Unstable motions in the Three Body
Problem

Author
Jaime Paradela Diaz

Supervised by
Marcel Guardia Munarriz and Tere M-Seara Alonso

A dissertation submitted in fulfillment
of the requirements for the Doctoral degree
in Applied Mathematics

at the
Universitat Politecnica de Catalunya
2023



A mis padres y a mi hermano.



Agradecimientos

En primer lugar a Marcel Guardia y Tere M. Seara, no podriais haber sido mejores directores de
tesis. A pesar de que soy un poco cabezoén, habéis tenido una paciencia infinita conmigo durante todos
estos anos y he aprendido muchisimo de vosotros. Siempre me habéis animado a seguir intentdndolo y
me habéis dado la libertad de equivocarme un montén de veces hasta llegar a las ideas que funcionan.
Espero tener la suerte de poder seguir trabajando con vosotros muchos anos mas.

Muchas gracias al departamento de matemaéticas de la UPC, en especial a la seccién de la ETSEIB, y
mas en especial ain a todos mis companeros de doctorado: Mar Giralt, fﬁigo Urtiaga, Roman Moreno,
José Lamas, Laura Gonzélez, Didac Gil y Renzo Bruera. Habéis animado mucho los incontables dias
en la UPC y me han encantado nuestras quedadas en bares aleatorios de Barcelona jMucho dnimo con
vuestras tesis!

Thanks to the Mathematics Department at the University of Torino, in special to Susanna Terracini,
Gian Marco Canneori, Stefano Vita and Irene De Blasi. 1 felt like at home and I have enjoyed a lot being
there. Susanna, thanks a lot for your patience and all the things that you have taught me. I hope that I
am lucky to continue learning much more. Grazie mille!

I would also like to thank the Mathematics Department at the University of Maryland, in special
to Bassam Fayad, Dima Dolgopyat, Rodrigo Trevifio, Francisco Arana-Herrera and Jon DeWitt. I have
really enjoyed my time at Maryland and I am very looking forward to be there for the next years. Thanks
Bassam and Dima for always having time to discuss mathematics with me. I have learned a lot from you.
Thanks Rodrigo, Fran and Jon for do not letting me do any productive work all thursdays from 12 am
to 12 pm.

También me gustaria dar las gracias a Maria del Mar Gonzalez Nogueras, por ser una directora de
tesis de méaster estupenda y haberme animado a empezar un doctorado en matematicas.

A todos mis amigos, sabéis lo importante que sois para mi, habria sido completamente imposible
acabar la tesis sin vosotros. Los que estais desde més pequenos y seguis estando como si nos siguiésemos
viendo todos los dias: Abadin, Andy, Brais, Carlos, Campos, Corbal, Ivian, Mario, Martin, Maté, Oscar,
Rosales, Sergio, Tono y Yago. Es imposible calcular todo lo que nos hemos reido juntos, no se puede salir
de fiesta con nadie mejor que vosotros jPor muchos afios mas! A Potter, Nacho, Jimbo, Silvia, Cortés,
Ayala, Bastian, Zatur, Teclas y Avi, hacéis que siempre que voy a Madrid esté deseando encontrar otra
excusa para volver. Aunque he hecho ya muchas visitas durante la tesis, seguiré yendo para asegurarme
de que resiste el fuerte jPor muchos anos més! A Manu, Julio y Chuki, rezagaos Bueu, nunca habia nada
que hacer, pero siempre encontramos algo jPor muchos afios mas! A Brais, Manu, Lurdes, Sara, Myriam,
Marfia, Angel, Zaida y Soffa, no me habéis dejado ni un fin de semana de descanso durante estos casi 4
afnos en Barcelona. Como vosotros decis, a ver si algin dia hacemos un plan normal jPor muchos anos
mas! A Carla, por aguantarme, hacer que me lo pase genial siempre y cuidarme tanto jPor muchos anos
mas!

A mi familia. A Julia, Jose, Cristina, Jose Mari, Sergio, Manolo, Tina, Cristina, Jorge, Lucia, Elba y
Africa. Habéis cuidado mucho de m{ desde pequeno. Por tltimo, pero mas importante, a mis padres, a
mi hermano y a la abuela Ermitas. Siempre me habéis animado a hacer las cosas que me gustan aunque
eso supusiese irme lejos de casa. Esta tesis, y todo el camino hasta aqui, ha sido posible gracias a vuestro
apoyo y carino. Gracias.

ii



Elconomic support

This work has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Grant Agreement No 757802).

iii



Abstract

The 3 Body Problem is a dynamical system which models the motion of three bodies interacting
via Newtonian gravitation. It is called restricted when one body has zero mass and the other two, the
primaries, have strictly positive masses. In the region of the phase space where one body (the massless
body for the restricted case) is far from the other two both models can be studied as a nearly integrable
Hamiltonian system. This is the so-called hierarchical regime.

The present thesis deals with the existence of unstable motions, strongly associated to non-integrable
dynamics, in the 3 Body Problem and/or its restricted versions. More concretely, we analyze the existence
of topological instability, non trivial hyperbolic sets and oscillatory motions (complete orbits which are
unbounded but return infinitely often to some bounded region). On one hand, the existence of (a strong
form of) topological instability in the N Body Problem (N > 3) was coined by Herman to be “the oldest
question in dynamical systems” [Her98]. On the other hand, oscillatory motions are the unique type
of final motions for the 3 Body Problem which are not present in the integrable approximation. Their
connection with the existence of non trivial hyperbolic sets has lead to the formulation of fundamental,
yet unsolved, conjectures about their abundance [Ale71l [GK12].

Our first main result establishes the existence of Arnold diffusion, a robust mechanism leading to
topological instability [Arn64], in the Restricted 3 Body Problem for any value mg, m; > 0 of the masses
of the primaries. The transition chain leading to Arnold diffusion is built in the hierarchical region. We
extend a previous result by Kaloshin, Delshams, De la Rosa and Seara [DKdIRS19], which applied to
arbitrarily small mass ratio my/mg — 0. Their setting, which exploits the trick, used by Arnold in his
original paper, of making use of two perturbative parameters, lead to an a priori unstable model. In
our setting, where the mass ratio is arbitrary, we face some of the challenges present in a priori stable
systems.

Our second main result shows the existence of oscillatory motions in a symmetric configuration of the
Restricted 3 Body Problem usually known as the Restricted Isosceles 3 Body Problem (RI3BP). This
symmetry implies the existence of a conserved quantity, the angular momentum, which can be taken as
a parameter of the system. For large values of the parameter, one can focus on the hierarchical region
to study the existence of oscillatory motions, and therefore, make use of geometric perturbation theory.
However, for non-large values of the parameter, the set of oscillatory motions is not contained in the
hierarchical region. We develop new tools which blend geometric ideas with variational techniques to
prove that there exist oscillatory motions in the RI3BP for almost all values of the parameter.

Our third main result proves the existence of non trivial hyperbolic sets and oscillatory motions in the
3 Body Problem for all values of the masses mgy, mi, ms > 0. The non trivial hyperbolic set, contained
in a subset of the hierarchical region where the inner bodies perform approximately circular motions,
is associated to a transverse intersection between the stable and unstable manifolds of a (topological)
Normally Hyperbolic Invariant Manifold. The existence of non trivial center directions complicates
heavily both the analysis of existence of transverse intersections between these invariant manifolds and
the construction of the horseshoe. The contribution of the author concerns the first of these two steps.

Our fourth main result concerns the existence of Arnold diffusion in the 3 Body Problem for all values
of the masses mg, m1, my > 0. The robustness of the mechanism which we use to prove the existence
of Arnold Diffusion in the Restricted 3 Body Problem implies that the obtained transition chain admits
a continuation in the 3 Body Problem if my is sufficiently small. The substantial difference when the
masses mg,mi,my > 0 are fixed is that one can construct a transition chain along which there is a
large exchange of momentum between the inner and outer bodies, resulting in a significant change of the
eccentricity of the inner bodies. This requires considerably more work than in our construction of the
transition chain in the Restricted 3 Body Problem and our construction of hyperbolic sets (contained
in the nearly circular subset of the hierarchical region) for the 3 Body Problem. The first step towards
establishing this result, which constitutes the subject of the last chapter of this thesis, is the analysis of
the so-called Melnikov approximation associated to the aforementioned transition chain.
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Chapter 1

Introduction

The 3 Body Problem is a Hamiltonian dynamical system which models the motion of three bodies
interacting via Newtonian gravitation. Understanding qualitatively the global picture of its dynamics
is, probably, one of the most challenging questions in dynamics, and, research in this problem, typically
combines tools from many different fields, such as Hamiltonian perturbation theory, hyperbolic dynamics,
calculus of variations and symplectic geometry. In this manuscript we present some modest contributions
of the author to the problem.

The major complexity of the dynamics of the 3 Body Problem was already pointed out by Poincaré
back in 1890 [Poi90, [Poi99], when he discovered (in simplified models) the existence of transverse in-
tersections between the stable and unstable manifolds of certain hyperbolic periodic orbits. Among the
many dynamical consequences of this “realm of chaos”, is the non existence of additional global and
real-analytic integrals of motion apart from the already known (i.e. the Hamiltonian function and the
ones associated to continuous symmetries), which implies the analytic non-integrability of the 3 Body
Problem. Since the time of Poincaré many remarkable dynamical phenomena have been observed in the
3 Body Problem.

1.1 State of the art and main results

At the moment, many of the results concerning the global dynamics of the 3 Body Problem have been
established in nearly integrable settings, that is, regions in the phase space, or in the space of parameters
(the masses of the three bodies), where the 3 Body Problem can be studied as a small perturbation of
two uncoupled 2 Body Problems (recall that the 2 Body Problem is integrable). Two examples of nearly
integrable settings are the so-called planetary and hierarchical regimes. In the former one, the first body
is much more heavy than the other two, so, up to first order, the light bodies do not interact between
themselves and the Hamiltonian decouples into two binary systems. In the latter one, the third body is
far from the other two, and therefore, up to higher order interactions, the motions of the binary system,
and the motion of the third body with respect to the center of mass of the binary system, are uncoupled.

The first major result concerning the dynamics in the planetary regime, was established by Arnold
in [Arn63]. Although the lack of torsion of the integrable approximation prevents the application of the
classical versions of the KAM theory, he extended the KAM techniques to deal with “properly degenerate
systems”, and proved the existence of a positive measure set of quasiperiodic motions in the 3 Body
Problem. The result was later later extended to the case of N > 3 bodies in the work of Féjoz and Herman
[Fej04] (see also [Rob95l [CP11]). For the existence of quasiperiodic motions in the hierarchical regime (and
punctured tori, passing arbitrarily close to double collision) see [Fej01] [Fej02a) [Fej02bl [Zhaldl [Zhal5).
This metric stability can be seen as a remnant of the completely elliptic dynamics of the integrable
approximations. However, although of positive measure, the KAM set is nowhere dense, leaving room for
the existence of unstable motions starting arbitrarily close to it. On an effort to replace positive measure
by open sets, a remarkable result by Nekhoroshev [Neh77] (see also [Nie96]), shows that the KAM set
is indeed included in an open subset of the phase space where trajectories are effectively stable. That



is, orbits starting on this set are stable for an exponentially long time (with respect to the perturbative
parameter, which, in the planetary regime, is the mass ratio).

On the other hand, many striking mechanisms, leading to some sort of instability or departing from
the integrable dynamics, have been found in the N Body problem with N > 3, or its restricted versions
[Sit60, [LS80al, Moe84l, [Xia92l Mos01l, [Bol06, Moe0T7, [GK11 [GK12l [GMS16, [GSMS17, I[CG18, [DKJIRS19,
S720|, Xue20, BGG21, ICGM ™22, BGG22, [CFG22, [CEFG23]. Many of them (if not all) are related to the
existence of (partially) hyperbolic invariant objects.

Complementary to the Hamiltonian perturbation theory approach, the wariational approach, has
yielded a number of remarkable results on the N Body Problem for N > 3 in non-nearly integrable set-
tings, which include, for example, the existence of collisionless periodic orbits and completely parabolic
and hyperbolic motions (just to cite a few results, see [CMO00, [FT04, TV07, MV09, MV20] and the
references therein).

Despite the enormous amount of research, the global picture of the dynamics of the 3 Body Problem
(and, more generally, of the N Body Problem), is still quite far to be understood. Yet, a quite remarkable
result of Chazy gives a classification of the possible final motions (i.e. complete orbits) of the 3 Body
Problem. To describe them, we denote by r; the vector from the point mass m; to the point mass m;
fori#k,j#k, i<j.

Theorem 1.1.1 (Chazy [Cha22], see also [AKNO6]). Every solution of the 3 Body Problem defined for
all (future) time belongs to one of the following seven classes.

e Hyperbolic (H): |r;| — oo, || = ¢; >0,1=0,1,2, as t — oo.

e Hyperbolic—Parabolic (HPy): |ri| — o0, i =0,1,2, |rg] = 0, |75 > ¢; > 0,1 #k, as t — oo.

e Hyperbolic-Elliptic, (HEy): |ri| — oo, [7i| = ¢; >0,i=0,1,2, i #k, ast — 00, sup;>,, |rx| < oo.
e Parabolic-Elliptic (PEy): |ri| — oo, 7| = 0,1 =0,1,2, i # k, as t — 00, sup;,, |rx| < co.

e Parabolic (P): |r;| = oo, |7y = 0,i=0,1,2, as t — oo.

e Bounded (B): sup;s,, |ri| < oo, i=0,1,2.

e Oscillatory (0S): limsup,_, ., Sup,_g 1 2 [7i| = 00 and liminf; . sup;_q 1 5 |7s| < oo.

Note that this classification applies both when ¢ — +o00 or ¢ — —oo. To distinguish both cases we
add a superindex + or — to each of the cases, e.g HT and H~. Examples of all types of motion but the
oscillatory ones were known at the time of Chazy. The first example of oscillatory motions was given by
Sitnikov in [Sit60]. Since then, starting with Moser [Mos01], a number of works have shown the existence
of oscillatory motions in different models in Celestial Mechanics (see Section for a list of results).
The next natural question is to evaluate the measure of each of these sets. It turns out that the answer
is known for all sets except one, the oscillatory ones. For example, notice that, in particular, Arnold’s
theorem [Arn63] shows that bounded motions have positive measure. The following conjecture about
the measure of the set of oscillatory motions goes back to Alexeev [AleT1] (in the English version he
attributes this conjecture to Kolmogorov).

Conjecture 1.1.2 (Alexeev, Kolmogorov). The Lebesgue measure of the set of oscillatory motions is
zero.

Proving or disproving this conjecture was considered by Arnold to be the fundamental question in
Celestial Mechanics. By now, it remains wide open. The only available partial results, have been obtained
in [GK12].

One should also remark the importance of oscillatory motions in connection with the existence of
non trivial hyperbolic sets. More concretely, the modern approach to prove the existence of oscillatory
motions in Celestial Mechanics, introduced by Moser in [Mos01], consists on proving the existence of a
homoclinic class which contains oscillatory motions.



Now we give a different look at the description of the qualitative behavior of solutions. In his 1998 ICM
lecture, Herman asked the following question, which he considered to be the oldest question in dynamical
systems. Let N > 3, fix the center of mass at the origin, and, on the constant energy hypersurface h,
reparametrize the flow so collisions occur in infinite time.

Question 1.1.3 (Herman [Her98]). Is for every h the non wandering set of the Hamiltonian flow of the
N Body Problem nowhere dense on the constant energy hypersurface of energy h?

This would imply that bounded orbits are nowhere dense and no topological stability occurs. At the
moment, this conjecture is largely out of reach, and we are still looking for topologically unstable motions
in negative energy levels (for positive energy levels, the identity of Jacobi-Lagrange implies that every
orbit defined for all future times is wandering (see [Che98] for a proof)). What Herman believed that was
not an unreasonable question to ask, “and possibly prove in a finite time with a lot of technical details”
is that:

Question 1.1.4 (Herman [Her98]). Consider the planetary regime, then, if the mass ratio is sufficiently
small, in any neighbourhood of fized different circular orbits around mg (the heavy body) moving in the
same direction in a plane, there are wandering domains.

These questions motivate, at least up to some extent, the results obtained in this thesis. In Sections
(1.1.1} [1.1.2) and [1.1.3] we state the main results of our work. They concern the existence of topological
instability, oscillatory motions and non trivial hyperbolic sets in the 3 Body Problem and its restricted
versions. We recall that the 3 Body Problem is called restricted if one of the bodies has zero mass and
the other two, the primaries, have strictly positive masses. In this limit problem, the primaries “are
not affected” by the motion of the massless body and they move according to the dynamics of the 2
Body Problem. Then, the Restricted 3 Body Problem models the motion of the massless body under the
gravitational potential created by the primaries. The most interesting case is when the primaries move
in the region of negative energy, i.e. they perform a (bounded) circular or elliptic motion.

The common feature of the mechanisms that we present in this work is the existence of a Normally
Hyperbolic Invariant Manifold (see [HPSTT, [Fen74l [Fen77] for the precise definition and classical results
on normal hyperbolicity). Loosely speaking, a submanifold N C M of a Riemannian manifold M is
Normally Hyperbolic for a map f if it is f-invariant and for each point in N there exists a dominated
splitting of the tangent space into three subspaces: a uniformly contracting one (stable), a uniformly
expanding one (unstable), and the tangent space to N, in which the dynamics is “in between” (less
contracting than the stable and less expanding than the unstable). Among the remarkable properties
of Normally Hyperbolic Invariant Manifolds are their persistence under perturbations and the fact that
they possess stable and unstable invariant manifolds which are also robust under perturbations. As we
will see, these manifolds usually act as carriers, connecting distant regions of the phase space.

We will identify certain (topological) Normally Hyperbolic Manifolds for the 3 Body Problem or
its restricted versions, and introduce tools to prove that their stable and unstable manifolds intersect
transversally. Then, we analyze the dynamical consequences of this phenomenon. In particular, how they
imply the existence of topological instability and/or non trivial hyperbolic sets. These phenomena have
been studied in the context of “general” Hamiltonian systems (see for example [Dou88|, BT99) [DAILS00,
MS02] [BB02l, Mat03l, [CY04l, [Tre04, [DAILS06) Ber08, [GTO0K, DHO9L INP12] Trel2l BKZ16l IDdILS16L IChel7,
GT17,[KZ20, IGAILS20]), however, the application of these ideas to Celestial Mechanics is quite challenging
because, in addition to many other difficulties, of the existence of many degeneracies.

Before entering into details let us do a final remark. Despite the common framework in wich we
build the mechanisms leading to topological instability and chaotic dynamics, these phenomena are quite
different in nature. On one hand, chaotic dynamics are associated to the existence of non trivial hyperbolic
invariant sets, while topological instability is associated (in the present work) to the existence of finite
transition chains between partially hyperbolic invariant objects. On the other hand, the hyperbolic
invariant sets associated to chaotic behavior might be small and do not lead necessarily to topological
instability.




1.1.1 Topological Instability in the Restricted 3 Body Problem

In accordance with the general belief that the 3 Body Problem, although strongly degenerate, displays
the main features of a general Hamiltonian system, one expects (at least in nearly integrable settings)
the coexistence of metric stability of quasiperiodic KAM motions with topological instability in the 3
Body Problem. This was indeed conjectured by Arnold, to be the typical situation in nearly integrable
Hamiltonians (see [Arn63]). However, results concerning topological instability in Celestial Mechanics
have been obtained only quite recently in [CGIS8| [DKdIRS19] for the Restricted 3 Body Problem and in
[CEFG22] [CFG23] for the spatial 4 Body Problem.

In all these results, the underlying mechanism is the so-called Arnold diffusion mechanism. This mech-
anism, proposed by Arnold in his seminal study of topological instability in nearly integrable Hamiltonian
systems (see [Arn64]), is based on the existence of a transition chain of invariant tori, that is, a sequence
of partially hyperbolic invariant tori connected by transverse heteroclinic orbits. In modern language, the
Arnold diffusion mechanism relies on the existence of a Normally Hyperbolic Invariant Manifold (NHIM)
whose stable and unstable manifolds intersect transversally along a homoclinic manifold. Then, if the
inner dynamics on the NHIM contains “sufficient” quasiperiodic invariant tori (or other invariant objects
such as Aubry-Mather sets), one can combine the outer excursions along the homoclinic manifold with
quasiperiodic inner dynamics (or orbits shadowing the Aubry-Mather sets) to obtain a transition chain
leading to topological instability. Another important tool in the modern (geometric) approach to Arnold
diffusion is the so-called scattering map [DAILS08|, a suitable composition of holonomy maps along the
unstable and stable foliations, which encodes the dynamics along the homoclinic manifold.

Although Arnold conjectured in [Arn64] that the mechanism of instability based on the existence
of transition chains “is applicable to the general case (for example, to the problem of 3 bodies)” the
implementation of these ideas is quite challenging and no such result is available so far.

The first result in this direction was obtained in [DKdIRS19], which, to the best of our knowledge,
constituted the first, complete, analytic proof of Arnold diffusion in Celestial Mechanics. There, the
authors considered the Restricted Elliptic 3 Body Problem, in which the primaries, of masses mg, my > 0,
revolve around each other in Keplerian ellipses. This configuration is a a 2+1/2 degrees of freedom
Hamiltonian system.

They showed that there exist a transition chain of periodic orbits along which the angular momenturrEI
G of the massless body experiences large variations. Notice that the angular momentum is a conserved
quantity in the 2 Body Problem, which can be seen as a limit problem of the Restricted 3 Body Problem
when my/mgo — OH

The construction of the transition chain of periodic orbits goes as follows. In the Restricted 3 Body
Problem there exists a 3 dimensional (topological) Normally Hyperbolic Invariant Cylinder P, located
“at infinity”. It corresponds to the w-limit set (resp. a-limit set) of the forward (resp. backwards)
parabolic motions of the Restricted 3 Body Problem. We will refer to P, as the “parabolic infinity”.
Since the Newtonian interaction decays with the distance, the dynamics on P, is trivial: it is foliated
by periodic orbits (fixed points of the time one map). On the other hand, although the linearized
vector field vanishes on P, it is a classical result that P,, posseses 4 dimensional stable W?*(P)
and unstable W"(Py,) invariant manifolds (these are indeed the set of forward and backward parabolic
motions respectively). Moreover, for sufficiently large G, > 0, the submanifolds W**(Ps N{G > G.})
pass far from the position of the primaries. In other words, the submanifolds W** (P, N {G > G.}) are
contained in the hierarchical region, where the Restricted 3 Body Problem can be studied as a perturbation
of the 2 Body Problem. Then, by means of classical Poincaré-Melnikov theory [Mel63, IDAILS06], the
authors of [DKAIRS19] established that, for G, > 1, W% (Poo N {G > G.}) and W5 (P, N {G > G.})
intersect transversally along two different homoclinic manifolds by further asuming that m/mg < 1.
Then, to overcome the fact that the inner dynamics on P, is trivial, the authors make use of the two
scattering maps associated to the two different homoclinic manifolds. They prove that these maps share
no common invariant curve, which finally implies the existence of drifting orbits of the iterated function
system [Moe(2].

n polar coordinates in the plane of motion of the massless body, the angular momentum G is symplectically conjugated
to the angular coordinate.
2For this range of parameters, the massless body only “feels” the interacion with mg up to terms of order mj/mo < 1.



From the a priori unstable to the a priori stable case

As already mentioned, the transition chain of periodic orbits constructed in [DKdIRS19] is contained in
the hierarchical region, where the third body is far away from the primaries and the Restricted 3 Body
Problem can be studied as a time periodic perturbation of the 2 Body Problem. Due to the fast decay of
the Newtonian force with the distance, in the hierarchical regime, there exist two different time scales:
the motion associated to the integrable approximation is slow compared to the evolution of the time
variable. In a neighborhood of Po, N{G > G.}, the ratio between the two time scales is proportional to
e = G;3 while the size of the perturbation is of order § = G 3(m1/mg) = E(ml/mo)ﬂ Therefore, the
effect of the perturbation along the stable and unstable manifolds of P, N {G > G.} averages out to an
exponentially small remainder O(6 exp(—1/¢)), which, as a matter of fact, bounds the distance between
We(Poo N{G > G,}) and W*(Poo N{G > G.}).

Indeed, a somehow standard averaging argument (see [Nei84]) yields a non sharp, exponentiall small,
upper bound on the distance between these manifolds. However, in order to prove the existence of trans-
verse intersections between them, one needs to obtain an asymptotic formula for the distance between
these manifolds (measured along a suitable transverse section). This requires substantially more work:
notice that the perturbation (in the hierarchical approximation) has size § = (mq/myg), so (for fixed
values of the masses) one has to prove that a lot of cancellations happen in order to obtain a sharp
asymptotic formula with exponentially small (in ¢ = G?) leading term. This obstacle was removed in
[IDKAIRS19] by assuming that m;/mg, which, we recall, is proportional to the size of the perturbation,
is also exponentially small in €, measuring the ratio between time scales. With this trick, already em-
ployed by Arnold in his original paper [Arn64], although there exist different time scales, the system is
also exponentially close to integrable and classical Poincaré-Melnikov theory can be used to prove the
existence of transverse intersections between W#(Po N{G > G..}) and W*(Ps N {G > G..}). Moreover,
in this setting, the scattering maps associated to the transverse intersections between these manifolds are
also exponentially close to the identity. Therefore, although the difference between the scattering maps is
exponentially small, the verification of the non existence of common invariant curves can be investigated
by means of classical perturbation theory.

Summing up, the transition chain in [DKdIRS19)] is built in a neighbourhood of a (topological) Nor-
mally Hyperbolic Invariant Cylinder (NHIC), in which there exist different time scales. However, by the
choice of the parameters in the problem, the Hamiltonian is exponentially close (with respect to the ratio
between time scales) to integrable. In the Arnold diffusion literature, this setting is usually referred to
the a priori unstable case. Indeed, for these systems, the “splitting” between the invariant manifolds of
the NHIC, is of the order of the perturbation.

On the other hand, one refers to the a priori stable case, for perturbations of completely integrable
systems. Notice that the integrable system is completely elliptic, i.e. there do not exist hyperbolic invari-
ant objects. For sufficiently small e-perturbations, a NHIC A typically arises in small neighbourhoods
of single resonances [Berl0]. Indeed, they survive as perturbations of the NHIC N associated to the
truncated resonant normal form. Moreover, due to its integrability, in the truncated resonant normal
form, the invariant manifolds of A coincide along a homoclinic manifold. However, due to their weak
hyperbolicity (it is of the order of the square root of the size of the perturbation, i.e. 1/¢), there exist dif-
ferent time scales in a neighbourhood of N;: the fast, non resonant, angles and the slow, resonant, angle.
Studying the splitting of the homoclinic manifold of N, when considering the full normal form, is now
quite subtle. Although the truncated normal form is €* (for some « > 1) close to the full normal form,
in the real analytic setting we know that, due to the existence of different time scales, the perturbation
averages out to an exponentially small remainder (in €) which bounds the splitting of the homoclinic
manifold. However, there are no extra parameters at our disposal, and, obtaining an asymptotic formula
for the difference between the stable and unstable manifolds of N; is much harder than in the a priori
unstable case.

Our first main contribution is the extension of the result in [DKdIRS19] to the case of arbitrary masses
mg, my > 0, a setting in which we face some of the challenges present in the a priori stable case.

3The labelling of the primaries is not relevant, so without loss of generality we can suppose that m; < mq.



Theorem 1.1.5 ([GPS23b]). Let G be the angular momentum of the massless body and € € (0,1) be the
eccentricity of the orbit of the primaries. Then, for any mg, my > 0, my # my, there exists G, > 0 such
that, for any € € (0,G;3) and any values G1,Go satisfying

G, <Gy <Gy <e /3,
there exists T > 0 and an orbit v of the RPESBP for which
Gov(0) <Gy and Go < Gon(T).

To the best of our knowledge, this is the first result concerning Arnold diffusion for a real-analytic
Hamiltonian system which displays features of the a priori stable caseﬂ In particular, in a neighbourhood
of Poo N {G > G.}, the dynamics of the RPE3BP presents two different time scales, and we study
the existence of transverse intersections between its invariant manifolds without making use of extra
parameters. In order to prove Theorem in [GPS23b], we introduce a new approach to:

e Analyze the highly anisotropic splitting between the stable and unstable manifolds associated to
pairs of partially hyperbolic fully resonant invariant tori in a singular perturbation framework, and

e Distinguish the dynamics of two exponentially close scattering maps associated to different homo-
clinic channels.

The first item can be seen as an extension of the formalism developed in [Sau01l [LMS03], where the
splitting of the stable and unstable invariant manifolds of the same quasiperiodic torus was investigatedﬂ
We exploit the fact that P, is foliated by invariant (resonant) tori, whose stable and unstable invariant
manifolds are Lagrangian. With this approach, we can take advantage of the symplectic features of the
problem. Let us mention that, all previous works which study the existence of transverse intersections
between the invariant manifolds of different invariant tori rely on an indirect approach: first one proves
the existence of transverse homoclinic orbits to a given torus and then deduce the existence of heteroclinic
orbits to nearby tori by direct application of the implicit function theorem. However, the directions along
which the splitting is exponentially small can move as we vary the torus. Thus, to ensure that the errors
in the approximation by the homoclinic connection are exponentially small, this indirect method only
works when the two tori under consideration are exponentially close (in the perturbative parameter).

We, on the other hand, study the existence of transverse intersections between different pair of tori
in a direct way. This enables us to establish the existence of heteroclinic connections between resonant
tori separated up to a distance of the size of the perturbation.

It is key for proving that, the invariant manifolds of P, N {G > G..} intersect transversally along two
different homoclinic manifolds which are moreover diffeomorphic to (recall that € is the eccentricity of
the primaries orbit)

Poo(6,Gy) = Poo N{G. < G < e 1/3},

The upshot of this result is that we can prove the existence of two different scattering maps defined globally
on P (e, G*)ﬁ These scattering maps are polynomially close to the identity. We develop tools to obtain
an asymptotic formula for their difference, which averages out to an exponentially small quantity, and
then make use of an interpolation plus averaging argument to show that they do not share common
invariant curves.

Another novelty of our construction is that we work directly with the generating functions of the
stable and unstable manifolds of the invariant tori instead of relying on vector parametrizations. The
main difficulty is the appearance of certain unbounded operator in the linearized invariant equation
defining the generating functions (see [Sau01]). This obstacle was removed in all previous works by
considering a different vector parametrization of the invariant manifolds. We overcome the problem, and

4The first example of a real-analytic a priori stable system exhibiting topological instability was recently constructed by
B. Fayad in [Fay23|. The techniques are, however, different from the Arnold diffusion mechanism.

5The authors in [Sau0T] [LMS03] consider a generalized Arnold model.

6This is crucial in the present problem due to the degeneracy of the inner dynamics on Poo



directly find the generating functions, by making use of a suitable Newton iterative scheme in a scale of
Banach spaces in the spirit of the usual schemes used in KAM theory.

We believe that the main ideas developed in [GPS23b] can be of general interest for the study of
Arnold diffusion in the real-analytic a priori stable setting.

1.1.2 Oscillatory motions in the Restricted 3 Body Problem

Another major question in Celestial Mechanics is the description of the final motions (i.e. defined for
all future times) of the Restricted 3 Body Problem. In the restricted case, the classification in Theorem
reduces to four classes (as in Theorem the classification also applies to t — —o0).

Theorem 1.1.6 (Chazy [Cha22]). Every solution of the Restricted 3-body Problem defined for all (future)
times belongs to one of the following classes

e B (bounded): sup,> |q(t)| < oo.

o P (parabolic) |q(t)] — oo and |¢(t)] — 0 as t — oo.

o H (hyperbolic): |q(t)| — oo and |¢(t)] — ¢ >0 ast — 0.

o O (oscillatory) limsup,_, ., |¢(t)| = co and liminf,_, |q(t)] < co.

As already mentioned in the introduction, the first example was given by Sitnikov [Sit60] in a particular
symmetric configuration of the Restricted 3 Body Problem nowadays known as the Sitnikov example.

The Moser approach: a toolbox from hyperbolic dynamics

In 1973, Moser gave a new, conceptually more transparent, proof of the existence of oscillatory motions
in the Sitnikov example [Mos01], making use of ideas from hyperbolic dynamics: he built a homoclinic
class which contains oscillatory motions.

More concretely, he considered a (topologically) hyperbolic periodic orbit v, at infinity, E] and proved
that its stable and unstable invariant manifolds intersect transversally. Although ~y., is only topologically
hyperbolic (often denoted as parabolic), Moser proved that, for a suitable (2 dimensional) return map
®y, to a suitable section X close to W* (7o) M W#(7), there exists a non trivial hyperbolic set X'. The
dynamics of @y restricted to X C ¥ is moreover conjugated to the shift

o:NZ 5 NZ (ow)k = Wit1,

acting on the space of infinite sequences. Namely, X is a horseshoe with “infinitely many legs” for ®y,. By
construction, sequences w = (-« ,W_p,W_pil, " W0y Wpo1,Wn, ") E NZ for which lim SUD,, 00 Wn =
oo (resp. limsup,,_, . wp, = o0) correspond to complete motions of the Sitnikov problem which are
oscillatory in the future (in the past).

Moser’s ideas have been very influential and have been extended to other models in Celestial Mechanics
[LS80al, [LS80OD, [X1a92, Moe07], [GMST6], [GSMS17, [SZ20, ICGM™22|. The main difficulties that one faces
when implementing these ideas are the following. First, proving that the stable and unstable manifolds
of the parabolic infinity (a topological hyperbolic periodic orbit in symmetric configurations, and, a
topological normally hyperbolic invariant cylinder in the Elliptic and in the Spatial Circular Restricted 3
Body Problem) intersect transversally. To the best of our knowledge, in all previous works, the authors
consider perturbative settings in order to tackle this step. Second, to construct a non trivial hyperbolic
invariant set close to the homoclinic intersection. As we will see in Section this step presents major
challenges for models with more than 2 degrees of freedom.

"Due to the existence of additional symmetries the Sitnikov model is a 14+1/2 degrees of freedom Hamiltonian system.
After performing the symplectic reduction, the parabolic infinity (see Section and compare with the 3 dimensional
submanifold P« ), reduces to a periodic orbit.



The Restricted Isosceles 3 Body Problem: a functional analytic approach to the existence
of oscillatory motions

In this work we consider the so-called Restricted Isosceles 3 Body Problem. In this model, the primaries
move periodically along a degenerate ellipse (a line) and the massless body moves on the plane perpen-
dicular to the line in which the primaries move. The position of the primaries is symmetric with respect
to this perpendicular plane, so the three bodies always form an isosceles triangle. Due to the rotational
symmetry, the angular momentum G of the massless body is a conserved quantity, which can be taken
as a parameter of the system. We thus obtain a one-parameter family of Hamiltonian systems Hg, with
G eR.
Our second main result is the following.

Theorem 1.1.7 ([GPSV21l [PT22]). There eixsts a constant G, > 0 and a subset G C R with {|G| >
G.} C G and Leb(R\ G) = 0 such that, for the Hamiltonian Hg, if G € G,

XtnYy - #0 with X,Y =08S,B,P,H.

Let us now mention a few remarks concerning Theorem[[.1.7] For all G € R, there exists a (topological)
hyperbolic periodic orbit at infinity 7., . Moreover, for G > 1, the invariant manifolds W™*(yeo ),
are contained in the hierarchical region (recall the discussion in Section [1.1.1]). Therefore, for |G| > 1,
the study of transverse intersections between W* (v ) can be studied perturbatively. This was the
approach in [GPSV21]. The problem of existence of transverse intersections between W™*(vys ) for
G > G, > 1, can indeed be considered as a simpler, lower dimensional version of our analysis of the
existence of transverse intersections between the manifolds W**(Po, N {G > G.}) for the Restricted
Elliptic 3 Body Problem, outlined in Section [1.1.1

However, for an arbitrary G € R, one cannot rely on a perturbative approach to study the existence
of transverse intersections between W**(yo ). As far as we know, Theorem is the first result
concerning the existence of oscillatory motions relying upon a global analytical approach rather than
on perturbative techniques. Some interesting related works, where the existence of oscillatory motions
is obtained in a setting which is not close to integrable, are [Moe(7] and [CGM™22|. While in [Moe07]
the author shows the existence of oscillatory motions in the 3 Body Problem close to triple collision
(perturbation from the zero angular momentum case), in [CGMT'22| the authors obtain a computer
assisted proof of the existence of oscillatory motions in the Restricted Circular 3 Body Problem for small
values of the Jacobi constant.

As in Moser’s approach, the first main step in our construction is to prove the existence of a homoclinic
orbit to vs,c. To this end, we will adopt a global approach and deploy the powerful machinery of the
theory of calculus of variations. In particular, we rephrase the problem of existence of homoclinic orbits
t0 Yoo, @s that of the existence of critical points of a certain action functional Ag defined in a suitable
Hilbert space D2, The existence of critical points of the action functional Ag is obtained by a minmax
argument tailor made for the present problem. The use of minmax techniques to study the existence
and multiplicity results for homoclinic orbits in Hamiltonian systems has already been widely exploited
in the literature (see for example [Sér92] [CZES90, [CZRI1] and [MNT99]). In the variational approach
to our problem, we face two main difficulties at this step: the phase space is not compact and the vector
field presents singularities (corresponding to possible collision with the massive bodies). In order to
overcome the first difficulty we make use of a renormalized action functional defined on an appropriately
chosen functional space D™2. In order to avoid singularities and gain compactness, we then perform a
constrained deformation argument. With these techniques, together with a compactness property of the
map dAg : D2 — DY2 and Struwe’s monotonicity trick, we are able to show that, for almost all values
of the angular momentum G, there exists a Palais-Smale sequence in D2 which converges to a critical
point of the action functional Ag. This proves the existence of an orbit 7, homoclinic to vs,a, which
actually corresponds to a two sided parabolic motion of the Restricted Isosceles 3 Body Problem. It is
worthwhile pointing out that half parabolic and hyperbolic motions for the N Body Problem have been
obtained using variational methods in [MV09, MV20] with a different technique.

The homoclinc orbit 7, obtained in this way is associated with an intersection between the stable and
unstable manifolds of the periodic orbit v, ,c. To proceed further, though we can not tell whether this



intersection is transverse or not, we may rely on our minmax construction to deduce some topological
transversality. This can be achieved by a topological degree argument based on a general result by Hofer
([Hof86]). More precisely, we exploit the mountain pass characterization of 7, to show that for almost
all values of the angular momentum G there exists a (possibly different) critical point rj of the action
functional Ag for which the Leray-Schauder index of the map VAg : DY2 — D2 at r), is well defined
and different from zero. This allows us to shadow finite segments of the homoclinic orbit r,. The proof
of Theorem [[.1.7] is then obtained by combining a suitable parabolic version of the Lambda lemma close
t0 Yoo, With the outer dynamics wich shadows finite segments of ry,.

1.1.3 Hyperbolic dynamics, Oscillatory motions and Topological instability
in the 3 Body Problem

Finally, we present some results concerning the existence of unstable motions in the planar 3 Body
Problem (3 degrees of freedom). These motions are constructed on a region of the phase space which we
denote by the parabolic-elliptic regime (see Theorem [1.1.1)).

The parabolic-elliptic regime

On each constant, negative energy hypersurface, there exists a 3 dimensional invariant submanifold at
infinity £ for the flow of the 3 Body Problem. It corresponds to the w-limit set (resp. a-limit set) of the
points which lead to forward (resp. backwards) orbits along which the motion of one body is parabolic
and the motion the other two bodies is elliptic. Since at £, the distance between one body (the one
performing the parabolic motion) and the other two (the binary, elliptic, system) is infinite, the coupling
in the hierarchical approximation vanishes identically on £,,. Thus, the dynamics on &, is completely
integrable. Moreover, due to the so-called super integrability of the 2 Body Problem, £, is foliated by
periodic orbits.

It is known (see [BEM20c]), that £, posseses 4-dimensional stable and unstable invariant manifolds
W**(Ex). We focus on an invariant submanifold € cire C £ corresponding to nearly circular motion
of the bodies qg, q1. Then, if we denote by G the angular momentum of the body g2, and let G, > 1, the
stable and unstable manifolds W"*(Ex cire N{G > G, }) are contained in the hierarchical region, and the
bodies qg, ¢1 perform nearly circular motions.

Existence of non trivial hyperbolic sets
Our third main result is the following.

Theorem 1.1.8 (|[GMPS22]). Consider the 3 Body problem with masses mg,m1, ma > 0 such that
mg # my. Then,

XtnYy #£90 with X,Y = OS, B, PE;, HEs.

Theorem [1.1.8]is indeed a consequence of the following result, which deals with the existence of non
trivial hyperbolic sets in the 3 Body Problem (see Section [1.1.2)).

Theorem 1.1.9 ([GMPS22]). Consider the 8 Body problem with masses mg,my1, ma > 0 such that
mo # mq. Then, there exists a section transverse to the flow of the 3 Body Problem such that (a suitable
iterate of ) the induced Poincaré map possesses a non trivial hyperbolic set.

The contribution of the author to the proof of Theorems and has been to adapt the tech-
niques developed in [GPS23b] to prove the existence of two transverse intersections between W**(Exg circN
{G > G.}). This corresponds to Sections 7 and 8 in [GMPS22].

Once this result is proved, close to the intersection of these invariant manifolds we build a horseshoe
for certain return map associated to a transverse section. The construction of the horseshoe is rather
involved. We only outline it.

‘We build two suitable sections X7 and X5 transverse to the local stable and local unstable manifolds of
Eoo cire Tespectively in which by using a (parabolic) Lambda lemma we are able to define a transition map.



For this four dimensional map the dynamics is hyperbolic in a pair of directions and is C' close to the
identity in the other pair. Two different outer maps can be defined from certain subsets of ¥ to 31 by
following the homoclinic excursions associated to the transverse intersections between W** (€ circ N{G >
G.}). The composition of the transition map with the outer maps yields two well defined return maps
for the section Xo. Since the outer dynamics are close to the scattering map dynamics (which are close
to the identity maps), the return maps are (as the transition map from ¥; to Xs) hyperbolic in a pair
of directions and C' close to the identity in the other pair. However to build the horseshoe we need
hyperbolicity in all directions. The idea to overcome this problem is to make use of the two different
return maps. Indeed, we are able to prove that, for a suitable composition of these maps, there exists an
isolating block, in which the dynamics is uniformly hyperbolic in all directions.

Topological instability in the 3 Body Problem

Due to the robustness of the mechanism, one could directly prove that the transition chain of heteroclinic
orbits constructed in [DKdIRS19, [GPS23b] for the R3BP can be continued to the 3BP if the mass mg is
sufficiently small. As a consequence, one can deduce that, in the 3BP, if mq is sufficiently small, there
exist orbits along which the angular momentum G of the third body experiences significant variations,
while the eccentricity of the inner bodies remains small.

A much more challenging, and interesting question, is to prove the existence of Arnold Diffusion in
the 3BP for any choice of the masses mg,mi,ma > 0. The substantial difference is that, due to the
conservation of the total angular momentum, as the angular momentum of the third body grows, so does
the eccentricity of the orbit of the binary system ﬁ However, in order to construct orbits along which
this transfer of angular momentum is significant, one cannot make use of the arguments developed in
IDKAIRS19) [GPS23b)], since they strongly rely on the hypothesis that the eccentricity of the primaries
orbit is small enough. Thus, new techniques have to be developed to, in particular, analyze the existence
of transverse intersections between the invariant manifolds of £...

Here, we present the first, of a series of papers, devoted to the construction of a transition chain of
periodic orbits contained in €., along which the angular momentum of the third body is transferred
to the binary system, resulting in a substantial change of its eccentricity. In particular, we want to
construct orbits which transition from close to circular orbits to highly eccentric ellipses (i.e., with close
to collision points). This first paper is devoted to analyze the so-called Melnikov approximation of
the distance between the invariant manifolds of £.. Just to motivate the result, let us recall that the
invariant manifold &, is foliated by invariant tori, whose stable and unstable manifolds are Lagrangian
submanifolds of the phase space. Thus, these invariant manifolds can be parametrized by the gradient of
scalar valued generating functions, which we denote by S"°. Notice that the existence of critical points
of AS = §* — 5% implies the existence of intersections between the invariant manifolds of £,,. Thus, if
one is able to prove that AS is approximated by certain function L in the C? topology, the existence of
non degenerate critical points of L implies the existence of non degenerate critical points of AS. The
function L is usually called the Melnikov potential.

Remark 1.1.10. See Section for a discussion on the justification of the Melnikov approximation
and the actual construction of a transition chain of periodic orbits for the 3 Body Problem.

The full result that we present in Chapter |§| (see also [GPS23al), which concerns the asymptotic
analysis of the Melnikov potential, is a rather lengthy formula which requires the introduction of a large
amount of notation. Therefore, we only state here an important consequence of the full result, which
is key to prove that the stable and unstable manifolds of £ intersect transversally along two different
homoclinic manifolds. Let € denote the instantaneous eccentricity of ellipse formed by qg, ¢1 and let G be
the angular momentum of ¢. Given ¢ € (0,1/2), and G, > 1, we denote as

$x(6,G)={q€&x:e€(6,1-6), G>G.}
Theorem 1.1.11. Fiz any ¢ € (0,1/2). Then, there exists G, > 1 such that the Melnikov potential
L(u,2) : R X £(0,Gy) — R, u€R, z€E(4,G,),

8The change of eccentricity due to the transfer of angular momentum goes to zero with ms — 0.
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associated to the invariant manifolds of Ex(0,Gy) is non degenerate in the following sense. There exist
two connected open sets T'L C Ex(0,Gy), satisfying

Leb(€x(6,G) \T'x) < exp(~G2/3),
such that, for z € Ty, there exists ux = us(z) for which 0, L(u+(2),2)) =0 and 02, L(u+(z),2) # 0.

The asymptotic analysis of the Melnikov potential L in this problem is rather more complicated
than in [DKdIRS19, [GPS23b|. Let us explain why. As in [DKJIRS19] I(GPS23b], due to the existence of
different time scales, the function L is given by an infinite sum of fast oscillatory integrals. A classical
tool for analyzing fast oscillatory integrals when the integrand is a real analytic function is to change the
integration contour to a steepest descent path. This is a complex path which visits the singularity (or
singularities) of the integrand which is closest to the real axis and such that, as we move away from the
singularity, the integrand decays exponentially fast.

In [DKAIRS19, [GPS23b], the domain of analyticity of the integrand is close to a direct product and,
moreover, its singularities are all “sufficiently close” from each other so they can be treated as one. Then,
one can expand the integrand in Laurent series around this singularity to analyze the Melnikov potential
asymptotically. However, in the present setting, where we consider arbitrary eccentricities, the domain
of analyticity of the integrand of the oscillatory integrals defining L is not a direct product and there
exist several, different singular submanifolds. Thus, one cannot rely on Laurent expansions. On the other
hand, our approach makes use of standard tools from complex analysis such as the method of analytic
continuation to first, locate all the complex singularities and, second, study the local behavior of the
integrand around them.

1.2 Conclusions

The present thesis has been devoted to the study of different kinds of unstable motions in the 3 Body
Problem and its restricted versions. The common feature in the mechanisms presented, is the existence
of (topological) hyperbolic invariant objects. We have introduced different tools to prove the existence
of transverse intersections between their invariant manifolds in a variety of contexts, including singu-
lar perturbation frameworks and non perturbative settings. Then, we have investigated the dynamical
consequences of the existence of these transverse intersections. More concretely, the existence of Arnold
diffusion, oscillatory motions and non trivial hyperbolic sets.

This thesis was performed from September 2019 to April 2023 by Jaime Paradela Diaz and was
supervised by Professors Marcel Guardia Munarriz and Tere M-Seara Alonso.

The results presented here can also be found in the articles [GPSV21l [GMPS22] [PT22 [GPS23b),
GPS23a). At the current date, the first is already published, the second, third and fourth are under
revision, and the fifth one is being prepared.

1.3 Open problems

To conclude this introduction, we list three open problems, related to the main results of this work, which
we find interesting and which we are currently addressing.

1.3.1 Existence of two sided completely parabolic motions in the N Body
Problem

Consider a complete orbit of the N Body Problem. We say that it is completely parabolic, if it approaches
infinity with zero asymptotic kinetic energy. It is a classical result that, for completely parabolic mo-
tions, its asymptotic shape must be a central configuration (see [Che98]). A number of works have proved
that given an arbitrary initial configuration and an arbitrary central configuration there exists a com-
pletely parabolic orbit of the N Body Problem, passing through the given initial configuration and whose
asymptotic shape is the prescribed central configuration (see [MV09, BDET21]).
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However, to the best of our knowledge, there are no results available on the existence of two sided
completely parabolic orbits, i.e. orbits which are completely parabolic both in backward and forward
time. By definition, the shape of this orbit is asymptotic to a central configuration both in the past and
in the future. Together with S. Terracini, we are investigating the existence of such orbits. A possible
roadmap is to consider orbits of the 2N Body Problem which are symmetric under the dihedral group.
This symmetry, drastically drops the dimension of the problem to a system of two degrees of freedom
[FP08, [FP13]. In this setting, we plan to extend the tools developed in [PT22] to study the existence of
two sided completely parabolic motions in the 2N Body Problem.

1.3.2 Topological Instability in the 3 Body Problem

As we already explained in Section justifying the Melnikov approximation (namely, obtaining an
asymptotic formula for the distance between the stable and unstable invariant manifolds), for problems
involving different time scales, is a quite challenging problem. One option would be to carry on an
averaging procedure with an “optimal loss of analyticity”. Another approach is to follow Lazutkin ideas
for the standard map [Laz87] (see also [Sau01l, [LMS03]), and extend the parametrizations of the invariant
manifolds to a “sufficiently large” complex domain. This was the approach in [GPS23D)].

Compared to [GPS23b], justifying the Melnikov approximation for the 3 Body Problem in the parabolic-
elliptic regime (see Section , requires overcoming many major difficulties. These are indeed related
to the same difficulties present in the analysis of the Melnikov potential (see the discussion at the end of
Section . Namely, when we study the Hamiltonian of the 3 Body Problem, in a neighbourhood of
the invariant manifolds of £, its domain of analyticity is not a direct product.

Together with M. Guardia and T. M-Seara, we are currently extending the techniques in [GPS23b)]
to overcome this problem.

1.3.3 Homoclinic tangencies in Celestial Mechanics

Since the pioneering work of Newhouse [New70, New74] New79|, the existence of homoclinic tangencies
is widely recognized as a source of wild dynamics. For Hamiltonian systems (at least in models of 1+1/2
or 2 degrees of freedom), this includes: existence of thick hyperbolic basic sets with persistent tangencies,
existence of infinitely many elliptic islands and universality (loosely speaking, this concept means that,
given any diffeomorphism f of the disk, there exists a return map of the system which, after a proper
renormalization, approximates the dynamics of f up to arbitrary order).

In some particular models in Celestial Mechanics, due to the existence of discrete symmetries, one can
find primary homoclinic tangencies between the manifolds of the “parabolic infinity”. Moreover, in some
cases, these tangencies unfold “generically” as we move the parameters of the system. Together with
J.M. Cors, M. Garrido, and P. Martin, we are studying the dynamical consequences of this phenomenon.

Disclaimer: The reader will forgive us for the text overlap between some of the chapters of the thesis,
especially between their introduction sections.

12



Chapter 2

A degenerate Arnold diffusion
mechanism in the Restricted 3 Body
Problem

Abstract: A major question in dynamical systems is to understand the mechanisms driving global
instability in the 3 Body Problem (3BP), which models the motion of three bodies under Newtonian
gravitational interaction. The 3BP is called restricted if one of the bodies has zero mass and the other
two, the primaries, have strictly positive masses mg, m;. We consider the Restricted Planar Elliptic 3
Body Problem (RPE3BP) where the primaries revolve in Keplerian ellipses. We prove that the RPE3BP
exhibits topological instability: for any values of the masses mg, my (except mg = mq), we build or-
bits along which the angular momentum of the massless body experiences an arbitrarily large variation
provided the eccentricity of the orbit of the primaries is positive but small enough.

In order to prove this result we show that a degenerate Arnold Diffusion Mechanism, which moreover
involves exponentially small phenomena, takes place in the RPE3BP. Our work extends the result obtained
in [DKdIRS19] for the a priori unstable case mi/mg < 1, to the case of arbitrary masses mg, mq; > 0,
where the model displays features of the so-called a priori stable setting.

2.1 Introduction

The N Body Problem models the motion of N bodies under mutual gravitational interaction. Under-
standing its global dynamics for N > 3 (the system is integrable for N = 2) is probably one of the oldest
(and more challenging) questions in dynamical systems. A major achievement in this direction was the
proof of the existence of a positive measure set of quasiperiodic motions in the N Body Problem. This
result was first established by Arnold in [Arn63|, who gave a master application of the KAM technique
to the case of 3 coplanar bodies. The proof was later extended to case of N > 3 in the work of Féjoz and
Herman [Fej04] (see also [Rob95) [CP11]). On the other hand, in accordance with the general belief that
the N Body Problem, although strongly degenerate, displays the main features of a "typical” Hamilto-
nian system, in his ICM address, Herman conjectured [Her98| that the set of non wandering points for
the flow of the N Body Problem is nowhere dense on every energy level for N > 3. This would imply
topological instability for the N Body Problem in a very strong sense.

The existence of topological instability in Hamiltonian systems was first investigated by Arnold in
[Arn64], where he constructed an example of nearly integrable Hamiltonian in which this kind of behavior
occurs. To that end, Arnold proposed a mechanism giving raise to unstable motions based on the
existence of a transition chain of invariant tori: a sequence of invariant irrational tori which are connected
by transverse heteroclinic orbits. This mechanism is nowadays called the Arnold mechanism. Arnold
verified that this mechanism takes place in a cleverly built model usually referred to as the Arnold model,
and he conjectured that topological instability is indeed a common phenomenon in the complement
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of integrable Hamiltonian Systems [Arn63]. Despite the enormous amount of research (see for example
[Dou88l, [BT99, [DAILS00, MS02l, BB02], Mat03l, [CY 04, [Tre04, [DAILS06, Ber08| [GT08|, [DHO9, INP12l [Trel2l
BKZ16, [DAILS16l [Chel7, [GTT7, [KZ20, (GAILS20]) the Arnold diffusion phenomenon, and more generally
the dynamics in the complement of the KAM tori set, is still poorly understood (and even more poorly
for real analytic or non-convex Hamiltonians).

In [Arn64], Arnold conjectured that the mechanism of instability based on the existence of transition
chains “is applicable to the general case (for example, to the problem of 8 bodies)”. However, results
concerning the existence of Arnold diffusion in the 3 Body Problem or related models are rather scarce
(see [CGIS| [DKAIRS19, [CFG22, [CFG23| and also [DGRI6, [FGKRI6] for numerical based results).

The 3 Body Problem is called “restricted” if one of the bodies has zero mass and the other two, the
primaries, have strictly positive masses mg, mi. In this limit problem, the motion of the primaries is just
a 2 Body Problem and the dynamics of the massless body is governed by the gravitational interaction
with the primaries. In this work, we consider the case in which the primaries revolve around each other
in Keplerian ellipses of eccentricity ¢ € (0,1) and the massless body moves on the same plane as the
primaries. This model, usually known in the literature as the Restricted Planar Elliptic 3 Body Problem
(RPE3BP), is a 2+ 1/2 degrees of freedom Hamiltonian system. For e = 0 (i.e. for the Restricted Planar
Circular 3 Body Problem), the rotational symmetry prevents the existence of topological instability in
nearly integrable settings (see Remark below).

The goal of this paper is to prove that a degenerate Arnold Diffusion mechanism takes place in the
RPE3BP: we show that for any value of the masses of the primaries (mg # m1), there exist orbits of
the RPE3BP along which the angular momentum of the massless body experiences any predetermined
drift provided the eccentricity of the orbits of the primaries is positive but small enough. Notice that the
angular momentum is a conserved quantity in the 2 Body Problem, which can be seen as a limit problem
of the Restricted 3 Body Problem when my/mg — 0.

To the best of our knowledge the first complete proof of existence of Arnold Diffusion in Celestial Me-
chanics was obtained in [DKdIRS19], in which the authors showed the existence of topological instability
in the RPE3BP. Nevertheless, this result was established under the strong hypothesis mq/mg < 1 (see
Section for a more precise description of the setting). Under this condition, the problem falls in the
a priori unstable case for the study of Arnold diffusion and can be analyzed by means of classical pertur-
bation theory. Our result extends the work in [DKdIRS19] to the case of arbitrary masses mg,m; > 0, a
setting in which the problem displays many features of the so-called a priori stable case.

2.1.1 Main Result

Fix a Cartesian reference system with origin at the center of mass of the primaries and choose units so
that the total mass of the primaries is equal to 1. In these coordinates, the primaries, which we denote
by qo and ¢1, move along Keplerian ellipses of eccentricity € € (0, 1) whose time parametrization reads

qo(t) = pe(t)(cos f(1),sin f(t)) @1(t) = = (1 = po(t)(cos f(t),sin f(1)),

where mo = 1 — p and m; = p € (0,1/2] are the masses of g9 and g1, o(t) is the distance between the
primaries and is given by

_ 1—¢?

~ 1+ecos f(t)

and the so called true anomaly f(t) is determined implicitely by the equation

o(t)

df _ (1+ecos f)?

&~ (A= 1(0)=0.

The RPE3BP describes the motion of a massless body ¢ € R? in the gravitational field generated by the
primaries and it is governed by the second order differential equation

q—qo(t) s ¢ (1)
g—aq@)P  lg—a@)?

i= (-, (2.1)
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It is a classical fact that the RPE3BP admits a Hamiltonian structure. Introducing p and E the conjugate
momenta to ¢ and t, and the gravitational potential

o 1-np %
Ve = =@l T = ao)

the RPE3BP is Hamiltonian with respect to

2
p
H(q,p,t,E) = % - U(g,t)+E

and the canonical symplectic structure in the extended phase space T*(R? x T). The following is our
main result.

Theorem 2.1.1. Let G(q,p) = |q A p| be the angular momentum of the massless body. Then, for any
p € (0,1/2), there exists G > 0 such that, for any € € (0,G;3) and any values Gy, Gy satisfying

G* S Gl < GQ S 6_1/3,
there exists T > 0 and an orbit vy of the RPE3BP for which

Gov(0) <Gy and Gy < Gon(T).

2.1.2 Previous results: Arnold diffusion and unstable motions in Celestial
Mechanics

A number of works have shown the existence of unstable motions in the 3 Body Problem or its restricted
versions. For example, oscillatory orbits (orbits that leave every bounded region but return infinitely
often to some fixed bounded region, see [Cha22]) and/or chaotic behavior in particular configurations
of the Restricted 3 Body Problem [Sit60), [LS80a, Moe84l [Xia92l Bol06, Moe07, [GK11l [GK12] [GMS16,
GSMST7, Mos01l, [SZ20, [GPSV21l, ICGM ™22, BGG21, BGG22, [GMPS22, [PT22].

However, results concerning the existence of Arnold diffusion in the 3 Body Problem or related models
are rather scarce. Some remarkable works are [DGR16, [FGKRI6l [CGI18, [DKdIRS19, [CFG22, [CFG23]. In
[DGR16] and [FGKRI6], the authors combine numerical with analytical techniques to study the existence
of diffusion orbits in the Restricted 3 Body Problem close to L1 and along mean motion resonances
respectively. In [CGI8]| the authors give a computer assisted proof of the existence of Arnold diffusion in
the Restricted Planar Elliptic 3 Body Problem. Moreover, some very interesting features of the random
behavior, such as convergence to a stochastic process, are studied. In the recent works [CEFG22] [CFG23],
the authors show that the Arnold Diffusion mechanism takes place in the spatial 4 Body Problem.

Of major importance, and closely related to the setting of the present work, is the paper [DKdIRS19)
(see also [Xia93 [MP94] for previous partial results). To the best of our knowledge it constituted the first
complete analytic proof of Arnold Diffusion in Celestial Mechanics.

Theorem 2.1.2 (Theorem 1 in [DKdIRS19]). There exist G. > 0 and ¢ > 0 such that, for any € €
(0,eGZY) and any values Gy, Gy satisfying

G*§G1<G2§C/€,

if the mass ratio satisfies
p < exp(=G3/3),

there exists T > 0 and an orbit v : [0,T] — Ry x T? x R3 of the RPESBP for which

Gov(0) <Gy G2 < Goy(T).
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2.1.3 From the a priori unstable to the a priori stable case

The proofs of Theorem and Theorem rely on the existence of a rather degenerate Arnold
Diffusion mechanism. In modern language, the seminal proof of existence of Arnold diffusion in [Arn64]
is based on the existence of a Normally Hyperbolic Invariant Cylinder foliated by invariant tori. The
stable and unstable manifolds of the cylinder intersect transversally, what allows to construct a sequence of
quasiperiodic whiskered invariant tori connected by heteroclinic orbits. An important tool in the modern
approach to Arnold diffusion is the so called scattering map [DdILS08] which encodes the dynamics along
these heteroclinic connections.

In [DKdIRS19], it is shown that, for the RPE3BP, there exists a 3 dimensional (topological) Normally
Hyperbolic Invariant Cylinder P, foliated by periodic orbits (see Section [2.1.4)). We will see in Section
that, in the region of the phase space {G > G.}, the RPE3BP can be studied as a fast periodic
perturbation of the integrable 2BP. Theorems and are based on the existence of a transition
chain of periodic orbits, contained in Po, N{G > G}, along which the angular momentum G experiences
an arbitrarily large drift.

Under the additional (and rather restrictive) hypothesis of exponentially small mass ratio p <
exp(—G2/3), the RPE3BP in the parabolic regime with large angular momentum G > G, > 1 (see
Section falls in the a priori unstable setting. Indeed, one takes the parameter u, measuring the
size of the perturbation, exponentially small with respect to the one measuring the ratio between the
different time scales of the problem 1/G2, as Arnold did in his original paper [Arn64]. This heavily
simplifies the two main steps for the construction of the diffusion chain of heteroclinic orbits (see Sec-
tion . On one hand, the existence of transverse intersections between the 4 dimensional stable
and unstable manifolds W*(P,, N {G > G.}) and W*(P,, N {G > G,.}) can be tackled by classical
perturbative techniques (Poincaré-Melnikov method). The reason is that, although the splitting between
these manifolds is exponentially small in 1/G,, the system is also exponentially close to integrable. To
overcome the fact that the inner dynamics on P, is trivial, the proof of Theorems and
make use of two different scattering maps associated to two different homoclinic manifolds contained
in W8 (Poo N{G > G.}) M W (P N{G > G.}). In the doubly perturbative setting {G > G.} and
1 < exp(—G2/3), the scattering maps are exponentially close to the identity and a (non trivial) algebraic
computation shows that they share no common invariant curve. Then, the existence of drifting orbits
can be deduced from classical arguments (see [Moe02]).

Theorem extends Theorem to the case p € (0,1/2). In this setting, the problem displays
many features of the so called a priori stable case in the real analytic category. In particular, no extra
parameters are available to study the exponentially small splitting between W"(Po N {G > G.}) and
W*(PsxN{G > G.}). To the best of our knowledge, Theorem [2.1.1]is the first result proving the existence
of Arnold Diffusion for a real analytic Hamiltonian which does not fall in the a priori unstable setting E

We develop two main sets of tools to prove Theorem [2.1.1] In particular we introduce a new approach
to:

e Analyze the highly anisotropic splitting between the stable and unstable manifolds associated to
pairs of partially hyperbolic fully resonant invariant tori in a singular perturbation framework, and

e Distinguish the dynamics of two exponentially close scattering maps associated to different homo-
clinic channels.

We believe that the main ideas developed in this work can be of general interest for the study of
Arnold diffusion in the real analytic a priori stable setting. We refer the interested reader to Section
where we introduce a degenerate version of the Arnold model to explain the main difficulties and
novelties in the proof of Theorem [2.1.1]

IThe first example of a real analytic a priori stable system exhibiting topological instability was recently constructed by
B. Fayad in [Fay23|. The techniques are however different from the Arnold Diffusion mechanism.
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Poo ={r=o00,y=E=0, (a,t,G) € T?> x R}

Figure 2.1: Sketch of the projection on the plane ¢ € R? of a segment of the diffusive orbit. It shadows a
finite family of parabolic orbits which are indeed heteroclinic orbits to Ps.. As the angular momentum
grows the massless body ¢ passes further from the primaries.

Remark 2.1.3. We will see later (see Section and, in particular, the discussion below Theorem
that the angle of splitting between the invariant manifolds Wi and W} of the invariant torus
Ti = Poo N{G = I} is of the order ~ u(1 —2u)eexp(—1I2/3). Since the inner dynamics on Pa is trivial,
in the diffusion mechanism underlying the proof of Theorems[2.1.1 and[2.1.9, an estimate of the splitting
angle between Wi and W73 is not enough for estimating the diffusion time, and one more ingredient comes
into play: the transversality between the invariant curves of the two scattering maps associated to each
transverse homoclinic intersection. Still, we will also see (see the proof of Proposz'tion below) that
the angle between these invariant curves is again proportional to ~ u(l — 2u)eexp(—I13/3). Thus, the
orbits obtained in Theorem |2.1.1| present significant drift only after exponentially long times.

2.1.4 Outline of the proof of Theorem [2.1.1

We introduce the (exact symplectic) change to polar coordinates (r,y,a,G,t,E) — (q,p,t,E) where
g = (rcosa,rsina) and (y,G) are the conjugate momenta to (r,«). In this coordinate system, the
RPE3BP is a Hamiltonian system on the (extended) phase space E|

(rya,t,y,G,E) € Ry x T? x R® = M, (2.2)

with Hamiltonian function

2

H. il
272

2
pol(T, o, t,y, G, E) = % + — Voor(r, o, t) + E, Vool(r, i, t) = U(rcosa, rsina, t).  (2.3)

The equations of motion in polar coordinates simply read

. . G?

r :8pr01 =y Y= 787’Hpol = 7‘73 + arvppol
. G .
« :aGHpol = ﬁ G = _aaHpol = aonvpol

t =0pHpo = 1 E = —0;Hpo1 = 0; Vo

2Properly one should exclude collisions. Since our analysis is performed far from collisions we abuse notation and we
refer to My, as phase space.
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Since Vpor(r, o, t) — 0 as r — oo, we identify the invariant submanifold E|
Poo = {(00,9,t,0,1,0): (p,t) € T>, I € R} (2.4)
contained in the zero energy level {Hpo = 0}.

Remark 2.1.4. We have already pointed out in the introduction that, although the Restricted 3 Body
Problem with > 0,e = 0, (i.e. the RPC3BP) is non integrable (see [GMS16]), the existence of topological
instability is prevented by the rotational symmetry. In particular, the conservation of the Jacobi constant
J = Hpol — G, which is a consequence of the rotational symmetry, readily shows that, for the RPC3BP,
there cannot exist heterolicinic orbits connecting periodic orbits in Ps with different values of G (see also
Lemma .

However, we want to remark that in the setting in Theorem one cannot deduce the ewistence
of transversal intersections between W' (Poo) and W*(Ps) from that of the invariant manifolds of the
RPC3BP. Indeed, the splitting between the invariant manifolds in the case p > 0,€ = 0 is exponentially
small in 1/G, and we consider eccentricities up to polynomially small values in 1/G ..

Despite being degenerate (the linearized vector field restricted to P vanishes), it is a classical result
of Baldom4 and Fontich [BE04b] (see also McGehee [McGT3] for the circular case) that the manifold Py,
posseses stable and unstable manifolds

W' (Ps) ={x € {Hpo1 = 0}: 3z € P for which TEIPOO |p7 (z) — ¢7(2)] = 0}

W (Poso) ={z € {Hpot = 0}: 3z € P, for which TILH;O " (x) — @7 ()] = 0}. (25)
By introducing the McGehee transformation r = nyq(z) = 2/22, one can prove that the flow on a neigh-
borhood of the invariant manifold Pe, = 771\7[1G (Ps) “behaves” as the flow around a Normally Hyperbolic
Invariant Cylinder. Namely, one can prove that W'"(Pu) = nyés (W' (Pwo)) exist and are analytic sub-
manifolds except at x = 0, where they are C*°, and that a parabolic version of the Lambda lemma holds.
Because of this, we say that P, is a Topological Normally Hyperbolic Invariant Cylinder (TNHIC).

In order to prove Theorem we will use the invariant manifolds of P, whose vertical direction is
parametrized by the coordinate G, as a highway to obtain orbits whose angular momentum G experiences
arbitrarily large variations. More concretely, we build a transition chain of periodic orbits in P, along
which G increases.

There are two main ingredients for the construction of the aforementioned transition chain of periodic
orbits. The first one is the existence of two different transverse intersections between W"(P,) and
W*5(Ps). The second one is to establish certain transversality property between the dynamics along
the two different 3 dimensional homoclinic manifolds associated to the transverse intersections between
W' (Ps) and WS(Ps). The application of these ideas to the RPE3BP, without assuming that u is
exponentially small with respect to 1/G,, is quite challenging since major difficulties are present in the
verification of each of the two main ingredients for the construction of the transition chain.

Transverse homoclinic intersections between the invariant manifolds for p € (0,1/2): The
existence of transverse intersections between the stable and unstable manifolds of a hyperbolic periodic
orbit was already identified by Poincaré as a major source of dynamical complexity (see [P0i90]). The
occurrence of this phenomenon, although residual in the C™ (r > 1) topology for vector fields on a
compact manifold, is nevertheless rather complicated to check in a particular model and, in general, little
can be said except in the case of perturbations of systems with a Normally Hyperbolic Invariant Manifold
whose stable and unstable manifolds coincide along a homoclinic manifold.

Our approach to show that the invariant manifolds W™5(Py,) defined in intersect transversally
is to study the RPE3BP as a small perturbation of the integrable 2BP, in which the invariant manifolds
of Py, coincide along a homoclinic manifold Wiy (Ps) of parabolic motions. Yet, for fixed u € (0,1/2),
the RPE3BP is far from the 2BP. We however recover a nearly integrable regime if we focus our attention

3The submanifold ([2.4) can be described properly in McGehee variables (z, o, t,y, G, E) where r = nyg (z) = 2/x2.
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to the region of the phase space {G > G.} with G, sufficiently large. The reason is that, for G, large
enough, the stable and unstable manifolds W"*(P, N{G > G.}) are located far away from the primaries
and therefore, they can be studied as a perturbation of the homoclinic manifold Wlsp(Po N {G >
G.}) (see Section [2.2). The (substantial) price to pay is that this regime corresponds to a singular
perturbation setting. Namely, as we show in Section for G, > 1, the dynamics in a neighborhood
of W"(Poo N {G > G.}) corresponds to a fast periodic analytic perturbation coupled to the slow
dynamics of the integrable 2BP. Indeed, since the Newtonian potential decays with distance, the motion
of the massless body is much slower than the rotation of the primaries. The existence of these two
time scales results in an exponentially small splitting (in 1/G,. < 1) between the invariant manifolds
WP N{G > G.}) and W3 (Poo N{G > G, }): the effect of the perturbation along a neighborhood of
the homoclinic manifold Wi, averages out up to an exponentially small remainder which, as a matter
of fact, bounds the distance between W" (P N {G > G.}) and W3(Poo N{G > G, }) (see [Nei84]).

In the a priori unstable setting, that is, perturbations of systems with a Normally Hyperbolic Invari-
ant Manifold whose stable and unstable manifolds coincide along a homoclinic manifold, and for which
the hyperbolicity is much stronger than the size of the perturbation, there are no different time scales.
Therefore, the splitting between invariant manifolds is usually tackled by means of Poincaré-Melnikov
theory (see [Mel63l, [DAILS06, [GAIL18]), which gives an asymptotic formula for the distance between them
in terms of a convergent improper integral, usually referred to in the literature as the Melnikov function.
Nevertheless, establishing the validity of the Melnikov approximation in the singular perturbation frame-
work where the splitting between W'™* is exponentially small (as is the case of the present problem), is
a demanding problem for which no general theory is available.

One should remark that the original Arnold model, despite having two different time scales, it possesses
two parameters: the one measuring the ratio between time scales € and the one measuring the size of the
perturbation p. In this case, Melnikov theory predicts that dist(W", W) ~ M + O(u?) for a function M
which “typically” has size M ~ pexp(—c/+/e). Therefore, by assuming that the size of the perturbation
1 is exponentially small compared to the ratio between time scales, classical Melnikov theory can be
directly applied even if the splitting between W™ is exponentially small in . This was the approach
considered in [Arn64] and [DKdIRS19].

The analysis of exponentially small splitting has drawn major attention in the past decades due to
its relevance for the study of instability mechanisms in real analytic Hamiltonian systems. Indeed, in
the absence of extra perturbative parameters, as is the case in a priori stable systems (perturbations
of integrable systems in action angle variables: no hyperbolicity is present in the integrable system),
one has to face this phenomenon. Remarkable progress has been made in a number of works in low
dimensional models (just to cite a few works, see [Laz87, [DS92| [Gel94, [Gel97, Tre97] [Gel99) BF04al,
MSS11l, BFGS12) [Gual3]). In higher dimension, results are much more scarce. We highlight [Sau01]
and [LMS03], where the exponentially small splitting between the stable and unstable manifolds of a
partially hyperbolic invariant torus is investigated. When the torus under consideration is sufficiently
irrational, the splitting of its invariant manifolds is exponentially small in all directions (see [DGJS97] and
[Sau01]). However, if the torus is resonant, one expects that the splitting is in general highly anisotropic,
involving directions in which the splitting is exponentially small and directions in which the splitting
is of the order of the perturbation. This strong anisotropy complicates heavily the geometric analysis.
Exponentially small splitting happens in directions close to that of the actions conjugated to the fast
angles and polynomially small splitting happens in directions close to that of the actions conjugated to
the resonant angles. However is not clear a priori how to locate exactly the directions of exponentially
small splitting.

In [LMS03], Lochak, Marco and Sauzin developed a formalism to identify the directions of exponen-
tially small splitting between the stable and unstable manifolds of the same partially hyperbolic invariant
torus. The situation is much more intrincate when one considers the invariant manifolds associated to
two different partially hyperbolic invariant tori. Indeed, all previous works which study the existence
of transverse intersections between the invariant manifolds of different invariant tori rely on an indirect
approach: first, one proves the existence of transverse homoclinic intersections between the invariant
manifolds of a given torus and then deduce the existence of heteroclinic connections between nearby tori
by direct application of the implicit function theorem. However, the directions along which the splitting
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is exponentially small can move as we vary the torus. Therefore, to ensure that all the errors in the
approximation by the homoclinic connection are exponentially small, this indirect method only works
when the two tori under consideration are exponentially close.

The present is, to the best of the authors knowledge, the first work in which the highly anisotropic
splitting between the invariant manifolds of a pair of partially hyperbolic fully resonant invariant tori
(which in the current problem foliate P,) is succesfully analyzed. Namely, by studying the problem in
a direct way we establish the existence of heteroclinic connections between resonant tori separated up to
a distance of the size of the perturbation. This allows us to prove the existence of two manifolds I'y of
homoclinic points to Ps, N {t = 0} which moreover are diffeomorphic to

PL=PonN{t=0, G, <G <e /3

The main idea behind our approach is to exploit the Hamilton-Jacobi formalism for, given a pair of
partially hyperbolic invariant tori, building a local symplectic coordinate system, tailored made for each
pair of invariant tori, in which the direction of exponentially small splitting between their associated
invariant manifolds is clearly isolated from the non-exponentially small one. The coordinate system
strongly depends on the pair of tori considered, what gives an idea of the subtleness of the phenomenon.
The key player in this construction is the “splitting potential” AS, which will be defined in as the
difference between the generating function of the unstable manifold of one of the tori and the generating
function of the stable manifold of the other torus [l

Remark 2.1.5. The splitting potential was first introduced by Eliasson in [Eli94)] and later appeared in
the work of Sauzin [Sau01] and Lochak, Marco and Sauzin [LMS03], to study the splitting between the
invariant manifolds of a given torus. The terminology splitting potential was coined in [DGO0].

In the variational approach to Arnold Diffusion, the splitting potential also plays a major role, since
it is related to the so called Peierl’s barrier in Mather theory (see [Zhalll]).

Another remarkable novelty of our construction is that we work directly with the generating func-
tions associated to the stable and unstable manifolds of the invariant tori instead of relying on a vector
parametrization of these invariant manifolds. The difficulty to work directly with the generating function
is the appearance of certain unbounded operator in the linearized invariance equation which defines the
generating functions (see [Sau01]). This obstacle was removed in all previous works by considering a
different vector parametrization of the invariant manifolds. We overcome the problem, and directly find
the generating functions, by making use of a suitable Newton iterative scheme in a scale of Banach spaces
in the spirit of the usual schemes used in KAM theory.

Construction of a transition chain of heteroclinic orbits: The progress made in the analysis of
the strongly anisotropic splitting between invariant manifolds of partially hyperbolic resonant invariant
tori is of high relevance for the second step in the proposed diffusion mechanism. Indeed, we are able
to prove that the scattering maps (see [DAILS08]), which encode the dynamics along the homoclinic
manifolds T'y, are globally defined on PX C Po. This result was already obtained in [DKdIRS19], for
the a priori unstable case y < exp(—G?/3) and is extended in this work to the a priori stable setting
w € (0,1/2). Besides the importance of this achievement for the study of Arnold Diffusion in a priori
stable Hamiltonians, the existence of two globally defined scattering maps is vital for the construction of
diffusive orbits in the RPE3BP. As a matter of fact, the inner dynamics on P, is trivial and, as seen in
IDKAIRS19], we can only rely on the combination of the two scattering maps.

The pair of scattering maps on P35, defines an iterated function system: the existence of a transition
chain of heteroclinic orbits to P, along which the drift in the angular momentum G takes place, is guar-
anteed after showing that the two scattering maps share no common invariant curves (see [Moe(2] and
also [LCOT]). This is a rather challenging problem since, although both scattering maps are only polyno-
mially close (in 1/G.) to the identity, the difference between them averages out up to an exponentially
small quantity (in 1/G.) which, we show, is different from zero on an open subset of PZ.

4These are Lagrangian submanifolds and, therefore, can be parametrized in terms of a generating function (see Section
2.3.1)).
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The key to establish this result is the construction of a generating function for each scattering map,
which are exact symplectic. We moreover show that the asymptotics of these generating functions are well
controlled by the asymptotics of an explicit function usually referred to as the reduced Melnikov potential.
Once the dynamics of both scattering maps have been distinguished, we apply an interpolation result
combined with an averaging procedure to show that the invariant curves of both maps always intersect
transversally.

2.1.5 A degenerate Arnold model

Since we expect that the ideas of this work can be of interest for readers from the field of Arnold diffusion,
but which might have no background in Celestial Mechanics, in this section we present a degenerate
version of the Arnold model (see [Arn64]) which illustrates the two main challenges we face.

Consider the Hamiltonian system

H(q,p, ¢, I, t;e,1) = Ho(q,p, I;€) + pH1(q, ¢, t;€), (¢,p) €T xR, (p,I) e TxR, teT (2.6)
where
p2 12
Ho(q,p,I;e) = 5+ g(cosq—1) (1 + 2) ; Hy(q,p,t;¢) = e(cosq — 1) (sinp + cost) .

We observe that, for any u,e > 0,
N={(¢,p,0, [,t) ETxRxTxRxT:q=p=0}
is a Normally Hyperbolic Invariant Cylinder, which is foliated by periodic orbits with frequencies

(wy,wi) = (0,1).

Due to the fact that the inner dynamics on N is trivial, in order to obtain orbits which present a large
drift along the I component, we can only rely on the outer dynamics.

The setting 0 < ¢ < 1 and 0 < pu < exp(—1/+/¢), which corresponds to the so called a priori unstable
case, can be identified (up to major difficulties and technicalities associated to the particular form of the
Hamiltonian of the RPE3BP) with the situation studied in [DKdIRS19]. Define

When g = 0, the system has an homoclinic manifold to A which can be parametrized as
This,0,1;€) = {(¢,p, 0, I) = (gn(s), \@ph(s)ﬂ—i—Hh(s,I; \@),I), seR, (6,I) e TxR} with §= 1/\[5

By assuming that < exp(—1/+/€), one can use classical perturbation theory to show that, W"(N\') and
W3(N) intersect transversally along two different homoclinic manifolds I'x. Indeed, as explained in the
previous section, Poincaré-Melnikov theory predicts that, when measured along the line orthogonal to the
unperturbed homoclinic manifold and passing through the point (T'y(s, 6, I;&),t), the distance between
the invariant manifolds is given by

dist(WHN), W3 (N)) ~ udsL(0, I,t — s/VEE) + O(u?),
where

L(0,1,0;¢) = / Hi(aqn(7), Vépn(7),0 + 0u(1, I; V&), 0 + 7/VE)dr

is the so-called Melnikov potential. Using the expression for H;, one can easily see that

h2(ﬂ sin (t = 5/VE) = O(exp(~1/VE).

DL(0,I,t —s/VEE) =
2\/5)
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The claim then follows from the fact that, for all (0,1,t) € T x R x T, there exist two different non-
degenerate zeros s (t, 1) = /&t and s_(t,I) = vzt + 7 of the function s — 9,L(0,I,t — s/\/; ).

This allows to define two scattering maps Py : NN{t = 0} — N'N{t = 0}, associated to the homoclinic
manifolds T'y. Finally, one can show (see [DAILS08]) that the dynamics of each of the scattering maps
P, expressed in variables (6,7), are given by

Pi =1d+ puJVLL(,1;€) + O(u?),
where J is the standard complex structure in R2 and
Li(0,1;8) = L(0,1,—5+(0,1)/VE&).

Therefore, in the case p < exp(—1/+v/Z), classical perturbation theory yields an asymptotic formula for
the difference between P and P_ which can be used to verify the existence of drifting orbits.

The problem is much more intrincate if p ~ €% (for a given o > 0). On one hand, as already explained
in Section one cannot make use of classical perturbation theory to study directly the existence of
transverse intersections between W™*(A'). The ideas developed in [Sau01] and [LMS03] could be used to
prove the existence of two functions 6L (I’) such that for every I’, (q,p,p, I,t) = (0,0,0+(I'),I',0) C N
is a point for which there exist a homoclinic orbit to the torus 7;, = N N {I = I'}. Then, by application
of the implicit function theorem, one can show that there exist two scattering maps Py : No N {t = 0} —
N N {t =0} where N1 are vertical strips of the form

Ne={(g,p,0,[,t) ETXxRXTxRy xT:q=p=0, |o—0+(I)] <exp(—1/VE)}.

However, with this approach Ny N N_ = (. Therefore, only one scattering map would be available
on each domain and diffusion would be prevented by the existence of invariant curves of the scattering
maps. The ideas we introduce in the present work allow us to prove the existence of two globally defined
scattering maps Py : NN {t =0} - N N{t =0} in the case pr ~ £*.

Finally, in the case u ~ %, both scattering maps P4 are only O(£%) (for some 8 > 0) close to
the identity whereas the difference between P, and P_ averages out to up to an exponentially small
~ pexp(—1/v/€) term (the size of the splitting). Therefore, proving that this difference is not zero, is
much more demanding than in the a priori unstable case yu < exp(—1/v/2) (even pu = 1).

We end this section with two remarks concerning the degeneracy of Hamiltonian (and of the
setting in which we build the diffusion mechanism leading to Theorem . The first one is that the
convexity of close to N is of order ¢ (and vanishes on N'). Therefore, the Hamiltonian does not
satisfy the assumptions of Nekhoroshev theorem and one could think that the diffusion time is polynomial
in e. This is not the case since the angle between the invariant curves of the map P, and those of the
map P_ is exponentially small with respect to €.

The second remark is that, although in the present case all the cylinder is foliated by periodic orbits
with the same frequency (which, as already discussed above, introduces certain challenges for proving
the existence of diffusive orbits), we have the strong feeling that the the ideas developed in this work,
specially the ones in Sections [2.3.1] and can be adapted to the a priori stable case for the original
Arnold model, in which there exists a Normally Hyperbolic Invariant Cylinder A foliated by invariant
tori of frequencies (wy(I),wy) = (1, 1).

2.1.6 Organization of the article

In Section we introduce the (nearly integrable) parabolic regime with large angular momentum dis-
cussed in Section[2.1.4] We show that, in this regime, the RPE3BP can be treated as a fast time periodic
perturbation of the 2BP, whose main features are also discussed in Section [2:2] Section [2.3] contains the
core of the proof of Theorem More concretely, Section [2.3.1] renders the main ideas behind the
proof of the first main ingredient: existence of transverse intersections between the invariant manifolds
of Pso. The proof of this result is postponed to Section Sections to [2.3.5] are devoted to the
construction of two global scattering maps on P,, and the analysis of the transversality between the
invariant curves of these maps. The rather technical proofs of the results in these sections are deferred
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to Sections [2.5] 2.6 and Appendix [2.B] Finally, in Section [2:3.6] we state a suitable shadowing result for
parabolic manifolds which completes the proof of Theorem Appendix [5.C| contains a detailed study
of the perturbative potential and the associated Melnikov potential.

Througout the rest of the paper we fix a value p € (0,1/2).
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2.2 The 2BP and a nearly integrable regime for the RPE3BP

The 2 Body Problem (2BP) in polar coordinates is the Hamiltonian system associated to

HZBP(r7y7G) = % to5 (27)

on the phase space (r, o, y,G) € Ry x T x R%. Since the Hamiltonian Happ does not depend on the angle
«, the angular momentum G is a first integral for the 2BP. Moreover, it is functionally independent and
commutes with the energy Hopp, what makes the 2BP integrable. The dynamics of the 2BP is completely
understood: positive energy levels correspond to hyperbolic motions, negative energy levels to elliptic
motions and the zero energy level corresponds to parabolic motions.

2.2.1 The parabolic homoclinic manifold of the 2BP

Of special interest for us are the parabolic motions. Denote by P2BF = {(c0,,0,G) € Ry x T x R?} =
P N{t = E = 0} the parabolic infinity in the reduced phase space (see the extended phase space in
polar coordinates in Section [2.1.1]), which is a 2 dimensional TNHIC. Then, the set of points leading
to parabolic motions, that is, the set {Hogp = 0}, is a 3 dimensional submanifold Wl;p homoclinic to
P2BP | Let @F1,sp e the flow associated to the Hamiltonian (2.7)), thenﬂ

Wihp = {z e Ry x T x R%: 32 € P2BP for which T [¢F,,,, () = Oy, (2)] = 0. (2.8)

The following lemma gives a parametrization of the homoclinic manifold W;p. A proof can be found
in [MP94].
Lemma 2.2.1. There exist real analytic functions ry(u), an(u) and yn(u) such that
Wisp = {T28p (1, B) = (G?*ru(u), B+ an(u), G 'yn(u),G) €ERL x TxR*:u € R, BT, G € R\ {0}}
and, if we denote by Xopp the vector field associated to the Hamiltonian ,

Xoppolapp = DIgpp T with T = (G73,0).

The functions Ty, yn and oy admit a unique analytic extension to C\{u =is: s € (—oo, —1/3]U[1/3,00)}
and satisfy the asymptotic behavior

ru(u) ~ u?/? exp(iap (u)) ~ 1 yn(u) ~ w3 as u— £00

5Note that for the r component 7, o Popp (z) = o0 as T — too.
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and

+q 1/2
- 1/3) yn(u) ~ (ui/3)~ /2 as u — +i/3.

uFi/3
Moreover, yn(u) = 0 if and only if u =0 and ry(u) > 1/2 for all u € R.

rn(u) ~ (uti/3)"/? exp(iap(u)) ~ (

2.2.2 The parabolic regime with large angular momentum for the RPE3BP
It is a fact, implied by the last item in Lemma [2.2.1] that, for G, > 1,
T (Wigp N{G > G.}) > G2/2>> 1,

where by 7, we denote the projection into the r coordinate. Therefore, in a neighborhood of the parabolic
homoclinic manifold (6.21)) for the 2BP we have r > 1 (that is, the massless body is far away from the
primaries) and the Hamiltonian of the RPE3BP can be studied as a perturbation of the (integrable) 2BP.
Indeed, expanding the Hamiltonian (2.3]) in powers of 1/,

Hoatroty B =L+ S g o( LY 2 ety )+ B+ 0 (2

ol\7, &, 1, Y, &, = 5 5.0 a9 = Y, g |
pol Y 2 22 7 r3 2BPAT Y r3

where we have used that V0 in (2.3)) is given by

I
(r? +2(1 = pro(t) cos(a = f(t)) + (1 — p)?0%)/?

Vool(r, o, t) =

1—p 1 1
+ 3 s =T 3
(r2 + 2uro(t) cos(a — f(t)) + u20?)/ r r
With the object of investigating this perturbative regime, we consider an arbitrarily large constant G, > 1
and make the conformally symplectic scaling
(7:’ a? t? g? é’ E) '—> (717 a? t? y? G? E)
defined by ) }
r=G*7, y=G.1, G = G.G, E=G.E.
Up to time reparametrization, the autonomous Hamiltonian in the scaled variables reads
~2 ap
L o~ - 7 G
H t,y9,G, E) ==
('I",Oé, 'Y, 9 ) 9 + 27.;2

It is an easy computation to show that, for G27 > 1,
~ 1 1
V(F,at)==-+0 -
w01~ +0 (gm)

H(F, 1,3, G, E) = Hopp(7,§,G) + G3E + O(G,*773%).
The nature of this perturbative regime is now clear: in the parabolic regime with large angular momentum
the RPE3BP is a fast time periodic perturbation (f = G2) of the slow dynamics (¥ ~ & ~ § = O(1)) of
the 2BP. Since the gravitational potential V is analytic on a complex neighborhood of the embedding
of Wh;p in the extended phase space, succesive averaging steps can be performed to find a real analytic
change of variables 1 defined on a complex neighborhood of Wi, N {é > 1} in which

Hovy =K+ O(exp(—CG?)) (2.9)

for some C' > 0 and where K = K (7, a, 9, G) is O(G*) close to H and coincides with H at Po,N{G > 1}.
A simple counting dimension argument shows that, for the flow associated to the 2 degrees of freedom
autonomous Hamiltonian K, the invariant manifolds associated to Pa, N{G > 1} (which is also a TNHIC
for K) must coincide along a homoclinic manifold. Therefore, it follows from that the distance
between W3 (P, N {G > G.}) is bounded by O(exp(—CG?)).

—V (7o t) + G3E, V(F,a,t) = G2Vpor (G2F, 1) .

and, therefore
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Figure 2.2: The unstable and stable manifolds W"*(Py,) of the Topological Normally Hyperbolic Invari-
ant Cylinder Pos. In order to measure the splitting between W}, and W}, we build a suitable symplectic
coordinate system (depending non trivially on I" and I®), in which the directions of exponentially small
splitting are isolated from the non-exponentially small one.

2.3 Proof of the main theorem

The first step in the proof of Theorem is to prove that the manifolds W"*(P4,) (defined in (2.5))
intersect transversally. This is a rather delicate problem since we will see that the splitting angle between
W(Ps N{G > G.}) and W5(Ps, N {G > G.}) is exponentially small in 1/G, and we will not study
directly the existence of intersections between them. The reason is that, in order to measure this splitting,
one needs to find a suitable local coordinate system which isolates the exponentially small directions.
However, these directions are highly sensitive with respect to the projection along the stable and unstable
foliations (see Figure and it is not clear a priori how to locate them without exploiting the symplectic
features of the problem.

To overcome this difficulty we take advantage of the fact that P, in is foliated by invariant tori

lpoo:U,]—Iv 7—]:{.%:(00,4,0,15,0,]',0)7 (@)t)ETQ,G:I}

I€eR

and, therefore, we can express
u,s
W™ (Pse) = |J W)
IER

where W;"* are the stable and unstable manifolds of the invariant torus 7;. Since W;"® are Lagrangian
submanifolds, one can parametrize them (at least locally) as a graph over the configuration space and
measure the splitting in the conjugate directions. Since all tori 7; C P, are resonant with frequencies
(wa,wt) = (0,1), we will see that the splitting between their invariant manifolds is highly anisotropic.

In the present work, we extend the formalism developed by Lochak, Marco and Sauzin in [LMS03],
to analyze directly the existence of transverse intersections between the stable W3}. and unstable W7,
manifolds of two (possibly) different invariant tori 7y« and 7s.

2.3.1 The non exact Lagrangian intersection problem

In this section, we exploit the Hamilton-Jacobi formalism to reduce the problem of existence of intersec-
tions between W7}, and W7, to the problem of existence of critical points of a certain scalar function.
Before entering the details of our construction, the introduction of some notation is in order. Given a
value I, € Ry, for € € (0, I;3), we define the annulus

AL, e)=Tx{I,<I <3} cTxR (2.10)
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and, given p > 0, we introduce the complex neighborhood
Ay(I,e) =T, x Ay (I, e) C (C/2nZ) x C (2.11)
where T, is the strip of width p centered at the real torus and
Ay i(I,e)={I €C:|ImI| < p, I, <Rel < e '/3}. (2.12)

Remark 2.3.1. In the following we will restrict our analysis to tori Trus such that I, I° € A(I.,€). The
introduction of the annulus A(I.,e) C T x R is needed for the following reasons. On one hand, in order
to work in the perturbative regime introduced in Section[2.2.3, one needs to consider a region of the phase
space with sufficiently large angular momentum, hence the requirement I > I,. On the other hand, the
requirement € < I3 is of technical nature and it is related to the limitations of the method (see Appendix
that we use to compute the so-called Melnikov potential (defined in below).

Remark 2.3.2. The use of complex neighborhoods of A(I,€) is needed to make use of Cauchy estimates
in Section . In the following, fized a value of I., we will simply write A, A, and A, and drop the
dependence on I,.

Given I,,p > 0 and € € (0,13), for any I, I° € A, 1, we define
Jm:;P+F) (2.13)
and perform the change of variables (depending on I,,)
N, (u, 8,6, Y, J, E; Iny) — (r,a,t,y,G, E) (2.14)
given by
r = I2r,(u) a =+ ap(u) y = I tyn(u) + T2y, H(w) (Y —r 2 ) G=1Iy+J,

where 1, yn and «y, are defined in Lemma The change of variables n;_ is the symplectic completion

m

of the change in the basis given by r = IZr,(u), @ = 3 + ap(u), which is well suited to study a
neighborhood of the unperturbed homoclinic orbit Wisp N {G = I} (see (6.21))).

A key point in our construction, is that we use the parametrization of Wi, N {G = I,} in Lemma
[2:27] as first order approximation both for the unstable manifold of 77« and for the stable manifold of
T

Remark 2.3.3. Notice that in (u,p,t,Y,J, E) coordinates, the tori Tius are given by T = {u =
—00,Y=E=0, J=1"—In} and T;s ={u=00,Y =E =0, J=1I°—I,}.

The proof of the following result is a straightforward computation.

Lemma 2.3.4. Let (Mpo1,dApo1) be the exact symplectic manifold where Mpyo s the phase space in polar
coordinates (see (2.2)) and Apor = ydr + Gda + Edt is the canonical one form. Let (M,d\) be the exact
symplectic manifold

M = {(u,3,t,Y,J,E) € R x T? x R*} and A =Ydu+ JdB + Edt

The change of variables nr, : M \ {u =0} — Ry x T? x R? defined in ([2.14) satisfies

du + I,,dB.

