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tesis de máster estupenda y haberme animado a empezar un doctorado en matemáticas.
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Abstract
The 3 Body Problem is a dynamical system which models the motion of three bodies interacting

via Newtonian gravitation. It is called restricted when one body has zero mass and the other two, the
primaries, have strictly positive masses. In the region of the phase space where one body (the massless
body for the restricted case) is far from the other two both models can be studied as a nearly integrable
Hamiltonian system. This is the so-called hierarchical regime.

The present thesis deals with the existence of unstable motions, strongly associated to non-integrable
dynamics, in the 3 Body Problem and/or its restricted versions. More concretely, we analyze the existence
of topological instability, non trivial hyperbolic sets and oscillatory motions (complete orbits which are
unbounded but return infinitely often to some bounded region). On one hand, the existence of (a strong
form of) topological instability in the N Body Problem (N ≥ 3) was coined by Herman to be “the oldest
question in dynamical systems” [Her98]. On the other hand, oscillatory motions are the unique type
of final motions for the 3 Body Problem which are not present in the integrable approximation. Their
connection with the existence of non trivial hyperbolic sets has lead to the formulation of fundamental,
yet unsolved, conjectures about their abundance [Ale71, GK12].

Our first main result establishes the existence of Arnold diffusion, a robust mechanism leading to
topological instability [Arn64], in the Restricted 3 Body Problem for any value m0,m1 > 0 of the masses
of the primaries. The transition chain leading to Arnold diffusion is built in the hierarchical region. We
extend a previous result by Kaloshin, Delshams, De la Rosa and Seara [DKdlRS19], which applied to
arbitrarily small mass ratio m1/m0 → 0. Their setting, which exploits the trick, used by Arnold in his
original paper, of making use of two perturbative parameters, lead to an a priori unstable model. In
our setting, where the mass ratio is arbitrary, we face some of the challenges present in a priori stable
systems.

Our second main result shows the existence of oscillatory motions in a symmetric configuration of the
Restricted 3 Body Problem usually known as the Restricted Isosceles 3 Body Problem (RI3BP). This
symmetry implies the existence of a conserved quantity, the angular momentum, which can be taken as
a parameter of the system. For large values of the parameter, one can focus on the hierarchical region
to study the existence of oscillatory motions, and therefore, make use of geometric perturbation theory.
However, for non-large values of the parameter, the set of oscillatory motions is not contained in the
hierarchical region. We develop new tools which blend geometric ideas with variational techniques to
prove that there exist oscillatory motions in the RI3BP for almost all values of the parameter.

Our third main result proves the existence of non trivial hyperbolic sets and oscillatory motions in the
3 Body Problem for all values of the masses m0,m1,m2 > 0. The non trivial hyperbolic set, contained
in a subset of the hierarchical region where the inner bodies perform approximately circular motions,
is associated to a transverse intersection between the stable and unstable manifolds of a (topological)
Normally Hyperbolic Invariant Manifold. The existence of non trivial center directions complicates
heavily both the analysis of existence of transverse intersections between these invariant manifolds and
the construction of the horseshoe. The contribution of the author concerns the first of these two steps.

Our fourth main result concerns the existence of Arnold diffusion in the 3 Body Problem for all values
of the masses m0,m1,m2 > 0. The robustness of the mechanism which we use to prove the existence
of Arnold Diffusion in the Restricted 3 Body Problem implies that the obtained transition chain admits
a continuation in the 3 Body Problem if m2 is sufficiently small. The substantial difference when the
masses m0,m1,m2 > 0 are fixed is that one can construct a transition chain along which there is a
large exchange of momentum between the inner and outer bodies, resulting in a significant change of the
eccentricity of the inner bodies. This requires considerably more work than in our construction of the
transition chain in the Restricted 3 Body Problem and our construction of hyperbolic sets (contained
in the nearly circular subset of the hierarchical region) for the 3 Body Problem. The first step towards
establishing this result, which constitutes the subject of the last chapter of this thesis, is the analysis of
the so-called Melnikov approximation associated to the aforementioned transition chain.
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Chapter 1

Introduction

The 3 Body Problem is a Hamiltonian dynamical system which models the motion of three bodies
interacting via Newtonian gravitation. Understanding qualitatively the global picture of its dynamics
is, probably, one of the most challenging questions in dynamics, and, research in this problem, typically
combines tools from many different fields, such as Hamiltonian perturbation theory, hyperbolic dynamics,
calculus of variations and symplectic geometry. In this manuscript we present some modest contributions
of the author to the problem.

The major complexity of the dynamics of the 3 Body Problem was already pointed out by Poincaré
back in 1890 [Poi90, Poi99], when he discovered (in simplified models) the existence of transverse in-
tersections between the stable and unstable manifolds of certain hyperbolic periodic orbits. Among the
many dynamical consequences of this “realm of chaos”, is the non existence of additional global and
real-analytic integrals of motion apart from the already known (i.e. the Hamiltonian function and the
ones associated to continuous symmetries), which implies the analytic non-integrability of the 3 Body
Problem. Since the time of Poincaré many remarkable dynamical phenomena have been observed in the
3 Body Problem.

1.1 State of the art and main results

At the moment, many of the results concerning the global dynamics of the 3 Body Problem have been
established in nearly integrable settings, that is, regions in the phase space, or in the space of parameters
(the masses of the three bodies), where the 3 Body Problem can be studied as a small perturbation of
two uncoupled 2 Body Problems (recall that the 2 Body Problem is integrable). Two examples of nearly
integrable settings are the so-called planetary and hierarchical regimes. In the former one, the first body
is much more heavy than the other two, so, up to first order, the light bodies do not interact between
themselves and the Hamiltonian decouples into two binary systems. In the latter one, the third body is
far from the other two, and therefore, up to higher order interactions, the motions of the binary system,
and the motion of the third body with respect to the center of mass of the binary system, are uncoupled.

The first major result concerning the dynamics in the planetary regime, was established by Arnold
in [Arn63]. Although the lack of torsion of the integrable approximation prevents the application of the
classical versions of the KAM theory, he extended the KAM techniques to deal with “properly degenerate
systems”, and proved the existence of a positive measure set of quasiperiodic motions in the 3 Body
Problem. The result was later later extended to the case of N ≥ 3 bodies in the work of Féjoz and Herman
[Fej04] (see also [Rob95, CP11]). For the existence of quasiperiodic motions in the hierarchical regime (and
punctured tori, passing arbitrarily close to double collision) see [Fej01, Fej02a, Fej02b, Zha14, Zha15].
This metric stability can be seen as a remnant of the completely elliptic dynamics of the integrable
approximations. However, although of positive measure, the KAM set is nowhere dense, leaving room for
the existence of unstable motions starting arbitrarily close to it. On an effort to replace positive measure
by open sets, a remarkable result by Nekhoroshev [Neh77] (see also [Nie96]), shows that the KAM set
is indeed included in an open subset of the phase space where trajectories are effectively stable. That
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is, orbits starting on this set are stable for an exponentially long time (with respect to the perturbative
parameter, which, in the planetary regime, is the mass ratio).

On the other hand, many striking mechanisms, leading to some sort of instability or departing from
the integrable dynamics, have been found in the N Body problem with N ≥ 3, or its restricted versions
[Sit60, LS80a, Moe84, Xia92, Mos01, Bol06, Moe07, GK11, GK12, GMS16, GSMS17, CG18, DKdlRS19,
SZ20, Xue20, BGG21, CGM+22, BGG22, CFG22, CFG23]. Many of them (if not all) are related to the
existence of (partially) hyperbolic invariant objects.

Complementary to the Hamiltonian perturbation theory approach, the variational approach, has
yielded a number of remarkable results on the N Body Problem for N ≥ 3 in non-nearly integrable set-
tings, which include, for example, the existence of collisionless periodic orbits and completely parabolic
and hyperbolic motions (just to cite a few results, see [CM00, FT04, TV07, MV09, MV20] and the
references therein).

Despite the enormous amount of research, the global picture of the dynamics of the 3 Body Problem
(and, more generally, of the N Body Problem), is still quite far to be understood. Yet, a quite remarkable
result of Chazy gives a classification of the possible final motions (i.e. complete orbits) of the 3 Body
Problem. To describe them, we denote by rk the vector from the point mass mi to the point mass mj

for i ̸= k, j ̸= k, i < j.

Theorem 1.1.1 (Chazy [Cha22], see also [AKN06]). Every solution of the 3 Body Problem defined for
all (future) time belongs to one of the following seven classes.

• Hyperbolic (H): |ri| → ∞, |ṙi| → ci > 0, i = 0, 1, 2, as t→ ∞.

• Hyperbolic–Parabolic (HPk): |ri| → ∞, i = 0, 1, 2, |ṙk| → 0, |ṙi| → ci > 0, i ̸= k, as t→ ∞.

• Hyperbolic–Elliptic, (HEk): |ri| → ∞, |ṙi| → ci > 0, i = 0, 1, 2, i ̸= k, as t→ ∞, supt≥t0 |rk| <∞.

• Parabolic-Elliptic (PEk): |ri| → ∞, |ṙi| → 0, i = 0, 1, 2, i ̸= k, as t→ ∞, supt≥t0 |rk| <∞.

• Parabolic (P): |ri| → ∞, |ṙi| → 0, i = 0, 1, 2, as t→ ∞.

• Bounded (B): supt≥t0 |ri| <∞, i = 0, 1, 2.

• Oscillatory (OS): lim supt→∞ supi=0,1,2 |ri| = ∞ and lim inft→∞ supi=0,1,2 |ri| <∞.

Note that this classification applies both when t → +∞ or t → −∞. To distinguish both cases we
add a superindex + or − to each of the cases, e.g H+ and H−. Examples of all types of motion but the
oscillatory ones were known at the time of Chazy. The first example of oscillatory motions was given by
Sitnikov in [Sit60]. Since then, starting with Moser [Mos01], a number of works have shown the existence
of oscillatory motions in different models in Celestial Mechanics (see Section 1.1.2 for a list of results).
The next natural question is to evaluate the measure of each of these sets. It turns out that the answer
is known for all sets except one, the oscillatory ones. For example, notice that, in particular, Arnold’s
theorem [Arn63] shows that bounded motions have positive measure. The following conjecture about
the measure of the set of oscillatory motions goes back to Alexeev [Ale71] (in the English version he
attributes this conjecture to Kolmogorov).

Conjecture 1.1.2 (Alexeev, Kolmogorov). The Lebesgue measure of the set of oscillatory motions is
zero.

Proving or disproving this conjecture was considered by Arnold to be the fundamental question in
Celestial Mechanics. By now, it remains wide open. The only available partial results, have been obtained
in [GK12].

One should also remark the importance of oscillatory motions in connection with the existence of
non trivial hyperbolic sets. More concretely, the modern approach to prove the existence of oscillatory
motions in Celestial Mechanics, introduced by Moser in [Mos01], consists on proving the existence of a
homoclinic class which contains oscillatory motions.
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Now we give a different look at the description of the qualitative behavior of solutions. In his 1998 ICM
lecture, Herman asked the following question, which he considered to be the oldest question in dynamical
systems. Let N ≥ 3, fix the center of mass at the origin, and, on the constant energy hypersurface h,
reparametrize the flow so collisions occur in infinite time.

Question 1.1.3 (Herman [Her98]). Is for every h the non wandering set of the Hamiltonian flow of the
N Body Problem nowhere dense on the constant energy hypersurface of energy h?

This would imply that bounded orbits are nowhere dense and no topological stability occurs. At the
moment, this conjecture is largely out of reach, and we are still looking for topologically unstable motions
in negative energy levels (for positive energy levels, the identity of Jacobi-Lagrange implies that every
orbit defined for all future times is wandering (see [Che98] for a proof)). What Herman believed that was
not an unreasonable question to ask, “and possibly prove in a finite time with a lot of technical details”
is that:

Question 1.1.4 (Herman [Her98]). Consider the planetary regime, then, if the mass ratio is sufficiently
small, in any neighbourhood of fixed different circular orbits around m0 (the heavy body) moving in the
same direction in a plane, there are wandering domains.

These questions motivate, at least up to some extent, the results obtained in this thesis. In Sections
1.1.1, 1.1.2 and 1.1.3, we state the main results of our work. They concern the existence of topological
instability, oscillatory motions and non trivial hyperbolic sets in the 3 Body Problem and its restricted
versions. We recall that the 3 Body Problem is called restricted if one of the bodies has zero mass and
the other two, the primaries, have strictly positive masses. In this limit problem, the primaries “are
not affected” by the motion of the massless body and they move according to the dynamics of the 2
Body Problem. Then, the Restricted 3 Body Problem models the motion of the massless body under the
gravitational potential created by the primaries. The most interesting case is when the primaries move
in the region of negative energy, i.e. they perform a (bounded) circular or elliptic motion.

The common feature of the mechanisms that we present in this work is the existence of a Normally
Hyperbolic Invariant Manifold (see [HPS77, Fen74, Fen77] for the precise definition and classical results
on normal hyperbolicity). Loosely speaking, a submanifold N ⊂ M of a Riemannian manifold M is
Normally Hyperbolic for a map f if it is f -invariant and for each point in N there exists a dominated
splitting of the tangent space into three subspaces: a uniformly contracting one (stable), a uniformly
expanding one (unstable), and the tangent space to N , in which the dynamics is “in between” (less
contracting than the stable and less expanding than the unstable). Among the remarkable properties
of Normally Hyperbolic Invariant Manifolds are their persistence under perturbations and the fact that
they possess stable and unstable invariant manifolds which are also robust under perturbations. As we
will see, these manifolds usually act as carriers, connecting distant regions of the phase space.

We will identify certain (topological) Normally Hyperbolic Manifolds for the 3 Body Problem or
its restricted versions, and introduce tools to prove that their stable and unstable manifolds intersect
transversally. Then, we analyze the dynamical consequences of this phenomenon. In particular, how they
imply the existence of topological instability and/or non trivial hyperbolic sets. These phenomena have
been studied in the context of “general” Hamiltonian systems (see for example [Dou88, BT99, DdlLS00,
MS02, BB02, Mat03, CY04, Tre04, DdlLS06, Ber08, GT08, DH09, NP12, Tre12, BKZ16, DdlLS16, Che17,
GT17, KZ20, GdlLS20]), however, the application of these ideas to Celestial Mechanics is quite challenging
because, in addition to many other difficulties, of the existence of many degeneracies.

Before entering into details let us do a final remark. Despite the common framework in wich we
build the mechanisms leading to topological instability and chaotic dynamics, these phenomena are quite
different in nature. On one hand, chaotic dynamics are associated to the existence of non trivial hyperbolic
invariant sets, while topological instability is associated (in the present work) to the existence of finite
transition chains between partially hyperbolic invariant objects. On the other hand, the hyperbolic
invariant sets associated to chaotic behavior might be small and do not lead necessarily to topological
instability.
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1.1.1 Topological Instability in the Restricted 3 Body Problem

In accordance with the general belief that the 3 Body Problem, although strongly degenerate, displays
the main features of a general Hamiltonian system, one expects (at least in nearly integrable settings)
the coexistence of metric stability of quasiperiodic KAM motions with topological instability in the 3
Body Problem. This was indeed conjectured by Arnold, to be the typical situation in nearly integrable
Hamiltonians (see [Arn63]). However, results concerning topological instability in Celestial Mechanics
have been obtained only quite recently in [CG18, DKdlRS19] for the Restricted 3 Body Problem and in
[CFG22, CFG23] for the spatial 4 Body Problem.

In all these results, the underlying mechanism is the so-called Arnold diffusion mechanism. This mech-
anism, proposed by Arnold in his seminal study of topological instability in nearly integrable Hamiltonian
systems (see [Arn64]), is based on the existence of a transition chain of invariant tori, that is, a sequence
of partially hyperbolic invariant tori connected by transverse heteroclinic orbits. In modern language, the
Arnold diffusion mechanism relies on the existence of a Normally Hyperbolic Invariant Manifold (NHIM)
whose stable and unstable manifolds intersect transversally along a homoclinic manifold. Then, if the
inner dynamics on the NHIM contains “sufficient” quasiperiodic invariant tori (or other invariant objects
such as Aubry-Mather sets), one can combine the outer excursions along the homoclinic manifold with
quasiperiodic inner dynamics (or orbits shadowing the Aubry-Mather sets) to obtain a transition chain
leading to topological instability. Another important tool in the modern (geometric) approach to Arnold
diffusion is the so-called scattering map [DdlLS08], a suitable composition of holonomy maps along the
unstable and stable foliations, which encodes the dynamics along the homoclinic manifold.

Although Arnold conjectured in [Arn64] that the mechanism of instability based on the existence
of transition chains “is applicable to the general case (for example, to the problem of 3 bodies)” the
implementation of these ideas is quite challenging and no such result is available so far.

The first result in this direction was obtained in [DKdlRS19], which, to the best of our knowledge,
constituted the first, complete, analytic proof of Arnold diffusion in Celestial Mechanics. There, the
authors considered the Restricted Elliptic 3 Body Problem, in which the primaries, of masses m0,m1 > 0,
revolve around each other in Keplerian ellipses. This configuration is a a 2+1/2 degrees of freedom
Hamiltonian system.

They showed that there exist a transition chain of periodic orbits along which the angular momentum1

G of the massless body experiences large variations. Notice that the angular momentum is a conserved
quantity in the 2 Body Problem, which can be seen as a limit problem of the Restricted 3 Body Problem
when m1/m0 → 0 2.

The construction of the transition chain of periodic orbits goes as follows. In the Restricted 3 Body
Problem there exists a 3 dimensional (topological) Normally Hyperbolic Invariant Cylinder P∞ located
“at infinity”. It corresponds to the ω-limit set (resp. α-limit set) of the forward (resp. backwards)
parabolic motions of the Restricted 3 Body Problem. We will refer to P∞ as the “parabolic infinity”.
Since the Newtonian interaction decays with the distance, the dynamics on P∞ is trivial: it is foliated
by periodic orbits (fixed points of the time one map). On the other hand, although the linearized
vector field vanishes on P∞, it is a classical result that P∞ posseses 4 dimensional stable W s(P∞)
and unstable Wu(P∞) invariant manifolds (these are indeed the set of forward and backward parabolic
motions respectively). Moreover, for sufficiently large G∗ > 0, the submanifolds Wu,s(P∞ ∩ {G ≥ G∗})
pass far from the position of the primaries. In other words, the submanifolds Wu,s(P∞ ∩ {G ≥ G∗}) are
contained in the hierarchical region, where the Restricted 3 Body Problem can be studied as a perturbation
of the 2 Body Problem. Then, by means of classical Poincaré-Melnikov theory [Mel63, DdlLS06], the
authors of [DKdlRS19] established that, for G∗ ≫ 1, Wu(P∞ ∩ {G ≥ G∗}) and W s(P∞ ∩ {G ≥ G∗})
intersect transversally along two different homoclinic manifolds by further asuming that m1/m0 ≪ 1.
Then, to overcome the fact that the inner dynamics on P∞ is trivial, the authors make use of the two
scattering maps associated to the two different homoclinic manifolds. They prove that these maps share
no common invariant curve, which finally implies the existence of drifting orbits of the iterated function
system [Moe02].

1In polar coordinates in the plane of motion of the massless body, the angular momentum G is symplectically conjugated
to the angular coordinate.

2For this range of parameters, the massless body only “feels” the interacion with m0 up to terms of order m1/m0 ≪ 1.
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From the a priori unstable to the a priori stable case

As already mentioned, the transition chain of periodic orbits constructed in [DKdlRS19] is contained in
the hierarchical region, where the third body is far away from the primaries and the Restricted 3 Body
Problem can be studied as a time periodic perturbation of the 2 Body Problem. Due to the fast decay of
the Newtonian force with the distance, in the hierarchical regime, there exist two different time scales:
the motion associated to the integrable approximation is slow compared to the evolution of the time
variable. In a neighborhood of P∞ ∩ {G ≥ G∗}, the ratio between the two time scales is proportional to
ε = G−3

∗ while the size of the perturbation is of order δ = G−3
∗ (m1/m0) = ε(m1/m0).

3 Therefore, the
effect of the perturbation along the stable and unstable manifolds of P∞ ∩ {G ≥ G∗} averages out to an
exponentially small remainder O(δ exp(−1/ε)), which, as a matter of fact, bounds the distance between
W s(P∞ ∩ {G ≥ G∗}) and Wu(P∞ ∩ {G ≥ G∗}).

Indeed, a somehow standard averaging argument (see [Nei84]) yields a non sharp, exponentiall small,
upper bound on the distance between these manifolds. However, in order to prove the existence of trans-
verse intersections between them, one needs to obtain an asymptotic formula for the distance between
these manifolds (measured along a suitable transverse section). This requires substantially more work:
notice that the perturbation (in the hierarchical approximation) has size δ = ε(m1/m0), so (for fixed
values of the masses) one has to prove that a lot of cancellations happen in order to obtain a sharp
asymptotic formula with exponentially small (in ε = G−3

∗ ) leading term. This obstacle was removed in
[DKdlRS19] by assuming that m1/m0, which, we recall, is proportional to the size of the perturbation,
is also exponentially small in ε, measuring the ratio between time scales. With this trick, already em-
ployed by Arnold in his original paper [Arn64], although there exist different time scales, the system is
also exponentially close to integrable and classical Poincaré-Melnikov theory can be used to prove the
existence of transverse intersections between W s(P∞ ∩ {G ≥ G∗}) and Wu(P∞ ∩ {G ≥ G∗}). Moreover,
in this setting, the scattering maps associated to the transverse intersections between these manifolds are
also exponentially close to the identity. Therefore, although the difference between the scattering maps is
exponentially small, the verification of the non existence of common invariant curves can be investigated
by means of classical perturbation theory.

Summing up, the transition chain in [DKdlRS19] is built in a neighbourhood of a (topological) Nor-
mally Hyperbolic Invariant Cylinder (NHIC), in which there exist different time scales. However, by the
choice of the parameters in the problem, the Hamiltonian is exponentially close (with respect to the ratio
between time scales) to integrable. In the Arnold diffusion literature, this setting is usually referred to
the a priori unstable case. Indeed, for these systems, the “splitting” between the invariant manifolds of
the NHIC, is of the order of the perturbation.

On the other hand, one refers to the a priori stable case, for perturbations of completely integrable
systems. Notice that the integrable system is completely elliptic, i.e. there do not exist hyperbolic invari-
ant objects. For sufficiently small ε-perturbations, a NHIC Nε typically arises in small neighbourhoods
of single resonances [Ber10]. Indeed, they survive as perturbations of the NHIC Ñε associated to the
truncated resonant normal form. Moreover, due to its integrability, in the truncated resonant normal
form, the invariant manifolds of Ñε coincide along a homoclinic manifold. However, due to their weak
hyperbolicity (it is of the order of the square root of the size of the perturbation, i.e.

√
ε), there exist dif-

ferent time scales in a neighbourhood of Nε: the fast, non resonant, angles and the slow, resonant, angle.
Studying the splitting of the homoclinic manifold of Ñε, when considering the full normal form, is now
quite subtle. Although the truncated normal form is εα (for some α > 1) close to the full normal form,
in the real analytic setting we know that, due to the existence of different time scales, the perturbation
averages out to an exponentially small remainder (in ε) which bounds the splitting of the homoclinic
manifold. However, there are no extra parameters at our disposal, and, obtaining an asymptotic formula
for the difference between the stable and unstable manifolds of Nε is much harder than in the a priori
unstable case.

Our first main contribution is the extension of the result in [DKdlRS19] to the case of arbitrary masses
m0,m1 > 0, a setting in which we face some of the challenges present in the a priori stable case.

3The labelling of the primaries is not relevant, so without loss of generality we can suppose that m1 < m0.
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Theorem 1.1.5 ([GPS23b]). Let G be the angular momentum of the massless body and ϵ ∈ (0, 1) be the
eccentricity of the orbit of the primaries. Then, for any m0,m1 > 0, m1 ̸= m0, there exists G∗ > 0 such
that, for any ϵ ∈ (0, G−3

∗ ) and any values G1, G2 satisfying

G∗ ≤ G1 < G2 ≤ ϵ−1/3,

there exists T > 0 and an orbit γ of the RPE3BP for which

G ◦ γ(0) ≤ G1 and G2 ≤ G ◦ γ(T ).

To the best of our knowledge, this is the first result concerning Arnold diffusion for a real-analytic
Hamiltonian system which displays features of the a priori stable case4. In particular, in a neighbourhood
of P∞ ∩ {G ≥ G∗}, the dynamics of the RPE3BP presents two different time scales, and we study
the existence of transverse intersections between its invariant manifolds without making use of extra
parameters. In order to prove Theorem 1.1.5, in [GPS23b], we introduce a new approach to:

• Analyze the highly anisotropic splitting between the stable and unstable manifolds associated to
pairs of partially hyperbolic fully resonant invariant tori in a singular perturbation framework, and

• Distinguish the dynamics of two exponentially close scattering maps associated to different homo-
clinic channels.

The first item can be seen as an extension of the formalism developed in [Sau01, LMS03], where the
splitting of the stable and unstable invariant manifolds of the same quasiperiodic torus was investigated5.
We exploit the fact that P∞ is foliated by invariant (resonant) tori, whose stable and unstable invariant
manifolds are Lagrangian. With this approach, we can take advantage of the symplectic features of the
problem. Let us mention that, all previous works which study the existence of transverse intersections
between the invariant manifolds of different invariant tori rely on an indirect approach: first one proves
the existence of transverse homoclinic orbits to a given torus and then deduce the existence of heteroclinic
orbits to nearby tori by direct application of the implicit function theorem. However, the directions along
which the splitting is exponentially small can move as we vary the torus. Thus, to ensure that the errors
in the approximation by the homoclinic connection are exponentially small, this indirect method only
works when the two tori under consideration are exponentially close (in the perturbative parameter).

We, on the other hand, study the existence of transverse intersections between different pair of tori
in a direct way. This enables us to establish the existence of heteroclinic connections between resonant
tori separated up to a distance of the size of the perturbation.

It is key for proving that, the invariant manifolds of P∞ ∩{G ≥ G∗} intersect transversally along two
different homoclinic manifolds which are moreover diffeomorphic to (recall that ϵ is the eccentricity of
the primaries orbit)

P∞(ϵ,G∗) = P∞ ∩ {G∗ < G < ϵ−1/3}.

The upshot of this result is that we can prove the existence of two different scattering maps defined globally
on P∞(ϵ,G∗)

6. These scattering maps are polynomially close to the identity. We develop tools to obtain
an asymptotic formula for their difference, which averages out to an exponentially small quantity, and
then make use of an interpolation plus averaging argument to show that they do not share common
invariant curves.

Another novelty of our construction is that we work directly with the generating functions of the
stable and unstable manifolds of the invariant tori instead of relying on vector parametrizations. The
main difficulty is the appearance of certain unbounded operator in the linearized invariant equation
defining the generating functions (see [Sau01]). This obstacle was removed in all previous works by
considering a different vector parametrization of the invariant manifolds. We overcome the problem, and

4The first example of a real-analytic a priori stable system exhibiting topological instability was recently constructed by
B. Fayad in [Fay23]. The techniques are, however, different from the Arnold diffusion mechanism.

5The authors in [Sau01, LMS03] consider a generalized Arnold model.
6This is crucial in the present problem due to the degeneracy of the inner dynamics on P∞
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directly find the generating functions, by making use of a suitable Newton iterative scheme in a scale of
Banach spaces in the spirit of the usual schemes used in KAM theory.

We believe that the main ideas developed in [GPS23b] can be of general interest for the study of
Arnold diffusion in the real-analytic a priori stable setting.

1.1.2 Oscillatory motions in the Restricted 3 Body Problem

Another major question in Celestial Mechanics is the description of the final motions (i.e. defined for
all future times) of the Restricted 3 Body Problem. In the restricted case, the classification in Theorem
1.1.1 reduces to four classes (as in Theorem 1.1.1, the classification also applies to t→ −∞).

Theorem 1.1.6 (Chazy [Cha22]). Every solution of the Restricted 3-body Problem defined for all (future)
times belongs to one of the following classes

• B (bounded): supt≥0 |q(t)| <∞.

• P (parabolic) |q(t)| → ∞ and |q̇(t)| → 0 as t→ ∞.

• H (hyperbolic): |q(t)| → ∞ and |q̇(t)| → c > 0 as t→ ∞.

• O (oscillatory) lim supt→∞ |q(t)| = ∞ and lim inft→∞ |q(t)| <∞.

As already mentioned in the introduction, the first example was given by Sitnikov [Sit60] in a particular
symmetric configuration of the Restricted 3 Body Problem nowadays known as the Sitnikov example.

The Moser approach: a toolbox from hyperbolic dynamics

In 1973, Moser gave a new, conceptually more transparent, proof of the existence of oscillatory motions
in the Sitnikov example [Mos01], making use of ideas from hyperbolic dynamics: he built a homoclinic
class which contains oscillatory motions.

More concretely, he considered a (topologically) hyperbolic periodic orbit γ∞ at infinity, 7 and proved
that its stable and unstable invariant manifolds intersect transversally. Although γ∞ is only topologically
hyperbolic (often denoted as parabolic), Moser proved that, for a suitable (2 dimensional) return map
ΦΣ to a suitable section Σ close to Wu(γ∞) ⋔W s(γ∞), there exists a non trivial hyperbolic set X . The
dynamics of ΦΣ restricted to X ⊂ Σ is moreover conjugated to the shift

σ : NZ → NZ (σω)k = ωk+1,

acting on the space of infinite sequences. Namely, X is a horseshoe with “infinitely many legs” for ΦΣ. By
construction, sequences ω = (· · · , ω−n, ω−n+1, · · · , ω0, · · ·ωn−1, ωn, · · · ) ∈ NZ for which lim supn→∞ ωn =
∞ (resp. lim supn→−∞ ωn = ∞) correspond to complete motions of the Sitnikov problem which are
oscillatory in the future (in the past).

Moser’s ideas have been very influential and have been extended to other models in Celestial Mechanics
[LS80a, LS80b, Xia92, Moe07, GMS16, GSMS17, SZ20, CGM+22]. The main difficulties that one faces
when implementing these ideas are the following. First, proving that the stable and unstable manifolds
of the parabolic infinity (a topological hyperbolic periodic orbit in symmetric configurations, and, a
topological normally hyperbolic invariant cylinder in the Elliptic and in the Spatial Circular Restricted 3
Body Problem) intersect transversally. To the best of our knowledge, in all previous works, the authors
consider perturbative settings in order to tackle this step. Second, to construct a non trivial hyperbolic
invariant set close to the homoclinic intersection. As we will see in Section 1.1.3, this step presents major
challenges for models with more than 2 degrees of freedom.

7Due to the existence of additional symmetries the Sitnikov model is a 1+1/2 degrees of freedom Hamiltonian system.
After performing the symplectic reduction, the parabolic infinity (see Section 1.1.1 and compare with the 3 dimensional
submanifold P∞), reduces to a periodic orbit.
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The Restricted Isosceles 3 Body Problem: a functional analytic approach to the existence
of oscillatory motions

In this work we consider the so-called Restricted Isosceles 3 Body Problem. In this model, the primaries
move periodically along a degenerate ellipse (a line) and the massless body moves on the plane perpen-
dicular to the line in which the primaries move. The position of the primaries is symmetric with respect
to this perpendicular plane, so the three bodies always form an isosceles triangle. Due to the rotational
symmetry, the angular momentum G of the massless body is a conserved quantity, which can be taken
as a parameter of the system. We thus obtain a one-parameter family of Hamiltonian systems HG, with
G ∈ R.

Our second main result is the following.

Theorem 1.1.7 ([GPSV21, PT22]). There eixsts a constant G∗ > 0 and a subset G ⊂ R with {|G| ≥
G∗} ⊂ G and Leb(R \ G) = 0 such that, for the Hamiltonian HG, if G ∈ G,

X+ ∩ Y − ̸= ∅ with X,Y = OS,B, P,H.

Let us now mention a few remarks concerning Theorem 1.1.7. For allG ∈ R, there exists a (topological)
hyperbolic periodic orbit at infinity γ∞,G. Moreover, for G ≫ 1, the invariant manifolds Wu,s(γ∞,G),
are contained in the hierarchical region (recall the discussion in Section 1.1.1). Therefore, for |G| ≫ 1,
the study of transverse intersections between Wu,s(γ∞,G) can be studied perturbatively. This was the
approach in [GPSV21]. The problem of existence of transverse intersections between Wu,s(γ∞,G) for
G ≥ G∗ ≫ 1, can indeed be considered as a simpler, lower dimensional version of our analysis of the
existence of transverse intersections between the manifolds Wu,s(P∞ ∩ {G ≥ G∗}) for the Restricted
Elliptic 3 Body Problem, outlined in Section 1.1.1.

However, for an arbitrary G ∈ R, one cannot rely on a perturbative approach to study the existence
of transverse intersections between Wu,s(γ∞,G). As far as we know, Theorem 1.1.7, is the first result
concerning the existence of oscillatory motions relying upon a global analytical approach rather than
on perturbative techniques. Some interesting related works, where the existence of oscillatory motions
is obtained in a setting which is not close to integrable, are [Moe07] and [CGM+22]. While in [Moe07]
the author shows the existence of oscillatory motions in the 3 Body Problem close to triple collision
(perturbation from the zero angular momentum case), in [CGM+22] the authors obtain a computer
assisted proof of the existence of oscillatory motions in the Restricted Circular 3 Body Problem for small
values of the Jacobi constant.

As in Moser’s approach, the first main step in our construction is to prove the existence of a homoclinic
orbit to γ∞,G. To this end, we will adopt a global approach and deploy the powerful machinery of the
theory of calculus of variations. In particular, we rephrase the problem of existence of homoclinic orbits
to γ∞,G as that of the existence of critical points of a certain action functional AG defined in a suitable
Hilbert space D1,2. The existence of critical points of the action functional AG is obtained by a minmax
argument tailor made for the present problem. The use of minmax techniques to study the existence
and multiplicity results for homoclinic orbits in Hamiltonian systems has already been widely exploited
in the literature (see for example [Sér92, CZES90, CZR91] and [MNT99]). In the variational approach
to our problem, we face two main difficulties at this step: the phase space is not compact and the vector
field presents singularities (corresponding to possible collision with the massive bodies). In order to
overcome the first difficulty we make use of a renormalized action functional defined on an appropriately
chosen functional space D1,2. In order to avoid singularities and gain compactness, we then perform a
constrained deformation argument. With these techniques, together with a compactness property of the
map dAG : D1,2 → D1,2 and Struwe’s monotonicity trick, we are able to show that, for almost all values
of the angular momentum G, there exists a Palais-Smale sequence in D1,2 which converges to a critical
point of the action functional AG. This proves the existence of an orbit r̃h homoclinic to γ∞,G, which
actually corresponds to a two sided parabolic motion of the Restricted Isosceles 3 Body Problem. It is
worthwhile pointing out that half parabolic and hyperbolic motions for the N Body Problem have been
obtained using variational methods in [MV09, MV20] with a different technique.

The homoclinc orbit r̃h obtained in this way is associated with an intersection between the stable and
unstable manifolds of the periodic orbit γ∞,G. To proceed further, though we can not tell whether this
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intersection is transverse or not, we may rely on our minmax construction to deduce some topological
transversality. This can be achieved by a topological degree argument based on a general result by Hofer
([Hof86]). More precisely, we exploit the mountain pass characterization of r̃h to show that for almost
all values of the angular momentum G there exists a (possibly different) critical point rh of the action
functional AG for which the Leray-Schauder index of the map ∇AG : D1,2 → D1,2 at rh is well defined
and different from zero. This allows us to shadow finite segments of the homoclinic orbit rh. The proof
of Theorem 1.1.7 is then obtained by combining a suitable parabolic version of the Lambda lemma close
to γ∞,G with the outer dynamics wich shadows finite segments of rh.

1.1.3 Hyperbolic dynamics, Oscillatory motions and Topological instability
in the 3 Body Problem

Finally, we present some results concerning the existence of unstable motions in the planar 3 Body
Problem (3 degrees of freedom). These motions are constructed on a region of the phase space which we
denote by the parabolic-elliptic regime (see Theorem 1.1.1).

The parabolic-elliptic regime

On each constant, negative energy hypersurface, there exists a 3 dimensional invariant submanifold at
infinity E∞ for the flow of the 3 Body Problem. It corresponds to the ω-limit set (resp. α-limit set) of the
points which lead to forward (resp. backwards) orbits along which the motion of one body is parabolic
and the motion the other two bodies is elliptic. Since at E∞ the distance between one body (the one
performing the parabolic motion) and the other two (the binary, elliptic, system) is infinite, the coupling
in the hierarchical approximation vanishes identically on E∞. Thus, the dynamics on E∞ is completely
integrable. Moreover, due to the so-called super integrability of the 2 Body Problem, E∞ is foliated by
periodic orbits.

It is known (see [BFM20c]), that E∞ posseses 4-dimensional stable and unstable invariant manifolds
W s,u(E∞). We focus on an invariant submanifold E∞,circ ⊂ E∞ corresponding to nearly circular motion
of the bodies q0, q1. Then, if we denote by G the angular momentum of the body q2, and let G∗ ≫ 1, the
stable and unstable manifolds Wu,s(E∞,circ∩{G ≥ G∗}) are contained in the hierarchical region, and the
bodies q0, q1 perform nearly circular motions.

Existence of non trivial hyperbolic sets

Our third main result is the following.

Theorem 1.1.8 ([GMPS22]). Consider the 3 Body problem with masses m0,m1,m2 > 0 such that
m0 ̸= m1. Then,

X+ ∩ Y − ̸= ∅ with X,Y = OS,B, PE3, HE3.

Theorem 1.1.8 is indeed a consequence of the following result, which deals with the existence of non
trivial hyperbolic sets in the 3 Body Problem (see Section 1.1.2).

Theorem 1.1.9 ([GMPS22]). Consider the 3 Body problem with masses m0,m1,m2 > 0 such that
m0 ̸= m1. Then, there exists a section transverse to the flow of the 3 Body Problem such that (a suitable
iterate of) the induced Poincaré map possesses a non trivial hyperbolic set.

The contribution of the author to the proof of Theorems 1.1.8 and 1.1.9, has been to adapt the tech-
niques developed in [GPS23b] to prove the existence of two transverse intersections betweenWu,s(E∞,circ∩
{G ≥ G∗}). This corresponds to Sections 7 and 8 in [GMPS22].

Once this result is proved, close to the intersection of these invariant manifolds we build a horseshoe
for certain return map associated to a transverse section. The construction of the horseshoe is rather
involved. We only outline it.

We build two suitable sections Σ1 and Σ2 transverse to the local stable and local unstable manifolds of
E∞,circ respectively in which by using a (parabolic) Lambda lemma we are able to define a transition map.
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For this four dimensional map the dynamics is hyperbolic in a pair of directions and is C1 close to the
identity in the other pair. Two different outer maps can be defined from certain subsets of Σ2 to Σ1 by
following the homoclinic excursions associated to the transverse intersections betweenWu,s(E∞,circ∩{G ≥
G∗}). The composition of the transition map with the outer maps yields two well defined return maps
for the section Σ2. Since the outer dynamics are close to the scattering map dynamics (which are close
to the identity maps), the return maps are (as the transition map from Σ1 to Σ2) hyperbolic in a pair
of directions and C1 close to the identity in the other pair. However to build the horseshoe we need
hyperbolicity in all directions. The idea to overcome this problem is to make use of the two different
return maps. Indeed, we are able to prove that, for a suitable composition of these maps, there exists an
isolating block, in which the dynamics is uniformly hyperbolic in all directions.

Topological instability in the 3 Body Problem

Due to the robustness of the mechanism, one could directly prove that the transition chain of heteroclinic
orbits constructed in [DKdlRS19, GPS23b] for the R3BP can be continued to the 3BP if the mass m2 is
sufficiently small. As a consequence, one can deduce that, in the 3BP, if m2 is sufficiently small, there
exist orbits along which the angular momentum G of the third body experiences significant variations,
while the eccentricity of the inner bodies remains small.

A much more challenging, and interesting question, is to prove the existence of Arnold Diffusion in
the 3BP for any choice of the masses m0,m1,m2 > 0. The substantial difference is that, due to the
conservation of the total angular momentum, as the angular momentum of the third body grows, so does
the eccentricity of the orbit of the binary system 8. However, in order to construct orbits along which
this transfer of angular momentum is significant, one cannot make use of the arguments developed in
[DKdlRS19, GPS23b], since they strongly rely on the hypothesis that the eccentricity of the primaries
orbit is small enough. Thus, new techniques have to be developed to, in particular, analyze the existence
of transverse intersections between the invariant manifolds of E∞.

Here, we present the first, of a series of papers, devoted to the construction of a transition chain of
periodic orbits contained in E∞, along which the angular momentum of the third body is transferred
to the binary system, resulting in a substantial change of its eccentricity. In particular, we want to
construct orbits which transition from close to circular orbits to highly eccentric ellipses (i.e., with close
to collision points). This first paper is devoted to analyze the so-called Melnikov approximation of
the distance between the invariant manifolds of E∞. Just to motivate the result, let us recall that the
invariant manifold E∞ is foliated by invariant tori, whose stable and unstable manifolds are Lagrangian
submanifolds of the phase space. Thus, these invariant manifolds can be parametrized by the gradient of
scalar valued generating functions, which we denote by Su,s. Notice that the existence of critical points
of ∆S = Su − Ss implies the existence of intersections between the invariant manifolds of E∞. Thus, if
one is able to prove that ∆S is approximated by certain function L in the C2 topology, the existence of
non degenerate critical points of L implies the existence of non degenerate critical points of ∆S. The
function L is usually called the Melnikov potential.

Remark 1.1.10. See Section 1.3.2 for a discussion on the justification of the Melnikov approximation
and the actual construction of a transition chain of periodic orbits for the 3 Body Problem.

The full result that we present in Chapter 6 (see also [GPS23a]), which concerns the asymptotic
analysis of the Melnikov potential, is a rather lengthy formula which requires the introduction of a large
amount of notation. Therefore, we only state here an important consequence of the full result, which
is key to prove that the stable and unstable manifolds of E∞ intersect transversally along two different
homoclinic manifolds. Let ϵ denote the instantaneous eccentricity of ellipse formed by q0, q1 and let G be
the angular momentum of q2. Given δ ∈ (0, 1/2), and G∗ ≫ 1, we denote as

E∞(δ,G∗) = {q ∈ E∞ : ϵ ∈ (δ, 1− δ), G ≥ G∗}

Theorem 1.1.11. Fix any δ ∈ (0, 1/2). Then, there exists G∗ ≫ 1 such that the Melnikov potential

L(u, z) : R× E∞(δ,G∗) → R, u ∈ R, z ∈ E∞(δ,G∗),

8The change of eccentricity due to the transfer of angular momentum goes to zero with m2 → 0.
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associated to the invariant manifolds of E∞(δ,G∗) is non degenerate in the following sense. There exist
two connected open sets Γ± ⊂ E∞(δ,G∗), satisfying

Leb(E∞(δ,G∗) \ Γ±) ≲ exp(−G3
∗/3),

such that, for z ∈ Γ±, there exists u± = u±(z) for which ∂uL(u±(z), z)) = 0 and ∂2uuL(u±(z), z) ̸= 0.

The asymptotic analysis of the Melnikov potential L in this problem is rather more complicated
than in [DKdlRS19, GPS23b]. Let us explain why. As in [DKdlRS19, GPS23b], due to the existence of
different time scales, the function L is given by an infinite sum of fast oscillatory integrals. A classical
tool for analyzing fast oscillatory integrals when the integrand is a real analytic function is to change the
integration contour to a steepest descent path. This is a complex path which visits the singularity (or
singularities) of the integrand which is closest to the real axis and such that, as we move away from the
singularity, the integrand decays exponentially fast.

In [DKdlRS19, GPS23b], the domain of analyticity of the integrand is close to a direct product and,
moreover, its singularities are all “sufficiently close” from each other so they can be treated as one. Then,
one can expand the integrand in Laurent series around this singularity to analyze the Melnikov potential
asymptotically. However, in the present setting, where we consider arbitrary eccentricities, the domain
of analyticity of the integrand of the oscillatory integrals defining L is not a direct product and there
exist several, different singular submanifolds. Thus, one cannot rely on Laurent expansions. On the other
hand, our approach makes use of standard tools from complex analysis such as the method of analytic
continuation to first, locate all the complex singularities and, second, study the local behavior of the
integrand around them.

1.2 Conclusions

The present thesis has been devoted to the study of different kinds of unstable motions in the 3 Body
Problem and its restricted versions. The common feature in the mechanisms presented, is the existence
of (topological) hyperbolic invariant objects. We have introduced different tools to prove the existence
of transverse intersections between their invariant manifolds in a variety of contexts, including singu-
lar perturbation frameworks and non perturbative settings. Then, we have investigated the dynamical
consequences of the existence of these transverse intersections. More concretely, the existence of Arnold
diffusion, oscillatory motions and non trivial hyperbolic sets.

This thesis was performed from September 2019 to April 2023 by Jaime Paradela Dı́az and was
supervised by Professors Marcel Guàrdia Munárriz and Tere M-Seara Alonso.

The results presented here can also be found in the articles [GPSV21, GMPS22, PT22, GPS23b,
GPS23a]. At the current date, the first is already published, the second, third and fourth are under
revision, and the fifth one is being prepared.

1.3 Open problems

To conclude this introduction, we list three open problems, related to the main results of this work, which
we find interesting and which we are currently addressing.

1.3.1 Existence of two sided completely parabolic motions in the N Body
Problem

Consider a complete orbit of the N Body Problem. We say that it is completely parabolic, if it approaches
infinity with zero asymptotic kinetic energy. It is a classical result that, for completely parabolic mo-
tions, its asymptotic shape must be a central configuration (see [Che98]). A number of works have proved
that given an arbitrary initial configuration and an arbitrary central configuration there exists a com-
pletely parabolic orbit of the N Body Problem, passing through the given initial configuration and whose
asymptotic shape is the prescribed central configuration (see [MV09, BDFT21]).
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However, to the best of our knowledge, there are no results available on the existence of two sided
completely parabolic orbits, i.e. orbits which are completely parabolic both in backward and forward
time. By definition, the shape of this orbit is asymptotic to a central configuration both in the past and
in the future. Together with S. Terracini, we are investigating the existence of such orbits. A possible
roadmap is to consider orbits of the 2N Body Problem which are symmetric under the dihedral group.
This symmetry, drastically drops the dimension of the problem to a system of two degrees of freedom
[FP08, FP13]. In this setting, we plan to extend the tools developed in [PT22] to study the existence of
two sided completely parabolic motions in the 2N Body Problem.

1.3.2 Topological Instability in the 3 Body Problem

As we already explained in Section 1.1.1, justifying the Melnikov approximation (namely, obtaining an
asymptotic formula for the distance between the stable and unstable invariant manifolds), for problems
involving different time scales, is a quite challenging problem. One option would be to carry on an
averaging procedure with an “optimal loss of analyticity”. Another approach is to follow Lazutkin ideas
for the standard map [Laz87] (see also [Sau01, LMS03]), and extend the parametrizations of the invariant
manifolds to a “sufficiently large” complex domain. This was the approach in [GPS23b].

Compared to [GPS23b], justifying the Melnikov approximation for the 3 Body Problem in the parabolic-
elliptic regime (see Section 1.1.3), requires overcoming many major difficulties. These are indeed related
to the same difficulties present in the analysis of the Melnikov potential (see the discussion at the end of
Section 1.1.3). Namely, when we study the Hamiltonian of the 3 Body Problem, in a neighbourhood of
the invariant manifolds of E∞, its domain of analyticity is not a direct product.

Together with M. Guàrdia and T. M-Seara, we are currently extending the techniques in [GPS23b]
to overcome this problem.

1.3.3 Homoclinic tangencies in Celestial Mechanics

Since the pioneering work of Newhouse [New70, New74, New79], the existence of homoclinic tangencies
is widely recognized as a source of wild dynamics. For Hamiltonian systems (at least in models of 1+1/2
or 2 degrees of freedom), this includes: existence of thick hyperbolic basic sets with persistent tangencies,
existence of infinitely many elliptic islands and universality (loosely speaking, this concept means that,
given any diffeomorphism f of the disk, there exists a return map of the system which, after a proper
renormalization, approximates the dynamics of f up to arbitrary order).

In some particular models in Celestial Mechanics, due to the existence of discrete symmetries, one can
find primary homoclinic tangencies between the manifolds of the “parabolic infinity”. Moreover, in some
cases, these tangencies unfold “generically” as we move the parameters of the system. Together with
J.M. Cors, M. Garrido, and P. Mart́ın, we are studying the dynamical consequences of this phenomenon.

Disclaimer: The reader will forgive us for the text overlap between some of the chapters of the thesis,
especially between their introduction sections.
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Chapter 2

A degenerate Arnold diffusion
mechanism in the Restricted 3 Body
Problem

Abstract: A major question in dynamical systems is to understand the mechanisms driving global
instability in the 3 Body Problem (3BP), which models the motion of three bodies under Newtonian
gravitational interaction. The 3BP is called restricted if one of the bodies has zero mass and the other
two, the primaries, have strictly positive masses m0,m1. We consider the Restricted Planar Elliptic 3
Body Problem (RPE3BP) where the primaries revolve in Keplerian ellipses. We prove that the RPE3BP
exhibits topological instability: for any values of the masses m0,m1 (except m0 = m1), we build or-
bits along which the angular momentum of the massless body experiences an arbitrarily large variation
provided the eccentricity of the orbit of the primaries is positive but small enough.

In order to prove this result we show that a degenerate Arnold Diffusion Mechanism, which moreover
involves exponentially small phenomena, takes place in the RPE3BP. Our work extends the result obtained
in [DKdlRS19] for the a priori unstable case m1/m0 ≪ 1, to the case of arbitrary masses m0,m1 > 0,
where the model displays features of the so-called a priori stable setting.

2.1 Introduction

The N Body Problem models the motion of N bodies under mutual gravitational interaction. Under-
standing its global dynamics for N ≥ 3 (the system is integrable for N = 2) is probably one of the oldest
(and more challenging) questions in dynamical systems. A major achievement in this direction was the
proof of the existence of a positive measure set of quasiperiodic motions in the N Body Problem. This
result was first established by Arnold in [Arn63], who gave a master application of the KAM technique
to the case of 3 coplanar bodies. The proof was later extended to case of N ≥ 3 in the work of Féjoz and
Herman [Fej04] (see also [Rob95, CP11]). On the other hand, in accordance with the general belief that
the N Body Problem, although strongly degenerate, displays the main features of a ”typical” Hamilto-
nian system, in his ICM address, Herman conjectured [Her98] that the set of non wandering points for
the flow of the N Body Problem is nowhere dense on every energy level for N ≥ 3. This would imply
topological instability for the N Body Problem in a very strong sense.

The existence of topological instability in Hamiltonian systems was first investigated by Arnold in
[Arn64], where he constructed an example of nearly integrable Hamiltonian in which this kind of behavior
occurs. To that end, Arnold proposed a mechanism giving raise to unstable motions based on the
existence of a transition chain of invariant tori: a sequence of invariant irrational tori which are connected
by transverse heteroclinic orbits. This mechanism is nowadays called the Arnold mechanism. Arnold
verified that this mechanism takes place in a cleverly built model usually referred to as the Arnold model,
and he conjectured that topological instability is indeed a common phenomenon in the complement
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of integrable Hamiltonian Systems [Arn63]. Despite the enormous amount of research (see for example
[Dou88, BT99, DdlLS00, MS02, BB02, Mat03, CY04, Tre04, DdlLS06, Ber08, GT08, DH09, NP12, Tre12,
BKZ16, DdlLS16, Che17, GT17, KZ20, GdlLS20]) the Arnold diffusion phenomenon, and more generally
the dynamics in the complement of the KAM tori set, is still poorly understood (and even more poorly
for real analytic or non-convex Hamiltonians).

In [Arn64], Arnold conjectured that the mechanism of instability based on the existence of transition
chains “is applicable to the general case (for example, to the problem of 3 bodies)”. However, results
concerning the existence of Arnold diffusion in the 3 Body Problem or related models are rather scarce
(see [CG18, DKdlRS19, CFG22, CFG23] and also [DGR16, FGKR16] for numerical based results).

The 3 Body Problem is called “restricted” if one of the bodies has zero mass and the other two, the
primaries, have strictly positive masses m0,m1. In this limit problem, the motion of the primaries is just
a 2 Body Problem and the dynamics of the massless body is governed by the gravitational interaction
with the primaries. In this work, we consider the case in which the primaries revolve around each other
in Keplerian ellipses of eccentricity ϵ ∈ (0, 1) and the massless body moves on the same plane as the
primaries. This model, usually known in the literature as the Restricted Planar Elliptic 3 Body Problem
(RPE3BP), is a 2+1/2 degrees of freedom Hamiltonian system. For ϵ = 0 (i.e. for the Restricted Planar
Circular 3 Body Problem), the rotational symmetry prevents the existence of topological instability in
nearly integrable settings (see Remark 2.1.4 below).

The goal of this paper is to prove that a degenerate Arnold Diffusion mechanism takes place in the
RPE3BP: we show that for any value of the masses of the primaries (m0 ̸= m1), there exist orbits of
the RPE3BP along which the angular momentum of the massless body experiences any predetermined
drift provided the eccentricity of the orbits of the primaries is positive but small enough. Notice that the
angular momentum is a conserved quantity in the 2 Body Problem, which can be seen as a limit problem
of the Restricted 3 Body Problem when m1/m0 → 0.

To the best of our knowledge the first complete proof of existence of Arnold Diffusion in Celestial Me-
chanics was obtained in [DKdlRS19], in which the authors showed the existence of topological instability
in the RPE3BP. Nevertheless, this result was established under the strong hypothesis m1/m0 ≪ 1 (see
Section 2.1.2 for a more precise description of the setting). Under this condition, the problem falls in the
a priori unstable case for the study of Arnold diffusion and can be analyzed by means of classical pertur-
bation theory. Our result extends the work in [DKdlRS19] to the case of arbitrary masses m0,m1 > 0, a
setting in which the problem displays many features of the so-called a priori stable case.

2.1.1 Main Result

Fix a Cartesian reference system with origin at the center of mass of the primaries and choose units so
that the total mass of the primaries is equal to 1. In these coordinates, the primaries, which we denote
by q0 and q1, move along Keplerian ellipses of eccentricity ϵ ∈ (0, 1) whose time parametrization reads

q0(t) = µϱ(t)(cos f(t), sin f(t)) q1(t) = −(1− µ)ϱ(t)(cos f(t), sin f(t)),

where m0 = 1 − µ and m1 = µ ∈ (0, 1/2] are the masses of q0 and q1, ϱ(t) is the distance between the
primaries and is given by

ϱ(t) =
1− ϵ2

1 + ϵ cos f(t)

and the so called true anomaly f(t) is determined implicitely by the equation

df

dt
=

(1 + ϵ cos f)2

(1− ϵ)3/2
, f(0) = 0.

The RPE3BP describes the motion of a massless body q ∈ R2 in the gravitational field generated by the
primaries and it is governed by the second order differential equation

q̈ = (1− µ)
q − q0(t)

|q − q0(t)|3
+ µ

q − q1(t)

|q − q1(t)|3
. (2.1)
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It is a classical fact that the RPE3BP admits a Hamiltonian structure. Introducing p and E the conjugate
momenta to q and t, and the gravitational potential

U(q, t) =
1− µ

|q − q0(t)|
+

µ

|q − q1(t)|

the RPE3BP is Hamiltonian with respect to

H(q, p, t, E) =
|p|2

2
− U(q, t) + E

and the canonical symplectic structure in the extended phase space T ∗(R2 × T). The following is our
main result.

Theorem 2.1.1. Let G(q, p) = |q ∧ p| be the angular momentum of the massless body. Then, for any
µ ∈ (0, 1/2), there exists G∗ > 0 such that, for any ϵ ∈ (0, G−3

∗ ) and any values G1, G2 satisfying

G∗ ≤ G1 < G2 ≤ ϵ−1/3,

there exists T > 0 and an orbit γ of the RPE3BP for which

G ◦ γ(0) ≤ G1 and G2 ≤ G ◦ γ(T ).

2.1.2 Previous results: Arnold diffusion and unstable motions in Celestial
Mechanics

A number of works have shown the existence of unstable motions in the 3 Body Problem or its restricted
versions. For example, oscillatory orbits (orbits that leave every bounded region but return infinitely
often to some fixed bounded region, see [Cha22]) and/or chaotic behavior in particular configurations
of the Restricted 3 Body Problem [Sit60, LS80a, Moe84, Xia92, Bol06, Moe07, GK11, GK12, GMS16,
GSMS17, Mos01, SZ20, GPSV21, CGM+22, BGG21, BGG22, GMPS22, PT22].

However, results concerning the existence of Arnold diffusion in the 3 Body Problem or related models
are rather scarce. Some remarkable works are [DGR16, FGKR16, CG18, DKdlRS19, CFG22, CFG23]. In
[DGR16] and [FGKR16], the authors combine numerical with analytical techniques to study the existence
of diffusion orbits in the Restricted 3 Body Problem close to L1 and along mean motion resonances
respectively. In [CG18] the authors give a computer assisted proof of the existence of Arnold diffusion in
the Restricted Planar Elliptic 3 Body Problem. Moreover, some very interesting features of the random
behavior, such as convergence to a stochastic process, are studied. In the recent works [CFG22, CFG23],
the authors show that the Arnold Diffusion mechanism takes place in the spatial 4 Body Problem.

Of major importance, and closely related to the setting of the present work, is the paper [DKdlRS19]
(see also [Xia93, MP94] for previous partial results). To the best of our knowledge it constituted the first
complete analytic proof of Arnold Diffusion in Celestial Mechanics.

Theorem 2.1.2 (Theorem 1 in [DKdlRS19]). There exist G∗ > 0 and c > 0 such that, for any ϵ ∈
(0, cG−1

∗ ) and any values G1, G2 satisfying

G∗ ≤ G1 < G2 ≤ c/ϵ,

if the mass ratio satisfies
µ≪ exp(−G3

2/3),

there exists T > 0 and an orbit γ : [0, T ] → R+ × T2 × R3 of the RPE3BP for which

G ◦ γ(0) ≤ G1 G2 ≤ G ◦ γ(T ).
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2.1.3 From the a priori unstable to the a priori stable case

The proofs of Theorem 2.1.1 and Theorem 2.1.2 rely on the existence of a rather degenerate Arnold
Diffusion mechanism. In modern language, the seminal proof of existence of Arnold diffusion in [Arn64]
is based on the existence of a Normally Hyperbolic Invariant Cylinder foliated by invariant tori. The
stable and unstable manifolds of the cylinder intersect transversally, what allows to construct a sequence of
quasiperiodic whiskered invariant tori connected by heteroclinic orbits. An important tool in the modern
approach to Arnold diffusion is the so called scattering map [DdlLS08] which encodes the dynamics along
these heteroclinic connections.

In [DKdlRS19], it is shown that, for the RPE3BP, there exists a 3 dimensional (topological) Normally
Hyperbolic Invariant Cylinder P∞ foliated by periodic orbits (see Section 2.1.4). We will see in Section
2.2.2 that, in the region of the phase space {G ≥ G∗}, the RPE3BP can be studied as a fast periodic
perturbation of the integrable 2BP. Theorems 2.1.1 and 2.1.2 are based on the existence of a transition
chain of periodic orbits, contained in P∞∩{G ≥ G∗}, along which the angular momentum G experiences
an arbitrarily large drift.

Under the additional (and rather restrictive) hypothesis of exponentially small mass ratio µ ≪
exp(−G3

∗/3), the RPE3BP in the parabolic regime with large angular momentum G ≥ G∗ ≫ 1 (see
Section 2.1.4) falls in the a priori unstable setting. Indeed, one takes the parameter µ, measuring the
size of the perturbation, exponentially small with respect to the one measuring the ratio between the
different time scales of the problem 1/G3

∗, as Arnold did in his original paper [Arn64]. This heavily
simplifies the two main steps for the construction of the diffusion chain of heteroclinic orbits (see Sec-
tion 2.1.4). On one hand, the existence of transverse intersections between the 4 dimensional stable
and unstable manifolds W s(P∞ ∩ {G ≥ G∗}) and W u(P∞ ∩ {G ≥ G∗}) can be tackled by classical
perturbative techniques (Poincaré-Melnikov method). The reason is that, although the splitting between
these manifolds is exponentially small in 1/G∗, the system is also exponentially close to integrable. To
overcome the fact that the inner dynamics on P∞ is trivial, the proof of Theorems 2.1.1 and 2.1.2
make use of two different scattering maps associated to two different homoclinic manifolds contained
in W s(P∞ ∩ {G ≥ G∗}) ⋔ W u(P∞ ∩ {G ≥ G∗}). In the doubly perturbative setting {G ≥ G∗} and
µ≪ exp(−G3

∗/3), the scattering maps are exponentially close to the identity and a (non trivial) algebraic
computation shows that they share no common invariant curve. Then, the existence of drifting orbits
can be deduced from classical arguments (see [Moe02]).

Theorem 2.1.1 extends Theorem 2.1.2 to the case µ ∈ (0, 1/2). In this setting, the problem displays
many features of the so called a priori stable case in the real analytic category. In particular, no extra
parameters are available to study the exponentially small splitting between W u(P∞ ∩ {G ≥ G∗}) and
W s(P∞∩{G ≥ G∗}). To the best of our knowledge, Theorem 2.1.1 is the first result proving the existence
of Arnold Diffusion for a real analytic Hamiltonian which does not fall in the a priori unstable setting 1.

We develop two main sets of tools to prove Theorem 2.1.1. In particular we introduce a new approach
to:

• Analyze the highly anisotropic splitting between the stable and unstable manifolds associated to
pairs of partially hyperbolic fully resonant invariant tori in a singular perturbation framework, and

• Distinguish the dynamics of two exponentially close scattering maps associated to different homo-
clinic channels.

We believe that the main ideas developed in this work can be of general interest for the study of
Arnold diffusion in the real analytic a priori stable setting. We refer the interested reader to Section
2.1.5, where we introduce a degenerate version of the Arnold model to explain the main difficulties and
novelties in the proof of Theorem 2.1.1.

1The first example of a real analytic a priori stable system exhibiting topological instability was recently constructed by
B. Fayad in [Fay23]. The techniques are however different from the Arnold Diffusion mechanism.
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Figure 2.1: Sketch of the projection on the plane q ∈ R2 of a segment of the diffusive orbit. It shadows a
finite family of parabolic orbits which are indeed heteroclinic orbits to P∞. As the angular momentum
grows the massless body q passes further from the primaries.

Remark 2.1.3. We will see later (see Section 2.3.1 and, in particular, the discussion below Theorem
2.3.9) that the angle of splitting between the invariant manifolds W u

I and W s
I of the invariant torus

TI = P∞ ∩ {G = I} is of the order ∼ µ(1− 2µ)ϵ exp(−I3/3). Since the inner dynamics on P∞ is trivial,
in the diffusion mechanism underlying the proof of Theorems 2.1.1 and 2.1.2, an estimate of the splitting
angle between W u

I and W s
I is not enough for estimating the diffusion time, and one more ingredient comes

into play: the transversality between the invariant curves of the two scattering maps associated to each
transverse homoclinic intersection. Still, we will also see (see the proof of Proposition 2.3.25 below) that
the angle between these invariant curves is again proportional to ∼ µ(1 − 2µ)ϵ exp(−I3/3). Thus, the
orbits obtained in Theorem 2.1.1 present significant drift only after exponentially long times.

2.1.4 Outline of the proof of Theorem 2.1.1

We introduce the (exact symplectic) change to polar coordinates (r, y, α,G, t, E) 7→ (q, p, t, E) where
q = (r cosα, r sinα) and (y,G) are the conjugate momenta to (r, α). In this coordinate system, the
RPE3BP is a Hamiltonian system on the (extended) phase space 2

(r, α, t, y,G,E) ∈ R+ × T2 × R3 ≡Mpol (2.2)

with Hamiltonian function

Hpol(r, α, t, y,G,E) =
y2

2
+
G2

2r2
− Vpol(r, α, t) + E, Vpol(r, α, t) = U(r cosα, r sinα, t). (2.3)

The equations of motion in polar coordinates simply read

ṙ =∂yHpol = y ẏ = −∂rHpol =
G2

r3
+ ∂rVpol

α̇ =∂GHpol =
G

r2
Ġ = −∂αHpol = ∂αVpol

ṫ =∂EHpol = 1 Ė = −∂tHpol = ∂tVpol.

2Properly one should exclude collisions. Since our analysis is performed far from collisions we abuse notation and we
refer to Mpol as phase space.
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Since Vpol(r, α, t) → 0 as r → ∞, we identify the invariant submanifold 3

P∞ =
{
(∞, φ, t, 0, I, 0) : (φ, t) ∈ T2, I ∈ R

}
(2.4)

contained in the zero energy level {Hpol = 0}.

Remark 2.1.4. We have already pointed out in the introduction that, although the Restricted 3 Body
Problem with µ > 0, ϵ = 0, (i.e. the RPC3BP) is non integrable (see [GMS16]), the existence of topological
instability is prevented by the rotational symmetry. In particular, the conservation of the Jacobi constant
J = Hpol − G, which is a consequence of the rotational symmetry, readily shows that, for the RPC3BP,
there cannot exist heterolicinic orbits connecting periodic orbits in P∞ with different values of G (see also
Lemma 2.3.17).

However, we want to remark that in the setting in Theorem 2.1.1 one cannot deduce the existence
of transversal intersections between W u(P∞) and W s(P∞) from that of the invariant manifolds of the
RPC3BP. Indeed, the splitting between the invariant manifolds in the case µ > 0, ϵ = 0 is exponentially
small in 1/G∗ and we consider eccentricities up to polynomially small values in 1/G∗.

Despite being degenerate (the linearized vector field restricted to P∞ vanishes), it is a classical result
of Baldomá and Fontich [BF04b] (see also McGehee [McG73] for the circular case) that the manifold P∞
posseses stable and unstable manifolds

W u(P∞) ={x ∈ {Hpol = 0} : ∃z ∈ P∞ for which lim
τ→−∞

|ϕτ (x)− ϕτ (z)| = 0}

W s(P∞) ={x ∈ {Hpol = 0} : ∃z ∈ P∞ for which lim
τ→∞

|ϕτ (x)− ϕτ (z)| = 0}.
(2.5)

By introducing the McGehee transformation r = ηMG(x) = 2/x2, one can prove that the flow on a neigh-
borhood of the invariant manifold P̃∞ = η−1

MG(P∞) “behaves” as the flow around a Normally Hyperbolic

Invariant Cylinder. Namely, one can prove that W u,s(P̃∞) = η−1
MG(W

u,s(P∞)) exist and are analytic sub-
manifolds except at x = 0, where they are C∞, and that a parabolic version of the Lambda lemma holds.
Because of this, we say that P∞ is a Topological Normally Hyperbolic Invariant Cylinder (TNHIC).

In order to prove Theorem 2.1.1, we will use the invariant manifolds of P∞, whose vertical direction is
parametrized by the coordinate G, as a highway to obtain orbits whose angular momentum G experiences
arbitrarily large variations. More concretely, we build a transition chain of periodic orbits in P∞ along
which G increases.

There are two main ingredients for the construction of the aforementioned transition chain of periodic
orbits. The first one is the existence of two different transverse intersections between W u(P∞) and
W s(P∞). The second one is to establish certain transversality property between the dynamics along
the two different 3 dimensional homoclinic manifolds associated to the transverse intersections between
W u(P∞) and W s(P∞). The application of these ideas to the RPE3BP, without assuming that µ is
exponentially small with respect to 1/G∗, is quite challenging since major difficulties are present in the
verification of each of the two main ingredients for the construction of the transition chain.

Transverse homoclinic intersections between the invariant manifolds for µ ∈ (0, 1/2): The
existence of transverse intersections between the stable and unstable manifolds of a hyperbolic periodic
orbit was already identified by Poincaré as a major source of dynamical complexity (see [Poi90]). The
occurrence of this phenomenon, although residual in the Cr (r ≥ 1) topology for vector fields on a
compact manifold, is nevertheless rather complicated to check in a particular model and, in general, little
can be said except in the case of perturbations of systems with a Normally Hyperbolic Invariant Manifold
whose stable and unstable manifolds coincide along a homoclinic manifold.

Our approach to show that the invariant manifolds W u,s(P∞) defined in (2.5) intersect transversally
is to study the RPE3BP as a small perturbation of the integrable 2BP, in which the invariant manifolds
of P∞ coincide along a homoclinic manifold W h

2BP(P∞) of parabolic motions. Yet, for fixed µ ∈ (0, 1/2),
the RPE3BP is far from the 2BP. We however recover a nearly integrable regime if we focus our attention

3The submanifold (2.4) can be described properly in McGehee variables (x, α, t, y,G,E) where r = ηMG(x) = 2/x2.
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to the region of the phase space {G ≥ G∗} with G∗ sufficiently large. The reason is that, for G∗ large
enough, the stable and unstable manifoldsW u,s(P∞∩{G ≥ G∗}) are located far away from the primaries
and therefore, they can be studied as a perturbation of the homoclinic manifold W h

2BP(P∞ ∩ {G ≥
G∗}) (see Section 2.2). The (substantial) price to pay is that this regime corresponds to a singular
perturbation setting. Namely, as we show in Section 2.2, for G∗ ≫ 1, the dynamics in a neighborhood
of W u,s(P∞ ∩ {G ≥ G∗}) corresponds to a fast periodic analytic perturbation coupled to the slow
dynamics of the integrable 2BP. Indeed, since the Newtonian potential decays with distance, the motion
of the massless body is much slower than the rotation of the primaries. The existence of these two
time scales results in an exponentially small splitting (in 1/G∗ ≪ 1) between the invariant manifolds
W u(P∞ ∩ {G ≥ G∗}) and W s(P∞ ∩ {G ≥ G∗}): the effect of the perturbation along a neighborhood of
the homoclinic manifold W h

2BP averages out up to an exponentially small remainder which, as a matter
of fact, bounds the distance between W u(P∞ ∩ {G ≥ G∗}) and W s(P∞ ∩ {G ≥ G∗}) (see [Nei84]).

In the a priori unstable setting, that is, perturbations of systems with a Normally Hyperbolic Invari-
ant Manifold whose stable and unstable manifolds coincide along a homoclinic manifold, and for which
the hyperbolicity is much stronger than the size of the perturbation, there are no different time scales.
Therefore, the splitting between invariant manifolds is usually tackled by means of Poincaré-Melnikov
theory (see [Mel63, DdlLS06, GdlL18]), which gives an asymptotic formula for the distance between them
in terms of a convergent improper integral, usually referred to in the literature as the Melnikov function.
Nevertheless, establishing the validity of the Melnikov approximation in the singular perturbation frame-
work where the splitting between W u,s is exponentially small (as is the case of the present problem), is
a demanding problem for which no general theory is available.

One should remark that the original Arnold model, despite having two different time scales, it possesses
two parameters: the one measuring the ratio between time scales ε and the one measuring the size of the
perturbation µ. In this case, Melnikov theory predicts that dist(W u,W s) ∼M +O(µ2) for a function M
which “typically” has size M ∼ µ exp(−c/

√
ε). Therefore, by assuming that the size of the perturbation

µ is exponentially small compared to the ratio between time scales, classical Melnikov theory can be
directly applied even if the splitting between W u,s is exponentially small in ε. This was the approach
considered in [Arn64] and [DKdlRS19].

The analysis of exponentially small splitting has drawn major attention in the past decades due to
its relevance for the study of instability mechanisms in real analytic Hamiltonian systems. Indeed, in
the absence of extra perturbative parameters, as is the case in a priori stable systems (perturbations
of integrable systems in action angle variables: no hyperbolicity is present in the integrable system),
one has to face this phenomenon. Remarkable progress has been made in a number of works in low
dimensional models (just to cite a few works, see [Laz87, DS92, Gel94, Gel97, Tre97, Gel99, BF04a,
MSS11, BFGS12, Gua13]). In higher dimension, results are much more scarce. We highlight [Sau01]
and [LMS03], where the exponentially small splitting between the stable and unstable manifolds of a
partially hyperbolic invariant torus is investigated. When the torus under consideration is sufficiently
irrational, the splitting of its invariant manifolds is exponentially small in all directions (see [DGJS97] and
[Sau01]). However, if the torus is resonant, one expects that the splitting is in general highly anisotropic,
involving directions in which the splitting is exponentially small and directions in which the splitting
is of the order of the perturbation. This strong anisotropy complicates heavily the geometric analysis.
Exponentially small splitting happens in directions close to that of the actions conjugated to the fast
angles and polynomially small splitting happens in directions close to that of the actions conjugated to
the resonant angles. However is not clear a priori how to locate exactly the directions of exponentially
small splitting.

In [LMS03], Lochak, Marco and Sauzin developed a formalism to identify the directions of exponen-
tially small splitting between the stable and unstable manifolds of the same partially hyperbolic invariant
torus. The situation is much more intrincate when one considers the invariant manifolds associated to
two different partially hyperbolic invariant tori. Indeed, all previous works which study the existence
of transverse intersections between the invariant manifolds of different invariant tori rely on an indirect
approach: first, one proves the existence of transverse homoclinic intersections between the invariant
manifolds of a given torus and then deduce the existence of heteroclinic connections between nearby tori
by direct application of the implicit function theorem. However, the directions along which the splitting
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is exponentially small can move as we vary the torus. Therefore, to ensure that all the errors in the
approximation by the homoclinic connection are exponentially small, this indirect method only works
when the two tori under consideration are exponentially close.

The present is, to the best of the authors knowledge, the first work in which the highly anisotropic
splitting between the invariant manifolds of a pair of partially hyperbolic fully resonant invariant tori
(which in the current problem foliate P∞) is succesfully analyzed. Namely, by studying the problem in
a direct way we establish the existence of heteroclinic connections between resonant tori separated up to
a distance of the size of the perturbation. This allows us to prove the existence of two manifolds Γ± of
homoclinic points to P∞ ∩ {t = 0} which moreover are diffeomorphic to

P∗
∞ = P∞ ∩ {t = 0, G∗ < G < ϵ−1/3}.

The main idea behind our approach is to exploit the Hamilton-Jacobi formalism for, given a pair of
partially hyperbolic invariant tori, building a local symplectic coordinate system, tailored made for each
pair of invariant tori, in which the direction of exponentially small splitting between their associated
invariant manifolds is clearly isolated from the non-exponentially small one. The coordinate system
strongly depends on the pair of tori considered, what gives an idea of the subtleness of the phenomenon.
The key player in this construction is the “splitting potential” ∆S, which will be defined in (2.22) as the
difference between the generating function of the unstable manifold of one of the tori and the generating
function of the stable manifold of the other torus 4.

Remark 2.1.5. The splitting potential was first introduced by Eliasson in [Eli94] and later appeared in
the work of Sauzin [Sau01] and Lochak, Marco and Sauzin [LMS03], to study the splitting between the
invariant manifolds of a given torus. The terminology splitting potential was coined in [DG00].

In the variational approach to Arnold Diffusion, the splitting potential also plays a major role, since
it is related to the so called Peierl’s barrier in Mather theory (see [Zha11]).

Another remarkable novelty of our construction is that we work directly with the generating func-
tions associated to the stable and unstable manifolds of the invariant tori instead of relying on a vector
parametrization of these invariant manifolds. The difficulty to work directly with the generating function
is the appearance of certain unbounded operator in the linearized invariance equation which defines the
generating functions (see [Sau01]). This obstacle was removed in all previous works by considering a
different vector parametrization of the invariant manifolds. We overcome the problem, and directly find
the generating functions, by making use of a suitable Newton iterative scheme in a scale of Banach spaces
in the spirit of the usual schemes used in KAM theory.

Construction of a transition chain of heteroclinic orbits: The progress made in the analysis of
the strongly anisotropic splitting between invariant manifolds of partially hyperbolic resonant invariant
tori is of high relevance for the second step in the proposed diffusion mechanism. Indeed, we are able
to prove that the scattering maps (see [DdlLS08]), which encode the dynamics along the homoclinic
manifolds Γ±, are globally defined on P∗

∞ ⊂ P∞. This result was already obtained in [DKdlRS19], for
the a priori unstable case µ ≪ exp(−G3

∗/3) and is extended in this work to the a priori stable setting
µ ∈ (0, 1/2). Besides the importance of this achievement for the study of Arnold Diffusion in a priori
stable Hamiltonians, the existence of two globally defined scattering maps is vital for the construction of
diffusive orbits in the RPE3BP. As a matter of fact, the inner dynamics on P∞ is trivial and, as seen in
[DKdlRS19], we can only rely on the combination of the two scattering maps.

The pair of scattering maps on P∗
∞ defines an iterated function system: the existence of a transition

chain of heteroclinic orbits to P∞, along which the drift in the angular momentum G takes place, is guar-
anteed after showing that the two scattering maps share no common invariant curves (see [Moe02] and
also [LC07]). This is a rather challenging problem since, although both scattering maps are only polyno-
mially close (in 1/G∗) to the identity, the difference between them averages out up to an exponentially
small quantity (in 1/G∗) which, we show, is different from zero on an open subset of P∗

∞.

4These are Lagrangian submanifolds and, therefore, can be parametrized in terms of a generating function (see Section
2.3.1).
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The key to establish this result is the construction of a generating function for each scattering map,
which are exact symplectic. We moreover show that the asymptotics of these generating functions are well
controlled by the asymptotics of an explicit function usually referred to as the reduced Melnikov potential.
Once the dynamics of both scattering maps have been distinguished, we apply an interpolation result
combined with an averaging procedure to show that the invariant curves of both maps always intersect
transversally.

2.1.5 A degenerate Arnold model

Since we expect that the ideas of this work can be of interest for readers from the field of Arnold diffusion,
but which might have no background in Celestial Mechanics, in this section we present a degenerate
version of the Arnold model (see [Arn64]) which illustrates the two main challenges we face.

Consider the Hamiltonian system

H(q, p, φ, I, t; ε, µ) = H0(q, p, I; ε) + µH1(q, φ, t; ε), (q, p) ∈ T× R, (φ, I) ∈ T× R, t ∈ T (2.6)

where

H0(q, p, I; ε) =
p2

2
+ ε(cos q − 1)

(
1 +

I2

2

)
, H1(q, φ, t; ε) = ε(cos q − 1) (sinφ+ cos t) .

We observe that, for any µ, ε ≥ 0,

N = {(q, p, φ, I, t) ∈ T× R× T× R× T : q = p = 0}

is a Normally Hyperbolic Invariant Cylinder, which is foliated by periodic orbits with frequencies

(ωφ, ωt) = (0, 1).

Due to the fact that the inner dynamics on N is trivial, in order to obtain orbits which present a large
drift along the I component, we can only rely on the outer dynamics.

The setting 0 < ε≪ 1 and 0 < µ≪ exp(−1/
√
ε), which corresponds to the so called a priori unstable

case, can be identified (up to major difficulties and technicalities associated to the particular form of the
Hamiltonian of the RPE3BP) with the situation studied in [DKdlRS19]. Define

ε̃ = ε

(
1 +

I2

2

)
.

When µ = 0, the system has an homoclinic manifold to N which can be parametrized as

Γh(s, θ, I; ε̃) = {(q, p, φ, I) = (qh(s),
√
ε̃ph(s), θ+θh(s, I;

√
ε̃), I), s ∈ R, (θ, I) ∈ T×R} with ṡ = 1/

√
ε̃.

By assuming that µ≪ exp(−1/
√
ε̃), one can use classical perturbation theory to show that, W u(N ) and

W s(N ) intersect transversally along two different homoclinic manifolds Γ±. Indeed, as explained in the
previous section, Poincaré-Melnikov theory predicts that, when measured along the line orthogonal to the
unperturbed homoclinic manifold and passing through the point (Γh(s, θ, I; ε̃), t), the distance between
the invariant manifolds is given by

dist(W u(N ),W s(N )) ∼ µ∂sL(θ, I, t− s/
√
ε̃; ε̃) +O(µ2),

where

L(θ, I, σ; ε̃) = 1√
ε̃

∫ ∞

−∞
H1(qh(τ),

√
ε̃ph(τ), θ + θh(τ, I;

√
ε̃), σ + τ/

√
ε̃)dτ,

is the so-called Melnikov potential. Using the expression for H1, one can easily see that

∂sL(θ, I, t− s/
√
ε̃; ε̃) =

2π

sinh
(

π
2
√
ε̃

) sin
(
t− s/

√
ε̃
)
= O(exp(−1/

√
ε̃).
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The claim then follows from the fact that, for all (θ, I, t) ∈ T × R × T, there exist two different non-
degenerate zeros s+(t, I) =

√
ε̃t and s−(t, I) =

√
ε̃t+ π of the function s 7→ ∂sL(θ, I, t− s/

√
ε̃; ε̃).

This allows to define two scattering maps P± : N∩{t = 0} → N∩{t = 0}, associated to the homoclinic
manifolds Γ±. Finally, one can show (see [DdlLS08]) that the dynamics of each of the scattering maps
P± expressed in variables (θ, I), are given by

P± = Id + µJ∇L±(θ, I; ε̃) +O(µ2),

where J is the standard complex structure in R2 and

L±(θ, I; ε̃) = L(θ, I,−s±(0, I)/
√
ε̃; ε̃).

Therefore, in the case µ ≪ exp(−1/
√
ε̃), classical perturbation theory yields an asymptotic formula for

the difference between P+ and P− which can be used to verify the existence of drifting orbits.
The problem is much more intrincate if µ ∼ ε̃α (for a given α > 0). On one hand, as already explained

in Section 2.1.4, one cannot make use of classical perturbation theory to study directly the existence of
transverse intersections between W u,s(N ). The ideas developed in [Sau01] and [LMS03] could be used to
prove the existence of two functions θ±(I

′) such that for every I ′, (q, p, φ, I, t) = (0, 0, θ±(I
′), I ′, 0) ⊂ N

is a point for which there exist a homoclinic orbit to the torus TI′ = N ∩ {I = I ′}. Then, by application
of the implicit function theorem, one can show that there exist two scattering maps P± : N±∩{t = 0} →
N ∩ {t = 0} where N± are vertical strips of the form

N± = {(q, p, φ, I, t) ∈ T× R× T× R+ × T : q = p = 0, |φ− θ±(I)| ≤ exp(−1/
√
ε̃)}.

However, with this approach N+ ∩ N− = ∅. Therefore, only one scattering map would be available
on each domain and diffusion would be prevented by the existence of invariant curves of the scattering
maps. The ideas we introduce in the present work allow us to prove the existence of two globally defined
scattering maps P± : N ∩ {t = 0} → N ∩ {t = 0} in the case µ ∼ ε̃α.

Finally, in the case µ ∼ ε̃α, both scattering maps P± are only O(ε̃β) (for some β > 0) close to
the identity whereas the difference between P+ and P− averages out to up to an exponentially small
∼ µ exp(−1/

√
ε̃) term (the size of the splitting). Therefore, proving that this difference is not zero, is

much more demanding than in the a priori unstable case µ≪ exp(−1/
√
ε̃) (even µ = 1).

We end this section with two remarks concerning the degeneracy of Hamiltonian (2.6) (and of the
setting in which we build the diffusion mechanism leading to Theorem 2.1.1). The first one is that the
convexity of (2.6) close to N is of order ε (and vanishes on N ). Therefore, the Hamiltonian (2.6) does not
satisfy the assumptions of Nekhoroshev theorem and one could think that the diffusion time is polynomial
in ε. This is not the case since the angle between the invariant curves of the map P+ and those of the
map P− is exponentially small with respect to ε.

The second remark is that, although in the present case all the cylinder is foliated by periodic orbits
with the same frequency (which, as already discussed above, introduces certain challenges for proving
the existence of diffusive orbits), we have the strong feeling that the the ideas developed in this work,
specially the ones in Sections 2.3.1 and 2.3.3, can be adapted to the a priori stable case for the original
Arnold model, in which there exists a Normally Hyperbolic Invariant Cylinder Ñ foliated by invariant
tori of frequencies (ωφ(I), ωt) = (I, 1).

2.1.6 Organization of the article

In Section 2.2 we introduce the (nearly integrable) parabolic regime with large angular momentum dis-
cussed in Section 2.1.4. We show that, in this regime, the RPE3BP can be treated as a fast time periodic
perturbation of the 2BP, whose main features are also discussed in Section 2.2. Section 2.3 contains the
core of the proof of Theorem 2.1.1. More concretely, Section 2.3.1 renders the main ideas behind the
proof of the first main ingredient: existence of transverse intersections between the invariant manifolds
of P∞. The proof of this result is postponed to Section 2.4. Sections 2.3.2 to 2.3.5 are devoted to the
construction of two global scattering maps on P∞ and the analysis of the transversality between the
invariant curves of these maps. The rather technical proofs of the results in these sections are deferred
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to Sections 2.5, 2.6 and Appendix 2.B. Finally, in Section 2.3.6 we state a suitable shadowing result for
parabolic manifolds which completes the proof of Theorem 2.1.1. Appendix 5.C contains a detailed study
of the perturbative potential and the associated Melnikov potential.

Througout the rest of the paper we fix a value µ ∈ (0, 1/2).
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2.2 The 2BP and a nearly integrable regime for the RPE3BP

The 2 Body Problem (2BP) in polar coordinates is the Hamiltonian system associated to

H2BP(r, y,G) =
y2

2
+
G2

2r2
− 1

r
(2.7)

on the phase space (r, α, y,G) ∈ R+×T×R2. Since the Hamiltonian H2BP does not depend on the angle
α, the angular momentum G is a first integral for the 2BP. Moreover, it is functionally independent and
commutes with the energy H2BP, what makes the 2BP integrable. The dynamics of the 2BP is completely
understood: positive energy levels correspond to hyperbolic motions, negative energy levels to elliptic
motions and the zero energy level corresponds to parabolic motions.

2.2.1 The parabolic homoclinic manifold of the 2BP

Of special interest for us are the parabolic motions. Denote by P2BP
∞ = {(∞, α, 0, G) ∈ R+ × T× R2} =

P∞ ∩ {t = E = 0} the parabolic infinity in the reduced phase space (see the extended phase space in
polar coordinates in Section 2.1.1), which is a 2 dimensional TNHIC. Then, the set of points leading
to parabolic motions, that is, the set {H2BP = 0}, is a 3 dimensional submanifold W h

2BP homoclinic to
P2BP
∞ . Let ϕτH2BP

be the flow associated to the Hamiltonian (2.7), then 5

W h
2BP = {x ∈ R+ × T× R2 : ∃z ∈ P2BP

∞ for which lim
τ±∞

|ϕτH2BP
(x)− ϕτH2BP

(z)| = 0}. (2.8)

The following lemma gives a parametrization of the homoclinic manifold W h
2BP. A proof can be found

in [MP94].

Lemma 2.2.1. There exist real analytic functions rh(u), αh(u) and yh(u) such that

W h
2BP = {Γ2BP(u, β) = (G2rh(u), β + αh(u), G

−1yh(u), G) ∈ R+ × T× R2 : u ∈ R, β ∈ T, G ∈ R \ {0}}

and, if we denote by X2BP the vector field associated to the Hamiltonian (2.7),

X2BP ◦ Γ2BP = DΓ2BP Υ with Υ = (G−3, 0).

The functions rh, yh and αh admit a unique analytic extension to C\{u = is : s ∈ (−∞,−1/3]∪ [1/3,∞)}
and satisfy the asymptotic behavior

rh(u) ∼ u2/3 exp(iαh(u)) ∼ 1 yh(u) ∼ u−1/3 as u→ ±∞
5Note that for the r component πr ◦ ϕτ

H2BP
(x) → ∞ as τ → ±∞.
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and

rh(u) ∼ (u±i/3)1/2 exp(iαh(u)) ∼
(
u± i/3

u∓ i/3

)1/2

yh(u) ∼ (u±i/3)−1/2 as u→ ±i/3.

Moreover, yh(u) = 0 if and only if u = 0 and rh(u) ≥ 1/2 for all u ∈ R.

2.2.2 The parabolic regime with large angular momentum for the RPE3BP

It is a fact, implied by the last item in Lemma 2.2.1, that, for G∗ ≫ 1,

πr
(
W h

2BP ∩ {G ≥ G∗}
)
≥ G2

∗/2 ≫ 1,

where by πr we denote the projection into the r coordinate. Therefore, in a neighborhood of the parabolic
homoclinic manifold (6.21) for the 2BP we have r ≫ 1 (that is, the massless body is far away from the
primaries) and the Hamiltonian of the RPE3BP can be studied as a perturbation of the (integrable) 2BP.
Indeed, expanding the Hamiltonian (2.3) in powers of 1/r,

Hpol(r, α, t, y,G,E) =
y2

2
+
G2

2r2
− 1

r
+ E +O

(
1

r3

)
= H2BP(r, y,G) + E +O

(
1

r3

)
,

where we have used that Vpol in (2.3) is given by

Vpol(r, α, t) =
µ

(r2 + 2(1− µ)rϱ(t) cos(α− f(t)) + (1− µ)2ϱ2)1/2

+
1− µ

(r2 + 2µrϱ(t) cos(α− f(t)) + µ2ϱ2)1/2
=

1

r
+O

(
1

r3

)
.

With the object of investigating this perturbative regime, we consider an arbitrarily large constantG∗ ≫ 1
and make the conformally symplectic scaling

(r̃, α, t, ỹ, G̃, Ẽ) 7−→ (r, α, t, y,G,E)

defined by
r = G2

∗r̃, y = G−1
∗ ỹ, G = G∗G̃, E = G∗Ẽ.

Up to time reparametrization, the autonomous Hamiltonian in the scaled variables reads

H̃(r̃, α, t, ỹ, G̃, Ẽ) =
ỹ2

2
+
G̃2

2r̃2
− Ṽ (r̃, α, t) +G3

∗Ẽ, Ṽ (r̃, α, t) = G2
∗Vpol

(
G2

∗r̃, α, t
)
.

It is an easy computation to show that, for G2
∗r̃ ≫ 1,

Ṽ (r̃, α, t) =
1

r̃
+O

(
1

G4
∗r̃

3

)
and, therefore

H̃(r̃, α, t, ỹ, G̃, Ẽ) = H2BP(r̃, ỹ, G̃) +G3
∗Ẽ +O(G−4

∗ r̃−3).

The nature of this perturbative regime is now clear: in the parabolic regime with large angular momentum
the RPE3BP is a fast time periodic perturbation (ṫ = G3

∗) of the slow dynamics ( ˙̃r ∼ α̇ ∼ ˙̃y = O(1)) of
the 2BP. Since the gravitational potential Ṽ is analytic on a complex neighborhood of the embedding
of W h

2BP in the extended phase space, succesive averaging steps can be performed to find a real analytic
change of variables ψ defined on a complex neighborhood of W h

2BP ∩ {G̃ ≥ 1} in which

H̃ ◦ ψ = K +O(exp(−CG3
∗)) (2.9)

for some C > 0 and where K = K(r̃, α, ỹ, G̃) is O(G−4
∗ ) close to H̃ and coincides with H̃ at P∞∩{G̃ ≥ 1}.

A simple counting dimension argument shows that, for the flow associated to the 2 degrees of freedom
autonomous Hamiltonian K, the invariant manifolds associated to P∞∩{G̃ ≥ 1} (which is also a TNHIC
for K) must coincide along a homoclinic manifold. Therefore, it follows from (2.9) that the distance
between W u,s(P∞ ∩ {G ≥ G∗}) is bounded by O(exp(−CG3

∗)).
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Figure 2.2: The unstable and stable manifolds W u,s(P∞) of the Topological Normally Hyperbolic Invari-
ant Cylinder P∞. In order to measure the splitting between W u

Iu and W s
Is we build a suitable symplectic

coordinate system (depending non trivially on Iu and Is), in which the directions of exponentially small
splitting are isolated from the non-exponentially small one.

2.3 Proof of the main theorem

The first step in the proof of Theorem 2.1.1 is to prove that the manifolds W u,s(P∞) (defined in (2.5))
intersect transversally. This is a rather delicate problem since we will see that the splitting angle between
W u(P∞ ∩ {G ≥ G∗}) and W s(P∞ ∩ {G ≥ G∗}) is exponentially small in 1/G∗ and we will not study
directly the existence of intersections between them. The reason is that, in order to measure this splitting,
one needs to find a suitable local coordinate system which isolates the exponentially small directions.
However, these directions are highly sensitive with respect to the projection along the stable and unstable
foliations (see Figure 2.3) and it is not clear a priori how to locate them without exploiting the symplectic
features of the problem.

To overcome this difficulty we take advantage of the fact that P∞ in (2.4) is foliated by invariant tori

P∞ =
⋃
I∈R

TI , TI =
{
x = (∞, φ, t, 0, I, 0), (φ, t) ∈ T2, G = I

}
and, therefore, we can express

W u,s(P∞) =
⋃
I∈R

W u,s
I

where W u,s
I are the stable and unstable manifolds of the invariant torus TI . Since W u,s

I are Lagrangian
submanifolds, one can parametrize them (at least locally) as a graph over the configuration space and
measure the splitting in the conjugate directions. Since all tori TI ⊂ P∞ are resonant with frequencies
(ωα, ωt) = (0, 1), we will see that the splitting between their invariant manifolds is highly anisotropic.

In the present work, we extend the formalism developed by Lochak, Marco and Sauzin in [LMS03],
to analyze directly the existence of transverse intersections between the stable W s

Is and unstable W u
Iu

manifolds of two (possibly) different invariant tori TIu and TIs .

2.3.1 The non exact Lagrangian intersection problem

In this section, we exploit the Hamilton-Jacobi formalism to reduce the problem of existence of intersec-
tions between W s

Is and W u
Iu , to the problem of existence of critical points of a certain scalar function.

Before entering the details of our construction, the introduction of some notation is in order. Given a
value I∗ ∈ R+, for ϵ ∈ (0, I−3

∗ ), we define the annulus

Λ(I∗, ϵ) = T× {I∗ ≤ I ≤ ϵ−1/3} ⊂ T× R (2.10)
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and, given ρ > 0, we introduce the complex neighborhood

Λρ(I∗, ϵ) = Tρ × Λρ,I(I∗, ϵ) ⊂ (C/2πZ)× C (2.11)

where Tρ is the strip of width ρ centered at the real torus and

Λρ,I(I∗, ϵ) = {I ∈ C : |ImI| ≤ ρ, I∗ ≤ ReI ≤ ϵ−1/3}. (2.12)

Remark 2.3.1. In the following we will restrict our analysis to tori TIu,s such that Iu, Is ∈ Λ(I∗, ϵ). The
introduction of the annulus Λ(I∗, ϵ) ⊂ T× R is needed for the following reasons. On one hand, in order
to work in the perturbative regime introduced in Section 2.2.2, one needs to consider a region of the phase
space with sufficiently large angular momentum, hence the requirement I ≥ I∗. On the other hand, the
requirement ϵ ≤ I−3

∗ is of technical nature and it is related to the limitations of the method (see Appendix
5.C) that we use to compute the so-called Melnikov potential (defined in (2.24) below).

Remark 2.3.2. The use of complex neighborhoods of Λ(I∗, ϵ) is needed to make use of Cauchy estimates
in Section 2.3.2. In the following, fixed a value of I∗, we will simply write Λ,Λρ and Λρ,I and drop the
dependence on I∗.

Given I∗, ρ > 0 and ϵ ∈ (0, I−3
∗ ), for any Iu, Is ∈ Λρ,I , we define

Im =
1

2
(Iu + Is) (2.13)

and perform the change of variables (depending on Im)

ηIm : (u, β, t, Y, J, E; Im) 7−→ (r, α, t, y,G,E) (2.14)

given by

r = I2mrh(u) α = β + αh(u) y = I−1
m yh(u) + I−2

m y−1
h (u)(Y − r−2

h J) G = Im + J,

where rh, yh and αh are defined in Lemma 2.2.1. The change of variables ηIm is the symplectic completion
of the change in the basis given by r = I2mrh(u), α = β + αh(u), which is well suited to study a
neighborhood of the unperturbed homoclinic orbit W h

2BP ∩ {G = Im} (see (6.21)).
A key point in our construction, is that we use the parametrization of W h

2BP ∩ {G = Im} in Lemma
2.2.1 as first order approximation both for the unstable manifold of TIu and for the stable manifold of
TIs .

Remark 2.3.3. Notice that in (u, β, t, Y, J, E) coordinates, the tori TIu,s are given by TIu = {u =
−∞, Y = E = 0, J = Iu − Im} and TIs = {u = ∞, Y = E = 0, J = Is − Im}.

The proof of the following result is a straightforward computation.

Lemma 2.3.4. Let (Mpol,dλpol) be the exact symplectic manifold where Mpol is the phase space in polar
coordinates (see (2.2)) and λpol = ydr +Gdα+Edt is the canonical one form. Let (M,dλ) be the exact
symplectic manifold

M =
{
(u, β, t, Y, J, E) ∈ R× T2 × R3

}
and λ = Y du+ Jdβ + Edt

The change of variables ηIm :M \ {u = 0} → R+ × T2 × R3 defined in (2.14) satisfies

η∗Imλpol − λ =
2

I2mrh(u)
du+ Imdβ.

In particular, η∗Im is a symplectic change of variables between (M \ {u = 0},dλ) and (Mpol,dλpol).

Remark 2.3.5. The map ηIm is not defined at u = 0 since yh(u) = 0 (see Lemma 2.2.1) This will
introduce some technicalities at certain steps in the proof of Theorem 2.1.1.
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After time reparametrization (multiplication by I3m), when expressed in the new coordinate system,
the Hamiltonian function Hpol in (2.3) reads

H(u, β, t, Y, J, E) = Y + I3mE +

(
Y − r−2

h (u)J
)2

2y2h(u)Im
+

J2

2r2h(u)Im
− V (u, β, t; Im, ϵ), (2.15)

where

V (u, β, t; Im, ϵ) = I3mVpol(I
2
mrh(u), β + αh(u), t; ϵ)−

Im
rh(u)

(2.16)

and Vpol is the gravitational potential expressed in polar coordinates (see (2.3)).
It is easy to check that W u,s

Iu,s , are Lagrangian submanifolds of M but are not exact (unless Is = Iu)
since they have defect of exactness

δu = (0,
1

2
(Iu − Is), 0) δs = (0,

1

2
(Is − Iu), 0). (2.17)

The manifolds W u,s
Iu,s − (0, 0, 0, δu,s) (expressing W u,s

Iu,s in (u, β, t, Y, J, E) coordinates) are, as a matter of
fact, exact Lagrangian submanifolds and there exist functions (here u0 is some positive constant)

T u(u, β, t; Iu, Is, ϵ) : (−∞,−u0]× T2 → R, T s(u, β, t; Iu, Is, ϵ) : [u0,∞)× T2 → R, (2.18)

solutions to the Hamilton-Jacobi equation

H(q, δu,s +∇T u,s(q; Iu, Is, ϵ)) = 0, q = (u, β, t),

which, for q = (u, β, t) belonging to (−∞,−u0] × T2 → R for the unstable or [u0,∞) × T2 → R for the
stable, give parametrizations

Wu
Iu(q; I

u, Is, ϵ) =(q, δu +∇T u(q; Iu, Is, ϵ))

Ws
Is(q; I

u, Is, ϵ) =(q, δu +∇T u(q; Iu, Is, ϵ))
(2.19)

of (a part of) the invariant manifolds W u
Iu and W s

Is (defined in (2.5)) in the coordinate system defined
by (2.14). In the next proposition, we prove that these parametrizations can be uniquely extended to
domains which intersect along an open set.

Proposition 2.3.6. There exists ρ∗, I∗ > 0 such that, for ϵ ∈ (0, I−3
∗ ), and any Iu, Is with Im = (Iu +

Is)/2 ∈ Λρ∗,I ,and |Is − Iu| ≤ ϵ|Im|−4, the functions T u,s in (2.18) admit a unique analytic continuation
to certain domains of the form (u, β, t) ∈ Ru,s×T2 where Ru,s ⊂ R are such that Ru ∩Rs is a non-empty
open interval. Moreover,

|∇T u,s(u, β, t; Iu, Is, ϵ)| ≲ |Im|−4 ∀(u, β, t) ∈ Ru,s × T2

and

T u(u, β, t; Iu, Is, ϵ) = O(|u|−1/3) as u→ −∞ and T s(u, β, t; Iu, Is, ϵ) = O(|u|−1/3) as u→ +∞.

Remark 2.3.7. Ideally, one would try to extend the unstable parametrization to Ru = (−∞, ũ0] and the
stable one to Rs = [−ũ0,∞) for some ũ0 > 0 so 0 ∈ Ru ∩ Rs. However, we are not able to define the
parametrizations (2.19) at u = 0 (see Remark 6.4.3). Yet, we can extend Wu

Iu to a domain Ru (which
does not contain the point u = 0) and such that Ru ∩Rs is a non empty open interval (see Section 2.4.3,
the idea is to define a new parametrization which can be extended across u = 0 and then come back to
the Lagrangian graph parametrization). This is crucial, since for measuring the distance between the
invariant manifolds, we need their parametrizations Wu,s

Iu,s to be defined on an open common domain.

Define now the generating functions

Su,s(q; Iu, Is, ϵ) = ⟨δu,s, q⟩+ T u,s(q; Iu, Is, ϵ), q = (u, β, t), (2.20)
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where δu,s are given in (2.17), which, by definition, solve the Hamilton-Jacobi equation

H(q,∇Su,s(q; Iu, Is, ϵ)) = 0,

and the parametrizations (2.19) can be rewritten as

Wu,s
Iu (q; Iu, Is, ϵ) =(q,∇Su,s(q; Iu, Is, ϵ)), q ∈ Ru,s × T2. (2.21)

In this way, we have shown that the problem of existence of transverse intersections between W u
Iu and

W s
Is is equivalent to the existence of critical points of the splitting potential

(u, β, t) 7→ ∆S(u, β, t; Iu, Is, ϵ) = (Su − Ss)(u, β, t; Iu, Is, ϵ). (2.22)

We point out that the functions Su,s are no more 2π-periodic in β and must be considered as functions
on the covering β ∈ R. Indeed, now for all k ∈ Z,

Su(u, β + 2kπ, t; Iu, Is, ϵ) =kπ(Iu − Is) + Su,s(u, β, t; Iu, Is, ϵ)

Ss(u, β + 2kπ, t; Iu, Is, ϵ) =kπ(Is − Iu) + Su,s(u, β, t; Iu, Is, ϵ).

This fact reflects the non-exact nature of the problem and excludes the possibility (at least in a straigh-
forward manner) of applying topological/variational methods such as Ljusternik-Schnirelman theory to
prove the existence of critical points of (2.22) as is usually done when δu = δs (see [Eli94]).

In Theorem 2.3.9 below we establish the existence of two manifolds of critical points for the function
∆S defined in (2.22). The main ingredient is the approximation of ∆S by the so-called Melnikov potential
defined in (2.24).

Proposition 2.3.8. Let ∆S be the function defined in (2.22) and let 0 < v1 < v2 be two fixed real
numbers. Then, there exists ρ∗, I∗ > 0 such that, for ϵ ∈ (0, I−3

∗ ) and any Iu, Is with Im = (Iu + Is)/2 ∈
Λρ∗,I and |Is − Iu| ≤ ϵ|Im|−4, there exist an analytic (real analytic if Iu, Is ∈ R) close to the identity
local change of variables

Φ(· ; Iu, Is, ϵ) : [v1, v2]× T2
ρ −→ C× T2

2ρ

(v, θ, t) 7−→ (u, β, t)

and an analytic (real analytic if Iu, Is ∈ R) function ∆S(σ, θ; Iu, Is, ϵ) such that

∆S(t− I3mv, θ; I
u, Is, ϵ) = ∆S ◦ Φ(v, θ, t; Iu, Is, ϵ). (2.23)

Moreover, if we define the Melnikov potential

L(σ, θ; Im, ϵ) =

∫
R
V (s, θ, σ + I3ms; Im, ϵ)ds, (2.24)

where V is defined in (2.16), then the estimates

|∆S(σ, θ; Iu, Is, ϵ)− (Iu − Is)θ − L(σ, θ; Im, ϵ)| ≲ |Im|−7,

and (here h[l] denotes the l-th Fourier coefficient of a 2π-periodic function σ 7→ h(σ))

|∆S [l](θ; Iu, Is, ϵ)− L[l](θ; Im, ϵ)| ≲ |CIm|−4+3|l|/2 exp(−|l|Re(I3m)/3),

are satisfied for some C > 0 independent of Iu, Is and ϵ.

Proposition 2.3.8 is proved in Section 2.4 where we perform the analytic continuation of the stable and
unstable generating functions Su,s in 2.20 up to a common domain where we can study their difference
∆S = Su−Ss. The core of Proposition 2.3.8 is to give a harmonic by harmonic asymptotic approximation
of ∆S, defined in (2.23), in terms of the Melnikov potential (2.24), whose critical points can be easily
computed. Then, a direct application of the implicit function theorem yields next theorem. Again, for
the sake of clarity in the ongoing discussion, its proof is deferred to Section 2.4.
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Theorem 2.3.9. There exists ρ∗, I∗ > 0 such that, for ϵ ∈ (0, I−3
∗ ) and all (θ, Iu) ∈ Λρ∗ , there exist two

real analytic functions
(θ, Iu) 7→ (σ±(θ, I

u), Ĩs±(θ, I
u))

such that

∂σ∆S(σ±(θ, Iu), θ; Iu, Ĩs±(θ, Iu), ϵ) = 0 ∂θ∆S(σ±(θ, Iu), θ; Iu, Ĩs±(θ, Iu), ϵ) = 0.

Moreover, the determinant of the Hessian matrix of the function (σ, θ) 7→ ∆S(σ, θ; Iu, Is, ϵ) evaluated at
(σ, θ; Iu, Is) = (σ±(θ, I

u), θ; Iu, Ĩs±(θ, I
u)) is different from zero for all (θ, Iu) ∈ Λρ.

Before analyzing the consequences of Theorem 2.3.9 it is worth pointing out two remarks. The first
one is that the change of coordinates Φ obtained in Proposition 2.3.8 can be completed to an exact
symplectic change of coordinates

Φ̃(· ; Iu, Is, ϵ) : (v, θ, t,Y,J , E) 7→ (u, β, t, Y, J, E)

in which now the stable and unstable manifolds are locally parametrized by W̃ u,s
Iu,s : (v1, v2) × T2 → C6

where

W̃u
Iu(q̃; I

u, Is, ϵ) = (q̃,∇(Su ◦ Φ)(q̃; Iu, Is, ϵ)) W̃s
Is(q̃; I

u, Is, ϵ) = (q̃,∇(Ss ◦ Φ)(q̃; Iu, Is, ϵ)),

and q̃ = (v, θ, t). Therefore, as ∆S = (Su − Ss) ◦ Φ, the existence of nondegenerate critical points of
∆S found in Theorem 2.3.9 also implies the existence of transverse intersections between W u

Iu and W s
Is ,

which, in the coordinate system given by Φ̃, can be parametrized as

Γ̃±(θ, t; I
u) = W̃u

Iu(I
−3
m (t− σ±(θ, I

u)), θ, t; Iu, Ĩs(θ, Iu)). (2.25)

The reason for introducing the change of coordinates Φ̃ is that this coordinate system isolates the direc-
tions in which the splitting is exponentially small. Namely, we will see in the proof of Proposition 2.3.8,
carried out in Section 2.4, that

|∂σ∆S| ∼ |Im|−1/2 exp(−Re(I3m)/3) |∂θ∆S| ∼ ϵ|Im|−5.

The change of coordinates Φ̃ depends on the pair of tori whose splitting we are measuring, namely on Iu

and Is, a fact which reflects the subtleness of the problem (see Figure 2.3).
The second remark is that there are several different ways to look for zeros of the map

(∂σ∆S, ∂θ∆S)(σ, θ; Iu, Is) : T2 × R2 7−→ R2.

In Theorem 2.3.9 we have chosen to express σ and Is in terms of θ and Iu since, with this approach, the
functions σ±(θ, I

u) and Ĩs±(θ, I
u), giving rise to critical points of ∆S, are globally defined on T× {I∗ ≤

Iu ≤ ϵ−1/3} which is diffeomorphic to an annular region inside P∞ ∩ {t = 0}. In Section 2.3.2 we exploit
this construction to show the existence of two scattering maps (one for each of the manifolds Γ̃+ and Γ̃−)
which are globally defined on P∞ ∩ {t = 0} ∩ {I∗ ≤ I ≤ ϵ−1/3}.

In Section 2.3.3, once we have established the global existence of the scattering maps in Section
2.3.2, we describe the critical points of ∆S in terms of the actions Iu and Is labelling the tori TIu and
TIu which are connected along the corresponding heteroclinic orbit. This, in some sense, more natural
approach, sheds light on the relationship between the generating functions of the invariant manifolds and
the scattering maps (see Proposition 2.3.13). As a matter of fact, we define the generating functions of
each scattering map in terms of the generating functions Su,s of the invariant manifolds.

Remark 2.3.10. In the forthcoming sections we only write the dependence on ϵ explicitely when needed.
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2.3.2 Construction of two global scattering maps

From now on we work with the stroboscopic Poincaré map

P : {t = 0} → {t = 0} (2.26)

induced by the flow of the Hamiltonian (2.3) on the section {t = 0}. Observe that the manifold

P∗
∞ ≡ P∞ ∩ {t = 0, I∗ < I < ϵ−1/3}. (2.27)

which can be parametrized by the coordinates (α,G), is foliated by fixed points for this map.
In Theorem 2.3.9 we have found two manifolds (indexed by ±) of non-degenerate critical points of the

function (σ, θ) 7→ ∆S, each of them giving rise to a manifold Γ± consisting on heteroclinic orbits to P∗
∞

(see the parametrization (2.25) for {t = 0}). Our goal now is to build a map which encodes the dynamics
along each of the manifolds Γ± which, following [DdlLS08], we denote as homoclinic channels . These are
the so-called scattering maps introduced by Delshams, de la Llave and Seara in [DdlLS00, DdlLS06] (see
also [DdlLS08], where the geometric properties of this object are thoroughly studied). Loosely speaking,
given one of the channels Γ±, at a point (φu, Iu) ∈ P∗

∞, its associated scattering map gives the forward
asymptotic (α,G) components along the unique heteroclinic orbit through Γ± which is asymptotic in the
past to (φu, Iu).

The key idea behind the proof of Theorem 2.3.9 has been the construction of a bespoke coordinate
system for the analysis of each intersection problem: notice that the changes of variables ηIm and Φ
introduced for studying the intersection between the invariant manifolds W u

Iu and W s
Is depend both on

the actions Iu,s. Therefore, up to now, Theorem 2.3.9 implies the existence of a bunch of heteroclinic
orbits each of them described in a different coordinate system. Still, in order to build the scattering
maps, we need an unified description of the asymptotic dynamics along the families of heteroclinic orbits.

The first step towards definining them is to obtain a parametrization of the homoclinic channels Γ±
in the original polar coordinates (2.2). To that end, let Φ be the change of variables of Theorem 2.3.9,
let σ±(θ, I

u) and Ĩs±(θ, I
u) be the functions obtained in that theorem and for t = 0, define

Φ±(θ, I
u) = Φ(−I−3

m (Iu, Ĩs(θ, Iu))σ±(θ, I
u), θ, 0; Iu, Ĩs±(θ, I

u)). (2.28)

Then, the homoclinic manifolds Γ± ⊂ Mpol (Mpol is the phase space in polar coordinates) can be
parametrized as follows (see (2.14) and (2.21))

Γ± =

{
(r, α, 0, y,G,E) = ηIm ◦Wu

Iu ◦Φ±(θ, I
u) = ηIm ◦Ws

Is ◦Φ±(θ, I
u), (θ, Iu) ∈ T×{I∗ < I < ϵ−1/3}

}
.

(2.29)

Remark 2.3.11. Eventually, we will work with the extended parametrization of the homoclinic manifolds
Γ± to the complex domain (θ, Iu) ∈ Λρ, which was defined in (2.11).

Notice that the homoclinic manifolds Γ± are diffeomorphic to P∗
∞ in (2.27). Therefore, denoting by

ϕτHpol
the time τ flow associated to the Hamiltonian (2.3), we can define the backward wave map

Ωu
± : Γ± → P∞ ∩ {t = 0}

x 7→ (φu
±, I

u
±) = lim

τ→−∞
(α ◦ ϕτHpol

(x), G ◦ ϕτHpol
(x))

(2.30)

and the forward wave map

Ωs
± : Γ± → P∞ ∩ {t = 0}

x 7→ (φs
±, I

s
±) = lim

τ→+∞
(α ◦ ϕτHpol

(x), G ◦ ϕτHpol
(x))

(2.31)

which are diffeomorphisms on their images. Notice that α and G are constants of motion in P∞ and
therefore, these limits are well defined. Finally, the so called scattering maps, which encode the dynamics
along the heteroclinic excursions, are given by

P± = Ωs± ◦
(
Ωu

±
)−1

: P∗
∞ −→ P∞ ∩ {t = 0}

(φu, Iu) 7−→ (φs
±, I

s
±).

(2.32)
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We notice at this point that our construction of the homoclinic channels gives much more information
about the dynamics of the scattering map in the action component I than in the angle component φ.
Namely, using the parametrization (2.29) of the homoclinic manifold Γ± and writing x = x±(θ, I

u) for a
point x± ∈ Γ±, the wave maps satisfy

Ωu
±(x±(θ, I

u)) =(φu
±(θ, I

u), Iu) = lim
τ→−∞

(α ◦ ϕτHpol
(x±(θ, I

u)), Iu)

Ωs
±(x±(θ, I

u)) =(φs
±(θ, I

u), Is±(θ, I
u)) = lim

τ→+∞
(α ◦ ϕτHpol

(x±(θ, I
u)), Ĩs±(θ, I

u))
(2.33)

so, up to composing with the close to identity transformation (Ωu
±)

−1, the projection of the scattering

map in the direction of the action is given by the function Ĩs± obtained in Theorem 2.3.9 and which is
determined implicitely in terms of ∆S = ∆S ◦ Φ by the system of equations

∂θ∆S(σ±(θ, Iu), θ; Iu, Ĩs±(θ, Iu)) = 0 ∂θ∆S(σ±(θ, Iu), θ; Iu, Ĩs±(θ, Iu)) = 0. (2.34)

However, the existence of a direct link between the generating functions which parametrize the invariant
manifolds of the tori in T ∗

I = TI ∩ {t = 0} ⊂ P∗
∞, and the angular component of the wave maps, and

consequently of the scattering maps, is not clear at the moment. In Section 2.3.3 we establish a relation-
ship between the difference ∆S(· ; Iu, Is) defined in (2.22) between generating functions associated to the
invariant manifolds of a pair of invariant tori T ∗

Iu , T ∗
Is , and the angular dynamics along the heteroclinic

orbit in Γ± which connects the tori T ∗
Iu , T ∗

Is . This connection is crucial to obtain asymptotic formulas for
the scattering maps, since the asymptotics of the difference between generating functions ∆S(· ; Iu, Is)
of a pair of invariant tori is well controlled by the Melnikov function L defined in (2.24).

2.3.3 A generating function for the scattering maps

It is indeed quite natural to expect a direct relationship between the family of generating functions Su, Ss

in (2.20). However, until this paper, as far as the authors know, this connection had only been established
up to first order using the so called Melnikov potential (see [DdlLS08]). In Theorem 2.3.13 we show how
Su, Ss completely determine the scattering maps.

To do so, we first need to look at the manifolds of critical points of the function (σ, θ) 7→ ∆S(σ, θ; Iu, Is)
in a different way from that in Theorem 2.3.9. This is the content of the following proposition, which
will be proved together with Theorem 2.3.9 in Section 2.4.

Proposition 2.3.12. Let ∆S be the function defined in Theorem 2.3.9. Then, there exists I∗ > 0 such
that, for any ϵ ∈ (0, I−3

∗ ) and every pair of actions

(Iu, Is) ∈ RI ≡
{
(Iu, Is) ∈ (I∗, ϵ

−1/3)2 : |Is − Iu| < µ(1− µ)(1− 2µ)
15πϵ

16(Iu)5

}
, (2.35)

one can find functions
(Iu, Is) 7→ (σ̂±(I

u, Is), θ̂±(I
u, Is)),

such that

∂σ∆S(σ̂±(Iu, Is), θ̂±(Iu, Is); Iu, Is) = 0 ∂θ∆S(σ̂±(Iu, Is), θ̂±(Iu, Is); Iu, Is) = 0.

Proposition 2.3.12 provides in some sense, a more natural way to look for the critical points of the
function ∆S than the one in Theorem 2.3.9: We fix a sufficiently close (but not necessarily exponentially
close) pair of actions (Iu, Is) and look at the values of the angles (σ, θ) for which there exists a critical
point of (σ, θ) 7→ ∆S. Next theorem gives the connection between the generating functions associated to
the invariant manifolds and the scattering maps.

Theorem 2.3.13. Let (Iu, Is) ∈ RI where RI is the domain defined in (2.35), let σ̂±(I
u, Is), θ̂±(I

u, Is)
be the functions obtained in Proposition 2.3.12 and define

S±(I
u, Is) = ∆S(σ̂±(Iu, Is), θ̂±(Iu, Is); Iu, Is). (2.36)
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Then, for all (Iu, Is) ∈ RI , the angles

φu
±(I

u, Is) = ∂IsS±(I
u, Is) φs

±(I
u, Is) = −∂IuS±(Iu, Is) (2.37)

satisfy
P±(φ

u
±(I

u, Is), Iu) = (φs
±(I

u, Is), Is).

Namely, S± is a generating function for the scattering map P± defined in (2.32).

The rather slow decay of parabolic motions and the fact that the parametrizations (2.21) are not
defined at u = 0 introduce certain technicalities in the proof of Theorem 2.3.13. For this reason, the
proof is deferred to Section 2.5.

2.3.4 Qualitative and asymptotic properties of the scattering maps

The link established between the scattering maps P± and the difference ∆S between the generating
functions associated to the invariant manifolds of pairs of invariant tori provides very rich information
about the qualitative and quantitative properties of P±. This information is split between Theorem
2.3.16 and Theorem 2.3.19 below. The former sums up their qualitative properties and states a global
asymptotic formula for P± in terms of the reduced Melnikov potentials

L±(φ
u, Iu; ϵ) =

∫
R
V (s, φu, σ̃±(φ

u)+(Iu)3s; Iu, ϵ)ds σ̃+(φ
u) = φu, σ̃−(φ

u) = φu+π, (2.38)

where V (u, β, t; Iu, ϵ) is the potential introduced in (2.16). Define also the reduced Melnikov potential
associated to the circular problem

L±,circ(I
u) =

∫
R
Vcirc(s, σ̃±(φ

u)− φu + (Iu)3s; Iu)ds (2.39)

where Vcirc(u, t− β; Iu) = V (u, β, t; Iu, 0). Then, in Theorem 2.3.19, we establish an asymptotic formula
for the difference between the scattering maps P+ and P−.

Remark 2.3.14. In the following we identify Λρ defined in (2.10) with a complex neighborhood of P∗
∞.

Lemma 2.3.15. Let L± be the reduced Melnikov potentials defined in (2.38). Then, there exists ρ∗, I∗ > 0
such that for ϵ ∈ (0, I−3

∗ ) and for all (φu, Iu) ∈ Λρ∗ we have

∂φuL±(φ
u, Iu; ϵ) =µ(1− µ)(1− 2µ)

15πϵ

8(Iu)5
sinφu +O(ϵ|Iu|−7)

∂IuL±(φ
u, Iu; ϵ) =− µ(1− µ)

3π

2(Iu)4
+O(|Iu|−7, ϵ|Iu|−4).

Moreover, under the same assumptions

∂Iu(L+ − L−)(φ
u, Iu; ϵ) =µ(1− µ)

√
πI3

2

(
(1− 2µ) +O(|Iu|−1

)
exp(−(Iu)3/3))

∂φu(L+ − L−)(φ
u, Iu; ϵ) =− µ(1− µ)ϵ

(
6
√
2πI3 sinφu +O(|Iu|1/2)

)
exp(−(Iu)3/3)).

