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CHAPTER 4

MOTION ESTIMATION USING HIGHER-ORDER STATISTICS

In this chapter we propose a class of cost functions based on Higher-Order Statistics, to

estimate the displacement vector between consecutive image frames. In case the sequence is

severely corrupted by additive Gaussian noise of unknown covariance, using higher than

second order statistics is appropriate since cumulants of Gaussian noise are zero. To obtain

consistent cumulant estimates we need several records of the same sequence, which is not

generally possible. Nevertheless, previous frames, where the registration problem has

already been solved, can be used to obtain asymptotically unbiased estimates. This is

possible when stationarity among the employed frames can be assumed. The objective of

this work is to introduce HOS-based cost functions capable of estimating motion even for

small regions or blocks. An alternative estimation is also provided, when only two frames

are available, that outperforms other higher-order statistics-based cost functions. Finally, a

recursive version to obtain the displacement is derived for cases when some a priori

knowledge is available.

The chapter is organized as follows. The problem of motion estimation is introduced in

Section 1. In Section 2 and 3, cost functions based on the variance and kurtosis of the

displaced frame difference are revised and analytical expressions for AR models are

developed. In section 4 a new class of HOS-based cost functions is derived and-simulation

and real results are given. In Section 5 a recursive version of the new cost function is

presented and, finally, Section 6 is devoted to conclusions and final remarks.
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4.1 Introduction

An image or video sequence is a series of 2-D images sequentially ordered in time. There is

a growing interest in research applications involving image sequences, mainly in the area of

image sequence analysis and image sequence processing. The latter refers to the operations

of filtering, interpolation, subsampling and compression, which goals are the improvement

of visual quality, conversion between video formats and bandwidth-efficient representation

of image sequences [Sezan, 1993]. Image sequence analysis is aimed to those operations

that generate some type of data for the purpose of information retrieval or interpretation

[Huang, 198 la].

A lot of attention is focused on the estimation of 2-D motion or velocity field between

successive frames. Its knowledge is useful in multiple areas involving not only analysis

tasks such as segmentation and pattern recognition, but it is also helpful in processing tasks,

for example motion estimation plays an important role in image compression and sampling

structure conversion applications [Sezan, 1993]. Noise reduction is another example of

image sequence processing that can benefit greatly from ihe knowledge of motion. There

are some situations where the image sequence might be corrupted with noise, for example,

images from surveillance cameras (which quality is often very poor) or medical images such

as echographics with speckle noise. Assuming we know the position of an image point

along a sequence, one-dimensional filtering can be applied through the direction of motion.

This operation does not alter image features since the pixels are highly correlated along time

(if not equal) and their grey levels do not change dramatically from frame to frame. On the

other hand, noise is less correlated in time and even if it is colored its grey level may be

quite different from frame to frame. Hence, by simply averaging or applying 1-D filters,

such as median filters [Lagendijk, 1993], [Viero, 1993], noise may be drastically reduced.

4.1.1 Motion models

The computation of motion is an ill-posed inverse problem [Bertero, 1988], [Efstratiadis,

1991]. That is, (a) there is no solution for the data containing occlusion areas, (b) the

solution satisfying the observed data is not unique, (c) there is a lack of continuity between

data and solution since a slight modification of some intensity structures may cause

significant change in the computation of the displacement vector, (d) on top of this, noise

impedes the task of estimating motion.

All motion estimation algorithms involve additional assumptions about the motion structure.

These assumptions may be represented implicitly or explicitly or, from another perspective,
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motion can be defined by non-parametric or parametric models. An explicit formulation

involves parametric motion models. In this case the problem of motion estimation reduces

to that of estimating the values of the parameters. These models can be applied under

limited circumstances, nevertheless highly accurate results may be obtained. Among these
are Affine Flow models ; Planar Surface Motion under perspective projection models ; and

Rigid Body Motion Models [Anandan, 1993]. On the other hand, when using non-

parametric models some type of smoothness or uniformity constraint is imposed on the

local variation of motion. As it might be expected, the results are limited in accuracy, but

the model is applicable to a wide range of circumstances. Another interesting point of view

arises from considering local or global models. The former constraints the motion in the

neighborhood of a pixel whereas global models describe motion over the entire visual field.

Parametric models are usually global models and non-parametric models are local.

4.1.2 A brief review of Motion Estimation Approaches

The methods for the estimation of the perceived motion may be classified into the following

categories (according to [Efstratiadis, 1991]):

1) Histogram or segmentation-based methods. Some of the early work on motion

estimation was the gradient transform method proposed by Fennema & Thomson [1979]

based on a histogram identification. Several segmentation methods have also been proposed

to estimate motion [Driessen, 1989], [Wu, 1990]. For example in [Cheong, 1993], images

are segmented from the zero-crossings of the wavelet transform. This result is then used to

extract moving objects.

2) Transform domain methods. In this case, motion is detected on the interframe changes

in the transform domain. The Fourier transform and its shift property are frequently used

[Huang, 198lb]. In [Kojima, 1993], the 3D FFT-Spectrum is used to detect the velocity of

a moving object which spectrum lies in several planes of the frequency domain. The

velocity is estimated by detecting the orientation of those planes. This type of methods,

however, works well only in estimating the translation of moving objects and they are not

effective in distinguishing multiple moving objects.

3) Region or feature matching algorithms. They are designed to produce a solution vector

by finding the correspondence between structures in subsequent images. Once these

structures are identified then the corresponding structure in the following images are

searched by a certain optimization criteria. According to the region- or block-matching

approach, the displacement vector at each pixel maximizes a similarity function or
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minimizes an error function which is computed using small blocks that belong to successive

frames. Such approaches maximize the correlation function [Bergmann, 1982], minimize

the mean-squared error [Jain, 198la] or the mean of the absolute frame difference
[Srinivasan, 1985]. A kurtosis matching criteria has also been defined in [Anderson, 1991].

A recent work in this context is developed by Zhen and Blostein [1993], where a matching

error weighting algorithm is employed for motion field estimation by adaptively modifying

a regularization functional.

4) Spatio-temporal gradient methods. These were first introduced by Limb and Murphy

[1975] and Cafforio and Rocca [1976]. Later, Netravali & Robbins [1980] motivated one of

the most important applications of motion estimation, namely, the motion compensated

coding of image sequences, by defining an efficient pixel-recursive gradient-based

algorithm. This method minimizes the displaced frame difference function in a small causal

area around the working point assuming constant image intensity along the motion

trajectory. Anderson & Giannakis developed a pixel-recursive algorithm by minimizing a

mean fourth-order cumulant criterion [1992].

5) Statistical methods. In this line, several algorithms have been proposed. A Maximum

Likelihood formulation was presented by Martinez [1988] based on the direct form of the

motion model and the Expectation Maximization algorithm was employed for the

estimation of motion. In [Namazi, 1992], the generalized ML algorithm estimates the

Karhunen-Loève expansion coefficients to search for the motion vector. Other authors have

proposed a Bayesian Formulation. In [Konrad,1988] motion is modeled as a vector Markov

random field and a Maximum A Posteriori probability criteria is derived to obtain the

motion vector. Stiller [1993] addresses a model-based object-oriented motion estimator. The

Displaced Frame Difference (DFD) is considered to obey a white generalized Gaussian

distribution. A MAP estimator with respect to the image model is derived to estimate

motion.

4.1.3 Motivation of the proposed Motion Estimator

The goal of this work is to estimate motion when image sequences are corrupted with noise.

The final objective might be noise reduction in image frames. In this case and as we

mentioned, we take advantage of the fact that image features are highly correlated as

compared to noise samples along motion trajectories. Motivated by this fact, we consider

finding the direction of motion, or in other words, solving first the registration problem and,

in a second step, perform frame averaging, which is optimal in the maximum-likelihood

sense. Observe that this approach is opposed to the reconstruction algorithms that exploit
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the shift invariance property of cumulants as in the restoration schemes presented in the

previous chapter. There, averaging was done in a higher-order domain and the shift was the
same for all pixels.

We might be in a different situation, where the final goal is not to reduce noise but to

estimate motion itself. For example, for analysis purposes, as is the case of noisy image

sequences of the human heart which are of interest in assessing motility of the heart. In any

case, whatever the final goals are, estimate motion is our prime objective.

We consider that no occlusions occur, that is, pixels of regions are visible over the entire

frame and pixels do not move in or out of the images.

The reasons for choosing a motion model to fit in a given detection scheme are generally

quite intuitive. We have chosen a non-parametric approach where the displacement vector is

computed from the information in a local area. The reason is simply to allow a wider range

of situations and not restrict ourselves to a particular motion model.

On the other hand, noise can be realistically described as a colored Gaussian process. In

such circumstances, the study of Higher-Order Statistics of images may offer some

advantages. As it was explained in chapter 2 cumulants can draw non-Gaussian signals out

of Gaussian noise. Therefore, considering the statistics of the group of pixels under analysis

to be non-Gaussian distributed allows to extract information of regions and its motion.

Stationarity of the noise and signals is assumed among the employed frames.

Given the previous rationale we propose a motion estimation scheme that is divided in two

steps, the second of which we concentrate our efforts :

Segmentation We may work with motion estimation based on blocks or on a segmentation

approach. The latter aims to adapt the segmentation to the scene such that each region

uniquely corresponds to one continuously moving 2-D object. Several problems that are

inherent to block-oriented approaches are avoided, i.e., blocking artifacts are drastically

reduced and small region sizes are not imposed. However the method becomes increasingly

complex as the number of regions undergoing different displacements increases. There

might be other statistical advantages or disadvantages in using one or the other approach.

The size of blocks may be generally not too large in the block-matching approach. For

example, in the H261 coding standard, blocks are taken to be 16x16 pixels in the lower

level of the hierarchical block-matching step [CCITT, 1990]. This fact and the fact that

pixels of one block may belong to different regions causes the block to be of Non-Gaussian

statistics distribution. On the other side, pixels belonging to a same region are usually
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considered Gaussian, specially for large and seemingly homogeneous regions. However,
this is not true for textured regions which are often characterized by Non-Gaussian statistics.

Since it is intended to apply methods that assume that regions are not normal distributed, a

check of the Gaussianity should be carried out beforehand if possible. Otherwise any HOS-

method fails to distinguish between the Gaussian statistics of the noise and the Gaussian

statistics of the regions or blocks.

Motion estimation. For every moving region or block, we estimate motion using a cost

function, that we also call performance index, that is maximized or minimized for the

desired displacement. We are interested in choosing a cost function based on HOS to reduce

the effect of colored Gaussian noise in our estimates. We define a criterion based on the

minimization of a HOS function of the displaced frame difference.

According to the previous classification, the above approach might be considered to be a

region or block matching method which recursive version (that will be defined at the end of

the chapter) may be categorized into a spatio-temporal gradient method. The feature we are

matching is the image intensity in a local area (that is represented by a block or segmented

region).

4.1.3 Problem Formulation

From an image registration point of view, the problem of motion estimation can be stated as

follows: "given an image sequence, compute a representation of the motion field that best

aligns pixels in one frame of the sequence with those in the /?e.xr"[Netravali, 1979]. This can

be formulated as :

gk-l(m) =fk-l(m) + nk-i(m)

gk(m) = fk(m)+ nk(m) = fk-i(m-dk°(m)) + ntfin), (4. 1)

where in =(m,n) denotes spatial image position of a point, gk(m) and gk-i(m) are observed

image intensities at instant k and k-1, respecti vely,fk(in ) and/k-ifm) are noise-free frames,

nk(m) and nk-i(m) are assumed to be stationary, zero-mean Gaussian noise with unknown

temporal and spatial covariance, and dk°(m ) is the displacement vector of the pixel of

coordinates m during the time interval [k-l,k]. The noise-free frames are assumed to be

zero-mean non-Gaussian signals which are statistically independent of the noise.

