Pi

ui∗
Update on Pi’s model com-
puted by some other peer ti

Number of updates com-
puted by Pi on her private
data

κi

Privacy parameter such
that there is a probabil-
ity 1/κi that an update ex-
changed by Pi has been
computed by Pi on her pri-
vate data

θ
Centroid of a batch of up-
dates

Dest(·)

Function that computes
the pseudonym of the peer
to whom the message in
the argument is to be sent

Signi(·)
Function computing Pi’s
signature on the argument

V eri(·, ·)
Verification function for
Pi’s signature H(·) Cryptographic hash func-

tion

Enci(·, · · · )

Function that encrypts the
message and the nonce in
the arguments under Pi’s
public key

Ri
Request for updates mes-
sage sent by Pi

τ Epoch identifier r, r2, r
∗, · · · Random nonces

U i
j→k

Update message that con-
tains Enci(uij) signed and
sent by Pj to Pk

U i
j→∗

Same as above but sent by
Pj to any peer

Uui∗
Set of update messages
containing ui∗

Sui∗
Set of peers having sent up-
date messages in Uui∗

Ci = {ci1, ..., cin}
Local reputations managed
by Pi on the other peers
she has interacted with

δ
Reputation quantum for
punishment and reward

Ti

Interaction threshold,
which is used by Pi to
decide whether to interact
with other peers
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To account for the actions of the peers involved in the interactions, Protocol 1
relies on local reputations: each peer Pi maintains local reputation scores Ci =
{ci1, ..., cin}, which represent Pi’s opinion on the other peers she has interacted
with. These local reputations are never shared. Hence, the interactions between
two peers depend only on their corresponding local reputations.

Local reputations take values within the range [0, 1]. Depending on the actions
of Pk during the execution of Protocol 1, Pi’s opinion on peer Pk (cik) can either
improve or worsen. Generating a bad update for Pi or duplicating updates (to
save computation) decreases the generator’s reputation cik by a certain quantum
δ (hard punishment). Furthermore, unintentionally forwarding bad or duplicated
updates to Pi slightly decreases the forwarder’s reputation cik by a fraction of δ
(soft punishment). On the other hand, helping a good update reach the model
manager or helping disseminate the model brings a reward (fraction of δ) to one
of the helping peers.

After each tit-for-tat phase, every peer Pi computes an interaction threshold Ti.
This threshold defines the minimum reputation value Pi requires to another peer
in order to trust him and, therefore, interact with him. The threshold is computed
as the average of the local reputations managed by a peer minus their standard
deviation:

Ti = Ci − σ(Ci). (4.1)

In what follows, we will use the term trusted (by a certain peer Pi) to denote a
peer Pk with a local reputation equal or above Ti; that is, “Pi trusts Pk” means
cik ≥ Ti. Inversely, we will use the term untrusted for a peer Pl such that cil < Ti.

Protocol 1 works as follows. At each epoch, each Pi disseminates her model mi to
some of the others peers, trusted or not (subprotocol Disseminate(Pi,mi)). Since
Pi would anyway be unable to prevent her model from reaching peers untrusted
by her (because dissemination is multi-hop), it makes no sense for Pi to limit
dissemination to her trusted peers.

After disseminating her model, each peer Pi computes updates based on her local
private data for as many models as the peer has received from trusted peers.

Next come two tit-for-tat blocks:
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Protocol 1: Co-utile FDML based on tit-for-tat
1 Peer Pi calls Disseminate(Pi,mi);
2 for each model mk received do
3 if Pi trusts Pk then
4 Pi computes an update uki

5 Let ti be the number of updates computed by Pi;
/* Privacy tit-for-tat */

6 for j = 1 to κi × ti do
7 Pi randomly selects a Pl such that cil ≥ Ti;
8 Pi calls Exchange_update(Pi,Pl);

9 Pi waits until the first half of the epoch has elapsed;
10 Pi hard-punishes any peer to whom Pi has sent an update in the privacy

tit-for-tat without being reciprocated with another update from that
peer;
/* Learning tit-for-tat */

11 for each uk∗ received by Pi from a trusted peer and not yet forwarded do
12 if cik ≥ Ti then
13 Pi tells Pk she has an update on Pk’s model and requests an

update from Pk, if possible an ui∗ on Pi’s model;
14 if Pi receives an update from Pk then
15 Pi sends uk∗ to Pk;

16 for each good update ui∗ received by Pi from a trusted peer Pj do
17 Pi updates her model mi with ui∗, where in case of duplication ui∗ is

considered only once;
18 Pi rewards Pj ;
19 Pi also rewards the first destination peer that participated in the

model dissemination;

20 Pi hard-punishes any peer to whom Pi has sent an update in the learning
tit-for-tat without being reciprocated with another update from that
peer;

21 for each Pk from whom Pi has received a bad ui∗ do
22 Pi calls Punish_bad(Pi, ui∗, Pk);

23 for each duplicate update ui∗ do
24 Pi calls Punish_duplicate(Pi, ui∗).
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• Up to the end of the first half of the epoch, a “privacy tit-for-tat” is run. In
parallel, every peer Pi peer calls subprotocol Exchange_update(Pi,Pl) to
exchange the updates she holds with other trusted peers Pl. The updates
that a peer Pi holds may have been computed by Pi or may have been
just received from other trusted peers (Pi systematically discards updates
received from untrusted peers due to their demonstrated bad behavior in
previous epochs).

Hence, when a peer Pl receives an update from Pi, Pl cannot be sure that
the update was really computed by Pi, which protects the privacy of Pi’s
private data. See the details of Exchange_update in Section 4.3.2 below.

If a peer Pi has computed ti updates, she tries to exchange κiti updates,
where κi is a privacy parameter selected by Pi.

As a result, the probability that an update exchanged by Pi has actually
been computed by Pi on her private data is at most 1/κi; thus, the greater
κi, the more work for Pi, but also the more privacy.

• The second tit-for-tat is called “learning tit-for-tat” and starts in the second
half of the epoch. In parallel, peers send to the corresponding trusted model
managers all the updates that: (i) they got from trusted peers; and (ii) they
did not forward in the privacy tit-for-tat.

Due to the first tit-for-tat, the peer Pi that sends an update uk∗ to Pk is not
in general the peer having computed the update, which is good for privacy.
On the other hand, if Pi sends an update uk∗ to Pk (tit), Pi expects to
receive from Pk an update that, ideally, should be ui∗ (tat). However, if Pk

does not have any ui∗, Pi will also accept any other update from Pk, say ul∗.
This will enable Pi to contact another model manager (Pl). By repeating
this exchange of updates, Pi increases the chance of receiving updates ui∗
on her own model. At a network level, this will make it possible for most
updates to reach their corresponding model managers.

Before sending uk∗ to Pk, Pi asks Pk whether she has got any update for
her (ideally ui∗).

If Pk sends an update to Pi, Pk expects to receive uk∗ from Pi; if this does
not happen, then Pk hard-punishes Pi by decreasing her local reputation
drastically.
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If Pk is not able to send any update to Pi (because she has run out of them),
Pi selects another update to be exchanged with its corresponding model
manager, and keeps uk∗ to be exchanged later with other peers holding ui∗.

At the end of the epoch, Pi checks whether the updates ui∗ she has received
as a model manager are good (see below). Then Pi uses each good update
to improve her model mi. If a good update has been received several times
(duplicate), it is only used once. Also, Pi rewards the last peer that for-
warded the update, and the first destination peer that helped disseminate
the model.

Finally, Pi launches punishment protocols involving those peers Pk from
whom Pi has received bad or duplicate updates ui∗. The peers who com-
puted these updates will eventually be hard-punished. The reason is that
bad or duplicate updates correspond to malicious behaviors that should be
discouraged: bad updates can bias the model or prevent it from converg-
ing [23], whereas duplicate updates signal that some peer is trying to avoid
the cost of calculating updates on her own private data1.

After the two tit-for-tat blocks, each peer will have received a number of updates
for her own model that is highly correlated with the number of updates computed
by her for the models of other peers (see Figure 4.10 in the experimental section).
In this way, the protocol fosters the computation of new updates.

Figure 4.1 shows an example of the execution of Protocol 1. P0 and P3 disseminate
their respective models, which reach P1 and P3 in the case of P0’s model, and
P0, P1 and P2 in the case of P3’ model. Each peer computes an update and,
afterwards, the “privacy tit-for-tat” phase begins. In this phase, the updates are
exchanged among the peers and, at the end, P0 owns u31, P1 owns u32 and u03,
P2 owns u30 and P3 owns u01. For the sake of clarity, in the “learning tit-for-tat”
phase we have just shown the interaction between P0 and P3. Since P0 trusts
P3, P0 tells P3 that she has an update for her, P3 sends u01 to P0 and finally, P0

sends u31 to P3. The remaining updates would be exchanged among the other
1One might also think of “smart duplicators”, who slightly change another peer’s update to

forgo calculation costs while escaping the duplicator punishment. However, this behavior is not
possible because, as it will be seen below, updates are encrypted under the model manager’s
public key, and hence if they are altered in transit, no proper update will be recovered by the
manager, who will count the resulting gibberish as a bad update and will punish the “smart
duplicator” for having generated it.
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peers in a similar way. After receiving an update, each peer should check it. In
our example, P0 checks u01. If u01 is a good update, P0 updates her model and
rewards both the first disseminating peer (not shown in the diagram, say Px) and
the last forwardee (P3). If u01 is a bad update or it has been duplicated, P0

launches the corresponding punishment protocol.

In the next subsections, we describe the auxiliary (sub)protocols that appear
in Protocol 1, namely Disseminate, Update_exchange, update forwarding,
Punish_bad, and Punish_duplicate.

4.3.1 Model dissemination
To describe the Disseminate subprotocol, we first define some notation.

Addressing in our P2P network is designed to function as a distributed hash
table (DHT) using consistent hashing [53], rendezvous hashing [54], or similar
approaches. In other words, all peers in the network are able to determine, using
an agreed-upon cryptographic hash function denoted by Dest(·), which peer is
responsible for processing a specific message. Additionally, peers are identified by
a pseudonym consisting in an integer in the range (0, 2λ − 1) (e.g. for λ = 160
we have a 160-bit integer). We use Signi(·) to denote a function computing Pi’s
signature on the argument using her private key. Likewise, we denote by V eri(·, ·)
the signature verification function for Pi’s signature using Pi’s public key. For
correctness, V eri(m,Signi(m)) = 1 for any message m. Note that the identifier i
of peer Pi is deterministically linked to Pi’s public key, and so all peers are able
to obtain Pi’s public key from her identifier. Finally, H(·) is a cryptographic hash
function.

Disseminate(Pi,mi) works as follows:

1. Peer Pi constructs a request for updates message

Ri = ⟨i, τ,mi, Signi(H(i, τ,mi)), r⟩, (4.2)

where i is Pi’s pseudonym, τ is an epoch identifier, mi is Pi’s model, and r
is a random nonce.

2. Pi computes j = Dest(Ri).

3. Pi sends Ri to PDest(Ri) who, upon receiving the message, checks that (i)
she is the intended receiver by ensuring her identifier matches Dest(Ri), (ii)

UNIVERSITAT ROVIRA I VIRGILI 
CO-UTILE PROTOCOLS FOR DECENTRALIZED COMPUTING 
Jesús Alberto Manjón Paniagua 



4.3. Co-utile FDML based on tit-for-tat 59

Figure 4.1: Sequence diagram showing the interactions among peers in an exam-
ple execution of Protocol 1
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the epoch identifier τ is correct, (iii) she has not received another request for
updates for the same model mi in the current epoch, and (iv) the signature
on i, τ and mi is valid.

4. If any of the previous checks fails, PDest(Ri) drops Ri.
Otherwise, PDest(Ri) appends a new sequence number r2 to obtain R2

i =
⟨i, τ,mi, Signi(H(i, τ,mi)), r, r2⟩, and then forwards R2

i to PDest(R2
i )

. Noth-
ing prevents PDest(Ri) from disseminating mi to additional destination peers,
by replacing r2 with other sequence numbers.

The rationale of the Disseminate subprotocol is as follows.

• The identifiers and the public keys of peers are linked to each other. Hence,
peers cannot maliciously alter their identifiers.

• Due to the above and to the use of a cryptographic hash function (resis-
tant to preimage attacks), a malicious peer Pi is prevented from choosing
a designated target peer Pj as a destination for Pi’s requests for updates
(in view of attacking Pj ’s privacy by obtaining updates computed on Pj ’s
private data). Indeed, Ri contains i, τ , mi, a signature on i, τ and mi,
and a nonce r. Since i and τ cannot be altered and the signature has
to be valid for the message to be accepted by Pj , Pi needs to find either
a format-conforming m∗

i , a nonce r∗, or a combination of both such that
j = Dest(i, τ,m∗

i , Signi(H(i, τ,m∗
i )), r

∗), which is computationally infeasi-
ble for cryptographically secure hash functions. The same holds for the
second hop.

4.3.2 Update exchange

In the Exchange_update(Pi,Pl) subprotocol, a peer Pi seeks to exchange an
update with another peer Pl that is trusted by Pi.

When exchanging updates during the privacy tit-for-tat, peers want to avoid re-
ceiving repeated updates, that is, updates the peers had themselves generated or
received from other peers in previous exchanges. Note that avoiding repeated
updates also avoids loops in the path from the update generator to the model
manager for whom the update is intended.
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The reason to avoid repeated updates is that it is dangerous for a peer to forward
an update more than once. Indeed, forwarding more than once due to a loop can
hardly be distinguished from forwarding more than once due to malicious update
duplication. In fact, subprotocol Punish_duplicate (Section 4.3.5) punishes
any peer that forwards the same update more than once.

Therefore, Update_exchange(Pi,Pl) operates in the following way:

1. Pi shows to Pl the hash images H(u) of all updates u computed by Pi or
received by Pi, such that u has not been forwarded yet.

2. Pl shows to Pi the hash images H(u′) of all updates u′ computed by Pi or
received by Pi, such that u′ has not been forwarded yet.

3. If Pi finds a hash H(u∗∗) among those shown by Pl that does not correspond
to any update previously held by Pi, then Pi requests to Pl the update u∗∗.

4. If Pl finds a hash H(u′∗∗) among those shown by Pi that does not correspond
to any update previously held by Pl, then Pl requests to Pi the update u′∗∗.