In particular, the asymptotic formula

{L+,L−}(φu, Iu; ϵ) = 2∂φu(L+ − L−)∂IuL+(φ
u, Iu; ϵ) +O

(
ϵ|Iu|−7/2 exp(−(Iu)3/3)

)
, (2.40)

which measures the transversality between the level sets of L±, holds for all (φu, Iu) ∈ Λ.

Lemma 2.3.15 is proven in Appendix 5.C, were we provide a detailed analysis of the asymptotic
properties of the Melnikov potential L defined in (2.24). We now state the global properties satisfied by
P±.
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Theorem 2.3.16. The scattering maps P± : P∗
∞ → P∗

∞ defined in (2.32) are exact symplectic and real
analytic. Moreover, there exists ρ∗ > 0 such that the maps P± admit an analytic extension to Λρ∗ and
for all (φu, Iu) ∈ Λρ∗

P± = (Id + J∇L±) +
(
O(|Iu|−7,O(ϵ|Iu|−11/2)

)⊤
, (2.41)

where L± has been defined in (2.38) and J denotes the standard complex structure in R2.

Introduce now (compare (2.27)) the domain

P∗
∞,circ = P∞ ∩ {t = 0, I∗ ≤ I}, (2.42)

and denote by
P±,circ : P∗

∞,circ → P∗
∞,circ (2.43)

the scattering map (2.32) associated to the case ϵ = 0, which corresponds to the circular problem
(RPC3BP). The following result is an immediate corollary of Theorem 2.3.16.

Lemma 2.3.17. The scattering map P±,circ : P∗
∞,circ → P∗

∞,circ, associated to the circular case ϵ = 0, is
of the form

P±,circ(φ
u, Iu) = (φu + ωcirc(I

u), Iu)

Moreover, for all (φu, Iu) ∈ P∗
∞,circ, we have

ωcirc(I
u) = ∂IuL±,circ(I

u) +O(|Iu|−7),

where L±,circ has been defined in (2.39).

Remark 2.3.18. The integrability of the scattering map of the circular problem (ϵ = 0) is a consequence
of the conservation of the Jacobi constant (see Remark 2.1.4).

Once we have established the global existence and asymptotic behavior for the maps P±, in Theorem
2.3.19 below we provide an asymptotic formula for the difference P+−P−. With the intention of clarifying
the statement of Theorem 2.3.19, the recalling of some notation is in order. Let Φ± be the maps defined
in (2.28), let Ωu

± be the wave maps defined in (2.30), denote by Ξ± be the maps

(Iu, Is) 7→ Ξ±(I
u, Is) = (θ̂±(I

u, Is), Iu) (2.44)

obtained in Proposition 2.3.12, let S± be the generating functions obtained in Proposition 2.3.13 and
consider the function Ĩs±(θ, I

u) obtained in Theorem 2.3.9. Define also the vertical strip

P∗
∞,vert = P∗

∞ ∩ {π/8 ≤ φu ≤ π/4}. (2.45)

Theorem 2.3.19. The restriction P±|P∗
∞,vert

: P∗
∞,vert −→ P∗

∞ of the scattering maps P± to P∗
∞,vert can

be computed as

(φu, Iu) 7−→ (φu − (∂IuS± + ∂IsS±) ◦ (Ωu
± ◦ ηIm ◦ Φ± ◦ Ξ±)

−1(φu, Iu), Ĩs± ◦ (Ωu
± ◦ ηIm ◦ Φ±)

−1(φu, Iu)).

Moreover, for all (φu, Iu) ∈ P∗
∞,vert,

P+ − P− = J∇(L+ − L−) + exp(−(Iu)3/3)
(
O((Iu)−1/2), O(ϵ(Iu)−5/2)

)⊤
. (2.46)

The proof of Theorems 2.3.16 and 2.3.19 is postponed until Section 2.6.

Remark 2.3.20. Notice that to state Theorem 2.3.19, we have considered the vertical strip P∗
∞,vert

instead of the whole submanifold P∗
∞. This is due to the fact that the maps

(Iu, Is) → Ωu
± ◦ Ξ±(I

u, Is) = (φu
±(I

u, Is), Iu)

are not invertible everywhere on P∗
∞. However, it is easy to check from Lemma 2.3.15 and Theorem

2.3.16 that P∗
∞,vert ⊂ Dom (Ωu

± ◦ Ξ±)
−1. This will be enough for our purposes.
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Remark 2.3.21. We point out that (2.46) does not mean that P± are approximated by L± up to an
exponentially small remainder. This is a subtle point in our argument: there are non-exponentially small,
i.e. polynomially small, errors in the approximation of P± by L±. What we prove in Theorem 2.3.19 is
that these errors are the same for both approximations of P+ and P−.

Remark 2.3.22. Throughout the rest of this section we write (φ, I) instead of (φu, Iu).

2.3.5 Transversality between the scattering maps

In this section we prove that the scattering maps P± share no common invariant curves. This transversal-
ity property will imply (see Section 2.3.6) the existence of a transition chain of heteroclinic orbits along
which the angular momentum changes in any predetermined fashion.

To prove this property we first straighten the dynamics of one of the maps. Namely, we obtain a
one degree of freedom Hamiltonian K+, defined on P∗

∞, such that P+ follows the level sets of K+ up
to an exponentially small remainder. Then, we verify that on the vertical strip P∗

vert defined in (2.45),
the scalar product between the vectors ∇K+ and P− − P+ is uniformly away from zero to guarantee the
absence of common invariant curves.

We start by looking for the Hamiltonian K+. To this end, we first use a theorem by Kuksin and
Pöschel ([KP94]) which produces a non autonomous time periodic interpolating Hamiltonian K+ for the
map P+. The introduction of some notation is in order. Given a domain D ⊂ Tn × Rn and ρ > 0 we
write

Dρ = {z ∈ C2n : dist(z,D) ≤ ρ}.

We write | · |ρ for the sup norm for functions f : Dρ → C and use ∥·∥ρ for the case where f is vector

valued. Also, given a domain D as before we call D̂ = D × T× R its extended phase space.

Theorem 2.3.23 (Theorem 4 in [KP94]). Fix ρ0 > 0 and let F : Dρ0 ⊂ Tnρ0 × Cn → Tnρ0 × Cn be a real
analytic exact symplectic map of the form F = F0 + F1 where

F0(φ, I) = (φ+ ∂Ih(I), I)

for some h : Rn → R and
∥F1∥ρ0 ≤ ε.

Then, there exists ε0(n, ρ, |h|, |Dh|, |D2h|) > 0 such that for all 0 ≤ ε ≤ ε0, there exists a non-autonomous
time periodic real analytic Hamiltonian K(φ, τ, I, E) : D̂ ⊂ Tn+1 × Rn+1 → R on the extended phase
space and a real analytic symplectic embedding

j : D → Σ = {K = 0, τ = 0}

such that the Poincaré map ϕK for the flow of K on the section Σ is well defined and satisfies

F = j−1 ◦ ϕK ◦ j.

Moreover,
|K − h|ρ ≲ ε and ∥j − j0∥ρ ≲ ε,

where j0(φ, τ, I, E) = (φ, 0, I,−h(I)) and ρ = ρ0/2.

Let D = P∗
∞ ∩ {I∗ ≤ I ≤ I∗ + 1} be a horizontal strip of width 1. Then, Lemma 2.3.15, Theorem

2.3.16 and Lemma 2.3.17 imply that the map P+ restricted to D satisfies the hypothesis of Theorem
2.3.23 with h(I) any function such that

∂Ih(I) = ωcirc(I), ε = ϵI−5
∗

and some ρ0 > 0 which does not depend on I∗. Thus, Theorem 2.3.23 yields a real analytic Hamiltonian
function K+ and a real analytic symplectic embedding j+ such that

P+ = j−1
+ ◦ ϕK+

◦ j+
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and
|K+ − h|ρ ≲ ϵI−5

∗ , ∥j+ − j0∥ρ ≲ ϵI−5
∗ ,

where ρ = ρ0/2 . Writing XK+ for the vector field generated by K+ and expanding its Poincaré map
ϕK+ on the section {τ = 0} in Taylor series we get that

ϕK+ = Id +XK+ +
(
O
(
|XK+,φ|2ρ + |XK+,φ|ρ|XK+,I |ρ|

)
, O

(
|XK+,I |2ρ + |XK+,φ|ρ|XK+,I |ρ|

))⊤
. (2.47)

Moreover, identifying j0 with the identity map on D and writing j+ = Id +∆j+, for all (φ, I) ∈ Dρ/2, a
simple Taylor expansion plus Cauchy estimates show that

ϕK+ =j+ ◦ P+ ◦ j−1
+ = j+ ◦

(
j−1
+ + (P+ − Id) ◦ j−1

+

)
=(Id + ∆j+) ◦

(
Id−∆j+ + (P+ − Id) ◦ (Id + ∆j+)

−1 +O(∥∆j+∥2ρ)
)

=Id−∆j+ + (P+ − Id) + ∆j+ ◦
(
Id−∆j+ + (P+ − Id) ◦ (Id + ∆j+)

−1
)

+O(∥D(P+ − Id)∆j+∥ρ/2) +O(∥∆j+∥2ρ/2)

=P+ +O(∥∆j+∥2ρ) +O(∥D(P+ − Id)∆j+∥ρ/2)
=P+ +O(ϵ2I−10

∗ ).

Therefore, using (2.47), we get that, for all (φ, I) ∈ Dρ,

XK+ − (P+ − Id) =
(
O(I−8

∗ + ϵI−9
∗ ), O(ϵI−9

∗ )
)⊤
. (2.48)

Therefore, using Lemma 2.3.15 and Theorem 2.3.16, we observe that the Hamiltonian vector field XK+

is a slow fast system on (φ, τ, I, E) ∈ D since τ̇ = 1 while φ̇ = O(I−4
∗ ) and İ = O(ϵI−5

∗ ). We now obtain
a Neishtadt’s like normal form ([Nei84]) for the Hamiltonian function K+ to push the τ dependence to
an exponentially small remainder.

Lemma 2.3.24. There exists a real analytic change of variables ψ : Dρ/8 → Dρ/2 with

∥Id− ψ∥ρ/8 ≲ ϵI−9
∗

and a real analytic autonomous Hamiltonian function K+ : Dρ/8 → C such that the map

P+ = ψ−1 ◦ j+ ◦ P+ ◦ j−1
+ ◦ ψ

and the time one map ϕK+
associated to the Hamiltonian function K+ satisfy

∥P+ − ϕK+
∥ρ/8 ≲ ϵ exp

(
−cI4∗

)
(2.49)

for some c = c(ρ) > 0.

The proof follows the ideas developed in [Nei84] but in a Hamiltonian setting. We only sketch the
proof in Appendix 2.B in order to keep track of the ϵ dependence of the error terms.

Let ϑ = j−1
+ ◦ψ, which satisfies ϑ = Id+O(ϵI−5

∗ ) uniformly on Dρ/8. Then, from the previous lemma,
we know that the curves {K+ = const} are almost invariant for the map

P+ = ϑ−1 ◦ P+ ◦ ϑ.

In the next proposition we show that this is not the case for the map P− = ϑ−1◦P−◦ϑ. The approximation
result

P+ − P− ∼ J (L+ − L−)

obtained in Theorem 2.3.19 and the asymptotic expression (2.40) measuring the transversality between
the level sets of L+ and L− given in Lemma 2.3.15 are the key to this result.
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Proposition 2.3.25. There exists I∗ > 0 such that, for any ϵ ∈ (0, I−3
∗ ), the maps P+ and P− share no

common invariant curve on P∗
∞.

Proof. We write | · |, ∥·∥ for the scalar and vectorial sup norm on D (namely, ρ = 0). Let K+ be the
autonomous Hamiltonian obtained in Lemma 2.3.24. Then, for all (φ, I) ∈ D the map P+ = ϑ−1 ◦P+ ◦ϑ
satisfies

|K+ ◦ P+ −K+| = |K+ ◦ P+ −K+ ◦ ϕK+
| ≤ ∥∇K+∥∥P+ − ϕK+

∥ ≲ ϵ exp(−cI4∗ ),
where ϕK+

is the time one map of the Hamiltonian K+ and we have used inequality (2.49) in Lemma
2.3.24. We now claim that, for all (φ, I) ∈ P∗

vert, the map P− = ϑ−1 ◦ P− ◦ ϑ satisfies

K+ ◦ P− −K+ = {L+,L−}+O(ϵI
−9/2
∗ exp(−I3∗/3)),

from which the statement of the proposition follows using the estimates for {L+,L−} given in Lemma
2.3.15. Indeed, these estimates prove that the maps P± share no common invariant curve on

P∗
∞ ∩ {I∗ ≤ I ≤ I∗ + I−2

∗ }

where the estimates are uniform, i.e. for I ∈ {I∗ ≤ I ≤ I∗ + I−2
∗ } we have

exp(−I3∗/3) ≲ exp(−I3/3) ≲ exp(−I3∗/3).

Since the choice of I∗ was arbitrary this implies that the maps P± share no common invariant curve on
P∗
∞. To verify the claim we use the triangle inequality to write

|K+ ◦ P− −K+| ≥
∣∣∣∣ |K+ ◦ P− −K+ ◦ P+| − |K+ ◦ P+ −K+|

∣∣∣∣.
Now, in order to bound from below the term |K+ ◦ P− −K+ ◦ P+| we expand in Taylor series

K+ ◦ P− −K+ ◦ P+ = ⟨∇K+, (P− − P+)⟩+O
(
∥D2K+(P− − P+)∥∥P− − P+∥

)
.

On one hand, denoting by J the usual complex structure in R2 and using inequality (2.48), we have that

∇K+ =J (P+ − Id) +
(
O
(
|XK+,I − (P+,I − I)|

)
,O
(
|XK+,φ + (P+,I − I)|

))⊤
=J (P+ − Id) +

(
O
(
ϵI−9

∗
)
, O

(
I−8
∗
))⊤

.

On the other hand, since ϑ is a O(ϵI−5
∗ )-close to identity real analytic transformation defined in a complex

neighborhood of size ρ/8 ∼ 1, one easily checks that ϑ̃ ≡ ϑ−1 − Id = O(ϵI−5
∗ ) and

P− − P+ =ϑ−1 ◦ P− ◦ ϑ− ϑ−1 ◦ P+ ◦ ϑ =
(
ϑ−1 ◦ P− − ϑ−1P+

)
◦ ϑ

=
(
P− − P+ + ϑ̃ ◦ P− − ϑ̃ ◦ P+

)
◦ ϑ

=

(
(P− − P+) +

(∫ 1

0

Dϑ̃ (P− + s(P+ − P−)) ds

)
(P− − P+)

)
◦ ϑ

=P− − P+ +O
(
ϵI−5

∗ ∥P− − P+∥
)
.

Therefore,

⟨∇K+, (P− − P+)⟩ =
〈
J (P+ − Id) +

(
O(ϵI−9

∗ ),O(I−8
∗ )
)⊤
, P− − P+ +O

(
ϵI−5

∗ ∥P− − P+∥
) 〉
.

Using the estimates in Theorem 2.3.16,

⟨J (P+ − Id), (P− − P+)⟩ =(∂φL+ +O(ϵI−7
∗ ))(∂I(L+ − L−) +O(I

1/2
∗ exp(−I3∗/3)))

+ (∂IL+ +O(I−7
∗ ))(−∂φ(L+ − L−) +O(ϵI

−3/2
∗ exp(−I3∗/3)))

={L+,L−}+O(ϵI
−9/2
∗ exp(−I3∗/3)),

and the proposition is proved taking into account the asymptotic expressions in Lemma 2.3.15.
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Figure 2.3: The invariant curves of the map P+ (in red) intersect transversally the invariant curves of
the map P− (in blue). We also sketch a segment of a diffusive orbit for the iterated function system
generated by the maps P±.

2.3.6 Shadowing and existence of a transition chain

We now consider the iterated function system generated by the maps P±. Since the maps P± are both
twist maps and share no common invariant curve on P∗

∞ , it is proven in [Moe02] (see also [LC07]) that
the iterated function system generated by the maps P± possesses drift orbits in P∗

∞.

Theorem 2.3.26. Let P± be the maps defined in (2.32). Then, there exists I∗ such that, for any
ϵ ∈ (0, I−3

∗ ) and any pair I1, I2 satisfying

I∗ ≤ I1 ≤ I2 ≤ ϵ−1/3,

there exists N ∈ N and a sequence

{(ik, zk)}1≤k≤N ⊂ ({+,−} × P∗
∞)

N
zk+1 = Pik(zk)

such that
πIz1 ≤ I1 and I2 ≤ πIzN .

Finally, the proof of Theorem 2.1.1 is completed by standard shadowing results (see Figure 2.3.6). Let
(φ, I) ∈ P∗

∞, which is a parabolic fixed point of the Poincaré map P in (2.26) and denote byW u,s
φ,I its stable

and unstable manifolds. For a number δ > 0 and a point p ∈ {t = 0} and denote by Bδ(p) ⊂ {t = 0} the
ball of radius δ centered at p at the Poincaré section. The following shadowing result for TNHIC, proved
in [GSMS17] fits our purposes.

Proposition 2.3.27 (Proposition 2 in [GSMS17]). Let N ∈ N∪{∞} and let {(φk, Ik)}1≤k≤N be a family
of fixed points in P∗

∞ for the Poincaré map P such that, for all 1 ≤ k ≤ N , W u
φk,Ik

intersects transversally
W s(P∗

∞) at a point pk ∈ W s
φk+1,Ik+1

. Then, for any sequence {δk}k≥1 with δk > 0 there exists a point

z ∈ Bδ1(φ0, I0) and two sequences {nk}1≤k≤N , {ñk}1≤k≤N ,⊂ N with nk < ñk < nk+1 < ñk+1 such that
Pnk(z) ∈ Bδk(φk, Ik) and P

ñk(z) ∈ Bδk(pk) for all 1 ≤ k ≤ N .

Let {zk}1≤k≤N = {(φk, Ik)}1≤k≤N ⊂ P∗
∞ be the sequence of fixed points for the Poincaré map P

given in Theorem 2.3.26 and apply Proposition 2.3.27 with δk > 0 small enough. The proof of Theorem
2.1.1 is complete.
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Figure 2.4: A true orbit of the RPE3BP which shadows the pseudo orbit {zk}1≤k≤N obtained in Theorem
2.3.26. In blue (red) we skecth segments of the stable (unstable) manifolds associated to parabolic fixed
points {zk}0≤k≤N of the Poincaré map P .

2.4 The generating functions of the invariant manifolds

In this section we provide the proof of Propositions 2.3.6 and 2.3.8 and show how the latter readily
implies Theorem 2.3.9. First we show the existence of real analytic solutions T u,s(u, β, t; Iu, Is, ϵ) to the
Hamilton-Jacobi equation associated to the Hamiltonian H in (2.15). That is,

H(q, δu,s +∇T u,s(q)) = 0 q = (u, v, t)

with δu = (0, (Iu − Is)/2, 0), δs = (0, (Is − Iu)/2, 0) and asymptotic conditions

lim
Reu→−∞

T u(u, β, t; Iu, Is, ϵ) = 0 lim
Reu→∞

T s(u, β, t; Iu, Is, ϵ) = 0

on certain complex domains of the form Du,s × T2 defined below, which satisfy

Du ∩Ds ̸= ∅, and ((−∞,−u0] ∪ [u1, u2])× T2 ⊂ Du × T2, [u0,∞)× T2 ⊂ Ds × T2

for some real values u0 < u1 < u2. This is the content of Sections 2.4.2 and 2.4.3. Then, in Section 2.4.4
we study the difference

∆S(q; Iu, Is, ϵ) = ⟨δu − δs, q⟩+ (T u − T s)(q; Iu, Is, ϵ)

on the complex domain (Du ∩Ds)×T2 and show that ∆S is approximated uniformly in (Du ∩Ds)×T2

by
∆S ∼ ⟨δu − δs, q⟩+ L̃

where L̃ is the Melnikov potential (recall that Im = (Iu + Is)/2) defined by

L̃(u, β, t; Im, ϵ) =

∫
R
V (s, β, t− I3mu+ I3ms; Im, ϵ)ds. (2.50)

Remark 2.4.1. The function L̃ satisfies

L̃(u, β, t; Im, ϵ) = L(t− I3mu, β; Im, ϵ)

where L(σ, β; Im, ϵ) was defined in (2.24). The introduction of (2.50) is just a matter of convenience for
the forthcoming sections.
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Finally, we prove that the existence of nondegenerate critical points of the function

q 7→ ⟨δu − δs, q⟩+ L̃(q; Iu, Is, ϵ)

implies the existence of nondegenerate critical points of the function q 7→ ∆S(q; Iu, Is, ϵ).

2.4.1 From the circular to the elliptic problem

As pointed out in the introduction, for ϵ = 0 and µ > 0, which corresponds to the circular problem
(RPC3BP), the system is already non integrable since there exist transverse intersections between the
stable and unstable manifolds of all the tori TI ⊂ P∞ with I sufficiently large (see [GMS16]). However,
for ϵ = 0, due to the conservation of the Jacobi constant, there do not exist heteroclinic connections
between different tori TI , TI′ ⊂ P∞. In Theorem 2.3.9 we prove that for ϵ > 0 there do exist heteroclinic
connections between sufficiently close TI , TI′ ⊂ P∞. As explained at the beginning of Section 2.4 this
result will be proved by approximating the difference ∆S by the Melnikov potential L. In this approxima-
tion there are errors errors coming from the circular part of the perturbation and errors exclusive of the
elliptic part. For this reason, in order to obtain asymptotic formulas for the scattering maps associated
to the aforementioned heteroclinic intersections, in the case µ, ϵ > 0, it is necessary to keep track of the
ϵ dependent part in the generating functions T u,s. To that end, we denote by (see [GMS16])

T u,s
circ(u, t− β; Im) = T u,s(u, β, t; Im, Im, 0), (2.51)

the generating functions associated to the invariant manifolds of the invariant torus TIm ⊂ P∞ for the
circular problem (ϵ = 0), let

Vcirc(u, t− β; Im) = V (u, β, t; Im, 0) (2.52)

and introduce the Melnikov potential associated to the circular problem

L̃circ(u, t− β; Im) = L̃(u, β, t; Im, 0). (2.53)

2.4.2 Analytic continuation of the unstable generating function

Consider the domain (see Figure 2.4.2 and Remark 2.3.7)

Du
κ = {u ∈ C : |Imu| ≤ 1/3− κ|Im|−3 − tanβ1Reu, |Imu| ≥ 1/6 + κ|Im|−3 − tanβ2Reu}, (2.54)

where β1, β2 ∈ (0, π/2), β1 < β2 and κ > 0 is a given constant. It is clear that for Im large enough Du
κ is

non empty. The role of the parameter κ is to shrink the domain Du
κ when, in Sections 2.4.3 and 2.4.4,

we introduce close to identity changes of variables and make use of Cauchy estimates.
In this section we prove the existence of positive constants κ, ρ and σ such that for all I∗ large enough

and any Im ∈ Λρ,I(I∗), |Iu − Is| ≤ ϵ|Im|−4, where Λρ,I is introduced in (2.12), there exists a unique real
analytic solution to the Hamilton-Jacobi equation

H(q, δu +∇T u) = (1 +Au(q, δu +∇T u))∂uT
u +Bu(q, δu +∇T u)∂βT

u + I3m∂tT
u − V (q) = 0 (2.55)

with asymptotic condition limReu→−∞ T u = 0 in the complex domain (u, β, t) ∈ Du
κ×Tρ×Tσ and where

Au =
1

2y2hIm

(
∂uT

u − r−2
h (δu + ∂βT

u)
)

Bu = − 1

2y2hr
2
hIm

(
∂uT

u − r−1
h (δu + ∂βS

u
)
. (2.56)

The existence of T s solving the corresponding Hamilton-Jacobi equation on Ds ×Tρ×Tσ with Ds
κ =

{u ∈ C : − u ∈ Du
κ} is obtained by a completely analogous argument.

Remark 2.4.2. The use of different widths for the strips in the angles β and t is only a technical issue.
The solution to the Hamilton-Jacobi equation (2.55) will be obtained by means of a Newton method in
which the size of the strip Tρ for the angle β is reduced at each iteration while the size of the strip Tσ
for the t variable can be kept constant. For this reason, in all the forthcoming notation, we omit the
dependence on σ and only emphasize the dependence on ρ.

The width of the strip of analyticity in the angle β is taken to be the same than the width of the complex
neighborhood for the parameter Im. This is an arbitrary choice to avoid introducing more notation.
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Figure 2.5: The complex domains Du
κ and Ds

κ.

Let η, ν be positive real constants. We now introduce the family of Banach spaces of sequences of
analytic functions in which we will look for solutions to (2.55)

Zη,ν,ρ =
{
h = {h[l]}l∈Z : h[l] : Du

κ × Tρ → C is analytic for all l ∈ Z and ∥h∥η,ν,ρ <∞
}

(2.57)

where ∥·∥η,ν,ρ is the Fourier sup norm

∥h∥η,ν,ρ =
∑
l∈Z

∥h[l]∥η,ν,ρ,le|l|σ

defined by

∥h∥η,ν,ρ,l = sup
(u,β)∈(Du

κ∩{Re(u)≤−1})×Tρ

∣∣∣uηh[l](u, β)∣∣∣
+ sup

(u,β)∈(Du
κ∩{Re(u)≥−2})×Tρ

∣∣∣(u− i/3)ν+l/2(u+ i/3)ν−l/2h[l](u, β)
∣∣∣ .

It will also be convenient for us to introduce the Banach spaces

Xη,ν,ρ =
{
h = {h[l]}l∈Z : h[l] : Du

κ × Tρ → C is analytic for all l ∈ Z and JhKη,ν,ρ <∞
}
. (2.58)

where
JhKη,ν,ρ = ∥h∥η,ν,ρ + ∥∂uh∥η+1,ν+1,ρ. (2.59)

Remark 2.4.3. It is straightforward to check that the elements of Zη,ν,ρ and Xη,ν,ρ can be identified with
Fourier series

h(u, β, t) =
∑
l∈Z

h[l](u, β)eilt

which, for a given u ∈ Du, converge on the strip

Tσ(u) =
{
t ∈ C/2πZ :

∣∣∣∣Im(t)− 1

2
(ln(|u− i/3|)− ln(|u+ i/3|))

∣∣∣∣ ≤ σ

}
.

That is, they yield well defined functions for (u, β) ∈ Du
κ×Tρ and t ∈ Tσ(u). Alternatively one can think

of the elements of Xη,ν,ρ as formal Fourier series on the strip Tσ (see [GMS16] and [GMPS22]).

Remark 2.4.4. In the case Iu, Is ∈ R, one can replace analytic by real analytic in the definition of Zη,ν,ρ
and Xη,ν,ρ.

In the following lemma we list some properties of the spaces Xη,ν,ρ which will be useful. The proof is
straightforward.
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Lemma 2.4.5. The following statements hold:

• (Graded algebra property) For any g ∈ Xη,ν,ρ and f ∈ Xη′,ν′,ρ, their product satisfies gf ∈
Xη+η′,ν+ν′,ρ.

• Let h ∈ Xη,ν,ρ. Then, for η′ < η and ν′ < ν we have h ∈ Xη′,ν′,ρ and

∥h∥η′,ν′,ρ ≤ |Im|3(ν−ν
′)∥h∥η,ν,ρ

• Let h ∈ Xη,ν,ρ. Then for any 0 < δ < ρ we have that ∂βh ∈ Xη,ν,ρ−δ and

∥∂βh∥η,ν,ρ−δ ≤ δ−1∥h∥η,ν,ρ.

We also state the following lemma, which will be useful to deal with compositions in the angular
variable β. The proof can be found in [GMS16].

Lemma 2.4.6. Let h ∈ Xη,ν,ρ and let gi ∈ X0,0,ρ′ with ρ > ρ′, i = 1, 2, and

∥gi∥0,0,ρ′ ≤
ρ− ρ′

2
.

Write h ◦ (Id + gi)(u, β, t) = h(u, β + gi(u, β, t), t). Then, h ◦ (Id + gi) ∈ Xη,ν,ρ′ with

∥h ◦ (Id + gi)∥η,ν,ρ′ ≲ ∥h∥η,ν,ρ.

Moreover, for f = h ◦ (Id + g2)− h ◦ (Id + g1) we have

∥f∥η,ν,ρ′ ≲ (ρ− ρ′)−1∥h∥η,ν,ρ∥g2 − g1∥0,0,ρ′ .

The choice of the functional space for solving (2.55) is motivated by the following result proved in
Appendix 5.C.

Lemma 2.4.7. Fix κ > 0 and σ > 0. Then, there exist ρ0, I∗ > 0 such that, for ϵ ∈ (0, I−3
∗ ), and

Iu, Is with Im ∈ Λρ0,I , the perturbative potential V (v, β, t; Im) defined in (2.16) satisfies V ∈ X2,3/2,ρ0 .
Moreover

∥V ∥2,3/2,ρ0 ≲ |Im|−3

and
∥V − Vcirc∥2,3/2,ρ0 ≲ ϵ|Im|−3

where Vcirc was defined in (2.52).

We now state the main result in this section.

Theorem 2.4.8. Let κ, σ > 0 and ρ0 > 0 as in Lemma 2.4.7. Then, there exist ρ ∈ (0, ρ0) and I∗ > 0
such that for for ϵ ∈ (0, I−3

∗ ), and Iu, Is such that Im = (Iu + Is)/2 ∈ Λρ,I(I∗), and |Iu − Is| ≤ ϵ|Im|−4,
there exists T u ∈ X1/3,1/2,ρ solution to the Hamilton-Jacobi equation (2.55) such that

∥T u∥1/3,1/2,ρ ≲ |Im|−3 and ∥T u − Lu∥1/3,1,ρ ≲ |Im|−7,

where Lu is the unstable half Melnikov potential

Lu(u, β, t; Im, ϵ) =

∫ 0

−∞
V (u+ s, β, t+ I3ms; Im, ϵ)ds. (2.60)

Moreover,
∥T u − T u

circ − (Lu − Lu
circ)∥1/3,1,ρ ≲ ϵ|Im|−7,

where T u
circ is defined in (2.51) and Lu

circ(u, t− β; Im) = Lu(u, β, t; Im, 0).
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The proof of Theorem 2.4.8 will be accomplished by a Newton iterative scheme. That is, we obtain
T u as the limit of an iterative process T u = limn→∞ Tn where T0 = 0 and the n-th step is obtained as
the solution to the linear equation

H(Tn−1) +DH(Tn−1)[Tn − Tn−1] = 0 (2.61)

where, by abuse of notation we have written (and will write in the forthcoming sections)

H(Tn) = H(q, δu +∇Tn; Iu, Is)

and H is given in (2.15). One can check that the linearized operator DH(T )[·] reads

DH(T )[·] =
(
1 + y−2

h I−1
m

(
∂uT − r−2

h (δuβ + ∂βT )
))
∂u[·]

− y−2
h r−2

h I−1
m

(
∂uT − 2r−1

h (δuβ + ∂βT )
)
∂β [·] + I3m∂t[·],

(2.62)

where we recall that

δuβ =
1

2
(Iu − Is).

Since H is quadratic in ∇T the second differential of H is a bilinear operator and the error we accomplish
at the step n is

H(Tn) = D2H [∆Tn,∆Tn] = y−2
h I−1

m

(
(∂u∆Tn)

2 − 2r−2
h ∂u∆Tn∂β∆Tn + 2r−1

h (∂β∆Tn)
2
)

(2.63)

where we have introduced the notation ∆Tn = Tn − Tn−1.
In the proof of Theorem 2.4.8 we treat DH(T )[·] as a small perturbation of the constant coefficients

linear operator
L[·] = (∂u + I3m∂t)[·]. (2.64)

The next technical lemma, proved in [GOS10], shows the existence of a right inverse for L on the functional
space Xη,ν,ρ with η > 1.

Lemma 2.4.9. Let L be the operator defined in (2.64). Then, for any η > 1 there exists an operator
G : Xη,ν,ρ → Xη−1,ν,ρ, given by

G(h)(u, β, t) =
∫ 0

−∞
h(u+ s, β, t+ I3ms)ds, (2.65)

such that L ◦ G = Id : Xη,ν,ρ → Xη,ν,ρ. Moreover, for any h ∈ Xη,ν,ρ with η, ν > 1 the following estimates
hold

∥G(h)∥η−1,ν−1,ρ ≲ ∥h∥η,ν,ρ and ∥∂uG(h)∥η,ν,ρ ≲ ∥h∥η,ν,ρ.

Remark 2.4.10. Lemma 2.4.9 or similar versions are usually proved for Im ∈ R (see [GOS10]). As for
Im ∈ Λρ,I we have

arg(Im) = tan−1(O(|Im|−1)) = O(|Im|−1),

and it is straightforward to check that the same proof applies for Im ∈ Λρ,I .

First step of the Newton scheme

The iterative scheme proposed above defines the function T1 as the solution to the linearized equation

H(0) +DH(0)[T1] = 0. (2.66)

Instead, it will be convenient to modify the first step of the iterative process and define T1 as the solution
to

LT1 = −H(0), (2.67)
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where L is the constant coefficients linear operator defined in (2.64). Using Lemma 2.4.9 we can rewrite
(2.66) as

T1 = −G(H(0)). (2.68)

The properties of the unperturbed homoclinic stated in Lemma 2.2.1, Lemma 2.4.7 for the potential V
and the hypothesis |δuβ | ≲ ϵ|Im|−4 imply that (here ρ0 is the constant given in Lemma 2.4.7)

∥H(0)∥4/3,3/2,ρ0 = ∥y−2
h r−3

h I−1
m (δuβ)

2 − V ∥4/3,3/2,ρ0 ≲ |Im|−3 ≡ ε0. (2.69)

Therefore, it follows from Lemma 2.4.9 that T1 ∈ X1/3,1/2,ρ0 with

JT1K1/3,1/2,ρ0 ≲ ε0. (2.70)

The error in this first approximation is given by

H(T1) = D2H[T1, T1] + (DH(T1)− L) [T1].

Using Lemma 2.2.1, Lemma 2.4.5, and the expressions (2.62) and (2.63), we obtain that for 0 < δ0 < ρ0

∥D2H[T1, T1]∥4/3,3/2,ρ0−δ0 ≲ |Im|1/2
(
∥∂uT1∥24/3,3/2,ρ0 + ∥∂uT1∥4/3,3/2,ρ0∥∂βT1∥1/3,1/2,ρ0−δ0

+ |Im|−3/2∥∂βT1∥24/3,3/2,ρ0−δ0
)

and

∥(DH(T1)− L) [T1]∥4/,3/2,ρ0−δ0 ≲ |Im|−1|δuβ |
(
∥∂uT1∥1/3,1/2,ρ0−δ0 + ∥∂βT1∥1/3,1/2,ρ0−δ0

)
.

Then, it follows from the estimate (2.70) for T1, the hypothesis |δuβ | ≲ ϵ|Im|−4 and the third and fourth
items in Lemma 2.4.5, that

∥H(T1)∥4/3,3/2,ρ0−δ0 ≲ |Im|1/2ε20
(
1 + δ−1

0 + I−3/2
m δ−2

0

)
≲ |Im|1/2ε20δ−2

0 ,

where ε0 was defined in (2.69). We now take

δ0 ≡ ε
1/8
0 and define ρ1 = ρ0 − δ0.

Therefore,

∥H(T1)∥4/3,3/2,ρ1 ≲ |Im|1/2ε1/40 ε
3/2
0 ≤ ε

3/2
0 ≡ ε1.

The iterative argument

Throughout this section, the symbol a ≲ b means that there exists C > 0 which does not depend on the
step n and Im such that a ≤ Cb.

Through the Newton iteration scheme, at the step n+ 1, we have to solve the linearized equation

H(Tn) +DH(Tn)[∆Tn+1] = 0 ∆Tn+1 = Tn+1 − Tn.

For that, we have to invert the linear operator DH(Tn)[·] defined in (2.62). Since this operator has a non
zero coefficient multiplying ∂β we must find a change of variables

(u, β, t) = Ψn+1(u, φ, t) ≡ (u, φ+ ψn+1(u, φ, t), t), (2.71)

in which the linearized operator does not involve partial derivatives with respect to the new angle φ.
Define

An =
1

2y2hIm

(
∂uTn − r−2

h (δuβ + ∂βTn)
)

Bn = − 1

2y2hr
2
hIm

(
∂uTn − r−1

h (δuβ + ∂βTn)
)
. (2.72)
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Then, one can check that, if one considers a change of variables (2.71) with ψn+1 solving (here L is the
operator (2.64))

Lψn+1 = Bn ◦Ψn+1 − (An ◦Ψn+1)∂vψn+1,

the following equations determining an unknown function h are equivalent

DH(Tn)[h]+H(Tn) = 0 ⇐⇒ (1+An ◦Ψn+1)∂u(h◦Ψn+1)+I
3
m∂t(h◦Ψn+1)+H(Tn)◦Ψn+1 = 0.

(2.73)

Indeed, if we denote by ∆T̃n+1 the solution of the second equation in (2.73), then

∆Tn+1 = ∆T̃n+1 ◦Ψ−1
n+1

solves the first equation in (2.73). As a consequence, we define

Tn+1 = Tn +∆T̃n+1 ◦Ψ−1
n+1

and
T̃n+1 = Tn+1 ◦Ψn+1 = T̃n ◦Ψ−1

n ◦Ψn+1 +∆T̃n+1.

In order to state the inductive hypothesis, we define now the constants

εn = ε
3/2
n−1 δn = ε1/8n ρn = ρn−1 − 2δn−1. (2.74)

Notice that it follows (taking ε0 small enough) from this definition that ρn ≥ ρ0/2 ∀n ∈ N ∪ {∞}.
Suppose that:

• (H1) There exists a family of functions {T̃i}1≤i≤n ⊂ X1/3,1/2,ρi−1
and a family of close to identity

maps Ψ1 = Id and {Ψi}2≤i≤n with Ψi = Id + ψi, ψi ∈ X2/3,1/2,ρi−1
, such that

Lψi+1 = Bi ◦Ψi+1 − (Ai ◦Ψi+1)∂uψi+1,

where now Ai, Bi are written in terms of T̃i

Ai =
1

2y2hIm

(
∂u(T̃i ◦Ψ−1

i )− r−2
h (δuβ + ∂β(T̃i ◦Ψ−1

i ))
)

Bi =− 1

2y2hr
2
hIm

(
∂u(T̃i ◦Ψ−1

i )− r−1
h (δuβ + ∂β(T̃i ◦Ψ−1

i ))
)
.

• (H2) The functions ψi satisfy (see Remark 2.4.11 below)

Jψi+1 − ψiK2/3,1/2,ρi ≲ |Im|−1δ7i−1.

• (H3) The functions T̃i satisfy

JT̃i+1 − T̃i ◦Ψ−1
i ◦Ψi+1K1/3,1/2,ρi ≲ εi,

and
∥H(T̃i+1 ◦Ψ−1

i+1) ◦Ψi+1∥4/3,3/2,ρi+1
≲ εi+1.

Remark 2.4.11. Hypothesis (H2) can be rephrased as

JΨ−1
i ◦Ψi+1 − IdK2/3,1/2,ρi ≲ |Im|−1δ7i−1.

We claim that, under these hypotheses, there exists a map Ψn+1 = Id+ψn+1, ψn+1 ∈ X2/3,1/2,ρn solving

Lψn+1 = Bn ◦Ψn+1 − (An ◦Ψn+1)∂uψn+1
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with
Jψn+1 − ψnK2/3,1/2,ρn ≲ |Im|−1δ7n−1

and T̃n+1 ∈ X1/3,1/2,ρn such that

JT̃n+1 − T̃n ◦Ψ−1
n ◦Ψn+1K1/3,1/2,ρn ≲ εn

for which
∥H(T̃n+1 ◦Ψ−1

n+1) ◦Ψn+1∥4/3,3/2,ρn+1
≲ εn+1.

The first step towards the proof of the inductive claim is to look for the change of variables Ψn+1.

Lemma 2.4.12. Assume that (H1), (H2) and (H3) hold for all 1 ≤ i ≤ n . Then, there exists Ψn+1 =
Id + ψn+1, ψn+1 ∈ X2/3,1/2,ρn such that

Lψn+1 = Bn ◦Ψn+1 − (An ◦Ψn+1)∂vψn+1

with JΨn+1 −ΨnK2/3,1/2,ρn ≲ |Im|−1δ7n−1.

Proof. Throughout the proof we will use the first part of Lemma 2.4.6, which deals with compositions in
the angular variable, without mentioning. We also define ρ̃n = ρn−1 − δn−1 to avoid lengthy notation.
Since L is linear, we can write

L(ψn+1 − ψn) =Bn ◦Ψn+1 −Bn−1 ◦Ψn − (An ◦Ψn+1)∂uψn+1 + (An−1 ◦Ψn)∂uψn
=Bn ◦Ψn+1 −Bn ◦Ψn + (Bn −Bn−1) ◦Ψn − ((An −An−1) ◦Ψn+1)∂uψn+1

− (An−1 ◦Ψn+1 −An−1 ◦Ψn)∂uψn+1 − (An−1 ◦Ψn)∂u(ψn+1 − ψn)

which, by the mean value theorem, can be rewritten as the fixed point equation

∆ψn+1 = G(F (∆ψn+1))

in a Banach space Xη,ν,ρ for suitable η, ν, ρ to be chosen, where ∆ψn+1 = ψn+1 − ψn, G is the operator
introduced in Lemma 2.4.9 and

F (∆ψn+1) =∆ψn+1

∫ 1

0

∂βBn ◦ (Id + s∆ψn+1) ds+ (Bn −Bn−1) ◦Ψn

− ((An −An−1) ◦ (Ψn +∆ψn+1))∂u(ψn +∆ψn+1)

−∆ψn+1∂u(ψn +∆ψn+1)

∫ 1

0

∂βAn ◦ (Id + s∆ψn+1) ds− (An−1 ◦Ψn)∂u∆ψn+1.

We obtain ∆ψn+1 by an standard application of the fixed point theorem for Banach spaces. To that end
we first bound the term

F (0) = (Bn −Bn−1) ◦Ψn − (An −An−1) ◦Ψn∂uψn.

We observe that

∂u

(
T̃n ◦Ψ−1

n − T̃n−1 ◦Ψ−1
n−1

)
=∂u

(
T̃n − T̃n−1 ◦Ψ−1

n−1 ◦Ψn
)
◦Ψ−1

n

+ ∂φ

(
T̃n − T̃n−1 ◦Ψ−1

n−1 ◦Ψn
)
◦Ψ−1

n ∂uΨ
−1
n

and

∂β

(
T̃n ◦Ψ−1

n − T̃n−1 ◦Ψ−1
n−1

)
=∂φ

(
T̃n − T̃n−1 ◦Ψ−1

n−1 ◦Ψn
)
◦Ψ−1

n ∂βΨ
−1
n .

Therefore, taking into account that (for the case n = 1 notice that ψ1 = 0)

JψnK2/3,1/2,ρn−1
≤ Jψ2K2/3,1/2,ρn−1

+

n∑
i=3

Jψi − ψi−1K2/3,1/2,ρn−1
≲ Jψ2K2/3,1/2,ρn−1

≲ |Im|−1δ70 ,
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it is easy to show that the inductive hypothesis implies∥∥∥y−2
h r−2

h I−1
m ∂u

(
T̃n ◦Ψ−1

n − T̃n−1 ◦Ψ−1
n−1

)
◦Ψn

∥∥∥
5/3,3/2,ρ̃n

≲|Im|−1JT̃n − T̃n−1 ◦Ψ−1
n−1 ◦ΨnK1/3,1/2,ρn−1

≲|Im|−1εn−1

and∥∥∥y−2
h r−3

h I−1
m ∂β

(
T̃n ◦Ψ−1

n − T̃n−1 ◦Ψ−1
n−1

)
◦Ψn

∥∥∥
5/3,3/2,ρ̃n

≲|Im|−1δ−1
n−1

× JT̃n − T̃n−1 ◦Ψ−1
n−1 ◦ΨnK1/3,1/2,ρn−1

≲|Im|−1εn−1δ
−1
n−1.

Thus, from the definition of Bn in (2.72),

∥(Bn −Bn−1) ◦Ψn∥5/3,3/2,ρ̃n ≲ |Im|−1εn−1δ
−1
n−1 = |Im|−1δ7n−1.

Taking into account that δn ≤ δ0 = |Im|−3/8 and the definition of An in (2.72), a similar computation
shows that

∥(An −An−1) ◦Ψn∂uψn∥5/3,3/2,ρ̃n ≲∥(An −An−1) ◦Ψn∥2/3,1/2,ρ̃n∥∂uψn∥1,1,ρn
≲|Im|3/2∥(An −An−1) ◦Ψn∥2/3,1/2,ρ̃nJψnK2/3,1/2,ρn
≲|Im|1/2εn−1δ

−1
n−1JψnK2/3,1/2,ρn ≲ |Im|−17/8δ7n−1.

Therefore,

∥F (0)∥5/3,3/2,ρ̃n =∥(Bn −Bn−1) ◦Ψn − (An −An−1) ◦Ψn∂uψn∥5/3,3/2,ρn
≲|Im|−1εn−1δ

−1
n−1 = |Im|−1δ7n−1,

and it follows from Lemma 2.4.9 that

∥G(F (0))∥2/3,1/2,ρ̃n ≲ |Im|−1δ7n−1.

We notice that, since An, Bn depend linearly on Tn,

∥∂βAn∥2/3,1/2,ρ̃n−δn−1
≤∥∂βA1∥2/3,1/2,ρ̃1−δ0 +

n∑
i=2

∥∂β(Ai −Ai−1)∥2/3,1/2,ρ̃i−δi−1

≤δ−1
0 ∥∂βA1∥2/3,1/2,ρ̃1 +

n∑
i=2

δ−1
i ∥Ai −Ai−1∥2/3,1/2,ρ̃i

≲|Im|−1

(
ε0δ

−1
0 +

n−1∑
i=1

εiδ
−1
i

)
≲ |Im|−1ε0δ

−1
0 = |Im|−29/8,

and the same computation shows that

∥∂βBn∥5/3,3/2,ρ̃n−δn−1
≲ |Im|−1ε0δ

−1
0 = |Im|−29/8.

Take now any ∆ψ,∆ψ∗ ∈ B(|Im|−1δ7n−1) ⊂ X2/3,1/2,ρn . From the fundamental theorem of calculus, it
follows that

F (∆ψ∗)− F (∆ψ) =(∆ψ∗ −∆ψ)

∫ 1

0

∂βBn ◦ (Id + s(∆ψ∗ −∆ψ)) ds−An ◦ (Ψn +∆ψ)∂u(∆ψ
∗ −∆ψ)

− (∆ψ∗ −∆ψ)∂u(ψn +∆ψ∗)

∫ 1

0

∂βAn ◦ (Id + s(∆ψ∗ −∆ψ)) .
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Using the previous estimates, Lemma 2.4.5 and the second part of Lemma 2.4.6, we obtain that (recall
that ρn = ρn−1 − 2δn−1 = ρ̃n − δn−1)

∥(∆ψ∗ −∆ψ)

∫ 1

0

∂βBn ◦ (Id + s(∆ψ∗ −∆ψ)) ds∥5/3,3/2,ρn ≲|Im|3/2∥∂βBn∥5/3,3/2,ρn∥∆ψ −∆ψ∗∥2/3,1/2,ρn

≲|Im|−17/8∥∆ψ −∆ψ∗∥2/3,1/2,ρn .

Similar computations show that

∥F (ψ)− F (ψ∗)∥5/3,3/2,ρn ≲ |Im|−17/8∥ψ − ψ∗∥2/3,1/2,ρn .

Finally, from Lemma 2.4.9,

∥G (F (ψ)− F (ψ∗))∥2/3,1/2,ρn ≲∥F (ψ)− F (ψ∗)∥5/3,3/2,ρn
≲|Im|−17/8∥ψ − ψ∗∥2/3,1/2,ρn .

Then, the proof of the lemma follows from direct application of the fixed point theorem in the ball of
radius C|Im|−1δ7n−1 (for some large enough C) centered at the origin of the Banach space X2/3,1/2,ρn .

We now complete the proof of the inductive claim for T̃n+1.

Proposition 2.4.13. The equation

(1 +An ◦Ψn+1)∂u(∆T̃n+1) + I3m∂t(∆T̃n+1) +H(Tn) ◦Ψn+1 = 0 (2.75)

admits a unique solution ∆T̃n+1 ∈ X1/3,1/2,ρn such that

∥∆T̃n+1∥1/3,1/2,ρn ≲ εn.

Moreover, the function
T̃n+1 = Tn ◦Ψ−1

n ◦Ψn+1 +∆T̃n+1

satisfies
∥H(T̃n+1 ◦Ψ−1

n+1) ◦Ψn+1∥1/3,1/2,ρn+1
≲ εn+1.

Proof. Again, throughout the proof we will use the first part of Lemma 2.4.6, which deals with compo-
sitions in the angular variable, without mentioning. We rewrite (2.75) as the affine fixed point equation
for ∆T̃n+1

∆T̃n+1 = −G
(
H(T̃n ◦Ψ−1

n ) ◦Ψn+1 − (An ◦Ψn+1)∂u(∆T̃n+1)
)

where G is the operator introduced in Lemma 2.4.9. The existence of a fixed point ∆T̃n+1 ∈ X1/3,1/2,ρn

with
J∆T̃n+1K1/3,1/2,ρn ≲ εn

is easily completed using the properties of G in Lemma 2.4.9 and the estimates

∥(H(T̃n ◦Ψ−1
n )) ◦Ψn+1∥4/3,3/2,ρn ≲ εn ∥An ◦Ψn+1∥0,0,ρn ≲ I3/2m ∥An ◦Ψn+1∥2/3,1/2,ρn ≲ |Im|−17/8,

which are obtained from the inductive hypothesis after writing

(H(T̃n ◦Ψ−1
n )) ◦Ψn+1 =(H(T̃n ◦Ψ−1

n )) ◦Ψn +
(
(H(T̃n ◦Ψ−1

n )) ◦Ψn+1 − (H(T̃n ◦Ψ−1
n )) ◦Ψn

)
,

and using the estimate for Jψn+1 − ψnK1/3,1/2,ρn given in Lemma 2.4.12. In order to prove the estimate
for the error, it follows from our construction that

H(T̃n+1 ◦Ψ−1
n+1) = D2H

[
∆T̃n+1 ◦Ψ−1

n+1,∆T̃n+1 ◦Ψ−1
n+1

]
.

The proof is completed in a straightforward manner from expression (2.63), the estimate for J∆T̃n+1K1/3,1/2,ρn
and the estimate for Jψn+1 − ψnK1/3,1/2,ρn given in Lemma 2.4.12.
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We can now conclude the proof of Theorem 2.4.8.

Proof of Theorem 2.4.8. Notice that the function T1 obtained in (2.68) and the map Ψ1 = Id satisfy the
inductive hypothesis assumed at the beginning of Section 2.4.2. Therefore, for all n ∈ N, we can find
maps Ψn = Id + ψn with ψn ∈ X1/3,1/2,ρn−1

satisfying

Jψn+1 − ψnK1/3,1/2,ρn ≲ |Im|−1δ7n−1

and functions T̃n ∈ X1/3,1/2,ρn−1
such that

∥T̃n+1 − T̃n ◦Ψ−1
n ◦Ψn+1∥1/3,1/2,ρn ≲ εn

∥∥∥(H(T̃n ◦Ψ−1
n )) ◦Ψn

∥∥∥
4/3,3/2,ρn

≲ εn+1 = ε
(3/2)n+1

0 .

Then, Ψn converges uniformly on X1/3,1/2,ρ0/4 to an analytic change of coordinates

Ψ∞ = Id + ψ∞ Jψ∞K1/3,1/2,ρn ≲ |Im|−1δ70 = |Im|−29/8 (2.76)

and the sequence {Tn}n∈N defined by

Tn = T̃n ◦Ψ−1
n

converges uniformly to an analytic function T ∈ X1/3,1/2,ρ0/4 such that

∥T∥1/3,1/2,ρ0/4 ≲ ∥T1∥1/3,1/2,ρ/4 +
∞∑
n=1

∥Tn+1 − Tn∥1/3,1/2,ρ/4 ≲ ε0

and
∥H(T )∥4/3,3/2,ρ0/4 = lim

n→∞
∥H(Tn)∥4/3,3/2,ρ0/4 = 0.

This proves the existence of a solution T ∈ X1/3,1/2,ρ0/4 to the Hamilton-Jacobi equation (2.55). Moreover,
recalling the definition of the half Melnikov potential Lu in (2.60), we have

T u − Lu = G
(

1

2y2hIm
(∂uT

u − r−2
h (δuβ + ∂βT

u))2 +
1

2y2hr
2
hIm

(δuβ + ∂βT
u)2
)

Therefore, using that |δuβ | ≲ ϵ|Im|−4 and ∥T u∥1/3,1/2,ρ0/4, one easily obtains that

∥T u − Lu∥1/3,1,ρ0/8 ≲ |Im|−7.

We set ρ = ρ0/8.
Now we prove the estimate for the difference T u − T u

circ. The function T u
circ satisfies (compare (2.55))

(1 +Au
circ)∂uT

u
circ +Bu

circ∂βT
u
circ + I3m∂tT

u
circ − Vcirc = 0,

with

Au
circ =

1

2y2hIm

(
∂uT

u
circ − r−2

h ∂βT
u
circ

)
Bu

circ = − 1

2y2hr
2
hIm

(
∂uT

u
circ − r−1

h ∂βT
u
circ

)
. (2.77)

Using that (see Lemma 2.4.7) ∥V − Vcirc∥2,3/2,ρ0 ≲ ϵ|Im|−3 and, by hypothesis, |δuβ | ≲ ϵ|Im|−4, one easily
obtains that

∥T u − T u
circ∥1/3,1/2,ρ ≲ ϵ|Im|−3.

This estimate implies that

∥Au −Au
circ∥2/3,1/2,ρ ≲ ϵ|Im|−4 ∥Bu −Bu

circ∥2,3/2,ρ ≲ ϵ|Im|−4,

and we obtain that
∥T u − T u

circ − (Lu − Lu
circ)∥1/3,1,ρ ≲ ϵ|Im|−7,

as was to be shown.
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Figure 2.6: The domains Du,flow
κ1

and D̃u
κ2

defined in (2.81) and (2.82).

2.4.3 Extension of the parametrization by the flow

Theorem 2.4.8 provides the existence of a Lagrangian graph parametrization Wu of the form (2.19) of
the unstable manifold of the invariant torus TIu , on the domain (u, β, t) ∈ Du

κ × Tρ × Tσ. As already
discussed in Remark 2.3.7 (see also Section 2.4.4 below), to study the difference between W u

Iu and W s
Is

we need to extend their parametrizations to a common domain containing a subset of the real line. This
is (at least in a direct manner) not possible using the parametrizations (2.19) since yh(0) = 0.

We sketch the simple solution to this technical issue. The details can be found in [GMS16]: since
in polar coordinates (r, α, t, y,G,E) the vector field associated to the Hamiltonian (2.3) is not singular
(except at r = 0), we look for a different parametrization Wu(ũ, β̃, t) of the unstable manifold in polar
coordinates

Wu(ũ, β̃, t) =
{
(r, α, t, y,G,E) =(I2mrh(ũ) +Rflow(ũ, β̃, t), β̃ + αh(ũ) + Ωflow(ũ, β̃, t), t, I

−1
m

yh(ũ) + Yflow(ũ, β̃, t, Im + Jflow(ũ, β̃, t), Eflow(ũ, β̃, t))
} (2.78)

such that
ϕs(Wu(ũ, β̃, t)) = Wu(ũ+ s, β̃, t+ I3ms) (2.79)

where ϕspol is the time s flow generated by the Hamiltonian (2.3). Notice that this extension is a rather
standard procedure since we will consider domains which are at distance order ∼ 1 from the singularities
u = ±i/3.

Let ηIm be the change of coordinates defined in (2.14) and letWu be the Lagrangian graph parametriza-
tion associated to the generating function T u obtained in Theorem 2.4.8. The first step is to perform a
change of variables h of the form

(u, β, t) = h(ũ, β̃, t) = (ũ+ hu(ũ, β̃, t), β̃ + hβ(ũ, β̃, t), t) (2.80)

such that the parametrization ηIm ◦Wu ◦ h is of the form (2.78) and satisfies (2.79). This is the content
of Lemma 2.4.14 below. Second, we use the flow ϕspol to extend this parametrization to a domain

(ũ, β̃, t) ∈ Du,flow
κ1

× Tρ1 × Tσ1
(for suitable κ1 > κ, ρ1 < ρ, σ1 < σ ) where

Du,flow
κ1

= {ũ ∈ C : |Imũ| ≤ − tanβ1Reu+ 1/3− κ1|Im|−3, |Imũ| ≤ tanβ2Reũ+ 1/6 + κ1|Im|−3}. (2.81)

This domain contains ũ = 0, is at distance ∼ O(1) from u = ±i/3, and satisfies Du,flow
κ1

∩ Du
κ ̸= ∅ ,

Du,flow
κ1

∩Ds ∩ R ̸= ∅ (see Figure 2.4.3).

Lemma 2.4.14. Let ∥·∥0,0,ρ be as in (2.58) but referred to the domain Du,flow
κ1

∩ Du
κ. Then, on the

overlapping domain (Du,flow
κ1

∩ Du
κ) × Tρ1 × Tσ2

, there exists an analytic change of coordinates h of the
form (2.80) such that

∥hu∥0,0,ρ ≲ |Im|−4 ∥hβ∥0,0,ρ ≲ |Im|−5/2,

and for which the parametrization ηIm ◦ Wu ◦ h : (Du,flow
κ1

∩Du
κ)× Tρ1 × Tσ2 → C6 is of the form (2.78)

and satisfies (2.79).
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The proof of this lemma follows the same lines as the proof of Theorem 5.16 in [GMS16]. As com-
mented above, we now extend the parametrization obtained in Lemma 2.4.14 to the domain Du,flow

κ1
.

Notice that this parametrization will be well defined at ũ = 0 since the vector field associated to the
Hamiltonian (2.3) is not singular at r = I2mrh(0) ̸= 0.

Lemma 2.4.15. The parametrization ηIm ◦Wu ◦h : (Du,flow
κ1

∩Du
κ)×Tρ1 ×Tσ2

→ C6 obtained in Lemma
2.4.14 can be extended analitically to a parametrization Wu : Du,flow

κ1
×Tρ1 ×Tσ1 → C6 of the form (2.78)

which satisfies (2.79) and such that

|Im|2(ln(|Im|)−1∥Rflow∥0,0,ρ1 , |Im|−1/2 ∥Ωflow∥0,0,ρ1 , |Im|−1 ∥Yflow∥0,0,ρ1 , |Im|−3/2∥Jflow∥0,0,ρ1 ≲ |Im|−3,

where the norm ∥·∥0,0,ρ is as in (2.58) but referred to the domain Du,flow
κ1

.

The proof of this lemma follows the same lines as the proof of Proposition 5.20 in [GMS16]. Finally,
we come back to the graph parametrization. To that end, for suitable κ2 > κ1, ρ2 < ρ1, σ2 < σ1, we
define the domain

D̃u
κ2

= {u ∈ C : |Imu| ≤ − tanβ1Reu+ 1/3− κ2|Im|−3, |Imu| ≤ tanβ2Reu+ 1/6− κ2|Im|−3,

|Imu| ≥ − tanβ2Reu+ 1/6 + κ2|Im|−3}
(2.82)

which is at distance ∼ O(1) from u = 0 and verifies D̃u
κ2

⊂ Du,flow
κ1

(see Figure 2.4.3).

Lemma 2.4.16. Let Wu be the parametrization obtained in Lemma 2.4.15, which is of the form (2.78).
Let ∥·∥0,0,ρ be as in (2.58) but referred to the domain D̃u

κ2
. Then, there exists an analytic change of

coordinates g = (ũ+ gu(ũ, β̃, t), β̃ + gβ(ũ, β̃, t), t) such that

∥gu∥0,0,ρ ≲ |Im|−4 ∥gβ∥0,0,ρ ≲ |Im|−5/2,

and such that η−1
Im

◦Wu◦g constitutes the unique analytic extension, to the domain (u, β, t) ∈ D̃u
κ2
×Tρ2×Tσ,

of the Lagrangian graph parametrization Wu associated to the function T u obtained in Theorem 2.4.8.

The proof of this lemma follows the same lines as the proof of Proposition 5.21 in [GMS16]. In
conclusion, we have proven the existence of the analytic continuation of the unstable generating function
T u to the domain (see Figure 2.4.3)

Dκ2
= {u ∈ C : |Imu| ≤ − tanβ1Reu+ 1/3− κ2|Im|−3, |Imu| ≤ tanβ1Reu+ 1/3− κ2|Im|−3,

|Imu| ≥ − tanβ2Reu+ 1/6 + κ2|Im|−3}.
(2.83)

Indeed, introducing the Banach spaces

Yν,ρ =
{
h = {h[l]}l∈Z : h

[l] : Dκ2
× Tρ → C is analytic for all l ∈ Z and ∥h∥ν,ρ <∞

}
, (2.84)

where ∥·∥ν,ρ is the Fourier sup norm

∥h∥ν,ρ =
∑
l∈Z

∥h[l]∥ν,ρ,le−|l|σ ∥h[l]∥ν,ρ,l = sup
(u,β)∈Dκ2

×Tρ

∣∣∣(u− i/3)ν+l/2(u+ i/3)ν−l/2h[l](u, β)
∣∣∣ (2.85)

(notice that the weight uη becomes now meaningless since Dκ2
is bounded), the following proposition,

which extends the domain of definition of the function element T u in Theorem 2.4.8, holds.

Proposition 2.4.17. There exist κ2, σ2, ρ2 > 0 and I∗ > 0 such that for ϵ ∈ (0, I−3
∗ ) and Iu, Is with

Im ∈ Λρ2,I , and |Iu − Is| ≤ ϵ|Im|−4, there exists T u ∈ Y1/2,ρ2 which constitutes the unique analytic
continuation to (u, β, t) ∈ Dκ2

× Tρ2 × Tσ2
of the function obtained in Theorem 2.4.8. Moreover, in this

domain
∥T u∥1/2,ρ2 ≲ |Im|−3 and ∥T u − Lu∥1,ρ2 ≲ |Im|−7,

where Lu is the unstable half Melnikov potential defined in (2.60). In addition, we have that

∥T u − T u
circ − (Lu − Lu

circ)∥1,ρ2 ≲ ϵ|Im|−7

where T u
circ is defined in (2.51) and Lu

circ(u, t− β; Im) = Lu(u, β, t; Im, 0).

50



Figure 2.7: The domain Dκ defined in (2.83).

2.4.4 The difference ∆S between the generating functions of the invariant
manifolds

In Theorem 2.4.8 we have proved that, for suitable κ, σ > 0 and ρ > 0, the formal Fourier series T u

(see Remark 2.4.3) in the parametrization (2.19) of the unstable manifold of the torus TIu is uniformly
O(|Im|−7) approximated in X1/3,1/2,ρ, by the half Melnikov potential Lu introduced in (2.60). Moreover,
in Proposition 2.4.17 we have shown that T u admits a unique analytic continuation to the domain
(u, β, t) ∈ Dκ2

× Tρ2 × Tσ2
for suitable κ2 > κ, ρ2 < ρ and σ2 < σ.

The very same argument in the proof of Theorem 2.4.8 shows the stable counterpart for the formal
Fourier series T s on the domain (u, β, t) ∈ Ds

κ × Tρ × Tσ where Ds
κ = {u ∈ C : − u ∈ Du

κ}. Moreover,
denoting by X s

1/3,1/2,ρ the associated Banach space for formal Fourier series defined on Ds
κ×Tρ×Tσ, T s

is uniformly O(|Im|−7) approximated in X s
1/3,1/2,ρ by the stable half Melnikov potential

Ls(u, β, t; Im, ϵ) =

∫ 0

+∞
V (u+ s, β, t+ I3ms; Im, ϵ)ds. (2.86)

Since Dκ2 ⊂ Ds
κ, we can now analyze the difference between the generating functions of the stable and

unstable manifolds (see equation (2.20) and the discussion below it)

∆S = Su − Ss = ⟨δu − δs, q⟩+ T u − T s (2.87)

on the common domain q = (u, β, t) ∈ Dκ2
× Tρ2 × Tσ2

. For the sake of clarity in the forthcoming
arguments, we summarize in Theorem 2.4.18 the previous discussion. We denote by

∆Scirc(u, t− β; Im) ≡ T u
circ(u, t− β; Im)− T s

circ(u, t− β; Im). (2.88)

Theorem 2.4.18. There, there exist κ2, σ2, ρ2 > 0 and I∗ > 0 such that for ϵ ∈ (0, I−3
∗ ) and Iu, Is with

Im ∈ Λρ2,I and |Iu − Is| ≤ ϵ|Im|−4, the difference ∆S = Su − Ss defined in (2.20) satisfies ∆S ∈ Y1/2,ρ2

and
∥∆S − ⟨δu − δs, q⟩ − L̃∥1/2,ρ2 ≲ |Im|−7,

where the norm ∥·∥ν,ρ is defined in (2.85) and the Melnikov potential L̃ is defined in (2.50). Moreover,
we have

∥∆S −∆Scirc − (⟨δu − δs, q⟩+ L̃− L̃circ)∥1,ρ2 ≲ ϵ|Im|−7,

where ∆Scirc is defined in (2.88) and L̃circ is defined in (2.53).

We now recall that the aim of Section 2.4 is to show that the existence of nondegenerate critical points
of the function ⟨(δu − δs), q⟩+ L̃ implies the existence of critical points of the function q → ∆S. Namely,
our goal is to prove Theorem 2.3.9. As first step, we provide a proof of Proposition 2.3.8. With that
objective we state the following lemma, whose proof is given in Appendix 5.C.
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Lemma 2.4.19. Let ρ0 > 0 be given in Lemma 2.4.7. Then, there exists I∗ > 0 such that for ϵ ∈ (0, I−3
∗ )

and Im ∈ Λρ0,I , the Melnikov potential L̃ defined in (2.50) is an analytic function of all its arguments
(real analytic if Im ∈ R) and can be expressed as the absolutely convergent series

L̃(u, β, t; Iu, Is, ϵ) =
∑
l∈N

Ll(t− I3mu, β; Im, ϵ),

where, writing σ = t− I3mu,

• L0(β; Im) = µ(1− µ)
(
L0,0(Im, ϵ) + L0,1(Im, ϵ) cosβ + E0(β; Im, ϵ)

)
with

L0,0(Im, ϵ) =
π

2I3m

(
1 +O(|Im|−4, ϵ−2)

)
L0,1(Im, ϵ) =− (1− 2µ)

15πϵ

8I3m

(
1 +O(|Im|−4, ϵ−2)

)
|E0(β; Im, ϵ)| ≲ϵ2|Im|−7,

• L1(σ, β; Im, ϵ) = µ(1− µ)
(
2L1,1(Im, ϵ) cos(σ − β) + 2L1,2(Im, ϵ) cos(σ − 2β) + E1(σ, β; Im, ϵ)

)
with

2L1,1(Im, ϵ) =(1− 2µ)

√
π

8Im

(
1 +O(|Im|−1, ϵ−2)

)
exp(−I3m/3)

2L1,2(Im, ϵ) =− 3ϵ
√
2πI3m

(
1 +O(|Im|−1, ϵ−1)

)
exp(−I3m/3)

|E1(σ, β; Im, ϵ)| ≲ϵ(|Im|−3/2 + ϵ|Im|5/2) exp(−I3m/3),

(2.89)

• The sum of the higher coefficients

L≥2(u, β, t; Im) =
∑
l≥2

Ll(σ, β; Im, ϵ)

satisfies the estimate
|L≥2| ≲ |Im|3/2 exp(−2Re(I3m)/3).

Notice that the estimates in Theorem 2.4.8 only imply

|∂u∆(S − L̃)| ≲ |Im|−7

while
|∂uL̃| ∼ |Im|3/2 exp(−Re(I3m)/3).

The existence of critical points of ∆S as a consequence of the existence of nondegenerate critical points
of the function ⟨(δu − δs), q⟩+ L̃ is therefore not clear at the moment. This “mismatch” is caused by not
looking at the problem in the right set of coordinates. In Lemma 2.4.20 below, we prove the existence of
a change of variables (u, β, t) = Φ(v, θ, t) such that ∆S = ∆S ◦ Φ only depends on v and t through the
difference σ = t− I3mv. This fact is equivalent to ∆S ∈ KerL where L is the linear operator

L = ∂v + I3m∂t.

Then, in Lemma 2.4.21 it is shown that functions in Yν,ρ ∩ KerL (see (2.84)), present an exponential
decay in the size of their Fourier coefficients. Finally, this last property, together with the approximation
of ∆S by ⟨(δu − δs), q⟩+ L̃ in the norm (2.85), given in Theorem 2.4.18, are used to complete the proof
of Proposition 2.3.8.
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Lemma 2.4.20. There exists ρ3, I∗ > 0 such that for ϵ ∈ (0, I−3
∗ ) and Iu, Is with Im ∈ Λρ3,I and

|Iu − Is| ≤ ϵ|Im|−4, there exists an analytic change of variables of the form

(u, β, t) = Φ(v, θ, t) = (v + ϕv(v, θ, t), θ + ϕθ(v, θ, t), t)

with ϕv ∈ Y0,ρ3 , ϕθ ∈ Y1/2,ρ3 and ∥ϕv∥0,ρ3 ≲ |Im|−4, ∥ϕθ∥1/2,ρ3 ≲ |Im|−4, such that ∆S = ∆S◦Φ satisfies

L∆S = (∂v + I3m∂t)∆S = 0. (2.90)

Moreover, under the same hypotheses, there exists an analytic change of variables

(u, t− β) = Φcirc(v, t− θ) = (v + ϕv,circ(v, t− θ), θ + ϕθ,circ(v, t− θ))

with ϕv,circ ∈ Y0,ρ3 , ϕθ,circ ∈ Y1/2,ρ3 and ∥ϕv − ϕv,circ∥0,ρ3 ≲ ϵ|Im|−4, ∥ϕθ − ϕθ,circ∥1/2,ρ3 ≲ ϵ|Im|−4, such
that ∆Scirc = ∆Scirc ◦ Φcirc satisfies

∆Scirc(v, t− θ) = ∆Ŝcirc(t− θ − I3mv; Im), (2.91)

for some periodic function ∆Ŝcirc(t− θ − I3mv; Im).

Proof. Using that both Su,s satisfy the same Hamilton-Jacobi equation H(q,∇Su,s) = 0 it is an straight-

forward computation to check that ∆S is a solution to L̃∆S = 0 with

L̃ = (1 + (As +Au)) ∂u + (Bs +Bu)∂β + I3m∂t (2.92)

and where Au,s, Bu,s are defined as in (2.56). One can now check that ∆S ∈ KerL, if and only if, Φ
satisfies

Lϕv = (As +Au) ◦ Φ and Lϕβ = (Bs +Bu) ◦ Φ. (2.93)

In order to rewrite (2.93) as a fixed point equation for Φ we introduce the left inverse operator G for L
defined by the expression (here v+ and v− are the top and bottom points and v0 is any real point in the
domain Dκ2

defined in (2.83)),

G(h) =
∑
l∈Z

G[l](h) (2.94)

with

G[l](h) =

∫ 0

v+−v
h[l](v + s, θ)eilI

3
msds for l > 0

G[0](h) =

∫ 0

v0−v
h[0](v + s, θ)ds for l = 0

G[l](h) =

∫ 0

v−−v
h[l](v + s, θ)eilI

3
msds for l < 0.

Therefore, it is enough to look for Φ satisfying

ϕv = G((As +Au) ◦ Φ) and ϕθ = G((Bs +Bu) ◦ Φ).

The proof of the first part of the lemma now follows from a standard fixed point argument along the
lines (but considerably simpler) of the proof of Lemma 2.4.12 (see also Theorem 6.3 in [GMS16]). In
particular, the proof is easily completed using the estimates

∥Au,s∥1/2,ρ ≲ |Im|−4 ∥Bu,s∥3/2,ρ ≲ |Im|−4,

which are obtained in an straightforward manner from Proposition 2.4.17 and the discussion at the
beginning of Section 2.4.4 by taking, for example, ρ3 ≤ ρ2/2. To deal with compositions, we make use of
a natural extension of Lemma 2.4.6 which allows to treat also changes of variables in v (details can be
found in [GMS16]).
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We now prove the second part of the lemma. Introduce the angle ξ = t−β, and write ∆Scirc(u, ξ; Im).

Therefore, ∆Scirc is a solution to L̃circ∆Scirc = 0 where

L̃circ = (1 + (As
circ +Au

circ)) ∂u + (I3m −Bs
circ −Bu

circ)∂ξ (2.95)

and Au,s
circ, B

u,s
circ are defined in (2.77). Thus, ∆Scirc ∈ KerL, if and only if, Φ̃circ(v, ξ̃) ≡ (v+ϕv,circ(v, ξ̃), ξ̃−

ϕθ,circ(v, ξ̃)) satisfies

Lϕv,circ = (As
circ +Au

circ) ◦ Φ̃circ and Lϕθ,circ = (Bs
circ +Bu

circ) ◦ Φ̃circ.

The lemma follows using the estimates (see the proof of Theorem 2.4.8)

∥Au,s −Au,s
circ∥1/2,ρ ≲ ϵ|Im|−4 ∥Bu,s −Bu,s

circ∥3/2,ρ ≲ ϵ|Im|−4.

The following lemma gives the exponential decay of the Fourier coefficients for functions in Yν,ρ∩KerL
(see also Lemma 6.7 in [GMS16])

Lemma 2.4.21. Fix ν, ρ ≥ 0 and let h ∈ Yν,ρ be such that h ∈ KerL. Then h can be written as

h(v, θ, t) =
∑
l∈Z

Λ[l](θ)eil(t−I
3
mv)

and, for some C > 0 independent of ∥h∥ν,ρ and Im,

sup
θ∈Tρ

|Λ[l](θ)| ≲∥h∥ν,ρ (C|Im|)3(ν+|l|/2) exp(−|l|Re(I3m)/3).

Proof. Write

h(v, θ, t) =
∑
l∈Z

h[l](v, θ)eilt.

Since h ∈ KerL
h(v, θ, t) =

∑
l∈Z

Λ[l](θ)eil(t−I
3
mv),

where Λ[l](θ) = h[l](v, θ)eilI
3
mv is independent of v. For l > 0, we evaluate at v+ = i(1/3− κ|Im|−3) and

use that
∥h[l]∥ν,ρ ≤ |Im|3|l|/2∥h∥ν,ρ

to obtain that

|Λ[l]| ≤|Im|3ν∥h[l]∥ν,ρ exp(−|l|Re(I3m)(1/3− κ|Im|−3))

≤∥h∥ν,ρ (C|Im|)3(ν+|l|/2) exp(−|l|Re(I3m)/3)

for some C > 0. The result for l < 0 is obtained analogously evaluating at v− = −i(1/3− κ|Im|−3).

We now have all the ingredients to complete the proof of Proposition 2.3.8.

Remark 2.4.22. In the following, we rename as ρ the constant ρ3 > 0 which was obtained in Lemma
2.4.20.

Proof of Proposition 2.3.8. Recall that L̃, which was defined in (2.50), satisfies

L̃(u, β, t; Im, ϵ) = L(t− I3mu, β; Im, ϵ),

where L(σ, β; Im, ϵ) was defined in (2.24). Let q̃ = (v, θ, t). Since E = ∆S − ⟨(δu − δs), q̃⟩ − L̃ ∈ KerL,
and E ∈ Y1/2,ρ, it is enough to estimate ∥E∥1/2,ρ and apply Lemma 2.4.21. To that end, we write

E = E1 + E2
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with E1 = ∆S−⟨δu− δs, q̃⟩− L̃, and E2 = ∆S −∆S. Using that |δu,s| ≲ ϵ|Im|−4, the estimate for ∥ϕθ∥0,ρ
in Lemma 2.4.20 and the estimate for ∆S − ⟨δu − δs, q⟩ − L̃ in Theorem 2.4.18 we obtain

∥E1∥1/2,ρ ≲ |Im|−7.

In order to bound E2, it follows from the mean value theorem, the estimates for ∥Su,s∥3/2,ρ, which can be
deduced from Proposition 2.4.17 and the analogous version for T s (see the discussion at Section 2.4.4),
and the estimates for∥ϕv∥0,ρ, ∥ϕθ∥1/2,ρ in Lemma 2.4.20, that

∥E2∥1/2,ρ ≲ |Im|−11/2.

Applying Lemma 2.4.21, we obtain that

∆S − ⟨δu − δs, q̃⟩ − L̃ =
∑
l∈Z

E [l](θ)eil(t−I
3
mv) (2.96)

where, there exists some C > 0, such that for l ̸= 0,

sup
θ∈Tρ

|E [l](θ)| ≲(C|Im|)3(1+|l|)/2∥E∥1/2,ρ exp(−|l|Re(I3m)/3)

≲(C|Im|)−4+3|l|/2 exp(−|l|Re(I3m)/3)

as was to be shown.

Finally, we also state the following lemma which will prove useful in the proof, in Section 2.4.5, of
Theorem 2.3.9.

Lemma 2.4.23. Define the function Ecirc(θ, σ; Iu, Is) given by

Ecirc = ∆S −∆Scirc − ((Iu − Is)θ + L− Lcirc) (2.97)

where ∆S and ∆Scirc are defined in Lemma 2.4.20, L is defined in (2.24) and Lcirc(σ − θ; Im) =
L(σ, θ; Im, 0). Then, we have that

∥Ecirc∥1/2,ρ ≲ ϵ|Im|−11/2.

Proof. We write Ecirc = Ecirc,1 + Ecirc,2 + Ecirc,3 + Ecirc,4 with

Ecirc,1 =
(
∆S −∆Scirc − (Iu − Is)β − (L̃− L̃circ)

)
◦ Φ

Ecirc,2 =∆Scirc ◦ Φ−∆Scirc

Ecirc,3 =− (Iu − Is)ϕθ

Ecirc,4 =− (L̃− L̃circ) + (L̃− L̃circ) ◦ Φ

On one hand, Theorem 2.4.18 implies that ∥Ecirc,1∥1,ρ ≲ ϵ|Im|−7. On the other hand, the estimates

∥∂v∆Scirc∥3/2,ρ, ∥∂β∆Scirc∥1/2,ρ ≲ |Im|−3,

which can be deduced from Theorem 2.4.18, and the estimates ∥ϕv − ϕv,circ∥0,ρ, ∥ϕθ − ϕθ,circ∥1/2,ρ ≲
ϵ|Im|−4 obtained in Lemma 2.4.20 imply that ∥Ecirc,2∥1/2,ρ ≲ ϵ|Im|−11/2. For the third term, since
|Iu − Is| ≲ ϵ|Im|−4, the estimate ∥ϕv∥0,ρ ≲ |Im|−4 in Lemma 2.4.20 shows that ∥Ecirc,3∥1/2,ρ ≲ ϵ|Im|−8.

Finally, since ∥∂v(L̃ − L̃circ)∥3/2,ρ, ∥∂β(L̃ − L̃circ)∥1/2,ρ ≲ ϵ|Im|−3, which can be deduced from Theorem

2.4.18, we obtain that ∥Ecirc,4∥1/2,ρ ≲ ϵ|Im|−11/2.
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2.4.5 The critical points of the function ∆S
In this section we use Lemma 2.4.19 and Proposition 2.3.8 to provide a proof of Theorem 2.3.9 and
Proposition 2.3.12.

Remark 2.4.24. Since we always assume that |Iu − Is| ≤ ϵ|Iu|−4, all the errors, which a priori depend
on both Iu, Is can be estimated in terms of the value of Iu alone. This is an arbitrary choice motivated
by the fact that, in the following, we take Iu as independent variable.

Proof of Theorem 2.3.9. Throughout the proof we will use the following notation. Let

K = {(θ, σ, Iu, Is) ∈ T2
ρ × Λ2

ρ,I : |Iu − Is| ≤ ϵ|Iu|−4}.

We look for zeros of the function

F (θ, σ, Iu, Is) ≡ (∂σ∆S, ∂θ∆S)(θ, σ; Iu, Is), (2.98)

which are of the form (θ, σ, Iu, Is) = (θ, σ±(θ, I
u), Iu, Is(θ, Iu)).

In order to obtain asymptotic formulas for the critical points, we divide the proof in two steps. First we
study the existence of critical points σ±,circ(θ, I

u) of the function ∆Scirc(σ, θ, I
u) = ∆Ŝcirc(σ− θ; Iu), and

then prove the existence of critical points of the function F which are ϵ close to (σ, Is) = (σ±,circ(θ, I
u), Iu).

Since for all (θ, σ, Iu, Is) ∈ K (see (2.89))

∂σLcirc(σ − θ; Iu) = µ(1− µ)(1− 2µ)

√
π

2Iu
exp(−(Iu)3/3) sin(σ − θ) +O(|Iu|−3/2 exp(−Re((Iu)3)/3))

and
|∂σ∆Scirc(σ, θ; I

u)− Lcirc(σ − θ; Iu)| ≲ |Iu|−5/2 exp(−Re((Iu)3)/3),

a direct application of the implicit function theorem shows that there exist non degenerate critical points

σ+,circ(θ, I
u) = θ +O(|Iu|−1) σ−,circ(θ, I

u) = θ + π +O(|Iu|−1) (2.99)

of the function ∂σ∆Scirc(σ, θ, I
u).

Therefore, to analyze the zeros of F , we write

∂σ∆S =∂σ∆Scirc + Eσ
∂θ∆S =(Iu − Is) + ∂θ(L− Lcirc) + Eθ,1 + Eθ,2

with

Eσ =∂σ(∆S −∆Scirc)

Eθ,1 =∂θ(∆S −∆Scirc − ((Iu − Is)θ + L− Lcirc))

Eθ,2 =∂θ∆Scirc

(2.100)

The existence of nondegenerate zeros of the function F (θ, σ, Iu, Is) will be a direct consequence of the
asymptotic formulas in Lemma 2.4.19, the estimates in Lemma 2.4.23 and the implicit function theorem.
The first step is to estimate the error terms Eσ, Eθ,1 and Eθ,2. We write Eσ = ∂σ(L− Lcirc) + Ecirc where
Ecirc has been defined in (2.97). Therefore, the asymptotic formulas in Lemma 2.4.19, the fact that
Ecirc ∈ KerL and the estimates in Lemma 2.4.23 imply that

|Eσ| ≲ ϵ|Iu|3/2 exp(−Re((Iu)3)/3).

The estimate in Lemma 2.4.23 implies that

|Eθ,1| ≲ ϵ|Iu|−11/2.

Moreover, since
|∂2σθ∆Scirc| ≲ |Iu|−1/2 exp(−Re((Iu)3)/3),
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if we define (for a sufficiently large, but fixed, C > 0)

K± = {(θ, σ, Iu, Is) ∈ K : |σ − σ±,circ(θ, I
u)| ≤ Cϵ|Iu|2}

we obtain that
sup

(θ,σ)∈K±

|Eθ,2| ≲ ϵ|Iu|3/2 exp(−Re((Iu)3)/3).

Therefore, in view of the asymptotic expression in Lemma 2.4.19

∂θ(L− Lcirc)(θ, I
u) = µ(1− µ)(1− 2µ)

15πϵ

8(Iu)5
sin θ +O(ϵ|Iu|−11/2), (2.101)

we take

σ̃±(θ, I
u) = σ±,circ(θ, I

u) Îs±(θ, I
u) = Iu + ∂θ(L− Lcirc)(θ, σ̃±(θ, I

u), Iu), (2.102)

where σ±,circ(θ, I
u) are defined in (2.99), as approximate solutions. Indeed, taking into account the

estimates for Eσ, Eθ,1 and Eθ,2 defined in(2.100), for all (θ, σ̃±, I
u, Îs±) ∈ K

F (θ, σ̃±, I
u, Ĩs) =

(
O(ϵ exp(−Re((Iu)3)/3)),O(ϵ|Iu|−11/2)

)
, (2.103)

and these estimates extend to (θ, σ, Iu, Is) ∈ K̃± ≡ {(θ, σ, Iu, Is) ∈ K± : |Is − Îs±| ≤ ϵ|Iu|−5}. Denote by

A± the differential of the map (σ, Is) 7→ F (θ, σ, Iu, Is) evaluated at (θ, σ̃±, I
u, Îs±). It is an straightforward

but tedious computation to check that the asymptotic expression in Lemma 2.4.19 and the estimates in
2.4.23 imply

A± =

(
±2µ(1− µ)L1,1 0

0 −1

)
+

(
O((|Iu|−5/2 + ϵ|Iu|3/2) exp(−Re((Iu)3)/3)) O(|Iu|3/2 exp(−Re((Iu)3)/3))

O(|Iu|−1/2 exp(−Re((Iu)3)/3)) O(|Iu|−7)

)
.

Therefore, a direct application of the Implicit function theorem, together with the fact that (see (2.89))

|L1,1| ∼ |Im|−1/2 exp(−Re((Iu)3)/3)),

yields the existence of I∗ ≫ 1 and

σ±(θ, I
u) = σ̃±(θ, I

u) +O(ϵ|Iu|2) Ĩs±(θ, I
u) = Îs±(θ, I

u) +O(ϵ|Im|−11/2) (2.104)

such that, for all (θ, Iu) ∈ Λρ = Tρ × Λρ,I , we have

F (θ, σ±(θ, I
u), Iu, Ĩs±(θ, I

u)) = 0.

It will be convenient for the proofs of Theorems 2.3.16 and 2.3.19, which will be given in Section
2.6, to state now the following more technical version of Theorem 2.3.9, which includes the asymptotic
formulas for the functions σ±(θ, I

u), Ĩs±(θ, I
u) obtained in the proof of Theorem 2.3.9 above.

Lemma 2.4.25. Let (θ, Iu) ∈ Λρ and let

(θ, Iu) 7→ (σ±(θ, I
u), Ĩs±(θ, I

u))

be the real analytic functions satisfying

∂σ∆S(σ±(θ, Iu), θ; Iu, Ĩs±(θ, Iu)) = 0 ∂θ∆S(σ±(θ, Iu), θ; Iu, Ĩs±(θ, Iu)) = 0,

which were obtained in Theorem 2.3.9. Then, for all (θ, Iu) ∈ Λρ we have

σ+ = θ +O(|Iu|−1), σ− = θ + π +O(|Iu|−1)

and
Ĩs±(θ, I

u) = Iu + ∂θL±(θ, I
u) +O(ϵ|Iu|−11/2),

where L±(θ, I
u) is the Melnikov potential defined in (2.38).
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Proof. The result for σ± is deduced from (2.99) and (2.104). We only have to prove the result for Ĩs±. In
the proof of Theorem 2.3.9 above, we have obtained that (see (2.102) and (2.104))

Ĩs±(θ, I
u) = Iu + ∂θ(L− Lcirc)(θ, σ±(θ, I

u); Iu) +O(ϵ|Iu|−11/2).

Let σ̃+(θ) = θ and σ̃−(θ) = θ + π. On one hand, since

|σ± − σ̃±| ≲ |Iu|−1,

from the asymptotic expression in Lemma 2.4.19, we obtain that, for all (θ, Iu) ∈ Λρ,

|∂θ(L− Lcirc)(θ, σ̃±(θ); I
u)− ∂θ(L− Lcirc)(θ, σ±(θ, I

u); Iu)| ≲ ϵ|Iu|3/2 exp(−Re((Iu)3/3)

and,
|∂σ(L− Lcirc)∂θσ̃±(θ, σ̃±(θ); I

u)| ≲ ϵ|Iu|3/2 exp(−Re((Iu)3/3),

and the lemma follows from the fact that Lcirc(σ̃±(θ)− θ; Iu) does not depend on θ.

We now finish this section with the proof of Proposition 2.3.12.

Proof of Proposition 2.3.12. For Iu, Is such that

|Is − Iu| ≤ µ(1− µ)(1− 2µ)15πϵ

16|Iu|5
,

we define

θ̃(Is, Iu) = sin−1

(
8(Iu)5(Is − Iu)

µ(1− µ)(1− 2µ)15πϵ

)
σ̃±(I

u, Is) = σ±,circ(θ̃(I
s, Iu), Iu).

where σ±,circ are defined in (2.99). Denoting by Ã± the differential of the map (σ, θ) 7→ F (θ, σ, Iu, Is),

where F is defined in (2.98), evaluated at (θ̃(Iu, Is), σ̃±(I
u, Is), Iu, Is), we obtain that

Ã± =

(
±µ(1− µ)L1,1 0

0 µ(1− µ)(1− 2µ) 15πϵ8I5 cos θ̃

)
+

(
O((|Iu|−5/2 + ϵ|Iu|3/2) exp(−Re((Iu)3)/3)) O(|Iu|−1/2 exp(−Re((Iu)3)/3))

O(|Iu|−1/2 exp(−Re((Iu)3)/3)) O(ϵ|Iu|−11/2)

)
,

and again, it follows from direct application of the Implicit function theorem the existence of a value I∗
(which might be different from the one obtained in the proof of Theorem 2.3.9) and functions

σ̂±(I
u, Is) = σ̃±(θ, I

u) = +O(ϵ|Iu|2) θ̂±(I
u, Is) = θ̃(Iu, Is) +O(ϵ|Iu|−11/2)

such that
F (θ±(I

u, Is), σ̂±(I
u, Is), Iu, Is) = 0

for all

(Iu, Is) ∈
{
(Iu, Is) ∈ C2 : Iu ∈ Λρ,I , |Is − Iu| ≤ µ(1− µ)(1− 2µ)15πϵ

16|Iu|5

}
.
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2.5 The generating functions of the scattering maps. Proof of
Theorem 2.3.13

As explained in Section 2.3.2, Theorem 2.3.9 implies the existence of two scattering maps P± : P∗
∞ → P∗

∞
(see (2.32)). In this section, we provide the rather technical proof of Theorem 2.3.13, in which we prove
the existence (and obtain an explicit expression) of a generating function for each of the scattering maps
P±.

Proof of Theorem 2.3.13. Consider the time T map ϕTHpol
of the Hamiltonian Hpol introduced in (2.3).

The transformation ϕTHpol
is exact symplectic and therefore there exists a function PT : Mpol → R such

that dPT = (ϕTHpol
)∗λ−λpol. The function (it is defined modulo constants) PT is known as the primitive

function associated to the exact symplectic map ϕTHpol
. It is a standard computation (see the proof of

Theorem 13 in [DdlLS08]) that (up to a constant)

PT =

∫ T

0

(iHpol
λpol +Hpol) ◦ ϕτHpol

dτ,

where iHpol
λpol denotes the contraction of the one form λpol = ydr + Gdα + Edt with the vector field

associated to the Hamiltonian Hpol. Now we obtain an expression for the primitive function associated
to the (exact symplectic) scattering maps P±. The natural candidate to consider as primitive function of
the scattering map P± defined in (2.32) would be (see Theorem 13 in [DdlLS08]) to consider the function
PT restricted to Γ±, which is given by

P̃±(φ
u, Iu) = lim

T→∞

∫ T

−T
iHpol

λpol ◦ ϕτHpol
◦ (Ωu)−1

± (φu, Iu) dτ, (2.105)

where we have already taken into account that Hpol ◦ ϕτHpol
◦ (Ωu)−1

± = 0 and that the dynamics in P∞
is trivial. However, the improper integral (2.105) is not convergent (Theorem 13 in [DdlLS08] is proved
for scattering maps associated to Normally Hyperbolic Invariant Manifolds, however, in the present case
the rate of contraction/expansion along the stable/unstable leaves of P∞ is only polynomial). Indeed,
for τ → ±∞ (see Lemma 2.2.1 and Proposition 2.3.6)

iHpol
λpol ◦ ϕτHpol

◦ (Ωu)−1
± (φu, Iu) =

(
y2 +

G2

r2

)
◦ ϕτHpol

◦ (Ωu)−1
± (φu, Iu)

∼I−2
m

(
y2h(τ) +

1

r2h(τ)

)
=

2

I2mrh(τ)
∼ τ−2/3.

Therefore, we consider instead the renormalized primitive function P± : P∗
∞ → R, defined as

P±(φ
u, Iu) =

∫
R

(
iHpol

λpol ◦ ϕτHpol
◦ (Ωu)−1

± (φu, Iu)−Q′(τ)
)
dτ, (2.106)

where Q(u) is any function satisfying Q′(u) = 2/I2mrh(u). We now want to express the integrand in
(2.106) in terms of the parametrizations (2.21). To that end we notice that

iHpol
λpol ◦ ϕτHpol

◦ (Ωu)−1
± =iHpol

λpol ◦ ϕτHpol
◦ ηIm ◦ (Ωu ◦ ηIm)−1

± = iHpol
λpol ◦ ηIm ◦ ϕτh ◦ (Ωu ◦ ηIm)−1

± .

Then, using Lemma 6.4.2 and the definition of Q,

iHpol
λpol ◦ ϕτHpol

◦ (Ωu)−1
± = iH(λ+ dQ+ Imdβ) ◦ ϕτh ◦ (Ωu ◦ ηIm)−1

±

where λ = Y du+Gdβ+Edt. Yet, the parametrization (2.21) is not defined at u = 0 so ϕτh ◦ (Ωu ◦ηIm)−1
±

might not be defined for all τ ∈ R . The rather simple solution to this annoyance goes as follows.
By Cauchy’s initial value theorem, the function ϕτHpol

◦ (Ωu)−1
± can be extended analitically to a real
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analytic function, which, by abuse of notation, we denote as τ 7→ ϕτHpol
◦ (Ωu)−1

± , defined in a complex
neighborhood of R and such that

d

dτ

(
ϕτHpol

◦ (Ωu)−1
±

)
= XHpol

◦ ϕτHpol
◦ (Ωu)−1

± ,

where XHpol
is the vector field associated to the Hamiltonian (2.3). Therefore, we can change the

integration path in the definition of P± to a complex path γ ⊂ C on the domain of analyticity of the
function τ 7→ ϕτHpol

◦ (Ωu)−1
± and such that 0 /∈ γ. Moreover, we can choose γ to also satisfy that (πu

denotes the projection onto the u component)

u(τ ;φu, Iu) ≡ πu

(
η−1
Im

◦ ϕτHpol
◦ (Ωu)−1

± (φu, Iu)
)
̸= 0 ∀τ ∈ γ. (2.107)

This is possible since (see the expresion (2.15) of the Hamiltonian H and Proposition 2.3.6) away from
u ̸= 0

d

dτ
πu ◦ ϕτh(u, β, t) = ∂YH ◦ ϕτH(u, β, t) = 1 +O(|Im|−5),

so by taking γ which does not enter a O(|Im|−5) neighborhood of τ = 0 we can guarantee that (2.107)
holds. Then,

P±(φ
u, Iu) =

∫
γ

iHpol
λpol ◦ ϕτHpol

◦ (Ωu)−1
± (φu, Iu)−Q′(τ) dτ

=

∫
γ

iH(λ+ dQ+ Imdβ) ◦ ϕτH ◦ (Ωu ◦ ηIm)−1
± (φu, Iu)−Q′(τ)dτ

(2.108)

is well defined. Moreover,

lim
T→∞

∫ T

−T
ihdQ ◦ ϕτH ◦ (Ωu ◦ ηIm)−1

± (φu, Iu)−Q′(τ) dτ

= lim
T→∞

∫ T

−T

d

dτ
(Q ◦ ϕτH ◦ (Ωu ◦ ηIm)−1

± )(φu, Iu)−Q′(τ) dτ

= lim
T→∞

(Q(u(T ;φu, Iu))−Q(T )) + (Q(−T )−Q(u(−T ;φu, Iu))).

We claim that this limit is zero. Indeed, from the expresion (2.15) of the Hamiltonian H and Proposition
2.3.6 we observe, that for large values of u,

d

dτ
u(τ ;φu, Iu) =

d

dτ
πu ◦ ϕτH ◦ (Ωu ◦ ηIm)−1

± (φu, Iu) = ∂YH ◦ ϕτH(Ωu ◦ ηIm)−1
± (φu, Iu)

=1 +O(|u(τ ;φu, Iu)|−2/3).

So for large T we have
|u(±T ;φu, Iu)∓ T )| = O(T 1/3).

Moreover, Q′(±T ) ∼ T−2/3 for T → ∞ so, by application of the mean value theorem

|Q(u(±T ;φu, Iu))−Q(±T )| ≲ Q′(±T )|u(±T ;φu, Iu)∓ T | ≤ O(T−1/3).

Therefore, expression (2.108) reduces to

P±(φ
u, Iu) =

∫
γ

(iHλ+ Imdβ) ◦ ϕτH ◦ (Ωu)−1
± (φu, Iu)dτ. (2.109)

Let now γu = γ|τ≤0, γ
s = γ|τ≥0 and introduce the functions

P u(u, β, t; Iu, Is) =

∫
γu

iH(λ+ Imdβ) ◦ ϕτh ◦Wu(u, β, t; Iu, Is)dτ

P s(u, β, t; Iu, Is) =

∫
γs

iH(λ+ Imdβ) ◦ ϕτh ◦Ws(u, β, t; Iu, Is)dτ,

60



where Wu,s are the parametrizations of the invariant manifolds introduced in (2.21). Therefore

P u(u, β, t; Iu, Is, ϵ) =

∫
γu

d

dτ
((Su + Imβ) ◦ ϕτh ◦Wu) (u, β, t; Iu, Is, ϵ)dτ

=Su(u, β, t; Iu, Is, ϵ) + Imβ − Iuφu(u, β, t; Iu, Is, ϵ)

P s(u, β, t; Iu, Is, ϵ) =

∫
γs

d

dτ
((Ss + Imβ) ◦ ϕτh ◦Ws) (u, β, t; Iu, Is, ϵ)dτ

=− Ss(u, β, t; Iu, Is, ϵ)− Imβ + Isφs(u, β, t; Iu, Is, ϵ),

(2.110)

where φu,s(u, β, t; Iu, Is, ϵ) denotes the asymptotic value of the α coordinate along the unstable or unstable
leave of a point in Wu or W s given by the parametrization (2.21). Notice that, in particular,

(P u + P s)(u, β, t; Iu, Is, ϵ) = ∆S(u, β, t; Iu, Is, ϵ) + Isφs(u, β, t; Iu, Is, ϵ)− Iuφu(u, β, t; Iu, Is, ϵ).

Let now (Iu, Is) ∈ RI (see (2.35)) and denote by φu,s
± (Iu, Is) the backwards and forward asymptotic

value of the β component along the heteroclinic orbit which passes through the heteroclinic point x± =
(u, β, t, Y, J, E) given by

x±(I
u, Is) =Wu ◦ Φ(−I3m(Iu, Is)σ̂±(Iu, Is), θ̂±(Iu, Is), 0; Iu, Is)

=Ws ◦ Φ(−I3m(Iu, Is)σ̂±(Iu, Is), θ̂±(Iu, Is), 0; Iu, Is),

where Φ(v, θ, t; Iu, Is, ϵ) is the change of variables obtained in Proposition 2.3.8 and σ̂±, θ̂± were obtained
in Proposition 2.3.12. That is,

P±(φ
u
±(I

u, Is), Iu) = (φs
±(I

u, Is), Is).

Then, using expression (2.110), we obtain that the primitive function in (2.109) can be expressed as

P±(φ
u
±(I

u, Is), Iu) =(P u + P s) ◦ Φ±(θ̂±(I
u, Is); Iu)

=S±(I
u, Is) + Isφs

±(I
u, Is)− Iuφu

±(I
u, Is),

where S± is the function defined in (2.36). The proposition plainly follows from the definition of primitive
function of an exact symplectic map. Indeed

dS± = dP± − Isdφs
± − φs

±dI
s + Iudφu

± + φu
±dI

u = φu
±dI

u − φs
±dI

s.

2.6 Asymptotic analysis of the scattering maps

In this section we prove Theorems 2.3.16 and 2.3.19. Namely, we establish an asymptotic formula for the
scattering maps defined in (2.32) and for their difference in terms of the reduced Melnikov potentials L±
defined in (2.38). Let ηIm be the change of variables defined in (2.14), consider the function Ĩs±(θ, I

u)
obtained in Theorem 2.3.9 (see also Lemma 2.4.25), let Φ± be the map defined in (2.28) and let Ωu

± be
the wave maps introduced in (2.30). By the expressions (2.33) for the wave maps, it follows that for all
(φu, Iu) ∈ P∗

∞, the G coordinate of the scattering map P± is given by

Is±(φ
u, Iu) = Ĩs± ◦ (Ωu

± ◦ ηIm ◦ Φ±)
−1(φu, Iu).

2.6.1 The wave maps and their difference

Let
φu = Θ(u, β, t; Iu, Is, ϵ) ≡ β + ϑ(u, β, t; Iu, Is, ϵ) (2.111)
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be the map which to q = (u, β, t) associates the backward asymptotic β component along the leave of the
unstable foliation which passes through the point Wu(q; Iu, Is, ϵ). The map (2.111) is indeed the inverse
of the map Ψ∞ = Id + ψ∞ in (2.76) and therefore (the norm J·Kη,ν,ρ is defined in (2.59))

JϑK1/3,1/2,ρ ≲ |Iu|−29/8. (2.112)

Remark 2.6.1. A more refined analysis of the first step in the iterative process carried out in Sections
2.4.2 and 2.4.2 shows that the map Ψ∞ = Id + ψ∞ in (2.76) satisfies indeed Jψ∞K1/3,1/2,ρn ≲ |Iu|−4

and consequently JϑK1/3,1/2,ρ ≲ |Iu|−4. Performing this extra step would complicate unnecessarily the
iterative process in Sections 2.4.2 and 2.4.2. Therefore we continue our discussion making use of the
rougher estimate (2.112) which is sufficient for our purposes.

Let now Φ± be the change of coordinates defined in (2.28) and σ±, Ĩ
s
± be the functions obtained in

Theorem 2.3.9. Define now the maps
Ω̃u

± = Ωu
± ◦ ηIm ◦ Φ± (2.113)

where Ωu
± are the backward wave maps introduced in (2.30). By construction

Ω̃u
±(θ, I

u) =
(
θ + (ϑ ◦ Φ±)(θ, I

u) + ϕθ(−I3m(Iu, Ĩs±(θ, Iu))σ±(θ, Iu)), θ, 0; Iu, Ĩs±(θ, Iu)), Iu
)

(2.114)

where Φ = (v + ϕv, θ + ϕθ, t) was defined in Lemma 2.4.20. In this section we show that Ω̃u
± is a

O(|Im|−29/4)-close to identity map and show that the difference between the map Ω̃u
+ and Ω̃u

− is expo-
nentially small. To do so we will show that the function

Υ = ϑ ◦ Φ+ ϕθ (2.115)

is the sum of a function Υhom ∈ KerL and a function which vanishes when evaluated at (θ, σ±(θ, I
u), Iu, Ĩs±(θ, I

u)).
By construction, if we denote by XH the vector field associated to the Hamiltonian (2.15) and write

Xu
H = (Xu

H,u, X
u
H,β , X

u
H,t) = (XH,u ◦Wu, XH,β ◦Wu, I3m),

then Θ, defined in (2.111), conjugates the vector field

u̇ = Xu
H,u ◦Θ−1 φ̇u = 0 ṫ = I3m

to the vector field Xu
h . That is, Θ

−1 straightens the dynamics in the φu component. It is straightforward
to check that this conjugacy is equivalent to the fact that, ϑ defined in (2.111), solves

Luϑ = −Xu
H,β (2.116)

with
Lu = Xu

H,u∂u +Xu
H,β∂β + I3m∂t

Notice now that
Xu
H,u = 1 + 2Au Xu

H,β = 2Bu,

where Au and Bu are the functions defined in (2.56). Therefore, denoting by L̃ the differential operator
defined in (2.92) one can rewrite (2.116) as

L̃ϑ =− 2Bu + (As −Au) ∂uϑ+ (Bs −Bu) ∂βϑ.

It now follows from the definition of Φ in Lemma 2.4.20 that Υ, defined in (2.115), solves

LΥ =

(
(Au −As)∂uϑ+ (Bs −Bu) (1 + ∂βϑ)

)
◦ Φ. (2.117)

Write Φ−1 = (u + ϕ̃u, β + ϕ̃β , t). Thus, from the definition of Au,s and Bu,s, expression (2.117) can be
rewritten as

LΥ = F∂v∆S +G∂θ∆S
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where ∆S is defined in (2.23),

F = f(1 + ∂vϕ̃u) + g∂vϕ̃β G = g(1 + ∂βϕ̃β) + f∂βϕ̃v

and

f = − 1

2y2hr
2
hIm

(
1 + ∂βϑ− r2h∂uϑ

)
g =

1

y2hr
3
hIm

(
1 + ∂βϑ− r−1

h ∂uϑ
)

Let G be the left inverse operator for L defined in (2.94). Since ∆S ∈ KerL (and ∂v∆S, ∂θ∆S too),

L (G(F )∂v∆S + G(G)∂θ∆S) = F∂v∆S +G∂θ∆S

and hence,
Υ = Υhom + G(F )∂v∆S + G(G)∂θ∆S

for some function Υhom ∈ KerL. Define now

Υ±(θ, I
u) = Υ(−I−3

m (Iu, Ĩs±(θ, I
u))σ±(θ, I

u), θ, 0; Iu, Ĩs±(θ, I
u)) (2.118)

where σ±(θ, I
u), Ĩs±(θ, I

u) are the functions obtained in Theorem 2.3.9. Then, the functions Ω̃± defined
in (2.113) satisfy

Ω̃±(θ, I
u) = (θ +Υ±(θ, I

u), Iu). (2.119)

Lemma 2.6.2. For all (θ, Iu) ∈ Λρ,

|Υ±| ≲ |Iu|−29/8 and |Υ+ −Υ−| ≲ |Iu|−5/8 exp(−Re((Iu)3))/3).

Proof. Taking into account the estimate for ϕθ in Lemma 2.4.20 and the estimate (2.112) (the norm ∥·∥ν,ρ
is defined in (2.85))

∥Υ∥1/2,ρ ≤ ∥ϑ∥1/2,ρ + ∥ϕθ∥1/2,ρ ≲ |Iu|−29/8,

which implies the first estimate. In order to prove the result for the difference we only need to estimate

∥Υhom∥1/2,ρ = ∥Υ− G(F )∂v∆S − G(G)∂θ∆S∥1/2,ρ .

Indeed, since ∂v∆S(σ±(θ, Iu), θ; Iu, Ĩs±(θ, Iu), ϵ) = ∂θ∆S(σ±(θ, Iu), θ; Iu, Ĩs±(θ, Iu), ϵ) = 0, it follows from
Lemma 2.4.21

|Υ+ −Υ−| ≤ 2 |(Id− π0)Υhom| ≲ |Iu|3 ∥Υhom∥1/2,ρ exp(−Re((Iu)3)/3).

To estimate ∥Υhom∥1/2,ρ, one can check from the definition of F,G and the estimates for ∥∆S∥1/2,ρ which
can be deduced from Theorem 2.4.18 that

∥G(F )∂v∆S∥1/2,ρ ≲|Iu|−1∥∂v∆S∥3/2,ρ ≲ |Iu|−4

∥G(G)∂θ∆S∥1/2,ρ ≲|Iu|−1∥∂θ∆S∥1,ρ ≲ |Iu|−4

and the proof is completed.

Remark 2.6.3. From now on we will decrease the value of ρ > 0 without mentioning.
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2.6.2 Proof of Theorem 2.3.16

From the definition of the scattering maps P±(φ
u, Iu) = (φs

±, I
s
±) in (2.32), the expressions (2.33) for the

wave maps Ωu
± and Ωs

± , and the definition of Ω̃± in (2.113)

Is± = Ĩs± ◦ (Ω̃±)
−1.

We then write

Is± = Iu + ∂θL± + (Ĩs± − (Iu + ∂θL±)) ◦ (Ω̃±)
−1 + ((Iu + ∂θL±) ◦ (Ω̃±)

−1 − (Iu + ∂θL±)).

Therefore, from Lemma 2.4.25, we obtain that for all (φu, Iu) ∈ Λρ

|(Ĩs± − (Iu + ∂θL±)) ◦ (Ω̃±)
−1| ≲ ϵ|Iu|−11/2.

Also, from the estimates of the Melnikov potential L given in Lemma 2.4.19, the expression (2.119) for

Ω̃± and the estimate for Υ± in Lemma 2.6.2, we deduce that, for all (φu, Iu) ∈ Λρ,

|(Iu + ∂θL±) ◦ (Ω̃±)
−1 − (Iu + ∂θL±)| ≲ ϵ|Iu|−69/8.

Combining both estimates
|Is± − (Iu + ∂θL±)| ≲ ϵ|Iu|−11/2.

The result
|φs

± − (φu − ∂IuL±)| ≲ |Iu|−7

has already been proved in [GSMS17] (see also the proof of Proposition 2.6.5).

Remark 2.6.4. In [GSMS17] the authors consider the case 0 ≤ ϵ ≤ exp(−Re(Iu)3/3)), however, since
both the main term in the asymptotic expansion and the error come from the circular part, the result
holds for 0 ≤ ϵ < 1).

2.6.3 Proof of Theorem 2.3.19

We now derive asymptotic formulas for the difference between the components of each of the maps P+

and P− defined in (2.32), thus completing the proof of Theorem 2.3.19.

Let Ĩs±(θ, I
u) be the functions obtained in Theorem 2.3.9, let σ̂±(I

u, Is), θ̂±(I
u, Is) be the functions

obtained in Proposition 2.3.12, denote by Ξ± be the maps

(Iu, Is) 7→ Ξ±(I
u, Is) = (θ̂±(I

u, Is), Iu) (2.120)

and define the function (see Proposition 2.3.13)

S±(I
u, Is) =∆S(σ̂±(Iu, Is), θ̂±(Iu, Is); Iu, Is).

Then, it follows from Proposition 2.3.13 that, for (φu, Iu) ∈ P∗
vert = P∗

∞∩{π/8 ≤ φu ≤ π/4} (see Remark
2.3.21) the scattering maps P± : (φu, Iu) 7→ (φs

±, I
s
±) are given by the implicit expression

(φu, Iu) 7→ (φu + (∂IuS± + ∂IsS±) ◦ (Ωu
± ◦ ηIm ◦ Φ± ◦ Ξ±)

−1, Ĩs± ◦ (Ωu
± ◦ ηIm ◦ Φ±)

−1). (2.121)

Proposition 2.6.5. Let L±(θ, I
u) be the reduced Melnikov potentials introduced in (2.38). Then, there

exists I∗ > 0 such that

• For all (θ, Iu) ∈ Λ (see (2.10)),

|(Ĩs+ − Ĩs−)(θ, I
u)− ∂θ(L+ − L−)(θ, I

u)| ≲ ϵ(Iu)−5/2 exp(−(Iu)3)/3) (2.122)
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• For all (θ, Iu) ∈ [π/8, π/4]× {Iu ≥ I∗} ⊂ Dom(Ξ−1
± ), we have

|(∂IuS+ + ∂IsS+ − ∂IuL+) ◦ Ξ−1
+ −(∂IuS− + ∂IsS− − ∂IuL−) ◦ Ξ−1

− |
≲ (Iu)−1/2 exp(−(Iu)3)/3).

(2.123)

Proof. We first check (2.122). To do so, we write

∂σ∆S =∂σ∆Scirc + ∂σ(L− Lcirc) + Eσ
∂θ∆S =∂θ∆S [0] + ∂θ ((Id− π0)(L− Lcirc)) + ∂θ ((Id− π0)∆Scirc) + Eθ,

where Eσ = ∂σEcirc, Eθ = ∂θ ((Id− π0)Ecirc) and Ecirc has been defined in (2.97). Let now σ̂±(θ, I
u, Is)

and Îs(θ, Iu) be such that

∂σ∆S(θ, σ̃±(θ, Iu, Is), Iu, Is) = 0 (∂θ∆S)[0](θ, Iu, Îs(θ, Iu)) = 0.

One expects that the solution (σ, Is) = (σ±(θ, I
u), Ĩs±(θ, I

u)) to (∂σ∆S, ∂θ∆S) = 0 is close to (σ, Is) =

(σ̂±(θ, I
u, Îs(θ, Iu)), Îs(θ, Iu)). The main term in the correction of the solution to the second equation of

the system (∂σ∆S, ∂θ∆S) = 0 is given by the term

∂θ ((Id− π0)(L− Lcirc)) (θ, σ̂±(θ, I
u, Is); Iu, Îs(θ, Iu), ϵ)+∂θ ((Id− π0)∆Scirc) (θ, σ̂±(θ, I

u, Îs(θ, Iu)); Iu, Is).
(2.124)

Therefore, using the fact that ∆Scirc(θ, σ; I
u, Is) = ∆Ŝcirc(σ−θ; Iu, Is) and the definition of σ̂±(θ, I

u, Is),
the term (2.124) can be expressed as

∂θ ((Id− π0)(L− Lcirc)) (θ, σ̂±(θ, I
u, Is); Iu, Îs(θ, Iu), ϵ) + ∂σ(L− Lcirc)(θ, σ̂±(θ, I

u, Îs(θ, Iu)); Iu, Is, ϵ)

+ Eσ(θ, σ̂±(θ, Iu, Is); Iu, Îs(θ, Iu), ϵ).

It follows from the fact that Lcirc = Lcirc(σ − θ, Iu) and the definition of L±(θ, I
u; ϵ) that

∂θL±(θ, I
u; ϵ) = ∂θ ((Id− π0)(L− Lcirc)) (θ, σ̃±(θ); I

u, ϵ) + ∂σ(L− Lcirc)(θ, σ̃±(θ); I
u, ϵ),

where
σ̃+(θ) = θ σ̃+(θ) = θ + π.

Then, the asymptotic formula (2.122) follows from the estimates

|Eσ|, |Eθ| ≲ ϵ|Iu|−5/2 exp(−Re((Iu)3/3))

the fact that
|σ̃(θ)− σ̂(θ, Iu, Îs(θ, Iu)| ≲ |Iu|−1,

and Lemma 2.4.19.
We now prove the asymptotic formula (2.123). Let Φ± be defined in (2.28) and Ξ± be defined in

(2.44). Then, using that
(∂σ∆S) ◦ Φ± ◦ Ξ± = (∂θ∆S) ◦ Φ± ◦ Ξ± = 0

we have

∂IuS± + ∂IsS± =∂Iu(∆S ◦ Φ± ◦ Ξ±) + ∂Is(∆S ◦ Φ± ◦ Ξ±) = (∂Iu∆S + ∂Is∆S) ◦ Φ± ◦ Ξ±

=(∂IuL̃+ ∂IsL̃) ◦ Φ± ◦ Ξ± + EI

where L̃ is the Melnikov potential defined in (2.50), and

EI = (∂Iu(∆S − L̃) + ∂Is(∆S − L̃)) ◦ Φ± ◦ Ξ±.
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It follows from the estimate

|(Id− π0)(∆S − L̃)(θ, σ; Iu, Is, ϵ)| ≲ (Iu)−5/2 exp(−(Iu)3/3)

in Proposition 2.3.8, that for all (θ, Iu) ∈ Λ

|(Id− π0)∂Iu,s(∆S − L̃)(θ, σ; Iu, Is, ϵ)| ≲ (Iu)−1/2 exp(−(Iu)3/3).

so
|EI(θ, σ; Iu, Is, ϵ)| ≲ (Iu)−1/2 exp(−(Iu)3/3).

Therefore, it follows from the definition of Φ±(θ, I
u) that

|EI ◦ Φ+ − EI ◦ Φ−| ≲ (Iu)−1/2 exp(−(Iu)3/3),

for all (θ, Iu) ∈ Λ and the asymptotic formula (2.123) is inmediate.

Finally, we complete the proof of Theorem 2.3.19.

Proof of Theorem 2.3.19. We write

Is+ − Is− = (Ĩs+ − Ĩs−) ◦ (Ω̃+)
−1 + E1 with E1 = Ĩs− ◦ (Ω̃+)

−1 − Ĩs− ◦ (Ω̃−)
−1

and the result for the G component follows using that Ω̃±(θ, I
u) = (θ +Υ±(θ, I

u), Iu) and the estimate
|Υ+ −Υ−| ≲ |Iu|−5/8 exp(−Re((Iu)3)/3) given in Lemma 2.6.2. Indeed by the mean value theorem

|E1| =|Ĩs− ◦ (Ω̃+)
−1 − Ĩs− ◦ (Ω̃−)

−1| ≲ sup
θ∈Tρ

|∂θ Ĩs−||Υ+ −Υ−| ≲ ϵ(Iu)−45/8 exp(−(Iu)3/3),

where we have used that for all (θ, Iu) ∈ Λρ

|∂θ Ĩs−| ≲ |∂2θθL−| ≲ ϵ(Iu)−5.

We now study the angular component, which for (φu, Iu) ∈ Λvert, is given by

φs
+ − φs

− = ((∂IuS+ + ∂IsS+) ◦ Ξ−1
+ − (∂IuS− + ∂IsS−) ◦ Ξ−1

− ) ◦ Ω̃−1
+ + E2,

where

E2 =(∂IuS− + ∂IsS−) ◦ (Ω̃+ ◦ Ξ−)
−1 − (∂IuS− + ∂IsS−) ◦ (Ω̃− ◦ Ξ−)

−1.

The asymptotic formulas for the Melnikov potential given in Lemma 2.4.19 and the uniform estimates in
Proposition 2.6.5 imply that

|∂θ((∂IuS− + ∂IsS−) ◦ Ξ−1
− )| ≲ ϵ(Iu)−6.

Since
|Υ+ −Υ−| ≲ (Iu)−5/8 exp(−(Iu)3)/3),

we obtain that, for all (θ, Iu) ∈ Λvert,

|E2| ≲ ϵ(Iu)−53/8 exp(−(Iu)3/3).

Theorem 2.3.19 now follows combining these estimates with the ones given in Proposition 2.6.5.
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2.A The perturbative potential V and the Melnikov potential L

In this appendix we provide we provide the proofs of Lemma 2.4.7, which describes the behavior of
the perturbative potential V defined in (2.16), Lemma 2.4.19 which states the main properties of the
Melnikov potential L defined in (2.50) and Lemma 2.3.15 concerning the reduced Melnikov potentials
L± introduced in (2.38). We start by recalling the following well known result, a proof of which can be
found in [MP94].

Lemma 2.A.1. Let rh(u) and αh(u) the functions defined in Lemma 2.2.1. Then, under the real analytic
change of variables u = (τ + τ3/3)/2, and using the same notation rh(τ) and αh(τ), we have that

rh(τ) =
τ2 + 1

2
eiαh(τ) =

τ − i

τ + i
.

2.A.1 Proof of Lemma 2.4.7

From the definition of V (u, β, t; Im) in (2.16) and straightforward manipulations we obtain that

U(τ, β, t; Im) =V (u(τ), β, t; Im)

=
µIm

rh(τ)
(
1 + 2(1−µ)ϱ(t)

I2mrh(τ)
ei(β+αh(τ)−f(t))

)1/2 (
1 + 2(1−µ)ϱ(t))

I2mrh(τ)
e−i(β+αh(τ)−f(t))

)1/2
+

(1− µ)Im

rh(τ)
(
1− 2µϱ(t)

I2mrh(τ)
ei(β+αh(τ)−f(t))

)1/2 (
1− 2µϱ(t)

I2mrh(τ)
e−i(β+αh(τ)−f(t))

)1/2 − Im
rh(τ)

.