72



As mentioned in Chapter 2 a relationship between motion and image sequence should be
established, it was assumed that image intensity was held constant along trajectories. This
relationship was expressed as :

Mm) =fk-i(m-dk°(m)), (4.2)

This basic assumption is known as Intensity Constancy Equation and we have already

substituted it in Eq. (4.1). The problem is to estimate d^(m) from the observation of gk(m)

gk-i(m), and, in case it is possible, from other previous frames.

The DFD/.(d), displaced frame difference, was first defined by Netravali & Robbins [1979]

as

DFDk (d) = gk(m) - gk-i(m-d) (4.3)

where we omit the space dependency of the displacement to simplify notation. The

DFDj. (d) is defined in term of two quantities : (i) the spatial location; (2) and the

displacement d with which it is evaluated. The DFD/, (d) or other related functions, such as

its correlation, its kurtosis or its gradient are obtained on eveiy moving pixel.

Next, we introduce different criteria to obtain the displacement vector based on the

DFDf, (d) . We analyze under which conditions it is more appropriate to utilize each of the

cost functions. It is necessary to investigate the behavior of the cost functions for different

displacements and SNR. For this purpose we use first-order AR models for the noise and

the signal. These models are often utilized in Image Processing [Jain], with applications in

data compression, image restoration, texture analysis and synthesis, and in several other

situations. Here, they will be used to derive exact analytical expressions that will

characterize cost functions under ideal circumstances. This is why in the following sections

a rigorous study of the cost functions is carried out going beyond a mere ad hoc test that

often leads to inconsistent results. Analytical expressions are derived for each performance

index as a function of the correlation and higher-order moments of the image region and of

the noise. We consider the cost functions for the case of correlation among pixels within a

region as well as for the case of complete uncorrelation of pixels.

4.2 Variance of the DFD

A classical solution to obtain the displacement vector is the minimum square error

[Netravali, 1979], which in terms of the DFDk (d) becomes:
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(4.4)

A

dk°<- min(J2k(d) )

A consistent estimation of this cost function is given by:

J2k(d)= ^DFDk
2(d) (4.5)

where Om denotes the spatial domain that contains the pixels of a given region or block and

N the number of such pixels.

From Eq. (4.3) and Eq. (4.1) we rewrite the DFD as:

DFDk(d)=[fk(m)+nk(m)]-[fk.i(m-d)+nk.i(m-d)]

Defining the displaced signal difference as:

DSDiJd) = fk(in)-fk.i(m-d)

and the displaced noise difference as:

DNDk(d) = nk(m)-nk.i(m-d),

we derive die DFD as a function of signal and noise differences:

J2k(d) = EfDSDk
2(d)} + E{DNDk

2(d)J

where we assumed that the noise is independent of the signal, then

J2k(d) =2a/-2Effk(m)fk.1(m-d)J + 2oll
2-2E{nk(m)nk.1(m-d)J (4.6)

where

<7n
2= Elnk(m)n^m)i = E{nk.i(m-d)nk-i(m-d)}

on one hand and

of = E{fk(m)fk{,n)} = E{fk.i(m-d)fk.i(m-d) }

on the other hand. We define the spatial-temporal covariance of the noise as:

rnp(d) = E{nk(m)nk.p(m-d)J ,
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and we denote the spatial covariance of the signal by:

rj(dk°-d) = E{fk<m)ftím+dk0-d)}.

The intensity constancy Equation, Eq. (4.2), can be rewritten as:

fk.l(m-d) = fk(m+dk°-d). (4.7)

Substituting the above equation into Eq. (4.6) the cost function can be expressed as a

function of the covariances, therefore:

J2k(d) =2af
2 - 2rfld\?-d) + 2an

2- 2rnl(d). (4.8)

This is the general expression that characterizes the second-order statistics- based cost

function. From this equation particular expressions are derived depending on the nature of

the noise and on the signal and noise models. Thus, in first place, we distinguish the cases

of white and colored noise. Assuming noise is white in time the noise covariance is given

by:

rnl(d)=a„2S(k-(k-l))=0,

where 8(k) is the Kronecker delta. In this case

J2k(d) = 2af
2+ 2an

2- 2rj(dk°-d) )

which minimum does not depend on the noise. Thus, in case images are affected by white

noise, the above cost function can be utilized to detect the correct displacement since the

only noise contribution in Eq. (4.8) is the variance term which is assumed constant.

However, we are interested in studying the case when noise is colored, in which case its

covariance is different from zero. In this situation the cost function at the correct

displacement may not be a minimum. The characterization of the signal and noise

covariances may allow a deeper knowledge of the effects of the degradation. This

information may lead to the true displacement even though the signal is corrupted by

colored noise. Following is an analytical study of J2k(d) when the covariance functions are

described by AR models.
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4.2.1 Study for Uncorrelated Region and Colored Noise

We start with a simpler case when the signal covariance is white. Although this is a very

unlikely situation in image processing applications, it gives a better understanding of the

behavior of the cost functions. On the other hand, colored noise can be characterized by the

output of an IIR system excited by white noise:

H(zni,Zn,Zk) = d-amZm^rtl-dnZn'1)'1 d-akZk'1)'1 (4.9)

Since the transfer function H is separable, the covariance can be factored as [Jain, p. 214]:

rnl(d) = rnl(dm, dn ) = <J,2 am
ld»¿ an

M« W (4.10)

where the displacement has been decomposed into its two spatial components d = (dm,dn)

and a/, is the AR temporal coefficient which appears to the power of one, since this is the

temporal difference considered between two consecutive frames.

For an uncorrelated region, the covariance is zero except at the origin, that is for d = d¡P.

Thus Eq. (4.8) becomes

hk(d) =2af
2 (l-S(d-dk

0)) + 2an
2(l- a,,!d>'¿ a¿dn W ) (4.11)

This function has two minima, one at displacement zero caused by the noise, and the other

one at displacement d^° that has to be identified. For this purpose, we require the global

minimum of J2jJ(d) to be located at d = dk° and not at d = 0 , hence, J2^1?} < J2^-

inequality is expressed as a function of the noise and signal parameters as:

< 2af
2+2an

2-2an
2 ak

This condition is equivalent to:

Of >On
2 (ikíl-a,ndk"^ (índkn°^). (4.12)

Since SNR = 10 log(-^, Eq. (4.12) becomes:

SNR > JOlog(ak (1- a,ndkm01
 fln'Vjj. (4.13)

Consequently, this condition limits the SNR. There is not such a restriction for white noise,

since it is only necessary that (am=an=ak=0),
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which is always true. Figure 4.1 shows J2i¿(d) for a uniform distributed 1-D white signal.

Colored noise is generated as the output of a first-order AR system with coefficients

am-=ak =0.8, which input is a white Gaussian distributed signal. The signal under analysis

undergoes a displacement of dk° = 8, and the SNR = 0 dB. For these parameter values, we

obtain a theoretical absolute minimum at the desired displacement up to SNR ~ - L7dB .

For lower SNR the absolute minimum is located at displacement zero and a local minimum

is located at the correct displacement that tends to disappear when decreasing the SNR.

0.34

0.32

0.3

058

a
a 026
I
^0.24
g

| 022
>

0.2

0.18

0.16

0.14 "—
-40 -30 -10 0 10

displacement
30

Fig 4.1 ./2Ä-W for an uncorrelated signal which AR noise coefficients are am -

and for SNR = 0 dB.

^ = 0.8 ,

4.2.2 Study for Correlated Region and Colored Noise

The effects of noise are even more harmful when there is correlation among pixels within a

region or block. Considering this is a more likely situation, an analogous expression of the

cost function must be derived. We model the signal as a stationary AR process and thus, the

covariance within the region is given by [Jain]:

rjid) = CT/V^V^'

where bm and bn are the spatial coefficients of the signal covariance. The cost function in

this case becomes :
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(4.14)

As before, to obtain the correct displacement we require the global minimum of the function

to be located at the desired displacement. The inequality J2k(d¡P) <J2k(0), is derived as a
function of region and noise parameters:

a li/i "11 lu i ^i / / \itìi KHI bn kn > an Ok(l- a,n KII\

, \d,o\ \il,o\
2 2 J'am Un (Jn kn

af > on
¿ ak

1-

and therefore the SNR should be at least:

SNR > 10log(ak (4.15)

Figure 4.2 shows J2^) f°r a I'D first-order AR-modeled signal that is generated as the

output of a system with coefficient bm = 0.8, and which input is a white uniform distributed

signal. The variance of the signal is related to the variance of the generating signal, x, as

(Appendix C), &x
 2= OV2 - bm

2 oV2. Likewise the AR noise coefficients are am= a^ = 0.8

and the SNR = 0 dB. The signal is displaced djP= 8. For these parameters, we obtain an

absolute minimum at the desired displacement up to SNR ~-1 dB.

0.9

Q
0
'
8

u.
Q

I
"50.7

0.5

-40 -30 -20 -10 0 10
displacement

20 30

Fig 4.2 -/2A-W f°r a coiTelated signal which AR noise coefficients are am = ak =0.8 and

AR signal coefficient is bm= 0.8, SNR = 0 dB.
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In figures 4.3 and 4.4 the SNR bounds are plot according to Eq. (4.12) and Eq. (4.15) to

obtain the displacement from the absolute minimum of ^¡¿(d) • The displacement is fixed to
d]P= (0.5, 0.5) in fig. 4.3 and dk°= (8, 8) in figure 4.4. It is interesting to observe that for a

given displacement the SNR curve shows a maximum for some specific AR coefficients of

the noise. The limit SNR is higher for correlated signals when the displacement is small

(fig. 4.3) whereas this difference is not observed when the correct displacement is large (fig.

4.4). On the other hand, setting the AR coefficients and varying the optimum displacement

the results show quite different behavior for white signals than for correlated signals (fig.

4.5). It is more easily seen here that for large displacement the SNR bounds tend to be the

same for white and colored signals.
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Fig 4.3 Minimum SNR curve for •/2¿/<V^ as a functi°n °f the noise AR parameters
an =am=afc given d¡P= (0.5, 0.5) a) for white signals b) for correlated signals (bm=bn=0.8 )
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4.3 Kurtosis of the DFD

We are interested in choosing a cost function based on HOS to reduce the effect of colored

Gaussian noise. Recall from Chapter 2 that HOS methods are blind to Gaussian processes

and thus, information due to deviations from Gaussianity may be extracted. Theoretically,

this property will permit to detect the correct displacement for any SNR. This kind of cost

functions can be built from different criteria. For example, the displacement can be found by

maximizing or minimizing a function of moments, cumulants, or cross-cumulants. The

approach in [Kleihorst, 1993] minimizes the third-order moment:

Efgk-i (m-d) gk(m)gk+I (m+d)J

Another criterion is to apply cumulant or moment matching of regions. In [Anderson, 1991]

a third-order cumulant matching criterion is proposed where the correct displacement is

found by minimizing:

-l gkgk+](rl>T2) - C8k-i gk-J gk-j(Trd'r2^ 1

The above third-order statistics cost functions reduce the effect of Gaussian noise, however

they restrict the regions to be non-symmetrically distributed. As we saw in Chapter 2 odd-

order cumulants of symmetrically distributed signals are zero and therefore are not

appropriate to use. A third option consist on choosing a criteria based on a HOS-function of

the displaced frame difference. The approach in [Anderson, 1994] is based on a fourth-order

statistics cost function that utilizes the kurtosis of the DFD^d), which is asymptotically

unaffected by correlated Gaussian noise. It is defined as :

K(DFDk(d)) = E{DFDk
4(d)j -3[ EfDFDk

2(d)}] 2 (4.15)

From the independence properly of cumulants (property [P4] in Chapter 2), we obtain

K(DFDk(d)) = KíDSDtfd)) + K(DNDk(d))

If the noise is Gaussian or the kurtosis of its distribution is zero, even if it is colored,

K(DNDk(d)) =0, i. e., the kurtosis of the DFD^d) only depends on the kurtosis of the

DSDf.(d). Therefore a suitable cost function is:

J4Ik(d)= K(DFDk(d)) (4.16)

% min
' *°<- max
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This cost function changes its sign depending on the kurtosis sign of the region. The correct

displacement is found by minimizing J4jk (d) when the region has a positive kurtosis or

maximizing it when the kurtosis is negative. Tugnait [1989] was the first to propose this

criterion to estimate the time delay between two signals as an extension to the performance

index j ̂ W- Latter, Anderson & Giannakis [1993] used the above cost function to

recursively estimate the displacement of pixels between two images.

