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Chapter 1

Monetary Policy and the
Transition to Rational

Expectations

Under the assumption of bounded rationality, economic agents learn from their past
mistaken predictions by combining new and old information to form new beliefs. The
purpose of this chapter is to examine how the policy-maker, by affecting private agents’
learning process, determines the speed at which the economy converges to the rational
expectation equilibrium. I find that by reacting strongly to private agents’ expected
inflation, a central bank increases the speed of convergence.

I assess the relevance of the transition period when looking at a criterion for eval-

uating monetary policy decisions and suggest that a fast convergence is not always
desirable.

1.1 Introduction

In the presence of structural changes, agents in the economy may need time in order to
learn about the new environment: in the early stages of this process, previously held
beliefs could lead to biased predictions. For this reason, there is now a substantial
interest on whether rational expectations can be attained as the outcome of a learning
process. In particular, the recent literature on monetary policy has emphasized that
while rational expectations is an important and useful benchmark, a policy maker
should consider the robustness of any equilibrium reached under a particular monetary
policy to deviations from rational expectations. A common way to carry out this
idea is to employ the techniques of Marcet and Sargent (1989a, 1989b) and Evans
and Honkapohja (2001), assuming that agents in the model form expectations via
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1. Monetary Policy and the Transition to Rational Expectations 2

econometric forecasts. In this environment, Evans and Honkapohja (2003a, 2003b)
and Bullard and Mitra (2002) suggest that economic policies should be designed to
be conducive to long-run convergence of private expectations to rational expectations
(E-Stability)!. Failing to do so, gives rise to an equilibrium which is not robust to small
expectational errors. In accordance with this literature, "good” policies are those that
induce a determinate and learnable rational expectations equilibrium (see Bullard and
Mitra, 2002).

A small but growing body of research is concerned with the properties of the conver-
gence along the learning process?. The works of Giannitsarou (2003), Aoki and Nikolov
(2003) and Orphanides and Williams (2003) analyze, in particular, the transition to
the rational expectations equilibrium in the context of policy decisions, addressing the
question of whether all policies that produce learnability and determinacy are equally
good from a learning perspective.

This chapter takes up this point by adapting theoretical results of Benveniste,
Metivier and Priouret (1990) and Marcet and Sargent (1995). I start by examining
how the policy-maker, by affecting the private agents’ learning process, can influence
the transition to the rational expectations equilibrium (i.e. the speed of learning). I
show that by reacting strongly to expected inflation, a central bank can shorten the
length of the transition and increase the speed of convergence to the rational expec-
tations equilibrium. Next, I focus on the notion of speed of learning to develop the
analysis along three different directions. First, the concept is used to refine further
the set of ”good” policies: grounded on the set of policies that imply determinate and
learnable rational expectations equilibria, I look at speed of learning as a criterion to
characterize its elements. In this sense, I consider as an example, a policy described
in Evans and Honkapohja (2003a), EH policy, and I show that even though this policy
meets all of the objectives listed above (determinacy and learnability) and is optimal
under discretion and rational expectations, it is not suitable from the perspective of
the speed of learning. Second, I show that policies that drive the economy to the
same rational expectations equilibrium may imply very different dynamics along the
transition. I use this result in order to show how a policy maker who wants to reach
in the long run the same rational expectations equilibrium determined as under the
EH policy, can adjust the speed of learning of the private sector. Finally, I conduct
a welfare analysis taking the speed of convergence to the rational expectation equi-
librium into consideration. The interesting result is that a fast learning is not always
desirable. While in the absence of an inflation bias, fast learning always increases

! An earlier paper by Howitt (1992) had already shown that under some interest rate rules the
rational expectation equilibrium is not learnable.

?Papers on this topic include Evans and Honkapohja (1993), Marcet and Sargent (1995), Timmer-
man (1996), Sargent (1999), Marcet and Nicolini (2003).
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the social welfare, in presence of such a bias, the relation between speed of conver-
gence and welfare is not straightforward: if initial expected inflation is higher than the
rational expectations equilibrium, the policy maker can substantially increase social
welfare inducing a fast learning. If, instead, perceived inflation is initially lower, a slow
transition might be preferable, since inflation would remain closer to the first best for
a longer period of time.

The chapter is organized as follows. Section 1.2 presents the monetary policy
problem, describing the learning dynamics under two different policy rules. The sec-
tion ends showing that under the optimal policy described in Evans and Honkapohja
(2003a), the transition to the rational expectations equilibrium is very slow. In section
1.3 I show how policies could be ordered according to their speed of convergence. In
section 1.4 I study policies that allow the central bank to shorten (or extend) the tran-
sition without affecting the long-run equilibrium and in section 1.5 I analyze how these

policies influence social welfare. Section 1.6 includes robustness checks and section 1.7
summarizes and concludes.

1.2 The framework

1.2.1 The baseline model

Much of the recent theoretical analysis on monetary policy has been conducted under
the “New Phillips curve” paradigm reviewed in Clarida, Galf and Gertler (1999) and
Woodford (2003). The baseline framework is a dynamic general equilibrium model
with money and temporary nominal price rigidities. I consider the linearized reduced
form of the economy with competitive monopolistic firms, staggered prices and private

agents that maximize intertemporal utility. From the private agents’ point of view
there is an intertemporal IS curve3

T = Ef w1 — @ (¢ — Efmey1) + g (2.1)
and an aggregate supply (AS) modeled by an expectations-augmented Phillips curve*:

Ty = ozt + fE M, (2.2)

3The IS relationship approximates the Euler equation characterizing optimal aggregate consump-
tion choices and the parameter ¢ can be interpreted as the rate of intertemporal substitution.

“The AS relation approximates aggregate pricing emerging from monopolistically competitive firms’
optimal behaviour in Calvo’s model of staggered prices. Here I'm not considering cost-push shocks.
Introducing cost-push shocks, would not change substantially the results on speed of convergence and

the role of policy decisions along the transition. However, in section 6, the welfare analysis is handled
also in presence of cost-push shocks.
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where x; is the output gap, measured as the log deviation of actual output (y;) from
potential output (z:) (i.e., the level of output that would arise if wages and prices
were perfectly competitive and flexible), m; is actual inflation at time ¢, E{'m; is the
level of inflation expected by private agents for period t + 1, given the information at
time t. Similarly Efz;y; is the level of the output gap that private agents expect for
period t + 1, given the information at time ¢. I write E} to indicate that expectations
need not be rational (E; without * denotes RE); 4; is the short-term nominal interest
rate and is taken to be the instrument for monetary policy; g; is a demand shock,
Gt = pgi—1 + Eg¢ With £g; ~ N (0,02) and iid.

In order to complete the model, it is necessary to specify how the interest rate
is settled and how agents form beliefs. I consider the nominal interest rate as the
policy instrument and model it by means of a reaction function. Thus, a policy
rule is just a functional relationship between a dependent variable (the interest rate)
and some endogenous (expected inflation and output gap) and exogenous (shocks)
variables. I consider three cases. I start with a simple expectations-based policy rule
that helps me to introduce in a very simple and intuitive way the concept of speed of
convergence. Then, I describe the optimal RE policy under discretion derived in Evans
and Honkapohja (2003a)°. Finally, I introduce a set of expectations-based policy rules
and I show how to characterize the elements of this set, using a measure of the speed
of convergence.

Concerning beliefs, I start each analysis by considering the rational expectations
hypothesis in order to focus and discuss subsequently the implications of bounded
rationality.

1.2.2 A simple expectations-based reaction function

Tt has long been recognized that monetary policy needs a forward-looking dimension®.

Let us assume that the central bank, in order to set the current interest rate, uses
simple policy rules that feed back from expected values of future inflation and output

5] leave for future research a general study of the transition along the learning process for monetary
policy problems under commitment.

%In a recent paper that analyzes monetary policy decisions in the US in the last two decades,
A. Greenspan (2004), Chairman of the Board of Governors of the Federal Reserve System, writes
" In recognition of the lag in monetary policy’s impact on economic activity, a preemptive response to
potential for building inflationary pressures was made an important feature of policy. As a consequence,
this approach elevated forecasting to an even more prominent place in policy deliberations”.
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gap’

it =7 + fY:cE:xt+l + 77rE:7rt+l- (2.3)

The class of expectations-based reaction functions that I first consider has v, = %
in order to simplify the interaction between actual and expected variables. Under

(2.3), in fact, the economy evolves according to the following system of equations:

Y; = Q + FE;Yiy1 + Sgu (2.4)

},t=|:7rt:|1
. o

_ | —eer _ | Brap(dl—7) O _| @
Q——[ —wv]’ Fh_[ o (1= 7x) 0}’ y [1l 29)

and neither the IS nor the AS are affected by expectations on output gap®.

Under rational expectations (i.e. Efziy1 = Eixiy1 and Ef iy = Eymeq) it has
been shown that the dynamic system defined by (2.4) has a unique non-explosive
equilibrium (Bullard and Mitra, 2002). In particular, assuming for simplicity that

pg = 0, the equilibrium can be written as a linear function of a constant and the
shock®

where

Tt =07 +ag: and Tt = Qg + gt, (2.6)

while agents’ forecasts are just constant
Et7l't+1 =Qy and EtiL'H_]_ = Q. (27)

Adaptive Learning

Let us assume now that private agents form expectations by learning from past expe-
riences and update their forecasts through recursive least squares estimates!©.

We are firstly interested in studying whether the economy, in this case, might
converge to the determinate equilibrium (2.6).

"One theme in the literature concerning rules of this type is that they tend to induce large regions of
indeterminacy of the rational expectations equilibrium and are therefore undesirable (see for example,
Bernanke and Woodford, 1997 and Bullard and Mitra, 2002). In the next sections I will focus on
policies that, as a basic requirement, imply a determinate REE and I will consider learnability and
speed of learning as additional constraint in this set of policies.

8For a more general class of expectations-based policy rules without restrictions on v,, I refer to
section 3.

%Considering an i.i.d stochastic process instead of an AR(1) does not affect the results on speed
of convergence. However, since the litterature usually consider AR(1) shocks, the welfare analysis in
sections 5 and 6 is obtained assuming a persistent demand shock.

19Gee Marcet and Sargent (1989 a, b) or Evans and Honkapohja (2001) for a detailed analysis of
least squares learning.
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Since, under the simple expectations-based reaction function (2.3), neither the IS
nor the AS relations depend on expected output gap, the system under learning can
be described by focusing directly on beliefs regarding expected inflation!?.

I assume that agents do not know the effective value of @, in equation (2.5), but
estimate it using past information. In this case, private agents’ expected inflation is
given by:

EfTe41 = any, (2.8)

where ar; is a statistic inferred recursively from past data according to

Qrt = Qrt-1+ 1 (7rt—1 - a7r,t—1) . (2‘9)

Forecasts are updated by a term that depends on the last prediction error!?

weighted by the gain sequence, t~1. It is well known that in this case the adap-
tive procedure is the result of a least squares regression of inflation on a constant, and
perceived inflation is just equal to the sample mean of past inflations:

t
At = % ;m_l. (2.10)

An important aspect of least squares learning is that agents’ beliefs may converge
to RE, i.e., the estimated parameters ar ¢ may converge asymptotically to @;. The E-
Stability principle (Evans and Honkapohja, 2001) provides conditions for asymptotic
stability of the REE under least squares learning.

Before analyzing speed of convergence I describe briefly E-stability, since the build-
ing blocks of the two concepts are the same. The stability under learning (E-stability)
of a particular equilibrium is addressed by studying the mapping from the estimated
parameters (i.e., the perceived law of motion, PLM), to the true data generating
process (i.e., the actual law of motion ALM).

When expectations in system (2.4) evolve according to expression (2.8), the infla-
tion’s ALM is

7t =T (art) + age, (2.11)
where
T (an,t) = —apy + [B+ ap (1 — z)] any (212)
is the mapping from PLM to ALM of inflation.

115 the next section I show formally that this does not affect the results.

12This formula implies that private agents do not use today’s inflation to formulate their forecasts.
The assumption is made purely for convenience and it is often made in models of learning as it
simplifies solving the model. The dynamics of the model are unlikely to change.
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As shown in Marcet and Sargent (1999a,b) and Evans and Honkapohja (2001), it
turns out that the dynamic system described by equations (2.9), (2.11) and (2.12) can
be studied in terms of the associated ordinary differential equation (ODE)

d—daf = h(az) =T (ar) — ar, (2.13)
where 7 denotes “notional” or “artificial” time and h({ar) is the asymptotic mean
prediction error (i.e. the mean distance between the ALM and the PLM):

h(az) = tll.rgo T (ars) — an.- (2.14)
The REE is said to be E-stable if it is locally asymptotically stable under equation
(2.14) and under some regularity conditions.

In our example E-stability conditions are readily obtained by computing the deriv-
ative of the ODE with respect to a, and checking wether it is smaller than zero!?

Speed of convergence to the REE

It turns out that policy decisions (i.e., choices concerning +, ) are important not only to
describe asymptotic properties of the equilibrium under learning, but also to determine
the speed at which the distance between PLM and ALM shortens over time.

Figure 1 plots the mapping from PLM to ALM (2.12) and shows how private
agents’ estimates affect actual inflation along the transition to the REE.

Fig 1

Mapping from PLM to ALM

()
A .

