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Summary

Quantum computers use the laws of quantum mechanics to do complex operations that clas-
sical computers can’t solve. Quantum computers and other physical quantum systems require
quantum information to be completely isolated from the environment in order to be perfectly
functional. Quantum systems that are not completely isolated suffer from decoherence noise
and may suffer from errors. Implementing these systems is a huge challenge and development
of suboptimal systems with a low error rate seems to be the best way forward to building
these systems.

In quantum communications, designing codes that are able to reduce or protect against
errors is a necessity. This work focuses on perfect and quasi-perfect quantum codes, which are
a family of codes that exists in the classical setting and are optimum in terms of minimizing
the error probability for a given number of channel uses. In the first part of the work we
generalize the definition of quasi-perfect codes to include both classical codes and quantum
codes. We also provide an example of a quantum quasi-perfect code for 2-qubits classical-
quantum channels that make use of quantum entanglement and that can be extrapolated to
an N -dimensional classical-quantum channel.

The second part of this work focuses on quasi-perfect codes in optical communications,
where coherent states are used to convey information through an optical channel, known
as the Bosonic channel. The Bosonic channel has infinite dimension, so instead we consider
a finite-dimensional approximation of the Bosonic channel with a negligible approximation
error for a sufficiently large channel dimension. We show that phase-modulated coherent
states constitute a codebook that is quasi-perfect for the approximated channel, and thus
are close to optimal for the Bosonic channel.

The last part of the work focuses on stabilizer error correction codes, which are practical
codes that use redundancy to protect against errors. Error correction is not specifically used
to transmit classical information, but to protect quantum information instead. However,
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it is possible that we require to obtain classical information from a quantum state after
performing error correction. For these particular cases we may be able to prove that an error
correction code is quasi-perfect and thus optimum.



Resum

Els ordinadors quàntics fan servir les lleis de la mecànica quàntica per a realitzar operacions
complexes que els ordinadors clàssics no poden resoldre. Els ordinadors quàntics i els altres
sistemes quàntics requereixen que la informació quàntica estigui completament aïllada de
l’entorn per tal de ser perfectament funcionals. Els sistemes quàntics que no estan completa-
ment aïllats són afectats per soroll de decoherència i poden patir errors. Implementar aquests
sistemes és un gran repte i l’única manera de construir sistemes quàntics és desenvolupar
sistemes subòptims amb una taxa d’error baixa.

En comunicacions quàntiques, dissenyar codis capaços de reduir o protegir contra errors
és una necessitat. Aquest treball es centra en codis quàntics perfectes i quasi-perfectes que ja
existeixen en sistemes clàssics i que són òptims en termes de minimitzar la probabilitat d’error
per un determinat nombre d’usos del canal. A la primera part del treball generalitzem la
definició de codis quasi-perfectes per incloure codis clàssics i codis quàntics. També proveïm
un exemple de codi quàntic quasi-perfecte per a canals clàssic-quàntics de 2-qubits que fa
servir entrellaçat quàntic i que pot extrapolar-se a un canal de dimensió N .

La segona part d’aquest treball es centra en codis quasi-perfectes en comunicacions
òptiques, on estats coherents es fan servir per a transmetre informació a través d’un canal
òptic, conegut com a canal Bosònic. El canal Bosònic té dimensió infinita, per això considerem
en canvi una aproximació del canal Bosònic de dimensió finita, amb un error d’aproximació
negligible amb una dimensió de canal suficientment gran. Demostrem que una modulació de
fase dels estats coherents constitueix un codi quasi-perfecte pel canal aproximat, i per tant
és pràcticament òptim per al canal Bosònic.

L’última part del treball es centra en codis estabilitzadors de correcció d’errors, que són
codis pràctics que fan servir redundància per a protegir contra errors. La correcció d’errors
no es fa servir específicament per a transmetre informació clàssica, sinó per a protegir la
informació quàntica. Tot i això, és possible que requerim obtenir informació clàssica d’un
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estat quàntic després de fer servir correcció d’errors. Per a aquests casos, pot ser possible
demostrar que un codi de correcció d’errors és quasi-perfecte i per tant òptim.



Resumen

Los ordenadores cuánticos hacen uso de las leyes de la mecánica cuántica para realizar opera-
ciones complejas que los ordenadores clásicos no pueden resolver. Los ordenadores cuánticos
y otros sistemas cuánticos requieren que la información cuántica esté completamente aislada
del entorno para poder ser perfectamente funcionales. Los sistemas cuánticos que no están
completamente aislados son afectados por ruido de decoherencia y pueden sufrir errores.
Implementar estos sistemas es un gran reto y la única manera de construir sistemas cuánticos
es desarrollar sistemas subóptimos con una tasa de error baja.

En comunicaciones cuánticas, diseñar códigos capaces de reducir o proteger contra errores
es una necesidad. Este trabajo se centra en códigos cuánticos perfectos y quasi-perfectos que
ya existen en sistemas clásicos y que son óptimos en términos de minimizar la probabilidad
de error para un determinado número de usos del canal. En la primera parte del trabajo
generalizamos la definición de códigos quasi-perfectos para incluir códigos clásicos y códigos
cuánticos. También proveemos un ejemplo de código cuántico quasi-perfecto para canales
clásico-cuánticos de 2-qubits que usa entrelazado cuántico y que puede extrapolarse a un
canal de dimensión N .

La segunda parte de este trabajo se centra en códigos quasi-perfectos en comunicaciones
ópticas, donde se usan estados coherentes para transmitir información a través de un canal
óptico, conocido como canal Bosónico. El canal Bosónico tiene dimensión infinita, por eso
consideramos en cambio una aproximación del canal Bosónico de dimensión finita, con
un error de aproximación negligible con una dimensión del canal suficientemente grande.
Demostramos que una modulación de fase de los estados coherentes constituye un código
quasi-perfecto para el canal aproximado y, por lo tanto es prácticamente óptimo para el
canal Bosónico.

La última parte del trabajo se centra en códigos estabilizadores de corrección de errores,
que son códigos prácticos que usan redundancia para proteger contra errores. La corrección
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de errores no se usa específicamente para transmitir información clásica, sino para proteger
la información cuántica. Aún así, es posible que requiramos obtener información clásica de
un estado cuántico después de usar corrección de errores. Para estos casos, puede ser posible
demostrar que un código de corrección de errores es quasi-perfecto y, por lo tanto, óptimo.
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Notation

Mathematical notation

N set of natural numbers

Z set of integers

R set of real numbers

C set of complex numbers

U unitary operator

X,Y, Z Pauli matrices

H Hamdamard matrix

1N identity matrix of dimension N

Π projector matrix

C code set

X ,Y alphabets or sets

|ψ〉 , |φ〉 quantum pure vector states

ρ quantum density matrix

|Φ+〉 , |Φ−〉 , |Ψ+〉 , |Ψ−〉 Bell states

NA→B Quantum channel
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1
Introduction

1.1 Introduction to quantum information theory and motivation

Quantum information theory combines classical information theory with quantum mechanics.
It differs from classical information theory in several aspects. Quantum information theory is
indeterministic: it is based on the probabilities of events rather than on their predictions.
Unlike in classical systems, a quantum state can be a superposition state; that is, a linear
combination of other allowed states.

The simplest unit of quantum information is the qubit (quantum bit) which, can be
represented, for example, by the spin of an electron or by the polarization of a photon. More
complex systems like a quantum computer are harder to implement; these systems usually
are very noisy and suffer from decoherence. Quantum systems can be measured and the
measurement outcome becomes a random variable. Let’s suppose we want to implement a
quantum circuit that prepares the maximally entangled state, which is a quantum state of
two qubits which are in the same state, that is, when measured independently they behave
like a binary equally distributed random variable but their measurement outcomes are fully
correlated. Then when we measure each qubit of the maximally entangled state we may have
an outcome of "00" (that is, two classical "0s") with a probability of 50% or an outcome "11"
also with 50% probability. Measurement outcomes "01" and "10" are in principle impossible,
i.e. their probability is 0. We can simulate the behavior of this circuit using the available
(online) IBM Q Experience quantum system simulator. Our simulation consist on performing
1024 measurements of each of the two qubits. Ideally both outcome "00" and "11" should
be obtained with probability 0.5 and outcomes "01" and "10" should never happen. The
histogram of the simulation shows convergence of the expected results.
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2 Introduction

Figure 1.1: Histogram from the simulation of a circuit that generates the maximally entangled state

The same circuit executed on a real quantum computer (also using 1024 iterations) gives
a histogram like the one illustrated in Fig.1.2
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Figure 1.2: Histogram from the implementation on a real quantum computer of a circuit that generates the
maximally entangled state

The real implementation differs from the simulation: now outcomes "01" and "10" are
also obtained and outcomes "00" and "11" do not seem to be characterized by the same
probabilities. This shows that even for a very simple circuit the results when using real
quantum computers may be very different from what we expect from the theory of quantum
mechanics.

Despite being difficult to implement quantum systems have some benefits over classical
ones. They can be unconditionally secure (see for example [12], [13]) due to some particulari-
ties of quantum systems (non-cloning theorem). Quantum computers also will be able to solve
tasks that classical computers are not able to solve, and in theory be computationally more
efficient. Recently Google demonstrated quantum supremacy using a developed 54-qubit
processor [14] (that is, they claim that their processor can perform tasks that the classical
computer can not perform in practice), so maybe the quantum era is closer than we expect.
In any case, it is clear that current quantum systems demand quantum error protecting codes
for proper operation.

This work will investigate perfect and quasi-perfect codes in the quantum context. These
codes are optimum to minimize the error probability when transmitting information over a
classical-quantum channel and thus might be able to contribute to more reliable quantum
systems.

1.2 Brief introduction to the history of quantum mechanics

In the 19th century, before the introduction of quantum mechanics, it was believed that
classical physics (consisting on Newton’s laws of mechanics, Maxwell’s electromagnetic the-
ory and Boltzmann’s theory of statistical mechanics) were able to explain any physical
phenomena. However, as stated in 1901 by William Thomson Kelvin [4], there was some
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phenomena that could not be fully explained by the classical theory, namely the failure of
the Michelson-Morley experiment and the "ultraviolet catastrophe".

The Michelson-Morley experiment [5] pretended to detect the existence ether, which was
believed to be an invisible medium that allowed light waves to travel through vacuum. It
was assumed that light waves could not travel through empty space and so there had to
be a medium carrying light waves through empty space. However, the experiment provided
evidence against the ether theory.

On the other hand, the ultraviolet catastrophe is the classical prediction that a black
body would emit an infinite amount of energy at high frequencies, which does not happen in
reality. In 1901, Planck considered the hypothesis that radiating energy exists in discrete
quantities (in bundles of energy) and used this model to predict how much energy does a
black body emits in function of the frequency [6]. Later, Einstein reinforced Planck’s theory
and showed that it provided an explanation to the photoelectric effect [7]. In 1924, de Broglie
stated that every element of matter behaves as both particles and waves [8], and in 1926
Schrödinger formulated a wave equation that describes the evolution of quantum systems
[9]. In 1925, Heisenberg introduced an alternative theory called matrix mechanics [10] that
was not as popular as the Schrödinger’s theory, but later in 1930 Dirac showed that both
formalisms were equivalent and unified them [11].

1.3 Quantum postulates

Quantum mechanics are described by the following four postulates:

1. Postulate 1: Any isolated physical system has an associated Hilbert space H of a
certain dimension on the field of complex numbers C. This Hilbert space is called the
state space. The system is completely defined by a state |ψ〉 (a unit vector) at any
instant. An example is a qubit, which is a two-dimensional vector that is defined by
two complex numbers (see Section 2.1). In general, it is a difficult problem to know
what is the state space for a specific system, and it would require to delve into the field
of quantum electrodynamics. In this work we will always assume that the state space
is known.

2. Postulate 2: The evolution of a quantum system is described by a unitary operator
U acting on the state vector.

3. Postulate 3: A quantum measurement is a set of operators {Πm}, called measurement
operators, that act on the state space of the system in order to obtain a classical
outcome m. The measurement operation is irreversible: the state after measurement is
affected by this process and it is not possible to recover the original state.

4. Postulate 4: The state of a composite system (i.e. a system consisting on two or more
physical systems) is the tensor product of the state spaces of the smaller systems. For



1.4. Objectives 5

example, if a system in the state |ψ〉 is composed by multiple systems in the states
|ψ〉1,|ψ〉2,. . .,|ψ〉n, then the state |ψ〉 can be decomposed as |ψ〉 = |ψ〉1⊗|ψ〉2⊗. . .⊗|ψ〉n.

The formal definitions and implications of these postulates will be described in Chapter 2.

1.4 Objectives

This section presents the main objectives of this work, which can be summarized as the
following:

• Objective 1: Provide a generalization of perfect and quasi-perfect quantum codes
defined in the classical context to classical-quantum channels. For this purpose we
follow a similar procedure as in the classical case. Perfect and quasi-perfect quantum
codes attain the meta-converse bound with equality, and thus they minimize the error
probability over a given channel.

• Objective 2: Study simple cases of 2-qubit codes over a classical-quantum channel. The
goal is to find perfect and quasi-perfect codes, if they exist, for simplified cases. In
Chapter 4, we present some examples of quasi-perfect codes. In particular, the Bell
codes for 2-qubits and a number of codewordsM ≥ 4 are quasi-perfect codes even when
the quantum state is observed after a quantum erasure channel or a depolarizing channel.

• Objective 3: Find perfect and quasi-perfect codes for more than two qubits, or equiv-
alently for a channel dimension larger than 4. The Bell codes found for 2-qubits can
be extrapolated for an arbitrary number of qubits, although there are several ways
of building them (see for example [15], [16]). In Chapter 5, we study quasi-perfect
codes for the bosonic channel, where the dimension of the channel is infinite. We con-
sider an approximated version of the channel with finite, but arbitrarily large dimension.

• Objective 4: Find quasi-perfect codes that can perform error correction. Perfect and
quasi-perfect codes developed in objectives 1, and 2 exhibit a cardinality greater than
2N where N is the number of qubits. As such, they can’t be used directly as quantum
error correcting codes. Chapter 6 will focus on quasi-perfect codes in the error correction
setting.





2
Quantum theory

This chapter presents the notation and basic quantum concepts that are necessary to
understand this work. Textbooks [1], [2], [3] provide a detailed introduction to the area.

2.1 Qubit and the bloch sphere

In the quantum world, the most basic unit of information is the quantum bit or qubit. A
general qubit can be represented as the superposition of two quantum states:

|ψ〉 = α |0〉+ β |1〉 , (2.1)

where α and β are the complex amplitudes of the superposed states |0〉 and |1〉, and where:

|α|2 + |β|2 = 1. (2.2)

The states |0〉 and |1〉 are mathematically represented in a Hilbert space of dimension 2 as
the following two column vectors:

|0〉 ,
[
1, 0
]T
, (2.3)

|1〉 ,
[
0, 1
]T
. (2.4)

Similarly, 〈0| and 〈1| are defined as the row vectors:

〈0| ,
[
1, 0
]
, (2.5)

〈1| ,
[
0, 1
]
. (2.6)

This notation will be used later. A qubit can also be written as:

|ψ〉 = cos(θ/2) |0〉+ sin(θ/2)ejψ |1〉 . (2.7)

7



8 Quantum theory

This allows us to represent it visually in a sphere, in function of the angles θ and ψ. This
sphere is called Bloch sphere.

Figure 2.1: Bloch sphere

The {|0〉 , |1〉} basis is called the computational basis, but naturally a qubit can be
represented in any other basis, for example, another commonly used basis would be the
{|+〉 , |−〉} basis with:

|+〉 , 1√
2
[
1, 1
]T
, (2.8)

|−〉 , 1√
2
[
1,−1

]T
. (2.9)

There are several ways to physically represent quantum information, including the polarization
of a photon, the Fock state of a light wave (see Chapter 5) or the spin of an electron, among
others. As an example, consider that the electric field vector of a light wave has the following
three components in the x,y and z axis:

E(r, t) =

Ex(z, t)
Ey(z, t),

0

 (2.10)

with

Ex(z, t) = Ex cos (kz − ωt+ αx) , (2.11)
Ey(z, t) = Ey cos (kz − ωt+ αy) . (2.12)
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where Ex, Ey are the amplitudes of the electrical field in the x and y axis respectively, αx, αy
are phases, ω is the angular frequency, r is the position vector, t is the time instant, z is
the direction of the wave propagation and k is the wavelength number. When Ey = 0 and
Ex(r, t) = Ex cos kz − ωt+ αx, the electric field oscillates on the x axis; in this case the
polarization is horizontal. Similarly, when Ex = 0 and Ey(r, t) = Ey cos kz − ωt+ αy the
electric field oscillates on the y axis, and in this case the polarization is vertical.

Figure 2.2: Vertical polarization (left), horizontal polarization (right)

A qubit can be represented as the polarization of a photon by assigning |0〉 to the hori-
zontal polarization, |0〉 = |H〉, and |1〉 to the vertical polarization, |1〉 = |V 〉.

Also, if Ey = Ex, then we have a wave that is a combination of a vertical polarized
wave and a horizontal polarized wave. This wave has a 45o polarization and it represents a
quantum state |H〉+ |V 〉 that when normalized, it corresponds to the |+〉 state. Similarly, if
Ey = −Ex, then we have |H〉 − |V 〉 that when normalized, it corresponds to the |−〉 state.
With this, it is possible to create systems that are able to use the {|0〉 , |1〉} basis and the
{|+〉 , |−〉} basis as well.

Figure 2.3: Diagonal polarization, Ey = Ex (left), diagonal polarization, Ey = −Ex (right)



10 Quantum theory

2.2 Quantum evolution

Quantum systems can undergo reversible transformations which are modelled by unitary
matrices. This transformations are referred as reversible evolutions or unitary evolutions.
Reversibility is a consequence of unitary evolution because unitary operators have an inverse
(it is their conjugate transpose). Also, quantum states that go through unitary transformations
maintain unit norm. Quantum unitary evolutions can be represented as a quantum circuit,
which is a diagram that represents the qubits or quantum states of a quantum system and
the unitary operators (also called quantum gates) that are applied to them.

Figure 2.4: Quantum circuit representation of quantum state φ undergoing unitary operator U

The most common unitary operators are the Pauli matrices (I, Z, X, Y ) and the
Hadamard matrix (H):

I =
(

1 0
0 1

)
, (2.13)

X =
(

0 1
1 0

)
, (2.14)

Z =
(

1 0
0 −1

)
, (2.15)

Y =
(

0 −i
i 0

)
, (2.16)

H = 1√
2

(
1 1
1 −1

)
. (2.17)

(2.18)

In particular, the X operator satisfies X |0〉 = |1〉 and X |1〉 = |0〉 (it changes the amplitude
of a qubit) and the Z operator satisfies Z |0〉 = |0〉 and Z |1〉 = − |1〉 (it changes the phase of
a qubit). The Y operator is a combination of both operators. The Hadamard gate takes the
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{|0〉 , |1〉} basis to the {|+〉 , |−〉} basis.

2.3 Measurement of qubits

Measurement operations in quantum systems allow us to obtain classical information from a
quantum state. In general it is not possible to retrieve the complex amplitudes (α and β) or
the phase of a qubit. Instead we can only measure observables, that is, physical parameters
of the quantum state. Observables are represented by Hermitian operators (for example the
Pauli matrices). The result of the measurement follows the Born rule: the outcome of the
measurement is one of the eigenvalues of the operator and the resulting quantum state is
the corresponding eigenvector. The probability of having an outcome m when performing a
measurement over a qubit ψ is:

pm = 〈ψ|Πm |ψ〉 , (2.19)

where Πm is the projector onto the eigenspace of the operator used for the measurement
corresponding to the eigenvalue λm.

For example, if we want to measure the qubit |ψ〉 defined above in the computational
basis we can use the Z operator, which has the following eigen decomposition:

Z = |0〉 〈0| − |1〉 〈1| =
(

1 0
0 0

)
−
(

0 0
0 1

)
= Π0 −Π1. (2.20)

When we make a measurement using Z we obtain one of its eigenvalues, which are 1 and
-1. We then associate the eigenvalue ‘1’ to an outcome m = 0 and the eigenvalue -1 to an
outcome m = 1. When we measure a qubit (2.1), we have the following probabilities of
obtaining outcome 0 and outcome 1:

p0 = 〈ψ|Π0 |ψ〉 = 〈ψ|
(

1 0
0 0

)
|ψ〉 = |α|2, (2.21)

p1 = 〈ψ|Π1 |ψ〉 = 〈ψ|
(

0 0
0 1

)
|ψ〉 = |β|2. (2.22)

(2.23)

We could also use the operatorX to make a measurement. In this case, the eigen decomposition
is the following:

X = |+〉 〈+| − |−〉 〈−| = 1
2

(
1 1
1 1

)
− 1

2

(
1 −1
−1 1

)
= Π+ −Π−. (2.24)

In this case, when we make a measurement on the same qubit we obtain the following
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probabilities of outcome 0 and outcome 1:

p0 = 〈ψ|Π+ |ψ〉 = 1
2 〈ψ|

(
1 1
1 1

)
|ψ〉 =

∣∣∣α2 + β2

2

∣∣∣, (2.25)

p1 = 〈ψ|Π− |ψ〉 = 1
2 〈ψ|

(
1 −1
−1 1

)
|ψ〉 =

∣∣∣α2 − β2

2

∣∣∣. (2.26)

(2.27)

2.4 Composite systems

It is possible to represent systems with multiple qubits in a compact way using the kroenecker
product between them. For example, a two qubit system can be represented as the kroenecker
product between both qubits:

|ψ〉 = |0〉 ⊗ |0〉 = |00〉 =
(

1
0

)
⊗
(

1
0

)
=


1
0
0
0

 . (2.28)

Naturally the same applies for any other possible states. This is the mathematical model of a
two qubit system and models the behavior of them even if they are placed in different locations.
States representing more than one qubit are known as composite states. Unitary operators
that affect individual qubits that belong to a composite system can also be expressed as
a unitary operator that is the kroenecker product of each unitary operator. For example,
consider a three-qubit system consisting on three qubits ψ1, ψ2 and ψ3 with each qubit
undergoing a unitary transformation U1, U2 and U3. Each qubit’s output is U1ψ1, U2ψ2 and
U3ψ3, or equivalently, we can represent the output as a unitary operator affecting the whole
composite state as follows:

(U1ψ1 ⊗ U2ψ2 ⊗ U3ψ3) = (U1 ⊗ U2 ⊗ U3)(ψ1 ⊗ ψ2 ⊗ ψ3), (2.29)

where we used the property (AC)⊗(BD) = (A⊗B)(C⊗D) that is satisfied by the kroenecker
product operation. This makes it possible to represent quantum systems as a composite input
state with unitary operators applied to the composite state. An important unitary operator
that is used frequently in quantum systems is the controlled NOT gate (or CNOT gate),
which is an operator that takes two input qubits and outputs two qubits. One of the input
qubits is a "control" qubit that is not affected by the CNOT operator, and the other one has
its amplitude flipped if the control qubit is |1〉. The CNOT operator can be expressed as:

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.30)
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Figure 2.5: Quantum circuit representation of a CNOT gate

A composite quantum state that can not be expressed as the kroenecker product of two
states is called an entangled state. For example, the so-called maximally entangled state is
defined as:

|Φ+〉 = 1√
2

(|00〉+ |11〉). (2.31)

When measured in isolation using the computational basis, each of the qubits delivers a
binary random variable. However, the outcome at each of the qubits is always the same,
i.e., they are fully correlated, even if measured in different locations. The simplest entangled
states are two-qubit states called Bell states, with the one in (2.31) being one of them. There
are other three Bell states, which have the form:

|Φ−〉 = 1√
2

(|00〉 − |11〉), (2.32)

|Ψ+〉 = 1√
2

(|01〉+ |10〉), (2.33)

|Ψ−〉 = 1√
2

(|01〉 − |10〉). (2.34)

(2.35)

These four states are entangled states that form an orthogonal basis of the four-dimensional
Hilbert space, and will be relevant in Section 4.4.1.