As specified in Line 10 of Protocol 1, if a peer does not reciprocate in the above
exchange subprotocol, she will be hard-punished by the other peer at the end of
the privacy tit-for-tat.

4.3.3 Update forwarding

Both the privacy tit-for-tat and the learning tit-for-tat require the exchange of
model updates among peers. In order to protect the privacy of the model update
generators against the peers in the update’s path to the model manager, a peer
Pj that computes an update uij of model mi owned by Pi encrypts uij under Pi’s
public key.

Preserving the update generator’s privacy as just discussed must be compatible
with being able to trace bad or duplicate updates during the punishment subpro-
tocols. To do so, every update sent by a peer Pj to a peer Pk includes the identities
of both peers and is signed by Pj . In this manner, if the update contained in the
message is flagged as suspicious, Pk can prove that she did not compute the up-
date, but just forwarded it. The only peer that cannot show a signature from a
previous peer is the update generator. Thus, an update message containing an
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update for the model mi managed by Pi, sent by peer Pj to Pk at epoch τ and
timestamp T takes the form

U i
j→k = ⟨j, k, i, τ, T,

Enci(uij , r),

Signj(H(j, k, i, τ, T, r, Enci(uij,r)))⟩ (4.3)

In Expression (4.3), r is the nonce inserted during the dissemination phase in the
request-for-updates message Ri to which the update corresponds (see Expression
(4.2)). Upon receiving a good update U i

j→k, the model manager Pi can reward the
first destination peer Dest(Ri) that took care of forwarding Ri rather than drop-
ping it. The reward consists in a small increase (by a fraction of δ) of Dest(Ri)’s
local reputation.

4.3.4 Punishing bad updates
In this section, we describe the Punish_bad subprotocol for punishing bad up-
dates. In Section 2.3.1 we discussed the approaches that a model manager can
use to decide whether a received update is good or bad. In a nutshell:

• Detection via model metrics An update is labeled as bad if incorporating it to
the model degrades the model accuracy. This approach requires a validation
data set on which the model with the update and the model without the
update can be compared. Also, the computation needed to make a decision
on each received update is significant.

• Detection via update statistics. Given a batch of updates, an update is
classified as bad if it is much more distant than the other updates from the
centroid of the batch.

• Neutralization of bad updates via special aggregation. This approach consists
in ignoring bad updates rather than seeking to explicitly detect them. It
combines the above intuitions of distance-based detection and majority vot-
ing. Updates are aggregated using operators that are insensitive to outliers,
such as the median, the coordinate-wise median, or Krum aggregation. In
this way, updates too different from the rest have little or no influence on
the learning process.
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In our protocol, we want to actually detect bad updates in order to avoid inter-
action with the malicious peers generating them. Hence, we discard the third
approach based on ignoring bad updates. On the other hand, the approach based
on model metrics is quite costly and requires validation data. Thus, resorting to
update statistics seems the most suitable option in our case.

The Punish_bad(Pi, ui∗, Pk) subprotocol is called by Pi upon receiving a bad
update ui∗ from another peer Pk and it works as follows:

1. Pi asks Pk to prove that Pk did not generate ui∗.

2. If Pk did not generate ui∗, according to the update forwarding subprotocol
(Section 4.3.3), Pk should have received a message U i

l→k with the structure
of Expression (4.3) and containing ui∗ from another peer, say Pl. Now:

Pk calls Punish_bad(Pk, ui∗, Pl);

If Pk decides to help Pi (e.g., because Pk trusts Pi), then Pk sends U i
l→k to

Pi.

3. If Pi receives a proof that Pk did not generate ui∗, then Pi soft-punishes Pk

by slightly decreasing (by a fraction of δ) her local reputation cik.
Else Pi hard-punishes Pk by decreasing Pk’s local reputation by δ.

If Pk proves she did not generate the bad update by showing U i
l→k to Pi, Pk avoids

a severe decrease of her local reputation cik. Yet, cik is decreased a little. The
rationale is to have Pk share some of the damage caused by the bad update, so
that Pk has an incentive to launch punishment against Pl. In this way, punishment
hops up to the generator of the bad update, who cannot prove she got it from
anyone else, and is therefore hard-punished by the peer who directly got the bad
update from the generator.

Resuming the example in Figure 4.1, Figure 4.2 shows the case where the update
received by P0 (u01) was bad. P0 asks P3 to prove that she did not generate u01
and P3 returns the message U0

2→3 received from P2 to avoid being hard-punished.
P0 soft-punishes P3 and P3 executes the same protocol with P2. P2 can also prove
she was not the generator of u01 and try to execute the same protocol with P1.
Since P1 was the generator of the bad update, she cannot send a message U0

∗→1

to P2 and, therefore, P1 is hard-punished.
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Figure 4.2: Sequence diagram showing the interactions among peers in an ex-
ample execution of the Punish_bad subprotocol. The diagram at the bottom
shows the path followed by the update.
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An alternative to the above hop-wise punishment would be for the model manager
Pi to trace and punish the generator upstream with the help of the intermediate
forwarders. While this procedure would allow the model manager Pi to directly
punish the generator, it might also be misused: Pi might pretend that a good
update is bad in order to find which peer generated it and thereby break the
generator’s privacy (to the extent that an update can leak information on the
generator’s private data). A peer Pl can defend against this potentially misusable
alternative by never answering bad update claims for another peer Pi to whom Pl

did not directly send the update.

4.3.5 Punishing duplicate updates

Punish_duplicate(Pi, ui∗) aims at punishing the most downstream duplica-
tor(s), that is, the peer(s) closest to Pi in the update forwarding path who dupli-
cated an update to try to save her (their) own computing resources.

Punish_duplicate traces the duplicator(s) upstream. It works as follows:

1. If ui∗ is a duplicate, this means that Pi has received a set of messages Uui∗ =
{U i

ℓ→i|U i
ℓ→i contains ui∗} such that |Uui∗ | ≥ 2. Let Sui∗ = {Pℓ|U i

ℓ→i ∈
Uui∗}.

2. Non-questioned_peers = Sui∗ .

3. While Duplicator= not_found and Non_questioned_peers ̸= ∅ do

If ∃Pℓ ∈ Non_questioned_peers such that Uui∗ contains more than one
message U i

ℓ→∗ then

(a) Pi hard-punishes all Pℓ that satisfy the condition;
(b) Pi sets Duplicator = found;

Else

(a) Pi picks Pℓ ∈ Non_questioned_peers such that Pℓ sent the most
recently timestamped message in Uui∗ ;

(b) Pi questions Pℓ by sending Uui∗ to Pℓ;
(c) If Pi receives from Pℓ a message U i

e→ℓ that contains ui∗ then
i. Pi appends Pe to Non_questioned_peers;
ii. Pi removes Pℓ from Non_questioned_peers;
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iii. Pi lets Uui∗ = Uui∗ ∪ {U i
e→ℓ};

Else
i. Pi hard-punishes Pℓ;
ii. Pi sets Duplicator = found.

Note that, unlike in Punish_bad, in Punish_duplicate a malicious Pi cannot
make false claims: Pi must actually show a set Uui∗ of signed messages containing
the same update in order to get help in upstream tracing.

Also, in the last step of Punish_duplicate, a peer Pℓ that sent only one mes-
sage but does not help tracing the upstream duplicator is hard-punished. Thus,
failing to collaborate to track a duplicator receives the same punishment as being
a duplicator. Note that there is no danger that an honest update generator is
punished in this way, even if the generator cannot by definition help tracing up-
stream (because she did not receive the update from anyone else). The reason is
that Punish_duplicate prioritizes the most recently timestamped updates, so
that it will always find the real duplicator before reaching an honest generator.

Hence, if an honest generator comes to be questioned in Punish_duplicate, she
will hard-punish the questioning peer because the latter should not have ques-
tioned her.

Figure 4.3 shows the case where u01 was duplicated in Figure 4.1. If we assume
the updates followed the paths shown in the bottom diagram, P0 sends all the
messages received with the duplicated update (Uu01) to P3 (because U0

3→0 was
the last message received, right before U0

2→0), and P3 replies with the message she
received from P1 (U0

1→3). Then, P0 questions P2 by sending her all the collected
messages. When P2 sends back the message she received from P1 (U0

1→2), P0

knows that P1 is the duplicator and hard-punishes her.

4.4 Co-utility analysis
In this section we will show that Protocol 1 will be adhered to by rational peers.
Hence, the rational behavior of peers is to follow the protocol rather than attack
it.

4.4.1 Model dissemination
Step 1 of Protocol 1 is rationally sustainable: without disseminating her model,
a peer cannot expect to receive updates from other peers. A different issue is
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Figure 4.3: Sequence diagram showing the interactions among peers in an ex-
ample execution of the Punish_duplicate subprotocol. The diagram at the
bottom shows the paths followed by the updates.
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whether the Disseminate subprotocol as described in Section 4.3.1 will be ratio-
nally followed by Pi and the other peers. We justify this.

On Pi’s side, it is rational to avoid swamping the other peers with requests for
updates: sending each request for updates has a computation cost (the signa-
ture) and a communication cost, and Pi knows that destination peers will reject
duplicate requests for updates.

On the other hand, the destination peer, say Pj , is incentivized to avoid dropping
the request for updates Ri, because if Ri brings a good update to Pi, Pi may be
rewarded by Pj with a reputation increase.

However, Pj is interested in making sure she is not deliberately chosen by Pi and
hence the target of a privacy attack by Pi. Hence, Pj is motivated to check the
format of message Ri, to make sure she was chosen using the hash function and
to check that Ri carries Pi’s signature, in order to be sure about who is the model
manager (this is necessary for the privacy tit-for-tat).

Last, Pj is rationally interested in launching a second dissemination hop to PDest(R2
i )

in order to forestall an attack by a malicious Pi who would send mi only to Pj (if
the model owner sends her model to a single peer Pj , then the owner knows that
any updates on her model have been computed by Pj , which compromises Pj ’s
privacy). The more peers Pj sends mi to, the more privacy Pj secures for herself.

4.4.2 Update computation

Step 4 of Protocol 1 is also rationally sustainable: by computing updates for the
received models, a peer “mints” a currency that she will be able to use in the
tit-for-tats. If Pi purposefully computes a bad update uk∗ for Pk’s model mk, this
is detected in the learning tit-for-tat and Pi is eventually hard-punished by the
peer that firstly forwarded the bad update in the privacy tit-for-tat (Step 22).
Hence, a peer who computes bad updates will receive fewer and fewer updates for
her model from other peers as a consequence of a general worsening of her local
reputations c∗i. Unless attacking another peer’s model has a higher utility than
training one’s own model, the best option for a peer is to compute good updates
in Step 4.

4.4.3 The privacy tit-for-tat

The privacy tit-for-tat is co-utile by design:
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• At Step 8, peer Pi calls the Update_exchange subprotocol to exchange
non-repeated updates with another peer Pl. As described in Section 4.3.2,
in this subprotocol Pi makes a tit move consisting of showing to Pl the hash
images of all updates Pi has available for exchange. If no corresponding
tat move by Pl follows (in which Pl shows the hash images of her available
updates), Pi can exit the subprotocol. Otherwise, if Pi (resp. Pl) finds that
Pl (resp. Pi) has a non-repeated update, Pi (resp. Pl) requests that update
from Pl (resp. Pi).

Both peers are rationally interested in getting non-repeated updates: indeed,
Punish_duplicate punishes a peer if she has sent more than once the same
update, no matter whether this comes as a result of message duplication or
as a result of a loop.

• In case Pl (resp. Pi) fails to provide the requested update, she will be hard-
punished by Pi (resp. Pl) at Step 10. This can be viewed as a “currency”
exchange. The exchange can involve updates that Pi and Pl have computed
and updates they have received from other peers. The more updates a
peer receives from other peers, the more updates she can send other than
those she computes herself; the received updates are used as noise to hide
the computed updates, which results in higher privacy. Hence, forwarding
updates computed by other peers is co-utile.

4.4.4 The learning tit-for-tat

The learning tit-for-tat is also co-utile by design. Peer Pi makes a tit move by
sending an update uk∗ to Pk (Step 15) after having secured a tat move consisting
of an update from Pk (Step 14). When requesting the tat move from Pk (Step 13),
Pi expresses her preference for an update ui∗ on her model.

In case Pk possesses an update ui∗, there is no reason why Pk should not send it
to Pi; yet if Pk does not have any update ui∗, she can send another update to Pi

as a valid tat move.

4.4.5 Model updating

For every good update received by Pi, it is in Pi’s interest to use it to update
her own model mi (Step 17). After that, if the good update was sent by Pk,
it is in Pi’s interest to increase the local reputation cik, for the sake of keeping
accurate records on the other peers’ behavior and to increase the number of trusted
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peers with whom Pi can interact. From the point of view of a newcomer peer
Pk, the possibility of being rewarded with a reputation increase is an incentive
to cooperate as an honest update generator or forwarder: as soon as the local
reputation cik reaches Pi’s interaction threshold Ti, Pk can expect Pi to compute
or send to Pk updates for Pk’s model.

4.4.6 Punishment
Finally, it is also in Pi’s interest to punish the misbehavior by other peers, in
order to discourage it. Punishment involves a decrease of the offender Pk’s local
reputation, which is a dissuasive punishment. If her local reputation cik is less
than the interaction threshold Ti, Pk knows Pi will not send or compute updates
for Pk’ model.

Specifically,

• In Step 20, Pi hard-punishes those peers to whom Pi sent an update (in a
requested tat-move) without receiving the corresponding tit.

• Although Pi can detect bad or duplicate updates and ignore them, it is in
Pi’s interest to discourage other peers from generating such updates. In the
case of bad updates, Pi’s incentive is to save detection work. In the case
of duplicate updates, Pi’s incentive is to deter bandwidth and processing
wastage as a result of duplication.

Hence:

– Pi calls Punish_bad to punish every peer Pk from whom Pi has re-
ceived a bad update. If Pk did not generate that update, Pk’s rational
decision is to escape the most severe punishment (hard-punishing by
Pi) by revealing the name Pl of the peer that sent the bad update to Pk.
Even if Pk collaborates, Pk still shares some of the burden of the bad
update, because Pk will be soft-punished by Pi, by slightly decreasing
her local reputation cik. This motivates Pk to carry on the punishment
upstream, in order to make sure the generator of the bad update gets
hard-punished by the forwarder that first got the bad update.
On the other hand, as pointed out in Section 4.3.4, a peer’s rational
behavior is, for privacy reasons, not to answer bad update claims from
another peer to whom the former peer did not directly sent that update.
See more detailed explanations at the end of Section 4.3.4.