2
¥ Apol — A= ———
Y FEN ()

In particular, nj s a symplectic change of variables between (M \ {u = 0},d\) and (M1, dApol)-

Remark 2.3.5. The map ny,, is not defined at w = 0 since yn(u) = 0 (see Lemma This will
introduce some technicalities at certain steps in the proof of Theorem [2.1.1]
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After time reparametrization (multiplication by I3), when expressed in the new coordinate system,
the Hamiltonian function Hyo in (2.3)) reads

Y — r_2(u)J)2 J?
H tY.JE)=Y +I3FE ( h -V t: I, 2.15
(u? /B? b b ) ) + m + 2y}21(u)1m + 2T}21(u)lm (u)/87 b 76)7 ( )
where I
V(U,B,t; Inue) = Ir%lvpol(jfnrh(u)a /8 + O‘h(u)at; E) - r EI’;) (216)
h

and V,o1 is the gravitational potential expressed in polar coordinates (see (2.3))).
It is easy to check that W, are Lagrangian submanifolds of M but are not exact (unless I® = I'™)
since they have defect of exactness

5 = (0, %(1“ —I*),0) 5 = (0, %(IS —1),0). (2.17)

The manifolds W% — (0,0,0,8"™*) (expressing W} in (u,,t,Y, J, E) coordinates) are, as a matter of
fact, exact Lagrangian submanifolds and there exist functions (here ug is some positive constant)

T (u, B, t; 1", I%,€) : (—o0, —ug] x T? = R, T5(u, B, t; 1%, 1%, €) : [ug,00) x T2 = R, (2.18)
solutions to the Hamilton-Jacobi equation
H(g,0"* +VT"(q; 1", I*,€)) = 0, q=(u,B,1),

which, for ¢ = (u, 3,t) belonging to (—oo, —ug] x T2 — R for the unstable or [ug,c0) x T? — R for the
stable, give parametrizations

W}l“ (q7 [u’Is7 6) :(Qa (;u + VTu(q;Iua Isve))

2.19
Wi (g: I I, €) —(, 8" + VT (g5 I, I, €)) (2.19)

of (a part of) the invariant manifolds W}, and W7, (defined in (2.5)) in the coordinate system defined
by (2.14). In the next proposition, we prove that these parametrizations can be uniquely extended to
domains which intersect along an open set.

Proposition 2.3.6. There exists ps, I, > 0 such that, for e € (0,172), and any I%, I® with I, = (I* +
I5)/2 € A,, r,and |I° — I"| < €|Iu| ™%, the functions T™ in admit a unique analytic continuation
to certain domains of the form (u,3,t) € R%* x T? where R%* C R are such that RN R® is a non-empty
open interval. Moreover,

VTS (u, B, 6 1% 1P, )] S [ Im| V(u, B,t) € R x T?
and
T (u, B, t; 1%, I®  €) =(9(|u|_1/3) asu — —o0 and T5(u, B,t; 1", I°, €) :(’)(|u\_1/3) asu — +00.

Remark 2.3.7. Ideally, one would try to extend the unstable parametrization to R" = (—o0, @] and the
stable one to R® = [—1g,00) for some Ty > 0 so 0 € R* N R°. However, we are not able to define the
parametrizations at w =0 (see Remark . Yet, we can extend Wy, to a domain R" (which
does not contain the point u = 0) and such that R* N R® is a non empty open interval (see Sectionm
the idea is to define a new parametrization which can be extended across u = 0 and then come back to
the Lagrangian graph parametrization). This is crucial, since for measuring the distance between the

invariant manifolds, we need their parametrizations Wi.S, to be defined on an open common domain.

Define now the generating functions

SU (g IV, 1%, €) = (6%°, q) + T™*(q; 1", I® €), q=(u,B,1), (2.20)
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where 0"™*° are given in , which, by definition, solve the Hamilton-Jacobi equation
H(q, VS (q;I",I",€)) = 0,
and the parametrizations can be rewritten as
WE(q; 1, TP €) =(q, VS™(g; 1", I, €)), g € R%* x T2 (2.21)

In this way, we have shown that the problem of existence of transverse intersections between W}, and
Wi is equivalent to the existence of critical points of the splitting potential

(u, B8,t) = AS(u, B, t; I", I°€) = (8™ — S%)(u, B, t; I, I°  €). (2.22)

We point out that the functions S™*° are no more 27-periodic in 8 and must be considered as functions
on the covering 5 € R. Indeed, now for all k € Z,

S%(u, B+ 2km, t; IV, I°, €) =kn(I" — I*) + S (u, 8, t; I", I*, €)
S%(u, f 4 2k, t; IV, I®, €) =km(I® — I") + S (u, B8,t; IV, I®, €).

This fact reflects the non-exact nature of the problem and excludes the possibility (at least in a straigh-
forward manner) of applying topological/variational methods such as Ljusternik-Schnirelman theory to
prove the existence of critical points of as is usually done when 0" = §° (see [ELi94]).

In Theorem [2.3.9] below we establish the existence of two manifolds of critical points for the function
AS defined in (2.22). The main ingredient is the approximation of AS by the so-called Melnikov potential
defined in @P

Proposition 2.3.8. Let AS be the function defined in and let 0 < v1 < vg be two fized real
numbers. Then, there exists p«, L. > 0 such that, for € € (0,173) and any I, I° with I, = (I* + I*)/2 €
A, 1 and |I5 — I'| < €|Iy|™*, there exist an analytic (real analytic if I",I° € R) close to the identity
local change of variables

(- ;I IP€) : [u1,09) x T2 — Cx T3,

(,U’ 07t) }—> (u7/8’t)
and an analytic (real analytic if I*, I® € R) function AS(o,0; 1%, 1% €) such that

AS(t — 30,0, 1", I°,¢) = AS o ®(v,0,t; 1", I°, €). (2.23)

Moreover, if we define the Melnikov potential
L(0,0;1,¢€) = / V(s,0,0 + I s; Iy, €)ds, (2.24)
R

where V' is defined in , then the estimates
|AS(0,6; 1", " €) — (I" = I*)0 — L(0,6; I, €)| < |Im| ",
and (here h!Y denotes the I-th Fourier coefficient of a 2m-periodic function o — h(c))
ASH(O; 1%, 1%, €) = LI(0; I, €)] S |C |12 exp(—[1[Re(17)/3),
are satisfied for some C > 0 independent of I*,I° and €.

Proposition 2.3:8]is proved in Section 2.4 where we perform the analytic continuation of the stable and
unstable generating functions S™* in [2.20| up to a common domain where we can study their difference
AS = §"—S®. The core of Proposition is to give a harmonic by harmonic asymptotic approximation
of AS, defined in , in terms of the Melnikov potential , whose critical points can be easily
computed. Then, a direct application of the implicit function theorem yields next theorem. Again, for
the sake of clarity in the ongoing discussion, its proof is deferred to Section [2:4]
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Theorem 2.3.9. There exists p., I, > 0 such that, for e € (0,1;%) and all (0,I") € A,_, there exist two
real analytic functions R
(97 Iu) = (Jﬂ: (0’ Iu)7 Ij: (0’ Iu))

such that
s AS (o (0,1%),60; 1%, 15.(,1"),€) =0 DoAS(01(0,1),0; 1%, I5.(0, %), €) = 0.

Moreover, the determinant of the Hessian matriz of the function (o,0) — AS(0,0; 1", I°,€) evaluated at
(0,0, 1", I°) = (0+(6,1"),0; 1", I3 (0,1)) is different from zero for all (6,1") € A,.

Before analyzing the consequences of Theorem [2.3.9] it is worth pointing out two remarks. The first
one is that the change of coordinates ¢ obtained in Proposition [2.3.8| can be completed to an exact
symplectic change of coordinates

(1% IPe): (v,0,6,Y,T,E) = (u,B8,t,Y,J, E)

in which now the stable and unstable manifolds are locally parametrized by W}’ub : (v1,v9) x T2 — CS
where

WG 1%, 1%, €) = (3, V(5" 0 )(§; I, I* €)) Wi (G 19, T €) = (§,V(S° 0 ®)(G; I, I, €)),

and ¢ = (v,0,t). Therefore, as AS = (S" — S®) o ¥, the existence of nondegenerate critical points of
AS found in Theorem also implies the existence of transverse intersections between W, and W7,
which, in the coordinate system given by ®, can be parametrized as

(0,6 1%) = Wa(IZ3(t — 0(0,1Y),0, 1%, (6, T%)). (2.25)

The reason for introducing the change of coordinates ® is that this coordinate system isolates the direc-
tions in which the splitting is exponentially small. Namely, we will see in the proof of Proposition [2.3.8
carried out in Section that

105 AS| ~ |Iu| /2 exp(~Re(I3)/3) 09 AS| ~ €| Iu| 5.

The change of coordinates ® depends on the pair of tori whose splitting we are measuring, namely on I
and I®; a fact which reflects the subtleness of the problem (see Figure [2.3)).
The second remark is that there are several different ways to look for zeros of the map

(05AS,00AS) (0, 0; T, I°) : T? x R? — R?.

In Theorem we have chosen to express o and I® in terms of # and I since, with this approach, the
functions o (6, I") and I%.(0, I"), giving rise to critical points of AS, are globally defined on T x {I, <
I < e '/3) which is diffeomorphic to an annular region inside Py, N {t = 0}. In Section we exploit
this construction to show the existence of two scattering maps (one for each of the manifolds I’y and I'_)
which are globally defined on Py, N {t =0} N{I, < T < e /3}.

In Section [2.3.3] once we have established the global existence of the scattering maps in Section
[2:3:2] we describe the critical points of AS in terms of the actions I" and I® labelling the tori 77+ and
Tre« which are connected along the corresponding heteroclinic orbit. This, in some sense, more natural
approach, sheds light on the relationship between the generating functions of the invariant manifolds and
the scattering maps (see Proposition . As a matter of fact, we define the generating functions of
each scattering map in terms of the generating functions S"* of the invariant manifolds.

Remark 2.3.10. In the forthcoming sections we only write the dependence on € explicitely when needed.
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2.3.2 Construction of two global scattering maps

From now on we work with the stroboscopic Poincaré map

P:{t=0}— {t=0} (2.26)
induced by the flow of the Hamiltonian (2.3)) on the section {¢ = 0}. Observe that the manifold
PL=Pon{t=0, I, <I<e /3 (2.27)

which can be parametrized by the coordinates («, G), is foliated by fixed points for this map.

In Theorem we have found two manifolds (indexed by +) of non-degenerate critical points of the
function (o, 0) — AS, each of them giving rise to a manifold 'y consisting on heteroclinic orbits to P%
(see the parametrization for {t = 0}). Our goal now is to build a map which encodes the dynamics
along each of the manifolds I'y which, following [DdILS08], we denote as homoclinic channels . These are
the so-called scattering maps introduced by Delshams, de la Llave and Seara in [DAILS00} [DAILS06] (see
also [DAILS0§|, where the geometric properties of this object are thoroughly studied). Loosely speaking,
given one of the channels 'y, at a point (¢", I") € PZ, its associated scattering map gives the forward
asymptotic (a, G) components along the unique heteroclinic orbit through I'y which is asymptotic in the
past to (", I").

The key idea behind the proof of Theorem has been the construction of a bespoke coordinate
system for the analysis of each intersection problem: notice that the changes of variables n; and ®
introduced for studying the intersection between the invariant manifolds W, and W7}, depend both on
the actions I"®. Therefore, up to now, Theorem implies the existence of a bunch of heteroclinic
orbits each of them described in a different coordinate system. Still, in order to build the scattering
maps, we need an unified description of the asymptotic dynamics along the families of heteroclinic orbits.

The first step towards definining them is to obtain a parametrization of the homoclinic channels I'+
in the original polar coordinates . To that end, let ® be the change of variables of Theorem
let 04.(6,1") and I5 (6, I") be the functions obtained in that theorem and for ¢t = 0, define

Dy(O, %) = S(—I2(I", 150, 1)) o (0, 1Y),6,0; ", I5.(6, T%)). (2.28)

Then, the homoclinic manifolds T'y C Mpe (Mpe is the phase space in polar coordinates) can be

parametrized as follows (see (2.14) and (2.21))

Iy = {(r,a,O,y7G7E) = nr, oW 0 ®L(0, 1) =17, oW 0®4(0, 1), (,1%) € Tx {I, < I <e Y3} 1.
(2.29)

Remark 2.3.11. Eventually, we will work with the extended parametrization of the homoclinic manifolds
Iy to the complex domain (6,1") € A,, which was defined in (2.11)).

Notice that the homoclinic manifolds I'y are diffeomorphic to P in (2.27). Therefore, denoting by
gb}{pol the time 7 flow associated to the Hamiltonian (2.3, we can define the backward wave map
Q4 Ty = P nN{t=0}

v (o I1) = lim (@odpy, (2),G 0 0, (2)) (2:30)

and the forward wave map
Q5 Ty - PonN{t=0}

. . . . 2.31
o (@ 03) = lm (a0 6k, (2),G o 6%, (2)) (231)

which are diffeomorphisms on their images. Notice that a and G are constants of motion in P, and
therefore, these limits are well defined. Finally, the so called scattering maps, which encode the dynamics
along the heteroclinic excursions, are given by

Pr=Qi0(Q1) " :PL — Pan{t=0}

(@I s (A1), (2.32)
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We notice at this point that our construction of the homoclinic channels gives much more information
about the dynamics of the scattering map in the action component I than in the angle component .
Namely, using the parametrization (2.29) of the homoclinic manifold 'y and writing x = x4 (0, I") for a
point x4 € 'y, the wave maps satisfy

QL (22(0, 1) =(¢%(6,1"), ") = lim (a0 ¢y (z+(6,1)),1")

T——00

S u s u s u : T u Ts u (233)
O (22 (0, 1) =(¢5% (6, 1), 1L (0,1%) = Tim (a0 6y, (w(6, 1), T3(60,1))
so, up to composing with the close to identity transformation (Q4)~!, the projection of the scattering

map in the direction of the action is given by the function fft obtained in Theorem and which is
determined implicitely in terms of AS = AS o ® by the system of equations

BpAS(o1(0,1%),0; 1", I5.(6, 1)) = 0 BpAS (04 (0,1%),0; 1", I5.(6, ")) = 0. (2.34)

However, the existence of a direct link between the generating functions which parametrize the invariant
manifolds of the tori in 7 = 7; N {t = 0} C P%, and the angular component of the wave maps, and
consequently of the scattering maps, is not clear at the moment. In Section [2:3.3] we establish a relation-
ship between the difference AS(- ; I, I®) defined in between generating functions associated to the
invariant manifolds of a pair of invariant tori 7%, 7%, and the angular dynamics along the heteroclinic
orbit in I+ which connects the tori 7%, 7;5. This connection is crucial to obtain asymptotic formulas for
the scattering maps, since the asymptotics of the difference between generating functions AS(- ; I, I¥)

of a pair of invariant tori is well controlled by the Melnikov function L defined in (2.24)).

2.3.3 A generating function for the scattering maps

It is indeed quite natural to expect a direct relationship between the family of generating functions S, .S®
in . However, until this paper, as far as the authors know, this connection had only been established
up to first order using the so called Melnikov potential (see [DAILS08]). In Theorem we show how
S, 5% completely determine the scattering maps.

To do so, we first need to look at the manifolds of critical points of the function (¢, 0) — AS(c, 0; I", I°)
in a different way from that in Theorem [2.3.9] This is the content of the following proposition, which
will be proved together with Theorem in Section

Proposition 2.3.12. Let AS be the function defined in Theorem [2.53.9 Then, there exists I, > 0 such
that, for any € € (0,1;3) and every pair of actions

(I, I*) e Ry = {(1“,15) € (L, e V32 |IP = I < p(1 — p)(1 — 2”)161(5;16)5} , (2.35)

one can find functions .
(1" 7)) = (6 (1", I7), 0. (1", 7)),
such that
OeAS(6+ (1, I%), 04 (1", I%); I, I%) = 0 OoAS (64 (1, I%), 0. (I, I%); 1", I®) = 0.

Proposition provides in some sense, a more natural way to look for the critical points of the
function AS than the one in Theorem We fix a sufficiently close (but not necessarily exponentially
close) pair of actions (I",I®) and look at the values of the angles (o, ) for which there exists a critical
point of (0,0) — AS. Next theorem gives the connection between the generating functions associated to
the invariant manifolds and the scattering maps.

Theorem 2.3.13. Let (I, I°) € Ry where Ry is the domain defined in (2.38), let 6 (1", I%), 0 (1", I%)
be the functions obtained in Proposition and define

SL(I' 1) = AS(GL(I", I%), 04 (1", I¥); IV, I®). (2.36)
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Then, for all (I*,I°) € Ry, the angles
LI, I°) = 0S8 (1", I®) O (I, %) = =0msSL (I, I°) (2.37)
satisfy
Pi(pi(I", 1), I") = (£5.(I", I?), I).
Namely, St is a generating function for the scattering map Py defined in (2.32]).

The rather slow decay of parabolic motions and the fact that the parametrizations (2.21]) are not
defined at u = 0 introduce certain technicalities in the proof of Theorem [2.3.13] For this reason, the
proof is deferred to Section

2.3.4 Qualitative and asymptotic properties of the scattering maps

The link established between the scattering maps Py and the difference AS between the generating
functions associated to the invariant manifolds of pairs of invariant tori provides very rich information
about the qualitative and quantitative properties of P.. This information is split between Theorem
and Theorem below. The former sums up their qualitative properties and states a global
asymptotic formula for P4 in terms of the reduced Melnikov potentials

Li(e" I € /V (s, 0+ (p )—|—(Iu)3s;I“,e)ds a1 (") = ", a_(o") = "+, (2.38)

where V(u, 8,t; I", €) is the potential introduced in (2.16]). Define also the reduced Melnikov potential
associated to the circular problem

Ly cire(I") = / Veire (8, 6+ (") — " 4 (IV)3s; 1")ds (2.39)
R
where Veie(u, t — 85 1") = V(u, B,¢;1",0). Then, in Theorem [2.3.19] we establish an asymptotic formula
for the difference between the scattering maps P4 and P_.

Remark 2.3.14. In the following we identify A, defined in (2.10) with a complex neighborhood of P, .

Lemma 2.3.15. Let L1 be the reduced Melnikov potentials defined in (2.38|). Then, there exists py, L. > 0
such that for e € (0,1;3) and for all (¢*,I") € A,. we have

15
Dpn Lo (9", T €) =p(1 — p1)(1 — 2) = sin " + O (€| 1|7

8([u)5

3T
Iu77 Iu74.
s+ O el

O Ly (" 1% €) = — p(l—p)

Moreover, under the same assumptions

Ope(Ly — L) (" " €) =pu(1 — m/? (1= 2) + O(I" ™) exp(—(I")%/3)
DLy = L)(@" 1% €) = = (1 — p)e (6v2r T sin " + O(I1*1/2) ) exp(~(I")*/3)).
In particular, the asymptotic formula
{L4, £ M@ T €) = 2000 (L = LIl (9" 1% ) + O (el P exp(~(1")/3)),  (2.40)

which measures the transversality between the level sets of Ly, holds for all (%, I") € A.

Lemma [2.3.15] is proven in Appendix were we provide a detailed analysis of the asymptotic
properties of the Melnikov potential L defined in (2.24). We now state the global properties satisfied by
Py.
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Theorem 2.3.16. The scattering maps Py : PX — P defined in (2.32) are exact symplectic and real
analytic. Moreover, there exists p, > 0 such that the maps P+ admit an analytic extension to A,, and
for all (", I") € A,

-
Py = (Id+JVLL) + (0(|1u|—7, O(e\[“|_11/2)> : (2.41)
where L4 has been defined in (2.38) and J denotes the standard complex structure in R2.

Introduce now (compare (2.27)) the domain
Pcto,circ = ,POO N {t = 07-[* S 1}7 (242)

and denote by
]P)i,CiYC : P;o,circ - P:o,circ (243)

the scattering map (2.32)) associated to the case ¢ = 0, which corresponds to the circular problem
(RPC3BP). The following result is an immediate corollary of Theorem [2.3.16

Lemma 2.3.17. The scattering map Py circ : Pl
of the form

— P associated to the circular case € = 0, is

,circ ,circ?

]P):I:,circ(gouv Iu) = (Sou + wcirC(Iu)v Iu)

Moreover, for all (o, I") € P* we have

oo,circ?
wcirc<1u) - 81“£j:,circ(1u) + O(|Iu|_7)7
where L cive has been defined in (2.39).

Remark 2.3.18. The integrability of the scattering map of the circular problem (e = 0) is a consequence
of the conservation of the Jacobi constant (see Remark .

Once we have established the global existence and asymptotic behavior for the maps P, in Theorem
[2.3.19 below we provide an asymptotic formula for the difference P, —P_. With the intention of clarifying
the statement of Theorem the recalling of some notation is in order. Let ®4 be the maps defined
in , let 24} be the wave maps defined in , denote by =1 be the maps

IV, 1%) = B (I, I%) = (02 (I, I%), 1Y) (2.44)

obtained in Proposition [2.3.12 let S+ be the generating functions obtained in Proposition [2.3.13| and
consider the function I% (6, I") obtained in Theorem Define also the vertical strip

sonvert = Pog N{m/8 < " <m/dj. (2.45)

*
00, ver

Theorem 2.3.19. The restriction Py|ps P,

vert | Pooert — P of the scattering maps P+ to P
be computed as

¢ can

(", ") — (9" — (OnSs + 0p=S1) 0 (AL ony, 0 P 0 E) (P IY), I3 0 (L ony, o Ly) (", I).

Moreover, for all (o, I") € P%

| T
Py =P = JV(Ly — L) +exp(—(1")/3) (O((I")7112), Oe(1) /7)) . (2.46)

The proof of Theorems [2.3.16] and [2.3.19] is postponed until Section

Remark 2.3.20. Notice that to state Theorem we have considered the vertical strip P, yert
instead of the whole submanifold P . This is due to the fact that the maps

(Iua IS) - Qi © E:|:(Iuv [S) = (@i(Iua 15)7]11)
are not invertible everywhere on Pi,. However, it is easy to check from Lemma and Theorem

that Pk, very C Dom (QY 0 Ex)~". This will be enough for our purposes.
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Remark 2.3.21. We point out that does not mean that Py are approximated by Ly up to an
exponentially small remainder. This is a subtle point in our argument: there are non-exponentially small,
i.e. polynomially small, errors in the approximation of P+ by L. What we prove in Theorem 18
that these errors are the same for both approximations of P, and P_.

Remark 2.3.22. Throughout the rest of this section we write (p,I) instead of (%, I").

2.3.5 Transversality between the scattering maps

In this section we prove that the scattering maps P4 share no common invariant curves. This transversal-
ity property will imply (see Section the existence of a transition chain of heteroclinic orbits along
which the angular momentum changes in any predetermined fashion.

To prove this property we first straighten the dynamics of one of the maps. Namely, we obtain a
one degree of freedom Hamiltonian K, defined on P2, such that Py follows the level sets of K up
to an exponentially small remainder. Then, we verify that on the vertical strip P, defined in (2.45),
the scalar product between the vectors VI, and P_ — P is uniformly away from zero to guarantee the
absence of common invariant curves.

We start by looking for the Hamiltonian K. To this end, we first use a theorem by Kuksin and
Poschel (JKP94]) which produces a non autonomous time periodic interpolating Hamiltonian K for the
map P,. The introduction of some notation is in order. Given a domain D C T” x R™ and p > 0 we
write

D, = {z € C*": dist(z, D) < p}.

We write | - |, for the sup norm for functions f : D, — C and use |||, for the case where f is vector
valued. Also, given a domain D as before we call D = D x T x R its extended phase space.

Theorem 2.3.23 (Theorem 4 in [KP94]). Fiz pg > 0 and let F': D, C T x C* — T} x C" be a real
analytic exact symplectic map of the form F = Fy + Fy where

Fo(p, I) = (¢ + Orh(I),I)

for some h: R™ — R and
[EF1llpy < e

Then, there exists £o(n, p, |h|,|Dh|, |D*h]) > 0 such that for all 0 < & < e, there exists a non-autonomous
time periodic real analytic Hamiltonian K(p,7,1,E) : D C T x R — R on the extended phase
space and a real analytic symplectic embedding

j:D—=>Y={K=0, =0}
such that the Poincaré map ¢y for the flow of K on the section ¥ is well defined and satisfies
F=j"1lo¢goj.

Moreover,
K —hl,<e  and |7 —Jjoll, Se,
where jO(SD’T, Ia E) = (@ﬂ 07[7 _h(I)) and P = P0/2
Let D = PX N{l. < I < I.+ 1} be a horizontal strip of width 1. Then, Lemma [2.3.15] Theorem

2.3.16| and Lemma imply that the map P, restricted to D satisfies the hypothesis of Theorem
2.3.23| with h(I) any function such that

Orh(I) = weire (1), e=el®

and some pg > 0 which does not depend on I,. Thus, Theorem |2.3.23| yields a real analytic Hamiltonian
function Ky and a real analytic symplectic embedding j; such that

Py =jitodr, ojy
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and
K —hl|, Sel®, g+ = ol S eI,

where p = po/2 . Writing Xg, for the vector field generated by K| and expanding its Poincaré map
¢K, on the section {7 = 0} in Taylor series we get that

.
b, =1d+ Xi, + (O (I Xk, o5+ 1 Xk, olpl Xk 1lol) s O (1 Xk, 1lh + 1 Xk, olpl Xk, 1lol)) - (2.47)

Moreover, identifying jo with the identity map on D and writing j, = Id + Aj,, for all (¢, 1) € D, /2, a
simple Taylor expansion plus Cauchy estimates show that

dr, =jr oPyojit =jyo (i 4+ Py —1d)o i)
=(Id+Ajy) o (Id = Ajy + (Py = Id) o (Id + Ajiy) ™ + O([| A7+ [12))
+ O(|D(Py —1d)Aj4 p72) + O AG1 115 /2)
=P + O(|Aj¢2) + O(ID(Py — 1d)Aj|,/2)
=P, + O(119).
Therefore, using (2.47), we get that, for all (¢, 1) € D,,
Xg, — (Py —1d) = (O(I7% + eI7%), O(eI%) . (2.48)

Therefore, using Lemma [2.3.15 and Theorem [2.3.16] we observe that the Hamiltonian vector field X,
is a slow fast system on (¢, 7,1, E) € D since 7 = 1 while ¢ = O(I;*) and I = O(eI;%). We now obtain
a Neishtadt’s like normal form (|Nei84]) for the Hamiltonian function K to push the 7 dependence to
an exponentially small remainder.

Lemma 2.3.24. There exists a real analytic change of variables v : D,z — D, /5 with
11d = Y|l,/8 S el;?

and a real analytic autonomous Hamiltonian function Ky : D,/;s — C such that the map

Pp=¢ lojyoProjitor
and the time one map ¢x_ associated to the Hamiltonian function K satisfy

1Py — b, lloys S eexp (—cIy) (2.49)
for some ¢ = ¢(p) > 0.

The proof follows the ideas developed in [Nei84] but in a Hamiltonian setting. We only sketch the
proof in Appendix in order to keep track of the ¢ dependence of the error terms.

Let ¥ = j;l 01, which satisfies ¥ = Id + O(el ) uniformly on D,/g. Then, from the previous lemma,
we know that the curves {K, = const} are almost invariant for the map

P+:19_1OIP+O’[9.

In the next proposition we show that this is not the case for the map P_ = ¥~ 1oP_o4. The approximation
result

Pp —P_~J(Ly — L)

obtained in Theorem [2.3.19| and the asymptotic expression (2.40) measuring the transversality between
the level sets of £, and £_ given in Lemma [2.3.15] are the key to this result.
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Proposition 2.3.25. There exists I, > 0 such that, for any e € (0,1.3), the maps Py and P_ share no
common invariant curve on P .

Proof. We write | - |, ||-|| for the scalar and vectorial sup norm on D (namely, p = 0). Let £y be the
autonomous Hamiltonian obtained in Lemma Then, for all (¢,I) € D the map PL =9 toP, o9
satisfies

K 0Py — Ky = [Ky 0Py = Ky 0 0, | < [VELIIP1 — ¢, || S eexp(—ely),

where ¢ic, is the time one map of the Hamiltonian K, and we have used inequality (2.49) in Lemma
2.3.241 We now claim that, for all (¢, ) € P}, the map P_ = 971 o P_ o ¥ satisfies

vert?
KyoP_ — Ky ={Ly, L} + O(el, " exp(—13/3)),

from which the statement of the proposition follows using the estimates for {£,£_} given in Lemma
2.3.15] Indeed, these estimates prove that the maps P4 share no common invariant curve on

Pr NA{L §I§I*+I;2}
where the estimates are uniform, i.e. for I € {I, < T < I, + I;?} we have
exp(—12/3) S exp(—1°/3) S exp(—I/3).

Since the choice of I, was arbitrary this implies that the maps P, share no common invariant curve on
Px.. To verify the claim we use the triangle inequality to write

|’C+OP_—’C+‘2 |]C+OP_—IC+OP+|—VC+OP+—]C+| .

Now, in order to bound from below the term |} o P_ — K 0P| we expand in Taylor series
K0P — Ky 0Py = (VK (P- —Py) + O (|D?K. (- —Po)[|[P- — Py ]).
On one hand, denoting by J the usual complex structure in R? and using inequality ([2.48)), we have that
T
VK4 =T Py —1d) + (O (| Xk, .1 = (Prr = D), O (I Xk + (Pryr = 1))
—J(Py —1d) + (O (eI%), O (I7%)) .

On the other hand, since ¥ is a O(el%)-close to identity real analytic transformation defined in a complex
neighborhood of size p/8 ~ 1, one easily checks that ¥ =9~ — Id = O(el ) and

P.—P =0 'oP_ ot -9 'oP od= (197101?_71971[@4_)019
:(P_—P++1§OP_—1§OP+)00

1 ~
= <(]P’_ —Py)+ (/0 DY (P_ + s(Py —P_)) ds> (P_ — ]P’+)> 0
=P_ — P, + O (el °|P- —P4])).
Therefore,
(VE4, (P_ —Py)) =(J (P4 —1d) + (O(eI[?), (9(1;8))T , P =P+ O (el PP =Py ) ).
Using the estimates in Theorem [2.3.16}
(T (P4 —1d), (P — P,)) =(0, Ly + O(eI;M))(01(Ly — L) + O(1)% exp(—12/3)))
+(OrLy + O (=0p(Ls — L) + Ol > exp(~12 /3)))
={Ly, L} + Ol exp(~I2/3)),

and the proposition is proved taking into account the asymptotic expressions in Lemma [2.3.15] O
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Figure 2.3: The invariant curves of the map P, (in red) intersect transversally the invariant curves of
the map P_ (in blue). We also sketch a segment of a diffusive orbit for the iterated function system
generated by the maps P.

2.3.6 Shadowing and existence of a transition chain

We now consider the iterated function system generated by the maps P.. Since the maps P, are both
twist maps and share no common invariant curve on P2 , it is proven in [Moe02] (see also [LCO7]) that
the iterated function system generated by the maps Py possesses drift orbits in P2 .

Theorem 2.3.26. Let Py be the maps defined in (2.32). Then, there exists I. such that, for any
€ (0,1;3) and any pair I, I satisfying

L <L <L <el'3
there exists N € N and a sequence

{(ir, 2) h<hen ({4, =} x P zi+1 = Piy (2x)

such that
Tz < I and I, <mrzy.

Finally, the proof of Theorem is completed by standard shadowing results (see Figure|2.3.6| - Let
(¢, I) € P*,, which is a parabolic fixed point of the Poincaré map P in and denote by W(/J 7 its stable
and unstable manifolds. For a number 6 > 0 and a point p € {t = 0} and denote by Bs(p) C {t = 0} the
ball of radius d centered at p at the Poincaré section. The following shadowing result for TNHIC, proved

n [GSMS17] fits our purposes.

Proposition 2.3.27 (Proposition 2 in [GSMSI17]). Let N € NU{oo} and let {(¢x, Ix) }1<k<n be a family
of fized points in P, for the Poincaré map P such that, for all1 <k < N, Wg  intersects transversally
W2(P%) at a point p, € W3, 1 . Then, for any sequence {0k }i>1 with 5k > 0 there exists a point
z € Bs, (vo,1o) and two sequences {ny}1<k<n, {7k t1<k<n, C N with ng < A < ng1 < Agy1 such that

P (2) € Bs, (¢x, I.) and P™(z) € Bs, (px) for all1 <k < N.

Let {zxi<k<n = {(¥k, Ix)}1<k<n C PZ be the sequence of fixed points for the Poincaré map P
given in Theorem [2.3.26] and apply Proposition [2.3.27 with d; > 0 small enough. The proof of Theorem
2.1.1]is complete.
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Figure 2.4: A true orbit of the RPE3BP which shadows the pseudo orbit {zx}1<r<n obtained in Theorem
2.3.26] In blue (red) we skecth segments of the stable (unstable) manifolds associated to parabolic fixed
points {zj }o<r<n of the Poincaré map P.

2.4 The generating functions of the invariant manifolds

In this section we provide the proof of Propositions [2.3.6] and [2.3.8] and show how the latter readily
implies Theorem m First we show the existence of real analytic solutions T%%(u, 8,¢; I%, I% €) to the
Hamilton-Jacobi equation associated to the Hamiltonian H in (2.15)). That is,

H(q,6"* +VT"(q)) =0 q=(u,v,t)
with ¢" = (0, (I" — I*)/2,0), §°* = (0, (I®* — I")/2,0) and asymptotic conditions

lim  T%(u,B,6:1%,I%¢) =0 lim T°%(u,B,t;1% 1% €) =0

Reu——o0 Reu—o0
on certain complex domains of the form D™ x T? defined below, which satisfy
D" N D* # 0, and ((—o00, —up] U [u1, ug]) x T? C D" x T?, [ug, 00) x T? C D* x T?

for some real values ug < u; < us. This is the content of Sections and Then, in Section
we study the difference

AS(; I IPie) = (0" = 8%, q) + (T" —T°)(q; 1", I* €)
on the complex domain (D" N D®) x T? and show that AS is approximated uniformly in (D" N D%) x T?

by -
AS ~ (0% —06%q)+ L

where L is the Melnikov potential (recall that I, = (I" + I°)/2) defined by
L(u, 8, t; I, €) = / Vs, Bt — I3 u+ I3 5; Iy, €)ds. (2.50)
R

Remark 2.4.1. The function L satisfies
L(u, B,t; Iy, €) = L(t — I2u, B; In, €)
where L(o, B; I, €) was defined in (2.24). The introduction of (2.50) is just a matter of convenience for

the forthcoming sections.

38



Finally, we prove that the existence of nondegenerate critical points of the function
g (8% —06%q) + L(q; I%, I®¢)

implies the existence of nondegenerate critical points of the function ¢ — AS(q; I, I®,€).

2.4.1 From the circular to the elliptic problem

As pointed out in the introduction, for ¢ = 0 and p > 0, which corresponds to the circular problem
(RPC3BP), the system is already non integrable since there exist transverse intersections between the
stable and unstable manifolds of all the tori 7; C Po, with I sufficiently large (see [GMS16]). However,
for € = 0, due to the conservation of the Jacobi constant, there do not exist heteroclinic connections
between different tori 77, 7y C Poo. In Theorem we prove that for € > 0 there do exist heteroclinic
connections between sufficiently close 77, 7;: C Po. As explained at the beginning of Section @ this
result will be proved by approximating the difference AS by the Melnikov potential L. In this approxima-
tion there are errors errors coming from the circular part of the perturbation and errors exclusive of the
elliptic part. For this reason, in order to obtain asymptotic formulas for the scattering maps associated
to the aforementioned heteroclinic intersections, in the case u, e > 0, it is necessary to keep track of the
€ dependent part in the generating functions T"*. To that end, we denote by (see [GMSI16])

TS (uyt — B Im) = T (u, B, t; I, I, 0), (2.51)

circ

the generating functions associated to the invariant manifolds of the invariant torus 7y, C P for the
circular problem (e = 0), let

Veire(us t = B3 Iim) = V(u, B, t; In, 0) (2.52)
and introduce the Melnikov potential associated to the circular problem
-Z/circ(uvt_ﬂ;jm) = E(uaﬂat;lmvo)' (253)

2.4.2 Analytic continuation of the unstable generating function

Consider the domain (see Figure and Remark [2.3.7)
D! = {u € C: |Imu| < 1/3 — L]~ — tan 81 Reu, |Tmu| > 1/6 + x|Ln| > — tan BoReu}, (2.54)

where 1, 82 € (0,7/2), 81 < B2 and k > 0 is a given constant. It is clear that for I, large enough D? is
non empty. The role of the parameter & is to shrink the domain D when, in Sections and
we introduce close to identity changes of variables and make use of Cauchy estimates.

In this section we prove the existence of positive constants k, p and o such that for all I, large enough
and any I, € A, 1(1,), [I" — I’ < €|Im|~*, where A, 1 is introduced in , there exists a unique real
analytic solution to the Hamilton-Jacobi equation

H(q, 8" + V") = (1 + A%(q, 6" + VT"),T" + B(q, 6" + VI™)sT" + I39,T" — V(q) =0 (2.55)
with asymptotic condition limgey—s—oo T = 0 in the complex domain (u, 8,t) € Dt x T, x T, and where

1 1
A" = —— (9,T" — ;% (6" + 0T B"=———— (0,T" —r; ' (6" + 05S").  (2.56
2y}21]m ( "h ( +0p )) 2y}2174}211m ( "h ( +0g ) ( )
The existence of T solving the corresponding Hamilton-Jacobi equation on D® x T, x T, with Dy =
{u € C: —wu € D}} is obtained by a completely analogous argument.

Remark 2.4.2. The use of different widths for the strips in the angles 8 and t is only a technical issue.
The solution to the Hamilton-Jacobi equation will be obtained by means of a Newton method in
which the size of the strip T, for the angle § is reduced at each iteration while the size of the strip T,
for the t variable can be kept constant. For this reason, in all the forthcoming notation, we omit the
dependence on o and only emphasize the dependence on p.

The width of the strip of analyticity in the angle B is taken to be the same than the width of the complex
neighborhood for the parameter I,. This is an arbitrary choice to avoid introducing more notation.
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Figure 2.5: The complex domains D}} and D5,.

Let n, v be positive real constants. We now introduce the family of Banach spaces of sequences of
analytic functions in which we will look for solutions to (2.55)

20, = {h = {(WMyez: B DM x T, — C is analytic for all I € Z and ||h||,.,., < oo} (2.57)
where ||-||5,,p is the Fourier sup norm

1l = SR pael”

lez
defined by
| Plln,v,p = sup ‘u”hm (u,ﬁ)‘
(u,B)€(DEN{Re(u)<—-1})XT,
+ sup (i3 412 i3y 200w, )|

(u,B)e(DiN{Re(u)2—-2})xT,

It will also be convenient for us to introduce the Banach spaces
Xpwp = {h=1{n"}iez + A2 DY x T, = C is analytic for all 1 € Z and [Bl,) < 00} . (258)

where
[[h]]n,u,p = ||h| nvp T ”auth-&-l,V-'rl,p- (2-59)
Remark 2.4.3. It is straightforward to check that the elements of Z,, . , and X, , , can be identified with

Fourier series '
h(u, B,) = > Al (u, B)e
leZ

which, for a given u € D", converge on the strip

T, (u) = {t € C/2nZ: ‘Im(t) - % (In(lu — i/3]) — In(|ju + i/3|))‘ < a} .

That is, they yield well defined functions for (u,8) € Dy x T, and t € T, (u). Alternatively one can think
of the elements of X, , as formal Fourier series on the strip T, (see [GMS16] and [GMPS22]).

Remark 2.4.4. In the case I", I° € R, one can replace analytic by real analytic in the definition of Z,, ..,
and Xy .-

In the following lemma we list some properties of the spaces &}, ;. , which will be useful. The proof is
straightforward.
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Lemma 2.4.5. The following statements hold:

e (Graded algebra property) For any g € X,,, and f € Xy, ,, their product satisfies gf €
Xosot vt p-
n+n’,v+v',p

o LetheX,,,. Then, forn <n and v <v we have h € X,y ./ , and
Hh”n’,u’,p = |Im|3(y_y )”h”n,u,p

o Lethe &, , ,. Then for any 0 < § < p we have that Ogh € &, ,, ,—5 and

1087 19.0—5 < 6 [Bllyp-

We also state the following lemma, which will be useful to deal with compositions in the angular
variable 8. The proof can be found in [GMSIG].

Lemma 2.4.6. Let h€ &, , , and let g; € Xy0,,» with p > p,i=12 and

p—p
lgillo.0.r < =5~

Write h o (1d + g;)(u, 8,1) = h(u, B + gi(u, B,),8). Then, ho (Id + g;) € &y with
[ho (Ad + gi)llgv.pr S [1Blln,p-
Moreover, for f = ho (Id+ g2) — ho (Id + g1) we have

1 lner S (0 = 0 I llgz = g1llo0,er-

The choice of the functional space for solving (2.55|) is motivated by the following result proved in
Appendix

Lemma 2.4.7. Fiz k > 0 and 0 > 0. Then, there exist po, I, > 0 such that, for e € (0,172), and
I, 15 with Iy € Ay, 1, the perturbative potential V (v, 3,t; 1) defined in (2.16)) satisfies V' € Xy 3/9
Moreover

sP0 *

1Vll2,3/2.00 S |2

3P0~

and
||V - ‘/c;irc||2,3/2,p0 5 E‘Im‘is

where Veire was defined in (2.52)).
We now state the main result in this section.

Theorem 2.4.8. Let k,0 > 0 and pg > 0 as in Lemma . Then, there exist p € (0,p9) and I, >0
such that for for e € (0,173), and I*,I° such that I, = (I + I*)/2 € A, 1 (1), and |I" — I*| < €|Lx]| 7%,
there exists TV € Xy/31/2,, solution to the Hamilton-Jacobi equation (2.55) such that

17113172, S M| = and IT" = L*1/3,1,p S Hml ™",

where L™ is the unstable half Melnikov potential
0
L(u, B,t; I, €) = / V(u+s, Bt + I3 s; I, €)ds. (2.60)

Moreover,

HTu - T(grc - (Lu - L}:lirc)Hl/&l,p 5 E‘Im‘i’??

where TY

M o is defined in (2.51)) and LY, .(u,t — B; I,) = L"(u, B,t; I, 0).
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The proof of Theorem [2.4.8| will be accomplished by a Newton iterative scheme. That is, we obtain
T as the limit of an iterative process TV = lim,, .., T,, where Ty = 0 and the n-th step is obtained as
the solution to the linear equation

H(Ty-1) + DH(Ty1)[Ty, — Tp1] = 0 (2.61)
where, by abuse of notation we have written (and will write in the forthcoming sections)
H(T,)=H(q,é" +VT,;I",I°)
and H is given in (2.15). One can check that the linearized operator DH (T[] reads

DH(T)[] = (1+ 45 I (0T = 1, *(83 + 057))) Oul

oo h (2.62)
— 4 2 Lt (0uT = 2 (68 + 95T)) Ol ] + L[,
where we recall that 1
62 = 5([” - ).

Since H is quadratic in VT the second differential of H is a bilinear operator and the error we accomplish
at the step n is

m

H(T,) = D*H [AT,, AT,] = y; 2I! ((auATn)2 — 220, AT, 05 AT, + 21y (83ATn)2) (2.63)

where we have introduced the notation AT, =T, — T,,_1.
In the proof of Theorem we treat DH(T')[-] as a small perturbation of the constant coefficients
linear operator
L[] = (8u + I5,00)[]- (2.64)

The next technical lemma, proved in [GOS10], shows the existence of a right inverse for £ on the functional
space X}, ., , with n > 1.

Lemma 2.4.9. Let L be the operator defined in (2.64). Then, for any n > 1 there exists an operator
G: Xy — X1, given by

0
O(h)(w .1) = [ hlut s Bt + Ihs)ds, (2.65)

such that Lo G =1d: A, , , = X, . ,. Moreover, for any h € X, , with n,v > 1 the following estimates
hold

1G(R)ln-1,0-1,0 S 1Pll,0,p and 10uG(M)l,vp S 1Pl

Remark 2.4.10. Lemma or similar versions are usually proved for I, € R (see [GOSI0]). As for
Im € A, 1 we have
arg(In) = tan™ (O(|Im| ™) = O(|IIm| ™),

and it is straightforward to check that the same proof applies for I, € A, ;.

First step of the Newton scheme

The iterative scheme proposed above defines the function 77 as the solution to the linearized equation
H(0)+ DH(0)[T1] = 0. (2.66)

Instead, it will be convenient to modify the first step of the iterative process and define T3 as the solution
to
LTy =—H(0), (2.67)
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where L is the constant coefficients linear operator defined in (2.64). Using Lemma we can rewrite

s
T = —G(H(0)). (2.68)

The properties of the unperturbed homoclinic stated in Lemma [2.:2.1] Lemma [2:4.7] for the potential V'
and the hypothesis |04] < €|l,a|~* imply that (here py is the constant given in Lemma [2.4.7)

IH(0)]4/3,3/2,p0 = ||y{27’ﬂ3[r;1(55)2 —Vllaszz/z,p0 S | ™2 = 0. (2.69)
Therefore, it follows from Lemma 2.4.9 that T\ € Xy /31/2,, With
[T1)1/3.1/2.00 S €0 (2.70)

The error in this first approximation is given by
H(T\) = D*H[T\, Ty] + (DH(T\) — £) [T1].
Using Lemma Lemma and the expressions and , we obtain that for 0 < dg < pg
ID*H [Ty, T1)\la/3,3/2.00—60 S Tm|*/? (”a’U«TlHZQL/B,S/Q,pg + 10uT1 1| 473,3/2,p0 108 T 1 11/3,1/2,p0 50
1Ll 2005 T3 5,32, 50
and

[(DH(T1) — L) [T1]||4/,3/2,p0 50 S | =05 (10uT111/3,1/2,00—50 + 108T111/3,1/2,p0—36) -
Then, it follows from the estimate ) for Ty, the hypothesis |65| < €[Im|™ ~4 and the third and fourth
items in Lemma [2.4.5] that
VE T lla/5,3/2,00- 0 S /28 (14051 4 122052) S ||/ 2e805%,
where g was defined in . We now take
do = sé/g and define p1 = po — do-

Therefore,
IH(T) /38720 S | 2e ey? <€/ = e1.

The iterative argument

Throughout this section, the symbol a < b means that there exists C' > 0 which does not depend on the
step n and I, such that a < Cb.
Through the Newton iteration scheme, at the step n + 1, we have to solve the linearized equation

H(T,) + DH(T,))[AT,11] = 0 AT,i1 = Thsr — T

For that, we have to invert the linear operator DH (T),)[-] defined in . Since this operator has a non
zero coefficient multiplying dg we must find a change of variables

(’LL, Ba t) = \Ijn+1(u7 ®, t) = (uv 2 + "/}nJrl(uv 2 t)v t)a (271)

in which the linearized operator does not involve partial derivatives with respect to the new angle
Define

1

1
An = 5
Vel

(OuTy — % (68 + 05T0)) By = =gz (0T 8+ 0sT)) . (2.72)
h'h
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Then, one can check that, if one considers a change of variables (2.71)) with 4,11 solving (here £ is the

operator (2.64)
Lippy1r = BpoVy,1 — (Ay o Vyy1)0utnya,

the following equations determining an unknown function h are equivalent

DH(T,)[h+H(T,) =0 — (14 Ap 00, 41)0u(ho Wy i1) + 1505 (ho Wy i1) + H(Ty) 0 Wy = 0.

(2.73)
Indeed, if we denote by AT, ;1 the solution of the second equation in ([2.73)), then
ATn+1 = Afn+1 o \I/;Jlrl
solves the first equation in (2.73)). As a consequence, we define
Tn+1 =T, + A{Zf:’thl o “II;}L:[
and _ _ -
Thi1=Thy10Vp1 =T,0 \I/r,:l oW, 11+ AT .

In order to state the inductive hypothesis, we define now the constants

En = ai/_zl Op = 5&/8 P = Pn-1 — 20p_1- (2.74)

Notice that it follows (taking ep small enough) from this definition that p, > po/2 Vn € NU {oo}.
Suppose that:

e (H1) There exists a family of functions {Tihgign C Xi/3,1/2,p,_, and a family of close to identity
maps \Ijl =1Id and {\Pi}QSiSn with \Ilz =Id+ %‘7 w’i S X2/3,1/2,pi,17 such that

Lpig1 =BioVipy — (AjoWi1)0uis1,

where now A;, B; are written in terms of T}

1 ol -1 —2/¢u T -1
i= g (0o W) =205 + 0p(Ti0 W)
1 ~ ~
B. _ — T \Il-_l _ —1/5u T ‘1/__1 .
i 2y}21r}21[m <8u( ioW; ) Ty (55_'_86( i O, )))

e (H2) The functions v; satisfy (see Remark [2.4.11| below)

[it1 — Yilayaiy2.p S Ml 7107y

e (H3) The functions T; satisfy

o = -1
[[Ti+1 —T;o ‘I’i o \Iji+1]]1/371/2,p,1 f, €iy

and _
[H(Tiv1 00 ) 0 Wittllayas/zp S it

Remark 2.4.11. Hypothesis (H2) can be rephrased as

[W; oWy —Td]as1/2.p, S [Tm| 1671

3P~

We claim that, under these hypotheses, there exists a map W, 41 = Id +¥n 11, Yny1 € Xo)3,1/2,, solving

sPn

£¢n+1 =DB,o \Iln—i-l - (An o \Ijn+1)8uwn+l
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with
H¢n+1 - z1Z)n]]2/3,1/2,,an, 5 |Im|715’77L—1

and Tvn+1 € X1/3,1/2,p, such that

HTn+1 ~Tno v, to Voiili/s1/2,0n S €n

for which B
| H(Th1 0 ‘I’;il) © \Ijn+1|‘4/373/27pn+1 S Ent1-

The first step towards the proof of the inductive claim is to look for the change of variables ¥, ;1.

Lemma 2.4.12. Assume that (H1), (H2) and (H3) hold for all 1 <1i <n . Then, there exists V41 =
Id + ¥ni1, Yns1 € Xoy3.1/2,p, such that

LYpy1=BroWyiq — (An © \pn—&-l)av'(/)n-i-l
U)’Lth [[\I]n—'rl — \I/n]]2/371/27pn g |Im|715;_1.

Proof. Throughout the proof we will use the first part of Lemma [2.4.6] which deals with compositions in
the angular variable, without mentioning. We also define p,, = pp—1 — d,—1 to avoid lengthy notation.
Since L is linear, we can write

E(q/}n—&-l - ¢n) =B,oV,41 —By_10¥, — (An © \I’n+1)au¢n+1 + (An—l © \I/n)auwn
=B, o \Ianrl —BpoV¥, + (Bn - anl) oW, — ((An - Anfl) © q’n«kl)au'(/)nJrl
- (Anfl o \IjnJrl —A,_10 \Iln)au'l/}n+1 - (Anfl o \Iln)au(ql}n+1 - wn)

which, by the mean value theorem, can be rewritten as the fixed point equation

AZ/)n+l = g(F(A¢n+1))

in a Banach space &), , , for suitable 7, v, p to be chosen, where A, 11 = 9,11 — ¥p, G is the operator
introduced in Lemma [2:4.9] and

1
F(AYni1) =Av%n 41 / 9By o (Id + sApi1) ds + (B — Bp—1) 0 ¥y,
0
- ((An - Anfl) o (\Iln + Awn+1))8u(wn + A’(/)nJrl)

1
- Awn+1au(wn + Awn—i-l) / aﬁAn © (Id + SAwn—i-l) ds — (An—l o \Ijn)aqun—i-l
0

We obtain Avy,,4+1 by an standard application of the fixed point theorem for Banach spaces. To that end
we first bound the term

F(0)= (B, —Bp-1)oV,, — (A, — Ap_1) o ¥,,0,0y,.
We observe that
d, (:Fn U Ty 10 \1/;11) —B, (Tn Ty oWl o qfn) o P!
+d, (Tn —Tpq10¥ 10 \I:n) oWt 9,0t
and
g (Tn oWl — T, 10 \If,ji1> =0, (Tn —Tpy0W ' o \Pn) oWl 9wt

Therefore, taking into account that (for the case n = 1 notice that ¥ = 0)

[Wnl2/3,1/2,00 1 < [2]2/31/2.0n 1 + Z[W% —Yi—1lo/31/2.pm 0 S [W2l2/31/2.0m 0 S | 7160,
i=3
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it is easy to show that the inductive hypothesis implies

Hyﬂ%ﬂzfglau (Tn o \117_11 - Tnfl o \I]»;il) o \I/n §|Im|_1[[j:n - CZA—;nfl o \Ij»,:il ] \I/n]]l/3,1/2,pn_1

5/3,3/2,n
§|Im|_15n—1

and

Hy{%iglr;lag (Tn o ‘Ilgl - Tn_l o \Il;il) oV, §|Im|715;i1

5/3,3/2,pn

X [[Tn —Tp 10 ‘I’ﬁil oW, ]1/3,1/2,0n 1

§|Im|_15nfldrzi1'
Thus, from the definition of B, in (2.72)),
||(Bn - anl) o \Ijn||5/3,3/2,ﬁn 5 |Im|_15n715;i1 = |Im‘_15771—1~

Taking into account that 6, < &y = |I,|~%/® and the definition of A,, in ([2.72)), a similar computation
shows that

(A — An—1) 0 V0 0utnlls/3,3/2,5, SI(An — An1) o Wallasz,1/2,5, 10unlli e,
§|Im|3/2||(An - Anfl) o \Ijn||2/3,1/2,ﬁn H¢nﬂ2/3,1/2,pn
,S|Im|1/25n—15;i1[[wn]]2/3,1/2,pn S |Im|717/86r7b_1~

Therefore,

1F(0)ll5/3,3/2,5, =I1(Bn — Bn-1) 0¥y — (An — Ap_1) 0 V0 0utnll5/3,3/2, 0,
S| ten—16,1) = I 710%

and it follows from Lemma [2.4.9] that
||Q(F(O))H2/3,1/2,ﬁn 5 |Im|71577171'

We notice that, since A,,, B,, depend linearly on T,

108 Anll2/3.1 /2.5, 5, <N05A1ll2/3.1/2.5 80 + P _NOs(Ai = Ai1)ll2ss1/2.5-5,

1=2
<65 M 10p A ll2j3,1 /2,5 + D 05 A = Aicillagzaez
=2
n—1
s <€°5°_1 ! Zfi‘si_l) S |08y = || 727,
=1

and the same computation shows that
195 Bnlls/3:8/2,50 601 S ml ~"e005 " = [Im| 7275,

Take now any A, Ay* € B(|I,|7167 ;) C Xy/3.1/2,p,- From the fundamental theorem of calculus, it
follows that

1
F(AY") = F(AY) =(A¢™ - Aw)/o 9By o (Id + s(AY* — Ay))ds — Ay o (U, + Atp)0u(AY" — AY)

1
— (AY* — AY)O0y (¢, + Ad;*)/o 0A, o (Id + s(AY™ — Ay)).
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Using the previous estimates, Lemma and the second part of Lemma we obtain that (recall
that Pn = Pn—-1 — 25n—1 = ﬁn - 511—1)

1
|(Ay™ — Ag) / 03By, o (Id + s(Ay™ — Ay)) d8||5/3,3/2,pn g\fm\g/z||aﬁBn||5/3,3/2,pn | Arp — A¢*||2/3,1/2,pn
0

Sl 78 Ay — AY*|l2/3,1/2,p, -
Similar computations show that
IEW) = F)ls/3.3/2,00 S Ml 8110 = 67273172, -
Finally, from Lemma [2.:4.9]
1G (F(¥) = F(@")l2/3,1/2.0, SIF W) = F@")5/3,3/2,0,
S 78y — U |l2/3,1/2,n

Then, the proof of the lemma follows from direct application of the fixed point theorem in the ball of
radius C|I,| 167 _; (for some large enough C') centered at the origin of the Banach space X5/31/2,,,. O

We now complete the proof of the inductive claim for Tn+1~

Proposition 2.4.13. The equation
(14 Ay oW, )0y (AT 41) 4 I2.8,(ATi1) + H(T,) 0 Wpyy =0 (2.75)

admits a unique solution Afn+1 € Xi1/3,1/2,p, such that

||Afn+1”1/3,1/2,pn S €n-
Moreover, the function B _
Thi1 =TpoU, b oW, 1+ AT
satisfies
[H(To1 001 ) 0 W lli/a/2,pm 00 S Ent-
Proof. Again, throughout the proof we will use the first part of Lemma [2.4.6] which deals with compo-

sitions in the angular variable, without mentioning. We rewrite (2.75) as the affine fixed point equation
for AT, 11

ATpir = -G (H(Tn oW ) oW,y — (A, 0 \Iln+1)6u(ATn+1)>

where G is the operator introduced in Lemma The existence of a fixed point Afn+1 € Xi/3,1/2
with

P

[[ATn+1H1/3,1/2,pn Seén
is easily completed using the properties of G in Lemma and the estimates

||(H(Tn o ‘I’Zl)) © ‘I’n+1H4/3,3/2,pn Sen |An o ‘1’n+1||0,0 S I3/2||An o \Ijn+1‘|2/3,1/2,pn < |Im|_17/8»

sPn ~ Tm
which are obtained from the inductive hypothesis after writing

(H(Tp o U )) oW,y =(H(T, 0¥, ")) 0¥, + ((H(Tn oW ) oW,y — (H(T, 0¥, ")) o \pn) :

and using the estimate for [1n 11 —¥n]1/3,1/2,p, given in Lemma [2.4.12} In order to prove the estimate
for the error, it follows from our construction that
H(Tpyy0W,1,) = DH [ATn+1 oW ATy o \IJ;H .

The proof is completed in a straightforward manner from expression (2.63)), the estimate for [[AT n+1l1/3,1/2
and the estimate for [, 11 — ¥n]1/3,1/2,p, given in Lemma [2.4.12

»Pn
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We can now conclude the proof of Theorem [2.4.8|

Proof of Theorem[2.].8 Notice that the function T; obtained in (2.68)) and the map ¥; = Id satisfy the
inductive hypothesis assumed at the beginning of Section [2.4.2] Therefore, for all n € N, we can find
maps ¥, = Id + v, with ¢, € Xy/3,1/2,,,_, satisfying

[['Q/Jn+1 ¢nﬂ1/3 1/2,pn S|I | 15n 1

and functions fn € X1/3,1/2,p,_, Such that

< _ /2t

1Tt = T 0 05" 0 Wil S 20 | (@0 vty S ent1 = €

n
H4/3,3/2,pn

Then, ¥,, converges uniformly on &} /31,2 ,,/4 to an analytic change of coordinates

Voo =Id + oo [ocli /3,12, S | 7206 = [ I |72%/8 (2.76)

and the sequence {T,,} defined by

neN _
T,=T,oV, !

converges uniformly to an analytic function T' € &} /312 ,/4 such that

IT11/3.1/2.p0/a S W T1ll1/30 /2,070 + D N Tns1 = Tullysi/2p/a S €0

n=1
and
I H(T)4/3,3/2,00/4 = nlggoHH(Tn)||4/3,3/2,p0/4 =0.

This proves the existence of a solution 7' € X' /3,1/2,5,/4 to the Hamilton-Jacobi equation (2.55). Moreover,
recalling the definition of the half Melnikov potential L" in (2.60)), we have

1
T _ U —
6 (57

1
-2 2 2
QT = @5+ 05T+ oy (03 + 057
Therefore, using that \5g| < €I, ~* and IT"1/3,1/2,p0 /4, ODE easily obtains that

1T = L1 /31,0078 < ] ™"

We set p = pg/8.
Now we prove the estimate for the difference T" — T% .. The function T _ satisfies (compare (2.55]))

circ* circ
(1 + A%e)OuTlre + B0 Tetre + Indi T — Veire = 0,

with
1

A::]irc = m (a TCII‘C rh265 ClI‘C) Bglrc = -

1

——— (9, T 195TY,.) . 2.77
2%217,}21[“1( circ rh B Clrc) ( )

Using that (see Lemma [2.4.7) |V — Virell2,3/2,00 S €lTm| ™ and, by hypothesis, |03| < €[Im|~*, one easily
obtains that

IT" = Terelli/za/2.0 S €lml 2
This estimate implies that
1A = Agicllasz e, S elml ™ 1B = Bircll2,3/2,0 < €l L ™

and we obtain that
HTu (;irc - (Lu - Llclirc)Hl/?),l,p S 6|Im‘_7?

as was to be shown. O
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Figure 2.6: The domains D% and D};2 defined in (2.81)) and (2.82).

2.4.3 Extension of the parametrization by the flow

Theorem m provides the existence of a Lagrangian graph parametrization W" of the form of
the unstable manifold of the invariant torus 7;., on the domain (u,3,t) € D x T, x T,. As already
discussed in Remark (see also Section below), to study the difference between W, and W&,
we need to extend their parametrizations to a common domain containing a subset of the real line. This
is (at least in a direct manner) not possible using the parametrizations since yp(0) = 0.

We sketch the simple solution to this technical issue. The details can be found in [GMSI6]: since
in polar coordinates (r,a,t,y,G, E) the vector field associated to the Hamiltonian is not singular
(except at r = 0), we look for a different parametrization W*(@, 8,t) of the unstable manifold in polar
coordinates

W, B,t) = {(r,a,t,y, G, E) =(I2r4,(@0) + Reow (@, B, 1), B + an(@) + Qpow (@, B, ), t, I

b . i (2.78)
yh(a) + Yﬂow(ﬂv 67 t, Im + Jﬁow(ﬁa 7t)7 Eﬁow(ﬁa ﬁy t))}

such that R R
(W (@, B,t)) = W@ + 8, B, t + I1s) (2.79)
where ¢, is the time s flow generated by the Hamiltonian . Notice that this extension is a rather
standard procedure since we will consider domains which are at distance order ~ 1 from the singularities
u = =+i/3.
Let i be the change of coordinates defined in and let W" be the Lagrangian graph parametriza-

m

tion associated to the generating function T" obtained in Theorem The first step is to perform a
change of variables h of the form
(u, B,t) = h(@i, B,t) = (@t + hy (@, B, 1), B+ hs(@, 5,t),t) (2.80)

such that the parametrization 7y o W" o h is of the form (2.78) and satisfies (2.79)). This is the content
of Lemma below. Second, we use the flow ¢, to extend this parametrization to a domain

(@,B,t) € Dufow 5 T, x T,, (for suitable k; > K, p1 < p,01 < o ) where
DpioY = {i € C: [Imii| < —tan B1Reu + 1/3 — k1| Im|~*, [Imd| < tan BoReti 4 1/6 + k1[I |3}, (2.81)

This domain contains @ = 0, is at distance ~ O(1) from u = =+i/3, and satisfies D" N D #£ (),
Dufow N DS NR # 0 (see Figure [2.4.3).

Lemma 2.4.14. Let ||-|lo,0,, be as in ([2.58) but referred to the domain D%V N DY, Then, on the
overlapping domain (Dg;ﬂow N DY) x T,, x T,,, there exists an analytic change of coordinates h of the

form (2.80) such that

”hu 0,0,p 5 |Im|74 ||hﬁ||0,0,p 5 |Im‘75/27

and for which the parametrization ny,, o W" o h : (D" N D) x T, x Ty, — C is of the form (2.78)
and satisfies (2.79)).
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The proof of this lemma follows the same lines as the proof of Theorem 5.16 in [GMS16]. As com-
mented above, we now extend the parametrization obtained in Lemma [2.4.14] to the domain Dziﬂow.

Notice that this parametrization will be well defined at @ = 0 since the vector field associated to the
Hamiltonian (2.3)) is not singular at r = I27,(0) # 0.

Lemma 2.4.15. The parametrization nr,, o W' oh : (D,‘;’lﬂOw ND2) x T,, x Ty, — C° obtained in Lemma
2.4.14| can be extended analitically to a parametrization W* : Dziﬁow X T, x Ty, = CC of the form ([2.78)
which satisfies (2.79) and such that

|Im|2(ln(|lm|)_lHRﬂOW”O,O,pu |Im|_1/2 HQHOWHO,O,pu |Im|_1 HYﬂOWHO,O,pu |Im|_3/2||Jﬂ0W||0,0,p1 S |Im|_3>
where the norm ||-||o,0,, is as in ([2.58) but referred to the domain D%,

The proof of this lemma follows the same lines as the proof of Proposition 5.20 in [GMS16]. Finally,
we come back to the graph parametrization. To that end, for suitable ko > K1,p2 < p1,02 < 01, We
define the domain

D,‘iz ={u € C: [Imu|] < —tan f1Reu + 1/3 — ko|In| 3, |Tmu| < tan BoReu + 1/6 — rg| |2,

) » (2.82)
Imu| > —tan BaReu + 1/6 + kol In| ™7}

which is at distance ~ O(1) from v = 0 and verifies D};Q C Do (see Figure [2.4.3).

Lemma 2.4.16. Let W" be the parametrization obtained in Lemma which is of the form (2.78]).
Let ||||o,0,p be as in (2.58) but referred to the domain D). . Then, there exists an analytic change of

coordinates g = (4 + gy (1, B, t), B+ 95(a, B8, t),t) such that

|O,07p 5 |Im|_5/27

lgullo..p < 1Tl ™" lgs

and such that 771_111 oW'og constitutes the unique analytic extension, to the domain (u, 5,t) € D};,z XTpy X Te,
of the Lagrangian graph parametrization YW" associated to the function T obtained in Theorem|2.4.8.

The proof of this lemma follows the same lines as the proof of Proposition 5.21 in [GMSI16]. In
conclusion, we have proven the existence of the analytic continuation of the unstable generating function
T" to the domain (see Figure [2.4.3))

D, ={ueC: |Imu| < —tan f1Reu+1/3 — Kol Im| 72, [Imu| < tan f1Reu +1/3 — Kol Im| 73,

[Tmu| > — tan BoReu + 1/6 + ka|In| 3} (2:83)
Indeed, introducing the Banach spaces
Vi = {h = {W"}1ez: WY D, x T, — C is analytic for all [ € Z and ||h]],., < oo} , (2.84)
where ||-||,,, is the Fourier sup norm
Bl = S0 e 0= sup i3 i3 8)| (285)

lez (u,8)€EDy, X T,

(notice that the weight " becomes now meaningless since D, is bounded), the following proposition,
which extends the domain of definition of the function element 7" in Theorem [2.4.8] holds.

Proposition 2.4.17. There exist ko, 09, p2 > 0 and I, > 0 such that for e € (0,1_3) and I, I° with
Im € Ay, 1, and |I" — I?| < €|Im|™*, there exists T" € V12,0, which constitutes the unique analytic
continuation to (u, B,t) € Dy, x Tp, X Ty, of the function obtained in Theorem|2.4.8 Moreover, in this
domain

1T /2,00 S |l and T = L1 S 1Tl

where L is the unstable half Melnikov potential defined in (2.60). In addition, we have that
||Tu _ Tu

circ circ ~

— (L = Ly l1pe S €| ™

where TY

W o is defined in (2.51)) and LY, .(u,t — B; I,) = L"(u, B,t; Iy, 0).
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Figure 2.7: The domain D, defined in ([2.83]).

2.4.4 The difference AS between the generating functions of the invariant
manifolds

In Theorem @ we have proved that, for suitable k,0 > 0 and p > 0, the formal Fourier series T"
(see Remark [2.4.3) in the parametrization of the unstable manifold of the torus 77« is uniformly
O(|Ia|~7) approximated in X; /3,1/2,p» by the half Melnikov potential L" introduced in . Moreover,
in Proposition [2:4.17] we have shown that 7" admits a unique analytic continuation to the domain
(u,B,t) € Dy, x Tp, x Ty, for suitable ky > K, ps < p and 09 < 0.

The very same argument in the proof of Theorem shows the stable counterpart for the formal
Fourier series 7° on the domain (u,3,t) € D} x T, x T, where D} = {u € C: —u € D}}. Moreover,
denoting by A} 3.1/2,p the associated Banach space for formal Fourier series defined on D x T, x T, T®

is uniformly O(|I,|~") approximated in X7 3.1/2,p by the stable half Melnikov potential

0

Ls(u7ﬁ7t;lm,e):/ V(u+s,B,t+ I3 s; I, €)ds. (2.86)
+o0

Since D,,, C D%, we can now analyze the difference between the generating functions of the stable and

unstable manifolds (see equation (2.20)) and the discussion below it)
AS=8"—5°=("-6%q)+T" - T° (2.87)

on the common domain ¢ = (u,3,t) € Dy, x T,, x Ty,. For the sake of clarity in the forthcoming
arguments, we summarize in Theorem [2.4.18|the previous discussion. We denote by
AScive(u,t — B5Im) = Toipo(uy t — B L) — Tipo (it — B5 Iy (2.88)

Theorem 2.4.18. There, there exist k2,02, p2 > 0 and I, > 0 such that for e € (0,1;3) and I, I° with
Im € Ap, 1 and [T — I8| < ¢|Iy|~*, the difference AS = S™ — S5 defined in (2.20) satisfies AS € V1o
and

sP2

IAS = (8" = 6°,¢) = Lll1 /2,00 < | 7,

P2~

where the norm ||-||,., is defined in ([2.85) and the Melnikov potential L is defined in (2.50). Moreover,
we have o
HAS — AScire — (<6u -6, q> +L - LcirC)HLpz N 6|Im|_7v

where ASciyc s defined in (2.88]) and Leire is defined in (2.53)).

We now recall that the aim of Section [2.4]is to show that the existence of nondegenerate critical points
of the function ((6" — &%), ¢) + L implies the existence of critical points of the function ¢ — AS. Namely,
our goal is to prove Theorem As first step, we provide a proof of Proposition [2.3.8 With that
objective we state the following lemma, whose proof is given in Appendix [5.C]
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Lemma 2.4.19. Let pg > 0 be given in Lemma . Then, there exists I, > 0 such that for e € (0,1.3)
and I, € A, 1, the Melnikov potential L defined in (2.50) is an analytic function of all its arguments
(real analytic if I, € R) and can be expressed as the absolutely convergent series

i’(uaﬁvt;lualsve) = Z‘Cl(t_ Igl’uﬂﬁ;lmae))

leN
where, writing o =t — I3 u,

o Lo(B;Im) = (1 — ) (Lo,o(Ims €) + Lo (Im, €) cos B+ Eo(B; I, €)) with

™ — —
L070(Im,6) :ﬁ (1 + O(|Im| 4,6 2))

LO’]_(Im,G) = — (1 — 2/1,)

| Eo(B; Im, €)] €| Il 7,

157e
813

(14 0(Iml ™ 7))

o Li(0,B;Im,€) = p(l — p)(2L1,1(Im, €) cos(o — B) + 2L1 2(Im, €) cos(o — 28) + E1 (o, B; Im, €)) with

2L (I ) =(1 = 210)y 5= (14 Ol ™€) exp(~15/3)

2L1,2(Ims €) = = /205, (14 O | ™, €7)) exp(~13,/3) (2.89)
|E1(0, B I, €)] Se([ 1] =% + €| I |*/?) exp(—15,/3),

o The sum of the higher coefficients
L>o(u, Bt Im) Zﬁl B3 I, €
1>2

satisfies the estimate
|L50] S [Im|*? exp(—2Re(13})/3).

Notice that the estimates in Theorem only imply
0uA(S = L) < [Im| 7

while ~
|0uL| ~ |In|*’? exp(—Re(I5)/3).

The existence of critical points of AS as a consequence of the existence of nondegenerate critical points
of the function (5" — %), q) + L is therefore not clear at the moment. This “mismatch” is caused by not
looking at the problem in the right set of coordinates. In Lemma [2.:4.20] below, we prove the existence of
a change of variables (u, 3,t) = ®(v,0,t) such that AS = AS o ® only depends on v and ¢ through the
difference o =t — I3 v. This fact is equivalent to AS € KerL where £ is the linear operator

L=20,+ I30;.

Then, in Lemma it is shown that functions in Y, , N KerL (see (2.84))), present an exponential
decay in the size of their Fourier coefficients. Finally, this last property, together with the approximation
of AS by ((6" —6%),¢) + L in the norm , given in Theorem are used to complete the proof
of Proposition [2.3.§
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Lemma 2.4.20. There exists p3,I. > 0 such that for ¢ € (0,173) and I%,I° with I, € Ap,r and
|[I% — I8| < €|Iu| 7%, there exists an analytic change of variables of the form

(u,B,t) = ®(v,0,t) = (v+ ¢p(v,0,1),0 + ¢g(v,0,1),t)
with ¢y € Vo,p5, G0 € V12,0, and [Py llo,p5 S [I| =4, Doll1/2,05 S |Im| =%, such that AS = ASo® satisfies
LAS = (0, + I30,)AS = 0. (2.90)
Moreover, under the same hypotheses, there exists an analytic change of variables
(u,t — ) = Poirc(v,t — ) = (U + by circ(v,t — 0),0 + dg.circ(v,t — 0))

with ¢v,circ S yO,pg; ¢9,circ S y1/2,p3 and ||¢v - d)v,circ”O,pg 5 6|Im|_47 H(be - ¢6’,Circ||1/2,p3 5 6IIm|_4; such
that AScire = AScire © Peive Satisfies

ASeire(v,t = 0) = ASeire(t — 0 — I3,; In), (2.91)
for some periodic function Agcirc(t —0—I3v;1y).
Proof. Using that both S™* satisfy the same Hamilton—JELcobi equation H(q, VS™®) = 0 it is an straight-
forward computation to check that AS is a solution to LAS = 0 with
L= (1+(A+A")) 8, + (B* + Bz + 130, (2.92)

and where A™* B"* are defined as in (2.56). One can now check that AS € KerL, if and only if, ®
satisfies
Loy, =(A"+AY o and Lop = (B*+ B")od. (2.93)

In order to rewrite (2.93) as a fixed point equation for ® we introduce the left inverse operator G for £
defined by the expression (here v; and v_ are the top and bottom points and vy is any real point in the

domain D,, defined in (2.83)),
G(h) =Y _Gln) (2.94)

IEZ
with o
Gl (n) :/ (v + s,O)eMrsnsds for [>0
Vi —v
0
Gl (n) :/ RO (v + s, 0)ds for =0
o -
Gl (n) :/ (v + s, 0)emsds for 1<0.
Therefore, it is enough to look for @ satisfying
by = G(4° + A") 0 ) and b0 = G((B* + B) 0 D).

The proof of the first part of the lemma now follows from a standard fixed point argument along the
lines (but considerably simpler) of the proof of Lemma [2.4.12] (see also Theorem 6.3 in [GMS1@]). In
particular, the proof is easily completed using the estimates

1A /2, S Hl ™ 1B ll3/2,0 S [Tl 7%,

NN

which are obtained in an straightforward manner from Proposition [2.4.17] and the discussion at the
beginning of Section by taking, for example, p3 < ps/2. To deal with compositions, we make use of
a natural extension of Lemma which allows to treat also changes of variables in v (details can be
found in [GMS16]).
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We now prove the second part of the lemma. Introduce the angle £ =t — 3, and write ASgire(u, &; Iin)-
Therefore, AScirc is a solution to LeircASecire = 0 where

ZCirC = (1 + (AZII‘C + A::llrc)) a + ( lerc B::]lrc)a (295)

and AS B are defined in (2.77)). Thus, ASir. € KerL, if and only if, écirc(v, f) = (V+ @y circ (v f) f—

circ’ Ccirc

0. circ (v, 5)) satisfies
Ly cire = (Agire T Agire) © Peire and Lo cire = (Biye + BYye) © 0 Pire.

The lemma follows using the estimates (see the proof of Theorem
HAH ,S AU S

Circ Circ

Selln|™1BY = Billsz, < ellml ™

P~

O

The following lemma gives the exponential decay of the Fourier coeflicients for functions in Y, ,NKerL
(see also Lemma 6.7 in [GMS16])

Lemma 2.4.21. Fiz v,p >0 and let h € ), , be such that h € KerL. Then h can be written as

’U 9 t ZA[I] zl t—1I3 v)
lEZ

and, for some C > 0 independent of ||h||,,, and I,
sup [AY(0)] Slhllu, (CHul)* 2 exp(—[1|Re(13,)/3).
0€T,
Proof. Write
h(v,0,t) Zh[l]UQ i,

leZ

’U at ZA[I] zlt 1371)

IEZ

Since h € Kerl

where AU(0) = nlY (v, 0)6”131” is independent of v. For [ > 0, we evaluate at vy = i(1/3 — k|[,|~®) and
use that

1 < L2 A

to obtain that
AL < LB exp(—IIRe(IE)(1/3 = k| ~2))
<[l (CIn)* @2 exp(—|1|Re(1},)/3)
for some C' > 0. The result for [ < 0 is obtained analogously evaluating at v_ = —i(1/3 — k|I,|73). O
We now have all the ingredients to complete the proof of Proposition [2.3.8

Remark 2.4.22. In the following, we rename as p the constant ps > 0 which was obtained in Lemma
[2.4.20
Proof of Proposition[2.3.8, Recall that L, which was defined in (2.50)), satisfies

i(u, Bit; Im,€) = L(t — Ir?;lu’ B3 I €),

where L(c, B; I, €) was defined in (2.24). Let § = (v,6,t). Since & = AS — (0" — 6°),4) — L € KerL,
and £ € Y3, ,, it is enough to estimate [|€[|1/2,, and apply Lemma [2.4.21] To that end, we write

E=6+6
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with & = AS — (6" —6°%,§) — L, and & = AS — AS. Using that [0"%| < ¢|I,,|~*, the estimate for ||¢]lo,,
in Lemma [2.4.20| and the estimate for AS — (" — 6%, ¢) — L in Theorem [2.4.18| we obtain

1El11/2,0 S ] 7

In order to bound &, it follows from the mean value theorem, the estimates for [|S**||3/2 ,, which can be
deduced from Proposition and the analogous version for T% (see the discussion at Section [2.4.4]),
and the estimates for||¢,|[o,p, [|@6]l1/2,, in Lemma [2.4.20} that

IE2111/2,p S | 71/,

Applying Lemma [2.4.21] we obtain that
AS — (8"~ 0%,q) — L= ell(g)ett-1uv) (2.96)
I€Z

where, there exists some C' > 0, such that for [ # 0,

sup O] S(CILnl)* V2| EN] o, exp(—[I[Re(I5,)/3)
P

S(C| L)~ exp(— 1| Re(I5,)/3)
as was to be shown. O

Finally, we also state the following lemma which will prove useful in the proof, in Section of
Theorem [2.3.91

Lemma 2.4.23. Define the function Eire(0,0; 1", I%) given by
Eeire = AS — AScire — ((I" — I°)0 + L — Leire) (2.97)

where AS and ASci. are defined in Lemma |2.4.20, L is defined in (2.24) and Leyc(oc — 0;1,) =

L(0,0;11,,0). Then, we have that

||gcircH1/2,p 5 €|Im|_11/2'

PT’OOf. We write 5Circ = Ccirc,1 + gcirc,Z + gcirc,?: + gcirc,4 with

gcirc,l = (AS - AScirc - (Iu - Is)ﬂ - (Z/ - Zcirc)) od
gcirc,2 :Ascirc od — AScirc
gcirc,S = - (Iu - IS)¢0
gcirc,4 = - (INJ - IN/circ) + (i/ - i’circ) od
On one hand, Theorem [2.4.18| implies that ||Ecire,1]]1,p S €[I,|~7. On the other hand, the estimates

HavAScirc”B/Q ‘a@AScircHl/lp S ‘Imliga

o]

which can be deduced from Theorem [2.4.18) and the estimates ||¢y, — @v cirello,p, [|#0 — @o.circll1/2,p S

€|Im|™* obtained in Lemma [2.4.20| imply that [Ecire,2ll1/2,0 S e|]m|_11/2. For the third term, since
[1" — I°| < €[Im|™*, the estimate [[¢yl0,p < [fm|™* in Lemma [2.4.20| shows that [[Ecire,3ll1/2,0 S €T ™5
Finally, since |8, (L — icirc)||3/2)p, 05(L — i’circ)”l/Z,p < €|In| 73, which can be deduced from Theorem

2.4.18 we obtain that ||Ecirc,all1/2,p S €| T |11/2. -
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2.4.5 The critical points of the function AS
In this section we use Lemma [2.4.19] and Proposition to provide a proof of Theorem [2.3.9] and

Proposition 2:3:12]

Remark 2.4.24. Since we always assume that [I% — I°| < €|I*|~*, all the errors, which a priori depend
on both I",I* can be estimated in terms of the value of I alone. This is an arbitrary choice motivated
by the fact that, in the following, we take I as independent variable.

Proof of Theorem[2.3.9. Throughout the proof we will use the following notation. Let
K={(0,0,1",°) € T2 x A2 ;: [I" = I°| < €lI"|7*}.
We look for zeros of the function
F(0,0,I",I°) = (0,AS, 09AS) (0, 0; 1", I®), (2.98)

which are of the form (8,0, 1", I%) = (0,04(0,1%), ", I5(6,I")).

In order to obtain asymptotic formulas for the critical points, we divide the proof in two steps. First we
study the existence of critical points o4 circ(6, I") of the function ASgivc(0, 8, I") = ASeirc(0 —0;1"), and
then prove the existence of critical points of the function F' which are € close to (o, I°) = (04 circ(0, I"), I").

Since for all (6,0, 1", I°) € K (see (2.89))

™ ) u
Oy Leire (0 = 0; 1) = (1 = 1) (1 = 2 7 exp(=(1")?/3) sin(o — 0) + O(| 1|72 exp(—Re((1")*)/3))
and
|80Ascir0(0a9?lu) - LcirC( —; Iu)‘ S |Iu| 5/2 exp(—R (( ) )/3)
a direct application of the implicit function theorem shows that there exist non degenerate critical points
Oy cire(0, 1) =0+ O(I" 1) 0 cire(0, ") =0+ +O(I"™1) (2.99)

of the function 5 ASeirc(c, 0, I*).
Therefore, to analyze the zeros of F', we write

0;AS =0, AScive + E5
89AS :(Iu - IS) + 80(-[/ - Lcirc) + 59,1 + 89,2
with
Ey =0, (AS — AS.irc)
€01 =08(AS — ASeive — (1" — I)0 + T — Leiee)) (2.100)
€2 =0pAS.ire

The existence of nondegenerate zeros of the function F(6,0,I", I®) will be a direct consequence of the
asymptotic formulas in Lemma, the estimates in Lemma [2:4.23] and the implicit function theorem.
The first step is to estimate the error terms &,,&p 1 and £y 2. We write &, = 95 (L — Leirc) + Ecire Where
Eire has been defined in . Therefore, the asymptotic formulas in Lemma the fact that
Eeire € KerL and the estimates in Lemma [2.4.23| imply that

€6 | S elI"]*? exp(—Re((I)?)/3).
The estimate in Lemma [2.4.23| implies that
(€0 | S elT"7H2
Moreover, since

1059 ASeire| S 171/ exp(~Re((1)*)/3),
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if we define (for a sufficiently large, but fixed, C > 0)
Ki={0,0,1",IF) € K: |0 — 04 circ(0, I")| < Ce|T"|?}

we obtain that

sup [ a| < el I"*/? exp(—Re((I")%)/3).
(0,0)EK +

Therefore, in view of the asymptotic expression in Lemma [2.4.19

1
9(L — Lesxe) (8, ") = p(1 — p)(1 — 2M>8(E}1T)65 sin 0 + O (e[ 1"[~11/2), (2.101)
we take
G4 (0, 1) = 0o (6, %) B(0, 1) = " + 9p(L — Lewne)(0,54.(6, 1), IV, (2.102)

where o4 cive(0, ") are defined in (2.99), as approximate solutions. Indeed, taking into account the
estimates for &,, & 1 and &y o defined in(2.100)), for all (0,5, I“,fjt) eK

F(0,5:,1", I*) = (O(eexp(~Re(I")*)/3)), O(e| 1| 7/2)) (2.103)

and these estimates extend to (6,0, 1", I8) € K+ = {(0,0,1",I°) € K+ : |I* — I%| < ¢[I"|~}. Denote by
A+ the differential of the map (o, I®) — F(6,0,I", I®) evaluated at (0,54, I", fsi) It is an straightforward
but tedious computation to check that the asymptotic expression in Lemma and the estimates in

E423) imply

A _( +2u(1 —p)Liy O )
+= 0 -1

+< o~ 5/2+6\I“I‘"*/2)exp( e((I')%)/3))  O(IT*[/® exp(~Re((I")?)/3)) )
O(I1"7*/? exp(~Re((1")*)/3)) o(|l*=7)

Therefore, a direct application of the Implicit function theorem, together with the fact that (see )
|Lia| ~ [In| % exp(=Re((I")*)/3)),
yields the existence of I, > 1 and
o1 (0, 1) =61(0, 1) + O(e|IV?) I5.(0,1%) = I5.(0, ") 4 O(e| Ln|~1Y/?) (2.104)
such that, for all (0,I") € A, =T, x A, 1, we have
F(0,0.(0,1"), 1", I5(0,1%) = 0.
O

It will be convenient for the proofs of Theorems [2.3.16] and [2.3.19] which will be given in Section
[2.6] to state now the following more technical version of Theorem [2.3.9] which includes the asymptotic
formulas for the functions o (8, I'), I3 (8, ") obtained in the proof of Theorem [2.3.9|above.

Lemma 2.4.25. Let (0,1") € A, and let
(6,1) = (0(6, 1), 13.(6,1"))
be the real analytic functions satisfying
Oe AS (0 (0,1"),0; 1", I5.(0,1")) =0 OpAS(01(0,1"),0; 1", I5.(0, 1)) = 0,
which were obtained in Theorem . Then, for all (0,1") € A, we have
oy =0+0(I"), o_=0+71+0(I"™)

and
TL(0, 1Y) = T 4 9p Lo (0, ") + O(e|IY|711/2),
where L4(0, 1) is the Melnikov potential defined in (2.38)).
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Proof. The result for o is deduced from (2.99) and (2.104). We only have to prove the result for I%.. In
the proof of Theorem above, we have obtained that (see (2.102)) and (2.104))

LL(0,1") = I" + 0 (L — Leive) (0,0 (0, 1); 1) + O(e| " 711/72),
Let 54(0) =60 and 5_(0) = 6§ + 7. On one hand, since
low — e | ST,
from the asymptotic expression in Lemma we obtain that, for all (6,I") € A,
89 (L — Leirc) (8, 64(0); 1) = (L — Leive) (6, 04 (8, 1"); I)| S e[ I'[*/* exp(—Re((1")*/3)

and

9

105 (L — Leire) 8054 (0,5.4(8); I)| S e|I"[*/2 exp(—Re((1")*/3),
and the lemma follows from the fact that Lei.c(64(0) — 0; ") does not depend on 6. O
We now finish this section with the proof of Proposition [2.3.12

Proof of Proposition[2 | For I, I® such that

p(1 — p)(1 — 2p)157e

s _ u <
[P =1 < 16]1v|? ’
we define
~ S(IM)5([s — v ~

where 04 iy are defined in (2.99). Denoting by A, the differential of the map (0,0) — F(0,0,1",I°),
where F' is defined in (2.98), evaluated at (0(1%,I%),64 (1", I%),I", I®), we obtain that

;‘I _ :tu(l — /J,)Ll’l 0
+ 0 (1 — p) (1 — 2p) 2% cos

815
+< o~ 5/2+6\I“I3/2)exp( e((I')%)/3))  O(I1"|~/? exp(—Re((I ))/3))>
O(|1%7*/% exp(—Re((1")%)/3)) O(e| 171172

and again, it follows from direct application of the Implicit function theorem the existence of a value I,
(which might be different from the one obtained in the proof of Theorem [2.3.9) and functions

G(I%I%) = 64(0,1%) = +O(e| I ?) 04 (1", %) = O(I", I®) + O(e|IV|711/?)

such that
FOL(IY %), 6.(I%1°),I%I°) =0

for all

(I",I%) € {(I“, FyeC e, |- < 1= “féb:fu)l‘rm} .
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2.5 The generating functions of the scattering maps. Proof of

Theorem [2.3.13

As explained in Section [2:3:2] Theorem implies the existence of two scattering maps Py : PX — PX
(see (2.32). In this section, we provide the rather technical proof of Theorem [2.3.13] in which we prove
the existence (and obtain an explicit expression) of a generating function for each of the scattering maps
Py.

Proof of Theorem[2.3.13 Consider the time 7' map qﬁgpol of the Hamiltonian H, introduced in (2.3).
The transformation gbgpol is exact symplectic and therefore there exists a function P7T : Mpyo1 — R such
that dPT = ( Epol)*k — Apol- The function (it is defined modulo constants) P is known as the primitive

function associated to the exact symplectic map d)gpol. It is a standard computation (see the proof of
Theorem 13 in [DAILS0§]) that (up to a constant)

T
PT = A (inol >\p01 + HPOI) © ¢7I:Ip01d7-7

where ip_, Apol denotes the contraction of the one form A,o = ydr + Gda + Edt with the vector field
associated to the Hamiltonian Hy,. Now we obtain an expression for the primitive function associated
to the (exact symplectic) scattering maps PL. The natural candidate to consider as primitive function of
the scattering map Py defined in would be (see Theorem 13 in [DdILS08|) to consider the function
PT restricted to I'y, which is given by

T
Pﬁ:(sﬁu, Iu) = Tlgr})o T inol)\pOl o ¢THpol o (Qu):T:l(QDuv Iu) dT> (2'105)

where we have already taken into account that Hpe 0 ¢3;  © (Q")2' = 0 and that the dynamics in Pu,
is trivial. However, the improper integral is not convergent (Theorem 13 in [DAILS08] is proved
for scattering maps associated to Normally Hyperbolic Invariant Manifolds, however, in the present case
the rate of contraction/expansion along the stable/unstable leaves of Py, is only polynomial). Indeed,

for 7 — £o0 (see Lemma and Proposition [2.3.6])
. T uy—1l/ u jyu 2 G2 T uy—1l/, u jyu
Uty Apol © O,y © (X)L (0N 1Y) = { 4" + 5 | 0y, o (D)2 (¢, 1Y)
1 2
12 (42 _ ~—2/3
2 (80 365 ) = T

Therefore, we consider instead the renormalized primitive function Py : Pi — R, defined as

Po@'s 1) = [ (it © 0, (@3 (6. 1) = (1)) (2.106)

where Q(u) is any function satisfying Q'(u) = 2/I2m,(u). We now want to express the integrand in
(2.106]) in terms of the parametrizations (2.21]). To that end we notice that

1

. _ . _ . _1
i Hypor Apol © O3, © (V) =iH,0Apol © O, © N1, © (4 01, )T = iH,0 Apol © 111, © BF, © (2% 01, )3

Then, using Lemma and the definition of @,

iHyaApol © Ohry, © (AZ! = ig(A +dQ + [mdB) 0 ¢ 0 (2 o, )5

pol

where A\ = Ydu+ Gdp + Edt. Yet, the parametrization (2.21)) is not defined at u = 0 so ¢ o (Q oy, )3
might not be defined for all 7 € R . The rather simple solution to this annoyance goes as follows.
By Cauchy’s initial value theorem, the function ¢} o (Q")L! can be extended analitically to a real
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analytic function, which, by abuse of notation, we denote as 7 (b}lpul o ()1, defined in a complex
neighborhood of R and such that

d T u\— T u\—
ar (¢HP01 o (Q ):I:l) = XHpol o ¢Hpol o (2 ):I:lv

where Xp  is the vector field associated to the Hamiltonian (2.3). Therefore, we can change the
integration path in the definition of Py to a complex path v C C on the domain of analyticity of the
function 7 — ¢;Ipol o (Q“)j_[1 and such that 0 ¢ . Moreover, we can choose 7 to also satisfy that (7,
denotes the projection onto the v component)

u(ti ", 1Y) = (771;1 0 G, © (2)ZH (9", I“)) #0 VT e (2.107)

This is possible since (see the expresion (2.15) of the Hamiltonian H and Proposition [2.3.6) away from
u#0

d
0 0L, B, t) = Oy H o oy (u, B, 1) =1+ O(|In| %),

so by taking v which does not enter a O(|I,|~?) neighborhood of 7 = 0 we can guarantee that ([2.107)
holds. Then,

Pj:(SOuvlu) = / inol)\pol o ¢7I:Ip01 o (Qu):T:l(QDua Iu) - Q/<T) dr
Yy
(2.108)
_ / i\ dQ + IndB) 0 ¢ o (2 o np, )1 (¢, I") — @ (r)dr
;

is well defined. Moreover,
T

lim indQ o ¢l o (%o nIm)il(gp“,]u) - Q'(r) dr
T

T—oo J_p %(Q o (b;{ ° (Qu © 77111,):7:1)(9011’ Iu) - Q/(T) dr
= lim (Q(u(T:¢", 1") = Q(T)) + (Q(=T) = Q(u(~T; ", I))).

We claim that this limit is zero. Indeed, from the expresion (2.15)) of the Hamiltonian H and Proposition
[2:326] we observe, that for large values of wu,
u u d T u - u u T u — u u
(75" 1) =m0 ¢y 0 (2" 0, )3 (9", 1) = Oy H 0 63 (0" 0y, )2 (0", 1)
=1+ O(Ju(r; 0", )| 7*/%).

EU
So for large T" we have
lu(£T;50" 1) £ T)| = O(T'?).
Moreover, Q' (T ~ T~2/3 for T — oo so, by application of the mean value theorem
Qu(ET; ", I") = QET)| S Q' () [u(£T; 9", I") FT| < O(T™/?).
Therefore, expression ([2.108)) reduces to

Pole'.1%) = [ (i + 1nd8) 0 67 0 ()3 (6", 1) (2.109)
¥
Let now v" = 7|,;<0, 7* = 7|r>0 and introduce the functions

P (u, 8,6 1", ) = / i(M + IndB) 0 67 o W (u, 6,1 1", I*)dr

yu

P3(u, 8,t; 1%, I°) :/

in(A+ IndB) 0 6 0 Wi(u, . ; I, I°)dr,
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where W™* are the parametrizations of the invariant manifolds introduced in (2.21). Therefore

P (u, B, 61, I €) :/ L (5" + InB) 0 67, 0 W) (u, .8 I, I*, )dr

Ju dr
=S"(u, B, t; 1%, I° €) + 1,8 — IV " (u, B, t; 1%, 1% €
( dﬂ ) B—1""(u,p ) (2.110)
P*(u, B,t; 1", 1% €) :/ d—((SS+ImB)o¢£oWS) (u, B, t; 1%, I*, e)dr
4o dT

= - Ss(u76at;lualsa€> - Imﬁ+lsws(u767t;lualsa€)a

where "5 (u, 8,t; I*, I%, €) denotes the asymptotic value of the a coordinate along the unstable or unstable
leave of a point in W* or W* given by the parametrization (2.21). Notice that, in particular,

(Pu +PS)(’U’767t;Iu7]S76) = AS(u,ﬁ,t;I“,IS,e) +Isws(u7ﬁat;lualsa€) - Iuwu(uaﬁat;lu718’6)'

Let now (I, I%) € Ry (see (2.35)) and denote by ¢3°(I", I®) the backwards and forward asymptotic
value of the 8 component along the heteroclinic orbit which passes through the heteroclinic point x4+ =
(u,8,t,Y, J, E) given by
xa(IV, 1) =W" o &(—1I3 (I", I®) 64 (1", %), 9i(lu, I°),0; 1", I®)
=WS o &(—I2 (I%, I%)6+ (1", I%), 0+ (1", I®), 0; T%, I®),
where ®(v,0,t; 1", I® €) is the change of variables obtained in Proposition and 64, éi were obtained
in Proposition [2.3.12] That is,
IP:I:(QOL:L(IH?IS%IU) - (@ft(]ua[s)vjs)'
Then, using expression (2.110]), we obtain that the primitive function in (2.109) can be expressed as
Py(@W(I%,1%),1%) =(P" + P®) 0 & (A (I, I°); %)
:Si(IU,IS) + Isﬁpl(Iu,IS) _ Iugﬁi(lll7ls),
where Sy is the function defined in (2.36]). The proposition plainly follows from the definition of primitive

function of an exact symplectic map. Indeed

dSy = dPs — I°dyS, — @5dI° + TUdpY + @LdI" = QLdI® — o5dI°.

2.6 Asymptotic analysis of the scattering maps

In this section we prove Theorems [2.3.16 and 2.3.19] Namely, we establish an asymptotic formula for the
scattering maps defined in and for their difference in terms of the reduced Melnikov potentials £
defined in (2.38). Let ny,, be the change of variables defined in (2.14), consider the function I3.(0,1%)
obtained in Theorem (see also Lemma [2.4.25)), let ®. be the map defined in and let Q% be
the wave maps introduced in . By the expressions (2.33)) for the wave maps, it follows that for all
(", I") € P%,, the G coordinate of the scattering map P4 is given by

IL(@" I =I5 o (L omp, 0 ®i) (", IY).