Consistent estimates of cumulants are those which are asymptotically unbiased and the

variance tends to zero when N — >°° [Rosenblatt]. The corresponding consistent estimation

ofJ41k(d)isgivenby:

J41k (d)= jf IßFD^d) -3 [{j ^DFDk
2(d) ] 2 (4. 17)

meQm

Asymptotically, the presence of noise does not degrade the detection process and the shape

of the cost function will depend only on the statistics of the signal. We will now develop the

theoretical kurtosis as a function of signal second and higher-order moments, latter some

examples for finite regions will show that the estimation is, in practice, affected by the

noise, since the estimation has a high noise-dependent variance.

As just mentioned, the kurtosis of the DFD depends only on the kurtosis of the displaced

signal difference when noise is Gaussian distributed, thus for zero-mean processes:

J4ik(d) =K(DSDk<d))=E{DSDk
4(d)J-3E2{DSDk

2(d)j. (4.18)

The two expectation terms are developed as a function of signal moments. We analyze first

the term E{DSDk
4(d)J obtaining:

E{DSDk
4(d)} = E{(fk(m) -fk-i(m-d)) 4) =

- 4Effk
3(m)fk.1(,n-d)}-4E{fk(m)fk.]

3(m-d)J,

which can be further developed as a function of fk only using Eq. (4.7). Thus, denoting the

signal fourth-order moment as m^ = E{ (fk
4(m) } = E{ (/^(m+djP-d) } we get:

E(DSDk
4(d)J=2mf4+6E{fk

2(mifk2(m-Hlk0-d)J

- 4Effk
3(m)f^m+dk

0-d)]-4Effk(m)fk
3(m+dk

0.d)J (4. 19)
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Analogously, the second term in Eq. (4.18) can be derived as

E 2{DFDk
2(d)} = (2af

2- 2rj{dk°.d) ) 2= 4<jf4 + 4 rf
2(dk°-d) - 8 of rf(dk°-d) (4.20)

From Eq. (4.19) and Eq. (4.20) the cost function based on the kurtosis can be written in

terms of the signal moments as :

J4ik(d) = 2mf4 +6Effk
2(m)fk

2(m+dk°-d)}

-4E{fk(mlfk
3(m+dk

0-d)}-4E{fk
3(m)fk(m+dk°-d)}

- 12of - 12 rf
2(dk°-d) +24 of rf(dk°-d) (4.21)

This is the general expression for the kurtosis based cost function . Following the theoretical

expressions considering uncorrelation and correlation among pixels are derived.

4.3.1. Study for Uncorrelated Region

For this cost function, we do not need to characterize colored Gaussian noise as we did in

section 4.2.1 since noise terms vanish thanks to the independence property of cumulants. On

the other hand, not only second-order but higher-order moments of the signal appear, as we

see in Eq. (4.21). For the case of an uncorrelated signal these moments are the following:

E{(fk2(m)fk-i2(m-d))} = of4 + (mf4 -of4) 5(d-dk
ó) (4.22)

E{(fk(m)fk-i
3(m-d)) }=Ef(fk

3(m)fk.i(m-d)) } = mf4 S(d-dk
0) (4.23)

Note that Eq. (4.22) is not zero for d ^dk°. The cost function is therefore :

J4ik(d)=2mf4+6[of4+(mf4 -Of4)8(d-dk
0)]-8mf4 S[d-dk°)-12of4+12of4^d-dk

0) (4.24)

Figure 4.6 shows J4jk(d) for a 1-D signal uniformly distributed that has negative kurtosis,

which value is given by m™ - 3 o/ = -75/75, where nif4 = 9/5 and o¿ = 1. The cost

function has a negative constant value, except a unique maximum at d£ = 8 where the cost

function is zero. For a positive kurtosis the constant value would be positive and the unique

minimum, in this case, would be at the correct displacement. As we have pointed out, this

result is maintained for any SNR.
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Fig 4.6 J41kW for an uncorrelated signal.

4.3.2. Study for Correlated Region

To study the behavior of J4ik(d) for correlated signals, we consider a first-order AR model

for 1-D signals. The reason to use 1-D signals is to avoid computing HOS components that

are too cumbersome to derive for 2-D signals. The 1-D components are developed in

Appendix C. It is proven there that:

E{fk
2(m)jk2(,n-(d-dL°))}= nV4 (bm) - (bm) cr (4.25)

The other higher-order terms are somewhat more difficult to obtain since they are different

depending on the sign of (d -d¡9). We define (see Appendix C):

7—< / i / i i o\\ / *i 4\ /j i » \fi~il i.\ *>/ / \ \ci~ci j.\ — 4rf(bm,(d-dk )) = (nif4- 3 Of ) (bmr *- + 3(bm) *• Of

,d-dk°) = b,m

(4.26)

(4.27)

It is shown that

rf(bm,d-dk) (d-dk°)>0

(d-dk°)<0

(4.28)

and
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Effi¡(m)Jk.j3(m-(d-dk0))J=l
Y(bm,d-dk°)

rf(bm,d-dk°)
(d-dk°)>0

(d-dk°)<0

(4.29)

Thus,

J4ik(d) = 2mf4+6 [nV4 (bm) ¿ '"'"* ' + of- (bm) '

- 4Vf(bm ,d-dk°) - 4 rf(bm ,d-dk°) -12of4 - 12af
4bm

2ld-dk\24

a/]

(4.30)

Figure 4.7 shows J^^d) for a 1-D AR-modeled signal that is generated as the output of a

system with coefficients bm = 0.8 , which input is a white uniformly distributed signal. The

kurtosis of the signal is related to the input generating signal, x, as (Appendix C),

(nin - 3 G f4) = (inx4 - 3 <7K
4) /(J-bm

4). For a correlated signal the peak has broaden at the

desired extremum atrf/ ; =8.

-0.005

-0.02

-0.025

-0.03
'.-40 -30 -20 -10 0 10 20 30 40

displacement

Fig 4.7 Jji^d) for correlated signal.

We have just obtained the statistical mean estimates of the second-order and fourth-order-

based cost functions. Independently of low or high correlation among the pixels of the

noise-free regions, J2$) 1S degraded by the presence of colored Gaussian noise. On the

other hand, the mean estimation of J^d) is not affected by this type of noise.
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As important as the mean of the estimation is the variance of the estimation. The following

examples are given to compare the variance when estimating J^//¿J and Jjj/JCd) . For this

purpose, we generate several times 1-D signals and each time we estimate the cost functions

as they are defined in Eq. (4.5) and (4.17). At last we compute the mean estimation of the

cost functions and their variances.

Example 4.1 : We determine J^d) and J4¡¡¿d) for a rectangular 1-D object of length 256

which kurtosis is negative. We use 20 different realizations to study the mean and variance

of these indexes. In first place, we observe their behavior for moderate SNR. Thus, fig.

(4.8a) and (4.8b) show the estimation for SNR - 15 dB, the pixels of the signal are

uncorrelated and the Gaussian noise follows an AR model with am =<7jt = 0.8. Each figure

shows: in solid line, the mean of the cost function using 20 realizations of a sequence of two
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Fig 4.8 Cost functions for SNR = 15 dB of a 256 length object where df,°=6; a)

b)J2[;(d) c) single realization QÏ J41^(d) and d) single realization of J2¡.(d)

signals, where </¿°= <5; in dashed line, the theoretical cost function; and finally, in dashed-

dot line, the mean plus/minus the standard deviation. Figures (4.8c) and (4.8d) show the
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estimation for a single realization. The mean estimation is close to the theoretical
expectations. The kurtosis-based measure seems to have a higher variance. This fact can be
confirmed for lower SNR. Figures (4.9a) and (4.9b) show the mean estimation for both cost

functions as well as the mean plus/minus standard deviation when SNR = -2.5 dB (this SNR

was chosen since it is close to the theoretical limit to obtain an absolute minimum using the

second-order based index, which is -2.3 dB for these parameters). Clearly, although the

mean estimation of the kurtosis tends to the theoretical result the variance is too high.

Figure (4.9c) And (4.9d) show the estimation for a single realization. A better way to

compare the variance is obtained normalizing both cost functions by their respective mean

estimation. Thus, using the same scaling we appreciate in fig. (4.10a) and (4. lOb) the

normalized cost functions for low SNR (-2.5 dB) and in fig. (4.1()c) and (4. lOd) for high

SNR (15 dB). These results suggest that the kurtosis-based cost function should not be used

for low SNR unless dealing with longer signals which would reduce the variance. We must

be aware of the fact that we are going to use this cost functions for image regions or blocks

and the number of pixels may not be large.
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Fig 4.9 Cost functions for SNR = -2.5 dB of a 256 length object where dk°=6, a) J4Ik(d) b)

c) single realization of J^rfd) and d) single realization of ^(¿(d)
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Fig 4.10 Normalized cost functions of a 256 length object where d¡,o=6, a)

W2k(d) for SNR = -2.5 dB , c) J41k(d) and a)J2k(d) for SNR = 75 dB

and

A Modified Kurtosis of the DFD

As we have shown in the previous section, the kurtosis is a very sensitive measure and we

need long data records to obtain low variance estimates. On the other hand, image

information is repeated along the sequence as it is established in the Intensity Constancy

equation, Eq. (4.2). This redundancy may be used to obtain belter estimates of the higher-

order statistics to reduce the effect of additive noise. Amblard et al. [1993], proposed an

adaptive scheme for the estimation of fourth-order cumulants for transient detection. It was

proven for the case of i.i.d. random variables that the estimator is asymptotically unbiased.

Using this approach, we derived the equivalent expression for the kurtosis of the displaced

frame difference which at time k becomes:

Kk (DFD(d))) =Kk.j (DFD(d))+y[ k(DFDk(d))- Kk.j (DFD(d))],

A

where k (DFDjJd))) is the "instantaneous kurtosis" given by,

(4.31)
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2k (DFDk(d)) = DFDk(d)-3fj DFDk(d) $., {DFD(d))J, (4.32)

and

Ek{DFD2(d)) =Ek.! (DFD2(d)}+ß [jj %DFDk
2(d)-Ek., fDFD2(d))J, (4.33)

¡i and 7 are forgetting factors that adapt the estimation to changing conditions. The sub

index k has been suppressed in the DFDs where previous frames are involved. This adaptive

scheme leads to consistent estimates of the kurtosis of the DFD.

