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Abstract

During the last decade, there has been a steady increase in the demand of high data rates that
are to be supported by wireless communication applications. Among the different solutions that
have been proposed by the research community to cope with this new demand, the utilization
of multiple antennas arises as one of the best candidates due to the fact that it provides both
an increase in reliability and also in information transmission rate. Although the use of multiple
antennas at the receiver side dates back from the sixties, the full potential of multiple antennas
at both communication ends has been both theoretically and practically recognized in the last
few years.

The design of proper multi-antenna communication systems to satisfy the high data rates
demand depends not only on the chosen figure of merit or performance metric, but also on the
quantity and the quality of the channel state information that is available at the communication
ends. In this dissertation we deal with the analysis and design of different architectures for
multiple-antenna communication systems for various degrees of quality and quantity of channel
state information. The analysis section is devoted to the study of capacity and achievable rates
and the part that deals with design is aimed at the synthesis of practical communication systems
that maximize a certain performance measure.

Firstly, we focus our attention on multiple antenna single-user communication systems with
perfect channel state information, which is an idealization of actual practical systems. In this
context, we review well known capacity results and deal with the practical characterization of a
linear transmitter that is designed to maximize the reliability of the wireless multi-antenna link.
Some analogies between the optimal linear transmitter design and the theory of constellation
construction are also pointed out.

Secondly, we stay in a single-user scenario and we move onto the case where the channel
state information is incomplete. In this case, a detailed capacity analysis is presented dealing
with the ergodic and compound capacity formulations, which arise depending on the model
utilized to characterize the channel. While in rapidly varying channels the ergodic capacity is a
key measure of the rates that can be achieved by any communication system, in slow varying
or fixed channels the compound capacity measures the minimum transmission rate that can be
sustained during the transmission of the message.

Next, we shift to the case where the available channel state information is imperfect. Precisely,
we deal with a practical communication system called spatial Tomlinson-Harashima precoder and
study its achievable rate capabilities. Due to the versatile architecture of the spatial Tomlinson-
Harashima precoder we are able to perform the study for the single and multi-user scenarios.
For both cases, a design is presented which is robust to the uncertainties of the channel state
information and which is aimed at maximizing the transmission rate.
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Finally, staying in the multi-user scenario with imperfect channel state information, we
present a transmission architecture that is robust to the uncertainties of the side information
that is available at both the transmitter and the receiver. The robustness criterion is to minimize
the transmitted power while guaranteeing a certain quality of service per user for every possible
realization of the channel that is compatible with the available channel state information.



Resum

Al llarg d’aquesta última dècada, s’ha produit un creixement constant en la demanda d’elevades
taxes de transmissió de dades que han de suportar les aplicacions sobre comunicacions sense fils.
Entre les diferents solucions ideades per la comunitat recercaire per tal de fer front a aquesta nova
demanda, la utilització de múltiples antenes s’erigeix com una de les millors candidates degut al
fet que proporciona simultàniament una millora en les taxes de transmissió i en la fiabilitat en
la recepció de les dades. L’ús d’antenes múltiples en un dels extrems de la comunicació data de
la dècada dels seixanta, nogensmenys ha estat en aquests últims anys quan s’ha pogut provar,
tant en els camps teòric com pràctic, tot el potenical que possibilita la presència de múltiples
antenes en ambdós extrems de la comunicació.

El disseny adequat de sistemes de comunicació amb múltiples antenes per satisfer aquesta
demanda no només depèn de la funció de mèrit (o de la mètrica de rendiment) escollida, sinó
que també es veu afectat per la quantitat i la qualitat de la informació de l’estat del canal que
es troba disponible als extrems de la comunicació. Aquesta tesi tracta sobre l’anàlisi i el disseny
d’arquitectures per sistemes de comunicació amb múltiples antenes i amb diferents nivells de
quantitat i qualitat de la informació de l’estat del canal. La secció d’anàlisi es centra en l’estudi
de la capacitat i les taxes de transmissió assolibles per aquests tipus de sistemes de comunicació
i la part de disseny queda més encarada a la śıntesi de sistemes de comunicació pràctics amb
l’objectiu de maximitzar el rendiment d’acord amb la mètrica de rendiment escollida.

Primerament, l’atenció es centra en sistemes de comunicació amb múltiples antenes per a
un únic usuari amb informació perfecte de l’estat del canal, que suposa una idealització dels
sistemes pràctics que s’empren en la realitat. En aquest context, es revisen resultats de capa-
citat que són ben coneguts, i es caracteritza, a més, un transmissor lineal dissenyat per tal de
maximitzar la fiabilitat de l’enllaç sense fils amb múltiples antenes. Addicionalment, s’apunten
una sèrie d’analogies entre el disseny del transmissor lineal òptim i la teoria de construcció de
constel.lacions de śımbols.

En segon lloc, es roman en un escenari de comunicacions amb un únic usuari i es considera el
cas on la informació sobre l’estat del canal és incompleta. En aquest cas, es presenta un anàlisi
detallat sobre la capacitat a través de les formulacions ergòdica i composta (compound), les
quals prenen significat depenent del model utilitzat per caracteritzar el canal. Mentres que en
canals ràpidament variants la capacitat ergòdica és la mesura clau de les taxes de transmissió
assolibles per qualsevol sistema de comunicació, en canals fixos o de variació lenta, és la capacitat
composta, la que mesura la mı́nima taxa de transmissió assolible de forma sostinguda durant la
transmissió del missatge.

Seguidament, es considera el cas on la informació disponible sobre l’estat del canal és im-
perfecta. Precisament, es discorre sobre un sistema de comunicació pràctic anomentat Precodifi-
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cador Espacial de Tomlinson i Harashima i s’estudien les seves potencialitat en termes de taxes
de transmissió assolibles. Gràcies a l’arquitectura versàtil del Precodificador Espacial de Tom-
linson i Harashima l’esmentat estudi es duu a terme tant per escenaris amb un únic usuari com
per escenaris amb múltiples usuaris. Per aquests dos casos, es presenta aix́ı doncs un disseny que
és robust a les incerteses de la informació de l’estat del canal i que té per objectiu minimitzar
les pèrdues de taxa de transmissió d’informació.

Finalment, restant en un escenari amb múltiples usuaris amb coneixement imperfecte de
l’estat del canal, es presenta una arquitectura de transmissió que és robusta a les incerteses
de la informació sobre l’estat del canal disponible tant en el transmissor com en el receptor.
La variable per al disseny robust és la distribució de potència entre els śımbols d’informació
destinats a cada usuari, i el criteri d’optimització és minimitzar la potència total transmesa, tot
garantint una determinada qualitat de servei per cada usuari i per qualsevol possible realització
del canal que sigui compatible amb la informació disponible sobre l’estat del canal.
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this project possible and worthwhile. I love you all.

Miquel

December 2006.

1This thesis was conducted with the support from the Generalitat de Catalunya 2003FI 00195.



Contents

Notation xv

Acronyms xvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Overview of multi-antenna communication systems 9

2.1 The multi-antenna communication system . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 General overview and benefits . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 The linear transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 The linear MIMO channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Uncertainty models for the CSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Capacity of MIMO channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Capacity results for different degrees of CSI . . . . . . . . . . . . . . . . . 15

2.3.2 Capacity formulation for the linear vector Gaussian channel . . . . . . . . 19

2.4 Practical communication schemes through multi-antenna channels . . . . . . . . 22

2.4.1 Practical schemes with no CSI . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Practical schemes with perfect CSI . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Practical schemes with imperfect and/or incomplete CSI . . . . . . . . . . 25

2.4.4 Practical transmission schemes for the multi-user case . . . . . . . . . . . 26

2.5 Mathematical characterization of alternative performance measures . . . . . . . . 28

xi



xii CONTENTS

2.5.1 Minimum distance of the received codewords . . . . . . . . . . . . . . . . 28

2.5.2 MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.3 Signal to noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.4 Symbol and bit error rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Single-user communication through MIMO channels with perfect CSI 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Capacity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Theoretical limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Practical limits: mercury/waterfilling . . . . . . . . . . . . . . . . . . . . . 35

3.3 Practical transmission schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 System description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 ML receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Transmitter design to minimize the worst-case PEP . . . . . . . . . . . . 41

3.3.4 Closed form solution for the particular case of two QPSK streams . . . . 45

3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Transmission of four bit per channel use . . . . . . . . . . . . . . . . . . . 50

3.4.2 Transmission of eight bit per channel use . . . . . . . . . . . . . . . . . . 50

3.4.3 Performance in terms of SER . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Chapter summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.A Proof of Proposition 3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.B Analysis of the minimum distance function candidates . . . . . . . . . . . . . . . 60

4 Single-user communication through MIMO channels with incomplete CSI 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Instantaneous mutual information . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Ergodic mutual information and capacity . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Solution to the particular case nT = nR = 2. . . . . . . . . . . . . . . . . 69

4.4.2 Approximation by finite sample size . . . . . . . . . . . . . . . . . . . . . 73

4.4.3 Optimization utilizing results from the theory of random matrices . . . . 74

4.5 Compound mutual information and capacity . . . . . . . . . . . . . . . . . . . . . 78

4.5.1 Solution for the particular case with nT = 2 . . . . . . . . . . . . . . . . . 79



CONTENTS xiii

4.5.2 Approximation by finite sample size . . . . . . . . . . . . . . . . . . . . . 80

4.5.3 Approximated approach inspired by Taylor expansion . . . . . . . . . . . 81

4.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 Chapter summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.A Proof that a diagonal covariance matrix is ergodic and compound optimal . . . . 90

4.A.1 Ergodic case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.A.2 Compound case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.B Alternative proof of Proposition 4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . 93

4.C Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.D Roots of polynomial (4.34) in (ξ, γ) . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 From single to multi-user communication with imperfect CSI 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 The spatial Tomlinson-Harashima precoder . . . . . . . . . . . . . . . . . 99

5.3.2 Single-user scenario (coupled receivers) . . . . . . . . . . . . . . . . . . . . 101

5.3.3 Multi-user scenario (decoupled receivers) . . . . . . . . . . . . . . . . . . 102

5.4 Information-theoretic analysis with perfect CSI . . . . . . . . . . . . . . . . . . . 104

5.4.1 Rate per stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.2 Power per stream and total transmitted power . . . . . . . . . . . . . . . 104

5.4.3 Achievable rates with STHP . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Rate loss with imperfect CSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5.1 Single-user scenario (coupled case) . . . . . . . . . . . . . . . . . . . . . . 110

5.5.2 Multi-user scenario (decoupled receivers case) . . . . . . . . . . . . . . . . 112

5.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.7 Chapter summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.A Properties of the differential entropy of a clipped Gaussian random variable . . . 119

5.A.1 Probability density function of a clipped Gaussian random variable . . . . 119

5.A.2 Differential entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.B Probability density function of p = Mt[s + z] . . . . . . . . . . . . . . . . . . . . 120

6 Multi-user communication through MIMO channels with imperfect CSI 123



xiv CONTENTS

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Capacity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Practical transmission scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 Imperfect CSI and problem statement . . . . . . . . . . . . . . . . . . . . . . . . 128

6.6 Uncertainty regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.6.1 Estimation white Gaussian noise . . . . . . . . . . . . . . . . . . . . . . . 132

6.6.2 Colored noise case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.6.3 Effects of a quantized CSI . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.6.4 Combination of regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.6.5 Example of extension to other types of transmitters . . . . . . . . . . . . 138

6.7 Practical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.7.1 Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.7.2 Starting point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.8 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.9 Chapter summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.A Proofs of equivalence of convex problems . . . . . . . . . . . . . . . . . . . . . . . 146

6.A.1 Proof of Proposition 6.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.A.2 Proof of Proposition 6.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.A.3 Proof of Proposition 6.6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.A.4 Proof of Proposition 6.6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.B Maximization of a general quadratic form with a norm constraint . . . . . . . . . 149

7 Conclusions and future work 153

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Bibliography



Notation

Boldface upper-case letters denote matrices, boldface lower-case letters denote column vectors,
and lower-case italics denote scalars.

N,Z,R,C The set of all natural, integer, real and complex numbers, respectively.

R+ The set of all strictly positive real numbers.

Zn×m,Rn×m,Cn×m The set of n×m matrices with integer-, real-, and complex-valued entries,
respectively. If m = 1, the index can be dropped.

XT Transpose of the matrix X.

XH Complex conjugate and transpose (Hermitian) of the matrix X.

[X]ij (i, j)th component of the matrix X.

TrX Trace of the matrix X.

|X| or det(X) Determinant of the matrix X.

X−1 Inverse of the matrix X.

X# Moore-Penrose pseudo-inverse of the matrix X.

X1/2 Hermitian square root of the positive semidefinite matrix X, i.e.,
X1/2X1/2 = X.

diag(A) Vector constructed with the elements in the diagonal of matrix A.

vec(A) Vector constructed stacking the columns of matrix A.

I or In Identity matrix and identity matrix of dimension n × n, respectively.

arg Argument.

max, min Maximum and minimum.

sup, inf Supremum (lowest upper bound) and infimum (highest lower bound).

(x)� Optimal value of variable x according to some criterion deduced from
the context.

(x)+ Positive part of the real scalar x, i.e., (x)+ = max{0, x}.
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xvi NOTATION

|x| Magnitude of the complex scalar x.

�x� Closest integer lesser than x.

‖x‖2 Squared Euclidean norm of the vector x: ‖x‖2 = xHx.

‖x‖2
A Squared norm of the vector x utilizing the metric defined by A: ‖x‖2

A =
xHAx.

∼ Distributed according to.

Pr{·} Probability.

px(x), p(x) Probability density function of the random variable x.

E[·] Mathematical expectation.

CN (m,C) Complex circularly symmetric Gaussian vector distribution with mean
m and covariance matrix C.

|A| Cardinality of the set A, i.e., number of elements in A.

Re{·} Real part.

Im{·} Imaginary part.

L Likelihood or Lagrangian function (deduced from the context).

∝ Equal up to a scaling factor (proportional).

�, � Approximately greater (lesser) than

� Defined as.

� Approximately equal.

lim Limit.

o(x) Landau symbol to denote that, if f = o(x), then f/x → 0 in the neigh-
borhood of some x0.

log(·) Natural logarithm.

loga(·) Base-a logarithm.

Q(x) 1√
2π

∫∞
x exp(−t2/2)dt.

i, i′, i′′ Index variables to refer to a receiver antenna or user. They range from
1 to nR or to nU .

j, j′, j′′ Index variables to refer to a transmitter antenna. They range from 1 to
nT .

k, k′, k′′ Index variables to refer to a substream. They range from 1 to nS .



Acronyms

a.s. almost surely.
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Chapter 1

Introduction

1.1 Motivation

Information theory was formally initiated in 1948 by Shannon in his pioneering work [Sha48]

in which he showed that reliable communication between a transmitter and a receiver was

possible even in the presence of a noisy channel. For a given channel, the maximum information

transmission rate at which the transmitter and receiver can communicate with an arbitrarily

low probability of error and no delay constraints is, since then, called the channel capacity.

For the particular case of a unit-gain band-limited continuous channel corrupted with addi-

tive white gaussian noise (AWGN), Shannon obtained his celebrated formula for the capacity

C = W · log
PT + PN

PN
, (1.1)

where W , PT , and PN represent the bandwidth, the average transmitted power, and the noise

power, respectively. The channel capacity is usually measured in bits (base-2 logarithm) or in

nats (base-e logarithm) per transmission. Sometimes it is useful to omit the dependence of the

capacity on the bandwidth by normalizing the capacity by the used bandwidth, obtaining the

spectral efficiency, usually measured in bits (or nats) per second per hertz.

Due to the logarithmic dependence of the spectral efficiency on the transmitted power, it

is extremely expensive to increase the capacity by radiating more power. For example, for a

sufficiently high signal to noise power ratio (SNR), doubling the transmitted power just yields

one extra bit per second per hertz of spectral efficiency. In addition, increasing the transmitted

power, specially in the mobile terminal, is not encouraged since it may violate regulation power

masks and the actual effects of electromagnetic radiation in people’s health is still a topic of

research [Lin02].

Another approach to increase the capacity consists in utilizing a wider electromagnetic band.

However, as many other natural resources, the electromagnetic spectrum is a scarce good and

1



2 1.1. Motivation

thus, its utilization is, in general, regulated by the government through the awarding of licenses,

which are extremely expensive. Consequently, it is essential to utilize the bandwidth in the most

efficient way.

Recently, theoretical studies, [Tel99, Fos98], and also practical implementations, [Gol99],

have shown that there exists an alternative technique which can increase the capacity without

neither transmitting more power nor occupying a wider band when the channel exhibits rich

scattering and its variations are accurately tracked by, at least, the receiver. This technique

consists in utilizing multiple antennas at both the transmitter and the receiver ends.

Utilizing an array of antennas just at the receiver side dates back from the sixties, and then it

was used with the only purpose to provide robustness again deep fades. Each receiving antenna

was used to collect incoming energy, and then, by combining properly the different received

signals, the SNR (and thus capacity) was increased. Although no extra power is needed, the

increase in capacity still has a logarithmical dependence on the SNR, which makes this solution

rather inefficient.

Combining multiple antennas both at the transmitter and receiver ends gives rise to the so

called multi-input multi-output (MIMO) channels. For MIMO channels, when the SNR is high

enough and the receiver tracks the variations of the channel, it can be shown that capacity grows

linearly with the minimum between the number of transmit, nT , and receive, nR, antennas,

C ∝ min(nT , nR). (1.2)

This linear growth of the capacity associated with MIMO channels is based on the premise that

a rich scattering environment provides independent transmission paths from each transmit to

each receive antenna. The constant multiplier associated with the linear scaling depends on the

degree of the channel state information (CSI) at the transmitter side.

Much subsequent work has been aimed at characterizing MIMO channel capacity under

different assumptions on the degree of CSI at the transmitter and receiver sides, and also under

the imposition of different practical (and, in general, suboptimal) transmission schemes, such

as, e.g., the non-linear spatial Tomlinson-Harashima Precoder (STHP) [Fis02a].

Despite the fact that the ultimate performance of any communication system is dictated by

the theoretical capacity limits, in the vast majority of cases the system designer has practical

constraints (specially time delay and complexity) which separate the rates that can be achieved

by the system from the capacity limits. In these cases, the system designer will try to maximize

some practical performance measure, instead of aiming at reaching the capacity limits.

In this sense, practical MIMO communication system designers have two primary concerns.

Firstly, the designer has to define a practical objective function to measure the global perfor-

mance of the system. In general, this performance metric will be selected depending on which is
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the purpose of the communication system. Secondly, the system designer will have to calculate

the values of the system parameters that optimize the value of the selected performance metric

of the system. Some of the most widely utilized performance measures include (but are not

limited to) bit error rate (BER), mean square error (MSE), and distance among the received

codewords.

From all that has been said above, the aim of this dissertation will be devoted to further

analyze the influence of the quantity and quality of the CSI at the transmitter and receiver

sides on the system capacity, and also the effect of imposing a particular transmitter structure

on the system performance, which will be evaluated according to some of the above mentioned

practical performance measures.

1.2 Outline of the dissertation

In general terms, this dissertation deals with the design and analysis of multi-antenna com-

munication systems, mainly focusing the attention on transmission architectures. Precisely, the

impact of the availability and quality of the CSI on the capacity and on the transmitter design is

studied and robust transmission architectures are designed. The main advantage of these robust

architecures is that their sensitivity to the presence of errors in the CSI is reduced with respect

to their classical non-robust counterparts. The outline of each of the chapter is as follows. Note

that the chapters with original contributions are chapters 3, 4, 5, and 6.

Chapter 1 has presented the motivation of this dissertation, is presenting the outline, and,

in the following section, will list the contributions of this dissertation.

Chapter 2 overviews some basic concepts and reviews the state of the art concerning multi-

antenna communication systems. Precisely the chapter is divided in two main parts: the first

one is devoted to the state of the art and mathematical formulation of capacity, and the second

one focuses on practical communication architectures.

Chapter 3 deals with communication in a single-user MIMO system where the CSI is con-

sidered to be perfect at both communication ends. After reviewing the capacity results for this

particular scenario, the practical design of a linear transmitter is considered. The design criterion

for the transmitter is such that the minimum distance among the received symbols is maximized,

which is meaningful figure of merit when the receiver employs a maximum-likelihood (ML) de-

tector. Additionally, it shows that this linear transmitter design is directly related to optimal

symbol constellation construction.

Chapter 4 introduces incompleteness of the CSI at the transmitter in single-user MIMO

communication systems. Specifically, it is considered that the transmitter is informed only with

(or is only able to estimate) the magnitude of the channel complex coefficients. For this particular
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choice of incomplete CSI, capacity results are presented encompassing the ergodic and compound

formulations. For some configurations with a small number of antennas, closed form expressions

for the capacity are found. For configurations with an arbitrary number of antennas, capacity

results based on random matrix theory are also presented.

Chapter 5 deals with multi-antenna communication systems with imperfect CSI at the trans-

mitter side. Precisely, it studies the effects of a noisy channel estimate at the transmitter on the

achievable rates of a communication architecture equipped with STHP. In addition, it presents

a robust design of this precoder so that the rate loss in the presence of errors in the CSI is min-

imized. Finally, due to the versatility of STHP to encompass multi-user systems, this chapter

links the single-user and the multi-user scenarios for multi-antenna systems.

Continuing with the multi-user scenario described in chapter 5, chapter 6 is fully devoted

to the study of a multi-antenna and multi-user communication system where it is considered

that both the transmitter and the receivers have only access to an imperfect version of the

CSI. Imposing a particular architecture at the transmitter side, the power allocation among the

signals to be transmitted to the users is robustly designed with the criterion of minimizing the

total transmitted power, while guaranteeing a certain predefined quality of service per user. The

problem is formulated within the powerful framework of convex optimization, which enables the

designer to efficiently find the solution to the robust transmitter design problem.

Chapter 7 concludes the dissertation and gives some topics for future research.

1.3 Research contributions

The main contribution of this dissertation is on the analysis and design of multi-antenna com-

munication systems depending on the degree and the quality of the CSI. In the following, a

detailed list of the research contributions in each chapter is presented.

Chapter 3

The main results of this chapter deal with the design of the optimal linear transmitter that

maximizes the minimum distance among the received symbols. These results have been published

in one conference paper and another paper has been submitted.

• M. Payaró, A. Pascual-Iserte, D. P. Palomar, M. A. Lagunas, “On linear transmitter

designs for MIMO systems with ML detection,” submitted to IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP’07), Honululu, HW, (USA),

May 2006.
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• M. Payaró, A. Pascual-Iserte, and M. A. Lagunas, “Optimum linear transmitter design for

MIMO systems with two QPSK data streams,” in Proc. IEEE International Conference

on Communications (ICC’06), Istanbul (Turkey), June 2006.

Chapter 4

The main contributions of this chapter are on the characterization of the transmit covariance

matrix that maximizes the mutual information for a particular case of channel state uncertainty

at the transmitter. Reports on these results have been published in six conference papers, and

a journal paper has been submitted.

• M. Payaró, A. Pascual-Iserte, and M. A. Lagunas, “Capacity evaluation in multiantenna

systems under phase uncertainty,” submitted to the special issue “Signal Processing for

Uncertain Systems”, in Circuits, Systems, and Signal Processing (CSSP), August 2006.

• M. Payaró, A. Wiesel, J. Yuan, and M. A. Lagunas, “On the capacity of linear vector

Gaussian channels with magnitude knowledge and phase uncertainty,” in Proc. IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP’06), Toulouse

(France), May 2006.

• M. Payaró, J. Yuan, and M. A. Lagunas, “On the capacity of MIMO systems with magni-

tude knowledge and phase uncertainty,” in Proc. IEEE Australian Communications Theory

Workshop, Perth (Australia), February 2006.

• M. Payaró, X. Mestre, A. I. Pérez-Neira, and M. A. Lagunas, “Robust power allocation

techniques for MIMO systems under modulus channel knowledge at the transmitter,” in

Proc. IEEE Workshop on Signal Proc. Advances in Wireless Commun. (SPAWC’05), New

York, NJ (USA), June 2005.

• M. Payaró, X. Mestre, A. I. Pérez-Neira, and M. A. Lagunas, “On power allocation under

phase uncertainty in MIMO systems,” in Proc. Winterschool on Coding and Information

Theory, Bratislava (Slovakia), February 2005.

• M. Payaró, X. Mestre, and M. A. Lagunas, “Ergodic capacity of a 2 × 2 MIMO system

under phase uncertainty at the transmitter,” in Proc. IEEE International Conference on

Electronics, Circuits and Systems (ICECS’04), Tel Aviv (Israel), December 2004.

• M. Payaró, X. Mestre, and M. A. Lagunas, “Optimum transmit architecture of a MIMO

system under modulus channel knowledge at the transmitter,” in Proc. IEEE Information

Theory Workshop (ITW’04), San Antonio, TX (USA), October 2004.
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Chapter 5

The main results in this chapter involve the robust design of a communications system with

STHP and the characterization of its achievable rates in the presence of errors in the design

parameters. The results of this chapter have been published in one journal paper and two

conference papers.

• M. Payaró, A. Pascual-Iserte, A. I. Pérez-Neira, and M. A. Lagunas, “On the achievable

rates with spatial Tomlinson-Harashima precoding in the presence of errors in the CSI,” to

appear in IEEE Trans. on Wireless Communications (submitted December 2005, revised

October 2006).

• M. Payaró, A. I. Pérez-Neira, and M. A. Lagunas, “Robustness evaluation of uniform power

allocation with antenna selection for spatial Tomlinson-Harashima precoding,” in Proc.

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’05),

Philadelphia, PA (USA), March 2005.

• M. Payaró, A. I. Pérez-Neira, and M. A. Lagunas, “Achievable rates for generalized spatial

Tomlinson-Harashima precoding,” in Proc. IEEE Vehicular Technology Conference (VTC-

Fall’04), Los Angeles, CA (USA), September 2004.

Chapter 6

The last chapter with original contributions deals with the robust design of the power allocation

in a multi-user system where there is uncertainty in the parameters that characterize the channel,

in such a way that a certain quality of service per user is guaranteed. Initial results have been

published in one conference paper. In addition, a full report of the obtained results has been

submitted to a journal publication and a patent application has been prepared (patent pending).

• M. Payaró, A. Pascual-Iserte, and M. A. Lagunas, “Method and System for Robustly

Transmitting the Minimum Power in Multi-User and Multi-Antenna Communications

Systems with Imperfect Channel Knowledge,” submitted on 2006/06/28 with submission

number PCT/EP2006/006244 (patent pending).

• M. Payaró, A. Pascual-Iserte, and M. A. Lagunas, “Robust Power Allocation Designs for

Multiuser and Multiantenna Downlink Communication Systems through Convex Opti-

mization,” submitted to IEEE Journal on Selected Areas in Communications, June 2006.

• M. Payaró, A. Pascual-Iserte, J. Yuan, and M. A. Lagunas, “A Convex Optimization

Approach for the Robust Design of Multiuser and Multiantenna Downlink Communica-
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tion Systems,” in Proc. IEEE Workshop on Signal Proc. Advances in Wireless Commun.

(SPAWC’06), Cannes (France), July 2006.

Other contributions not presented in this dissertation

During the last four years, some results not directly related with this dissertation or such that

the main research was not conducted by the author of this dissertation have also been published

in five conference papers.

Some results concerning the analysis and design of transmit architectures with different

degrees of knowledge of the channel state have been published in two conference papers:

• A. Pascual-Iserte, M. Payaró, A. I. Pérez-Neira, and M. A. Lagunas, “Impact of a Line

of Sight Component on the Performance of a MIMO System Designed under Statistical

Channel Knowledge,” in Proc. IEEE Workshop on Signal Proc. Advances in Wireless

Commun. (SPAWC’06), Cannes (France), July 2006.

• M. Payaró, A. Pascual-Iserte, A. I. Pérez-Neira, and M. A. Lagunas, “Flexible MIMO

Architectures: Guidelines in the design of MIMO parameters,” in Proc. IEEE Workshop

on Signal Proc. Advances in Wireless Commun. (SPAWC’05), Invited Paper, New York,

NJ (USA), June 2005.

A joint paper presenting part of the results from the MARQUIS project was published in

the proceedings of a conference:

• M. Payaró, M. Realp, D. Bartolomé, A. Pascual-Iserte, X. Mestre, A. I. Pérez-Neira, “Com-

parative Use of Metrics for Link/System Level Simulations in WLAN MIMO Systems,” in

Proc. IST Summit 2006 (IST Mobile Communications Summit 2006). Mikonos (Greece),

June 2006.

Some designs involving adaptive modulation and multiple antenna channels were presented

in two conference papers.

• A. Pascual-Iserte, M. Payaró, A. I. Pérez-Neira, M. A. Lagunas, “Robust Adaptive Mod-

ulation for Throughput Maximization in MIMO Systems Combining OSTBC and Beam-

forming,” in Proc. IST Mobile Communications Summit (IST’04), Lyon (France), June

2004.

• M. Payaró, M. A. Lagunas, “Adaptive Modulation in MISO Wireless Systems with Dis-

crete Low-Rate Power Feedback”, in Proc. European Signal Processing Conference (EU-

SIPCO’04), Viena (Austria), September 2004.
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Finally, an early conference paper on MIMO channel modeling was presented.

• M. Cabrera, M. Payaró, J. Vidal, M. Hunukumbure and M. Beach, “2GHz MIMO Channel

Model from Experimental Outdoor Data Analysis in UMTS”, in Proc. IEEE Vehicular

Technology Conference (VTC-Fall’03), Orlando, FL (USA), September 2003.



Chapter 2

Overview of multi-antenna
communication systems

2.1 The multi-antenna communication system

2.1.1 General overview and benefits

In addition to the capacity advantage described in the previous chapter, communication over

multi-antenna channels presents two main practical advantages with respect to traditional com-

munication over single antenna channels. These gains are usually referred to as diversity and

multiplexing gains.1 An overview on the potential gains of MIMO channels can be found in

[Böl02].

On the one hand, a MIMO communication system is said to have diversity gain d if, in the

high SNR regime, the average error probability decays as snr−d. Loosely speaking, the diversity

gain can be viewed as an enhancement of reliability due to the reception (or transmission) of

replicas of the same information that have experienced different fading paths. The diversity

gain is based on the assumption that at least one of these paths will not be in a bad fade

state. Traditionally, diversity has been exploited in the time or frequency domains, however, the

presence of the additional space dimension (due to the use of multiple antennas) yields another

source of diversity. Notice that spatial diversity gain is not exclusive of MIMO systems, as it

can also be extracted from MISO or SIMO architectures.

On the other hand, a MIMO system is said to achieve multiplexing gain r if, also in the

high SNR regime, its achievable rates scale as r log snr. In other words, multiplexing gain is the

increase of rate that can be attained through the use of multiple antennas at both sides of the

communication link, with respect to the rate achievable with a single antenna system, without

utilizing additional power. Notice that, as opposed to the diversity gain, the multiplexing gain

1In addition, one can have a third gain, beamforming gain, but it will not be discussed here.

9
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ENCODER DECODERp(yN|xN)
xN yN ω̂ω

Transmitter Channel Receiver

CHANNEL

STATE

Figure 2.1: Generic MIMO single-user communication system.

can only be obtained with the simultaneous presence of multiple antennas at the transmitter

and the receiver ends.

The designers of MIMO communication systems have focused their efforts in trying to obtain

transceivers architectures which achieve either the maximum multiplexing gain [Fos96], or the

the maximum diversity gain [Tar99a]. In [Zhe03], Zheng and Tse proved that both gains can

be achieved but that, actually, there is a fundamental tradeoff between how much of each gain

can be extracted. Precisely, for i.i.d. Rayleigh flat-fading MIMO channels with coherence time

l, they proved that the optimal diversity gain achievable by any coding scheme of block length

l and multiplexing gain r is (nT − r)(nR − r) as long as l ≥ nT + nR − 1. Their appealing

interpretation for this result was that out of the total resource of nT transmit and nR receive

antennas, it is as though r transmit and r receive antennas were used for multiplexing and the

remaining nT − r transmit and nR − r receive antennas provided the diversity.

2.1.2 Mathematical model

As depicted in Figure 2.1, the multi-antenna point to point communication system is composed of

three main logical blocks, the single transmitter of the message, the single receiver of the message,

and the physical channel between them. Note that both the transmitter and the receiver can have

access to some knowledge about the channel state. This knowledge may be partial or imperfect,

and it may also include statistical properties in case that the channel can be considered random,

or any other kind of information that can be used to describe the properties of the channel. In

its most general form, this side information is usually referred to as CSI. More details on the

CSI are given in §2.2.

Given the message ω ∈ Ω that is destined to the receiver, the encoder transforms it into the

codeword xN (ω) of length N , which is subsequently transmitted as x1,x2, . . . ,xN in N uses of

the channel. The transmitted signal at time instant n, xn, is a vector of complex elements of
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Figure 2.2: Generic MIMO single-user communication system.

dimension nT such that its j-th element, [xn]j , represents the signal transmitted through the

j-th antenna.

The transmitted signal xN (ω) propagates through the physical channel characterized by the

transition probability p
(
yN |xN

)
and is received as the random sequence yN . Each element of

this sequence yn, with n = 1, . . . , N is a vector of complex elements of dimension nR such that its

i-th element, [yn]i, represents the signal received through the i-th antenna. In this dissertation

we only deal with memoryless channels, which imply that

p
(
yN |xN

)
=

N∏
n=1

p(yi|xi) (2.1)

Once the sequence yN is received, the decoder takes a decision on which is the sequence that

was actually sent, according to a (hopefully properly defined) decision rule given by ω̂(yN ).

In this dissertation, in addition to the single-user case we also deal with the more complex

scenario where the transmitter, usually a base station (BS), transmits information simultane-

ously to nU users, which are equipped with a single antenna (which implies that the total number

of receiving antennas is equal to the number of users nR = nU ).

As it will be seen in chapters 5 and 6 the are two differences between the single-user case and

the multi-user case where each user has only one antenna, see Figure 2.2. The first difference is

that the transmitter has to be able to simultaneously encode up to nU messages ω1, ω2, . . . , ωnU

into the transmitted codeword xN (ω1, ω2, . . . , ωnU ), which now depends on all the messages. The

second difference is that, since each user is associated with one receiving antenna, the decoded

message of i-th user can only depend on the i-th component of the received sequence, which
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Figure 2.3: General capacity achieving structure for MIMO communication systems with side informa-
tion at the transmitter. Notice that, as it is said in the main text, the encoder is independent of the CSI,
and the dependence on the CSI at the transmitter is only through the linear matrix B.

implies that

ω̂i = ω̂i(
[
yN

]
i
), 1 ≤ i ≤ nU , (2.2)

which is the reason why, in some works, the multi-user case, is also termed non-cooperative

receivers.

Having specified these two differences, in the remainder of this chapter we will only deal

with the single-user case. Nonetheless, the reader is aware that the multi-user case can be

straightforwardly characterized.

2.1.3 The linear transmitter

The particular case where the transmitter is divided in two main blocks, as it is depicted in

Figure 2.3 is of remarkable importance due to its simplicity and performance capabilities.

The first block encodes the message ω into the sequence of data symbols vector sN , inde-

pendently of the CSI that is available at the transmitter side, only following the steps dictated

by code construction theory. At each time instant n, the symbols vector sn is a complex vector

of dimension nS , i.e., sn ∈ CnS .

The second block is allowed to depend on the CSI available at the transmitter, and it consists

of a linear transformation of the sequence of data symbols vector into the transmitted vector

xn. At each time instant n the transmitted vector is given by

xn = Bnsn, n = 1, . . . , N, (2.3)

where Bn ∈ CnT×nS is the linear transformation that is applied to the data symbols vector.
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2.1.4 The linear MIMO channel

Although MIMO channels arise in many different communication scenarios such as wire line

systems or frequency selective single antenna systems [Pal03a], our focus will spot on multi-

antenna digital wireless systems.

As commented above, in its most general form, the MIMO channel is characterized by its

transition probability density function, which is given by p(y|x), and which describes the proba-

bility of receiving the vector y conditioned on the fact that the vector x was actually transmitted.

However, dealing with such a generic type of channel is usually very difficult, and often even

unnecessary.

One of the most important and simplest MIMO channels is the linear MIMO channel (also

termed linear vector channel). As it name suggests, in this case the output of the channel y is a

linear function of the input x. In addition, to model the thermal noise and other undesired effects

that are present in the receiving radio-frequency front-ends, a noise term n is also included.

For the case of linear MIMO channels, the resulting input-output relation is given by

y = Hx + n, (2.4)

where H ∈ CnR×nT represents the linear response of the channel, such that its element [H]ij
denotes the channel path gain between j-th transmitter and i-th receiver.

In the vast majority of cases (and in this dissertation in particular), the noise term is modeled

as a circularly symmetric complex Gaussian random variable with zero mean and covariance

matrix given by Rn. Or, formally:

En = 0, (2.5)

EnnH = Rn. (2.6)

In this particular case the channel transition probability p(y|x) is given by [Mil74]

p(y|x) = pn(y − Hx) =
1

πnR |Rn|
exp

{
− (y − Hx)H R−1

n (y − Hx)
}

. (2.7)

2.2 Uncertainty models for the CSI

As mentioned in the previous section, when designing the transmitter and the receiver, both of

them may have access to a certain degree of CSI. Consequently, many possible design situations

arise depending on the quantity and the quality of the CSI available during the design stage. The

CSI is a generic term utilized to encompass all kind of information related to the channel, which

may include, for example, the MIMO channel impulse response, the statistics of the received

interferences, the statistics of the thermal noise, among many other aspects.
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To slightly formalize the presence of CSI in the system we introduce the following notation:

KX � {Set of variables, functions, or descriptions that describe

what is known about the channel state at the site X}
(2.8)

UX � {Set of variables, functions, or descriptions that describe

what is unknown about the channel state at the site X}
(2.9)

where X can be utilized to design the transmitter or the receiver sides, e.g., KRX would be the

generic name to represent what is known about the channel state at the receiver side.

In the following, we describe possible situations regarding the presence (or absence) of CSI

at the two communication ends. The objective is not to provide an exhaustive description, but

only to show a general view of the most common situations of CSI in multi-antenna systems. A

more detailed description can be found in [Gol03].

In the most typical communication setup, the channel estimation and the estimation of the

statistics of the interferences processes are performed at the receiver during the training period in

which the transmitter sends a pilot or training sequence. Consequently, one of the most common

situations corresponds to the case in which accurate (and ideally perfect) CSI is available at the

receiver side of the communication system. Taking this into account, the only remaining degree

of freedom is the availability of CSI at the transmitter side, as given by KTX and UTX, and

thus three different situations concerning the quantity and quality of the CSI available at the

transmitter side can be identified:

• No CSI: the transmitter does not have any knowledge of any parameter concerning the

channel or the interferences at the receiver. In this case, a reasonable transmitter strategy

consists in utilizing space-time codes [Tar99b, Tar99a, Gan01].

