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dels Horts. Ells són els que em fan sentir que tinc casa.





Acknowledgements

The following institutions are gratefully acknowledged for their contribution to this

work:

• This research project was part of projects PID2021-126436OB-C21 and PGC2018-

094132-B-I00 funded by Ministerio de Ciencia e Investigación (MCIN)/ Agencia

Estatal de Investigación (AEI)/ 10.13039/501100011033/ FEDER “Una manera de

hacer Europa” and MDM-2016-0600 by MCIN/AEI.

• CommSensLab-UPC was awarded Marı́a-de-Maeztu (MDM) Excellence

Unit (MDM-2016-0600, 1/7/2017-30/6/2021) funded by the Agencia Estatal de In-

vestigación, Spain.

• The work of A. Salcedo Bosch was supported by grant 2020 FISDU 00455 funded

by Generalitat de Catalunya—AGAUR.

• The European Commission collaborated under projects H2020 ATMO-ACCESS

(GA-101008004) and H2020 ACTRIS-IMP (GA-871115). The European Institute of

Innovation and Technology (EIT), KIC InnoEnergy project NEPTUNE (Offshore

Metocean Data Measuring Equipment and Wind, Wave and Current Analysis and

Forecasting Software, call FP7), supported the PdP and Ijmuiden offshore mea-

surement campaigns.

• Profs. Jakob Mann and Alfredo Peña (Denmark Technical University, DTU; De-

partment of Wind and Energy Systems · Meteorology and Remote Sensing · Wind

Energy Systems Division) are gratefully acknowledged for hosting A. Salcedo-

Bosch during his Ph.D. secondments.

• UPC-LIM lead PdP and Ijmuiden offshore measurement

campaigns in the framework of European project NEPTUNE (partners: Catalo-

nia Energy Research Institute (IREC), Remote Sensing Lab. (RSLAB, today Comm-

SensLab - UPC), Maritime Engineering Laboratory (LIM, UPC), Gas Natural Fenosa,

CIEMAT, University of Stuttgart, Soluciones de Ingenierı́a Marı́tima Operacional,

S.L. (SIMO)). EOLOS Floating Lidar Solutions is a sucessful spin-off from NEP-

TUNE.





Abstract

Remote sensing of the atmosphere is widely used by the wind energy industry to both
assess future wind farms deployment sites as well as to improve their operation. With
the rising interest in offshore wind energy, remote sensing of the atmosphere has be-
come essential in offshore deep-sea sites in order to reduce deployment and operation
costs. Particularly, floating LiDARs have become the de-facto instrument for offshore
wind resource assessment due to its flexibility and capabilities to measure the wind
with equivalent accuracy as meteorological met-masts in a cost-effective manner.

The main goal of this Thesis is to study and exploit the potentialities of existing atmo-
spheric remote sensing instruments, with special emphasis on floating Doppler wind
LiDARs. Towards this purpose, different signal processing and machine learning so-
lutions are proposed and analysed. First, the correction of the effect of vertical wind
on micro-rain-radar measurements is tackled by means of inverse methods. Second,
the capabilities of floating LiDARs to retrieve ocean-related parameters is studied. To
that end, signal processing techniques based on spectral analysis of the buoy’s motion
are used to characterize the ocean waves period. Third, and core part of this Thesis,
the motion-induced error of floating-LiDAR measurements of the wind is studied in
terms of estimation and compensation. Regarding the former, a novel analytical formu-
lation to estimate horizontal-wind-speed bias and turbulence-intensity-increment error
products is presented. The latter topic is tackled using machine learning techniques,
specifically, an Unscented Kalman filter for motion compensation of floating-Doppler-
wind-LiDAR measurements is presented, and its performance is analyzed under differ-
ent wave and atmospheric scenarios.

The presented methodologies are validated against reference fixed LiDARs and anemo-
meters in the context of two measurement campaigns: ”Pont del Petroli” and IJmuiden
campaigns. Data clustering techniques are used to assess the quality of the retrieved
data products under different scenarios of interest for the industry.

The results attained by the novel solutions presented here further demonstrate the
capabilities of floating Doppler wind LiDARs for off-shore wind monitoring, which
strengthens their position as key remote-sensing instruments for the off-shore wind en-
ergy industry.





Resumen

La industria eólica utiliza la teledetección de la atmósfera como herramienta para iden-
tificar futuros emplazamientos de campos eólicos ası́ como para optimizar su funciona-
miento. En las últimas décadas, con el incremento de campos eólicos marinos, la telede-
tección se ha convertido en fundamental para reducir el coste de sus instalaciones. Es-
pecialmente, los LiDAR Doppler flotantes han ganado terreno en la industria eólica
marina como instrumento estándar para la evaluació del recurso eólico gracias a su
bajo coste, su flexibilidad y su precisión al mesurar el viento en comparación con otros
métodos.

El objetivo principal de esta tesis es el estudio y explotación de las capacidades de in-
strumentos de teledetección ya existentes, con especial énfasis en el LiDAR Doppler
flotante. Para hacerlo, se analizaron una serie de métodos de procesado de señal y ”ma-
chine learning”. En primer lugar se estudia la corrección del efecto del viento vertical
en medidas del radar de lluvia ”micro-rain-radar” empleando métodos inversos. En
segundo lugar se abordaran las posibles aplicaciones del LiDAR flotante en la medida
de parámetros oceanográficos. En este sentido, se presenta un nuevo método basado en
estimación espectral para poder estimar el periodo de oleaje a partir de medidas de la
inclinación del LiDAR flotante. En tercer lugar, la parte principal de la tesis aborda la
estimación y la corrección del error causado por el oleaje en las medidas de los LiDAR
Doppler flotantes. En cuanto a la estimación del error, se desarrolla una formulación
analı́tica para estimar el sesgo de la velocidad horizontal del viento ası́ como el incre-
mento de la intensidad de turbulencia. En cuanto a la corrección del error, se presenta
un ”Unscented Kalman filter” capaz de corregir el error en las medidas del viento cau-
sado por el oleaje en LiDARs flotantes. Además, su rendimiento se estudia en diferentes
escenarios atmosféricos y de oleaje de interés.

Los métodos desarrollados en esta tesis se han validado con medidas de LiDARs fijos
y anemómetros como referencia. Los datos experimentales provienen principalmente
de dos campañas de medidas: la campaña de ”Pont del Petroli” y la campaña de ”IJ-
muiden”. Se han utilizado herramientas de clusterización de datos para estudiar la
calidad de los productos de datos obtenidos en escenarios de interés para la industria
eólica.

Los resultados logrados por los métodos presentados en esta tesis muestran las capaci-
dades y posibles aplicaciones futuras de los LiDARs flotantes y refuerzan su posición
como instrumento clave dentro de la industria eólica marina.





Resum

La indústria eòlica utilitza la teledetecció de l’atmosfera com a eina per identificar fu-
turs emplaçaments de camps eòlics aixı́ com per optimitzar el seu funcionament. En
les últimes dècades, amb l’increment de camps eòlics marins, la teledetecció ha es-
devingut fonamental per reduı̈r el cost de les seves instal·lacions. Especialment, els
LiDAR Doppler flotants han guanyat terreny en la indústria eòlica marina com a in-
strument estandard per a la evaluació del recurs eòlic gràcies al seu baix cost, la seva
flexibilitat i la seva precisió en mesurar el vent en comparació amb altres mètodes exis-
tents.

L’objectiu principal d’aquesta tesi és l’estudi i explotació de les capacitats d’instruments
de teledetecció ja existents, amb especial èmfasi en el LiDAR Doppler flotant. Per a fer-
ho, s’analitzaren una sèrie de mètodes de processat de senyal i ”machine learning”.
En primer lloc s’estudia la correcció de l’efecte del vent vertical en mesures del radar
de pluja ”micro-rain-radar” emprant mètodes inversos. En segon lloc s’abordaren les
possibles aplicacions del LiDAR flotant en la mesura de paràmetres oceanogràfics. En
aquest sentit, es presenta un nou mètode basat en estimació espectral per poder estimar
el perı́ode de les onades a partir de mesures de la inclinació del LiDAR flotant. En tercer
lloc, la part principal de la tesi aborda l’estimació i la correcció de l’error causat per
l’onatge en les mesures dels LiDAR Doppler flotants. Pel que fa a l’estimació de l’error,
es desenvolupa una formulació analı́tica per estimar el biaix de la velocitat horitzontal
del vent aixı́ com l’increment de la intensitat de turbulència. Pel que fa a la correcció de
l’error, es presenta un ”Unscented Kalman filter” capaç de corregir l’error en les mesures
del vent causat per l’onatge en LiDARs flotants. A més a més, el seu rendiment s’estudia
en diferents escenaris atmosfèrics i d’onatge d’interès.

Els mètodes desenvolupats en aquesta tesi s’han validat amb mesures de LiDARs fixes
i anemòmetres com a referència. Les dades experimentals provenen principalment de
dues campanyes de mesures: la campanya de Pont del Petroli i la campanya d’”IJmui-
den”. S’han utilitzat eines de clusterització de dades per tal d’estudiar la qualitat dels
productes de dades obtinguts en escenaris d’interès per a la indústria eòlica.

Els resultats assolits pels mètodes presentats en aquesta tesi mostren les capacitats i
possibles aplicacions futures dels LiDARs flotants i reforcen la seva posició com a in-
strument clau dins la indústria eòlica marina.
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5.2 Motional temporal series (Ijmuiden campaign): (a)) Heave signal above sea level

(a.s.l.) on April 11, 2015; (b)) Roll, pitch, and yaw signals on April 10, 2015). . . . . . 40

5.3 Histograms of daily minimal and maximal roll and pitch inertial-measurement-unit

(IMU) records (57,520,000 records between 29 Match and 17 June): (a) Daily minimal

tilt-record histogram; and (b) Daily maximal tilt-record histogram. Dashed lines

represent roll (blue) and pitch (red) medians in both panels. . . . . . . . . . . . . . . 41

5.4 Geometrical representation of buoy’s rotation in roll and pitch dimensions of move-

ment and vector approximation for small angles: (a) Three-dimensional geometry

sketch showing eigenangle α, roll (ϕ), and pitch (θ) angles, and vectors d̂ and ẑ in
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Chapter 1

Introduction

1.1 Wind Energy Market Outlook

In the path towards the achievement of 1.5ºC global warming by 2100, huge efforts are made glob-

ally to switch towards renewable energy sources. Recently, renewable energy sources (excluding

hydropower) share in power generation reached 13% globally, exceeding nuclear energy genera-

tion (9.8% share) [BP 2022]. Among the different renewable sources, wind energy has reached a

relevant position in the global energy market (6.65% share) due to its advantages in terms of en-

vironmental impact and technology improvements [Joyce Lee and Feng Zhao 2019]. In the recent

years, a tendency towards offshore wind energy has been observed due to the more homogeneous

winds that can be found over the ocean. In 2021, a record was set in newly installed offshore wind

energy capacity (21.1 GW), reaching a global offshore wind capacity of 57.2 GW. Led by China and

Europe, with a newly installed capacity of 17 GW and 3.3 GW in 2021, respectively, offshore wind

energy has reached a share of approximately 30% of new wind energy installations [Lee & Zhao

2022].

Particularly in Europe, the wind energy industry shows a rising interest in deploying offshore

wind farms further offshore, where there are more stable atmospheric conditions and power plants

interfere less with economic activity [Ramı́rez et al. 2021]. When installed further from shore and

in deeper waters, turbines face harsher meteorological conditions, requiring new turbine designs

together with improved operating practices [Agency 2021]. The less accessible locations and the ad-

vanced technology requirements caused a peak in offshore wind farms installation costs in the 2010

decade. In order to reduce the costs, the industry focused on the economy of scale by standardizing

the turbine manufacturing process and increasing the turbines capacity. As it can be observed in

Figure 1.1, there has been a tendency towards the increment of the average rotor diameter and hub

height of the installed wind turbine generators (WTG) in the last decade. Larger rotor diameter

and higher hub-heights permit a higher power output, which enables an important reduction of

1
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Figure 1.1: Evolution of the average rotor diameter and hub height of the offshore installed wind
turbines per year. Adapted from [Taylor et al. 2022].

the installation costs and an amortization of wind farm projects, achieving in 2021 a reduction of

the Levelized Cost of Energy (LCoE) by a 60% from its peak in 2011 [Taylor et al. 2022].

Nevertheless, offshore wind energy LCoE (0.075 USD/kWh) is significantly higher in compar-

ison to onshore wind (0.033 USD/kWh) and is the second highest just after concentrating solar

power (0.114 USD/kWh) (see Figure 1.2). One of the main differential factors are the higher oper-

ation and maintenance costs of offshore plants, which are more difficult to access. Offshore wind

farms are complex and expensive facilities, with a budget that can easily reach thousand million

Euros and several years of planning to the final deployment of the plant. Therefore, an optimal

planning and operation of the wind farms is of main importance for the industry, which requires

an accurate measurement of the offshore wind resource and other atmospheric parameters.

1.2 Remote Sensing of the Wind Resource

The most accepted sensors for wind measurements are the cup anemometers, which due to their

limitations (measurement heights and point-like measurements), require them to be deployed on

meteorological masts (metmast). However, in the case of offshore wind farms, as they are installed

at more remote locations and into deeper waters, the deployment of metmasts planted on the

seabed may be too expensive. Besides, due to the increase in WTGs hub height in the last decade,

metmasts may not be a feasible solution for measuring the wind at those heights. This motivates

the use of alternative remote sensing sensors such as satellites [Barthelmie & Pryor 2003, Chang

et al. 2014], radars [Hirth et al. 2012], sodars [Vogt & Thomas 1995, Lang & McKeogh 2011], and

combined methods [International Energy Association 2007, Sempreviva et al. 2008]. Nevertheless,
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Figure 1.2: Comparison of the average LCoE of different renewable energy sources between 2010
and 2021. Adapted from [Taylor et al. 2022].

due to the high requirements of the industry in terms of measurement accuracy, temporal and

spatial resolution, and data availability, LiDARs have become the most trustable device for wind

remote sensing.

In the context of offshore wind energy, LiDARs placed atop floating platforms or buoys have

arisen as the de-facto instrument for offshore wind vector measurements [Carbon Trust 2018].

When placed over a floating platform, LiDARs provide a series of advantages:

• They permit wind remote sensing in a cost-effective manner without relying on expensive

facilities. For instance, the cost of a floating LiDAR deployment is of about hundred-of-

thousand Euro whereas metmast installation can easily reach up to millions of Euros in in-

stallation and deployment costs.

• They are able to be easily re-deployed and thus cover large areas offering high versatility

[Pichugina et al. 2012].

• They are capable of sensing the wind at hub-height altitudes without the need for an external

structure.

• They provide reliable measurements of the 10-minute mean Horizontal Wind Speed (HWS)

and Wind Direction (WD) vertical profiles with very high accuracy (ρ2 > 0.98 using a met-

mast as a reference).
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However, floating LiDARs suffer 6-Degrees of Freedom (DoF) motion due to the ocean waves,

which induces errors on instantaneous wind vector measurements and adds variance to LiDAR

measurements in comparison to fixed LiDARs [Gutiérrez et al. 2015]. Therefore, the correction

of the motion-induced errors on floating LiDARs is a hot topic in the state of the art [Gottschall

et al. 2012a, Gutiérrez-Antuñano et al. 2017, Gutiérrez-Antuñano et al. 2018, Kelberlau et al. 2020,

Salcedo-Bosch et al. 2021c].

1.3 Off-shore Wind Energy in CommSensLab

NEPTUNE (Offshore Metocean Data Measuring Equipment and Wind, Wave and Current Analysis

and Forecasting Software, 9/1/2011-10/31/2014) was a European project of the European Institute

of Innovation and Technology (EIT). NEPTUNE was the starting point of CommSensLab (UPC)

activity on the application of floating Doppler lidars for off-shore wind resource assessment and

optimised location of off-shore wind-energy generators. The project involved several research and

industrial partners: Instituto de Investigación de Energı́a de Cataluña (IREC), CommSensLab (for-

merly Remote Sensing LAb., UPC), Lab. de Ingenierı́a Marı́tima (LIM-UPC), Gas Natural Fenosa,

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), University of

Stuttgart, and Soluciones de Ingenierı́a Marı́tima Operacional S.L. (SIMO).

NEPTUNE gave rise to a new technology of off-shore wind-lidar systems for wind farms as

well as a wealth of wind, wave and current simulation and forecasting tools. Specifically, KIC

(Knowledge Innovation Community)-InnoEnergy European project NEPTUNE [KIC InnoEnnergy

2015] aimed at developing cost-effective solutions for offshore wind energy. Towards this purpose,

the project developed:

• (i) a floating Doppler wind Lidar (FDWL) buoy for offshore wind resource assessment, which

gave rise to spin-off EOLOSTM [EOLOS 2023] and

• (ii) wind, wave and current measurement numerical models (hindcast/forecast).

The NEPTUNETM FDWL buoy was capable of measuring the wind at heights up to 200 m from

the sea surface by a fraction of the cost of a metmast with an equivalent accuracy. Along with the

wind measurements, the buoy was designed to sense different ocean-related parameters such as

waves and currents.

Spin-off company EOLOS (on floating Doppler lidar buoy systems for wind profiling) created

after NEPTUNE received in 2015 the EIT Innovators Award to recognize KIC innovation teams

that have developed in an exemplary manner an innovative product, service or process with a high

potential for societal and economic impact [KIC InnoEnnergy 2015].
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Project NEPTUNE also started to address the motion-compensation issue in FDWLs and con-

ducted first test with the FDWL to measure the wind resource with the accuracy required by the

industry standards in different maritime scenarios. The project went through three stages of devel-

opment and testing of the lidar buoy:

• Test Campaign I. Two identical LiDARs were compared in lab conditions, one fixed on the

ground and one co-located next to the fixed one on a moving platform.

• Test Campaign II. A proof-of-concept buoy was tested during a 38-days long campaign at

”Pont del Petroli” pier (Barcelona coast), using a fixed LiDAR located 50 m apart as a refer-

ence. The results obtained during the campaign were revisited in [Gutiérrez-Antuñano et al.

2017] from a signal-processing and statistical perspective.

• Test Campaign III. The EOLOSTM floating LiDAR, the pre-commercial prototype of the NEP-

TUNE project, was tested during a 3-month period at IJmuiden test site (85 km offshore of

the Netherlands). The IJmuiden campaign aimed to validate the EOLOSTM buoy against

the IJmuiden metmast in order to demonstrate the measurement capabilities of the off-shore

wind LiDAR and place it into the market. An internationally recognised consultancy (ECN)

assessed the EOLOSTM buoy against a series of Key Performance Indicators (KPI).

The techniques and methods proposed in this Ph.D. will be evaluated over experimental data

gathered during Test Campaign II and Test Campaign III, at ”Pont del Petroli” and IJmuiden, re-

spectively.

Departing from the background acquired with project NEPTUNE, CommSensLab (UPC) fos-

tered the research line on off-shore wind-energy started with NEPTUNE as part of Marı́a-de-

Maeztu Excellence project MDM-2016-060 (7/1/2017 - 6/30/2021) and National projects ARS (PGC-

2018-094132-B-I00) and GENESIS (PID2021-126436OB-C21). Thus, as part of the latter project, the

synergy among GNSS-R satellites, FDWLs and in-situ coastal sensors for wind observations is ex-

plored.

1.4 Main Objectives

This Ph.D. thesis focuses on floating LiDAR systems combined with advanced signal processing

techniques (as inherited from the AI) for off-shore wind-speed measurement. Specific objectives are:

• Objective 1. Methods for co-operative atmospheric observation over land and remote sens-

ing quality assurance: Essentials (obj. in collaboration with Purdue University, University

of Massachusetts (UMASS), NOAA-NSSL, and Denmark Technical University (DTU)).- This
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objective, used as an introductory complementary step in the Ph.D. project, aims at exploit-

ing previous knowledge of the Unit (CommSensLab-UPC) in the field of co-operative atmo-

spheric remote sensing and advanced signal processing. It focuses on the improvement of

rain radar data products in cooperation with ground-based disdrometers.

• Objective 2. Methods for co-operative atmospheric observation over sea: off-shore wind-

energy applications This is the core part of the Ph.D. and tackles the off-shore wind-lidar mo-

tion compensation problem from different points of view: First, characterization of the wave

motional behaviour is tackled through Power Spectral Density (PSD) estimation techniques.

Second, the motion-induced error on FDWL wind measurements is studied from numerical

and analytical perspectives. And third, the motion compensation problem is approached by

means of combining signal processing and machine learning techniques.

• Objective 3. Advanced data processing methods for off-shore wind-energy remote sensing

big-data analysis. This objective is transversal to the entire thesis. It comprises the study and

identification of unknown patterns (apparent HWS and TI vs. buoy motional variables) in

”Pont del Petroli” and IJmuiden campaigns by using Big Data techniques and the knowledge

acquired in objective 2.

1.4.1 Objective 1. Methods for co-operative atmospheric observation over land
and remote sensing quality assurance: Essentials

WTGs are deteriorated when operating under precipitation. Therefore, in order to increase their

lifetime, they need to be stopped in scenarios of heavy rain, snow or hail. An accurate measurement

of the precipitation vertical profile is of main importance for the wind energy industry to preview

heavy precipitation events close to the surface and stop the wind farms. Operationally, profiles of

precipitation are derived from scanning weather radars using VVP-like (volume velocity process-

ing) processing of a series of PPI scans at multiple elevations (e.g. 0.1, 0.3, 0.5, 1, 1.5, 3, 5, 10 degrees

from the horizontal). On the other hand, local precipitation vertical profiles can be measured by

means of vertically-pointed radars.

Vertically-pointed Frequency-Modulated Continuous-Wave (FMCW) radar measurements of

rain are greatly influenced by strong vertical winds (vertical air motion, VAM) in convective rain

scenarios. Particularly, 2nd order products such as rain rate (RR) and drop size distribution (DSD)

experience high estimation errors due to VAM. This objective is aimed at estimating the VAM from

vertically-pointed FCMW radar measurements in order to correct VAM-corrupted rain 2nd order

products.

Towards this purpose, a forward methods to estimate VAM velocity at a particular height from

vertically-pointing S-band FMCW radar measurements in convective rain scenarios is to be ex-

plored. The forward method relies on the parameterization of the DSD as a gamma distribution. It
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estimates the VAM along with the constitutive parameters of the gamma distribution by means of

a parametric solver.

The method is tested over radar measurements and taking a ground-based disdrometer as a

reference during the Verification of the ORigins Tornado EXperiment in South East US (VORTEX-

SE) project.

1.4.2 Objective 2. Methods for co-operative atmospheric observation over sea:
off-shore wind-energy applications.

This objective, which is the core part of the Ph.D. project, tackles the study of the effect of floating

LiDAR motion on wind measurements. This is a two-fold objective: (i) estimation of the charac-

teristic motional-period of the floating DWL, (ii), estimation of the motion-induced error on the

floating DWL, and (iii) motion-correction at floating DWL measurements. For this objective, data

gathered during ”Pont del Petroli” and IJmuiden campaigns will be used.

1.4.2.1 Estimation of the DWL characteristic motional period

Floating DWL buoys are subject to angular motion around the three coordinate axes. Yaw motion

is characterised by low variations with time whereas roll and pitch motion show much faster oscil-

latory behaviour. Therefore, roll and pitch motions are the most informative parameters of wave

motion. Thus, wave information can be obtained from roll and pitch tilt measurements. This objec-

tive is aimed at estimating the ocean waves period from roll and pitch measurements of a FDWL

buoy.

A new method to estimate the wave period from solely measurements of roll and pitch will be

explored.

1.4.2.2 Estimation of motion-induced error of FDWL measurements

FDWL motion induces errors on the retrieved wind vector, namely, a bias on the retrieved mean

wind vector and an apparent turbulence additive to the wind TI. Standard temporal resolutions in

wind energy are 10 min (typical) and 30 min. Here, it is aimed at study and quantify the motion-

induced error on FDWLs.

We aim at studying and quantifying both the motion-induced bias and apparent TI on FDWLs.

The motion-induced error on the retrieved wind products (HWS and TI) will be assessed by means

of a thorough formulation of the FDWL buoy geometry and of the specific DWL retrieval algorithm

employed. Methods to quantitatively estimate the FDWL error will also be explored from two

perspectives: (i) at 1-s level (corresponding to the LiDAR-scan temporal resolution), and (ii) at a

10-min level.

Additionally, aligned with Objective 3, the motion-induced error will be revisited as a function

of different motional and wind scenarios.
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1.4.2.3 Motion correction of FDWL measurements

In order to reduce the impact of DWL buoy motion on the HWS and TI measurements it is necessary

to compensate the motion-induced error, which otherwise leads to an apparent HWS and apparent

(increased) TI. This will be carried out by an Unscented Kalman Filter (UKF) departing from the

motion compensation method proposed in [Kelberlau et al. 2020].

The DWL scanning cone becomes distorted due to the buoy movement and so is the lidar point-

ing direction. When having LoS information available, Kelberlau et al. (2020) depicts the algebraic

transformations relating roll, pitch and yaw andlges to the real azimuth and zenith angles of the

lidar pointing direction and it proposes a mathematical method to correct the wind measurements

at a VAD level. In contrast to this method, the ZephIRTM300 DWL used in the ”Pont del Petroli”

and the IJmuiden campaigns does not allow access to LoSs intormation.

To solve this ”blind estimation” problem an UKF is proposed. We take advantage of the LoS

geometrical transformations given in [Kelberlau et al. 2020] and of our knowledge of the lidar

VAD retrieval model. The state vector to be estimated is formed by the ”clean” (i.e., motion-free)

wind vector and is extended with the LiDAR initial scan phase, an undisclosed parameter by the

ZephIRTM300. The observation vector is formed by the wind components measured in the moving

buoy coordinate system (uFDWL, vFDWL, wFDWL). This vector proposal attempts to make the

filter able to estimate the reference wind vector from the motion-corrupted wind vector.

The unknown nature of the stochastic wind process to be included as the UKF state-transition

function motivates the study of different wind process models. The impact of the wind modelling

as a random walk or as an auto-regressive process will be discussed. Moreover, in alignment with

objective 3, the performance of the motion-correction UKF will be discussed as a function of wind

and motional scenarios.

1.4.3 Objective 3. Advanced data processing methods for off-shore wind-energy
remote sensing big-data analysis.

Data-processing techniques are to be applied to analyse the experimental data gathered during

the off-shore intensive observational periods (IOP) in ”Pont del Petroli” and IJmuiden campaigns.

They are expected to disclose multi-variable correlations and hidden patterns and features. To-

wards this end, obj. 3 is aimed at: (i) the development of a relational database encompassing

IJmuiden experimental data and querying tools, and (ii) development of basic data mining tools

relying on big-data techniques.

IJmuiden and ”Pont del Petroli” IOP comprise large amounts of data from multiple instruments

and sensors at different sampling rates, including 10-min sampled data (the standard resolution in

wind energy) and 1-to-10 Hz data. Due to the hugenumber of data files, large sizes and different

formats involved, integration into a single database with transparent characteristics to the user is
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proposed: First, file formats are to be standarized to a unique one. Second, two goals are defined

for database transparency: Concerning 10-min data, single files are to be created for the complete

IOP. Concerning high-resolution data (1 s): (i) statistical parameters (wave period and amplitude

for instance) are to be recomputed at a 10-min basis, hence creating analogous files as for 10-min

data and, (ii) querying tools are to be created for data inspection.

As transversal tool, Data Mining will be carried out to discover hidden patterns among atmo-

spheric and wave parameters in the FDWL records. Data clustering will be carried out over the

measurement records to identify how different wave motion and atmospheric scenarios can affect

performance of the FDWL.

1.5 Organization of the Ph.D. Thesis

This Ph.D. Thesis is organized as follows:

• Chapter 1 motivates this Ph.D. thesis and presents its main goals contextualized in the off-

shore wind energy state of the art.

• Chapter 2 introduces the foundations of LiDAR wind remote sensing and reviews its func-

tioning principles.

• Chapter 3 presents the instrumentation and ”Pont del Petroli” and IJmuiden measurement

campaigns used in the Ph.D. thesis.

• Chapter 4 presents a forward method to estimate the VAM from stand-alone FMCW radar

measurements in the context of VORTEX-SE campaign.

• Chapter 5 presents the L-dB method to estimate the zero-crossing ocean-waves period from

roll and pitch measurements by the FDWL IMU. The results are validated in the context of

IJmuiden campaign using a wave buoy as a reference.

• Chapter 6 presents a unified analytical formulation for the computation of motion-induced

errors in FDWL measurement of the wind resource. The analytical model estimation perfor-

mance is discussed as a function of the FDWL motion and wind scenario in the context of

”Pont del Petroli” and IJmuiden campaigns.

• Chapter 7 describes the UKF for FDWL motion compensation and discusses its performance

as a function of different motion and wind scenarios. The filter behaviour is discussed under

different LiDAR operation configurations as well.

• Chapter 8 studies the impact of different wind and initial scan phase model combinations

on the capabilities of the motion-correction filter as well as the impact of different sea and

atmospheric scenarios on the filter performance.
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• Chapter 9 gives conclusion remarks and outlook.



Chapter 2

LiDAR in Off-shore Wind Energy

2.1 LiDAR Foundations

LiDARs are remote sensing devices that aim to measure a certain parameter of interest at a target

location by sending a light beam and receiving a backscattered signal which is received by a pho-

toreceiver with both high temporal and spatial resolution [Slinger & Harris 2012]. LiDAR stands

for Light Detection and Ranging, and its acronym is an analogy to radars, which instead of using

light beams, use electromagnetic waves at radio frequencies.

LiDARs were invented just after the development of the first lasers in the 1960’s. One of the first

applications of LiDARs was measuring the clouds and atmospheric pollution [Goyer & Watson

1963], and the measurement of the distance to the Moon from the Earth [Smullin & Fiocco 1962].

LiDARs became known to the general public by its usage in the Apolo 15 mission (1972), in which a

LiDAR was used to map the surface of the moon. For the measurement of target distances, LiDARs

measure the time of flight of an emitted laser beam to the target and its way back. This was possible

thanks to the electronics technology available in the 60’s.

LiDARs applications in wind remote sensing were demonstrated in the 1970s in aviation and

meteorology fields [Jelalian 1992]. Their applications in wind energy were firstly explored in the

1980s [Hardesty & Weber 1987, Vaughan & Forrester 1989], but they were too large and expensive,

and thus, were not accepted commercially in the wind energy industry. With the improvement

of optical fiber technology in the 1990s, thanks to communications engineering, a new generation

of all-fibre LiDARs emerged. They proved themselves able to reliably measure the wind resource

with high sensitivity and low cost, being more and more accepted in the industry.

2.2 LiDAR Functioning Principle and Types

LiDAR functioning principle is based on the scattering process, in which atoms or molecules that

are exposed to electromagnetic radiation with a wavelength similar to their size emit waves of the

same frequency (and lower energy) in various directions. LiDARs take advantage of this physical

11
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process by sending laser beams to the target to be sounded and then measuring the backscattered

light re-emitted by the target. Therefore, depending on the target size, LiDARs use different wave-

lengths: from ultraviolet (250 nm) to infrared (10 µm).

As mentioned before, LiDARs are able to measure a target distance by measuring the time-of-

flight of the backscattered light. Moreover, the frequency shift between emitted and received light

beams due to the Doppler effect can be used to determine the target velocity.

Depending on the remote sensing technique used LiDARs can be classified into coherent or inco-

herent. Incoherent (or direct detection) LiDARs are based on amplitude changes of the backscattered

signal whereas coherent LiDARs measure the frequency or phase shifts of the backscattered beam

in comparison to the emitted one.

Incoherent LiDARs such as backscatter or Raman lidars are mainly used in atmospheric science

to determine the atmospheric composition and distribution. Some of its applications are the de-

termination of aerosol concentration, pollution detection, cloud height and classification, and de-

termination of airborne particle properties, among others. They can be used to measure the wind

speed and direction as well. The backscattered signal intensity pattern describes an aerosol density

at the illuminated target location which shows variations with time, yielding recognisable aerosol

patterns that pass over the measured LoS. When this already recognised signature passes over an

additional LoS, knowing the distance and time of flight, the wind speed and direction can be mea-

sured (see Figure 2.1).

Figure 2.1: Incoherent LiDAR functioning principle. The aerosol pattern is first shown in Location
1 and then at Location 2. The correlated aerosol signatures acrossm multiple locations permit the
wind speed and direction measurement.

Coherent LiDARs (or Doppler LiDARs) are mainly used to measure the wind speed by measur-

ing the Doppler shift between the emitted and received light beams in a LoS. When the illumi-
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nated airborne particles are in motion, the back-scattered beam suffers a frequency shift due to the

Doppler effect. Coherent LiDARs make use of the Doppler relation to obtain the wind speed. It is

formulated as

fd = −2vr
λ
, (2.1)

where fd is the Doppler frequency shift, vr is the velocity along the LiDAR LoS direction (positive

away from the lidar), and λ is the sounding wavelength. Therefore, as indicated by Equation 2.1, a

target moving towards the LiDAR increases the frequency of the backscattered light (shift towards

blue), and a target moving away from the LiDAR reduces the frequency of the returning light (shift

towards red).

Coherent LiDARs make use of a local oscillator to retrieve the Doppler shift. This is, the

backscattered beam is optically mixed with the the local oscillator (reference beam) resulting in

a ”beat” signal that is measured by a photodetector. When mixing two harmonic signals that oscil-

late at similar frequencies, the resulting wave shows intensity beats. The amplitude of the resulting

signal can be described as

i(t) ∝ [ALOcos(ωLOt) +AScos(ωst)]
2, (2.2)

whereALO andAS are the amplitudes of the local oscillator and backscattered signals, respectively,

and ωLO and ωS are the frequencies of the local oscillator and backscattered signals, respectively.

This expression can be separated into a constant term and a cross term oscillating at the frequency

difference between the local oscillator and the backscattered signal: the ”beat signal”. It can be

formulated as

i(t) ∝ [A2
LO +A2

S ] + 2ALOAScos(|ωs − ωLO|t). (2.3)

Coherent LiDARs are able to retrieve the frequency difference by measuring the ”beat” frequency.

There are two main coherent LiDAR configurations to measure the Doppler frequency shift: ho-

modyne and heterodyne detection schemes. The homodyne detection scheme directly mixes the

backscattered signal with the local oscillator, being only able to measure the magnitude of the

frequency difference but not its sign. When using a heterodyne configuration, the backscattered

signal is mixed with a frequency-shifted local oscillator, being able to measure both positive and

negative Doppler shifts. A single LiDAR Line of Sight (LoS) measurement can only measure the

radial component of the target velocity along the LiDAR pointing direction.