2.5 Quantum state matrix representation

The description of quantum systems discussed above is only valid for pure quantum states,
that is, states fully represented in a given basis by their complex amplitudes. In general
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Figure 2.6: Quantum circuit representation of the Bell state |Φ+〉

however, quantum systems might incorporate an additional uncertainty modelled by classical
probability theory, that is, they can be characterized by different states each with a certain
probability. In this case the quantum state is mixed (not pure) and it must be described
using the quantum state matrix representation as:

ρ =
∑
x∈X

px |ψx〉 〈ψx| , (2.36)

where ρ is called the density operator. Density operators are semidefinite positive and they
have unitary trace Tr ρ = 1, since

∑
x∈X px = 1 and qubits have unitary norm.

2.6 Quantum channels

Let D(H) represent the space of density operators that act on a Hilbert space H. We denote
NA→B as a map which takes density operators in D(HA) to density operators in D(HB).
A quantum channel is defined as a linear, completely positive and trace-preserving map
describing the evolution of a quantum system. A map has these properties if and only if it
can be decomposed in the following way:

NA→B(ρA) =
d−1∑
l=0

VlρAV
†
l , (2.37)

where ρA is a density operator belonging to Hilbert space HA, d is no larger than
dim(HA) dim(HB) and Vl are called Kraus operators and belong to the space of square linear
operators which take Hilbert space HA to Hilbert space HB. The Kraus operators must
satisfy:
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d−1∑
l=0

V †l Vl = 1A. (2.38)

The most relevant channel in this work is the classical-quantum channel. The classical
quantum channel takes a classical input x and outputs a density operator ρx associated to x.
It can be modelled as follows:

NCQ
X→B(pX) =

d−1∑
x=0

pX(x)ρxB . (2.39)

In general, quantum channels take a quantum state and transform it into another quantum
state. An example of a quantum-quantum channel is the Pauli channel, which applies a Pauli
operator to the state with a certain probability:

NP
A→B =

1∑
i,j=0

p(i, j)ZiXjρXjZi, (2.40)

where p(i, j) is the probability of applying Z (for i = 1) and X (for j = 1), and X and Z are
the Pauli matrices defined before. Note that X0 = Z0 = 1A.

The erasure channel is a quantum-quantum channel in which the dimension of the Hilbert
space at the output of the channel equals the dimension of the input Hilbert space plus
one. Note that this is a generalization of the classical erasure channel. The quantum erasure
channel is modelled by the following equation:

NE
A→B(ρA) = (1− ε)IA→B(ρA) + ε|e〉〈e|B , (2.41)

where ε is the erasure probability and the Isometric channel IA→B(ρA) = IA→BρAI
†
A→B is

defined using the Isometry

IA→B =
[

1A

0 . . . 0

]
, (2.42)

where 1A is the identity matrix with the same dimensions as the input density operator,
i.e. dim(HA). The last channel presented here is the depolarizing channel. The effect of
this channel is to leave the input channel state untouched (with probability 1-p) or destroy
it completely, and transform it into a uniform distributed classical random variable (with
probability p) represented by quantum state π.

ND
A→B(ρA) = pπ + (1− p)ρA, (2.43)

where π = 1
dim(HA)1A.



16 Quantum theory

Figure 2.7: Superdense coding protocol implementation

2.7 Quantum protocols

The superdense coding protocol is a quantum protocol used to transmit classical information
from Alice (transmitter) to Bob (receiver). The name of the protocol is due to the fact that
two classical bits are sent with a single use of the quantum channel (i.e. transmitting only
a single qubit), and one entangled pair of qubits. Initially, the protocol has Alice and Bob
sharing an ebit, |Φ+〉AB = 1√

2 (|0〉A |0〉B + |1〉A |1〉B). Then, it does the following steps:

1. Alice applies a unitary operator (i.e. an I,X, Z or Y operators) to her share of the
state, depending on the two classical bits that should be transmitted. For example, if
the first bit is a ”1”, then the X operator is applied, and if the second bit is a ”1” the
Z operator is applied. Then, the state is transformed into one of the bell states, |Φ+〉,
|Φ−〉, |Ψ+〉, |Ψ−〉.

2. Alice transmits her qubit to Bob through the quantum channel.

3. Bob measures the state in the basis |Φ+〉 , |Φ−〉,|Ψ+〉, |Ψ−〉. Since this base is orthogonal,
he is able to distinguish these four states perfectly. Using the result of the measurement,
he can recover the classical bits that were transmitted.

The circuit implementing the superdense coding protocol is represented in 2.7.

Similarly, the teleportation protocol is used in order to transmit quantum information by
transmitting only two classical bits. The name of the protocol is due to the fact that the
quantum state that is transmitted is destroyed in the original location and restored at the
destination. As it was the case for the superdense coding protocol, Alice and Bob initially
share an ebit |Φ+〉AB . The teleportation protocol does the following in order to transmit the
qubit |ψ〉A′ from Alice to Bob:

1. Alice performs a measurement in the basis |Φ+〉 , |Φ−〉,|Ψ+〉, |Ψ−〉 on her whole sys-
tem, consisting on her qubit and her share of the ebit |Φ+〉A. This makes the whole
state collapse to one of four possible states, which are |Φ+〉A′A |ψ〉B , |Φ−〉A′A Z |ψ〉B ,
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Figure 2.8: Teleportation protocol implementation

|Ψ+〉A′AX |ψ〉B, |Ψ−〉A′AXZ |ψ〉B. This is because the state of the whole quantum
system is |ψ〉A′ |Φ+〉AB , which can be expressed in the Bell basis as follows:

|ψ〉A′ |Φ
+〉AB = (α |0〉A′ + β |1〉A′ )

1√
2

(|00〉AB + |11〉AB) (2.44)

= 1
2
(
α(|Φ+〉A′A + |Φ−〉A′A) |0〉B

)
+
(
β |Ψ+〉A′A − |Ψ

−〉A′A) |0〉B
)

+
(
α(|Ψ+〉A′A + |Ψ−〉A′A) |1〉B

)
+
(
β(|Φ+〉A′A − |Φ

−〉A′A) |1〉B
)

(2.45)

= 1
2
(
|Φ+〉A′A |ψ〉B + |Φ−〉A′A Z |ψ〉B + |Ψ+〉A′AX |ψ〉B + |Ψ−〉A′AXZ |ψ〉B

)
.

(2.46)

After the measurement operation the state |ψ〉A′ is lost, and instead we get |ψ〉B under
the effect of a Pauli matrix.

2. Alice sends two classical bits to Bob in order to indicate what was the measurement
outcome (i.e. to indicate which of the four states is the state after measurement). Bob
uses this information in order to decide what operator should be applied to his share
of the ebit in order to recover |ψ〉. For example, if the result of the measurement is
|Ψ+〉A′AX |ψ〉B, then he only has to apply an X gate to X |ψ〉B in order to obtain
X(X |ψ〉B) = |ψ〉B .

The circuit implementing the teleportation protocol is represented in 2.8. Both the super-
dense coding protocol and the teleportation protocol are examples of applications where
entanglement is used, and so classical schemes are not able to replicate these protocols.





3
State of the art

This section presents the state of the art on quasi-perfect codes in the classical setting and
on the meta-converse bound in the classical and quantum settings.

3.1 Meta-converse bound

The meta-converse bound in the classical setting was introduced in [28], and it is a bound
on the error probability of a Bayesian M-ary hypothesis test. Consider a binary hypothesis
test setting, where the objective is to discriminate between two hypothesis, H0 and H1 from
an observation of a random variable Y that takes values in an alphabet Y. Define P0(y)
as the probability mass function of Y under hypothesis H0 and P1(y) as the probability
mass function of Y under hypothesis H1. We define T (y) as the probability of deciding
hypothesis H0 given an observation y. Define αβ(P0, P1) as the minimum probability of
choosing hypothesis H1 when the true hypothesis is hypothesis H0 with a constraint on the
probability of choosing hypothesis H0 when hypothesis H1 is the true hypothesis:

αβ(P0, P1) = inf
T :
∑

y
T (y)P1(y)≤β

(
1−

∑
y

T (y)P0(y)
)
. (3.1)

Now, consider the M-ary hypothesis test setting where we want to discriminate between
M hypotheses, H0, H1, . . . ,HM−1. Consider the random variables X and Y taking values in
alphabets X and Y respectively. In communication systems, a transmitter sends a message
m (assigned to hypothesis Hm) over a channel by encoding it to a codeword x, and the
receiver will get y with a probability of PY =

∑
x∈X PXPY |X . Since the mapping m→ x is

deterministic, x is also assigned to the hypothesis Hm = Hx. The receiver will try to guess

19
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the true hypothesis Hx by using, for example, a maximum likelihood receiver (i.e. by deciding
Hx such that x maximizes PY |X). The error probability of the system is:

Pe = 1− 1
M

∑
y

max
x∈X

PY |X(y|x). (3.2)

According to [28] and [46, Theorem 1], the error probability satisfies

Pe ≥ inf
PX

sup
QY

{
α 1
M

(
PX × PY |X , PX ×QY

)}
, (3.3)

where PX × PY |X =
∑
x PXPY |X and PX × QY =

∑
x PXQY . The supremum is over all

arbitrary distributions QY , and the infimum is over all input distributions PX . This lower-
bound on the error probability is called the meta-converse bound, and it is a lower bound
of the error probability. As it will be shown later, quasi-perfect codes achieve this error
probability and so they are optimum.

3.2 Quasi-perfect codes in the classical setting

This section summarizes the results from [29] where quasi-perfect codes in the classical setting
are defined.
We consider a binary hypothesis test with hypotheses H0 and H1. We define the distributions
P0 and P1 over the alphabet Y , and T (y) as the probability that the test decides hypothesis
H0 for a given observation y, while the probability of deciding hypothesis H1 is 1 − T (y).
We define πj|i as the probability of deciding hypothesis j when the true hypothesis is i. In
the binary case, we may write:

π0|1(T ) ,
∑
y

T (y)P1(y), (3.4)

π1|0(T ) ,
∑
y

(1− T (y))P0(y). (3.5)

Also, we define αβ(P0, P1) , inf
T :π0|1≤β

π1|0(T ). The optimal test T ∗ that minimizes
αβ(P0, P1) is:

T ∗(y) , 1

[
P0(y)
P1(y) > γ

]
+ θ1

[
P0(y)
P1(y) = γ

]
, (3.6)

where 1[.] is the indicator function and for γ ≥ 0 and θ ∈ [0, 1] chosen such that β = π0|1(TNP ).
The proof can be found in [34].

Now, consider the channel coding problem of sending M equiprobable messages m ∈
(1, . . . ,M) through a classical channel with a transition probability of PY |X , with input
x ∈ X and output y ∈ Y. A code C = {x1, x2, . . . , xM} assigns each message to a channel
input xm. The minimum error probability of the code is given by:

Pe(C) = 1− 1
M

∑
y

max
x∈C

PY |X(y|x). (3.7)
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We define Q as an arbitrary distribution over the output alphabet Y. For any y ∈ Y, the
input x that maximizes PY |X(y|x) also maximizes PY |X(y|x)

Q(y) , since Q(y) does not depend on
x. With this consideration, we define the sphere of radius τ , Sx(τ,Q), as the set of outputs y
such that given input x have a likelihood of at least τQ(y):

Sx(τ,Q) ,
{
y ∈ Y

∣∣∣∣∣ PY |X(y|x)
Q(y) ≥ τ

}
. (3.8)

Similarly, the interior Si,x(τ,Q) and the shell So,x(τ,Q) of Sx(τ,Q) are defined as:

Si,x(τ,Q) ,
{
y ∈ Y

∣∣∣∣∣ PY |X(y|x)
Q(y) > τ

}
, (3.9)

So,x(τ,Q) ,
{
y ∈ Y

∣∣∣∣∣ PY |X(y|x)
Q(y) = τ

}
. (3.10)

We define the set Q as the set of distributions Q such that Fx(τ,Q) does not depend on x,
where Fx(τ,Q) , P

[
Y ∈ Sx(τ,Q) : τ ∈ [0, 1], Y ∼ PY |X=x

]
:

Q ,

{
Q ∈ P(Y)

∣∣∣∣∣ Fx(τ,Q) = F (τ,Q),∀x ∈ X , τ ≥ 0
}
. (3.11)

In cases where Q is not an empty set, we refer to the channel PY |X as a symmetric channel.

Definition 3.1. In the classical setting, a code C is perfect for a channel PY |X if there exist
γ ≥ 0 and Q ∈ Q such that the sets {Sx(γ,Q)}x∈C are disjoint and⋃

x∈C
Sx(γ,Q) = Y. (3.12)

Moreover, a code is quasi-perfect if the interior sets {Si,x(γ,Q)}x∈C are disjoint and (3.12)
is satisfied.

Let PY |X be a symmetric channel, and let Q ∈ Q. For γ ≥ 0, the error probability of a
code satisfies:

Pe(C) ≥ γ
(
Qi(γ)− 1

M

)
+

∑
τ∈LQ,τ≥γ

τQo(τ), (3.13)

where Qi(γ) , P[Y ∈ Si,x(γ,Q) : γ ∈ [0, 1],Y ∼ Q] , Qo(γ) , P[Y ∈ So,x(γ,Q) : γ ∈
[0, 1],Y ∼ Q] and LQ is defined as

LQ ,

{
τ ∈ R

∣∣∣ ∀x ∈ X ,∀y ∈ Y, PY |X(y|x)
Q(y) = τ

}
. (3.14)

For the proof, see [29].
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Figure 3.1: Representation of the BSC channel

3.3 Examples of classical quasi-perfect codes

This section presents some examples of quasi-perfect codes for the classical setting. Since
it is possible to express classical inputs as quantum states, we will use these examples to
compare the classical setting with the quantum setting, and to verify that the definition of
quasi-perfect codes in the quantum setting is equivalent to the classical case.

Consider the Binary Symmetric Channel (BSC) defined over a binary input alphabet
X = {0, 1} and binary output alphabet Y = {0, 1} with a probability of bit-flip error of
p, such that P (y = 0|x = 0) = (1 − p), P (y = 0|x = 1) = p, P (y = 1|x = 0) = p and
P (y = 1|x = 1) = (1− p). The graphical representation of the channel is shown in Figure 3.1.

The average error probability for a single use of a channel (no coding) is:

Pe = P (x = 0)p+ P (x = 1)p = p. (3.15)

We may be interested in defining a code to reduce the error probability. Let us consider a
code that uses a two-bit input and two codewords. The input alphabet is X = {00, 01, 10, 11},
the code is C = {00, 11} and the output alphabet is Y = {00, 01, 10, 11}. The channel is
described by the following probabilities for x ∈ C:

P (y = 00|x = 00) = (1− p)2, (3.16)
P (y = 01|x = 00) = P (y = 10|x = 00) = (1− p)p, (3.17)

P (y = 11|x = 00) = p2, (3.18)
P (y = 00|x = 11) = p2, (3.19)

P (y = 01|x = 11) = P (y = 10|x = 11) = (1− p)p, (3.20)
P (y = 11|x = 11) = (1− p)2. (3.21)

The decoder will determine that the transmitted codeword is ”00” when receiving ”00”, and
when it receives ”11” it is going to determine that the transmitted codeword was ”11”. If the
decoder receives ”01” or ”10” it will randomly decide which codeword was sent, for example,
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it will decide ”00” when codeword ”01” is received and ”11” when codeword ”10” is received.
The average error probability of this code is:

Pe = P (x = 00)(P (y = 10|x = 00) + P (y = 11|x = 00)) + P (x = 11)(P (y = 01|x = 11)
+ P (y = 00|x = 11)) = P (x = 00)((1− p)p+ p2) + P (x = 11)((1− p)p+ p2) = p.

(3.22)

As we see, the error probability has not improved with two channel uses, so it would make
sense to use three channel uses instead to protect against errors as we will see later. Even if
this example does not make sense in practise, it may be interesting from a theoretical point
of view in order to understand what the sets Sx(τ,Q), Si, x(τ,Q) and So, x(τ,Q) represent.
Using Q(y) = 1 and τ = (1− p)p, we get that Si, x(τ,Q) are:

Si,00(τ,Q) =
{
y ∈ Y

∣∣∣∣∣ PY |X(y|x = 00) > (1− p)p
}

= {00}, (3.23)

Si,11(τ,Q) =
{
y ∈ Y

∣∣∣∣∣ PY |X(y|x = 11) > (1− p)p
}

= {11}. (3.24)

Notice that {Si,x(γ,Q)}x∈C are disjoint, which is a requirement for a code to be quasi-perfect.
Intuitively, we see that Si, x(τ,Q) represents the decoding region that is centred at the input
codeword x, and when receiving y we have that the transmitted codeword is x with higher
probability than any other codewords for y ∈ {Si,x(γ,Q)}. Depending on how small τ is,
more codewords may be assigned to this decoding region. For example, if we had chosen
p2 < τ < (1−p)p then we would have Si,00(τ,Q) = {00, 01, 10} and Si,11(τ,Q) = {11, 01, 10}.
However, in this case we wouldn’t prove that the code is quasi-perfect since these sets are
not disjoint.

We see that the sets So,x(τ,Q) with τ = (1− p)p are the following:

So,00(τ,Q) =
{
y ∈ Y

∣∣∣∣∣ PY |X(y|x = 00) = (1− p)p
}

= {01, 10}, (3.25)

So,11(τ,Q) =
{
y ∈ Y

∣∣∣∣∣ PY |X(y|x = 11) = (1− p)p
}

= {01, 10}. (3.26)

Intuitively, So,x(τ,Q) represents the decoding region between Si,00(τ,Q) and Si,11(τ,Q).
Finally, we have that Sx(τ,Q) are:

S00(τ,Q) =
{
y ∈ Y

∣∣∣∣∣ PY |X(y|x = 00) ≥ (1− p)p
}

= {00, 01, 10}, (3.27)

S11(τ,Q) =
{
y ∈ Y

∣∣∣∣∣ PY |X(y|x = 00) ≥ (1− p)p
}

= {11, 01, 10}. (3.28)

Since
⋃
x∈C Sx(τ,Q) = Y and {Sx(τ,Q)}x∈C are not disjoint (but {Si,x(γ,Q)}x∈C are), the

code is quasi-perfect. This implies that the error probability of the code is optimum for
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all 2-bit codes, even though there is no improvement over the 1-bit code. As mentioned,
this example is not useful in practise, but it shows that codes that don’t improve the error
probability with respect to a code of smaller blocklength can actually be quasi-perfect and
achieve the optimum error probability for a fixed blocklength.

For a more practical example, consider a code that uses a three-bit input and two code-
words. In this case, we have that the input alphabet is X = {000, 001, 010, 011, 100, 101, 110, 111},
the code is C = {000, 111} and the output alphabet is Y = {000, 001, 010, 011, 100, 101, 110, 111}.
The channel is described by the following probabilities for x ∈ C:

P (y = 000|x = 000) = (1− p)3, (3.29)
P (y = 001|x = 000) = (y = 010|x = 000) = (y = 100|x = 000) = (1− p)2p, (3.30)

P (y = 011|x = 000) = P (y = 101|x = 000) = P (y = 110|x = 000) = (1− p)p2, (3.31)
P (y = 111|x = 000) = p3, (3.32)
P (y = 000|x = 111) = p3, (3.33)

P (y = 011|x = 111) = P (y = 101|x = 111) = P (y = 110|x = 111)(1− p)2p, (3.34)
P (y = 001|x = 111) = P (y = 010|x = 111) = P (y = 100|x = 111) = (1− p)p2, (3.35)

P (y = 111|x = 111) = (1− p)3. (3.36)

The decoder will be able to correct single-bit errors by determining that the transmitted
codeword is the one in C that is closer to the received sequence. So, when receiving ”001”,
”010”, ”100”, the decoder is going to determine that the transmitted codeword is ”000”, and
when receiving ”110”,”101”, ”011” it is going to determine that the transmitted codeword is
”111”. So, when a single-bit error occurs, the overall error probability is not affected since
we are able to recover the original codeword. With this consideration, the average error
probability of the code is:

Pe = 1− (P (x = 000)P (e ≥ 2) + P (x = 111)P (e ≥ 2) = (3.37)
P (x = 000)((1− p)p2 + p3) + P (x = 111)((1− p)p2 + p3) = (1− p)p2 + p3) = p2,

(3.38)

where P (e ≥ 2) is the probability of having two or more errors.

Next we show that this code is perfect. Consider Q(y) = 1 and τ = (1− p)2p− (1−p)p2

2 .
In this case, we have the following:

S00(τ,Q) = {y ∈ Y | PY |X(y|x) ≥ (1− p)2p− (1− p)p2

2 } = {000, 001, 010, 100}, (3.39)

S11(τ,Q) = {y ∈ Y | PY |X(y|x) ≥ (1− p)2p− (1− p)p2

2 } = {111, 011, 101, 110}. (3.40)
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And for the other regions we have:

Si,00(τ,Q) = {y ∈ Y | PY |X(y|x) > (1− p)2p− (1− p)p2

2 } = {000, 001, 010, 100}, (3.41)

Si,11(τ,Q) = {y ∈ Y | PY |X(y|x) > (1− p)2p− (1− p)p2

2 } = {111, 011, 101, 110}, (3.42)

So,00(τ,Q) = {y ∈ Y | PY |X(y|x) = (1− p)2p− (1− p)p2

2 } = {}, (3.43)

So,11(τ,Q) = {y ∈ Y | PY |X(y|x) = (1− p)2p− (1− p)p2

2 } = {}. (3.44)

In this example, So,00(τ,Q) and So,11(τ,Q) are empty sets. We can see that the sets {Si, x}
for x ∈ C are disjoint and

⋃
x∈C Si,x(τ,Q) = Y, which implies that the code is perfect.

3.4 Meta-converse bound in the quantum setting

The quantum meta-converse bound was derived in [30] and is a lower bound on the error
probability of a quantum code (Pe(C)) with cardinality M , as in the classical setting. This
section summarizes its derivation.

Consider a binary hypothesis tests that discriminates between two quantum density
operators W0 and W1 acting on a Hilbert space H. A measurement for each density operator
is defined in the form of two positive operator-valued measures Π0 and Π1 (POVM), such
that Π0 + Π1 = 1, where 1 is the identity matrix. These measurement operators applied to
W0 (and W1) have outcome 0 (or 1) with probability Tr(W0Π0) (or Tr(W1Π1)).

We define ε1|0 as the probability of deciding hypothesis 1 (or equivalently W1) when the
true one is hypothesis 0 (probability of false alarm) and ε0|1 as the probability of deciding
hypothesis 0 (or equivalently W0) when hypothesis 1 is the true hypothesis (probability of
miss-detection). Considering this, we have the following:

ε1|0 = 1− Tr(W0Π0), (3.45)
ε0|1 = Tr(W1Π0). (3.46)

We define

αβ(W0||W1) , inf
Π0:ε0|16β

(ε1|0) (3.47)

as the minimum probability of false alarm over all possible tests Π0 having a maximum
probability of miss-detection of β. The quantum Neyman-Pearson lemma [33] states that a
test Top is an optimum test for this binary hypothesis test problem if and only if it lies on
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the positive and null eigenspaces of the matrix W0 − tW1 where t > 0. Specifically, we define:

P+
t , {W0 − tW1 > 0}, (3.48)

P−t , {W0 − tW1 < 0}, (3.49)
P 0
t , {W0 − tW1 = 0}, (3.50)

(3.51)

where {A > 0} ,
∑
i:λi>0Ei, {λi} are the eigenvalues resulting from the spectral decomposi-

tion of A (A =
∑
i λiEi) and {Ei} are the orthogonal projections onto the corresponding

eigenspaces. Then the optimum test minimizing (3.47) satisfies:

Top = P+
t + p0

t , (3.52)

where 0 ≤ p0
t ≤ P 0

t .