UNIVERSITAT ROVIRA I VIRGILI 
CO-UTILE PROTOCOLS FOR DECENTRALIZED COMPUTING 
Jesús Alberto Manjón Paniagua 



4.5. Privacy and security 71

– Pi calls Punish_duplicate to punish duplicate updates and thus dis-
courage them. In Punish_duplicate, if a peer Pk did not generate a
duplicate, it is in Pk’s interest to escape punishment by revealing who
sent that duplicate to her.
On the other hand, although Punish_duplicate only punishes the
most downstream duplicator(s), this is enough. If an upstream peer
decides to duplicate an update, there might not be any other duplica-
tor further downstream, in which case she will be punished if at least
two peers that have received her duplicates co-operate with the model
manager to trace her. Hence duplicating always poses a risk to the
duplicator.

4.5 Privacy and security
In this section we examine how the confidentiality of the peers’ private data is
protected and how bad and duplicate updates can be detected by model managers.

4.5.1 Privacy

As mentioned in Section 4.3 when describing the privacy tit-for-tat, breaking the
link between an update and the peer that computed it goes a long way towards
guaranteeing that the private data sets of peers stay confidential. We can state
the following proposition.

Proposition 3. In Protocol 1, the probability that a passive attacker (in particu-
lar, a peer) receiving updates from Pi can make inferences on Pi’s private data is
upper-bounded by 1/κi.

Proof. Any peer Pi sends the ti updates she has computed on her private data
set only in the privacy tit-for-tat. Thus, this is the only point in Protocol 1
where the confidentiality of Pi’s private data set is at risk. This confidentiality
can be violated if two circumstances concur: i) an update computed by Pi can be
attributed by a peer Pl receiving it or by an attacker to Pi; ii) that update allows
Pl or the attacker to make inferences on Pi’s private data set.

Let us look at the attribution probability. In the privacy tit-for-tat, Pi sends a
random mix of the ti updates she has computed with κi(ti − 1) updates she has
received. Hence, a peer Pl receiving an update from Pi or an attacker intercepting
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it cannot decide whether the update was computed or merely received by Pi. From
Pl or the attacker’s point of view, the probability it was computed by Pi is at most
1/κi, which is the proportion of updates computed by Pi among the updates sent
by Pi.

While Proposition 3 deals with passive attacks, a model manager might also at-
tempt active attacks against privacy by trying to identify the generator of an
update through abuse of the Punish_bad or Punish_duplicate subprotocols.
More specifically:

• As explained in Section 4.3.4, the hop-wise operation of subprotocol Pun-
ish_bad only allows the model manager to trace one hop upstream. Hence,
the model manager cannot reach as far as the update generator.

• In Punish_duplicate, the model manager certainly needs to show real du-
plicates to question peers. Yet, the model manager could decide to proceed
further upstream even after finding the real duplicator, in order to reach the
update generator. When the model manager hits a peer who does not help
tracing further upstream, this peer may be just an uncollaborative peer or
the update generator (the manager cannot know which is the case). Even if
the manager guesses right that it is the generator, the latter can hard-punish
the manager, who runs the risk of the attacked honest generator refusing
to compute further updates for the manager: this will certainly occur if, as
a result of the hard punishment, the manager’s local reputation falls below
the generator’s interaction threshold. Hence, such an active attack offers an
uncertain outcome for the manager and it is likely to entail hard punishing.
Thus, this attack seems hardly rational for the model manager to carry out.

4.5.2 Security

In a decentralized learning process such as FDML, the main security goal is to
ensure that no incorrect updates will be used to update the model being learned.

First of all, note that good updates in our approach are fully accurate, unlike
noise-added updates obtained if using differential privacy.

On the other hand, as pointed out in Section 4.4, the co-utility of Protocol 1
ensures that rational peers are more interested in computing good updates than
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bad ones. Thus, co-utility helps towards correctness by reducing the proportion of
bad updates: having fewer bad updates means that they are more outlying with
respect to good updates and hence easier to detect by model managers.

In the event that a bad update reaches a model manager Pi, the latter can detect
it using the techniques mentioned in Section 4.3.4. As pointed out in that section,
a distance-based approach [32, 31] is a convenient option provided that the model-
managing peer waits to receive a batch of updates before deciding on the quality
of each single update.

Regarding duplicate updates, it is straightforward for Pi to detect them if up-
dates are continuous numerical values: it is very unlikely that two different peers
generate exactly the same update ui∗ for mi. Hence, in case there is more than
one update with the same value ui∗, this is a duplicate. If updates have low pre-
cision or are not continuous, equal updates for mi may be genuinely computed by
different peers. A fix is for each peer computing an update to make it unique by
appending a random nonce; in this case, if Pi receives two equal updates with the
same nonce, Pi knows they are duplicates.

4.6 Experimental results
In this section we report experimental work on several aspects. On the one hand,
we evaluated how the rate of good updates received by the peers evolves over
time depending on whether they compute good or bad updates and on whether
they follow the protocol. On the other hand, we assessed the extent to which
our approach reduces the communication overhead compared to systems based on
decentralized global reputation management.

Note that the contribution of the chapter is largely independent of the actual
models being learned, and of their particular parameters and performance. What
we present is a protocol to incentivize the peers to generate and forward good
updates (which improves accuracy), in such a way that updates cannot be linked
to the peers generating them (privacy). Further, we show that our protocols are
effective at discouraging misbehavior (security). Our mechanism can be combined
with any decentralized learning models and it will help those models to get rid
of bad updates and thus improve their performance (note that our protocol does
not alter good updates).

Therefore, in this experimental section we use one specific machine learning model
on a particular data set just for the sake of illustration. As justified below, the
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only parameters of the learning process that are relevant to our protocol are the
false positive rates and the false negative rates when model managers classify the
received updates into good or bad.

4.6.1 Experimental setting

In our experiments we used the MNIST data set of handwritten digits, which we
evenly split among n = 100 peers as their local data.

Following the experimental setting from [24], the baseline global model was a neu-
ral network where all convolutional layers and the first dense layer used the ReLU
activation function. The second dense layer, which was the output layer, used
softmax. The loss function was categorical crossentropy. The model substitution
rate η was set to 0.25, meaning that in each epoch the model kept information
about past training epochs, which made the training process more stable because
there were no abrupt changes in the model performance from one epoch to the
next. To compensate for the low substitution rate, the training process needed
to be longer. Training was carried out for 100 epochs, in which all peers ran
Protocol 1. Local updates were computed after 2 epochs of local training, with a
batch size of 32. We used distance-based outlier detection to detect bad updates.
The accuracy of the main task (classification of MNIST digits) was 97.87% due
to the presence of attacks (bad updates), down from 99.6% in the absence of at-
tacks. The outlier detection mechanism was highly effective, with a false negative
rate (good updates detected as bad) as low as FNR=3.8%, and a false positive
rate (bad updates detected as good) FPR=2.1% on average over all epochs. In
other words, only a small proportion of updates generated by honest peers were
classified as bad updates and were wrongly punished, and only a small proportion
of bad updates were rewarded as good.

While the development and discussion of attack detection mechanisms on FL such
as those recalled in Section 4.3.4 are out of the scope of this chapter, high FPR
and FNR rates might degrade the performance of our protocol, as they lead to
more frequent unjust punishment of good peers and incorrect reward of evil peers.

The model dissemination subprotocol (Section 4.3.1) requires the requester Pi

to find a set of different destination peers by generating sequence numbers and
computing j = Dest(Ri) for each of the requests for updates of her model mi.
In case Pi finds a collision, she can choose new sequence numbers and recompute
j = Dest(Ri). Note that the more requests Pi wants to send, the more difficult
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it is for Pi to find peers to directly send her request and, eventually, after the
forwards of the other peers, randomly hit different final destination peers for all
requests about mi.

Therefore, the rational behavior of a requester Pi is to limit her number of requests
so that the probability of sending all requests to different destination peers stays
above an acceptable threshold, say 0.5. This problem is similar to the birthday
problem2, that consists in computing the probability that in a group of people all
individuals have different birthday dates. In our setting, the number of possible
birthdays was the number of peers (n = 100) and we found that a peer could
send up to 12 requests while keeping the probability of sending all requests to
different peers above 0.5. Hence, we set the number of requests sent by peers in
every epoch to 12.

We should recall that a peer is soft-rewarded when she is the first peer to receive
a request directly from a manager in the dissemination phase, and when she is the
last forwardee of a good update. Even peers who are not trusted by others (with a
reputation below the interaction threshold) participate in the dissemination phase,
so they can be rewarded. Similarly, they can be the last forwardee of a good
update if they start the interaction in the “learning tit-for-tat” protocol. These
good behaviors should be rewarded (because they help good updates reach their
respective managers), but the reputation increase should be much smaller than
the hard punishment (δ) they receive for bad behavior (computing bad updates
or duplicating them). Also, the soft punishment is used in the Punish_bad
protocol against peers that unintentionally forward bad or duplicated updates to
incentivize them to launch punishment against the malicious peers. However, this
punishment should also be much lower than the hard punishment received when
a peer behaves badly.

We tested different values of δ with soft punishment and rewarding fractions δ/10
and δ/4, respectively, and 10% of malicious peers performing the attacks described
in the following sections. We let the network of n = 100 peers evolve during 100
epochs and we computed the ratio between the number of useful updates received
by a malicious peer and the number received by an honest peer. The main goal
of our protocol is for honest peers to receive more useful updates than malicious
peers. In this way, honest behavior will be the rational option. The results are
shown in Table 4.2.

2https://en.wikipedia.org/wiki/Birthday_problem
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Table 4.2: Ratio of useful updates received by a malicious peer vs an honest peer
for different values of δ

delta Evil Duplicator Whitewasher Selfish
0,10 0,1849 0,2279 0,1114 0,2872
0,20 0,1774 0,2491 0,1324 0,2765
0,30 0,1722 0,2287 0,1520 0,2766
0,40 0,1810 0,2213 0,1773 0,2762
0,50 0,1849 0,2277 0,1816 0,2734
0,60 0,1799 0,2294 0,2049 0,2731
0,70 0,1748 0,2284 0,1996 0,2744
0,80 0,1684 0,2308 0,2047 0,2748
0,90 0,1896 0,2410 0,2095 0,2750
1,00 0,1669 0,2495 0,2047 0,2726

We can see different values of δ had no effect on the ratio of good updates received
by malicious peers but they did in the case of whitewashers. The latter peers
always compute bad updates and whitewash as newcomers every 10 epochs (see
details in Section 4.6.3). Indeed, we can see that the lower the value of δ, the
lower was the ratio of good updates whitewashers received. With δ = 0.1 a
whitewasher got only 11.14% of the good updates received by an honest peer,
while with δ = 1.0 the ratio increased to 20.47%. The reason is that a larger δ
causes the local reputations cik to change swiftly. Newcomers enter the system
with the lowest possible local reputation (0) and they should earn reputation by
forwarding requests or sending useful updates to another peers. When the value
of δ is larger, whitewashers surpass the interaction threshold of other peers earlier,
and they can start flooding the system with bad updates. Given these results, we
set the value of δ to 0.1.

We next show that our previous choice of fractions δ/10 and δ/4 for soft punish-
ment and rewarding, respectively, is a good one. To that end, we tested different
fraction choices with δ = 0.1 and 10% of malicious peers performing the attacks
described in the next sections, and we computed again the ratio between the num-
ber of useful updates received by a malicious peer and the number received by
an honest peer. The results are shown in Table 4.3. We can see that the best
combination is indeed to set the soft reward to 25% of δ, and the soft punishment
to 10% of δ. With this combination, all malicious peers obtain the lowest ratio of
good updates.
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Table 4.3: Ratio of useful updates received by malicious peers vs honest peers
for different values of soft punishment and reward fractions of δ

Soft reward Soft punishment Evil Selfish Duplicator Whitewasher Avg
1,00 0,657 0,726 0,233 0,268 0,471
0.50 0,736 0,765 0,206 0,267 0,493
0.25 0,760 0,756 0,198 0,265 0,4951.00

0.10 0,813 0,779 0,191 0,267 0,513
1,00 0,466 0,384 0,467 0,288 0,401
0.50 0,380 0,345 0,169 0,277 0,293
0.25 0,392 0,345 0,133 0,275 0,2860.5

0.10 0,414 0,374 0,120 0,271 0,295
1,00 0,997 0,286 0,971 0,339 0,648
0.50 0,371 0,262 0,536 0,301 0,368
0.25 0,224 0,253 0,172 0,290 0,2350.25

0.10 0,180 0,239 0,116 0,287 0,205
1,00 1,001 0,606 1,002 0,433 0,760
0.50 0,997 0,316 0,989 0,400 0,675
0.25 0,885 0,268 0,890 0,351 0,5990.10

0.10 0,231 0,224 0,226 0,320 0,250

Hence, in what follows we set the parameter δ used for hard punishment to 0.1
and the soft punishment and rewarding fractions to δ/10 and δ/4, respectively.

4.6.2 Baseline scenario

Ideally, in our protocol a peer should receive good updates if and only if that peer
computes good updates for other peers. Thus, we first tested how the system
evolved when all the peers in the network were honest: they adhered to the
protocol without deviating and they always computed good updates for the other
peers.

Figure 4.4 shows the ratio between the number of useful updates (where an update
is useful if it is good and non-duplicate) received and the number of requests sent
by all the peers. The green line represents the average ratio over all peers for the
epoch in the abscissae, while the shaded region represents the standard deviation
of the ratio. In the first epochs, the behavior of the peers had not yet been
fully captured and, for this reason, the misclassification of some updates caused a
decrease in the ratio of useful updates received. When the system stabilized, the
peers received around 72% of their requested updates, because some requests or
updates got lost in different phases of the protocol execution.

These losses can be explained as follows. In spite of limiting to 12 per epoch
the number of requests for updates sent by each model managing peer, around
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Figure 4.4: Baseline scenario. Ratio of useful (good and non-duplicate) updates
received vs requests sent at each epoch.