Depending on the emitted signal, LiDARs can be classified into Continuous wave (CW) or pulsed.

Pulsed LiDARs use the time of flight to discern between the backscatter of different target ranges

and CW LiDARs achieve the same by focusing the emitted beam to a particular height by changing

its optics. CW LiDARs measurement range is very short being able to virtually measure at zero

range, whereas pulsed LiDARs have a minum range of tenths of meters, typically at 40-50 m.
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Figure 2.2: Coherent LiDAR functioning principle. The backscattered beam reflected by the air-
bourne particles is compared against a fraction of the emitted beam in the local oscillator (LO). The
Doppler shift due to wind is measured at the photodetector (PD) as the frequency of the beat signal.

Pulsed LiDARs can assess atmospheric information at different heights with a single optical

pulse. Range information is retrieved as the half of the time of flight between the emitted pulse and

the time bin of interest (”range gate”).

CW LiDARs continuously emit a light beam which is focused at a particular height. Therefore,

in order to measure a vertical profile, CW LiDARs need to re-focus from one height to the next

sequentially. Typically, they take multiple LoS measurements following a conical scan scheme from

which the wind vector can be retrieved.

This thesis uses the ZephIRTM300 LiDAR, an all-fiber monostatic homodyne CW lidar.

2.2.1 Velocity Azimuth Display algorithm

As mentioned, coherent LiDARs measure the radial component of the wind velocity at each LoS

measurement. In order to retrieve the three components of the wind vector U⃗ = [u, v, w], they

take multiple LoS measurements following a conically-shaped scan. The minimum number of

LoS measurements required to obtain the 3-D vector is 3 since a system of 3 unknowns is faced.

However, in the case of the ZephIRTM300 LiDAR, 50 LoS measurements are taken per scan. The

rapid sampling rate permits 1-s long scans, being able to measure a ”snapshot” of the wind vector

across the scan disk. The scanning cone is of an aperture θ0 of 30 deg from zenith. Figure 2.3

depicts a geometrical representation of the connical scanning configuration. The redundancy of

the number of measured LoSs permits the velocity-azimuth-display (VAD).

The VAD algorithm is widely used for the retrieval of the wind speed vector since the 90s. Each

LoS measurement of the radial velocity vr can be expressed as the dot product between the LiDAR

pointing direction unitary vector r̂ and the wind vector U⃗ = [u, v, w]:

vr(ϕ(t)) = r̂(t) · U⃗ = vh sin(θ0) cos [ϕ(t)− ϕ0] + w cos(θ0), (2.4)

where θ0 is the LiDAR 30 deg aperture angle from zenith, vh is the HWS, ϕ(t) is the azimuth angle

as a function of time, and ϕ0 is the azimuth angle of the wind vector (U⃗ = vh cos(ϕ0)x̂+vh sin(ϕ0)ŷ+
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Figure 2.3: Geometrical scheme of the coherent LiDAR VAD scanning.

wẑ. From Equation 2.4, the three components of the wind vector can be obtained as

u = Acos(ϕ0) csc(θ0), (2.5)

v = Asin(ϕ0) csc(θ0), (2.6)

w = AOS sec(θ0), (2.7)

where vh =
√
u2 + v2, A = vh sin(θ0), and AOS = w cos(θ0). Thus, by knowing A, AOS and ϕ0, the

wind vector can be retrieved.

The VAD algorithm uses the least-squares algorithm to fit the model function (Equation 2.4) to

the measured LoSs (vmeas.r ) in order to retrieve the sought-after parameters A, AOS , and ϕ0:

[A,AOS , ϕ0] = argmax
A,AOS ,ϕ0

||vr(ϕ(t))− vmeas.r (ϕ(t))||2. (2.8)

Figure 2.4 graphically depicts a VAD functioning example. The measured LoSs (black dots) follow

the shape described by the model in Equation 2.4, and the best fit encountered by the VAD algo-

rithm (Equation 2.8) is depicted in blue. A, AOS and ϕ0 parameters of interest are the amplitude,

offset and phase of the fitted curve, respectively.

2.3 Doppler LiDAR in Wind Energy

DWL systems are widely used by the wind energy industry due to their reliability and robustness

in sounding the wind [Slinger & Harris 2012]. They have been deployed around the globe in many

different operations. Some of the applications of DWLs in wind energy are:
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Figure 2.4: VAD result for the measured LoS velocities as a function of the ϕ azimuth scanning
angle. Black dots represent the measured LoS velocities and the blue line represents the sinusoudal
fitting. A is the amplitude of the sinusoud, AOS is the sinusoid offset with respect to 0, and ϕ0
represents its phase.

• On-site operations. Unfavorable wind conditions may reduce WTGs power output and even

challenge their integrity. For instance, an angular offset between the WD and the turbine

nacelle orientation (yaw missalignment) causes an output power reduction. Moreover, sudden

wind gusts may compromise the WTGs operation performance. DWLs deployed on WTGs

nacelle may be used to warn for yaw missalignment or incoming gusts by measuring the

wind up to 200 m in front of the blades.

• Wind resource assessment. Wind resource assessment is critical in investment decisions in wind

farm projects [Carbon Trust 2018]. HWS, WD and TI parameters are of main importance when

studying the adequacy of a future wind farm site. The standard instrument used towards this

purpose are cup and sonic anemometers deployed on meteorological masts. However, in the

last years, DWLs have been more and more employed for wind resource assessment, achiev-

ing a measurement accuracy comparable to the one of a meteorological mast with lower costs.

2.3.1 Doppler Wind LiDAR in Offshore Atmospheric Remote Sensing

Since the first offshore wind farm deployment at Vindeby, Denmark, in 1991, offshore wind in-

dustry has experienced a rapid growth (see Chapter 1) [Gottschall et al. 2017a]. In an offshore

wind farm project, a broad knowledge of the prevailing wind conditions at a candidate wind farm

location is needed to assess the return on the investment. High quality HWS, WD, and TI mea-

surements of the future deployment site that are representative of a significant time period (e.g.,

seasonal and interannual variability) are required. This was traditionally achieved by means of
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meteorological masts planted on the sea-bed. The increase in average water depths and WTGs

heights increased the deployment costs of offshore meteorological masts, which motivated the in-

dustry to find an alternative solution. With the increasing popularity of LiDARs in the industry in

the 2000’s, deployment of LiDARs on offshore platforms arouse as a suitable alternative. This was

due to the high flexibility of LiDARs combined to their capacity to measure at hub heights of the

increasing size of WTGs. Between 2009 and 2013, a large ensemble of LiDARs were installed on off-

shore platforms (such as oil rigs and transformer stations) to obtain a comprehensive wind dataset

within the EC-funded NORSEWIND project [Hasager et al. 2013]. The obtained results highlighted

LiDARs potentialities in offshore operation in comparison to meteorological mast measurements.

Besides, it permitted the development of a series of acceptance criteria on the LiDAR measurement

performance [Kindler et al. 2009].

However, the installation of offshore platforms limits the flexibility of LiDARs, relying on fixed

construction facilities. A more suitable and less expensive solution is to deploy LiDARs atop float-

ing platforms or buoys, the so-called floating LiDAR systems (FLS) or FDWLs. FDWLs are formed

by two key components: the LiDAR device and the floating platform. Two types of platforms

are usually employed: standard wave buoys or spar buoys. The former is more subject to wave

motion, and FDWLs of this type require active motion compensation. The latter may not require

compensation due to their better stability and position keeping, however, they are only suitable

for deep waters (> 40 m). In this thesis only FDWLs using wave buoys are considered. Moreover,

FDWLs are required to host: (i) energy generation and storage systems, (ii) a data logging system,

(iii) a communication system, (iv) a sea-bed mooring system, and (v) buoy’s attitude measurement

systems.

One of the main challenges to overcome by FDWLs is the wave-induced motion on the LiDAR,

which compromises the accuracy of wind vector measurements. The commercial LiDARs used in

FDWLs are conceived for a fixed operation, meaning that an accurate alignment of the instrument

is required by the manufacturer. Thus, the 6-DoF motion induced by waves violates this assump-

tion. The effect of motion on FDWL instantaneous measurements of the wind vector is reported

in multiple studies in the literature [Gottschall et al. 2014a, Tiana-Alsina et al. 2015, Bischoff et al.

2018, Salcedo-Bosch et al. 2021a, Kelberlau & Mann 2022]. In wind enegy standard averaging peri-

ods, typically 10 or 30 min, the motion-induced error on the retrieved mean wind vector is found

in terms of a bias of 1-2% in most cases [Gutiérrez-Antuñano et al. 2017, Gutiérrez-Antuñano et al.

2018, Kelberlau et al. 2020, Araújo da Silva et al. 2022a]. The error on instantaneous wind mea-

surements is encountered as an ”apparent variance addition” at higher wind statistical moments,

such as the TI [Gutiérrez-Antuñano et al. 2018, Salcedo-Bosch et al. 2020a]. In the state of the art,

study of the motion-induced error on FDWLs is two-fold: error estimation and error compensa-

tion. Error estimation is tackled separately at scan-time level [Tiana-Alsina et al. 2015, Bischoff
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et al. 2018, Salcedo-Bosch et al. 2021a] and at 10-min level [Bischoff et al. 2018, Gutiérrez-Antuñano

et al. 2018, Kelberlau & Mann 2022]. The motion compensation has been tackled by means of me-

chanical [Gutiérrez-Antuñano et al. 2017] or software approaches [Gutiérrez-Antuñano et al. 2018,

Kelberlau et al. 2020, Salcedo-Bosch et al. 2021c; 2022b].

2.3.2 OWA Roadmap

The offshore wind accelerator (OWA) program aims at reducing the deployment and operating

costs of offshore wind farms. Besides, it provides a series of recommendations and best practices

for health and safety requirements. The program is aimed at reducing the costs through technology

improvement and innovation, motivated by international competitors, and the most innovative

and promising ideas are developed for commercialisation [Carbon Trust 2018].

Since the first commercially available FDWL in 2009, the technology was developed in align-

ment with the offshore wind industry interests as a support for financial decisions. In the context

of OWA program, a working group coordinated by UK Carbon Trust set up a first framework for

FDWL acceptance by the industry with their ”roadmap for the commercial acceptance of floating

LiDAR technology” [Carbon Trust 2013]. This roadmap defines the required steps for floating Li-

DAR technology to become commercially available. Additionally, it defines three stages of technol-

ogy readiness for a FDWL system: baseline, pre-commercial and commercial. Since the first roadmap

publication in 2013, FDWLs have been seen as a maturing technology with multiple developed sys-

tems achieving a pre-commercial stage as a part of commercial offshore wind farm developments.

An updated roadmap published in 2018 [Carbon Trust 2018] reflects the latest status of FDWLs

based on the expertise gathered accross the industry in the last years.

The OWA roadmap defines a series of KPIs which provide quantitative criteria for FDLW sys-

tem acceptancy. Considering these requirements, the variety of the commercially available FDWLs

has not been limited but has made sure that each system is evaluated against the same require-

ments. The KPIs define thresholds for beast practice of certain magnitudes measured on a 10-min

basis. The quantitatively defined parameters of main importance are HWS and WD which are

summarised in Table 2.1.

KPI Acceptance Criteria
mean HWS slope 0.98 - 1.02

mean HWS R2 >0.98
mean WD slope 0.97 - 1.03
mean WD offset <5 deg

mean WD R2 >0.97

Table 2.1: Best Practice Acceptance Criteria for KPIs of main importance. Adapted from [Carbon
Trust 2018]
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Additionally, KPIs of secondary importance are recommended to be measured but without

quantitative Acceptance Criteria: wind shear and TI. Due to the limitations of FDWLs to measure

theses parameters, a comparison of measurements against reference values measured by anemom-

etry is recommended until there is sufficient knowledge in the sector on this subject.





Chapter 3

Experimental Data and
Instrumentation Set-Up

One of the main objectives of the NEPTUNE project was to design and implement a FDWL able to

be deployed commercially. At the end of the project, a first operational FDWL buoy prototype was

the EOLOSTM FLS200 FDWL buoy. Towards this purpose, two buoy prototypes were tested in real

offshore campaigns: a first buoy prototype (NEPTUNETM ) in the ”Pont del Petroli” campaign, and

a second one (EOLOSTM FLS200), in IJmuiden campaign as part of the commisioning phase.

3.1 Instrumentation

ZephIR 300 DWL.- The ZephIR 300 is a continuous-wave focusable Doppler lidar specially con-

ceived for offshore operation [Scientific 2016]. It is able to measure the wind at user-defined heights

from 10 m up to 200 m in steps of 1 m [M. Pitter et al. 2014]. In order to retrieve the wind vector

for a particular measurement height, the ZephIR 300 measures the Doppler radial speed along 50

LoSs every second over a scanning cone of 30 deg aperture from zenith. A wedge prism rotating

with a uniform circular motion of one revolution per second is used to steer the laser beam in the

directions of the 50 LoSs. In uniform wind, the projection of the wind vector along the 50 LoSs as

a function of the azimuth scanning angle (i.e., the so called VAD function) takes the shape of a co-

sine. The lidar uses the VAD algorithm to retrieve the wind vector from the LoSs by fitting a cosine

function to the LoS measurements [Slinger & Harris 2012]. The ZephIR 300 is a homodyne detec-

tion lidar, which means that it cannot discern the sign of the Doppler shift. As a result, the VAD

function takes the form of a rectified cosine wave, creating an ambiguity of ±180 deg for the WD

measurement [Knoop et al. 2021]. The ZephIR 300 is equipped with a wind vane to disambiguate

the WD. Table 3.1 summarises the main ZephIRTM 300 characteristics.

NEPTUNETM FDWL buoy.- The proof-of-concept NEPTUNETM FDWL buoy was a 3 m diame-

ter buoy designed as a prototype for offshore LiDAR operations [Gutiérrez-Antuñano et al. 2017].

It had a modular four-floater structure designed to satisfy wind-energy measurement requirements

21
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Variable Value
Measurement Height Range 10 m to 200 m

Number of Measurement heights up to 10
LoS Sampling Rate 50Hz

Wind Speed Accuracy <0.5%
Wind Speed Range <1 m/s to 70 m/s

Wind Direction Accuracy <0.5 deg

Table 3.1: ZephIR™300 specifications [Scientific 2016].

with a ZephIRTM 300 DWL as well as for tracking wave-induced motion on the device. The LiDAR

was placed on a cardanic frame, aimed to keep the instrument still and to reduce the impact of buoy

motion. The buoy was equipped with additional sensors to measure different wind and sea param-

eters. Specifically, it hosted two MicroStrain 3DM-GX2-45 inertial measurement units (IMU), which

combined a high-precision GPS antenna, an accelerometer and a gyro. The 3DM-GX3-45 is able to

measure the buoy’s velocity and tilt with an accuracy of ±0.1 m/s and ±0.35 deg, respectively. The

first IMU (i.e., the LiDAR IMU) was located under the LiDAR bottom, and the second IMU (i.e.,

the buoy IMU) was located on the buoy structure bottom (see Figure 3.1), being able to measure

the buoy and LiDAR attitude.

Figure 3.1: Instrumentation scheme of the FDWL proof-of-concept buoy used in PdP campaign.

EOLOSTM FLS200.- The EOLOSTM FLS200 buoy was an enhanced design of the NEPTUNETM

model, prepared for harsher scenarios and higher endurance during longer measurement cam-

paigns [Tiana-Alsina et al. 2017]. It was also optimized to host a ZephIRTM 300 LiDAR. It had

3.77 m width, weighed 3 tons, and had a similar modular four-floater structure design. It hosted

three wind generators and multiple solar panels generating a maximum of 2200 W to ensure en-

ergy autonomy for long measurement periods. The buoy’s cover was constructed with aluminum

reinforced fiberglass to safeguard the internal electronic equipment from external harshness. It

hosted data acquisition and communication systems able to store and send the measurements from

its different sensors. The data could be acquired through Iridium satellite and through WiFi com-

munications in a 100-m range. In the EOLOSTM FLS200 design, the LiDAR was integrated in the

buoy structure without a cardanic frame, being the whole structure a rigid body. Therefore, a single
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Figure 3.2: Mooring system scheme of EOLOSTM test lidar buoy used in IJmuiden campaign.

3DM-GX2-45 IMU was needed to track the buoy’s motion. From one of the 4 corners of the buoy,

a mounted tail acts as a ”stern” for the buoy, so that the opposite corner faces wind direction. The

buoy was moored to the seabed by a mooring system consisting of two main parts: (i) upper moor-

ing consisting of four lines connected to each of the buoy’s floaters united in its bottom to a single

line, and (ii) lower mooring consisting of a clump weight (see Figure 3.2).

IJmuiden metmast.- The IJmuiden metmast is an offshore facility operated by the Energy research

Centre of the Netherlands. It is located in the North Sea, 85 km offshore of the IJmuiden port

(Netherlands, see Figure 3.4 b)). IJmuiden is a coastal city that hosts the sea lock at the entrance of

the North Sea Canal providing access to the Amsterdam (Netherlands) port region. The IJmuiden

92-m tall metmast structure was formed by a platform at 20.88 m a.s.l. and three booms pointing

at 46.5º, 166.5º, and 286.5º clockwise from the North cardinal direction. It was equipped with mul-

tiple cup and sonic anemometers measuring the wind speed and direction at 27, 58.5, 85, and 92

m height above the Lowest Astronomical Tide (LAT). A ZephirTM 300 was mounted at the met-

mast platform sensing the wind above the metmast top from 90 m up to 300 m height every 25

m. Pressure, temperature and humidity sensors were mounted on the metmast to monitor addi-

tional atmospheric parameters. IJmuiden sensors and their direct data products are summarised in

Table 3.2.

TriaxysTM wave buoy.- The TriaxysTM wave buoy is a wave sensor designed for accurate mea-

surement of directional waves and currents at a sampling period of 1 h. It is equipped with 3

accelerometers, 3 gyroscopes, and a compass in order to measure the most relevant directional and

nondirectional wave parameters. Some of the parameters yielded by the wave sensor were wave-

height definitions, wave-period definitions, mean direction, and mean spread. These parameters
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Variable Sensor Sampling
Rate height [m] Units

Wind Speed
2 x Thies First Class

Advanced Anemometer

4 Hz

92 m/s

6 x Thies First Class
Advanced Anemometer 27, 58.5 m/s

Air Pressure 2 x Vaisala PTB210 21, 90 hPa
Temperature 2 x Vaisala HMP155D 21, 90 ºC
R. Humidity %

Wind Speed 3 x Metek USA-1 Sonic
Anemometer 85 m/s

Wind Direction 9 x First Class Wind Vane 26, 58, 87 deg
Precipitation

2 x Thies Disdrometer
Laser 785 nm max 0.5

mW
21

%
Synopt -

Amount mm

Intensity mm/
min

OK %
Qual %

Visibity m
Measuring points

ZephIR™300 1Hz 90 to 315

-
Missed points -
Packets in fit -

Wind direction deg
HWS m/s
VWS m/s

Spatial variation -
CS -

Backscatter -
Horizontal
confidence -

Table 3.2: Sensors summary of IJmuiden metmast facilities. [Werkhoven & Verhoef 2012].

are computed by TriaxysTM from heave, pitch, and roll measurements estimated from the 6 DoF

measurements. The main TriaxysTM data products and resolution is summarised in Table 3.3.

Variable Range Resolution Accuracy
Heave ±20 m 0.01 m Better than 1%
Period 1.5 to 33 s 0.1 s Better than 1%

Direction 0 to 360 deg 1 deg 3 deg
Currents 0-10 m/s 1 cm/s ±10 cm/s

Water temp. -5 to +50 ºC 0.1 ºC ±0.5 ºC

Table 3.3: Triaxys™ Wave & Current Buoy specifications. [AXYS Technologies 2015].

3.2 Measurement Campaigns

Pont del Petroli campaign.- The Pont del Petroli (PdP) campaign took place between May 24th and

June 31st of 2013 at ”Pont del Petroli” pier (Badalona, Barcelona, Spain) [Sospedra et al. 2015]. It
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Figure 3.3: ”Pont del Petroli” campaign location and scheme of the instrumental set-up.

aimed to assess the wind measurement capabilities of the proof-of-concept NEPTUNETM FDWL

buoy in the context of the NEPTUNE project by comparing its performance against a fixed lidar

[Gutiérrez-Antuñano et al. 2017]. Both the fixed and the FDWL were ZephIRTM 300 focusable

continuous-wave DWLs. The fixed DWL was situated at the PdP pier in a stand-still configura-

tion, as the reference device. The FDWL was deployed offshore 50 m away from the fixed DWL

(see Figure 3.3). Both ZephIRTM 300 were identical instruments and were calibrated onshore one

beside the other 1 m apart during a period of 3 h. They were configured to measure the wind at

a height 100 m above sea level (a.s.l.). The calibration ensured identical measurements at 1 s and

10 min intervals. ”Pont del Petroli” is located on the coastline of Badalona (Barcelona, Spain), in

the Barcelona metropolitan area. The experiment location surroundings are defined by an urban

topology of low-height buildings (up to 20 m), which follow the coastline in the west and north

cardinal directions, while the rest is defined by a sea-type topology.

IJmuiden campaign.- The IJmuiden campaign took place between March and October of 2015 at

IJmuiden test site. The experimental campaign aimed at assessing the wind measurement accuracy

of the EOLOSTM FLS200 FDWL pre-commercial buoy using the IJmuiden metmast as a reference.

The FDWL ZephIRTM 300 was configured to sense the wind at four measurement heights (25, 38,

56, and 83 m) matching the metmast cup anemometers (see Figure 3.4 a)). The EOLOS parts were

tested and assembled at LIM-UPC facilities in Barcelona. Once the preliminary performance was

validated, the FDWL was moved to IJmuiden where the instrument was tested and calibrated in

near-real conditions for a period of 1 month. Finally, the EOLOS FDWL buoy was moored next

to its final deployment position 300-m apart from IJmuiden metmast (see Figure 3.4). Next to the

metmast, a TriaxysTM wave buoy measured the main wave and current parameters.
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Figure 3.4: IJmuiden test campaign: (a) experimental setup at IJmuiden’s test showing the
EOLOSTM FLS200 and reference metmast, and (b) location map adapted from [Lencer 2008].



Chapter 4

Methods for Vertical-Air-Motion
Estimation from Frequency-
Modulated-Continuous-Wave Radar
Rain Measurements

The contents of this Chapter are aligned with the introductory Objective 1 and are part of the full paper [Sal-

cedo et al. 2022]: Salcedo-Bosch, A.; Rocadenbosch, F.; Frasier, S.; Domı́nguez-Pla, P. ”Forward method

for vertical air motion estimation from frequency modulated continuous wave radar rain measurements,”

11th European Conference on Radar in Meteorology and Hydrology (29th Aug. to 2nd Sept. 2022, Locarno,

Switzerland), ERAD 2022. Proc. ERAD 2022, p. 104-111.”. Systematic or multiple reproduction or dis-

tribution to multiple locations via electronic or other means is prohibited and is subject to penalties under

law

4.1 Introduction

Radars and disdrometers have been widely used to measure precipitation processes in the atmo-

spheric boundary layer [Rogers 1984]. Ground-based S-band Frequency Modulated Continuous

Wave (FMCW) radars have been used to assess the atmospheric boundary layer precipitation mi-

crophysical processes for more than 40 years [İnce et al. 2003], as they are unaffected by rain attenu-

ation [Tanamachi et al. 2019, Rocadenbosch et al. 2020]. Vertically-pointed FMCW radars permit the

derivation of key rain 2nd order integral parameters such as DSD and RR, among others [Doviak

& Zrnic 1984]. The radar high spatial and temporal resolution permit an accurate monitoring of

precipitation vertical profiles. Disdrometers record raindrop counts (at ground level) for different

diameters during a measurement interval, and precisely derive rain DSDs from which 2nd order

parameters such as RR can be obtained.

However, each of these devices has its limitations. On one hand, the disdrometer is not able to

27



4.1. INTRODUCTION 28

give information of the vertical variations of precipitation. Moreover, large errors are common in

scenarios with small diameter raindrops and low rain. On the other hand, radars have difficulty

precisely measuring precipitation at low heights due to interference from ground clutter, near-field

effects, and parallax influence (for FMCW radars employing dual antennas). Additionally, radars

estimate the DSD from radar Doppler spectrum by assuming that rain drops are Rayleigh scatterers

that fall at their terminal velocities, which are determined by the drop diameter. In practice, the

droplets falling velocity are influenced by the Vertical Air Motion (VAM) [Tridon et al. 2011], which

arises as a radar-measured spectrum shift in the velocity axis. In the presence of large VAM, such

as in convective rain scenarios, radar-derived DSD and 2nd order parameters may be corrupted

[Rocadenbosch et al. 2020, Tridon et al. 2011].

The VAM estimation and correction from stand-alone Doppler radar measurements has been

of interest since the beggining of radar usage in precipitation measurement [Hauser & Amayenc

1981]. Lhermitte (1988) proposed a method to differentiate VAM and raindrops terminal velocity in

W-band (λ = 3.2 mm) radars by exploiting Mie scattering. The VAM is determined by comparing

the observed spectrum to a predicted spectrum assuming no VAM. However, this is only feasible

for very-short wavelengths. Hauser & Amayenc (1981) proposed a fitting method in which the DSD

was assumed to be with an exponential form characterised by two parameters (Marshall-Palmer

distribution). This methodology optimised the best fit between the theoretical spectrum retrieved

from the DSD model (shifted by VAM) with respect to the experimental spectrum observations.

However, it required exponentially distributed size distributions and it is not suited for convective

rain scenarios. More recently, Tridon et al. (2011) proposed a VAM-correction method by shifting

the radar-measured spectrum to maximise the correlation with a no-VAM scenario. Rocadenbosch

et al. (2020) proposed a VAM estimation method based on the correspondence between Z-RR mea-

surements with three different Z-RR models. It consisted on a trial-and-error procedure in which

the radar-measured spectrum was shifted until Z-RR relationship matched theoretical models. A

similar approach was proposed by Kim & Lee (2016), which resorted to radar reflectivity empirical

relationships as well to estimate the VAM and then unshift the spectrum. However, they require

user expertise in rain radar observations for an accurate correction. In contrast, here, departing

from the proposal by Hauser & Amayenc (1981), a forward method to estimate the VAM from

stand-alone radar measurements is presented. The foundations of the forward method are to pa-

rameterise the DSD as a Gamma distribution and to project this parametric DSD through the radar

processing chain up to the retrieved radar-measured reflectivity. The methodology is tested over

experimental data measured by a vertically-pointed FMCW radar and validated by a disdrometer

as a reference during a convective rain event in VORTEX-SE campaign in 2017.

This chapter is structured as follows: Section 4.2 describes the VORTEX-SE campaign and

presents the OTT Parsivel2 disdrometer and the UMASS S-band radar; Section 4.3 revisits the dis-
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drometer and rain radar operation procedure as well as the VAM correction method; Section 4.4

shows a case study of the VAM correction method; and Section 4.5 gives concluding remarks.

4.2 Instruments

The Verification of the ORigins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE) mea-

surement campaign aimed at studying how different environmental scenarios affected the for-

mation, characteristics, and evolution of tornadoes in the Southeast United States. The second

measurement campaign of VORTEX-SE took place between 8 March and 8 May 2017 in northern

Alabama. It involved multiple fixed and mobile instruments assessing the spatial and temporal

evolution of storm events. During the experiment, the UMass S-band FMCW radar was deployed

at the Scottsboro, Alabama airport along with an OTT Parsivel2 disdrometer, part of the Portable

In-situ Precipitation Sensor (PIPS) package deployed by Purdue University.

The S-band FMCW radar was developed by the Microwave Remote Sensing Laboratory from

the University of Massachusetts (UMASS). It is a transportable radar which uses two parabolic

dish antennas of 2.4 m diameter with 34 dB gain, with a transmitter of 250 W [Waldinger et al.

2017]. It is able to vertically profile the volume reflectivity spectral density as a function of velocity

(η(v)) with temporal and spatial resolutions of 16 s and 5 m, respectively. The radar bandwidth

permits to measure drop falling velocities up to 14 m/s. Thanks to the radar signal wavelength,

the atmospheric boundary layer can be studied both in clear-air and precipitation scenarios.

The OTT Parsivel2 is a laser-based disdrometer able to measure the ground-level rain droplets

distribution as a function of diameter and falling velocity [Tokay et al. 2014]. Its operation is based

on the shadowing effect that drops generate when passing through a light band. From the hydrom-

eteors distribution, 2nd order parameters such as RR and DSD can be derived. It has been widely

used in measurement campaigns, and here, it will be used as a reference.

4.3 Method

4.3.1 Radar Data Products

Following [Rocadenbosch et al. 2020], the DSD is obtained as the ratio of the volume reflectivity

density with respect to the drop diameter, η(D) [m−1/mm], to the single-particle backscattering

cross section of a drop of diameter D, σ(D) [m2/drop]. It can be formulated as

N(D) =
η(D)

σ(D)
. (4.1)

FMCW radars are able to measure the volume spectral reflectivity, η(v), which is the volume reflectiv-

ity (or radar cross section per unit volume) per unit Doppler velocity. In order to retrieve the DSD

from radar measurements (see Equation 4.1 above), we need to express the spectral reflectivity as
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a function of drop diameter. To do so, the relationship η(D)∂D = η(v)∂v is used. This relationship

was found empirically by Gunn & Kintzer (1949), and was put expressed analytically by Atlas et al.

(1973) as

vn(D)[m/s] = (9.65− 10.3e−0.6·D[mm])δv(h), (4.2)

where δv(h) is the height-dependent density correction for the terminal fall velocity, which is for-

mulated as

δv(h) = 1 + 3.68 · 10−5h+ 1.71 · 10−9h2, (4.3)

where h is the measurement height.

From the DSD, second order products such as the reflectivity factor Z and theRR can be derived.

The radar reflectivity factor can be obtained as the sixth power of the DSD as

Z =

∫ ∞

0

N(D)D6dD, (4.4)

and theRR can be estimated from the DSD third moment as a function of drop terminal fall velocity

RR =
π

6

∫ ∞

0

N(D)D3v(D)dD. (4.5)

4.3.2 VAM influence

Without VAM, the radar-measured Doppler velocities match the raindrops terminal falling veloci-

ties (vDoppler = v(D)). In presence of VAM, the hydrometeors falling velocities are determined by

both the drop terminal velocity as a function of diameter (v(D) Equation 4.2) and the VAM velocity

(vV AM ). Then, the radar-measured Doppler velocity is given by

vDoppler = v(D) + vV AM . (4.6)

Therefore, drop diameter retrieval from velocity measurements and subsequent derivation of η(D),

DSD, and RR need to include the correction v(D) = vDoppler − vV AM . As vV AM could not be

measured with the available instrumentation, we face a non-linear inverse problem in which we

need to find the best vV AM estimation given radar volume reflectivity density η(v) measurement

[Rodgers 2004].

4.3.3 Methods: Forward model for VAM estimation

We propose a forward model approach to solve the inverse problem of radar RR retrieval as a

function of the VAM correction by constraining the DSD as a gamma distribution:

N(D) = N0D
µe−ΛD, (4.7)

in whichN0 , µ, and Λ are the intercept, shape, and slope constitutive parameters of the distribution,

respectively [Tokay & Short 1996].
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In an inverse problem, the parameters to be estimated are represented by the state vector xxx, and

the measurements actually made to estimate xxx can be represented by the measurement vector zzz

[Rodgers 2004].

In our inverse problem, the state vector xxx to be estimated is formed by the DSD gamma distri-

bution parameters and the VAM. It can be formulated as

xxx = [N0, µ,Λ, vV AM ]T . (4.8)

The measurement vector zzz is defined as the radar-measured volume reflectivity density η(v). It is

formulated as

zzz = η(v). (4.9)

zzz is a N × 1 dimension vector, being N the number of velocity bins measured by the radar.

We depart from Equation 4.1 in order to obtain the volume reflectivity density as a function of

diameter from the DSD as

η(D) = N(D)σ(D). (4.10)

Then, we make use of the relationship η(v)∂v = η(D)∂D to obtain the volume reflectivity density

as a function of velocity as

η(v) = N(D)σ(D)
∂D

∂v
. (4.11)

For each state vector xxx there is an ideal measurement vector zzz related by a forward function f(·).

The radar DSD-to-reflectivity forward function is defined as the expanded form of Equation 4.11

above as

f(xxx) = N0D(vV AM )µe−ΛD(vV AM )σ(D(vV AM ))
∂D(vV AM )

∂v
, (4.12)

where D(vV AM ) is the velocity-to-diameter relationship (see Equation 4.2) and vV AM is VAM ve-

locity correction (see Equation 4.6).

Then, the forward model can be defined as

zzz = f(xxx) + ϵ, (4.13)

where ϵ is a residual error term. In order to solve the inverse problem, and thus, to estimate the state

vector xxx, we resort to a constrained non-linear Least Squares (LSQ) method, finding the optimal xxx

that minimizes the squared error ϵ2 between the model observation f(xxx) and the actual observation

zzz. It can be formulated as an optimization problem as

xxx = argmin
xxx

||η(v)− η̂(v,xxx)||2 (4.14)

where η̂(v,xxx) is the estimated radar volume reflectivity, output of the radar DSD-to-reflectivity

forward function f(xxx). The block diagram in Figure 4.1 represents the optimization problem.

The optimization problem in Equation 4.14 is solved by means of the trust-region-reflective

algorithm [Moré & Sorensen 1983].
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Figure 4.1: Block diagram of the forward model algorithm. f(.) is the radar DSD-to-reflectivity
forward function. The substractor is used to compute the residual error, ϵ, between the measured
and the estimated radar volume reflectivity density.

4.4 Results and Discussion

The algorithm was tested over experimental data measured by the UMASS S-band FMCW radar

and the OTT Parsivel2 during VORTEX-SE 2017 campaign (see Section 4.2). The VAM was esti-

mated by means of the forward model method from radar volume reflectivity density measure-

ments at 500 m. Reflectivity density measurements were 1-min averaged in order to reduce their

uncertainty [Hauser & Amayenc 1981]. Then, radar measurements were corrected considering

VAM estimations, and RR and DSD radar products at 500 m were recomputed. The VAM-corrected

RR estimations were compared against the disdrometer RR as a reference, assuming vertical cor-

relation between 500 m and 0 m measurement heights considering 10-min average ensembles. Al-

though collision and coalescence processes are present in the precipitation process, correlation co-

efficients of ρ ≃ 0.75 were found for the RRs between the radar measurements at 500 m and the

disdrometer in the VORTEX-SE campaign [Rocadenbosch et al. 2020].