2.6.1 The wave maps and their difference

Let
Pt =0(u, B, 1%, 1% ) = B+ 9 (u, B, t; I, 1% €) (2.111)
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be the map which to ¢ = (u, 3, t) associates the backward asymptotic 8 component along the leave of the

unstable foliation which passes through the point W"(g; I*, I®, ). The map (2.111)) is indeed the inverse
of the map Vo, =Id + 9 in (2.76) and therefore (the norm [-],, , is defined in (2.59))

[9]1/3,1/2,0 S || 72978, (2.112)

Remark 2.6.1. A more refined analysis of the first step in the iterative process carried out in Sections

and shows that the map Vo = Id + oo in ([2.76) satisfies indeed [Voc]1/31/2,p, S 1074

and consequently [9]1/3,1/2,, S |I%|=*. Performing this extra step would complicate unnecessarily the
iterative process in Sections [2.4.9 and [2.7.3. Therefore we continue our discussion making use of the

rougher estimate (2.112)) which is sufficient for our purposes.

Let now @1 be the change of coordinates defined in (2.28]) and ai,fj[ be the functions obtained in
Theorem [2.3.9] Define now the maps

1 =0QLon, 00y (2.113)
where Q'L are the backward wave maps introduced in (2.30). By construction

QL(9, 1Y) = (9+ (00 ®L)(0, 1Y) + ¢g(—I3 (I, I5.(0, ")) o+ (0, T%)),0,0; I, I5.(0, ™)), I“) (2.114)

where ® = (v + ¢y,0 + ¢g,t) was defined in Lemma [2.4.20L In this section we show that ﬁ‘i is a

O(| I |~%/*)-close to identity map and show that the difference between the map Q% and Q" is expo-
nentially small. To do so we will show that the function

T=00d+ gy (2.115)

is the sum of a function Ypem € Kerl and a function which vanishes when evaluated at (6, o (6, 1), I, I5.(6, I")).
By construction, if we denote by Xy the vector field associated to the Hamiltonian (2.15) and write

Xiy = (Xfus Xbr s Xire) = (Xw o W, X g o W L),
then O, defined in (2.111)), conjugates the vector field
i=Xp,007" P =0 i=1I3

to the vector field X}'. That is, ©~! straightens the dynamics in the ¢" component. It is straightforward
to check that this conjugacy is equivalent to the fact that, 9 defined in (2.111]), solves

LU = =X}, (2.116)

with
LY = X}y ,0u+ X}y 508 + 15,0,

Notice now that
X}fl’u =14+ 2A" X}}ﬁ = 2B",

where A" and B" are the functions defined in (2.56)). Therefore, denoting by L the differential operator
defined in (2.92)) one can rewrite (2.116) as

L9 =—2B" + (A° — AY) 9,0 + (B® — B") 9s9.

It now follows from the definition of ® in Lemma that T, defined in (2.115]), solves
LY :<(AUl — A%)0, 9+ (B*—B") (1+ 8519)> o ®. (2.117)

Write @1 = (u + (iu,ﬁ + ég,t). Thus, from the definition of A"® and B™*®, expression (2.117)) can be
rewritten as

LY = FO,AS + GOgAS
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where AS is defined in (2.23)),

F:f<1+av(£u)+gavqg,3 G:g(l—i_aﬁéﬁ)""—faﬂ(;v

and

(1 + 0¥ — Tﬁauﬁ) g= (1 + 0¥ — Tglauﬁ)

f=- -
yird Ly,

Let G be the left inverse operator for £ defined in (2.94). Since AS € KerL (and 9,AS, 9pAS too),

2yrily,

L(G(F)D,AS + G(G)IpAS) = FO,AS + GOAS

and hence,
T = Thom + G(F)0,AS + G(G)0yAS

for some function Yyom € KerL. Define now
T (0, I%) = Y(—I;3(I% I5(0, 1Y) ox (6, 1%),0,0; %, I5.(0, %)) (2.118)

where o4 (0, I"), I%.(6, I") are the functions obtained in Theorem Then, the functions Q. defined

in (2.113) satisty N
QL (0,I%) = (04 Y(6,1%),1). (2.119)

Lemma 2.6.2. For all (6,1I") € A,
To| S 128 and T =T | S 1Y~ F exp(—Re((1)*))/3).

Proof. Taking into account the estimate for ¢y in Lemma|2.4.20|and the estimate (2.112)) (the norm |||, ,

is defined in (2.85))
IC01/2,0 < 191112, + 1P0ll1/2,0 S 117725,

which implies the first estimate. In order to prove the result for the difference we only need to estimate
Mhomlly 2, = 1T = G(F)OAS — G(G)0pAS|y 5, -

Indeed, since d,AS(o+ (0, 1), 0; 1", I5.(0,1"),€) = dgAS(0+ (0, 1"),0; 1", I5.(0,I"),€) = 0, it follows from
Lemma [2.4.27]

T4 = Y| < 2[(Id = 70) Lrom| < 11" | Thom I 2, exp(—Re((1)*)/3).

To estimate || Yhoml|; 5 ,» one can check from the definition of F, G and the estimates for [|AS||; /2 , which
can be deduced from Theorem [2.4.1§] that

IG(F)0uAS /2,5 S THI0AS 372, S 117

P~ P~
IG(G)0AS|l1 /2,0 ST 7H06AS 1, < 1177

and the proof is completed.

Remark 2.6.3. From now on we will decrease the value of p > 0 without mentioning.
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2.6.2 Proof of Theorem [2.3.16

From the definition of the scattering maps Py (", I") = (¢%, 1) in (2.32), the expressions (2.33) for the
wave maps {2} and Q% , and the definition of 24 in (2.113])

=1 0(Qs) "
We then write
IS =1+ 0Ly + (I — (I" + 9pLs)) 0 (Qu) L+ (I + 0pLs) 0 () F — (I" + 9pLy)).
Therefore, from Lemma we obtain that for all (¢",I") € A,
(I = (1" + 0pLa)) o () | S el 1Y/,

Also, from the estimates of the Melnikov potential L given in Lemma [2.4.19] the expression (2.119) for
Q4 and the estimate for T4 in Lemma we deduce that, for all (", I") € A,

|(I" + 8gLs) o (Qp)™F — (I" + B Ls)| < €] I1M]7598.

Combining both estimates
[ — (1" +8pLa)| S el 7H2,

The result
0% = (" = O L) S 177
has already been proved in [GSMST7] (see also the proof of Proposition [2.6.5)).

Remark 2.6.4. In the authors consider the case 0 < e < exp(—Re(I")3/3)), however, since
both the main term in the asymptotic expansion and the error come from the circular part, the result
holds for 0 <e<1).

2.6.3 Proof of Theorem [2.3.19

We now derive asymptotic formulas for the difference between the components of each of the maps P

and P_ defined in (2.32), thus completing the proof of Theorem [2.3.19
Let I5 (0, I") be the functions obtained in Theorem let 64 (I, I®),04 (1" I?) be the functions
obtained in Proposition 2.3.12] denote by Z be the maps

(I", I°) = E4 (I, %) = (04 (1", %), I") (2.120)
and define the function (see Proposition [2.3.13))
S+ (I", I*) =AS(64 (I, I°), 0, (I, I°); ", I*).

Then, it follows from Proposition |2.3.13|that, for (¢", I") € Pl = PiN{n/8 < ¢" < w/4} (see Remark
2.3.21)) the scattering maps Py : (¢, I") — (9%, I5) are given by the implicit expression

(P 1) = (2" + (OS5 + 0p:S5) 0 (W omp, 0®s 0Z4) ™", Lo (Qon, 0®s)™)).  (2121)

Proposition 2.6.5. Let L1(0,1") be the reduced Melnikov potentials introduced in (2.38). Then, there
exists I, > 0 such that

e For all (6,I") € A (see (2.10)),
(L5 = I2)(0.1") = Bg(L+ — L2)(0.1)] S e(I") ™/ exp(~(1")°)/3) (2.122)
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e For all (,I") € [r/8,7/4] x {I" > I.} C Dom(Z1"), we have

|(OruSy + 01s84 — OpuLy) 0 B —(OpuS_ + 0psS_ — O L_) 0 7|

2.123
S U7V exp(—(1)%)/3). (2129

Proof. We first check . To do so, we write
8JAS :aUAScirc + aa (L - Lcirc) + gcr
9 AS =9 AS + 9 (I1d — 7o) (L — Leire)) + 0o (Id — m0) ASeire) + o,

where &, = OsEecives €9 = O ((Id — 7o) Eecire) and Egire has been defined in (2.97)). Let now 64 (6,1, I)
and I®(0,I") be such that

0y AS(0,54 (0,1, 1%), I, I°) =0 (0o AS)ON (0, 1, 56, 1)) = 0.

One expects that the solution (o, %) = (o4 (0, "), I5.(0, 1)) to (9,AS,9AS) = 0 is close to (o, %) =
(64(0,1",15(0, 1)), 13(0, I")). The main term in the correction of the solution to the second equation of
the system (9,AS, 99AS) = 0 is given by the term

Ao (Id — o) (L — Leire)) (0,6(0, 1%, I°); T, I3(0, T%), €)+0p ((Id — 70) ASeire) (0, 64 (0, 1", I5(0, I™)); IV, T%).
(2.124)
Therefore, using the fact that AS.i (0, 05 I, I¥) = AScive(0 —6; I, I*) and the definition of 64 (0, I", I%),
the term (2.124) can be expressed as
99 ((Id — 7o) (L — Leive)) (8, 6(0, T, I%); %, I3(6, "), €) + Oy (L — Leire) (0, 6+(0, 1%, I5(8, I%)); IV, I®, €)
+ E,(0,64(0, 1%, I%); I, 15(0, 1), €).

It follows from the fact that Leiye = Leirc(0 — 0, 1) and the definition of £4 (6, I";€) that
Ly (0,1 €)= 0p ((Id —7m9)(L — Leixe)) (0,5+£(0); 1%, €) + 05 (L — Leive)(0,5+(0); I, €),

where

Then, the asymptotic formula (2.122]) follows from the estimates

(€ 0] S €l I"|7°2 exp(—Re((1")*/3))

the fact that .
6(0) — &(0, 1%, 1°(0, 1) S |17,

and Lemma 2419
We now prove the asymptotic formula . Let &4 be defined in and Z4 be defined in
(2.44). Then, using that
(0, AS) o PLoZL = (0hAS)oPLoZEL =0

we have
OruS4+ + 07sS4 =0pu (AS odo0Z1)+ 5 (AS odLoZy) = (8[uAS +01sAS)odyL o=y
=(0puL+ 91 L)o®y 02y + &

where L is the Melnikov potential defined in (2.50), and

Er = (Ora(AS — L) + 91:(AS — L)) 0 &4 0 =
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It follows from the estimate
|(Id = m0)(AS — L)(8,0: 1", I°, )| S (I") ™/ exp(—(I")*/3)
in Proposition that for all (6,1") € A
(1 = 7001 (AS — E)(0,05 I, T, €)] S (I") /2 exp(—(I")?/3).

SO
[€1(8, 051", I )| S (1) 71/ exp(—(1")*/3).

Therefore, it follows from the definition of &4 (6, I") that
Ero®y —Ero® | S (IM) 2 exp(—(1)?/3),
for all (6,1") € A and the asymptotic formula (2.123)) is inmediate. O

Finally, we complete the proof of Theorem [2.3.19
Proof of Theorem|[2.5.19 We write

- = -)o(Q) ™ + & with S =P o(Q) ' =P o(Q)"

and the result for the G component follows using that Q. (6, 1%) = (6 + T+ (6, 1"), ") and the estimate
Ty —T_| <I|I7~5/% exp(—Re((I")?)/3) given in Lemma Indeed by the mean value theorem

€2 =1 0 (@) = I o (@)1 < sup [0 |5 — T_| S e(I")™5/% exp(—(I")?/3),
0€T,

where we have used that for all (0,1") € A,
01| S 1035 ] S e(I") P,
We now study the angular component, which for (", I") € Ayers, is given by
05 — % = ((OrSy +91:S4) 0 E71 — (OS_ + 91:5_) 022N 0 Q7! 4 &,
where
Ey =(OS_ +91-8_) 0 (Qy 0E_) " — (9uS_ +91-S_) 0 (Q_o0=_)".

The asymptotic formulas for the Melnikov potential given in Lemma [2.4.19| and the uniform estimates in
Proposition [2.6.5] imply that

|06((OruS_ 4 01:S_) 0 271 S (1) 6.

Since
Ty =T | S (1) exp(—(1")%)/3),

we obtain that, for all (0, I") € Ayert,
|Ea] S e(I™)7%%/% exp(—(1")?/3).

Theorem [2.3.19 now follows combining these estimates with the ones given in Proposition [2:6.5]
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2.A The perturbative potential IV and the Melnikov potential L

In this appendix we provide we provide the proofs of Lemma [2.:4.7, which describes the behavior of
the perturbative potential V' defined in , Lemma which states the main properties of the
Melnikov potential L defined in and Lemma cerning the reduced Melnikov potentials
L+ introduced in . We start by recalling the following well known result, a proof of which can be
found in [MP94].

Lemma 2.A.1. Let ry,(u) and an(u) the functions defined in Lemma m Then, under the real analytic
change of variables u = (T + 73/3)/2, and using the same notation r,(7) and an(7), we have that
241

_ i (T) _ )
ru(7) 2 ¢ T+

T—1

2.A.1 Proof of Lemma
From the definition of V(u, 8,t; I,,) in (2.16]) and straightforward manipulations we obtain that

U(r, B, t: 1) =V (u(7), B, 15 Im)

_ film
- , 1/2 - . 1/2
i (7) (1 n 72(1112;;:)(5(;) eZ(B+ah(T)—f(t))> (1 4 72@3]7{3(&;(;))e—z<a+ah<f)—f<t)>)
(1= p)m I
" 2po(t) g NG 2po(t) i 172 ry(r)
() (1 - Al eitron(=£0)) 77 (1 = P e=ipron(r)=10)

(2.125)

As we need to bound the Fourier coefficients of V (u, 8,t; Iyy,) for u € D, we will use the transformation
in Lemma and bound the potential in these variables, where we have the explicit expressions of r},
and ay,. Tmportant in the sequel is that when « € DY we know that |72 4 1| > k|I,|~/2. We now define
the Fourier coefficients of ¢ — U(r, 8, t; I1,) as the integral expression

1 [ ,
U7, B; 1) = / U(, B, t; Im)e” " dt. (2.126)
0

T on
In this proof we will perform several changes of variables in this integral but we will keep the same

notation for the functions ¢ and f. In order to analyze this integral, we change the integration variable
to the eccentric anomaly ¢ by means of Kepler equation ¢t = £ — esin € so that (2.126)) reads

1 27 . .
Ul(r, 8; I,) = o / (1 —ecos&)U(T, B,€ — esin&; Iy e~ HE—esind gy, (2.127)
T Jo

In this way, we have the explicit formulas

€2

0(§) =1—ecos& 0(6)etf &) = g2 — ¢ e i, (2.128)

12

where a = (v/1 + e++/1 — €)/2. Changing the integration contour in (2.127) to the line {¢ € C/27Z: £ =
an(7) + s, s € [0,27]} we obtain that,

efilah(‘r)

U[l](Tvﬁ;Im):T
vy

27
/ (1—ecos(an(7)+s))U(7, B, an(7)+s—esin(an (7)+$); Im)efil(sfeSin(a“m“))ds,
0
and

2
o(s) = (1 —ecos(an(r) +5))  o(s)ef®) = ¢lon(® (aQe“ —eeton(r) ¢ ;26_"(2%(7)“))) (2.129)
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Now, the main observation is that, using the assumption ¢ < I2, for fixed k,0 > 0 and all (1,) €
{72 4 1| > &|Iu|~3/?} x T, one can easily see that

. 1
‘eeilah(ﬂ') 5 Im 3

and, therefore,
() ST [ols) et ranm=i) <1,

Using these inequalities, as well as the fact that

! "

Rru(r) |~ "
we obtain,
2(1—p)o(®) sip+antn—rvy) L ot 2p0(8) _ti(Bran(n)—f(t) L ot

Iirn(7) aFE arn(T) ™ 2" aFE arn(T) ™

This justifies that we can use the Taylor formula

_1 1 2

(I1+2z)"2 :1—§m+(’)(m )s

to bound the Fourier coefficients of the potential. Using the cancellations of the order 0 and 1 terms we get,
for a certain pg,& > 0 small enough but independent of |I,,|, and for (7, 8) € {|72+ 1| > &[In|~%/2} x T},

U (7, B)| S | =2 rn(7)| 3 letn D e 17,
Equivalenty, for (u,8) € Di x T,
|V[”(u7ﬁ)| < |Im|—3‘rh(u)|—3|e—ila1,(u)|e—\l|&, (2.130)

that taking into account Lemma 1) gives the desired bound for the norm of VI and V and completes
the proof of the first estimate in Lemma [2:477] The estimate for the difference V — V. is obtained from
the fact that V' depends analytically on € and a straightforward application of Schwarz’s lemma.

2.A.2 Proof of Lemmas [2.3.15] and 2.4.19|

The estimates (2.130) are enough to bound the associated Fourier coefficients LU (3; I, of the Melnikov
potential L(u, 8,t; I;,) defined in . In fact

L(u, B,t; I, €) Ze”“ L) LB Iy, €),  LU(B; In / VU (s, B; In, €)eiIm®ds, (2.131)

SO we can write B
L(u,B,t; 1%, 1% ¢) = Zﬁl(t - Iglu,ﬂ;]m, €)
IEN
where . , ,
Li(t = I3, B; Iy €) = U Im LU Iy €) + e 10 Im ) LB, 1,y ).

Then, for [ > 1, it is enough to change the path of integration to Imu = 1 — |I,|* to bound |LU|, use

the bounds (2.130]), use that

2| < 13

and the fact that L= = LI, to obtain, writing o = ¢t — I3u

IIl

1£4(0, 85 In)| < |Tm| 2+ % exp(—IRe(12)/3)
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and, therefore, for the sum,
L52(0, B; )| < |In|% exp(—2Re(12)/3).

The coefficients LI° and LM can be computed expanding the potential U up to order four in powers of
1/rn(7) and bounding the remainder in an analogous way. We do not do the computations here because
they can be found in Lemmas 31 and 36 in [DKdIRS19]. Define the coefficients

1

2m
3 (1= = () [ e ey

k,n
o (p) = om

Then, one has

Lol 1) = <1—u>(c3°<0>7r

3T
(1= 20 07 cos + 0@

and
Ll (O’, /B; Ima 6) = H(l - :U) <2L1,1(Ima 6) COS(U - ﬁ) + 2L1,2(Im7 6) COS(U - 2/8) + O(€|Im|73/2a |C:1))731é1|)) )

with

E11(Ims) (1= 20) (0[5 + Ol ) expl-12/3)

L1 a(Im,€) = <c§’2(0)\/ % + O(e)) exp(—13,/3).

The proof of Lemma [2.4.19| is now completed by making use of Lemma 28 in [DKdIRS19] where the
coefficients cl "(0) are computed. An analogous computation is done in [GMPS22].
Finally, the proof of Lemma [2.3.15] is straightforward after noticing that

(B Im) =Y LI (B; 1) L (BiLn) =Y (1)’ LI(B; I).

lez leZ

2.B Proof of Lemma [2.3.24]

We look for a symplectic change of variables as the time one map of the Hamiltonian flow ¢ induced
by a function Fj to be determined. We write Ky = Ky + Ry where Ky does not depend on time and the
average (Rg) = 0. Notice that

Xk llpr2 =€ S I [ Xrollp2 =€ S el

~ *

By Taylor’s formula with integral remainder we find that
K+O¢F1 :Ko—f—aTFl +R0+P0

where )
POZ{Ko,F1}+/ {R0+(175){K0,F1},F1}O¢§;~1d8.
0

Since (Rp) = 0 we can choose F periodic and satisfying F; = — fOT Ryds so

HXFl ||p/2

Now we write K o ¢, = K1 + Ry where K1 = Ko+ (Fy) and Ry = Py — (Py). Write p = p/2, then, the
estimates
||XF1 ”ﬁ S é7 ‘R1|ﬁ—5 S 557 ||XK1 - XK0||ﬁ—2§ S/ 56716 (2132)
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for any 0 < € < § < p are straightforward. Indeed
Ko, Fi}ls S 11Xk, 51 Xm 1l < € {Ro, F1}|5 S 1 Xl X |5 S €2

and
{{Ko, 1}, Fi}lps S 6 21X, ol Xm 511 Xy 155 S €8°67% < ed'e

from where the second and third inequalities (2.132) plainly follow. Assume now that we are able to
carry on the process iteratively and find n functions F;, i = 1,...,n such that

Kog¢gpo--o¢p, =K, + Ry,
with

||XFn ||ﬁ—2(n—1)6 5 ééinJrlEnila |Rn|ﬁ—(2n—1)5 S 557n+1€n’ ||XKn - Xanl ||ﬁ72n5 5 55711671

where the symbol a < b means that there exists C' > 0 which does not depend on n,e,é and § such that
a < Cb.

Then, if §~'e < 1 and p — 2(n + 1) > 0 is an easy computation to show that we can perform one
averaging step more to obtain a new function Fj,; such that

Kog¢p o--0¢p,,, = Knp1+ Rnq1

with

[ XF |5 gns S 867", | Rnt1lp-(@ntrys S €6 ",

and
— Xg < gy (gt

n

Xk

n+1 p—2(n+1)s

Therefore, taking § = 2¢, after a number N = [36~!| /4 of averaging steps we get that p—2nd > /2 = p/8
and the reminder has size

—[p6~"]1n2
|Ryl,s S e (e/0)N = 2262 N = 2zcexp (Lo]n)

4

from where the estimate (2.49) follows using the definition of §. On the other hand, by construction

N N
||XKN - XKO”p/S S Z ||XK,, - XKn_l ||p/8 SJ éz o "e" S 5
n=1 n=1

and we have shown that [[Xx, — (P4 —1d)[| 5 < I78. Finally, for ¢ = ¢, o---0 ¢p, we have

Id =9, S 1 X, < el?.
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Chapter 3

Symbolic dynamics in the Restricted
Elliptic Isosceles 3 Body Problem

Abstract: The restricted elliptic isosceles three body problem (REI3BP) models the motion of a mass-
less body under the influence of the Newtonian gravitational force caused by two other bodies called
the primaries. The primaries of masses m; = mo move along a degenerate Keplerian elliptic collision
orbit (on a line) under their gravitational attraction, whereas the third, massless particle, moves on the
plane perpendicular to their line of motion and passing through the center of mass of the primaries. By
symmetry, the component of the angular momentum G of the massless particle along the direction of the
line of the primaries is conserved.

We show the existence of symbolic dynamics in the REI3BP for large G by building a Smale horseshoe
on a certain subset of the phase space. As a consequence we deduce that the REI3BP possesses oscilla-
tory motions, namely orbits which leave every bounded region but return infinitely often to some fixed
bounded region. The proof relies on the existence of transversal homoclinic connections associated to an
invariant manifold at infinity. Since the distance between the stable and unstable manifolds of infinity is
exponentially small, Melnikov theory does not apply.

3.1 Introduction

The restricted three body problem studies the motion of three bodies, one of them massless, under
Newtonian gravitational force. The massless body does not exert any force on the other two, the primaries,
and move therefore according to Kepler laws. As a particular case, in the restricted elliptic isosceles three
body problem (REI3BP), the primaries move along a degenerate ellipse and the third (massless) body
moves on the perpendicular plane to their line of motion passing through their center of mass, which is
invariant. In this configuration the primaries collide, but since it is a Keplerian motion its collisions can
be regularized. In a coordinate system with origin at the center of mass of the primaries, the position of
the primaries is given by

t t
a0="D001  wo="00 ). (3.1)
where
p(t)=1—cosE(t) (3.2)
and the eccentric anomaly F (t) satisfies
t=FE—sinE. (3.3)
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Introducing polar coordinates (r,y, «, @) in the plane of motion of the third body, where (y, G) denote
the conjugated momenta to (r, a) the REI3BP is Hamiltonian with respect to
2 G? 1
HryGt)=L + = - —— (3.4)
2 T 2y P20

4

It is inmediate to check that G is a conserved quantity so the REI3BP is a system of 1 4 1/2 degrees of
freedom. We fix G # 0 in order to avoid triple collisions.

In [BDVO§| the authors the study the existence of symmetric periodic solutions of the Hamiltonian
system associated to . In the present paper we prove the existence of chaotic dynamics in the
REI3BP for large values of the angular momentum G, by building a Smale horseshoe with infinitely
many symbols on a certain subset of the phase space. To build this horseshoe we first prove that the
stable and unstable manifold associated to a certain invariant manifold intersect transversally, giving rise
to homoclinic connections to the invariant manifold.

As a consequence, from the way the horseshoe is built, we deduce the existence of different types of
orbits of the REI3BP according to their behavior as ¢ — +o0o. In particular, the existence of infinitely
many periodic orbits of arbitrary large period is obtained. A complete classification of the orbits of the
three body problem according to their final motion was already established by Chazy in 1922 [Cha22]
(see also [AKNO6]). For the restricted three body problem (either planar or spatial, circular or elliptic)
the possibilities reduce to four:

e H¥*(hyperbolic) : ||r (t)|| — oo and || (t)|| — ¢ > 0 as t — +oc.

e P*(parabolic) : ||r (t)|| — oo and || ()| — 0 as t — +oo.

e B*(bounded) : limsup,_, ., || (¢)]| < co.

e OS¥*(oscillatory) : limsup,_, . |7 (t)|| = oo and liminf; ,4. |7 ()] < co.

Examples of hyperbolic, parabolic and bounded motions were already known by Chazy (in particular
they are present in the two body problem). However, no examples of oscillatory motions were known
until Sitnikov [Sit60] proved their existence on a certain symmetric configuration of the spatial restricted
three body problem, now called the Sitnikov example. We shall prove that any past-future combination
of the four possible final motions exists in the REI3BP.

The connection between chaotic dynamics and the existence of different types of final motions was
first devised by Moser [Mos01], who gave a new proof of the existence of oscillatory motions in the
Sitnikov model. Moser’s approach relying on the connection between final motions, transversal homoclinic
points and symbolic dynamics has been successfully extended to provide more examples of these motions
|LS80al, [LS80b, Moe84] Moe07, [GK12], [GMS16]. When dealing with perturbations of integrable systems
the classical strategy for showing the existence of transversal intersections between the invariant manifolds
is to find non-degenerate zeros of the Melnikov function, which gives an asymptotic expression for the
distance between them. However, when considering fast non-autonomous perturbations, the Melnikov
function is exponentially small with respect to the perturbative parameter and the validity of Melnikov
theory is not justified. This difficulty can be solved when the system in consideration has two perturbative
parameters and an exponentially smallness condition between them is assumed. This was the approach
in [LS80al, where the existence of oscillatory motions in the restricted planar circular three body problem
(RPC3BP) was shown for values of the mass ratio exponentially small compared to the value of the
inverse of the Jacobi constant.

The study of the existence of intersections between invariant manifolds for fast non-autonomous per-
turbations without assuming smallness conditions on extra parameters requires showing that the distance
between invariant manifolds is indeed exponentially small. This problem, now known as exponentially
small splitting of separatrices, has drawn remarkable attention in the past decades, but, due to its dif-
ficulty most of the available results concern concrete models [HMSS8S8| [DS92) [Gel00], (GOS0, [GaGI11] or
in general systems under very restrictive hypothesis to be applicable to problems in Celestial Mechanics
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[DGJS9T, BF04al BF04bl [Gual2l BFGS12, [Gal2]. Following these ideas, [GMS16] proves the transversal-
ity of certain invariant manifolds of the RPC3BP for any mass ratio and large Jacobi constants, extending
the result in [L.S80a] of existence of oscillatory motions to any mass ratio.

Following the same approach in [GMSI6], the present paper proves the exponentially small splitting
of separatrices in a real problem arising from Celestial Mechanics, the aforementioned REI3BP, under
the only assumption of large angular momentum G. It is worth pointing out that the Hamiltonian
is, in general, far from being integrable. However, we will see in Section [3.2] that for orbits with large
angular momentum G, the Hamiltonian can be considered as a fast non-autonomous perturbation
of the two body problem, which is integrable.

From our result we deduce the existence of transverse homoclinic connections and we are able to build
a Smale horseshoe on a certain subset which is close to the homoclinc points. This result completes the
previous work [BDDV17], where the existence of symbolic dynamics in the EIR3BP was investigated for
large values of G using numerical techniques for analyzing the exponentially small splitting of separatrices.

The main result of the present paper, which gives the existence of chaotic dynamics in the REI3BP,
is the following.

Theorem 3.1.1. Denote by ¢ the Poincaré map induced by the flow of the Hamiltonian on the
section X1 = {(r,y,t) eRy xRxT:y=0, §g>0}. Then, there exists 0 < G* < oo such that for
G > G* there exists an invariant set S C X such that the dynamics of ¢ : S — S is topologically
conjugated to the shift

o: Nt - NZ
{an}nez — {an_l}nEZ
Namely 1 has a Smale horseshoe of infinite symbols.

An immediate consequence of Theorem is the existence of infinitely many periodic orbits in the
system associated to Hamiltonian (3.4)). Moreover, from the way the Smale horseshoe of Theorem
is built, we obtain the second main result (see Section for a detailed exposition of this connection).

Theorem 3.1.2. Denote by X (respectively Y ~) either HY, PT BY or OS™ (respectively H=, P~ , B~
or OS™). Then, there exists G* < oo such that if G > G* we have

XtNY ™ #£90

for all possible combinations of X+ and Y ~. In particular, the Hamiltonian system (3.4) posses oscillatory
orbits, that is, orbits such that

limsup|r (t)] =00 and lUminf|r(¢)| < oco.
t—+oo t—+oo

As commented above, the proof of Theorem relies on two main ingredients: establishing the
existence of transversal intersections between the invariant manifolds WW%* associated to a periodic orbit
at infinity and showing the existence of a Smale horseshoe on a certain subset close to the homoclinc
points. The latter follows from the arguments presented in [Mos01] without significant modifications.
These arguments are sketched in Section for the sake of self-completeness.

For the analysis of the splitting of the invariant manifolds, we use the fact that W%* are Lagrangian
submanifolds so they can be parametrized as graphs which satisfy the Hamilton-Jacobi equation associ-
ated to H. Then, we study solutions to this equation in a suitable complex domain to get exponentially
small asymptotics for the distance between W3 and WY . In order to obtain the appropiate expo-
nent these parameterizations must be analyzed in a neighbourhood O (G*3) of the singularities of the
unperturbed homoclinic (G — c0).

The document is organized as follows. In Section we introduce the invariant manifolds at infinity
and discuss the proofs and connection between Theorem and Theorem In particular, from
Theorem which claims the existence of transverse intersections of the infinity manifolds, we build a
Smale horseshoe that is then used to show the existence of any past-future combination of final motions.
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The rest of the paper is devoted to the proof of Theorem We discuss the integrable system (G — 00)
and its homoclinic manifold in Section Section is devoted to rewrite the problem of existence
of the infinity manifolds as a fixed point equation. We solve this equation and bound the solution in a
suitable complex domain in Section In Section we show that the distance between the invariant
manifolds is given, up to first order, by the Melnikov function and then we compute its asymptotic
expansion for large G in Section [3-A]

3.2 Description of the proof of theorems |3.1.1| and

We notice from the Hamiltonian (3.4]) that the angular momentum G is a conserved quantity. Therefore,
we apply the conformally symplectic change of variables

r=G*, y=G 'y, t=G3s,

to the equations of motion associated to the Hamiltonan (3.4) to obtain a new system which is also
Hamiltonian with respect to the scaled Hamiltonian.

i (7,§,5G) = G*H (G*F,G~'§,G%s)
72 3.5)
7?11 s (
=Stz HU(RG)

e o)) e

72 4 0%(G%s) /s

where

U (ﬁG?’s) =

< =

Observe that, for G large, the system associated to the Hamiltonian (3.5) can be studied as a fast and
small non-autonomous perturbation of the Kepler two-body problem. Adding time ¢ as a phase variable,
which we now denote by £, we see from the equations of motion associated to the Hamiltonian ([3.5)

i _
ds_y

g 1 1

d€¢ 3

ds_G’

that A = {(7,9,£) = (00,0,&) : £ € T} is a parabolic periodic orbit, which we will call infinity.
Denoting by ¢s = (¢7, #7, ¢5) the flow of the system (3.7)), we define the stable and unstable manifolds
of infinity as

s _ (=5 T Folx s o) : G55 ) —
Wi, = {(r,y,f) eR, XRxT~Sgr+rloo¢s (7,9,8) = o0, Sggloodg (ny,f)—O}

(3.8)

W = {(f,g,g) ERy xRxT: lim ¢f(7§,&) =00, lim ¢7 (7 7,¢) _o}.
s——00 s——00

The usual way to study the dynamics near infinity is to use McGehee coordinates » = 2z~2 which
map neighbourhoods of infinity into bounded domains containing the origin. In particular, the periodic
orbit A corresponds to the periodic orbit {(z,y,£) = (0,0,&) : £ € T} in McGehee coordinates. This
transformation was used in [McGT73|] to show that W¥%* exist and are analytic submanifolds except at
infinity, where only C'* regularity is proven (see [BEM20c| for more general results). However, in the
present work we prefer to stick to the original variables since the symplectic form is non canonical in
McGehee coordinates.

For G — oo the system is integrable since U — 0 and therefore W3, and WY coincide along a
two dimensional homoclinic manifold which is foliated by Keplerian parabolic orbits. Hence, it can be
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Figure 3.1: Stable and unstable invariant manifolds of infinity for the Poincaré map Pg, in (3.10).

parametrized by the time section £ and a suitable time parametrization (75, (v), gy (v)) of the parabolic
orbit. We denote the parametrization of this invariant manifold as

2 (v,6) = (7 (v) ;90 (v),§)  where  (v,§) € R x T, (3.9)

and fix the origin of v such that g, (0) = 0, which makes the homoclinic orbit symmetric under the map
v — —v. Some properties of this parametrization are discussed in Section [3.3.1

We will prove that in the full problem , this two dimensional homoclinic manifold breaks down
for 1 < G < o0, and W5, WY do not longer coincide. In order to measure the distance between the
invariant manifolds we introduce the Poincaré stroboscopic map

Pey 1 {€=&} — {{=& +2m} (3.10)
(7:7 g) — PEO (ﬁ Zj)
so W3 N {€ = &} become invariant curves v** (see Figure [3.1]).

Then, for y > 0, considering a parametrization of v** of the form

= 7n (v)
¥ (3.11)

< X

where 7, (v) is the parametrization of the unperturbed homoclinic , we observe that to measure
the distance between the invariant manifolds along a suitable section v = v* it suffices to measure the
difference between the functions YESO“ The following theorem is one of the two main ingredients needed
for the proof of Theorem [3.1.1]

Theorem 3.2.1. Let W5, and WY be the infinity manifolds associated to the periodic orbit A and v**
the corresponding curves of the map Pe,. Then, for G large enough,

(i) The curves v exist and have a parametrization of the form (3.11),
(ii) If we fix a section 7 =7 (v*) the distance d between these curves along this section is given by

_ Jy (1) V2r

n (v*)

a3

d G2~ F sin (& — GPv*) + B, |B| <0G~ F (3.12)

where Ji is the first Bessel function of first kind and g correspond to the § component of the
unperturbed homoclinic and C' > 0 is a constant independent of G.

(iii) There exist (at least) two transverse homoclinic connections to the periodic orbit A.
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Ttem (7i7) is a direct consequence of Item (i¢). Indeed, since
J1 (1) ~ 0.44051 # 0

we observe that formula in Theorem implies that the zeros of the distance are given, up
to first order, by the zeros of the function S%; — G3v*). Therefore, transversal intersections of the
invariant curves v** will occur for values of & — G3v* located in a neighbourhood O (G‘l) of the points
& — G3v* = 0, 7. These transversal intersections give rise to two homoclinic connections to the invariant
manifold A as stated in the third item of Theorem B.2.11

Observe that the distance between the invariant manifolds is exponentially small with respect to G.
As usually happens in exponentially small splitting of separatrices phenomena, the smaller the period of
the fast perturbation (in our case 27/G?), the smaller the distance between the manifolds (see [Nei84]).

3.2.1 Symbolic dynamics and oscillatory orbits

Once Theorem is proven, the existence of chaotic dynamics is obtained following the techniques
introduced in [Mos0I]. For that we define the section

S ={(58 R xRxT:j=0,y>0} (3.13)
and use coordinates (7, &) for this section. Then, we define the Poincaré map

¢12+—>E+

(fo,&0) = (F1,&1) (3.14)

where & = & + G®s, and 5 > 0 is the first time in which ¢, (79,0,&p) intersects X, again and 7, is
such that ¢ (7o, 0,&) = (71,0,&1). We set & = oo for points (7, ) which do not intersect X', anymore
in the future and define Dy C X' as the set of points for which & < oco. In the unperturbed problem
(G — o0) one easily deduces, using the conservation of energy, that X is divided in two open sets,
corresponding to initial conditions leading to hyperbolic and elliptic motions, whose common boundary
is the curve in which the homoclinic manifold intersects X,. In this case, Dy corresponds to the
set of initial conditions leading to elliptic motions.

In order to characterize the set Dy in the full problem we make use of the following proposition,
already proven in [BDDV1T], which describes the intersection W** N X, .

Proposition 3.2.2. The stable manifold W?* intersects X backwards for the first time in a simple curve

7 = {75 (o), §0) € X2 75 (§o + 2m) =7 (§0) } - (3.15)
Analogously, the unstable manifold W" intersects Xy forward for the first time in a simple curve
¥ =A{(G (S0) , 0) € X2 7 (§o + 2m) = 7¢ (&0) - (3.16)

Remark 3.2.3. From Theorem |3.2.1] we deduce that the curves 4°* described in Proposition |3.2.4 in-
tersect transversally, a fact which is crucial for the proof of Theorem[3.27)

The curve 4° divides X} in two connected components. One of these components correspond to Dy
and the other component consists of initial conditions leading to orbits which do not intersect X again
and which escape to infinity with positive asymptotic radial velocity. We also define the set D1 C X
of initial conditions (g, &p), in which the map v ~! is well defined. A similar argument to the one above
using 4* instead of 4° can be used to identify this set.

Once we have identified Dy and Dy, given a point (7,&) € Do N Dy we consider the sequence of
consecutive times &, given by ¢¥™ (79, &) = (7, &) for n € Z (whenever they exist) to define the sequence

of integers
4. = fn B gn—l
n 27_[_ ’
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where [-] defines the integer part. Thus, a,, € N measures the number of binary collisions of the primaries
between consecutive approaches of the third body. We introduce some technical concepts needed for
stating the theorem that establishes the existence of symbolic dynamics on a subset of the closure DyN Dy
by conjugating v with the shift acting on a space of doubly infinite sequences.

Let A denote the set of all doubly infinite sequences

a = ( .A_2,0_1,00;01,02 .. )
of elements a,, € N. Equipping A with the product topology, the shift o : A — A given by

g ({a’”}neZ) = {a"—l}nEZ (3'17)

is a homeomorphism.
We can define the compactification A of A admitting elements of the following type: For «, 8 integers
satysfying a <0, 8 > 1, let
a=(00,0041,--.,088-1,00) Gn € N.

We also admit half infinite sequences with o = —o0, § < 00 or @ > —00, § = 00. It is possible to extend
the topology defined on A to A in a way such that the shift is a homeomorphism when restricted
to

Aoz{aeﬁzao#oo}

(see [Mos01] for details).

The proof of the following theorem, from which Theorems and are deduced, follows from
direct adaptation of the ideas presented in [MosO1] for the Sitnikov problem. The main ingredients
are the transversal intersection of the curves v** and a C'! Lambda-Lemma for the parabolic invariant
manifold A. This Lambda-Lemma follows from a careful analysis of the dynamics near A using McGehee
coordinates which map neighbourhoods of infinity into bounded neighborhoods of the origin.

Theorem 3.2.4. There ezists a set S C (Do N Dy) which is invariant under the Poincaré map v defined
in (3.14) and such that its restriction to S, is conjugated to the shift o defined in (3.17). That is, there
exists an homeomorphism x : A — S such that

VX = X0
Moreover, x can be extended to X : A — S such that
VX = XO
if both sides are restricted to Ap.

In other words, to each point p = (rg,&p) € S we associate a sequence a(p) € A which codifies the
time between successive intersections of the flow ¢ (r0,0,&) with X . In this setting, the connection
between Theorem and Theorem becomes clear. The first part of Theorem |3.2.4] corresponds
to sequences

e a(p) =(...a_9,a_1,a9,0a1,...) with a,, € N for all n € Z. These represent orbits which perform
an infinite number of “close” approaches to the line where the primaries move both in the past and
in the future. From this result we deduce the existence of any past-future combination of bounded
(sup,,cz an < 00) and oscillatory (limsup,,_, ., an = 00) motions.

The second part of the theorem, concerns sequences of the following type

e a(p)=(00,a—k,ak+1,...) with a,, € N for all n > —k, which represent capture orbits, i.e., orbits
where the third body comes from infinity at ¢ - —oo and remains revolving around the line of
primaries for all future times. In particular, we obtain orbits which are hyperbolic or parabolic in
the past and bounded or oscillatory in the future.
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e a(p)=(...a1—1,a;,00) with a,, € N for all n < [. In this case the third body performed an infinite
number of oscillations in the past but escapes to infinity as ¢ — oo. These sequences correspond to
orbtis which are bounded or oscillatory in the past and parabolic or hyperbolic in the future.

e a(p) = (00,ak,...,a;,00) with a, € N for all n € Z which corresponds to orbits coming from
infinity, revolving around the primaries a finite number of times and escaping again to infinity as
t — oo. They correspond to past-future combinations of parabolic and hyperbolic motions.

Finally, we point out that the existence of infinitely many periodic orbits in the REI3BP is deduced from
Theorem since fixed points for the shift correspond to periodic orbits of the Hamiltonian ({3.5)).

3.3 The invariant Manifolds as graphs

3.3.1 The unperturbed homoclinic solution

For the unperturbed problem, G — oo in (3.5)), the equations of motion reduce to

Ty
dv
T 11 (3.18)

dv 3 727

In this case the infinity manifolds W3 associated to A coincide along the two dimensional homocinic
manifold Zj, introduced in (3.9). The (complex) singularities of Zj, (v, &) will be crucial for studying the
existence of the invariant manifolds of the perturbed problem in certain complex domains. Thus, we
state the following results, which were already obtained in [MP94].

1. The homoclinic solution (3.9) behaves as

2/3 - —~1/3

7, (V) ~ 307, n (v) ~ 2v as |v] = 0.

2. The homoclinic solution (3.9)) is a real analytic function of v with singularities at v = £i/3.
3. Close to its singularities, the homoclinic solution (3.9) behaves as

i\ /2 c i\ /2
7p (v) ~ C (v F 3) , In (V) ~ 5 <v F 3) ,  where C?=42i.

3.3.2 The perturbed invariant manifolds and their difference

In this section we look for parametrizations of the infinity manifolds W%*® in certain complex domains
defined below. More concretely we look for graph parametrizations of W¥%* as solutions to a PDE. To
do this we observe that the canonical form \ = 7#djj — Hds is closed on the infinity manifolds (since the
infinity manifolds are invariant by the flow it is enough to check that d\ is null on A). Then, one can see
A as the differential of a function S (7, &) such that

S=9 G%0S=-H

or, putting this together, as a solution of the Hamilton-Jacobi equation
G30¢S + H (7,0:5,£) = 0.

We write S = Sy + S1 where Sy is the solution to the unperturbed problem

0:5)> 1
(97.5) + =
2 272

G?’agSo + — % =0
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and perform the change of variables

Then, the equation for Tj (v, &) = S1 (74 (v) ,£) becomes
Ty + = (0T1)” + GOOLTy +V (1,€) = 0, (3.20)
29n
where

Note that the change of variables (3.19) implies that we are looking for parametrizations of the stable
and unstable manifolds of the form

I
=

T h (’U)
~ 1 u,s (3.22)
Yn (U) + mauT1

Y

where 7, (v) , 9p, (v) correspond to the unperturbed homoclinic (3.9) and 77"° (v, &) are solutions of equa-
tion (3.20) with asymptotic boundary condition for the unstable manifold
1

0,11 =0 3.23
V——00 Yh (’U) 1 ( )

and the analogous one for the stable manifold. Once we show the existence of the unstable manifold,
the existence of the stable one is guaranteed by symmetry. Indeed, if T} (v,&) is a solution of ,
=T (—v,—=¢&) is also a solution satisfying the opposite boundary condition.

Before going into the analysis of the existence of the generating functions T}"* we recall that our goal
is to have a first asymptotic approximation of the distance between the infinity manifolds which now
boils down to obtain an asymptotic formula for 9, (T} — T5). To this end, we introduce the Melnikov

potential
o0

L(v¢&G)= / V (7, (v+s), £+ G?s) ds, (3.24)

— 00
which, as we state in Theorem below approximates to first order the difference A = T7 — T7".

We point out that the parametrization becomes undefined at v = 0 since we have fixed v such
that g5, (0) = 0. Since in order to measure 9, (T}* — T7) we need both functions to be defined in a common
domain we will introduce a different parametrization to extend the unstable manifold across v = 0. This
is discussed in full detail in Section 341

The next proposition gives the first asymptotic term of the Melnikov potential and will be proved in

Section [B.Al
Proposition 3.3.1. The function function L (v,£; G) defined in (3.24)) satisfies

L(v,&G) =L (G) + Zi LU (G) cos (1(¢— G3v)) ,
=1

where

LU (G) = =y (1) V2R G2 =5 (1 +0 (G_3/2))

—1ye?

‘L[l] (G)‘ <KG Pe=Ve™5 | forl>1,

with Ji the first Bessel function of the first kind and K > 0 a constant independent of G.
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Figure 3.2: The domain D" defined in (3.25).

Theorem 3.3.2. Choose any 0 < v_ < vy < co. Then, there exists K > 0 such that for any v € [v_,v4]
and for any G large enough, the generating functions Ty (v,€) satisfy

—g3

T5 (v,€) — T} (v,€) — L (v,€) — E| < KG™ e ™5,

where E € R is a constant and

_g3

100 (TF (v,6) = T} (0,€)) = QL (v,§)] < KG~ 275

From Proposition [3.3.1] Theorem and Equation (3.22)) we deduce Theorem We devote
Sections [3.4] and [3.5] to the proof of Theorem [3.3.2

3.4 The invariant manifolds in complex domains

The classical procedure when studying exponentially small splitting of separatrices is to look for the
functions 71 and 77 in a complex common domain D x T where D C C is a connected domain which
reaches a neighborhood of size O (G™) (recall that the period of the perturbation is 271/G3) of
the singularities of the unperturbed separatrix, i.e., v = +i/3 (see Section [3.3.1)). The idea behind this
approach is that for v € R we will get exponentially small bounds on the distance d (v, &) between the
invariant manifolds if we show that d is a quasiperiodic function in some suitable coordinates and we
manage to bound |d| in a connected domain D which contains a subset of the real line and gets close to
the singularities v = +i/3 .

Since boundary conditions are imposed at infinity, we need to solve the equation for T1* (resp.
T7) in a complex unbounded domain reaching v — —oo (resp. v — o0). On the other hand, in order
to measure their difference we need them to be defined in a common domain, we need to extend one of
them across v = 0. However, the equation becomes singular at v = 0 since gy, (0) = 0. To overcome
this problem we divide the process of extension of the invariant manifolds into three steps.

We first solve equation together with the boundary condition in the domain

D3t = {veC: [Im(v)| < —tanBiRe(v) +1/3 — kG2, [Im(v)| > tanBoRe(v) + 1/6 — 6},  (3.25)
which does not contain v = 0 and where x,d and 1,82 € (0,7/2) are fixed independently of G (see

Figure . One can check that for 6 € (0,1/12), kK ~ O (1), we can always find G big enough such
that this domain is non empty. Once the existence of T} in the domain Df:g“ is proven, we exploit the
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Figure 3.3: The domain Dgf’g" defined in 1)

symmetry of equation (3.20)) under the map (v,£) — (—v, —&) to atutomatically deduce the existence of
T7 in the domain

DXy = {veC: [Im(v)| < tanBRe(v) + 1/3 — kG, |Im(v)| > —tanBoRe(v) +1/6 —6}.  (3.26)

The next step is to perform the analytical continuation of 77" accross the imaginary axis. Thus, we
would have both invariant manifolds defined on a common domain (this domain will be contained in
D7 where T is already defined). Since yj, (0) = 0, the equation (3.20) becomes singular at v = 0 so
we change to a parametrization invariant by the flow in the bounded domain

Dps = D5 N (Re(v) > —p) (3.27)

for some finite p > 0. Then, we use the flow ¢, associated to the system (3.7)) to extend the unstable
manifold T7* to the domain

Dgf’g" ={v e C: [Im(v)| < —tan B1Re(v) + 1/3 — kG, |Imv| < tan BoRe(v) +1/6 + &} (3.28)

which contains v = 0 (see Figure [3.3). Then we go back to the original parametrization in a “boomerang
domain”

Dy.s={veC:[Im(v)] < —tanBiRe(v) + 1/3 — kG2, [Im(v)| < tanBiRe(v) + 1/3 — kG~ ,

[Im(v)| > —tanBeRe(v) +1/6 — 6}, (3.29)

(which does not contain v = 0) in order to measure the distance between the stable and unstable manifold.

3.4.1 Existence of the invariant manifolds close to infinity

In order to prove existence of the invariant manifolds we rewrite equation (3.20]) as a fixed point equation
in a suitable Banach space. We start by defining the linear operator

L=0,+ G (3.30)
so equation (3.20]) reads
1
L(Ty"°) = F (T\"%) where F(Ty"%) = 37 (6UT1“’S)2 -V (v,§). (3.31)
h
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Figure 3.4: The domain D, 5 defined in (3.29)

We introduce the left inverse operators
0

6" (N @& = [ f(+sc+6)ds
o (3.32)
G (1) 0= [ F(otse+Gs)ds
“+o0
so we can rewrite equation (3.31) as the fixed point equation
T =g"* o F(I1""). (3.33)

Remark 3.4.1. Throughout this section we will only work with the unstable manifold so we will omit
the superindex u and write D%, T1 and G instead of D:f’(gu, TV and G if there is no possible confusion.

We look for solutions of this equation in the Banach spaces

Z5, = {h(v,f) 1D x T — C: v h(v,§) is real analytic, £+ h(v,§) is continuous,

(3.34)
and ||h||WL < oo},
where
Il = ]
= vH
and

= sup

H Bl
v, ’UED:C:J\D/JYK,C;

v? Rl (’U)‘ + sup
vED, x5

(v2 + 1/9)" Kl (v)‘ .

Notice that the first term takes account of the behaviour at infinity and the second one of the behaviour
near the singularities since v2 +1/9 = (v —i/3) (v +4/3). As we see from (3.33)) we will also need to take
control on the derivatives so we introduce

ésf’u = {h(v,f) 1D x T — C: v h(v,§) is real analytic, £ h(v,§) is continuous,
(3.35)
and [h],,, < oo},

where
[[h]]u,p = ||hHu,p + ||avh||l/+1”u+l :
The following lemma provides estimates for the norm of the perturbative potential.
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Lemma 3.4.2. Let V be the perturbative potential defined in (3.21). Then, for G large enough we have
that
Vi3, < KG™*

for a constant K > 0 independent of G.

Proof. Since the domain D reaches a neighbourhood of order O (G=%) of v = +i/3 we have that for
G sufficiently large

— | < KG!
O
for K > 0 independent of G. Therefore, from (3.6) we deduce that for all (v,£) € D% x T
K
WV (0, < ——3-
G*[7n (v)]
The conclusion follows now using the asymptotic expressions for 7, (v) obtained in Section m O

We also state algebra-like properties for these spaces, which are straightforward from their definition
and will be useful when dealing with the fixed point equation.

Lemma 3.4.3. Let Z3°, be the Banach spaces defined in (3.34). Then

e
i) Ifh € 25, and g € Z57 , then hg € 273, , with

st
th||u+u’,u+p/ < ||h||1/,p, HgHV’,u’ '
i) If h € Z55,, then h € 22, for a > 0 with

||h||y—a,u, S K ||h||y7u *
i) If h € 25, then, for a > 0 we have that h € Z75,_, with
IRl .m0 < KG* ||, -
w) If h € Z75, then, for a > 0 we have that h € 255, , with
||h||y,/_1,+a S K ||h||z/,/,1, :

The following lemma provide estimates for the inverse operator. The proof follows the exact same
lines as in Lemma 5.5. in [GOSI0] (see also [BFGS12]).

Lemma 3.4.4. The operator G defined on (3.32) satisfies the following properties
i) Foranyv>1,ul, G: 2y — Zy—1,u—1 15 well defined, linear and satisfies Lo G = Id.
iWlIfheZ,, for somev>1, u>1, then

G (M)l —1,—1 < KR, , - (3.36)
i) If h € Z,,,, for some v >1, u > 1, then
||8Ug (h)Hu,p. S K ||hHu,p, : (337)

Now we are ready to solve the fixed point equation.

Theorem 3.4.5. Fiz k > 0 andd > 0. Then, for G large enough the fized point equation (3.33) has a
unique solution T1" on D5 x T which satisfies

HTlu]]m/z = boGi4
with by > 0 independent of G. Moreover, if we define the function
LY (v,6) =G" (V) (v,¢)

we have
T3 = L]l 10 < KGT'2 (3.38)

where K > 0 is independent of G.
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Proof. We show that T} is the unique solution the fixed point equation (3.33)). For that we first check
that the operator G o F is well defined from Z; /5 to itself. Indeed, from Lemma m we have that

Vly52 < KGT

Then, the result follows from direct application of the properties of the homoclinic solution stated in
Section ‘the algebra properties of the norm stated in Lemma and Lemma|3.4.4]since we obtain
that for h € 2171/2

[G o ]:(h)]]m/z < K min ([[h]]1,1/2 ,G_4> (3.39)

for some K > 0 independent of G. In particular we deduce that there exists by > 0 independent of G
such that

b
[GoF ()1, <5 G

Then in order to show existence and uniqueness of solutions it is enough to show that the map G o F is
contractive on the ball B (bOG*‘L) C Z4,1/2 centered at 0. For that purpose we write

1
.F(hg) - .F(hl) = ﬁ (81,}11 + 8vh2) (&,hl - avhg)
h

so using that hi,ho € B (boG_4) - 21,1/2’,{,5 we have

1
17 () = F ()lasyy < | g0z @t + 0uha)| 0uts = Outal
Yn 0,0
1
< KG3? ~—5 (Ovh1 + 0yh2) [h1 = haly 1 )0
2y, 0,1/2
< KG™?[h - hali 1/

and contractivity follows from Lemma [3.4.4] (enlarging G if necessary).
To obtain ([3.38)) we notice that

Ty — L711||1’1/2 = [[Go(F(T1) - ]:(0))”1,1/2
< [Go (F(T1) = F(O)]h1)2
KGP [T,y < KGTH/2,

N

IN

O

Since the parametrization (3.22)) becomes singular at v = 0, in the next section we look for a new
parametrization of the unstable manifold which is regular at v = 0 and therefore allows us to extend it
across v = 0.

3.4.2 Analytic continuation of the solution to the domain DE%W

In order to measure the distance between the stable and unstable manifolds we need them to be defined
in a common domain. However, a parametrization of the form

7 (v,€) > ( 7 (v) >
I v, = ~ = u
wo=( 508 )=(
becomes undefined at v = 0. To avoid this difficulty we look for a different parametrization of the unstable

manifold in the domain D, . s (3.27) which does not contain v = 0 and then extend it by the flow. In
order to proceed, we introduce the Banach spaces

Vipr,s = {h(v,ﬁ) 1D x T — C: v h(v,§) is real analytic, § — h(u,§) is continuous,
(3.40)
and [[h|[, < oo},
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where

Iall, Z ] (3.41)

and
= sup
13 ’L)GDpym,s

Hhm

(v2 +1/9)" AlY (11)‘ (3.42)
and the analogues of
57#’,,’,{’5 = {h(v@) : D55 x T = C:ive h(v,§) is real analytic, £+ h(v,§) is continuous,
and [h], < oo},

with

(Rl = 1120, + 100kl -

Remark 3.4.6. Throughout this section we will work on different domains D, . 5, Df%w and Dm; (the
latter is defined in ) We will denote by YV, x5 the analogue to the Banach spaces associated to

the domain D, 5, and by yf"“’ the analogues for domain Dﬂow ([3:28) (in this case for vectomal functions
since we will work with vector fields on the plane).

From Hamilton-Jacobi parametrizations to parametrizations invariant by the flow

We look for a change of variables of the form Id + g : (v,€) — (v + g (v,&), &) such that

I'(v,§) =To(Id+g) (v,&) (3.43)

satisfies

b5 (1(0,6)) =T (v+ 5,6+ ).
Denoting by X the vector field generated by the Hamiltonian (3.5, this equation is equivalent to

Xol=¢ (F) , (3.44)
which we can rewrite as
1
L(g) (v,&) =Fo(Id+g)(v,8) where F= y—28UT1 (3.45)
h

and L stands for the differential operator (3.30]). As before we transform (3.45)) into a fixed point equation.
Thus, we introduce the inverse operator

300 = S0 (1 e

€7,
where
G (h)[” _ /v oHG (t—v) p[l] (t) dt
/ Ay (3.46)
G = / G =) plll (1) d¢.

and vy, 7, are the top and bottom points of the domain D, . s defined in equation (3.27)). The following
lemma is proved as Lemma 5.5 in [GOS10].
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Lemma 3.4.7. The operator G defined on satisfies the following properties.
i) Forany n >0, G: Yy prs = Vyupws 15 well defined, linear and satisfies Lo G = Id.
it) If h € Yy p.i,5 for some p > 1, then
lgwm)| <, (3.47)
iii) If h € Yy pk,6 for some p > 1, then

Therefore, solutions of (3.45|) are also fixed points of

&ﬁ(h)”u < K|, (3.48)

g:QNO}'o(Id—&—g). (3.49)

We state two technical lemmas which will be useful for dealing with compositions of functions and are
deduced from the proofs of Lemmas 5.14 and 5.15 in [GMST6].

Lemma 3.4.8. Fiz constants ¢’ < 6, p' < p , & > k and take h € Y, p 5. Then, Oyh € Y, p 1,5 and

4
satisfy » g .
mmu<(m_ﬂ)<ﬁ>|mu.

Lemma 3.4.9. Fir constants p' < p, 6’ <6 and v" >k + 1. Then,
i) Ifh €Y, prs and g€ B (G’73) C Vo pr w60 we have that h =ho (Id+g) € Yy pr w50 and

< (%) e

i1) Moreover if g1,g2 € B (Gf?’) C Vup w5, then f =ho(Id+g1) — ho (Id + g2) satisfies

GS Py M
1, < [C=) (H) 1R, lgr — 92110 -

Theorem 3.4.10. Let & and k be the constants given by Theorem[3.1.5 Let p1 < p, 61 < 8, and k1 > k.
Then, for G big enough, there exist a function g € Yo p, x,,5, Satisfying

lglly < b1G=772
for by > 0 independent of G and such that
I'=To(Id+g)

satisfies (3.44]).

Proof. To find g we solve the fixed point equation (3.49)). For that, we take g € B (KG*7/2) C Vo,p1,k1,615
with K a constant independent of G. Then by Lemma [3.4.9| and using the estimate for 0,77 obtained in
Theorem [3.4.5] we have

K1 1/2
IFo@+glye < () 1Fly
K\ 1/2 4
< =
- </€) K&
< KG™



where K is a constant depending only on the reduction of the domain. From here it is clear using Lemma
that the map Go Fo (Id+g): B (KG77/2) C Vo,p1,61,61 = Vo,p1,k1,61, 15 well defined. Moreover,
we obtain that

oo et sy, < K0 o7t 1,

<KG1/2H]-"O d+g), _ H
- 14+ 9jg=ol] (3.50)

< KGY/? Hfo 1d + g)‘g:OHI/2

S blG—7/2
for some b; independent of G. It only remains to show that the map GoFo (Id + g) is contractive in a
neighbourhood of the origin. Take g1,g9o € B (blG_7/2) C Vo,p1,k1,5:» Using again Lemma we have

that
[Fo(d+g1) = Fo(d+ga)ly, < KG™'? g1 — gall, -

Direct application of Lemma yields
|6 (Fotd+g)—Fold+g))| <K g1 - g,

so for G big enough the map g — G o F o (Id 4 g) is contractive on B (blG_7/2) C Yo,p1 k1,6, and the
proof is completed. ]

Analytic extension of the unstable manifold by the flow parametrization

Now we perform the analytic continuation of the parametrization (3.43)) given by Theorem to the
domain Dgf’g" defined in using the flow of the Hamiltonian . Notice that since the domain
Dgf)g” is bounded and at distance of order O (1) with respect to the singularities all norms |[|A[|, are
equivalent, therefore it will suffice to get estimates on the norm ||Alf,.

Write I = I + fl, where

Ly (v,6) = Too (1d+9) (v,&)  To(v) = (Fa (v) ,Gn (v)). (3.51)
Then, the equation (3.44]) that defines this extension is rewritten as
Vi (n) —F (H) (3.52)

where
£ (h) =L (h) — DX, (ﬁo) h
F () =Xo (T +h) = Xo (Ip) = DXo (Fo) h+ X (o + ).
Denote by ¥ (v) the fundamental matrix of the linear system
z(v) = DXo (I (v,§)) 2 (v), ve DNy

Then, equation (3.52), together with a suitable initial condition I}, can be reformulated as the fixed
point equation

hi=h+GoF(h), (3.53)

where



is the solution of the homogeneous equation £ (k) = 0 (observe that since vy, 7y, —p; are contained in
D, v s, the terms qu[l] (v1), fl[” (1) and fl[” (—p1) are already defined) and

G (h) =wG (v 'h)

is a right inverse operator. Notice that since DX (fo (v,& )) is continuous and DE%W is a compact domain
at distance O (1) from the singularities, we have that there exists K > 0 such that

sup max{||¢\|0 , ||LD*1HO} <K, (3.54)
veDoy

in the matrix norm associated to the usual vector norm in C2.

Lemma 3.4.11. Assume h,h € B (KG*‘L) C yﬂ(;;lv s, for some K > 0. Then there exists K' >0 such
that
i) Defining Y (h) = Xo (fo + h) - X0 (fo) — DXy (fo) h we have that Y (h) € yg‘;jgl and

Iy (m)lly < K'G™*,
i) X1 (To+n) € Vo s, with || X1 (fo+n) | <K'G,
[0y ()], < - 1|
o o ()= (8), < b

Proof. The proof follows from the mean value theorem together with the straightforward bounds
Joxo ()], <5 |x ()], < £'6™ [pxi (B)] < x'a
O

Proposition 3.4.12. Let k1 and d; be the constants considered in Theorem 3.4.10.  Then, there ex-
ists by > 0 such that if G is large enough, the fived point equation ) has a unique solution I €
B (b,G™) C VG 5,

Proof. As v1,v1,p1 € Dy, x,,5, We have that I, € Vo,p1,r1,6: With
HﬁhH < KG.
0

We claim using Lemma [3.4.11| that the map K : h — I}, + G o F (h) is well defined from B (KG™) c
VEoW 5, to VIO 5. .. Moreover, we see from the estimate (3.54) for the fundamental matrix ¥ (v) that
there exists by such that

H/@(O)H = ”Fh+Q(X1 OFO)H < bﬁG_

Finally, from Lemma [3.4.11] we conclude that for G big enough K is Lipschitz in B (bg ) C ygﬁ 5
with Lipschitz constant KG 4.

From flow parametrization to Hamilton-Jacobi parametrization

Now that we have extended the parametrization across v = 0, the next step is to come back to the
Hamilton-Jacobi parametrization so we have both stable and unstable manifolds parametrized as
graphs of the rofm (7, (v),§"* (v,€)) and we can easily measure the distance between them.

We look for a change of variables of the form Id 4+ f such that

ol o(Id+ f) (v,€) =74 (v) (3.55)
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in the domain ~
D"il,tsl Dflow N DH1,617 (356)

K1, (51

where Df:lof;”l D,,, 5, are the domains defined in and (3.29). Therefore, in Dy e N Dy, .5, the
change Id + f is the inverse of the change Id + ¢ obtalned in Theorem [3.4.10] We will See that this change
of variables is unique under certain conditions, therefore, once we have f, the second component of the

unstable manifold is given by
1
yn (v)

Using the properties of the unperturbed solution, i.e. 71 0 I (v, &) = 75, (v), we can write equation ((3.55)
as

mgolyo(Id+ f)(v,€) = 0, T (3.57)

f=P()

where

(fh(’u—"_f(vv ))—Fh(U)—gh(’U)f(U,g)—7T10F10(Id+f)(’l),§)).

Proposition 3.4.13. Consider the constants k1 and 8, given by Proposition [3.4.19 and any ke > k1,
do < d1. Then,
i) There exists bs > 0 such that for G large enough, the operator P has a unique fizved point f €
y(),,..i2 02 with
1£1lp < bsG

it) Equation (3.57) defines the graph of the unstable manifold wich can be written as T* = Ty + T
where T{" satisfies
0,1, < KG.

Proof. For the first part we observe that, for fo, f1 € B (KG_4) C V0,k2,625

7 (0 + f2) — Fn (v+ f1) = G0 (f2 — [ S K| f5 = f7]
< KG'fo— fil.

Then, from Lemma[3.4.9|and the fact and Hflu

. < KG~* we deduce that

P (f2) =P (f)l < KGH|f2 = ful,

i.e. P(f) is a contractive mapping on B (bsG™*) C Vy,x,,s, for some bg > 0 so there exist a unique

f € B(b3G™*) C Yo,xz,8, solving f =P (f).
For the second part we have from equation (3.57) that

. 1
mg ol o(Id+ v,§) = ——0,T1.
2o lro(Id+ f)(v,§) o 0
Therefore,
Tl < K||——a,T
v1070 > yh<v)v10
= K 7T20ﬁ10(1d+f)H0
< K|Iyo (1d+f)H0
< K ﬁlH < KG—4a
0
where we have used Lemma [3.4.9 and the estimate for Hﬁluo obtained in Proposition |3.4.12 O
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We sum up the results obtained in this section in the following theorem.

Theorem 3.4.14. Let ko and 02 be the constants given by Proposition[3.].13 Then, for G big enough
there exist real analytic functions T\"® defined in Dy, s, which are solutions of equation (3.20) and satisfy

0T o < baG™

for a certain by > 0 independent of G.
Proof. For the stable manifold, the result was obtained in Theorem since Dy, 5, C D" For the

unstable manifold, using that D,, 5, C D" UD,%(;Q the result follows from the combination of Theorem
and Proposition [3.4.13 O]

3.5 The difference between the manifolds

Once we have obtained the parametrization of the invariant manifolds in the common domain D,; s defined
in (3.4), the next step is to study their difference. To this end we define

A~ (’U7 g) =T° (U7 6) - (Uv 5) . (358)
Substracting equation (3.20) for 77 and T} one obtains that
A e Kerl
where £ is the differential operator
L=(1+A(v,8)0, — G0
with L
A(,8) = = (0, — 017" . (3.59)
2y

To obtain exponentially small bounds on the difference between the invariant manifolds we will look for
a close to identity change of variables (v,&) = (w4 C (w, &), &) such that the function

Aw, &) = A(w+ C(w,§),8) (w,€) € Dy s X T, (3.60)

satisfies
A e Kerl

where £ is the differential operator defined in (3.30). The condition A € Kerl implies that A =
f (5 — G3w). Therefore, since A is periodic in ¢ it must be periodic in w. Since A is real analytic and

bounded in a strip that reaches up to points O (G*?’) close to the singularities the exponentially small
bound for |A (w, §)| where w € R comes straightforward by a classical argument (see Lemma below).
We devote the rest of the section to make this rigorous.

3.5.1 Straightening the operator £

As we did in the previous sections we introduce the Banach spaces
Qs = {h(w,g) :Dys X T = C: wr h(w,§) is real analytic, £ — h(w,§) is continuous
and ||A[[, < oo}

where

I T R T ey
lez " ®

wEDy s
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Theorem 3.5.1. Let ko and dy the constants defined in Theorem [34.1]} Let k3 > koand 03 < 0 be
fized. Then, for G big enough, there exists C € Qg .5, Such that the function

Aw,§) = A(w+C(w,§),¢)
satisfies that A € KerL. Moreover, we have that
IClly < bsG™™
for a certain bs > 0 independent of G.

Proof. Using the chain rule we obtain that the implication A € Ker£ if and only if A € KerZ, is equivalent
to finding C' satisfying

L (C) = A|v:w+C(u))
— Ao (Id+C),

where A (v,£) was defined in (3.59)). We can rewrite this equation as a fixed point equation
C=G(Ao(Id+0C)),

where G is the inverse operator defined in (3.46). Using the bounds for 9,7}"® in Theorem [3.4.14} the
properties of the homoclinic orbit stated in Section [3.3.1] , and Lemma for the composition, we
obtain that, for C' € B (KG™*) C Qg .65,

[Ao (Id+C)|ly, < K'G™

for some K > 0 independent of G. Hence, from Lemma we observe that the map C' — G (Ao (Id+ C))
is well defined from C € B (KG~"/2) C Qo,ny,6, — Q0,13,65- Moreover, we also get

for some b5 independent of G. Hence, it only remains to prove that the map C +— G (Ao (Id+C))
is contractive on the ball B (b5G_7/2) C Qo,x3,65, - Again by Lemma we have that if Cq,Cs €
B (b5G77/2) C QO,R3,53, then

[Ao (Id+Cs) — Ao (Id+ C1)lly o

IN

KG® HA||1/2 1C2 — Cl”o
< KGTH|Cy = Cilly,

and contractivity follows from Lemma for G big enough. O

3.5.2 Estimates for the difference between the invariant manifolds
Now we exploit the fact that the function A (w, &) defined in satisfies

A € KerL
to get exponentially small bounds on the real line.

Lemma 3.5.2. Let h : D, s x T— C be a real-analytic function such that h € Qq s and h € KerL.
Then,
i) h is of the form
h(w,€) = > All (w) € = 3 gllleit(E=6"w),

1€z l€7,
i) the coefficients S satisfy the bounds

-1G3

8] < 1l B
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Proof. Since h € Kerl and is periodic in &, we have that each Fourier coefficient hl" satisfies
—pl L aEall =0
dw

so it has to be
pl0 (w) = B[l]e—ilG’?‘w

for certain constants S, Moreover, evaluating this equality at the top vertex wy = i (1 /3 — /@G_S) of
the domain D, s for [ < 0 and at the bottom vertex wy =14 (1/3 — HG_3) for [ > 0 we obtain that

—G3

’ﬂm‘gnmx{hm(wﬂ’hm(@ﬂ}e 5 elllka

< Hh”o e\l|n3€—\lS\G3

-1G3
3

< ||nllo Ke

for a constant K independent of G and [. Therefore, for u € RN D, 5

—ye?

‘h[z] (u)’ — ’B[l]‘ < ||hll, K'Me™"5
O

Using this lemma we already have exponentially small bounds for A (w,£) . Nevertheless, our goal is
to prove that the function L defined in (3.24)) is the main term in A. Thus we study the function

5(w7§) :A(w,g)—L(w,ﬁ)

Lemma 3.5.3. Consider the constants k3 and d3 defined in Theorem|3.5.1 Then, for (w,§) € (Dg,,55 NR)X
T we get

—a3

€ (w,€) — B| < KG™2e ™5

where E is a constant and

et
3 .

10,8 < KG™e

Proof. Notice that L = L® — L* where L* = G* (V'), with G*° are the left inverse operators introduced
in (3.32). Then, it is clear that £ (L) = 0 and we have that £ € Ker£. We bound £ in the domain D, s
so that we can apply Lemma We decompose € = &7 — &' + £ where

E =T — L*
E&=A—A.

From Lemma and equation (3.38)) we have

€tlly = 175 = L*lly < KG¥2 T3 — L], < KG™.

For the second term we use Lemmas [3.4.3] and the bounds for A and C from Theorems [3.4.14] and
[3.5.1] to obtain

I€:lly = |40 1a+0) - 4 < k6|4 Y,

<KG?| 4| el < kG,

Combining these results
€lly < KGTT2.
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Hence, by direct application of Lemma [3.5.2] we obtain that for u € Dy, s, "R

—lyas

‘g[l] (w)‘ < GRS

Now, defining E = £1% (notice that by Lemma &Y is constant) we have that for (w, &) € (D, 5, NR)x
T

E—El< Y |6l w)
[|>1
—7/p =2 =g*
<G e g;; (Ke )

—g3
3 .

11

< KG e
Finally, it is a straightforward computation to check that

—|i1Ga3

‘dg[l] (w)‘ <G V2KRle=5—

dw

so we conclude that

a3
3 .

10,E| < KG™ e
O

There is only one step left for achieving our goal, going back to the original variables (v,£). This is
done in the next lemma.

Lemma 3.5.4. Consider the function
E(v,6) = Av,6) ~ L(v,€)

where A (v,€) is defined in (3.58) and L (v,£) is defined in [(3.24). Fix k4 > k3 and 64 < d3. Then, for
(’U,E) € (DK4,54 OR) x T,

_g3

E(,6) —E| < KG 273 (3.61)
| |

where E is a constant and s
-G

31)5'(1),5)’ < KG V25 (3.62)

Proof. We look for a function ¢ (v, &) such that (Id + C) o (Id + ¢) (v,€) = (v, &), i.e., ¢ must satisfy

v=v+¢ 0, +C(v+ep[E),E)

or what is the same
(,0(1},5) =-C (U+S0(U,€),§) . (363)

In order to solve this fixed point equation we first use Lemma to obtain that for ¢ € B (K G_4) -
y0,1i4,64 .
ICo(Id+e)lly < IIClly < KG™

so the map ¢ — C'o (Id + ) is well defined from B (KG™*) C Yo,xs,6, — Yo,x4,6,- Moreover we get that

there exists bg such that
bs

—4
2G .

|ceas oo, <
Since for @1, € B (KG_4) C Vo,x4,6, We have

|C o (Id+ p2) — Co(Id+p1)lly < KG* |2 — ¢1ll,
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we have shown the existence of a unique ¢ € B (bsG~*) C Vo 4,5, solving (3.63).
3.61)) and (3.62) follow from

Now that we have obtained the inverse change of variables, the bounds (3.61
direct application of Lemma if we notice that

E(w(v,€),8) =(A-L)o(Id+¢)(v,)
( o(Id+C) — )o(1d+<p)(v,g)
A(”?f)_LO(Id+@)(U’§)

S0
E,§) =&, &)+ Lo(d+¢)(v,8) —L(v,¢).
Then, the result follows from Lemma [3.4.9] and the estimates on Proposition [3.3.1] O

3.A Computation of the melnikov potential

We devote this section to the computation of the Melnikov potential L (v, &) whose partial derivative
with respect to v gives us the first order term of the distance between the infinity manifolds. From its
definition (3.24) we have

L(v,é“):/Oo V (7 (v +3),£+ G®s) ds

— 00

:/OO V (7n (s),6+G* (s —v)) ds.

— 00

Expanding in Taylor series the square root in (3.6) we obtain that

o =1 oo 2k 3 S — v s
V(fh(S),erGg(sv))Z( z )(4G4)_k/ p (fJ;fH(( : ) d '
—00o T S

k=1

Hence, expanding now the terms p?* in Fourier series we get

_ _Zeu(gc%)i< _El )al,k (4G4)_k /°° m

leZ k=1 Th

1 27 )
x5 [ @) e

where

Since for all o € [0, 27] we have |p| < 2 we easily bound
lag | < 4%, (3.64)
Moreover, changing the integration variable to the eccentric anomaly E defined by t = F —sin
p(E)=1—-cosE,

we obtain that
ail = —2J1 (1) 7é 0 (365)

where Jj is the Bessel function of first kind.
Under the time reparametrization
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we can write

[M]8

1 00 ilG3<T+§)/2d
L(v.€)=—2 Hil(=GP) ( 5 )a G4k/ € T
0.6 = =2, k)T L r =i (i)™

1€Z k=1
. ad =1
_ _22671(5—(}'311) Z < i > i, G (1, k) (3.66)
1€7 k=1
_ ZL[l]eil(ngav).

€z
The harmonic with [ = 0 is readily bounded using that

I (2k—1/2)

I(ka):ﬁ F(Qk) ,

where I stands for the Gamma function.

A standard computation shows that L = LI=U so we focus only on the case I > 0. The next
proposition, which can be deduced from Propositions 19 and 22 in [DKdIRS19] gives estimates for |I (I, k)|
and the asymptotic first order term for I (1,1) which we use to identify the main term in LMY (v,€).

Proposition 3.A.1. Let G be large enough, then the estimate

—1G3
3

T (1, k)| < 8elG3H—3/2¢

holds for 1 > 1, k > 1. Moreover we have that

I(1,1) =7 (2)3/2 e 5 (1 +0 (0—3/2)) .

For [ = 1 we have

1 — [ 3
L[l] =-2 <2CL171G41171 + Z < ]2€ ) al,kG4kI (13 k)) :

k=2

Using Proposition and the estimate in ((3.64) we have that

o0

(7 )anoran

k=2

< 861/26%& G Z G™F
k=2

< 1661/26%6;36;77/2.

Therefore
—g3
3

LW = ay /727G e (14 0(G7Y)).

For | > 2 we have
> =1
L= —22 ( /26 > al,kG74kIl7k
k=1

and again from Proposition and the estimate in (3.64) we obtain

—1G3
3 .

‘L[l]‘ < 322G

From the estimates we have obtained for |L[l]‘ the double series is absolutely convergent, which justify
the expansions in Taylor and Fouier series and the proof of Proposition [3.3.1]is completed.
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Chapter 4

Oscillatory motions in the Restricted
3 Body Problem: a
functional-analytic approach

Abstract: In this paper we introduce a functional-analytic approach to the existence of parabolic and
oscillatory motions for the Restricted Isosceles 3-body Problem (RI3BP) for almost all values of the
angular momentum. According to the classification given by Chazy back in 1922, we name oscillatory an
entire motion of the massless body ¢ which is unbounded but returns infinitely often inside some bounded
region:

lim sup |q(¢)| = oo and liminf |¢(¢)| < oo.

t—too t—too

In contrast with the other possible final motions in Chazy’s classification, oscillatory motions do not
occur in the 2-body Problem, while they do for larger numbers of bodies. A further point of interest is
their appearance in connection with the existence of chaotic dynamics.

In this paper we introduce new tools to study the existence of oscillatory motions and prove that
oscillatory motions exist in a particular configuration known as the Restricted Isosceles 3-body Problem
(RI3BP) for almost all values of the angular momentum. Our method, which is global in nature and
not limited to nearly integrable settings, extends the previous results [GPSV2I] by blending variational
and geometric techniques with tools from nonlinear analysis such as the mountain pass theorem and the
topological degree theory. To the best of our knowledge, the present work constitutes the first complete
analytic proof of existence of oscillatory motions in a non perturbative regime.

4.1 Introduction

One of the oldest questions in Dynamical Systems is to understand the mechanisms driving the global
dynamics of the 3 Body Problem, which models the motion of three bodies interacting through Newtonian
gravitational force. The 3 Body Problem is called restricted if one of the bodies has mass zero and the
other two have strictly positive masses. In this limit problem, the massless body is affected by, but does
not affect, the motion of the massive bodies. A fundamental question concerning the global dynamics
of the Restricted 3 Body Problem is the study of its possible final motions, that is, the qualitative
description of its complete (defined for all time) orbits as time goes to infinity. In 1922 Chazy gave
a complete classification of the possible final motions of the Restricted 3 Body Problem [Cha22]. To
describe them we denote by ¢ the position of the massless body in a Cartesian reference frame with origin
at the center of mass of the primaries.

Theorem 4.1.1 ([Cha22]). Every solution of the Restricted 3 Body Problem defined for all (future) times
belongs to one of the following classes
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B (bounded): sup, |q(t)| < oo.

P (parabolic) |q(t)| — oo and |¢q(t)] — 0 as t — oo.

H (hyperbolic): |q(t)| — oo and |¢(t)] — ¢ >0 as t — 0.

O (oscillatory) limsup,_, . |q(t)| = oo and liminf;_, . |q(t)] < oo.

Notice that this classification also applies for ¢ — —oo. We distingish both cases adding a superindex
+ or — to each of the cases, e.g. HY and H~.

Unlike oscillatory, bounded, parabolic and hyperbolic motions also exist in the 2 Body Problem and
examples of each of these classes of motion in the Restricted 3 Body Problem were already known by
Chazy. However, the existence of oscillatory motions in the Restricted 3 Body Problem was an open
question for a long time. Their existence was first established by Sitnikov in a particular configuration
of the Restricted 3 Body Problem nowadays known as the Sitnikov problem.

4.1.1 The Moser approach to the existence of oscillatory motions: literature

After Sitnikov’s work, Moser gave a new proof of the existence of oscillatory motions in the Sitnikov
problem [Mos01]. His approach makes use of tools from the geometric theory of dynamical systems,
in particular, hyperbolic dynamics. More concretely, Moser considered an invariant periodic orbit “at
infinity” (see Section which is degenerate (the linearized vector field vanishes) but posseses stable
and unstable invariant manifolds. Then, he proved that its stable and unstable manifolds intersect
transversally. Close to this intersection, he built a section ¥ transverse to the flow and established the
existence of a non trivial hyperbolic set X for the Poincaré map ®y induced on X. The dynamics of &y,
restricted to X C ¥ is moreover conjugated to the shift

o:N? 5 N? (ow)k = wWit1

acting on the space of infinite sequences. Namely, & is a horseshoe with ”infinitely many legs” for the
map ®x. By construction, sequences w = (..., W_pn,W_pi1.. Woser Wy 1...Wn...) € N% for which
limsup,,_, ., wy, (respectively limsup,, , . wy,) correspond to complete motions of the Sitnikov problem
which are oscillatory in the future (in the past).

Moser’s ideas have been very influential. In [LS80a] Simé and Llibre implemented Moser’s approach
in the Restricted Circular 3 Body Problem (RC3BP) in the region of the phase space with large Jacobi
constant provided the values of the ratio between the masses of the massive bodies is small enough.
Their result was later extended by thm:chazyintro [Xia92] and closed by Guardia, Martin and Seara in
[GMS16] where oscillatory motions for the RC3BP for all mass ratios are constructed in the region of
the phase space with large Jacobi constant. The same result is obtained in [CGM™22| for low values of
the Jacobi constant relying on a computer assisted proof. In [GSMS17] and [SZ20], the Moser approach
is applied to the Restricted Elliptic 3 Body Problem and the Restricted 4 Body Problem respectively.
For the 3 Body Problem, results in certain symmetric configurations (which reduce the dimension of the
phase space) were obtained in [Ale69] and [LS80b]. Another interesting result, which however holds for
non generic choices of the 3 masses, is obtained in [Moe(7]. In the recent preprint [GMPS22], the first
author together with Guardia, Martin and Seara, has proved the existence of oscillatory motions in the
planar 3 Body Problem (5 dimensional phase space after symplectic reductions) for all choices of the
masses (except all equal) and large total angular momentum.

The first main ingredient in Moser’s strategy is the detection of a transversal intersection between
the invariant manifolds of the periodic orbit at infinity. Yet, checking the occurrence of this phenomenon
in a physical model is rather problematic, and in general little can be said except for perturbations of
integrable systems with a hyperbolic fixed point whose stable and unstable manifolds coincide along a
homoclinic manifold. As far as the authors know, all the previous works concerning the existence of
oscillatory motions in the 3 Body Problem (restricted or not) adopt a perturbative approach to prove
the existence of transversal intersections between the stable and unstable manifolds of infinity. In some
cases the perturbative regime is obtained by assuming that certain parameter related to the motion of the
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massive bodies (in general the ratio between the masses of the massive bodies or the eccentriticy of their
orbit) is small, and others by working in a region of the phase space where the massless body is located
far away from the primaries. The latter situation falls in what is usually called singular perturbation
theory and (in general) needs a much more involved analysis than the former one, usually referred to as
regular perturbation theory.

The second key ingredient is the construction of a horseshoe close to the transversal intersections of
the invariant manifolds. For the Sitnikov and Isosceles Restricted 3 Body Problem (which is introduced in
Section are non autonomous Hamiltonian systems with 1+ 1/2 degrees of freedom (3 dimensional
phase space), its dynamics can be reduced to the study of a two dimensional area preserving map in
which the periodic orbit at infinity becomes a fixed point which, despite being degenerate, behaves as
a hyperbolic fixed point. The same happens in the RC3BP after reducing by rotational symmetry and
in certain symmetric configurations of the 3BP. In all of these problems Moser’s ideas for constructing
a horseshoe close to the transverse intersections between the invariant manifolds of the parabolic fixed
point can be implemented directly. In the planar 3 Body Problem, the dynamics can be reduced to a 4
dimensional symplectic map and the parabolic fixed point becomes a 2 dimensional (degenerate) normally
hyperbolic invariant manifold. Due to the existence of central directions the construction of the horseshoe
in [GMPS22] becomes much more involved. In [Moe(7], the author analyzes orbits which pass close to
triple collision. In this setting, the close encounters with triple collision, produce stretching also in the
central directions.

An approach different in nature from Moser’s is developed by Galante and Kaloshin in [GKTI]. By
making use of Aubry-Mather theory and semi-infinite regions of instability, the authors prove the existence
of oscillatory orbits for the RC3BP with a realistic value of the mass ratio.

It is worthwhile mentioning that another fundamental issue in Celestial Mechanics, besides that
of existence of oscillatory motions, is about their abundance. In the conference in honor of the 70th
anniversary of Alexeev, Arnol’d posed the question whether the Lebesgue measure of the set of oscillatory
motions is positive (cfr [GK12]). This question was considered by Arnol’d to be the fundamental issue of
Celestial Mechanics. It has been conjectured by Alexeev that the Lebesgue measure is zero. Neverthless,
this conjecture remains wide open. The only partial results in this direction are due to Gorodetski and
Kaloshin [GK12]. They consider the RC3BP and the Sitnikov problem and prove that for both problems
and a Baire generic subset of an open set of parameters (eccentricity in the Sitnikov problem and mass
ratio in the RC3BP), the Hausdorff dimension of the set of oscillatory motions is maximal.

4.1.2 The Isosceles configuration of the Restricted 3 Body Problem: main
results

In the present work we consider a particular configuration of the Restricted 3 Body Problem known as
the Restricted Isosceles 3 Body Problem. In this configuration, the two primaries have equal masses
mo = my = 1/2 and move periodically on a degenerate ellipse of eccentricity one (a line), according
to the Kepler laws for the motion of the 2 Body Problem. The massless particle moves on the plane
perpendicular to the line along which the primaries move (see Figure .

In the plane of motion of the massless body we fix a Cartesian reference frame with origin at the
point where the line along which the primaries move intersects the plane. Then, in Cartesian coordinates
(g,p,t) € R* x T\ {¢ = 0}, the motion of the massless body is given by the Hamiltonian system

p? 1
H(q,p,t) = 2 — V(g t Veart (¢, 1) = ——ee—.
(qp ) 9 cat(q ) ¢ t(q ) |q\2+p2(t)

where p(t) : T — [0,1/2] is a half of the distance between the primaries.

Remark 4.1.2. One can obtain an explicit expression of the function p(t) after introducing the change
of variables t = u — sinu, commonly known as the Kepler equation. When expressed in terms of the new
variable u (which is the eccentric anomaly) we have p(t(u)) = (1 — cosu)/2. Yet, our analysis does not
require to have an explicit expression of the function p(t), so we work directly with the original variable t.
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Figure 4.1: Sketch of the motion in the Restricted Isosceles 3 Body Problem.

It will be convenient for our analysis to introduce polar coordinates (r,a,t,y,G) € Ry x T? x R?
where ¢ = (rcosa,rsina) and (y, G) denote the conjugate momenta to (r, ). In polar coordinates, the
Hamiltonian of the Restricted Isosceles 3 Body Problem reads
G? 1
— = V(rt V(rt) = ——. 4.1
5z~ V0 1) = s (4.1

We inmediately notice that G is a conserved quantity for the flow of (4.1). It is therefore natural to
consider the one-parameter family of Hamiltonian systems

y2
H(TvtvyaG) = 5—’_

Hg (rv 2 y) = H(T’, t,y, G) (Ta L, y) € R+ x T xR. (42)
Since lim, o V(r,t) = 0, for all G € R the Hamiltonian (4.2]) posses a periodic orbit at infinity
Yoo ={r=o00, y=0} CRy xT xR. (4.3)

Homoclinic and heteroclinic to such a periodic orbit at infinity are entire parabolic motions. In [GPSV21],
the first author together with M. Guardia, T. Seara and C.Vidal, proved the following result.

Theorem 4.1.3 ([GPSV21]). Consider the Hamiltonian system Hg defined in . Denote by X+
(respectively Y~ ) either HT, PT,B* or OS™ (respectively H=,P~, B~ or OS™) according to Chazy’s
classification in Theorem[{.1.1l Then, there exists G, > 1 such that for all G € R such that |G| > G,
the Hamiltonian system Hg satisfies

XtNY  #£90
for all possible combinations of X* and Y.

Theorem [£.1.3] is proved by exploiting the fact that for G large enough, in a suitable region of the
phase space, the Hamiltonian H¢g can be studied as a perturbation of the (integrable) 2 Body Problem.
This allowed the authors to prove that the periodic orbit v, posses global stable and unstable invari-
ant manifolds which intersect transversally (see Theorem . As a corollary of this result, a rather
straightforward implementation of Moser’s ideas shows the truth of Theorem

The following is the first main result of the present work.

Theorem 4.1.4. Consider the Hamiltonian system Hq defined in [£.2). Denote by X (respectively
Y~ ) either H, PT, Bt or OS™ (respectively H=, P~, B~ or OS~) according to Chazy’s classification
in Theorem|4.1.1. Then, for almost all G € R the Hamiltonian system Hg satisfies

XtNY = #90

for all possible combinations of XT and Y ~.
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To the best of our knowledge, Theorem [£.1.4] is the first complete analytic proof of the existence of
oscillatory motions relying upon a global analytical approach rather than on perturbative techniques.
Some interesting related works, where the existence of oscillatory motions is obtained in a setting which
is not close to integrable, are [Moe07] and [CGM™'22]. While in [Moe(07] the author shows the existence
of oscillatory motions in the 3 Body Problem close to triple collision (small values of the total angular
momentum), in [CGM™22| the authors obtain a computer assisted proof of the existence of oscillatory
motions in the Restricted Circular 3 Body Problem for small values of the Jacobi constant.

Theorem is indeed obtained as a consequence of the following result.

Theorem 4.1.5 (Symbolic Dynamics). Let {l;} C Z be an increasing sequence and define the time
intervals I; = [(I; —1;21)/2, (lj+1 —1;)/2]. Then, for almost all G € R, all e > 0 and all R sufficiently
large, there exists an orbit r,(s) : R — R4 of homoclinic to v, and a constant L > 0 such that if
the sequence {l;} C Z satisfies Lj41 —l; > L, then, for any sequence o = {o;} C {0,1}% there exists an
orbit r,(s) : R — R4 of such that , if 0; =0

|TU|CI(I_7’) >R

and if o5 =1

Ire —rnloir,) < e,

Moreover, if o has only a finite number of non zero entries, then r, is a homoclinic solution.

Theorem can be read as follows. For almost all G € R there exist an orbit r;, of homoclinic
t0 Yoo such that the following holds. Let z, = (r,y,t) = (ra(0),7,(0),0) € Ry xR X T, let zoo = (r,y,t) =
(00,0,0) = voo N{t = 0} € Ry xR x T and denote by ® the Poincaré map induced on the section {t = 0}
by the flow to the Hamiltonian (4.2). Then, for any 6 > 0 and any sequence {zx}rez C {Zo0, 24 }”
there exists a point z € Bs(z9) and a sequence {nj}rez € N? such that ®"*(zy) € Bs(zk) The
statement in Theorem [4.1.5| is indeed stronger since it also provides control on the orbit in all the
intervals [(ng — ng—1)/2, (g + ngt1)/2).

The following corollary of Theorem can obtained by nowadays well known arguments (see for
example [MNT99] and [Koz83]).

Corollary 4.1.6. For almost all G € R the Restricted Isosceles 3 Body Problem is not C* integrable and
has positive topological entropy.

4.1.3 Outline of the proof: new tools for the study of oscillatory motions

As in Moser’s approach, the first main step in our construction is to prove the existence of a homoclinic
orbit to .- Yet, in the setting of Theorem geometric perturbation theory is not available since
the Hamiltonian system Hg in is not nearly integrable. Instead, we will adopt a global approach
and deploy the powerful machinery of the theory of calculus of variations. In particular, we rephrase the
problem of existence of homoclinic orbits to 7., as that of the existence of critical points of a certain
action functional Ag (cfr defined in a suitable Hilbert space D' (cfr (4.10)). The existence
of critical points of the action functional Ag is obtained by a minmax argument tailored made for
the present problem. The use of minmax techniques to study the existence and multiplicity results
for homoclinic orbits in Hamiltonian systems has already been widely exploited in the literature (see
for example [Sér92 [CZES90, [CZRI1] and [MNT99]). In the variational approach to our problem, we
face two main difficulties at this step: the phase space is not compact and the vector field presents
singularities (corresponding to possible collision with the massive bodies). In order to overcome the first
difficulty we make use of a renormalized action functional (see Remark defined on a appropriately
chosen functional space D':2. In order to avoid singularities and gain compactness we then perform a
constrained deformation argument. With these techniques, together with a compactness property of the
map dAg : DY2 — D2 (Struwe’s monotonicity trick), we are able to show that, for almost all values of

1By Bs(200) we mean the set {|y| < 8, |r|~! < 6}.
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the angular momentum G [J] there exists a Palais-Smale sequence in D'? which converges to a critical
point of the action functional Ag. This proves the existence of an orbit 7, homoclinic to v, which
actually correspond to a doubly parabolic motion of our problem. It is worthwhile pointing out that
half parabolic and hyperbolic motions for the n Body Problemem have been obtained using variational
methods in [MV09, MV20(] with a different technique.

The homoclinc orbit 7, obtained in this way is associated with an intersection between the stable and
unstable manifolds of the periodic orbit v,. To proceed further, though we can not tell whether this
intersection is transversal or not, we may rely on our minmax construction to deduce some topological
transversality. This can be achieved by a topological degree argument based on a general result by Hofer
([Hof86]). More precisely, we exploit the mountain pass characterization of 7, to show that for almost
all values of the angular momentum G (except possibly a finite set of values) there exists a (possibly
different) critical point r, of the action functional Ag for which the Leray-Schauder index of the map
VAg : DY? — D2 at 7}, is well defined and different from zero P} This allows us to shadow finite
segments of the homoclinic orbit 7. The proof of Theorem [4.1.5| is then obtained by combining a
suitable parabolic version of the Lambda lemma close to v, with the outer dynamics wich shadows finite
segments of rp,.

4.1.4 Organization of the paper

In Section [£.2] we recall some well known facts about the 2 Body Problem. Then, in Section [£.3] we
analyze the dynamics around the periodic orbit v,,. In particular, the existence of stable and unstable
manifolds W#*(7.;G) and a parabolic version of the lambda lemma close to 7. In Section we
introduce the variational formulation and prove the existence of a homoclinic orbit to ., by means of
a minmax argument. Then, in Section we obtain a (possibly different) homoclinic orbit associated
with a topologically transverse intersection between W (7,.; G). Finally in Section we combine the
parabolic Lambda lemma of Section [£.3] together with the robustness of the topological degree under
perturbations to construct “multibump” homoclinics and finish the proof of Theorem [4.1.5

4.2 The 2 Body Problem

In this section we recall some well known facts about the 2 Body Problem (2BP) which will be used in
the following. In polar coordinates, the Hamiltonian of the 2BP reads (compare (4.1))

Hopp(r,a,y,G) = =— + — — —. (4.4)
As for , the rotational symmetry implies that G is a conserved quantity, so we look at as a one-
parameter family of Hamiltonian functions Happ ¢ (7, y). For each G € R the Hamiltonian Haopp ¢ (r,y) is
integrable and the motion can be classified in terms of the value of the energy: negative values correspond
to elliptic motions, positive energies correspond to hyperbolic motions and for zero energy the motion is
parabolic.