(2.125)

As we need to bound the Fourier coefficients of V (u, β, t; Im) for u ∈ Du
κ, we will use the transformation

in Lemma 2.A.1 and bound the potential in these variables, where we have the explicit expressions of rh
and αh. Important in the sequel is that when u ∈ Du

κ we know that |τ2 +1| ≥ κ|Im|−3/2. We now define
the Fourier coefficients of t→ U(τ, β, t; Im) as the integral expression

U [l](τ, β; Im) =
1

2π

∫ 2π

0

U(τ, β, t; Im)e
−iltdt. (2.126)

In this proof we will perform several changes of variables in this integral but we will keep the same
notation for the functions ϱ and f . In order to analyze this integral, we change the integration variable
to the eccentric anomaly ξ by means of Kepler equation t = ξ − ϵ sin ξ so that (2.126) reads

U [l](τ, β; Im) =
1

2π

∫ 2π

0

(1− ϵ cos ξ)U(τ, β, ξ − ϵ sin ξ; Im)e
−il(ξ−ϵ sin ξ)dt. (2.127)

In this way, we have the explicit formulas

ϱ(ξ) = 1− ϵ cos ξ ϱ(ξ)eif(ξ) = a2eiξ − ϵ+
ϵ2

4a2
e−iξ, (2.128)

where a = (
√
1 + ϵ+

√
1− ϵ)/2. Changing the integration contour in (2.127) to the line {ξ ∈ C/2πZ : ξ =

αh(τ) + s, s ∈ [0, 2π]} we obtain that,

U [l](τ, β; Im) =
e−ilαh(τ)

2π

∫ 2π

0

(1−ϵ cos(αh(τ)+s))U(τ, β, αh(τ)+s−ϵ sin(αh(τ)+s); Im)e
−il(s−ϵ sin(αh(τ)+s))ds,

and

ϱ(s) = (1− ϵ cos(αh(τ) + s)) ϱ(s)eif(s) = eiαh(τ)

(
a2eis − ϵe−iαh(τ) +

ϵ2

4a2
e−i(2αh(τ)+s))

)
(2.129)
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Now, the main observation is that, using the assumption ϵ ≲ I−2
m , for fixed κ, σ > 0 and all (τ, β) ∈

{|τ2 + 1| ≥ κ|Im|−3/2} × Tσ one can easily see that∣∣∣ϵe±iαh(τ)
∣∣∣ ≲ I

− 1
2

m

and, therefore,

|ϱ (s)| ≲ 1
∣∣∣ϱ (s) e±i(β+αh(τ)−f(t))

∣∣∣ ≲ 1.

Using these inequalities, as well as the fact that∣∣∣∣ 1

I2mrh(τ)

∣∣∣∣ ≲ I
− 1

2
m ,

we obtain,∣∣∣∣2 (1− µ) ϱ (t)

I2mrh(τ)
e±i(β+αh(τ)−f(t))

∣∣∣∣ ≲ 1

I2mrh(τ)
≲ I

− 1
2

m

∣∣∣∣ 2µϱ (t)I2mrh(τ)
e±i(β+αh(τ)−f(t))

∣∣∣∣ ≲ 1

I2mrh(τ)
≲ I

− 1
2

m .

This justifies that we can use the Taylor formula

(1 + x)−
1
2 = 1− 1

2
x+O(x2),

to bound the Fourier coefficients of the potential. Using the cancellations of the order 0 and 1 terms we get,
for a certain ρ0, σ̃ > 0 small enough but independent of |Im|, and for (τ, β) ∈ {|τ2+1| ≥ κ|Im|−3/2}×Tρ0

|U [l](τ, β)| ≲ |Im|−3|rh(τ)|−3|e−ilαh(τ)|e−|l|σ̃.

Equivalenty, for (u, β) ∈ Du
κ × Tρ0

|V [l](u, β)| ≲ |Im|−3|rh(u)|−3|e−ilαh(u)|e−|l|σ̃, (2.130)

that taking into account Lemma 2.2.1 gives the desired bound for the norm of V [l] and V and completes
the proof of the first estimate in Lemma 2.4.7. The estimate for the difference V − Vcirc is obtained from
the fact that V depends analytically on ϵ and a straightforward application of Schwarz’s lemma.

2.A.2 Proof of Lemmas 2.3.15 and 2.4.19

The estimates (2.130) are enough to bound the associated Fourier coefficients L[l](β; Im) of the Melnikov
potential L̃(u, β, t; Im) defined in (2.50). In fact

L̃(u, β, t; Im, ϵ) =
∑

eil(t−I
3
mu)L[l](β; Im, ϵ), L[l](β; Im) =

∫ ∞

−∞
V [l](s, β; Im, ϵ)e

ilI3msds, (2.131)

so we can write
L̃(u, β, t; Iu, Is, ϵ) =

∑
l∈N

Ll(t− I3mu, β; Im, ϵ)

where
Ll(t− I3mu, β; Im, ϵ) = eil(t−I

3
mu)L[l](β; Im, ϵ) + e−il(t−I

3
mu)L[−l](β; Im, ϵ).

Then, for l ≥ 1, it is enough to change the path of integration to Imu = 1
3 − |Im|3 to bound |L[l]|, use

the bounds (2.130), use that ∣∣∣e±iαh(u)
∣∣∣ ≲ |Im|

3
2

and the fact that L[−l] = L[l], to obtain, writing σ = t− I3mu,

|Ll(σ, β; Im)| ≤ |Im|
3l
2 + 3

2 exp(−lRe(I3m)/3)
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and, therefore, for the sum,

|L≥2(σ, β; Im)| ≤ |Im|
9
2 exp(−2Re(I3m)/3).

The coefficients L[0] and L[1] can be computed expanding the potential U up to order four in powers of
1/rh(τ) and bounding the remainder in an analogous way. We do not do the computations here because
they can be found in Lemmas 31 and 36 in [DKdlRS19]. Define the coefficients

ck,nl (µ) =
1

2π
((1− µ)k−1 − (−µ)k−1)

∫ 2π

0

ϱk(t)e−inf(t))e−iltdt.

Then, one has

L0(β; Im) =µ(1− µ)

(
c2,00 (0)

π

2I3m
+ (1− 2µ)c3,10 (0)

3π

4I5m
cosβ +O(ϵ2|Im|−7)

)
,

and

L1(σ, β; Im, ϵ) = µ(1− µ)
(
2L1,1(Im, ϵ) cos(σ − β) + 2L1,2(Im, ϵ) cos(σ − 2β) +O(ϵ|Im|−3/2, |c3,31 I4m|)

)
,

with

L1,1(Im, ϵ) =(1− 2µ)

(
c3,11 (0)

√
π

8Im
+O(|Im|−2)

)
exp(−I3m/3)

L1,2(Im, ϵ) =

(
c2,21 (0)

√
πI3m
2

+O(ϵ)

)
exp(−I3m/3).

The proof of Lemma 2.4.19 is now completed by making use of Lemma 28 in [DKdlRS19] where the

coefficients ck,nl (0) are computed. An analogous computation is done in [GMPS22].
Finally, the proof of Lemma 2.3.15 is straightforward after noticing that

L+(β; Im) =
∑
l∈Z

eilβL[l](β; Im) L−(β; Im) =
∑
l∈Z

(−1)leilβL[l](β; Im).

2.B Proof of Lemma 2.3.24

We look for a symplectic change of variables as the time one map of the Hamiltonian flow ϕF1
induced

by a function F1 to be determined. We write K+ = K0 +R0 where K0 does not depend on time and the
average ⟨R0⟩ = 0. Notice that

∥XK0∥ρ/2 ≡ ε ≲ I−4
∗ ∥XR0∥ρ/2 ≡ ε̃ ≲ ϵI−9

∗

By Taylor’s formula with integral remainder we find that

K+ ◦ ϕF1 =K0 + ∂τF1 +R0 + P0

where

P0 = {K0, F1}+
∫ 1

0

{R0 + (1− s) {K0, F1} , F1} ◦ ϕsF1
ds.

Since ⟨R0⟩ = 0 we can choose F1 periodic and satisfying F1 = −
∫ τ
0
R0ds so

∥XF1∥ρ/2 ≤ ε̃.

Now we write K+ ◦ ϕF1 = K1 +R1 where K1 = K0 + ⟨P0⟩ and R1 = P0 − ⟨P0⟩. Write ρ̃ = ρ/2, then, the
estimates

∥XF1
∥ρ̃ ≲ ε̃, |R1|ρ̃−δ ≲ ε̃ε, ∥XK1

−XK0
∥ρ̃−2δ ≲ ε̃δ−1ε (2.132)
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for any 0 < ε < δ < ρ̃ are straightforward. Indeed

|{K0, F1}|ρ̃ ≲ ∥XK+
∥ρ̃∥XF1

∥ρ̃ ≲ εε̃ |{R0, F1}|ρ̃ ≲ ∥XR0
∥ρ̃∥XF1

∥ρ̃ ≲ ε̃2

and
|{{K0, F1}, F1}|ρ̃−δ ≲ δ−2∥XK+

∥ρ̃∥XF1
∥ρ̃∥XF1

∥ρ̃−δ ≲ εε̃2δ−2 ≤ εδ−1ε̃

from where the second and third inequalities (2.132) plainly follow. Assume now that we are able to
carry on the process iteratively and find n functions Fi, i = 1, . . . , n such that

K ◦ ϕF1 ◦ · · · ◦ ϕFn = Kn +Rn

with

∥XFn
∥ρ̃−2(n−1)δ ≲ ε̃δ−n+1εn−1, |Rn|ρ̃−(2n−1)δ ≲ ε̃δ−n+1εn,

∥∥XKn
−XKn−1

∥∥
ρ̃−2nδ

≲ ε̃δ−nεn

where the symbol a ≲ b means that there exists C > 0 which does not depend on n, ε, ε̃ and δ such that
a ≤ Cb.

Then, if δ−1ε < 1 and ρ̃ − 2(n + 1)δ > 0 is an easy computation to show that we can perform one
averaging step more to obtain a new function Fn+1 such that

K ◦ ϕF1
◦ · · · ◦ ϕFn+1

= Kn+1 +Rn+1

with ∥∥XFn+1

∥∥
ρ̃−2nδ

≲ ε̃δ−nεn, |Rn+1|ρ̃−(2n+1)δ ≲ ε̃δ−nεn+1,

and ∥∥XKn+1
−XKn

∥∥
ρ̃−2(n+1)δ

≲ ε̃δ−(n+1)εn+1.

Therefore, taking δ = 2ε, after a numberN =
[
ρ̃δ−1

]
/4 of averaging steps we get that ρ̃−2nδ ≥ ρ̃/2 = ρ/8

and the reminder has size

|RN |ρ/8 ≲ ϵ̃δ (ϵ/δ)
N

= 2ε̃ε2−N = 2ε̃ε exp

(
−[ρ̃δ−1] ln 2

4

)
from where the estimate (2.49) follows using the definition of δ. On the other hand, by construction

∥XKN
−XK0

∥ρ/8 ≲
N∑
n=1

∥∥XKn
−XKn−1

∥∥
ρ/8

≲ ε̃

N∑
n=1

δ−nεn ≤ ε̃

and we have shown that ∥XKN
− (P+ − Id)∥ρ/8 ≲ I−8

∗ . Finally, for ψ = ϕF1
◦ · · · ◦ ϕFN

we have

∥Id− ψ∥ρ/8 ≲ ∥XF1∥ρ/2 ≲ ϵI−9
∗ .
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Chapter 3

Symbolic dynamics in the Restricted
Elliptic Isosceles 3 Body Problem

Abstract: The restricted elliptic isosceles three body problem (REI3BP) models the motion of a mass-
less body under the influence of the Newtonian gravitational force caused by two other bodies called
the primaries. The primaries of masses m1 = m2 move along a degenerate Keplerian elliptic collision
orbit (on a line) under their gravitational attraction, whereas the third, massless particle, moves on the
plane perpendicular to their line of motion and passing through the center of mass of the primaries. By
symmetry, the component of the angular momentum G of the massless particle along the direction of the
line of the primaries is conserved.

We show the existence of symbolic dynamics in the REI3BP for large G by building a Smale horseshoe
on a certain subset of the phase space. As a consequence we deduce that the REI3BP possesses oscilla-
tory motions, namely orbits which leave every bounded region but return infinitely often to some fixed
bounded region. The proof relies on the existence of transversal homoclinic connections associated to an
invariant manifold at infinity. Since the distance between the stable and unstable manifolds of infinity is
exponentially small, Melnikov theory does not apply.

3.1 Introduction

The restricted three body problem studies the motion of three bodies, one of them massless, under
Newtonian gravitational force. The massless body does not exert any force on the other two, the primaries,
and move therefore according to Kepler laws. As a particular case, in the restricted elliptic isosceles three
body problem (REI3BP), the primaries move along a degenerate ellipse and the third (massless) body
moves on the perpendicular plane to their line of motion passing through their center of mass, which is
invariant. In this configuration the primaries collide, but since it is a Keplerian motion its collisions can
be regularized. In a coordinate system with origin at the center of mass of the primaries, the position of
the primaries is given by

q1 (t) =
ρ (t)

2
(0, 0, 1) q2 (t) =

ρ (t)

2
(0, 0,−1) , (3.1)

where
ρ (t) = 1− cosE (t) (3.2)

and the eccentric anomaly E (t) satisfies
t = E − sinE. (3.3)
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Introducing polar coordinates (r, y, α,G) in the plane of motion of the third body, where (y,G) denote
the conjugated momenta to (r, α) the REI3BP is Hamiltonian with respect to

H (r, y,G, t) =
y2

2
+
G2

r2
− 1√

r2 + ρ2(t)
4

. (3.4)

It is inmediate to check that G is a conserved quantity so the REI3BP is a system of 1 + 1/2 degrees of
freedom. We fix G ̸= 0 in order to avoid triple collisions.

In [BDV08] the authors the study the existence of symmetric periodic solutions of the Hamiltonian
system associated to (3.4). In the present paper we prove the existence of chaotic dynamics in the
REI3BP for large values of the angular momentum G, by building a Smale horseshoe with infinitely
many symbols on a certain subset of the phase space. To build this horseshoe we first prove that the
stable and unstable manifold associated to a certain invariant manifold intersect transversally, giving rise
to homoclinic connections to the invariant manifold.

As a consequence, from the way the horseshoe is built, we deduce the existence of different types of
orbits of the REI3BP according to their behavior as t → ±∞. In particular, the existence of infinitely
many periodic orbits of arbitrary large period is obtained. A complete classification of the orbits of the
three body problem according to their final motion was already established by Chazy in 1922 [Cha22]
(see also [AKN06]). For the restricted three body problem (either planar or spatial, circular or elliptic)
the possibilities reduce to four:

• H±(hyperbolic) : ∥r (t)∥ → ∞ and ∥ṙ (t)∥ → c > 0 as t→ ±∞.

• P±(parabolic) : ∥r (t)∥ → ∞ and ∥ṙ (t)∥ → 0 as t→ ±∞.

• B±(bounded) : lim supt→±∞ ∥r (t)∥ <∞.

• OS±(oscillatory) : lim supt→±∞ ∥r (t)∥ = ∞ and lim inft→±∞ ∥r (t)∥ <∞.

Examples of hyperbolic, parabolic and bounded motions were already known by Chazy (in particular
they are present in the two body problem). However, no examples of oscillatory motions were known
until Sitnikov [Sit60] proved their existence on a certain symmetric configuration of the spatial restricted
three body problem, now called the Sitnikov example. We shall prove that any past-future combination
of the four possible final motions exists in the REI3BP.

The connection between chaotic dynamics and the existence of different types of final motions was
first devised by Moser [Mos01], who gave a new proof of the existence of oscillatory motions in the
Sitnikov model. Moser’s approach relying on the connection between final motions, transversal homoclinic
points and symbolic dynamics has been successfully extended to provide more examples of these motions
[LS80a, LS80b, Moe84, Moe07, GK12, GMS16]. When dealing with perturbations of integrable systems
the classical strategy for showing the existence of transversal intersections between the invariant manifolds
is to find non-degenerate zeros of the Melnikov function, which gives an asymptotic expression for the
distance between them. However, when considering fast non-autonomous perturbations, the Melnikov
function is exponentially small with respect to the perturbative parameter and the validity of Melnikov
theory is not justified. This difficulty can be solved when the system in consideration has two perturbative
parameters and an exponentially smallness condition between them is assumed. This was the approach
in [LS80a], where the existence of oscillatory motions in the restricted planar circular three body problem
(RPC3BP) was shown for values of the mass ratio exponentially small compared to the value of the
inverse of the Jacobi constant.

The study of the existence of intersections between invariant manifolds for fast non-autonomous per-
turbations without assuming smallness conditions on extra parameters requires showing that the distance
between invariant manifolds is indeed exponentially small. This problem, now known as exponentially
small splitting of separatrices, has drawn remarkable attention in the past decades, but, due to its dif-
ficulty most of the available results concern concrete models [HMS88, DS92, Gel00, GOS10, GaG11] or
in general systems under very restrictive hypothesis to be applicable to problems in Celestial Mechanics
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[DGJS97, BF04a, BF04b, Gua12, BFGS12, Ga12]. Following these ideas, [GMS16] proves the transversal-
ity of certain invariant manifolds of the RPC3BP for any mass ratio and large Jacobi constants, extending
the result in [LS80a] of existence of oscillatory motions to any mass ratio.

Following the same approach in [GMS16], the present paper proves the exponentially small splitting
of separatrices in a real problem arising from Celestial Mechanics, the aforementioned REI3BP, under
the only assumption of large angular momentum G. It is worth pointing out that the Hamiltonian (3.4)
is, in general, far from being integrable. However, we will see in Section 3.2 that for orbits with large
angular momentum G, the Hamiltonian (3.4) can be considered as a fast non-autonomous perturbation
of the two body problem, which is integrable.

From our result we deduce the existence of transverse homoclinic connections and we are able to build
a Smale horseshoe on a certain subset which is close to the homoclinc points. This result completes the
previous work [BDDV17], where the existence of symbolic dynamics in the EIR3BP was investigated for
large values of G using numerical techniques for analyzing the exponentially small splitting of separatrices.

The main result of the present paper, which gives the existence of chaotic dynamics in the REI3BP,
is the following.

Theorem 3.1.1. Denote by ψ the Poincaré map induced by the flow of the Hamiltonian (3.4) on the
section Σ+ = {(r, y, t) ∈ R+ × R× T : y = 0, ẏ > 0}. Then, there exists 0 < G∗ < ∞ such that for
G > G∗ there exists an invariant set S ⊂ Σ+ such that the dynamics of ψ : S → S is topologically
conjugated to the shift

σ : NZ → NZ

{an}n∈Z 7→ {an−1}n∈Z

Namely ψ has a Smale horseshoe of infinite symbols.

An immediate consequence of Theorem 3.1.1 is the existence of infinitely many periodic orbits in the
system associated to Hamiltonian (3.4). Moreover, from the way the Smale horseshoe of Theorem 3.1.1
is built, we obtain the second main result (see Section 3.2 for a detailed exposition of this connection).

Theorem 3.1.2. Denote by X+ (respectively Y −) either H+, P+, B+ or OS+ (respectively H−, P−, B−

or OS−). Then, there exists G∗ <∞ such that if G > G∗ we have

X+ ∩ Y − ̸= ∅

for all possible combinations of X+ and Y −. In particular, the Hamiltonian system (3.4) posses oscillatory
orbits, that is, orbits such that

lim sup
t→±∞

|r (t)| = ∞ and lim inf
t→±∞

|r (t)| <∞.

As commented above, the proof of Theorem 3.1.1 relies on two main ingredients: establishing the
existence of transversal intersections between the invariant manifolds Wu,s

∞ associated to a periodic orbit
at infinity and showing the existence of a Smale horseshoe on a certain subset close to the homoclinc
points. The latter follows from the arguments presented in [Mos01] without significant modifications.
These arguments are sketched in Section 3.2 for the sake of self-completeness.

For the analysis of the splitting of the invariant manifolds, we use the fact that Wu,s
∞ are Lagrangian

submanifolds so they can be parametrized as graphs which satisfy the Hamilton-Jacobi equation associ-
ated to H. Then, we study solutions to this equation in a suitable complex domain to get exponentially
small asymptotics for the distance between Ws

∞ and Wu
∞. In order to obtain the appropiate expo-

nent these parameterizations must be analyzed in a neighbourhood O
(
G−3

)
of the singularities of the

unperturbed homoclinic (G→ ∞) .
The document is organized as follows. In Section 3.2 we introduce the invariant manifolds at infinity

and discuss the proofs and connection between Theorem 3.1.1 and Theorem 3.1.2. In particular, from
Theorem 3.2.1, which claims the existence of transverse intersections of the infinity manifolds, we build a
Smale horseshoe that is then used to show the existence of any past-future combination of final motions.
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The rest of the paper is devoted to the proof of Theorem 3.2.1. We discuss the integrable system (G→ ∞)
and its homoclinic manifold in Section 3.3.1. Section 3.3.2 is devoted to rewrite the problem of existence
of the infinity manifolds as a fixed point equation. We solve this equation and bound the solution in a
suitable complex domain in Section 3.4. In Section 3.5 we show that the distance between the invariant
manifolds is given, up to first order, by the Melnikov function and then we compute its asymptotic
expansion for large G in Section 3.A.

3.2 Description of the proof of theorems 3.1.1 and 3.1.2

We notice from the Hamiltonian (3.4) that the angular momentum G is a conserved quantity. Therefore,
we apply the conformally symplectic change of variables

r = G2r̃, y = G−1ỹ, t = G3s,

to the equations of motion associated to the Hamiltonan (3.4) to obtain a new system which is also
Hamiltonian with respect to the scaled Hamiltonian.

H̃ (r̃, ỹ, s;G) = G2H
(
G2r̃, G−1ỹ, G3s

)
=
ỹ2

2
+

1

r̃2
− 1

r̃
+ U

(
r̃, G3s

) (3.5)

where

U
(
r̃, G3s

)
=

1

r̃
− 1√

r̃2 + ρ2(G3s)/4G4

=
ρ2
(
G3s

)
8G4r̃3

(
1 +O

(
1

r̃2G4

))
. (3.6)

Observe that, for G large, the system associated to the Hamiltonian (3.5) can be studied as a fast and
small non-autonomous perturbation of the Kepler two-body problem. Adding time t as a phase variable,
which we now denote by ξ, we see from the equations of motion associated to the Hamiltonian (3.5)

dr̃

ds
= ỹ

dỹ

ds
=

1

r̃3
− 1

r̃2
− ∂r̃U

dξ

ds
= G3,

(3.7)

that Λ = {(r̃, ỹ, ξ) = (∞, 0, ξ) : ξ ∈ T} is a parabolic periodic orbit, which we will call infinity.
Denoting by ϕs = (ϕr̃s, ϕ

ỹ
s , ϕ

ξ
s) the flow of the system (3.7), we define the stable and unstable manifolds

of infinity as

Ws
∞ =

{
(r̃, ỹ, ξ) ∈ R+ × R× T : lim

s→+∞
ϕr̃s (r̃, ỹ, ξ) = ∞, lim

s→+∞
ϕỹs (r̃, ỹ, ξ) = 0

}
Wu

∞ =

{
(r̃, ỹ, ξ) ∈ R+ × R× T : lim

s→−∞
ϕr̃s (r̃, ỹ, ξ) = ∞, lim

s→−∞
ϕỹs (r̃, ỹ, ξ) = 0

}
.

(3.8)

The usual way to study the dynamics near infinity is to use McGehee coordinates r = 2x−2 which
map neighbourhoods of infinity into bounded domains containing the origin. In particular, the periodic
orbit Λ corresponds to the periodic orbit {(x, y, ξ) = (0, 0, ξ) : ξ ∈ T} in McGehee coordinates. This
transformation was used in [McG73] to show that Wu,s

∞ exist and are analytic submanifolds except at
infinity, where only C∞ regularity is proven (see [BFM20c] for more general results). However, in the
present work we prefer to stick to the original variables since the symplectic form is non canonical in
McGehee coordinates.

For G → ∞ the system is integrable since U → 0 and therefore Ws
∞ and Wu

∞ coincide along a
two dimensional homoclinic manifold which is foliated by Keplerian parabolic orbits. Hence, it can be
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Figure 3.1: Stable and unstable invariant manifolds of infinity for the Poincaré map Pξ0 in (3.10).

parametrized by the time section ξ and a suitable time parametrization (r̃h (v) , ỹh (v)) of the parabolic
orbit. We denote the parametrization of this invariant manifold as

z̃h (v, ξ) = (r̃h (v) , ỹh (v) , ξ) where (v, ξ) ∈ R× T, (3.9)

and fix the origin of v such that ỹh (0) = 0, which makes the homoclinic orbit symmetric under the map
v → −v. Some properties of this parametrization are discussed in Section 3.3.1.

We will prove that in the full problem (3.5), this two dimensional homoclinic manifold breaks down
for 1 ≪ G < ∞, and Ws

∞,Wu
∞ do not longer coincide. In order to measure the distance between the

invariant manifolds we introduce the Poincaré stroboscopic map

Pξ0 : {ξ = ξ0} → {ξ = ξ0 + 2π} (3.10)

(r̃, ỹ) 7→ Pξ0 (r̃, ỹ)

so Ws,u
∞ ∩ {ξ = ξ0} become invariant curves γs,u (see Figure 3.1).

Then, for y > 0, considering a parametrization of γs,u of the form

r̃ = r̃h (v)
ỹ = Y s,uξ0

(v)
(3.11)

where r̃h (v) is the parametrization of the unperturbed homoclinic (3.9), we observe that to measure
the distance between the invariant manifolds along a suitable section v = v∗ it suffices to measure the
difference between the functions Y s,uξ0

. The following theorem is one of the two main ingredients needed
for the proof of Theorem 3.1.1.

Theorem 3.2.1. Let Ws
∞ and Wu

∞ be the infinity manifolds associated to the periodic orbit Λ and γs,u

the corresponding curves of the map Pξ0 . Then, for G large enough,

(i) The curves γs,u exist and have a parametrization of the form (3.11),

(ii) If we fix a section r̃ = r̃ (v∗) the distance d between these curves along this section is given by

d =
J1 (1)

√
2π

ỹh (v∗)
G

1/2e−
G3

3 sin
(
ξ0 −G3v∗

)
+ E, |E| ≤ CG−1/2e−

G3

3 , (3.12)

where J1 is the first Bessel function of first kind and ỹh correspond to the ỹ component of the
unperturbed homoclinic and C > 0 is a constant independent of G.

(iii) There exist (at least) two transverse homoclinic connections to the periodic orbit Λ.

75



Item (iii) is a direct consequence of Item (ii). Indeed, since

J1 (1) ∼ 0.44051 ̸= 0

we observe that formula (3.12) in Theorem 3.2.1, implies that the zeros of the distance are given, up
to first order, by the zeros of the function sin

(
ξ0 −G3v∗

)
. Therefore, transversal intersections of the

invariant curves γs,u will occur for values of ξ0−G3v∗ located in a neighbourhood O
(
G−1

)
of the points

ξ0 −G3v∗ = 0, π. These transversal intersections give rise to two homoclinic connections to the invariant
manifold Λ as stated in the third item of Theorem 3.2.1.

Observe that the distance between the invariant manifolds is exponentially small with respect to G.
As usually happens in exponentially small splitting of separatrices phenomena, the smaller the period of
the fast perturbation (in our case 2π/G3), the smaller the distance between the manifolds (see [Nei84]).

3.2.1 Symbolic dynamics and oscillatory orbits

Once Theorem 3.2.1 is proven, the existence of chaotic dynamics is obtained following the techniques
introduced in [Mos01]. For that we define the section

Σ+ =
{
(r̃, ỹ, ξ) ∈ R+ × R× T : ỹ = 0, ˙̃y > 0

}
(3.13)

and use coordinates (r̃0, ξ0) for this section. Then, we define the Poincaré map

ψ : Σ+ → Σ+

(r̃0, ξ0) 7→ (r̃1, ξ1)
(3.14)

where ξ1 = ξ0 + G3s, and s > 0 is the first time in which ϕs (r̃0, 0, ξ0) intersects Σ+ again and r̃1 is
such that ϕs (r̃0, 0, ξ0) = (r̃1, 0, ξ1). We set ξ1 = ∞ for points (r̃0, ξ0) which do not intersect Σ+ anymore
in the future and define D0 ⊂ Σ+ as the set of points for which ξ1 < ∞. In the unperturbed problem
(G → ∞) one easily deduces, using the conservation of energy, that Σ+ is divided in two open sets,
corresponding to initial conditions leading to hyperbolic and elliptic motions, whose common boundary
is the curve in which the homoclinic manifold (3.9) intersects Σ+. In this case, D0 corresponds to the
set of initial conditions leading to elliptic motions.

In order to characterize the set D0 in the full problem (3.5) we make use of the following proposition,
already proven in [BDDV17], which describes the intersection Ws,u ∩Σ+.

Proposition 3.2.2. The stable manifold Ws intersects Σ+ backwards for the first time in a simple curve

γ̃s = {(r̃s0 (ξ0) , ξ0) ∈ Σ+ : r̃s0 (ξ0 + 2π) = r̃s0 (ξ0)} . (3.15)

Analogously, the unstable manifold Wu intersects Σ+ forward for the first time in a simple curve

γ̃u = {(r̃u0 (ξ0) , ξ0) ∈ Σ+ : r̃u0 (ξ0 + 2π) = r̃u0 (ξ0)} . (3.16)

Remark 3.2.3. From Theorem 3.2.1 we deduce that the curves γ̃s,u described in Proposition 3.2.2 in-
tersect transversally, a fact which is crucial for the proof of Theorem 3.2.4.

The curve γ̃s divides Σ+ in two connected components. One of these components correspond to D0

and the other component consists of initial conditions leading to orbits which do not intersect Σ+ again
and which escape to infinity with positive asymptotic radial velocity. We also define the set D1 ⊂ Σ+

of initial conditions (r̃0, ξ0), in which the map ψ−1 is well defined. A similar argument to the one above
using γ̃u instead of γ̃s can be used to identify this set.

Once we have identified D0 and D1, given a point (r̃0, ξ0) ∈ D0 ∩ D1 we consider the sequence of
consecutive times ξn given by ψn (r̃0, ξ0) = (r̃n, ξn) for n ∈ Z (whenever they exist) to define the sequence
of integers

an =

[
ξn − ξn−1

2π

]
,
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where [·] defines the integer part. Thus, an ∈ N measures the number of binary collisions of the primaries
between consecutive approaches of the third body. We introduce some technical concepts needed for
stating the theorem that establishes the existence of symbolic dynamics on a subset of the closure D0∩D1

by conjugating ψ with the shift acting on a space of doubly infinite sequences.
Let A denote the set of all doubly infinite sequences

a = (. . . a−2, a−1, a0; a1, a2 . . . )

of elements an ∈ N. Equipping A with the product topology, the shift σ : A→ A given by

σ
(
{an}n∈Z

)
= {an−1}n∈Z (3.17)

is a homeomorphism.
We can define the compactification Ā of A admitting elements of the following type: For α, β integers

satysfying α ≤ 0, β ≥ 1, let
a = (∞, aα+1, . . . , aβ−1,∞) an ∈ N.

We also admit half infinite sequences with α = −∞, β <∞ or α > −∞, β = ∞. It is possible to extend
the topology defined on A to Ā in a way such that the shift (3.17) is a homeomorphism when restricted
to

Ā0 =
{
a ∈ Ā : a0 ̸= ∞

}
(see [Mos01] for details).

The proof of the following theorem, from which Theorems 3.1.1 and 3.1.2 are deduced, follows from
direct adaptation of the ideas presented in [Mos01] for the Sitnikov problem. The main ingredients
are the transversal intersection of the curves γs,u and a C1 Lambda-Lemma for the parabolic invariant
manifold Λ. This Lambda-Lemma follows from a careful analysis of the dynamics near Λ using McGehee
coordinates which map neighbourhoods of infinity into bounded neighborhoods of the origin.

Theorem 3.2.4. There exists a set S ⊂ (D0 ∩D1) which is invariant under the Poincaré map ψ defined
in (3.14) and such that its restriction to S, is conjugated to the shift σ defined in (3.17). That is, there
exists an homeomorphism χ : A→ S such that

ψχ = χσ.

Moreover, χ can be extended to χ̄ : Ā→ S̄ such that

ψχ̄ = χ̄σ

if both sides are restricted to Ā0.

In other words, to each point p = (r0, ξ0) ∈ S we associate a sequence a(p) ∈ A which codifies the
time between successive intersections of the flow ϕs (r0, 0, ξ0) with Σ+. In this setting, the connection
between Theorem 3.1.1 and Theorem 3.1.2 becomes clear. The first part of Theorem 3.2.4 corresponds
to sequences

• a (p) = (. . . a−2, a−1, a0, a1, . . . ) with an ∈ N for all n ∈ Z. These represent orbits which perform
an infinite number of “close” approaches to the line where the primaries move both in the past and
in the future. From this result we deduce the existence of any past-future combination of bounded
(supn∈Z an <∞) and oscillatory (lim supn→±∞ an = ∞) motions.

The second part of the theorem, concerns sequences of the following type

• a (p) = (∞, a−k, a−k+1, . . . ) with an ∈ N for all n > −k, which represent capture orbits, i.e., orbits
where the third body comes from infinity at t → −∞ and remains revolving around the line of
primaries for all future times. In particular, we obtain orbits which are hyperbolic or parabolic in
the past and bounded or oscillatory in the future.
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• a (p) = (. . . al−1, al,∞) with an ∈ N for all n < l. In this case the third body performed an infinite
number of oscillations in the past but escapes to infinity as t→ ∞. These sequences correspond to
orbtis which are bounded or oscillatory in the past and parabolic or hyperbolic in the future.

• a (p) = (∞, ak, . . . , al,∞) with an ∈ N for all n ∈ Z which corresponds to orbits coming from
infinity, revolving around the primaries a finite number of times and escaping again to infinity as
t→ ∞. They correspond to past-future combinations of parabolic and hyperbolic motions.

Finally, we point out that the existence of infinitely many periodic orbits in the REI3BP is deduced from
Theorem 3.1.1 since fixed points for the shift correspond to periodic orbits of the Hamiltonian (3.5).

3.3 The invariant Manifolds as graphs

3.3.1 The unperturbed homoclinic solution

For the unperturbed problem, G→ ∞ in (3.5), the equations of motion reduce to

dr̃

dv
= ỹ

dỹ

dv
=

1

r̃3
− 1

r̃2
.

(3.18)

In this case the infinity manifolds Ws,u
∞ associated to Λ coincide along the two dimensional homocinic

manifold z̃h introduced in (3.9). The (complex) singularities of z̃h (v, ξ) will be crucial for studying the
existence of the invariant manifolds of the perturbed problem in certain complex domains. Thus, we
state the following results, which were already obtained in [MP94].

1. The homoclinic solution (3.9) behaves as

r̃h (v) ∼ 3v2/3, ỹh (v) ∼ 2v−1/3 as |v| → ∞.

2. The homoclinic solution (3.9) is a real analytic function of v with singularities at v = ±i/3.

3. Close to its singularities, the homoclinic solution (3.9) behaves as

r̃h (v) ∼ C

(
v ∓ i

3

)1/2

, ỹh (v) ∼
C

2

(
v ∓ i

3

)1/2

, where C2 = ±2i.

3.3.2 The perturbed invariant manifolds and their difference

In this section we look for parametrizations of the infinity manifolds Wu,s
∞ in certain complex domains

defined below. More concretely we look for graph parametrizations of Wu,s
∞ as solutions to a PDE. To

do this we observe that the canonical form λ = r̃dỹ − H̃ds is closed on the infinity manifolds (since the
infinity manifolds are invariant by the flow it is enough to check that dλ is null on Λ). Then, one can see
λ as the differential of a function S (r̃, ξ) such that

∂r̃S = ỹ G3∂ξS = −H̃

or, putting this together, as a solution of the Hamilton-Jacobi equation

G3∂ξS +H (r̃, ∂r̃S, ξ) = 0.

We write S = S0 + S1 where S0 is the solution to the unperturbed problem

G3∂ξS0 +
(∂r̃S0)

2

2
+

1

2r̃2
− 1

r̃
= 0
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and perform the change of variables
(r̃, ξ) 7→ (r̃h (v) , ξ) . (3.19)

Then, the equation for T1 (v, ξ) = S1 (r̃h (v) , ξ) becomes

∂vT1 +
1

2ỹh2
(∂vT1)

2
+G3∂ξT1 + V (v, ξ) = 0, (3.20)

where
V (v, ξ) = U (r̃h(v), ξ) . (3.21)

Note that the change of variables (3.19) implies that we are looking for parametrizations of the stable
and unstable manifolds of the form

r̃ = r̃h (v)

ỹ = ỹh (v) +
1

ỹh (v)
∂vT

u,s
1

(3.22)

where r̃h (v) , ỹh (v) correspond to the unperturbed homoclinic (3.9) and Tu,s1 (v, ξ) are solutions of equa-
tion (3.20) with asymptotic boundary condition for the unstable manifold

lim
v→−∞

1

ỹh (v)
∂vT

u
1 = 0 (3.23)

and the analogous one for the stable manifold. Once we show the existence of the unstable manifold,
the existence of the stable one is guaranteed by symmetry. Indeed, if T1 (v, ξ) is a solution of (3.20),
−T1 (−v,−ξ) is also a solution satisfying the opposite boundary condition.

Before going into the analysis of the existence of the generating functions Tu,s1 we recall that our goal
is to have a first asymptotic approximation of the distance between the infinity manifolds which now
boils down to obtain an asymptotic formula for ∂v (T

u
1 − T s1 ). To this end, we introduce the Melnikov

potential

L (v, ξ;G) =

∫ ∞

−∞
V
(
r̃h (v + s) , ξ +G3s

)
ds, (3.24)

which, as we state in Theorem 3.3.2 below approximates to first order the difference ∆ = T s1 − Tu1 .
We point out that the parametrization (3.22) becomes undefined at v = 0 since we have fixed v such

that ỹh (0) = 0. Since in order to measure ∂v (T
u
1 − T s1 ) we need both functions to be defined in a common

domain we will introduce a different parametrization to extend the unstable manifold across v = 0. This
is discussed in full detail in Section 3.4.

The next proposition gives the first asymptotic term of the Melnikov potential and will be proved in
Section 3.A.

Proposition 3.3.1. The function function L (v, ξ;G) defined in (3.24) satisfies

L (v, ξ;G) = L[0] (G) + 2

∞∑
l=1

L[l] (G) cos
(
l
(
ξ −G3v

))
,

where

L[1] (G) = −J1 (1)
√
2πG

−5/2e
−G3

3

(
1 +O

(
G−3/2

))
∣∣∣L[l] (G)

∣∣∣ ≤ KG
−5/2el−

1/2e
−|l|G3

3 , for l > 1,

with J1 the first Bessel function of the first kind and K > 0 a constant independent of G.
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Figure 3.2: The domain D∞,u
κ,δ defined in (3.25).

Theorem 3.3.2. Choose any 0 < v− < v+ <∞. Then, there exists K > 0 such that for any v ∈ [v−, v+]
and for any G large enough, the generating functions Tu,s1 (v, ξ) satisfy

|T s1 (v, ξ)− Tu1 (v, ξ)− L (v, ξ)− E| ≤ KG−7/2e
−G3

3 ,

where E ∈ R is a constant and

|∂v (T s1 (v, ξ)− Tu1 (v, ξ))− ∂vL (v, ξ)| ≤ KG−1/2e
−G3

3 .

From Proposition 3.3.1, Theorem 3.3.2 and Equation (3.22) we deduce Theorem 3.2.1. We devote
Sections 3.4 and 3.5 to the proof of Theorem 3.3.2.

3.4 The invariant manifolds in complex domains

The classical procedure when studying exponentially small splitting of separatrices is to look for the
functions Tu1 and T s1 in a complex common domain D × T where D ⊂ C is a connected domain which
reaches a neighborhood of size O

(
G−3

)
(recall that the period of the perturbation (3.6) is 2π/G3) of

the singularities of the unperturbed separatrix, i.e., v = ±i/3 (see Section 3.3.1). The idea behind this
approach is that for v ∈ R we will get exponentially small bounds on the distance d (v, ξ) between the
invariant manifolds if we show that d is a quasiperiodic function in some suitable coordinates and we
manage to bound |d| in a connected domain D which contains a subset of the real line and gets close to
the singularities v = ±i/3 .

Since boundary conditions are imposed at infinity, we need to solve the equation (3.20) for Tu1 (resp.
T s1 ) in a complex unbounded domain reaching v → −∞ (resp. v → ∞). On the other hand, in order
to measure their difference we need them to be defined in a common domain, we need to extend one of
them across v = 0. However, the equation (3.20) becomes singular at v = 0 since ỹh (0) = 0. To overcome
this problem we divide the process of extension of the invariant manifolds into three steps.

We first solve equation (3.20) together with the boundary condition (3.23) in the domain

D∞,u
κ,δ =

{
v ∈ C : |Im(v)| < −tanβ1Re(v) + 1/3− κG−3, |Im(v)| > tanβ2Re(v) + 1/6− δ} , (3.25)

which does not contain v = 0 and where κ, δ and β1, β2 ∈ (0, π/2) are fixed independently of G (see
Figure 3.2). One can check that for δ ∈ (0, 1/12), κ ∼ O (1) , we can always find G big enough such
that this domain is non empty. Once the existence of Tu1 in the domain D∞,u

κ,δ is proven, we exploit the
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Figure 3.3: The domain Dflow
κ,δ defined in (3.28).

symmetry of equation (3.20) under the map (v, ξ) → (−v,−ξ) to atutomatically deduce the existence of
T s1 in the domain

D∞,s
κ,δ =

{
v ∈ C : |Im(v)| < tanβ1Re(v) + 1/3− κG−3, |Im(v)| > −tanβ2Re(v) + 1/6− δ} . (3.26)

The next step is to perform the analytical continuation of Tu1 accross the imaginary axis. Thus, we
would have both invariant manifolds defined on a common domain (this domain will be contained in
D∞,s
κ,δ where T s1 is already defined). Since yh (0) = 0, the equation (3.20) becomes singular at v = 0 so

we change to a parametrization invariant by the flow in the bounded domain

Dρ,κ,δ = D∞,u
κ,δ ∩ (Re(v) > −ρ) (3.27)

for some finite ρ > 0. Then, we use the flow ϕs associated to the system (3.7) to extend the unstable
manifold Tu1 to the domain

Dflow
κ,δ =

{
v ∈ C : |Im(v)| < − tanβ1Re(v) + 1/3− κG−3, |Imv| < tanβ2Re(v) + 1/6 + δ} (3.28)

which contains v = 0 (see Figure 3.3). Then we go back to the original parametrization in a “boomerang
domain”

Dκ,δ =
{
v ∈ C : |Im(v)| < −tanβ1Re(v) + 1/3− κG−3, |Im(v)| < tanβ1Re(v) + 1/3− κG−3 ,

|Im(v)| > −tanβ2Re(v) + 1/6− δ} ,
(3.29)

(which does not contain v = 0) in order to measure the distance between the stable and unstable manifold.

3.4.1 Existence of the invariant manifolds close to infinity

In order to prove existence of the invariant manifolds we rewrite equation (3.20) as a fixed point equation
in a suitable Banach space. We start by defining the linear operator

L = ∂v +G3∂ξ (3.30)

so equation (3.20) reads

L (Tu,s1 ) = F (Tu,s1 ) where F (Tu,s1 ) = − 1

2ỹ2h
(∂vT

u,s
1 )

2 − V (v, ξ) . (3.31)

81



Figure 3.4: The domain Dκ,δ defined in (3.29)
.

We introduce the left inverse operators

Gu (f) (v, ξ) =
∫ 0

−∞
f
(
v + s, ξ +G3s

)
ds

Gs (f) (v, ξ) =
∫ 0

+∞
f
(
v + s, ξ +G3s

)
ds,

(3.32)

so we can rewrite equation (3.31) as the fixed point equation

Tu,s1 = Gu,s ◦ F (Tu,s1 ) . (3.33)

Remark 3.4.1. Throughout this section we will only work with the unstable manifold so we will omit
the superindex u and write D∞

κ,δ, T1 and G instead of D∞,u
κ,δ , T

u
1 and Gu if there is no possible confusion.

We look for solutions of this equation in the Banach spaces

Z∞
ν,µ =

{
h(v, ξ) : D∞

κ,δ × T → C : v 7→ h(v, ξ) is real analytic, ξ 7→ h(v, ξ) is continuous,

and ∥h∥ν,µ <∞
}
,

(3.34)

where
∥h∥ν,µ =

∑
l∈Z

∥∥∥h[l]∥∥∥
ν,µ

and ∥∥∥h[l]∥∥∥
ν,µ

= sup
v∈D∞

κ,δ\Dρ,κ,δ

∣∣∣vνh[l] (v)∣∣∣+ sup
v∈Dρ,κ,δ

∣∣∣(v2 + 1/9
)µ
h[l] (v)

∣∣∣ .
Notice that the first term takes account of the behaviour at infinity and the second one of the behaviour
near the singularities since v2+1/9 = (v − i/3) (v + i/3). As we see from (3.33) we will also need to take
control on the derivatives so we introduce

Z̃∞
ν,µ =

{
h(v, ξ) : D∞

κ,δ × T → C : v 7→ h(v, ξ) is real analytic, ξ 7→ h(v, ξ) is continuous,

and JhKν,µ <∞
}
,

(3.35)

where
JhKν,µ = ∥h∥ν,µ + ∥∂vh∥ν+1,µ+1 .

The following lemma provides estimates for the norm of the perturbative potential.

82



Lemma 3.4.2. Let V be the perturbative potential defined in (3.21). Then, for G large enough we have
that

∥V ∥2,3/2 ≤ KG−4

for a constant K > 0 independent of G.

Proof. Since the domain D∞
κ,δ reaches a neighbourhood of order O

(
G−3

)
of v = ±i/3 we have that for

G sufficiently large ∣∣∣∣ 1

G4r̃2h (v)

∣∣∣∣ ≤ KG−1,

for K > 0 independent of G. Therefore, from (3.6) we deduce that for all (v, ξ) ∈ D∞
κ,δ × T

|V (v, ξ)| ≤ K

G4 |r̃h (v)|3
.

The conclusion follows now using the asymptotic expressions for r̃h (v) obtained in Section 3.3.1.

We also state algebra-like properties for these spaces, which are straightforward from their definition
and will be useful when dealing with the fixed point equation.

Lemma 3.4.3. Let Z∞
ν,µ be the Banach spaces defined in (3.34). Then

i) If h ∈ Z∞
ν,µ and g ∈ Z∞

ν′,µ′ then hg ∈ Z∞
ν+ν′,µ+µ′ with

∥hg∥ν+ν′,µ+µ′ ≤ ∥h∥ν,µ ∥g∥ν′,µ′ .

ii) If h ∈ Z∞
ν,µ, then h ∈ Z∞

ν−α for α > 0 with

∥h∥ν−α,µ ≤ K ∥h∥ν,µ .

iii) If h ∈ Z∞
ν,µ then, for α > 0 we have that h ∈ Z∞

ν,µ−α with

∥h∥ν,µ−α ≤ KG3α ∥h∥ν,µ .

iv) If h ∈ Z∞
ν,µ then, for α > 0 we have that h ∈ Z∞

ν,µ+α with

∥h∥ν,µ+α ≤ K ∥h∥ν,µ .

The following lemma provide estimates for the inverse operator. The proof follows the exact same
lines as in Lemma 5.5. in [GOS10] (see also [BFGS12]).

Lemma 3.4.4. The operator G defined on (3.32) satisfies the following properties
i) For any ν > 1, µ 1, G : Zν,µ → Zν−1,µ−1 is well defined, linear and satisfies L ◦ G = Id.
ii)If h ∈ Zν,µ for some ν > 1, µ > 1, then

∥G (h)∥ν−1,µ−1 ≤ K ∥h∥ν,µ . (3.36)

iii) If h ∈ Zν,µ for some ν ≥ 1, µ ≥ 1, then

∥∂vG (h)∥ν,µ ≤ K ∥h∥ν,µ . (3.37)

Now we are ready to solve the fixed point equation.

Theorem 3.4.5. Fix κ > 0 andδ > 0. Then, for G large enough the fixed point equation (3.33) has a
unique solution Tu1 on D∞

κ,δ × T which satisfies

JTu1 K1,1/2 ≤ b0G
−4

with b0 > 0 independent of G. Moreover, if we define the function

Lu1 (v, ξ) = Gu (V ) (v, ξ)

we have
∥Tu1 − Lu1∥1,1/2 ≤ KG−13/2 (3.38)

where K > 0 is independent of G.
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Proof. We show that T1 is the unique solution the fixed point equation (3.33). For that we first check
that the operator G ◦ F is well defined from Z̃1,1/2 to itself. Indeed, from Lemma 3.4.2 we have that

∥V ∥2,3/2 ≤ KG−4.

Then, the result follows from direct application of the properties of the homoclinic solution stated in
Section 3.3.1, the algebra properties of the norm stated in Lemma 3.4.3 and Lemma 3.4.4 since we obtain
that for h ∈ Z̃1,1/2

JG ◦ F (h)K1,1/2 ≤ Kmin
(
JhK1,1/2 , G

−4
)

(3.39)

for some K > 0 independent of G. In particular we deduce that there exists b0 > 0 independent of G
such that

JG ◦ F (0)K1,1/2 ≤ b0
2
G−4.

Then in order to show existence and uniqueness of solutions it is enough to show that the map G ◦ F is
contractive on the ball B

(
b0G

−4
)
⊂ Z̃1,1/2 centered at 0. For that purpose we write

F (h2)−F (h1) =
1

2y2h
(∂vh1 + ∂vh2) (∂vh1 − ∂vh2)

so using that h1, h2 ∈ B
(
b0G

−4
)
⊂ Z̃1,1/2,κ,δ we have

∥F (h2)−F (h1)∥2,3/2 ≤
∥∥∥∥ 1

2y2h
(∂vh1 + ∂vh2)

∥∥∥∥
0,0

∥∂vh1 − ∂vh2∥2,3/2

≤ KG3/2

∥∥∥∥ 1

2y2h
(∂vh1 + ∂vh2)

∥∥∥∥
0,1/2

Jh1 − h2K1,1/2

≤ KG−5/2 Jh1 − h2K1,1/2 ,

and contractivity follows from Lemma 3.4.4 (enlarging G if necessary).
To obtain (3.38) we notice that

∥T1 − Lu1∥1,1/2 = ∥G ◦ (F (T1)−F (0))∥1,1/2
≤ JG ◦ (F (T1)−F (0))K1,1/2
≤ KG−5/2 JT1K1,1/2 ≤ KG−13/2.

Since the parametrization (3.22) becomes singular at v = 0, in the next section we look for a new
parametrization of the unstable manifold which is regular at v = 0 and therefore allows us to extend it
across v = 0.

3.4.2 Analytic continuation of the solution to the domain Dflow
κ,δ

In order to measure the distance between the stable and unstable manifolds we need them to be defined
in a common domain. However, a parametrization of the form

Γ (v, ξ) =

(
r̃ (v, ξ)
ỹ (v, ξ)

)
=

(
r̃h (v)
1

ỹh(v)
∂vT

u

)
becomes undefined at v = 0. To avoid this difficulty we look for a different parametrization of the unstable
manifold in the domain Dρ,κ,δ (3.27) which does not contain v = 0 and then extend it by the flow. In
order to proceed, we introduce the Banach spaces

Yµ,ρ,κ,δ =
{
h(v, ξ) : D∞

κ,δ × T → C : v 7→ h(v, ξ) is real analytic, ξ 7→ h(u, ξ) is continuous,

and ∥h∥µ <∞
}
,

(3.40)
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where
∥h∥µ =

∑
l∈Z

∥∥∥h[l]∥∥∥
µ

(3.41)

and ∥∥∥h[l]∥∥∥
µ
= sup
v∈Dρ,κ,δ

∣∣∣(v2 + 1/9
)µ
h[l] (v)

∣∣∣ (3.42)

and the analogues of (3.35)

Ỹµ,ρ,κ,δ =
{
h(v, ξ) : D∞

ρ,κ,δ × T → C : v 7→ h(v, ξ) is real analytic, ξ 7→ h(v, ξ) is continuous,

and JhKµ <∞
}
,

with
JhKµ = ∥h∥µ + ∥∂vh∥µ+1 .

Remark 3.4.6. Throughout this section we will work on different domains Dρ,κ,δ, D
flow
κ,δ and D̃κ,δ (the

latter is defined in (3.56)). We will denote by Yµ,κ,δ the analogue to the Banach spaces (3.40) associated to

the domain D̃κ,δ, and by Yflow
µ,κ,δ the analogues for domain Dflow

κ,δ (3.28) (in this case for vectorial functions
since we will work with vector fields on the plane).

From Hamilton-Jacobi parametrizations to parametrizations invariant by the flow

We look for a change of variables of the form Id + g : (v, ξ) 7→ (v + g (v, ξ) , ξ) such that

Γ̂ (v, ξ) = Γ ◦ (Id + g) (v, ξ) (3.43)

satisfies
ϕs

(
Γ̂ (v, ξ)

)
= Γ̂

(
v + s, ξ +G3s

)
.

Denoting by X the vector field generated by the Hamiltonian (3.5), this equation is equivalent to

X ◦ Γ̂ = L
(
Γ̂
)
, (3.44)

which we can rewrite as

L (g) (v, ξ) = F ◦ (Id + g) (v, ξ) where F =
1

y2h
∂vT1 (3.45)

and L stands for the differential operator (3.30). As before we transform (3.45) into a fixed point equation.
Thus, we introduce the inverse operator

G̃ (h) =
∑
l∈Z

G̃ (h)
[l]
eilξ

where

G̃ (h)
[l]

=

∫ v

v1

eilG
3(t−v)h[l] (t) dt

G̃ (h)
[0]

=

∫ v

−ρ
h[l] (t) dt (3.46)

G̃ (h)
[l]

=

∫ v

v̄1

eilG
3(t−v)h[l] (t) dt.

and v1, v̄1 are the top and bottom points of the domain Dρ,κ,δ defined in equation (3.27). The following
lemma is proved as Lemma 5.5 in [GOS10].
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Lemma 3.4.7. The operator G̃ defined on 3.46 satisfies the following properties.
i) For any µ ≥ 0, G̃ : Yµ,ρ,κ,δ → Yµ,ρ,κ,δ is well defined, linear and satisfies L ◦ G̃ = Id.
ii) If h ∈ Yµ,ρ,κ,δ for some µ > 1, then∥∥∥G̃ (h)

∥∥∥
µ−1

≤ K ∥h∥µ . (3.47)

iii) If h ∈ Yµ,ρ,κ,δ for some µ ≥ 1, then∥∥∥∂vG̃ (h)
∥∥∥
µ
≤ K ∥h∥µ . (3.48)

Therefore, solutions of (3.45) are also fixed points of

g = G̃ ◦ F ◦ (Id + g) . (3.49)

We state two technical lemmas which will be useful for dealing with compositions of functions and are
deduced from the proofs of Lemmas 5.14 and 5.15 in [GMS16].

Lemma 3.4.8. Fix constants δ′ < δ, ρ′ < ρ , κ′ > κ and take h ∈ Yµ,ρ,κ,δ. Then, ∂vh ∈ Yµ,ρ′,κ′,δ′ and
satisfy

∥∂vh∥µ ≤ G3

(κ′ − κ)

(
κ

′

κ

)µ
∥h∥µ .

Lemma 3.4.9. Fix constants ρ′ < ρ, δ′ < δ and κ′ > κ+ 1. Then,
i) If h ∈ Yµ,ρ,κ,δ and g ∈ B

(
G−3

)
⊂ Yµ,ρ′,κ′,δ′ we have that h̃ = h ◦ (Id + g) ∈ Yµ,ρ′,κ′,δ′ and

∥∥∥h̃∥∥∥
µ
≤

(
κ

′

κ

)µ
∥h∥µ .

ii) Moreover if g1, g2 ∈ B
(
G−3

)
⊂ Yµ,ρ′,κ′,δ′ , then f = h ◦ (Id + g1)− h ◦ (Id + g2) satisfies

∥f∥µ ≤ G3

(κ′ − κ)

(
κ′

κ

)µ
∥h∥µ ∥g1 − g2∥0,0 .

Theorem 3.4.10. Let δ and κ be the constants given by Theorem 3.4.5. Let ρ1 < ρ, δ1 < δ, and κ1 > κ.
Then, for G big enough, there exist a function g ∈ Y0,ρ1,κ1,δ1 satisfying

∥g∥0 ≤ b1G
−7/2

for b1 > 0 independent of G and such that

Γ̂ = Γ ◦ (Id + g)

satisfies (3.44).

Proof. To find g we solve the fixed point equation (3.49). For that, we take g ∈ B
(
KG−7/2

)
⊂ Y0,ρ1,κ1,δ1 ,

with K a constant independent of G. Then by Lemma 3.4.9 and using the estimate for ∂vT1 obtained in
Theorem 3.4.5 we have

∥F ◦ (Id + g)∥1/2 ≤
(κ1
κ

)1/2
∥F∥1/2

≤
(κ1
κ

)1/2
KG−4

≤ KG−4
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where K is a constant depending only on the reduction of the domain. From here it is clear using Lemma
3.4.7 that the map G̃ ◦ F ◦ (Id + g) : B

(
KG−7/2

)
⊂ Y0,ρ1,κ1,δ1 → Y0,ρ1,κ1,δ1, is well defined. Moreover,

we obtain that ∥∥∥G̃ ◦ F ◦ (Id + g)|g=0

∥∥∥
0
≤ KG1/2

∥∥∥G̃ ◦ F ◦ (Id + g)|g=0

∥∥∥
1/6

≤ KG1/2
∥∥∥F ◦ (Id + g)|g=0

∥∥∥
7/6

≤ KG1/2
∥∥∥F ◦ (Id + g)|g=0

∥∥∥
1/2

≤ b1G
−7/2

(3.50)

for some b1 independent of G. It only remains to show that the map G̃ ◦ F ◦ (Id + g) is contractive in a
neighbourhood of the origin. Take g1, g2 ∈ B

(
b1G

−7/2
)
⊂ Y0,ρ1,κ1,δ1 , using again Lemma 3.4.9 we have

that
∥F ◦ (Id + g1)−F ◦ (Id + g2)∥1/2 ≤ K̃G−1/2 ∥g1 − g2∥0 .

Direct application of Lemma 3.4.4 yields∥∥∥G̃ (F ◦ (Id + g1)−F ◦ (Id + g2))
∥∥∥
0
≤ K̃G−1/2 ∥g1 − g2∥0 ,

so for G big enough the map g 7→ G̃ ◦ F ◦ (Id + g) is contractive on B
(
b1G

−7/2
)
⊂ Y0,ρ1,κ1,δ1 and the

proof is completed.

Analytic extension of the unstable manifold by the flow parametrization

Now we perform the analytic continuation of the parametrization (3.43) given by Theorem 3.4.5 to the
domain Dflow

κ,δ defined in (3.28) using the flow of the Hamiltonian (3.5). Notice that since the domain

Dflow
κ,δ is bounded and at distance of order O (1) with respect to the singularities all norms ∥h∥µ are

equivalent, therefore it will suffice to get estimates on the norm ∥h∥0.
Write Γ̂ = Γ̂0 + Γ̂1, where

Γ̂0 (v, ξ) = Γ0 ◦ (Id + g) (v, ξ) Γ0 (v) = (r̃h (v) , ỹh (v)) . (3.51)

Then, the equation (3.44) that defines this extension is rewritten as

L̂
(
Γ̂1

)
= F̂

(
Γ̂1

)
(3.52)

where

L̂ (h) =L (h)−DX0

(
Γ̂0

)
h

F̂ (h) =X0

(
Γ̂0 + h

)
−X0

(
Γ̂0

)
−DX0

(
Γ̂0

)
h+X1

(
Γ̂0 + h

)
.

Denote by Ψ (v) the fundamental matrix of the linear system

ż (v) = DX0 (Γ0 (v, ξ)) z (v) , v ∈ Dflow
κ,δ .

Then, equation (3.52), together with a suitable initial condition Γ̂h, can be reformulated as the fixed
point equation

Γ̂1 = Γ̂h + Ĝ ◦ F̂
(
Γ̂1

)
, (3.53)

where

Γ̂h =
∑
l>0

Ψ (v)Ψ−1 (v1) Γ̂
[l]
1 (v1) e

ilG3(v1−v)eilξ

+
∑
l<0

Ψ (v)Ψ−1 (v̄1) Γ̂
[l]
1 (v̄1) e

ilG3(v̄1−v)eilξ

+Ψ (v)Ψ−1 (−ρ1) Γ̂ [0]
1 (−ρ1)
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is the solution of the homogeneous equation L̂ (h) = 0 (observe that since v1, v̄1,−ρ1 are contained in

Dρ,κ,δ, the terms Γ̂
[l]
1 (v1) , Γ̂

[l]
1 (v̄1) and Γ̂

[l]
1 (−ρ1) are already defined) and

Ĝ (h) = Ψ G̃
(
Ψ−1h

)
is a right inverse operator. Notice that since DX

(
Γ̂0 (v, ξ)

)
is continuous and Dflow

κ,δ is a compact domain

at distance O (1) from the singularities, we have that there exists K > 0 such that

sup
v∈Dflow

κ,δ

max
{
∥Ψ∥0 ,

∥∥Ψ−1
∥∥
0

}
≤ K, (3.54)

in the matrix norm associated to the usual vector norm in C2.

Lemma 3.4.11. Assume h, h̃ ∈ B
(
KG−4

)
⊂ Yflow

0,κ1,δ1
for some K > 0. Then there exists K

′
> 0 such

that
i) Defining Y (h) = X0

(
Γ̂0 + h

)
−X0

(
Γ̂0

)
−DX0

(
Γ̂0

)
h we have that Y (h) ∈ Yflow

0,κ1,δ1
. and

∥Y (h)∥0 ≤ K
′
G−4,

ii) X1

(
Γ̂0 + h

)
∈ Yflow

0,κ1,δ1
. with

∥∥∥X1

(
Γ̂0 + h

)∥∥∥
0
≤ K

′
G−4,

iii)
∥∥∥Y (h)− Y

(
h̃
)∥∥∥

0
≤ K

′
G−4

∥∥∥h− h̃
∥∥∥
0
,

iv)
∥∥∥X1

(
Γ̂0 + h

)
−X1

(
Γ̂0 + h̃

)∥∥∥
0
≤ K

′
G−4

∥∥∥h− h̃
∥∥∥
0
.

Proof. The proof follows from the mean value theorem together with the straightforward bounds∥∥∥DX0

(
Γ̂0

)∥∥∥
0
≤ K

′
∥∥∥X1

(
Γ̂0

)∥∥∥
0
≤ K

′
G−4

∥∥∥DX1

(
Γ̂0

)∥∥∥
0
≤ K

′
G−4.

Proposition 3.4.12. Let κ1 and δ1 be the constants considered in Theorem 3.4.10. Then, there ex-
ists b2 > 0 such that if G is large enough, the fixed point equation (3.53) has a unique solution Γ̂1 ∈
B
(
b2G

−4
)
⊂ Yflow

0,κ1,δ1
.

Proof. As v1, v̄1, ρ1 ∈ Dρ1,κ1,δ1 we have that Γ̂h ∈ Y0,ρ1,κ1,δ1 with∥∥∥Γ̂h∥∥∥
0
≤ KG−4.

We claim using Lemma 3.4.11 that the map K̂ : h 7→ Γh + Ĝ ◦ F̂ (h) is well defined from B
(
KG−4

)
⊂

Yflow
0,κ1,δ1

to Yflow
0,κ1,δ1

.. Moreover, we see from the estimate (3.54) for the fundamental matrix Ψ (v) that
there exists b2 such that ∥∥∥K̂ (0)

∥∥∥
0
=
∥∥∥Γh + Ĝ (X1 ◦ Γ0)

∥∥∥
0
≤ b2

2
G−4.

Finally, from Lemma 3.4.11, we conclude that for G big enough K̂ is Lipschitz in B
(
b2G

−4
)
⊂ Yflow

0,κ1,δ1

with Lipschitz constant KG−4.

From flow parametrization to Hamilton-Jacobi parametrization

Now that we have extended the parametrization (3.43) across v = 0, the next step is to come back to the
Hamilton-Jacobi parametrization (3.22) so we have both stable and unstable manifolds parametrized as
graphs of the rofm (r̃h (v) , ỹ

u,s (v, ξ)) and we can easily measure the distance between them.
We look for a change of variables of the form Id + f such that

π1 ◦ Γ̂ ◦ (Id + f) (v, ξ) = r̃h (v) (3.55)
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in the domain
D̃κ1,δ1 = Dflow

κ1,δ1
∩Dκ1,δ1 , (3.56)

where Dflow
κ1,δ1

, Dκ1,δ1 are the domains defined in (3.28) and (3.29). Therefore, in Du
ρ1,κ1,δ1

∩ D̃κ1,δ1 the
change Id+f is the inverse of the change Id+g obtained in Theorem 3.4.10. We will see that this change
of variables is unique under certain conditions, therefore, once we have f , the second component of the
unstable manifold is given by

π2 ◦ Γ̂1 ◦ (Id + f) (v, ξ) =
1

yh (v)
∂vT1. (3.57)

Using the properties of the unperturbed solution, i.e. π1 ◦Γ0 (v, ξ) = r̃h (v), we can write equation (3.55)
as

f = P (f)

where

P (f) =
−1

yh (v)
(r̃h (v + f (v, ξ))− r̃h (v)− ỹh (v) f (v, ξ)− π1 ◦ Γ1 ◦ (Id + f) (v, ξ)) .

Proposition 3.4.13. Consider the constants κ1 and δ1 given by Proposition 3.4.12 and any κ2 > κ1,
δ2 < δ1. Then,

i) There exists b3 > 0 such that for G large enough, the operator P has a unique fixed point f ∈
Y0,κ2,δ2with

∥f∥0 ≤ b3G
−4.

ii) Equation (3.57) defines the graph of the unstable manifold wich can be written as Tu = T0 + Tu1
where Tu1 satisfies

∥∂vTu1 ∥0 ≤ KG−4.

Proof. For the first part we observe that, for f2, f1 ∈ B
(
KG−4

)
⊂ Y0,κ2,δ2 ,

|r̃h (v + f2)− r̃h (v + f1)− ỹh (f2 − f1)| ≤ K
∣∣f22 − f21

∣∣
≤ KG−4 |f2 − f1| .

Then, from Lemma 3.4.9 and the fact and
∥∥∥Γ̂u1 ∥∥∥

0
≤ KG−4 we deduce that

|P (f2)− P (f1)| ≤ KG−4 |f2 − f1| ,

i.e. P (f) is a contractive mapping on B
(
b3G

−4
)
⊂ Y0,κ2,δ2 for some b3 > 0 so there exist a unique

f ∈ B
(
b3G

−4
)
⊂ Y0,κ2,δ2 solving f = P (f) .

For the second part we have from equation (3.57) that

π2 ◦ Γ̂1 ◦ (Id + f) (v, ξ) =
1

yh (v)
∂vT1.

Therefore,

∥∂vT1∥0,0 ≤ K

∥∥∥∥ 1

yh (v)
∂vT1

∥∥∥∥
0

= K
∥∥∥π2 ◦ Γ̂1 ◦ (Id + f)

∥∥∥
0

≤ K
∥∥∥Γ̂1 ◦ (Id + f)

∥∥∥
0

≤ K
∥∥∥Γ̂1

∥∥∥
0
≤ KG−4,

where we have used Lemma 3.4.9 and the estimate for
∥∥∥Γ̂1

∥∥∥
0
obtained in Proposition 3.4.12.
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We sum up the results obtained in this section in the following theorem.

Theorem 3.4.14. Let κ2 and δ2 be the constants given by Proposition 3.4.13. Then, for G big enough
there exist real analytic functions Tu,s1 defined in Dκ2,δ2 which are solutions of equation (3.20) and satisfy

∥∂vTu,s1 ∥3/2 ≤ b4G
−4

for a certain b4 > 0 independent of G.

Proof. For the stable manifold, the result was obtained in Theorem 3.4.5 since Dκ2,δ2 ⊂ D∞,s
κ,δ . For the

unstable manifold, using that Dκ2,δ2 ⊂ D∞,u
κ,δ ∪D̃κ2,δ2 the result follows from the combination of Theorem

3.4.5 and Proposition 3.4.13.

3.5 The difference between the manifolds

Once we have obtained the parametrization of the invariant manifolds in the common domainDκ,δ defined
in (3.4), the next step is to study their difference. To this end we define

∆̃ (v, ξ) = T s (v, ξ)− Tu (v, ξ) . (3.58)

Substracting equation (3.20) for T s1 and Tu1 one obtains that

∆̃ ∈ KerL̃

where L̃ is the differential operator

L̃ = (1 +A (v, ξ)) ∂v −G3∂ξ

with

A (v, ξ) =
1

2ỹ2h
(∂vT

s
1 − ∂vT

u
1 ) . (3.59)

To obtain exponentially small bounds on the difference between the invariant manifolds we will look for
a close to identity change of variables (v, ξ) = (w + C (w, ξ) , ξ) such that the function

∆ (w, ξ) = ∆̃ (w + C (w, ξ) , ξ) (w, ξ) ∈ Dκ,δ × T, (3.60)

satisfies
∆ ∈ KerL

where L is the differential operator defined in (3.30). The condition ∆ ∈ KerL implies that ∆ =
f
(
ξ −G3w

)
. Therefore, since ∆ is periodic in ξ it must be periodic in w. Since ∆ is real analytic and

bounded in a strip that reaches up to points O
(
G−3

)
close to the singularities the exponentially small

bound for |∆ (w, ξ)| where w ∈ R comes straightforward by a classical argument (see Lemma 3.5.2 below).
We devote the rest of the section to make this rigorous.

3.5.1 Straightening the operator L̃
As we did in the previous sections we introduce the Banach spaces

Qµ,ρ,κ,δ =

{
h(w, ξ) : Dκ,δ × T → C : w 7→ h(w, ξ) is real analytic, ξ 7→ h(w, ξ) is continuous

and ∥h∥µ <∞
}

where
∥h∥µ =

∑
l∈Z

∥∥∥h[l]∥∥∥
µ
,

∥∥∥h[l]∥∥∥
µ
= sup
w∈Dκ,δ

∣∣∣(w2 + 1/9
)µ
h (v)

∣∣∣ .
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Theorem 3.5.1. Let κ2 and δ2 the constants defined in Theorem 3.4.14. Let κ3 > κ2and δ3 < δ2 be
fixed. Then, for G big enough, there exists C ∈ Q0,κ3,δ3 such that the function

∆ (w, ξ) = ∆̃ (w + C (w, ξ) , ξ)

satisfies that ∆ ∈ KerL. Moreover, we have that

∥C∥0 ≤ b5G
−7/2

for a certain b5 > 0 independent of G.

Proof. Using the chain rule we obtain that the implication∆ ∈ KerL if and only if∆ ∈ KerL̃, is equivalent
to finding C satisfying

L (C) = A|v=w+C(w)

= A ◦ (Id + C) ,

where A (v, ξ) was defined in (3.59). We can rewrite this equation as a fixed point equation

C = G̃ (A ◦ (Id + C)) ,

where G̃ is the inverse operator defined in (3.46). Using the bounds for ∂vT
u,s
1 in Theorem 3.4.14, the

properties of the homoclinic orbit stated in Section 3.3.1 , and Lemma 3.4.9 for the composition, we
obtain that, for C ∈ B

(
KG−4

)
⊂ Q0,κ3,δ3 ,

∥A ◦ (Id + C)∥1/2 ≤ K
′
G−4

for someK
′
> 0 independent ofG.Hence, from Lemma 3.4.9 we observe that the map C 7→ G̃ (A ◦ (Id + C))

is well defined from C ∈ B
(
KG−7/2

)
⊂ Q0,κ3,δ3 → Q0,κ3,δ3 . Moreover, we also get∥∥∥G̃ (A ◦ (Id + C)|C=0

)∥∥∥
0
≤ b5

2
G−7/2,

for some b5 independent of G. Hence, it only remains to prove that the map C 7→ G̃ (A ◦ (Id + C))
is contractive on the ball B

(
b5G

−7/2
)
⊂ Q0,κ3,δ3, . Again by Lemma 3.4.9 we have that if C1, C2 ∈

B
(
b5G

−7/2
)
⊂ Q0,κ3,δ3 , then

∥A ◦ (Id + C2)−A ◦ (Id + C1)∥1/2 ≤ KG3 ∥A∥1/2 ∥C2 − C1∥0
≤ KG−1 ∥C2 − C1∥0 ,

and contractivity follows from Lemma 3.4.7 for G big enough.

3.5.2 Estimates for the difference between the invariant manifolds

Now we exploit the fact that the function ∆ (w, ξ) defined in (3.60) satisfies

∆ ∈ KerL

to get exponentially small bounds on the real line.

Lemma 3.5.2. Let h : Dκ,δ × T→ C be a real-analytic function such that h ∈ Q0,κ,δ and h ∈ KerL.
Then,

i) h is of the form

h (w, ξ) =
∑
l∈Z

h[l] (w) eilξ =
∑
l∈Z

β[l]eil(ξ−G
3w).

ii) the coefficients β[l] satisfy the bounds∣∣∣β[l]
∣∣∣ ≤ ∥h∥0K

|l|e
−|l|G3

3 .
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Proof. Since h ∈ KerL and is periodic in ξ, we have that each Fourier coefficient h[l] satisfies

d

dw
h[l] + ilG3h[l] = 0

so it has to be
h[l] (w) = β[l]e−ilG

3w

for certain constants β[l]. Moreover, evaluating this equality at the top vertex w2 = i
(
1/3− κG−3

)
of

the domain Dκ,δ for l < 0 and at the bottom vertex w̄2 = i
(
1/3− κG−3

)
for l > 0 we obtain that∣∣∣β[l]

∣∣∣ ≤ max
{
h[l] (w2) , h

[l] (w̄2)
}
e

−|l|G3

3 e|l|κ3

≤ ∥h∥0 e
|l|κ3e

−|l|G3

3

≤ ∥h∥0K
|l|e

−|l|G3

3 ,

for a constant K independent of G and l. Therefore, for u ∈ R ∩Dκ,δ∣∣∣h[l] (u)∣∣∣ = ∣∣∣β[l]
∣∣∣ ≤ ∥h∥0K

|l|e
−|l|G3

3 .

Using this lemma we already have exponentially small bounds for ∆ (w, ξ) . Nevertheless, our goal is
to prove that the function L defined in (3.24) is the main term in ∆. Thus we study the function

E (w, ξ) = ∆ (w, ξ)− L (w, ξ) .

Lemma 3.5.3. Consider the constants κ3 and δ3 defined in Theorem 3.5.1. Then, for (w, ξ) ∈ (Dκ3,δ3 ∩ R)×
T we get

|E (w, ξ)− E| ≤ KG−7/2e
−G3

3 .

where E is a constant and

|∂wE| ≤ KG−1/2e
−G3

3 .

Proof. Notice that L = Ls − Lu where L∗ = G∗ (V ), with Gu,s are the left inverse operators introduced
in (3.32). Then, it is clear that L (L) = 0 and we have that E ∈ KerL. We bound E in the domain Dκ,δ

so that we can apply Lemma 3.5.2. We decompose E = Es1 − Eu1 + E2 where

E∗
1 = T ∗

1 − L∗

E2 = ∆− ∆̃.

From Lemma 3.4.3 and equation (3.38) we have

∥E∗
1 ∥0 = ∥T ∗

1 − L∗∥0 ≤ KG3/2 ∥T ∗
1 − L∗∥1/2 ≤ KG−5.

For the second term we use Lemmas 3.4.3, 3.4.9 and the bounds for ∆̃ and C from Theorems 3.4.14 and
3.5.1 to obtain

∥E2∥0 =
∥∥∥∆̃ ◦ (Id + C)− ∆̃

∥∥∥
0
≤ KG3

∥∥∥∆̃∥∥∥
0
∥C∥0

≤ KG9/2
∥∥∥∆̃∥∥∥

1/2
∥C∥0 ≤ KG−7/2,

Combining these results
∥E∥0 ≤ KG−7/2.
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Hence, by direct application of Lemma 3.5.2 we obtain that for u ∈ Dκ3,δ3 ∩ R∣∣∣E [l] (w)
∣∣∣ ≤ G−7/2K |l|e

−|l|G3

3 .

Now, defining E = E [0] (notice that by Lemma 3.5.2, E0 is constant) we have that for (w, ξ) ∈ (Dκ3,δ3 ∩ R)×
T

|E − E| ≤
∑
|l|>1

∣∣∣E [l] (w)
∣∣∣

≤ G−7/2e
−G3

3

∑
|l|>2

(
Ke

−G3

3

)|l|
≤ KG−7/2e

−G3

3 .

Finally, it is a straightforward computation to check that∣∣∣∣ d

dw
E [l] (w)

∣∣∣∣ ≤ G−1/2K |l|e
−|l|G3

3

so we conclude that

|∂wE| ≤ KG−1/2e
−G3

3 .

There is only one step left for achieving our goal, going back to the original variables (v, ξ). This is
done in the next lemma.

Lemma 3.5.4. Consider the function

Ẽ (v, ξ) = ∆̃ (v, ξ)− L (v, ξ)

where ∆̃ (v, ξ) is defined in (3.58) and L (v, ξ) is defined in (3.24). Fix κ4 > κ3 and δ4 < δ3. Then, for
(v, ξ) ∈ (Dκ4,δ4 ∩ R)× T, ∣∣∣Ẽ (v, ξ)− E

∣∣∣ ≤ KG−7/2e
−G3

3 (3.61)

where E is a constant and ∣∣∣∂vẼ (v, ξ)
∣∣∣ ≤ KG

−1/2e
−G3

3 . (3.62)

Proof. We look for a function φ (v, ξ) such that (Id + C) ◦ (Id + φ) (v, ξ) = (v, ξ), i.e., φ must satisfy

v = v + φ (v, ξ) + C (v + φ (v, ξ) , ξ)

or what is the same
φ (v, ξ) = −C (v + φ (v, ξ) , ξ) . (3.63)

In order to solve this fixed point equation we first use Lemma 3.4.9 to obtain that for φ ∈B
(
KG−4

)
⊂

Y0,κ4,δ4

∥C ◦ (Id + φ)∥0 ≤ ∥C∥0 ≤ KG−4

so the map φ 7→ C ◦ (Id + φ) is well defined from B
(
KG−4

)
⊂ Y0,κ4,δ4 → Y0,κ4,δ4 . Moreover we get that

there exists b6 such that ∥∥∥C ◦ (Id + φ)|φ=0

∥∥∥
0
≤ b6

2
G−4.

Since for φ1, φ2 ∈ B
(
KG−4

)
⊂ Y0,κ4,δ4 we have

∥C ◦ (Id + φ2)− C ◦ (Id + φ1)∥0 ≤ KG−4 ∥φ2 − φ1∥0
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we have shown the existence of a unique φ ∈ B
(
b6G

−4
)
⊂ Y0,κ4,δ4 solving (3.63).

Now that we have obtained the inverse change of variables, the bounds (3.61) and (3.62) follow from
direct application of Lemma 3.4.9 if we notice that

E (w (v, ξ) , ξ) = (∆− L) ◦ (Id + φ) (v, ξ)

=
(
∆̃ ◦ (Id + C)− L

)
◦ (Id + φ) (v, ξ)

= ∆̃ (v, ξ)− L ◦ (Id + φ) (v, ξ)

so
Ẽ (v, ξ) = E (v, ξ) + L ◦ (Id + φ) (v, ξ)− L (v, ξ) .

Then, the result follows from Lemma 3.4.9 and the estimates on Proposition 3.3.1.

3.A Computation of the melnikov potential

We devote this section to the computation of the Melnikov potential L (v, ξ) whose partial derivative
with respect to v gives us the first order term of the distance between the infinity manifolds. From its
definition (3.24) we have

L (v, ξ) =

∫ ∞

−∞
V
(
r̃h (v + s) , ξ +G3s

)
ds

=

∫ ∞

−∞
V
(
r̃h (s) , ξ +G3 (s− v)

)
ds.

Expanding in Taylor series the square root in (3.6) we obtain that

V
(
r̃h (s) , ξ +G3 (s− v)

)
= −

∞∑
k=1

( −1
2
k

)(
4G4

)−k ∫ ∞

−∞

ρ2k
(
ξ +G3 (s− v)

)
ds

r̃2k+1
h (s)

.

Hence, expanding now the terms ρ2k in Fourier series we get

L (v, ξ) = −
∑
l∈Z

eil(ξ−G
3v)

∞∑
k=1

( −1
2
k

)
al,k

(
4G4

)−k ∫ ∞

−∞

eilG
3sds

r̃2k+1
h (s)

,

where

al,k =
1

2π

∫ 2π

0

ρ2k (σ) e−ilσdσ.

Since for all σ ∈ [0, 2π] we have |ρ| < 2 we easily bound

|al,k| ≤ 4k. (3.64)

Moreover, changing the integration variable to the eccentric anomaly E defined by t = E − sinE

ρ (E) = 1− cosE,

we obtain that
a1,1 = −2J1 (1) ̸= 0 (3.65)

where J1 is the Bessel function of first kind.
Under the time reparametrization

s =
1

2

(
τ +

τ3

3

)
,
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we can write

L (v, ξ) = −2
∑
l∈Z

eil(ξ−G
3v)

∞∑
k=1

( −1
2
k

)
al,kG

4k

∫ ∞

−∞

e
ilG3

(
τ+ τ3

3

)
/2
dτ

(τ − i)
2k

(τ + i)
2k

= −2
∑
l∈Z

eil(ξ−G
3v)

∞∑
k=1

( −1
2
k

)
al,kG

4kI (l, k)

=
∑
l∈Z

L[l]eil(ξ−G
3v).

(3.66)

The harmonic with l = 0 is readily bounded using that

I (0, k) =
√
π
Γ (2k − 1/2)

Γ (2k)
,

where Γ stands for the Gamma function.
A standard computation shows that L[l] = L[−l] so we focus only on the case l > 0. The next

proposition, which can be deduced from Propositions 19 and 22 in [DKdlRS19] gives estimates for |I (l, k)|
and the asymptotic first order term for I (1, 1) which we use to identify the main term in L[1] (v, ξ) .

Proposition 3.A.1. Let G be large enough, then the estimate

|I (l, k)| ≤ 8elG3k−3/2e
−lG3

3 ,

holds for l ≥ 1, k ≥ 1. Moreover we have that

I (1, 1) =
√
π

(
G

2

)3/2

e
−G3

3

(
1 +O

(
G−3/2

))
.

For l = 1 we have

L[1] = −2

(
−1

2
a1,1G

−4I1,1 +

∞∑
k=2

( −1
2
k

)
a1,kG

4kI (1, k)

)
.

Using Proposition 3.A.1 and the estimate in (3.64) we have that∣∣∣∣∣
∞∑
k=2

( −1
2
k

)
a1,kG

4kI (1, k)

∣∣∣∣∣ ≤ 8e1/2e
−G3

3 G−3/2
∞∑
k=2

G−k

≤ 16e1/2e
−G3

3 G−7/2.

Therefore

L[1] = a1,1
√
π2−

3/2G−5/2e
−G3

3

(
1 +O

(
G−1

))
.

For l ≥ 2 we have

L[l] = −2

∞∑
k=1

( −1
2
k

)
al,kG

−4kIl,k

and again from Proposition 3.A.1 and the estimate in (3.64) we obtain∣∣∣L[l]
∣∣∣ ≤ 32el−

1/2G−5/2e
−lG3

3 .

From the estimates we have obtained for
∣∣L[l]

∣∣ the double series is absolutely convergent, which justify
the expansions in Taylor and Fouier series and the proof of Proposition 3.3.1 is completed.
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Chapter 4

Oscillatory motions in the Restricted
3 Body Problem: a
functional-analytic approach

Abstract: In this paper we introduce a functional-analytic approach to the existence of parabolic and
oscillatory motions for the Restricted Isosceles 3-body Problem (RI3BP) for almost all values of the
angular momentum. According to the classification given by Chazy back in 1922, we name oscillatory an
entire motion of the massless body q which is unbounded but returns infinitely often inside some bounded
region:

lim sup
t→±∞

|q(t)| = ∞ and lim inf
t→±∞

|q(t)| <∞.

In contrast with the other possible final motions in Chazy’s classification, oscillatory motions do not
occur in the 2-body Problem, while they do for larger numbers of bodies. A further point of interest is
their appearance in connection with the existence of chaotic dynamics.

In this paper we introduce new tools to study the existence of oscillatory motions and prove that
oscillatory motions exist in a particular configuration known as the Restricted Isosceles 3-body Problem
(RI3BP) for almost all values of the angular momentum. Our method, which is global in nature and
not limited to nearly integrable settings, extends the previous results [GPSV21] by blending variational
and geometric techniques with tools from nonlinear analysis such as the mountain pass theorem and the
topological degree theory. To the best of our knowledge, the present work constitutes the first complete
analytic proof of existence of oscillatory motions in a non perturbative regime.

4.1 Introduction

One of the oldest questions in Dynamical Systems is to understand the mechanisms driving the global
dynamics of the 3 Body Problem, which models the motion of three bodies interacting through Newtonian
gravitational force. The 3 Body Problem is called restricted if one of the bodies has mass zero and the
other two have strictly positive masses. In this limit problem, the massless body is affected by, but does
not affect, the motion of the massive bodies. A fundamental question concerning the global dynamics
of the Restricted 3 Body Problem is the study of its possible final motions, that is, the qualitative
description of its complete (defined for all time) orbits as time goes to infinity. In 1922 Chazy gave
a complete classification of the possible final motions of the Restricted 3 Body Problem [Cha22]. To
describe them we denote by q the position of the massless body in a Cartesian reference frame with origin
at the center of mass of the primaries.

Theorem 4.1.1 ([Cha22]). Every solution of the Restricted 3 Body Problem defined for all (future) times
belongs to one of the following classes
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• B (bounded): supt≥0 |q(t)| <∞.

• P (parabolic) |q(t)| → ∞ and |q̇(t)| → 0 as t→ ∞.

• H (hyperbolic): |q(t)| → ∞ and |q̇(t)| → c > 0 as t→ ∞.

• O (oscillatory) lim supt→∞ |q(t)| = ∞ and lim inft→∞ |q(t)| <∞.

Notice that this classification also applies for t→ −∞. We distingish both cases adding a superindex
+ or − to each of the cases, e.g. H+ and H−.

Unlike oscillatory, bounded, parabolic and hyperbolic motions also exist in the 2 Body Problem and
examples of each of these classes of motion in the Restricted 3 Body Problem were already known by
Chazy. However, the existence of oscillatory motions in the Restricted 3 Body Problem was an open
question for a long time. Their existence was first established by Sitnikov in a particular configuration
of the Restricted 3 Body Problem nowadays known as the Sitnikov problem.

4.1.1 The Moser approach to the existence of oscillatory motions: literature

After Sitnikov’s work, Moser gave a new proof of the existence of oscillatory motions in the Sitnikov
problem [Mos01]. His approach makes use of tools from the geometric theory of dynamical systems,
in particular, hyperbolic dynamics. More concretely, Moser considered an invariant periodic orbit “at
infinity” (see Section 4.1.2) which is degenerate (the linearized vector field vanishes) but posseses stable
and unstable invariant manifolds. Then, he proved that its stable and unstable manifolds intersect
transversally. Close to this intersection, he built a section Σ transverse to the flow and established the
existence of a non trivial hyperbolic set X for the Poincaré map ΦΣ induced on Σ. The dynamics of ΦΣ

restricted to X ⊂ Σ is moreover conjugated to the shift

σ : NZ → NZ (σω)k = ωk+1

acting on the space of infinite sequences. Namely, X is a horseshoe with ”infinitely many legs” for the
map ΦΣ. By construction, sequences ω = (. . . , ω−n, ω−n+1 . . . ω0, . . . ωn−1 . . . ωn . . . ) ∈ NZ for which
lim supn→∞ ωn (respectively lim supn→−∞ ωn) correspond to complete motions of the Sitnikov problem
which are oscillatory in the future (in the past).

Moser’s ideas have been very influential. In [LS80a] Simó and Llibre implemented Moser’s approach
in the Restricted Circular 3 Body Problem (RC3BP) in the region of the phase space with large Jacobi
constant provided the values of the ratio between the masses of the massive bodies is small enough.
Their result was later extended by thm:chazyintro [Xia92] and closed by Guardia, Mart́ın and Seara in
[GMS16] where oscillatory motions for the RC3BP for all mass ratios are constructed in the region of
the phase space with large Jacobi constant. The same result is obtained in [CGM+22] for low values of
the Jacobi constant relying on a computer assisted proof. In [GSMS17] and [SZ20], the Moser approach
is applied to the Restricted Elliptic 3 Body Problem and the Restricted 4 Body Problem respectively.
For the 3 Body Problem, results in certain symmetric configurations (which reduce the dimension of the
phase space) were obtained in [Ale69] and [LS80b]. Another interesting result, which however holds for
non generic choices of the 3 masses, is obtained in [Moe07]. In the recent preprint [GMPS22], the first
author together with Guardia, Mart́ın and Seara, has proved the existence of oscillatory motions in the
planar 3 Body Problem (5 dimensional phase space after symplectic reductions) for all choices of the
masses (except all equal) and large total angular momentum.

The first main ingredient in Moser’s strategy is the detection of a transversal intersection between
the invariant manifolds of the periodic orbit at infinity. Yet, checking the occurrence of this phenomenon
in a physical model is rather problematic, and in general little can be said except for perturbations of
integrable systems with a hyperbolic fixed point whose stable and unstable manifolds coincide along a
homoclinic manifold. As far as the authors know, all the previous works concerning the existence of
oscillatory motions in the 3 Body Problem (restricted or not) adopt a perturbative approach to prove
the existence of transversal intersections between the stable and unstable manifolds of infinity. In some
cases the perturbative regime is obtained by assuming that certain parameter related to the motion of the
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massive bodies (in general the ratio between the masses of the massive bodies or the eccentriticy of their
orbit) is small, and others by working in a region of the phase space where the massless body is located
far away from the primaries. The latter situation falls in what is usually called singular perturbation
theory and (in general) needs a much more involved analysis than the former one, usually referred to as
regular perturbation theory.

The second key ingredient is the construction of a horseshoe close to the transversal intersections of
the invariant manifolds. For the Sitnikov and Isosceles Restricted 3 Body Problem (which is introduced in
Section 4.1.2) are non autonomous Hamiltonian systems with 1 + 1/2 degrees of freedom (3 dimensional
phase space), its dynamics can be reduced to the study of a two dimensional area preserving map in
which the periodic orbit at infinity becomes a fixed point which, despite being degenerate, behaves as
a hyperbolic fixed point. The same happens in the RC3BP after reducing by rotational symmetry and
in certain symmetric configurations of the 3BP. In all of these problems Moser’s ideas for constructing
a horseshoe close to the transverse intersections between the invariant manifolds of the parabolic fixed
point can be implemented directly. In the planar 3 Body Problem, the dynamics can be reduced to a 4
dimensional symplectic map and the parabolic fixed point becomes a 2 dimensional (degenerate) normally
hyperbolic invariant manifold. Due to the existence of central directions the construction of the horseshoe
in [GMPS22] becomes much more involved. In [Moe07], the author analyzes orbits which pass close to
triple collision. In this setting, the close encounters with triple collision, produce stretching also in the
central directions.

An approach different in nature from Moser’s is developed by Galante and Kaloshin in [GK11]. By
making use of Aubry-Mather theory and semi-infinite regions of instability, the authors prove the existence
of oscillatory orbits for the RC3BP with a realistic value of the mass ratio.

It is worthwhile mentioning that another fundamental issue in Celestial Mechanics, besides that
of existence of oscillatory motions, is about their abundance. In the conference in honor of the 70th
anniversary of Alexeev, Arnol’d posed the question whether the Lebesgue measure of the set of oscillatory
motions is positive (cfr [GK12]). This question was considered by Arnol’d to be the fundamental issue of
Celestial Mechanics. It has been conjectured by Alexeev that the Lebesgue measure is zero. Neverthless,
this conjecture remains wide open. The only partial results in this direction are due to Gorodetski and
Kaloshin [GK12]. They consider the RC3BP and the Sitnikov problem and prove that for both problems
and a Baire generic subset of an open set of parameters (eccentricity in the Sitnikov problem and mass
ratio in the RC3BP), the Hausdorff dimension of the set of oscillatory motions is maximal.

4.1.2 The Isosceles configuration of the Restricted 3 Body Problem: main
results

In the present work we consider a particular configuration of the Restricted 3 Body Problem known as
the Restricted Isosceles 3 Body Problem. In this configuration, the two primaries have equal masses
m0 = m1 = 1/2 and move periodically on a degenerate ellipse of eccentricity one (a line), according
to the Kepler laws for the motion of the 2 Body Problem. The massless particle moves on the plane
perpendicular to the line along which the primaries move (see Figure 4.1.2).

In the plane of motion of the massless body we fix a Cartesian reference frame with origin at the
point where the line along which the primaries move intersects the plane. Then, in Cartesian coordinates
(q, p, t) ∈ R4 × T \ {q = 0}, the motion of the massless body is given by the Hamiltonian system

H(q, p, t) =
|p|2

2
− Vcart(q, t) Vcart(q, t) =

1√
|q|2 + ρ2(t)

.

where ρ(t) : T → [0, 1/2] is a half of the distance between the primaries.

Remark 4.1.2. One can obtain an explicit expression of the function ρ(t) after introducing the change
of variables t = u− sinu, commonly known as the Kepler equation. When expressed in terms of the new
variable u (which is the eccentric anomaly) we have ρ(t(u)) = (1 − cosu)/2. Yet, our analysis does not
require to have an explicit expression of the function ρ(t), so we work directly with the original variable t.
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Figure 4.1: Sketch of the motion in the Restricted Isosceles 3 Body Problem.

It will be convenient for our analysis to introduce polar coordinates (r, α, t, y,G) ∈ R+ × T2 × R2

where q = (r cosα, r sinα) and (y,G) denote the conjugate momenta to (r, α). In polar coordinates, the
Hamiltonian of the Restricted Isosceles 3 Body Problem reads

H(r, t, y,G) =
y2

2
+
G2

2r2
− V (r, t) V (r, t) =

1√
r2 + ρ2(t)

. (4.1)

We inmediately notice that G is a conserved quantity for the flow of (4.1). It is therefore natural to
consider the one-parameter family of Hamiltonian systems

HG(r, t, y) = H(r, t, y,G) (r, t, y) ∈ R+ × T× R. (4.2)

Since limr→∞ V (r, t) = 0, for all G ∈ R the Hamiltonian (4.2) posses a periodic orbit at infinity

γ∞ = {r = ∞, y = 0} ⊂ R+ × T× R. (4.3)

Homoclinic and heteroclinic to such a periodic orbit at infinity are entire parabolic motions. In [GPSV21],
the first author together with M. Guardia, T. Seara and C.Vidal, proved the following result.

Theorem 4.1.3 ([GPSV21]). Consider the Hamiltonian system HG defined in (4.2). Denote by X+

(respectively Y −) either H+, P+, B+ or OS+ (respectively H−, P−, B− or OS−) according to Chazy’s
classification in Theorem 4.1.1. Then, there exists G∗ ≫ 1 such that for all G ∈ R such that |G| ≥ G∗,
the Hamiltonian system HG satisfies

X+ ∩ Y − ̸= ∅
for all possible combinations of X+ and Y −.

Theorem 4.1.3 is proved by exploiting the fact that for G large enough, in a suitable region of the
phase space, the Hamiltonian HG can be studied as a perturbation of the (integrable) 2 Body Problem.
This allowed the authors to prove that the periodic orbit γ∞ posses global stable and unstable invari-
ant manifolds which intersect transversally (see Theorem 4.4.1). As a corollary of this result, a rather
straightforward implementation of Moser’s ideas shows the truth of Theorem 4.1.3.

The following is the first main result of the present work.

Theorem 4.1.4. Consider the Hamiltonian system HG defined in (4.2). Denote by X+ (respectively
Y −) either H+, P+, B+ or OS+ (respectively H−, P−, B− or OS−) according to Chazy’s classification
in Theorem 4.1.1. Then, for almost all G ∈ R the Hamiltonian system HG satisfies

X+ ∩ Y − ̸= ∅

for all possible combinations of X+ and Y −.
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To the best of our knowledge, Theorem 4.1.4 is the first complete analytic proof of the existence of
oscillatory motions relying upon a global analytical approach rather than on perturbative techniques.
Some interesting related works, where the existence of oscillatory motions is obtained in a setting which
is not close to integrable, are [Moe07] and [CGM+22]. While in [Moe07] the author shows the existence
of oscillatory motions in the 3 Body Problem close to triple collision (small values of the total angular
momentum), in [CGM+22] the authors obtain a computer assisted proof of the existence of oscillatory
motions in the Restricted Circular 3 Body Problem for small values of the Jacobi constant.

Theorem 4.1.4 is indeed obtained as a consequence of the following result.

Theorem 4.1.5 (Symbolic Dynamics). Let {lj} ⊂ Z be an increasing sequence and define the time
intervals Ij = [(lj − lj−1)/2, (lj+1 − lj)/2]. Then, for almost all G ∈ R, all ε > 0 and all R sufficiently
large, there exists an orbit rh(s) : R → R+ of (4.2) homoclinic to γ∞ and a constant L > 0 such that if
the sequence {lj} ⊂ Z satisfies lj+1 − lj ≥ L, then, for any sequence σ = {σj} ⊂ {0, 1}Z there exists an
orbit rσ(s) : R → R+ of (4.1) such that , if σj = 0

|rσ|C1(Ij) ≥ R

and if σj = 1
|rσ − rh|C1(Ij) ≤ ε,

Moreover, if σ has only a finite number of non zero entries, then rσ is a homoclinic solution.

Theorem 4.1.5 can be read as follows. For almost all G ∈ R there exist an orbit rh of (4.2) homoclinic
to γ∞ such that the following holds. Let z∗ = (r, y, t) = (rh(0), ṙh(0), 0) ∈ R+×R×T, let z∞ = (r, y, t) =
(∞, 0, 0) = γ∞∩{t = 0} ∈ R+×R×T and denote by Φ the Poincaré map induced on the section {t = 0}
by the flow to the Hamiltonian (4.2). Then, for any δ > 0 and any sequence {zk}k∈Z ⊂ {z∞, z∗}Z
there exists a point z ∈ Bδ(z0) and a sequence {nk}k∈Z ∈ NZ such that Φnk(z0) ∈ Bδ(zk)

1. The
statement in Theorem 4.1.5 is indeed stronger since it also provides control on the orbit in all the
intervals [(nk − nk−1)/2, (nk + nk+1)/2].

The following corollary of Theorem 4.1.5 can obtained by nowadays well known arguments (see for
example [MNT99] and [Koz83]).

Corollary 4.1.6. For almost all G ∈ R the Restricted Isosceles 3 Body Problem is not Cω integrable and
has positive topological entropy.

4.1.3 Outline of the proof: new tools for the study of oscillatory motions

As in Moser’s approach, the first main step in our construction is to prove the existence of a homoclinic
orbit to γ∞. Yet, in the setting of Theorem 4.1.5, geometric perturbation theory is not available since
the Hamiltonian system HG in (4.2) is not nearly integrable. Instead, we will adopt a global approach
and deploy the powerful machinery of the theory of calculus of variations. In particular, we rephrase the
problem of existence of homoclinic orbits to γ∞ as that of the existence of critical points of a certain
action functional AG (cfr 4.11) defined in a suitable Hilbert space D1,2 (cfr (4.10)). The existence
of critical points of the action functional AG is obtained by a minmax argument tailored made for
the present problem. The use of minmax techniques to study the existence and multiplicity results
for homoclinic orbits in Hamiltonian systems has already been widely exploited in the literature (see
for example [Sér92, CZES90, CZR91] and [MNT99]). In the variational approach to our problem, we
face two main difficulties at this step: the phase space is not compact and the vector field presents
singularities (corresponding to possible collision with the massive bodies). In order to overcome the first
difficulty we make use of a renormalized action functional (see Remark 4.4.2) defined on a appropriately
chosen functional space D1,2. In order to avoid singularities and gain compactness we then perform a
constrained deformation argument. With these techniques, together with a compactness property of the
map dAG : D1,2 → D1,2 (Struwe’s monotonicity trick), we are able to show that, for almost all values of

1By Bδ(z∞) we mean the set {|y| ≤ δ, |r|−1 ≤ δ}.
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the angular momentum G 2, there exists a Palais-Smale sequence in D1,2 which converges to a critical
point of the action functional AG. This proves the existence of an orbit r̃h homoclinic to γ∞, which
actually correspond to a doubly parabolic motion of our problem. It is worthwhile pointing out that
half parabolic and hyperbolic motions for the n Body Problemem have been obtained using variational
methods in [MV09, MV20] with a different technique.

The homoclinc orbit r̃h obtained in this way is associated with an intersection between the stable and
unstable manifolds of the periodic orbit γ∞. To proceed further, though we can not tell whether this
intersection is transversal or not, we may rely on our minmax construction to deduce some topological
transversality. This can be achieved by a topological degree argument based on a general result by Hofer
([Hof86]). More precisely, we exploit the mountain pass characterization of r̃h to show that for almost
all values of the angular momentum G (except possibly a finite set of values) there exists a (possibly
different) critical point rh of the action functional AG for which the Leray-Schauder index of the map
∇AG : D1,2 → D1,2 at rh is well defined and different from zero 3. This allows us to shadow finite
segments of the homoclinic orbit rh. The proof of Theorem 4.1.5 is then obtained by combining a
suitable parabolic version of the Lambda lemma close to γ∞ with the outer dynamics wich shadows finite
segments of rh.

4.1.4 Organization of the paper

In Section 4.2 we recall some well known facts about the 2 Body Problem. Then, in Section 4.3 we
analyze the dynamics around the periodic orbit γ∞. In particular, the existence of stable and unstable
manifolds W±(γ∞;G) and a parabolic version of the lambda lemma close to γ∞. In Section 4.4 we
introduce the variational formulation and prove the existence of a homoclinic orbit to γ∞ by means of
a minmax argument. Then, in Section 4.5 we obtain a (possibly different) homoclinic orbit associated
with a topologically transverse intersection between W±(γ∞;G). Finally in Section 4.6 we combine the
parabolic Lambda lemma of Section 4.3 together with the robustness of the topological degree under
perturbations to construct “multibump” homoclinics and finish the proof of Theorem 4.1.5.

4.2 The 2 Body Problem

In this section we recall some well known facts about the 2 Body Problem (2BP) which will be used in
the following. In polar coordinates, the Hamiltonian of the 2BP reads (compare (4.1))

H2BP(r, α, y,G) =
y2

2
+
G2

2r2
− 1

r
. (4.4)

As for (4.1), the rotational symmetry implies that G is a conserved quantity, so we look at (4.4) as a one-
parameter family of Hamiltonian functions H2BP,G(r, y). For each G ∈ R the Hamiltonian H2BP,G(r, y) is
integrable and the motion can be classified in terms of the value of the energy: negative values correspond
to elliptic motions, positive energies correspond to hyperbolic motions and for zero energy the motion is
parabolic.

It is also straightforward to check that for all G ∈ R

z∞ = {r = ∞, y = 0} ⊂ R+ × R.

is a fixed point for the flow of (4.4)4. Moreover, for all G ∈ R the fixed point z∞ posses stable and unstable
manifolds which coincide along a one dimensional homoclinic manifold Wh

2BP (z∞, G). The homoclinic
orbit Wh(z∞, G) is indeed the parabolic orbit of the 2BP with angular momentum G.

2See the discussion at the beginning of Section 4.4.2.
3In Proposition 4.5.12 show that the topological degree being non zero implies that the intersection between the invariant

manifolds of γ∞ at rh is topologically transverse.
4To analyze this fixed point properly one should work in McGehee coordinates, which are introduced in Section 4.3.2.
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Lemma 4.2.1. There exist real analytic functions r0(u;G) and y0(u;G), defined for all u ∈ R, such that

Wh
2BP(z∞;G) = {r = r0(u;G), y = y0(u;G), u ∈ R}. (4.5)

Moroever, r0(u;G) ≥ G2/2 for all u ∈ R and

r0(u;G) ∼ u2/3 y0(u;G) ∼ u−1/3 as u→ ±∞.

In addition, for any G,G∗ ∈ R we have

|r0(u;G)− r0(u;G∗)| ≲ |G2 −G2
0| as u→ ±∞.

Remark 4.2.2. In the last item of Lemma 4.2.1 we compare solutions associated with different values
of the angular momentum G. The fact that we need that kind of information in our argument is due to
a technical step (Struwe’s monotonicity trick) in Section 4.4 (see Remark 4.4.2 and Lemma 4.4.10).

Proof. A proof of the first two items can be found in [MP94], where the authors also show that

rh(u;G) =
G2(τ2(u) + 1)

2
for u =

G3

2

(
τ(u) +

τ3(u)

3

)
.

One can check that for τ ∈ R the second equality admits the unique inverse

τ(u) =
(
3G−3u+

√
9G−6u2 − 1

)1/3
−
(
3G−3u+

√
9G−6u2 − 1

)−1/3

which for large u yields that
τ(u) = (6G−3u)1/3

(
1 +O(u−1)

)
.

Therefore, as u→ ±∞

rh(u;G) =
G2

2
+

(6u)2/3

2

(
1 +O(u−1)

)
and the conclusion follows.

Define the local stable and unstable manifolds5

W+
2BP,loc(z∞;G) =Wh

2BP (z∞;G) ∩ {y > 0}

W−
2BP,loc(z∞;G) =Wh

2BP (z∞;G) ∩ {y < 0}.

It is a standard fact that W±
2BP,loc(z∞;G) are exact Lagrangian submanifolds so they can therefore be

parametrized in terms of a generating function.

Lemma 4.2.3. There exists S0(r;G) : (G
2/2,∞) → R+, which satisfies

H2BP ;G(r, ∂rS0(r;G)) = 0

and such that
W±

2BP,loc(z∞;G) = {(r,±∂rS0(r;G)) ∈ R+ × R : r > G2/2}.

4.3 The dynamics close to γ∞

In this section we study the dynamics in a neighbourhood of the periodic orbit at infinity defined in (4.3).
Despite being degenerate (the linearized vector field vanishes at γ∞) the flow close to the periodic orbit
γ∞ behaves in a similar way to the flow on a neighbourhood of a hyperbolic periodic orbit.

5One can prove that orbits starting at points in W+
2BP,loc(z∞;G) (respectively W−

2BP,loc(z∞;G) ) are confined in the

region {r > G2/2, y ≥ 0} for all positive times (respectively in the region {r > G2/2, y ≤ 0} for all negative times).
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4.3.1 The local invariant manifolds

Let ϕsG be the time s flow associated with the Hamiltonian HG defined in (4.2). It is a classical result by
McGehee [McG73] (see also [BF04b]) that γ∞ posses local stable and unstable invariant manifolds (by
πr, πy we denote the projection on the r and y coordinates of a point (r, y, t) ∈ R+ × R× T)

W+
loc,R(γ∞;G) ={x ∈ R+ × R× T : πrϕ

s
G(x) ≥ R, πyϕ

s(x) ≤ 1/R, ∀s ≥ 0}
W−

loc,R(γ∞;G) ={x ∈ R+ × R× T : πrϕ
s
G(x) ≥ R, πyϕ

s(x) ≤ 1/R, ∀s ≤ 0}
(4.6)

It is also a standard fact thatW±
loc,R(γ∞;G) are exact Lagrangian submanifolds so they can be parametrized

in terms of a generating function. The following result follows directly from the arguments in the proof
of Theorem 4.4. in [GPSV21] (see Remark 4.3.2).

Proposition 4.3.1 ([GPSV21]). Let HG be the one parameter family of Hamiltonians defined in (4.2)
and fix any G∗ > 0. Then, there exist R > 0 such that for all G ∈ [−G∗, G∗] there exist two functions
S±(r, t;G) : [R,∞)× T → R, real analytic on r and G, solutions to the Hamilton-Jacobi equation

HG(r, t, ∂rS
±(r, t;G)) + ∂tS

±(r, t;G) = 0

and such that

W±
loc,R(γ∞;G) = {(r, y, t) ∈ R+ × R× R : r ∈ [R,∞), y = ∂rS

±(r, t;G)}.

Moreover, if we let S0(r;G) be the function defined in Lemma 4.2.3, we have that

S±(r;G)− S0(r;G) ∼ r−3/2 as r → ∞.

Remark 4.3.2. In Theorem 4.4. in [GPSV21] the authors only show the existence of the generating
functions S±(r, t;G) for large values of G. The reason is that, under the hypothesis of large G, they can
extend the generating functions to a common domain where they can measure their diference. However,
if we are only concerned with the existence and behaviors of the generating functions close to infinity, the
problem is already perturbative, and the very same arguments apply to obtain the conlcusion in Proposition
4.3.1.

Define the global stable and unstable invariant manifolds

W+(γ∞;G) =
⋃
s≤0

ϕsG(W
+
loc,R(γ∞;G)) W−(γ∞;G) =

⋃
s≥0

ϕsG(W
−
loc,R(γ∞;G)). (4.7)

The analytic dependence of the functions S±(r, t;G) on r and G will be key to prove that transversal
intersections (whenever they exist) between the global stable and unstable invariant manifolds (4.7) are
topologically transverse except for (possibly) a finite subset of values of G. This is key for the multibump
construction. On the other hand, the estimate S± − S0 ∼ r−3/2 as r → ∞ will be needed in the proof of
certain technical steps in Lemma 4.5.7 (see Appendix 4.A).

4.3.2 The parabolic Lambda Lemma

We now analyze the topology of the flow lines close to the periodic orbit γ∞. For that, it is convenient
to introduce the McGehee transformation r = 2/x2 in which the equations of motion associated with the
Hamiltonian system HG in (4.2) read

ẋ = −x
3

4

∂HG

∂y
= −x

3y

4
ẏ =

x3

4

∂HG

∂x
= −x

4

4

1

(1 + x4ρ2(t)
4 )3/2

+
x6G2

8
.

In this variables, the periodic orbit at infinity (4.3) now corresponds to the periodic orbit γ̂∞ = {x =
y = 0, t ∈ T}. Following Moser [Mos01], we now straighten the stable and unstable directions associated
with this periodic orbit. To that end, we introduce the change of variables

q̃ =
x− y

2
p̃ =

x+ y

2
.
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Figure 4.2: Phase portrait of the 2BP in McGehee coordinates. The fixed point z∞ corresponds in
McGehee coordinates to the origin in the (x, y) ∈ R2 plane.

In these coordinates

˙̃q =
1

4
(q̃ + p̃)3(q +O3(q̃, p̃)) ˙̃p = −1

4
(q̃ + p̃)3(p̃+O3(q̃, p̃)) (4.8)

so it is clear that the local stable and unstable invariant manifolds associated with the periodic orbit
γ̃∞ = {q̃ = p̃ = 0, t ∈ T}, which, by the work of McGehee [McG73] (see also Proposition 4.3.1) we
already know exist, are close (for small |q̃|, |p̃|) to {q̃ = 0} and {p̃ = 0} respectively. Let now, for
sufficiently small δ > 0, define the set

Qδ = {(q̃, p̃, t) ∈ R2 × T : |q̃| ≤ δ, |p̃| ≤ δ}.

and, let (0, p̃, t) ∈ Qδ → (p̃, γs(p̃, t), t) ⊂ Qδ and (q̃, 0, t) ∈ Qδ → (q̃, γu(q̃, t), t) ⊂ Qδ be graph
parametrizations of these local invariant manifolds. Introduce new variables on Qδ given by

q = q̃ − γs(p̃, t) p = p̃− γu(q̃, t).

From the invariance equation satisfied by γu,s one can deduce their Taylor expansion around q̃ = p̃ = 0.
Then, an easy computation, shows that

q̇ = −q
4

(
(q + p)3 +O4(q, p)

)
ṗ =

p

4

(
(q + p)3 +O4(q, p)

)
(4.9)

so in coordinates (q, p, t) ⊂ Qδ the local stable and unstable manifolds are the sets {p = 0} ∩ Qδ and
{q = 0} ∩Qδ respectively. Define now, for a < δ the sections (see Figure 4.3.2)

Σ+
a = {(q, p, t) ∈ Q2δ : p = δ, 0 < q ≤ a} Σ−

a = {(q, p, t) ∈ Q2δ × T : q = δ, 0 < p ≤ a}

and the associated Poincaré map Φloc : Σ+
a → Σ−

a′ , associated with the flow (4.8), whenever is well
defined. Lemma 4.3.3 shows that a parabolic version of the Lambda Lemma holds for the degenerate
periodic orbit {p = q = 0}. In order to build orbits whose final motions are hyperbolic, we also introduce
the outer sections

Σ+
a,hyp = {(q, p, t) ∈ Q2δ : p = δ, −a ≤ q < 0} Σ−

a,hyp = {(q, p, t) ∈ Q2δ : q = δ, −a ≤ p < 0}.

The proof of the following proposition follows plainly from the arguments in Chapter IV of [Mos01],
where an analogous result is proved for the Sitnikov problem. See also Theorem 5.4. in [GMPS22].

Lemma 4.3.3. Fix any G∗ > 0. Then, there exists C > 0 sufficiently large and δ > 0 sufficiently small
such that for any G ∈ [−G∗, G∗] and any a ∈ (0, δ/2) the Poincaré map

Φloc : Σ
+
a −→ Σ−

a1−Cδ
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Figure 4.3: The sections Σ±
a . The Poincaré map Φloc : Σ+

a → Σ−
a′ sends the blue line in the section Σ+

a

into the blue line in the section Σ−
a , which accumulates to {p = 0}.

is well defined. Moreover, for any t1 sufficiently large there exist unique q and p1, which satisfy

q1+Cδ ≤ p1 ≤ q1−Cδ q−3(1−Cδ)/2 ≲ t1 ≲ q−3(1+Cδ)/2,

for which Φloc(q, a, 0) = (a, p1, t1).
In addition, for any (q, a, 0) ∈ Σ+

a,hyp (respectively (a, p, 0) ∈ Σ−
a,hyp), the orbit (qhyp(s), phyp(s), s) of

(4.9) with initial condition (q, a, 0) (respectively (a, p, 0)) is defined for all forward (respectively backward)
times and satisfies

lim
s→∞

y(qhyp(s), (phyp(s)) > 0 (respectively lim
s→−∞

y(qhyp(s), (phyp(s)) < 0).

The first item in Lemma 4.3.3 shows that the iterates of curves which are transversal to the local
stable manifold accumulate along the unstable manifold (see also Figure 4.3.2). The second item ensures
that orbits with initial conditions on Σ+

a,hyp (respectively Σ−
a,hyp) have forward (respectively backward)

hyperbolic final motions. We now translate these results to the original coordinates. To that end we
introduce the sections

Λ+
R,δ ={(r, y, t) : r = R, 0 < ∂rS

+(R, t;G)− y ≤ δ, t ∈ T}
Λ−
R,δ ={(r, y, t) : r = R, 0 < y − ∂rS

−(R, t;G) ≤ δ, t ∈ T}

and the map Φloc,R1,R2
: Λ+

R1,δ
→ Λ−

R2,δ′
whenever is well defined. We also define the sections leading to

hyperbolic final motions

Λ+
R,δ ={(r, y, t) : r = R, −δ ≤ ∂rS

+(R, t;G)− y < 0, t ∈ T}
Λ−
R,δ ={(r, y, t) : r = R, −δ ≤ y − ∂rS

−(R, t;G) < 0, t ∈ T}.

Lemma 4.3.4. Fix any G∗ > 0. Then, there exist R > 0 sufficiently large such that for any R1, R2 ≥ R
there exists δ0(R1, R2) such that for all G ∈ [−G∗, G∗] the Poincaré map

Φloc,R1,R2
: Λ+

R1,δ
→ Λ−

R2,δ′

is well defined for δ ≤ δ0 and some δ′(R1, R2, δ) > 0. There exists T∗ such that for any T ≥ T∗ there
exist unique y0, y1 such that Φloc,R1,R2

(R1, y0, 0) = (R2, y1, T ). Moreover, for any ε > 0 there exists T∗∗
such that, if T ≥ T∗∗ and Φloc,R1,R2

(R1, y0, 0) = (R2, y1, T ), then

∂rS
+(R1, 0;G)− y0 ≤ ε y1 − ∂rS

+(R2, T ;G) ≤ ε.

In addition, the orbit (rhyp(s), yhyp(s), s) of (4.2) with initial condition (R1, y, 0) ∈ Λ+
R1,δ,hyp

(respectively

(R2, y, 0) ∈ Λ−
R2,δ,hyp

), is defined for all forward (respectively backward) times and satisfies

lim
s→∞

yhyp(s) > 0 (respectively lim
s→−∞

yhyp(s) < 0).

106



4.4 Existence of homoclinic orbits to γ∞

In this section we establish the existence of orbits of the Hamiltonian (4.1), which are homoclinic to
γ∞. For |G| ≫ 1, the Hamiltonian (4.1) can be considered as a perturbation of the integrable 2BP, in
which there exists a homoclinic manifold to γ∞ (see Lemma 4.2.1). Therefore, for |G| ≫ 1, one can use
geometric perturbation theory to prove that the global invariant manifolds W+(γ∞;G) and W−(γ∞;G)
defined in (4.7) intersect transverally. This was the approach used in [GPSV21] where the following result
was proved.

Theorem 4.4.1 ([GPSV21]). There exists G∗ < ∞ such that for all G such that |G| ≥ G∗ the global
stable and unstable manifolds W+(γ∞;G) and W−(γ∞;G) defined in (4.7), intersect transversally.

Yet, for a fixed G ∈ R, the Hamiltonian (4.1) is not close to the 2BP. Therefore, geometric per-
turbation theory cannot help to study the existence of transversal intersections between W+(γ∞;G)
and W−(γ∞;G). We however exploit the variational formulation of the problem, in which the powerful
techniques from nonlinear functional analysis are available.

More concretely, in Section 4.4.1 we introduce a suitable action functional, defined on a suitable Hilbert
space, whose critical points are indeed orbits of (4.1) which are homoclinic to γ∞. Then, in Section 4.4.2
we establish the existence of a critical point of the aforementioned action functional using a minmax
argument. The minmax characterization of the critical point obtained is crucial for the construction in
Section 4.6.

4.4.1 The Variational Formulation

We introduce the vector space of real valued functions

D1,2 = {φ ∈ C(R) : ∃vφ ∈ L2(R) such that φ(s) = φ(0) +

∫ s

0

vφ(t)dt ∀s ∈ R}. (4.10)

In the following, we will write φ̇ = vφ (i.e. vφ is the weak derivative of φ). It is easy to chek that

⟨φ,ψ⟩D1,2 = |φ(0)ψ(0)|+ ⟨φ̇, ψ̇⟩L2

defines an inner product on D1,2 for which the functional space D1,2 equiped with this inner product is
a Hilbert space. We write

∥φ∥D1,2 = (⟨φ,φ⟩D1,2)
1/2

.

for the induced norm. Notice that for all φ ∈ D1,2 and all s ∈ R

|φ(s)| ≤ |φ(0)|+ ∥φ̇∥L2

√
|s|.

After the introduction of the functional space D1,2 it is an easy computation to show that the existence
of orbits of (4.2) homoclinic to the periodic orbit at infinity γ∞ = {r = ∞, y = 0, t ∈ T} is equivalent to
the existence of critical points of the action functional AG : D1/2 → R given by

AG(φ;G0) =

∫
R
Lren(φ, φ̇, s;G,G0)ds, (4.11)

where

Lren(φ, φ̇, s;G,G0) =
φ̇2

2
+ VG(r0 + φ)− V0(r0)− r̈0φ, (4.12)

VG stands for the effective potential

VG(r, t) =
G2

2r2
− 1√

r2 + ρ2(t)
, (4.13)

and V0(r0) =
G2

0

2r20
− 1

r0
with r0 being the parabolic orbit of the 2BP with angular momentum G0 ∈ R (see

Remark 4.4.3).
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Remark 4.4.2. Lren(φ, φ̇, s;G) is indeed a renormalized Lagrangian, that is, we have substracted the
term V0(r0) in the integrand of what would be the “natural” action functional. The reason behind the
definition of (4.11) is that the action of a parabolic orbit is infinite. Indeed, the Lagrangian of the 2BP
reads

L0(r0, ṙ0) =
ṙ20
2

− V0(r0)

and for a parabolic orbit r0(s) ∼ s2/3 for s→ ±∞.