• Perfect CSI: the transmitter has full knowledge of the instantaneous channel realization

and, possibly, of the interferences statistics at the receiver. In this case, since full infor-

mation is available, there are many possible strategies and optimization criteria to carry

out the design depending on the detection method at the receiver or on the performance

metric [Pal03a].

• Imperfect CSI: the transmitter has inaccurate knowledge about the parameters describ-

ing the channel. For example, the transmitter may be informed of an erroneous channel

matrix H̃ �= H. For the case of imperfect CSI, two main strategies can be considered, either

the transmitter is designed to attain the maximum performance level for the worst possible

situation of the channel among the ones that are compatible with the CSI (maximin or

worst-case approach) or the transmitter is designed to have the best mean performance

averaged over the unknown parameters of the CSI (statistical or Bayesian approach).
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• Partial CSI: the transmitter has only partial knowledge of the channel, which can be

obtained, for example, through a low rate feedback link or through the channel reciprocity

principle in TDD systems that do not have appropriate calibration. An example of this

kind of uncertainty is the case where the transmitter has only access to the magnitude of

the channel matrix coefficients and has complete uncertainty about the complex phase of

the entries of the channel matrix. This model is more carefully analyzed and discussed in

chapter 4.

Note that all the above descriptions assume that the receiver has full and perfect access to

the CSI. Obviously, as far as the practical implementation of real systems is concerned, this

assumption is somewhat too optimistic in the sense that the CSI that is actually available at

the receiver is imperfect too. In chapter 6 a multi-user robust design is presented, where both

the transmitter and the receiver are considered to have imperfect CSI.

2.3 Capacity of MIMO channels

The capacity of a channel is a fundamental limit in the maximum rates at which information

can be transmitted with arbitrarily low probability of error. The channel capacity theorem

by Shannon dates back from 1948 [Sha48], and it is the central and most famous success of

information theory.

In the following sections, we review the fundamental communication limits of MIMO channels

for different degrees of CSI.

2.3.1 Capacity results for different degrees of CSI

Channel capacity, in the Shannon theoretic sense, was originally defined for time-invariant chan-

nels as the maximum mutual information between the transmitted and the received signals

[Sha48, Sha49]. For wireless communications, however, the channel is time-varying and, in that

case, channel capacity admits multiple definitions, depending on the degree of knowledge about

the channel state (or its distribution) that is available at the transmit and receive ends. In addi-

tion, capacity can be measured by averaging over all possible channel states or by maintaining a

fixed minimum rate. See the excellent tutorials [Gol97, Big98] and [Gol03] on capacity of SISO

and MIMO fading channels, respectively.

If the channel varies continuously (or for each use of the channel in discrete time models) the

capacity is usually referred to as ergodic capacity, which is the natural extension of the Shannon

capacity for time-varying channels. The ergodic formulation also holds for block-constant fading

channel models, where it is assumed that a new realization of the channel is drawn independently
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every T symbols and then remains constant for the duration of T symbols. The ergodic formu-

lation is valid in this case because channel coding can be performed over multiple independent

fading intervals.

As opposed to this approach, if the unknown channel variations are slow compared with

the codeword length, such that the channel can be considered fixed but unknown during the

transmission, then either the compound capacity or the outage capacity formulations are more

relevant [Csi81, Oza94]. The compound formulation assumes that the channel is a deterministic

quantity that belongs to an uncertainty region, and copes with the problem of finding the maxi-

mum rates that can be achieved for the worst channel inside the region. The outage formulation

assumes that the channel is an unknown and fixed random variable and it accounts for the fact

that, for any given transmission rate, there is a non-zero probability that the channel cannot

support it.

The following two subsections give some results on capacity concerning different degrees of

knowledge of the CSI at both the transmitter and the receiver.

Capacity results in the non-coherent case

In a fixed wireless environment, it is valid to assume that the fading coefficients vary slowly,

in such a way that the transmitter can periodically send pilot signals to allow the receiver to

estimate the coefficients accurately. In mobile environments, however, the fading coefficients can

change quite rapidly and the estimation of channel parameters becomes much more difficult.

The case where neither the transmitter nor the receiver can track the variations of the wireless

channel yields the commonly called non-coherent channel models.

Non-coherent channel models arise whenever it is assumed that the actual realization of the

fading is not known by the transmitter nor the receiver, however, both of them know the law

of the fading channel process. In [Mar99], Marzetta and Hochwald investigated the capacity of

the block model for the non-coherent MIMO case. They proved that there is no capacity gain

if the number of transmit antennas nT is bigger than the coherence time T with respect to the

case where the number of antennas is equal to the coherence time. In addition, they showed

that capacity can be achieved by successively transmitting T ×nT signal matrices with a certain

structure. Finally, for a fixed number of transmit antennas, they found that if the length of the

coherence time is allowed to grow without bound, T � nT , the capacity approaches the capacity

obtained in the coherent case, where the receiver has knowledge of the channel state.

Later, Zheng and Tse [Zhe02] further investigated the capacity for non-coherent MIMO

communication. They found the asymptotic capacity of this channel at high SNR in terms of

the coherence time T , the number of transmit antennas nT , and the number of receive antennas
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nR. Precisely, they stated that capacity scales as

C = M∗
(

1 − M∗

T

)
log snr + o(1), M∗ = min

{
nT , nR,

⌊
T

2

⌋}
, (2.10)

as SNR tends to infinity. Notice that, as a particular case for SISO sytems, capacity scales as

(T −1)/T . The model of block-fading for the wireless channel was generalized in [Lia04] allowing

for variations inside each fading block. The authors of [Lia04] considered that the correlation

matrix that parameterizes the variations of the fading coefficients within a block has rank Q.

Consequently, for Q = 1 the results of the block model are recovered. For SISO channels it was

found that, in the limit of high SNR, capacity scales as

C =
(

1 − Q

T

)
log snr + o(1). (2.11)

For the MIMO case no variations with respect to the result in (2.10) were found, even in the

presence of correlation across blocks in a stationary and ergodic manner.

The only studies that address the non-coherent case with no simplifications on the structure

of the fading process are by Moser and Lapidoth [Mos04, Lap03]. There, the authors proved

that if the fading process is regular in the sense that have a finite differential entropy rate, then

capacity grows double-logarithmically in the SNR as

C ∝ log log snr + o(1). (2.12)

In addition, in [Lap04], it was demonstrated that, even in the presence of a feedback channel,

the multiplicative constant in (2.12) could not be increased. Comparing (2.10) or (2.11) with

(2.12) one can readily see that the high-SNR behavior of channel capacity can depend critically

on the model, and that simplifications of the model may lead to completely different asymptotic

behaviors. Some generalizations of the above results for multiple antenna channels can be found

in [Koc04], and for multiple antenna channels with memory in [Lap02].

Capacity results in the coherent case

In a communications environment, where the receiver is (by any means2) able to estimate the

channel coefficients accurately, the kind of communication that can be established is usually

referred to as coherent communication. In this particular case of communication, the channel

capacity depends on the CSI that is made available at the transmitter side. The ergodic capacity

of MIMO communications system over a frequency nonselective fading channel with perfect CSI

at the receiver has been a topic that has received a lot of attention in the recent literature as it

is detailed in the following.

2These may include tracking of the pilots sent by the receiver, or blind channel estimation
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In his popular work [Tel99], Telatar stated that, when the transmitter has no CSI, uniform

power allocation is the most reasonable approach to achieve capacity. The optimality of the

uniform power allocation scheme was later proven in [Pal03c], where the authors obtained a

robust solution under channel uncertainty by formulating the problem within a game-theoretic

framework. The payoff function of the game, which was mathematically formulated as a maximin

problem, was the mutual information and the players were the transmitter and a malicious

nature. The uniform power allocation is obtained as a robust solution (under a mild isotropy

condition).

For the case where the transmitter has perfect CSI, it is also well known [Ral98, Tel99]

that the capacity achieving transmit strategy consists in splitting the signal among a set of

beamformers giving each one a fraction of transmission power according to a “waterfilling”

algorithm. The capacity of wireless communication architectures impaired by both noise and

cochannel interference was studied in [Loz02b]. There, the authors found an expression for the

capacity in the limit of a large number of antennas using RMT [Wis28, Wig55, Wig58, Wig59,

Mar67]. This asymptotic solution depends only on the ratio of the number of transmit antennas

over the number of receive antennas, the SNR, and the SIR. One of the main conclusions in

[Loz02b] is that antenna diversity can substitute for time and/or frequency diversity at providing

ergodicity, even when the number of antennas is very small.

The ergodic capacity of multiple antenna systems with partial CSI at the transmitter side

has also been the focus of investigation of numerous researchers. For example, in [Nar98], some

initial results were given considering different degrees of quality and quantity of the feedback

information. Precisely, the authors determined when the transmission strategy should use some

form of beamforming and when it should not (or, equivalently, when the transmit covariance

matrix is rank one or not). In addition they showed that, when properly chosen, even a small

amount of side information can be quite valuable. In [Vis01], an information-theoretic perspective

on optimum transmitter strategies for systems with transmit antenna arrays and imperfect

channel feedback was provided. In their paper, two extreme cases were considered: mean feedback

(the channel side information resides in the mean of the distribution), and covariance feedback

(the channel is assumed to be varying too rapidly to track its mean, so that the mean is set to

zero and the side information resides in the covariance of the distribution). For both feedback

models, the authors proved that capacity can be achieved by using a Gaussian codebook with a

particular covariance matrix, and that when there is a moderate disparity between the strengths

of different paths from the transmitter to the receiver, it is nearly optimal to employ the simple

beamforming strategy of transmitting all available power in the strongest direction indicated

by the feedback. Similar results were given in [Jaf01a], where the authors proved that, in the

case of channel covariance feedback, capacity can be achieved by transmitting a Gaussian signal

whose covariance matrix has the same eigenvectors as the true channel covariance matrix. The
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structure of the corresponding eigenvalues is further investigated in [Jor03]. The results above

were further generalized in [Mou02] and [Sim02], taking into account different mutual information

formulations such as the ergodic and outage. A unification of all these previous results as well

as new insights and results were provided in [Tul05].

In [Sko03], the effect of partial side information at the transmitter is analyzed for a generic

MIMO case. One of the most important conclusions of their paper is that capacity can be

achieved by a structure that first maps source symbols into space-time codewords independently

from the CSI, and then weights these codewords as a function of the CSI at the transmitter,

similarly as depicted in Figure 2.3.

It is also important to mention that, when communicating through a MIMO channel, effects

of possible correlation in the channel fading coefficients must be taken into account. In [Mes03],

Mestre evaluated the asymptotic uniform power allocation capacity of frequency nonselective

MIMO channels with fading correlation at either the transmitter or the receiver, concluding that

the effects of correlated fading is more harmful at the side with less number of antennas. For a

detailed analysis on effects of correlation see also [Kie05].

2.3.2 Capacity formulation for the linear vector Gaussian channel

When a single-user is communicating through a linear MIMO channel corrupted with additive

Gaussian noise, the optimum signaling to achieve rates arbitrarily close to the channel capacity

is well known as reported in [Bra74, Ral98, Cov91, Tel99].

In the most general setup, the capacity of a channel is the maximum mutual information

between the transmitted and the received signals I(x;y) over all possible input distributions

satisfying the power constraint [Bla87, Cov91]:

C = max
p(x)

I(x;y),

s. t.
∫

xHxp(x) dx ≤ PT .
(2.13)

For the vector Gaussian channel under consideration in this section, it is well known that

the maximum mutual information is achieved with a Gaussian input x ∼ CN (0,Q), whose pdf

is given by

p(x) =
1

πnT |Q| exp{−xHQ−1x}. (2.14)

This implies that a Gaussian code is used for transmission, where Q is the covariance matrix of

the transmitted vector x, which is yet to be determined. For this particular choice of transmission

code the explicit expression of the mutual information I(x;y) becomes [Cov91, Tel99]

I(x;y) = log det
(
I + R−1

n HQHH
)
. (2.15)
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For notation convenience, this mutual information expression shall be denoted by Ψ(Q,H(K,U))

to explicit its dependence on the transmit covariance matrix Q and the channel matrix H through

its known K and unknown U parameters. Thus, we define

Ψ(Q,H(K,U)) = log det
(
I + R−1

n H(K,U)QH(K,U)H
)
. (2.16)

In the following subsection we particularize the expression of the capacity depending on the

characteristics and the model that we utilize to describe the channel.

Ergodic mutual information and capacity

The ergodic mutual information is defined as the expectation over the channel state uncer-

tainty of the instantaneous mutual information expression in (2.16) [Gol03]. The ergodic mutual

information is thus given by

IE(K,Q) = EUΨ(Q,H(K,U)). (2.17)

The ergodic mutual information is a meaningful measure of the achievable rates in situations

where the set of known parameters K remains constant during the transmission of the message,

while the channel unknown parameters U vary sufficiently fast so that its long-term ergodic

properties are revealed.

The ergodic capacity, is then defined as the supremum of the ergodic mutual information

with respect to the set of possible covariance matrices, subject to a mean transmitted power

constraint as

CE(K) = sup
Q

IE(K,Q),

s. t. TrQ ≤ PT ,

Q � 0.

(2.18)

Note that we have made explicit the dependence of the capacity on the actual state of the known

parameters of the channel as given by K.

Compound mutual information and capacity

The compound mutual information is defined [Csi81] as the infimum of the mutual information

expression in (2.16) with respect to the channel state uncertainty. Formally, it particularizes to

IC(K,Q) = inf
U

Ψ(Q,H(K,U)). (2.19)

Noticeworthy, the compound mutual information does not depend on the statistical properties

of the uncertainty in the channel, because it only considers the worst-case scenario.
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The compound mutual information is a measure of the worst-case achievable rates in situa-

tions where no significant channel variability may occur during the transmission of the message

and the transmitter is only informed of (or is only able to estimate accurately) the parameters

of the channel as given by K. This may be the case of a static communication between the

transmitter and the receiver, or when communicating in a slow fading environment.

Similarly as in the previous case, the compound capacity, is then defined as the supremum

of the compound mutual information with respect to the set of possible covariance matrices,

subject to a mean transmitted power constraint as

CC(K) = sup
Q

IC(K,Q),

s. t. TrQ ≤ PT ,

Q � 0.

(2.20)

Outage mutual information and capacity

The outage mutual information [Oza94] is the maximum rate R such that the probability that

the mutual information in (2.16) is below R is less or equal than ε as expressed in (2.21).

Iε
O(K,Q) = sup

R
{R|Pr{Ψ(Q,H(K,U)) ≤ R} ≤ ε}, (2.21)

where the probability is with respect to the distribution of the unknown parameters U . The

outage mutual information can be technologically relevant in either static scenarios, or when the

channel fluctuations are slow enough so that the channel can be considered fixed3 during the

transmission of the message. From its expression in (2.21), we can see that the outage mutual

information can be directly related to the achievable rate that can be guaranteed with a certain

probability, which is given by 1 − ε.

The outage capacity problem can be stated from two different formulations, which are es-

sentially equivalent. The first approach is to find the optimal covariance matrix that maximizes

the rate given an outage probability. The second approach is to obtain the minimum outage

probability given a fixed target rate. Considering the former point of view, the formulation for

the problem of finding the outage capacity becomes

Cε
O(K) = sup

Q
Iε
O(K,Q),

s. t. TrQ ≤ PT ,

Q � 0.

(2.22)

3The channel is considered fixed, but the transmitter has only partial (or no) knowledge of the channel state
matrix.
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Considering the latter point of view, for a target rate Cout we obtain the following problem

formulation for the minimum outage probability εmin,

εmin(K, Cout) = inf
Q

Pr {Ψ(Q,H(K,U)) ≤ Cout}

s. t. TrQ ≤ PT ,

Q � 0.

(2.23)

2.4 Practical communication schemes through multi-antenna
channels

Although the theoretical study of the capacity limits in multi-antenna systems is of paramount

importance, in the vast majority of cases the system designer has practical constraints (mainly

time delay and complexity) which turn the capacity limits into an unreachable objective. Rather,

the system designer will try to exploit some other benefits that are provided when communicating

through multi-antenna channels.

In this sense, one of the primary concerns of MIMO communication systems designers is, as

a first step, the definition of a practical objective function to measure the global performance of

the system, and secondly the design of the system accordingly to that specific function definition.

In the following subsections, some of the most important practical communication schemes

for multi-antenna channels are reviewed depending on the degree of CSI that is available at

both communication ends. This revision is not aimed at being exhaustive but rather at giving

a general overview. For the sake of completeness, once this overview is presented a brief section

will characterize some of the most utilized practical performance metrics.

2.4.1 Practical schemes with no CSI

When no CSI is available at the transmitter side, there exist two main philosophies to design

communication architectures. On one hand there exist techniques whose objective is the in-

crease in the transmission rate by exploiting the multiplexing gain described in §2.1.1. On the

other hand some transmission architectures are designed to take advantage of the diversity gain

provided by multi-antenna channels.

As far as the techniques that are focused on maximizing the multiplexing gain, the BLAST

family [Fos96] lies among the most cited and celebrated ones. The most popular schemes among

the BLAST family are the Vertical-BLAST, or V-BLAST [Loz02a], and Diagonal-BLAST (D-

BLAST). The V-BLAST technique consists in transmitting different data streams through each

antenna. Each data stream is independently coded, which implies that the transmitter can send

multiple data streams so that the final rate is increased. Since each antenna is transmitting its
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own data stream the V-BLAST system can be seen as a multiple-access channel (MAC), and

consequently the receiver is very similar to a multi-user receiver based on successive decoding and

cancelation. The only conceptual difference between the V-BLAST and the D-BLAST schemes

is that in the latter case the independently coded data streams are transmitted through a

different antenna each time the channel is accessed creating the illusion that each data stream

is transmitted through a time varying channel.

Concerning the techniques that enable a more reliable communication through the multi-

antenna channel without any knowledge of the CSI, one of the first works was [Ses93], where

a delay diversity technique was presented in a multiple transmit antenna system. This simple

technique essentially consists in transmitting the same information stream through all the an-

tennas, but applying a different delay at each antenna in such a way that different realizations

of the same data are acquired at the receiver side. This technique was subsequently generalized

leading to the so-called space-time codes (STC).

In [Tar98], the rank and determinant criteria for the optimum design of STC for a MIMO

channel where the receiver performs ML detection were derived and also the space-time trellis

codes (STTC) were proposed according to these criteria, and whose performance was excellent

both in terms of rate and reliability. However, one of the main drawbacks of STTC is that the

transceiver complexity increases dramatically as the number of dimensions of the MIMO channel

grows.

To overcome this complexity problem, the research community proposed the utilization of

space-time block codes (STBC) which were decoded with ML performance assuming that perfect

CSI was available at the receiver. The first contribution in this field was given by Alamouti in

[Ala98], where a rate one orthogonal STBC for two transmit antennas was proposed. The main

interest of orthogonal STBC is that the ML detector can be decoupled into a set of parallel

ML detectors with extremely reduced complexity. The pioneering work by Alamouti was further

generalized to any number of transmit antennas within the framework of the Hurwitz-Radon

family of matrices in [Tar99a] or under the framework of amicable designs in [Gan01, Gan02,

Sto02]. In these works it was shown that rate one orthogonal STBC existed only for the case

of two transmitting antennas. For a generic number of antennas either the rate one or the

orthogonality properties should be dropped to be able to obtain a suitable STBC design. If

the orthogonality principle is dropped it is possible to obtain rate one STBC designs as shown

in [Jaf01b]. However, as a consequence the simplicity of the decoupled ML detector cannot be

achieved. The study of STC assuming the presence of errors in the CSI acquired a the receiver

was conducted in [Tar99b].

In the case where even the receiver has no access to the CSI, it was shown in [Mar99] that, in

the high SNR regime, the optimum transmitted signal is such that the data streams transmitted

through different antennas are mutually orthogonal, giving rise to unitary codes. In [Hoc00a],
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some families of unitary code designs are presented, and in [Hoc00b], a systematic design of

unitary codes based on Fourier and algebraic models is provided. Moreover, in [Hoc00c], the

extension of differential modulation schemes for the multi-antenna case was presented, obtaining

the so called differential unitary space-time designs, which do not require CSI neither at the

transmitter nor at the receiver.

2.4.2 Practical schemes with perfect CSI

The case where both the transmitter and the receiver have full access to the CSI is a topic that

has been extensively studied by the research community. There exists a vast literature on the

subject depending on which was the metric utilized to compute the performance of the system

and which were the designs constraints such as the kind of transmitter and receiver, which may

be linear or nonlinear.

Initially, in works such as [Sal85, Yan94] the transmitter and receiver of a MIMO system

were designed based on the presence of linear time-invariant filters both at the transmitter and

the receiver whose objective was the minimization of the MSE. In these works, it was shown

that the optimal filter design diagonalizes the channel, and, consequently, the data streams are

transmitted through the eigenmodes of the channel.

In [Ral98], instead of the minimization of the MSE, it was considered the maximization of

the mutual information defined as in [Cov91] for a frequency selective MIMO channel, and two

techniques were described, namely spatio-temporal vector-coding and discrete matrix multitone.

In both cases the optimal design also diagonalizes the MIMO channel matrix.

Another important performance measure is the BER of the system. This case was considered,

for example, in [Din02], where it was shown that the optimal transmitter, in general, does not

diagonalize the MIMO channel matrix.

Later, the case of linear transmitters and receivers was solved in [Sca02] for most of the

already known performance measures, and has been further generalized, under the framework of

convex optimization, in [Pal03b]. Moreover, in [Pal03a, Pal03b], Palomar showed that most of

the typical objective functions, such as the minimization of the trace of the MSE matrix or the

maximization of the mutual information, fall into two categories extracted from majorization

theory: Schur-convex and Schur-concave functions, [Mar79]. In this common case, the design of

any MIMO communications system can be framed, in a unified way, in the powerful of theory

of convex optimization and consequently, the design problem can be solved very efficiently. Par-

ticularly, he demonstrated that for Schur-concave functions (mutual information and weighted

arithmetic mean of the MSE among others) the optimal transmit and receive linear filters are

such that the system is fully diagonalized, resulting in parallel substreams. In addition, for
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Schur-convex objective functions (such as the maximization of the mean BER4, or the maxi-

mization of the harmonic mean of the SNR), he showed that the system is diagonalized up to

a rotation transformation at the transmitter side, which uniformly distributes the transmitted

symbols among the different eigenmodes.

It has also been shown that the obtained performances can be improved when nonlinear

stages are permitted or when the complexity of the receiver is increased, taking as the objective

the minimization of the BER (see e.g. the application of the nonlinear receiver MMSE-VBLAST

in [Jia05]).

Although the case of having a perfect CSI at both sides of the system has been studied

deeply, the only work (prior to this one) in which the transmitter is designed assuming that a

perfect ML receiver is employed is [Col04]. The utilization of a ML receiver is motivated by recent

efficient implementations such as the optimal sphere decoder [Has03, Dam03], or the schemes

based on semidefinite relaxation (SDR) [Ma02, Jal05, Wie05b], which reduce the computational

complexity by sacrificing optimality.

2.4.3 Practical schemes with imperfect and/or incomplete CSI

In the two previous subsections, the transmission strategies in two extreme cases have been

described. In a practical scenario it may be too pessimistic that the transmitter is totally unaware

of the CSI and assuming that both the transmitter and the receiver have full access to the CSI

may not be too realistic in a practical deployment. Consequently, usually only imperfect and/or

incomplete CSI is available (specially at the transmitter side, since, in some scenarios, the receiver

can accurately track the channel variations).

As far as the imperfect CSI case is concerned, one of the first works to appear was [Nar98],

where a multi-antenna transmitter was considered, which was informed either with a version

of the channel corrupted with Gaussian noise or with a quantized version of the channel. For

multiple performance criteria (such as the mean SNR or the mutual information) the optimal

transmitter consisted in transmitting different data streams through the eigenmodes of the

channel with a suitable power allocation among them.

A parallel line of work was developed in [Jön02] where a particular structure for the trans-

mitter was imposed consisting of a concatenation of an orthogonal STBC and a linear transfor-

mation, which was designed to maximize the mean SNR according to the available CSI following

the Bayesian philosophy. The authors proved that when there is full access to the CSI the so-

lution tends to the structure of a simple beamformer, whereas for the case of no CSI the linear

transformation becomes the identity and thus the transmitter is equivalent to performing only

the STBC.
4Assuming that the same constellation is utilized for each of the substreams.
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Another design possibility consists in taking the worst-case or maximin approach [Kas85].

In this case, the transmitter is aware of an uncertainty region where the actual channel belongs

to, and is aimed at maximizing some performance criterion for the worst possible channel inside

the uncertainty region. Precisely, in [Vor03] a robust receive beamformer is designed taking into

account that the parameters that describe the actual spatial signature of the incoming signal

belong to an uncertainty region. Moreover in [Pal04], the optimal linear transmitter and receiver

were designed under the maximin criterion so that the total transmitted power was minimized

and some QoS constraints were satisfied for each data substream. Finally, in [PI06] the authors

considered a similar structure to the one described in [Jön02], i.e., a concatenation of a STBC

plus a fixed linear transformation. In this case, the authors designed the optimal power allocation

among the different outputs of the STBC according to the maximin philosophy and under the

framework of convex optimization.

Much less literature exists concerning the transmission schemes with incomplete CSI. In

[Muk01], for example, it was considered the case where, for a single receiving antenna, the

multi-antenna transmitter was informed with either the phases of the channel response or the

magnitude. In case of phase information it was shown that the optimal transmitter consisted of a

phase-former with the phases matched to those of the actual channel. For the case of magnitude

knowledge the best strategy consisted in transmitting only through the antenna with highest

gain. Another case of incomplete CSI was studied in [Cho02d], where the author considered the

case where the transmitter performs single beamforming of the outgoing data. In the scheme

developed by Choi, the transmitter only has partial knowledge of the eigenvector associated

with the highest eigenvalue. In this case, transmission beamformer was acquired differentially,

as step-by-step updates, from the receiver through a low rate feedback link, at a rate that was

related to the Doppler frequency of the channel.

2.4.4 Practical transmission schemes for the multi-user case

For the case of a multi-user scenario, one of the best known and most widely studied transmit

architecture is the extension of the non-linear precoding scheme proposed by Tomlinson [Tom71]

and Harashima [Miy72, Har72], for temporal intersymbol interference mitigation, into spatial

interference equalization for MIMO systems [Fis02a], see Figure 2.4. In their work, they showed

that STHP offered good power efficiency and low decoding delays.

The main idea behind STHP is to move the decision feedback equalizer (DFE) structure

which is typically placed at the receiver end (e.g., in BLAST-like architectures [Fos96]) to the

transmitter side. The most important advantage of this movement of the equalizer is that, as the

information symbols are obviously known to the transmitter, it overcomes the frequent problem

of error propagation of DFE systems, which occur when wrong symbol decisions are used to
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Figure 2.4: Transceiver scheme for STHP.

detect other received symbols by canceling its interference.

However, as many precoding schemes, the main limitation of the STHP structure is that

perfect CSI has to be made available at the transmitter side so that the precoder can be matched

to the channel. When the CSI at the transmitter is imperfect the system suffers from performance

degradation. The effects of imperfect CSI for STHP, in terms of SNR loss, were studied in

[Fis02b]. The extension of the SHTP scheme to the multi-user case was done in [Win04a].

In addition to STHP another practical transmission scheme was developed by Peel,

Hochwald, and Swindlehurst [Pee05a, Pee05b] motivated in this case by recent theoretical results

[Cai03, Yu04, Vis03b, Vis03a, Wei04, Wei06] describing the sum-capacity when using multiple

antennas to communicate with multiple users in a known rich scattering environment. The au-

thors introduced an encoding algorithm which is variation on channel inversion that regularizes

the inverse and uses a “sphere encoder” to perturb the data to reduce the power of the transmit-

ted signal. Firstly, they showed that while the sum-capacity grows linearly with the minimum

of the number of antennas and users, the sum-rate of channel inversion does not. They precised

that this poor performance is due to the large spread in the singular values of the channel ma-

trix. As a modification of channel inversion the authors introduced regularization to improve the

condition of the inverse and maximize the signal to interference-plus-noise ratio at the receivers

as

x = HH
(
HHH + αI

)−1
s, (2.24)

where α is the regularization constant, and s represents the data vector before precoding. How-

ever, regularization was found to be not enough to achieve near-capacity performance at all

SNRs. After the regularization of the channel inverse, a certain perturbation of the data using

a “sphere encoder” was performed to further reduce the energy of the transmitted signal. The

authors claimed that the performance difference with and without this perturbation is shown to

be dramatic. In [Win04b], Windpassinger et al. presented a reduced complexity scheme similar



28 2.5. Mathematical characterization of alternative performance measures

to the one presented in [Pee05a, Pee05b] based on lattice-reduction.

2.5 Mathematical characterization of alternative performance
measures

As commented in the previous section, despite the interest of the theoretical study of the capacity

limits in multi-antenna systems, the system designer has different constraints which turn the

capacity limits into an unreachable objective in a practical approach. Rather, one of the primary

concerns of MIMO communication systems designers is the definition of a practical objective

function to measure the global performance of the system.

In the following some of the most widely utilized performance measures are reviewed.

2.5.1 Minimum distance of the received codewords

Consider the linear MIMO communication system described in §2.1.4 with Gaussian noise. As-

sume that the set of possible transmitted codewords is given by xm with m = 1, . . . , |Ω|. Then

the m-th received codeword is defined by ym = Hxm. The squared distance among the received

codewords ym and ym′ is then defined as

d2(ym,ym′) � ‖ym − ym′‖2
R−1

n
= (ym − ym′)HR−1

n (ym − ym′). (2.25)

Once the squared distance has been properly defined, it is straightforward to define the

minimum distance as the minimum distance among all the possible pairs of received codewords

as

dmin = min
m,m′

d(ym,ym′). (2.26)

As it suggested by its name, the higher the minimum distance among the received codewords

the better the performance of the system, as the immunity against Gaussian noise is increased.

The importance of the minimum distance as a performance metric stems from the utilization

at the receiver side of a ML detector. The ML detector selects as the best choice for the estimation

of the transmitted codeword x̂m, the one that maximizes the likelihood function L(y,xm),

which, assuming that all the codewords are equally probable, is given by the channel transition

probability p(y|xm),

x̂m = arg max
xm

L(y,xm) = arg max
xm

p(y|xm). (2.27)

In communication systems corrupted with AWGN the channel transition probability is the one

described in (2.7) and consequently maximizing the likelihood function particularizes to mini-
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mizing the quadratic form

x̂m = arg max
xm

p(y|xm) = arg min
xm

(y − Hxm)HR−1
n (y − Hxm). (2.28)

Within this framework, the pairwise error probability (PEP) of the codewords xm′ and xm is

defined as the probability that the codeword xm′ is detected when xm was actually transmitted.

This erroneous detection occurs whenever the likelihood of xm′ is higher than that of xm,

conditioned on the fact that xm was actually transmitted, i.e., y = Hxm + n.

Mathematically, the probability of such an event can be described as

pepm,m′ = Pr {L(Hxm + n,xm′) > L(Hxm + n,xm)} (2.29)

= Pr {p(Hxm + n|xm′) > p(Hxm + n|xm)} (2.30)

= Pr
{
(H(xm − xm′) + n)HR−1

n (H(xm − xm′) + n) < nHR−1
n n

}
, (2.31)

where the definition of p(y|x) in (2.7) has been utilized in last equation.

With some straightforward manipulations from the last expression, the PEP simplifies to

pepm,m′ = Pr
{
(xm − xm′)HHHR−1

n H(xm − xm′) < −2Re(xm − xm′)HHHR−1
n n

}
. (2.32)

Noticing that the right hand side of the equation is a real Gaussian random variable with variance

equal to (xm − xm′)HHHR−1
n H(xm − xm′)/2 the PEP can be finally expressed as

pepm,m′ = Q

√
(xm − xm′)HHHR−1

n H(xm − xm′)
2

 (2.33)

= Q

√
(ym − ym′)HR−1

n (ym − ym′)
2

 (2.34)

= Q

√
d2

m,m′

2

 . (2.35)

Note that the well known expression in (2.35) coincides with that given in [Woz65, p.265].

From all the possible combinations of m and m′, the most important one is the one that

gives the minimum distance as defined in (2.26). As it is shown in [Loz06] the minimum distance

characterizes the behavior of any practical communication system, specially at high SNRs.

2.5.2 MSE

The MSE refers to the expected value of the squared error committed by an estimator of a

random scalar quantity. We denote by s the random scalar quantity and its estimator, by ŝ. The

MSE is then given by

mse � E|s − ŝ|2. (2.36)
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In the common case where the random quantity s and the estimator ŝ are vectors, the MSE can

properly described by the matrix

E = E(s − ŝ)(s − ŝ)H , (2.37)

whose k-th diagonal entry represents the MSE committed in the estimation of the k-th element

of vector s,

[E]kk = E|sk − ŝk|2 = msek. (2.38)

Obviously, when the MSE refers to the error committed at the receiver when estimating

the information that is sent from the transmitter, it is desired that the MSE be as small as

possible, since it means that the estimation matches closely the desired information. Hence, any

reasonable system has to be designed to have a low MSE.

Recently, a deep entanglement has been unveiled between the MMSE, the key measure in

the field of estimation theory, and the mutual information (and thus capacity), which is the

representative measure in information theory. Some preliminary intuitions on this relation were

developed in [For04], and initial formal results for the scalar case were presented in [Guo05] and

were extended to the vector formulation in [Pal06]. The relation between the MMSE and the

mutual information is through differentiation with respect to the SNR which is described next.

2.5.3 Signal to noise ratio

The signal to noise ratio (SNR) of a given quantity y = αd + βu refers to the expected power

quotient of the desired part αd over the undesired part βu, which arises from the noise present

in the system. The SNR given by

snr � |α|2E|d|2
|β|2E|u|2 =

Pd

Pu
. (2.39)

As it is intuitive from its definition, the higher the SNR the better the system. Hence, any

reasonable system has to be designed to have a SNR as high as possible. The definition of SNR

can be further generalized to include the effects of interferences in the undesired signal. In this

case, the ratio in (2.39) is usually termed signal to interference-plus-noise ratio (SINR).

An important issue concerning the SINR is how it is determined which part of the given

quantity y is desired and which part is undesired. For example, assume that the model for a

received signal is

y = αd + βu, (2.40)

where the quantity α is not accurately known by the receiver and only an estimate α̂ is available.

Accordingly, the receiver will detect the desired signal as a function of α̂. For example, in the
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case where the receiver utilizes detection thresholds to estimate the desired signal, i.e.,

d̂ =
y

α̂
= d +

(α − α̂)d + βu

α̂
, (2.41)

these thresholds will be set-up as a function of the value of α̂. Alternatively, if the receiver

performs ML detection, the likelihood function will also be evaluated according to the value of

α̂, leading to a certain mismatch between the actual likelihood function and the utilized one.

From all that has been said above, in such cases it is more convenient to consider the following

decomposition of the quantity y:

y = α̂d + (α − α̂)d + βu, (2.42)

where α̂d is the effective desired signal and (α− α̂)d+βu is the effective undesired contribution.

Note that in the effective undesired signal the term (α − α̂)d acts as a self-interfering quantity.

Consequently, even though the actual powers of the desired and undesired signals are equal

to Pd = |α|2E|d|2 and |β|2E|u|2 respectively, and the SINR is given by (2.39), it may be more

accurate to compute the effective SINR, which is given by

esinr =
|α̂|2E|d|2

|α − α̂|2E|d|2 + |β|2E|u|2 , (2.43)

where d and u are assumed independent.

2.5.4 Symbol and bit error rates

The symbol error rate (SER) of a communication system is empirically defined as the quotient

between the number of symbols received in error and the total number of received symbols.

Similarly, the BER is defined as the fraction of bits in error.

The SER is intimately related with the PEP described in §2.5.1, but it is usually difficult

to deal with a precise explicit expression. Consequently, assuming that the interference-plus-

noise component is Gaussian distributed, the SER, denoted by P err
s , can be approximated by an

analytical expression as a function of the SINR [Pro95]:

P err
s = a1Q(a2sinr), (2.44)

where a1 and a2 are constants that depend on the signal constellation.

Once the SER has been characterized, the BER can be approximately obtained from the

symbol error probability P err
s assuming that the bits have been mapped into the constellation

points using a Gray encoding. The expression for the BER, ber, is

ber � P err
s

log2 M
, (2.45)

where M is the number of points in the constellation utilized for transmission. In [Cho02a] a

better approximate expression for the BER than the one in (2.45) is found.
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Chapter 3

Single-user communication through
MIMO channels with perfect CSI

3.1 Introduction

As it has been described in the previous chapter, communicating through MIMO channels pro-

vides a great enhancement in capacity, [Fos96, Fos98], and also in system performance in terms

of diversity and multiplexing gains under the tradeoff theoretically described in [Zhe03]. In prac-

tice, these potential improvements can be achieved by proper design of transmitter and receiver

architectures.

It has been also commented that one main aspect that conditions this design process is the

quantity and quality of the CSI available at both communication ends. In this chapter the case

where both the transmitter and the receiver have full knowledge of the state of the channel

is analyzed. First we recall the expression for the capacity in such case and then proceed to

describe practical transmission schemes that try to achieve this limit.

3.2 Capacity results

3.2.1 Theoretical limits

When a single-user is communicating through a MIMO channel where perfect CSI is available

at both sides of the link, the notion of instantaneous mutual information as defined in (2.16)

becomes a meaningful measure of the maximum rates at which information can be reliably

transferred from the transmitter to the receiver.

The assumption of perfect CSI holds true either when the channel remains essentially fixed,

such as in DSL systems, or when its variations are sufficiently slow with respect to the duration

of the transmission. For this particular case of perfect CSI, capacity is achieved by adapting the

33
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transmitted signal to the specific channel realization H and to the covariance of the noise Rn.

Formally, with perfect CSI the ergodic, compound, and outage capacity formulations pre-

sented in chapter 2 collapse, because the set of unknown parameters is void, UTX = URX = ∅.
Consequently, the capacity formulation can be expressed as [Bra74, Cov91, Ral98, Tel99, Sca99]

C = max
Q

log det
(
I + R−1

n HQHH
)
,

s. t. TrQ ≤ PT ,

Q � 0,

(3.1)

where, as indicated in the problem formulation, the maximization with respect to the transmit

covariance matrix Q of the Gaussian distributed transmitted signal is restricted to positive

semi-definite matrices such that a mean transmitted power constraint is fulfilled.