Nevertheless, we are interested in obtaining the displacement vector at time k and this only

depends on the instantaneous kurtosis, that is, Eq. (4.32) and (4.33). It is clear that there is

no information on the current displacement between two frames in previous images or in

previous displacements (unless we were dealing with some kind of prediction or motion

model). Previous frames can be used to obtain information on the statistics of the regions

and/or statistics of the noise. Our goal is to define a low variance cost function which should

be, at the same time, asymptotically unaffected by con-elated Gaussian noise. One possible

solution is based on the instantaneous kurtosis defined by Eq. (4.32), which is normalized to

the square of the variance:

/-i{DFD2(d)) ] (4.34)

For ¡i =1 only the previous DFD intervenes, and therefore, only three frames are included:

d) (4.35)

mei2m

For small values of ¿í past frames become more significant than the previous one. Thus,
A .7

depending on the estimation of E¿,_j¡DFDz(d)), different versions of the above cost

function may be derived. Observe that instead of having the instantaneous second-order

moment estimate to the power of two, which may show a high variance, we have a term

whihc is the product of the instantaneous second-order moment by the estimated second-

order moment using more than two frames.

In terms of expectations Eq. (4.34) is rewritten as:

' EÍDFDk
4(d)}- 3 E(DFDk

2(d)} Ek.!{DFD2(d)}. (4.36)
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An alternative estimation is necessary in case only two frames are available or when the

first two frames of a sequence are not static. In this case, it seems reasonable to use the

kurtosis cost function as it is defined in Eq. (4.17) and normalize by the square of the

variance. Another approach that we propose using Eq. (4.34) with:

Ek.!{DFD2(d)) -> ¿ ^lgk-l(m) -gk-l(m-d) ] 2, (4.37)
mtfiin

is given by:

J43k(d) = -y^— [ft
2k m£U,n

(4.38)

The resulting cost function will display a behavior similar to the one in Eq. (4.35), yielding

to better estimates of the displacement.

To study these cost functions we derived also the moments of the DFD as a function of

signal and noise moments. The development is shown in Appendix D for J 42^), when

ß= l, and for J^j^d), where we substitute the summation by the expectation operator. The

results are illustrated in the following sections.

The first step is to decompose J 42^) in signal and noise differences. Thus, we obtain their

contributions (Appendix D):

J42k (d)= -r4^ {E{DSDL
4(d))-3E{DSDL

2(d)}E{DSDk.i
2(d)}

J 2k (d)

-3E{DNDk
2(d)}[ EfDSDk.J

2(d)J-EfDSDl
2(d)JJ } (4.39)

which for n=l leads to the expression (Appendix D):

J42k(d) = — í — /
m f

- 3/2 cr/ - 2rj(dk°-d) ] [2(J2 - 2rjidk.i°-d) ]

-3 [2 an
2- 2rn](d)J [2rj(dk

0-d)] - 2rßk.i°-d)} (4.40)
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This is the general expression of the new-defined cost function as a function of the signal

and noise moments. Analogously as we did for the previous cost functions, analytical

expressions may be derived for the case of correlated and uncorrelated signals.

4.4.1 Study for Uncorrelated Region and Colored Noise:

In this case we obtain:

J42k(d) = v
-6cff

Although noise is affecting the behavior of the cost function it does in an appropriate

manner. The cost function is characterized in three different areas. In the first one, when the

displacement variable is different from the correct current and previous displacements, we

obtain the normalized kurtosis which sign depends on the sign of the region kurtosis. When

the variable is equal to the current displacement, the value of the cost function is negative.

Finally, for the previous displacement, we obtain a value which is higher than the

normalized kurtosis. Thus the usual shape of the cost function will show a maximum at the

previous displacement and a minimum at the correct displacement. This will be better seen

in the examples.

4.4.2 Study for Correlated Region and Colored Noise:

The analytical expression for the case of 1-D correlated signals is the following:

2mf4+6fmf4 (bm) af
4- (bm af

4]- ,d-dk°) - 4 rf(bm ,d-dk°)

-12a,2e?[l- b,,^- b.^-l "; }
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where the moment functions were obtained in Sections 4.2 and 4.3 for AR models. It is not

obvious to recognize what is the behavior of JJ42¡¿d) for different displacements. From Eq.

(4.40) we can notice that there is a noise term that multiplies a difference of displaced signal
covariances. Thus, if the optimal displacements at time k and k-1 are equal, we can easily

deduce that J'42^) is nothing else than the normalized kurtosis of the DFDk(d). For other

situations, the following examples will clarify what is, in general, the behavior of this cost

function.

Example 4.2 : We either assume the signal is uncorrelated or follows an AR model which

input is an i.i.d. sequence uniformly distributed. We use the coefficients am =o¿= 0.6 for

the noise and btn = 0.9 for the signal, the SNR is set to 0 dB. Figures (4.lla) and (4.lib)

show J42i/d) for an uncorrelated and a correlated signal respectively. The displacement is

df.° = 8 and d^f =0. We observe that there is a minimum at the correct displacement and a

maximum at displacement zero. As we pointed out, the noise is affecting J42^) in an

advantageous manner. Figures (4.1 le) and (4.1 Id) show the theoretical behavior of J42¡-(d)

for an uncorrelated and a correlated signal respectively when d^f — d¡P. For this case, the

cost function behaves as the normalized kurtosis. It displays a maximum at the correct

displacement when the region has negative kurtosis and a minimum when the region

kurtosis is positive. The minimum we obtain at displacement zero is due to the

normalization factor, the square variance estimate.

We also study the situation when the displacement changes slowly along the sequence.

Figures (4.12a) and (4.12b) show ̂ ¿^ when dk° = 8 and d^¡° =7. As expected, we

obtain a maximum at the previous displacement and a minimum at the current displacement.

The same thing occurs when dk° = 8 and dj._j° =9, see fig. (4.12c) and (4.12d). However

we perceive a local minimum at displacement zero which is caused by the noise covariance.

This could lead to incorrect results for other AR parameters and different SNR. Fortunately,

we have observed that this only happens for extremely low SNR. For white signal this

problem does not happen at all.

Figure (4.13) shows, for the same situation of d/.0 close iod^f, the behavior of the cost

function when the signal has positive kurtosis. In this case we do not observe any local

minimum at d= 0 even for extremely low SNR.
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Fig 4.1 1 J42i¿d) for a negative kurtosis region a) uncorrelated signal df,° = 8 ,

b) con-elated signal, c) uncorrelated signal d¡9 = dk„f, d) correlated signal.
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Fig 4.12 J42i¿d) for a negative kurtosis region a) uncorrelated signal d¡P = 8 , d

b) correlated signal, c) uncorrelated signal d ¡9 = 8 , d¡._f = 9, d) correlated signal.

=0,

= 7,

93



(a)

-2

-20 -10 O

(c)

10 20

0.4

0.2

-0.2

-0.4

(b)

-20 -10

-2

4'—
-20 -10 10 20

0.4

0.2

-0.2

-0.4

O

(d)

10 20

-20 -10 10 20

Fig 4.13 JT42k(d) for a positive kurtosis region a) uncorrelated signal d f.0 = 8 , dk_j° = 7,

b) correlated signal, c) uncorrelated signal dk° = 8, dk_¡° = 9, d) correlated signal.

We can then conclude that the new-defined cost function exhibits always an absolute

minimum at the desired displacement for positive kurtosis regions. The same behavior is

observed for negative kurtosis regions except when dk_j° = dk°, in which case the cost

function becomes the normalized kurtosis. In this situation, the extremum at the desired

displacement becomes a maximum. Hence, except for this case, in all other situations the

correct displacement is derived from an absolute minimum. We need to introduce a

mechanism to avoid searching a wrong minimum when d^¡° = dk°. One approach is to use

¡J.<1, thus, the influence of previous frames allows to keep a minimum at the desired

displacement. If this situation stands for many frames we end up in the same situation. An
A 2

additional step is added which consist of introducing a shift of -d^f to E¡,.j{DFD¿(d)).
A

Thus, in the following iteration, k(DFDk(d))) will have a maximum atd=0 and a minimum

at d=dk° .
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Next we present some examples where we compare the three cost functions defined up to

this point. We will see the effects of the estimation and the advantages of using the newly

defined cost function. We also test the above procedures for the case ofd/.^0 = djP.

Example 4.3 : In this example we compare the performance indexes for a white 1-D

rectangular object of length 256, which is moving along three frames where df,,¡° = 0 and

d]P = 8. Noise is simulated using an AR model with am-ak - 0.6 and SNR = -5 dB. As in

example 4.1, we generate the sequence 20 times and obtain the mean behavior of the cost

function at time k (we represent in dashed line the theoretical curve; in solid line the mean-

estimation of the cost function; and in dashed-dot line the mean +/- the variance of the

estimation). We can observe in fig. 4.14b that the kurtosis cost function does not show the

maximum at the correct displacement and exhibits high variance. We have normalized this

cost function by J2[? (d) to study if there is any improvement, which does not happen as it is

illustrated in fig. 4.14a. Figure 4.14c shows JT42i/d) using the estimation in Eq. (4.35), that

is for ¡1=1, where only the previous displacement is relevant. For the modified kurtosis the

variance is much lower and follows the theoretical results. Thus, this cost function can be

reliably used for objects of this size in similar situations. For J2i¿d) in fig. 4.14d the

variance is low, but for this SNR the minimum at the correct displacement is not absolute.

The limit SNR for these parameters is found to be -2.29 dB from a 1-D version of Eq.

(4.13). Figure 4.15 shows the cost functions for a single sequence realization. The modified

kurtosis cost function outperforms all other cost functions.

In the next step, we compare the cost functions for a highly correlated signal and find there

is also an improvement in detecting motion using the new cost function. Figures 4.16 and

4.17 depict the mean behavior and a single realization of the cost functions for a 1-D

colored rectangular signal following an AR model which parameter is bm = 0.8. The SNR is

-2dB and the noise parameters are the same. The limit SNR in this case is -1.49 dB given

from a 1-D version of Eq. (4.15). J42^) shows a minimum that is easily detected. J2^

shows two similar minima at the previous and current displacement.

Example 4.4 : In this example we compare -/^¿M) and J 2^) for a 2-D white uniformly

distributed object of size 16x16. Colored noise that follows an AR model with

an=am=cifc = 0.8 is added to a sequence of three images where the object is displaced

dk_J°=(0,0) and dk°=(4,l) . The SNR is set to 0 dB. The absolute minimum for J2k(d)

corresponds to the displacement vector (0,0), whereas a relative minimum appears at (4,1)

which is the correct displacement (fig. 4.18 and 4.19). On the other side, the absolute
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minimum for J '42^) is (4,1). We found that for this type of signal and SNR = 0 dB we
obtain an 80% of error for J ) versus 10% of error for

Example 4.5 : In this example we study the situation when the displacement changes slowly

along the sequence. The signal and noise parameters are characterized by the same values

than in Example 4.3 and the SNR is -2 dB. Figures (4.20a) shows a single realization of

Jj2k(d) when dj.° = 8, d^f =7 and d^2° - 0. As expected, we obtain a maximum at the
previous displacement and a minimum at the current displacement. This situation is

A -,

improved when ¡i = 0.89 in the recursive estimation of E¡<_j{DFD¿(d)) as it can be seen in

fig. (4.20c). The same comments are valid for the case of df.° - 8 , d^_f -9 and

dk_2° = 0, see fig. (4.20b) and (4.20d).