Consider now the case of multiple hypothesis testing, that is, we have to discriminate
among M quantum states {W1,W2,...,WM}, each with an associated probability of occurring
{p1,p2,...,pM} . In this case we need to define a POVM set P = {Π1,Π2, ...,ΠM} such that∑

m Πm = 1 in order to make a measurement over the observed quantum state and decide
which is the true hypothesis. The average error probability of the test is:

ε(P) , 1−
M∑
m=1

pm Tr(WmΠm), (3.53)

and the minimum average error probability is obtained by optimizing over all possible test P :

ε , min
P

ε(P). (3.54)

We design the test P in order to minimize the average error probability. The optimum test does
not have a closed form, but it is known that it has to satisfy the Holevo-Yuen-Kennedy-Lax
conditions:

Lemma 3.1 (Holevo-Yuen-Kennedy-Lax conditions). A decoder P? = {Π?
1, . . . ,Π?

M} minimizes
(3.54) if and only if, for each m = 1, . . . ,M ,(

Λ(P?)− pmWm

)
Π?
m = Π?

m

(
Λ(P?)− pmWm

)
= 0, (3.55)

Λ(P?)− pmWm ≥ 0, (3.56)

where

Λ(P?) ,
M∑
m=1

pmWmΠ?
m =

M∑
m=1

pmΠ?
mWm (3.57)

is required to be self-adjoint.
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Proof: The theorem follows from [31, Th. 4.1, Eq. (4.8)] or [32, Th. I] after simplifying
the optimality conditions.

The multiple hypothesis problem can be simplified by transforming it into a binary
hypothesis problem. We define the following matrices:

T , diag(p1W1, ..., pMWM ), (3.58)

D(µ0) , 1
M
diag(µ0, ..., µ0). (3.59)

The T matrix is a block diagonal matrix containing all the possible quantum states associated
to a hypothesis weighted by their corresponding classical probabilities, and the D(µ0) matrix
is also a block diagonal matrix built using an arbitrary density operator µ0.

If we use a test P = {Π1,Π2, ....,ΠM} to discriminate quantum states W1, W2,..., WM

we can define a binary hypothesis test to discriminate T and D(µ0) which will have the
following false alarm and miss-detection probabilities:

ε1|0(P) = 1−
M∑
m=1

pmTr(WmΠm) = ε(P), (3.60)

ε0|1(P) = 1
M

M∑
m=1

Tr(µ0Πm) = 1
M
. (3.61)

Considering this and the definition of αβ(W0||W1) above, it is possible to get a lower bound
on the average error probability:

ε(P) ≥ max
µ0

α 1
M

(T ||D(µ0)). (3.62)

It is possible to show that an optimum test satisfying Lemma 3.1 achieves this bound with
respect to some specific µ0. Take µ0 = µ∗0 = 1

c∗0
Λ(P∗) with c∗0 being a normalization constant

and t = Mc∗0. If we take P∗ = {Π∗1,Π∗2, ...,Π∗M} then:

T − tD(µ0) = diag(p1W1 − Λ(P∗), p2W2 − Λ(P∗), ..., pMWM − Λ(P∗)). (3.63)

According to the quantum Neyman-Pearson theorem the optimum test Top that minimizes the
average error probability corresponds to the non-negative eigenspace of the matrix T −tD(µ0).
If we define Top = diag(Top1 , Top2 , ..., TopM ) then Topm must be on the non-negative eigenspace
of pmWm − Λ(P∗). Also, in order to satisfy the Holevo-Yuen-Kennedy-Lax conditions it
should also be on the non-positive eigenspace of T − tD(µ0), so it has to be on the null
eigenspace. In this case we have:

ε1|0(Top) = ε(P∗), (3.64)

ε0|1(Top) = 1
M
. (3.65)
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Which means that for the test satisfying the Holevo-Yuen-Kennedy-Lax conditions and using
µ0 = µ∗0 we have:

ε = α 1
M

(T ||D(µ0)). (3.66)

This means that the test P = P∗ attains the minimum probability of error. As we will see
later, quantum quasi-perfect codes achieve this bound and thus are optimum.



4
Quantum perfect and quasi-perfect codes

This chapter presents the main results of this thesis, which can be found in [21] and [22]. It
is organized as follows: Section 4.1 presents the problem of transmitting classical information
over a classical-quantum channel, Section 4.2 introduces a definition of symmetric channels,
Section 4.3 defines quasi-perfect codes for classical-quantum channels and Section 4.4 shows
examples of quantum quasi-perfect codes.

4.1 Classical-quantum channels

We consider the channel coding problem of transmitting M equiprobable messages over
a one-shot classical-quantum channel x → Wx, with x ∈ X and Wx ∈ D(H). While the
results from Section 3.4 were derived for discrimination among non-equiprobable alternatives,
in the remainder of this work we consider the channel coding problem with equiprobable
messages for clarity of exposition. A channel code is defined as a mapping from the message
set {1, . . . ,M} into a set of M codewords C = {x1, . . . , xM}. For a source message m, the
decoder receives the associated density operator Wxm and must decide on the transmitted
message.

With some abuse of notation, for a fixed code, sometimes we shall write Wm , Wxm .
The minimum error probability for a code C is then given by

Pe(C) , min
{Π1,...,ΠM}

{
1− 1

M

M∑
m=1

Tr
(
WmΠm

)}
. (4.1)

This problem corresponds precisely to the M -ary quantum hypothesis testing problem
described in Section 3.4. In contrast to the classical setting, in which (4.1) is minimized by
the maximum likelihood decoder, the minimizer of (4.1) corresponds to any POVM satisfying

29
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the optimality conditions from Lemma 3.1.

A direct application of (3.62) provides an alternative expression for Pe(C). Let P denote
a (classical) distribution over the input alphabet X and define

PW ,
∑

x∈X
P (x)

(
|x〉〈x| ⊗Wx

)
, (4.2)

P ⊗ µ ,
(∑

x∈X
P (x) |x〉〈x|

)
⊗ µ. (4.3)

We denote by PC the input distribution induced by the codebook C, hence PCW = 1
M

∑
x∈C
(
|x〉〈x|⊗

Wx

)
and PC ⊗ µ =

( 1
M

∑
x∈C |x〉〈x|

)
⊗ µ. Using (3.62) we obtain the following result.

Theorem 4.1 (Classical-quantum meta-converse bound). Let C be any codebook of cardinality
M for a channel x→Wx, with x ∈ X and Wx ∈ D(H). Then,

Pe(C) = sup
µ

{
α 1
M

(
PCW ‖PC ⊗ µ

)}
(4.4)

≥ inf
P

sup
µ

{
α 1
M

(
PW ‖P ⊗ µ

)}
. (4.5)

where the maximization is over auxiliary states µ ∈ D(H), and the minimization is over
(classical) input distributions P .

Proof: The identity (4.4) is a direct application of ((3.62)). The relaxation (4.5) follows
by minimizing (4.4) over all input distributions, not necessarily induced by a codebook.

The right-hand-side of (4.4) coincides with the finite block-length converse bound by
Matthews and Wehner [42, Eq. (45)], particularized for a classical-quantum channel with an
input state induced by the codebook C. The lower bound (4.5) corresponds to [42, Eq. (46)]
specialized to the classical-quantum setting (see also [43, Sec. 4.6] for a direct derivation
for classical quantum channels). The classical analogous of (4.5) is usually referred to as
meta-converse bound, since several converse bounds in the literature can be derived from it.
As it is the case in the classical-quantum setting, in the following we shall refer to this result
as meta-converse.

Theorem 4.1 implies that the quantum generalization of the meta-converse bound proposed
by Matthews and Wehner in [42, Eq. (45)] is tight for a fixed codebook C. By fixing µ to be
the state induced at the system output, the lower bound (4.5) recovers the converse bound
[41, Th. 1], which is a rederivation of previous results in [44] (see [44, Remarks 10 and 15]).
This bound is not tight in general since (i) the minimizing P does not need to coincide with
the input state induced by the best codebook, and (ii) the choice of µ0 in [41, Th. 1] does
not maximize the resulting bound in general.
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4.2 Symmetric channels

Definition 4.1. We define a symmetric classical-quantum channel as a classical-quantum
channel x→Wx, with x ∈ X and Wx ∈ D(H) satisfying

Wx = UxW̄U†x, (4.6)

for all x ∈ X , where W̄ ∈ D(H) does not depend on x and Ux is a unitary linear operator
that acts on H and is parametrized by x.

The definition of symmetric channels is the same as the definition of covariant channels,
which can be found in the literature (see, e.g., [17] or [18, Sec. 9.7]). We define G as a
compact group, HA as the input Hilbert space and HB as the output Hilbert space of a
quantum channel N : D(HA) → D(HB). The covariant channel is defined as the channel
NA→B that satisfies NA→B(VgρV †g ) = UgNA→B(ρ)U†g for every input state ρ ∈ D(HA),
where g → Vg, g → Ug, g ∈ G are projective representations of G in the input and output
Hilbert spaces of the channel respectively. For a classical-quantum channel NX→B with
NX→B : x → Wx, x ∈ X , Wx ∈ D(HB), we can define the orthogonal basis |x〉〈x|. Then,
for Vx such that |x〉〈x| = Vx|0〉〈0|V †x , it follows that Wx = UxNX→B(|0〉〈0|)U†x = UxW0U

†
x.

This means that any covariant quantum channel with classical (orthogonal) inputs also
satisfies (4.6). This definition of symmetry is similar to the one considered in [19, 20] with
the additional assumption Ux = Ux, U |X | = 1, for some unitary U . However, we do not
impose any particular structure on the unitary representations Ux.

4.3 Quasi-perfect codes

For any operator µ ∈ D(H), and parameter t ∈ R we define

Ex(t, µ) ,
{
Wx − tµ ≥ 0

}
, (4.7)

For a symmetric channel x → Wx = UxW̄U†x, x ∈ X , we consider the set of auxiliary
operators µ ∈ D(H) such that they commute with the unitary transformations Ux, x ∈ X .
More precisely, for a symmetric channel x→Wx, we define

UW ,
{
µ ∈ D(H) | Uxµ = µUx

}
. (4.8)

Then, for any symmetric channel x→Wx, x ∈ X , Wx ∈ D(H), and µ ∈ UW , it follows that

Ex(t, µ) =
{
UxW̄U†x − tµ ≥ 0

}
(4.9)

= Ux
{
W̄ − tU†xµUx ≥ 0

}
U†x (4.10)

= UxĒ(t, µ)U†x, (4.11)

where in the last step we used the fact that µUx = Uxµ and defined Ē(t, µ) ,
{
W̄ − tµ ≥ 0

}
,

which does not depend on x ∈ X .
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Similarly to (4.7), we define

E◦x(t, µ) ,
{
Wx − tµ = 0

}
, (4.12)

E•x(t, µ) ,
{
Wx − tµ > 0

}
, (4.13)

and

F •x (t, µ) , Tr
(
WxE•x(t, µ)

)
, (4.14)

G•x(t, µ) , Tr
(
µ E•x(t, µ)

)
, (4.15)

where, F•(·) , F •x (·), G•(·) , G•x(·), independent of x ∈ X for symmetric channels.

Definition 4.2. A code C is perfect for a classical-quantum channel x→Wx, if there exist
a scalar t and a state µ ∈ D(H) such that the projectors

{
Ex(t, µ)

}
x∈C are orthogonal to

each other and
∑
x∈C Ex(t, µ) = 1. More generally, a code is quasi-perfect if there exist t

and µ ∈ D(H) such that the projectors
{
E•x(t, µ)

}
x∈C are orthogonal to each other, and for

I• ,
∑
x∈C E•x(t, µ), I◦ , 1 − I•, it holds that

∑
x∈C E◦x(t, µ) = cI◦ where c ∈ R, c > 0 is a

normalizing constant that depends on the code C.

Example 1 (Classical 2-bit Binary Symmetric Channel): We consider the classical Binary
Symmetric Channel from Section 3.3 in order to draw comparisons between classical and
quantum quasi-perfect codes. We denote the BSC channel by NA→B(|φx〉 〈φx|), where |φx〉
is a quantum state representing a classical state. We denote the probability of a bit-flip error
as δ, and use the assumption that (1− δ) > δ. Let’s consider the case of using two uses of
the channel to transmit two possible quantum states, |00〉 〈00| and |11〉 〈11|, corresponding
to the input codewords (in bits) ′00′ and ′11′ respectively. The quantum channel states are
then W00 = NA→B(|00〉 〈00|) and W11 = NA→B(|11〉 〈11|), or equivalently:

W00 =


(1− δ)2 0 0 0

0 δ(1− δ)) 0 0
0 0 (1− δ)δ 0
0 0 0 δ2

 , (4.16)

W11 =


δ2 0 0 0
0 (1− δ)δ 0 0
0 0 δ(1− δ)) 0
0 0 0 (1− δ)2

 . (4.17)
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Let’s take µ = 1
4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and t = 4δ(1− δ). Then we have that:

E00 = {W00 − tµ ≥ 0} =




(1− δ)2 − δ(1− δ) 0 0 0
0 0 0 0
0 0 0 0
0 0 0 δ2 − δ(1− δ)

 ≥ 0

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ,

(4.18)

E11 = {W11 − tµ ≥ 0} =



δ2 − δ(1− δ) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 (1− δ)2 − δ(1− δ)

 ≥ 0

 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

(4.19)

Notice that this coincides with the classical regions S00(τ,Q) and S11(τ,Q) from Section
3.3. The classical interior and shell regions of Sx also coincide with E•x and E◦x , x ∈ {00, 11}
respectively. We have that:

E•00 = {W00 − tµ > 0} =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (4.20)

E•11 = {W11 − tµ > 0} =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , (4.21)

E◦00 = {W00 − tµ = 0} =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 , (4.22)

E◦11 = {W11 − tµ = 0} =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 . (4.23)

With this, we can check the orthogonality condition that the code must satisfy in order to
be quasi-perfect:

E•00E•11 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 = 0. (4.24)



34 Quantum perfect and quasi-perfect codes

We also see that the second condition is satisfied as well:

E◦00 + E◦11 =


0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

 = cI◦, (4.25)

where I◦ = 1− I• = 1−


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

. Notice that neither E00, E11 are

orthogonal to each other, nor E00 + E11 is the identity matrix, which means that the code is
quasi-perfect but not perfect as in the classical case. We see that the example provided here
and the one in Section 3.3 are completely equivalent.

Example 2 (Classical 3-bit Binary Symmetric Channel): Consider the 3-bit codebook
from Section 3.3 used to transmit classical information through the classical BSC channel,
consisting on the codewords {|000〉 〈000| , |000〉 〈111|}. The quantum states at the output of
the channel are:

W000 =



(1− δ)3 0 0 0 0 0 0 0
0 (1− δ)2δ 0 0 0 0 0 0
0 0 (1− δ)2δ 0 0 0 0 0
0 0 0 (1− δ)δ2 0 0 0 0
0 0 0 0 (1− δ)2δ 0 0 0
0 0 0 0 0 (1− δ)δ2 0 0
0 0 0 0 0 0 (1− δ)δ2 0
0 0 0 0 0 0 0 δ3


,

(4.26)

W111 =



δ3 0 0 0 0 0 0 0
0 (1− δ)δ2 0 0 0 0 0 0
0 0 (1− δ)δ2 0 0 0 0 0
0 0 0 (1− δ)2δ 0 0 0 0
0 0 0 0 (1− δ)δ2 0 0 0
0 0 0 0 0 (1− δ)2δ 0 0
0 0 0 0 0 0 (1− δ)2δ 0
0 0 0 0 0 0 0 (1− δ)3


.

(4.27)

We use t = 8δ(1 − δ)2 and µ = 1
8I8, where I8 is the identity matrix of dimension 8. Then
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E000 is:

E000 = {W000 − tµ ≥ 0}

=




(1 − δ)3 − δ(1 − δ)2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 (1 − δ)δ2 − δ(1 − δ)2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 (1 − δ)δ2 − δ(1 − δ)2 0 0
0 0 0 0 0 0 (1 − δ)δ2 − δ(1 − δ)2 0
0 0 0 0 0 0 0 δ3 − δ(1 − δ)2

 ≥ 0



=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (4.28)

Similarly, E111 is:

E111 = {W111 − tµ ≥ 0} =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (4.29)

Notice that E000 and E111 coincide with the regions S000(τ,Q) and S111(τ,Q) from the 3-bit
classical example for the BSC channel of Section 3.3. Also, we can see that the code is perfect,
since E000 and E111 are orthogonal to each other and E000 + E111 = 1.

Example 3 (Pure State Channel): We consider the channel x → Wx = |ϕx〉〈ϕx|, with
classical input x and a quantum pure-state output |ϕx〉〈ϕx| on a n-dimensional Hilbert space
H. Any pure-state Wx can be constructed via unitary transformations from an arbitrary
pure-state W̄ = |ψ〉〈ψ|, which means that the pure-state channel is symmetric according to
definition 4.1. If there are no further restrictions on the output of the system (that is, it
can be an arbitrary pure state Wx = UxW̄U†x), then the auxiliary state µ which commutes
with all unitary linear operator Ux, x ∈ X , is the normalized identity matrix (or equivalently
the maximally mixed state), µ = 1

n1. According to Definition 4.2, a code C with M = n

orthogonal pure states is perfect for this channel with parameters t = n and µ = 1
n1, since the

projectors Ex
(
n, 1

n1
)

=
{
|ϕx〉 〈ϕx| − 1 ≥ 0

}
= |ϕx〉 〈ϕx| are orthogonal for x ∈ C, and they

form a basis for H. Note that this particular case can be reduced to a classical problem, since
the channel outputs commute with each other. Similarly, a code with M ≥ n is quasi-perfect
for this channel with parameters t = n and µ = 1

n1 provided that
∑
x∈C |ϕx〉 〈ϕx| = c1 with
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c = M
n . A family of codes fulfilling this properties will be studied in detail in Section 4.4.1. For

these quasi-perfect codes, the interiors E•x
(
n, 1

n1
)

=
{
|ϕx〉 〈ϕx| − 1 > 0

}
= 0, hence they are

orthogonal to each other, and the channel outputs don’t commute with each other. ForM < n,
the codes for this channel and the auxiliary state µ = 1

n1 are neither perfect nor quasi-perfect.

The next result provides an alternative expression for the error probability of perfect and
quasi-perfect codes.

Theorem 4.2 (Error probability of quasi-perfect codes). Let the channel x → Wx, x ∈ X ,
Wx ∈ D(H), and µ ∈ UW be symmetric, and let C be perfect or quasi-perfect with parameters
t and µ. Then,

Pe(C) = 1− F•(t, µ) + t
(
G•(t, µ)− |C|−1), (4.30)

where |C| denotes the cardinality of the codebook C.

Proof: Let C = {x1, . . . , xM} be an arbitrary code for the (symmetric) channel x→Wx.
To avoid ambiguities, we shall denote by t̄ the smallest value of t such that the projectors{
E•x(t, µ)

}
x∈C are orthogonal to each other for a certain code C. We shall refer to t̄ as the

packing radius of the code C with respect to state µ.

We define the orthogonal basis {Ē(i)} associated to the eigenspace of
{
W̄ − t̄µ ≥ 0

}
such

that

Ē•(t̄, µ) =
∑
i∈I•

Ē(i), (4.31)

E•x(t̄, µ) = UxĒ•(t̄, µ)U†x =
∑
i∈I•

UxĒ(i)U†x =
∑
i∈I•

Ex(i), (4.32)

where we let Ex(i) , UxĒ(i)U†x. Here, I• denotes the set of basis indexes associated to
the strictly positive eigenvalues. Note that the projectors Ex(i) are orthogonal to Ex′(i)
for x 6= x′, i ∈ I• since the projectors {E•x(t̄, µ)} for x ∈ C are orthogonal to each other.
Similarly, we also write

Ē◦(t̄, µ) =
∑
i∈I◦

Ē(i), (4.33)

E◦x(t̄, µ) = UxĒ◦(t̄, µ)U†x =
∑
i∈I◦

UxĒ(i)U†x =
∑
i∈I◦

Ex(i). (4.34)

where I◦ denotes the set of basis indexes associated to the zero eigenvalues. In this later
case however, there is no orthogonality condition between the projectors Ex(i) for i ∈ I◦ for
different codewords x ∈ C. Now define d• ,M |I•| and d◦ , n− d•, where n = dim(H). The
code specific constant associated with a quasi-perfect code C is c , M |I◦|

d◦
.