6% of requests were dropped due to collisions at the dissemination stage. Then,
some updates (around a 18%) were also dropped because some model managers
could not offer other updates in exchange for them during the learning tit-for-tat.
Last, around a 3.8% of updates were wrongly classified as bad, which triggered
the Punish_bad subprotocol. As a result of this misclassification, some honest
peers were punished and therefore their local reputations temporarily fell below
the interaction threshold of other peers, which prevented these honest peers from
receiving some updates.

Figure 4.5 depicts the flow from the expected updates to be received by the model
managers (“Models sent”) to the actual good updates received (“Good updates re-
ceived”). Some requests were dropped due to collisions in the dissemination phase
(“Models ignored”). Other requests were not handled (“Updates not computed”)
due to a temporally model managers’ low reputation in the initial epochs when
the peer behavior was not yet fully captured. Additionally, as we explained above,
some updates could not be exchanged with their corresponding model managers
(“Updates not sent to MM”) and some updates were wrongly classified as bad
(“Bad updates received”).
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Figure 4.5: Flow of updates

4.6.3 Protection against attacks

We next considered attacks by malicious peers. We wanted to check to what
extent honest peers did better than attackers in terms of received useful updates:
if the former did better, then honest behavior is the rational option, as intended
by the design of our protocol.

Specifically, we considered the following attacks by malicious peers: i) evil peers
who follow the protocol but always compute bad updates; ii) selfish peers who
try to free-ride on the other peers’ computational effort; iii) duplicator peers who
duplicate updates computed by other peers in order to save computational effort;
and iv) whitewashers, who are peers with poor local reputations that choose to
leave the network and re-enter it with a new identity as newcomers.
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Evil peers

This kind of peers follow the protocol but always compute bad updates. Our
protocol tries to thwart evil peers from finding other peers who compute good
updates for them. Hence, if our protocol works well, evil peers should receive a
lower ratio of good updates than honest peers.

To test this attack, we set up a scenario with the same parameters as the baseline
scenario but with 10% of evil peers. The remaining 90% were honest peers.

Figure 4.6: Scenario with evil peers. Ratio of useful updates received vs requests
sent at each epoch.

Figure 4.6 displays the ratios between the number of useful updates received and
the number of requests sent by honest and evil peers. As in the baseline scenario,
during the first epochs when the behavior of the peers was being modeled, the
ratio of useful updates received by the honest peers decreased. However, after
this initial stage, this ratio increased constantly. After 100 epochs, honest peers
were receiving around 64% of their requested updates, whereas evil peers received
fewer than 3%. In the first epochs, evil peers were detected and hard-punished
as soon as their updates reached the model managers. In this way, their local
reputations eventually fell below the interaction threshold of the other peers and,
at each subsequent epoch, evil peers found fewer and fewer other peers who were
willing to interact with them.
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Figure 4.7: Scenario with evil peers. Ratio of useful updates received vs requests
sent at each epoch when the effectiveness of the model manager’s detection mech-
anism for bad updates is degraded to FNR=10% and FPR=8%.

In Figure 4.7 we show the behavior of our protocol when simulating a degraded
outlier detection mechanism with a higher FNR of 10% (i.e., 10% of good up-
dates are classified as bad) and a higher FPR of 8% (i.e., 8% of bad updates are
classified as good). While these figures mean that the outlier detection procedure
now misclassifies updates nearly three times more often than the procedure used
in previous experiments (with FNR=3.8% and FPR=2.1%), our protocol is not
significantly affected, and it is still able to differentiate between good and evil
peers. Despite this poorer detection, evil peers receive only around 5% of useful
updates out of their total sent requests. These results demonstrate that, even
if the model manager uses an ineffective detection mechanism, malicious peers
are still substantially penalized, and thus they have a rational motivation to stop
their behavior.

Figure 4.8 shows the ratio between the number of useful updates received and
the number of requests made as a function of the proportion of evil peers, after
100 iterations. Honest peers obtained a higher ratio of useful updates than evil
peers when the proportion of evil peers remained below 35%. However, this ratio
decreased as the proportion of evil peers increased, due to both the lower number
of trusted peers and the higher total number of bad updates computed. Fewer
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Figure 4.8: Scenario with evil peers. Ratio of useful updates received vs requests
during 100 epochs, as a function of the proportion of evil peers.

trusted peers imply fewer peers to exchange updates with, and fewer good updates
that can be sent to their corresponding model managers. Evil peers kept a low
ratio of useful updates when their proportion was below 30%. Nevertheless, at a
proportion of around 40%, the computation of the interaction thresholds Ti was
not able to capture the peers’ behavior correctly, and all peers began to interact
with each other and received the same ratio of useful updates. As the proportion
of evil peers increased, fewer good updates were generated and the ratio of useful
updates dropped to almost zero. Anyway, proportions of evil peers higher than
30% can be regarded as unrealistic.

Selfish peers

This type of peers disseminate their model and request new updates, but they
ignore all the requests from other peers except one. In this way, they try to
obtain new good updates while saving most of their own computing resources.

Note that if selfish peers did not compute any update, they would not be able to
participate in the tit-for-tats.

We tested this attack in a scenario with the same parameters as the baseline
scenario but with 10% of selfish peers. The remaining 90% were honest peers.
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Figure 4.9: Scenario with selfish peers. Ratio of useful updates received vs
requests sent at each epoch.

Figure 4.9 shows the ratios between the number of useful updates received and
the number of requests sent by honest and selfish peers. Honest peers ended up
receiving around 60% of their requested updates, whereas selfish peers received
at most 8%. Indeed, since selfish peers computed only one update, they only had
one update to trade with the other peers in the learning tit-for-tat; hence, they
received at most one new good update per epoch.

Additionally, Figure 4.10 plots the number of updates computed by selfish and
honest peers against the number of updates they receive from other peers. The
bottom-left points correspond to the 10 selfish peers who compute and receive
100 updates each, one per epoch, which explains why they appear as a single
(overprinted) point. On the other hand, the top-right points correspond to the
90 honest peers. The correlation between the number of computed and received
updates is really high (0.983), as anticipated in Section 4.3 above.

Figure 4.11 shows the ratio between the number of useful updates received and
the number of requests made as a function of the proportion of selfish peers, after
100 iterations. Regardless of their proportion, since selfish peers computed only
one update per epoch, they received at most one new good update (8% of the
12 update requests they sent per epoch). Meanwhile, honest peers received more
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Figure 4.10: Scenario with selfish peers. Computed updates against received
updates for selfish and honest peers. Correlation: 0.983

useful updates than selfish peers for almost any proportion of selfish peers, but
this ratio decreased as the proportion of selfish peers increased, due to the lower
overall number of updates computed.

Duplicator peers

An alternative option for a peer to save her own computing resources is to become
a duplicator rather than a selfish peer.

Instead of computing updates themselves, duplicator peers just duplicate some of
the updates they receive from other peers. By doing so, the duplicator effortlessly
obtains several updates to trade with the other peers in the learning tit-for-tat.

To test this scenario, we used again the same parameters as in the baseline scenario
but with 10% of duplicators. These peers duplicated every update they sent in

UNIVERSITAT ROVIRA I VIRGILI 
CO-UTILE PROTOCOLS FOR DECENTRALIZED COMPUTING 
Jesús Alberto Manjón Paniagua 



4.6. Experimental results 85

Figure 4.11: Scenario with selfish peers. Ratio of useful updates received vs
requests during 100 epochs, as a function of the proportion of selfish peers.

the privacy tit-for-tat, thereby amassing updates to be traded later.

Figure 4.12 shows the ratios between the number of useful updates received and
the number of requests sent by honest and duplicator peers. While honest peers
received almost 57% of their requested updates, duplicators only received around
5%. As soon as the model managing peers received a duplicated update, they
launched the Punish_duplicate subprotocol, identified the nearest duplicator
and hard-punished her by decreasing her local reputation, thereby avoiding new
interactions with that peer as soon as her reputation became lower than the inter-
action threshold. As duplicators kept duplicating updates, their local reputations
never recovered.

Figure 4.13 shows the ratio between the number of useful updates received and
the number of requests made as a function of the proportion of duplicator peers,
after 100 iterations. Honest peers obtained a higher ratio of useful updates than
duplicators when the proportion of duplicators remained below 45%. However,
this ratio decreased as the proportion of duplicator peers increased, due to the
lower number of trusted peers on the one hand, and to the higher total number of
duplicated updates on the other hand. At 50% of duplicators, all peers received
the same ratio of useful updates, and above this value, duplicators obtained a
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Figure 4.12: Scenario with duplicators. Ratio of useful updates received vs
requests sent at each epoch.

higher ratio than honest peers. At this point, the interaction threshold failed to
capture the peer’s behavior and all peers began to interact with each other. Since
duplicators produced more updates (by duplicating some of them) than honest
peers, they were able to exchange them and received more updates for their own
model. Nevertheless, duplicators never received more than 30% of the expected
updates, a value far from the 64% received by the honest peers in the absence of
duplicators.

Whitewashers

Evil peers and duplicators are hard-punished by several peers at each epoch.
After a few epochs, as their local reputations have decreased to the point of being
smaller than the interaction thresholds of most of the other peers, they receive a
low percentage of the updates they request, as shown in the previous experiments.
In these circumstances, evil peers and duplicators may be tempted to whitewash
themselves by leaving the network and returning as newcomers. However, by
design a newcomer enters the system with the lowest possible local reputation
(zero), which is below the interaction threshold of almost every other peer.

We tested this scenario by using the same parameters as in the baseline scenario
but with 10% of whitewashers. These peers always computed bad updates and
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Figure 4.13: Scenario with duplicator peers. Ratio of useful updates received vs
requests during 100 epochs, as a function of the proportion of duplicator peers.

whitewashed as newcomers every 10 epochs.

Figure 4.14 depicts the ratios between the number of good updates received and
the number of requests sent by honest peers and whitewashers. Honest peers
eventually received around 60% of their requested updates, whereas whitewashers
ended up receiving no useful updates.

Although the whitewashers had the option of improving their local reputation by
forwarding requests or updates to other peers, they kept computing bad updates
and thus they were hard-punished by the model managing peers who received
these bad updates. Therefore, in general they never managed to be trusted by
the other peers; they only could occasionally get good updates from peers they
had not yet interacted with (which explains the peaks).

Figure 4.15 shows the ratio between the number of useful updates received and the
number of requests made as a function of the proportion of whitewashers, after 100
iterations. The results are very similar to those we obtained with evil peers (see
Figure 4.8). Again, when the proportion of whitewashers was below 35%, honest
peers obtained a higher ratio of good updates than malicious peers. However, from
around 40% upwards, the computation of the interaction thresholds Ti was not
able to capture the peers’ behavior correctly (most of the interaction thresholds
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Figure 4.14: Scenario with whitewashers. Ratio of useful updates received vs
requests sent at each epoch.

dropped close to zero, the initial reputation of newcomers), and all peers started
to interact with each other and received the same ratio of good updates.

We finally considered the case of an honest newcomer, who computes good up-
dates, to illustrate that she does much better than whitewashers. We had this
newcomer join the network right after epoch 20. Figure 4.16 shows that the hon-
est newcomer increased her ratio of received useful updates as a consequence of
her participation in the protocol, by computing and forwarding new updates and
requests for the rest of the peers. As soon as the newcomer forwarded a request
from another peer in the dissemination protocol or sent a useful update to an-
other peer in the learning tit-for-tat, the beneficiary peers rewarded her with an
increase of her local reputation. Although in the first epochs after entering the
system these small increases were not enough to surpass the interaction threshold
of other peers, eventually they were and the newcomer became trusted to more
and more peers, who sent updates to her.

4.6.4 Overhead incurred by the protocol

Decentralized global reputation can be used as an alternative to tit-for-tat and
local reputations to build artificial incentives that yield co-utile protocols. How-
ever, as noted in Section 3.2, global reputation management requires a significant
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Figure 4.15: Scenario with evil peers. Ratio of useful updates received vs requests
during 100 epochs, as a function of the proportion of whitewasher peers.

number of messages to be exchanged between the peers of the network to compute
the global peer reputations.

In order to compare the overhead of decentralized global reputation management
with that of our tit-for-tat protocol, we estimated the number of messages needed
by an adaptation of the global reputation protocol of [55] to FDML. In this case,
every peer expecting a reward after computing or forwarding an update needs to
send at least one message to each of her accountability managers. Then, after
all peers have received the requested updates, global reputations are computed.
The reputation values maintained by the accountability managers are normalized
into the range [0, 1] by dividing them by the largest reputation in the network.
To that end, it is necessary that accountability managers broadcast all reputation
values greater than 1. Finally, a decentralized global reputation computation
must be run, which entails a new exchange of messages among the accountability
managers.

In contrast, the tit-for-tat based on local reputations does not require additional
communication among peers because the local opinion of a peer on another peer
is never shared. However, as some good updates are lost in the learning tit-for-tat
when a model manager does not have more updates to exchange, we counted as
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Figure 4.16: Scenario with an honest newcomer. Ratio of useful updates received
vs requests sent at each epoch.

overhead the messages generated to forward these lost updates.

Figure 4.17 shows the overhead incurred by our tit-for-tat protocol and three
versions of the protocol based on decentralized global reputation in a network
where all peers are honest. The first global reputation-based protocol rewards
with a reputation increase only the peer that generates a good update; the second
rewards the generator of a good update and the first forwarder of that good
update; finally, the third rewards the generator of a good update and all the
forwarders along the path from the generator to the model manager. Every peer
disseminated her model among 12 other peers and the number of epochs was 100.

The size of the network did not affect the overhead ratio incurred by any of the
four protocols in the comparison. The tit-for-tat protocol added only a modest
overhead in comparison with the global reputation-based protocols. Moreover,
the greater the number of peers to be rewarded for each good update, the greater
the overhead of global reputation-based protocols.

4.7 Conclusions and future work
We have presented a co-utile protocol for FDML. The fact that all participating
peers are at the same time model managers and workers facilitates using tit-for-tat
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Figure 4.17: Overhead of the tit-for-tat protocol and three protocols based on
decentralized global reputation

and local reputations to achieve co-utility. In this way, co-utility occurs naturally
and complex incentives such as decentralized global reputations are not needed.