13This coincide with checking wether the derivative of the mapping from PLM to ALM is smaller
than 1.
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First of all note that if the slope of the mapping is smaller than 1, the determinate
REE (2.6) is E-stable!*. In other words, if the economy starts from a perceived level
of inflation ar, < @r or ag > Gyr, the mean of the prediction error, E [T (ar ) — ar 4,
decreases over time and asymptotically converges to zero.

Is there any difference between a policy that results in the slope of T(.) equal to
0.01 and one with the slope equal to 0.997 The recent literature on monetary policy
and learning (Evans and Honkapohja 2003a, 2003b, and Bullard and Mitra 2002), by
focusing on asymptotic properties, does not provide an answer to this question. Since
in both cases the REE is determinate and E-stable, both policies are “good”15.

The concept of speed of learning can be used in order to refine the set of ”good”
policies.

In the literature, the problem of the speed of convergence of recursive least square
learning algorithms has been analyzed mainly through numerical procedures and sim-
ulations. The few analytical results on the transition to the rational expectations
equilibrium are obtained by using a theorem of Benveniste, Metiver and Priouret
(1990) that relates the speed of convergence of the learning process to the eigenvalues
of the associated ordinary differential equation (ODE) at the fixed point!6. In the
present case, the ODE to be analyzed is the one described in expression (2.14) and
the associated eigenvalue coincides with the slope of the mapping from PLM to ALM
(2.12).

The following propositions, adapting arguments from Marcet and Sargent (1995),
show that by choosing the -, the policy-maker not only determines the level of infla-
tion in the long run, but also the speed at which the distance between perceived and
actual inflation narrows over time.

Proposition 1 Let us define

ago+,3—1/2}

Sl={7r:'7w> cp

Under the simple expectations-based reaction function (2.8), if v, € Si, then
Vi (art —Tr) SN (O, 062,)

with

2 a’og
“ " T=F—ap =) 219

M For simplicity, let focus only on positive values of the slope. In this case a slope smaller than 1 is
a necessary and sufficient condition for determinacy and E-stability.

13With “good” policy, I refer to the criterion used by Bullard and Mitra (2002) to evaluate policy
rules, based on determinacy and E-stability of the REE.

16See Marcet and Sargent (1995) for an interpretation of the ODE.

g
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Proof. See Appendix A. m

If the conditions of Proposition 1 are satisfied, the estimates ar; converge to the
REE, @, at root-t speed. Root-t is the speed at which, in classical econometrics, the
mean of the distribution of the least square estimates converges to the true value of
the parameters estimated. Note that the formula for the variance of the estimator a,
is modified with respect to the classical case where 02 = azag. Proposition 2 shows

a
that for lower values of 7, convergence is slower.

Proposition 2 Under the simple expectations-based reaction function (2.8), if v, €
S1, then the weaker the response to expected inflation (the smaller v, ), the greater the

asymptqtic variance of the limiting distribution, 2.

Proof. See Appendix B. m

Looking at the formula for the asymptotic variance (2.15) it is easy to understand
the role of policy decisions in determining the speed of convergence to the REE: for a
weaker response to expected inflation, the convergence is slower in the sense that the
asymptotic variance of the limiting distribution is greater.

What happens when the slope of the mapping (2.12) is smaller than 1, but bigger

than 0.5?7 Let us define Sy = {7,, : EL:? < Yr < 5%-12} If v, € Sa, the
estimates ar: converge to the REE @y, but at a speed different from root-t. In this
case, as Marcet and Sargent (1995) suggests, the importance of initial conditions fails
to die out at an exponential rate (as it is needed for root-t convergence) and agents’
beliefs converge to rational expectations at a rate slower than root-t. In particular,
also when 7y, € Ss it is possible to show by means of simulations that as the slope of
the T(.) mapping increases, the speed of convergence decreases®’.
" Figure 2 shows examples for the two cases where Y« € S1 and v, € Sy. Since the
least squares algorithm adjusts each parameter towards the truth when new informa-
tion is received, the new belief ar ;41 will be an average of the previous beliefs ar ;
and the actual value T (ar,t) plus an error. When the reaction of the policy maker to
expected inflation is strong (v, € S1), the derivative of T'(.) is smaller than (or equal
to) 1/2 and T (ar,) is close to Gr; when the reaction is weak (v, € S2), the derivative
of T'(.) is larger than 1/2 and T (ar,:) is close to ar; instead of being close to @y, so
the average can stay far from the REE for a long time.

17See section 4 for simulations that relate speed of convergence and the slope of the T'() mapping.
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Fig. 2

Mapping from PLM to ALM and the speed of convergence

a) Low v, b) High ~y,
T(a,) T(a,)
A A o Ta,)
S 1)
o r~ :i-——_—_—_-
Bl Y > a, Ea > a,

Nb'

% 1(a,,)

It is worth noting that even though the transition is quite different in the two cases
analyzed here, the learning equilibrium could end up converging to the same REE
and, according to policy-maker preferences, the speed of convergence could become a

relevant variable in the policy decision problem.

1.2.3 Optimal monetary policy under discretion

The reason why I started with the simple expectations-based reaction function (2.3)
was that it simplified the analysis of the dynamics under learning. I now consider
the optimal monetary policy problem without commitment (discretionary policies),
where any promises made in the past by the policy-maker do not constrain current
decisions. In deriving the optimal discretionary policy, I follow Evans and Honkapohja
(2003a), assuming that the policy-maker cannot manipulate private agent’s beliefs.
This assumption implies that the optimality conditions derived under learning are
equivalent to the ones obtained under RE.

The policy problem consists in choosing the time path for the instrument ¢; to
engineer a contingent plan for the target variables 7; and (z; — Z) that maximizes the
objective function

(o o]
Maz — Ey Z,BtL (g, xt)

T, Tt
b t=0
where

L (my,xt) = [ﬂf + Az — "55)2]

N =
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subject to the constraints (2.1) and (2.2) and Efm¢41, Ef iy given.

The solution of this problem!8, as derived in Evans and Honkapohja (2003a), yields
to a reaction function that relates the policy instrument i, to the current state of the
economy and private agents’ expectations:

it =7 + Yz E{ Tei1 + VBT + 750 (2.16)

where 7* = —(,\Tiﬁ)—(pii Ve =7 = —;; and v =1+ («\_fgf)—so'

Since interest rate rule (2.16) states that the policy maker should react to expected
inflation and expected output gap, it is sometimes called the optimal ezpectations-
based reaction function (Evans and Honkapohja, 2003a). However, to stress the fact
that this policy is optimal under rational expectations but is not necessarily optimal
under learning, it would be worth to call it the RE-optimal ezpectations-based reaction
function; in order to avoid notational flutter, I call it Evans and Honkapohja policy,
or EH-policy.

Under rational expectations (i.e. Efziy1 = Eixi1 and Efmiyy = Eymiq) the
equilibrium is:

e =Em1 =ay and 1z = Eyxeyq = Gy, (2.17)

Assuming that private agents do not know @, and @, but estimate them recursively,
the expected inflation and output gap evolve as described in section 2.2, while the
mapping from PLM to ALM is now given by

T (art,8z) = (B* + any, @' — (B—T*) o lar:) . (2.18)

where S Aot
* * —
Pt TR’

Again, since the right-hand side of (2.18) does not depend on a, properties of
the equilibrium under learning can be described simply by focusing on the mapping
from perceived inflation to actual inflation.

As the EH-policy results in a unique and E-stable REE, Evans and Honkapohja
(2003a) concludes that the policy derived as the optimal solution of the problem under
discretion and rational expectations is also “good” under learning,.

However, if we simulate the model under the EH-policy, and Clarida, Gall and

Gertler (2000) calibration'?, it turns out that the distance between the actual inflation

131 consider X as an exogenous policy parameter, as is often done in the literature. An alternative
approach is to obtain A as the result of the general equilibrium problem. In this case A would depend
on representative consumer preferences and firms’ price setting rules.

Y9(larida, Gali and Gertler (CGG, 2000) derive from regressions on US data, ¢ = 4, o = 0.075,
B = 0.99; Woodford (W, 1999) finds ¢ = (0.157), a = 0.024, B = 0.99. Both the Clarida, Galf
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and the REE would be significatively different from zero for many periods??.

Fig 3
Deviation of actual inflation from the REE!
(n?F = 2%; initial expected inflation = 2.5%; A = 0.1)

7[‘
2,8 1

2,5 1

S~

2,31

s

1,8 +—r——m—m———————————r—r—1 1
1 8 15 22 29 36 43 50 57 64 71 78

lannualized data

Figure 3 shows the evolution of perceived inflation under learning. Assuming that
the policy-maker follows a flexible inflation targeting policy rule with A = 0.1, the
output gap target?! is T = 0.004 and using CGG calibration, the REE for inflation is
around 0.5 per cent (notice that since inflation here is measured as quarterly changes in
the log of prices, the annualized inflation in the REE is around 2 per cent). I consider
an initial expected inflation 0.5 percentage point higher (in annualized terms) than the
REE. After 20 years (¢ = 80) perceived inflation is still 0.3 percentage points higher
than the REE?2,

Applying a similar argument to that used in Propositions 1 and 2 it is possible
to state the following proposition about the speed of convergence and the role of the
relative weight to output gap, A, in the loss function.

and Gertler (2000) and Woodford (1999) calibrations are for quarterly data. However the first work
uses annualized data for inflation and interest rate, while the second one uses quarterly interst rates
and measures inflation as quarterly changes in the log of prices. I uses Woodford convention and
therefore my CGG calibration divides by 4 the o and multiply by 4 the ¢ reported by CGG (see also
Honkapohja and Mitra, 2004).

2011 general, the weight that is attributed to the initial belief plays an important role. In equation
(2.9), an initial ¢ very small would imply a much higher weight to the present than to the past. In
other words, the bigger the ¢, the higher the weight given to previous belives. In all the simulations,
I give very low initial weight to past data (to = 2).

211 choose this value for the output gap target to match the annualized inflation rate of 2 per cent.

28imilar results obtain under Woodford (2003) calibration.
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Proposition 3 Under the EH policy, the speed of convergence of the learning process
depends negatively on the weight that the policy-maker gives to output gap relative to

inflation. In particular, the greater the weight to output gap, the slower the learning
process.

Proof. See Appendix C. m

Proposition 3, by looking at the slope of the mapping from perceived to actual
inflation, relates the speed of convergence of the learning equilibrium to the importance
of output gap in the objective function.

Fig 4
Slope of the mapping from PLM to ALM

oT(a,)

da,
1,0 1

0,8 1

0,5 1

0,3 1

0,0

0,0 0,1 0,2 0,3 04 0,5

Figure 4 shows how the slope of the mapping from the PLM to ALM of inflation
changes as the relative weight that the policy-maker gives to the output gap increases®.
It is sufficient that the policy maker cares very little about the output gap in order
that the slope of the mapping is already close to 1 (for example when A = 0.1, the
slope is 0.94). In particular, unless A is smaller than 0.006, root-t convergence is never
reached! Notice that also in the case where )\ is obtained as the result of a general

equilibrium problem (Woodford, 2003, suggests in this case a value for A close to 0.05;)
the slope is close to 0.9.

271 use the Clarida, Gali and Gertler calibration for US. Similar results obtain with the Woodford
calibration.
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The fact that the learning speed could be very slow (or very fast) depending on

2

policy decisions®!, suggests that when they consider the monetary policy problem

under learning, policy-makers should take into account the transition to the REE.
E-stability and determinace are not sufficient to characterize policies in a context of
adaptive learning. The FH-policy, which is optimal under rational expectations, may
not be optimal under learning if policy makers take into account the transition.

1.3 Speed of convergence and policy design
Let us consider a third and more generic set of ezpectations-based reaction functions

it =7+ VB Ter1 + VB Tep1 + Vg0t 3.1

and show how to characterize the elements of this set using a measure of the speed of
convergence.

Under a generic ezpectations-based reaction function, the economy evolves accord-
ing to the following expression:

Y; = Q+F x E{Yi41 + S, (3.2)

where

o[z mlm] e

- (1 =7,
oo | Broel-m) all-em) } (3.
12 (1 - '77r) (1 - m:c)
and the REE is of the form
.Yt =Z+Sgt’ (3'5)

If private agents do not know A but estimate it recursively, expected inflation
and output gap evolve in a more complex way then described in section 2. As both
the IS and the AS relations also depend on the expected output gap?®, the learning
process cannot be described only by focusing on beliefs regarding expected inflation
(see Appendix D for a complete description of the learning mechanism in this case).

Expectations are given by:

EfYii1 = Ay, (3.6)

where elements in A; are estimated similarly to (2.9).

24T his result could be applied to the problem of “optimal delegation”, justifing a conservative central
bank when fast convergence is required.

®Under generic ezpectations-based reaction functions (3.1) the elements in the second column of
the F' matrix are not necessarily zero.
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Lemma 4 is a slight generalization of a result obtained in Bullard and Mitra (2002)

and describes the necessary and sufficient conditions under which the REE (3.5) is
E-stable.

Lemma 4 Under a generic expectations-based reaction function (3.1), the necessary

and sufficient condition for a rational expectations equilibrium to be E-stable is
1- 1-8 7
) [ I v £ -
Yx > Mmax [ 5 Yzr 1 ap o ]
Proof. See Appendix D. =

Figure 5 shows, with CGG calibration, all the combinations (+,,~,) under which
the REE is E-stable.