It is also straightforward to check that for all G € R

Zoo ={r=00, y=0} CRy xR.

is a fixed point for the flow of (4.4}l Moreover, for all G € R the fixed point 2., posses stable and unstable
manifolds which coincide along a one dimensional homoclinic manifold W 5 (24, G). The homoclinic
orbit W (24, @) is indeed the parabolic orbit of the 2BP with angular momentum G.

28ee the discussion at the beginning of Section

3In Propositionshow that the topological degree being non zero implies that the intersection between the invariant
manifolds of v, at 75 is topologically transverse.

4To analyze this fixed point properly one should work in McGehee coordinates, which are introduced in Section
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Lemma 4.2.1. There exist real analytic functions ro(u; G) and yo(u; G), defined for all u € R, such that
Wipp (200 G) = {r = 10(w; G), y = yo(u; G), u € R}. (4.5)
Moroever, mo(u; G) > G?/2 for all u € R and
ro(u; G) ~ u?/3 yo(u; G) ~ u=1/3 as u — +00.
In addition, for any G,G. € R we have
Iro(u; G) — ro(u; Gy)| < |G? — G2 as u — Fo0.

Remark 4.2.2. In the last item of Lemma [[.2.1] we compare solutions associated with different values
of the angular momentum G. The fact that we need that kind of information in our argument is due to

a technical step (Struwe’s monotonicity trick) in Section (see Remark and Lemmal4.4.10).
Proof. A proof of the first two items can be found in [MP94], where the authors also show that

2(1%(u 3 3(u
Th(UQG):W for u:% <T(U)+ ?() ))

One can check that for 7 € R the second equality admits the unique inverse

() = (367 + VoG 0w 1) — (36 4 VoG o —1)
which for large v yields that
T(u) = (6G7%u)/? (14 O@w™)).
Therefore, as u — £o0
w6y = S+ O (1 o)
and the conclusion follows. O

Define the local stable and unstable manifolds<]
W;BP,ZOC(ZOO; G) :thBP(Zoo§ G)N{y >0}
WsBpioe(200i G) =Wl p(200; G) N {y < 0}.

It is a standard fact that W;EB Ploe(%00i G) are exact Lagrangian submanifolds so they can therefore be
parametrized in terms of a generating function.

Lemma 4.2.3. There exists So(r;G) : (G?/2,00) — Ry, which satisfies
Happ,c(r,0rSo(r; G)) =0
and such that
W35 pioe(200; G) = {(r, £0,5(r; G)) € Ry x R:r > G?/2}.
4.3 The dynamics close to 7

In this section we study the dynamics in a neighbourhood of the periodic orbit at infinity defined in (4.3)).
Despite being degenerate (the linearized vector field vanishes at 7.,) the flow close to the periodic orbit
Yoo behaves in a similar way to the flow on a neighbourhood of a hyperbolic periodic orbit.

50ne can prove that orbits starting at points in W;BPlOC(ZOO; G) (respectively W, p ;.. (200; G) ) are confined in the
region {r > G2/2,y > 0} for all positive times (respectively in the region {r > G?/2,y < 0} for all negative times).
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4.3.1 The local invariant manifolds

Let ¢Z be the time s flow associated with the Hamiltonian H¢ defined in (4.2]). It is a classical result by
McGehee [McGT3] (see also [BF04b]) that v posses local stable and unstable invariant manifolds (by
7,y we denote the projection on the r and y coordinates of a point (r,y,t) € Ry x R x T)

Wit r(100; G) ={x € Ry x R x T: 16 (x) > R, my¢°(x) < 1/R, Vs > 0}

4.6
Wioe r(Vo0i G) ={z € Ry xR x T: m.¢¢;(2) > R, my¢°(x) < 1/R, Vs <0} (4.6)

It is also a standard fact that Wlifc’ r(7o0: G) are exact Lagrangian submanifolds so they can be parametrized
in terms of a generating function. The following result follows directly from the arguments in the proof
of Theorem 4.4. in [GPSV2I] (see Remark |4.3.2]).

Proposition 4.3.1 ([GPSV21]). Let Hg be the one parameter family of Hamiltonians defined in (4.2)
and fiz any G, > 0. Then, there exist R > 0 such that for all G € [—G.,G.] there exist two functions
SE(r,t;G) : [R,00) x T — R, real analytic on r and G, solutions to the Hamilton-Jacobi equation

He(r,t,8,.8F(r, t; Q)) + 8, ST (r,t: G) = 0
and such that
WlfC’R(’yoo;G) ={(r,y,t) eR, xR xR: 7€ [R,00), y =095 (r, t;G)}.
Moreover, if we let So(r; G) be the function defined in Lemma we have that
SE(r; Q) = So(r; G) ~ r3/2 as r — 00.

Remark 4.3.2. In Theorem 4.4. in |[GPSV21] the authors only show the existence of the generating
functions S*(r,t;G) for large values of G. The reason is that, under the hypothesis of large G, they can
extend the generating functions to a common domain where they can measure their diference. However,
if we are only concerned with the existence and behaviors of the generating functions close to infinity, the
problem is already perturbative, and the very same arguments apply to obtain the conlcusion in Proposition

[-3.1

Define the global stable and unstable invariant manifolds

’7007 U d)G loc R 7007 G)) ’yooa U (bG loc R 'Yooa G)) (47)

s<0 s>0

The analytic dependence of the functions ST (r,¢;G) on r and G will be key to prove that transversal
intersections (whenever they exist) between the global stable and unstable invariant manifolds are
topologically transverse except for (possibly) a finite subset of values of G. This is key for the multibump
construction. On the other hand, the estimate ST — S° ~ r=3/2 as r — 0o will be needed in the proof of

certain technical steps in Lemma (see Appendix [4.A]).

4.3.2 The parabolic Lambda Lemma

We now analyze the topology of the flow lines close to the periodic orbit 7.,. For that, it is convenient
to introduce the McGehee transformation r = 2/22 in which the equations of motion associated with the
Hamiltonian system Hg in (4.2)) read

s _T0Hs _ % ,_ @ 0He _ o 1 EAES
T 1oy 4 YT e T Ay @y s

In this variables, the periodic orbit at infinity (4.3]) now corresponds to the periodic orbit Yo, = {2 =
y =0, t € T}. Following Moser [Mos01], we now straighten the stable and unstable directions associated
with this periodic orbit. To that end, we introduce the change of variables

r—y . THY
2 P="

q:
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Hoypp >0

(opp <O
N

Figure 4.2: Phase portrait of the 2BP in McGehee coordinates. The fixed point z,, corresponds in
McGehee coordinates to the origin in the (x,y) € R? plane.

In these coordinates

i= 100+ )+ Os(a.9) p=— 1+ 50+ Os(d.9) (1)

so it is clear that the local stable and unstable invariant manifolds associated with the periodic orbit
Yoo = {q¢ = p = 0,t € T}, which, by the work of McGehee [McGT3] (see also Proposition [4.3.1)) we
already know exist, are close (for small |§|,[p|) to {§ = 0} and {p = 0} respectively. Let now, for
sufficiently small § > 0, define the set

Qs = {(q.p.t) e R* x T: |g| <6, |p| < 6}

andv let (Oaﬁv t) € Q5 — (157 ’ys(ﬁv t)vt) - Q5 and ((ju Oat) € Q5 - (q~a ’yu(@ t)7t) C Q5 be gfaph

parametrizations of these local invariant manifolds. Introduce new variables on Q5 given by
a=q—7"(p.1) p=p-7"(41)

From the invariance equation satisfied by v** one can deduce their Taylor expansion around § = p = 0.

Then, an easy computation, shows that

i=—2((g+p)®+Oslg,p)) p=L2((a+p)?* + 0ulg,p)) (4.9)

4

13

so in coordinates (g,p,t) C Qs the local stable and unstable manifolds are the sets {p = 0} N Qs and
{q = 0} N Qs respectively. Define now, for a < § the sections (see Figure |4.3.2))

S ={(¢,p.t) EQas:p=10, 0<g<a} Y, ={(g;p,t) €Q2s xT: q=9, 0<p<a}

and the associated Poincaré map ®pe : X7 — X/, associated with the flow , whenever is well
defined. Lemma [£.3:3] shows that a parabolic version of the Lambda Lemma holds for the degenerate
periodic orbit {p = ¢ = 0}. In order to build orbits whose final motions are hyperbolic, we also introduce
the outer sections

E;;hyp = {(qapat) € QQS: b= 63 —a < q< 0} E(;,hyp = {(qapat) € QQJ: q= 5, —a < p< O}

The proof of the following proposition follows plainly from the arguments in Chapter IV of [Mos01],
where an analogous result is proved for the Sitnikov problem. See also Theorem 5.4. in [GMPS22].

Lemma 4.3.3. Fiz any G, > 0. Then, there exists C > 0 sufficiently large and 6 > 0 sufficiently small
such that for any G € [—G., G4] and any a € (0,6/2) the Poincaré map

Do : E;r — 2;1705
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Figure 4.3: The sections X£. The Poincaré map @, : £F — ¥, sends the blue line in the section X}
into the blue line in the section X7, which accumulates to {p = 0}.

1s well defined. Moreover, for any t1 sufficiently large there exist unique q and p1, which satisfy
gtC% < py < g'=CF g 3=CO/2 <y < (=3(1+CH)/2
for which ®10¢(q,a,0) = (a,p1,t1).
In addition, for any (¢,a,0) € Zi‘h (respectively (a,p,0) € X ), the orbit (ghyp(s), Pnyp(s),s) of

with initial condition (g, a,0) (respectwely (a,p,0)) is defined for all forward (respectively backward)
tzmes and satisfies

Jim 4(gnyp(s), (Pryp(s)) > 0 (respectively lim y(gnyp(s), (Pyp(s)) < 0).

The first item in Lemma [£.3.3] shows that the iterates of curves which are transversal to the local
stable manifold accumulate along the unstable manifold (see also Figure . The second item ensures
that orbits with initial conditions on ¥ hyp (respectively ¥, ) have forward (respectively backward)
hyperbolic final motions. We now translate these results to the original coordinates. To that end we
introduce the sections

Afs ={(ry,t): 7 =R, 0< 8,5 (R,;G) —y <4, t € T}
Ags ={(r,y,t):r=R, 0<y—0,S" (R, t;G) <6, t € T}

and the map ®ioc, Ry R, : AJIQI s — AEQ s Whenever is well defined. We also define the sections leading to
hyperbolic final motions

A'I;’é ={(r,y,t):r=R, -6 < 9.ST(R,t;G) —y <0, t €T}
Aps={(ry.t):r=R, =0 <y—0,5 (R, t;,G) <0, t €T}

Lemma 4.3.4. Fiz any G, > 0. Then, there exist R > 0 sufficiently large such that for any Ry, Re > R
there exists do(R1, Ra2) such that for all G € [—G., G| the Poincaré map

AT -
(I)loc,Rl,RQ : AR1,6 — AR%&,

is well defined for 6 < 6y and some §'(Ry, Ro,0) > 0. There exists T, such that for any T > T, there
exist unique Yo, y1 such that @ioc gy .y (R1,Y0,0) = (Re,y1,T). Moreover, for any e > 0 there exists Ty
such that, if T > Ty and Pioc, R, Rk, (R1,Y0,0) = (Re,y1,T), then

0-ST(R1,0;G) —yo < e y1 — 0,ST(R2, T;G) < e.

In addition, the orbit (royp(s), ynyp(s), s) of ([@.2)) with initial condition (Ry,y,0) € Agl’é’hyp (respectively

(R2,y,0) € AR, s1yp): 08 defined for all forward (respectively backward) times and satisfies

lim ynyp(s) >0 (respectwely hm yhyp( ) < 0).

§—00
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4.4 Existence of homoclinic orbits to 7

In this section we establish the existence of orbits of the Hamiltonian , which are homoclinic to
Yoo- For |G| > 1, the Hamiltonian can be considered as a perturbation of the integrable 2BP, in
which there exists a homoclinic manifold to v (see Lemma [4.2.1]). Therefore, for |G| > 1, one can use
geometric perturbation theory to prove that the global invariant manifolds W (v; G) and W™ (Vs0; G)
defined in intersect transverally. This was the approach used in [GPSV21] where the following result
was proved.

Theorem 4.4.1 (|[GPSV21]). There exists G. < oo such that for all G such that |G| > G. the global
stable and unstable manifolds W (voo; G) and W™ (Voo; G) defined in (4.7), intersect transversally.

Yet, for a fixed G € R, the Hamiltonian is not close to the 2BP. Therefore, geometric per-
turbation theory cannot help to study the existence of transversal intersections between W (v4;G)
and W~ (700; G). We however exploit the variational formulation of the problem, in which the powerful
techniques from nonlinear functional analysis are available.

More concretely, in Section[.4.1]we introduce a suitable action functional, defined on a suitable Hilbert
space, whose critical points are indeed orbits of which are homoclinic to 7. Then, in Section m
we establish the existence of a critical point of the aforementioned action functional using a minmax
argument. The minmax characterization of the critical point obtained is crucial for the construction in

Section [4.61

4.4.1 The Variational Formulation

We introduce the vector space of real valued functions
D'? ={p € C(R): Fv, € L*(R) such that ¢(s) = ¢(0) +/ v,(t)dt Vs € R} (4.10)
0

In the following, we will write ¢ = v, (i.e. v, is the weak derivative of o). It is easy to chek that

(@, )12 = p(0)9(0)] + {p,¥) L2

defines an inner product on D2 for which the functional space D'? equiped with this inner product is
a Hilbert space. We write
1/2
lellprz = (@, 0)pr2) ™

for the induced norm. Notice that for all ¢ € D2 and all s € R

()] < 1 (O)] + ll3llz2 /1s]-

After the introduction of the functional space D2 it is an easy computation to show that the existence
of orbits of (4.2) homoclinic to the periodic orbit at infinity v., = {r = oo,y = 0,¢ € T} is equivalent to
the existence of critical points of the action functional Ag : DV/? — R given by

AG(‘P; GO) = / Lren(‘Pﬂba S;G, GO)d57 (4'11)

R

where .o
Lien(p, 9, 8,G,Go) = % + Va(ro +¢) — Vo(ro) — Foe, (4.12)

Vi stands for the effective potential
G? 1

22 7 20

and Vy(rg) = Gy _ % with ro being the parabolic orbit of the 2BP with angular momentum Gy € R (see

2
2rg

Remark [4.4.3).

Va(r,t) = (4.13)
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Remark 4.4.2. L., (p, ¢, s;G) is indeed a renormalized Lagrangian, that is, we have substracted the
term Vy(ro) in the integrand of what would be the “natural” action functional. The reason behind the
definition of (4.11)) is that the action of a parabolic orbit is infinite. Indeed, the Lagrangian of the 2BP

reads
) 73
Lo(ro, 7o) = 5 Vo(ro)

and for a parabolic orbit ro(s) ~ s*/3 for s — +oo.

Remark 4.4.3. It might seem surprising that when defining the renormalized Lagrangian Lien, we let
Gy be an independent parameter instead of taking G = Go. The reason is that in this way, for a fixed
Go € R and fized ¢ € DY? the function G — Ag(p) is monotonely decreasing. This will allow us to
use a monotonicity trick due to Struwe which is key to obtain uniform bounds for certain (Palais-Smale)

sequences {©n fnen C DV2 for which dAg(¢n) — 0 (see Section and, in particular, |4.4.10). On

the other hand, the asymptotic behavior of parabolic solutions as s — oo becomes independent of the
value of the angular momentum G (see Lemma so the definition of the renormalized Lagrangian
Lren makes sense for G # Gj.

Remark 4.4.4. Throughout the rest of the paper the value Gy € Ry will be fized. Thus, we omit the
dependence of all quantities on Gy. Having fized Gy € Ry, we state results for G € [—Gy, Go] (or full
measure subsets of this set). This choice is completely arbitrary: the results proved below are certainly
true if we replace [—Go, Go| by any other bounded subset. However, since we have always the freedom to
choose Gy as large as we want it is enough to state results for G € [—Gy, Gy).

The following observation will play an important role in our construction.
Lemma 4.4.5. Let 7 € Z and define the translation operator
T-(p)(s) = @(s +7) +ro(s + ) — ro(s).

Then, for all T € Z
Ac(Tr(¢)) = Aclp)-

We now state a technical lemma which will prove useful in later compactness arguments.

Lemma 4.4.6. Let v > 0 and let L% be the weighted L? space with norm given by

1/2
2
¥
wmz(/ 'M) -
R 7o

Then, D2 is continuously embedded in L?Y for v >0 and compactly embedded in L,2y for v > 0.

Proof. The proof of the continuous embedding for v > 0 is obtained by the very same argument used
in the proof of Proposition 3.2. in [BDFT21] taking into account that ro(s) ~ s%/% for s — o0 and
ro(s) > G3/2 Vs € R. We now prove that the embedding for v > 0 is compact. Take any bounded
sequence {@, }nen C D52 such that ¢, — 0 weakly in DY2. In particular ¢, (s) — 0 pointwise for all
s € R. Since, for any ¢ € D"? and any s € R we have

lp(s)] < 1(0)] + l¢ll L2 /1]
we obtain that for all s € R )
|‘Pn(5)‘2 < Hﬁpn”[)u
757 T

Therefore, a direct application of the dominated convergence theorem shows that
2
=0.

lim [on 2, = lim [ —2n
nooo T L“r n— 00 R¢8+7(3)
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We now show that A is continuous and has a continuous differential on a suitable subset Q C D12,

Lemma 4.4.7. Let K > 0 and m > 0 be two fixed constants and define
Q={pe D" lplpr2 < K, minro(s) +p(s) > m}

Then, for any G € [—Go, Go] we have Ag € C(int(Q), R).

Proof. Let ¢, € @Q and make use of the mean value theorem to write

Aa(e) ~ Aatv) = [ §<¢+¢><¢—¢> FOVaro+ e —v) il -v) (410

where £ = Ap + (1 — A\)9 for some A(s) € [0, 1]. On one hand,

[@+ire-i)| < </|s0+¢|2)1/2 (/Rw—@bl?)l/:o

as ||¢ — ¥||p1.2 — 0. On the other hand, since for ¢, € D2
min ro(s) + &(s) =min o(s) + Ap(s) + (1 = A)g(s) = min A(ro(s) +¢(s)) + (1 = A)(ro(s) +(s))
zmiﬂg am+(1l—=XAm=m>0
se

and convergence in D2 implies uniform convergence in compact intervals, we have, taking into account

the expression of Vg , that
(0 Va(ro+ &) — o) (p— 1) =0
pointwise as || — ¥||pr.2 — 0. Moreover, for s — oo
ro(s) +¢(s) = 1o(s) = (Ip(O)] + Il 2 /[s1) ~ 5>
so, from the definition of Vs in , a straightforward computation shows that for ro — oo
0,V (ro) — o ~ 15 °.

Thus, using again that mingegr r9(s) + £(s) > m > 0, we obtain the existence of C' > 0 depending only
on K and m such that for all s € R

10, Va(ro(s) +&(s)) — fo(s)| < Crg°(s)

Therefore,
/R (0rVa(ro + &) — 7o) (¢ — w)’ < (/R (@, Viro 4 €) — i) |> 1/2

1/2
x (/(arvc<ro+s>—fo>||w—w|2)
R
lo— >
<0 [ #55= Ol -l

and the continuity of the map Ag : Q € D%? — R is implied by Lemma m The proof that
dAg : Q c DY? — D2 is a continuous map follows from similar arguments. O

Lemma 4.4.8. Let K > 0 and m > 0 be two fived constants and let Q C DV? be the subset defined in
Lemma . Then, for any for any G € |-Gy, Gol, dAg : int(Q) — D2 is a compact perturbation of
the identity. In partiuclar, this implies that for any compact set F C DY? the set Q N (dAg) 1(F) is
compact.
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Proof. We write

dAc()l4] =3, D)1z —/(«m+2f¢ 1) (e )
i+ [ - [ (o S By

*A(w‘%ﬂ

#¢wp+2/¢¢+m>w1

R

(4.15)

where we have introduced the functional

Pwmﬂ_4<Mﬁ;P_%?w_A<WoJ?fﬁﬁﬂ_%+29w

Thanks to Lemma [1.4.6] we can take

(oo =2 [ Z

RTO

(P, )2

as an equivalent inner product in D12, It follows from Lemmammat forallp € Q, dAg(p) : D¥2 = R
and P(p) : DM — R are continuous linear functionals and thanks to Riesz representation theorem, for
every o € Q C D2 there exist unique 74 (), np(¢) € D12 such that

((na(w), ¥))prz2 = dAc(p)[¥] ((np(9), ¥))pr2 = P(p)[Y].
and na = Id + np. After writing

((np(ps) = np (@), np(es) —np(9))) prz = Ples)mp(ex) — ne(e)] — P(p)np(es) —npp)l,

a tedious but straightforward computation shows that for any ., p € Q

Inp(ps) =np(@)ID12 < o= llzz Inp(*) =np(@)lliz , < llox =@z Inp(@) —np(e)lpre (4.16)

1/4 1/4 1/4

what implies that np : @ — D'? is a compact operator (recall that the embedding of D2 in L2/4 is
compact). The second item in the lemma plainly follows after writing
na(e) = ¢ +np(p).

Indeed, for a sequence {¢,}neny C Q C DY? whose image under dAg is contained in a compact subset
F C D2 there exists a subsequence (which we do not relabel) for which {n(¢,)}nen is convergent in
D12, Then, the proof is finished since 7p being a compact operator and implies that (up to passing to a
further subsequence) {np(¢n)}nen is also convergent in D12, O

From now on we will omit the subscript in the inner product and norm defined in D2,

4.4.2 Existence of critical points of the action functional

In this section we prove the existence of critical points of the action functional Ag defined in using
a minmax argument. In particular, we will employ a constrained version of the celebrated mountain pass
theorem of Ambrosetti and Rabinowitz [?]. The first step is to verify that the level sets of Ag have a
mountain pass geometry. This is the content of the following proposition.
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Proposition 4.4.9. Take any constant M > 0. Then, for all G € [—Go, Go]\{0} there exist 1)1, 1o € D2
such that

Ac() < —M i=1,2.

Moreover, there exists M* > 0 such that if we take M > M*, then for any curve v € C([0,1], D%?)
joining Y1 and 1o there exist a point 1., for which

Ac(y) > —M)2.
Proof. Let 4 > 0 so

Ac(u)=/RVG(ro+ﬂ)—v0(r0):/R

/ 1 1
< —
m To + W@ To

It follows from Fatou’s lemma that

L e @
o+ i+ P77 10 2o+ uP 3

1 1 1
limsup Ag(p) = limsup/ ——<—- | = = —x.
H—>00 H—>00 rRTO + 1% To R T0

On the other hand, take n € (0,1/2). Then, for some finite (and uniform for n € (0,1/2)) C' > 0 we have
1 1 Gj G?
A :/Vr-i- —Vr:/ - 407
ol = J Yelrotm =Wl = | G+ 2 w0 T 2 2
1 2
1 G
§C+/ — .
o rot+n  2(ro+n)?

Using that ro(s) = 1/2 + s? + O(s3) for s — 0 (this can be deduced from the proof of Lemma [4.2.1)) one
can easily check that

limsup Ag(n) = —oc.

n—1/2
The first part of the lemma is proven by taking ¢¥1 = u with u large enough and o = n with n — 1/2.
In order to prove the second item of the lemma we let R > 0 be such that

02 Va(r) >0 Vr >R

and denote by T the value of s for which r¢(s) > R for all s such that |s| > T. Notice that R exists because
of the convexity of Vi (r) for large values of r, which can be checked explicitely from the expression of
Ve in ([4.13). We now take ¢ € D'? such that minger ro(s) + ¢(s) = R. We claim that Ag(p) > —M /2
so the lemma follows since, by continuity, for all v € C([0, 1], D'*?) joining 11 and 1) there exist a point
@ € v for which

Isnei]g ro(s) + ¢(s) = R.

We now prove the claim. Lemma implies that, withouth lost of generality, we can suppose that the
minimum is attained at the interval s € [0,1]. We express

=112
AG(QO) _ ||()0||L2

5 TJ<(@) + 12 (0) + Elp)
where

J- () / 1 1 n 0P
>\p) = -
> s[>T ((ro + )2 +p2)1/2 (r% + p2)1/2 (Tg +p2)3/2

1 1 %)
_ GQ/ - - + T
si<r 2(ro + )2 215 1
J<(9) _/ 1 _ 1 0P
ST Jer o+ 9P+ 22 B+ p2) 2 " (12 + p2)32

1 1 %)
_ G2/ e
sl 2(ro + ) 2rg g
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and

1 Top 1 e 2 oy [ 1 ®
E(p) = - ST N (67 T eC) Y Q.
O |t e w4 (5

For the first term, after applying the mean value theorem twice, we obtain that

Js () = / 02, Ves(ro + E)mep
|s|>T

withn =0p, 0 <o <1and £ =An, 0 << 1. Since
min(rg + &) > min(rg,70 + ¢) > R

we have J>(¢) > 0 by the definition of R. For the second term we use that minser 79(s) + ¢(s) > R > 0
and that for all s € R we have |o(s)] < |¢(0)] + ||©]lL2/|s] so we obtain

Top 2 1 1 14
T
<) |s|<T (7"8 + P2)3/2 |s|<T 2R? 27"3 7"3

To G% .
20+ [ o (G =7 ) 2 00 i

for some C' > 0 which depends only on R. An analogous computation shows that for the third term we
have

1 1 1 (ro + p) (G3 -G .
E(p) > e — — 4 | = — >-C(1 2
(Lp) = /;e]R (T% +p2)1/2 To + (7’8 (T(Q) +p2)3/2 + Tg Y= ( + HSDHL )

for some C' > 0 which depends only on R. Therefore

eIz
2

Ac(p) 2 —C(1+¢lz2)
for C' depending only on R and the result follows after enlarging M (if necessary) while keeping R
fixed. O

We now have established the existence of the mountain pass geometry for the level sets of the functional
Ag. The next natural step would be to apply the classical deformation lemma to obtain a Palais-Smale
(PS) sequence for the functional Ag. There are however two difficulties. The first one is that, a priori,
a suboptimal path, might contain points ¢ € D2 for which minseg(ro + ¢)(s) = 0, at which the
functional ¢ +— Ag is not continuous. The second difficulty is that, even if we can guarantee that
minger(ro + ¢)(s) > 0 for all ¢ in the region where we carry the deformation argument, without further
constraints we are not able to show that the PS sequence obtained is precompact. For that reason, we
take m > 0 large enough and we carry the deformation argument in the region

Fu= {0 D% mintra + o)) <7} (417)

In Lemma [4.4.15[ we show that on a suitable subset Fi 55 C Fr, the functional Ag(p) is bounded and
coercive, from where we deduce a uniform bound for ||¢|| when ¢ € Fi 5. This will be crucial to obtain
uniformly bounded PS sequences.

The deformation argument

We now introduce the set of curves

I'={y € C([0,1], D"*): 7(0) = 1, (1) = v2} (4.18)
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and for > 0 large enough the candidate to critical value

cg = vnelfF max{Ag(v(t)): v(t) € Fm, t €[0,1]} (4.19)

The first step in the deformation argument is to prove that there exists a positive § such that for all
bounded ¢ € {¢ € DY2: |Ag — | > 6}, we have mingeg(ro + ©)(s) > 0. To that end we notice that

Ac(p) = A(p) — G* B(y) (4.20)
with

22

@ 1 I e of 1o
Alp) = | & -ty (-2
) /n«2+((ro+90)2+02)1/2 o 73 °<27‘3 )

(4.21)
B() Z/]R(roJrsa)‘2

and apply a monotonicity trick due to Struwe (see [?] and [?]) to show that for almost every G, the
functional B(y) is bounded if |Ag(p) — c¢| is small enough (see Remark [4.4.12)). The following version
of the monotonicity trick was proved in [?]. We provide the proof for the sake of self completeness.

Lemma 4.4.10. There exists a full measure subset J C [—Gy, Go] such that for all G € J there exists
constants 6 > 0 and C > 0 for which if |Ag(p) — cq| < § then B(p) < C.

Proof. Since B(y) > 0 it follows from expression and the definition of ¢g in that G — cg is
a monotone decreasing function. Therefore, it is differentiable on a subset J C R whose complement has
zero measure. Let G* € J, § > 0 and take ¢ such that |Ig-(p) — cg+| < §. Take now G < G*, then, by
decreasing (if necessary) the value of § we can assume that

Ac(p) > cg- — (G" = G) Ag(p) < cg- + (G = G)

Then
_Aclp) —Acly) _ ca + (G =G) —cp + (G - G)

G*—G G* -G
By the hypothesis on G* there exists an open neighbourhood around G* for which

B(p)

G — CG*
G* -G

and the lemma is proven. O

—Ce — 1< < —Cpe +1

Boundedness of the functional B(y) allows us to obtain an a priori estimate for minser(ro + ¢)(s) if
¢ € D%? is bounded.

Lemma 4.4.11. Let ¢ € D%2 be such that B(¢) < C. Then, there exists a constant m > 0, depending
only on ||¢]|z2 such that
ro(s) + ¢(s) > m Vs € R.

Proof. Suppose there exists s, € R such that lims_ ., 7(s) + ¢(s) = 0. Since ¢ € D2 it holds that
|s«] < oo and we can assume without loss of generalitiy that ro(s) + ¢(s) > 0 for all s < s,. Take
now so = S, — 1 and write 7(s) = ro(s) + ¢(s). Then, by the fundamental theorem of calculus, for any
s € [S0, Sx)

r(s) s

in(r(s) ~ In(r(so) = [ rlr = [ e o

r(s0) 50

and Holder’s inequality implies

s 1/2
[In(r(s)) — In(r(so))| < B(y) </ (fo + @)2> <SCQA+elee)-
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Remark 4.4.12. In Lemma we show that for all G € R\ {0}, we have mingegr(ro + ¢)(s) > G2/2
for orbits of which are homoclinic to v . However, that argument does not allow us to conclude that
there exist 6 > 0 such that for all bounded ¢ € {¢ € D*?: |Ag — ¢| > §} we have mingeg(ro +¢)(s) > 0.
Therefore, is not clear how to incorporate the a priori estimate in Lemma to obtain a minmax
critical point.

Assume now that ¢ is such that |Ag(p) — cg| < 6. Therefore, thanks to Lemmas [4.4.10| and [4.4.11] it
is possible to obtain an inequality of the form

-AG(SO) > ||<)0HL2

> I o)) (422)

for some C' > 0. Thus, if we moreover assume that ¢ € Fsm and that infser(ro + ¢)(s) happens for
s € [0,1] we can obtain a uniform bound for the D2 norm of ¢. In general, in problems in which the
action functional is invariant under integer time translations, the latter assumption introduces no loss of
generality and this argument can be employed to obtain uniformly bounded PS sequences.

However, in the present problem, the translation operator T.(¢) = ¢(s + 7) + ro(s + 7) — ro(s), for
which we have Ag(T;(¢)) = Ag(p), is not an isometry in D2, This introduces certain technicalities
in the deformation argument. In order to overcome this technical annoyance we introduce the following
definition.

Definition 4.4.13. Given ¢ € DY2 we define its barycenter as the functional Bar : D2 — R given by

Bar(p) = ( Ja+ o+ m?)?ds) h [ 51+ o+ o) 2as.

The following properties of the barycenter functional will be crucial for the deformation argument.

Lemma 4.4.14. Let Bar(p) be the functional introduced in Definition|.4.15 The following statements
hold:

e Behaviour under translations: For any T € Z
B(T-p) = B(p) — 7.
where the translation operator T, was introduced in Lemma [{.4.5.

e Local Lipschitzianity: For any K > 0 there exists Lpay > 0 such that

B -B !
wp | Bule) =Bl

lell <K, lI<K e — |l

Proof. The proof of the first part is a trivial computation. For the second one we express

B(¢) = Ba(¢)/Bi(p)
with
Bu(p) = / (1+ (ro + 9)?) 2ds Ba(p) = / S(1+ (ro + 9)?) " 2ds.

First we notice that there exists C' > 0 such that for all ||¢|| < K we have B1(p) > C > 0 and |Ba(¢)| < C.
Indeed, for all s € R

()] < Lo (O] + llellze vVIsl < (L +VIsD el < C(1+ V/]s])

so there exists T' > 0, depending only on ||¢||, such that

ro(s) +(s) = ro(s)(1 — O(s™/%))
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for all |s| > T. Therefore, for C' depending only on T,

|Ba(p)| < C+/

|s|>T

|s|(L+ (10 + ¢)?)2ds < C (1 _|_/|

s|>T

|s|r04(s)ds> <C.
The uniform bound from below for By (y) follows since there exists C' and T', depending only on ||¢||,

such that
ro(s) +¢(s) < C(1+/1s])
for all |s| < T. Take now ¢, p* € D2 and write

B(¢") — B(p) = (Ba2(¥*) — B2(9))/Bi(¢) + (Bi(¢") — Bi(»))B2(»)/ B1(#") Bi(p)

Let g(¢) = (1 + (ro + )?)~2. Then for ¢, p* € D*? we can write

1
Bo(o") — Baly) = / s(o” — ) / (Mg — 0))dAds
0
On one hand for all s € R

|2%(5) = ¢(s)] < "(0) = @(0)] + [|¥* = @llre Vs < (1 + VIsDlle™ - ¢l

and it follows that
1
|Ba(e") — Ba()| <Clig" — ol / (1+[sP2) / o+ Mg — @)[(L+ Iro + Ag” — p[?)~3dAds
0
<Cllo* — ol / (1+1s/2)ry® < Cllg™ — gl

The same computation shows that there exists C such that

|B1(¢") = Bi(p)l < Clle™ — ||
and the lemma is proven. O

Together, Lemma[£.4.10]and Lemma imply the following result, which is key in our constrained

deformation argument.

Lemma 4.4.15. Let J C [-Go, Go] C R be the subset obtained in Lemmal.4.10, Let G € J, let § > 0
be the constant in Lemmal[{.4.10, let b > 0 and define

Frop = Fm N {(p € DY |Ag(p) — ca| <6, |Bar(p)| < b} (4.23)
Then, there exists K > 0 such that
sup |lof| < K
PEFm,6,b

Proof. Let
S = {5 € R: min(ro +¢)(s) = (ro + ¢)(5)}

We claim that under the hypothesis of the lemma there exists C' > 0 such that
|Bar(¢) — 8| < C VseS

Suppose not, then, by continuity, there exist 5 € S and sequences {¢,}, {5,} such that ¢,, — ¢ in DY
5, — § and

©n € Frm, |AG(¢n) —cal <6, and |Bar(¢n) — 5n| — oc.
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By invariance of the action functional under translation T, (¢)(s) = ¢(s 4+ 7) + ro(s + 7) — 70(s) (see
Lemma [4.4.5)) and the fact that

the sequence @, = Tis, pn, satisfies
Pn € Frmy |Ac(Pn) —ca| <6 and |Bar(¢p,)| — oo.

However, the first two properties imply the existence of K such [|@,|| < K for all n € N. Indeed, by the
construction of ¢,, for all ¢,, we have

lo(s)] <+ | &nllzz/Is + 1]

Moreover, since G € J and |Ag(¢n) — ca| <6 , Lemma [4.4.10| implies that there exists C' > 0 such that
B(¢n) < C for all n € N. Therefore, it is easy to check that there exists C' > 0 such that

" [ :
Ao 2 nliz o4 60)
for all n € N. Thus, since |Ag(@n) — cg| < and |cg| is bounded, the sequence {@, } must be uniformly
bounded. It is easy to check that the existence of K such that ||@,|| < K is in contradition with Bar(@,,)
being unbounded.

Once we know that the claim |Bar(¢) — 5| < C holds, we obtain that § < C'+b for all § € S. Therefore,
since ¢ € Fr, we have that

2(0)] < lo(8)] + @l 2 V1] < C(L+ (|l 2)

for some C' > 0 depending only on 77, and b. The result follows since now we can show that for all ¢,
we have 12
Pn .
Aclpn) 2 =5 L2 — O+ [1gnll2)
for some C uniform on n. O

In Proposition we show the existence of a PS sequence contained in Fz s for large enough
values of m and b. Notice that in particular, thanks to Lemma [£.4.15] this sequence will be uniformly
bounded.

We split the proof of Proposition [4.4.17] in two parts. First, we assume by contradiction that there
exists no critical point of the action functional Ag in Fim 5. Under this assumption, we build a pseudo
gradient vector field for Ag, this is the content of Proposition Then, in Proposition we
use this pseudo gradient vector field to build a localized deformation which yields points ¢ € F 5 for
which Ag(p) < cg, a contradiction.

Before stating Proposition some definitions are in order. Let b > 0 and 0 < £ < §/2 where
0 > 0 is the constant in Lemma For we want the flow along the pseudogradient vector field to
leave D12\ F; positively invariant, we express it as the convex combination of two localized vector fields:
a gradient-like vector field supported on

P={pcD"?: |Ag(p) —cq| <, miﬂgro(s) + ¢(s) <m, Bar(p) < 2b} (4.24)
sE

and a vector field supported on

Y ={pe D"?: |Ag(p) —ca| <6, |Ir1€i£r0(s) + ¢(s) —m| < e, Bar(p) < 2b}. (4.25)

for which D12\ Fy; is positively invariant. This construction is made explicit in the following proposition.
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Proposition 4.4.16. Let J C [Go,Go]R be the subset obtained in Lemma |4.4.10, Let 6 > 0 be the
constant in Lemma[{.4.10 and take m > 0 large enough. Assume that for allb > 0 there exists a > 0 for
which

inf {IVAG(9): ¢ € Fmsm} >«

Then, there exists by such that for all b > by there exists a Lipschitz pseudogradient vector field W :
DY2 — DY2 such that

o [W]l<1,
o There exists a constant B > 0 such that

dAg(p) W(p)] < =5 Vo € PUY,

e The region DY2\ Fuy is positively invariant under the flow of W.
Proof. Let € < §/2, define the sets

Y ={p € D*?*: |Ag(p) — cg| <6, |r¥1€iﬂr§1ro(s) + ¢(s) —m| < e, Bar(p) < 2b}
Z ={p € D"*: |Ac(p) = cq| <4, |minro(s) + ¢(s) — ]| > 2e, Bar(p) < 2b}

and the function
distZ

= distY + distZ’
which satisfies W =0 on Z and ¥ =1 on Y. We also introduce

P ={p e D"?: |Ac(p) —ca| <ce, minro(s) + (s) <, Bar(p) < 2b}
Q ={p € D"?: |Ac(p) — cc| = 6, minro(s) + ¢(s) <, Bar(p) < 2b}

and define the function )
B distQ
 distP + distQ’
which satisfies ® = 0 on Q and ® = 1 on P. Take now a sufficiently small open neighbourhood U C D':2,
supp(®) € D'2. Notice that by Lemma 4.4.15| there exists K > 0 such that
sup{|l¢l|: ¢ € U} < K.

Then, since G € J, Lemmas [4.4.10] and 4.4.11] impy that there exists m > 0 such that

inf{miﬂ]g ro(s) +¢(s): ¢ € U} > m.
se

Therefore, by Lemma we have that dAg € C1(U, D1?), what implies the existence of a constant
C > 0 such that distP + dist@) > C. We introduce now the pseudogradient vector field

1 VAg
W=—(-1-9)0—— -+ Tv) (4.26)
V2 IVAg||
where v is the constant vector field given by the constant v = 1 € D2, Notice that for a large enough
fixed T, and for all b > 0 there exists & > 0 such that

sup{dAg(p)[v]: ¢ € supp¥} < —a (4.27)

_ G? B o+ @ v
dAg(p)[v] _/BQ((TO‘F(P)S ((ro + ¢)? +p2)3/2)

and the claim follows since for large enough 7 the integrand is non positive and moreover it is strictly
negative on a positive measure subset of the real line since (thanks to Lemma there exists K > 0
such that sup,ecsuppwll@ll < K. It is straightforward to chek that the pseudogradient vector field W
introduced in satisfies the properties listed in the statement in the lemma with 5 = min{«, &} > 0.

O

Indeed
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Proposition 4.4.17. Let J C [—Go, Go] C R be the subset obtained in Lemmal4.4.10, Let 6 > 0 be the
constant in Lemma and take m > 0 large enough. Then, for b > 0 large enough there exists a
Palais-Smale sequence {on}, cy C Fm,s,20 for Ag at the level cg.

Proof. Let I C C([0,1], D) be the set defined in ([4.18). Let ¢ < §/2 and take a suboptimal path
Ye C I' for which Ag(7:(t)) < ¢g + ¢ for all ¢ € [0,1] such that mingeg ro(s) + (7(¢))(s) < m. For all
v € I' we define the set

B, = {Bar(%(t)): lAc(y(t) — cal > &, g&TO(S) +(v(#®)(s) <m, teo, 1]} :
Notice that for each v € I', the set B, is a compact subset of R. Denote by
bmin = min B, bmax = max B,
and consider the translated path ’y; = Tpy7e for by = [bumin]- It satisfies that
By1 C [0, bmax — bo + 1]

Let W : D%2 — D2 be the pseudogradient vector field built in Proposition and denote by 7, its
time 7 flow. Notice that since W is Lipschitz the flow 7, is well defined at least for sufficiently small
7. Let § > 0 be the constant in Proposition We claim that the deformed path ! o 9, with
T« = 2¢/[3 satisfies

max{Aq (-, (72)()): minro(s) + (0. (12)(1)) (s) <™, [Bar(n- (v2)(#)| < b, t € [0,1]}
<cg—e.
To verify the claim we first notice that the maximal displacement is bounded by
117+ (@) =l < THWI| < 77 = 2¢/8.
Therefore, applying Lemma we obtain that for any ¢ € 7. (taking b sufficiently large)
|Bar(n,«(¢)) — Bar(¢)| < Lpay2¢/8 < b/4.

Thus, since the region {mingecg r(s) + ¢(s) > m} is forward invariant by the flow n, and

d
—_ <
dT(AG © 77) > Oa

in order to verify the claim, it is enough to check that there does not exist
RS {miﬂgro(s) + (vA(t)) (s) <m, Bar(y1(t)) <5b/4, te]0, 1]}
s

for which 1, (y}) € P Vr € [0,7*] where P C D2 is the set defined in (4.24)). This is clearly not possible
since for ¢ € P we have

d
E(AG o 77) <-8

SO
Ac(h+(2)) € Ag(v2) =" B < e — ¢
a contradiction. Now that the claim is verified consider the path
’7? = T*bo (’761)

It satisfies that
B, C [bo + b, bmax + 1]
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and
max{Ag(v2(t)): ISIIGIHI{} ro(s) + (’y?(t)) (s) <m, Bar(y2(t)) <bo+b, tc[0,1]} <cg—¢

If binax — bo +1 < b the proposition is proved. In the case byax —bg +1 > b we repeat the argument above
with the path 72 to obtain a path 42 satisfying

B.s C [bo + 2b, brax + 1]

and
max{ Aa(22(0): minro(s) + (2(1)) (s) <7, Bar(2(1)) < bo+ 20, 1€ [0,1]} < cq e
The result follows after repeating the construction no more than [(byax — bo + 1)/b] steps. O

Finally, we obtain the existence of a critical point of the functional Ag at a level ¢ .

Theorem 4.4.18. Let J C [—Gy, Go] C R be the subset obtained in Lemmal4.4.10L Then, for all G € J
there exists a critical point of the action functional Ag at the level cg.

Proof. By Proposition 4.4.17L for sufficiently large 7 and b there exists a Palais-Smale sequence {¢n }, .y C
Fim,o.26 s0 it follows from Lemma [4.4.15] that it is bounded. The theorem is then proved since the Palais
Smale sequence {p, }nen satisfies the hypothesis for the set @ of the compactness Lemma m O

4.5 Topological transversality between the stable and unstable
manifolds

For the choice of Gy > 0 was arbitrary, Theorem implies that for any compact subset [—Go, Gy
of the real line, there exists a full measure subset J C [—Gg, Go] such that for all G € J there exists an
orbit of which is homoclinic to vo,. Another way of rephrasing Theorem is that the invariant
manifolds manifolds W# (7., G) defined in intersect for almost all values of G in [-Gy, Go|. However,
Theorem [4.4.18| contains no information about the geometry of the intersection, in particular wether it
is transversal or not.

Theoremm proved in [GPSV21], shows that the intersection between W= (4, G) is transverse for
all G sufficiently large. Moreover, the local stable manifolds V[/'lffC (Yoo; G) (see ) depend analytically
on r and G (see Proposition . We want to exploit this facts to deduce that the intersection of the
manifolds W (74, G) (which, by Theorem we already know that exists for almost all values of
G € [—Gy, Gy]) must be topologically transverse for almost all values of G in [—Gg, Gy).

Remark 4.5.1. In the following we fix a sufficiently large value of Gy and work with G € J C [—-Gy, Gp].
The first step is to obtain an a priori estimate from below for mingeg 71(s).

Lemma 4.5.2. Let G € R and let ri,(s; G) : R — R be an orbit of of the Hamiltonian Hg in (4.1) which
is homoclinic to vys. Then, for all s € R we have

G2
rp(s) > -

Proof. Since 71,(s;G) : R — R is an orbit of of the Hamiltonian Hg we have that

G? Th G? 1
—_—— s 2 — — —5. (4.28)
SRR

iy =
Let now I C R be an interval in which 74(s) < 0 for all s € I. Then, multiplying (4.28) by 7, for all
s € I we obtain ) )
d /7 G 1
(O 1y
ds \ 2 2ri Ty
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that is, the energy
B(s) = 72 (s) G? 1
2 2r2(s)  rp(s)

is non increasing on the interval I. Let I be a maximal interval in which r,(s) is decreasing: we distinguish
between two alternatives, either

o [ =(—00,81], and lims_, o 74 (8) = 00, lims_, o 71(s) = 0 and 7,(s1) = 0, or
o [ =[sp,s1] and 7 (s9) =0, 7x(sp) < 0 and 74(s1) =0
for some —o0o < s < 81 < 0o. In the first case we have

lim E(s) =0.

S—>—00

In the second case, using that 7 (sg) = 0, #,(s9) < 0 and the inequality (4.28]), we obtain

#2(s0) G2 1 c? 1 a2 1
E(so) = 222 + - = — < —
(50) 2 2r2(so)  rn(so)  2ri(so)  7Ta(so) ~ ri(so)  7Th(so)

<0.
Therefore, in both cases, for all s € I we have E(s) < 0, which implies that

r(s) >r(s1) > ;
O

Lemma implies that for G # 0, homoclinic orbits do not intersect the section {r = 0}. This
fact allows us to exploit the analytic dependence of the Hamiltonian Hg in the parameter G to prove the
following result.

Lemma 4.5.3. The set of values of G € R\ {0} for which W~ (70, G) = W (700, G), is finite.

Proof. Fix any § > 0 and let G, be the constant in Theorem and let 1 < R; < Rs be such that
for all G € [-2G,, 2G,] the generating function ST (r,t; G) associated with the local stable manifold (see
4.3.1)) is well defined for all (r,t) € [Ry, Ra] X T. Define the set

Q={(r,y,t) e R xRxT:r e (Ry,R2), y>0, t=0}.

Whenever it exists, denote by 7. C QNW"(Vs; G) the connected component of QNW" (740; G) associated
with the first backwards intersection of W*(7vu0; G) with @ (see Figure [4.5). Define now the set

G={GeR:6<|G|<2G,, Yo # 0 and 3 ¢, € C* ([R1, R2],R) such that v5 = graph(eg)}.

Clearly, G C G where
G={GeR: 4§ <|G|<2G., W (750:G) = W™ (70 G)}-
In view of Lemma for all G € G
dist(W* (vs0, G), {r = 0}) > G?/2. (4.29)

so G is a closed set. Moreover, since the Hamiltonian depends analytically on G, and, by ,
for all G € G the vector field associated with is analytic on a neighbourhood of W (v, G), there
exists an open subset O C G such that G C O and in which vo € C¥([R1, R2] x O). Define now the
function A(r, @) : [Ry, Ra] x G — R given by

A(r,G) = pg(r) — 0,5t (r,0;G)
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R1 R2 "I“

Figure 4.4: The domain @ and a sketch of the intersection of the stable manifolds W (ys; G) with @Q
for a value of G € G.

which satisfies A(r,G) =0 for all G € G and A € C* ([Ry, Ry] x O). Suppose now that G = {5 < |G| <
2G.}. Then, A(r,G) = 0for all (r, G) € [Ry, R2]x {6 < |G| < 2G,} and we obtain a contradiction with the
fact that for |G| > G, the manifolds W"(ys0, G), W*(veo, G) intersect transversally (see Theorem [1.4.1)).
Therefore, G C {6 < |G| < 2G,}. We now show that, moreover, G cannot contain any accumulation
point. To see this suppose that there exists G4, € G such that

Gmaz = max{G € G: G is an accumulation point of G}.

Since Gier € G there exists an open interval ¥V C O such that G € V. Then, the fact that V C O
implies thatA(r, G) € C¥ ([R1, R2] x V) and since Giyq, is an acuumulation point of G we conclude that
A(r,G) =0on [Ry, Ry]x V. Then V C G, so there exists G €V C G such that G > Gz, a contradiction
with the definition of G,,qz- O

Denote now by J C R the set
T={GeJ:G#0, Wi (70:G) # W™ (71 G)} (4.30)

where J was defined in Lemma [4.4.10| (see also Theorem [4.4.18)).
Lemma 4.5.4. For all G € J the set Crit(Ag) = {¢ € DV?: dAg(p) = 0} is isolated in D2

Proof. Following [MNT99], we define the map Tg : Crit(A) C D%? — R given by
Tr = sup{s € R: ro(s) + ¢(s) = R, ¢ € Crit(A) c D*?}.

We now show that the set Tr(Crit(.A)) is isolated in R. Suppose on the contrary that there exists an
accumulation point Ty € Tr(Crit(.A)), then, there exist {(¢n,tn)tneny C Crit(A) x R and R € R, such
that t,, = Tr, (ro + ¢n)(tn) = R and

((ro + @n)(tn), (Fo + &n)(tn)) € WIZ)LC(’YOO; G).

Thus, there exist infinitely many different homoclinic points contained in the piece of the local stable
manifold v, = {y = 9,57 (r,t), t = T, r € [R, Ry]} for any R; < R. This would imply the existence
of Tw < T, Ry < R3 such that v, N ¢T*~T=+(y_) intersect at infinitely many points, where v_ = {y =
OrST(R,t), t = Tux, 1 € [Ra, R3]}.However, v, and vy_ are compact analytic curves, and since G € J
they cannot intersect at infinitely many points.

By Lemma 3.3. in [MNT99], the function Tg : Crit(A) C D%? — R is continuous, so the lemma is
proven, for if it were to be false there would exist an accumulation point T, € Tr(Crit(.A)). O

The fact that the critical points are isolated implies the following non-degeneracy property at, at
least, one of the critical points of Ag at the level cq. We say that ¢, € Crit(Ag) has a local mountain
pass structure if, for all neighbourhood U C D2 of ¢, the set {p € U: Ag(p) < Ac(ps)} is not path
connected. The following result is a direct consequence of Lemma and Theorem 1 in [Hof86].
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Proposition 4.5.5. For all G € J there exists . € Crit(Ag) such that Ag(p«) = cg which has a local
mountain pass structure.

Remark 4.5.6. In all the forthcoming sections we fix G € J where J is the set defined in (4.30) and
omit the dependence on G.

4.5.1 The reduced action functional

For n € N\ {0} we denote by H'([—n,n]) the usual Sobolev space consisting of functions defined on the
interval [—n,n] C R with one weak derivative in L?([—n,n]) and introduce the restriction operator
j: DY — HY([-n,n))

. (4.31)
o = §(®) = @l=n.n]

Then, for a sufficiently small neighbourhood U ¢ H'([—n,n]) of a point @, = j(p.) where ¢, € D2
and a sufficiently large n € N (depending on ¢.) we define the reduced action functional A : U C
H([-n,n]) — R given by

Alg) = /f Lien($, ¢, 8)ds — ST ((ro + @) (n)) + 87 ((ro + @)(—n)) + Fo(n)(2(n) — (=),

where the renormalized Lagrangian L, is defined in and ST are the generating functions of the
local stable and unstable manifolds which were obtained in Proposition[£.3.1] Notice that for n sufficiently
large (depending on ¢, ) and @ sufficiently close to j(y.) the values (ro+@)(£n) are contained in Dom(S*).

We now want to translate the results we have obtained for the functional A, in particular Proposition
in results for the functional A. To that end, given any constant ¢ € R and n € N we introduce the
functional spaces

D}r’z(c, n) = {¢ € C([n,0)): Jv, € L*([n,o0)) such that
p(s) = c—l—/ v,(t)dt, Vs € [n,00)}
and
DY*(¢,n) = {p € C((—00, —n]): v, € L*((—o0, —n]) such that
p(s) =c¢ —/ v, (t)dt, Vs € (—o0, —n]}

Define also the weakly closed subsets

D};Q(c, n) ={p € D}F’Q(c, n): ro(s) + o(s) > ro(n) + ¢, Vs € [n,00)}

D1—,2(C7 Tl) :{QO € D1_72(C, Tl)l TO(S) + <p(s) 2 TO(_n) +¢ Vs € (_007 —TL]}
Then, we define the asymptotic actions

+o0
AF(p) = i/ Lien(ip; @, 8)ds (4.32)
+n

Lemma 4.5.7. For all ¢ € R there exists ng € N such that for all n > ng there exists a unique
@i+ € Dy*(e,n) such that
A*(p+) = min{A*(¢): ¥ € Dy*(e,n))}.
Moreover,
A*(px) = FS*((ro(n) + ¢) + 8%((ro) (£n)) F #o(£n)e.
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Proof. A simple computation shows that

£+ 3r2 _ 1
RO 0T )

from where we easily deduce that there exists R > 0 such that, if

83TV(7“, t) =

ro(n)+c>R

then, the functional ¢ — AT () in ([4.32)) is strictly convex on the strictly convex set D}f (¢,n). Therefore,
there exists a unique minimizer @, € D_l‘_’Q(c, n) for which

At (p4) = min{ A" (¥): ¥ € DY*(@(n))}

Moreover, is easy to check that ¢, is a critical point of the functional A™(p). Consequently, r(s) =
r0(s) + ¢4 (s) is an orbit of asymptotic in the future to veo.

Let now ST (r, s) be the generating function of the local stable manifold introduced in Proposition
By uniqueness of the local stable manifold, the function ¢ (s) satisfies that

(7o + ¢4 )(s) = 9,57 (ro(s) + ¢+ (s), 5)
for all s € [n,00). In particular, since moreover ¢ (s) € D}F’Q Lemma in Appendix implies that
|94 ()] < 876 as s — oo and since 7o(s) ~ s~/3 as s — oo , we can integrate by parts to obtain

o'} oo 22
. ' .
| Crntoriem) = [ Vi) = Valro) — o

oo 2
. oL
= —7(n)c +/ —; + 700 + V(rg + ¢1) — Vo(ro).

On the other hand,

oo -2
|5 +iop Vi + ) =Va(r)

—/noo ((Fo + ©4)0rST(ro + 1) — H(ro + ¢4,0:-5 (ro + ¢4), 5)
—#o 9,5%(ro) = Ho(ro, 0, 5°(r0)))
— [ S5 0+ o) - 15 (n(e)
= — 8" ((ro(n) +¢) + 5°(ro(n))
where we have used that H(rg + ¢4, 0.5 (ro + ¢4),s) + 05T (ro + ¢+, s) = 0 and the fact that
Tim S*((ro + 94)(5)) — S°(ro(s)) = 0,
which is also proved in Lemma [T} 0

Introduce now the extension operator E : U ¢ H'([-n,n]) — D2

v for s € [-n,n] (4.33)

E
E_(p) for s € (—o0, —n)
E(p) for s € (n,00)

where

EL () ={p € Dy*(§(£n)): A (p) < AF(¥), Vo € Dy*(p(£n))}.

From the proof of Lemma [1.32] we deduce the following.
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Figure 4.5: Sketch of the suboptimal path ~..

Lemma 4.5.8. Let ¢ € D2, let n € N sufficiently large, let ¢ = j(p) and let U € H'([-n,n]) a
sufficiently small neighbourhood of p. Then, the extension operator (4.33)) is well defined on U.

The proof of the following Lemma is an straightforward consequence of the definition of the extension
operator E.

Lemma 4.5.9. Let o, € DY2. Then, for n € N sufficiently large and all ¢ contained in a sufficiently
small neigubourhood U C D%? of o,

Ai(9) < A().
Also, for all ¢ in a sufficiently small neighbourhood U C H*([-n,n]) of j(¢«)

A(@) = A(E(@)).
Moreover, for ¢, € DY2 such that dA(p,) = 0 we have dA(j(ps)) = 0.

We can now translate the result for A stated in Proposition in an analogous result for A.

Proposition 4.5.10. There ezists n € N and @, C H([—n,n]) which is a critical point ofj and has a
local mountain pass structure.

Proof. The proof is a simple combination of the proof of Theorem 1 in [Hof86] together with the relation-
ship between the functionals A and A which was obtained in Lemma We sketch here the details
for the sake of completeness.

Denote by Crit(A, cg) = {¢ € Crit(A) C DY?: A(p) = cg} where cg is the critical value defined in
(@19). Lemmal[d.5.4implies, in particular, that Crit(A, cg) is an isolated subset in D2, Moreover, fixing
m sufficiently large Crit(A, cg) C Fsm where Jo was defined in . Let now ¢ > 0 and v. ¢ I' ¢ D2
be a suboptimal path at level ¢g. Then, v. intersects a finite number of elements in Crit(A, ¢g), which
we denote by {¢1,..., ¢} for some finite k. Let now § > 0 sufficiently small and denote by B; s C D2
the ball of radius ¢ around ¢;. Without loss of generality we can assume that 7. intersects each B; s only
once so we can define (see Figure

t7 =inf{t € [0,1]: y(t) € Bis} t =sup{t € [0,1]: v(t) € Bis}.

and e; = y(t;) and e = y(t;). Let now n € N large enough and ¢ small enough so the restricition
operator j in(4.31)) is well defined on Uy <;<iB;s. Let B; s = j(B;s5). Again, without loss of generality, we

can assume that for alli =1,...,k, ef € D2 have minimizing tails, that is, eﬂ[nm) C Dl’z(ei(n), n) is
+

the unique minimizer of AT on DV2(ef (n),n) and e |(=00,—n] C D'2(e(—n),n) is the unique minimizer

of A~ on D'2(ef(—n),n). Now, define the paths

i

Yi = ](’Y‘[t;tj]) c Hl([*nﬂn])

for i =1,...,k, and the points ¢; = j(p;) € H([-n,n]), which are indeed critical points of the reduced
action functional A. Suppose the point ¢; does not have a local mountain pass structure. Then, we can
build (see Lemma 1 in [Hof86]) a continuous deformation 7 : [0,1] x B; s — H*([—n,n]) such that

n (‘{1} x ({¢ €Bis: Alp) <ca+e}\ Bz’,&/Q)) c{peBis: Alp) <cc—e}
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n ([o, 1] x 01([3'2,5/2)) C Bis

n(z,0) =@ V(z,0) €[0,1] x {p € Big: [Alp) —ca| 2 ¢} .
where by Cl(giyg/Q) we denote the closure of the ball lg'm/g. Write n(%;) = n({1} x 4;), which satisfies

An(%) <ca—¢
and
(3 () = jler) N3 () = j(ef).
Now, for the extension operator E is well defined on Bi,é (shrinking ¢ if necessary) and n(%;) C Bi,é’ we
can define the path E(n(%;)) C DY? which, by construction, satisfies

AEM(%:))) < ca —¢
and
n(3)(t) = e (3t = €.
The proposition is therefore proved for, if none of the points ; posses a local mountain pass structure,
the continuous path v C D2 defined by gluing (in the obvious way) the segments . \ U1§i§k ’Ye|[ti—’t;r]
with the segments E(n;(%;)) satisfies A(y) < ¢ — €, a contradiction.

Proposition [£.5.10] entails a non degeneracy condition for the intersection of the invariant manifolds
W (700) and W™ (7o) at the homoclinic orbit associated with ¢.. We now make use of topological degree
theory to exploit this non degeneracy condition. Let ¢. € H'([—n,n]) be the critical point obtained in
Proposition [4.5.10{ and consider a sufficiently small neighbourhood U € H'([—n,n]) such that ¢, € U.
By definition of the functional A, and the fact that

1{11111 ]ro(s) + @x(s) >0
se|l—n,n
the differential dA(3) : U — H'([-n,n]) is a continuous linear functional and, for any ¢ € U and any
¢ € H*([-n,n]), we can express

dA()[W] = (%) L2 ((onm) + 2/

—n

n

Py
gk GOl (4.34)
0
where we have introduced the functional (compare expression (4.15) in the proof of Lemma |4.4.8))
. @ Go) /( rot ¢ 1 2¢>
P = —_— — — . L
W= (- 2)v- [ (st o5 )¥

= (9:5™ ((ro + @) (n)) = o(n)) P(n) + (8-S~ ((ro + @) (—n)) — Fo(—n)) ¥(—n).

Since ro(s) > 0 and the interval [—n,n] is compact, the expression

<<<P»1/J>> = <¢7¢>L2([—n,n]) + 2/" oY

3
—-n 7o

defines an equivalent inner product on H*([—n,n]). For ¢ € U, denote by V.A($) the unique element of
H!([-n,n]) such that for all » € H'([-n,n])

(VA(@),9)) = dA(p)[¥]. (4.35)

From (£.34) one easily deduces that the map VA : U — H'([—n,n]) is a compact perturbation of the
identity. Therefore, for any subset V' C U € H'([-n,n]) and any point Z € H'([-n,n]) such that
Z ¢ VA(OV) the Leray-Schauder degree |§| associated with the triple (V.A,V, Z), which we denote by

deg(Vﬁ, ‘7, z),
is well defined. Proposition [4.5.10] together with Theorem 2 in [Hof86], imply the following result.

6The Leray-Schauder degree is a generalization of the Brouwer degree to maps between infinite dimensional spaces wich
are of the form identity+compact. Details about its definition and properties can be found in [?].
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Proposition 4.5.11. Let 3, € H([—n,n]) be the critical point of A which was obtained in Proposition
4.5.10 and, for e > 0, denote by B.(p.) C HY([—n,n]) the ball of radius ¢ centered at ¢.. Then, there
exists €9 such that for all 0 < e < gy,

deg(VA, B.(3,),0) = —1.

As a consequence of Proposition we can prove that the manifolds W (v; G) and W™ (Yeo; G)
intersect transversally for G € G. First, we introduce some notation which will be useful in the proof of
Proposition and in Section Let s € [-n,n], then, we denote by ev, : H*([-n,n]) — R the
evaluation operator given by

evsp = §(s).
In addition we denote by evs € H!([—n,n]) the unique element such that for all ¢ € H*([—n,n])

((evs, ) = evs(¥).
Proposition 4.5.12. For all G € J there exists a topologically transverse intersection between W (vso; G)
and W~ (Ys0; G).

Proof. Let ¢, C H'([—n,n]) be the critical point obtained in Proposition 4.5.10l Then, there exists
g0 > 0 such that for all 0 < e < g9

VA(@.) =0 and VA@) #0 Vo€ B(p) \ {0}
In particular, there exists dp > 0 such that

sup  [[VA(@)] = do.
PEIB: (¢x)
Define now, for § € R, the one parameter family of maps Fs : H'([-n,n]) — H*([-n,n]) given by

n

Fy(g) = VAB.) +dev, =V ( Loenlip, s>) 10,5 ((r0+) (—n))ev_n— (0,5 ((ro +¢) (n)) +)ev,

—n
Then, it is possible to find d; > 0 such that Fs(y) is an admissible homotopy for 6 € [—d1,d1] so by
invariance of the degree under admissible homotopies

deg(Fs, B-(¢4),0) = =1 Vo € [—61,d1].

We now show how this implies the desired conclusion. Let Q = {p € B.: Fs(p) = 0, 6§ € [—01, 1]}
Then, denoting by ,, T, the projections onto the r,y coordinates of a point (r,y,t) € R? x T, and by ¢°
the flow at time s associated to Hamiltonian (4.2]) we have that

[—61,601] C {my 0 $31(r,0-S™ (r,—n), —n) — 0.ST (m, 0 ¢37(r, 0,8~ (r,—n), —n): v € Rs, }
for Rs,{r = (10 + ¢)(—n): ¢ € Q}. This completes the proof. O

4.6 Construction of multibump solutions

We now show how Proposition |4.5.11| together with the parabolic lambda Lemma |4.3.3| can be used to
the deduce the existence of homoclinic orbits to vo, which perform any arbitrary number of “bumps”.
We start by stating the following lemma, which is nothing but a reformulation of the parabolic lambda

Lemma (1.3

Lemma 4.6.1. There exists R large enough such that for Ry, Ry > R there exists Ty such that for all
T > T, there ezists a unique orbit 7#(t; T, Ry, R1) of (4.1)) for which #(0) = Ry and 7#(T) = Ry. Moreover,
for all e > 0 there exists Tyx(€) such that for all T > T, the unique solution 7(t; T, Ro, R1) satisfies

9,S*(Ry) —7(0) < e #T) — 8,5 (Ry) <e.
Given Ry, Ry > R and T > T, we denote by
v (T, Ry, Ry) = #(0; T, Ro, Ry) v~ (T, Ry, Ry) = #(T; T, Ry, Ry).

where 7(t; T, Ro, R1) is the orbit segment found in Lemma [4.6.1]
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4.6.1 Proof of Theorem [4.1.5]
We are now ready to build the multibump solutions. By proposition [4.5.11] we know that there exists a
critical point @, € H'([-n,n]) of A and g > 0 such that for all 0 < & < &,

deg(VA, B2($.),0) = —1,

where B.($.) C H'([—n,n]) stands for the ball of radius ¢ centered at ¢.. For any L € N, introduce

now the m
v F:(B(p)""' x ({l eN: 1> T} — (H'([-n,n])) !

(4.36)
(ng,...,gDLJrhll,...,lL) — (Fl,...,FL+1)

where the maps F;, 1 < j < L +1 are given by

Fy =V A + (0.5 (p1(n),n) — vF (I, p1(n), p2(—n))) evy,
Fro =VAg + (v (I, or(n), or41(—n)) — 8,5 (¢r41(—n), —n)) ev,

and for 2 < j < L (this set is empty for L = 1)

Fj =V Ag + (8:5F (05 (n),n) — v* (15, 0;(n), 9j+1(—n))) evn
+ (v (o1, pj-1(n), 0i(—n)) — 9,57 ((pj)(—n), —n)) ev_p.

The proof of the following result follows inmediately after from Proposition [£:5.11] and Lemma [£.6.1]
Theorem 4.6.2. There exists p, € H'([-n,n]), T >0 and € > 0 such that for all L € N

deg(F, (B.(p:) "™ x ({l eN: 1 > T}, 0) = (-1)F

In particular, for any sequence 1 = {l;}1<j<r, C ({l € N: 1 > T}F there exists (1) = {0;(D)}1<j<r+1 C
(HY([-n,n]))**t such that
F(e(1),1)=0.
Theorem |4.6.2|shows the truth of the first item in Theorem“for sequences o € {0, 1}Z with finite,
but arb1trar1ly large number of nonzero entries. For the time interval T, in the definition of (4.36] - ) does
not depend on L, the existence of solutions 7, such that ¢ has infinitely many non-zero entries follows

by a standard diagonal argument in the CllOC topology. In order to deduce the second item, namely the
existence of infinitely many periodic orbits, we define the functional

Fper + (Be(:))" x ({l e N2 1 > T )" — (H'([-n,n])*

(4.37)
((pl,...,(pL+1,l1,...,lL) — (Fl,...,FL)

with periodic boundary conditions

Fi =VAg + (0,5 (p1(n),n) — (117<P1( (—=n))) evy,
+ (v (I, pr(n), p1(—n)) — ((%)( ) —n)) ev_,

Fr, =VAg+ (v (I, er(n), oot ( n)) = 8.8 (pry1(—n),—n)) ev,
+ (v (L, or(n), p1(=n)) = 9,57 ((pr)(—n), —n)) ev_y,

and such that for 2 < j < L (this set is empty for L = 1) F; has the same expression as in in the non
periodic case. The proof of Theorem is complete.
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4.6.2 Proof of Theorem [4.1.4]
From the proof of Theorem it follows that
XtNY #£90

for any possible combination of X* € {P*, Bt 0OS*} and Y~ € {P~,B~,08"}. We now show that
HT NP~ # () (the proof for the other combinations being similar). The following result is implied by the
second part of Lemma [£.3.4]

Lemma 4.6.3. There exists R large enough and €9 such that for all R > Ry and all 0 < e < gg there
exists a unique orbit 7(s;, Ry, d) of (4.1) for which

72<0) = R07 ( ) 8 S (ROa )
Moreover, 7(s;, Ry, d) is defined for all s > 0 and satisfies

lim 7(s; Rp,e) = 00 lim ’Ié(S;RQ,S) >0

§— 00 §—00

Given Ry > R and € > 0 we denote by
’U;fyp(Ro, 5) = 7%(0; Ro, 6)

where 7(s; Ry, €) is the orbit segment found in Lemma Fix 0 < & < gg. The fact that HT NP~ # ()
follows from the fact that the functional

Faygp  (Bo(@ )" x ({l e N: 1 > T )P — (H' ([-n,n])) !
(P15 s @r41l1y -5 0n) — (Fingps - - > FL41,hyp)

where the maps Fjjyp, 1 < j < L+ 1 are given by

Fl,hyp :VJZ(G + (aTS+(S01(n)7n) - UJF(ll» wl(n)v 902(_{”’))) eVn
Fritnyy =VAc + (v (I, oL(n),¢r41(—n)) — 0,5 (pr11(—n), —n)) ev,,
+ (05" (praa(m),n) = v, (pr41(n), ) ) evn
and for 2 < j < L (this set is empty for L = 1)
Fjnyp —V-AGz + (8 S’+(g07(n),n) v (lJaQOJ( )s 50.7'-1-1(_71))) eVn
+ (07 (1,91 (), i (=n)) = 8-S ((¢))(=n), —n)) ev_p.

In order to prove that PT™ N OS™ # () we take L — oo and argue as in the proof of Theorem In
order to show that H™ N B~ we impose periodic boundary conditions. The proof of Theorem is
complete.

4.A Proof of of the technical claims in Lemma

We first prove the following result, which will be needed for the proof of Lemma

Lemma 4.A.1. Let Sy(r; G) be the generating function defined in Lemma. Then, for any G,G, € R
we have that

G? - GE

S0 G) = So(rs G)| S =
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Proof. Denote by @(r) the unique function such that, for all y < 0, the y component of the parametrization
(4.5) is given by yn(a(r)). Writing AS(r; G, G.) = So(r; G) — So(r; G«) we observe that AS(r; G, G.)
satisfies

G2-G?2  (9,AS)?

un(@(r)0,AS + T 4 0
Using now that yy, (@(r)) ~ r~'/2 for large r > 1 we obtain that
O, AS ~ Lr;/fz +O(r'/%(9,A8)?)
" @ -G
|AS(r; G, GL))| S iz
as was to be shown. O

The claims in Lemma follow from the following result.

Lemma 4.A.2. Suppose that for G € [—G., G.] there exists an orbit r(s; G) : R — Ry of the Hamiltonian
Heg in(4.2) which is homoclinic to oo and, for some Gy € [—G., G.] satisfies

Ir(s; G) — ro(s, Go)| < s'/2 as s — +o0.

Then,
10,8 (r(s; G), G) — 9,So(ro(s; Go), Go)| < s7°/¢ as s — %00,
and, in particular
l}lj? SE(r(s; @), 5;G) — S°(ro(s; Go), Go) = 0.

Proof. We write

0, S* (r(s: G), @) = 8,80 (ro(s; Go), Go) = (95T (r(s:G), G) = 9,80 (r(s3 G). G))
+(0:5°(0(5:G). G) = 9, So(ro (53 Go). G)
+(8:5%(ro(s; Go), G) — 8-So(r0(s3 Go), Go))

=F1 + E> + Es.

On one hand, it follows from the last item in Lemma that as s — oo
B S r*(s:G) S g7 P (s:G) S 5700

On the other hand, it follows from the mean value theorem, the definition of S°(r; G) and the hypothesis
in the statement of the lemma that as s — 400

|Ea| S sup 107,5°(r; G)|Ir(s; G) = r0(s, Go)| S 79 (51 Go)Ir(s: G) = ro(s, Go)| S 57/
re

for I ={r e Ri:r=Aro(s;Go) + (1 — N)r(s;G), A €[0,1]}. Also, from Lemma we deduce that
|Es| <r3/2 < s

The proof of the first item follows combining the estimates for F1, F5, E3 and integrating. The second
part follows from the obtained estimate and straightforward computations. O
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Chapter 5

Hyperbolic dynamics and Oscillatory
motions in the 3 Body Problem

Abstract: Consider the planar 3 Body Problem with masses mq, m1,mo > 0. In this paper we address
two fundamental questions: the existence of oscillatory motions and chaotic hyperbolic sets.

In 1922, Chazy classified the possible final motions of the three bodies, that is, the behaviors the
bodies may have when time tends to infinity. One of the possible behaviors are oscillatory motions:
solutions of the 3 Body Problem such that the positions of the bodies qq, q1, g2 satisfy

liminf  sup  [|¢i —¢gj|]| <4+oo and limsup sup |lg; — gj|| = +oo.
E=E00 § 50,1,2,i%j t—too i,j=0,1,2,i%j

Assume that all three masses mg, mq, ms > 0 are not equal. Then, we prove that such motions exist.
We also prove that one can construct solutions of the 3 Body Problem whose forward and backward final
motions are of different type.

This result relies on constructing invariant sets whose dynamics is conjugated to the (infinite sym-
bols) Bernouilli shift. These sets are hyperbolic for the symplectically reduced planar 3 Body Problem.
As a consequence, we obtain the existence of chaotic motions, an infinite number of periodic orbits and
positive topological entropy for the 3 Body Problem.

For the sake of completeness, we reproduce here the full article [GMPS22], although as already men-
tioned in the introduction, the contribution of the author reduces to Sections 7, 8 and 9.1 in [GMPS22].
5.1 Introduction

The 3 Body Problem models the motion of three punctual bodies qq, g1, g2 of masses mg, my,mg > 0
under the Newtonian gravitational force. In suitable units, it is given by the equations

o = m a1 — qo a2 — qo

0 =M1y 2T 13

g1 — qoll? g2 — qol|?

.. qo — q1 92 —q1

g1 =mo—3 2T 13 5.1
To—alP "™l —alP (5.1)

. qo — G2 q1 — 42

g2 = My T 3

T 1 B
HQO_QQHS a1 —(J2H3

In this paper we want to address two fundamental questions for this classical model: The analysis of the
possible Final Motions and the existence of chaotic motions (symbolic dynamics). These questions go
back to the first half of the XX century.
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Final motions: We call final motions to the possible qualitative behaviors that the complete (i.e.
defined for all time) trajectories of the 3 Body Problem may possess as time tends to infinity (forward
or backward). The analysis of final motions was proposed by Chazy [Cha22|, who proved that the final
motions of the 3 Body Problem should fall into one of the following categories. To describe them, we
denote by 7 the vector from the point mass m; to the point mass m; for i # k, j #k, i < j.

Theorem 5.1.1 (Chazy, 1922, see also [AKNO6]). Every solution of the 3 Body Problem defined for all
(future) time belongs to one of the following seven classes.

e Hyperbolic (H): |r;| — oo, || = ¢; > 0,1=0,1,2, as t — co.

Hyperbolic—Parabolic (HPy): |ri| = oo, i =0,1,2, |7g] = 0, |75] = ¢; >0, i #k, ast — oo.

Hyperbolic-Elliptic, (HE}): |ri| — oo, 74| = ¢; >0,1=0,1,2, i # k, as t = 00, sup;,, |rx| < 00.

Parabolic-Elliptic (PEy): |ri| — oo, |fi] = 0,i=10,1,2, i # k, ast — 00, sup;>,, 1| < oo.

Parabolic (P): |r;| = oo, |7i] = 0,i=0,1,2, as t = c©.

Bounded (B): sup;s,, |ri| < o0, i=0,1,2.

Oscillatory (08S): limsup,_, ., sup;_q 1 2 |7i| = 00 and liminf; o sup;_q 1 o [7i| < oo.

Note that this classification applies both when ¢ — +o00 or t — —oo. To distinguish both cases we
add a superindex + or — to each of the cases, e.g H' and H~.

At the time of Chazy all types of motions were known to exist except the oscillatory motions E| .
Their existence was proven later by Sitnikov [Sit60] for the Restricted 3 Body Problem and by Alekseev
[Ale69] for the (full) 3 Body Problem for some choices of the masses. After these seminal works, the
study of oscillatory motions have drawn considerable attention (see Section below) but all results
apply under non-generic assumptions on the masses.

Another question posed by Chazy was whether the future and past final motion of any trajectory
must be of the same type. This was disproved by Sitnikov and Alekseev, who showed that there exist
trajectories with all possible combinations of future and past final motions (among those permitted at
an energy level).

The first result of this paper is to construct oscillatory motions for the 3 Body Problem provided
mg # my and to show that all possible past and future final motions at negative energy can be combined.

Besides the question of existence of such motions, there is the question about their abundance. As is
pointed out in [GK12], V. Arnol’d, in the conference in honor of the 70th anniversary of Alexeev, posed
the following question.

Question 5.1.2. s the Lebesgue measure of the set of oscillatory motions positive?

Arnol’d considered it the fundamental question in Celestial Mechanics. Alexeev conjectured in [Ale71]
that the Lebesgue measure is zero (in the English version [Ale81] he attributes this conjecture to Kol-
mogorov). This conjecture remains wide open.

Symbolic dynamics: The question on existence of chaotic motions in the 3 Body Problem can be
traced back to Poincaré and Birkhoff. It has been a subject of deep research during the second half of
the XX century. The second goal of this paper is to construct hyperbolic invariant sets for ( a suitable
Poincaré map and after symplectically reducing for the classical first integrals of) the 3 Body Problem
whose dynamics is conjugated to that of the usual shift

o:NZ 5 N2, (ow)k = Wkt1, (5.2)

ndeed, note that in the limit m1,m2 — 0, where the model becomes two uncoupled Kepler problems, all final motions
are possible except OS=.
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in the space of sequences, one of the paradigmatic models of chaotic dynamics. Note that these dynamics
implies positive topological entropy and an infinite number of periodic orbits.

The known results on symbolic dynamics in Celestial Mechanics require rather restrictive hypotheses
on the parameters of the model (in particular, the values of the masses). Moreover, all the proofs of
existence of hyperbolic sets with symbolic dynamics in Celestial Mechanics deal with very symmetric
configurations which allow to reduce the 3 Body Problem to a two dimensional Poincaré map (see the
references in Section below).

5.1.1 Main results

The two main results of this paper are the following. The first theorem deals with the existence of
different final motions and, in particular, of oscillatory motions.

Theorem 5.1.3. Consider the 3 Body Problem with masses mg, my, mg > 0 such that mg # my. Then,
X NYt#£0 with X, Y = OS, B, PE>, HE».

Note that this theorem gives the existence of orbits which are oscillatory in the past and in the future.
It also gives different combinations of past and future final motions. Indeed,

e The bodies of masses my and my perform approximately circular motions. That is, |go — ¢1] is
aproximately constant.

e The third body may have radically different behaviors: oscillatory, bounded, hyperbolic or parabolic.

The motions given by Theorem [5.1.3] have negative energy. In such energy levels, only OS, B, PEy, HE,
are possible and therefore we can combine all types of past and future final motions.

The second main result of this paper deals with the existence of chaotic dynamics for the 3 Body
Problem.

Theorem 5.1.4. Consider the 8 Body Problem with masses mg, my, ma > 0 such that mg # my. Fix
the center of mass at the origin and denote by ®; the corresponding flow. Then, there exists a section 11
transverse to ®; such that the induced Poincaré map

P:U=UCT =TI

satisfies the following. There exists M € N such that the map P™ has an invariant set X which is
homeomorphic to N x T. Moreover, the map PM : X — X is topologically conjugated to

NZxT—NEXT
(w,0) = (ow, 8 + f(w))

where o is the shift introduced in (5.2)) and f : N? — R is a continuous function.

The set X is a hyperbolic set once the 3 Body Problem is reduced by its classical first integrals.
The obtained conjugation implies positive topological entropy and an infinite number of periodic orbits
for the 3 Body Problem for any values of the masses (except all equal). The oscillatory motions given
by Theorem also belong to this invariant set X. In fact, Theorem will be a consequence of
Theorem [E.1.41

5.1.2 Literature

Oscillatory motions: The first proof of oscillatory motions was achieved by Sitnikov in [Sit60] for what
is called nowadays the Sitnikov problem. It is the Restricted 3 Body Problem when the two primaries
have equal mass (the mass ratio is g = 1/2), and perform elliptic motion whereas the third body (of
zero mass) is confined to the line perpendicular to the plane defined by the two primaries and passing
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through their center of mass. This configuration implies that this model can be reduced to a one and a
half degrees of freedom Hamiltonian system, i.e. the phase space is three dimensional.

Later, Moser [Mos01] gave a new proof. His approach to prove the existence of such motions was
to consider the invariant manifolds of infinity and to prove that they intersect transversally. Then,
he established the existence of symbolic dynamics close to these invariant manifolds, which lead to the
existence of oscillatory motions. His ideas have been very influential and are the base of the present work.
In Section [5.1.3] we explain this approach as well as the challenges to apply it to the 3 Body Problem.

Since the results by Moser, there has been quite a number of works dealing with the Restricted 3 Body
Problem. In the planar setting, the first one was by Simé and Llibre [L.S80a]. Following the same approach
as in [Mos01], they proved the existence of oscillatory motions for the RPC3BP for small enough values
of the mass ratio u between the two primaries. One of the main ingredients of their proof, as in [Mos01],
was the study of the transversality of the intersection of the invariant manifolds of infinity. They were
able to prove this transversality provided p was exponentially small with respect to the Jacobi constant,
which was taken large enough. Their result was extended by Xia [Xia92] using the real-analyticity of
the invariant manifolds of infinity. The problem of existence of oscillatory motions for the RPC3BP
was closed by the authors of the present paper in [GMS16], which proved the existence of oscillatory
motions for any value of the mass ratio u € (0,1/2]. These oscillatory motions possess large Jacobi
constant. The authors with M. Capinski and P. Zgliczynski showed the existence of oscillatory motions
with “low” Jacobi constant relying on computer assisted proofs in [CGM™22|. A different approach using
Aubry-Mather theory and semi-infinite regions of instability was developed in [GKTI] [GK10b, [GK10a].
In [GPSV21], the Moser approach is applied to the Restricted Isosceles 3 Body Problem. The existence
of oscillatory motions has also been proven for the (full) 3 Body Problem by [Ale69] and [LS80b]. The
first paper deals with the Sitnikov problem with a third positive small mass and the second one with the
collinear 3 Body Problem.

A fundamental feature of the mentioned models is that they can be reduced to two dimensional area
preserving maps. In particular, one can implement the Moser approach [Mos01], that is, they relate the
oscillatory motions to transversal homoclinic points to infinity and symbolic dynamics. The works by
Galante and Kaloshin do not rely on the Moser approach but still rely on two dimensional area preserving
maps tools. Moreover, most of these works require rather strong assumptions on the masses of the bodies.

Results on Celestial Mechanics models of larger dimension such as the 3 Body Problem or the Re-
stricted Planar Elliptic 3 Body Problem are much more scarce.

The authors with L. Sabbagh (see [GSMS17]) proved the existence of oscillatory motions for the
Restricted Planar Elliptic 3 Body Problem for any mass ratio and small eccentricity of the primaries.
This work relies on “soft techniques” which allow to prove that 05+ # () but unfortunately do not imply
that OS~ N OS"™ #  (this stronger result could be proven with the tools developed in the present paper).
The same result, that is OST # (), is obtained for a Restricted Four Body Problem in [SZ20).

In [MoeQT7], R. Moeckel proves the existence of oscillatory motions for the (non-restricted) 3 Body
Problem relying on passage close to triple collision, and therefore for arbitrarily small total angular
momentum. This result applies to a “big” set of mass choices (however its complement also contains an
open set).

The present paper is the first one which “implements” the ideas developed by Moser to the planar
3 body problem (see Sections and below). Conditional results had been previously obtained in
[Rob&4, [Rob15], where C. Robinson proved the existence of oscillatory motions under the assumption that
the so-called scattering map has a hyperbolic fixed point. As far as the authors know, such assumption
has not been proven yet. We follow a different approach (see Section .

The mentioned works deal with the problem of existence of oscillatory motions in different models of
Celestial Mechanics. As far as the authors know, there is only one result dealing with their abundance
[GK12] (recall the fundamental Question [5.1.2)). In this paper, Gorodetksi and Kaloshin analyze the
Hausdorff dimension of the set of oscillatory motions for the Sitnikov example and the RPC3BP. They
prove that for both problems and a Baire generic subset of an open set of parameters (the eccentricity of
the primaries in the Sitnikov example and the mass ratio and the Jacobi constant in the RPC3BP) the
Hausdorff dimension is maximal.

A dynamics strongly related to oscillatory motions is the Arnold diffusion behavior attached to the
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parabolic invariant manifolds of infinity. Such unstable behavior leads to growth in angular momentum.
This is proven in [DKdIRS19] for the Restricted Planar Elliptic 3 Body Problem for mass ratio and
eccentricity small enough (some formal computations on the associated Melnikov function had been done
previously in [MP94]).

Symbolic dynamics and hyperbolic sets for the 3 Body Problem Starting from the 90’s, there
is a wide literature proving the conjugacy or semi-conjugacy of the dynamics of N-Body Problem models
with the shift . These results give the existence of symbolic dynamics for such models. Results
proving the existence of hyperbolic sets with symbolic dynamics are much more scarce and, as far as the
authors know, all of them are in models which can be reduced to 2 dimensional maps. Namely, until the
present paper no hyperbolic sets with symbolic dynamics had been proven to exist for the (symplectically
reduced) planar 3 Body Problem. Note also that all the previous results dealing with symbolic dynamics
in Celestial Mechanics must impose non-generic conditions on the masses.

Concerning the Restricted 3 Body Problem, there are several papers proving the existence of hyper-
bolic invariant sets with symbolic dynamics. On the one hand there are the results mentioned above
which construct oscillatory motions relying on the invariant manifolds of infinity. There is also a wide
literature constructing symbolic dynamics (providing semiconjugacy with the shift) by means of orbits
passing very close to binary collision [BM00, [BM0G6] Bol06].

For models which can be reduced to a two dimensional Poincaré map (such as the Restricted Circular
Planar 3 Body Problem), there are also results which rely on Computer Assisted Proofs to show the
existence of transverse homoclinic points and therefore symbolic dynamics (see for instance [Ari02, [WZ03|
Cap12| [GZ19]).

On the full 3 Body Problem, as far as the authors know, the only results up to now proving symbolic
dynamics rely on dynamics close to triple collision [Moe89,[Moe(07]. These great results give semiconjugacy
between the 3 Body Problem and the shift and apply to a “large” open set (but not generic) of
masses (see also [RS83]). However, they do not lead to the existence of hyperbolic sets with symbolic
dynamics.

The results on symbolic dynamics for the N-Body Problem with N > 4 are very scarce (see [KM.J19]
for chaotic motions in a Restricted 4 Body Problem). See also [BN03, [ST12] for the N center problem.

5.1.3 The Moser approach

The proof of Theorems and rely on the ideas developed by J. Moser [Mos01] to prove the
existence of symbolic dynamics and oscillatory motions for the Sitnikov problem. Let us explain here
these ideas. Later, in Section [5.2] we explain the challenges we have to face to apply these ideas to the 3
Body Problem.

The Sitnikov problem models two particles of equal mass (mg = m; = 1/2) performing elliptic orbits
with eccentricity ¢ and a third body of mass 0 which is confined along the line perpendicular to the
ellipses plane and passing through the center of mass of the two other bodies. This is a Hamiltonian
system of one and a half degrees of freedom defined by

2
H(p,q,t) = % - qQ—T—R(t) (5.3)

where R(t) is the distance between each of the primaries to the center of mass and satisfies
1 e
R(t) = 513 cost + O(e?).
For this model, J. Moser proposed the following steps to construct oscillatory motions:
1 One can consider P = (g,p,t) = (+00,0,t), t € T, as a periodic orbit at infinity. This periodic
orbit is degenerate (the linearitzation of the vector field at it is the zero matrix). Nevertheless, one

can prove that it has stable and unstable invariant manifolds [McGT73]. Note that these manifolds
correspond to the parabolic-elliptic motions (see Theorem [5.1.1]).
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2 One can prove that these invariant manifolds intersect transversally, leading to transverse homoclinic
orbits “to infinity”. Indeed, when ¢ = 0 the Hamiltonian has one degree of freedom and is
therefore integrable. Then, the invariant manifolds coincide. For 0 < € < 1 one can apply Poincaré-
Melnikov Theory [Mel63] to prove their splitting.

If P would be a hyperbolic periodic orbit, one could apply the classical Smale Theorem [Sma65] to
construct invariant sets with symbolic dynamics and, inside them, oscillatory motions. However, since
P is degenerate one needs a more delicate analysis than rather just applying the Smale Theorem. In
particular, one needs the further steps:

3 Analyze the local behavior of ([5.3)) close to the infinity periodic orbit P. In hyperbolic points/periodic
orbits this is encoded in the classical Lambda lemma (see for instance [PAMS82]). In this step one
needs to prove a suitable version of the Lambda lemma for degenerate (parabolic) periodic orbits.

4 From Steps 2 and 3 one can construct a 2—dimensional return map close to the invariant manifolds
of the periodic orbit P. The final step is to construct a sequence of “well aligned strips” for this
return map plus cone conditions. This leads to the existence to a hyperbolic set whose dynamics is
conjugated to that of the shift (a Smale horseshoe with an “infinite number of legs”).
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5.2 Outline of the proof

To apply the Moser ideas to the 3 Body Problem is quite challenging, even more if one wants to give
results for a wide choice of masses. Note here the main difficulties:

e After reducing by the first integrals, the Sitnikov model, the Alekseev model and the Restricted
Planar Circular 3BP are 3 dimensional flows whereas the planar 3 Body Problem is a 5 dimensional
flow. This is by no means a minor change. In particular infinity goes from a periodic orbit to a
two dimensional family of periodic orbits with the same period. This adds “degenerate” dimensions
which makes considerably more difficult to build hyperbolic sets.

e We do not assume any smallness condition on the masses. This means that one cannot apply
classical Melnikov Theory to prove the transversality between the invariant manifolds of infinity.
We consider a radically different nearly integrable regime: we take the third body far away from
the other two (usually such regime is referred to as hierarchical). This adds multiple time scales to
the problem which leads to a highly anisotropic transversality between the invariant manifolds: in
some directions the transversality is exponentially small whereas in the others is power-like.

These issues make each of the steps detailed in Section [5.1.3] considerably difficult to be implemented in
the 3 Body Problem. In the forthcoming sections we detail the main challenges and the novelties of our
approach.

We believe that the ideas developed for each of these steps have interest beyond the results of the
present paper and could be used in other physical models (certainly in Celestial Mechanics) to construct
all sorts of unstable motions such as chaotic dynamics or Arnold diffusion.
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5.2.1 Outline of Step 0: A good choice of coordinates

Before implementing the Moser approach in the Steps 1, 2, 3, and 4 below, one has to consider first a
preliminary step: to choose a good system of coordinates. This is quite usual in Celestial Mechanics
where typically cartesian coordinates do not capture “well” the dynamics of the model.

In this case, keeping in mind that we want to construct hyperbolic sets, it is crucial that

e We symplectically reduce the planar 3 Body Problem by the classical first integrals.

e We consider coordinates which capture the near integrability of the model in such a way that the
first two bodies perform close to circular motion whereas the third one performs close to parabolic

motion (see Figure [5.1).

ma

T

mi

Figure 5.1: We consider two bodies performing approximately circular motions while the third body is
close to a parabola, which is arbitrarily large and far from the other two bodies.

To this end we first consider the classical Jacobi coordinates (Q1,Q2) as seen in Figure and
conjugate momenta (Py, Py). This reduces the model to a 4 degrees of freedom Hamiltonian system.

Then, for the first pair (Q1, P1), we consider the classical Poincaré variables (A, L,n,{) and for the
second one (Q2, P») we consider polar coordinates (r,y,«,T") where y is the radial momentum and T' is
the angular momentum. Finally, we “eliminate” the pair (a, ") by reducing the system by rotations.

Therefore, we finally have a three degrees of freedom Hamiltonian system defined in the coordinates
(A L,n, &, 7, y) which depends on the total angular momentum, which can be treated as a parameter and
which we take large enough. In Section we perform these changes of coordinates in full detail and
give expressions for the resulting Hamiltonian.

We fix the total energy to a negative value. Following the Moser approach explained in Section [5.1.3]
we consider the “parabolic infinity” manifold, which is now defined by

€ = {r =00, y =0},
and therefore can be parameterized by the coordinates (A, L,7,£) (we actually eliminate the variable L

by means of the energy conservation). More properly speaking, we consider McGehee coordinates

r=-—
x2’

so that “infinity” becomes (z,y) = (0, 0).
The dynamics at infinity is foliated by the periodic orbits (7, £) = constant of the same period. The
first step in our proof is to analyze the invariant manifolds of these periodic orbits and their intersections.
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5.2.2 Outline of Step 1: Transverse homoclinic orbits to infinity

In suitably modified McGehee coordinates, the infinity manifold becomes £, = {(x,y) = (0,0), z € U C
R?, t € T}. The dynamics in a neighborhood of infinity is given by

i=—-2’y(1+ Oz(z,y)), %= 0Og(z,y),
Y= _$4(1+02(x7y))’ t= L

forx +y >0, 2€ U C R?, and t € T. Note that infinity is foliated by the periodic orbits z = constant.
Thanks to [BEM20a, BFM20b], these periodic orbits have local stable and unstable invariant manifolds,
which are analytic (away from infinity) and smooth with respect to parameters and to the base periodic
orbit. The union of these invariant manifolds form the stable and unstable invariant manifolds of infinity,
W4 (Ex) and W (€ ), which are four dimensional in a five dimensional energy level.

In order to control the globalization of these invariant manifolds, we consider a hierarchical regime in
our system. We consider a configuration such that the first two bodies perform approximately circular
motions whereas the third body performs approximately parabolic motion along a parabola which is
taken arbitrarily large compared with the circle of the two first bodies (see Figure .

In other words, we choose the fixed value of the energy to be negative and of order 1, and take the
total angular momentum © large. This choice has two consequences. On the one hand, the motion of the
third body takes place far from the first two. This implies that the system becomes close to integrable,
since, being far from the first bodies, the third one sees them almost as a single one and hence its motion
is governed at a first order by a Kepler problem with zero energy — since its motion is close to parabolic
— while the motion of the first two bodies is given at first order by another Kepler problem with negative
energy. On the other hand, in this regime the system has two time scales, since the motion of the third
body is O(©~3) slower than that of the first ones. This implies that the coupling term between the two
Kepler problems is a fast and small perturbation.

In the framework of averaging theory, the fact that the perturbation is fast implies that the difference
between the stable and unstable invariant manifolds of infinity is typically exponentially small in ©73,
which precludes the application of the standard Poincaré-Melnikov theory to compute the difference
of these invariant manifolds. Indeed, the perturbation can be averaged out up to any power of ©73,
making the distance between the manifolds a beyond all orders quantity. We need to resort to more
delicate techniques to obtain a formula of this distance which is exponentially small in ©~3, proven in
Theorem below. From this formula we are able to deduce that the invariant manifolds of infinity do
intersect transversally along two distinct intersections. These intersections are usually called homoclinic
channels, which we denote by I'! and I'? (see Figure [5.3).