Our proposed protocol consists of a double tit-for-tat. The first tit-for-tat is used
to hide the identity of the peer that computed each update, in order to protect the
privacy of peers. In the second tit-for-tat, peers receive updates relevant to their
own model, but they receive them from other peers that did not compute those
updates. Deviations from the protocol are punished, which increases ostracism for
the offending peers. On the one hand, a peer that fails to reciprocate in a tit-for-
tat is punished by the non-reciprocated peer. On the other hand, after the second
tit-for-tat, bad or duplicate updates can be detected by the model-managing peers,
who launch punishment subprotocols aimed as tracing the offending peers. This
ensures correctness of the learning process and incentivizes good and non-duplicate
updates.

Future research will be devoted to fine-tuning the protocol in order to further
reduce its overhead and the proportion of lost good updates. Also, we plan to ex-
plore adaptations of the proposed protocol to decentralized computations different
from machine learning, such as decentralized anonymization or even multiparty
computation among rational peers.
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Chapter 5

Circuit-Free General-Purpose
Multi-Party Computation via
Co-Utile Unlinkable
Outsourcing

5.1 Introduction
Multiparty Computation (MPC) is a cryptographic protocol that allows multiple
parties to jointly compute a function over their private inputs without revealing
any individual data. The fundamental concept behind MPC is to preserve privacy
while achieving a collective computational result. It allows parties to jointly per-
form computations on sensitive data, such as financial records, health information
or confidential research data, without the need for a trusted intermediary.

MPC has applications in several domains. One prominent use case is secure data
analytics, where multiple organizations can pool their data without sharing them
directly, which enables them to gain valuable insights while preserving privacy.

Despite its benefits, MPC faces certain threats and challenges. A key concern
is the potential for malicious parties to subvert the protocol and manipulate the
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results of the calculations. Adversaries could attempt to gain unauthorized ac-
cess to sensitive data or tamper with the computation to obtain unintended in-
formation. Protecting against such threats requires rigorous security measures,
including cryptographic techniques and robust protocols, as well as careful threat
modeling and analysis.

In addition, due to its cryptographic nature, MPC introduces computational and
communication overheads that can affect its practical scalability. Efficient im-
plementation of MPC protocols is an ongoing area of research aimed at reducing
computational and communication costs while maintaining security guarantees.

5.2 Contributions
In this chapter, we propose an MPC protocol based on the co-utility property (see
Section 2.2) that has the following distinguishing properties:

• It is general-purpose without making use of circuits; it can work for any
computation expressed as ordinary high-level programming code, no matter
the depth of its loops, its use of recursion or its complexity.

• It does not rely on the cryptographic primitives usual in MPC; it uses cryp-
tography only to guarantee confidential and authenticated communications.

• It assumes a peer-to-peer (P2P) community is available, where each peer
accumulates a reputation in a decentralized and co-utile manner.

• It relies on the notion of co-utile anonymous channel to guarantee that
inputs and outputs, although visible to some peers, cannot be linked to
their corresponding parties.

• It delivers correct exact outputs as long as parties are rational.

We illustrate our approach in two example applications, one of them being elec-
tronic voting. Our empirical work shows that reputation captures well the behav-
ior of peers and ensures that parties with high reputation obtain correct results.

Section 5.3 introduces a co-utile protocol suite for MPC. Section 5.4 discusses how
the proposed protocol suite achieves co-utility (and thus is rationally sustainable).
Section 5.5 shows how our protocols satisfy privacy for the inputs and the out-
puts, and how they make correct computation the best option for rational peers.
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Section 5.6 sketches illustrating applications. Section 5.7 presents experimental
results. Finally, Section 5.8 deals with conclusions and future research.

5.3 A co-utile framework for multi-party computation
5.3.1 Players and security model

The players in our framework are peers in a P2P network as follows:

• Clients are the parties that agree on a joint computation to be conducted,
and then provide private inputs to it and obtain private outputs from it.
Since the purpose of MPC is for clients to obtain correct outputs, they can
be assumed to provide truthful inputs. No MPC protocol can detect if one or
more clients provide untruthful inputs in order to alter the outputs derived
by the other clients.

• Workers perform computations for clients.

• Forwardees receive messages from clients and forward them to other for-
wardees or submit them to workers.

• Accountability managers are peers that manage the reputations of other
peers in the network. Each peer P is assigned M accountability managers
that are (pseudo)randomly determined by hashing the peer’s pseudonym P .
In this way, P cannot choose her accountability managers, which makes the
latter more likely to perform their duty impartially and therefore honestly.

In our framework, the inputs provided by clients and the outputs they obtain
cannot be unequivocally linked to them, even though such inputs and outputs may
be seen by some other peers. Our privacy guarantee is predicated on unlinkability
rather than on confidentiality. If inputs or outputs are such that it is not acceptable
to disclose them even unlinkably or such that their very values or formats make
them linkable to certain clients, then our framework cannot be used.

Clients are publicly known to each other (they are neither anonymous nor pseudony-
mous), because in general, a peer wants to know with whom she is engaging in joint
computation. Forwardees, workers and accountability managers are pseudony-
mous. A client also uses a pseudonym to interact with forwardees, workers and
accountability managers; clients do not know each others’ pseudonyms. A peer’s
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pseudonym Pi and her public identity IDi are related as Pi = H(IDi, noncei),
where H(·) is a one-way hash function and noncei is a random number only known
to peer IDi; in this way, the pseudonym Pi does not leak the underlying real iden-
tity IDi, but the link between both can be proven if necessary by revealing noncei.
During a protocol execution, any peer can play any of the above four roles (client,
worker, forwardee, accountability manager).

We assume that peers are rational: given appropriate incentives they will honestly
fulfill their roles in the protocol, but they may be curious to learn the inputs or
outputs of specific clients. We will design protocols so that these rational peers
find no incentive to deviate. However, there may be a minority of malicious peers
that are irrational, that is, who are ready to deviate from the protocols even if
doing so places them in a worse position.

Although we will show how to incentivize rational peers to adhere to our proto-
cols, we cannot guarantee that clients will provide truthful inputs for any arbitrary
multi-party computation; this can only be guaranteed if clients are assumed hon-
est or honest-but-curious. For rational clients, input truthfulness depends on the
specific MPC to be carried out. In some MPCs, a rational client may find incen-
tives to provide a false input, e.g. if she knows her false input cannot be detected
by the others but it allows her to be the only client that learns the correct out-
put. However, in other MPCs the rational behavior is to provide correct inputs.
Take for example the millionaires’ problem [4]: if millionaire A inputs an amount
higher than her actual fortune and the output is that A is richer than the other
millionaire B, then A does not learn whether she is really richer or poorer than
B; similarly, if A inputs an amount lower than her actual fortune and the output
is that A is poorer than B, then A does not learn whether she is really poorer or
richer than B.

The main aim of a rational client is to obtain a correct output of the joint com-
putation and to keep her inputs and outputs confidential from the other clients
and the other pseudonymous peers. As we will show in the next sections, a client
needs to have a high reputation to fulfill the previous aim. The incentive for a ra-
tional worker or a rational forwardee to cooperate is to increase her reputation in
order to be able to become a successful client. Finally, the incentive for a rational
accountability manager is to preserve fairness in the community. More details on
the rational behavior of all peers are given in the next sections.

In some applications reputation alone may be deemed an insufficient incentive,
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for example because working to build up a high reputation entails substantial
financial costs in equipment, bandwidth, electricity, etc. To mitigate this short-
coming, reputation can be periodically converted into payments. In fact, rational
incentives to correct computation in the form of payments are proposed in [56],
where they are implemented by a central “boss”, and in [57, 58], where they are
embodied in smart contracts in blockchains. However, unlike in our approach
based on reputation only, incentives in these proposals require external payment
infrastructures that may not (always) be available or that may themselves be
centralized or not rationally sustainable.

5.3.2 Requirements

At the end of the previous section we have mentioned reputation as the “currency”
that incentivizes peers. In order for reputation to be effective, the following re-
quirements need to be fulfilled:

• Reward. If a worker correctly performs a certain computation for a client,
the worker’s reputation must increase.

• Punishment. If a worker incorrectly performs a certain computation for a
client, the worker’s reputation must decrease. Similarly, a client that does
not follow the protocols as prescribed must be punished with a reputation
decrease.

• Probabilistic reward. A peer acting as a forwardee for inputs or outputs
should be motivated by a nonzero probability of obtaining a reputation
increase.

• Reputation utility. Having high reputation must be attractive for peers.
Specifically, the higher the reputation of a client, the easier it is for the client
to retrieve her outputs while preserving her privacy. For a pseudonymous
peer, a high reputation is the way to become a successful client.

5.3.3 General-purpose MPC in the honest-but-curious model

For the sake of clarity, we first present a basic version of our protocol suite as-
suming that all peers are honest-but-curious.

Several nodes in the P2P network decide to engage in a joint computation and play
the role of clients. The number of clients must be at least 4: with only 2 clients,
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if a client sees an input or an output that is not hers, she knows it corresponds to
the other client; with only 3 clients, unequivocal inferences are still possible, as
justified in our privacy analysis of Section 5.5.1.

In Protocol 2, each client P secretly selects a worker Pw (who does not know who P
is). Every worker receives the inputs of all clients in an unlinkable way via the co-
utile anonymous channel FWD-CH (Protocol 3). Once all workers have received
all inputs, each client P also sends to her Pw via FWD-CH the computation to be
performed and an encryption key to be used by Pw to return the results to P via
the reverse anonymous channel REV-CH (Protocol 4). Unlinkability in FWD-CH
is achieved by random hopping among peers until a peer submits the message to
the destination worker. REV-CH backtracks the hopping path of FWD-CH up to
the client.

The idea of using an anonymous channel for MPC was first proposed in [59]; the
novelty here is that we present an anonymous channel that does not depend on
any central authority and is rationally sustainable.

Note 7 (Sending input to all peers). Line 6 of Protocol 2 shows that the input
values are sent to all network participants. This is necessary so that all workers
receive the input values from all clients, without forcing them to share the workers
they have selected. In fact, a node does not know that it is a worker until she
receives the message with the computation to be performed (line 8).

5.3.4 General-purpose MPC in the rational model

In the rational model peers may deviate from their prescribed behavior if they
are not properly incentivized. For example, a worker might return a random
output without actually performing a computation that could be hard, or a mes-
senger might not forward received messages, in both cases with the objective of
safeguarding his own resources. We will add two mechanisms to cope with this
problem: (i) redundancy to detect wrong computation or wrong forwarding; (ii)
decentralized reputation to reward correct computation and correct forwarding,
and punish wrong behavior.

In the protocols in this section, we assume the public-key cryptosystem used to
encrypt to peers is probabilistic, that is, it uses randomness so that an observer
cannot determine whether two ciphertexts correspond to the same cleartext. Also,
we assume all messages encrypted under this public-key cryptosystem can be made
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Protocol 2: Honest-but-curious general-purpose MPC
1 Clients ID1, . . . , IDm among the n peers (where m,n are public and

4 ≤ m ≤ n) know each other and agree to jointly perform the
computation (O1, O2, . . . , Om) = C(I1, I2, . . . , Im), where input Ii and
output Oi must stay private to IDi;

2 for i = 1 to m in parallel do
3 Client IDi uses her pseudonym Pi;
4 Pi prunes the code C into the part Ci that computes Oi, i.e.

Oi = Ci(I1, I2, . . . , Im); /* In case Ci requires knowledge of
which of the inputs is Pi’s, Ii is also embedded in Ci

*/
5 Pi randomly and secretly selects a peer Pwi among the n peers as a

worker;
6 for l = 1 to n do
7 Pi calls FWD-CH(Pi, Ii||noncei, nil, Pl); /* Pi sends her

private input Ii to all peers Pl via the FWD-CH(·)
anonymous channel, so that in particular Pwi gets
it. Ii is appended a random nonce to make it unique.
*/

8 Pi calls Oi = FWD-CH(Pi, PKwi(Ki), Ci, Pwi). /* Pi sends to Pwi

a key Ki encrypted under Pwi’s public key and the
computation Ci (a peer’s public key may be her
pseudonym). Then Pwi will return Oi symmetrically
encrypted under Ki via the reverse channel. */
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Protocol 3: FWD-CH(Ps,msg, comp, Pd)

1 Parameter p ∈ [0, 1];
2 if Ps = Pd then
3 if comp = nil AND msg carries a new nonce then
4 Pd extracts the input I in msg and appends it to Ilist;

/* When comp = nil, msg is an input I; Ilist is initially
empty and is appended all inputs with different
nonces received by Pd in FWD-CH calls with comp = nil
*/

5 else
6 Pd waits until Ilist contains m different inputs;
7 Pd performs computation out = comp(Ilist);
8 Pd cleans Ilist;
9 Pd decrypts K = SKd(msg);

/* When comp ̸= nil and all inputs have been received, Pd

performs computation comp on the received Ilist;
also, msg = PKd(K), where the symmetric key K is
to be used by Pd to encrypt the output of comp
before returning it */

10 Pd calls REV-CH(Pd, EK(out), comp, Pprev);
/* REV-CH returns the encrypted output of comp = Ci to

originator Pi without knowing who Pi is; Pprev is the
pseudonym of the peer from whom Pd received comp */

11 else
12 if Ps is the originator of msg then pforward = 1 else pforward = p;

/* The originator always hops but other peers hop with
prob. p */

13 if Bernoulli(pforward) = 1 then
14 Ps randomly chooses another peer P ′;
15 Ps sends (msg, comp) to P ′;
16 P ′ calls FWD-CH(P ′,msg, comp, Pd);
17 else
18 Ps directly sends (msg, comp) to Pd;
19 Pd calls FWD-CH(Pd,msg, comp, Pd).
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Protocol 4: REV-CH(Ps, EK(out), comp, Pprev)

1 Ps sends (EK(out), comp) to Pprev;
2 if Pprev knows the key K then /* Pprev is the client */
3 Pprev decrypts out; /* out is Pprev’s private output Oprev */
4 else
5 Let Pprev2 be the peer from whom Pprev received the FWD-CH

message with comp;
6 Pprev calls REV-CH(Pprev, EK(out), comp, Pprev2). /* Pprev

backtracks to Pprev2 */

of the same length, if necessary by padding the cleartext, so that ciphertext length
cannot be used by an observer to guess information on the cleartext. Additionally,
we assume peers can digitally sign messages.