Fig 5
E-stable region under the expectations-based policy rule

-1 0 1 2 3 4 Vx

Figure 5 shows a well known result (see Bullard and Mitra 2002) that under policy
rules like (3.1) the set of policies under which the REE is determinate (the darker
area) is much smaller than the one where REE is E-stable (the lighter area).

Note that, since the EH policy (2.16) is an element of the set of generic expectations-
based policy rules (3.1), points A and B represent the combination 4%, ~% in the two
extreme cases where a policy-maker does not care about the output gap, A = 0 (point
A), and where he gives a relative small weight also to the output gap, A = 0.1 (point B).
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Figure 5 shows that in both cases the REE is determinate and E-Stable?®. However,
for A = 0.1 this is already very close to the bounds of the E-stability region; in this
case, if the policy-maker chooses the EH policy rule, but improperly calibrates the
model it can easily end up outside the E-stable region, enforcing a non-stationary
policy.

Finally, the fact that the origin is not in the stable region is consistent with the
non-convergence result of Evans and Honkapohja (2003a): policies that react only to
shocks, ignoring expectations, are unstable under learning.

1.3.1 The transition to the REE

In the previous sections, policy-makers settled the coefficients of matrix F', by means
of the reaction function. This means that the evolution of estimated coefficients in
private agents’ forecasts (i.e., the speed at which private agents learn) strictly depends
on policy decisions.

Proposition 5 provides conditions for root-t convergence.

Proposition 5 Under ezpectations-based reaction functions (8.1), if

1-28 1-28 . B k] (38)

) - -

200 a ap o

Yr > max [l-i-

then
Vi(4 — A) 3 N(0,0)

where the matriz S} satisfies
I I ' J 2
E(F_I) Q+Q E(F-—-I) +5505=0 (3.9)

Proof. See Appendix E. m

Under the generic expectations-based reaction function (3.1), if the REE is E-stable
but conditions in Proposition 5 are not satisfied, then not all the eigenvalues of the
matrix F' have real part smaller than one half. In this case, as suggested in section 2,
the learning equilibrium converges to the REE at a slower rate than root-t. Figure 6
shows all combinations of 7, and -y, for which there is root-t convergence.

261t is possible, moreover, to show that for any positive and finite value of }, i.e., for all flexible
inflation targeting policies under the EH policy (2.16) the rational expectation equilibrium is E-Stable
(Evans and Honkapohja, 2002).
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Fig 6
Root-t convergence under the expectations-based policy rule

Root-t region
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By comparing Figure 5 and Figure 6, it is clear that the set of combinations (v, ¥, )
resulting in root-t convergence is much smaller than the one under which E-stability
holds. Moreover, the region where both root-t convergence and determinateness hold
is smaller than the one of E-stability and determinateness. As derived in section 2,
point B in Figure 6 shows that when the policy-maker gives weight A = 0.1, in the EH
policy, the economy converges at a speed slower than root-t.

In the previous sections, in order to characterize how policies determine the speed
of converge to REE, I focused only on one policy parameter at a time (v, in section
2.2 and A in section 2.3). Here, on the contrary, since the speed of convergence is
determined by the eigenvalues of F' and this matrix depends on both v, and v, it
is necessary to focus on two policy parameters at a time. For this reason I define
the speed of convergence isoquants that map elements of the set of ezpectations-based
reaction functions into a speed of convergence measure?’.

Definition 6 A speed of convergence isoquant is a curve in R? along which all points

(i.e., combinations (v,,7,) of an expectations-based reaction function (8.1)) result in
the same real part of the largest eigenvalue z) of the matriz F.

2"In the definition I relate speed of convergence to the eigenvalues of the matrix F. In general, as

shown in previous sections, the speed of convergence is related to the eigenvalues of the derivatives of
the mapping from PLM to ALM, T'(A). In this case, the derivative is equal to F.



1. Monetary Policy and the Transition to Rational Expectations 18

For simplicity I restrict the analysis to the set
= {Y Yz : Vx> 0,7, > 0and 0 < 21 < 1}.

The following definition and proposition describe the main properties of the speed
of convergence isoquants:

Definition 7 The speed of convergence, represented by the speed of convergence iso-
quants, is monotonically increasing in the reaction to expected inflation (v, ) if, given
the reaction to the expected output gap (v, ), the real part of the largest eigenvalue z;of
the matriz F is decreasing in v,.

A similar definition for monotonicity with respect to the expected output gap could
be settled.

Proposition 8 The speed of convergence relation, represented by the speed of conver-
gence isoquants and defined over ' is: (i) monotonically increasing in ., (i) not
monotonic with respect to 7y,.

Proof. See Appendix F. m

Proposition 8 states that, for a given reaction to output gap expectations, the
policy-maker, by increasing the reaction to expected inflation increases monotonically
the speed at which private agents learn. On the contrary, for a given reaction to
expected inflation, by increasing the reaction to the expected output gap, private
agents could learn both faster or slower, depending on the value of v,.

Figure 7 shows the speed of convergence isoquants: the lower the isoquant, the
slower the convergence. In fact, the larger the real part of z;, the lower the isoquant
and, from Marcet and Sargent (1995), the larger the real part of 21, the slower the

convergence.



1. Monetary Policy and the Transition to Rational Expectations 19

Fig 7

The speed of learning isoquants

Figure 7 illustrates a practical way of using speed of learning in order to characterize
monetary policies. For example, a combination of v, and 7, just above the isoquant
21 = 1 (point B) determines an E-stable REE, but would imply very slow convergence.
Combinations of v, and <, placed above the isoquant z; = 0.1 imply a very fast
learning process. The combinations of -y,. and v, that stay above the isoquant 2; = 0.5
imply a learning process that converges to the REE at a root-t speed.

Let us now see how to make active use of the speed of convergence in the study of
optimal policies under discretion.

1.4 Discretionary policy and learning

In section 2 we have seen that, in order to identify EH policy (2.16) as the optimal pol-
icy under discretion and learning, the crucial assumption is that “the policy-maker does
not make active use of learning behavior on the part of agents” (Evans and Honkapohja,
2003a). Under rational expectations, the problem of optimal “discretionary policy”
implies, by definition, that policy-makers cannot affect private agents’ expectations.
However, under the hypothesis of bounded rational private agents a rational policy-
maker with full information should take transition into account. In fact, if private

agents’ expectations are the result of estimations that depend on past values of the
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policy instrument, the policy-maker’s decisions will affect future estimates and, con-
sequently, the private agents’ learning process.

Therefore, EH policy (2.16) is not necessarily optimal under learning but could be
defined as asymptotically-optimal. However, if private agents’ PLM is well specified,
not only the EH-policy is asymptotically optimal under discrertion, but we know that
there is a continuum of ezpectations-based policy rules that result in the same REE.

Lemma 9 Under rational expectations, in the set of expectations-based reaction func-
tions (3.1) there are infinitely many elements, i.e. combinations of ¥,Yg,Vr,7, that
result in the optimal REE for {m;,x;} defined in (2.17).

Proof. See Appendix G. m

Since all the policies that in the long run result in the same optimal allocation,
could determine different transitions to the REE, a device for discriminating between
them is required?®. The speed of convergence isoquants derived in the previous section
could be a useful starting point.

Let us consider a set of asymptotically-optimal expectations-based reaction functions
that allow to completely offset demand shocks, as under the EH policy.

Proposition 10 The mazrimum speed of convergence of the learning process that could
be reached under the restricted set of asymptotically-optimal expectations-based reaction
functions,

it =9 + Vo Eeir + Ve Brmer1 + Y0t (4.1)

: % _ 1 o A = _ (+op)(M+a?)-AB 1-8
with7g =75 = 4 ¥ =7 = ~ganpZ ond 1o = ()\-I’(-az)gpcz - Ay,

depends negatively on the weight that the policy-maker gives to output gap relative to

inflation.

Proof. See Appendix H. m

Proposition 10 states that under the set of reaction functions (4.1), the economy
converges asymptotically to the optimal REE under discretion, but for a given A the
policy-maker can bring about a different speed of convergence. Note, instead, that
under EH policy (2.16), each A was associated with a given speed of convergence. In
particular, under asymptotically optimal expectations-based reaction functions (4.1),
the larger the relative weight on output gap, ), the larger will be the real part of the
biggest eigenvalue of the F' matrix and the slower the fastest speed of convergence that
a policy-maker can reach. Figure 8 shows, in the same picture, the speed of learning

28 “There is no single policy rule that is uniquely consistent with the optimal equilibrium. Many rules
may be consistent with the same equilibrium, even though they are not equivalent insofar as they imply
a commitment to different sorts of out-of equilibrium behaviour” (Svensson and Woodford, 1999).
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isoquants and, for given ), combinations of v, and <y, under which the economy will
converge asymptotically to the optimal REE under discretion.

Fig 8
Asymptotically-optimal expectations-based reaction functions
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The line A = 0 shows that if the policy-maker does not care about the output gap,
by imposing 7, = <., he can choose combinations of 7, and -y, that imply a fast
convergence: in the region where the REE is determinate (dark area), the line A =0,
in fact, intersects all the isoquants lower or equal to z; = 0.5. If, instead, the relative
weight to output gap is equal to 0.1, the policy-maker could choose only combinations
of 7, and -y, such that the speed of convergence is slower than root-t: the line A = 0.1
does not intersect any isoquant with z; < 0.5.

Points A and B in Figure 8 also show another important result that will be analyzed
further in the next section: for a given value of A there are infinitely many expectations-
based policies that determine asymptotically the same REE, but induce a faster (or
slower) speed of convergence than the one determined by EH policy (2.16).

1.4.1 The mapping from PLM to ALM

In order to show how the central bank can make active use of private agents’ learning
behavior in the monetary policy problem under discretion, I now consider more in
detail the mapping from perceived to actual variables.
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In section 2.3 I have shown that the analysis of the transition to the REE, under

EH policy stands on the mapping from perceived inflation to actual inflation
T (aw’t) = Q* + F*a—n"t (4.2)

and the necessary and sufficient condition for E-stability reduces to I'* < 1.

To give an example, since I consider A to be an exogenous policy parameter, let
us assume that the policy-maker gives a positive weight A = 0.1 (note that with this
weight the policy-maker cares 10 times more about inflation than about output gap).
In this case the mapping T (ar,) has aslope equal to 0.94 under CGG parametrization.
Figure 9 shows the mapping from PLM to ALM. Even if initial perceived inflation is
not too far from the REE, since the slope of the T(.) mapping is close to 1, the
transition from the learning to the RE equilibrium is very slow.

Fig 9
The mapping from PLM to ALM under the EH policy
(A=0.1)
T
Ezn) ...._. T (a”)
Eﬂ
= »a,
all’,l aﬂ'

1.4.2 Adjusting the learning speed

The question now is whether a policy-maker who wants to reach in the long run
the same REE determined by the EH policy (2.16) can speed up or slow down the
private agents’ learning process. To answer to this question I consider a subset of the
asymptotically optimal policies that allow to offset not only demand shocks, but also

expected output gap movements, as under the EH policy?°.

29 At the beginning of this section I have analyzed a more generic set of asymptotically-optimal
policies (4.1) that allowed to choose among different speeds of convergence. However, under that
policy, the analysis of the learning dynamics involved a mapping from PLM to ALM with both
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Definition 11 The Adjusted Learning Speed-I" (ALS-I") policy rule, is an expectations-
based reaction function

ifLS (1Y) = yALS + LS Bymypn + VAL Eymegr + 7455 g, (43)

. . e*(1-I’ -

with coefficients yALS = —zﬁ_r.;;?;, vals = ;,u’s = -;;, yALS = (1 + %), where
1 < IV <0 is the slope of the new mapping from perceived inflation to actual inflation
obtained under the ALS-I” policy:

T (ant) = —((—ll:—f%@* +Tang. (4.4)

Note that, under least square learhing, the ALS-IV policy leads to a mapping from
PLM to ALM

T’ (a-/r,t,aa:,t) — (u@* + I"a,,, o* (1 - I") _ (ﬂ - I") a7r,t> (45)

1-17) 1-Ta a

that does not depend on the perceived output gap. Therefore, in order to study
convergence to the REE, as under EH-policy, the analysis can focus on the mapping
from perceived to actual inflation.

Figure 10 shows the new mapping T” (a,,;) under the ALS-T" policy.

Fig 10
The mapping from PLM to ALM under the ALS-I policy
(I <I*)
T|
T(an:} (an) P T(a,,)

= —P»q

a a "

perceived inflation and output gap. Here, instead, I consider a policy that allows a choice between

diffent speeds of convergence just by looking at a mapping from perceived to actual inflation, as under
the EH Policy.
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In particular, it can be observed that T” (ar:) has the same fixed point, @y, as
under the EH policy, but the intercept and the slope are different. The policy-maker,
in order to speed up (slow down) the transition to the REE can follow an expectations-
based reaction function that induces a rotation of the mapping from PLM to ALM
around the fixed-point (i.e., the REE), with a slope I lower (higher) than under the
EH policy.

The following proposition formalizes this result.

Proposition 12 Under rational expectations, the ALS-I" policy results in the same
REE for {m,z¢} derived under the EH policy. Under least squares learning, the ALS-
I policy results asymptotically in the same REE for {m,z¢} derived under the EH
policy.