The fact that the perturbed invariant manifolds are exponentially close is usually referred to as
exponentially small splitting of separatrices. This phenomenon was discovered by Poincaré [Poi90, [Poi99].
It was not until the 80’s, with the pioneering work by Lazutkin for the standard map (see [Laz84| Laz03])
that analytic tools to analyze this phenomenon were developed. Nowadays, there is quite a number of
works proving the existence of transverse homoclinic orbits following the seminal ideas by Lazutkin, see
for instance [DS92| [Gel94l [DS97, DGISI7. [Gel97, [DRIS| [Gel99), [Gel00) [Lom00l [GS01), BF04D, IGOS10,
GaG11l, [Gual2| [MSS11] BCS13, BCS18al, BCS18b]. Note, however, that most of these results deal with
rather low dimensional models (typically area preserving two dimensional maps or three dimensional
flows), whereas the model considered in the present paper has higher dimension (see also [GGSZ21],
which deals with an exponentially small splitting problem in infinite dimensions). The high dimension
makes the analysis in the present paper considerably more intrincate. Of special importance for the
present paper are the works by Lochak, Marco and Sauzin (see [SauOIl [LMS03]) who analyze such
phenomenon considering certain graph parameterizations of the invariant manifolds. Other methods to
deal with exponentially small splitting of separatrices are Treschev’s continuous averaging (see [Tre97])
or “direct” series methods (see [GGM99]).

As far as the authors know, the first paper to prove an exponentially small splitting of separatrices
in a Celestial Mechanics problem is [GMS16] (see also [GPSV21l, [ BGG22, BGG21]).

The results in the aforementioned Theorem [5.4.3] allows us to define and control two different return
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maps from a suitable section transverse to the unstable manifold of infinity. The section, four dimensional,
is close to €. Each of these return maps will be, in turn, the composition of a local map, that describes
the passage close to infinity, and a global map, following the dynamics along the global invariant manifolds.
These are the subject of study of Steps 2 and 3 below. Finally, a suitable combination of the two return
maps will give rise to chaotic dynamics as it is explained in Step 4.

5.2.3 Outline of Step 2: The parabolic Lambda lemma and the Local map

To analyze the local behavior close to infinity, we develop a parabolic Lambda lemma. The classical
Lambda lemma applies to (partially) hyperbolic invariant objects and is no longer true in the parabolic
setting. The statement has to be adapted and the proof we provide has to face considerable subtleties.

The first step in proving a Lambda lemma is to perform a normal form procedure which straightens
the invariant manifolds and the associated stable and unstable foliations. In the present paper, thus, we
need to set up a parabolic normal form. Indeed, for any fixed N > 3, we construct local coordinates in a
neighborhood of infinity in which the (symplectically reduced) 3BP is written as

i=aq((g+p)>®+04(q,p), 2=4q"p"0u(q,p),

p=-p((¢+p)*+04(q,p), t=1, (54)

where p = ¢ = 0 corresponds to the parabolic infinity, £. Note that in these coordinates the (local)
unstable manifold of infinity is given by p = 0 and the (local) stable manifold is ¢ = 0. The key point,
however, is that the dynamics on the “center” variables z is extremely slow in a neighborhood of infinity.
This normal form is obtained in Theorem

The parabolic Lambda Lemma is proven in these normal form variables. However, since the statement
fails at the infinity manifold, first we consider two 4-dimensional sections at a fixed but small distance of
Exo: X transverse to W#(E,,) and Yo transverse to W4 (Ey,) (see Figure . We call local map to the
induced map by the flow between the sections 3; and .

p i+

AX

Figure 5.2: Behavior of the local map from the section ¥; to the section 5. We are omitting the
dynamics of the z-components, which are “very close” to the identity.

The parabolic Lambda lemma given in Theorem below implies that the intersection of mani-
folds transverse to W?*(€y) within ¥; gets mapped by the local map to an immersed manifold which
accumulates in a C' way to W*(E4) N Lo. Furthermore, in the z-variables, the local map is close to the
identity at the C' level. As a consequence, the local map and its inverse have one and only one expanding
direction.

When combining the local map with a global map along a homoclinic chanel, this construction provides
a map with a single expanding direction and a single contracting direction. This was enough for Moser
since in the Sitnikov problems one deals with 2-dimensional sections. However, in order to obtain a true
hyperbolic object, we need hyperbolicity in all four directions. That is, we need to “gain” hyperbolicity
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in the z-directions, whose dynamics is mainly given by the behavior of the global map. We will achieve
hyperbolicity by combining two different global maps, related to the two different homoclinic channels
obtained in Step 1 (see Theorem. The Lambda Lemma ensures that the dynamics in the z-variables
induced by the travel along the homoclinic manifold is essentially preserved by the local passage.

5.2.4 Outline of Step 3: The Scattering map and the Global maps

A crucial tool to understand the dynamics close to the invariant manifolds of infinity is the so-called
Scattering map. The Scattering map was introduced by Delshams, de la Llave and Seara [DdILS00L
DAILS06l [DAILS08] to analyze the heteroclinic connections to a normally hyperbolic invariant manifold.
However, as shown in [DKAIRS19] (see Section [5.4.3), the theory in [DAILSO08] can be adapted to the
parabolic setting of the present paper.

From Theorem we obtain that the transversal intersection of the invariant manifolds W*(£,)
and W*(€,) contains at least two homoclinic channels, I'V C W#(E,,)NW¥(Ey) j = 1,2 (see Figure|5.3)).
Then, associated to each homoclinic channel, one can define the scattering map S’ as follows. We say that
ry = S7(x_) if there exists a heteroclinic point in 'V whose trajectory is asymptotic to the trajectory
of x4 in the future and asymptotic to the trajectory of x_ in the past. Such points x4 are well defined
even if £, is not a normally hyperbolic manifold. Once I'V is fixed, thanks to the transversality between
the invariant manifolds, the associated scattering map is locally unique and inherits the regularity of the
invariant manifolds.

Fl

Figure 5.3: Transverse intersection of the invariant manifolds of £, along two homoclinic channels I'y
and FQ.

The construction of scattering maps in the parabolic setting was already done in [DKdIRS19]. Note,
however, that in the present paper the transversality between the invariant manifolds is highly anisotropic
(exponentially small in some directions and polynomially small in the others). This complicates consid-
erably the construction of the scattering maps, which is done in Section (see Section for the
proofs). Moreover, we show that the domains of the two scattering maps S* and S?2, associated to the
two different channels, overlap.

The scattering maps are crucial to analyze the global maps which have been introduced in Step 2 and
are defined from the section Y5 to the section ¥;. Indeed, we show that the dynamics of the z-variables in
the two global maps are given (at first order) by the corresponding variables of the associated scattering
maps. The additional hyperbolicity in the z-directions we need will come from a suitable high iterate of a
combination of the two scattering maps S = (S1)™ o 5% (for a suitable large M). To prove the existence
of this hyperbolicity, we construct an isolating block for this combination.

By isolating block we mean the following: There exists a small rectangle in the z-variables, in the
common domain of the scattering maps, whose image under S is another rectangle “correctly aligned”
with the original one, as seen in Figure that is, the horizontal and vertical boundaries are mapped
into horizontal and vertical boundaries, respectively, it is stretched along the horizontal direction, shrunk
in the vertical direction, and the left and right vertical boundaries are mapped to the left and right of
the vertical boundaries, respectively, while the top and bottom horizontal boundaries are mapped below
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Figure 5.4: The isolating block R of the iterate of the scattering map S

and above, respectively, of the top and bottom horizontal boundaries.

To construct such isolating block we proceed as follows. Each of the scattering maps is a nearly
integrable twist map around an elliptic fixed point (see Figure . The two fixed points are different
but exponentially close to each other with respect @ 3. Combining the two rotations around the distinct
elliptic points, we use a transversality-torsion argument (in the spirit of [Cre03]) to build the isolating

block.
ChN

So

Figure 5.5: The dynamics of the two scattering maps S' and 52

5.2.5 Outline of Step 4: The isolating block for the return map

The last step of the proof combines Steps 2 and 3. We consider the return map ¥ given by M iterates of
the return map along the first homoclinic chanel and 1 iterate along the second homoclinic chanel. Each
of the maps has two hyperbolic directions given by the passage close to the infinity manifolds as we have
seen in Section[5.2.3] The projection onto the z-variables of each of the maps is close to the corresponding
projection of the scattering maps. The same happens to the projection onto the z-variables of the whole
composition V. Hence, the map V¥, possesses two “stable” and two “unstable” directions in some small
domain. Even if the two stretching rates in the two expanding directions are drastically different, we are
able to check that the restriction of ¥ to this small domain satisfies the standard hypotheses that ensure
that ¥ is conjugated to the Bernouilli shift with infinite symbols. In particular, we prove cone conditions
for the return map V.

In conclusion, we obtain a product-like structure as seen in Figure In the left part of the figure,
one obtains the usual structure of infinite horizontal and vertical strips as obtained by Moser in [Mos01]
whereas the right part of the figure corresponds to the isolating block construction in the z directions.
This structure leads to the existence of a hyperbolic set whose dynamics is conjugated to that of the
usual shift . Since the strips accumulate to the invariant manifolds of infinity, one can check that
there exists oscillatory orbits inside the hyperbolic invariant set.
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\I’(Rl) —_/—/S(R)_
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U(Ry)
W () homoclinic channel

Figure 5.6: The horizontal and vertical four dimensional strips which lead to the conjugation with the

Bernouilli shift of infinite symbols.

5.2.6 Summary of the outline and structure of the paper

To summarize, we present here in a diagram the main steps in the proof of Theorems and

Transversality of the
invariant manifolds

of infinity (Theorem |5.4.3))

Two Scattering maps

(Theorem [5.4.5)

Two global maps

N 7

Parabolic
normal form

(Theorem |5.5.2))

Parabolic
Lambda lemma

(Theorem |5.5.4))

Local map

Isolating block for

(Theorem

a suitable iterate of the return map

e

Oscillatory motions

(Theorem )

Symbolic dynamics

(Theorem D

5.3 A good system of coordinates for the 3 Body Problem

To analyze the planar 3 Body Problem , the first step is to choose a good system of coordinates
which, on the one hand, reduces symplectically the classical first integrals of the model and, on the other
hand, makes apparent the nearly integrable setting explained in Section That is, we consider a good
system of coordinates so that we obtain, at first order, that the two first bodies, go,q1 € R2, move on
ellipses, whereas the third body, ¢2 € R?, moves on a coplanar parabola which is far away from the

ellipses.
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5.3.1 Symplectic reduction of the planar 3 Body Problem

Introducing the momenta p; = m;¢;, i = 0,1,2, equation (6.1]) defines a six degrees of freedom Hamil-
tonian system. We start by reducing it by translations with the classical Jacobi coordinates to obtain a
four degrees of freedom Hamiltonian system. That is, we define the symplectic transformation

Qo =qo Py =po +p1 +p2
m
Qr=q —qo Pr=p+——p2
mo +my
moqo + mMi1qa
Q2:q2_7 P2:p2-

mo + mq

Qo

Figure 5.7: The Jacobi coordinates. C'My; stands for the center of mass of the bodies ¢y and ¢ .

These coordinates allow to reduce by the total linear momentum since now Fy is a first integral.
Assuming Py = 0, the Hamiltonian of the 3 Body Problem becomes

- PR~
H(Q17P17Q27P2): E 2/2 _U(leQQ)
j=1 "

where

1 1 1 1 1

g omo  mq’ p2  mo+mip Mg
and (7(@ Q ) o moma + momso + mimeo

PR T Q2 + o0@il T IQ2 — 1@
with

mq mo 1 (5 5)
0pg = ————, o1 = = . .
0 mo + my ! mo + my 1+o0g

Next step is to express the Hamiltonian H in polar coordinates. Identifying R? with C, we consider the
symplectic transformation

. . . r . _ G .
Q1 = pe’?, Q2 =re'*, P =ze" +i=¢", Py =ye' +i—e'®
P T
which leads to the Hamiltonian

1 (22 T2
H(p,2,0,T,r,y,0a,G) = ™ <Z+2>
1

1 (v, G? =0 ia
+M2<2+27‘2>—U(p6 ,re )
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where

~ ; ; mommy moim2 mims
U 10 i) _ . i i .
(pe e ) p |’I"€w‘ + O-Opeze‘ |’I"€w‘ _ Ulp€19|
_ mgmy 1 moms " mims
o r \|1+o092e!0=)| |1 — o Leil0-)| )~

We study the regime where the third body is far away from the other two and its angular momentum is
very large. That is,
r>p and G>T.

Then, we have

1 /22 T2 1 (y? G2 momy  ma(mg +my) p?
H* 0,T G=—|—=—+-— — | =+ =) - — ol= .

Thus, at first order we have two uncoupled Hamiltonians, one for (p, z,0,T") and the other for (r,y, o, G),

1 (22 T2 1
Hgi(p, 2,0,1) = — ( + 2) — Moy —
pr\2  2p p (5.6)

1 (y? G2 1
Hpue(r,y,0,G) = — (L4 2 - -
pPar (1, Y, @, G) M2(2+2T2 mQ(mOJle)T

To have the first order Hamiltonians Hg) and Hp,, independent of the masses, we make the following
scaling to the variables, which is symplectic,
1 _ 1

=——7, z=pumomiz, r=——F and y= uama(mg—+m1)y.
H1moema pama(mo + my)

We also rescale time as -

— pemi(mo +mq)?

Then, we obtain the Hamiltonian

B 32 F2 1 ~2 2 1
H*(5.2,0,0.7,§,,G) :u(z +—~> + (y+G ) W70 - a).
1%

2 2 2 " F
with
5o v mo mq
Wi(p 70 —a)== 5 + = —(mo+mq) |, 5.7
v o <|1+5o$e1<9—a) 11— 5, Zei(0—a)| (mo 1)> (5.7)
and
po T s bm)md and 5= P2mmotm) g
Hammz (mo + ml) H1moma

Note that the potential W only depends on the angles through 6 — a due to the rotational symmetry of
the system.
Now, we change the polar variables (p, z, 8, T") to the classical Delaunay coordinates (see, for instance,
[Sze67])
(p,2,0,T)— (¢, L,g,T). (5.9)

This change is symplectic. As usual, from the Delaunay actions, which are the square of the semimajor
axis L and the angular momentum I', one can compute the eccentricity

1"2
ec(L,T) = /1= 5. (5.10)

The position variables (p, ) can be expressed in terms of Delaunay variables as

p=pt LT)=L*1-e.cos E) and 0=60((L,g,T)=v({,LT)+g, (5.11)
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where the angles true anomaly v and eccentric anomaly E are defined in terms of the mean anomaly ¢
and eccentricity e. as

v 1+ e, FE

{=FE—e.sinFkE and tan§ Vi e tanE. (5.12)

One could also write an expression for Z, but it is not necessary to obtain the new Hamiltonian

. v 7?2 G 1 ~ _
H(K,L,g,F,r,y,a,G) = 7@ + <2 + ﬁ - 77) + W(p(f,L,F),nv(f,L,F) +9 - O[),

where W is the potential introduced in (6.4). Now, by , the distance condition corresponds to 7 > L?
and the first order uncoupled Hamiltonians are

G2
272

1

HE](E,L,,Q,F): +

~2
v e
272 and HPar(T, Y, «, G) - 9

Do
=

whereas W = (’)(f,:f—;) = O(%)
Now, we make the last reduction which uses the rotational symmetry. We define the new angle
¢ = g — . To have a symplectic change of coordinates, we consider the transformation

(67 L? ¢7 F’ F) §7 a7 6) = (£7 L7 g - a? F7 F’ g? a? G + F)' (5'13)
Then, we obtain the following Hamiltonian, which is independent of «,
ﬁ(&LaQSaFv?v{l]; @) :H(&L,QS + OZ,F,;,g,CV, O — F)

v 7> eo-1)? 1 ~ -
= - ﬁ"‘ <y2+(2;:2) — F) + W(p(, L,T),7,v(¢, L,T) + ¢).

(5.14)

Since this Hamiltonian is independent of «, the total angular momentum © is a conserved quantity which
can be taken as a parameter of the system. We assume © > 1.

5.3.2 The Poincaré variables

We consider nearly circular motions for the first two bodies. Since Delaunay variables are singular at the
circular motions I' ~ L (equivalently by (6.7), e. ~ 0), we introduce Poincaré variables

(za La ¢7 F7 ?a g) = ()‘) L’ 777 ga ?7 A/)7
defined by

A=Cl+ ¢, L=L,

n=vVL-Te?, &=vL-Te ™,
which are symplectic in the sense that the form d¢ A dL + d¢ A dI' is mapped into dA A dL + idn A d€.

These coordinates make the Hamiltonian H well defined at circular motions (i.e. at p =& = 0). The
transformed Hamiltonian can be written as

~2 2
~ eV v (©—L+nf 1l =
K(A,L,n,f,r,y,@) - 2L2 + 2 2;;2 77 =+ W(AaLvnzfa?) (516)

(5.15)

where, using that

i _ " 5.17
© Ve (5:17)

the potential becomes

W (A, Ly, &,7) = W(a(¢, L,T), 7 v(¢, L,T) + ¢)

B (R

1+G0E et |1 - 512 Azeiv]

144



where the functions v and p are evaluated at

(0,1,T) = (A+;logZ,L,Ln§). (5.19)

In particular, by and (5.15]), the eccentricity is given by

o= TVIEVIL T

The associated equations are

_ I — N
X:%—wﬂﬁw, L' = —o\W
O—L+ e ©O—L+ g
n = _ZTWSn —10:W, ¢ = zT"gg + 0, W (5.20)
IS _, (©®-L+n? 1 ~
r’:y, y/:( = 775) _ﬁ_arw.

Remark 5.3.1. Notice that the Hamiltonian was not analytic at a neighborhood of circular motions
for the two first bodies, that is L = I'". Nevertheless, it is well known that once this Hamiltonian is
expressed in Poincaré variables, that is Hamiltonian , the system becomes analytic for (n,£) in a
neighborhood of (0,0). See, for instance, [Féjl15).

5.4 The manifold at infinity and the associated invariant mani-
folds

The Hamiltonian K in (5.16) has an invariant manifold at infinity. Indeed, the potential W in (15.18))
satisfies W = O(L*/7?). Therefore, the manifold

POO :{()\7[/37775-3/7,@: F:+OO, g:()}

is invariant? _
Note that, at P.., the Hamiltonian K satisfies

~ v

e =51

and L‘pw = 0. Therefore, we can fix L = L and restrict to an energy level K= . We consider the

_ﬁ
restricted infinity manifold
v

— -1 (2
o =P NK <2L3

) ={(\L,n,&,7,9): L =1Ly, T=400, §=0, (n,&) €U, A€ T}, (5.21)

where U C R? is an open set containing the origirEI which is specified below. By the particular form of
the Hamiltonian & in (5.16)), it is clear that the manifold £ is foliated by periodic orbits as

Eoo = U Py
(n0,80) €U
with
P770750 = {()‘7L777a§7777§) - N =To, 5 = 607 L= LO, ;F: +OO7 :'7: Oa A S T}7

2To analyze this manifold properly, one should consider McGehee coordinates ¥ = 2/z2. This is done in Section
3Observe that (n,£) € C? but they satisfy £ = 7.

145



whose dynamics is given by
v
Alt) = Ao + —=t.
These periodic orbits are parabolic, in the sense that its linearization (in McGehee coordinates) is de-
generate. Nonetheless, we will see Theorem that they have stable and unstable invariant manifolds
whose union form the invariant manifolds of the infinity manifold €.

The goal of this section is to analyze the stable and unstable invariant manifolds of £,, and show that,
restricting to suitable open domains of £, they intersect transversally along two homoclinic channels I'!
and I'? (see Figure[5.3). This will allow us to define two different scattering maps on suitable domains of
Eoo-

5.4.1 The unperturbed Hamiltonian system

Since we are considering the regime 7 > L2 and W satisfies W = O(L*/73), we first analyze the
Hamiltonian K in with W = 0. We consider this as the unperturbed Hamiltonian. In fact, when
W =0, K becomes integrable and therefore the invariant manifolds of the periodic orbits P, ¢, coincide.

Indeed, it is easy to check that L and n¢ (and the Hamiltonian) are functionally independent first
integrals. Therefore, if we restrict to the energy level K = ==~ and we define

2Lo
Go = © — Lo + oo,
the invariant manifolds of any periodic orbit P, ¢, should satisfy

O — L +nt = Go

and therefore they must be a solution of the equations

14 Go
N=—-=

IE R

.Gy .Go
n = _qun’ ¢ = z§§ (5.22)
G 1

~ _ ~ ~ _ -0
=Y b¥y=7 7=

The invariant manifolds of the periodic orbit P,, ¢, associated to equation ([5.22)) are analyzed in the next
lemma.

Lemma 5.4.1. The invariant manifolds of the periodic orbit P, ¢, associated to equation (5.22)) coincide
along a homoclinic manifold which can be parameterized as

A:’Y—FQSh(U) LZLQ
n=mne'™ = ge (5.23)
F=Giu(u) ¥ =Gy (),
where (T (u), gn(u), dn(uw)) are defined as
B 1
ma(u) =ro(r(w),  ro(r) = 5(7* + 1),

Un(u) =yo(r(w),  wo(7) =5+ (5.24)

o) = o(r(w),  o(r) = ilog ( - ) |

where T(u) is obtained through



In particular

ei¢0(7') _ T +Z
T—1
and ¢y, satisfies
lim ¢n(u) =0 (mod 27) and on(0) = . (5.25)

u—Fo0
Moreover, the dynamics in the homoclinic manifold (5.23) is given by

v

! _ -3 !’
u =G;”, W—L—g.

Note that the dynamics in this homoclinic manifold makes apparent the slow-fast dynamics. Indeed
the motion on the (7,y) variables is much slower than the rotation dynamics in the A\ variable.

Proof of Lemma[5.4.1 To prove this lemma it is convenient to scale the variables and time as

F=G2r, y=Gy'y, and t=G3s (5.26)
in equation (5.22)) to obtain
A _vGg 1
ds L3 72’
dn i e i
- R 5.27
ds 72 ds 1’"\25 ( )
ar _ 5 dy _ 1 _ 1
ds 0 ds 7 72

The last two equations are Hamiltonian with respect to
hrY) =%+ —= — % (5.28)
and, following [LS80a], they have a solution (7,(s),yn(s)) as given in which satisfies
i (F(s). 5u(s) = (00.0) and  §(0) = 0. (5.29)

Moreover, for the (n,£) components, it is enough to define the function ¢y, (s) which satisfies

dé 1
i@ and  ¢u(0) = 7.

Following again [LS80a], it is given in ([5.24)) and satisfies the asymptotic conditions in (5.25)).
To complete the proof of the lemma it is enough to integrate the rest of equations in ((5.27)) and undo

the scaling ((5.26)). O

Observe that the union of the homoclinic manifolds of the periodic orbits P,, ¢, form the homoclinic
manifold of the infinity manifold (restricted to the energy level) £, which is four dimensional.

5.4.2 The invariant manifolds for the perturbed Hamiltonian

In this section we analyze the invariant manifolds of the infinity manifold £ (see (5.21)) and their

intersections for the full Hamiltonian K in (5.16) (that is, incorporating the potential W in (5.18)).
Given a periodic orbit P, ¢, € £x, we want to study its 2 dimensional unstable manifold and its possible
intersections with the 2 dimensional stable manifold of nearby periodic orbits

Ppoton,cotoe € Ex for some |om], |6¢] < 1.
This will lead to heteroclinic connections and, therefore, to the definition of scattering maps. To this end,
we consider parameterizations of a rather particular form. The reason, as it is explained in Section [5.7.1]
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below, is to keep track of the symplectic properties of these parameterizations. Using the unperturbed
parameterization introduced in Lemma and the constant

Go = © — Lo + no&o,
we define parameterizations of the following form, where * stands for x = u, s,

A =7+ ¢n(u)
L*(u,y) =Lo + A" (u,)

" (u,y) = “”h(“)(no +a*(u,7))

€ (u,7) =e "M (& + B (u, 7)) (5.30)
7 =G (u)
() = B | Y () | AT(y) = (0 + 0" (w9) (6 + £ (7)) + ko

Go  Ggin(u) G (u) (P (u))?

where the functions A*, o, 8%, Y™ satisfy

(A (u, ), " (u,y), B (u,7), G (w) " Y “(u,7)) = (0,0,0,0), as u— —oo
(A® (u, ), o (u, ), B%(u, ), @h(u))_le(u,’y)) — (0,6m,0¢,0), as u— +oo.

The rather peculiar form of these parameterizations relies on the fact that one can interpret them
through the change of coordinates given by

(A’L’T]7€’?’y % (’)/,A,O[7B7U,,Y).

Then, one can keep track of the symplectic properties of the invariant manifolds since this change is
symplectic in the sense that it sends the canonical form into dy A dA + ida A dB + du A dY. This is
explained in full detail in Section (see the symplectic transformation (5.71))).

If the functions (Y*, A*, a*, 3*) are small, as stated in Theorem below, these parameterizations
are close to those of the unperturbed problem, given in Lemma [5.4.1] Furthermore, note that, to analyze
the difference between the invariant manifolds, it is enough to measure the differences

(Y — YU, A° — A%, a® — ", B° — BY) (5.31)

for w in a suitable interval and v € T. The zeros of this difference will lead to homoclinic connections
to Py, .¢,, if one chooses dn = d§ = 0, and to heteroclinic connections between P, ¢, and Py ysn,c0+5¢
otherwise.

The analysis of the difference is done in Proposition and Theorem below. First,
in Proposition we define a Melnikov potential, which provides the first order of the difference
between the invariant manifolds through the difference (5.31)). Then, Theorem m gives the existence
of parameterizations of the form for the unstable manifold of P, ¢, and the stable manifold of
Pyy+6n.¢0+5¢ and shows that, indeed, the derivatives of the Melnikov potential given in Proposition
plus an additional explicit term depending on (é7,0¢) gives the first order of their difference when the
parameter © is large enough.

We then introduce a Melnikov potential

“+o0

‘C(U7 770a§0) = Gg/

— 0o

W (0 + ws + ¢n(s), Lo, e n(s)p emionls) g, G%?h(s)> ds, (5.32)

where W is given in (5.18)), (Pn(u), #n(u)) are introduced in Lemma and

w=-—=L, with Go=0 — Lo+ no&o. (5.33)
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Note that, as usual, it is just the integral of the perturbing potential W evaluated at the unperturbed
homoclinic manifold ([5.23)).
To provide asymptotic formulas for the Melnikov potential £ we use the parameter

6 =06 - L. (5.34)

Proposition 5.4.2. Fiz Ly € [1/2,2]. Then, there exists ©* > 1 and 0 < ¢* < 1 such that for
O > 0" and (1o, &) satisfying &y = 7o and |19|©%/2 < o*, the Melnikov potential introduced in (5.32)) is
2m-periodic in o and can be written as

L(o,m0,€0) = L (10, &) + LM (0o, &0)e™™ + LI (10, &0)e ™ + LZ (0, m0, o),

and the Fourier coefficients satisfy L19(ng, &) = L= (&, n0) and

31360 —N31—5 Ly 6
64 3L,

_ 2(©9+n0é0) N. N- 7~
cM(no, o) =ve s [ 3[L6@——342\FL593no+Rl(no,fo)

£ (g, &) =mL§(O + mo&o) l]; (1 + 3@ - (1o + &) + Ro(n0, o)

Lo 2 L2

32

where U is the constant introduced in (5.8)) and

m4(m0 m1)5 m6(m0 + m1)7
N, = P00 ), 5.35
2 mgm‘;’ ’ 3 mgm? (ml 0) ( )

and
Ro(0,&) = 0 (07%) + 0 (07%m|*),  Ra(mo,&0) = O (671, ol |TIO|2@5/2)

and, fori,j >1,

33}0320720(770,50)‘ < C(i,7)072,

03,0, Ra (10, o) < (0, )@+,
for some constants C(i, j) independent of ©.
Moreover, fori,j7 >0, k> 1,

2063

08,08, 04.] < (i, W)OT/2HH) 26 S
where C(i,7,k) is a constant independent of ©.

This proposition is proven in Appendix

The next theorem gives an asymptotic formula for the diference between the unstable manifold of the
periodic orbit P, ¢, and the stable manifold of the periodic orbit P iy ¢,+6¢, Which is measured by
(5.31]).

Theorem 5.4.3. Fiz Ly € [1/2,2] and uy,us such that uy > us > 0. Then, there exists ©* > 1
and 0 < o* < 1 such that for © > ©*, (n9,&) satisfying & = Mo and |no|©3/2 < o* and (61, 5€)
satisfying 8¢ = on and |6n|©3 < o*, the unstable manifold of Py ¢, and the stable manifold of Py, sn.¢0+5¢
can be parameterized as graphs with respect to (u,v) € (uj,uz) X T as in for some functions
(Y*,A* o*, B%), x = u, s which satisfy

Y* <7 [A<COe7 |af|<e7? [ <co. (5.36)
Moreover, its difference satisfies
(U, Vazo) Ys(u 7720762 My(U,’Y,Zm(SZ)
(U Y, 2 0) AS(’U’ ’Y,Zo,(SZ) _ MA(U,’Y,Z(),éz)
au(u Y5 & 0) o’ (U, Y5 20, 62) N N(u, R 52) 57] + M(l(ua Y5 20, 5Z) (537)
(U 7720) Bs(u,f}/aZOadz) 5€+Mﬁ(u,"}/720,52)
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where zo = (no, &), 62 = (0n,68), N is a matriz which satisfies
N=Id+0(07?%) (5.38)
and the vector M is of the form

wIy L(7y — wu, 29) + O (070 In* O)

My (u,7, 29, 02) " a8
Ma(u,7,20,02) | _ | =0 L(y — wu, z0) + O (e #0752 O (5.39)
o) —i0g, £(3 — wi,z0) + O (6°°)
AT =0 iOpo Ly — wu, 2) + O (076)
where L is the Melnikov potential introduced in (5.32)) and w is given in (5.33)).
Moreover, the function M satisfies the following estimates
0,0 OF(My +wd, L) < C(i, 5, k)OO~
|05, 0,05 (My )| <€, 5, k) (5.40)

103,01, 0% (M + i0¢, L), 05, 0% 05 (Mg — 10y, L)| < C (i, j, k)O°.

Furthermore, both for the derivatives of the component My and the ~y-derivatives of the other components
one has the following exponentially small estimates. For any i,j,k > 0

01,0 0F (M + 0,L)| < C(i, j, k)@ ~5/2+3+1)/2™ 518 1052 ©

Eo Y
263

104, 04,05 7 (My = wd, £)] < C(i, 5, k)72 /2 5if (541)

63

104,08 05 (Mo, + i0p, L), 0,08 05T (Mg — i0g, L)] < C(i, 4, k) 230H/2e 315

Note that for My the error in and is bigger than the first order given by the Melnikov
potential. Modifying slightly the matrix A this error could be made smaller. However, this is not needed.
The reason is that, by conservation of energy, one does not need to take care of the distance between the
invariant manifolds on the Y component.

Remark 5.4.4. The estimates in Pmpositz'on and the bounds (5.40) imply the following estimates
that are needed for analyzing the scattering maps in Section [5.4.

Dy eeMy | < C(N)O™°

10,80
\D%O,goMﬂ SO +0 3 (Inol + &) for z=0a,p
DY (M| <C(N)O™® for z=0a,8 and N >1, N #2,

where C(N) is a constant only depending on N.
Analogously Proposition and the bounds in (5.41) imply

_ 262 s .

IasMA‘ = C(k)(@—1/2 + @_3/2|770|)e 3 ) |(9170MA‘ S @3/26 8L , |8£OMA| 5 @3/2e 3L
and, when i+ 3 > 1,

10} 80 OF M| < Cli j, k)O3 /2 3T

where C'(k) and C(3,j, k) are independent of ©.
Finally, 1,5,k > 0,

263

101,00 05 My | < C(i, 5, k)O3 —3+ /2 558

oY

04,00, 05 Mol 105,00, 05 M| < CG.j. )OH2=204/267 50
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Theorem [5.4.3] is proved in several steps. First, in Section [5.7] we prove the existence of param-
eterizations of the form for the invariant manifolds. These parameterizations are analyzed in
complex domains. They fail to exist at u = 0 since at this point, when written in the original coordinates
(N, L,n, &, 7,9), the unperturbed invariant manifold is not a graph over the variables 7, \. Thus, in Section
we extend the unstable invariant manifold using a different parameterization. This allows us to
have at the end a common domain (intersecting the real line) where both manifolds have graph param-
eterizations as ([5.30). Finally in Section we analyze the difference between the invariant manifolds
and complete the proof of Theorem [5.4.3

5.4.3 The scattering maps associated to the invariant manifolds of infinity

Once we have the asymptotic formulas for the difference of the stable and unstable manifolds for
nearby periodic orbits in €4, next step is to look for their intersections to find heteroclinic connections
between different periodic orbits. This will allow us to define scattering maps in suitable domains of
€. Now we provide two homoclinic channels and the two associated scattering maps whose domains
inside £ overlap. The construction of the homoclinic channels relies on certain non-degeneracies of the
Melnikov potential analyzed in Proposition In particular, we need non-trivial dependence on the
angle . If one analyzes the first y-Fourier coefficient of the potential £(y — wu,no,&o) given by ,
one can easily see that it vanishes at a point of the form

. Ny _s5/2~ s .
= Thad = ——— 1?6721 0 (675/2) .
Sbad = Mbad 241/2N, ° ( )

Therefore, we will be able to define scattering maps for || < ©7%/2 and & = 7 (that is the domain
considered in Theorem minus a small ball around the point (9bad, Toad)-
The main idea behind Theorem is the following: We fix a section v = u* and, for (n9,&p) in the

good domain D introduced below (see ([5.44])), we analyze the zeros of equations ([5.37)), which lead to two
solutions

’yj = Pyj(U*,UOag(J)v 5€j = 5€j(U*a 770750)) 577] = 677j(U*a7707£0)a .7 = ]-a 2.
These solutions provide two heteroclinic points through the parameterization (5.30) as

Zﬁet = Zﬂet(U*anmgO) = (Anet, Lhet; et Enet Thet, Thet )
= ()\7 Lu» nuv £u7 Fa gu) (U*a 7] (U*v 7o, 50)) € Wu(Pno,éo) N WS(PU0+57I-j7€0+5§-7 )

Varying (1o, o) and u, one has two 3-dimensional homoclinic channels which define homoclinic manifolds
to infinity. These channels are defined by

I/ = {Zﬁet(u»ﬂo,ﬁo) tu € (u1,u2), (M0, o) € ﬁ)} (5.42)

and associated to these homoclinic channels one can define scattering maps which are analyzed in the
next theorem. B
To define the domain D of the scattering maps we introduce the notation

D, (m0,&0) = {w € R? : |(1,€) — (n0,&0)| < p} - (5.43)

Theorem 5.4.5. Assume that mo # my. Fix Ly € [1/2,2] and 0 < o < ¢* where o* is the constant
introduced in Theorem[5.4.5. Then, there exists ©* > 1 such that, if © > ©*, one can define scattering
maps

< 1 - 1
ST x [2,1] XD — T x [2,1} xC, j=12

where (see Figure[5.8)
D= Dg@*3/2 (07 0) \ DQ@*Q (nbad7 nbad)z (544)
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associated to the homoclinic channels TV introduced in (5.42). These scattering maps are of the form

. )‘+Aj(noa€0)
S]()\7L077707£0) = ) LO
S (10, &o0)

where S7 is independent of \ but may depemﬁ on Ly and is given by

. no — iﬁﬂ’Lg(é + 77050)_3 Ang + 2A277(2)§0 + Agé_Q .
87 (no, &) = o~ arE s ) - 1| TR (o, %) (5.45)
&o + wnr L5(© + no&o) A1éo + 2Aampés + A3©

where © = © — Ly,
3N, 3Ny 15 3
Aj=—=, As=——=, As3=-N3s—L;. 5.46
1 8L07 2 16[/(2)7 3 3\/?64 0 ( )

(see (5.35)) and R? satisfies _
R (o, &) = 0 (07°,07 o)

Moreover,
o S7 is symplectic in the sense that it preserves the symplectic form dng A d&.
e Fiz N > 3. Then, the derivatives of R7 satisfy
IDFRI ()| < C(k)©~°, k=1...N
for z € ]ﬁ, where C(k) is a constant which may depend on k but is independent of ©.
e There exists points zg = (ng,fg), j=1,2, of the form

- 5Ny L

fé =1 and 776 = 8N2 \/méi2 + @) (@73 10g2 6) (547)

where Ny and N3 are the constants introduced in (5.35), such that S¥(i},€)) = (n},€)). Further-
more, the distance between these two fixed points is exponentially small as

. 4 - _ 963
ng—my =& — & = —ﬁLé/QG)Q/Ze M (1+0(© ' Im*e)). (5.48)
This theorem is proven in Section [5.9.1]

D ,6-3/2(0,0)

D02 (Mbad, Toad)

Figure 5.8: The domain D in (5.44) of the scattering maps (see Theorem [5.4.5)).

To analyze the return map from a neighborhood of infinity to itself along the homoclinic channels it
is convenient to reduce the dimension of the model. To this end, we apply the classical Poincaré-Cartan

4To simplify the notation we omit the dependence of S7 on Lg. In fact, from now one we will restrict the scattering map
to a level of energy. Since the energy determines Lg it can be treated as a fixed constant
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reduction. We fix the energy level K= Then, by the Implicit Function Theorem, we know that

v
— 343
there exists a function L(A, n, &, 7, ¥; ©) satisfying

~ 14

K ()\7 —L()\777,€77A:,§/),77,§,77, g) = _ﬁ
0

The function L depends also on © and Lo (which can be treated now as a parameter). We omit this
dependence to simplify the notation.

The function L can be seen as a Hamiltonian system of two and a half degrees of freedom with A
as time. Then, it is well known that the trajectories of L coincide with the trajectories of K at the
energy level K = fﬁ (up to time reparameterization). From now on and, in particular, to analyze the
return map from a neighborhood of infinity to itself (see Section , we consider the flow given by the
Hamiltonian L.

Recall that our goal is to construct a hyperbolic invariant set with symbolic dynamics for this return
map by means of the usual isolating block construction (see Figure . To capture the hyperbolicity in
the (n, £)-directions we must rely on the scattering maps. Indeed, in these directions, the dynamics close
to infinity is close to the identity up to higher order (see Theoremand the heuristics in Section
and, therefore, hyperbolicity can only be created through the dynamics along the invariant manifolds,
which is encoded in the scattering maps. Thus, as a first step we construct an isolating block for a
suitable (large) iterate of the scattering maps associated to L.

Therefore, we need to compute them from the scattering maps gSN‘J obtained in Theorem (restricted
to the energy level K= —QVT%) Indeed, if we denote by

ST :TxDCTxC—TxC, j=1,2

the scattering maps associated to L, they are of the form

ST (A0, &) = (ymﬁ,gw) '

where S7 are the functions introduced in . Note that the fact that A\ is now time, implies that the
corresponding component in the scattering map is the identity. Nevertheless, as the (1, £) coordinates of
the periodic orbit in £, do not evolve in time, the associated components of the scattering maps for the
non-autonomous Hamiltonian L and the original one K coincide.

Using Theorem and Taylor-expanding the scattering maps around their fixed points, one can
prove the following proposition.

Proposition 5.4.6. Assume that mg # my, fir N > 3 and take © > 1 large enough. Then, for j = 1,2,
the expansion of the scattering map S’ introduced in (5.45) around its fized point =}, obtained in Theorem

is of the form

N

A : . , \ N+1
S(z) =2 +pj(z—2) + ZP’“ (z — z{]) +0 (z — z(]))
k=2
where z = (n,€) and _ 3
py = e with  w; = vrLiA,07% 4+ 0O (@_4) (5.49)

and Py are homogeneous polynomials in 1 — né and & — fé of degree k. Moreover they satisfy

Py(z)= Y 03¢ with b =0(07°)
i+j=2
P3(2) =TO 3|22+ ©7°0 (z%)

where
T = —divnLiA; + 0 (071 (5.50)

(see (5.46) and (5.35)) satisfies T # 0 and the coefficients of Py, for k > 4 are of order O (073).
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This proposition shows that the scattering maps are close to a rotation around an elliptic fixed point
(with a very small frequency). For this reason it is rather hard to obtain hyperbolicity for any one of
them. Instead, we obtain it for a suitable high iterate of a combination of the scattering maps. This is
stated in the next theorem, whose prove is deferred to Section [5.9.2

Theorem 5.4.7. Assume that mg # mq, fix Lo € [1/2,2] and take © > 1 large enough. Then, there
exists 0 < kg < 1 and a change of coordinates

T:(=Fo,Fo)? =D, (no,&) = T(p,J)
where D is the domain introduced in , such that the scattering maps
S ="1o08 0T,
where ST have been introduced in Theorem satisfy the following statements.
1. They are of the form

S = (PTPOAT)wa e (G0

which satisfies
b=0,585(0,00#0 and  8%(0,J)=0 for J € (—Fo,Ro)
2. For any 0 < K < Ry, there exists M = M(R) such that the rectangle
R={(p,J): 0<p<267'%,0<J <R} (5.51)

is an isolating block for 8 = (§1)M 0 82. Namely, if one considers a C* curve J = v(p) with
v :[0,2b7R] — R with v(p) € [0,&], then, its image (p1(¢), J1(¢)) = S(¢,v(¢)) is a graph over
its horizontal component and satisfies that

Ji(p) € (0,&), ¢1(0) <0 and ¢1(207'F) > 2b 'R
8. For z = (p,J) € R, the matriz DS(z) is hyperbolic with eigenvalues Xg(2), \g(2)~" € R with
HOP
Furthermore, there exist two vectors fields V; : R — TR of the form

vlz(é), sz(vﬂl("‘)) with Va1 (2)] S 7,

which satisfy, for z € R,
DS =Xg(2) (Vi +Ta(2)  with ()| S 7

DS(:)Va(z) = ()" (VaB(2)) + Ta2))  with  |Va(2)| S

5.5 Local behavior close to infinity and a parabolic Lambda
Lemma

5.5.1 McGehee coordinates

To study the behavior of Hamiltonian K in (5.16) close to the infinity manifold &£, we introduce the
classical McGehee coordinates 7 = 2/2%. To simplify the notation, in this section we drop the tilde of 7.

The Hamiltonian I becomes
P O-L4n)?at a?

14
j(AaL7na€7xay;®) = _m—"_%—’—fz_ 7+V<A5Lan7£ax)
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where 5
V()‘7L7na€’x) = /W <A7L777?€’ 352) = O(xﬁ),

and W is the potential in (5.18]), while the canonical symplectic form dA A dL + idn A d€ + dr A dy is
transformed into

4
AN dL + idy A dE — —dzx A dy.
X

Hence, the equations of motion associated to J are
N =0, = 2 + 0 L'=-0\J = 0(«%)
—UVLJd — 3 z), = —OUXNJ — z),

W =i =~ (0~ L4ne)a'n+0®), & =i0,T = (O~ Ltnt)a'e+0(),

§ § (©-L+n?

x T

1 1
r_ T :_73 I T :_74 8
@ =— Oy J 1%y Yy 1 (=0:.T) % + 3 + O(z°).
In the new variables, the periodic orbits P, ¢, in the energy level K= —57= become
0

Pno,so:{)\ET»L:LOa77:7707525073322/:0}

for any 7, & € C with |l |o] < L(l)/2 (see (5.15). To study the local behavior around €, we consider
the new variables

a =ne O-L+nd)y and b=¢eO-Ltndy, (5.52)
The equations of motion become
N =0T = =+ 0@, L'=-0,J=0("
— UL — 3 z ), — A — x"),
a/ = O<x6>7 b/ = (’)(acﬁ),
1 1 © — L+ ab)?
- fzx?’y, y = 71$4 + %xfs +O(z®).

Remark 5.5.1. Note that the change of coordinates (5.52)) is the identity on Eo. Therefore, Theo-
rem[5.4.9 is still valid in these coordinates.

As we have done in Section we restrict to the energy level 7 = —57> and express L in terms of
0

the rest of the variables in a neighborhood of x = y = 0. An immediate computation shows that L is an
even function of z and y and

Lo oo 2 2 2
—(z* — Os(x .
21/( Y ) + 2( Y )
Taking A\ as the new time and denoting the derivative with respect to this new time by a dot, we
obtain the 27-periodic equation

L=1Ly+

i =—Kozy (14 B(2® — y°) + 02(2”,y%)),

§ = —Koz' (1 - (4A(2) + B)a® — By? + Oz(2%,4?))
3 = 0(x9),

t=1

)

where, abusing notation, we denote again by ¢ the new time A, z = (a, b) belongs to a compact set and

2 _ 7:2 1 —a ’

A(z) =< (© = Lo +ab)” = g (1 (Lo b)) ; 5,53
L
KO = —.

B:
4

Nl w ool

1
L()V’
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Observe that, since (a,b) belong to a compact set, taking © large enough, we can assume that

02 1 SR
A=—(1- = (Lo— ~0%>0.
A ( @(0 ab)) >16@ >0

Scaling « and y by Ké/?’, one obtains
@ = —2’y(1+ Ba® — By’ + Ri(x,y, 2,1)),
y = —a*(1+ (B —4A)x* — By? + Ry(x,y,2,1)),
Z= R3(xayazat)v
t=1,

(5.54)

where we have kept the notation x, y for the scaled variables and A,B for the scaled constants. Moreover,

1. the functions R;, ¢ = 1,2, 3, are even in x,
2. R3(w,y,z,t) = O3(z?) and R;(x,y,2,t) = Oz(x2,y?), i=1,2.

The periodic orbit P, ¢, becomes P, ¢, ={x =y =0, a=1mny, b=~E, t € T}.

We now apply the change of variables (z,y,2) = (z,y, Y(p, J)), where T is given in Theorem [5.4.7}
The transformed equation has the same form as in with statements 1 and 2 above. From now
on, we will assume z = (p,J). In particular, the scattering maps associated to the infinity manifold
{z = y = 0} will satisfy the properties of Theorem [5.4.7

5.5.2 C! behavior close to infinity

To study the local behavior of system ([5.54)) close to £, we start by finding a suitable set of coordinates,
provided by the next theorem, whose proof is deferred to Section [5.10

Theorem 5.5.2. Let K C R? be a compact set. For any N > 1, there exists a neighborhood U of the
subset EE = U, ek Poy C Eoo, in R2Z X R2 X T and a CN change of variables

T—y T4y
2 72

q):(ﬂc,y,z,t)EU»—)(q,p,Z,t)z ( ,Z,t)—FOg(.T,:U)

that transforms system (5.54)) into

i=q((q+p)*+ Oslq,p),
p=-p((¢+p)*+ Os(q.p),

Remark 5.5.3. It is worth to remark that the change of variables in Theorem is analytic in some
complez sectorial domain of R? x R? x T with EX in its vertex. This claim is made precise in the proof
of the Theorem[5.5.3 To prove this fact, it is important to control the terms of degree 6 of the equations

forx and y in (5.54), in particular, the sign of A in (5.53) (see Section .

To simplify the notation, we drop the tilde from the new z variable. Let N > 10 be fixed. We are
interested in the behavior of system in the region ®(U) N {¢ + p > 0}. The stable and unstable
invariant manifolds of P,, in this region are, respectively, W*(P,,) = {¢=0, p> 0, z = 29, t € T} and
W (P,,)={p=0, ¢ >0, 2=z, t € T}. Even if the invariant manifold £X is not normally hyperbolic,
it behaves as such and possesses smooth stable and unstable invariant manifolds (see [BEM20al BEM20b] )
defined by

z=q"pNO04(q,p), (5.55)
i=1 '

wH(EK) = U W*(P,,), *=u,s.
zZ0EK

Moreover, the invariant manifolds W*(£X) are foliated by stable and unstable leaves Wiy * = u,s,
which are defined as follows. Denote by ¢, (w) the flow associated to equation . Then, w € W, if
and only if

lor (w) — @r(wo)| — 0 as T — 400
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and analogously for the unstable leaves with backward time.
This allows us to define the classical wave maps associated to the stable and unstable foliations, which
we denote by Q° and Q%, as

O (w) =wo ifand only if we Wy — for x =u,s. (5.56)

Observe that in the local coordinates given by Theorem one has that, locally, W*(EE) = {q¢ = 0}
and W*(EX) = {p = 0}. Moreover,

Q°(0,p, z,t) = (0,0, 2,t) and 02°(q,0,2,t) = (0,0, 2,t).

The next step is to prove a Lambda Lemma that will describe the local dynamics close to £X in the
coordinates given by Theorem Note that the particular form and invariance of W*(£X) x = u, s,
implies that the solution ¢, (wg) through any point wo = (g0, po, 20, to) € ®(U) N {qg > 0, p > 0} satisfies
or(wg) € D(U)N{g >0, p > 0} for all 7 such that ¢, (wg) € ®(U). We define, then,

Vo ={(¢,;p) [ lal:Ip < p, ¢>0, p>0}.
Let W C R? be an bounded open set. Given 0 < § < a < p and W C W, we define the sections
wsW) ={(g,p,2,t) €V, x W x T |p=a, 0< q<d},

A+5(W) {(Qap>zyt)€VpXWXT|q=a,0<p<5}.

a

(5.57)

and the associated Poincaré map .
Uioe 0 Ay (W) — AL 5(W) (5.58)

induced by the flow of (5.55)), wherever it is well defined.

Theorem 5.5.4. Assume N > 10 in system (5.55)). Let K C W be a compact set. There exists 0 < p < 1
and C > 0, satisfying Cp < 3/5, such that, for any 0 < a < p and any 6 € (0,a/2), the Poincaré map
Wige A;(;(K) — AT a5 ca (W) associated to system (5.55)) is well defined. Moreover, Uy, satisfies the
following.

1. There exist C1,Cy > 0 such that, for any (q,a, 20,t0) € A;’é(K), Uioe(q, a, 20, t0) = (a,p1,21,t1)
satisfies
q1+Ca §p1 < ql—Ca

)

|21 _ ZO| < %aN(l—s—Ca)qN(l—Ca)’

51q73(17Ca)/2 <t —ty < 5«2q—3(1+0a)/2.

2. Fiz any M > 0. Then, there exists 6o and Cs > 0, such that for any & € (0,80) and ~ : [0,6) —
V,x W xT, aC" curve with v((0,8)) C A, 5(K) of the form v(q) = (q,a, 20(q), to(q)) and satisfying
IVllcr < M the following is true. Its image Vio.(v(q)) = (a,p1(q), 21(q), t1(q)) satisfies

- ! ~ 1 ca - -1
p@l<d,  |AD <agcn @< h@) > G
tl(q) q / a
3. There exists Cy > 0 such that, if y : [0,1] — ~s(K) is aC' curve of the form y(u) = (qo(u), a, 20 (u), to(w)),
then Wioc(v(u)) = (a, p1(u), z1(u), t1(u)) satzsﬁes for all uw € [0,1],

|21 (w) — 20 (u)] < Cally (w)l|qo(u)N 0.
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4. Fiz any M > 0. Then, there exists 8o such that for any § € (0,00), any C* curve (20(u),to(u)) €
K x T, u € [0,1], satisfying ||(zo(u),to(u))|lcx < M and any o € (0,0), there exists a func-
tion go : [0,1] — (0,8) with qo(0) = do, |gh(0)] < @'°, such that Wioc(qo(u), a, zo(u), to(u)) =
(a,p1(u), z1(u), t1(u)) satisfies

%—C’a

< Csds "(a0(0), 25(0), o (0D
< Csdoll(46(0), 25(0), 6 (0)]]

for some 6’5 > 0 independent of the curve and .

The proof of Theorem is deferred to Section [5.11

5.6 Construction of the hyperbolic set

The final step in constructing the Smale horseshoe for the 3 Body Problem given by the Hamiltonian
(5.16)) is to combine the dynamics in the vicinity of the disk £X at infinity (see Theorem [5.5.2)) with the
dynamics along their invariant manifolds analyzed in Theorem [5.4.3]

5.6.1 The return map

We construct a return map in a suitable section transverse to the invariant manifolds. This map is built
as a composition of the local map (close to infinity) studied in Theorem [5.5.4] (see also Figure [5.2), and
a global map (close to the invariant manifolds), which we analyze now. To build the hyperbolic set, we
will have to consider a suitable high iterate of the return map. To be more precise, we consider different
return maps associated to two different homoclinic channels (and therefore, associated to the two different
scattering maps obtained in Theorem .

To define these return maps, we consider the sections Af’ s given in , which are transverse to the
stable/unstable invariant manifolds respectively, and we call

Y1 EA;é(K):{p:a,0<q<§,t€T,z€K},

5.59
EQEA:&_CG(K):{q:a,0<p<5170“7t6T,z€K}, (5.59)

where (g, p, z,t) are the coordinates defined by Theorem K C R? is a compact set and we take

o< and a < p.

a
2
Theorem [5.5.4)) ensures that there exists C' > 0 such that the local map

\Illoc : 21 — 22

(see (5.58) is well defined.

The global maps will be defined from suitable open sets in X5 to X;. They are defined as the maps
induced by Hamiltonian expressed in the coordinates given by Proposition In fact, to
construct them, we use slightly different coordinates which are defined on suitable neighborhoods of the
homoclinic channels at 3, i.e. TV N ¥y, j = 1,2 (see )

These coordinates are constructed as follows.

1. In the coordinateﬁ (p,t,2) in Xo, Do NW* = {p = 0}. Since we are in a perturbative setting (when
© is large enough), we have that W*NXy = {p = w(¢, z)}. Moreover, [YNY,, j = 1,2, where I/ are

5Note that we have reordered the variables. The reason is that, in the section X2, the variable ¢ will play a similar role
as the variable p whereas the variable z is treated as a center variable.
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the homoclinic channels given by Theorem [5.4.5, can be parametrized as {(p,t,z) = (0,15(2), 2)}.
In particular, the functions t? satisfy

ws(t?(z)vz) =0, Opw® ( ( ) )750

Hence, the equation p = w®(¢t,z) defines in the neighborhood of each homoclinic channel two
functions @3 (p, 2), satisfying w3 (0, z) = 0, such that

p=w(tz) = t=t(2) + @5 (p,2),

in a neighborhood of IV N ¥y, j = 1,2. That is, (p, tf(z) + ;3 (p, 2), z) parametrizes W* N ¥ in a
neighborhood of IV N X,. We define two new sets of coordinates in X, defined in a neighborhood
of Fj n 22,

(p,7,2) = Aj(p.t,2) = (p,t = 1(2) — @5 (p,2),2),  j=1,2. (5.60)
In these coordinates, W* N X5 in each of the neighborhoods of IV is given by 7 = 0.

2. We proceed analogously in X;. In the coordinates (q,7,2) in X1, X1 NW* = {g =0}, W*N%, =
{q = w“(t,2)} for some function w* and the intersection of the homoclinic channels T, j = 1,2,
with ¥ are given by {(q,t, z) = (0, tjl- (2),2)} for some functions t}. In particular,

w“(tj1 (2),2) =0, dyw"(tj(z),2) # 0.

Hence, the equation ¢ = w"(t,z) can be inverted in the neighborhood of I'V N ¥y, j = 1,2, by
defining two functions w} (g, z) satisfying @} (0, 2) = 0, such that

qg=w"(t,z) = tzt;(z)+w;(q,z).

That is, (¢,t}(2) +w¥(q, 2), z) parametrizes W* N ¥} in a neighborhood of TV N %;. We define two
new sets of coordinates in ¥, defined in a neighborhood of I'V N X1,

(¢,0,2) = Bj(q,t,2) = (¢,t — tjl(z) —wj(q,2),2), j=1,2. (5.61)
In these coordinates, W* N Y in each of the neighborhoods of IV is given by o = 0.

Let Wgob,j, 7 = 1,2, be the two global maps from a neighborhood of IV N X5 in X9, which we denote
y sz, to a neighborhood of I'V N ¥, in ¥, which we denote by Ujl, defined by the flow. Choosing the
coordinates (p, 7, 2) in Uj2 and (g, 0,2) in Ujl, given by A; and Bj; respectively (see (5.60), (5.61)), we can
define B
\Ijglob,j (pa T, Z) = Bj © \Ijglob,j o Aj_l(P, T, Z)

Then, for points (p,7,2) = (0,0, z) € T¥ N ¥y, the global map ‘T/glob,j map is given by:
e Compute (0,0,%,2) = Q“(a,0,t3(2), 2) € EX, where QO is the wave map introduced in (5.56).
e Compute (0,0,7,57(z)) € EX, where S/ is the scattering map analyzed in Theorem m
e Compute (2%)71(0,0,%,57(2)) = (0,a,1,87(2)) € TV N %;.
e Finally in coordinates (g, o, z) this last point becomes (0, 0,§j(2))
e In conclusion, ‘iglob,j(0,0,z) = (0,0,§j(z))
Using this fact and the changes of coordinates in , we have that

Q ~ 4 (2)(1+ O1(p, 7))
o1 | = Vaob;(p, 7, 2) = Bjo Ugion s 0 A H(p, 7,2) = pvg(Z)(l + O1(p, 7)) | (5.62)
21 Z) + Ol (pa )
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where 17 ()13 (z) # 0. Indeed, the claim follows from the fact that

Tyton,; ({p = 0}NU?) = U giobj (W NS NU;)=W"NSiNU} ={oc=0}nU;
xpglob,j({r_O}mU) U gion (W* NS NU;) =W NS NU ={qg=0}nU;

and expanding around (0,0, z). The fact that v (z)v; ( ) # 0 follows immediately from the fact that

\Ilglob ; are diffeomorphisms. It is then immediate that o : U1 — U2 is of the form

glob 7

_ o} (2)(1 + O1(g,0))
\I}g?lcl)b,j(q’ 0, Z) A © \Ijglob 7 ° B (q7 g, Z) = qff%(z)(l + Ol ((L U)) ’ (563)
(87)71(2) + Oi(q, 0)

where ()i (=) # 0.
Now we deal with the local map. Notice that Theorem implies that, for 1 <1i,j < 2, U),.(U}) N
Uf # (). We will denote by Wigc;; = \Illoc‘\l,l—l(Ug)mU1 : Ui1 — Uj2 and its expression in coordinates

I —1
Wioc,i,j = Aj © Wioc,ij © B

Observe that the map Wi, ;; does not depend on 4 and j and the dependence of \T/loc,i’j on ¢ and j is
only through the systems of coordinates A; and B;.

The combination of the global maps along the homoclinic channels and the local map allows to define
four different maps W;; : U7 — U7 by setting ; j = Wioe,ij © Yglob,i» We will denote its expression in
coordinates as

U, ;= Vioc,i,j © Wglob,i- (5.64)
Let us specify the domains we will consider. Given ¢ € (0,a/2), let Q% C 5 be the set

Qi ={0<p<d 0<7<d, 2z€R}CU? (5.65)

where R has been introduced in (5.51). We remark that the “sides” {p = 0} and {7 = 0} of Qf are
Wu Ny and W N Xy, respectively, and the “edge” {p =7 =0} is ['* N Ts.
Let ¥ be the map defined as
U=U500 oWy, (5.66)

where M is given by (5.173)). We will denote by U its expression in the As coordinate system, that is,

=000 oWy, : 0} — 5. (5.67)
5.6.2 Symbolic dynamics: conjugation with the shift

We consider in Q3%, defined in , the set of coordinates (p, 7, p,J) given by Ay and Theorem m
The coordinates have been chosen in such a way that (7, ) variables are “expanding” by \Tl, while the
(p, J) variables are “contracting”. To formalize this idea, we introduce the classical concepts of vertical
and horizontal rectangles in our setting (see Figure as well as cone fields (see [Sma65, Mos01l, [Wig90|
KH93)).

We will say that H C Q? is a horizontal rectangle if

H={(p,7,0,J) € Q}; hi (1,¢) <p < hf(7,9), hy (1,0) < J < hi(7,9)}, (5.68)

where hif : (0,8) x (0,%) — (0,8) x (0,&), i = 1,2, are £,-Lipschitz. Analogously, V C Q3% is a vertical
rectangle if

V={(p,7,0,J) € Q3 vi (n,J) <7 <] (p.J), vy (p.J) <@ <vf(p,J)}, (5.69)

with £,-Lipschitz functions v : (0,8) x (0,&) — (0,8) x (0,%), i = 1,2.
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If H is the horizontal rectangle (5.68)), we split 0H = 0, H U 9, H as
O H = {w e Q3; (p,J) = (hy , ha)(1,9) or (p,J) = (A, h3)(7, 0)},
OuH = {w e Q% (1,9) = (0,0) or (1,¢) = (6,%)}
and, analogously, if V' is the vertical rectangle (5.69), we split OV = 9,V U 9,V as

0V ={we Q3 (p,J) = (0,0) or (p,J) = (6,&)},
0V ={we Q% (1,9) = (v ,v7)(p,J) or (7,0) = (v ,v3)(p, J)}.

Additionally, we define the stable and unstable cone fields in the following way. For w € %, we
consider in T,,0% the basis given by the coordinates (p,7,¢,J) and write z € 7,02 as z = (24, ;)
meaning r = xs,pa% + Ty + xuw% + 25,775, We define ||z,| = max{|zy |, |[Tu,|} and |z =
max{|zs pl, |zs,s|}. Then, a ks-stable cone at w € Q3 is

Snf),ns = {x € TwQ%? |z < HsHiUsH}
and a r,-unstable cone at w € Q%
St e, = {2 € TLQ3; ||zl < wullzull}- (5.70)

Having in mind [Wig90] (see also [Mos01]), we introduce the following hypotheses. Let F': 9% — R*
be a C' diffeomorphism onto its image.

H1 There exists two families {H,}nen, {Vi}nen of horizontal and vertical rectangles in Q2, with
lpl, < 1, such that H,NH, =0, V,NV,y =0, n#n', H, —» {p =0}V, = {r =0}, when n — oo,
in the sense of the Hausdorff distance, F(V,,) = H,,, homeomorphically, F~*(9,V,,) C d,H,,, n € N.
H2 There exist ky, ks, > 0 satisfying 0 < u < 1 — kyk, such that if w € U,V,,, then DF(w)Sg . C
St (w).r, Whereas if w € UpH,, then DF~'(w)S; .. C S%-1(w)x,- Moreover, denoting T =
DF(w)z and = = DF Y (w)x, if z € S¥ then

U .., then |zf| > p=taz,| whereas, if © € S5
25| > -

wW,Kg?

Finally, we introduce symbolic dynamics in our context (see [MosO1] for a complete discussion).
Consider the space of sequences ¥ = NZ, with the topology’| induced by the neighborhood basis of
s =(...,8%,85,85,...)

Ji={s€X; sp =55, |k| <j}, Jjr1 C Jj

and the shift map o : ¥ — X defined by o(s); = s;4+1. The map o is a homeomorphism.
We have the following theorem, which is a direct consequence of Theorems 2.3.3 and 2.3.5 of [Wig90].

Theorem 5.6.1. Assume that F : Q§ — R*, a C' diffeomorphism onto its image, satisfies H1 and H2.
Then there exists a subset X C Q% and a homeomorphism h : X — % such that h o F|X =ocoh.

Remark 5.6.2. Hypothesis H2 implies that the set X given by Theorem|[5.6.1| is hyperbolic.
Theorem 5.6.3. If k and 6 are small enough, T satisfies H1 and H2.

Theorem [5.6.3] is an immediate consequence of the following two propositions. Proposition [5.6.4
implies that ¥ indeed satisfies H1 and Proposition implies that ¥ satisfies H2.

5This topology can be also defined by the distance d(s,7) = > .z 4=1k1§(sy, r) where 6(n,m) = 1 if n = m and
d(n,m) =0 if n # m.
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Proposition 5.6.4. If § is small enough, \T/(Qg) N Q2 has an infinite number of connected components.
More concretely, there exists 0 < 11 < 1o < d such that the set

Hey oy ={(p,70,J) € Q3 | 1 S 7 <72}
satisfies the following. There exists { Hy }nen, a family of horizontal rectangles,
Hy ={(p,7:¢,7) € Q5 | 1 (10) <p S i (7,0), g (mp) < T < b (7,0)},
with Hy, N Hy = 0, if n # n’, such that Ry s hfn — 0 uniformly when n — oo, and

sup Lip hy,,,sup Lip b3, < O(k) + O(6),

2,n ~

with W(Hr, +,) N Q% = UpenH,.
The analogous claim holds for vertical rectangles and \Tl_l, that is, there exist 0 < p1 < pa < § such
that the set
Vphpz = {(vavcpv J) € Q? | p1<p SPQ}

satisfies the following. There exists {Vy, tnen, a family of vertical rectangles,
Vo ={lp,7.0.0) € Q5 | vy, (0, ) <7 <, (p,]), vy, (p,J) < 0 <03, (p,J])},

with Vo, N Vi =0, if n # ', such that vy, vi’:n — 0 uniformly when n — oo, and

sup Lip v, ,,, sup Lip v;n < 0(1),
n n

with U= (Vp, 1,) N Q2 = UnenVi.
In particular, ¥ satisfies H1.

The proof of this proposition is placed in Section [5.12.2
Proposition 5.6.5. U satisfies H2 with k, = O(6) + O(i), ks = O(1) and p = O(R).

The proof of this proposition is placed in Section [5.12.4}

Propositions |5.6.4] and imply that the map W satisfies hypotheses H1 and H2. Therefore, one
can apply Theorem [5.6.1] to ¥ to obtain that ¥ has a a hyperbolic invariant set whose dynamics is
conjugated to the shift of infinite symbols.

To complete the proof of Theorem we need to “undo” the symplectic reduction by rotations (see
(6.11))). This adds one degree of freedom to the system: now one has to take into account © (which is a
first integral) and its conjugate variable o € T. Since « is a cyclic variable, its dynamics is just a rotation
determined by the other variables.

Then, one can consider as Poincaré section II just the section Y5 introduced in expressed in the
original coordinates, and the invariant set given by Theorem [5.6.3|becomes a set X which is homeomorphic
to NZ x T. Note that in Theorem we are fixing the center of mass at the origin and therefore we do
not need to pay attention to the reduction by translation; indeed, the variables used for Theorem [5.6.3
are based on Jacobi coordinates which also reduce by translations.

Theorem [5.1.3]is also a direct consequence of Theorem [5.6.3] Indeed, note that, the symbols in N keep
track of the closeness of the corresponding strip of each point in X to the invariant manifolds of infinity.
That is, the larger the symbol, the closer the strip is to the invariant manifolds. This implies that these
points get closer to infinity. For this reason, by construction, if one considers a bounded sequence in
3, the corresponding orbit in X’ is bounded. If one considers a sequence {wg }xez which is unbounded
both as k — 400, the corresponding orbit belongs to OS~NOS™T. Indeed, the orbit keeps visiting for all
forward and backward times a fixed neighborhood of the homoclinic channel (which is “uniformly far”
from infinity) but at the same time keeps getting closer and closer to infinity because the sequence is
unbounded. By considering sequences which are bounded at one side and unbounded at the other, one
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can construct trajectories which belong to B~NOST and OS™NB™. The trajectories which are (in the
future or in the past) parabolic-elliptic or hyperbolic-elliptic do not belong to X but they can be built
analogously. Indeed, as is done by Moser [Mos01], one can consider sequences of the form

W= (0., W_1,W0, W1,y , WA—1,00).

That is, points whose M — 1 forward iterates come back to the section ¥ and then the trajectory goes to
infinity. By the construction of the horizontal strips, one can built orbits which have these behavior since
the strips get streched and therefore its image hit the invariant manifolds of infinity (which correspond
to the motions PF,) and hit points “at the other side” of the invariant manifolds, which correspond to
hyperbolic motions HE, (see Figure . The same can be achieved for the inverse return map U~! and
the vertical strips. For this reason one can combine future/past PFEs; and HFE> with any other types of
motion.

5.7 Proof of Theorem [5.4.3: Parameterization of the invariant
manifolds of infinity

Theorem gives an asymptotic formula for the distance between the unstable manifold of the periodic
orbit P, ¢, and the stable manifold of the periodic orbit P, sy ¢,+s¢- In this section we carry out the
first step of its proof. We consider suitable graph parameterizations of the invariant manifolds and we
analyze their analytic extensions to certain complex domains. Later, in Section [5.8] we use these analytic
extensions to obtain asymptotic formulas for the difference between the parameterizations for real values
of the parameters.

This section is structured as follows. First, in Section [5.7.1] we consider symplectic coordinates which
are adapted to have graph paramerizations of the invariant manifolds, which are constructed in Section
Then, in Section [5.7.3| we analyze the analytic extension of this graph paramerizations to certain
complex domains. Such analysis is performed in Section by means of a fixed point argument in
suitable Banach spaces of formal Fourier series. These graphs paramerizations are singular at a certain
point (where the invariant manifolds cease to be graphs). To overcome this problem, in Section we
consider a different type of parameterizations.

5.7.1 An adapted system of coordinates

To study W*(P,, ¢,) and W*(Py, 15n.¢046¢) With [dn], 0] < 1, we perform a change of variables to the
coordinates introduced in (5.15). This transformation

(F’ g? A’ L7 n)f) % (u7 Y)’y? A7 a’ ﬁ)

relies on the parameterization of the unperturbed separatrix associated to the periodic orbit P, ¢, given
by Lemma [5.4.1] and is defined as

o B Y A — (o +@)(§o + B) + Moo
= G2 (u), 10 . S —
r oTh(u) Yy Gy G%yh(u) G(Q)yh(u) (Th(u))?
A =7+ on(u), L=Lo+A o
n = eith(u)(no + ), €= e ion(u) (¢0 + B)
where
Go = 0O — Lo + 1n0&o- (5-72)

This change of coordinates is consistent with the particular form of the parameterization of the perturbed
invariant manifolds given in ([5.30]). Indeed, we look for parameterizations of the unstable manifold of the
periodic orbit P, ¢, and the stable manifold of the periodic orbit P, sy ¢,+5¢ as graphs in (u, ) as

(u7’7) H (Y’A7a7ﬂ) = Z*(Uﬁfy)a * = u7 S.
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It can be easily checked, using Lemma that the change of coordinates is symplectic in the
sense that the pull back of the canonical symplectic form is just w = du AdY + dy A dA +ida AdS. This
fact will be strongly used later in Section [5.8.5 B
To analyze the dynamics it is enough to express the Hamiltonian /C in terms of the new variables.
We also scale time as
t=Gis (5.73)

to have parabolic motion of speed one coupled with a fast rotation. Then, the Hamiltonian becomes

_ Giv Go (- Y A — (1o + ) (& + B) + noko \
Pt desd) = g+ 5 (0 gt G )
n (O —Lo—A+(m+a)é+h8)” G (5.74)
QGO;“\}] (u)2 7/“\11 (u)

+ GEW (v + dn(u), Lo + A, (g + @), =) (& + B), T (w)) -

Observe that we do not write the dependence of P on the parameters Lg, 19, &g, nor on Gy. In a natural
way we can write P = Po(u, Y, 7, A, o, B) + P1(u, v, A, «, 8) where, using (5.72)),

G3v Go (. Y A~ (o +a)(éo + B) +mo&o\”
T e
Pow o)== o ar t 2 MY Gm T T Gamwnw)?
i (©—Lo—A+ (170 +a)(&+08)? AGO (5.75)
2GoTh(u)? Th(u)
B Giv v A
=— m + Qo(u, Y, A — (no + a)(&o + B) + noéo)
where, taking into account 7 Qo can be written as
_Go (- Y q * (Go—q?® Gy
Qi) =G (M) + g+ Grmmar) * TAtE A 516
B y2 q2 ’
=Y + Wﬁ(u) + fi(w)Yq+ f2(u)5
with 1 5
N A O N R ST O AT o
and
Pu(u 7 A B) = GEW (7 + o), Lo+ A, e (g + @), e (& + B), Gim(w)) . (5.78)

The periodic orbits at infinity P, ¢, and Pp4sn,¢0+5¢ are now given by
Py o ={(w,Y,7, A, a, B) = (£00,0,7,0,0,0),v € T}
Pﬂo+5n7§o+5£ :{(ua Yv Y5 Av «, B) = (:l:OO, Oa s 07 5775 5§)a v e T}

The equations for the integrable system, which corresponds to P; = 0, are

. Y
U=0yPy=0yQo =1+ 5— + fi(u)gq

Goy;
- h(wyY?* N
Y = — = — = 0 Y =
. Gy G
Y =0pAPo = m + anO = m + fl(u)y + f2(u)q

A=—0,Py=—-0,Q0 =0
& = —i0gPy = 100,Q0 = i (f1(w)Y + fa(u)q)

B =1i0,Po = —i0,Q0 = —iB (f1(w)Y + fa(u)q)
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where ¢ = A — (no + ) (& + B) + mo&o and f1 and fo are given in (5.77).
This system has a 2-dimensional homoclinic manifold to the periodic orbit P, ¢, given by

{uh=u, =0, =7 AL=0,a,=0, 8h=0,ucR,yeT} (5.79)
whose dynamics is given by
) . . G3v
(iL7Y7ﬂ/7Aad7ﬂ) = <1a0a 370a070> .
Ly
(recall that we have scaled time as (5.73))).

5.7.2 Graph parameterizations of the perturbed invariant manifolds

We look for parameterizations of W*(Py, ¢,) and W*(Py,4sy,¢0+6¢) as perturbations of the same homo-

clinic manifold (5.79) as
(u,y) = (YA, 8) = Z"(u,y)  where  Z%(u,v) =

Note that in the unperturbed case, Z = 0 is a manifold homoclinic to P, ¢,-
The graph parameterizations (5.80) are not defined in a neighborhood of u = 0 since the symplectic
transformation (5.71)) is not well defined at « = 0. For this reason, we shall use different parameterizations

depending on the domain.
i/3 /
4 i(1/3— nGY) ,

pr > b

Figure 5.9: The domains D}, ; and D} ; defined in (5.81)).

First in Sections and we obtain graph parameterizations (5.80) in the domains D,’; x T,
where

nE = {u € C;|Imu| < tan 1Rewu + 1/3 — Gy 3, |[Tmu| > — tan BoReu + 1/6—6}
Dy s = {ueC;—uce Df;,é},

which do not contain u = 0 (see Figure [5.9). These are the same domains that were used in [GMSI6].
However, the intersection domain Dy 5 N Dy 5 has empty intersection for real values of u and therefore,

to compare both manifolds one needs to extend the stable manifold to a domain which overlaps with
Dy s NR. This is done in Section

(5.81)

5.7.3 The invariance equation for the graph parameterizations

The graph parameterizations introduced in (5.80)) satisfy the invariance equation
-0, P

@202 (P )z = | Z57 | w2t (582
10, P
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Using vector notation Z = Z(x) is invariant if
DZ(2)X, (%, Z(z)) = Xz(z, Z(z)) (5.83)

where X, = (9yP,0sP) " and Xz = (=0, P, —0,P, —idsP,i0sP) .
Observe that X = X% 4+ X! where X* are the Hamiltonian vector fields associated to P;. Of course,
when P; = 0, Z = 0 satisfies the invariance equation (5.82)). In fact,

T G\ "
X2(0,0) = @rPo, o) (0) = (1058 )
0
X9 (2,0) = (—8yPo, —8,Po, —idgPo, i0aPo) " (x,0) = 0.
Proposition 5.7.1. The invariance equation (5.82)) can be rewritten as
LZ =AZ + F(Z) with F(Z)=—-G1(Z)0uZ — G2(2)0,Z + Q(Z) (5.84)
where
e L is the operator
G3
L(Z) = 0,7 + VL—S?aYZ. (5.85)

o The functions G and Go are defined as
Y

Gi(u,7, Y, A, a, B) :m + fi(u)q 556)
Ga(1,7,Y A 0, 0) = ¢ LOGE”A)S - ngg” + ALY + fo(w)g + 4P (u, 7, A, o, B)
where ¢ = A — ngf — o — af
o The matriz A is
A(u) = < A?u) B?u) ) (5.87)

with
_ o fne  fa(w)no _ oo~ )
Alw) = Z( “hmg —hu) ) o Blu)=if(u) ( e ko (5.88)
where f1 and fo are defined in ,
e The function Q is

U , , 2 op
Ql(u777KAaa7ﬁ) = GZ(J)%\%U(/L)YQ - fl(u)Yq - fZ(U)% - T;(ua’Y?A7aaﬁ)
0
QQ(U,")/,Y,A,OC,ﬂ) = - 87’))/1 (U,")/,A,Oé,ﬁ) (589)

Q3(u7 e Ya Aa «, 6) =i [fl(U)Y + fQ(U) (A - 277018 - O(§0 - O[,B)] - 28/57)1(’&, e A7 62} B)
Q4<u’77 KAa Oé,ﬁ) = - Zﬁ [fl(u)y + f2(u) (A - 7705 - 204§0 - 04,6)] + Z-aapl(u”y, A7a76)'
The proof of this proposition is done in Appendix [5.A]

To solve the invariance equation, we first integrate the linear system £Z = A(u)Z, which, writing
Z = (Zyn, Zap), reads

LZyp =0

5.90
LZypg = Alu)Zyn + B(u)Zugs (5.90)

where A(u) and B(u) are given in (5.88). The proof of the following lemma is straighforward.

166



Lemma 5.7.2. A fundamental matriz of the linear system (5.90)) is

1 0 0 0
0 1 0 0
)y = . . N , —" 5.91
alw) nogi(u)  mogs(u) 1 —mnologs(u)  —nigs(u) s (5.91)

—&og1(u)  —&ogs (u) €595 (u) 1+ noogs ()

where gi(u) = if1(u) and (g3) (u) = ifa(u), * = u,s. In particular we can choose the functions g
satisfying that limge y— 400 95 (1) = 0 and limge y——oo g4 (u) = 0.

We define two different inverse operators of L,

0

G“(h)(u,v) = / h(u+ s,y +vGiLy?s)ds

o (5.92)
G (1)) = [ hlut sy +vGELG )

+oo

We use them to prove the existence of the stable and unstable invariant manifolds. Here we only deal
with the stable manifold of P, sy.¢,+5 and we take G = G°® and ®4 = ®% (the unstable manifold of
P,, ¢, is obtained analogously from the particular case on = 6§ = 0).

We use this operator and the fundamental matrix ® 4 to derive an integral equation equivalent to the

invariance equation .
Lemma 5.7.3. The parameterization Z° of W*(Py,15n.e0+5:) 15 a fized point of the operator

F(Z) = P62+ ©4G (2,'F(Z)) = ®adz+ Gao F(Z) (5.93)
where 6z = (0,0,0n,6¢) T and

G(h1)

G(h2)
G(h3) +m0G (f1G(h1)) +m0G (f2G(h2)) — n0G (f2G (§ohs + noha))
G(ha) — G (f1G(h1)) — &G (f2G(h2)) + £0G (f2G (&ohs + noha)) -

Ga(h) = (5.94)

Proof. Using the fundamental matrix ® 4(u) and the variation of constants formula give the first equality
in (5.93). We point out that lim,_, 4o ®4(u)éz = dz. For the second one we write ®4G (®'F(Z)) in
components as

G(F1(Zy))
G(F2(Zy))
G(F3(Z1)) +10g1G(F1(Z1)) 4+ 10928 (F2(Z1))

+10G (=91 F1(Z1) — 92F2(Z1) + 092 F5(Z1) + nogaFa(Z1))
—1092G (§0F3(Z1) + noFu(Z1))
G(Fu(Z1)) = §091G(F1(Z1)) — €092G(F2(Z1))

—0G (—91 F1(Z1) — 92F2(Z1) — &092F3(Z1) — nog2Fa(Z1))
+£092G (S0 F3(Z1) +noFa(Z1))

®aG (D4 F(21))

Then, it only suffices to note that the terms of the form ¢;G(F;) — G(g;F;) can be rewritten as
9:9(F;) = G(9:F}) = G(9u9:9(F;)) = G(fiG(F;))-

Indeed, it is enough to apply the operator £ to both sides. O
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5.7.4 A fixed point of the operator F

To obtain a fixed point of the operator F in (5.93), for (u,7) € D; ; x T, we introduce the functional set-

ting we work with. We consider functions of the form Z = (Y, L, a, 3) . Take h any of these components
and define its Fourier series
— Z Rl () ety

qEZ

Denote by f any of the Fourier coefficients, which are only functions of u, and take p > 0. We consider
the following norm, which captures the behavior as Reu — oo and also the behavior “close” to the
singularities of the unperturbed homoclinic (see Lemma ,

(+=5) (vr5) s
Now, for a fixed o > 0, we define the norm for h as

llgm = Y 1A [,m,q€! 7
keZ

Ifllnmg=— sup  Ju"f(u)]+  sup
Dzﬁéﬂ{RcuZp} DZ,JQ{RCUSP}

We denote the corresponding Banach space by Yy .. Note that such norms do not define necessarily
functions in Dy, 5xTo. Indeed, the Fourier series may be divergent for complex u due to the term e~*4%» (%)

which grows exponentially as |q| — co. Still, since |e=%®s(#)| = 1 for real values of u, the Fourier series
define actual functions for real values of u.

To prove the existence of the invariant manifolds, we need to keep control of the first derivatives for
sequences of Fourier coefficients h € ), ,,,. The derivatives of sequences are defined in the natural way

Ouh(u,7) ZB pldl (w)ete, Oyh(u,y) = Z(M)h[‘ﬂ (u)e', (5.95)
q€EL qEZ

Then, we also consider the norm

uhﬂn,m = ”h”nm + Hauh||n+1,m+1 + G8‘|8’yh‘|n+l,m+1

and denote by X, ,, the associated Banach space. Since each component of Z = (Y, L, a, 8) has different
behavior, we define the weighted norms

—idn

1Zlnmevee = 1Y lntmrs + Al + e

, (5.96)
LZ I m.vee =1 ZlIn,m,vec + 10uZllnt1,m+1,vec + G305 Z [lnt1,m+1,vec-

We denote by Vi m,vec and X, p, vec the associated Banach spaces.

Since the Banach space X, ., vec is a space of formal Fourier series, the terms 0,P:(u,v,Z), z =
u,y, A, a, 8, which appear in Proposition for Z = (Y, o, A, B) € Xy vec are understood formally by
the formal Taylor expansio

0 f—iq

a@ 8273 7 7 —i1—1
0.P1(u, v, Z Z ZZ“,ZZ A j,)f, (u,7,0,0,0)a" g2 A==t (5.97)

Pl 0 —i1 —ip)! O adiz BOr—i1—i2 A
£>0 " i1=0143=0 1= )] p

where z = u, v, A, o, 8. In Lemmal5.7.7 below we give conditions on Z which make this formal composition
meaningful.
Finally, we define B
Z =790z where 0z = (0,0,(577,55)T

and introduce the operator o _
F(Z)=F(Z +0z) — 6z (5.98)

where F is defined in (5.93). It is clear that Z is a fixed point of F if and only if Z is a fixed point of F.

"Note that the function P; in (5.84) does not depend on Y
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Theorem 5.7.4. Let 5z = (0,0,6n,0¢)" and denote by B, the ball of radius p in Xi/31/2.vec- There
exists by > 0 such that if Go > 1, |on],16¢] < Gy® and

Ino|GY? <« 1, (5.99)

then, the operator F defined in (5.98) has the following properties.

1' f : BbOGJ?’ In Go - BboGJS In Gy’
2. It is Lipschitz in BbOGO_S InG, With Lipschitz constant Lip (]T') < G53/2 In? Gy.

Therefore, F has a fized point AR Bb0G531nG0' Denoting by Z° = 6z + Z% and by F the operator
(5.93) we have that Z° — F(0) € By ma, end

I-LZS - ‘F(O)J_Il/?),l/Q,vec ,S G0—9/2 1113 Go.

Moreover, As satisfies
[A* 131 S Gag/z- (5.100)

Next proposition gives estimates for the derivatives of the invariant manifolds parameterizations for
real values of (u,7).

Proposition 5.7.5. The parameterization Z° = 8z + Z* obtained in Theorem m can be extended

analytically to the domain
1

ue DR,y € Tlol < 5, 6ol < 5. (5.101)
Moreover, in this domain the function Z° = (Y*, A%, o°, §°) satisfies that
Y*|<Go® NI <OGRS, |of| <GP° |8° < CGg?
and, for N > 0, its derivatives satisfy
IDN(2° - F(0))| < C(N)Gy", (5.102)

where DN denotes the differential of order N with respect to the variables (u,v,m0,&) and C(N) is a
constant which may depend on N but independent of Gj.

Note that the condition is not required in Proposition Indeed this condition is needed to
extend the Fourier coefficients of Z* into points of Dy, ; wich are G, °-close to the singularities u = +i/3.
The extension to the disk |ng| < %7 |€o] < % is needed to apply Cauchy estimates to obtain ,
which is needed (jointly with the analogous estimate for the parameterization of the unstable manifold)
to obtain the estimates for the difference between the invariant manifolds given in (5.40)).

We devote the rest of this section to proof Theorem [5.7.4] First in Section [5.7.4] we state several
lemmas which give properties of the norms and the functional setting. Then, in Section[5.7.4] we give the
fix point argument which proves Theorem [5.7.4] Finally, in Section we explain how to adapt the
proof of Theorem to prove Proposition [5.7.5

Technical lemmas

We devote this section to state several lemmas which are needed to prove Theorem [5.7.4] The first one,
whose prove is straighforward, gives properties of the Banach spaces Y, p,.

Lemma 5.7.6. The spaces YV, m satisfy the following properties:
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o Ifh € Yum and g € Yy s, then the formal product of Fourier series hg defined as usual by

(hg)!(w) = > hHg"]

keZ
satisfies that hg € Ynin' mem’ and ||Rg|lntn mams < ||Bllnmllglln ms-
o Ifh € Vum, then h € Yp_pm withn >0 and ||h||p—ym < K||h]nm-
o Ifh € Vi, then h € Yy iy with n >0 and ||h|nmin < K| B|7n,m-

o Ifh € Vum, then h € Yoy withn >0 and ||h]nm—y < KG"||R|

n,m-

We are going to find a fixed point of the operator (5.93) in a suitable space X, m vec Of formal Fourier
series. The previous lemma ensures that &), ,, vec is an algebra with respect to the usual product, but we
need to ensure that the composition ([5.97) is also well defined.

Lemma 5.7.7. Consider Z € X /3 vec Satisfying || Z]]1,1/2,vec < G(;S/Q- Then, the formal compositions
6,2731 (ua Vs Z(ua 7))7 Z=U,"7, Aa Q, /6; deﬁned in " Sa’tisfy

(aupl('v %y Z)va’ypl('v %y Z)aaﬁpl(v Yy Z)vaapl('v %y Z)) S X2,3/2,vec

and
||(6u7)1(7 ) Z),ay'Pl(', K Z)vaﬁpl('v K Z)vaapl('a ) Z))||273/27vec 5 G63'
Moreover, if one defines
API(Z7 Z/) :(8upl(a ) Z)a 877)1('7 ) Z)7aﬂ7)1(7 %y Z)78a731('a B Z))
- (aupl('z Y Z/), 8VP1(H Yy Zl)v aﬂpl(" K Z/)760t7)1<'7 5 Z/))7
then, for Z, 2" € Xy 12 vecs

HAP]-(Z’ Z/)||3,2,vec S Ga?)”Z - Z/||171/2,vec-

~

The proof of this lemma is a straighforward computation.

We also need a precise knowledge of the behavior of the paramerization of the unperturbed homoclinic
introduced in Lemma [5.4.1]as u — +00 and close to its complex singularities. They are given in the next
two lemmas.

Lemma 5.7.8. The homoclinic (5.24) with initial conditions (5.29)) behaves as follows:
o As |u| = +oo,

Fa(u) ~u??, Gu(u) ~ w3 and  ¢n(u) — 7 ~u"? (mod 2r).

o Asu— £i/3,

N 1/2 L\ —1/2 i\ /2
~ 1 ~ } ion (u U+ 3
m(u) ~[uF < , gh(u)~ (uF < , eion(u) 13 )
3 3 u— %

3

The proof of this lemma is given in [GMS16]. From Lemma one can derive properties for the
functions f; and fo introduced in (5.77)).

Lemma 5.7.9. The functions f1 and fo introduced in (5.77) satisfy f1 € Xoz0 and fo € Xyy31/2.
Moreover,

Lfillzyso SGo1 and ([ fallaszaje S Gyt
Finally we give properties of the operators introduced in ([5.92)) and ([5.94).
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Lemma 5.7.10. The operator G = G° in (5.92)), when considered acting on the spaces Xy pm and Vi m
has the following properties.

1. Foranyn>1and m>1,G: Vnm — Vn—1,m—1 5 well defined and linear continuous. Moreover

LoG =1d.
2. If h € Yim for somen >1 andm > 1, G(h) € Yp_1,m—1 and
1G (B) [ln—1.m-1 S [|Rlln,m-
3. If h € Yy1 for somen >1, G(h) € V10 and
G (B) [ln-1,0 S I Gollhlln,1
4. If h € Yy m for some n > 1 and m > 1 satisfies (h)y =0, G(h) € Vp,m and

1G (0) llnm S Go 1R

5. If h € Ynm for somen >1 and m > 1, 0,G(h),0,G(h) € YVi.m and

10uG (B) llnm S [|Plln,m
105G (B) llnm < Gg > 1 llin,m-

6. From the previous statements, one can conclude that if h € Yy, m, for somen > 1 and m > 1, then

Q(h) S anl,mfl and

”_g(h)ﬂn—l,m—l S ||h||n,m if m>1
”_g(h)ﬂnfl,mfl S ll’lG()Hth,m ifm=1.
Additionally,
(7) if h € Ypm form >1, m > 3/2 then

e G (¥ W) lln-1m-1 S IBllnm,

(8) if h € Yy 32 for n > 1, then

€= G (e " h) [ n—1,1/2 S I Gollh|n3/2-

Claims 1 to 6 in this lemma are proved for m > 1 in [GMSI6]. The case m = 1 can be proven
analogously. Claims 7 and 8 can be deduced analogously taking into account the expression of e¥i¥r
given in Lemma [5.7.§|

From this result we can deduce the following lemma, which is a direct consequence of Lemmas [5.7.9

and B.7.100

Lemma 5.7.11. Consider h € YVp m.vec for n > 1 and m > 3/2. Then, the operator G4 introduced in

(5.94)) satisfies the following:
d Ifm > 3/2; gA (h) S anl,mfl,vec and |_|_gA (h)ﬂnfl,mfl,vec 5 Hh”n,m,vecy
L4 Ifm = 3/2; gA (h) S Xn—l,l/Q,vcc and |_|_gA (h)JJn—l,l/Q,vcc 5 In GOHth,B/Q,vcc-

171



The fixed point argument: Proof of Theorem

To prove the existence of a fixed point of the operator F defined in , we start by analyzing F (0) =
(P4 —1Id)dz + Ga o F(dz) (see and ([5.94)) where 6z = (0,0,6,,6) .

Since F has several terms, we split F(Z) = —G1(2)0,Z — G2(2)0,Z + Q(Z) (see (5.84))) as F' =
F' 4+ F? + F3 where

FYZ)=~Gi(2)0,Z — Go(2)0, Z (5.103)
Y2 — fl(w)Yq - fo(w)%

F2(z)=| 0 (5.104)
ia (fi(w)Y + fa(u)A = 2f2(u)noB — fa(u)abo — f2(u)a)

=i (fr(w)Y + fa(u)A = fa(u)noB — 2f2(u)ago — fa(u)op)
_8uP1 (U, v, Av «, ﬁ)
—0yP1(u,v, A, a, B)

_2657)1 (U, v, Aa «, ﬂ)
Z.aapl (ua Vs A7 , B)

and ¢ = A —nof — §oa — afb.
First we notice that F1(dz) = 0. Denoting by |§z| = |dn| + |6¢] it is straightforward to check, using

Lemma that

(5.105)

[|F%(32) ||4/3 12 S LEe

On the other hand, by the bounds of P; in Lemma 1| (see the estimates (5.273))) and the estimates
for 7, and g, in Lemma one has that F2(62) € yz,g/z,VeC and

-3

’|F3(6z)|‘2,3/2,vec S Gy

Then, applying Lemma [5.7.11| one obtains ]?(0) € X1/3,1/2,vec and that there exists by > 0 such that

~ by . _ bo .
LF ()11 /3.1 /2,vee < ZO(GO 24162 +1022)Gyt In Gy < 50G031n Go. (5.106)
where we have used that
(@4 —1d)0z]ly /5.1 2 vee S Go '10%]

and the hypothesis |0z| < Gy,

Next step is to prove that F is contractive in the ball B(bOGJ3 InGo) C A/3,1/2,vec- For that we
compute separately the Lipschitz constant of each of the terms Fi(Z) for i = 1,2, 3.

Notation 5.7.12. In the statements of the forthcoming lemmas, given an element Ze X1/3,1/2 we write
Z=27+56z.

We also assume without mentioning that |dn|, |6¢] < Gg® and n0G§/2 < 1.

Lemma 5.7.13. Consider Z,7' € X, 3 1 2.vec With [LZle/g 1/2,vecs [LZJJI/;), 12vee S Go 3InGy. Then,
the functions G1 and Gy introduced in 6) satisfy that

1G1(2)ll2/3,1/2, 191(Z") 23,172 S Go* InGo
||g2(Z)H1/3,1/2»||g2( )||1/3 1/2<1nG0

and

1G1(Z) = G1(Z)|ayz1/2 S Go 'L Z — Z' 113,12 vee
1G2(Z) = Go(Z) 1 j31/2 S GILZ — Z' 11 /3.1 /2 vee-
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This lemma is a direct consequence of the definition of G; and Gy in (5.86) and Lemmas and
We use this lemma to compute the Lipschitz constant of F'1.

Lemma 5.7.14. Consider Z,Z’ € X1/3,1/2,vec With u2ﬂ1/371/27vec, [LZ’le/gyl/g)veC < bOGO_?’lnGO. Then,
the function F' introduced in (5.103) satisfies
HFl(Z)”s/S,z,vec 5 G 1112 Go

||F1(Z> - Fl(Z/)”B/S,Q,veC 5 G In GOLLZ - ZlJJl/B,l/Q,vec-

Proof. The first part plainly follows from the definition of F'! and the estimates in Lemma [5.7.13] We
now obtain the result for the difference. The second component can be written as

Fy(2) = F3(Z") = (0uA = 0,0") G1(Z) + 8.0 (G1(Z) — G1(Z'))
(05 — 0,N) Go(Z) + 0, N (Go(Z) — Go(Z1)) .