Example 4.6 :We also compare the tracking capabilities with the ones of J2i/d) using the
A -y

procedure to center E^.jfDFD-fd)) at dk_j and using ß = 0.89. We are given 10

realizations of a sequence of 7 synthetic noise free images containing an uncorrelated 2-D

rectangular object. The object was previously segmented and was moving (3,1) pixels per

frame. Colored Gaussian noise was generated from a first order AR model with an=am=ak

= 0.6 and added to the sequence. For this size and signal distribution, the cost function

J41ffd) did not work at all. Table 1 shows the percentage errors to reach the final position

for different sizes and SNR.

96



0.5
(a)

*. /

-0.5 !
-20 -10

'•-/-, V x '-..'
» v ' V : *

2

i

0

-1

-2
-20 -10

0

(c)

10 20

0.4

0.2

0

-0.2

-0.4

(b)

-20 -10

10 20

0.8

0.7

0.6

0.5

0.4

0.3
-20 -10

0

(d)

10 20

10 20

Fig 4.14 Estimated cost functions when dk_j° =0, dk° =8 and SNR = -5 dB for a white

signal of length 256: a) J^j^d) normalized; b')J4If.(d) ; c) J^d) ; d) J2fJ[d)

(a)

0.5

-0.5

0.4

0.2

(b)

-20 -10 0

(c)

10 20
-0.2

-20 -10

1

0

-1

-2
-20 -10 10 20

0.7

0.6

0.5

0.4

0.3
-20 -10

0

(d)

10 20

10 20

Fig 4.15 Cost functions for a single realization when d¡,_¡0 =0, dk° =8 and SNR - -5 dB for
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Fig 4.16 Estimated cost functions when dk_f =0, dk° =8 andSNR = -2 dB for a colored

signal of length 256: a) J41]¿d) normalized; b) J41k(d) ; c) J42ifd) ;
(a)
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Fig 4.17 Cost functions for a single realization when dk_f =0, dk° =8 andSNR = -2 dB for

a colored signal of length 256: a) J4¡k(d) normalized;b)J41k(d) ; c) J42ffd) ; d)J2k(d)
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(a) (b)

Fig 4.18 Estimated cost functions for a 2D white object of size=16xl6 where dk_1°= (0,0),

dk°= (4,1), SNR = OdB from 20 runs a) 3-D view of J42k(d) ; b) J2k(d) ; c) image view of

J42k(d) ; d) J2t(d).
(a) (b)

Fig 4.19 Estimated cost functions for a 2D white object of size=16xl6 where d^f- (0,0),

dk°= (4,1), SNR = OdB for a single realization a) 3-D view of J42k(d) ; b) J2]¿d) ; c) image

view of J42k(d) ; d) J2k(d).
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Fig 4.20 J42k(d) when dk.2° = O a) \L = 1 dk° = 8, dk,f = 7, b)/z = 1 dk° = 8, dk.f = 9, e)

// = 0.89 dk° = 8 , dk.j° = 7 d)fj = 0.89 dk° = 8, dk.j° = 9.

size

SNR

J42k(d)

J2k(d)

32x32

OdB

0%

0%

16x16

OdB

10%

20%

32x32

-2 dB

10%

40%

16x16

-2 dB

30%

40%

32x32

-5 dB

80%

100%

16x16

-5 dB

90%

100%

Table 4.1 Percentage of error for example 4.6
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4.4.4 Simple Versión of the Modified Kurtosis of the DFD

The modified kurtosis cost function displays an outstanding behavior specially when d/f is

different from d^f or, in case these displacements are similar, when we center the update

or use fi<l. The main improvement is that J r42k(d) exhibits a low variance as compared to

the kurtosis cost function, allowing smaller size signals or regions. On the other side, this

new cost function is able to obtain the correct displacement when the SNR is low and

second-order statistics of the DFD lead to ambiguous results. We are interested in defining a

cost function with the characteristics of 342^d) even though only two frames are available.

This could be achieved if we replace EfDFD^^d)} for a convenient function. We choose

the square differences of one of the frames with the same frame shifted d. The resulting cost

function shows a behavior analogous to J '42^) when dk_}°=0, that is, a maximum at

displacement zero and a minimum at the current displacement. It was defined in Eq. (4.38)

and we repeat it here for convenience.

- gk-l(m-d) ] 2

As we did for the other cost functions we have developed Jjyjd) as a function of signal and

noise moments, obtaining (Appendix D):

J43k(d)= ,.,
J 2k (d)

{2wf4+6E{fk
2(m)fk

2(m+dk°-d)HE{fk
3(m^

-3 [2ffn
2-2rnI(d)J 2+6[2af

2- 2rj(d-dk
0) ] [2an

2-2rnl(d) ]

-3[2af
2- 2rj{d) +2an

2-2rn0(d) J [2e2- 2rj{d-dk
0) +2an

2-2rnl(d) ] (4.45)

The following examples will illustrate the response of this cost function.

Example 4.6 : In this example ̂ 42^) ant^ ^43k^ are estimated in an analogous scenario

than the previous examples and are found to look very similar. The performance indexes are

compared for a 1-D colored rectangular object of length 256, which is moving along three

frames where d^-f = 0 and df.° = 3. For this case we choose a signal with positive kurtosis

generated from a first-order AR system which coefficient is bm =0.8 and which input is a

Laplacian distributed signal. Noise is simulated using an AR model with am=ak = 0.6 and
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SNR = -2 dB. We generate the sequence 20 times and compute the percentage of error for

each cost function. Thus, we estimated 95 % of error using J2i/d), 100% of error forJ41k(d),

45 % for J42i¿d) and 50% using J4^(d). Figure 4.21 depicts each cost function for a single
realization.

As we just mentioned, we observe that J42k(d) resembles J43k(d). Nevertheless, we have to

keep in mind that whereas the latter is just an approximation that works correctly up to a

certain SNR, the former does not change its behavior for low SNR, like the kurtosis. Figure

4.22 shows the theoretical mean curves for the two cost functions when the SNR is

0 dB. On the other hand when the SNR tends to -<», J42¡¿d) does not change its shape while

^43k^ c'oes not snow a minimum anymore, see fig. 4.23.

(a)
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(b)
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(d)

10 20

-20 -10 -20 -10 10 20

Fig 4.21 Cost functions for a single realization when dk^° =0, dk
a =8 and SNR = -2 dB for

a colored signal of length 256 and positive kurtosis: a) J4^(d); b)J4j¡.(d); c) J42¿d); d)J2f/d)
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Fig 4.22 Theoretical behavior of the cost functions when dk_ f =0, dk° =8 and SNR = OdB

for a white signal a) 342^) ; c) J^d) ; and a correlated signal b) J
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Fig 4.23 Theoretical behavior of the cost functions when dk,f =0, dk° =8 and SNR =-30 dB

for a white signal a) J42^} ; c)J4ìk(d) ; and a con-elated signal b) J^d) ; d)J43k(d)
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Example 4.7: The cost function J^^d) has applicability in a different context involving

time delay estimation. Hinich et al. [1989] have shown via bispectral analysis that whereas

the ambient ocean noise is indeed Gaussian, the ship radiated noise is non-Gaussian. Thus,

the use of higher-order statistics for the time delay estimation in passive sonar is well-

motivated. On the other side, Tugnait, [1991], proposed an optimization approach where the

time delay between two signals is estimated by minimizing a mean fourth-order (MFC)

criterion, which is nothing else than J41i<(d). To demonstrate its performance he used the

following example. Time delay between two 1-D signals has to be estimated. The signal is

given by the product/¿.^ (in) = Wk _¡ (m) ßk_](m) where Wk ¡ (m) is Laplace i.i.d and ßk } (in)

is a Bernoulli process. This type of signal is a test signal widely used in the acoustics/

geophysics literature (a lot of controversy exist whether or not it approximates a real signal).

The noise sources are spatially correlated, nk_}(m) is generated first, whereas nk(m) is

computed from

10
nk (m) = ]£ b(i) nk-1 (m+i) (4.41)

1=0

where b(i) takes the values {0.2, 0.4, 0.6, 0.8, 1, 1, 1, 0.7, 0.5, 0.3, 0.1}. It was seen that

J4]l/d) yields the true time delay, that was set to dk°=I6 , whereas J2k(d) does not. The

signal length was 2000 and the SNR = -5 dB. In addition, the newly developed cost function

J43i/d) can also be used to obtain the true time delay. Figs. (4.24a), (4.24b) and (4.24c)

show the mean plus/minus standard deviation of the three cost functions for 10 realizations.

Figures (4.25a), (4.25b) and (4.25c) show the cost functions for a signal of length 64 for 10

realizations. We obtained 90% of error for J4]k(d) versus 20% of error for J42k(d). We can

then conclude that the new cost function outperformed the variance and the unnormalized

kurtosis cost functions.
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Fig. 4.24 a) mean behavior of J2k(d) for a 1-D signal of length 2000 and SNR = -5 dB

b)J41l/d) c)J42k(d)
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Fig. 4.25 a) mean behavior ofJ2k(d) for a 1-D signal of length 64 and SNR = -5 dB

b) J41k(d) c) J^d)
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Example 4.8: This example demonstrates the improvement of the new fourth-order based

cost function J43k(d) from the second-order one, J2k(d), when block-matching is applied to

obtain the displacement between consecutive real frames. Figure 4.26a shows one of the

original images taken from the "flowers" sequence. Figure 4.26b is the same image when

colored Gaussian noise generated from an AR model with ajt = am=an = 0.6 has been added to

the sequence and the SNR is 2 dB. In first place we have manually displaced by (4,0) all

pixels in the image. Figure 4.27a depicts the ideal vector displacement map given blocks of

16x16 pixels. The result for noisy frames when using the correlation-based measure is shown

in fig. 4.27b. Most blocks are represented by a dot point that indicates that displacement zero

has been detected. Figure 4.27c shows the results after applying J^^fd). As a whole, we

observe that the detection decision has been improved. Notice that most wrong decisions are

located in the upper part of the image where the homogeneous sky is, whereas most correct

decisions are located on the flower zone which is a textured region. The percentage of correct

decisions for J43k(d) is 17% and 7% for J2k(d). Another important measure of closeness is

derived when the difference of the computed from the correct displacement is less or equal

than one pixel. Thus, a 37% of closeness is obtain for J43k(d) versus a 7 % for J2k(d).

(a) (b)

Fig 4.26 a) one of the original frames from the flowers sequence b) one of the noisy frames

where colored noise follows an AR model with a¿ = am=an = 0.6 and the SNR is 2 dB.
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(a) (b)

(C)

Fig 4.27 a) Noise-free displacement map given blocks of 16x16 pixels after applying J2k(d),

where all pixels in the second frame have been displaced by (4,0) b) map for noisy frames

using J2k(d). c) using J43k(d).

In second place, real displacement from two consecutive frames of the "flowers" sequence

(frames 112 and 113), is computed. The results obtained from the second-order cost function

when no noise is added is illustrated in fig 4.28a. Some blocks from the left hand side of the

image as well as some blocks containing pixels from the sky seem to be wrongly detected.

Figure 4.28b and 4.28c are the maps obtained when colored noise is added to the sequence

for J2k(d) and J43k(d) respectively. As expected the fourth-order cost function outperforms

the second-order one. In this case we obtain a 23% of correct decision for J43k(d) versus 12%

for J2k(d). The closeness measure results in a 37% for J^j/tW versus 19% for J2k(d).
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(a) (b)

•s x ' -, - '

v _ _ _ _"H _

(c)

Fig 4.28 a) Noise-free real displacement map given blocks of 16x16 pixels obtained from

J2k(d). b) displacement map for noisy frames when using J2k(d) c) using J43i¿(d).