The maximization problem in (3.1) has a well-known solution, Q�, which is aligned1 with

the whitened channel correlation matrix, HHR−1
n H:

HHR−1
n H = UHΛHUH

H ⇒ Q� = UHΛQUH
H. (3.2)

This implies that the capacity achieving architecture transmits independent data streams

through each one of the eigenmodes of the whitened channel correlation matrix. With this

optimal structure the capacity problem in (3.1) simplifies to

C = max
{λQ,j}

nT∑
j=1

log(1 + λQ,jλH,j)

s.t.
nT∑
j=1

λQ,j ≤ PT

λQ,j ≥ 0, 1 ≤ j ≤ nT ,

(3.3)

where [ΛH]jj = λH,j and [ΛQ]jj = λQ,j have been used. The value of λQ,j corresponds to

the power that is allocated to the j-th eigenmode. It is now straightforward to prove that the

expression for the optimal eigenvalues of the covariance matrix Q� is given by

λ�
Q,j =

(
µ − 1

λH,j

)+

, 1 ≤ j ≤ nT (3.4)

where µ is chosen so that the power constraint in (3.3) is fulfilled with equality.

In [Cov91] a beautiful interpretation of the optimal power allocation in (3.4) is given which

is also depicted in Figure 3.1. Basically, it consists in considering each one of the eigenmodes

as water-porous unit-base vessels which are arranged together. Then each vessel is filled with a

solid substance such that the height of this substance is equal to the inverse of the corresponding
1In this context, we consider that two positive semi-definite matrices are aligned when they commute, or,

equivalently, when they share the same eigenvectors.
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Figure 3.1: Graphical representation of the power allocated to each eigenmode. In this case, no power
is allocated to eigenmodes 7 and 8, as their inverse eigenvalues are above the water level.

channel eigenvalues λH,j . Next, an amount of water which represents the available power PT is

poured through the vessels. In this interpretation, the value of µ plays the role of the height

of the water level, and the value of the optimal power allocation {λ�
Q,j} is the water height in

each of the vessels. If the amount of solid substance of any of the vessels is above the water

level no power is assigned to the corresponding eigenmode. This interpretation makes clear the

facts that higher power is allocated to eigenmodes with higher eigenvalues, and that no power

is given to the eigenmodes whose eigenvalues are below a certain threshold which is determined

from the available power PT and the other channel eigenvalues λH,j .

3.2.2 Practical limits: mercury/waterfilling

Although Gaussian inputs are optimum from a mutual information viewpoint, state-of-the-art

technology cannot implement them in practice. Rather, technology constrains the inputs to be

drawn from discrete constellations, which may differ significantly from the Gaussian idealization.

In [Loz06], the authors found the optimal power allocation that maximizes the input-output

mutual information for the case where the MIMO channel consists in a bank of independent

parallel channels with AWGN (which implies that nT = nR and that UH = Rn = I) and

the input distribution to each of these parallel channels is given and fixed. For this case the

input-output relation in (2.4) can be scalarized and reduces to

yj =
√

λH,jxj + nj , 1 ≤ j ≤ nT , (3.5)

where we have assumed that HHR−1
n H is full rank. Since the authors of [Loz06] only deal with

the design of the power allocation, this implies that the transmit covariance matrix is diagonal
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and the power allocation coincides with the eigenvalues of the transmit covariance matrix. It

is important to mention that for a generic case with a non-diagonal MIMO channel, it is not

known whether the optimal covariance matrix diagonalizes the channel or not. Following the

model presented in §2.1, the transmitted signal can be expressed as

xj =
√

λQ,jsj , 1 ≤ j ≤ nT , (3.6)

where {sj} are independent symbols drawn from an arbitrary set of constellations. Once the

symbol yj has been received, the MMSE estimate of sj becomes

ŝj(λ) = E

{
sj |

√
λsj + ni

}
, (3.7)

and similarly we can define the MMSE function of j-th parallel channel as

mmsej(λ) = E |sj − ŝj(λ)|2 . (3.8)

For this simplified system model, the authors of [Loz06] found that the eigenvalues of the

transmit covariance matrix that maximize the mutual information between the input and the

output have an analogous expression to that in (3.4) found for the case of utilizing ideal Gaussian

codes. In this case the optimal power allocation is given by

λ�
Q,j =

(
µ −

Gj

(
(λH,jµ)−1

)
λH,j

)+

, (3.9)

where, just as in the previous case, the value of µ is such that the power constraint is fulfilled

with equality and where the only difference with respect to the expression in (3.4) is the factor

Gj

(
(λH,jµ)−1

)
, which is never below one and takes into account the non-Gaussianity of the

codes that are being utilized. The explicit expression for the function Gj is

Gj(ζ) =
{

1/ζ − mmse−1
j (ζ), ζ ∈ [0, 1]

1, ζ > 1
, (3.10)

where mmse−1
j is the inverse, with respect to the composition of functions, of the MMSE function

described in (3.8).

The expression in (3.9) admits an interpretation which generalizes that of the water-filling

presented in the previous section.

1. We represent each parallel channel in (3.5), with a unit-base water-porous mercury-

nonporous vessel.

2. Next, we fill each vessel with some solid substance up to a height equal to λ−1
H,j . See Figure

3.2.
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3. We then fix the value of µ, and pour mercury onto each of the vessels until its total height

(including the solid) reaches G((λH,jµ)−1)/λH,j . See Figure 3.3.

4. Finally, we pour a volume of water equal to PT (the waterlevel reaches a height equal to

µ). See Figure 3.4.

Once all these steps have been performed, the water height from the top of the mercury to the

water level gives λ�
Q,j .
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Figure 3.2: Graphical representation of each parallel channel by a unit-base water-porous mercury-
nonporous vessel. Each vessel is filled with some solid substance up to a height equal to λ−1

H,j .

1

,4λ −
H

1

,1λ −
H

1

,2λ −
H

1

,3λ−
H

1

,5λ −
H

1

,6λ −
H

1

,7λ−
H

1

,8λ −
H

eigenmodes

power

W
a
te

r

P
T

( )( )1

,

,

j j

j

G λ µ

λ

−

H

H

Figure 3.3: Mercury is poured onto each of the vessels until its total height (including the solid) reaches
G((λH,jµ)−1)/λH,j .

What must be highlighted from the mercury/waterfilling interpretation is that the additional

mercury pouring stage regulates the water admitted by each vessel thus tailoring the process
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to arbitrary input distributions. Pouring mercury onto a vessel amounts to reducing the power

that is allocated to that channel by an amount that depends on the deviation of the input

distribution from the Gaussian ideal. Note that for Gaussian signaling the function Gj is always

equal to one, recovering the original water-filling interpretation.

For example, let us assume that a particular channel has a very high equivalent gain λH,j .

Consequently, if we perform waterfilling assuming that an ideal Gaussian code is being utilized

a lot of power is going to be given to this particular channel to take advantage of its high gain

to achieve higher rates. However, if the symbol constellation that is transmitted through this

channel deviates significantly from the Gaussian idealization2, a lot of mercury is going to be

poured to its vessel and consequently the power that is actually given to that channel is greatly

reduced because otherwise it would be wasted. (See, for example, channels 1 and 4 in Figures

from 3.2 to 3.4).

Note also that, similarly to the water-filling solution, some of the channels are not activated

(no power is allocated to them) by the mercury/waterfilling solution. In the following section,

it will be shown that this same behavior can be present in practical transmission schemes.

3.3 Practical transmission schemes

The notions of capacity and mutual information enable us to obtain a measure of the max-

imum rates at which information can be reliably transferred from the transmitter to the re-

ceiver when utilizing Gaussian codes (waterfilling interpretation) or arbitrary signalling (mer-

2For example, in the case of supposing that the total available power PT is high and the chosen constellation
has a very low rate.
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cury/waterfilling). However, to achieve these limits infinite-length codes should be utilized. De-

spite their theoretical usefulness, these kind of codes can not be implemented in a practical

system, since the codewords have to be necessarily bounded in the time domain (due to, e.g.,

delay constraints or complexity issues).

Consequently, it is convenient to design the transceiver taking into account that finite-length

codewords which belong to discrete constellations are the ones that are going to be actually

transmitted. In fact, as described in §2.4.2, practical transceiver designs for the case where the

transmitter has full access to the CSI (through the reciprocity principle or a feedback link) have

been extensively studied by many researchers. The differences among the works rely on the kind

of transmitter and receiver and the chosen performance measure.

In the following, we focus on a communication scheme with the ML detector at the receiver

side. This is motivated by recent efficient implementations such as the optimal sphere decoder

[Dam03], or the schemes based on semidefinite relaxation [Ma02], which reduce the computa-

tional complexity by sacrificing optimality. Some initial results on linear transmitter design for

this particular case of receiver structure have been given in [Col04, Pay06b, Pay06c].

Precisely, we give further insight on the problem of designing a linear transmitter for a

MIMO system with perfect CSI at both sides, when a ML detector is utilized. According to this

choice of receiver, a meaningful performance objective is the minimization of the worst PEP for

any possible pair of transmitted symbol vectors. In this sense, the problem is mathematically

formulated as a maximin optimization problem, which is, in general, quite complicated to solve

due to its non-convex and discrete nature. Despite this fact, we are able to partially characterize

its solution. The relation between the utilized performance metric and the mutual information

and capacity as described above will be clarified in §3.3.3.

3.3.1 System description

Let us recall the system model described in chapter 2. A narrowband multiplexing system with

nT transmit and nR receive antennas corrupted with additive Gaussian noise is considered. Let us

define x ∈ CnT as the transmitted signal, where [x]j represents the transmitted signal through

j-th antenna. We also define H ∈ CnR×nT as the channel matrix, where [H]ij represents the

baseband equivalent path gain from the j-th transmitter to the i-th receiver. Finally, n ∈ CnR

is defined as the noise vector, where [n]i represents the noise component received at the i-th

antenna. The noise is modeled as AWGN, with E|[n]i|2 = 1, ∀i ∈ [1, nR]. The received vector,

y ∈ CnR , for can thus be expressed as y = Hx + n.

As it is stated in the previous section, the transmitted signal x ∈ CnT is obtained from a

linear combination of L independent data symbols, which are stacked to form the data symbols

vector s ∈ C ⊂ CL, where C is a discrete set (codebook) containing the possible codewords for
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Figure 3.5: MIMO communications scheme considered in this chapter.

the vector s and where we assume EssH = IL. Consequently, the transmitted signal is given by

x = Bs, where B ∈ CnT×L represents a generic linear transformation. In addition, we recall that

throughout the remainder of this chapter we assume that the receiver employs a ML detector.

See Figure 3.5 for a graphical representation of the described communication scheme.

3.3.2 ML receiver

Since the receiver performs ML detection, the estimate of the data symbols vector is given by

the vector ŝ maximizing the log-likelihood function particularized for the case where Rn = I,

logL(y,Bs) ∝ (y − HBs)HR−1
n (y − HBs) = −‖y − HBs‖2, (3.11)

where the function L is the same as described in §2.5.1. The detected symbols vector is thus

given by

ŝ = arg max
s∈C

logL(y,Bs). (3.12)

In our case, there are |C| different data symbols vectors (codewords), which can then be

indexed as sm, where m ∈ {1, 2, . . . , |C|}. The probability of deciding in favor of sm′ when sm

is actually transmitted is denoted by pepm,m′ , and it is given by the probability that L(sm′) >

L(sm) conditioned on the fact that sm is transmitted. We recall the expression for this probability

from (2.35):

pepm,m′ = Pr {L(y, sm′) > L(y, sm)|y = HBsm + n} = Q

√
d2

m,m′

2

 , (3.13)

where d2
m,m′ represents the squared Euclidean distance between the received constellation points

HBsm and HBsm′ , i.e.,

d2
m,m′ = ‖HBsm − HBsm′‖2 = eH

m,m′BHRHBem,m′ , (3.14)

where RH = HHH and em,m′ = sm − sm′ . It is important to highlight that in case the noise is

colored, i.e., the case where EnnH = Rn �= I, can be incorporated in this model just by letting

RH = HHR−1
n H.
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Now, we denote by ET the set of all possible error vectors. Furthermore we define E as the set

of error vectors that yield different values of the squared distance expression in (3.14). Note that

there may exist groups of error vectors which yield the same distance, and consequently only

one representative of the group need to be considered, lowering the total number of elements in

E with respect to ET , i.e., |E| ≤ |ET |.

In any case, since we are only interested in errors that yield different values of the minimum

distance in (3.14), we can always index the possible error vectors from 1 to |E|, as eq, with

q = {1, 2, . . . , |E|}. Since the expression for d2
m,m′ in (3.14) depends on the particular error

vector, we can also index the different values of the set {d2
m,m′}, with the same label that we use

for the error vectors, q. In the following, d2
q is utilized instead of d2

m,m′ , and, equivalently, pepq

replaces pepm,m′ .

3.3.3 Transmitter design to minimize the worst-case PEP

We now present the design of the optimum linear transmitter, B�. The criterion for optimality

is to minimize the maximum (or worst-case) PEP with respect to the set of error vectors, or,

formally

B� = arg min
B

max
q

pepq, (3.15)

where q ∈ {1, 2, . . . , |E|}. Moreover, the search space of the minimization with respect to B

is restricted to matrices that fulfill that the mean transmitted power does not exceed PT , or,

equivalently, to matrices such that Tr BBH ≤ PT . Notice that, due to the dependence given

in (3.13), minimizing the worst-case PEP is equivalent to maximizing the squared minimum

Euclidean distance between the received constellation points:

arg min
B

max
q

pepq = arg max
B

min
q

d2
q = arg max

B
d2

min. (3.16)

Since the behavior of the mutual information in the high SNR regime is dictated by the minimum

distance between the received constellation symbols, maximizing the minimum distance is a

maximum mutual information achieving strategy in the high SNR regime. Consequently, our

results agree with those in [Loz06] in the high SNR regime.

Writing explicitly the squared distance as a function of the transmission matrix B and the

error vector eq as in (3.14), the optimization problem in (3.15) is equivalently reformulated as

B� = arg max
B

min
e∈E

eHBHRHBe,

s.t. Tr BBH ≤ PT .
(3.17)

Utilizing the SVD, the optimum transmitter matrix B� can always be factored as

B� = U�Σ�V�H , (3.18)
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where U� ∈ CnT×nT and V� ∈ CL×L are unitary matrices and Σ� ∈ CnT×L is a matrix with

non-zero elements only in its main diagonal. From a signal processing perspective, this matrix

decomposition can be viewed as a three-step transformation of the data symbols vector. The

matrix U� is a spatial processing matrix with nT orthonormal columns coupling the transmission

through the spatial modes of the channel, and Σ� performs the power allocation among these

modes. Note also that, with this notation, the eigenvalues of the transmit covariance matrix

Q = ExxH = BBH are given by λQ,j = [Σ]2jj . Finally, the purpose of V� is to spread the

constellation symbols among these spatial modes.

In the following subsections we characterize each one of these matrices.

Optimal spatial processing matrix

The optimal spatial processing matrix U� is found next:

Proposition 3.3.1 Let the SVD of RH be given by RH = UHΛHUH
H, where the elements of

ΛH are sorted in decreasing order, then it follows that there exists a solution to the optimization

problem in (3.17) with the following structure:

B� = UHΣ�V�H , (3.19)

where Σ� and V� are the same as defined in (3.18).

Proof Consider any given matrix B = UΣVH . For this generic choice the quadratic form in

the objective function in (3.17) becomes

eHVΣUHRHUΣVHe. (3.20)

We now consider the SVD decomposition ΣUHRHUΣ = QDQH , with D diagonal and Q

unitary, which clearly implies that

D = QHΣUHRHUΣQ (3.21)

is a diagonal matrix. From [Pal03b, Lemma 12], we can state that there exists a matrix X =

UHΣX, with ΣX having non-zero elements only in the main diagonal, such that XHRHX = D

and that TrXXH ≤ TrΣΣH = TrBBH . We now only need to check that

BHRHB = VΣUHRHUΣVH = VQDQHVH = VQXHRHXQHVH . (3.22)

Defining B̃ = XQHVH = UHΣXṼH , with Ṽ = VQ, we have shown by construction that

for any given matrix B we can find another matrix B̃ such that the objective function in

(3.17) is the same BHRHB = B̃HRHB̃, whereas the required transmitted power is now lower,

Tr B̃B̃H = TrXXH ≤ TrBBH . Consequently, the optimal transmitter must be of the form

B� = UHΣ�V�H . �
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This solution implies that the optimal transmitter B� transmits the processed symbols

through the eigenmodes of the channel. The corresponding gains of these eigenmodes are given

by λH,j .

Once we have derived the left singular vectors of the optimal transmitter structure B� we

now proceed to further characterize the optimal structure of the solution.

Optimal power allocation, Σ�

In this section we derive the structure of the optimal power allocation matrix Σ�. It is shown

that the optimal power allocation inverts the gains of the eigenmodes, λH,j , up to a fixed scaling

factor which is different for each eigenmode, recovering the results of [Loz06, Theorem 7] in the

high SNR regime. For the sake of notation, we restrict ourselves to the case where the number

of components of the data symbols vector is equal to the rank of RH and also to the number

of antennas at the transmitter and the receiver, L = nT = nR = rankRH. The following is also

valid for the general case of arbitrary values of L, nT , nR, and rankRH, but care has to be taken

with the dimensions of the matrices.

With B� = UHΣ�V�H , the problem in (3.17) simplifies to

{Λ�
Q,V�} = arg max

ΛQ,V
min
e∈E

eHVΛHΛQVHe,

s.t. TrΛQ ≤ PT ,

VVH = VHV = I,

(3.23)

where, as commented above, ΛQ = Σ2 is a diagonal matrix containing the eigenvalues of the

transmit covariance matrix. The matrix V is now assumed fixed and we focus on the optimization

of the matrix ΛQ. To this purpose, we index the set of possible error vectors with q and rewrite

the objective function in (3.23) as

eH
q VΛHΛQVHeq = TrΛHΛQVHeqeH

q V =
nT∑
j=1

λH,jλQ,jαqj , (3.24)

where we have defined the variable αqj = [VHeqeH
q V]jj . Introducing the new optimization

variable t = minq
∑nT

j=1 λH,jλQ,jαqj we can rewrite the maximization with respect to ΛQ in the

problem in (3.23) as

max
t,{λQ,j}

t

s.t.
nT∑
j=1

λH,jλQ,jαqj ≥ t, ∀q ∈ {1, 2, . . . , |E|},

nT∑
j=1

λQ,j ≤ PT ,

λQ,j ≥ 0, 1 ≤ j ≤ nT .

(3.25)
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Note that the previous optimization problem is a linear (and thus convex) optimization problem

in the optimization variables {λQ,j} and t.

The set of inequalities
∑nT

j=1 λH,jλQ,jαqj ≥ t, ∀q ∈ {1, 2, . . . , |E|} will be tight for a subset

of indices q ∈ T . A priori, the set T is unknown, but we assume it given by an oracle. Then,

clearly, the optimal solution must fulfill

nT∑
j=1

λH,jλ
�
Q,jαqj = t�, ∀q ∈ T , (3.26)

which can be more compactly rewritten as

AΛHλ�
Q = t�1, (3.27)

where [A]n(q)j = αqj , [λ�
Q]j = λ�

Q,j , 1 is the all-one vector, and the function n(q) can be any

arbitrary function fulfilling that it assigns to each element q ∈ T a different number from 1 to

|T |. From the equation AΛHλ�
Q = t�1 a necessary and sufficient structure of the optimal power

allocation is

λ�
Q,j =

t�βj

λH,j
, (3.28)

where [β]j = βj is such that Aβ = 1 which always has at least one solution. For the case where

the rank of A is equal to L (which can always be assumed in practice) the vector β is

β =
(
AHA

)−1AH1. (3.29)

Note that β is a function of matrix V, the error vectors eq, and the set T .

Finally, the value of t� can be found from the restriction on the total transmitted power as

nT∑
j′=1

t�βj′

λH,j′
= PT ⇒ t� =

PT∑nT
j′=1

βj′
λH,j′

, (3.30)

and we obtain,

λ�
Q,j =

βj

λH,j

PT∑nT
j′=1

βj′
λH,j′

. (3.31)

The solution found in (3.31) is such that the equivalent gain of each eigenmode is now

λQ,jλH,j = t�βj , where t� is given by (3.30) which is a common factor to all these eigenmodes.

Note that this common factor only depends on the set of active constraints T , i.e., the relative

ratios between the equivalent gains at the receiver are fixed for any value of the gains λH,j ,

whenever the variation of these gains does not change the set of active constraints T .

It is important to mention that, although the expression in (3.31) sheds some light on the

optimal design of a linear transmitter, it can not be utilized in practice as it depends on the
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set T which is a priori unknown. The optimal solution must be found by numerically solving

the convex optimization problem in (3.25). Once the solution is known, it is very easy to find

the set T and check that (3.31) is actually fulfilled. Note also that (3.31) agrees with the results

reported in [Pay06b] for the particular case of transmitting 2 QPSK data streams and which are

reproduced in §3.3.4.

Comments on the optimal V

It now remains to calculate V� to obtain the full design of the transmitter B�. Unfortunately, the

problem of finding the optimal V matrix appears to be intractable. Consequently, we propose

an ad-hoc algorithm to obtain a good approximation of V�.

1. Generate a set of possible candidates V � {Vc}. A good choice for this set consists in

selecting these matrices from the Grassmannian manifold of the appropriate dimension

[Lov03], because it yields a set of matrices that uniformly cover all the unitary matrices

space.

2. For a given channel matrix H, solve the optimization problem in (3.25) for each matrix in

V and calculate the minimum distance.

3. Choose the matrix from V that yields the maximum minimum distance as the transmitter

V matrix

The main drawback of this algorithm is that it can become computationally hard because,

in order to obtain a good transmitter design, the cardinality of V has to be high, and for each

candidate in V an optimization problem has to be solved to obtain the corresponding optimal

power allocation.

3.3.4 Closed form solution for the particular case of two QPSK streams

The framework for the design of linear transmitters presented in the preceding sections is general

in the sense that the symbols codebook C, the number of data streams L, and the MIMO

configuration given by nT and nR can be arbitrarily chosen. However, no closed form solution

is, in general, available for the design of the optimal transmitter B�.

To gain further insight in this problem, we now find a closed form transmitter that maximizes

the minimum distance for a particular case. Precisely, we focus on a case with arbitrary values

of nT and nR and with L = 2 data streams where the elements of the data symbols vector

belong to a QPSK constellation. Formally, we can state that s ∈ C � M×M ⊂ C2, where M
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represents the QPSK constellation, i.e.,

M �
{

1 + i√
2

,
1 − i√

2
,
−1 + i√

2
,
−1 − i√

2

}
. (3.32)

Consequently, the transmitted signal is given by x = Bs, with B ∈ CnT×2.

From this particular choice of codebook C and the definition of the error vector, en,m =

sn − sm, one easily sees that each component of the error vector en,m must belong to the set

S �
{

0,±
√

2,±i
√

2,±
√

2 ± i
√

2
}

. (3.33)

We recall that we defined the set E as the set of error vectors that yield different values for

the objective function and, ET as the set of all possible error vectors. Considering that the zero

vector can not belong to ET , we obtain

ET = S2\{0}. (3.34)

The cardinal of ET is |ET | = |S|2 − 1 = 80. This implies that the different error vectors can be

indexed from 1 to 80, as eq, with q = {1, 2, . . . , 80}. Similarly, we recall that we defined E as the

set of error vectors that yield different values of the objective function in (3.17). In Appendix

3.A it is shown that the number of errors that yield different values of the objective function in

(3.17) is given by |E| = 14.

We are now ready to particularize the general problem in (3.17) for the specific choice of the

parameters described above.

Proposition 3.3.2 Consider the following constrained maximin optimization problem:

max
B

min
e

eHBHRHBe,

s.t. Tr BBH ≤ PT ,

e ∈ E ,

B ∈ CnT×2,

(3.35)

where RH ∈ CnT×nT is a positive semidefinite hermitian matrix with λH,1 and λH,2 being its

two largest eigenvalues, with λH,1 ≥ λH,2, and E is the set of error vectors that yield different

values of the objective function in (3.35). It then follows that there is an optimal solution, B�,

which is given by B� = UHΣVH , where UH ∈ CnT×2 has as columns the eigenvectors of RH

corresponding to λH,1 and λH,2. In addition, defining

λc � (
√

3 − 1)(3 − 2
√

2)
1 + 3

√
3 − 2

√
6

� 9.683 · 10−2, (3.36)

the optimal solution is completed with
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Figure 3.6: Optimal received constellation when λH,2/λH,1 < λc. Notice that the four innermost points
have five neighbors at minimum distance, as opposed to the 16-QAM constellation where they have only
four neighbors.

• If λH,2/λH,1 < λc, then

Σ =
( √

PT 0
0 0

)
, (3.37)

VH =
(

cos θT −ei φT sin θT

e− i φT sin θT cos θT

)
, (3.38)

where φT = arccos
(

3+
√

3
2
√

6

)
and θT = arctan

( √
6

3+
√

3

)
.

• If λH,2/λH,1 ≥ λc, then

Σ =

√
PT

λH,2 + α0λH,1

( √
λH,2 0
0

√
α0λH,1

)
, (3.39)

VH =
1√
2

(
1 −ei π/4

e− i π/4 1

)
, (3.40)

where α0 = 3 − 2
√

2 � 1.716 · 10−1.

Proof See Appendix 3.A. �

Noteworthy, the inner structure of the optimal transmission matrix B� depends on the

relation of the two largest eigenvalues of RH.

On one hand, when this relation is low, λH,2/λH,1 < λc, only the strongest eigenmode is

found useful for transmission (the rank of Σ is one), and then a new constellation is created
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Figure 3.7: Received constellation through the two largest eigenmodes. Left, eigenmode associated with
λH,1. Right, eigenmode associated with λH,2. Notice that the constellation points at the two different
eigenmodes are paired by numbers from 1 to 16. Each pair is transmitted and received together.

using the two QPSK streams. This new constellation is very similar to a 16-QAM modulation,

with little perturbations over the positions of the constellation points in order to maximize

the minimum distance among them and, consequently, maximize the number of neighbors at

minimum distance. In Figure 3.6 this new constellation is depicted.

On the other hand, if the relation λH,2/λH,1 is bigger than the threshold value λc, then the

two eigenmodes associated with the two largest eigenvalues are used for transmission. In this case,

two similar signal constellations with 16 points are transmitted through the two eigenmodes. If

we consider the received constellation HBs, we can express it, up to a unitary transformation

Q ∈ CnR×2 which preserves the distances, as

HBs = Q

√
PT λH,1λH,2

λH,2 + α0λH,1

(
1 0
0

√
α0

)
VHs, (3.41)

where we have represented the two largest eigenmodes of the channel matrix H in its SVD,

H = QΛ
1
2 UH

H. See Figure 3.7 for a graphical representation of the received constellation. Note

that the constellation points at the two different eigenmodes are paired, in the sense that they

are transmitted and received together, giving a total of 16 different symbols. This implies that

the symbol rate is the same as in the case of using only one channel eigenmode. In addition,

the points in the outer circle in one of the eigenmodes are paired with the points in the inner

circle in the other eigenmode, and vice versa. Moreover, equation (3.41) implies that the relation

between the sizes of the constellations received through the two eigenmodes is fixed and equal to
√

α0 =
√

2− 1. This fixed ratio is optimal in the sense that it maximizes the minimum distance

between the received constellation points.

To give a visual idea of the two optimal transmission schemes we present a picture of both

in Figure 3.8.
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It is also important to highlight that the optimal values found for the diagonal entries of

matrix Σ� for the 2 QPSK stream case agree with the general results reported in (3.31).

• For the case λH,2/λH,1 < λc we have

λ�
Q,1 = [Σ�]211 = PT , (3.42)

λ�
Q,2 = [Σ�]211 = 0, (3.43)

which agrees with the results in (3.31) with β1 = 1 and β2 = 0.

• For the case λH,2/λH,1 ≥ λc we have

λ�
Q,1 = [Σ�]211 =

PT λH,2

λH,2 + α0λH,1
=

1
λH,1

PT
1

λH,1
+ α0

λH,2

, (3.44)

λ�
Q,2 = [Σ�]211 =

PT α0λH,1

λH,2 + α0λH,1
=

α0

λH,2

PT
1

λH,1
+ α0

λH,2

, (3.45)

which agrees with the results in (3.31) with β1 = 1 and β2 = α0.
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Figure 3.8: Graphical representation of the two optimal transmission architectures. The upper scheme
is optimal when λH,2/λH,1 < λc, notice that only one eigenmode is used. The lower scheme is optimal
when λH,2/λH,1 ≥ λc.
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3.4 Simulation results

The transmitter design presented in the previous section is optimal in the sense that it maximizes

the minimum distance (MMD) between the received constellation points. To validate the good-

ness of this criterion, we have compared the performance of our transmission scheme – MMD –

with the performance of four well known transmission architectures: V-BLAST [Fos96, Wol98],

OSTBC schemes [Ala98, Tar99a], the minimum BER optimal linear design (MBOL) [Pal03b],

and the maximum minimum SNR eigenvalue design (MMS) [Sca02]. For the sake of fairness, in

all these cases the receiver performs ML detection, and the rate is fixed.

3.4.1 Transmission of four bit per channel use

In this case we have fixed the transmission rate at 4 bit per channel use. This implies that the

BLAST scheme transmits two QPSK symbols per channel use, the OSTBC scheme (Alamouti)

transmits two 16-QAM symbols each two channel uses, and the MMD, MBOL, and MMS designs

transmit a linear combination of two QPSK symbols.

We have considered a random 2 × 2 MIMO channel, with i.i.d. Rayleigh entries. Firstly, we

have obtained the pdfs of the squared minimum distance, d2
min, between the received constellation

points, when the transmission power is fixed to unity (see Figure 3.9). The mean of the pdfs of

the squared minimum distance is summarized in Table 3.1.

Table 3.1: Mean d2
min for Different Transmission Architectures
Scheme Mean d2

min

Maximum Minimum SNR Eigenvalue (MMS) 0.8001
16-QAM Alamouti 0.8003

QPSK BLAST 0.9924
Optimum Linear (MBOL) 1.0848

Maximum Minimum Distance (MMD) 1.8696

As expected, the MMD scheme presents the highest mean squared minimum distance, be-

cause it yields the maximum minimum distance for each channel realization.

3.4.2 Transmission of eight bit per channel use

Case with nT = nR = 2

Firstly, we have considered a transmission of eight bit per channel use through a random 2 × 2

MIMO channel with i.i.d. Rayleigh entries. In the case of the MMD, MBOL, and MMS designs

we are transmitting a linear combination of two 16-QAM streams. In the case of V-BLAST we
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Figure 3.9: Pdf of the squared minimum distance d2
min for different types of communication schemes.

We have fixed PT = 1.

are directly transmitting an independent 16-QAM data stream through each antenna. Finally

in the case of OSTBC (Alamouti) we are transmitting two 256-QAM symbols each two channel

uses.

We have obtained the cdf of the squared minimum distance, d2
min, between the received

constellation points (see Figure 3.10). Note how our proposed scheme, MMD, yields always the

highest minimum distance as its plot is always the rightmost for a given probability value. The

mean of the squared minimum distance is summarized in Table 3.2.

Table 3.2: Mean d2
min for Different Transmission Architectures
Scheme Mean d2

min

256-QAM OSTBC (Alamouti) 0.0465
Optimum Linear (MBOL) 0.1468

Maximum Minimum SNR Eigenvalue (MMS) 0.1555
16-QAM BLAST 0.1790

Maximum Minimum Distance (MMD) 0.2974
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Figure 3.10: Cdf of the squared minimum distance among the received constellation points.

Case with nT = nR = 4

Secondly, we have considered a transmission of eight bit per channel use through a fixed 4 × 4

MIMO channel. In the case of the MMD, MBOL, and MMS designs we are transmitting a linear

combination of four QPSK data streams. In the case of V-BLAST we are directly transmitting

an independent QPSK data stream through each one of the four antennas. Finally in the case

of OSTBC we assume that a rate one code exists for four antennas and consequently we are

transmitting four 256-QAM symbols each four channel uses3.

For this case of eight bit per channel use transmission with nT = nR = 4 the performance

comparison will be made in the following subsection in terms of SER.

3.4.3 Performance in terms of SER

Up to this point we have only compared the performance of our scheme with the ones in the

existing literature in terms of minimum distance. Since our proposed architecture is aimed at

maximizing the minimum distance the results that we have obtained so far are not surprising.

To complete the comparison, in Figure 3.11 (4 bit per channel use) and Figure 3.12 (8 bit

3Note that this assumption is advantageous to the OSTBC scheme as no rate one codes exist for four anten-
nas, and consequently modulations richer than 256-QAM should be used and the minimum distance would be
decreased.
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Figure 3.11: SER for different types of communication schemes for a 2 × 2 MIMO channel when the
rate is fixed to 4 bit per channel.

per channel use) we present the mean SER vs. the system mean SNR. Also in this case, the

MMD scheme shows the best performance, because it makes an efficient use of the CSI at the

transmitter side. As a counterpart, we recall that the BLAST and Alamouti schemes do not

need any CSI at the transmitting end.

Noteworthy, although the MMD scheme is not originally designed to minimize the mean SER

(but the worst-case PEP), it also presents an excellent performance in its terms. This implies

that the minimization of the worst-case PEP is a key point in the design of good transmission

schemes where the performance is dictated by the SER. If we consider the BER instead of the

SER as a performance metric, similar results to the ones presented here are obtained.

In addition, the poor performance of MBOL and MMS, specially at high SNR, is due to the

fact that, for these two cases, d2
min can take values close to zero with non-zero probability (see

Figure 3.9), as opposed to the other cases (BLAST, Alamouti, and MMD) where the probability

that d2
min takes small values tends to zero.

3.5 Chapter summary and conclusions

In this chapter, we have studied the design of the optimal linear transmitter for a MIMO system

with full CSI when the objective is the maximization of the minimum distance among the received

constellation points, which is a practical design criterion as opposed to mutual information
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Figure 3.12: SER for different types of communication schemes when the rate is fixed to 8 bit per
channel use. Two MIMO channel configuration have been considered: 2 × 2 and 4 × 4.

criteria which assume that infinite-length codes are being utilized.

We have optimally characterized the left singular vectors, U�, and the singular values, Σ�, of

the transmitter matrix, B�, and have given a simple algorithm to obtain a good approximation

to V�.

We have also found that our proposed scheme yields an excellent performance in terms of

mean minimum distance and SER, when compared to well-known schemes such as V-BLAST,

OSTBC schemes, the minimum BER optimum linear design, or the maximum minimum SNR

eigenvalue design. Unfortunately, for the general case, the computational complexity of our

proposed scheme is rather high as it involves a search over a big set of matrices {V}, which makes

it difficult to implement in fast-fading environments. However, for fixed fading environments such

that the transmitter calculation can can be performed off-line we have shown that it presents

an excellent performance.

In addition, for the particular case of transmitting two QPSK streams, we have presented

the design in closed form, which reduces enormously the computational complexity as the search

over the set of matrices {V} is not necessary since an explicit expression for it is available.
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3.A Proof of Proposition 3.3.2

From Proposition 3.3.1, the objective function of the optimization problem in (3.35) becomes

eHVΣΛHΣVHe, (3.46)

where we have used that B = UHΣVH and RH = UHΛHUH
H. Notice that the restriction

Tr BBH ≤ PT becomes Tr ΣΣH ≤ PT .

Now, suppose that we fix Σ and we define L = ΣΛHΣ. The original problem in (3.35)

becomes

max
Σ

max
V

min
e

eHVLVHe, (3.47)

where the dependence of the objective function on Σ is implicit in L. Since L is a diagonal

matrix and V is unitary, they can be parameterized as

L =
(

�1 0
0 �2

)
, and V =

(
eiδ cos θ eiε sin θ

−e−iε sin θ e−iδ cos θ

)
. (3.48)

The optimization problem becomes

max
Σ

max
θ,δ,ε

min
q≤|ET |

eH
q VLVHeq, (3.49)

where the error vector has been indexed as explained in §3.3.4. For the sake of notation, let us

define the objective function for the possible error vectors as fq � eH
q VLVHeq, with q ≤ |ET |.

Since there are elements in the set ET that are proportional, i.e., eq = zeq′ , z ∈ C, it is possible

to discard 66 elements from the total of 80 in ET because either they yield the same objective

function (|z| = 1) or because the objective function is always greater in one case (|z| > 1). For

example, if we let

e2 =
( √

2√
2

)
, e15 =

(
i
√

2
i
√

2

)
, and e16 =

( √
2 − i

√
2√

2 − i
√

2

)
, (3.50)

then e15 = exp(iπ/2)e2 and e16 = (1 + i)e2. From which, clearly, f2 = f15 and f2 < f16, which

implies that f15 and f16 can be discarded as they will have no effect as long as f2 is present in the

inner minimization in (3.49). Repeating this kind of elimination with the remaining elements in

ET we end up with the set E of error vectors that yield different values of the objective function

in (3.35). In this case, it can be shown that |E| = 14 and, consequently, there are 14 different

objective functions, f1, f2, . . . , f14.

min
q≤|E|=14

eH
q VLVHeq ≤ min

q≤|ET |
eH

q VLVHeq. (3.51)



56 3.A. Proof of Proposition 3.3.2

The explicit expressions for these 14 functions are

f1 = 2
(
�1 sin2 θ + �2 cos2 θ

)
, (3.52)

f4 = 2
(
�1 cos2 θ + �2 sin2 θ

)
, (3.53)

f2 = 2 (�1 + �2 + 2(�2 − �1) sin θ cos θ cos φ) , (3.54)

f5 = 2 (�1 + �2 − 2(�2 − �1) sin θ cos θ cos φ) , (3.55)

f6 = 2 (�1 + �2 + 2(�2 − �1) sin θ cos θ sinφ) , (3.56)

f7 = 2 (�1 + �2 − 2(�2 − �1) sin θ cos θ sinφ) , (3.57)

f8 = 2
(
�1 + �2 + �1 cos2 θ + �2 sin2 θ + 2

√
2(�2 − �1) sin θ cos θ cos (φ + 3π/4)

)
, (3.58)

f9 = 2
(
�1 + �2 + �1 cos2 θ + �2 sin2 θ + 2

√
2(�2 − �1) sin θ cos θ cos (φ + π/4)

)
, (3.59)

f10 = 2
(
�1 + �2 + �1 cos2 θ + �2 sin2 θ + 2

√
2(�2 − �1) sin θ cos θ cos (φ − π/4)

)
, (3.60)

f11 = 2
(
�1 + �2 + �1 cos2 θ + �2 sin2 θ + 2

√
2(�2 − �1) sin θ cos θ cos (φ − 3π/4)

)
, (3.61)

f12 = 2
(
�1 + �2 + �1 sin2 θ + �2 cos2 θ + 2

√
2(�2 − �1) sin θ cos θ cos (φ + 3π/4)

)
, (3.62)

f13 = 2
(
�1 + �2 + �1 sin2 θ + �2 cos2 θ + 2

√
2(�2 − �1) sin θ cos θ cos (φ + π/4)

)
, (3.63)

f3 = 2
(
�1 + �2 + �1 sin2 θ + �2 cos2 θ + 2

√
2(�2 − �1) sin θ cos θ cos (φ − π/4)

)
, (3.64)

f14 = 2
(
�1 + �2 + �1 sin2 θ + �2 cos2 θ + 2

√
2(�2 − �1) sin θ cos θ cos (φ − 3π/4)

)
, (3.65)

where φ = δ + ε. Since the only dependence of {fq} on δ and ε is through φ, the problem now

becomes

max
Σ

max
θ,φ

min
q≤14

fq (θ, φ) , (3.66)

where, in this case, the dependence of {fq} on Σ is implicit in �1 and �2.