Then, the estimate for the second component is a consequence of Lemmas[5.7.6|and [5.7.13|and the fact that
UZJJI/&I/Q’VGC, [LZ J1/3,1/2,vec < boGy 31n Gy. The other components can be estimated analogously. O

Lemma 5.7.15. Consider Z,Z’ € X1/3,1/2,vec With [LZMl/g,l/g,vec, Uzlﬂl/&l/gwec < boGo_Bln Gyo. Then,
the function F? introduced in (5.104) satisfies

|‘F2(Z)||4/3,2,vec 5 G 1112 C:O
||F2(Z) - FQ(Z/)||4/3,2,Vec S G 41HG0|_|_Z - Z/JJl/3,1/2,vec-

Proof. We recall that F'? was defined in (5.104). For the first component F? we obtain
IE2Z) 0 < Go (I 1372+ ¥ lsassalallonse + lals2) < Go ™ Go,
where we have used that [|ql[o,1/2 S ([02] + ||Z||071/2) < G5?InGp. On the other hand, for the difference

|F2(z) - F2(2) <G InGollZ — Z'11 /3,1 /2,vec-

H7/33

Similar computations lead to the following estimate for the third component

|75 (2 ||4/32 S G 'InGo
and to the bound for the difference
||F32( F3 Z, ||4/32 < Gy 41I1GO”Z A ||1/3 1/2,vec:
Proceeding analogously one obtains the same estimate for FZ. Since Fs = 0, the claim follows. O

Lemma 5.7.16. Consider Z,Z' € X1/3,1/2,vec With |_|_ZJ_|1/371/27V6C, [LZ’le/g,l/g,vec < boGy?InGy. Then,
the function F3 introduced in (5.105) satisfies

IF3(2) = F?(0)l2.2vec S Go°In® Gy
IF3(2) = F(Z)|22ee S Go®lZ = Z' J1/3,1/2vec-
Proof. To prove the first statement, one can write
F3(Z) — F3(0) = (F3(6z + Z) — F3(02)) + (F*(62) — F3(0))

For the first term in the right hand side, it is enough to apply Lemma To estimate the second
term, one can use the mean value theorem and the estimates for the derivatives of P; given in Lemma
5.B.1| (and Cauchy estimates). The second statement in Lemma [5.7.16|is a direct consequence of Lemma

O
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Now we are ready to prove Theorem [5.7.4]

Proof of Theorem[5.7.4 Lemmas [5.7.14] [5.7.15] and [5.7.16] imply that
IE(Z) = F(Z)|lass2ec S Gy *WGollZ = Z'||1 /3,12, vec-

for Z,7' € B(boGy?) C X1/3,1/2,vec. Therefore, applying Lemma |5.7.11} one has
U]?(Z) — -/%(Z/)J_ll/?),l,vec < GyPln® GOUZ - Z’ﬂl/s,l/z,vem (5.107)

which implies
LF(Z) = F(Z) 1 js1/2vee S Go /2 ° GollZ — 71173172, vee-

Thus, for Gy large enough, F is contractive from B(bOGgg InGo) C AY/3,1/2,vec to itself with Lipschitz

constant of size Lip < Ga?’/Q In? Gy and it has a unique fixed point Z*. Denote now by Z% = 6z + zs.
By definition of the operator F we have that

Z° = F(0) = Ga(F(Z2°) = F(0)) = GaF1(Z2°) + GaFa(Z°) + Ga(F3(2°) — F35(0))

so it follows from Lemmas [5.7.14] [5.7.15| and [5.7.16] that Z* — F(0) € Xi/31/2.vec C V1/3,1/2,vec and

125 = F(0) |l /3.1 /2.vee SGo > Go||F(Z°) = F(0)[|1/3.1.vec
SGYPIGAF(Z°) + GaFa(Z°) + Ga(F3(Z°) — F3(0)) 1 /3.1 vec
<SGI(Gy %2 Go + Gy In? Go + G 8 In® Go) < Gy ”* In® G

Now it only remains to obtain the improved estimates for As. Since it is a fixed point of F ,
R = F(0) + (B(2) - B(0) .
For the second term, we use to obtain
[ F2(Z°) — fz(o)ﬂ1/3,1 <GPl GOUZSJJ1/3,1/2 < Gy %1 Gy.

Using (5.93), we write the first term as F2(0) = G(F2(62)) where Fy(6z) = —04P1(u,7,0,0m, ). Since
(F»(62)), = 0 and satisfies ||F2(62)[|2,3/2 < Gy (see Lemma [5.B.1), one can apply item 4 of Lemma
E7.10 one obtains

172011 S G * 1 P20 /2 S Go ™ 1 Fa(02)lly 372 < Gy ™™

~

Proof of Proposition [5.7.5

The proof of Theorem [5.7.4] can be carried out in the same way in the smaller domain
D" = {u € C;|Imu| < —tan f1Rev + 1/4, Imwu| > tan SaReu + 1/6 — 6}

where all the points are at a uniform distance from the singularities u = +i/3. In this case the perturbing
potential P; can be easily estimated of order GE?’ with the norm with m = 0 for any (n0,&p)
satisfying |no|, |€o| < 1/2. That is, without imposing condition . Note that now the weight at the
singularities u = £i/3, measured by m, is harmless since the points D are O(1)-far from them.

This gives the estimates for the invariant manifolds. One can obtain the improved estimate for A and
the estimate of the Lipschitz constant as has been done in the proof of Theorem [5.7.4] To obtain the
estimates for the derivatives it is enough to apply Cauchy estimates. Note that in all the variables one
can apply these estimates in disks of radius independent of Gy.
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5.7.5 Extension of the parametrization of the unstable manifold by the flow

Theorem 4] gives a graph parameterization Z° of the form of W#(Pyy+on,e0+5¢) as a formal
Fourier series Wlth analytic Fourier coefficients defined in the domaln Dy s x T.

To compute the difference betweent the stable and unstable mamfold it is necessary to have the
parameterizations of both manifolds defined in a common (real) domain. However, since g, (0) = 0, it
is not possible to extend these parameterizations to a common domain containing a real interval (see
(5.71)). Therefore, to compare them, we extend the stable manifold using a different parametrization.
We proceed analogously as in [GMST6].

Given the paramerization Z°(u,vy) = (u, Y (u,7),7v, A(u,7), a(u,7), B(u,~)), the first step is to look
for a change of variables of the form

Td+g: (0,6) = (1,7) = (v +91(0,€), € + ga(v,)), (5.108)

such that Z° = Z% o (Id + g) satisfies the invariance equation

3
Py (2°(v,§)) = 2° <v+t£+ LG; > (5.109)

where @, is the flow associated to the Hamiltonian system (5.74). Note that the composition is understood
as formal composition of formal Fourier series

o (d+9)(0.€) = Ao+ (0,0, + 92(0.6) = 3 S ()T "0 k(0. T (0. g3 (0.
m=0 " n=0

Denoting by X the associated vector field to Hamiltonian ([5.74) equation (5.109) is equivalent to
L(Z°) =X o0Z° (5.110)

where the operator £ is defined in ([5.85)).
We want Z* to be defined in the domain D% x T, where

Dﬂf’éw = {v € C;[Imv| < tan f1Rev + 1/3 — kG, |Imv| < —tan foRev + 1/6 + 3}, (5.111)

which can be seen in Figure [5.12
We will relate the two types of the parameterization in the overlapping domain

o = DY nD; (5.112)

Proceeding as in [GMSI16], one can obtain in this domain the change of coordinates (5.108). Abusing
notation, we use the Banach space ), , introduced in Section @ Recall that the index n refers to
the decay at infinity and therefore it does not give any information in the compact domain D}%5 and
therefore we can just take n = 0.

Lemma 5.7.17. Let §, k and o be the constants fized in the statement of Theorem[5.7.4) Let oy < o, §; <
6 and k1 > k& such that (log k1 —log k)/2 < 01 — o be fized and consider the domain DY's x Ty, . Then,
for Go big enough, there exists a (not necessarily convergent) Fourier series g = (g1,92) € Yo,0 X Yo,0
satisfying
—4 —-3/2
lgilloo < 02Go" llg2llo.o < 026G ™,

where by > 0 is a constant independent of Gy, such that Z° = Z° o (Id 4 g), satisfies (5.110)).

Once we have obtained a parameterization Z° which satisfies (5.110) in the overlapping domain Dy}
(see (5.112))), next step is to extend this parameterization to the domain Dg?g” in (5.111)). This extension

175



is done through a fixed point argument and follows the same lines as the flow extension of [GMS16]
(Section 5.5.2). We write the parameterization Z° as Z°(v,§) = Z§(v, &) + Z§ (v, ) with

v Gy 'Uu(v,€)
0 g(v,g)
78 = g .= GX(FU(”@’E) (5.113)
0 A(v,§)
0 B(v,§)

The Gp—factors in the v and v component is just to normalize the sizes. In the statement of the following
lemma, abusing notation, we also use the Banach space ), ,, introduced in Section referred to the
domain DE%W . Since the domain DE%W is compact and all points are at a distance independent of G
from the singularities v = £i/3, we can just take n =m = 0 (all norms || - ||,,.,m» are equivalent).

Lemma 5.7.18. Let k1 , 01, o1 be the constants considered in Lemma [5.7.17. Then, there exists a
solution of equation of the form (as a formal Fourier series) for (v,§) € Dgf‘,%l x Ty, ,
whose Fourier coefficients are analytic continuation of those obtained in Lemma[5.7.17 Moreover, they
satisfy Z3 € V§ o and

101l0,05 I ¥1l0,0, ITll0,0, [[Allo,0- l|All0.0, [[Bllo,0 S Go®.

The proof of this lemma is analogous to the one of Proposition 5.20 in [GMST6]. This is a standard
fixed point argument in the sense that the domain Dgf)g” is “far” from the singularities v = +i/3 (the
distance to these points is independent of Ggp). The only issue that one has to keep in mind that we are
dealing with formal Fourier series.

Once we have obtained this flow parameterizations in DE%W , the last step is to switch back to the
graph parameterization . We want the graph parameterization to be defined in the following domain
where we can compare the graph parameterizations of the stable and unstable invariant manifolds.

D5 ={v€C; |Imv| < tan B1Rev + 1/3 — kG, >, [Imv| < —tan f1Rev + 1/3 — kG,
[Imv| > tan SoRev + 1/6 — 6},

where xk € (0,1/3), § € (0,1/12) and B4, 82 € (0,7/2) are fixed independently of Gy (see Figure [5.10).
Therefore, this domain is not empty provided Gy > 1.

(5.114)

i/3

Figure 5.10: The domains D,; s defined in (5.114).

Note that Theorem gives already the graph parameterization Z° in the domain D, s N D; ;.
Now it only remains to show that they are also defined in the domain

Dys = {v € C;|Imwv| < tan B1Rev + 1/3 — kGy 3, [Imv| > tan BoRev + 1/6 — &
(5.115)
Imv| < ftanBQRev+1/6+§}
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(see Figure |5.11]).

Figure 5.11: The domain 5,475 defined in (5.115)).

Indeed, it is easy to see that _
DH75 C D;a U DR75.

We look for a change of coordinates which transforms the flow—parameterization obtained in Lemma
5.7.18| to the graph parameterization ([5.80). Note that this change is just the inverse of
u="v+GyU(v,§)
¥ =&+ Gr(v,€)

where U and T are defined in (5.113)).

Lemma 5.7.19. Consider the constants k1, 61 and oy considered in Lemma and any Ko > Ki,
b9 > 01 and o9 < o1. Then,

o There exists a function h = (h1, he) € Yo,0 X Yo,0 with
|h1llo,0 < bapGy*, [hallo.0 < bapGy ™.

such that the change of coordinates Id + h is the inverse of the restriction of the change given by
Lemma m to the domain D? s N D, s,.

K1,01

e Moreover,
Z° =20 (Id+h)

defines a formal Fourier series which gives a parameterization of the stable invariant manifold as a
graph, that is of the form (5.80). Then, in the domain D, s, X Ty, this parameterization satisfies

1Y los/2 < G5 In Go, Mlos2 S Go™?

lae' ™ lo1/2 S Go*InGo,  [1Be™™lo1/2 S Gg®InGo.

i
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Figure 5.12: The domain Dgf’g"’ defined in (5.115)).

Taking 6z = 0 and proceeding analgously one obtains analogous results to Theorems|[5.7.4)and Proposi-
tion for W*(P,, ¢,). For the sake of clarity, we sum up the properties of the graph parameterizations
of W*(Pyy.¢0) and W?*( Py 4n.¢0+0¢) in the following theorem.

Theorem 5.7.20. Let 6z = (0,0,6n,0¢). Then, if Go > 1, |0n)|,|6¢| < Go° and

ol G/ < 1,

the invariant manifold W*(Py, ¢,) and W*(Py,15n.e0+5¢) admit graph parameterizations Z** : Dy, 5, —

C* of the form (5.80) which satisfy
12° = F*(O)llo /2, 12" = F*(0) 0,12 S Gy ** n® Go

where F* is the operator defined in (5.93) and F* is defined analogously but taking 6z = 0. In particular,
the estimates 02
1Y *llo3/2 < Go* InGo, 1A o, S Gy,

||a*€i¢(u)||o,1/2 < GGy, |[|pre ™ 012 S Gy InG.

hold for * = wu,s.
Moreover these parameterizations satisfy, that for u € Dy, 5, "R and v € T,

V) < Go®, |A°| OGS, o] < Gy®, |B% < CGy?

and for N >0,
|DN(Z* — F%(0))],| DN (2" — F*(0))| S C(N)G,°,

where DV denotes the differential of order N with respect to the variables (u,~,n0,&) and C(N) is a
constant which may depend on N but independent of Gy.

5.8 Proof of Theorem [5.4.3t The difference between the invari-
ant manifolds of infinity

This section is devoted to prove Theorem Once we have obtained the parametrization of the in-
variant manifolds (as formal Fourier series) up to points O(Gy?) close to the singularities u = 4i/3 in
Theorem the next step is to study their difference. We fix (Lg, 19, &o) and consider the param-
eterization Z" of the unstable manifold of the periodic orbit P, ¢, and the parameterization Z° of the
stable manifold of the periodic orbit P, 4sn.¢0+s¢-
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We then define the difference vector A = A(u,~), which is 27-periodic in v, as
A=(Y"—Y* A=~ A° " —a®, B — %) . (5.116)

The Fourier coeflicients of A are defined in the domain D,, 5 introduced in .
Using the equations for (Y*, A*, a*, 8*) for x = u, s in , we have that A satisfies an equation of
the form _
LA = AA+ BA + RA, (5.117)

where £ is the linear operator _
L=LA+G(Z%)0, + G2(Z2")0y, (5.118)

G1, G2 are the operators defined in (5.86)), A is the matrix introduced in (5.87) and B and R are matrices
which depend on Z* and Z° and its derivatives and are expected to be small compared to A. The matrix
B has only one non-zero term,

B A®
Bo1 = ———5 + fi(u)0,A®
= g T (5.119)

B;; =0 otherwise.

where f7 is the function introduced in (5.77). The matrix R is defined as follows
1
R(u.2) = [ D2Q (52" () + (1 5)2°(w7) ds
0
1
= 0.2°(w) [ D (w752 y) + (1= 5)2°(u, ) ds (5.120)
0

1
0,7 (u,7) / D2Ga (w7, 57" (u, ) + (1 — $)Z°(u,)) ds — B,
0

where Q is the function introduced in (5.89)). Note that R satisfies
Ry = 0.

The reason for defining the matrix B and not putting all terms together in R will be clear later. Roughly
speaking, the first order of equation is LA = AA. To give an heuristic idea of the proof let us
assume that A is a solution of this equation instead of (5.117). Then, one can easily check that A must
be of the form

A=d,C

where ®4 is the fundamental matrix introduced in (actually a suitable modification of it) and
C(u,7y) is a vector whose y— Fourier coefficients are defined (and bounded) in D,, 5 and satisfying £LC = 0.
Then, Lemma will show that, for real values of the parameters, the function C' minus its average
with respect to « is exponentially small.

Now, A is a solution of instead of LA = AA. Thus, to apply Lemma we adapt
these ideas. We do this in several steps. First, in Section [5.8:1] we describe the functional setting. In
Section [5.8.2] we perform a symplectic change of coordinates to straighten the operator in the left hand
side of (5.117)). Then, in Section we look for a fundamental solution of the transformed linear
partial differential equation. Finally, in Section we deduce the asymptotic formula of the distance
between the invariant manifolds and in Section [5.8.5] we obtain more refined estimates for the average of
the difference of the A component.

5.8.1 Weighted Fourier norms and Banach spaces

We define the Banach spaces for Fourier series with coefficients defined in D, s. First, we define the
Banach spaces for the Fourier coefficients as

Pm,g ={h: Dy s — C: analytic, ||h]|m,q < o0},
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where
[7llm,q = sup

u€Dy 5

for any m,q € R. Note that these definitions are the same as in Section but for functions defined
in Dy 5 instead of Dy, ;. Now, for o > 0, we define the Banach space for Fourier series

u — /3™ |u + z‘/3|meiq¢h<“>h(u)] .

Qm,a = {h(uv’}/) = Zh[e] (u)eif"/ : h[e] S Pm,fa ”hHm,a < OO} )

LET

where

o = S,
Flln =32 11| e

LEZ

The Banach space Q,, , satisfies the algebra properties stated in Lemma (with n = 0). From now
on in this section, we will refer to this lemma understanding the properties stated in it as properties
referred to elements of Q,, , instead of elements of YV, o.

Now, we need to define vector and matrix norms associated to the just introduced norms. Those
norms inherit the structure of the norms considered in Section We consider

3
Qm,o’,vec = Qerl,a X Qm,g’

with the norm 4 '
||Z||m,o',vec = ||Y||m+1,o' + ||A||m,0 + ||ez¢ha||m,0 + |||e_z¢h6||m,0- (5.121)

Analogously, we consider the Banach space Q, « 5,0,mat Of 4 X 4 matrices with the associated norm
||\Ile,a,mat =
max { 1P11]lm,o + P21 ]lm—1,0 + ||ei¢h(u)\]?31”m—l,o + ||€7i¢h(u)‘1/41|\m—1,m

H\IJ12||m+1,U =+ ||\I/22||m70 + ||€wh(u)\1/32”m,a + ||e_i¢h(u)‘p42”m,m (5.122)
Heii(bh(u)@13”m+1,o' + ||eii¢h(u)\:[123”m,a + ||\II33||m,o' + ||672i¢h(u)‘1143”m,07

1€ T ]| p1.0 + (€D Woy [0 + |€29 D T3y |0 + ||\I/44|m’”}'

Lemma 5.8.1. The norms || ||m.o.vec and || |m,o.mat introduced in (5.121)) and (5.122) respectively have
the following properties

o Consider Z € Q, 5,vec and a matriz ¥ € Qp 5 mar. Then, VZ € Qpiy 5 vec and
1€ Z+n,0,vec S (¥ ln.0,matl|Z]lv,0,vec
o Consider matrices ¥V € Qp 5 mat and ¥ € Q, 5 mar. Then, WU € Q, 1y 5 may and

ICYotm.0mat S ¥ ln.cmat % ]lv,0.mat-

In the present section we will need to take derivatives of and compose Fourier series.

Lemma 5.8.2. Fiz constants o' < o, & > k and &' > § and take h € Q,, » on the domain D, s. Its
derivatives, as defined in (5.95), satisfy the following in D,y s .

® Oph € Qp o and
I\ ™ 31|
108 Bl < () (C*)"'mum,,,.

K K —K)
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L] 35}1 S Qm,o’ and

1
|9ehllmor < ——lIBllmo-

Lemma 5.8.3. We define the formal composition of formal Fourier series
h(v +g(v,€),€ Z — O h(v,€)g" (1,6).

Fixz constants o' < o, K" >k and 8' > 6. Let K — k >mn > 0. Then,

o Ifh€ Qo inDys, g€ Qoo in Dy g and | gllo,e < 77G63 we have that X (v,&) = h(v+g(v,§),§)
satisfies X € Vp,or in Dy 5 and

I\ m —1
||X||m,a/<(“) (1— K ) T
K KR — K

Lg2llo.er < nGo® in Dy s, then Y (v,€) = h(v+ g2(v,€),€) — h(v + g1 (v, €), €)

G3 &\ 7 -2
Wlhno < 220 () (1= 7%) il — sl

K K

Moreover, if || g1
satisfies

o IfO,h € Qo inDys, 91,92 € Qoo in Dy s and ||g1 lgz2llo.er < nGa‘3 we have thatY € Vi o

in D, s and

K\ 1
1Y (im0 < " ﬁ”avh”m,a\\!h*91||0,o/-

Py

—K

Finally we give estimates for the matrices appearing in the right hand side of (5.117]).

Lemma 5.8.4. The matrices B and R in (5.119) and (5.120) satisfy the following

<Gy /2 Therefore || Bl|2,0.mat S Go /2

e By satisfies
e Re Q3/2crmat and ||R||3/2crmat S G 2,

Proof. For By, one needs the improved bounds for A® given in (5.100) and the estimates in Lemma
The estimates for R are obtained through an easy but tedious computation using the definitions

of Q Gy and Gs given in and -, Lemma- Lemma and the estimates for the Z%, Z*

given in Theorem [5.7.20] N ote that since we are dealing with formal Fourier series the compositions are
understood as in Lemma 577 O

5.8.2 Straightening the differential operator

First step is to perform a symplectic change of coordinates in phase space so that one transforms the

operator £ in (5.118) into £. Namely, to remove the term Gy (Z*)d, A + G2(Z™)0,A from the left hand
p.117)

side of equation (5.117

Theorem 5.8.5. Let 0o, ko and do be the constants considered in Lemmal|5.7.19. Let o3 < 02, K3 > Ko
and 03 > o be fixred. Then, for Go big enough and |n0\Gg/2 small enough, there exists a symplectic
transformation given by a (not necessarily convergent) Fourier series

(u,Y,7, A0, 8) = (v, Y, 7, A, o, B)
of the form

v Y 8’YC(’Uv’Y)

~ ~ 1
¥(0.77R0u) = (04 €0 gy A - T

17,04,5> (5.123)
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where C € Qq o, 0 Dy, 5, Satisfying
||C||0703 § b6G64 In Go,

with bg > 0 a constant independent of G, such that

1

140,C(v,7v) 000
N N
)= [ TR L0 Ol A, (5.124)
0 0 01

where A is the function defined in , is well defined and satisfies the equation
LA = AA + BA + RA (5.125)
where A is the matriz introduced in and the matrices B and R satisfy
o [|Ballios S GO_H/2 and B;; = 0 otherwise. Therefore ||B||2 o5 mat S GO_H/2
¢ R € Q3/2.05mat 1 Diys5, Ro1 =0, [[R]l3/2,05,mat S G63-

We devote the rest of this section to prove this theorem.

Proof of Theorem [5.8.5]

We perform a change of coordinates
Do : (v,7) = (u,7) = (v+C(v,7),7), (5.126)

to straighten the operator L. Clearly, the full change (5.123]) is symplectic. To straighten the operator
we proceed as in [GMS16]. Consider an operator of the form

3
£ = (14 Qa0 + 201+ Qafw 1),

and consider a change of coordinates of the form ([5.126)) which satisfies

QiroPy—Q20P

LC =
1+ Q20 P

(5.127)

Then, if A solves the equation Lh = D for some D, the transformed h=ho d( satisfies the equation

DO@O

Lh=D h D=_——"_"°_|
where 150500,

Note that all these equations and transformations have to make sense for formal Fourier series. In
particular, the compositions are understood as in Lemma and the fraction as

1 q
m = ;(*Qﬂuﬁ)) .

Proposition 5.8.6. Let o3, k3 and d3 be the constants considered in Theorem [5.8.5. Then, for Gy big

enough and \770|G3/2 < 1, there exists a (not necessarily convergent) Fourier series C € Qp o, in Dy, s,
satisfying
ICllo.s < b6Gy ' InGo,  [10:Cll1j2.05 < b6Go”,  105Cll1j2,05 < b6Gg "

with bg > 0 a constant independent of G, such that

A*(v,y) =A(v+C(v,7),7), (5.128)
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where A is the function defined in ((5.116)), is well defined and satisfies the equation

LA* = AA* + BA* + RA* (5.129)
where
E— BOCI)() E_Ao(bo—A—‘rRO(I)O
14+ Gy(Zv) 0 dy’ 14+ Ga(Zw) 0Dy

with ®o(v,7) = (v +C(v,7),7). Moreover the matriz B satisfies ||§21||1 os S G_H/Q, B;; =0 otherwise,

~J
11/2

which imply ||§||2703,mat S Gy 7. The matriz Re Q3/2,05,mat > Ro1 =0 and

”RH3/2 o3, mat ~> G_

Using, the definition of £ in (5.118)), to prove this proposition, we look for a function C satisfying

equation ([5.127)) with

L3
Qi) = Gi(2)(w7),  Qalwn) = -~ 5Ga(7") (u.7) (5.130)
0
The next lemma gives estimates for these functions.
Lemma 5.8.7. The functions Q1 and Q2, in D,., s,, satisfy
1Qilli/200 £ Go*Go,  Q2ll1en S Go™”
10.Q1ll3/20, S Gy InGo, [0,Qall20n S G5*'? (5.131)
10,@1ll3/202 £ Gy TInGo, [10,Qellin £ Gy

Proof. Lemma [5.7.13] gives the estimate for @J;. Analogous estimates can be obtained for its derivatives,
differentiating and using the estimates for Z* and its derivatives in Theorem and Lemma
To estimate Q2 and its derivatives one can proceed analogously taking into account the improved
estimates for A% in Theorem [5.7.201 O

We obtain a solution of equation (5.127)) by considering a left inverse G of the operator £ in the space
Q12,0 and setting up a fixed point argument.
We define the following operator acting on the Fourier coefficients as

= Z G(h) @ (u)eir, (5.132)

q€Z
where its Fourier coefficients are given by
G(W)9 (u) = / ’ e/ G3Le (=) plal (1) gy for ¢ < 0
1) (4 / Bl (1)
G(h)l9) (u) = / (W CRLT (1= plal (1) gy for ¢ > 0.
us

Here ug = i(1/3 — HG(;S) is the top vertex of the domain D, s, U is its conjugate, which corresponds to
the bottom vertex of the domain D,; s and u* is the left endpoint of D, s NR.

Lemma 5.8.8. The operator G in (5.132)), in the domain D, s, satisfies that

o Ifh € Q,, for somev e (0,1), then G(h) € Qp, and Hg~(h)H < K||hly.q-
0,0
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Ifhe Oy, then G(h) € Qop and Hé(h)”o < K1nGolhl1.0-

If he Q, 5 for some v > 1, then G(h) € Qv_1,0 and ‘lg(h)“u_l i < K||hlly,o-

If he Q, s for some v >0, then &Jg~(h)

w|| < Kliblo.

If h € Q,, for some v >0 and (h) =0, then G(h) € Q,.» and

Ol g el Ui

Moreover, if h is a real-analytic Fourier series, that is hl9)(w) = hl=d(u), then so is G(h).
This lemma can be proven as Lemma 8.3 of [?].

Proof of Proposition[5.8.6. 'We prove Proposition by looking for a fixed point of the operator

o Q1 (u,y) — Qa(u,7y)
K=Gok, KO@)="—"77 Q2(w,7)  lucorcon)

(5.133)

where g~ is the operator introduced in (5.132) and @1, Q2 are the formal Fourier series in ([5.130)).
We write K£(0) as

1
K(0) = Q1 —-Q@r _ 0, - Qa( +Q1).
1+ Qz 1+ Q2
Note that, by (5.131)), the second term satisfies, in Dy, s,,
‘ Q201+ Q1) < G—9/2
14 QQ 1,09

Now, by Lemmas and there exists a constant bg > 0 independent of Gy, such that, in D, s,

o, - oo, <P, (452
< Q1] /2,05 + 10 Gy W N

A

b
< 56(;64 In Go.
Now we prove that K is a Lipschitz operator in the ball B(bgGE"‘ InGy) C Qppy in Dy, s,. Take
91,92 € B(bsGy*InGy) C Qp o,- By Lemma and estimates (.131)),

o, [Ql(“»’Y) - Q2(U7’Y)]

— _3 p—
T+ Qa(un) 192 = g1llo.cs < Go " llg2 = g1llo,o

3/2,02

1K(g2) = K(g)ll3/2,0, S ‘

Then, by Lemma and [5.8:8

[Ko) —Ktan|, =68 |[Ki) =Ko, , = G5 1K(92) = K(91)ly 2.0 < G0z = 91l

503

Thus, taking Gg large enough, the operator K is a contractive operator B(b6G54 InGy) C Qo0 The fix
point of the operator gives the change of coordinates provided in Proposition [5.8.6)
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To obtain the estimates for 9,C it is enough to use that we have seen that for C € B(bsGg ‘InGy)
Q0,05 K(C) satisfies K(C) € Q1 9,0, and | K(C)||1 /2,0, < Go°. Then, by Lemma/5.8.8, 9,C = 8,GoK(C) €
Q1 /2,0, and satisfies |0,G 0 K(C)||1/2,0, S Gy°. The estimates for 9,C are obtained through the identity

Lg
vG}

0,C = —2 (K(C) — 8,C).

Finally, the estimates for B and R are a direct consequence of the estimates for C just obtained, the
estimate of R in Lemma the identity (5.130]), estimates (5.131]), the definition of A in (5.87)), the
estimates of the functions f; and fy given in Lemma [5.7.9) and the condition \770|G§/2 < 1. O

Now, we are ready to prove Theorem [5.8.5

Proof of Theorem[5.8.5 1t is straightforward to check that the transformation ([5.123) is symplectic. It
only remains to obtain the estimates for B and R. To this end, it is enough to apply the transformation

1 = ~ 0,C(v,7) 7

Y=1Tacwy AT TTacw)

to equation (5.129)) to obtain the formulas for the coefficients (B + R);;. To this end, to a 4 x 4 matrix
M whose entries M;; are functions of (v, ) we define the following 4 x 4 matrix J (M) whose coefficients
J(M);; are defined a

a,K(C ,
J(M)11:M11+ 1+8(2_M128'yc7 J(M)lg:(1+avC)Mlj7 ]:273747
Moy + 9,C My + 8,K(C) — Maed,C — (8,C)* Mya

M =
J(M)z1 1+8,C
J(M)aj = Moj + 0,CMy;, j=2,3,4
M1 + Mig&yc
1+0,C
We split B and R as before. That is, B;; = 0 for 4j # 21 and Ro; = 0. Then, the coeflicients of the
matrix B and R in Theorem [5.8.5 are defined as
Bo1 + 8,CR11 + 0,K(C) — R20,C — (8,C)* Ria
1+ 0,C

821 =

and B B
R=JA)-A+TJR)—-(B-DB)
where A and R are the matrices defined in (5.87) and Proposition respectively. This implies that

Ri;j = J(R);; for all coefficients except Ro; = 0 and
—A;10,C + Eil +0,C (AiQ + éﬂ)
1+ 9,C

Then, one can obtain the estimates for the coefficients of R using these definitions, the estimates for
R and C in Proposition the estimates for the matrix A given in Lemma (see the definition of
A in (5.87)) and the condition |770|Gg/2 < 1. For the bounds of 9,K(C) and 0,K(C) one has to use the
definition of K(C) in to obtain

Ri1 =

(14 0,C(v,7))

9,K(C)(v,7) =B, [Ql(“’w - QNW)]

1+ Qa(u, )
Q1(u,v) — Q2(u, 7)]
14+ Q2(u,7) w=v+C(v,7)
Q1(u,y) — QQ(U77):|
1+ Q2(u,7)

u=v+C(v,y)

0,K(0)(0.7) =0 |

a’YC(Ua ’Y)

+o,|

u=v+C(v,7)
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Then, using the estimates in (5.131)) and Lemma one has

10K 37205 £ Co®s 1K€ 1,0y < Gy 7.
O
5.8.3 The general solution for the straightened linear system
Now, we solve the linear equation by looking for a fundamental matrix ¥ satisfying
LY =(A+B+R)¥T. (5.134)

Note that in we have obtained a fundamental matrix ® 4 of the linear equation LV = AV. However,
it can be easily seen that this matrix does not have good estimates with respect to the norm introduced
in . Thus, we modify it slightly. Let us introduce the notation ®4 = (V1,...,Vs) where V; are the
columns of the matrix. Then, we define the new fundamental matrix

~ 1 1
Vi=Vi—non (3> Vs +&og1 <—3> Vi

~ 7 7
Vo = Vo — 092 (3> V3 + 092 <3> Va

Vi=V;.j=34.

dy=(V4,...V4)  defined as (5.135)

Lemma 5.8.9. Assume |770|Gg/2 < 1. The fundamental matriz ® 4 and its inverse E);‘l satisfy &m, ;I;Ifll €
Q0,05 1M Dy s, and
< 1.

~
0,03, mat

|4

s e

0,03, mat

Moreover, the matrices ® 4 in (5.91)) and 5,4 in (5.135)) are related as 4 = &)AJ where J is a constant
matriz which satisfies

J =1d + O(Jno)-

Moreover, the O(|ng|) terms are only present in the third and fourth row of the matriz.

The proof of this lemma is a direct consequence of the definition of d, in (5.135)) and Lemma [5.7.9
In the next theorem we obtain a fundamental matrix of ([5.134)).

Theorem 5.8.10. Let 03, k3 and d3 be the constants considered in Theorem [5.8.5. Then, for Gy
big enough and \770|Gg/2 small enough, there exists a fundamental matrixz of (5.134)) of the form ¥ =
QA(Id + W) with ¥ € Q13 5 mat 1 Dy, 55, which satisfies

HEJH < G533 Gy.

1/2,03,mat

Moreover,
<Gy InG,.

0,03, mat

7]

We devote the rest of this section to prove this theorem. Note that ¥ is a solution of (5.134) if an
only if W satisfies L B B
LT =3, (B+R)Ps(Id + D). (5.136)

We solve this equation through a fixed point argument by setting up an integral equation.
The first step is to invert the operator £. To this end, we need to use different integral operators
depending on the components. The reason is the significantly different behavior of the components close
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to the singularities of the unperturbed separatrix. That is, besides the operator G in (5.132)), we define
the operators

G (h)(u,7) = Gx(h + > G (w)e, ) (u /h[o] (5.137)
4€7\ {0}

where uy = ug and u_ = g, where ug has been introduced in (5.132)). Note that equation ([5.136[) has
many solutions which arise from the fact that the operator £ has many left inverse operators. We choose
just one solution which is convenient for us.

Lemma 5.8.11. The operators G+ introduced in (5.137) satisfy the following. Assume h € Qy 5 mat i1
Dy with v > 1/2. Then e**(WG, (eF9(Wh) € Q, 1 ;5 mar and

Heiwh(u)gi (emh(wh) H Sl forv>1)2
Heiw“(u)gi (eﬂ@‘(“)h) H—1/2,o SInGollhlly s, -

Finally, we define an integral operator Gna¢ acting on matrices in @, o mat linearly on the coefficents
as follows. For M € Q, ; mat, we define Gpat (M) as

Gmat(M) i = G(M;;) fori=1,2,j=1,2,3,4
gmat(M)gj = g+(Mw) for _] = 1, 2, 3,4 (5138)
Gmat (M )45 = G_(M;;) for j =1,2,3,4.

Lemma 5.8.12. The operator Guat in (5.138|) has the following properties.
o Assume M € Q5 mat With v > 2. Then Guat(M) € Qu_1,6,mat and
Hgmat(M)”y 1aN||M|| forv>2
||gmat( )”1,0 SIHGO ||MH2,0"
o Assume M € Q, 5 mat With v > 3/2 and Ma1 = 0. Then Gumat(M) € Qu_1,5,mat and
[Gmat (M), 1, S 1M, , forv>3/2
[Gmat (M)l 2., S InGo ||M||3/2,g-

We use the operator Gpat to look for solutions of (5.136)) through an integral equation. We define the
operator _ N R
S(¥) = Gmat 0 S(¥) with S(V) = 0,1 (B+R)DA(Id + V).

Lemma 5.8.13. Consider the domain D, s,. The affine operator S Q1/2,05,mat — 21/2,05,mat 1S
Lipschitz and satisfies that, for any ¥, V' € Q15 5, mat

Hg(\p) ~ S

< —3/2 !
1/2,08,mat ™ Gy InGo ||V - H1/2,03,mat

Proof. To compute the Lipschitz constant, we write
S(W) —S(V') =, (B+R)D (¥ — T').

The properties of B and R in Theorem imply that B+ R, ,, mat S Go 82 Then, using also

Lemmas [5.8.9 and Lemma [5.8.3] -
1S(®) = SO s 2,0 mac S || @3]

—-3/2
SGP W =y,

||B + RHl,ag,mat

B2

||‘I] - ‘I]/||1/2,U3,mat

0,03, mat 0,03, mat

mat *
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Thus, applying Lemma [5.8.12]

|S(w) - S(w) S Go S(0) = SOVl 2,00 mat S Go > M Gol|¥ = W'l 5,

1/2,03,mat mat

O

Then, to finish the proof of Theorem [5.8.10] it is enough to use Lemmas and [5.8.12] and to use
the estimates for B and R in Theorem [(.8.5] to see that

S(0) = Gt [6;1(6 + R)EISA}
satisfies

50, 56 s 5.

+ Hgmat [521R$Ai| H
1/2,03,mat 1,03, mat

+InGy H%jn&:AH

1/2,03,mat

<G G, H%;lzs@‘

2,03,mat 3/2,03,mat

3/2
<G> Go 1By mmat + G0 [R5 5,00
5 Ga?) lnGo.

mat

Therefore, together with Lemma |5.8.13] one has that the operator S has a unique fixed point U which

satisfies H\TJH < Gy InGy.
1/2,03,mat

For the estimates for \Tlgl it is enough to write \Tlgl as \Tlgl =8(0)21 + [5’(\11) — §(\Il’)} . For the first
21
term, by Theorem [5.8.5 and Lemma [5.8.8] one has that

H§(0)21‘ < e " ma,.

0,03

For the second term it is enough to use Lemma [5.8:13] to obtain

550w

< H [S(w) - S(w)] <GP Gy H\I:H <Gy Gy.

21‘ 0,03 21”—1/2,0’3 1/2,03,mat

5.8.4 Exponentially small estimates of the difference between the invariant
manifolds

Last step is to obtain exponentially small bounds of the difference between invariant manifolds A and
its first order. We first analyze A in (5.128). Using that ¥ = ®4(Id 4+ ¥) with ¥ obtained in Theorem

5.8.10|is a fundamental matrix of the equation ([5.134)), we know that A (which also satisfies (5.134)) is
of the form L o R R
A=d,(Id+ T)A where A  satisfies LA = 0. (5.139)

To bound the function A, we use the following lemma, proven in [GMSI6].

Lemma 5.8.14. Fiz x>0, 6 > 0 and o > 0. Let us consider a formal Fourier series Y € Qy, in Dy s
such that T € KerL. Define its average

1 27
T, = — T dr.
(Th =5 ; (v, 7)dy
Then, the Fourier series Y (v,7y) satisfies the following.

o Is of the form
T(v,v) = Z Y4 (v)e”’Y — Z T[Z]e“(cg”ﬂ)

LET LEL

for certain constants Y9 € C. In particular, its average (Y)y(v) = T is independent of v.
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o [t defines a function for v € D, s NR and v € T, whose Fourier coefficients satisfy that

g ()| 1~ 05 3/2, 1]~ 4578
T < swp [T K5 S, (KGE)
v K8
\e|c:3 . ¢1G3
o100 < s [V KIGETS S G, (G5 e
v K,8

Note, nevertheless, that we do not want to bound A but its difference with respect to its first order.
The first order is defined through the operators F** in ((5.93)) (see Theorem [5.7.20) and is given by

Ag = B3 (FU(0) — F*(0)). (5.140)
Using and the relation 5;1¢>A = J given in Lemma
Ao =070, [0z + G (27 F(0)) — G° (93" F(0))] = Joz + G* (ciglF(O)) —g (é;lF(O)) . (5.141)

Since Jéz is constant and G**° are both inverses of L, ﬁo satisfies Eﬁo =0.
We write then, A as L R
A=Ag+E.
The next two lemmas give estimates for these functions. Recall that © and Gy are related through
vG}

w=—
3
Ly

with Gog =0 — Lo + no&o.

(see (5.33)).
Lemma 5.8.15. The function 30 in ((5.141) satisfies that, for v € D,y s, "R and v € T,

AY o(v,7) = wdy L(wv — 7,70, &)
ARo(v,7) = =05 L(wv — 7,70, &0)
ZEO(U, ) = 0 — 10, L(wv — 7,10, 0) + G > Omo, Gg ' &o)
ABy(v,7) = 6€ + iy, L(wv — 7,10, &0) + G *Olmo, G &)

where L is the Melnikov potential introduced in Proposition [5.4.3

Lemma 5.8.16. The function g satisfies that, forv € Dy, 5, "R and v € T,

&y — ()| S e GG Gy, |Ex — (Ea)] S e 902Gy 2 Gy

2\ < ,—~G3/31/2 _ < o—G3/31/2 2 (5.142)
— (&) Se Gy/* In® Gy, |€/3 <5>\Ne G, " In" Gy

and

[Ev)| + 1EN] + [(Ea)| + 1(E5)] S G In Gol*.

Note that this lemma gives an expression of the difference between the paramerizations of the invariant
manifolds A as

A=0, (Id + \I/) (&) + 5) (5.143)

and the Fourier coefficients of & (except its averages) have exponentlally small bounds. In the next section

we improve the estimates for a certain average associated to the A component of E.
We finish this section proving Lemmas [5.8.15] and [5.8.16]
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Proof of Lemma[5.8.13, For the Y component, using the definition of &4 in (5.135) and the properties
of the matrix J stated in Lemma [5.8.9, one has

AY o = G"(F1(0)) — G*(Fi(0)) = G"(F1(0)) — G*(F1(0)).

Then, recalling the definition of the operators G** in ([5.92)) and of F'(0), one can check that AY( = wd, L.
Proceeding analogously, one can prove that AAg = —0,L. _ B
For the components o and 8 we use that, for real values of v, the matrix ® 4 satisfies o4 — Id =
@) (Galno + Galgo). Then, using Theorem [5.7.20} for real values of (v,~),
Aag =7a(J82) + G (F3(0)) — G°(F3(0)) + O (Gg "no + Gy &)
=06n — 0, L+ O (Gy*no + Gy *6o) + O (G o)

(m,, denotes the projection on the o component) and analgously for 5. O

Proof of Lemma[5.8.16, Using the definition of Ay in (5.140), we split the function & in (5.143) as
E=EY4E? 4 &3 with
S =+ 1) '3 A-3,'A = [(Id +) Id} ;A

&2 =3y (Z - A) (5.144)

3= 3,1 (A~ (F(0)" — F%(0)))

)

where U is the matrix obtained in Theorem [5.8.10 We bound each term separately.
For the first term, we write the matrix as (Id + ¥)~! — Id = Zk21(—\11)k. Therefore, using the

estimates for 5;1 and ¥ in Lemma and Theorem [5.8.10| respectively and the properties of the
matrix norm given in Lemma [5.8.1]

H[(Id+(17)—1 ~1d] Efng < G33InGy.

1/2,03,mat

Then, using also Theorems [5.7.20| and |5.8.5|and Lemma [5.8.3 one has A 17200 vee < Ga31InGy. Thus,
/2,03, ~ 0

(e < GoP I Gol| Ao,y wee S Gy ®In® Go.

1,03,vec

For 527 we use the definition of A in (5.128]). Theorems [5.7.20] and and Lemma imply that
1A = All1/3,05vee S Gg " In? Go.
Then, using this estimate and Lemmas and
|| < &2 1A = Allg/a,05 e S Gy In® Go.

0,03, mat

3/2,03,vec

Finally, using that the paramerizations of the invariant manifolds Z*, * = u, s obtained in Theorem 5.7.20)
are fixed points of the operators F*, x = u, s, respectively, we write £3 as

£ =01 (FU(2") = F*(2%)) — @3 (F(0) = F*(0)).

Now, by (5.107)),

|F*(Z*) — F*(0) <SG InGoP x=u,s.

||17vec,03 ~

Therefore, using this estimate and the estimate for o 4 in Lemma we obtain

|

<[

(Hf“(Z“)—f“(O) +17°(2°) = F2(0) < Gy Gol*.

l,ag,vec> ~

|| 1,03,vec

1,03,vec 0,03, mat
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Now, for v € D, 5, "R and v € T,

[GIER < Gyl InGol?.

1,03,vec

8 e

1,03,vec 3/2,03,vec

< G85/2 In? Gy. Then, by the definition of the norm,

For the other harmonics, one can use HS ’

0,03,vec
1€ lo.0s £ Go*In*Go,  [Exllo.es £ G ™ In Gy
|€allo,rs S Gyt In® Go, I1€s010,05 S Gy ' In* Go.
which together with Lemma [5.8.14] gives the estimates of the lemma. O

5.8.5 Improved estimates for the averaged term

The last step in the analysis of the difference between the invariant manifolds is to obtain improved
estimates for the averaged term of £,. Note that for this component the first order, given by the
Melnikov potential in Theorem is exponentially small (see Proposition . Therefore, to prove
that Ag is bigger than the error one has to show that <§A> is smaller than the corresponding Melnikov
components —9,L (and thus exponentially small). We prove this fact by using the Poincaré invariant.
One can proceed analgously for <Ey> However, this estimate is not needed because this estimate can be
deduced by the the conservation of energy.

Consider the autonomous Hamiltonian system associated to . Then, it has the Poincaré invariant
acting on closed loops of the phase space defined as follows. Consider a loop I' in phase space, then

I(T) = /F (Ydu + Ady + Bda)

is invariant under the flow associated to the Hamiltonian system. We use this invariant to improve the
estimates of the v-averaged term in AA.

In Theorem we have obtained parameterizations of W*(P,, ¢,) and W?*( Py ton.c040¢), 2%
and Z°. Take any loop I'* contained in W"(P,,¢,), homotopic to the loop W*(Py,¢,) N {u = uo}
(and thus homotopic to P, ¢,) and any loop I'* contained in W*(Py,4sn,.¢+5¢), homotopic to a loop
W(Pyy+on,c0+0¢) N {u = uo} (and thus homotopic to Py ysn.¢,+5¢). More concretely, in the case of the
stable manifold, take a C! function f: T — Dy s "R and define an associated loop parameterized as

I ={(w,Y, 7, A0, 8) = (f(0), Y*(f(7):7), v A*(f (1), 7), & (£ (), ), B7(f (), 7)} (5.145)
where Z¢ = (Y*, A®, a®, §°) is the parameterization of the invariant manifold obtained in Theorem [5.7.20
Lemma 5.8.17. The loops in (5.145) satisfy I(T*) =0, x = u, s.

Proof. Call ®; the flow associated to the Hamiltonian P in (5.74) and take a loop I'*. Then, since the
Poincaré invariant is invariant under this flow

I(T%) = lim I(®,(°)).

t—o0

Then, using that lim;_, . 74 (P (T'¥)) = dn and the estimates of the parameterizations of Z*® as u — oo in
Theorem [5.7.20] it is clear that lim;_, o I(P:(I'*)) = 0. O

Taking any of the loops I'* and I'* considered in Lemma [5.8.17] we have I(I'*) — I(I'"*) =0
Now we consider the symplectic exact transformation ® obtained in Theorem [5.8.5] and we work in
variables (v,7). Let us fix a section v = vy and define the loops I'* = W*(Py,¢,) N {v = vo} and

rs = W3 (Pyoton.co+o¢) N{v = vo}. It is clear that ['* = & (I'™*) for a suitable function f. Since the
Poincaré invariant is invariant under exact symplectic transformations, we have that

I(T%) = /~ (?du + Ady + Bda) — I[(T*) = 0.
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Moreover, since v is constant in the loops
~ 27T ~ ~
I (F*) = / (A*(vo,y) + ,8*(1)0,7)87&*(110,7)) dy=0, *=u,s
0

where ()7*, /N\*, a*, E*), * = u, s, are the parameterizations obtained in Theorem m

Now consider the difference A between the parameterization of the invariant manifolds introduced in
(5.128)). Subtracting the Poincaré invariant for the stable and unstable loops and integrating by parts,
we obtain the relation

~ o~ 27T ~ ~
0= I(f") - I(F*) = /0 (8K (v0,7) + ha (w0, 7)AF(w0,7) + ho(v0, NAB(wo, 7))y (5.146)
where

hl(v07’7) = _% (a’ygs(v()a’y) + a’\/gu(’l)07’7)> and h2(U077) = % (a’Y&S(UOa’y) + 6’7&u(00a7)) .

Note that the functions h; satisfy (h;), = 0 and, by Theorem |hi(v,7)] < Gg®InGy for i = 1,2
and real values of (v,7).
Next step is to make the transformation

(Y, A,&58)" =¥(w,7)(Y,Aa06)7 (5.147)

where U = & 4 (Id + W) is the matrix obtained in Theorem [5.8.10| The difference between the invariant
manifolds in these new coordinates is the vector A introduced in (5.139)), which satisfies LA = 0.
We analyze the Poincaré invariant relation (5.146)) after performing the change of coordinates (5.147)).

Note that this change is not symplectic and therefore the Liouville form is not preserved. Thus, we apply
the change of coordinates to (5.146|) directly and we obtain

P (v, 7) B (v, 7) + ha(vo, 1) AB(vo, 7) + ha(vo, 7)AY ) dy = 0

(5.148)
for some functions h;. By the definition of the fundamental matrix ® 4 in ((5.135)) and the estimates of the
matrix ¥ obtained in Theorem [5.8.10, one can easily check that, for real values of (v,v) and assuming
|770|G3/2 < 1, the functions h; satisfy

2m N N
| (4 Rotoo 1) BA o) +

hi| SG;%InGo, i=0...2 and  |hs]| < Gy”*InG. (5.149)

We would like to use (5.148)) to obtain more accurate estimates of (3/\) Assume for a moment that
(hi) =0 for ¢ = 1,2,3 and let us introduce the following notation

{1} (v,7) = f(0,7) = ()v).

It certainly satisfies ({ f(v,v)}) = 0.
By (5.142), the four components of {ﬁ} are exponentially small. Under the assumption <IA11> =0 for

1 =1,2,3 then (5.148)) becomes

N 1 21
AN(w) = ———— | F(vp,7)d
A = s Gooo) Jo TN

o {io} {8 ¢ ) (8] + {12} {85} + i} ov).

Now, using the estimates given in Proposition and (5.142), one would obtain

with

|F(v0,7)| S Gy *?e=%0/3 G,
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therefore (AA) would have the same estimate.

Now, this argument does not work because ( ;) # 0 for ¢ = 1,2, 3. Therefore, we have to perform the
close to the identity change of coordinates which depends on v but not on ~.

AN = AA4 ) Ry (B2 AB + ths) Ry
1+ (ho) 1+ (ho) 1+ (ho)

and the other variables remain unchanged. Note that the functions h; are small by ((5.149)) and therefore

this change is close to the identity. Moreover, the functions (ﬁﬁ are independent of v and therefore

o~

(AN) = (AA) + Cy (Aa) + Co(AB) + C3(AY).

where

C; = {hs <% ;- (5.150)
+
Thus ,
[{AA}] S Gy*PeGars,

Now the relation ([5.148[) becomes

27
/ (1 + oo, 1) AA(wo, ) + b (0, ) Ba(vo,7) + ha (00, 1) AB(v9,7) + b (0, 1)AY ) dy = 0
0
where

— % by, i=1,2,3,
1+ (ho)

and therefore satisfy (h;) = 0 and |h;| < Gg®In Gy for i = 1,2,3. Therefore, the argument done previously
works and one can deduce that

<AA('U0,’}/)> < Ga‘r’/Qe*Gg/?’ In Gy.
The just obtained results are summarized in the following lemma.

Lemma 5.8.18. The function A introduced in (5.139) satisfies that A(v,~) = N(v)A(v,~) where N is
the matriz

1 0 0 0
s 1 -G, -C
No=| % o 1 o
o 0 o0 1

which satisfies

N=1a+0(Gi*mGo)  and  Nar=0(Gy"*Go).

Moreover, for real values of v € D, 5, N R, <AA(U,7)> S G85/2€_GS/3 In Gy.
The next two lemmas complete the estimates of the errors in Theorem

Lemma 5.8.19. The function A(v,~) in (5.128) can be written as
A7) = N(v,7) (Bo(v,7) + Ev,7))
where ﬁo is the function introduced in ((5.141]), N is an invertible matriz satisfying

N =1d+0(Gi* mGo)  and N =0 (65" nGy)
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and € satisfies
Ev| S GG, |EA S e PG I G, |Eal, I8s] S G’ Go.
Moreover, gy7ga7gﬁ € KerL and
&y — (&) S e GG m? Gy

€0 — (Ea), 1€5 — (Ea)] S e~ Go/3G* 1 G

Proof. By (5.139) and (5.8.18), one has that A = N'A with A’ = & 4(Id + U)N. Then, it can be written
as

&:N(EOH?) with £=N"16—(1d—N"HA,=A - A,
We estimate (£) and {€} separately. For the A average component we use that
(Er) = (AN) = O (Gg5/ze*G3/3 In Go> .

For the other averages one has to use that N —Id = O(Gy*log G) and the estimates for &, and g@ in

Lemma [5.8.16| and for 30 given by Lemma [5.8.15| and Proposition One can proceed analogously

for the no average terms {£} O

Now it only remains to express the difference between the invariant manifolds in the variables (u,~)

(see Theorem [5.8.5)).
Lemma 5.8.20. The function A(u,y) introduced in (5.116)) can be written as

A7) = N, y) (Bolu,7) + E(u,7))
where 80 is the function introduced in , N is an invertible matriz satisfying
N =1d+0(Gg*logGo)  and  Noy =0 (G "> InGy)
and & satisfies
&y S G2 Gy, |6 S e GBG P2 Gy, |Eal,|Es] < G5O In? Gy

Moreover, £y ,Eq,E3 and
&y — (Ev)| S e P2 2 G,
0
[Ea — (Ea)l, 165 — (€5)] < e7C0/3Gy* In? Go.

The proof of this lemma is straighforward applying the inverse of change of coordinates obtained in

Theorem [5.8.51

5.8.6 End of the proof of Theorem [5.4.3

Lemma 15.8.20L recalling the expression of ﬁo given in Lemma |5.8.15] completes the proof of formulas
(5.37), (5.38), (5.39) in Theorem (recall the relation between Gy and © given in (5.33)). Note,

however that it gives slightly worse estimates compared to those in Theorem Indeed, Lemma
5.8.20] implies that A is of the form

N =1d+ 00 3log©)
and M, and Mg satisfy

Ma(u,v,20,62)\ _ [(—i0e, L(7 — wu, 20) + O (©76 In? 0)
Mp(u,v,20,02) ) ~ \ iy L(y — wu,20) + O (0 5In*O) /-
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Below we give the sharper estimates. However, they are enough to obtain the estimates for the derivatives
given in . Indeed, it is enough to apply Cauchy estimates. Indeed, the formulas (5.37), (5.38), (5.39)
are Vahd in a domaln such that |79|©3/? < 1 and therefore applying Cauchy estimates one loses ©3/2 at
each derivative.

Then, it only remains to prove the estimates in and and the improved estimates for
(5.37), (5.38)), (5.39). The first ones are a direct consequence of Theorem To obtain the estimates
for the derivatives of M in we proceed as follows.

First note that, by Theorem the paramerizations of the invariant manifolds admit an analytic
continuation to the domain

1 1
u€DesOR, v €T, [mo] < 5, 6ol < 5. (5.151)

Proceeding analgously, one can also extend analytically to this domain the change of variable ® obtained
in Theorem Then, one can easily check that in such domain, the associated function C satisfies

cl<e.

(recall (5.33)). Similarly, one can extend the matrix ¥ = ®4(Id + ¥) given by Theorem [5.8.10| to the
same domain, where it satisfies _
NIt

Then, one can conclude that the matrix A" appearing in Theorem [5.4.3] can be also analytically extended

to (b.151f) where it satisfies
N =Id+0(073).
(see (5.38)). This analysis also gives the improved estimates for M, and Mg in (5.39).
Note that the derivatives of C, ¥ and N with respect to (19.§y) have the same estimates in the domain

1
|770 < 17 |§0| <

Indeed, it is enough to apply Cauchy estimates. Using these estimates and the estimates of the derivatives
of the parameterizations of the invariant manifolds given by Theorem [5.7.20] one can easily deduce

formulas ([5.40).

5.9 The homoclinic channels and the associated scattering maps

We devote this section to prove the results on the scattering maps stated in Section First, in
Section [5.9.1| we prove Theorem That is we prove the existence of two homoclinic channels and
we obtain formulas for the associated scattering maps (in suitable domains). Second, in Section we
prove Theorem which provides the existence of an isolating block for a suitable high iterate of a
combination of the two scattering maps obtained in Theorem [5.4.5)

5.9.1 The scattering maps: Proof of Theorem [5.4.5

We devote this section to prove the existence and derive formulas for the scattering maps given by
Theorem [5.4.5] Consider two periodic orbits Py, ¢, Pyo+on.coto¢ € Eoo- We fix a section u = u* € (uy, uz)
(which is transverse to the flow) and we analyze the intersection W"(P,, ¢,) and W* (P, 1sn.¢046¢) in
this section. By the expression and Theorem these invariant manifolds intersect along an
heteroclinic orbit if there exists v € T such that

Y“(u*,v,20) — Y°(u*,, 20,02) =0
A% (u*, 7, A (u*,v,20,02) =0
u( S - s( S ) (5.152)
« ( 3 7Y 2 0) « ( ;7Y 20, Z):O
ﬁu( *aV,ZO) ﬂs( *37720752) 0



where zo = (10, &) € D (see ) and 0z = (0, 0€) satisfies |0z| < ©3.
Using (5.37) in Theorem [5.4.3] the fact that the matrix A is invertible and energy conservation,
obtaining a zero (vy,dz) of (5.152)) is equivalent to obtain a zero (v, dz) of

Ma(u*,v,20,02) =0
on+ Mu(u*,v,20,02) =0 (5.153)
8¢ + Mga(u*, v, z0,62) = 0.
We emphasize that by zeros we mean that for a given zy and u* there exists v and §z which solve these

three equations.
We first analyze the second and third equations, that is

6n+Mo¢(U*J’Y>ZO7§z) =0, 5§+Mﬁ(U*J’Y>ZO7§z) = 0.

Using the asymptotic expansions for M, and Mg given in Theorem [5.4.3] one can obtain (d7,6¢) in
terms of (g, &o) and ~ as follows,

577 = 677(U*7’77 ZO) = —1850£(7 - WU*77707£0) + Pl(U*7’Y77707§O)
55 = 65(,“*7’77 ZO) = ianoﬁ(’y - WU*ﬂ?O,fO) + P?(U*773n07£0)

where by Proposition the estimates of M in Theorem [5.4.3] implicit derivation and Cauchy esti-
mates, the functions P; and P, satisfy

(5.154)

104,02 P,| < C(i, j)©~° for 1,5 >0
. o _wes (5.155)
104,08 05 P < C(i, 4, k) 230HD2e 318 for i, j >0,k >1

for some constants C(i,7) and C(3, j, k).
Now we solve the equation for the A component evaluated at (5.154]), that is

Ma(u*, 7, 20, 02(u*,v,20)) = 0.
Note that in the domain D introduced in , one has that
e z o
Then, dividing this equation by the factor (72£[*1]), one obtains an equation of the form
sin(wu* —v) + 0O7Y2) =0
which has two solutions
¥ =~ (u*, 20) =wut 4+ (j — )7+ O (@71/2) ) j=12. (5.156)

Moreover, one can apply Cauchy estimates reducing ¢ used in the definition (|5.44)) of ]ﬁ), to obtain that
|05, 0 ~7| < C(i, k)@~ /27204 (5.157)

for i,k > 0 and some constant C(i, k) independent of ©.

Now we obtain asymptotic formulas for the scattering maps. Observe that, recalling the parameteriza-
tion of the invariant manifolds in (5.30), the values (u*,~7(u*, 20), 20, 62(u*, 77 (u*, 20), 20)), u* € (u1,u2)
and zp € D (see ) solving equations give rise to heteroclinic points

Z. = (/\{let(u*, zo),wﬁet(u*, 20)) € W (P,,) N WS(PZO+5zg)
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with A, = 77 (u*, 20) + ¢n(u*). Consequently, denoting by v(t, z) the flow of equation (5.20), there exist
N, such that

O (b)) — v (BN w0) 50 as £ —oc (5.158)
) (t, zﬂet) — (t, )\i, wo + 5w6) —0 as t— +oo, (5.159)
where wo = (Lo, 1o, &0, 00,0) and (511% is given by (5.154) with v = ~7(u*, 20), in the sense that the

asymptotic condition in the 7 component of ¥ ( t, zﬁet) means that it becomes unbounded. An important

observation is that, using that the system (5.20]) is autonomous, we have that, for any s € R
Y <t+s,zﬂet) — (t—l—s,)\{,wo) —0 as t— —oo,
P (t—i—s,zﬂet) -y (t—i—s,)\i,wo—i—éwg) —0 as t— 4o0,
and we observe that
U (t+ 850 ) = v (805 2a)

) (t—«—s,)\j_,wo) =1 (t,@/) (57)\];,w0)> =\ +ngs,wo),

and analgously for the other periodic orbit.

Calling zﬁet (s) =1 (s, zflet>, and )\i (s) = )xi + LL?)& we have that

¥ (t, zﬂet(s)) -1 (t, )\j_(s),wo) —0 as t— —o0

P (t, zﬁct(s)) — (t, )\Zr(s),wo + §w6) —0 as t— +oo.

Therefore, the orbit through 2/ (s) is an heteroclinic orbit between the points (X (s),wq) € P, and
(N.(s),wo + 0w}) € P

zo+52g

A=XN + +3s and, abusing notation, calling again the heteroclinic point 2 (\) := 2] _,(s), we have that
0

, for any s € R. Analogously, given any A € T, we can choose s through

¢(t,zﬂet()\) —Y(t, A\, wp) =0 as t— —o0

J i j (5.160)
U(t, Zhet()‘)) —Y(t, A+ A wo + 6w0) —0 as t— +o©

where A7 = )\i — M. Consequently, the scattering maps are of the form

LO LO ]
~. A A+ AJ
S’ — i

Mo 1o + 81

€o &o + 08

where (19 + 017, & + §&7) = S7(no, &) are independent of A\ and Ly is preserved by the conservation of
the energy (recall that we are omitting the dependence on Lg of all the functions).

Observe that 2, (\) = 2, (X, 1m0, &), with (10, &) € D and A € T, gives a different parameterization
of the homoclinic chanel introduced in .

Finally, note that to obtain formulas for S7 one has just to evaluate at the solutions 77 in

(15.156), to obtain

i (10 _ (70— i0g L(jm,m0,&0) + O E@_ﬁg)
o <€o> - (fo + 0y, L(j7, 10, &) + O (07°) ) * (5.161)
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Then, it is enough to use the formulas of the Melnikov potential £ given in Proposition [5.4.2] to obtain
the formulas for &7 in Proposition The estimates for the derivatives of §7 are a consequence of
the estimates for the derivatives of the Melnikov potential in Proposition and the estimates ([5.155)),

(5.157).

Finally, Theorem 8 in [DdILS08] implies that the map Si s symplectic. Then, using the particular
form of &’ one can easily see that S7 is symplectic in the sense that fixing I = Lg it preserves the
symplectic form dng A d&p. o

Now it only remains to analyze the fixed points (17,&)) of the scattering maps 7. The particular
form of the fixed points given in is just a consequence of and the asymptotic expansions
of the Melnikov potential given in Proposition Note that (19,)) € D where D is the domain in
(5.44).

To prove the asymptotic formula (5.48]) for the difference between the two fixed points one cannot use
but has to go back to equatio and analyze them when dn = §¢ = 0. In particular,

Ma(u*, 77 0, &) =0, Mg(u*,+7, 0, &) =0.
We subtract the equalities for 7 = 1 and j = 2 to obtain
Ma(U*WQ,T)g,fg)*MQ(U*,VI,U(%,%):0 and Mﬁ(U*772777(2)7§g)*MIB(U*ﬁlaﬁéafé):0-
Taylor expanding, defining Ang = 13 — ng, A&y = &2 — £} and using the estimates in Proposition
and Theorem [5.4.3] we have
Eo + 0o Ma (0", 72,15, ) A0 + 9g, Ma (1", 72,15, §5) Ao + © 202 (Ao, A&y) = 0
Eg + 0y Mg (u*, 7%, mg, &) Ao + Ogg Mg (u*,7*, 15, €5) Ao + O 72 Oz (Ao, Ap) = 0

where

; - _ e
Ea = MQ(U*,WQ,Wé,fé) - MQ(U*vvlan(l)vfé) = 75VN2\/7?L3/263/26 3 (1 + o (@71))

3i i

Eg = Mﬁ(U*vvzvnéafé) - MB(U*a71ané,§é) = 5”N2\/7?L(7)/2(:)3/267ﬁ (1 +0 (@71)) :

Moreover, using again the estimates in Proposition [5.4.2f and Theorem [5.4.3

37 ~
Do M (u* 72,18, 63) = —gzerf’)@_?’Ng +0 (677
DegMp(u*, 7,5, &) = %%LS@)’?’NQ +0(67?)

and
a&oMQ(U*7’72a 77(%»5(%) = aﬁoMﬁ(u*v’y27névgé) =0 (9_5) :
Then, recalling that Ny # 0 (see (5.35)), it is enough to apply the Implicit Function Theorem.

5.9.2 An isolating block for an iterate of the scattering map: Proof of The-
orem [5.4.7|

We devote this section to construct an isolating block for a suitable iterate of the scattering map. That is,
for the map S = (S')M 0 82 for a suitable large M which depends on the size of the block. To construct
the block we need a “good” system of coordinates. We rely on the properties of the scattering maps
obtained in Proposition [5.4.5

The steps to build the isolating block are

1. Prove the existence of a KAM invariant curve T, for S'. To apply KAM Theory we first have to
do a finite number of steps of Birkhoff Normal Form around the elliptic point of S' and consider
action-angle coordinates.
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2. Prove that the preimage of T, by the other scattering map, that is (§2)~!(T,), intersects transver-
sally T,.

3. Pick a small “rectangle” whose lower boundary is a piece of the torus T, and one adjacent side is
a piece of (82)~1(T.).
4. Show that such rectangle has the isolating block property for S = (S1)M o S2.

We start with Step 1. We follow, without mentioning explicitly, all the notation used in Proposition
5.4.5] However, we restrict the scattering maps to much narrower domains (see Lemma [5.9.1] below). In
fact, we consider domains which are balls centered at the fixed points z} of the scattering maps obtained
in Proposition and exponentially small radius. We use the notation for disks introduced in .
These exponentially small domains are enough to build the isolating block.

Since in this section we need to perform several symplectic transformations to the scattering maps,
we denote them by ®;, i = 1,2, 3,4.

Lemma 5.9.1. For © > 1 large enough, there exists a symplectic change of coordinates
D1 :D, 0 (zé) — D, (z(l)) with p= 611/26_%
such that ®1(z3) = 2z} and 8* = 7' 0 8 0 By is of the form
§1(Z) =z ei(w1+C1|z—z5|2+02|z—z5|4)(z _to (z _ zé)7 (5.162)
where the wi has been introduced in , the constant C7 = TO 340 <(:)75) with T as introduced in
in Proposition|5.4.5, which satisfies C1 # 0 and Cy such that Cy = O (6’3).

Morover, ®, satisfies

®i(2) =2+ 6720 (z*)+0(2*).
Proof. The proof of this lemma is through the classical method of Birkhoff Normal Form by (for instance)

generating functions. Fix N > 1. Note that then the small divisors which arise in the process are of the
form |[k©~=3 — 1| for k = 1...2N — 2. Then, taking © big enough, they satisfy

k032 —1]> 073

With such estimate and the estimates of the Taylor coefficients of the scattering map S* given in Propo-
sition [5.4.5] one can easily complete the proof of the lemma. O

_ Next step is the application of KAM Theorem. To this end, we consider action angle coordinates for
S! (centered at the fixed point). Note that the first order of S! in (5.162) is integrable and therefore it
only depends on the action.

563

N _ 263
Lemma 5.9.2. Fiz a parameter p € <0, %@11/26 3L3> and any £ > 4. Consider the change of coordi-

nates _ _
2= 0y(0,1) = (ng 4+ pVIe?, € + pVIe ).
Then, the map St = <I>§1 0Slo Dy is symplectic with respect to the canonical form d0 N\ dI and it is of

the form

Moreover, for I € [1,2], the function B satisfies
B(I)=Cyd 3+ 0 (6*4
9 B(I) = p? (01(1)—3 4O (é—4))
97 B(I) = O(p"),
where C1 # 0 is the constant provided in Lemma and Coy = DwL§A; (see (5.49)).
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We use the following KAM Theorem from [Her83| [Her86] (we use the simplified version already stated
in [DAILS00])

Theorem 5.9.3. Let f : T! x [0,1] — T! x [0,1] be an ezact symplectic C* map, £ > 4. Assume that
f = fo+6f1, where f(I,0) = (0+ A(I),I), A is C* and satisfies |0rA(I)| > M and || f1|lce < 1.

Then, if o = 6Y/2M~" is sufficiently small, for a set of Diophantine numbers with T = 5/4, we can
find invariant tori which are the graph of C'=3 functions u,,, the motion on them is C'=3 conjugate to a
rotation by w and ||uyl||ce—s < 62 and the tori cover the whole annulus except a set of measure smaller
than constantM ~15'/2.

Note that the map (5.163) in [1,2] x T satisfies the properties of Theorem with M > ©73p
and 0 = p% for any regularity C* (the scattering map is actually analytic). This theorem then gives, in
particular, a torus T, which is invariant by S! and is parameterized as a graph as

T,={I=V(0) =1 +0c(p*),0 €T}, j=1,2, (5.164)

where I, satisfies I, € [1,2]. Note that the C* in the error refers to derivatives with respect to 6.
In the next lemma, we apply several steps of Birkhoff Normal Form around the torus T,.

Lemma 5.9.4. There exists a symplectic change of coordinates ®3 satisfying
(I7 0) = @3(J7w) = (1/1 + (QC1 (P2) aJ + I* + (QC1 (pQ)) ’

such that {J = 0} = &3 *(T,) and the map S becomes

_ (¥ +B(J)+0(J?)
where _ ~
B(J)=bo+biJ with by=Co0*+0 (077, (5.166)

Coy # 0 is the constant provided in Lemma and by € R satisfies by # 0 for © large enough.

Now we express the scattering map S? also in (¢, J) coordinates to compare them. To this end, we
take

263

p=072 3§ (5.167)
The exponent 7/2 is not crucial and one could take any other exponent in the interval (3/2,11/2).

Lemma 5.9.5. Take p of the form (5.167) and © large enough. Then, the scattering map S% expressed
in the coordinates (¢, J) obtained in Lemma is of the form

(2, )\ (U + () + O ()
= (g 7) = (51018 0)

fi(¥) = Ocr (6*2) and g1 (¥) = Co0 2 cos ) + Ocr (@*3 In? @) ,

with some constant Cy # 0.

where

Proof. We need to apply to S? the changes of coordinates given in Lemmas and We first
apply the symplectic transformation ®; in Lemma Then, we obtain that S? = ®,' 0 §? 0 ®; is of
the form _ _

S 2) =@ 08%0® =2+ Na(2—33) + P2 (2 — %)

where 22 = ®7%(22), and therefore satisfies 22 = 22 + O(22)2, and P, is a function which satisfies

P (== )| < Cals - 3
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for some constant C5 independent of ©.
Now we apply the (scaled) Action-Angle transformation considered in Lemma m To this end,
taking into account (|5.48)), we define

4 - _ 263
A= =g = m @7 (z0) = m @7 (65) = —=Ly/ "6V (140 (07 m%6)),  (5.168)

where we have used that ®; is close to the identity (see Lemma|5.9.1) and m, denotes the projection in
the n-component. R
Denoting (01,1;) = S?(6,I), we obtain (in complex notation)

pVIe™ = —A+ 2 (A4 pVIe?) + 0 (|8 + pVTe?)
= (A2 — DA+ XapVIe” + O(p+ A)2
Therefore,
£/ 116101 = ()\2 — 1); + /\z\ﬁew —+ ;O(pqL A)2
Now, condition (5.167) and the fact that A, = €2, with wy = we®~ + O(©~*), implies that

A
(Ao — 1); <O?«1.

Therefore, using also (5.168]), (5.49) and the fact [A3] = 1 (see Proposition [5.4.5)), we obtain

L =11+ Eéeie + l(9c1(,0+ A)? i =1 (1 + EC:)*2 cos + O¢1 (6% In? @))
VT p p VI
for some constant C' # 0 independent of ©. The notation Og: refers to derivatives with respect to (0, I).
The formulas for #; can be obtained analogously to obtain the following expansion

2 B 0+ Ocl (@_2)
S (971) - <I+0262 ICOS0+O(31 (@73 1112 @)

for some constant Cy #£ 0.
Now it only remains to apply the change of coordinates ®3 obtained in Lemma [5.9.4] renaming the
constant Co by Cov/I,. O]

We use the expressions of S' and S? given in Lemmas and to build the isolating block.
Consider the torus T, = {J = 0} which is invariant by S'. Then, we define

T_ = (s?) "' (T.)
and we denote by Z, = (¢, 0) the intersection between T, and T_ which satisfies
by = g +0 (0 'Im?e). (5.169)

This point will be one of the vertices of the block and “segments” within T, and T_ will be two of the
edges of the block.
Lemma [5.9.5| implies that

9483 (1:,0) = 2072 + 0 (67’ ©) #0.
Therefore, in a neighborhood of (¢, 0), the torus T_ can be parameterized as
P = h(J) for |J] <1 and h(0) = .. (5.170)

In other words, there exists a function h satisfying $%(h(J), J) = 0.
To analyze such block we perform a last change of coordinates so that the segment of T_ becomes
vertical.
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Lemma 5.9.6. The symplectic change of coordinates
Q4 (¢, J)=(p+h(J),J) for peT, |J <1,
transforms the scattering maps given in Lemmas[5.9.7) and [5.9.5 into
S, J) = (‘p+ff();zﬁ)(‘]2)) and S (p,J) = (ﬁi(% ‘”) (5.171)
which satisfies $%(0,J) = 0 for |J| < 1.
Note that, since 82 its a diffeomorphism, it satisfies
b = 9,5%(0,0) # 0. (5.172)
We use Lemma and this fact to build the isolating block.
Note that now the point Z, = (1«,0) has become Z, = (0,0) and the chosen two sides of the block
are J =0 and ¢ = 0. We consider the block R defined as
R = {(@,J): 0<p<2b 'R 0<J< f%} for some £ < 1.
The choice of ¢ = 2b~'% is for the following reason. It implies that, for & small enough,
22671k, J) >k for  Je(0,R).
Then,
R =8)(R)n{0<J <&}

is a “rectangle” bounded by the segments J = 0, J = & and two other segments of the form ¢ = h;(.J),
i = 1,2 which satisfy
|ha(J) — hi(J)| SR for 0<J<R.

Now, we show that for a suitable M > 1, R is an isolating block for (§')™ 082, To this end, we must
analyze (S')M(R'). Note that M will depend on &.
Consider the vertices of the rectangle R, Z;;, i,j = 1,2, with
Zi1 = (¢i1,0), Zis = (pi2, k) with 15 < @5, j=12
Note that they satisfy
|SOZJ_@Z’]/|§[%7 i7j77’.l7j/:172'
We define "
Zy = (e Ji) = (8") " (Zy),
which by Lemma [5.9.6| satisfy
JM =0 and JN =k + MO(R).

Choosing a suitable M satisfying

<M< — 5.173
4b 1k — = 201k’ ( )
where by is the constant introduced in Lemma[5.9.4] we show that
1 1
Pl =i 2 g and = o < <0, (5.174)

Indeed, for the first one, note that

- - 1 -
P15 — P51 = Q12 — 21 + Mbii+ MO(R?) = 1 +O0(R) 2
For the second estimate in (5.174)) it is enough to choose a suitable M by using the particular form of
the first component of S; in Lemma and the definition of by in ((5.166|).
The estimates in (5.174]) implies that R is an isolating block.
Now, we compute DS = D[(S")™ o S2].

| =
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Lemma 5.9.7. For z = (¢,J) € R, the matriz DS(z) is hyperbolic with eigenvalues \(z),\(z)"! € R
with
A(2) 2

Moreover, there exist two vectors fields V; : R — TR of the form

v = (é) e (‘/211(2)> with |Var(2)| < i,

which satisfy, for z € R,

DS(2)Vi = Mg(2) (V1 + Al(z)) with Vi) <&
DS()Va(z) = (=)' (VaB(2)) + Ta(2))  with  |Va(2)| S &

Proof. Note that

1

)

DEYM — (1 Mby +0(1)> MO (72) = <1 Mby +(9(1)) LO®).

and therefore, since M ~ K~

0 1 0 1

On the other hand, by Lemma (5.172f) and taking into account that S2 s symplectic,

D§? = (Z “(’)_1) +O()

for some n € R. Then,

R _ 11
DS — (Msbl p ) +0() (5.175)

Since this matrix is symplectic (the scattering maps are, see [DAILS08]), to prove hyperbolicity it is
enough to check that the trace is bigger than 2. Indeed, for (¢, J) € R and & > 0 small enough,

trDS = Mbb;, + O(1) > &L
The statements for V; are straightforward considering the form of DS in (5.175). To obtain those for V5
it is enough to invert the matrix DS and compute the eigenvector of large eigenvalue. O

5.10 A parabolic normal form: Proof of Theorem [5.5.2]

The Theorem will be an immediate consequence of the Lemmas [5.10.1} [5.10.2f and [5.10.3| below.

5.10.1 First step of normal form

The first step of the normal form transforms the “center” variables z so that its dynamics becomes much
closer to the identity in a neighborhood of infinity.

Lemma 5.10.1. For any N > 0, there exist an analytic change of variables of the form
Z=z+4Z(x,y,2t),

where Z is a polynomial in (z,y) of order at least 3, even in x, such that equation (5.54) becomes in the
new variables

i = —2*y(1+ Ba® — By? + O4(z,7)),
y = —z*(1+ (B — 44)2® — By? + O4(z,7)), (5.176)
Z=150n(z,y).
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where the On(z,y) terms in the equations of Z as well as the Oy(x,y) are even functions of x. The
constants A and B were introduced in (5.53)).

Proof. Equation (5.54)) is in the claimed form for N = 0. We proceed by induction. Assume the claim is
true for N, that is, that the equation is

i = —23y(1 + Ba? — By? + O4(z,v)),
y = —2(1+ (B —4A)2? — By? + O4(z,7)), (5.177)
z= .’IJGPN({,E7 Y, a, b7 t) + $60N+1 ({L‘7 y)7

where py is a homogeneous polynomial in (x,y), even in x, of degree N with coefficients depending on

(2,1).
First, with an averaging step, we can assume that py does not depend on t. Indeed, given Uy such
that 0;Unx = pny — DN, where pn = (pn):, the change

=24 2Un(z,y,2,1),

transforms equation into
i = —a®y(1+ Ba® — By® + O4(x,y)),
§=—a*(1+ (B —4A)z> — By? + O4(z,y)), (5.178)
z=a%n(z,y,2) + 250N 11 (2, 7).

Clearly, since py is even in z, so is U,, and then the parity on z of the equation remains the same.
Second, we consider the change
Z=zZ+ ZN+3(xay7 Z)a
where Zx 3 is a homogeneous polynomial in (z,y) of degree N +3, even in z, with coefficients depending
on z. It transforms equation (5.178)) into
& = —2’y(1 + Bz® — By® + Ou(z,y)),
g =—z'(1+ (B~ 44)2® - By* + Oa(z,y)),
"’é = xS (I'BﬁN(ZL', Y, 2) - yaxZN—Hi(xa Y, '2) - xayZN—&-St(xa Y, 2)) + zGON—i-l(:L'? y)
Clearly, since Zy 3 is even in z, the parity in x of the equation is preserved.
Since 23py (z, ¥, 2) is an odd polynomial in z, it is in the range of the operator L : Oy 43 + y9,Cni3+

x0yCn 43, acting on homogeneous polynomials of degree IV + 3, even in z, the claim follows. Indeed, for
any j,£ > 0 such that 2j + ¢+ 1= N+ 3,

J
L <Z aixz(ji)yl+2i+1> = g2yt

=0

where
1

+1

(2)--- (25 =21+ 2)
(C+1)- ((+1+20)

Y
—

ag = and a; = (—1)

O

5.10.2 Second step of normal form: straightening the invariant manifolds of
infinity

Here we use the invariant manifolds of the periodic orbits P,, to find coordinates in which these manifolds

are the coordinate planes.

Let K C R? be a fixed compact set. Given p > 0, we denote by K7, a neighborhood of K in C? such
that Rez € K and |Im z| < p, for all z € K£. Given 6,0, p > 0, we consider the domain

Us,, ={(¢,p,2,t) € Cx C x C?xC | Img| < dRegq, |Imp| < dRep,
N ) < pr = € K2 [imt] < o}, (5.179)
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Lemma 5.10.2. There exists a C*° change of variables of the form (q,p, z) — (q,p, 2) +O2(q,p), analytic
in a domain of the form (5.179)), that transforms equation (5.176|) into

i=q((q+p)°*+04q.p), %=qOnta(q,p),
p=-p((g+p)*+Oulg,p), t=1

Equation (5.180) is analytic in Us ,, for some §,p > 0, and C* at (¢,p) = (0,0).
Proof. We start by straightening the tangent directions of the topological saddle in (5.176]). We introduce
(¢,p,2) = ((z = 9)/2, (x +y)/2, 2).

In these variables, equation ((5.176)) becomes

(5.180)

. 2B
i=(q+p)° (q —2A4¢* — 6 <A — 3> ¢’p — 6Aqp* — 2Ap* + O((q +p)5)> ,

, 2B 5.181
p=—(¢+p)? <p+2Aq3+6 <A 3> ¢*p + 6Agp? + 2Ap® + O((q +p)5)> (5.181)

2= (q+p)°On(g,p).

This equation is analytic and 27-periodic in ¢ in a neighborhood U of {¢ = p = 0, 2 € R?, ¢t € R} in
CxCxC?xC.

Let 0 > 0, p > 0 be such that {||(¢,p)|| < p} x K x {|Imt| < o} C U. Let zp € K. We claim
that that the periodic orbit P,, of has invariant stable and unstable manifolds which admit
parametrizations v*" (-, t; zg) of the form

(P, 2) =7"(q: 1 20) = (éq?’ +0(q"), 20 + O(qN+3)> ,
(5.182)

(0.5 =70, t:20) = (55 + 00 + 06+ )

where y%" are analytic in
ngp = {(q,t,Zo) S (C3 | |Imq| < 5Reqa |Q| < p, |Imt| <0, 2 € K(é}7
Vs, = {(p,t,20) € C* | [Imp| < 6Rep, |p| < p, [Imt| < o, 29 € K3,

for some 9, p,o > 0 and are of class C*° at ¢ = 0 and p = 0, respectively.
We prove the claim for 4*, being the one for y° analogous. First we remark that, if v* exists and is
C*™ at ¢ = 0, substituting in the vector field an imposing the invariance condition, one obtains that it

must be of the form given by ([5.182)).
We change the sign of time in (5.181)). With the introduction of the new variables
1
q+p

zZ= (z — 20),

equation ([5.181] becomes

i=—q(q¢+p)°’+0((q+p)°,
p=plg+p)°®+0((q+p)°), (5.183)
Z=2(q—p)(q+p)*+205(¢,p) + Onss5(q,p)

where the vector field is analytic in U.
The results in [BEAILMO7] and [GSMSI17] imply that the parabolic periodic orbit (¢, p, 2) = (0,0, 0)
of (5.183]), which is parabolic, has an invariant stable manifold, parametrized by

(a.p.2) = 3(u,t, 20) = (u+ O(u?), O(u?), O(u?)) (5.184)
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with 4 analytic in 175,[, = {|Imu| < 6|Reul|, |u| < p, Imt| < o, z9 € KL}, for some §, p,o0 > 0 and of class
C> at u = 0. Since has the time reversed, 7 corresponds to the unstable manifold of .
We can invert the first component of , g = 7mgY(u,t,20), to obtain u = ¢+ U(q,t, 2p), defined and
analytic in

Vit ={(g.t.20) € C* | [Imq| < §'Req, |q| < ¢, Imt| <o, 20 € KL },

for any 0 < ¢ < ¢ and some 0 < p' < p, and is C* in Vil oy U {0 Hence, the stable manifold of
(¢,p,2) = (0,0,0) of (5.183 m, and therefore the unstable one of (5.182)), can be written as a graph as

(p7 2) = 'AY((L ta ZO) = Trp,i;?(q +U(Q7 ta ZO)7 ta ZO) = O(q2)

We claim that 7:9(q,t,20) = O(¢"V+2).
Indeed, assume that m:9(q,t, 20) = arqg” + O(¢¥*1). It is clear that L > 2. But, denoting by X the
vector field in ([5.183)), since the graph of 4 is invariant, it satisfies

aJ . -
- LanLJrB + O(qL+4) = aiqﬂ-iry(Q7 ta ZO)X(] (Qa V(q)v t)

= X:(q,7(9),t) = arg" ™ +a,0(¢"*°) + O(¢" ),
from which the claim follows.
Going back to z = zg + (g + p)Z we obtain that (p,z) = v%(q,t,20) = (O(¢?), 20 + O(¢V13)) is a
parametrization of the unstable manifold of P,,. Substituting this expression into (5.181)), one obtains

that O(¢?) = §q3 + O(q*), which proves the claim for 4* in (5.182).
Now we straighten the invariant manifolds using the functions v* and +* in (5.182). We claim that

there exist variables (g, p, z) in which equation ([5.181]) becomes

i=q((qg+p)*+Oy),
p=—p((qg+p)*+ Ou), (5.185)
z = qpOn+4(q;p),

being defined and analytic in a domain of the form ((5.179) and is C*° at (¢q,p) = (0,0). We will apply
two consecutives changes of variables, each of them straightening one invariant manifold.
Let z§(q, z,t) = z + On43(q) be such that

z=m.7"(q, t: 25 (g, 2, 1)),

which is also analytic on Vy',, C* at ¢ = 0. We define the new variables (4,p,2) = U7 (g, p, 2, 1) by

q=q,

~ u u A 3

p=p—mp7"(q,t;25(q,2,t)) =p — 54 + O4(q), (5.186)
Z=2z4(¢q,2,t) = 24+ On43(q).

Again, it is easy to see that the map

q q
Vi(G,5,28) = | p+u7(q20) | = | P+ 53+ 0a(d)
is analytic in the domain
Wi, ={(g,p,%,t) € C* | |gl, ] < p, Rep >0, [Img| < 0Req, z € K¢, t € T, }. (5.187)

8This claim can be proven as follows. U is trivially C> at u = 0. Observe that the function U is the solution of the
fixed point equation U = F(U), with F(U)(q,t,z0) = —¢(q +U(q,t,z0),t, 20) and ¢ = 7. Since p(u,t,z0) = O(u?) and
is analytic in Vs, ,,, we have that, for any 0 < ¢’ < d and 0 < p’ < p, dup(u,t,20) = O(u) in Vi . Using this fact, it is

immediate to see that I is a contraction with the norm [[¢||2 = sup(q¢ F0EVE L, lg=2U(q, t, 2)|, if p" is small enough.
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for some v, p,0 > 0. Moreover, since W;j;—¢ is the identity (and trivially it is analytic in {[p| < p, Z €
KCP, t € T,}). Observe that we are considering ¢ with Reg > 0.
Observe that, in these variables, the unstable manifold is given by p = 0. We claim that, in these
variables, equation (5.181)) becomes
¢=q(q+p)*+ Os,
p=—p((G+5)* + Ou), (5.188)
Z = pOn+15(3, D),

Indeed, the claim for (j is an immediate substitution. To see the claim for Z, we observe that, on the
unstable manifold, z is constant and equal to zg. Hence

% d u u . u s u u
z = %ZO (Q7 Z, t) = 6(120 (Qa Z, t)q + azZO (Q7 Z, t)Z + atzo (qa Z, t) = ON+6(Q5p) + atZO (Qa Z, t)

Since §|ﬁ:0 =0, 0:24(q,2,t) = On16(q) and the claim follows. Then the claim for $ is an immediate
substitution.

Observe that the composition v* o Uy, where v*(p, t; zg) is the function in , is well defined and
analytic in Wy, ,, for 0 < ¢’ < 6/3 and p’ small enough. Indeed, if (¢,p,2,t) € W, s, using the the
function A in is real analytic and positive for real values of z € K¢,

L A - s
m591(4,0,2,t) = §q3 + O(q4) € Vs,

and Rem;¥1(4,0, 2,t) > 0, which implies that, for any p € Vs, with Rep > 0, p+ %(53 +0(3*) € Vs,
It can be seen with the same type of fixed point argument that the stable manifold (g, z) = v*(p, t, z0)
in (5.182)) can be written in the variables (¢, p, Z) as

(q,2) =7 (D, t; 20) = (;1253 +0(p"), 20 + O(p N+3)> : (5.189)

analytic in
Vi o ={(B.t,20) € C* | Imp| < 6"Rep, || < p”, Imt| < o, 20 € KL },

for some 0 < 8" < &, 0< p” < p'.

Now, repeating the same arguments, we obtain a change of variables (¢, p, %) = (d,ﬁ, Z,t) such
that N
\112(qA7ﬁa27t) = Aﬁ =
2+¢5(]§727t) Z+ON+3
is analytic in the domain
Wi, =1{(a.p,2.t) € C*|4],[p| < p, Rep >0, [Imp| < dRep, 2 € KL, t € To}. (5.190)

for some 7, p, > 0 (smaller than §” and p”). Moreover, Wy ;- is analytic in {|p| < p, Z € K¢, t € T, }.
This change is the identity on the unstable manifold. The previous arguments show that equation (5.176])

in the (g, p, 2) variables has the form ([5.180)).
The change of variables ¥; o W5 is then analytic in Us ,, defined in (5.179)), for some 6, p > 0.

O

5.10.3 Third step of normal form

Next lemma provides a better control of the dynamics of z = (a, b) close to (¢,p) = (0,0).

207



Lemma 5.10.3. Let N > 2 be fized. For any 1 <k < (N +1)/2, there exists a change of variables

®<qap7 Z7t> = (qap7 z+ ON+3(q7p)7t>7

analytic in a domain of the form (5.179) and of class CN*2 at (q,p) = (0,0) such that equation ([5.180)

becomes, in the new variables,
G =q((g+p)° + O4),

p=—-p((g+p)°+ 0Oy),
z= qkpkON+6—2ka
t=1,

(5.191)

where z = (a, b).

Proof. We prove the claim by induction. The case k = 1 is given by Lemmal[5.10.2} We observe that, since
equation (5.180) is analytic in Us, and C* at (0,0), the z component of the vector field, gpOn4(q,p),
can be written as

: N4
qpOnN+4(q,p) = Z (ap)" ™ (@n+a—2j(q, 2,t) + Pysa2;(p, 2.1)) + (qp)L 2 Oa(q, p),
0<j<| 552

where the functions Qnt4—2j(u, 2,t), Pnta—2j(u, 2,t) = O(uNT472), 0 < j < | 24| are analytic in a

2
domain of the form
Vs.p = {(u, z,t) € C? | Imu| < 6Rew, |u| < p, [Imt| <o, z € K7},

for some 9, p > 0.
Assume that the equation is in the form

i=q((q+p)*+04),
p=—p((qg+p)*+ O4), (5.192)
2 =q¢"p"Om(q.p),

where M = N + 6 — 2k > 5 and is analytic in Us ,. We write the terms O (¢, p) = Rm (g, p, 2,t) as

RM(CLP,Z,t) = QM(Qatvz) + PM(p7 ta Z) + ﬁM(qapvth)v

where

QM(qvtaZ) = R]\/[(Q,O,Z,t) = OM(q)v PM(pataz) = RM(Ovpazvt) = OM(p)

It is clear that ﬁM(q,p,t, z) = qpOnr—2(q, ).
We perform a change a variables to get rid of the term @Qy; and P, of the form

Z=z+¢"p"(A(q, 2,t) + B(p, z,1)). (5.193)

The equation for Z becomes .
z=¢""p" 0N 5(q,p)

if
Qu + haA+ fO,A+ 0 A =0, (5.194)
Py + haB + f0,B + ;B =0, (5.195)
where, from ,
k(dp + qp) = qp(ha(q, z,t) + ha(p, 2, t) + qpha(q, p, 2, 1)) (5.196)
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with h,4(q,2'7t) = 04((])7 il4(p,2,t) = 04(p) and BQ(qapVZat) = 02(q7p)’ and

f(qv Zut) = (j|p:0 = q4 + OB(q)a

_ A (5.197)
f(p,2,t) = Plg=0 = —p* + Os(p).

The functions f, hy, Qs and f , iL4, Py are defined respectively in the sectors
V ={Imgq| < éRegq, |q| < p, |Imt| < 0, z € KL},
V = {|lmp| < 6Rep, |p| < p, Imt| < 0, z € KL}.

Lemma 5.10.4. If p is small enough, equations (5.194)) and (5.195)) admit analytic solutions A, B,
defined in V and V', such that

sup ¢~ M=DA(q, 2,t)|, sup - lp~M=3)B(p, 2,t)| < co.
(q,2,t)eV (p,2,t)EV

respectively,

Proof of Lemma|5.10.4, We prove the claim for ((5.194]), being the proof for (5.195]) analogous.

We consider the change of variables ¢ = g(u), where g(u) satisfies

dgq

@ = f(qazat)

Since f(q, 2,t) = ¢* + O5(q), we have that

q(u) = —W(l + O 3)).

It transforms (5.194) into
LA=—-Qp — h4A, (5.198)

where
LA=0,A+ 0;A (5.199)

and Qp(u, 2,t) = Qur(q(u), z,t) and ha(u, z,t) = ha(q(u), z,t) are defined in
V ={Reu < —1/(3p%), Imu| < 3arctany|Reu|, [Imt| < o, z € K¢}
We introduce the Banach spaces
X.={a:V>C||al. < oo}

where, writing a(u, z,t) = e, ol (u, z)e',

— £ o €] a4
K = ) ’
lafle =Y sup |ual(u, 2)le
= (u,2)€U

and
U={Reu < —1/(3p%), [Imu| < 3arctany|Reu|, z € Kc}.

The following properties of the spaces X, are immediate:

1. ifa € X; and & € Xz, ad € X and

lad]|srz < llaflsllal,

2. if a € Xy, for all kK < k, a € Xz and

lallz < 3" %0 e
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It is clear that @ M € X3 and hy € Xys3. The following lemma, whose proof is omitted, is a
simplified version of Lemma [5.7.10

Lemma 5.10.5. Let § € X, with k > 1. The equation La = B has a solution G(B) € Xi_1 with
1G(B) k-1 < 11B]lx-

Using Lemma [5.10.5, we can rewrite equation (5.198)) as the fixed point equation
A= g(—éM — hyA).

But, since M > 5, the right hand side above is a contraction in Xps/3_1 if p is small enough, since, by 1.
and 2.,

1G(~Qnrr — had) = G(—Qnr — haA)||arjz—1 < |ha(A — A)l|arz
< |l hal[1[I(A = A)”M/?)—l < 31/30Hh4||4/3”(A - A)”M/S—L

Finally, since u(q) = 1/(3¢®) + O(q?), the lemma follows. O

Now we can finish the proof of Lemma [5.10.3] With the choice of A and B given by Lemma
the change of variables transforms @ into a equation of the same form with & replaced by
k+1and M by M — 2. Notice that this change of variables, since it is analytic in a sectorial domain of
the form and is of order Opri2r—3(q,p) = On+3(gq,p), it is of class CV =2 at (g,p) = (0,0). The
composition of the vector field with the change is well defined in a sectorial domain of the form ,
with ~ replaced with any 0 < 7/ < v, if p is small enough. Hence the lemma is proven. O

5.11 The parabolic Lambda Lemma: Proof of Theorem [5.5.4

The proof of Theorem will be a consequence of the following technical lemmas and is deferred to
the end of this section. To simplify the notation in this section we denote ¥ = ¥),..
Let K > 0 be such that the terms Oy, in (5.55) satisfy

1Ol < Kll(@p)l*,  (a,p,2,) €V, x W x T.

This bound is also true for (q,p, z,t) € B, x W x T, being B, = {(q,p) | l¢|, |p| < p}.

We express system ((5.55)) in a new time in which the topological saddle is a true saddle. Indeed,
since the solutions of ((5.55)) with initial condition (go, po, z0,t0) € B, x W x T with go,po > 0 satisfy
q(t) + p(t) > 0 while they belong to B, x W x T, we can write equations in the new time s such
that dt/ds = (g + p)~3. System becomes

¢ =q(1+ 01(q,p)),
p'=—p(1+ O1(q,p)),
2 =¢"pN01(q,p), (5.200)
. 1
¢ = ,
(q+p)?

where " denotes d/ds. The Oi(q,p) terms are uniformly bounded in terms of (g,p) in V, x W x T.
Given K C W, for wy = (g0, o, 20,t0) € V, x K x T, we define

Sw, =sup{s>0|w(8) eV, x WxT, Vse|0,s)}, (5.201)

where w is the solution of ((5.55)) with initial condition wy.
Next lemma implies Item 1 of Theorem
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Lemma 5.11.1. Let K C W be a compact set. There exists p and C' > 1 such that the solution
w = (q,p, z,t) of (5.200) with initial condition wy = (qo, o, 20,t0) € V, x K x T satisfies

1 1
Tor e
log<<p> ><sw0<log<<p) )
do q0

Moreover, for any 0 < a < p and 0 < 6 < a/2, the Poincaré map
v A;é(K) — Azél,CQ(W),

where the sets A s(K) are defined in (5.57), is well defined and, if w = (qo,a, 20,%0) € A;é(K) and
U(w) = (a, pl,zl,tl) then

T <p < g7

1 —3Ca
|21 — 20] §—aN(1+3C“)qéV(l 8¢ ), (5.202)

élqo_?’(l_ca)/2 <ty — ty < Oy 31FC/2

for some constants C~'1, Cy >0 depending only on a.