The main protocol

Protocol 5 is the version of Protocol 2 augmented with redundancy (r different
workers are used by each client) and decentralized reputation. In Protocol 5 we
use co-utile versions C-FWD-CH (Protocol 7) and C-REV-CH (Protocol 8) of
the previous FWD-CH and REV-CH auxiliary protocols. For the rest and unless
otherwise said, the notations are the same as in Protocol 2.

Each client P secretly selects r workers Pw and sends her input to all peers via
Protocol 7. Afterwards, each client P sends to her workers Pw via the same channel
the computation Ci to be performed and the encryption key K to be used by Pw to
return the results. As soon she received all the expected outputs (via Protocol 8)
from her workers, each client proves to her accountability managers that she has
rewarded the first forwardee, compares the outputs with each other and considers
the most frequent the final output. Finally, she rewards or punished every worker
depending on the output received.

The main idea of the protocols is that a node will only interact with other nodes
of similar reputation (gi). For example, a worker will only accept to compute for
a client with a similar reputation, or a forwardee will only accept to forward a
message if it comes from another node with a similar reputation. In this way,
nodes with low reputations (due to bad computations or bad behavior) become
excluded without the possibility of interaction with other nodes, and therefore,
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without the possibility of receiving correct results.

Note 8 (Newcomers). By design, a newcomer enters the system with the lowest
possible global reputation g = 0, which is below the interaction threshold of almost
every other peer. If we took no action, newcomers would never be selected by the
honest nodes to be their workers since the difference between their reputations is
too great. They would only be able to compute for the malicious nodes that would
get correct computations thanks to the honest newcomers that enter the system.
Therefore, when a node enters the system, for a certain number of iterations it is
allowed to be chosen by the clients as a worker whatever the difference between
the reputations. In this way, the node will be able to increase her reputation as
long as it executes the computations correctly. However, on the other hand, in
order to prevent malicious nodes from exiting the system and re-entering under
a different pseudonym (whitewashing), newcomers will not be able to be clients
and will not obtain any results.

Note 9 (On parameter κi). Parameter κi is secret to each client Pi. If κi ≫ r,
then workers are selected from a large set, which makes it more difficult for Pi’s
workers to guess that their client is Pi. On the other hand, too large a κi is also
risky for Pi, because it can result in choosing workers with reputation much higher
than Pi’s (who are likely to refuse working for Pi) or workers with much lower
reputation (who may be unreliable).

Note 10 (On sharing workers). A way to reduce the computation and communi-
cation of Protocol 5 while still providing redundancy would be for clients to share
their workers, rather than each client choosing her own r workers. For example, if
each client proposed one worker, a pool of m workers would be available to every
client; to achieve the same redundancy level, Protocol 5 requires using m2 workers.
Yet sharing workers comes at a price. First, redundancy based on sharing workers
means that the same computation C must be run for all clients. Second, clients
are forced to trust workers that have been selected by other clients. This is par-
ticularly bad if the reputations of clients are very heterogeneous: high-reputation
clients could find workers with higher reputation (and thus more reliable) than
the workers proposed by the other clients. Also, the worker suggested by a client
Pj might collude with Pj against other clients (see Section 5.5.1 on collusions).
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Protocol 5: Rational general-purpose MPC
1 Clients ID1, . . . , IDm among the n peers (where m,n are public and

4 ≤ m ≤ n) know each other and agree to jointly perform the
computation (O1, O2, . . . , Om) = C(I1, I2, . . . , Im), where input Ii and
output Oi must stay private to IDi;

2 for i = 1 to m in parallel do
3 Client IDi uses her pseudonym Pi;
4 Pi prunes the code C into the part Ci that computes Oi, i.e.

Oi = Ci(I1, I2, . . . , Im);
5 Pi secretly selects as workers r peers Pi1 , . . . , Pir randomly chosen

among the κi > r peers with closest reputation to gi and newcomers;
6 for l = 1 to n do
7 Pi calls C-FWD-CH(Pi, PKl(Ii||noncei), PKl(nil), Pl);

8 for k = 1 to r do
9 Pi calls Oi,k = C-FWD-CH(Pi, PKik(Ki), PKik(Ci), Pik);

10 forall accountability managers AM of Pi do
11 if Pi does not show to AM a reward receipt from the first

forwardee then /* Not rewarding the first forwardee
is punished */

12 AM assigns local reputation ℓAM,i = 0 to Pi;

13 Take as Oi the most frequent value in {Oi,1, . . . , Oi,r};
14 for k = 1 to r do
15 if Oi,k = Oi AND Oi ̸= nil then
16 Pi assigns ℓiik = 1; /* Majority result is rewarded */
17 else
18 Pi assigns ℓiik = 0 /* Minority result is punished */

19 Call Protocol 6 to update the public global reputation gi of each peer Pi.
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Protocol 6: Co-utile P2P global reputation computation
1 for i = 1 to n do /* EigenTrust-like global reputation */
2 Pi submits local reputation values {ℓij : j = 1, . . . , n} to all M

accountability managers of Pi;
3 forall pupils Pd of Pi do
4 Pi collects local reputation values {ℓdj : j = 1, . . . , n};
5 Pi normalizes cdj = ℓdj/

∑
j ℓdj , j = 1, . . . , n;

6 forall pupils Pd of Pi do
7 for j = 1 to n do
8 Pi queries all the accountability managers of Pj for cjdg

(0)
j ;

9 k := −1;
10 repeat
11 k := k + 1;
12 Pi computes g

(k+1)
d = c1dg

(k)
1 + c2dg

(k)
2 + . . .+ cndg

(k)
n ;

13 for j = 1 to n do
14 Pi sends cdjg

(k+1)
d to all M accountability managers of Pj ;

15 Pi waits for all accountability managers of Pj to return
cjdg

(k+1)
j ;

16 until |g(k+1)
d − g

(k)
d | < ϵ; // Parameter ϵ > 0 is a small value;
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Protocol to send messages via the co-utile anonymous channel

Protocol 7 (C-FWD-CH) shows the operation of the co-utile anonymous channel.
When a node receives a message, she firstly checks whether it was sent by a node
with a higher or similar reputation (lines 21, if the node is a messenger, and 28,
if the node is the recipient worker). If the reputation of the sender is too low, the
node discards the message. If she accepts the message but she is not the recipient
worker, she should decide randomly whether to send the message to the worker
or to another forwardee (line 18). If she decides to hop to another forwardee, she
will send the message to a forwardee with similar or higher reputation (see Note
12).

The workers will collect the received inputs from all clients (line 6), and will
execute the required computation as soon as they receive m inputs and Ci (line
12). The output, encrypted under key K, will be sent back to the clients via
Protocol 8 (C-REV-CH).

Note 11 (On the flexibility parameter δ). In Protocol 7 a peer Pj does not discard
a message from a peer Pi as long as Pi’s reputation gi is at least gj − δ, where
δ is a small reputation amount. The value δ introduces some flexibility in the
interaction and helps new peers (that start with 0 reputation) to earn reputation
as first forwardees. A large δ is not acceptable from the rational point of view:
high-reputation peers have little to gain by accepting messages or computations
from peers much below them in reputation (if those low-reputation peers are the
clients, they may not reward them).

Note 12 (On function Select). In Protocol 7 function Pt = Select(gs, gd) is
used by a peer Ps to select a peer Pt as a forwardee towards the worker Pd. There
are several ways in which this can be done. However, the rational choice is for
Ps to select a forwardee Pt with a sufficient reputation so that Pd does not refuse
to compute should Pt directly submit to the worker. Hence, if Ps’s reputation
is gs ≥ gd − δ, Ps can randomly pick any of the peers whose reputation lies in
[gd − δ, gs + δ]: any forwardee Pt with reputation at least gd − δ does not risk
refusal from the worker Pd, but peers Pt with reputation above gs+ δ will discard
Ps’s messages. On the other hand, if gs < gd − δ, Ps chooses the peer with the
maximum reputation that does not exceed gs+δ, because any peer with reputation
above that value will discard Ps’s message.
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Protocol 7: C-FWD-CH(Ps,msg,Ecomp, Pd)

1 Parameter p ∈ [0, 1];
2 if Ps = Pd then
3 Pd decrypts comp = SKd(Ecomp);
4 if comp = nil then /* In this case, msg contains an input */
5 Pd decrypts I||nonce = SKd(msg);
6 if Pd has not previously received nonce then Pd appends I to Ilist;
7 else
8 if comp = “refuse” then /* The worker has refused to

compute */
9 Pd assigns out := nil; /* The worker returns no output */

10 else
11 Pd waits until Ilist contains m different inputs;
12 Pd computes out := comp(Ilist); /* The worker computes */

13 Pd cleans Ilist;
14 Pd recovers K = SKd(msg);
15 Pd calls C-REV-CH(Pd, EK(out), Ecomp, Pprev);

16 else
17 if Ps is the originator of msg then pforward = 1 else pforward = p;
18 Ps computes decision = Bernoulli(pforward);
19 if decision = 1 then /* Ps decides to hop */
20 Ps sends (msg,Ecomp) to Pt = Select(gs, gd) /* See Note 12

about function Select */;
21 if Ps’s reputation is at least gt − δ then /* See Note 11 about

δ */
22 Pt calls C-FWD-CH(Pt,msg,Ecomp, Pd);
23 else
24 Pt discards (msg,Ecomp);

25 else
26 Ps directly sends (msg,Ecomp) to Pd /* Ps decides to submit

to the worker */;
27 Pd decrypts comp = SKd(Ecomp);
28 if comp ̸= nil and Ps’s reputation is less than gd − δ then
29 Pd sets Ecomp := PKd(“refuse”); /* Pd refuses to compute

*/
30 Pd calls C-FWD-CH(Pd,msg,Ecomp, Pd);
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Protocol to send outputs via the reverse channel

Once the computation has been performed, every worker sends back the output
via Protocol 8 (C-REV-CH), since, as she does not know the client’s identity, she
is not able to use the anonymous channel. The reverse path is followed until the
output reaches client Pprev (who can decrypt the message since she knows key
K), and the client rewards the first forwardee Ps. The first forwardee returns the
receipt that the client has to show to her accountability managers in line 11 of
Protocol 5.

Protocol 8: C-REV-CH(Ps, EK(out), Ecomp, Pprev)

1 Ps sends (EK(out), Ecomp) to Pprev;
2 if Pprev knows the key K then
3 Pprev decrypts out /* If Pprev knows K, then Pprev is the

client and Ps the first forwardee */;
4 Pprev sends Sprev(“Pprev has set ℓprev,s = 1”) to Ps ; /* Pprev commits

to rewarding the first forwardee */
5 Ps forwards Sprev(“Pprev has set ℓprev,s = 1”) to Pprev’s AMs;
6 Pprev’s AMs set ℓprev,s = 1;
7 Ps returns a signed reward receipt Ss(“Ps acknowledges ℓprev,s = 1”)

to Pprev;
8 else
9 Let Pprev2 be the peer from whom Pprev received the C-FWD-CH

message with Ecomp;
10 Pprev calls C-REV-CH(Pprev, EK(out), Ecomp, Pprev2).

Note 13 (On rewarding the first forwardee only). In Protocol C-REV-CH only
the first forwardee is rewarded, rather than all forwardees, and only when the
computation to be done is not nil. Note that in Step 5 of Protocol 6 the local
reputations awarded by a peer are normalized before updating global reputations
(this is done to prevent peers from increasing their influence by giving more opin-
ions on other peers). Hence, if all forwardees were rewarded by the client, the
reputation increase of each rewarded forwardee would be smaller. Thus, every
forwardee would be better off by sending msg directly to the destination peer
rather than forwarding it to another forwardee. As a consequence, there would
be only one forwardee, who would know that the previous peer is the client who
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originated msg. This would break the anonymity of the channel. Rewarding only
the first forwardee when the computation to be done is not nil avoids this problem
and is a sufficient incentive: the forwardees do not see which is the computation
to be performed (it is probabilistically encrypted under the worker’s public key)
and any forwardee can hope to be the first for a non-nil computation and thus
has a reason to collaborate.

5.4 Co-utility analysis
We argue that the framework formed by Protocols 5, 6, 7 and 8 is co-utile, that
is, that these protocols will be adhered to by the rational players. We first give
a sketch justification and then we analyze in detail the motivation of each of the
above player categories to adhere to the protocols they are required to participate
in. The sketch is as follows:

• The clients’ goal is to perform a joint computation and obtain their respec-
tive correct outputs, while keeping their own inputs and outputs private.
For that reason, the clients can be assumed to correctly perform their tasks
in Protocols 5, 7 and 8. If a client fails to behave as prescribed (when acting
as a client, as a forwardee or as a worker), her reputation will decrease and
it will be more difficult for him/her to obtain correct results.

• Forwardees have no role in Protocol 5, but they are essential to the operation
of the co-utile anonymous channel in Protocol 7 (C-FWD-CH) and Proto-
col 8 (C-REV-CH). Their incentive is the hope to be rewarded in Protocol 8
with a reputation increase in case they turn out to be the first forwardee.

• Workers are expected in C-FWD-CH to perform the required computation.
Then in C-REV-CH they are expected to start the reverse path upstream to
return the output. Their incentive to compute correctly is to be rewarded
in Protocol 5 if the output they deliver is the majority output among those
returned by redundant workers.

• Accountability managers have important roles in Protocols 5, 6 and 8. In
our security model (Section 5.3.1), peers are assumed to be rational, even if
rational attackers are not excluded. Given that peers interact in successive
iterations, the interest of rational accountability managers is to favor correct
computations, as they may be clients themselves in subsequent computation
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rounds. On the other hand, the fact that the M accountability managers
of every peer are (pseudo)randomly assigned thwarts conflicts of interest
and facilitates honest management of the peer’s reputation. Furthermore, if
necessary, a countermeasure could be added right after Step 8 of Protocol 6
whereby Pi punishes with local reputation 0 those AMs that provide local
reputations for Pj that do not agree with the majority reputation value.

Next, we elaborate on co-utility for each player category.

5.4.1 Co-utility for clients

In Protocol 5, ID1, . . . , IDm can be assumed to honestly agree on the joint com-
putation, because jointly computing is their goal. Then at Step 3 they are also
interested in switching to their respective pseudonyms P1, . . . , Pm. If a client used
her real identity IDi, in C-FWD-CH it would be trivial for a forwardee Pt to know
whether she is the first forwardee (and hence the only forwardee that will be re-
warded); in consequence, if Pt was asked to be a forwardee by a pseudonymous
peer, Pt’s rational decision would be to decline. In this way, there would be only
one forwardee, which would weaken unlinkability for the clients.