In principle, the search space for the inner maximization part in (3.66) is (θ, φ) ∈ [−π, π] ×
[−π, π], but, from the specific dependence of {fq} on (θ, φ) the search space can be reduced to

(θ, φ) ∈ D � [0, π/4] × [0, π/4], and the index function q can be constrained to be not greater

than 3, as we show in Appendix 3.B. As a consequence, we obtain an equivalent formulation of

(3.35) as

max
Σ

max
θ,φ

min
q≤14

fq (θ, φ) = max
Σ

max
(θ,φ)∈D

min
q≤3

fq (θ, φ) . (3.67)

Let us define α � �2/�1 ∈ [0, 1], and α0 � 3 − 2
√

2. We can distinguish two different cases.

• If α ∈ [α0, 1] � A1, then the two innermost optimization problems in (3.67) can be reduced

to

max
(θ,φ)∈D

min
q≤3

fq (θ, φ) = max
(θ,φ)∈D

f1(θ, φ) = �1 + �2, (3.68)

where the maximum is attained for θ� = φ� = π/4. See Appendix 3.B for further details.
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• If α ∈ [0, α0) � A0, then, we also show in Appendix 3.B that the two innermost problems

in (3.67) can be bounded by

max
(θ,φ)∈D

min
q≤3

fq ≤ K(λc�1 + �2), (3.69)

where λc � (
√

3 − 1)(3 − 2
√

2)
1 + 3

√
3 − 2

√
6

, and K � 1 + α0

λc + α0
. In this case, instead of maximizing the

objective function, we maximize the bound and then prove that the bound is attained by

the objective function at the optimal point. The expressions for the possible optimal values

of (θ�, φ�) can be found in Appendix 3.B.

This last two cases allow us to split the original problem in (3.67) into two simpler problems.

Namely,

max
Σ

max
(θ,φ)∈D

min
q≤3

fq

{
= max

Σ
�1 + �2 if α ∈ A1

≤ max
Σ

K(λc�1 + �2) if α ∈ A0
, (3.70)

where the dependence of �1 and �2 on Σ is

L = ΣΛHΣ =
(

σ1 0
0 σ2

)(
λH,1 0

0 λH,2

)(
σ1 0
0 σ2

)
=

=
(

λH,1σ
2
1 0

0 λH,2σ
2
2

)
=

(
�1 0
0 �2

)
, (3.71)

with Tr ΣΣH = σ2
1 + σ2

2 ≤ PT . For the sake of notation, we define γ = σ2
1 + σ2

2, p = σ2
1/γ,

and λ = λH,2/λH,1 ≤ 1. Since λH,1 ≥ λH,2, it is clear that at the optimal power allocation the

inequality σ2
1 ≥ σ2

2 must be fulfilled as otherwise by switching the values of σ2
1 and σ2

2 the value

of the objective function in (3.70) could be increased without increasing the transmitted power.

With these definitions and considerations, we obtain an expression for �1 and �2

�1 = γλH,1p,

�2 = γλH,1λ(1 − p).
(3.72)

Consequently the two optimization problems in (3.70) can be further simplified. When α ∈ A1

(or, equivalently, when p ≤ λ
λ+α0

) we obtain

max
p,γ

γλH,1(p + λ(1 − p)) (3.73)

and when α ∈ A0 (p ≥ λ
λ+α0

) the bound becomes

max
p,γ

KγλH,1(λcp + λ(1 − p)). (3.74)

Notice that, both problems in (3.73) and (3.74), are increasing functions of γ, then it is clear that

γ = σ2
1 +σ2

2 ≤ PT , will take its maximum allowed value, i.e., γ = PT . It now only remains to find

the optimal value for the parameter p, which we recall is constrained to belong to p ∈ [1/2, 1].
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Thus, the problem in (3.73) becomes

max
p

p + λ − λp = p(1 − λ) + λ

s. t. p ∈
[
1
2
,

λ

λ + α0

]
,

(3.75)

where the restriction on p is due to the fact that α ∈ A1 must be guaranteed. Since the factor

(1−λ) in the objective function in (3.75) is bigger than zero, the optimum will be attained when

p equals its maximum value, i.e., p� = λ
λ+α0

.

Similarly, the problem in (3.74) can be written equivalently as

max
p

λcp + λ(1 − p) = (λc − λ)p + λ,

s. t. p ∈
(

λ

λ + α0
, 1
]

,
(3.76)

where, in this case the restriction on p is to guarantee that α ∈ A0. The solution to the max-

imization depends on a condition on λ. On one hand, if λ < λc, then the optimum is p� = 1.

On the other hand, if λ ≥ λc, the optimum is attained by p� → λ
λ+α0

, which coincides with the

optimum solution for the problem in (3.73) and which implies that, when λ ≥ λc, the solution

lies in the boundary of the two regions, i.e., α = α0. Finally, we recall that what we obtained is

just the maximization of the bound in (3.69), we now check that the bound is actually attained

by the objective function.

• λ < λc: In this case we know that p� = 1, from (3.72) this implies that α� = 0. Particular-

izing in (3.111) and (3.112) for α� = 0 we obtain

θ� = arctan
(√

6/(3 +
√

3)
)

, (3.77)

φ� = arccos
(
(3 +

√
3)/(2

√
6)
)

, (3.78)

and evaluating fq, for q = {1, 2, 3}, at the point (θ�, φ�, p�) we obtain

min
q≤3

fq(θ�, φ�, p�) = 2
(

1 − 1√
3

)
PT λH,1 = KλcPT λH,1 =

= K(λc�1 + �2)|p�=1 ≥ K(λc�1 + �2) ≥ min
q≤3

fq, (3.79)

where last inequality follows from the fact that K(λc�1 + �2) is a bound for minq≤3 fq.

• λ ≥ λc: In this case we know that p� → λ
λ+α0

, from 3.72 this implies that α� → α0.

Particularizing in (3.111) and (3.112) for α� = α0 we obtain

θ� = π/4, (3.80)

φ� = π/4, (3.81)
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and evaluating fq, for q = {1, 2, 3}, at the point (θ�, φ�, p�) we obtain

min
q≤3

fq(θ�, φ�, p�) =
λ

λ + α0
(1 + α0)PT λH,1 = K�1(λc + α0) =

= K(λc�1 + �2)|p�= λ
λ+α0

≥ K(λc�1 + �2) ≥ min
q≤3

fq, (3.82)

where, as before, K(λc�1 + �2)|p� is the bound in (3.70) evaluated at the argument p� in

(3.80) and where last inequality follows from the fact that K(λc�1 + �2) is a bound for

minq≤3 fq.

Now that we have obtained the optimal values for all the parameters, θ�, φ�, and p�, for both

problems in (3.73) and (3.74) and that have proved that the objective function in (3.70) attains

its bound when α ∈ A0, it remains to evaluate the objective function in (3.70) and calculate in

each case which function yields the greatest value.

From all the previous obtained results we can write

max
p

max
(θ,φ)∈D

min
q≤3

fq =


λ

λ + α0
(1 + α0)PT λH,1 α = α0 ∈ A1

KλcPT λH,1 α = 0 ∈ A0

. (3.83)

Clearly, the case that will yield the greatest value depends on

λ

λ + α0
(1 + α0) ≷ Kλc ⇔ λ ≷ λc. (3.84)

Finally, recalling that λ = λH,2/λH,1, we obtain

max
p

max
(θ,φ)∈D

min
q≤3

fq =


λH,1λH,2

λH,2 + α0λH,1
(1 + α0)PT λH,2/λH,1 ≥ λc,

KλcPT λH,1 λH,2/λH,1 < λc.
(3.85)

To sum up, we have obtained that

• For λH,2/λH,1 < λc the solution to the optimization problem in (3.35) is parameterized by

p� = 1, θ� = θT = arctan
(√

6/(3 +
√

3)
)
, and φ� = φT = arccos

(
(3 +

√
3)/(2

√
6)
)
. The

optimal transmitter is then

Σ� =
√

PT

( √
p� 0
0

√
1 − p�

)
=

( √
PT 0
0 0

)
(3.86)

V� =
(

cos θ� eiφ�
sin θ�

−e−iφ�
sin θ� cos θ�

)
=

(
cos θT eiφT sin θT

−e−iφT sin θT cos θT

)
(3.87)

B� = UHΣ�V�H = UH

( √
PT 0
0 0

)(
cos θT −eiφT sin θT

e−iφT sin θT cos θT

)
(3.88)
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• For λH,2/λH,1 ≥ λc the solution to the optimization problem in (3.35) is parameterized

by p� = λ
λ+α0

= λH,2

λH,2+α0λH,1
, θ� = π/4, and φ� = π/4. The optimal transmitter is then

Σ� =
√

PT

( √
p� 0
0

√
1 − p�

)
=

√
PT

 √
λH,2

λH,2+α0λH,1
0

0
√

α0λH,1

λH,2+α0λH,1

 (3.89)

V� =
(

cos θ� eiφ�
sin θ�

−e−iφ�
sin θ� cos θ�

)
=

1√
2

(
1 eiπ/4

−e−iπ/4 1

)
(3.90)

B� = UHΣ�V�H = UH

√
PT

2(λH,2 + α0λH,1)

( √
λH,2 0
0

√
α0λH,1

)(
1 −eiπ/4

e−iπ/4 1

)
(3.91)

3.B Analysis of the minimum distance function candidates

Throughout this appendix, the matrix Σ will be considered fixed and, consequently, �1 and �2,

which depend directly on Σ will also be fixed. In addition, by the definition in (3.72) we recall

that �1 ≥ �2 and we define J = [0, π/4], P = (−π, π], and D = J 2.

We first assume that φ ∈ J . Then it follows

min
q={1,4}

fq = �1 + �2 − (�1 − �2) |cos 2θ| , (3.92)

min
q={2,5,6,7}

fq = 2 (�1 + �2 − (�1 − �2) cos φ |sin 2θ|) , (3.93)

min
q={3,8,...,14}

fq = 3(�1 + �2) − (�1 − �2) |cos 2θ| − 2
√

2(�1 − �2) cos φ |sin 2θ| . (3.94)

These three functions are periodic functions with period Tθ = π/2 and symmetric, inside k-th

period with respect to θk = π/4 + kπ/2.

Secondly, we assume that θ ∈ J . In this case it follows

min
q={2,5,6,7}

fq = 2 (�1 + �2 + 2(�2 − �1) sin θ cos θ cos (φ − k1π/2)) , (3.95)

min
q={3,8,...,14}

fq = 2(�1 + �2 + �1 sin2 θ + �2 cos2 θ+ (3.96)

+ 2
√

2(�2 − �1) sin θ cos θ cos (φ − π/4 − k2π/2) , (3.97)

where k1 = �2φ/π+1/2� and k2 = �2φ/π�. Notice that these two functions are periodic functions

with period Tφ = π/2 and symmetric, inside k-th period with respect to φk = π/4 + kπ/2.

From the double periodicity in θ and φ, and the double symmetry with respect to π/4+kπ/2,

it can then be directly obtained that the search space can be reduced from P2 to D.

In addition, it can be seen by simple inspection from (3.92), (3.93), (3.94), (3.95), and (3.97)



Chapter 3. Single-user communication through MIMO channels with perfect CSI 61

that ∀(θ, φ) ∈ D the following equalities hold

f1 = min
q={1,4}

fq, (3.98)

f2 = min
q={2,5,6,7}

fq, (3.99)

f3 = min
q={3,8,...,14}

fq. (3.100)

Consequently, the original problem in (3.66) can be simplified to

max
Ũ,Σ

max
θ,φ

min
q≤14

fq (θ, φ) = max
Ũ,Σ

max
(θ,φ)∈D

min
q≤3

fq (θ, φ) . (3.101)

Now, we have to determine under which conditions each of the three functions yields the

minimum value for a given point (θ, φ). To do so, we find the domain regions where each function

will take the minimum value. Each of these regions will be denoted by Ri ⊆ D.

(θ, φ) ∈ Ri ⇒ fi(θ, φ) ≤ fj(θ, φ), j �= i (3.102)

In order to find the frontiers of these regions, let us define (θpq, φpq) as the set of points such

that fp(θpq, φpq) = fq(θpq, φpq). From the expressions in (3.52), (3.54), (3.64), they must fulfill

cos φ12 =
�1 cos2 θ12 + �2 sin2 θ12

2(�1 − �2) sin θ12 cos θ12
, (3.103)

cos (φ13 − π/4) =
�1 + �2

2
√

2(�1 − �2) sin θ13 cos θ13

, (3.104)

sin φ23 =
�1 sin2 θ23 + �2 cos2 θ23

2(�1 − �2) sin θ23 cos θ23
. (3.105)

Recalling that α � �2/�1 ∈ [0, 1), and α0 � 3−2
√

2 in Figure 3.13 we have plotted the frontiers

of each region for diferent values of α. Concerning the frontiers of the three regions R1, R2, and

R3, we can distinguish three different cases.

• α ∈ (1/3, 1]: There exist no solutions in D for equations in (3.103)-(3.105), thus, there

are no intersections between any of the three functions. It is straightforward to check

that, since the maximum value of function f1 is lower than the minimum of the values of

functions f2 and f3, in this case R1 = D. The optimization problem is solved by

max
(θ,φ)∈D

min
q

fq(θ, φ) = max
(θ,φ)∈D

f1(θ, φ) = �1 + �2, (3.106)

where the maximum is attained for θ� = π/4, ∀φ.

• α ∈ [α0, 1/3]: There exist solutions in D only for equations (3.103) and (3.105), thus there

are intersections between f1 and f2 and between f2 and f3. Since there are no intersections
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Figure 3.13: Partitions of D in regions Ri such that fi ≤ fj . The solid lines represents the boundary
between each region. The red lines (or marks) represent possible candidates to the maximum value of the
minimum of the three functions.

between f1 and f3, in this case R3 = ∅, thus R1 ∪ R2 = D. In addition, the maximum

value of f1 is attained by θ = π/4, for all φ, but in this case the intersection with f2

clips part of this zone where the maximum is attained and reduces it to θ = π/4 and

φ ∈
[
arccos

(
1+α

2(1−α)

)
, π/4

]
, see Figure 3.13. Finally, we obtain

max
(θ,φ)∈D

min
q

fq(θ, φ) = max
(θ,φ)∈D

f1(θ, φ) = �1 + �2, (3.107)

where the maximum is attained for θ� = π/4, and ∀φ ∈
[
arccos

(
1+α

2(1−α)

)
, π/4

]
.

Since the expression for maxθ,φ minq fq(θ, φ) is the same for this case than for the previous

one, we can merge these two cases, obtaining

α ∈ [α0, 1/3] ∪ (1/3, 1] = [α0, 1] ⇒ max
(θ,φ)∈D

min
q

fq(θ, φ) = �1 + �2, (3.108)

where θ� = π/4 and φ� = π/4 is a solution ∀α ∈ [α0, 1]. Notice that arccos
(

1+α0
2(1−α0)

)
= π/4.

• α ∈ [0, α0): There are intersections between all possible pairs of functions. See Figure

3.13 for details. The region R1 is delimited by the points A, T, and B; the region R2,

by A, T, and I; and the region R3, by I, T, and B. Noteworthy, the point-T, which we

call triple point, (θT , φT ), is the intersection between all the three functions. Since f1 is an

increasing function of θ, f2 is an increasing function of φ, and f3 is a decreasing function
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of φ, the point (θ�, φ�) that maximizes the minimum of the three functions must lie in the

intersection between f2 and f3 (The curve that goes from I to T in Figure 3.13). If we

plug (3.105) in (3.54), it can be seen that the function is continuous and that there is only

a local minimum. Consequently, the maximum in the curve has to be in one of the two

extremes, namely the point-T or the point-I. So, the two candidate points for being the

location of the maximum (θ�, φ�) are the triple intersection point (θT , φT ) and the point

in the intersection between f2 and f3, (θI , φI). We give here the expressions for (θI , φI)

and (θT , φT ):

θI =
π

4
, (3.109)

φI = arcsin
(

1 + α

2(1 − α)

)
, (3.110)

θT = arctan

√
3 − 3α −

√
3
√

α2 − 6α + 1
3 − 3α +

√
3
√

α2 − 6α + 1

 , (3.111)

φT = arccos
(

α cos2 θT + sin2 θT − 1 − α

2 sin θT cos θT (α − 1)

)
. (3.112)

Finally, evaluating the functions at the two candidate points we obtain

f2,3(θI , φI) = 2�1

(
1 + α − 1

2

√
3α2 − 10α + 3

)
, (3.113)

f1,2,3(θT , φT ) = �1

(
1 + α − 1√

3

√
α2 − 6α + 1

)
. (3.114)

We present now a linear upper bound, on both functions in (3.113) and (3.114). The bound

is found by fixing �1 and by constructing the line that goes from f2,3(θI , φI) evaluated at α = α0

to f1,2,3(θT , φT ) evaluated at α = 0. See Figure 3.14.

The bound is

K�1 (λc + α) = K(λc�1 + �2), (3.115)

where

λc � (
√

3 − 1)(3 − 2
√

2)
1 + 3

√
3 − 2

√
6

� 9.683 · 10−2, K � 1 + α0

λc + α0
� 4.3650. (3.116)
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Chapter 4

Single-user communication through
MIMO channels with incomplete CSI

4.1 Introduction

In this chapter we study and characterize different mutual information and capacity formulations

for a very specific case of incomplete CSI at the transmitter side and perfect CSI at the receiver

side.

As commented in chapter 2, in the existing literature, a paradigmatic example of study for a

scenario with incomplete CSI is the case of knowing only the channel statistics, but not the actual

realization. According to this, the transmit covariance matrix has to be designed to maximize

the mutual information averaged over these statistics, i.e., the so-called ergodic capacity.

In the following pages a different approach is taken by considering a more engineering per-

spective. Here it is considered that the transmitter has perfect knowledge of the magnitude of

the complex channel coefficients, but a complete lack of knowledge of the channel phases. This

uncertainty model encompasses many practical situations of interest. As an illustrative example,

consider the case of TDD schemes, where the transmitter can estimate the channel during the

uplink and use it as it was the same in the downlink thanks to the electromagnetic reciprocity

principle. Note, however, that this is not true since the uplink and downlink channels are seen

through different RF chains. Although calibration methods are able to compensate the gains,

the phases are much more difficult to be estimated and compensated.

As it is commented in §2.3.2, it is widely known that, in case of having additive Gaussian

noise at the receiver, the optimum transmitted signal has to be zero-mean Gaussian distributed

if the mutual information is to be maximized. Thus, the only remaining degree of freedom

when optimizing the system is the transmit covariance matrix. In this chapter, a design of the

transmit covariance matrix to achieve the ergodic and compound capacities is proposed under

65
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the already mentioned uncertainty model. Unfortunately, closed-form solutions do not exist

and approximations have to be applied. For both cases, a numerical optimization method is

proposed based on the use of a finite set of random realizations of the channel phases, although

it may require a high computational load. Additionally, for the case of the ergodic capacity, an

approximate method with lower complexity is also given based on RMT [Tul04], whereas for

the case of the compound capacity, an approximate finite term Taylor expansion of the mutual

information is exploited. In this sense, one of the major contributions of the present chapter

with respect to the existing literature, is the application of RMT not only for the evaluation but

also for the optimization of the ergodic mutual information for the case of magnitude knowledge

and phase uncertainty.

4.2 System model

We stay with the flat-fading MIMO channel model presented in the preceding chapter and which

is reviewed in §2.1.4. We recall it here, for the sake of completeness. The received signal vector

y ∈ CnR is given by

y = Hx + n, (4.1)

where x ∈ CnT is the transmitted signal vector, H ∈ CnR×nT represents the channel matrix,

and n ∈ CnR is the noise vector. In this case, the entries of the noise vector are considered to

be proper complex Gaussian random variables with En = 0 and EnnH = σ2I.

As explained in the introduction, we consider that, while the receiver is fully cognizant of

the channel state, the transmitter has only knowledge about the magnitude of the entries of the

channel matrix, and a complete lack of knowledge about the actual value of their phases. To

separate the known from the unknown part of the channel entries, the following variables are

defined:

[H]ij = mij ei θij , mij ∈ R+ ∪ {0}, θij ∈ [0, 2π), (4.2)

where θij are i.i.d. random variables uniformly distributed in [0, 2π) as suggested by, e.g., [Jak74].

By defining the matrices M and P such that [M]ij = mij and [P]ij = ei θij , the uncertainty

model described in (4.2) can be compactly rewritten as

H = M � P, (4.3)

where � represents the Hadamard element-wise matrix product.
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4.3 Instantaneous mutual information

The capacity achieving strategy in MIMO channels with AWGN is signaling using random

Gaussian vectors as shown in [Cov91] and commented in chapter 2. In this case, the instantaneous

mutual information for a fixed transmit covariance matrix, Q = ExxH , and channel state as

defined by {M,P} is the particularization of the expression (2.16) in §2.3.2 for the uncertainty

model considered here

Ψ(Q,M,P) = log det
(
I + σ−2(M � P)Q(M � P)H

)
, (4.4)

where the transmitted power is given by ExHx = TrQ = PT . Recall from the previous chapter

that utilizing the SVD the matrix Q can be factored as Q = UQΛQUH
Q, with UQ being a unitary

matrix with the eigenvectors of Q and ΛQ being a diagonal matrix containing the eigenvalues

of Q which are given by λQ,j = [ΛQ]jj .

In the following sections, we particularize the definitions of ergodic and compound mutual

information for the uncertainty model considered in this chapter and explain in which situations

these measures become meaningful and how can they be maximized.

4.4 Ergodic mutual information and capacity

The information theoretic community defines the ergodic mutual information as the expectation

with respect to the channel state uncertainty of the instantaneous mutual information in (4.4)

as described in (2.17). In our case, since the channel uncertainty is associated with the channel

phases P, the expression for the ergodic mutual information particularizes to

IE(Q,M) = EPΨ(Q,M,P). (4.5)

Note that, by taking the expectation with respect to P, the ergodic mutual information IE(Q,M)

does not depend on P.

The ergodic capacity is then defined as the supremum of the ergodic mutual information

with respect to the set of possible covariance matrices Q, subject to a mean transmitted power

constraint. Formally, this can be written as

CE = sup
Q

IE(Q,M)

s. t. TrQ ≤ PT ,

Q � 0.

(4.6)

The ergodic capacity is utilized as a measure of the maximum rates that can be achieved

in situations where, during the transmission of the message, the magnitude of the channel
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Figure 4.1: Optimum transmitter architecture for the case of complete phase unknowledge of the channel
gains. Both for the cases of ergodic and compound capacities, the optimum signalling consists in trans-
mitting independent signals through different transmit antennas with an appropriate power allocation.

matrix, M, remains constant while the channel phases, P, vary sufficiently fast so that its long-

term properties are revealed. This model would correspond, for example, to a communication

situation with direct line of sight, where the mobile user is moving slowly. In this scenario, while

the magnitude of the entries of M would not change in an appreciable way, the phases in P

would vary very rapidly because of the relative movement.

The optimal structure of the covariance matrix that achieves the ergodic capacity is given

next and is depicted in Figure 4.1.

Proposition 4.4.1 Assume instantaneous perfect CSI at the receiver and magnitude CSI at the

transmitter, M. If the channel state, defined as H = M�P, with [P]ij = ei θij , is a random matrix

whose elements’ phases, θij, are i.i.d. random variables drawn from a uniform distribution in the

interval [−π, π), then the ergodic capacity of the Gaussian memoryless channel (4.1), subject to

a transmit power constraint PT , can only be achieved by a diagonal covariance matrix Q� = ΛQ,

i.e., U�
Q = I. The ergodic capacity is then given by the solution to

CE = sup
ΛQ

IE(ΛQ,M)

s. t. TrΛQ ≤ PT ,

λQ,j ≥ 0, [ΛQ]jj′ = 0, 1 ≤ j, j′ ≤ nT .

(4.7)

Proof See Appendix 4.A. �

Because of the difficulty of dealing with the expectation with respect to the channel phases

in the expression for IE(ΛQ,M), an expression for the optimal values of the diagonal elements

of ΛQ has only been found for the nT = nR = 2 case [Pay04b, Pay04a], as given in the following

section.
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Once the exact solution for the nT = nR = 2 case is presented, in the following sections

we derive two methods to numerically calculate an approximation to the optimal values of the

diagonal of ΛQ for any possible values of nT and nR.

4.4.1 Solution to the particular case nT = nR = 2.

As a particular case from what has been proven in the last section, we can state that the capacity

of a 2 × 2 MIMO system with phase uncertainty at the transmitter can be characterized with

the following maximization:

CE = sup
{λQ,1,λQ,2}

IE({λQ,1, λQ,2},M)

s. t. λQ,1 + λQ,2 ≤ PT ,

λQ,j ≥ 0, 1 ≤ j ≤ 2.

(4.8)

where IE({λQ,1, λQ,2},M) is the same as defined in (4.7) with the positive weights λQ,1 and

λQ,2 denoting the diagonal elements of ΛQ. Equivalently, IE({λQ,1, λQ,2},M) can be expressed

as

IE({λQ,1, λQ,2},M) = EP log det
(
I + σ−2λQ,1h1hH

1 + σ−2λQ,2h2hH
2

)
, (4.9)

where the dependence of hj , j = 1, 2, on P has not been written explicitly. For the sake of

simplicity we define,

T = 2λQ,1λQ,2σ
−4m11m12m21m22, (4.10)

S = 1 + λQ,1σ
−2

(
m2

11 + m2
21

)
+ λQ,2σ

−2
(
m2

12 + m2
22

)
+ λQ,1λQ,2σ

−4
(
m2

11m
2
22 + m2

12m
2
21

)
,

(4.11)

φ = θ21 − θ11 + θ12 − θ22. (4.12)

Notice that φ is also uniformly distributed in [−π, π). With the last definitions and expanding

the determinant in (4.9), IE({λQ,1, λQ,2},M) can be expressed as

IE({λQ,1, λQ,2},M) = log S +
1
2π

∫ π

−π
log

(
1 − T cos φ

S

)
dφ. (4.13)

This last integral can be solved using [Gra00, p.526]

1
π

∫ π

0
log (1 + β cos x) dx = log

(
1
2

(
1 +

√
1 − β2

))
. (4.14)

Thus, the mutual information in (4.13) can be expressed as

IE({λQ,1, λQ,2},M) = log
(

1
2

(
S +

√
S2 − T 2

))
. (4.15)

Once we have obtained an explicit expression for the ergodic mutual information, IE , we can

characterize the capacity of the system and the optimum power allocation scheme by carrying out
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the maximization of (4.15) with respect to the positive weights λQ,1, λQ,2 under the constraint

λQ,1 + λQ,2 = PT . Consequently, the optimization problem can be reformulated as follows,

{λ�
Q,1, λ

�
Q,2} = arg sup

λQ,1,λQ,2

log
(

1
2

(
S +

√
S2 − T 2

))
s.t. λQ,1 + λQ,2 = PT ,

λQ,j ≥ 0, 1 ≤ j ≤ 2,

(4.16)

where the dependence of the objective function on λQ,1 and λQ,2 is through S and T . We make

the slight abuse of notation and denote the optimization variables and their optimum values

with the same symbol. It is easy to see that this optimization problem is convex. In order to

investigate the properties of the optimum solution, let us first formulate the Lagrangian of the

corresponding minimization problem,

L(λQ,1, λQ,2) = −S −
√

S2 − T 2 − µ1λQ,1 − µ2λQ,2 + ν (λQ,1 + λQ,2 − PT ) . (4.17)

Imposing the KKT conditions, we see that, the following are necessary and sufficient conditions

for {λQ,1, λQ,2} to be the global maximum of (4.16)

λQ,j ≥ 0, (4.18)

µj ≥ 0, (4.19)

λQ,jµj ≥ 0, (4.20)

λQ,1 + λQ,2 − PT = 0, (4.21)
d

dλQ,j

(
S +

√
S2 − T 2

)
+ µj − ν = 0, (4.22)

for j = 1, 2. Now, observe that µ1 and µ2 are just slack variables that can be eliminated, leaving

d
dλQ,j

(
S +

√
S2 − T 2

)
≤ ν, (4.23)

λQ,j

(
ν − d

dλQ,j

(
S +

√
S2 − T 2

))
= 0, (4.24)

again for j = 1, 2. Let us now analyze the different situations regarding power allocation.

Situation 1: one transmit antenna is switched off.

Assume that λ�
Q,1 = PT and λ�

Q,2 = 0 so that the second antenna is switched off. Our objective

here is to find necessary and sufficient conditions for this situation to be optimal. Let us first

concentrate on the necessary conditions. Obviously, from (4.24) one must have,

ν =
d

dλQ,1

(
S +

√
S2 − T 2

)
(4.25)
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and consequently

d
dλQ,1

(
S +

√
S2 − T 2

)
≥ d

dλQ,2

(
S +

√
S2 − T 2

)
. (4.26)

This is clearly our candidate condition for sufficiency, and can alternatively be written as

PT

σ2
≤

(
m2

11 + m2
21

)
−
(
m2

12 + m2
22

)
m2

11m
2
22 + m2

21m
2
12

� ξ. (4.27)

From this point, we see that the necessary and sufficient conditions for transmitting with the

first antenna are (4.27) together with
(
m2

11 + m2
21

)
>

(
m2

12 + m2
22

)
. By the symmetry of the

problem, one can also see that, whenever
(
m2

11 + m2
21

)
<

(
m2

12 + m2
22

)
and PT σ−2 ≤ −ξ = |ξ|,

the first antenna will be switched off and the whole power will be allocated to the second one,

i.e., λ�
Q,1 = 0, λ�

Q,2 = PT .

Situation 2: both antennas are active.

Without loss of generality, we assume here that ξ > 0 (the case ξ < 0 can readily be studied

exploiting the inherent symmetry of the problem, and the case ξ = 0 leads to the trivial solution

λ�
Q,1 = λ�

Q,2 = PT /2).

We define λQ,1 = λ and then λQ,2 = PT − λ. The last KKT conditions in (4.18)–(4.22) tell

us that

ν =
d

dλQ,1

[
S +

√
S2 − T 2

]
=

d
dλQ,2

[
S +

√
S2 − T 2

]
. (4.28)

This condition can alternatively be written as

S

T
+

√
S2

T 2
− 1 =

2m11m12m21m22

m2
11m

2
22 + m2

21m
2
12

PT − 2λ

ξσ2 + PT − 2λ
. (4.29)

From this equation, the expression of the ergodic mutual information in (4.15), and the fact

that T > 0 by its definition in (4.10), one readily sees that (PT − 2λ) and
(
ξσ2 + PT − 2λ

)
must always have the same sign (otherwise, the logarithm could not be properly defined). In

addition, it can be stated that PT − 2λ < 0, because if the contrary was assumed it would

lead to
√

S2 − T 2 < 0. Thus, since PT − 2λ and ξσ2 + PT − 2λ have the same sign, it implies

λ > (PT + ξσ2)/2, i.e., the optimum power allocation algorithm gives more power to the best

antenna (namely the first one whenever ξ > 0).

Note that, up to now, we have only proven that the optimum λ is such that

PT + ξσ2

2
< λ < PT . (4.30)

Next, we give a more specific characterization of the optimum transmit power allocation.



72 4.4. Ergodic mutual information and capacity

(0,0)

Uniform power allocation ( 0)ξ =

Antenna Selection

,1

,2 0

TPλ
λ

=
=

Q

Q

Antenna Selection

,1

,2

0

TP

λ
λ

=
=

Q

Q

,1 ,2
/ 2TPλ λ= =

Q Q

Power Allocation

,1 ,2
λ λ>

Q Q

Power Allocation

,2 ,1
λ λ>

Q Q

2

TP

σ

Figure 4.2: Graphical scheme of the optimal power allocation as a function of γ and ξ.

Our objective now is to obtain a closed form expression for the optimum power allocation

strategy in the case where the two antennas are active. So, we define

x =
2λ − PT

σ2
, (4.31)

∆ =
m2

11m
2
22 − m2

21m
2
12

m2
11m

2
22 + m2

21m
2
12

, (4.32)

Υ =
2 + PT σ−2

(
m2

11 + m2
21

)
+ PT σ−2

(
m2

12 + m2
22

)(
m2

11 + m2
21

)
−
(
m2

12 + m2
22

) . (4.33)

Using basic algebraic manipulations, one can show that (4.29) can be reformulated (adding, of

course, new solutions) as:

∆2x4 − 4ξx3 +
[
(3ξ − 4Υ) ξ − ∆2P 2

T σ−4
]
x2 + 4Υξ2x + P 2

T σ−4ξ2 = 0. (4.34)

The power assignment can be determined finding the root of the fourth order polynomial in

(4.34) in the range x ∈ (ξ, PT σ−2). Note that there exist closed form expressions for the roots of

a fourth order polynomial, and therefore the optimum power allocation strategy can be derived

in exact form (no root-searching procedures are needed). In Appendix 4.D we prove that there

is a single root of the polynomial (4.34) located on x ∈ (ξ, PT σ−2). Thereby, using (4.31), the

optimal λ can be found.

Summary: optimum power allocation scheme.

Let us now briefly summarize the optimum power allocation policy in a 2 × 2 MIMO system

under phase uncertainty at the transmitter.
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• If PT /σ2 < |ξ|, then the best transmit antenna should be selected (namely λ�
Q,1 = PT ,

λ�
Q,2 = 0 if ξ > 0 and vice versa if ξ < 0).

• If PT /σ2 ≥ |ξ|, and ξ > 0, then λ�
Q,1 = (PT + σ2x)/2, where x is the unique root of

the fourth order polynomial (4.34) in the region ξ < x < PT /σ2. If ξ < 0, an equivalent

characterization can be given simply by swapping the role of antenna 1 and antenna 2.

In Figure 4.2, the optimum power allocation scheme above described is depicted as a function

of ξ and PT /σ2.

4.4.2 Approximation by finite sample size

In the previous section we presented a closed-form expression for the optimal transmit covariance

matrix for the particular case of a 2×2 MIMO system. In this section we characterize the diagonal

elements of the transmit covariance matrix utilizing numerical methods for the general case.

From its expression in (4.7), it becomes clear that the mutual information maximization

problem is a convex optimization problem because it is defined as the supremum of a concave

function and the constraints are linear in the design variables, [Boy04]. However, the stochastic

nature of the objective function (defined as the expectation of a random quantity) complicates

the optimization by making difficult to compute the exact value of the objective function, its

gradient, and its Hessian, which are needed at each optimization step.

To overcome this problem, in a practical set-up the expectation operator is approximated

by taking the mean of a sufficiently large sample of realizations of the channel phases matrix P

for a fixed magnitude matrix M.

IE(ΛQ,M) � Inum
E (ΛQ,M) =

1
|M|

∑
P∈M

Ψ(ΛQ,M,P), (4.35)

where M is the set of realizations of the phases matrix P. With the utilization of this approxi-

mation, we obtain the following problem

CE � sup
ΛQ

1
|M|

∑
P∈M

Ψ(ΛQ,M,P)

s. t. TrΛQ ≤ PT ,

λQ,j ≥ 0, [ΛQ]jj′ = 0, 1 ≤ j, j′ ≤ nT ,

(4.36)

where the concavity of the objective function is preserved and, consequently, it is a convex opti-

mization problem. The speed of convergence of these kind of problems can be greatly increased

by providing to the algorithm the analytical expressions of the gradient vector and the Hessian

matrix of the cost function, which are given next.
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Since the dependence of Inum
E (ΛQ,M) on ΛQ is only through its diagonal elements, we

can calculate the gradient of Inum
E (ΛQ,M) with respect to the vector λQ which is given by

[λQ]j = [ΛQ]jj . Defining the vectors mj and pj , with 1 ≤ j ≤ nT , as the vectors such that

[mj ]i = [M]ij and that [pj ]i = [P]ij , the gradient can be expressed as [Mag99]

[∇λQ
Inum
E (ΛQ,M)]j =

1
|M|

∑
P∈M

(mj � pj)H
(
I + σ−2(M � P)ΛQ(M � P)H

)−1(mj � pj).

(4.37)

Similarly, the Hessian matrix ∇2
λQ

Inum
E (ΛQ,M) is defined as the matrix whose (j, j′)-th element

fulfills

[∇2
λQ

Inum
E (ΛQ,M)]jj′ =

∂2Inum
E (ΛQ,M)

∂λQ,j∂λQ,j′
=

= − 1
|M|

∑
P∈M

|(mj � pj)H
(
I + σ−2(M � P)ΛQ(M � P)H

)−1(mj′ � pj′)|2. (4.38)

In the simulations section we show some ergodic capacity results, which have been obtained by

solving the convex optimization problem in (4.36). We highlight that, although being a convex

optimization problem, for large values of nT and nR the solution is computationally hard to

obtain. In the following section, we present an alternative method to overcome this problem.

4.4.3 Optimization utilizing results from the theory of random matrices

Although the method presented in the last section to compute the ergodic mutual information

is generic, in the sense that the values of nT and nR are arbitrary, and it can achieve any desired

accuracy, its main drawback is that it is computationally hard to obtain a solution, which makes

difficult its implementation in real-time systems.

Recall that, in the previous section, the expectation with respect to the channel phases of

the instantaneous mutual information was approximated by a mean over a sample of phases

realizations, as in (4.35). An alternative approximation for this expectation can be obtained

within the framework of RMT. See further [Tul04] for an excellent and exhaustive introduction

to RMT with applications to the analysis of wireless communications systems.

One of the objects of study of the theory of random matrices is the eigenvalue probability

density of random matrices such as XXH , with X ∈ CnR×nT when the number of columns, nT ,

and rows, nR, of the matrix grows without bound but keeping the ratio nT /nR held constant,

as

lim
nT→∞
nR→∞

nT

nR
= β. (4.39)

An interesting result in RMT is that the asymptotic eigenvalue density of XXH is independent

of the particular distribution of the entries of X as long as they are independently distributed.
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In particular, the entries of X have to fulfill

[X]ij =

√
dij

nT
zij , (4.40)

with zij being i.i.d. random variables with Ez11 = 0 and E|z11|2 = 1, and some other technical

requirements on higher order moments which are out of the scope of the present dissertation,

but which are fulfilled by the presented model. The parameter dij controls the variance of the

random variable [X]ij as it is described below.