Remark 4.4.3. It might seem surprising that when defining the renormalized Lagrangian Lren, we let
G0 be an independent parameter instead of taking G = G0. The reason is that in this way, for a fixed
G0 ∈ R and fixed φ ∈ D1,2 the function G → AG(φ) is monotonely decreasing. This will allow us to
use a monotonicity trick due to Struwe which is key to obtain uniform bounds for certain (Palais-Smale)
sequences {φn}n∈N ⊂ D1,2 for which dAG(φn) → 0 (see Section 4.4.2 and, in particular, 4.4.10). On
the other hand, the asymptotic behavior of parabolic solutions as s → ±∞ becomes independent of the
value of the angular momentum G (see Lemma 4.2.1) so the definition of the renormalized Lagrangian
Lren makes sense for G ̸= G0.

Remark 4.4.4. Throughout the rest of the paper the value G0 ∈ R+ will be fixed. Thus, we omit the
dependence of all quantities on G0. Having fixed G0 ∈ R+, we state results for G ∈ [−G0, G0] (or full
measure subsets of this set). This choice is completely arbitrary: the results proved below are certainly
true if we replace [−G0, G0] by any other bounded subset. However, since we have always the freedom to
choose G0 as large as we want it is enough to state results for G ∈ [−G0, G0].

The following observation will play an important role in our construction.

Lemma 4.4.5. Let τ ∈ Z and define the translation operator

Tτ (φ)(s) = φ(s+ τ) + r0(s+ τ)− r0(s).

Then, for all τ ∈ Z
AG(Tτ (φ)) = AG(φ).

We now state a technical lemma which will prove useful in later compactness arguments.

Lemma 4.4.6. Let γ ≥ 0 and let L2
γ be the weighted L2 space with norm given by

∥φ∥L2
γ
=

(∫
R

|φ|2

r3+γ0

)1/2

.

Then, D1,2 is continuously embedded in L2
γ for γ ≥ 0 and compactly embedded in L2

γ for γ > 0.

Proof. The proof of the continuous embedding for γ ≥ 0 is obtained by the very same argument used
in the proof of Proposition 3.2. in [BDFT21] taking into account that r0(s) ∼ s2/3 for s → ±∞ and
r0(s) ≥ G2

0/2 ∀s ∈ R. We now prove that the embedding for γ > 0 is compact. Take any bounded
sequence {φn}n∈N ⊂ D1,2 such that φn → 0 weakly in D1,2. In particular φn(s) → 0 pointwise for all
s ∈ R. Since, for any φ ∈ D1,2 and any s ∈ R we have

|φ(s)| ≤ |φ(0)|+ ∥φ̇∥L2

√
|s|

we obtain that for all s ∈ R
|φn(s)|2

r3+γ0 (s)
≲

∥φn∥2D1,2

1 + |s|1+γ
.

Therefore, a direct application of the dominated convergence theorem shows that

lim
n→∞

∥φn∥2L2
γ
= lim
n→∞

∫
R

|φn|2

r3+γ0 (s)
= 0.
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We now show that AG is continuous and has a continuous differential on a suitable subset Q ⊂ D1,2.

Lemma 4.4.7. Let K > 0 and m > 0 be two fixed constants and define

Q = {φ ∈ D1,2 : ∥φ∥D1,2 ≤ K, min
s∈R

r0(s) + φ(s) ≥ m}

Then, for any G ∈ [−G0, G0] we have AG ∈ C1(int(Q),R).

Proof. Let φ,ψ ∈ Q and make use of the mean value theorem to write

AG(φ)−AG(ψ) =

∫
R

1

2
(φ̇+ ψ̇)(φ̇− ψ̇) + ∂rVG(r0 + ξ)(φ− ψ)− r̈0(φ− ψ) (4.14)

where ξ = λφ+ (1− λ)ψ for some λ(s) ∈ [0, 1]. On one hand,∣∣∣∣∫
R
(φ̇+ ψ̇)(φ̇− ψ̇)

∣∣∣∣ ≤ (∫
R
|φ̇+ ψ̇|2

)1/2(∫
R
|φ̇− ψ̇|2

)1/2

→ 0

as ∥φ− ψ∥D1,2 → 0. On the other hand, since for φ,ψ ∈ D1,2

min
s∈R

r0(s) + ξ(s) =min
s∈R

r0(s) + λφ(s) + (1− λ)ψ(s) = min
s∈R

λ(r0(s) + φ(s)) + (1− λ)(r0(s) + ψ(s))

≥min
s∈R

λm+ (1− λ)m = m > 0

and convergence in D1,2 implies uniform convergence in compact intervals, we have, taking into account
the expression of VG (4.13), that

(∂rVG(r0 + ξ)− r̈0) (φ− ψ) → 0

pointwise as ∥φ− ψ∥D1,2 → 0. Moreover, for s→ ±∞

r0(s) + φ(s) ≥ r0(s)−
(
|φ(0)|+ ∥φ̇∥L2

√
|s|
)
∼ s2/3

so, from the definition of VG in (4.13), a straightforward computation shows that for r0 → ∞

∂rVG(r0)− r̈0 ∼ r−3
0 .

Thus, using again that mins∈R r0(s) + ξ(s) ≥ m > 0, we obtain the existence of C > 0 depending only
on K and m such that for all s ∈ R

|∂rVG(r0(s) + ξ(s))− r̈0(s)| ≤ Cr−3
0 (s)

Therefore, ∣∣∣∣∫
R
(∂rVG(r0 + ξ)− r̈0) (φ− ψ)

∣∣∣∣ ≤(∫
R
| (∂rVG(r0 + ξ)− r̈0) |

)1/2

×
(∫

R
| (∂rVG(r0 + ξ)− r̈0) ||φ− ψ|2

)1/2

≤C
∫
R

|φ− ψ|2

r30
= C∥φ− ψ∥L2

0
,

and the continuity of the map AG : Q ⊂ D1,2 → R is implied by Lemma 4.4.6. The proof that
dAG : Q ⊂ D1,2 → D1,2 is a continuous map follows from similar arguments.

Lemma 4.4.8. Let K > 0 and m > 0 be two fixed constants and let Q ⊂ D1,2 be the subset defined in
Lemma 4.4.7. Then, for any for any G ∈ [−G0, G0], dAG : int(Q) → D1,2 is a compact perturbation of
the identity. In partiuclar, this implies that for any compact set F ⊂ D1,2 the set Q ∩ (dAG)

−1(F ) is
compact.
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Proof. We write

dAG(φ)[ψ] =⟨φ̇, ψ̇⟩L2 −
∫
R

(
r0 + φ

((r0 + φ)2 + ρ2)3/2
− 1

r20

)
ψ +

∫
R

(
G2

(r0 + φ)3
− G0

r30

)
ψ

=⟨φ̇, ψ̇⟩L2 + 2

∫
R

φψ

r30
−
∫
R

(
r0 + φ

((r0 + φ)2 + ρ2)3/2
− 1

r20
+

2φ

r30

)
ψ

+

∫
R

(
G2

(r0 + φ)3
− G0

r30

)
ψ

=⟨φ̇, ψ̇⟩L2 + 2

∫
R

φψ

r30
+ P (φ)[ψ]

(4.15)

where we have introduced the functional

P (φ)[ψ] =

∫
R

(
G2

(r0 + φ)3
− G0

r30

)
ψ −

∫
R

(
r0 + φ

((r0 + φ)2 + ρ2)3/2
− 1

r20
+

2φ

r30

)
ψ

Thanks to Lemma 4.4.6 we can take

⟨⟨φ,ψ⟩⟩D1,2 = 2

∫
R

φψ

r30
+ ⟨φ̇, ψ̇⟩L2

as an equivalent inner product inD1,2. It follows from Lemma 4.4.7 that for all φ ∈ Q, dAG(φ) : D
1,2 → R

and P (φ) : D1,2 → R are continuous linear functionals and thanks to Riesz representation theorem, for
every φ ∈ Q ⊂ D1,2 there exist unique ηA(φ), ηP (φ) ∈ D1,2 such that

⟨⟨ηA(φ), ψ⟩⟩D1,2 = dAG(φ)[ψ] ⟨⟨ηP (φ), ψ⟩⟩D1,2 = P (φ)[ψ].

and ηA = Id + ηP . After writing

⟨⟨ηP (φ∗)− ηP (φ), ηP (φ∗)− ηP (φ)⟩⟩D1,2 = P (φ∗)[ηP (φ∗)− ηP (φ)]− P (φ)[ηP (φ∗)− ηPφ)],

a tedious but straightforward computation shows that for any φ∗, φ ∈ Q

∥ηP (φ∗)−ηP (φ)∥2D1,2 ≤ ∥φ∗−φ∥L2
1/4

∥ηP (φ∗)−ηP (φ)∥L2
1/4

≤ ∥φ∗−φ∥L2
1/4

∥ηP (φ∗)−ηP (φ)∥D1,2 (4.16)

what implies that ηP : Q → D1,2 is a compact operator (recall that the embedding of D1,2 in L2
1/4 is

compact). The second item in the lemma plainly follows after writing

ηA(φ) = φ+ ηP (φ).

Indeed, for a sequence {φn}n∈N ⊂ Q ⊂ D1,2 whose image under dAG is contained in a compact subset
F ⊂ D1,2 there exists a subsequence (which we do not relabel) for which {ηA(φn)}n∈N is convergent in
D1,2. Then, the proof is finished since ηP being a compact operator and implies that (up to passing to a
further subsequence) {ηP (φn)}n∈N is also convergent in D1,2.

From now on we will omit the subscript in the inner product and norm defined in D1,2.

4.4.2 Existence of critical points of the action functional

In this section we prove the existence of critical points of the action functional AG defined in (4.11) using
a minmax argument. In particular, we will employ a constrained version of the celebrated mountain pass
theorem of Ambrosetti and Rabinowitz [?]. The first step is to verify that the level sets of AG have a
mountain pass geometry. This is the content of the following proposition.
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Proposition 4.4.9. Take any constantM > 0. Then, for all G ∈ [−G0, G0]\{0} there exist ψ1, ψ2 ∈ D1,2

such that
AG(ψi) ≤ −M i = 1, 2.

Moreover, there exists M∗ > 0 such that if we take M ≥ M∗, then for any curve γ ∈ C([0, 1], D1,2)
joining ψ1 and ψ2 there exist a point ψγ for which

AG(ψγ) ≥ −M/2.

Proof. Let µ > 0 so

AG(µ) =

∫
R
VG(r0 + µ)− V0(r0) =

∫
R

1

((r0 + µ)2 + ρ2)1/2
− 1

r0
− G2

2(r0 + µ)2
+
G2

0

2r20

≤
∫
µ

1

r0 + µ
− 1

r0
.

It follows from Fatou’s lemma that

lim sup
µ→∞

AG(µ) = lim sup
µ→∞

∫
R

1

r0 + µ
− 1

r0
≤ −

∫
R

1

r0
= −∞.

On the other hand, take η ∈ (0, 1/2). Then, for some finite (and uniform for η ∈ (0, 1/2)) C > 0 we have

AG(η) =

∫
R
VG(r0 + η)− V0(r0) =

∫
R

1

((r0 + η)2 + ρ2)1/2
− 1

r0
+
G2

0

2r20
− G2

2(r0 + η)2

≤C +

∫ 1

0

1

r0 + η
− G2

2(r0 + η)2
.

Using that r0(s) = 1/2 + s2 +O(s3) for s→ 0 (this can be deduced from the proof of Lemma 4.2.1) one
can easily check that

lim sup
η→1/2

AG(η) = −∞.

The first part of the lemma is proven by taking ψ1 = µ with µ large enough and ψ2 = η with η → 1/2.
In order to prove the second item of the lemma we let R > 0 be such that

∂2rrVG(r) ≥ 0 ∀r ≥ R

and denote by T the value of s for which r0(s) ≥ R for all s such that |s| ≥ T . Notice that R exists because
of the convexity of VG(r) for large values of r, which can be checked explicitely from the expression of
VG in (4.13). We now take φ ∈ D1,2 such that mins∈R r0(s) + φ(s) = R. We claim that AG(φ) ≥ −M/2
so the lemma follows since, by continuity, for all γ ∈ C([0, 1], D1,2) joining ψ1 and ψ2 there exist a point
φ ∈ γ for which

min
s∈R

r0(s) + φ(s) = R.

We now prove the claim. Lemma 4.4.5 implies that, withouth lost of generality, we can suppose that the
minimum is attained at the interval s ∈ [0, 1]. We express

AG(φ) =
∥φ̇∥2L2

2
+ J≤(φ) + J≥(φ) + E(φ)

where

J≥(φ) =

∫
|s|≥T

1

((r0 + φ)2 + ρ2)1/2
− 1

(r20 + ρ2)1/2
+

r0φ

(r20 + ρ2)3/2

−G2

∫
|s|≤T

1

2(r0 + φ)2
− 1

2r20
+
φ

r30

J≤(φ) =

∫
|s|≤T

1

((r0 + φ)2 + ρ2)1/2
− 1

(r20 + ρ2)1/2
+

r0φ

(r20 + ρ2)3/2

−G2

∫
|s|≥T

1

2(r0 + φ)2
− 1

2r20
+
φ

r30
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and

E(φ) =

∫
s∈R

1

(r20 + ρ2)1/2
− r0φ

(r20 + ρ2)3/2
− 1

r0
+
φ

r20
+ (G2

0 −G2)

(
1

2r20
− φ

r30

)
For the first term, after applying the mean value theorem twice, we obtain that

J≥(φ) =

∫
|s|≥T

∂2rrVG(r0 + ξ)ηφ

with η = σφ, 0 ≤ σ ≤ 1 and ξ = λη, 0 ≤ λ ≤ 1. Since

min(r0 + ξ) ≥ min(r0, r0 + φ) ≥ R

we have J≥(φ) ≥ 0 by the definition of R. For the second term we use that mins∈R r0(s) +φ(s) ≥ R > 0

and that for all s ∈ R we have |φ(s)| ≤ |φ(0)|+ ∥φ̇∥L2

√
|s| so we obtain

J≤(φ) ≥− C +

∫
|s|≤T

r0φ

(r20 + ρ2)3/2
−G2

∫
|s|≤T

1

2R2
− 1

2r20
− φ

r30

≥− C +

∫
|s|≤T

(
r0

(r20 + ρ2)3/2
− G2

0

r30

)
φ ≥ −C(1 + ∥φ̇∥L2)

for some C > 0 which depends only on R. An analogous computation shows that for the third term we
have

E(φ) ≥
∫
s∈R

1

(r20 + ρ2)1/2
− 1

r0
+

(
1

r20
− (r0 + ρ)

(r20 + ρ2)3/2
+

(G2
0 −G2)

r30

)
φ ≥ −C(1 + ∥φ̇∥L2)

for some C > 0 which depends only on R. Therefore

AG(φ) ≥
∥φ̇∥2L2

2
− C(1 + ∥φ̇∥L2)

for C depending only on R and the result follows after enlarging M (if necessary) while keeping R
fixed.

We now have established the existence of the mountain pass geometry for the level sets of the functional
AG. The next natural step would be to apply the classical deformation lemma to obtain a Palais-Smale
(PS) sequence for the functional AG. There are however two difficulties. The first one is that, a priori,
a suboptimal path, might contain points φ ∈ D1,2 for which mins∈R(r0 + φ)(s) = 0, at which the
functional φ 7→ AG is not continuous. The second difficulty is that, even if we can guarantee that
mins∈R(r0 + φ)(s) > 0 for all φ in the region where we carry the deformation argument, without further
constraints we are not able to show that the PS sequence obtained is precompact. For that reason, we
take m > 0 large enough and we carry the deformation argument in the region

Fm =

{
φ ∈ D1,2 : min

s∈R
(r0 + φ)(s) ≤ m

}
. (4.17)

In Lemma 4.4.15 we show that on a suitable subset Fm,δ,b ⊂ Fm, the functional AG(φ) is bounded and
coercive, from where we deduce a uniform bound for ∥φ∥ when φ ∈ Fm,δ,b. This will be crucial to obtain
uniformly bounded PS sequences.

The deformation argument

We now introduce the set of curves

Γ =
{
γ ∈ C([0, 1], D1,2) : γ(0) = ψ1, γ(1) = ψ2

}
(4.18)
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and for m > 0 large enough the candidate to critical value

cG = inf
γ∈Γ

max{AG(γ(t)) : γ(t) ∈ Fm, t ∈ [0, 1]} (4.19)

The first step in the deformation argument is to prove that there exists a positive δ such that for all
bounded φ ∈ {φ ∈ D1,2 : |AG − φ| ≥ δ}, we have mins∈R(r0 + φ)(s) > 0. To that end we notice that

AG(φ) = A(φ)−G2 B(φ) (4.20)

with

A(φ) =

∫
R

φ̇2

2
+

1

((r0 + φ)2 + ρ2)1/2
− 1

r0
+
φ

r20
+G2

0

(
1

2r20
− φ

r30

)
B(φ) =

∫
R
(r0 + φ)−2

(4.21)

and apply a monotonicity trick due to Struwe (see [?] and [?]) to show that for almost every G, the
functional B(φ) is bounded if |AG(φ)− cG| is small enough (see Remark 4.4.12). The following version
of the monotonicity trick was proved in [?]. We provide the proof for the sake of self completeness.

Lemma 4.4.10. There exists a full measure subset J ⊂ [−G0, G0] such that for all G ∈ J there exists
constants δ > 0 and C > 0 for which if |AG(φ)− cG| ≤ δ then B(φ) ≤ C.

Proof. Since B(φ) ≥ 0 it follows from expression (4.20) and the definition of cG in (4.19) that G 7→ cG is
a monotone decreasing function. Therefore, it is differentiable on a subset J ⊂ R whose complement has
zero measure. Let G∗ ∈ J , δ > 0 and take φ such that |IG∗(φ)− cG∗ | ≤ δ. Take now G < G∗, then, by
decreasing (if necessary) the value of δ we can assume that

AG(φ) ≥ cG∗ − (G∗ −G) AG∗(φ) ≤ cG∗ + (G∗ −G)

Then

B(φ) =
AG∗(φ)−AG(φ)

G∗ −G
≤ cG + (G∗ −G)− c∗G + (G∗ −G)

G∗ −G

By the hypothesis on G∗ there exists an open neighbourhood around G∗ for which

−c′G∗ − 1 ≤ cG − cG∗

G∗ −G
≤ −c′G∗ + 1

and the lemma is proven.

Boundedness of the functional B(φ) allows us to obtain an a priori estimate for mins∈R(r0 + φ)(s) if
φ ∈ D1,2 is bounded.

Lemma 4.4.11. Let φ ∈ D1,2 be such that B(φ) ≤ C. Then, there exists a constant m > 0, depending
only on ∥φ̇∥L2 such that

r0(s) + φ(s) ≥ m ∀s ∈ R.

Proof. Suppose there exists s∗ ∈ R such that lims→s∗ r0(s) + φ(s) = 0. Since φ ∈ D1,2 it holds that
|s∗| < ∞ and we can assume without loss of generalitiy that r0(s) + φ(s) > 0 for all s < s∗. Take
now s0 = s∗ − 1 and write r(s) = r0(s) + φ(s). Then, by the fundamental theorem of calculus, for any
s ∈ [s0, s∗)

ln(r(s))− ln(r(s0)) =

∫ r(s)

r(s0)

r−1dr =

∫ s

s0

r−1(t)ṙ(t)dt

and Hölder’s inequality implies

| ln(r(s))− ln(r(s0))| ≤ B(φ)

(∫ s

s0

(ṙ0 + φ̇)2
)1/2

≤ C (1 + ∥φ̇∥L2) .
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Remark 4.4.12. In Lemma 4.5.2, we show that for all G ∈ R \ {0}, we have mins∈R(r0 +φ)(s) ≥ G2/2
for orbits of (4.2) which are homoclinic to γ∞. However, that argument does not allow us to conclude that
there exist δ > 0 such that for all bounded φ ∈ {φ ∈ D1,2 : |AG−φ| ≥ δ} we have mins∈R(r0 +φ)(s) > 0.
Therefore, is not clear how to incorporate the a priori estimate in Lemma 4.5.2 to obtain a minmax
critical point.

Assume now that φ is such that |AG(φ)− cG| ≤ δ. Therefore, thanks to Lemmas 4.4.10 and 4.4.11 it
is possible to obtain an inequality of the form

AG(φ) ≥
∥φ̇∥L2

2
− C∥φ∥ (4.22)

for some C > 0. Thus, if we moreover assume that φ ∈ Fm and that infs∈R(r0 + φ)(s) happens for
s ∈ [0, 1] we can obtain a uniform bound for the D1,2 norm of φ. In general, in problems in which the
action functional is invariant under integer time translations, the latter assumption introduces no loss of
generality and this argument can be employed to obtain uniformly bounded PS sequences.

However, in the present problem, the translation operator Tτ (φ) = φ(s + τ) + r0(s + τ) − r0(s), for
which we have AG(Tτ (φ)) = AG(φ), is not an isometry in D1,2. This introduces certain technicalities
in the deformation argument. In order to overcome this technical annoyance we introduce the following
definition.

Definition 4.4.13. Given φ ∈ D1,2 we define its barycenter as the functional Bar : D1,2 → R given by

Bar(φ) =

(∫
R
(1 + (r0 + φ)2)−2ds

)−1 ∫
R
s(1 + (r0 + φ)2)−2ds.

The following properties of the barycenter functional will be crucial for the deformation argument.

Lemma 4.4.14. Let Bar(φ) be the functional introduced in Definition 4.4.13. The following statements
hold:

• Behaviour under translations: For any τ ∈ Z

B(Tτφ) = B(φ)− τ.

where the translation operator Tτ was introduced in Lemma 4.4.5.

• Local Lipschitzianity: For any K > 0 there exists LBar > 0 such that

sup
∥φ∥≤K,∥φ′∥≤K

|Bar(φ)− Bar(φ′)|
∥φ− φ′∥

≤ LBar.

Proof. The proof of the first part is a trivial computation. For the second one we express

B(φ) = B2(φ)/B1(φ)

with

B1(φ) =

∫
R
(1 + (r0 + φ)2)−2ds B2(φ) =

∫
R
s(1 + (r0 + φ)2)−2ds.

First we notice that there exists C > 0 such that for all ∥φ∥ ≤ K we have B1(φ) ≥ C > 0 and |B2(φ)| ≤ C.
Indeed, for all s ∈ R

|φ(s)| ≤ |φ(0)|+ ∥φ̇∥L2

√
|s| ≤ (1 +

√
|s|)∥φ∥ ≤ C(1 +

√
|s|)

so there exists T > 0, depending only on ∥φ∥, such that

r0(s) + φ(s) ≥ r0(s)(1−O(s−1/6))
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for all |s| ≥ T . Therefore, for C depending only on T ,

|B2(φ)| ≤ C +

∫
|s|≥T

|s|(1 + (r0 + φ)2)−2ds ≤ C

(
1 +

∫
|s|≥T

|s|r−4
0 (s)ds

)
≤ C.

The uniform bound from below for B1(φ) follows since there exists C and T , depending only on ∥φ∥,
such that

r0(s) + φ(s) ≤ C(1 +
√
|s|)

for all |s| ≤ T . Take now φ,φ∗ ∈ D1,2 and write

B(φ∗)−B(φ) = (B2(φ
∗)−B2(φ))/B1(φ) + (B1(φ

∗)−B1(φ))B2(φ)/B1(φ
∗)B1(φ)

Let g(φ) = (1 + (r0 + φ)2)−2. Then for φ,φ∗ ∈ D1,2 we can write

B2(φ
∗)−B2(φ) =

∫
R
s(φ∗ − φ)

∫ 1

0

g′(λ(φ∗ − φ))dλds

On one hand for all s ∈ R

|φ∗(s)− φ(s)| ≤ |φ∗(0)− φ(0)|+ ∥φ̇∗ − φ̇∥L2

√
|s| ≤ (1 +

√
|s|)∥φ∗ − φ∥

and it follows that

|B2(φ
∗)−B2(φ)| ≤C∥φ∗ − φ∥

∫
R
(1 + |s|3/2)

∫ 1

0

|r0 + λ(φ∗ − φ)|(1 + |r0 + λφ∗ − φ|2)−3dλds

≤C∥φ∗ − φ∥
∫
R
(1 + |s|3/2)r−5

0 ≤ C∥φ∗ − φ∥.

The same computation shows that there exists C such that

|B1(φ
∗)−B1(φ)| ≤ C∥φ∗ − φ∥

and the lemma is proven.

Together, Lemma 4.4.10 and Lemma 4.4.14 imply the following result, which is key in our constrained
deformation argument.

Lemma 4.4.15. Let J ⊂ [−G0, G0] ⊂ R be the subset obtained in Lemma 4.4.10. Let G ∈ J , let δ > 0
be the constant in Lemma 4.4.10, let b > 0 and define

Fm,δ,b = Fm ∩
{
φ ∈ D1,2 : |AG(φ)− cG| ≤ δ, |Bar(φ)| ≤ b

}
(4.23)

Then, there exists K > 0 such that
sup

φ∈Fm,δ,b

∥φ∥ ≤ K

Proof. Let
S = {s̄ ∈ R : min

s∈R
(r0 + φ)(s) = (r0 + φ)(s̄)}

We claim that under the hypothesis of the lemma there exists C > 0 such that

|Bar(φ)− s̄| ≤ C ∀s̄ ∈ S

Suppose not, then, by continuity, there exist s̄ ∈ S and sequences {φn}, {s̄n} such that φn → φ in D1,2,
s̄n → s̄ and

φn ∈ Fm, |AG(φn)− cG| ≤ δ, and |Bar(φn)− s̄n| → ∞.
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By invariance of the action functional under translation Tτ (φ)(s) = φ(s + τ) + r0(s + τ) − r0(s) (see
Lemma 4.4.5) and the fact that

B(Tτ (φ)) = B(φ)− τ

the sequence φ̃n = T[s̄n]φn, satisfies

φ̃n ∈ Fm, |AG(φ̃n)− cG| ≤ δ and |Bar(φ̃n)| → ∞.

However, the first two properties imply the existence of K such ∥φ̃n∥ ≤ K for all n ∈ N. Indeed, by the
construction of φ̃n, for all φ̃n we have

|φ(s)| ≤ m+ ∥ ˙̃φn∥L2

√
|s+ 1|

Moreover, since G ∈ J and |AG(φ̃n)− cG| ≤ δ , Lemma 4.4.10 implies that there exists C > 0 such that
B(φ̃n) ≤ C for all n ∈ N. Therefore, it is easy to check that there exists C > 0 such that

AG(φ̃n) ≥
∥ ˙̃φn∥2L2

2
− C(1 + ∥ ˙̃φn∥L2)

for all n ∈ N. Thus, since |AG(φ̃n)− cG| ≤ δ and |cG| is bounded, the sequence {φ̃n} must be uniformly
bounded. It is easy to check that the existence of K such that ∥φ̃n∥ ≤ K is in contradition with Bar(φ̃n)
being unbounded.

Once we know that the claim |Bar(φ)− s̄| ≤ C holds, we obtain that s̄ ≤ C+b for all s̄ ∈ S. Therefore,
since φ ∈ Fm, we have that

|φ(0)| ≤ |φ(s̄)|+ ∥φ̇∥L2

√
|s̄| ≤ C(1 + ∥φ̇∥L2)

for some C > 0 depending only on m, δ and b. The result follows since now we can show that for all φn
we have

AG(φn) ≥
∥φ̇n∥2L2

2
− C(1 + ∥φ̇n∥L2)

for some C uniform on n.

In Proposition 4.4.17 we show the existence of a PS sequence contained in Fm,δ,b for large enough
values of m and b. Notice that in particular, thanks to Lemma 4.4.15 this sequence will be uniformly
bounded.

We split the proof of Proposition 4.4.17 in two parts. First, we assume by contradiction that there
exists no critical point of the action functional AG in Fm,δ,b. Under this assumption, we build a pseudo
gradient vector field for AG, this is the content of Proposition 4.4.16. Then, in Proposition 4.4.17 we
use this pseudo gradient vector field to build a localized deformation which yields points φ ∈ Fm,δ,b for
which AG(φ) < cG, a contradiction.

Before stating Proposition 4.4.16 some definitions are in order. Let b > 0 and 0 < ε < δ/2 where
δ > 0 is the constant in Lemma 4.4.10. For we want the flow along the pseudogradient vector field to
leave D1,2 \Fm positively invariant, we express it as the convex combination of two localized vector fields:
a gradient-like vector field supported on

P = {φ ∈ D1,2 : |AG(φ)− cG| ≤ ε, min
s∈R

r0(s) + φ(s) ≤ m, Bar(φ) ≤ 2b} (4.24)

and a vector field supported on

Y = {φ ∈ D1,2 : |AG(φ)− cG| ≤ δ, |min
s∈R

r0(s) + φ(s)−m| ≤ ε, Bar(φ) ≤ 2b}. (4.25)

for which D1,2\Fm is positively invariant. This construction is made explicit in the following proposition.
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Proposition 4.4.16. Let J ⊂ [G0, G0]R be the subset obtained in Lemma 4.4.10. Let δ > 0 be the
constant in Lemma 4.4.10 and take m > 0 large enough. Assume that for all b > 0 there exists α > 0 for
which

inf {∥∇AG(φ)∥ : φ ∈ Fm,δ,2b} ≥ α

Then, there exists b0 such that for all b ≥ b0 there exists a Lipschitz pseudogradient vector field W :
D1,2 → D1,2 such that

• ∥W∥ ≤ 1,

• There exists a constant β > 0 such that

dAG(φ) [W (φ)] ≤ −β ∀φ ∈ P ∪ Y,

• The region D1,2 \ Fm is positively invariant under the flow of W .

Proof. Let ε < δ/2, define the sets

Y ={φ ∈ D1,2 : |AG(φ)− cG| ≤ δ, |min
s∈R

r0(s) + φ(s)−m| ≤ ε, Bar(φ) ≤ 2b}

Z ={φ ∈ D1,2 : |AG(φ)− cG| ≤ δ, |min
s∈R

r0(s) + φ(s)−m| ≥ 2ε, Bar(φ) ≤ 2b}

and the function

Ψ =
distZ

distY + distZ
,

which satisfies Ψ = 0 on Z and Ψ = 1 on Y . We also introduce

P ={φ ∈ D1,2 : |AG(φ)− cG| ≤ ε, min
s∈R

r0(s) + φ(s) ≤ m, Bar(φ) ≤ 2b}

Q ={φ ∈ D1,2 : |AG(φ)− cG| ≥ δ, min
s∈R

r0(s) + φ(s) ≤ m, Bar(φ) ≤ 2b}

and define the function

Φ =
distQ

distP + distQ
.

which satisfies Φ = 0 on Q and Φ = 1 on P . Take now a sufficiently small open neighbourhood U ⊂ D1,2,
supp(Φ) ⊂ D1,2. Notice that by Lemma 4.4.15, there exists K > 0 such that

sup{∥φ∥ : φ ∈ U} ≤ K.

Then, since G ∈ J , Lemmas 4.4.10 and 4.4.11, impy that there exists m > 0 such that

inf{min
s∈R

r0(s) + φ(s) : φ ∈ U} ≥ m.

Therefore, by Lemma 4.4.7 we have that dAG ∈ C1(U,D1,2), what implies the existence of a constant
C > 0 such that distP + distQ > C. We introduce now the pseudogradient vector field

W =
1√
2
(−(1−Ψ)Φ

∇AG

∥∇AG∥
+Ψv) (4.26)

where v is the constant vector field given by the constant v = 1 ∈ D1,2. Notice that for a large enough
fixed m, and for all b > 0 there exists α̃ > 0 such that

sup{dAG(φ)[v] : φ ∈ suppΨ} ≤ −α̃ (4.27)

Indeed

dAG(φ)[v] =

∫
R

(
G2

(r0 + φ)3
− r0 + φ

((r0 + φ)2 + ρ2)3/2

)
v

and the claim follows since for large enough m the integrand is non positive and moreover it is strictly
negative on a positive measure subset of the real line since (thanks to Lemma 4.4.15) there exists K > 0
such that supφ∈suppΨ∥φ∥ ≤ K. It is straightforward to chek that the pseudogradient vector field W
introduced in (4.26) satisfies the properties listed in the statement in the lemma with β = min{α, α̃} > 0.
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Proposition 4.4.17. Let J ⊂ [−G0, G0] ⊂ R be the subset obtained in Lemma 4.4.10. Let δ > 0 be the
constant in Lemma 4.4.10 and take m > 0 large enough. Then, for b > 0 large enough there exists a
Palais-Smale sequence {φn}n∈N ⊂ Fm,δ,2b for AG at the level cG.

Proof. Let Γ ⊂ C([0, 1], D1,2) be the set defined in (4.18). Let ε < δ/2 and take a suboptimal path
γε ⊂ Γ for which AG(γε(t)) ≤ cG + ε for all t ∈ [0, 1] such that mins∈R r0(s) + (γε(t))(s) ≤ m. For all
γ ∈ Γ we define the set

Bγ ≡
{
Bar(γε(t)) : |AG(γ(t))− cG| ≥ ε, min

s∈R
r0(s) + (γ(t))(s) ≤ m, t ∈ [0, 1]

}
.

Notice that for each γ ∈ Γ , the set Bγ is a compact subset of R. Denote by

bmin = minBγε bmax = maxBγε

and consider the translated path γ1ε = Tb0γε for b0 = [bmin]. It satisfies that

Bγ1
ε
⊂ [0, bmax − b0 + 1]

Let W : D1,2 → D1,2 be the pseudogradient vector field built in Proposition 4.4.16 and denote by ητ its
time τ flow. Notice that since W is Lipschitz the flow ητ is well defined at least for sufficiently small
τ . Let β > 0 be the constant in Proposition 4.4.16. We claim that the deformed path γ1ε ◦ ητ∗ with
τ∗ = 2ε/β satisfies

max{AG(ητ∗(γ
1
ε )(t)) : min

s∈R
r0(s) +

(
ητ∗(γ

1
ε )(t)

)
(s) ≤ m, |Bar(ητ∗(γ1ε )(t))| ≤ b, t ∈ [0, 1]}

≤ cG − ε.

To verify the claim we first notice that the maximal displacement is bounded by

∥ητ∗(φ)− φ∥ ≤ τ∗∥W∥ ≤ τ∗ = 2ε/β.

Therefore, applying Lemma 4.4.14, we obtain that for any φ ∈ γε (taking b sufficiently large)

|Bar(ητ∗(φ))− Bar(φ)| ≤ LBar2ε/β ≤ b/4.

Thus, since the region {mins∈R r0(s) + φ(s) ≥ m} is forward invariant by the flow ητ and

d

dτ
(AG ◦ η) ≤ 0,

in order to verify the claim, it is enough to check that there does not exist

φ ∈
{
min
s∈R

r0(s) +
(
γ1ε (t)

)
(s) ≤ m, Bar(γ1ε (t)) ≤ 5b/4, t ∈ [0, 1]

}
for which ητ (γ

1
ε ) ∈ P ∀τ ∈ [0, τ∗] where P ⊂ D1,2 is the set defined in (4.24). This is clearly not possible

since for φ ∈ P we have
d

dτ
(AG ◦ η) ≤ −β

so
AG(ητ∗(γ1ε )) ≤ AG(γ

1
ε )− τ∗β ≤ cG − ε

a contradiction. Now that the claim is verified consider the path

γ2ε = T−b0(γ
1
ε ).

It satisfies that
Bγ2

ε
⊂ [b0 + b, bmax + 1]
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and

max{AG(γ
2
ε (t)) : min

s∈R
r0(s) +

(
γ2ε (t)

)
(s) ≤ m, Bar(γ2ε (t)) ≤ b0 + b, t ∈ [0, 1]} ≤ cG − ε

If bmax− b0+1 ≤ b the proposition is proved. In the case bmax− b0+1 ≥ b we repeat the argument above
with the path γ2ε to obtain a path γ3ε satisfying

Bγ3
ε
⊂ [b0 + 2b, bmax + 1]

and

max{AG(γ
3
ε (t)) : min

s∈R
r0(s) +

(
γ3ε (t)

)
(s) ≤ m, Bar(γ3ε (t)) ≤ b0 + 2b, t ∈ [0, 1]} ≤ cG − ε

The result follows after repeating the construction no more than [(bmax − b0 + 1)/b] steps.

Finally, we obtain the existence of a critical point of the functional AG at a level cG .

Theorem 4.4.18. Let J ⊂ [−G0, G0] ⊂ R be the subset obtained in Lemma 4.4.10. Then, for all G ∈ J
there exists a critical point of the action functional AG at the level cG.

Proof. By Proposition 4.4.17, for sufficiently largem and b there exists a Palais-Smale sequence {φn}n∈N ⊂
Fm,δ,2b so it follows from Lemma 4.4.15 that it is bounded. The theorem is then proved since the Palais
Smale sequence {φn}n∈N satisfies the hypothesis for the set Q of the compactness Lemma 4.4.8.

4.5 Topological transversality between the stable and unstable
manifolds

For the choice of G0 > 0 was arbitrary, Theorem 4.4.18 implies that for any compact subset [−G0, G0]
of the real line, there exists a full measure subset J ⊂ [−G0, G0] such that for all G ∈ J there exists an
orbit of (4.1) which is homoclinic to γ∞. Another way of rephrasing Theorem 4.4.18 is that the invariant
manifolds manifoldsW±(γ∞, G) defined in (4.7) intersect for almost all values ofG in [−G0, G0]. However,
Theorem 4.4.18 contains no information about the geometry of the intersection, in particular wether it
is transversal or not.

Theorem 4.4.1, proved in [GPSV21], shows that the intersection between W±(γ∞, G) is transverse for
all G sufficiently large. Moreover, the local stable manifolds W±

loc(γ∞;G) (see (4.6)) depend analytically
on r and G (see Proposition 4.3.1). We want to exploit this facts to deduce that the intersection of the
manifolds W±(γ∞, G) (which, by Theorem 4.4.18 we already know that exists for almost all values of
G ∈ [−G0, G0]) must be topologically transverse for almost all values of G in [−G0, G0].

Remark 4.5.1. In the following we fix a sufficiently large value of G0 and work with G ∈ J ⊂ [−G0, G0].

The first step is to obtain an a priori estimate from below for mins∈R rh(s).

Lemma 4.5.2. Let G ∈ R and let rh(s;G) : R → R be an orbit of of the Hamiltonian HG in (4.1) which
is homoclinic to γ∞. Then, for all s ∈ R we have

rh(s) ≥
G2

2
.

Proof. Since rh(s;G) : R → R is an orbit of of the Hamiltonian HG we have that

r̈h =
G2

r3h
− rh

(r2h + ρ2)3/2
≥ G2

r3h
− 1

r2h
. (4.28)

Let now I ⊂ R be an interval in which ṙh(s) ≤ 0 for all s ∈ I. Then, multiplying (4.28) by ṙh, for all
s ∈ I we obtain

d

ds

(
ṙ2h
2

+
G2

2r2h
− 1

rh

)
≤ 0,
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that is, the energy

E(s) =
ṙ2h(s)

2
+

G2

2r2h(s)
− 1

rh(s)

is non increasing on the interval I. Let I be a maximal interval in which rh(s) is decreasing: we distinguish
between two alternatives, either

• I = (−∞, s1], and lims→−∞ rh(s) = ∞, lims→−∞ ṙh(s) = 0 and ṙh(s1) = 0, or

• I = [s0, s1] and ṙh(s0) = 0, r̈h(s0) ≤ 0 and ṙh(s1) = 0

for some −∞ < s0 < s1 <∞. In the first case we have

lim
s→−∞

E(s) = 0.

In the second case, using that ṙh(s0) = 0, r̈h(s0) ≤ 0 and the inequality (4.28), we obtain

E(s0) =
ṙ2h(s0)

2
+

G2

2r2h(s0)
− 1

rh(s0)
=

G2

2r2h(s0)
− 1

rh(s0)
≤ G2

r2h(s0)
− 1

rh(s0)
≤ 0.

Therefore, in both cases, for all s ∈ I we have E(s) ≤ 0, which implies that

r(s) ≥ r(s1) ≥
G2

2
.

Lemma 4.5.2 implies that for G ̸= 0, homoclinic orbits do not intersect the section {r = 0}. This
fact allows us to exploit the analytic dependence of the Hamiltonian HG in the parameter G to prove the
following result.

Lemma 4.5.3. The set of values of G ∈ R \ {0} for which W−(γ∞, G) =W+(γ∞, G), is finite.

Proof. Fix any δ > 0 and let G∗ be the constant in Theorem 4.4.1 and let 1 ≪ R1 < R2 be such that
for all G ∈ [−2G∗, 2G∗] the generating function S+(r, t;G) associated with the local stable manifold (see
4.3.1) is well defined for all (r, t) ∈ [R1, R2]× T. Define the set

Q = {(r, y, t) ∈ R+ × R× T : r ∈ (R1, R2), y > 0, t = 0}.

Whenever it exists, denote by γ−G ⊂ Q∩Wu(γ∞;G) the connected component ofQ∩Wu(γ∞;G) associated
with the first backwards intersection of Wu(γ∞;G) with Q (see Figure 4.5). Define now the set

G̃ = {G ∈ R : δ ≤ |G| ≤ 2G∗, γ
−
G ̸= ∅ and ∃ φ−

G ∈ Cω ([R1, R2],R) such that γ−G = graph(φ−
G)}.

Clearly, G ⊂ G̃ where

G = {G ∈ R : δ ≤ |G| ≤ 2G∗, W
+(γ∞;G) =W−(γ∞;G)}.

In view of Lemma 4.5.2, for all G ∈ G

dist(W±(γ∞, G), {r = 0}) ≥ G2/2. (4.29)

so G is a closed set. Moreover, since the Hamiltonian (4.2) depends analytically on G, and, by (4.29),
for all G ∈ G the vector field associated with (4.2) is analytic on a neighbourhood of W±(γ∞, G), there

exists an open subset O ⊂ G̃ such that G ⊂ O and in which φ−
G ∈ Cω([R1, R2] × O). Define now the

function ∆(r,G) : [R1, R2]× G̃ → R given by

∆(r,G) = φ−
G(r)− ∂rS

+(r, 0;G)
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Figure 4.4: The domain Q and a sketch of the intersection of the stable manifolds W±(γ∞;G) with Q

for a value of G ∈ G̃.

which satisfies ∆(r,G) = 0 for all G ∈ G̃ and ∆ ∈ Cω ([R1, R2]×O). Suppose now that G = {δ ≤ |G| ≤
2G∗}. Then, ∆(r,G) = 0 for all (r,G) ∈ [R1, R2]×{δ ≤ |G| ≤ 2G∗} and we obtain a contradiction with the
fact that for |G| ≥ G∗ the manifolds Wu(γ∞, G), W

s(γ∞, G) intersect transversally (see Theorem 4.4.1).
Therefore, G ⊊ {δ ≤ |G| ≤ 2G∗}. We now show that, moreover, G cannot contain any accumulation
point. To see this suppose that there exists Gmax ∈ G such that

Gmax = max{G ∈ G : G is an accumulation point of G}.

Since Gmax ∈ G there exists an open interval V ⊂ O such that G ∈ V. Then, the fact that V ⊂ O
implies that∆(r,G) ∈ Cω ([R1, R2]× V) and since Gmax is an acuumulation point of G we conclude that
∆(r,G) = 0 on [R1, R2]×V. Then V ⊂ G, so there exists G̃ ∈ V ⊂ G such that G̃ > Gmax, a contradiction
with the definition of Gmax.

Denote now by J ⊂ R the set

J = {G ∈ J : G ̸= 0, W+(γ∞;G) ̸=W−(γ∞;G)} (4.30)

where J was defined in Lemma 4.4.10 (see also Theorem 4.4.18).

Lemma 4.5.4. For all G ∈ J the set Crit(AG) = {φ ∈ D1,2 : dAG(φ) = 0} is isolated in D1,2.

Proof. Following [MNT99], we define the map TR : Crit(A) ⊂ D1,2 → R given by

TR = sup{s ∈ R : r0(s) + φ(s) = R, φ ∈ Crit(A) ⊂ D1,2}.

We now show that the set TR(Crit(A)) is isolated in R. Suppose on the contrary that there exists an
accumulation point T∗ ∈ TR(Crit(A)), then, there exist {(φn, tn)}n∈N ⊂ Crit(A) × R and R ∈ R+ such
that tn → TR, (r0 + φn)(tn) = R and

((r0 + φn)(tn), (ṙ0 + φ̇n)(tn)) ∈W+
loc(γ∞;G).

Thus, there exist infinitely many different homoclinic points contained in the piece of the local stable
manifold γ+ = {y = ∂rS

+(r, t), t = T∗, r ∈ [R,R1]} for any R1 < R. This would imply the existence
of T∗∗ < T∗, R2 < R3 such that γ+ ∩ ϕT∗−T∗∗(γ−) intersect at infinitely many points, where γ− = {y =
∂rS

−(R, t), t = T∗∗, r ∈ [R2, R3]}.However, γ+ and γ− are compact analytic curves, and since G ∈ J
they cannot intersect at infinitely many points.

By Lemma 3.3. in [MNT99], the function TR : Crit(A) ⊂ D1,2 → R is continuous, so the lemma is
proven, for if it were to be false there would exist an accumulation point T∗ ∈ TR(Crit(A)).

The fact that the critical points are isolated implies the following non-degeneracy property at, at
least, one of the critical points of AG at the level cG. We say that φ∗ ∈ Crit(AG) has a local mountain
pass structure if, for all neighbourhood U ⊂ D1,2 of φ∗, the set {φ ∈ U : AG(φ) < AG(φ∗)} is not path
connected. The following result is a direct consequence of Lemma 4.5.4 and Theorem 1 in [Hof86].
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Proposition 4.5.5. For all G ∈ J there exists φ∗ ∈ Crit(AG) such that AG(φ∗) = cG which has a local
mountain pass structure.

Remark 4.5.6. In all the forthcoming sections we fix G ∈ J where J is the set defined in (4.30) and
omit the dependence on G.

4.5.1 The reduced action functional

For n ∈ N \ {0} we denote by H1([−n, n]) the usual Sobolev space consisting of functions defined on the
interval [−n, n] ⊂ R with one weak derivative in L2([−n, n]) and introduce the restriction operator

j : D1,2 −→ H1([−n, n])
φ 7−→ j(φ) = φ|[−n,n]

(4.31)

Then, for a sufficiently small neighbourhood Ũ ⊂ H1([−n, n]) of a point φ̃∗ = j(φ∗) where φ∗ ∈ D1,2

and a sufficiently large n ∈ N (depending on φ∗) we define the reduced action functional Ã : Ũ ⊂
H1([−n, n]) → R given by

Ã(φ̃) =

∫ n

−n
Lren(φ̃, ˙̃φ, s)ds− S+((r0 + φ̃)(n)) + S−((r0 + φ̃)(−n)) + ṙ0(n)(φ̃(n)− φ̃(−n)),

where the renormalized Lagrangian Lren is defined in (4.12) and S± are the generating functions of the
local stable and unstable manifolds which were obtained in Proposition 4.3.1. Notice that for n sufficiently
large (depending on φ∗) and φ̃ sufficiently close to j(φ∗) the values (r0+φ̃)(±n) are contained in Dom(S±).

We now want to translate the results we have obtained for the functional A, in particular Proposition
4.5.5, in results for the functional Ã. To that end, given any constant c ∈ R and n ∈ N we introduce the
functional spaces

D1,2
+ (c, n) = {φ ∈ C([n,∞)) : ∃vφ ∈ L2([n,∞)) such that

φ(s) = c+

∫ s

n

vφ(t)dt, ∀s ∈ [n,∞)}

and

D1,2
− (c, n) = {φ ∈ C((−∞,−n]) : ∃vφ ∈ L2((−∞,−n]) such that

φ(s) = c−
∫ −n

s

vφ(t)dt, ∀s ∈ (−∞,−n]}

Define also the weakly closed subsets

D̃1,2
+ (c, n) ={φ ∈ D1,2

+ (c, n) : r0(s) + φ(s) ≥ r0(n) + c, ∀s ∈ [n,∞)}
D̃1,2

− (c, n) ={φ ∈ D1,2
− (c, n) : r0(s) + φ(s) ≥ r0(−n) + c, ∀s ∈ (−∞,−n]}

Then, we define the asymptotic actions

A±(φ) = ±
∫ ±∞

±n
Lren(φ, φ̇, s)ds (4.32)

Lemma 4.5.7. For all c ∈ R there exists n0 ∈ N such that for all n ≥ n0 there exists a unique
φ± ∈ D̃1,2

± (c, n) such that

A±(φ±) = min{A±(ψ) : ψ ∈ D̃1,2
± (c, n))}.

Moreover,
A±(φ±) = ∓S±((r0(±n) + c)± S0((r0)(±n))∓ ṙ0(±n)c.
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Proof. A simple computation shows that

∂2rrV (r, t) = −3G2

r4
+

3r2

(r2 + ρ2(t))5/2
− 1

(r2 + ρ2(t))3/2

from where we easily deduce that there exists R > 0 such that, if

r0(n) + c ≥ R

then, the functional φ 7→ A+(φ) in (4.32) is strictly convex on the strictly convex set D̃1,2
+ (c, n). Therefore,

there exists a unique minimizer φ+ ∈ D̃1,2
+ (c, n) for which

A+(φ+) = min{A+(ψ) : ψ ∈ D̃1,2
+ (φ̃(n))}.

Moreover, is easy to check that φ+ is a critical point of the functional A+(φ). Consequently, r(s) =
r0(s) + φ+(s) is an orbit of (4.1) asymptotic in the future to γ∞.

Let now S+(r, s) be the generating function of the local stable manifold introduced in Proposition
4.3.1. By uniqueness of the local stable manifold, the function φ+(s) satisfies that

(ṙ0 + φ̇+)(s) = ∂rS
+(r0(s) + φ+(s), s)

for all s ∈ [n,∞). In particular, since moreover φ+(s) ∈ D1,2
+ Lemma 4.A.2 in Appendix 4.A implies that

|φ̇+(s)| ≲ s1/6 as s→ ∞ and since ṙ0(s) ∼ s−1/3 as s→ ∞ , we can integrate by parts to obtain∫ ∞

n

Lren(φ+, φ̇+, s) =

∫ ∞

n

φ̇2
+

2
+ V (r0 + φ+)− V0(r0)− r̈0φ+

=− ṙ0(n)c+

∫ ∞

n

φ̇2
+

2
+ ṙ0φ̇+ V (r0 + φ+)− V0(r0).

On the other hand,∫ ∞

n

φ̇2
+

2
+ ṙ0φ̇+ V (r0 + φ+)−V0(r0)

=

∫ ∞

n

(
(ṙ0 + φ̇+)∂rS

+(r0 + φ+)−H(r0 + φ+, ∂rS
+(r0 + φ+), s)

−ṙ0 ∂rS0(r0)−H0(r0, ∂rS
0(r0))

)
=

∫ ∞

n

d

ds
S+((r0 + φ+)(s))−

d

ds
S0(r0(s))

=− S+((r0(n) + c) + S0(r0(n))

where we have used that H(r0 + φ+, ∂rS
+(r0 + φ+), s) + ∂tS

+(r0 + φ+, s) = 0 and the fact that

lim
s→∞

S+((r0 + φ+)(s))− S0(r0(s)) = 0,

which is also proved in Lemma 4.A.2.

Introduce now the extension operator E : Ũ ⊂ H1([−n, n]) → D1,2

E(φ̃) =

 E−(φ̃) for s ∈ (−∞,−n)
φ̃ for s ∈ [−n, n]

E+(φ̃) for s ∈ (n,∞)
(4.33)

where

E±(φ̃) ={φ ∈ D̃1,2
± (φ̃(±n)) : A±(φ) ≤ A±(ψ), ∀ψ ∈ D̃1,2

± (φ̃(±n))}.

From the proof of Lemma 4.32 we deduce the following.
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Figure 4.5: Sketch of the suboptimal path γε.

Lemma 4.5.8. Let φ ∈ D1,2, let n ∈ N sufficiently large, let φ̃ = j(φ) and let Ũ ⊂ H1([−n, n]) a

sufficiently small neighbourhood of φ̃. Then, the extension operator (4.33) is well defined on Ũ .

The proof of the following Lemma is an straightforward consequence of the definition of the extension
operator E.

Lemma 4.5.9. Let φ∗ ∈ D1,2. Then, for n ∈ N sufficiently large and all φ contained in a sufficiently
small neigubourhood U ⊂ D1,2 of φ∗

Ã(j(φ)) ≤ A(φ).

Also, for all φ̃ in a sufficiently small neighbourhood Ũ ⊂ H1([−n, n]) of j(φ∗)

Ã(φ̃) = A(E(φ̃)).

Moreover, for φ∗ ∈ D1,2 such that dA(φ∗) = 0 we have dÃ(j(φ∗)) = 0.

We can now translate the result for A stated in Proposition 4.5.4 in an analogous result for Ã.

Proposition 4.5.10. There exists n ∈ N and φ̃∗ ⊂ H1([−n, n]) which is a critical point of Ã and has a
local mountain pass structure.

Proof. The proof is a simple combination of the proof of Theorem 1 in [Hof86] together with the relation-
ship between the functionals A and Ã which was obtained in Lemma 4.5.9. We sketch here the details
for the sake of completeness.

Denote by Crit(A, cG) = {φ ∈ Crit(A) ⊂ D1,2 : A(φ) = cG} where cG is the critical value defined in
(4.19). Lemma 4.5.4 implies, in particular, that Crit(A, cG) is an isolated subset in D1,2. Moreover, fixing
m sufficiently large Crit(A, cG) ⊂ Fm where Fm was defined in (4.17). Let now ε > 0 and γε ⊂ Γ ⊂ D1,2

be a suboptimal path at level cG. Then, γε intersects a finite number of elements in Crit(A, cG), which
we denote by {φ1, . . . , φk} for some finite k. Let now δ > 0 sufficiently small and denote by Bi,δ ⊂ D1,2

the ball of radius δ around φi. Without loss of generality we can assume that γε intersects each Bi,δ only
once so we can define (see Figure 4.5.1)

t−i = inf{t ∈ [0, 1] : γ(t) ∈ Bi,δ} t+i = sup{t ∈ [0, 1] : γ(t) ∈ Bi,δ}.

and e−i = γ(t−i ) and e+i = γ(t+i ). Let now n ∈ N large enough and δ small enough so the restricition
operator j in(4.31) is well defined on ∪1≤i≤kBi,δ. Let B̃i,δ = j(Bi,δ). Again, without loss of generality, we

can assume that for all i = 1, . . . , k, e±i ∈ D1,2 have minimizing tails, that is, e±i |[n,∞) ⊂ D̃1,2(e±i (n), n) is

the unique minimizer of A+ on D̃1,2(e±i (n), n) and e
±
i |(−∞,−n] ⊂ D̃1,2(e±i (−n), n) is the unique minimizer

of A− on D̃1,2(e±i (−n), n). Now, define the paths

γ̃i = j(γ|[t−i t+i ]) ⊂ H1([−n, n])

for i = 1, . . . , k, and the points φ̃i = j(φi) ∈ H1([−n, n]), which are indeed critical points of the reduced
action functional Ã. Suppose the point φ̃i does not have a local mountain pass structure. Then, we can
build (see Lemma 1 in [Hof86]) a continuous deformation η : [0, 1]× B̃i,δ → H1([−n, n]) such that

η
(
{1} × ({φ̃ ∈ B̃i,δ : Ã(φ) ≤ cG + ε} \ B̃i,δ/2)

)
⊂ {φ̃ ∈ B̃i,δ : Ã(φ) ≤ cG − ε}
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η
(
[0, 1]× Cl(B̃i,δ/2)

)
⊂ B̃i,δ

η(z, φ) = φ ∀(z, φ) ∈ [0, 1]× {φ̃ ∈ B̃i,δ : |Ã(φ)− cG| ≥ ε} .
where by Cl(B̃i,δ/2) we denote the closure of the ball B̃i,δ/2. Write η(γ̃i) = η({1} × γ̃i), which satisfies

Ã(η(γ̃i)) ≤ cG − ε

and
η(γ̃i)(t

−
i ) = j(e−i ) η(γ̃i)(t

+
i ) = j(e+i ).

Now, for the extension operator E is well defined on B̃i,δ (shrinking δ if necessary) and η(γ̃i) ⊂ B̃i,δ, we
can define the path E(η(γ̃i)) ⊂ D1,2 which, by construction, satisfies

A(E(η(γ̃i))) ≤ cG − ε

and
η(γ̃i)(t

−
i ) = e−i η(γ̃i)(t

+
i ) = e+i .

The proposition is therefore proved for, if none of the points φ̃i posses a local mountain pass structure,
the continuous path γ ⊂ D1,2 defined by gluing (in the obvious way) the segments γε \

⋃
1≤i≤k γε|[t−i ,t+i ]

with the segments E(ηi(γ̃i)) satisfies A(γ) ≤ c− ε, a contradiction.

Proposition 4.5.10 entails a non degeneracy condition for the intersection of the invariant manifolds
W+(γ∞) andW−(γ∞) at the homoclinic orbit associated with φ̃∗. We now make use of topological degree
theory to exploit this non degeneracy condition. Let φ̃∗ ∈ H1([−n, n]) be the critical point obtained in

Proposition 4.5.10 and consider a sufficiently small neighbourhood Ũ ∈ H1([−n, n]) such that φ̃∗ ∈ Ũ .

By definition of the functional Ã, and the fact that

min
s∈[−n,n]

r0(s) + φ̃∗(s) > 0

the differential dÃ(φ̃) : Ũ → H1([−n, n]) is a continuous linear functional and, for any φ̃ ∈ Ũ and any
ψ ∈ H1([−n, n]), we can express

dÃ(φ)[ψ] = ⟨φ̇, ψ̇⟩L2([−n,n]) + 2

∫ n

−n

φψ

r30
+ P (φ)[ψ], (4.34)

where we have introduced the functional (compare expression (4.15) in the proof of Lemma 4.4.8)

P̃ (φ)[ψ] =

∫ n

−n

(
G2

(r0 + φ)3
− G0

r30

)
ψ −

∫ n

−n

(
r0 + φ

((r0 + φ)2 + ρ2)3/2
− 1

r20
+

2φ

r30

)
ψ

−
(
∂rS

+((r0 + φ̃)(n))− ṙ0(n)
)
ψ(n) +

(
∂rS

−((r0 + φ̃)(−n))− ṙ0(−n)
)
ψ(−n).

Since r0(s) > 0 and the interval [−n, n] is compact, the expression

⟨⟨φ,ψ⟩⟩ = ⟨φ̇, ψ̇⟩L2([−n,n]) + 2

∫ n

−n

φψ

r30
,

defines an equivalent inner product on H1([−n, n]). For φ̃ ∈ Ũ , denote by ∇Ã(φ̃) the unique element of
H1([−n, n]) such that for all ψ ∈ H1([−n, n])

⟨⟨∇Ã(φ̃), ψ⟩⟩ = dÃ(φ)[ψ]. (4.35)

From (4.34) one easily deduces that the map ∇Ã : Ũ → H1([−n, n]) is a compact perturbation of the

identity. Therefore, for any subset Ṽ ⊂ Ũ ∈ H1([−n, n]) and any point z̃ ∈ H1([−n, n]) such that

z̃ /∈ ∇Ã(∂Ṽ ) the Leray-Schauder degree 6 associated with the triple (∇Ã, Ṽ , z̃), which we denote by

deg(∇Ã, Ṽ , z̃),

is well defined. Proposition 4.5.10, together with Theorem 2 in [Hof86], imply the following result.

6The Leray-Schauder degree is a generalization of the Brouwer degree to maps between infinite dimensional spaces wich
are of the form identity+compact. Details about its definition and properties can be found in [?].
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Proposition 4.5.11. Let φ̃∗ ∈ H1([−n, n]) be the critical point of Ã which was obtained in Proposition
4.5.10 and, for ε > 0, denote by Bε(φ̃∗) ⊂ H1([−n, n]) the ball of radius ε centered at φ̃∗. Then, there
exists ε0 such that for all 0 ≤ ε ≤ ε0,

deg(∇Ã, Bε(φ̃∗), 0) = −1.

As a consequence of Proposition 4.5.11 we can prove that the manifolds W+(γ∞;G) and W−(γ∞;G)
intersect transversally for G ∈ G. First, we introduce some notation which will be useful in the proof of
Proposition 4.5.12 and in Section 4.6. Let s ∈ [−n, n], then, we denote by evs : H1([−n, n]) → R the
evaluation operator given by

evsφ̃ = φ̃(s).

In addition we denote by evs ∈ H1([−n, n]) the unique element such that for all ψ ∈ H1([−n, n])

⟨⟨evs, ψ⟩⟩ = evs(ψ).

Proposition 4.5.12. For all G ∈ J there exists a topologically transverse intersection betweenW+(γ∞;G)
and W−(γ∞;G).

Proof. Let φ̃∗ ⊂ H1([−n, n]) be the critical point obtained in Proposition 4.5.10. Then, there exists
ε0 > 0 such that for all 0 ≤ ε ≤ ε0

∇Ã(φ̃∗) = 0 and ∇Ã(φ̃) ̸= 0 ∀φ ∈ Bε(φ∗) \ {φ∗}.

In particular, there exists δ0 > 0 such that

sup
φ∈∂Bε(φ∗)

∥∇Ã(φ̃)∥ ≥ δ0.

Define now, for δ ∈ R, the one parameter family of maps Fδ : H
1([−n, n]) → H1([−n, n]) given by

Fδ(φ) = ∇Ã(φ̃∗)+δevn = ∇
(∫ n

−n
Lren(φ, φ̇, s)

)
+∂rS

−((r0+φ)(−n))ev−n−(∂rS
+((r0+φ)(n))+δ)evn

Then, it is possible to find δ1 > 0 such that Fδ(φ) is an admissible homotopy for δ ∈ [−δ1, δ1] so by
invariance of the degree under admissible homotopies

deg(Fδ, Bε(φ∗), 0) = −1 ∀δ ∈ [−δ1, δ1].

We now show how this implies the desired conclusion. Let Q = {φ ∈ Bε : Fδ(φ) = 0, δ ∈ [−δ1, δ1]}.
Then, denoting by πr, πy the projections onto the r, y coordinates of a point (r, y, t) ∈ R2 ×T, and by ϕs

the flow at time s associated to Hamiltonian (4.2) we have that

[−δ1, δ1] ⊂ {πy ◦ ϕ2nH (r, ∂rS
−(r,−n),−n)− ∂rS

+(πr ◦ ϕ2nH (r, ∂rS
−(r,−n),−n) : r ∈ Rδ1}

for Rδ1{r = (r0 + φ)(−n) : φ ∈ Q}. This completes the proof.

4.6 Construction of multibump solutions

We now show how Proposition 4.5.11 together with the parabolic lambda Lemma 4.3.3 can be used to
the deduce the existence of homoclinic orbits to γ∞ which perform any arbitrary number of “bumps”.
We start by stating the following lemma, which is nothing but a reformulation of the parabolic lambda
Lemma 4.3.4.

Lemma 4.6.1. There exists R large enough such that for R0, R1 ≥ R there exists T∗ such that for all
T ≥ T∗ there exists a unique orbit r̂(t;T,R0, R1) of (4.1) for which r̂(0) = R0 and r̂(T ) = R1. Moreover,
for all ε > 0 there exists T∗∗(ε) such that for all T ≥ T∗∗ the unique solution r̂(t;T,R0, R1) satisfies

∂rS
+(R0)− ˙̂r(0) ≤ ε ˙̂r(T )− ∂rS

−(R1) ≤ ε.

Given R0, R1 ≥ R and T ≥ T∗ we denote by

v+(T,R0, R1) = ˙̂r(0;T,R0, R1) v−(T,R0, R1) = ˙̂r(T ;T,R0, R1).

where r̂(t;T,R0, R1) is the orbit segment found in Lemma 4.6.1.
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4.6.1 Proof of Theorem 4.1.5

We are now ready to build the multibump solutions. By proposition 4.5.11 we know that there exists a
critical point φ̃∗ ∈ H1([−n, n]) of Ã and ε0 ≥ 0 such that for all 0 ≤ ε ≤ ε0,

deg(∇Ã, Bε(φ̃∗), 0) = −1,

where Bε(φ̃∗) ⊂ H1([−n, n]) stands for the ball of radius ε centered at φ̃∗. For any L ∈ N, introduce
now the map

F : (Bε(φ∗))
L+1 × ({l ∈ N : l ≥ T∗∗})L −→ (H1([−n, n]))L+1

(φ1, . . . , φL+1, l1, . . . , lL) 7−→ (F1, . . . , FL+1)
(4.36)

where the maps Fj , 1 ≤ j ≤ L+ 1 are given by

F1 =∇ÃG +
(
∂rS

+(φ1(n), n)− v+(l1, φ1(n), φ2(−n))
)
evn

FL+1 =∇ÃG +
(
v−(lL, φL(n), φL+1(−n))− ∂rS

−(φL+1(−n),−n)
)
evn

and for 2 ≤ j ≤ L (this set is empty for L = 1)

Fj =∇ÃG +
(
∂rS

+(φj(n), n)− v+(lj , φj(n), φj+1(−n))
)
evn

+
(
v−(lj−1, φj−1(n), φj(−n))− ∂rS

−((φj)(−n),−n)
)
ev−n.

The proof of the following result follows inmediately after from Proposition 4.5.11 and Lemma 4.6.1.

Theorem 4.6.2. There exists φ̃∗ ∈ H1([−n, n]), T > 0 and ε > 0 such that for all L ∈ N

deg(F, (Bε(φ∗))
L+1 × ({l ∈ N : l ≥ T}L, 0) = (−1)L

In particular, for any sequence l = {lj}1≤j≤L ⊂ ({l ∈ N : l ≥ T}L there exists φ(l) = {φj(l)}1≤j≤L+1 ⊂
(H1([−n, n]))L+1 such that

F (φ(l), l) = 0.

Theorem 4.6.2 shows the truth of the first item in Theorem 4.1.5 for sequences σ ∈ {0, 1}Z with finite,
but arbitrarily large number of nonzero entries. For the time interval T∗∗ in the definition of (4.36) does
not depend on L, the existence of solutions rσ such that σ has infinitely many non-zero entries follows
by a standard diagonal argument in the C1

loc topology. In order to deduce the second item, namely the
existence of infinitely many periodic orbits, we define the functional

Fper : (Bε(φ∗))
L × ({l ∈ N : l ≥ T∗∗})L −→ (H1([−n, n]))L

(φ1, . . . , φL+1, l1, . . . , lL) 7−→ (F1, . . . , FL)
(4.37)

with periodic boundary conditions

F1 =∇ÃG +
(
∂rS

+(φ1(n), n)− v+(l1, φ1(n), φ2(−n))
)
evn

+
(
v−(lL, φL(n), φ1(−n))− ∂rS

−((φ1)(−n),−n)
)
ev−n

FL =∇ÃG +
(
v−(lL, φL(n), φL+1(−n))− ∂rS

−(φL+1(−n),−n)
)
evn

+
(
v+(L,φL(n), φ1(−n))− ∂rS

+((φL)(−n),−n)
)
ev−n

and such that for 2 ≤ j ≤ L (this set is empty for L = 1) Fj has the same expression as in in the non
periodic case. The proof of Theorem 4.1.5 is complete.
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4.6.2 Proof of Theorem 4.1.4

From the proof of Theorem 4.1.5 it follows that

X+ ∩ Y − ̸= ∅

for any possible combination of X+ ∈ {P+, B+, OS+} and Y − ∈ {P−, B−, OS−}. We now show that
H+ ∩P− ̸= ∅ (the proof for the other combinations being similar). The following result is implied by the
second part of Lemma 4.3.4.

Lemma 4.6.3. There exists R large enough and ε0 such that for all R ≥ R0 and all 0 ≤ ε ≤ ε0 there
exists a unique orbit r̂(s; , R0, δ) of (4.1) for which

r̂(0) = R0, ˙̂r(0) = ∂rS
+(R0, 0) + ε.

Moreover, r̂(s; , R0, δ) is defined for all s ≥ 0 and satisfies

lim
s→∞

r̂(s;R0, ε) = ∞ lim
s→∞

˙̂r(s;R0, ε) > 0

Given R0 ≥ R and ε > 0 we denote by

v+hyp(R0, ε) = ˙̂r(0;R0, ε)

where r̂(s;R0, ε) is the orbit segment found in Lemma 4.6.3. Fix 0 ≤ ε ≤ ε0. The fact that H
+ ∩P− ̸= ∅

follows from the fact that the functional

Fhyp : (Bε(φ∗))
L+1 × ({l ∈ N : l ≥ T∗∗})L −→ (H1([−n, n]))L+1

(φ1, . . . , φL+1, l1, . . . , lL) 7−→ (F1,hyp, . . . , FL+1,hyp)

where the maps Fj,hyp, 1 ≤ j ≤ L+ 1 are given by

F1,hyp =∇ÃG +
(
∂rS

+(φ1(n), n)− v+(l1, φ1(n), φ2(−n))
)
evn

FL+1,hyp =∇ÃG +
(
v−(lL, φL(n), φL+1(−n))− ∂rS

−(φL+1(−n),−n)
)
evn

+
(
∂rS

+(φL+1(n), n)− v+hyp(φL+1(n), ε)
)
evn

and for 2 ≤ j ≤ L (this set is empty for L = 1)

Fj,hyp =∇ÃGi+
(
∂rS

+(φj(n), n)− v+(lj , φj(n), φj+1(−n))
)
evn

+
(
v−(lj−1, φj−1(n), φj(−n))− ∂rS

−((φj)(−n),−n)
)
ev−n.

In order to prove that P+ ∩ OS− ̸= ∅ we take L → ∞ and argue as in the proof of Theorem 4.1.5. In
order to show that H+ ∩ B− we impose periodic boundary conditions. The proof of Theorem 4.1.4 is
complete.

4.A Proof of of the technical claims in Lemma 4.5.7

We first prove the following result, which will be needed for the proof of Lemma 4.A.2.

Lemma 4.A.1. Let S0(r;G) be the generating function defined in Lemma 4.2.3. Then, for any G,G∗ ∈ R
we have that

|S0(r;G)− S0(r;G∗)| ≲
|G2 −G2

∗|
r1/2

.
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Proof. Denote by ũ(r) the unique function such that, for all y < 0, the y component of the parametrization
(4.5) is given by yh(ũ(r)). Writing ∆S(r;G,G∗) = S0(r;G) − S0(r;G∗) we observe that ∆S(r;G,G∗)
satisfies

yh(ũ(r))∂r∆S +
G2 −G2

∗
2r2

+
(∂r∆S)

2

2
= 0

Using now that yh(ũ(r)) ∼ r−1/2 for large r ≫ 1 we obtain that

∂r∆S ∼ G2 −G2
∗

r3/2
+O(r1/2(∂r∆S)

2)

so

|∆S(r;G,G∗))| ≲
|G2 −G2

∗|
r1/2

as was to be shown.

The claims in Lemma 4.5.7 follow from the following result.

Lemma 4.A.2. Suppose that for G ∈ [−G∗, G∗] there exists an orbit r(s;G) : R → R+ of the Hamiltonian
HG in(4.2) which is homoclinic to γ∞ and, for some G0 ∈ [−G∗, G∗] satisfies

|r(s;G)− r0(s,G0)| ≲ s1/2 as s→ ±∞.

Then,
|∂rS+(r(s;G), G)− ∂rS0(r0(s;G0), G0)| ≲ s−5/6 as s→ ±∞,

and, in particular
lim

s→±∞
S±(r(s;G), s;G)− S0(r0(s;G0), G0) = 0.

Proof. We write

∂rS
+(r(s;G), G)− ∂rS0(r0(s;G0), G0) =

(
∂rS

+(r(s;G), G)− ∂rS0(r(s;G), G)
)

+
(
∂rS

0(r(s;G), G)− ∂rS0(r0(s;G0), G)
)

+
(
∂rS

0(r0(s;G0), G)− ∂rS0(r0(s;G0), G0)
)

=E1 + E2 + E3.

On one hand, it follows from the last item in Lemma 4.3.1 that as s→ ±∞

|E1| ≲ r−5/2(s;G) ≲ r
−5/2
0 (s;G) ≲ s−5/3.

On the other hand, it follows from the mean value theorem, the definition of S0(r;G) and the hypothesis
in the statement of the lemma that as s→ ±∞

|E2| ≲ sup
r∈I

|∂2rrS0(r;G)||r(s;G)− r0(s,G0)| ≲ r−2
0 (s;G0)|r(s;G)− r0(s,G0)| ≲ s−5/6

for I = {r ∈ R+ : r = λr0(s;G0) + (1− λ)r(s;G), λ ∈ [0, 1]}. Also, from Lemma 4.2.3 we deduce that

|E3| ≲ r−3/2 ≲ s−1.

The proof of the first item follows combining the estimates for E1, E2, E3 and integrating. The second
part follows from the obtained estimate and straightforward computations.
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Chapter 5

Hyperbolic dynamics and Oscillatory
motions in the 3 Body Problem

Abstract: Consider the planar 3 Body Problem with masses m0,m1,m2 > 0. In this paper we address
two fundamental questions: the existence of oscillatory motions and chaotic hyperbolic sets.

In 1922, Chazy classified the possible final motions of the three bodies, that is, the behaviors the
bodies may have when time tends to infinity. One of the possible behaviors are oscillatory motions:
solutions of the 3 Body Problem such that the positions of the bodies q0, q1, q2 satisfy

lim inf
t→±∞

sup
i,j=0,1,2,i̸=j

∥qi − qj∥ < +∞ and lim sup
t→±∞

sup
i,j=0,1,2,i̸=j

∥qi − qj∥ = +∞.

Assume that all three masses m0,m1,m2 > 0 are not equal. Then, we prove that such motions exist.
We also prove that one can construct solutions of the 3 Body Problem whose forward and backward final
motions are of different type.

This result relies on constructing invariant sets whose dynamics is conjugated to the (infinite sym-
bols) Bernouilli shift. These sets are hyperbolic for the symplectically reduced planar 3 Body Problem.
As a consequence, we obtain the existence of chaotic motions, an infinite number of periodic orbits and
positive topological entropy for the 3 Body Problem.

For the sake of completeness, we reproduce here the full article [GMPS22], although as already men-
tioned in the introduction, the contribution of the author reduces to Sections 7, 8 and 9.1 in [GMPS22].

5.1 Introduction

The 3 Body Problem models the motion of three punctual bodies q0, q1, q2 of masses m0,m1,m2 > 0
under the Newtonian gravitational force. In suitable units, it is given by the equations

q̈0 = m1
q1 − q0

∥q1 − q0∥3
+m2

q2 − q0
∥q2 − q0∥3

q̈1 = m0
q0 − q1

∥q0 − q1∥3
+m2

q2 − q1
∥q2 − q1∥3

q̈2 = m0
q0 − q2

∥q0 − q2∥3
+m1

q1 − q2
∥q1 − q2∥3

.

(5.1)

In this paper we want to address two fundamental questions for this classical model: The analysis of the
possible Final Motions and the existence of chaotic motions (symbolic dynamics). These questions go
back to the first half of the XX century.
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Final motions: We call final motions to the possible qualitative behaviors that the complete (i.e.
defined for all time) trajectories of the 3 Body Problem may possess as time tends to infinity (forward
or backward). The analysis of final motions was proposed by Chazy [Cha22], who proved that the final
motions of the 3 Body Problem should fall into one of the following categories. To describe them, we
denote by rk the vector from the point mass mi to the point mass mj for i ̸= k, j ̸= k, i < j.

Theorem 5.1.1 (Chazy, 1922, see also [AKN06]). Every solution of the 3 Body Problem defined for all
(future) time belongs to one of the following seven classes.

• Hyperbolic (H): |ri| → ∞, |ṙi| → ci > 0, i = 0, 1, 2, as t→ ∞.

• Hyperbolic–Parabolic (HPk): |ri| → ∞, i = 0, 1, 2, |ṙk| → 0, |ṙi| → ci > 0, i ̸= k, as t→ ∞.

• Hyperbolic–Elliptic, (HEk): |ri| → ∞, |ṙi| → ci > 0, i = 0, 1, 2, i ̸= k, as t→ ∞, supt≥t0 |rk| <∞.

• Parabolic-Elliptic (PEk): |ri| → ∞, |ṙi| → 0, i = 0, 1, 2, i ̸= k, as t→ ∞, supt≥t0 |rk| <∞.

• Parabolic (P): |ri| → ∞, |ṙi| → 0, i = 0, 1, 2, as t→ ∞.

• Bounded (B): supt≥t0 |ri| <∞, i = 0, 1, 2.

• Oscillatory (OS): lim supt→∞ supi=0,1,2 |ri| = ∞ and lim inft→∞ supi=0,1,2 |ri| <∞.

Note that this classification applies both when t → +∞ or t → −∞. To distinguish both cases we
add a superindex + or − to each of the cases, e.g H+ and H−.

At the time of Chazy all types of motions were known to exist except the oscillatory motions 1 .
Their existence was proven later by Sitnikov [Sit60] for the Restricted 3 Body Problem and by Alekseev
[Ale69] for the (full) 3 Body Problem for some choices of the masses. After these seminal works, the
study of oscillatory motions have drawn considerable attention (see Section 5.1.2 below) but all results
apply under non-generic assumptions on the masses.

Another question posed by Chazy was whether the future and past final motion of any trajectory
must be of the same type. This was disproved by Sitnikov and Alekseev, who showed that there exist
trajectories with all possible combinations of future and past final motions (among those permitted at
an energy level).

The first result of this paper is to construct oscillatory motions for the 3 Body Problem provided
m0 ̸= m1 and to show that all possible past and future final motions at negative energy can be combined.

Besides the question of existence of such motions, there is the question about their abundance. As is
pointed out in [GK12], V. Arnol’d, in the conference in honor of the 70th anniversary of Alexeev, posed
the following question.

Question 5.1.2. Is the Lebesgue measure of the set of oscillatory motions positive?

Arnol’d considered it the fundamental question in Celestial Mechanics. Alexeev conjectured in [Ale71]
that the Lebesgue measure is zero (in the English version [Ale81] he attributes this conjecture to Kol-
mogorov). This conjecture remains wide open.

Symbolic dynamics: The question on existence of chaotic motions in the 3 Body Problem can be
traced back to Poincaré and Birkhoff. It has been a subject of deep research during the second half of
the XX century. The second goal of this paper is to construct hyperbolic invariant sets for ( a suitable
Poincaré map and after symplectically reducing for the classical first integrals of) the 3 Body Problem
whose dynamics is conjugated to that of the usual shift

σ : NZ → NZ, (σω)k = ωk+1, (5.2)

1Indeed, note that in the limit m1,m2 → 0, where the model becomes two uncoupled Kepler problems, all final motions
are possible except OS±.
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in the space of sequences, one of the paradigmatic models of chaotic dynamics. Note that these dynamics
implies positive topological entropy and an infinite number of periodic orbits.

The known results on symbolic dynamics in Celestial Mechanics require rather restrictive hypotheses
on the parameters of the model (in particular, the values of the masses). Moreover, all the proofs of
existence of hyperbolic sets with symbolic dynamics in Celestial Mechanics deal with very symmetric
configurations which allow to reduce the 3 Body Problem to a two dimensional Poincaré map (see the
references in Section 5.1.2 below).

5.1.1 Main results

The two main results of this paper are the following. The first theorem deals with the existence of
different final motions and, in particular, of oscillatory motions.

Theorem 5.1.3. Consider the 3 Body Problem with masses m0,m1,m2 > 0 such that m0 ̸= m1. Then,

X− ∩ Y + ̸= ∅ with X,Y = OS,B,PE2,HE2.

Note that this theorem gives the existence of orbits which are oscillatory in the past and in the future.
It also gives different combinations of past and future final motions. Indeed,

• The bodies of masses m0 and m1 perform approximately circular motions. That is, |q0 − q1| is
aproximately constant.

• The third body may have radically different behaviors: oscillatory, bounded, hyperbolic or parabolic.

The motions given by Theorem 5.1.3 have negative energy. In such energy levels, only OS, B, PEk, HEk
are possible and therefore we can combine all types of past and future final motions.

The second main result of this paper deals with the existence of chaotic dynamics for the 3 Body
Problem.

Theorem 5.1.4. Consider the 3 Body Problem with masses m0,m1,m2 > 0 such that m0 ̸= m1. Fix
the center of mass at the origin and denote by Φt the corresponding flow. Then, there exists a section Π
transverse to Φt such that the induced Poincaré map

P : U = Ů ⊂ Π → Π

satisfies the following. There exists M ∈ N such that the map PM has an invariant set X which is
homeomorphic to NZ × T. Moreover, the map PM : X → X is topologically conjugated to

NZ × T → NZ × T
(ω, θ) 7→ (σω, θ + f(ω))

where σ is the shift introduced in (5.2) and f : NZ → R is a continuous function.

The set X is a hyperbolic set once the 3 Body Problem is reduced by its classical first integrals.
The obtained conjugation implies positive topological entropy and an infinite number of periodic orbits
for the 3 Body Problem for any values of the masses (except all equal). The oscillatory motions given
by Theorem 5.1.3 also belong to this invariant set X . In fact, Theorem 5.1.3 will be a consequence of
Theorem 5.1.4.

5.1.2 Literature

Oscillatory motions: The first proof of oscillatory motions was achieved by Sitnikov in [Sit60] for what
is called nowadays the Sitnikov problem. It is the Restricted 3 Body Problem when the two primaries
have equal mass (the mass ratio is µ = 1/2), and perform elliptic motion whereas the third body (of
zero mass) is confined to the line perpendicular to the plane defined by the two primaries and passing
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through their center of mass. This configuration implies that this model can be reduced to a one and a
half degrees of freedom Hamiltonian system, i.e. the phase space is three dimensional.

Later, Moser [Mos01] gave a new proof. His approach to prove the existence of such motions was
to consider the invariant manifolds of infinity and to prove that they intersect transversally. Then,
he established the existence of symbolic dynamics close to these invariant manifolds, which lead to the
existence of oscillatory motions. His ideas have been very influential and are the base of the present work.
In Section 5.1.3 we explain this approach as well as the challenges to apply it to the 3 Body Problem.

Since the results by Moser, there has been quite a number of works dealing with the Restricted 3 Body
Problem. In the planar setting, the first one was by Simó and Llibre [LS80a]. Following the same approach
as in [Mos01], they proved the existence of oscillatory motions for the RPC3BP for small enough values
of the mass ratio µ between the two primaries. One of the main ingredients of their proof, as in [Mos01],
was the study of the transversality of the intersection of the invariant manifolds of infinity. They were
able to prove this transversality provided µ was exponentially small with respect to the Jacobi constant,
which was taken large enough. Their result was extended by Xia [Xia92] using the real-analyticity of
the invariant manifolds of infinity. The problem of existence of oscillatory motions for the RPC3BP
was closed by the authors of the present paper in [GMS16], which proved the existence of oscillatory
motions for any value of the mass ratio µ ∈ (0, 1/2]. These oscillatory motions possess large Jacobi
constant. The authors with M. Capinski and P. Zgliczyński showed the existence of oscillatory motions
with “low” Jacobi constant relying on computer assisted proofs in [CGM+22]. A different approach using
Aubry-Mather theory and semi-infinite regions of instability was developed in [GK11, GK10b, GK10a].
In [GPSV21], the Moser approach is applied to the Restricted Isosceles 3 Body Problem. The existence
of oscillatory motions has also been proven for the (full) 3 Body Problem by [Ale69] and [LS80b]. The
first paper deals with the Sitnikov problem with a third positive small mass and the second one with the
collinear 3 Body Problem.

A fundamental feature of the mentioned models is that they can be reduced to two dimensional area
preserving maps. In particular, one can implement the Moser approach [Mos01], that is, they relate the
oscillatory motions to transversal homoclinic points to infinity and symbolic dynamics. The works by
Galante and Kaloshin do not rely on the Moser approach but still rely on two dimensional area preserving
maps tools. Moreover, most of these works require rather strong assumptions on the masses of the bodies.

Results on Celestial Mechanics models of larger dimension such as the 3 Body Problem or the Re-
stricted Planar Elliptic 3 Body Problem are much more scarce.

The authors with L. Sabbagh (see [GSMS17]) proved the existence of oscillatory motions for the
Restricted Planar Elliptic 3 Body Problem for any mass ratio and small eccentricity of the primaries.
This work relies on “soft techniques” which allow to prove that OS± ̸= ∅ but unfortunately do not imply
that OS−∩OS+ ̸= ∅ (this stronger result could be proven with the tools developed in the present paper).
The same result, that is OS± ̸= ∅, is obtained for a Restricted Four Body Problem in [SZ20].

In [Moe07], R. Moeckel proves the existence of oscillatory motions for the (non-restricted) 3 Body
Problem relying on passage close to triple collision, and therefore for arbitrarily small total angular
momentum. This result applies to a “big” set of mass choices (however its complement also contains an
open set).

The present paper is the first one which “implements” the ideas developed by Moser to the planar
3 body problem (see Sections 5.1.3 and 5.2 below). Conditional results had been previously obtained in
[Rob84, Rob15], where C. Robinson proved the existence of oscillatory motions under the assumption that
the so-called scattering map has a hyperbolic fixed point. As far as the authors know, such assumption
has not been proven yet. We follow a different approach (see Section 5.2).

The mentioned works deal with the problem of existence of oscillatory motions in different models of
Celestial Mechanics. As far as the authors know, there is only one result dealing with their abundance
[GK12] (recall the fundamental Question 5.1.2). In this paper, Gorodetksi and Kaloshin analyze the
Hausdorff dimension of the set of oscillatory motions for the Sitnikov example and the RPC3BP. They
prove that for both problems and a Baire generic subset of an open set of parameters (the eccentricity of
the primaries in the Sitnikov example and the mass ratio and the Jacobi constant in the RPC3BP) the
Hausdorff dimension is maximal.

A dynamics strongly related to oscillatory motions is the Arnold diffusion behavior attached to the
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parabolic invariant manifolds of infinity. Such unstable behavior leads to growth in angular momentum.
This is proven in [DKdlRS19] for the Restricted Planar Elliptic 3 Body Problem for mass ratio and
eccentricity small enough (some formal computations on the associated Melnikov function had been done
previously in [MP94]).

Symbolic dynamics and hyperbolic sets for the 3 Body Problem Starting from the 90’s, there
is a wide literature proving the conjugacy or semi-conjugacy of the dynamics of N -Body Problem models
with the shift (5.2). These results give the existence of symbolic dynamics for such models. Results
proving the existence of hyperbolic sets with symbolic dynamics are much more scarce and, as far as the
authors know, all of them are in models which can be reduced to 2 dimensional maps. Namely, until the
present paper no hyperbolic sets with symbolic dynamics had been proven to exist for the (symplectically
reduced) planar 3 Body Problem. Note also that all the previous results dealing with symbolic dynamics
in Celestial Mechanics must impose non-generic conditions on the masses.

Concerning the Restricted 3 Body Problem, there are several papers proving the existence of hyper-
bolic invariant sets with symbolic dynamics. On the one hand there are the results mentioned above
which construct oscillatory motions relying on the invariant manifolds of infinity. There is also a wide
literature constructing symbolic dynamics (providing semiconjugacy with the shift) by means of orbits
passing very close to binary collision [BM00, BM06, Bol06].

For models which can be reduced to a two dimensional Poincaré map (such as the Restricted Circular
Planar 3 Body Problem), there are also results which rely on Computer Assisted Proofs to show the
existence of transverse homoclinic points and therefore symbolic dynamics (see for instance [Ari02, WZ03,
Cap12, GZ19]).

On the full 3 Body Problem, as far as the authors know, the only results up to now proving symbolic
dynamics rely on dynamics close to triple collision [Moe89, Moe07]. These great results give semiconjugacy
between the 3 Body Problem and the shift (5.2) and apply to a “large” open set (but not generic) of
masses (see also [RS83]). However, they do not lead to the existence of hyperbolic sets with symbolic
dynamics.

The results on symbolic dynamics for the N -Body Problem with N ≥ 4 are very scarce (see [KMJ19]
for chaotic motions in a Restricted 4 Body Problem). See also [BN03, ST12] for the N center problem.

5.1.3 The Moser approach

The proof of Theorems 5.1.3 and 5.1.4 rely on the ideas developed by J. Moser [Mos01] to prove the
existence of symbolic dynamics and oscillatory motions for the Sitnikov problem. Let us explain here
these ideas. Later, in Section 5.2, we explain the challenges we have to face to apply these ideas to the 3
Body Problem.

The Sitnikov problem models two particles of equal mass (m0 = m1 = 1/2) performing elliptic orbits
with eccentricity ε and a third body of mass 0 which is confined along the line perpendicular to the
ellipses plane and passing through the center of mass of the two other bodies. This is a Hamiltonian
system of one and a half degrees of freedom defined by

H(p, q, t) =
p2

2
− 1√

q2 +R(t)
(5.3)

where R(t) is the distance between each of the primaries to the center of mass and satisfies

R(t) =
1

2
+
ε

2
cos t+O(ε2).

For this model, J. Moser proposed the following steps to construct oscillatory motions:

1 One can consider P = (q, p, t) = (+∞, 0, t), t ∈ T, as a periodic orbit at infinity. This periodic
orbit is degenerate (the linearitzation of the vector field at it is the zero matrix). Nevertheless, one
can prove that it has stable and unstable invariant manifolds [McG73]. Note that these manifolds
correspond to the parabolic-elliptic motions (see Theorem 5.1.1).
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2 One can prove that these invariant manifolds intersect transversally, leading to transverse homoclinic
orbits “to infinity”. Indeed, when ε = 0 the Hamiltonian (5.3) has one degree of freedom and is
therefore integrable. Then, the invariant manifolds coincide. For 0 < ε≪ 1 one can apply Poincaré-
Melnikov Theory [Mel63] to prove their splitting.

If P would be a hyperbolic periodic orbit, one could apply the classical Smale Theorem [Sma65] to
construct invariant sets with symbolic dynamics and, inside them, oscillatory motions. However, since
P is degenerate one needs a more delicate analysis than rather just applying the Smale Theorem. In
particular, one needs the further steps:

3 Analyze the local behavior of (5.3) close to the infinity periodic orbit P . In hyperbolic points/periodic
orbits this is encoded in the classical Lambda lemma (see for instance [PdM82]). In this step one
needs to prove a suitable version of the Lambda lemma for degenerate (parabolic) periodic orbits.

4 From Steps 2 and 3 one can construct a 2–dimensional return map close to the invariant manifolds
of the periodic orbit P . The final step is to construct a sequence of “well aligned strips” for this
return map plus cone conditions. This leads to the existence to a hyperbolic set whose dynamics is
conjugated to that of the shift (a Smale horseshoe with an “infinite number of legs”).
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5.2 Outline of the proof

To apply the Moser ideas to the 3 Body Problem is quite challenging, even more if one wants to give
results for a wide choice of masses. Note here the main difficulties:

• After reducing by the first integrals, the Sitnikov model, the Alekseev model and the Restricted
Planar Circular 3BP are 3 dimensional flows whereas the planar 3 Body Problem is a 5 dimensional
flow. This is by no means a minor change. In particular infinity goes from a periodic orbit to a
two dimensional family of periodic orbits with the same period. This adds “degenerate” dimensions
which makes considerably more difficult to build hyperbolic sets.

• We do not assume any smallness condition on the masses. This means that one cannot apply
classical Melnikov Theory to prove the transversality between the invariant manifolds of infinity.
We consider a radically different nearly integrable regime: we take the third body far away from
the other two (usually such regime is referred to as hierarchical). This adds multiple time scales to
the problem which leads to a highly anisotropic transversality between the invariant manifolds: in
some directions the transversality is exponentially small whereas in the others is power-like.

These issues make each of the steps detailed in Section 5.1.3 considerably difficult to be implemented in
the 3 Body Problem. In the forthcoming sections we detail the main challenges and the novelties of our
approach.

We believe that the ideas developed for each of these steps have interest beyond the results of the
present paper and could be used in other physical models (certainly in Celestial Mechanics) to construct
all sorts of unstable motions such as chaotic dynamics or Arnold diffusion.
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5.2.1 Outline of Step 0: A good choice of coordinates

Before implementing the Moser approach in the Steps 1, 2, 3, and 4 below, one has to consider first a
preliminary step: to choose a good system of coordinates. This is quite usual in Celestial Mechanics
where typically cartesian coordinates do not capture “well” the dynamics of the model.

In this case, keeping in mind that we want to construct hyperbolic sets, it is crucial that

• We symplectically reduce the planar 3 Body Problem by the classical first integrals.

• We consider coordinates which capture the near integrability of the model in such a way that the
first two bodies perform close to circular motion whereas the third one performs close to parabolic
motion (see Figure 5.1).

Figure 5.1: We consider two bodies performing approximately circular motions while the third body is
close to a parabola, which is arbitrarily large and far from the other two bodies.

To this end we first consider the classical Jacobi coordinates (Q1, Q2) as seen in Figure 5.7 and
conjugate momenta (P1, P2). This reduces the model to a 4 degrees of freedom Hamiltonian system.

Then, for the first pair (Q1, P1), we consider the classical Poincaré variables (λ, L, η, ξ) and for the
second one (Q2, P2) we consider polar coordinates (r, y, α,Γ) where y is the radial momentum and Γ is
the angular momentum. Finally, we “eliminate” the pair (α,Γ) by reducing the system by rotations.

Therefore, we finally have a three degrees of freedom Hamiltonian system defined in the coordinates
(λ, L, η, ξ, r, y) which depends on the total angular momentum, which can be treated as a parameter and
which we take large enough. In Section 5.3 we perform these changes of coordinates in full detail and
give expressions for the resulting Hamiltonian.

We fix the total energy to a negative value. Following the Moser approach explained in Section 5.1.3,
we consider the “parabolic infinity” manifold, which is now defined by

E∞ = {r = ∞, y = 0},

and therefore can be parameterized by the coordinates (λ, L, η, ξ) (we actually eliminate the variable L
by means of the energy conservation). More properly speaking, we consider McGehee coordinates

r =
2

x2
,

so that “infinity” becomes (x, y) = (0, 0).
The dynamics at infinity is foliated by the periodic orbits (η, ξ) = constant of the same period. The

first step in our proof is to analyze the invariant manifolds of these periodic orbits and their intersections.
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5.2.2 Outline of Step 1: Transverse homoclinic orbits to infinity

In suitably modified McGehee coordinates, the infinity manifold becomes E∞ = {(x, y) = (0, 0), z ∈ U ⊂
R2, t ∈ T}. The dynamics in a neighborhood of infinity is given by

ẋ = −x3y(1 +O2(x, y)), ż = O6(x, y),

ẏ = −x4(1 +O2(x, y)), ṫ = 1,

for x+ y > 0, z ∈ U ⊂ R2, and t ∈ T. Note that infinity is foliated by the periodic orbits z = constant.
Thanks to [BFM20a, BFM20b], these periodic orbits have local stable and unstable invariant manifolds,
which are analytic (away from infinity) and smooth with respect to parameters and to the base periodic
orbit. The union of these invariant manifolds form the stable and unstable invariant manifolds of infinity,
W s(E∞) and Wu(E∞), which are four dimensional in a five dimensional energy level.

In order to control the globalization of these invariant manifolds, we consider a hierarchical regime in
our system. We consider a configuration such that the first two bodies perform approximately circular
motions whereas the third body performs approximately parabolic motion along a parabola which is
taken arbitrarily large compared with the circle of the two first bodies (see Figure 5.1).

In other words, we choose the fixed value of the energy to be negative and of order 1, and take the
total angular momentum Θ large. This choice has two consequences. On the one hand, the motion of the
third body takes place far from the first two. This implies that the system becomes close to integrable,
since, being far from the first bodies, the third one sees them almost as a single one and hence its motion
is governed at a first order by a Kepler problem with zero energy — since its motion is close to parabolic
— while the motion of the first two bodies is given at first order by another Kepler problem with negative
energy. On the other hand, in this regime the system has two time scales, since the motion of the third
body is O(Θ−3) slower than that of the first ones. This implies that the coupling term between the two
Kepler problems is a fast and small perturbation.

In the framework of averaging theory, the fact that the perturbation is fast implies that the difference
between the stable and unstable invariant manifolds of infinity is typically exponentially small in Θ−3,
which precludes the application of the standard Poincaré-Melnikov theory to compute the difference
of these invariant manifolds. Indeed, the perturbation can be averaged out up to any power of Θ−3,
making the distance between the manifolds a beyond all orders quantity. We need to resort to more
delicate techniques to obtain a formula of this distance which is exponentially small in Θ−3, proven in
Theorem 5.4.3 below. From this formula we are able to deduce that the invariant manifolds of infinity do
intersect transversally along two distinct intersections. These intersections are usually called homoclinic
channels, which we denote by Γ1 and Γ2 (see Figure 5.3).

The fact that the perturbed invariant manifolds are exponentially close is usually referred to as
exponentially small splitting of separatrices. This phenomenon was discovered by Poincaré [Poi90, Poi99].
It was not until the 80’s, with the pioneering work by Lazutkin for the standard map (see [Laz84, Laz03])
that analytic tools to analyze this phenomenon were developed. Nowadays, there is quite a number of
works proving the existence of transverse homoclinic orbits following the seminal ideas by Lazutkin, see
for instance [DS92, Gel94, DS97, DGJS97, Gel97, DR98, Gel99, Gel00, Lom00, GS01, BF04b, GOS10,
GaG11, Gua12, MSS11, BCS13, BCS18a, BCS18b]. Note, however, that most of these results deal with
rather low dimensional models (typically area preserving two dimensional maps or three dimensional
flows), whereas the model considered in the present paper has higher dimension (see also [GGSZ21],
which deals with an exponentially small splitting problem in infinite dimensions). The high dimension
makes the analysis in the present paper considerably more intrincate. Of special importance for the
present paper are the works by Lochak, Marco and Sauzin (see [Sau01, LMS03]) who analyze such
phenomenon considering certain graph parameterizations of the invariant manifolds. Other methods to
deal with exponentially small splitting of separatrices are Treschev’s continuous averaging (see [Tre97])
or “direct” series methods (see [GGM99]).

As far as the authors know, the first paper to prove an exponentially small splitting of separatrices
in a Celestial Mechanics problem is [GMS16] (see also [GPSV21, BGG22, BGG21]).

The results in the aforementioned Theorem 5.4.3 allows us to define and control two different return
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maps from a suitable section transverse to the unstable manifold of infinity. The section, four dimensional,
is close to E∞. Each of these return maps will be, in turn, the composition of a local map, that describes
the passage close to infinity, and a global map, following the dynamics along the global invariant manifolds.
These are the subject of study of Steps 2 and 3 below. Finally, a suitable combination of the two return
maps will give rise to chaotic dynamics as it is explained in Step 4.

5.2.3 Outline of Step 2: The parabolic Lambda lemma and the Local map

To analyze the local behavior close to infinity, we develop a parabolic Lambda lemma. The classical
Lambda lemma applies to (partially) hyperbolic invariant objects and is no longer true in the parabolic
setting. The statement has to be adapted and the proof we provide has to face considerable subtleties.

The first step in proving a Lambda lemma is to perform a normal form procedure which straightens
the invariant manifolds and the associated stable and unstable foliations. In the present paper, thus, we
need to set up a parabolic normal form. Indeed, for any fixed N ≥ 3, we construct local coordinates in a
neighborhood of infinity in which the (symplectically reduced) 3BP is written as

q̇ = q((q + p)3 +O4(q, p)), ż = qNpNO4(q, p),

ṗ = −p((q + p)3 +O4(q, p)), ṫ = 1,
(5.4)

where p = q = 0 corresponds to the parabolic infinity, E∞. Note that in these coordinates the (local)
unstable manifold of infinity is given by p = 0 and the (local) stable manifold is q = 0. The key point,
however, is that the dynamics on the “center” variables z is extremely slow in a neighborhood of infinity.
This normal form is obtained in Theorem 5.5.2.

The parabolic Lambda Lemma is proven in these normal form variables. However, since the statement
fails at the infinity manifold, first we consider two 4-dimensional sections at a fixed but small distance of
E∞: Σ1 transverse to W s(E∞) and Σ2 transverse to Wu(E∞) (see Figure 5.2). We call local map to the
induced map by the flow between the sections Σ1 and Σ2.

Figure 5.2: Behavior of the local map from the section Σ1 to the section Σ2. We are omitting the
dynamics of the z-components, which are “very close” to the identity.

The parabolic Lambda lemma given in Theorem 5.5.4 below implies that the intersection of mani-
folds transverse to W s(E∞) within Σ1 gets mapped by the local map to an immersed manifold which
accumulates in a C1 way to Wu(E∞) ∩ Σ2. Furthermore, in the z-variables, the local map is close to the
identity at the C1 level. As a consequence, the local map and its inverse have one and only one expanding
direction.

When combining the local map with a global map along a homoclinic chanel, this construction provides
a map with a single expanding direction and a single contracting direction. This was enough for Moser
since in the Sitnikov problems one deals with 2-dimensional sections. However, in order to obtain a true
hyperbolic object, we need hyperbolicity in all four directions. That is, we need to “gain” hyperbolicity
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in the z-directions, whose dynamics is mainly given by the behavior of the global map. We will achieve
hyperbolicity by combining two different global maps, related to the two different homoclinic channels
obtained in Step 1 (see Theorem 5.4.3). The Lambda Lemma ensures that the dynamics in the z-variables
induced by the travel along the homoclinic manifold is essentially preserved by the local passage.

5.2.4 Outline of Step 3: The Scattering map and the Global maps

A crucial tool to understand the dynamics close to the invariant manifolds of infinity is the so-called
Scattering map. The Scattering map was introduced by Delshams, de la Llave and Seara [DdlLS00,
DdlLS06, DdlLS08] to analyze the heteroclinic connections to a normally hyperbolic invariant manifold.
However, as shown in [DKdlRS19] (see Section 5.4.3), the theory in [DdlLS08] can be adapted to the
parabolic setting of the present paper.

From Theorem 5.4.3 we obtain that the transversal intersection of the invariant manifolds W s(E∞)
andWu(E∞) contains at least two homoclinic channels, Γj ⊂W s(E∞)∩Wu(E∞) j = 1, 2 (see Figure 5.3).
Then, associated to each homoclinic channel, one can define the scattering map Sj as follows. We say that
x+ = Sj(x−) if there exists a heteroclinic point in Γj whose trajectory is asymptotic to the trajectory
of x+ in the future and asymptotic to the trajectory of x− in the past. Such points x± are well defined
even if E∞ is not a normally hyperbolic manifold. Once Γj is fixed, thanks to the transversality between
the invariant manifolds, the associated scattering map is locally unique and inherits the regularity of the
invariant manifolds.

Figure 5.3: Transverse intersection of the invariant manifolds of E∞ along two homoclinic channels Γ1

and Γ2.

The construction of scattering maps in the parabolic setting was already done in [DKdlRS19]. Note,
however, that in the present paper the transversality between the invariant manifolds is highly anisotropic
(exponentially small in some directions and polynomially small in the others). This complicates consid-
erably the construction of the scattering maps, which is done in Section 5.4.3 (see Section 5.9 for the
proofs). Moreover, we show that the domains of the two scattering maps S1 and S2, associated to the
two different channels, overlap.

The scattering maps are crucial to analyze the global maps which have been introduced in Step 2 and
are defined from the section Σ2 to the section Σ1. Indeed, we show that the dynamics of the z-variables in
the two global maps are given (at first order) by the corresponding variables of the associated scattering
maps. The additional hyperbolicity in the z-directions we need will come from a suitable high iterate of a
combination of the two scattering maps Ŝ = (S1)M ◦ S2 (for a suitable large M). To prove the existence
of this hyperbolicity, we construct an isolating block for this combination.

By isolating block we mean the following: There exists a small rectangle in the z-variables, in the
common domain of the scattering maps, whose image under Ŝ is another rectangle “correctly aligned”
with the original one, as seen in Figure 5.4, that is, the horizontal and vertical boundaries are mapped
into horizontal and vertical boundaries, respectively, it is stretched along the horizontal direction, shrunk
in the vertical direction, and the left and right vertical boundaries are mapped to the left and right of
the vertical boundaries, respectively, while the top and bottom horizontal boundaries are mapped below
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Figure 5.4: The isolating block R of the iterate of the scattering map Ŝ

and above, respectively, of the top and bottom horizontal boundaries.
To construct such isolating block we proceed as follows. Each of the scattering maps is a nearly

integrable twist map around an elliptic fixed point (see Figure 5.5). The two fixed points are different
but exponentially close to each other with respect Θ−3. Combining the two rotations around the distinct
elliptic points, we use a transversality-torsion argument (in the spirit of [Cre03]) to build the isolating
block.

Figure 5.5: The dynamics of the two scattering maps S1 and S2

5.2.5 Outline of Step 4: The isolating block for the return map

The last step of the proof combines Steps 2 and 3. We consider the return map Ψ given by M iterates of
the return map along the first homoclinic chanel and 1 iterate along the second homoclinic chanel. Each
of the maps has two hyperbolic directions given by the passage close to the infinity manifolds as we have
seen in Section 5.2.3. The projection onto the z-variables of each of the maps is close to the corresponding
projection of the scattering maps. The same happens to the projection onto the z-variables of the whole
composition Ψ. Hence, the map Ψ, possesses two “stable” and two “unstable” directions in some small
domain. Even if the two stretching rates in the two expanding directions are drastically different, we are
able to check that the restriction of Ψ to this small domain satisfies the standard hypotheses that ensure
that Ψ is conjugated to the Bernouilli shift with infinite symbols. In particular, we prove cone conditions
for the return map Ψ.

In conclusion, we obtain a product-like structure as seen in Figure 5.6. In the left part of the figure,
one obtains the usual structure of infinite horizontal and vertical strips as obtained by Moser in [Mos01]
whereas the right part of the figure corresponds to the isolating block construction in the z directions.
This structure leads to the existence of a hyperbolic set whose dynamics is conjugated to that of the
usual shift (5.2). Since the strips accumulate to the invariant manifolds of infinity, one can check that
there exists oscillatory orbits inside the hyperbolic invariant set.
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Figure 5.6: The horizontal and vertical four dimensional strips which lead to the conjugation with the
Bernouilli shift of infinite symbols.

5.2.6 Summary of the outline and structure of the paper

To summarize, we present here in a diagram the main steps in the proof of Theorems 5.1.3 and 5.1.4.

Transversality of the
invariant manifolds

of infinity (Theorem 5.4.3)

Parabolic
normal form

(Theorem 5.5.2)

Two Scattering maps
(Theorem 5.4.5)

Parabolic
Lambda lemma
(Theorem 5.5.4)

Two global maps Local map

Isolating block for
a suitable iterate of the return map

(Theorem 5.6.3)

Oscillatory motions
(Theorem 5.1.3)

Symbolic dynamics
(Theorem 5.1.4)

5.3 A good system of coordinates for the 3 Body Problem

To analyze the planar 3 Body Problem (6.1), the first step is to choose a good system of coordinates
which, on the one hand, reduces symplectically the classical first integrals of the model and, on the other
hand, makes apparent the nearly integrable setting explained in Section 5.2. That is, we consider a good
system of coordinates so that we obtain, at first order, that the two first bodies, q0, q1 ∈ R2, move on
ellipses, whereas the third body, q2 ∈ R2, moves on a coplanar parabola which is far away from the
ellipses.
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5.3.1 Symplectic reduction of the planar 3 Body Problem

Introducing the momenta pi = miq̇i, i = 0, 1, 2, equation (6.1) defines a six degrees of freedom Hamil-
tonian system. We start by reducing it by translations with the classical Jacobi coordinates to obtain a
four degrees of freedom Hamiltonian system. That is, we define the symplectic transformation

Q0 = q0 P0 = p0 + p1 + p2

Q1 = q1 − q0 P1 = p1 +
m1

m0 +m1
p2

Q2 = q2 −
m0q0 +m1q1
m0 +m1

P2 = p2.

Figure 5.7: The Jacobi coordinates. CM01 stands for the center of mass of the bodies q0 and q1.

These coordinates allow to reduce by the total linear momentum since now P0 is a first integral.
Assuming P0 = 0, the Hamiltonian of the 3 Body Problem becomes

H̃(Q1, P1, Q2, P2) =

2∑
j=1

|Pj |2

2µj
− Ũ(Q1, Q2)

where
1

µ1
=

1

m0
+

1

m1
,

1

µ2
=

1

m0 +m1
+

1

m2

and
Ũ(Q1, Q2) =

m0m1

∥Q1∥
+

m0m2

∥Q2 + σ0Q1∥
+

m1m2

∥Q2 − σ1Q1∥
with

σ0 =
m1

m0 +m1
, σ1 =

m0

m0 +m1
=

1

1 + σ0
. (5.5)

Next step is to express the Hamiltonian H̃ in polar coordinates. Identifying R2 with C, we consider the
symplectic transformation

Q1 = ρeiθ, Q2 = reiα, P1 = zeiθ + i
Γ

ρ
eiθ, P2 = yeiα + i

G

r
eiα

which leads to the Hamiltonian

H∗(ρ, z, θ,Γ, r, y, α,G) =
1

µ1

(
z2

2
+

Γ2

2ρ2

)
+

1

µ2

(
y2

2
+
G2

2r2

)
− Ũ

(
ρeiθ, reiα

)
.
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where

Ũ
(
ρeiθ, reiα

)
=
m0m1

ρ
+

m0m2

|reiα + σ0ρeiθ|
+

m1m2

|reiα − σ1ρeiθ|

=
m0m1

ρ
+

1

r

(
m0m2

|1 + σ0
ρ
r e
i(θ−α)|

+
m1m2

|1− σ1
ρ
r e
i(θ−α)|

)
.

We study the regime where the third body is far away from the other two and its angular momentum is
very large. That is,

r ≫ ρ and G≫ Γ.

Then, we have

H∗(ρ, z, θ,Γ, r, y, α,G) =
1

µ1

(
z2

2
+

Γ2

2ρ2

)
+

1

µ2

(
y2

2
+
G2

2r2

)
− m0m1

ρ
− m2(m0 +m1)

r
+O

(
ρ2

r3

)
.

Thus, at first order we have two uncoupled Hamiltonians, one for (ρ, z, θ,Γ) and the other for (r, y, α,G),

HEl(ρ, z, θ,Γ) =
1

µ1

(
z2

2
+

Γ2

2ρ2

)
−m0m1

1

ρ

HPar(r, y, α,G) =
1

µ2

(
y2

2
+
G2

2r2

)
−m2(m0 +m1)

1

r
.

(5.6)

To have the first order Hamiltonians HEl and HPar independent of the masses, we make the following
scaling to the variables, which is symplectic,

ρ =
1

µ1m0m1
ρ̃, z = µ1m0m1z̃, r =

1

µ2m2(m0 +m1)
r̃ and y = µ2m2(m0 +m1)ỹ.

We also rescale time as
t =

τ

µ2m2
2(m0 +m1)2

.

Then, we obtain the Hamiltonian

H̃∗(ρ̃, z̃, θ,Γ, r̃, ỹ, α,G) = ν

(
z̃2

2
+

Γ2

2ρ̃2
− 1

ρ̃

)
+

(
ỹ2

2
+
G2

2r̃2
− 1

r̃

)
−W (ρ̃, r̃, θ − α).

with

W (ρ̃, r̃, θ − α) =
ν̃

r̃

(
m0

|1 + σ̃0
ρ̃
r̃ e
i(θ−α)|

+
m1

|1− σ̃1
ρ̃
r̃ e
i(θ−α)|

− (m0 +m1)

)
, (5.7)

and

ν =
µ1m0m1

µ2m2(m0 +m1)
, ν̃ = (m0 +m1)m

2
2 and σ̃i =

µ2m2(m0 +m1)

µ1m0m1
σi. (5.8)

Note that the potential W only depends on the angles through θ − α due to the rotational symmetry of
the system.

Now, we change the polar variables (ρ̃, z̃, θ,Γ) to the classical Delaunay coordinates (see, for instance,
[Sze67])

(ρ̃, z̃, θ,Γ) 7→ (ℓ, L, g,Γ). (5.9)

This change is symplectic. As usual, from the Delaunay actions, which are the square of the semimajor
axis L and the angular momentum Γ, one can compute the eccentricity

ec(L,Γ) =

√
1− Γ2

L2
. (5.10)

The position variables (ρ̃, θ) can be expressed in terms of Delaunay variables as

ρ̃ = ρ̃(ℓ, L,Γ) = L2(1− ec cosE) and θ = θ(ℓ, L, g,Γ) = v(ℓ, L,Γ) + g, (5.11)
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where the angles true anomaly v and eccentric anomaly E are defined in terms of the mean anomaly ℓ
and eccentricity ec as

ℓ = E − ec sinE and tan
v

2
=

√
1 + ec
1− ec

tan
E

2
. (5.12)

One could also write an expression for z̃, but it is not necessary to obtain the new Hamiltonian

H(ℓ, L, g,Γ, r̃, ỹ, α,G) = − ν

2L2
+

(
ỹ2

2
+
G2

2r̃2
− 1

r̃

)
+W (ρ̃(ℓ, L,Γ), r̃, v(ℓ, L,Γ) + g − α),

whereW is the potential introduced in (6.4). Now, by (6.8), the distance condition corresponds to r̃ ≫ L2

and the first order uncoupled Hamiltonians are

HEl(ℓ, L, g,Γ) = − ν

2L2
and HPar(r̃, ỹ, α,G) =

ỹ2

2
+
G2

2r̃2
− 1

r̃

whereas W = O( ρ̃
2

r̃3 ) = O(L
4

r̃3 ).
Now, we make the last reduction which uses the rotational symmetry. We define the new angle

ϕ = g − α. To have a symplectic change of coordinates, we consider the transformation

(ℓ, L, ϕ,Γ, r̃, ỹ, α,Θ) = (ℓ, L, g − α,Γ, r̃, ỹ, α,G+ Γ). (5.13)

Then, we obtain the following Hamiltonian, which is independent of α,

H̃(ℓ, L, ϕ,Γ, r̃, ỹ; Θ) =H(ℓ, L, ϕ+ α,Γ, r̃, ỹ, α,Θ− Γ)

= − ν

2L2
+

(
ỹ2

2
+

(Θ− Γ)2

2r̃2
− 1

r̃

)
+W (ρ̃(ℓ, L,Γ), r̃, v(ℓ, L,Γ) + ϕ).

(5.14)

Since this Hamiltonian is independent of α, the total angular momentum Θ is a conserved quantity which
can be taken as a parameter of the system. We assume Θ ≫ 1.

5.3.2 The Poincaré variables

We consider nearly circular motions for the first two bodies. Since Delaunay variables are singular at the
circular motions Γ ≃ L (equivalently by (6.7), ec ≃ 0), we introduce Poincaré variables

(ℓ, L, ϕ,Γ, r̃, ỹ) 7→ (λ, L, η, ξ, r̃, ỹ),

defined by
λ = ℓ+ ϕ, L =L,

η =
√
L− Γeiϕ, ξ =

√
L− Γe−iϕ,

(5.15)

which are symplectic in the sense that the form dℓ ∧ dL + dϕ ∧ dΓ is mapped into dλ ∧ dL + idη ∧ dξ.
These coordinates make the Hamiltonian H̃ well defined at circular motions (i.e. at η = ξ = 0). The
transformed Hamiltonian can be written as

K̃(λ, L, η, ξ, r̃, ỹ; Θ) = − ν

2L2
+
ỹ2

2
+

(Θ− L+ ηξ)2

2r̃2
− 1

r̃
+ W̃ (λ, L, η, ξ, r̃) (5.16)

where, using that

eiϕ =
η√
ηξ
, (5.17)

the potential becomes

W̃ (λ, L, η, ξ, r̃) =W (ρ̃(ℓ, L,Γ), r̃, v(ℓ, L,Γ) + ϕ)

=
ν̃

r̃

(
m0

|1 + σ̃0
ρ̃
r̃

η√
ηξ
eiv|

+
m1

|1− σ̃1
ρ̃
r̃

η√
ηξ
eiv|

− (m0 +m1)

)
,

(5.18)
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where the functions v and ρ̃ are evaluated at

(ℓ, L,Γ) =

(
λ+

i

2
log

η

ξ
, L, L− ηξ

)
. (5.19)

In particular, by (6.7) and (5.15), the eccentricity is given by

ec =
1

L

√
ηξ
√

2L− ηξ.

The associated equations are

λ′ =
ν

L3
− Θ− L+ ηξ

r̃2
+ ∂LW̃ , L′ = −∂λW̃

η′ = −iΘ− L+ ηξ

r̃2
η − i∂ξW̃ , ξ′ = i

Θ− L+ ηξ

r̃2
ξ + i∂ηW̃

r̃′ = ỹ, ỹ′ =
(Θ− L+ ηξ)2

r̃3
− 1

r̃2
− ∂rW̃ .

(5.20)

Remark 5.3.1. Notice that the Hamiltonian (6.12) was not analytic at a neighborhood of circular motions
for the two first bodies, that is L = Γ. Nevertheless, it is well known that once this Hamiltonian is
expressed in Poincaré variables, that is Hamiltonian (5.16), the system becomes analytic for (η, ξ) in a
neighborhood of (0, 0). See, for instance, [Féj13].

5.4 The manifold at infinity and the associated invariant mani-
folds

The Hamiltonian K̃ in (5.16) has an invariant manifold at infinity. Indeed, the potential W̃ in (5.18)

satisfies W̃ = O(L4/r̃3). Therefore, the manifold

P∞ = {(λ, L, η, ξ, r̃, ỹ) : r̃ = +∞, ỹ = 0}

is invariant2.
Note that, at P∞, the Hamiltonian K̃ satisfies

K̃|P∞ = − ν

2L2

and L̇|P∞ = 0. Therefore, we can fix L = L0 and restrict to an energy level K̃ = − ν
2L2

0
. We consider the

restricted infinity manifold

E∞ = P∞ ∩ K̃−1

(
− ν

2L2
0

)
= {(λ, L, η, ξ, r̃, ỹ) : L = L0, r̃ = +∞, ỹ = 0, (η, ξ) ∈ U , λ ∈ T} , (5.21)

where U ⊂ R2 is an open set containing the origin3 which is specified below. By the particular form of
the Hamiltonian K̃ in (5.16), it is clear that the manifold E∞ is foliated by periodic orbits as

E∞ =
⋃

(η0,ξ0)∈U

Pη0,ξ0

with
Pη0,ξ0 = {(λ, L, η, ξ, r̃, ỹ) : η = η0, ξ = ξ0, L = L0, r̃ = +∞, ỹ = 0, λ ∈ T},

2To analyze this manifold properly, one should consider McGehee coordinates r̃ = 2/x2. This is done in Section 5.5.
3Observe that (η, ξ) ∈ C2 but they satisfy ξ = η.
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whose dynamics is given by

λ(t) = λ0 +
ν

L3
0

t.

These periodic orbits are parabolic, in the sense that its linearization (in McGehee coordinates) is de-
generate. Nonetheless, we will see Theorem 5.4.3 that they have stable and unstable invariant manifolds
whose union form the invariant manifolds of the infinity manifold E∞.

The goal of this section is to analyze the stable and unstable invariant manifolds of E∞ and show that,
restricting to suitable open domains of E∞, they intersect transversally along two homoclinic channels Γ1

and Γ2 (see Figure 5.3). This will allow us to define two different scattering maps on suitable domains of
E∞.