We consider the decoder T = {Π1, . . . ,ΠM} with projectors
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Πm = E•xm(t̄, µ) + 1
c
E◦xm(t̄, µ) (4.35)

= Uxm Ē•(t̄, µ)U†xm + 1
c
Uxm Ē◦(t̄, µ)U†xm (4.36)

= UxmΠ̄U†xm , m = 1, . . . ,M, (4.37)

where

Π̄ = Ē•(t̄, µ) + 1
c
Ē◦(t̄, µ). (4.38)

Note that this definition implies

M∑
m=1

Πm = I• + I◦ = 1, (4.39)

as required.
We next show that this decoder satisfies the Holevo-Yuen-Kennedy-Lax conditions from

Lemma 3.1 and therefore it minimizes the probability of error. To this end, we write

Λ(T ) = 1
M

M∑
`=1

W`Π` (4.40)

= 1
M

M∑
`=1

UlW̄ Π̄U†l (4.41)

= 1
M

M∑
`=1

UlW̄ Ē•(t̄, µ)U†l + 1
Mc

M∑
`=1

UlW̄ Ē◦(t̄, µ)U†l . (4.42)

Then, it follows that

(
Λ(T )− 1

M
Wm

)
Πm =

 1
M

M∑
` 6=m

W`Π`

Πm + 1
M
WmΠm(Πm − I) (4.43)

=

 1
M

M∑
` 6=m

W`Π`

Πm + 1
Mc

(
1
c
− 1
)
WmE◦m(t̄, µ) (4.44)

=

 1
M

M∑
` 6=m

W`Π`

Πm + 1
Mc

(
1
c
− 1
)
t̄µE◦m(t̄, µ). (4.45)
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We consider the first term in (4.45) only. This term can be decomposed as 1
M

M∑
` 6=m

W`Π`

Πm = 1
M

 M∑
` 6=m

W`E•` (t̄, µ) + 1
c

M∑
` 6=m

W`E◦` (t̄, µ)

(E•m(t̄, µ) + 1
c
E◦m(t̄, µ)

)
(4.46)

= 1
M

 M∑
` 6=m

W`E•` (t̄, µ) + 1
c
t̄µ

M∑
` 6=m
E◦` (t̄, µ)

(E•m(t̄, µ) + 1
c
E◦m(t̄, µ)

)
(4.47)

= 1
M

 M∑
` 6=m

W`E•` (t̄, µ) + t̄µI◦ −
1
c
t̄µE◦m(t̄, µ)

 1
c
E◦m(t̄, µ) (4.48)

= 1
Mc

 M∑
` 6=m

W`E•` (t̄, µ)E◦m(t̄, µ) +
(

1− 1
c

)
t̄µE◦m(t̄, µ)

 (4.49)

= 1
Mc

 M∑
` 6=m

W`E•` (t̄, µ)I◦E◦m(t̄, µ) +
(

1− 1
c

)
t̄µE◦m(t̄, µ)

 (4.50)

= 1
Mc

(
1− 1

c

)
t̄µE◦m(t̄, µ). (4.51)

Here, the first equality follows by noting that W`E◦` (t̄, µ) = t̄µE◦` (t̄, µ) since E◦` (t̄, µ) is the
projector associated to the nullspace of W` − t̄µ. Combining (4.51) with (4.45) we prove that(
Λ(T )− 1

MWm

)
Πm = 0. Following analogous steps we show that Πm

(
Λ(T )− 1

MWm

)
= 0

and hence the decoder satisfies the optimality condition (3.55).
On the other hand,

Λ(T )− 1
M
Wm = 1

M

 M∑
` 6=m

W`E•` (t̄, µ) + 1
c
t̄µ

M∑
` 6=m
E◦` (t̄, µ)

+ 1
M
Wm(Πm − I). (4.52)

Considering only the second term, we obtain
1
M
Wm(Πm − I) = 1

M
WmE•m(t̄, µ) + 1

M
Wm

1
c
E◦m(t̄, µ)− 1

M
Wm (4.53)

= 1
M
t̄µ

1
c
E◦m(t̄, µ)− 1

M
WmI◦ −

1
M
Wm

∑
` 6=m
E•` (t̄, µ), (4.54)

where in (4.54) we used that Wm = WmI• +WmI◦ and that
∑
` E•` (t̄, µ) = I•. Continuing

from (4.52):

1
M

 M∑
` 6=m

W`E•` (t̄, µ) + 1
c
t̄µ

M∑
`=1
E◦` (t̄, µ)

− 1
M
WmI◦ −

1
M
Wm

∑
` 6=m
E•` (t̄, µ) (4.55)

= 1
M

M∑
6̀=m

W`E•` (t̄, µ)− 1
M
Wm

∑
` 6=m
E•` (t̄, µ) + 1

M
t̄µI◦ −

1
M
WmI◦. (4.56)
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The eigenvectors of Wm− t̄µ corresponding to positive eigenvalues belong to the subspace
spanned by I•. This means that I◦( 1

MWm − 1
M t̄µ) ≤ 0, and so 1

M t̄µI◦ − 1
MWmI◦ ≥ 0. On

the other hand we have that:

1
M

M∑
6̀=m

W`E•` (t̄, µ)− 1
M
Wm

∑
` 6=m
E•` (t̄, µ) = 1

M

M∑
` 6=m

(W` −Wm)E•` (t̄, µ) (4.57)

>
1
M

M∑
` 6=m

(t̄µ−Wm)E•` (t̄, µ) (4.58)

>
1
M

M∑
` 6=m

(t̄µ− t̄µ)E•` (t̄, µ) = 0. (4.59)

where in (4.58) we used W`E•` (t̄, µ) > t̄µE•` (t̄, µ), and (4.59) follows since WmE•6̀=m(t̄, µ) <
t̄µE•` 6=m(t̄, µ) which holds since E•` 6=m(t̄, µ) and E•m(t̄, µ) being orthogonal implies that E•` 6=m(t̄, µ)
must belong to the negative eigenspace of Wm − t̄µ. We conclude that Λ(T )− 1

MWm ≥ 0.
As the decoder T = {Π1, . . . ,ΠM} satisfies the optimality conditions from Lemma 3.1, it

minimizes (4.1). Then, combining (3.57), (4.1), and (4.14) we obtain that the error probability
of this code can be rewritten as

Pe(C) = 1− Tr
(
Λ(T ?)

)
= 1− Tr

(
1
M

M∑
m=1

WmE•m(t̄, µ) + 1
Mc

M∑
m=1

WmE◦m(t̄, µ)
)

(4.60)

= 1− 1
M

M∑
m=1

F •xm(t̄, µ)− 1
Mc

Tr
(

M∑
m=1

t̄µE◦m(t̄, µ)
)

(4.61)

= 1− 1
M

M∑
m=1

F •xm(t̄, µ)− t̄

M
Tr
(
µI◦). (4.62)

Now, noting that µ = µ(I◦ + I•) we obtain

Tr
(
µI◦
)

= 1− Tr
(
µ

M∑
m=1
E•m(t̄, µ)

)
= 1−

M∑
m=1

G•xm(t̄, µ), (4.63)

where the second equality follows from (4.15). Then, substituting (4.63) in (4.62), and
using the fact that F•(t̄, µ) = F •x (t̄, µ) and G•(t̄, µ) = G•x(t̄, µ) for symmetric channels, and
M = |C|, we obtain

Pe(C) = 1− F•(t̄, µ) + t̄(G•(t̄, µ)− |C|−1). (4.64)

Theorem 4.3 (Quasi-perfect codes attain the meta-converse). Let the channel x → Wx be
symmetric and let C be perfect or quasi-perfect with parameters t and µ ∈ UW . Then, for
M = |C|,

Pe(C) = inf
P

sup
µ′
α 1
M

(
PW ‖P ⊗ µ′

)
. (4.65)
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Proof: The proof is provided in Appendix 4.C.

Remark 4.1. A special channel to consider is the erasure channel, that takes a quantum
state on Hilbert space HA and outputs a quantum state on Hilbert space HB, where systems
A and B have dimensions dA and dB respectively. The erasure channel is defined by:

NE
A→B(ρx) = (1− ε)IA→B(ρx) + ε|e〉〈e|B , (4.66)

where ρx is the input quantum state and the Isometric channel IA→B(ρM ) = IA→BρMI
†
A→B

is defined using the isometry

IA→B =
[

1M

0 . . . 0

]
(4.67)

as unique Kraus operator and where {|0〉, . . . , |M − 1〉, |e〉} form an orthonormal basis on
HB. In this case we express the output state Wx = NE

A→B(ρx) as Wx = WxIA→BI
†
A→B +

Wx|e〉〈e|B = WxIA→BI
†
A→B + ε|e〉〈e|B. The eigenspace of

{
Wx − t̄µ = 0

}
consist of the

eigenspace of
{
IA→B(ρM )− t̄µ = 0

}
plus the eigenvector |e〉〈e|B. Equivalently, we can express

E◦x(t̄, µ) as E◦x(t̄, µ) =
∑
i∈I◦ Ex(i) = E ′◦x (t̄, µ) + |e〉〈e|B, where E

′◦
x (t̄, µ) is the eigenspace of{

IA→B(ρM )− t̄µ = 0
}
and |e〉〈e|B does not depend on x (i.e. all codewords share the same

eigenvector |e〉〈e|B). The input state has no effect on the term ε|e〉〈e|B, so for this case we
introduce the following generalized definition of quasi-perfect codes which can accommodate
the different input and output dimensions of the erasure channel:

Definition 4.3. A code C is generalized quasi-perfect if there exists t and µ ∈ D(H) such
that the projectors

{
E•x(t, µ)

}
x∈C are orthogonal to each other, fulfilling

∑
x∈C E•x(t, µ) = I•.

Moreover we also require that
∑
x∈C E

′◦
x (t̄, µ) = CCI◦A, where I◦A = IA→BI

†
A→B − I•,

E ′◦x (t̄, µ) = E◦x(t̄, µ)− |e〉〈e|B and CC ∈ R, CC > 0 is a normalizing constant that depends on
the code C.

The following lemma shows that generalized quasi-perfect codes are optimum among all
codes of the same blocklength and cardinality:

Theorem 4.4 (Generalized quasi-perfect codes attain the meta-converse bound). Let the channel
x→Wx be symmetric and let C be generalized quasi-perfect with parameters t and µ ∈ UW .
Then, for M = |C|,

Pe(C) = inf
P

sup
µ′
α 1
M

(
PW ‖P ⊗ µ′

)
. (4.68)

Proof. We define the POVM as follows:

Π̄ = Ē•(t̄, µ) + 1
CC
Ē
′◦(t̄, µ) + 1

M
|e〉〈e|B , (4.69)
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where Ē ′◦(t̄, µ) = Ē◦(t̄, µ)− |e〉〈e|B. Following similar steps as in the proof of Theorem 4.2,
it is possible to show that the optimality conditions from Lemma 3.1 are satisfied. We have:

Λ(T ) = 1
M

M∑
`=1

UlW̄ Ē•U†l + 1
MCC

M∑
`=1

UlW̄ Ē
′◦(t̄, µ)U†l

+ 1
M
W |e〉〈e|B = Λ(T )

′
+ 1
M
W |e〉〈e|B , (4.70)

and so: (
Λ(T )− 1

M
Wm

)
Πm

=
(

Λ(T )
′
− 1
M
WmIA→BI

†
A→B

)
Πm

+
(

1
M
W |e〉〈e|B −

1
M
W |e〉〈e|B

)
Πm = 0, (4.71)

where we used that
(

Λ(T )′ − 1
MWmIA→BI

†
A→B

)
Πm = 0 as shown in the proof of Theorem

4.2. Similarly Πm

(
Λ(T )− 1

MWm

)
= 0, showing that (3.55) holds. Also, Λ(T ) − 1

MWm is
semidefinite positive because Λ(T )− 1

MWm

= Λ(T )′ − 1
MWmIA→BI

†
A→B + 1

MW |e〉〈e|B − 1
MW |e〉〈e|B = Λ(T )′ − 1

MWmIA→BI
†
A→B . We

conclude that the conditions from Lemma 3.1 are also satisfied in this case. The rest of the
proof follows the same steps as in Theorem 4.2 and Theorem 4.3.

4.4 Examples of quantum quasi-perfect codes

4.4.1 Pure 2-qubit classical-quantum channel (Bell codes)

We consider an arbitrary 2-qubit pure-state classical-quantum channel given by

x→Wx = |ϕx〉〈ϕx|. (4.72)

We define the codebook C = {x1, . . . , xM}, with even cardinality M = 2K ≥ 4, such that
the output of the channel of the m-th codeword is Wm = |ϕxm〉〈ϕxm | with

|ϕxm〉 =
{

1√
2

(
|00〉+ ejφk |11〉

)
, m = 1 + 2k,

1√
2

(
|01〉+ ejφk |10〉

)
, m = 2 + 2k,

(4.73)

where φk = 2πk/K, for k = 0 . . .K − 1.

This code is a generalization of the Bell states that we refer to as Bell code. The channel
output for codeword xm is thus given by the pure state Wxm = Wm which is defined as
Wm = |ϕxm〉 〈ϕxm |. For example, if M = 4, we have that K = 2 and ϕ0 = 0, ϕ1 = π,
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obtaining the following:

|ϕx1〉 ≡
1√
2
(
|00〉+ |11〉

)
, (4.74)

|ϕx2〉 ≡
1√
2
(
|01〉+ |10〉

)
, (4.75)

|ϕx3〉 ≡
1√
2
(
|00〉 − |11〉

)
, (4.76)

|ϕx4〉 ≡
1√
2
(
|01〉 − |10〉

)
, (4.77)

which are the Bell states. Similarly, for M = 8, we have K = 4, ϕ0 = 0, ϕ1 = π
2 , ϕ2 = π,

ϕ3 = 3π
2 and:

|ϕx1〉 ≡
1√
2
(
|00〉+ |11〉

)
, (4.78)

|ϕx2〉 ≡
1√
2
(
|01〉+ |10〉

)
, (4.79)

|ϕx3〉 ≡
1√
2
(
|00〉+ j |11〉

)
, (4.80)

|ϕx4〉 ≡
1√
2
(
|01〉+ j |10〉

)
, (4.81)

|ϕx5〉 ≡
1√
2
(
|00〉 − |11〉

)
, (4.82)

|ϕx6〉 ≡
1√
2
(
|01〉 − |10〉

)
, (4.83)

|ϕx7〉 ≡
1√
2
(
|00〉 − j |11〉

)
, (4.84)

|ϕx8〉 ≡
1√
2
(
|01〉 − j |10〉

)
, (4.85)

which are phase-modulated states that are built from the Bell states. As we show next, this
codebook constitutes a quasi-perfect code.

Proposition 4.1. The 2-qubit classical-quantum channel Wx = |ϕx〉 〈ϕx| is symmetric and
the Bell code C is quasi-perfect for this channel. Moreover,

Pe(C) = α 1
M

(
Wx ‖µ0

)
= 1− 4

M
. (4.86)

Proof: We have that
∑
x∈C |ϕx〉 〈ϕx| = M

4 14, which means that the code is quasi-
perfect as mentioned in Example 3 in Section 4.3. From Example 3, we have t = n = 4,
µ = 1

41 and E•x
(
n, 1

n1
)

= 0, which means that F•(·) = G•(·) = 0. Using (4.64), we obtain
that Pe(C) = 1− t 1

M = 1− 4
M .
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4.4.2 Example: pure 2-qubit classical-quantum channel followed by a quantum
erasure channel

Consider a classical-quantum channel followed by the quantum erasure channel:

NA→B(ρA) = (1− ε)IA→B(ρA) + ε|e〉〈e|B ,

where the Isometric channel IA→B(ρA) = IA→BρAI
†
A→B is defined using the isometry

IA→B from (4.67), particularized for dA = 4, dB = 5. The channel is then defined by
Wx = NA→B(|ϕx〉 〈ϕx|A).

For M = 2K > 3, we use the Bell codebook C =
{
x1, . . . , xM

}
of Section 4.4.1. The

channel output for codeword xm is thus given by the state Wxm = Wm which is defined as
Wm = NA→B

(
|ϕxm〉 〈ϕxm |A

)
.

Proposition 4.2. The 2-quit classical-quantum erasure channel is symmetric and the Bell
code C is generalized quasi-perfect for this channel. Moreover,

Pe(C) = α 1
M

(
Wx ‖µ0

)
= 1− 4− 3ε

M
. (4.87)

Proof: The proof is provided in Appendix 4.A.

4.4.3 Example: pure 2-qubit classical-quantum channel followed by a quantum
depolarizing channel

Consider a classical-quantum channel followed by the depolarizing channel:

NA→B(ρA) = p
1
414 + (1− p)ρA.

Consider the Bell codes defined in the previous cases. The channel output for codeword xm
is thus given by the state Wxm = Wm which is defined as Wm = NA→B

(
|ϕxm〉 〈ϕxm |A

)
.

Proposition 4.3. The 2-qubit classical-quantum depolarizing channel is symmetric and the
Bell code C is quasi-perfect for this channel. Moreover,

Pe(C) = α 1
M

(
Wx ‖µ0

)
= 1− 1

M
(4− 3p). (4.88)

Proof: The proof is provided in the Appendix 4.B.

4.4.4 Extension to N -qubit classical-quantum channels

This section shows that the Bell codes for the 2-qubit classical-quantum channel can be
extended to an N -qubit classical-quantum channel.
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Consider an arbitrary N -qubit classical-quantum channel with pure outputs given by

|ϕ〉 =
2N−1∑
l=0

αl |l〉 (4.89)

=
2N−1∑
l=0

αl |lN−1 . . . l0〉 (4.90)

= α0 |0 . . . 00〉+ α1 |0 . . . 01〉+ . . .+ α2N−1 |1 . . . 11〉 (4.91)

for
∑2N−1
l=0 |αl|2 = 1 and where lN−1 . . . l0 are the digits of the binary representation of l.

The channel is then defined by the mapping x → Wx = |ϕx〉 〈ϕx|. For M = 2N−1K ≥ 2N ,
the N -qubit Bell codebook of cardinality M is given by C =

{
x1, . . . , xM

}
with the following

channel outputs:

|ϕxm〉 =



1√
2

(
|00〉+ ejφk |11〉

)
⊗ |lN−3 . . . l0〉 ,

m = 1 + 2k + 2Kl,

1√
2

(
|01〉+ ejφk |10〉

)
⊗ |lN−3 . . . l0〉 ,

m = 2 + 2k + 2Kl,

(4.92)

where φk = 2πk/K, k = 0, . . . ,K − 1, and where l = 0, . . . , 2N−2 − 1.
The channel output for codeword xm is thus given by the pure state Wm = |ϕxm〉 〈ϕxm |.

Proposition 4.4. Let µ0 = 1
2N 12N . The N -qubit classical-quantum channel is symmetric and

the N -qubit Bell code C is quasi-perfect for this channel. Moreover,

Pe(C) = α 1
M

(
Wx ‖µ0

)
= 1− 2N

M
. (4.93)

Proof: The proof is the same to that of Proposition 4.1 and it is omitted here.



Appendix

4.A Proof of Proposition 4.2

Let ρB be the average density matrix as observed by the decoder. For M > 3 it follows that

ρB = 1
M

M∑
m=1

Wm = 1
M

M∑
m=1
NA→B

(
|ϕxm〉 〈ϕxm |A

)
=

(1− ε) 1
414

0
...
0

0 . . . 0 ε

 . (4.94)

Define decoder P = {Π1, . . . ,ΠM} as

Πm = 1
M
ρ
− 1

2
B Wmρ

− 1
2

B = 1
M

4 |ϕxm〉 〈ϕxm |
0
...
0

0 . . . 0 1

 . (4.95)

It is possible to check that Πm ≥ 0 and that
∑M
m=1 Πm = 15. Moreover,

Λ(P) , 1
M

M∑
m=1

WmΠm = 1
M

 (1− ε)14

0
...
0

0 . . . 0 ε

 . (4.96)

Conditions (3.55) and (3.56) from Lemma 3.1 are satisfied by this decoder as we show next.
First we can see that

Λ(P)Π?
m = 1

M
WmΠ?

m, (4.97)

45



46 Quantum perfect and quasi-perfect codes

which implies (3.55). Equation (3.56) in Lemma 3.1 is satisfied since, for arbitrary unit

norm vector |ψ′〉 ,
[
|ψ〉
π

]
, where |π| ≤ 1, 〈ψ|ψ〉 = 1− |π|2,

〈ψ′|Λ(P) |ψ′〉
1
M 〈ψ′|Wm |ψ′〉

=
1
M

[
(1− ε) 〈ψ|ψ〉+ ε|π|2

]
1
M [(1− ε)| 〈ψ|ϕxm〉 |2 + ε|π|2]

≥ 1, (4.98)

where the inequality is implied by the Cauchy-Schwarz inequality since | 〈ψ|ϕxm〉 |2 ≤
〈ψ|ψ〉 〈ϕxm |ϕxm〉 = 〈ψ|ψ〉. As (4.98) implies 〈ψ| (Λ(P)− 1

MWm) |ψ〉 ≥ 0 for an arbitrary |ψ〉,
then (3.56) follows.We conclude that P = {Π1, . . . ,ΠM} minimizes the error probability for C.

Let

µ0 = 1
4− 3ε

 (1− ε)14

0
...
0

0 . . . 0 ε

 . (4.99)

We prove that

Ex(t, µ0) =


15, t < 0,
|v′1〉 〈v′1|+ |v′2〉 〈v′2| , 0 ≤ t ≤ t0,
0, t > t0,

(4.100)

where |v′1〉 =
[
|ϕx〉

0

]
, |v′2〉 =

[
0, 0, 0, 0, 1

]T and t0 ≥ 0. For t < 0 the identity is trivial since

both Wx ≥ 0 and µ0 ≥ 0. For the t ≥ 0 region, we consider:

Wx − tµ0 =
[
(1− ε) |ϕx〉 〈ϕx| 0

0 ε

]
− t

4− 3ε

[
(1− ε)14 0

0 ε

]
(4.101)

=
[

(1− ε)(|ϕx〉 〈ϕx| − t
4−3ε14) 0

0 ε(1− t
4−3ε )

]
. (4.102)

For t > 4− 3ε the matrix Wx − tµ0 has no positive eigenvalues. For 0 ≤ t ≤ 4− 3ε it has two
positive eigenvalues whose eigenvectors are |v′1〉 = |ϕx〉 and |v′2〉 =

[
0, 0, 0, 0, 1

]T , obtaining
(4.100).

Taking t = 4 − 3ε we see that 1
MWm − Λ(P) = 1

MWm − t
M µ0 is negative semidefinite.

Hence, Exm(t, µ0) ,
{
Wm − tµ0 ≥ 0

}
=
{
Wm − tµ0 = 0

}
= E◦xm(t, µ0) is the null eigenspace

of 1
MWm − Λ(P). This also implies that E•xm(t, µ0) = 0, hence

{
E•x(t, µ)

}
x∈C are orthogonal

to each other. For this choice of t and µ0, we also have that

Exm(t, µ0) =
[
|ϕx〉 〈ϕx| 0

0 1

]
. (4.103)
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We conclude that
∑
x∈C Ex(t, µ) =

[
M
4 14 0
0 M

]
, which means that E ′◦x (t̄, µ) = M

4 I◦A, where

E ′◦x (t̄, µ) and I◦A were defined in Definition 4.3. This proves that the code is generalized
quasi-perfect. The error probability using the optimal decoder P is:

Pe(C) = 1− 1
M

M∑
m=1

Tr
(
WmΠm

)
(4.104)

= 1− Tr
(
Λ(P)

)
(4.105)

= 1− 4− 3ε
M

, (4.106)

where in the last step we used (4.96).

4.B Proof of Proposition 4.3

Define decoder P = {Π1, . . . ,ΠM} as

Πm = 4
M
|ϕxm〉 〈ϕxm | . (4.107)

This set of projectors satisfy Πi ≥ 0 and
∑M
i=1 Πi = 14. For this decoder, we have

Λ(T ) , 1
M

M∑
i=1

WiΠi (4.108)

= 4
M2

M∑
i=1

Wi |ϕxi〉 〈ϕxi | (4.109)

= 1
4M (4− 3p)14. (4.110)

It follows that

Λ(T )Πi = 1
M
WiΠi, (4.111)

which implies (3.55). Equation (3.56) is satisfied since, for arbitrary unit norm vector |ψ〉,

〈ψ|Λ(T ) |ψ〉
1
M 〈ψ|Wi |ψ〉

=
1

4M (4− 3p)
1

4M (p+ 4(1− p)| 〈ψ|ϕxi〉 |2)
(4.112)

≥ 4− 3p
p+ 4(1− p) = 1. (4.113)

So T = {Π1, . . . ,ΠM} minimizes the error probability for the Bell code C.

We can also see that the channel is symmetric, because Wx = UxWyUx
= Ux(p 1

414 + (1− p)ρy)Ux = Uxp
1
414Ux + (1− p)Ux |αy〉 〈αy|Ux = p 1

414 + (1− p) |αx〉 〈αx|,
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with Ux being a unitary matrix such that Ux |αy〉 〈αy|Ux = |αx〉 〈αx|.
Next, we prove that the Bell code is quasi-perfect for the depolarizing channel. Recall that

Ex(t, µ0) =
{
Wx − tµ0 ≥ 0

}
. (4.114)

Let µ0 = 1
41. We obtain the eigenvector associated to the largest eigenvalue of Wx − tµ0. To

this end, we consider an arbitrary unit-norm vector |v〉. The largest eigenvalue of Wx − tµ0
is given by

max
v
〈v| (Wx − tµ0) |v〉 (4.115)

= max
v

{p
4 + (1− p)| 〈v|ϕx〉 |2 −

t

4

}
(4.116)

= 1− 3
4p−

t

4 . (4.117)

The vector |v〉 maximizing (4.116) is |v〉 = |ϕx〉. We can observe that t = t0 corresponds
to the case for which the maximum eigenvalue of |αm〉 〈αm| − tµ0 is equal to zero, which is
obtained with t0 = 4−3p. For 0 ≤ t ≤ 4−3p, (4.117) is the only non-negative eigenvalue with
associated eigenvector |v〉 = |ϕx〉. Therefore, for this interval, we obtain Ex(t, µ0) = |ϕx〉 〈ϕx|.