The matrix definition in (4.40) fits excellently in the uncertainty model considered in this

chapter as we explain in the following. Firstly, recall that the interest is in the evaluation of the

quantity

IE(ΛQ,M) = EP log det
(
I + σ−2(M � P)ΛQ(M � P)H

)
. (4.41)

Utilizing the spectral decomposition of the matrix (M�P)ΛQ(M�P)H we obtain an equivalent

expression for the ergodic mutual information.

IE(ΛQ,M) = EP

nR∑
i=1

log
(
1 + σ−2ζi

)
, (4.42)

where ζi, with 1 ≤ i ≤ nR, represents the eigenvalues of the matrix (M � P)ΛQ(M � P)H .

Note that the eigenvalues ζi are random quantities that depend on the current realization of

the channel phases P. By introducing the spectral measure of (M � P)ΛQ(M � P)H as the

following random probability measure

µ(ζ) =
1

nR

nR∑
i=1

δ(ζ − ζi), (4.43)

the mutual information expression in (4.42) can be reformulated as

IE(ΛQ,M) = EP

∫ ∞

0
log

(
1 + σ−2ζ

)
µ(ζ)dζ, (4.44)

where the expectation with respect to the channel phases now acts upon the probability measure

µ(ζ). As commented above, the probability measure µ(ζ) is the eigenvalue density of the matrix

(M � P)ΛQ(M � P)H . Defining X = (M � P)Λ1/2
Q it can be readily seen that

XXH = (M � P)ΛQ(M � P)H . (4.45)

Now, the entries of X fulfill that

[X]ij = [M]ijλ
1/2
Q,j ei θij , (4.46)
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which is the same model as in (4.40) by identifying√
dij

nT
= [M]ijλ

1/2
Q,j , (4.47)

zij = ei θij , (4.48)

and noting that E ei θij = 0 and E| ei θij |2 = 1. Consequently the asymptotical distribution µ(ζ)

can be computed with the results of RMT. However, the interest here is not in the asymptotical

distribution of µ(ζ) but rather, on a deterministic approximation of it, for finite values of nT and

nR. Fortunately, such approximation of µ(ζ) has been developed in, e.g., [Tul04] and [Hac05],

and it is reproduced in the following, utilizing the guidelines described in [Hac06] or [Pay06a].

First of all, by differentiating and integrating the expression (4.41) with respect to σ2, the

following expression is obtained

IE(ΛQ,M) =
∫ ∞

σ2

(
1
ξ
− EP

1
nR

Tr
(
(M � P)ΛQ(M � P)H + ξI

)−1
)

dξ (4.49)

It can be readily seen that the second term inside the integral can be equivalently expressed as

1
nR

Tr
(
(M � P)ΛQ(M � P)H + ξI

)−1 =
1

nR

nR∑
i=1

1
ζi + ξ

=
∫

1
ζ + ξ

µ(ζ)dζ = mµ(−ξ), (4.50)

where mµ(z) is the Stieltjes transform of the random measure µ(ζ). Having introduced this

transformation, the mutual information expression in (4.49) becomes

IE(ΛQ,M) =
∫ ∞

σ2

(
1
ξ
− EPmµ(−ξ)

)
dξ. (4.51)

As commented above, the key idea is to replace the expectation of the Stieltjes transform of the

random measure µ(ζ) by the Stieltjes transform of a deterministic measure ν(ζ) in such a way

that

lim
nT→∞
nR→∞

µ(ζ) − ν(ζ) = 0, a.s., with lim
nT→∞
nR→∞

nT

nR
= β. (4.52)

Consequently, the approximation

IE(ΛQ,M) � ĪE(ΛQ,M) =
∫ ∞

σ2

(
1
ξ
− mν(−ξ)

)
dξ, (4.53)

is obtained, which fulfills that

lim
nT→∞
nR→∞

IE(ΛQ,M) − ĪE(ΛQ,M) = 0, a.s., with lim
nT→∞
nR→∞

nT

nR
= β. (4.54)

and for any finite values of nT and nR, ĪE(ΛQ,M) approximates IE(ΛQ,M). Unfortunately,

the mean and variance of this estimator are not fully characterized yet and its study is a subject

of ongoing research.
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Now it is only needed to obtain a procedure to calculate mν(z) as a function of ΛQ and

M. In [Tul04] and [Hac05], the authors found that the Stieltjes transform of the deterministic

probability measure ν(ζ), fulfilling the property in (4.52)) is given by

mν(z) =
1

nR
1Ht(z), (4.55)

where 1H is the all-one row vector of the appropriate dimension, and t(z) is the solution to the

following system of equations

[t(z)]i =
1

−z
(
1 + n−1

T d̃H
i t̃(z)

) , for 1 ≤ i ≤ nR, (4.56)

[t̃(z)]j =
1

−z
(
1 + n−1

T dH
j t(z)

) , for 1 ≤ j ≤ nT , (4.57)

where dj ∈ RnR , with 1 ≤ j ≤ nT , and d̃i ∈ RnT , with 1 ≤ i ≤ nR are column vectors with real

non-negative entries such that

[dj ]i = dij = nT [M]2ijλQ,j (4.58)

[d̃i]j = dij = nT [M]2ijλQ,j . (4.59)

With these definitions and integrating (4.53) it is now possible to obtain an expression for

the deterministic approximation of the mutual information as

ĪE(ΛQ,M) = −
nR∑
i=1

log(σ2[t(−σ2)]i) −
nT∑
j=1

log(σ2[t̃(−σ2)]j)−

− σ2
nR∑
i=1

nT∑
j=1

[t(−σ2)]i[t̃(−σ2)]j [M]2ijλQ,j . (4.60)

Although this expression for ĪE(ΛQ,M) is rather complicated, it can be numerically evaluated

in a very efficient manner. The computationally heavier part is the calculation of t and t̃ which

has to be done with numerical methods (for example, utilizing the fixed-point technique, which,

for this particular case, is a very efficient and reliable method).

Once a method to compute ĪE(ΛQ,M) has been obtained, the ergodic capacity can now be

approximated as CE � C̄E , where C̄E is the solution to the following optimization problem

C̄E = sup
ΛQ

ĪE(ΛQ,M)

s. t. TrΛQ ≤ PT ,

λQ,j ≥ 0, [ΛQ]jj′ = 0, 1 ≤ j, j′ ≤ nT ,

(4.61)

which is solved numerically utilizing standard methods. Recall again that the proposed method

to approximate CE is the result from the application of RMT.

In the simulations section, the goodness of this approximation is validated experimentally,

and some insight into the implications of RMT in this problem is given.
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4.5 Compound mutual information and capacity

The expression for the compound mutual information can be obtained from the particularization

of the expression given in (2.19), which recall that is defined in [Csi81] as the infimum, with

respect to the channel state uncertainty, of the mutual information expression in (4.4). For the

considered uncertainty model, it particularizes to:

IC(Q,M) = inf
P∈P

Ψ(Q,M,P), (4.62)

where P � {X ∈ CnR×nT | |[X]ij | = 1} defines the set of all possible channel phases compatible

with the incomplete knowledge about H. It must be emphasized that the compound mutual

information does not depend on the statistical properties of the uncertainty in the channel,

because it only considers the worst-case scenario.

The compound capacity is then naturally defined as the maximum with respect to the trans-

mit covariance matrix of the compound mutual information as in (2.20), subject to a total mean

transmitted power constraint.

CC = sup
Q

IC(Q,M)

s. t. TrQ ≤ PT ,

Q � 0.

(4.63)

The compound mutual information is a measure of the worst-case achievable rates in situa-

tions where no significant channel variability may occur during the transmission of the message

and the transmitter is only informed of (or is only able to estimate accurately) the magnitude

matrix M. This may be the case of a static communication between the transmitter and the

receiver, or when communicating in a slow fading environment.

The optimal structure of the covariance matrix that achieves the compound capacity is given

next and it is depicted in Figure 4.1.

Proposition 4.5.1 Assume instantaneous perfect CSI at the receiver and magnitude CSI at the

transmitter, M. If the channel state, which is an unknown matrix, is defined as H = M�P, with

[P]ij = ei θij then the compound capacity of the Gaussian memoryless channel (4.1), subject to a

transmit power constraint PT , can only be achieved by a diagonal covariance matrix Q� = ΛQ,

i.e., U�
Q = I. The compound capacity is then given by the solution to

CC = sup
ΛQ

IC(ΛQ,M)

s. t. TrΛQ ≤ PT ,

λQ,j ≥ 0, [ΛQ]jj′ = 0, 1 ≤ j, j′ ≤ nT .

(4.64)
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Proof See Appendix 4.A. �

As stated in Appendix 4.A, similarly as in the ergodic case, the compound capacity can

also be achieved by a diagonal transmit covariance matrix, i.e., transmitting independent data

streams through different antennas with an appropriate power allocation (see Figure 4.1).

In the following section, a closed-form solution for the above optimization problem is given

for the particular case with nT = 2 [Pay05b, Pay05a]. For a generic value of nT numerical

methods need to be utilized.

4.5.1 Solution for the particular case with nT = 2

Before proceeding to present the solution to the problem of finding the power allocation that

maximizes the compound mutual information, some preliminary results have to be described.

It can be proved that the second order Taylor expansion of the determinant det(I +

σ−2HΛQHH), formulated as det
(
I + σ−2HΛQHH

)
= D(ΛQ,H) + o

(∑
j,j′ λQ,jλQ,j′

)
, is given

by the following function:

D(ΛQ,H) = 1 + σ−2
∑

j

λQ,jαjj + σ−4
∑

j,j′>1

λQ,jλQ,j′(αjjαj′j′ − |αjj′ |2), (4.65)

where αjj′ = hH
j hj′ and hj represents the j-th column of the matrix H. Note that for nT = 2

the second order approximation becomes exact,

nT = 2 ⇒ det
(
I + σ−2HΛQHH

)
= D(ΛQ,H). (4.66)

The objective now is to find a lower bound of the function D(ΛQ,H) over all the possible phases

realizations which model the uncertainty in the channel knowledge. In order to do it, note that

|αjj′ |2 can be upper bounded as

|αjj′ |2 = |hH
j hj′ |2 =

(∑
k

h∗
kjhkj′

)(∑
l

hljh
∗
lj′

)
(4.67)

=
∑

k

|hkj |2|hkj′ |2 +
∑
k,l �=k

h∗
kjhkj′hljh

∗
lj′ (4.68)

=
∑

k

m2
kjm

2
kj′ +

∑
k,l>k

2mkjmkj′mljmlj′ cos(θkj − θkj′ − θlj + θlj′) (4.69)

≤
∑

k

m2
kjm

2
kj′ +

∑
k,l>k

2mkjmkj′mljmlj′ (4.70)

= |mH
j mj′ |2, (4.71)

where mj is the j-th column of the matrix M. Noticing that αjj = ‖hj‖2 = ‖mj‖2, and using

the upper bound above, it can be easily seen that

D(ΛQ,H) ≥ D(ΛQ,M), (4.72)



80 4.5. Compound mutual information and capacity

i.e., the minimum of the second order Taylor expansion of the determinant over all the possible

phases corresponds to the evaluation of this Taylor expansion for the concrete case of having

zero-phases.

From what has been said above, for the particular case where nT = 2, the expression of the

compound mutual information in (4.62) is simplified to

IC(Q,M) = inf
P∈P

Ψ(Q,M,P) = inf
P∈P

logD (ΛQ,H) = logD (ΛQ,M) . (4.73)

Thus, the problem in (4.63) can be reformulated as

CC = sup
{λQ,1,λQ,2}

logD (ΛQ,M)

s.t. λQ,1 + λQ,2 = PT ,

λQ,j ≥ 0, 1 ≤ j ≤ 2,

(4.74)

and, using the KKT conditions and supposing ‖m1‖2 < ‖m2‖2 and m1 �= km2, the optimal

solution can be readily obtained as

λ�
Q,1 =

(
PT

2
− (‖m2‖2 − ‖m1‖2)σ2

2
(
‖m1‖2‖m2‖2 − |mT

2 m1|2
))+

, (4.75)

λ�
Q,2 = PT − λ�

Q,1. (4.76)

The solution to the case where ‖m1‖2 > ‖m2‖2 is symmetric to the solution presented above,

and if m1 = km2 all the power must be given to the best channel. Notice that, although the

problem set-up is different, a similar result was obtained in [Chu01].

In the following subsection approximate solutions to compute the optimal power allocation

without imposing the restriction that nT = 2 are presented.

4.5.2 Approximation by finite sample size

Similarly as in the ergodic channel capacity presented in the previous section, in this case,

the compound mutual information is proposed to be calculated approximately by using a large

sample of realizations of the channel phases matrix P for a fixed magnitude matrix M. Using

the same notation as before, let M be the set of samples of random phases realizations, i.e.,

M = {P1, . . . ,P|M|}, where k will be used as the index corresponding to the k-th element, i.e.,

Pk. Using this, the compound mutual information can be approximated as

IC(ΛQ,M) � Inum
C (ΛQ,M) = inf

P∈M
Ψ(ΛQ,M,P) = Ψ(ΛQ,M,Pkmin

), (4.77)

where kmin is the index corresponding to the phase matrix at which the minimum in the ex-

pression above is achieved, which depends on ΛQ for a fixed M, i.e., kmin = kmin(ΛQ). The
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optimization problem, corresponding to the maximization of Inum
C (ΛQ,M), can now be written

as the following convex optimization problem:

C̄C � sup
ΛQ

Ψ(ΛQ,M,Pkmin(ΛQ))

s. t. TrΛQ ≤ PT ,

λQ,j ≥ 0, [ΛQ]jj′ = 0, 1 ≤ j, j′ ≤ nT .

(4.78)

The numerical algorithms for convex problems based, for example, on interior point methods, can

be applied to obtain the solution to the above problem. The speed of convergence of these kind

of procedures can be greatly increased by providing to the algorithm the analytical expressions

of the gradient vector and the Hessian matrix of the cost function. In this case, the gradient

and Hessian can be directly found by adapting the expressions given in §4.4.2 to the compound

case. This results in the following expressions:

[∇λQ
Inum
C (ΛQ,M)]j = (mj � pj)H

(
I + σ−2(M � P)ΛQ(M � P)H

)−1(mj � pj)
∣∣∣
P=Pkmin(ΛQ)

.

(4.79)

Similarly, the Hessian matrix ∇2
λQ

Inum
C (ΛQ,M) is defined as the matrix whose (j, j′)-th element

fulfills

[∇2
λQ

Inum
C (ΛQ,M)]jj′ =

= − |(mj � pj)H
(
I + σ−2(M � P)ΛQ(M � P)H

)−1(mj′ � pj′)|2
∣∣∣
P=Pkmin(ΛQ)

. (4.80)

4.5.3 Approximated approach inspired by Taylor expansion

The previous approach based on the approximation of the minimum of the mutual information

over a finite set of realizations of the phase matrix P may have an unaffordable computational

load in order to obtain accurate approximations since the sample size may be required to be too

high, specially for moderate and high values of nT and nR.

In this subsection a different approach is taken. First, the second order Taylor expansion of

the determinant in the expression of the mutual information is considered and, afterwards, the

minimum value of this Taylor expansion over all the possible phases realizations is presented

recalling the results from §4.5.1. Once this expression has been made explicit, a convex problem

is formulated inspired by the previous result in order to calculate an approximation of the

maximum value of the worst-case original mutual information, i.e., of the compound capacity.

In the cases where the Taylor expansion coincides with the original exact determinant, this

convex optimization problem is able to find the compound capacity exactly. This happens when

either the number of transmit or receive antennas is equal to 2 or less, i.e., min{nT , nR} ≤ 2.

In a general case, the approximation will improve as the terms of order equal to or greater than
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3 in the Taylor expansion have a low contribution, which happens, for example, in low SNR

conditions. The goodness of this approximation will be evaluated in the simulations section.

Recalling the results from §4.5.1, the second order Taylor expansion of the determinant

det(I + σ−2HΛQHH), formulated as det
(
I + σ−2HΛQHH

)
= D(ΛQ,H) + o

(∑
j,j′ λQ,jλQ,j′

)
,

is given by the following function:

D(ΛQ,H) = 1 + σ−2
∑

j

λQ,jαjj + σ−4
∑

j,j′>1

λQ,jλQ,j′(αjjαj′j′ − |αjj′ |2), (4.81)

where αjj′ = hH
j hj′ and hj represents the j-th column of the matrix H. As it was also seen in

§4.5.1 a lower bound of the function D(ΛQ,H) is given by

D(ΛQ,H) ≥ D(ΛQ,M), (4.82)

i.e., the minimum of the second order Taylor expansion of the determinant over all the possible

phases corresponds to the evaluation of this Taylor expansion for the concrete case of having

zero-phases.

Inspired by this result, in the following it will be assumed that

det(I + σ−2HΛQHH) � det(I + σ−2MΛQMH), (4.83)

which will be more accurate as the terms of order greater than 2 in the Taylor expansion are more

negligible. Using this approximation, the compound capacity will now be found numerically as

the solution to the following convex optimization problem:

C̄C � sup
ΛQ

log det(I + σ−2MΛQMH)

s. t. TrΛQ ≤ PT ,

λQ,j ≥ 0, [ΛQ]jj′ = 0, 1 ≤ j, j′ ≤ nT .

(4.84)

Similarly as presented above, this convex problem can be solved easily using efficient numerical

algorithms based, for example, on interior point methods. Also as noted before, the speed of

convergence of these kind of procedures can be greatly increased by providing to the algorithm

the analytical expressions of the gradient vector and the Hessian matrix of the cost function. In

this case, the gradient and Hessian can be directly found by adapting the expressions given in

§4.5.2 to the objective function of the problem in (4.84). This results in the following expression:

[∇λQ
log det(I + σ−2MΛQMH)]j = mH

j

(
I + σ−2MΛQMH

)−1mj , 1 ≤ j ≤ nT . (4.85)

Similarly, the Hessian matrix ∇2
λQ

Inum
C (ΛQ,M) is defined as the matrix whose (j, j′)-th element

fulfills

[∇2
λQ

log det(I + σ−2MΛQMH)]jj′ = −|mH
j

(
I + σ−2MΛQMH

)−1mj′ |2, 1 ≤ j, j′ ≤ nT .

(4.86)
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Figure 4.3: Sample variance evaluation of the ergodic mutual information when using a set of random
realizations of the phases matrix. Different numbers of random realizations of the phases matrix and
numbers of transmit and receive antennas have been evaluated.

4.6 Simulations

In this section, some simulation results are presented to illustrate the concepts that have been

presented previously and evaluate the proposed solutions in terms of achieved performance.

First, in Figure 4.3, the accuracy of the approximation of the ergodic mutual information

using a sample set of random realizations of the phases matrix is evaluated. This evaluation is

performed in terms of the sample variance of the estimation vs. the size of the sample set and for

different numbers of transmit and receive antennas. As a general conclusion, it is observed that

when the number of random samples and antennas increases, the sample variance decreases,

i.e., the quality of the approximates improves, as expected. On the other hand, a qualitative

evaluation of the accuracy of the technique based on random matrix theory is shown in Figure

4.4. There, the estimated histogram of the eigenvalues of a random MIMO channel (i.e., the

eigenvalues of the expression HHH) for different numbers of transmit and receive antennas is

presented jointly with the asymptotic non-random probability density function ν(ζ) derived from

RMT. As expected, as the size of the MIMO channel increases, the accuracy gets better. Note,

however, that even in the case of a low number of antennas, the asymptotic distribution is able

to reproduce the mean behavior of the random distribution.
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Figure 4.4: Comparison between the experimental and, therefore, random histogram of the eigenvalues
of a random channel, i.e., of the expression HHH , and the asymptotic non-random probability density
function ν(ζ) given by RMT for different numbers of transmit and receive antennas.

Figure 4.5 shows again the random histogram of the eigenvalues and the asymptotic non-

random probability density function ν(ζ) derived from RMT for two different situations. First,

the situation corresponding to a transmitter in which a uniform power allocation is used, i.e., a

situation in which the knowledge of the modulus of the channel gains is not exploited (eigenvalues

of HIHH). Secondly, the case where the power allocation is derived so that the ergodic mutual

information is maximized, i.e., the ergodic capacity is achieved (eigenvalues of HΛHH , with

Λ containing the optimized power allocation). As a conclusion, it is shown that thanks to the

optimization of the power allocation, the distribution of the eigenvalues is shifted to higher

argument values and, therefore, the mutual information increases.

A more concrete numerical evaluation of the ergodic capacity is shown in Figures 4.6 and

4.7. From the first one it is concluded that both the numerical algorithm based on the sample

set of random realizations of the phases matrix and the algorithm derived from the application

of random matrix theory achieve almost the same ergodic capacity. This suggests to choose the

second technique, since it has a much lower computational load than the first one. In the second

figure, i.e., Figure 4.7, the optimized power allocation is compared with the uniform power

allocation, that is, that corresponding to the complete uncertainty of both the magnitude and

the phases of the channel gains. As seen in the figure, the gain provided by the optimized power
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Figure 4.5: Comparison between the experimental and the asymptotic probability density functions of
the eigenvalues resulting from uniform power allocation (i.e., of the expression HIHH) and the optimized
power allocation to achieve ergodic capacity (i.e., of the expression HΛHH).

allocation is specially important at low SNR, since at high SNR, the optimized power allocation

tends to be the uniform power allocation, as expected.

Concerning the simulations corresponding to the compound capacity, some results are given

in the remaining figures. Figure 4.8 also evaluates the sample variance of the compound capacity

corresponding to the application of a sample set of random realizations of the phases matrix.

The same conclusion as in Figure 4.3 can be obtained. Note, however, that the sample variances

obtained in the case of the compound capacity are approximately an order of magnitude higher

than in the case of the ergodic capacity. Finally, the same conclusions as before are derived from

the observation of Figs. 4.9 and 4.10. Note that in Figure 4.9 the techniques that are compared

are the one based on the application of the sample set of random realizations of the phases

matrix and the algorithm inspired by the second order Taylor expansion of the determinant in

the expression of the mutual information. As previously, both algorithms provide almost the

same result and, therefore, it is suggested to use the second one, since it has a much lower

computational complexity.
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Figure 4.6: Evaluation of the optimized power allocation in terms of ergodic mutual information using
the approximated algorithm with a finite sample set of random realization of the phases matrix and the
algorithm based on RMT.
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Figure 4.7: Comparison of the ergodic capacity that can be achieved when the transmitter has magnitude
knowledge and phase uncertainty using the optimized power allocation with the capacity that can be
achieved when the transmitter has no CSI, i.e., with uniform power allocation.



Chapter 4. Single-user communication through MIMO channels with incomplete CSI 87

10
0

10
1

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0 Sample variance as a function of the number of samples (Compound)

Number of Realizations

S
am

pl
e 

va
ria

nc
e

4x4 

8x8 

20x20 

Figure 4.8: Sample variance evaluation of the compound mutual information when using a set of random
realizations of the phases matrix. Different numbers of random realizations of the phases matrix and
numbers of transmit and receive antennas have been evaluated.
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Figure 4.9: Evaluation of the optimized power allocation in terms of compound mutual information
using the approximated algorithm with a finite sample set of random realization of the phases matrix
and the algorithm inspired by the second order Taylor expansion of the determinant in the expression of
the mutual information.
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Figure 4.10: Comparison of the ergodic capacity that can be achieved when the transmitter has magni-
tude knowledge and phase uncertainty using the optimized power allocation with the capacity that can
be achieved when the transmitter has no CSI, i.e., with uniform power allocation.

4.7 Chapter summary and conclusions

In this chapter, the problem of the design of a transmitter in a MIMO channel to achieve capac-

ity has been addressed. More concisely, the MIMO channel has been considered as a system with

uncertainty in the channel knowledge in terms of known magnitude of the channel gains and

completely unknown phases. The design problem has been derived from two different perspec-

tives that deal with the uncertainty in the system through two different approaches. On the one

hand, in the ergodic capacity case, the uncertainty has been addressed from a statistical point

of view, i.e., the capacity has been calculated as the average of the mutual information over

the statistics of the unknown phases. On the other hand, in the compound capacity case, the

capacity has been found as the infimum of the mutual information over all the possible phases

realizations.

The main problem when dealing with the two designs of the transmit covariance matrix to

achieve ergodic and compound capacities is that, except for particular cases of values of nT

and nR, closed-form expressions do not exist. This chapter has then focused the attention on

the application of numerical methods to find the optimal transmission signaling schemes that,

in both cases, can be implemented by transmitting independent data streams through different
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antennas with an appropriate power allocation. In both cases, two different numerical approaches

have been proposed. One of them is based on the utilization of a set of random samples of the

phases matrix, which are used to approximate the ergodic and compound mutual information.

For the case of the ergodic capacity, an additional technique based on the tools provided by

RMT is also presented, which reduces drastically the computational complexity. This reduction

in the computational load can also be achieved in the compound capacity problem by using an

approximation of the worst-case mutual information inspired by the minimization of a second

order Taylor expansion of the determinant in the mutual information.

Finally, the simulations have been useful to show two different aspects. First, the accu-

racy of the proposed approximated solutions has been tested, showing that the low complexity

techniques provide nearly the same results as the high load algorithms based on the set of ran-

dom realizations of the phases matrix. Finally, the ergodic and compound capacities themselves

have been evaluated for different scenarios, leading to the conclusion that the optimization of

the power allocation with only the knowledge of the magnitude of the channel gains allows to

improve the system performance very importantly.
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4.A Proof that a diagonal covariance matrix is ergodic and com-
pound optimal

The proof for the ergodic case is first presented, and then the necessary steps to obtain the proof

for the compound case are simply added.

4.A.1 Ergodic case

The following lemmas are first presented.

Lemma 1 Let Jn ∈ ZnT×nT be a diagonal matrix such that its non-zero entries satisfy [Jn]jj ∈
{1,−1}, ∀j. There are L = 2nT different such matrices which are indexed from n = 1 to n = L.

It then follows that

Λ =
1
L

L∑
n=1

JnQJn (4.87)

is a diagonal matrix such that [Λ]jj = [Q]jj, ∀Q ∈ CnT×nT .

Proof From the definition of Jn we readily see that [JnQJn]jj = [Q]jj , ∀n, and that

[JnQJn]jj′ =
{

[Q]jj′ if [Jn]jj = [Jn]j′j′
−[Q]jj′ if [Jn]jj �= [Jn]j′j′

. (4.88)

Since the sum in (4.87) is over all the possible {Jn} then, while the terms in the diagonal,

[JnQJn]jj , always contribute constructively, the terms off the diagonal, [JnQJn]jj′ , will have

the same number of positive contributions than of negative ones, and, thus, the total sum

vanishes. �

Lemma 2 The function IE(Q,M) is invariant under the transformation Q �→ JnQJn, ∀n,

where the definition of Jn is the same as in Lemma 1.

Proof We begin by noticing that

(M � P)JnQJn(M � P)H = (M � P̃)Q(M � P̃)H , (4.89)

where we have introduced the following change of variables

[P̃]ij =
{

[P]ij if [Jn]jj = 1
[P]ij ei π if [Jn]jj = −1 . (4.90)

Notice that the change of variable [P̃]ij = [P]ij ei π does not affect its distribution, since we have

assumed that the phase variables θij are uniformly distributed on [0, 2π) and consequently the

distribution of [P]ij = ei θij is invariant under phase shifts.
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In (4.93), the transformation Q �→ JnQJn is performed on IE(Q,M) and it is shown that it

remains invariant.

IE(Q,M) �→ IE(JnQJn,M) = EP log det
(
I + (M � P)JnQJn(M � P)H

)
(4.91)

= E
P̃

log det
(
I + (M � P̃)Q(M � P̃)H

)
(4.92)

= IE(Q,M), (4.93)

where last equality follows from the fact that P̃ is a dummy integration variable. �

Lemma 3 The function IE(Q,M) is strictly concave in Q, where Q belongs to the set of positive

semidefinite matrices.

Proof The function IE(Q,M) is defined in (4.5) as the expectation with respect to P, of a

strictly concave function in Q. Consequently, from [Boy04], IE(Q,M) is also strictly concave. �

Once these lemmas have been established the optimality of a diagonal covariance matrix is pretty

straightforward as it is shown next.

Proof To prove achievability we only need to show that

IE(Q,M) =
L∑

n=1

1
L

IE(Q,M) (4.94)

=
L∑

n=1

1
L

IE(JnQJn,M) (4.95)

≤ IE

(
1
L

L∑
n=1

JnQJn,M

)
(4.96)

= IE(Λ,M), (4.97)

where Λ is a diagonal matrix such that TrΛ = TrQ. Note that (4.95) follows from Lemma 2;

inequality (4.96), from Lemma 3; and, finally, we invoked Lemma 1 to write (4.97). It is now

straightforward to see that, if Q is a solution to the optimization problem in (4.6), then there

exists a diagonal matrix Λ that is also optimal or, formally,

sup
Q

IE(Q,M) ≤ sup
Λ

IE(Λ,M), (4.98)

where Λ is a diagonal matrix such that TrΛ = TrQ. �

Proof To prove the converse we use a similar argument as in [Eld04]. Since IE(Q,M) is strictly

concave in Q it has a unique global maximum, Q�. From Lemma 2, we deduce that, for Q� to

be unique, it has to satisfy Q� = JnQ�Jn, ∀n, which implies that Q� has to be diagonal. �
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4.A.2 Compound case

To prove the optimality of a diagonal covariance matrix for the compound case we follow a very

similar development as in the previous section.

Lemma 4 The function IC(Q,M) is invariant under the transformation Q �→ JnQJn, ∀n,

where the definition of Jn is the same as in Lemma 1.

Proof We recall the change of variable introduced in the proof of Lemma 2. Notice that P ∈
P ⇒ P̃ ∈ P. In (4.101), we perform the transformation Q �→ JnQJn on IC(Q,M) and show

that it remains invariant.

IC(Q,M) �→ IC(JnQJn,M) = inf
P∈P

log det
(
I + (M � P)JnQJn(M � P)H

)
(4.99)

= inf
P̃∈P

log det
(
I + (M � P̃)Q(M � P̃)H

)
(4.100)

= IC(Q,M), (4.101)

where last equality follows from the fact that P̃ is a dummy minimization variable. �

Lemma 5 The function IC(Q,M) is strictly concave in Q, where Q belongs to the set of positive

semidefinite matrices.

Proof The function IC(Q,M) is defined in (4.62) as the pointwise infimum, with respect to

P ∈ P, of a set of strictly concave functions in Q. Consequently, from [Boy04, p. 81], IC(Q,M)

is also strictly concave. �

Again, we are now ready to prove the optimality of a diagonal covariance matrix for the

maximization of the compound mutual information.

Proof To prove achievability we only need to show that

IC(Q,M) =
L∑

n=1

1
L

IC(Q,M) (4.102)

=
L∑

n=1

1
L

IC(JnQJn,M) (4.103)

≤ IC

(
1
L

L∑
n=1

JnQJn,M

)
(4.104)

= IC(Λ,M), (4.105)

where Λ is a diagonal matrix such that TrΛ = TrQ. Note that (4.103) follows from Lemma 4;

inequality (4.104), from Lemma 5; and, finally, we invoked Lemma 1 to write (4.105). It is now



Chapter 4. Single-user communication through MIMO channels with incomplete CSI 93

straightforward to see that, if Q is a solution to the optimization problem in (4.63), then there

exists a diagonal matrix Λ that is also optimal or, formally,

sup
Q

IC(Q,M) ≤ sup
Λ

IC(Λ,M), (4.106)

where Λ is a diagonal matrix such that TrΛ = TrQ. �

Proof To prove the converse a similar argument as in [Eld04] is used. Since IC(Q,M) is strictly

concave in Q it has a unique global maximum, Q�. From Lemma 4, we deduce that, for Q� to

be unique, it has to satisfy Q� = JnQ�Jn, ∀n, which implies that Q� has to be diagonal. �

4.B Alternative proof of Proposition 4.4.1

An alternative proof of Proposition 4.4.1 to that given in [Pay06f, Pay06e] is presented next. In

§4.4 it was stated that the ergodic capacity was given by

CE = sup
Q

IE(Q,M)

s. t. TrQ ≤ PT ,

Q � 0.

(4.107)

The objective here is to show that the maximization with respect to Q can be restricted to the

set of diagonal positive semidefinite matrices. The same procedure as in [Vis01] will be followed.

Let us first consider the following optimization problem above, restricting the maximization

to the set of positive semidefinite diagonal matrices such that TrQ = PT . The optimization

function is strictly concave in Q, while the constraint set is convex1 and compact. This implies

that there exists a unique Λ, diagonal and positive semidefinite, that solves the restricted opti-

mization problem. We now show that this ΛQ is actually the solution to the first optimization

problem. Indeed, a necessary and sufficient condition for the overall optimality of Λ is

dIE(Λ,Q − Λ;M) ≤ 0, (4.108)

where dIE(A,B;M) is the Fréchet differential of IE(Q,M) in the direction of B evaluated at

A (see further [Lue98]). Since the explicit expression for IE(Q,M) is given by

IE(Q,M) = EP log det
(
I + σ−2(M � P)Q(M � P)H

)
, (4.109)

the necessary and sufficient condition for optimality in (4.108) is equivalent to:

EPTr
[
HH

(
I + HΛHH

)−1
H (Q − Λ)

]
≤ 0, (4.110)

1It is obviously bounded due to the constraint, and it is closed because of the way it is defined (preimage of a
closed set by a continuous application).
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where H = M � P has been utilized for the sake of notation.

Let DQ be a diagonal matrix containing the diagonal entries of Q, and Q̃ = Q − DQ. The

above condition can be expressed as

EPTr
[
HH

(
I + HΛHH

)−1
H (DQ−Λ)

]
+ EPTr

[
HH

(
I + HΛHH

)−1
HQ̃

]
≤ 0. (4.111)

Notice that the first term is always negative or zero, thanks to the optimality of Λ among the set

of positive semidefinite diagonal matrices and that TrDQ = trQ = PT , so that the constraint

is fulfilled. As for the second term, it can be written as

EPTr
[
HH

(
I + HΛHH

)−1
HQ̃

]
=

nT∑
i=1

nT∑
k=1
k �=i

qikEP

[
hH

i

(
I + HΛHH

)−1
hk

]
. (4.112)

From symmetry considerations, notice that it is sufficient to show that, for 1 < i ≤ nT ,

EP

[
hH

i

(
I + HΛHH

)−1
h1

]
= 0 (4.113)

in order to prove that the second term in (4.111) is identically zero. With this, we will have proven

that a diagonal covariance matrix Q is the optimum structure to attain capacity. Equation

(4.113) can be alternatively written as:

1
J

∫ π

−π
· · ·

∫ π

−π
hH

i

(
I + HΛHH

)−1
h1dθ11 . . . dθnRnT = 0, (4.114)

where J = (2π)nRnT . This is equivalent to∫ π

−π
· · ·

∫ π

−π
hH

i gdθ12 . . . dθnRnT = 0, (4.115)

with

g =
∫ π

−π
· · ·

∫ π

−π

(
I + HΛHH

)−1
h1dθ11 . . .dθnR1. (4.116)

Defining f = (I + HΛHH)−1h1, it can be noticed that each element of vector function f =

[f1 . . . fnR ]T can be considered as a function of arguments (θ11, . . . , θnR1) with the remaining

(θ12, . . . , θnRnT ) considered constant parameters, i.e., fk : RnR → C. Each fk, 1 ≤ k ≤ nR, is a

measurable function and has the following properties:

fk(θ11 + π, . . . , θnR1 + π) = −fk(θ11, . . . , θnR1), (4.117)

fk(θ11, . . . , θi1 ± 2π, . . . , θnR1) = fk(θ11, . . . , θi1, . . . , θnR1), (4.118)

for all 1 ≤ i ≤ nR. Next lemma gives a result concerning functions with the above properties.

Lemma 6 Let f : Rn → C be a measurable function such that f(θ1, . . . , θn) = −f(θ1 +

π, . . . , θn + π) and that f(θ1, . . . , θi ± 2π, . . . , θn) = f(θ1, . . . , θi, . . . , θn), with 1 ≤ i ≤ n. Then∫ π

−π
· · ·

∫ π

−π
f(θ1, . . . , θn) dθ1 . . .dθn = 0. (4.119)
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Proof See appendix 4.C. �

Last lemma implies that g = 0, which is a sufficient condition for (4.115) to be true. With

this, we have proven that a diagonal Q is enough to attain the MIMO channel capacity.

4.C Proof of Lemma 6

Although Lemma 6 is quite intuitive, its proof is given here for completeness. The proof will be

done by induction.

• n = 1

Let f : R → C be a measurable function such that f(θ) = −f(θ +π) and that f(θ) = f(θ± 2π).

Then, ∫ π

−π
f(θ)dθ =

∫ 0

−π
f(θ)dθ +

∫ π

0
f(θ)dθ. (4.120)

Defining the change ω = θ − π in the second term of the right hand side of last equation and

using the property f(θ) = −f(θ + π), we can write∫ π

−π
f(θ)dθ =

∫ 0

−π
f(θ)dθ −

∫ 0

−π
f(ω)dω = 0. (4.121)

• n true → n + 1 true

Let f : Rn → C be a measurable function such that f(θ1, . . . , θn) = −f(θ1 + π, . . . , θn + π) and

that f(θ1, . . . , θi ± 2π, . . . , θn) = f(θ1, . . . , θi, . . . , θn), with 1 ≤ i ≤ n, then∫ π

−π
· · ·

∫ π

−π
f(θ1, . . . , θn)dθ1 . . . dθn = 0. (4.122)

Let us now consider a measurable function f : Rn+1 → C such that f(θ1, . . . , θn+1) = −f(θ1 +

π, . . . , θn+1+π) and that f(θ1, . . . , θi±2π, . . . , θn+1) = f(θ1, . . . , θi, . . . , θn+1), with 1 ≤ i ≤ n+1.