5.4.1 The unperturbed Hamiltonian system

Since we are considering the regime r̃ ≫ L2 and W̃ satisfies W̃ = O(L4/r̃3), we first analyze the

Hamiltonian K̃ in (5.16) with W̃ = 0. We consider this as the unperturbed Hamiltonian. In fact, when

W̃ = 0, K̃ becomes integrable and therefore the invariant manifolds of the periodic orbits Pη0,ξ0 coincide.
Indeed, it is easy to check that L and ηξ (and the Hamiltonian) are functionally independent first

integrals. Therefore, if we restrict to the energy level K̃ = − ν
2L0

and we define

G0 = Θ− L0 + η0ξ0,

the invariant manifolds of any periodic orbit Pη0,ξ0 should satisfy

Θ− L+ ηξ = G0

and therefore they must be a solution of the equations

λ′ =
ν

L3
0

− G0

r̃2
,

η′ = −iG0

r̃2
η, ξ′ = i

G0

r̃2
ξ

r̃′ = ỹ, ỹ′ =
G2

0

r̃3
− 1

r̃2
.

(5.22)

The invariant manifolds of the periodic orbit Pη0,ξ0 associated to equation (5.22) are analyzed in the next
lemma.

Lemma 5.4.1. The invariant manifolds of the periodic orbit Pη0,ξ0 associated to equation (5.22) coincide
along a homoclinic manifold which can be parameterized as

λ = γ + ϕh(u) L = L0

η = η0e
iϕh(u) ξ = ξ0e

−iϕh(u)

r̃ = G2
0r̂h(u) ỹ = G−1

0 ŷh(u),

(5.23)

where (r̂h(u), ŷh(u), ϕh(u)) are defined as

r̂h(u) = r0(τ(u)), r0(τ) =
1

2
(τ2 + 1),

ŷh(u) = y0(τ(u)), y0(τ) =
2τ

(τ2 + 1)
,

ϕh(u) = ϕ0(τ(u)), ϕ0(τ) = i log

(
τ − i

τ + i

)
,

(5.24)

where τ(u) is obtained through

u =
1

2

(
1

3
τ3 + τ

)
.
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In particular

eiϕ0(τ) =
τ + i

τ − i

and ϕh satisfies
lim

u→±∞
ϕh(u) = 0 (mod 2π) and ϕh(0) = π. (5.25)

Moreover, the dynamics in the homoclinic manifold (5.23) is given by

u′ = G−3
0 , γ′ =

ν

L3
0

.

Note that the dynamics in this homoclinic manifold makes apparent the slow-fast dynamics. Indeed
the motion on the (r̃, ỹ) variables is much slower than the rotation dynamics in the λ variable.

Proof of Lemma 5.4.1. To prove this lemma it is convenient to scale the variables and time as

r̃ = G2
0r̂, ỹ = G−1

0 ŷ, and t = G3
0s (5.26)

in equation (5.22) to obtain
dλ

ds
=
νG3

0

L3
− 1

r̂2
,

dη

ds
= − i

r̂2
η,

dξ

ds
=

i

r̂2
ξ

dr̂

ds
= ŷ,

dŷ

ds
=

1

r̂3
− 1

r̂2
.

(5.27)

The last two equations are Hamiltonian with respect to

h(r̂, ŷ) =
ŷ2

2
+

1

2r̂2
− 1

r̂
(5.28)

and, following [LS80a], they have a solution (r̂h(s), ŷh(s)) as given in (5.24) which satisfies

lim
s→±∞

(r̂h(s), ŷh(s)) = (∞, 0) and ŷh(0) = 0. (5.29)

Moreover, for the (η, ξ) components, it is enough to define the function ϕh(s) which satisfies

dϕ

ds
= − 1

r̂2h
and ϕh(0) = π.

Following again [LS80a], it is given in (5.24) and satisfies the asymptotic conditions in (5.25).
To complete the proof of the lemma it is enough to integrate the rest of equations in (5.27) and undo

the scaling (5.26).

Observe that the union of the homoclinic manifolds of the periodic orbits Pη0,ξ0 form the homoclinic
manifold of the infinity manifold (restricted to the energy level) E∞, which is four dimensional.

5.4.2 The invariant manifolds for the perturbed Hamiltonian

In this section we analyze the invariant manifolds of the infinity manifold E∞ (see (5.21)) and their

intersections for the full Hamiltonian K̃ in (5.16) (that is, incorporating the potential W̃ in (5.18)).
Given a periodic orbit Pη0,ξ0 ∈ E∞, we want to study its 2 dimensional unstable manifold and its possible
intersections with the 2 dimensional stable manifold of nearby periodic orbits

Pη0+δη,ξ0+δξ ∈ E∞ for some |δη|, |δξ| ≪ 1.

This will lead to heteroclinic connections and, therefore, to the definition of scattering maps. To this end,
we consider parameterizations of a rather particular form. The reason, as it is explained in Section 5.7.1
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below, is to keep track of the symplectic properties of these parameterizations. Using the unperturbed
parameterization introduced in Lemma 5.4.1 and the constant

G0 = Θ− L0 + η0ξ0,

we define parameterizations of the following form, where ∗ stands for ∗ = u, s,

λ = γ + ϕh(u)

L∗(u, γ) =L0 + Λ∗(u, γ)

η∗(u, γ) = eiϕh(u)(η0 + α∗(u, γ))

ξ∗(u, γ) = e−iϕh(u)(ξ0 + β∗(u, γ))

r̃ =G2
0r̂h(u)

ỹ∗(u, γ) =
ŷh(u)

G0
+
Y ∗(u, γ)

G2
0ŷh(u)

+
Λ∗(u, γ)− (η0 + α∗(u, γ))(ξ0 + β∗(u, γ)) + η0ξ0

G2
0ŷh(u)(r̂h(u))

2

(5.30)

where the functions Λ∗, α∗, β∗, Y ∗ satisfy

(Λu(u, γ), αu(u, γ), βu(u, γ), (ŷh(u))
−1Y u(u, γ)) → (0, 0, 0, 0), as u→ −∞

(Λs(u, γ), αs(u, γ), βs(u, γ), (ŷh(u))
−1Y s(u, γ)) → (0, δη, δξ, 0), as u→ +∞.

The rather peculiar form of these parameterizations relies on the fact that one can interpret them
through the change of coordinates given by

(λ, L, η, ξ, r̃, ỹ) → (γ,Λ, α, β, u, Y ).

Then, one can keep track of the symplectic properties of the invariant manifolds since this change is
symplectic in the sense that it sends the canonical form into dγ ∧ dΛ + idα ∧ dβ + du ∧ dY . This is
explained in full detail in Section 5.7.1 (see the symplectic transformation (5.71)).

If the functions (Y ∗,Λ∗, α∗, β∗) are small, as stated in Theorem 5.4.3 below, these parameterizations
are close to those of the unperturbed problem, given in Lemma 5.4.1. Furthermore, note that, to analyze
the difference between the invariant manifolds, it is enough to measure the differences

(Y s − Y u,Λs − Λu, αs − αu, βs − βu) (5.31)

for u in a suitable interval and γ ∈ T. The zeros of this difference will lead to homoclinic connections
to Pη0,ξ0 , if one chooses δη = δξ = 0, and to heteroclinic connections between Pη0,ξ0 and Pη0+δη,ξ0+δξ,
otherwise.

The analysis of the difference (5.31) is done in Proposition 5.4.2 and Theorem 5.4.3 below. First,
in Proposition 5.4.2, we define a Melnikov potential, which provides the first order of the difference
between the invariant manifolds through the difference (5.31). Then, Theorem 5.4.3 gives the existence
of parameterizations of the form (5.30) for the unstable manifold of Pη0,ξ0 and the stable manifold of
Pη0+δη,ξ0+δξ and shows that, indeed, the derivatives of the Melnikov potential given in Proposition 5.4.2
plus an additional explicit term depending on (δη, δξ) gives the first order of their difference when the
parameter Θ is large enough.

We then introduce a Melnikov potential

L(σ, η0, ξ0) = G3
0

∫ +∞

−∞
W̃
(
σ + ωs+ ϕh(s), L0, e

iϕh(s)η0, e
−iϕh(s)ξ0, G

2
0r̂h(s)

)
ds, (5.32)

where W̃ is given in (5.18), (r̂h(u), ϕh(u)) are introduced in Lemma 5.4.1 and

ω =
νG3

0

L3
0

, with G0 = Θ− L0 + η0ξ0. (5.33)
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Note that, as usual, it is just the integral of the perturbing potential W̃ evaluated at the unperturbed
homoclinic manifold (5.23).

To provide asymptotic formulas for the Melnikov potential L we use the parameter

Θ̃ = Θ− L0. (5.34)

Proposition 5.4.2. Fix L0 ∈ [1/2, 2]. Then, there exists Θ∗ ≫ 1 and 0 < ϱ∗ ≪ 1 such that for
Θ ≥ Θ∗ and (η0, ξ0) satisfying ξ0 = η0 and |η0|Θ3/2 ≤ ϱ∗, the Melnikov potential introduced in (5.32) is
2π-periodic in σ and can be written as

L(σ, η0, ξ0) = L[0](η0, ξ0) + L[1](η0, ξ0)e
iσ + L[−1](η0, ξ0)e

−iσ + L≥(σ, η0, ξ0),

and the Fourier coefficients satisfy L[q](η0, ξ0) = L[−q](ξ0, η0) and

L[0](η0, ξ0) = ν̃πL4
0(Θ̃ + η0ξ0)

−3

[
N2

8

(
1 + 3

η0ξ0
L0

− 3

2

η20ξ
2
0

L2
0

)
−N3

15

64

L2
0√

2L0

Θ̃−2(η0 + ξ0) +R0(η0, ξ0)

]

L[1](η0, ξ0) = ν̃e
− ν̃(Θ̃+η0ξ0)3

3L3
0

[
N3

32

√
π

2
L6
0Θ̃

− 1
2 − 3

N2

4

√
πL

7
2
0 Θ̃

3
2 η0 +R1(η0, ξ0)

]
where ν̃ is the constant introduced in (5.8) and

N2 =
m4

2(m0 +m1)
5

m3
0m

3
1

, N3 =
m6

2(m0 +m1)
7

m5
0m

5
1

(m1 −m0), (5.35)

and
R0(η0, ξ0) = O

(
Θ−4

)
+O

(
Θ−2|η0|3

)
, R1(η0, ξ0) = O

(
Θ−1, |η0|, |η0|2Θ5/2

)
and, for i, j ≥ 1,∣∣∣∂iη0∂jξ0R0(η0, ξ0)

∣∣∣ ≤ C(i, j)Θ−2,
∣∣∣∂iη0∂jξ0R1(η0, ξ0)

∣∣∣ ≤ C(i, j)Θ(−1+3i+3j)/2,

for some constants C(i, j) independent of Θ.
Moreover, for i, j ≥ 0, k ≥ 1,

|∂iη0∂
j
ξ0
∂kσL≥| ≤ C(i, j, k)Θ7/2+3(i+j)/2e

− 2ν̃Θ̃3

3L3
0 .

where C(i, j, k) is a constant independent of Θ.

This proposition is proven in Appendix 5.C.
The next theorem gives an asymptotic formula for the diference between the unstable manifold of the

periodic orbit Pη0,ξ0 and the stable manifold of the periodic orbit Pη0+δη,ξ0+δξ, which is measured by
(5.31).

Theorem 5.4.3. Fix L0 ∈ [1/2, 2] and u1, u2 such that u1 > u2 > 0. Then, there exists Θ∗ ≫ 1
and 0 < ϱ∗ ≪ 1 such that for Θ ≥ Θ∗, (η0, ξ0) satisfying ξ0 = η0 and |η0|Θ3/2 ≤ ϱ∗ and (δη, δξ)
satisfying δξ = δη and |δη|Θ3 ≤ ϱ∗, the unstable manifold of Pη0,ξ0 and the stable manifold of Pη0+δη,ξ0+δξ
can be parameterized as graphs with respect to (u, γ) ∈ (u1, u2) × T as in (5.30) for some functions
(Y ∗,Λ∗, α∗, β∗), ∗ = u, s which satisfy

|Y ∗| ≤ Θ−3, |Λ∗| ≤ CΘ−6, |α∗| ≤ Θ−3, |β∗| ≤ CΘ−3. (5.36)

Moreover, its difference satisfies
Y u(u, γ, z0)− Y s(u, γ, z0, δz)
Λu(u, γ, z0)− Λs(u, γ, z0, δz)
αu(u, γ, z0)− αs(u, γ, z0, δz)
βu(u, γ, z0)− βs(u, γ, z0, δz)

 = N (u, γ, z0, δz)


MY (u, γ, z0, δz)
MΛ(u, γ, z0, δz)

δη +Mα(u, γ, z0, δz)
δξ +Mβ(u, γ, z0, δz)

 (5.37)
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where z0 = (η0, ξ0), δz = (δη, δξ), N is a matrix which satisfies

N = Id +O(Θ−3) (5.38)

and the vector M is of the form


MY (u, γ, z0, δz)
MΛ(u, γ, z0, δz)
Mα(u, γ, z0, δz)
Mβ(u, γ, z0, δz)

 =


ω∂σL(γ − ωu, z0) +O

(
Θ−6 ln2 Θ

)
−∂σL(γ − ωu, z0) +O

(
e
− ν̃Θ̃3

3L3
0 Θ−5/2 ln2 Θ

)
−i∂ξ0L(γ − ωu, z0) +O

(
Θ−6

)
i∂η0L(γ − ωu, z0) +O

(
Θ−6

)
,

 (5.39)

where L is the Melnikov potential introduced in (5.32) and ω is given in (5.33).
Moreover, the function M satisfies the following estimates

|∂iη0∂
j
ξ0
∂kγ (MY + ω∂σL)| ≤ C(i, j, k)Θ−6

|∂iη0∂
j
ξ0
∂kγ (Mα + i∂ξ0L)|, |∂iη0∂

j
ξ0
∂kγ (Mβ − i∂η0L)| ≤ C(i, j, k)Θ−6.

(5.40)

Furthermore, both for the derivatives of the component MΛ and the γ-derivatives of the other components
one has the following exponentially small estimates. For any i, j, k ≥ 0

|∂iη0∂
j
ξ0
∂kγ (MΛ + ∂σL)| ≤ C(i, j, k)Θ−5/2+3(i+j)/2e

− ν̃Θ̃3

3L3
0 log2 Θ

|∂iη0∂
j
ξ0
∂k+1
γ (MY − ω∂σL)| ≤ C(i, j, k)Θ2−3(i+j)/2e

− ν̃Θ̃3

3L3
0

|∂iη0∂
j
ξ0
∂k+1
γ (Mα + i∂η0L)|, |∂iη0∂

j
ξ0
∂k+1
γ (Mβ − i∂ξ0L)| ≤ C(i, j, k)Θ1/2−3(i+j)/2e

− ν̃Θ̃3

3L3
0 .

(5.41)

Note that for MY the error in (5.39) and (5.40) is bigger than the first order given by the Melnikov
potential. Modifying slightly the matrix N this error could be made smaller. However, this is not needed.
The reason is that, by conservation of energy, one does not need to take care of the distance between the
invariant manifolds on the Y component.

Remark 5.4.4. The estimates in Proposition 5.4.2 and the bounds (5.40) imply the following estimates
that are needed for analyzing the scattering maps in Section 5.4.3,

|DN
η0,ξ0MY | ≤ C(N)Θ−6

|D2
η0,ξ0Mx| ≲ Θ−5 +Θ−3(|η0|+ |ξ0|) for x = α, β

|DN
η0,ξ0Mx| ≤ C(N)Θ−3 for x = α, β and N ≥ 1, N ̸= 2,

where C(N) is a constant only depending on N .
Analogously Proposition 5.4.2 and the bounds in (5.41) imply

|∂kγMΛ| ≤ C(k)(Θ−1/2 +Θ−3/2|η0|)e
− ν̃Θ̃3

3L3
0 , |∂η0MΛ| ≲ Θ3/2e

− ν̃Θ̃3

3L3
0 , |∂ξ0MΛ| ≲ Θ3/2e

− ν̃Θ̃3

3L3
0

and, when i+ j ≥ 1,

|∂iη0∂
j
ξ0
∂kγMΛ| ≤ C(i, j, k)Θ3(i+j)/2e

− ν̃Θ̃3

3L3
0 ,

where C(k) and C(i, j, k) are independent of Θ.
Finally, i, j, k ≥ 0,

|∂iη0∂
j
ξ0
∂k+1
γ MY | ≤ C(i, j, k)Θ3−3(i+j)/2e

− ν̃Θ̃3

3L3
0

|∂iη0∂
j
ξ0
∂k+1
γ Mα|, |∂iη0∂

j
ξ0
∂k+1
γ Mβ | ≤ C(i, j, k)Θ3/2−3(i+j)/2e

− ν̃Θ̃3

3L3
0 .
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Theorem 5.4.3 is proved in several steps. First, in Section 5.7, we prove the existence of param-
eterizations of the form (5.30) for the invariant manifolds. These parameterizations are analyzed in
complex domains. They fail to exist at u = 0 since at this point, when written in the original coordinates
(λ, L, η, ξ, r̃, ỹ), the unperturbed invariant manifold is not a graph over the variables r̃, λ. Thus, in Section
5.7.5, we extend the unstable invariant manifold using a different parameterization. This allows us to
have at the end a common domain (intersecting the real line) where both manifolds have graph param-
eterizations as (5.30). Finally in Section 5.8 we analyze the difference between the invariant manifolds
and complete the proof of Theorem 5.4.3.

5.4.3 The scattering maps associated to the invariant manifolds of infinity

Once we have the asymptotic formulas (5.37) for the difference of the stable and unstable manifolds for
nearby periodic orbits in E∞, next step is to look for their intersections to find heteroclinic connections
between different periodic orbits. This will allow us to define scattering maps in suitable domains of
E∞. Now we provide two homoclinic channels and the two associated scattering maps whose domains
inside E∞ overlap. The construction of the homoclinic channels relies on certain non-degeneracies of the
Melnikov potential analyzed in Proposition 5.4.2. In particular, we need non-trivial dependence on the
angle γ. If one analyzes the first γ-Fourier coefficient of the potential L(γ − ωu, η0, ξ0) given by (5.32),
one can easily see that it vanishes at a point of the form

ξbad = ηbad =
N3

24
√
2N2

L
5/2
0 Θ̃−2 +O

(
Θ̃−5/2

)
.

Therefore, we will be able to define scattering maps for |η0| ≪ Θ−3/2 and ξ0 = η0 (that is the domain
considered in Theorem 5.4.3 minus a small ball around the point (ηbad, ηbad).

The main idea behind Theorem 5.4.5 is the following: We fix a section u = u∗ and, for (η0, ξ0) in the

good domain D̃ introduced below (see (5.44)), we analyze the zeros of equations (5.37), which lead to two
solutions

γj = γj(u∗, η0, ξ0), δξ
j = δξj(u∗, η0, ξ0), δη

j = δηj(u∗, η0, ξ0), j = 1, 2.

These solutions provide two heteroclinic points through the parameterization (5.30) as

zjhet = zjhet(u
∗, η0, ξ0) = (λhet, Lhet, ηhet, ξhet, r̃het, ỹhet)

= (λ, Lu, ηu, ξu, r̃, ỹu) (u∗, γj(u∗, η0, ξ0)) ∈Wu(Pη0,ξ0) ∩W s(Pη0+δηj ,ξ0+δξj ).

Varying (η0, ξ0) and u, one has two 3–dimensional homoclinic channels which define homoclinic manifolds
to infinity. These channels are defined by

Γj =
{
zjhet(u, η0, ξ0) : u ∈ (u1, u2), (η0, ξ0) ∈ D̃

}
(5.42)

and associated to these homoclinic channels one can define scattering maps which are analyzed in the
next theorem.

To define the domain D̃ of the scattering maps we introduce the notation

Dρ(η0, ξ0) =
{
w ∈ R2 : |(η, ξ)− (η0, ξ0)| < ρ

}
. (5.43)

Theorem 5.4.5. Assume that m0 ̸= m1. Fix L0 ∈ [1/2, 2] and 0 < ϱ ≪ ϱ∗ where ϱ∗ is the constant
introduced in Theorem 5.4.3. Then, there exists Θ∗ ≫ 1 such that, if Θ ≥ Θ∗, one can define scattering
maps

S̃j : T×
[
1

2
, 1

]
× D̃ → T×

[
1

2
, 1

]
× C, j = 1, 2

where (see Figure 5.8)

D̃ = DϱΘ−3/2(0, 0) \ DϱΘ−2(ηbad, ηbad), (5.44)
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associated to the homoclinic channels Γj introduced in (5.42). These scattering maps are of the form

S̃j(λ, L0, η0, ξ0) =

λ+∆j(η0, ξ0)
L0

Sj(η0, ξ0)


where Sj is independent of λ but may depend4 on L0 and is given by

Sj(η0, ξ0) =

η0 − iν̃πL4
0(Θ̃ + η0ξ0)

−3
[
A1η0 + 2A2η

2
0ξ0 +A3Θ̃

−2
]

ξ0 + iν̃πL4
0(Θ̃ + η0ξ0)

−3
[
A1ξ0 + 2A2η0ξ

2
0 +A3Θ̃

−2
]+Rj(η0, ξ0) (5.45)

where Θ̃ = Θ− L0,

A1 =
3N2

8L0
, A2 = − 3N2

16L2
0

, A3 = −N3
15√
264

L
3
2
0 . (5.46)

(see (5.35)) and Rj satisfies
Rj(η0, ξ0) = O

(
Θ−5,Θ−4|η0|

)
Moreover,

• Sj is symplectic in the sense that it preserves the symplectic form dη0 ∧ dξ0.

• Fix N ≥ 3. Then, the derivatives of Rj satisfy

|DkRj(z)| ≤ C(k)Θ−5, k = 1 . . . N

for z ∈ D̃, where C(k) is a constant which may depend on k but is independent of Θ.

• There exists points zj0 = (ηj0, ξ
j
0), j = 1, 2, of the form

ξj0 = ηj0 and ηj0 =
5N3

8N2

L3
0√

2L0

Θ̃−2 +O
(
Θ−3 log2 Θ

)
(5.47)

where N2 and N3 are the constants introduced in (5.35), such that Sj(ηj0, ξ
j
0) = (ηj0, ξ

j
0). Further-

more, the distance between these two fixed points is exponentially small as

η20 − η10 = ξ20 − ξ10 = − 4√
π
L
1/2
0 Θ̃9/2e

− ν̃Θ̃3

3L3
0

(
1 +O

(
Θ−1 ln2 Θ

))
. (5.48)

This theorem is proven in Section 5.9.1.

Figure 5.8: The domain D̃ in (5.44) of the scattering maps (see Theorem 5.4.5).

To analyze the return map from a neighborhood of infinity to itself along the homoclinic channels it
is convenient to reduce the dimension of the model. To this end, we apply the classical Poincaré-Cartan

4To simplify the notation we omit the dependence of Sj on L0. In fact, from now one we will restrict the scattering map
to a level of energy. Since the energy determines L0 it can be treated as a fixed constant
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reduction. We fix the energy level K̃ = − ν
2L2

0
. Then, by the Implicit Function Theorem, we know that

there exists a function L(λ, η, ξ, r̃, ỹ; Θ) satisfying

K̃ (λ,−L(λ, η, ξ, r̃, ỹ), η, ξ, r̃, ỹ) = − ν

2L2
0

.

The function L depends also on Θ and L0 (which can be treated now as a parameter). We omit this
dependence to simplify the notation.

The function L can be seen as a Hamiltonian system of two and a half degrees of freedom with λ
as time. Then, it is well known that the trajectories of L coincide with the trajectories of K̃ at the
energy level K̃ = − ν

2L2
0
(up to time reparameterization). From now on and, in particular, to analyze the

return map from a neighborhood of infinity to itself (see Section 5.2), we consider the flow given by the
Hamiltonian L.

Recall that our goal is to construct a hyperbolic invariant set with symbolic dynamics for this return
map by means of the usual isolating block construction (see Figure 5.4). To capture the hyperbolicity in
the (η, ξ)-directions we must rely on the scattering maps. Indeed, in these directions, the dynamics close
to infinity is close to the identity up to higher order (see Theorem 5.5.4 and the heuristics in Section 5.2.3)
and, therefore, hyperbolicity can only be created through the dynamics along the invariant manifolds,
which is encoded in the scattering maps. Thus, as a first step we construct an isolating block for a
suitable (large) iterate of the scattering maps associated to L.

Therefore, we need to compute them from the scattering maps S̃j obtained in Theorem 5.4.5 (restricted

to the energy level K̃ = − ν
2L2

0
). Indeed, if we denote by

Šj : T× D̃ ⊂ T× C → T× C, j = 1, 2

the scattering maps associated to L, they are of the form

Šj(λ, η0, ξ0) =
(

λ
Sj(η0, ξ0)

)
.

where Sj are the functions introduced in (5.45). Note that the fact that λ is now time, implies that the
corresponding component in the scattering map is the identity. Nevertheless, as the (η, ξ) coordinates of
the periodic orbit in E∞ do not evolve in time, the associated components of the scattering maps for the
non-autonomous Hamiltonian L and the original one K̃ coincide.

Using Theorem 5.4.5 and Taylor-expanding the scattering maps around their fixed points, one can
prove the following proposition.

Proposition 5.4.6. Assume that m0 ̸= m1, fix N ≥ 3 and take Θ ≫ 1 large enough. Then, for j = 1, 2,
the expansion of the scattering map Sj introduced in (5.45) around its fixed point zj0, obtained in Theorem
5.4.5, is of the form

Sj(z) = zj0 + µj(z − zj0) +

N∑
k=2

Pk

(
z − zj0

)
+O

(
z − zj0

)N+1

where z = (η, ξ) and
µj = eiωj with ωj = ν̃πL4

0A1Θ̃
−3 +O

(
Θ−4

)
(5.49)

and Pk are homogeneous polynomials in η − ηj0 and ξ − ξj0 of degree k. Moreover they satisfy

P2(z) =
∑
i+j=2

b2ijξ
iηj with b2ij = O

(
Θ−5

)
P3(z) = T Θ̃−3|z|2z +Θ−5O

(
z3
)

where
T = −4iν̃πL4

0A2 +O
(
Θ−1

)
(5.50)

(see (5.46) and (5.35)) satisfies T ̸= 0 and the coefficients of Pk for k ≥ 4 are of order O
(
Θ−3

)
.
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This proposition shows that the scattering maps are close to a rotation around an elliptic fixed point
(with a very small frequency). For this reason it is rather hard to obtain hyperbolicity for any one of
them. Instead, we obtain it for a suitable high iterate of a combination of the scattering maps. This is
stated in the next theorem, whose prove is deferred to Section 5.9.2.

Theorem 5.4.7. Assume that m0 ̸= m1, fix L0 ∈ [1/2, 2] and take Θ ≫ 1 large enough. Then, there
exists 0 < κ̃0 ≪ 1 and a change of coordinates

Υ : (−κ̃0, κ̃0)2 → D̃, (η0, ξ0) = Υ(φ, J)

where D̃ is the domain introduced in (5.44), such that the scattering maps

Ŝj = Υ−1 ◦ Sj ◦Υ,

where Sj have been introduced in Theorem 5.4.5, satisfy the following statements.

1. They are of the form

Ŝ1(φ, J) =

(
φ+ B̃(J) +O

(
J2
)

J +O
(
J3
) )

and Ŝ2(φ, J) =

(
Ŝ2φ(φ, J)

Ŝ2J(φ, J)

)
which satisfies

b = ∂φŜ
2
J(0, 0) ̸= 0 and Ŝ2J(0, J) = 0 for J ∈ (−κ̃0, κ̃0).

2. For any 0 < κ̃≪ κ̃0, there exists M =M(κ̃) such that the rectangle

R =
{
(φ, J) : 0 ≤ φ ≤ 2b−1κ̃, 0 ≤ J ≤ κ̃

}
(5.51)

is an isolating block for Ŝ = (Ŝ1)M ◦ Ŝ2. Namely, if one considers a C1 curve J = γ(φ) with
γ : [0, 2b−1κ̃] → R with γ(φ) ∈ [0, κ̃], then, its image (φ1(φ), J1(φ)) = Ŝ(φ, γ(φ)) is a graph over
its horizontal component and satisfies that

J1(φ) ∈ (0, κ̃), φ1(0) < 0 and φ1(2b
−1κ̃) > 2b−1κ̃.

3. For z = (φ, J) ∈ R, the matrix DŜ(z) is hyperbolic with eigenvalues λŜ(z), λŜ(z)
−1 ∈ R with

λŜ(z) ≳ κ̃−1

Furthermore, there exist two vectors fields Vj : R → TR of the form

V1 =

(
1
0

)
, V2 =

(
V21(z)

1

)
with |V21(z)| ≲ κ̃,

which satisfy, for z ∈ R,

DŜ(z)V1 = λŜ(z)
(
V1 + V̂1(z)

)
with |V̂1(z)| ≲ κ̃

DŜ(z)V2(z) = λŜ(z)
−1
(
V2(Ŝ(z)) + V̂2(z)

)
with |V̂2(z)| ≲ κ̃.

5.5 Local behavior close to infinity and a parabolic Lambda
Lemma

5.5.1 McGehee coordinates

To study the behavior of Hamiltonian K̃ in (5.16) close to the infinity manifold E∞, we introduce the
classical McGehee coordinates r̃ = 2/x2. To simplify the notation, in this section we drop the tilde of ỹ.

The Hamiltonian K̃ becomes

J (λ, L, η, ξ, x, y; Θ) = − ν

2L2
+
y2

2
+

(Θ− L+ ηξ)2

2

x4

4
− x2

2
+ V (λ, L, η, ξ, x)
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where

V (λ, L, η, ξ, x) = W̃

(
λ, L, η, ξ,

2

x2

)
= O(x6),

and W̃ is the potential in (5.18), while the canonical symplectic form dλ ∧ dL + idη ∧ dξ + dr ∧ dy is
transformed into

dλ ∧ dL+ idη ∧ dξ − 4

x3
dx ∧ dy.

Hence, the equations of motion associated to J are

λ′ = ∂LJ =
ν

L3
+O(x4), L′ = −∂λJ = O(x6),

η′ = −i∂ξJ = − i

4
(Θ− L+ ηξ)x4η +O(x6), ξ′ = i∂ηJ =

i

4
(Θ− L+ ηξ)x4ξ +O(x6),

x′ = −x
3

4
∂yJ = −1

4
x3y, y′ = −x

3

4
(−∂xJ ) = −1

4
x4 +

(Θ− L+ ηξ)2

8
x6 +O(x8).

In the new variables, the periodic orbits Pη0,ξ0 in the energy level K̃ = − ν
2L2

0
become

Pη0,ξ0 = {λ ∈ T, L = L0, η = η0, ξ = ξ0, x = y = 0}

for any η0, ξ0 ∈ C with |η0|, |ξ0| ≤ L
1/2
0 (see (5.15)). To study the local behavior around E∞, we consider

the new variables
a = η e−i(Θ−L+ηξ)y and b = ξ ei(Θ−L+ηξ)y. (5.52)

The equations of motion become

λ′ = ∂LJ =
ν

L3
+O(x4), L′ = −∂λJ = O(x6),

a′ = O(x6), b′ = O(x6),

x′ = −1

4
x3y, y′ = −1

4
x4 +

(Θ− L+ ab)2

8
x6 +O(x8).

Remark 5.5.1. Note that the change of coordinates (5.52) is the identity on E∞. Therefore, Theo-
rem 5.4.5 is still valid in these coordinates.

As we have done in Section 5.4, we restrict to the energy level J = − ν
2L2

0
and express L in terms of

the rest of the variables in a neighborhood of x = y = 0. An immediate computation shows that L is an
even function of x and y and

L = L0 +
1

2ν
(x2 − y2) +O2(x

2, y2).

Taking λ as the new time and denoting the derivative with respect to this new time by a dot, we
obtain the 2π-periodic equation

ẋ = −K0x
3y
(
1 +B(x2 − y2) +O2(x

2, y2)
)
,

ẏ = −K0x
4
(
1− (4A(z) +B)x2 −By2 +O2(x

2, y2)
)
,

ż = O(x6),

ṫ = 1,

where, abusing notation, we denote again by t the new time λ, z = (a, b) belongs to a compact set and

A(z) =
1

8
(Θ− L0 + ab)

2
=

Θ2

8

(
1− 1

Θ
(L0 − ab)

)2

,

B =
3

2

1

L0ν
, K0 =

L3
0

4ν
.

(5.53)
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Observe that, since (a, b) belong to a compact set, taking Θ large enough, we can assume that

A =
Θ2

8

(
1− 1

Θ
(L0 − ab)

)2

>
1

16
Θ2 > 0.

Scaling x and y by K
1/3
0 , one obtains

ẋ = −x3y(1 +Bx2 −By2 +R1(x, y, z, t)),

ẏ = −x4(1 + (B − 4A)x2 −By2 +R2(x, y, z, t)),

ż = R3(x, y, z, t),

ṫ = 1,

(5.54)

where we have kept the notation x, y for the scaled variables and A,B for the scaled constants. Moreover,

1. the functions Ri, i = 1, 2, 3, are even in x,

2. R3(x, y, z, t) = O3(x
2) and Ri(x, y, z, t) = O2(x

2, y2), i = 1, 2.

The periodic orbit Pη0,ξ0 becomes Pη0,ξ0 = {x = y = 0, a = η0, b = ξ0, t ∈ T}.
We now apply the change of variables (x, y, z) = (x, y,Υ(φ, J)), where Υ is given in Theorem 5.4.7.

The transformed equation has the same form as in (5.54) with statements 1 and 2 above. From now
on, we will assume z = (φ, J). In particular, the scattering maps associated to the infinity manifold
{x = y = 0} will satisfy the properties of Theorem 5.4.7.

5.5.2 C1 behavior close to infinity

To study the local behavior of system (5.54) close to E∞ we start by finding a suitable set of coordinates,
provided by the next theorem, whose proof is deferred to Section 5.10.

Theorem 5.5.2. Let K ⊂ R2 be a compact set. For any N ≥ 1, there exists a neighborhood U of the
subset EK∞ = ∪z0∈KPz0 ⊂ E∞, in R2 × R2 × T and a CN change of variables

Φ : (x, y, z, t) ∈ U 7→ (q, p, z̃, t) =

(
x− y

2
,
x+ y

2
, z, t

)
+O2(x, y)

that transforms system (5.54) into

q̇ = q
(
(q + p)3 +O4(q, p)

)
, ˙̃z = qNpNO4(q, p),

ṗ = −p
(
(q + p)3 +O4(q, p)

)
, ṫ = 1.

(5.55)

Remark 5.5.3. It is worth to remark that the change of variables in Theorem 5.5.2 is analytic in some
complex sectorial domain of R2 × R2 × T with EK∞ in its vertex. This claim is made precise in the proof
of the Theorem 5.5.2. To prove this fact, it is important to control the terms of degree 6 of the equations
for x and y in (5.54), in particular, the sign of A in (5.53) (see Section 5.10).

To simplify the notation, we drop the tilde from the new z variable. Let N > 10 be fixed. We are
interested in the behavior of system (5.55) in the region Φ(U) ∩ {q + p ≥ 0}. The stable and unstable
invariant manifolds of Pz0 in this region are, respectively, W s(Pz0) = {q = 0, p > 0, z = z0, t ∈ T} and
Wu(Pz0) = {p = 0, q > 0, z = z0, t ∈ T}. Even if the invariant manifold EK∞ is not normally hyperbolic,
it behaves as such and possesses smooth stable and unstable invariant manifolds (see [BFM20a, BFM20b])
defined by

W ∗(EK∞) =
⋃
z0∈K

W ∗(Pz0), ∗ = u, s.

Moreover, the invariant manifolds W ∗(EK∞) are foliated by stable and unstable leaves W ∗
w0

, ∗ = u, s,
which are defined as follows. Denote by φτ (w) the flow associated to equation (5.55). Then, w ∈W s

w0
if

and only if
|φτ (w)− φτ (w0)| → 0 as τ → +∞
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and analogously for the unstable leaves with backward time.
This allows us to define the classical wave maps associated to the stable and unstable foliations, which

we denote by Ωs and Ωu, as

Ω∗(w) = w0 if and only if w ∈W ∗
w0

for ∗ = u, s. (5.56)

Observe that in the local coordinates given by Theorem 5.5.2, one has that, locally, W s(EK∞) = {q = 0}
and Wu(EK∞) = {p = 0}. Moreover,

Ωs(0, p, z, t) = (0, 0, z, t) and Ωs(q, 0, z, t) = (0, 0, z, t).

The next step is to prove a Lambda Lemma that will describe the local dynamics close to EK∞, in the
coordinates given by Theorem 5.5.2. Note that the particular form and invariance of W ∗(EK∞),∗ = u, s,
implies that the solution φτ (w0) through any point w0 = (q0, p0, z0, t0) ∈ Φ(U) ∩ {q > 0, p > 0} satisfies
φτ (w0) ∈ Φ(U) ∩ {q > 0, p > 0} for all τ such that φτ (w0) ∈ Φ(U). We define, then,

Vρ = {(q, p) | |q|, |p| < ρ, q > 0, p > 0}.

Let W ⊂ R2 be an bounded open set. Given 0 < δ < a ≤ ρ and W̃ ⊂W , we define the sections

Λ−
a,δ(W̃ ) = {(q, p, z, t) ∈ Vρ × W̃ × T | p = a, 0 < q < δ},

Λ+
a,δ(W̃ ) = {(q, p, z, t) ∈ Vρ × W̃ × T | q = a, 0 < p < δ}.

(5.57)

and the associated Poincaré map
Ψloc : Λ

−
a,δ(W̃ ) −→ Λ+

a,δ(W ) (5.58)

induced by the flow of (5.55), wherever it is well defined.

Theorem 5.5.4. Assume N > 10 in system (5.55). Let K ⊂W be a compact set. There exists 0 < ρ < 1
and C > 0, satisfying Cρ < 3/5, such that, for any 0 < a ≤ ρ and any δ ∈ (0, a/2), the Poincaré map
Ψloc : Λ−

a,δ(K) → Λ+
a,δ1−Ca(W ) associated to system (5.55) is well defined. Moreover, Ψloc satisfies the

following.

1. There exist C̃1, C̃2 > 0 such that, for any (q, a, z0, t0) ∈ Λ−
a,δ(K), Ψloc(q, a, z0, t0) = (a, p1, z1, t1)

satisfies
q1+Ca ≤ p1 ≤ q1−Ca,

|z1 − z0| ≤
1

2N
aN(1+Ca)qN(1−Ca),

C̃1q
−3(1−Ca)/2 ≤ t1 − t0 ≤ C̃2q

−3(1+Ca)/2.

2. Fix any M > 0. Then, there exists δ0 and C̃3 > 0, such that for any δ ∈ (0, δ0) and γ : [0, δ) →
Vρ×W ×T, a C1 curve with γ((0, δ)) ⊂ Λ−

a,δ(K) of the form γ(q) = (q, a, z0(q), t0(q)) and satisfying
∥γ∥C1 ≤M the following is true. Its image Ψloc(γ(q)) = (a, p1(q), z1(q), t1(q)) satisfies

|p′1(q)| ≤ C̃3,

∣∣∣∣p′1(q)t′1(q)

∣∣∣∣ ≤ C̃3q
1−Ca, |z′1(q)| ≤ C̃3, |t′1(q)| ≥ C̃3

1

q3/5−Ca
.

3. There exists C̃4 > 0 such that, if γ : [0, 1] → Λ−
a,δ(K) is a C1 curve of the form γ(u) = (q0(u), a, z0(u), t0(u)),

then Ψloc(γ(u)) = (a, p1(u), z1(u), t1(u)) satisfies, for all u ∈ [0, 1],

|z′1(u)− z′0(u)| ≤ C̃4∥γ′(u)∥q0(u)N−10.
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4. Fix any M > 0. Then, there exists δ0 such that for any δ ∈ (0, δ0), any C1 curve (z0(u), t0(u)) ∈
K × T, u ∈ [0, 1], satisfying ∥(z0(u), t0(u))∥C1 ≤ M and any q̃0 ∈ (0, δ), there exists a func-

tion q0 : [0, 1] → (0, δ) with q0(0) = q̃0, |q′0(0)| < q̃
1/5
0 , such that Ψloc(q0(u), a, z0(u), t0(u)) =

(a, p1(u), z1(u), t1(u)) satisfies

|p′1(0)| ≤ C̃5q̃
3
5−Ca
0 ∥(q′0(0), z′0(0), t′0(0))∥,

|z′1(0)− z′0(0)| ≤ C̃5q̃0∥(q′0(0), z′0(0), t′0(0))∥,
t′1(0) = t′0(0),

for some C̃5 > 0 independent of the curve and δ.

The proof of Theorem 5.5.4 is deferred to Section 5.11.

5.6 Construction of the hyperbolic set

The final step in constructing the Smale horseshoe for the 3 Body Problem given by the Hamiltonian
(5.16) is to combine the dynamics in the vicinity of the disk EK∞ at infinity (see Theorem 5.5.2) with the
dynamics along their invariant manifolds analyzed in Theorem 5.4.3.

5.6.1 The return map

We construct a return map in a suitable section transverse to the invariant manifolds. This map is built
as a composition of the local map (close to infinity) studied in Theorem 5.5.4 (see also Figure 5.2), and
a global map (close to the invariant manifolds), which we analyze now. To build the hyperbolic set, we
will have to consider a suitable high iterate of the return map. To be more precise, we consider different
return maps associated to two different homoclinic channels (and therefore, associated to the two different
scattering maps obtained in Theorem 5.4.5).

To define these return maps, we consider the sections Λ±
a,δ given in (5.57), which are transverse to the

stable/unstable invariant manifolds respectively, and we call

Σ1 ≡ Λ−
a,δ(K) = {p = a, 0 < q < δ, t ∈ T, z ∈ K},

Σ2 ≡ Λ+
a,δ1−Ca(K) = {q = a, 0 < p < δ1−Ca, t ∈ T, z ∈ K},

(5.59)

where (q, p, z, t) are the coordinates defined by Theorem 5.5.2, K ⊂ R2 is a compact set and we take

δ <
a

2
and a ≤ ρ.

Theorem 5.5.4) ensures that there exists C > 0 such that the local map

Ψloc : Σ1 → Σ2

(see (5.58)) is well defined.
The global maps will be defined from suitable open sets in Σ2 to Σ1. They are defined as the maps

induced by Hamiltonian (5.16) expressed in the coordinates given by Proposition 5.5.2. In fact, to
construct them, we use slightly different coordinates which are defined on suitable neighborhoods of the
homoclinic channels at Σ2, i.e. Γ

j ∩ Σ2, j = 1, 2 (see (5.42)).
These coordinates are constructed as follows.

1. In the coordinates5 (p, t, z) in Σ2, Σ2∩Wu = {p = 0}. Since we are in a perturbative setting (when
Θ is large enough), we have thatW s∩Σ2 = {p = ws(t, z)}. Moreover, Γj∩Σ2, j = 1, 2, where Γj are

5Note that we have reordered the variables. The reason is that, in the section Σ2, the variable t will play a similar role
as the variable p whereas the variable z is treated as a center variable.
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the homoclinic channels given by Theorem 5.4.5, can be parametrized as {(p, t, z) = (0, t2j (z), z)}.
In particular, the functions t2j satisfy

ws(t2j (z), z) = 0, ∂tw
s(t2j (z), z) ̸= 0.

Hence, the equation p = ws(t, z) defines in the neighborhood of each homoclinic channel two
functions w̃sj (p, z), satisfying w̃

s
j (0, z) = 0, such that

p = ws(t, z) ⇐⇒ t = t2j (z) + w̃sj (p, z),

in a neighborhood of Γj ∩ Σ2, j = 1, 2. That is, (p, t2j (z) + w̃sj (p, z), z) parametrizes W s ∩ Σ2 in a

neighborhood of Γj ∩ Σ2. We define two new sets of coordinates in Σ2, defined in a neighborhood
of Γj ∩ Σ2,

(p, τ, z) = Aj(p, t, z) = (p, t− t2j (z)− w̃sj (p, z), z), j = 1, 2. (5.60)

In these coordinates, W s ∩ Σ2 in each of the neighborhoods of Γj is given by τ = 0.

2. We proceed analogously in Σ1. In the coordinates (q, γ, z) in Σ1, Σ1 ∩W s = {q = 0}, Wu ∩ Σ1 =
{q = wu(t, z)} for some function wu and the intersection of the homoclinic channels Γj , j = 1, 2,
with Σ1 are given by {(q, t, z) = (0, t1j (z), z)} for some functions t1j . In particular,

wu(t1j (z), z) = 0, ∂tw
u(t1j (z), z) ̸= 0.

Hence, the equation q = wu(t, z) can be inverted in the neighborhood of Γj ∩ Σ1, j = 1, 2, by
defining two functions w̃uj (q, z) satisfying w̃

u
j (0, z) = 0, such that

q = wu(t, z) ⇐⇒ t = t1j (z) + w̃uj (q, z).

That is, (q, t1j (z) + w̃uj (q, z), z) parametrizes Wu ∩Σ1 in a neighborhood of Γj ∩Σ1. We define two

new sets of coordinates in Σ1, defined in a neighborhood of Γj ∩ Σ1,

(q, σ, z) = Bj(q, t, z) = (q, t− t1j (z)− w̃uj (q, z), z), j = 1, 2. (5.61)

In these coordinates, Wu ∩ Σ1 in each of the neighborhoods of Γj is given by σ = 0.

Let Ψglob,j , j = 1, 2, be the two global maps from a neighborhood of Γj ∩ Σ2 in Σ2, which we denote
by U2

j , to a neighborhood of Γj ∩ Σ1 in Σ1, which we denote by U1
j , defined by the flow. Choosing the

coordinates (p, τ, z) in U2
j and (q, σ, z) in U1

j , given by Aj and Bj respectively (see (5.60), (5.61)), we can
define

Ψ̃glob,j(p, τ, z) = Bj ◦Ψglob,j ◦A−1
j (p, τ, z).

Then, for points (p, τ, z) = (0, 0, z) ∈ Γj ∩ Σ2, the global map Ψ̃glob,j map is given by:

• Compute (0, 0, t̂, z) = Ωu(a, 0, t2j (z), z) ∈ EK∞, where Ωu is the wave map introduced in (5.56).

• Compute (0, 0, t̂, Ŝj(z)) ∈ EK∞, where Ŝj is the scattering map analyzed in Theorem 5.4.7.

• Compute (Ωs)−1(0, 0, t̂, Ŝj(z)) = (0, a, t̃, Ŝj(z)) ∈ Γj ∩ Σ1.

• Finally in coordinates (q, σ, z) this last point becomes (0, 0, Ŝj(z))

• In conclusion, Ψ̃glob,j(0, 0, z) = (0, 0, Ŝj(z))

Using this fact and the changes of coordinates in (5.60), (5.61) we have thatq1σ1
z1

 = Ψ̃glob,j(p, τ, z) = Bj ◦Ψglob,j ◦A−1
j (p, τ, z) =

τνj1(z)(1 +O1(p, τ))

pνj2(z)(1 +O1(p, τ))

Ŝj(z) +O1(p, τ)

 , (5.62)
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where νj1(z)ν
j
2(z) ̸= 0. Indeed, the claim follows from the fact that

Ψ̃glob,j({p = 0} ∩ U2
j ) = Ψ̃glob,j(W

u ∩ Σ2 ∩ U2
j ) =Wu ∩ Σ1 ∩ U1

j = {σ = 0} ∩ U1
j

Ψ̃glob,j({τ = 0} ∩ U2
j ) = Ψ̃glob,j(W

s ∩ Σ2 ∩ U2
j ) =W s ∩ Σ1 ∩ U1

j = {q = 0} ∩ U1
j

and expanding around (0, 0, z). The fact that νj1(z)ν
j
2(z) ̸= 0 follows immediately from the fact that

Ψ̃glob,j are diffeomorphisms. It is then immediate that Ψ̃−1
glob,j : U

1
j → U2

j is of the form

Ψ̃−1
glob,j(q, σ, z) = Aj ◦Ψ−1

glob,j ◦B
−1
j (q, σ, z) =

σµj1(z)(1 +O1(q, σ))

qµj2(z)(1 +O1(q, σ))

(Ŝj)−1(z) +O1(q, σ)

 , (5.63)

where µj1(z)µ
j
2(z) ̸= 0.

Now we deal with the local map. Notice that Theorem 5.5.4 implies that, for 1 ≤ i, j ≤ 2, Ψloc(U
1
i )∩

U2
j ̸= ∅. We will denote by Ψloc,i,j = Ψloc|Ψ−1

loc(U
2
j )∩U1

i
: U1

i → U2
j and its expression in coordinates

Ψ̃loc,i,j = Aj ◦Ψloc,i,j ◦B−1
i .

Observe that the map Ψloc,i,j does not depend on i and j and the dependence of Ψ̃loc,i,j on i and j is
only through the systems of coordinates Aj and Bi.

The combination of the global maps along the homoclinic channels and the local map allows to define
four different maps Ψij : U2

i → U2
j by setting Ψi,j = Ψloc,i,j ◦ Ψglob,i. We will denote its expression in

coordinates as
Ψ̃i,j = Ψ̃loc,i,j ◦ Ψ̃glob,i. (5.64)

Let us specify the domains we will consider. Given δ ∈ (0, a/2), let Qi
δ ⊂ Σ2 be the set

Qi
δ = {0 < p < δ, 0 < τ < δ, z ∈ R} ⊂ U2

i (5.65)

where R has been introduced in (5.51). We remark that the “sides” {p = 0} and {τ = 0} of Qi
δ are

Wu ∩ Σ2 and W s ∩ Σ2, respectively, and the “edge” {p = τ = 0} is Γi ∩ Σ2.
Let Ψ be the map defined as

Ψ = Ψ1,2 ◦ΨM−1
1,1 ◦Ψ2,1, (5.66)

where M is given by (5.173). We will denote by Ψ̃ its expression in the A2 coordinate system, that is,

Ψ̃ = Ψ̃1,2 ◦ Ψ̃M−1
1,1 ◦ Ψ̃2,1 : Q2

δ −→ Σ2. (5.67)

5.6.2 Symbolic dynamics: conjugation with the shift

We consider in Q2
δ , defined in (5.65), the set of coordinates (p, τ, φ, J) given by A2 and Theorem 5.4.7.

The coordinates have been chosen in such a way that (τ, φ) variables are “expanding” by Ψ̃, while the
(p, J) variables are “contracting”. To formalize this idea, we introduce the classical concepts of vertical
and horizontal rectangles in our setting (see Figure 5.6) as well as cone fields (see [Sma65, Mos01, Wig90,
KH95]).

We will say that H ⊂ Q2
δ is a horizontal rectangle if

H = {(p, τ, φ, J) ∈ Q2
δ ; h

−
1 (τ, φ) ≤ p ≤ h+1 (τ, φ), h

−
2 (τ, φ) ≤ J ≤ h+2 (τ, φ)}, (5.68)

where h±i : (0, δ) × (0, κ̃) → (0, δ) × (0, κ̃), i = 1, 2, are ℓh-Lipschitz. Analogously, V ⊂ Q2
δ is a vertical

rectangle if

V = {(p, τ, φ, J) ∈ Q2
δ ; v

−
1 (p, J) ≤ τ ≤ v+1 (p, J), v

−
2 (p, J) ≤ φ ≤ v+2 (p, J)}, (5.69)

with ℓv-Lipschitz functions v±i : (0, δ)× (0, κ̃) → (0, δ)× (0, κ̃), i = 1, 2.
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If H is the horizontal rectangle (5.68), we split ∂H = ∂hH ∪ ∂vH as

∂hH = {ω ∈ Q2
δ ; (p, J) = (h−1 , h

−
2 )(τ, φ) or (p, J) = (h+1 , h

+
2 )(τ, φ)},

∂vH = {ω ∈ Q2
δ ; (τ, φ) = (0, 0) or (τ, φ) = (δ, κ̃)}

and, analogously, if V is the vertical rectangle (5.69), we split ∂V = ∂hV ∪ ∂vV as

∂hV = {ω ∈ Q2
δ ; (p, J) = (0, 0) or (p, J) = (δ, κ̃)},

∂vV = {ω ∈ Q2
δ ; (τ, φ) = (v−1 , v

−
2 )(p, J) or (τ, φ) = (v+1 , v

+
2 )(p, J)}.

Additionally, we define the stable and unstable cone fields in the following way. For ω ∈ Q2
δ , we

consider in TωQ2
δ the basis given by the coordinates (p, τ, φ, J) and write x ∈ TωQ2

δ as x = (xu, xs)
meaning x = xs,p

∂
∂p + xu,τ

∂
∂τ + xu,φ

∂
∂φ + xs,J

∂
∂J . We define ∥xu∥ = max{|xu,τ |, |xu,φ|} and ∥xs∥ =

max{|xs,p|, |xs,J |}. Then, a κs-stable cone at ω ∈ Q2
δ is

Ssω,κs
= {x ∈ TωQ2

δ ; ∥xu∥ ≤ κs∥xs∥}

and a κu-unstable cone at ω ∈ Q2
δ ,

Suω,κu
= {x ∈ TωQ2

δ ; ∥xs∥ ≤ κu∥xu∥}. (5.70)

Having in mind [Wig90] (see also [Mos01]), we introduce the following hypotheses. Let F : Q2
δ → R4

be a C1 diffeomorphism onto its image.

H1 There exists two families {Hn}n∈N, {Vn}n∈N of horizontal and vertical rectangles in Q2
δ , with

ℓhℓv < 1, such thatHn∩Hn′ = ∅, Vn∩Vn′ = ∅, n ̸= n′, Hn → {p = 0}, Vn → {τ = 0}, when n→ ∞,
in the sense of the Hausdorff distance, F (Vn) = Hn, homeomorphically, F−1(∂vVn) ⊂ ∂vHn, n ∈ N.

H2 There exist κu, κs, µ > 0 satisfying 0 < µ < 1 − κuκs such that if ω ∈ ∪nVn, then DF (ω)Suω,κu
⊂

SuF (ω),κu
, whereas if ω ∈ ∪nHn, then DF−1(ω)Ssω,κs

⊂ SsF−1(ω),κs
. Moreover, denoting x+ =

DF (ω)x and x− = DF−1(ω)x, if x ∈ Suω,κu
, then |x+u | ≥ µ−1|xu| whereas, if x ∈ Ssω,κs

, then
|x−s | ≥ µ−1|xs|.

Finally, we introduce symbolic dynamics in our context (see [Mos01] for a complete discussion).
Consider the space of sequences Σ = NZ, with the topology6 induced by the neighborhood basis of
s∗ = (. . . , s∗−1, s

∗
0, s

∗
1, . . . )

Jj = {s ∈ Σ; sk = s∗k, |k| < j}, Jj+1 ⊂ Jj

and the shift map σ : Σ → Σ defined by σ(s)j = sj+1. The map σ is a homeomorphism.
We have the following theorem, which is a direct consequence of Theorems 2.3.3 and 2.3.5 of [Wig90].

Theorem 5.6.1. Assume that F : Q2
δ → R4, a C1 diffeomorphism onto its image, satisfies H1 and H2.

Then there exists a subset X ⊂ Q2
δ and a homeomorphism h : X → Σ such that h ◦ F|X = σ ◦ h.

Remark 5.6.2. Hypothesis H2 implies that the set X given by Theorem 5.6.1 is hyperbolic.

Theorem 5.6.3. If κ̃ and δ are small enough, Ψ̃ satisfies H1 and H2.

Theorem 5.6.3 is an immediate consequence of the following two propositions. Proposition 5.6.4
implies that Ψ̃ indeed satisfies H1 and Proposition 5.6.5 implies that Ψ̃ satisfies H2.

6This topology can be also defined by the distance d(s, r) =
∑

k∈Z 4−|k|δ(sk, rk) where δ(n,m) = 1 if n = m and
δ(n,m) = 0 if n ̸= m.
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Proposition 5.6.4. If δ is small enough, Ψ̃(Q2
δ) ∩Q2

δ has an infinite number of connected components.
More concretely, there exists 0 < τ1 < τ2 < δ such that the set

Hτ1,τ2 = {(p, τ, φ, J) ∈ Q2
δ | τ1 ≤ τ ≤ τ2}

satisfies the following. There exists {Hn}n∈N, a family of horizontal rectangles,

Hn = {(p, τ, φ, J) ∈ Q2
δ | h−1,n(τ, φ) ≤ p ≤ h+1,n(τ, φ), h

−
2,n(τ, φ) ≤ J ≤ h+2,n(τ, φ)},

with Hn ∩Hn′ = ∅, if n ̸= n′, such that h−1,n, h
+
1,n → 0 uniformly when n→ ∞, and

sup
n

Liph−2,n, sup
n

Liph+2,n ≲ O(κ̃) +O(δ),

with Ψ̃(Hτ1,τ2) ∩Q2
δ = ∪n∈NHn.

The analogous claim holds for vertical rectangles and Ψ̃−1, that is, there exist 0 < p1 < p2 < δ such
that the set

Vp1,p2 = {(p, τ, φ, J) ∈ Q2
δ | p1 ≤ p ≤ p2}

satisfies the following. There exists {Vn}n∈N, a family of vertical rectangles,

Vn = {(p, τ, φ, J) ∈ Q2
δ | v−1,n(p, J) ≤ τ ≤ v+1,n(p, J), v

−
2,n(p, J) ≤ φ ≤ v+2,n(p, J)},

with Vn ∩ Vn′ = ∅, if n ̸= n′, such that v−1,n, v
+
1,n → 0 uniformly when n→ ∞, and

sup
n

Lip v−2,n, sup
n

Lip v+2,n ≲ O(1),

with Ψ̃−1(Vp1,p2) ∩Q2
δ = ∪n∈NVn.

In particular, Ψ̃ satisfies H1.

The proof of this proposition is placed in Section 5.12.2.

Proposition 5.6.5. Ψ̃ satisfies H2 with κu = O(δ) +O(κ̃), κs = O(1) and µ = O(κ̃).

The proof of this proposition is placed in Section 5.12.4.
Propositions 5.6.4 and 5.6.5 imply that the map Ψ̃ satisfies hypotheses H1 and H2. Therefore, one

can apply Theorem 5.6.1 to Ψ̃ to obtain that Ψ̃ has a a hyperbolic invariant set whose dynamics is
conjugated to the shift of infinite symbols.

To complete the proof of Theorem 5.1.4 we need to “undo” the symplectic reduction by rotations (see
(6.11)). This adds one degree of freedom to the system: now one has to take into account Θ (which is a
first integral) and its conjugate variable α ∈ T. Since α is a cyclic variable, its dynamics is just a rotation
determined by the other variables.

Then, one can consider as Poincaré section Π just the section Σ2 introduced in (5.59) expressed in the
original coordinates, and the invariant set given by Theorem 5.6.3 becomes a set X which is homeomorphic
to NZ ×T. Note that in Theorem 5.1.4 we are fixing the center of mass at the origin and therefore we do
not need to pay attention to the reduction by translation; indeed, the variables used for Theorem 5.6.3
are based on Jacobi coordinates which also reduce by translations.

Theorem 5.1.3 is also a direct consequence of Theorem 5.6.3. Indeed, note that, the symbols in N keep
track of the closeness of the corresponding strip of each point in X to the invariant manifolds of infinity.
That is, the larger the symbol, the closer the strip is to the invariant manifolds. This implies that these
points get closer to infinity. For this reason, by construction, if one considers a bounded sequence in
Σ, the corresponding orbit in X is bounded. If one considers a sequence {ωk}k∈Z which is unbounded
both as k → ±∞, the corresponding orbit belongs to OS−∩OS+. Indeed, the orbit keeps visiting for all
forward and backward times a fixed neighborhood of the homoclinic channel (which is “uniformly far”
from infinity) but at the same time keeps getting closer and closer to infinity because the sequence is
unbounded. By considering sequences which are bounded at one side and unbounded at the other, one
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can construct trajectories which belong to B−∩OS+ and OS−∩B+. The trajectories which are (in the
future or in the past) parabolic-elliptic or hyperbolic-elliptic do not belong to X but they can be built
analogously. Indeed, as is done by Moser [Mos01], one can consider sequences of the form

ω = (. . . , ω−1, ω0, ω1, . . . , ωM−1,∞).

That is, points whose M −1 forward iterates come back to the section Σ2 and then the trajectory goes to
infinity. By the construction of the horizontal strips, one can built orbits which have these behavior since
the strips get streched and therefore its image hit the invariant manifolds of infinity (which correspond
to the motions PE2) and hit points “at the other side” of the invariant manifolds, which correspond to

hyperbolic motions HE2 (see Figure 5.6). The same can be achieved for the inverse return map Ψ̃−1 and
the vertical strips. For this reason one can combine future/past PE2 and HE2 with any other types of
motion.

5.7 Proof of Theorem 5.4.3: Parameterization of the invariant
manifolds of infinity

Theorem 5.4.3 gives an asymptotic formula for the distance between the unstable manifold of the periodic
orbit Pη0,ξ0 and the stable manifold of the periodic orbit Pη0+δη,ξ0+δξ. In this section we carry out the
first step of its proof. We consider suitable graph parameterizations of the invariant manifolds and we
analyze their analytic extensions to certain complex domains. Later, in Section 5.8, we use these analytic
extensions to obtain asymptotic formulas for the difference between the parameterizations for real values
of the parameters.

This section is structured as follows. First, in Section 5.7.1 we consider symplectic coordinates which
are adapted to have graph paramerizations of the invariant manifolds, which are constructed in Section
5.7.2. Then, in Section 5.7.3 we analyze the analytic extension of this graph paramerizations to certain
complex domains. Such analysis is performed in Section 5.7.4 by means of a fixed point argument in
suitable Banach spaces of formal Fourier series. These graphs paramerizations are singular at a certain
point (where the invariant manifolds cease to be graphs). To overcome this problem, in Section 5.7.5, we
consider a different type of parameterizations.

5.7.1 An adapted system of coordinates

To study Wu(Pη0,ξ0) and W
s(Pη0+δη,ξ0+δξ) with |δη|, |δξ| ≪ 1, we perform a change of variables to the

coordinates introduced in (5.15). This transformation

(r̃, ỹ, λ, L, η, ξ) → (u, Y, γ,Λ, α, β)

relies on the parameterization of the unperturbed separatrix associated to the periodic orbit Pη0,ξ0 given
by Lemma 5.4.1 and is defined as

r̃ =G2
0r̂h(u), ỹ =

ŷh(u)

G0
+

Y

G2
0ŷh(u)

+
Λ− (η0 + α)(ξ0 + β) + η0ξ0

G2
0ŷh(u)(r̂h(u))

2

λ = γ + ϕh(u), L =L0 + Λ

η = eiϕh(u)(η0 + α), ξ = e−iϕh(u)(ξ0 + β)

(5.71)

where
G0 = Θ− L0 + η0ξ0. (5.72)

This change of coordinates is consistent with the particular form of the parameterization of the perturbed
invariant manifolds given in (5.30). Indeed, we look for parameterizations of the unstable manifold of the
periodic orbit Pη0,ξ0 and the stable manifold of the periodic orbit Pη0+δη,ξ0+δξ as graphs in (u, γ) as

(u, γ) 7→ (Y,Λ, α, β) = Z∗(u, γ), ∗ = u, s.
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It can be easily checked, using Lemma 5.4.1, that the change of coordinates (5.71) is symplectic in the
sense that the pull back of the canonical symplectic form is just ω = du∧ dY + dγ ∧ dΛ+ idα∧ dβ. This
fact will be strongly used later in Section 5.8.5.

To analyze the dynamics it is enough to express the Hamiltonian K̃ (5.16) in terms of the new variables.
We also scale time as

t = G3
0s (5.73)

to have parabolic motion of speed one coupled with a fast rotation. Then, the Hamiltonian becomes

P(u, Y, γ,Λ, α, β) =− G3
0ν

2(L0 + Λ)2
+
G0

2

(
ŷh(u) +

Y

G0ŷh(u)
+

Λ− (η0 + α)(ξ0 + β) + η0ξ0
G0ŷh(u)(r̂h(u))2

)2

+
(Θ− L0 − Λ + (η0 + α)(ξ0 + β))2

2G0r̂h(u)2
− G0

r̂h(u)

+G3
0W̃

(
γ + ϕh(u), L0 + Λ, eiϕh(u)(η0 + α), e−iϕh(u)(ξ0 + β), G2

0r̂h(u)
)
.

(5.74)

Observe that we do not write the dependence of P on the parameters L0, η0, ξ0, nor on G0. In a natural
way we can write P = P0(u, Y, γ,Λ, α, β) + P1(u, γ,Λ, α, β) where, using (5.72),

P0(u, Y, γ,Λ, α, β) =− G3
0ν

2(L0 + Λ)2
+
G0

2

(
ŷh(u) +

Y

G0ŷh(u)
+

Λ− (η0 + α)(ξ0 + β) + η0ξ0
G0ŷh(u)(r̂h(u))2

)2

+
(Θ− L0 − Λ + (η0 + α)(ξ0 + β))2

2G0r̂h(u)2
− G0

r̂h(u)

=− G3
0ν

2(L0 + Λ)2
+Q0(u, Y,Λ− (η0 + α)(ξ0 + β) + η0ξ0)

(5.75)

where, taking into account (5.28), Q0 can be written as

Q0(u, Y, q) =
G0

2

(
ŷh(u) +

Y

G0ŷh(u)
+

q

G0ŷh(u)(r̂h(u))2

)2

+
(G0 − q)2

2G0r̂h(u)2
− G0

r̂h(u)

=Y +
Y 2

2G0ŷ2h(u)
+ f1(u)Y q + f2(u)

q2

2

(5.76)

with

f1(u) =
1

G0y2h(u)r
2
h(u)

, f2(u) =
2

G0r3h(u)y
2
h(u)

(5.77)

and

P1(u, γ,Λ, α, β) = G3
0W̃

(
γ + ϕh(u), L0 + Λ, eiϕh(u)(η0 + α), e−iϕh(u)(ξ0 + β), G2

0r̂h(u)
)
. (5.78)

The periodic orbits at infinity Pη0,ξ0 and Pη0+δη,ξ0+δξ are now given by

Pη0,ξ0 ={(u, Y, γ,Λ, α, β) = (±∞, 0, γ, 0, 0, 0), γ ∈ T}
Pη0+δη,ξ0+δξ ={(u, Y, γ,Λ, α, β) = (±∞, 0, γ, 0, δη, δξ), γ ∈ T}

The equations for the integrable system, which corresponds to P1 = 0, are

u̇ = ∂Y P0 = ∂YQ0 = 1 +
Y

G0ŷ2h
+ f1(u)q

Ẏ = −∂uP0 = −∂uQ0 =
ŷ′h(u)Y

2

ŷ3h(u)G0
+ f ′1(u)Y q + f ′2(u)

q2

2

γ̇ = ∂ΛP0 =
G3

0ν

(L0 + Λ)3
+ ∂qQ0 =

G3
0ν

(L0 + Λ)3
+ f1(u)Y + f2(u)q

Λ̇ = −∂γP0 = −∂γQ0 = 0

α̇ = −i∂βP0 = iα∂qQ0 = iα (f1(u)Y + f2(u)q)

β̇ = i∂αP0 = −iβ∂qQ0 = −iβ (f1(u)Y + f2(u)q)
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where q = Λ− (η0 + α)(ξ0 + β) + η0ξ0 and f1 and f2 are given in (5.77).
This system has a 2-dimensional homoclinic manifold to the periodic orbit Pη0,ξ0 given by

{uh = u, Yh = 0, γh = γ, Λh = 0, αh = 0, βh = 0, u ∈ R, γ ∈ T} (5.79)

whose dynamics is given by

(u̇, Ẏ , γ̇, Λ̇, α̇, β̇) =

(
1, 0,

G3
0ν

L3
0

, 0, 0, 0

)
.

(recall that we have scaled time as (5.73)).

5.7.2 Graph parameterizations of the perturbed invariant manifolds

We look for parameterizations of Wu(Pη0,ξ0) and W
s(Pη0+δη,ξ0+δξ) as perturbations of the same homo-

clinic manifold (5.79) as

(u, γ) 7→ (Y,Λ, α, β) = Z∗(u, γ) where Z∗(u, γ) =


Y ∗(u, γ)
Λ∗(u, γ)
α∗(u, γ)
β∗(u, γ)

 , ∗ = u, s. (5.80)

Note that in the unperturbed case, Z = 0 is a manifold homoclinic to Pη0,ξ0 .
The graph parameterizations (5.80) are not defined in a neighborhood of u = 0 since the symplectic

transformation (5.71) is not well defined at u = 0. For this reason, we shall use different parameterizations
depending on the domain.

Figure 5.9: The domains Du
κ,δ and Ds

κ,δ defined in (5.81).

First in Sections 5.7.3 and 5.7.4, we obtain graph parameterizations (5.80) in the domains Du,s
κ,δ × T,

where

Ds
κ,δ =

{
u ∈ C;|Imu| < tanβ1Reu+ 1/3− κG−3

0 , |Imu| > − tanβ2Reu+ 1/6− δ
}

Du
κ,δ = {u ∈ C;− u ∈ Ds

κ,δ},
(5.81)

which do not contain u = 0 (see Figure 5.9). These are the same domains that were used in [GMS16].
However, the intersection domain Ds

κ,δ ∩Du
κ,δ has empty intersection for real values of u and therefore,

to compare both manifolds one needs to extend the stable manifold to a domain which overlaps with
Du
κ,δ ∩ R. This is done in Section 5.7.5.

5.7.3 The invariance equation for the graph parameterizations

The graph parameterizations introduced in (5.80) satisfy the invariance equation

(∂uZ, ∂γZ) (u, γ) ·
(
∂Y P
∂ΛP

)
(u, γ, Z(u, γ)) =


−∂uP
−∂γP
−i∂βP
i∂αP

 (u, γ, Z(u, γ)) (5.82)
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Using vector notation Z = Z(x) is invariant if

DZ(x)Xx(x, Z(x)) = XZ(x, Z(x)) (5.83)

where Xx = (∂Y P, ∂ΛP)
⊤

and XZ = (−∂uP,−∂γP,−i∂βP, i∂αP)
⊤
.

Observe that X = X0 +X1 where Xi are the Hamiltonian vector fields associated to Pi. Of course,
when P1 = 0, Z = 0 satisfies the invariance equation (5.82). In fact,

X0
x(x, 0) = (∂Y P0, ∂ΛP0)

⊤
(x, 0) =

(
1, ν

G3
0

L3
0

)⊤

X0
Z(x, 0) = (−∂uP0,−∂γP0,−i∂βP0, i∂αP0)

⊤
(x, 0) = 0.

Proposition 5.7.1. The invariance equation (5.82) can be rewritten as

LZ = AZ + F (Z) with F (Z) = −G1(Z)∂uZ − G2(Z)∂γZ +Q(Z) (5.84)

where

• L is the operator

L(Z) = ∂uZ + ν
G3

0

L3
0

∂γZ. (5.85)

• The functions G1 and G2 are defined as

G1(u, γ, Y,Λ, α, β) =
Y

G0ŷ2h(u)
+ f1(u)q

G2(u, γ, Y,Λ, α, β) =
G3

0ν

(L0 + Λ)3
− G3

0ν

L3
0

+ f1(u)Y + f2(u)q + ∂ΛP1(u, γ,Λ, α, β)

(5.86)

where q = Λ− η0β − ξ0α− αβ

• The matrix A is

A(u) =

(
0 0

A(u) B(u)

)
(5.87)

with

A(u) = i

(
f1(u)η0 f2(u)η0
−f1(u)ξ0 −f2(u)ξ0

)
, B(u) = if2(u)

(
−η0ξ0 −η20
ξ20 η0ξ0

)
(5.88)

where f1 and f2 are defined in (5.77).

• The function Q is

Q1(u, γ, Y,Λ, α, β) =
ŷ′h(u)

G0ŷ3h(u)
Y 2 − f ′1(u)Y q − f ′2(u)

q2

2
− ∂P1

∂u
(u, γ,Λ, α, β)

Q2(u, γ, Y,Λ, α, β) = − ∂P1

∂γ
(u, γ,Λ, α, β)

Q3(u, γ, Y,Λ, α, β) = iα [f1(u)Y + f2(u) (Λ− 2η0β − αξ0 − αβ)]− i∂βP1(u, γ,Λ, α, β)

Q4(u, γ, Y,Λ, α, β) = − iβ [f1(u)Y + f2(u) (Λ− η0β − 2αξ0 − αβ)] + i∂αP1(u, γ,Λ, α, β).

(5.89)

The proof of this proposition is done in Appendix 5.A.
To solve the invariance equation, we first integrate the linear system LZ = A(u)Z, which, writing

Z = (ZY Λ, Zαβ), reads

LZY Λ = 0

LZαβ = A(u)ZY Λ + B(u)Zαβ
(5.90)

where A(u) and B(u) are given in (5.88). The proof of the following lemma is straighforward.
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Lemma 5.7.2. A fundamental matrix of the linear system (5.90) is

Φ∗
A(u) =


1 0 0 0
0 1 0 0

η0g1(u) η0g
∗
2(u) 1− η0ξ0g

∗
2(u) −η20g∗2(u)

−ξ0g1(u) −ξ0g∗2(u) ξ20g
∗
2(u) 1 + η0ξ0g

∗
2(u)

 , ∗ = u, s (5.91)

where g′1(u) = if1(u) and (g∗2)
′(u) = if2(u), ∗ = u, s. In particular we can choose the functions g∗2

satisfying that limReu→+∞ gs2(u) = 0 and limReu→−∞ gu2 (u) = 0.

We define two different inverse operators of L,

Gu(h)(u, γ) =
∫ 0

−∞
h(u+ s, γ + νG3

0L
−3
0 s)ds

Gs(h)(u, γ) =
∫ 0

+∞
h(u+ s, γ + νG3

0L
−3
0 s)ds.

(5.92)

We use them to prove the existence of the stable and unstable invariant manifolds. Here we only deal
with the stable manifold of Pη0+δη,ξ0+δξ and we take G = Gs and ΦA = ΦsA (the unstable manifold of
Pη0,ξ0 is obtained analogously from the particular case δη = δξ = 0).

We use this operator and the fundamental matrix ΦA to derive an integral equation equivalent to the
invariance equation (5.84).

Lemma 5.7.3. The parameterization Zs of W s(Pη0+δη,ξ0+δξ) is a fixed point of the operator

F(Z) = ΦAδz +ΦAG
(
Φ−1
A F (Z)

)
= ΦAδz + GA ◦ F (Z) (5.93)

where δz = (0, 0, δη, δξ)⊤ and

GA(h) =


G(h1)
G(h2)

G(h3) + η0G (f1G(h1)) + η0G (f2G(h2))− η0G (f2G (ξ0h3 + η0h4))
G(h4)− ξ0G (f1G(h1))− ξ0G (f2G(h2)) + ξ0G (f2G (ξ0h3 + η0h4)) .

 (5.94)

Proof. Using the fundamental matrix ΦA(u) and the variation of constants formula give the first equality
in (5.93). We point out that limu→+∞ ΦA(u)δz = δz. For the second one we write ΦAG

(
Φ−1
A F (Z)

)
in

components as

ΦAG
(
Φ−1
A F (Z1)

)
=



G(F1(Z1))
G(F2(Z1))
G(F3(Z1)) + η0g1G(F1(Z1)) + η0g2G(F2(Z1))
+η0G (−g1F1(Z1)− g2F2(Z1) + ξ0g2F3(Z1) + η0g2F4(Z1))
−η0g2G (ξ0F3(Z1) + η0F4(Z1))
G(F4(Z1))− ξ0g1G(F1(Z1))− ξ0g2G(F2(Z1))
−ξ0G (−g1F1(Z1)− g2F2(Z1)− ξ0g2F3(Z1)− η0g2F4(Z1))
+ξ0g2G (ξ0F3(Z1) + η0F4(Z1))


.

Then, it only suffices to note that the terms of the form giG(Fj)− G(giFj) can be rewritten as

giG(Fj)− G(giFj) = G(∂ugiG(Fj)) = G(fiG(Fj)).

Indeed, it is enough to apply the operator L to both sides.
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5.7.4 A fixed point of the operator F
To obtain a fixed point of the operator F in (5.93), for (u, γ) ∈ Ds

κ,δ×Tσ, we introduce the functional set-
ting we work with. We consider functions of the form Z = (Y,L, α, β)⊤. Take h any of these components
and define its Fourier series

h(u, γ) =
∑
q∈Z

h[q](u)eiqγ

Denote by f any of the Fourier coefficients, which are only functions of u, and take ρ > 0. We consider
the following norm, which captures the behavior as Reu → ∞ and also the behavior “close” to the
singularities of the unperturbed homoclinic (see Lemma 5.7.8),

∥f∥n,m,q = sup
Ds

κ,δ∩{Reu≥ρ}
|unf(u)|+ sup

Ds
κ,δ∩{Reu≤ρ}

∣∣∣∣(u− i

3

)m(
u+

i

3

)m
e−iqϕh(u)f(u)

∣∣∣∣ .
Now, for a fixed σ > 0, we define the norm for h as

∥h∥n,m =
∑
k∈Z

∥h[q]∥n,m,qe|q|σ.

We denote the corresponding Banach space by Yn,m. Note that such norms do not define necessarily
functions inDs

κ,δ×Tσ. Indeed, the Fourier series may be divergent for complex u due to the term e−iqϕh(u)

which grows exponentially as |q| → ∞. Still, since |e−iqϕh(u)| = 1 for real values of u, the Fourier series
define actual functions for real values of u.

To prove the existence of the invariant manifolds, we need to keep control of the first derivatives for
sequences of Fourier coefficients h ∈ Yn,m. The derivatives of sequences are defined in the natural way

∂uh(u, γ) =
∑
q∈Z

∂uh
[q](u)eiqγ , ∂γh(u, γ) =

∑
q∈Z

(iℓ)h[q](u)eiqγ . (5.95)

Then, we also consider the norm

ThUn,m = ∥h∥n,m + ∥∂uh∥n+1,m+1 +G3
0∥∂γh∥n+1,m+1

and denote by Xn,m the associated Banach space. Since each component of Z = (Y, L, α, β) has different
behavior, we define the weighted norms

∥Z∥n,m,vec = ∥Y ∥n+1,m+1 + ∥Λ∥n,m + ∥αeiϕh(u)∥n,m + ∥βe−iϕh(u)∥n,m
TZUn,m,vec = ∥Z∥n,m,vec + ∥∂uZ∥n+1,m+1,vec +G3

0∥∂γZ∥n+1,m+1,vec.
(5.96)

We denote by Yn,m,vec and Xn,m,vec the associated Banach spaces.
Since the Banach space Xn,m,vec is a space of formal Fourier series, the terms ∂zP1(u, γ, Z), z =

u, γ,Λ, α, β, which appear in Proposition 5.7.1 for Z = (Y, α,Λ, β) ∈ Xn,n,vec are understood formally by
the formal Taylor expansion7

∂zP1(u, γ, Z) =
∑
ℓ≥0

1

ℓ!

ℓ∑
i1=0

ℓ−i1∑
i2=0

ℓ!

i1!i2!(ℓ− i1 − i1)!

∂ℓ(∂zP1)

∂i1α∂i2β∂ℓ−i1−i2Λ
(u, γ, 0, 0, 0)αi1βi2Λℓ−i1−i2 . (5.97)

where z = u, γ,Λ, α, β. In Lemma 5.7.7 below we give conditions on Z which make this formal composition
meaningful.

Finally, we define
Z̃ = Z − δz where δz = (0, 0, δη, δξ)⊤

and introduce the operator
F̃(Z̃) = F(Z̃ + δz)− δz (5.98)

where F is defined in (5.93). It is clear that Z is a fixed point of F if and only if Z̃ is a fixed point of F̃ .

7Note that the function P1 in (5.84) does not depend on Y
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Theorem 5.7.4. Let δz = (0, 0, δη, δξ)⊤ and denote by Bρ the ball of radius ρ in X1/3,1/2,vec. There

exists b0 > 0 such that if G0 ≫ 1, |δη|, |δξ| ≲ G−3
0 and

|η0|G3/2
0 ≪ 1, (5.99)

then, the operator F̃ defined in (5.98) has the following properties.

1. F̃ : Bb0G−3
0 lnG0

→ Bb0G−3
0 lnG0

,

2. It is Lipschitz in Bb0G−3
0 lnG0

with Lipschitz constant Lip (F̃) ≲ G
−3/2
0 ln2G0.

Therefore, F̃ has a fixed point Z̃s in Bb0G−3
0 lnG0

. Denoting by Zs = δz + Z̃s and by F the operator

(5.93) we have that Zs −F(0) ∈ Bb0G−3
0 lnG0

and

TZs −F(0)U1/3,1/2,vec ≲ G
−9/2
0 ln3G0.

Moreover, Λ̃s satisfies

TΛ̃sU1/3,1 ≲ G
−9/2
0 . (5.100)

Next proposition gives estimates for the derivatives of the invariant manifolds parameterizations for
real values of (u, γ).

Proposition 5.7.5. The parameterization Zs = δz + Z̃s obtained in Theorem 5.7.4 can be extended
analytically to the domain

u ∈ Ds
κ,δ ∩ R, γ ∈ T, |η0| ≤

1

2
, |ξ0| ≤

1

2
. (5.101)

Moreover, in this domain the function Zs = (Y s,Λs, αs, βs) satisfies that

|Y s| ≤ G−3
0 , |Λs| ≤ CG−6

0 , |αs| ≤ G−3
0 , |βs| ≤ CG−3

0

and, for N ≥ 0, its derivatives satisfy

|DN (Zs −F(0))| ≤ C(N)G−6
0 , (5.102)

where DN denotes the differential of order N with respect to the variables (u, γ, η0, ξ0) and C(N) is a
constant which may depend on N but independent of G0.

Note that the condition (5.99) is not required in Proposition 5.7.5. Indeed this condition is needed to
extend the Fourier coefficients of Zs into points of Ds

κ,δ wich are G−3
0 -close to the singularities u = ±i/3.

The extension to the disk |η0| ≤ 1
2 , |ξ0| ≤

1
2 is needed to apply Cauchy estimates to obtain (5.102),

which is needed (jointly with the analogous estimate for the parameterization of the unstable manifold)
to obtain the estimates for the difference between the invariant manifolds given in (5.40).

We devote the rest of this section to proof Theorem 5.7.4. First in Section 5.7.4, we state several
lemmas which give properties of the norms and the functional setting. Then, in Section 5.7.4 we give the
fix point argument which proves Theorem 5.7.4. Finally, in Section 5.7.4, we explain how to adapt the
proof of Theorem 5.7.4 to prove Proposition 5.7.5.

Technical lemmas

We devote this section to state several lemmas which are needed to prove Theorem 5.7.4. The first one,
whose prove is straighforward, gives properties of the Banach spaces Yn,m.

Lemma 5.7.6. The spaces Yn,m satisfy the following properties:
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• If h ∈ Yn,m and g ∈ Yn′,m′ , then the formal product of Fourier series hg defined as usual by

(hg)[ℓ](v) =
∑
k∈Z

h[k]g[ℓ−k]

satisfies that hg ∈ Yn+n′,m+m′ and ∥hg∥n+n′,m+m′ ≤ ∥h∥n,m∥g∥n′,m′ .

• If h ∈ Yn,m, then h ∈ Yn−η,m with η > 0 and ∥h∥n−η,m ≤ K∥h∥n,m.

• If h ∈ Yn,m, then h ∈ Yn,m+η with η > 0 and ∥h∥n,m+η ≤ K∥h∥n,m.

• If h ∈ Yn,m, then h ∈ Yn,m−η with η > 0 and ∥h∥n,m−η ≤ KG3η
0 ∥h∥n,m.

We are going to find a fixed point of the operator (5.93) in a suitable space Xn,m,vec of formal Fourier
series. The previous lemma ensures that Xn,m,vec is an algebra with respect to the usual product, but we
need to ensure that the composition (5.97) is also well defined.

Lemma 5.7.7. Consider Z ∈ X1,1/2,vec satisfying ∥Z∥1,1/2,vec ≪ G
−3/2
0 . Then, the formal compositions

∂zP1(u, γ, Z(u, γ)), z = u, γ,Λ, α, β, defined in (5.97) satisfy

(∂uP1(·, ·, Z), ∂γP1(·, ·, Z), ∂βP1(·, ·, Z), ∂αP1(·, ·, Z)) ∈ X2,3/2,vec

and
∥(∂uP1(·, ·, Z), ∂γP1(·, ·, Z), ∂βP1(·, ·, Z), ∂αP1(·, ·, Z))∥2,3/2,vec ≲ G−3

0 .

Moreover, if one defines

∆P1(Z,Z
′) =(∂uP1(·, ·, Z), ∂γP1(·, ·, Z), ∂βP1(·, ·, Z), ∂αP1(·, ·, Z))

− (∂uP1(·, ·, Z ′), ∂γP1(·, ·, Z ′), ∂βP1(·, ·, Z ′), ∂αP1(·, ·, Z ′)),

then, for Z,Z ′ ∈ X1,1/2,vec,

∥∆P1(Z,Z
′)∥3,2,vec ≲ G−3

0 ∥Z − Z ′∥1,1/2,vec.

The proof of this lemma is a straighforward computation.
We also need a precise knowledge of the behavior of the paramerization of the unperturbed homoclinic

introduced in Lemma 5.4.1 as u→ ±∞ and close to its complex singularities. They are given in the next
two lemmas.

Lemma 5.7.8. The homoclinic (5.24) with initial conditions (5.29) behaves as follows:

• As |u| → +∞,

r̂h(u) ∼ u2/3, ŷh(u) ∼ u−1/3 and ϕh(u)− π ∼ u−1/3 (mod 2π).

• As u −→ ±i/3,

r̂h(u) ∼
(
u∓ i

3

)1/2

, ŷh(u) ∼
(
u∓ i

3

)−1/2

, eiϕh(u) ∼

(
u+ i

3

u− i
3

)1/2

.

The proof of this lemma is given in [GMS16]. From Lemma 5.7.8, one can derive properties for the
functions f1 and f2 introduced in (5.77).

Lemma 5.7.9. The functions f1 and f2 introduced in (5.77) satisfy f1 ∈ X2/3,0 and f2 ∈ X4/3,1/2.
Moreover,

Tf1U2/3,0 ≲ G−1
0 and Tf2U4/3,1/2 ≲ G−1

0 .

Finally we give properties of the operators introduced in (5.92) and (5.94).
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Lemma 5.7.10. The operator G = Gs in (5.92), when considered acting on the spaces Xn,m and Yn,m
has the following properties.

1. For any n > 1 and m ≥ 1, G : Yn,m −→ Yn−1,m−1 is well defined and linear continuous. Moreover
L ◦ G = Id.

2. If h ∈ Yn,m for some n > 1 and m > 1, G(h) ∈ Yn−1,m−1 and

∥G (h) ∥n−1,m−1 ≲ ∥h∥n,m.

3. If h ∈ Yn,1 for some n > 1, G (h) ∈ Yn−1,0 and

∥G (h) ∥n−1,0 ≲ lnG0∥h∥n,1

4. If h ∈ Yn,m for some n ≥ 1 and m ≥ 1 satisfies ⟨h⟩γ = 0, G(h) ∈ Yn,m and

∥G (h) ∥n,m ≲ G−3
0 ∥h∥n,m.

5. If h ∈ Yn,m for some n ≥ 1 and m ≥ 1, ∂uG(h), ∂γG(h) ∈ Yn,m and

∥∂uG (h) ∥n,m ≲ ∥h∥n,m
∥∂γG (h) ∥n,m ≲ G−3

0 ∥h∥n,m.

6. From the previous statements, one can conclude that if h ∈ Yn,m for some n > 1 and m ≥ 1, then
G(h) ∈ Xn−1,m−1 and

TG(h)Un−1,m−1 ≲ ∥h∥n,m if m > 1

TG(h)Un−1,m−1 ≲ lnG0∥h∥n,m if m = 1.

Additionally,

(7) if h ∈ Yn,m for n > 1, m > 3/2 then

∥e±iϕhG(e∓iϕhh)∥n−1,m−1 ≲ ∥h∥n,m,

(8) if h ∈ Yn,3/2 for n > 1, then

∥e±iϕhG(e∓iϕhh)∥n−1,1/2 ≲ lnG0∥h∥n,3/2.

Claims 1 to 6 in this lemma are proved for m > 1 in [GMS16]. The case m = 1 can be proven
analogously. Claims 7 and 8 can be deduced analogously taking into account the expression of e∓iϕh

given in Lemma 5.7.8
From this result we can deduce the following lemma, which is a direct consequence of Lemmas 5.7.9

and 5.7.10.

Lemma 5.7.11. Consider h ∈ Yn,m,vec for n > 1 and m ≥ 3/2. Then, the operator GA introduced in
(5.94) satisfies the following:

• If m > 3/2, GA (h) ∈ Xn−1,m−1,vec and TGA (h)Un−1,m−1,vec ≲ ∥h∥n,m,vec,

• If m = 3/2, GA (h) ∈ Xn−1,1/2,vec and TGA (h)Un−1,1/2,vec ≲ lnG0∥h∥n,3/2,vec.
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The fixed point argument: Proof of Theorem 5.7.4

To prove the existence of a fixed point of the operator F̃ defined in (5.98), we start by analyzing F̃(0) =
(ΦA − Id)δz + GA ◦ F (δz) (see (5.84) and (5.94)) where δz = (0, 0, δη, δξ)

⊤.
Since F has several terms, we split F (Z) = −G1(Z)∂uZ − G2(Z)∂γZ + Q(Z) (see (5.84)) as F =

F 1 + F 2 + F 3 where

F 1(Z) = −G1(Z)∂uZ − G2(Z)∂γZ (5.103)

F 2(Z) =


ŷ′h(u)

G0ŷ3h(u)
Y 2 − f ′1(u)Y q − f ′2(u)

q2

2

0
iα (f1(u)Y + f2(u)Λ− 2f2(u)η0β − f2(u)αξ0 − f2(u)αβ)
−iβ (f1(u)Y + f2(u)Λ− f2(u)η0β − 2f2(u)αξ0 − f2(u)αβ)

 (5.104)

F 3(Z) =


−∂uP1(u, γ,Λ, α, β)
−∂γP1(u, γ,Λ, α, β)
−i∂βP1(u, γ,Λ, α, β)
i∂αP1(u, γ,Λ, α, β)

 (5.105)

and q = Λ− η0β − ξ0α− αβ.
First we notice that F 1(δz) = 0. Denoting by |δz| = |δη| + |δξ| it is straightforward to check, using

Lemma 5.7.9, that ∥∥F 2(δz)
∥∥
4/3,1/2

≲ G−1
0 |δz|2.

On the other hand, by the bounds of P1 in Lemma 5.B.1 (see the estimates (5.273)) and the estimates
for r̂h and ŷh in Lemma 5.7.8, one has that F 3(δz) ∈ Y2,3/2,vec and∥∥F 3(δz)

∥∥
2,3/2,vec

≲ G−3
0 .

Then, applying Lemma 5.7.11 one obtains F̃(0) ∈ X1/3,1/2,vec and that there exists b0 > 0 such that

TF̃(0)U1/3,1/2,vec ≤
b0
4
(G−2

0 + |δz|+ |δz|2)G−1
0 lnG0 ≤ b0

2
G−3

0 lnG0. (5.106)

where we have used that
∥(ΦA − Id)δz∥1/3,1/2,vec ≲ G−1

0 |δz|

and the hypothesis |δz| ≲ G−3
0 .

Next step is to prove that F̃ is contractive in the ball B(b0G
−3
0 lnG0) ⊂ X1/3,1/2,vec. For that we

compute separately the Lipschitz constant of each of the terms F i(Z) for i = 1, 2, 3.

Notation 5.7.12. In the statements of the forthcoming lemmas, given an element Z̃ ∈ X1/3,1/2 we write

Z = Z̃ + δz.

We also assume without mentioning that |δη|, |δξ| ≲ G−3
0 and η0G

3/2
0 ≪ 1.

Lemma 5.7.13. Consider Z̃, Z̃ ′ ∈ X1/3,1/2,vec with TZ̃U1/3,1/2,vec,TZ̃ ′U1/3,1/2,vec ≲ G−3
0 lnG0. Then,

the functions G1 and G2 introduced in (5.86) satisfy that

∥G1(Z)∥2/3,1/2, ∥G1(Z
′)∥2/3,1/2 ≲ G−4

0 lnG0

∥G2(Z)∥1/3,1/2, ∥G2(Z
′)∥1/3,1/2 ≲ lnG0

and

∥G1(Z)− G1(Z
′)∥2/3,1/2 ≲ G−1

0 TZ̃ − Z̃ ′U1/3,1/2,vec

∥G2(Z)− G2(Z
′)∥1/3,1/2 ≲ G3

0TZ̃ − Z̃ ′U1/3,1/2,vec.
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This lemma is a direct consequence of the definition of G1 and G2 in (5.86) and Lemmas 5.7.8 and
5.7.6. We use this lemma to compute the Lipschitz constant of F 1.

Lemma 5.7.14. Consider Z̃, Z̃ ′ ∈ X1/3,1/2,vec with TZ̃U1/3,1/2,vec,TZ̃ ′U1/3,1/2,vec ≤ b0G
−3
0 lnG0. Then,

the function F 1 introduced in (5.103) satisfies

∥F 1(Z)∥5/3,2,vec ≲ G−6
0 ln2G0

∥F 1(Z)− F 1(Z ′)∥5/3,2,vec ≲ G−3
0 lnG0TZ̃ − Z̃ ′U1/3,1/2,vec.

Proof. The first part plainly follows from the definition of F 1 and the estimates in Lemma 5.7.13. We
now obtain the result for the difference. The second component can be written as

F 1
2 (Z)− F 1

2 (Z
′) = (∂uΛ− ∂uΛ

′)G1(Z) + ∂uΛ
′ (G1(Z)− G1(Z

′))

(∂γΛ− ∂γΛ
′)G2(Z) + ∂γΛ

′ (G2(Z)− G2(Z
′)) .

Then, the estimate for the second component is a consequence of Lemmas 5.7.6 and 5.7.13 and the fact that
TZ̃U1/3,1/2,vec,TZ̃ ′U1/3,1/2,vec ≤ b0G

−3
0 lnG0. The other components can be estimated analogously.

Lemma 5.7.15. Consider Z̃, Z̃ ′ ∈ X1/3,1/2,vec with TZ̃U1/3,1/2,vec, TZ̃ ′U1/3,1/2,vec ≤ b0G
−3
0 lnG0. Then,

the function F 2 introduced in (5.104) satisfies

∥F 2(Z)∥4/3,2,vec ≲ G−7
0 ln2G0

∥F 2(Z)− F 2(Z ′)∥4/3,2,vec ≲ G−4
0 lnG0TZ̃ − Z̃ ′U1/3,1/2,vec.

Proof. We recall that F 2 was defined in (5.104). For the first component F 2
1 we obtain

∥F 2
1 (Z)∥7/3,3 ≲ G−1

0

(
∥Y ∥24/3,3/2 + ∥Y ∥2/3,5/2∥q∥0,1/2 + ∥q∥20,1/2

)
≲ G−7

0 ln2G0,

where we have used that ∥q∥0,1/2 ≲ (|δz|+ ∥Z̃∥0,1/2) ≲ G−3
0 lnG0. On the other hand, for the difference∥∥F 2

1 (Z)− F 2
1 (Z

′)
∥∥
7/3,3

≲ G−4
0 lnG0∥Z̃ − Z̃ ′∥1/3,1/2,vec.

Similar computations lead to the following estimate for the third component∥∥F 2
3 (Z)

∥∥
4/3,2

≲ G−7
0 lnG0

and to the bound for the difference∥∥F 2
3 (Z)− F 2

3 (Z
′)
∥∥
4/3,2

≲ G−4
0 lnG0∥Z̃ − Z̃ ′∥1/3,1/2,vec.

Proceeding analogously one obtains the same estimate for F 2
4 . Since F

2
2 = 0, the claim follows.

Lemma 5.7.16. Consider Z̃, Z̃ ′ ∈ X1/3,1/2,vec with TZ̃U1/3,1/2,vec,TZ̃ ′U1/3,1/2,vec ≤ b0G
−3
0 lnG0. Then,

the function F 3 introduced in (5.105) satisfies

∥F 3(Z)− F 3(0)∥2,2,vec ≲ G−6
0 ln2G0

∥F 3(Z)− F 3(Z ′)∥2,2,vec ≲ G−3
0 TZ̃ − Z̃ ′U1/3,1/2,vec.

Proof. To prove the first statement, one can write

F 3(Z)− F 3(0) = (F 3(δz + Z̃)− F 3(δz)) + (F 3(δz)− F 3(0))

For the first term in the right hand side, it is enough to apply Lemma 5.7.7. To estimate the second
term, one can use the mean value theorem and the estimates for the derivatives of P1 given in Lemma
5.B.1 (and Cauchy estimates). The second statement in Lemma 5.7.16 is a direct consequence of Lemma
5.7.7.
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Now we are ready to prove Theorem 5.7.4.

Proof of Theorem 5.7.4. Lemmas 5.7.14, 5.7.15 and 5.7.16 imply that

∥F (Z)− F (Z ′)∥4/3,2,vec ≲ G−3
0 lnG0TZ̃ − Z̃ ′U1/3,1/2,vec.

for Z̃, Z̃ ′ ∈ B(b0G
−3
0 ) ⊂ X1/3,1/2,vec. Therefore, applying Lemma 5.7.11, one has

TF̃(Z̃)− F̃(Z̃ ′)U1/3,1,vec ≲ G−3
0 ln2G0TZ̃ − Z̃ ′U1/3,1/2,vec, (5.107)

which implies

TF̃(Z̃)− F̃(Z̃ ′)U1/3,1/2,vec ≲ G
−3/2
0 ln2G0TZ̃ − Z̃ ′U1/3,1/2,vec.

Thus, for G0 large enough, F̃ is contractive from B(b0G
−3
0 lnG0) ⊂ X1/3,1/2,vec to itself with Lipschitz

constant of size Lip ≲ G
−3/2
0 ln2G0 and it has a unique fixed point Z̃s. Denote now by Zs = δz + Z̃s.

By definition of the operator F we have that

Zs −F(0) = GA(F (Zs)− F (0)) = GAF1(Z
s) + GAF2(Z

s) + GA(F3(Z
s)− F3(0))

so it follows from Lemmas 5.7.14, 5.7.15 and 5.7.16 that Zs −F(0) ∈ X1/3,1/2,vec ⊂ Y1/3,1/2,vec and

∥Zs −F(0)∥1/3,1/2,vec ≲G
3/2
0 lnG0∥F (Zs)− F (0)∥1/3,1,vec

≲G3/2
0 TGAF1(Z

s) + GAF2(Z
s) + GA(F3(Z

s)− F3(0))U1/3,1,vec

≲G3/2
0 (G−6

0 ln2G0 +G−7
0 ln2G0 +G−6

0 ln3G0) ≲ G
−9/2
0 ln3G0.

Now it only remains to obtain the improved estimates for Λ̃s. Since it is a fixed point of F̃ ,

Λ̃s = F̃2(0) +
(
F̃2(Z̃

s)− F̃2(0)
)
.

For the second term, we use (5.107) to obtain

TF̃2(Z̃
s)− F̃2(0)U1/3,1 ≲ G−3

0 ln2G0TZ̃sU1/3,1/2 ≲ G−6
0 ln3G0.

Using (5.93), we write the first term as F̃2(0) = G(F2(δz)) where F2(δz) = −∂γP1(u, γ, 0, δη, δξ). Since
⟨F2(δz)⟩γ = 0 and satisfies ∥F2(δz)∥2,3/2 ≲ G−3

0 (see Lemma 5.B.1), one can apply item 4 of Lemma
5.7.10 one obtains

TF̃2(0)U1,1 ≲ G
3/2
0 TF̃2(0)U2,3/2 ≲ G

−3/2
0 ∥F2(δz)∥2,3/2 ≲ G

−9/2
0 .

Proof of Proposition 5.7.5

The proof of Theorem 5.7.4 can be carried out in the same way in the smaller domain

D̃u =
{
u ∈ C; |Imu| < − tanβ1Re v + 1/4, |Imu| > tanβ2Reu+ 1/6− δ

}
where all the points are at a uniform distance from the singularities u = ±i/3. In this case the perturbing
potential P1 can be easily estimated of order G−3

0 with the norm (5.96) with m = 0 for any (η0, ξ0)
satisfying |η0|, |ξ0| ≤ 1/2. That is, without imposing condition (5.99). Note that now the weight at the

singularities u = ±i/3, measured by m, is harmless since the points D̃u are O(1)-far from them.
This gives the estimates for the invariant manifolds. One can obtain the improved estimate for Λ and

the estimate of the Lipschitz constant as has been done in the proof of Theorem 5.7.4. To obtain the
estimates for the derivatives it is enough to apply Cauchy estimates. Note that in all the variables one
can apply these estimates in disks of radius independent of G0.
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5.7.5 Extension of the parametrization of the unstable manifold by the flow

Theorem 5.7.4 gives a graph parameterization Zs of the form (5.80) of W s(Pη0+δη,ξ0+δξ) as a formal
Fourier series with analytic Fourier coefficients defined in the domain Ds

κ,δ × T.
To compute the difference betweent the stable and unstable manifold, it is necessary to have the

parameterizations of both manifolds defined in a common (real) domain. However, since ŷh(0) = 0, it
is not possible to extend these parameterizations to a common domain containing a real interval (see
(5.71)). Therefore, to compare them, we extend the stable manifold using a different parametrization.
We proceed analogously as in [GMS16].

Given the paramerization Zs(u, γ) = (u, Y (u, γ), γ,Λ(u, γ), α(u, γ), β(u, γ)), the first step is to look
for a change of variables of the form

Id + g : (v, ξ) 7→ (u, γ) = (v + g1(v, ξ), ξ + g2(v, ξ)), (5.108)

such that Zs = Zs ◦ (Id + g) satisfies the invariance equation

Φt (Z
s(v, ξ)) = Zs

(
v + t, ξ +

νG3
0

L3
0

t

)
, (5.109)

where Φt is the flow associated to the Hamiltonian system (5.74). Note that the composition is understood
as formal composition of formal Fourier series

h ◦ (Id + g)(v, ξ) = h(v + g1(v, ξ), ξ + g2(v, ξ)) =

∞∑
m=0

1

m!

m∑
n=0

(
m

n

)
∂m−n
v ∂nξ h(v, ξ)g

m−n
1 (v, ξ)gn2 (v, ξ).

Denoting by X the associated vector field to Hamiltonian (5.74) equation (5.109) is equivalent to

L(Zs) = X ◦ Zs, (5.110)

where the operator L is defined in (5.85).
We want Zs to be defined in the domain Dflow

κ,δ × T, where

Dflow
κ,δ =

{
v ∈ C; |Im v| < tanβ1Re v + 1/3− κG−3

0 , |Im v| < − tanβ2Re v + 1/6 + δ
}
, (5.111)

which can be seen in Figure 5.12.
We will relate the two types of the parameterization in the overlapping domain

Dovr
κ,δ = Dflow

κ,δ ∩Ds
κ,δ. (5.112)

Proceeding as in [GMS16], one can obtain in this domain the change of coordinates (5.108). Abusing
notation, we use the Banach space Yn,m introduced in Section 5.7.4. Recall that the index n refers to
the decay at infinity and therefore it does not give any information in the compact domain Dovr

κ,δ and
therefore we can just take n = 0.

Lemma 5.7.17. Let δ, κ and σ be the constants fixed in the statement of Theorem 5.7.4. Let σ1 < σ, δ1 <
δ and κ1 > κ such that (log κ1 − log κ)/2 < σ1 − σ be fixed and consider the domain Dovr

κ1,δ1
×Tσ1

. Then,
for G0 big enough, there exists a (not necessarily convergent) Fourier series g = (g1, g2) ∈ Y0,0 × Y0,0

satisfying

∥g1∥0,0 ≤ b2G
−4
0 , ∥g2∥0,0 ≤ b2G

−3/2
0 ,

where b2 > 0 is a constant independent of G0, such that Zs = Zs ◦ (Id + g), satisfies (5.110).

Once we have obtained a parameterization Zs which satisfies (5.110) in the overlapping domain Dovr
κ,δ

(see (5.112)), next step is to extend this parameterization to the domain Dflow
κ,δ in (5.111). This extension
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is done through a fixed point argument and follows the same lines as the flow extension of [GMS16]
(Section 5.5.2). We write the parameterization Zs as Zs(v, ξ) = Zs0(v, ξ) + Zs1(v, ξ) with

Zs0 =


v
0
ξ
0
0
0

 , Zs1 =


G−1

0 U(v, ξ)
Y(v, ξ)
G3

0Γ(v, ξ)
Λ(v, ξ)
A(v, ξ)
B(v, ξ)

 . (5.113)

The G0–factors in the u and γ component is just to normalize the sizes. In the statement of the following
lemma, abusing notation, we also use the Banach space Yn,m introduced in Section 5.7.4 referred to the
domain Dflow

κ,δ . Since the domain Dflow
κ,δ is compact and all points are at a distance independent of G0

from the singularities v = ±i/3, we can just take n = m = 0 (all norms ∥ · ∥n,m are equivalent).

Lemma 5.7.18. Let κ1 , δ1, σ1 be the constants considered in Lemma 5.7.17. Then, there exists a
solution of equation (5.110) of the form (5.113) (as a formal Fourier series) for (v, ξ) ∈ Dflow

κ1,δ1
× Tσ1

,
whose Fourier coefficients are analytic continuation of those obtained in Lemma 5.7.17. Moreover, they
satisfy Zs1 ∈ Y6

0,0 and

∥U∥0,0, ∥Y∥0,0, ∥Γ∥0,0, ∥Λ∥0,0, ∥A∥0,0, ∥B∥0,0 ≲ G−3
0 .

The proof of this lemma is analogous to the one of Proposition 5.20 in [GMS16]. This is a standard
fixed point argument in the sense that the domain Dflow

κ,δ is “far” from the singularities v = ±i/3 (the
distance to these points is independent of G0). The only issue that one has to keep in mind that we are
dealing with formal Fourier series.

Once we have obtained this flow parameterizations in Dflow
κ,δ , the last step is to switch back to the

graph parameterization (5.80). We want the graph parameterization to be defined in the following domain
where we can compare the graph parameterizations of the stable and unstable invariant manifolds.

Dκ,δ = {v ∈ C; |Im v| < tanβ1Re v + 1/3− κG−3
0 , |Im v| < − tanβ1Re v + 1/3− κG−3

0 ,

|Im v| > tanβ2Re v + 1/6− δ} ,
(5.114)

where κ ∈ (0, 1/3), δ ∈ (0, 1/12) and β1, β2 ∈ (0, π/2) are fixed independently of G0 (see Figure 5.10).
Therefore, this domain is not empty provided G0 > 1.

Figure 5.10: The domains Dκ,δ defined in (5.114).

Note that Theorem 5.7.4 gives already the graph parameterization Zs in the domain Dκ,δ ∩ Ds
κ,δ.

Now it only remains to show that they are also defined in the domain

D̃κ,δ =
{
v ∈ C; |Im v| < tanβ1Re v + 1/3− κG−3

0 , |Im v| > tanβ2Re v + 1/6− δ

|Im v| < − tanβ2Re v + 1/6 + δ
} (5.115)
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(see Figure 5.11).

Figure 5.11: The domain D̃κ,δ defined in (5.115).

Indeed, it is easy to see that
Dκ,δ ⊂ Ds

κ,δ ∪ D̃κ,δ.

We look for a change of coordinates which transforms the flow–parameterization obtained in Lemma
5.7.18 to the graph parameterization (5.80). Note that this change is just the inverse of

u = v +G−1
0 U(v, ξ)

γ = ξ +G3
0Γ(v, ξ)

where U and Γ are defined in (5.113).

Lemma 5.7.19. Consider the constants κ1, δ1 and σ1 considered in Lemma 5.7.18 and any κ2 > κ1,
δ2 > δ1 and σ2 < σ1. Then,

• There exists a function h = (h1, h2) ∈ Y0,0 × Y0,0 with

∥h1∥0,0 ≤ b4µG
−4
0 , ∥h2∥0,0 ≤ b4µG

−1
0 .

such that the change of coordinates Id + h is the inverse of the restriction of the change given by
Lemma 5.7.17 to the domain Ds

κ1,δ1
∩ D̃κ2,δ2 .

• Moreover,
Zs = Zs ◦ (Id + h)

defines a formal Fourier series which gives a parameterization of the stable invariant manifold as a
graph, that is of the form (5.80). Then, in the domain Dκ2,δ2 × Tσ2

this parameterization satisfies

∥Y ∥0,3/2 ≲ G−3
0 lnG0, ∥Λ∥0,3/2 ≲ G

−9/2
0 ,

∥αeiϕ(u)∥0,1/2 ≲ G−3
0 lnG0, ∥βe−iϕ(u)∥0,1/2 ≲ G−3

0 lnG0.
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Figure 5.12: The domain Dflow
κ,δ defined in (5.115).

Taking δz = 0 and proceeding analgously one obtains analogous results to Theorems 5.7.4 and Proposi-
tion 5.7.5 forWu(Pη0,ξ0). For the sake of clarity, we sum up the properties of the graph parameterizations
of Wu(Pη0,ξ0) and W

s(Pη0+δη,ξ0+δξ) in the following theorem.

Theorem 5.7.20. Let δz = (0, 0, δη, δξ). Then, if G0 ≫ 1, |δη|, |δξ| ≲ G−3
0 and

|η0|G3/2
0 ≪ 1,

the invariant manifold Wu(Pη0,ξ0) and W
s(Pη0+δη,ξ0+δξ) admit graph parameterizations Zu,s : Dκ2,δ2 →

C4 of the form (5.80) which satisfy

∥Zs −Fs(0)∥0,1/2, ∥Zu −Fu(0)∥0,1/2 ≲ G
−9/2
0 ln3G0

where Fs is the operator defined in (5.93) and Fu is defined analogously but taking δz = 0. In particular,
the estimates

∥Y ∗∥0,3/2 ≲ G−3
0 lnG0, ∥Λ∗∥0,1 ≲ G

−9/2
0 ,

∥α∗eiϕ(u)∥0,1/2 ≲ G−3
0 lnG0, ∥β∗e−iϕ(u)∥0,1/2 ≲ G−3

0 lnG0.

hold for ∗ = u, s.
Moreover these parameterizations satisfy, that for u ∈ Dκ2,δ2 ∩ R and γ ∈ T,

|Y s| ≤ G−3
0 , |Λs| ≤ CG−6

0 , |αs| ≤ G−3
0 , |βs| ≤ CG−3

0

and for N ≥ 0,
|DN (Zs −Fs(0))|, |DN (Zu −Fu(0))| ≲ C(N)G−6

0 ,

where DN denotes the differential of order N with respect to the variables (u, γ, η0, ξ0) and C(N) is a
constant which may depend on N but independent of G0.

5.8 Proof of Theorem 5.4.3: The difference between the invari-
ant manifolds of infinity

This section is devoted to prove Theorem 5.4.3. Once we have obtained the parametrization of the in-
variant manifolds (as formal Fourier series) up to points O(G−3

0 ) close to the singularities u = ±i/3 in
Theorem 5.7.20, the next step is to study their difference. We fix (L0, η0, ξ0) and consider the param-
eterization Zu of the unstable manifold of the periodic orbit Pη0,ξ0 and the parameterization Zs of the
stable manifold of the periodic orbit Pη0+δη,ξ0+δξ.
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We then define the difference vector ∆ = ∆(u, γ), which is 2π-periodic in γ, as

∆ = (Y u − Y s,Λu − Λs, αu − αs, βu − βs)
⊤
. (5.116)

The Fourier coefficients of ∆ are defined in the domain Dκ,δ introduced in (5.114).
Using the equations for (Y ∗,Λ∗, α∗, β∗) for ∗ = u, s in (5.84), we have that ∆ satisfies an equation of

the form
L̃∆ = A∆+B∆+R∆, (5.117)

where L̃ is the linear operator
L̃ = L+ G1(Z

u)∂u + G2(Z
u)∂γ , (5.118)

G1,G2 are the operators defined in (5.86), A is the matrix introduced in (5.87) and B and R are matrices
which depend on Zu and Zs and its derivatives and are expected to be small compared to A. The matrix
B has only one non-zero term,

B21 = −∂uΛ
s

G0ŷ2h
+ f1(u)∂γΛ

s

Bij = 0 otherwise.

(5.119)

where f1 is the function introduced in (5.77). The matrix R is defined as follows

R(u, γ) =

∫ 1

0

DZQ (u, γ, sZu(u, γ) + (1− s)Zs(u, γ)) ds

− ∂uZ
s(u, γ)

∫ 1

0

DZG1 (u, γ, sZ
u(u, γ) + (1− s)Zs(u, γ)) ds

− ∂γZ
s(u, γ)

∫ 1

0

DZG2 (u, γ, sZ
u(u, γ) + (1− s)Zs(u, γ)) ds−B,

(5.120)

where Q is the function introduced in (5.89). Note that R satisfies

R21 = 0.

The reason for defining the matrix B and not putting all terms together in R will be clear later. Roughly
speaking, the first order of equation (5.117) is L∆ = A∆. To give an heuristic idea of the proof let us
assume that ∆ is a solution of this equation instead of (5.117). Then, one can easily check that ∆ must
be of the form

∆ = ΦAC

where ΦA is the fundamental matrix introduced in (5.91) (actually a suitable modification of it) and
C(u, γ) is a vector whose γ– Fourier coefficients are defined (and bounded) in Dκ,δ and satisfying LC = 0.
Then, Lemma 5.8.14) will show that, for real values of the parameters, the function C minus its average
with respect to γ is exponentially small.

Now, ∆ is a solution of (5.117) instead of L∆ = A∆. Thus, to apply Lemma 5.8.14 we adapt
these ideas. We do this in several steps. First, in Section 5.8.1 we describe the functional setting. In
Section 5.8.2 we perform a symplectic change of coordinates to straighten the operator in the left hand
side of (5.117). Then, in Section 5.8.3, we look for a fundamental solution of the transformed linear
partial differential equation. Finally, in Section 5.8.4, we deduce the asymptotic formula of the distance
between the invariant manifolds and in Section 5.8.5 we obtain more refined estimates for the average of
the difference of the Λ component.

5.8.1 Weighted Fourier norms and Banach spaces

We define the Banach spaces for Fourier series with coefficients defined in Dκ,δ. First, we define the
Banach spaces for the Fourier coefficients as

Pm,q = {h : Dκ,δ → C : analytic, ∥h∥m,q <∞} ,
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where
∥h∥m,q = sup

u∈Dκ,δ

∣∣∣|u− i/3|m|u+ i/3|meiqϕh(u)h(u)
∣∣∣ .

for any m, q ∈ R. Note that these definitions are the same as in Section 5.7.4 but for functions defined
in Dκ,δ instead of Ds

κ,δ. Now, for σ > 0, we define the Banach space for Fourier series

Qm,σ =

{
h(u, γ) =

∑
ℓ∈Z

h[ℓ](u)eiℓγ : h[ℓ] ∈ Pm,ℓ, ∥h∥m,σ <∞

}
,

where
∥h∥m,σ =

∑
ℓ∈Z

∥∥∥h[ℓ]∥∥∥
m,ℓ

e|ℓ|σ.

The Banach space Qm,σ satisfies the algebra properties stated in Lemma 5.7.6 (with n = 0). From now
on in this section, we will refer to this lemma understanding the properties stated in it as properties
referred to elements of Qm,σ instead of elements of Ym,0.

Now, we need to define vector and matrix norms associated to the just introduced norms. Those
norms inherit the structure of the norms considered in Section 5.7. We consider

Qm,σ,vec = Qm+1,σ ×Q3
m,σ

with the norm
∥Z∥m,σ,vec = ∥Y ∥m+1,σ + ∥Λ∥m,σ + ∥eiϕhα∥m,σ + ∥|e−iϕhβ∥m,σ. (5.121)

Analogously, we consider the Banach space Qν,κ,δ,σ,mat of 4× 4 matrices with the associated norm

∥Ψ∥m,σ,mat =

max

{
∥Ψ11∥m,σ + ∥Ψ21∥m−1,σ + ∥eiϕh(u)Ψ31∥m−1,σ + ∥e−iϕh(u)Ψ41∥m−1,σ,

∥Ψ12∥m+1,σ + ∥Ψ22∥m,σ + ∥eiϕh(u)Ψ32∥m,σ + ∥e−iϕh(u)Ψ42∥m,σ,
∥e−iϕh(u)Ψ13∥m+1,σ + ∥e−iϕh(u)Ψ23∥m,σ + ∥Ψ33∥m,σ + ∥e−2iϕh(u)Ψ43∥m,σ,

∥eiϕh(u)Ψ14∥m+1,σ + ∥eiϕh(u)Ψ24∥m,σ + ∥e2iϕh(u)Ψ34∥m,σ + ∥Ψ44∥m,σ

}
.

(5.122)

Lemma 5.8.1. The norms ∥ ·∥m,σ,vec and ∥ ·∥m,σ,mat introduced in (5.121) and (5.122) respectively have
the following properties

• Consider Z ∈ Qν,σ,vec and a matrix Ψ ∈ Qη,σ,mat. Then, ΨZ ∈ Qν+η,σ,vec and

∥ΨZ∥ν+η,σ,vec ≲ ∥Ψ∥η,σ,mat∥Z∥ν,σ,vec.

• Consider matrices Ψ ∈ Qη,σ,mat and Ψ′ ∈ Qν,σ,mat. Then, ΨΨ′ ∈ Qν+η,σ,mat and

∥ΨΨ′∥ν+η,σ,mat ≲ ∥Ψ∥η,σ,mat∥Ψ′∥ν,σ,mat.

In the present section we will need to take derivatives of and compose Fourier series.

Lemma 5.8.2. Fix constants σ′ < σ, κ′ > κ and δ′ > δ and take h ∈ Qm,σ on the domain Dκ,δ. Its
derivatives, as defined in (5.95), satisfy the following in Dκ′,δ′ .

• ∂nv h ∈ Qm,σ′ and

∥∂nv h∥m,σ′ ≤
(
κ′

κ

)m
G3n

0 n!

(κ′ − κ)n
∥h∥m,σ.
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• ∂ξh ∈ Qm,σ′ and

∥∂ξh∥m,σ′ ≤ 1

σ − σ′ ∥h∥m,σ.

Lemma 5.8.3. We define the formal composition of formal Fourier series

h(v + g(v, ξ), ξ) =

∞∑
n=0

1

n!
∂nv h(v, ξ)g

n(v, ξ).

Fix constants σ′ < σ, κ′ > κ and δ′ > δ. Let κ′ − κ > η > 0. Then,

• If h ∈ Qm,σ in Dκ,δ, g ∈ Q0,σ′ in Dκ′,δ′ and ∥g∥0,σ′ ≤ ηG−3
0 we have that X(v, ξ) = h(v+g(v, ξ), ξ)

satisfies X ∈ Ym,σ′ in Dκ′,δ′ and

∥X∥m,σ′ ≤
(
κ′

κ

)m(
1− η

κ′ − κ

)−1

∥h∥m,σ.

Moreover, if ∥g1∥0,σ′ , ∥g2∥0,σ′ ≤ ηG−3
0 in Dκ′,δ′ , then Y (v, ξ) = h(v+ g2(v, ξ), ξ)−h(v+ g1(v, ξ), ξ)

satisfies

∥Y ∥m,σ′ ≤ G3
0

κ′ − κ

(
κ′

κ

)m(
1− η

κ′ − κ

)−2

∥h∥m,σ∥g2 − g1∥0,σ.

• If ∂vh ∈ Qm,σ in Dκ,δ, g1, g2 ∈ Q0,σ′ in Dκ′,δ′ and ∥g1∥0,σ′ , ∥g2∥0,σ′ ≤ ηG−3
0 we have that Y ∈ Ym,σ′

in Dκ′,δ′ and

∥Y ∥m,σ′ ≤
(
κ′

κ

)m
1

1− η
κ′−κ

∥∂vh∥m,σ∥g2 − g1∥0,σ′ .