Proof. See Appendix I. m

Taking parameters a, ¢, 8 as given, under the EH policy, the speed of convergence
relies entirely on A: by choosing a A the policy-maker is also choosing the slope of
the T'(.) mapping (in the previous example, with A = 0.1, the slope was equal to 0.
94) and, therefore, he determines the speed of convergence. However, under ALS-T’
policy, the policy-maker could choose separately the relative weight on output gap and
the speed at which agents learn without affecting the REE.

Lemma 13 Under ALS-T" policy (4.3) the speed of convergence does not depend on
the relative weight on output gap.

Proof. See Appendix L. m
Comparing now EH and ALS-T” policies, we have that

Lemma 14 The response of interest rate to a rise in ezpected inflation is higher under
the ALS-T' than under the EH policy if I' < T*, is lower if I > T*.

Proof. See Appendix M. =

The following proposition and its corollary formally compare the transition under
ALS-T” and under the EH policies.

Proposition 15 Assume that private agents form expectations through recursive least
squares learning and that initial perceived inflation is the same under both ALS-T" and
EH policies but different from the REE. Now, if the reaction to expected inflation is
stronger under ALS-T' than under EH policy, i.e. vALS > ~*, then perceived and
actual inflation will be closer to the REE under ALS-IV than under the EH policy,
along the transition. The opposite is true when yALS < 4%,
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Proof. See Appendix N. =

Corollary 16 Consider two ALS policies iALS (T}) and i4LS (T) with 0 < T < T <
1 and arg (1455 (T1)) = axo (¢4L5 (I})) # @r. Along the transition, perceived and
actual inflation will be closer to the REE under ALS-T' (T"}) than under ALS-T' (T'%)
policy.

The intuition is the following: if the policy-maker reacts strongly to a change
in expected inflation, the difference between private agents’ expectations and actual
inflation ‘will be greater and the prediction error will be initially bigger; if private
agents make larger errors they will adapt their estimates faster and both expected
and actual inflation will move closer to the REE. In other words, the stronger the
policy-maker’s response to a change in private agents’ expectations, the faster private
agents learn and the shorter the transition to the REE?0.

The fact that under the ALS policy for every 0 < ¢ < oo the distance from the REE
could be smaller (greater) than under the EH policy brings to the following question:
how long does it take under the two policies to get e-close to the REE, i.e., starting
from the same distance from the REE, |ar o — @r| > €, how many periods are needed
under the two policies in order to get |m — @y| < €?

Assuming that the policy-maker follows a flexible inflation targeting policy rule
with A = 0.1, the output gap target is T = 0.004 and using CGG calibration, figure 11
compares the results of a simulation under the EH policy and under an ALS-I" policy
with I" = 0.5 (i.e., root-t convergence is imposed). Given that the REE for annual
inflation is around 2 per cent, I consider an initial expected annualized inflation 0.5
percentage point higher than the REE.

390rphanides and Williams (2003), independently obtained the result that policies that take account
of private learning should call for aggressive responses to inflation in order to improve performances
in stabilizing fluctuations in the economy. Their analysis is mainly focused on numerical simulations,
while here I use the concept of speed of learning in order to justify analytically the result. In this
sense this paper could be considered a theoretical justification for Orphanides and Williams work.
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Fig 11
Deviation of actual inflation from the REE
(78 = 2%; initial expected inflation = 2.5%; A = 0.1)
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Under the ALS-IV policy, after 1 quarter the initial error is already halved, after
1 year is below 0,2 percentage points and after 5 years the distance from the REE is
smaller than 0,1 percentage point. On the contrary, under EH policy, after 1 quarter
inflation is still 0.5 percentage point higher than the REE and after 20 years is still
0,3 percentage points higher.

Table 2 compares the transition to the REE for different ALS-I" policies.
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Tab 2
Transition under the ALS-I” policy3!
(Quarters needed in order to have (7; — Trpg) smaller than)

0.4 0.3 0.2 0.1
,Y#LS T
36 02 1 1 1 2
29 04 1 1 2 4
26 05 1 1 2 8
23 0.6 1 2 4 22
16 08 2 7 50 > 1000
1.3 09 6 98  >1000 > 1000
121 094 24 > 1000 > 1000 > 1000
1.03 098 | >1000 >1000 > 1000 > 1000

Let us consider, for example, the ALS-I" with yAL5 = 2.6. Given that in equi-
librium inflation is 2 per cent and assuming an initial expected inflation equal to 2.5
percent, inflation can be reduced by more than 0.3 percentage point, in half of the time
needed under the ALS-TV with vALS = 2.3, approximately 1/25 of the time needed
under the ALS-I" with vALS = 1.6 and more than 1/1000 of the time needed under
the EH-policy.

This section looked at the role of policy decisions in determining the speed of
convergence under learning, focusing on the mapping from perceived inflation to actual
inflation. Before asking how the policy-maker can make use of his role to increase

social welfare, the following lemma concerns the behavior of the output gap along the
transition.

Lemma 17 Under EH and ALS policies, when initial perceived inflation is higher
(lower) than the REE, the output gap converges to the REE from below (above).

Proof. See Appendix N. m

Now it is possible to return to the question addressed at the beginning of the
chapter: is the EH policy still optimal under learning? Are policies that speed up the
learning process always better than policies that involve a slow transition to the REE?

3'When X = 0.1, the ALS policy with y42$ = 1.2 coincides with EH-policy.
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1.5 Welfare analysis

In January 1999, with the start of stage 3 of the Economic and Monetary Union,
monetary competencies were transferred from each country of the European Union to
the European Central Bank. Before that date people were accustomed to take into
account the monetary policy of their own country when making economic decisions.
After the start of stage 3, they faced a new policy-maker (and a new monetary pol-
icy) and inflation and output gap equilibria determined under the new policy regime
were, in some cases, different from the ones implied by the previous policies. Let us
consider, for example, countries like Italy or Spain, whose rates of inflation are his-
torically higher than in other member states, and assume that in those two countries
expected inflation at the start of the EMU was higher than the REE determined by
the new monetary regime. Under the assumption that private agents need time to
learn the new equilibrium, it is clear that the dynamics of the learning equilibrium
along the transition to the REE play an important role in the analysis of monetary
policy decisions based on welfare measures. Questions like the ones raised at the end
of the previous section show up spontaneously.

To answer to those questions I consider separately the two cases where initial
expected inflation is higher than the REE and where it is lower. The reason why I
proceed in this way is twofold. First, under adaptive learning, when the policy-maker
chooses the policy, he already knows private agents’ expectations and he could infer
wether the initial bias in agents’ prediction is positive or negative. Second, the welfare
implications differs in the two cases. In the literature it is well known that under the
loss function described in section 2.3 the first best plan would be, for all ¢, to have
inflation and output gap at their target levels, i.e., 7¥Z = 0 and zf'? = Z. As many
works have shown, under no commitment, the first best solution is not feasible if = # 0.
The optimal (time-consistent) policy in this case leads to a REE with inflation higher
than the first best and output gap lower:

Ao
REE _ = FB :
r (A+a2)—)\,3m > w7 for all
A1-8) _
REE _ FB
T = (/\+a2)—)\ﬁx<xt for all ¢

Under learning, however, inflation and output gap could remain far from the REE
for a long time. Therefore, if initial perceived inflation is higher than the REE, as
in previous section, actual inflation will be higher and output gap lower than the
REE along the transition. In this case, a policy-maker who bases decisions on the
loss function described in section 2.3 would prefer policies that make inflation fall
and output gap rise quickly to the REE. On the contrary, if initial perceived inflation
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is lower than the REE, the policy-maker would prefer policies that make inflation
climbing and output gap landing slowly to the REE. Since EH policy is not taking
into account the transition, I claim that there are ALS-I" policies that will make our
economy better off.

In order to verify this claim, let us start by assuming that the EH policy (which
is optimal under RE) is also optimal when private agents form expectations through
adaptive learning. The aim is to compute the welfare cost of alternative monetary
policies, i.e., ALS-T", that asymptotically result in the same REE as the EH policy,
but along the transition result in different learning equilibria.

The social loss associated with EH policy is defined as:

(o]

L§T =By Y AL (m: (iPH) 2, (i¥7)),
: t=0
where L (m; (¢85 , z; (iEH )) is the period ¢ loss function defined above and 7 (iFH ),z (iBH)
denote the contingent plans for inflation and output gap under EH policy. Similarly,
the social loss associated with ALS-I" policies is defined as

L1 (I = Bo 3L (me (1455 (T)) e (1425 (1))
=0
I measure the welfare cost (or gain) of adopting policy ALS-I' instead of the

reference EH policy as the percentage increase (decrease) in the social loss of moving
from EH to ALS-I"policy:

LALS V) — [EH
w(LOALS(r'))=< 0 (LOE)H g >*100.

Note that for values of w (L§LS (I')) < O there is a welfare gain in adopting ALS-T
policy instead of EH, while for w (L4L5 (I')) > 0, there is a welfare loss.

I run simulations® for 10000 periods, assuming that the policy-maker follows a
flexible inflation targeting policy rule with X = 0.1, the output gap target is T = 0.004
and using CGG calibration. The annualized inflation in the REE is around 2 per cent
and the initial expected inflation is 0.5 percentage point higher (in annualized terms)
than the REE. I compute social losses under the EH and ALS-I" policies for different
values of yALS (i.e., different I”).

Figure 12 shows that ALS-I" policies with IV < I'*, by inducing a fast convergence,
reduce the social loss up to 25 per cent relative to EH policy. Policies with IV > I'™,
on the contrary, increase the social loss by up to 10 per cent. In particular, a central

%In the following simulations I consider as AR(1) stochastic process for the demand shock, with
p, =0.95 and £g¢ ~ N (0, 0.005)
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bank that follows an ALS-I” policy with yALS = 2.6 can, by increasing the speed of
convergence to root-¢, lower the value of the loss function by 20 per cent relative to
the EH policy.

Fig 12
Percentage loss in total welfare (mp > 7fF)
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In order to analyze how the percentage increase (decrease) in the social loss evolves
along the transition, simulations are also run for T' < 10000 periods. Table 3 shows
the results, pointing out that most of the gain from using an ALS-I" policy with fast
transition is concentrated in the first 40 quarters.

Tab 3
Percentage loss in total welfare after Tquarters (mg > w'tF)
YALS TV | T=10 T=20 T=40 T=100 T=10000
40 02| -11 -18 -22 245 255

33 04 -10 -16 -19 -225 235

26 05| -9 -14 -17 -21 —-22
23 06| -8 -—-12 -15 -18 —19.5
13 09]-1,5 -2 -3 -3,5 —4
1.03 0.98 3 4 ) 6 7

Figure 13 and Table 4 show that under the assumption of an initial expected
inflation 0.5 percentage point lower than the REE, by inducing a slower convergence,
the policy-maker could reduce the welfare loss.
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Fig 13
Percentage loss in total welfare (my < 77F)
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A central bank that follows an ALS-I policy with yALS = 1.03 can, by increasing
the slope of the mapping from perceived inflation to actual inflation to IV = 0.98, slow
down the transition and lower the value of the loss function by approximately 10 per
cent relative to the EH policy. On the contrary, a policy-maker who speeds up the
transition to root-t convergence, following an ALS-I" policy with yALS = 2.6, would
increase the value of the loss function by approximately 40 per cent relative to the EH
policy! Again, Table 4 shows that most of the loss from using an ALS-T" policy with
fast transition is concentrated in the first 20 quarters, while advantages from inducing
a slower convergence are distributed along the transition.

Tab 4
Percentage loss in total welfare after T quarters (mg < 77F)

YALS  TY | T=10 T=20 T=40 T=100 T=10000
40 02| 56 53 51 49 48
33 04| 43 43 44 44 43
26 05| 36 38 39 40 40
23 06| 28 30 33 35 36
13 09| 3 4 5 5,5 6
103 098| -3 -5 -6 -8 -9

Before concluding I wish to emphasize some aspects concerning the robustness of
welfare results.
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1.6 Robustness

In the previous section I studied the speed of convergence and welfare by running
simulations with A = 0.1 and T = 0.004. Changing these parameters would not change
the finding that EH policy is not optimal under learning when the central bank makes
active use of learning and that, when initial perceived inflation is higher than the REE,
the central bank could increase welfare by inducing a faster transition. However, in
the extreme case where T = 0, if initial expected inflation is 0.5 percentage point
lower (in annualized terms) than the REE, the finding that a slower convergence to
the REE increases welfare does not hold anymore. In fact, when Z = 0, in our model,
the optimal policy under discretion results in a REE with inflation and output gap
equal to the first best, and a faster transition will always be better (table 5).

Tab 5
Percentage loss in total welfare, when 7 =0
(w (L§ES (1)) ; T = 10000)

yALS T | me>aRE mp< wRE
4.0 0.2 —57 —57
3.3 0.4 —59 —59
2.6 0.5 —58 —58
2.3 0.6 —56 —56
1.3 0.9 -20 —20
1.03 0.98 69 69

Table 6 shows what happens if we change the weight that the policy-maker gives
to output gap relative to inflation. In the table are reported the results of a simulation
with Z = 0.004 and A = 0.05 (i.e. the value obtained as the result of a general
equilibrium problem in Woodford, 2003). In this case, the effects on welfare are only
slightly different from the ones obtained in the previous section.