Figure 4.2 shows the VAM estimation and correction results in terms of RR during a 20-minute

observation period. By comparing the radar-retrieved RR without correction (dashed gray) to the

disdrometer (dashed red), it can be observed how from 04:46 to 04:55 they largely disagree, being

the first up to 3 mm · h−1 lower than the latter. The VAM estimated by the inverse method pre-

sented in Section 4.3.3 (dashed-dot green) shows constant -1 m/s values from 04:40 to 04:44, then

it rises with a constant slope up to values around 1 m/s, and finally, at 04:55, it shows negative

values down to -3 m/s. These VAM values seem to be in accordance with the RR, as a positive

VAM implies a reduction of the radar-retrieved RR [Salcedo-Bosch et al. 2022a], corresponding to

the 04:46-04:55 period in which the radar measures a lower RR as compared to the reference. After

VAM correction, the radar-retrieved RR (dashed black) shows values of the same order of magni-

tude as the ones for the disdrometer, proving the validity of the VAM estimations. These results are

further corroborated when comparing the 5-min window-averaged versions of the RR measure-

ments (solid traces). The radar-measured RR (solid gray) shows significantly lower values in the

04:46-04:55 period with respect to the disdrometer (solid red). After correction, the radar-measured
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Figure 4.2: Time series representing the radar-measured RR (1 min), with (dashed black) and with-
out (dashed gray) VAM correction, the disdrometer-measured RR (1 min, dashed red) and the VAM
estimated by the forward method (green). Solid traces are the 5-min averaged versions of the re-
spective dashed plots.

RR (solid black) matches almost ideally the reference. Note that when RR is very low, e.g., at 04:56-

04:58 period, the VAM correction does not have a noticeable effect on the radar measurements, as

reflectivity density values are too low. During the 04:40-04:44 period, it can be observed that the

VAM-corrected radar RR shows lower values than the disdrometer reference. This may be due to

an overestimation of negative VAMs. As a result, the algorithm estimates biased DSD parameters

in order to match the measurements, i.e., to minimize the squared error between the measurement

vector and the output of the forward function (see Equation 4.14).

Figure 4.3 compares two DSDs measured by the radar, with and without VAM correction,

against the reference DSDs measured by the disdrometer. Figure 4.3 a) plots the radar and the

disdrometer DSD measurements at 04:43 UTC. Surprisingly, the VAM-corrected radar RR becomes

underestimated (see Figure 4.2). As it can be observed, the raw DSD radar measurement (gray)

virtually overlaps the reference (red). Therefore, the estimated VAM should be close to 0 m/s

and no correction should be required. However, the forward method presented overestimates the

VAM (VAM≃ −0.8 m/s), compensating the poorer functioning of the forward method with a miss-

estimation of the DSD constitutive parameters (N0, µ, and Λ), which leads to wrong DSD retrievals
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Figure 4.3: Comparison between DSDs measured by the radar, with (black) and without (gray)
VAM correction, and the disdrometer (red). Two case examples are shown: (a)) biased VAM esti-
mation; (b)) good VAM estimation.

(black). On the other hand, Figure 4.3 b) depicts the comparison of DSD measurements at 04:49,

where a VAM of 1.5 m/s is estimated. Here, a factor 10 difference can be observed between the

radar-measured and reference DSDs. After VAM correction, the radar-measured DSD matches al-

most perfectly the reference. However, as previously reported in the literature [Jash et al. 2019],

optical disdrometers underestimate DSDs at low diameters (see D < 0.5mm at Figure 4.3 b)).

4.5 Conclusions

An inverse method to estimate VAM velocity from stand-alone radar measurements was presented.

The method consists on fitting a modelled volume reflectivity density, as a function of the VAM and

DSD gamma distribution constitutive parameters, to the radar-measured reflectivity.

The method was tested over experimental data captured during a 20-minute period by an S-

band FMCW radar and validated with an OTT Parsivel2 disdrometer in the context of VORTEX-SE

2017 measurement campaign. The estimation results found VAM values mainly ranging from -1

m/s up to 1.5 m/s during the period under analysis. After VAM correction, the radar-measured

RRs were found to match almost ideally the disdrometer-measured RR for positive VAM values.

However, overestimation of VAM negative values was found in no-VAM scenarios, leading to miss-

estimation of the DSD constitutive parameters. These results were corroborated by comparing

radar-retrieved DSD (with and without VAM correction) to disdrometer measurements.

Although promising, the algorithm still needs to be further tested over different stratiform and

convective rain scenarios in order to see if overestimation of negative VAM is also found, and

how to improve these estimations. The VAM estimations could also be further validated by direct

measurements of vertical wind by wind profilers.



Chapter 5

Estimation of Wave Period from Pitch
and Roll of a Lidar Buoy

The contents of this Chapter are aligned with Obj. 2 of this Ph.D. and are part of the full paper [Salcedo-

Bosch et al. 2021b]: A. Salcedo-Bosch, F. Rocadenbosch, M. A. Gutiérrez-Antuñano, and J. Tiana-Alsina.

”Estimation of wave period from pitch and roll of a lidar buoy”, Sensors, 21(4), 2021b. doi: https:

//doi.org/10.3390/s21041310. Systematic or multiple reproduction or distribution to multiple

locations via electronic or other means is prohibited and is subject to penalties under law

5.1 Introduction

As it has been explained in Chapter 2, FDWLs suffer wave-induced errors on wind measurements

[Gottschall et al. 2014b]. Sea waves induce translational (sway, surge, and heave for x, y and z axes,

respectively) and rotational (roll, pitch, and yaw for x, y, and z axes, respectively) motion to the

floating DWL, which accounts for 6 Degrees of Freedom (DoF), creating a Doppler effect over the

wind vector retrieval and TI [Tiana-Alsina et al. 2017, Kelberlau et al. 2020, Gutiérrez-Antuñano

et al. 2018, Mangat et al. 2014, M. Pitter et al. 2014, Bischoff et al. 2014, Gottschall et al. 2012b].

LiDAR buoys are usually wave buoys moored to the seabed by means of a clump. The buoy’s

design is a trade-off between accurate LiDAR wind measurements and attitude measurements for

wave-induced motion compensation [Schuon et al. 2012]. Of the 6 DoF of a wave buoy (sway,

surge, heave, roll, pitch, and yaw), sway, surge, and yaw are mainly determined by wind and

current forces, whereas heave, roll, and pitch are mainly determined by sea state [Kelberlau et al.

2020] and are used to study sea waves [Center 1996]. Sea waves are a subject of interest in various

fields such as marine engineering [Faltinsen 1993], oceanography [Center 1996, Suh et al. 2010,

Ardhuin et al. 2019, C. & S. 2018] and wind engineering [Gottschall et al. 2018, He et al. 2019].

Waves can be studied from directional and nondirectional perspectives by means of the directional

and nondirectional spectra, which are estimated from a measuring wave buoy’s heave, roll, and

35
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pitch records [Center 1996, Kuik et al. 1988]. From spectrum estimations, wave period and height

variables are derived and studied.

In this chapter, we present a spectral-analysis methodology to estimate the wave period from

roll and pitch records (2 DoF) measured by a LiDAR buoy, and reconcile our methodology to classi-

cal oceanographic wave-period estimation methods in the state of the art, which usually rely on av-

erage and zero-crossing period computation. We assumed quasistatic yaw rotation and neglected

translational motion on account of the buoy’s mooring topology.

Incipient studies addressed the topic as follows: in [Gutiérrez-Antuñano et al. 2017], the wave-

induced buoy’s tilt period was computed from the smoothed Fast Fourier Transform (FFT) of pitch

and roll time series. The most prominent peak of these 2 FFTs was chosen as the most relevant spec-

tral component, and the period was estimated as the inverse of the frequency corresponding to it. In

[Gutiérrez-Antuñano et al. 2018], roll and pitch tilt periods were virtually correlated (ρ ≃ 0.5); thus,

1-DoF was considered informative enough of the buoy’s motional wave period. In [Salcedo-Bosch

et al. 2020b], two estimation methods to assess the wave period from pitch and roll measurements

based on Blackman–Tukey power-spectral-density (PSD) estimation method were presented. Be-

cause the correlation between pitch and roll periods showed up experimentally, estimations using

1-DoF (either roll or pitch) became meaningful enough for the study. The first, the peak method,

estimated the period as the inverse of the frequency of the maximum of the PSD. The second, the 3

dB method, defined the 3 dB threshold as the frequency region containing PSD values higher than

half of the PSD maximum. In this method, the period was estimated as the inverse of the average

of the start and stop cut-off frequencies of the 3 dB region. The 3 dB method yielded much higher

correlation coefficients (ρ = 0.62) than those of the peak method (ρ = 0.37) when compared to the

measured wave periods from reference buoys. However, a formulation was missing explaining the

3 dB PSD approach in relation to the different oceanographic definitions existing in the state of the

art for the wave period or the underlying foundations.

Here, we present the sought-after formulation of the 3 dB method in relation to well-established

wave-period oceanographic definitions. We also extend our pitch and roll spectral analysis (2 DoF)

to the derivation of the tilt-angle PSD (so-called buoy eigenangle) representing the combined rota-

tion effects of pitch and roll angles on buoy rotation geometry.

5.2 Materials and Methods

5.2.1 Review of remote sensing instruments

For this study, we use data from IJmuiden campaign, the validation campaign of the EOLOSTM

FLS200 test floating LiDAR buoy at the IJmuiden test site (see Chapter 3). The main instruments

used in this study were: (i) the 3DM-GX3-45 inertial measurement unit (IMU) on the LiDAR buoy
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measuring the buoy’s tilt (roll, pitch, and yaw), accelerations in X, Y and Z axes, and Global-

Positioning-System (GPS) position at a sampling rate of approximately 8 Hz; and (ii) the TriaxysTM

wave buoy next to the metmast measuring the reference wave parameters at a sampling period of

1 hour [Werkhoven & Verhoef 2012]. Figure 3.4 shows the instrumentation setup of the campaign

and the location of IJmuiden’s test facilities. For this study, 1920 wave-buoy data records from 29

March to 17 June (80 days) were used.

Triaxys reference parameters computation review. Some of the parameters yielded by the wave sen-

sor were: wave-height definitions (Hmax, H10, Hsig and Havg), wave-period definitions (Tmax, T10,

Tsig , Tz , Tavg, Tp, and Tp5), MeanDirection, and MeanSpread. Subindices max, 10, sig, avg, z, p,

and p5 refer to the maximal wave height and its corresponding period (Hmax and Tmax respec-

tively), the highest tenth of the waves’ average height and period (H10 and T10 respectively), the

highest third of the waves’ average height and period (Hsig and Tsig respectively), the average

wave height and period (Havg and Tavg respectively), the average zero upcrossing period (Tz), the

period corresponding to the highest spectral component of the wave energy spectrum (Tp), and the

peak wave period computed by the READ method (Tp5), respectively [MacIsaac & Naeth 2013].

Wave period parameters Tz , Tavg and Tp are formulated in Section 5.2.2.

TriaxysTM computes these parameters from heave, pitch, and roll measurements estimated from

the 6-DoF measurements by 3 accelerometers and 3 gyros by solving the nonlinear differential equa-

tions relating the buoy motion to accelerations and angular rates. It follows a similar procedure to

that in [Øyvind F. Auestad et al. 2013] to obtain heave, surge, and sway translational motions and

roll, pitch, and yaw rotational motions. Wave analysis is then carried out on the buoy by perform-

ing zero-crossing analysis of wave elevation in the time domain, nondirectional analysis by means

of FFT methods, and lastly directional wave analysis [MacIsaac & Naeth 2013].

5.2.2 Method (I): Estimation of Sea-Wave Period

Waves can be analysed from directional and nondirectional perspectives depending on the pur-

pose of the study and the available data. Directional wave analysis studies the contribution of

ocean waves propagating in different directions with different amplitudes and periods by means

of the directional spectrum (DS(f, θ)) of the wave heave by means of the two slope components of

the buoy, computed from roll and pitch records [Barstow et al. 2005, Tannuri et al. 2003], with tech-

niques such as the Fourier expansion method and the maximum entropy Method [Massel 2017].

Nondirectional wave analysis studies surface ocean waves from the nondirectional energy spec-

trum (S(f), computed from wave elevation) [Center 1996, C. & S. 2018]. S(f) is defined as [Sweitzer

et al. 2004]

S(f) = FT (H(t)) =

∫ T

0

H(t)e−i2πftdt, (5.1)

where H(t) is the wave elevation as a function of time, t, f is frequency, and T is the study period.
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Directional and nondirectional wave spectra are related in the following way:

DS(f, θ) = S(f)D(f, θ), (5.2)

where D(f, θ) is the directional spreading function and θ is the wave angular direction. S(f) in

Equation 5.1 above can also be re-encountered by integrating DS(f, θ) over all angular directions

(θ from 0 to 2π), S(f) =
∫ 2π

0
D(f, θ)dθ.

Spectral moments mn are defined as

mn =

∫ ∞

0

fnS(f)df, (5.3)

where n stands for an n-th order moment.

Different wave amplitude and period characterization parameters can be derived from spec-

trum S(f) and its spectral moments mn. Some of the most relevant wave-period definitions are

[Barstow et al. 2005]:

• mean zero-crossing period, which is defined as

Tz =

√
m0

m2
; (5.4)

• average period

Tavg =
m0

m1
; (5.5)

• and peak period

Tp =
1

fp
, (5.6)

where fp is the peak frequency of S(f).

5.2.3 Method (II): Buoy-Motion Model

We define the buoy’s moving body Cartesian right-handed XYZ coordinate system and the global

Cartesian right-handed north–east–down (NED) frame of reference (Figure 5.1). Without external

forces, the X, Y, and Z axes of the buoy’s moving body XYZ coordinate system would be aligned with

the north, east, and vertically down axes of the global NED frame of reference.

In practice, such external forces can cause translational motion in the N, E, and D directions

(surge, sway, and heave, respectively), and rotational motion along the N, E, and D axes (roll,

pitch and yaw, respectively) to the buoy [Tiana-Alsina et al. 2017, Bischoff et al. 2014]. The buoy’s

mooring limits surge and sway motion, while heave (Figure 5.2a) follows the wave altitude. Note

at Figure 5.2a that there are no heave measurements below 0 m in IJmuiden campaign. Regarding

rotational motion, roll and pitch are mainly characterised by wave-motion behaviour, whereas yaw

motion is mainly determined by the wind and currents due to the buoy’s tail acting as the stern.

Therefore, heave (translational), and roll and pitch (rotational) motions are the most informative
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Figure 5.1: Fixed and moving-body (buoy’s) coordinate systems used. The fixed coordinate system
is the right-handed north–east–down (NED) system (dashed arrows with unitary vectors n̂, ê, and
d̂ plotted in blue, green, and red, respectively). Buoy’s coordinate system denoted as XYZ (solid
arrows with unitary vectors x̂, ŷ, ẑ). α is the buoy’s eigenangle defined as the angle between unitary
vectors, d̂ and ẑ.

parameters of wave motion. Yaw motion showed slow variations with time (typically greater than

1 min; quasistatic approximation) due to wind and current influence, whereas roll and pitch motion

exhibited comparatively much faster oscillatory behaviour due to wave influence (see Figure 5.2b)

on time scales of the order of seconds.

The IMU was set up to measure the buoy’s rotation angles on the basis of the fixed global right-

handed NED coordinate system (see Figure 5.1). We defined n̂, ê, and d̂ as the unitary vectors

aligned with the N, E, and D axes, respectively. On the other hand, we defined the x̂, ŷ and ẑ

unitary vectors along the rotated moving-body coordinate system (XYZ).

Large-angle case. In order to express our rotation problem with a single angle (so-called eigen-

vector-axis-associated angle or eigenangle for short in what follows denoted α in Figure 5.1) we

resorted to Euler’s rotation theorem, which states that every rotation in three dimensions is de-

fined by its axis (a vector along this axis is unchanged by the rotation), and its angle—the amount

of rotation about that axis. Euler’s theorem also states that any 3D body rotation can be described

by three angles. Therefore, the eigenangle can be expressed from roll, pitch, and yaw rotation an-

gles. There are many different mathematical conventions for these three angles depending on the

axes where the rotations are carried out and its order. We used the D-E-N convention defining

the specific sequences of axes rotation (D-E-N axes are the global-coordinate (GPS) axes or fixed

counterparts of Z-Y-X axes attached to the moving body, i.e., the buoy). In the D-E-N convention,
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Figure 5.2: Motional temporal series (Ijmuiden campaign): (a)) Heave signal above sea level (a.s.l.)
on April 11, 2015; (b)) Roll, pitch, and yaw signals on April 10, 2015).

we have three composed elemental rotations carried out sequentially in the global fixed coordi-

nate axes: first, around the D axis (yaw motion, denoted by ψ); second, around the E axis (pitch,

θ); and third, around the N axis (roll, ϕ), see Figure 5.1. Angles were positive counterclockwise.

Considering these definitions, Euler’s rotation matrix can be formatted as [Roithmayr & Hodges

2016]:

R = RψRθRϕ, (5.7)

where Rϕ, Rθ, and Rψ are the counterclockwise extrinsic rotation matrices around the N axis (roll),

E axis (pitch), and D axis (yaw), respectively.

Rϕ =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 ,

Rθ =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 ,

Rψ =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 .

(5.8)

Then, any vector rotation can be described by right multiplying it by the rotation matrix,

⃗rrot = R· r⃗, (5.9)

where r⃗ and ⃗rrot are vectors (before and after rotation, respectively) with coordinates expressed

in the fixed-coordinate system. We define α as the eigenvector-axis-associated angle of the buoy’s

combined motion in roll, pitch, and yaw angles. Conceptually, α is the angle between the down

axis of the global coordinate system (NED) and the Z axis of the buoy (moving body, XYZ) (see

Figure 5.1). As previously mentioned, the D and Z axes are described by unitary vectors d̂ = [0, 0, 1]
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Figure 5.3: Histograms of daily minimal and maximal roll and pitch inertial-measurement-unit
(IMU) records (57,520,000 records between 29 Match and 17 June): (a) Daily minimal tilt-record
histogram; and (b) Daily maximal tilt-record histogram. Dashed lines represent roll (blue) and
pitch (red) medians in both panels.

and ẑ, respectively. Given d̂ (fixed coordinate system), vector ẑ (moving coordinate system) can be

expressed in the fixed coordinate system using Equation 5.9 as

ẑ = R· d̂ = RϕRθRψ· d̂ =

 − sin θ
sinϕ cos θ
cosϕ cos θ

 . (5.10)

This can be seen graphically in Figure 5.4a, where ẑ is the result of rotating d̂ by θ deg around E

(pitch) and ϕ deg around N (roll). Because of the D-E-N convention to describe chained rotations,

α was invariant to the yaw rotation around D axis. Similarly, α is invariant to heave, which is

translational motion along the D axis.

Then, α can be computed from the dot product between d̂ and ẑ as follows:

α = arccos (d̂· ẑ). (5.11)

Inserting d̂ = [0, 0, 1] and ẑ (Equation 5.10) into Equation 5.11 yields

α = arccos (cosϕ cos θ). (5.12)

Because the cosine is an even function, α in Equation 5.12 above is always positively defined.

Small-angle case. Figure 5.3 plots 80 day histograms describing maximal and minimal, and pitch

and roll daily buoy records. Both angles were below ±22 deg (maximum). The median of the

minima and the median of the maxima yielded [-13, +10] deg in pitch and [-12, +11] deg in roll,
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Figure 5.4: Geometrical representation of buoy’s rotation in roll and pitch dimensions of movement
and vector approximation for small angles: (a) Three-dimensional geometry sketch showing eige-
nangle α, roll (ϕ), and pitch (θ) angles, and vectors d̂ and ẑ in NED coordinate system. d̂ transforms
into ẑ after roll (ϕ) and pitch (θ) rotations about N and E axes, respectively (Equation 5.12). (b) Rep-
resentation of roll and pitch rotations r⃗ϕ and r⃗θ, respectively, on NE plane (Equation 5.10) along
with resultant vector r⃗zd, Equation 5.14).

which is representative of roughly ± 13 deg (± 0.23-rad) angular excursion. Considering first-

order Taylor’s approximation, cos (x) ≃ 1 and sin (x) ≃ x, x = θ, ϕ in Equation 5.10, this angular

excursion yields cos (0.17) = 0.97 ≃ 1 and sin (0.23) ≃ 0.22, which are 2.5% and 0.8% errors,

respectively. This enables us to propose the small-angles approximation, applied to Equation 5.10,

which leads to

ẑ ≃

−θϕ
1

 . (5.13)

We then define r⃗zd as the vector difference between d̂ and ẑ (see Figure 5.4),

r⃗zd = d̂− ẑ ≃

 θ
−ϕ
0

 = θ

10
0

+ ϕ

 0
−1
0

 = r⃗θ + r⃗ϕ. (5.14)

Therefore, r⃗zd can be expressed as the sum of the two linearly independent vectors r⃗θ = θ[1, 0, 0]

and r⃗ϕ = ϕ[0,−1, 0] with modules

|r⃗θ| = θ, |r⃗ϕ| = ϕ. (5.15)

This is shown on N-E plane in Figure 5.4b.
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Moreover, if α→ 0, sinα ≃ α and

α ≃ sin (α) = sin

(
|r⃗dz|
|ẑ|

)
= sin (|r⃗dz|) ≃ |r⃗dz| . (5.16)

Because we use unitary vector ẑ, Equation 5.15 means that sought-after eigenangle α is directly

modulus of difference vector rzd. Combining Equation 5.15 and Equation 5.16, we obtain

α ≃
√
ϕ2 + θ2. (5.17)

Equation 5.17 states that the eigenangle angle can be interpreted as the 1-DoF equivalent formula-

tion for the real 2-DoF problem posed by motion in pitch and roll angles. This equivalent formu-

lation is in accordance with previous published work [Salcedo-Bosch et al. 2020b], in which pitch

and roll angular periods were shown experimentally to be correlated (ρ = 0.54 in that case).

The PSD of the eigenangle random process, ααα, is given by a linear combination of pitch and roll

PSDs and pitch-to-roll cross-PSD (see Appendix B for details),

Sααα,ααα(f) = Sθ,θ(f) + Sϕ,ϕ(f)− 2Im[Sθ,ϕ(f)]. (5.18)

Because roll(t) and pitch(t) were real-valued time series,Rϕ,θ is also real-valued, and the associated

cross-spectral density Sθ,ϕ is Hermitian, i.e., its complex conjugate is equal to the original function

with the variable f changed in sign, Sθ,ϕ(−f) = S∗
θ,ϕ(f) or, equivalently, the real part of Sθ,ϕ(f) is

an even function and the imaginary part is an odd function. The latter is important to understand

which PSD terms contribute ”power” to the random process ααα (power is computed in units of

[rad2], which is not actual physical power but the squared value of signal ααα).

If we integrate both terms of Equation 5.18 from f=−∞ to ∞,
∫∞
−∞ Sααα,αααdf average power (in

units of [rad2]) is given by

σ2
ααα = σ2

θ + σ2
ϕ. (5.19)

Because Im(Sθ,ϕ(f)) is an odd function, integral
∫∞
−∞ Im(Sθ,ϕ)df vanishes out, and it emerges

that the cross-spectral density does not contribute power to eigenangle random processααα; only roll

and pitch PSDs do.

5.2.4 PSD Estimation

In order to estimate the PSD of random process ααα, the Blackman–Tukey method was chosen on ac-

count of its computation simplicity and best trade-off between noise rejection and spectral-resolution

characteristics [Proakis & Manolakis 2006]. The Blackman–Tukey method SBTxx (f) consists of smooth-

ing periodogram Pxx(f), here computed through the FFT algorithm, by its convolution with a

smoothing window W (f) (rectangular window in this study). It can be formulated as

SBTααα,ααα(f) =

∫ 1/2

−1/2

Pααα,ααα(β)W (f − β)dβ, (5.20)
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Figure 5.5: Two examples of PSD estimation by periodogram and Blackman–Tukey method of mea-
sured tilt data: (a) Bimodal case; and (b) Multimodal case. L-dB threshold and cut-off frequencies,
fminL−dB , and fmaxL−dB , are also indicated by magenta dashed lines and arrows. L = 3 dB.

with

Pααα,ααα(f) =
1

L

∣∣∣∣∣
L−1∑
n=0

ααα(n)e−j2πfn

∣∣∣∣∣
2

=
1

L
|FFT (ααα(n))|2, (5.21)

where L is the number of FFT samples, and ”n” is shorthand notation for nT with T the sampling

period (T ≃ 0.125 s).

From Equation 5.18, Blackman–Tukey estimation of the PSD is written as

SBTααα,ααα = SBTϕ,ϕ + SBTθ,θ − 2Im[SBTθ,ϕ ]. (5.22)

Figure 5.5 shows PSD estimations of two 10 min tilt temporal series of eigenangle ααα computed by

using periodogram (Pαα(f), grey) and the Blackman–Tukey method (SBTααα,ααα(f), black).

IMU sampling frequency was 8 Hz, although some jitter showed up. Roll (ϕ) and pitch (θ)

were resampled at a fixed sampling frequency of 10 Hz to ensure a uniform sampling rate and a

sampling period that were a submultiple of 1 s for convenience. Then, the PSD of ααα was computed

following the Blackman–Tukey estimation method (Equation 5.20 and Equation 5.22).

Figure 5.5a shows bimodal behaviour for the PSD of ααα, with two dominant or modal frequen-

cies at 0.22 Hz (fpeak2) and 0.31 Hz (fpeak1), equivalently, T2 = 1/0.22 = 4.5 s and T1 = 1/0.30 = 3.2

s, respectively, while Figure 5.5b shows nearly unimodal behaviour with a PSD peak at 0.22 Hz

(fpeak1). The L-dB threshold is also plotted, which was computed as the relative level L-dB below

the maximal peak level given by fpeak1. fminL−dB and fmaxL−dB denote the minimal and maximal fre-

quency components of the PSD content that were higher than the L-dB threshold (see Section 5.2.5

for details).
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5.2.5 PSD Significant-Wave-Period Estimation

We define the PSD significant wave period as the period associated to the buoy’s eigenangle (Equa-

tion 5.17) and estimated it by imposing a threshold level on its PSD (Section 5.2.4). This threshold is

found in Section 5.3 in relation to different well-accepted wave-period oceanographic definitions.

Next, we formulate the PSD significant wave-period concept.

Figure 5.5 shows the buoy’s eigenangle PSD for two different motional cases. In both, it emerged

that there was not a single relevant spectral component, but multiple ones (labelled fpeak,i, blue ar-

rows). In order to consider all relevant spectral components contributing power to the significant

wave period, we defined an L-dB threshold (quantity “L” to be found) as the relative level L-dB

below the maximal peak level of the PSD. This L-dB threshold (L = 3 dB in Figure 5.5) defines a

frequency span, [fminL−dB ,fmaxL−dB] in which the PSD content is higher than a power factor of 10−L/10

compared to the peak level. The L-dB method computes the wave period as the average wave-

length in the L-dB region. We defined the average wavelength as the arithmetic mean between

maximal and minimal wavelengths:

λL−dB =
λmaxL−dB + λminL−dB

2
. (5.23)

Introducing the concept of the phase velocity of a wave (vp), which is the rate at which the wave

propagates in the medium, and that any given phase of the wave (for example, the crest) appears

to travel at the phase velocity [Brillouin & Massey 2013], we can write λ = vpT , where T is the

wave period. By inserting this relation into Equation 5.23 and by using T = 1/f , Equation 5.23 can

be rewritten as

TL−dB =

1
fmin
L−dB

+ 1
fmax
L−dB

2
, (5.24)

which gives the sought-after significant wave-period estimated from the fmin and fmax, L-dB cut-

off frequencies of the PSD. Equation 5.24 can also be interpreted as the harmonic mean of the maxi-

mal and minimal cut-off frequencies, fmaxL−dB and fminL−dB , respectively, of the L-dB region (Figure 5.5).

5.3 Results and Discussion

In order to validate the proposed methodology, TL−dB estimations (Equation 5.24) were carried out

over tilt (eigenangle) experimental data measured during the whole IJmuiden campaign (80 days)

and then compared against reference wave periods measured by the TriaxysTM buoy. Because the

TriaxysTM buoy yielded multiple estimations of the wave period according to the different oceano-

graphic definitions (Section 5.2), we first needed to assess which of these best matched the PSD

wave period estimated by using the L-dB method (TL−dB , Equation 5.24).

To carry out this comparison, three statistical indicators were used: (i) correlation coefficient

(ρ), (ii) Root-Mean-Squared Error (RMSE), and (iii) Mean Deviation (MD). In the context of wind
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energy, a typical sampling period is 10 min; thus, TL−dB was estimated every 10 minutes. When

comparing the significant wave period estimated via the L-dB method and TriaxysTM, TL−dB was

resampled to the temporal resolution of TriaxysTM (1 h). Root-mean-square error is defined as

RMSE =

√∑
i(TL−dB − Tz)2

N
(5.25)

and the mean deviation is defined as

MD =

∑
i(TL−dB − Tz)

N
. (5.26)

TL−dB was estimated at L − dB values ranging from 3 to 11 dB and compared against oceano-

graphic wave-period definitions Tz , Tavg , Tp, T10, Te, Tp5, and Tsig defined in Section 5.2 and

measured by TriaxysTM, which were used as references. Figure 5.6 shows statistical indicators

when comparing TL−dB as a function of L with each of these TriaxysTM reference periods. Fig-

ure 5.6 shows the results of these comparisons in terms of ρ (Figure 5.6a), RMSE (Figure 5.6b), and

MD (Figure 5.6c). The zero-crossing and the average-period methods (Tz and Tavg , respectively)

yielded by experiment identical statistical indicators, which is evidenced by the overlapping blue

and dashed black lines in the three subfigures (Figure 5.6 a)–c)). When comparing Tz and Tavg to

TL−dB , maximal ρ, minimal RMSE, and MD closest to 0 were evidenced. The largest differences

occurred for the wave energy spectrum peak methods (Tp5 and Tp). A possible explanation for

that is that wave energy spectrum peak methods measured the period corresponding to the peak

spectral component and did not consider wave multimodality. Lastly, T10 and Tsig , which consider

the highest tenth and third of the wave energy spectrum as the relevant wave spectral components,

respectively, showed better agreement than the latter set did (Tp5 and Tp), with Tsig showing better

indicators. Tsig showed higher ρ, lower RMSE, and MD closer to 0 than T10 due to the broader fre-

quency span. It emerged that the L-dB method best matched Tz and Tavg (with virtually identical

indicators). In the following, the L-dB method is compared with reference to Tz .

Optimal threshold L was found heuristically using a parametric approach: TL−dB estimations

were computed as a function of threshold L spanning from L = 3 to 10 dB for the whole measure-

ment campaign, and then compared statistically against Tz . Statistically, indicators relating both

methods for each threshold value L were computed for each week and each month of the 80 day

campaign, and lastly for the whole campaign. Then, weekly and monthly sets were averaged over

all weeks and months, respectively, to yield monthly and weekly ensemble averages (in what fol-

lows, the word ”ensemble” is skipped). The chosen statistically indicators were the ones above (ρ,

RMSE, and MD) along with the slope and intercept point of the linear regression (LR, y=mx+n)

between y = TL−dB and x = Tz .

Figure 5.7 shows statistical indicators computed for the 80 day campaign as weekly and monthly

averages, and for the whole campaign as a function of threshold L. ρ, RMSE, and LR slope showed
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Figure 5.6: Comparison by 3 statistical indicators of agreement between estimated TL−dB and ref-
erence wave periods from IJmuiden campaign’s experimental data at different L values: (a) Cor-
relation coefficient, ρ, as a function of threshold level, L; (b) Same as (a) for RMSE (Equation 5.25);
and (c) MD (Equation 5.26).

similar values for the two time averages considered and for the whole campaign. ρ grew from 0.7

at L = 3 dB to a maximum of 0.86 at 8 dB and onwards. On the other hand, RMSE showed parabolic

behaviour with minimal RMSE = 0.46 s around L = 7.75 dB. The LR slope showed a linearly increas-

ing trend, with the ideal value of 1 reached at L = 8.5 dB. The LR intercept reached 0 (ideality value)

at L = 8.5 dB (weekly averages) and L = 9.5 dB (campaign), although the LR intercept became less

relevant because slope deviations from unity (ideal value) are always associated to nonzero inter-

cepts in the regression procedure. Lastly, the MD showed decreasing linear trend and cut the 0 dB

baseline at L = 8 dB. Therefore, by choosing threshold L = 8 dB, virtually all ideal indicators’ values

were achieved, ρ = 0.86, RMSE = 0.47 s, LR slope = 0.97, and MD ≃ 0.02.

Figure 5.8 shows the scatter plot between the PSD L-dB method with L = 8 dB, 8-dB method

T8−dB , and zero-crossing method Tz . With the chosen 8 dB threshold, both methods reconciled,

as evidenced by the indicator values above. Overall, narrowly scattered points represent T8−dB

points that did not fall out of the ideal 1:1 line by more than the RMSE value. The straight-line fit
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Figure 5.7: Statistical indicators comparing L-dB method TL−dB and zero-crossing method Tz , as
a function of threshold value L (dB), parameterised by averaging time (IJmuiden campaign, 29
March–17 June 1920 records). (Dashed dot) Weekly averaged indicators. (Dashed) Monthly aver-
age. (Solid trace) Indicators computed for whole 80 day campaign.

had a slope equal to 0.97 and intercept equal to 0.13, all of which yielded virtual coincidence with

the ideal 1:1 line.

Despite the good agreement between both methods, which reconciled PSD 8 dB method T8−dB

to oceanographic zero-crossing method Tz , scatter-plot outliers accounting for an RMSE approxi-

mately equal to 10% of the mean wave period warrant some comments. First, TriaxysTM computa-

tion of reference period Tz was affected by the buoy’s translational and rotational movements; in

our modelling, (Section 5.2.3 and Section 5.2.5) only roll and pitch were considered (2 DoF). Second,

our methodology was experimentally tested under the assumption of small angles, the median of

maximal tilt excursion was ±13 deg (Figure 5.3), which incurred 2.5% and 0.8% errors when using

first-order cosine and sine approximation, respectively. Lastly, the DWL and TriaxysTM reference

buoys were 200 m apart during the campaign, which may also have accounted for small wind,

current, and wave differences.
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5.4 Summary and Conclusions

A new method (L-dB) to estimate the wave period by the spectral analysis of pitch and roll time

records measured on a DWL buoy was shown in the context of IJmuiden’s campaign and in com-

parison to classical oceanographic wave-period estimation methods. This 2-DoF approach assumes

quasistatic yaw rotation as compared to the wave period and negligible translational motion (see,

e.g., Figure 3.2 mooring scheme).