Take t = 4 − 3p, then 1
MWm − Λ(T ) is negative semidefinite and E•xm(t, µ0) = 0. As a

result,
{
E•xm(t, µ0)

}
x∈C are orthogonal to each other. Similarly, for this choice of t and µ0,

it follows that
∑
x∈C E◦x(t, µ) = M

4 14 and so the code is quasi-perfect. Using the optimal
decoder T , we obtain that the probability of error is

Pe(C) = 1− 1
M

M∑
i=1

Tr
(
WiΠi

)
(4.118)

= 1− Tr
(
Λ(T )

)
(4.119)

= 1− 4− 3p
M

, (4.120)

where in the last step we used (4.110).

4.C Proof of Theorem 4.3

We need to introduce a couple of lemmas in order to prove Theorem 4.3.

Lemma 4.1. For any binary hypothesis test discriminating between the quantum states ρ0
and ρ1, it follows that

αβ(ρ0‖ρ1)

= sup
t≥0

{
Tr
(
ρ0
{
ρ0 − tρ1 ≤ 0

})
+ t
(
Tr
(
ρ1
{
ρ0 − tρ1 > 0

})
− β

)}
(4.121)

≥ Tr
(
ρ0
{
ρ0 − t′ρ1 ≤ 0

})
− t′β, (4.122)

for any t′ ≥ 0.
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Proof:
For any operator A ≥ 0 and 0 ≤ T ≤ 1, it holds that Tr

(
A{A > 0}

)
≥ Tr

(
AT
)
[45, Eq.

8]. For A = ρ0 − t′ρ1 and T = Top defined in (3.52), this inequality becomes

Tr
(
(ρ0 − t′ρ1)P+

t′

)
≥ Tr

(
(ρ0 − t′ρ1)Top

)
, (4.123)

where we defined P+
t′ , {ρ0 − t′ρ1 > 0}. Indeed, (4.123) holds with equality for the value

t′ = t appearing in (3.52), as Tr
(
(ρ0 − tρ1)θ0

t

)
= 0 for any 0 ≤ θ0

t ≤
{
ρ0 − tρ1 = 0

}
, since θ0

t

is in the null-space of ρ0 − tρ1.

After some algebra, (4.123) yields

−Tr
(
ρ0Top

)
≥ −Tr

(
ρ0P

+
t′

)
+ t′Tr

(
ρ1(P+

t′ − Top)
)
. (4.124)

Summing one to both sides of (4.124) and noting that αβ(ρ0‖ρ1) = 1 − Tr
(
ρ0Top

)
and

β = Tr
(
ρ1Top

)
, we obtain

αβ(ρ0‖ρ1)
≥ Tr

(
ρ0{ρ0 − t′ρ1 ≤ 0}

)
+ t′Tr

(
ρ1P

+
t′

)
− t′β. (4.125)

As (4.123) holds with equality for the value t′ = t appearing in (3.52), so it does (4.125) after
optimization over the parameter t′ ≥ 0. Then, (4.121) follows. To obtain the lower bound
(4.122), we fix t′ ≥ 0 and use that Tr

(
ρ1
{
ρ0 − t′ρ1 > 0

})
≥ 0.

Lemma 4.2. Let ρ0 = PW and ρ1 = P ⊗ µ be defined in (4.2) and (4.3), respectively. Then,
the optimal trade-off (3.47) for a hypothesis test between ρ0 and ρ1 satisfies

αβ
(
PW ‖P ⊗ µ

)
= inf

{β′x}:
β=
∑

x
P (x)β′x

∑
x∈X

P (x)αβ′x
(
Wx ‖µ

)
. (4.126)

Proof: We consider Lemma 4.1 with ρ0 ← PW and ρ1 ← P ⊗ µ. Then, using the
block-diagonal structure of PW and P ⊗ µ, the identity (4.121) yields

αβ
(
PW ‖P ⊗ µ

)
= sup

t≥0

{∑
x∈X

P (x) Tr
(
Wx

{
Wx − tµ ≤ 0

})
+ t

(∑
x∈X

P (x) Tr
(
µ
{
Wx − tµ > 0

})
− β

)}
(4.127)

= sup
t≥0

{∑
x∈X

P (x)
(

Tr
(
Wx

{
Wx − tµ ≤ 0

})
+ t
(

Tr
(
µ
{
Wx − tµ > 0

})
− β′x

))}
(4.128)
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for any {β′x}, x ∈ X , such that
∑
x P (x)β′x = β.

We relax the optimization (4.128) by allowing t to be different for each x. Then, we
obtain the following upper bound on αβ

(
PW ‖P ⊗ µ

)
,

αβ
(
PW ‖P ⊗ µ

)
≤
∑
x∈X

P (x) sup
tx≥0

{
Tr
(
Wx

{
Wx − txµ ≤ 0

})
+ tx

(
Tr
(
µ
{
Wx − txµ > 0

})
− β′x

)}
(4.129)

=
∑
x∈X

P (x)αβ′x
(
Wx ‖µ

)
, (4.130)

where in the last step we applied the identity (4.121) from Lemma 4.1 with ρ0 ←Wx and
ρ1 ← µ. The bound (4.129)-(4.130) holds for any {β′x}, x ∈ X , such that

∑
x P (x)β′x = β.

Then, to prove (4.126) we only need to show that there exist {β′x} satisfying
∑
x P (x)β′x = β

and such that (4.129) holds with equality.

The value of t maximizing (4.128) induces the Neyman-Pearson test (3.52), which due to
the block-diagonal structure of the problem, can be decomposed into the sub-tests

T ′x =
{
Wx − tµ > 0

}
+ θ0

x. (4.131)

Each of these subtests induces a type-I error probability α′x and a type-II error probability
β′x, that, according to the Neyman-Pearson lemma, satisfy

∑
x P (x)α′x = αβ

(
PW ‖P ⊗ µ

)
and

∑
x P (x)β′x = β. For this choice of {β′x}, the optimization in (4.129) yields tx = t (as

the t parameter in the Neyman-Pearson subtests is unique), and therefore (4.129) holds with
equality. The result thus follows.

Now we can prove Theorem 4.3. From Theorem 4.1, we have that the right-hand side of
(4.65) is a lower bound to the error probability of any code. Then, to prove (4.65) we only
need to show that the error probability of a quasi-perfect code C coincides with this lower
bound. Using (4.121) in Lemma 4.1, with t′ = t, we have that for symmetric channels:

αβx
(
Wx ‖µ

)
≥ 1− F •x (t, µ) + t

(
G•x(t, µ)− βx

)
(4.132)

= 1− F•(t, µ) + t
(
G•(t, µ)− βx

)
. (4.133)

Then, using Lemma 4.2, we have the following:

inf
P

sup
µ′
α 1
M

(
PW ‖P ⊗ µ′

)
≥ inf

{P (x),βx}:∑
x
P (x)βx= 1

M

∑
x∈X

P (x)αβx
(
Wx ‖µ

)
(4.134)

≥ inf
{P (x),βx}:∑
x
P (x)βx= 1

M

(
1− F•(t, µ) + t

(
G•(t, µ)−

∑
x P (x)βx

))
(4.135)

= 1− F•(t, µ) + t

(
G•(t, µ)− 1

M

)
, (4.136)
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which coincides with the error probability of quasi-perfect codes. This implies that
Pe(C) ≥ infP supµ′ α 1

M

(
PW ‖P ⊗ µ′

)
≥ Pe(C), proving the equality.





5
Quasi-perfect codes for coherent states

This chapter presents the main results of [22]. We study quasi-perfect codes for the trans-
mission of coherent states. The information is conveyed by a laser pulse and transmitted
through an optical channel. We will show that phase-modulated codes are quasi-perfect for
an approximation of the channel.

5.1 Introduction to optical communications and coherent states

In optical communications systems the information is transmitted in the form of light,
generated by a laser or a LED. Optical communications have the advantage of having a
high bandwidth due to the fact that the carrier central frequency is very high (of the order
of Terahertz). The general classical-quantum channel is composed by a classical channel,
where the information is conveyed through an electrical signal that is converted to an optical
quantum signal and transmitted through a quantum channel. The optical signal is then
received by an optical detector and converted back to electrical. The signal generated by the
laser is a quasi-monochromatic light pulse, that is, a light pulse that has an electric field
with the following expression:

Ē(r, t) = E(r, t)e−jωt+φ, (5.1)

where E(r, t) is in
√
photons/(s ·m2) units and is a term that depends on the mode and

temporal mode, i.e. E(r, t) = ψ(r)s(t). The light source (laser) generates photons as a random
Poisson process with a mean number of photons equal to:

N =
∫ T

0

∫
A

|Ē(r, t)|2drdt, (5.2)

53
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Figure 5.1: Optical channel model

where A is the aperture area of the light pulse and T is the pulse duration. Ideally, the
optical receiver detects the photons, and collects information about the arriving number of
photons (clicks) and their arrival time. The number of photons is a Poisson process with:

pk = e−NNk

k! , (5.3)

where pk is the probability of having k photon arrivals and N is the mean number of photons.
It is possible to represent the state of the electromagnetic field produced by the laser as a
coherent state, defined as:

|α〉 ≡ e− 1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉 , (5.4)

where α is a complex amplitude, |α|2 is the average number of photons of the state |α〉 and
|n〉 is the photon number state, also known as Fock state. Coherent states were introduced
in the quantum optics field by Glauber (see [23]). In general, it is not possible to produce a
state with a predetermined number of photons n, and so it is not possible to use a photon
number modulation-based system to transmit classical information. Instead, it is common
to use a phase-modulation of the coherent state |α〉 by associating different hypothesis to
different values of the phase of α. An overview of some types of modulations and optical
receivers is presented next.

There are different types of modulations that can be used to transmit classical information
in this setting. The simplest one is the On-Off keying modulation. In this case, the transmitter
will either send a pulse over a period of time T or send nothing, and the receiver will decide
hypothesis H0 if it receives nothing or H1 if it receives the pulse.
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Figure 5.2: On-Off keying modulation

In this case, if nothing is transmitted (hypothesis 0) the number of photons that the
receiver detects are 0. This means that there will be no error in this case, since the receiver
will always decide H0. On the other hand, if a pulse is transmitted then the receiver will
decide H1 if it receives at least a photon, and will decide H0 if no photon is received. So,
when the true hypothesis is H1, the probability of error is the probability of having 0 arriving
photons, and it can be obtained using (5.3). The overall error probability assuming a uniform
input distribution is:

Pe = P (H0) · 0 + P (H1)e−N = 1
2e
−N . (5.5)

A more elaborated strategy is to use an offset in order to have hypothesis 0 being |β〉 instead
of |0〉, and |α+ β〉 instead of |α〉 (this is called a displacement operation). This strategy
utilizing displacement was proposed by Kennedy [24] and can be implemented by using a
beamsplitter. The error probability obtained is

Pe = 1
2(1− e−(|β2|)) + 1

2e
−(|α+β|)2

, (5.6)

This expression can be optimized over β and it gives a better error probability than the one
in (5.5). Other types of modulation are phase modulations, such as the BPSK modulation or
Q-ary PSK modulations. Implementing a BPSK modulation can be done by using a Kennedy
receiver with a displacement α of the input state, such that hypothesis |−α〉 and hypothesis
|α〉 become |0〉 and |2α〉. In this case, the probability of error is:

Pe = 1
2e
−4N . (5.7)

Another strategy to implement a BPSK modulation receiver was defined by Dolinar in [25]
and explored in later works [26], [27]. The Dolinar receiver uses a feedback pulse in order
to optimize the error probability. The input pulse has a constant amplitude of E or −E
depending on which one is the true hypothesis. This pulse is divided into several segments
s(t) with the same amplitude as the original pulse, and each one is fed to the detector at
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different times. The receiver will use one of two possible pulses u+(t) and u−(t) as feedback
(see Figure 5.3).

Figure 5.3: Dolinar receiver

The feedback signals can be expressed as:

u+(t) = −E√
1− e−4Nt/T

, (5.8)

u−(t) = E√
1− e−4Nt/T

. (5.9)

They are pulses that initially have a high amplitude and then they tend to E or −E as time
passes.
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Figure 5.4: Plot of u+ in function of time, with E = 2

Figure 5.5: Plot of u− in function of time, with −E = −2

Initially, the detector is going to assume that the receiving signal corresponds to one
of the hypothesis (i.e. it assumes either that s(t) has a positive amplitude or a negative
amplitude). Then, it will choose to use u+ as feedback if the assumption was that the signal
had negative amplitude (or in other words, the detector assumes hypothesis H0) or u− if
the assumption was that the signal had positive amplitude (the detector assumes hypothesis
H1). The feedback is added to the next input segment s(t), as shown in Figure 5.3. Since for
lower values of time u+(t) and u−(t) have very high amplitudes compared to the amplitude
of s(t), the sum y(t) = s(t) + u±(t) is positive if u+(t) is used as feedback, or negative if
u−(t) is used. In other words, the sign of s(t) + u±(t) is determined by the feedback pulse
u±(t) (notice that the feedback signal always has a higher amplitude than the s(t) signal,
in terms of absolute value). The detector is going to use the same feedback signal until it
detects a click, which is a photon arrival. Once this happens, the detector is going to assume
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that the true hypothesis is H0 if the pulse u−(t) was used as feedback. Similarly, the detector
is going to assume that the true hypothesis is H1 if u+(t) was used as feedback. Next, it
will change the feedback signal from u−(t) to u+(t) or from u+(t) to u−(t) and repeat the
process until another click is detected. This process is iterated for all the pulse duration
T . When all the signal segments have entered the detector, it will determine that the true
hypothesis corresponds to the last assumption it made. Notice that as t tends to T , u+(t)
and u−(t) tend to E and −E respectively. If the true hypothesis is H0, then s(t) has an
amplitude of −E and so the amplitude of s(t) + u+(t) tends to zero as t tends to T , which
means that it is going to be less probable to get clicks.

This iterative process use all the arriving photons in contrast to the Kennedy receiver,
and is able to achieve an optimum probability of error, which is

Pe = 1
2

[
1−

√
1− e−4N

]
. (5.10)

This is proven in [25]. For the case of having multiple hypothesis, it is necessary to use a
Q-ary PSK modulation. An implementation of a QPSK receiver was proposed by Bondurant
and it uses a similar concept to the Kennedy receiver. The detector receives one out of Q
possible hypothesis corresponding to Q quantum states with different phases (for example,
for Q = 4, it would be |α〉, |−α〉, |jα〉 and |−jα〉). Then, the receiver input signal is displaced
in order to "null" one of the possible states (for Q = 4, the constellation is moved to |0〉,
|2α〉, |jα+ α〉 and |−jα+ α〉 by using a displacement of α, so that the state |−α〉 becomes
|0〉). Next, the receiver waits for clicks. If photons are detected, then the receiver will con-
sider that the hypothesis corresponding to the state that has been nulled is not the true
hypothesis because no photons should have been detected, and in this case it will repeat the
same process by nulling another hypothesis. If no photons are detected, then it determines
that the true hypothesis is the one that corresponds to the state that has been displaced to |0〉.

In the next section, we will analyse codes using Q-ary PSK modulations to show that
they are quasi-perfect for an approximated bosonic channel. We will use an optimum POVM
for measurement and not consider the difficulties in implementing these receivers. Our line
of work will be focused on the optimality of the actual codes rather than the design of the
detectors.

5.2 Quasi-perfect codes for the bosonic classical-quantum channel

In this section, we explore quasi-perfect codes for the transmission of coherent states. Recall
that coherent states are represented by:

|α〉 ≡ e− 1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉 . (5.11)

Notice that the dimension of |α〉 is infinite. We instead want to consider a finite dimensional
quantum receiver that implements collective measurements by using a POVM defined in a
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Hilbert space of dimension N , HN , i.e., restricting the dimension of the Fock states |n〉 to
N , n ∈ {0, . . . , N − 1}.

We define the Nth order approximation |α〉N ∈ HN of a coherent state |α〉 as:

|α〉N ≡
1√
CN

N−1∑
n=0

αn√
n!
|n〉 , (5.12)

CN =
N−1∑
n=0

|α|2n

n! . (5.13)

To determine how close the approximation is with respect to the original state we make
use of the concept of Pure-State Fidelity, which is calculated as a function of the order of
approximation N ,

F (N) = | 〈α|α〉N |
2 = CN

e|α|2

= 1
1 + C−1

N

∑∞
n=N

|α|2n
n!

= 1
1 + εN

, (5.14)

for εN = C−1
N

∑∞
n=N

|α|2n
n! . Note that limN→∞ εN = 0 which means that if N is sufficiently

large, the Fidelity between the original and the approximated state tends to one. The Fidelity
and the Trace Distance || |α〉 〈α| − |α〉 〈α|N ||1 for pure states are related as follows:

1
2 || |α〉 〈α| − |α〉 〈α|N ||1 =

√
1− F (N)

=
√

εN
1 + εN

≈
√
εN . (5.15)

Since limN→∞ εN = 0 for sufficiently large N , if a measurement using an arbitrary operator
Π on the approximated state |α〉N succeeds with high probability, it also does succeed with
high probability if applied to the original state |α〉 since:

1
2 || |α〉 〈α| − |α〉 〈α|N ||1

= max
0≤∆≤I

{Tr{∆(|α〉 〈α| − |α〉 〈α|N )}}

≥ | 〈α|Π |α〉 − 〈α|N Π |α〉N |. (5.16)

We are interested in the channel coding problem of transmitting M equiprobable messages
through a classical-quantum channel. Messages are represented by the classical random
variable x, over a one-shot approximated coherent quantum channel x→ |αx〉 〈αx|N , with
αx ≡ aeiθx , θx ∈ [0, 2π). A channel code is defined as a mapping from the message set
{1, . . . ,M} into a set of M codewords C = {x1, . . . , xM}. The decoder operates in a finite
dimensional Hilbert space of dimension N , HN . For a source message m, the decoder decides
which was the transmitted message. Define C = {x1, . . . , xM}, with αxm ≡ aδxm ≡ aeiθxm ,
θxm = 2π(m−1)

M for a code with cardinality M , and for each message m = 1, ...,M , i.e. as in
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a classical PSK modulation. Note that this implies that a = |αxm |.

The analysis that is presented here will consider the particular case of having the same
message cardinality M as the dimension of the POVM’s Hilbert space N , in other words, we
consider N = M .

Define ρM as the density matrix observed by theM -dimensional decoder. For N = M ≥ 2
it follows that

ρM = 1
M

M∑
m=1
|αxm〉 〈αxm |M

= 1
CM



1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a4

2 . . . 0
...

...
0 0 0 . . . a2(M−1)

(M−1)!

 , (5.17)

where

|αxm〉M ≡
1√
CM

M−1∑
n=0

αnxm√
n!
|n〉 . (5.18)

We define the state density matrix when the message xm is transmitted as Wm, i.e, Wm ≡
|αxm〉 〈αxm |M . Also, let αm ≡ αxm and δm ≡ δxm to simplify the notation. We consider the
decoder P = {Π1, . . . ,ΠM} where

Πm = 1
M
ρ
− 1

2
M Wmρ

− 1
2

M

= 1
M


1 δ∗m δ∗2m . . . δ∗M−1

m

δm 1 δ∗m . . . δ∗M−2
m

δ2
m δm 1 . . . δ∗M−3

m
...

...
... . . .

...
δM−1
m δM−2

m δM−3
m . . . 1

 . (5.19)

One can check that Πm ≥ 0 and that
∑M
m=1 Πm = 1M . Moreover,

Λ(P) , 1
M

M∑
m=1

WmΠm

= 1
M

BM
CM



1 0 0 ... 0
0 a 0 ... 0
0 0 a2

√
2 ... 0

...
...

... . . .
...

0 0 0 ... aM−1√
(M−1)!


, (5.20)
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with CM =
∑M−1
n=0

a2n

n! , and BM =
∑M−1
n=0

an√
n! . Then one can check that

Λ(P)Πm = 1
M
WmΠm. (5.21)

Also, for any unit vector |v〉,

〈v|Λ(P) |v〉
1
M 〈v|Wm |v〉

= 〈v|Λ(P) 1
2 Λ(P) 1

2 |v〉
1
M | 〈v|αm〉 |2

= M 〈u|u〉
| 〈u|Λ(P) 1

2 |αm〉 |2
≥ M

〈αm|Λ(P)−1 |αm〉
= 1, (5.22)

which proves that Λ(P)− 1
MWm ≥ 0.

We check the symmetry of the one-shot coherent channel x→ |αx〉 〈αx|M , with |αx| = a.
In our channel we have αy = αxe

i(θy−θx), i.e. |αy〉 = Θ |αx〉, where Θ is a diagonal matrix
which elements incorporate the corresponding phase shifts. Note that ΘHΘ = I. Since (4.6)
holds, we conclude that the channel is symmetric.

We prove that C is quasi-perfect for µ = µ0 and t = t0, with t0 and µ0 defined below.
Recall that a code is quasi-perfect with respect to µ0 and t0 if it satisfies that {E•x(t0, µ0)} for
x ∈ C are orthogonal to each other and also that

∑
x∈C E◦x(t, µ) = CCI◦. From the optimality

condition of the decoder (5.22) we can see that Λ(P) − 1
MWx ≥ 0, which implies that

Ex(t0, µ0) ,
{
Wx − t0µ0 ≥ 0

}
=
{
Wx − t0µ0 = 0

}
= E◦x(t0, µ0) is the null eigenspace of

1
MWx−Λ(P). This also implies that E•x(t, µ0) = 0, hence

{
E•x(t0, µ)

}
for x ∈ C are orthogonal

to each other. Also, d◦ = n = M because d• = 0, which implies that CC = 1.

Recall that

Ex(t, µ0) =
{
|αx〉 〈αx|M − tµ0 ≥ 0

}
. (5.23)

Let µ0 = MCM
(BM )2 Λ(P) , we prove that

Ex(t0, µ0) = |vx,t0〉 〈vx,t0 |M . (5.24)

We obtain the eigenvector associated to the largest eigenvalue of |αx〉 〈αx| − tµ0. To this end,
we consider an arbitrary unit-norm vector |v〉. The largest eigenvalue of |αm〉 〈αm| − tµ0 is
given by

max
|v〉:〈v|v〉=1

〈v|
(
|αx〉 〈αx| − tµ0

)
|v〉 =

max
|v〉:〈v|v〉=1

{
〈v|αx〉 〈αx|v〉 − t 〈v|µ0 |v〉

}
. (5.25)

We can observe that t = t0 corresponds to the case for which the maximum eigenvalue of
|αm〉 〈αm| − tµ0 is equal to zero, which implies

|αx〉 〈αx|v〉 = t0µ0 |v〉 . (5.26)
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Note that (5.26) implies

|vx,t0〉 = 1√
M


1
δx
δ2
x
...

δM−1
x

 . (5.27)

Multiplying by 〈αx|µ−1
0 at both sides of (5.26) we obtain

〈αx|µ−1
0 |αx〉 〈αx|v〉 = (BM )2

CM
〈αx|v〉 = t0 〈αx|v〉 , (5.28)

from which we obtain t0 = (BM )2

CM
.

Now, we can see that using (5.27),∑
x∈C
Ex(t0, µ) =

∑
x∈C
|vx,t0〉 〈vx,t0 | (5.29)

= 1
M

M∑
m=1


1 δ∗m δ∗2m . . . δ∗M−1

m

δm 1 δ∗m . . . δ∗M−2
m

δ2
m δm 1 . . . δ∗M−3

m
...

...
... . . .

...
δM−1
m δM−2

m δM−3
m . . . 1

 = 1M . (5.30)

So, we conclude that the code is quasi-perfect.