Also in Protocol 5 it is rational for the pseudonymous clients to correctly perform
steps up to Step 9. This means pruning C into their respective computations,
selecting workers, and sending to the workers via the anonymous channel C-FWD-
CH first their private inputs and then the pruned computation and the key for
receiving encrypted outputs. Note that private inputs are sent in parallel at Step 7,
so Pi cannot wait for the other peers to send their private inputs to Pi’s workers
and then free-ride without sending Pi’s input to the other peers’ workers. It is in
all the clients’ interest to perform honestly, as they want to obtain correct outputs.
It is also rational for the clients to select newcomers as workers: the higher the
number of honest nodes that participate, the more resistant to attacks the system
will be. Hence, helping newcomers to demonstrate their behavior makes sense.

In Protocol 7, it is bad for the client Pi originating the message (called Ps inside the
protocol) to directly send it to the worker Pik (called Pd inside the protocol), even
if only with probability 1−p, like in the Crowds system [45]. In that case, from the
worker Pik ’s viewpoint, the most likely sender of a message is the originating client
Pi: indeed, Pi would send it with probability 1 − p, whereas the l-th forwardee
would send it only with probability pl(1 − p) < 1 − p. Hence, the originating
client Pi is interested in looking for a forwardee, and therefore Pi will honestly
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follow Steps 17 and 18. Further, the client Pi wants, if possible, a forwardee that
will not risk refusal by the worker or, if this is not possible, a forwardee with the
maximum possible reputation among those that will not discard Pi’s message (see
Note 12 for a justification). Since a client Pi will only obtain her output Oi if she
finds her own good forwardees and workers (the forwardees and workers of other
clients do not take care of Oi), Pi is motivated to maintain a high reputation gi.
An additional motivation for a client Pi to maintain a high reputation is that
it allows Pi to randomly choose her first forwardee among a large set of peers
that will not risk refusal by the worker, which increases unlinkability of successive
messages sent by Pi. This ensures honest adherence to Step 20.

In Protocol 8, it is obviously in the interest of Pi (called Pprev inside the protocol)
to decrypt her private output when she receives it (Step 3). Further Pi’s best
option is to reward the first forwardee by giving her local reputation 1 (Step 4),
in order to obtain a reward receipt from the first forwardee (Step 7). This reward
receipt is necessary for Pi to escape being punished with 0 local reputation in
Step 12 of Protocol 5.

Pi could certainly decide to favor a false first forwardee P ′ of her choice, rather
than the real first forwardee P . This would still work well for Pi, because P ′

would return a signed receipt for the same reasons that P would do it. However,
if Pi wants to favor P ′, it entails less risk (of being discovered) for Pi to use P ′ as
a real first forwardee. Thus, there is no rational incentive for clients to favor false
first forwardees.

5.4.2 Co-utility for forwardees

In Protocol 7, there may be two types of forwardees:

1. Ps is a forwardee if she is not the originator of msg. Ps’s incentive to
perform her role properly is the hope of being the first forwardee for a non-
nil computation and hence be rewarded with a reputation increase. Note that
Ps does not know whether she is the first and whether the computation is
non-nil, because the latter is encrypted and timing does not help, given that
the C-FWD-CH calls with nil and non-nil computations are interleaved due
to the hopping mechanism among forwardees. According to the protocol,
Ps must decide between forwarding (msg, comp) to some other peer Pt or
directly sending (msg, comp) to the destination peer Pd who will perform
comp. Both actions take about the same effort, so it is rational for Ps to
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make the decision randomly according to the prescribed probabilities (p for
forwarding and 1− p for directly sending to Pd). In case of forwarding, Ps’s
rational procedure is like the originator’s: use the Select function.

2. Pt is the forwardee selected by Ps in case of forwarding. Pt must decide on
message acceptance or discarding. The incentive for Pt to accept to deal with
a message is the hope to increase her reputation if Pt happens to be the first
forwardee for a non-nil computation (which Pt does not know). However,
Pt will not accept to deal with a message coming from Ps if the latter’s
reputation is too low: it might be a sign that Ps did not “pay” previous
first forwardees in Step 4 of Protocol 8 and was therefore punished with
reputation decrease in Step 12 of Protocol 5. Thus, the rational decision is
for Pt to accept to deal with Ps’s message only if Ps is not too inferior to Pt

in reputation, that is, if gs ≥ gt − δ. Otherwise, in Step 24 Pt discards Ps’s
message.

In Protocol 8, forwardees backtrack along the reverse path from the worker to the
originator. There are two forwardee roles:

1. In Step 5 Ps is the first forwardee because Pprev was the originator under
C-FWD-CH. Hence, at Step 5 Ps is obviously interested in forwarding to
Pprev’s AMs the reward Ps receives from Pprev. On the other hand, at Step 7
Ps’s best option is to return the reward receipt to Pprev, because Pprev could
otherwise blacklist Ps and never make Ps a first forwardee in future joint
computations.

2. In Step 10 Pprev does not know whether she is the first forwardee or not.
In the hope of being the first forwardee, Pprev’s best option is to forward
(EK(out), comp) to the next upstream peer Pprev2. If Pprev2 turns out to
be the originator, then Pprev will be rewarded as the first forwardee (see
previous item).

5.4.3 Co-utility for workers

In Protocol 7 at Step 5 Pd is the worker to whom the private inputs are sent by
the clients. Decrypting and storing these inputs is necessary for Pd to be able to
correctly perform the computation at Step 12. The motivation for Pd to return
the correct computation result encrypted under the retrieved key K in Step 15 is
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to receive a reputation reward in Step 16 of Protocol 5, rather than a reputation
punishment in Step 18 of that protocol.

In Protocol 8, the worker Pd (called Ps within the protocol) merely sends (EK(out),
Ecomp) to the previous peer in the path followed by C-FWD-CH. The worker’s
motivation to do this is to earn a reputation reward in Step 16 of Protocol 5.

Note that, workers being peers, they are also likely to be clients at some point.
And for a client having a high reputation is the way to easily find forwardees that
help preserve the client’s input and output privacy.

5.4.4 Co-utility for accountability managers

In Protocol 5, the accountability managers punish those clients that do not reward
their first forwardee (Step 12). Since they are pseudorandomly chosen, most AMs
are rational and thus interested in favoring correct computation; hence, most AMs
will discharge their role as described in the protocol.

Protocol 6 is run by all peers in their capacity of accountability managers. Since
most AMs are rationally interested in favoring correct computation, they are also
interested in correctly updating and maintaining global reputations. Therefore,
most AMs can be assumed to run Protocol 6 correctly. For the same reason, all
peers will supply local reputations to their AMs at the start of the protocol.

Finally, in Protocol 8 the role of AMs is to reflect the reputation rewards received
by the first forwardees. Again, the rational interest of the AMs to preserve the
correct operation of the protocol suite allows expecting them to do their job.

The bottom line that allows trusting AMs as a community is that they are pseu-
dorandomly chosen and redundant (each peer has M AMs), coupled with the
assumption that a majority of peers (and hence of AMs) is rational. Yet, it might
be argued that assuming a majority of rational peers is not the same as assuming
a majority of honest peers. If it is feared that a sizeable proportion of AMs might
have rational motivations to deviate, additional countermeasures could be set up
to punish bad AM behavior. For example, as hinted earlier in the sketch at the
beginning of this section, after Step 8 of Protocol 6 Pi could punish with local
reputation 0 those AMs that provide local reputations for Pj that do not agree
with the majority reputation value. Yet, to avoid complicating pseudocodes, we
have refrained from including such optional countermeasures.
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5.5 Privacy and correctness
Here we examine how the protocols satisfy the requirements of Section 5.3.2, and
thereby preserve the confidentiality of the peers’ private inputs and outputs and
incentivize correct computation by the peer workers.

5.5.1 Privacy

In our protocol suite, the privacy of client inputs and outputs is based on the
co-utile anonymous channel implemented by protocols C-FWD-CH (downstream)
and C-REV-CH (upstream). This channel breaks the link between clients and
their inputs and outputs.

We first show that, in general, no collusion of peers can link with certainty an input
to the corresponding client. Then we deal with the unlinkability of outputs and
we argue that the only collusion that could link an output to the corresponding
client is hardly rational. After showing that collusions are unproductive to link
inputs and either unproductive or not rational to link outputs, we prove that in
the absence of collusion a client can plausibly deny that a certain input is hers
and that a certain output is hers.

Proposition 4. If a client Pi’s input Ii is not embedded in her computation Ci,
no collusion of peers can link with certainty an input to Pi.

Proof. A successful collusion must include at least a first forwardee (who knows
the client’s pseudonym) and a worker (who computes the client’s output). Under
the assumption of the proposition, client Pi sends her input only at Step 7 of Pro-
tocol 5, via C-FWD-CH. In this call to C-FWD-CH, Pi does not reward the first
forwardee, which means that the latter does not learn she is the first forwardee.
Hence the worker cannot find a first forwardee that knows for sure the pseudonym
of the client to whom a specific input corresponds.

Regarding outputs, when a client Pi calls C-FWD-CH to send the return key
and the computation (Step 9 of Protocol 5), Pi does reward the first forwardee.
Therefore, this first forwardee learns Pi’s pseudonym and could collude with the
worker to link the output to the client’s pseudonym. Nonetheless, such a collusion
is hardly rational:
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• Peers are pseudonymous: the first forwardee only knows the worker’s pseudonym
and the worker does not even know the first forwardee’s pseudonym unless
the first forwardee tells the worker. People tend to collude with those they
know, and thus pseudonymity is a defense against collusion.

• There is an asymmetry between the worker and the first forwardee. It
is unclear why the worker should share with the colluding first forwardee
the value of the client’s private output after the first forwardee reveals the
client’s pseudonym: the worker cannot verify that the pseudonym actually
corresponds to the client, and even if the worker accepts the pseudonym as
good, it is not the client’s real identity.

• In case a first forwardee or a worker Pt is also a client herself, colluding to
link another client Pv’s output with Pv’s pseudonym makes Pt’s own output
more easily linkable (linkage possibilities reduce from m clients to m − 1
after a successful collusion).

A final mitigating factor is that, in many joint computations the outputs are
either not private (e.g. the tally in e-voting is public) or less confidential than the
inputs.

Proposition 5. If there is no collusion between the peers, a client Pi can plausibly
deny that a certain private input is hers and can also plausibly deny that a certain
private output is hers. Hence, client privacy would still hold if the mapping between
the client’s pseudonym Pi and the client’s real identity IDi was discovered.

Proof. The privacy guarantee is based on unlinkability and input/output encryp-
tion.

Let us examine whether a worker can link an input to the corresponding client.
By the design of Protocol C-FWD-CH, a worker Pjk knows that when Pjk receives
PKjk(Ii) from a peer P , P is unlikely to be the client Pi to whom Ii corresponds
(a client always chooses to hop if she can). Yet, since we assume in Protocol 5
that m ≥ 4, there are at least 4 clients; hence, even if both Pjk and P happened
to be also clients themselves, Pjk cannot unequivocally determine which of the
remaining clients is Pi. What Pjk can do is to estimate the probability that
PKjk(Ii) was submitted by the l-th forwardee as pl−1(1− p), and hence that the
most likely submitter is the first forwardee. Nevertheless, the first forwardee is
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chosen by client Pi using the Select function, described in Note 12. If gi ≥
gd − δ, then Pi chooses the first forwardee randomly among the set of peers with
reputation in the interval [gd − δ, gi + δ], and this set depends on the current
reputations and varies over time; hence, as long as there are several peers with
reputations in the previous interval, even if Pjk received two encrypted inputs
from the same peer in two different successive joint computations, Pjk cannot
infer that both inputs correspond to the same client. If gi < gd − δ, then Pi

chooses as a first forwardee the peer with the maximum reputation that does not
exceed gi + δ: if reputations do not change between two successive messages, Pi

would choose the same first forwardee for both messages; yet Pd cannot be sure
that the submitter of both messages is really the first forwardee, and hence Pd

cannot be sure that both messages were generated by the same client. Hence,
in no case can two different messages sent by the same client be unequivocally
linked, even if the probability of correctly linking them is lower when gi ≥ gd − δ.

On the other hand, the worker Pik receives the computation Ci via C-FWD-CH
from the same client Pi to whom output Oi must be returned via C-REV-CH.
However, by the design of C-FWD-CH Pik receives Ci without learning who Pi is.
Also, by the design of C-REV-CH Pik returns the client’s output Oi by hopping
upstream via the reverse path, with no knowledge of Pi’s pseudonym or identity.
Certainly, Pik could try to identify the client Pi by looking for which peers Pik is
closest in reputation; however, Pik does not know the parameter κi (number of
closest peers) used by Pi in Protocol 5 when choosing her workers.

Consider now linkability by a forwardee Ps. If Ps is a forwardee of a message
from Pprev, in general Ps does not know whether Pprev originated the message
or is merely forwarding it. The only exception is when Ps is the first forwardee
(because in this case Ps receives a message from Pprev in Step 4 of Protocol 8).
Yet, in this case Ps can only link the encrypted version of the output (that is,
EK(out)) to the client’s identity Pprev.

Lastly, if AM is an accountability manager of a client Pi, AM only sees the reward
receipts from the first forwardees of that client (see Protocol 5). In no case can
AM access the inputs or the outputs of Pi.

Since no input or output can be unequivocally attributed to a client by any other
peer, plausible deniability by the client holds.

UNIVERSITAT ROVIRA I VIRGILI 
CO-UTILE PROTOCOLS FOR DECENTRALIZED COMPUTING 
Jesús Alberto Manjón Paniagua 



5.6. Example applications 115

5.5.2 Correctness

To ensure correctness, the delivery of correct outputs must be the best rational
option for the non-client peers (forwardees and workers). Protocols 5, 7 and 8
are designed to incentivize this option. Thus, from the discussion on co-utility for
workers and forwardees in Section 5.4 the following proposition follows:

Proposition 6. The rational behavior of workers and forwardees in Protocols 5,
7 and 8 is to return correct outputs to the clients.

5.6 Example applications
Our framework is totally general and therefore it can accommodate any joint
computation with input and output confidentiality. However, for the sake of
illustration, we sketch two specific applications.