The 2-DoF buoy motion model enabled the formulation of the so-called eigenangle, which is

the buoy tilt angle around the eigenaxis of rotation of the lidar buoy (Euler’s rotation theorem).

Specifically, the eigenangle is the angle between the down (D) component of the north–east–down

fixed coordinate system (IMU frame of reference) and the Z component (downwards) of the buoy’s

XYZ moving coordinate system.

Under the practical approximation of small angles, the eigenangle can be computed as the

quadratic sum of pitch and roll angles (Equation 5.17), and it can be modelled as a complex-number

random process, hence assimilating into its real and imaginary components both pitch and roll time

series. Histograms records of daily maximal and daily minimal pitch and roll angles (160 records)

yielded angular excursions of [-22, +22] deg (min/max values) and [-13, +11] deg (median values),

these values showing quantitative description of the small-angle approximation used in our study.

Under these conditions, PSD of the eigenangle Sααα,ααα, was derived (see Appendix B) as the linear

combination of pitch and roll PSDs (Sθ,θ and Sϕ,ϕ, respectively) and the pitch-to-roll cross-PSD
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(Sθ,ϕ). PSD was computed by applying the Blackman–Tukey method over 10 min data segments,

and wave period TL−dB was computed from the fmin and fmax cut-off frequencies of the PSD

(Equation 5.24) at which the spectral components dropped off L decibels from the peak level.

The proposed L-dB method, which is rooted in the spectral context, was compared to different

wave-period definitions from the oceanographic context, namely, the mean zero-crossing, average,

and peak periods, among others. The study was carried out by using threshold L as parameteriza-

tion, and correlation coefficient, ρ, RMSE, MD, and LR slope and intercept as statistical indicators.

The L-dB method was indistinctly in close agreement with the zero-crossing and average wave-

period definitions, and a threshold value L = 8 dB exhibited the best indicators when comparing

the L-dB and zero-crossing methods over daily, weekly, and whole-campaign averages, hence rec-

onciling the spectral approach to the oceanographic one.

Lastly, when comparing our 8 dB method (T8−dB) with the zero-crossing one (Tz), LR slope was

0.97 and intercept was 0.13, which virtually matched the ideal 1:1 line (Figure 5.8). Regarding the

statistical indicators above, the 8 dB method yielded fairly good results with ρ = 0.86, RMSE = 0.46

s (as compared to a mean wave-period over the campaign of 4.39 s), and MD = 0.02 s. In spite of

this low RMSE value, a few outliers departed up to 2 s from the ideal line. We speculate that his

misestimation was due to the assumption of 2-DoF (pitch and roll) in our methodology in com-

parison to the 3-DoF (heave, roll, and pitch) used by Triaxys (and in the literature) to compute the

wave period, the small-angle approximation, and the 200 m distance between the DWL and Triaxys

buoy references. All in all, the proposed L-dB method allows floating wind lidars themselves to

provide increased knowledge on the sea state (i.e., sea period), which can enhance wind measure-

ments and reduce offshore wind farms deployment cost. Such knowledge could be assimilated into

offshore wind measurements and used to complement mesoscale wind prediction models, which

could help improve ship safety under strong wind conditions. Particularly, the IJmuiden sea lock

has recently been object of a study in order to explore techniques to improve the safety of ships

mooring and navigating nearby [Ricci & Blocken 2020], which could benefit from these offshore

wind lidar measurements.



Chapter 6

A Unified Formulation for
Computation of Six-Degrees-of-
Freedom-Motion-Induced Errors in
Floating Doppler Wind Lidars

The contents of this Chapter are aligned with Obj. 2 of this Ph.D. and are part of the full paper [Salcedo-

Bosch et al. 2023]: Salcedo-Bosch, A.; Farré-Guarné, J.; Araújo da Silva, M.P.; Rocadenbosch, F. ”A

Unified Formulation for the Computation of the Six-Degrees-of-Freedom-Motion-Induced Errors in Floating

Doppler Wind LiDARs”, Remote Sens. 2023, 15, 1478. https://doi.org/10.3390/rs15061478.

Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is

prohibited and is subject to penalties under law

6.1 Introduction

As presented in Section 2.2, mainly two types of DWLs are used for wind remote sensing: pulsed

and focusable continuous-wave (CW) DWLs [Slinger & Harris 2012]. Pulsed DWLs use the time of

flight to discern between measurements at different altitudes whereas focusable CW DWLs achieve

the same by focusing the emitted beam to a particular height by changing its optics.

When placed over floating platforms or buoys, DWLs are able to measure the wind profile

in a cost-effective way [Carbon Trust 2013, Schuon et al. 2012, Silva et al. 2022]. On the other

hand, FDWLs suffer 6-DoF motion, induced by the waves [Gottschall et al. 2014b, Salcedo-Bosch

et al. 2021b; 2020b], which increases the variance on the reconstructed wind vector by the lidar

[Gutiérrez-Antuñano et al. 2018, Salcedo-Bosch et al. 2020a]. However, in wind energy standard

averaging periods, typically 10 or 30 min, the motion-induced error on the retrieved mean wind

vector can be neglected, as it is averaged out [Gutiérrez-Antuñano et al. 2017, Gutiérrez-Antuñano

et al. 2018, Kelberlau et al. 2020, Gottschall et al. 2017a].
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The motion-induced variance on FDWL measurements is encountered at higher wind statistical

moments, such as the TI [Kelberlau et al. 2020]. In the presence of wave motion, FDWLs measure

an apparent turbulence addition due to the motion-induced variance, which corrupts the TI mea-

surements [Salcedo-Bosch et al. 2020a, Gutiérrez-Antuñano et al. 2018]. TI is one of the parameters

of main importance for wind farm design and operation, as wrong estimates of TI could lead to

turbine overdesign or malfunctioning [Mücke et al. 2011] and, thus, higher costs.

In the state of the art, study of the motion-induced error on FDWLs is two-fold: error estima-

tion and error compensation. This paper addresses the former topic, specifically, error estimation

in focusable CW FDWLs, which is carried out using a thorough analytical formulation of the sys-

tem mechanics and wind vector retrieval algorithm. Error estimation in pulsed FDWLs is tackled

elsewhere [Désert et al. 2021, Gottschall et al. 2014a]. The latter topic, i.e., error compensation, be it

using either mechanical [Gutiérrez-Antuñano et al. 2017] or signal processing techniques [Kelber-

lau et al. 2020, Salcedo-Bosch et al. 2021c; 2022b, Gutiérrez-Antuñano et al. 2018] is out of the scope

of the present work.

So far, Multiple studies have addressed the study of the motion-induced error on focusable CW

FDWLs at both scan-time and 10 min levels:

At scan-time level, Tiana-Alsina et al. (2015) proposed a basic CW FDWL-motion simulator in

which roll and pitch motions were simulated by means of Euler’s rotation matrices. This simula-

tor provided insights on the HWS error in relation to the WD and the buoy tilt but was unable to

simulate the effects of translational motion on the HWS error. Bischoff et al. (2018) presented a sim-

ulation environment to estimate uncertainties in measurements by CW FDWLs using a simplified

buoy model. However, the error estimates could not match the measurements for high-resolution

(1 Hz) data. Kelberlau et al. (2020) provided a thorough geometrical description of the FDWL

dynamics taking into account the 6-DoF motion of the FDWL buoy and provided a method for

compensating the apparent TI measured by the SEAWATCH CW FDWL buoy by FugroTM . This

geometrical description permitted a preliminary study of the 6-DoF-motion-induced error in a li-

dar scan but was limited by the oversimplification of assuming a constant value for the initial scan

phase. Departing from this geometrical description, Salcedo-Bosch et al. (2021c) numerically sim-

ulated the 6-DoF CW DWL measurement error [Salcedo-Bosch et al. 2021a] and provided a first

6-DoF-motion correction algorithm using an UKF. The simulator [Salcedo-Bosch et al. 2021a] mod-

eled each of the six DoF as a sinusoidal signal with a given amplitude, frequency, and phase and

enabled full understanding of the motion-induced error in a lidar scan through the principle of

error superposition. Most of the CW FDWL-motion-related error studies in the literature resort to

numerical simulations due to the inherent complexity of the VAD algorithm, because it involves

a least-squares fit as a nonlinear operation. These simulations are computationally expensive and
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difficult to implement [Tiana-Alsina et al. 2015, Salcedo-Bosch et al. 2021a, Bischoff et al. 2018, Kel-

berlau & Mann 2022].

At 10 min level, Kelberlau & Mann (2022) recently presented a study on the motion-induced error

in the measurement of the mean HWS using a motion simulator. The study theoretically proved

the reduced sensitivity of the mean HWS error to lidar motion and its relation to the buoy motion

frequency. However, the study was limited to the mean HWS and provided error values up to

one order of magnitude smaller than typical measured values. The study by Bischoff et al. (2018)

was also limited to studying the bias in the HWS mean, and difficulties in validating the estimated

values with experimental data were encountered. Gutiérrez-Antuñano et al. (2018) presented a

method to estimate the TI measurement error based on a 2-DoF (roll and pitch) motion simulator

as a way to compensate for this error. Overall, it showed good estimation of the motion-induced

error, but the performance of the method largely depended on the motion scenario because only

two DoF were taken into account. In addition, the simulation was computationally demanding.

The above considerations motivate the study of a unified 6-DoF (rotational and translational)

method to quantify the motion-induced error in focusable CW FDWLs: In this work, we provide,

for the first time, a complete analytical formulation and calculus of the 6-DoF-motion-induced error

on the HWS retrieved by the focusable CW FDWL in a scan. The formulation relies on the VAD

lidar wind retrieval algorithm and motion parameterization using the characteristic amplitude, fre-

quency, and phase of each of the six DoF (i.e., three rotational and three translational components).

Methods to statistically quantify the 10 min HWS bias and TI increment in response to floating

lidar motion are also derived. The framework is the focusable continuous-wave ZephIRTM 300 li-

dar tested using experimental data gathered during ”Pont del Petroli” and IJmuiden measurement

campaigns.

This chapter is structured as follows: Section 6.2 presents ”Pont del Petroli” and IJmuiden mea-

surement campaigns and describes the instrumentation used; Section 6.3 describes the analytical

motion model of the FDWL and presents the motion estimation method; Section 6.4 validates the

analytical model by means of the simulator [Salcedo-Bosch et al. 2021a] and experimental measure-

ments from ”Pont del Petroli” and IJmuiden campaigns; Section 6.5 gives concluding remarks.

6.2 Materials

For this study, data from ”Pont del Petroli” and IJmuiden campaigns (see Chapter 3) was used.

The Pont del Petroli campaign.- From ”Pont del Petroli” campaign, we considered:

i. wind measurements from the reference fixed DWL sited at ”Pont del Petroli” pier,

ii. wind measurements from the FDWL,
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iii. fixed DWL and FDWL buoy internal parameters for data-quality control and

iv. 6-DoF motion measurements obtained by the ”lidar IMU” and the ”buoy IMU”.

The IJmuiden campaign.- From IJmuiden campaign, we considered:

i. wind measurements at 92 m height from the reference fixed DWL installed on the metmast

platform (21 m),

ii. wind measurements at 83 m height from the EOLOSTM FLS200 FDWL,

iii. fixed DWL and FDWL buoy internal parameters for data-quality control and

iv. 6-DoF motion measurements obtained by the 3DM-GX2-45 IMU installed inside the EOLOSTM

FLS200 buoy.

6.3 Methods

6.3.1 Basic Definitions

The instantaneous wind vector u⃗ (u⃗ = U⃗ + u⃗′, where U⃗ denotes the mean wind and u⃗′ the turbulent

component) is defined as the three-dimensional vector (u1, u2, u3) computed here from the HWS,

WD, and Vertical Wind Speed (VWS) as

u⃗ = [HWS · cos (WD), HWS · sin (WD), V WS]. (6.1)

In wind energy, the 10 min mean wind vector is the usual standard and, hereafter, HWS, WD, and

VWS refer to the 10 min mean values unless otherwise indicated.

The TI is indicative of the HWS variations with respect to the mean HWS, and it is computed as

TI =
σHWS

HWS
, (6.2)

where σHWS is the 10 min HWS standard deviation.

Instantaneous error. With a view to study the motion-induced FDWL measurement error in the

retrieved HWS at the i-th lidar scan, we define the ”instantaneous” error (in practice, the 1 s error

considering a scan rate of 1 scan/s) as

ϵHWS,i = ˆHWSi −HWSi, (6.3)

where ˆHWS denotes the HWS ”estimated” by the VAD algorithm and HWSi denotes the ”true”

HWS at the i-th scan.

10 min error. The wind energy industry is interested in quantifying both the HWS measurement

bias and TI increment due to wave-induced motion on FDWLs at a 10 min level.
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The bias during a sequence of N measurement scans (i.e., the sample statistical interval; usually

N = 600 for 10 min measurements when measuring at a single height) is defined as the difference

between the mean HWS measured by the FDWL and the mean HWS measured by the reference

fixed lidar. Formally,

biasmeas =
1

N

N∑
i=1

ˆHWSi −
1

N

N∑
i=1

HWSi =
1

N

N∑
i=1

ϵHWS,i. (6.4)

Statistically, it can be expressed as

biasest = E[ ˆHWS]−HWS = E[ϵHWS,i], (6.5)

where E[·] denotes the expectation operator, ˆHWS is the 10 min horizontal wind speed estimated

by the FDWL, and HWS is the ”true” 10 min horizontal wind speed.

The TI increment, ∆TImeas, is defined as the TI measured by the FDWL minus the TI measured

by the reference fixed lidar. Formally,

∆TImeas =
σHWSFDWL

HWSFDWL

∣∣∣∣∣
bin

−
σHWSfixed

HWSfixed

∣∣∣∣∣
bin

, (6.6)

where the overbar denotes ”mean” over the 10 min HWS samples in the calculus bin.

On the other hand, the TI increment can be estimated as

∆TIest =
σϵHWS,i

HWS
, (6.7)

where σϵHWS,i
is the standard deviation of the instantaneous error (Equation 6.3).

6.3.2 Reconciling the estimated and the measured TI

Next, we relate Equation 6.7 to Equation 6.6 from the statistics and probability theory viewpoint.

Towards this goal and in order to aid mathematical notation, we introduce short-hand notation F-

R-W as follows: we change mnemonics ”FDWL” into ”F” and ”fixed” into ”R” (as a reminder of

”reference” fixed lidar). We also introduce subscript ”W” as a reminder of ”wind” to denote the

wind that a nonmoving DWL would measure at the same place as the moving FDWL. In other words,

subscript ”W” denotes the ”true” wind measurement but including the 1 s average and spatial

smoothing inherent to the DWL scanning procedure. To simplify notation, the ”true” wind HWS,

HWSW , is simply denoted as HWS.

6.3.2.1 On the estimated TI

According to probability theory, the variance of the difference of two random variables (i.e., ϵF,W =

HWSF − HWSW , which reproduces Equation 6.3) is equal to the sum of each of their variances

minus twice their covariance [Barlow 1989],

σ2
ϵF,W

= σ2
F + σ2

W − 2ρσFσW , (6.8)
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where ρ is the correlation coefficient between ”F” and ”W” variables, and cov(F,W ) = ρF,WσFσW .

At this point, we introduce the assumption that the FDWL-measured and the ”true” HWS (sub-

scripts ”F” and ”W”, respectively) are linearly correlated so that ρF,W ≈ 1. By experiment, Tiana-

Alsina et al. (2015) reported correlation coefficients of ρF,R = 0.9, ρF,R = 0.86, and ρF,R = 0.66

between co-located moving and reference DWLs in a controlled-motion experiment for tilt motion

amplitudes of 10, 16, and 25 deg, respectively. In past experimental campaigns involving different

FDWL buoy topologies [Kelberlau & Mann 2022, Salcedo-Bosch et al. 2021b, Gutiérrez-Antuñano

et al. 2018, Kelberlau et al. 2020], the most frequent buoy tilts were reported to range from 0 up to

10 deg. These low tilts are also supportive of high F-to-W correlation coefficients, ρF,W ≈ 1, at the

FDWL location. Inserting ρF,W = 1 in Equation 6.8 above and re-arranging terms,

σ2
ϵF,W

≃ (σF − σW )2. (6.9)

By taking the square root of Equation 6.9 above and substituting it into Equation 6.7, the estimated

turbulence intensity can be written as

∆TIest ≃
σF − σW
HWS

. (6.10)

6.3.2.2 On the measured TI

As in the preceding subsection, one can assume that the 10 min FDWL- and reference-lidar-measured

HWS are virtually identical so that HWSFDWL ≈ HWSfixed ≈ HWS [Gottschall et al. 2017b,

Araújo da Silva et al. 2022a]. Introducing this approximation into Equation 6.6 and using the short-

hand notation F-R-W-M introduced above, it can be rewritten as

∆TImeas =
σF − σR
HWS

. (6.11)

If the FDWL and the fixed lidar carried out exactly co-located measurements, the estimated TI

(Equation 6.10) and the measured TI (Equation 6.11) would be identical (i.e., σR = σW ). In practice,

the fixed and the FDWL were located 50 m apart in PdP campaign and 300 m apart in IJmuiden

campaign (see Section 6.2) and, therefore, small differences up to 1% [Salcedo-Bosch et al. 2021c]

are expected to arise between the estimated and the measured TI increment when different wind

flows are measured by the reference and floating lidars.

6.3.3 FDWL geometrical model

We define the right-handed Cartesian XYZ ”moving body” coordinate system of the lidar buoy

(hereafter, the ”moving” coordinate system) and the right-handed Cartesian north–east–down (NED)

”fixed” inertial frame of reference (hereafter, the ”fixed” system, Figure 6.1). The IMU (see Sec-

tion 6.2) measures the rotation and translation of the ”moving” coordinate system with respect to

the ”fixed” system. Vectors n̂, ê, and d̂ are unitary vectors aligned with the N, E, and D axes of the
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Figure 6.1: Motion geometry of the FDWL buoy.

fixed coordinate system, respectively. x̂, ŷ, and ẑ are unitary vectors aligned with the X, Y, and Z

axes, respectively, of the moving coordinate system. ĥ is a unit vector in the outbound direction of

the lidar scanning cone axis and is defined as the opposite of ẑ. The half-angle cone aperture is θ0

= 30 deg.

Unitary vector r̂ defines the lidar beam pointing direction in each LoS measurement during

the lidar scan. In what follows, r̂ is given in spherical coordinates relative to moving coordinate

system. Specifically, r̂ is given by the zenith angle relative to ĥ, which is denoted θ0 (i.e., the cone

aperture), and by the azimuth angle relative to x̂, which is denoted ϕ (Figure 6.1). As mentioned,

θ0 is the constant value of 30 deg corresponding to the scanning-cone aperture. ϕ is a time-variable

angle representing the lidar scanning phase (positive towards ŷ).

During the lidar scan, the vector r̂ rotates about ĥ with uniform circular motion at a rate of 1

revolution per second, i.e., ϕ(t) = 2π × t [rad]. In what follows, for simplicity, we stick to variable

ϕ instead of the usual time variable t. Variable ϕ ranges from 0 to 2π [rad] during a lidar scan.

Therefore, r̂ can be formulated in the moving coordinate system as follows:

r̂(ϕ) = sin(θ0) · cos(ϕ− ϕ0)x̂+ sin(θ0) · sin(ϕ− ϕ0)ŷ − cos(θ0)ẑ, (6.12)

where ϕ0 is the lidar initial scan phase or, from now on, the ”initial phase”.
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6.3.4 The VAD algorithm as a first-order Fourier series

Focusable CW DWLs use the VAD algorithm to retrieve the wind vector from the measured, along-

LoS-projected wind velocity during the lidar scan, which is computed as the so-called VAD function,

f(ϕ) = u⃗ · r̂(ϕ). (6.13)

In a motionless uniform nonturbulent wind scenario, the wind vector can be decomposed as u⃗ =

HWSρ̂ + wĥ, where ρ̂ = cos(WD)x̂ + sin(WD)ŷ, WD positive counterclockwise. Then, the ideal

VAD function f(ϕ) takes the shape of the model cosine function [Peña et al. 2015, Slinger & Harris

2012],

fmodel(ϕ) = A · cos(ϕ−B) + C, (6.14)

where A is the amplitude, B is the phase, and C is the offset term. From Equation 6.14 above, the

HWS, WD, and VWS components of the wind vector are obtained as [Kelberlau et al. 2020]

HWS =
A

sin(θ0)
,

WD = B,

VWS =
C

cos(θ0)
.

(6.15)

In Equation 6.15 above HWS, WD, and VWS refer to the values retrieved at the i-th scan.

The VAD algorithm uses the Least Squares (LSQ) algorithm to fit the model cosine function

fmodel (Equation 6.14) to the measured function f(ϕ) in order to obtain the sought-after parameters

A, B, and C:

min
∣∣∣
A,B,C

{∣∣∣∣f(ϕ)− [A · cos(ϕ−B) + C]
∣∣∣∣2} . (6.16)

The LSQ fit is usually carried out by means of numerical methods. Yet, they do not allow

explicit analytical formulation of solving coefficients A, B, and C with a view to understand prop-

agation of the motion-induced error. A way out of this problem is to treat the error-norm mini-

mization of Equation 6.16 in the Hilbert space of the square integrable functions L2[0, 2π], in which

{1, cos(m · ϕ), sin(n · ϕ)}, m,n = 1...∞ form an orthogonal basis. Equivalently, the Fourier series is

the LSQ projection of a target function to an orthogonal space defined by a sum of sine and cosine

functions Tolstov (1976). Therefore, the solution of Equation 6.16 is the first-order Fourier series

of f(ϕ) in the basis function {1, cos(ϕ), sin(ϕ)}. The first-order Fourier series can be rewritten in

the form of Equation 6.14, in which A, B, and C parameters can be expressed as a function of the
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Fourier coefficients as Stearns & Hush (2011)

A =
√
a21 + b21,

B = arctan

(
− b1
a1

)
,

C =
a0
2
,

(6.17)

where a0, a1, and b1 are first-order Fourier coefficients of f(ϕ), obtained as Stade (2015)

a0 =
2

P

∫ P

0

f(ϕ)dϕ,

a1 =
2

P

∫ P

0

f(ϕ) cos(ϕ)dϕ,

b1 =
2

P

∫ P

0

f(ϕ) sin(ϕ)dϕ,

(6.18)

where P = 2π.

From Equation 6.15 and Equation 6.17 above, it emerges that Fourier coefficients a1 and b1

propagate errors to the HWS and WD (i.e., to the wind horizontal components), while coefficient

a0 propagates errors only to the retrieved VWS.

As mentioned, homodyne-detection lidars, as in the case of the ZephIRTM 300, are only able

to measure the magnitude of the along-LoS radial velocities but not the sign. This is equivalent

to saying that f(ϕ) takes the shape of a rectified cosine, i.e., the absolute value of f(ϕ) [Kelberlau

et al. 2020]. When applying the VAD algorithm to |f(ϕ)|, parametersA and C retain the same value

as for the heterodyne case (VAD applied to f(ϕ)) but B has a ±π rad ambiguity. The latter can be

disambiguated by a wind vane co-located with the lidar buoy.

6.3.5 Estimation error methodology

In the absence of buoy motion, the X, Y, and Z axes of the moving coordinate system would coincide

with the N, E, and D axes of the fixed system [Salcedo-Bosch et al. 2021b]. In the presence of waves,

the FDWL experiences angular and translational motion about the three NED axes. In this section,

we formulate analytical expressions for the motion influence on the VAD-retrieved wind vector.

In order to simplify the obtained analytical expressions, the following assumptions are consid-

ered: (i) motion in each of the six DoF is considered to be a zero-mean simple harmonic motion; (ii)

rotational and translational motions are considered to be independent error sources; and (iii) under

motion, the VWS contribution to the HWS error is considered to be null as compared to the HWS

contribution [Kogaki et al. 2020].

6.3.5.1 Rotational Motion Model

The FDWL buoy undergoes roll, pitch, and yaw motion around the three fixed coordinate axes, i.e.,

N, E, and D, respectively. As observed experimentally [Salcedo-Bosch et al. 2021b], roll and pitch
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motions can be modeled using first-order small-angle approximation as simple harmonic motions.

Yaw motion, which shows larger and more constant values with time, can be modeled by constant

tilt.

We define roll and pitch tilts (in units of radians) as sinusoidal signals of the form

Ωx(ϕ) = Ax · sin(fxϕ− αx), (6.19)

where Ax, fx, and αx denote the amplitude, frequency, and motional phase, respectively. Subindex

x = roll, pitch denotes roll and pitchmotion, respectively. Note that, for convenience, Equation 6.19

is expressed as a function of lidar scan phase variable ϕ (ϕ = 2πt) instead of time variable t.

As mentioned, the yaw tilt is considered a constant value Ωyaw(ϕ) = Ayaw. This is conducted

without limiting the general formulation of the problem. Thus, the reader can extend formulation

of the yaw angle to the harmonic case by defining the yaw motion as a sinusoidal signal (Equa-

tion 6.19) plus an offset term equal to its mean value during the interval under study, and by

following the formulas in Section 6.3.5.1 and Appendix C.1.

First, in order to compute the rotated lidar pointing direction, r̂rot, in the fixed NED coordinate

system given roll, pitch, and yaw rotations, we use the Euler rotation matrix. Euler’s rotation the-

orem states that any rigid-body rotation can be defined by three rotation angles [Palais et al. 2009].

There are many different conventions regarding the rotation angles and its order of application.

Here, we consider the NED convention, i.e., three elemental rotations are carried out sequentially:

first, a rotation around the N axis (roll motion); second, a rotation around the E axis (pitch motion);

and finally, a rotation around the D axis (yaw motion). Rotations are positive counterclockwise.

Therefore, the Euler rotation matrix can be written as [Roithmayr & Hodges 2016]

RRR = RDRDRD ·RERERE ·RNRNRN , (6.20)

whereRNRNRN ,RERERE , andRDRDRD are the elemental rotation matrices about the N, E, and D axes, respectively.

They can be formulated as follows:

RDRDRD =

cos(Ωy) − sin(Ωy) 0
sin(Ωy) cos(Ωy) 0

0 0 1

 ,
RERERE =

 cos(Ωp(ϕ)) 0 sin(Ωp(ϕ))
0 1 0

− sin(Ωp(ϕ)) 0 cos(Ωp(ϕ))

 ,
RNRNRN =

1 0 0
0 cos(Ωr(ϕ)) − sin(Ωr(ϕ))
0 sin(Ωr(ϕ)) cos(Ωr(ϕ))

 ,
(6.21)

where subindexes y, p, and r stand for ”yaw”, ”pitch”, and ”roll”, respectively.

The small-angle approximation for roll and pitch angles [Salcedo-Bosch et al. 2021b, Kelberlau

et al. 2020] translates into first-order Taylor approximation for the sine and cosine functions (i.e.,
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sin(x) ≃ x and cos(x) ≃ 1). These first-order approximations have already been incorporated into

Equation C.1, Appendix C.1, in order to simplify rotation matrixRRR.

The second step is to compute the rotated version of the lidar pointing vector, r̂rot(ϕ), in the

NED fixed coordinate system:

r̂rot(ϕ) = RRR · r̂(ϕ). (6.22)

Third, the FDWL-measured wind under rotational motion is computed by projecting the wind

vector over the rotated lidar pointing vector for each LoS. This can be expressed by means of the

dot product as follows:

frot(ϕ) = u⃗ · r̂rot(ϕ). (6.23)

Eventually, the motion-corrupted FDWL wind vector is derived by applying the VAD algorithm

to function frot(ϕ) above. With this aim, the first-order Fourier coefficients of frot(ϕ) (i.e., arot0 ,

arot1 , and brot1 ) are computed through Equation 6.18 by substituting frot(ϕ) in place of f(ϕ). The

HWS retrieval error is computed as the difference between the ”true” HWS (i.e., without motion

influence) and the FDWL-retrieved HWS under rotational motion:

ϵrotHWS,i = HWS, i− 1

sin(θ0)

√
(arot1 )2 + (brot1 )2, (6.24)

where arot1 and brot1 are the Fourier coefficients of frot(ϕ). See Section C.3 for the mathematical

results in expanded form.

6.3.5.2 Translational-Motion Model

Waves also induce translational motion to the FDWL in the N, E, and D directions, i.e., surge, sway,

and heave motions, respectively. Similar to the derivation of the rotational motion components in

Equation 6.19, sinusoidal variation is assumed for each translational-motion component. They are

formulated as follows:

tx(ϕ) = Ax · sin(fxϕ− αx), (6.25)

where Ax, fx, and αx, are the amplitude, frequency, and phase of translational motion x, where x

denotes the surge, sway, or heave components. We also define translational-velocity vector t⃗(ϕ) in

the NED fixed coordinate system as the three-component vector,

t⃗(ϕ) = [tsu(ϕ), tsw(ϕ), the(ϕ)], (6.26)

where subscripts su, sw, and he refer to surge, sway, and heave, respectively.

First, with a view to compute the FDWL-measured wind under translational motion, we com-

pute the apparent wind vector. The apparent wind vector measured by the FDWL is the difference

between the wind vector and the translational-velocity vector:

u⃗trans(ϕ) = u⃗− t⃗(ϕ). (6.27)
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Second, the translational-velocity contribution to the lidar-measured LoS, ftrans(ϕ), can be ob-

tained by projecting the apparent wind vector, u⃗trans, on the lidar pointing direction r̂(ϕ) as follows:

ftrans(ϕ) = u⃗trans(ϕ) · r̂(ϕ). (6.28)

The lidar-retrieved wind vector is the result of applying the VAD algorithm over the motion-

corrupted LoS, ftrans(ϕ). The Fourier coefficients atrans0 , atrans1 , and btrans1 are obtained through

Equation 6.18 by substituting f(ϕ) by ftrans(ϕ). The Fourier coefficients are given in expanded

form in Section C.4 of the Appendix.

Finally, the HWS measurement error due to FDWL’s translational motion ϵtransHWS,i becomes

ϵtransHWS,i = HWSi −
1

sin(θ0)

√
(atrans1 )2 + (btrans1 )2. (6.29)

6.3.5.3 Total Error Model

In order to estimate the total error, we depart from the assumption that rotational and translational

motion are independent error sources (see Section 6.3.5). Therefore, the total error in the retrieved

HWS in a lidar scan is the superposition of errors:

ϵHWS,i(u⃗, ϕ0) = ϵrotHWS,i(u⃗, ϕ0) + ϵtransHWS,i(u⃗, ϕ0). (6.30)

In Equation 6.30 above, the total error, ϵHWS,i(u⃗, ϕ0), is parameterized by the instantaneous wind

vector u⃗ and initial phase ϕ0.
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Figure 6.2: Example of estimation of the HWS total error in a lidar scan (HWS = 10 m/s, VWS = 0
m/s, WD ranging from 0 to 360 deg, roll-only motion). (a) Colorplot of the HWS error as a function
of the wind direction, WD, and initial phase, ϕ0. (b) HWS error for WD = 275 deg (vertical black
line in panel (a)) as a function of the initial phase. Blue horizontal line indicates the mean HWS
error.

Figure 6.2a illustrates the estimated HWS total error in a lidar scan parameterized as a function

of the wind direction (WD ranging from 0 to 360 deg) and initial phase ϕ0 in a roll-only motion



6.3. METHODS 63

scenario (HWS = 10 m/s, VWS = 0 m/s). As can be observed, the HWS error is highly dependent

on both input parameters (WD and initial phase), ranging from -1.5 up to 1.5 m/s (HWS errors for

other input HWSs are scalable through simple direct proportionality). If the WD is known, the

HWS error in a lidar scan is dependent only on the initial phase. This is represented in Figure 6.2b,

where the HWS error in a lidar scan of Figure 6.2a is represented as a function of the initial phase

ϕ0 for the constraint settings HWS = 10 m/s, WD = 275 deg, and VWS = 0 m/s.

However, the initial phase is a manufacturer’s undisclosed parameter for the ZephIR 300 lidar.

As the instantaneous value of the initial phase at each lidar scan cannot be known nor, consequently,

the total error, we assume the initial phase to be a random variable with uniform distribution be-

tween 0 and 2π rad [Gutiérrez-Antuñano et al. 2018]. As a result, HWS error moments rather than

instantaneous values must be derived:

The 10 min HWS bias (Equation 6.5) is computed as the expectation (first raw moment) of the

HWS total error function (Equation 6.30), ϵHWS,i(u⃗, ϕ0), with respect to the initial phase, ϕ0, con-

strained to the mean wind vector U⃗ as follows:

biasest = Eϕ0 [ϵHWS,i(U⃗ , ϕ0)]. (6.31)

In practice, biasest is simply the mean value of ϵHWS,i(U⃗ , ϕ0) computed as

biasest =
1

N

N∑
i=1

ϵHWS,i(U⃗ , ϕ0,i), (6.32)

where discrete random variable ϕ0 is defined by a finite list {ϕ0,1, ..., ϕ0,N} of equally likely out-

comes (vertical line in Figure 6.2a).

Analogously, the 10 min TI increment of Equation 6.7 is estimated as follows:

∆TIest =
STDϕ0

[ϵHWS,i(U⃗ , ϕ0)]

ˆHWS
, (6.33)

where STD stands for standard deviation which is the square root of the variance of the total error

(σϵHWS,i
), and ˆHWS is the 10 min mean HWS measured by the FDWL.

6.3.6 Bias and TI-increment estimation procedure

Figure 6.3 summarizes the procedure described in Section 6.3.5 to compute the estimated 10 min

bias and TI increment. The 10 min mean wind vector (U⃗ ) as well as the characteristic amplitude, fre-

quency, and phase of each of the 6 DoF are the inputs. In practice, the yaw frequency and phase are

set to zero. Fourier coefficients arot1 and brot1 are obtained through Equation C.3 and Equation C.4,

respectively, which estimate the HWS measurement error due to rotational motion (ϵrotHWS,i, Equa-

tion 6.24). Similarly, Fourier coefficients atrans1 and btrans1 are obtained through Equation C.5 and

Equation C.6, respectively, which estimate the HWS measurement error due to translational motion
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(ϵtransHWS,i, Equation 6.29). The following step is to sum the rotational- and translational-error expres-

sions to yield the total error as a function of the wind vector and initial scan phase (Equation 6.30).

Then, it is constrained to the 10 min mean wind vector, U⃗ , by substituting u⃗ in Equation 6.30 with

U⃗ . Finally, the bias and TI increment are estimated by means of Equation 6.31 and Equation 6.33,

respectively.