Tab 6
Percentage loss in total welfare, when A = 0.05
(w (LTS (1)) ; = 0.004, T = 10000)

YALS T | o> aRE  my < oRE
4.0 0.2 =21 34.5
3.3 0.4 -19 31
2.6 0.5 —18 28
2.3 0.6 —15 24
1.3 0.9 1 -1
1.03 098 14 -15.5
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1.6.1 Initial Expected Inflation Symmetrically Distributed around
the REE

Under the assumption that initial expected inflation is random and distributed sym-
metrically3® around the REE figure 14 shows that if the policy maker does not take
into account the initial bias in agents’ prediction, ALS-I" policies that induce a slower

convergence than under EH policy would be slightly preferable than policies that de-
termine a fast convergence.

. Fig 14
Percentage loss in total welfare
(mo symmetrically distributed around w®)
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1.6.2 An Economy with Cost-push Shocks

The new-Keynesian model analyzed in this chapter is derived assuming that only
one shock affects the economy. Under this assumption the policy-maker neutralizes
real effects of the shock whether it follows the EH policy or an ALS-IY policy, i.e.,
Vg = gu‘s = %. However, when an additional shock hits the economy (for example,
a “cost-push shock”, u;) the policy-maker cannot, in general, neutralize both shocks
at the same time. In this case, since the two policies along the transition to the REE
would react differently to u;, welfare analysis could be affected. Simulations show that

the introduction of a cost-push shock affects the results only in the amount of the
welfare gain (or loss). '

%3Here I assume an uniform distribution between —0.5 and +0.5 percentage point around the REE.
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Tab 7
Percentage loss in total welfare with cost-push shocks
(w (L§E5 (1)) ; T = 10000)

yALS TV | g >aRE  mp < P
4.0 0.2 —23 36
3.3 04 —22 32
2.6 0.5 —20 29
2.3 0.6 -19 26
1.3 0.9 —4 44
1.03  0.98 8.3 -8.1

Table 7 shows that adding an AR(1) shock u; in the aggregate supply equation®!,
when initial private agents’ perceived inflation is 0.5 percentage point higher (in an-
nualized terms) than the REE, a central bank that follows an ALS-T” policy with
vALS = 2.6 can lower the value of the loss function by approximately 20 per cent
relative to the EH policy (22 per cent without cost-push shocks); when initial private
agents’ perceived inflation is 0.5 percentage point lower than the REE, an ALS-T'
policy with yA%S = 1.01 can lower the value of the loss function by approximately 8
per cent (10 per cent without cost-push shocks).

The results obtained in this section show that optimal policies derived under RE
are not optimal under learning. Using results for the speed of convergence could help to
increase social welfare by taking into account the transition from learning equilibrium
to the REE. Solving for the true optimal policy under discretion and learning would
involve taking into account that the policy-maker could make active use of private
agents’ learning behavior. However, since the optimal monetary policy has to be
derived by substituting the private agents’ PLM into the objective function, it would
be time-dependent. Further analysis in this direction is required and will be left for
future research.

1.7 Conclusions

In this chapter of the thesis I have shown that considering learning in a model of
monetary policy design is particularly important in order to describe not only the
asymptotic properties of rational expectations equilibrium to which the economy could

3] assume A = 0.1, T = 0.004, u; = p,ts—1 + €u,t With p, = 0.35 and €4,: ~ N (0,0.005)
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converge, but even to describe the dynamics that characterize the transition to this
equilibrium.

The central message is that policy-makers should not only look at monetary poli-
cies that determine a stable equilibrium under learning, but also take into account
how policy decisions affect the speed at which learning converges to rational expec-
tations. In particular, under certain policies, the REE is E-stable, but the period
needed to converge to this equilibrium could be incredibly long. Reacting strongly to
expected inflation, a central bank would shorten the transition and increase the speed
of convergence from the learning equilibrium to the REE.

A policy-maker who considers his role in determining the dynamics of the private
agents’ learning process could choose a policy rule that induces agents to learn at a
given speed, affecting the welfare of society. In particular, if the policy-maker knows
that after a regime change private agents’ perceived inflation would be higher than
the REE, by choosing a policy that reacts strongly to expected inflation he would
determine a fast convergence and could increase social welfare. If, instead, perceived
inflation is initially lower than the REE, a slow transition is preferred when the output
gap target is greater than zero.

1.8 Appendix: Proofs of Propositions and Lemmas

A. PrROOF OF PROPOSITION 1

Given the recursive stochastic algorithm

@nt = arg-1 +1 7 (—apy + [B+ ap (1 — v,)] ar -1 + agt1 — Grj-1)
let
h(ax) = [~apy +[B+ ap (1 = ¥x)] ax — aa]
and let a, be such that h(ar) = 0. By the theorem of Benveniste et. al.(Theorem 3,
page 110), if the derivative of h(a) is smaller than —1/2, then
V2 (ars — @) > N (0,02)

where 02 satisfies

[ @x)] 02+ E [~apy + [B+ p (1 = 7,)] @r — r + agi]* = 0

Note that the derivative of E [—apy + [+ ap (1 — ;)] ar — ax] being smaller

than —1/2 coincides with [8+ ap (1 — 7, )] being smaller than 1/2, i.e., 7, being

1/2~8
larger than 1 — —%‘p—
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B. PROOF OF PROPOSITION 2

The formula for the asymptotic variance of the limiting distribution is

2

o2 = a o2
* [1-B-ap(l-7.)]
and the derivative,
da2 ayp

= — a?0? <0
M [1-B—apl -7 ¢

C. PROOF OF PROPOSITION 3

The argument is similar to the one used in the proof of Propositions 1 and 2.

In order to have root-t convergence,

ol

)‘<2,B—1

2 . .
For values of A > 55— there is no root-t convergence and convergence will be slower.
28-1 g

D. ProOF OF LEMMA 4

In the context of the present model, expected inflation and output gap are

a
EiYiy1 = ( ™t ) = A

Azt

where ar; and az; are estimated recursively
_ -1
Qrt = Qrp-1 +t7 (-1 — Art—1)

-1
Gzt =agg-1+17 (Tim1 — Az t—1)

The ALM of inflation and output gap is

[7& ] =Q+FA

Tt

Thus the mapping from PLM to ALM takes the form

Consider the stability under learning (E-stability) of the rational expectation so-
lution A as the situation where the estimated parameters A; converge to A over time.
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From Evans and Honkapohja (2001), the E-stability is determined by the following
differential equation

d
- (A)=T(4) -4
For this framework E-stability conditions are readily obtained by computing the deriva-
tive of T' (A’) — A’ and imposing that the determinant of the matrix with the derivatives
of the previous differential equation with respect to A is greater than zero and the trace
of the matrix with the derivative is greater than zero. In particular, the eigenvalues of

F, 21 and z2, must have real parts less than one (let us define the biggest eigenvalue
of the F''matrix as z;).

Then, let us distinguish between the two cases:

1. The “real” case.

In this case two conditions must be satisfied in order to have convergence to the
REE:

(a) For reality
(0 (1= 72) + B+ (1 — 7)) =48 (1 — 7)) > O

(b) implies
1-p
Vo >1-— g—a_)'Yz
Since by hypothesis z; > 29, if z; < 1 then also 29 < 1.

2. The “complex” case.

In this case two conditions must be satisfied in order to have convergence to the
REE:

(a) For the solution to be imaginary,

(ap (L= 1) + B+ (1 - p7,)" —48(1 — p1,) <0

(b) fReal part of 2 <—1| implies

(e (1 =7,) + 8+ (1 —07,) <1
2

That is

ap [0 4

Since by hypothesis z; > 29, if 2; < 1 then also z3 < 1.
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From case 1 and case 2, we obtain the necessary and sufficient condition for E-
stability,

1-p 1-8 17
7,r>maX[1—T%,1— o —;f—]

E. PrRooFr OF PROPOSITION 5

Consider again the mapping from PLM to ACL under the least square learning
hypothesis:
| T (4) = Q+FA,
From Marcet and Sargent (1992) it follows that in order to have root-t convergence
the eigenvalues of F' must have the real part smaller than %
Then, let us distinguish between the two cases:

1. The “real” case.
In this case two conditions must be satisfied in order to have convergence to the
REE:
(a) For reality

(ap (L =) + B+ (1= 1)) —4B(1 —p7,) >0

(b) implies

1-268 1-28

1
T > 1t 20up a

x

Note that if z;is smaller than % then even 2z, is smaller than %

2. The “complex” case.

In this case two conditions to be satisfied in order to have root-t convergence:

(a) For the solution to be imaginary,

(o (L= 1) + B+ (1= 07,)* —4B(1 — ;) <0

(b) |Real part of z; < 1 |implies

(ep(Q-7) +B+ (A —97s)) 1
2 2
That is 3
‘ B _ D=
71r>1+a(p o

Note that if z;is smaller than % then even 2z, is smaller than %
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From case 1 and case 2, we obtain the necessary and sufficient condition for root-t
convergence,

1-2 1-2
ﬂ_ 18’71;71'*‘”“@_—:7_:”'
2ap o ap «

'y,,>ma.x[1+

F. PROOF OF PROPOSITION 8

Consider the set I' = {7,,7, : 7x > 0,7, > 0and 0 < 2, < 1}.
Monotonically increasing with respect to 7,: for every b = (7},75) € T and

w = (v2,7}) € T, with 72 > 7}, w implies a value for the real part of 2; smaller or
equal to the one with h.

Proof. z; is the biggest eigenvalue of F':

(O:(p (1 - 71r) +ﬁ+ (1 "SD’Y:B)) +
2

(oo (= 72)+ B+ (1~ 97,))* —46(1 — p7.)
N 2

Consider a b = (7yz,7s) € I such that z; = 2] is real. In this case

21

(ago(l—'%r)+ﬁ+(1_(p'7:c))2_4ﬂ(1_(p7x) >0

For every € > 0 there is a w = (72,42) = (vL +¢,7%) € T with 72 > 77.
For the combination (v,,7,) = w, the biggest eigenvalue of F’, 22 is equal to
2 _ (0(1=(x+e)+8+(1-v (1))
z; = 5 +
+\/(a<p (L= (1k +€) + B+ (1 - (b)) — 46 (1)
2

There could be two cases:

1. w is such that 2? is real. In this case

2
(p(l= (1 +e))+B+(1-p1)) —4Br: >0
Now, it is obvious that 2{ — z] < 0 and monotonicity with respect to 7, is
satisfied.
2. w is such that 22 is complex. In this case 2z} should be compared with the real
part of 22

Since

(ep(1-(ra+e)) +8+1-¢n)) (wl-r)+B+0-¢w) |,
) 2

monotonicity with respect to -, is satisfied.
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Consider an h = ('y,lr,fy},) such that 2} is complex. In this case only the real part
of z} is of interest.
1
Take a w = (71 +¢,7L), in this case |lw — k|| = [(')/,1T +e— 7,1,)2] * = ¢. In the
point (7,,7;) = w, the biggest eigenvalue of F, z? is equal to

2 _ (ap(l=(m+e)) +0+(1-vn))
Zl = 2
V(ap(1— (1 +6) +B+ (1 —o1l))? — 4673
+ 2

Note ﬁow, that if 2} is complex, z? cannot be real: if z} is complex 46y >
2
(o (L—77) +B+ (1 —en))"
Now, since

(a0 (L=12) + B+ (1=9m))" > (a9 (1 = (m+€) + 6+ (L= o))’

then 4871 > (ap (1 — (1L +¢)) +B+ (1 - m}c))z , i.e., 22 is complex. In this case
it is obvious that monotonicity with respect to 7, is satisfied. =

No Monotonicity with respect to v,: Consider an h = ('y,l,,fyi) € I'" and a
w = (7;,73) = (’)',1,,’7_,}c + E) € T such that 2} and zf are complex. In this case it is
easy to see (using a similar argument to the previous proof) that z} < 22; take now

h=(vt7:) €T and a w = (7},72) = (v1,71 +¢€) € T such that 2{ and 27 are real
and it is easy to see that 2? < z{.

G. PrOOF OF LEMMA 9

Substituting the value of the conditional expectations into (2.21), the optimal
policy rule could be written as:

i =R+ ')’;Z!]t

R _ Aa 5
T T DT -8
1
R
Tg = '(;

This expression says that the policy-maker should offset demand shocks (g;) by
adjusting the nominal interest rate in order to neutralize any shock to the IS curve.
Since this optimal policy rule involves only the fundamentals of the economy (demand
and supply shocks), it could be defined as the optimal fundamentals-based reaction
function under rational expectations (Evans and Honkapohja (2003a))%.

% Many autors (see for example Woodford (1999)) have shown that this interest rate rule leads to
indeterminacy, i.e., a multiplicity of rational expectations equilibria.
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Now, consider a generic ezpectations-based policy rule of the form:

it =¥ + Yo Et®er1 + Yo EeTign + Y40t

Assuming rational expectations, expected values could be substituted in the pre-
vious expression to obtain the following policy rule:

it = (7 + Y20z + Yur) + Vg9

By comparing this equation with the optimal fundamentals-based policy rule, a
system of two equations on four unknowns (7,¥;,¥x,,) i obtained:

YR = (Y +728s + Vr0r)

TR = g,

Obviously, this system has multiple solutions.