Motion estimation is also computed when applying region-matching to previously segmented

images. Segmentation is only performed over the first image of the sequence, see fig. 4.29a,

using a multiresolution method that applies morphological filters in each resolution level

[Salembier & Pardas, 1994]. This method is chosen since morphological filters are visually

satisfactory and are not based on Gaussianity concepts. The displacement map of the regions

from two consecutive frames when utilizing J2k(d) is shown in fig. 4.29b for the noise-free

case. In case the sequence is corrupted by colored Gaussian noise the results after applying

J2k(d) and J43k(d) are illustrated in figs. 4.29c and 4.29d respectively. The AR model
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parameters are ak=am=an= 0.6 and the SNR is 2 dB. The detection map is slightly better for

the fourth-order cost function. Nevertheless, the results are poorer to the ones obtained for the

block-matching approach.

(b)

\
N.

\

(c) (d)

Fig 4.29 a) Segmentation of image 4.26a b)displacement map for the noise-free case using

J2k(d). b) displacement map for noisy frames when using J2k(d). c) and using
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4.5 Recursive estimation of the displacement

In the previous sections the estimated displacement was taken from an exhaustive search of

the displacement that provided the absolute minimum or maximum of a given cost function.

Recursive estimation algorithms aim to reduce the computational complexity, specially for

sub-pixel displacements, since they use a priori information on the location of regions. Thus,

given an ittl estimate of displacement, we obtain the (i+l)t}l estimate such that, the value of the

cost function resulting from the (i+1)"1 estimate is lower (or higher) than the one used in the

ith. The gradient search procedure is represented algebraically as :

d' = d l·1- e sgnMd ''')] Vdi-l J (d l·1), (4.42)

where d l is the estimated displacement at the /''' iteration, e is a constant, V¿¡-1 is the gradient

with respect to the estimated displacement and finally, "fid 1~1) gives the correct sign for every

cost function and statistics of the signal of interest.

4.5.1 Recursive Estimation based on the variance of the DFD

Netravali & Robbins [1979] were the first to use a gradient type approach to obtain the

displacement vector from die variance of the DFD. The recursive formulation becomes

d'^d'-1 - € Vdi-l E{DFDk
2(dl·I)],

dl = d '-* - £ E{2 DFDk(d '-* ) V¿¡-1 DFDk (d '-1)}. (4.43)

For this cost function the goal is to reach a minimum, and then sgn[y(d i'1)] is always 1.

Substituting the DFD by the signal difference, the gradient of the DFD may be computed

from the gradient of the image intensity since Vd*'1 DFDf,(d '-1) =V,n gf,(in+d¡,o-d i~1).

Then it follows :

d ' = d l·1 - £ E{2 DFDk(d
 l·I) V,n Sk(m +dk°- d l·1)J. (4.44)

This expression must be estimated for the displacement of regions between frames. We utilize

the estimation we defined in Eq. (4.5), which yields to:

d '' = d *-' - 2 £ %DFDk(d
 ¡ - J ) VlttSk(m +dk°- d i'ì ). (4.45)

The above recursive motion estimator was successfully applied to simulated and real image
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sequences. It was also evaluated in the context of frame-to-frame coding [Netravali, 1979]. Its

performance will be compared to the recursive version of the new-defined cost function.

4.5.2 Recursive estimation based on the kurtosis of the DFD, J4jk(d)

The recursive estimation based on the kurtosis of the DFD was developed by Anderson

[1994]. It is given by:

dl=d ''-' - e sSn[j(d i'1)] Vd i-l[E{DFDk
4(d l-l)}-3E2{DFDk

2(d ^ )}]

d ' = d '-1 - £ sgn[y(d '-* )]

[Ef 4 DFDk
3(d l·I) VmSk(m+dk°- d ";J /

- 6E {DFDk
2(d ï'1)} Ef 2DFDk(d

 l·1 ') Vm8k(m+dk°-d l·1 )} ] (4.46)

In this case sgnftfd i~l)J = sgn[ K(ff,(m))] , that is, it is positive for distributions with

positive kurtosis and negative for regions of negative kurtosis. Likewise we use the estimation

in Eq. (4.17) and obtain,

f N X4 DFD k3 (d ¡-]) V,ngk(m+dk
tì-d ")

di-1) j j ^DFDk(d
l·1) V,ngk(m+dk

0-d l·1 ) ] (4.47)

meQm

The recursive equation for the cost function based on the kurtosis of the DFD was compared

to the second-order recursive estimator [Anderson, 1994]. It is shown there that there is an

improvement when the image frames are corrupted by colored noise. However the

comparison was carried out for local neighborhoods, where only three to six pixels are

involved, and therefore statistical models are not valid.

4.5.3 Recursive estimation based on the modified kurtosis of the DFD

As we saw for the exhaustive estimation of motion, the kurtosis is characterized by a large

variance and the ideal shape of the cost function is not achieved in single realizations for

moderate size signals. The second-order cost function may lead to the true solution if we are

close enough from the local minimum that appears at the correct displacement. This local
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minimum is only observable when the SNR is not very low. See for example figure 4.16,

where we can observe that J2k (d) displays a maximum between displacement zero and d¿>.

In this case if the starting point in the recursive algorithm is on the right side of this maximum

or on the right side of d¡P the gradient recursive algorithm will reach the correct displacement

The same figure shows 342k W • For this cost function a gradient type of approach will lead

to the correct displacement from a starting point lying further from the correct solution. In

other situations, like the one shown in figure 4.21 of Example 4.6 the right solution using

J2k(d) may never be reached whereas for J42k W a gradient-based algorithm may lead to the

right solution

The recursive estimation formula is an expression rather complex since the cost function is

normalized to J42k (d). It is given by:

-I ÍE{DFDk
4(d 'w )}-3EfDFDk

2(d l·I )}E{DFDk.]
2(d i'1)}]

In this case sgn[y(d 'l~l )] = 1 since we are looking for a minimum independently of the sign of

the kurtosis. This might represent an advantage in cases where the sign of the kurtosis of the

region might be unknown. The gradient of the DFD at time k-1 may be as well expressed as a

function of the image intensity at time k considering the displacement of the region.

Vd '-* DFDk-l(d ''*) = Vm gk(m+dk.j°-d 'l'1) (4.49)

and the recursive formulation becomes,

-

{ E{4DFDk
3(d l·1) V,ngk(m+dk°- d l·1)}E 2{DFDk

2(d l·1)}

-3E{DFDk.¡
2(d l·1)jE{2DFDk(d

 l·1 ) Vingk(m+dk°- d l·1 )/E 2{DFDk
2(d "¡J

-3E{DFDk
2(d l-l)ÌEl2DFDk.i(d ^ ) Vmsi¿m+dk-i°- d lW;/£ 2{DFDk

2(d l·1 )}

-2E{DFDk
2(d l·1)}E{2DFDk(d

 l·1 ) V,ngk(m+dk°- d l·I)}

•[E{DFDk
4(d l·1 )}-3E{DFDk

2(d ¡'] )}E{DFDk.¡
2(d l·l)}] ] (4.50)

The following step is to substitute the expectation operators by the estimation in eq. (4.35)

obtaining:
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meQ

meQm

-o ¿r

meQm

-6 jj

N

m

meQm

meQm

d1'1) ]
meQm

meQm

meQm

meQm meQm

which is rewritten as :

meQm

meQm

+
meQm

meQm

)^ I¿>FDk(d
i-1)Vmgk(m+dk

0-di-1)
meQm

l·1) VmSk(m +dk.f-d
 /WJ

meQm meQm

4 jj ^J)FDk(d
i'1)Vmgl!(m+dk.1

0-di-1)jf

meQm meQm meQm

(4.51)

(4.52)

This expression looks rather complex since it involves five terms instead of the two used for

the kurtosis. This is mainly due to the normalization factor. Nevertheless, the terms involving

previous frames, like the variance of the DFD at time k-1, do not have to be computed again.
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Despite an increase in the computational load, the results are satisfactory as it was for the

exhaustive search. The following example illustrates the improvement.

Example 4.8. We compare the recursive schemes of J42k(d) and J2k(d), for a situation

similar to example 4.5. The object in this case, is a 2-D uniformly distributed rectangular

object of size 16x16 which pixels are correlated following a first order AR model. We

generated 10 realizations of a sequence of 3 images for three different SNR. The object is

moving (3,1) pixels per frame. For the first pair of images the objective is to estimate the

displacement when an initial guess is provided, using Eq. (4.38) in the recursive scheme. The

initial position was (1,0) and e was set to 0.2. The percentages of error after 20 iterations are

given in Table 4.2. The second-order cost function often leads to a local minimum at (0,0).

On the other hand, for the second pair of images the correct previous displacement was given

and the objective was to check if the cost functions were able to track the minimum, the results

are given in Table 4.3. For very low SNR, J42k(d) is characterized by a 50% of error

whereas J2k(d) always failed.

SNR

Jm(d)

J2kw

OdB

10%

90%

-2 dB

30%

90%

-5 dB

50%

100%

Table 4.2 Percentage of error to reach minimum given an initial guess, example 4.8.

SNR

J43t(d)

J2k(d)

OdB

0%

10%

-2 dB

30%

30%

-5 dB

50%

100%

Table 4.3 Percentage of error in tracking given the correct previous displacement, example 4.8
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4.6 Conclusions and final remarks

There are some situations where motion between frames has to be estimated in the presence of
noise. In such cases most existing methods do not work properly and more robust techniques

are necessary. On the other hand, noise can be realistically described as a colored Gaussian

process. In such circumstances, HOS may offer some advantages since cumulants of

Gaussian processes are asymptotically zero. In this chapter, a two-step motion estimation

scheme has been proposed. In the first step, the images are divided in blocks or regions. In

the second one, a cost function estimates the displacement of these blocks or regions. Cost

functions of the displaced frame difference based on second and fourth-order statistics were

examined and compared. For this purpose, analytical expressions were derived from AR

models of the image regions and noise.

The theoretical study showed the following results:

- The second-order statistics function of the DFD is capable of detecting the correct

displacement from an absolute minimum up to certain SNR which varies depending on the

correlation of the noise and signal.

- The kurtosis of the DFD is capable of detecting the correct displacement from an absolute

minimum or maximum, depending on the sign of the kurtosis of the region, for any SNR.

- A new fourth-order function of the DFD was also defined. This cost function is based on an

adaptive scheme for the estimation of fourth-order cumulants and uses previous frames to

estimate motion. It shows a minimum at the correct displacement and a maximum at

displacement zero independently of the sign of the kurlosis. The theoretical study shows that

the shape of the cost function is affected by the noise covariance function. Its influence is

however positive since the shape of the cost function is accentuated and not distorted by the

noise.

Simulations employing moderate size regions and low SNR were given. The following

conclusion can be drawn out:

- The mean of the second-order cost function of the DFD obeyed the theoretical values with

low variance.

- The mean behavior of the kurtosis followed the predicted function, however its variance was

so high that detection of the correct displacement was difficult in most of the cases. This

measure should only be utilized for long data records which imply moderate variance.
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- The modified kurtosis of DFD followed the theoretical results and the correct displacement

could be easily detected in some cases where the two previous measures could not. The

objective to obtain a HOS measure with lower variance estimates than the kurtosis was

satisfied. The main problem of this cost function appeared for negative kurtosis regions when

two consecutive displacements were the same. The behavior in this case was similar to the

normalized kurtosis but could be easily improved by changing a parameter or shifting the

previous update term.

This new-defined cost function shows its usefulness for moderate size regions in a range of

SNR where the second-order cost function is biased and the kurtosis shows a high variance.