Figure 6.3: Block diagram depicting Section 6.3.5 estimation procedure for the bias and TI incre-
ment.

Alternatively, for specific 1 s error model validation (refer to Section 6.4.1), the total error (Equa-

tion 6.30) can be obtained as a function of the instantaneous wind vector and lidar initial scan

phase.

6.3.7 Sinusoidal characterization of measured motion time series

In order to estimate the FDWL-motion-induced error with the presented methodology based on

Equation 6.19 and Equation 6.25, there is a requirement that the motion time series in each of the

DoF to be modeled as a sinusoidal signal with a characteristic amplitude, frequency, and phase (A,

f , and α, respectively). The estimation procedure for these parameters is described next through a

case example.

Figure 6.4a shows a record of the IMU-measured roll time series during the PdP campaign. As

can be noticed, the signal is composed of multiple frequency components. To analyze the signal

spectrum, the Power Spectral Density (PSD) was computed in batches of 10 min segments using

the Blackman–Tukey method [Proakis & Manolakis 2006]. In Figure 6.4b, it emerges that the signal

has a broad spectrum with relevant frequency components from approximately 0.25 up to 0.5 Hz.

The characteristic frequency f was computed as the frequency corresponding to the peak PSD

maximum (≃ 0.3 Hz).

In order to estimate the characteristic amplitude A, we make use of the fact that the amplitude

of a sinusoidal signal is related to its power, P , through the relationship P = A2/2 [Proakis &
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Figure 6.4: FDWL-motion characterization as a sinusoidal signal: roll motion example (PdP, 24 of
June 2013, 00:00 LT). (a) 10 min roll time series (blue trace) and fitted sinusoidal signal (black trace).
(b) PSD of panel (a) time series.

Manolakis 2006]. Moreover, the mean power P of a stochastic signal s(t) (i.e., the IMU-measured

motion) with duration T is computed as [Proakis & Manolakis 2006]

P =

∫ T

0

|s(t)|2dt. (6.34)

The mean power, P , takes into account all frequency components of the signal spectrum [Plancherel

& Leffler 1910]. Therefore, the characteristic amplitude can be estimated from the mean signal

power as A =
√
2P . Finally, the characteristic phase α is obtained from first-order Fourier decom-

position of s(t) in similar fashion as calculation of phase term B in Equation 6.17 given first-order

coefficients a1 and b1 in Equation 6.18 (see Section 6.3.4).

Figure 6.4a shows the IMU-measured roll time series against the ”fitted” sinusoidal signal with

characteristic amplitude, frequency, and phase of A = 1.3 deg, f = 0.3 Hz, and α = 1.1 deg,

respectively. It can be observed that the fitted sinusoidal signal reproduces the measured time

series under first-harmonic approximation with reasonable accuracy.

6.3.8 A note on Appendix A and Supplementary Materials maths formulation

Provided in Appendix C is a formulation compendium to compute the 6-DoF-motion-induced error

(Section 6.3.5.3). A MATLABTM R2020a code to compute the total error (Section 6.3.5.3) is also

included as part of the Supplementary Materials of this manuscript.

The mathematical derivations of this Appendix C have been checked both algebraically and nu-

merically. Algebraically, manually derived maths expressions have been validated using MATLABTM
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R2020a symbolic toolbox. Numerically, these expressions have been coded in MATLAB and com-

pared with the outputs of the FDWL simulator [Tiana-Alsina et al. 2015] (Figure 6.5, 6.6, and 6.7)

for quality assurance.

6.4 Results and Discussion

6.4.1 Error model validation

In order to validate the presented analytical-error formulation (Section 6.3.5 and Appendix C; in

what follows, ”the unified-error formulation”), the estimated total error in the FDWL-retrieved

HWS (Equation 6.30) was compared with the lidar motion simulator as a reference [Salcedo-Bosch

et al. 2021a]. The study was carried out by inputting the same reference wind vector (HWS = 10

m/s and VWS = 0 m/s) into both the unified formulation and the simulator under three different

motion scenarios: (i) rotational motion only, (ii) translational motion only, and (iii) 6-DoF motion.

In all cases, fx = 0.3 Hz and αx = 0 deg, x = roll, pitch, were used. In each scenario, performance

of the analytically estimated error was evaluated as a function of the WD and initial scan phase ϕ0.
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Figure 6.5: Validation of the analytical-error formulation in roll-only scenario #1: HWS error (pa-
rameters: Aroll = 10 deg, froll = 0.3 Hz and αroll = 0 deg. Input wind: HWS = 10 m/s, VWS = 0
m/s). (a) Analytically estimated HWS error as function of wind direction (WD) and initial scan
phase (ϕ0). (b) Simulator-estimated HWS error. (c) Difference (a) minus (b) (in absolute value).

In roll-only scenario #1 (Figure 6.5), the analytically estimated error (Figure 6.5a, Equation 6.24)

was virtually identical to the simulator-estimated error (Figure 6.5b) over the whole span of WDs

and initial-phase values. From Figure 6.5c, all error differences between panels (a) and (b) were

lower than 0.3 m/s, which is evidence of the satisfactory accuracy attained using first-order approx-

imation in the formulation. The RMSE between the error estimates of Figure 6.5a and Figure 6.5b
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(equivalently, the square root of the mean of the squares of the error values shown in Figure 6.5c)

was 0.04 m/s.
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Figure 6.6: Validation of the analytical-error formulation in translational-only scenario #2: HWS
error (parameters: Asurge = 10 deg, remaining parameters and panel labels same as in Figure 6.5).

When addressing translational-only scenario #2 (Figure 6.6), null differences (0 m/s) were found

in Figure 6.6c between the analytically and the simulator-estimated error. The exact 0 m/s error

difference is explained by the fact that no approximations were used when deriving the analytical

expressions for the translational-motion component.

Opposite to other floating remote-sensing devices such as high-frequency surface-wave radars,

which measure the horizontal propagation of waves and thus are not sensitive to heave-induced

Doppler effect [Yao et al. 2021, Wan et al. 2022], the ZephIRTM 300 FDWL is sensitive to all three

translational motion components due to its inherent conical scanning pattern [Slinger & Harris

2012].

Finally, successful performance of the unified formulation presented for the analytically esti-

mated error is re-encountered in Figure 6.7, where both translational and rotational motion were

combined into 6-DoF motion scenario #3. Despite the greater complexity of this scenario, error

differences (Figure 6.7c) remained below 0.7 m/s. The RMSE was 0.22 m/s.

6.4.2 Experimental results

The unified-error formulation (Section 6.3.5 and Appendix C) was also validated by comparing

the analytically estimated HWS mean bias and TI increment (Equation 6.31 and Equation 6.33,

respectively) against their experimental values (Equation 6.4 and Equation 6.6, respectively). Ex-

perimental values were computed from the 10 min errors between the FDWL and the reference

fixed lidar used in both the nearshore (”Pont del Petroli”) and open-sea (IJmuiden) scenarios. For
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Figure 6.7: Validation of the analytical-error formulation in 6-DoF scenario #3: HWS error (param-
eters: Aroll = Apitch = 10 deg, and Asurge = Asway = Aheave = 2 m/s, remaining parameters and
panel labels same as in Figure 6.5).

the IJmuiden campaign, measurements of the FDWL at 83 m and measurements of the metmast

DWL at 92 m were considered. Towards this purpose, 848 data records (6 to 30 June 2013) from

PdP campaign and 3893 data records (1 April to 7 May 2015) from IJmuiden campaign were used

(see Section 6.2). Data were filtered for quality assurance following the outlier-rejection criteria

presented by Salcedo-Bosch et al. (2021c): measured HWS values outside the 1-80 m/s range, rain-

flagged data, Spatial Variation (SV) values higher than 0.2, and backscatter coefficients lower than

0.02 were removed. The SV is an indicator of the goodness of the VAD fitting of the measured LoS

in a lidar scan [Wagner et al. 2009]. The backscatter coefficient is indicative of the power of the

received lidar echo.

6.4.2.1 Performance according to estimation of the HWS bias

In PdP campaign, using statistical analysis (figure not shown), the measured 10 min HWS bias

(Equation 6.4) showed virtually nil values in accordance with previous results in nearshore loca-

tions in the state of the art [Kelberlau et al. 2020, Gutiérrez-Antuñano et al. 2017]. The median of

the measured 10 min HWS bias was -0.02% with 25th and 75th percentiles of -0.89% and 0.76%,

respectively. On the other hand, the analytically estimated 10 min HWS bias (Equation 6.5) showed

values of the same order of magnitude as the measured one, thus validating the method. Thus, the

median of the estimated bias was 0.06%, and the 25th and 75th percentiles were -0.66%, and 0.64%,

respectively. The median bias is in accordance with the results obtained in other state-of-the-art

studies [Kelberlau & Mann 2022].

In Ijmuiden campaign, the measured 10 min HWS showed higher values than the observed ones

in ”Pont del Petroli” campaign: the median of the measured 10 min HWS bias was -0.53% with 25th
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and 75th percentiles of -2.30% and 1.08%, respectively (and notice the asymmetrical distribution of

these percentiles around 0%). These values are in accordance with previous open-sea measurement

campaigns [Gottschall et al. 2012a; 2014a]. This is due to the fact that in an open-sea scenario

there is stronger wave motion, which induces higher error on FDWL measurements. The above-

mentioned asymmetry on the measured biases accounts for the wind shear between the fixed DWL

and FDWL measurement heights (92 and 83 m, respectively). The analytical model estimated biases

of the same order of magnitude as the measured ones with a median of 0.05%, and 25th and 75th

percentiles of -1.48% and 1.47%, respectively, which further validates the analytical model.

6.4.2.2 Performance according to estimation of the TI increment (I): case example

As part of the validation study, in the next case example, the analytically estimated 10 min TI in-

crement, ∆TIest (Equation 6.33), is compared with the measured one, ∆TImeas (Equation 6.7). The

different motion conditions studied are described as a function of the mean tilt amplitude and mean

translational-velocity amplitude of the lidar buoy:

The mean tilt amplitude is computed as the 10 min mean of the quadratic sum of roll and pitch tilts

(simple harmonic motion, Equation 6.19) [Kelberlau et al. 2020]. It can be formulated as follows:

Atilt =

∑N
k=1

√
Ωroll(k)2 +Ωpitch(k)2

N
, (6.35)

where Ωx, x = rollpitch is the IMU-measured roll/pitch tilt, N = 6000 is the number of samples in

a 10 min interval at 10 Hz IMU-sampling frequency, and k is a reminder of discrete time tk.

The mean translational-velocity amplitude is computed as the 10 min mean norm of the FDWL

translational-velocity vector,

Avtrans
=

∑N
k=1 ||⃗t(k)||
N

, (6.36)

where t⃗(k) is the translational-velocity vector defined by Equation 6.26.

Figure 6.8a compares the estimated TI-increment time series (∆TIest) with the measured one

(∆TImeas) in the context of PdP campaign. The motion-induced error on the FDWL-measured

TI manifested as TI increments between 0.5 and 5%. The highest TI increments occurred during

the daytime (from 10 a.m. to 4 p.m., approximately), corresponding to time periods with high

HWSs. These periods were also related to high wave motion [Gutiérrez-Antuñano et al. 2017,

Jeffreys & Taylor 1925]. This is corroborated in Figure 6.8b, where the mean tilt amplitude and

mean translational-velocity amplitude of the floating lidar are depicted as time series. It can be

observed that high TI-increment values in Figure 6.8a were linked to high-motion scenarios, i.e., to

time periods with high tilt and velocity amplitudes in Figure 6.8b.

In Figure 6.8a, the estimated TI increment exhibited similar values as the measured one over

the period under study. The 1-hour-averaged time series further shows the goodness of the TI-

increment estimates. However, small underestimation of the peak values occurred. Thus, while
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Figure 6.8: Validation of the analytical-error formulation in a real case scenario (PdP campaign, 25
June 2013, 00:00 UTC to 27 June 2013, 00:00 UTC): TI increment. (a) Analytically estimated vs. mea-
sured TI-increment time series. Black dots are 10 min analytically estimated TI increment, ∆TIest
(Equation 6.7). Blue dots are 10 min measured TI increment, ∆TImeas (Equation 6.6). (b) Mean tilt
amplitude (Equation 6.35) and mean translational-velocity amplitude (Equation 6.36) time series.
In both panels, the solid trace represent 1 h averaged time series.

the measured TI increment peaked at 5% close to noon time, the estimated one only reached 3.5%.

Larger differences were observed in one-to-one comparisons of the 10 min estimates with the 10

min measurements. A suitable explanation for this is that in the unified formulation presented in

Section 6.3.5.3, wind flow during 10 min periods is assumed to be uniform, and only the motion

influence is considered. As the lidars were located 50 m apart, wind scenarios with high spatial

variability (e.g., turbulent winds coming from the urban area, Section 6.2) usually led to different

instantaneous measurements between the floating and the reference lidar. Therefore, correlation

coefficients ρF,R < 1 ( Section 6.3.2.1), which may limit the validity of the estimates, ∆TIest. This

effect may also occur in low-motion scenarios [Salcedo-Bosch et al. 2021c].

6.4.3 Performance on the estimation of the TI increment (II): statistical analysis

Performance of the analytical-error formulation when estimating the 10 min TI increment was also

assessed with reference to the FDWL-measured TI increment under near-shore and open-sea mo-

tional scenarios (PdP and IJmuiden campaigns, respectivley). The statistical sample consisted of

848 data records (from 6 to 30 June 2013) for PdP campaign and 3893 data records (from 1 April to 7
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May of 2015) for IJmuiden campaign. The estimated and the measured TI increments (∆TIest and

∆TImeas, respectively) for the whole campaign were clustered as a function of the wind intensity,

using the HWS as the binning variable, and as a function of the type of motion (i.e., rotational or

translational) using the mean tilt amplitude and mean translational-velocity amplitude as the respective

binning variables.

The estimation accuracy was quantitatively assessed according to the RMSE, which is formu-

lated as follows:

RMSE =

√∑N
p=1[∆TIest(p)−∆TImeas(p)]2

N
, (6.37)

where N is the number of samples in the bin under study, ∆TIest(p) is the p-th TI-increment esti-

mate in the bin, and ∆TImeas(p) is the corresponding p-th measurement.

Figure 6.9 depicts the statistical results for PdP (left panels) and IJmuiden (right panels) cam-

paigns. In all panels, it can be observed that the TI increment, ∆TI , was always positive, evidencing

the motion-induced additive turbulence [Salcedo-Bosch et al. 2020a, Kelberlau et al. 2020]. More-

over, it increased with increasing wave motion, i.e., with increasing mean tilt amplitude (panels (a),

(b)) and mean translational-velocity amplitude (panels (c), (d)). ∆TI ranged from median values

of ∆TI ≃ 1% in low-motion scenarios to ∆TI ≃ 2% in high-motion ones. The green bars illus-

trating statistically significant bins (i.e., bins containing greater or equal than 5% of the population

of PdP campaign, i.e., ≃ 50 samples) showed mean tilt amplitudes between 1 and 3.5 deg for PdP

campaign and between 1 and 5.5 deg for IJmuiden campaign (notice the different X-axis ranges

used). The observed mean translational-velocity amplitudes ranged between 0.1 and 0.2 m/s for

PdP campaign, and between 0.1 and 0.65 m/s for IJmuiden campaign (notice the different X-axis

ranges used). The HWS ranged between 2 and 8 m/s in PdP campaign, and between 2 and 22

m/s in IJmuiden campaign (notice the different X-axis ranges used). The higher motion and wind

magnitudes evidence the harsher scenario experienced by the FDWL during IJmuiden campaign.

On one hand, Figure 6.9a)-b) plot the TI increment as a function of the mean tilt amplitude in 0.5

deg bins, which is representative of the rotational-motion component. The median of the estimated

∆TI values virtually matched that of the measurements, thus validating the overall analytical-

error formulation. In PdP campaign (Figure 6.9a)), error bars showed larger dispersion for the

measured values (∆TImeas) than for the estimated ones (∆TIest). This is attributable to the urban

topology surrounding the experimental area, which creates high spatial variation of the wind field.

In contrast, this was not found in IJmuiden. Thus, Figure 6.9b)-d)-f) shows estimated error bars

virtually coincidental with the measured ones on account of the more homogeneous wind fields

found over the ocean.

On the other hand, Figure 6.9c)-d) represent the TI increment as a function of the FDWL mean

translational velocity in 0.025 m/s bins for PdP campaign and 0.05 m/s bins for IJmuiden campaign,

respectively. Similar to Figure 6.9a)-b), the median of the estimated ∆TI values almost ideally
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Figure 6.9: Validation of the analytical-error formulation: Global statistics for the PdP campaign (6 to
30 June 2013) and IJmuiden campaign (1 April to 1 June 2015). Left panels show the results obtained for
the PdP campaign, and right panels show the results obtained for IJmuiden campaign. Comparison
between the measured and the estimated TI increment as a function of different motion conditions
clustered by (panels a, b) mean tilt amplitude (rotational motion), (panels c, d) mean translational-
velocity amplitude, and (panels e,f) mean HWS. Error bars indicate the 25th and 75th percentiles.
Bar graphs represent the number of occurrences in the data for each category bin. Solid red lines
represent the RMSE between ∆TIest and ∆TImeas for each category bin. Bins containing less than
5% of the PdP population are gray shaded.
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matched the measurements in all the significant bins (dark green, Figure 6.9c)-d)). The largest

difference was ∆TImeas −∆TIest = 0.26% for the 0.175 m/s bin. Similar comments apply to those

for Figure 6.9a)-b) regarding the measurement error bars.

Finally, Figure 6.9e)-f) depict the TI increment as a function of the mean HWS in 1 m/s bins

for PdP campaign and 2 m/s for IJmuiden campaign, respectively. Similar concurrent results are

observed, with the estimated ∆TI median values matching the measurements for all HWS bins

except for the 2 m/s one. This is due to the fact that ZephIRTM 300 HWS measurements below 3

m/s are tagged as ”unreliable” according to the manufacturer’s specs for the lidar [Scientific 2016].

Similar discussion comments apply for the error bars shown in Figure 6.9 e)-f).

The RMSE between the estimated with the measured ∆TI (Equation 6.37) is depicted in red for

each of the tilt, velocity, and HWS bins. Similar values were obtained in all statistically significant

bins, ranging from RMSE = 0.004 (0.4%) up to RMSE = 0.013 (1.3%), which is comparable to

(and, therefore, consistent with) the size of the measurement error bars obtained for ∆TImeas. As

can be observed, the RMSE is slightly correlated with the tilt so that the larger the buoy tilt, the

larger the RMSE in rough approximation, which in turn accounts for the 1st-order approximation

used in Equation C.1 (refer to Appendix C.1).

6.5 Summary and Conclusions

A unified analytical formulation for the computation of the 6-DoF-motion-induced error in focusable

CW FDWLs was presented (Figure 6.3). The total error in the retrieved HWS was computed as the

superposition of rotational- and translational-motion errors. The formulation proved to be capable

of estimating the HWS bias (Section 6.4.2.1) and TI increment (Figure 6.8, and Figure 6.9).

The analytical model departed from a thorough formulation of the FDWL buoy geometry and

dynamics in order to derive the rotational- and translational-motion influence on the lidar-measured

LoS measurements in a CW DWL scan. The well-known VAD algorithm was computed as a first-

order Fourier series, which allowed derivation of the sought-after analytical expressions describ-

ing the FDWL-measured wind-vector error as a function of the buoy attitude and the ”true” wind

vector. First-order approximation was retained when computing the buoy rotational matrix. The

assumption of a uniformly distributed random initial scan phase permitted the estimation of the

HWS measurement bias and RMSE over 10 min time intervals.

The wave-induced motion in each of the six DoF was modeled as a simple harmonic motion

with a characteristic amplitude, frequency, and phase recomputed every 10 minutes for each DoF.

A method to estimate these variables based on spectral analysis of the lidar-buoy motional time

series was presented in Section 6.3.7.

The proposed formulation was numerically validated by comparing the HWS error figures ob-

tained as a function of WD and initial scan phase with those output by the FDWL-motion simulator
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[Salcedo-Bosch et al. 2021a]. A virtually perfect match between both methods was found except for

the second-order approximation errors.

The methodology was further validated using experimental data from ”Pont del Petroli” (Bada-

lona, Barcelona) and IJmuiden (North sea, 85 km offshore the Netherlands) campaigns, in which an

FDWL and a reference fixed lidar were used. The estimated 10 min bias using the analytical formu-

lation presented here yielded similar results to the measured one. Thus, for the PdP campaign, the

median values obtained for the estimated and the experimental HWS bias were -0.02% and 0.06%,

respectively, and the 25th and 75th percentiles were -0.66% (estimated) and -0.89% (measured);

and 0.76% (measured) and 0.64% (estimated), respectively. For the IJmuiden campaign, median

values of -0.53% (measured) and 0.05% (estimated) were found, and the 25th and 75th percentiles

were -2.30% (measured) and -1.48% (estimated); and 1.08% (measured) and 1.47% (estimated), re-

spectively. The inherent asymmetry between positive and negative biases accounts for wind shear

between the fixed DWL and FDWL measurement heights. The slight differences between the mea-

sured and estimated values are inconsequential and account for the harsher sea conditions at the

IJmuiden site. With regard to estimation of the TI increment, the analytical estimates matched

the measured values in statistical terms under all motion and wind scenarios for both PdP and

IJmuiden campaigns (Figure 6.9). Thus, the root mean square differences between the medians

of ∆TIest and ∆TImeas were 0.16% (PdP) and 0.11% (IJmuiden) for the rotational motion (Fig-

ure 6.9a), b)), 0.13% and 0.16% for the translational motion (Figure 6.9c), d)), and 0.14% and 0.21%

for the HWS (Figure 6.9e), f)), given mean values of about 0.015 (1.5%). Experimental validation

was limited by the fact that the intercompared lidars were a minimum of 50 m apart and subject

to wind flows that were not always uniform. This caused moderate dispersion in the turbulence

values measured by the two lidars, which deteriorated in one-to-one comparison of the 10 min TI.

All in all, the unified formulation presented here proves to be a straightforward and accurate

tool for evaluating the motion-induced error in focusable CW FDWLs in terms of both HWS-bias

and TI-increment estimation, which is additive to the real one. Although the proposed method

enables to correct the FDWL-measured TI (i.e., the apparent TI) via subraction of the estimated

TI increment to the lidar-measured one, the accuracy of this methodology on a 10-min basis will

be studied in future work. MatlabTM R2020a codes are also provided to the reader as part of the

Supplementary Materials of this manuscript. Further steps could include the study of multi-modal

motion as well as the wind flow variability in a lidar scan. Finally, experimental validation would

benefit from tests at different LiDAR sounding heights.



Chapter 7

A Robust Adaptive Unscented
Kalman Filter for Floating Doppler
Wind Lidar Motion Correction

The contents of this Chapter are aligned with Obj. 2 of this Ph.D. and are part of the full paper [Salcedo-Bosch

et al. 2021c]: Salcedo-Bosch, A.; Rocadenbosch, F.; Sospedra, J. ”A Robust Adaptive Unscented Kalman

Filter for Floating Doppler Wind-LiDAR Motion Correction”, Remote Sens. 2021, 13, 4167. https:

//doi.org/10.3390/rs13204167. Systematic or multiple reproduction or distribution to multiple

locations via electronic or other means is prohibited and is subject to penalties under law

7.1 Introduction

As it has been exposed in Chapter 2, multiple validation campaigns have shown the robustness

and reliability of HWS and WD FDWL measurements at the ten-minute level [Gutiérrez et al. 2015,

Gutierrez-Antunano et al. 2017, Schuon et al. 2012, Mathisen 2013, Gutiérrez-Antuñano et al. 2018].

However, FDWLs measure an increased TI, in contrast to fixed LiDARs, due to wave-induced mo-

tion [Salcedo-Bosch et al. 2020a, Courtney & Hasager 2016].

TI is a relevant parameter in wind farm design and operation [Mücke et al. 2011]. For instance,

erroneous TI could lead to over-design of the wind turbines, causing extra costs. Therefore, there is

a need to compensate for the effect of wave-induced motion on FDWL measurements [Gottschall

et al. 2017a; 2014b]. Both the rotational motion (roll, pitch, and yaw) and translational motion

(surge, sway, and heave) of the LiDAR induce errors in the retrieved HWS and WD [Tiana-Alsina

et al. 2017, Kelberlau et al. 2020]. The latter is of lesser concern because WD errors can easily be

corrected by means of a reference compass installed on the buoy [Gutiérrez-Antuñano et al. 2017].

Multiple approaches have been presented for reduction of the motion-induced error in FDWL

measurements [Wolken-Möhlmann et al. 2010, M. Pitter et al. 2014, Tiana-Alsina et al. 2015, Gutiérrez-

Antuñano et al. 2017, Kelberlau et al. 2020, Salcedo-Bosch et al. 2021c, Gutiérrez-Antuñano et al.
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2018, Bischoff et al. 2015, Gottschall et al. 2014a; 2012b, Schlipf et al. 2012]. Thus, the works of

Wolken-Möhlmann et al. (2010) and Gottschall et al. (2014a) are representative of the first studies

on the simulation and offshore tests of lidars on floating platforms. Schlipf et al. (2012) demon-

strated the potentialities of theoretically modeling a lidar system in order to reconstruct the wind

field from corrupted lidar measurements. Regarding the ZephIR lidar, M. Pitter et al. (2014) studied

its performance when mounted on buoys or wind turbines and proved that the 10-min averaged

wind speed recorded by ZephIRs is very resilient to motion. It was also found that angular motion

is the main error source. The study of Bischoff et al. (2015) addressed the motion compensation

of FDWLs by means of a wind field reconstruction method and demonstrated that the quality of

horizontal wind measurements can be improved if the lidar attitude is known. Tiana-Alsina et al.

(2015) presented a mechanical approach by deploying the ZephIR-300 lidar on a cardanic frame.

This method was able to compensate for most of the rotational motion but not for the translational

one. However, mechanical resonance was a risk to be minimized and the cardarnic method in-

creased the hardware costs of the instrument.

More recently, Gutiérrez-Antuñano et al. (2017) presented an adaptive averaging window tech-

nique to filter out the motion-induced errors on HWS measurements. The window length has to

be comparable to the tilting period of the lidar (roll and pitch motion only). Unfortunately, this

method requires the lidar wind-vector sampling frequency to be higher (approximately by a fac-

tor 2) than the wave motion frequency, which is not always the case. In 2020, Kelberlau et al.

(2020) proposed a signal processing approach, in which the 6-DoF motion of the FDWL were taken

into account to correct for the motion-induced error at a Line of Sight (LoS) level. The algorithm

demonstrated itself able to take the motion out in multiple wind and sea scenarios in a coastal en-

vironment but it requires access to the high-frequency internal LoS measurements of the lidar. The

latter is usually undisclosed information for most commercial continuous-wave lidars.

In this study, we aim to correct the motion-induced error on wind measurements by a float-

ing continuous-wave conical-scanning DWL without accessing LoS information. We rely on the

fact that successively measured wind observations tend to be correlated and that past measure-

ments provide a priori information on the wind vector at the current estimation time [Mann 1998,

Brown et al. 1984]. Moreover, the LiDAR measurement process and the wave-induced 6-DoF Li-

DAR motion can be accurately modelled. In this scenario, the Kalman Filter (KF) is considered to

be a promising candidate for tackling this problem. The KF is used to estimate discrete time-series,

which are governed by linear differential operators [Rodgers 2004]. It can estimate the hidden

variables of a dynamic system from observations over time.

In non-linear systems, as in our case, the plain KF is not adequate to solve the problem. Instead,

upgrades of the KF, such as the Extended Kalman Filter (EKF) or the Unscented Kalman Filter

(UKF) [Robert Grover & Y.C. Hwang 2012], are used. In this study, we present a Robust Adaptive
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Unscented Kalman Filter (RAUKF) based on the FDWL model proposed by Kelberlau et al. [Kel-

berlau et al. 2020], to estimate the LiDAR-retrieved wind vector without motion influence. We rely

on the FDWL geometrical model and the Velocity–Azimuth Display (VAD) LiDAR wind-retrieval

algorithm [Slinger & Harris 2012].

Filter performance is assessed using experimental data from the “El Pont del Petroli” (PdP) cam-

paign (see Chapter 3), in which a proof-of-concept FDWL buoy was compared, with reference to

a fixed LiDAR [Gutiérrez-Antuñano et al. 2017]. This allowed us to compare the motion-corrected

FDWL TI to the fixed-LiDAR reference TI.

7.2 Materials and Methods

7.2.1 Instrumental Setup Review

For this study, data from ”Pont del Petroli” campaign (see Chapter 3) was used. The main pa-

rameters used were: (i) wind measurements from the reference ZephIRTM 300 DWL deployed at

”Pont del Petroli” pier, (ii) wind measurements from the NEPTUNETM floating LiDAR buoy, (iii)

ZephIRTM 300 internal parameters for data-quality control and (iv) 6-DoF motion measurements

captured by the ”LiDAR IMU” and the ”buoy IMU”.

7.2.2 Basic Theoretical Definitions

In this chapter, the wind vector,UUU , is defined as a three-component vector formed by the HWS, WD

(clockwise from north), and vertical wind speed (VWS), as

UUU =

HWS
WD
VWS

 . (7.1)

In wind energy, a standard sampling period of 10 min was used. The mean wind conditions

at this resolution were obtained by simply averaging the high-resolution (1 s) wind-vector compo-

nents into a 10 min period. Thus, the mean HWS was computed as

HWS =
1

N

N∑
n=1

HWSn, (7.2)

whereHWSn is the high-resolution HWS measurement andN = 600 is the number of 1 s measure-

ments in one minute.

We are also interested in the HWS variations, with respect to the mean HWS. This variability

was measured by means of the TI, which is defined as

TI =
σHWS

HWS
, (7.3)

where σHWS is the 10 min HWS standard deviation. The standard deviation is defined as

σHWS =

√√√√ 1

N − 1

N∑
n=1

(HWSn −HWS). (7.4)
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7.2.3 The Estimation Viewpoint

The KF relies on two steps to estimate the hidden state-vector of the physical system under study:

The prediction step and the innovation step [Rodgers 2004].

The prediction step is defined by two equations, which are formulated in state-space notation as

xxxk|k−1 = f(xxxk−1|k−1) + vvvk, (7.5)

zzzk|k−1 = h(xxxk|k−1) +nnnk. (7.6)

The first equation is the prediction equation, in which xxxk|k−1 is the hidden state-vector to be es-

timated, based on the previous state-vector estimate, xxxk−1|k−1. Sub-indices n|m denote estimation

at the discrete time instant n, conditioned to all available information up to time m. Here, xxxk|k−1

is the motion-free wind vector to be estimated, based on previous wind-vector estimations. f(·)

is the state-transition function predicting the state-vector at discrete time k, xxxk|k−1, given previous

knowledge of the state-vector, xxxk−1|k−1; that is, f(·) describes the stochastic wind model (to be

found) that predicts the measured wind vector at the next time step from the wind vector at the

previous one. vvvk is the process noise. The temporal resolution is the scan period (1 s approximately,

see Section 7.2.4).

The second equation is the measurement equation, which estimates the present-time measure-

ment, zzzk|k−1, given the a priori state-vector, xxxk|k−1, and motion information (to be further devel-

oped in Section 7.2.6), through the measurement function h(·). In other words, the measurement

function models the FDWL motion dynamics and estimates the expected motion-corrupted wind

measurements, based on the a priori state-vector and IMU motion information vector MMM (to be

defined in Section 7.2.6). nnnk is the measurement noise.

On the other hand, the innovation step allows for the assimilation of the present-time measure-

ment information into the a priori state-vector estimate through a projection gain (the so-called

Kalman gain). Formally,

x̂xxk|k = xxxk|k−1 +KKKk(zzzk − zzzk|k−1), (7.7)

where zzzk is the wind-vector measurement and KKKk is the Kalman gain matrix. The latter relates

the measurement estimation error, ∆zzz = zzzk|k − zzzk|k−1, to the a priori state-vector estimation error,

∆xxx = xxxk|k − xxxk|k−1.

To implement the UKF, both the state-transition wind model f(.) and FDWL motion-dynamics

measurement function h(.) must be found. This is tackled in the following section.

7.2.4 The Measurement Model: FDWL Motion

The wind vector is retrieved from the Doppler wind projection along the LoSs in the conical scan

pattern by means of the VAD algorithm (see Section 7.2.4.3). In real operating conditions of the
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FDWL, sea-induced motion disturbs the conical scan, such that the pointing direction and mea-

sured radial velocities become affected by rotational and translational motion. In the motion-

correction study by Kelberlau et al. (2020), a complete geometrical description of the problem is

thoroughly given. Next, we summarize and adapt information from this reference which are rele-

vant to derive the measurement function h(.) shown in Equation (6) above.

To describe the FDWL system, we first define the right-handed Cartesian XYZ “moving-body”

coordinate system of the buoy and the north–east–down right-handed Cartesian NED “fixed”

global frame of reference (see Figure 7.1). The latter is the inertial frame of reference in which

the wind vector and FDWL motion are defined. Without external influence, the X, Y, and Z axes of

the moving-body coordinate system are aligned with the north, east, and vertically down vectors

of the fixed NED frame of reference. Wind, waves, and external forces cause translational motion in

the N, E, and D directions (surge, sway, and heave, respectively), and rotational motion along the

N, E, and D axes (roll, pitch, and yaw, respectively). We define x̂, ŷ, and ẑ as unit vectors aligned

with the X, Y, and Z axes of the moving-body coordinate system. On the other hand, n̂, ê, and d̂

are defined as the unit vectors aligned with the north, east, and vertically down axes of the global

NED frame of reference. ĥ is defined as the LiDAR beam direction before the prism deflection. The

vector ĥ is defined as the opposite vector to ẑ. The LoSs are measured in a cone of ϕ0-deg width

from ĥ. Finally, we define θ0 as the LiDAR initial scan phase (i.e., the azimuth angle of the LiDAR

pointing direction at the first LoS; denoted r̂1), with respect to x̂ in the XY plane. During a scan,

the LiDAR pointing direction r̂ ranges from θ = −θ0 to θ = −θ0 + 360 × 1s, with a fixed step ∆θ

between consecutive LoSs in a scan, which are denoted by r̂n and r̂n+1, where n is the LoS number.