We can also easily find the error probability of this code, which is the minimum error
probability among all possible codes of cardinality M for this channel. Using the optimal
decoder P, we obtain that the probability of error is

Pe(C) = 1− 1
M

M∑
m=1

Tr
(
WiΠi

)
(5.31)

= 1− 1
M

B2
M

CM
. (5.32)

Notice that the code is quasi-perfect only for the truncated bosonic channel. However,
due to (5.16), for sufficiently large N the error probability in (5.32) is close to the optimal
error probability for the original bosonic channel.

5.3 Quasi-perfect codes for the bosonic channel incorporating a depolarizing chan-
nel

Consider the Nth-order approximation of the bosonic classical-quantum channel of (5.13)
observed after a quantum depolarizing channel, defined as:

ND
A→B(ρM ) = p

1
M
1M + (1− p)ρM . (5.33)



5.4. Generalized quasi-perfect codes for the bosonic channel incorporating an erasure channel 63

The combined classical-quantum channel is thus Wx = ND
A→B

(
|αx〉 〈αx|A

)
. Using the

codebook C defined in (5.18), the channel output is given by Wm = ND
A→B

(
|αxm〉 〈αxm |A

)
,

m = 1, . . . ,M .

Proposition 5.1. For N = M , the bosonic classical-quantum channel incorporating a depo-
larizing channel is symmetric and the code C is quasi-perfect for this channel.

Moreover,

Pe(C) = α 1
M

(
Wx ‖µ0

)
= 1− (1− p)B2

M

MCM
− p

M
, (5.34)

which is obtained using decoder P = {Π1, . . . ,ΠM} with

Πm = 1
M
|πm〉 〈πm| , (5.35)

πm =
[
1, ejθm , e2jθm , e3jθm , ..., e(M−1)jθm

]T
. (5.36)

Proof. The proof is provided in Appendix 5.A.

5.4 Generalized quasi-perfect codes for the bosonic channel incorporating an era-
sure channel

Consider the Nth-order approximation of the bosonic classical-quantum channel (5.13)
observed after a quantum erasure channel, defined as

NE
A→B(ρM ) = (1− ε)IA→B(ρM ) + ε|e〉〈e|B .

where the Isometric channel IA→B(ρM ) = IA→BρMI
†
A→B is defined using the isometry

IA→B =
[

1M

0 . . . 0

]
(5.37)

as unique Kraus operator and where {|0〉, . . . , |M − 1〉, |e〉} form an orthonormal basis in
HB, where the dimension of HB is dB. The combined classical-quantum channel is then
Wx = NE

A→B
(
|αx〉 〈αx|A

)
. Using the codebook C defined in (5.18), the channel output is

given by Wm = NE
A→B

(
|αxm〉 〈αxm |A

)
, m = 1, . . . ,M .

Proposition 5.2. For M = dB, the truncated bosonic channel incorporating an erasure
channel is symmetric and the code C is generalized quasi-perfect for this channel. Moreover,

Pe(C) = α 1
M

(
Wx ‖µ0

)
= 1− (1− ε)B2

M

MCM
− ε

M
, (5.38)
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which is obtained using decoder P = {Π1, . . . ,ΠM} with

Πm = 1
M



1 δ∗m δ∗2m . . . δ∗M−1
m 0

δm 1 δ∗m . . . δ∗M−2
m 0

δ2
m δm 1 . . . δ∗M−3

m 0
...

...
... . . .

...
...

δM−1
m δM−2

m δM−3
m . . . 1 0

0 0 0 . . . 0 1


. (5.39)

Proof: The proof is provided in the Appendix 5.B



Appendix

5.A Proof of Proposition 5.1

The density matrix ρM observed by the decoder in this case is:

ρM = 1
M

M∑
m=1

(1− p) |αxm〉 〈αxm |M + p
1
M
1

=



(1− p) 1
CM

+ 1
M p 0 0 . . . 0

0 (1− p) a2

CM
+ 1

M p 0 . . . 0
0 0 (1− p) a4

2CM + 1
M p . . . 0

...
...

0 0 0 . . . (1− p) a2(M−1)

CM (M−1)! + 1
M p


.

(5.40)

It is easy to see that the channel is still symmetric since Wx = UxWyUx = Ux(p 1
M 1M + (1−

p)ρy)Ux = Uxp
1
M 1MUx+(1−p)Ux |αy〉 〈αy|Ux = p 1

M 1M +(1−p) |αx〉 〈αx|, with Ux being a
unitary matrix such that Ux |αy〉 〈αy|Ux = |αx〉 〈αx|, as in the case without the depolarizing
channel.

To prove that the code is quasi-perfect, {E•x(t, µ)} must be orthogonal to each other and∑
x∈C Ex(t, µ) = c1. Let’s take t = t0 = Mc0, where c0 = Tr(Λ(P)), and µ = µ0 = 1

c0
Λ(P) =

1
c0

1
M

∑M
m=1WmΠm. In this case we have:

E•x(t, µ) = {Wx − tµ > 0} = {(1− p) |αx〉 〈αx|+
p

M
I −MΛ(P) > 0} (5.41)

= {(1− p) |αx〉 〈αx|+
p

M
I −M((1− p)Λ(P)wpol + p

M2 I) > 0} (5.42)

= {(1− p) |αx〉 〈αx| −M(1− p)Λ(P)wpol > 0}, (5.43)

65
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where Λ(P)wpol is the Λ(P) that we defined in (5.20). Notice that (5.43) is equivalent to:

E•x(t, µ) = { 1
M
|αx〉 〈αx| − Λ(P)wpol > 0}, (5.44)

and from (5.22) we know that Λ(P)wpol− 1
M |αx〉 〈αx| ≥ 0. This means that E•x(t, µ) = 0 and

so {E•x(t, µ)} are orthogonal.

To obtain Ex(t, µ), we obtain the eigenvector corresponding to the largest eigenvalue of
Wx − tµ, similar to (5.25):

max
|v〉:〈v|v〉=1

{
〈v|
(
Wx − tµ0

)
|v〉
}

=

max
|v〉:〈v|v〉=1

{
(1− p) 〈v|αx〉 〈αx|v〉 − (1− p)M 〈v|Λ(P)wpol |v〉

}
. (5.45)

where we used µ = µ0 and t = t0. In this case the maximum eigenvalue is 0, so we can write
the following:

〈v|αx〉 〈αx|v〉 = M 〈v|Λ(P)wpol |v〉 (5.46)

Now, using |v〉 = 1√
M

[
1 δx δ2

x . . . δM−1
x

]T as in (5.27), we can see that (5.46) is
satisfied since

〈v|αx〉 〈αx|v〉 = 1
M

B2
M

CM
, (5.47)

M 〈v|Λ(P)wpol |v〉 = 1
M

B2
M

CM
. (5.48)

This means that Ex(t, µ) = |vx〉 〈vx| and so
∑
x∈C Ex(t0, µ) = 1, proving that the second

condition also holds. We conclude that the code is quasi-perfect. The probability of error is
obtained by using Pe(C) = 1− Tr(Λ(P)) = 1− (1−p)B2

M

MCM
− p

M .

5.B Proof of Proposition 5.2

For this case, we have that

ρM = 1
M

M∑
m=1

Wm

= 1
CM



(1− ε) 0 0 . . . 0 0
0 (1− ε)a2 0 . . . 0 0
0 0 (1− ε)a

4

2 . . . 0 0
...

...
0 0 0 . . . (1− ε)a

2(M−1)

(M−1)! 0
0 0 0 . . . 0 ε


, (5.49)
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and

Λ(P) , 1
M

M∑
m=1

WmΠm

=(1− ε) 1
M

BM
CM



1 0 0 ... 0 0
0 a 0 ... 0 0
0 0 a2

√
2 ... 0 0

...
...

... . . .
...

...
0 0 0 ... aM−1√

(M−1)!
0

0 0 0 . . . 0 0


+


0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
... . . .

...
0 0 0 . . . ε

 . (5.50)

Now, using t = (1− ε)B
2
M

CM
+ ε and µ = µ0 = 1

c0
Λ(P) (with c0 being a normalizing constant)

we have that the matrix Wx − tµ has two positive eigenvalues whose eigenvectors are
|v1〉 = 1√

M

[
1 δx δ2

x . . . δM−1
x

]T (the same as in (5.27)) and |v2〉 =
[
0, 0, 0, 0, 1

]T . This
means that: ∑

x∈C
Exm(t, µ) =

[
1 0
0 M

]
. (5.51)

Also, E•xm(t, µ) = 0 for all x ∈ C, and so {E•xm(t, µ)} are orthogonal to each other. Since both
conditions are satisfied, we conclude that the code is quasi-perfect. As in the previous cases,
the probability of error is Pe(C) = 1− Tr(Λ(P)) = 1− (1−ε)B2

M

MCM
− ε

M .





6
Quasi-perfect codes in error correction

This chapter focuses on the quantum error correction setting. Gottesman’s works [37], [38],
[39] and Calderbank’s, Rains’s and Shor’s works [35], [36] provide an introduction to this
field.

6.1 Quantum error correction

As we know, quantum channels may introduce errors to a quantum state. In previous chapters,
we introduced optimal codes to discriminate quantum states in classical-quantum channels.
However, we may be interested instead in protecting quantum states against quantum errors.
To do so, it is necessary to add ancilla qubits to the state, so the detector can use extra
information in order to determine if an error has occurred and to correct it. An important
particularity of error correction in the quantum setting is that the quantum state should be
preserved when determining whether an error has occurred or not. This means that directly
measuring the quantum state using an optimal POVM is not a good strategy for error
correction, because then the state will collapse to one of the eigenvectors of the measurement
operators, and the original state would be lost. Instead the error correction process should
focus on determining if a particular set of error have occurred without obtaining any infor-
mation of the original quantum state (the one unaffected by errors). In general, errors are
modelled as amplitude errors (that is, one or more qubits affected by an X matrix), phase
errors (that is, one or more qubits affected by a Z matrix) or both. We refer to these type of
errors as Pauli errors, since they are modelled as unitary Pauli matrices.

A quantum error correction code C is used to encode a k-qubit quantum state into a
n-qubit quantum state, with n > k, in order to protect it from channel errors. The code
generates up to 2k different codewords that constitute the coding space. To correct two errors

69
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ex and ey from a set of correctable errors E, we need to be able to distinguish the state
corresponding to the codeword ψi affected by the error ex from the state corresponding to the
codeword ψj affected by error ey, with i 6= j and ex, ey being unitary matrices. To guarantee
that we are able to distinguish both these states perfectly, they should be orthonormal:

〈ψi| e†xey |ψj〉 = 0. (6.1)

Only if this condition is satisfied for all the codewords and any ex ∈ E, ey ∈ E, then an
adequate measurement makes it possible to correct any error of the set E. The other condition
that needs to be satisfied to properly correct errors is that the measurement must not change
the state when no error occurs. In other words, we should not get information about the
codespace because in this case we would be distorting the input quantum state. We get
information of error e = e†xey by measuring 〈ψ| e†xey |ψ〉 for all possible errors ex, ey. The
result of this measurement should be independent on the codeword, that is:

〈ψi| e†xey |ψi〉 = 〈ψj | e†xey |ψj〉 (6.2)

for all |ψi〉 , |ψj〉 ∈ C. Combining both conditions, we obtain that

〈ψi| e†xey |ψj〉 = ceδij , (6.3)

where δ is the Dirac function and ce is a constant that only depends on the error vectors
ex, ey. If this condition holds, then the decoder may perform a measurement in order to
obtain knowledge about the (possible) errors that may have occurred, that is, in order to
obtain the syndrome. Then, depending on the syndrome obtained the decoder applies a Pauli
operator to recover the original state.

6.2 Stabilizer codes

A stabilizer correction quantum code is an error correction code that consists on a commutative
group S called stabilizer and a coding space T that is determined by the stabilizer. The code
encodes a k-qubit state belonging to T (a codeword) into a n-qubit state. The coding space
T has a dimension of 2k and is build as follows:

T = {|ψ〉 | Sx |ψ〉 = |ψ〉 ∀Sx ∈ S}, (6.4)

with Sx ∈ S, x ∈ {1, 2, . . . |S|}. We denote the set of correctable errors E = {e1, e2, ..., en}
as the set of Pauli errors that can be corrected by the decoder. Then for all ex ∈ E,
x ∈ {1, . . . , |E|} there is at least one stabilizer element Sx that anti-commutes with ex, that
is, Sxex = −exSx.

The decoder may use a POVM to make a measurement to detect possible errors without
affecting the codeword. To do that, consider the projectors Πx = In+Sx

2 and Π̄x = In−Sx
2 ,

where Πx and Π̄x are built using the stabilizer component Sx and where In is the identity
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matrix of dimension n. A measurement of the quantum state |ψ〉 〈ψ| using the projector Πx

will have a probability of outcome ’1’ being the following:

Tr
(
In + Sx

2 |ψ〉 〈ψ|
)

= Tr
((

In
2 |ψ〉+ Sx

2 |ψ〉
)
〈ψ|
)

= Tr
((
|ψ〉
2 + |ψ〉2

)
〈ψ|
)

= Tr(|ψ〉 〈ψ|) = 1. (6.5)

If the quantum state was affected by an error ex that anti-commutes with Sx and the
state became ex |ψ〉 〈ψ| e†x then the probability of obtaining outcome ’1’ using the projector
Πx would be:

Tr
(
In + Sx

2 ex |ψ〉 〈ψ| e†x
)

= Tr
((

In
2 ex |ψ〉+ Sx

2 ex |ψ〉
)
〈ψ| e†x

)
= Tr

((
ex
|ψ〉
2 − ex

|ψ〉
2

)
〈ψ| e†x

)
= 0. (6.6)

So the projector will give an outcome of ’1’ when there is no error ex. Similarly, for the
projector Π̄x:

Tr
(
In − Sx

2 |ψ〉 〈ψ|
)

= Tr
((

In
2 |ψ〉 −

Sx
2 |ψ〉

)
〈ψ|
)

= Tr
((
|ψ〉
2 −

|ψ〉
2

)
〈ψ|
)

= 0 (6.7)

Tr
(
In − Sx

2 ex |ψ〉 〈ψ| e†x
)

= Tr
((

In
2 ex |ψ〉 −

Sx
2 ex |ψ〉

)
〈ψ| e†x

)
= Tr

((
ex
|ψ〉
2 + ex

|ψ〉
2

)
〈ψ| e†x

)
= 1. (6.8)

So, using the POVM {Πx, Π̄x} to perform a measurement will allow us to detect error
ex with certainty. Notice that Πx + Π̄x = In because of the way the projectors are build
and Πx ≥ 0, Π̄x ≥ 0, confirming that this POVM is valid. To detect and correct mul-
tiple errors, we need to make use of all the stabilizer elements and build the projectors
Π1,Π2, . . . ,Π|S|, Π̄1, Π̄2, . . . , Π̄|S|. Then, the POVM that the error correction decoder uses is
build using all the combinations of Πx and Π̄x, that is,
{Π1Π2 . . .Π|S|,Π1Π2 . . . Π̄|S|, . . . , Π̄1Π̄2 . . . Π̄|S|}. The syndrome is obtained directly from the
outcome of the measurement. Then, the decoder will use a look-up table in order to deter-
mine the operator that needs to be applied to the quantum state to do the error correction
procedure.

Example A trivial example of a stabilizer code is the Shor 9-qubit code that encodes a
single qubit into a 9-qubit codeword as follows:

|0L〉 , (|000〉+ |111〉) (|000〉+ |111〉) (|000〉+ |111〉) , (6.9)
|1L〉 , (|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉) . (6.10)
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This code was defined by Shor in [40] and is the equivalent to the repetition code in the
classical case. The code has a stabilizer S defined as follows:

S1 = Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I, (6.11)
S2 = Z ⊗ I ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I, (6.12)
S3 = I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I, (6.13)
S4 = I ⊗ I ⊗ I ⊗ Z ⊗ I ⊗ Z ⊗ I ⊗ I ⊗ I, (6.14)
S5 = I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I, (6.15)
S6 = Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ Z ⊗ I ⊗ Z, (6.16)
S7 = X ⊗X ⊗X ⊗X ⊗X ⊗X ⊗ I ⊗ I ⊗ I, (6.17)
S8 = I ⊗ I ⊗ I ⊗X ⊗X ⊗X ⊗X ⊗X ⊗X. (6.18)

Now, an amplitude error (X error) to the first qubit (e1 = X ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I)
will anti-commute with S1 and S2, an amplitude error to the second qubit will anti-commute
with S1, an amplitude error to the third qubit will anti-commute with S2, etc. Similarly,
different (single) phase errors will anti-commute with at least one of the stabilizers S6, S7, S8.
Using these properties, the decoder can differentiate between single qubit amplitude and/or
phase errors and correct them.

Other simple examples include the 7-qubit Steane code [47] and the 5-qubit code given in
Section 6.3.

6.3 Performance of error correction quasi-perfect codes

This section shows how to study the performance of a quantum error correction system
consisting on a codebook and a set of stabilizers by using the properties of quasi-perfect codes.
In contrast to previous chapters, error correction does not involve making a measurement of
a quantum state. However, we may want to protect a qubit (or multiple qubits) using error
protection and later measure it to obtain some classical information from it. For example,
we may want to implement the superdense coding protocol to transmit classical information
between Alice and Bob. As we’ve seen in Section 2.7, Alice needs to send her share of the
entangled state through the quantum channel. If the quantum channel is noisy, then errors to
the qubit will be more likely to happen, and (classical) communication will not be possible.
In this case, we may need to implement an error correction code in order to protect the qubit
against errors, while maintaining the entanglement properties which would not be possible
if we measured the state. We may also need to protect Bob’s qubit from decoherence by
implementing error correction.

We can show that a particular error correction code is optimum by proving that it is
quasi-perfect. As we will see later, even if the code is quasi-perfect the error correction
procedure may degrade the error probability. As an example, we will consider the 5-qubit
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error correction code which is the simplest code that can be used to correct Pauli errors to
a single qubit. For the channel model, we consider two channels: the depolarizing channel,
which is a simple and trivial case, and the Pauli channel, which is a more interesting but
also a more complicated channel to study.

Consider the 5-qubit stabilizer code C = {|0L〉 , |1L〉} with

|0L〉 = 1
4[ |00000〉+ |10010〉+ |01001〉+ |10100〉+ |01010〉 − |11011〉 − |00110〉 − |11000〉

− |11101〉 − |00011〉 − |11110〉 − |01111〉 − |10001〉 − |01100〉 − |10111〉+ |00101〉 ],
(6.19)

|1L〉 = 1
4[ |11111〉+ |01101〉+ |10110〉+ |01011〉+ |10101〉 − |00100〉 − |11001〉 − |00111〉

− |00010〉 − |11100〉 − |00001〉 − |10000〉 − |01110〉 − |10011〉 − |01000〉+ |11010〉 ].
(6.20)

and with the following stabilizers:

S1 = X ⊗ Z ⊗ Z ⊗X ⊗ I, (6.21)
S2 = I ⊗X ⊗ Z ⊗ Z ⊗X, (6.22)
S3 = X ⊗ I ⊗X ⊗ Z ⊗ Z, (6.23)
S4 = Z ⊗X ⊗ I ⊗X ⊗ Z. (6.24)

Consider the 5-qubit classical-quantum channel x → Wx = |ϕx〉〈ϕx| observed after a
quantum depolarizing channel, defined as

WD
x = ND

A→B(|ϕx〉〈ϕx|) = (1− p)|ϕx〉〈ϕx|+
p

32132, (6.25)

with |ϕ0〉 = |0L〉 and |ϕ1〉 = |1L〉.

First, we show that the code is quasi-perfect for the depolarizing channel. To do that,
consider t = p and µ = I

32 . Then, we have:

E•0 = {(1− p) |0L〉 〈0L|+
p

32I − tµ > 0} = {(1− p) |0L〉 〈0L|+
p

32I −
p

32I > 0} (6.26)

= {(1− p) |0L〉 〈0L| > 0} = |0L〉 〈0L| , (6.27)

E•1 = {(1− p) |1L〉 〈1L|+
p

32I − tµ > 0} = {(1− p) |1L〉 〈1L|+
p

32I −
p

32I > 0} (6.28)

= {(1− p) |1L〉 〈1L| > 0} = |1L〉 〈1L| . (6.29)

Since |0L〉 and |1L〉 are orthogonal codewords, we have that E•0 and E•1 are orthogonal.
Also, we have that

E0 = {(1− p) |0L〉 〈0L| ≥ 0} = I, (6.30)
E1 = {(1− p) |1L〉 〈1L| ≥ 0} = I. (6.31)
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Figure 6.1: Source and channel model

So we have that
∑
x∈C Ex = E0 + E1 = 2I. Also, the channel is symmetric since

Wx = UxWxU
†
x = (1 − p)Ux |ᾱ〉 〈ᾱ|U†x + Ux

p
32IU

†
x = (1 − p)Ux |ᾱ〉 〈ᾱ|U†x + p

32I because
UxU

†
x = I, where ᾱ does not depend on x . We conclude that the code is quasi-perfect and

achieves the optimum error probability.

Next we want to check that the error correction does not degrade the probability of
error. We should take into consideration that the error correction procedure may affect the
probability of error. If we wanted to obtain classical information from the quantum state
(for example, we would like to know whether codeword |0〉L or |1〉L is transmitted) ideally
we would use the optimum POVM in order to make a measurement of the state. Since the
code is quasi-perfect, we know that the error probability is optimum in this case. The error
probability that we get when measuring the quantum state after performing error correction
may be higher than the one we get by using the optimum POVM to measure the state directly.
That is the case when we consider the Pauli channel as the channel model, as we will see later.

In order to check the optimality of the error correction procedure, we consider that the
decoder is part of the channel (see Figure 6.1). We compute the optimum error probability
at the output of the depolarizing channel since we know that the code is quasi-perfect in
this case. Then, we compute the probability of error obtained by using the error correction
decoder and compare it to the optimum.

Since the code is quasi-perfect and the channel is symmetric, we can compute the optimum
error probability as:

Pe(C) = 1− F•(t, µ) + t

(
G•(t, µ)− 1

M

)
. (6.32)

To obtain the first term we can use the symmetry property and use any of the codewords for
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the calculation:

F•(t, µ) = Tr(W0E•0 (t, µ)) = (1− p) Tr(|0L〉 〈0L|) + p

32 Tr(|0L〉 〈0L|) = (1− p) + p

32 .
(6.33)

Similarly, the second term is obtained as follows:

t

(
G•(t, µ)− 1

M

)
= p

(
Tr(µE•0 )− 1

2

)
= p

(
1
32 −

1
2

)
. (6.34)

The optimum error probability is:

Pe(C) = 1− (1− p)− p

32 + p

32 −
p

2 = p

2 . (6.35)

We obtain the same error probability when we try to discriminate the states after the error
correction procedure, because with probability (1 − p) the detector is going to correctly
assume that the state wasn’t affected by any errors, and with probability p is going to
randomly decide that a single-qubit Pauli error occurred and try to correct it by applying
the same Pauli matrix to the state. Thus, the average error probability after error correction
is also p

2 , which means that implementing error correction for a depolarizing channel does
not worsen the error probability. That is not necessarily the case for other channels, as we
will see next.

We would like to analyse a more complex case; in particular, we study the optimality
of the code when we transmit the quantum information through a quantum Pauli channel.
Since error correction is aimed at correcting Pauli errors, it makes more sense to consider
the Pauli channel in order to model the errors. Similar to the previous section, we first show
that the code itself is quasi-perfect for the Pauli channel, and then we compare the optimum
error probability to the one that we obtain using the error correction procedure.