Finally we give estimates for the matrices appearing in the right hand side of (5.117).

Lemma 5.8.4. The matrices B and R in (5.119) and (5.120) satisfy the following

• B21 satisfies ∥B21∥1,σ ≲ G
−11/2
0 . Therefore ∥B∥2,σ,mat ≲ G

−11/2
0 .

• R ∈ Q3/2,σ,mat and ∥R∥3/2,σ,mat ≲ G−3
0 .

Proof. For B21 one needs the improved bounds for Λs given in (5.100) and the estimates in Lemma
5.7.8. The estimates for R are obtained through an easy but tedious computation using the definitions
of Q, G1 and G2 given in (5.89) and (5.86), Lemma 5.7.8, Lemma 5.B.1 and the estimates for the Zu, Zs

given in Theorem 5.7.20. Note that since we are dealing with formal Fourier series the compositions are
understood as in Lemma 5.7.7.

5.8.2 Straightening the differential operator

First step is to perform a symplectic change of coordinates in phase space so that one transforms the
operator L̃ in (5.118) into L. Namely, to remove the term G1(Z

u)∂u∆+ G2(Z
u)∂γ∆ from the left hand

side of equation (5.117).

Theorem 5.8.5. Let σ2, κ2 and δ2 be the constants considered in Lemma 5.7.19. Let σ3 < σ2, κ3 > κ2
and δ3 > δ2 be fixed. Then, for G0 big enough and |η0|G3/2

0 small enough, there exists a symplectic
transformation given by a (not necessarily convergent) Fourier series

(u, Y, γ,Λ, α, β) = Φ(v, Ỹ , γ, Λ̃, α, β)

of the form

Φ(v, Ỹ , γ, Λ̃, α, β) =

(
v + C(v, γ), 1

1 + ∂vC(v, γ)
Ỹ , γ, Λ̃− ∂γC(v, γ)

1 + ∂vC(v, γ)
Ỹ , α, β

)
(5.123)
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where C ∈ Q0,σ3
in Dκ3,δ3 satisfying

∥C∥0,σ3
≤ b6G

−4
0 lnG0,

with b6 > 0 a constant independent of G0, such that

∆̃(v, γ) =


1

1+∂vC(v,γ) 0 0 0

− ∂γC(v,γ)
1+∂vC(v,γ) 1 0 0

0 0 1 0
0 0 0 1

∆(v + C(v, γ), γ) , (5.124)

where ∆ is the function defined in (5.116), is well defined and satisfies the equation

L∆̃ = A∆̃ + B∆̃ +R∆̃ (5.125)

where A is the matrix introduced in (5.87) and the matrices B and R satisfy

• ∥B21∥1,σ3
≲ G

−11/2
0 and Bij = 0 otherwise. Therefore ∥B∥2,σ3,mat ≲ G

−11/2
0

• R ∈ Q3/2,σ3,mat in Dκ3,δ3 , R21 = 0, ∥R∥3/2,σ3,mat ≲ G−3
0 .

We devote the rest of this section to prove this theorem.

Proof of Theorem 5.8.5

We perform a change of coordinates

Φ0 : (v, γ) 7→ (u, γ) = (v + C(v, γ), γ), (5.126)

to straighten the operator L̃. Clearly, the full change (5.123) is symplectic. To straighten the operator
we proceed as in [GMS16]. Consider an operator of the form

L̃ = (1 +Q1(u, γ))∂u +
νG3

0

L3
0

(1 +Q2(u, γ))∂γ .

and consider a change of coordinates of the form (5.126) which satisfies

LC =
Q1 ◦ Φ0 −Q2 ◦ Φ0

1 +Q2 ◦ Φ0
. (5.127)

Then, if h solves the equation L̃h = D for some D, the transformed h̃ = h ◦ Φ0 satisfies the equation

Lh̃ = D̃ where D̃ =
D ◦ Φ0

1 +Q2 ◦ Φ0
.

Note that all these equations and transformations have to make sense for formal Fourier series. In
particular, the compositions are understood as in Lemma 5.8.3 and the fraction as

1

1 +Q2(u, γ)
=
∑
q≥0

(−Q2(u, γ))
q.

Proposition 5.8.6. Let σ3, κ3 and δ3 be the constants considered in Theorem 5.8.5. Then, for G0 big

enough and |η0|G3/2
0 ≪ 1, there exists a (not necessarily convergent) Fourier series C ∈ Q0,σ3

in Dκ3,δ3

satisfying
∥C∥0,σ3 ≤ b6G

−4
0 lnG0, ∥∂vC∥1/2,σ3

≤ b6G
−3
0 , ∥∂γC∥1/2,σ3

≤ b6G
−6
0

with b6 > 0 a constant independent of G0, such that

∆∗(v, γ) = ∆ (v + C(v, γ), γ) , (5.128)
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where ∆ is the function defined in (5.116), is well defined and satisfies the equation

L∆∗ = A∆∗ + B̃∆∗ + R̃∆∗ (5.129)

where

B̃ =
B ◦ Φ0

1 + G2(Zu) ◦ Φ0
, R̃ =

A ◦ Φ0 −A+R ◦ Φ0

1 + G2(Zu) ◦ Φ0

with Φ0(v, γ) = (v + C(v, γ), γ). Moreover the matrix B̃ satisfies ∥B̃21∥1,σ3 ≲ G
−11/2
0 , Bij = 0 otherwise,

which imply ∥B̃∥2,σ3,mat ≲ G
−11/2
0 . The matrix R̃ ∈ Q3/2,σ3,mat, R̃21 = 0 and

∥R̃∥3/2,σ3,mat ≲ G−3
0 .

Using, the definition of L̃ in (5.118), to prove this proposition, we look for a function C satisfying
equation (5.127) with

Q1(u, γ) = G1(Z
u)(u, γ), Q2(u, γ) =

L3
0

νG3
0

G2(Z
u)(u, γ). (5.130)

The next lemma gives estimates for these functions.

Lemma 5.8.7. The functions Q1 and Q2, in Dκ2,δ2 , satisfy

∥Q1∥1/2,σ2
≲ G−4

0 lnG0, ∥Q2∥1,σ2
≲ G

−9/2
0

∥∂uQ1∥3/2,σ2
≲ G−4

0 lnG0, ∥∂uQ2∥2,σ2
≲ G

−9/2
0

∥∂γQ1∥3/2,σ2
≲ G−7

0 lnG0, ∥∂γQ2∥1,σ2
≲ G

−9/2
0 .

(5.131)

Proof. Lemma 5.7.13 gives the estimate for Q1. Analogous estimates can be obtained for its derivatives,
differentiating (5.86) and using the estimates for Zu and its derivatives in Theorem 5.7.20 and Lemma
5.7.8. To estimate Q2 and its derivatives one can proceed analogously taking into account the improved
estimates for Λu in Theorem 5.7.20.

We obtain a solution of equation (5.127) by considering a left inverse G̃ of the operator L in the space
Q1/2,σ and setting up a fixed point argument.

We define the following operator acting on the Fourier coefficients as

G̃(h)(u, γ) =
∑
q∈Z

G̃(h)[q](u)eiqγ , (5.132)

where its Fourier coefficients are given by

G̃(h)[q](u) =
∫ u

u2

eiqνG
3
0L

−3
0 (t−u)h[q](t) dt for q < 0

G̃(h)[0](u) =
∫ u

u∗
h[0](t) dt

G̃(h)[q](u) =
∫ u

u2

eiqνG
3
0L

−3
0 (t−u)h[q](t) dt for q > 0.

Here u2 = i(1/3− κG−3
0 ) is the top vertex of the domain Dκ,δ, u2 is its conjugate, which corresponds to

the bottom vertex of the domain Dκ,δ and u∗ is the left endpoint of Dκ,δ ∩ R.

Lemma 5.8.8. The operator G̃ in (5.132), in the domain Dκ,δ, satisfies that

• If h ∈ Qν,σ for some ν ∈ (0, 1), then G̃(h) ∈ Q0,σ and
∥∥∥G̃(h)∥∥∥

0,σ
≤ K∥h∥ν,σ.
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• If h ∈ Q1,σ, then G̃(h) ∈ Q0,σ and
∥∥∥G̃(h)∥∥∥

0,σ
≤ K lnG0∥h∥1,σ.

• If h ∈ Qν,σ for some ν > 1, then G̃(h) ∈ Qν−1,σ and
∥∥∥G̃(h)∥∥∥

ν−1,σ
≤ K∥h∥ν,σ.

• If h ∈ Qν,σ for some ν > 0, then ∂vG̃(h) ∈ Qν,σ and
∥∥∥∂vG̃(h)∥∥∥

ν,σ
≤ K∥h∥ν,σ.

• If h ∈ Qν,σ for some ν > 0 and ⟨h⟩ = 0, then G̃(h) ∈ Qν,σ and∥∥∥G̃(h)∥∥∥
ν,σ

≤ KG−3
0 ∥h∥ν,σ.

Moreover, if h is a real-analytic Fourier series, that is h[q](u) = h[−q](u), then so is G̃(h).

This lemma can be proven as Lemma 8.3 of [?].

Proof of Proposition 5.8.6. We prove Proposition 5.8.6 by looking for a fixed point of the operator

K̃ = G̃ ◦ K, K(C)(v, γ) = Q1(u, γ)−Q2(u, γ)

1 +Q2(u, γ)

∣∣∣∣
u=v+C(v,γ)

(5.133)

where G̃ is the operator introduced in (5.132) and Q1, Q2 are the formal Fourier series in (5.130).
We write K(0) as

K(0) =
Q1 −Q2

1 +Q2
= Q1 −

Q2(1 +Q1)

1 +Q2
.

Note that, by (5.131), the second term satisfies, in Dκ2,δ2 ,∥∥∥∥Q2(1 +Q1)

1 +Q2

∥∥∥∥
1,σ2

≲ G
−9/2
0 .

Now, by Lemmas 5.8.8 and 5.7.6, there exists a constant b6 > 0 independent of G0, such that, in Dκ3,δ3 ,∥∥∥K̃(0)
∥∥∥
0,σ3

=
∥∥∥G̃ ◦ K(0)

∥∥∥
0,σ3

≤
∥∥∥G̃(Q1)

∥∥∥
0,σ3

+

∥∥∥∥G̃ (Q2(1 +Q1)

1 +Q2

)∥∥∥∥
0,σ3

≤ ∥Q1∥1/2,σ3
+ lnG0

∥∥∥∥Q2(1 +Q1)

1 +Q2

∥∥∥∥
1,σ3

≤ b6
2
G−4

0 lnG0.

Now we prove that K̃ is a Lipschitz operator in the ball B(b6G
−4
0 lnG0) ⊂ Q0,σ3 in Dκ3,δ3 . Take

g1, g2 ∈ B(b6G
−4
0 lnG0) ⊂ Q0,σ3 . By Lemma 5.8.3 and estimates (5.131),

∥K(g2)−K(g1)∥3/2,σ3
≲

∥∥∥∥∂u [Q1(u, γ)−Q2(u, γ)

1 +Q2(u, γ)

]∥∥∥∥
3/2,σ2

∥g2 − g1∥0,σ3
≲ G−3

0 ∥g2 − g1∥0,σ3
.

Then, by Lemma 5.7.6 and 5.8.8,∥∥∥K̃(g2)− K̃(g1)
∥∥∥
0,σ3

≲ G
3/2
0

∥∥∥K̃(g2)− K̃(g1)
∥∥∥
1/2,σ3

≲ G
3/2
0 ∥K(g2)−K(g1)∥3/2,σ3

≲ G
−3/2
0 ∥g2 − g1∥0,σ3

.

Thus, taking G0 large enough, the operator K̃ is a contractive operator B(b6G
−4
0 lnG0) ⊂ Q0,σ3

. The fix
point of the operator gives the change of coordinates provided in Proposition 5.8.6.
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To obtain the estimates for ∂vC it is enough to use that we have seen that for C ∈ B(b6G
−4
0 lnG0) ⊂

Q0,σ3 , K(C) satisfies K(C) ∈ Q1/2,σ3
and ∥K(C)∥1/2,σ3

≲ G−3
0 . Then, by Lemma 5.8.8, ∂vC = ∂vG̃ ◦K(C) ∈

Q1/2,σ3
and satisfies ∥∂vG̃ ◦ K(C)∥1/2,σ3

≲ G−3
0 . The estimates for ∂γC are obtained through the identity

∂γC =
L3
0

νG3
0

(K(C)− ∂vC) .

Finally, the estimates for B̃ and R̃ are a direct consequence of the estimates for C just obtained, the
estimate of R in Lemma 5.8.4, the identity (5.130), estimates (5.131), the definition of A in (5.87), the

estimates of the functions f1 and f2 given in Lemma 5.7.9 and the condition |η0|G3/2
0 ≪ 1.

Now, we are ready to prove Theorem 5.8.5.

Proof of Theorem 5.8.5. It is straightforward to check that the transformation (5.123) is symplectic. It
only remains to obtain the estimates for B and R. To this end, it is enough to apply the transformation

Y =
1

1 + ∂vC(v, γ)
Ỹ , Λ = Λ̃− ∂γC(v, γ)

1 + ∂vC(v, γ)
Ỹ

to equation (5.129) to obtain the formulas for the coefficients (B +R)ij . To this end, to a 4× 4 matrix
M whose entries Mij are functions of (v, γ) we define the following 4× 4 matrix J (M) whose coefficients
J (M)ij are defined a

J (M)11 =M11 +
∂vK(C)
1 + ∂vC

−M12∂γC, J (M)1j = (1 + ∂vC)M1j , j = 2, 3, 4,

J (M)21 =
M21 + ∂γCM11 + ∂γK(C)−M22∂γC − (∂γC)2M12

1 + ∂vC
J (M)2j =M2j + ∂γCM1j , j = 2, 3, 4

J (M)i1 =
Mi1 +Mi2∂γC

1 + ∂vC
, J (M)ij =Mij , i = 3, 4, j = 2, 3, 4.

We split B and R as before. That is, Bij = 0 for ij ̸= 21 and R21 = 0. Then, the coefficients of the
matrix B and R in Theorem 5.8.5 are defined as

B21 =
B̃21 + ∂γCR̃11 + ∂γK(C)− R̃22∂γC − (∂γC)2 R̃12

1 + ∂vC
and

R = J (A)−A+ J (R̃)− (B − B̃)

where A and R̃ are the matrices defined in (5.87) and Proposition 5.8.6 respectively. This implies that

Rij = J (R̃)ij for all coefficients except R21 = 0 and

Ri1 =
−Ai1∂vC + R̃i1 + ∂γC

(
Ai2 + R̃i2

)
1 + ∂vC

Then, one can obtain the estimates for the coefficients of R using these definitions, the estimates for
R̃ and C in Proposition 5.8.6, the estimates for the matrix A given in Lemma 5.7.9 (see the definition of

A in (5.87)) and the condition |η0|G3/2
0 ≪ 1. For the bounds of ∂vK(C) and ∂γK(C) one has to use the

definition of K(C) in (5.133) to obtain

∂vK(C)(v, γ) = ∂u

[
Q1(u, γ)−Q2(u, γ)

1 +Q2(u, γ)

]∣∣∣∣
u=v+C(v,γ)

(1 + ∂vC(v, γ))

∂γK(C)(v, γ) = ∂u

[
Q1(u, γ)−Q2(u, γ)

1 +Q2(u, γ)

]∣∣∣∣
u=v+C(v,γ)

∂γC(v, γ)

+ ∂γ

[
Q1(u, γ)−Q2(u, γ)

1 +Q2(u, γ)

]∣∣∣∣
u=v+C(v,γ)
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Then, using the estimates in (5.131) and Lemma 5.8.3, one has

∥∂vK(C)∥3/2,σ3
≲ G−3

0 , ∥∂γK(C)∥1,σ3
≲ G

−11/2
0 .

5.8.3 The general solution for the straightened linear system

Now, we solve the linear equation (5.129) by looking for a fundamental matrix Ψ satisfying

LΨ = (A+ B +R)Ψ. (5.134)

Note that in (5.91) we have obtained a fundamental matrix ΦA of the linear equation LΨ = AΨ. However,
it can be easily seen that this matrix does not have good estimates with respect to the norm introduced
in (5.122). Thus, we modify it slightly. Let us introduce the notation ΦA = (V1, . . . , V4) where Vi are the
columns of the matrix. Then, we define the new fundamental matrix

Φ̃A = (Ṽ1, . . . Ṽ4) defined as

Ṽ1 = V1 − η0g1

(
i

3

)
V3 + ξ0g1

(
− i

3

)
V4

Ṽ2 = V2 − η0g2

(
i

3

)
V3 + ξ0g2

(
− i

3

)
V4

Ṽj = Vj , j = 3, 4.

(5.135)

Lemma 5.8.9. Assume |η0|G3/2
0 ≪ 1. The fundamental matrix Φ̃A and its inverse Φ̃−1

A satisfy Φ̃A, Φ̃
−1
A ∈

Q0,σ3
in Dκ3,δ3 and ∥∥∥Φ̃A∥∥∥

0,σ3,mat
≲ 1,

∥∥∥Φ̃−1
A

∥∥∥
0,σ3,mat

≲ 1.

Moreover, the matrices ΦA in (5.91) and Φ̃A in (5.135) are related as ΦA = Φ̃AJ where J is a constant
matrix which satisfies

J = Id +O(|η0|).

Moreover, the O(|η0|) terms are only present in the third and fourth row of the matrix.

The proof of this lemma is a direct consequence of the definition of Φ̃A in (5.135) and Lemma 5.7.9.
In the next theorem we obtain a fundamental matrix of (5.134).

Theorem 5.8.10. Let σ3, κ3 and δ3 be the constants considered in Theorem 5.8.5. Then, for G0

big enough and |η0|G3/2
0 small enough, there exists a fundamental matrix of (5.134) of the form Ψ =

Φ̃A(Id + Ψ̃) with Ψ̃ ∈ Q1/2,σ3,mat in Dκ3,δ3 , which satisfies∥∥∥Ψ̃∥∥∥
1/2,σ3,mat

≲ G−3
0 lnG0.

Moreover, ∥∥∥Ψ̃21

∥∥∥
0,σ3,mat

≲ G
−9/2
0 lnG0.

We devote the rest of this section to prove this theorem. Note that Ψ is a solution of (5.134) if an

only if Ψ̃ satisfies
LΨ̃ = Φ̃−1

A (B +R)Φ̃A(Id + Ψ̃). (5.136)

We solve this equation through a fixed point argument by setting up an integral equation.
The first step is to invert the operator L. To this end, we need to use different integral operators

depending on the components. The reason is the significantly different behavior of the components close
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to the singularities of the unperturbed separatrix. That is, besides the operator G̃ in (5.132), we define
the operators

G±(h)(u, γ) = G±(h)
[0](u) +

∑
q∈Z\{0}

G̃(h)[q](u)eiqγ , G±(h)
[0](u) =

∫ u

u±

h[0](t) dt (5.137)

where u+ = u2 and u− = ū2, where u2 has been introduced in (5.132). Note that equation (5.136) has
many solutions which arise from the fact that the operator L has many left inverse operators. We choose
just one solution which is convenient for us.

Lemma 5.8.11. The operators G± introduced in (5.137) satisfy the following. Assume h ∈ Qν,σ,mat in
Dκ,δ with ν ≥ 1/2. Then e±iϕh(u)G±(e

∓iϕh(u)h) ∈ Qν−1,σ,mat and∥∥∥e±iϕh(u)G±

(
e∓iϕh(u)h

)∥∥∥
ν−1,σ

≲ ∥h∥ν,σ for ν > 1/2∥∥∥e±iϕh(u)G±

(
e∓iϕh(u)h

)∥∥∥
−1/2,σ

≲ lnG0 ∥h∥1/2,σ .

Finally, we define an integral operator Gmat acting on matrices in Qν,σ,mat linearly on the coefficents
as follows. For M ∈ Qν,σ,mat, we define Gmat(M) as

Gmat(M)ij = G̃(Mij) for i = 1, 2, j = 1, 2, 3, 4

Gmat(M)3j = G+(Mij) for j = 1, 2, 3, 4

Gmat(M)4j = G−(Mij) for j = 1, 2, 3, 4.

(5.138)

Lemma 5.8.12. The operator Gmat in (5.138) has the following properties.

• Assume M ∈ Qν,σ,mat with ν ≥ 2. Then Gmat(M) ∈ Qν−1,σ,mat and

∥Gmat(M)∥ν−1,σ ≲ ∥M∥ν,σ for ν > 2

∥Gmat(M)∥1,σ ≲ lnG0 ∥M∥2,σ .

• Assume M ∈ Qν,σ,mat with ν ≥ 3/2 and M21 = 0. Then Gmat(M) ∈ Qν−1,σ,mat and

∥Gmat(M)∥ν−1,σ ≲ ∥M∥ν,σ for ν > 3/2

∥Gmat(M)∥1/2,σ ≲ lnG0 ∥M∥3/2,σ .

We use the operator Gmat to look for solutions of (5.136) through an integral equation. We define the
operator

S̃(Ψ) = Gmat ◦ S(Ψ) with S(Ψ) = Φ̃−1
A (B +R)Φ̃A(Id + Ψ).

Lemma 5.8.13. Consider the domain Dκ3,δ3 . The affine operator S̃ : Q1/2,σ3,mat → Q1/2,σ3,mat is
Lipschitz and satisfies that, for any Ψ,Ψ′ ∈ Q1/2,σ3,mat,∥∥∥S̃(Ψ)− S̃(Ψ′)

∥∥∥
1/2,σ3,mat

≲ G
−3/2
0 lnG0 ∥Ψ−Ψ′∥1/2,σ3,mat

Proof. To compute the Lipschitz constant, we write

S(Ψ)− S(Ψ′) = Φ̃−1
A (B +R)Φ̃A(Ψ−Ψ′).

The properties of B and R in Theorem 5.8.5 imply that ∥B +R∥1,σ3,mat ≲ G
−3/2
0 . Then, using also

Lemmas 5.8.9 and Lemma 5.8.1,

∥S(Ψ)− S(Ψ′)∥3/2,σ3,mat ≲
∥∥∥Φ̃−1

A

∥∥∥
0,σ3,mat

∥B +R∥1,σ3,mat

∥∥∥Φ̃A∥∥∥
0,σ3,mat

∥Ψ−Ψ′∥1/2,σ3,mat

≲G
−3/2
0 ∥Ψ−Ψ′∥1/2,σ3,mat .
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Thus, applying Lemma 5.8.12,∥∥∥S̃(Ψ)− S̃(Ψ′)
∥∥∥
1/2,σ3,mat

≲ lnG0 ∥S(Ψ)− S(Ψ′)∥3/2,σ3,mat ≲ G
−3/2
0 lnG0 ∥Ψ−Ψ′∥1/2,σ3,mat .

Then, to finish the proof of Theorem 5.8.10, it is enough to use Lemmas 5.8.8 and 5.8.12 and to use
the estimates for B and R in Theorem 5.8.5 to see that

S̃(0) = Gmat

[
Φ̃−1
A (B +R)Φ̃A

]
satisfies ∥∥∥S̃(0)∥∥∥

1/2,σ3,mat
≲G

3/2
0

∥∥∥Gmat

[
Φ̃−1
A BΦ̃A

]∥∥∥
1,σ3,mat

+
∥∥∥Gmat

[
Φ̃−1
A RΦ̃A

]∥∥∥
1/2,σ3,mat

≲G
3/2
0 lnG0

∥∥∥Φ̃−1
A BΦ̃A

∥∥∥
2,σ3,mat

+ lnG0

∥∥∥Φ̃−1
A RΦ̃A

∥∥∥
3/2,σ3,mat

≲G
3/2
0 lnG0 ∥B∥2,σ3,mat + lnG0 ∥R∥3/2,σ3,mat

≲G−3
0 lnG0.

Therefore, together with Lemma 5.8.13, one has that the operator S̃ has a unique fixed point Ψ̃ which

satisfies
∥∥∥Ψ̃∥∥∥

1/2,σ3,mat
≲ G−3

0 lnG0.

For the estimates for Ψ̃21 it is enough to write Ψ̃21 as Ψ̃21 = S̃(0)21 +
[
S̃(Ψ)− S̃(Ψ′)

]
21
. For the first

term, by Theorem 5.8.5 and Lemma 5.8.8, one has that∥∥∥S̃(0)21∥∥∥
0,σ3

≲ G
−11/2
0 lnG0.

For the second term it is enough to use Lemma 5.8.13 to obtain∥∥∥[S̃(Ψ)− S̃(Ψ′)
]
21

∥∥∥
0,σ3

≤
∥∥∥[S̃(Ψ)− S̃(Ψ′)

]
21

∥∥∥
−1/2,σ3

≲ G
−3/2
0 lnG0

∥∥∥Ψ̃∥∥∥
1/2,σ3,mat

≲ G
−9/2
0 lnG0.

5.8.4 Exponentially small estimates of the difference between the invariant
manifolds

Last step is to obtain exponentially small bounds of the difference between invariant manifolds ∆ and
its first order. We first analyze ∆̃ in (5.128). Using that Ψ = Φ̃A(Id + Ψ̃) with Ψ̃ obtained in Theorem

5.8.10 is a fundamental matrix of the equation (5.134), we know that ∆̃ (which also satisfies (5.134)) is
of the form

∆̃ = Φ̃A(Id + Ψ̃)∆̂ where ∆̂ satisfies L∆̂ = 0. (5.139)

To bound the function ∆̂, we use the following lemma, proven in [GMS16].

Lemma 5.8.14. Fix κ > 0, δ > 0 and σ > 0. Let us consider a formal Fourier series Υ ∈ Q0,σ in Dκ,δ

such that Υ ∈ KerL. Define its average

⟨Υ⟩γ =
1

2π

∫ 2π

0

Υ(v, γ)dγ.

Then, the Fourier series Υ(v, γ) satisfies the following.

• Is of the form

Υ(v, γ) =
∑
ℓ∈Z

Υ[ℓ](v)eiℓγ =
∑
ℓ∈Z

Υ̃[ℓ]eiℓ(G
3
0v+γ)

for certain constants Υ̃[ℓ] ∈ C. In particular, its average ⟨Υ⟩γ(v) = Υ̃[0] is independent of v.
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• It defines a function for v ∈ Dκ,δ ∩ R and γ ∈ T, whose Fourier coefficients satisfy that∣∣∣Υ[ℓ](v)
∣∣∣ ≤ sup

v∈Dκ,δ

∣∣∣Υ[ℓ](v)
∣∣∣K |ℓ|e−

|ℓ|G3
0

3 ≲ ∥Υ∥0,σ (KG
3/2
0 )|ℓ|e−

|ℓ|G3
0

3

∣∣∣∂vΥ[ℓ](v)
∣∣∣ ≤ sup

v∈Dκ,δ

∣∣∣Υ[ℓ](v)
∣∣∣K |ℓ|G3

0e
−

|ℓ|G3
0

3 ≲ G3
0 ∥Υ∥0,σ (KG

3/2
0 )|ℓ|e−

|ℓ|G3
0

3 .

Note, nevertheless, that we do not want to bound ∆̂ but its difference with respect to its first order.
The first order is defined through the operators Fu,s in (5.93) (see Theorem 5.7.20) and is given by

∆̂0 = Φ̃−1
A (Fu(0)−Fs(0)) . (5.140)

Using (5.93) and the relation Φ̃−1
A ΦA = J given in Lemma 5.8.9,

∆̂0 = Φ̃−1
A ΦA

[
δz + Gu

(
Φ−1
A F (0)

)
− Gs

(
Φ−1
A F (0)

)]
= J δz + Gu

(
Φ̃−1
A F (0)

)
− Gs

(
Φ̃−1
A F (0)

)
. (5.141)

Since J δz is constant and Gu,s are both inverses of L, ∆̂0 satisfies L∆̂0 = 0.
We write then, ∆̂ as

∆̂ = ∆̂0 + Ê .

The next two lemmas give estimates for these functions. Recall that Θ and G0 are related through

ω =
νG3

0

L3
0

, with G0 = Θ− L0 + η0ξ0.

(see (5.33)).

Lemma 5.8.15. The function ∆̂0 in (5.141) satisfies that, for v ∈ Dκ3,δ3 ∩ R and γ ∈ T,

∆̂Y 0(v, γ) = ω∂σL(ωv − γ, η0, ξ0)

∆̂Λ0(v, γ) = −∂σL(ωv − γ, η0, ξ0)

∆̂α0(v, γ) = δη − i∂ξ0L(ωv − γ, η0, ξ0) +G−3
0 O(η0, G

−1
0 ξ0)

∆̂β0(v, γ) = δξ + i∂η0L(ωv − γ, η0, ξ0) +G−3
0 O(η0, G

−1
0 ξ0)

where L is the Melnikov potential introduced in Proposition 5.4.2.

Lemma 5.8.16. The function Ê satisfies that, for v ∈ Dκ3,δ3 ∩ R and γ ∈ T,

|ÊY − ⟨ÊY ⟩| ≲ e−G
3
0/3G2

0 ln
2G0, |ÊΛ − ⟨ÊΛ⟩| ≲ e−G

3
0/3G−1

0 ln2G0

|Êα − ⟨Êα⟩| ≲ e−G
3
0/3G

1/2
0 ln2G0, |Êβ − ⟨Êβ⟩| ≲ e−G

3
0/3G

1/2
0 ln2G0

(5.142)

and

|⟨ÊY ⟩|+ |⟨ÊΛ⟩|+ |⟨Êα⟩|+ |⟨Êβ⟩| ≲ G−6
0 | lnG0|3.

Note that this lemma gives an expression of the difference between the paramerizations of the invariant
manifolds ∆̃ as

∆̃ = Φ̃A

(
Id + Ψ̃

)(
∆̂0 + Ê

)
(5.143)

and the Fourier coefficients of Ê (except its averages) have exponentially small bounds. In the next section

we improve the estimates for a certain average associated to the Λ̃ component of Ê .
We finish this section proving Lemmas 5.8.15 and 5.8.16.
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Proof of Lemma 5.8.15. For the Y component, using the definition of Φ̃A in (5.135) and the properties
of the matrix J stated in Lemma 5.8.9, one has

∆̂Y 0 = Gu(F1(0))− Gs(F1(0)) = Gu(F1(0))− Gs(F1(0)).

Then, recalling the definition of the operators Gu,s in (5.92) and of F (0), one can check that ∆̂Y 0 = ω∂σL.
Proceeding analogously, one can prove that ∆̂Λ0 = −∂σL.

For the components α and β we use that, for real values of v, the matrix Φ̃A satisfies Φ̃A − Id =
O
(
G−1

0 η0 +G−1
0 ξ0

)
. Then, using Theorem 5.7.20, for real values of (v, γ),

∆̂α0 =πα(J δz) + Gu(F3(0))− Gs(F3(0)) +O
(
G−4

0 η0 +G−4
0 ξ0

)
= δη − i∂ξ0L+O

(
G−4

0 η0 +G−4
0 ξ0

)
+O

(
G−3

0 η0
)

(πα denotes the projection on the α component) and analgously for β.

Proof of Lemma 5.8.16. Using the definition of ∆̂0 in (5.140), we split the function Ê in (5.143) as

Ê = Ê1 + Ê2 + Ê3 with

Ê1 = (Id + Ψ̃)−1Φ̃−1
A ∆̃− Φ̃−1

A ∆̃ =
[
(Id + Ψ̃)−1 − Id

]
Φ̃−1
A ∆̃

Ê2 = Φ̃−1
A

(
∆̃−∆

)
Ê3 = Φ̃−1

A (∆− (F(0)u −Fs(0)))

(5.144)

where Ψ̃ is the matrix obtained in Theorem 5.8.10. We bound each term separately.
For the first term, we write the matrix as (Id + Ψ̃)−1 − Id =

∑
k≥1(−Ψ̃)k. Therefore, using the

estimates for Φ̃−1
A and Ψ̃ in Lemma 5.8.9 and Theorem 5.8.10 respectively and the properties of the

matrix norm given in Lemma 5.8.1,∥∥∥[(Id + Ψ̃)−1 − Id
]
Φ̃−1
A

∥∥∥
1/2,σ3,mat

≲ G−3
0 lnG0.

Then, using also Theorems 5.7.20 and 5.8.5 and Lemma 5.8.3, one has ∥∆̃∥1/2,σ3,vec ≲ G−3
0 lnG0. Thus,∥∥∥Ê1

∥∥∥
1,σ3,vec

≲ G−3
0 lnG0∥∆̃∥0,σ3,vec ≲ G−6

0 ln2G0.

For Ê2, we use the definition of ∆̃ in (5.128). Theorems 5.7.20 and 5.8.5 and Lemma 5.8.3 imply that

∥∆̃−∆∥1/3,σ3,vec ≲ G−7
0 ln2G0.

Then, using this estimate and Lemmas 5.7.6 and 5.8.9,∥∥∥Ê2
∥∥∥
3/2,σ3,vec

≲
∥∥∥Φ̃−1

A

∥∥∥
0,σ3,mat

∥∆̃−∆∥3/2,σ3,vec ≲ G−7
0 ln2G0.

Finally, using that the paramerizations of the invariant manifolds Z∗, ∗ = u, s obtained in Theorem 5.7.20
are fixed points of the operators F∗, ∗ = u, s, respectively, we write Ê3 as

Ê3 = Φ̃−1
A (Fu(Zu)−Fs(Zs))− Φ̃−1

A (Fu(0)−Fs(0)) .

Now, by (5.107),
∥F∗(Z∗)−F∗(0)∥1,vec,σ3

≲ G−6
0 | lnG0|3 ∗ = u, s.

Therefore, using this estimate and the estimate for Φ̃A in Lemma 5.8.9, we obtain∥∥∥Ê3
∥∥∥
1,σ3,vec

≲
∥∥∥Φ̃−1

A

∥∥∥
0,σ3,mat

(
∥Fu(Zu)−Fu(0)∥1,σ3,vec

+ ∥Fs(Zs)−Fs(0)∥1,σ3,vec

)
≲ G−6

0 | lnG0|3.
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Now, for v ∈ Dκ3,δ3 ∩ R and γ ∈ T,

|⟨Ê⟩| ≲ |Ê | ≲
∥∥∥Ê1

∥∥∥
1,σ3,vec

+
∥∥∥Ê2

∥∥∥
3/2,σ3,vec

+
∥∥∥Ê3

∥∥∥
1,σ3,vec

≲ G−6
0 | lnG0|3.

For the other harmonics, one can use
∥∥∥Ê∥∥∥

0,σ3,vec
≲ G

−5/2
0 ln2G0. Then, by the definition of the norm,

∥ÊY ∥0,σ3 ≲ G
1/2
0 ln2G0, ∥ÊΛ∥0,σ3 ≲ G

−5/2
0 ln2G0

∥Êα∥0,σ3
≲ G−1

0 ln2G0, ∥Êβ∥0,σ3
≲ G−1

0 ln2G0.

which together with Lemma 5.8.14 gives the estimates of the lemma.

5.8.5 Improved estimates for the averaged term

The last step in the analysis of the difference between the invariant manifolds is to obtain improved
estimates for the averaged term of ÊΛ. Note that for this component the first order, given by the
Melnikov potential in Theorem 5.4.3, is exponentially small (see Proposition 5.4.2). Therefore, to prove

that ∆̂0 is bigger than the error one has to show that ⟨ÊΛ⟩ is smaller than the corresponding Melnikov
components −∂σL (and thus exponentially small). We prove this fact by using the Poincaré invariant.

One can proceed analgously for ⟨ÊY ⟩. However, this estimate is not needed because this estimate can be
deduced by the the conservation of energy.

Consider the autonomous Hamiltonian system associated to (5.74). Then, it has the Poincaré invariant
acting on closed loops of the phase space defined as follows. Consider a loop Γ in phase space, then

I(Γ) =

∫
Γ

(Y du+ Λdγ + βdα)

is invariant under the flow associated to the Hamiltonian system. We use this invariant to improve the
estimates of the γ-averaged term in ∆̂Λ.

In Theorem 5.7.20, we have obtained parameterizations of Wu(Pη0,ξ0) and W s(Pη0+δη,ξ0+δξ), Z
u

and Zs. Take any loop Γu contained in Wu(Pη0,ξ0), homotopic to the loop Wu(Pη0,ξ0) ∩ {u = u0}
(and thus homotopic to Pη0,ξ0) and any loop Γs contained in W s(Pη0+δη,ξ0+δξ), homotopic to a loop
W s(Pη0+δη,ξ0+δξ) ∩ {u = u0} (and thus homotopic to Pη0+δη,ξ0+δξ). More concretely, in the case of the
stable manifold, take a C1 function f : T → Du

κ,δ ∩ R and define an associated loop parameterized as

Γs = {(u, Y, γ,Λ, α, β) = (f(γ), Y s(f(γ), γ), γ,Λs(f(γ), γ), αs(f(γ), γ), βs(f(γ), γ)} (5.145)

where Zs = (Y s,Λs, αs, βs) is the parameterization of the invariant manifold obtained in Theorem 5.7.20.

Lemma 5.8.17. The loops in (5.145) satisfy I(Γ∗) = 0, ∗ = u, s.

Proof. Call Φt the flow associated to the Hamiltonian P in (5.74) and take a loop Γs. Then, since the
Poincaré invariant is invariant under this flow

I(Γs) = lim
t→∞

I(Φt(Γ
s)).

Then, using that limt→∞ πα(Φt(Γ
s)) = δη and the estimates of the parameterizations of Zs as u→ ∞ in

Theorem 5.7.20, it is clear that limt→∞ I(Φt(Γ
s)) = 0.

Taking any of the loops Γs and Γu considered in Lemma 5.8.17, we have I(Γs)− I(Γu) = 0
Now we consider the symplectic exact transformation Φ obtained in Theorem 5.8.5 and we work in

variables (v, γ). Let us fix a section v = v0 and define the loops Γ̃u = Wu(Pη0,ξ0) ∩ {v = v0} and

Γ̃s = W s(Pη0+δη,ξ0+δξ) ∩ {v = v0}. It is clear that Γ̃∗ = Φ−1(Γ∗) for a suitable function f . Since the
Poincaré invariant is invariant under exact symplectic transformations, we have that

I(Γ̃∗) =

∫
Γ̃∗

(
Ỹ dv + Λ̃dγ + β̃dα̃

)
= I(Γ∗) = 0.

191



Moreover, since v is constant in the loops

I
(
Γ̃∗
)
=

∫ 2π

0

(
Λ̃∗(v0, γ) + β̃∗(v0, γ)∂γα̃

∗(v0, γ)
)
dγ = 0, ∗ = u, s

where (Ỹ ∗, Λ̃∗, α̃∗, β̃∗), ∗ = u, s, are the parameterizations obtained in Theorem 5.8.5.

Now consider the difference ∆̃ between the parameterization of the invariant manifolds introduced in
(5.128). Subtracting the Poincaré invariant for the stable and unstable loops and integrating by parts,
we obtain the relation

0 = I(Γ̃u)− I(Γ̃s) =

∫ 2π

0

(
∆Λ̃(v0, γ) + h1(v0, γ)∆α̃(v0, γ) + h2(v0, γ)∆β̃(v0, γ)

)
dγ (5.146)

where

h1(v0, γ) = −1

2

(
∂γ β̃

s(v0, γ) + ∂γ β̃
u(v0, γ)

)
and h2(v0, γ) =

1

2
(∂γα̃

s(v0, γ) + ∂γα̃
u(v0, γ)) .

Note that the functions hi satisfy ⟨hi⟩γ = 0 and, by Theorem 5.7.4, |hi(v, γ)| ≲ G−6
0 lnG0 for i = 1, 2

and real values of (v, γ).
Next step is to make the transformation

(Ỹ , Λ̃, α̃, β̃)⊤ = Ψ(v, γ)(Ŷ , Λ̂, α̂, β̂)⊤ (5.147)

where Ψ = Φ̃A(Id + Ψ̃) is the matrix obtained in Theorem 5.8.10. The difference between the invariant

manifolds in these new coordinates is the vector ∆̂ introduced in (5.139), which satisfies L∆̂ = 0.
We analyze the Poincaré invariant relation (5.146) after performing the change of coordinates (5.147).

Note that this change is not symplectic and therefore the Liouville form is not preserved. Thus, we apply
the change of coordinates to (5.146) directly and we obtain∫ 2π

0

(
(1 + ĥ0(v0, γ))∆̂Λ(v0, γ) + ĥ1(v0, γ)∆̂α(v0, γ) + ĥ2(v0, γ)∆̂β(v0, γ) + ĥ3(v0, γ)∆̂Y

)
dγ = 0

(5.148)

for some functions ĥi. By the definition of the fundamental matrix Φ̃A in (5.135) and the estimates of the

matrix Ψ̃ obtained in Theorem 5.8.10, one can easily check that, for real values of (v, γ) and assuming

|η0|G3/2
0 ≪ 1, the functions ĥi satisfy

|ĥi| ≲ G−3
0 lnG0, i = 0 . . . 2 and |ĥ3| ≲ G

−9/2
0 lnG0. (5.149)

We would like to use (5.148) to obtain more accurate estimates of ⟨∆̂Λ⟩. Assume for a moment that

⟨ĥi⟩ = 0 for i = 1, 2, 3 and let us introduce the following notation

{f} (v, γ) = f(v, γ)− ⟨f⟩(v).

It certainly satisfies ⟨{f(v, γ)}⟩ = 0.

By (5.142), the four components of
{
∆̂
}
are exponentially small. Under the assumption ⟨ĥi⟩ = 0 for

i = 1, 2, 3 then (5.148) becomes

⟨∆̂Λ⟩(v0) =
1

2π(1 + ⟨ĥ0⟩)(v0)

∫ 2π

0

F (v0, γ)dγ

with
F =

{
ĥ0

}{
∆̂Λ
}
+
{
ĥ1

}{
∆̂α
}
+
{
ĥ2

}{
∆̂β
}
+
{
ĥ3

}{
∆̂Y

}
.

Now, using the estimates given in Proposition 5.4.2 and (5.142), one would obtain

|F (v0, γ)| ≲ G
−5/2
0 e−G

3
0/3 lnG0
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therefore ⟨∆̂Λ⟩ would have the same estimate.

Now, this argument does not work because ⟨ĥi⟩ ≠ 0 for i = 1, 2, 3. Therefore, we have to perform the
close to the identity change of coordinates which depends on v but not on γ.

∆̌Λ = ∆̂Λ +
⟨ĥ1⟩

1 + ⟨ĥ0⟩
∆̂α+

⟨ĥ2⟩
1 + ⟨ĥ0⟩

∆̂β +
⟨ĥ3⟩

1 + ⟨ĥ0⟩
∆̂Y

and the other variables remain unchanged. Note that the functions hi are small by (5.149) and therefore

this change is close to the identity. Moreover, the functions ⟨ĥi⟩ are independent of γ and therefore

⟨∆̌Λ⟩ = ⟨∆̂Λ⟩+ Ĉ1⟨∆̂α⟩+ Ĉ2⟨∆̂β⟩+ C3⟨∆̂Y ⟩.

where

Ĉi =
⟨ĥi⟩

1 + ⟨ĥ0⟩
. (5.150)

Thus ∣∣{∆̌Λ
}∣∣ ≲ G

−3/2
0 e−G

3
0/3.

Now the relation (5.148) becomes∫ 2π

0

(
(1 + ĥ0(v0, γ))∆̌Λ(v0, γ) + ȟ1(v0, γ)∆̂α(v0, γ) + ȟ2(v0, γ)∆̂β(v0, γ) + ȟ3(v0, γ)∆̂Y

)
dγ = 0

where

ȟi = ĥi −
1 + ĥ0

1 + ⟨ĥ0⟩
⟨ĥi⟩, i = 1, 2, 3,

and therefore satisfy ⟨ȟi⟩ = 0 and |ȟi| ≲ G−3
0 lnG0 for i = 1, 2, 3. Therefore, the argument done previously

works and one can deduce that 〈
∆̌Λ(v0, γ)

〉
≲ G

−5/2
0 e−G

3
0/3 lnG0.

The just obtained results are summarized in the following lemma.

Lemma 5.8.18. The function ∆̂ introduced in (5.139) satisfies that ∆̂(v, γ) = N(v)∆̌(v, γ) where N is
the matrix

N(v) =


1 0 0 0

−Ĉ3 1 −Ĉ1 −Ĉ2

0 0 1 0
0 0 0 1.


which satisfies

N = Id +O
(
G−3

0 lnG0

)
and N21 = O

(
G

−9/2
0 lnG0

)
.

Moreover, for real values of v ∈ Dκ3,δ3 ∩ R,
〈
∆̌Λ(v, γ)

〉
≲ G

−5/2
0 e−G

3
0/3 lnG0.

The next two lemmas complete the estimates of the errors in Theorem 5.4.3.

Lemma 5.8.19. The function ∆̃(v, γ) in (5.128) can be written as

∆̃(v, γ) = Ñ (v, γ)
(
∆̂0(v, γ) + Ẽ(v, γ)

)
where ∆̂0 is the function introduced in (5.141), Ñ is an invertible matrix satisfying

Ñ = Id +O(G−3
0 lnG0) and Ñ21 = O

(
G

−9/2
0 lnG0

)
,
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and Ẽ satisfies

|ẼY | ≲ G−6
0 ln2G0, |ẼΛ| ≲ e−G

3
0/3G

−5/2
0 ln2G0, |Ẽα|, |Ẽβ | ≲ G−6

0 ln2G0.

Moreover, ẼY , Ẽα, Ẽβ ∈ KerL and

|ẼY − ⟨ẼY ⟩| ≲ e−G
3
0/3G2

0 ln
2G0

|Ẽα − ⟨Ẽα⟩|, |Ẽβ − ⟨Ẽβ⟩| ≲ e−G
3
0/3G

1/2
0 ln2G0.

Proof. By (5.139) and (5.8.18), one has that ∆̃ = N ∆̌ with N = Φ̃A(Id + Ψ̃)N . Then, it can be written
as

∆̃ = N
(
∆̂0 + Ẽ

)
with Ẽ = N−1Ê − (Id−N−1)∆̂0 = ∆̌− ∆̂0.

We estimate ⟨Ẽ⟩ and {Ẽ} separately. For the Λ average component we use that

⟨ẼΛ⟩ = ⟨∆̌Λ⟩ = O
(
G

−5/2
0 e−G

3
0/3 lnG0

)
.

For the other averages one has to use that N − Id = O(G−3
0 logG0) and the estimates for Êα and Êβ in

Lemma 5.8.16 and for ∆̂0 given by Lemma 5.8.15 and Proposition 5.4.2. One can proceed analogously
for the no average terms {Ẽ}

Now it only remains to express the difference between the invariant manifolds in the variables (u, γ)
(see Theorem 5.8.5).

Lemma 5.8.20. The function ∆(u, γ) introduced in (5.116) can be written as

∆(u, γ) = N (u, γ)
(
∆̂0(u, γ) + E(u, γ)

)
where ∆̂0 is the function introduced in (5.141), N is an invertible matrix satisfying

N = Id +O(G−3
0 logG0) and N21 = O

(
G

−9/2
0 lnG0

)
and E satisfies

|EY | ≲ G−6
0 ln2G0, |EΛ| ≲ e−G

3
0/3G

−5/2
0 ln2G0, |Eα|, |Eβ | ≲ G−6

0 ln2G0.

Moreover, EY , Eα, Eβ and

|EY − ⟨EY ⟩| ≲ e−G
3
0/3G2

0 ln
2G0

|Eα − ⟨Eα⟩|, |Eβ − ⟨Eβ⟩| ≲ e−G
3
0/3G

1/2
0 ln2G0.

The proof of this lemma is straighforward applying the inverse of change of coordinates obtained in
Theorem 5.8.5.

5.8.6 End of the proof of Theorem 5.4.3

Lemma 5.8.20, recalling the expression of ∆̂0 given in Lemma 5.8.15, completes the proof of formulas
(5.37), (5.38), (5.39) in Theorem 5.4.3 (recall the relation between G0 and Θ given in (5.33)). Note,
however that it gives slightly worse estimates compared to those in Theorem 5.4.3. Indeed, Lemma
5.8.20 implies that N is of the form

N = Id +O(Θ−3 logΘ)

and Mα and Mβ satisfy(
Mα(u, γ, z0, δz)
Mβ(u, γ, z0, δz)

)
=

(
−i∂ξ0L(γ − ωu, z0) +O

(
Θ−6 ln2 Θ

)
i∂η0L(γ − ωu, z0) +O

(
Θ−6 ln2 Θ

) ) .
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Below we give the sharper estimates. However, they are enough to obtain the estimates for the derivatives
given in (5.41). Indeed, it is enough to apply Cauchy estimates. Indeed, the formulas (5.37), (5.38), (5.39)
are valid in a domain such that |η0|Θ3/2 ≪ 1 and therefore applying Cauchy estimates one loses Θ3/2 at
each derivative.

Then, it only remains to prove the estimates in (5.36) and (5.40) and the improved estimates for
(5.37), (5.38), (5.39). The first ones are a direct consequence of Theorem 5.7.20. To obtain the estimates
for the derivatives of M in (5.40) we proceed as follows.

First note that, by Theorem 5.7.20, the paramerizations of the invariant manifolds admit an analytic
continuation to the domain

u ∈ Dκ,δ ∩ R, γ ∈ T, |η0| ≤
1

2
, |ξ0| ≤

1

2
. (5.151)

Proceeding analgously, one can also extend analytically to this domain the change of variable Φ obtained
in Theorem 5.8.5. Then, one can easily check that in such domain, the associated function C satisfies

|C| ≲ Θ−4.

(recall (5.33)). Similarly, one can extend the matrix Ψ = Φ̃A(Id + Ψ̃) given by Theorem 5.8.10 to the
same domain, where it satisfies

|Ψ̃| ≲ Θ−3.

Then, one can conclude that the matrix N appearing in Theorem 5.4.3 can be also analytically extended
to (5.151) where it satisfies

N = Id +O(Θ−3).

(see (5.38)). This analysis also gives the improved estimates for Mα and Mβ in (5.39).

Note that the derivatives of C, Ψ̃ and N with respect to (η0.ξ0) have the same estimates in the domain

|η0| ≤
1

4
, |ξ0| ≤

1

4
.

Indeed, it is enough to apply Cauchy estimates. Using these estimates and the estimates of the derivatives
of the parameterizations of the invariant manifolds given by Theorem 5.7.20, one can easily deduce
formulas (5.40).

5.9 The homoclinic channels and the associated scattering maps

We devote this section to prove the results on the scattering maps stated in Section 5.4.3. First, in
Section 5.9.1 we prove Theorem 5.4.5. That is we prove the existence of two homoclinic channels and
we obtain formulas for the associated scattering maps (in suitable domains). Second, in Section 5.9.2 we
prove Theorem 5.4.7 which provides the existence of an isolating block for a suitable high iterate of a
combination of the two scattering maps obtained in Theorem 5.4.5.

5.9.1 The scattering maps: Proof of Theorem 5.4.5

We devote this section to prove the existence and derive formulas for the scattering maps given by
Theorem 5.4.5. Consider two periodic orbits Pη0,ξ0 , Pη0+δη,ξ0+δξ ∈ E∞. We fix a section u = u∗ ∈ (u1, u2)
(which is transverse to the flow) and we analyze the intersection Wu(Pη0,ξ0) and W s(Pη0+δη,ξ0+δξ) in
this section. By the expression (5.30) and Theorem 5.4.3, these invariant manifolds intersect along an
heteroclinic orbit if there exists γ ∈ T such that

Y u(u∗, γ, z0)− Y s(u∗, γ, z0, δz) = 0

Λu(u∗, γ, z0)− Λs(u∗, γ, z0, δz) = 0

αu(u∗, γ, z0)− αs(u∗, γ, z0, δz) = 0

βu(u∗, γ, z0)− βs(u∗, γ, z0, δz) = 0

(5.152)
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where z0 = (η0, ξ0) ∈ D̃ (see (5.44)) and δz = (δη, δξ) satisfies |δz| ≲ Θ3.
Using (5.37) in Theorem 5.4.3, the fact that the matrix N is invertible and energy conservation,

obtaining a zero (γ, δz) of (5.152) is equivalent to obtain a zero (γ, δz) of

MΛ(u
∗, γ, z0, δz) = 0

δη +Mα(u
∗, γ, z0, δz) = 0

δξ +Mβ(u
∗, γ, z0, δz) = 0.

(5.153)

We emphasize that by zeros we mean that for a given z0 and u∗ there exists γ and δz which solve these
three equations.

We first analyze the second and third equations, that is

δη +Mα(u
∗, γ, z0, δz) = 0, δξ +Mβ(u

∗, γ, z0, δz) = 0.

Using the asymptotic expansions for Mα and Mβ given in Theorem 5.4.3, one can obtain (δη, δξ) in
terms of (η0, ξ0) and γ as follows,

δη = δη(u∗, γ, z0) = −i∂ξ0L(γ − ωu∗, η0, ξ0) + P1(u
∗, γ, η0, ξ0)

δξ = δξ(u∗, γ, z0) = i∂η0L(γ − ωu∗, η0, ξ0) + P2(u
∗, γ, η0, ξ0)

(5.154)

where by Proposition 5.4.2, the estimates of M in Theorem 5.4.3, implicit derivation and Cauchy esti-
mates, the functions P1 and P2 satisfy

|∂iη0∂
j
ξ0
Pi| ≤ C(i, j)Θ−6 for i, j ≥ 0

|∂iη0∂
j
ξ0
∂kγPi| ≤ C(i, j, k)Θ1/2−3(i+j)/2e

− ν̃Θ̃3

3L3
0 for i, j ≥ 0, k ≥ 1

(5.155)

for some constants C(i, j) and C(i, j, k).
Now we solve the equation for the Λ component evaluated at (5.154), that is

MΛ(u
∗, γ, z0, δz(u

∗, γ, z0)) = 0.

Note that in the domain D̃ introduced in (5.44), one has that∣∣∣L[−1]
∣∣∣ ≳ Θ− 1

2 .

Then, dividing this equation by the factor (−2L[−1]), one obtains an equation of the form

sin(ωu∗ − γ) +O(Θ−1/2) = 0

which has two solutions

γj = γj(u∗, z0) = ωu∗ + (j − 1)π +O
(
Θ−1/2

)
, j = 1, 2. (5.156)

Moreover, one can apply Cauchy estimates reducing ϱ used in the definition (5.44) of D̃, to obtain that

|∂iη0∂
k
ξ0γ

j | ≤ C(i, k)Θ−1/2−2(i+k) (5.157)

for i, k ≥ 0 and some constant C(i, k) independent of Θ.
Now we obtain asymptotic formulas for the scattering maps. Observe that, recalling the parameteriza-

tion of the invariant manifolds in (5.30), the values (u∗, γj(u∗, z0), z0, δz(u
∗, γj(u∗, z0), z0)), u

∗ ∈ (u1, u2)

and z0 ∈ D̃ (see (5.44)) solving equations (5.153) give rise to heteroclinic points

zjhet = (λjhet(u
∗, z0), w

j
het(u

∗, z0)) ∈Wu(Pz0) ∩W s(Pz0+δzj0
)
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with λjhet = γj(u∗, z0)+ϕh(u
∗). Consequently, denoting by ψ(t, z) the flow of equation (5.20), there exist

λj± such that

ψ
(
t, zjhet

)
− ψ

(
t, λj−, w0

)
→ 0 as t→ −∞ (5.158)

ψ
(
t, zjhet

)
− ψ

(
t, λj+, w0 + δwj0

)
→ 0 as t→ +∞, (5.159)

where w0 = (L0, η0, ξ0,∞, 0) and δwj0 is given by (5.154) with γ = γj(u∗, z0), in the sense that the

asymptotic condition in the r̃ component of ψ
(
t, zjhet

)
means that it becomes unbounded. An important

observation is that, using that the system (5.20) is autonomous, we have that, for any s ∈ R

ψ
(
t+ s, zjhet

)
− ψ

(
t+ s, λj−, w0

)
→ 0 as t→ −∞,

ψ
(
t+ s, zjhet

)
− ψ

(
t+ s, λj+, w0 + δwj0

)
→ 0 as t→ +∞,

and we observe that

ψ
(
t+ s, zjhet

)
= ψ

(
t, ψ(s, zjhet)

)
,

ψ
(
t+ s, λj−, w0

)
= ψ

(
t, ψ

(
s, λj−, w0

))
= (λj− +

ν

L3
0

s, w0),

and analgously for the other periodic orbit.

Calling zjhet(s) = ψ
(
s, zjhet

)
, and λj±(s) = λj± + ν

L3
0
s, we have that

ψ
(
t, zjhet(s)

)
− ψ

(
t, λj−(s), w0

)
→ 0 as t→ −∞

ψ
(
t, zjhet(s)

)
− ψ

(
t, λj+(s), w0 + δwj0

)
→ 0 as t→ +∞.

Therefore, the orbit through zjhet(s) is an heteroclinic orbit between the points (λj−(s), w0) ∈ Pz0 and

(λj+(s), w0 + δwj0) ∈ Pz0+δzj0
, for any s ∈ R. Analogously, given any λ ∈ T, we can choose s through

λ = λj− + ν
L3

0
s and, abusing notation, calling again the heteroclinic point zjhet(λ) := zjhet(s), we have that

ψ(t, zjhet(λ)− ψ(t, λ, w0) → 0 as t→ −∞
ψ(t, zjhet(λ))− ψ(t, λ+∆j , w0 + δwj0) → 0 as t→ +∞

(5.160)

where ∆j = λj+ − λj−. Consequently, the scattering maps are of the form

S̃j :


L0

λ
η0
ξ0

→


L0

λ+∆j

η0 + δηj0
ξ0 + δξj0


where (η0 + δηj , ξ0 + δξj) = Sj(η0, ξ0) are independent of λ and L0 is preserved by the conservation of
the energy (recall that we are omitting the dependence on L0 of all the functions).

Observe that zjhet(λ) = zjhet(λ, η0, ξ0), with (η0, ξ0) ∈ D̃ and λ ∈ T, gives a different parameterization
of the homoclinic chanel introduced in (5.42).

Finally, note that to obtain formulas for Sj one has just to evaluate (5.154) at the solutions γj in
(5.156), to obtain

Sj
(
η0
ξ0

)
=

(
η0 − i∂ξ0L(jπ, η0, ξ0) +O

(
Θ−6

)
ξ0 + i∂η0L(jπ, η0, ξ0) +O

(
Θ−6

)) . (5.161)
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Then, it is enough to use the formulas of the Melnikov potential L given in Proposition 5.4.2 to obtain
the formulas for Sj in Proposition 5.4.5. The estimates for the derivatives of Sj are a consequence of
the estimates for the derivatives of the Melnikov potential in Proposition 5.4.2 and the estimates (5.155),
(5.157).

Finally, Theorem 8 in [DdlLS08] implies that the map S̃j is symplectic. Then, using the particular

form of S̃j one can easily see that Sj is symplectic in the sense that fixing L = L0 it preserves the
symplectic form dη0 ∧ dξ0.

Now it only remains to analyze the fixed points (ηj0, ξ
j
0) of the scattering maps Sj . The particular

form of the fixed points given in (5.47) is just a consequence of (5.161) and the asymptotic expansions

of the Melnikov potential given in Proposition 5.4.2. Note that (ηj0, ξ
j
0) ∈ D̃ where D̃ is the domain in

(5.44).
To prove the asymptotic formula (5.48) for the difference between the two fixed points one cannot use

(5.161) but has to go back to equations (5.153) and analyze them when δη = δξ = 0. In particular,

Mα(u
∗, γj , ηj0, ξ

j
0) = 0, Mβ(u

∗, γj , ηj0, ξ
j
0) = 0.

We subtract the equalities for j = 1 and j = 2 to obtain

Mα(u
∗, γ2, η20 , ξ

2
0)−Mα(u

∗, γ1, η10 , ξ
1
0) = 0 and Mβ(u

∗, γ2, η20 , ξ
2
0)−Mβ(u

∗, γ1, η10 , ξ
1
0) = 0.

Taylor expanding, defining ∆η0 = η20 − η10 , ∆ξ0 = ξ20 − ξ10 and using the estimates in Proposition 5.4.2
and Theorem 5.4.3, we have

Eα + ∂η0M̃α(u
∗, γ2, η10 , ξ

1
0)∆η0 + ∂ξ0M̃α(u

∗, γ2, η10 , ξ
1
0)∆ξ0 +Θ−3O2 (∆η0,∆ξ0) = 0

Eβ + ∂η0M̃β(u
∗, γ2, η10 , ξ

1
0)∆η0 + ∂ξ0M̃β(u

∗, γ2, η10 , ξ
1
0)∆ξ0 +Θ−3O2 (∆η0,∆ξ0) = 0

where

Eα = Mα(u
∗, γ2, η10 , ξ

1
0)−Mα(u

∗, γ1, η10 , ξ
1
0) = −3i

2
ν̃N2

√
πL

7/2
0 Θ̃3/2e

− ν̃Θ3

3L3
0

(
1 +O

(
Θ−1

))
Eβ = Mβ(u

∗, γ2, η10 , ξ
1
0)−Mβ(u

∗, γ1, η10 , ξ
1
0) =

3i

2
ν̃N2

√
πL

7/2
0 Θ̃3/2e

− ν̃Θ3

3L3
0

(
1 +O

(
Θ−1

))
.

Moreover, using again the estimates in Proposition 5.4.2 and Theorem 5.4.3,

∂η0Mα(u
∗, γ2, η10 , ξ

1
0) = −3i

8
ν̃πL3

0Θ̃
−3N2 +O

(
Θ−5

)
∂ξ0Mβ(u

∗, γ2, η10 , ξ
1
0) =

3i

8
ν̃πL3

0Θ̃
−3N2 +O

(
Θ−5

)
and

∂ξ0Mα(u
∗, γ2, η10 , ξ

1
0) = ∂η0Mβ(u

∗, γ2, η10 , ξ
1
0) = O

(
Θ−5

)
.

Then, recalling that N2 ̸= 0 (see (5.35)), it is enough to apply the Implicit Function Theorem.

5.9.2 An isolating block for an iterate of the scattering map: Proof of The-
orem 5.4.7

We devote this section to construct an isolating block for a suitable iterate of the scattering map. That is,
for the map S = (S1)M ◦ S2 for a suitable large M which depends on the size of the block. To construct
the block we need a “good” system of coordinates. We rely on the properties of the scattering maps
obtained in Proposition 5.4.5.

The steps to build the isolating block are

1. Prove the existence of a KAM invariant curve T∗ for S1. To apply KAM Theory we first have to
do a finite number of steps of Birkhoff Normal Form around the elliptic point of S1 and consider
action-angle coordinates.
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2. Prove that the preimage of T∗ by the other scattering map, that is (S2)−1(T∗), intersects transver-
sally T∗.

3. Pick a small “rectangle” whose lower boundary is a piece of the torus T∗ and one adjacent side is
a piece of (S2)−1(T∗).

4. Show that such rectangle has the isolating block property for S = (S1)M ◦ S2.

We start with Step 1. We follow, without mentioning explicitly, all the notation used in Proposition
5.4.5. However, we restrict the scattering maps to much narrower domains (see Lemma 5.9.1 below). In
fact, we consider domains which are balls centered at the fixed points zj0 of the scattering maps obtained
in Proposition 5.4.5 and exponentially small radius. We use the notation for disks introduced in (5.43).
These exponentially small domains are enough to build the isolating block.

Since in this section we need to perform several symplectic transformations to the scattering maps,
we denote them by Φi, i = 1, 2, 3, 4.

Lemma 5.9.1. For Θ ≫ 1 large enough, there exists a symplectic change of coordinates

Φ1 : Dρ/2
(
z10
)
→ Dρ

(
z10
)

with ρ = Θ̃11/2e
− ν̃Θ̃3

3L3
0

such that Φ1(z
1
0) = z10 and S̃1 = Φ−1

1 ◦ S1 ◦ Φ1 is of the form

S̃1(z) = z10 + ei(ω1+C1|z−z10 |
2+C2|z−z10 |

4)(z − z10) +O
(
z − z10

)7
(5.162)

where the ω1 has been introduced in (5.49), the constant C1 = T Θ̃−3 +O
(
Θ̃−5

)
with T as introduced in

(5.50) in Proposition 5.4.5, which satisfies C1 ̸= 0 and C2 such that C2 = O
(
Θ̃−3

)
.

Morover, Φ1 satisfies
Φ1(z) = z + Θ̃−2O

(
z2
)
+O

(
z3
)
.

Proof. The proof of this lemma is through the classical method of Birkhoff Normal Form by (for instance)
generating functions. Fix N ≥ 1. Note that then the small divisors which arise in the process are of the
form |kΘ̃−3 − 1| for k = 1 . . . 2N − 2. Then, taking Θ big enough, they satisfy

|kΘ̃−3 − 1| ≳ Θ−3.

With such estimate and the estimates of the Taylor coefficients of the scattering map S1 given in Propo-
sition 5.4.5, one can easily complete the proof of the lemma.

Next step is the application of KAM Theorem. To this end, we consider action angle coordinates for
S̃1 (centered at the fixed point). Note that the first order of S̃1 in (5.162) is integrable and therefore it
only depends on the action.

Lemma 5.9.2. Fix a parameter ρ ∈
(
0, 12 Θ̃

11/2e
− ν̃Θ̃3

3L3
0

)
and any ℓ ≥ 4. Consider the change of coordi-

nates
z = Φ2(θ, I) = (η10 + ρ

√
Ieiθ, ξ10 + ρ

√
Ie−iθ).

Then, the map Ŝ1 = Φ−1
2 ◦ S̃1 ◦ Φ2 is symplectic with respect to the canonical form dθ ∧ dI and it is of

the form

Ŝ1(θ, I) =

(
θ +B(I) +OCℓ

(
ρ6
)

I +OCℓ

(
ρ6
)
.

)
(5.163)

Moreover, for I ∈ [1, 2], the function B satisfies

B(I) = C0Θ̃
−3 +O

(
Θ̃−4

)
∂IB(I) = ρ2

(
C1Θ̃

−3 +O
(
Θ̃−4

))
∂2IB(I) = O(ρ4),

where C1 ̸= 0 is the constant provided in Lemma 5.9.1 and C0 = ν̃πL4
0A1 (see (5.49)).
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We use the following KAM Theorem from [Her83, Her86] (we use the simplified version already stated
in [DdlLS00])

Theorem 5.9.3. Let f : T1 × [0, 1] → T1 × [0, 1] be an exact symplectic Cℓ map, ℓ ≥ 4. Assume that
f = f0 + δf1, where f(I, θ) = (θ +A(I), I), A is Cℓ and satisfies |∂IA(I)| ≥M and ∥f1∥Cℓ ≤ 1.

Then, if σ = δ1/2M−1 is sufficiently small, for a set of Diophantine numbers with τ = 5/4, we can
find invariant tori which are the graph of Cℓ−3 functions uω, the motion on them is Cℓ−3 conjugate to a
rotation by ω and ∥uω∥Cℓ−3 ≲ δ1/2 and the tori cover the whole annulus except a set of measure smaller
than constantM−1δ1/2.

Note that the map (5.163) in [1, 2] × T satisfies the properties of Theorem 5.9.3 with M ≳ Θ−3ρ
and δ = ρ6 for any regularity Cℓ (the scattering map is actually analytic). This theorem then gives, in

particular, a torus T∗ which is invariant by Ŝ1 and is parameterized as a graph as

T∗ =
{
I = Ψ(θ) = I∗ +OC1(ρ2), θ ∈ T

}
, j = 1, 2, (5.164)

where I∗ satisfies I∗ ∈ [1, 2]. Note that the C1 in the error refers to derivatives with respect to θ.
In the next lemma, we apply several steps of Birkhoff Normal Form around the torus T∗.

Lemma 5.9.4. There exists a symplectic change of coordinates Φ3 satisfying

(I, θ) = Φ3(J, ψ) =
(
ψ +OC1

(
ρ2
)
, J + I∗ +OC1

(
ρ2
))
,

such that {J = 0} = Φ−1
3 (T∗) and the map Ŝ1 becomes

S1(ψ, J) =

(
ψ + B̃(J) +O

(
J2
)

J +O
(
J3
) )

(5.165)

where
B̃(J) = b0 + b1J with b0 = C0Θ̃

−3 +O
(
Θ−4

)
, (5.166)

C0 ̸= 0 is the constant provided in Lemma 5.9.2 and b1 ∈ R satisfies b1 ̸= 0 for Θ large enough.

Now we express the scattering map S2 also in (ψ, J) coordinates to compare them. To this end, we
take

ρ = Θ̃7/2e
− ν̃Θ̃3

3L3
0 (5.167)

The exponent 7/2 is not crucial and one could take any other exponent in the interval (3/2, 11/2).

Lemma 5.9.5. Take ρ of the form (5.167) and Θ large enough. Then, the scattering map S2 expressed
in the coordinates (ψ, J) obtained in Lemma 5.9.4 is of the form

S2(ψ, J) =

(
S2ψ(ψ, J)

S2J(ψ, J)

)
=

(
ψ + f1(ψ) +O (J)
J + g1(ψ) +O (J)

)
where

f1(ψ) = OC1

(
Θ−2

)
and g1(ψ) = C2Θ̃

−2 cosψ +OC1

(
Θ−3 ln2 Θ

)
,

with some constant C2 ̸= 0.

Proof. We need to apply to S2 the changes of coordinates given in Lemmas 5.9.1 and 5.9.2. We first
apply the symplectic transformation Φ1 in Lemma 5.9.1. Then, we obtain that S̃2 = Φ−1

1 ◦ S2 ◦ Φ1 is of
the form

S̃2(z) = Φ−1
1 ◦ S2 ◦ Φ1 = z̃20 + λ2(z − z̃20) + P̃2

(
z − z̃20

)
where z̃20 = Φ−1

1 (z20), and therefore satisfies z̃20 = z20 +O(z20)
2, and P̃2 is a function which satisfies∣∣∣P̃2

(
z − z̃20

)∣∣∣ ≤ C3

∣∣z − z̃20
∣∣2
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for some constant C3 independent of Θ̃.
Now we apply the (scaled) Action-Angle transformation considered in Lemma 5.9.2. To this end,

taking into account (5.48), we define

∆ = η20 − η̃10 = πηΦ
−1
1 (z10)− πηΦ

−1
1 (z20) = − 4√

π
L
1/2
0 Θ̃9/2e

− ν̃Θ̃3

3L3
0

(
1 +O

(
Θ−1 ln2 Θ

))
, (5.168)

where we have used that Φ1 is close to the identity (see Lemma 5.9.1) and πη denotes the projection in
the η-component.

Denoting (θ1, I1) = Ŝ2(θ, I), we obtain (in complex notation)

ρ
√
I1e

iθ1 = −∆+ λ2

(
∆+ ρ

√
Ieiθ

)
+O

(
|∆+ ρ

√
Ieiθ|2

)
= (λ2 − 1)∆ + λ2ρ

√
Ieiθ +O(ρ+∆)2.

Therefore, √
I1e

iθ1 = (λ2 − 1)
∆

ρ
+ λ2

√
Ieiθ +

1

ρ
O(ρ+∆)2.

Now, condition (5.167) and the fact that λ2 = eiω2 , with ω2 = ω0Θ̃
−3 +O(Θ−4), implies that

(λ2 − 1)
∆

ρ
≲ Θ−2 ≪ 1.

Therefore, using also (5.168), (5.49) and the fact |λ2| = 1 (see Proposition 5.4.5), we obtain

I1 = I

∣∣∣∣1 + λ2 − 1

λ2
√
I

∆

ρ
eiθ +

1

ρ
OC1(ρ+∆)2

∣∣∣∣2 = I

(
1 +

C√
I
Θ̃−2 cos θ +OC1

(
Θ−3 ln2 Θ

))
for some constant C ̸= 0 independent of Θ. The notation OC1 refers to derivatives with respect to (θ, I).

The formulas for θ1 can be obtained analogously to obtain the following expansion

Ŝ2(θ, I) =

(
θ +OC1

(
Θ−2

)
I + C2Θ̃

−2
√
I cos θ +OC1

(
Θ−3 ln2 Θ

))
for some constant C2 ̸= 0.

Now it only remains to apply the change of coordinates Φ3 obtained in Lemma 5.9.4, renaming the
constant C2 by C2

√
I∗.

We use the expressions of S1 and S2 given in Lemmas 5.9.4 and 5.9.5 to build the isolating block.
Consider the torus T∗ = {J = 0} which is invariant by S1. Then, we define

T− =
(
S2
)−1

(T∗)

and we denote by Z∗ = (ψ∗, 0) the intersection between T∗ and T− which satisfies

ψ∗ =
π

2
+O

(
Θ−1 ln2 Θ

)
. (5.169)

This point will be one of the vertices of the block and “segments” within T∗ and T− will be two of the
edges of the block.

Lemma 5.9.5 implies that

∂ψS
2
J(ψ∗, 0) = C2Θ̃

−2 +O
(
Θ−3 ln2 Θ

)
̸= 0.

Therefore, in a neighborhood of (ψ∗, 0), the torus T− can be parameterized as

ψ = h(J) for |J | ≪ 1 and h(0) = ψ∗. (5.170)

In other words, there exists a function h satisfying S2J(h(J), J) = 0.
To analyze such block we perform a last change of coordinates so that the segment of T− becomes

vertical.
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Lemma 5.9.6. The symplectic change of coordinates

Φ4 : (ψ, J) = (φ+ h(J), J) for φ ∈ T, |J | ≪ 1,

transforms the scattering maps given in Lemmas 5.9.4 and 5.9.5 into

Ŝ1(φ, J) =

(
φ+ B̃(J) +O

(
J2
)

J +O
(
J3
) )

and Ŝ2(φ, J) =

(
Ŝ2φ(φ, J)

Ŝ2J(φ, J)

)
(5.171)

which satisfies Ŝ2J(0, J) = 0 for |J | ≪ 1.

Note that, since Ŝ2 its a diffeomorphism, it satisfies

b = ∂φŜ
2
J(0, 0) ̸= 0. (5.172)

We use Lemma 5.9.6 and this fact to build the isolating block.
Note that now the point Z∗ = (ψ∗, 0) has become Ẑ∗ = (0, 0) and the chosen two sides of the block

are J = 0 and φ = 0. We consider the block R defined as

R =
{
(φ, J) : 0 ≤ φ ≤ 2b−1κ̃, 0 ≤ J ≤ κ̃

}
for some κ̃≪ 1.

The choice of φ = 2b−1κ̃ is for the following reason. It implies that, for κ̃ small enough,

Ŝ2J(2b
−1κ̃, J) ≥ κ̃ for J ∈ (0, κ̃).

Then,
R′ = Ŝ2(R) ∩ {0 ≤ J ≤ κ̃}

is a “rectangle” bounded by the segments J = 0, J = κ̃ and two other segments of the form φ = hi(J),
i = 1, 2 which satisfy

|h2(J)− h1(J)| ≲ κ̃ for 0 ≤ J ≤ κ̃.

Now, we show that for a suitable M ≫ 1, R is an isolating block for (Ŝ1)M ◦ Ŝ2. To this end, we must
analyze (Ŝ1)M (R′). Note that M will depend on κ̃.

Consider the vertices of the rectangle R′, Zij , i, j = 1, 2, with

Zi1 = (φi1, 0), Zi2 = (φi2, κ̃) with φ1j < φ2j , j = 1, 2.

Note that they satisfy
|φij − φi′j′ | ≲ κ̃, i, j, i′, j′ = 1, 2.

We define
ZMij = (φMij , J

M
ij ) =

(
Ŝ1
)M

(Zij),

which by Lemma 5.9.6 satisfy

JMi1 = 0 and JMi2 = κ̃+MO(κ̃3).

Choosing a suitable M satisfying
1

4b1κ̃
≤M ≤ 1

2b1κ̃
, (5.173)

where b1 is the constant introduced in Lemma 5.9.4, we show that

φM12 − φM21 ≳
1

8
and − 1

16
≤ φM21 ≤ 0. (5.174)

Indeed, for the first one, note that

φM12 − φM21 = φ12 − φ21 +Mb1κ̃+MO(κ̃2) =
1

4
+O(κ̃) ≳

1

8
.

For the second estimate in (5.174) it is enough to choose a suitable M by using the particular form of
the first component of Ŝ1 in Lemma 5.9.6 and the definition of b0 in (5.166).

The estimates in (5.174) implies that R is an isolating block.
Now, we compute DŜ = D[(Ŝ1)M ◦ Ŝ2].
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Lemma 5.9.7. For z = (φ, J) ∈ R, the matrix DŜ(z) is hyperbolic with eigenvalues λ(z), λ(z)−1 ∈ R
with

λŜ(z) ≳ κ̃

Moreover, there exist two vectors fields Vj : R → TR of the form

V1 =

(
1
0

)
, V2 =

(
V21(z)

1

)
with |V21(z)| ≲ κ̃,

which satisfy, for z ∈ R,

DŜ(z)V1 = λŜ(z)
(
V1 + V̂1(z)

)
with |V̂1(z)| ≲ κ̃

DŜ(z)V2(z) = λŜ(z)
−1
(
V2(Ŝ(z)) + V̂2(z)

)
with |V̂2(z)| ≲ κ̃.

Proof. Note that

DŜ1 =

(
1 (b1 +O(κ̃))
0 1

)
+O

(
κ̃2
)

and therefore, since M ∼ κ̃−1,

D(Ŝ1)M =

(
1 Mb1 +O(1)
0 1

)
+MO

(
κ̃2
)
=

(
1 Mb1 +O(1)
0 1

)
+O (κ̃) .

On the other hand, by Lemma 5.9.6, (5.172) and taking into account that Ŝ2 is symplectic,

DŜ2 =

(
η −b−1

b 0

)
+O(κ̃)

for some η ∈ R. Then,

DŜ =

(
Mbb1 −b−1

b 0

)
+O (1) (5.175)

Since this matrix is symplectic (the scattering maps are, see [DdlLS08]), to prove hyperbolicity it is
enough to check that the trace is bigger than 2. Indeed, for (φ, J) ∈ R and κ̃ > 0 small enough,

trDŜ =Mbb1 +O(1) ≳ κ̃−1.

The statements for V1 are straightforward considering the form of DŜ in (5.175). To obtain those for V2
it is enough to invert the matrix DŜ and compute the eigenvector of large eigenvalue.

5.10 A parabolic normal form: Proof of Theorem 5.5.2

The Theorem 5.5.2 will be an immediate consequence of the Lemmas 5.10.1, 5.10.2 and 5.10.3 below.

5.10.1 First step of normal form

The first step of the normal form transforms the “center” variables z so that its dynamics becomes much
closer to the identity in a neighborhood of infinity.

Lemma 5.10.1. For any N ≥ 0, there exist an analytic change of variables of the form

z̃ = z + Z(x, y, z, t),

where Z is a polynomial in (x, y) of order at least 3, even in x, such that equation (5.54) becomes in the
new variables

ẋ = −x3y(1 +Bx2 −By2 +O4(x, y)),

ẏ = −x4(1 + (B − 4A)x2 −By2 +O4(x, y)),

˙̃z = x6ON (x, y).

(5.176)
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where the ON (x, y) terms in the equations of ˙̃z as well as the O4(x, y) are even functions of x. The
constants A and B were introduced in (5.53).

Proof. Equation (5.54) is in the claimed form for N = 0. We proceed by induction. Assume the claim is
true for N , that is, that the equation is

ẋ = −x3y(1 +Bx2 −By2 +O4(x, y)),

ẏ = −x4(1 + (B − 4A)x2 −By2 +O4(x, y)),

ż = x6pN (x, y, a, b, t) + x6ON+1(x, y),

(5.177)

where pN is a homogeneous polynomial in (x, y), even in x, of degree N with coefficients depending on
(z, t).

First, with an averaging step, we can assume that pN does not depend on t. Indeed, given UN such
that ∂tUN = pN − p̃N , where p̃N = ⟨pN ⟩t, the change

z̃ = z + x6UN (x, y, z, t),

transforms equation (5.177) into

ẋ = −x3y(1 +Bx2 −By2 +O4(x, y)),

ẏ = −x4(1 + (B − 4A)x2 −By2 +O4(x, y)),

˙̃z = x6p̃N (x, y, z̃) + x6ON+1(x, y).

(5.178)

Clearly, since pN is even in x, so is Un and then the parity on x of the equation remains the same.
Second, we consider the change

ẑ = z̃ + ZN+3(x, y, z̃),

where ZN+3 is a homogeneous polynomial in (x, y) of degree N+3, even in x, with coefficients depending
on z̃. It transforms equation (5.178) into

ẋ = −x3y(1 +Bx2 −By2 +O4(x, y)),

ẏ = −x4(1 + (B − 4A)x2 −By2 +O4(x, y)),

˙̂z = x3
(
x3p̃N (x, y, ẑ)− y∂xZN+3(x, y, ẑ)− x∂yZN+3(x, y, ẑ)

)
+ x6ON+1(x, y).

Clearly, since ZN+3 is even in x, the parity in x of the equation is preserved.
Since x3p̃N (x, y, ẑ) is an odd polynomial in x, it is in the range of the operator L : CN+3 7→ y∂xCN+3+

x∂yCN+3, acting on homogeneous polynomials of degree N + 3, even in x, the claim follows. Indeed, for
any j, ℓ ≥ 0 such that 2j + ℓ+ 1 = N + 3,

L

(
j∑
i=0

aix
2(j−i)yℓ+2i+1

)
= x2j+1yℓ,

where

a0 =
1

ℓ+ 1
and ai = (−1)i

(2j) · · · (2j − 2i+ 2)

(ℓ+ 1) · · · (ℓ+ 1 + 2i)
, i ≥ 1.

5.10.2 Second step of normal form: straightening the invariant manifolds of
infinity

Here we use the invariant manifolds of the periodic orbits Pz0 to find coordinates in which these manifolds
are the coordinate planes.

Let K ⊂ R2 be a fixed compact set. Given ρ > 0, we denote by Kρ
C, a neighborhood of K in C2 such

that Re z ∈ K and |Im z| < ρ, for all z ∈ Kρ
C. Given δ, σ, ρ > 0, we consider the domain

Uδ,ρ = {(q, p, z, t) ∈ C× C× C2 × C | |Im q| < δRe q, |Im p| < δRe p,

∥(q, p)∥ < ρ, z ∈ Kρ
C, |Im t| < σ}. (5.179)
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Lemma 5.10.2. There exists a C∞ change of variables of the form (q, p, z) 7→ (q, p, z)+O2(q, p), analytic
in a domain of the form (5.179), that transforms equation (5.176) into

q̇ = q((q + p)3 +O4(q, p)), ż = qpON+4(q, p),

ṗ = −p((q + p)3 +O4(q, p)), ṫ = 1.
(5.180)

Equation (5.180) is analytic in Uδ,ρ, for some δ, ρ > 0, and C∞ at (q, p) = (0, 0).

Proof. We start by straightening the tangent directions of the topological saddle in (5.176). We introduce

(q, p, z) = ((x− y)/2, (x+ y)/2, z).

In these variables, equation (5.176) becomes

q̇ = (q + p)3
(
q − 2Aq3 − 6

(
A− 2B

3

)
q2p− 6Aqp2 − 2Ap3 +O((q + p)5)

)
,

ṗ = −(q + p)3
(
p+ 2Aq3 + 6

(
A− 2B

3

)
q2p+ 6Aqp2 + 2Ap3 +O((q + p)5)

)
ż = (q + p)6ON (q, p).

(5.181)

This equation is analytic and 2π-periodic in t in a neighborhood U of {q = p = 0, z ∈ R2, t ∈ R} in
C× C× C2 × C.

Let σ > 0, ρ > 0 be such that {∥(q, p)∥ < ρ} × Kρ
C × {|Im t| < σ} ⊂ U . Let z0 ∈ K. We claim

that that the periodic orbit Pz0 of (5.181) has invariant stable and unstable manifolds which admit
parametrizations γs,u(·, t; z0) of the form

(p, z) = γu(q, t; z0) =

(
A

2
q3 +O(q4), z0 +O(qN+3)

)
,

(q, z) = γs(p, t; z0) =

(
A

2
p3 +O(p4), z0 +O(pN+3)

)
,

(5.182)

where γs,u are analytic in

V uδ,ρ = {(q, t, z0) ∈ C3 | |Im q| < δRe q, |q| < ρ, |Im t| < σ, z0 ∈ Kρ
C},

V sδ,ρ = {(p, t, z0) ∈ C3 | |Im p| < δRe p, |p| < ρ, |Im t| < σ, z0 ∈ Kρ
C},

for some δ, ρ, σ > 0 and are of class C∞ at q = 0 and p = 0, respectively.
We prove the claim for γu, being the one for γs analogous. First we remark that, if γu exists and is

C∞ at q = 0, substituting in the vector field an imposing the invariance condition, one obtains that it
must be of the form given by (5.182).

We change the sign of time in (5.181). With the introduction of the new variables

z̃ =
1

q + p
(z − z0),

equation (5.181) becomes

q̇ = −q(q + p)3 +O((q + p)6),

ṗ = p(q + p)3 +O((q + p)6),

˙̃z = z̃(q − p)(q + p)2 + z̃O5(q, p) +ON+5(q, p)

(5.183)

where the vector field is analytic in U .
The results in [BFdlLM07] and [GSMS17] imply that the parabolic periodic orbit (q, p, z̃) = (0, 0, 0)

of (5.183), which is parabolic, has an invariant stable manifold, parametrized by

(q, p, z̃) = γ̃(u, t, z0) = (u+O(u2),O(u2),O(u2)) (5.184)
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with γ̃ analytic in Ṽδ,ρ = {|Imu| < δ|Reu|, |u| < ρ, |Im t| < σ, z0 ∈ Kρ
C}, for some δ, ρ, σ > 0 and of class

C∞ at u = 0. Since (5.183) has the time reversed, γ̃ corresponds to the unstable manifold of (5.182).
We can invert the first component of (5.184), q = πqγ̃(u, t, z0), to obtain u = q + U(q, t, z0), defined and
analytic in

V uδ′,ρ′ = {(q, t, z0) ∈ C3 | |Im q| < δ′Re q, |q| < ρ′, |Im t| < σ, z0 ∈ Kρ′

C },
for any 0 < δ′ < δ and some 0 < ρ′ < ρ, and is C∞ in V uδ′,ρ′ ∪ {0}8. Hence, the stable manifold of
(q, p, z̃) = (0, 0, 0) of (5.183), and therefore the unstable one of (5.182), can be written as a graph as

(p, z̃) = γ̂(q, t, z0) = πp,z̃ γ̃(q + U(q, t, z0), t, z0) = O(q2).

We claim that πz̃ γ̂(q, t, z0) = O(qN+2).
Indeed, assume that πz̃ γ̂(q, t, z0) = aLq

L +O(qL+1). It is clear that L ≥ 2. But, denoting by X the
vector field in (5.183), since the graph of γ̂ is invariant, it satisfies

− LaLq
L+3 +O(qL+4) =

∂

∂q
πz̃ γ̂(q, t, z0)Xq(q, γ̃(q), t)

= Xz̃(q, γ̃(q), t) = aLq
L+3 + aLO(qL+5) +O(qN+5),

from which the claim follows.
Going back to z = z0 + (q + p)z̃ we obtain that (p, z) = γu(q, t, z0) = (O(q2), z0 + O(qN+3)) is a

parametrization of the unstable manifold of Pz0 . Substituting this expression into (5.181), one obtains
that O(q2) = A

2 q
3 +O(q4), which proves the claim for γu in (5.182).

Now we straighten the invariant manifolds using the functions γu and γs in (5.182). We claim that
there exist variables (q, p, z) in which equation (5.181) becomes

q̇ = q((q + p)3 +O4),

ṗ = −p((q + p)3 +O4),

ż = qpON+4(q, p),

(5.185)

being defined and analytic in a domain of the form (5.179) and is C∞ at (q, p) = (0, 0). We will apply
two consecutives changes of variables, each of them straightening one invariant manifold.

Let zu0 (q, z, t) = z +ON+3(q) be such that

z = πzγ
u(q, t; zu0 (q, z, t)),

which is also analytic on V uδ,ρ, C∞ at q = 0. We define the new variables (q̃, p̃, z̃) = Ψ−1
1 (q, p, z, t) by

q̃ = q,

p̃ = p− πpγ
u(q, t; zu0 (q, z, t)) = p− A

2
q3 +O4(q),

z̃ = zu0 (q, z, t) = z +ON+3(q).

(5.186)

Again, it is easy to see that the map

Ψ1(q̃, p̃, z̃, t) =

 q̃

p̃+ ψp̃1(q̃, z̃, t)
z̃ + ψz̃1(q̃, z̃, t)

 =

 q̃
p̃+ A

2 q̃
3 +O4(q̃)

z̃ +ON+3(q̃)


is analytic in the domain

Wu
δ,ρ = {(q̃, p̃, z̃, t) ∈ C4 | |q̃|, |p̃| ≤ ρ, Re p̃ ≥ 0, |Im q̃| < δRe q̃, z̃ ∈ Kρ

C, t ∈ Tσ}. (5.187)

8This claim can be proven as follows. U is trivially C∞ at u = 0. Observe that the function U is the solution of the
fixed point equation U = F (U), with F (U)(q, t, z0) = −φ(q + U(q, t, z0), t, z0) and φ = πq γ̃. Since φ(u, t, z0) = O(u2) and

is analytic in Ṽδ0,ρ0 , we have that, for any 0 < δ′ < δ and 0 < ρ′ < ρ, ∂uφ(u, t, z0) = O(u) in Ṽδ′,ρ′ . Using this fact, it is

immediate to see that F is a contraction with the norm ∥φ∥2 = sup(q,t,z0)∈V u
δ′,ρ′′

|q−2U(q, t, z)|, if ρ′′ is small enough.
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for some γ, ρ, σ > 0. Moreover, since Ψ1|q̃=0 is the identity (and trivially it is analytic in {|p̃| < ρ, z̃ ∈
Kρ

C, t ∈ Tσ}). Observe that we are considering q̃ with Re q̃ ≥ 0.
Observe that, in these variables, the unstable manifold is given by p̃ = 0. We claim that, in these

variables, equation (5.181) becomes
˙̃q = q̃(q̃ + p̃)3 +O4,

˙̃p = −p̃((q̃ + p̃)3 +O4),

˙̃z = p̃ON+5(q̃, p̃),

(5.188)

Indeed, the claim for ˙̃q is an immediate substitution. To see the claim for z̃, we observe that, on the
unstable manifold, z̃ is constant and equal to z0. Hence

˙̃z =
d

dt
zu0 (q, z, t) = ∂qz

u
0 (q, z, t)q̇ + ∂zz

u
0 (q, z, t)ż + ∂tz

u
0 (q, z, t) = ON+6(q, p) + ∂tz

u
0 (q, z, t).

Since ˙̃z|p̃=0 = 0, ∂tz
u
0 (q, z, t) = ON+6(q) and the claim follows. Then the claim for ˙̃p is an immediate

substitution.
Observe that the composition γs ◦Ψ1, where γ

s(p, t; z0) is the function in (5.182), is well defined and
analytic in Wu

δ′,ρ′ , for 0 < δ′ < δ/3 and ρ′ small enough. Indeed, if (q̃, p̃, z̃, t) ∈ Wu
δ′,ρ′ , using the the

function A in (5.53) is real analytic and positive for real values of z ∈ Kρ
C,

πp̃Ψ1(q̃, 0, z̃, t) =
A

2
q̃3 +O(q̃4) ∈ V sδ,ρ,

and Reπp̃Ψ1(q̃, 0, z̃, t) > 0, which implies that, for any p̃ ∈ V sδ,ρ with Re p̃ ≥ 0, p̃+ A
2 q̃

3 +O(q̃4) ∈ V sδ,ρ.
It can be seen with the same type of fixed point argument that the stable manifold (q, z) = γs(p, t, z0)

in (5.182) can be written in the variables (q̃, p̃, z̃) as

(q̃, z̃) = γ̃s(p̃, t; z0) =

(
A

2
p̃3 +O(p̃4), z0 +O(p̃N+3)

)
, (5.189)

analytic in

V sδ′′,ρ′′ = {(p̃, t, z0) ∈ C3 | |Im p̃| < δ′′Re p̃, |p̃| < ρ′′, |Im t| < σ, z0 ∈ Kρ′′

C },

for some 0 < δ′′ < δ′, 0 < ρ′′ < ρ′.
Now, repeating the same arguments, we obtain a change of variables (q̂, p̂, ẑ) = Ψ−1

2 (q̃, p̃, z̃, t) such
that

Ψ2(q̂, p̂, ẑ, t) =

q̂ + ψq̂2(p̂, ẑ, t)
p̂

ẑ + ψẑ2(p̂, ẑ, t)

 =

q̂ + A
2 p̂

3 +O4(p̂)
p̂

ẑ +ON+3(p̂)


is analytic in the domain

W s
δ,ρ = {(q̂, p̂, ẑ, t) ∈ C4 | |q̂|, |p̂| ≤ ρ, Re p̂ ≥ 0, |Im p̂| < δRe p̂, ẑ ∈ Kρ

C, t ∈ Tσ}. (5.190)

for some γ, ρ, σ > 0 (smaller than δ′′ and ρ′′). Moreover, Ψ2|q̃=0 is analytic in {|p̃| < ρ, z̃ ∈ Kρ
C, t ∈ Tσ}.

This change is the identity on the unstable manifold. The previous arguments show that equation (5.176)
in the (q̂, p̂, ẑ) variables has the form (5.180).

The change of variables Ψ1 ◦Ψ2 is then analytic in Uδ,ρ, defined in (5.179), for some δ, ρ > 0.

5.10.3 Third step of normal form

Next lemma provides a better control of the dynamics of z = (a, b) close to (q, p) = (0, 0).
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Lemma 5.10.3. Let N ≥ 2 be fixed. For any 1 ≤ k < (N + 1)/2, there exists a change of variables

Φ(q, p, z, t) = (q, p, z +ON+3(q, p), t),

analytic in a domain of the form (5.179) and of class CN+2 at (q, p) = (0, 0) such that equation (5.180)
becomes, in the new variables,

q̇ = q((q + p)3 +O4),

ṗ = −p((q + p)3 +O4),

ż = qkpkON+6−2k,

ṫ = 1,

(5.191)

where z = (a, b).

Proof. We prove the claim by induction. The case k = 1 is given by Lemma 5.10.2. We observe that, since
equation (5.180) is analytic in Uδ,ρ and C∞ at (0, 0), the z component of the vector field, qpON+4(q, p),
can be written as

qpON+4(q, p) =
∑

0≤j<⌊N+2
2 ⌋

(qp)j+1(QN+4−2j(q, z, t) + PN+4−2j(p, z, t)) + (qp)⌊
N+4

2 ⌋O2(q, p),

where the functions QN+4−2j(u, z, t), PN+4−2j(u, z, t) = O(uN+4−2j), 0 ≤ j < ⌊N+4
2 ⌋, are analytic in a

domain of the form

Vδ,ρ = {(u, z, t) ∈ C3 | |Imu| < δReu, |u| < ρ, |Im t| < σ, z ∈ Kρ
C},

for some δ, ρ > 0.
Assume that the equation is in the form

q̇ = q((q + p)3 +O4),

ṗ = −p((q + p)3 +O4),

ż = qkpkOM (q, p),

(5.192)

where M = N + 6− 2k > 5 and is analytic in Uδ,ρ. We write the terms OM (q, p) = RM (q, p, z, t) as

RM (q, p, z, t) = QM (q, t, z) + PM (p, t, z) + R̃M (q, p, t, z),

where
QM (q, t, z) = RM (q, 0, z, t) = OM (q), PM (p, t, z) = RM (0, p, z, t) = OM (p).

It is clear that R̃M (q, p, t, z) = qpOM−2(q, p).
We perform a change a variables to get rid of the term QM and PM of the form

z̃ = z + qkpk(A(q, z, t) +B(p, z, t)). (5.193)

The equation for z̃ becomes
˙̃z = qk+1pk+1OM−2(q, p)

if

QM + h4A+ f∂qA+ ∂tA = 0, (5.194)

PM + h̃4B + f̃∂qB + ∂tB = 0, (5.195)

where, from (5.192),

k(q̇p+ qṗ) = qp(h4(q, z, t) + h̃4(p, z, t) + qpĥ2(q, p, z, t)) (5.196)
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with h4(q, z, t) = O4(q), h̃4(p, z, t) = O4(p) and ĥ2(q, p, z, t) = O2(q, p), and

f(q, z, t) = q̇|p=0 = q4 +O5(q),

f̃(p, z, t) = ṗ|q=0 = −p4 +O5(p).
(5.197)

The functions f, h4, QM and f̃ , h̃4, PM are defined respectively in the sectors

V = {|Im q| < δRe q, |q| < ρ, |Im t| < σ, z ∈ Kρ
C},

Ṽ = {|Im p| < δRe p, |p| < ρ, |Im t| < σ, z ∈ Kρ
C}.

Lemma 5.10.4. If ρ is small enough, equations (5.194) and (5.195) admit analytic solutions A, B,

defined in V and Ṽ , such that

sup
(q,z,t)∈V

|q−(M−3)A(q, z, t)|, sup
(p,z,t)∈Ṽ

|p−(M−3)B(p, z, t)| <∞.

respectively,

Proof of Lemma 5.10.4. We prove the claim for (5.194), being the proof for (5.195) analogous.
We consider the change of variables q = q(u), where q(u) satisfies

dq

du
= f(q, z, t).

Since f(q, z, t) = q4 +O5(q), we have that

q(u) = − 1

(3u)1/3
(1 +O(u−1/3)).

It transforms (5.194) into

LA = −Q̂M − ĥ4A, (5.198)

where
LA = ∂uA+ ∂tA (5.199)

and Q̂M (u, z, t) = QM (q(u), z, t) and ĥ4(u, z, t) = h4(q(u), z, t) are defined in

V̂ = {Reu < −1/(3ρ3), |Imu| < 3 arctan γ|Reu|, |Im t| < σ, z ∈ KC}.

We introduce the Banach spaces

Xκ = {α : V̂ → C | ∥α∥κ <∞}

where, writing α(u, z, t) =
∑
ℓ∈Z α

[ℓ](u, z)eiℓt,

∥α∥κ =
∑
ℓ∈Z

sup
(u,z)∈U

|uκα[ℓ](u, z)|eσ|ℓ|,

and
U = {Reu < −1/(3ρ3), |Imu| < 3 arctan γ|Reu|, z ∈ KC}.

The following properties of the spaces Xκ are immediate:

1. if α ∈ Xκ and α̃ ∈ Xκ̃, αα̃ ∈ Xκ+κ̃ and

∥αα̃∥κ+κ̃ ≤ ∥α∥κ∥α̃∥κ̃,

2. if α ∈ Xκ, for all κ̃ ≤ κ, α ∈ Xκ̃ and

∥α∥κ̃ ≤ 3κ−κ̃ρ3(κ−κ̃)∥α∥κ.
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It is clear that Q̂M ∈ XM/3 and ĥ4 ∈ X4/3. The following lemma, whose proof is omitted, is a
simplified version of Lemma 5.7.10.

Lemma 5.10.5. Let β ∈ Xκ, with κ > 1. The equation Lα = β has a solution G(β) ∈ Xk−1 with
∥G(β)∥k−1 ≤ ∥β∥k.

Using Lemma 5.10.5, we can rewrite equation (5.198) as the fixed point equation

A = G(−Q̂M − ĥ4A).

But, since M > 5, the right hand side above is a contraction in XM/3−1 if ρ is small enough, since, by 1.
and 2.,

∥G(−Q̂M − ĥ4A)− G(−Q̂M − ĥ4Ã)∥M/3−1 ≤ ∥ĥ4(A− Ã)∥M/3

≤ ∥ĥ4∥1∥(A− Ã)∥M/3−1 ≤ 31/3ρ∥ĥ4∥4/3∥(A− Ã)∥M/3−1.

Finally, since u(q) = 1/(3q3) +O(q−2), the lemma follows.

Now we can finish the proof of Lemma 5.10.3. With the choice of A and B given by Lemma 5.10.4,
the change of variables (5.193) transforms (5.192) into a equation of the same form with k replaced by
k + 1 and M by M − 2. Notice that this change of variables, since it is analytic in a sectorial domain of
the form (5.179) and is of order OM+2k−3(q, p) = ON+3(q, p), it is of class C

N−2 at (q, p) = (0, 0). The
composition of the vector field with the change is well defined in a sectorial domain of the form (5.179),
with γ replaced with any 0 < γ′ < γ, if ρ is small enough. Hence the lemma is proven.

5.11 The parabolic Lambda Lemma: Proof of Theorem 5.5.4

The proof of Theorem 5.5.4 will be a consequence of the following technical lemmas and is deferred to
the end of this section. To simplify the notation in this section we denote Ψ = Ψloc.

Let K > 0 be such that the terms Ok in (5.55) satisfy

∥Ok∥ ≤ K∥(q, p)∥k, (q, p, z, t) ∈ Vρ ×W × T.

This bound is also true for (q, p, z, t) ∈ Bρ ×W × T, being Bρ = {(q, p) | |q|, |p| < ρ}.
We express system (5.55) in a new time in which the topological saddle is a true saddle. Indeed,

since the solutions of (5.55) with initial condition (q0, p0, z0, t0) ∈ Bρ ×W × T with q0, p0 ≥ 0 satisfy
q(t) + p(t) > 0 while they belong to Bρ ×W × T, we can write equations (5.55) in the new time s such
that dt/ds = (q + p)−3. System (5.55) becomes

q′ = q(1 +O1(q, p)),

p′ = −p(1 +O1(q, p)),

z′ = qNpNO1(q, p),

t′ =
1

(q + p)3
,

(5.200)

where ′ denotes d/ds. The O1(q, p) terms are uniformly bounded in terms of (q, p) in Vρ ×W × T.
Given K ⊂W , for w0 = (q0, p0, z0, t0) ∈ Vρ ×K × T, we define

sw0
= sup {s > 0 | w(s̃) ∈ Vρ ×W × T, ∀s̃ ∈ [0, s)}, (5.201)

where w is the solution of (5.55) with initial condition w0.
Next lemma implies Item 1 of Theorem 5.5.4.
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Lemma 5.11.1. Let K ⊂ W be a compact set. There exists ρ and C > 1 such that the solution
w = (q, p, z, t) of (5.200) with initial condition w0 = (q0, p0, z0, t0) ∈ Vρ ×K × T satisfies

log

((
ρ

q0

) 1
1+Cρ

)
≤ sw0

≤ log

((
ρ

q0

) 1
1−Cρ

)
.

Moreover, for any 0 < a ≤ ρ and 0 < δ < a/2, the Poincaré map

Ψ : Λ−
a,δ(K) → Λ+

a,δ1−Ca(W ),

where the sets Λ±
a,δ(K) are defined in (5.57), is well defined and, if w = (q0, a, z0, t0) ∈ Λ−

a,δ(K) and
Ψ(w) = (a, p1, z1, t1), then

q1+Ca0 ≤ p1 ≤ q1−Ca0 ,

|z1 − z0| ≤
1

2N
aN(1+3Ca)q

N(1−3Ca)
0 ,

C̃1q
−3(1−Ca)/2
0 ≤ t1 − t0 ≤ C̃2q

−3(1+Ca)/2
0

(5.202)

for some constants C̃1, C̃2 > 0 depending only on a.

Proof. Let w0 = (q0, p0, z0, t0) ∈ Vρ × K × T and w = (q, p, z, t) the solution of (5.200) with initial
condition w0 at s = 0. Since q0, p0 > 0, while w ∈ Vρ ×W × T, q, p > 0. Hence, there exists C > 0,
depending only on ρ and W , such that

(1− Cρ)q ≤ q′ ≤ (1 + Cρ)q,

−(1 + Cρ)p ≤ p′ ≤ −(1− Cρ)p,

−CρqNpN ≤ z′i ≤ CρqNpN , i = 1, 2.

(5.203)

Since p is decreasing and {p = 0} is invariant, w can only leave Vρ ×W × T if q = ρ or z leaves W .
From (5.203), we have that for all s such w(s̃) ∈ Vρ ×W × T for all s̃ ∈ [0, s),

q0e
(1−Cρ)s ≤ q(s) ≤ q0e

(1+Cρ)s,

p0e
−(1+Cρ)s ≤ p(s) ≤ p0e

−(1−Cρ)s (5.204)

and

|zi(s)− zi(0)| ≤
1

2N
qN0 p

N
0

(
e2NCρs − 1

)
, i = 1, 2. (5.205)

In particular, the time sq0,q to reach q from q0 is bounded by

log

(
q

q0

) 1
1+Cρ

≤ sq0,q ≤ log

(
q

q0

) 1
1−Cρ

, (5.206)

but, up to this time, for i = 1, 2, since 0 < q0, p0, q < ρ < 1,

|zi(sq0,q)− zi(0)| ≤
1

2N
qN0 p

N
0

(
q

q0

) 2NCρ
1−Cρ

=
1

2N
q
N 1−3Cρ

1−Cρ

0 pN0 q
2NCρ
1−Cρ ≤ 1

2N
ρ2N . (5.207)

Hence, taking ρ small enough depending on K, the solution through w0 remains in Vρ ×W × T for all s
such that

0 < s < sw0 < log

(
ρ

q0

) 1
1−Cρ

.

Moreover, (5.207) ensures that the solution leaves Vρ ×W × T through q = ρ.
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The time sq0,q to reach q from q0 is bounded by below by

sq0,q ≥ log

(
q

q0

) 1
1+Cρ

, (5.208)

putting q = ρ in (5.208) we obtain the lower bound for sw0
.

Consequently, for any 0 < δ < a < ρ, if w0 ∈ Λ−
a,δ(K), the solution through w0 satisfies q = a at a

time s∗ bounded by

log

(
a

q0

) 1
1+Ca

≤ s∗ ≤ log

(
a

q0

) 1
1−Ca

. (5.209)

From (5.204) with an analogous argument replacing ρ by a, this solution satisfies

q1+2Ca
0 ≤ p0

(
a

q0

)−1−Ca
1−Ca

≤ p0e
−(1+Ca)s∗ ≤ p(s∗) ≤ p0e

−(1−Ca)s∗ ≤ p0

(
a

q0

)−1+Ca
1+Ca

≤ q1−2Ca
0

and, for i = 1, 2,

|zi(s∗)− zi(0)| ≤
1

2N
aN

1+Ca
1−Ca q

N(1−3Ca)
0 .

It only remains to estimate t(s∗)− t0. Since

t(s∗)− t0 =

∫ s∗

0

1

(q + p)3
ds,

0 < q0 < δ, p0 = a and 2δ < a, we have that

t(s∗)− t0 ≥
∫ s∗

0

1

(q0e(1+Ca)s + p0e−(1−Ca)s)3
ds

=

∫ s∗

0

e−3Cas

(q0es + p0e−s)3
ds

≥
(q0
a

) 3Ca
1+Ca

∫ s∗

0

1

(q0es + p0e−s)3
ds

=
(q0
a

) 3Ca
1+Ca 1

(q0p0)3/2

∫ s∗−log(p0/q0)
1/2

− log(p0/q0)1/2

1

(eσ + e−σ)3
dσ

≥ 1

a3(1+Ca)/2
1

q
3(1−Ca)/2
0

∫ (1−Ca)(log 2)/(2(1+C)a)

−(log 2)/2

1

(eσ + e−σ)3
dσ.

With an analogous argument one obtains the upper bound of t(s∗)− t0.

Let w = (q, p, z, t) be a solution of (5.55) with initial condition w0 ∈ Vρ ×K × T. We define

τ = p/q (5.210)

and, from now on, abusing notation we denote Oi = Oi(q, p).
Clearly, 0 < τ(s) <∞, for all s such that w ∈ Vρ ×K × T. It is immediate from (5.200) that

dτ

ds
= −(2 +O1)τ. (5.211)

The variational equations around a solution of system (5.55) are
Q̇

Ṗ

Ż

Ṫ

 =


(q + p)2(4q + p+O2) (q + p)2q(3 +O1) qO4 qO4

−(q + p)2p(3 +O1) −(q + p)2(q + 4p+O2) pO4 pO4

qN−1pNO4 qNpN−1O4 qNpNO4 qNpNO4

0 0 0 0



Q
P
Z
T

 , (5.212)
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where Z = (Z1, Z2).
In order to prove item 2) of Theorem 5.5.4, we will have to study the behavior of the solutions of (5.212)

with initial condition Q = Q0 ̸= 0 along solutions of (5.55) with initial condition w0 = (q0, p0, z0, t0) ∈
U ∩ {q > 0, p > 0} which will be taken with p0 small but fixed and q0 arbitrarily close to 0.

Equations (5.212) become, in the time s in which (5.200) are written and using τ in (5.210) ,
Q′

P ′

Z ′

T ′

 =


4+τ+O1

1+τ
3+O1

1+τ qO1 qO1

− (3+O1)τ
1+τ − 1+4τ+O1

1+τ pO1 pO1

qN−1pNO1 qNpN−1O1 qNpNO1 qNpNO1

0 0 0 0



Q
P
Z
T

 . (5.213)

It will be convenient to perform a linear change of variables to (5.213).

Proposition 5.11.2. There exists α∗, with 0 < α∗ < 6/5 such that for any ρ > 0 small enough, any
w = (q, p, z, t), solution of (5.200) with w|s=0 = w0 = (q0, p0, z0, t0) ∈ Vρ ×K × T and any α∗

0 ∈ [0, α∗],
there exists a CN function α : [0, sw0

] → R, where sw0
was introduced in (5.201), with α(0) = α∗

0, such
that, in the new variables

P̃ = P + αQ,

system (5.212) becomes
Q′

P̃ ′

Z ′

T ′

 =


4+τ+O1

1+τ − α 3+O1

1+τ
3+O1

1+τ qO1 qO1

0 − 1+4τ+O1

1+τ + α 3+O1

1+τ pO1 pO1

qN−1pNO1 qNpN−1O1 qNpNO1 qNpNO1

0 0 0 0



Q

P̃
Z
T

 . (5.214)

Furthermore, for s ∈ (0, sw0
],

0 < α(s) <
2τ(s)

1 + τ(s)
. (5.215)

Proof. Given α and P̃ = P + αQ, since τ > 0, the equation for P̃ is

P̃ ′ =

(
− (3 +O1)τ

1 + τ
+ α′ + (5 +O1)α− α2 3 +O1

1 + τ

)
Q

+

(
−1 + 4τ +O1

1 + τ
+ α

3 +O1

1 + τ

)
P̃ + (p+ αq)O1Z + (p+ αq)O1T, (5.216)

The claim will follow finding an appropriate solution of

α′ = ν0 + ν1α+ ν2α
2, (5.217)

where

ν0 =
(3 +O1)τ

1 + τ
, ν1(s) = −5 +O1, ν2 =

3 +O1

1 + τ
. (5.218)

Let f(w,α) = ν0 + ν1α+ ν2α
2 be the right hand side of (5.217), where we have omitted the dependence

of νi, i = 1, 2, 3 on w. We introduce α0 and α1, the nullclines of (5.217), by

f(w,α) = ν2(α− α0(τ))(α− α1(τ)),

and R, where

α0(τ) = − ν1
2ν2

(
1−

(
1− 4

ν0ν2
ν21

)1/2
)

=

(
5

6
+O1

)(
1 + τ −

(
(1 + τ)2 −

(
36

25
+O1

)
τ

)1/2
)

=

(
5

6
+O1

)(
1 + τ −

√
R(τ)

)
.

(5.219)

To complete the proof of Proposition 5.11.2, we need the following two auxiliary lemmas.
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Lemma 5.11.3. The function α0 has the following properties. For (q, p) ∈ Vρ (that is, 0 < τ <∞),

1. 4/5 +O1 ≤
√
R(τ)/(1 + τ) < 1,

2. limτ→∞ α0(τ) = 3/5 +O1,

3. limτ→0 α0(τ)/τ = 3/5 +O1,

4.
d

ds
α0 = −(1 +O1)

√
R− τ + 1 +O1√

R
α0,

5.

− (2 +O1)α0√
R

≤ d

ds
α0 ≤ − (32/25 +O1)α0√

R

6. and limτ→0(dα0/ds)/α0 = −2 +O1.

Furthermore,

0 < α0(τ) <
τ

1 + τ
. (5.220)

Proof. Items 1 to 6 are proven in [GK12]. The rather crude bound (5.220) is a straightforward compu-
tation.

Next lemma provides solutions of (5.217) close to the nullcline α0.

Lemma 5.11.4. For any 0 < ρ < 1 small enough, the following is true. For any solution w = (q, p, z, t)
of (5.55) with initial condition w0 ∈ Vρ×K×T, if α is a solution of (5.217) with 0 ≤ α(s0) ≤ 2α0(τ(s0))
for some 0 < s0 < sw0 , then 0 < α(s) < 2α0(τ(s)) for all s ∈ [s0, sw0 ].

Proof of Lemma 5.11.4. We only need to proof that α satisfies

(i)
dα

ds |α=0
> 0, (ii)

dα

ds |α=2α0

< 2
dα0

ds
.

Item (i) follows from
dα

ds |α=0
= ν0 > 0.

Now we prove (ii). Using 5 of Lemma 5.11.3, (ii) is implied by

dα

ds |α=2α0

=
3 +O1

1 + τ
α0(2α0 − α1)

=
3 +O1

1 + τ
α0

(
α0 −

(
5

3
+O1

)√
R

)
< −2

2 +O1√
R

α0,

which, since α0 > 0, is equivalent to

3 +O1

1 + τ

(
α0 −

(
5

3
+O1

)√
R

)
< −4 +O1√

R
, (5.221)

for 0 < τ . Taking into account the definition of α0, (5.221) is equivalent to prove(
15

2
+O1

)
R− (4 +O1)(1 + τ) >

(
5

2
+O1

)
(1 + τ)

√
R,
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for 0 < τ , which is equivalent to((
15

2
+O1

)
R− (4 +O1)(1 + τ)

)2

−
(
5

2
+O1

)2

(1 + τ)2R > 0.

If we disregard the O1 terms, which are small if ρ is small, the above inequality simply reads

50τ4 − 13τ3 +
826

25
τ2 − 75

3
τ + 6 = τ2

(
50τ2 − 13τ +

76

25

)
+ 30τ2 − 75

3
τ + 6 > 0.

But the above inequality holds, since 50τ2 − 13τ + 76
25 > 0 and 30τ2 − 75

3 τ + 6 > 0.

Let α be any solution of (5.217) with α(0) ∈ [0, 2α0(τ(0))], which, by the definition of τ and Item 2
in Lemma 5.11.3, is a nonempty interval (recall that τ(0) ≫ 1). By Lemma 5.11.4, α is well defined for
s ∈ [0, sw0

] and 0 < α(s) < 2α0(τ(s)). Then, bound (5.220) implies (5.215). System (5.214) is obtained
by a straightforward computation. Observe that, by (5.220), the terms (p+ αq)O1 in (5.216) are indeed
pO1.

Lemma 5.11.5. Choose N > 10 in Theorem 5.5.2. LetW and K be the sets considered in Theorem 5.5.4.
Let w = (q, p, z, t) be a solution of (5.55) with initial condition, at s = 0, w0 ∈ Λ−

a,δ(K). Let s̃w0 be

such that w(s̃w0
) ∈ Λ+

a,δ1−Ca(W ). Let W = (Q, P̃ , Z, T ) be a solution of (5.214) with initial condition, at

s = 0, W0 = (Q0, P̃0, Z0, T0).

1. For all s ∈ [0, sw0
],

∥(Z, T )− (Z0, T0)∥ ≤ KqN−10
0 ∥W0∥.

2. For s = s̃w0
,

|P̃ (s̃w0
)| ≤ Cq

3
5+Cρ
0 (|P̃0|+O1∥W0∥).

3. Assume that W0 satisfies Q0 ̸= 0. Then, there exists δ such that for any w0 ∈ Λ−
a,δ(K),

|Q(s̃w0
)| ≥ C

(
|Q0| − Cq

1
5+O1(ρ)
0 ∥W0∥

)
q
−( 3

5+O1(ρ))
0 .

4. For any P̃0, there exists a linear map Q̃(Z0, T0) satisfying |Q̃(Z0, T0)| ≤ Cq
1
5+O1(ρ)
0 ∥(Z0, T0)∥,

such that the solution W of (5.214) with initial condition W0 = (Q̃(Z0, T0), P̃0, Z0, T0) satisfies
Q(s̃w0

) = 0.

Proof. Here ∥ · ∥ will denote the sup-norm. Let α be any of the functions given by Lemma 5.11.4.
Using (5.220), a direct computation shows that the spectral radius of the matrix defining system (5.214)
is bounded by 7 +O1(ρ). Hence, if ρ is small enough,

∥W (s)∥ ≤ e8s∥W0∥, 0 ≤ s ≤ s̃w0 , (5.222)

where, by (5.206), the time s̃w0 is bounded by above by

s̃w0 ≤ log

(
a

q0

) 1
1−Cρ

. (5.223)

Let WQ,P = (Q,P ) and WZ,T = (Z, T ). The vector WZ,T satisfies

W ′
Z,T = qNpNO1WZ,T + qN−1pN−1O1WQ,P .

Since, by (5.204),

∥qN−1pN−1O1WQ,P ∥ ≤ (q0p0)
N−1e2NCρs∥WQ,P ∥ ≤ (q0p0)

N−1e(8+2NCρ)s∥W0∥
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and N > 10, we have that, for 0 ≤ s ≤ s̃w0
, if ρ is small enough,

∥WZ,T (s)−WZ,T (0)∥ ≤ KqN−10
0 ∥W0∥,

for some constant K. This proves Item 1.
Now we prove Item 2. The equation for P̃ is

P̃ ′ = AP̃ + pO1WZ,T ,

where

A = −1 + 4τ +O1

1 + τ
+ α

3 +O1

1 + τ
.

Using the bounds on α given by Lemma 5.11.4 and (5.215), a straightforward computation shows that,

if ρ is small enough, for all τ > 0, A < −3/5. Hence, using again (5.204), |P̃ (s)| ≤ (|P̃0|+O1∥W0∥)e−
3
5 s,

which, taking into account the bound of s̃w0
, implies Item 2.

To prove Item 3, observe that the equation for Q is

Q′ = ÃQ+ B̃P̃ + qO1WZ,T ,

where

Ã =
4 + τ +O1

1 + τ
− α

3 +O1

1 + τ
, B̃ =

3 +O1

1 + τ
.

Again, a straightforward computation shows that, if ρ is small enough, Ã > 3/5. Defining u(s) =

exp
∫ s
0
Ã(σ) dσ, we have that

Q(s) = u(s)

[
Q0 +

∫ s

0

u(−σ)(B̃(σ)P̃ (σ) + q(σ)O1WZ,T (σ)) dσ

]
(5.224)

We bound the terms in the integral in the following way. First we observe that, using (5.211),

0 ≤ B̃(σ) =
3 +O1

1 + τ
≤ q0
p0

3 +O1
q0
p0

+ e−(2+O1(ρ))s
<
q0
p0

(3 +O1)e
(2+O1(ρ))s.

Hence, by the previous bound on P̃ , for some constant K > 0,∣∣∣∣∫ s

0

u(−σ)B̃(σ)P̃ (σ) dσ

∣∣∣∣ ≤ (|P̃0|+O1∥W0∥)(3 +O1)
q0
p0

∫ s

0

e(
4
5+O1(ρ))σ dσ

≤ K(|P̃0|+O1∥W0∥)q0e(
4
5+O1(ρ))s.

Using (5.204) to bound q(s), the other term in the integral can be bounded as∣∣∣∣∫ s

0

u(−σ)q(σ)O1WZ,T (σ) dσ

∣∣∣∣ ≤ O1(ρ)∥W0∥q0
∫ s

0

e(
2
5+O1(ρ))σ dσ

≤ O1(ρ)∥W0∥q0e(
2
5+O1(ρ))s.

That is, since 0 < s < s̃w0 and using (5.223),∣∣∣∣Q0 +

∫ s

0

u(−σ)(B̃(σ)P̃ (σ) + q(σ)O1WZ,T (σ)) dσ

∣∣∣∣ ≥ |Q0| −Kq
1
5+O1(ρ)
0 ∥W0∥.