7.2.4.1 Rotational Motion

The rotational model (to be formulated as function hrot(·) in Section 7.2.6) computes the “true”

LiDAR pointing direction vectors by means of a series of geometrical operations. Rotational motion

affects the LiDAR pointing direction in each LoS, r̂n, n = 1, . . . , 50. A series of chained vector

rotations (refer to Kelberlau et al. (2020), Equations (5)–(12)) are needed to re-encounter r̂ in the NED

reference frame (in the following, r̂ will be used as shorthand notation for the vector set r̂n, n =

1, . . . , 50). This is derived next:

The Euler rotation matrix is used to express x̂, ŷ, and ẑ in the NED frame of reference given

roll, pitch, and yaw values (Kelberlau et al. (2020), Equations (5)–(7)). The unitary vector ĥ in the

direction of the laser beam, before it is deflected by the LiDAR prism, is computed as (Kelberlau

et al. (2020), Equation (8)):

ĥ = −ẑ. (7.8)
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Figure 7.1: Schematic of the motion geometry of the FDWL buoy. (a) The moving-body coordinate
system (red arrows) and the fixed coordinate system (blue arrows). (b) The LiDAR scanning cone
and LiDAR pointing direction (green arrows) in relation to the XYZ coordinate system.

êθ0 , which denotes the vector in the direction of LiDAR heading in the N-E plane (i.e., the azimuth

angle of r̂1), is obtained by rotating x̂ along ĥ by θ deg, as:

êθ1 = R(ĥ, θ) · x̂, (7.9)

where R(ĥ, θ) is the rotation matrix about ĥ θ degrees (Kelberlau et al. (2020), Equation (9)). Then,

auxiliary vector êθ270 , defined as the unit vector perpendicular to êθ0 in the N-E plane, is encoun-

tered as (Kelberlau et al. (2020), Equation (10)):

êθ270 = ĥ× êθ0 . (7.10)

Finally, the first LiDAR pointing direction r̂1 can be expressed in the NED frame of reference by

rotating ĥ by ϕ0 deg along êθ270 , as:

r̂1 = R(êθ270 , ϕ0) · ĥ. (7.11)

The remaining LiDAR pointing directions in a scan, r̂n, n = 2, . . . , 50 are obtained by changing

the scan angle θ0 into θn−1, with n as above.
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7.2.4.2 Translational Motion

The translational model (formulated as function htrans(·) in Section 7.2.6) computes the set of 50

LiDAR-measured, LoS radial velocities during a scan, vvvLoS . Translational motion also influences

the measured LoS velocities. To study its effects, we need to account for all the velocity components

at the position of the LiDAR scanning prism (origin of the scanning cone, O′ in Figure 7.1). First,

we define d⃗ as the distance vector between the origin of the NED coordinate system (O in Figure

7.1) and that of the scanning cone in the NED frame of reference (O′ in Figure 7.1). The velocity

experienced at measurement location O′, ⃗vlidar, becomes influenced by both the translational ve-

locities experienced by the LiDAR and rigid-body motion caused by the angular velocities. This

composite effect can be expressed as (Kelberlau et al. (2020), Equation (14))

⃗vlidar = n̂vn + êve + d̂vd + (n̂ωn)× d⃗+ (êωe)× d⃗+ (d̂ωd)× d⃗, (7.12)

where vn, ve, and vd are surge, sway, and heave motions, respectively, and ωn, ωe and ωd are roll,

pitch, and yaw angular velocities, respectively.

Finally, the translational velocity contribution into a LoS (Kelberlau et al. (2020), Equation (15))

is the projection of ⃗vlidar onto r̂ (Kelberlau et al. (2020), Equation (15)):

vLoS = r̂ · ⃗vlidar. (7.13)

The radial velocity measured by the LiDAR along a LoS is encountered as the difference be-

tween the wind-vector projection over r̂ and vLoS , as:

vr = U⃗ · r̂ − vLoS . (7.14)

7.2.4.3 VAD Algorithm

The VAD model (formulated as hV AD(·) in Section 7.2.6) retrieves the wind vector UUU from the

measured LoS velocities, vvvLoS . Assuming a uniform wind field, the measured radial wind, as

a function of the azimuth LiDAR scan angle, takes the form of a cosine wave [Slinger & Harris

2012] (see Chapter 2). The VAD algorithm uses the Least Squares (LSQ) method to fit a sinusoidal

function to the measured radial velocities in the conical scan, vr, at LoS azimuth angles ϕ. Formally,

vr(ϕ) = |A cos (ϕ−B) + C|, (7.15)

where A, B, and C are the LSQ solving variables, which yield the wind-vector information as:

HWS = A/ sin (ϕ),

WD = B ± 180 deg,

V WS = C/ cos (ϕ).

(7.16)
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The sign ambiguity in the WD is due to the ZephIR 300 homodyne LiDAR detection, i.e., the

LiDAR can only measure unsigned Doppler frequency shifts, which leads to 180-deg ambiguity in

the WD retrieved by the VAD algorithm [Slinger & Harris 2012]. This ambiguity is resolved by

means of the wind vane installed on the buoy.

7.2.5 State-Transition Model

7.2.5.1 Wind Model

The LiDAR-retrieved wind vector is a non-stationary stochastic process dependent on the atmo-

spheric conditions [Smith & Mehta 1993]. For instance, the wind field gusty nature causes high

wind speed increments during short time periods [Mücke et al. 2011]. Although physically rooted,

advanced turbulent models describing the spectral tensor for atmospheric surface-layer turbu-

lence [Mann 1998] provide a refined solution, their application is hampered by their complexity

and demand for computational resources. Instead, we propose a straightforward and oversimpli-

fied approach, in which the wind process is modelled as a Random Walk (RW) stochastic process,

in a similar fashion as what was used for the initial scan-phase model. It is formulated as:

UUUk = UUUk−1 + ϵϵϵk, (7.17)

where ϵϵϵk is a random variable with zero-mean Gaussian distribution, N(0, σ).

Figure 7.2 compares the HWS time-series estimated from the RW model (Equation (7.17)) to

that measured by the fixed LiDAR. Figure 7.2a) demonstrates a similar dynamic range and process

variability between both time-series, during most of the time. This is corroborated in Figure 7.2b),

in terms of their associated Power Spectral Densities (PSD). Both PSDs were virtually coincident

in the first spectral lobe (10 Hz cut off, −15 dB), indicating that RW modelling is a promising

candidate for our estimation purposes. Discrepancies above 10 Hz were responsible for partial

time-series tracking around sample nos. 150–200 in Figure 7.2a).

a)

b)

Figure 7.2: Comparison between the HWS RW model presented in Section 7.2.5.1 and experimental
data: (a) Temporal series; and (b) PSD.
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7.2.5.2 Initial Scan-Phase Model

The LiDAR initial scan phase, θ0, has great influence on the measurement error and, therefore,

is of key importance for LiDAR motion correction [Gutiérrez-Antuñano et al. 2018]. However,

θ0 is an undisclosed parameter from the manufacturer’s side, which needs to be estimated. In the

motion-correction study by Gutiérrez-Antuñano et al. (2018), θ0 is considered a random variable

with uniform probability density from 0 to 360 deg. Based on this assumption, the LiDAR initial

scan-phase process is modelled as a RW process, as:

θ0,k = θ0,k−1 + ϵk, (7.18)

where ϵk is a uniform random variable in [0, 360) deg.

7.2.6 State-Space Formulation of the Problem

Once the measurement (Section 7.2.4) and state-transition models (Section 7.2.5) have been formu-

lated, we aim to derive associated measurement and state-transition functions h(.) and f(.), respec-

tively, in accordance with the state-space formulation presented in Section 7.2.3.

State-transition function f(.).- To derive the state-transition function, first we considered the

“clean” (i.e., motion-free) wind vector, UUUk, which is to be estimated from the motion-corrupted

wind vector UUUFDWL
k from the FDWL. The state-vector to be estimated, xkxkxk, is formed by the clean

wind vector at time k, UUUk, and the LiDAR initial scan phase at that discrete time, θ0,k. This is

formulated as

xxxk =
[
UUUTk θ0,k

]T
, (7.19)

which using Equation (7.1), can be expanded to

xxxk =
[
HWSk WDk VWSk θ0,k

]T
. (7.20)

By inserting the state-vector Equation (7.20) above, along with the RW models for the wind

and initial scan-phase processes (Equations (7.17) and (7.18), respectively) into prediction Equation

(7.5), we obtain

xxxk|k−1 = III · xxxk−1|k−1 + vvvk, (7.21)

where III is the identity matrix. This enables us to identify state-transition function f(·), as:

f(xxxk−1|k−1) = III · xxxk−1|k−1. (7.22)

In Equation (7.22) above, the state-vector is a 4-component vector, estimated at each successive

LiDAR scan (i.e., with approximately 1 s temporal resolution). Recall that sub-indices n|m refer to

estimation at discrete time n, based on past information up to discrete time m.
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Measurement function h(.)—The measurement equation (Equation (7.6)) predicts the motion-corrup-

ted wind-vector zzzk|k−1 measured by the FDWL (i.e., the observation vector) from the estimated

state-vector, xxxk|k−1. The observation vector is written as

zzzk = UUUFDWL
k = [HWSFDWL,WDFDWL, V WSFDWL]

T , (7.23)

where HWSFDWL, WDFDWL, and VWSFDWL are the FDWL measurements of HWS, WD, and

VWS, respectively. zzzk is a 3-component vector computed at each successive time scan.

As the measurement function h(·) is time variant depending on the attitude motion of the Li-

DAR, we define the motion block-vector MMMk describing the 6-DoF motion of the FDWL during a

scan as:

MMMk = [RRRk,PPP k,YYY k, vxvxvxk, vyvyvyk, vdvdvdk], (7.24)

where RRRk, PPP k, YYY k, vxvxvxk, vyvyvyk, and vdvdvdk are the roll, pitch, yaw, surge, sway, and heave time-series

measured by the IMU at 10 Hz temporal resolution and interpolated at 50 Hz. Numerically, the

block-vector MMM is a 50 × 6 matrix, where each row is a LoS attitude measurement, and each column

is an attitude parameter.

Assuming uniform wind flow during the LiDAR scan at time k, the motion-corrupted FDWL

observations in a scan can be described by a set of three successive operations (Section 7.2.4, and

refer to Figure 7.3):

(i) retrieval of the motion-corrupted instantaneous LoS set, r̂rr;

(ii) estimation of the associated LoS velocities, vvvLoS ; and

(iii) VAD retrieval of the motion-corrupted observation wind vector, zzzk|k−1;

where r̂rr denotes the block-vector [r̂1, r̂2, ..., r̂n], n = 1, · · · , 50, and each component represents

the nth LoS unit vector (Figure 7.1).

Figure 7.3: Block diagram depicting the measurement function h(.), as a chain process in which
rotation, translation, and VAD retrieval are modelled as elementary functions. Equation numbers
inside each block refer to pertinent equations in the text.

Figure 7.3 block diagram depicts the filter measurement function h(·) as a chain calculus pro-

cess:
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First, at each discrete time k, the 50 motion-corrupted LoSs during the scan ([r̂1, r̂2, ..., r̂n],

n = 1, · · · , 50) are computed by means of the geometrical operations presented in Section 7.2.4.1

(Equations (9)–(12)). This set of operations is denoted hrot(·) in Figure 7.3. The function hrot(·)

computes the block-vector r̂rr = [r̂1, r̂2, ..., r̂50] in the global NED frame of reference based on roll,

pitch, and yaw instantaneous angles from attitude vector MMMk and predicted initial phase θ0,k|k−1

from the state-vector, xxxk|k−1. Therefore, the block-vector r̂rr can be written as

r̂rr = hrot(xxxk|k−1,MMMk). (7.25)

Second, the motion-corrupted LoS velocities at time k, vvvLoS,k, are calculated through the set of

operations described in Section 7.2.4.2 (Equations (7.12) and (7.13)), and denoted htrans(·) in Figure

7.3. Function htrans(·) computes this set of velocities given the predicted wind vector, UUUk|k−1,

the estimated LoS directions from the previous block, r̂rr, and by considering the influence of LiDAR

translational and rigid-body motion information, through Equation (7.14) and Section 7.2.4.2, given

MMMk. Then, vvvLoS,k is obtained as

vvvLoS,k = htrans(xxxk|k−1,MMM, r̂rr). (7.26)

Third, the motion-corrupted VAD-retrieved wind vector zzzk|k−1 is determined from the 50-LoS

set of velocities, vvvLoS,k, by means of the least-squares VAD algorithm presented in Section 7.2.4.3

(Equations (7.15) and (7.16)). The VAD algorithm is denoted by hV AD(·) in Figure 7.3. Hence,

zzzk|k−1 = hV AD(vvvLoS,k). (7.27)

This chain calculus to compute measurement function h(·) can be formulated as the composition

of hrot(·), htrans(·), and hV AD(·) functions (through the so-called “chain rule”), as:

h(·) = hV AD(·) ◦ htrans(·) ◦ hrot(·). (7.28)

The time-variant observation model Equation (7.6) can be formulated as

zzzk|k−1 = h(xxxk|k−1,MMM) +nnnk. (7.29)

7.2.7 Estimation of State- and Observation-Noise Covariance Matrices

To ensure convergent, unbiased estimates, the UKF must have a priori knowledge of both the pro-

cess noise, vvvk, and measurement noise, nnnk. These are zero-mean, additive white Gaussian noise

processes with covariances,QQQk andRRRk, respectively, which must be found.

The process-noise covariance matrix,QQQk, is defined as

QQQk = E[vvvkvvv
T
k ]. (7.30)
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Likewise, the measurement-noise covariance is defined as

RRRk = E[nnnknnn
T
k ]. (7.31)

As the measurement function h(.) is time variant with the LiDAR motion vector MMM , so is the

measurement noise. Additionally, the wind statistical moments are not stationary, and the noise

covariance matrices are difficult to accurately describe. Instead, we propose the adaptive estima-

tion of these matrices based on statistical physical inference [Davari & Gholami 2017, Koivisto et al.

2016, Li et al. 2016]. In this study, the RAUKF [Zheng et al. 2018] is chosen, due to its low compu-

tational requirements, fast convergence, and overall good performance to adaptively estimate the

noise covariances. Moreover, the RAUKF uses a fault-detection mechanism to detect filter failure

due to inaccurate estimation of the noise covariance matrices. When a fault is detected, QQQ and RRR

are adjusted (see Appendix D.3 for details).

In contrast to Equation (7.30), the RAUKF does not estimate QQQ as the ensemble average of

vvvkvvv
T
k [WANG 1999, Hajiyev & Soken 2014]. A more straightforward approach is to estimate the

matrix QQQk instantaneously (i.e., at each discrete time k), using the approximation E[vvvkvvv
T
k ], and to

balance it with previous estimates. As a further refinement, the RAUKF dynamically adjusts Q̂QQk by

blending present and past estimates of the covariance matrix through a forgetting factor, λ, as:

Q̂QQk = (1− λ)Q̂QQk−1 + λvvvkvvv
T
k . (7.32)

The RAUKF uses similar procedure as for Q̂QQk, to compute the instantaneous estimations of RRRk

through a forgetting factor δ, as:

R̂RRk = (1− δ)R̂RRk−1 + δnnnknnn
T
k . (7.33)

A similar memory-fading procedure has been used in the radar application of the filter for

atmospheric boundary layer height estimation Lange et al. (2015). In practice, factors in the range

0.1–0.2 provided convergent, unbiased results, as shown in Section 7.3.

7.2.8 Filter Initialization

The UKF initial space vector takes the form

x̂xx0 = [UUUproxy0 , θ0,0]
T , (7.34)

where UUUproxy0 is the “proxy” wind time-series and θ0,0 is initial scan phase, θ0, at time k = 0.

To initialize the filter, a 10 min length, moving-average time-series Gutiérrez-Antuñano et al.

(2017) of the first 1 s-resolution wind measurements (the so-called “proxy” time-series, UUUproxyk ) is

computed. The window length chosen is the wave period over the 10 min series, which is estimated
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by means of the L-dB method [Salcedo-Bosch et al. 2021b] (see Chapter 5. Other wave-period esti-

mation methods in the literature [Salcedo-Bosch et al. 2020b, Center 1996] yielded virtually identi-

cal results. The wind component of the state-vector is initialized by retaining the first-time sample

of the proxy wind, UUUproxyk . The initial scan-phase component of the state-vector is initialized with

a random value between 0 and 360 deg, as dictated by the assumption of the a priori unknown

uniform phase distribution.

The state-noise covariance matrix is linked to RW process noise vvvk (Equation (7.5)). For simplic-

ity, this matrix is assumed to be diagonal. At time k = 0, this matrix is written as

QQQ0 = diag(
[
σ2
HWS σ2

WD σ2
VWS σ2

θ0
,
]
), (7.35)

where each component represents a variance.

As a RW process is characterized at each discrete time by incremental/detrimental random

steps away from the previous value of the variable, σ2
HWS , σ2

WD, and σ2
VWS are estimated as the

variance of difference between consecutive samples. For example, σ2
HWS is calculated from UUUproxy

as

σ2
HWS = E[(HWSproxyk −HWSproxyk−1 )2], (7.36)

where E(.) is the expectancy operator (in practice, a 10 min window average). Process noise θ0 is

initialized with the noise variance of a uniform distribution from 0 to 360 deg as

σ2
θ0 =

(b− a)
2

12
=

3602

12
, (7.37)

where a = 0 and b = 360 deg are the lower and upper limits of the uniform distribution, respec-

tively.

The measurement-noise covariance matrix at initial time, k = 0, is formulated as

RRR0 = diag(
[
σ2
R,HWS σ2

R,WD σ2
R,VWS

]
), (7.38)

where the subscriptR is a remainder of covariance matrixRRRk and σR,i, i = HWS,WD,VWS is the

estimated measurement-noise standard deviation for each of the variables. We used σR,HWS = 0.05

m/s, σR,WD = 50 deg, and σR,VWS = 0.025 m/s for the experimental data of Section 7.3. These

measurement-noise standard deviations were roughly estimated from the 10 min proxy wind time-

series,UUUproxyk , used to initialize the filter. These values were deliberately low, to ensure the smooth

start-up of the filter, hence preventing divergence.

Finally, the a priori error covariance matrix, P̂PP
xx

0 , is initialized as

PPP−
0 =QQQ0, (7.39)

which indicates that the user’s expected a priori error during initialization is comparable to the

state-noise “nervousness” of the filter,QQQ0.
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7.3 Results

The motion-compensation algorithm was tested on the PdP experimental campaign by comparing

the FDWL with reference to the fixed LiDAR. This is discussed in the following:

7.3.1 Data Set

The data set used for validation of the motion-correction algorithm comprised data from 6 to 30

June of 2013, with both LiDARs measuring at a fixed height of 100 m; specifically, (i) wind-LiDAR

data from the FDWL, (ii) FDWL internal status parameters, and (iii) 6-DoF motion measurements

by two IMUs, one on the LiDAR instrument (“lidar IMU” in what follows) and another on the buoy

(“buoy IMU”), were used.

Lidar internal status parameters were available, to assess the LiDAR status as well as to ensure

the quality of the VAD-retrieved wind-vector measurements. These parameters include the Spatial

Variation (SV), backscatter, and other system parameters. The SV parameter is a LiDAR internal

parameter representing the turbulence intensity of the variation degree of the radial wind speeds

(LoS) within the circle of scan of the LiDAR [Gutiérrez-Antuñano et al. 2017]. The SV can be under-

stood as a goodness-of-fit parameter of the VAD algorithm which is used to retrieve the wind vector

at a given height [Wagner et al. 2009, Slinger & Harris 2012]. By experiment, Gutiérrez-Antuñano

et al. (2017) showed strong correlation between the wind TI and the SV values measured by a fixed

ZephIR 300 LiDAR at 100 m in height (SV = 0.02 was approximately related to TI = 5% and SV = 0.1

to TI = 30% therein). The backscatter coefficient is an internal dimensionless parameter indicative

of the intensity of the backscattered light return. By experiment, a backscatter threshold of 0.1

is reported in Gutiérrez Antuñano (2019) to distinguish between normal and low signal LiDAR

returns.

Regarding the IMU data used for motion compensation, each of the IMUs was used for a differ-

ent purpose: On one hand, the LiDAR IMU was used to measure rotational motion, as the LiDAR

was mounted on the cardanic frame in such a way that its rotation center coincided with the LiDAR

scan cone apex (location of the scanning prism; point O in Figure 7.1). On the other hand, the buoy

IMU was used to measure translational motion.

7.3.2 Data Filtering

Lidar-measured data from both the fixed and FDWLs required outlier removal, which encom-

passed 999X values (a label for system measurement error), too-high wind speed, and rain-flagged

data.

The ZephIR 300 LiDAR has a wind measurement range of 1–80 m/s [Scientific 2016]. In high-

motion scenarios, wind measurements by the FDWL exhibited high variances as compared to the
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mean HWS. Ten-minute time-series with a HWS mean lower than 2.5 m/s were removed, to en-

sure reliable instantaneous HWS measurements [Gutiérrez-Antuñano et al. 2018]. Complex-terrain

effects also cause non-negligible effects on the wind flow variability, which may well invalidate the

assumption of uniform wind flow during the LiDAR scan [Bingöl et al. 2009]. Thus, metropolitan

buildings along the coastline cause high spatial variability on the wind field [Al-Khalidy 2018],

which demonstrates as a non-uniform wind vector along the LiDAR scanning cone. On the other

hand, winds blowing from sea to land exhibit higher spatial homogeneity, which leads to more re-

liable LiDAR measurements. Following Section 7.3.1, 1-s data with SV greater than 0.2, which were

indicative of spatially non-homogeneous winds, were filtered out. Similarly, data with associated

backscatter coefficients smaller than a threshold of 0.02, which is indicative of LiDAR measure-

ments with very low signal return, were rejected.

7.3.3 Campaign Overview

During the measurement period (6–30 June 2013), the surface layer was dominated by local thermal

winds hardly rising above 15 m/s at 100 m in height [Gutiérrez-Antuñano et al. 2017]. The observed

HWS in this period ranged from 1 m/s to 15 m/s, with three predominant WDs: North East (NE),

North West (NW) and South (S); see Figure 7.4.

Figure 7.4: Wind rose representing the HWS and WD (after data filtering), measured during the
PdP campaign, by the reference LiDAR (10 min) from June 6 to June 30 of 2013 (1875 records).
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During the night, the wind was light, coming predominantly from the urban area (NW), show-

ing low HWS values with high turbulence and spatial variability. During the day, the atmosphere

was dominated by winds coming from the sea towards land (S and NE), with higher HWS and

lower turbulence.

Both the fixed- and floating-lidar 10 min WD time-series showed unexpected high noise (roughly

about ±5-deg uncertainty in Figure 7.5). This phenomenon is called “granularity” herein, and

was caused by a LiDAR flaw. This issue was solved in a later manufacturing series of the instru-

ment [Gutierrez-Antunano et al. 2017].

Figure 7.5: WD time-series measured by the FDWL at 100 m height, showing the so-called “granu-
larity” effect.

7.3.4 UKF Results

Low/High-turbulence scenario analysis.—The filter was applied to the campaign data set described in

Section 7.3.3. The filter converged in most cases, achieving successful motion correction when com-

pared to the reference fixed LiDAR. Divergent cases (accounting for less than 0.5% of the statistical

sample) were attributable to strong wind shears, which motivated retuning of the measurement-

noise variance settings in Equation (7.38).

Figure 7.6 shows a low-turbulence case example, comparing a FDWL HWS measurement time-

series with and without correction against the reference fixed-LiDAR time-series. Besides evident

filter convergence, the motion-corrected HWS time-series matched almost ideally that of the ref-

erence LiDAR. The motion-induced error was greatly reduced from 0.14 m/s to 0.05 m/s RMSE,

thus achieving good performance. When analyzing the PSD of these three time-series (see inset), it

emerged that the RW model was able to emulate the wind process with high accuracy, up to some

21 dB roll-off at 7 Hz. However, the high-frequency components below −30 dB, which were not as

relevant, were underestimated (data not shown).
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Figure 7.6: HWS time-series measured at 100 m height between the fixed LiDAR and the FDWL,
with and without correction (see legend). Inset: PSD comparison. Low HWS-variance scenario (7
June 2013, PdP).

Underestimation of frequency components may lead to motion over-correction by the UKF in

high variance scenarios, as illustrated in Figure 7.7. It can be observed that the motion-corrected

FDWL and fixed-LiDAR temporal series only partially matched each other. Spectral analysis un-

derlined differences between the HWS PSDs (red and black traces), being as high as 5 dB at low

frequencies (0 to 5 Hz) and increasing to ≃10 dB at high frequencies (5 to 20 Hz). This is a limita-

tion of the used RW wind model, which was not able to emulate the high-frequency components

of the wind spectrum. Consequently, the filter assimilated the wind model error as a measurement

error, which led to biased estimations at specific times in Figure 7.7. Regarding 10-min WD estima-

tion in either high-or low-variance scenarios (counterparts of Figures 7.6 and 7.7, respectively, data

not shown), the filter was able to retrieve the yaw-error-free WD with a RMSE as low as roughly

5 deg for both the high- and low-variance cases. Regarding the so-called 1-s WD estimation, the

“granularity” effect showed up in the retrieved time-series in similar fashion as for the retrieved

HWS.

Overall campaign analysis.- With a view to assess the overall filter performance, the TIs mea-

sured by the FDWL during the PdP campaign (25 days, 1875 records) with and without correction

(TIfloat.,corr. and TIfloat., respectively) were compared to the TI measured by the fixed LiDAR
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Figure 7.7: Same as Figure 7.6. High HWS-variance scenario (22 June 2013, PdP).

(TIfixed). In the context of WE, the typical temporal resolution of wind-related data products is 10

min; thus, the comparison was carried out at 10 min temporal resolution. To carry out this com-

parison, different statistical indicators were considered: (i) The determination coefficient (R2), (ii)

RMSE, and (iii) Mean Deviation (MD).

The RMSE for a sample of N motion-corrected measurements is defined as

RMSE =

√∑N
n (TIfloat.,corr. − TIfixed)2

N
, (7.40)

and the MD is defined as

MD =

∑N
n TIfloat.,corr. − TIfixed

N
. (7.41)

The MD accounts for the systematic error in the LiDAR-measured TI (equivalently, HWS stan-

dard deviation) caused by wave-induced motion [Gutiérrez et al. 2015, Gottschall et al. 2014a].

The RMSE and MD definitional formulae to compare FDWL uncorrected measurements to fixed-

LiDAR measurements are analogous to Equations (7.40) and (7.41) above, by changing TIfloat.,corr

to TIfloat..

The scatter plot shown in Figure 7.8 compares the TI measured by the FDWL (with and without

correction) against the TI measured by the fixed LiDAR. Without correction, most of the TIfloating

values fell below the ideal 1:1 line. This was because buoy motion added an apparent variance to
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the HWS measurements, which increased the LiDAR-measured turbulence. The linear regression

(LR, red dashed-dot line) offset of −0.0185 indicated the amount of added turbulence [Salcedo-

Bosch et al. 2020a]. The LR slope of 1.0358, which is virtually identical to the ideal unity slope,

indicates that the apparent turbulence equally affected all HWS measurements.

Figure 7.8: Scatter plot comparing the TI measured by the FDWL with reference to the fixed LiDAR,
with and without correction (Red, without motion correction; Black, with motion correction). The
dashed line indicates the ideal 1:1 line. Dot-dashed lines indicate corresponding color-coded lin-
ear regressions.

Regarding the motion-corrected TI measurements (black dots), the scatter points lay closer to

the ideal 1:1 line, as demonstrated by an LR offset as low as 0.0032. This represented an 83%

reduction factor, in comparison to the uncorrected measurements (offset term equal to 0.0185), and

very small over-correction from the UKF side.

Scatter points away from the ideal 1:1 are a consequence of different filter model limitations:

First, the LiDAR initial scan-phase model (Section 7.2.5.2) was unknown, the proposed RW mod-

els being only a reasonable rough approximation. Second, the retrieved WD by any of the two

LiDAR instruments showed the so-called “granularity” issue, which accounted for uncertainties

of some ± 5 degrees (see Section 7.3.3), and which could have well led to inaccurate correction

by the UKF. Finally, in Figure 7.8, we did not include the start-up period of the filter, in which

the noise covariance matrices are still not well-estimated. Third, a more homogeneous terrain ex-
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Table 7.1: Statistical indicators evaluating the comparison between FDWL (with and without cor-
rection) and fixed LiDAR TI measurements at the 10 min level.

Uncorrected Motion-Corrected WD Filtered Motion-Corrected
R2 0.85 0.90 0.93

RMSE 2.01% 1.01% 0.86%
MD −1.70% 0.29% 0.36%

perimental scenario should be used. FDWLs are conceived for open-sea environments, and the

motion-correction should be tested in these scenarios.

The overall campaign results demonstrated the good performance of the filter in reducing the

apparent TI caused by buoy motion. All statistical indicators (see Table 7.1) improved: (i) the coeffi-

cient of determination, R2, rose from 0.85 (without compensation) to 0.90 (with compensation); (ii)

the RMSE reduced from 2.01% (without) to 1.01% (with); and (iii) the MD increased from −1.70%

to 0.29%, accounting for an 83% factor improvement.

However, closer inspection of the measurement setup warrants some comments, regarding the

statistical indicators shown: First, the floating and the fixed LiDARs were located 50 m apart and,

although they measured similar wind conditions, the instantaneous wind measurements were not

the same. This would have required setting up two LiDARs co-located at the same place. Specif-

ically, winds blowing from/to the urban area (WDs between 270 and 330 deg, and between 90

and 150 deg, respectively) experienced higher spatial and temporal variation, due to terrain rough-

ness [Al-Khalidy 2018], which led to different HWS time-series being measured by the LiDARs (see

Section 7.3.3).

According to Taylor’s frozen-atmosphere theory [Taylor 1938], turbulent eddies transported by

the mean wind hold their properties as if they were “frozen”, such that two points aligned with

the mean WD will observe the same wind stochastic realization, with a time delay. This delay is

inversely proportional to the mean HWS. The floating and the fixed LiDARs were mainly aligned

along the north-south direction and, therefore, only measurement records with WDs within 180±30

deg will be considered for further, enhanced statistical analysis. The maximum delay measured

between the two LiDARs was 25 s, which is a negligible value, compared to the measurement

period of 10 min.

After the WD was filtered, as indicated, the statistical indicators improved, as shown in the third

column of Table 7.1. The coefficient of determination increased to 0.93 and the RMSE decreased to

0.86%. The small increase in MD (0.36%) was not significant, on account of the approximate WD

filtering procedure.
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7.4 Summary and Conclusions

An adaptive method for 6-DoF motion compensation of ZephIR 300 FDWL wind measurements

was presented in this chapter. The RAUKF algorithm proved to be capable of correcting the motion-

induced error in the retrieved HWS (Figure 7.6) and TI (Figure 7.8), without accessing LiDAR LoS

velocity measurements, which is undisclosed information from the manufacturer’s side for most

of the commercial continuous-wave wind LiDARs. To the best of our knowledge, this is a key

state-of-the-art contribution of this work.

The proposed solution departed from the FDWL motion dynamics study by Kelberlau et al.

(2020) and the well-known VAD wind-retrieval algorithm, to derive an ad-hoc state-space for-

mulation of the problem from the point of view of control theory, using an UKF and stochastic

modelling. The state-vector transition model relied on a RW model to describe the unknown

motion-corrected wind vector (to be found) and blind LiDAR initial scan phase. The measure-

ment model was time variant and combined the buoy’s 6-DoF IMU information with the filter’s

estimated motion-corrected wind vector, to predict the FDWL motion-corrupted wind measure-

ments. The recursive loop of the filter, combined with run-time estimation of the state-vector and

measurement-noise covariance matrices, ensured successful and convergent results.

The methodology was validated using the experimental data collected during a PdP measure-

ment campaign in Barcelona, using a fixed LiDAR on the PdP pier as the reference instrument. To

quantitatively assess filter performance, the 10 min TI measured by the FDWL with and without

correction was compared to the TI measured by the reference LiDAR. Wind measurements were

also WD screened, to ensure the validity of Taylor’s frozen-atmosphere assumption along the con-

necting line between the two LiDARs. All statistical indicators showed significant improvement

Table 7.1: MD improved from −1.60% (without correction) to 0.36% (with correction), the RMSE

improved from 1.9% to 0.86%, and the determination coefficient (R2) increased from 0.86 to 0.93.

Linear regression between floating- and fixed-TI measurements showed an offset equal to the ap-

parent motion-induced TI added; which, upon correction by the filter, was virtually removed.

A limitation of the filter was its underestimation of the high-frequency components (i.e., fast

transients) when comparing floating-lidar HWS temporal series with reference to fixed-LiDAR

ones. This was due to the oversimplified RW wind model used. Notwithstanding the overall

improvement in all the statistical indicators shown, a few outliers departed from the ideal 1:1 line

between the motion-corrected and fixed-LiDAR TI observations. We hypothesize that this may be

due to the filter start-up time (about 60 s before stable tracking condition is reached), as well as the

so-called “granularity” effect in the LiDAR-retrieved WD.

All in all, the RAUKF was demonstrated to be an effective tool for 6-DoF motion correction of

FDWL measurements and accurate TI measurements. Furthermore, the recursive operation of the
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filter allows room for stand-alone, nearly real-time correction of FDWL measurements.



Chapter 8

Enhanced Dual Filter for Floating
Wind Lidar Motion Correction: The
Impact of Wind and Initial Scan
Phase Models

The contents of this Chapter are aligned with Obj. 2 of this Ph.D. and part of the full paper [Salcedo-Bosch

et al. 2022b]: Salcedo-Bosch, A.; Rocadenbosch, F.; Sospedra, J. ”Enhanced Dual Filter for Floating Wind

Lidar Motion Correction: The Impact of Wind and Initial Scan Phase Models”, Remote Sens. 2022, 14, 4704.

https://doi.org/10.3390/rs14194704. Systematic or multiple reproduction or distribution to

multiple locations via electronic or other means is prohibited and is subject to penalties under law

8.1 Introduction

In Chapter 7, the FDWL motion-correction method for a focusable continuous-wave lidar based on

the Unscented Kalman Filter (UKF) is presented. The method demonstrated to be able to correct

FDWL measurements for motion-induced additive TI on the run without having access to the Li-

DAR internal LoS measurements. Thus, when comparing the FDWL to a reference fixed lidar, the

apparent TI was reduced from −1.70% (without correction) to 0.29% (with correction). However,

moderate TI differences between the two lidars remained, which manifested with a coefficient of

determination of 0.93. Moreover, this first UKF prototype overcompensates the TI , which we hy-

pothesize is caused by the assumptions of oversimplified random process models of the Random

Walk (RW) type for both the wind and initial scan phase. The flaws of these models demonstrate

prominently in high wind turbulence or transitioning scenarios, which may often cause filter di-

vergence Robert Grover & Y.C. Hwang (2012). Therefore, it is sensible to assume that refined wind

and LiDAR initial scan phase models are to enhance filter tracking and reduce divergence.