Then∫ π

−π
· · ·

∫ π

−π
f(θ1, . . . , θn+1)dθ1 . . .dθn+1 =

∫ π

−π
· · ·

∫ π

−π
ϕ(θ1, . . . , θn)dθ1 . . .dθn, (4.123)

where ϕ(θ1, . . . , θn) =
∫ π
−π f(θ1, . . . , θn+1)dθn+1. Evidently, ϕ(θ1, . . . , θi ± 2π, . . . , θn) =

ϕ(θ1, . . . , θi, . . . , θn) holds for all i such that 1 ≤ i ≤ n, and from the Fubini-Torelli theo-

rem we get that ϕ(θ1, . . . , θn) is a measurable function. Thus, from n case assumption, it is now

sufficient to prove that ϕ(θ1, . . . , θn) = −ϕ(θ1 + π, . . . , θn + π). By definition

ϕ(θ1 + π, . . . , θn + π) =
∫ π

−π
f(θ1 + π, . . . , θn + π, θn+1)dθn+1. (4.124)
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Considering the change ω = θn+1 − π last equation reads

ϕ(θ1 + π, . . . , θn + π) =

=
∫ −π

−2π
f(θ1 + π, . . . , θn + π, ω + π)dω +

∫ 0

−π
f(θ1 + π, . . . , θn + π, ω + π)dω. (4.125)

Using the change � = ω + 2π in the first term of last equation and the property f(θ1, . . . , θi ±
2π, . . . , θn+1) = f(θ1, . . . , θi, . . . , θn+1), with 1 ≤ i ≤ n, we get

ϕ(θ1 + π, . . . , θn + π) =
∫ π

0
f(θ1 + π, . . . , θn + π, � + π)d�+

+
∫ 0

−π
f(θ1 + π, . . . , θn + π, ω + π)dω =

∫ π

−π
f(θ1 + π, . . . , θn + π, ω + π)dω. (4.126)

Using that f(θ1, . . . , θn+1) = −f(θ1 + π, . . . , θn+1 + π) we can finally write

ϕ(θ1 + π, . . . , θn + π) = −
∫ π

−π
f(θ1, . . . , θn, ω)dω = −ϕ(θ1, . . . , θn). (4.127)

4.D Roots of polynomial (4.34) in (ξ, γ)

Let us express (4.34) as

(x2∆2 − ξ2) =
4xξ(x − ξ)(x + Υ)

x2 − γ2
. (4.128)

When ξ < x < γ the derivative of the left hand side of last equation is 2x∆2 > 0, while the

derivative of the right hand side can be expressed as

4ξ
(x − ξ)(x + Υ) + x(x + Υ) + x(x − ξ)

x2 − γ2
− 8x2ξ(x − ξ)(x + Υ)

(x2 − γ2)2
< 0. (4.129)

Consequently, it can be seen that for the range of values of x under consideration, the left hand

side of (4.128) is monotonically increasing, while the right hand side is monotonically decreasing.

Since there is always a solution within ξ < x < γ for which these two side coincide, the solution

must be unique.



Chapter 5

From single to multi-user
communication with imperfect CSI

5.1 Introduction

Following the notions and ideas presented in last chapter, in this chapter we study the perfor-

mance, in terms of mutual information (or achievable rates), of a particular single-user trans-

ceiver architecture, the so-called STHP in the presence of errors in the CSI. One of the main

advantages of this scheme is that its design can be very easily extended to the multi-user case,

i.e., a situation where more than one user is receiving information from the transmitter as de-

scribed in §2.1.2. This study will make us wonder what is the impact of an imperfect CSI in a

more general multi-user scenario, which will be discussed in more detail in chapter 6.

5.2 Background

In 1983, Costa surprised the electrical engineering research community with a result, [Cos83],

which loosely speaking stated that the capacity of an interfered communications system, such

that the interference is known non-causally at the transmitter, is the same as if the interference

were not present. He also showed that the capacity can be achieved by a transmission scheme

which is, since then, known as “dirty paper” coding (DPC). Costa used an analogy to give an

intuitive idea of this coding technique: in his particular vision, the signal space is a blank paper,

the interference is dirt in this paper, and the transmitted signal is ink. The optimal strategy is

not to clean the paper and then write, but to take advantage of the dirt by writing as much

aligned with it as possible. From this point of view, the optimal “dirty paper” strategy can be

seen as the transmitter counterpart of the ML receiver, whose philosophy is to estimate the data

symbols without trying to cancel or equalize the incoming interferences.

This pioneering work by Costa and recent theoretical results describing the sum-capacity

97
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when using multiple antennas to communicate with multiple users in a known rich scattering

channel [Cai03, Vis03b, Yu04, Vis03a, Wei06], have motivated a significant research on MIMO

downlink transmit strategies. One of such downlink strategies [Fis02a, Win04a] was the extension

of the non-linear precoding scheme for temporal intersymbol interference mitigation proposed

by Tomlinson [Tom71] and Harashima [Miy72, Har72], into spatial interference equalization for

MIMO systems, leading to the STHP scheme. The main idea behind STHP is to pre-subtract the

interference that is produced by the presence of the MIMO channel before the signal is actually

transmitted, which turns out to be computationally very simple to implement.

In addition to STHP, other downlink transmission strategies have been recently proposed,

such as the transmission architecture for the MIMO broadcast channel developed by Peel,

Hochwald, and Swindlehurst [Pee05a, Pee05b]. In their work, they proposed a transmission

scheme based on a two-step process. In the first step, the channel is partially equalized utilizing

a regularized inversion that improves the performance, specially at low SNRs. In the second

step, a vector perturbation, which is calculated using a combinatorial search, is applied to the

transmitted signal to obtain good performance at all SNRs. This scheme is also known as sphere

encoder, because it is the transmitter version of the sphere decoder [Fin85]. A similar, but com-

putationally less demanding scheme, was proposed in [Win04b] where optimality was sacrificed

to reduce the computational load. There, the key idea was to replace the vector perturbation

technique with Babai’s closest-point approximate solution which offers an excellent tradeoff be-

tween complexity and optimality loss. An analogous approach was taken in [Sha05a], where the

authors proposed another alternative method to calculate the vector perturbation, based on the

MMSE feedback precoder. Other downlink schemes include the STHP optimized with respect

to the sum of mean square errors as given in [Joh04], or the non-linear precoding scheme with

vector perturbation described in [Sch05] which shows the best performance among all the cited

schemes.

A commonality among all these transmission architectures is that, since the precoder has to

be matched to the channel, some degree of CSI has to be made available at the transmitter. In

this chapter it is assumed that this CSI is imperfect, due to errors in the estimation of the channel

or due to the presence of a noisy feedback channel, which implies that there is a performance

degradation of the system. The effects of imperfect CSI for STHP in a single-user scenario, in

terms of SNR loss, were studied in [Fis02b]. The authors in [Die05] proposed a robust design of

the transceiver matrices in STHP in a multi-user broadcast scenario taking a Bayesian modeling

of the errors in the CSI and looking for the minimization of the sum of the MSE for all the users.

An additional zero-forcing constraint but keeping the same design objective and error modeling

was given in [Hun04].

In this chapter, the problem of evaluating the rate (or mutual information) loss of STHP due

to small errors in the available CSI both for the single and multi-user cases is addressed from an
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information theoretic point of view. A maximin robust design of the set of moduli used in STHP

is presented and the corresponding power allocation among the transmitted data streams, that

maximizes the worst-case achievable rates, is derived. The choice of analyzing the STHP scheme

is due to the fact that it is a widely studied transmission architecture, which can be implemented

in real systems because it requires a small amount of computational effort and also for reasons

of simplicity of analysis.

5.3 System model

The downlink of a flat fading wireless communications system with nT antennas at the BS

and nR antennas at the receiver side is considered. Recalling the model reviewed in §2.1.4, the

received signal vector y ∈ CnR is given by

y = Hx + n, (5.1)

where x ∈ CnT is the transmitted signal vector, H ∈ CnR×nT represents the channel matrix, and

n ∈ CnR is the noise vector. In this case, the entries of the noise vector are considered to be proper

complex Gaussian random variables with zero mean and variance σ2, i.e., n ∼ CN (0, σ2InR).

As it was stated in §5.2, the single and multi-user scenarios are analyzed in the following

sections. In the single-user case, see Figure 5.1, the i-th element of the received vector, yi,

represents the received signal at the i-th antenna of that single-user, i.e., there is only one user

with a receiver equipped with nR antennas. In the multi-user case, see Figure 5.2, yi stands for the

received signal by i-th user, i.e., there are nR users with single antenna terminals. In both cases,

the nT transmitting antennas belong to the BS. Moreover, the BS is equipped with STHP, which

is a non-linear transformation applied to the data symbols. The output of this transformation is

matched to the channel in such a way that the interference caused by the channel matrix once

the signal is transmitted is precisely the inverse of the precoding transformation. Consequently,

the original data symbols can be easily recovered at the receiving end. Notice that, an additional

linear processing matrix placed at the receiver (single-user) or at the transmitter (multi-user) is

necessary to fully invert the STHP transformation. A full description of this transformation is

detailed in the following section.

5.3.1 The spatial Tomlinson-Harashima precoder

The input of the STHP is a vector, s ∈ CnS , whose entries are the nS data symbols that are

to be transmitted, sk, k = 1, . . . , nS . In (5.2), the output of the precoder, p ∈ CnS , is obtained

from these data symbols in a similar way to the recursive causal spatial relation described in
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[Fis02a].

pk = [p]k = Mtk

[
sk −

k−1∑
k′=1

bkk′pk′

]
, for k = 1, . . . , nS . (5.2)

In (5.2), bkk′ are a set of coefficients to be determined, and Mtk [p] represents a complex modulo

reduction of p into the complex square region Dk � [−tk, tk) × [− i tk, i tk), which is used to

limit the dynamic range of the output signal to overcome the problem of the increase of the

transmitted power in precoding schemes where the channel response is inverted. Notice that

the main difference between (5.2) and the scheme in [Fis02a] is that our scheme allows different

moduli, tk, for each component of the precoder output p.

An alternative and more compact notation can be used for the output of the precoder by

arranging the coefficients bkk′ into the elements below the diagonal of a lower triangular matrix

B ∈ CnS×nS with ones in the main diagonal, such that [B]kk′ = bkk′ . The output of the precoder

is then

p = B−1(s + a), (5.3)
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where the elements of vector a must be of the form ak = 2tkuk + i 2tkvk for some uk, vk ∈ Z,

which must be chosen such that the resulting elements of p lie inside the modulo region defined

by the elements of vector t, i.e., pk ∈ Dk.

In the following two subsections we will consider the cases mentioned earlier, namely: (a)

single-user (coupled receivers), i.e., the different receivers are allowed to cooperate by jointly

processing the received data; (b) multi-user (decoupled receivers), i.e., the receiving antennas

belong to different users and therefore only individual processing of the received symbols is

possible. It is also important to mention (as it was similarly noted in [Win04a]) that, while

the coupled receivers structure can never model a multi-user situation, the decoupled receivers

structure can also be applied in the single-user scenario. Consequently, in the single-user case, the

optimum design would be to have a versatile transceiver structure that could switch between the

coupled and decoupled architectures depending on which of them yields a better performance for

a given channel realization. Bearing this fact in mind, we consider in the following, the analysis

of the coupled and decoupled receivers structures.

5.3.2 Single-user scenario (coupled receivers)

For the case where the receivers are coupled (see Figure 5.1), the transmitted signal vector, xc,

is

xc = p = B−1(s + a). (5.4)

From dimensional analysis, last equation implies that the number of transmit antennas has to

be equal to or higher than the number of transmitted signals, i.e., nT ≥ nS . If the number of

antennas is higher than nS then, a subset of nS antennas is selected, where the selection is made

according to an achievable rates maximization criterion as it is commented later. Moreover,

since the single-user has to recover all the nS transmitted symbols, its mobile terminal has to

be equipped with nR ≥ nS antennas. Let us assume that the selected antennas are numbered

from 1 to nS , then, the transmitted power for the coupled case, P c
T , is calculated as

P c
T = E xH

c xc =
nS∑
k=1

Pk, (5.5)

where Pk is the power transmitted through k-th antenna.

The design of the transmitter and the receiver consists in specifying the precoding matrix

B at the transmitter side and the product of matrices, GF at the receiver end. These matrices

were found in [Win04a] for a zero-forcing criterion1, and here we recall their results. From the

1Notice that, since we are interested in high data transmission rates, the SNR can be considered to be high
enough so that the zero-forcing and the MMSE criteria yield the same result. A similar argument is considered
in [Win04a].
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ql-factorization of the channel,

H = FHS, (5.6)

where F is unitary and S is lower triangular, we obtain

skk = [S]kk, G = diag({s−1
kk }), B = GS. (5.7)

With these definitions, we reproduce in (5.8) the estimate, r ∈ CnS , of the data symbols, s.

r = Mt [GFHxc + GFn] = Mt [Bxc + GFn] = Mt [s + GFn] . (5.8)

Notice that Mt[z] performs a modulo-tk operation for each element zk. Since F is a unitary

transformation matrix, in (5.8) it is possible to define a new noise vector ñ = Fn with the same

statistical behavior as the original one, i.e., ñ ∼ n. In addition, since G is a diagonal matrix

with gkk = [G]kk, the estimate of the data symbols vectors r can be expressed in the form of nT

parallel data streams as

rk = Mtk [sk + gkkñk] , k = 1, . . . , nS . (5.9)

This model of parallel data streams clarifies the purpose of utilizing a precoder to presubtract

the intersymbol interference that is caused by the channel matrix: we obtain nS parallel (or

independent) data streams between the transmitter and the receiver. Note that the quality of

the data streams is dictated by the components of the diagonal of the lower triangular matrix

S, which fulfill that skk �= 0, ∀k, as

nS∏
k=1

s2
kk = det(SHS) = det(HHH), (5.10)

and H is assumed full rank.

5.3.3 Multi-user scenario (decoupled receivers)

In the multi-user scenario, it is necessary that the receivers be decoupled (see Figure 5.2), or

alternatively, since the components of the received vector may be located at geographically

separated places, only individual processing of each element of the received signal vector is

permitted. Last statement implies that the receiver processing matrix must be diagonal. Bearing

this constraint in mind, in [Win04a], it was found that the unitary matrix F must be placed

at the transmitter side to linearly process the output of the STHP, obtaining the expression in

(5.11) for the transmitted signal. Notice that the diagonal processing matrix G remains at the

receiving end to adjust the dynamic range of the received signal.

xd = Fp. (5.11)
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Since in the decoupled case nR represents the number of users, we assume nR = nS , so that

each user receives its own data symbol. In addition, if the BS has to transmit these nS symbols

simultaneously, then nT ≥ nS must be guaranteed. Notice that, since F is a unitary matrix,

the transformation in (5.11) does not increase the transmitted power, P d
T , with respect to the

coupled case, P c
T ,

P d
T = E xH

d xd = E pHFHFp = E pHp = E xH
c xc = P c

T , (5.12)

and consequently, in the sequel PT = P c
T = P d

T will be used.

Again, following [Win04a], the design, for a zero-forcing criterion, of the matrices at the trans-

mitter side (B and F) and at the receiver side, G, is based, in this case on the lq-factorization

in (5.13) of the channel matrix:

H = SFH , (5.13)

where S is a lower triangular matrix and F is unitary. The definitions

skk = [S]kk, G = diag({s−1
kk }), B = GS. (5.14)

are identical as in the previous section. With these definitions, and some algebra it can be found

that the estimate of the data symbols vector is given by

r = Mt [s + Gn] . (5.15)

Analogously as in (5.9), the estimate, r, of the data symbols vector can be expressed in terms

of nS parallel streams, as

rk = Mtk [sk + gkknk] , k = 1, . . . , nS . (5.16)

Noteworthy, the models presented in (5.9) and (5.16) enable a scalable structure in the

number of active streams. In this sense, the k-th stream can be disabled by letting tk = 0, and

(5.9) and (5.16) still hold.2 As it will be shown in §5.4.2, while in the coupled case, letting tk = 0

means that the k-th transmit antenna is switched off; in the decoupled scenario, it implies that

k-th user does not receive its data symbol. Consequently, there is an analogy between the number

of active transmit antennas and the actual number of data streams in the single-user scenario;

and between the number of active users and the number of data streams in the multi-user case.

From this point, since the information-theoretic analysis in the case of perfect CSI is based

on the expressions (5.9) and (5.16) and they represent the same input-output relation, in the

next section, a unified approach will be taken.
2If a stream is to be disabled, the optimal procedure would be to consider a previous spatial ordering block in

the communications diagram. This spatial ordering block would indicate which would be the best stream to be
disabled. The best stream to be disabled would be the stream that when disabled produced an equivalent channel
with lowest values of {gkk}, i.e., with the lowest noise powers at the receiver.
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5.4 Information-theoretic analysis with perfect CSI

In this section the maximum rates that can be achieved when communicating utilizing the STHP

scheme are analyzed. Apart from the analysis in itself, one of the novelties in this section is that

the design parameters are the set of variables {tk}, which control the modulo operations in the

STHP system. In addition, the objective function to be optimized is the achievable rates, as

opposed to the minimization of the MSE, which is widely considered in the literature.

5.4.1 Rate per stream

The unified model deduced in (5.9) and (5.16) describes the input-output relation of a set

of parallel communication streams. Assuming independence between the elements in the data

symbols vector, s, the mutual information between the transmitted symbols and the output of

the receiver end, r, can be expressed as the sum of the mutual information between the elements

of each vector, I(s; r) =
∑nS

k=1 I(sk; rk). Each term in the sum is independently upper-bounded

by [Wes98]

I(sk; rk) ≤ 2 log(2tk) − h(Mtk [gkknk]), (5.17)

where h(·) denotes differential entropy (see further [Cov91]), so that h(Mtk [gkknk]) represents the

differential entropy of a modulo-2tk complex Gaussian random variable. The reader is referred

to Appendix 5.A for a description on the properties of h(Mtk [gkknk]).

Now the aim is to find the maximum achievable rates for each independent data stream, and

this rate is denoted by R(tk, gkkσ), whose dependence on tk and the noise standard deviation

gkkσ has been explicitly indicated. One would want R(tk, gkkσ) to be equal to the bound in

(5.17) and this can be achieved by choosing sk to be a random variable drawn from a uniform

distribution in the complex square region Dk [Wes98]. For such a case, the rate corresponding

to the k-th data stream, R(tk, gkkσ) equals the maximum achievable mutual information, i.e.,

R(tk, gkkσ) = 2 log(2tk) − h(Mtk [gkknk]), (5.18)

where gkkσ is the square root of the variance of gkknk. Noteworthy, the only degree of freedom

that we have to control the rate of k-th data stream is through tk, because gkkσ is externally

determined by the zero-forcing design in (5.7), and the Gaussian noise determines σ.

5.4.2 Power per stream and total transmitted power

From what was stated in §5.4.1, we now assume that the data symbols, sk, are chosen to be

uniformly distributed in the complex region Dk so that the mutual information per stream is

maximized. This implies that the power assigned to k-th stream is E|sk|2 = 2t2k/3.
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For this particular distribution of sk, it can be shown that the entries, pk, of the output vector

of the precoder, p, are also independent random variables following a uniform distribution in

Dk, i.e., pk ∼ sk (see Appendix 5.B for details).

Since in the coupled case the transmitted signal is directly the output of the precoder, xc = p,

the entries of the transmitted signal will also be uniformly distributed in Dk and therefore the

peak power and dynamic range of the transmitted signal are limited. We define

P c
k = E

[
xcxH

c

]
kk

(5.19)

as the power transmitted through k-th antenna in the coupled case. It is straightforward to

prove that, in the coupled case, the power transmitted through k-th antenna coincides with the

power assigned to k-th stream,

E|sk|2 = E|pk|2 = E
[
xcxH

c

]
kk

= P c
k = 2t2k/3. (5.20)

In addition, the total transmitted power is the sum of the individual contributions of each

antenna,

PT =
nS∑
k=1

2t2k
3

. (5.21)

From what was seen in §5.3.3, the transmitted power for the decoupled case is the same as in the

coupled case, PT , consequently (5.21) is still valid for the decoupled case. However, the terms in

the summation in (5.21) are not individually associated to the power transmitted through any

particular antenna, which we shall denote as P d
k . In the decoupled case, the power transmitted

through k-th antenna is

P d
k = E

[
xdxH

d

]
kk

= E

nS∑
k′=1

fkk′pk′

nS∑
k′′=1

f∗
kk′′p∗k′′ =

nS∑
k′=1

2t2k′

3
|fkk′ |2, (5.22)

where fkk′ = [F]kk′ . Notice that we have used that Epkp
∗
k′ = δkk′2t2k/3, as we show in Appendix

5.B.

5.4.3 Achievable rates with STHP

From what was stated in the last two sections, we can now state the problem of obtaining

the maximum achievable rates for a system with STHP. The maximum achievable rates are the

maximum of the sum of the rates of each stream subject to a total transmitted power constraint,

CTHP = max
{tk}

nS∑
k=1

R(tk, gkkσ),

s.t.
nS∑
k=1

2t2k
3

= PT .

(5.23)
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This problem is, in general, non-convex in the design variables, {tk}, due to the fact that

R(tk, gkkσ) is non-convex in tk. This implies that the problem in (5.23) has to be solved by

exhaustive search or by some non-convex optimization algorithm. However, it turns out that,

in the high SNR regime, the problem becomes convex and can be solved very easily in a closed

form. In addition, the high SNR solution inspires a quasi-optimal solution valid for all SNRs.

Solution in the high SNR regime

In the high SNR regime, PT can be chosen as large as needed, which implies that the values of

tk in the constraint in (5.23) can also be considered to be unbounded. Clearly, for high values

of tk, the effect of the modulo reduction, Mtk , in the random variable Mtk [gkkñk] is lost. This

means that the differential entropy in (5.17) will tend to the entropy of a complex Gaussian

random variable, i.e.,

h(Mtk [gkknk]) → h(gkknk) = log
(
g2
kkσ

2πe
)
, (5.24)

(see Appendix 5.A). Consequently, the rate of k-th stream tends to

R(tk, gkkσ) → 2 log (2tk) − log
(
g2
kkσ

2πe
)
, (5.25)

which is the mutual information when the input is uniformly distributed in Dk and the noise

is Gaussian with power given by g2
kkσ

2. In the high SNR regime, the problem in (5.23) can be

thus reformulated as

C∞
THP = max

{tk}

nS∑
k=1

2 log (2tk) − log
(
g2
kkσ

2πe
)
,

s.t.
nS∑
k=1

2t2k
3

= PT .

(5.26)

The solution to this problem is easily obtained by letting all the design variables take the same

value, tk =
√

3PT /2nS , which is determined so that the power constraint is fulfilled. Substituting

this solution in (5.26) we may rewrite C∞
THP as

C∞
THP = nS log

(
6PT

nSσ2πe

)
+

nS∑
k=1

log
(
g−2
kk

)
= nS log

(
6PT

nSσ2πe

)
+ log

(
nS∏
k=1

g−2
kk

)
, (5.27)

where g−1
kk are the elements of the triangular matrix S, such that SHS = HHH, therefore it

follows that
nS∏
k=1

g−2
kk = det

(
HHH

)
, (5.28)

and we can now write

C∞
THP = nS log

(
PT

nSσ2

)
− nS log

(πe
6

)
+ log det

(
HHH

)
, (5.29)
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where we have explicitly indicated the minus sign in the second term. Recall that the maximum

achievable rates in the high SNR regime when the STHP is not present coincides with the MIMO

channel capacity for the single-user case, i.e.,

C = nS log
(

PT

nSσ2

)
+ log det

(
HHH

)
. (5.30)

Finally, comparing the expressions for the system capacity, C, and the maximum achievable

rates with STHP, C∞
THP, we see that there is a constant gap between them given by

∆C = C − CTHP = nS log
(πe

6

)
� 0.353 nS (nats). (5.31)

With this last expression we have obtained the spatial version of the shaping loss for temporal

Tomlinson-Harashima precoding in [Wes98]. Notice that, although ∆C does not decrease as the

SNR tends to infinity, its relative importance, defined as ∆C/C, does, as both C and CTHP tend

to grow without bound.

Suboptimal solution

In the previous section we found that, in the high SNR regime, the solution to the problem in

(5.23) consists in letting all tk take the same value. This solution can shed some light to find a

quasi-optimal solution for the problem in (5.23) that can be valid at all SNRs. We consider the

two following approximations for the function R(tk, gkkσ), (see Appendix 5.A):

• For low values of tk/(gkkσ),

R(tk, gkkσ) � 2 log 2tk − 2 log 2tk = 0. (5.32)

Note that the entropy of Mtk [gkkñk] in (5.18) tends to that of a complex uniform random

variable.

• For high values of tk/(gkkσ),

R(tk, gkkσ) � 2 log(2tk/(gkkσ)) − log(πe), (5.33)

because h(Mtk [gkkñk]) in (5.18) tends to the entropy of a complex Gaussian random

variable with variance g2
kkσ

2.

See Figure 5.3 for a graphical representation of the function R(tk, gkkσ) and these two approxi-

mations. Notice that, for values of tk/(gkkσ) >
√

πe/4 � 1.46, the function R(tk, gkkσ) is better

characterized by its high tk/(gkkσ) approximation than by its low argument approximation. The

opposite happens for tk/(gkkσ) <
√

πe/4.

Let us now suppose that all the available streams are classified into two sets (G-Gaussian and

U-uniform) depending on which approximation of the two presented above is more accurate for
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Figure 5.3: Graphical representation of the function R(tk, gkkσ) for gkkσ = 1 as a function of tk and
its approximation for high values of tk/(gkkσ). Notice also that for low values of tk/(gkkσ) the function
R(tk, gkkσ) is very well approximated by R(tk, gkkσ) � 0.

its rate. As the contribution to the system rate (5.23) of streams belonging to U tends to zero

no power is assigned to these streams, so that no power is wasted. Thus, the problem becomes

CTHP � max
{tk∈G}

∑
k∈G

2 log(2tk/(gkkσ)) − log(πe),

s.t.
∑
k∈G

Pk =
2
3

∑
k∈G

t2k = PT ,

tk = 0, ∀k ∈ U

(5.34)

The solution to the maximization problem above can be found very easily and it corresponds to

assigning the same power to all the streams in G (and no power to those in U), i.e.,

k ∈ G → tk =
√

3PT /(2|G|),

k ∈ U → tk = 0,
(5.35)

where |G| denotes the number of active streams. The set of active streams G is found by sorting

the set {gkk}nS
k=1 in increasing order and constructing the new sets {gkk}N

k=1, for N = 1, . . . , nS .

For each set, the total power, PT , is uniformly distributed among the streams and the Gaussian

assumption is checked for each stream. The set of active streams, G, is defined as the set that

yields the highest achievable rates and all its streams fulfill the Gaussian assumption.
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As it is clear from (5.35), the solution consists in performing uniform power allocation among

the set of active streams (stream selection). We have found this simple transmit strategy as a

result of a rate optimization problem, without imposing it as an a priori structure. In the case of

coupled receivers, since each stream is transmitted through a different antenna, when a stream

is not active it means that its corresponding antenna is switched off, in an analogous way to

the well known antenna-selection algorithms, e.g., [Gor00]. In the case of decoupled receivers

(multi-user scenario), each stream corresponds to a particular user, consequently, we have to

select a group of active users, which simultaneously receive their transmitted symbols.

Noteworthy, since some of the streams may be switched off as indicated by (5.35), a new

channel matrix without the elements corresponding to the disabled streams can be considered.

In this case, its corresponding Cholesky decomposition gives different values of {g′kk}, k ∈ G,

which are lower than the original ones, {gkk}, [Gol96], and then the Gaussian approximations

for these streams continue to be valid, giving the same solution as obtained in (5.35).

5.5 Rate loss with imperfect CSI

In the previous section we have analyzed the achievable rates of the STHP structure for the

case where the transmitter can be designed with perfect CSI. In practice, however, this situation

is fictional and the transmitter usually acquires knowledge of the current channel realization

through an imperfect feedback link (or by estimation of the reciprocal channel in TDD systems).

In this section we will consider that there is a mismatch between the ideal transmitter

design (as given by B in the coupled case, and by B and F in the decoupled one) and the

actual transmitter which we shall denote by B̂ and F̂, which are erroneous versions of their ideal

counterparts. Precisely, the main contribution of this section is that in both cases (coupled and

decoupled) we obtain a robust design, whose objective is the maximization of the sum rate in

the presence of errors in the CSI. In the coupled case (see Figure 5.1), we consider that the

transmitter is informed directly of B̂ through a feedback link with errors. Noteworthy, since

B is a lower triangular matrix with ones in the main diagonal, only the elements below the

diagonal are to be fed back. Consequently, feeding back these elements requires a lower amount

of feedback than transmitting the whole channel matrix H from the receiver to the transmitter,

and that the reason why we consider that the feedback information is the matrix B rather than

the matrix H.

In the decoupled case (see Figure 5.2), two precoding matrices are necessary at the trans-

mitter side: B and F, which cannot be calculated at the receivers side because each receiver

only knows one of the rows of the full matrix H. Consequently, we assume that the transmitter

is informed, e.g., through a feedback link or by direct estimation, with an erroneous channel

matrix Ĥ, and that, based upon that estimate, the transmitter calculates B̂ and F̂ following
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(5.13) and (5.7).

Since we are interested in high data rate transmission, the following analysis is done assuming

that the SNR is high (for practical purposes this implies that it has to be greater than 10 dB)

and that the error in the precoding matrices B̂ and F̂ is kept small.

5.5.1 Single-user scenario (coupled case)

In the coupled case, we consider that the receiver feeds back the elements below the main

diagonal of the matrix B to the transmitter. If some kind of error is considered in the feedback

link, the transmitter will be informed with an erroneous precoding matrix, B̂ = B + ∆ with ∆

being a strictly lower triangular matrix. In this case, using the compact notation as in (5.4), the

transmitted signal, x
c,B̂

, becomes

x
c,B̂

= B̂−1(s + a
B̂

) = (B + ∆)−1(s + a
B̂

). (5.36)

Notice that a
B̂

in (5.36) must now be chosen so that x
c,B̂

lies inside the modulo region defined

by vector t. In addition, it is important to state that, in general, a
B̂
�= a, where a is defined as

in (5.4). However, if the variance of the elements of the error matrix ∆ is kept small it can be

assumed that

(As1) : a = a
B̂

. (5.37)

See §5.6 for a validity evaluation. Under (As1), substituting (5.36) in (5.8) and using the matrix

inversion lemma [Hor85], (B+∆)−1 = B−1−B−1(∆B−1+InT )−1∆B−1, the received signal can

be expressed as r
B̂

= Mt[s+(∆B−1 + InT )−1∆B−1(s+a)+Gñ]. Notice that B−1(s+a) = xc,

i.e., we can reduce B−1(s+a) to xc, which would be the transmitted signal in the coupled case if

no errors were present in B̂ matrix, and whose components are bounded in [−tk, tk)×[−j tk, j tk).

Defining L = (∆B−1 + InT )−1∆ the received signal reads

r
B̂

= Mt[s + Lxc + Gñ], (5.38)

where L is a strictly lower triangular matrix.3 Attention must be paid to the fact that if the

elements of ∆ are sufficiently low, the first order approximation L = ∆ + o(∆) becomes valid.

Once we have obtained an expression for the input-output relation in the presence of feedback

errors we can proceed to maximize the mutual information between s and r
B̂

. As it was described

in §5.3.2, the power transmitted through k-th antenna, Pk, is controlled by tk by the relation

Pk = 2t2k/3. In §5.4, it was found that, if no feedback errors are present, the STHP gets very

close to achieve its capacity when each element of data vector s is uniformly distributed in the
3Notice that the inverse of a triangular matrix is also triangular. Additionally, the product of a lower triangular

matrix and a strictly lower triangular matrix is a strictly lower triangular matrix.
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interval defined by vector t and the transmission power, PT , is equally distributed among the

set of active antennas, which is defined as the set of active antennas that would correspond to

the perfect CSI case (see §5.4.3). Noteworthy, the optimal set in the imperfect CSI case need

not be the same as in the perfect CSI case, but, in practice, it can be checked that the two sets

coincide (at least with the small errors assumption). From now on, the set of active antennas

are numbered from 1 to N , i.e., P1, . . . , PN > 0, PN+1, . . . , PnS = 0. In the following, the power

distribution and, consequently, the moduli {tk} will be adapted to maximize the worst-case

achievable rates when feedback errors are present, giving thus rise to a robust design.

The first order approximation in ∆ of the received signal vector is

(As2) : r
B̂
� Mt[s + ∆x + Gñ], (5.39)

where xc has been substituted by x for the sake of notation. If ∆x is treated as an unknown inter-

ference the mutual information between k-th element of data vector, sk, and the corresponding

element of received signal, rk = [r
B̂

]k, is

I(sk; rk) = log(6Pk) − h
(
Mtk

[
gkkñk +

∑
j<k

δkjxj

])
, (5.40)

where δkj = [∆]kj and h(·) denotes differential entropy in an analogous way as in (5.17). Notice

that, as it was stated in §5.4.2, since xk is the output of the precoder, it is uniformly distributed

in Dk and thus its variance equals Pk.

Let us define the random variable zk = gkkñk +
∑

j<k δkjxj with power E{|zk|2} = g2
kkσ

2 +∑
j<k |δkj |2Pj . It can be easily verified [Pap91] that zk can be approximately modeled as a

complex Gaussian random variable as long as

(As3) : max
j

|δkj |2Pj � g2
kkσ

2/3. (5.41)

Under (As3), we found in §5.4.3 that the mutual information expression (5.40) is very well

approximated by

(As4) : I(sk; rk) � log+

(
6Pk

πe(g2
kkσ

2 +
∑

j<k |δkj |2Pj)

)
, (5.42)

where log+(x) = max(log(x), 0). The achievable rates for the STHP structure will then be the

sum of the mutual information of each active stream, C =
∑N

k=1 I(sk; rk).

In order to describe the noise worst-case scenario we consider that the squared moduli of the

components of the error matrix ∆ are bounded, i.e., |δkj |2 < αkj . In addition, for the sake of

simplicity we assume that αkj = α, ∀k, j. Notice that, since we are interested in the worst-case,

in case that the values of αkj were different for some k, j, the more pessimistic case could be

considered by letting α = maxk,j αkj .
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From all the considerations above, the power distribution that maximizes the worst-case

achievable rates when the CSI is imperfect is the solution to the following maximin problem:

Crob,c
THP = max

{Pk}
min
{δij}

N∑
k=1

I(sk; rk),

s.t.
N∑

k=1

Pk = PT ,

|δij |2 ≤ α, ∀i, j.

(5.43)

The solution to the minimization part is trivial, since each term I(sk; rk) is a decreasing

function of |δij |2 and each |δij |2 is upper bounded independently of the others. Thus, the mini-

mum will be attained when |δij |2 = α, ∀i, j. The resulting maximization problem is a standard

constrained optimization problem, and can be solved with the use of the Lagrange method. The

Lagrange equation is, up to a constant,

L({Pk}; λ) =
N∑

k=1

log
(

Pk

(g2
kkσ

2 + α
∑

k′<k Pk′)

)
+ λ

(
N∑

k=1

Pk − PT

)
. (5.44)

The optimal power allocation should satisfy

∂L({Pk}; λ)
∂Pk

= 0 for k = 1, . . . , N and
∂L({Pk}; λ)

∂λ
= 0, (5.45)

with the additional constraint that {Pk} is non-negative ∀k. With some basic manipulations from

(5.44) and (5.45) a recursive relation of the type PN−k = f(PN−k+1, . . . , PN ) for k = 1, . . . , N−1

between the assigned power to each antenna can be found as

PN−k = PN−k+1

wN−k+1 + α
(
PT −

∑
k′>N−k Pk′

)
wN−k+1 + α

(
PT −

∑
k′>N−k+1 Pk′

) , with wk = g2
kkσ

2 (5.46)

for k = 1, . . . , N − 1. Notice that the second factor in last equation is always lower than unity,

which implies necessarily that P1 ≤ P2 ≤ . . . ≤ PN−1 ≤ PN , which is a reasonable solution since

power interference is progressive in the sense that Pk interferes with streams from k + 1 to N ,

but not with streams from 1 to k − 1, see (5.42). The set of equations in (5.46) together with∑N
k=1 Pk = PT can be solved numerically obtaining the robust power allocation.

5.5.2 Multi-user scenario (decoupled receivers case)

In the decoupled case two precoding matrices are necessary at the transmitter side: B and F.

As commented above, we assume that the transmitter is informed, e.g., through a feedback link

or by direct estimation, with an erroneous channel matrix Ĥ = H + ∆, and that, based upon

that estimate, the transmitter calculates B̂ and F̂ following (5.13) and (5.7). Furthermore, we

consider that the entries of ∆ are i.i.d. circularly symmetric complex Gaussian random variables.
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The error present in the estimate Ĥ propagates to the estimates B̂ and F̂ as B̂ = B + ∆B, and

F̂ = F + ∆F. This error propagation has been recently studied in [Bah05] to characterize the

BER in STHP systems. Fortunately, the explicit expressions for ∆B and ∆F are not needed

here, because the authors of [Bah05] also obtained a very simple expression, which is reproduced

in (5.47), for the estimate of the data symbols vector in the decoupled case when B̂ and F̂ are

utilized in the transmitter design.

r = Mt [s + ξ(s) + Gn] . (5.47)

In last equation, ξ(s) is a random vector that represents the effects of having imperfect versions

of B and F at the transmitter side, and is independent of n but depends on the transmitted

symbols sequence. In [Bah05], the authors also found that ξ is distributed as a zero mean

circularly symmetric complex Gaussian random vector with E ξξH = Ξ.4 An explicit expression

for the calculation of Ξ is given in [Bah05] and is not reproduced here for the sake of space. We

simply need to know that Ξ can be calculated for the worst possible sequence of transmitted

symbols as a function of H and the power of the entries of ∆. Notice that, in this case, the

structure of the interference is not progressive, as it was found to be in the coupled case (5.38).

This is due to the fact that, in the decoupled case, before the output of the precoder p
B̂

is

being transmitted it is multiplied by the matrix F̂ which is unitary and consequently distributes

uniformly the interference that is present in p
B̂

among all the components of the transmitted

signal xd = F̂p
B̂

.

Moreover, in general, the matrix Ξ is not diagonal, which implies that the entries of the

interference term ξ in (5.47), can be correlated. However, since the receivers are not allowed

to cooperate, no advantage can be taken from the correlation of the interference term in the

decoding process, and thus we only need to be concerned about the diagonal entries of Ξ, [Ξ]kk,

which represent the power of the interference term in the received signal by each user.

From what has been said above, the entries of the interference term ξ can be accurately

modeled as an additional source of Gaussian noise independent of Gn, and whose power is

given by the diagonal elements of the matrix Ξ. Consequently, since the sum of two independent

Gaussian variables is another Gaussian variable whose power is given by the sum of the individual

powers, the two noise terms can be easily grouped into a single noise term, i.e., ξk + gkknk ∼
CN (0, g2

kkσ
2 + [Ξ]kk). Now, the received vector in (5.47) can thus be equivalently expressed as

r = Mt [s + Dν] , or rk = Mtk [sk + dkkνk] , k = 1, . . . , nS , (5.48)

where D is a diagonal matrix, with [D]2kk = d2
kk = g2

kkσ
2 + [Ξ]kk, and where ν ∼ CN (0, InS ).