Since 0 < q0 < δ, substituting this bound into (5.224) and evaluating at s = s̃w0
, we obtain 3.

Item 4 follows immediately from the bounds of the terms inside the brackets in (5.224).
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Proof of Theorem 5.5.4. Lemma 5.11.1 proves that the Poincaré map Ψ : Λ−
a,δ(K) → Λ+

a,δ1−Ca(W ) is well
defined for any compact K ⊂W if 0 < 2δ < a are small enough and also implies the estimates of Item 1
of Theorem 5.5.4.

Given I ⊂ R, an interval, let γ(u) = (q0(u), a, z0(u), t0(u)), u ∈ I be a C1 curve in Λ−
a,δ(K) with

0 < q(u) < δ, and γ̃ = Ψ ◦ γ = (a, p1, z1, t1), which is well defined if δ is small enough. Along this proof
we choose different curves γ(u).

Let us compute γ̃′(u). Let X = (Xq, Xp, Xz, Xt) denote the vector field in (5.55) and w = (q, p, z, t).
Since γ̃(u) = φt1(u)−t0(u)(γ(u)), we have that

γ̃′(u) =


0

p′1(u)
z′1(u)
t′1(u)

 = Dwφt1(u)−t0(u)(γ(u))γ
′(u) +X(γ̃(u))(t′1(u)− t′0(u))

=


Q|t1(u)−t0(u) +Xq(γ̃(u))(t

′
1(u)− t′0(u))

P|t1(u)−t0(u) +Xp(γ̃(u))(t
′
1(u)− t′0(u))

Z|t1(u)−t0(u) +Xz(γ̃(u))(t
′
1(u)− t′0(u))

T|t1(u)−t0(u) +Xt(γ̃(u))(t
′
1(u)− t′0(u))

 , (5.225)

where (Q,P,Z, T ) is the solution of (5.212) along φt−t0(u)(γ(u)) with initial condition γ′(u).
From the first component of (5.225),

t′1(u)− t′0(u) = −
Q|t1(u)−t0(u)

Xq(γ̃(u))
. (5.226)

We observe that Xq(γ̃(u)) = a(a+O(q0(u)
1−O1(a))3 +O(a4)).

We choose α in Lemma 5.11.4 such that α(0) = 0. We apply the change of variables of Propo-
sition 5.11.2 and consider (Q, P̃ , Z, T ), the corresponding solution of (5.214). By the choice of α,
(Q,P,Z, T )|s=0 = (Q, P̃ , Z, T )|s=0.

Now we prove Item 2 of Theorem 5.5.4. Assume q(u) = u, 0 < u < δ. Let W 0
u = (Q0

u, P
0
u , Z

0
u, T

0
u) =

γ′(u). Let (Qu, Pu, Zu, Tu) be the solution of (5.213) with initial condition W 0
u and (Qu, P̃u, Zu, Tu),

the solution of (5.214) with the same initial condition. If δ is small enough, sup0<u<δ ∥γ′(u)∥ =
sup0<u<δ ∥W 0

u∥ < 2∥W 0
0 ∥. Hence, if δ is small enough, by item 3 of Lemma 5.11.5,

|Qu(s̃w0
)| ≥ C

(
|Q0

u| − Cu
1
5+O1(ρ)∥W 0

0 ∥
)
u−( 3

5+O1(ρ)) ≥ C̃|Q0
u|u−( 3

5+O1(ρ)).

In the case we are considering, Q0
u = 1. This inequality, combined with (5.226), implies

|t′1(u)− t′0(u)| ≥ Cu−( 3
5+O1(ρ)). (5.227)

Hence, by item 2 of Lemma 5.11.5, the bound of α given by Lemma 5.11.4, bound (5.220), (5.226) and
the facts that T ′ = 0, T = t′0(u), |Xp(γ̃(u))| ≤ Cq(u)1−Ca and |Xq(γ̃(u))| ≤ C,∣∣∣∣p′1(u)t′1(u)

∣∣∣∣ = |Pu(s̃γ(u)) +Xp(γ̃(u))(t
′
1(u)− t′0(u)|

|t′1(u)|

≤
|Pu(s̃γ(u)) +Xp(γ̃(u))(t

′
1(u)− t′0(u)|

|t′1(u)− t′0(u))|

(
1 +

|t′0(u)|
|t′1(u)|

)
≤ C

|P̃u(s̃γ(u))− α(s̃γ(u))Qu(s̃γ(u)) +Xp(γ̃(u))(t
′
1(u)− t′0(u))|

|t′1(u)− t′0(u)|

= C
|P̃u(s̃γ(u)) + [(α(s̃γ(u))Xq(γ̃(u)) +Xp(γ̃(u))](t

′
1(u)− t′0(u))|

|t′1(u)− t′0(u)|

= C

(
|P̃u(s̃γ(u))|

|t′1(u)− t′0(u)|
+
∣∣(α(s̃γ(u))Xq(γ̃(u)) +Xp(γ̃(u))

∣∣)
≤ C̃u1−Ca.
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And, analogously, using Item 1 of Lemma 5.11.5 and the fact that N > 10, we obtain that∣∣∣∣z′1(u)t′1(u)

∣∣∣∣ ≤ |Zu(s̃w0
) +Xz(γ̃(u))(t

′
1(u)− t′0(u)|

|t′1(u)− t′0(u))|

(
1 +

|t′0(u)|
|t′1(u)|

)
≤ C

(
|Zu(s̃w0

))|
|t′1(u)− t′0(u)|

+ |Xz(γ̃(u))|
)

≤ Cu
3
5−Ca,

which proves Item 2 of Theorem 5.5.4.
Now we prove Item 3 of Theorem 5.5.4. We first observe that, using (5.222), (5.223) and (5.226),

|t′1(u)− t′0(u)| ≤ C|Qu(s̃γ(u))| ≤ Cq(u)−8−Ca∥Wu∥.

Then, using Item 1 of Lemma 5.11.5 and, since N > 10, |Xz(γ̃(u))| ≤ Cq(u)N−Ca,

|z′1(u)− z′0(u)| = |Z|t1(u)−t0(u) − Z|0 +Xz(γ̃(u))(t
′
1(u)− t′0(u))|

≤ Cq(u)N−10∥Wu∥.

Hence, Item 3 is proven.
We finally prove Item 4. Let q̃0 ∈ (0, δ) and w̃0 = (q̃0, a, z̃0, t̃0) ∈ Λ−

δ (K). Taking into account (5.227),
which also holds in this case, by the Implicit Function Theorem, the equation

t1(q, a, z, t)− t = t1(q̃0, a, z̃0, t̃0)− t̃0

defines a function q = q0(z, t), with (z, t) in neighborhood of (z0, t0). Given (z0(u), t0(u)), any curve in
K × T with z0(0) = z̃0 and t0(0) = t̃0, let γ(u) = (q0(z0(u), t0(u)), a, z0(u), t0(u)) and γ̃(a, p1, z1, t1) =
Ψ ◦ γ. Since, by the definition of the function q0, (t1(u)− t0(u))

′ = 0, from (5.225) we obtain that

γ̃′(u) =


Q|t1(u)−t0(u)
P|t1(u)−t0(u)
Z|t1(u)−t0(u)
T|t1(u)−t0(u)

 ,

where (Q,P,Z, T ) is the solution of (5.212) along φt−t0(u)(γ(0)) with initial condition γ′(0). In par-

ticular, Q|t1(u)−t0(u) = 0. But, then, this implies that Q|0 has to be the value Q̃0 given by Item 4 of

Lemma 5.11.5. Moreover, this implies P|t1(u)−t0(u) = P̃|t1(u)−t0(u). From the bounds of Lemma 5.11.5
follow 4 of Theorem 5.5.4.

5.12 Conjugation with the Bernouilli shift

We devote this section to prove Propositions 5.6.4 and 5.6.5. This is done in several steps. First, in
Section 5.12.1, we analyze the differential of the return maps Ψ̃i,j defined in (5.64). In particular, we
analyze its expanding, contracting and center directions. Then, in Section 5.12.2, we prove Proposition
5.6.4. In Section 5.12.3, we analyze the differential of Ψ̃, the high iterate of the return map defined in
(5.67). Finally, in Section 5.12.4, we use these cone fields to prove Proposition 5.6.5.

5.12.1 The differential of the intermediate return maps

In the following lemma, we write a vector v ∈ TωQi
δ in the basis ∂

∂p ,
∂
∂τ ,

∂
∂z , where

∂
∂z stands for ( ∂

∂z1
, ∂
∂z2

),
given by the coordinates defined by Ai.

Lemma 5.12.1. Let N be fixed. Assume δ small enough.
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1. The vector field

v1 =

0
1
0


satisfies that, for any ω = (p, τ, z) ∈ Qi

δ ∩ Ψ̃−1
i,j (Q

j
δ),

DΨ̃i,j(ω)v1 = λi1(ω)(v1 + ṽi,j1 (ω)), 1 ≤ i, j ≤ 2, (5.228)

where Ψ̃i,j is the return map defined in (5.64) written in coordinates (p, τ, z) and

λi1(ω) ≳ τ−
3
5+C̃a,

|ṽi,j1,p(ω)| ≤ O
(
τ1−C̃a

)
, ṽi,j1,τ (ω) = 0, ∥ṽi,j1,z(ω)∥ ≤ O

(
τ

3
5−C̃a

)
.

Moreover, for any vector

v̂1 =

b1
c


for |b|, |c| ≲ 1 one has

DΨ̃i,j(ω)v̂1 = λi1(ω)(v1 + v̂i,j1 (ω)), 1 ≤ i, j ≤ 2, (5.229)

for some vector v̂i,j1 satisfying

|v̂i,j1,p(ω)| ≤ O
(
τ1−C̃a

)
, |v̂i,j1,τ (ω)|, ∥v̂

i,j
1,z(ω)∥ ≤ O

(
τ

3
5−C̃a

)
and ∥λi1(ω)v̂

i,j
1,z(ω)∥ ≤ O (1) .

2. There exist C0 vector fields vi,j2 : Qi
δ → TQi

δ, i, j = 1, 2, of the form

vi,j2 (ω) =

 1

ṽi,j2,τ (ω)

vi2,z(z) + ṽi,j2,z(ω)

 , (5.230)

where the functions vi2,z depend only on z and satisfy ∥vi2,z(z)∥ = O(1), and

|ṽi,j2,τ (ω)| = O(p) +O
(
τ

3
5−C̃a

)
, ∥ṽi,j2,z(ω)∥ ≤ O

(
τ

3
5−C̃a

)
, i = 1, 2,

such that for any ω = (p, τ, z) ∈ Qi
δ ∩ Ψ̃−1

i,j (Q
j
δ), the following holds.

DΨ̃i,j(ω)v
i,j
2 (ω) = λi,j2 (ω)(vi,j2 (Ψ̃i,j(ω)) + v̂i,j2 (ω)), 1 ≤ i, j ≤ 2, (5.231)

where

λi,j2 (ω)−1 ≳ τ−
3
5+C̃a,

v̂i,j2,p(ω) = 0, |v̂i,j2,τ (ω)| ≤ O
(
τ1−C̃a

)
, ∥v̂i,j2,z(ω)∥ ≤ O

(
τ

3
5−C̃a

)
.

3. For any vz(z), C
0 vector field in R2, i, j = 1, 2, there exist vector fields

vi,j(ω) =

 0
0

vz(z)

+

 0
ṽi,jτ (ω)

0

 ,

with |ṽi,jτ | ≤ O(τ1/5−Ca), such that the following holds.

DΨ̃i,j(ω)v
i,j(ω) =

 0
0

DŜi(z)vz(z)

+ v̂i,j(ω), ∥v̂i,j∥ ≤ O(τ1/5−Ca, a). (5.232)
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Proof. We start with v1. For any ω = (p, τ, z) ∈ Qi
δ, z = (z1, z2), we have that, in view of (5.62),

DΨ̃glob,i(ω)v1 =

 O1(τ) νi1(z) +O1(p, τ) O1(τ)
νi2(z) +O1(p, τ) O1(p) O1(p)

S̃i,p(z) +O1(p, τ) S̃i,τ (z) +O1(p, τ) DŜi(z) +O1(p, τ)

0
1
0


= (νi1(z) +O1(p, τ))

 1
O1(p, τ)

S̃i,τ (z)ν
i
1(z)

−1 +O1(p, τ)

 ,

where S̃i,p(z) = ∂pπzΨglob,i(0, 0, z) and S̃i,τ (z) = ∂τπzΨglob,i(0, 0, z). Hence, using that (q∗, σ∗, z∗) =

Ψ̃glob,i(ω) satisfies q
∗ = τνi1(z)(1+O1(p, τ)), by Item 2 of Theorem 5.5.4, we have that, using (5.61) and

(5.60)

DΨ̃i,j(ω)v1 = DAj(Ψi,j(A
−1
i (ω)))DΨloc,i,j(B

−1
i ◦ Ψ̃glob,i(ω))DB

−1
i (Ψ̃glob,i(ω))DΨ̃glob,i(ω)v1

= (νi1(z) +O1(p, τ))DAj(Ψi,j(A
−1
i (ω)))DΨloc,i,j((B

−1
i ◦ Ψ̃glob,i(ω))

 1
O0(p, τ)
O0(p, τ)


= λ1(ω)(ν

i
1(z) +O1(p, τ))

P ∗
i,j

1
Z∗
i,j

 ,

where, for some C > 0,

λ1(ω) ≳ τ−
3
5+Ca, |P ∗

i,j | ≤ O
(
τ1−Ca

)
, ∥Z∗

i,j∥ ≤ O
(
τ

3
5−Ca

)
.

This proves the claim for v1, taking λ
i
1(ω) = λ1(ω)(ν

i
1(z) +O1(p, τ)). The proof of the second statement

of Item 1 follows exactly the same lines.
We now prove Item 2. Let vi2,z(z) = Ŝi,σ(Ŝi(z)), where Ŝi,σ(z) = ∂σπzΨ̃

−1
glob,i(0, 0, z). We observe

that, since Ψ̃i,j = Ψ̃loc,i,j ◦ Ψ̃glob,i,(
DΨ̃i,j(ω)

)−1

= D(Ψ̃−1
i,j )(Ψ̃i,j(ω)) = D(Ψ̃−1

glob,i)(Ψ̃
−1
loc,i,j ◦ Ψ̃i,j(ω))D(Ψ̃−1

loc,i,j)(Ψ̃i,j(ω))

= D(Ψ̃−1
glob,i)(Ψ̃glob,i(ω))D(Ψ̃−1

loc,i,j)(Ψ̃i,j(ω)).

First of all, we notice that, denoting Ψ̃i,j(ω) = (p̂, τ̂ , ẑ), by (5.62) and Item 1 of Theorem 5.5.4,

(τνi1(z))
1+Ca(1 +O1(p, τ)) ≤ p̂ ≤ (τνi1(z))

1−Ca(1 +O1(p, τ)). (5.233)

Then, since
Ψ̃−1

loc,i,j = Bi ◦Ψ−1
loc,i,j ◦A

−1
j ,

applying Item 2 of Theorem 5.5.4 to (Ψloc,i,j)
−1 (that is, applying Item 2 of Theorem 5.5.4, changing the

sign of the vector field), evaluated at A−1
j ◦ Ψ̃i,j(ω), and to the vector vi,j2 in (5.230),

D(Ψ̃−1
loc,i,j)(Ψ̃i,j(ω))v

i,j
2 (Ψ̃i,j(ω)) = λ̃i,j2 (ω)

Q̂∗
i,j

1

Ẑ∗
i,j

 ,

where, for some C̃ > 0,

λ̃i,j2 (ω) ≳ τ−
3
5+C̃a, |Q̂∗

i,j | ≤ O
(
τ1−C̃a

)
, ∥Ẑ∗

i,j∥ ≤ O
(
τ

3
5−Ca

)
.
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Hence, by (5.63),

DΨ̃i,j(ω)
−1vj2(Ψ̃i,j(ω)) = D(Ψ̃−1

glob,i)(Ψ̃glob,i(ω))D(Ψ̃−1
loc,i,j)(Ψ̃i,j(ω))v

j
2(Ψ̃i,j(ω))

= λ̃i,j2 (ω)D(Ψ̃−1
glob,i)(Ψ̃glob,i(ω))

Q̂∗
i,j

1

Ẑ∗
i,j


= λ̃i,j2 (ω)

 O1(τ) µi1(Ŝi(z)) +O1(p, τ) O1(τ)

µi2(Ŝi(z)) +O1(p, τ) O1(p) O1(p)

Ŝi,q(Ŝi(z)) +O1(p, τ) Ŝi,σ(Ŝi(z)) +O1(p, τ) D(Ŝ−1
i )(Ŝi(z)) +O1(p, τ)

Q̂∗
i,j

1

Ẑ∗
i,j


= λ̃i,j2 (ω)(µi1(Ŝi(z)) +O1(p, τ))

 1
T̄ ∗
i,j

Ŝi,σ(Ŝi(z)) + Z̄∗
i,j

 ,

where Ŝi,q(z) = ∂qπzΨ̃
−1
glob,i(0, 0, z) and Ŝi,σ(z) = ∂σπzΨ̃

−1
glob,i(0, 0, z) and

|T̄ ∗
i,j | ≤ O1(p) +O

(
τ

3
5−C̃a

)
, ∥Z̄∗

i,j∥ ≤ O
(
τ

3
5−C̃a

)
.

The claim follows taking (λi,j2 )−1(ω) = λ̃i,j2 (ω)(µi1(Ŝi(z)) +O1(p, τ)).
Finally, we prove Item 3. In order to find the vector fields, we look for vi,j = v0 + ṽi,j(p, τ, z), with

v0 = (0, 0, vz)
⊤ and ṽi,j = (0, ṽi,jτ,1 + ṽi,jτ,2, 0)

⊤. Note that both corrections appear in the τ -direction. We

write down them separated since they will play different roles. Roughly speaking ṽi,jτ,1 will be obtained

by applying Item 4 in Theorem 5.5.4 whereas ṽi,jτ,2 is obtained by applying Item 2 in the same theorem.
We have that

DΨ̃glob,i(ω)v
i,j(ω) =

 νi1(z)ṽ
i,j
τ,1 +O1(p, τ)v

i,j

O1(p, τ)v
i,j

DŜi(z)vz + S̃i,τ (z)ṽ
i,j
τ,1 +O1(p, τ)v

i,j

+

 νi1(z)ṽ
i,j
τ,2

0

S̃i,τ (z)ṽ
i,j
τ,2

 .

Hence, by (5.61),

DB−1
i (Ψ̃glob,i(ω))DΨ̃glob,i(ω)v

i,j(ω) = w1(ω) + w2(ω) (5.234)

with

w1(ω) =

 νi1(z)ṽ
i,j
τ,1 +O1(p, τ)v

i,j

−βi,2(Ŝi(z))DSi(z)vz −
[
βi,1(Ŝi(z))ν

i
1(z) + βi,2(Ŝi(z))S̃i,τ (z)

]
ṽi,jτ,1 +O1(p, τ)v

i,j

DŜi(z)vz + S̃i,τ (z)ṽ
i,j
τ,1 +O1(p, τ)v

i,j

 (5.235)

w2(ω) =

 νi1(z)ṽ
i,j
τ,2

−
[
βi,1(Ŝi(z))ν

i
1(z) + βi,2(Ŝi(z))S̃i,τ (z)

]
ṽi,jτ,2

S̃i,τ (z)ṽ
i,j
τ,2

 (5.236)

where the functions βi,1(z) = −∂w̃u
i

∂q (0, 0, z) and βi,2 = −(tui )
′(z)− ∂w̃u

i

∂z (0, 0, z) (see (5.61)).

Since πq(Ψ̃glob,i(ω)) = νi1(z)τ(1 + O1(p, τ)), (see (5.62)), by Item 4 of Lemma 5.11.5 with P̃0 = 0,

there exists a linear map Q̃(B−1
i ◦ Ψ̃glob,i(ω)), with ∥Q̃(B−1

i ◦ Ψ̃glob,i(ω))∥ ≤ O(τ1/5), such that if w1

satisfies
πqw1(ω) = Q̃(B−1

i ◦ Ψ̃glob,i(ω)) [πt,zw1(ω)] (5.237)

then
πtDΨloc,i,j(B

−1
i ◦ Ψ̃glob,i(ω))w1(ω) = πtw1(ω),

|πpDΨloc,i,j(B
−1
i ◦ Ψ̃glob,i(ω))w1(ω)| ≤ O(τ3/5−Ca)∥πt,zw1(ω)∥,

∥πzDΨloc,i,j(B
−1
i ◦ Ψ̃glob,i(ω))w1(ω)− πzw1(ω)∥ ≤ O(τ)∥w1(ω)∥.
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We use this fact to choose a suitable w1 (by choosing a suitable ṽi,jτ,1).

Moreover, since νi1 does not vanish, from Item 2 of Theorem 5.5.4,

DΨloc,i,j(B
−1
i ◦ Ψ̃glob,i(ω))w2(ω) = λ(ω)νi1(z)ṽ

i,j
τ,2(ω)

P ∗

1
Z∗


with

λ(ω) ≳ τ−(3/5−Ca), |P ∗| ≤ O(τ1−Ca), |Z∗| ≤ O(τ3/5−Ca).

Then, if we assume for a moment that (5.237) is satisfied, cumbersome but straightforward computations
lead to

DΨ̃i,j(ω)v
i,j =

 λ(τ)νi1(z)ṽ
i,j
τ,2(ω)P

∗ +O(τ3/5−Ca)vi,j

T̃0(ω) +O1(p, τ)v
i,j + λ(ω)T̃1(ω)ṽ

i,j
τ,2(ω)

DŜi(z)vz + S̃i,p(z)ṽ
i,j
τ,1 +O1(p, τ)v

i,j + λ(ω)νi1(z)ṽ
i,j
τ,2(ω)Z

∗

 (5.238)

where

T̃0(ω) =
[
αi,2(Ŝi(z))− βi,2(Ŝi(z))

]
DŜi(z)vz − ((βi,1(Ŝi(z))− αi,1(Ŝi(z)))ν

i
1(z)

+ (βi,2(Ŝi(z))− αi,2(Ŝi(z)))S̃i,p(z))ṽ
i,j
τ,1

T̃1(ω) =ν
i
1(z)

[
1 + (αi,1(Ŝi(z)) +O1(p, τ))P

∗ + (αi,2(Ŝi(z)) +O1(p, τ))Z
∗]

where αi,1 = −∂pw̃si (p, z) and αi,2 = −∂ztsi (z)− ∂zw̃
s
i (p, z). Note that for small (p, τ), T̃1(ω) ≳ 1.

We choose

ṽi,jτ,2(ω) = − 1

λ(τ)T̃1(ω)
T̃0(ω). (5.239)

Observe that this choice of ṽi,jτ,2 is linear in vi,jτ,1 and satisfies

ṽi,jτ,2(ω) = O(τ3/5−Ca) +O(τ3/5−Ca)ṽi,jτ,1(ω).

Inserting this choice of ṽi,jτ,2 in (5.237), we obtain the fixed point equation for ṽi,jτ,1

ṽi,jτ,1 =
1

νi1(z)

(
Q̃(B−1

i ◦Ψglob,i(ω))

((
T̃ (ω)

DŜi(z)vz + S̃i,p(z)ṽ
i
τ

)
+O1(p, τ)ṽ

i,j

))
.

It clearly has a solution ṽi,jτ,1 = O(τ1/5)∥vz∥. Then, taking into account (5.238) and (5.239), we have that

πpDΨ̃i,j(ω)v
i,j = λ(τ)νi1(z)ṽ

i,j
τ,2(ω)P

∗ +O(τ3/5−Ca)vi,j = O(τ3/5−Ca)vz

and
πτDΨ̃i,j(ω)v

i,j = O1(p, τ)v
i,j = O1(p, τ)vz.

This completes the proof of Item 3.

5.12.2 Horizontal and vertical strips: Proof of Proposition 5.6.4

Proposition 5.6.4 is direct consequence of the following lemma.

Lemma 5.12.2. For any horizontal surface,

Sh = {(p, τ, φ, J) ∈ Q2
δ | (p, J) = (h1(τ, φ), h2(τ, φ)), (τ, φ) ∈ (0, δ)× (0, κ̃)} ⊂ Σ2,

with h a C1 function satisfying

sup
(τ,φ)∈(0,δ)×(0,κ̃)

∥∂τh1(τ, φ)∥ < O(1), sup
(τ,φ)∈(0,δ)×(0,κ̃)

∥∂φh1(τ, φ)∥ < O(δ), (5.240)
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Ψ̃(Sh)∩Q2
δ has an infinite number of connected components. Moreover, Ψ̃(Sh)∩Q2

δ contains a countable
union of horizontal surfaces, Shn

, with limn→∞ hn,1 = 0, in the C0 topology and

|∂τhn,1| ≲ O(δ), |∂φhn,1| ≲ O(κ̃δ),

|∂τhn,2| ≲ O(δ) +O(κ̃), |∂φhn,2| ≲ O(κ̃).

Analogously, for any vertical surface,

Sv = {(p, τ, φ, J) ∈ Q2
δ | (τ, φ) = (v1(p, J), v2(p, J)), (p, J) ∈ (0, δ)× (0, κ̃)} ⊂ Σ2,

with v a C1 function satisfying

sup
(p,J)∈(0,δ)×(0,κ̃)

∥∂pv1(τ, φ)∥ < O(1), sup
(p,J)∈(0,δ)×(0,κ̃)

∥∂Jv1(τ, φ)∥ < O(δ), (5.241)

Ψ̃−1(Sv) ∩ Q2
δ has an infinite number of connected components. Moreover, Ψ̃−1(Sv) ∩ Q2

δ contains a
countable union of vertical surfaces, Svn , with limn→∞ vn = 0, in the C0 topology and

|∂pvn,1| ≲ O(δ), |∂Jhn,1| ≲ O(κ̃δ),

|∂phn,2| ≲ O(1), |∂Jhn,2| ≲ O(κ̃).

In particular, Liphn ≲ O(δ) +O(κ̃) and Lip vn ≲ O(1), uniformly in n.

Proof. In this proof we denote z = (z1, z2) = (φ, J). Let h : (0, δ)× (0, κ̃) → (0, δ)× (0, κ̃) be a function
satisfying (5.240). Let

Λ0(τ, z1) = (h1(τ, z1), τ, z1, h2(τ, z1))
⊤ and Λ̃1(τ, z1) = Ψ̃2,1 ◦ Λ0(τ, z1) = (h̃1, T̃ , Z̃)

⊤(τ, z1).
(5.242)

By Item 1 of Theorem 5.5.4, the definition of Ψ̃2,1 in (5.64) and the expression of Ψ̃glob,2 in (5.62), we
have that

T̃ (τ, z1) ≳ τ−3/2+Ca, (5.243)

for all z1 ∈ (0, κ̃). Hence, for any n ∈ N, sufficiently large, there exist τ−1,n < τ+1,n such that T̃ (τ+1,n, z1) ≤
n < n+ δ ≤ T̃ (τ−1,n, z1), for all z1 ∈ (0, κ̃) and, moreover, τ±1,n → 0 as n→ +∞.

By Item 1 of Lemma 5.12.1,

∂τ Λ̃1(τ, z1) = DΨ̃2,1 ◦ Λ0(τ, z1)


∂τh1(τ, z1)

1
0

∂τh2(τ, z1)

 =


λ(τ, z1)ε1(τ, z1)

λ(τ, z1)
Z1(τ, z1)
Z2(τ, z1)

 (5.244)

where,

|λ(τ, z1)| ≳ Cτ−3/5+Ca, |ε1(τ, z1)| ≲ τ1−Ca, ∥(Z1(τ, z1), Z2(τ, z1))∥ ≲ O(1). (5.245)

In particular, |∂τ T̃ (τ, z1)| = |λ(τ, z1)| > Cτ−3/5+Ca. Hence, the equation

T̃ (τ, z1) = T

defines a function τ̂1(T, z1), for T > 0 large enough and z1 ∈ (0, κ̃), such that τ−1,n ≤ τ̂1(T, z1) ≤ τ+1,n for

T ∈ [n, n + δ], with ∂T τ̂1(T (τ, z1), z1) = λ−1(τ̂1(T, z1), z1). Taking τ+1,n small enough by taking n large

enough, we can assume that τ̂1(T, z1)
1/5−Ca ≲ O(δ) for T ∈ [n, n+δ]. Moreover supT∈[n,n+δ] τ̂1(T, z1) → 0

as n→ +∞.
We define

Λ1(T, z1) = Λ̃1(τ̂1(T, z1), z1).
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By construction, πτΛ1(T, z1) = T and, by Item 1 of Theorem 5.5.4, supT∈[n,n+δ] πpΛ1(T, z1) → 0 as
n→ +∞. In view of (5.244), it satisfies

∂TΛ1(T, z1) = ∂τ Λ̃1(τ̂1(T, z1), z1)∂T τ̂1(T, z1) =


O(δ)
1

O(δ)
O(δ)

 .

Moreover, by (5.62) and Item 1 of Theorem 5.5.4, the third component of Λ1, satisfies

|πz1Λ1(T, z1)− πz1 Ŝ
2(z1, h2(τ̂1(T, z1), z1))|

= |πz1Ψ̃2,1 ◦ Λ0(τ̂1(T, z1), z1)− πz1 Ŝ
2(z1, h2(τ̂1(T, z1), z1))| ≲ O(δ). (5.246)

Now we compute the derivatives of Λ1 with respect to z1. We have that

∂z1Λ1(T, z1) = ∂z1

[
Λ̃1(τ̂1(T, z1), z1)

]
= DΨ̃2,1 ◦ Λ0(τ̂1(T, z1), z1) [∂τΛ0(τ̂1(T, z1), z1)∂z1 τ̂1(T, z1) + ∂z1Λ0(τ̂1(T, z1), z1)] .

We write the vector ∂z1Λ0(τ̂1(T, z1), z1) as

(∂z1Λ0)(τ̂1(T, z1), z1) =


∂z1h1
0
1

∂z1h2

 = ∂z1h1


1
b
c1
c2

+


0
d

1− ∂z1h1c1
∂z1h2 − ∂z1h1c2

− (d+ ∂z1h1b)


0
1
0
0

 , (5.247)

where

• b, c = (c1, c2) are the functions given by Item 2 of Lemma 5.12.1 such that

|b(τ, z1)| ≲ O(δ, τ̂
3/5−Ca)
1 ), ∥(c1, c2)(τ, z1)∥ ≲ O(1)

and
DΨ̃2,1 ◦ Λ0(τ̂1(T, z1), z1)(1, b, c)

⊤ = µ(τ̂1, z1)(1, b
∗, c∗)⊤

with
|µ(τ̂1, z1)| ≲ O(τ̂

3/5−Ca
1 ), |b∗(τ̂1, z1)| ≲ O(δ), ∥(c∗1, c∗2)(τ, z1)∥ ≲ O(1)

• d = O(τ̂
1/5−Ca
1 ) is given by Item 3 of Lemma 5.12.1 satisfies

DΨ̃2,1 ◦ Λ0(τ̂1(T, z1), z1)


0
d

1− ∂z1h1c1
∂z1h2 − ∂z1h1c2

 =


d∗1
d∗2

DŜ2(z1, h2(τ̂1, z1))

(
1− ∂z1h1c1

∂z1h2 − ∂z1h1c2

)
+ d∗3


with ∥(d∗1, d∗2, d∗3)∥ = O(τ̂

1/5−Ca
1 ).

Then, applying Item 1 of Lemma 5.12.1 to (d+∂z1h1b)(0, 1, 0, 0)
⊤, using formula (5.247) and the previous

bounds for µ, b∗ and d∗2, we obtain

πTDΨ̃2,1 ◦ Λ0(τ̂1(T, z1), z1)∂z1Λ0(τ̂1(T, z1), z1) = λ(τ̂1, z1)(d+ ∂z1h1b) +O(τ̂
1/5−Ca
1 ). (5.248)

By using the second part of Item 1 of Lemma 5.12.1 (see (5.229)),

πTDΨ̃2,1 ◦ Λ0(τ̂1(T, z1), z1)∂τΛ0(τ̂1(T, z1), z1)∂z1 τ̂1(T, z1) = λ(τ̂1, z1)
(
1 +O(τ̂

3/5−Ca
1 )

)
∂z1 τ̂1(T, z1).

(5.249)
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Now, since πTΛ1(T, z1) = T , we have that πT∂z1Λ1(T, z1) = 0. Then, combining (5.248) and (5.249) we
obtain that

∂z1 τ̂1(T, z1) = O(δ).

This bound is not good enough. In order to improve it, we introduce A = ∂τh1∂z1 τ̂1 + ∂z1h1 = O(δ) and
rewrite ∂z1 [Λ0(τ̂1(T, z1), z1)] as

∂z1 [Λ0(τ̂1(T, z1), z1)] = A


1

b̃
c̃1
c̃2

+


0

d̃
1−Ac̃1

∂τh2∂z1 τ̂1 + ∂z1h2 −Ac̃2

− (d̃+Ab̃− ∂z1 τ̂1)


0
1
0
0

 ,

where, again, b̃ = O(δ), c̃ = (c̃1, c̃2) = O(1) are the functions given by Item 2 of Lemma 5.12.1 and

d̃ = O(τ̂
1/5−Ca
1 ) is given by Item 3 of Lemma 5.12.1. Then,

DΨ̃2,1 ◦ Λ0(τ̂1(T, z1), z1)∂z1 [Λ0(τ̂1(T, z1), z1)]

= µA


1

O(δ)
O(1)
O(1)

+


O(δ)
O(δ)

DŜ2(z1, h2(τ̂1, z1))

(
1−Ac̃1

∂τh2∂z1 τ̂1 + ∂z1h2 −Ac̃2

)
+O(δ)

−(ã+Ab̃−∂z1 τ̂1)


λO(δ)
λ

O(1)
O(1)

 ,

where |µ(τ̂1, z1)| ≲ O(τ̂
3/5−Ca
1 ) = O(δ). Hence, using again that πTΛ1(T, z1) = T , we obtain that

ã+Ab̃− ∂z1 τ̂1 = O(δ)/λ. This implies that

πp∂z1Λ1(T, z1) = µA+O(δ)− (ã+Ab̃− ∂z1 τ̂1)λO(δ) = O(δ).

Summarizing,

∂TΛ1(T, z1) =


O(δ)
1

O(δ)
O(δ)

 , ∂z1Λ1(T, z1) =


O(δ)
O(δ)

DŜ2(z1, h2(τ̂1, z1))

(
1

∂z1h2

)
+O(δ)

 .

Now we proceed by induction, defining Λ̃j = Ψ̃1,1 ◦ Λj−1, for 2 ≤ j ≤ M . With the same argument,

πτ Λ̃j(τ, z1) = T defines a function τ̂j(T, z1), with T large enough, such that Λj(T, z1) = Λ̃j(τ̂j(T, z1), z1)
satisfies

∂TΛj(T, z1) =


O(δ)
1

O(δ)
O(δ)

 , ∂z1Λj(T, z1) =


O(δ)
O(δ)

D((Ŝ1)j−1 ◦ Ŝ2)(z1, h2(τ̂j , z1))
(

1
∂z1h2

)
+O(δ)


and

|πz1Λj(T, z1)− πz1(Ŝ
1)j−1 ◦ Ŝ2(z1, h2(τ̂j , z1))| ≲ O(δ). (5.250)

Of course, the O(δ) terms depend on j.

In the last step, we define Λ̃M+1(τ, z1) = Ψ̃1,2 ◦ ΛM (τ, z1), defined for τ ∈ (0, δ). With the same
argument to obtain (5.243), we have that

T̃M+1(τ, z1) = πT Λ̃M+1(τ, z1) ≥ Cτ−3/2+Ca

and, from (5.244) and (5.245),

|∂τ T̃M+1(τ, z1)| = |λ(τ, z1)| > Cτ−3/5+Ca.

Hence, the equation
T̃M+1(τ, z1) = T

225



defines a function τ̂M+1(T, z1), for T large enough and z1 ∈ (0, κ̃), strictly decreasing in τ with limT→∞ τ̂M+1(T, z1) =
0, uniformly in z1, with ∂T τ̂M+1(T (τ, z1), z1) = λ(τ̂M+1(T, z1), z1)

−1. With the previous arguments,

ΛM+1(T, z1) = Λ̃M+1(τ̂M+1(T, z1), z1)

|πz1ΛM+1(T, z1)− πz1 Ŝ(z1, h2(τ̂M+1, z1))| ≲ O(δ), (5.251)

and

∂TΛM+1(T, z1) =


O(δ)
1

O(δ)
O(δ)

 , ∂z1ΛM+1(T, z1) =


O(δ)
O(δ)

DŜ(z1, h2(τ̂M+1, z1))

(
1

∂z1h2

)
+O(δ)

 , (5.252)

where Ŝ = (Ŝ1)M ◦ Ŝ2 was introduced in of Theorem 5.4.7. Since, by Item 3 of Theorem 5.4.7,∣∣∣∣πz1DŜ(z1, h2(τ̂M+1, z1))

(
1

∂z1h2

)∣∣∣∣ ≳ κ̃−1, (5.253)

the equation πz1ΛM+1(T, z1) = Z1 defines a function ẑM+1(T,Z1), with T large enough and Z1 ∈ (0, κ̃).
Using (5.252) and (5.253), we immediately have

|∂T ẑM+1(T,Z1)| ≲ O(δκ̃), |∂Z1 ẑM+1(T,Z1)| ≲ O(κ̃).

Then, Λ(T,Z1) = ΛM+1(T, ẑM+1(T,Z1)) is defined for T large enough and Z1 ∈ (0, κ̃), satisfies

πTΛ(T,Z1) = T, πZ1
Λ(T,Z1) = Z1,

and, denoting h̃ = (h̃1, h̃2) = (πpΛ, πz2Λ),

∂T h̃ =

(
O(δ)

O(δ) +O(κ̃)

)
, ∂Z1

h̃ =

(
O(δκ̃)
O(κ̃)

)
.

Moreover, if we denote by h̃n = (h̃n,1, h̃n,2) the restriction of h̃ to T ∈ [n, n+ δ], it satisfies that

lim
n→∞

hn,1 = 0.

This proves the claim for the horizontal bands. The claim for the vertical one is proven analogously.

5.12.3 The differential of the high iterate of the return map

In this section we analyze the differential of the map Ψ̃ in (5.67). Note that this map is a composition of the

return maps Ψ̃i,j (see (5.64)), whose differentials have been studied in Section 5.12.1. In that section we
have obtained a good basis at each point of the tangent space which captures the expanding, contracting
and center direction for each map Ψ̃i,j . Note however that the basis depends on the map (and certainly
on the point!). Therefore, one has to adjust these bases so that they capture the expanding/contracting

behavior for the differential of Ψ̃. This is done in Proposition 5.12.4 below.
First we state a lemma, which is an immediate consequence of Lemma 5.12.1 and matrix products.

Lemma 5.12.3. Consider the vector fields {v1, vi,j2 , vi,j3 , vi,j4 }, i = 1, 2, where v1 and vi,j2 are the vectors
in Items 1 and 2 of Lemma 5.12.1 and

vi,j3 = e3 + ṽi,j3 , vi4 = e4 + ṽi,j4 ,

where e3 = (0, 0, 1, 0)⊤, e4 = (0, 0, 0, 1)⊤ and ṽi,j3 and ṽi,j4 are such that vi,j3 and vi,j4 satisfy Item 3 of

Lemma 5.12.1. They form a basis of TωQi
δ at any ω = (p, τ, z) ∈ Qi

δ ∩Ψ−1
i,j (Q

j
δ). Let Ci,j(ω) denote the
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matrix of the change of coordinates from the standard basis to {v1, vi,j2 , vi,j3 , vi,j4 }. Then,

M2,1(ω) = C1,1(Ψ̃2,1(ω))
−1DΨ̃2,1(ω)C2,1(ω) =

 λ2,1 µ2,1ε2,11 ε2,12

λ2,1ε2,13 µ2,1 ε2,14

λ2,1ε2,15 µ2,1(a2,1 + ε2,16 ) DŜ2(z) + ε2,17

 ,

M1,1(ω) = C1,1(Ψ̃1,1(ω))
−1DΨ̃1,1(ω)C1,1(ω) =

 λ1,1 µ1,1ε1,11 ε1,12

λ1,1ε1,13 µ1,1 ε1,14

λ1,1ε1,15 µ1,1ε1,16 DŜ1(z) + ε1,17

 ,

M̃1,1(ω) = C1,2(Ψ̃1,1(ω))
−1DΨ̃1,1(ω)C1,1(ω) =

 λ̃1,1 µ̃1,1δ1,11 δ1,12

λ̃1,1δ1,13 µ̃1,1 δ1,14

λ̃1,1δ1,15 µ̃1,1(a1,2 + δ1,16 ) DŜ1(z) + δ1,17

 ,

M1,2(ω) = C2,1(Ψ̃1,2(ω))
−1DΨ̃1,2(ω)C1,2(ω) =

 λ1,2 µ1,2ε1,21 ε1,22

λ1,2ε1,23 µ1,2 ε1,24

λ1,2ε1,25 µ1,2(a1,1 + ε1,26 ) DŜ1(z) + ε1,27

 ,

(5.254)

where
|εi,jk (ω)|, |δ1,1k (ω)|, ≤ O(τ

1
5−Ca, δ), k = 1, . . . , 7,

λi,j(ω), λ̃1,1(ω), µi,j(ω)−1, µ̃1,1(ω)−1 ≳ τ−
3
5+Ca

and ai,j = ai,j(z), i, j = 1, 2 satisfy |ai,j | ≤ O(1).

This lemma provides formulas for the differential of the intermediate return maps in “good bases”.
The next proposition provides a good basis for the high iterate of the return map Ψ̃ in (5.67).

Proposition 5.12.4. Consider κ̃ given by Theorem 5.4.7 and δ > 0 small enough. Consider also the
map Ψ̃ = Ψ̃1,2 ◦ Ψ̃M−1

1,1 ◦ Ψ̃2,1 defined in Q2
δ ⊂ Σ2. There exists C : Q2

δ ∩ Ψ̃−1(Q2
δ) → M4×4(R) of the

form
C(ω) = C2,1(ω)C̃(ω)CŜ(ω)

where C2,1(ω) is the matrix introduced in Lemma 5.12.3,

C̃(ω) =

1 a(ω) b(ω)
0 1 0
0 0 Id

 , a(ω), b(ω) = O(τ3/5−Caδ1/5),

and, for ω = (p, τ, z),

CŜ(ω) =


1 0 0 0
0 1 0 0
0 0 1 V2,1(z)
0 0 0 1

 ,

where V2,1 is given by Item 3 of Theorem 5.4.7, such that

C(Ψ̃(ω))−1DΨ̃(ω)C(ω) =


λ µε5 ε7 ε10
λε2 µ(1 + ε6) ε8 ε11
λε3 µc̃1 λŜ λ−1

Ŝ
ε12

λε4 µc̃2 λŜε9 λ−1

Ŝ

 , (5.255)

where

λ(ω) ≳ τ−
3
5+C̃aδ−3M/5, µ(ω)−1 ≳ τ−

3
5+C̃a, c̃1, c̃2 = O(1), |εj | ≲ O(δ1/5),

for j = 2, . . . , 11, j ̸= 9,
|ε9|, |ε12| ≲ κ̃
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and λŜ ≥ κ̃−1 was introduced in Item 3 of Theorem 5.4.7.

Analogously, there exists Ĉ : Q2
δ ∩Ψ(Q2

δ) → M4×4(R) of the form

Ĉ(Ψ̃(ω)) = C2,1(Ψ̃(ω))C̃∗(Ψ̃(ω))C∗
Ŝ
(ω)

with

C̃∗(Ψ̃(ω)) =

 1 0 0

ã(ω) 1 b̃(ω)
0 0 Id

 , ã(ω), b̃(ω) = O(δ4/5−Ca),

and, for ω(p, τ, z),

C∗
Ŝ
(ω) =


1 0 0 0
0 1 0 0

0 0 1 V2,1((Ŝ)
−1(z))

0 0 0 1

 ,

such that

Ĉ(ω)−1D(Ψ̃)−1(Ψ̃(ω))Ĉ(Ψ̃(ω)) =


µ̃ε̃1 λ̃ε̃5 ε̃8 ε̃11
ε̃2 λ̃ ε̃9 ε̃12
ε̃3 λ̃ε̃6 λ−1

Ŝ
λ−1

Ŝ
ε̃13

ε̃4 λ̃ε̃7 λŜε̃10 λŜ

 , (5.256)

where
λ̃(ω) ≳ δ−3(M+1)/5, µ̃(ω)−1 ≳ δ−

3
5 , |ε̃j | ≲ O(δ1/5),

for j = 1, . . . , 12, j ̸= 10, 13,
|ε̃10|, |ε̃13| ≲ κ̃,

Proof. In view of Lemma 5.12.3, we write

C2,1(Ψ̃(ω))−1DΨ̃(ω)C2,1(ω) = MM (ω) · · ·M0(ω), (5.257)

where the matrices

M0(ω) = M2,1(ω)

Mj(ω) = M1,1(Ψ̃
j−1
1,1 ◦ Ψ̃2,1(ω)), j = 1, . . . ,M − 2,

MM−1(ω) = M̃1,1(Ψ̃
M−2
1,1 ◦ Ψ̃2,1(ω)),

MM (ω) = M1,2(Ψ̃
M−1
1,1 ◦ Ψ̃2,1(ω)),

are given by Lemma 5.12.3. The product of the matrices in (5.257), in the current form, is difficult to
control. We find an adapted basis in which this product of matrices has a more convenient expression.
We proceed in the following way. We claim that, for any 0 ≤ j ≤M , there exists a matrix

Cj =

1 αj βj
0 1 0
0 0 Id

 , |αj |, ∥βj∥ ≤ KMτ
3/5−Caδ(1+3j)/5, (5.258)

where KM is a constant depending only onM , such that, if we define C̃j = C̃j−1Cj with j ≥ 0, C̃−1 = Id,
satisfies

Mj . . .M0C̃j =

 λ̃j 0 0

λ̃jεj,1 µ(1 + εj,2) εj,3
λ̃jεj,4 µcj S̃j + εj,5

 (5.259)

with
S̃j(z) = D((Ŝ1)j−1 ◦ Ŝ2)(z) (5.260)
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and

λ̃j ≳ τ−3/5+Caδ−3(j−1)/5, µ−1 ≳ τ−3/5+Ca, εj,k = O(δ1/5), cj = O(1). (5.261)

The constants involved in the above equalities depend only on M .
We prove this claim by induction. The case j = 0 follows from the expression of M0 = M2,1 given

Lemma 5.12.3, taking C̃0 = C0 as in (5.258) with

λ̃0 = λ2,1, µ = µ2,1, α0 = −µ
2,1ε2,11

λ2,1
, β0 = − ε2,12

λ2,1
.

Now assume that (5.259) holds for j − 1, with 1 ≤ j ≤M − 2, that is, there exists C̃j−1 such that

Mj

(
Mj−1 . . .M0C̃j−1

)
=

 λj µj ε̃j,1 ε̃j,2
λj ε̃j,3 µj ε̃j,4
λj ε̃j,5 µj ε̃j,6 Sj + ε̃j,7

 λ̃j−1 0 0

λ̃j−1εj−1,1 µ(1 + εj−1,2) εj−1,3

λ̃j−1εj−1,4 µcj−1 S̃j−1 + εj−1,5


with

(λj , µj) = (λ1,1, µ1,1) ◦ Ψ̃j−1
1,1 ◦ Ψ̃2,1

Sj = DŜ1 ◦ πzΨ̃j−1
1,1 ◦ Ψ̃2,1

ε̃j,k = ε1,1k ◦ Ψ̃j−1
1,1 ◦ Ψ̃2,1, k = 1, . . . , 7.

(5.262)

where πz is the projection onto the z component. Observe that, by hypothesis, Ψ̃j−1
1,1 ◦ Ψ̃2,1(ω) ∈ Q1

δ and

therefore πτ Ψ̃
j−1
1,1 ◦ Ψ̃2,1(ω), πpΨ̃

j−1
1,1 ◦ Ψ̃2,1(ω) ∈ (0, δ). In particular, by Lemma 5.12.3,

|λj |, |µj |−1 ≳ δ−3/5 and |ε̃j,k| ≲ δ1/5.

Then, the elements of the top row of MjMj−1 . . .M0C̃j−1 are

λ̃j = λj λ̃j−1

(
1 +

1

λj
(µj ε̃j,1εj−1,1 + ε̃j,2εj−1,4)

)
≳ δ−3/5τ−3/5+Caδ−3(j−2)/5 ≳ τ−3/5+Caδ−3(j−1)/5,

(5.263)

and
D1 = µ (µj ε̃j,1(1 + εj−1,2) + ε̃j,2cj−1) , D2 = µj ε̃j,1εj−1,3 + ε̃j,2(S̃j−1 + εj−1,5).

Hence, taking

αj = −D1

λ̃j
= O

(
τ2(3/5−Ca)δ(3j+1)/5

)
, βj = −D2

λ̃j
= O

(
τ3/5−Caδ(3j+1)/5

)
,

we have that

MjMj−1 . . .M0C̃j−1Cj =

 λ̃j 0 0

λ̃jεj,1 µ(1 + εj,2) εj,3
λ̃jεj,4 µcj S̃j + εj,5

 ,

for some εj,k, k = 1 . . . 5 and cj .
Note that εj,1 and εj,4 do not depend on the choice of αj and βj . Indeed, using the equality in the

first row in (5.263), they satisfy

εj,1 =
λj λ̃j−1

λ̃j

(
ε̃j,3 +

1

λj
(µjεj−1,1 + ε̃j,4εj−1,4)

)
= O(1)O(δ1/5),

εj,4 =
λj λ̃j−1

λ̃j

(
ε̃j,5 +

1

λj
(µj ε̃j,6εj−1,1 + (Sj + ε̃j,7)εj−1,4)

)
= O(1)O(δ1/5).
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Clearly, αj and βj satisfy the inequalities in (5.258). Moreover,

λ̃jεj,1αj = −D1εj,1 = µO(δ1/5), λ̃jεj,1βj = −D2εj,1 = O(δ1/5). (5.264)

The bounds of the elements ofMjMj−1 . . .M0C̃j−1Cj can be computed immediately from Lemma 5.12.3
and the induction hypotheses. Indeed,

εj,2 =
λ̃jεj,1αj

µ
+ µj(1 + εj−1,2) + ε̃j,4cj−1 = O(δ1/5),

εj,3 = λ̃jεj,1βj + µjεj−1,3 + ε̃j,4(S̃j−1 + εj−1,5) = O(δ1/5),

cj =
λ̃jεj,4αj

µ
+ µj ε̃j,6(1 + εj−1,2) + (Sj + ε̃j,7)cj−1 = O(1),

εj,5 = −S̃j + λ̃jεj,4βj + (Sj + ε̃j,7)(S̃j−1 + εj−1,5) + µj ε̃j,6εj−1,3 = SjS̃j−1 − S̃j +O(δ1/5)

where we have used (5.264) in the bounds of εj,2, εj,3, cj .
To get small estimates for εj,5 note that, by Statement 1 of Proposition 5.5.4, one has that for

j = 1 . . .M − 2 and ω = (p, τ, z) ∈ Q2
δ ,∣∣∣πzΨ̃j−1
1,1 ◦ Ψ̃2,1(ω)− Ŝ

j−1
1 ◦ Ŝ2(z)

∣∣∣ ≤ O(δ).

Then, by the definition of Sj and S̃j in (5.262) and (5.260) respectively,∣∣∣SjS̃j−1 − S̃j
∣∣∣ ≤ O(δ).

This implies that |εj,5| ≤ O(δ1/5).
The obtained estimates prove the claim for 0 ≤ j ≤ M − 2. The cases j = M − 1,M can be treated

exactly in the same way. They only differ in εj,4, cj and εj,5, where ε̃j−1,6 should be substituted by some
c̃j = O(1) coming from Lemma 5.12.3. Their final bounds remain the same.

Observe that, from (5.258),

C̃M = C0 · · ·CM =

1
∑

0≤j≤M αj
∑

0≤j≤M βj
0 1 0
0 0 Id


where, from the bounds in (5.258),∣∣∣∣∣∣

∑
0≤j≤M

αj

∣∣∣∣∣∣ ,
∥∥∥∥∥∥
∑

0≤j≤M

βj

∥∥∥∥∥∥ ≤ O(τ3/5−Caδ1/5).

Hence, from (5.259) with j =M , we have that, for any ω ∈ Q2
δ ∩ Ψ̃−1(Q2

δ),

C̃−1
M (Ψ(ω))C2,1(Ψ̃(ω))−1DΨ̃(ω)C2,1(ω)C̃M (ω)

=

1 −
∑

0≤j≤M αj −
∑

0≤j≤M βj
0 1 0
0 0 Id

 λ̃M 0 0

λ̃MεM,1 µ(1 + εM,2) εM,3

λ̃MεM,4 µcM S̃M + εM,5


=

λ̃M (1 +O(τ3/5−Caδ2/5)) µO(τ3/5−Caδ1/5) O(τ3/5−Caδ1/5)

λ̃MεM,1 µ(1 + εM,2) εM,3

λ̃MεM,4 µcM S̃M + εM,5

 .

Finally, the claim follows from the properties of V2,1 in Theorem 5.4.7.
The proof of (5.256) is completely analogous, considering matrices Dj of the form

Dj =

 1 0 0
αj 1 βj
0 0 Id

 ,

which are also a group.

230



5.12.4 Stable and unstable cone fields: Proof of Proposition 5.6.5

The analysis of the differential of the map Ψ̃ (see (5.67)) performed in Section 5.12.3 allows us to set up
stable and unstable cone fields and prove Proposition 5.6.5.

The only difficulty in the study of the behavior of the cone fields is that, of the two expanding factors
λ, λŜ (see Proposition 5.12.4), which satisfy λ > λŜ > 1, λ is unbounded in Qδ (as τ → 0). Hence the
error terms λεi in (5.255) are not necessarily small and, in fact, can be large.

We start by considering the unstable cone field Suω,κu
, introduced in (5.70). Let M be the matrix

in (5.255) that is,

M(ω) = C(Ψ̃(ω))−1DΨ̃(ω)C(ω).

For x ∈ Suω,κu
, let y = C(ω)x, where C is given by Lemma 5.12.4. We will denote y = (yu, ys), where

yu = (y1, y3) and ys = (y2, y4), and use the norms ∥yu∥ = max{|y1|, |y3|} and ∥ys∥ = max{|y2|, |y4|}.
Given κ > 0, we denote

S̃uω,κ = {y; ∥ys∥ ≤ κ∥yu∥}.

We also denote (My)u = Mu,uyu +Mu,sys and (My)s = Ms,uyu +Ms,sys, where

Mu,u =

(
λ ε7
λε3 λS̃

)
, Mu,s =

(
µε5 ε10
µc̃1 λ−1

Ŝ
ε12

)
,

Ms,u =

(
λε2 ε8
λε4 λŜε9

)
, Ms,s =

(
µ(1 + ε6) ε11
µc̃2 λ−1

Ŝ

)
.

(5.265)

with |εi| ≲ O(δ1/5), i ̸= 9, 12 and |ε9|, |ε12| ≲ O(κ̃).

Recall that C(ω) = C2,1(ω)C̃(ω)CŜ(ω) (see Proposition 5.12.4). The form of C̃ and CŜ has been given
in Proposition 5.12.4. Lemmas 5.12.1 and 5.12.3 imply that C2,1 is of the form

C2,1 =


0 1 0 0
1 O(δ) O(δ) O(δ)
0 ã 1 0

0 b̃ 0 1

 .

Let â = supω∈Qδ
|ã(ω)| ≲ O(1) and b̂ = supω∈Qδ

|b̃(ω)| ≲ O(1). Then, it is immediate to check that

C(ω)Suω,κu
⊂ S̃uω,κ̃u

, κ̃u ≥ (1 +O(δ1/5))κu + b̂

1 + â
= O(1), (5.266)

and, for β > 0, small enough,

C(ω)−1S̃uω,β ⊂ Su
ω,β̃

, β̃ ≤ (1 + b̂)β

1−O(δ1/5)− (1 + â+O(δ))β
= O(β). (5.267)

We claim that

1. if y ∈ S̃uω,κ̃u
, ∥(My)u∥ ≥ λŜ(1 +O(δ1/5))∥yu∥ and

2. M(ω)S̃uω,κ̃u
⊂ S̃uω,κ̂u

, with κ̂u = O(δ1/5) +O(κ̃).

Indeed, let y ∈ S̃uω,κ̃u
. We first observe that ∥M−1

u,u∥ ≤ λ−1

Ŝ
. This implies that

∥Mu,uyu∥ ≥ ∥M−1
u,u∥−1∥yu∥ ≥ λŜ∥yu∥.

Hence, using that ∥ys∥ ≤ κ̃u∥yu∥,

∥(My)u∥ ≥ ∥Mu,uyu∥ − ∥Mu,sys∥ ≥ (λŜ −O(δ1/5)κ̃u)∥yu∥. (5.268)

231



Taking into account the bound on κ̃u given by (5.266), this last inequality implies Item 1. However, this
is the minimum expansion in the unstable directions. If ∥yu∥ = |y1|, the expansion is much larger, as
follows from

∥(My)u∥ ≥ |(My)1| = |λy1 + ε7y3 + µε5y2 + ε10y4|
≥ (λ−O(δ1/5)−O(δ1/5)κ̃u)|y1| = λ(1−O(δ1/5)/λ−O(δ1/5)κ̃u/λ)∥yu∥. (5.269)

Also, if ∥yu∥ = |y1| and |y1| ≥ (λŜ/λ)|y3|, we have that

|(My)1| = |λy1 + ε7y3 + µε5y2 + ε10y4| ≥ λ(1−O(δ1/5)/λŜ −O(δ1/5)κ̃u)|y1|. (5.270)

Now we prove Item 2. We first claim that, if y ∈ S̃uω,κ̃u
,

∥Ms,uyu∥ ≤


λ(O(δ1/5) +O(κ̃))∥yu∥, if ∥yu∥ = |y1|,
λ(O(δ1/5) +O(κ̃))|y1|, if ∥yu∥ = |y3| and |y1| ≥ (λS̃/λ)|y3|,
λS̃(O(δ1/5) +O(κ̃))∥yu∥, if ∥yu∥ = |y3| and |y1| ≤ (λS̃/λ)|y3|.

(5.271)

Indeed, if ∥yu∥ = |y1|, by the definition of Ms,u in (5.265) and the fact that λS̃/λ < 1,

∥Ms,uyu∥ ≤ λO(δ1/5)|y1|+ λS̃O(κ̃)|y3| ≤ λ(O(δ1/5) +O(κ̃))∥yu∥.

In the case ∥yu∥ = |y3| and |y1| ≥ (λS̃/λ)|y3|, we have that

∥Ms,uyu∥ ≤ λO(δ1/5)|y1|+ λS̃O(κ̃)|y3| ≤ λ(O(δ1/5) +O(κ̃))|y1|.

Finally, if ∥yu∥ = |y3| and |y1| ≤ (λS̃/λ)|y3|,

∥Ms,uyu∥ ≤ λO(δ1/5)|y1|+ λS̃O(κ̃)|y3| ≤ λS̃(O(δ1/5) +O(κ̃))∥yu∥,

which proves (5.271).

Hence, if y ∈ S̃uω,κ̃u
and ∥yu∥ = |y1|, by the first inequality in (5.271), using that ∥Ms,s∥ ≤ O(δ1/5)+

O(κ̃) and (5.269), we have that

∥(My)s∥ ≤ ∥Ms,uyu∥+ ∥Ms,sys∥ ≤ λ(O(δ1/5) +O(κ̃))∥yu∥ ≤ (O(δ1/5) +O(κ̃))∥(My)u∥.

In the case ∥yu∥ = |y3| and |y1| ≥ (λS̃/λ)|y3|, by (5.268), the second inequality in (5.271) and (5.270),

∥(My)s∥ ≤ ∥Ms,uyu∥+ ∥Ms,sys∥ ≤ λ(O(δ1/5) +O(κ̃))|y1|+ (O(δ1/5) +O(κ̃))∥ys∥
≤ (O(δ1/5) +O(κ̃))|(My)1|+ (O(δ1/5) +O(κ̃))∥(My)u∥ ≤ (O(δ1/5) +O(κ̃))∥(My)u∥.

Finally, in the case ∥yu∥ = |y3| and |y1| ≤ (λS̃/λ)|y3|, by the third inequality in (5.271) and (5.268),

∥(My)s∥ ≤ ∥Ms,uyu∥+ ∥Ms,sys∥ ≤ λS̃(O(δ1/5) +O(κ̃))∥yu∥+ (O(δ1/5) +O(κ̃))∥ys∥
≤ (O(δ1/5) +O(κ̃))∥(My)u∥.

This proves Item 2. Then, taking β = O(δ1/5)+O(κ̃) in (5.267), the claim for the unstable cones follows.
The proof of the claim for the stable cones is completely analogous. It is only necessary to use (5.256)

instead of (5.255). We simply emphasize that (5.267) is replaced by (5.266).

5.A Proof of Proposition 5.7.1

We devote this section to proof Proposition 5.7.1. Separating the linear and non-linear terms, the invari-
ance equation (5.83) can be rewritten as

LZ = DZX
0
Z(x, 0)Z + F (x, Z)
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where

F (x, Z) = X0
Z(x, Z)−X0

Z(x, 0)−DX0
Z(x, 0)Z +X1

Z(x, Z)−DZ
(
X0
x(x, Z)− Ω+X1

x(x, Z)
)

with Ω = (1, νG3
0/L

3
0)

⊤.
Observe that, using the definition of Q0 in (5.76) and defining q = Λ− αξ0 − η0β − αβ, one has

DZ
(
X0
x(x, Z)− Ω+X1

x(x, Z)
)

= ∂uZ (∂YQ0(u, Y, q)− 1) + ∂γZ

(
G3

0ν

(L0 + Λ)3
− G3

0ν

L3
0

+ ∂qQ0(u, Y, q) + ∂ΛP1(u, γ,Λ, α, β)

)
= ∂uZ

(
Y

G0y2h(u)
+ f1(u)q1

)
+ ∂γZ

(
G3

0ν

(L0 + Λ)3
− G3

0ν

L3
0

+ f1(u)Y + f2(u)q + ∂ΛP1(u, γ,Λ, α, β)

)
.

Therefore,

DZ
(
X0
x(x, Z)− Ω+X1

x(x, Z)
)
= ∂uZG1(u, γ, Z) + ∂γZG2(u, γ, Z)

where G1 and G2 are the functions introduced in (5.86). Moreover, X0
Z(x, 0) = 0 and

A(u) = DX0
Z(u, γ, 0) =


− ∂2P0

∂Y ∂u − ∂2P0

∂Λ∂u − ∂2P0

∂α∂u − ∂2P0

∂β∂u

0 0 0 0

−i ∂
2P0

∂Y ∂β −i ∂
2P0

∂Λ∂β −i ∂
2P0

∂α∂β −i ∂
2P0

∂β∂β

i ∂
2P0

∂Y ∂α i ∂
2P0

∂Λ∂α i ∂
2P0

∂α∂α i ∂
2P0

∂β∂α

 (u, γ, 0) =

(
0 0

A(u) B(u)

)
.

We obtain the expression of A(u) and B(u) using the formula for P0 in (5.75) and (5.76), (5.77). Defining

Q(Z) = X0
Z(x, Z)−X0

Z(x0)−AZ +X1
Z(x, Z)

we obtain the formulas (5.89).

5.B Estimates for the perturbing potential

The goal of this appendix is to give estimates for the Fourier coefficents of the potential P1 introduced
in (5.78). This estimates are thoroughly used in the proof of Theorem 5.7.4 given in Section 5.7.4 and in
the analysis of the Melnikov potential given in Appendix 5.C.

Using (5.18), (5.19) and (5.71), the potential P1 satisfies

P1(u, γ,Λ, α, β) = G3
0W̃

(
γ + ϕh(u), L0 + Λ, eiϕh(u)(η0 + α), e−iϕh(u)(ξ0 + β), G2

0r̂h(u)
)

= ν̃G0

r̂h(u)

 m0∣∣∣∣1+ σ̃0
G2

0

ρ̃eiv

r̂h(u)

√
η0+α
ξ0+β e

iϕh(u)

∣∣∣∣ +
m1∣∣∣∣1− σ̃1

G2
0

ρ̃eiv

r̂h(u)

√
η0+α
ξ0+β e

iϕh(u)

∣∣∣∣ − (m0 +m1)

 ,

where the function ρ̃(ℓ, L,Γ)eiv(ℓ,L,Γ) is evaluated at

ℓ = γ − 1

2i
log

η0 + α

ξ0 + β
, L = L0 + Λ, Γ = L0 + Λ− (η0 + α)(ξ0 + β).

By (6.8) and (6.9), ρ̃eiv can be written also as function of (ℓ, L, ec), where ec is the function introduced
in (6.7). In coordinates (5.71), ec can be written as

ec = E(Λ, α, β)
√
(η0 + α)(ξ0 + β) where E(Λ, α, β) =

√
2(L0 + Λ)− (η0 + α)(ξ0 + β)

L0 + Λ
. (5.272)

Next lemma gives some crucial information about the Fourier expansion of the perturbed Hamiltonian
P1 in the domains Du

κ,δ, D
s
κ,δ in (5.81).
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Lemma 5.B.1. Assume |α0| < ζ0, |β0| < ζ0, where ζ0G
3/2
0 ≪ 1, 1/2 ≤ L0 ≤ 2. Then, there exists σ > 0

such that for u ∈ Du
κ,δ ∪Ds

κ,δ, γ ∈ Tσ, |Λ| ≤ 1/4, |α| ≤ ζ0/4, |β| ≤ ζ0/4, the function P1 can be written
as

P1(u, γ,Λ, α, β) =
∑
q∈Z

P [q]
1 (u,Λ, α, β)eiqγ where P [q]

1 (u,Λ, α, β) = P̂ [q]
1 (u,Λ, α, β)eiqϕh(u)

for some coefficients P̂ [q]
1 satisfying∣∣∣P̂ [q]
1

∣∣∣ ≤ K

G3
0|r̂h(u)|3

e−|q|σ
∣∣∣∂uP̂ [q]

1

∣∣∣ ≤ K

G3
0|r̂h(u)|4

|ŷh(u)|e−|q|σ

∣∣∣∂γP̂ [q]
1

∣∣∣ ≤ K

G3
0|r̂h(u)|3

e−|q|σ
∣∣∣∂ΛP̂ [q]

1

∣∣∣ ≤ K

G3
0|r̂h(u)|3

e−|q|σ

∣∣∣e−iϕh(u)∂αP̂ [q]
1

∣∣∣ ≤ K

G3
0|r̂h(u)|3

e−|q|σ
∣∣∣eiϕh(u)∂βP̂ [q]

1

∣∣∣ ≤ K

G3
0|r̂h(u)|3

e−|q|σ.

(5.273)

We devote the rest of this appendix to prove this lemma.

Proof of Lemma 5.B.1. To estimate the Fourier coefficients of P1 it is convenient to analyze first the
Newtonian potential in Delaunay coordinates. Indeed, we consider the potential W̃ in Delaunay coordi-
nates,

V (ℓ, L, ϕ,Γ, r̃) = W̃
(
ℓ+ ϕ,L,

√
L− Γeiϕ,

√
L− Γe−iϕ, r̃

)
which reads

V (ℓ, L, ϕ,Γ, r̃) =
ν̃

r̃

(
m0

|1 + σ̃0neiϕ|
+

m1

|1− σ̃1neiϕ|
− (m0 +m1)

)
, (5.274)

where n = n(ℓ, L, ϕ,Γ, r̃) = ρ̃
r̃ e
iv.

This potential can be rewritten as V (ℓ, L, ϕ,Γ, r̃) =
∑
q∈Z V

[q]eiqℓ with

V [q](L, ϕ,Γ, r̃) =
1

2π

∫ 2π

0

V (ℓ, L, ϕ,Γ, r̃)e−iqℓdℓ

=
ν̃

2πr̃

∫ 2π

0

(
m0

|1 + σ̃0neiϕ|
+

m1

|1− σ̃1neiϕ|
− (m0 +m1)

)
e−iqℓdℓ.

To estimate these integrals, we perform the change to the excentric anomaly

ℓ = E − ec sinE, dℓ = (1− ec cosE)dE (5.275)

and use that

ρ̃eiv = L2

(
a2eiE − ec +

e2c
4a2

e−iE
)
, a =

√
1 + ec +

√
1− ec

2
(5.276)

where ec =
1
L

√
L2 − Γ2. Then we do a second change of variables E + ϕ = s to obtain

V [q] =
ν̃

r̃

∫ 2π

0

(
m0

|1 + σ̃0ñeiϕ|
+

m1

|1− σ̃1ñeiϕ|
− (m0 +m1)

)
e−iq(s−ϕ−ec sin(s−ϕ))(1− ec cos(s− ϕ))ds

= eiqϕ
ν̃

r̃

∫ 2π

0

(
m0

|1 + σ̃0ñeiϕ|
+

m1

|1− σ̃1ñeiϕ|
− (m0 +m1)

)
e−iq(s−ec sin(s−ϕ))(1− ec cos(s− ϕ))ds

= eiqϕV̂ [q](L, ϕ,Γ, r̃)

where

ñ(s, L, ϕ,Γ, r̃)eiϕ = n(s− ϕ− ec sin(s− ϕ), L, ϕ,Γ, r̃)eiϕ =
1

r̃
L2

(
a2eis − ece

iϕ +
e2c
4a2

e−i(s−2ϕ)

)
.
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Now we relate these Fourier coefficients to those of P1. To this end, we relate Delaunay coordinates to
the coordinates introduced in (5.71). One can see that the (ℓ, L, ϕ,Γ, r̃, ỹ) → (u, Y, γ,Λ, α, β) is given by

ℓ = γ − 1

2i
log

η0 + α

ξ0 + β
L = L0 + Λ

ϕ = ϕh(u) +
1

2i
log

η0 + α

ξ0 + β
Γ = L− (η0 + α)(ξ0 + β)

r̃ = G2
0r̂h(u) ŷ =

ŷh(u)

G0
+

Y

G2
0ŷh(u)

+
Λ− (η0 + α)(ξ0 + β) + η0ξ0

G2
0ŷh(u)(r̂h(u))

2
.

(5.277)

Then,

P1(u, γ,Λ, α, β)

= G3
0V

(
γ − 1

2i
log

η0 + α

ξ0 + β
, L0 + Λ, ϕh(u) +

1

2i
log

η0 + α

ξ0 + β
, L0 + Λ− (η0 + α)(ξ0 + β), G2

0r̂h(u)

)
=
∑
q∈Z

eiq(ϕh(u)+
1
2i log

η0+α
ξ0+β )eiq(γ−

1
2i log

η0+α
ξ0+β )P̂ [q]

1 (u,Λ, α, β)

=
∑
q∈Z

eiq(ϕh(u)+γ)P̂ [q]
1 (u,Λ, α, β)

where

P̂ [q]
1 (u,Λ, α, β) = G3

0V̂
[q]

(
L0 + Λ, ϕh(u) +

1

2i
log

η0 + α

ξ0 + β
, L0 + Λ− (η0 + α)(ξ0 + β), G2

0r̂h(u)

)

=
ν̃G0

2πr̂h(u)

∫ 2π

0

 m0∣∣∣1 + σ̃0n̂e
i(ϕh(u)+

1
2i log

η0+α
ξ0+β )

∣∣∣ + m1∣∣∣1− σ̃1n̂e
i(ϕh(u)+

1
2i log

η0+α
ξ0+β )

∣∣∣ − (m0 +m1)


e−iq(s−ec sin(s−(ϕh(u)+

1
2i log

η0+α
ξ0+β )))

(
1− ec cos

(
s−

(
ϕh(u) +

1

2i
log

η0 + α

ξ0 + β

)))
ds

where now

n̂ei(ϕh(u)+
1
2i log

η0+α
ξ0+β ) =

1

G2
0r̂h(u)

(L0+Λ)2
(
a2eis − ece

i(ϕh(u)+
1
2i log

η0+α
ξ0+β ) +

e2c
4a2

e−i(s−2(ϕh(u)+
1
2i log

η0+α
ξ0+β ))

)
.

The first important observation is that, using the expresion for the eccentricity in (5.272) one has

ece
1
2 log

η0+α
ξ0+β = (η0 + α)E , ece

− 1
2 log

η0+α
ξ0+β = (ξ0 + β)E

which implies

ec sin(s− (ϕh(u) +
1

2i
log

η0 + α

ξ0 + β
))) =

E
2i

(
(ξ0 + β)ei(s−ϕh(u)) − (η0 + α)e−i(s−ϕh(u))

)
ec cos(s− (ϕh(u) +

1

2i
log

η0 + α

ξ0 + β
))) =

E
2

(
(ξ0 + β)ei(s−ϕh(u)) + (η0 + α)e−i(s−ϕh(u))

)

and

n̂ei(ϕh(u)+
1
2i log

η0+α
ξ0+β ) =

(L0 + Λ)2

G2
0r̂h(u)

(
a2eis − (η0 + α)Eeiϕh(u) + E2 (η0 + α)2

4a2
e−i(s−2ϕh(u))

)
.

Now we observe that, taking into account that 1/2 ≤ a ≤ 2, the asymptotics provided by Lemma 5.4.1
for r̂h and ϕh, and the fact that |η0 + α|+ |ξ0 + β| ≤ ζ0 imply∣∣∣(|η0 + α|+ |ξ0 + β|)Ee±iϕh(u)

∣∣∣ ≤ Kζ0G
3/2
0 ≪ 1
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we have that ∣∣∣n̂ei(ϕh(u)+
1
2i log

η0+α
ξ0+β )

∣∣∣ ≤ K

G2
0|r̂h(u)|

≤ G
−1/2
0 ≤ 1

2

under the hypotheses of the lemma. Therefore we have that, using the cancellations (observe that
σ̃0m0 − σ̃1m1 = 0), ∣∣∣P̂ [q]

1 (u,Λ, α, β)
∣∣∣ ≤ K

1

G3
0|r̂h(u)|3

.

The bounds for the derivatives can be made analogously differentiating the expressions for P1.

5.C The Melnikov potential: Proof of Proposition 5.4.2

We devote this section to prove Proposition 5.4.2 which gives estimates for the Melnikov potential L
introduced in (5.32). Note that L can be rewritten in terms of the perturbing potential P1 introduced in
(5.78) as

L(σ, η0, ξ0) =
∫ +∞

−∞
P1(s, σ + ωs, 0, 0, 0) ds where ω =

νG3
0

L3
0

(see (5.33)).

First, we obtain estimates for the harmonics different from 0,±1 of the potential L.

Lemma 5.C.1. The q-Fourier coefficient of the Melnikov potential (5.32) with |q| ≥ 2 can be bounded as

∣∣∣L[q]
∣∣∣ ≤ KqG

3|q|+1
2

0 e
− |q|ν̃G3

0
3L3

0 , (5.278)

for some K > 0 independent of G0 and q.

Proof. The proof of this lemma is straighforward if one writes the Fourier coefficients of L in terms of the
Fourier coefficients of the perturbing Hamiltonian P1 introduced in (5.78) (which can be also expressed

in terms of the function P̂ [q]
1 introduced in Lemma 5.B.1) as

L[q] =

∫ +∞

−∞
P [q]
1 (u, 0, 0, 0)e

i
qν̃G3

0
L3
0
u
du =

∫ +∞

−∞
P̂ [q]
1 (u, 0, 0, 0)eiqϕh(u)e

i
qν̃G3

0
L3
0
u
du.

Then, it is enough to change the path of the integral to Imu = 1
3 − G3

0 and use the bounds of Lemma
5.B.1 and that, by Lemma 5.4.1,

|eqiϕh(u)| ≤ KqG
3|q|
2

0 .

Now we give asymptotic formulas for the harmonics q = 0,±1. It is easy to check that

L[q](η0, ξ0) = L[−q](ξ0, η0)

and therefore it is enough to compute q = 0, 1.

Lemma 5.C.2. The Fourier coefficients L[0] and L[1] satisfy

L[0](η0, ξ0) =
ν̃π

8
L4
0G

−3
0

[
N2

(
1 +

3

L0
η0ξ0 −

3

2L2
0

(η0ξ0)
2

)
− 15N3L

2
0

8
√
2L0

G−2
0 (η0 + ξ0) + η0ξ0O1 (η0, ξ0)

]

L[1](η0, ξ0) =
ν̃
√
π

4
e
− ν̃G3

0
3L3

0 L4
0G

3/2
0

[(
N3L

2
0

8
√
2
G−2

0 − 3N2√
L0

η0

)
+O

(
G

−5/2
0 , G

−3/2
0 η0, η0ξ0, η

2
0G0, ξ

2
0G0

)]
,

where N2 and N3 are given in (5.35)
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Proof. Proceeding as in the proof of Lemma 5.B.1, we use Delaunay coordinates. To this end, we first
compute expansions of the potential V introduced in (5.274) in powers of r̃ as V = V1 + V2 + V≥ with

V1(ℓ, L, ϕ,Γ, r̃) = N2ν̃
ρ̃2

4r̃3
(3 cos 2(v + ϕ) + 1) ,

V2(ℓ, L, ϕ,Γ, r̃) = −N3ν̃
ρ̃3

8r̃4
(3 cos(v + ϕ) + 5 cos 3(v + ϕ)) ,

(see (5.35)) and V≥ is of the form V≥ = 1
r̂E and E is a function of z = 1

r̃ ρ̃e
i(v+ϕ) of order 4. Accordingly,

we write the potential P1(u, γ,Λ, α, β) in (5.78) as

P1 = P11 + P12 + P1≥.

Now we compute formulas for the Fourier coefficents of P [q]
1 with q = 0, 1. For the coefficients P [q]

1≥,
proceeding as in Lemma 5.B.1, one can prove that

P [q]
1≥(u, 0, 0, 0) = P̂ [q]

1≥(u, 0, 0, 0)e
iqϕh(u) with

∣∣∣P̂ [q]
1≥(u, 0, 0, 0)

∣∣∣ ≲ 1

G7
0|r̂5h(u)|

. (5.279)

For P11 and P12 we have explicit formulas. To compute their Fourier coefficients, we introduce the
coefficients Cn,mq , defined, following [DKdlRS19], by

ρ̃n(ℓ, L,Γ)eimv(ℓ,L,Γ) =
∑
q∈Z

Cn,mq (L, ec)e
iqℓ =

∑
q∈Z

(
ξ0
η0

)q/2
Cn,mq (L0, ec)e

iqγ (5.280)

where ℓ = γ − 1
2i log(η0/ξ0), L = L0, Γ = L0 − η0ξ0 (see (5.277)).

The coefficients Cn,mq depend on L and ec is the eccentricity (see (5.272)). Then, recalling also

ϕ = ϕh(u) +
1
2i ln

(
η0
ξ0

)
, we obtain

P [q]
11 (u, 0, 0, 0) =

N2ν̃

4G3
0r̂

3
h(u)

(
C2,0
q +

3

2
C2,2
q e2iϕ +

3

2
C2,−2
q e−2iϕ

)(
ξ0
η0

)q/2
=

N2ν̃

4G3
0r̂

3
h(u)

(
C2,0
q +

3

2
C2,2
q e2iϕh(u)

(
ξ0
η0

)−1

+
3

2
C2,−2
q e−2iϕh(u)

(
ξ0
η0

))(
ξ0
η0

)q/2
P [q]
12 (u, 0, 0, 0) = − N3ν̃

8G5
0r̂

4
h(u)

(
3

2
C3,1
q eiϕ +

3

2
C3,−1
q e−iϕ +

5

2
C3,3
q e3iϕ +

5

2
C3,−3
q e−3iϕ

)(
ξ0
η0

)q/2
= − N3ν̃

8G5
0r̂

4
h(u)

(
3

2
C3,1
q eiϕh(u)

(
ξ0
η0

)−1/2

+
3

2
C3,−1
q e−iϕh(u)

(
ξ0
η0

)1/2

+
5

2
C3,3
q e3iϕh(u)

(
ξ0
η0

)−3/2

+
5

2
C3,−3
q e−3iϕh(u)

(
ξ0
η0

)3/2
)(

ξ0
η0

)q/2
,

where N2 and N3 are given by in (5.35).

The functions L[q], q = 0, 1, can be written as L[q] = L[q]
1 + L[q]

2 + L[q]
≥ with

L[q]
i =

∫ +∞

−∞
P [q]
1i (s, 0, 0, 0)e

iqωsds, i = 1, 2,≥ .

We first give estimates for the last terms. For L[1]
≥ it is enough to change the path of integration to

Im s = 1/3 − G−3
0 and use (5.279) and the properties in Lemma 5.4.1. For L[0]

≥ one can estimate the
integral directly. Then, one can obtain∣∣∣L[0]

≥

∣∣∣ ≲ G−7
0 and

∣∣∣L[1]
≥

∣∣∣ ≲ G−1
0 e

− ν̃G3
0

3L3
0 . (5.281)
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Thus, it only remains to obtain formulas for L[q]
i , q = 0, 1, i = 1, 2. Using the formulas in (5.24), they

are given in terms of the integrals∫ +∞

−∞

1

r̂2l−k+1
h (t)

e−ikϕh(t)eiqωtdt =

∫ +∞

−∞

eiqω(τ+
τ3

3 )

(τ − i)2l−2k(τ + i)2l
dτ for l ≥ k ≥ 0

∫ +∞

−∞

1

r̂k−2l+1
h (t)

e−ikϕh(t)eiqωtdt =

∫ +∞

−∞

eiqω(τ+
τ3

3 )

(τ − i)−2l(τ + i)2k−2l
dτ for l ≤ k ≤ −1.

Therefore, following the notation of [DKdlRS19], if we introduce

N(q,m, n) =
2m+n

G2m+2n−1
0

(
−1/2

m

)(
−1/2

n

)∫ +∞

−∞

eiqω(τ+
τ3

3 )

(τ − i)2m(τ + i)2n
dτ, (5.282)

one can write these functions as

L[0]
1 =

N2ν̃

4

(
C2,0

0 N(0, 1, 1) +

(
ξ0
η0

)−1

C2,2
0 N(0, 2, 0) +

(
ξ0
η0

)
C2,−2

0 N(0, 0, 2)

)

L[1]
1 =

N2ν̃

4

((
ξ0
η0

)1/2

C2,0
1 N(1, 1, 1) +

(
ξ0
η0

)−1/2

C2,2
1 N(1, 2, 0) +

(
ξ0
η0

)3/2

C2,−2
1 N(1, 0, 2)

)

L[0]
2 =

N3ν̃

8

((
ξ0
η0

)−1/2

C3,1
0 N(0, 2, 1) +

(
ξ0
η0

)1/2

C3,−1
0 N(0, 1, 2)

+

(
ξ0
η0

)−3/2

C3,3
0 N(0, 3, 0) +

(
ξ0
η0

)3/2

C3,−3
0 N(0, 3, 0)

)

L[1]
2 =

N3ν̃

8

(
C3,1

1 N(1, 2, 1) +

(
ξ0
η0

)
C3,−1

1 N(1, 1, 2)

+

(
ξ0
η0

)−1

C3,3
1 N(1, 3, 0) +

(
ξ0
η0

)2

C3,−3
1 N(1, 0, 3)

)

(5.283)

It can be easly check that the functions N satisfy

N(0, 0, k) = N(0, k, 0) = 0, for k ≥ 2 and N(−q,m, n) = N(q, n,m).

The leading terms of the integrals in (5.282) are given in [DKdlRS19] (see Lemma 30 and the proof of
Lemma 36),

N(0, 1, 1) =
π

2
G−3

0 N(1, 2, 1) =
1

4

√
π

2
G

− 1
2

0 e
− ν̃G3

0
3L3

0

(
1 +O(G

−3/2
0 )

)
N(0, 2, 1) =

3π

8
G−5

0 N(1, 2, 0) =

√
π

2
G

3
2
0 e

− ν̃G3
0

3L3
0

(
1 +O(G

−3/2
0 )

)
N(0, 1, 2) =

3π

8
G−5

0 N(1, 3, 0) =
1

3

√
π

2
G

5
2
0 e

− ν̃G3
0

3L3
0

(
1 +O(G

−3/2
0 )

)
and

N(1, 1, 1) = e
− ν̃G3

0
3L3

0 O
(
G

−3/2
0

)
, N(1, 0, 2) = e

− ν̃G3
0

3L3
0 O

(
G

−9/2
0

)
N(1, 1, 2) = e

− ν̃G3
0

3L3
0 O

(
G

−7/2
0

)
, N(1, 0, 3) = e

− ν̃G3
0

3L3
0 O

(
G

−13/2
0

)
.

Now it remains to estimate some of the coefficients Cn,mq in (5.280), defined as

Cn,mq (L0, ec) =
L2n
0

2π

∫ 2π

0

ρ̃n(ℓ, L0, ec)e
imv(ℓ,L0,ec)e−iqℓdℓ.
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Proceeding as in (5.275), we change variables to the eccentric anomaly. Then, using (6.8) and (6.9) to
express ρ̃ and v in terms of the eccentric anomaly, one obtains

Cn,mq (L0, ec) =
L2n
0

2π

∫ 2π

0

(
a2eiE +

e2c
4a2

e−iE − ec

)m
(1− ec cosE)

n+1−m
e−iq(E−ec sinE)dE, (5.284)

where a has been defined in (5.276). These formulas easily imply the symmetries

Cn,mq (ec) = Cn,−m−q (ec) = C
n,m

q (ec) and Cn,mq (ec) = (−1)q+mCn,mq (−ec).

One can also compute them, as was already done in [DKdlRS19], to obtain

C2,0
0 = L4

0

(
1 +

3

L0
η0ξ0 −

3

2L2
0

(η0ξ0)
2

)
C3,−1

0

(
ξ0
η0

)1/2

= − 5√
2L0

L6
0

(
ξ0 +O(ξ20η0)

)
C3,1

0

(
ξ0
η0

)−1/2

= − 5√
2L0

L6
0

(
η0 +O(η20ξ0)

)
C3,1

1 = L6
0 (1 +O(η0ξ0))(

ξ0
η0

)−1/2

C2,2
1 = −3L4

0

√
2

L0
η0 +O

(
η20ξ0

)
.

They also can be easily bounded, switching the integration path in (5.284) to either ImE = log ec (if
q −m > 0) or ImE = − log ec (if q −m < 0), as

|Cn,mq (ec)| ≲ e|m−q|
c .

Using this estimate, one obtains(
ξ0
η0

)1/2

C2,0
1 =O(ξ0),

(
ξ0
η0

)3/2

C2,−2
1 =O

(
ξ30
)
,

(
− ξ0
η0

)
C3,−1

1 =O
(
ξ20
)

(
ξ0
η0

)−1

C3,3
1 =O

(
η20
)
,

(
ξ0
η0

)2

C3,−3
1 =O

(
ξ40
)
.

Then,

L[0]
1 =

N2ν̃π

8
L4
0G

−3
0

(
1 +

3

L0
η0ξ0 −

3

2L2
0

(η0ξ0)
2

)
L[1]
1 =− N2ν̃

4

√
π

L0
G

3
2
0 e

− ν̃G3
0

3L3
0 3L4

0η0

(
1 +O(η0ξ0, G

−3/2
0 )

)
L[0]
2 =− 15N3ν̃πL

6
0

64
√
2L0

G−5
0 (η0 + ξ0 + η0ξ0O1(η0, ξ0))

L[1]
2 =

N3ν̃

32

√
π

2
L6
0G

− 1
2

0 e
− ν̃G3

0
3L3

0

(
1 +O

(
η0ξ0, ξ

2
0G

−3
0 , G

−3/2
0 , η20G

3
0

))
.

These formulas and (5.281) give the asymptotic expansions stated in Lemma 5.C.2.

To complete the proof of Proposition 5.4.2 it is enough to use the relation between Θ, Θ̃ and G0 in
(5.34), (5.33).
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Chapter 6

Global instability in the 3 Body
Problem: The Melnikov
approximation

Abstract: The 3 Body Problem is a Hamiltonian system which models the motion of three bodies
interacting via Newtonian gravitation. Understanding its global dynamics is one of the more challenging
question in dynamics.

This is the first of a series of papers devoted to prove the existence of global instability in the 3 Body
Problem on negative energy levels. We focus on the hierarchical regime where one body is far away
from the other two, whose instantaneous, relative motion, happens on an ellipse, and, in particular, are
interested in the existence of orbits for which the angular momentum of the far body is transferred to
the binary, elliptic system, resulting in a substantial change of its eccentricity (from nearly circular to
almost collision).

Our approach relies on the existence of a (topological) Normally Hyperbolic Invariant Cylinder E∞,
located “at infinity” and can be seen as a rather non trivial extension of the previous results [DKdlRS19,
GPS23b] for the restricted case. In this first paper we describe the mechanism and introduce the so-called
Melnikov approximation, a crucial tool for proving the existence of transverse intersections between E∞.
The validity of the Melnikov approximation and the construction of a transition chain of periodic orbits
in E∞ leading to topological instability, will be the subject of a future work.

6.1 Introduction

The 3 Body Problem models the motion of three bodies interacting via Newtonian gravitation. We
consider the planar case, in which the three bodies move on the same plane. Its dynamics is given by the
Hamiltonian system

H3BP(q, p) =

2∑
i=0

|pi|2

2mi
−

∑
0≤i<j≤2

mimj

|qi − qj |
(q, p) ∈ R12 \∆ (6.1)

where mi > 0, i = 0, 1, 2, and ∆ = {qi = qj for some 0 ≤ i < j ≤ 2} corresponds to the collision set.
In the so-called hierarchical regime, that is, the region of the phase space where one body is far from
the other two, the Hamiltonian (6.1) can be studied as a small perturbation of two uncoupled Kepler
problems: one describing the dyamics of the binary system and one describing the motion of the far away
body q3 with respect to the center of mass of the other two q1, q2. In this nearly integrable setting, one
can try to understand the mechanisms giving raise to stable and unstable motions making use of the
techniques of Hamiltonian perturbation theory.
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The first major achievement towards understanding this picture, was obtained by Arnold in [Arn63],
who gave a master application of the KAM techniques to prove the existence of a positive measure set
of quasiperiodic motions in the coplanar 3 Body Problem. The proof was later extended to case of
N ≥ 3 bodies in the work of Féjoz and Herman [Fej04] (see also [Rob95, CP11]). On the other hand, in
accordance with the general belief that the N Body Problem, although strongly degenerate, displays the
main features of a “typical” Hamiltonian system, in his ICM address, Herman conjectured [Her98] that
the set of nonwandering points for the flow of the N Body Problem is nowhere dense on every energy
level for N ≥ 3. This would imply topological instability for the N Body Problem in a very strong sense.

At the moment, this conjecture seems largely out of reach, and the very few rigourous examples of
topological instability in Celestial Mechanics were given quite recently in [CG18, DKdlRS19, GPS23b]
for the Restricted 3 Body Problem and in [CFG22, CFG23] for the spatial 4 Body Problem. In all these
works, the underlying mechanism, is the so called Arnold diffusion mechanism. This mechanism, proposed
by Arnold in his seminal study of topological instability in nearly integrable Hamiltonian systems (see
[Arn64]), is based on the existence of a transition chain of invariant tori, that is, a sequence of partially
hyperbolic invariant tori connected by transverse heteroclinic orbits between them. In modern language,
the Arnold diffusion mechanism relies on the existence of a Normally Hyperbolic Invariant Manifold
(NHIM) whose stable and unstable manifolds intersect transversally along a homoclinic manifold. Then,
if the inner dynamics on the NHIM contains “sufficient” quasiperiodic invariant tori (or other invariant
objects such as Aubry-Mather sets), one can combine the outer excursions along the homoclinic manifold
with quasiperiodic inner dynamics (or orbits shadowing the Aubry-Mather sets) to obtain a transition
chain leading to topological instability.

When studying the existence of Arnold diffusion in concrete models, for example in Celestial Mechan-
ics, usually, one of the main difficulties is to prove that the invariant manifolds of the NHIM intersect
transversally. In regular perturbation frameworks, i.e. when there exist no different time scales, this
problem can be tackled by means of the so-called Poincaré-Melnikov theory, which gives an asymptotic
formula for the distance (measured along a suitable section) between these invariant manifolds (see, for
example, [DdlLS06, DdlLS08], and see [DKdlRS19] for an application to Celestial Mechanics). However,
when there exist different time scales, one needs much more extra work to prove that the distance between
the invariant manifolds can be approximated by a (modified) Melnikov function (see [LMS03, GPS23b]).

This paper is the first of a series of two papers devoted to study the existence of Arnold diffusion in
the 3 Body Problem. Here, we identify a (topological) NHIM for the 3BP and introduce the Melnikov
approximation for studying the existence of transverse intersections between its stable and unstable
manifolds. The second paper will be devoted to justify rigourously the Melnikov approximation as well
as the construction of unstable motions.

6.1.1 A degenerate Arnold diffusion mechanism for the Restricted 3BP

The 3 Body Problem is called restricted if two bodies, the primaries, have strictly positive masses, and
the third one has zero mass. Our approach to study the existence of Arnold Diffusion in the 3 Body
Problem is strongly based on the previous works [DKdlRS19, GPS23b], where the authors considered
the Restricted Planar Elliptic 3 Body Problem. In this model, the primaries move, according to Kepler
laws, on ellipses of eccentricity ϵ0 ∈ (0, 1). The authors in [DKdlRS19, GPS23b] show the existence of
a transition chain of periodic orbits located in the region of the phase space where the third body is far
from the other two. In this hierarchical regime, the R3BP can be studied as a periodic perturbation
of the 2 Body Problem describing the motion of the massless body with respect to the center of mass
of the primaries. The constructed transition chain of periodic orbits leads to topological instability in
the following sense: there exist orbits along which the angular momentum G = |q ∧ p| of the massless
body, a conserved quantity in the 2 Body Problem approximation, experiences arbitrarily long variations
provided the eccentricity of the primaries orbit is positive, but sufficiently small.

More concretely, for the R3BP, there exists a 3-dimensional “invariant manifold at infinity” P∞,
corresponding to the ω-limit set (resp. α-limit set) of the points which lead to forward (resp. backwards)
parabolic motions (when the massless body tends to infinity with asymptotic zero velocity). The manifold
P∞ is strongly degenerate in the sense that it is completely foliated by periodic orbits. Although the
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linearized vector field vanishes on the normal directions to P∞, this manifold possesses 4-dimensional
stable and unstable manifolds W s,u(P∞), which are indeed the set of forward and backwards parabolic
motions. For G∗ ≫ 1, the submanifolds Wu,s(P∞ ∩ {G ≥ G∗}) are contained in the hierarchical region
(third body far from the primaries) and, if the eccentricity of the primaries is small enough, these manifolds
intersect transversally along two different homoclinic manifolds, which are moreover diffeomorphic to
P∗
∞ = P∞ ∩ {G∗ < G < ϵ−1/3} (where ϵ is the eccentricity of the primaries orbit). Therefore, one

can define two different global scattering maps on P∗
∞ encoding the dynamics along the two different

homoclinic manifolds. Since the inner dynamics on P∞ is trivial, one cannot rely on the classical approach
of combining inner quasiperiodic dynamics and the outer dynamics of one scattering map to prove the
existence of drifting orbits. However, since both scattering maps are defined globally, by analyzing the
dynamics of the iterated function system given by them, one can show the existence of orbits along which
the angular momentum grows from G ≤ G∗ to G ≥ ϵ−1/3.

6.1.2 The parabolic-elliptic regime and Arnold Diffusion in the 3BP

We will see in Section 6.2 that, for the 3BP, on each constant, negative energy hypersurface, there exists
a 3-dimensional invariant submanifold at infinity E∞. It corresponds to the ω-limit set (resp. α-limit
set) of the points which lead to forward (resp. backwards) orbits along which the motion of one body is
parabolic and the motion the other two bodies is elliptic. Since at E∞ the distance between one body
(the one performing the parabolic motion) and the other two (the binary, elliptic, system) is infinite,
the coupling in the hierarchical approximation vanishes identically on E∞. Thus, the dynamics on E∞ is
completely integrable. Moreover, due to the so-called super integrability of the 2 Body Problem, E∞ is
foliated by periodic orbits.

It is known (see [BFM20c]), that E∞ possesses 4-dimensional stable and unstable invariant manifolds.
Therefore, one can try to extend the techniques developed in [DKdlRS19, GPS23b] to prove the existence
of a transition chain of periodic orbits in the 3BP. Indeed, due to the robustness of the mechanism, one
could directly prove that the transition chain of heteroclinic orbits constructed in [DKdlRS19, GPS23b]
for the R3BP can be continued to the 3BP if the mass m2 is sufficiently small. Therefore, one can deduce
that, in the 3BP, if m2 is sufficiently small, there exist orbits along which the angular momentum G of
the third body experiences significant variations, while the eccentricity of the inner bodies remains small.

In the present work, we are interested in proving the existence of Arnold Diffusion in the 3BP for any
choice of the masses m0,m1,m2 > 0. The substantial difference is that, due to the conservation of the
total angular momentum, as the angular momentum of the third body grows, so does the eccentricity of
the orbit of the binary system 1. However, in order to construct orbits along which this transfer of angular
momentum is significant, one cannot make use of the arguments developed in [DKdlRS19, GPS23b], since
they strongly rely on the hypothesis that the eccentricity of the primaries orbit is small enough. Thus,
new techniques have to be developed to, in particular, analyze the existence of transverse intersections
between the invariant manifolds of E∞ (see also Section 6.4 and, in particular, the discussion at the end
of Section 6.4.2 where we outline the main technical difficulties).

Our goal in this series of papers can now be stated clearly: We want to construct a transition chain
of periodic orbits contained in E∞, along which the angular momentum of the third body is transferred
to the binary system, resulting in a substantial change of its eccentricity. In particular, we want to
construct orbits which transition from close to circular orbits to highly eccentric ellipses (i.e., with close
to collision points) This first paper is devoted to analyze the so called Melnikov approximation of the
distance between the invariant manifolds of E∞.

Remark 6.1.1. Notice that, in [DKdlRS19, GPS23b], the variations of the angular momentum G of
the massless body are bounded above by the value of 1/ϵ. This limitation, as already commented, is
due to the fact that we were able to prove the existence of scattering maps only in the submanifold
P∗
∞ = P∞∩{G∗ < G < ϵ−1/3} (see Section 6.1.1). With the techniques that we develop in these series of

papers, we can remove that limitation and prove, that, for any ϵ ∈ (0, 1), there exist orbits of the RPE3BP
which present an unbounded growth of the angular momentum of the massless body.

1The change of eccentricity due to the transfer of angular momentum goes to zero with m2 → 0.
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The parabolic-elliptic regime and hyperbolic sets in the 3BP

The parabolic-elliptic regime has recently been considered in [GMPS22] to establish the existence of non
trivial hyperbolic sets in the 3BP. To prove this result, the authors focus on an invariant submanifold
E∞,circ ⊂ E∞ corresponding to nearly circular motion of the bodies q0, q1, and prove that its stable and
unstable invariant manifolds intersect transversally. Then, they prove the existence of a non trivial hy-
perbolic set for the return map to a suitable section close to the transverse intersection. The construction
is rather involved due to the existence of center directions.

Notice, however, that, since the hyperbolic set is contained in the region of the phase space where the
binary, elliptic system, performs close to circular motions, it does not lead to topological instability, in the
sense that it does not contain orbits along which the angular momentum of the third body is transferred
to the binary system, whose eccentricity is always close to zero for all the orbits in the hyperbolic set.

A remarkably interesting, but even more challenging question, is to study how the eccentricities asso-
ciated to initial conditions lying on a sufficiently small neighbourhood of E∞ distribute after sufficiently
long time. This would require to combine, and extend considerably, the ideas from Sections 6.1.2 and
6.1.2. We hope to come back to this question in the future.

6.1.3 The Melnikov approximation

We focus, for G∗ ≫ 1, on the invariant submanifold E∞ ∩ {G ≥ G∗} where G stands for the angular
momentum of the third body. The reason is that its stable and unstable manifolds are contained in the
hierarchichal region and therefore, can be analyzed perturbatively. In Section 6.4, we give an heuristic
argument to obtain an asymptotic formula, up to polynomially small relative errors in 1/G∗, for the
distance between Wu(E∞ ∩ {G ≥ G∗}) and W s(E∞ ∩ {G ≥ G∗}). This first order is the so-called
Melnikov approximation.

Our perturbative setting corresponds, however, to a singular perturbation framework, since there exist
different time scales: the fast dynamics of the binary system and the slow dynamics of the parabolic
motion of the third body, whose interaction with the binary system is weak due the decay of Newtonian
gravitation with distance. The effect of the coupling averages then to an exponentially small reminder in
1/G∗,

2 which, as a matter of fact, bounds the distance betweenWu(E∞∩{G ≥ G∗}) andW s(E∞∩{G ≥
G∗}). Therefore, in order for the Melnikov approximation to yield a valid asymptotic formula, one needs
to show that the errors in the Melnikov approximation are also exponentially small in 1/G∗.

In this work, we only compute the Melnikov approximation of the distance between Wu(E∞ ∩ {G ≥
G∗}) and W s(E∞ ∩ {G ≥ G∗}). The rigourous justification of this approximation, and the construction
of a transition chain of periodic orbits contained in Wu(E∞ ∩ {G ≥ G∗}) ∩W s(E∞ ∩ {G ≥ G∗}) will be
the subject of a separate paper.

6.1.4 Organization of the article

In Section 6.2 we introduce a suitable coordinate system in which the dynamics between the binary (ellip-
tic) system and the motion of the third (parabolic) body are uncoupled up to higher order interactions.
In Section 6.3 we study the dynamics associated to the two uncoupled 2 Body Problems which gives
the first order dynamics of the parabollic-elliptic regime. In particular, we show that there exists an
unperturbed homoclinic manifold to E∞. In Section 6.4 we introduce an adapted coordinate system in a
neighbourhood of the unperturbed homoclinic manifold, which is suitable for analyzing the existence of
transverse intersections between the perturbed manifolds and give an heuristic justification of the Mel-
nikov approximation. In Section 6.5 we state our main result: namely, we give an asymptotic formula of
the so-called Melnikov potential and outline the proof of this result. Sections 6.6 and 6.7 are devoted to
complete the proof of the main result.

2The quantity 1/G∗ can be taken as a measure of the ratio between the two time scales of the parabolic-elliptic regime.
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Figure 6.1: Sketch of an instantaneous configuration in the parabolic-elliptic regime.

6.2 A good coordinate system for the parabolic-elliptic regime

In this section we introduce a coordinate system suitable for describing the region of the phase space
where, up to higher order interactions, the bodies q0, q1 ∈ R2 form a binary system with negative energy,
i.e. they revolve around each other in Keplerian ellipses, and the third body q2 ∈ R2 is located far from
q0, q1 and performs a zero energy, i.e. parabolic, motion with respect to the center of mass of q0, q1 (see
Figure 6.2).

6.2.1 Symplectic reduction of the planar 3 Body Problem

The HamiltonianH3BP in (6.1) defines a six degrees of freedom Hamiltonian system. We start by reducing
it by translations with the classical Jacobi coordinates to obtain a four degrees of freedom Hamiltonian
system. That is, we define the symplectic transformation

Q0 = q0 P0 = p0 + p1 + p2

Q1 = q1 − q0 P1 = p1 +
m1

m0 +m1
p2

Q2 = q2 −
m0q0 +m1q1
m0 +m1

P2 = p2.

These coordinates allow to reduce by the total linear momentum since now P0 is a first integral. Assuming
P0 = 0, the Hamiltonian of the 3 Body Problem becomes

H∗(Q1, P1, Q2, P2) =

2∑
j=1

|Pj |2

2µj
− V ∗(Q1, Q2)

where
1

µ1
=

1

m0
+

1

m1
,

1

µ2
=

1

m0 +m1
+

1

m2

and
V ∗(Q1, Q2) =

m0m1

|Q1|
+

m0m2

|Q2 + σ0Q1|
+

m1m2

|Q2 + σ1Q1|
with

σ0 =
m1

m0 +m1
, σ1 =

−m0

m0 +m1
=

−1

1 + σ0
. (6.2)

Next step is to express the Hamiltonian H∗ in polar coordinates. Identifying R2 with C, we consider the
symplectic transformation

Q1 = ϱeiθ, Q2 = reiα, P1 = zeiθ + i
Γ

ϱ
eiθ, P2 = yeiα + i

G

r
eiα
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which leads to the Hamiltonian

Hpol(r, ϱ, α, θ, y, z,G,Γ) =
1

µ1

(
z2

2
+

Γ2

2ϱ2

)
+

1

µ2

(
y2

2
+
G2

2r2

)
− Vpol (r, ϱ, θ − α) ,

where

Vpol (r, ϱ, θ − α) = V ∗ (ϱeiθ, reiα) = m0m1

ϱ
+

m0m2

|reiα + σ0ϱeiθ|
+

m1m2

|reiα + σ1ϱeiθ|

=
m0m1

ϱ
+

1

r

(
m0m2

|1 + σ0
ϱ
r e
i(θ−α)|

+
m1m2

|1 + σ1
ϱ
r e
i(θ−α)|

)
.

Focus now on the region of the phase space where r ≫ ϱ, in which the third body is far from the other
two. Then, we have

Hpol(r, ϱ, α, θ, z, y,G,Γ) =
1

µ1

(
z2

2
+

Γ2

2ϱ2

)
+

1

µ2

(
y2

2
+
G2

2r2

)
− m0m1

ϱ
− m2(m0 +m1)

r
+O

(
ϱ2

r3

)
.

Thus, at first order, we have two uncoupled Hamiltonians, one for (ϱ, θ, z,Γ) and the other for (r, α, y,G),
3

Hel(ϱ, θ, z,Γ) =
1

µ1

(
z2

2
+

Γ2

2ϱ2

)
−m0m1

1

ϱ

Hpar(r, α, y,G) =
1

µ2

(
y2

2
+
G2

2r2

)
−m2(m0 +m1)

1

r
.

(6.3)

To have the first order Hamiltonians Hel and Hpar independent of the masses, we make the following
scaling to the variables

ϱ =
1

µ1m0m1
ϱ̃, z = µ1m0m1z̃, r =

1

µ2m2(m0 +m1)
r̃ and y = µ2m2(m0 +m1)ỹ,

which is conformally symplectic. Then, after time rescaling, we obtain the Hamiltonian

H̃pol(r̃, ϱ̃, α, θ, ỹ, z̃,Γ, G) = ν

(
z̃2

2
+

Γ2

2ϱ̃2
− 1

ϱ̃

)
+

(
ỹ2

2
+
G2

2r̃2
− 1

r̃

)
− Ṽ (ϱ̃, r̃, θ − α).

with

Ṽ (ϱ̃, r̃, θ − α) =
ν̃

r̃

(
m0

|1 + σ̃0
ϱ̃
r̃ e
i(θ−α)|

+
m1

|1 + σ̃1
ϱ̃
r̃ e
i(θ−α)|

− (m0 +m1)

)
, (6.4)

and

ν =
µ1m

2
0m

2
1

µ2m2
2(m0 +m1)2

, ν̃ = (m0 +m1)m
2
2 and σ̃i =

µ2m2(m0 +m1)

µ1m0m1
σi. (6.5)

Note that the potential Ṽ only depends on the angles through θ − α due to the rotational symmetry of
the system. Now, we change the polar variables (ϱ̃, θ, z̃,Γ) to the classical Delaunay coordinates (see, for
instance, [Win41])

(ϱ̃, θ, z̃,Γ) 7→ (ℓ, L, g,Γ). (6.6)

This change is symplectic. As usual, from the Delaunay actions, which are the square of the semimajor
axis L and the angular momentum Γ, one can compute the eccentricity

ϵ(L,Γ) =

√
1− Γ2

L2
. (6.7)

3The notation Hel and Hpar is used to emphasize that, up to (small) variations caused by the coupling terms O
(

ϱ2

r3

)
,

we will work in the region of the phase space where Hel < 0 and Hpar = 0 (see also Section 6.3).
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The position variables (ϱ̃, θ) can be expressed in terms of Delaunay variables as

ϱ̃ = ϱ̃(ℓ, L,Γ) = L2(1− ϵ cosE) and θ = θ(ℓ, L, g,Γ) = f(ℓ, L,Γ) + g, (6.8)

where the angles true anomaly f and eccentric anomaly E are defined in terms of the mean anomaly l
and eccentricity ϵ as

l = E − ϵ sinE and tan
f

2
=

√
1 + ϵ

1− ϵ
tan

E

2
. (6.9)

One could also write an expression for z̃, but it is not necessary to obtain the new Hamiltonian

Ĥ(r̃, α, g, ℓ, ỹ, G,Γ, L) = − ν

2L2
+

(
ỹ2

2
+
G2

2r̃2
− 1

r̃

)
− Ṽ (ϱ̃(ℓ, L,Γ), r̃, f(ℓ, L,Γ) + g − α),

where Ṽ is the potential introduced in (6.4). Now, by (6.8), the distance condition corresponds to r̃ ≫ L2

and the first order uncoupled Hamiltonians are

Ĥel(L) = − ν

2L2
and Ĥpar(r̃, y, G) =

ỹ2

2
+
G2

2r̃2
− 1

r̃
(6.10)

whereas Ṽ = O( ρ̃
2

r̃3 ) = O(L
4

r̃3 ).
Now, we make the last reduction which uses the rotational symmetry. We define the new angle

ϕ = g − α and the total angular momentum Θ = G+Γ. To have a symplectic change of coordinates, we
consider the transformation

(r̃, α, g, ℓ, y,G,Γ, L) = (r̃, α, g − α, ℓ, ỹ, G+ Γ,Γ, L) (6.11)

Then, we obtain the following Hamiltonian, which is independent of α,

H(r̃, ϕ, ℓ, ỹ,Γ, L; Θ) =Ĥ(r̃, α, ϕ+ α, ℓ, ỹ,Θ− Γ,Γ, L)

= − ν

2L2
+

(
ỹ2

2
+

(Θ− Γ)2

2r̃2
− 1

r̃

)
− Ṽ (ϱ̃(ℓ, L,Γ), r̃, f(ℓ, L,Γ) + ϕ).

(6.12)

Since this Hamiltonian is independent of α, the total angular momentum Θ is a conserved quantity which
can be taken as a parameter of the system. The Hamiltonian H induces a well defined Hamiltonian flow
on the symplectic manifold (M,dσ) where

M = {(r̃, ℓ, ϕ, ỹ,Γ, L) ∈ R+ × T2 × R3 : 0 < Γ < L} (6.13)

and σ = ỹdr̃ + Γdϕ+ Ldℓ.

6.2.2 The parabolic manifold at infinity

Fix any L0 ∈ R+ and any Θ > L0. From the expression of H in (6.12), we observe that

E∞ = {(r̃, ϕ, ℓ, ỹ,Γ, L) = (∞, ϕ, ℓ, 0, L0,Γ): (ϕ, ℓ) ∈ T2, L = L0, 0 < Γ < L0} (6.14)

is an “invariant manifold at infinity” contained in the energy level H−1(−ν/2L2
0)

4. We call E∞ the
parabolic-elliptic infinity, since it corresponds to the ω-limit set (resp. α-limit set) of the forward (resp.
backwards) parabolic-elliptic motions. The dynamics on E∞ is simply given by the (integrable) resonant
linear flow on T2 × {0 < Γ < L0}

ϕ̇ = 0, ℓ̇ =
ν

L3
0

, Γ̇ = 0.

4To analyze this manifold properly, one should introduce the McGehee transformation r̃ = 2/x2, (see, for instance
[McG73]).
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In other words, E∞ is foliated by periodic orbits γϕ,Γ with frequency (ωϕ, ωℓ) = (0, ν/L3
0). It will be

convenient for us, to define, for

G0 ∈ GΘ,L0
= {G ∈ R+ : Θ− L0 < G0 < Θ}, (6.15)

the invariant torus 5 TG0
⊂ E∞ given by

TG0
=
⋃
ϕ∈T

γϕ,Θ−G0
= E∞ ∩ {Γ = Θ−G0}. (6.16)

Observe that E∞ =
⋃
G0∈GΘ,L0

TG0
.

Despite being degenerate (the linearized vector field on the normal directions vanishes), the tori TG0

possess 3-dimensional stable and unstable invariant manifolds (see [BFM20c]) 6

W s(TG0
) ={x ∈ H−1(−ν/(2L2

0)) : ∃x+ ∈ TG0
s.t. lim

t→+∞
|ϕt(x)− ϕt(x+)| → 0}

Wu(TG0
) ={x ∈ H−1(−ν/(2L2

0)) : ∃x− ∈ TG0
s.t. lim

t→−∞
|ϕt(x)− ϕt(x−)| → 0},

(6.17)

where ϕt denotes the time t flow associated to the Hamiltonian H in (6.12). The union of these manifolds
gives rise to the (4-dimensional) stable and unstable manifolds of the cylinder E∞

W s(E∞) ={x ∈ H−1(−ν/(2L2
0)) : ∃x+ ∈ E∞ s.t. lim

t→+∞
|ϕt(x)− ϕt(x+)| → 0} =

⋃
G0∈GΘ,L0

W s(TG0
)

Wu(E∞) ={x ∈ H−1(−ν/(2L2
0)) : ∃x− ∈ E∞ s.t. lim

t→−∞
|ϕt(x)− ϕt(x−)| → 0} =

⋃
G0∈GΘ,L0

Wu(TG0
).

(6.18)

As already discussed in the introduction, our approach to prove the existence of drfiting orbits in the 3
Body Problem, is to construct a transition chain of heteroclinic orbits contained in W s(E∞) ⋔Wu(E∞).

6.3 The 2 Body Problem

We have seen in Section 6.2.1 that the Hamiltonian H in (6.12) corresponds, up to O(L4/r̃3), to the sum
of the two uncoupled Hamiltonians Hpar and Hel in (6.10). These are 2 Body Problem Hamiltonians
expressed in different coordinate systems, each of them suited to describe the dynamics on different
energy levels:

{(ϕ, ℓ,Γ, L) ∈ T2 × R2
+ : Hel(g, ℓ,Γ, L) < 0} and {(r̃, α, ỹ, G) ∈ R+ × T× R2 : Hpar(r̃, α, ỹ, G) = 0}.

(6.19)

Remark 6.3.1. It is well known that the 2 Body Problem can be symplectically reduced to a Hamiltonian
system with one degree of freedom. However, since later we will study the dynamics of the 3 Body Problem
as a perturbation of two uncoupled 2 Body Problems, we prefer to describe the dynamics of Hel and Hpar

in their full phase space. The integrability of course reflects in the existence of many integrals of motion
(see (6.19) and Remark 6.3.3 below).

The Hamiltonian Hel introduces a linear flow on (ϕ, ℓ,Γ, L) ∈ T2 × R2
+ ∩ {0 < Γ < L} given by

ϕ̇ = 0, ℓ̇ =
ν

L3
0

, Γ̇ = 0, L̇ = 0.

We inmediately observe the existence of a foliation by two dimensional resonant tori

TΓ0,L0 = {(ϕ, ℓ,Γ, L) = (ϕ, ℓ,Γ0, L0)}. (6.20)

The energy level Hpar = 0 corresponds to the parabolic motions of the 2 Body Problem. These are
described in the next section.

5The reason why we parametrize the tori in terms of the value of G instead of using the value of Γ will be explained
later (see Remark 6.4.1).

6Note that πr ◦ ϕt(x) = ∞ as t → ∞ (resp. t → −∞) for x ∈ W s(TG0 ) (resp. x ∈ Wu(TG0 )).
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6.3.1 The parabolic homoclinic manifold of the 2BP

One inmediately checks that P∞ = {(r̃, α, ỹ, G) = (∞, α, 0, G) : (α,G) ∈ T × R} is a 2 dimensional
invariant cylinder for the Hamiltonian Hpar, contained in the zero energy level. Moreover, P∞ possesses
stable and unstable manifolds which indeed coincide along the 3-dimensional homoclinic submanifold
W h

2BP(P∞) 7

W h
2BP(P∞) = {x ∈ R+ × T× R2 : ∃z ∈ P∞ for which lim

t±∞
|ϕtpar(x)− ϕtpar(z)| = 0}, (6.21)

where ϕt2BP is the flow associated to the Hamiltonian Hpar in (6.10). The following lemma gives a
parametrization of the homoclinic manifold W h

2BP(P∞). A proof can be found in [MP94].

Lemma 6.3.2. There exist real-analytic functions rh(u), αh(u) and yh(u) such that

W h
2BP(P∞) =

{
Γ2BP(u, β) = (G2rh(u), β+αh(u), G

−1yh(u), G) ∈ R+×T×R2 : u ∈ R, β ∈ T, G ∈ R\{0}
}

and, if we denote by X2BP the vector field associated to the Hamiltonian Hpar,

X2BP ◦ Γ2BP = DΓ2BP Υ with Υ = (G−3, 0).

The functions rh, yh and αh admit a unique analytic extension to C\{u = is : s ∈ (−∞,−1/3]∪ [1/3,∞)}
and satisfy the asymptotic behavior

rh(u) ∼ u2/3 exp(iαh(u)) ∼ 1 yh(u) ∼ u−1/3 as Re u→ ±∞

and

rh(u) ∼ (u±i/3)1/2 exp(iαh(u)) ∼
(
u± i/3

u∓ i/3

)1/2

yh(u) ∼ (u±i/3)−1/2 as u→ ±i/3.

Moreover, yh(u) = 0 if and only if u = 0 and rh(u) ≥ 1/2 for all u ∈ R.

Remark 6.3.3. The integrability of the Hamiltonian Hpar (see Remark 6.3.1) reflects in the conservation
of the angular momentum G. Indeed, one can check that, for any G∗ ∈ R \ {0}, W h

2BP(P∞ ∩ {G = G∗})
are invariant submanifolds homoclinic to the invariant torus at infinity P∞ ∩ {G = G∗}.

6.4 Adapted coordinates in a neighbourhood of the unperturbed
homoclinic manifold

The last statement in Lemma 6.3.2 implies that

πr̃(W
h
2BP(P∞ ∩ {G = G∗})) ≥ G2

∗/2.

Thus, by choosing G∗ ≫ 1, the homoclinic manifold W h
2BP(P∞ ∩ {G = G∗}) is contained in the region

of the phase space where r̃ ≫ L2
0. Consequently, on a neighbourhood of W h

2BP(P∞ ∩ {G = G∗}), the
Hamiltonian H in (6.12) can be studied as a perturbation of the sum of the two uncoupled Hamiltonians
Hel and Hpar. Then, one expects that, for G0 ≫ 1, the invariant manifolds Wu,s(TG0

) in (6.17) are close
to the product W h

2BP(P∞ ∩ {G = G0})× TΘ−G0,L0 ⊂ M and can be studied perturbatively.

Remark 6.4.1. The reason why we parametrize the tori (6.16) in terms of the value of G0 is that we
already have a parametrization, in terms of G0 of the invariant manifold W h

2BP(P∞ ∩ {G = G0}).
7Note that for the r̃ component πr̃ ◦ ϕt

par(x) → ∞ as t → ±∞.
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We now fix any
L0 ∈ R+ and Θ ≫ L0. (6.22)

Then, by the definition of the set GΘ,L0
in (6.15), for any G0 ∈ GΘ,L0

we have that G0 ≫ 1. In order to
analyze the dynamics in a neighbourhood of W h

2BP(P∞ ∩ {G = G0})× TΘ−G0,L0 ⊂ M, we introduce the
change of coordinates

ηG0
: (u, β, λ, Y, J,Λ) 7→ (r, ϕ, ℓ, y,Γ, L) (6.23)

given by

r = G2
0rh(u), ϕ = β+αh(u), ℓ = λ, y = G−1

0 yh(u)+
Y − r2h(u)J

G2
0yh(u)

, Γ = Γ0+J, L = L0+Λ.

where rh, αh, yh are the functions introduced in Lemma 6.3.2 and Γ0 = Θ−G0. The proof of the following
result is a straightforward computation.