In the present chapter, we study the impact of different wind and phase model combinations
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on the motion-correction capabilities of the filter as well as the impact of different near-shore sea

and atmospheric scenarios on the filter performance. The novelty of the enhanced filter lies in the

expected superior wind-tracking capabilities of the filter, particularly in high-frequency turbulence

regimes and in the operation of the filter without having access to the LiDAR internal LoS mea-

surements.

8.2 Materials and Methods

8.2.1 Review of Materials

For this study, data from ”Pont del Petroli” campaign (see Chapter 3) was used. Specifically, the

dataset comprised (i) wind measurements from the reference fixed DWL sited at PdP pier, (ii)

wind measurements from the FDWL, (iii) fixed DWL and FDWL buoy internal parameters for

data-quality control and (iv) 6 DoF motion measurements obtained by the “lidar IMU” and the

“buoy IMU”. HWS values were measured by the fixed reference lidar and ranged from 1.2 to 14.4

m/s, whereas TI values ranged from 0.90% to 24.89%. According to the manufacturer’s specifica-

tions [M. Pitter et al. 2014], lidar HWS measurement records lower than 2 m/s were considered

unreliable; therefore, records with 10 min mean HWS lower than 2 m/s were filtered out.

ZephIR 300 LiDAR rotating prism and focusing. As mentioned in Section 3.1, ZephIR 300 is a

focusable CW DWL. The LiDAR uses a rotating prism to deflect the emitted laser beam (Figure 8.1)

and create a scanning cone of 30-degree width from zenith. The prism rotates with uniform circular

motion at a rate of one rotation per second (360 degs/s). The LiDAR uses the VAD algorithm to

retrieve the wind vector from the 50 LoS velocity measurements in a scan. By refocusing, the LiDAR

is able to sequentially measure at a set of user-defined heights. However, this is performed at the

expense of reducing the sounding time resolution at a given height by a factor greater than the

number of sounding heights, because dead times are needed to refocus from one height to another.

When the LiDAR measures at a single height (no refocusing) the wind vector is retrieved with a

nearly uniform resolution of 1 s (1 scan/s). This was the preferred option in this study, and a fixed

height of 100 m, was used.

8.2.2 Methods

8.2.2.1 Enhanced Wind Models: The Auto-Regressive Approach

In this section, we aim to revisit the basic RW wind model of Equation 7.17 for the improved esti-

mation of the wind process spectrum by the UKF. To this end, different models are presented and

compared in terms of their power spectral density (PSD) with reference to the fixed lidar. The PSD

indicates the signal power distribution as a function of the frequency [Proakis & Manolakis 2006].
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Figure 8.1: Geometry of the NEPTUNE FDWL proof-of-concept buoy. Inset shows the lidar rotating
prism used for deflection of the laser beam.

Random walk (Equation (7.21)) models the state-vector wind component, UUUk (Equation (7.20)),

at discrete time tk as the superposition of the measured wind vector, UUUk−1, at previous time tk−1

plus a stochastic term ϵk:

UUUk = UUUk−1 + ϵk. (8.1)

Alternatively, we propose a low computationally demanding, straightforward wind model based

on an Auto Regressive (AR) process of order P , AR(P). In this model, the measured wind vector,UUUk,

at each time tk is a linear combination of its P previous values (i.e., at time instants tk−1, . . . , tk−P )

plus a stochastic term modeling an imperfectly predictable term. The AR(P) model is formulated

as follows:

UUUk =
[
wwwHWST ·HWSHWSHWSk wwwWDT ·WDWDWDk wwwVWST · VWSVWSVWSk

]T
+ ϵk, (8.2)

where UUUk is the 3× 1-dimension wind vector at time tk (Equation (6.1));HWSHWSHWSk,WDWDWDk and VWSVWSVWSk

are the P × 1-dimension vectors denoting the measured HWS, WD and VWS at previous times

tk−1, . . . , tk−P . ϵk is zero-mean white noise with constant variance σ2
ϵ . wwwx, x = HWS, WD, VWS

are the P × 1-dimension vectors containing the AR(P) model coefficients for the HWS, WD and
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VWS wind components, respectively:

www =
[
wwwHWST wwwWDT wwwVWST

]T
. (8.3)

The AR-process PSD is computed by means of the Yule–Walker equations [Proakis & Manolakis

2006].

The accuracy of the AR wind model depends on the process order as discussed next:

Thus, in Figure 8.2, we compared the PSD of four different 10 min HWS time series measured

by the fixed lidar with the estimated PSDs using different random process models. Two high- and

two low-frequency wind scenarios (panels (a,b) and (c,d), respectively) characterized by low and

high HWSs ((a,c) and (b,d), respectively) were chosen. It can be observed that the RW model was

not able to follow all the spectral details of the measured PSD in high frequency scenarios. At low

frequencies (f ≈ 0 Hz), RW was biased up to 4 dBs. In addition, RW was not able to follow the

second lobe of the lidar-measured PSDs at f ≈ 0.05 Hz. On the other hand, the RW matched quite

well the reference PSD in low frequency scenarios irrespective of the HWS chosen. Regarding the

AR models, they emulated more accurately the PSD in high frequency scenarios in comparison

to the RW model. Moreover, it is evident that the higher the process order was, the better the

model capability to equal the measured PSD was. The AR process order P was determined on the

basis of the lowest order, ensuring a difference lower than 3 dB between the secondary lobes of the

measured and emulated PSDs in high-frequency scenarios (Figure 8.2a,b). By experiment, the AR

process order P = 10 was found.

8.2.2.2 Lidar-Scan Initial-Phase Model

The UKF lidar motion-correction algorithm by Salcedo-Bosch et al. [Salcedo-Bosch et al. 2021c]

assumes the oversimplification that initial phase θ0 is a random variable with uniform distribution

over 0-360 deg, and that there are independent phases from one conical scan to the next [Gutiérrez-

Antuñano et al. 2018]. An RW model was considered for the initial phase:

θ0,k = θ0,k−1 + ϵk, (8.4)

where θ0,k and θ0,k−1 are the initial phases at discrete times tk and tk−1, respectively, and ϵk is a

random variable with uniform distribution over [0, 360] deg.

Alternatively, here, we propose a phase model based on the kinematics of the DWL rotating

prism used to implement the scanning mechanism (Section 8.2.1 and Figure 8.1, inset) that breaks

this independence assumption. Because the prism has Uniform Circular Motion (UCM) at a rate of

360 deg/s, if the initial phase is known at a given time instant, it can be known elsewhere in time.

The UCM initial-phase model can be formulated as follows:

θ0,k = θ0,k−1 + 360×∆tk, (8.5)
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Figure 8.2: Comparison between the HWS PSD measured by the fixed lidar (PdP campaign;
Barcelona; 10 min HWS time series) and the PSDs estimated from a set of different RW and AR
random process models (see legend). Panels (a,b): high-frequency wind scenarios (19 June 2013,
17:10 LT; and 28 June 2013, 12:40 LT, respectively). Panels (c,d): low-frequency wind scenarios (24
June 2013, 12:30 LT, and 22 June 2013, 12:10 LT, respectively).

where θ0,k and θ0,k−1 are the initial phases (in degrees) at discrete times tk and tk−1, respectively,

and ∆tk is the time lag between tk and tk−1. Experimentally, there is a small time lapse between

consecutive lidar scans as well as a variability in this time lapse, which can be caused by CPU

internal processes or the re-focusing of the lidar at different heights. This leads to observed initial

phases, θ0, with apparent uniform distribution between 0 and 360 deg.

Figure 8.3 shows the initial-phase time series, θ0,k, for the UCM model in response to the time-

lag series, ∆tk. The resulting initial-phase distribution is also shown. The time-lag series was

generated from one hour of lidar-recorded timestamps. The initial phase at start time t0 = 0 s was

θ0,0 = 180 deg. In Figure 8.3b, it can be observed that the time lag, ∆tk, usually departed from the

nominal ≃1 s scan time (baseline), with noticeable lag dropouts approximately every 15 s being

caused by the lidar internal CPU interruptions. The initial-phase time series shown in Figure 8.3a

tentatively demonstrated uniform random behavior over [0, 360) degs. The uniform distribution

was corroborated in the 30 deg bin histogram in Figure 8.3c.
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Figure 8.3: The UCM initial-phase model (19 June 2013; 17:10–17:20 LT; PdP campaign). (a) Initial-
phase time series, θ0,k (sub-segment 17:10:08–17:11:35 LT). (b) Time-lag time series, ∆tk. Baseline
(dashed line) indicates the 1 s nominal lidar scan time. (c) Histogram plot of the initial phase
(panel (a)).

8.2.2.3 Dual UKF Estimation

We propose a dual UKF approach consisting of two unscented Kalman filters working coopera-

tively: the main filter (UKF1), which estimates the wind vector (Equation (8.2)) and initial phase,

and the auxiliary filter (UKF2), which estimates the weight vector (Equation (8.3)). The motivation

behind this is the non-stationarity of wind fields. Although, in theory, the wind process is usu-

ally considered stationary over short-term intervals (≃15 min [Smith & Mehta 1993]), in practice,

it is non-stationary and is dependent on the atmospheric conditions. Therefore, weight vector www,

which describes the AR model coefficients, is an unknown set of random variables that needs to be

continuously estimated at each discrete time tk along with state vector xxxk.

As illustrated in Figure 8.4, the weight vector estimated at time tk−1 by UKF2,wwwk−1|k−1, is used

by UKF1 to estimate the wind vector at the prediction step. Similarly, the wind-vector and initial-

phase estimates at tk−1, denoted as UUUk−1|k−1 and θ0,k−1|k−1, respectively, which are part of the

state-vector xxxk−1|k−1 estimated by UKF1, are used to estimate the weight vector at the UKF2 inno-

vation step. Both filters use the motion-corrupted wind vectors retrieved by the FDWL (UUUFDWL
k )

at both the prediction and innovation steps, and the IMU-measured FDWL attitude (6 DoFs) at the

prediction step. The formulation of the two filters is detailed in the subsections below.

8.2.2.4 Main UKF

The main filter, UKF1, exhibits great similarities with the former motion-correction filter designed

by Salcedo-Bosch et al. Salcedo-Bosch et al. (2021c) (refer to Section 7.2.6). Similar to such imple-

mentation, UKF1 aims to estimate the wind vector and initial phase from motion-corrupted wind

data; however, this is achieved using enhanced models in the version here shown. Thus, UKF1

uses the AR(P) model instead of RW for the wind process and the UCM model instead of RW for

the initial phase.
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Figure 8.4: The dual UKF approach. (Red box) Main filter (UKF1) used to estimate the motion-free
wind vector (UUUk, i.e., the “true” wind vector at time tk) and initial phase θ0,k. (Blue box) Auxiliary
filter (UKF2) used to estimate the weight vector defining the AR wind model. (Green Box) FDWL
block. Green arrows depict that both filters assimilate FDWL 6 DoF motion information from the
buoy IMUs as well as the motion-corrupted FDWL wind retrievals, UUUFDWL

k . The black arrows
depict the exchange of information between filters UKF1 and UKF2.

In order to formulate UKF1, the previous equation for the state vector (Equation (7.20)) is refor-

mulated by including the P past wind-vector estimations relative to times from tk−P to tk−1:

xxxk =
[
UUUTk UUUTk−1 ... UUUTk−P θ0,k

]T
. (8.6)

The state-transition function of the main filter, fUKF1(·), is composed of AR wind-model state-

transition function fARUUU (·) and UCM initial-phase state-transition function fUCMθ0
(·):

fUKF1(wwwk−1|k−1,xxxk−1|k−1) =

[
fARUUU (wwwk−1|k−1,UUUk−1|k−1 . . .UUUk−P |k−P )

fUCMθ0
(θ0,k−1|k−1)

]
, (8.7)

wherewwwk−1|k−1 is the current “a posteriori” estimate of the weight vector by UKF2, and fARUUU (·) and

fUCMθ0
(·) are written in state-space formulation upon the models of Equation (8.3) and Equation

(8.5), respectively. Explicitly:

fARUUU (www,UUUk−1|k−1, . . . ,UUUk−P |k−P ) =



wwwHWST ·HWSHWSHWSk−1|k−1

wwwWDT ·WDWDWDk−1|k−1

wwwVWST · VWSVWSVWSk−1|k−1



III


UUUk−1|k−1

UUUk−2|k−2

...
UUUk−P+1|k−P+1




, (8.8)
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and:

fUCMθ0 (θ0,k−1|k−1) =
[
θ0,k−1|k−1 + 360×∆tk

]
. (8.9)

In Equations (8.8) and (8.9) above, the state-space formulation provides a convenient way to

rewrite the simple random process description of Equations (8.3) and (8.5) into the vector forms

of Equations (8.8) and (8.9), respectively. The advantage of this state-space representation is that it

allows the AR wind model and UCM initial-phase model to be easily integrated into filter Equation

(7.5) through state-transition function f(·) = fUKF1.

Measurement vector zzzUKF1
k and measurement function hUKF1(·) are identical to the UKF filter

described in Section 7.2.6 with measurement function h(·) defined by Equation (7.28).

8.2.2.5 Auxiliary UKF

The auxiliary filter, UKF2, aims to estimate AR wind-model weight vector www. Therefore, the state-

vector is vectorwwwk to be estimated, formed by the HWS, WD and VWS as AR process coefficients

of P -th order:

wwwk =
[
wwwHWS
k

T
wwwWD
k

T
wwwVWS
k

T
]T
. (8.10)

Because it is assumed that random step changes in any of the weights occur with equal proba-

bility and are independent of each other, the state-transition model is considered as random walk

[Wan & Van Der Merwe 2000]. It is formulated as follows:

fUKF 2(wwwk−1|k−1) = III ·wwwk−1|k−1. (8.11)

Similar to UKF1, the UKF2 observation vector is FDWL-measured wind vector UUUDWL
k . In ex-

panded form:

zzzUKF 2
k =

[
HWSFDWL WDFDWL VWSFDWL

]T
, (8.12)

where HWSFDWL, WDFDWL and VWSFDWL are the FDWL-measured (i.e., motion-corrupted)

HWS, WD and VWS, respectively.

The UKF2 measurement function, hUKF2(·), relates the “a priori” estimation of weight vector

wwwk|k−1 to the motion-corrupted measurement vector zzzUKF2
k . To perform the above, the P pre-

vious motion-corrected wind vectors estimated by UKF1 (UUUk−1|k−1, . . . ,UUUk−P−1|k−P−1) must be

propagated to the AR wind model via function fARUUU (·)) and weights wwwk|k−1 in order to predict

motion-corrected or “true” wind vector UUUk at present time tk. Then, the predicted wind vector is

transformed by UKF1 lidar measurement function hUKF1(·) to predict measured motion-corrupted

wind vector UUUFDWL in the recursive loop of the filter. These steps can be written as follows:

hUKF2(wwwk|k−1,UUUk−1|k−1) = hUKF1(fARUUU (wwwk|k−1,UUUk−1|k−1)). (8.13)

Note that, for short, hUKF1(·) = h(·) in Equation (7.28), Section 7.2.6.
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Concerning filter initialization, both the main and auxiliary filters use a rough estimate of the

motion-corrected wind-vector time series computed using the window averaging technique [Gutiérrez-

Antuñano et al. 2017]. The initial weight vector,www0, is derived by fitting an AR model to the rough

motion-corrected time series. The process-noise covariance initial matrices are derived as the mean

squared error between the observations and the predictions by the fitted AR model. Measurement-

noise covariance matrices are initialized from the rough motion-corrected time series as in [Salcedo-

Bosch et al. 2021c].

8.2.2.6 Model Intercomparison Methodology

In order to assess the motion-correction performance of the improved wind and initial-phase mod-

els presented in Sections 8.2.2.1 and 8.2.2.2, two model combinations were considered (Table 8.1):

• (1) Basic model Both the wind process and initial phase are modeled as RWs;

• (2) Enhanced model: The wind process is modeled as an AR process (order P = 10) and the

initial phase as UCM (see Section 8.2.2.2).

Table 8.1: Basic and enhanced model combinations studied to assess the motion-correction fil-
ter performance.

Model
Combinations

Wind Model Initial-Phase Model Dual UKF

Basic RW (Equation (7.17)) RW (Equation (7.18)) No
Enhanced AR (Equation (8.8)) UCM (Equation (8.9)) Yes

For each of the model combinations above, the motion-correction performance was analyzed in

terms of TI and its mean deviation with reference to the fixed lidar. The statistical descriptors below

were considered.

(a) Floating-lidar TI measurements with and without correction (TIfloat.−corr. and TIfloat., re-

spectively) were compared against fixed-DWL TI measurements (TIfixed), which were used as

reference. Model comparisons were carried out considering different motion scenarios clustered

as a function of (i) mean WD, (ii) mean HWS and (iii) FDWL mean tilt. The mean tilt was computed

from 10 min roll and pitch-tilt measurements [Salcedo-Bosch et al. 2021b]:

Tilt =

∑N
n=1

√
roll (tn)

2
+ pitch (tn)

2

N
, (8.14)

where N = 6000 is the number of samples in a 10 min interval, and ∆tn = 100 ms is the IMU

sampling time increment (10 Hz sampling frequency).

(b) The Mean Deviation (MD) of the FDWL motion-corrected TI with reference to the fixed lidar

was computed as follows:

MD =
1

N

N∑
n=1

(TInfloat.−corr. − TInfixed), (8.15)
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where N is the number of measurements in each HWS cluster.

8.3 Results and Discussion

In this section, the performance of the enhanced motion-correction UKF is studied. First, two case

examples are presented under low- and high-frequency turbulent regimes. Second, the perfor-

mance of the basic and enhanced filters in terms of TI estimation is compared under different

motion and wind scenarios. Third, the motion-correction accuracy achieved by both filters is ex-

amined through numerical analysis. Finally, the limitations of the enhanced filter are presented

and discussed.

8.3.1 Case Examples

Two case examples are presented next to illustrate the comparative performance between the basic

and enhanced models of Section 8.2.2.1 and Section 8.2.2.2, respectively, under two different turbu-

lent regimes: (i) low-frequency turbulence (Figure 8.5) and (ii) high-frequency turbulence (Figure

8.6). These figures compare the 10 min motion-corrected HWS time series and related spectra

when using the basic and enhanced models with reference to the fixed lidar and the uncorrected

FDWL. The error bars depicted are indicative of the uncertainty in the HWS estimations. The

HWS uncertainty is computed as the square root of the main diagonal first element of the a pos-

teriori error covariance matrix PPP xxk (Algorithm 1, step 3 in Appendix D). The PPP xxk main diagonal

is the a posteriori state-noise error variance vector associated with the state vector (see Equation

(7.20) and Equation (8.6)), so that its first element (Equation (6.1)) corresponds to the HWS error

[Rocadenbosch et al. 1999]. A similar approach was followed by Araújo et al. Araújo da Silva

et al. (2022b) to assess the Kalman filter error on the estimation of the atmospheric boundary layer

height.
The first case is shown in Figure 8.5. The weak turbulence of the wind in Figure 8.5a was

evidenced by the fixed-lidar time series, showing an approximately constant HWS (HWS ≈ 6

m/s) along with slow speed variations (notice that the Y-axis scale only spans 1.5 m/s). In the PSD

plot of Figure 8.5b, the prominent low-frequency behavior of the turbulence was associated with

a primary-to-secondary lobe level (PSLL) as high as 29 dB. The primary lobe, which concentrates

most of the wind energy, was close to 0 Hz and peaked at 4 dBs, while the secondary lobe, which

assimilates rapid turbulent variations, lay at 0.08 Hz and peaked at −25 dBs.

In Figure 8.5a, both the basic and the enhanced model combinations enabled the filter to motion-

correct the corrupted FDWL measurements and to acceptably track the fixed-lidar HWS reference.

This is re-encountered in Figure 8.5b, with similar spectra between the enhanced and the basic

models, albeit with the remark that the enhanced models overestimated the high-frequency com-

ponents above 0.1 Hz. Moreover, both model combinations were able to correctly estimate the true
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Figure 8.5: Case example #1: Low-frequency turbulence scenario (PdP campaign; 22 June 2013;
12:10 LT). HWS time-series measured during PdP campaign by the fixed lidar and the FDWL with
motion correction considering the basic and enhanced models combinations. (a) Time-series com-
parison between the basic and enhanced floating-lidar motion-correction models with reference to
the fixed lidar. (b) Related PSDs.

wind TI (figure not shown) as TIfloat.−corr. = 2.77% (basic) and 2.87% (enhanced), which were

nearly identical to the reference TI , TIfixed = 2.76%.

However, the error bars evidence that HWS estimates from the basic filter have very high un-

certainties as compared to the enhanced filter. This is due to the improved wind and initial phase

models used, providing more accurate a priori estimation of the wind vector.

The second case is shown in Figure 8.6. In Figure 8.6a, the referenceHWS time series measured

by the fixed lidar demonstrated rapid and more intense variations, including sudden wind gusts

lasting between 20 and 30 s. These fast HWS variations manifested in the PSD of Figure 8.6b as a

much lower PSLL than that in Figure 8.5b. The PSLL was only 7 dB (the main lobe around 0 Hz

(low frequencies) was at ≃4 dB, and the secondary lobe at ≃ −3 dB lay between 0.03 and 0.05 Hz

(high frequencies)).

From the temporal series plots, it arises that the motion-correction filter was not able to follow

the HWS peaks when using the basic model combination. These peaks were treated by the filter

as if they were noise; therefore, such turbulent situations led to biased estimations. In contrast,

the enhanced combination permitted the filter to track the wind gusts. Based on the error bars

shown in Figures 8.5 and 8.6, it emerges that in a fast-changing wind scenario, the enhanced-filter

uncertainties in the HWS estimates remain small and attain similar values to those attributable to

low-frequency scenarios. The PSD demonstrated that the basic model combination (blue trace) un-
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Figure 8.6: Case example #2: High-frequency turbulence scenario (PdP; 28 June 2013; 12:40 LT).
Same legend as in Figure 8.5. Note the larger Y-axis limits in panel (a) to accommodate much
higher HWS variations.

derestimated all frequency components higher than approximately 0.02 Hz by about ≃8 dB (blue

trace versus black trace). On the contrary, the enhanced combination permitted the filter to reason-

ably follow the high-frequency wind components up to 0.1 Hz. The numerical estimation yielded

TIfloat.−corr. = 1.17% (basic), and 2.08% (enhanced) as compared with TIfixed = 2.07%. It is impor-

tant to highlight that higher AR-model orders (for example, P = 20 and P = 30) yielded biased

estimations of both the PSD and TI due to the much longer convergence time required by the filter.

Therefore, in a fast-changing wind scenario, such as the one in Figure 8.6, the filter may not be able

to converge.

8.3.2 Global Statistics

To complete the analysis, the performance of the motion-correction model combinations mentioned

above (Section 8.2.2.6) was studied by comparing the 10 min TI measured by the FDWL (before and

after motion correction) with reference to the fixed lidar under different wind and motion condi-

tions. In total, 1786 data records (from 6 to 30 June 2013) from the PdP experimental campaign were

used. The statistical database was filtered out for outliers according to the quality assurance crite-

ria described in detail in Salcedo-Bosch et al. (2021c). In brief, the removed outliers encompassed

rain-flagged data, HWS measurement values outside the 1–80 m/s range, SV values higher than

0.2 and backscattering coefficients smaller than 0.02.

The 10-min meanHWS andWDmeasured by the FDWL without motion compensation matched



8.3. RESULTS AND DISCUSSION 109

almost ideally the measurements of the reference fixed lidar as expected from previous studies

[Araújo da Silva et al. 2022a, Kelberlau et al. 2020, Gutiérrez-Antuñano et al. 2017, Gutierrez-

Antunano et al. 2017]. Regarding the mean HWS, when regressing FDWL HWS data onto fixed-

lidar HWS for the whole campaign, the coefficient of the determination (R2) was 0.997, linear

regression (LR) slope was 0.99 and LR offset was 0.06 m/s. Regarding the mean WD, the coeffi-

cient of determination was 0.990, LR slope 0.98 and LR offset 0.41 deg. These values are compliant

with the key performance indicators defined by the Carbon Trust Offshore Wind Accelerator [Car-

bon Trust 2018]. The same indicators were obtained after motion correction with both the basic and

the enhanced filters.

Figure 8.7 shows the performance of the motion-correction model combinations mentioned

above in Section 8.2.2.6, studied by comparing the TI measured by the fixed lidar and by the

FDWL (before and after motion correction) under different wind and motion conditions. The input

statistical variables of the study or clustering variables were WD, HWS and buoy tilt angle, and the

output ones were mean TI , MD and FDWL translational velocity.

In Figure 8.7a,c,d, it can be observed that the measured FDWL TI , TIfloat, was higher than

the fixed-lidar reference TI , TIfixed, for all the clustering variables and range of values because of

the additive turbulence caused by wave motion [Kelberlau et al. 2020, Salcedo-Bosch et al. 2020a,

Gutiérrez-Antuñano et al. 2018]. In Figure 8.7c, the difference between TIfloat and TIfixed in-

creased with the HWS, because higher wind speeds cause higher wave motion [Jeffreys & Taylor

1925]. In Figure 8.7d, the difference between TIfloat. and TIfixed increased in with the increase in

tilt and FDWL translational velocity.
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Figure 8.7: Motion correction performance as a function of different wind and wave-motion con-
ditions clustered by (a) WD, (c) HWS and (d) tilt. Panels (a,c,d): (Red trace with dots) Fixed-lidar
mean TI . (Green trace with diamonds) FDWL mean TI before motion correction. (Blue trace with
circles) FDWL mean TI after motion correction using the basic model combination. (Black trace
with plus signs) Same as blue trace but for the enhanced model combination. Dispersion bars
represent the 1-σ dispersion of the data in each bin (≃68% percentile). Panel (a): (Gray trace with
triangles, read on the right Y-axis) Fixed-lidar meanHWS. Panel (d): (Purple) trace with diamonds,
read on the right Y-axis) FDWL mean translational velocity. (e,f) Error bar analysis: TI Mean de-
viation bar charts (Equation (8.15), in absolute value) binned by HWS and tilt angle, respectively.
Blue and black bars stand for the basic and the enhanced model combinations, respectively. Values
above the bars indicate the number of samples in each bin. Panel (b): PdP campaign wind rose.
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Regarding Figure 8.7a (where TI measurements were clustered in 60 deg wide bins), the TI

increased between 240 and 360 deg, which was due to winds coming from the urban area (see

Figure 8.7b). The higher roughness of the urban terrain was also responsible for larger spatial and

temporal variations in the wind field, which resulted in higher turbulence. The opposite was true

for winds coming from the sea (WDs between 0 and 240 deg) because of the lower roughness of

the sea surface [He et al. 2021]. It is known that lower roughness is directly related to higher wind

speeds [Stull 1988]. Thus, the mean HWS measured by the fixed DWL (gray trace) demonstrated

peak values of 6.3 and 5.9 m/s for winds following the coast line (WDs between 60 and 120 deg

and between 180 and 240 deg, respectively). In contrast, turbulent winds blowing from land (WDs

between 240 and 360 deg) translated into lower HWS values of 5.2 and 4.4 m/s.

Figure 8.7c depicts the TI as a function of the mean HWS. HWSs were clustered into 2 m/s

bins and speeds higher than 9 m/s were merged into a single bin (“>9” label) on account of the

low number of samples available. When considering the reference TI measured by the fixed lidar,

TIfixed, it decreased with the increase in the HWS. A suitable explanation for that is that at low

HWSs, turbulence is mainly caused by thermal gradients (thermal turbulence) [Monin & Obukhov

1954], which smooth out with the increase in wind speeds [Kelberlau et al. 2020, Türk & Emeis 2010,

MacEachern & İlhami Yıldız 2018]. In addition, it usually occurs that the TI measured offshore

tends to stabilize and even increment at high HWS values due to the increased sea roughness

induced by higher waves [Stull 1988, Türk & Emeis 2010, Lange et al. 2004]. However, this latter

effect was not observed (Figure 8.7c) possibly because of the interfering effect caused by winds

blowing from land (see Figure 8.7b).

In Figure 8.7d, the TI is shown as a function of the FDWL tilt angle in 0.5 deg wide bins.

Values higher than 3 deg were merged into a single bin (“>3” label). The reference TI , TIfixed,

exhibited high values at low tilt angles (<1 deg) and decreased with a virtually constant slope up

to a 2.5 deg tilt. We hypothesize that this reduction in TI was associated with higher HWSs that

progressively smoothed out the thermal turbulence. In the last section of the curve, above 2.5 deg

tilt, it is likely that higher HWSs made sea-surface roughness, rather than thermals, the dominant

source of turbulence, and that this caused the small increase in TI in the plot.

Overall, both the basic and the enhanced model combinations demonstrated a high level of

motion correction, as shown in all Figure 8.7 panels, with TIfloat.−corr. matching almost ideally

the reference TI , TIfixed. On one hand, the basic model combination demonstrated a small over-

correction of TIfloat, which exhibited mean TIfloat.−corr. values below the reference TI , TIfixed,

in almost all ranges of values. This is in accordance with previous results [Salcedo-Bosch et al.

2021c]. On the other hand, the enhanced model combination demonstrated that the FDWL motion-

corrected the TI , TIfloat.−corr., to be virtually identical to that of the fixed lidar, TIfixed. In the

bar charts of Figure 8.7e,f, it can be clearly observed that the enhanced model combination yielded
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much lower MDs than the basic model for both binning variables and ranges of values. A limiting

point arises in Figure 8.7a for winds coming from the urban area (WDs between 240 and 360 deg).

For these WDs, the high spatial variability observed may invalidate the assumption of uniform

wind during the DWL scan, which would not hold true for the motion-correction filter and would

lead to filter divergence.

8.3.3 Numerical Analyses

Using numerical analyses, we compared the raw FDWL TI , TIfloat., and the corrected one by the

different models, TIfloat.−corr., with the fixed-lidar reference TI , TIfixed. The descriptive indica-

tors used to quantitatively assess the statistical deviation between any two datasets were (i) the

mean deviation (MD; defined in Equation (8.15)), (ii) the root-mean-squared error (RMSE), (iii)

the coefficient of determination (R2) and (iv) the slope and offset term of the Linear Regression

(LR).

Table 8.2 shows the descriptive indicators obtained for the correlation variables and the model

combinations indicated. The superior performance of the enhanced model with respect to the basic

model and, in turn, that of the basic model with respect to the motion-uncorrected case are evident.

Thus, without motion correction, the floating vs. fixed lidar TI data attained an R2 value of 0.90,

an RMSE of 1.87% and an MD of 1.62%. In addition, the LR was the poorest (y = 0.96x + 0.02).

Using the basic model, the motion-correction filter improved the correlation to R2 = 0.93, RMSE =

0.81% andMD = −0.32%. Still, the filter demonstrated its flaws in the form of an overcompensated

TI . This was evidenced by a negative MD (MD = −0.32%), which was approximately one-fifth

of the bias for the uncorrected case (MD = 1.62%) in absolute value. Finally, the enhanced model

attained almost ideal indicators: R2 = 0.96, RMSE = 0.58% and MD = −0.07%. The latter indicator

represents an ≃80% reduction in MD as compared with the basic model.

Table 8.2: Statistical indicators comparing the 10 min fixed-lidar to floating-lidar TI (with and
without motion compensation) using the “basic” and the “enhanced” models of Table 8.1.

Uncorrected Corrected (Basic) Corrected (Enhanced)
Correlated

TIfloat. vs. TIfixed TIfloat.−corr. vs. TIfixed TIfloat.−corr. vs. TIfixedvariables
R2 0.90 0.93 0.96

RMSE 1.87% 0.81% 0.58%
MD 1.62% −0.32% −0.07%

Slope 0.96 0.97 0.99
Offset 1.81 × 10−2 1.70 × 10−3 7.41 × 10−4

The improved motion correction achieved by the enhanced model as compared with the basic

model is shown in Figure 8.8 in terms of TI . Thus, the motion-corrected FDWL data points us-

ing the enhanced model (Figure 8.8b, blue points), (TIfixed, T Ifloat.−corr.), became less scattered

than the uncorrected ones (Figure 8.8a,b, black points), (TIfixed, T Ifloat.), and less scattered than
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the points corrected using the basic model (Figure 8.8a, red points). This reduction in scattering

was best evidenced by the narrower minor axes in the associated standard-deviation ellipses. The

major and minor axis directions of the ellipses are the eigenvectors of the data covariance matrix.

The lengths of the semi-major and -minor axes are computed as the square root of the associated

eigenvalues.

Figure 8.8: Comparison between the motion-corrected floating-lidar TI (basic and enhanced mod-
els) and the fixed-lidar TI. (a) Basic model of Table 8.1 and (b) enhanced model. (Black dot-dashed
line, both panels) Linear regression TIfloat. (uncorrected) on TIfixed. (Red dot-dashed line, panel
(a)) Linear regression TIfloat.−corr. on TIfixed for the basic model. (Blue dot-dashed line, panel (b))
Linear regression TIfloat.−corr. on TIfixed for the enhanced model. The minor axes of the ellipses
delimit the population spread outside of the linear-regression line (see text).

When comparing the correction performance of the enhanced filter with previously published

results in the state-of-the-art, the filter outperformed other methods [Gutiérrez-Antuñano et al.

2017, Gutiérrez-Antuñano et al. 2018] because of the demonstrated wind tracking capabilities under

the different turbulent regimes (Figures 8.5a and 8.6b) and convergence in all motion scenarios.

Without having access to the lidar internal LoS measurements, the enhanced filter attains similar

correction accuracy as the motion compensation algorithm by Kelberlau et al. (2020) under similar

wave (tilt < 3 deg) and wind conditions (HWS < 10 m/s). Yet, the outstanding feature of the UKF

is that it is able to operate in a stand-alone run-time fashion, i.e., with no need to synchronize with

the lidar measurement timestamps for data post-processing.
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8.3.4 Method Limitations

First, the results demonstrated in this study are limited to the ZephIR-300 FDWL sounding at a sin-

gle height. The single-height configuration was chosen in this study for its simplicity when assessing

the comparative filter performance between the “basic” and the “enhanced” models. However, a

typical configuration for this type of lidar is multiple-height sounding. Under this configuration,

the filter has less information available from each individual measurement height because the ob-

servation time is divided into the number of sounding heights. The latter is due to the ZephIR lidar

measuring the wind at multiple heights by following a sequential pattern. Therefore, filter perfor-

mance (which was computed from the one-to-one correspondence between the motion-corrected

measurements and the ones from the reference fixed lidar in Figure 8.8) is expected to degrade with

an increasing number of sounding heights. See [Salcedo-Bosch et al. 2022c] for an in-depth discus-

sion. A consequence of this poorer performance is that the enhanced filter will continue to be able

to take the motion out “on average” over time but losing the fine detail of the wind time series.