H. PROOF OF PROPOSITION 10

By considering the values of the coefficients of the reaction function ~j, +* A
and the rational expectations values a., a, as given, the combinations of v, and 7,

are obtained imposing asymptotically the same equilibrium derived under the optimal
expectations-based reaction function (2.21):

A+ (1+ap)—28 (1-5)
a(A+a2)p a =

Vo =

Consider the isoquants of Figure 8:
—1- (-2)(B—=) + (8 —2)

Y o e = for v, <7,
,B+1—'221 1 —~
’71r=1+———ago = for v, 27,
with a kink on )
2
~ -2 +8 . (B—2)
(“ o8 " %

Restricting the analysis to the set I'g = {v,,7;: 0 < 21 < 3,7 > 0,7, > 0}, now
the maximum speed of convergence problem defined for 0 < z; < 8

711113 Z (Yr>Vz)

ot _ () (l+ap) -2 (1-5)
T = a(A+a?)e a F
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has a solution (use proposition 3.D.1 in Mas-Colell et al., 1995), and there is also
an indirect speed of convergence function v () that is strictly decreasing on A (use
proposition 3.D.3 in Mas-Colell et al., 1995). The maximum speed of convergence that
could be induced by a combination (vy,,7,) for a given A will always coincide with the
kink. Note that

v ——2z1
2L =—=<0
0z1  ¢p
aA7r _ =2 (:B — .2'1)
T = owB <0 for z<p

Now, since the higher the level curve, the faster the convergence, it must be shown
that as A increases, the line

(At (Q+ap) =23 (1-P)
Te = a(A+a?)p TTa -

moves downward and the fastest speed of convergence that is feasible is lower, or in

other words the smallest z; that can be reached is larger.

I. PROOF OF PROPOSITION 12

Under the EH policy, the economy evolves according to the following dynamic
e _ o* + Ir* 0 Et'll' t+1
Tt % ——LB—;P—I 0 Etxt—f-l
Under the ALS-I" policy, the economy evolves according to the following dynamic
-1’
I-Ta —S‘a_l 0 Bzt
The REE under both policies is

__ _&(1-p)
T B A s P

system:

system:

-1)
$*(1-I")

o) [8

Tt

and under learning, when both I and I'* are smaller than one the REE is E-stable.

L. PROOF OF LEMMA 13
Since under ALS-IV policy,
I'= (1-7#5) ap + B,

given the parameters o, ¢, 8, each value of the policy reaction parameter 2L has a
corresponding slope of the T'(.) mapping, I, independently from A.
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M. PROOF OF LEMMA 14

If
1> >T1
then BT 5T
= (1 E57) > (4 557) -
Similarly if
: 1>0>1*

N. PROOF OF PROPOSITION 15

Define ay ¢ (iALS (r )) and ar ¢ (iEH ) the perceived inflation under ALS-I" and EH
policies, ¢ (¢4L5 (I')) and ¢ (i) actual inflation under ALS-T" and EH policies.
Assume that the economy starts from a point where the learning equilibrium and the
REE do not coincide,

a1r,0 (ZALS (F,)) — a7|',0 (ZEH) # Eﬂ'
I have to show that if YALS > %, then for every 0 <t < 0o
|as (45 (1)) = @n| < |an; (i) =]
and
[me (455 (1)) — @ < |ms (iPH) — ]
while, if yALS < 4%, then for every 0 <t < oo
|ans (455 (') = @x| > |ans (%) ]
and
[me (455 (1) = @a| > |me (5F) ]

I will prove the proposition for yALS > 4*. A similar procedure could be used for
oS <.
Let yALS > 4%, then
I <T*

Now, for t = 0, since

(o) 7 (o)

then
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[mo (455 (1)) = @a| < |0 (°) — |

For t = 1, since

ar,1 ('I,EH) —Qr =Tg (’iEH) —Qar
art (iALS (F')) — 8 =70 (iALS (I-\I)) —ar
then
|ame (425 (")) = | < |an1 (EH) — x|

Moreover, since

EH o
T (Z ) —dy=0*? <a7r,o - m)

T (iALS (I-\I)) _a—w — Fl2 (aﬂ‘,o _ (T%)

and since I"™*2 > I'”2, then
|y (455 (T)) — 8| < |m1 (5F) — |

Similarly for ¢ > 1.

N. ProoF oF LEMMA 17
Given that

_2(1-5
@t = 1-T"a

it must be shown that if ax,o (i4L° (I')) = aro (i¥#) > Gy, then for every 0 <t < oo,
- (iALS (I")) - (,LEH) < oREE
and for all 0 < t/,¢ < oo, with ¢ > ¢
21 (455 (IY)) < 2 (455 (1)) < 275 and 2, (iPF) < 2y (iPH) < 2REE
If a0 (iA55 (I")) = anp (i) < @y, then for every 0 < t < oo,
xt (,L-ALS (1-\1)) T (ZEH) > oREE
and for all 0 < t/,t < 00, with ¢/ > ¢

T (iALS () > zv (iALS ™) > z*EE gnd =z, (iEH ) >z (iEH ) > ZREE
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45

22 (iFH) = %t _s —a ) a;/r,t (i7H)
_o@a-1) _ (B-I)

z¢ (455 (P,)) T -TYa Py

Qs (iALS (I‘/))

Let aro <@. Since
! * __
C-p -0,

04 o

e R

and

o (05 1) - 205 = L= (%)

then zo (i¥H) , 2o (¢4L5 (I)) < 0.
For t =1, we have

) . ™ — @*
2y (iH) — gREE T ( - B) (amo - I‘*))

o2 (445 (0) = T (an0 - 7y )

and again it is obvious that z; (i¥¥) ,z; (i4L5 (I')) < 0 and

T (z'ALS () > = (iALS (r’ )) and (iEH ) > o (iEH )

similarly for t=2,3,... and for the case arp (i4L° (I)) = arp (¥H7) > @y.






Chapter 2

Quantitative Implication of
Limited Commitment and

Temporary Exclusion

A burgeoning literature studies models of risk-sharing where the planner is able to
enforce contracts under the threat of permanent exclusion. Permanent exclusion has
been often criticized for not being a credible threat. We study the problem when
exclusion can only be enforced temporarily. We show how to adapt recursive methods
to compute the optimal allocation and compare it with the one enforceable under the
threat of permanent exclusion. We study when the exclusion period is large enough and

we use this to comment on various issues of risk default and international borrowing
and lending!.

2.1 Introduction

The literature on risk-sharing has provided a framework to think about the role of
assets in diversifying risks. The effects on asset prices, consumption and investment,
both within a country and across countries, have been thoroughly studied under com-
plete markets. In this case, with full information, the optimal consumption allocation
depends on the current value of the aggregate state only; this outcome reflects the
opportunities to insure risks that markets provide.

One stylized fact on consumption data, however, is that, conditional on per capita
consumption, individual consumption is positively correlated with current and lagged
individual income. One way to model this phenomena is to assume that financial

!This chapter is part of a project on which I’'m working with Albert Marcet.
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markets are incomplete, so that agents cannot eliminate all idiosyncratic risk. The
drawback of this approach is that the results it implies depend on the arbitrary set
of securities that are made available to agents. A recent strand of literature considers
risk-sharing agreements under limited participation, introducing an element of default
in the equilibrium. The main assumption is that agents are able to default on the risk-
sharing agreement if they find a better outside alternative. An enforceable contract
should deliver at all times at least the same utility of the outside option. Several studies
assume that the outside option is defined by some autarkic solution; references include,
among others, Kehoe and Levine (1993), Kocherlakota (1996), Marcet and Marimon
(1998), Alvarez and Jermann (2000, 2001) and Kehoe and Perri (2002). All these
works consider permanent exclusion as the harshest punishment for default and they
study optimal contracts under the constraint that agents will never be worse off with
respect to permanent autarky. The introduction of these constraints provides agents
with incentive to commit to their agreements at the cost of reducing risk sharing.

Kehoe and Levine (1993) and Kocherlakota (1996) study efficient allocations in
economies where participation constraints ensure that agents would at no time be bet-
ter off by reverting permanently to autarchy. Alvarez and Jermann (2000) show that
by modelling participation constraints as portfolio constraints, the efficient allocations
can be decentralized as a competitive equilibrium with solvency constraints. Kehoe
and Perri (2002) go a step further by assuming that the constraints that private agents
face are explicitly chosen as part of the equilibrium.

The common factor of all these works is that the optimal solution is enforced by
the threat to leave the defaulting agent in autarky forever. In most real life situations
this is hardly a credible threat. In most situations where default may take place,
agents would have an incentive to renegotiate after having been in autarky, because
this punishment eliminates all future mutual gains from intertemporal exchange. In
general if a relationship is broken (be it a credit contract, a commercial relationship, a
political alliance, an employment agreement or, of course, a sentimental relationship)
permanent exclusion is not a credible threat, but in most of these cases some time has
to elapse before a new similar relationship can be established.

In this chapter we relax the assumption of permanent autarky as the harshest
credible punishment for default on a risk-sharing agreement?. We assume that a
defaulting agent will be excluded for T periods. After this period of time the agent can
start anew with a (restricted) optimal contract that, in turn, will take into account
the possibility of default. In solving the model, we assume that the planner that
will reoptimize after the T periods, will have the same preferences as his predecessor

*While we were working at this project, we realized that Scholl (2004) has independently developed
a similar framework in the context of international business cyle theory.
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(equivalently, this is the same planner, who could not enforce autarky any longer)®.
There are many real world situations that can be used to motivate this structure: a
typical example of temporary autarky, is the case described by the Chapter 7 of the
US Bankruptcy Code in the States. Borrowers can default on their loans by filing
for bankruptcy; post-bankruptcy the household has serious difficulty in getting new
loans for a period of about ten years, but once the ten year period is over, federal law
mandates that the record of the filing be deleted from the household’s credit history.
Other examples come from international borrowing and lending agreements: it is not
credible that a country would be permanently excluded from international borrowing
and lending after default, given that governments (both of the defaulting and the
lending countries) change after a few years, so permanent exclusion is simply not an
option. In fact, all countries in history that have defaulted have been, eventually,
brought back in the international capital markets.

We present preliminary results. First, we characterize analytically the constrained
efficient allocation. A recursive formulation is needed to compute equilibria. The most
general ways of formulating optimal dynamic contracts recursively are the Lagrangian
approach of Marcet and Marimon (M&M, 1998) and the promised utility approach of
Abreu, Pierce and Stachetti (APS, 1990). Temporary punishment is not an immediate
extension of these setups, because the outside option now depends on the solution of
the optimal contract, since the optimal contract will be enforced again after T periods.
We show how to adapt these methods to formulate a recursive solutions by solving
an appropriate fixed point problem that uses M&M or APS as an accessory in an
inner loop iteration. We develop an algorithm that implements the recursive solution.
We show, perhaps surprisingly, that the computational costs of finding a numerical
solution to the temporary punishment model are, in a certain dimension, the same
as for the case of permanent autarky. Therefore, maintaining this assumption is not
justified by appealing to numerical simplicity.

We also show that in some cases the risk-sharing agreement may give rise to an
empty feasible set. This may occur when the fixed point that defines an equilibrium is
stated in terms of arbitrary functions or, even in cases where a feasible set is known to
be non-empty, along the iterations to find the solution of the problem. We overcome
the problem by modifying slightly the original model, introducing a penalty function
in the objective of the planner.

Finally, we decentralize the allocation by a system of borrowing constraint and
prices a la Alvarez & Jermann in order to discuss the properties of the pricing kernel

and obtain predictions about asset prices. We document quantitative implications

3Studying in detail the game theorethic justification for this assumption is beyond the scope of this
paper and is left for future research.
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and compare them with the ones obtained under permanent reversion to autarchy.
‘We show how to use our framework to asses a few issues of interest, such as the length
of the punishment needed in order to get close to the equilibrium under the threat of
permanent exclusion; the behavior of prices and interest rate under the two punishment
strategies. The first issue is important in determining the effects of different periods
of exclusion: are the 10 years of Chapter 7 very costly in terms of efficiency?, do they
imply a very different interest rate with respect to the case of permanent exclusion?,
how long should the IMF exclude a defaulting country before it is again a candidate
to receive loans?. The second issue is important to determine whether temporary
punishment can help or hurt in explaining some empirical puzzles.

The chapter is organized in the following way. Section 2.2 describes the environ-
ment. Section 2.3 discusses the equilibrium allocation and the computational method.
Section 2.4 shows the quantitative results and section 2.5 concludes.

2.2 The Environment

There are two ex ante identical households denoted ¢ = 1,2 with preferences over
consumption streams ordered by Ep Y i2, 8*u; (c}), where u (c) is an increasing, strictly
concave, and twice continuously differentiable function, and § € (0,1) is a discount
factor.

Each household receives a stochastic endowment stream {w}},, for i = 1,2 where

w},w? is a Markov process with w§,w? given and
log w;' =(1-p,)W+p,log wi—l + E:

with &; ~ N (0,2) and i.i.d.; all variables dated t are contingent on realizations of the
shocks up to ¢.

A planner allocates goods to households in ways designed to get them to share
resources voluntarily given that they have an outside option. The planner objective
function consists in maximizing

oo
Ep Zét [a'u,1 (ctl) +(1—-a)up (c?)] (1)
t=0
subject to the stochastic endowment law of motion and the feasibility constraint:

G 6 Swptw; (2

The planner is committed to honor his promises, while private agents are free to
walk away at any time and choose autarky. In order to ensure that agents share their
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resources, efficient contracts would issue rewards that depend on the public observable
outcornes.