Consider the 5-qubit stabilizer code C = {|0L〉 , |1L〉} defined by equations (6.19), (6.20),
with the following stabilizers:

S1 = X ⊗ Z ⊗ Z ⊗X ⊗ I, (6.36)
S2 = I ⊗X ⊗ Z ⊗ Z ⊗X, (6.37)
S3 = X ⊗ I ⊗X ⊗ Z ⊗ Z, (6.38)
S4 = Z ⊗X ⊗ I ⊗X ⊗ Z. (6.39)

Consider the 5-qubit classical-quantum channel x → Wx = |ϕx〉〈ϕx| observed after a
quantum Pauli channel, defined as

WP
x = NP

A→B(|ϕx〉〈ϕx|) =
∑
k,l

pxk,lX(k)Z(l)|ϕx〉〈ϕx|(X(k)Z(l))†, (6.40)
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where |ϕ0〉 = |0L〉 , |ϕ1〉 = |1L〉 and pxk,l is the probability of having a certain type
of errors X, Z or Y in each qubit. The matrices X(k), Z(l) are 32 × 32 matrices that
consist on a Kroenecker product of identity matrices I with X and Z matrices respectively,
and k and l are indexes that specify k1, k2, k3, k4 and k5, and l1, l2, l3, l4 and l5 with
X(k) = Xk1⊗Xk2⊗Xk3⊗Xk4⊗Xk5 and Z(l) = Zl1⊗Zl2⊗Zl3⊗Zl4⊗Zl5 . The sum is over
all values of k and l, or equivalently over all combinations of k1, k2, k3, k4, k5, l1, l2, l3, l4 and
l5. Notice that the probability of getting an error Y on a qubit is the probability of getting
both an error X and Z because Y (k)|ϕx〉〈ϕx|Y (k)† = X(k)Z(k)|ϕx〉〈ϕx|(Z(k)X(k))†. We
will assume that the probabilities of getting X and Z errors on a qubit are independent for
all qubits. With this assumption, we define the probability pixjz, with i ∈ {0, 1, 2, 3, 4, 5},
j ∈ {0, 1, 2, 3, 4, 5}, i = k1 + k2 + k3 + k4 + k5 and j = l1 + l2 + l3 + l4 + l5 as the probability
of Wx having an i number of X errors and j number of Z errors. In particular, we define the
following:

pixjz = pix(1− px)5−ipjz(1− pz)5−j , (6.41)

where px and pz are the probabilities of having a single-qubit X or Z error respectively.
Then, the Pauli channel in (6.40) can be expressed as:

WP
x = NP

A→B(|ϕx〉〈ϕx|) =
∑
k,l

pixjzX(k)Z(l)|ϕx〉〈ϕx|(X(k)Z(l))†. (6.42)

Our objective is to prove that the channel is symmetric and that the code is quasi-perfect
for the Pauli channel.

To prove symmetry, we need to show that Wx can be expressed as Wx = UxW̄U†x for
x ∈ X where W̄ does not depend on x. In order to do that, we need to define what is the set
of Wx. In general it is not trivial to prove symmetry of the code over all possible 5-qubit
states (notice that in this case the channel states are mixed states in contrast to previous
examples where the states where pure). We decided to restrict the input alphabet X to all
states that are a Pauli transformation (an application of an X, Z or Y matrix to one or
multiple qubits) of |0〉L defined in (6.19). The state |1〉L in (6.20) can be obtained as

U1 = (X ⊗X ⊗X ⊗X ⊗X), (6.43)
|1〉L = U1 |0〉L , (6.44)

so it satisfies this assumption. In this case we can define W0 = W̄ = NP
A→B(|0〉L 〈0|L)

and Wx = NP
A→B(|ϕx〉〈ϕx|) = NP

A→B(Ux |0〉L 〈0|L Ux), where Ux is a Pauli transformation
unitary matrix. We can then write the following:

W0 =
∑
k,l

pixjzX(k)Z(l) |0〉L 〈0|L (X(k)Z(l))†, (6.45)

Wx =
∑
k,l

pixjzX(k)Z(l)Ux |0〉L 〈0|L Ux(X(k)Z(l))†. (6.46)
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To prove symmetry, we need to show that Wx = UxW̄Ux. To do that, notice that Ux
commutes or anti-commutes with any other matrix that is also a Kroenecker product of
Pauli matrices:

X(i)Z(j) = ±Z(j)X(i). (6.47)

Thus, we have:

UxW̄Ux = Ux

∑
k,l

pixjzX(k)Z(l) |0〉L 〈0|L (X(k)Z(l))†
Ux

=
∑
k,l

pixjzX(k)Z(l)Ux |0〉L 〈0|L Ux(X(k)Z(l))† = Wx. (6.48)

Proving Wx = UxW̄Ux. We conclude that the channel is symmetric.

To prove that the code is quasi-perfect, we need to show that E•0 (t, µ) and E•1 (t, µ) defined
as:

E•0 (t, µ) = {W0 − tµ > 0} =

∑
k,l

pixjzX(k)Z(l) |0〉L 〈0|L (X(k)Z(l))† − tµ > 0

 , (6.49)

E•1 (t, µ) = {W1 − tµ > 0} =

∑
k,l

pixjzX(k)Z(l) |1〉L 〈1|L (X(k)Z(l))† − tµ > 0

 . (6.50)

are orthogonal, and that E0(t, µ) + E1(t, µ) = cI, where c ∈ R, c > 0 and:

E0(t, µ) = {W0 − tµ ≥ 0}, (6.51)
E1(t, µ) = {W1 − tµ ≥ 0}. (6.52)

The proof is provided in Appendix 6.A. The error probability of the code obtained by
using the optimum POVM to directly measure the quantum state is given in (6.92). We can
also check that the error correction procedure degrades the error probability, as shown in
(6.147).

This section shows how it is possible to prove that an error correction code is quasi-perfect
and thus optimum for discriminating between states, even though the analysis is particular
for each case. We also show that the error correction procedure may introduce a degradation
to the error probability when discriminating between two or more quantum states, since error
correction focuses on recovering the original quantum state rather than on optimizing the
code and the associated POVM in order to distinguish states in a classical-quantum channel.

In general, it is not trivial to show that a particular code is quasi-perfect, and even in
the 5-qubit example that has been presented here it has been necessary to make a strong
assumption to show that the code satisfies the symmetry condition. However, this shows that
the theory presented in the previous sections can be used in practical schemes and may be
worth exploring its application to error correction and not only to state discrimination.





Appendix

6.A Analysis of the 5-qubit stabilizer code

With some abuse of notation we will write Ex = Ex(t, µ) and E•x = E•x(t, µ) . Let’s take
µ = I

32 and t = t0. The value of t0 that proves that the code is quasi-perfect depends on
the eigenvalues of the matrix W0 (the matrix W1 has also the same eigenvalues). Define the
following values:

λ1 = p0x2z + pp0x3z + 3p2x1z + 7p2x2z + 7p2x3z + 3p2x4z + p4x0z + 2pp4x1 + 2p4x2z

+ 2p4x3z + 2p4x4z + p4x5z, (6.53)
λ2 = p0x2z + p0x3z + p2x0z + 4p2x1z + 5p2x2z + 5p2x3z + 4p2x4z + p2x5z + p4x1z

+ 4p4x2z + 4p4x3z + p4x4z, (6.54)
λ3 = p0x1z + p0x4z + p2x0z + 2p2x1z + 7p2x2z + 7p2x3z + 2p2x4z + p2x5z + 2p4x1z

+ 3p4x2z + 3p4x3z + 2p4x4z, (6.55)
λ4 = p0x0z + p0x5z + 5p2x1z + 5p2x2z + 5p2x3z + 5p2x4z + 5p4x2z + 5p4x3z, (6.56)
λ5 = 5p1x2z + 5p1x3z + 5p3x1z + 5p3x2z + 5p3x3z + 5p3x4z + p5x0z + p5x5z, (6.57)
λ6 = p1x1z + 4p1x2z + 4p1x3z + p1x4z + p3x0z + 4p3x1z + 5p3x2z + 5p3x3z + 4p3x4z

+ p3x5z + p5x2z + p5x3z, (6.58)
λ7 = 2p1x1z + 3p1x2z + 3p1x3z + 2p1x4z + p3x0z + 2p3x1z + 7p3x2z + 7p3x3z + 2p3x4z

+ p3x5z + p5x1z + p5x4z, (6.59)
λ8 = p1x0z + 2p1x1z + 2p1x2z + 2p1x3z + 2p1x4z + p1x5z + 3p3x1z + 7p3x2z + 7p3x3z

+ 3p3x4z + p5x2z + p5x3z. (6.60)

The eigenvalues of the W0 matrix are λ5 and λ4 with multiplicity 1 and λ1,λ2,λ3, λ6, λ7
and λ8 with multiplicity 5. Consider λi1 ≥ λi2 ≥ λi3 ≥ λi4 ≥ λi5 ≥ λi6 ≥ λi7 ≥ λi8 , λij ∈
{λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8}, j ∈ {1, 2, 3, 4, 5, 6, 7, 8}. Then, we choose t0 = 32

(
λ4i+λ5i

2

)
in

79
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order to take half of the eigenvalues of the original matrix W0 when calculating {W0− t0 I
32 ≥

0}. Then, we obtain that E•0 = E0 and E•1 = E1 with:

E•0 = 1
16



11 0 0 −3 0 −1 −3 0 0 −1 −1 0 −3 0 0 1 0 −3 −1 0 −1 0 0 1 −3 0 0 1 0 1 1 0
0 5 −3 0 1 0 0 −3 1 0 0 −1 0 3 1 0 −3 0 0 1 0 −1 −1 0 0 −3 −1 0 1 0 0 −1
0 −3 5 0 −3 0 0 1 1 0 0 −1 0 −1 −3 0 1 0 0 −3 0 −1 −1 0 0 1 3 0 1 0 0 −1
−3 0 0 11 0 −3 −1 0 0 1 1 0 −1 0 0 3 0 −1 −3 0 1 0 0 −1 −1 0 0 3 0 −1 −1 0
0 1 −3 0 5 0 0 −3 −3 0 0 −1 0 −1 1 0 1 0 0 1 0 3 −1 0 0 1 −1 0 −3 0 0 −1
−1 0 0 −3 0 11 −3 0 0 3 −1 0 1 0 0 1 0 1 −1 0 3 0 0 1 1 0 0 1 0 −3 1 0
−3 0 0 −1 0 −3 11 0 0 1 −3 0 −1 0 0 −1 0 −1 1 0 1 0 0 3 −1 0 0 −1 0 −1 3 0
0 −3 1 0 −3 0 0 5 1 0 0 3 0 −1 1 0 1 0 0 1 0 −1 3 0 0 1 −1 0 1 0 0 3
0 1 1 0 −3 0 0 1 5 0 0 3 0 −1 −3 0 −3 0 0 1 0 −1 −1 0 0 −3 −1 0 1 0 0 −1
−1 0 0 1 0 3 1 0 0 11 3 0 1 0 0 −3 0 −3 −1 0 −1 0 0 1 −3 0 0 1 0 1 1 0
−1 0 0 1 0 −1 −3 0 0 3 11 0 −3 0 0 1 0 1 3 0 −1 0 0 1 1 0 0 −3 0 1 1 0
0 −1 −1 0 −1 0 0 3 3 0 0 5 0 −3 −1 0 −1 0 0 3 0 1 1 0 0 −1 −3 0 −1 0 0 1
−3 0 0 −1 0 1 −1 0 0 1 −3 0 11 0 0 3 0 −1 1 0 −3 0 0 −1 −1 0 0 −1 0 3 −1 0
0 3 −1 0 −1 0 0 −1 −1 0 0 −3 0 5 3 0 −1 0 0 −1 0 −3 1 0 0 −1 1 0 3 0 0 1
0 1 −3 0 1 0 0 1 −3 0 0 −1 0 3 5 0 1 0 0 1 0 −1 3 0 0 1 −1 0 1 0 0 3
1 0 0 3 0 1 −1 0 0 −3 1 0 3 0 0 11 0 −1 1 0 1 0 0 3 −1 0 0 −1 0 −1 3 0
0 −3 1 0 1 0 0 1 −3 0 0 −1 0 −1 1 0 5 0 0 −3 0 −1 3 0 0 1 −1 0 −3 0 0 −1
−3 0 0 −1 0 1 −1 0 0 −3 1 0 −1 0 0 −1 0 11 −3 0 1 0 0 3 −1 0 0 −1 0 3 −1 0
−1 0 0 −3 0 −1 1 0 0 −1 3 0 1 0 0 1 0 −3 11 0 3 0 0 1 1 0 0 1 0 1 −3 0
0 1 −3 0 1 0 0 1 1 0 0 3 0 −1 1 0 −3 0 0 5 0 3 −1 0 0 1 −1 0 1 0 0 3
−1 0 0 1 0 3 1 0 0 −1 −1 0 −3 0 0 1 0 1 3 0 11 0 0 −3 −3 0 0 1 0 1 1 0
0 −1 −1 0 3 0 0 −1 −1 0 0 1 0 −3 −1 0 −1 0 0 3 0 5 −3 0 0 3 1 0 −1 0 0 1
0 −1 −1 0 −1 0 0 3 −1 0 0 1 0 1 3 0 3 0 0 −1 0 −3 5 0 0 −1 −3 0 −1 0 0 1
1 0 0 −1 0 1 3 0 0 1 1 0 −1 0 0 3 0 3 1 0 −3 0 0 11 −1 0 0 3 0 −1 −1 0
−3 0 0 −1 0 1 −1 0 0 −3 1 0 −1 0 0 −1 0 −1 1 0 −3 0 0 −1 11 0 0 3 0 −1 3 0
0 −3 1 0 1 0 0 1 −3 0 0 −1 0 −1 1 0 1 0 0 1 0 3 −1 0 0 5 3 0 1 0 0 3
0 −1 3 0 −1 0 0 −1 −1 0 0 −3 0 1 −1 0 −1 0 0 −1 0 1 −3 0 0 3 5 0 3 0 0 1
1 0 0 3 0 1 −1 0 0 1 −3 0 −1 0 0 −1 0 −1 1 0 1 0 0 3 3 0 0 11 0 3 −1 0
0 1 1 0 −3 0 0 1 1 0 0 −1 0 3 1 0 −3 0 0 1 0 −1 −1 0 0 1 3 0 5 0 0 3
1 0 0 −1 0 −3 −1 0 0 1 1 0 3 0 0 −1 0 3 1 0 1 0 0 −1 −1 0 0 3 0 11 3 0
1 0 0 −1 0 1 3 0 0 1 1 0 −1 0 0 3 0 −1 −3 0 1 0 0 −1 3 0 0 −1 0 3 11 0
0 −1 −1 0 −1 0 0 3 −1 0 0 1 0 1 3 0 −1 0 0 3 0 1 1 0 0 3 1 0 3 0 0 5



,

(6.61)

E•1 = 1
16



5 0 0 3 0 1 3 0 0 1 1 0 3 0 0 −1 0 3 1 0 1 0 0 −1 3 0 0 −1 0 −1 −1 0
0 11 3 0 −1 0 0 3 −1 0 0 1 0 −3 −1 0 3 0 0 −1 0 1 1 0 0 3 1 0 −1 0 0 1
0 3 11 0 3 0 0 −1 −1 0 0 1 0 1 3 0 −1 0 0 3 0 1 1 0 0 −1 −3 0 −1 0 0 1
3 0 0 5 0 3 1 0 0 −1 −1 0 1 0 0 −3 0 1 3 0 −1 0 0 1 1 0 0 −3 0 1 1 0
0 −1 3 0 11 0 0 3 3 0 0 1 0 1 −1 0 −1 0 0 −1 0 −3 1 0 0 −1 1 0 3 0 0 1
1 0 0 3 0 5 3 0 0 −3 1 0 −1 0 0 −1 0 −1 1 0 −3 0 0 −1 −1 0 0 −1 0 3 −1 0
3 0 0 1 0 3 5 0 0 −1 3 0 1 0 0 1 0 1 −1 0 −1 0 0 −3 1 0 0 1 0 1 −3 0
0 3 −1 0 3 0 0 11 −1 0 0 −3 0 1 −1 0 −1 0 0 −1 0 1 −3 0 0 −1 1 0 −1 0 0 −3
0 −1 −1 0 3 0 0 −1 11 0 0 −3 0 1 3 0 3 0 0 −1 0 1 1 0 0 3 1 0 −1 0 0 1
1 0 0 −1 0 −3 −1 0 0 5 −3 0 −1 0 0 3 0 3 1 0 1 0 0 −1 3 0 0 −1 0 −1 −1 0
1 0 0 −1 0 1 3 0 0 −3 5 0 3 0 0 −1 0 −1 −3 0 1 0 0 −1 −1 0 0 3 0 −1 −1 0
0 1 1 0 1 0 0 −3 −3 0 0 11 0 3 1 0 1 0 0 −3 0 −1 −1 0 0 1 3 0 1 0 0 −1
3 0 0 1 0 −1 1 0 0 −1 3 0 5 0 0 −3 0 1 −1 0 3 0 0 1 1 0 0 1 0 −3 1 0
0 −3 1 0 1 0 0 1 1 0 0 3 0 11 −3 0 1 0 0 1 0 3 −1 0 0 1 −1 0 −3 0 0 −1
0 −1 3 0 −1 0 0 −1 3 0 0 1 0 −3 11 0 −1 0 0 −1 0 1 −3 0 0 −1 1 0 −1 0 0 −3
−1 0 0 −3 0 −1 1 0 0 3 −1 0 −3 0 0 5 0 1 −1 0 −1 0 0 −3 1 0 0 1 0 1 −3 0
0 3 −1 0 −1 0 0 −1 3 0 0 1 0 1 −1 0 11 0 0 3 0 1 −3 0 0 −1 1 0 3 0 0 1
3 0 0 1 0 −1 1 0 0 3 −1 0 1 0 0 1 0 5 3 0 −1 0 0 −3 1 0 0 1 0 −3 1 0
1 0 0 3 0 1 −1 0 0 1 −3 0 −1 0 0 −1 0 3 5 0 −3 0 0 −1 −1 0 0 −1 0 −1 3 0
0 −1 3 0 −1 0 0 −1 −1 0 0 −3 0 1 −1 0 3 0 0 11 0 −3 1 0 0 −1 1 0 −1 0 0 −3
1 0 0 −1 0 −3 −1 0 0 1 1 0 3 0 0 −1 0 −1 3 0 5 0 0 3 3 0 0 −1 0 −1 −1 0
0 1 1 0 −3 0 0 1 1 0 0 −1 0 3 1 0 1 0 0 −3 0 11 3 0 0 −3 −1 0 1 0 0 −1
0 1 1 0 1 0 0 −3 1 0 0 −1 0 −1 −3 0 −3 0 0 1 0 3 11 0 0 1 3 0 1 0 0 −1
−1 0 0 1 0 −1 −3 0 0 −1 −1 0 1 0 0 −3 0 −3 −1 0 3 0 0 5 1 0 0 −3 0 1 1 0
3 0 0 1 0 −1 1 0 0 3 −1 0 1 0 0 1 0 1 −1 0 3 0 0 1 5 0 0 −3 0 1 −3 0
0 3 −1 0 −1 0 0 −1 3 0 0 1 0 1 −1 0 −1 0 0 −1 0 −3 1 0 0 11 −3 0 −1 0 0 −3
0 1 −3 0 1 0 0 1 1 0 0 3 0 −1 1 0 1 0 0 1 0 −1 3 0 0 −3 11 0 −3 0 0 −1
−1 0 0 −3 0 −1 1 0 0 −1 3 0 1 0 0 1 0 1 −1 0 −1 0 0 −3 −3 0 0 5 0 −3 1 0
0 −1 −1 0 3 0 0 −1 −1 0 0 1 0 −3 −1 0 3 0 0 −1 0 1 1 0 0 −1 −3 0 11 0 0 −3
−1 0 0 1 0 3 1 0 0 −1 −1 0 −3 0 0 1 0 −3 −1 0 −1 0 0 1 1 0 0 −3 0 5 −3 0
−1 0 0 1 0 −1 −3 0 0 −1 −1 0 1 0 0 −3 0 1 3 0 −1 0 0 1 −3 0 0 1 0 −3 5 0
0 1 1 0 1 0 0 −3 1 0 0 −1 0 −1 −3 0 1 0 0 −3 0 −1 −1 0 0 −3 −1 0 −3 0 0 11



.