Second, it is important to highlight that, in contrast to anemometers, continuous-wave focus-

able lidars measure a temporally- and spatially-averaged version of the wind vector. They assume

a uniform wind flow during the lidar scan when retrieving the wind vector by means of the VAD

algorithm. Therefore, in the turbulent conditions prevailing in the interference created by wind tur-

bines (e.g., induction effect in the inflow and disturbance in the wake Micallef & Rezaeiha (2021)),

DWLs cannot provide valid measurements of the wind field Gottschall (2020). Under these cir-

cumstances, the proposed AR and RW wind models are no longer valid for modeling such high

turbulent flows, which may lead to filter divergence.

Finally, regarding filter convergence, the enhanced filter demonstrate itself able to successfully

correct the corrupted wind measurements under all motional conditions in the mild near-shore

scenario of the PdP campaign (FDWL mean translational velociy lower than 0.5 m/s, mean tilt

amplitude lower than 3 deg and wave periods longer than 3 s). Provided correct measurement of

the FDWL motion attitude by the IMUs (according to Nyquist criterion and sampling requirements

[Shannon 1949]), which was always the case, the filter was at all times able to compensate for the

motion-corrupted wind. Therefore, rougher conditions such as those occurring in open seas (higher

tilt amplitudes about 5 deg and wave periods longer than 2 s [Salcedo-Bosch et al. 2021b]) or the

hydrodynamics associated with floating offshore wind turbines [Gao et al. 2022] are not expected

to affect the filter performance.

Although future research is to give further insight into harsher sea-wave and wind conditions,

preliminary limits of filter convergence were analyzed via simulation. FDWL measurements were

simulated from turbulent wind fields generated using the Mann model [Mann 1998]. The filter

was found to be reliable under these extreme motional conditions: mean tilt > 15 deg and mean

translational velocity > 2 m/s, provided that correct measurements of the FDWL attitude were



8.4. SUMMARY AND CONCLUSIONS 115

input from the IMUs. On the other hand, the filter was unable to track highly turbulent wind fields

with TIs higher than ≃30%.

8.4 Summary and Conclusions

Enhanced wind and lidar initial scan phase models for the FDWL motion-correction UKF filter by

Salcedo-Bosch et al. (2021c) are presented. The novelty of the enhanced filter relies on the superior

wind-tracking capabilities of the filter at a 10-min level under different turbulent regimes without

having access to the lidar internal LoS measurements, nor to the lidar measurement timestamps

for filter synchronization. The new UKF combines an AR wind model with a UCM initial-phase

model, which supersedes the basic RW used for both the wind and initial-phase models in the

previous filter. In addition, the state-space reformulation of the UKF along with an implementation

based on a dual filter enables the fine removal of the motion-induced TI as well as straightforward

processing to be achieved.

Regarding the wind model, it is shown that while the former RW model can follow only up to

the first lobe of the wind spectrum, an AR model of order 10 can reproduce high-frequency wind

fluctuations up to 0.1 Hz. According to our experiments, the improvement was higher with the

increase in the order of the AR process.

With respect to the lidar-scan model, the rotation of the wedge prism used for laser-beam steer-

ing is modeled assuming a uniform circular model. Our results demonstrate that this model clearly

outperformed the RW model previously used, which inaccurately assumed a random uniform dis-

tribution of the initial phase.

As far as filter implementation is concerned, the dual UKF combines two filters working coop-

eratively (Figure 8.4): the main filter (UKF1), which is the motion-correction filter itself, and the

auxiliary filter (UKF2), which estimates the AR wind-model coefficients. The main filter estimates

the true wind-vector (HWS, WD and VWS) and the initial scan phase given the AR coefficients

estimated by the auxiliary filter, i.e., the IMU-measured 6 DoF motion of the floating lidar and the

lidar-measured wind. The prediction step aims at estimating the true wind vector and initial phase

prior to the assimilation of the present-time motion-corrupted wind. The innovation step aims

at matching the present-time floating-lidar-measured wind vector to the filter-predicted motion-

corrupted wind at each recursive cycle of the filter.

The dual-UKF motion-correction performance was validated over the 06 Jun–30 Jun 2013 inten-

sive observation period during the PdP campaign in different wind and motional scenarios using

big-data clustering. The enhanced model combination proved itself as the best candidate to address

the FDWL motion compensation in all wind and motional scenarios and statistically demonstrated

a virtually ideal correction. With reference to the 10 min fixed-lidar data, the MD improved from

1.62% (floating lidar without motion correction) to −0.07% (with correction), while R2 increased
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from 0.90 to 0.96, and the RMSE improved from 1.87% to 0.58%. Though the superior perfor-

mance of the enhanced model as compared with the basic one is undeniable, the basic model also

provided convergent results and acceptable indicators to correct the FDWL motion in most cases.

At a finer level of detail, the enhanced model permitted the over-compensation issue of the basic

model to be overcome thanks to its capability to track the high-frequency spectral fluctuations of

wind turbulence (Figures 8.5 and 8.6). The latter proves the enhanced filter as a better candidate

for the measurement of incoming wind disturbances in floating wind turbine control. Feasibility

and convergence of the enhanced filter is discussed in Section 8.3.4.

All in all, this study demonstrates the importance of the accurate modeling of the wind tur-

bulence spectrum, initial scan phase and motion dynamics for the successful removal of motion-

induced turbulence in floating-lidar measurements. However, the filter was tested over experimen-

tal data measured under mild environmental conditions (Mediterranean shore). Future research is

to extend this study to harsher scenarios. Furthermore, a better experimental set-up, having both

the reference and the floating lidars beside each other, could help minimize wind-direction-induced

errors when computing performance statistics. Finally, the filter needs to be tested with FDWLs

configured to measure the wind at multiple heights.



Chapter 9

Conclusions and Outlook

9.1 Conclusions

The research conducted in this Ph.D. Thesis focused on the evaluation and improvement of FDWL

capabilities in sensing atmospheric and ocean parameters with the aim to reduce the associated

costs of offshore wind farms assessment phase. The work carried out was particularly centered on

the effect of wave-induced motion on FDWL measurements of the wind. In this context, the scope

of the main conclusions drawn from this work is two-fold: (i) motion-induced error estimation,

and (ii) motion-induced error correction.

Regarding motion-induced error estimation:

1. A unified analytical formulation of the 6-DoF-motion-induced-error on FDWLs was de-

rived, being able to accurately estimate the 10-minute bias and TI increment observed in

FDWLs.

2. The analytical model showed promising results in both near-shore and open-sea scenarios,

proving its capabilities in a wide range of wind and motion scenarios.

Regarding the motion-induced error correction:

1. Motion compensation of FDWL wind measurements with an UKF showed promising re-

sults (R2 = 0.96 in terms of TI), being able to correct the motion-induced error on-the-run

without having access to the LiDAR LoS measurements (undisclosed by the manufacturer).

2. The motion-correction UKF was found to be able to compensate for the motion-induced

error in all motional and wind scenarios studied.

3. The wind and initial scan phase models used by the motion-correction filters were found

to have an important influence on the motion correction, being an AR model able to track

the high frequencies of the wind process, opposite to a RW model.

More detailed conclusions of this Ph.D. dissertation are given next:
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9.1.1 On the Estimation of Ocean Waves Period from FDWL Measurements.

A new method (L-dB method) to estimate the wave period from roll and pitch records measured

by a FDWL buoy was presented. By means of the spectral analysis of tilt measurements, the L-

dB method showed itself able to estimate the wave period in the context of IJmuiden campaign

with reference to classical oceanographic wave-period estimation methods by a wave buoy. For the

estimation, the L-dB method considered only roll and pitch tilts and assumed negligible transla-

tional motion. The low-angle assumption enabled the formulation of the so-called eigenangle as a

complex-number random process. Wave period was computed from the cut-off frequencies of the

PSD of the eigenangle process.

By parameterizing the results as a function of L, it was found that the L-dB method was in

close agreement with the zero-crossing and average wave-period definitions, and a threshold value

L=8 dB exhibited the best statistical indicators when compared to the zero-crossing method. We

reconciled the spectral approach to the oceanographic one, yielding the L-dB method fairly good

results when compared against the TryaxisTM wave buoy as a reference, with ρ = 0.86, RMSE =

0.46 s, and MD = 0.02 s.

All in all, the proposed L-dB method allowed FDWLs to increase the knowledge of sea state

without relying on external equipment, which could enhance wind measurements and reduce off-

shore wind farms deployment cost.

9.1.2 On the Estimation of 6-Degrees-of-Freedom-Motion-Induced Errors in FD-
WLs.

A unified analytical formulation for the computation of the 6-DoF-motion-induced error in focus-

able CW FDWLs was presented. The formulation showed itself capable to estimate the HWS bias

and TI increment at a 10-minute level. Rotational and translational motion effect on FDWL mea-

surements were formulated separately and added assuming superposition. The VAD algorithm

was computed as a first-order Fourier series, that allowed derivation of the sought-after analyti-

cal expressions that related attitude measurements to FDWL-measurement errors. The assumption

of uniformly distributed random initial scan phase allowed the derivation of 10-min mean HWS

bias and TI increment estimation expressions. The analytical model was numerically validated by

means of a numerical simulator [Salcedo-Bosch et al. 2021a].

The analytical model was validated experimentally under two different scenarios, a near-shore

scenario (PdP campaign) and an open-sea scenario (Ijmuiden campaign). The estimations of mean

HWS bias yielded similar results to the measure ones. The TI increment estimates matched the

measured values in statistical terms under all motion and wind scenarios.

The unified formulation proved to be a useful tool for evaluating the motion-induced error in

focusable CW FDWLs in terms of both HWS-bias and TI-increment estimation.
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9.1.3 On the Motion Compensation of FDWLs.

Two adaptive UKFs for motion compensation of ZephIRTM 300 FDWL wind measurements were

presented and compared. Both filters proved to be capable of correcting the motion-induced error

in the retrieved HWS and TI without accessing LiDAR LoS velocity measurements. The filters

measurement models departed from the FDWL motion dynamics study by Kelberlau et al. (2020)

and the VAD wind-retrieval algorithm to derive an ad-hoc state-space formulation of the problem

from the point of view of control theory. The proposed filters differed in the state-vector transition

models used: the so-called basic filter considered a RW model for the wind and initial scan phase

processes, whereas the so-called enhanced filter considered an AR model for the wind process

and an UCM model for the initial scan phase process. The latter combined two UKFs working

cooperatively, i.e., the main and auxiliary filters, to recursively estimate the motion-free wind vector

as well as the AR wind-model coefficients.

Both filters were validated over experimental data gathered during PdP campaign, by using

the filters over FDWL-measured data and taking as a reference wind measurements from a fixed

DWL 50-m appart. Their performance was analyzed and compared in terms of TI in different wind

and motional scenarios using big-data clustering. The enhanced filter proved itself as the best

candidate to address the FDWL motion compensation in all wind and motional scenarios and sta-

tistically demonstrated a virtually ideal correction. When comparing 10-minute TI measurements

by the FDWL against the reference measured by the fixed DWL, all statistical indicators improved.

With the enhanced filter, the coefficient of determination improved from R2 = 0.90 (without cor-

rection) to R2 = 0.96 (with correction), the RMSE from 1.87% to 0.58%, and the MD from 1.62% to

-0.07%. Worse results were attained with the basic filter, with R2 = 0.93, RMSE=0.81%, and MD=-

0.32% after compensation. The latter was found to be attributable to the wind and initial phase

models used, that were not able to track the high-frequency spectral fluctuations of the wind tur-

bulence. Thus, the basic filter showed over-compensation of the motion-induced error on FDWL

wind measurements.

All in all, the UKF demonstrated to be an effective tool for 6-DoF motion correction of FDWL

measurements and accurate TI measurements. Furthermore, the recursive operation of the filter

allowed room for stand-alone, nearly real-time correction of FDWL measurements.

9.2 Outlook

Future work should further validate the presented methods at additional locations and different

LiDAR configurations.

The L-dB method for wave period estimation should be validated in other sites with different

sea conditions such as near-shore scenarios where breaking waves can be found. In addition, its
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reconciliation with other oceanographic wave period indicators, e.g., significant wave period, could

be explored. Its applications in vessels and oceanographic buoys could also be of interest.

The unified analytical model for the estimation of motion-induced errors on FDWLs could be

improved by considering motion spectral multi-modality and the wind flow variability within the

LiDAR scanning cone. The study of the influence of the FDWL measurement height could also

improve the accuracy of the method. Finally, it is worth exploring how the error estimation could

be used for motion compensation and compare the obtained results with other methods in the state

of the art.

The performance of the motion-correction UKFs for FDWL motion compensation should be

studied in harsher scenarios such as open-sea scenarios where stronger wave motion and wind

turbulence is observed. It is also worth studying how the FDWL measurement of the wind profile at

different heights affects the filter performance. All in all, the study of FDWL motion compensation

could benefit from a temptative implementation of the filter in a commercial FDWL during an

assessment phase of a future offshore wind farm.
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Appendix B

Power-Spectral-Density Derivation

Appendix related to Chapter 5.

Next, we compute the PSD associated to the time variations of eigenangle α, given by Equa-

tion 5.17. Using the superposition principle described by Equation 5.17 and illustrated in Fig-

ure 5.4a, where pitch and roll contributions add up in quadrature, α can be described in a straight-

forward form by means of time-varying complex function

α(t)α(t)α(t) = θ(t)− jϕ(t), (B.1)

where bold is used to denote a complex number.

The PSD of a complex random process, α(t)α(t)α(t), is defined as the Fourier transform of the autocor-

relation function. Formally,

Sααα,ααα(f) =

∫ ∞

−∞
Rα,α(τ)e

−i2πfτdτ, (B.2)

where Rααα,ααα(τ) is the autocorrelation of ααα Proakis & Manolakis (2006), τ is the time lag, and f is the

frequency. The autocorrelation of a complex process is defined as Proakis & Manolakis (2006)

Rx,x(τ) = E[x(t)x∗(t+ τ)], (B.3)

where * denotes complex conjugate.

By inserting Equation B.1 into Equation B.3 above. the autocorrelation function of random

complex process α(t)α(t)α(t) yields

Rααα,ααα(τ) = Rϕ,ϕ(τ) +Rθ,θ(τ) + j[Rθ,ϕ(τ)−Rϕ,θ(τ)]. (B.4)

Using that Rϕ,θ(τ) = R∗
θ,ϕ(−τ) (using similar definition to Equation B.3 but for the cross-

correlation between random processes θ(t) and ϕ(t), Bracewell (2000)) Equation B.4 above reduces

to

Rααα,ααα(τ) = Rϕ,ϕ(τ) +Rθ,θ(τ) + j[Rθ,ϕ(τ)−R∗
ϕ,θ(−τ)]. (B.5)

By inserting Equation B.5 into the PSD definition of Equation B.2 and using that:
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(i) the cross-PSD (also called cross spectral density) between two processes x(t) and y(t) is the

Fourier transform (FTFTFT ) of the cross-correlation function, Sx,y =
∫∞
−∞Rx,y(τ)e

−i2πfτdτ , and

that

(ii) R∗
θ,ϕ(τ) → S∗

θ,ϕ(f) according to the FT conjugation property, x∗(t) → X∗(−f), with X the

FT of signal x(t) and the arrow symbol denoting FT ,

the PSD of ααα is obtained as

Sααα,ααα(f) = Sθ,θ(f) + Sϕ,ϕ(f) + j[Sθ,ϕ(f)− S∗
θ,ϕ(f)]. (B.6)

The terms into square brackets on the right side of Equation B.6 can be recognized as the complex

subtraction, z − z∗ = 2iIm(z), with z = Sθ,ϕ(f) and Im()̇ denoting the imaginary part. Therefore,

Sααα,ααα(f) = Sθ,θ(f) + Sϕ,ϕ(f)− 2Im[Sθ,ϕ(f)], (B.7)

with units of [rad2/Hz].
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Formulation compendium

Appendix related to Chapter 6.

This Appendix provides exhaustive details for the formulation of the 6-DoF-motion-induced

error. Specifically, Section C.1 addresses first-order approximation of the Euler rotation matrix, RRR,

in connection with Equation 6.20 and 6.21. Section C.2 tackles calculation of the LoS-projected wind

vector under rotational motion to obtain VAD function frot(ϕ). The first-order Fourier coefficient

under rotational and translational motion are formulated in Sections C.3 and C.4, respectively, by

using the auxiliary integrals given in Section C.5.

Refer to Section 6.4.1 and Figures 6.5, 6.6, and 6.7 for quality assurance.

C.1 First-order Approximation of the Rotation Matrix

The Euler rotation matrix, RRR, is the result of elemental rotations about the N, E, and D axes, RNRNRN ,

RERERE , and RDRDRD, respectively, representing roll, pitch, and yaw rotations. Inserting Equation 6.21 into

Equation 6.20 and retaining first-order terms yields:

RRR ≃

cos(Ωy) − sin(Ωy) sin(Ωy) · Ωr(ϕ) + cos(Ωy) · Ωp(ϕ)
sin(Ωy) cos(Ωy) − cos(Ωy) · Ωr(ϕ) + sin(Ωy) · Ωp(ϕ)
−Ωp(ϕ) Ωr(ϕ) 1

 , (C.1)

where Ωx, x = r, p, y is the tilt angle already defined in Equation 6.19. r, p, y is shorthand notation

for ”roll”, ”pitch”, and ”yaw”.

C.2 Wind-vector Projection Over the Rotated Lidar Pointing Vec-
tor

In rotational motion, the FDWL-measured wind as a function of the scan phase, frot(ϕ), is the

projection of the wind vector u⃗ on the lidar pointing vector r̂rot(ϕ). Inserting Equation 6.12 and

Equation C.1 into Equation 6.22 gives r̂rot(ϕ), and substituting this vector and definitional Equa-

tion 6.1 for the wind vector into Equation 6.23 gives the VAD function for the measured wind. The
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result can be expressed as follows:

frot(ϕ) = u⃗ · r̂rot(ϕ) = HWS · [cos(WD) · (sin(θ0) · [cos(ϕ− ϕ0) · r11 + sin(ϕ− ϕ0) · r12]

− cos(θ0) · r13) + sin(WD) · (sin(θ0) · [cos(ϕ− ϕ0) · r21 + sin(ϕ− ϕ0) · r22]

− cos(θ0) · r23)] + VWS · (sin(θ0) · [cos(ϕ− ϕ0) · r31 + sin(ϕ− ϕ0) · r32]

− cos(θ0) · r33),

(C.2)

where coefficients rij , i, j = 1..3 are the entries in the i-th row and j-th column of the rotation

matrixRRR (Equation C.1).

C.3 Fourier Coefficients for the Rotational Motion Model

In rotational motion of the FDWL (Section 6.3.5.1), the first-order Fourier coefficients arot1 and brot1

of Equation 6.24 that give the HWS rotational error are obtained in analytical form by inserting

Equation C.2 above into definitional Equation 6.18. They take the following form:

arot1 =
1

π

∫ 2π

0

frot(ϕ) cos(ϕ)dϕ =
1

π
HWS · [cos(WD) · (sin(θ0) · [cos(y)I11

− sin(y)I12]− cos(θ0) · [Ar sin(y)I1,r +Ap cos(y)I1,p])

+ sin(WD) · (sin(θ0) · [sin(y)I11 + cos(y)I12]

− cos(θ0) · [−Ar cos(y)I1,r +Ap sin(y)I1,p])],

(C.3)

and

brot1 =
1

π

∫ 2π

0

frot(ϕ) sin(ϕ)dϕ =
1

π
HWS · [cos(WD) · (sin(θ0) · [cos(y)I21

− sin(y)I22]− cos(θ0) · [Ar sin(y)I2,r +Ap cos(y)I2,p])

+ sin(WD) · (sin(θ0) · [sin(y)I21 + cos(y)I22]

− cos(θ0) · [−Ar cos(y)I2,r +Ap sin(y)I2,p])],

(C.4)

where coefficients Imn and Im,x with m,n = 1, 2 and x = r, p are the auxiliary integrals of Ta-

ble C.1. Mnemonic subscript m = 1 (m = 2) refers to Fourier coefficient a1 (b1), and as mentioned,

subscripts r and p denote ”roll” and ”pitch”, respectively.

C.4 Fourier Coefficients for the Translational-Motion Model

In translational motion, the FDWL-measured wind as a function of the scan phase, ftrans(ϕ) (Equa-

tion 6.28), is the projection of the apparent wind vector (Equation 6.27) on the lidar pointing vector

(Equation 6.12). The first step towards computing the Fourier coefficients is, therefore, computation

of the apparent wind by substituting translational-velocity vector Equation 6.26 and definitional

Equation 6.1 for the wind vector into Equation 6.27. The second step is substituting Equation 6.27
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for the measured wind and Equation 6.12 for the lidar pointing vector into Equation 6.28 which

gives the VAD function for the measured wind, ftrans(ϕ).

Finally, first-order Fourier coefficients atrans1 and btrans1 in Equation 6.29, giving the HWS trans-

lational error, are derived in analytical form by inserting Equation 6.28 into definitional Equa-

tion 6.18. This gives

atrans1 =
1

π

∫ 2π

0

ftrans(ϕ) cos(ϕ)dϕ =
1

π
· (sin(θ0) · [HWS · (cos(WD)I11

+sin(WD)I12)−Asu · I11,su −Asw · I12,sw]

+Ah · cos(θ0) · I1,h),

(C.5)

and

btrans1 =
1

π

∫ 2π

0

ftrans(ϕ) sin(ϕ)dϕ =
1

π
· (sin(θ0) · [HWS · (cos(WD)I21

+sin(WD)I22)−Asu · I21,su −Asw · I22,sw]

+Ah · cos(θ0) · I2,h),

(C.6)

where coefficients Imn, Im,x, and Imn,x withm,n = 1, 2 and x = su, sw, h are the auxiliary integrals

of Table C.1. As mentioned, mnemonic subscript m = 1 (m = 2) refers to Fourier coefficient a1 (b1).

Subscripts su, sw, and h denote ”surge”, ”sway”, and ”heave”, respectively.
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C.5 Auxiliary Integrals

Coef. g(ϕ)
∫ 2π

0
g(ϕ) dϕ

I11 cos(ϕ) · cos(ϕ− ϕ0) π · cos(ϕ0)
I12 cos(ϕ) · sin(ϕ− ϕ0) −π · sin(ϕ0)
I21 sin(ϕ) · cos(ϕ− ϕ0) π · sin(ϕ0)
I22 sin(ϕ) · sin(ϕ− ϕ0) π · cos(ϕ0)
I1,x cos(ϕ) · sin(fxϕ− αx) − fx

f2
x−1 · [cos(αx − 2πfx)− cos(αx)]

if fx = 1 −→ −π sin(αx)
I2,x sin(ϕ) · sin(fxϕ− αx) − 1

f2
x−1 · [sin(αx − 2πfx)− sin(αx)]

if fx = 1 −→ π cos(αx)
I11,x cos(ϕ) · cos(ϕ− ϕ0) · sin(fxϕ− αx)

1
fx(f2

x−4) [fx sin(ϕ0)Ax − (f2x − 2) cos(ϕ0)Bx]

if fx = 2 −→ π
2 sin(αx − ϕ0)

I12,x cos(ϕ) · sin(ϕ− ϕ0) · sin(fxϕ− αx)
1

fx(f2
x−4) [fx cos(ϕ0)Ax + (f2x − 2) sin(ϕ0)Bx]

if fx = 2 −→ π
2 cos(αx − ϕ0)

I21,x sin(ϕ) · cos(ϕ− ϕ0) · sin(fxϕ− αx)
1

fx(f2
x−4) [fx cos(ϕ0)Ax + 2 sin(ϕ0)Bx]

if fx = 2 −→ π
2 cos(αx − ϕ0)

I22,x sin(ϕ) · sin(ϕ− ϕ0) · sin(fxϕ− αx)
1

fx(f2
x−4) [−fx sin(ϕ0)Ax + 2 cos(ϕ0)Bx]

if fx = 2 −→ π
2 sin(αx − ϕ0)

where: being:
x ∈ [r = roll, p = pitch Ax = sin(αx)(1− cos(2πfx))

su = surge, sw = sway, h = heave] + cos(αx) sin(2πfx)
Bx = sin(αx) sin(2πfx)
− cos(αx)(1− cos(2πfx))

Table C.1: Auxiliary integrals for computation of the rotational- and translational-motion Fourier
coefficients given by Equation C.3–Equation C.4 and Equation C.5–Equation C.6, respectively. Note
that not all possible subscript combinations are simultaneously used.



Appendix D

Kalman Filter Review

Appendix related to Chapter 7.

This Section summarizes the study on UKF by Wan & Van Der Merwe (2000), for self-complete-

ness of the theoretical foundations given in Section 7.2.3. The reader is referred to this reference for

further insight.

The Kalman Filter (KF) is a recursive filter that optimally estimates the internal (i.e., hidden)

state-vector of a linear dynamic system from noisy observations, as described in Section 7.2.3. The

KF is the optimal estimator for linear systems under a statistical minimum-variance criterion over

time. In contrast, the Extended Kalman Filter (EKF) is one of the most widely used methods to

estimate the state variables of non-linear systems, as is the case of moving FDWLs. The main limi-

tation of the EKF is that it linearizes system non-linearities by first-order Taylor’s series expansion.

This implies propagation of the random variables distribution (RVD) through the system equa-

tions, which usually leads to large errors in the statistical moments of the transformed variables

and, hence, to sub-optimal filter performance. The Unscented Kalman Filter (UKF) provides an

elegant solution to solve these weaknesses [Wan & Van Der Merwe 2000].

D.1 The Unscented Transform

The UKF addresses the RVD approximation errors of the EKF by means of the Unscented Transform

(UT). In the UT, a set of samples representative of the mean and covariance of the RVD are chosen.

These samples are propagated through the non-linear dynamics of the system, to accurately capture

the system-propagated RVD mean and covariance. This is formulated in the following:

Consider an N -dimensional random variable xxx (e.g., the state-vector previously introduced in

Section 7.2.3) with mean xxx and covariance PxPxPx propagating through a non-linear function f(·) (e.g.,

the state-transition function of Section 7.2.3), yyy = f(xxx). The UT chooses a set of 2N + 1 auxiliary

vectors (the so-called sigma vectors), χiχiχi, to estimate the RVD [Julier & Uhlmann 1997]. Their sample

131
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mean and sample covariance are xxx and PPP x, respectively. The sigma vectors are chosen as

χχχ0 = xxx (D.1)

χχχi = xxx+ (
√

(L+ λ)PPP xx)i i = 1, . . . , L (D.2)

χχχi = xxx− (
√

(L+ λ)PPP xx)i i = L+ 1, . . . , 2L, (D.3)

where (
√
(L+ λ)PPP xx)i denotes the ith row of the square-root matrix, and λ is a scaling parameter

(typically, λ = 3 − N for Gaussian distributions). When sigma vectors χχχ propagate through the

non-linear function f(xxx), a transformed variable set, υiυiυi, is obtained,

υυυi = f(χχχi). (D.4)

The sought-after mean and covariance of system output variableyyy are approximated as a weighted

mean of the propagated sigma points,

yyy ≃
2N∑
i=0

Wm
i υυυ

i, (D.5)

PPP yy ≃
2N∑
i=0

Wm
i (υυυi − yyy)(υυυi − yyy)T , (D.6)

where the weights are defined as

Wm
0 =W c

0 = λ/(N + λ), (D.7)

Wm
i =W c

i = 1/(2(N + λ)). (D.8)

D.2 The Unscented Kalman Filter

The UKF uses the UT to estimate the RVDs of both the state-vector and the observation vector. The

recursive algorithm of the filter can be summarized by the following ten-step procedure:

Step 1. Initialize the filter with the initial-guess state-vector and state-vector covariance, as:

x̂xx0 = E[xxxTk ] (D.9)

P̂PP
xx

0 = E
[
(xxx0 − x̂xx0)(xxx0 − x̂xx0)

T
]
. (D.10)

Step 2. Calculate the sigma points at discrete time k− 1, used as a proxy of the state-vector RVD

(see Appendix D.1), as:

χχχk−1 =
[
x̂xxk−1 xxxk−1 ±

√
(L+ P̂PP

xx

k−1|k−1)
]
. (D.11)

Step 3. Compute the sigma-points output at time k, in response to the sigma points input at time

k − 1, by the system state-transition function, f(·), as:

χχχk|k−1 = f(χχχk−1). (D.12)
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Step 4. Obtain the predicted a priori state-vector mean and covariance matrix at time k, as:

xxxk|k−1 =

2N∑
i=0

Wm
i χχχ

i
k|k−1 (D.13)

PPP xxk|k−1 =

2N∑
i=0

W c
i [χχχ

i
k|k−1 − xxxk|k−1][χχχ

i
k|k−1 − xxxk|k−1]

T +QQQk, (D.14)

whereQQQk is the state-noise covariance matrix defined in Section 7.2.7.

Step 5. Propagate the sigma-points set computed in Step 3 above, through the non-linear mea-

surement function h(·), to obtain the so-called sigma-Z points, as:

ZZZk|k−1 = h(χχχk|k−1). (D.15)

Step 6. Estimate the mean and covariance of the innovation set at time k from the obtained

sigma-Z points and observation-noise covariance matrix,RRRk (refer to Section 7.2.7),

zzzk|k−1 =

2N∑
i=0

Wm
i ZZZ

i
k|k−1. (D.16)

PPP zzk|k−1 =

2N∑
i=0

W c
i [ZZZ

i
k|k−1 − zzzk|k−1][ZZZ

i
k|k−1 − zzzk|k−1]

T +RRRk. (D.17)

In Equation (D.17) above, ZZZ denotes the sigma-Z points in the UT domain, whereas zzz denotes

the observation vector in the “non-transformed” measurement domain (e.g., the LiDAR wind-

vector measurements). An overbar is used to indicate the approximated mean, by means of the

UT as computed in Appendix D.1.

Step 7. Compute the a priori state-vector covariance matrix at time k, as the cross covariance

between xxxk|k−1 and zzzk|k−1:

PPP xzk|k−1 =

2N∑
i=0

W c
i [χχχ

i
k|k−1 − xxxk|k−1][ZZZ

i
k|k−1 − zzzk|k−1]

T . (D.18)

Step 8. Derive the Kalman gain as

KKKk = PPP xzk|k−1(PPP
zz
k|k−1)

−1. (D.19)

Step 9. Compute the a posteriori state-vector and a posteriori covariance as:

x̂xxk = xxxk|k−1 +Kk(zzzk − zzzk|k−1) (D.20)

P̂PP
xx

k|k = PPP xxk|k−1 −PPP zzk|k−1 −KKKkPPP
zz
k|k−1KKK

T . (D.21)

Step 10. (Recursive step) Time update and go to Step 2:

x̂xxk−1 = x̂xxk (D.22)

P̂PP
xx

k−1|k−1 = P̂PP
xx

k|k. (D.23)
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Algorithm 1: UKF algorithm [Julier & Uhlmann 1997].
1: Initialize:

x̂xx0 = E[xxx0]

P̂PP
xx
0 = E[(xxx0 − x̂xx0)(xxx0 − x̂xx0)T ]

2: Calculate Sigma-points:

χχχk−1 =
[
x̂xxk−1 x̂xxk−1 ±

√
L+ P̂PP

xx
k−1

]
3: Prediction step (estimate xxxk based on prior information):

Propagate χχχk−1 through state-transition function:
χχχk|k−1 = f(χχχk−1)
Obtain xxxk χχχk|k−1 mean and covariance:
xxxk|k−1 =

∑2N
i=0 W

m
i χχχi

k|k−1

PPPxx
k|k−1

=
∑2N

i=0 W
c
i [χχχ

i
k|k−1

− xxxk|k−1][χχχ
i
k|k−1

− xxxk|k−1]
T +QQQk

Propagate χχχk|k−1 through measurement function:
ZZZk|k−1 = h(χχχk|k−1)
Obtain ZZZk|k−1 mean and covariance:
zzzk|k−1 =

∑2N
i=0 W

m
i ZZZi

k|k−1

PPP zz
k|k−1

=
∑2N

i=0 W
c
i [ZZZ

i
k|k−1

− zzzk|k−1][ZZZ
i
k|k−1

− zzzk|k−1]
T +RRRk

4: Innovation step (improve xxxk estimate with measurement zzzk information):
Obtain Kalman gain:
PPPxz

k|k−1
=

∑2N
i=0 W

c
i [χχχ

i
k|k−1

− xxxk|k−1][ZZZ
i
k|k−1

− zzzk|k−1]
T

KKKk = PPPxz
k|k−1

(PPP zz
k|k−1

)−1

Use measurement zzzk to improve estimates x̂xxk and P̂PP
xx
k :

x̂xxk = xxxk|k−1 +KKKk(zzzk − zzzk|k−1)

P̂PP
xx
k = PPPxx

k|k−1
−KKKkPPP

zz
k|k−1

(KKKk)
T

5: Recursion step:
x̂xxk−1 = x̂xxk

P̂PP
xx
k−1 = P̂PP

xx
k

Return back to step 2.

D.3 RAUKF Fault-Detection Mechanism

The RAUKF algorithm uses the fault-detection mechanism described in the study by Zheng et al.

(2018). In short, this method computes a test variable ϕk, which signals the need to re-adjust the

covariance matricesRRRk andQQQk. The test variable at time k is defined as

ϕk = [zzzk − h(xk|k−1)]
T [PPP zzk|k−1]

−1[zzzk − h(xk|k−1)]. (D.24)

ϕk follows a χ2 distribution with s DoFs, where s is the dimension of vector µµµk = zzzk − h(xk|k−1)

(s = 3 in the case of Equation (6.1) wind vector). To detect a fault with reliability 1− σ (where σ is

a preset value), a threshold χ2
s,σ is set, such that

P (ϕk > χ2
s,σ) = σ. (D.25)

With these settings, a fault is detected with reliability 1 − σ when ϕk > χ2
s,σ , which means that

covariance matrices RRR and QQQ must be re-adjusted. χ2
s,σ defines the error detection reliability (e.g.,

for 90% reliability, set σ = 0.1). If s = 3 DoF (as is the case here) then χ2
3,0.1 must be set to 6.36.

The variables σ and χ2
s,σ indicate the confidence we have in the system model and the related noise

covariance matrices. Thus, the higher the threshold χ2
s,σ , the lower the probability that an error is

interpreted as a model fault.
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