For higher SNR it is reasonable to use the variance of the DFD since it is able to obtain the

correct displacement at a lower cost. For very low SNR the variance of the new defined cost

function increases and therefore, as the kurtosis, any improvement is manifested only for

larger regions.

A simplified version when only two frames are available as well as a recursive version were

also given. In particular, the fourth-order based cost function for only two frames was

employed in an application unrelated to image processing that involved time delay estimation.

The results showed an improvement with respect to existing techniques since the new method

was capable of dealing with shorter signals. The recursive estimator behavior was also

illustrated and outperformed the second-order statistics-based approach.

The results of this Chapter suggest that low-variance cost functions based on higher-order

statistics may be defined and can outperform not only the second-order cost function but other

existing HOS-based cost functions.
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CHAPTER 5

CONCLUSIONS

In this thesis new applications of Higher-Order Statistics to two different image processing

fields were developed. The major challenge of the two studied topics was to solve each

particular problem when images had suffered a degradation phenomena of known statistics.

In case this degradation consisted of additive colored Gaussian noise of unknown covariances

and/or linear phase blurring filters some properties of HOS were particularly useful. That is,

in contrast to second-order statistics, higher-order statistics are asymptotically unaffected by

additive Gaussian noise. Another advantage is that phase information is preserved except for a

constant factor. These properties were introduced in the first chapter of the thesis and

exploited in the following chapters for each application.

117



In the first pail of this work, the restoration of degraded images from the HOS of their
projections was investigated.

Using projections of images has many advantages. First of all, the properties of the blurring

function are preserved. Thus, if the 2-D PSF has zero or linear phase FT, its projections also

have zero or linear phase FT. The convolution theorem is also valid for the projections.

Second, the computational load applying HOS-based methods is reduced. Actually, this is the

main motivation to use HOS over the projections.

Different algorithms were derived to reconstruct the 1-D signals from either the phase of the

Fourier Transform or the phase of the Bispectrum. For this purpose, three Corollaries were

established as the theoretical bases of the restoration strategy.

The algorithms were applied to images distorted with deterministic PSF and Gaussian noise

and to simulated and real astronomical images degraded by turbulent atmosphere. The quality

of the reconstructed images was considerably improved with respect to the original pictures.

Some examples were also provided which showed better achievement with respect to other

restoration schemes. The capability of the WS algorithm to reconstruct the projections from its

third-order moments was demonstrated. The results proved to be quite good for moderate

SNR. For low SNR the restoration of the projections was also good, although small errors in

some of the projections are easily propagated to the image.

In the second paït of the thesis the problem of Motion Estimation was examined when image

frames are corrupted by colored Gaussian noise. A two-step motion estimation scheme was

proposed. In the first step, the images are divided in blocks or regions. In the second one, a

cost function estimates the displacement of these blocks or regions. Cost functions of the

DFD based on second and fourth-order statistics for AR models of both the image regions and

the noise were studied. The mean of the second-order cost function of the DFD obeyed the

theoretical values with low variance. The mean behavior of the kurtosis followed the predicted

function, however its variance was so high that detection of the correct displacement was

difficult in most of the cases. These results were compared to a new HOS-based cost

function. The modified kurtosis of DFD followed the theoretical results and the correct

displacement could be easily detected in some cases where the two previous measures could

not. The objective to obtain a HOS measure with lower variance estimates than the kurtosis

was satisfied. The main problem of this cost function appeared for negative kurtosis regions

when two consecutive displacements were the same. The behavior in this case was similar to
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the normalized kurtosis but could be easily improved by changing a parameter or shifting the
previous update term. This new-denned cost function showed the best behavior for moderate

size regions in a range of SNR where the second-order cost functions are biased and the
previously existing kurtosis criterion shows a high variance.

6.1 Topics for Future Research

Signal Processing as well as Image Processing research grows year by year considering

techniques that were traditionally treated with second-order statistics. In most cases this

improvement is well justified, however its practical application in some areas of image

processing is arguable. The amount of data present in a single image is too small to extract

information from higher-order statistics. Therefore, only research work that considers image

series or sequences may really benefit from the properties of HOS. The price such techniques

pay is a very high computational load. This is actually the main drawback of the restoration

scheme we presented in this thesis, even though the restoration was performed over the

projections of the image.

In my opinion, future work on the area of image restoration employing HOS, should be

directed towards the following direction:

- As we have mentioned, small errors in the reconstruction of projections are easily

propagated to the final image. This fact is accentuated when images are affected by low SNR

even though the projections seem to be properly reconstructed. The only way to solve this

problem is to avoid using projections for strongly degraded images. However, the analytical

complexity grows considerably when the Bispectrum of an image (not the projections), which

is a 4-D signal, is estimated. Therefore, future work should be directed towards low cost

procedures to extract the signal information from the Bispectra of images as well as low cost

restoration techniques that could make use of this information.

- A special case in this area is the restoration of astronomical images. Although this was one

of the first applications in this area, many research groups are still currently working in this

field. For example, in last European Signal Processing Conference (EUSIPCO '94) many

works on astronomical images were presented [Negrete, 1994] [Rosille, 1994] . An

interesting perspective was presented in [Negrete, 1994] that consisted on using adaptive

optics techniques preprocessing together with bispectral processing to obtain highly accurate

astronomical objects. This could be one future line of research. In my opinion also, other

methods which are mostly based on the Phase of the Bispectrum should also be investigated.
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On the other hand, in the area of motion estimation, future research in the line of this work

can be extended in many interesting and important directions:

- The employment of parametric motion models together with HOS-based techniques can be

studied. Thus, the strategy consisting in using past frames to obtain low variance estimates

could be better exploited.

- The inclusion of the blurring filter in the degradation scheme could be considered. Recall

from the general framework introduced in chapter 2 that the general equation was simplified

for the case of no blurring. It would be interesting to analyze the behavior of the cost

functions in this situation.

- The model employed in this thesis for the motion estimation problem should be verified with

real sequences. As we have mentioned in Chapter 4, image frames obtained from surveillance

cameras as well medical images may follow such model. The model of other degraded

sequences should also be investigated.

- Finally, another area where HOS-based methods can be applied implies images affected by

speckled noise. It can be easily shown that the use of HOS in this area is well motivated.

HOS-based methods have already been used to restore images degraded by such type of noise

[Wear, 1990]. It would be interesting to study the motion estimation problem for sequences

affected by speckle noise.
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Appendix A

Given a sequence of 5 images, the Bispectrum of AQ(%) is estimated from GQ(C) =

Ng(C) = H0(C) Fefö + Ne(Ç) as the average in (1). NtfC) is the FT of the projection of the

noise that we assume to be zero-mean, EfNg(Ç) J = 0, and symmetrically distributed, that is

E{Nß(Cj) Ngfa) NQ*(%J + ̂ 2)} - 0. Thus, the statistical expectation of the estimation is

{
r>

~ I
S i=l

C

*
E{e * j E{Ndl(Çl)N0l (Ç1+Ç2 )J

(Al)

where the linear phase factor is a consequence of the shift of observation /. Denoting by

S(Çj,Ç2) = E{N0lfa) Nei(Ç2)J, (Al) simplifies to :

(A2)

If TÍ is a random variable uniformly distributed between -T and +T, then Efe } =

Tsinc(TÇ); if it has a triangular distribution then E{e~jTl^ }= 1/4 T2sinc2(TE/2). Thus for

T»

Efe-tät-l1 S~°L( } ~\0 otherwise

Finally we obtain,
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Ba9(Çl,Ç2) otherwise

(A4)

Therefore the Estimation of the Bispectrum is biased near the origin. However the phase is

zero at the origin and thus the estimated phase is unbiased except for a small region around the

origin. So far we have only assumed that the noise is symmetrically distributed. If it is also
white, S(C],%2) - NGn^8(^1+^2)', where N is the length of the of the observations and an^

is the variance of the noise, then it is biased only in the axis £; = 0, £,2 = 0, and £,j+ £?= 0 :

otherwise

(A4)

Furthermore, for zero-mean signals Ag(0) - 0 the estimation is asymptotically unbiased at all

frequency pairs.
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Appendix B

The 2-D Discrete Fourier Transform of an NxN 2-D signal flnj,^), is defined as

A7- / M- 1Y_ _. -ÌW2Ì12
F(wl,w2) = 1 1 f[nl,n2) e e J

nl=0 n2=0

denoting by,

N-l -jwjn]
x(wl,n2) = L f(nJ,ii2) e

n 1=0

then

N-l
F(wl,w2) = Z x(wl,n2) e

n2=0

F(wj,W2) and x(wj,ri2) can be seen as a 1-D Fourier pair with parameter wj. Therefore

Applying Theorem 1 we can obtain x(w],n2) from the phase of F(wj,W2) at anY N-l distinct

M/2 frequencies. Analogously, we can see x(wj,n2) andflnj.n^) as a 1"̂  Fourier pair with

parameter «2, and thus recover f(n 1,112) from the phase ofx(wj,ri2) at any N-l distinct wj

frequencies. Hence, (N-1)(N-1) points of the phase of F(wj,w2) in 0 < wj < n, 0 < w 2 < n

are needed to reconstruct/fw/.^J.

Since wj has been used as a fixed parameter in the first place, the pairs (w¡,W2) are not

arbitrarily taken. Although wj could be placed at any N-l distinct frequencies, they must

remain the same for any w 2- Thus, the grid of frequencies (wj,W2) forms N-l aligned
columns in wj, of N-l points arbitrarily distributed in W2-

Obviously the.same arguments could be reached interchanging w¡ by w 2.
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Appendix C

In this appendix we obtain E{fk
2(m)fk

2(m-D)} , E(fk
3(m)fk(m-D)J and E{fk(m)fk

3(m-D)J,

where Z> = d-dk° . The signal is generated as the output of a first order, zero mean

Autoregresive (AR) process. For the sake of simplicity we derive these moments for 1-D

signals. Thus:

fk(m) = xrfrn) + bmfk(m-l) (C-l)

where xk(m) is a stationary zero-mean input sequence that is independent of past outputs.

The system uses one recent output and the current input to generate the output.

The goal is to derive expressions as a function of the variance, fourth-order moments of the

signal and parameters of the model.