A fairly common assumption in the literature on limited enforcement is that if the
participants walk away from the arrangement they would be punished with permanent
exclusion. In our work we focus on a more general case where the household that
chooses to default, will have to spend only finitely many periods in autarky. We refer
to this period as ”crossing the desert”. We also assume that once the punishment is
lifted the defaulting agent regains the status that he had at time 0. This assumption
could be loosely justified as corresponding to a situation where the defaulting agent,
after having crossed the desert, finds some planner and some other agent to provide,
from then on, the same contract that he has faced at ¢ = 0, contingent on the state
variables being the same as the ones after crossing the desert.

2.2.1 Temporary Exclusion

Let ci;t for t’ > t denote the consumption (contingent on the realization) of agent 4 in
period ¢’ if the agent has defaulted in t. In order to enforce agent ’s participation, the
planner should make sure that, at any time, the continuation utility delivered by his
allocation is at least as high as the one implied by staying in autarchy for T' periods
and after that to a utility to be determined by the contract,

E, Zaau, i) > E Za wi (whyj) + Ee 25 ws () - (3)
j=0 =0

The first sum in the right side refers to the punishment period, when the agent
consumes only his endowment, the second sum allows for the consumption T-periods
after default to be determined by the contract.

Some assumptions on the nature of the contract that the defaulting agent obtains
after the exclusion period expires are needed. We assume that if agent ¢ defaults at
time ¢, the allocations after T' periods do not depend on shocks that occurred before
t+ T. In addition, we assume that the allocations after crossing the desert are the
same (given the shocks) regardless of when default occurred. Let s; = (w},w?) be the

vector of states with support S and s* = (s, 81, ...50), then, we assume that there
are functions cj.’D : 87 — Ry, such that

i,D ,
Ct+T (SHT'H)“ 7 (4T SLLT+1s oy St4T+7) i=0,1,..

Restricting consumption after default in this way is reasonable in most situations
having to do with limited participation. It captures the idea that after the punishment
is over, the allocation does not depend on the fact that the default has occurred, either
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because of bankruptcy law (as in Chapter 7) or because another planner is going to
offer a similar contract to the agent (as in banking, when competitive banks offer
contracts that yield the same to the same agents) or because of lack of commitment
on the part of the planner which causes the planner to deny the promises it made after
T periods.

Given ¢P , we can define the expected utility after ”crossing the desert” as a

3
function F#P : S — R such that

oo
) . D .
D (se47) = By Z &y, (c;-’ ( 3t+T+J)) (4)
=0
In words, equation (4) says that the expected value of the continuation utility after
crossing the desert of an agent that decided to default at time ¢ depends only on time

t+T state variables. Therefore, the only consumption paths that are feasible are those
that satisfy

T-1
E; Zéju, ct+_1 > E; Z & u; wt_,_J) + 67 EtFl’ (se+T) (5)
J=0 j=0

for all periods and realizations.
Thus, given any set of functions F = (F!, F2) such that the set of consumption
allocations satisfying (5) is non-empty, and denoting

V;Aut,T (wt; F =E Z 5] wt+] + 6 EtFn (a)t+T) (6)

we have to solve the
F-Planner Problem

ma E026t [ous (¢f) + (1~ @) ug ()] (7
ce t=0
st. E, Z&’u, ) > VAT (wy F) Vi (8)
3=0
¢+ <wh+wf 9)
given (wg,w}) (10)

The contract that enforces the optimal allocation obtained from solving the F-
planner problem is a sequence of functions ¢ = k; (s%; F) for ¢ > 0 that assigns a
history-dependent consumption stream c: to the households.

Finally, we assume that the consumption profile obtained after crossing the desert
is the same as the optimal profile that would be chosen at ¢ = 0. This is the usual
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case considered under time consistency, where it is known that the planner is going
to re-optimize (in this case after the punishment period of length T'). As a result, the
planner sets the variables taking into account the fact that in the future there would

be a planner willing to offer the same ¢t = 0 contractual conditions to agents who have
crossed the desert.

Now, for each agent we can compute the value function
» m . .
V‘(So; F; a) = Eo Z&’ui (C;*) (11)
=0

for all stve S where “«” denotes the optimal solution of the planner’s problem. Notice
that «, in principle, may depend on time; here, however, we assume for simplicity that
it is constant?. In this way we can maintain implicit the dependence of the optimal
solution and the value function on «, since we assume that the future planners will use
the same «. Since, by assumption, the planner that will re-optimize after T-periods
of autarchy, has the same preferences of his predecessor, we have to look for a solution
W = (W', W?) where
Vi(, W) =Wi() fori=1,2 (12)
Definition An optimal contract with temporary autarky and reversion to initial

value is defined as the solution to the planner problem described above when FF =W
satisfying (12).

2.2.2 Recursive Formulation

In order to reduce the dimension of the argument of the h; function we apply a recursive
formulation of the history-dependent contracts. The key is to realize that if F is fixed,
the function ViA"t’T (;F) is a given function, known before the optimal solution is
found, so that the Lagrangian approach of Marcet and Marimon (1998) can be used
to formulate recursively the solution to the F-planner’s problem.

Let v; , be the Lagrange multiplier associated to the time-t participation constraint
of agent 7. The planner’s Lagrangean would be

L = Eoiét{aul (a) + (1 —a)uz (&) +
t=0

2 o
D TP | D60 (ehyy) = VT (Wi F) | }-
=1 i=0
After defining the co-state variable as in Marcet and Marimon (1992),

Pig=igy+7; for i=1,2 (13)

1We leave for further reasearch the case where a is endogenous and changes across periods.
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with g; _; =, gy _; = 1 — @, the Lagrangian could be written as:

(o o]
L = Ep Z 8 { (1 +10e) w1 (cf) + (o1 +¥2,) u2 (F) — (14)
t=0

2
- Z (g — pig—1) VEAut’T (we; F)}
im1

The solution of the F-planner problem satisfies the recursive saddle point functional
equation (SPFE):

W(w,p) = ,}gfosup{(#l + 1) u (eh) + (o +72) w2 (¢*) -
= ct

2
=S nVAT (W F) + 8B [W (o, 1) |w]} (15)
i=]

st. pi o= p+y; for i=1,2

and
[ ¢ ] = f(w, s F) (16)
i

for a time-invariant policy function f, where y; _; = @, py 3 =1 — & and p; evolves
according to (13). Solving the model reduces to finding the policy function f. Once
this function is approximated we can generate consumption sequences and find the
agent value functions V(-; F). In section 3 we describe the computational method
used to find f and V.

Once we know how to approximate the f function (and, consequently, V), the
temporary punishment equilibrium can be computed by iterating on F' until we find
the fixed point satisfying (12).

Described in this form, finding the temporary punishment equilibrium may appear
very complicated, because we need an inner iteration (to solve for f(:; F) given F)
nested in an outer iteration (to iterate on F and find W). The good news is that we
can subsume both iterations in one. We start with a candidate f, test if the FOC and
(12) are satisfied, and iterate until both the FOC are satisfied and the resulting agent-
value function satisfies the fixed point requirement (12). More formally, let WV be the
function that maps a candidate decision function f into the agent-value function V :

"s> (17)

Wi(f)(s) = E (Z 8tui(ci(f))
t=0
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where ci(f) is the consumption series generated by f. The policy function in the
temporary exclusion algorithm satisfies®

FPEGW(TE)) (18)

Before characterizing the optimal allocation under the threat of temporary exclu-
sion and describing the computational algorithm used to find the numerical solution,
we would like to remark two points.

First of all, notice that in order to recover the case of limited enforcement under
the threat of permanent exclusion it is sufficient to consider the model with temporary

exclusion and T sufficiently large. In fact as T' — oo, participation constraints reduce
to

xR oo
By i (dyy) 2 B Y 6u; (wiss) (19)
3=0 =0
where the right hand side is the utility of the outside option when the agent consumes
only his endowment. Notice that under the threat of permanent exclusion we don’t
have to solve the outer fixed point problem (i.e., we don’t need to iterate on F' and find
W). In this case, Marcet and Marimon (1992) have shown that the optimal allocations
satisfy
U (C% ) _ Moy
——h = —=. (20)
uy () mag
Finally, notice that full enforcement is equivalent to assume that the planner has
the ability to punish any deviation from the optimal plan with some action that leaves
the defaulting agent with arbitrarily low utility. In this case, the optimal allocations
satisfy the sharing rule o
u,l (c;) _l-¢ (21)
uh (cf) a
Equation (21) tells us that consumption of both agents depends on the current
value of the aggregate state only.

2.3 Characterizing the optimal allocation

From the recursive formulation given by the SPFE (15) we can easily obtain the first

order conditions for the optimal consumption paths of the agents, which, combined,
will define the following optimal sharing rule:

vi (e) _ pag
uy () e

SWe are actually working in showing that in order to find the temporary punishment equilibrium

it is sufficient to find an algorithm that at the n-th iteration obtains an approximate function f, using
FP = W(fn-1) in the FOC.

(22)
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Equation (22) shows that in an optimal allocation the planner should choose effi-
ciently the weights po, and y; 4, making sure that agents are induced not to default
by increasing consumption not only in the period in which they are tempted to default
but also in the future. That is, ”individual paths of consumption depend on individ-
ual histories not just on the initial wealth distribution and the aggregate consumption
path, as in the Arrow-Debrau competitive allocations” (Marcet and Marimon, 1998).
Comparing equations (20) and (22) we can see the similarities between permanent
and temporary exclusion: given the lagrange multipliers, the two optimality condi-
tions are the same. However, as the participation constraints differ in the two models,
the lagrange multipliers and the optimal allocations should differ.

Notice that when the participation constraints are never binding (for example, if
the endowment of each agent can be sufficiently small with a positive probability)
equation (22) reduces to (21) and the efficient allocation is the same as under full
enforcement.

We analyze now in detail the computational algorithm.

2.3.1 Computational Algorithm

For convenience, we normalize the multipliers by defining 7 = ul - and \; = Zf :6
This allows us to keep track of only the relative weight ) instead of the two absolute
weights p) ; and p9,. The transition law for A can be written as follows,
-1+ 77
1+7

With the normalized multipliers we can summarize the sharing rule (22) by

W () _ Aea+ 7
up () 1+%

To approximate the non linear functions that enter in the participation constraints

(24)

we employ the parametrized expectation approach (PEA) described in den Haan and
Marcet (1994).

We specify a second-degree polynomial in the state and co-state variables to ap-
proximate the left-hand side of the participation constraint,

EtZN “lu ¥ (a; Siz) (25)

6Since we assume that co-state varlables at time t = —1 are equal to zero, the initial welfare

weights’ ratio is A_; = -1;—"
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where S = (1,logw},logw?,log At—1), Szt = (1,logw?,logwyi,log 1/X—1) is the
vector of the state and co-state variables and a is a vector of parameters that we
compute with the iterative algorithm described below’.

To approximate the expected utility in the T-periods of autarchy we use a second
degree polynomial on w?i,

T-1

B> 6l (whyy) = p (i) (26)
j=1

In order to compute b in (26), we run one non-linear least square regression of Aut;v’:t
on wi, where

T—1
Aut], = Z & u (wiy;) fort=0,..N.
=1

and we define with the vector b the result of this regressionS.

In order to approximate F»P (wy.r) we use the same function as in equation (25)
with S = (1,logwy,logw?,log 152) and SP; = (1,logw?, logwt,log 123) instead of
Sit:

FP (wryr) = (0 SP4r)

Finally to obtain E;F*P (w;yr) we use a second-degree polynomial on wi

E,F"P (wir) = By [ (05 S547)] = o (d ) (27)

where d is computed by the iterative algorithm.

The first three steps in the algorithm compute the endogenous variables of the
model for a given set of parametrized expectations; steps 4 and 5 are used to compute
the coefficients @ and b. Thus, for given values of the coefficients we simulate the
system and find the polynomials with the highest predictive power (see Marcet and
Singleton, 1999). We look for second-degree polynomials that generate simulations
such that these polynomials are, precisely, the ones with the highest predictive power.
. Formally the algorithm is expressed as follows:

Step 1: Because of the Kuhn-Tucker conditions, we have to consider several cases
in order to calculate for the endogenous variables. Given a realization of the shocks
(e1t, €2;) and the endowments (w1, way), first of all we tentativelj try the solution
where the participation constraints are not binding. In this case, the normalized

7 As the problem is symmetric for the two agents {in fact the variables in the function that approx-
imate the left-hand side of the agent 1’s participation constraint are symmetric to the ones for agent
2), we can use the same parameters a for both participation constraints,

8 Notice that we can run the regression before starting the iterative procedure, since the expected
utility in the T-periods of autarchy depends only on exogenous variables.
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lagrange multipliers are equal to zero and A, = A\;—;. Consumption is determined from
the feasibility constraint (2) and the optimality condition (24).
Step 2: Check wether this allocation satisfies the participation constraints®. Given

the parameters @™ and [fn, we define the variable

peie=1u(c}) —u(wi) +6 [¢ @S + ¢ (3; w;') +8T 1y (En;w;')] , o (29)

the following cases can occur!?:

® PCi,t 2 0 and pecat Z 0
® pC1t < 0 and pe2t >0
e pc2t <0and pers >0

In the first case go to step 3; otherwise consumption of agent ¢ for whom the
participation constraint is binding is computed by imposing pe;; = 0 in (28). The
lagrange multiplier associated to the PC of the defaulting agent is obtained from (24),
while \; and consumption of the other agent is obtained from the definition (23) and
from the feasibility constraint (2).