4More precisely, in [Bah05] the authors state that the vector ξ in (5.47) is asymptotically distributed as a
circularly symmetric complex Gaussian random vector. In this case, asymptotically refers to the fact that in the
limit where the entries of ∆ are Gaussian distributed then so are the entries in the vector ξ. Since we are assuming
that the entries of ∆ are Gaussian distributed we can drop the adjective asymptotically without losing precision.
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Now we can express the robust achievable rates for the decoupled case as the solution to

Crob,d
THP = max

{tk}

nS∑
k=1

R

(
tk,

√
g2
kkσ

2 + [Ξ]kk

)
,

s.t.
nS∑
k=1

2t2k
3

= PT .

(5.49)

However, one readily sees that the problem in (5.49) is the same that was solved in §5.4.3,

but with a new set of noise powers given according to d2
kk = g2

kkσ
2 + [Ξ]kk. Consequently,

the problem can be solved quasi-optimally by selecting an active set of streams (users) and

performing uniform power allocation among them as was explained in §5.4. Noteworthy, in the

imperfect CSI case, the robust set of active users does not necessarily be the same as in the

perfect CSI case. This is due to the fact that, when the CSI is imperfect, the ordering of the

new set of noise powers d2
kk may be different than the set g2

kkσ
2. Consequently, the algorithm

may deactivate a user whose channel was good when no feedback errors were present, but whose

channel quality has decreased significantly due to the presence of the term [Ξ]kk.

5.6 Simulation results

To validate and give graphical representations of our results, numerical simulations have been

conducted. We have considered a flat-fading 3 × 3 MIMO channel matrix, whose entries have

been assumed to be zero mean unit variance i.i.d. circularly symmetric complex Gaussian random

variables. For the case where the presence of errors in the feedback is considered we have fixed

a mean SNR of PT /σ2 = 15 dB.

For the perfect CSI case, in Figure 5.4 the maximum achievable rates for STHP and the

system capacity are plotted versus the mean SNR. At the high SNR regime, the rate loss of

STHP with respect to the system capacity is approximately of 1 nat, as expected from (5.31).

The achievable rates given by the quasi-optimal solution in §5.4.3 are not plotted because they

overlap with the ones obtained with numerical optimization of the problem in (5.23), which

is a graphical indication of the quasi-optimality of our uniform power allocation with stream

selection solution.

Concerning the case of imperfect CSI, on the one hand, for the single-user case, as the

robust capacity analysis has been done using numerous approximations (As1), (As2), (As3),

and (As4), before presenting the simulations results, the validity of the approximations is shown

in Figure 5.5 by plotting the fraction of realizations with respect to the noise in which the

approximations are valid. Precisely, (As4) is considered to hold true when the relative difference

between the approximation (5.42) and the actual value (5.40), calculated numerically, is lower

than 10−3. It can be seen that, for the particular values of the simulation parameters taken in
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Figure 5.4: System capacity and achievable rates for STHP, as a function of mean SNR. The high SNR
approximation has also been plotted.

this section, the capacity analysis is valid for values of α up to −21 dB. For values of α higher

than −21 dB our analysis is not valid. However, from the slope of the robust achievable rates

curves at α = −21 dB in Figure 5.6, the rates that can be achieved for α > −21 dB seem to

decrease fast, so even with a robust technique it would be difficult to cope with the problems

associated with having an imperfect feedback link. Notice that the validity of (As 2) has not

been plotted as the differences between L and ∆B have always been found negligible. In Figure

5.6, we have plotted the maximum achievable rates for the robust power allocation strategy and

also for the non-robust uniform power allocation with antenna selection scheme described in

§5.4.3 for different realizations of the MIMO channel. In Figure 5.7 we have plotted the fraction

of the total power that is transmitted through each one of the antennas, which is related to the

set of moduli used in STHP, for a particular realization of the channel. It can be seen that, as

α gets close to -21 dB, the robust power allocation differs substantially from the uniform power

allocation.

On the other hand, in the multi-user case, similar simulations have been conducted but in

this case the parameter α represents the noise power of each component of the estimation error

in the channel matrix Ĥ = H + ∆H, i.e., E|[∆H]ij |2 = α. For each channel realization the

worst-case matrix Ξ has been computed following [Bah05] and then a set of active users has

been selected according to the set of noise powers given by d2
kk = g2

kkσ
2 + [Ξ]kk. The resulting

maximum achievable sum rate has been plotted in Figure 5.8 for various channel realizations.



116 5.7. Chapter summary and conclusion

In addition, since in the multi-user case we are not so strongly conditioned on the validity of

the approximations done in the single-user case, we can extend the domain of α. As the value

of α increases the maximum achievable sum rate decreases very rapidly, which implies that, as

the estimation noise increases, even the robust technique is not able to cope with the presence

of errors in the feedback link. Note that this conclusion, also valid for the single-user case, is

not surprising since the robust design presented in this chapter has been derived assuming small

errors and, therefore, the degradation can be quite high when this assumption does not hold.

5.7 Chapter summary and conclusion

In this chapter we have analyzed some issues concerning the achievable rates of the STHP scheme.

Initially, we have added new degrees of freedom in the design of the STHP by allowing different

modulo operations at the output of the precoder. Next, the loss in mutual information with

respect to the system capacity has been calculated for the high SNR regime, finding that there

is a gap of approximately 0.353nS nats. Finally, we have found two robust power allocation

strategies, for the coupled and decoupled cases, that maximize the mutual information with

imperfect CSI. We have observed that the proposed robust techniques are able to cope with the

imperfections in the CSI by minimizing the loss in terms of rate when the CSI is not perfect.

Finally, we wish to highlight that the proposed algorithm could work in a realistic deployment

since the presence of errors in the feedback link has been explicitly taken into account in the

design process.
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5.A Properties of the differential entropy of a clipped Gaussian
random variable

For the sake of simplicity, the properties presented in this section for the differential entropy of

a clipped Gaussian random variable, h(Mt[z]), with z ∈ C, will be based on extensions from the

differential entropy of a real random variable h(Mt[x]), with x ∈ R. First, the pdf of Mt[x] is

characterized, and then some properties of its differential entropy are presented.

5.A.1 Probability density function of a clipped Gaussian random variable

Let x be a real zero-mean Gaussian random variable with variance σ2. Let us also define y =

Mt[x] where now Mt[x] is a modulo-2t reduction of x into the interval [−t, t). The pdf of y, is

fY (y, t, σ) =
{ ∑∞

k=−∞ fX(y − 2tk, σ) y ∈ [−t, t)
0 y /∈ [−t, t)

, (5.50)

where the dependence of fY on variables t, σ has been explicitly written, and where

fX(x, σ) =
1√
2πσ

exp
(
− x2

2σ2

)
. (5.51)

It is important to notice that, if t tends to infinity with σ fixed, fY tends to fX as the only

relevant term in the summation in (5.50) is for k = 0. In addition, if σ tends to infinity with

t fixed, fY tends to the pdf of a uniform random variable in [−t, t), i.e., fY (y) = (2t)−1 for

y ∈ [−t, t).

5.A.2 Differential entropy

The differential entropy of y can be written as [Cov91]

h(y, t, σ) = −
∫ t

−t
fY (y, t, σ) log fY (y, t, σ)dy. (5.52)

In the previous section, it was stated that, in some limiting values, fY tends to the pdf of

a uniform (t → ∞, σ fixed) or Gaussian (t fixed, σ → ∞) random variables. Consequently,

the limiting values of the differential entropy in these cases will correspond to the well known

expressions for the differential entropy of uniform and Gaussian random variables:

lim
t→∞

h(y, t, σ) =
1
2

log 2πeσ2, (5.53)

lim
σ→∞

h(y, t, σ) = log 2t, (5.54)

which for the complex case these tend to log πeσ2 and 2 log 2t, respectively.
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5.B Probability density function of p = Mt[s + z]

The purpose of this appendix is to show that the elements pk in equation (5.2), are independent

of the others pk′ , with k′ �= k, i.e., fPkPk′ (pk, pk′) = fPk
(pk)fPk′ (pk′). Just as in the previous

section, we will present the analysis in the real case, bearing that the extension to the complex

case is straightforward.

First of all, we recall the expression in (5.2),

pk = Mtk

[
sk −

k−1∑
k′=1

bkk′pk′

]
, for k = 1, . . . , nS . (5.55)

and for the sake of notation, we define z = −
∑k−1

k′=1 bkk′pk′ , and we omit the subscript index k.

With this new notation, the expression in (5.55) simplifies to p = Mt[s + z]. The joint pdf of p

and z is

fPZ(p, z) = fP |Z(p | z)fZ(z). (5.56)

In order to prove independence between p and z, it is sufficient to show that fP |Z(p | z) = fP (p).

Defining q = s + z, we have fQ|Z(q | z) = fS(q − z), from which it can be stated that

fQ|Z(q | z) =
{

1/(2t) q ∈ [z − t, z + t)
0 q /∈ [z − t, z + t)

, (5.57)

and consequently

fP |Z(p | z) =
{ ∑∞

k=−∞ fQ|Z(p − 2tk | z) p ∈ [−t, t)
0 p /∈ [−t, t)

. (5.58)

Notice that the function fQ|Z(p − 2tk | z) is flat in the interval [z + t(2k − 1), z + t(2k + 1))

and zero elsewhere. This implies that
∑∞

k=−∞ fQ|Z(p − 2tk | z) is a non-overlapping superposi-

tion of flat intervals separated a distance equal to the length of the interval, 2t. Consequently,∑∞
k=−∞ fQ|Z(p − 2tk | z) = 1/(2t) independently of z, from which it can be stated that

fP |Z(p | z) = fP (p) =
{

1/(2t) p ∈ [−t, t)
0 p /∈ [−t, t)

, (5.59)

which implies that p is uniformly distributed in [−t, t) and it is independent of z. Since z is

defined as a linear combination of {pk′}k−1
k′=1, and the result we have shown is independent of the

distribution of z it follows that, for any two pair of values k and k′, with k′ < k, fPkPk′ (pk, pk′) =

fPk
(pk)fPk′ (pk′). Notice that if k′ > k the independence is trivial since in (5.2) and (5.55) it can

be seen that pk does not depend on pk′ with k′ > k.

Extending the above results to the complex case, it implies that, when the entries, sk, of

the precoder input symbols vector, s, are independent and uniformly distributed in the intervals
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{[−tk, tk)× [− i tk, i tk)}k, the entries, pk , of the precoder output vector p are also independent

and uniformly distributed in the intervals {[−tk, tk) × [− i tk, i tk)}k. This implies that

Epkp
∗
k′ = δkk′

2t2k
3

, (5.60)

where δkk′ represents the kronecker delta.
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Chapter 6

Multi-user communication through
MIMO channels with imperfect CSI

6.1 Introduction

In connection with last chapter, where the multi-user scenario has been introduced, in this

chapter we stay in this multi-user setup and present the robust design of a linear transmitter

that is aimed at guaranteeing a minimum QoS for every user taking into account the fact that

the CSI that both the transmitter and the receivers have available is imperfect.

Before presenting this robust linear transmitter design some capacity results are briefly

discussed in the following section.

6.2 Capacity results

As it has been commented in the previous chapters, multiple-antenna communications systems

have generated a great deal of interest among the research community since they have the

potential of considerably increasing the capacity. In chapter 3 we saw that, if perfect CSI is

made available at the transmitter and the receiver, then they can jointly create a number of

parallel channels and thus, loosely speaking, increase the capacity of the channel by this same

factor. It was later shown that the same capacity scaling is true if the channel is not known at

the transmitter [Tel99, Fos98] and even if it is not known at the receiver [Zhe02, Has02, Lap98,

Mos04, Lap03] (provided that the coherence interval of the channel is not too short).

Since these results only hold for single-user communication systems, there has been recent

interest in the role of MIMO systems in a multi-user setup, and especially in broadcast channels.

There have been two main approaches of conducting research in these multi-user scenarios. On

one hand, there has been a line of work studying transmission architectures [Kob05b, Kob05a]

123
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and also cross-layer scheduling algorithms in MIMO broadcast channels [Hoc04, Vic06, Rea06].

One of the main results of [Hoc04] being that, due to channel hardening in MIMO systems,

many of the multi-user gains disappear. On the other hand, a significant research effort has

been devoted to the study the sum-rate capacity and also the capacity region of MIMO BC

[Cai03, Vis03b, Vis03a, Yu04]. The main conclusion of these excellent works is that the sum-

rate capacity is achieved by DPC [Cos83]. Recently, it has been shown that DPC in fact achieves

the capacity region of the Gaussian MIMO broadcast channel [Wei04, Wei06].

While the above results suggest that in the asymptotic regime capacity increases linearly in

the number of transmit antennas, they all rely on the assumption that the channel is known

perfectly at the transmitter. Moreover, the DPC scheme, especially in the multi-user context,

is extremely computationally intensive (although suboptimal schemes such as channel inversion

[Yoo05] or Tomlinson-Harashima precoding [Yu01, Zam02, Pee05a, Pee05b] give relatively close

performance to the optimal schemes). It is then reasonable to speculate whether, as in the

single-user case, it is possible to get the same gains in the multi-user case without having

channel knowledge at the transmitter. Unfortunately, if no channel knowledge is available at the

transmitter, capacity scales only logarithmically in the number of transmit antennas [Sha05b].

In fact, in this case, increasing the number of transmit antennas yields no gains since the same

performance can be obtained with a single transmit antenna operating at higher power.

In many applications, especially if the users are mobile and are moving rapidly, it is not

reasonable to assume that all the channel coefficients from the transmitter to every user can be

made available at both communication ends. Since perfect CSI may be impractical, yet no CSI

is useless, it is very important to study the capacity of broadcasting systems where only partial

or imperfect CSI at the transmitter is available.

However, this subject has proved extremely difficult and almost no works have been found

in the existing literature that deal with the topic of broadcast capacity with imperfect or incom-

plete CSI. In [Sha05b] the achievable sum-rate was studied for a particular case or orthogonal

beamforming with SNR feedback, and in [Lap06] Lapidoth, Shamai, and Wigger studied the ef-

fects of imperfect CSI at the transmitter in the capacity of a simplified MIMO broadcast channel

with two antennas at the transmitter and two users equipped with single antenna terminals.

Since the general topic of broadcast capacity with imperfect CSI appears to be untractable,

we focused more specifically on the design of practical transceiver architectures, where the im-

perfections in the CSI are taken into account explicitly in the design process. Unfortunately, due

to the lack of general results in broadcast capacity with imperfect CSI it is, for the moment,

impossible to design the transmitter according to information-theoretic criteria. Consequently,

in the following sections we present the design of a multi-antenna transmitter for the broad-

cast channel which is aimed at minimizing the total transmitted power while guaranteeing a

predefined QoS per user.



Chapter 6. Multi-user communication through MIMO channels with imperfect CSI 125

6.3 Practical transmission scheme

Although the benefits for single-user communications have been studied extensively in the previ-

ous chapters, one of the main potentials of multi-antenna communications is that they can afford

multi-user communications, where the different signals can be separated by spatial processing

techniques. As opposed to single-user communications, in the design of multi-user systems, sev-

eral QoS measures have to be considered simultaneously, each one corresponding to each user.

This leads to an inherent problem in the design of such systems, which is how to handle with

these different quality measures.

A possible solution, inspired by single-user designs, aims at optimizing the mean value of

these measures [Ser04]. However, it must be taken into account that the optimization of the mean

does not guarantee a minimum acceptable quality for all the users. Consequently, a more suitable

approach, is to guarantee a minimum QoS independently for the data stream corresponding to

each user, while optimizing a global network parameter such as the total transmitted power.

Similar to the single-user case, the performance in multi-user communications also depends

on the available CSI. Initially, most researchers concentrated their efforts on the design of multi-

user transmission architectures assuming that both the transmitter and the user receivers have

perfect knowledge of the CSI, giving rise to the so-called solution to the downlink beamforming

problem, [Ben01, Sch04]. Very recently, a unified framework with a very powerful and general

model to deal with the problem of power allocation design in a multi-user and multi-antenna

downlink scenario with perfect CSI has been presented in [Boc05].

Note that, as it has been already commented in this dissertation, in a realistic implementation

of the system, the assumption of the availability of a complete and perfect CSI is too optimistic,

specially for wireless systems where the fluctuations of the channel can be fast, and also due

to the presence of estimation noise or quantization effects in the CSI. In the case of imperfect

CSI, the simplest approach consists in utilizing the available CSI as if it was perfect, giving rise

to naive (non-robust) designs. It has been shown that these designs are extremely sensitive to

the errors in the CSI [Cho02b, Cho02c, Zho04], which translates into a decrease of the system

performance, or, equivalently, into an inefficient use of the network resources, such as the power

consumption.

Thus, a more desired approach in this case is to consider a robust design where the presence

of the errors in the CSI is explicitly taken into consideration in the design. Different designs

are possible depending on the model assumed for the errors. On one hand, in the Bayesian

philosophy the errors are modeled from a statistical point of view, and, on the other hand, the

maximin approach does not need a statistical description of the error, because it is assumed

that the error belongs to a predefined uncertainty region, whose shape and size are linked to the
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physical phenomenon producing the error in the CSI.

In the following, we consider the downlink of a multi-user communications system with

several single antenna receivers and a multiantenna BS. The transmitter is composed of two

blocks: a power allocation among the symbols for different users, and a linear transformation.

The robustness of our system is achieved by a maximin design of the power allocation under

two considerations. On one hand, the objective is to minimize the total transmitted power, and,

on the other hand, we wish to guarantee a certain minimum QoS per user for any possible error

of the CSI inside the uncertainty region. The design of the power allocation fulfilling these two

considerations is formulated as a convex optimization problem, which is next solved for several

uncertainty regions, modeling the most practical cases of errors in the CSI (estimation Gaussian

noise and/or quantization effects). The main advantage of formulating our optimization problem

within the convex optimization framework is that numerical solutions can be computed very

efficiently, and, even in some cases, a quasi-closed form solution can be found.

Although a significant research effort has been devoted to the design robust receivers (see

[Vor03] and references therein), to the best of our knowledge, the existing literature dealing

with linear transmitter design in multi-user systems with imperfect CSI is more scarce [Ben00,

Ben01, Big04], and some references therein by the same authors. In these works it has been

considered that an imperfect estimate of the channel covariance matrix is made available at the

transmitter, whereas we consider the alternative case where an imperfect estimate of the channel

matrix itself is available at both communication ends.

6.4 System model

We consider the same downlink communication system model as in the previous chapter for

the multi-user case. Recall that in this model the BS utilizes nT antennas to simultaneously

transmit information symbols to nU users, whose terminals are equipped with a single antenna.

The baseband model for the samples of the received signal vector y ∈ CnU is then

y = Hx + n, (6.1)

where x ∈ CnT represents the transmitted signal by the BS through all the antennas, H =

[h1, . . . ,hnU ]H ∈ CnU×nT is the channel matrix, and n ∈ CnU represents the noise vector.

As opposed to the previous chapter, where we considered both the single- and multi-user cases

within the same model, in this chapter only the multi-user case is dealt with and consequently

it will be convenient to decouple the model for the received vector in (6.1) as

yi = [y]i = hH
i x + ni, i = 1, . . . , nU , (6.2)
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where hH
i ∈ C1×nT is the flat fading spatial channel response from the nT transmission antennas

to the i-th user, x ∈ CnT represents the transmitted signal by the BS through all the antennas,

and ni = [n]i is the noise contribution with E|ni|2 = σ2, ∀i.

The transmitted signal, x, is designed as a linear function of the information symbols vector,

s ∈ CnU , where si represents the symbol to be communicated to i-th user and where EssH = InU

is assumed w.l.o.g. This linear combination is expressed as a product of two linear transforma-

tions as

x = BP1/2s, (6.3)

where B = [b1, . . . ,bnU ] is the transmission matrix and the diagonal matrix P1/2, with elements

[P1/2]ii =
√

pi, takes into account the power allocation among the information symbols.

The objective is now to design the transmitter according to the available information about

the actual channel matrix at both communications ends, which is assumed to be imperfect. In

order to optimize the global system performance, the presence of these imperfections has to be

taken into account explicitly, leading to robust solutions that are less sensitive to these errors. As

we have commented previously, there are different ways to incorporate robustness in the system

design, such as the Bayesian and the maximin approaches, where the whole transmitter BP1/2

is designed according to these criteria. In both cases, the formulated mathematical problems are

generally much more complicated than the classical non-robust solutions. This too demanding

complexity requires to make some assumptions and simplifications in the design, as seen in

many works such as [Jön02, Zho02, Zho03, Sch04, Ben01] (indeed, these simplifications may be

required not only to solve the mathematical problem itself, but also to obtain a solution that

can be implemented in a realistic system with restrictions on the allowed computational load).

Concretely, in our case, the design of the transmitter is simplified by dividing it into two parts

taking an engineering and practical perspective. The transmission matrix B is allowed to depend

only on the channel estimate and it is designed in a non-robust way according to a predefined

performance criterion. On the other hand, the design of the power allocation P1/2 is much more

general and is allowed to depend not only on the channel estimate, but also on the model of

the imperfections in the CSI. In other words, the robustness is achieved through the addition

of a power allocation block before the symbols are processed by the matrix B as depicted in

Figure 6.1 as opposed to the naive design in Figure 6.2 where there is no power allocation and

the transmission matrix B is designed as if no errors were present in the estimate of the channel

matrix. Note then that we focus on the power allocation itself. Indeed, the transmitter separation

into two blocks has also been taken in excellent works such as [Sch04, Boc05], and references

therein by the same authors, where the power allocation is designed assuming perfect CSI, i.e.,

they do not analyze the robustness problem. As commented before, a similar work as the one

presented here on the design of a robust power allocation has been performed by [Big04], where

the focus is not given to the design of the linear transmission matrix B.
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Figure 6.1: Robust downlink multi-user communication scheme. In the robust case we have added a
power allocation block, that weights the information symbols prior to transforming them with the linear
filter B. The power allocation is robustly designed to minimize the transmitted power while guaranteeing
a certain QoS for each user. The optimal power allocation is found as a function of the channel estimate
H̃, the uncertainty region R, and the set of QoS constraints {qosi}.

6.5 Imperfect CSI and problem statement

As it has been widely commented in this dissertation, in a practical communications scenario,

the assumption of perfect CSI at the transmitter and receiver sides is rather unrealistic. At the

receivers side, the channel is usually estimated through training sequences (pilot symbols), and

at the transmitter side, the CSI can be acquired through a feedback channel in FDD systems

or from previously received symbols by exploiting the channel reciprocity in TDD systems. In

both cases, different sources of errors can be identified depending on how the CSI is obtained,

such as estimation Gaussian noise or the effects of a quantized feedback, among others.

In this section, we analyze the case where, due to the aforementioned imperfection in the CSI

acquisition, both the transmitter and the receiver have only access to the same noisy estimate,

H̃ = [h̃1, . . . , h̃nU ]H , of the actual channel H. More precisely, it is assumed that the actual

channel is inside an uncertainty region, R ⊂ CnU×nT , around its estimate, which formally can

be expressed as

H = H̃ + ∆, (6.4)

for some ∆ = [δ1, . . . , δnU ]H ∈ R. The shape and size of R model the kind of uncertainty

in the channel estimate. For example, if the uncertainty stems from the fact that the CSI is

a uniformly quantized version of the actual channel, then the entries of the error matrix are

inside the interval [∆]ij ∈ [−ρ, ρ] × [− i ρ, i ρ], where 2ρ is the quantization step, and thus the

uncertainty region is a hypercube, whose side length is the quantization step (more details are

given in §6.6 or see further [PI06]).
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Figure 6.2: Naive downlink multi-user communication scheme. In this non-robust case, the transmitter
performs a linear transformation of the information symbols, which is allowed to depend on the channel
estimation H̃. Note that the design of the transmitter matrix B is designed like as if the estimate of the
channel matrix H̃ were perfect.

As mentioned in the introduction, given a design for the transmitter matrix B as a function

of the channel estimate H̃, the most general formulation of our problem is to robustly design the

power allocation matrix P, as in (6.5), so that the total transmitted power, PT (P), is minimized,

and the QoS indicator for every user, qosi(P,∆), is always above a certain pre-required minimum

quality threshold for each user, qos0i , for any possible realization of the error matrix ∆ inside

the uncertainty region R. Formally, this optimization problem can be stated as

min
P

PT (P)

s. t. qosi (P,∆) ≥ qos0i , 1 ≤ i ≤ nU , ∀∆ ∈ R.

pi ≥ 0, 1 ≤ i ≤ nU

(6.5)

Note that, by explicitly taking into account the imperfections of the CSI in the design process

we obtain a communications system which is robust to uncertainties in the channel estimate.

The robustness of the proposed system stems from the fact that, by explicitly guaranteeing that

the QoS for every user is above a certain different threshold for any possible error realization

inside the uncertainty region, an increase in the reliability against estimation errors is provided

to the users.

The QoS indicator is chosen to be the perceived SINR for each user, sinri, and, consequently,

the QoS requirements are expressed as SINR thresholds sinr0i , such that the user SINR must be

above its corresponding threshold, i.e., sinri ≥ sinr0i must be guaranteed. The choice of SINR as

a QoS indicator is, however, rather arbitrary. For example, if the QoS requirement is desired to

be expressed in terms of rate ri ≥ r0i , it is always possible to transform it into a SINR constraint

as sinr0i = exp r0i −1. Similar expressions can be obtained when the QoS is selected to be the BER

beri ≤ ber0i or the mean square error msei ≤ mse0
i (see further our preliminary work [Pay06d]

where the mean square error criterion has been taken).



130 6.5. Imperfect CSI and problem statement

H
n

U

1

1

1

x

n
T n

U

.

.

.

B

n

s
1

s
2

sn
U

r

y
1

y
2

n
U

1p

2p

Unp

.

.

.

( ) 1

1 1 1

H p
−

h b

( ) 1

2 2 2

H p
−

h b

( ) 1

U U U

H

n n np
−

h b

s
1

s
2

sn
U

^

^

^
yn

U

Figure 6.3: Schematic representation of the downlink communication system. Each receiver estimates
its own symbol, ŝi, e.g., dividing the incoming signal by the coefficient of si in the expression for the
received signal in (6.9). Note that the SINR is not modified by this division.

In the following, we particularize the general optimization problem in (6.5) for our commu-

nications scheme. From (6.3), the transmitted power for this architecture is readily obtained as

the linear function

PT (P) = E TrxxH = TrBPBH . (6.6)

The expression for the SINR for each user can be obtained as follows. We begin from the

received signal for i-th user in (6.2) when considering the uncertainty model in (6.4):

yi = hH
i BP1/2s + ni (6.7)

= h̃H
i BP1/2s + δH

i BP1/2s + ni (6.8)

= h̃H
i bi

√
pisi + (h̃H

i B̄i + δH
i B)P1/2s + ni, (6.9)

where B̄i � [b1, . . . ,bi−1,0,bi+1, . . . ,bnU ] (see Figure 6.3 for an schematic representation of the

received signal). Expanding the second term in last equation, we obtain

(h̃H
i B̄i + δH

i B)P1/2s = h̃H
i

∑
j �=i

bj
√

pjsj + δH
i

∑
j �=i

bj
√

pjsj + δH
i bi

√
pisi. (6.10)

Now it is important to determine precisely the way how each user is going to estimate its

own received symbol according to the reception of yi. From the expansion in (6.10) it can be

seen that the term (h̃H
i B̄i + δH

i B)P1/2s in (6.9) does not have any known contribution to the

reception of the symbol si because the only term that depends on si (the last one in (6.10)) also

contains the factor δH
i associated with the error in the channel estimate and which is unknown
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for both communication ends. Since it has been assumed that each receiver has available the

same channel estimation than the transmitter h̃i and is aware of the power allocated to its

signal pi and the transmitter matrix B, the most reasonable estimate of the received symbol as

a function of the received signal is given by

ŝi =
yi

h̃H
i bi

√
pi

= si +
(h̃H

i B̄i + δH
i B)P1/2s + ni

h̃H
i bi

√
pi

, (6.11)

where, from all that has been said, the second term has to be computed as interference.

Consequently, although in the formal definition of SINR all the terms containing the desired

information should be computed as signal power, as it was shown in §2.5.3, it may be more

useful to compute the effective SINR as in (2.43). With this consideration in mind, the effective

SINR1 experienced by i-th user can be directly obtained as

esinri =
E|h̃H

i bi
√

pisi|2

E|(h̃H
i B̄i + δH

i B)P1/2s + ni|2
=

|h̃H
i bi|2pi

(h̃H
i B̄i + δH

i B)P(B̄H
i h̃i + BHδi) + σ2

. (6.12)

Particularizing the problem in (6.5) with the expression for the transmitted power in (6.6) and

where the the QoS constraint qosi ≥ qos0i is rewritten with the SINR expression in (6.12), we

obtain the equivalent problem for our case:

min
P

TrBPBH ,

s. t.
(
h̃H

i B̄i + δH
i B

)
P
(
B̄H

i h̃i + BHδi

)
− γ0

i

∣∣h̃H
i bi

∣∣2pi + σ2 ≤ 0, 1 ≤ i ≤ nU , ∀∆ ∈ R,

pi ≥ 0, 1 ≤ i ≤ nU ,

(6.13)

where we have defined γ0
i = 1/esinr0i . Note that since the restrictions for each user (indexed by

i) in the optimization problem (6.13) have to be guaranteed for all ∆ ∈ R, it is sufficient to

impose that they be satisfied for the worst-case situation, i.e., the case where ∆ is such that it

maximizes the value of the restrictions as

min
P

TrBPBH ,

s. t. sup
∆∈R

(
h̃H

i B̄i + δH
i B

)
P
(
B̄H

i h̃i + BHδi

)
− γ0

i

∣∣h̃H
i bi

∣∣2pi + σ2 ≤ 0, 1 ≤ i ≤ nU ,

pi ≥ 0, 1 ≤ i ≤ nU

(6.14)

whose solution is the same as in the problem (6.13). From [Boy04], we know that supz2∈A f(z1, z2)

is a convex function in z1 if f(z1, z2) is also convex in z1 for all z2, unaffected by the shape

of A. This implies that the restrictions in (6.14) are convex in P for every possible shape and

size of the uncertainty region R because they are defined as the supremum of a linear (and thus

convex) function of P.

1For the sake of clarity, from this point the effective SINR will be referred to as SINR.
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In the following section, we particularize the convex problem in (6.14) for a number of

uncertainty regions that model the most interesting practical situations, like, e.g., the fact that

the channel estimation is a quantized version of the actual channel, or that the channel estimation

has a Gaussian noise contribution with respect to the actual channel or, even the case with a

combination of both sources of errors. The cases of spherical or elliptical uncertainty regions have

already been considered in [AS05, Wie05a, Wie06] when dealing with robust designs. We try to

go a step beyond by doing a generalization effort to include many different uncertainty regions.

In addition, for each one of these uncertainty regions, a ready-to-program particularization of

the convex optimization general problem in (6.14) is given.

6.6 Uncertainty regions

The definition of the uncertainty region R should take into account the quality of the channel

estimate and the imperfections in the estimation process that generate the error in such a way

that the mathematical optimization problem as in (6.14) is directly related to the physical

phenomenon producing the error.

In this section, we focus our attention on the particularization of the general problem in

(6.14), of finding the power allocation that minimizes the transmitted power while guaranteeing

the QoS for the users, for some interesting uncertainty regions derived from the previously

described error sources and combinations of them. In addition, we particularize the obtained

expressions for the case where B = BZF = H̃H
(
H̃H̃H

)−1. This choice is made for the sake of

simplicity, because, in this case, |h̃H
i bi|2 = 1 and B̄H

i h̃i = 0, for all i, and the general robust

problem in (6.14) becomes

min
P

TrBZFPBH
ZF,

s. t. sup
∆∈R

δH
i BZFPBH

ZFδi − γ0
i pi + σ2 ≤ 0, 1 ≤ i ≤ nU ,

pi ≥ 0, 1 ≤ i ≤ nU .

(6.15)

In addition to the simplification of the obtained optimization problem, the choice B = BZF

has been proven optimal in terms of signal reception quality at high SNRs and it is also widely

utilized in the wireless downlink literature, e.g., [Yoo05]. However, it is important to recall that

the procedures described below are valid no matter what kind of transmission matrix B is chosen

(see further §6.6.5).

6.6.1 Estimation white Gaussian noise

In this section, we deal with the case where the corresponding channel vector of each of the

users, hi, is estimated independently from the others. This model is valid, for example, if each
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user estimates its own channel and feeds it back to the transmitter through an ideal feedback

link. We thus consider that the estimate h̃i is a noisy version of the actual channel hi corrupted

with AWGN,

h̃i = hi + wi, ∀i, or, compactly, H̃ = [h̃1, . . . , h̃nU ]H = H + W (6.16)

where wi ∈ CnT×1 represents the estimation noise, and whose entries are proper i.i.d. complex

Gaussian random variables, wi ∼ CN (0, ς2
i I), and where W is related with ∆ as ∆ = −W. The

estimation noise power is characterized by ς2
i and can be different for each user, so that different

qualities in the channel estimation per user can be modeled (due to, e.g., different distances

from the users to the BS).

We must now relate the estimation error model in (6.16) with the uncertainty model that

we have considered in this work, H = H̃ + ∆, where ∆ belongs to an uncertainty region, R.

By inspection from (6.16), one simply obtains ∆ = −W (and δi = −wi). There are a couple of

implications of this equality that need to be further commented:

• The first fact is that, since for this error model each one of the estimation noise vectors

{δi} are white and Gaussian, their probability distribution has spherical symmetry around

the origin. The usual approach in this case is to define a spherical uncertainty region, as

in [PI06] or [AS05], for the error committed in the estimation of the channel for each user

formulated as follows

R = S ind
{R2

i }
�

{
∆ ∈ CnU×nT

∣∣ ‖δi‖2 = δH
i δi ≤ R2

i , ∀i
}

, (6.17)

where Ri is related with the noise power ς2
i and also with the probability that the actual

channel is inside the uncertainty region, as commented in the following. Note that our

formulation allows to consider spherical regions with different radii Ri.

• Another important point comes from the fact that, since the uncertainty region R is a

bounded set and the Gaussian entries of the estimation error ∆ are unbounded, the actual

channel error will belong to the uncertainty region with a certain probability, Pin = Pr{∆ ∈
R} < 1. Consequently, in this case, the QoS required for the users will only be guaranteed

with a probability equal to Pin. For the case where the error is outside the uncertainty

region and an outage event is declared because the QoS can not be guaranteed. See [PI06]

and also [Ron06] for a detailed description of the relation between Ri, Pin, and the power

of the estimation noise, ς2
i .

From the expression of the uncertainty region in (6.17), it can be seen that the quality of the

estimation of the channel of i-th user is determined by the radius of the uncertainty region Ri.

Since Ri is related to the power of the estimation noise, ς2
i , the bigger the uncertainty in the
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channel estimation, the bigger the radius of the uncertainty region. This allows us to consider

different channel estimation qualities for each user, which models, for example, a situation where

the users are placed at different distances of the BS, i.e., the uncertainty radius, Ri, of a user

which is close to the BS is lower than that of a user which is placed far from it.

Once the uncertainty region has been properly defined as in (6.17) for the case where the

error in the channel estimate is due to estimation Gaussian noise, the optimization problem in

(6.15) can now be solved. Its solution is given in the following proposition.

Proposition 6.6.1 Let us define the diagonal matrices Γ and Σ, with [Γ]ii = R2
i /γ0

i and [Σ]ii =

σ2/γ0
i . Then it follows that the convex problem in (6.15) for the case ∆ ∈ R = S ind

{R2
i }

has a

feasible solution if, and only if, λmax(BZFΓBH
ZF) < 1. In this case, the entries of its solution,

P�, are given by

p�
i =

R2
i µ + σ2

γ0
i

= esinr0i
(
R2

i µ + σ2
)
, ∀i ∈ {1, . . . , nU} (6.18)

where µ is the unique solution to the fixed point equation λmax(BZF(Γµ + Σ)BH
ZF) = µ, which

can be very efficiently solved, utilizing, e.g., the Newton method, applying the expression for the

differential of λmax(X) found in [Mag99, p. 161].

Proof See Appendix 6.A.1. �

The solution for the optimal power allocation in (6.18) can be particularized for the case

where there is no error in the channel estimate and, consequently, Ri = 0, ∀i. In this case,

p�
i,perf = esinr0i σ

2. This allows us to interpret that, so that the QoS are guaranteed in the

imperfect CSI case, there is an increase of esinr0i R
2
i µ in the power allocated to i-th symbol with

respect to the perfect CSI, which is the minimum price to pay to obtain a robust design for the

case B = BZF.

6.6.2 Colored noise case

It is possible to generalize the case presented above to include the effects of a colored Gaussian

estimation noise. In this case, the model for the estimation error is the same as in (6.16) but we

consider wi ∼ CN (0,Ci), with Ci being a general positive definite matrix. Due to the presence of

the general correlation matrix Ci, it can be shown (see, e.g., [Ron06]) that this case corresponds

to an elliptical uncertainty region defined as

R = E ind
{R2

i },{Ci} �
{
∆ ∈ CnU×nT

∣∣ δH
i C−1

i δi ≤ R2
i , ∀i

}
. (6.19)

The solution to the problem in (6.15) for this case is described in the following proposition.
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Figure 6.4: Graphical representation of the elliptical/spherical uncertainty region, for the case where
there is an individual constraint on the error committed in each channel, hi.

Proposition 6.6.2 The solution to the optimal power allocation in (6.15) for the case where

∆ ∈ E ind
{R2

i },{Ci}, is given by the solution to the following convex optimization problem:

min
P

TrBZFPBH
ZF,

s. t. R2
i λmax(C

1/2
i BZFPBH

ZFC1/2
i ) − γ0

i pi + σ2 ≤ 0, 1 ≤ i ≤ nU ,

pi ≥ 0, 1 ≤ i ≤ nU ,

(6.20)

which can be solved numerically in a very efficient manner following the methods described in

[Boy04]. Note also that the gradient and Hessian of the first constraint in (6.20) can be found

in [Mag99].

Proof See Appendix 6.A.2. �

Corollary 1 For the particular case where all the correlation matrices Ci are equal for

all i, Ci = C, the convex problem in (6.20) has a feasible solution if, and only if,

λmax(C1/2BZFΓBH
ZFC1/2) < 1. In this case, the entries of its solution, P�, are given by the

expression in (6.18) where in this case µ is the unique solution to the fixed point equation

λmax(C1/2BZF(Γµ + Σ)BH
ZFC1/2) = µ.

Proof The proof follows directly from the steps performed in the proof in Appendix 6.A.1

replacing the equation (6.33) by the one obtained in (6.20) with Ci = C, for all i. �

6.6.3 Effects of a quantized CSI

In the previous sections, we have considered the case where the estimation error is modeled as

Gaussian noise. In this section we deal with the case where the available CSI, H̃, is a quantized
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Figure 6.5: Graphical representation of the uncertainty regions that arise when the available CSI is a
quantized version of the actual channel. Our formulation allows that each quantization region can have a
different shape and that each region can be defined by a different number of vertices, as well as the fact
that the quantization regions are not necessarily convex.

version of the actual channel H. This would correspond to the practical case where each receiver

quantizes a perfect estimate of its own channel2 and then feeds back this quantized information

to the transmitter through a digital feedback link.