For D=0 the three moments are equivalent to the fourth-order moment of the signal, that is,

mf4= E{fk
4(m)} (C-2)

We also define the variance of the signal and the input sequence as oV2= Effk
2(m)j and

<yJ
2= E{xk

2(m)} respectively. We rewrite <JX
2 in terms of ov2 using C-l, that is,

Effk
2(m)} =E{xk

2(m)}+bm
2E{fk

2(m-l )}

Therefore

(JX
2= af

2 - bm
2 of

2 (C-3)

We derive the kurtosis of the input signal yv, in terms of ÖV2 and m^, thus using C-l,

Effk4(m)J =E(xk4(m)J+bm
4Effk

4(m-l)J + 6 Efxk
2(m)Jbm

2Effk
2(m-l )J

=mx4 +bm
4mf4 + 6 <Jx

2b,,2Of2

- 3 ffx
4=mf4 -bm

4mf4 - 6 bm
2af

2(af
2 - bm

2 af
2) - 3 (af

2 - bm
2 of

2} 2

K = (mf4 - 3 <rf
4) (l-bm

4) (C-4)

Next we evaluate the three moment functions separately. First, recall that the Barlett-

Brillinger-Rosenblatt summation formula, [ Brillinguer, 1967] relates the mth-order
cumulants of {fk

2(m)J with the impulse response of the system

°° in-1
Cmr(ii,i2 ..... im.j) = 7x Z U h(n+ij) (C-5)

'J n=0j=0
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Given (C-l) the impulse response of the system is: h(n) = bm
n for n>0. In the following

derivations we also utilize the equation that relates cumulants with moments in (2.10), that we
repeat here for the discrete signal fk( m ) :

Q,j( ll- 1* i3)=E{fk(m)fk(m+ i1)fk(m+ I2)fk(m+ 13)}

- E{fk(m)fk(m+ i1)JE{fk(m+ I2)fk(>n+ I3)h

- Effk(m)fk(m+ i2)]E/fk(m+ i¡)fk(m+ 13)J-

- E{fk(m)fk(m+ i3)}Effk(m+ i])fk(m+ 12)J. (C-6)

A) E{fk
2(m)fk

2(in-D)j , it this case iy= 0, i2= -D, i3= -D in (C-6), thus we obtain

Eitf(m)tf(m-D)}=C4¿Q,-Dt-D) + Effk
2(m)/E(fk

2(m-D)J+ 2 E 2{fk(m)fk(m-D)}

(C-l)

From C-5 we compute the first temi for negative D:

oo

C4f(0,-D,-D) = Yx4 Z h(n) h(n) h(n-D) h(n-D)
^ n=0

C4>j(0,-D,-D) = (mf4 - 3 O f ) (l-bm) (bm) n (bm) n~
n=0

00

Since £ (bm) 2n(bm)2 <n-D> = (bm)2 (-D> 4 for -D > 0 we obtain :
n=0 (1 '« '

C4JO,-D,-D) = (mf4 - 3 <Jf
4) (bm)2 (-D) (C-8)

Given the impulse response we obtain the last term in (C-7):

OO 00

• E ffk(m)fk(in-D)l = E{ Z h(n) x(m-n) I h(n ') x(m-D-n ')}
n=0 n=Q

oo oo

= Z Z h(n) h(n ') E{x(m-n)x(m-D-n ')}
n=0 n'=0

OO OO

= S Zh(n)h(n-D) ax
2

n=0 n'=0

solving the summation and using (C-3) this equation becomes:

E Ífk(m)fk(m-D)j = (bin)
 (~D) Of2 (C-9)

Finally, using (C-8) and (C-9) in (C-7) we obtain:

Effk2(m)fk
2(m-D)/= mf4 (bm) 2 ('D) + a/- (bm) 2(-D) a/
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where the second term was substituted by the variance of the signal to the square. For -D < 0
the results are the same since E{fk

2(m)fk
2(m+D)} = E{fk

2(m)fk
2(m-D)/, therefore we rewrite

the above equation as :

E{fk
2(m)fk

2(m-D)J= mf4 (bm) 2 IDI + Of4- (bm) 2IDI Of4 (C-10)

B) E{fk(m)fk
3(m-D)} , that is, z;= -D, 12= -D, 13= -D in (C-6), thus we obtain

E{fk(m)fk
3(m-D)}=C4iJ(-D,-D,-D) + 3E {fk(m)fk(m-D))E{fk

2(m-D)} (C-l 1)

Likewise we compute each term, the first one being :

oo

C4A-D,-D,-D) = yx
4 I h(n) h(n-D) h(n-D) h(n-D)

'J n=0

OO

C4J(-D,-D,-D) = (mf4-3 Of4) (l-bm
4) £ (bm) n (bm) 3(n'D)

n=0

°° ISince ^(bm)^(bm)3(n-D) = (bm)3 (-D) ' for -D > 0 we obtain :

' ;n=0

Q/-D,-D,-DJ = (mf4 - 3 Of4) (bm)3 l·I)) (C-12)

The second term was obtained in (C-9), therefore

E {fk(m)fk(ni-D)/Effk
2(m-D)} = (bm)(-D)Of

2 Of2

Finally (C- 11) becomes :

E{fk(m)fk
3(m-D)}=(,nf4 - 3 Of4) (bm)3 ('D) + 3(bm) <-D) Of4 (C-13)

This expression is valid for -D>0 . Let's compute the moment E/fk
3(m)fk(m-D)j for -D>0

and, since E{fk(m)fk
3(m+D)j = E{fk

3(m)fk(m-D)} we will derive (C-l 1) for -D<0.

C) E{fk
3(m)fk(m-D)} , we use ij= 0, 12= 0 , 13= -D in (C-6), thus we obtain

E/fk
3(ni)fk(m-D)/=C4i((0,0,-D) + 3E ffk(m)fk(m-D)JEffk

2(m)J (C-14)

Developing the first temi we get:

oo

C4AO,0,-D) = Yx4 Z h(n) h(n) h(n) h(n-D)
n=0 .

OO

4 - 4 3n (n'D)C4f<0,0,-D) = (nif4 - 3 O f ) (]-bm) (bm) n (bm)
n=0
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00

Since £ (bm) 3n(bm) (n-D) = (bm) <-D) l for-£» 0 we obtain
n=0 "i

C4J(0,0,-D) = (m{4 - 3 (Jf4) (bm) ('D)

Finally (C-14) becomes :

E{fk3(m)fk(m-D)j=(mf4 - 3 a/) (bJ-D) + 3(bm) ('D) O

Effk
3(m)fk(m-D)}= mf4 (bm) ('D}

If we define

and

rf(b,n,D) = (mf4 - 3 Of
4) (bm)3 IDI + 3(bm)IDI af

4

=bm
m mf4

the above definitions yield to :

,D) D>0

It's straightforward to see also that,

,D) D>0
(C-20)
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Appendix D

In this appendix we derive the new cost functions in terms of the signal and the noise

moments. The cost functions prior to normalization are given by:

J42k (à) = E{DFDk
4(d)}- 3 E(DFDk

2(d)}E{DFDk.]
2(d)J (D-l)

where

J43k (d) = E{DFDk
4(d)j- 3 E{DFDk

2(d)JE{DFD0
2(d)} (D-2)

EfDFD0
2(d)} = E([gk(m)-gk(m-d)]J (D-3)

A) We first analyze Jj2k • For this purpose we decompose DFDk (d) in noise and signal

differences. Thus, the first term ofJ42k(d) in (D-l) becomes:

E{DFDk(d)} = E(DSD4(d)} + E{DNDk
4(d)} + 6 E{DNDk

2(d) DSDk(d)}

+4 E{DNDk(d) DSDk
3(d)J + 4 EfDNDk

3(d)DSDk(d)J (D-4)

The last two terms cancel out according to the assumption that the signal is independent from

the noise and both are zero-mean signals. This yields,

E{DFDk
4(d)J = E{DSDk

4(d)} + E{DNDk(d)} + 6 EfDNDk
2(d) DSD2(d)} (D-5)

For the second temi of Jd) we obtain

EfDFDk
2(d)J E{DFDk.!

2(d)} = [E{DSDk
2(d)}+E/DNDk

2(d)]+2E{DNDk(d) DSDk(d)J] •

[E{DSDk.1
2(d)J+E{DNDk.]

2(d)J+2EfDNDk.1(d)DSDk.1(d)}]

=[E{DSDk
2(d)J+E{DNDk

2(d)/] [E{DSDk.i
2(d)}+E{DNDk.i

2(d))] , (D-6)

where the same assumptions were applied. Substituting (D-6) and (D-7) in (D-l),

J42k (d)= EfDSDk
4(d)J + E{DNDk

4(d)J +6E{DSDk
2(d)/E{DNDk

2(d)J

-3E{DSDk.1
2(d)}E{DNDk

2(d)J-3EfDNDk
2(d)JEfDNDk.j

2(d)J. (D-7)

Since we can consider that the noise differences have the same statistics at time k and k-1,
E{DNDf.2(d)/ = E{DNDk_j2(d)}, the terms corresponding to the kurtosis of the noise cancel

out (second and last terms), and the cost function simplifies to:

J42k (d)= E{DSDk
4(d)j +3E{DSDk

2(d)jE{DNDk
2(d)}
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- 3E{DSDk
¿(d))E{DSDk.1

2(d)}-3E{DSDk.1
2(d)}E{DNDk

2(d)} (D-8)

This equation can be rewritten as:

J42k (d)= EfDSDk
4(d)}- 3E{DSDk

2(d)}E{DSDk.1
2(d)/

-3EfDNDk
2(d)J[ E{DSDk.

2(d)}-E{DSDk
2(d)}] (D-9)

Using the expressions that were derived in Chapter 4

E{DNDk
2(d)} =2an

2-2rnl(d)

E{DSDk
2(d)} = 20f2-2rj(d-dk

0)

E{DSDk.!
2(d)} = 2cr/- 2r¿d-dk.f)

E{DSDk
4(d)J=2mß+6E{fk

2(m)f(2(m+dk°-d)J

-4E{fk
3(m)fk(m+dk°-d)} -4E{fk(m)fk

3(m+dk°-d)} (D-10)

we finally obtain:

J42k(d)=2inf4+6E{fk
2(m)fk

2(m+dk°.d)}

-4E{fk
3(m)fk(m+dk

0-d)/-4E{fk(m)fk
3(m+dk

0-d)J

-3(2af
2-2rj(dk

0-d)J Í20f2-2rj(dk.1
0-d)]-3[2an

2-2rn(d)] [2rj(dk.}
0-d)-2rj(dk

0-d)] (D-l 1)

for an uncorrelated signal the above equation becomes:

2nif4 -6<Jf

6vf
2l2an

2-2rn(d)] d=dk°#lk.1
0

*) O

Jf [2an -2rn(d)] d=dk.j *dk

0 d=dk°=dk.1°

-2mf4'6a2+6o2[2on
2-2rn(d)]

(D-12)

which is the result used in that Chapter

B) In second place we analyze J^rfd) as a function of signal and noise moments, using

(D-6) for the fourth-order moment of the DFD/.(d) :

J43k (d)= E{DSDk
4(d)j +E{DNDk

4(d)}+6EfDSDk
2(d)JE/DNDk

2(d)J

-3[E{DSDo2(d)}+E(DNDo2(d)J] [E{DSDk(d)}+E{DNDk(d)}] (D-13)

where

E{DND0
2(d)} =2an-2rn0(d)
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E{DSDo2(d)} = 2af'2rj(d) (D- 14)

Using the above expressions and (D- 10)

J43k(d)=2mf4+6E{fk
2(m)fk

2(m+dk°.d)J

-4E{fk
3(m)fk(m+dk°-d)}-4E{fk(m)fk

3(m+dk°-d)}

-3[2an
2-2rnl(d)J2

+6/2CT/- 2rj(d-dk°) ] [2an
2-2rnl(d) ]

-3/2C7/- 2rj(d) +2an
2-2rnfì(d) ] /2er/- 2rj(d-dk

0) +2an
2-2rnJ(d) ] (D-15)

where we used K(DNDk(d)) = E{DNDk
4(d)}-3(E{DNDk

4(d)})2 = O

for an uncorrelated signal the cost function becomes,

J43k(d) =

2/77/4 +6af-12[an
2-rni(d) ] 2+24af

2[a,1
2-r,1](d) ] -12[af

2+an
2-rn0(d) ] [0f

2+<Jn
2-rnl(d) ]

-12[an
2-rnl(dk°) ] 2-12[af

2- rj(dk°)+an
2-rn0(dk

0) ] [a„2-rnl(d) J d^d

2mf4 +6(Jf4-12[Gn
2-rnl(0) J 2-12[of- rj(-dk

0)][ffn
2-rnl(0) ] d=0*dk°

0 d=dk°=0

(D-16)

which con-esponds to the result used in Chapter 4.
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