Proof. Let wo = (qo,po,20,t0) € V, x K x T and w = (q,p, z,t) the solution of (5.200) with initial
condition wy at s = 0. Since qg,po > 0, while w € V, x W x T, q,p > 0. Hence, there exists C' > 0,
depending only on p and W, such that

(1-Cp)g <q < (14 Cp)g,
~(1+Cp)p<p" < —(1-Cp)p, (5.203)
—Cpg™ pN <z < Cpg™p", i=1,2.

Since p is decreasing and {p = 0} is invariant, w can only leave V, x W x T if ¢ = p or z leaves W.
From ([5.203)), we have that for all s such w(3) € V, x W x T for all § € [0, s),

qoe'9P® < q(s) < et TOP)s,

(5.204)
poe” TP < p(s) < poe~(17CP)s
and
|2i(s) — 2i(0)] < 2NQ0 py (NP 1), =12 (5.205)
In particular, the time s, , to reach ¢ from gy is bounded by
q e q =5
log ((10) < Sgp,q < log (qo) , (5_206)
but, up to this time, for i = 1,2, since 0 < qg,po,q < p < 1,
e 1 1-3C 1
q 1-Cp N 1: P N 2NCp
|2i(Sq0.) — 2i(0)] < ﬁ(JO Py <q0> =gyh  Poatr < ﬁp (5.207)

Hence, taking p small enough depending on K, the solution through wg remains in V, x W x T for all s

such that .
P\
O<s<sw0<log< > .
qo

Moreover, (5.207)) ensures that the solution leaves V, x W x T through q = p
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The time sg4, 4 to reach g from go is bounded by below by

q 1+Cp
Sq0.q > log “© ) (5.208)

putting ¢ = p in (5.208]) we obtain the lower bound for s,,,.
Consequently, for any 0 < § < a < p, if wy € A;(S(K)7 the solution through wy satisfies ¢ = a at a

time s, bounded by
R N
log () < s, <log () . (5.209)
qo qo

From ([5.204]) with an analogous argument replacing p by a, this solution satisfies

—14+C

—1—-Ca
14+2Ca < ﬁ 1=ca < —(14+Ca)ss < < —(1—Ca)s« < g 1+Ca < 1—-2Ca
o =rol < poe < p(s+) < poe =rol < qp

and, for i =1, 2,
1 N1+ce N(1-3Ca)

|Zz(8*) - Zi<0)‘ < ﬁa —Ca g

It only remains to estimate t(s.) — to. Since

Sy 1
t(ss) —tg = ds,
(s52) ~to /0 (g+p)?

0<qgg<d,po=aand 2§ < a, we have that

Sx 1
t(S*) — t() 2 / 1xC 1—C SdS
0 (qoe( +Ca)s +p067( — a)s)

73Cas
———ds
/o (qoe® + poe=*)3

q 3Ca Sx 1
2 —0) e / —3d3
a o (qoe® + poe*)

(‘JO>—&C& 1 s+~log(po/a0)'/* 1
(

— log(po/q0)/2 (60 + 6_‘7)3

do

1 1 /(1—Ca)(10g 2)/(2(14+C)a) 1
2 ——=do.
q3(1+Ca)/2 q8(17Ca)/2 —(log2)/2 (60' + 6—0)3
With an analogous argument one obtains the upper bound of ¢(s.) — to. O

Let w = (¢, p, 2,t) be a solution of (5.55)) with initial condition wy € V, x K x T. We define

T =p/q (5.210)

and, from now on, abusing notation we denote O; = O;(q, p).
Clearly, 0 < 7(s) < oo, for all s such that w € V,, x K x T. It is immediate from ({5.200] that

dr

=2+ 0 (5.211)

The variational equations around a solution of system (5.55)) are

Q (a+p)°@g+p+02)  (¢+p)°e3+01) q0,4 q0, Q

P —(q+p)’pB+01) —(¢+p*(g+4p+02)  pOy4 pOy P (5.212)
Z\| gV pN Oy VN pN10, pNO, NpNos | | Z | '

T 0 0 0 0 T
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where Z = (Zl,ZQ).

In order to prove item 2) of Theorem we will have to study the behavior of the solutions of ({5.212)
with initial condition @ = Q¢ # 0 along solutions of (5.55]) with initial condition wg = (qo, po, 20,t0) €
UnN{q >0, p>0} which will be taken with py small but fixed and ¢y arbitrarily close to 0.

Equations (5.212)) become, in the time s in which (5.200)) are written and using 7 in (5.210)) ,

Q 42;{;; gi=a 90 90 Q

/ _ (B+01)T _ 144740

IZD/ = ~n-i% N, NTT 1 Np(]g\fl Np(]D\fl ]ZD (5.213)
i "~ pYO01 ¢Vpt T 01 ¢"pYO1 ¢ pY Oy

T 0 0 0 0 T

It will be convenient to perform a linear change of variables to (5.213)).

Proposition 5.11.2. There exists o, with 0 < o* < 6/5 such that for any p > 0 small enough, any
w = (q,p, 2,t), solution of with wis—o = wo = (qo, Po, 20, t0) € V, x K x T and any of € [0, ],
there exists a CN function « : [0, 8,,] — R, where s, was introduced in , with a(0) = af, such
that, in the new variables

P=P+ aQ,
system (5.212) becomes
Cg/ 4+1‘:r7—(91 _ CJL31++(2_1 i:%++(3_1 . q(91 q01 Q
P _ 0 —H‘f% L+alt9 pO, pO; P (5.214)
Z' "N O, ¢"pN O "pNO1 ¢NpNOL | | Z
T’ 0 0 0 0 T
Furthermore, for s € (0, Sy,], 2r(s)
7(s
0< < —F. 5.215
als) < o (5.215)

Proof. Given a and P=P+ a@, since 7 > 0, the equation for Pis

S50 _(3+01)T / . 23+01
P—( I +ad' +b5+01)a—«a T, Q

<1+4T+(91 3+(91>~

Ty +a 1o, P+ (p+aq)O01Z + (p+ aq)O:T, (5.216)

The claim will follow finding an appropriate solution of
o = vy + via+ vaa?, (5.217)

where (3+0)) 540
I CRE %0 _ o+ 01

Vo = 1+T ) Vl(s)* 5+01, Vo = 1—|—7’

Let f(w,a) = vg + via + vaa? be the right hand side of (5.217)), where we have omitted the dependence

of v, i =1,2,3 on w. We introduce ag and a7, the nullclines of (5.217)), by

(5.218)

f(w, a) = va(ar = (7)) (e = ax (7)),

and R, where

- (2 + 01> (1 b7 ((1 )2 (3? + 01> T) 1/2> (5.219)

- <2+01> (1+T— R(T)).

To complete the proof of Proposition [5.11.2] we need the following two auxiliary lemmas.
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Lemma 5.11.3. The function ag has the following properties. For (q,p) € V, (that is, 0 < T < 00),

~

. 4/5+ 01 </R(1)/(1+7) <1,

2. im0 ap(7) =3/5+ Oy,
3. lim, g ap(r)/T =3/5+ O4,
4.
%Oéo =—(1+0) VE- T\/%l i 010407

> (2+01)ag _ d (32/25+ O1)ag

VR a7 VR
6. and lim,_o(dao/ds)/ag = =2+ Os.

Furthermore,
0 < ap(r) < 1:_7_.

(5.220)

Proof. Ttems 1 to 6 are proven in [GK12]. The rather crude bound (5.220)) is a straightforward compu-

tation.

Next lemma provides solutions of ([5.217)) close to the nullcline «p.

O

Lemma 5.11.4. For any 0 < p < 1 small enough, the following is true. For any solution w = (¢, p, z,1t)
of (p.55)) with initial condition wy € V, x K x T, if a is a solution of (5.217)) with 0 < a(sg) < 2a0(7(s0))

for some 0 < sg < Suy,, then 0 < a(s) < 2ao(7(s)) for all s € [so, Sw,)-

Proof of Lemma|5.11.4) We only need to proof that « satisfies

do do dog
i) — 0 ii) — 2—.
@) ds |a=0 - (i) ds |a=2a0 s
Item (i) follows from
da =19>0
ds |a=0 -0 '
Now we prove (ii). Using 5 of Lemma [5.11.3] (ii) is implied by
do _3+0;

J— — 2 _
ds |a=2a0 1+ @0(2a0 —a1)

3+0 )
= 1+7_1a0 <OZO <3+01> \/E>
24+ 0,

VR

< =2

Qo,

which, since oy > 0, is equivalent to

3+0; 5 4+ 04
o (ao_(3+ol)¢§)<_ 2

for 0 < 7. Taking into account the definition of ag, (5.221)) is equivalent to prove

<125 +01> R—(4+0)(1+7)> (2 +01> (1+1)WE,
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for 0 < 7, which is equivalent to

((125+01) R—(4—|—(91)(1+T))2— (;+01>2(1+r)2R>0-

If we disregard the O terms, which are small if p is small, the above inequality simply reads

4 3 e 2 Y _ 2 2 i 2 'Y
50T 137° + 257' 3T+6—7’ <5OT 13T+25> + 307 3T+6>0.

But the above inequality holds, since 5072 — 137 + I8 > 0 and 3072 — 22746 > 0. O

Let a be any solution of with a(0) € [0,2a0(7(0))], which, by the definition of 7 and Item 2
in Lemma is a nonempty interval (recall that 7(0) > 1). By Lemma « is well defined for
s € [0, sw,) and 0 < a(s) < 2a9(7(s)). Then, bound (5.220) implies (5.215). System (5.214) is obtained
by a straightforward computation. Observe that, by & , the terms (p + aq)O; in are indeed
pol. L]

Lemma 5.11.5. Choose N > 10 in Theorem@. Let W and K be the sets considered in Theorem.
Let w = (q,p, z,t) be a solution of (5.55) with initial condition, at s = 0, wy € A;B(K). Let 3y, be

such that w(5w,) € AT 51 c(W). Let W = (Q, P,Z,T) be a solution of (5.214) with initial condition, at
s = 07 WO = (QOvﬁ()?ZOvTO)'

1. For all s € [0, Sy, ],
1(Z,T) = (Zo, To)| < Kqp °[[Woll-

2. For s = 5y,,

~ 34¢ ~
1P(3uo)| < Cag ™" (|1 Po + O1]|Wol).

8. Assume that Wy satisfies Qo # 0. Then, there exists & such that for any wg € A;(S(K),

S it+0 (310
Qun)l > € (IQol = Ca5 ™I Woll ) g .

~ ~ ~ 1

4. For any Py, there exists a linear map Q(Zo,Ty) satisfying |Q(Zo, Tp)| < C’q5’+ol(p)||(Z0,TO)||,
such that the solution W of (5.214) with initial condition Wy = (Q(Zo,To), Po, Zo,Tp) satisfies
Q(8w,) =0.

Proof. Here || - || will denote the sup-norm. Let « be any of the functions given by Lemma |5.11.4
Using (5.220)), a direct computation shows that the spectral radius of the matrix defining system (5.214))

is bounded by 7+ O1(p). Hence, if p is small enough,
W (s)| <e®[[Woll,  0<s < Zuy, (5.222)

where, by (5.200)), the time §,,, is bounded by above by

a 1-Cp
S, < log (qo) . (5.223)

Let Wo p = (Q, P) and Wz r = (Z,T). The vector Wz 1 satisfies
Wé,T = quNOIWZ,T + qN_le_IO1WQ’p.

Since, by ([5.204]),

lg¥ 1N L0 W bl < (gopo)™N 12N W, pll < (qopo)™Y e T |
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and N > 10, we have that, for 0 < s < §,,,, if p is small enough,
IWzr(s) = Wzr(0)]| < Kgb " [Wall,

for some constant K. This proves Item 1.
Now we prove Item 2. The equation for P is

P' = AP +pO1Wz T,
where
]. + 47_ + 01 3 =+ Ol
- + « .
1+ 1+7
Using the bounds on « given by Lemma [5.11.4] and (5.215)), a straightforward computation shows that,
if p is small enough, for all 7 > 0, A < —3/5. Hence, using again (5.204), |P(s)| < (|Po| + OlHWO”)e*%S’

which, taking into account the bound of §,,,, implies Item 2.
To prove Item 3, observe that the equation for @ is

A:

Q = AQ + BP + qO\ Wy,

where

~ 4474+ 04 3+ 0, ~ 3+ 0,
A= -« , B= .
1+7 1+7 1+7

Again, a straightforward computation shows that, if p is small enough, A > 3/5. Defining u(s) =
exp [ A(c) do, we have that

Q(s) = u(s) {Qo + /OS u(=0)(B(0)P(0) + 4(0)01Wz,1(0)) do (5.224)

We bound the terms in the integral in the following way. First we observe that, using (5.211)),

~ 0 3401 _q 340
0< B(o) = 11 < pio%g 4 e~ (2+01(p))s

< (34 0)eH01e)s,
Do

Hence, by the previous bound on }5, for some constant K > 0,

/0 ) u(—0)B(0)P(0) do

< (Pl +01||W0|\)(3+01)%2/ (340107 g
0

< K(|Py| + O |[Wo[)goe 3O (D)=,

Using (5.204)) to bound ¢(s), the other term in the integral can be bounded as

/03 u(—0)q(0)O1 Wz r(0) do

< 01(p)||WoH(Jo/ e(3+01(0) g
0
< Ol(P)||W0HQO€(%+Ol(p))S-

That is, since 0 < s < 5, and using (5.223),

]Qo+ / u(—0)(B(0)P(0) + q(0)O1 War(0)) do| > Qo — Kqi T | Wo|l.

Since 0 < go < d, substituting this bound into ([5.224) and evaluating at s = §,,,, we obtain 3.
Item 4 follows immediately from the bounds of the terms inside the brackets in (|5.224]). O
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Proof of Theorem [5.5.7} Lemma 1| proves that the Poincaré map W : A 5(K) — AL ;i _c. (W) is well
defined for any compact K C W 1 l 26 < a are small enough and also 1mphes the estlmates of Item 1
of Theorem [(.5.41

Given I C R, an interval, let v(u) = (qo(u),a, 20(u), to(u)), u € I be a C* curve in A, s(K) with
0 < q(u) <d,and ¥ = Vo= (a,p1,2z,t1), which is well defined if ¢ is small enough. Along thls proof
we choose different curves v(u).

Let us compute 7' (u). Let X = (X, Xp, X,, X;) denote the vector field in and w = (q,p, 2, t).
Since (u) = ©¢, (u)—to(u) (Y(u)), we have that

0
() = | P | = Doyt (1007 () + XG0 () — ()
t(u)
%tl(u)ftom) + ))gq((i((u))))((t’l ((u; - té((u))))
_ 1 (u)—to (u) + Xp(F(w)) (] (u) — to(u
= Ziw—r +Xz<7<u>><ti<u>—t2<u>> . (522)

Tity (uy—to(u) + Xe(F(w)) (t1(u) — to(u))
where (Q, P, Z,T) is the solution of (5.212)) along ¢;_, () (7(u)) with initial condition ' (u).
p.225)),

From the first component of (5.

Q\tl(u to(
Xq(¥(u ))

We observe that X,(3(u)) = a(a + O(go(u)'~C1(9))3 1- O(a?)).

We _choose « in Lemma [5.11.4] such that a(0) = 0. We apply the change of variables of Propo-
sition and consider (Q,P,Z,T), the corresponding solution of . By the choice of «a,
(QPZT)S 0_(QPZT)\9 0-

Now we prove Item 2 of Theoremn Assume q( )=u,0<u<d. Let WO =(Q° PO Zg,Tuo) =
' (u). Let (Qu, Py, Zy,Ty) be the solution of with initial condition W2 and (Qu,Pu,Zu,T ),
the solution of with the same initial condition. If ¢ is small enough, supg.,.s |7 (vw)|| =

SUPgcucs W2l < 2||WQ||. Hence, if § is small enough, by item 3 of Lemma|5.11.5

t1(u) — to(u) = (5.226)

QuEu)| = € (|QU] — Cut* R @ W] ) um GO0 > ClQfJu=(+O0),
In the case we are considering, Q% = 1. This inequality, combined with ([5.226)), implies
Ith (u) — th ()| > Cu~ (BT, (5.227)

Hence, by item 2 of Lemma [5.11.5{ the bound of a given by Lemma [5.11.4] bound (|5.220), (5.226] and
the facts that 7" = 0, T = th(u), | X,(F(w))| < Cq(u)*~%* and | X,(F(u))| < C,

Pi(w)| _ [Pu(Sy) + Xp(3(w)) [t (u) — to(u)]
th(u) 1 (u)]
| Pu(5y(u)) + Xp(3(w)) (1 (u) — t5(u)] Ito(u)]
ST W - )] (1 )
< C|PU(§7(u)) - O‘(g'y(u))Qu(~'y(u)) + X (77( ))(tll (u) - té](u))l
T [t (u) — to(u)]
_ C|Pu(§'y(u)) + (85 u)) Xq(5(1)) + Xp(F(w))] (#1 (u) — 5 (u))]
[t (u) — to(u)]
. ‘P ( 'y(u))| ~ ~ -
=C <|t’1()—t’() + |(04(5w(u))Xq(’Y(U)) + Xp(’Y(U))|>
< 6,“1700,.
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And, analogously, using Item 1 of Lemma [5.11.5] and the fact that N > 10, we obtain that

W) 1 Zulun) + Xo () (E () — ()] [, | [th(u)
)| = 71 (u) — t(w))] <1 * |ta<u>>
12, (Gu) »
_C<|t/( ) — t)(u)] + X2 (3( ))l)
< C’uo a

which proves Item 2 of Theorem [5.5.4
Now we prove Item 3 of Theorem We first observe that, using (5.222)), (5.223)) and (5.226),

11 () =ty (w)] < ClQu(3,aw)| < Calu)* W, |.
Then, using Item 1 of Lemma [5.11.5|and, since N > 10, | X, (¥(u))| < Cq(u)VN =%,

[21(u) = 20 ()] = | Zjt, ()~ to(w) — Zjo + X=(F(w)) (t1 () — to(u))|
< Cq(u)™ W l.

Hence, Item 3 is proven.
We finally prove Item 4. Let Gy € (0,6) and wo = (qo, a, Zo, to) € Ay (K). Taking into account ([5.227]),
which also holds in this case, by the Implicit Function Theorem, the equation

t1<Q7 a>Z7t> —t= t1(607a7 20750) - g()

defines a function ¢ = go(z,t), with (z,?) in neighborhood of (z0,t0). Given (zo(u),to(u)), any curve in
K x T with 20(0) = Zo and #o(0) = to, let v(u) = (qo(20(u),t0(w)), a, 20(u), to(w)) and Y(a,p1, 21, t1) =
U o 4. Since, by the definition of the function qg, (t1(u) — to(u))’ = 0, from (5.225) we obtain that

where (Q, P, Z,T) is the solution of (5.212)) along ¢4, (7(0)) with initial condition +/(0). In par-
ticular, Q¢ (u _to(u) = 0. But, then, this 1mphes that Q‘O has to be the value QO given by Item 4 of

Lemma Moreover, this implies Pl¢, (u)—to(u) = P|t1(u) _to(u)- From the bounds of Lemma |5.11.5
follow 4 of Theorem m O

5.12 Conjugation with the Bernouilli shift

We devote_this section to prove Propositions [5.6.4] and [5.6.5] This is done in several steps. First, in
Section we analyze the differential of the return maps \Ill j defined in (5.64). In particular, we

al ze 1ts expandln contracting and center directions. Then, in Section [5.12.2) [5.12.2] we prove Proposition
In Section , we analyze the differential of \I/ the high iterate of the return map defined in
5.67. Finally, in Section we use these cone fields to prove Proposition W

5.12.1 The differential of the intermediate return maps

1o}

In the following lemma, we write a vector v € T, Q% in the basis p 6‘97, 559

given by the coordinates defined by A;.

o 0
where 2 55 stands for (57—, 5.-),

Lemma 5.12.1. Let N be fixred. Assume & small enough.
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1. The vector field
0

v = 1
0

satisfies that, for any w = (p,7,2) € Q45N \TJZJI(Q%),
DU, j(w)vr = N (w)(v1 + 517 (w)),  1<i,j<2
where \T/” is the return map defined in (5.64) written in coordinates (p,T,z) and

Ni(w) 2 7 8+C,

77, (w )ISO(T“G“), T (w) =0, [[TLw) <o(T%fC‘a),

Moreover, for any vector

for |bl,]c| <1 one has
D j(w)ir = N(@) (0 + 97 (),  1<ij<2,

RN .
for some vector v;” satisfying

(5.228)

(5.229)

o) <0 (T6), it 9@l <0 (T59)  and X (@)l @) < 01).

2. There exist CV vector fields vé’j : Q% = TO%, 4,7 =1,2, of the form
1
W= ww |
v5.(2) + 03 (w)

where the functions v5 , depend only on z and satisfy ||v5 . (2)| = O(1), and

352 @) = 0@ +0 (r37%), i@l <o(r),  i=1z2,

such that for any w = (p,7,2) € Q%N @;;(Qg), the following holds.

DU, j(w)vy? (w) = A7 (w) (057 (U5 () + 057 (),  1<4,j <2,

where

Ay (w) Tz e

055w) =0, |iyl @] <0 (r7%), ol <o (r8%).

3. For any v,(z), C° vector field in R?, i,j = 1,2, there exist vector fields

. 0 0
v (w) = 0 + @;](w) ,
v.(2) 0

with [057| < O(11/5=¢®), such that the following holds.
0

D\T!id- (W)™ (w) = 0 + 0% (w), ||17”H < O(Tl/5fca,a).

D/S\l-(z)vz(z)
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Proof. We start with v1. For any w = (p, 7, 2) € Q%, z = (21, 22), we have that, in view of (5.62),

N - Oa(7) vi(z) + O1(p,7) O1(7) 0
DUqopi(w)vr = | v2(2) + O:(p,7) Oilp) - Oulp) 1
Sip(2) + O1(p,7)  Sir(2) + O1(p,7) DSi(2) + O1(p, 7)) \0
1
= (vi(2) + O1(p, 7)) O1(p, ) ,

Sir(z)vi(2)7 + O1(p, 7)

where gm,(z) = 0p7:Wgl0p,i (0,0, 2) and gw(z) = 0,7 Vg101,:(0,0, 2). Hence, using that (¢*, 0%, 2") =
Walob i (w) satisfies ¢* = 704 (2)(1 4 O1(p, 7)), by Item 2 of Theorem we have that, using (5.61)) and
(15.60)

DV, j(w)vr = DAV (A7 (@) DW1oc,ig (B © Uyton,i(w)) DB} (Lyton,i (w)) DWgion,i(w)or

7

1
= (1 (2) + O1(p, 7)) DA; (Vi (AT () DW1oc,i, (B7 ' © Wgtob,i(w)) | Oolp, )
OO(pa T)
: Py
=MW )+ 0:1(p,7) | 1 |,
Zi;
where, for some C' > 0,
M@ R R0 (P70, 12 <0 (1)

This proves the claim for vy, taking \é(w) = A1 (w)(¥%(2) + O1(p,7)). The proof of the second statement
of Item 1 follows exactly the same lines.

~

We now prove Item 2. Let v} (z) = Si.»(Si(2)), where :S'\“,(z) = 8ngilgléb7i(0,0,z). We observe

that, since ¥; ; = Wioc ;5 0 Yglob s,

(DFis()) = D)) = DOl Nk o T g (@)D ) ()

= D(U 0y ) (Tgtoni (@) DL, ) (Vi 5(w)).

First of all, we notice that, denoting \Tl” (w) = (p, 7, 2), by (5.62) and Item 1 of Theorem

(T4 () (L + O1(p, 7)) < < (T04(2)) 794 (1 + O (p, 7). (5.233)
Then, since _
\111;(1:,1‘,3‘ =B, o \Ilexlzi,j o Aj_l,

applying Item 2 of Theoremmto (U1oc,i,5) " (that is, applying Item 2 of Theorem changing the

sign of the vector field), evaluated at A;l o V; i(w), and to the vector vy? in (5.230),

_ N o (9
D(Wioe; (Wi (w))og? (W j(w) = A57(w) | 1|,
Zi;
where, for some C > 0,
j\gj(w) > 7.—%—!—6‘:17 |Q;]| <O (Tl—éa) , ||Z:]|| <0 (T%—Ca> _

220



Hence, by (5.63)),
Jr J,—1

DU, j(w) "0 (W; 5 (w) = DT gl ) (Vgion,i (@) DTt (T 5 (w))vd (T 5(w))

= @)Dk, ) (Fyona@) | 1]
Zi
o - Ou(n) 11 (Si(2) + Or(p,7) O1(7) 1,
W | 4G 0 O) o) 1
Siq(8i(2)) + O1(p, 1) Si0(8i(2)) +O1(p,7) D(S;1)(Sil(2) + Or(p, 7)) \Z;
1
=N (@) E) + 0 n) | T :
Sia(8i(2)) + 27

where §i7q(z) = aqwz\fl !

alobi(0,0,2) and §“,(z) = 9,m. U}

g_lob}i(O, 0, z) and

7551 < 01(p) + 0 (8790) 127, < O (73-C).

The claim follows taking (A57) ™1 (w) = A7 (w) (14 (Si(2)) + O1(p, 7). N N
Finally, we prove Item 3. In order to find the vector fields, we look for v*/ = vg + 9"/ (p, 7, 2), with
vo = (0,0,v,)" and %7 = (0,979 + 0775, 0)". Note that both corrections appear in the 7-direction. We
write down them separated since they will play different roles. Roughly speaking 1717]1 will be obtained
by applying Item 4 in Theorem whereas 17172 is obtained by applying Item 2 in the same theorem.
We have that

. g vi(2)5] + Or(p, 7)™ Vi(2)5)
DT ()0 ) = Oup, w0
DS;(2)v. + Si+(2)877) + O1(p, 70" Sir(2)i0
Hence, by (5.61]),
DB (Wagion,i () Do, i(w)v'™ (w) = wn (w) + wa(w) (5.234)

with

Vi(2)77) + Or(p, 7)™

wi(w) = | =Bi2(Si(2))DSi(2)vs — | Bi1 (Si(2))vi (2) + 51‘,2(/3\1'(2))51‘,7(2)} T+ Or(p, T | (5.235)
DS;(2)v, + §”(2)5i]1 + O1(p, T)v"

Vi (2)57%

wa(w) = | = [Ba G () + BiaEi()5ir(2)] 50 (5.236)

§i,'r (Z)f)'lr’fz

where the functions 3; 1(z) = —825; (0,0,2) and B0 = —(t%)'(2) — 825 (0,0, 2) (see (5.61))).
Since my (Wgion, i (w)) = vi(2)7(1 4+ Oy1(p, 7)), (see (5.62)), by Item 4 of Lemma [5.11.5{ with P, = 0,

there exists a linear map Q(B; ' o Wgop.i(w)), with 1Q(B; ! o \Tlglob’i(w))H < O(71/%), such that if w,
satisfies B _
Taw1 (W) = Q(B; 0 Waiop i (W) [ w1 (w)] (5.237)

then N
'/TtD\Illoc,i,j (Bl_l o \Pglob,i(w))wl(w) = 7T{U.)1(CU),

75 DW1oc,i.3 (B; ™ © Wto,i(w))wi(w)] < O(T5=9%) ||y swn (w)ll,
7= DW10c,i5(B;” © Wgion,i(w))uwn (W) = mown (w)]| < O(7)||wi ().
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We use this fact to choose a suitable w; (by choosing a suitable #27).
Moreover, since i does not vanish, from Item 2 of Theorem

P*
DWloc,i,j (B 0 Ugion,i(w))wa(w) = Aw)vi (2)oh(w) [ 1
Z*
with
M) 2700 P OO, |20 < 00,

Then, if we assume for a moment that (5.237)) is satisfied, cumbersome but straightforward computations
lead to

o AW ()5 ()Pt + O(r3/5-Cayyi
D, ;(w)o' = To(@) + O1(p, ot + AT (%) (5.238)
D8i(2)v. + 8 p(2)05) + O1(p, 7)v"7 + Aw)vi (2)07% (w) Z*
where
To(w) = [0 2(8i(2)) — Bi2(8i(2))] D8;(2)vs — ((ﬁi,l(gi(Z))—Oéi,1(§i(2)))l/i(2)
+ (Bi2(8(2)) — 1.2 (Bi(2))) Sip ()

Si
Ti(w) =i (2) [1 + (@:,1(8i(2)) + Os(p, 7)) P* (Oézz( i(2)) + O1(p, 7)) Z7]
where o 1 = —9,W5(p, z) and a; 5 = —0,t3(2) — .3 (p, z). Note that for small (p,7), Ty (w) > 1.
We choose 1 B

(W) = ———=—Tp(w). 5.239
72(w) T @) o(w) (5.239)

Observe that this choice of 17;2 is linear in vil and satisfies
B(w) = O(F¥/570%) 4 O(/5=C)i (w)

Inserting this choice of @ZTJQ in (5.237)), we obtain the fixed point equation for T

7,1

i 1 ~/p—1 (w TV(W) bind
0 = () <Q(Bz 0 Wygion i (W)) ((D/S\z( Yo, +Szp( )i ) + O1(p, 1) >> .

It clearly has a solution 17;]1 = O(1'/%)||v.|. Then, taking into account (5.238) and (5.239)), we have that

T D, (W)™ = N1V (2)00% (W) P* + O(r3/5=C)id = O(r3/5=Cayy,

and _ N N
WTD\IIi,j (w)vl)] = Ol (pa T)UZJ = Ol (pv T)Uz

This completes the proof of Item 3. O

5.12.2 Horizontal and vertical strips: Proof of Proposition |5.6.4
Proposition is direct consequence of the following lemma.
Lemma 5.12.2. For any horizontal surface,

Sh=A{p. 70, J) € Q3 | (0, J) = (ha(7,0), ha(7,9)), (7, 9) € (0,6) x (0,R)} C s,
with h a C' function satisfying

sup Ha‘l'hl(7_7 90)” < 0(1)7 sup ”a@hl(Tv (P)H < 0(5), (5.240)
(1,¢)€(0,0) % (0,R) (7,¢)€(0,6) % (0,R)
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U(SK)N Q2 has an infinite number of connected components. Moreover, U(S,)N 9% contains a countable
union of horizontal surfaces, Sy, , with lim,_, o hy, 1 = 0, in the C° topology and

|a‘rhn,1| 5 0(5)a |atphn,1| 5 O(R(S),
|0rhn 2] S O0) + O(R), [0phn2| S O(R).

Analogously, for any vertical surface,

SU = {(paTaSOv J) € Qg | (Ta 90) = (Ul(pa J)aUQ(pa J))7 (p7 J) € (0,(5) X (Oai%)} C 227
with v a C' function satisfying

sup [0pv1 (T, 9)[| < O(1), sup [0svi(r, @) < O(9), (5.241)
(p,J)€(0,8) % (0,R) (p,J)€(0,8) x (0,&)

\Tl_l(Sv) N Q% has an infinite number of connected components. Moreover, \Tl_l(Sv) N Q% contains a
countable union of vertical surfaces, S, , with lim, . v, = 0, in the C° topology and

|8pvn71| S 0(9), |8Jhn,l| S O(&6),
‘aphn’2| 5 0(1)7 |8Jhn,2| 5 O(’%)

In particular, Lip hy, < O(0) + O(R) and Lipv, < O(1), uniformly in n.

Proof. In this proof we denote z = (z1,22) = (¢, J). Let h: (0,9) x (0,%) — (0,d) x (0,&) be a function
satisfying ([5.240)). Let

Ao(7,21) = (ha(1,21), 7, 21, ha(7,21)) T and  Ay(7,21) = Waq 0 Ag(7,21) = (b1, T, Z) " (7, 21).
(5.242)
By Item 1 of Theorem the definition of Wy ; in (5.64)) and the expression of Wyioh 2 in (5.62), we
have that _
T(1,21) 2 77 3/2+Ca, (5.243)

for all z; € (0,%). Hence, for any n € N, sufficiently large, there exist 7, ,, < Tfn such that T(Tf:n, z1) <

n<n+d< T(Tf,n,zl), for all 21 € (0, %) and, moreover, Tli,n — 0 as n — +oo.
By Item 1 of Lemma [5.12.1]

Orhy (7, 21) AT, z1)e1(T, 21)
0: A1 (7, 21) = DUy 0 Ag(r, 21) (1) = ZAl(ZT’fle)) (5.244)
Orha(T, 21) Zs(T, 21)
where,
AT, z1)| 2 CT704C  ey(r )| S 779 (Zu(r, 2), Za(m, 20) | S OQD). (5.245)

In particular, |0, T (7, z1)| = |A(1, z1)| > C73/5%Ce_ Hence, the equation
T(Ta Zl) =T

defines a function 71 (T, z1), for T > 0 large enough and z; € (0, &), such that 7, < #(T,21) < 71, for
T € [n,n+ 6], with Op71(T(7,21),21) = A" (#1(T, 21), 21). Taking Tf:n small enough by taking n large
enough, we can assume that 71 (T, 2;)/°~¢* < O(6) for T € [n, n+6]. Moreover SUPTefn,nts] T1(1521) = 0
as n — +00.
We define B
Al(T, Zl) = A1(7A'1(T, Zl), 21).
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By construction, 7,A1(T,z1) = T and, by Item 1 of Theorem SUP e n,nts] Tph1(T,21) — 0 as
n — +o0o. In view of ([5.244)), it satisfies

8TA1(T, 21) = 8-,—K1(7A'1 (T, Zl), Z1)8T7A'1 (T, Zl) =

Moreover, by (5.62) and Item 1 of Theorem the third component of A;, satisfies

|7T21 Al (Tv Zl) - 7TZ1/S\2(217 hQ(’f_l (Ta Zl)v Zl))|
= |71'Z1 @2)1 [¢] Ao(’f'l (T, Zl), Zl) — ’/Tzl/S\z(Zl, hQ(’TA'l (T, Zl), Zl))| S 0(6) (5246)
Now we compute the derivatives of A; with respect to z;. We have that
O A1 (T, 21) = ., | My (11 (T, 21),21)]
= DUy 0 Ag(71(T, 21), 21) [0- Mo (71 (T, 21), 21) 02y 71 (T 21) + 82y Ao (71(T, 21), 21)] -

We write the vector 9., Ag(71 (T, z1),21) as

0z, h1 1 0 0
@A) AT o)) = | O | =aum [ 2]+ d —d+a.mb) | L], (527
1 A0 )\T1ldL 5 21),21) = 1 = 0zl e 1— 0., hicy 21101 ol .
821 h2 C2 821 hg — 621 h102 0
where
e b, ¢ = (c1,cq) are the functions given by Item 2 of Lemma [5.12.1| such that
b7z SOGHTT), l(er e2)(r.21)| £ O)
and _
D\I/271 o AO(%l(T7 Zl)a Zl)(la b7 C)T = :u(%h Zl)(lv b*a C*)T
with I
u(F1,2)] S OGP, () SO6), (el ) (r2)] S 0()
o d=0(#/779") is given by Item 3 of Lemma [5.12.1] satisfies
0 dy
DUy 0 Ag(71(T d = “
sefolntmz 2|y g e | = D& e harran) (L o) gy
0. ha — 0., hicy A 0z ha — 0, hico 3

. * « * ~1/5—Ca
with |[(d3, d3, d5)[| = O(7/°~9%).

Then, applying Item 1 of Lemmal5.12.1|to (d+9.,h1b)(0,1,0,0) ", using formula (5.247)) and the previous
bounds for u, b* and dj, we obtain

mr Dy 0 Ao(71(T, 21), 21)02, Mo (F1 (T, 21), 21) = A(F1, 21)(d + D2, hab) + O(7779%). (5.248)

By using the second part of Item 1 of Lemma [5.12.1| (see ([5.229)),

7DV, 0 Mo(F1(T, 1), 20)0, Ao(71(T, 1), 20)0, 71 (T, 21) = A, 1) (14 O(/°79) ) 0., 7(T, 1),
(5.249)
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Now, since 7 A1 (T, z1) = T, we have that 770,, A1(T, z1) = 0. Then, combining ([5.248]) and (5.249) we
obtain that

821’%1(1—‘, Zl) = 0(5)

This bound is not good enough. In order to improve it, we introduce A = 9;h10,,71 + 9., h1 = O(5) and
rewrite 0,, [Ao(71(T, 21), 21)] as

1 0 0

0. [Ao(A(T, 1), 20 = A | P | + d ([t Ab—a, ) |
1 ) ’ & 1 7A61 1 0}’

Co 8Th2c'921%1 +8zlh2 — Aéy 0

where, again, b = O(0), ¢é = (¢1,é) = O(1) are the functions given by Item 2 of Lemma [5.12.1] and
d = O(#}/°79*) is given by Item 3 of Lemma [5.12.1, Then,

DUy 0 Ag(71(T, 1), 21)0z, [No(71(T, 21), 21)]
1 0(%) AO(9)

0(9) O(9) - = . A
- /J'A 0(1) + . . 1 —Aél —(G—FAb—alel) 0(1) s
0(1) DS (217h2(7'1721)) (&-hg@zlﬁ 0. hy — AEg) + 0(5) 0(1)

where |u(71,21)| S O(%f/‘r’*ca) = O(0). Hence, using again that npA1(T,21) = T, we obtain that
a+ Ab— 0,,71 = O(8)/A. This implies that

10, A (T, 21) = A + O(0) — (a + Ab — 0., 71)AO(5) = O(3).

Summarizing,
(’)gé) ggg;
aTAl(T7 Zl) = s azlAl(T, Zl) = R
o) D8(1. ha(f1, 21)) ( @}hz) +0()

Now we proceed by induction, defining 1~\j = \Tlm oAj_q, for 2 < j < M. With the same argument,

- A;(7,21) =T defines a function 7;(7, z1), with T large enough, such that A;(T, z1) = Aj(7;(T, z1), 21)
satisfies

O(9) 0(9)
1 O(6)
OrA;(T,z1) = v O N(T, 21) =
o) D(EY 1 08) (o1, ha(hy, 21)) <8Z11h2) +0()
and
72 A (T, 21) — 2, (81)7 71 082 (21, ha(F5, 21))| S O(6). (5.250)

Of course, the O(0) terms depend on j.
In the last step, we define Apr11(7,21) = W19 0 Apr(7,21), defined for 7 € (0,d). With the same
argument to obtain (5.243)), we have that

Thrsa(m,21) = wrAarga (7, 21) > Cr3/2+00
and, from (|5.244)) and (|5.245|),

18, Tari1 (1, 21)| = |A(7, 21)| > Cr—3/5+C0,

Hence, the equation B
TM+1(7'7 21) =T
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defines a function 73741 (7T, 21), for T large enough and z; € (0, 8), strictly decreasing in 7 with imp_ o Tar+1(T, 21) =
0, uniformly in 2y, with Op7yo1(T(7,21),21) = MFame1(T, 21),21) " With the previous arguments,
Ari1(T, 21) = Aprgr (T +1(T' 21), 21)

|7721AM+1(T7 Zl) - 71-zl/s\(zh h2(7A'M+17 Zl))| 5 0(5), (5251)
and
0(9) 0(9)
1 O(6
OrAp1 (T, 21) = o) | O A1 (Tyz21) = | ©) 1 , (5.252)
O((S) DS(Zl,hQ(TM+1,Zl)) <az1h2) +O(§)
where S = (8!)™ 082 was introduced in of Theorem Since, by Item 3 of Theorem m
7o D821, ha(iargn, o) (5 5 )| 2370, (5.253)
0., ha

the equation m,, Apr41(T, 21) = Z1 defines a function Zpr11 (T, Z1), with T large enough and Z; € (0, R).
Using (5.252)) and ([5.253|), we immediately have

012041(T, Z1)| S O(6R), [0z, 2m+1(T, Z1)| S O(R).
Then, AT, Z1) = Api41 (T, Zpm+1 (T, Z1)) is defined for T' large enough and Z; € (0, &), satisfies
’/TTA(T,Zl) =T, 7rZ1A(T7 Zl) = 71,

and, denoting h = (hy, hy) = (mpA, 7.,A),

o= (owrom) 2= (o)

Moreover, if we denote by h, = (Bn,l, ﬁnz) the restriction of h to T € [n,n + §], it satisfies that

lim hn,l =0.
n—00

This proves the claim for the horizontal bands. The claim for the vertical one is proven analogously. [

5.12.3 The differential of the high iterate of the return map

In this section we analyze the differential of the map ¥ in . Note that this map is a composition of the
return maps \T/” (see ), whose differentials have been studied in Section In that section we
have obtained a good basis at each point of the tangent space which captures the expanding, contracting
and center direction for each map ¥, ;. Note however that the basis depends on the map (and certainly
on the point!). Therefore, one has to adjust these bases so that they capture the expanding/contracting
behavior for the differential of ¥. This is done in Proposition below.

First we state a lemma, which is an immediate consequence of Lemma, and matrix products.

Lemma 5.12.3. Consider the vector fields {v1, Ué’j,vg’j,vij}, i =1,2, where v; and v;’j are the vectors

in Items 1 and 2 of Lemma[5.12.1) and

U?&’j =e3+ ﬁg’j, Uf; =e4+ ,Di,j’
where e3 = (0,0,1,0)7, eq = (0,0,0,1)T and ﬁéj and ﬁi’j are such that v;’j and vi’j satisfy Item 3 of

Lemma|5.12.1, They form a basis of T,,Q% at any w = (p,7,2) € Qs N \IJ;jl(Qg). Let C; j(w) denote the
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matriz of the change of coordinates from the standard basis to {Ul,’UQJ,’US ,v4’]} Then,

)\271 Iu271€2,1 62’1
~ ~ 1 2
Mo (w) = O 1 (Va1 (w) ' DWy (W) Can(w) = | A21e2! p2:t et ,
)\2’152’1 ul(agy + 52’1) DS%(z2) + €$’1
ALL Ml,lg%,l 5%’1
M1,1(w) = C’l,l(‘11171(w))*1D\I/171(w)Cl,l(w) = )\1’18;)’1 ,ul’l R Ei’l y
Ablegt pblegt DSY(z) + g7
. s . (5.254)
N - _ AT oy 5y
My (@) = Cra(W11 (W) DV 1 (w)Cra(w) = [ AbLeg At ot :
Aast it (ar s 4+ 667)  DSY(z) 4 607
N B )\1,2 M1’251’2 6;2
M 2(w) = Cz1 (V1 9(w)) " DT 5(w)Cy 2(w) = [ Ab2ey? 2 ey’ ,
A2l 12 (ay  +eg?) DSY(2) 4 er”?

where 1
b (@), 1B @), < O(F3748),  k=1,...,7,

N (@), A (W), 1 (w) i @) T 2 e
and a; ; = a; (2), i,§ = 1,2 satisfy |a; ;] < O(1).

This lemma provides formulas for the differential of the intermediate return maps in “good bases”.
The next proposition provides a good basis for the high iterate of the return map ¥ in ((5.67).

Proposition 5.12.4. Conszder & given by Theorem[5.4.7 and § > 0 small enough. Consider also the
map ¥ = Uy 50 \111 1 o \Ilg 1 defined in Q% C . There ezists C : Q3 N U- 1(Q2) — Myxa(R) of the
form

C(w) = Co1(w)C(w)Cs(w)
where Ca 1(w) is the matriz introduced in Lemma

~ 1 a(w) bw)
Cwy=(0 1 0o 1, a(w), b(w) = (’)(7-3/5’1—01151/5’))7
0 0 Id
and, for w = (p,7,2),
1 0 0 0
01 0 0
C§( ) O 0 1 ‘/‘271(2) ’
0 0 O 1
where Va1 is given by Item 3 of Theorem [5.4.7, such that
A e £7 €10
~ 1A Xeo p(l+e6) €3 €11
1 _
C(¥(w))" DY (w)C(w) = Aes e s )\§—1€12 ) (5.255)
)\64 /1,52 )\gé‘g )\g_l
where
Mw) 277 3HCag=3M5 ) 2 R0 5 6 = 0(1), el S O8Y9),

forj=2,...,11, j #9,
leol, le12] S &
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and Ag > &1 was introduced in Item 3 of Theorem .
Analogously, there exists C : QF N W(Q3%) — Myxa(R) of the form

C(T(w)) = Co1 (¥(w))C* (¥ (w))Cs (w)

with
1 0 } 0 i
C*(P(W) = law) 1 bw)]|, aw),bw)=0(E*5C),
0 0 Id
and’ fO?" w(pv T, Z);
1 0 0 0
* 10 10 0
Cg(W) 1o 0 1 17 1((’3\)—1(2:)) ;
0 0 O 1
such that ]
ﬁél )\?5 E~8 511
C(w)™ D) (W (w)C(P(w)) = g2 A & €12 (5.256)
53 )\56 )\,sfl )\’sfléll’, ) .
54 )\57 A”S‘élo )\§
where ) 3
Mw) > 6-3M+D/5, fi(w)™ > 678, 5] < 055,

forj=1,...,12, 5 # 10,13,
€101, €13] S R,

Proof. In view of Lemma [5.12.3] we write

Co1 (U(w)) DU (w)Co 1 (w) = Mps(w) - - - Mo(w), (5.257)
where the matrices
Mo(w) = Mg 1(w)
Mj(w) = Mia (B o Uon (), j=1,...,M -2,
Mar-1(w) = My (T2 0 Uy 1 (w)),
M (w) = My (U1 0 Uy (w)),

are given by Lemma [5.12.3] The product of the matrices in (5.257)), in the current form, is difficult to
control. We find an adapted basis in which this product of matrices has a more convenient expression.
We proceed in the following way. We claim that, for any 0 < j < M, there exists a matrix

L oa; b _
Ci=10 1 0|, Jagl[I8]| < Karr®/5-Cagirsnss, (5.258)
0 0 Id

where Ky is a constant depending only on M, such that, if we define (NI’]- = éj,le with j > 0, C_y= Id,
satisfies

~ Aj 0 0
M; . MGy = | Ngja p(l+e50) &3 (5.259)
5\]‘5]‘,4 e, Sj + €55
with _
S;i(2) = D((8')7 ! 0 8%)(2) (5.260)
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and

S\j > 7_—3/5-&-6‘11(5—3(J'—1)/57 M_l > T—3/5+Ca, ik = (/)(51/5)7 O(l) (5.261)
The constants involved in the above equalities depend only on M.

We prove this claim by induction. The case j = 0 follows from the expression of My = My ; given
Lemma[5.12.3] taking Cy = Cy as in ([5.258|) with

- M2,1€271 62,1
A0 = >\2’13 H = ,u2’13 Qo = — )\2,11 ) BO = 7)\3,1 :
Now assume that (5.259)) holds for j — 1, with 1 < j < M — 2, that is, there exists C~'j_1 such that

M; (Mjr - MoCi 1 )

Aj

migia €2 A 0 0
= | Néis Hy €j4 Aj-1gj-11 (1 +ej-12) €j-1,3
Ai€is  Migie  SitEit) \Nji_1gj_14 ficj 1 Sii1+¢e 15
with
o~
(Ajo ) = (ABE b o Wi o Wy y
Sj=D8' om, W] oWy, (5.262)
éj,k:E]];’lo@jl"zlo\AI;2,la k:1777

where 7, is the projection onto the z component. Observe that, by hypothesis, \Il{_ll ) @Q’I(W) € Qé and
therefore WT@{EI o @2@(&)), WP\T!{? o @271(w) € (0,6). In particular, by Lemma |5.12.3
Nl b ™t 2 8730

and  |&j,] < 0V°.
Then, the elements of the top row of M;M;_;... Moéj_l are

- - 1 3 3
A=A (1 + x (1j€jagj—11 + 5]',26]'1,4))
J

(5.263)
> §=3/57-3/5+Ca§=3(j=2)/5 > 1=3/5+Cag=3(j=1)/5
and B
D1 = p(pigjn(l+ejm12) +€52¢j-1),  Da=p&jaej_13 +E52(Sj—1 +€j-1,5).
Hence, taking
a; = _& -0 (72(3/57011)5(3j+1)/5) , 5;‘ _ _& -0 (T3/570a5(3j+1)/5) :
Aj Aj
we have that ~
) ) Aj 0 0
Mj./\/lj_l ...Mon_le = %\j{fj’l ,u(].+€j,2) _ €4,3 y
/\j8j74 HCj Sj + €4,5
for some €, k=1...5 and c;.
Note that €;; and ;4 do not depend on the choice of o; and ;. Indeed, using the equality in the
first row in ([5.263)), they satisfy
M1 (- 1 N
€j1 = ];\j : (Ej,s + 1 (ujgj-11 + 5;945]‘1,4)) O()0(6'?),
j J

Ahic1 [ 1 B
€j4 = ]S\J - (%5 + ;(Mjej,e@'—m + (S5 + 5]',7)53'—1,4)) = 0(1)0(5'/").
j j
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Clearly, o; and 3; satisfy the inequalities in ([5.258). Moreover,
Xjej,laj = —D1€j)1 = MO(51/5), S\j{:‘j’lﬁj = —D28j71 = 0(51/5) (5264)

The bounds of the elements of M;M;_; ... Moéj_lc’j can be computed immediately from Lemmal5.12.3
and the induction hypotheses. Indeed,

_ Ajgjaa;

=t pi(L+ejo1,0) + Ejaci1 = 0(8"7),
€3 = NigjnBi + 1igjo13 + Ea(Sjm1 +j-15) = O(6'7),
Nigj g 3 :
¢j = %43 +1i€j6(1+ej-1,2) + (S + &j7)ej—1 = O(1),

€i5 = =8j + Njgjab + (8j +&.0)(Sj1 +gjo15) + Hidieci-1s = 8;Sj-1 — 8+ O(6'?)
where we have used ([5.264]) in the bounds of ¢; 9, €;3, ¢;.

To get small estimates for €;5 note that, by Statement 1 of Proposition [5.5.4} one has that for
j=1...M—2and w= (p,7,2) € QF,

Wz‘i’{;l ) @271(60) — /S\]fl O§2(Z)

< 0(9).

Then, by the definition of S; and g’j in (5.262) and (5.260|) respectively,

‘Sjgj—l - ‘§]‘ < 0(9).

This implies that |e; 5| < O(51/?).

The obtained estimates prove the claim for 0 < j < M — 2. The cases j = M — 1, M can be treated
exactly in the same way. They only differ in €, 4, ¢; and € 5, where £;_; ¢ should be substituted by some
¢; = O(1) coming from Lemma Their final bounds remain the same.

Observe that, from ([5.258|),

_ 1 Zogng a; Zogng Bj
0 0 1d

where, from the bounds in (5.258|),

Z a;l, Z B; < O(r3/5-Cagl/s),
0<j<M 0<j<M

Hence, from (5.259) with j = M, we have that, for any w € Q3N \f'*l(Qg),

Cir (T (w)) a1 (B (w)) ™" D (w)Co1 (w)Cr (w)

1 _Zogng Q@ _Zogng Bj _Aw 0 0
=10 1 0 AMeEM,1 p(l+en2)  emg
0 0 Id )\MEMA 1216373 SM + EM,5
XM(1+O(T3/570a52/5)) /10(7’3/570‘151/5) O(TS/Sfc’aél/S)
= %MEM,I M(l +5M72) . EM,3
AMEM 4 9y, Sv+emps

Finally, the claim follows from the properties of V5 ; in Theorem
The proof of (5.256) is completely analogous, considering matrices D; of the form

1 0 O
Dj = Oéj 1 5]' ;
0 0 Id
which are also a group. O
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5.12.4 Stable and unstable cone fields: Proof of Proposition [5.6.5

The analysis of the differential of the map v (see (5.67))) performed in Section |5.12.3| allows us to set up
stable and unstable cone fields and prove Proposition [5.6.5]
The only difficulty in the study of the behavior of the cone fields is that, of the two expanding factors

A, Xz (see Proposition [5.12.4)), which satisfy A > A > 1, A is unbounded in Qs (as 7 — 0). Hence the
p.255)

error terms Ae; in ([5.255)) are not necessarily small and, in fact, can be large.
We start by considering the unstable cone field S introduced in (5.70). Let M be the matrix

in (5:255) that i, o
M(w) = C(¥(w)) ' DY (w)C(w).
For x € S¢ ., let y = C(w)x, where C is given by Lemma [5.12.4, We will denote y = (yu,ys), where

yu = (y1,93) and ys = (y2,y4), and use the norms ||y,|| = max{]y1|, lys|} and |lys|| = max{|ya|, |ya|}-
Given k > 0, we denote

S =1y sl < &llyall}-
We also denote (My)u = Mu,uyu + Mu,sys and (My)s = Ms,uyu + Ms,sysa where

A ey HE5 €10
M N ( ) M N ( c - )
w Aes Az )’ s uér A€ ’
A oS (i+ S) " (5.265)
o 155] g ey 6 €11
e e B R c)]

with |e5] < O(6'/5), i # 9,12 and |egl, |e12| < O(R).
Recall that C(w) = Cy1 (w)C(w)Cs(w) (see Proposition [5.12.4)). The form of C' and Cg has been given
in Proposition Lemmas [5.12.1] and [5.12.3| imply that (5,1 is of the form

0 1 0 0

o - 1 0B) 06) 0@)
2= 10 a 1 0
0 b 0 1

Let & = sup,co, |a(w)| < O(1) and b= SUp,,c o, b(w)| < O(1). Then, it is immediate to check that

(14 O(6Y%)) Ky + b _

u Su Fu > 1 2
Cw)S5 e, €SSk Fu> T4 o(1), (5.266)
and, for 8 > 0, small enough,
_ ~ 1+b)3
Cw)™ s “,cS < ( = 0(p). 5.267

We claim that

Loify e S8, [(My)ull > X1+ O(8Y/%)) ]Iyl and

2. M(w)St . C St . with &, = O(8Y/%) + O(&).

w,Ry?

Indeed, let y € S* .- We first observe that [|M; || < )\51. This implies that

Ml = 1M vl > Agllyull
Hence, using that ||ys|| < Rullyulls

I(My)ull > [Mauyull = [|Ma,sysll > (g = O )R [yl (5.268)
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Taking into account the bound on &, given by (5.266]), this last inequality implies Item 1. However, this
is the minimum expansion in the unstable directions. If ||y,|| = |y1|, the expansion is much larger, as
follows from

[(My)ull = [(My)1| = |Ay1 + e7ys + pesyz + €10yal
> (A= 0(8"%) — O(6"°)Ru) 1] = M1 — O(Y%) /A — O *)ku/Nlyull- (5.269)

Also, if ||lyu|| = |y1] and |y1] > (Ag/A)|ys|, we have that
[(My)i| = [Ays + e7ys + pesya + er0ya| = A1 = O(8Y°)/xg — O(8"*)Ro) [ . (5.270)

Now we prove Item 2. We first claim that, if y € gg R

NO@P) + O@E)lyull. — if lyull = Iy,
IMsuyull < § MOEY?) + OR))lyal, if [lyull = [ys| and |y1| = (Ag/A)lys. (5.271)
X5(0EY2) + O®E)lyull,  if llyull = lys| and Jy1] < Og/A)lys-

Indeed, if ||y, || = |y1|, by the definition of M, ,, in and the fact that A\g/A < 1,
IMsayall < A0 ga| + AgO(R)ys| < MOE®) + OF)) |yl -
In the case ||y, || = |ys| and |yi| > (Ag/A)|ys|, we have that
M. aiull < AOE) || + A5O(R)lys| < AOE?) + O(R)) |y |-
Finally, if [|y.[| = [ys| and |y:| < (Ag/A)lys],
IMs,uyull < AOGY2)lya] + A5O(R)ys| < A5(O(8) + OF))[lyall,

which proves (p-271).
Hence, if y € S% - and ||y || = |y1], by the first inequality in (5.271)), using that | M .|| < O(5*/%) +
O(%) and (5.269), we have that

M)l < IM e uyall + [IMsysll < MOE) + OR))llyall < (O(6Y) + O(R)) [ (My)ull
In the case ||y, || = |ys| and |yi| > (Ag/N)|ys|, by (5.268)), the second inequality in (5.271) and (5.270),

M)l < M suyall + [ Ma,sysll < MOGE?) + OF) || + (O(S) + OF)) [lys |
< (0(8Y%) + O(R)[(My)] + (O(5%) + O®) [(My)ull < (O(6Y%) + OR)) (M) ul-
Finally, in the case |ly,|| = |ys| and |y1| < (Ag/A)|ys|, by the third inequality in and (5.268),

M)l < M uyull + 1Ms,s95] < A5(0(S) + O@)lyull + (O(6"%) + OF))lys|
< (0(8"%) + O(&) (M)l

This proves Item 2. Then, taking 3 = O(6*/%) + O(&) in (5.267)), the claim for the unstable cones follows.
The proof of the claim for the stable cones is completely analogous. It is only necessary to use (5.256))

instead of ([5.255)). We simply emphasize that (5.267)) is replaced by (|5.266)).

5.A  Proof of Proposition

We devote this section to proof Proposition Separating the linear and non-linear terms, the invari-
ance equation (5.83]) can be rewritten as

LZ =Dz X%(2,0)Z + F(x,Z)
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where
F(x,Z) = Xy(x,Z) — X%(2,0) — DX (2,0)Z + Xy(z,Z) — DZ (X)(2,Z) — Q+ X} (z, Z))

with Q = (1,vG3/LE)T.
Observe that, using the definition of Qg in (5.76]) and defining ¢ = A — a&y — 10 — af, one has

DZ (X)(x,2) - Q+ X j(x,2))

— 0uZ Oy Qolu, Yog) = 1)+ 0,2 [ =Y GV o 0w, Y, q) + Oy Py (s, A, B)

= Uy ol\u, ¥, q o (LQ+A)3 L% o U, I',q A1\, Y, 4, @

B Y Giv G3v

—auZ (C;()yfl(rlt)+f1(U)Q1>+a’YZ<(L0+A)3_ Lg +fl(u)Y+f2(u)q+aA’Pl(u777Avaaﬁ) .

Therefore,

where G; and G» are the functions introduced in ((5.86). Moreover, X (z,0) = 0 and

_9*Pg _ 8%*Pg _9%Py _9%Pg
oY ou OANOu dadu IBOu
0 0 0 0 0 0
A(u) - DX%(U Y 0) = . 92P, . 92P, . 92P, . 02P, (u Y O) = < > .
Y ~loves ‘onos ‘oo lopop Y A(u)  B(u)
- 9%Py - 92Pg - 92Pg - 92Pg

‘ovoa  '9Roa  'oada  '9Bda
We obtain the expression of A(u) and B(u) using the formula for Py in (5.75) and (5.76), (5.77)). Defining
Q(Z2)=XY(z,2) — X% (20) — AZ + X} (2, Z)

we obtain the formulas (5.89)).

5.B Estimates for the perturbing potential

The goal of this appendix is to give estimates for the Fourier coefficents of the potential P; introduced
in (5.78). This estimates are thoroughly used in the proof of Theorem [5.7.4] given in Section and in
the analysis of the Melnikov potential given in Appendix

Using (5.18)), (5.19) and (5.71)), the potential P; satisfies

Pilu,y, A, B) = GIW (v + én(u), Lo + A, €29 (g + @), e~ ( (& + B), GF7n (u))

vGo mo miy

= = , + ,
7 (u) 1429 petv_ [mote jigy (u) 1_ 81 petv  [motoa igy (u)
Gz V totr° Gz V totr®

where the function p(¢, L, T)e (1) is evaluated at

— (mo+m) |,

L., m+a
(=~——1
T e+ s

By (6.8) and (6.9)), pe? can be written also as function of (¢, L, e..), where e. is the function introduced
in (6.7). In coordinates ([5.71)), e. can be written as

L=Lo+A, T'=Lo+A—(n+a)&+75).

Lo+ A) — (o + @) (&0 + 5)
Lo+ A '

ec =EN, o, 8)v/ (o +a)(§ + ) where E(A, )= V2 (5.272)

Next lemma gives some crucial information about the Fourier expansion of the perturbed Hamiltonian
Py in the domains D} 5, Dy, 5 in (5.81).
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Lemma 5.B.1. Assume |ag| < (o, |Bo| < (o, where COGS/Z < 1,1/2 < Lo < 2. Then, there exists o > 0
such that for u € D s U D; 5, v € Ty, [A| < 1/4, |af < Co/4, [B] < Co/4, the function Py can be written
as

Pi(u, v, A 0, 8) = > Pi(u, A a, B)e where P (u, A, a, B) = P (u, A, , B)e1o ()
qEZ

for some coefficients 73%1] satisfying

~ K ~ K
7)[‘1] < ,\76_“1‘0 auP[Q] < hu(u e—\q|a
| < G V1= g, e )
6 7/5[‘1] < S —|qlo ‘a 7/5[‘1] < S —lqlo 92
L GR WP LS G o 1>:279)
efith(u)aaﬁ[Q] < - e—lalo |gion(w) g plal| < e e—ldlo
| V1S @R P G P

We devote the rest of this appendix to prove this lemma.

Proof of Lemma[5.B.1} To estimate the Fourier coefficients of P; it is convenient to analyze first the
Newtonian potential in Delaunay coordinates. Indeed, we consider the potential W in Delaunay coordi-
nates,

V(6,L,6,1,7) =W (6 +¢,L,VL —Te® VL - Fe_i¢7?>

which reads

v mo mq
V(,L,¢,T,F) = = : — — 5.274
(6L 17 =% (|1+50ne“¢’ T G1ne9] (mo +m1)>7 (5.274)

where n = n(¢,L,¢,T,7) = gei“.
This potential can be rewritten as V(¢, L,¢,I',7) = > -, V0deial with
2m

1 )
V(L ¢, T,7) = ” V(¢,L,¢,T,7)e "l
T Jo

> 27
v mo my o
2y /0 <|1 +ognei?| |1 — Gynei?| (mo 1))

To estimate these integrals, we perform the change to the excentric anomaly

{=FE—ecsinE, dl=(1—-e.cosE)dE (5.275)

and use that

2
~iv _ 2 2 iE €. —iE _Vite+VI-—ee
pe”’ =L (a e —e.+ 1a2¢ > , a= 5 (5.276)
where e, = +1/L? —T'2. Then we do a second change of variables E 4+ ¢ = s to obtain
~ 27
vl — ¥ / mo__ ™ —igls—g—ecsinGs—0)) (1 _ o cos(s — ¢))d
T Jo |14 Gone?| " |1 — oyne'?| (mo +mu) ) e (1 —eccos(s — ¢))ds
~ 2
_ iao? Mo m —iq(s—ecsin(s—)) (] _ PN
2 (o T~ ot ) (1 ceen(s )

= V(L 6,1, 7)
where

2
€

~ ; . 1 ] ) )
(s, L,$,T,7)e'® = n(s — ¢ — ecsin(s — ¢), L, ¢, T, 7)e'® = ~L? (aze” —ece'? + 42@_’(8_2@) .
T a
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Now we relate these Fourier coefficients to those of P;. To this end, we relate Delaunay coordinates to
the coordinates introduced in (5.71]). One can see that the (¢, L, ¢, T, 7, y) — (u,Y,~v, A, o, 8) is given by

o + «

(=~ — —1 L=1Ly+A
7 £o + B 0
+ «
6= on(u)+ 58 TS T = L—(m+ )& +) (5.277)
~ . PO, Y A — (o + a)(&o + B) + noéo
= G2 u - yh(U) + —~ + -~ =~
7= Gomu(w) V=G e G2 () (7 () ?
Then,
Pl(u777A7 a? /8)
L. m+a Lo nmo+o ~
=G3 — —log Lo+ A + —log Lo+ A — G?
GV (1= 5108 20 Lo+ A n(a) + 5 Tow 2 Lo A (0 + )60+ 9), G )
_ Zeiq(%(u)%—ilog 55 gia(y—3; log Zﬂ%)ﬁ{fﬂ (u, A, a, B)
qEZL
= Z eiq((bh(u)'i"Y)ﬁ{Q] (’U,7 A7 Q, 6)
qE€Z
where

Pll(u, A0, ) = GIVI (L0+A,¢h(u) 1o Zoiﬁ Lo+ A = (no + a)(§ + 8), GgTn(u )>

Gy /27r mo 4 m (mo +myq)
N 27rn(u) Jo ‘1 + O_Oh\ei(dih(u) 37 log ZSIS) ‘1 _ 51ﬁ61(¢h(u)+ ; log 281;) 0 !

—ig(s—ee sin(s— 1 1pg 20+ 1 770 + «
o 1a(s—ecsin(s—(dn(u)+5; log go55)) (1 — €. COS ( ( ))) ds
én(u) + 8 T B

where now

2
ﬁei(¢l,(u)+§1og ggig) . - 1( )(L0+A)2 (a26is . z(¢h(u)+ log ggig) n 4ec2 e—z(s 2(¢n(u)+ = log ggig») '
0Th U a

The first important observation is that, using the expresion for the eccentricity in ([5.272)) one has
1 noto _ 1 ngto
ece? BN = (g + ), ece 2BEI = (& + B)E

which implies

1 & )
ecsin(s = (on(u) + 5 log o jgm = = (&0 + B =) — (g + @eilemen()
eecos(s — (6n(u) + - log B = 2 (60 + B 4 (g + @)= (=)

and

fet u lo, WDJra (L() + A)2 is i (u (770 + O[) —i(s— u
i(¢n (u)+3; log 2255) _ ) a%e’ — (ny + a)Ee'¥n( )+52T i(s—2¢n(w)) |

Now we observe that, taking into account that 1/2 < a < 2, the asymptotics provided by Lemma
for 7, and ¢y, and the fact that |ng + a| + [£0 + S| < o imply

(10 +al + 160 + BNEH* | < K6y < 1
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we have that

ﬂo+a)

‘h\ei(¢h(u)+% log e K —-1/2 1

< o= <G <z

- Gl ~ 2

under the hypotheses of the lemma. Therefore we have that, using the cancellations (observe that
50m0 — 51m1 = 0),

1
K,\i.
Gol7u(u)]®

The bounds for the derivatives can be made analogously differentiating the expressions for P;. O

Pl 0,8)| <

5.C The Melnikov potential: Proof of Proposition [5.4.2

We devote this section to prove Proposition [5.4.2] which gives estimates for the Melnikov potential £
introduced in (5.32)). Note that £ can be rewritten in terms of the perturbing potential P; introduced in

E78) as

Foo VG

L(o,n0,&0) = 3 Py (s,0 + ws,0,0,0) ds where w= Tg (see (5.33)).

First, we obtain estimates for the harmonics different from 0,41 of the potential L.

Lemma 5.C.1. The g-Fourier coefficient of the Melnikov potential (5.32) with |q| > 2 can be bounded as

=3
3lgl+1 _ 1417Cg

< KiG, * e 3 (5.278)

’ rld]

for some K > 0 independent of Gy and q.

Proof. The proof of this lemma is straighforward if one writes the Fourier coefficients of £ in terms of the
Fourier coefficients of the perturbing Hamiltonian P; introduced in (5.78) (which can be also expressed

in terms of the function ﬁ{q] introduced in Lemma ) as

Foo iq’;cgu too . Z@u
ﬂql:/ P (4,0,0,0)e = du:/ P (u,0,0,0)e49 e 2 g,

o0

Then, it is enough to change the path of the integral to Imu = % — G3 and use the bounds of Lemma
and that, by Lemma [5.4.1
o9 ()| < K9G, E

Now we give asymptotic formulas for the harmonics ¢ = 0, £1. It is easy to check that

L9 (19, &) = LD (&, m0)

and therefore it is enough to compute ¢ = 0, 1.
Lemma 5.C.2. The Fourier coefficients LI and £ satisfy

3 9 15NsLE .,
— - —=G
212 (1080) ) SVaL, (0

~ 5G3
V\/’TTG*%LgGS/Q |:(N3L(2) Gaz . 3N2
4 8\/§ v Lo

s _
Lo, &) = gLéGo ’

Ny (1 + Lioﬂoﬁo - (mo + &o) + 10&0 01 (770,50)]

£, ) = no) +0 (G55/2,Ga3/2no,nofo,n§Go,£§Go)] :
where No and N3 are given in (5.35))
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Proof. Proceeding as in the proof of Lemma [5.B.1} we use Delaunay coordinates. To this end, we first
compute expansions of the potential V" introduced in (5.274) in powers of 7 as V' = V; + V5 + V&> with

Vil¢,L,¢,T,7) = Ngﬁfig (3cos2(v+¢)+ 1),
Vo(l,L,¢,T,7) = —Ngl/ P 1 (3cos(v+¢) +5cos3(v + 9)),

(see (5.35))) and V= is of the form V5 = 7AE and E is a function of z = 1pe'"*9) of order 4. Accordingly,
we erte the potential P;(u,~, A, «, 8) in as

P1 = P11+ P12 + P1>.

Now we compute formulas for the Fourier coefficents of P{q] with ¢ = 0,1. For the coefficients 79{‘;],
proceeding as in Lemma [5.B.1] one can prove that -

_ . _ 1
P4 (1,0,0,0) = P (4,0,0,0)e ) with ‘Pg(u,o,o,O)‘ S & (5.279)

NGEAOIN

For P11 and Pio we have explicit formulas. To compute their Fourier coefficients, we introduce the
coefficients Cy"", defined, following [DKdIRS19], b

q/2
P, L,T)em R0 = N " omm (L e )ett = <€°> CI™ (Lo, ec)e® (5.280)

qEL qEZ Mo

where £ =~ — 2-log(no /&), L = Lo, I = Lo — no&o (see (5.277)).
The coefficients Cy»™ depend on L and e, is the eccentricity (see (5.272))). Then, recalling also

¢ = ¢n(u) + 5 In (ng), we obtain

NoD 3 3 , e/2
73[ }(u 0,0,0) = 2V (Cg,o + 503,262@ + 037_26_21‘1’) (€0>

AGET (u) "o
2
_ NEV 20 4 022 2in (u) (§0> §C2,—2€—2i¢h(u) (50> (50)(1/
AGETR(u) \ 7 0 271 o 0
~ /2
[q] _ Nsv 3 31 06 | B 3—1 —i¢ | D33 3i6 | O 3,-3 —3i) [ S0 !
P15 (u,0,0,0) e <20q e’ + 20q e "+ 26’q e’ + 2C’q e o

—1/2 1/2
_ N31/ 303 1 i (u) EO + ;CS,fle*M’h(u) 570
8GR (u) \ 27 o 2" T

—3/2 3/2 q/2
1 203 3esion(w) <§0> 1 2033 sion(w) (50) (50) 7
2 70 2 o 1o

where Ny and N3 are given by in (5.35)).
The functions £19, ¢ = 0,1, can be written as £l4 = E[fﬂ + E[Qq} + E[g] with

/ Pl(s,0,0,0)e"5ds,  i=1,2,>.
We first give estimates for the last terms. For L:L” it is enough to change the path of integration to

Ims =1/3 — Ga3 and use (5.279) and the properties in Lemma For E[>O] one can estimate the

integral directly. Then, one can obtain
_6§
¥ s 6 ana el sGgte L (5.281)
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Thus, it only remains to obtain formulas for EZM, q=0,1,i=1,2. Using the formulas in (5.24)), they
are given in terms of the integrals

. .3

/+°O L —iken(t) gigwt gy /+°O TS herl<k< -1

[ L (V) gtqw = or —1.
oo ﬁ—?l-{-l(t) oo (7- _ Z) 2l(7- + Z)Qk 21 - -

Therefore, following the notation of [DKdIRS19], if we introduce

3
oamtn (- 1/2\ [(—1/2\ [T® @ elw(tE)
0 —o0

m n T—1)2"(1 4+ 1)

T L ik giastg e iz k20
e ° e tdt = orl>k>
[m a0 / o (TP e

one can write these functions as

o e <02 ON(0,1,1) + <&)>102’2N(0 2,0) + (50) Co2N(0,0, 2))
1 4 0 0 » < 0

Mo Mo
~ 1/ —1/2 3/2
ol _Ner ((5()) C2ON(1,1,1) + (£0> CPPN(1,2,0) + (50) Cf’2N(170’2)>
4 7o Mo "o
N-o —1/2 1/2
£ = ;” ( <5°> Co'N(0,2,1) + (50> Coy 'N(0,1,2)
1o "o
o o (5.283)
T <°> C3PN(0,3,0) + <°> CS"P’N(Q&O))
Mo "o

£ = N§”<C31 (1,2,1)4—(&))03_1 (1,1,2)

—1 2
+ (5‘)> CPEN(1,3,0) + (io) Ci”"3N(1»073)>
0

"o
It can be easly check that the functions N satisfy
N(0,0,k) = N(0,k,0)=0, for k>2 and N(—g,m,n) = N(q,n,m).

The leading terms of the integrals in (5.282)) are given in [DKdIRS19] (see Lemma 30 and the proof of
Lemma 36),

o

. _9G3
N(O,l,l):gGaB N(1,2,1):1\/§G0_2e (1+O(G 3/2))

s _2G)
N(0,2,1) = %Gafﬁ N(1,2,0) = \/Zgée a3 (1 i O(G—:s/z))

VGO
N(O; 172) :%Ga‘ti N(l,?),o) — ;\/ZGS’ 3LS (1 + O(G_3/2)>

and

_ 763 a3
N(1,1,1) =e 40O (Ggs/a) o ON(1,0,2) = o (G_9/2)
i _oaf
N(1,1,2) = o (G77). N0 =< o (65
Now it remains to estimate some of the coefficients C3""™ in (5.280)), defined as

2n

27
C’;hm(LO?ec) = 2&/ (L, Lo,ec)eim“(&LO’ec)e*iqu@
™ Jo
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Proceeding as in (5.275), we change variables to the eccentric anomaly. Then, using and (6.9) to
express p and v in terms of the eccentric anomaly, one obtains

3"
27

CI™ (Lo, e0) =

2 2 m
(a26’E + 4662 e ec> (1 —eccos B)" 1M emiaEmeesinE) g (5 984)
a

where a has been defined in (5.276)). These formulas easily imply the symmetries

O (ee) = O ™ (ee) = Ty

—q q

(ee) and CP™(ec) = (1)1 O (—ee).

One can also compute them, as was already done in [DKdIRS19], to obtain
2,0 3 3
Co" = Ly <1 + foﬂoﬁo - TL%(%&))Q
3,—1 §O 1/2 5 6 2
Ccy = = ———L o
0 (,'70) \/m 0 (60 + (50"70))

51 (&) 5
Cy (770) = ALl (n0 + O(n3o))
CHt = L (1 + O(mo&o))

50 1/ 2,2 4 2 2
— Cy7 = =3L 7.0 + O (m5¢o) -
o 0

They also can be easily bounded, switching the integration path in (5.284]) to either Im E = loge,. (if
g—m>0)orImE = —loge, (if g—m < 0), as

G (ee)] S el

Using this estimate, one obtains

(50)1/2012’0:0(50% (2)3/202 =08, (f]z)cg_l 0 (&)

o
§o>_1 3,3 2 (fo) 3,-3 _
= cy? =0 , = | Cy
(&) err—om). (% 0(ci).
Then,
oy _ Nzl/ﬂ' L4 1 i o i 2
Ly = 3 Gy ( + L 0o 212 (1m060)
Nov i
=22 T Gge szt (14 0o, Go*))
15N 1/7rL
L[O] — 3 I e ) O
2 NG o (10 + &0 + no&oO1 (o, &)
N3v st _
) =22 P18y e (140 (mogo, 865, G2 RGR) ).
32
These formulas and (5.281]) give the asymptotic expansions stated in Lemma O

To complete the proof of Proposition it is enough to use the relation between ©, © and Gy in

’ '
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Chapter 6

Global instability in the 3 Body
Problem: The Melnikov

approximation

Abstract: The 3 Body Problem is a Hamiltonian system which models the motion of three bodies
interacting via Newtonian gravitation. Understanding its global dynamics is one of the more challenging
question in dynamics.

This is the first of a series of papers devoted to prove the existence of global instability in the 3 Body
Problem on negative energy levels. We focus on the hierarchical regime where one body is far away
from the other two, whose instantaneous, relative motion, happens on an ellipse, and, in particular, are
interested in the existence of orbits for which the angular momentum of the far body is transferred to
the binary, elliptic system, resulting in a substantial change of its eccentricity (from nearly circular to
almost collision).

Our approach relies on the existence of a (topological) Normally Hyperbolic Invariant Cylinder €.,
located “at infinity” and can be seen as a rather non trivial extension of the previous results [DKdIRS19,
GPS23D)] for the restricted case. In this first paper we describe the mechanism and introduce the so-called
Melnikov approzimation, a crucial tool for proving the existence of transverse intersections between .
The validity of the Melnikov approximation and the construction of a transition chain of periodic orbits
in £ leading to topological instability, will be the subject of a future work.

6.1 Introduction
The 3 Body Problem models the motion of three bodies interacting via Newtonian gravitation. We

consider the planar case, in which the three bodies move on the same plane. Its dynamics is given by the
Hamiltonian system

2

pil? mimn; 12

H = — — R A 1

38p (4, D) § o § G —g] (¢:p) €RZN\ (6.1)
i=0 0<i<j<2

where m; > 0, ¢ = 0,1,2, and A = {g; = ¢; for some 0 < i < j < 2} corresponds to the collision set.
In the so-called hierarchical regime, that is, the region of the phase space where one body is far from
the other two, the Hamiltonian can be studied as a small perturbation of two uncoupled Kepler
problems: one describing the dyamics of the binary system and one describing the motion of the far away
body g3 with respect to the center of mass of the other two q1,g2. In this nearly integrable setting, one
can try to understand the mechanisms giving raise to stable and unstable motions making use of the
techniques of Hamiltonian perturbation theory.
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The first major achievement towards understanding this picture, was obtained by Arnold in [Arn63],
who gave a master application of the KAM techniques to prove the existence of a positive measure set
of quasiperiodic motions in the coplanar 3 Body Problem. The proof was later extended to case of
N > 3 bodies in the work of Féjoz and Herman [Fej04] (see also [Rob95l [CPT1]). On the other hand, in
accordance with the general belief that the N Body Problem, although strongly degenerate, displays the
main features of a “typical” Hamiltonian system, in his ICM address, Herman conjectured [Her98] that
the set of nonwandering points for the flow of the N Body Problem is nowhere dense on every energy
level for N > 3. This would imply topological instability for the N Body Problem in a very strong sense.

At the moment, this conjecture seems largely out of reach, and the very few rigourous examples of
topological instability in Celestial Mechanics were given quite recently in [CG18| IDKdIRS19, [GPS23b)]
for the Restricted 3 Body Problem and in [CFG22| [CFG23] for the spatial 4 Body Problem. In all these
works, the underlying mechanism, is the so called Arnold diffusion mechanism. This mechanism, proposed
by Arnold in his seminal study of topological instability in nearly integrable Hamiltonian systems (see
[Arn64]), is based on the existence of a transition chain of invariant tori, that is, a sequence of partially
hyperbolic invariant tori connected by transverse heteroclinic orbits between them. In modern language,
the Arnold diffusion mechanism relies on the existence of a Normally Hyperbolic Invariant Manifold
(NHIM) whose stable and unstable manifolds intersect transversally along a homoclinic manifold. Then,
if the inner dynamics on the NHIM contains “sufficient” quasiperiodic invariant tori (or other invariant
objects such as Aubry-Mather sets), one can combine the outer excursions along the homoclinic manifold
with quasiperiodic inner dynamics (or orbits shadowing the Aubry-Mather sets) to obtain a transition
chain leading to topological instability.

When studying the existence of Arnold diffusion in concrete models, for example in Celestial Mechan-
ics, usually, one of the main difficulties is to prove that the invariant manifolds of the NHIM intersect
transversally. In regular perturbation frameworks, i.e. when there exist no different time scales, this
problem can be tackled by means of the so-called Poincaré-Melnikov theory, which gives an asymptotic
formula for the distance (measured along a suitable section) between these invariant manifolds (see, for
example, [DAILS06, [DAILS08], and see [DKdIRS19] for an application to Celestial Mechanics). However,
when there exist different time scales, one needs much more extra work to prove that the distance between
the invariant manifolds can be approximated by a (modified) Melnikov function (see [LMS03l [GPS23b]).

This paper is the first of a series of two papers devoted to study the existence of Arnold diffusion in
the 3 Body Problem. Here, we identify a (topological) NHIM for the 3BP and introduce the Melnikov
approximation for studying the existence of transverse intersections between its stable and unstable
manifolds. The second paper will be devoted to justify rigourously the Melnikov approximation as well
as the construction of unstable motions.

6.1.1 A degenerate Arnold diffusion mechanism for the Restricted 3BP

The 3 Body Problem is called restricted if two bodies, the primaries, have strictly positive masses, and
the third one has zero mass. Our approach to study the existence of Arnold Diffusion in the 3 Body
Problem is strongly based on the previous works [DKdIRS19, [GPS23b], where the authors considered
the Restricted Planar Elliptic 3 Body Problem. In this model, the primaries move, according to Kepler
laws, on ellipses of eccentricity €y € (0,1). The authors in [DKdIRS19, [GPS23b| show the existence of
a transition chain of periodic orbits located in the region of the phase space where the third body is far
from the other two. In this hierarchical regime, the R3BP can be studied as a periodic perturbation
of the 2 Body Problem describing the motion of the massless body with respect to the center of mass
of the primaries. The constructed transition chain of periodic orbits leads to topological instability in
the following sense: there exist orbits along which the angular momentum G = |g A p| of the massless
body, a conserved quantity in the 2 Body Problem approximation, experiences arbitrarily long variations
provided the eccentricity of the primaries orbit is positive, but sufficiently small.

More concretely, for the R3BP, there exists a 3-dimensional “invariant manifold at infinity” Pe,
corresponding to the w-limit set (resp. a-limit set) of the points which lead to forward (resp. backwards)
parabolic motions (when the massless body tends to infinity with asymptotic zero velocity). The manifold
Poo is strongly degenerate in the sense that it is completely foliated by periodic orbits. Although the
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linearized vector field vanishes on the normal directions to P, this manifold possesses 4-dimensional
stable and unstable manifolds W**(P,), which are indeed the set of forward and backwards parabolic
motions. For G, > 1, the submanifolds W"* (P, N {G > G.}) are contained in the hierarchical region
(third body far from the primaries) and, if the eccentricity of the primaries is small enough, these manifolds
intersect transversally along two different homoclinic manifolds, which are moreover diffeomorphic to
P = Poo N{G. < G < € '/3} (where € is the eccentricity of the primaries orbit). Therefore, one
can define two different global scattering maps on PZ encoding the dynamics along the two different
homoclinic manifolds. Since the inner dynamics on Py is trivial, one cannot rely on the classical approach
of combining inner quasiperiodic dynamics and the outer dynamics of one scattering map to prove the
existence of drifting orbits. However, since both scattering maps are defined globally, by analyzing the
dynamics of the iterated function system given by them, one can show the existence of orbits along which
the angular momentum grows from G < G, to G > ¢~ /3,

6.1.2 The parabolic-elliptic regime and Arnold Diffusion in the 3BP

We will see in Section that, for the 3BP, on each constant, negative energy hypersurface, there exists
a 3-dimensional invariant submanifold at infinity €. It corresponds to the w-limit set (resp. a-limit
set) of the points which lead to forward (resp. backwards) orbits along which the motion of one body is
parabolic and the motion the other two bodies is elliptic. Since at £, the distance between one body
(the one performing the parabolic motion) and the other two (the binary, elliptic, system) is infinite,
the coupling in the hierarchical approximation vanishes identically on £,,. Thus, the dynamics on £ is
completely integrable. Moreover, due to the so-called super integrability of the 2 Body Problem, & is
foliated by periodic orbits.

It is known (see [BFM20c]), that £ possesses 4-dimensional stable and unstable invariant manifolds.
Therefore, one can try to extend the techniques developed in [DKdIRS19, [GPS23b] to prove the existence
of a transition chain of periodic orbits in the 3BP. Indeed, due to the robustness of the mechanism, one
could directly prove that the transition chain of heteroclinic orbits constructed in [DKdIRS19, [GPS23b]
for the R3BP can be continued to the 3BP if the mass my is sufficiently small. Therefore, one can deduce
that, in the 3BP, if mo is sufficiently small, there exist orbits along which the angular momentum G of
the third body experiences significant variations, while the eccentricity of the inner bodies remains small.

In the present work, we are interested in proving the existence of Arnold Diffusion in the 3BP for any
choice of the masses mg, my, me > 0. The substantial difference is that, due to the conservation of the
total angular momentum, as the angular momentum of the third body grows, so does the eccentricity of
the orbit of the binary systemﬂ However, in order to construct orbits along which this transfer of angular
momentum is significant, one cannot make use of the arguments developed in [DKdIRS19, [GPS23D)], since
they strongly rely on the hypothesis that the eccentricity of the primaries orbit is small enough. Thus,
new techniques have to be developed to, in particular, analyze the existence of transverse intersections
between the invariant manifolds of £ (see also Section and, in particular, the discussion at the end
of Section where we outline the main technical difficulties).

Our goal in this series of papers can now be stated clearly: We want to construct a transition chain
of periodic orbits contained in £, along which the angular momentum of the third body is transferred
to the binary system, resulting in a substantial change of its eccentricity. In particular, we want to
construct orbits which transition from close to circular orbits to highly eccentric ellipses (i.e., with close
to collision points) This first paper is devoted to analyze the so called Melnikov approximation of the
distance between the invariant manifolds of £.

Remark 6.1.1. Notice that, in [DKdIRS19, (GPS23b], the variations of the angular momentum G of
the massless body are bounded above by the value of 1/e. This limitation, as already commented, is
due to the fact that we were able to prove the existence of scattering maps only in the submanifold
Pl =P N{G, < G < e 1/3} (see Section . With the techniques that we develop in these series of
papers, we can remove that limitation and prove, that, for any e € (0,1), there exist orbits of the RPESBP
which present an unbounded growth of the angular momentum of the massless body.

1The change of eccentricity due to the transfer of angular momentum goes to zero with ma — 0.
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The parabolic-elliptic regime and hyperbolic sets in the 3BP

The parabolic-elliptic regime has recently been considered in [GMPS22] to establish the existence of non
trivial hyperbolic sets in the 3BP. To prove this result, the authors focus on an invariant submanifold
Eso,cire C Eoo corresponding to nearly circular motion of the bodies o, g1, and prove that its stable and
unstable invariant manifolds intersect transversally. Then, they prove the existence of a non trivial hy-
perbolic set for the return map to a suitable section close to the transverse intersection. The construction
is rather involved due to the existence of center directions.

Notice, however, that, since the hyperbolic set is contained in the region of the phase space where the
binary, elliptic system, performs close to circular motions, it does not lead to topological instability, in the
sense that it does not contain orbits along which the angular momentum of the third body is transferred
to the binary system, whose eccentricity is always close to zero for all the orbits in the hyperbolic set.

A remarkably interesting, but even more challenging question, is to study how the eccentricities asso-
ciated to initial conditions lying on a sufficiently small neighbourhood of £, distribute after sufficiently
long time. This would require to combine, and extend considerably, the ideas from Sections and
We hope to come back to this question in the future.

6.1.3 The Melnikov approximation

We focus, for G, > 1, on the invariant submanifold £, N {G > G.} where G stands for the angular
momentum of the third body. The reason is that its stable and unstable manifolds are contained in the
hierarchichal region and therefore, can be analyzed perturbatively. In Section [6.4] we give an heuristic
argument to obtain an asymptotic formula, up to polynomially small relative errors in 1/G,, for the
distance between W% (€, N {G > G.}) and W*(E, N{G > G,.}). This first order is the so-called
Melnikov approximation.

Our perturbative setting corresponds, however, to a singular perturbation framework, since there exist
different time scales: the fast dynamics of the binary system and the slow dynamics of the parabolic
motion of the third body, whose interaction with the binary system is weak due the decay of Newtonian
gravitation with distance. The effect of the coupling averages then to an exponentially small reminder in
1/G., P which, as a matter of fact, bounds the distance between W*(E,N{G > G.}) and W*(E,N{G >
G.}). Therefore, in order for the Melnikov approximation to yield a valid asymptotic formula, one needs
to show that the errors in the Melnikov approximation are also exponentially small in 1/G.,.

In this work, we only compute the Melnikov approximation of the distance between W*(E,, N {G >
G.}) and W5 (Ex N{G > G.}). The rigourous justification of this approximation, and the construction
of a transition chain of periodic orbits contained in W*(E N{G > G.}) N W?*(Eo N{G > G, }) will be
the subject of a separate paper.

6.1.4 Organization of the article

In Section we introduce a suitable coordinate system in which the dynamics between the binary (ellip-
tic) system and the motion of the third (parabolic) body are uncoupled up to higher order interactions.
In Section we study the dynamics associated to the two uncoupled 2 Body Problems which gives
the first order dynamics of the parabollic-elliptic regime. In particular, we show that there exists an
unperturbed homoclinic manifold to €. In Section [6.4] we introduce an adapted coordinate system in a
neighbourhood of the unperturbed homoclinic manifold, which is suitable for analyzing the existence of
transverse intersections between the perturbed manifolds and give an heuristic justification of the Mel-
nikov approximation. In Section we state our main result: namely, we give an asymptotic formula of
the so-called Melnikov potential and outline the proof of this result. Sections and are devoted to
complete the proof of the main result.

2The quantity 1/G« can be taken as a measure of the ratio between the two time scales of the parabolic-elliptic regime.
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Figure 6.1: Sketch of an instantaneous configuration in the parabolic-elliptic regime.

6.2 A good coordinate system for the parabolic-elliptic regime

In this section we introduce a coordinate system suitable for describing the region of the phase space
where, up to higher order interactions, the bodies qg,q; € R? form a binary system with negative energy,
i.e. they revolve around each other in Keplerian ellipses, and the third body ¢ € R? is located far from
qo,q1 and performs a zero energy, i.e. parabolic, motion with respect to the center of mass of ¢g,q1 (see

Figure .

6.2.1 Symplectic reduction of the planar 3 Body Problem

The Hamiltonian Hsgp in (6.1) defines a six degrees of freedom Hamiltonian system. We start by reducing
it by translations with the classical Jacobi coordinates to obtain a four degrees of freedom Hamiltonian
system. That is, we define the symplectic transformation

Qo = qo Py =po+p1+p2
m
Qi=q —q Pi=p+———p
mo + my
moqo + Mmiq1
Q2:q2_71 Py = ps.
mo + my

These coordinates allow to reduce by the total linear momentum since now P, is a first integral. Assuming
Py = 0, the Hamiltonian of the 3 Body Problem becomes

2 |P \2
H*(Q1, P1,Qs, Py) =Z V*(Q1,Q2)
where
1 1 I 1 1
%51 mo  my’ M2 mo+mp Mo
and momi1 momms mims
Vi (Q1,Q2) = + +
(@1, Q2) Q1] Q2+ 00Q1]  |Q2+ 01Q1]
with 1
mq —myg —
op=—", oy = = . 6.2
* 7 mo +my YTme+mi 1+og (6.2)

Next step is to express the Hamiltonian H* in polar coordinates. Identifying R? with C, we consider the
symplectic transformation

, , T e
Ql _ 06197 Q2 _ rew‘, Pl _ 2619 —|—Z*819, P2 _ yeza +’L*6w‘
0 T
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which leads to the Hamiltonian

1 (22 T2 1 2 G?
Hpol(r,g,a,Q,y,z,G,F) = <+> +,U,7 (y + > _VPOI (T,Q,Q_Oé),
2

o\ 2 202 2 22
where
. . mom1 moms mims
Vool (r, 0,0 — @) = V* (e, re'®) = 4 . , 4
pol( 0 ) (Q ) 0 reic +UOQ619| reia +01Qe“9|
_ mgmy 1 moms n mims
0 r \ |1+ 002e!0=)| |1+ 012ei0-)| )"

Focus now on the region of the phase space where r > o, in which the third body is far from the other
two. Then, we have

1 /22 12 1 y2 G2 mom;y mz(mo+m1) QZ
HO y &y 767 9 7G7F - — ~ b —_— —_— _— — — O = .
pol(75 0,0, 0,2,y ) M1<2+292>+u2<2+27‘2> . " 4 (r3>

Thus, at first order, we have two uncoupled Hamiltonians, one for (g, 8, z,T') and the other for (r, o, y, G),

1 /22 T2 1
Hel(@79727r) - <Z+2> — momi—
pr\2 2 0
2 2 (6.3)
1 [y G 1
Hpar(raayva) = E ?‘F ﬁ —mz(mo+m1);.

To have the first order Hamiltonians He and Hpar independent of the masses, we make the following
scaling to the variables

1 - . 1 . -
0= ———0, Z=momiz, r=—————" and Y= pema(mgy+m1)y,
p1momy pama(mo 4+ myq)

which is conformally symplectic. Then, after time rescaling, we obtain the Hamiltonian

~ _ 2 T 1 oG 1\ 5
HpOI(Tv Q,O[,o,y,Z,F,G) =V <Z + —= — 5) + (y + ~> *V(Q,T,H*a).

2 ' 2p° 2 272§
with
~ o~ v mo ma
V(o,7,0 —a) == — — - , 6.4
(07,0 —a) == <|1+50§€i(9_a)|+|1+51§€i(9_a)| (mo+m1)> (6.4)
and ) s
po MO s Cmmd and 5, = Hemalmotm)
pams(mo + my) H11M0 MM

Note that the potential 1% only depends on the angles through 8 — « due to the rotational symmetry of
the system. Now, we change the polar variables (g, 6,z,T") to the classical Delaunay coordinates (see, for
instance, [Win41])

(0,0,z2,T)— (¢, L,g,T). (6.6)

This change is symplectic. As usual, from the Delaunay actions, which are the square of the semimajor
axis L and the angular momentum I', one can compute the eccentricity

F2
e(L,T) = /1~ 7. (6.7)

2
3The notation He and Hpay is used to emphasize that, up to (small) variations caused by the coupling terms O (%),
we will work in the region of the phase space where He; < 0 and Hpar = 0 (see also Section [6.3)).
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The position variables (g, ) can be expressed in terms of Delaunay variables as
§:§(€7L7F):L2(1_€COSE) and 929(€7L,9,F)=f(€,L,F)+g, (68)

where the angles true anomaly f and eccentric anomaly E are defined in terms of the mean anomaly [
and eccentricity € as
f J1+e E

l=FE—esink and tan§— 1_€tan§. (6.9)
One could also write an expression for z, but it is not necessary to obtain the new Hamiltonian
~ _ v 7 G 1 ~ ~
H(7, a,9,4,9,G,T,L) = ~373 + (2 + =i 77) —V(ole, L,T), 7, f(£,L,T) + g — ),

where V is the potential introduced in (6.4). Now, by (6.8), the distance condition corresponds to 7 > L?
and the first order uncoupled Hamiltonians are

)

el(L) = T 3579 and Hpar(’?yyu G) = + === (610)

v ~ 7 G* 1
212 2

whereas V = (9(?_—2) = O(%)

Now, we make the last reduction which uses the rotational symmetry. We define the new angle
¢ = g — o and the total angular momentum © = G +I'. To have a symplectic change of coordinates, we
consider the transformation

(?,a,g,ﬁ,y,G,F,L) = (7’:’0‘79 - a,é,ﬂ,G +F,F7L) (611)

Then, we obtain the following Hamiltonian, which is independent of «,

H(F, 6,0, 3,7, L; ©) =H(F,, ¢ + 0, £,5,0 — T, T, L)
- (6.12)

7> (-1 1 - -

Since this Hamiltonian is independent of «, the total angular momentum © is a conserved quantity which
can be taken as a parameter of the system. The Hamiltonian H induces a well defined Hamiltonian flow
on the symplectic manifold (M, do) where

M={F0¢,5T,L) R, xT*xR3>:0<T < L} (6.13)

and o = ydr + I'dg + Ld¢.