(6.62)

And using (6.61) and (6.62) we check that E0 + E1 = I and E•0 , E•1 are orthogonal,
proving that the 5-qubit code is also quasi-perfect for the Pauli channel. The optimum error
probability of the code can be obtained by using Pe(C) = 1 − F•(t, µ) + t

(
G•(t, µ)− 1

M

)
,

where 1
M = 1

2 , G•(t, µ) = Tr(µE•0 ) = 1
2 and F•(t, µ) = Tr(W0E•0 (t, µ)).
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Define:

A0 = p0x0z + 5p0x1z + 10p0x2z + 10p0x3z + 3p0x4z + p0x5z

16 , (6.63)

A1 = 5p1x0z + 25p1x1z + 50p1x2z + 50p1x3z + 25p1x4z + 5p1x5z

16 , (6.64)

A2 = 10p2x0z + 50p2x1z + 100p2x2z + 100p2x3z + 50p2x4z + 10p2x5z

16 , (6.65)

A3 = 10p3x0z + 50p3x1z + 100p3x2z + 100p3x3z + 50p3x4z + 10p3x5z

16 , (6.66)

A4 = 5p4x0z + 25p4x1z + 50p4x2z + 50p4x3z + 25p4x4z + 5p4x5z

16 , (6.67)

A5 = p5x0z + 5p5x1z + 10p5x2z + 10p5x3z + 3p5x4z + p5x5z

16 , (6.68)

B0 = p0x0z + p0x1z − 2p0x2z − 2p0x3z + p0x4z + p0x5z

16 , (6.69)

B1 = 3p1x0z + 3p1x1z − 6p1x2z − 6p1x3z + 3p1x4z + 3p1x5z

16 , (6.70)

B2 = 2p2x0z + 2p2x1z − 4p2x2z − 4p2x3z + 2p2x4z + 2p2x5z

16 , (6.71)

B3 = 2p3x0z + 2p3x1z − 4p3x2z − 4p3x3z + 2p3x4z + 2p3x5z

16 , (6.72)

B4 = 3p4x0z + 3p4x1z − 6p4x2z − 6p4x3z + 3p4x4z + 3p4x5z

16 , (6.73)

B5 = p5x0z + p5x1z − 2p5x2z − 2p5x3z + p5x4z + p5x5z

16 , (6.74)

C0 = p0x0z − 3p0x1z + 2p0x2z + 2p0x3z − 3p0x4z + p0x5z

16 , (6.75)

C1 = p1x0z + p1x1z − 2p1x2z − 2p1x3z + p1x4z + p1x5z

16 , (6.76)

C2 = 2p2x0z − 6p2x1z + 4p2x2z + 4p2x3z − 6p2x4z + 2p2x5z

16 , (6.77)

C3 = 2p3x0z − 6p3x1z + 4p3x2z + 4p3x3z − 6p3x4z + 2p3x5z

16 , (6.78)

C4 = p4x0z + p4x1z − 2p4x2z − 2p4x3z + p4x4z + p4x5z

16 , (6.79)

C5 = p5x0z − 3p5x1z + 2p5x2z + 2p5x3z − 3p5x4z + p5x5z

16 , (6.80)

D1 = p1x0z − 3p1x1z + 2p1x2z + 2p1x3z − 3p1x4z + p1x5z

16 , (6.81)

D4 = p4x0z − 3p4x1z + 2p4x2z + 2p4x3z − 3p4x4z + p4x5z

16 , (6.82)

x1 = A0 +A2 +A4, (6.83)
x2 = B0 +B2 −B4, (6.84)
x3 = B0 −B2 + C4, (6.85)
x4 = C0 − C2 +D4, (6.86)
x5 = A1 +A3 +A5, (6.87)
x6 = B1 −B3 −B5, (6.88)
x7 = C1 −B3 +B5, (6.89)
x8 = D1 − C3 + C5. (6.90)
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The matrix W0 can be expressed as:

W0 =



x1 0 0 −x2 0 x3 −x2 0 0 x3 x3 0 −x2 0 0 −x4 0 −x2 x3 0 x3 0 0 −x4 −x2 0 0 −x4 0 −x4 −x4 0
0 x5 −x6 0 x7 0 0 −x6 x7 0 0 −x7 0 x6 x8 0 −x6 0 0 x7 0 −x7 −x8 0 0 −x6 −x8 0 x8 0 0 −x8
0 −x6 x5 0 −x6 0 0 x7 x7 0 0 −x7 0 −x8 −x6 0 x7 0 0 −x6 0 −x8 −x7 0 0 x8 x6 0 x8 0 0 −x8
−x2 0 0 x1 0 −x2 x3 0 0 −x3 −x3 0 x4 0 0 x2 0 x3 −x2 0 −x4 0 0 x3 x4 0 0 x2 0 x4 x4 0

0 x7 −x6 0 x5 0 0 −x6 −x6 0 0 −x8 0 −x7 x7 0 x7 0 0 x8 0 x6 −x7 0 0 x8 −x8 0 −x6 0 0 −x8
x3 0 0 −x2 0 x1 −x2 0 0 x2 x4 0 −x3 0 0 −x3 0 −x3 x4 0 x2 0 0 −x3 −x4 0 0 −x4 0 −x2 −x4 0
−x2 0 0 x3 0 −x2 x1 0 0 −x4 −x2 0 x3 0 0 x3 0 x4 −x3 0 −x3 0 0 x2 x4 0 0 x4 0 x4 x2 0

0 −x6 x7 0 −x6 0 0 x5 x8 0 0 x6 0 −x7 x7 0 x8 0 0 x7 0 −x7 x6 0 0 x8 −x8 0 x8 0 0 x6
0 x7 x7 0 −x6 0 0 x8 x5 0 0 x6 0 −x7 −x6 0 −x6 0 0 x8 0 −x8 −x8 0 0 −x6 −x7 0 x7 0 0 −x8
x3 0 0 −x3 0 x2 −x4 0 0 x1 x2 0 −x3 0 0 x2 0 −x2 x4 0 x4 0 0 −x4 −x2 0 0 −x3 0 −x3 −x4 0
x3 0 0 −x3 0 x4 −x2 0 0 x2 x1 0 −x2 0 0 −x3 0 −x4 x2 0 x4 0 0 −x4 −x3 0 0 −x2 0 −x4 −x3 0
0 −x7 −x7 0 −x8 0 0 x6 x6 0 0 x5 0 −x6 −x7 0 −x8 0 0 x6 0 x8 x8 0 0 −x7 −x6 0 −x8 0 0 x7
−x2 0 0 x4 0 −x3 x3 0 0 −x3 −x2 0 x1 0 0 x2 0 x4 −x4 0 −x2 0 0 x4 x3 0 0 x4 0 x2 x3 0

0 x6 −x8 0 −x7 0 0 −x7 −x7 0 0 −x6 0 x5 x6 0 −x8 0 0 −x8 0 −x6 x8 0 0 −x7 x8 0 x6 0 0 x7
0 x8 −x6 0 x7 0 0 x7 −x6 0 0 −x7 0 x6 x5 0 x8 0 0 x8 0 −x8 x6 0 0 x8 −x7 0 x7 0 0 x6
−x4 0 0 x2 0 −x3 x3 0 0 −x2 −x3 0 x2 0 0 x1 0 x4 −x4 0 −x4 0 0 x2 x4 0 0 x3 0 x3 x2 0

0 −x6 x7 0 x7 0 0 x8 −x6 0 0 −x8 0 −x8 x8 0 x5 0 0 −x6 0 −x7 x6 0 0 x7 −x7 0 −x6 0 0 −x8
−x2 0 0 x3 0 −x3 x4 0 0 −x2 −x4 0 x4 0 0 x4 0 x1 −x2 0 −x3 0 0 x2 x3 0 0 x3 0 x2 x4 0
x3 0 0 −x2 0 x4 −x3 0 0 x4 x2 0 −x4 0 0 −x4 0 −x2 x1 0 x2 0 0 −x3 −x3 0 0 −x3 0 −x4 −x2 0
0 x7 −x6 0 x8 0 0 x7 x8 0 0 x6 0 −x8 x8 0 −x6 0 0 x5 0 x6 −x7 0 0 x7 −x7 0 x8 0 0 x6
x3 0 0 −x4 0 x2 −x3 0 0 x4 x4 0 −x2 0 0 −x4 0 −x3 x2 0 x1 0 0 −x2 −x2 0 0 −x4 0 −x3 −x3 0
0 −x7 −x8 0 x6 0 0 −x7 −x8 0 0 x8 0 −x6 −x8 0 −x7 0 0 x6 0 x5 −x6 0 0 x6 x8 0 −x7 0 0 x7
0 −x8 −x7 0 −x7 0 0 x6 −x8 0 0 x8 0 x8 x6 0 x6 0 0 −x7 0 −x6 x5 0 0 −x8 −x6 0 −x7 0 0 x7
−x4 0 0 x3 0 −x3 x2 0 0 −x4 −x4 0 x4 0 0 x2 0 x2 −x3 0 −x2 0 0 x1 x4 0 0 x2 0 x3 x3 0
−x2 0 0 x4 0 −x4 x4 0 0 −x2 −x3 0 x3 0 0 x4 0 x3 −x3 0 −x2 0 0 x4 x1 0 0 x2 0 x3 x2 0

0 −x6 x8 0 x8 0 0 x8 −x6 0 0 −x7 0 −x7 x8 0 x7 0 0 x7 0 x6 −x8 0 0 x5 x6 0 x7 0 0 x6
0 −x8 x6 0 −x8 0 0 −x8 −x7 0 0 −x6 0 x8 −x7 0 −x7 0 0 −x7 0 x8 −x6 0 0 x6 x5 0 x6 0 0 x7
−x4 0 0 x2 0 −x4 x4 0 0 −x3 −x2 0 x4 0 0 x3 0 x3 −x3 0 −x4 0 0 x2 x2 0 0 x1 0 x2 x3 0

0 x8 x8 0 −x6 0 0 x8 x7 0 0 −x8 0 x6 x7 0 −x6 0 0 x8 0 −x7 −x7 0 0 x7 x6 0 x5 0 0 x6
−x4 0 0 x4 0 −x2 x4 0 0 −x3 −x4 0 x2 0 0 x3 0 x2 −x4 0 −x3 0 0 x3 x3 0 0 x2 0 x1 x2 0
−x4 0 0 x4 0 −x4 x2 0 0 −x4 −x3 0 x3 0 0 x2 0 x4 −x2 0 −x3 0 0 x3 x2 0 0 x3 0 x2 x1 0

0 −x8 −x8 0 −x8 0 0 x6 −x8 0 0 x7 0 x7 x6 0 −x8 0 0 x6 0 x7 x7 0 0 x6 x7 0 x6 0 0 x5



.

(6.91)

We then obtain that:

Pe(C) = 1− Tr(W0E•0 (t, µ)) = 1− (11x1 + 15x2 − 5x3 − 5x4 + 5x5 + 15x6 + 5x7 + 5x8) .
(6.92)

With that, we have proved that the optimum error probability for this channel using
two input codewords and with the assumption that we’ve used to prove symmetry has the
expression in (6.92) and is satisfied by the codebook in (6.19), (6.20).

Since the code is quasi-perfect, we know that using an optimal POVM to measure the state
at the output of the Pauli channel would achieve the optimum error probability. However, we
should consider that the error correction procedure of the decoder may include a degradation
of the error probability, as mentioned in the analysis for the depolarizing channel case.

In order to obtain the error probability after the error correction procedure, we consider
that the decoder is part of the channel as we did for the depolarizing channel (see Figure
6.2). The degradation of the error probability introduced by using error correction is the
difference between the error probability with error correction and (6.92).

We define the following projectors:

P1 = I + S1
2 , P̄1 = I − S1

2 , (6.93)

P2 = I + S2
2 , P̄2 = I − S2

2 , (6.94)

P3 = I + S3
2 , P̄3 = I − S3

2 , (6.95)

P4 = I + S4
2 , P̄4 = I − S4

2 . (6.96)
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Figure 6.2: Source and channel model

We define the POVM T = {P1P2P3P4, P̄1P2P3P4, P1P̄2P3P4, ..., P̄1P̄2P̄3P̄4} in order to
determine if an error has occurred and to obtain the syndrome. The decoder uses a look-up
table in order to obtain the syndrome from the outcome of the measurement, as shown in
Table 6.1.

P1P2P3P4 0000 I ⊗ I ⊗ I ⊗ I ⊗ I
P1P2P3P̄4 0001 X ⊗ I ⊗ I ⊗ I ⊗ I
P1P2P̄3P4 0010 I ⊗ I ⊗ Z ⊗ I ⊗ I
P1P2P̄3P̄4 0011 I ⊗ I ⊗ I ⊗ I ⊗X
P1P̄2P3P4 0100 I ⊗ I ⊗ I ⊗ I ⊗ Z
P1P̄2P3P̄4 0101 I ⊗ Z ⊗ I ⊗ I ⊗ I
P1P̄2P̄3P4 0110 I ⊗ I ⊗ I ⊗X ⊗ I
P1P̄2P̄3P̄4 0111 I ⊗ I ⊗ I ⊗ I ⊗ Y
P̄1P2P3P4 1000 I ⊗X ⊗ I ⊗ I ⊗ I
P̄1P2P3P̄4 1001 I ⊗ I ⊗ I ⊗ Z ⊗ I
P̄1P2P̄3P4 1010 Z ⊗ I ⊗ I ⊗ I ⊗ I
P̄1P2P̄3P̄4 1011 Y ⊗ I ⊗ I ⊗ I ⊗ I
P̄1P̄2P3P4 1100 I ⊗ I ⊗X ⊗ I ⊗ I
P̄1P̄2P3P̄4 1101 I ⊗ Y ⊗ I ⊗ I ⊗ I
P̄1P̄2P̄3P4 1110 I ⊗ I ⊗ Y ⊗ I ⊗ I
P̄1P̄2P̄3P̄4 1111 I ⊗ I ⊗ I ⊗ Y ⊗ I

Table 6.1: Look-up table that the detector uses for error correction. Left: POVM elements. Center:
Corresponding syndrome. Right: Error correction operator that the decoder applies

Let’s define a POVM P = {Π0,Π1} consisting of the following projectors in order to
measure the state after error correction:

Π0 = 16 diag(|0L〉 〈0L|), (6.97)
Π1 = 16 diag(|1L〉 〈1L|). (6.98)
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Where Π0 + Π1 = I is satisfied because of the orthogonality between Π0 and Π1. Notice that
Tr(Π0 |0L〉 〈0L|) = 1, Tr(Π0 |1L〉 〈1L|) = 0, Tr(Π1 |0L〉 〈0L|) = 0 and Tr(Π1 |1L〉 〈1L|) = 1. It
is possible to check that the Yuen-Kennedy-Lax conditions are satisfied by this POVM:

(Λ(P)− 1
M
W0)Π0 = 1

M
(W0Π0 +W1Π1Π0 −W0Π0) = 0, (6.99)

(Λ(P)− 1
M
W1)Π1 = 1

M
(W0Π0Π1 +W1Π1 −W1Π1) = 0, (6.100)

Λ(P)− 1
M
W0 = 1

M
(W0Π0 +W1Π1)− 1

M
W0 = 1

M
(W1Π1 −W0Π1), (6.101)

Λ(P)− 1
M
W1 = 1

M
(W0Π0 +W1Π1)− 1

M
W1 = 1

M
(W0Π0 −W1Π0), (6.102)

where in the two last equations we used thatW0Π0−W0 = −W0Π1 andW1Π1−W1 = −W1Π0.
The error probability is the following:

Pe,ec = Tr(W0,ecΠ1) + Tr(W1,ecΠ0)
2 = Tr(W0,ecΠ1), (6.103)

where W0,ec, W1,ec are states that represent the effect of error correction applied to W0 and
W1 respectively. To formally define W0,ec and W1,ec, we should first consider the effect of
the error correction detector to the quantum state in a practical scheme. The state Wx,
x ∈ {0, 1} would be measured using the POVM T in order to obtain the syndrome. This
measurement operation would make the state collapse to a state WxMk

, k ∈ {0, 1, ..., 15},
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with:

WxM0
= P1P2P3P4WxP1P2P3P4

Tr(P1P2P3P4Wx) , (6.104)

WxM1
= P1P2P3P̄4WxP1P2P3P̄4

Tr(P1P2P3P̄4Wx)
, (6.105)

WxM2
= P1P2P̄3P4WxP1P2P̄3P4

Tr(P1P2P̄3P4Wx)
, (6.106)

WxM3
= P1P2P̄3P̄4WxP1P2P̄3P̄4

Tr(P1P2P̄3P̄4Wx)
, (6.107)

WxM4
= P1P̄2P3P4WxP1P̄2P3P4

Tr(P1P̄2P3P4Wx)
, (6.108)

WxM5
= P1P̄2P3P̄4WxP1P̄2P3P̄4

Tr(P1P̄2P3P̄4Wx)
, (6.109)

WxM6
= P1P̄2P̄3P4WxP1P̄2P̄3P4

Tr(P1P̄2P̄3P4Wx)
, (6.110)

WxM7
= P1P̄2P̄3P̄4WxP1P̄2P̄3P̄4

Tr(P1P̄2P̄3P̄4Wx)
, (6.111)

WxM8
= P̄1P2P3P4WxP̄1P2P3P4

Tr(P̄1P2P3P4Wx)
, (6.112)

WxM9
= P̄1P2P3P̄4WxP̄1P2P3P̄4

Tr(P̄1P2P3P̄4Wx)
, (6.113)

WxM10
= P̄1P2P̄3P4WxP̄1P2P̄3P4

Tr(P̄1P2P̄3P4Wx)
, (6.114)

WxM11
= P̄1P2P̄3P̄4WxP̄1P2P̄3P̄4

Tr(P̄1P2P̄3P̄4Wx)
, (6.115)

WxM12
= P̄1P̄2P3P4WxP̄1P̄2P3P4

Tr(P̄1P̄2P3P4Wx)
, (6.116)

WxM13
= P̄1P̄2P3P̄4WxP̄1P̄2P3P̄4

Tr(P̄1P̄2P3P̄4Wx)
, (6.117)

WxM14
= P̄1P̄2P̄3P4WxP̄1P̄2P̄3P4

Tr(P̄1P̄2P̄3P4Wx)
, (6.118)

WxM15
= P̄1P̄2P̄3P̄4WxP̄1P̄2P̄3P̄4

Tr(P̄1P̄2P̄3P̄4Wx)
. (6.119)

The outcome of the measurement is a 4-bit number that indicates the Pauli operator that must
be applied to WxMk

according to Table 6.1. For example, if the outcome of the measurement
is ’0110’, then the detector will apply an X operator to the fourth qubit. After this error
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correction stage, the states WxMk
become W ′

xMk
as follows:

W
′

xM0
= WxM0

, (6.120)

W
′

xM1
= X1WxM1

X1, (6.121)

W
′

xM2
= Z3WxM2

Z3, (6.122)

W
′

xM3
= X5WxM3

X5, (6.123)

W
′

xM4
= Z5WxM4

Z5, (6.124)

W
′

xM5
= Z2WxM5

Z2, (6.125)

W
′

xM6
= X4WxM6

X4, (6.126)

W
′

xM7
= Y5WxM6

Y5, (6.127)

W
′

xM8
= X2WxM8

X2, (6.128)

W
′

xM9
= Z4WxM9

Z4, (6.129)

W
′

xM10
= Z1WxM10

Z1, (6.130)

W
′

xM11
= Y1WxM11

Y1, (6.131)

W
′

xM12
= X3WxM12

X3, (6.132)

W
′

xM13
= Y2WxM13

Y2, (6.133)

W
′

xM14
= Y3WxM14

Y3, (6.134)

W
′

xM15
= Y4WxM15

Y4, (6.135)

where

X1 = X ⊗ I ⊗ I ⊗ I ⊗ I, Z1 = Z ⊗ I ⊗ I ⊗ I ⊗ I, Y1 = Y ⊗ I ⊗ I ⊗ I ⊗ I, (6.136)
X2 = I ⊗X ⊗ I ⊗ I ⊗ I, Z2 = I ⊗ Z ⊗ I ⊗ I ⊗ I, Y2 = I ⊗ Y ⊗ I ⊗ I ⊗ I, (6.137)
X3 = I ⊗ I ⊗X ⊗ I ⊗ I, Z3 = I ⊗ I ⊗ Z ⊗ I ⊗ I, Y3 = I ⊗ I ⊗ Y ⊗ I ⊗ I, (6.138)
X4 = I ⊗ I ⊗ I ⊗X ⊗ I, Z4 = I ⊗ I ⊗ I ⊗ Z ⊗ I, Y4 = I ⊗ I ⊗ I ⊗ Y ⊗ I, (6.139)
X5 = I ⊗ I ⊗ I ⊗ I ⊗X, Z5 = I ⊗ I ⊗ I ⊗ I ⊗ Z, Y5 = I ⊗ I ⊗ I ⊗ I ⊗ Y. (6.140)

We define W0,ec and W1,ec as the sum of all the possible states W ′

xMk
resulting from the

error measurement operation, weighted by their probability:

W0,ec =
15∑
k=0

pkW
′

0Mk
, (6.141)

W1,ec =
15∑
k=0

pkW
′

1Mk
, (6.142)

where pk = Tr(PkWxPk), Pk ∈ T . The Wx,ec states are essentially the expected state at the
output of the error correction detector. Then, the probability of error can be obtained by
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using (6.103). For each Pk ∈ T , we have:

Tr(P1P2P3P4W0P1P2P3P4Π1)
= 5p1x2z + 5p1x3z + 5p3x1z + 5p3x2z + 5p3x3z + 5p3x4z + 5p5x0z + 5p5x5z, (6.143)

Tr(P1P2P3P̄4W0P1P2P3P̄4Π1) = Tr(P1P2P̄3P̄4W0P1P2P̄3P̄4Π1) = Tr(P1P̄2P̄3P4W0P1P̄2P̄3P4Π1)
= Tr(P̄1P2P3P4W0P̄1P2P3P4Π1) = Tr(P̄1P̄2P3P4W0P̄1P̄2P3P4Π1)
= p0x2z + p0x3z + 3p2x1z + 7p2x2z + 7p2x3z + 3p2x4z + p4x0z

+ 2p4x1z + 2p4x2z + 2p4x3z + 2p4x4z + p4x5z, (6.144)

Tr(P1P2P̄3P4W0P1P2P̄3P4Π1) = Tr(P1P̄2P3P4W0P1P̄2P3P4Π1) = Tr(P1P̄2P3P̄4W0P1P̄2P3P̄4Π1)
= Tr(P̄1P2P3P̄4W0P̄1P2P3P̄4Π1) = Tr(P̄1P2P̄3P4W0P̄1P2P̄3P4Π1)
= 2p1x1z + 3p1x2z + 3p1x3z + 2p1x4z + p3x0z + 2p3x1z + 7p3x2z

+ 7p3x3z + 2p3x4z + p3x5z + p5x1z + p5x4z, (6.145)

Tr(P1P̄2P̄3P̄4W0P1P̄2P̄3P̄4Π1) = Tr(P̄1P2P̄3P̄4W0P̄1P2P̄3P̄4Π1) = Tr(P̄1P̄2P3P̄4W0P̄1P̄2P3P̄4Π1)
= Tr(P̄1P̄2P̄3P4W0P̄1P̄2P̄3P4Π1) = Tr(P̄1P̄2P̄3P̄4W0P̄1P̄2P̄3P̄4Π1)
= p0x2z + p0x3z + p2x0z + 4p2x1z + 5p2x2z + 5p2x3z + 4p2x4z

+ p2x5z + p4x1z + 4p4x2z + 4p4x3z + p4x4z. (6.146)

And the total error probability is:

Pe,ec(C) = 10p0x2z + 10p0x3z + 10p1x1z + 20p1x2z + 20p1x3z + 10p1x4z + 5p2x0z + 35p2x1z

+ 60p2x2z + 60p2x3z + 35p2x4z + 5p2x5z + 5p3x0z + 15p3x1z + 40p3x2z + 40p3x3

+ 15p3x4z + 5p3x5z + 5p4x0z + 15p4x1z + 30p4x2z + 30p4x3z + 15p4x4z + 5p4x5z

+ p5x0z + 5p5x1z + 5p5x4z + p5x5z. (6.147)

The error probability that is obtained using error correction is larger than the optimum
one (i.e. the error probability obtained by directly using a POVM to measure the quantum
state). For example, using px = 0.04 and pz = 0.03, we obtain that Pe,ec(C) ≈ 0.0242 and
Pe(C) ≈ 0.0193. The degradation of the error probability due to the use of error correction
can be calculated as Pe,ec(C)− Pe(C).





7
Conclusions

In this work we introduced a new family of codes for transmitting information through a
classical-quantum channels that optimize the error probability under a symmetry condition.
These codes are called quasi-perfect codes and are the equivalent of the quasi-perfect codes
for classical channels.

In Chapter 4, we introduced the definition of quasi-perfect codes and generalized quasi-
perfect codes for the classical-quantum channel. This definition is similar to the one in the
classical case, and it’s also valid for classical channels. We proved that the quasi-perfect
codes attain the meta-converse bound with equality under a symmetry condition, and so
they optimize the probability of error of a classical-quantum channel for a fixed cardinality
of the code and dimension of the codewords. In that chapter we also showed some particular
examples of quasi-perfect codes that satisfy the symmetry condition. The most interesting
ones are the Bell codes, which are a generalization of the Bell states for 2-qubit channels.
These codes are quasi-perfect for a code cardinality M larger than the channel dimension N .
In general, practical codes are the opposite in the sense that they use a smaller cardinality
of the code in order to reduce the probability of error.

In Chapter 5 we studied the optical channel, where the information is transmitted using
coherent states, through the bosonic channel. This channel has infinite dimension, so we
considered its truncated approximation of dimension N . We showed that the phase-modulated
coherent states constitute a quasi-perfect code for this truncated channel, as long as the
number of codewords M is the same as the dimension of the truncated channel N . A phase-
modulated codebook of finite cardinality M used for the infinite-dimensional bosonic channel
is not quasi-perfect, but for sufficiently large N the bosonic channel can be approximated to
the truncated channel with a negligible error. This makes this code nearly optimal even for
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the bosonic channel, providing an example of a practical code that uses M < N which is
close to optimal.

In Chapter 6, we focused on stabilizer error correction codes, which are practical codes
that use M < N . Error correction codes are in general used to preserve quantum information
and not to transmit classical information, however there may be situations where we want
to measure a state after undergoing error correction. In these cases it may be interesting
to show that an error correction code is optimum for a state discrimination problem. We
showed that the 5-qubit stabilizer code is an example of a quasi-perfect code for the 5-qubit
Pauli channel. The analysis to prove that is very case-specific, which means that it is not
possible to make any claim about other stabilizer codes being quasi-perfect without making
a particular analysis for each case. We also proved that the error correction procedure makes
the probability of error increase when we want to distinguish codewords using an optimal
POVM.
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