5.6.1 Finding differences with the previous and following parties
in a ranking or an auction

In this application, each client Pi gives as private input Ii her value for a certain
magnitude (e.g. wealth or auction bid) and wants as private output Oi the differ-
ence with the previous party in the ranking by that magnitude (e.g. how richer
is the next richer client or how much more did the next higher bidder offer) and
the difference with the following party in the ranking (e.g. how poorer is the next
poorer client or how much less did the next lower bidder offer).

In this case, the computation C consists of ranking all clients and finding the
differences between successive clients in the ranking. The pruned computation Ci

of interest for Pi consists of ranking all clients and finding only the differences
between Pi and its previous client and between Pi and its following client. Hence,
in this application, Pi’s input Ii must be embedded in Ci (yet this is no problem,
because the worker running Ci cannot link Ii to Pi).

5.6.2 Electronic voting

In electronic voting, the clients P1, . . . , Pm are the voters. The private inputs of
the clients I1, . . . , Im are their secret votes. There is only one output O, the tally,
which is public. Note the value of a vote does not reveal the identity of the voter,
and hence it is safe for clients to send their votes to workers as long as they do it
using an anonymous channel.
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The computation C consists of computing the absolute frequencies of all options
susceptible of being chosen by voters (e.g. candidates, parties, Yes/No/Blank
etc.). In this case C1 = C2 = . . . = Cm = C and no client input needs to be
embedded in C. Rather than each worker returning O to her client via C-REV-
CH, it is simpler for all workers to publish O. If a worker publishes a tally O′ that
disagrees with the majority tally, O′ will be discarded (and the worker’s reputation
will decrease). In fact, the computational overhead can be strongly reduced with
the following simplification: each client chooses only one worker rather than r; in
this case, there is a set of only m workers (rather than m× r), but if m ≥ 4, this
set is enough to compute O as the majority output.

It is also interesting to consider the particular case in which all peers are voter-
s/clients. Since all peers are clients and they are rational, correct computation of
the common output (tally) interests them. Hence, most peers can be expected to
behave honestly in their capacity of workers. As a consequence, reputations are
not needed for the correct tally to be majority.

We can generalize the last remark into the following proposition.

Proposition 7. If all peers are rational clients and there is a single common
output of the joint computation, Protocols 5, 7 and 8 can be expected to yield a
correct output even if all operations related to reputations are suppressed from the
protocols.

5.7 Experimental results
In this section, we report the results of the experiments with the proposed co-utile
framework. On one hand, we evaluated how the rate of correct outputs received by
the peers evolves over time depending on their behavior (ee considered good peers,
who honestly do their job, and malicious peers, who do not). On the other hand,
we compared the co-utile framework with a baseline framework in which there is
worker redundancy but no reputation (that is, Protocols 5, 7 and 8 without using
reputations to decide on workers, forwardees or clients).

Expected behavior. If the co-utile framework is well designed, good clients (that
are good peers) should obtain a higher rate of correct outputs in it than in the
baseline framework. Also, in the co-utile framework the rate of correct outputs
for good clients should be higher than for bad clients (who are malicious peers).
Further, the reputation of the peers should highly and positively correlate with
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their goodness and with the rate of correct outputs they obtain. The rationale
is that peers who perform wrong computations as workers are likely to end up
having low reputation, and it is difficult for a peer with low reputation to find
(as a client) other peers that are willing to perform a computation for her (as
workers) or forward the former peer’s messages (as forwardees). Moreover, the
rate of correct outputs for an honest newcomer should be, in the medium term,
very similar to the other honest clients. However, if a newcomer misbehaves, the
rate of correct outputs should be always low, as the other malicious peers in the
network. In this manner, malicious peers have no incentive to take a new virtual
identity in order to “clean” their reputation after misbehaving with other peers.

Experimental setting. We built a P2P network with n = 50 peers and let it evolve
for 150 iterations; in each iteration, a joint computation was conducted by m = 10
clients randomly chosen among the 50 peers. Each client gave a numerical value
as a private input to the joint computation; the latter consisted of ranking the
input values and returning as a private output the rank of the client’s value. A
malicious worker always returned a random output instead of the true output of a
computation (so they kept a 10% chance of returning the correct result). Finally,
we set r = 3 (three redundant workers per client).

5.7.1 Evaluation of the co-utile framework
To evaluate the co-utile framework, we set up a scenario with the parameters
listed above and 20% of malicious peers. The remaining 80% were honest peers.
Additionally, we introduced two nodes right after iteration 50: a malicious one and
an honest one. A node will be considered newcomer during her first 25 iterations
into the system. We gave an initial reputation g = 1/n = 0.02 to each client and
we took δ = g ∗ 0.75 = 0.015.

Figure 5.1 shows the evolution of the reputations of every kind of node during
the 150 iterations. The lines represent the average reputation of a particular
type of node for the iteration in the abscissae, while the shaded regions represent
the standard deviation. It can be seen that already in the first iterations, while
the node behaviors are still being modeled, the reputation of malicious peers
swiftly decreases. Around the ninth iteration, a clear difference exists between
the reputation of honest and malicious peers. From iteration 50, the evolution
of the reputation of the honest newcomer (blue) and the malicious newcomer
(gray) appears. Since during their first 25 iterations after their entrance, the
other nodes can select the newcomers as workers, the behavior of both nodes is
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Figure 5.1: Evolution of the reputations of every kind of node in a scenario with
20% of malicious nodes.

properly modeled. The reputation of the honest newcomer gradually increases
to the level of the other honest nodes, whereas the reputation of the malicious
newcomer remains low, as the other malicious nodes in the network. Take into
account that, during this phase, newcomers cannot be clients, just workers and
forwardees. Hence, a malicious node does not gain any benefit from leaving and
entering again the system with a new pseudonym (whitewashing).

The left chart of Figure 5.2 displays the rate of correct output as a function of
the reputation of the clients, both magnitudes accumulated after 150 iterations.
Honest nodes are depicted in green, malicious nodes in red, the honest newcomer
in blue and the malicious newcomer in gray. Nearly all the outputs requested by
clients with high reputation were correct, whereas on average less than 50% of the
outputs requested by clients with low reputation were correct. This satisfied our
expectations on the behavior of the co-utile framework. In fact, as it can be seen
in the right chart of Figure 5.2, reputation was even more decisive in the last 50
iterations. In these last iterations, all computations requested by peers with high
reputation (honest peers) were correct, whereas on average less than 20% of the
outputs requested by clients with low reputation were correct. Hence, as soon the
system stabilizes, the good peers always obtain correct outputs.
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Figure 5.2: Rate of correct outputs as a function of the reputation of clients,
with 20% of malicious nodes. On the left, in all 150 iterations; on the right, in
the last 50.

5.7.2 Comparison with the baseline framework

In order to compare our co-utile framework with other similar options, we set up
a baseline framework in which there was worker redundancy but no reputation
management was used by peers to choose workers or forwardees, or to decide
whether to act as a worker or a forwardee. We ran simulations for different
proportions of malicious peers. In the co-utile framework, we gave an initial
reputation g = 1/n = 0.02 to each client and we took δ = g ∗ 0.75 = 0.015.

Figure 5.3 shows the rate of correct outputs in the baseline and the co-utile frame-
works as a function of the proportion of malicious peers, after 250 iterations. No
matter the framework, the rate of correct outputs decreases as the proportion
of malicious peers increases, which was to be expected. However, in the co-utile
framework good clients obtained a much higher rate of correct outputs than bad
clients. Furthermore, good clients in the co-utile framework obtained a higher
rate of correct outputs than clients in the baseline framework, whereas bad clients
in the co-utile framework obtained a much lower rate of correct outputs than
clients in the baseline framework. Hence, reputation management in the co-utile
framework is useful to discriminate between good and bad clients, which in fact
encourages rational behavior: honest behavior turns out to be the best rational
option for any peer that wants to become a client.
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Figure 5.3: Rate of correct outputs in the baseline and the co-utile frameworks
for different types of clients, as a function of the proportion of malicious peers.

5.8 Conclusions and future work
We have presented a peer-to-peer framework for multiparty computation that has
the following innovative features: (i) it is general-purpose without making use of
circuits, so that it can work for any computation expressed as ordinary high-level
programming code, no matter its complexity, loops or recursions; (ii) unequivocal
linkability of each party’s inputs is prevented; (iii) if a majority of peers are ratio-
nal (not necessarily semi-honest), collusion is unattractive and hence, unequivocal
linkability of outputs is also prevented; (iv) the rational behavior of peers is to
return correct outputs to the client parties.

Future research will be devoted to reducing the overhead caused by worker and
accountability manager redundancy while preserving the current privacy and cor-
rectness guarantees. Further work will be performed on parameter tuning, and in
particular on the value of the initial reputation to be assigned to newcomers.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Decentralized computing is an emerging paradigm that redistributes computa-
tional tasks and decision making across a network, offering benefits such as re-
silience, scalability, privacy, and reduced reliance on central authorities. The
emergence of blockchain technology and other decentralized solutions, including
peer-to-peer networks, distributed ledger technologies, and decentralized file sys-
tems, has fuelled the growth of the sector, providing new opportunities for col-
laboration and innovation. These developments empower individuals and organi-
zations to collaborate and transact directly, bypassing traditional intermediaries
and fostering a more open and transparent digital ecosystem.

Decentralized systems face several challenges due to the absence of a central
coordinator. Achieving consensus among nodes, dealing with scalability issues,
ensuring fault tolerance, maintaining security without a central authority, and
establishing effective governance models are key areas that require attention and
innovative solutions.

This thesis focuses on one of the major hurdles for decentralization to become
widespread: how to ensure that all agents involved perform as expected. Nodes
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that deliberately deviate may do so to attack the system or simply to take advan-
tage of it without contributing.

Based on the notion of co-utility, we have designed several ethics-by-design frame-
works to solve the conflict between some ethical values and security properties in
three different scenarios: i) Federated learning; ii) Fully decentralized learning;
and iii) Multi-party computation.

In our first contribution, presented in Chapter 3, we have presented co-utile proto-
cols to improve privacy and security in federated learning while perfectly preserv-
ing the model accuracy. We use a decentralized reputation management scheme
to incentivize peers to adhere to the prescribed protocols. Confidentiality of the
peers’ private data is guaranteed by the unlinkability of updates: when a peer
generates an update, neither the model manager nor the other peers can identify
the update generator. Security, i.e. protection against bad updates, is pursued in
our approach via reputation. Whereas state-of-the-art security countermeasures
do nothing to reduce the number of bad updates that are processed by the model
manager, we address this issue in a way to achieve two beneficial effects: first, to
decrease the overhead for the model manager and the peers related to processing,
tracing and punishing bad updates; and, second, to make the (fewer) bad updates
processed by the model manager more identifiable as outliers. The design of our
protocols also renders whitewashing and Sybil attacks ineffective.

In Chapter 4 we presented a co-utile protocol for Fully Decentralized Machine
Learning. The fact that all participating peers are at the same time model man-
agers and workers facilitates using tit-for-tat and local reputations to achieve
co-utility. In this way, co-utility occurs naturally, and complex incentives such as
decentralized global reputations are not needed. Our proposed protocol consists
of a double tit-for-tat. The first tit-for-tat is used to hide the identity of the peer
that computed each update, in order to protect the privacy of peers. In the sec-
ond tit-for-tat, peers receive updates relevant to their own model, but they receive
them from other peers that did not compute those updates. Deviations from the
protocol are punished, which increases ostracism for the offending peers. On the
one hand, a peer that fails to reciprocate in a tit-for-tat is punished by the non-
reciprocated peer. On the other hand, after the second tit-for-tat, bad or duplicate
updates can be detected by the model-managing peers, who launch punishment
subprotocols aimed at tracing the offending peers. This ensures the correctness
of the learning process and incentivizes good and non-duplicate updates.
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Finally, in Chapter 5 we proposed a peer-to-peer co-utile framework for multiparty
computation that has the following innovative features: (i) it is general-purpose
without making use of circuits, so that it can work for any computation expressed
as ordinary high-level programming code, no matter its complexity, loops or recur-
sions; (ii) unequivocal linkability of each party’s inputs is prevented; (iii) if a ma-
jority of peers are rational (not necessarily semi-honest), collusion is unattractive
and hence, unequivocal linkability of outputs is also prevented; (iv) the rational
behavior of peers is to return correct outputs to the client parties.

6.2 Publications

The publications supporting the content of this thesis are stated below:

1. J. Domingo-Ferrer, A. Blanco-Justicia, J. Manjón and D. Sánchez, “Secure
and privacy-preserving federated learning via co-utility”, IEEE Internet of
Things Journal, vol. 9, no. 5, pp. 3988-4000, Mar 2022.

2. J. Manjón and J. Domingo-Ferrer, “Computación segura multiparte coútil
para cálculo de funciones arbitrarias”, in XVII Reunión Española sobre Crip-
tología y Seguridad de la Información - RECSI 2022, Santander, Spain, Oct
2022.

3. J. Domingo-Ferrer and J. Manjón, “Circuit-Free General-Purpose Multi-
Party Computation via Co-Utile Unlinkable Outsourcing”, IEEE Transac-
tions on Dependable and Secure Computing, vol. 20, no. 1, pp. 539-550,
Jan 2023.

4. J. Manjón, J. Domingo-Ferrer, D. Sánchez and A. Blanco-Justicia, “Secure,
Accurate and Privacy-Aware Fully Decentralized Learning via Co-Utility”,
Computer Communications, vol. 207, pp. 1-18, Jul. 2023.

6.3 Future work

Regarding the contributions presented in this thesis, we foresee some open prob-
lems and extensions that will be addressed in the future.
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An interesting avenue for future research in the federated learning scenario is to
harden the proposed protocols so that they can filter out a greater proportion of
bad updates in situations where a substantial share of the peers are malicious.

Concerning fully decentralized machine learning, we plan to fine-tune the protocol
in order to further reduce its overhead and the proportion of lost good updates.

Regarding multiparty computation, we expect to be able to reduce the overhead
caused by worker and accountability manager redundancy while preserving the
current privacy and correctness guarantees.

Additionally, we plan to explore adaptations of the proposed protocols to decen-
tralized computations different from machine learning and multiparty computa-
tion, such as decentralized anonymization.
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