6.2.2 The parabolic manifold at infinity
Fix any Ly € Ry and any © > Lg. From the expression of H in (6.12)), we observe that

Eoo ={(F,0,0,5,T,L) = (00,¢,£,0,Lo,T): (¢,£) €T?, L = Loy, 0<T < Ly} (6.14)

is an “invariant manifold at infinity” contained in the energy level H~1(—v/2L3) ﬂ We call £ the
parabolic-elliptic infinity, since it corresponds to the w-limit set (resp. a-limit set) of the forward (resp.
backwards) parabolic-elliptic motions. The dynamics on &, is simply given by the (integrable) resonant
linear flow on T? x {0 < T' < Lo}

. . v .
b =0, =2 I=o.
37
LO
4To analyze this manifold properly, one should introduce the McGehee transformation 7 = 2/z2, (see, for instance

[McGT3)).
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In other words, € is foliated by periodic orbits 74 r with frequency (we,we) = (0,v/L3). It will be
convenient for us, to define, for

Go€Gor,={GeRL: 00— Ly <Gy <O}, (6.15)
the invariant torus E| Ta, C £x given by
Tao = |J 1o.0-co = € N{T' = © — Gy} (6.16)
¢€T

Observe that £, = Ucoege Lo Téo-

Despite being degenerate (the linearized vector field on the normal directions vanishes), the tori T¢,

possess 3-dimensional stable and unstable invariant manifolds (see [BFM20c|) ﬁ

W (Ta,) ={r € H™ (~v/(QL3)): Foy € Ty st Jim_[64(x) — ¢'(a4)] = 0}
6.17
W (To,) ~{o € M v /@ID): - € Tay st T |o'(@) — '@ 20}, D

where ¢' denotes the time ¢ flow associated to the Hamiltonian H in (6.12]). The union of these manifolds
gives rise to the (4-dimensional) stable and unstable manifolds of the cylinder £

W*(Ex) ={z € KM (~v/(2L8)): Fay € Exo st Tim [6'(@) =o' (@) = 0} = |J  W*(Ta,)

Go€ge,r,
W) ={x € H 1 (—v/(2L%)): Fx_ € £ s:t. t_l}illnoo |¢'(x) — ¢'(z_)| — 0} = U W (Ta,)-
Go€Go,L,

(6.18)

As already discussed in the introduction, our approach to prove the existence of drfiting orbits in the 3
Body Problem, is to construct a transition chain of heteroclinic orbits contained in W*(Es) M W*(Ex).

6.3 The 2 Body Problem

We have seen in Section that the Hamiltonian # in (6.12]) corresponds, up to O(L*/7), to the sum
of the two uncoupled Hamiltonians Hp,, and Hg in These are 2 Body Problem Hamiltonians
expressed in different coordinate systems, each of them suited to describe the dynamics on different
energy levels:

{(¢,6,T,L) € T* x R%: Hy(g,4,T,L) <0} and {(F,a,5,G) € Ry x T x R?: Hpoo(F, @, 5, G) = 0}
(6.19)
Remark 6.3.1. It is well known that the 2 Body Problem can be symplectically reduced to a Hamiltonian
system with one degree of freedom. However, since later we will study the dynamics of the 8 Body Problem

as a perturbation of two uncoupled 2 Body Problems, we prefer to describe the dynamics of Hei and Hpay
in their full phase space. The integrability of course reflects in the existence of many integrals of motion

(see (6.19) and Remark[6.5.5 below).

The Hamiltonian Hy introduces a linear flow on (¢,¢,T', L) € T?> x R1 N {0 < T < L} given by

. . 1% . .
=0 (= — r=o0 L=0.
¢ =0, 5 ,
We inmediately observe the existence of a foliation by two dimensional resonant tori
TF07L0 = {(¢a €7F7L) = (¢7 E’ Fo,Lo)}. (620)

The energy level Hp,r = 0 corresponds to the parabolic motions of the 2 Body Problem. These are
described in the next section.

5The reason why we parametrize the tori in terms of the value of G instead of using the value of I' will be explained
later (see Remark [6.4.1)).
6Note that 7, 0 #'(z) = o0 as t — oo (resp. t — —o0) for & € W(Tg,) (resp. z € W¥(Tg,))-
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6.3.1 The parabolic homoclinic manifold of the 2BP

One inmediately checks that Po, = {(7,,9,G) = (00,,0,G): (o, G) € T x R} is a 2 dimensional
invariant cylinder for the Hamiltonian Hp,y, contained in the zero energy level. Moreover, P, possesses
stable and unstable manifolds which indeed coincide along the 3-dimensional homoclinic submanifold
Wiise (Poc) [

Whip(Pso) = {z € Ry x TxR?: 32 € P, for which thim |t (x) — ¢t (2)] = 0}, (6.21)
o0

par par

where ¢bpp is the flow associated to the Hamiltonian Hp,, in (6.10). The following lemma gives a
parametrization of the homoclinic manifold Wlsp (Po). A proof can be found in [MP94].

Lemma 6.3.2. There exist real-analytic functions ry(u), an(u) and yn(u) such that
Wisp (Poo) = {Tapp(u, B) = (G*rn(u), B+an(u), G yn(u), G) € Ry xTxR*: u e R, B €T, G € R\{0}}
and, if we denote by Xopp the vector field associated to the Hamiltonian Hpay,

Xopp olapp = DI'gpp T with T =(G73,0).

The functions ry, yn and oy admit a unique analytic extension to C\{u =is: s € (—oo0, —1/3]U[1/3,00)}
and satisfy the asymptotic behavior

ru(u) ~ u?/? exp(iap(u)) ~ 1 yn(u) ~u=t/3 as Re u— *oo
and
o 1/2
() ~ (ki/3)Y? explion(u) ~ (Z 8 g) () ~ (wki/3)V2 as wos +if3.

Moreover, yn(u) = 0 if and only if u =0 and ry(u) > 1/2 for all u € R.

Remark 6.3.3. The integrability of the Hamiltonian Hya, (see Remark reflects in the conservation
of the angular momentum G. Indeed, one can check that, for any G, € R\ {0}, Wi,p(Po N{G = G.})
are invariant submanifolds homoclinic to the invariant torus at infinity Poo N {G = G4 }.

6.4 Adapted coordinates in a neighbourhood of the unperturbed
homoclinic manifold

The last statement in Lemma, implies that
T+ (Wapp (Pao N{G = G.})) = GZ/2.

Thus, by choosing G > 1, the homoclinic manifold W, (Po, N {G = G.}) is contained in the region
of the phase space where 7 > L2. Consequently, on a neighbourhood of Wl (P N {G = G.}), the
Hamiltonian H in can be studied as a perturbation of the sum of the two uncoupled Hamiltonians
H,) and Hp,,. Then, one expects that, for Gy > 1, the invariant manifolds W**(7¢,) in are close
to the product Wi (Poo N {G = Go}) X Te—g,., C M and can be studied perturbatively.

Remark 6.4.1. The reason why we parametrize the tori (6.16]) in terms of the value of Gqg is that we
already have a parametrization, in terms of Gy of the invariant manifold Whsp(Peo N {G = Go}).

"Note that for the # component 77 o @Lar () = 00 as t — oo
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We now fix any
Lo e Ry and © > Lg. (622)

Then, by the definition of the set Gg r, in , for any Gy € Go, 1, we have that Gp > 1. In order to
analyze the dynamics in a neighbourhood of Wigp(Poo N{G = Go}) X To—aG,,1, C M, we introduce the
change of coordinates

NG, : (U, BN Y, J,A) — (r,0,4,y,T, L) (6.23)

given by

Y —ri(u)J
Goyn(u)

where 7, ay,, yn are the functions introduced in Lemma and I'g = © —Gq. The proof of the following
result is a straightforward computation.

r=Gim(u),  ¢=B+an(u), L=X  y=Ggly(u)+ P =To+J, L=LotA.

Lemma 6.4.2. Let (M,do) be the exact symplectic manifold in (6.13). Let (M,dr) be the exact sym-
plectic manifold

M = {(u,B,\Y,J,A) e R x T> x R*} and 7T =Ydu+ JdS + AdX

The change of variables ng, : M \ {u =0} — Ry x T? x R? defined in (6.23)) satisfies

2

NG,T — T
In particular, ng, is a symplectic change of variables between (M,do) and (M \ {u = 0},dr).
Remark 6.4.3. The map ng, is not defined at u =0 since yn(u) =0 (see Lemma[6.5.9).

The reason for introducing the coordinate transformation ((6.23)) is that, in the new coordinates, the
flow is almost linear on the region {|Y|, |J|, |A| < 1}. Indeed, up to a constant rescaling, the Hamiltonian
in the new coordinates reads
- V(“’a ﬁ7 )‘7 J7 A7 L07 P07 GO)7

(6.24)

-vG}
oo 2 it o G0) = =5 e ™ g

where we have introduced the perturbative potential

~ G
V(U, Ba )‘7 Y7 Jv A7 LO7 F()7 GO) = GgV(G%’]"h(U)7 Q()‘7 LO"_A» F0+J)7 f(>\7 ) L()+A7 F0+J)+ﬂ+ah(u)) - r 0 .

n(u)
(6.25)
Since, as we will see in Section [6.5.1
V(uaBa )‘7030;L0>F0aG0) = O(Gagrgg(u))v
we obtain
. : -3 i Gj -3
u=1+O(Y],[J],[A]), B=0(Gy" Y|, ], ]A]), AZ—V78+0(G0 YL 1] [A])
Y =0(G %Y, 1J],|A]), J = 0(G5% Y], J], A, A=0(G5 Y], J],A]).

6.4.1 Parametrization of the invariant manifolds

We now want to obtain a parametrization of the invariant manifolds associated to the invariant torus
7o C - Since these manifolds are Lagrangian, there exist functions (ug is a positive real number)

S¥: (=00, —up) x T = R S* : (ug, +00) x T? = R, (6.26)
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solutions to the Hamilton-Jacobi equation

G3
H(q, VS™*(q)) = —%, q=(u,B,1), (6.27)
0

where H is the Hamiltonian , such that
Wiee(Tao) ={(4: VS“(9)): ¢ = (u, B,t) € (=00, —ug) x T?}
Wiso(Ta,) ={(a, VS*(9)): ¢ = (u, B, 1) € (ug,+00) x T?}.

Therefore, if one can extend the functions S** in (6.26]) to a suitable common domain, one can measure
the distance between the manifolds W (7¢,) and Wy (7T¢q,) simply by studying the gradient of the
so-called splitting potential (see [EIi94) [DGOO], [San01])

AS(U,ﬁ,t;Lo,Fo,Go) = Su(uvﬂ,t;LOaF(J?GO) - SS(U,ﬂ,t;Lo,Fo, GO) (628>

6.4.2 Approximation of the splitting potential
From the expression for H in (6.24), the Hamilton-Jacobi equation (6.27) reads

we oy G g, DuS™* TR0 5") (955"
vG vG} vG}
_ _ u,s | _ s ws. 7T _0
(L% (Lo + 0\S®5)2 L3 xS V(u, B, X,05%,0,5"%; Lo, T'o, Go) =0

Thus, one expects that, up to first order, the generating functions S*?*, are approximated by the half
Melnikov potentials L™° which are defined as the unique solutions to

Gy ,
OuL™* + v =3 O\L™" = V(u, B,1,0,0; Lo, Ty, Gp) = 0 lim L%=0,  lim L°=0
0

Re u——o0 Re u—o0

and, that the splitting potential AS in (6.28) is given, up to first order, by the so-called Melnikov potential
E(U, 57 )\7 L07 F07 GO) = Lu(u7 Ba )‘a LO? FOa GO) - Ls(u7 67 Av LO, F07 GO) (629)

In view of this heuristic argument, the first step towards proving the existence of transverse intersec-
tions between W*(Tg,) and W#(7¢, ), is to study the Melnikov potential (6.29)). To that end, we invert
the linear operator £ = 0, + v(Go/Lg)3dx and express the half Melnikov potentials as E|

0
Lu(ua /65 Av LO) FO) GO) :/ V(u + 87/67 A + V(GO/LO)38707O; LOa FOa GQ)dS

“+o0
Ls(u7 ﬁa A7 LO) FO) GO) = - / V(u + 8767 A + V(GO/LO)BSa an;LOaFOa GO)dS7
0

SO
—+oo

E(U,B,)\;LO,FO,GO) = / V(U + Svﬂa)\ + V(Go/Lo)SS,O,0;L07F07G0)d5.

—00

It turns out that, up to rescaling, V(u, 3, \,0,0; Lo, Ty, Gp) only depends on the parameters Lg, g, Go

through the quantities
Go [ 12
I = fo and € = 1-— f% (630)

8The linear operator £ admits a right inverse in a suitable space of real analytic functions, defined in a complex
neighborhood of (—oo, —ug) x T2, which decay sufficiently fast for u — —oco. An analogous statment holds for real analytic
functions, defined on a complex neighborhood of (—o0, —ug) x T2, which decay sufficiently fast for u — co (See, for example,
|GPS23b)).
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Based on this observation, it will be convenient to introduce the function U (u, B, A1, €9) defined by
U(’LL, 57 )‘7 I(GO» LO)v 6O(]-—‘O, LO)) = V(uv ﬁv >‘7 07 07 LO) FO) GO)) (631)
and use the following, more compact, notation for the Melnikov potential defined in ([6.29))

L(B,I,/\—Vlsu;eo):/U(s,ﬁ,)\—1/I3u+ul3s;l,eo)ds. (6.32)
R

This heuristic approximation can be made rigourous, without too much extra work, for approximating
the splitting potential by the Melnikov potential in the C° topology. The approximation
in the C! topology (recall that transverse intersections between W*(7g,) and W*(Tg,) correspond to
non degenerate critical points of the splitting potential) requires however considerably more extra work.
The reason is the following. Due to the existence of different time scales and the real-analyticity of H
in (6.24), the splitting between W*(7¢,) and W*(T¢,) is highly anisotropic. A more or less standard,
averaging procedure, can be used to prove that the splitting (measured along a suitable section) between
W*(Ta,) and W*(Tg,) is polynomially small (in 1/G,) in the direction conjugated to the resonant angle
B, and exponentially small (in 1/G.) in a direction close to the direction conjugated to the fast angle A
(see [Nei84) [LMSO03]). This argument, however, only yields a (non sharp) upper bound for the gradient of
the splitting potential. In order to obtain an asymptotic formula (or a sharp estimate), one would need
to carry on this averaging procedure with an “optimal loss of analyticity”. Alternatively, following the
ideas of Lazutkin [Laz87], one can try to extend the splitting potential (or some vector parametrization of
the invariant manifolds) to a complex domain which gets “sufficiently close” to the complex singularities
of the perturbing potential V. Then, a standard argument can be used to obtain sharp estimates on the
decay of the Fourier coefficients of the splitting potential AS, what, in turn, yields a sharp estimate of
each component of its gradient. This was the approach in [GMS16], (GPS23b]. However, in these works,
where the eccentricity € was assumed to be either zero or small enough:

e The singularities of the perturbing term V are “sufficiently close” to that of the parametrization of
the unperturbed homoclinic manifold in Lemma [6.3.2

e The domain of analyticity of the perturbing term V' can be written as a direct product.

This is not the case when the normal form is centered around an orbit with arbitrary eccentricity
€ (0,1). As we will see in Section[6.5.4] the singularities of V' move away from those of the unperturbed
homoclinic manifold in Lemma [6.3.2} Moreover, the domain of analyticity of the perturbing term V'
cannot be written as a direct product. These facts complicate, heavily, the asymptotic analysis of the
Melnikov potential L in and the justification of the Melnikov approximation. In the rest of the
paper we introduce new tools to obtain an asymptotic analysis of the Melnikov function L and which,
we hope, can be of interest for the analysis of Melnikov functions in other Hamiltonian systems.
Finally, notice that we have only concerned ourselves with the analysis of the stable and unstable
manifolds of the same torus. However, in order to construct a transition chain leading to Arnold Diffusion,
we need to understand how the manifolds associated to pairs of different tori intersect. This requires

substantially more work and has been studied for the first time, in the exponentially small setting, in
[GPS23b].

Remark 6.4.4. We fiz once and for all the values of mqg, m1, mo # 0 such that mg # my1. We also fix
€0 € (0,1). In the following, when we introduce a real constant C' and say that C # 0, we mean that for
any choice of these parameters as above, the constant does not vanish.

6.5 The Melnikov potential

In this section we present our main result. Namely, for any fixed value of the masses mg, m1, ms > 0, any
eccentricity €y € (0, 1) and sufficiently large I, we obtain an asymptotic formula for the Melnikov potential
L in . To this end, the introduction of some notation is in order. Given a value 0 < I, < 0o, we
define the unbounded cylinder

AI) ={(B, 1) eTxR: I, <I}.
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Theorem 6.5.1. There exists I* > 1 such that the Melnikov potential L in (6.32)) satisfies the following
properties for all (B,1,0) € A(I,) x T:

e [t can be expressed as an absolutely convergent Fourier series

1 _
L(B,1,0560) = »_ LU(B, T;e0)e™, LB, I; e0) = —/L(,B,I,a; eo)e~ " do.
27T T

IeZ

e Forl =0,
[0] vm 3¢p ~2 =2\ 73
LB, I;e0) = 5> 1+ > (moog +myo7)]
+ —(1+..)(moG3 +m1G3) el ~ cosﬂ—i—E(ﬁ,I)),

with
BB, ST

e Forl = 1,2 there exist explicit real constants A; # 0 such thatﬂ

L8, Ty eo) = AT~ exp(~ M3/3>( T (14 0(7) explial3)

. (6.33)
+14007) exp(lq1(6))> TG L)
where
n(3) = ~3viseal (cos f — isin ) + O(L) 01(8) =~ vineal (cos § — isin ) + O(1)
and

ITi(B, I;e0)| S I8 exp(—IwI®/3) (1 + O (exp(IRe qo(B))) + O (exp(iRe ¢1(B))) )

e The sum of the higher coefficients

L23(/87[70;€0) = Z L[l](ﬁal7 60)6“0

[1]>3

satisfies
|L>3| < exp(—3vI?/4).

6.5.1 The Melnikov potential as an infinite sum of fast oscillatory integrals

The Melnikov potential L in is a real integral of a real-analytic function U (see ) whose
phase in the 27-periodic variable o oscillates rapidly. Therefore, one expects that the size of the Fourier
coefficients of the function o — L decays exponentially fast with |I|. In order to see this, we first obtain
an explicit formula for the function U (u, B, ; I, €p). The following lemma was proved in [VP94].

Remark 6.5.2. The reader will forgive us for keep using the notation ry,an and p, f after the change
of variables introduced in Lemmas[6.5.3 and[6.5.)

9Recall that &1 < 0 so minger(Re go(8), Re ¢1(8)) < 0. Therefore, (6.33)) provides asymptotic expression of LW, with
l=1,2, forall B €T.
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Lemma 6.5.3. Let rj,(u) and ap(u) be the functions defined in Lemma [6.5.4 Then, under the real-

analytic change of variables uw = (7 + 73/3)/2 we have that
2

1 .

rp(T) = u ;_ and elon(m) = s

T—1

Introduce also the function p(\) given by
o(X, Lo, To) = Lyp(X; €0(To, Lo))- (6.34)
where ¢ was defined in and ¢q in(6.30). We will also need the following lemma (see, for instance, ...)

Lemma 6.5.4. Let p()\) and f()\) be the functions defined in (6.34) and (6.8). Then, under the real-
analytic change of variables given by the Kepler equation A = £ — €psin&, we have

p() =1—¢€pcosé and p(€)ef (&) = 2i (e’f — 2K + f@fe_if)
Re
where c
fe = —————. 6.35
1+4/1—¢€ ( )
Consider the function U(u, 3, ; I, €) defined in (6.31) and denote by
U(Ta ﬂa 5; Iv 6O) = 0(”(7—)7 67 )‘(6)7 Ia 60)'
Then, we obtain that
mODI mlﬂI (mo + m1)17]
U » M ;Ia = 5 . + 5 . - )
B L) = e BT ] T Jra(r) + BA@e @] r(r)
(6.36)

where 7 and ., x = 0, 1, are defined in (6.5]). It is straightforward to check that, for

I > \/2(1 + €o) max(&o, [51]),

(6.36) is a real-analytic function of all its arguments. Therefore, for all [ € Z, the Fourier coefficients
UY(r, B;1,€p) of the function A — U(u(r), 8, A; I, €0) are well defined and given by the expression

Ul i Teo) = 5 [ Ulr .6 Leahp(€)e™ e (637

Moreover, the series U(7, 8,&; 1, €0) = Y, U(7, B 1, €0)e? ) is absolutely convergent for any (7, 3, &) €
R x T2. On the other hand, a trivial expansion of the denominators in in powers of 12, together
with the fact that

mooo + miogp =0 (638)
and the expressions for rp(7), ap(7) in Lemma show that 72U (7, 3,&; 1, €) is absolutely integrable
on R as a function of 7 (see also the proof of Lemma below). Thus, we can express the Melnikov
potential in as the absolutely convergent infinite sum of (convergent) improper integrals

1 [ -~
L(B,I,\ — vIPu;€p) =3 / U(u(s), B, A — vIPu + vIPu(s); I, €0) (s> + 1)ds
R

:% Zeil()\—ulau)/ U[l] (376; I7€O)eilulau(s)(52 + 1)ds
7I

1€z R
I 0o
LS L0 L),
lez

where by u(s) we mean u(s) = (s 4+ s°/3)/2, the functions Ul are defined in (6.37) and
1 .
L0, Lieo) = 5 [ UM(s,3: L) ™5 4 1), (6.39)
T JR

For |I| > 1 and I > 1, (6.39) are fast oscillatory integrals with phase (v I3u(s).
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6.5.2 Asymptotic analysis of L
In this section we provide an asymptotic expression, for I > 1, of the function LI defined in
Lemma 6.5.5. There exists I, > 1 such that for all (58,1) € A(I,)

32 15
LB I;eq) = V; ((1 + 2> (moGa +my63) I3 + Z(l +..)(moGs +m153) eoI ~° cos B + E(,B,I)) ,
(6.40)
with
[E@,D| ST
Proof. Let x = 0,1 and denote by (make use of Lemma [6.5.3)

a.p(§)
2rp(7)

Then, in view of (6.36)), the potential U(t, 5,&; I, €o) is given by the explicit expression

_ vl mo m i -
SR (\/(1+A0,+)(1+A0,)+\/(1+A1,+)(1+A1,) (mo + )>- (6.42)

Since for (7, 3,£) € R x T? we have

26,p(&)

A*yi(T,ﬂ,g;I,Eo): m

exp (£i(8 +an(r) — f(€))) = exp (£i(8—f(€)). (6.41)

|A*,:t|§-[72v *:0713

we can expand the terms (1+ A, £)~/2 up to order 3 in A, 4, use Lemma and ([6.38) to obtain

U(T7IB7§;I760> :% ((mOO'O +m101) 14('0(5))2_’_
p°(6)

et (B—£(8)) e~ H(B=F(8) (6.43)
+ (mOUO +m101) 276 ((T —i)2(1 +14)* + (r+14)2(r i)4>>

+ Eo(1,8,& 1,e0) + O(IT 7ry, > (1)),

where the term

3vl

Eo = 8ru (T )(

AS L+ A +AT L+ AT (A LA+ AT+ AT ),

satisfies that that
/(T2 + 1)Eodr = 0.
R

Recall that by (639), for 1 = 0, LI = [ [LU(7,8,&1,€)p(€)dédr. Then, the proof of the lemma is
completed d making use of the formulas

1 s 3¢2 1 N 5¢0
— de =1+ 20 il if(€)qe = -9
o7 Joen” (©dE =1+~ o7 Joon” (&)e 3 5
and
/ (r2 +1)72%dr = il / (r+40)72(r Fi)4dr = ——
TER 2 TER

254



6.5.3 Estimates for Ll with |I| >3

To analyze LI we begin by analyzing the behavior of Ul for complex values of 7. Let C' > 0 be a
sufficiently large constant and introduce the complex disks

D={reC:|r—i|<CI"} D={reC:7€eD}. (6.44)
Lemma 6.5.6. There exists L. > 1 such that, for oll (8,1) € A(IL,) and alll € Z, the function
7= U7, 8;1,6):C\ (DUD) — C (6.45)
defined in (6.37), is analytic. Moreover, for alll € Z and 7 € C\ (DU D), we have that
(U7, B; 1, €)| S I? min(L, |7]~°). (6.46)

Proof. Let A, 1 be the functions defined in (6.41)). Choosing C, in the definition of D in (6.44), large
enough, for all (3,£) € T? and all 7 € C \ (D U D) we have that

|A*,i| < 1/2 *2071'

It then follows that, for all [ € Z, for all 3 € T and all 7 € C\ (D U D) the function UEZ] (1, 8) defined
by (6.37)) is analytic. We now show how to obtain the estimate (6.46). For 7 € 9D U 9D we have that
|A, +| < 1/2. Therefore, the expansion (6.43) we used in the proof of Lemma shows that

max _|U(7,B,¢)| S JER
T7€0DUdD

On the other hand, for all 7 such that |7| =4, |A, +| < 72 and we obtain that

max |U(r, 8, )| 17

It then follows from direct application of the maximum principle that

max |U(7',B,§)|§IQ.
Te{|T|<4}\(DUD)

Finally, for 7 such that |7| > 4 we have that |A, 1| < 772172 and using again (6.38) we obtain that

max |U(r,3,8)| < 776173,
max [U(r 80| S
To complete the proof it is enough to use the definition of U in (6.37). O

As already pointed out at the beginning of the present section, since the function o — L(8,0;1, €g)
is periodic and real analytic, the size of its Fourier coefficients decays exponentially fast as |l| increases.
This is shown in the next lemma where we obtain (non- sharp) estimates on the decay for the harmonics
LU(B; 1, €p) with |I] > 3.

Lemma 6.5.7. There exists I, > 1 such that, for all (5,1) € A(L,),
Z ‘L[l](ﬁ,l; 60)‘ < I?exp (—31/[3/4) .

[11>3

Proof. We have shown in Lemma that for all I € Z the function 7 — U (1,8,1I) is analytic on
C\ (D U D) and satisfies the estimate (6.46)). Therefore, due to the absolute convergence of the integral
defining L (8, 1), one can change the integration contour from the real line to a suitable homotopic
path in the complex plane. For [ > 0 we choose the curve T' = I'g U T's; defined by (see Figure [6.5.3))
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To

Figure 6.2: Sketch of the integration path for the estimation of the size of |L!(p, I')| with I > 3.

To={r€C:|r—i|=¢ —3n/2 <arg(u(r) —i/3) < w/2}
Iy ={7 € C: Im u(r) > u*, arg(u(r) —i/3) € {-3n/2,7/2}}

with ¢ being the unique positive solution of the equation

c
2 6 12

and v* = Im(u(7*)) for 7* such that |7* —i| = ¢ and arg(u(7*) — i/3) = w/2. Thanks to our choice of ¢,
on 'y we have

. i(T—i)2 (r—1i)3 |T—z'|2 |7'—z'|3 1
— 3 = < = —.
fulr) = /3| 2 6 = 2 T 6 12
Therefore,
. 1 1 1
mip (In(u(r)) = 3 - 35 = 5

and we have that
max |exp(1'l1/I3u(T))| <exp (— WI?/4).
T€lo

Thus, using the bound (6.46)) we obtain

S Pexp (—WwI?/4).

/ U[l](T)eilulau(T)(TQ+1)d7_
To

On the other hand, we have chosen I'y; to be the union of two steepest descent paths for u(7). Hence,
using that 2du = (72 + 1)d7 and writing # = Im u — 1/4, we deduce from ({6.46))

=2

/ U[l] (T)eilIS’u(T) (7_2 + l)dT
Fst

/ ult (T(u))e“IS"du
u(Fst)

SIPexp (—wI?/4) /OO e Prqy
ST texp (- ZV13/4).0
Joining both computations we obtain that for [ > 1
‘L[l](B;I, eo)' < I?exp ( — ZVIB/4).
Actually, since o — L(8,0;1,¢q) is a real analytic function, we have that for |{| > 1

L1081, e0)| 5 T2 exp (= 11 /4).
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Then, we conclude that

> LB T e0)| S 1P exp (= 3uI®/4) Y exp (— (|| = 3)vI%/4) S TP exp (— 3vI?/4),
11>3 1[>3

as was to be shown. O

6.5.4 The Fourier coefficients L' and L2

In Lemmas and we have exploited the fact that for |I| > 1, LU (B, I) are oscillatory integrals
(with phase given by vI°u(7)) of a real-analytic function to deduce that they decay exponentially fast
with |I| for |{| > 3. It is clear that, making use of the estimates in Lemma [6.5.6] the argument used in the
proof of Lemma also yields exponentially small bounds for the Fourier coefficients L (3, I) with
|| = 1,2. However, in order to obtain an asymptotic formula for LI (3, 1) |I| = 1,2, one has to integrate
along a path which reaches the complex singularity 7 = 7’ of the (analytic continuation of) the function

7+ UW(7,B;1,€) in (6.37)), for which:
e Im(u(7")) is closest to zero,
e 7/ is contained in the real-analytic branch associated to the function u = (7 + 73/3)/2.

So far we know, from Lemmam that U in defines an analytic function for 7 € C\ (DUD) (see
. We now locate all the complex singularities of the analytic continuation of U in which are
relevant for our analysis. Then, we obtain local expansions close to each of these complex singularities.
This will allow us to deduce an asymptotic formula for LI'(3, I) and LPI(8, I).

It will be convenient to write U in (6.36)) as U = Uy + Uy with

m, vl myl

Uulr B 61 e0) = P (7) + 55 p(€) el ©+5+an(]  1(7) *=0l (6.47)
and define, for (7,5) € R x T,
y 1 27 )
,E](T,ﬁ;l, €) = %/ p(E U (T, 8,81, eo)e_m(&)dg *=0,1. (6.48)
0

Of course, the same argument in Lemma shows that (6.48)) defines an analytic function for (7, 3) €
C\ (DUD) x T. In the following, when we speak about the function element U,[(l] in (6.48)), we implicitely
refer to the pair (6.48]) and the region C\ (D U D).

Remark 6.5.8. Until further notice, the variable 5 as well as the parameters I, ey will be kept constant.
Consequently, we omit the dependence of any function on them.

Remark 6.5.9. As we have already seen in Lemma in order to analyze the coefficients LI with
1> 0 we only need to study (6.48|) for 7 € H where H is the upper half plane

H={reC:Im7 >0} (6.49)
Recall that due to real-analyticity, it is only necessary to study L with 1 > 0.
Let x =0, 1, denote by 7% (5; I, €0) € C the unique points satisfying
(75 —0)? + 26,60 2P =0, (6.50)

and introduce the punctured disk
D; =D\ {i, 7}, 7" }. (6.51)

where the disk D is defined in ([6.44]).
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Figure 6.3: An example of a curve T : [0,1] — D} joining a point 7'(0) = 79 € 9D with a poing
Y(1) = 7 € D}. The position of 7§ corresponds to an arbitrary value of j.

Remark 6.5.10. Until further notice, the variable B as well as the parameters I, ey will be kept constant.
Consequently, we omit the dependence of any function on them.

Also, we fiz any value of C in the definition of D in (6.44) large enough, so Lemmas and
hold and the points T} are well inside the disk D.

Proposition 6.5.11. Let x = 0,1 and fix any 79 € OD. Let 7 € D} and let T : [0,1] — DI be any
continuous curve joining Y(0) = 79 to Y(1) = 7. Then, the function element Ul in admits an
analytic continuation along Y wich we denote by Uy] (1; 7).

Moreover, if T, :[0,1] — DX are two continuous curves with Y(0) = Y'(0) =79, T(1) =Y'(1) =7
and such that the closed curve T = YY1 is contractible (in D) to a point, or homotopic (in D) to
oD, then UM (r; 1) = UM (7, 17).

The proof of this result is deferred to Section Proposition [6.5.11| shows that, for T : [0,1] — Dg

as above, the only candidates to be singularities of the analytic continuation of U,[f] in along Y
are {i,7},7*}. We will see in Proposition (whose proof is contained in Section that they are
indeed singularities. The second statement in Proposition can thus be understood as giving partial
information about the monodromy of the analytic continuation of around these singularities.
Although Proposition [6.5.11] holds for a rather large family of curves, in order to prove Theorem [6.5.1}
it is only necessary to study the behavior of the continuation of Uy] in along the following family
of curves. Let x =0, 1, fix any 79 € 9D and let 7 € D}. Then, we define the family of paths (see Figure
6.5.4)
X ={YeC(0,1],D]): Y(0) =79, Y(1) =7, card{T N J,.} <1}, (6.52)

where J, is the segment
Jo={reC:r=M}+(1-N7%, Ae[0,1]}. (6.53)

Introduce now the punctured disks (see also Figure [6.5.4))

Ci={reD;:0<|r—i|<I ™"} C;:{repzzoqr—mgr3/2}. (6.54)

From the definition of D in (6.44)), that of the points 7% in (6.50)) and Remark [6.5.10 one easily checks
that C;,CL C D} and C;NCL =0, Cx NC* =0.

Proposition 6.5.12. Let x = 0,1, 7 € D}, T € X, and let Uy] (1;T) be the function element obtained
in Proposition|6.5.11| by analytic continuation of (6.48]) along Y. Then, forl=1,2,

o For T € C} the asymptotic formula

*[l} (;7) :U*[l] (137) + Si(m; 1) + Ry (1)
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Figure 6.4: On the left, for a given 7 € D}, example of a curve T C X such that card{Y N J,} = 1.
On the right we sketch in red the boundary of the sets C;, C'y and C_. Again the situation depicted
correspond to an arbitrarily chosen value of 3.

holds with O]

ol (r;7) = m*Az\/? FP+0(I71) W((1 - 20,)(7; 7)) b.(r) = I2(r — )2’ (6.55)

where A; # 0 are explicit, purely imaginary, constants, |E|
|S1e (3 1) S T/°
and Ry . (7) is independent of T (and therefore analytic for all T € CL U {r+}).

o For 7 € C; there exists a constant By, € C such that,
y] (7'§ T) = Bl,* + El,*(TE T)

with
| By (m30)] S 175,

e ForTe D\ (C;uCy UC*) we have
’U*[”(T; T)‘ < 194,

Remark 6.5.13. It is admittedly akward that the estimate for 7 € D\ (C; U Cy U C*) (far from the
singularities) is worse than the estimates for T € C% and T € C;. This is only because the analysis we
have made away from the singularities is far less refined than the analysis close to the singularities. A
more detailed analysis would lead to better estimates far from the singularities, however, that will not be
necessary for our purposes.

The proof of Proposition [6.5.12]is postponed until Section The following lemma, proved also in
Section will be important to obtain an asymptotic expression for L' and LI?.

Lemma 6.5.14. Let U*[l] be the function defined in (6.55)). Then, 0.UW is a meromorphic function on
Cx U{ry} with a pole of order one at T = 71. Moreover, there exist explicit, purely imaginary, constants

Ay # 02| such that
- . i3
Res (0.01(r)) = m,An | P(1+0(7).
T=T} Ty

10The term 1 — 2b, vanishes for 7 = 7% . Therefore, one needs to take into account the argument of (7 — TI) (T —TF) or,
what is the same, the dependence on the path Y. We use the real analytic branch of the logarithm function.

11 The constants A; are computed explicitely in Section |6.7} see .

12The constants A; are computed explicitely in Section |6.7.4f see .
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We now show how to use Proposition and Lemma [6.5.14] to obtain an asymptotic expression
for LI and LI2l. We write LI in (6.39) as LI = L([)l] + L[ll] with

1

= —/ Ul (s)e“”lsu(s)(s2 + 1)ds *=0,1. (6.56)
R

27
Proposition 6.5.15. Let [ = 1,2. Then, there exists explicit real constants fll,* # 02| such that
(. 1) =72 AT (1 O(7) exp(=WwI (134 pa(B, 1) 4+ ha(B, 1)) + To(B.1) + Thoexp (8, 1)
(6.57)

with 5
(B, 1) = g&*eOJ*Q(COw — isin f3) |he(B,1)| S T73

and

T3 (8, 1) < I7%®exp(—Iv(1/3 + Re p,)) Ty sexp (B )| S T7%/8 exp(—1v(1/3)).

Remark 6.5.16. We point out that (6.57)) only gives an asymptotic formula of L[*l] for B € T such that
Re p, <0 that is B € (7/2,31/2).

Since L = L([)” + L[ll], the asymptotic formulas stated in Theorem [6.5.1 are straightforward from the
ones in Proposition [6.5.15} This concludes the proof of Theorem [6.5.

6.6 Proof of Proposition [6.5.15

In order to prove Proposition we change the integration contour in to a combination of
steepest descent paths ['4| which visit the singularities 7 = 7/ of the function 7 — UU(7, 3) for which
Im wu(7’) is closest to zero and which are contained in the real-analytic branch (see Remark of the
function u(r) = (1 + 73/3)/2.

Remark 6.6.1. The complex plane T € C can be divided in in three disjoint open connected which are all
mapped bijectively by the polynomial u(t) = (14 713/3)/2 onto C\ {u =is: s € (—oo, —1/3]U[1/3,+00)}
(see Figure . We will denote by real-analytic branch the (unique) open connected component contain-
ing the real line.

In Propositions [6.5.11 and |6.5.12) we have seen that 7 =i and 7 = 71 (), defined in , are the
unique singularities of the the analytic continuation of U (7, §) along paths in Y : [0,1] — D*. Since
these singularities move as we change the value of the angle 3, the integration contour that we choose
to compute , will be different for different values of 8. The first observation is that 8 — 71 (8) are
4r-periodic functions. Hence, throughout this section, we are forced to consider 8 € T = R/47Z.

Remark 6.6.2. For 7 € R, Ul(r, ) is a 2n-periodic function of 5. Of course, since LI1(B3) in
is defined as an integral over T € R, the function L (8) is also 27 periodic in 5. However, to compute
LU(B), we will change the integration contour from the real line to a path which enters the region T €
D. In this region, due to the existence of branching points, it is not true anymore that the analytic
continuation of the function UM (7, B) is a 2r-periodic function of B and one should instead study UM (t, B)
as a function of 5 € T.

13The constants Al are computed explicitely in Section see .
4By steepest descent path we mean a segment in the 7 € C plane where Re u(7) = const.
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Figure 6.5: On the left the plane 7 € C. The position of the points 74 () correspond to the case € Ty ,.
On the right, the image under the real-analytic transformation u(7). The dashed blue (red) curve on the
left is sent onto the dashed blue (red) curve on the right.

Define now the subsets (understood as mod 4)

T o= [7/3,5m/3], T_o =[m/342m,5m/3+ 27], Tio= T\ (T4+oUT_p) (6.58)
T4 = [4n/3,87/3], T_1 =[4n/3+2m,87/3 + 27], Tin= T\(T41UT_;1)
and write u(7) = (7 +73/3)/2 as
AN SRS
u(T) 3= 3(7’ i)+ 6(7’ i) (6.59)

We distinguish 3 situations:

1. B € Ty, For these values of 8 one easily checks that |"°| u(7% (8)) is contained in the real-analytic
branch of the function u(r) = (7 + 73/3)/2 and u(7*(B)) is not. Moreover, from (6.59) and the
definition of 73 (/) in (6.50)), we obtain that

1

S (1= 26.]e0l ™) + O™ < Im u(7}(8)) < 5 (1+15.]e0l 2) + O 7).

Wl =

We will see that, in this case, the main contribution to the integral LL” defined in ([6.50) is given
by the singularities 7 = 77 (3) and/or 7 = .

2. B € T_,: For these values of 3 one easily checks that u(7*(3)) is contained in the real-analytic
branch of the function u(7) = (7 + 7%/3)/2 and u(7%(8)) is not. From (6.59) and the definition of
7_(B) in (6.50)), we obtain that

1

5 (1= 20.]e0l ™) + O(7%) < Im u(7*(8)) < 5 (1+[3.le0l 2) + O 7).

Wl =

We will see that, in this case, the main contribution to the integral LL” defined in ([6.50) is given
by the singularities 7 = 7_(8) and/or 7 = i.

3. B € Ti. In this case, from (6.59) and the definition of 7 (8) in (6.50)
Im (73 (B8)) = 1/3 (1 + 2|64 |eo] 2 cos B) + O(I ) > 1/3(1 + |64|eol %) + O(I %) > 1/3.

We will see that, in this case, the main contribution to the integral LL” defined in ([6.50) is given
by the singularity 7 = i.

We now describe in full detail the case 8 € T, , and sketch later the changes needed to analyze the
other two situations.

15We arbitrarily define 77 (B) to be the solution of (6.50) which is contained in the real-analytic branch of u(r) =
(14 73/3)/2 for B € T4 .
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Figure 6.6: Sketch of the curve I'. On red and blue, the two connected components of I'eyp. In black an
sketch of I'yain, which will be defined precisely later (see also Figure m)

6.6.1 Case (1): €T,

We will change the integration contour in (6.56)) from the real line to a path (H denotes the upper half
plane)
FcCo=H\{i,7{(8),72(8)}

which is a suitable combination of steepest descent paths visiting the singularities 7 = ¢ and 77 (3) of
the (analytic continuation) of UM (7, 8). To that end, we first observe that, for § € T, , expression
implies that

~7r/6 < arg(u(ry (8)) — i/3) < /6.

Just to avoid technicalities, we focus on the case where arg(u(74(8)) —i/3) > —n/2 and indicate, at the
end of the section, how the obtained result extends to the full interval § € T4 .. Let 8 € T4 . be such
that arg(u(ro(8)) —i/3) > —7/2.

Fix a value of 8 € T4 , for which arg(u(r+(8)) —/3) > —n/2 (we now omit the dependence on
until further notice). Then, we consider

I'= Fexp U 1_‘ma,in C (C* (660)
where Texp, I'main are defined as follows (see Figure[6.6.1]). The former one is defined as

Fexp ={7 € C\ D: Im u(r) > 1/3, arg (u(r) —i/3) = —3m/2}

U {7’ € C\ D:Im u(r) > Im u(r}), arg (u(T) _ U(Ti)) _ 7r/2} (6.61)

The curve I'yaim C D is such that I' is connected and homotopic to the real line in C,. More concretely,
we will also choose I'jain as an union of steepest descent paths (for u(7)) contained in D and visiting 7 = i
and 7 = 7. To that end, in the following technical lemma, we study the behavior of the imaginary part
of u(7) along different steepest descent paths for u(7) and contained in D. We first define the constants

d, = min (1/3, Im (u (73))) +I7'/4, i, = max (1/3, Im (u (1)) + I~/ (6.62)
Lemma 6.6.3. Let I' C D be a connected segment. Then,
o If it satisfies Re u(r) =0 and Im u(7) > 1/3,

max Im u(7) < Uy min Im u(7) > ..
7el'nC; Tel'\C;

o If it satisfies Re u(7) = Re u(7}) and Im u(7) > Im u(7}),

max Im u(7) < Gy min Im u(7) > Gy.
Tel'NnCy Tel'\Ct
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Proof. Expanding u(7) = (7 + 73/3)/2 in Taylor series around 7 = i

i o 1 N N2 )
== r—i)3 = (r— 1 _
u(T) 3 2(7' i)+ 6(7’ i) 2(7’ i)°(1+0|T—1|)
and the first statement follows from the definition of C;. The Taylor expansion of u(7) around 7 = 77

yields
u(t) —u(ry) = 2l " ede (T — 1) (14 O|r — 7]) .
Then, the second statement follows from the definition of C7.
O

Lemma [6.6.3] provides us with suitable information on the behavior of Im u along steepest descent
paths visiting either 7 = ¢ or 77. This information is crucial to define I'yain as a union of paths along
which Imu is sufficiently large (so their contribution will be exponentially smaller) and paths contained
in either C; or C'}, for which we can perform an asymptotic analysis. More concretely, we choose I'nain

(see (6.60)) as the union

Fhain =T Ui UT 4

where ~ ~
Fi = Fz U Fi,expa PJr = F+ ) Fi,expy

with
o I'; oxp & combination of two steepest descent paths visiting the disk C;

Diexp ={7 € D\ C;: Im 1/3 < u(7), arg(u(r) —i/3) = —3m/2}

6.63
U{re D\ C;: Im 1/3 < u(r) < @y, arg(u(r) —i/3) = 7/2} (6.63)

e I'; oxp a combination of two steepest descent paths visiting the disk C%
Fiexp ={7€D\CY:Imu(r}y) <Im u(r) < dy, arg(u(r) —u(r))) = —37/2} (6.64)

U{r € D\ C7:Im u(ry) < Im u(r), arg(u(r) — u(r})) = 7/2}

Tjoin & segment joining I'; cxp and I'y oxp

Lioin = {7 € D\ (C; UCT): 0 <Re(u(r)) <Re(u(r})), Im(u(r)) = s}

f‘i, f‘+ are contained in C; and C'y respectively, and are such that I is connected and is homotopic
in C, to the real line (see Figure|6.6.1]). They will be defined more precisely later.

We notice that for each 7 € T', there exist a unique (up to homotopy) path T, € X,, where X is
the set of paths defined in . Therefore, in the following, in order to simplify the notation, for each
7 € I' we will simply write

Dy =l 1)

to denote the analytic continuation of (6.48]) along T,. The above discussion shows that L in (6.56]) is
equivalent to

L= % (7% + 1)Uy] (T)eil”Isu(T)dT. (6.65)
r

We are now in position to obtain an asymptotic formula for (6.65) for case (I), i.e. 8 € T4 ,. The idea be-
hind the definition of T is that, in view of Lemma, the contribution of the segments I'cxp, I'i.exp, I+ exp
and Tjein to the integral (6.56]), will be exponentially smaller than the contribution of the segments I';, '

We first bound the contribution to (6.65) of the segments, Iexp, I's exps '+ exp and Cjgin. For 7 € Fexyp,
defined in (6.61]), we have from Lemma that

’U*[”’ <2,
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Figure 6.7: Sketch of the curve I'yain. On red (blue), the two connected components of T'; exp (I'+ exp)-
In black an sketch of I'; and T';, which will be defined precisely later.

We now notice that I'exp, is the union of two segments which are steepest descent paths for the variable
u. Moreover, from Lemma we know that, for all 7 € T'exp, Im u(7) > 4, where i, has been defined
in (6.62). Then, using that du = (72 + 1)dr, and denoting by u(I'exp) the image of T'exp, under the real
analytic change of variables u(7) = (7 + 73/3)/2 introduced in Lemma we obtain that

[ @l ar <2 [ ulip)et
Coxp u(Texp)

Then, recalling that Re u(7) = 0 at exp, if we write = Im u — 4., we obtain

=2

/ (% + l)U*m (T)eil”IS“(T)dT
Toxp

/ W ()™ du
“(FeXP)

[ee]
<I% exp(—lwIiy) / e Ty < TV exp(—lwI3a,).
0

The segments I'; exp, '+ exp (see (6.63) and (6.64])) are also steepest descent paths for the variable w.
Therefore, Lemma the estimate for \U*[l]| when 7 € D\ (C; UCY UC*) in Proposition |6.5.12f and

the very same argument used to bound the contribution of I'exp, show that

<I*exp(—wI3a,) / e WPty < 173/% exp(—lwIa,)
0

/ (72 + YUY ()t dr
I exp

<14 exp(—lylgﬁ*)/ ez gy < I3 exp(—IlvlPa,).
0

241 U*[l] T eiugu(T)dT
(
r

+,exp

In order to bound the contribution from the segment I'joi, We simply use that length(FjOin) < I~ the
fact that |72 + 1| < 71 for 7 € Tjoin and the estimate for |Uy] (1)] when 7 € D\ (C; UCy UC*) in
Proposition [6.5.12| to obtain

/ (7% + l)UE] (T)eilI?’U(T)dT < P exp(— I, )length(Tjoi) < T4 exp(—IvI®ay).
Tjoin

The following step in the proof is to bound the contribution of the segment T'; C C;. According to
Proposition [6.5.12} there exists a constant By, € C such that, for 7 € Cj,

By =By, + Ei. (1)
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with |E;.(7)| < I/%. Due to the analyticity of Uy] on the region C; we can choose T'; to be given by

[ =T UT . ={7 € Ci: Tm u(r) > 1/3+ (), arg(u(r) —i/3) € {~3m/2,7/2}}
U{reC;: |t —i|=¢, arg(u(r) —i/3) € (3w /2,7/2)}

for arbitrarily small 0 < ¢ < 1 and §(¢) such that I'; is connected. The integral of the constant term is
trivially seen to be zero, so we only have to bound the integral of the term Ej (7). The uniform bounds
for |E; .| in Proposition imply that the contribution of f‘m is proportional to €, thus, arbitrarily
small. On the other hand, @St is again the union of two steepest descent paths for the variable u.
Arguing as above, defining 2 = Im u — 1/3 and making use of the estimate |E; .| < I'%/%, we obtain

0

oo
/ (7% + 1)U*m (T)eilIS"(T)dT <TI0/ exp(—IvI?)/3) / e r g < I8 exp(—IvI?/3).
st

Now we analyze the contribution of f+. We have shown in Proposition [6.5.12| that, for 7 € C7,
UM(r) = T (r) + S1u(7) + Ru(7)

where U is defined in (6-55)), [S; ()| < I'*/® and Ry, (7) is analytic for 7 € C* U{r+}. The contribution
of Ry .(7) to the mtegral is zero due to analyticity. To bound the contribution of S; , we deform the path
[, in a similar way to the one used to bound the contribution of T';, that is, we choose 'y to be a
combination of two steepest descent paths F+,st, starting at 74 and an arbitrarily small circumference
f‘+75 around 74 closing the path. The contribution of f+75 is proportional to e, thus, arbitrarily small.
Defining = Im u — 1/3, we obtain that

[ (72 + 1)Spe (r)e "D dr| <18 exp(—iwIPIm u(r})) / ey
Ty exp 0
<I798 exp(—IwI°Im u(1y)).

Finally, we evaluate the integral of U*[l] () on the whole f‘+ directly. To this end, we integrate by parts
and obtain

~ . 2 .
/ (7_2 + 1)U,£l] (T)ezllgu(f)dT 3U[l]( )ezluI3
T, vl

Ta 2 7l ilPu(r)
- — M/er 87-U* (T)e dT

where 7,, 7, are the endpoints of I';. Since |(7*[” ()] £ I?In(I) for 7 € C and, in view of Lemma m

: 3 : 3
ezlul u(7q) ezlul w(Tp)

7

< exp(—IwI3ay),

we obtain that R o
(G (et 7| S P (D) exp(~WwI*i).

Tb

On the other hand, we have seen in Lemma [6.5.14|that 7 = 77 is a simple pole of the function 9, U l]( ).
Therefore, a direct application of the residue theorem shows that

i 3TU*M( )e W) = 97 Res (8TULZ](T)eil13“(T)).

Iy T=T}

Thus,

2 1 1l13u (1) i (1] _ 3 *
/ﬁ(f U Oy = Res (0.01r)) exp(~(wIPu(r}))

+0 (Iil In(I) exp(—IwI*ay), 1798 exp(—IlvI*Tm u(Tj_))) .
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Figure 6.8: In black, sketch of the curve I' for values of 3 € T, , such that arg(u(7}(8)) —i/3) > —m/2.
Red (blue) dashed lines correspond to lines for which the imaginary (real) part of u(7) is constant.

From the formula for the residue given in Lemma it is straightforward to check that

l;‘}gﬁ% (aTU*[” (T)) exp(ilvIPu(r?)) = A \’;} Y1+ 0(I7Y) exp (= WI3(1/3+ p.(8) + 1%.(8)),
(6.66)
where i 4.
A=A (6.67)
and
pe(B) = 2col e W) = i (§ - ‘6”@5*60)3/26—1‘3%3/2) |

Combining this asymptotic computation with the estimates obtained for the contribution of I'exp, I'; exp,
I'texps Tjoin and I';, we obtain that, for 8 € T corresponding to the situation (I), i.e. f &€ Ty 4,

IAE) =Al% 1+ O(I) exp (= WI(1/3 4 p.(B)) + H4(8))
I (6.68)
+0 (1*9/8 exp(—IwI®/3), I=9/3 exp(—lv Im u(T;)(ﬁ))) .

Remark 6.6.4. Without saying, we have chosen I large enough so the exponentially small errors are
much smaller than the polynomial ones.

We have given, a complete, analytical description of the path I" used to obtain the asymptotic formula
(6.68) for the case where 3 € Ty , and arg(u(7}(8)) —4/3) > —n/2. An important feature of the chosen
path I' is that even when the two singularities 7 = i and 77 () have the same imaginary part El, the only

significant contributions to the integral L[*l] in come from the local segments T'; and f+. However,
when 3 € T, and arg(u(7}(8)) —i/3) — —m/2, the path I' is not well defined since Re u(77(8)) — 0.

Rather than providing lengthy formulas describing how to extend the path across g such that
arg(u(ry(8)) —i/3) — —n/2 we briefly discuss how one can deform the integration path I' to extend the
asymptotic expression for all 3 € Ty .. The main observation is that as arg(u(73(8))—i/3) — —m/2
we have

m (e} (8)) = 5 (1~ 2Aa,Jeol ) + O ) < 1/3.

Therefore, it is enough to consider a path I" which visits only the singularity 73 (3) (see Figure [6.6.1]).
One can check that an argument similar to that of the present section yields the asymptotic fomula (6.68)
also for arg(u(ry(8)) —i/3) = —m/2.

6.6.2 Cases (2): f€T_, and (3):0 € T;,

In order to obtain an asymptotic formula for the values of 3 € T corresponding to the situation (2), i.e.
€ T_ , the path I is chosen in the same way as we did for situation (1) but with 7* () replacing 77 (53).

16 This happens for 8 ~ 7 when * = 0 and 8 ~ 27 when * = 1.
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We obtain that for 5 € T_ , corresponding to the situation (2),

LYp) = 14+ 0 exp (— WI*(1/3+ p.(B)) + h~(8))

f
0 (17 exp(~1w1? /3), 17 exp(~1v Tm u(+2)(3)))

where

2 6
For values of 8 € T corresponding to the situation (3), i.e. S € T; 4, we have already seen that

B (8) = —i <5 +2r lV(%*eO)g/zem(mzw)/z) .

Im u(75(8)) > éu + |Gy leol 72) + O(I73) > 1/3.

Moreover, one can check that

,?Vf*ko[ﬂ + (9(]*3) < Reu(ri(p)) < glcf*kof olie )

We thus define the path I' = ey, U L'join UT'; where
1
Lexp = {7 € C: Im u(r) > 5(1/3 +Im u(r1(8))), Re u(r) € {—|F.|eol 2, |5+|€al 2}},
the path T'joi, is given by

Tjoin = {7 € C: Im u(7) = (1/3 +Im u(Ti(ﬂ))), Re u(7) € [—|5.|eol 2, |G |e0l 2]}

N)\)—l

and T; = T UT x, with

Diexp={7€C\D:Imu(r) < %(1/3 + Im U(T:T:(ﬂ))), arg(u(t) —i/3) € {-3w/2,7/2}}

and fi is such that I" is connected and homotopic in C, to the real line.
Then, an argument completely analogous to the one used in Section shows that for 5 € T, ,

\LY(B)] < T8 exp(—1vI?/3). (6.69)

To complete the proof of Proposition [6.5.15] we simply define h, = hy for 8 € T4 ., hy = h_ for
BeT_,and h, =0 for B €T, ,.

Remark 6.6.5. We point out that, for € T, . we have
hi(B) = h_(8 + 2r)
and, for € T_ ., we have

ho(8) = hy (8 — 2m).
Thus, expression (6.57)) is understood as an asymptotic expression ofLLZ] for B € T such that Re p.(8) <0
and as an estimate for LL” when B € T is such that Re p.(B) < 0.

6.7 The Fourier coefficients of the potential U: Proof or Propo-
sitions [6.5.117] and [6.5.12] and Lemma [6.5.14

The rest of the paper is devoted to the proof of Propositions [6.5.11] and [6.5.12] and Lemma. [6 We
omit the dependence of all functions on the variable § € T and the parameters I, €g.
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6.7.1 The analytic continuation of 7 — U[l]( )

Let D be the disk introduced in (6.44). In Lemma we have seen that, for all [ € Z, the expression
of U in 6.48)) defines an analytic function for 7 € C\ (D U D). We recall that, when we speak about

the function element U} in (6.48)), we implicitly refer to the pair and the region C\ (DU D). We
now want to extend analytically the function element along curves Y which connect an arbitrary
point 79 € C\ (D U D) and a point 7 in the region D. To that end, it will be convenient to perform the
change of variables z = €'¢, and, abusing notation, write A(z) = A(£(2)) and p(z) = p(&(2)), where A(€)
and p(&) are the functions in Lemma Then, if we denote by

Wi (1, 2) = Us(1, A(2)) (6.70)
the expression (6.48]) is equivalent to

*[”(r) = 2_—7:/ p(2)W, (T, z)z_lew‘(z)dz. (6.71)
Y1

where ~; is the circumference {|z| = 1} with positive orientation. The first step towards studying the

analytic continuation of the function element Ul in 6.71]) (defined on the region C\ (D U D)) is to
identify the complex singularities of the function z — W, (7, 2) in (6.70).

Remark 6.7.1. From now on we will omit the subscript = 0,1 and simply write UL, W, m and &
instead of Uy], W, my and &,. All the results we state in the following are valid for x =0, 1.

Lemma 6.7.2. Let k¢ be the constant defined in (6.35)) and, for 7 € R, define

~b(r) —1— /1 —2b(T) K2 _ Gee P
a(T) =kKe o) ae(T) =20 b(T) RV CETE (6.72)
1 B( )= 14+4/1- 25(7') 1 ~ Fee'l
C(T) FT B(T) CE(T’ <P) _H?C(T) b(T) _I2(T + ) (673)
Then, for (1,z) € R x {|z] = 1}, the function W (1, z) defined in can be expressed as
W(r,z) = ml” - (6.74)

€6 /(z—a(n) (z = ac(n) (z = (7)) (z = (7))
Proof. Making use of the expressions for p(€), f(€) in Lemma [6.5.4] we have that (by abuse of notation
we write p(z) = p(A(2)) and f(z) = f(A(2)))

if(z € K2 —if(z Ke€ 2 1
p(2)etf ?) = 5 (z — 2K + z) p(z)e” ) = 5 (z— — + 2112> ; (6.75)

The proof follows after a tedious, but straightforward, algebraic manipulation.

O

Lemma shows that the points z = a(7), ac(7), ¢(7) and ¢.(7) are branching points with exponent
—1/2 of the function z — W(7,2). In the following lemmas we obtain some information about the

functions a(7), ac(7),c(r) and ¢ (7) in (6.72)).

Lemma 6.7.3. Fiz any 790 € R and let 7= € C be the points defined in . Let 7 € C and let
T :[0,1] —» C be such that Y(0) = 79, Y (1) = 7 and Y([0,1)) C C\ {r4,7-}. Then, a,a. defined in
admit a unique continuation along Y which we denote by a(7; 1), ac(7; ). This continuation is
analytic if and only if 7 € C\ {7, 7_}. Moreover, for any two curves T,Y' C C\ {7y, 7_} sharing the
same endpoints, the analytic continuations along them coincide if and only if the sum of the indexes of
the closed curve Y'Y 1 with respect to T = 7, and T = 7_ belongs to 27.

An analogous statment holds for c,c. replacing 7+ by T+. We denote their analytic continuations
along a curve T by c(7;71), ce(m;T)

268



Proof. To prove the result for a,a., as b(t) # 0 for all 7 € C, we only have to check that 1 —2b = 0 if
and only if 7 € {7y, 7_}, but this is straightforward from the definition of b in (6.72)). The result for ¢, c,
follows analogously. O

We now study the behavior of the analytic continuation of a, ac, ¢ and c.. As already pointed out, we
can reduce our study to curves contained in the upper half plane

H={reC:Im 7 >0}

In view of Lemma the analytic continuations ¢(7;Y), c.(7; T) along curves T C H do not depend
on the choice of T so we will simply write ¢, c.. For the analytic continuations of a, a. along a path T we
write

b(r) —1—+/(1—=2b)(r;7T) . B K2
b(r) T = Ly

Remark 6.7.4. The notation (1 — 2b)(7;Y) is used to emphasize that we keep track of the argument of
1 —2b along the path Y.

a(T; T) = ke (6.76)

Lemma 6.7.5. Fiz any 10 € R. Let 7 € H and let Y : [0,1] — H be such that T(0) = 19, T(1) = 7.
Then, for all € H

le(r)| <17 lce(T)| 2 12
Let a(1; 1), ac(7; ) be the analytic continuation of (6.72) along Y :[0,1] = H\ {7y, 7} and let J C H
be the segment defined in Then, there exists a constant C > k. such that, if T € D\ {74, 7_} (see

(6-44) (6.50)) andcard{TﬂJ}—O

ke < la(m;0)| < C. (6.77)

Moreover, for any 7 € H \ {r,7_} and two different curves ¥, Y’ such that card{Y N J} = 0 and
card{Y' NJ}=1

a(t,Y") = ac(r;Y) ac(r,Y) =a(r; ). (6.78)

Proof. For 7 € H we have that I2|7 +i| > 1, and therefore b(7) is small, in fact |[b| < I=2. The result
for the functions ¢(1), c¢.(7) follows by expanding these functions in power series in the variable b().

We now prove the results for a,a.. The idea is to study the shape of the level sets of the function
la(m;Y)| for 7 € H\ J and T : [0,1] — H \ J. First we notice that, in view of Lemma the
continuation along two different paths (sharing the same endpoint) which do not cross J is the same.
Therefore we drop the dependence on Y. For 7 such that I|7 — 4| > 1 we have

2| —il?

5l > 1. (6.79)

la(T)] ~ ke

We now want to study what happens as 7 approaches J. To that end, it will be convenient to introduce
the variable ((7) = k¢/a(7). After some manipulations we arrive to the expression

1—2b(7) —
V1I=2b(r)+1

Writing z(7) = /1 — 2b(7), the map = — ¢ is a Mdbius transformation whose inverse is given by

() =

_1+4¢

=1=¢
We study the image of the curve () = re®® under the map (6.80) for # € T and fixed r < 1 (in view of
(6.79), we have |(| < 1 far from J). We have that

(6.80)

1+ ret

w0ir) =T em
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Figure 6.9: The family of ellipses {£, },>1 defined in (6.81]). The dashed segment corresponds to J.

Substituting now z = y/1 — 2b(7) we obtain the curve in the 7 € C plane

) Gege™ P (1 —ret?)?
0;r) —i)? ——— =0.
(T( 7T> 7’) + 2 rett

This curve corresponds indeed to the ellipse

0:7) — il2 cos2 0: 1) — il2 sin2
g ={rec, O —Feos’ B Jrir) —iTsin B _ ) (6.81)
p? q?
where
_ joel+r _ joel—r
Pr=\op r C=N\op

Consider now the family of ellipses &, in for r < 1 (see Figure[6.7.1]). For all r < 1 the semimajor
axis corresponds to a segment centered at 7 = 4, in the direction of J and of length p, > /250! =
(length J)/2. Also for r < 1, the semiminor axis has strictly positive length. When r — 1 these ellipses
collapse to the segment J. We conclude that for all 7 € H \ J, we have |((7)| < 1 what implies that
for all 7 € H\ J, |a(7)| > ke. Finally, let r. large enough so the disk D in is contained in the
bounded component among the two connected components in which &, divides the complex plane and
set C' = ke /T
The last item in the lemma is trivial from the definition in .
O

The following result will be useful for later computations.

Lemma 6.7.6. Fiz any 70 € R. Let 7 € H and let Y : [0,1] — H be such that T(0) =19, Y(1) = 7. Let
a(7; 1), ac(1; T) be given in (6.76). Then

2K/ (1 —20)(7;T)
b(; ) ’

a(t;T) —ac(r;Y) = — (6.82)

with b(T) the function defined in (6.72]).

Remark 6.7.7. One can easily check that a(m;Y) = a.(7;Y) if and only if T = i (for which |b] = o0)
or T = 14 (for which 1 —2b = 0). The notation (1 — 2b)(7;Y) and b(r; ) is used to keep track of the
argument of these quantities along Y. In this way we can keep track of the argument of a(T;Y) —ac(7; T)
along Y. This will be important in the forthcoming discussion.
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Proof. By the definition of a, a. in (6.76)) we obtain that

iT) —a(m;Y) =k b(r) 1 - /(1 =2)(1;T) b(r; ) _ —2Kc\/1—=2b(7; M)
ol ) = au(rs ) = L e )

O

We now come back to the problem of defining the analytic continuation of Ul in (6.48). To this
end, we notice that, in view of Lemma for 7 € R, the function z — W(r,z) is analytic on the
annulus {z € C: k. < |z| < 1}. Therefore, we can change the integration contour in from 1 to
Vi, defined as the curve {|z| = K.} with positive orientation. We obtain that, for 7 € R, expression

(6.71)) is equivalent to
*[l](T) = _Z/ p(2)Wo(r, 2)z Le* @)z, (6.83)

T oom

Vre

In fact, defines an analytic function for any 7 € H\J. Indeed, for any 7 € H\J, and any T : [0, 1] —
H\J, such that T(0) € Rand Y(1) = 7, we have that {|z| = k. }N{a(T(¢); 1), ac(Y(£); 1), c(Y (%)), c.(Y(t))} =
0 for all ¢ € [0,1].

We now embed this idea in a more general framework, which will allow us, in Proposition to define
the analytic continuation of along curves T C H which do cross the segment J. Fix any 70 € D\ J
and for any 7 € D define the family of curves

Y, ={Y e C([0,1],D): Y(0) =79, Y(1) =7, Y([0,1)) C D\ {74, 7-}}. (6.84)
Then, we introduce the ”collision set”:
Col={(r;T)e D xV.: {a(r;T),c(m)}N{ac(r;Y),c(r),0} # 0}. (6.85)

The set Col is described in the following lemma and will be related to the singularities of the analytic

continuation of (6.83)) in Lemma [6.7.10
Lemma 6.7.8. The collision set Col defined in (6.85) satisfies

Col = {{i} x Vi, {r} x Vo {7} x V:_}
at which we have that a(7;T) = a.(7; ) (independently of the curve Y ).

Proof. We deduce from Lemma m that a(7;T) = ac(r; Y) if and only if § = 0 or 1 — 2b = 0, which
corresponds to the points 7 = ¢ and 7 = 7, 7_, respectively. The existence of other possible “collisions”
is excluded using the bounds obtained in Proposition [6.7.5] O

We now consider the closed curve {|z| = k.}. It divides the z-complex plane C in two connected
components: we denote by By the bounded one and by Bo, the unbounded one. From Lemma [6.7.5 we
observe that, for 7 € H\ J and T € Y, such that Y N J = (J, we have that

{0, ac(m;Y), e(1)} € Bo {a(r;7), ce(T)} C Boo

so no singularity of the integrand in (6.83]) (see also (6.74))) is located on the curve {|z| = k.}. Therefore,
as already discussed, (6.83]) defines an analytic function.

Let now 7 € D and take a curve T € ), such that card{Y N J} = 1. From Lemma we observe
that now
{0,a(7;Y),e(7)} € Bo {ac(m;7), ce(7)} C B,

and the expression (6.83]) does not make sense since a singularity of the integrand has crossed the integra-
tion contour. Of course this is only a matter of how we have defined (6.83)). Indeed, thanks to analyticity,
as long as the path YT along we want to continue (6.83)) satisfies T N Col = @, where

é;i = {ia7-+a7——}7
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Figure 6.10: Sketch, in red, of the curve (1) obtained by continuous deformation of the curve {|z| = K.}
(pictured in dashed lines).

we have freedom to change the integration contour in (6.83) as we travel T to avoid having singular
points on it (see Figure [6.7.1]). This is the content of Proposition [6.7.10| below. We now introduce some
notation which clarifies its statement. We introduce the punctured plane

Cr={zeC:z¢{a(r;7),ac(r; 1), ¢(7), ce(T)}},

and the sets -
D* =D\ Col D={(r,z) e D" xC: ze€ C;}. (6.86)

Definition 6.7.9. Let (19, z0) € (D\J) x{|z| = k¢} be fized and let (1,z) € D. We say that a continuous
curve W : [0,1] — C? is an admissible path from (70, 29) to (7,2) if ¥(0) = (10, 20), ¥(1) = (7,2) and
w([0,1]) € D.

We are now ready to continue analytically UM in (6.83) along paths crossing J. Given a closed
loop v we denote by B, BL the bounded and unbounded connected components in which + divides the
z-complex plane C.

Proposition 6.7.10. Let 79 in D\ J, take any 7 € D* and let T : [0,1] — D* be a continuous curve
joining them. Then, there exists a closed curve v(T) € C; satisfying

{0,ac(m;Y),e(m; 1)} C BY {a(1;Y),ce(T; 1)} € BL
and such that the analytic continuation of (6.83)) along Y is given by

ul(r; 1) = = / o POW (287l POz, (6.87)
Y

where, for all z € (Y1), VY., is any admissible curve such that U [0,1] x ¥(T) — D defined by
(t,2) — W, .(t) is an homotopy between {10} X {|z] = K} and {7} x (7).

Moreover, for T,Y" C D* with Y(0) = Y'(0) € D\ J, Y(1) = Y'(1) = 7, and such that the closed
curve Y = YY1 is contractible to a point or homotopic to dD then UMW (7;T) = UM (+;T").

Proof. The first part of the lemma follows from standard arguments in complex analysis and the discussion
preceding the proposition. We now prove the second part of the lemma. Take now Y,Y’ C D* with
T(0) = Y’(0) € D, Y (1) = Y'(1) = 7, and define the closed loop T = Y'Y 1. Introduce the function
q(t) : [0,1] — R given by

a(T(t);T)

If q(0,T) = ¢(1,7) then, the curves 7(Y) and v(Y’) obtained in the first part of the lemma must be
homotopic in C, where 7 = Y (1) = Y'(1). Thus, it is clear that, if ¢(0, T) = ¢(1,Y), then U1 (T(0); ) =

q(t;T) = arg (1 - W) .
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Figure 6.11: Sketch of a curve Y, in red, homotopic in D* to dD.

UM(T(1),T). But this condition is met for any closed curve T € D* which is homotopic to dD. Indeed,
consider first the case where YN.J = (). In view of Lemmawe have that |a(T(t), T)/ac(T(t), T)| < 1
for all t € [0,1]. Therefore, we must have ¢(1, T) = ¢(0, T). Due to the uniqueness of analytic continuation
on simply connected domains we can drop the assumption T N J = (see Figure . O

Proposition shows that the points 7 = i, 7, 7_ are the unique canditates to be singular points
of the analytic continuation of along curves T C D. We will see in the forthcoming sections, where
we study the quantitative behavior of , along a suitable family of paths Y, that 7 = ¢, 7, 7_ are
indeed singular points of the analytic continuation of .

From now on, since the singularities ¢ and ¢, play no role when we restrict to 7 € H, we make use of
the more convenient expression for the function W (see (6.74)))

(7,2) Cj I?
W(r, z) = - .
(T+Z)\/1+h(7',z) \/Z*(a+ae)(’r)+%§ (6.88)
where
—imv | KeeP 25¢e ,
= - = — —if(2)
Cs - G h(r, z) T2(r 1 1) p(z)e . (6.89)

and, denote its continuation along any admissible path ¥ . : [0,1] — C2, as W(1,2; ¥, ,).
Remark 6.7.11. In the forthcoming sections, we will always assume the following without mentioning:
o We fix an arbitrary 7o € H\ J.

o Given a point T € D* we will denote by Y : [0,1] — D* any continuous curve such that T(0) = 7o
and Y(1) = 7.

e (T) is any curve in the homotopy class (in C.) of the curve v(Y) obtained in Proposition|6.7.10

o Gien 5(Y) as above, for all z € ¥(Y), ¥, , is any admissible curve such that U :[0,1] x 5(T) — D
defined by (t,z) — ¥, ,(t) is an homotopy between {70} X {|z| = K} and {7} x ¥(T).

o For a given ¥ , as above, and, understanding z — V. ,(1) as a parametrization of the curve ¥(T),
we will simply write W (7, z) instead of W(r,2; %, ,).
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6.7.2 Behavior of Ul(r;T) for 7 € D\ (C;UC, UC_)

We first choose a curve in the homotopy class of the curve (7") which is suitable for obtaining bounds
for [UY(7;7)| when 7 € D\ (C; UCy UC-) with C;,Cy and C_ the punctured disks defined in (6.54).
We recall that, in the present, and forthcoming sections, we include curves T : [0,1] — D* such that
card{Y N J} € {0,1}, where J is the segment in (6.53).

Lemma 6.7.12. If 7 € D\ (C;UCLUC_) the closed curve v = ~(T) in Proposition can be chosen
such that

e length(y) <1,

o For z € v we have that
2 ~1 2= a(m D)), |2 — ad(m 1) 2 T4
Proof. In order to prove the lemma we only need to verify that there exists a suitable lower bound on the

distance between a(7;T) and a.(7; T) and, in order to bound the length of the curve, give an estimate
on how far these points are from the origin in the z € C plane. From expression (6.82)) we obtain that

) — o () = 162 L 26T
(a(TvT) e( aT)) 165 bQ(T)

does not depend on the curve Y. That is, the function f(7) = (a — a.)?(7) is an analytic function on
D c C. Then, we can apply the maximum principle to f(7) to obtain that (making use of the definition

of C;,Cy in (6.59))
min la —ac| = 174,
T€D\(C;UC4)

We now want to obtain a lower bound on |a(7, T)|. To that end, we use that aa. = x2 and apply the
maximum principle on the subset of the Riemann surface associated to the analytic continuation of ac
which projects onto D. We know from Lemma that, there exists C' > k. such that

max{|a(r; T)|: 7 € D, card{YNJ} =0} < C max{|a.(m;Y)|: 7 € 9D, card{TNJ} =0} < K.
Combining these estimates with the last item in Lemma we obtain
max{|a.(r; T)|: 7 € D, card{YNJ} =1} < C max{|a(m;Y)|: 7 € 9D, card{TNJ} = 1} < Ke.
Therefore, we can conclude that

max{|a.(7; T)|: 7 € D, card{Y N J} € {0,1}} < max{|ac(m;T)|: 7 € D, card{Y N J} € {0,1}} < C
and, consequently, since aa. = K2,

min{|a(r; T)|: 7 € D, card{Y N J} € {0,1}} > min{|a(r; T)|: T € OD, card{Y N J} € {0,1}} > x2/C.

Then, in view of the preceeding discussion, given the curve v(Y) of Lemma [6.7.10, which we already
know that exists and satisfies

{0,ac(m;7),¢e(1;7)} C By {a(7;7),ce(m;7)} C BL,
we can always find 4(7) homotopic to 4(Y) in C, satisfying the requirements in the lemma. O

Lemma 6.7.13. Let UU(7;Y) be the analytic continuation along Y of (6.83) obtained in Proposition
6.7.10. Then, for 7 € D\ (C; UCy UC_) we have that

Ut < 1
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Proof. Change the curve *y( ), obtained in Proposition [6.7.10] to a curve 5(T) satlsfylng the properties
stated in Lemma Therefore, making use of the formulas for p(z) and e**(*) in , it is clear
that for z € v(T) we have

‘p(z)zfleil)\(z)

On the other hand, from the bounds in Lemma|6.7.12] and expression (6.88]), and the definition of C;, Cy
in (6.54), we obtain that, for 7 € D\ (C; UCy UC_) and z € ()

<1

W(r,2)| s I

and the result follows.

6.7.3 Behavior of Ull(7;7) for 7 € C; U Cx

Define ,
Cﬁfzp(z)ell)‘(z)

(1 +1i)\/z(1 + h(r,2))’

where the constant Cj is defined in (6.89) and the expression for p(z)e?*(#) can be deduced from (6.75).
We then write UM(T) in as

filr,z) = (6.90)

Uld(r; 1) = / p(2)W (1, 2)z" e dz
(1)

(6.91)

=fi(r,a(r;T))

/ 27 ldz +/ (filt,z) = fi(m, a(T' T)))z"1dz
+(1) V224 (a+ac)(T)z + K2 0 V22 (et ad)(r)z + K2 '

It is now convenient to introduce the function ((7;Y) (we already used this function in the proof of
Lemma [6.7.5), defined by

2 ac(r; ) Ke
¢(m; ) a(T; T) a2(7'; ’I‘) ( )
Lemma 6.7.14. Let
/ 1- (2 sin?
be the complete elliptic integral of the first kind. Then, we have that
2tz
=4k7NC(T VYK (C(T5 ).
/:y(Y) V22 + (a+ac)(1)z + K2 ( ( 2
Proof. We consider 7 € R and T such that card{Y N J} = 0, so we know that
la(m; 1) > 1, lac(m; 1) <1,
and we can simply choose
—1d 2z~ 1d
/ e = / : , (6.93)
v VA2 +(atad(m)z+ a2 o 22+ (a+ad(n)z + k2

where 7, is the circumference {|z| = K.} with positive orientation. Moreover, taking into account
the decay of the integrand for |z| — oo, we can change the integration contour in (6.93)) to the curve
Y = Ydown VYup where

Yup ={z € C: z=10a(r;T)s, s € (1,00)}
Ydown ={z € C: z = a(1; V)se ", s € (1,00)}.
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A straightforward computation then shows that

z~1dz s~lds

_ 2 /°°
w22 F(ata)(n)z+s2  aln) )i J/(s-1D(s- (1Y)

Changing the integration variable to = 1/s and then to 6 where x = sin?  we obtain

/°° s~ 1ds _ /1 dz L /”/2 do
L Vs-D(s5-003) Jo JO-2)(1-_C2) o /1—(2sin?6

Thus, for all 7 € R, we have that

z~dz L N
[v(T) V2 F(a+a)(n)z+ k2 Ak C(m VK (C(T; 7).

The result follows since K ({(7; Y)) can be continued analytically along any curve for which ¢?(7; Y) # 1.
However, we know from Lemma and the definition of D* that (?(t;Y) # 1 for 7 € D*. O

If we denote by

Y (fi(r,2) = filr,a(r; X))z 1dz
BmT) = /y(T) VA F(ata)(r)z+r2 (6.94)
and Lemma imply that
ull (7;0) = 4k fi(,a(m; ) C(T; VYK (C(57)) + Ey(75 7). (6.95)

In order to prove Proposition [6.5.12] it remains to obtain local expansions of K (¢(7;T)) and study the
quantitative behavior of E;(7;Y) for 7 € C1 and 7 € C;. The proof of the following lemma can be found
in, for example, [?].

Lemma 6.7.15. For all ¢ € C such that 0 < 1 — (2 < 1 there exists a constant ¢ € C such that
1
K(¢) = 5 (1= ¢*) +c+0(1 = %),

In the next lemma, whose proof is straightforward, we provide some technical information about the

function f;(7,z) introduced in (6.90).

Lemma 6.7.16. Fiz any two constants 0 < ¢ < C. Then, for all z € C such that ¢ < |z| < C, we have

|fl(Taz)|7 |8Tfl(7_vz)|a |8zfl(7',z)| S; 12'

Moreover, there exists fi(7, 2) such that fi(7,2) = (z — k) fi(r, 2), fi(7,2) is analytic in ¢ < |z| < C and
satisfies | fi(1, 2)| < I2.

The following lemma will also be useful. It shows that for 7 € C; and 7 € CL, the singular points
a(7;T) and a.(7;T) are close to |z| = k.. It also gives a lower bound on their distance.

Lemma 6.7.17. Let ((7;T) be defined in (6.92)). Then, for T € Cg,

a7 ) = =k + O] = 72 [V2), 1= 1) = 4/ =) ) (140 — 7] ))

(6.96)
and, for T € Cj,
a(m; 1) = ke + O(I|T — i) \1—(2(T;T)| ~ IT —1i. (6.97)

Proof. The expressions in are obtained expanding (6.76) and (6.82]) in powers of 1 — 2b. The
expressions in (6.97) are obtained expanding (6.76]) and (6.82]) in powers of 1/b. O
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Figure 6.12: Deformation of -, into the union (Y) = v1(Y)y2(Y) where 1 (Y) is depicted in red and
~2(T) is depicted in blue.

We now study the function E;(7;Y) introduced in . To that end, it is important to choose a
suitable path 4(T) in the homotopy class of (7).

Recall the framework introduced in Remark Let ind(z, ) stand for the index of a closed curve
v C C around a point z € C. The following observations will be important in the proof of Lemma [6.7.20}
Let 7 € D\ J and let T be such that TNJ = . Then, as already explained, 7(Y) can be chosen to be the
oriented circumference .. . Fix any point z € C,. Then, the curve v, can be deformed homotopically
in C; to the union 4(T) of two closed loops ;(Y), ¢ = 1,2, starting at Z and such that (see Figure

e ind (a(7; ), (Y)) = =1, ind (ac(7; T),71(T)) = 0 and ind (0,71 (T)) =0
e ind (a(7; Y)y2(Y)) = ind (ac(7; T),72(T)) = ind (0,72(Y)) = 1.

The idea behind this decomposition is that only the curve 41 (Y) is “trapped” between the singularities
a(7;Y),ac(m;Y). By choosing the point Z far enough from a(7r;7Y),a.(r;Y), the curve 42(T) can be
chosen to be sufficiently far from a(7;Y),a.(7; T). Therefore, the contribution of the segment A(T)
to the integral will be small. On the other hand, if Z is not too far from a(7;Y),ac(7;T) the
contribution of the segment 42(Y) to the integral can be analyzed asymptotically.

When 7 € D*, defined in , and T is an arbitrary curve T C D*, the situation is slightly more
complicated, since the points a(7;T) and a(7; T) may have revolved around themselves in a complicated
way, entangling thus, the geometry of the curve v(Y) (see Figure [6.7.3). However, by construction of the

curve y(T) in Proposition since
ind(a(70), Vx.) = 0, ind(ac(70), 7%, ) = 1, ind(0,7x,.) = 1,
the curve v(T) must satisfy
ind (a(7; Y),v(Y)) =0, ind (ac(1;Y),v(Y)) =1, ind (0,7(1)) = 1.
Then, the discussion above generalizes as follows (see Figure .

Lemma 6.7.18. Let v(Y) be the curve obtained in Proposition |6.7.10] and fix any point Z € C,. Then,
there exists an even number k(Y) > 2 and a family of loops {i(Y)}1<i<k(r) starting at Z satisfying

e fori=1
ind (a(7; 1), 7(Y)) = —1 ind (ac(r; 1), %(Y)) = 0, ind (0,7:(Y)) = 0.
o Forl<i<k(Y)/2,
ind (CL(T; T)?’YZ(T)) =-1, ind (ae(T; T)v'}/z(’r)) =-1, ind (Q%(T)) =0.
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Figure 6.13: On the left, along an arbitrary curve Y, the points a(7;Y) and a.(7; T) may have revolved
around each other in a complicated manner, entangling, thus, the shape of the curve v(T) (in dashed
lines). On the right, the loop decomposition associated to the curve v(Y) depicted on the right: ~1(T)
in red, v2(T) in green, v3(Y) in blue and v4(T) in black.

o Fori=k(Y)/2+1

ind (a(r; ), 7(T)) =1, ind (a.(r; Y), %(Y)) = 1, ind (0, 7;(T)) = 1.
o For k(T1)/2 <i < k(T),

ind (a(r; 1), (1)) =1, ind (a.(r; 1), %(Y)) = 1, ind (0, 7;(T)) = 0.

such that the composition 7(T) = y1(Y)--- () --y(r)(Y) is homotopic in C; to v(T).

Remark 6.7.19. Notice that, in particular, the closed curve ¥(Y) in Lemmal[6.7.18 satisfies ind (a(7; T),5(Y)) =
0, ind (ac(7;1),5(Y)) =1 and ind (0,5(Y)) = 1.

The number k() increases with the total number of times that a(t;Y) and a(7;Y) have turned
around themselves. That is, k() reflects the monodromy along different curves T, Y’ sharing the same

endopoints. In the particular case in which Y N J =0 so v(Y) is homotopic to .., Lemma holds
with k(T) = 2 (meaning that only items 1 and 3 are present in that case).

As before, the idea now is that only the curve v1 (T) is “trapped” between the singularities a(r, 1), a.(7; 1)
(recall that, although the origin is also a singularity of the integrand in , Lemma ensures that
for 7 € Cy and for 7 € C; both a(r;T),a.(7;Y) are far from the origin). Therefore, by choosing 2
properly, the contribution of 1 (T) can be analyzed asymptotically and the contribution of ~;(Y) for
7 > 2 can be shown to be smaller. Because of this we will write

(T) = Vsing(T)Vreg(T)a where 'Ysing(T) =7(T) 'Yreg(T) =72(T) - 7(Y) - 'Vk(T)(T)-

Let us point out one more important observation for the analysis of the integral E;(7;Y) in (6.94). Split

the integral (6.94) as

. (i(r.2) = fi(r,a(ri 1))+ ({7, 2) — fur.alrs T)))=~1dz
EI(T’T)‘/wm NEEICETA G +/mcg<r> NCEICETAOIET

(6.98)

and focus on the second term. Taking into account that 1 —2b — 0 as 7 — 74,

22 —(a+a)z+ kK= (24 k)? = 2re2(2 = 1/b) ~ (2 + k)%
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Therefore, since, in view of Lemma [6.7.17] for 7 — 71 we have a(7;Y), ac(7; ) = —ke, if all 2z In Yreq
are sufficiently far from a(7,Y),a.(7; T), one expects that

(ful,2) — filT, a(T' )zt (filr2) = filr,a(m 7))
V22 + (a+ae)(r)z + K2 Z+ Ke

and therefore that

Ul ) SEelr e de [ AEDE e s
/‘/reg('f) \/22 (1 + a‘€ )Z + K? '/%eg('r) (Z + K:€) fl( ’a( , )) /Yreg(T) (Z + /‘ie) ‘ (699)

The crucial remark now is that the integrals in the right hand side of do not depend on Y.
Indeed, all the integrals along the loops forming ves(Y), except the one with ind(a(r;Y),v;(Y)) =
ind(ac(7;7),7:(T)) = ind(0,~;(T)) = 1, cancel out. On the other hand, as we show in Lemma
the error commited in the approximation is sufficiently small compared to the leading term in
(16.95)).

Lemma 6.7.20. Let 7 € Cy. Then, there exist Eyeg,(T), E‘reg(T) and Egingi(1;T) such that
El('r; T) = Ereg,l(T) + fl(T; CL(T, T))Ereg('r) + Esing,l('r; T)

where Eregyl(T),E‘reg(T) do not depend on the choice of Y (i.e. they are analytic functions for T €
Cr U{7+}), Esing,1 1s analytic on Cx and satisfies

| Bsinga (73 1)| S 1'%

Proof. Fix § = I~/ Given () in the definition of Ey(r; T) in (6.94), we let Z = a(r; ) +d(a(r; Y) —
ac(m;7))/|(a(T; T) —ac(r; T)|, deform () to the composition of closed loops 5(T) in Lemmal6.7.18 and
denote by Ysing (1) and reg(YT) its singular and regular part. According to the discussion preceeding the
lemma, we write

T,2)2z"tdz
Ereg,l(T; T) :/ fl (( )
Yrex(T) 2+ Ke)
271z

Breg(r: 1) = / ,
eg eeg (T) (z + KJE)

and
(filr,2) — fl(T a(T' 1))z~ tdz
Eging 1.a ;T =
etalriT) /vsmgm V22 + (a+ao)(1)z + K2
ey 271 2sez(1 — 2b) (73 1)\ /2
Esing,b(TvT) = - [yreg('r) m (1 — (1 + (Z n I{E)zb(T) ) dz
Sy filr, z)27! 2%cz(1— 2b)(r; 1)\ /2
Esing,l7c<7'7 T) - /}’reg(T) (z —+ né) (1 - (1 + (Z n n5)2b(7') ) d27
SO

El(T; T) = Ereg,l(T) + fl(7-§ CL(T, T))Ereg(T) + Esing,l,a(T; T) + fl(T7 a(T; T))Esing,b(T; T) + Esing,l,c(T; T)

The integrals Fyeg; and Ereg do not depend on Y. We now bound Eging i q. Let s* = d/|a(m; T)—ac(1;T)],
then the loop Ysing(Y) can be deformed to

Ving(T) ={z € C: z = a(r; 1) + (a(r; T) — ac(r;T))s, s € (0,s") U (0,e7?7s")}.
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Then, we write

1
filr,z) = filr,a(1; 7)) = (2 — a(r; T))/ d.fi(m,a(m; ) + x(z — a(r; Y)))da
0
and use that [2| ~ 1 for all z € 7}, and Lemma [6.7.16{to show that for z € 7§,
fi(7,2) = filr, (s 1)) S 1P|z — a(7; 7).
Therefore, writing z(s) = a(7; T) + (a(7;T) — ac(m;Y))s,

—a(r,T)|ds
(a+ae)(T)z(s) + K2

|Esmgla(7' T (5)| <I la(T; Y) (r; Y \/ \/22

<Pla(r;Y) — ac(r; 7)) / S ds g AL =19,
0

It only remains to bound Egingp and Fging,i,.. To that end we notice that, for all 7 € Cx and all z € yeg,
with 7eg as above, by the assumption on 4,

(1 —2b)

— = <52 — <5V? <.
(24 Ke)2b| ™ =l < <

It therefore follows that
|Egingp| S0 2|1 — 74| S22 =174

and
|Bsing el S 62| — ma| S 672132 =17/,

The conclusion of the lemma follows by writing

Esing,l = Esing,l,a(T; T) + fl (7—7 CL(’T; T))Esing,b(T; T) + Esing,l,c(T; T)

We now study the behavior of the function E(7;Y) in (6.98)), for 7 € C;.
Lemma 6.7.21. Let 7 € C;. Then, there exist a constant B; € C and Egng,(7;Y) such that
E(1;Y) = C + Eging,(1;T)

with

| Esing,t(7; T)| S /8,
Proof. Fix § = I-'/8. Given v(Y) in the definition of E(r;Y) in (6.94), we let Z = a(7; Y) + 6(a(; T) —
ae(7;Y))/|(a(T; T) — ac(r; 1), we deform v(Y) to the composition of closed loops 4(T) in Lemma [6.7.18
and denote by Ysing(T) and 7yeg () its singular and regular part. We then write £ = E; , + E;; where

_ (filr, 2) = ful7, a(T'T)))z‘ldz
El?a_/mng(?f) V224 (a+ad)(r)z + K2

and further write Ey, = Ej . + Ejq — fi(i,a(7; T))E} . where

b / (fi(r,2) = f(ra(3 1)) = (fi(l, 2) — fili,a(r; 1)) 2~ 1d=
T () V(@ +a)(n)z + /2
B fi(i, 2)z71dz
Fra = /%egm V2 +ata)n: R
> :/ 27 1dz
T et V2 E (@t ad(m)z + A2
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The integral E, is bounded exactly as we did in Lemma [6.7.20] On the other hand, since, in view of

Lemma [6.7.16}
(i1, 2) = fi(m,a(r5 7)) = (fild, 2) = fuld, a(m; 0))| < 1Pl =l
one easily obtains that

Byl S 62 r—i| S0P =T7/8,

For E; 4 we write

/ fi(i, 2)z7tdz
Eq=
vees(1) V22 + (a+a)(7)z + K2

; -1 ; -1 -1/2
I I N e IR L
Wl'eg(T) & — Ke 'Yreg(’r) 2 = Ke (Z - K’E)

The first term is analytic for 7 € C; U {i} and, moreover, does not depend on 7. Let B; denote its value.
On the other hand, since, for 7 € C; and z € 7yeq, by the definition of 4,

(1) (2 — ke) 2| S 622 —i? S 620 V2 < 1,

and, by Lemmd6.7.16| | f(i, z)| < I?, we can bound

/%egm w (1 — (1 + (217(26)2)—1/2> N

Finally, making use of Lemma [6.7.17] one deduces that

S I267b(r)| S 407 —i|? = 1'%/8,

[fiGa(m; 1) S Pla(m; X) = we| S L7 — il

)
[fi(G, a(m; V) Epe(T;1)] S 5_1I3|T —i < o174 = J15/8,

The lemma now follows combining all the estimates. O

We finally sum up Lemmas [6.7.14] [6.7.20] and [6.7.21] in the following proposition.

Proposition 6.7.22. Let 7 € C1. Then,
U (r;Y) = dke—1fi(ro,a(re)) In (1 = 20) (73 Y)) + Sy (73 Y) + Ry o (1)
where S;(T; 1) is analytic in Cy, satisfies
|S1,+(73 1) S 7%,

and Ry (1) does not depend on the choice of T (i.e. it is an analytic function for T € Cy U{r1}). On
the other hand, for T € C;, there exists a constant By € C and a function Ey;, analytic in C;, such that

yt (1;7) =B, + El(T; T)

with R
(Ex(ri )] S 1.

Proof. We first prove the asympotic formula for 7 € Cy. According to Lemma [6.7.14]

K1) = 31 (1= (1) + e+ 011 - (1)),
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for some ¢ € C. Also, in view of Lemma[6.7.15]

In(1 - ¢3(m; 7)) = %ln((l —2b)(1; 7)) + In(4) — 2In (1 + /(1 — 2b)(7; X)).
Thus, for ¢ = ¢ + In(4), we have
K(((m;7)) = iln(l —2b(1; 7)) + &+ O(]1 — 2b(7; T)['/?).
We therefore write (recall that, from Lemma C(T30) = =1+ O(I'2 |1 — 74|1/?) for T € C4)
46 C(m ) fulr, a(m D) K (C(m3 ) = — £ fulre, ar2)) In(1 = 2b(73 1)) — ek fi(rs, a(7s))
w7 e, a(ra) (K(C( T)) — 7 In(1 = 20(r: 7)) — 2)
— 46 (ST D) fulr,a(m X)) = filre, alre))) K (C(r;T).
Then, we define

Ry (1) =Ereg (1) + fi(7s, (7)) Breg(r) — 485" fi(71, a(7s))
S1,4(73 1) =Eaing (75 ) + (filr,a(r5 7)) — fi(rs,a(71))) Ereg(7)
w7 e, a(ra) (K T)) — 7 In(1 = 20(r5 7)) — 2)
—4rN (T ) fi(ra(m3 1)) = fulre, a(r0)) K (C(m3T)),

where Ereg 1, Freg and Egng are the functions obtained in Lemma [6.7.200 The desired bounds for S(7; )
follow from the fact that, for 7 € Cy,

[(L=2b)(m; 1) S 1|7 — 7],
and, from Lemma [6.7.16

[filrz, a(r2)) = filr,a(m; D)) S Sup |07 f1(7, (7)) |7 — 7| + Sup 10: fu(7, a(7; 1)) la(r; 1) — a(7=)]

+ I2(jr = il + [a(rs 1) = a(ra)l) S 12 (Ir = 7l + 120 = ma V) S 17/,
Indeed, combining all the previous estimates and the bound for Eg,g; in Lemma
|1 (m; 1) S 1975,
We now analyze the case 7 € C;. We have shown tha,t for 7 € C; there exists B; € C such that
U () = 46 (7, als V) K (C(75 1)) + Bi + Esing(7T)

where
| Exing (73 1) S 1178,

On the other hand, from Lemmas[6.7.16| and [6.7.17],

fi(roalms )] S Pla(rsY) = kel S Plr =i ST

Then, we obtain that
U () = Bi S 18 + T4 S 197,

as was to be shown. O
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Observe now that

12C —Ke eiM(—ﬁe) szlm* —Ke eil}\(—ﬁe) eif
fio(ialry)) = CoxPld) _ Lom.p(=r) o).
(T4 +Z)\/—I€e(1 + (71, —Ke)) 24 Oy Ke€o

Then, Proposition [6.5.12] now follows by setting, for 7 € Cy,

7 (r; 1) =12Alm*\/§7(1+0(1‘1>) In((1 - 20)(7; 7)),

with IA(—ns)
_2'~ —Ke 3 —Ke
4, = Z2impl=rde : (6.100)
Ker/Re€0

and joining the results in Lemma and Proposition [6.7.22
6.7.4 Evaluation of the residues. Proof of Lemma [6.5.14]
A trivial computation shows that

d 1 db, —41725,e0e™"

—In(1-2b,)= ———— = 6.101

dr n( ) 1-2b, dr (1 =715)(1 = 712)(1 — 1) ( )

from where Lemma [6.5.14] follows by defining (notice that, the residue at 7 = 71 does not depend on
and [ and is the same for both x = 0,1)

Al :Al Iies*

( —4T 25, ege P —4T 25, e9e P AT 25, ege P
A\ (

T — (- z‘)) = AR <<T | Capy e z‘)) =N e
—— A
(6.102)
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