The quantization procedure that we deal with in this section is described in the following.

We consider the channel matrices space with K points, {Hk}. Each one of these points Hk is the

representative of the region Rk surrounding it (see Figure 6.5). Each region Rk is a polyhedron3

(not necessarily convex) with Mk vertices given by the set Vk = {Vk
1 ,Vk

2 , . . . ,Vk
Mk

} ⊂ CnU×nT ,

where the rows of Vk
m are defined as Vk

m = [vk
m,1, . . . ,v

k
m,nU

]H .

The transmitter is informed with the index k of the region where the actual channel belongs

to and then the estimate of the channel becomes H̃ = Hk and, consequently, the quantization

uncertainty region, QVk
, becomes the polyhedron around Hk, QVk

� Rk. For the sake of notation,

we drop the index k w.l.o.g., and present the characterization of the solution to the problem in

(6.15) in the next proposition.

Proposition 6.6.3 Consider the case where ∆ ∈ QV , then it follows that the convex problem

2The case where this estimate is imperfect is considered in the next subsection.
3The term polyhedron is understood as a geometric polytope composed of its boundary and its interior.
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in (6.15) can be rewritten as the following linear program:

min
P

TrBZFPBH
ZF,

s. t. vH
m,iBZFPBH

ZFvm,i − γ0
i pi + σ2 ≤ 0, 1 ≤ i ≤ nU , 1 ≤ m ≤ M,

pi ≥ 0, 1 ≤ i ≤ nU .

(6.21)

Proof See Appendix 6.A.3. �

Note that the set of restrictions in (6.21) is now just a list of linear restrictions in P.

In addition, it must be highlighted that, the versatility of the quantization method described

above allows us to consider, as a particular case, the situation where each user utilizes a different

quantization rule. As an example of application, we consider the simple case where each user

uniformly quantizes the real and imaginary parts of the entries of their corresponding channel

utilizing a fixed step of size 2ρi (different for each user). In this case, all the regions defined by

V k are equal V k = V (which corresponds to uniform quantization). For this case the vertices

can be expressed as

Vm = Vre
m + iVim

m , m = 1, . . . , 2nU×nT , (6.22)

where the elements of the matrices Vre
m and Vim

m are of the form [Vxx
m ]ij = ±ρi.

6.6.4 Combination of regions

In realistic setups, the error in the channel matrix may come from more than one source. A

typical example of this situation is the case where the available channel H̃ is a quantized version

of a corrupted version of the actual channel (see [PI06]). This would correspond, e.g., to scenarios

where each user imperfectly estimates its own channel and then feeds back, to the transmitter,

a quantized version of this noisy estimate.

In this case, the estimation error matrix ∆ can be considered to be the sum of two terms,

∆ = S + Q, the first one takes into account the contribution due to the Gaussian noise, thus

S ∈ S ind
{R2

i }
, and the second one models the effects that the channel estimate comes from a

quantization process, which implies that Q ∈ QV . In this case, the shape of the uncertainty

region where the global error matrix ∆ belongs to is the hyper-convolution of the two considered

regions as we have depicted in Figure 6.6, and the solution characterizing the optimal power

allocation is given next.

Proposition 6.6.4 Consider the case where the uncertainty matrix is ∆ = S + Q, with S ∈
S ind
{R2

i }
and Q ∈ QV . It then follows that the optimization problem in (6.15) is equivalent to
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∗ =

Figure 6.6: Graphical representation of the uncertainty region that arises when two different sources of
errors come into consideration. The left side of the picture describes the uncertainty regions associated
with two sources of errors, e.g., quantization effects (up) and estimation Gaussian noise (down). The
resulting uncertainty region (right) is the “convolution” of the two left regions as indicated by the dashed
lines.

solving the convex program

min
P

TrBZFPBH
ZF,

s. t.
(
s�
m,i(P) + vm,i

)HBZFPBH
ZF

(
s�
m,i(P) + vm,i

)
−

− γ0
i pi + σ2 ≤ 0, 1 ≤ i ≤ nU , 1 ≤ m ≤ M,

pi ≥ 0, 1 ≤ i ≤ nU ,

(6.23)

where s�
m,i(P) in (6.23) depends on P and it is the solution to the optimization problem described

in Appendix 6.B with A = BZFPBH
ZF, ỹ = vm,i, and b = R2

i .

Proof See Appendix 6.A.4. �

Since no closed-form expression for the solution to the convex optimization problem in (6.23) is

apparently available, iterative algorithms are needed to obtain a numerical solution. In this case,

at each iteration of the algorithm, the restrictions in (6.23) have to be numerically evaluated

and, consequently, s�
m,i(P) has to be computed as a function of the value of P in the current

iteration, as described in Appendix 6.B.

6.6.5 Example of extension to other types of transmitters

To illustrate the generality of the methods presented in this work, in this section we present the

convex optimization problem whose solution gives the robust power allocation for the general
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case where we do not impose a particular structure to the transmitter matrix B. As for the

definition of the uncertainty region, we consider the very generic case where the estimation error

∆ is modeled as ∆ = E + Q where E ∈ E ind
{R2

i },{Ci} takes into account the imperfections in the

available channel due to colored Gaussian estimation noise and Q ∈ QV models the effects of

the quantization of the channel estimate. With these assumptions, the general problem in (6.14)

becomes the following convex program:

min
P

TrBPBH ,

s. t.
(
B̄H

i h̃i + BH(e�
i (P) + vm,i)

)HP
(
B̄H

i h̃i + BH(e�
i (P) + vm,i)

)
− γ0

i

∣∣h̃H
i bi

∣∣2pi + σ2 ≤ 0, 1 ≤ i ≤ nU , 1 ≤ m ≤ M,

pi ≥ 0, 1 ≤ i ≤ nU ,

(6.24)

where e�
i (P) is the solution to the optimization problem described in Appendix 6.B with A =

C1/2
i BPBHC1/2

i , ỹ = C−1/2
i

(
vm,i + B

(
BHB

)−1B̄H
i h̃i

)
, and b = R2

i . This statement is left

without proof because it is very similar to that of Proposition 6.6.4. Note that the convex

optimization problem in (6.24) admits, as particular cases, most of the convex problems obtained

in the previous sections.

6.7 Practical issues

When numerically solving convex optimization problems such as (6.20), (6.21), (6.23), and (6.24)

where no closed form solution is available, there are two main considerations that have to be

taken into account before proceeding to the numerical optimization itself. First of all, it is

important to study the feasibility of the problem because if the feasible set is empty, then,

no solution exists. In §6.7.1, we give a generic feasibility test to verify the non-emptiness of

the feasible region. Secondly, if the feasible region is non-empty, a feasible initial value of the

optimization variable, P(0), has to be provided to the iterative numerical optimization algorithm.

A procedure to obtain this initial value is described in 6.7.2.

6.7.1 Feasibility

First of all, note that the restrictions in the problems (6.20), (6.21), (6.23), and (6.24) can be

equivalently expressed as a list of restrictions indexed by i and/or m. For the sake of notation

we now define u as the index of the list, which implies that the restrictions in (6.20), (6.21) and

(6.23) are of the general form

ru(P) + σ2 ≤ 0, ∀u, (6.25)
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where ru(P) is a convex function in P and homogenous of degree 14, i.e., it fulfills that ru(αP) =

αru(P). Clearly, from all this set of restrictions, if the condition (6.25) is met for the maximum

w.r.t. u then is met for all u. Thus, we define r(P) = maxu ru(P), which is also homogeneous of

degree 1. An equivalent restriction to (6.25) for the feasibility problem is then

r(P) + σ2 ≤ 0. (6.26)

Now, if P is feasible, then αP with α > 1 is also feasible. In particular, the limit case for α → ∞
is also feasible, and, in this limit case, the noise variance σ2 does not have any influence in the

inequality constraint in (6.26), and therefore the feasibility problem is equivalent to proving the

existence of a P matrix such that r(P) < 0, which can be further simplified to

r(P) < 0 ⇒ r(P̄) < 0, Tr P̄ = 1, (6.27)

where we have defined P̄ = P/ TrP and the homogeneity property r(αP) = αr(P) has been

utilized. Since we are only interested in proving the existence of a matrix that fulfills (6.27)

we can restrict our attention to the matrix that is most likely to fulfill it, i.e., the matrix that

minimizes the term r(P̄) in (6.27), which is the solution to

min
P̄

r(P̄),

s. t. Tr P̄ = 1,

p̄i ≥ 0, 1 ≤ i ≤ nU .

(6.28)

Since r(P̄) is defined as the maximum of a finite set of convex functions it is also convex, and

consequently the optimization problem in (6.28) is also convex and its solution always exists

and can be efficiently calculated, and is denoted by P̄�.

Once we have obtained this solution, it only remains to check wether r(P̄�) is lower than

zero (which implies that (6.27) is fulfilled and the problem is feasible), or r(P̄�) is greater than

or equal to zero. Clearly, if the minimum value of r(P̄) does not fulfill (6.27) then no other value

of r(P̄) can fulfill it and the problem becomes infeasible.

When the problem becomes infeasible, it means that there exists no power allocation such

that all the QoS constraints can be fulfilled. In this case, an outage event can be declared, or,

alternatively, some of the QoS constraints could be relaxed.

6.7.2 Starting point

If the problem is feasible, i.e., if r(P̄�) < 0, then there exists a solution to the considered original

problem (6.20), (6.21), (6.23), or (6.24) and efficient numerical algorithms can be utilized to

4The function ru(P) is homogeneous because it is defined as the supremum with respect to ∆ ∈ R of a set of
linear, and thus homogeneous of degree 1, functions of P.
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calculate it. However, the numerical algorithms need a starting feasible point, P(0), to begin the

iterative procedure to compute the solution.

We propose a heuristic starting point of the form P(0) = βP̄�, where β is calculated so

that P(0) is feasible and its corresponding transmitted power is minimized so that the speed of

convergence is increased.

Since we want the starting point P(0) to be feasible, it has to fulfill all the restrictions in

(6.25). Thus, it is only necessary to impose that it fulfills (6.26), from which we obtain

r(P(0)) + σ2 ≤ 0 ⇒ r(βP̄�) + σ2 ≤ 0 ⇒ βr(P̄�) + σ2 ≤ 0 ⇒ β ≥ −σ2

r(P̄�)
. (6.29)

Note that the feasibility of the problem (r(P̄�) < 0) is necessary to guarantee that β exists and

is positive, and consequently P(0) is positive semi-definite as expected.

Since we also want to minimize the transmitted power associated with the starting point

P(0), we have to choose the minimum β that fulfills the feasibility condition, which is clearly

given by

β =
−σ2

r(P̄�)
. (6.30)

6.8 Simulations

In the following, some simulation results are provided in order to give insight into the benefits

of the proposed robust design for the power allocation.

In Figure 6.7, we have considered a two user scenario where the uncertainty matrix belongs

to a independently constrained spherical region as discussed in §6.6.1. We have plotted the

feasibility region (i.e., the set of powers p1 and p2 for which the QoS are fulfilled ∀∆ ∈ R) for

different values of the uncertainty radius, R1 = R2 = R. Note that as the uncertainty radius

increases the region becomes smaller. If we continued to increase the radius there would be a

point where the feasibility region would become void and, thus, the optimization problem is

infeasible.

In Figure 6.8, we have also considered a two user scenario such that the uncertainty region

is an independently constrained spherical region (see §6.6.1 again) and we have fixed the value

of the uncertainty radius for user 2, R2. In the upper plot, we have drawn the feasibility region

(i.e., the set of esinr0i such that the problem is feasible) for different values of the uncertainty

radius of user 1, R1. The feasibility region corresponds to the area below each one of the curves.

In the lower plot we have represented the total transmitted power along the red dotted line.

Note that, as we approach the limit of the feasibility region, the necessary transmitted power to

guarantee the QoS constraints becomes arbitrarily large, as expected.



142 6.8. Simulations

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20

0

0

Power Allocated to the symbol of user 1, p
1
(linear units)

P
o

w
e
r 

A
llo

c
a

te
d

 t
o

 t
h

e
 s

y
m

b
o

l 
o
f 

u
s
e

r 
2
, 

p
2
(l

in
e

a
r 

u
n

it
s
)

Minimum Transmitted Power Vertices

Feasibility Regions for Different Values of the Radius of the

Uncertainty Region

R2 = 0

R2 = 5.4 x 10-3

R2 = 4.8 x 10-3

R2 = 4.0 x 10-3

Figure 6.7: Feasibility region as a function of the power allocated to the symbol of each user for different
values of the radius of the uncertainty region. The lower-left corner of each region corresponds to the
feasible point (the QoS constraints are met) such that the transmitted power is the lowest.

In addition we have conducted some simulations to show the goodness of our proposed robust

method. Since no references have been found in the literature that utilized our uncertainty model,

we have designed two simple ad-hoc power allocation techniques, which are very briefly described.

The first technique consists in forcing P = λI, and obtain the λ such that all QoS constraints

for every user are fulfilled ∀∆ ∈ R. The second technique consists in forcing [P]ii = νsinr0i σ
2,

where again ν is selected so that the QoS requirements per user are met ∀∆ ∈ R.

In Figure 6.9 we have considered a two user scenario with independently constrained spherical

uncertainty regions (see §6.6.1). The necessary total transmitted power, is plotted as a function

of the QoS requirement for user 1, esinr01, for the case of perfect CSI, and also for the case

of imperfect CSI, keeping fixed esinr02 in all the cases. In the latter case, we have plotted the

necessary power for our robust solution and also for the two ad-hoc approaches. As expected,

the robust solution yields the minimum necessary transmitted power to guarantee the QoS

constraints. Note also that, with the same QoS constraints, there is an increase in the minimum

necessary transmitted power for the case of imperfect CSI with respect to the perfect CSI case.

In Figure 6.10, a similar simulation has been conducted with 8 users. Note how the goodness of

our proposed approach is remarkably higher in this scenario with more users.
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6.9 Chapter summary and conclusions

In this chapter, a multi-antenna downlink multi-user system has been considered, where the

power allocation among the data streams of different users has been designed in a robust way

against uncertainties and errors in the available CSI. The robustness has been formulated under

a worst-case framework, where the objective has been the minimization of the total transmitted

power while still guaranteeing a minimum QoS (in terms of a minimum SINR) per user for

any possible channel realization within the so called uncertainty region around the available

CSI. This uncertainty region models the imperfections and errors in the CSI, and therefore, its

shape and size are directly connected with the physical source of the errors. In the chapter, we

have considered two different sources of errors and combinations of them, such as the Gaussian

noise and the quantization effects. The robust power allocation design has been solved using the

tools provided by convex optimization theory, obtaining closed-form solutions when possible,

and, when not possible, simplified optimization problems in convex form that can be solved

very efficiently with existing numerical methods. Besides, some practical aspects related to the

feasibility of the problem and the starting point in case of using numerical methods have also

been studied.

By means of simulations results, it has been proved that the proposed design improves
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the performance achieved by other non-robust power allocation policies. In particular, it has

been shown that the robust technique needs much less power than other solutions while still

guaranteeing the same QoS, i.e., the same quality can be achieved even requiring less energetic

resources. The improvement obtained by the robust design increases as the number of users also

increases, thus, it is concluded that this design is specially suitable in networks where many

users are coexisting in the same region.
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6.A Proofs of equivalence of convex problems

6.A.1 Proof of Proposition 6.6.1

We first need to particularize the general convex problem in (6.15) for the case where

R = S ind
{R2

i }
�

{
∆ ∈ CnU×nT

∣∣ ‖δi‖2 = δH
i δi ≤ R2

i , ∀i
}

. (6.31)

Since in the definition of the uncertainty region, there are independent restrictions for each

row δH
i of the uncertainty matrix ∆, the supremum in the restriction of the problem in (6.14)

particularizes to

sup
∆∈Sind

{R2
i
}

δH
i BZFPBH

ZFδi �
sup
δi

δH
i BZFPBH

ZFδi,

s.t. δH
i δi ≤ R2

i ,
(6.32)

whose solution is well known to be given by δi being proportional to the eigenvector associated

with the maximum eigenvalue of the matrix BZFPBH
ZF and such that δH

i δi = R2
i . In this case,

the supremum in (6.32) particularizes to R2
i λmax(BZFPBH

ZF), and the convex problem in (6.14)

becomes

min
P

TrBZFPBH
ZF,

s. t. R2
i λmax(BZFPBH

ZF) − γ0
i pi + σ2 ≤ 0, 1 ≤ i ≤ nU ,

pi ≥ 0, 1 ≤ i ≤ nU .

(6.33)

It is straightforward to prove that the solution P� to the problem in (6.33) has to fulfill the

restrictions with equality. Then, defining µ = λmax(BZFP�BH
ZF) ≥ 0, we obtain that the optimal

power allocation must fulfill

p�
i =

R2
i µ + σ2

γ0
i

, (6.34)

where µ has to be determined. First of all, we utilize the definitions of the diagonal matrices

[Γ]ii � R2
i

γ0
i

and [Σ]ii � σ2

γ0
i

to express P� = Γµ + Σ. Then, utilizing these definitions, from the

restriction in (6.33) for the optimal power allocation P� we obtain the following equation for

the µ parameter

λmax(ΓBµ + ΣB) = µ, with ΓB � BZFΓBH
ZF, ΣB � BZFΣBH

ZF (6.35)

where both sides are convex functions of µ.

We now find under which conditions, equation (6.35) has a solution (and how many). Since

ΓB and ΣB are positive definite matrices, then

λmax(ΓBµ + ΣB) ≤ λmax(ΓB)µ + λmax(ΣB), (6.36)

λmax(ΓBµ + ΣB) > λmax(ΓB)µ. (6.37)
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Last inequality clearly implies that if λmax(ΓB) ≥ 1 then (6.35) has no solution because no

intersection in the fixed point equation (6.35) is possible, as for all µ ≥ 0

λmax(ΓB) ≥ 1 ⇒ λmax(ΓBµ + ΣB) > λmax(ΓB)µ ≥ µ. (6.38)

On the contrary, if λmax(ΓB) < 1, then

λmax(ΓB) < 1 ⇒∃µ ≥ 0 | µ > λmax(ΓB)µ + λmax(ΣB) ≥ λmax(ΓBµ + ΣB)

µ = 0 ⇒ λmax(ΓBµ + ΣB) > µ,
(6.39)

which implies that there exists a value of µ such that µ > λmax(ΓBµ + ΣB), and another value

such that λmax(ΓBµ + ΣB) > µ; from continuity this implies that (6.35) must have a solution.

From the fact that λmax(ΓBµ+ΣB) is a monotonically increasing and convex function only one

solution can exist.

6.A.2 Proof of Proposition 6.6.2

We first particularize the general convex problem in (6.15) for the case where

R = E ind
{R2

i },{Ci} �
{
∆ ∈ CnU×nT

∣∣ δH
i C−1

i δi ≤ R2
i , ∀i

}
. (6.40)

Clearly, the supremum in the restriction of the problem in (6.14) particularizes to

sup
∆∈E ind

{R2
i
},{Ci}

δH
i BZFPBH

ZFδi, �
sup
δi

δH
i BZFPBH

ZFδi,

s.t. δH
i C−1

i δi ≤ R2
i ,

(6.41)

whose solution can be obtained by performing the change δ̃i = C−1/2
i δi and it is well known to

be given by δ̃i being proportional to the eigenvector associated with the maximum eigenvalue of

the matrix C1/2
i BZFPBH

ZFC1/2
i and such that δ̃

H
i δ̃i = R2

i . In this case, the supremum in (6.32)

particularizes to R2
i λmax(C

1/2
i BZFPBH

ZFC1/2
i ), and the convex problem in (6.14) becomes

min
P

TrBZFPBH
ZF,

s. t. R2
i λmax(C

1/2
i BZFPBH

ZFC1/2
i ) − γ0

i pi + σ2 ≤ 0, 1 ≤ i ≤ nU ,

pi ≥ 0, 1 ≤ i ≤ nU .

(6.42)

6.A.3 Proof of Proposition 6.6.3

In this case, the uncertainty region QV is the polyhedron (possibly non-convex) whose vertices

are given by the set V = {V1,V2, . . . ,VM} ⊂ CnU×nT .

The convex hull of the set of points V , denoted by conv V , is the minimal convex set con-

taining V , [Boy04], which clearly implies that the polyhedron QV is inside the convex hull of V ,
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i.e., QV ⊆ conv V . In [Boy04], it is shown that the convex hull of V is

conv V =
{∑M

m=1
θmVm

∣∣ ∑M

m=1
θm = 1, θm ≥ 0, ∀m

}
. (6.43)

We define f(∆) � δH
i BZFPBH

ZFδi, which is a convex function in ∆ (and consequently also on

δi). The supremum in the restriction in (6.15) particularizes to sup∆∈QV
f(∆) which can then

be bounded as,

sup
∆∈QV

f(∆) ≤ sup
∆∈ conv V

f(∆), (6.44)

where QV ⊆ conv V has been used. From (6.43), for any ∆ ∈ conv V , it exists a set {θ1, . . . , θM :∑M
m=1 θm = 1, θm ≥ 0,∀m} such that

∆ ∈ conv V ⇒ f(∆) = f

(
M∑

m=1

θmVm

)
≤

M∑
m=1

θmf(Vm) ≤ max
m

f(Vm), (6.45)

from which we can deduce that sup∆∈ conv V f(∆) ≤ maxm f(Vm). Since Vm ∈ QV , this implies

that sup∆∈QV
f(∆) = maxm f(Vm), which means that the supremum of f(∆), with ∆ ∈ QV ,

has to be necessarily placed in one of the vertices of the polyhedron (a priori we do not know

which one, though). Consequently, the supremum operation sup∆∈QV
f(∆) can be substituted

by a simple list of the function f(∆) evaluated at all the different vertices since necessarily one

of them has to be the supremum (and if the restriction is met for the supremum is also met for

all other values of ∆ ∈ QV ). The following two optimization problems are thus equivalent:

min
P

TrBZFPBH
ZF,

s. t. f(Vm) − γ0
i pi + σ2 ≤ 0, 1 ≤ i ≤ nU , 1 ≤ m ≤ M,

pi ≥ 0, 1 ≤ i ≤ nU ,

(6.46)

and

min
P

TrBZFPBH
ZF,

s. t. vH
m,iBZFPBH

ZFvm,i − γ0
i pi + σ2 ≤ 0, 1 ≤ i ≤ nU , 1 ≤ m ≤ M,

pi ≥ 0, 1 ≤ i ≤ nU ,

(6.47)

where vH
m,i is the i-th row of the vertex Vm.

6.A.4 Proof of Proposition 6.6.4

In this section we have to consider the case where ∆ = S + Q, with S ∈ S ind
{R2

i }
and Q ∈ QV .

Consequently, in this case we have δi = si +qi and the particularization of the restriction of the

problem in (6.15) for this uncertainty region becomes

sup
S∈Sind

{R2
i
}
,Q∈QV

(si + qi)
H BZFPBH

ZF (si + qi) � sup
S∈Sind

{R2
i
}

sup
Q∈QV

(si + qi)
H BZFPBH

ZF (si + qi)

(6.48)
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where we have utilized the fact that any maximization problem supx,y f(x,y) can be decom-

posed as supx supy f(x,y), [Boy04]. Now, we note that (si + qi)
H BZFPBH

ZF (si + qi) is a convex

function of qi and, similarly as we have done in the previous section, the solution to the inner

maximization is given by the function (si + qi)
H BZFPBH

ZF (si + qi) evaluated at one of the

vertices that define the convex hull {Vm}. From the original problem in (6.48), we obtain a set

of maximization problems indexed by the variable m that represent the vertices index, as

sup
S∈Sind

{R2
i
}

(si + vm,i)
H BZFPBH

ZF (si + vm,i) � sup
sH
i si≤R2

i

(si + vm,i)
H BZFPBH

ZF (si + vm,i) , (6.49)

where we have utilized the definition of the hyper-spherical uncertainty region S ind
{R2

i }
. The prob-

lem expressed in (6.49) is solved in Appendix 6.B, with x̃ = si, ỹ = vm,i, A = BZFPBH
ZF, and

b = R2
i and its solution is denoted by s�

i,m(P) which substituted in the maximization problem

in (6.49) becomes (
s�
m,i(P) + vm,i

)HBZFPBH
ZF

(
s�
m,i(P) + vm,i

)
, (6.50)

which completes the proof.

6.B Maximization of a general quadratic form with a norm con-
straint

Let x̃ and ỹ be vectors in the field CnT×1 and let A ∈ CnT×nT be a positive semi-definite matrix

with nU ≤ nT non-zero eigenvalues. We want to solve the following non-convex optimization

problem

maximize
x̃

(x̃ + ỹ)HA(x̃ + ỹ)

subject to x̃H x̃ ≤ b,
(6.51)

with b being a positive real value. Performing the SVD decomposition of the positive semi-definite

A matrix we obtain A = UΩUH , with Ω ∈ CnT×nT being a diagonal matrix with non-negative

diagonal elements sorted in decreasing order, and with U ∈ CnT×nT being a unitary matrix.

Introducing the changes x′ = UH x̃ and y′ = UH ỹ the problem in (6.51) becomes

maximize
{x′

i}
nT
i=1

nU∑
i=1

|x′
i + y′i|2ωi

subject to
nT∑
i=1

|x′
i|2 ≤ b,

(6.52)

where ωi = [Ω]ii > 0 for i ∈ [1, nU ], and where the remaining ωi = 0 for i ∈ [nU + 1, nT ] have

been discarded from the summation in the objective function in (6.52). Then clearly the optimal
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solution x′� fulfills x′�
i = 0 for i ∈ [nU + 1, nT ]. Consequently, we have reduced the search space

from dimension nT to dimension nU .

Noting that the inequality |x′
i + y′i|2 ≤ ||x′

i| + |y′i||
2 becomes an equality if the complex phase

of x′
i is chosen equal to the phase of y′i, then we can state that x′�

i = ∠y′i and we only need to

specify the complex magnitude of the elements of the solution x′�. Once the complex phase of

the solution has been established, the problem can be further simplified to a real optimization

problem by defining xi = |x′
i| and yi = |y′i|, and then the problem in (6.52) becomes

maximize
{xi}

nU
i=1

nU∑
i=1

(xi + yi)2ωi

subject to
nU∑
i=1

x2
i ≤ b,

xi ≥ 0, ∀i

(6.53)

where all the parameters {yi} and b are real non-negative numbers. We now separate the terms

in the summation in (6.53) in two different groups, depending on whether its corresponding yi

is zero or not. Thus, we define the partitions I1 and I2 as the sets of indices such that

i ∈ I1 ⊂ [1, nU ] ⇔ yi > 0, (6.54)

i ∈ I2 ⊂ [1, nU ] ⇔ yi = 0, (6.55)

and that I1 ∪ I2 = [1, nU ]. Finally, defining zi = (xi + yi)2, for all i, we obtain a convex

optimization problem, which is equivalent to that in (6.53), as

minimize
{zi}

nU
i=1

−
∑
i∈I1

ziωi −
∑
i∈I2

ziωi

subject to
∑
i∈I1

(
√

zi − yi)
2 +

∑
i∈I2

zi − b ≤ 0,

y2
i − zi ≤ 0, ∀i.

(6.56)

Note that we can assume w.l.o.g. that for any two indices k, l ∈ I2 then

k �= l ⇒ ωk �= ωl, ∀k, l ∈ I2 (6.57)

This can be assumed because in case ωk = ωl for some different k, l ∈ I2, then we can always

define a new variable zkl = zk + zl such that the equivalent problem has the same structure as

the original one and is one dimension smaller.

Furthermore, we can also assume w.l.o.g. that

k ∈ I1, l ∈ I2 ⇒ ωk �= ωl. (6.58)

In this case, the proof follows from a primal decomposition of the original problem in (6.56) with

ωl = ωk for some k ∈ I1 and l ∈ I2. The primal decomposition is performed by separating the
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terms with indices k and l in the objective function and by adding the auxiliary variable c ≥ 0

that allows us to decouple the first restriction in (6.56) for the indices k and l.

minimize
{zi}

nU
i=1\{zk,zl},c≥0

−
∑

i∈I1\{k}
ziωi −

∑
i∈I2\{l}

ziωi +

 minimize
zk,zl

− ωkzk − ωkzl

subject to (
√

zk − yk)
2 + zl − c ≤ 0,

subject to
∑

i∈I1\{k}
(
√

zi − yi)
2 +

∑
i∈I2\{l}

zi + c − b ≤ 0,

y2
i − zi ≤ 0, ∀i.

(6.59)

It can be shown that the solution to the inner minimization problem yields z�
l = 0 for all possible

values of c, yk, and ωk which implies that in case ωk = ωl for some k ∈ I1 and l ∈ I2 the term

corresponding to the index l can be eliminated w.l.o.g.

From all that has been said, it follows that the multiplicity of ωi is only possible among

indices inside the set I1 but not inside the set I2 or between one element of I1 and one of I2.

Because in the latter cases an equivalent problem can be obtained where this multiplicity does

not exist.

From the KKT conditions of the optimization problem in (6.56), we readily obtain that the

solution {z�
i } must fulfill:

−ωi + λ�

(
1 − yi√

z�
i

)
− µ�

i = 0, ∀i ∈ I1, (6.60)

−ωi + λ� − µ�
i = 0, ∀i ∈ I2, (6.61)

λ�

∑
i∈I1

(√
z�
i − yi

)2
+

∑
i∈I2

z�
i − b

 = 0, (6.62)

µ�
i

(
y2

i − z�
i

)
= 0, ∀i ∈ I1, (6.63)

−µ�
i z

�
i = 0, ∀i ∈ I2, (6.64)

µ�
i ≥ 0, ∀i, (6.65)

λ� ≥ 0. (6.66)

In the following, we deduce that µ�
i = 0, ∀i ∈ I1. Note that from the last restriction in (6.56),

either z�
i = y2

i or z�
i > y2

i must hold. If z�
i > y2

i , then from (6.63) we obtain µ�
i = 0. On the

contrary, if z�
i = y2

i then (6.60) becomes −ωi − µ�
i = 0. The inequalities ωi > 0 (by definition)

and µ�
i ≥ 0 (from (6.65)) imply that −ωi − µ�

i < 0 which is a contradiction thus z�
i = y2

i is not

a possible solution. Consequently, for i ∈ I1 we obtain z�
i > y2

i and µ�
i = 0. From (6.60) with

µ�
i = 0, we obtain the solution to (6.56) as

z�
i =

(
yiλ

�

λ� − ωi

)2

, ∀i ∈ I1, (6.67)
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where λ� has yet to be determined.

We now focus on the set of indices I2. Note that it is impossible that more than one optimal

z�
i′ be greater than zero with i′ ∈ I2. If we assume that z�

i′ > 0 and z�
j′ > 0, from (6.63) it would

imply that µ�
i′ = 0 and µ�

j′ = 0 which in its turn would mean that λ� = ωi′ and λ� = ωj′ which

is impossible, because, as expressed in (6.57), ωi′ �= ωj′ , ∀i′, j′ ∈ I2, and λ� can only take one

value. Consequently, at most there exists one index i′ ∈ I2 such that z�
i′ > 0. Obviously, in case

this index exists it would correspond to the biggest ωi′ , i.e., i′max = arg maxi∈I2 ωi.

Then only two cases need to be considered.

1. We first consider that z�
i = 0, ∀i ∈ I2. Then, the optimal solution is completed with (6.67),

where λ� is determined from the restriction in (6.56) similarly as in [Lor05], as the greatest

solution to the equation

∑
i

(
yiωi

λ� − ωi

)2

− b = 0. (6.68)

2. We now consider that there exists an index i′max ∈ I2 such that z�
i′max

> 0. Then, from

(6.64), µ�
i′max

= 0 and thus λ� = ωi′max
as indicated by (6.61). Plugging this value for λ� in

(6.67) we obtain the solution

z�
i =

(
yiωi′max

ωi′max
− ωi

)2

, ∀i ∈ I1, (6.69)

where the denominator is always different of zero as i ∈ I1 and i′max ∈ I2 which implies

that ωi �= ωi′max
. The solution is completed with z�

i′max
, which is determined such that the

power constraint is fulfilled with equality as

z�
i′max

= b −
∑
i∈I1

(√
z�
i − yi

)2
. (6.70)

To determine which of the two cases is the optimal one, we only need to calculate (6.69) and then

check the sign of b−
∑

i∈I1

(√
z�
i − yi

)2. In case it is negative then (6.70) becomes meaningless

because z�
i′ has to be positive or zero and thus the solution is given by the first case. Otherwise

the solution is given by the second case.

Once the solution to the convex problem in (6.56), {z�
i }

nU
i=1, is determined, we need simply

to construct the solution x̃� of the original problem in (6.51) as

x̃� = Ux′�, with
{

x′�
i = (

√
z�
i − yi) · exp (j∠ (y′i)) i ∈ [1, nU ]

x′�
i = 0 i ∈ [nU + 1, nT ]

. (6.71)
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Conclusions and future work

7.1 Conclusions

In general terms, this dissertation has dealt with the design and analysis of multi-antenna

communication systems, mainly focusing the attention on transmission architectures. Precisely,

the impact of the availability and quality of the CSI on the capacity and on the transmitter

design has been studied and robust transmission architectures have been designed in such a way

that their sensitivity to the presence of errors in the CSI is reduced with respect to their classical

non-robust counterparts.

In chapter 1 we have presented the motivation, the outline, and the contributions of this

dissertation and in chapter 2 we have reviewed some basic concepts and the state-of-the-art

concerning multi-antenna communication systems.

Chapter 3 has dealt with the design of a linear transmitter in a single-user MIMO system

where the CSI is considered to be perfect at both communication ends. The design criterion

for the transmitter has been such that the minimum distance among the received symbols has

been maximized. We have optimally characterized the left singular vectors, and the singular

values of the optimal transmitter matrix and have given a simple algorithm to obtain a good

approximation to the right singular vectors. We have also found that our proposed scheme yields

an excellent performance when compared to well-known schemes such as V-BLAST, OSTBC

schemes, the minimum BER optimum linear design, or the maximum minimum SNR eigenvalue

design. Unfortunately, we have also shown that, for the general case, the computational com-

plexity of our proposed scheme is rather high as it involves a search over a big set of matrices,

which makes it difficult to implement in fast-fading environments. However, for fixed fading

environments such that the transmitter calculation can can be performed off-line we have shown

that it presents an excellent performance. In addition, for the particular case of transmitting

two QPSK streams, we have presented the design in closed form, which reduces enormously the
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computational complexity as the search over the set of matrices is not necessary since an explicit

expression for it is available. Additionally, it has been shown that the linear transmitter design

is directly related to optimal symbol constellation construction.

Chapter 4 has introduced incompleteness of the CSI at the transmitter in single-user MIMO

communication systems. Specifically, it has been considered that the transmitter is informed (or

is able to estimate) only the magnitude of the channel complex coefficients. For this particular

choice of incomplete CSI, we have shown that a diagonal covariance matrix is sufficient and

necessary to achieve capacity in both the ergodic and compound formulations. Moreover, for

some configurations with small number of antennas we have been able to find closed form

expressions for the elements of the covariance matrix and for the capacity. For configurations

with an arbitrary number of antennas, we have presented numerical methods to calculate the

optimal values of the diagonal elements of the covariance matrix. We have also shown that these

methods may be computationally too demanding. To overcome this problem, for the ergodic case

we have presented a reduced complexity method based on RMT and for the compound case,

based on a Taylor approximation. Next, the accuracy of the proposed approximated solutions

has been tested, showing that the low complexity techniques provide nearly the same results as

the high load algorithms. Finally, the ergodic and compound capacities themselves have been

evaluated for different scenarios, leading to the conclusion that the optimization of the power

allocation with only the knowledge of the magnitude of the channel gains allows to improve the

system performance very importantly.

Chapter 5 has dealt with multi-antenna communication systems with imperfect CSI at the

transmitter side. Precisely, it has studied the effects of having a noisy channel estimate in

the achievable rates of a communication architecture equipped with STHP. It has been shown

that, unless some kind of robust architecture is considered the rate loss can be quite high.

Consequently, we have presented a robust design of this precoder both for the single- and multi-

user scenarios and we have shown that, with the robust design, the rate loss in the presence of

errors in the CSI is minimized. Finally, due to the versatility of STHP to encompass multi-user

systems, this chapter has linked the single-user and the multi-user scenarios in multi-antenna

systems.

Chapter 6 has been fully devoted to the study of a multi-antenna and multi-user communica-

tion system where it has been considered that both the transmitter and the receivers have access

only to an imperfect version of the CSI. Imposing a particular architecture at the transmitter

side, the power allocation among the signals to be transmitted to the users has been robustly

designed with the criterion of minimizing the total transmitted power, while guaranteeing a cer-

tain predefined quality of service per user. The problem has been formulated within the powerful

framework of convex optimization, which enabled the designer to efficiently find the solution to

the robust transmitter. It has also been proved that the proposed design improves the perfor-
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mance achieved by other non-robust power allocation policies. In particular, it has been shown

that the robust technique needs much less power than other solutions while still guaranteeing

the same QoS, i.e., the same quality can be achieved even requiring less energetic resources. The

improvement obtained by the robust design increases as the number of users also increases, thus,

it is concluded that this design is specially suitable in networks where many users are coexisting

in the same region.

As a conclusion to this dissertation we would like to highlight that the imperfections in

or incompleteness of the CSI can decrease significatively the achievable performance of multi-

antenna communication systems, unless robust architectures are properly designed to overcome

this situation.

7.2 Future work

There exist many possibilities for future work that may extend the results obtained in this

dissertation.

Concerning the setup of a MIMO channel with a single-user with perfect CSI some issues

are still open:

• Find the linear transmitter that maximizes the capacity for an arbitrary distribution of

the input symbols and an arbitrary structure of the MIMO channel.

• Further characterize the optimal structure of the constellation composition matrix V, for

the case of designing a linear transmitter when the receiver performs ML detection of the

received symbols.

For the cases where we considered imperfect and incomplete CSI it be interesting to further

research on

• Relating the uncertainty models utilized in the chapters that deal with imperfect or in-

complete CSI with the algorithms that are utilized for channel classification as in [Bou06].

• Including additional types of partial and incomplete CSI. For example in the case of

magnitude knowledge and phase uncertainty it would be worth trying to characterize the

effects where the magnitude knowledge is not perfect either.

Referring to the robust multi-user design in chapter 6 it would be interesting to

• Solve the problem that arises when different estimates of the channel matrix are available

at the two sides of the communication link.
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• Generalize the results by allowing the design of the full transmission matrix, not limiting

the optimization procedure to the power allocation.

• Compare the performance of the proposed transmitter with the broadcast capacity region

with imperfect CSI.
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