Lemma 6.4.2. Let (M,dσ) be the exact symplectic manifold in (6.13). Let (M,dτ) be the exact sym-
plectic manifold

M =
{
(u, β, λ, Y, J,Λ) ∈ R× T2 × R3

}
and τ = Y du+ Jdβ + Λdλ

The change of variables ηG0
:M \ {u = 0} → R+ × T2 × R3 defined in (6.23) satisfies

η∗G0
σ − τ =

2

G2
0rh(u)

du+G0dβ.

In particular, ηG0
is a symplectic change of variables between (M,dσ) and (M \ {u = 0},dτ).

Remark 6.4.3. The map ηG0
is not defined at u = 0 since yh(u) = 0 (see Lemma 6.3.2).

The reason for introducing the coordinate transformation (6.23) is that, in the new coordinates, the
flow is almost linear on the region {|Y |, |J |, |Λ| ≪ 1}. Indeed, up to a constant rescaling, the Hamiltonian
in the new coordinates reads

H(u, β, λ, J,Λ;L0,Γ0, G0) = − −νG3
0

2(L0 + Λ)2
+Y +

(Y − r2h(u)J)
2

2y2h(u)G0
+

J2

2r2h(u)G0
−V (u, β, λ, J,Λ;L0,Γ0, G0),

(6.24)
where we have introduced the perturbative potential

V (u, β, λ, Y, J,Λ;L0,Γ0, G0) = G3
0Ṽ
(
G2

0rh(u), ϱ(λ, L0+Λ,Γ0+J), f(λ, , L0+Λ,Γ0+J)+β+αh(u)
)
− G0

rh(u)
.

(6.25)
Since, as we will see in Section 6.5.1,

V (u, β, λ, 0, 0;L0,Γ0, G0) = O(G−3
0 r−3

h (u)),

we obtain

u̇ = 1 +O(|Y |, |J |, |Λ|), β̇ = O(G−3
0 , |Y |, |J |, |Λ|), λ̇ = −νG

3
0

L3
0

+O(G−3
0 , |Y |, |J |, |Λ|)

Ẏ = O(G−3
0 , |Y |, |J |, |Λ|), J̇ = O(G−3

0 , |Y |, |J |, |Λ|), Λ̇ = O(G−3
0 , |Y |, |J |, |Λ|).

6.4.1 Parametrization of the invariant manifolds

We now want to obtain a parametrization of the invariant manifolds associated to the invariant torus
TG0

⊂ E∞. Since these manifolds are Lagrangian, there exist functions (u0 is a positive real number)

Su : (−∞,−u0)× T2 → R Ss : (u0,+∞)× T2 → R, (6.26)
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solutions to the Hamilton-Jacobi equation

H(q,∇Su,s(q)) = −νG
3
0

L2
0

, q = (u, β, t), (6.27)

where H is the Hamiltonian (6.24), such that

Wu
loc(TG0

) ={(q,∇Su(q)) : q = (u, β, t) ∈ (−∞,−u0)× T2}
W s

loc(TG0
) ={(q,∇Ss(q)) : q = (u, β, t) ∈ (u0,+∞)× T2}.

Therefore, if one can extend the functions Su,s in (6.26) to a suitable common domain, one can measure
the distance between the manifolds Wu

loc(TG0
) and W s

loc(TG0
) simply by studying the gradient of the

so-called splitting potential (see [Eli94, DG00, Sau01])

∆S(u, β, t;L0,Γ0, G0) = Su(u, β, t;L0,Γ0, G0)− Ss(u, β, t;L0,Γ0, G0). (6.28)

6.4.2 Approximation of the splitting potential

From the expression for H in (6.24), the Hamilton-Jacobi equation (6.27) reads

∂uS
u,s + ν

G3
0

L3
0

∂λS
u,s +

(∂uS
u,s − r2h(u)∂βS

u,s)2

2y2h(u)G0
+

(∂βS
u,s)2

2r2h(u)G0

+

(
νG3

0

L2
0

− νG3
0

(L0 + ∂λSu,s)2
− νG3

0

L3
0

∂λS
u,s

)
− V (u, β, λ, ∂βS

u,s, ∂λS
u,s;L0,Γ0, G0) = 0.

Thus, one expects that, up to first order, the generating functions Su,s, are approximated by the half
Melnikov potentials Lu,s which are defined as the unique solutions to

∂uL
u,s + ν

G3
0

L3
0

∂λL
u,s − V (u, β, λ, 0, 0;L0,Γ0, G0) = 0 lim

Re u→−∞
Lu = 0, lim

Re u→∞
Ls = 0

and, that the splitting potential ∆S in (6.28) is given, up to first order, by the so-calledMelnikov potential

L̃(u, β, λ;L0,Γ0, G0) = Lu(u, β, λ;L0,Γ0, G0)− Ls(u, β, λ;L0,Γ0, G0). (6.29)

In view of this heuristic argument, the first step towards proving the existence of transverse intersec-
tions between Wu(TG0

) and W s(TG0
), is to study the Melnikov potential (6.29). To that end, we invert

the linear operator L = ∂u + ν(G0/L0)
3∂λ and express the half Melnikov potentials as 8

Lu(u, β, λ;L0,Γ0, G0) =

∫ 0

−∞
V (u+ s, β, λ+ ν(G0/L0)

3s, 0, 0;L0,Γ0, G0)ds

Ls(u, β, λ;L0,Γ0, G0) =−
∫ +∞

0

V (u+ s, β, λ+ ν(G0/L0)
3s, 0, 0;L0,Γ0, G0)ds,

so

L̃(u, β, λ;L0,Γ0, G0) =

∫ +∞

−∞
V (u+ s, β, λ+ ν(G0/L0)

3s, 0, 0;L0,Γ0, G0)ds.

It turns out that, up to rescaling, V (u, β, λ, 0, 0;L0,Γ0, G0) only depends on the parameters L0,Γ0, G0

through the quantities

I =
G0

L0
and ϵ0 =

√
1− Γ2

0

L2
0

. (6.30)

8The linear operator L admits a right inverse in a suitable space of real analytic functions, defined in a complex
neighborhood of (−∞,−u0)×T2, which decay sufficiently fast for u → −∞. An analogous statment holds for real analytic
functions, defined on a complex neighborhood of (−∞,−u0)×T2, which decay sufficiently fast for u → ∞ (See, for example,
[GPS23b]).
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Based on this observation, it will be convenient to introduce the function Ũ(u, β, λ; I, ϵ0) defined by

Ũ
(
u, β, λ; I(G0, L0), ϵ0(Γ0, L0)

)
= V (u, β, λ, 0, 0;L0,Γ0, G0), (6.31)

and use the following, more compact, notation for the Melnikov potential defined in (6.29)

L
(
β, I, λ− νI3u; ϵ0) =

∫
R
Ũ
(
s, β, λ− νI3u+ νI3s; I, ϵ0

)
ds. (6.32)

This heuristic approximation can be made rigourous, without too much extra work, for approximating
the splitting potential (6.28) by the Melnikov potential (6.32) in the C0 topology. The approximation
in the C1 topology (recall that transverse intersections between Wu(TG0

) and W s(TG0
) correspond to

non degenerate critical points of the splitting potential) requires however considerably more extra work.
The reason is the following. Due to the existence of different time scales and the real-analyticity of H
in (6.24), the splitting between Wu(TG0) and W s(TG0) is highly anisotropic. A more or less standard,
averaging procedure, can be used to prove that the splitting (measured along a suitable section) between
Wu(TG0

) and W s(TG0
) is polynomially small (in 1/G∗) in the direction conjugated to the resonant angle

β, and exponentially small (in 1/G∗) in a direction close to the direction conjugated to the fast angle λ
(see [Nei84, LMS03]). This argument, however, only yields a (non sharp) upper bound for the gradient of
the splitting potential. In order to obtain an asymptotic formula (or a sharp estimate), one would need
to carry on this averaging procedure with an “optimal loss of analyticity”. Alternatively, following the
ideas of Lazutkin [Laz87], one can try to extend the splitting potential (or some vector parametrization of
the invariant manifolds) to a complex domain which gets “sufficiently close” to the complex singularities
of the perturbing potential V . Then, a standard argument can be used to obtain sharp estimates on the
decay of the Fourier coefficients of the splitting potential ∆S, what, in turn, yields a sharp estimate of
each component of its gradient. This was the approach in [GMS16, GPS23b]. However, in these works,
where the eccentricity ϵ was assumed to be either zero or small enough:

• The singularities of the perturbing term V are “sufficiently close” to that of the parametrization of
the unperturbed homoclinic manifold in Lemma 6.3.2.

• The domain of analyticity of the perturbing term V can be written as a direct product.

This is not the case when the normal form (6.23) is centered around an orbit with arbitrary eccentricity
ϵ ∈ (0, 1). As we will see in Section 6.5.4, the singularities of V move away from those of the unperturbed
homoclinic manifold in Lemma 6.3.2. Moreover, the domain of analyticity of the perturbing term V
cannot be written as a direct product. These facts complicate, heavily, the asymptotic analysis of the
Melnikov potential L in (6.32) and the justification of the Melnikov approximation. In the rest of the
paper we introduce new tools to obtain an asymptotic analysis of the Melnikov function L and which,
we hope, can be of interest for the analysis of Melnikov functions in other Hamiltonian systems.

Finally, notice that we have only concerned ourselves with the analysis of the stable and unstable
manifolds of the same torus. However, in order to construct a transition chain leading to Arnold Diffusion,
we need to understand how the manifolds associated to pairs of different tori intersect. This requires
substantially more work and has been studied for the first time, in the exponentially small setting, in
[GPS23b].

Remark 6.4.4. We fix once and for all the values of m0,m1,m2 ̸= 0 such that m0 ̸= m1. We also fix
ϵ0 ∈ (0, 1). In the following, when we introduce a real constant C and say that C ̸= 0, we mean that for
any choice of these parameters as above, the constant does not vanish.

6.5 The Melnikov potential

In this section we present our main result. Namely, for any fixed value of the masses m0,m1,m2 > 0, any
eccentricity ϵ0 ∈ (0, 1) and sufficiently large I, we obtain an asymptotic formula for the Melnikov potential
L in (6.32). To this end, the introduction of some notation is in order. Given a value 0 < I∗ < ∞, we
define the unbounded cylinder

Λ(I∗) = {(β, I) ∈ T× R : I∗ ≤ I}.
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Theorem 6.5.1. There exists I∗ ≫ 1 such that the Melnikov potential L in (6.32) satisfies the following
properties for all (β, I, σ) ∈ Λ(I∗)× T:

• It can be expressed as an absolutely convergent Fourier series

L(β, I, σ; ϵ0) =
∑
l∈Z

L[l](β, I; ϵ0)e
ilσ, L[l](β, I; ϵ0) =

1

2π

∫
T
L(β, I, σ; ϵ0)e

−ilσdσ.

• For l = 0,

L[0](β, I; ϵ0) =
ν̃π

2

((
1 +

3ϵ20
2

)
(m0σ̃

2
0 +m1σ̃

2
1)I

−3

+
15

4
(1 + ...)(m0σ̃

3
0 +m1σ̃

3
1) ϵ0I

−5 cosβ + E(β, I)

)
,

with
|E(β, I)| ≲ I−7.

• For l = 1, 2 there exist explicit real constants Al ̸= 0 such that 9

L[l](β, I; ϵ0) = AlI
−1 exp(−lνI3/3)

(
m0√
σ̃0

(1 +O(I−1)) exp(lq0(β))

+
m1√
|σ̃1|

(1 +O(I−1)) exp(lq1(β))

)
+ Tl(β; I, ϵ0)

(6.33)

where

q0(β) = −2

3
νσ̃0ϵ0I(cosβ − i sinβ) +O(1), q1(β) = −2

3
νσ̃1ϵ0I(cosβ − i sinβ) +O(1)

and

|Tl(β, I; ϵ0)| ≲ I−9/8 exp(−lνI3/3)
(
1 +O (exp(lRe q0(β))) +O (exp(lRe q1(β)))

)
.

• The sum of the higher coefficients

L≥3(β, I, σ; ϵ0) =
∑
|l|≥3

L[l](β, I; ϵ0)e
ilσ

satisfies
|L≥3| ≲ exp(−3νI3/4).

6.5.1 The Melnikov potential as an infinite sum of fast oscillatory integrals

The Melnikov potential L in (6.32) is a real integral of a real-analytic function Ũ (see (6.31)) whose
phase in the 2π-periodic variable σ oscillates rapidly. Therefore, one expects that the size of the Fourier
coefficients of the function σ 7→ L decays exponentially fast with |l|. In order to see this, we first obtain
an explicit formula for the function Ũ(u, β, λ; I, ϵ0). The following lemma was proved in [MP94].

Remark 6.5.2. The reader will forgive us for keep using the notation rh, αh and ρ, f after the change
of variables introduced in Lemmas 6.5.3 and 6.5.4.

9Recall that σ̃1 < 0 so minβ∈T(Re q0(β),Re q1(β)) < 0. Therefore, (6.33) provides asymptotic expression of L[l], with
l = 1, 2, for all β ∈ T.
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Lemma 6.5.3. Let rh(u) and αh(u) be the functions defined in Lemma 6.3.2. Then, under the real-
analytic change of variables u = (τ + τ3/3)/2 we have that

rh(τ) =
τ2 + 1

2
and eiαh(τ) =

τ − i

τ + i
.

Introduce also the function ρ(λ) given by

ϱ(λ, L0,Γ0) = L2
0ρ(λ; ϵ0(Γ0, L0)). (6.34)

where ϱ was defined in (6.8) and ϵ0 in(6.30). We will also need the following lemma (see, for instance, ...)

Lemma 6.5.4. Let ρ(λ) and f(λ) be the functions defined in (6.34) and (6.8). Then, under the real-
analytic change of variables given by the Kepler equation λ = ξ − ϵ0 sin ξ, we have

ρ(ξ) = 1− ϵ0 cos ξ and ρ(ξ)eif(ξ) =
ϵ

2κϵ

(
eiξ − 2κϵ + κ2ϵe

−iξ)
where

κϵ =
ϵ0

1 +
√

1− ϵ20
. (6.35)

Consider the function Ũ(u, β, λ; I, ϵ0) defined in (6.31) and denote by

U(τ, β, ξ; I, ϵ0) = Ũ(u(τ), β, λ(ξ); I, ϵ0).

Then, we obtain that

U(τ, β, ξ; I, ϵ0) =
m0ν̃I∣∣rh(τ) + σ̃0

I2 ρ(ξ)e
i(f(ξ)+β+αh(τ))

∣∣ + m1ν̃I∣∣rh(τ) + σ̃1

I2 ρ(ξ)e
i(f(ξ)+β+αh(τ))

∣∣ − (m0 +m1)ν̃I

rh(τ)
,

(6.36)
where ν̃ and σ̃⋆, ⋆ = 0, 1, are defined in (6.5). It is straightforward to check that, for

I >
√

2(1 + ϵ0)max(σ̃0, |σ̃1|),

(6.36) is a real-analytic function of all its arguments. Therefore, for all l ∈ Z, the Fourier coefficients
U [l](τ, β; I, ϵ0) of the function λ 7→ Ũ(u(τ), β, λ; I, ϵ0) are well defined and given by the expression

U [l](τ, β; I, ϵ0) =
1

2π

∫
T
U(τ, β, ξ; I, ϵ0)ρ(ξ)e

−ilλ(ξ)dξ, (6.37)

Moreover, the series U(τ, β, ξ; I, ϵ0) =
∑
l∈Z U

[l](τ, β; I, ϵ0)e
ilλ(ξ) is absolutely convergent for any (τ, β, ξ) ∈

R× T2. On the other hand, a trivial expansion of the denominators in (6.36) in powers of I−2, together
with the fact that

m0σ̃0 +m1σ̃1 = 0 (6.38)

and the expressions for rh(τ), αh(τ) in Lemma 6.5.3 show that τ2U(τ, β, ξ; I, ϵ0) is absolutely integrable
on R as a function of τ (see also the proof of Lemma 6.5.5 below). Thus, we can express the Melnikov
potential in (6.32) as the absolutely convergent infinite sum of (convergent) improper integrals

L(β, I, λ− νI3u; ϵ0) =
1

2

∫
R
Ũ
(
u(s), β, λ− νI3u+ νI3u(s); I, ϵ0

)
(s2 + 1)ds

=
1

4π

∑
l∈Z

eil(λ−νI
3u)

∫
R
U [l]
(
s, β; I, ϵ0

)
eilνI

3u(s)(s2 + 1)ds

=
1

2

∑
l∈Z

eil(λ−νI
3u)L[l](β, I; ϵ0),

where by u(s) we mean u(s) = (s+ s3/3)/2, the functions U [l] are defined in (6.37) and

L[l](β, I; ϵ0) =
1

2π

∫
R
U [l]
(
s, β; I, ϵ0

)
eilνI

3u(s)(s2 + 1)ds. (6.39)

For |l| ≥ 1 and I ≫ 1, (6.39) are fast oscillatory integrals with phase lνI3u(s).
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6.5.2 Asymptotic analysis of L[0]

In this section we provide an asymptotic expression, for I ≫ 1, of the function L[0] defined in (6.39).

Lemma 6.5.5. There exists I∗ ≫ 1 such that for all (β, I) ∈ Λ(I∗)

L[0](β, I; ϵ0) =
ν̃π

2

((
1 +

3ϵ20
2

)
(m0σ̃

2
0 +m1σ̃

2
1)I

−3 +
15

4
(1 + ...)(m0σ̃

3
0 +m1σ̃

3
1) ϵ0I

−5 cosβ + E(β, I)

)
,

(6.40)
with

|E(β, I)| ≲ I−7.

Proof. Let ⋆ = 0, 1 and denote by (make use of Lemma 6.5.3)

∆⋆,±(τ, β, ξ; I, ϵ0) =
σ̃⋆ρ(ξ)

I2rh(τ)
exp

(
± i(β + αh(τ)− f(ξ))

)
=

2σ̃⋆ρ(ξ)

I2(τ ± i)2
exp

(
± i(β − f(ξ))

)
. (6.41)

Then, in view of (6.36), the potential U(τ, β, ξ; I, ϵ0) is given by the explicit expression

U =
ν̃I

rh(τ)

(
m0√

(1 + ∆0,+)(1 + ∆0,−)
+

m1√
(1 + ∆1,+)(1 + ∆1,−)

− (m0 +m1)

)
. (6.42)

Since for (τ, β, ξ) ∈ R× T2 we have

|∆⋆,±| ≲ I−2, ⋆ = 0, 1,

we can expand the terms (1 + ∆⋆,±)
−1/2 up to order 3 in ∆⋆,±, use Lemma 6.5.3 and (6.38) to obtain

U(τ, β, ξ; I, ϵ0) =
ν̃I

rh(τ)

((
m0σ̃

2
0 +m1σ̃

2
1

) ρ2(ξ)

I4(τ2 + 1)2
+

+
(
m0σ̃

3
0 +m1σ̃

3
1

) 3ρ3(ξ)
2I6

(
ei(β−f(ξ))

(τ − i)2(τ + i)4
+

e−i(β−f(ξ))

(τ + i)2(τ − i)4

))
+ E0(τ, β, ξ; I, ϵ0) +O(|I−7r−5

h (τ)|),

(6.43)

where the term

E0 =
3ν̃I

8rh(τ)

(
∆2

0,+ +∆2
0,− +∆2

1,+ +∆2
1,− − 5

6

(
∆3

0,+ +∆3
0,− +∆3

1,+ +∆3
1,−
))
,

satisfies that that ∫
R
(τ2 + 1)E0dτ = 0.

Recall that by (6.39), for l = 0, L[0] =
∫
R
∫
T U(τ, β, ξ; I, ϵ0)ρ(ξ)dξdτ . Then, the proof of the lemma is

completed d making use of the formulas

1

2π

∫
ξ∈T

ρ3(ξ)dξ = 1 +
3ϵ20
2

1

2π

∫
ξ∈T

ρ4(ξ)e±if(ξ)dξ = −5ϵ0
2

+ ...

and ∫
τ∈R

(τ2 + 1)−2dτ =
π

2

∫
τ∈R

(τ ± i)−2(τ ∓ i)−4dτ = −π
4
.
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6.5.3 Estimates for L[l] with |l| ≥ 3

To analyze L[l] we begin by analyzing the behavior of U [l] for complex values of τ . Let C > 0 be a
sufficiently large constant and introduce the complex disks

D =
{
τ ∈ C : |τ − i| ≤ CI−1

}
D̄ =

{
τ ∈ C : τ̄ ∈ D

}
. (6.44)

Lemma 6.5.6. There exists I∗ ≫ 1 such that, for all (β, I) ∈ Λ(I∗) and all l ∈ Z, the function

τ 7→ U [l](τ, β; I, ϵ0) : C \ (D ∪D) → C (6.45)

defined in (6.37), is analytic. Moreover, for all l ∈ Z and τ ∈ C \ (D ∪ D̄), we have that

|U [l](τ, β; I, ϵ0)| ≲ I2 min(1, |τ |−6). (6.46)

Proof. Let ∆⋆,± be the functions defined in (6.41). Choosing C, in the definition of D in (6.44), large
enough, for all (β, ξ) ∈ T2 and all τ ∈ C \ (D ∪ D̄) we have that

|∆⋆,±| ≤ 1/2 ⋆ = 0, 1.

It then follows that, for all l ∈ Z, for all β ∈ T and all τ ∈ C \ (D ∪ D̄) the function U [l](τ, β) defined
by (6.37) is analytic. We now show how to obtain the estimate (6.46). For τ ∈ ∂D ∪ ∂D̄ we have that
|∆⋆,±| ≤ 1/2. Therefore, the expansion (6.43) we used in the proof of Lemma 6.5.5 shows that

max
τ∈∂D∪∂D̄

|U(τ, β, ξ)| ≲ I2.

On the other hand, for all τ such that |τ | = 4, |∆⋆,±| ≲ I−2 and we obtain that

max
|τ |=4

|U(τ, β, ξ)| ≲ I−3.

It then follows from direct application of the maximum principle that

max
τ∈{|τ |≤4}\(D∪D̄)

|U(τ, β, ξ)| ≲ I2.

Finally, for τ such that |τ | ≥ 4 we have that |∆⋆,±| ≲ τ−2I−2 and using again (6.38) we obtain that

max
τ∈{|τ |≥4}

|U(τ, β, ξ)| ≲ τ−6I−3.

To complete the proof it is enough to use the definition of U [l] in (6.37).

As already pointed out at the beginning of the present section, since the function σ → L(β, σ; I, ϵ0)
is periodic and real analytic, the size of its Fourier coefficients decays exponentially fast as |l| increases.
This is shown in the next lemma where we obtain (non- sharp) estimates on the decay for the harmonics
L[l](β; I, ϵ0) with |l| ≥ 3.

Lemma 6.5.7. There exists I∗ ≫ 1 such that, for all (β, I) ∈ Λ(I∗),∑
|l|≥3

∣∣∣L[l](β, I; ϵ0)
∣∣∣ ≲ I2 exp

(
−3νI3/4

)
.

Proof. We have shown in Lemma 6.5.6 that for all l ∈ Z the function τ → U [l](τ, β, I) is analytic on
C \ (D ∪D) and satisfies the estimate (6.46). Therefore, due to the absolute convergence of the integral
(6.39) defining L[l](β, I), one can change the integration contour from the real line to a suitable homotopic
path in the complex plane. For l > 0 we choose the curve Γ = Γ0 ∪ Γst defined by (see Figure 6.5.3)
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Figure 6.2: Sketch of the integration path for the estimation of the size of |L[l](φ, I)| with l > 3.

Γ0 = {τ ∈ C : |τ − i| = c, −3π/2 ≤ arg(u(τ)− i/3) ≤ π/2}
Γst = {τ ∈ C : Im u(τ) ≥ u∗, arg(u(τ)− i/3) ∈ {−3π/2, π/2}}

with c being the unique positive solution of the equation

c2

2
+
c3

6
=

1

12

and u∗ = Im(u(τ∗)) for τ∗ such that |τ∗ − i| = c and arg(u(τ∗)− i/3) = π/2. Thanks to our choice of c,
on Γ0 we have

|u(τ)− i/3| =
∣∣∣∣ i(τ − i)2

2
+

(τ − i)3

6

∣∣∣∣ ≤ |τ − i|2

2
+

|τ − i|3

6
=

1

12
.

Therefore,

min
τ∈Γ0

(
Im(u(τ))

)
≥ 1

3
− 1

12
=

1

4

and we have that
max
τ∈Γ0

∣∣exp(ilνI3u(τ))∣∣ ≤ exp
(
− lνI3/4

)
.

Thus, using the bound (6.46) we obtain∣∣∣∣∫
Γ0

U [l](τ)eilνI
3u(τ)(τ2 + 1)dτ

∣∣∣∣ ≲ I2 exp
(
− lνI3/4

)
.

On the other hand, we have chosen Γst to be the union of two steepest descent paths for u(τ). Hence,
using that 2du = (τ2 + 1)dτ and writing x = Im u− 1/4, we deduce from (6.46)∣∣∣∣∫

Γst

U [l](τ)eilI
3u(τ)(τ2 + 1)dτ

∣∣∣∣ =2

∣∣∣∣∣
∫
u(Γst)

U [l](τ(u))eilI
3udu

∣∣∣∣∣
≲I2 exp

(
− lνI3/4

) ∫ ∞

0

e−lνI
3xdx

≲I−1 exp
(
− lνI3/4

)
.

Joining both computations we obtain that for l ≥ 1∣∣∣L[l](β; I, ϵ0)
∣∣∣ ≲ I2 exp

(
− lνI3/4

)
.

Actually, since σ 7→ L(β, σ; I, ϵ0) is a real analytic function, we have that for |l| ≥ 1∣∣∣L[l](β; I, ϵ0)
∣∣∣ ≲ I2 exp

(
− |l|νI3/4

)
.
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Then, we conclude that∣∣∣∣∣∣
∑
|l|≥3

L[l](β; I, ϵ0)

∣∣∣∣∣∣ ≲ I2 exp
(
− 3νI3/4

) ∑
|l|≥3

exp
(
− (|l| − 3)νI3/4

)
≲ I2 exp

(
− 3νI3/4

)
,

as was to be shown.

6.5.4 The Fourier coefficients L[1] and L[2]

In Lemmas 6.5.6 and 6.5.7 we have exploited the fact that for |l| ≥ 1, L[l](β, I) are oscillatory integrals
(with phase given by νI3u(τ)) of a real-analytic function to deduce that they decay exponentially fast
with |l| for |l| ≥ 3. It is clear that, making use of the estimates in Lemma 6.5.6, the argument used in the
proof of Lemma 6.5.7 also yields exponentially small bounds for the Fourier coefficients L[l](β, I) with
|l| = 1, 2. However, in order to obtain an asymptotic formula for L[l](β, I) |l| = 1, 2, one has to integrate
along a path which reaches the complex singularity τ = τ ′ of the (analytic continuation of) the function
τ 7→ U [l](τ, β; I, ϵ0) in (6.37), for which:

• Im(u(τ ′)) is closest to zero,

• τ ′ is contained in the real-analytic branch associated to the function u = (τ + τ3/3)/2.

So far we know, from Lemma 6.5.6, that U [l] in (6.37) defines an analytic function for τ ∈ C\(D∪D̄) (see
6.44). We now locate all the complex singularities of the analytic continuation of U [l] in (6.37) which are
relevant for our analysis. Then, we obtain local expansions close to each of these complex singularities.
This will allow us to deduce an asymptotic formula for L[1](β, I) and L[2](β, I).

It will be convenient to write U in (6.36)) as U = U0 + U1 with

U⋆(τ, β, ξ; I, ϵ0) =
m⋆ν̃I∣∣rh(τ) + σ̃⋆

I2 ρ(ξ)e
i(f(ξ)+β+αh(τ))

∣∣ − m⋆ν̃I

rh(τ)
⋆ = 0, 1 (6.47)

and define, for (τ, β) ∈ R× T,

U
[l]
⋆ (τ, β; I, ϵ0) =

1

2π

∫ 2π

0

ρ(ξ)U⋆(τ, β, ξ; I, ϵ0)e
−ilλ(ξ)dξ ⋆ = 0, 1. (6.48)

Of course, the same argument in Lemma 6.5.6 shows that (6.48) defines an analytic function for (τ, β) ∈
C\
(
D∪D̄

)
×T. In the following, when we speak about the function element U

[l]
⋆ in (6.48), we implicitely

refer to the pair (6.48) and the region C \ (D ∪ D̄).

Remark 6.5.8. Until further notice, the variable β as well as the parameters I, ϵ0 will be kept constant.
Consequently, we omit the dependence of any function on them.

Remark 6.5.9. As we have already seen in Lemma 6.5.7, in order to analyze the coefficients L[l] with
l > 0 we only need to study (6.48) for τ ∈ H where H is the upper half plane

H = {τ ∈ C : Im τ ≥ 0}. (6.49)

Recall that due to real-analyticity, it is only necessary to study L[l] with l > 0.

Let ⋆ = 0, 1, denote by τ⋆±(β; I, ϵ0) ∈ C the unique points satisfying

(τ⋆± − i)2 + 2σ̃⋆ϵ0I
−2e−iβ = 0, (6.50)

and introduce the punctured disk
D∗
⋆ = D \ {i, τ⋆+, τ⋆−}. (6.51)

where the disk D is defined in (6.44).
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Figure 6.3: An example of a curve Υ : [0, 1] → D∗
⋆ joining a point Υ (0) = τ0 ∈ ∂D with a poing

Υ (1) = τ ∈ D∗
⋆. The position of τ⋆± corresponds to an arbitrary value of β.

Remark 6.5.10. Until further notice, the variable β as well as the parameters I, ϵ0 will be kept constant.
Consequently, we omit the dependence of any function on them.

Also, we fix any value of C in the definition of D in (6.44) large enough, so Lemmas 6.5.6 and 6.5.7
hold and the points τ⋆± are well inside the disk D.

Proposition 6.5.11. Let ⋆ = 0, 1 and fix any τ0 ∈ ∂D. Let τ ∈ D∗
⋆ and let Υ : [0, 1] → D∗

⋆ be any

continuous curve joining Υ(0) = τ0 to Υ(1) = τ . Then, the function element U
[l]
⋆ in (6.48) admits an

analytic continuation along Υ wich we denote by U
[l]
⋆ (τ ; Υ).

Moreover, if Υ,Υ′ : [0, 1] → D∗
⋆ are two continuous curves with Υ(0) = Υ′(0) = τ0, Υ(1) = Υ′(1) = τ

and such that the closed curve Υ̃ = Υ′Υ−1 is contractible (in D∗
⋆) to a point, or homotopic (in D∗

⋆) to

∂D, then U
[l]
⋆ (τ ; Υ) = U

[l]
⋆ (τ,Υ′).

The proof of this result is deferred to Section 6.7. Proposition 6.5.11 shows that, for Υ : [0, 1] → D∗
⋆

as above, the only candidates to be singularities of the analytic continuation of U
[l]
⋆ in (6.48) along Υ

are {i, τ⋆+, τ⋆−}. We will see in Proposition 6.5.12 (whose proof is contained in Section 6.7) that they are
indeed singularities. The second statement in Proposition 6.5.11 can thus be understood as giving partial
information about the monodromy of the analytic continuation of (6.48) around these singularities.

Although Proposition 6.5.11 holds for a rather large family of curves, in order to prove Theorem 6.5.1,

it is only necessary to study the behavior of the continuation of U
[l]
⋆ in (6.48) along the following family

of curves. Let ⋆ = 0, 1, fix any τ0 ∈ ∂D and let τ ∈ D∗
⋆. Then, we define the family of paths (see Figure

6.5.4)
Xτ = {Υ ∈ C ([0, 1], D∗

⋆) : Υ(0) = τ0, Υ(1) = τ, card{Υ ∩ J⋆} ≤ 1}, (6.52)

where J⋆ is the segment
J⋆ = {τ ∈ C : τ = λτ⋆+ + (1− λ)τ⋆−, λ ∈ [0, 1]}. (6.53)

Introduce now the punctured disks (see also Figure 6.5.4)

Ci =
{
τ ∈ D∗

⋆ : 0 < |τ − i| ≤ I−5/4
}

C⋆± =
{
τ ∈ D∗

⋆ : 0 < |τ − τ⋆+| ≤ I−3/2
}
. (6.54)

From the definition of D in (6.44), that of the points τ⋆± in (6.50) and Remark 6.5.10, one easily checks
that Ci, C

⋆
± ⊂ D∗

⋆ and Ci ∩ C⋆± = ∅, C⋆+ ∩ C⋆− = ∅.

Proposition 6.5.12. Let ⋆ = 0, 1, τ ∈ D∗
⋆, Υ ∈ Xτ and let U

[l]
⋆ (τ ; Υ) be the function element obtained

in Proposition 6.5.11 by analytic continuation of (6.48) along Υ. Then, for l = 1, 2,

• For τ ∈ C⋆± the asymptotic formula

U
[l]
⋆ (τ ; Υ) =Ũ

[l]
⋆ (τ ; Υ) + Sl,⋆(τ ; Υ) +Rl,⋆(τ)
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Figure 6.4: On the left, for a given τ ∈ D∗
⋆, example of a curve Υ ⊂ Xτ such that card{Υ ∩ J⋆} = 1.

On the right we sketch in red the boundary of the sets Ci, C+ and C−. Again the situation depicted
correspond to an arbitrarily chosen value of β.

holds with 10

Ũ
[l]
⋆ (τ ; Υ) = m⋆Al

√
eiβ

σ̃⋆
I2(1 +O(I−1)) ln((1− 2b⋆)(τ ; Υ)) b⋆(τ) =

2σ̃⋆ϵ0e
−iβ

I2(τ − i)2
, (6.55)

where Al ̸= 0 are explicit, purely imaginary, constants, 11

|Sl,⋆(τ ; Υ)| ≲ I15/8

and Rl,⋆(τ) is independent of Υ (and therefore analytic for all τ ∈ C⋆± ∪ {τ±}).

• For τ ∈ Ci there exists a constant Bl,⋆ ∈ C such that,

U
[l]
⋆ (τ ; Υ) = Bl,⋆ + El,⋆(τ ; Υ)

with
|El,⋆(τ ; Υ)| ≲ I15/8.

• For τ ∈ D \ (Ci ∪ C⋆+ ∪ C⋆−) we have ∣∣∣U [l]
⋆ (τ ; Υ)

∣∣∣ ≲ I9/4.

Remark 6.5.13. It is admittedly akward that the estimate for τ ∈ D \ (Ci ∪ C⋆+ ∪ C⋆−) (far from the
singularities) is worse than the estimates for τ ∈ C⋆± and τ ∈ Ci. This is only because the analysis we
have made away from the singularities is far less refined than the analysis close to the singularities. A
more detailed analysis would lead to better estimates far from the singularities, however, that will not be
necessary for our purposes.

The proof of Proposition 6.5.12 is postponed until Section 6.7. The following lemma, proved also in
Section 6.7, will be important to obtain an asymptotic expression for L[1] and L[2].

Lemma 6.5.14. Let Ũ
[l]
⋆ be the function defined in (6.55). Then, ∂τ Ũ

[l] is a meromorphic function on
C⋆± ∪{τ±} with a pole of order one at τ = τ±. Moreover, there exist explicit, purely imaginary, constants

Âl ̸= 0 12 such that

Res
τ=τ⋆

±

(
∂τ Ũ

[l]
⋆ (τ)

)
= m⋆Âl

√
eiβ

σ̃⋆
I2
(
1 +O(I−1)

)
.

10The term 1− 2b⋆ vanishes for τ = τ⋆±. Therefore, one needs to take into account the argument of (τ − τ⋆+)(τ − τ⋆−) or,
what is the same, the dependence on the path Υ. We use the real analytic branch of the logarithm function.

11The constants Al are computed explicitely in Section 6.7, see (6.100).
12The constants Âl are computed explicitely in Section 6.7.4, see (6.102).
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We now show how to use Proposition 6.5.12 and Lemma 6.5.14 to obtain an asymptotic expression

for L[1] and L[2]. We write L[l] in (6.39) as L[l] = L
[l]
0 + L

[l]
1 with

L
[l]
⋆ =

1

2π

∫
R
U [l](s)eilνI

3u(s)(s2 + 1)ds ⋆ = 0, 1. (6.56)

Proposition 6.5.15. Let l = 1, 2. Then, there exists explicit real constants Ãl,⋆ ̸= 0 13 such that

L
[l]
⋆ (β, I) =

m⋆√
σ̃⋆

ÃlI
−1(1 +O(I−1)) exp(−lνI3(1/3 + p⋆(β, I) + h⋆(β, I))) + Tl,⋆(β, I) + Tl,⋆,exp(β, I)

(6.57)

with

p⋆(β, I) =
2

3
σ̃⋆ϵ0I

−2(cosβ − i sinβ) |h⋆(β, I)| ≲ I−3

and

|Tl,⋆(β, I)| ≲ I−9/8 exp(−lν(1/3 + Re p⋆)) |Tl,⋆,exp(β, I)| ≲ I−9/8 exp(−lν(1/3)).

Remark 6.5.16. We point out that (6.57) only gives an asymptotic formula of L
[l]
⋆ for β ∈ T such that

Re p⋆ < 0 that is β ∈ (π/2, 3π/2).

Since L[l] = L
[l]
0 +L

[l]
1 , the asymptotic formulas stated in Theorem 6.5.1 are straightforward from the

ones in Proposition 6.5.15. This concludes the proof of Theorem 6.5.1.

6.6 Proof of Proposition 6.5.15

In order to prove Proposition 6.5.15, we change the integration contour in (6.56) to a combination of
steepest descent paths 14 which visit the singularities τ = τ ′ of the function τ 7→ U [l](τ, β) for which
Im u(τ ′) is closest to zero and which are contained in the real-analytic branch (see Remark 6.6.1) of the
function u(τ) = (τ + τ3/3)/2.

Remark 6.6.1. The complex plane τ ∈ C can be divided in in three disjoint open connected which are all
mapped bijectively by the polynomial u(τ) = (τ + τ3/3)/2 onto C \ {u = is : s ∈ (−∞,−1/3]∪ [1/3,+∞)}
(see Figure 6.6). We will denote by real-analytic branch the (unique) open connected component contain-
ing the real line.

In Propositions 6.5.11 and 6.5.12, we have seen that τ = i and τ = τ⋆±(β), defined in (6.50), are the

unique singularities of the the analytic continuation of U [l](τ, β) along paths in Υ : [0, 1] → D∗
⋆. Since

these singularities move as we change the value of the angle β, the integration contour that we choose
to compute (6.56), will be different for different values of β. The first observation is that β 7→ τ⋆±(β) are
4π-periodic functions. Hence, throughout this section, we are forced to consider β ∈ T = R/4πZ.

Remark 6.6.2. For τ ∈ R, U [l](τ, β) is a 2π-periodic function of β. Of course, since L[l](β) in (6.56)
is defined as an integral over τ ∈ R, the function L[l](β) is also 2π periodic in β. However, to compute
L[l](β), we will change the integration contour from the real line to a path which enters the region τ ∈
D. In this region, due to the existence of branching points, it is not true anymore that the analytic
continuation of the function U [l](τ, β) is a 2π-periodic function of β and one should instead study U [l](τ, β)
as a function of β ∈ T.

13The constants Ãl are computed explicitely in Section 6.6, see (6.67).
14By steepest descent path we mean a segment in the τ ∈ C plane where Re u(τ) = const.
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Figure 6.5: On the left the plane τ ∈ C. The position of the points τ±(β) correspond to the case β ∈ T+,⋆.
On the right, the image under the real-analytic transformation u(τ). The dashed blue (red) curve on the
left is sent onto the dashed blue (red) curve on the right.

Define now the subsets (understood as mod 4π)

T+,0 = [π/3, 5π/3], T−,0 =[π/3 + 2π, 5π/3 + 2π], Ti,0 = T \ (T+,0 ∪ T−,0)

T+,1 = [4π/3, 8π/3], T−,1 =[4π/3 + 2π, 8π/3 + 2π], Ti,1 = T \ (T+,1 ∪ T−,1)
(6.58)

and write u(τ) = (τ + τ3/3)/2 as

u(τ)− i

3
=
i

3
(τ − i)2 +

1

6
(τ − i)3 (6.59)

We distinguish 3 situations:

1. β ∈ T+,⋆: For these values of β one easily checks that 15 u(τ⋆+(β)) is contained in the real-analytic
branch of the function u(τ) = (τ + τ3/3)/2 and u(τ⋆−(β)) is not. Moreover, from (6.59) and the
definition of τ⋆+(β) in (6.50), we obtain that

1

3

(
1− 2|σ̃⋆|ϵ0I−2

)
+O(I−3) ≤ Im u(τ⋆+(β)) ≤

1

3

(
1 + |σ̃⋆|ϵ0I−2

)
+O(I−3).

We will see that, in this case, the main contribution to the integral L
[l]
⋆ defined in (6.56) is given

by the singularities τ = τ⋆+(β) and/or τ = i.

2. β ∈ T−,⋆: For these values of β one easily checks that u(τ⋆−(β)) is contained in the real-analytic
branch of the function u(τ) = (τ + τ3/3)/2 and u(τ⋆+(β)) is not. From (6.59) and the definition of
τ−(β) in (6.50), we obtain that

1

3

(
1− 2|σ̃⋆|ϵ0I−2

)
+O(I−3) ≤ Im u(τ⋆−(β)) ≤

1

3

(
1 + |σ̃⋆|ϵ0I−2

)
+O(I−3).

We will see that, in this case, the main contribution to the integral L
[l]
⋆ defined in (6.56) is given

by the singularities τ = τ−(β) and/or τ = i.

3. β ∈ Ti,⋆. In this case, from (6.59) and the definition of τ±(β) in (6.50)

Im u(τ⋆±(β)) = 1/3
(
1 + 2|σ̃⋆|ϵ0I−2 cosβ

)
+O(I−3) ≥ 1/3(1 + |σ̃⋆|ϵ0I−2) +O(I−3) > 1/3.

We will see that, in this case, the main contribution to the integral L
[l]
⋆ defined in (6.56) is given

by the singularity τ = i.

We now describe in full detail the case β ∈ T+,⋆ and sketch later the changes needed to analyze the
other two situations.

15We arbitrarily define τ⋆+(β) to be the solution of (6.50) which is contained in the real-analytic branch of u(τ) =

(τ + τ3/3)/2 for β ∈ T+,⋆.
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Figure 6.6: Sketch of the curve Γ. On red and blue, the two connected components of Γexp. In black an
sketch of Γmain, which will be defined precisely later (see also Figure 6.6.1.)

6.6.1 Case (1): β ∈ T+,⋆

We will change the integration contour in (6.56) from the real line to a path (H denotes the upper half
plane)

Γ ⊂ C⋆ ≡ H \ {i, τ∗+(β), τ∗−(β)}

which is a suitable combination of steepest descent paths visiting the singularities τ = i and τ⋆+(β) of

the (analytic continuation) of U [l](τ, β). To that end, we first observe that, for β ∈ T+, expression (6.59)
implies that

−7π/6 ≤ arg(u(τ+(β))− i/3) ≤ π/6.

Just to avoid technicalities, we focus on the case where arg(u(τ+(β))− i/3) > −π/2 and indicate, at the
end of the section, how the obtained result extends to the full interval β ∈ T+,⋆. Let β ∈ T+,⋆ be such
that arg(u(τ+(β))− i/3) > −π/2.

Fix a value of β ∈ T+,⋆ for which arg(u(τ+(β)) − i/3) > −π/2 (we now omit the dependence on β
until further notice). Then, we consider

Γ = Γexp ∪ Γmain ⊂ C⋆ (6.60)

where Γexp,Γmain are defined as follows (see Figure 6.6.1). The former one is defined as

Γexp = {τ ∈ C \D : Im u(τ) > 1/3, arg (u(τ)− i/3) = −3π/2}
∪
{
τ ∈ C \D : Im u(τ) > Im u(τ⋆+), arg

(
u(τ)− u(τ⋆+)

)
= π/2

} (6.61)

The curve Γmain ⊂ D is such that Γ is connected and homotopic to the real line in C⋆. More concretely,
we will also choose Γmain as an union of steepest descent paths (for u(τ)) contained in D and visiting τ = i
and τ = τ⋆+. To that end, in the following technical lemma, we study the behavior of the imaginary part
of u(τ) along different steepest descent paths for u(τ) and contained in D. We first define the constants

û⋆ = min
(
1/3, Im

(
u
(
τ⋆+
)))

+ I−11/4, ũ⋆ = max
(
1/3, Im

(
u
(
τ⋆+
)))

+ I−9/4. (6.62)

Lemma 6.6.3. Let Γ̃ ⊂ D be a connected segment. Then,

• If it satisfies Re u(τ) = 0 and Im u(τ) ≥ 1/3,

max
τ∈Γ̃∩Ci

Im u(τ) < ũ⋆ min
τ∈Γ̃\Ci

Im u(τ) ≥ û⋆.

• If it satisfies Re u(τ) = Re u(τ⋆+) and Im u(τ) ≥ Im u(τ⋆+),

max
τ∈Γ̃∩C+

Im u(τ) < ũ⋆ min
τ∈Γ̃\C+

Im u(τ) ≥ û⋆.
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Proof. Expanding u(τ) = (τ + τ3/3)/2 in Taylor series around τ = i

u(τ)− i

3
=
i

2
(τ − i)2 +

1

6
(τ − i)3 =

i

2
(τ − i)2 (1 +O|τ − i|)

and the first statement follows from the definition of Ci. The Taylor expansion of u(τ) around τ = τ⋆+
yields

u(τ)− u(τ⋆+) = 2iI−1
√
ϵσ̃⋆e−iβ(τ − τ⋆+)

(
1 +O|τ − τ⋆+|

)
.

Then, the second statement follows from the definition of C⋆+.

Lemma 6.6.3 provides us with suitable information on the behavior of Im u along steepest descent
paths visiting either τ = i or τ⋆+. This information is crucial to define Γmain as a union of paths along
which Imu is sufficiently large (so their contribution will be exponentially smaller) and paths contained
in either Ci or C

⋆
+, for which we can perform an asymptotic analysis. More concretely, we choose Γmain

(see (6.60)) as the union
Γmain = Γi ∪ Γjoin ∪ Γ+

where
Γi = Γ̃i ∪ Γi,exp, Γ+ = Γ̃+ ∪ Γi,exp,

with

• Γi,exp a combination of two steepest descent paths visiting the disk Ci

Γi,exp ={τ ∈ D \ Ci : Im 1/3 < u(τ), arg(u(τ)− i/3) = −3π/2}
∪ {τ ∈ D \ Ci : Im 1/3 < u(τ) ≤ ũ⋆, arg(u(τ)− i/3) = π/2}

(6.63)

• Γ+,exp a combination of two steepest descent paths visiting the disk C⋆+

Γ+,exp ={τ ∈ D \ C⋆+ : Im u(τ⋆+) ≤ Im u(τ) ≤ ũ⋆, arg(u(τ)− u(τ⋆+)) = −3π/2}
∪ {τ ∈ D \ C⋆+ : Im u(τ⋆+) ≤ Im u(τ), arg(u(τ)− u(τ⋆+)) = π/2}

(6.64)

• Γjoin a segment joining Γi,exp and Γ+,exp

Γjoin = {τ ∈ D \ (Ci ∪ C⋆+) : 0 ≤ Re (u (τ)) ≤ Re
(
u
(
τ⋆+
))
, Im (u (τ)) = ũ⋆}.

• Γ̃i, Γ̃+ are contained in Ci and C+ respectively, and are such that Γ is connected and is homotopic
in C⋆ to the real line (see Figure 6.6.1). They will be defined more precisely later.

We notice that for each τ ∈ Γ, there exist a unique (up to homotopy) path Υτ ∈ Xτ , where Xτ is
the set of paths defined in (6.52). Therefore, in the following, in order to simplify the notation, for each
τ ∈ Γ we will simply write

U
[l]
⋆ (τ) = U

[l]
⋆ (τ ; Υτ )

to denote the analytic continuation of (6.48) along Υτ . The above discussion shows that L
[l]
⋆ in (6.56) is

equivalent to

L
[l]
⋆ =

1

2π

∫
Γ

(τ2 + 1)U
[l]
⋆ (τ)eilνI

3u(τ)dτ. (6.65)

We are now in position to obtain an asymptotic formula for (6.65) for case (I), i.e. β ∈ T+,⋆. The idea be-
hind the definition of Γ is that, in view of Lemma 6.6.3, the contribution of the segments Γexp,Γi,exp,Γ+,exp

and Γjoin to the integral (6.56), will be exponentially smaller than the contribution of the segments Γ̃i, Γ̃+.
We first bound the contribution to (6.65) of the segments, Γexp,Γi,exp,Γ+,exp and Γjoin. For τ ∈ Γexp,

defined in (6.61), we have from Lemma 6.5.6 that∣∣∣U [l]
⋆

∣∣∣ ≲ I2.
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Figure 6.7: Sketch of the curve Γmain. On red (blue), the two connected components of Γi,exp (Γ+,exp).

In black an sketch of Γ̃i and Γ̃+, which will be defined precisely later.

We now notice that Γexp is the union of two segments which are steepest descent paths for the variable
u. Moreover, from Lemma 6.6.3 we know that, for all τ ∈ Γexp, Im u(τ) ≥ û⋆ where û⋆ has been defined
in (6.62). Then, using that du = 1

2 (τ
2 + 1)dτ , and denoting by u(Γexp) the image of Γexp under the real

analytic change of variables u(τ) = (τ + τ3/3)/2 introduced in Lemma 6.5.3 we obtain that∫
Γexp

(τ2 + 1)U
[l]
⋆ (τ)eilνI

3u(τ)dτ = 2

∫
u(Γexp)

U
[l]
⋆ (τ(u))eilνI

3udu.

Then, recalling that Re u(τ) = 0 at Γexp, if we write x = Im u− û⋆, we obtain∣∣∣∣∣
∫
Γexp

(τ2 + 1)U
[l]
⋆ (τ)eilνI

3u(τ)dτ

∣∣∣∣∣ = 2

∣∣∣∣∣
∫
u(Γexp)

U
[l]
⋆ (τ(u))eilνI

3udu

∣∣∣∣∣
≲I2 exp(−lνI3û⋆)

∫ ∞

0

e−lνI
3xdx ≲ I−1 exp(−lνI3û⋆).

The segments Γi,exp,Γ+,exp (see (6.63) and (6.64)) are also steepest descent paths for the variable u.

Therefore, Lemma 6.6.3, the estimate for |U [l]
⋆ | when τ ∈ D \ (Ci ∪ C⋆+ ∪ C⋆−) in Proposition 6.5.12 and

the very same argument used to bound the contribution of Γexp, show that∣∣∣∣∣
∫
Γi,exp

(τ2 + 1)U
[l]
⋆ (τ)eilI

3u(τ)dτ

∣∣∣∣∣ ≲I9/4 exp(−lνI3û⋆)
∫ ∞

0

e−lνI
3xdx ≲ I−3/4 exp(−lνI3û⋆)∣∣∣∣∣

∫
Γ+,exp

(τ2 + 1)U
[l]
⋆ (τ)eilI

3u(τ)dτ

∣∣∣∣∣ ≲I9/4 exp(−lνI3û⋆)
∫ ∞

0

e−lνI
3xdx ≲ I−3/4 exp(−lνI3û⋆).

In order to bound the contribution from the segment Γjoin we simply use that length(Γjoin) ≲ I−1, the

fact that |τ2 + 1| ≲ I−1 for τ ∈ Γjoin and the estimate for |U [l]
⋆ (τ)| when τ ∈ D \ (Ci ∪ C⋆+ ∪ C⋆−) in

Proposition 6.5.12 to obtain∣∣∣∣∣
∫
Γjoin

(τ2 + 1)U
[l]
⋆ (τ)eilI

3u(τ)dτ

∣∣∣∣∣ ≲ I5/4 exp(−lνI3ũ⋆)length(Γjoin) ≲ I1/4 exp(−lνI3ũ⋆).

The following step in the proof is to bound the contribution of the segment Γ̃i ⊂ Ci. According to
Proposition 6.5.12, there exists a constant Bl,⋆ ∈ C such that, for τ ∈ Ci,

U
[l]
⋆ (τ) = Bl,⋆ + El,⋆(τ)
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with |El,⋆(τ)| ≲ I7/4. Due to the analyticity of U
[l]
⋆ on the region Ci we can choose Γ̃i to be given by

Γ̃i = Γ̃i,st ∪ Γ̃i,ε ≡{τ ∈ Ci : Im u(τ) > 1/3 + δ(ε), arg(u(τ)− i/3) ∈ {−3π/2, π/2}}
∪ {τ ∈ Ci : |τ − i| = ε, arg(u(τ)− i/3) ∈ (−3π/2, π/2)}

for arbitrarily small 0 < ε ≪ 1 and δ(ε) such that Γ̃i is connected. The integral of the constant term is
trivially seen to be zero, so we only have to bound the integral of the term El,⋆(τ). The uniform bounds

for |El,⋆| in Proposition 6.5.12 imply that the contribution of Γ̃i,ε is proportional to ε, thus, arbitrarily

small. On the other hand, Γ̃i,st is again the union of two steepest descent paths for the variable u.
Arguing as above, defining x = Im u− 1/3 and making use of the estimate |El,⋆| ≲ I15/8, we obtain∣∣∣∣∣

∫
Γ̃i,st

(τ2 + 1)U
[l]
⋆ (τ)eilI

3u(τ)dτ

∣∣∣∣∣ ≲I15/8 exp(−lνI3/3)
∫ ∞

0

e−lνI
3xdx ≲ I−9/8 exp(−lνI3/3).

Now we analyze the contribution of Γ̃+. We have shown in Proposition 6.5.12 that, for τ ∈ C⋆+,

U [l](τ) = Ũ
[l]
⋆ (τ) + Sl,⋆(τ) +Rl,⋆(τ)

where Ũ [l] is defined in (6.55), |Sl,⋆(τ)| ≲ I15/8 and Rl,⋆(τ) is analytic for τ ∈ C⋆+∪{τ⋆+}. The contribution
of Rl,⋆(τ) to the integral is zero due to analyticity. To bound the contribution of Sl,⋆ we deform the path

Γ̃+ in a similar way to the one used to bound the contribution of Γ̃i, that is, we choose Γ̃+ to be a
combination of two steepest descent paths Γ̃+,st, starting at τ+ and an arbitrarily small circumference

Γ̃+,ε around τ+ closing the path. The contribution of Γ̃+,ε is proportional to ε, thus, arbitrarily small.
Defining x = Im u− 1/3, we obtain that∣∣∣∣∣

∫
Γ̃+,exp

(τ2 + 1)Sl,⋆(τ)e
ilI3u(τ)dτ

∣∣∣∣∣ ≲I15/8 exp(−lνI3Im u(τ⋆+))

∫ ∞

0

e−lνI
3xdx

≲I−9/8 exp(−lνI3Im u(τ⋆+)).

Finally, we evaluate the integral of Ũ
[l]
⋆ (τ) on the whole Γ̃+ directly. To this end, we integrate by parts

and obtain∫
Γ̃+

(τ2 + 1)Ũ
[l]
⋆ (τ)eilI

3u(τ)dτ =
2

ilνI3
Ũ

[l]
⋆ (τ)eilνI

3u(τ)
∣∣τa
τb

− 2

ilνI3

∫
Γ̃+

∂τ Ũ
[l]
⋆ (τ)eilI

3u(τ)dτ

where τa, τb are the endpoints of Γ̃+. Since |Ũ [l]
⋆ (τ)| ≲ I2 ln(I) for τ ∈ C+ and, in view of Lemma 6.6.3,∣∣∣eilνI3u(τa)∣∣∣ , ∣∣∣eilνI3u(τb)∣∣∣ ≲ exp(−lνI3û⋆),

we obtain that ∣∣∣Ũ [l]
⋆ (τ)eilνI

3u(τ)
∣∣τa
τb

∣∣∣ ≲ I2 ln(I) exp(−lνI3û⋆).

On the other hand, we have seen in Lemma 6.5.14 that τ = τ⋆+ is a simple pole of the function ∂τ Ũ
[l]
⋆ (τ).

Therefore, a direct application of the residue theorem shows that∫
Γ̃+

∂τU
[l]
⋆ (τ)eilI

3u(τ)dτ = −2πi Res
τ=τ⋆

+

(
∂τ Ũ

[l]
⋆ (τ)eilI

3u(τ)
)
.

Thus, ∫
Γ̃+

(τ2 + 1)U
[l]
⋆ (τ)eilI

3u(τ)dτ =
4

lνI3
Res
τ=τ⋆

+

(
∂τ Ũ

[l]
⋆ (τ)

)
exp(−(lνI3u(τ⋆+))

+O
(
I−1 ln(I) exp(−lνI3ũ⋆), I−9/8 exp(−lνI3Im u(τ⋆+))

)
.
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Figure 6.8: In black, sketch of the curve Γ for values of β ∈ T+,⋆ such that arg(u(τ⋆+(β))− i/3) > −π/2.
Red (blue) dashed lines correspond to lines for which the imaginary (real) part of u(τ) is constant.

From the formula for the residue given in Lemma 6.5.14 it is straightforward to check that

4

lνI3
Res
τ=τ⋆

+

(
∂τ Ũ

[l]
⋆ (τ)

)
exp(ilνI3u(τ⋆+)) = Ãl

m⋆√
σ̃⋆

I−1(1 +O(I−1)) exp
(
− lνI3(1/3 + p⋆(β)) + h⋆+(β)

)
,

(6.66)
where

Ãl =
4

lν
Âl, (6.67)

and

p⋆(β) =
2

3
σ̃⋆ϵ0I

−2e−iβ h⋆+(β) = −i
(
β

2
− lν

6
(2σ̃⋆ϵ0)

3/2e−i3β/2
)
.

Combining this asymptotic computation with the estimates obtained for the contribution of Γexp, Γi,exp,
Γ+exp, Γjoin and Γi, we obtain that, for β ∈ T corresponding to the situation (I), i.e. β ∈ T+,⋆,

L
[l]
⋆ (β) =Ãl

m⋆√
σ̃⋆

I−1(1 +O(I−1)) exp
(
− lνI3(1/3 + p⋆(β)) + h⋆+(β)

)
+O

(
I−9/8 exp(−lνI3/3), I−9/8 exp(−lν Im u(τ⋆+)(β))

)
.

(6.68)

Remark 6.6.4. Without saying, we have chosen I large enough so the exponentially small errors are
much smaller than the polynomial ones.

We have given, a complete, analytical description of the path Γ used to obtain the asymptotic formula
(6.68) for the case where β ∈ T+,⋆ and arg(u(τ⋆+(β))− i/3) > −π/2. An important feature of the chosen
path Γ is that even when the two singularities τ = i and τ⋆+(β) have the same imaginary part 16, the only

significant contributions to the integral L
[l]
⋆ in (6.56) come from the local segments Γ̃i and Γ̃+. However,

when β ∈ T+,⋆ and arg(u(τ⋆+(β))− i/3) → −π/2, the path Γ is not well defined since Re u(τ⋆+(β)) → 0.
Rather than providing lengthy formulas describing how to extend the path across β such that

arg(u(τ⋆+(β))− i/3) → −π/2 we briefly discuss how one can deform the integration path Γ to extend the
asymptotic expression (6.68) for all β ∈ T+,⋆. The main observation is that as arg(u(τ⋆+(β))−i/3) → −π/2
we have

Im u(τ⋆+(β)) =
1

3
(1− 2|σ̃⋆|ϵ0I−2) +O(I−3) < 1/3.

Therefore, it is enough to consider a path Γ which visits only the singularity τ⋆+(β) (see Figure 6.6.1).
One can check that an argument similar to that of the present section yields the asymptotic fomula (6.68)
also for arg(u(τ⋆+(β))− i/3) → −π/2.

6.6.2 Cases (2): β ∈ T−,⋆ and (3):β ∈ Ti,⋆

In order to obtain an asymptotic formula for the values of β ∈ T corresponding to the situation (2), i.e.
β ∈ T−,⋆ the path Γ is chosen in the same way as we did for situation (1) but with τ⋆−(β) replacing τ

⋆
+(β).

16This happens for β ∼ π when ⋆ = 0 and β ∼ 2π when ⋆ = 1.
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We obtain that for β ∈ T−,⋆ corresponding to the situation (2),

L
[l]
⋆ (β) =Ãl

m⋆√
σ̃⋆

I−1(1 +O(I−1)) exp
(
− lνI3(1/3 + p⋆(β)) + h⋆−(β)

)
+O

(
I−9/8 exp(−lνI3/3), I−9/8 exp(−lν Im u(τ⋆+)(β))

)
where

h⋆−(β) = −i
(
β + 2π

2
− lν

6
(2σ̃⋆ϵ0)

3/2e−i3(β+2π)/2

)
.

For values of β ∈ T corresponding to the situation (3), i.e. β ∈ Ti,⋆, we have already seen that

Im u(τ⋆±(β)) ≥
1

3
(1 + |σ̃⋆|ϵ0I−2) +O(I−3) > 1/3.

Moreover, one can check that

−
√
3

2
|σ̃⋆|ϵ0I−2 +O(I−3) ≤ Re u(τ⋆±(β)) ≤

√
3

2
|σ̃⋆|ϵ0I−2 +O(I−3).

We thus define the path Γ = Γexp ∪ Γjoin ∪ Γi where

Γexp = {τ ∈ C : Im u(τ) ≥ 1

2

(
1/3 + Im u(τ⋆±(β))

)
, Re u(τ) ∈ {−|σ̃⋆|ϵ0I−2, |σ̃⋆|ϵ0I−2}},

the path Γjoin is given by

Γjoin = {τ ∈ C : Im u(τ) =
1

2

(
1/3 + Im u(τ⋆±(β))

)
, Re u(τ) ∈ [−|σ̃⋆|ϵ0I−2, |σ̃⋆|ϵ0I−2]}

and Γi = Γ̃i ∪ Γi,exp with

Γi,exp = {τ ∈ C \D : Im u(τ) ≤ 1

2

(
1/3 + Im u(τ⋆±(β))

)
, arg(u(τ)− i/3) ∈ {−3π/2, π/2}}

and Γ̃i is such that Γ is connected and homotopic in C⋆ to the real line.
Then, an argument completely analogous to the one used in Section 6.6.1 shows that for β ∈ Ti,⋆

|L[l]
⋆ (β)| ≲ I−9/8 exp(−lνI3/3). (6.69)

To complete the proof of Proposition 6.5.15 we simply define h⋆ = h+ for β ∈ T+,⋆, h⋆ = h− for
β ∈ T−,⋆ and h⋆ = 0 for β ∈ Ti,⋆.

Remark 6.6.5. We point out that, for β ∈ T+,⋆ we have

h+(β) = h−(β + 2π)

and, for β ∈ T−,⋆, we have
h−(β) = h+(β − 2π).

Thus, expression (6.57) is understood as an asymptotic expression of L
[l]
⋆ for β ∈ T such that Re p⋆(β) ≤ 0

and as an estimate for L
[l]
⋆ when β ∈ T is such that Re p⋆(β) ≤ 0.

6.7 The Fourier coefficients of the potential U : Proof or Propo-
sitions 6.5.11 and 6.5.12 and Lemma 6.5.14

The rest of the paper is devoted to the proof of Propositions 6.5.11 and 6.5.12 and Lemma 6.5.14. We
omit the dependence of all functions on the variable β ∈ T and the parameters I, ϵ0.
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6.7.1 The analytic continuation of τ 7→ U
[l]
⋆ (τ)

Let D be the disk introduced in (6.44). In Lemma 6.5.6 we have seen that, for all l ∈ Z, the expression

of U
[l]
⋆ in (6.48) defines an analytic function for τ ∈ C \ (D ∪ D̄). We recall that, when we speak about

the function element U
[l]
⋆ in (6.48), we implicitly refer to the pair (6.48) and the region C \ (D ∪ D̄). We

now want to extend analytically the function element (6.48) along curves Υ which connect an arbitrary
point τ0 ∈ C \ (D ∪ D̄) and a point τ in the region D. To that end, it will be convenient to perform the
change of variables z = eiξ, and, abusing notation, write λ(z) = λ(ξ(z)) and ρ(z) = ρ(ξ(z)), where λ(ξ)
and ρ(ξ) are the functions in Lemma 6.5.4. Then, if we denote by

W⋆(τ, z) = U⋆(τ, λ(z)) (6.70)

the expression (6.48) is equivalent to

U
[l]
⋆ (τ) =

−i
2π

∫
γ1

ρ(z)W⋆(τ, z)z
−1eilλ(z)dz. (6.71)

where γ1 is the circumference {|z| = 1} with positive orientation. The first step towards studying the

analytic continuation of the function element U
[l]
⋆ in (6.71) (defined on the region C \ (D ∪ D̄)) is to

identify the complex singularities of the function z →W⋆(τ, z) in (6.70).

Remark 6.7.1. From now on we will omit the subscript ⋆ = 0, 1 and simply write U [l],W,m and σ̃

instead of U
[l]
⋆ ,W⋆,m⋆ and σ̃⋆. All the results we state in the following are valid for ⋆ = 0, 1.

Lemma 6.7.2. Let κϵ be the constant defined in (6.35) and, for τ ∈ R, define

a(τ) =κϵ
b(τ)− 1−

√
1− 2b(τ)

b(τ)
aϵ(τ) =

κ2ϵ
a(τ)

b(τ) =
σ̃ϵe−iβ

I2(τ − i)2
(6.72)

c(τ) =
1

κϵ

b̃(τ)− 1 +
√

1− 2b̃(τ)

b̃(τ)
cϵ(τ, φ) =

1

κ2ϵc(τ)
b̃(τ) =

σ̃ϵeiβ

I2(τ + i)2
. (6.73)

Then, for (τ, z) ∈ R× {|z| = 1}, the function W (τ, z) defined in (6.70) can be expressed as

W (τ, z) =
mI3

ϵσ̃

z√
(z − a(τ)) (z − aϵ(τ)) (z − c(τ)) (z − cϵ(τ))

. (6.74)

Proof. Making use of the expressions for ρ(ξ), f(ξ) in Lemma 6.5.4 we have that (by abuse of notation
we write ρ(z) = ρ(λ(z)) and f(z) = f(λ(z)))

ρ(z)eif(z) =
ϵ

2κϵ

(
z − 2κϵ +

κ2ϵ
z

)
ρ(z)e−if(z) =

κϵϵ

2

(
z − 2

κϵ
+

1

zκ2ϵ

)
, (6.75)

The proof follows after a tedious, but straightforward, algebraic manipulation.

Lemma 6.7.2 shows that the points z = a(τ), aϵ(τ), c(τ) and cϵ(τ) are branching points with exponent
−1/2 of the function z 7→ W (τ, z). In the following lemmas we obtain some information about the
functions a(τ), aϵ(τ), c(τ) and cϵ(τ) in (6.72).

Lemma 6.7.3. Fix any τ0 ∈ R and let τ± ∈ C be the points defined in (6.50). Let τ ∈ C and let
Υ : [0, 1] → C be such that Υ(0) = τ0, Υ(1) = τ and Υ([0, 1)) ⊂ C \ {τ+, τ−}. Then, a, aϵ defined in
(6.72) admit a unique continuation along Υ which we denote by a(τ ; Υ), aϵ(τ ; Υ). This continuation is
analytic if and only if τ ∈ C \ {τ+, τ−}. Moreover, for any two curves Υ,Υ′ ⊂ C \ {τ+, τ−} sharing the
same endpoints, the analytic continuations along them coincide if and only if the sum of the indexes of
the closed curve Υ′Υ−1 with respect to τ = τ+ and τ = τ− belongs to 2Z.

An analogous statment holds for c, cϵ replacing τ± by τ̄±. We denote their analytic continuations
along a curve Υ by c(τ ; Υ), cϵ(τ ; Υ)
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Proof. To prove the result for a, aϵ, as b(τ) ̸= 0 for all τ ∈ C, we only have to check that 1 − 2b = 0 if
and only if τ ∈ {τ+, τ−}, but this is straightforward from the definition of b in (6.72). The result for c, cϵ
follows analogously.

We now study the behavior of the analytic continuation of a, aϵ, c and cϵ. As already pointed out, we
can reduce our study to curves contained in the upper half plane

H = {τ ∈ C : Im τ ≥ 0}.

In view of Lemma 6.7.3, the analytic continuations c(τ ; Υ), cϵ(τ ; Υ) along curves Υ ⊂ H do not depend
on the choice of Υ so we will simply write c, cϵ. For the analytic continuations of a, aϵ along a path Υ we
write

a(τ ; Υ) = κϵ
b(τ)− 1−

√
(1− 2b)(τ ; Υ)

b(τ)
aϵ(τ ; Υ) =

κ2ϵ
a(τ ; Υ)

. (6.76)

Remark 6.7.4. The notation (1− 2b)(τ ; Υ) is used to emphasize that we keep track of the argument of
1− 2b along the path Υ.

Lemma 6.7.5. Fix any τ0 ∈ R. Let τ ∈ H and let Υ : [0, 1] → H be such that Υ(0) = τ0, Υ(1) = τ .
Then, for all τ ∈ H

|c(τ)| ≲ I−2 |cϵ(τ)| ≳ I2

Let a(τ ; Υ), aϵ(τ ; Υ) be the analytic continuation of (6.72) along Υ : [0, 1] → H \ {τ+, τ−} and let J ⊂ H

be the segment defined in (6.53). Then, there exists a constant C̃ > κϵ such that, if τ ∈ D \ {τ+, τ−} (see
(6.44) (6.50)) and card{Υ ∩ J} = 0

κϵ < |a(τ ; Υ)| ≤ C̃. (6.77)

Moreover, for any τ ∈ H \ {τ+, τ−} and two different curves Υ,Υ′ such that card{Υ ∩ J} = 0 and
card{Υ′ ∩ J} = 1

a(τ,Υ′) = aϵ(τ ; Υ) aϵ(τ,Υ
′) = a(τ ; Υ). (6.78)

Proof. For τ ∈ H we have that I2|τ + i| ≫ 1, and therefore b̃(τ) is small, in fact |b̃| ≤ I−2. The result
for the functions c(τ), cϵ(τ) follows by expanding these functions in power series in the variable b̃(τ).

We now prove the results for a, aϵ. The idea is to study the shape of the level sets of the function
|a(τ ; Υ)| for τ ∈ H \ J and Υ : [0, 1] → H \ J . First we notice that, in view of Lemma 6.7.3, the
continuation along two different paths (sharing the same endpoint) which do not cross J is the same.
Therefore we drop the dependence on Υ. For τ such that I|τ − i| ≫ 1 we have

|a(τ)| ∼ κϵ
I2|τ − i|2

|σ̃|ϵ0
≫ 1. (6.79)

We now want to study what happens as τ approaches J . To that end, it will be convenient to introduce
the variable ζ(τ) = κϵ/a(τ). After some manipulations we arrive to the expression

ζ(τ) =

√
1− 2b(τ)− 1√
1− 2b(τ) + 1

.

Writing x(τ) =
√

1− 2b(τ), the map x 7→ ζ is a Möbius transformation whose inverse is given by

x =
1 + ζ

1− ζ
. (6.80)

We study the image of the curve ζ(θ) = reiθ under the map (6.80) for θ ∈ T and fixed r < 1 (in view of
(6.79), we have |ζ| ≪ 1 far from J). We have that

x(θ; r) =
1 + reiθ

1− reiθ
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Figure 6.9: The family of ellipses {Er}r≥1 defined in (6.81). The dashed segment corresponds to J .

Substituting now x =
√
1− 2b(τ) we obtain the curve in the τ ∈ C plane

(τ(θ; r)− i)2 +
σ̃ϵ0e

−iβ

2

(1− reiθ)2

reiθ
= 0.

This curve corresponds indeed to the ellipse

Er =
{
τ ∈ C :

|τ(θ; r)− i|2 cos2 β
p2r

+
|τ(θ; r)− i|2 sin2 β

q2r
= 1, θ ∈ T

}
(6.81)

where

pr =

√
σ̃ϵ0
2I2

1 + r√
r

qr =

√
σ̃ϵ0
2I2

1− r√
r
.

Consider now the family of ellipses Er in (6.81) for r < 1 (see Figure 6.7.1). For all r < 1 the semimajor
axis corresponds to a segment centered at τ = i, in the direction of J and of length pr >

√
2σ̃ϵ0I

−1 =
(length J)/2. Also for r < 1, the semiminor axis has strictly positive length. When r → 1 these ellipses
collapse to the segment J . We conclude that for all τ ∈ H \ J , we have |ζ(τ)| < 1 what implies that
for all τ ∈ H \ J , |a(τ)| > κϵ. Finally, let r∗ large enough so the disk D in (6.44) is contained in the
bounded component among the two connected components in which Er∗ divides the complex plane and

set C̃ = κϵ/r∗.
The last item in the lemma is trivial from the definition in (6.76).

The following result will be useful for later computations.

Lemma 6.7.6. Fix any τ0 ∈ R. Let τ ∈ H and let Υ : [0, 1] → H be such that Υ(0) = τ0, Υ(1) = τ . Let
a(τ ; Υ), aϵ(τ ; Υ) be given in (6.76). Then

a(τ ; Υ)− aϵ(τ ; Υ) =
−2κϵ

√
(1− 2b)(τ ; Υ)

b(τ ; Υ)
, (6.82)

with b(τ) the function defined in (6.72).

Remark 6.7.7. One can easily check that a(τ ; Υ) = aϵ(τ ; Υ) if and only if τ = i (for which |b| = ∞)
or τ = τ± (for which 1 − 2b = 0). The notation (1 − 2b)(τ ; Υ) and b(τ ; Υ) is used to keep track of the
argument of these quantities along Υ. In this way we can keep track of the argument of a(τ ; Υ)−aϵ(τ ; Υ)
along Υ. This will be important in the forthcoming discussion.
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Proof. By the definition of a, aϵ in (6.76) we obtain that

a(τ ; Υ)− aϵ(τ ; Υ) =κϵ

(
b(τ)− 1−

√
(1− 2b)(τ ; Υ)

b(τ ; Υ)
− b(τ ; Υ)

b(τ)− 1−
√
(1− 2b)(τ ; Υ)

)
=

−2κϵ
√

1− 2b(τ ; Υ)

b(τ ; Υ)
.

We now come back to the problem of defining the analytic continuation of U [l] in (6.48). To this
end, we notice that, in view of Lemma 6.7.5, for τ ∈ R, the function z 7→ W (τ, z) is analytic on the
annulus {z ∈ C : κϵ < |z| < 1}. Therefore, we can change the integration contour in (6.71) from γ1 to
γκϵ , defined as the curve {|z| = κϵ} with positive orientation. We obtain that, for τ ∈ R, expression
(6.71) is equivalent to

U
[l]
⋆ (τ) =

−i
2π

∫
γκϵ

ρ(z)W⋆(τ, z)z
−1eilλ(z)dz. (6.83)

In fact, (6.83) defines an analytic function for any τ ∈ H\J . Indeed, for any τ ∈ H\J , and any Υ : [0, 1] →
H\J , such that Υ(0) ∈ R and Υ(1) = τ , we have that {|z| = κϵ}∩{a(Υ(t); Υ), aϵ(Υ(t); Υ), c(Υ(t)), cϵ(Υ(t))} =
∅ for all t ∈ [0, 1].
We now embed this idea in a more general framework, which will allow us, in Proposition 6.7.10, to define
the analytic continuation of (6.83) along curves Υ ⊂ H which do cross the segment J . Fix any τ0 ∈ D \J
and for any τ ∈ D define the family of curves

Yτ = {Υ ∈ C([0, 1], D) : Υ(0) = τ0, Υ(1) = τ, Υ([0, 1)) ⊂ D \ {τ+, τ−}}. (6.84)

Then, we introduce the ”collision set”:

Col = {(τ ; Υ) ∈ D × Yτ : {a(τ ; Υ), cϵ(τ)} ∩ {aϵ(τ ; Υ), c(τ), 0} ≠ ∅} . (6.85)

The set Col is described in the following lemma and will be related to the singularities of the analytic
continuation of (6.83) in Lemma 6.7.10.

Lemma 6.7.8. The collision set Col defined in (6.85) satisfies

Col =
{
{i} × Yi, {τ+} × Yτ+ , {τ−} × Yτ−

}
at which we have that a(τ ; Υ) = aϵ(τ ; Υ) (independently of the curve Υ).

Proof. We deduce from Lemma 6.7.6 that a(τ ; Υ) = aϵ(τ ; Υ) if and only if 1
b = 0 or 1 − 2b = 0, which

corresponds to the points τ = i and τ = τ+, τ−, respectively. The existence of other possible “collisions”
is excluded using the bounds obtained in Proposition 6.7.5.

We now consider the closed curve {|z| = κϵ}. It divides the z-complex plane C in two connected
components: we denote by B0 the bounded one and by B∞ the unbounded one. From Lemma 6.7.5, we
observe that, for τ ∈ H \ J and Υ ∈ Yτ such that Υ ∩ J = ∅, we have that

{0, aϵ(τ ; Υ), c(τ)} ⊂ B0 {a(τ ; Υ), cϵ(τ)} ⊂ B∞

so no singularity of the integrand in (6.83) (see also (6.74)) is located on the curve {|z| = κϵ}. Therefore,
as already discussed, (6.83) defines an analytic function.

Let now τ ∈ D and take a curve Υ ∈ Yτ such that card{Υ ∩ J} = 1. From Lemma 6.7.5 we observe
that now

{0, a(τ ; Υ), c(τ)} ⊂ B0 {aϵ(τ ; Υ), cϵ(τ)} ⊂ B∞,

and the expression (6.83) does not make sense since a singularity of the integrand has crossed the integra-
tion contour. Of course this is only a matter of how we have defined (6.83). Indeed, thanks to analyticity,
as long as the path Υ along we want to continue (6.83) satisfies Υ ∩ C̃ol = ∅, where

C̃ol = {i, τ+, τ−},
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Figure 6.10: Sketch, in red, of the curve γ(Υ ) obtained by continuous deformation of the curve {|z| = κϵ}
(pictured in dashed lines).

we have freedom to change the integration contour in (6.83) as we travel Υ to avoid having singular
points on it (see Figure 6.7.1). This is the content of Proposition 6.7.10 below. We now introduce some
notation which clarifies its statement. We introduce the punctured plane

Cτ = {z ∈ C : z /∈ {a(τ ; Υ), aϵ(τ ; Υ), c(τ), cϵ(τ)}},

and the sets
D∗ = D \ C̃ol D = {(τ, z) ∈ D∗ × C : z ∈ Cτ}. (6.86)

Definition 6.7.9. Let (τ0, z0) ∈ (D\J)×{|z| = κϵ} be fixed and let (τ, z) ∈ D. We say that a continuous
curve Ψ : [0, 1] → C2 is an admissible path from (τ0, z0) to (τ, z) if Ψ(0) = (τ0, z0), Ψ(1) = (τ, z) and
Ψ([0, 1]) ⊂ D.

We are now ready to continue analytically U [l] in (6.83) along paths crossing J . Given a closed
loop γ we denote by Bγ0 , B

γ
∞ the bounded and unbounded connected components in which γ divides the

z-complex plane C.

Proposition 6.7.10. Let τ0 in D \ J , take any τ ∈ D∗ and let Υ : [0, 1] → D∗ be a continuous curve
joining them. Then, there exists a closed curve γ(Υ) ∈ Cτ satisfying

{0, aϵ(τ ; Υ), c(τ ; Υ)} ⊂ Bγ0 {a(τ ; Υ), cϵ(τ ; Υ)} ⊂ Bγ∞

and such that the analytic continuation of (6.83) along Υ is given by

U [l](τ ; Υ) =
−i
2π

∫
γ(Υ)

ρ(z)W (τ, z; Ψτ,z)z
−1e−ilλ(z)dz, (6.87)

where, for all z ∈ γ(Υ), Ψτ,z is any admissible curve such that Ψ̃ : [0, 1] × γ(Υ) → D defined by
(t, z) 7→ Ψτ,z(t) is an homotopy between {τ0} × {|z| = κϵ} and {τ} × γ(Υ).

Moreover, for Υ,Υ′ ⊂ D∗ with Υ(0) = Υ′(0) ∈ D \ J , Υ(1) = Υ′(1) = τ , and such that the closed
curve Υ̃ = ΥΥ−1 is contractible to a point or homotopic to ∂D then U [l](τ ; Υ) = U [l](τ ; Υ′).

Proof. The first part of the lemma follows from standard arguments in complex analysis and the discussion
preceding the proposition. We now prove the second part of the lemma. Take now Υ,Υ′ ⊂ D∗ with
Υ(0) = Υ′(0) ∈ ∂D, Υ(1) = Υ′(1) = τ , and define the closed loop Υ̃ = Υ′Υ−1. Introduce the function
q(t) : [0, 1] → R given by

q(t; Υ̃) = arg

(
1− aϵ(Υ̃(t); Υ̃)

a(Υ̃(t); Υ̃)

)
.

If q(0,Υ) = q(1,Υ) then, the curves γ(Υ) and γ(Υ′) obtained in the first part of the lemma must be
homotopic in Cτ where τ = Υ(1) = Υ′(1). Thus, it is clear that, if q(0,Υ) = q(1,Υ), then U [l](Υ̃(0);Υ) =
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Figure 6.11: Sketch of a curve Υ, in red, homotopic in D∗ to ∂D.

U [l](Υ̃(1),Υ). But this condition is met for any closed curve Υ̃ ⊂ D∗ which is homotopic to ∂D. Indeed,
consider first the case where Υ̃∩J = ∅. In view of Lemma 6.7.5 we have that |a(Υ̃(t), Υ̃)/aϵ(Υ̃(t), Υ̃)| < 1
for all t ∈ [0, 1]. Therefore, we must have q(1, Υ̃) = q(0, Υ̃). Due to the uniqueness of analytic continuation
on simply connected domains we can drop the assumption Υ̃ ∩ J = ∅ (see Figure 6.7.1).

Proposition 6.7.10 shows that the points τ = i, τ+, τ− are the unique canditates to be singular points
of the analytic continuation of (6.83) along curves Υ ⊂ D. We will see in the forthcoming sections, where
we study the quantitative behavior of (6.87), along a suitable family of paths Υ, that τ = i, τ+, τ− are
indeed singular points of the analytic continuation of (6.83).

From now on, since the singularities c and cϵ play no role when we restrict to τ ∈ H, we make use of
the more convenient expression for the function W (see (6.74))

W (τ, z) =
Cβ

(τ + i)
√

1 + h(τ, z)

I2√
z − (a+ aϵ)(τ) +

κ2
ϵ

z

(6.88)

where

Cβ =
−imν̃
π

√
κϵeiβ

σ̃ϵ0
h(τ, z) =

2σ̃eiβ

I2(τ + i)2
ρ(z)e−if(z). (6.89)

and, denote its continuation along any admissible path Ψτ,z : [0, 1] → C2, as W (τ, z; Ψτ,z).

Remark 6.7.11. In the forthcoming sections, we will always assume the following without mentioning:

• We fix an arbitrary τ0 ∈ H \ J .

• Given a point τ ∈ D∗ we will denote by Υ : [0, 1] → D∗ any continuous curve such that Υ(0) = τ0
and Υ(1) = τ .

• γ̃(Υ) is any curve in the homotopy class (in Cτ ) of the curve γ(Υ) obtained in Proposition 6.7.10.

• Given γ̃(Υ) as above, for all z ∈ γ̃(Υ), Ψτ,z is any admissible curve such that Ψ̃ : [0, 1]× γ̃(Υ) → D
defined by (t, z) 7→ Ψτ,z(t) is an homotopy between {τ0} × {|z| = κϵ} and {τ} × γ̃(Υ).

• For a given Ψτ,z as above, and, understanding z 7→ Ψτ,z(1) as a parametrization of the curve γ̃(Υ),
we will simply write W (τ, z) instead of W (τ, z; Ψτ,z).
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6.7.2 Behavior of U [l](τ ;Υ ) for τ ∈ D \ (Ci ∪ C+ ∪ C−)

We first choose a curve in the homotopy class of the curve γ(Υ ) which is suitable for obtaining bounds
for
∣∣U [l](τ ;Υ )

∣∣ when τ ∈ D \ (Ci ∪ C+ ∪ C−) with Ci, C+ and C− the punctured disks defined in (6.54).
We recall that, in the present, and forthcoming sections, we include curves Υ : [0, 1] → D∗ such that
card{Υ ∩ J} ∈ {0, 1}, where J is the segment in (6.53).

Lemma 6.7.12. If τ ∈ D\ (Ci∪C+∪C−) the closed curve γ = γ(Υ ) in Proposition 6.7.10 can be chosen
such that

• length(γ) ≲ 1,

• For z ∈ γ we have that

|z| ∼ 1 |z − a(τ ;Υ )|, |z − aϵ(τ ;Υ )| ≳ I−1/4

Proof. In order to prove the lemma we only need to verify that there exists a suitable lower bound on the
distance between a(τ ; Υ) and aϵ(τ ; Υ) and, in order to bound the length of the curve, give an estimate
on how far these points are from the origin in the z ∈ C plane. From expression (6.82) we obtain that

(
a(τ ; Υ)− aϵ(τ ; Υ)

)2
= 16κ2ϵ

1− 2b(τ)

b2(τ)

does not depend on the curve Υ. That is, the function f(τ) ≡ (a − aϵ)
2(τ) is an analytic function on

D ⊂ C. Then, we can apply the maximum principle to f(τ) to obtain that (making use of the definition
of Ci, C± in (6.54))

min
τ∈D\(Ci∪C±)

|a− aϵ| ≳ I−1/4.

We now want to obtain a lower bound on |a(τ,Υ)|. To that end, we use that aaϵ = κ2ϵ and apply the
maximum principle on the subset of the Riemann surface associated to the analytic continuation of aϵ
which projects onto D. We know from Lemma 6.7.5 that, there exists C̃ > κϵ such that

max{|a(τ ; Υ)| : τ ∈ ∂D, card{Υ∩J} = 0} ≤ C̃ max{|aϵ(τ ; Υ)| : τ ∈ ∂D, card{Υ∩J} = 0} < κϵ.

Combining these estimates with the last item in Lemma 6.7.5, we obtain

max{|aϵ(τ ; Υ)| : τ ∈ ∂D, card{Υ∩J} = 1} ≤ C̃ max{|a(τ ; Υ)| : τ ∈ ∂D, card{Υ∩J} = 1} < κϵ.

Therefore, we can conclude that

max{|aϵ(τ ; Υ)| : τ ∈ D, card{Υ ∩ J} ∈ {0, 1}} ≤ max{|aϵ(τ ; Υ)| : τ ∈ ∂D, card{Υ ∩ J} ∈ {0, 1}} ≤ C̃

and, consequently, since aaϵ = κ2ϵ ,

min{|a(τ ; Υ)| : τ ∈ D, card{Υ ∩ J} ∈ {0, 1}} ≥ min{|a(τ ; Υ)| : τ ∈ ∂D, card{Υ ∩ J} ∈ {0, 1}} ≥ κ2ϵ/C̃.

Then, in view of the preceeding discussion, given the curve γ(Υ) of Lemma 6.7.10, which we already
know that exists and satisfies

{0, aϵ(τ ;Υ ), c(τ ;Υ )} ⊂ Bγ0 {a(τ ;Υ ), cϵ(τ ;Υ )} ⊂ Bγ∞,

we can always find γ̃(Υ) homotopic to γ(Υ) in Cτ satisfying the requirements in the lemma.

Lemma 6.7.13. Let U [l](τ ; Υ) be the analytic continuation along Υ of (6.83) obtained in Proposition
6.7.10. Then, for τ ∈ D \ (Ci ∪ C+ ∪ C−) we have that∣∣∣U [l](τ ; Υ)

∣∣∣ ≲ I9/4.
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Proof. Change the curve γ(Υ), obtained in Proposition 6.7.10, to a curve γ̃(Υ) satisfying the properties
stated in Lemma 6.7.12. Therefore, making use of the formulas for ρ(z) and eilλ(z) in (6.75), it is clear
that for z ∈ γ̃(Υ) we have ∣∣∣ρ(z)z−1eilλ(z)

∣∣∣ ≲ 1.

On the other hand, from the bounds in Lemma 6.7.12, and expression (6.88), and the definition of Ci, C±
in (6.54), we obtain that, for τ ∈ D \ (Ci ∪ C+ ∪ C−) and z ∈ γ̃(Υ)

|W (τ, z)| ≲ I9/4

and the result follows.

6.7.3 Behavior of U [l](τ ;Υ ) for τ ∈ Ci ∪ C±

Define

fl(τ, z) =
CβI

2ρ(z)eilλ(z)

(τ + i)
√
z(1 + h(τ, z))

, (6.90)

where the constant Cβ is defined in (6.89) and the expression for ρ(z)eilλ(z) can be deduced from (6.75).
We then write U [l](Υ) in (6.87) as

U [l](τ ; Υ) =

∫
γ(Υ)

ρ(z)W (τ, z)z−1eilλ(z)dz

=fl(τ, a(τ ; Υ))

∫
γ(Υ)

z−1dz√
z2 + (a+ aϵ)(τ)z + κ2ϵ

+

∫
γ(Υ)

(fl(τ, z)− fl(τ, a(τ ; Υ)))z−1dz√
z2 + (a+ aϵ)(τ)z + κ2ϵ

.

(6.91)

It is now convenient to introduce the function ζ(τ ; Υ) (we already used this function in the proof of
Lemma 6.7.5), defined by

ζ2(τ ; Υ) =
aϵ(τ ; Υ)

a(τ ; Υ)
=

κ2ϵ
a2(τ ; Υ)

. (6.92)

Lemma 6.7.14. Let

K(ζ) =

∫ π/2

0

dθ√
1− ζ2 sin2 θ

,

be the complete elliptic integral of the first kind. Then, we have that∫
γ(Υ)

z−1dz√
z2 + (a+ aϵ)(τ)z + κ2ϵ

= 4κ−1
ϵ ζ(τ ; Υ)K(ζ(τ ; Υ)).

Proof. We consider τ ∈ R and Υ such that card{Υ ∩ J} = 0, so we know that

|a(τ ; Υ)| > 1, |aϵ(τ ; Υ)| < 1,

and we can simply choose∫
γ(Υ)

z−1dz√
z2 + (a+ aϵ)(τ)z + κ2ϵ

=

∫
γ1

z−1dz√
z2 + (a+ aϵ)(τ)z + κ2ϵ

, (6.93)

where γκϵ is the circumference {|z| = κϵ} with positive orientation. Moreover, taking into account
the decay of the integrand for |z| → ∞, we can change the integration contour in (6.93) to the curve
γ = γdown γup where

γup ={z ∈ C : z = a(τ ; Υ)s, s ∈ (1,∞)}
γdown ={z ∈ C : z = a(τ ; Υ)se−i2π, s ∈ (1,∞)}.
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A straightforward computation then shows that∫
γ1

z−1dz√
z2 + (a+ aϵ)(τ)z + κ2ϵ

=
2

a(τ)

∫ ∞

1

s−1ds√
(s− 1)(s− ζ2(τ ; Υ))

.

Changing the integration variable to x = 1/s and then to θ where x = sin2 θ we obtain∫ ∞

1

s−1ds√
(s− 1)(s− ζ2)

=

∫ 1

0

dx√
(1− x)(1− ζ2x)

= 2

∫ π/2

0

dθ√
1− ζ2 sin2 θ

.

Thus, for all τ ∈ R, we have that∫
γ(Υ)

z−1dz√
z2 + (a+ aϵ)(τ)z + κ2ϵ

= 4κ−1
ϵ ζ(τ ; Υ)K(ζ(τ ; Υ)).

The result follows since K(ζ(τ ; Υ)) can be continued analytically along any curve for which ζ2(τ ; Υ) ̸= 1.
However, we know from Lemma 6.7.8 and the definition of D∗ that ζ2(τ ; Υ) ̸= 1 for τ ∈ D∗.

If we denote by

El(τ ; Υ) =

∫
γ(Υ)

(fl(τ, z)− fl(τ, a(τ ; Υ)))z−1dz√
z2 + (a+ aϵ)(τ)z + κ2ϵ

. (6.94)

(6.91) and Lemma 6.7.14 imply that

U [l](τ ; Υ) = 4κ−1
ϵ fl(τ, a(τ ; Υ)) ζ(τ ; Υ)K(ζ(τ ; Υ)) + El(τ ; Υ). (6.95)

In order to prove Proposition 6.5.12 it remains to obtain local expansions of K(ζ(τ ; Υ)) and study the
quantitative behavior of El(τ ; Υ) for τ ∈ C± and τ ∈ Ci. The proof of the following lemma can be found
in, for example, [?].

Lemma 6.7.15. For all ζ ∈ C such that 0 < 1− ζ2 ≪ 1 there exists a constant c ∈ C such that

K(ζ) =
1

2
ln(1− ζ2) + c+O(|1− ζ2|).

In the next lemma, whose proof is straightforward, we provide some technical information about the
function fl(τ, z) introduced in (6.90).

Lemma 6.7.16. Fix any two constants 0 < c < C. Then, for all z ∈ C such that c ≤ |z| ≤ C, we have

|fl(τ, z)|, |∂τfl(τ, z)|, |∂zfl(τ, z)| ≲ I2.

Moreover, there exists f̃l(τ, z) such that fl(τ, z) = (z − κϵ)f̃l(τ, z), f̃l(τ, z) is analytic in c ≤ |z| ≤ C and
satisfies |f̃l(τ, z)| ≲ I2.

The following lemma will also be useful. It shows that for τ ∈ Ci and τ ∈ C±, the singular points
a(τ ; Υ) and aϵ(τ ; Υ) are close to |z| = κϵ. It also gives a lower bound on their distance.

Lemma 6.7.17. Let ζ(τ ; Υ) be defined in (6.92). Then, for τ ∈ C±,

a(τ ; Υ) = −κϵ +O(I|τ − τ±|1/2), 1− ζ2(τ ; Υ) = 4
√
(1− 2b)(τ ; Υ)

(
1 +O(I1/2|τ − τ±|1/2)

)
(6.96)

and, for τ ∈ Ci,
a(τ ; Υ) = κϵ +O(I|τ − i|) |1− ζ2(τ ; Υ)| ∼ I|τ − i|. (6.97)

Proof. The expressions in (6.96) are obtained expanding (6.76) and (6.82) in powers of 1 − 2b. The
expressions in (6.97) are obtained expanding (6.76) and (6.82) in powers of 1/b.

276



Figure 6.12: Deformation of γκϵ into the union γ̃(Υ) = γ1(Υ)γ2(Υ) where γ1(Υ) is depicted in red and
γ2(Υ) is depicted in blue.

We now study the function El(τ ; Υ) introduced in (6.94). To that end, it is important to choose a
suitable path γ̃(Υ) in the homotopy class of γ(Υ).

Recall the framework introduced in Remark 6.7.11. Let ind(z, γ) stand for the index of a closed curve
γ ⊂ C around a point z ∈ C. The following observations will be important in the proof of Lemma 6.7.20.
Let τ ∈ D\J and let Υ be such that Υ∩J = ∅. Then, as already explained, γ(Υ) can be chosen to be the
oriented circumference γκϵ

. Fix any point z̃ ∈ Cτ . Then, the curve γκϵ
can be deformed homotopically

in Cτ to the union γ̃(Υ) of two closed loops γi(Υ), i = 1, 2, starting at z̃ and such that (see Figure 6.7.3)

• ind (a(τ ; Υ), γ1(Υ)) = −1, ind (aϵ(τ ; Υ), γ1(Υ)) = 0 and ind (0, γ1(Υ)) = 0

• ind (a(τ ; Υ)γ2(Υ)) = ind (aϵ(τ ; Υ), γ2(Υ)) = ind (0, γ2(Υ)) = 1.

The idea behind this decomposition is that only the curve γ̃1(Υ) is “trapped” between the singularities
a(τ ; Υ), aϵ(τ ; Υ). By choosing the point z̃ far enough from a(τ ; Υ), aϵ(τ ; Υ), the curve γ̃2(Υ) can be
chosen to be sufficiently far from a(τ ; Υ), aϵ(τ ; Υ). Therefore, the contribution of the segment γ̃2(Υ)
to the integral (6.94) will be small. On the other hand, if z̃ is not too far from a(τ ; Υ), aϵ(τ ; Υ) the
contribution of the segment γ̃2(Υ) to the integral (6.94) can be analyzed asymptotically.

When τ ∈ D∗, defined in (6.86), and Υ is an arbitrary curve Υ ⊂ D∗, the situation is slightly more
complicated, since the points a(τ ; Υ) and aϵ(τ ; Υ) may have revolved around themselves in a complicated
way, entangling thus, the geometry of the curve γ(Υ) (see Figure 6.7.3). However, by construction of the
curve γ(Υ) in Proposition 6.7.10, since

ind(a(τ0), γκϵ
) = 0, ind(aϵ(τ0), γκϵ

) = 1, ind(0, γκϵ
) = 1,

the curve γ(Υ) must satisfy

ind (a(τ ; Υ), γ(Υ)) = 0, ind (aϵ(τ ; Υ), γ(Υ)) = 1, ind (0, γ(Υ)) = 1.

Then, the discussion above generalizes as follows (see Figure 6.7.3).

Lemma 6.7.18. Let γ(Υ) be the curve obtained in Proposition 6.7.10 and fix any point z̃ ∈ Cτ . Then,
there exists an even number k(Υ) ≥ 2 and a family of loops {γi(Υ)}1≤i≤k(Υ) starting at z̃ satisfying

• For i = 1

ind (a(τ ; Υ), γi(Υ)) = −1 ind (aϵ(τ ; Υ), γi(Υ)) = 0, ind (0, γi(Υ)) = 0.

• For 1 < i ≤ k(Υ)/2,

ind (a(τ ; Υ), γi(Υ)) = −1, ind (aϵ(τ ; Υ), γi(Υ)) = −1, ind (0, γi(Υ)) = 0.
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Figure 6.13: On the left, along an arbitrary curve Υ, the points a(τ ; Υ) and aϵ(τ ; Υ) may have revolved
around each other in a complicated manner, entangling, thus, the shape of the curve γ(Υ) (in dashed
lines). On the right, the loop decomposition associated to the curve γ(Υ) depicted on the right: γ1(Υ)
in red, γ2(Υ) in green, γ3(Υ) in blue and γ4(Υ) in black.

• For i = k(Υ)/2 + 1

ind (a(τ ; Υ), γi(Υ)) = 1, ind (aϵ(τ ; Υ), γi(Υ)) = 1, ind (0, γi(Υ)) = 1.

• For k(Υ)/2 < i ≤ k(Υ),

ind (a(τ ; Υ), γi(Υ)) = 1, ind (aϵ(τ ; Υ), γi(Υ)) = 1, ind (0, γi(Υ)) = 0.

such that the composition γ̃(Υ) = γ1(Υ) · · · γi(Υ) · · · γk(Υ)(Υ) is homotopic in Cτ to γ(Υ).

Remark 6.7.19. Notice that, in particular, the closed curve γ̃(Υ) in Lemma 6.7.18 satisfies ind (a(τ ; Υ), γ̃(Υ)) =
0, ind (aϵ(τ ; Υ), γ̃(Υ)) = 1 and ind (0, γ̃(Υ)) = 1.

The number k(Υ) increases with the total number of times that a(τ ; Υ) and aϵ(τ ; Υ) have turned
around themselves. That is, k(Υ) reflects the monodromy along different curves Υ,Υ′ sharing the same
endopoints. In the particular case in which Υ ∩ J = ∅ so γ(Υ) is homotopic to γκϵ , Lemma 6.7.18 holds
with k(Υ) = 2 (meaning that only items 1 and 3 are present in that case).

As before, the idea now is that only the curve γ1(Υ) is “trapped” between the singularities a(τ,Υ), aϵ(τ ; Υ)
(recall that, although the origin is also a singularity of the integrand in (6.94), Lemma 6.95 ensures that
for τ ∈ C± and for τ ∈ Ci both a(τ ; Υ), aϵ(τ ; Υ) are far from the origin). Therefore, by choosing z̃
properly, the contribution of γ1(Υ) can be analyzed asymptotically and the contribution of γi(Υ) for
i ≥ 2 can be shown to be smaller. Because of this we will write

γ̃(Υ) = γsing(Υ)γreg(Υ), where γsing(Υ) = γ1(Υ) γreg(Υ) = γ2(Υ) · · · γi(Υ) · · · γk(Υ)(Υ).

Let us point out one more important observation for the analysis of the integral El(τ ; Υ) in (6.94). Split
the integral (6.94) as

El(τ ; Υ) =

∫
γsing(Υ)

(fl(τ, z)− fl(τ, a(τ ; Υ)))z−1dz√
z2 + (a+ aϵ)(τ)z + κ2ϵ

+

∫
γreg(Υ)

(fl(τ, z)− fl(τ, a(τ ; Υ)))z−1dz√
z2 + (a+ aϵ)(τ)z + κ2ϵ

(6.98)

and focus on the second term. Taking into account that 1− 2b→ 0 as τ → τ±,

z2 − (a+ aϵ)z + κ2ϵ = (z + κϵ)
2 − 2κϵz(2− 1/b) ∼ (z + κϵ)

2.
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Therefore, since, in view of Lemma 6.7.17, for τ → τ± we have a(τ ; Υ), aϵ(τ ; Υ) → −κϵ, if all z in γreg
are sufficiently far from a(τ,Υ), aϵ(τ ; Υ), one expects that

(fl(τ, z)− fl(τ, a(τ ; Υ)))z−1√
z2 + (a+ aϵ)(τ)z + κ2ϵ

∼ (fl(τ, z)− fl(τ, a(τ ; Υ)))z−1

z + κϵ

and therefore that∫
γreg(Υ)

(fl(τ, z)− fl(τ, a(τ ; Υ)))z−1dz√
z2 + (a+ aϵ)(τ)z + κ2ϵ

∼
∫
γreg(Υ)

fl(τ, z)z
−1dz

(z + κϵ)
− fl(τ ; a(τ ; Υ))

∫
γreg(Υ)

z−1dz

(z + κϵ)
. (6.99)

The crucial remark now is that the integrals in the right hand side of (6.99) do not depend on Υ.
Indeed, all the integrals along the loops forming γreg(Υ), except the one with ind(a(τ ; Υ), γi(Υ)) =
ind(aϵ(τ ; Υ), γi(Υ)) = ind(0, γi(Υ)) = 1, cancel out. On the other hand, as we show in Lemma 6.7.20,
the error commited in the approximation (6.99) is sufficiently small compared to the leading term in
(6.95).

Lemma 6.7.20. Let τ ∈ C±. Then, there exist Ereg,l(τ), Ẽreg(τ) and Esing,l(τ ; Υ) such that

El(τ ; Υ) = Ereg,l(τ) + fl(τ ; a(τ,Υ))Ẽreg(τ) + Esing,l(τ ; Υ)

where Ereg,l(τ), Ẽreg(τ) do not depend on the choice of Υ (i.e. they are analytic functions for τ ∈
C± ∪ {τ±}), Esing,l is analytic on C± and satisfies

|Esing,l(τ ; Υ)| ≲ I15/8.

Proof. Fix δ = I−1/8. Given γ(Υ) in the definition of El(τ ; Υ) in (6.94), we let z̃ = a(τ ; Υ)+ δ(a(τ ; Υ)−
aϵ(τ ; Υ))/|(a(τ ; Υ)−aϵ(τ ; Υ)|, deform γ(Υ) to the composition of closed loops γ̃(Υ) in Lemma 6.7.18 and
denote by γsing(Υ) and γreg(Υ) its singular and regular part. According to the discussion preceeding the
lemma, we write

Ereg,l(τ ; Υ) =

∫
γreg(Υ)

fl(τ, z)z
−1dz

(z + κϵ)

Ẽreg(τ ; Υ) =

∫
γreg(Υ)

z−1dz

(z + κϵ)
,

and

Esing,l,a(τ ; Υ) =

∫
γsing(Υ)

(fl(τ, z)− fl(τ, a(τ ; Υ)))z−1dz√
z2 + (a+ aϵ)(τ)z + κ2ϵ

Esing,b(τ ; Υ) =−
∫
γreg(Υ)

z−1

(z + κϵ)

(
1−

(
1 +

2κϵz(1− 2b)(τ ; Υ)

(z + κϵ)2b(τ)

)−1/2
)
dz

Esing,l,c(τ ; Υ) =−
∫
γreg(Υ)

fl(τ, z)z
−1

(z + κϵ)

(
1−

(
1 +

2κϵz(1− 2b)(τ ; Υ)

(z + κϵ)2b(τ)

)−1/2
)
dz,

so

El(τ ; Υ) = Ereg,l(τ) + fl(τ ; a(τ,Υ))Ẽreg(τ) + Esing,l,a(τ ; Υ) + fl(τ, a(τ ; Υ))Esing,b(τ ; Υ) + Esing,l,c(τ ; Υ).

The integrals Ereg,l and Ẽreg do not depend on Υ. We now bound Esing,l,a. Let s
∗ = δ/|a(τ ; Υ)−aϵ(τ ; Υ)|,

then the loop γsing(Υ) can be deformed to

γ′sing(Υ) =
{
z ∈ C : z = a(τ ; Υ) + (a(τ ; Υ)− aϵ(τ ; Υ))s, s ∈

(
0, s∗

)
∪
(
0, e−i2πs∗

)}
.
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Then, we write

fl(τ, z)− fl(τ, a(τ ; Υ)) = (z − a(τ ; Υ))

∫ 1

0

∂zfl
(
τ, a(τ ; Υ) + x(z − a(τ ; Υ))

)
dx

and use that |z| ∼ 1 for all z ∈ γ′sing and Lemma 6.7.16 to show that for z ∈ γ′sing

|fl(τ, z)− fl(τ, a(τ ; Υ))| ≲ I2|z − a(τ ; Υ)|.

Therefore, writing z(s) = a(τ ; Υ) + (a(τ ; Υ)− aϵ(τ ; Υ))s,

∣∣Esing,l,a(τ ; Υ, δ)
∣∣ ≲I2|a(τ ; Υ)− aϵ(τ ; Υ)|

∫ s∗

0

|z(s)− a(τ,Υ)|ds√
z2(s) + (a+ aϵ)(τ)z(s) + κ2ϵ

≲I2|a(τ ; Υ)− aϵ(τ ; Υ)|
∫ s∗

0

√
s

s+ 1
ds ≲ δI2 = I15/8.

It only remains to bound Esing,b and Esing,l,c. To that end we notice that, for all τ ∈ C± and all z ∈ γreg,
with γreg as above, by the assumption on δ,∣∣∣∣ (1− 2b)

(z + κϵ)2b

∣∣∣∣ ≲ δ−2I|τ − τ±| ≤ δ−2I−1/2 ≪ 1.

It therefore follows that
|Esing,b| ≲ δ−2I|τ − τ±| ≲ δ−2I−1/2 = I−1/4.

and
|Esing,l,c| ≲ δ−2I3|τ − τ±| ≲ δ−2I3/2 = I7/4.

The conclusion of the lemma follows by writing

Esing,l = Esing,l,a(τ ; Υ) + fl(τ, a(τ ; Υ))Esing,b(τ ; Υ) + Esing,l,c(τ ; Υ).

We now study the behavior of the function E(τ ; Υ) in (6.98), for τ ∈ Ci.

Lemma 6.7.21. Let τ ∈ Ci. Then, there exist a constant Bl ∈ C and Esing,l(τ ; Υ) such that

E(τ ; Υ) = C + Esing,l(τ ; Υ)

with
|Esing,l(τ ; Υ)| ≲ I15/8.

Proof. Fix δ = I−1/8. Given γ(Υ) in the definition of E(τ ; Υ) in (6.94), we let z̃ = a(τ ; Υ) + δ(a(τ ; Υ)−
aϵ(τ ; Υ))/|(a(τ ; Υ)− aϵ(τ ; Υ)|, we deform γ(Υ) to the composition of closed loops γ̃(Υ) in Lemma 6.7.18
and denote by γsing(Υ) and γreg(Υ) its singular and regular part. We then write E = El,a + El,b where

El,a =

∫
γsing(Υ)

(fl(τ, z)− fl(τ, a(τ ; Υ)))z−1dz√
z2 + (a+ aϵ)(τ)z + κ2ϵ

and further write El,b = El,c + El,d − fl(i, a(τ ; Υ))El,e where

El,c =

∫
γreg(Υ)

(
(fl(τ, z)− fl(τ, a(τ ; Υ)))− (fl(i, z)− fl(i, a(τ ; Υ)))

)
z−1dz√

z2 + (a+ aϵ)(τ)z + κ2ϵ

El,d =

∫
γreg(Υ)

fl(i, z)z
−1dz√

z2 + (a+ aϵ)(τ)z + κ2ϵ

El,e =

∫
γreg(Υ)

z−1dz√
z2 + (a+ aϵ)(τ)z + κ2ϵ

.
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The integral El,a is bounded exactly as we did in Lemma 6.7.20. On the other hand, since, in view of
Lemma 6.7.16, ∣∣(fl(τ, z)− fl(τ, a(τ ; Υ)))− (fl(i, z)− fl(i, a(τ ; Υ)))

∣∣ ≲ I2|τ − i|,

one easily obtains that
|El,c| ≲ δ−1I2|τ − i| ≲ δ−1I3/4 = I7/8.

For El,d we write

El,d =

∫
γreg(Υ)

fl(i, z)z
−1dz√

z2 + (a+ aϵ)(τ)z + κ2ϵ

=

∫
γreg(Υ)

fl(i, z)z
−1dz

z − κϵ
+

∫
γreg(Υ)

fl(i, z)z
−1

z − κϵ

(
1−

(
1 +

b(τ)

(z − κϵ)2

)−1/2
)
dz.

The first term is analytic for τ ∈ Ci ∪ {i} and, moreover, does not depend on τ . Let Bl denote its value.
On the other hand, since, for τ ∈ Ci and z ∈ γreg, by the definition of δ,

|b(τ)(z − κϵ)
−2| ≲ δ−2I2|τ − i|2 ≲ δ−2I−1/2 ≪ 1,

and, by Lemma6.7.16 |fl(i, z)| ≲ I2, we can bound∣∣∣∣∣
∫
γreg(Υ)

fl(i, z)z
−1

z − κϵ

(
1−

(
1 +

b(τ)

(z − κϵ)2

)−1/2
)
dz

∣∣∣∣∣ ≲ I2δ−1|b(τ)| ≲ I4δ−1|τ − i|2 = I13/8.

Finally, making use of Lemma 6.7.17, one deduces that

|fl(i, a(τ ; Υ)| ≲ I2|a(τ ; Υ)− κϵ| ≲ I3|τ − i|,

so
|fl(i, a(τ ; Υ)El,e(τ ; Υ)| ≲ δ−1I3|τ − i| ≲ δ−1I7/4 = I15/8.

The lemma now follows combining all the estimates.

We finally sum up Lemmas 6.7.14, 6.7.20 and 6.7.21 in the following proposition.

Proposition 6.7.22. Let τ ∈ C±. Then,

U [l](τ ; Υ) = 4κϵ−1fl(τ±, a(τ±)) ln
(
(1− 2b)(τ ; Υ)

)
+ Sl,±(τ ; Υ) +Rl,±(τ)

where Sl(τ ; Υ) is analytic in C±, satisfies

|Sl,±(τ ; Υ)| ≲ I15/8,

and Rl,±(τ) does not depend on the choice of Υ (i.e. it is an analytic function for τ ∈ C± ∪ {τ±}). On

the other hand, for τ ∈ Ci, there exists a constant Bl ∈ C and a function Êl, analytic in Ci, such that

U [l](τ ; Υ) = Bl + Êl(τ ; Υ)

with
|Êl(τ ; Υ)| ≲ I15/8.

Proof. We first prove the asympotic formula for τ ∈ C±. According to Lemma 6.7.14,

K(ζ(τ ; Υ)) =
1

2
ln
(
1− ζ2(τ ; Υ)

)
+ c+O

(
|1− ζ2(τ ; Υ)|

)
,
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for some c ∈ C. Also, in view of Lemma 6.7.15,

ln(1− ζ2(τ ; Υ)) =
1

2
ln((1− 2b)(τ ; Υ)) + ln(4)− 2 ln

(
1 +

√
(1− 2b)(τ ; Υ)

)
.

Thus, for c̃ = c+ ln(4), we have

K(ζ(τ ; Υ)) =
1

4
ln(1− 2b(τ ; Υ)) + c̃+O

(
|1− 2b(τ ; Υ)|1/2

)
.

We therefore write (recall that, from Lemma 6.7.17, ζ(τ ; Υ) = −1 +O(I1/2|τ − τ±|1/2) for τ ∈ C±)

4κ−1
ϵ ζ(τ ; Υ)fl(τ, a(τ ; Υ))K(ζ(τ ; Υ)) =− κ−1

ϵ fl(τ±, a(τ±)) ln(1− 2b(τ ; Υ))− 4c̃κ−1
ϵ fl(τ±, a(τ±))

− 4κ−1
ϵ fl(τ±, a(τ±))

(
K(ζ(τ ; Υ))− 1

4
ln(1− 2b(τ ; Υ))− c̃

)
− 4κ−1

ϵ (ζ(τ ; Υ)fl(τ, a(τ ; Υ))− fl(τ±, a(τ±))) K(ζ(τ ; Υ)).

Then, we define

Rl,±(τ) =Ereg,l(τ) + fl(τ±, a(τ±))Ẽreg(τ)− 4c̃κ−1
ϵ fl(τ±, a(τ±))

Sl,±(τ ; Υ) =Esing,l(τ ; Υ) +
(
fl(τ, a(τ ; Υ))− fl(τ±, a(τ±))

)
Ẽreg(τ)

− 4κ−1
ϵ fl(τ±, a(τ±))

(
K(ζ(τ ; Υ))− 1

4
ln(1− 2b(τ ; Υ))− c̃

)
− 4κ−1

ϵ (ζ(τ ; Υ)fl(τ, a(τ ; Υ))− fl(τ±, a(τ±)))K(ζ(τ ; Υ)),

where Ereg,l, Ẽreg and Esing are the functions obtained in Lemma 6.7.20. The desired bounds for S(τ ; Υ)
follow from the fact that, for τ ∈ C±,

|(1− 2b)(τ ; Υ)| ≲ I|τ − τ±|,

and, from Lemma 6.7.16,

|fl(τ±, a(τ±))− fl(τ, a(τ ; Υ))| ≲ sup
τ̃∈Ci

|∂τfl(τ̃ , a(τ±))||τ − τ±|+ sup
τ̃∈C±

|∂zfl(τ, a(τ̃ ; Υ))||a(τ ; Υ)− a(τ±)|

+ I2
(
|τ − τ±|+ |a(τ ; Υ)− a(τ±)|

)
≲ I2

(
|τ − τ±|+ I1/2|τ − τ±|1/2

)
≲ I7/4.

Indeed, combining all the previous estimates and the bound for Esing,l in Lemma 6.7.20,

|Sl,±(τ ; Υ)| ≲ I15/8.

We now analyze the case τ ∈ Ci. We have shown tha,t for τ ∈ Ci there exists Bl ∈ C such that

U [l](τ ; Υ) = 4κ−1
ϵ fl(τ, a(τ ; Υ))K(ζ(τ ; Υ)) +Bl + Esing(τ ; Υ)

where
|Esing(τ ; Υ)| ≲ I15/8.

On the other hand, from Lemmas 6.7.16 and 6.7.17,

|fl(τ, a(τ ; Υ))| ≲ I2|a(τ ; Υ)− κϵ| ≲ I3|τ − i| ≲ I7/4.

Then, we obtain that
|U [l](τ ; Υ)−Bl| ≲ I15/8 + I7/4 ≲ I15/8,

as was to be shown.
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Observe now that

fl,⋆(τ
⋆
±, a(τ

⋆
±)) =

I2Cβ,⋆ρ(−κϵ)eilλ(−κϵ)

(τ± + i)
√

−κϵ(1 + h⋆(τ±,−κϵ))
=
I2ν̃m⋆ρ(−κϵ)eilλ(−κϵ)

2i

√
eiβ

σ̃⋆κϵϵ0
+O(I).

Then, Proposition 6.5.12 now follows by setting, for τ ∈ C±,

Ũ
[l]
⋆ (τ ; Υ) = I2Alm⋆

√
eiβ

σ̃⋆

(
1 +O(I−1)

)
ln((1− 2b)(τ ; Υ)),

with

Al =
−2iν̃ρ(−κϵ)eilλ(−κϵ)

κϵ
√
κϵϵ0

, (6.100)

and joining the results in Lemma 6.7.13 and Proposition 6.7.22.

6.7.4 Evaluation of the residues. Proof of Lemma 6.5.14

A trivial computation shows that

d

dτ
ln(1− 2b⋆) =

1

1− 2b⋆

db⋆
dτ

=
−4I−2σ̃⋆ϵ0e

−iβ

(τ − τ⋆+)(τ − τ⋆−)(τ − i)
(6.101)

from where Lemma 6.5.14 follows by defining (notice that, the residue at τ = τ± does not depend on β
and I and is the same for both ⋆ = 0, 1)

Âl =Al Res
τ=τ⋆

+

(
−4I−2σ̃⋆ϵ0e

−iβ

(τ − τ⋆+)(τ − τ⋆−)(τ − i)

)
= Al Res

τ=τ⋆
−

(
−4I−2σ̃⋆ϵ0e

−iβ

(τ − τ⋆+)(τ − τ⋆−)(τ − i)

)
= −Al

4I−2σ̃⋆ϵ0e
−iβ

2(τ⋆± − i)2

=−Al.

(6.102)
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18(6):703–718, 2013.

[Fen77] N. Fenichel. Asymptotic stability with rate conditions. II. Indiana Univ. Math. J., 26(1):81–
93, 1977.

[Fen74] N. Fenichel. Asymptotic stability with rate conditions. Indiana Univ. Math. J., 23:1109–
1137, 1973/74.

[FGKR16] J. Fejoz, M. Guardia, V. Kaloshin, and P. Roldán. Kirkwood gaps and diffusion along mean
motion resonances in the restricted planar three-body problem. J. Eur. Math. Soc. (JEMS),
18(10):2315–2403, 2016.

[FP08] D. L. Ferrario and A. Portaluri. On the dihedral n-body problem. Nonlinearity, 21(6):1307–
1321, 2008.

[FP13] D. L. Ferrario and A. Portaluri. Dynamics of the dihedral four-body problem. Discrete
Contin. Dyn. Syst. Ser. S, 6(4):925–974, 2013.

287



[FT04] D. L. Ferrario and S. Terracini. On the existence of collisionless equivariant minimizers for
the classical n-body problem. Invent. Math., 155(2):305–362, 2004.

[Ga12] J. P. Gaivão. Exponentially small splitting of separatrices. Bol. Soc. Port. Mat., (Special
Issue):181–184, 2012.

[GaG11] J. P. Gaivão and V. Gelfreich. Splitting of separatrices for the Hamiltonian-Hopf bifurcation
with the Swift-Hohenberg equation as an example. Nonlinearity, 24(3):677–698, 2011.

[GdlL18] M. Gidea and R. de la Llave. Global Melnikov theory in Hamiltonian systems with general
time-dependent perturbations. J. Nonlinear Sci., 28(5):1657–1707, 2018.

[GdlLS20] M. Gidea, R. de la Llave, and T. M. Seara. A general mechanism of instability in Hamiltonian
systems: skipping along a normally hyperbolic invariant manifold. Discrete Contin. Dyn.
Syst., 40(12):6795–6813, 2020.

[Gel94] V. Gelfreich. Separatrices splitting for the rapidly forced pendulum. In Seminar on Dynam-
ical Systems (St. Petersburg, 1991), volume 12 of Progr. Nonlinear Differential Equations
Appl., pages 47–67. Birkhäuser, Basel, 1994.
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École Norm. Sup. (4), 34(2):159–221, 2001.
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