Step 3: Repeat Steps 1-2 for t =1, ...N.

Step 4: Now we are ready to compute the new value for the parameters a.

Compute the discounted sum of future utilities

K
Vi=> &u(d,;) fort=0,..N and K big enough
e

In particular, compute first Vi = % (a;S}), then obtain backward the remaining

values. In order to find @**1, we run a non-linear least square regression of V} on S;;
Vi =9 (@1 Sit) +ene

where ey, s ~ N (O, 0'2) and i.i.d.

Step 5: In order to compute d*!, generate the time series {¢v (E"“; SE +T) }
for ¢ =1, 2 and run a non-linear regression

Y (@ 504r) = ¢ (5 wt) +epe.

where gy,s ~ N (0,0%) and i.i.d.

Repeat Steps 1-5 in order to find a new value of the parameters @ and d. The

N

t=1

iteration ends when @"*! ~ @® and d*+! ~ d", that is when ¢ and ¢ converge to the
correct approximating polynomials.

9We have to go down through all possible cases, until we find one where all the conditions are
satisfied. By proceeding in this manner, all the inequalities implied by the Kuhn-Tucker conditions
are satisfied automatically (see Marcet and Singleton, 1999).

10 Along the iteration to find the equilibrium, also the case where pey,¢+ < 0 and pea,; < 0 may occur.
In section 3.2 we show how to modify the computational algorithm to take care of this event.
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2.3.2 Feasibility along the Iteration

With the treat of permanent exclusion, Kocherlakota (1996) shows that, under fairly
general assumptions, for any state there is a feasible continuation of consumption plans
that makes at least one of the agents better off than under autarky. However during
the iteration process to find the optimum, any algorithm would replace the left hand
side in the participation constraints by a function W; that approximates the discounted
sum of future consumption in the contract. In particular, if we use PEA as in Marcet

and Marimon (1992) then we approximate the participation constraints as follows

u(ciz) + 6% (a5 Sit) > v (wr) for all 4,t

As during the iteration process 1 (a®;.S;¢) is not exactly equal to the discounted
sum, Kocherlakota’s result may not apply. It can indeed happen that there are no
values of (c1,c3) that satisfy the equation. In this case the algorithm breaks down
because it is asked to compute feasible consumption when a feasible consumption does
not exist for the approximate 1 (.). This is common to any algorithm solving this
problem: in PEA the simulation step can not be performed in some periods, and in
MWR algorithms the Euler equation can not be evaluated at some point in the state
space so that the residual can not be computed at that state point. This problem
appears to be even more of serious in the temporary exclusion model, as the function
% (.) enters also in the right hand side.

‘We propose the following solution. Introduce a third agent that can give units of
consumption to the economy whenever there are no feasible consumption paths that
satisfy the participation constraint. Such agent will be asked to provide additional
consumption only when it is absolutely necessary; the aim is to gradually make this

contribution less generous. Formally, we change the technology constraints to be as
follows,

2 2
dcie <> wip+b, (29)
=1 =1

6 > 0

We could think about many different alternatives of changing the objective function

of the planner, here we just consider the simple case where we solve the following
planner’s problem.

Modified-Planner’s Problem
00 2
max Eo» B || ey ulcsr) | —pb? (30)
t=0 j=1
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for a "large” p > 0. Since the set of participation constraints does not change, the
modified problem will merely!! consists of maximizing (30) subject to the original
participation constraints and (29).

The contribution of the third agent plays a similar role as the penalty function in
the computation of static constrained maximization problems. In this way we alter
the objective function so that it is painful to make active use of the third agent. We
label this agent as the ”"penalty agent”. He will provide additional consumption to
insure feasibility, but at the same time reducing utility of the planner. As in models
with penalty functions, using a high enough p, would insure that the fixed point is a
solution to the original problem.

Notice that for the modified problem there is always a feasible solution. The
algorithms will not break down for the modified problem in a period or realization with
unfeasible consumption. Setting a positive § whenever it is necessary the algorithm
would continue working. With PEA the simulation step can be performed for as many
periods as we wish, and if some MWR algorithm is used the Euler equation can be
evaluated at any point in the state space. For large p’s the policy function will be
selected setting & > 0 not very often, because of the term —Eg o, B'pb? in the
planner’s objective function.

The new procedure to find the optimal allocation described in the previous section
should then be slightly modified. The Kuhn-Tucker condition of the modified problem
is now given by the following expression,

u(cit) =pb: if6:>0 (31)

Then if there is a feasible consumption for the original constraints, we proceed as
before. If there are no feasible consumptions, we add a new step in the algorithm
and compute endogenous variables using the Kuhn-Tucker condition of the modified
problem.

2.4 Quantitative Results

‘We now describe some quantitative results obtained for different lengths of the exclu-
sion period, T', and compare them with those obtained under the threat of permanent
exclusion.

In the benchmark model, we set the initial weight & = 0.5 and the relative risk
aversion parameter equal to 1 (logarithmic utility). We choose the discount factor to
match the average real risk-less interest rate of 2 per cent per year in a model where

Ygince it is concave, the Modified-planner’s problem is well defined.
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reversion to autarchy lasts for 10 years!? and we assume perfect negative correlation
between the endowments of the two agents!3. In order to simulate our model we also
need to assume values for the parameters p,,, @ and §2. We choose these to match the

tightness of the participation constraints found in Alvarez and Jermann (2000) in the
model with permanent exclusion!4.

Statistics for the benchmark model

§ o cov(eey) @ op, 0w cov(w;,w;) corT(w;,w;)
0.965 0,07 —0.004 2 088 0,27 -0.07 -1

2.4.1 Temptation to Default

We analyze quantitatively how, in presence of limited enforcement, the incentive to
default modifies as the length of the punishment period shortens.

Table 1 shows the average ”temptation to default”, measured by the expected value
of the normalized lagrange multiplier ..

Tab. 1 Average Temptation to Default and Outside Option

T co 100 48 40 36 28
E[F | =1 011 o011 012 013 015 020 020
E[¥ | »-1=066] 001 001 001 003 004 010 0.10
E[¥; | Ad-1=15] 068 066 061 062 066 075 0.75
E[K{}“t’T] 20.01 20.01 20.03 20.03 20.03 20.04 20.04

When both agents were equally lucky in the past (A1 = 1; row 1 in the table), the
temptation to default increases as the punishment period shortens. To give an intuition
let’s consider first the threat of permanent exclusion. In this case the incentive to
default is small, as the outside option (the last row in the table) is the worst possible.
‘Thus the compensation (see equation (24)) for not defaulting will be low. As the length

121f we calibrate our model to match the average real riskless interest rate of 2 per cent per year in
a model with permanent exclusion (as in Alvarez and Jermann, 2000), it turns out that the average
interest rate in the case of an exclusion that lasts 10 years would be negative. For this reason, one
possible use of our model is in the evaluation of the effectiveness of calibrating the limited enforcement
model on the permanent exclusion case.

13The fact that endowments are perfectly negatively correlated allows us to reduce the set of variables
in the approximated function 1 on which we run regressions, S1,: = (1,logw},log As—1) and S =
(1,logw?,log 1/A¢—1).

' Alvarez and Jermann (2000) found in a model with permanent esclusion that the participation
constraints of an agents is binding 25 per cent of the time. Therefore we calibrate p,, @ and Q to
have a similar tightness in a model where exclusion lasts 10 years.
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of the punishment shortens, the expected utility of the outside option rises increasing
the incentive to default.

When agent 1 has already a long history of good shocks (the normalized weight, A,
is lower than 1; second row in Tab 1) his temptation to leave is very low and remains
almost unchanged for punishment periods bigger than T" = 40. In this case, in fact,
his share of aggregate consumption in the agreement is high (in equation (24), a low
At—1 implies a high consumption) and an increase in the length of the punishment is
not sufficient to reduce further the temptation to default. However, for T' < 40, even
if agent 1’s consumption in the agreement is already high, the temptation to leave
quickly increases, if we reduce T', as he knows that after a short period in autarchy he
would enter a new contract.

Finally, when agent 1 has a long history of bad shocks (the co-state variable is bigger
than 1; third row in Tab 1), his share of aggregate consumption in the agreement is
relatively low and his temptation to default when he face a good shock is very high
for all T. As T increases, for T > 40, the temptation slightly increases, while for low
levels of T', the incentive to default increases as T decreases. Again, the fact that after
a short period in autarchy the defaulting agent would face a new contract (with a new
initial modified relative weight equal to 1) makes it more appealing to default.

2.4.2 Tightness of Participation Constraints

We analyze now how the inverse relationship between the incentive to default and the
length of exclusion translates in terms of tightness of the participation constraints. In
Figure 1 we report the expected combinations of pcis and pcat (see equation (28))
for different relative weights, E [pc@ | Ade—1 =5\]. As T decreases, the region where
pcy s and peg; are both non-negative shrinks and the probability that the participation
constraint of one agent is binding increases. The reason is that as the punishment
period shortens, the incentive to default increases (see also table 1), since the defaulting
agent knows that in T" periods he will rejoin the agreement.
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Fig. 1 Participation Constraints
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Table 2 reports the percentage of time that the participation constraint is binding
for one agent. Clearly, the longer the period in autarchy the lower the percentage of
periods when the participation constraint of is binding.

Tab. 2 Tightuess of Participation Constraints

T oo 200 100 60 44 40 36 20
PC agent ¢ binding (%) | 16.5 16.5 17.5 20.5 24.0 250 27.0 31.0

In the economy with a temporary exclusion of 40 years (" = 100), the probability
that one agents is tempted to default is (almost) the same that we would have under
permanent exclusion. Reducing the length of the punishment below 40 years, sensibly

increases the percentage of periods when the participation constraints are binding.

2.4.3 Welfare analysis

We want now see whether the increase in the tightening of the participation constraints
as the length of the punishment period shortens, brings about a change in total welfare.

Figure 2 draws the efficient constrained frontier for different T”s: each frontier
shows the combinations of the expected continuation values, as described in equation
(11), for different relative weights; the left-corners, on the contrary, shows the expected
utility of the outside option (see also the fourth row in table 1).
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Fig. 2 The efficient frontier
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As the length of the punishment period decreases, the outside option increases,
and the frontier of efficient allocations shrinks. The decrease in total welfare is the
cost to be paid in order to convince agents to commit to the risk-sharing agreement.

In order to quantify these costs, Table 3 reports welfare reduction with respect to
an economy with full enforcement. We measure welfare loss in terms of consumption
equivalence. This measure, denoted by ce?, is computed as the fraction of consumption
that an economy with full enforcement should give up, in order to have the same
welfare as the economy with limited enforcement and temporary exclusion (of length-
T). Formally the “consumption equivalent” is implicitly defined by:

B35 o ()] ~B 30 [ das (-] (@)

=0 i=1 j=0 i=1

Tab. 3 Welfare Analysis

T o0 100 80 60 40 36 24
Consumption equivalence | 0.01 0.01 0.01 0.011 0.011 0.015 0.015

With permanent exclusion the decrease in welfare with respect to the full enforce-
ment economy corresponds to a permanent reduction of quarterly consumption of
around 1.0 per cent (4.0 per cent, annualized), while under the threat of a temporary
exclusion of 10 years (T = 40), quarterly consumption fall by 1.1 per cent (4.4 per
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cent, annualized). An increase in the length of the punishment period from 10 years
to co would determine a very low increase in terms of welfare. This result, together
with the one obtained in the previous section, suggests that tighter participation con-
straints under temporary punishment do not convey a comparable loss in terms of
welfare. Notice, however, that in this model, assuming a long exclusion is not costly,
as in equilibrium default never occurs, while in real word situations default takes place
and lasting exclusions from an agreement could reveal very costly. Thus, in front of
possibly high costs for increasing the length of the punishment period above 10 years,
table 3 tells us that the benefits would be very low.

2.4.4 Consumption and the Business Cycle

In the previous section we have seen how the length of the punishment period affects
welfare, here we study the quantitative properties of the consumption allocation for
different 7"s.

Under full enforcement agents can full insure against all idiosyncratic risks. In this
case the consumption ratio, ¢1¢/co¢, would be constant. Under limited enforcement
an agent is induced not to default by increasing his consumption not only in the period
when he is tempted to default, but also in the future. The fact that as T" decreases
the temptation to default and the tightness of the participation constraints increase
implies that also the variability of the consumption ratio increases (Figure 3).

Fig. 3 Consumptions
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Table 4 reports the ratio between the standard deviation of consumption of one
agent and the standard deviation of his endowment, as a measure of risk-sharing. In
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presence of no risk sharing the ratio would be equal to 1.

Tab. 4 Risk Sharing

T o0 200 100 80 60 40 36 20
Std(c;)/Std(w;) | 0.84 0.84 0.85 0.86 0.87 0.89 0.9 091

Risk sharing increases with the length of the exclusion period since, as T increases,
the incentive to default and the tightness of the participation constraints decrease.
Notice that risk-sharing is already very low under the threat of permanent exclusion
and for T" 2> 100 this would not change with 7. Reducing below that level the length
of the punishment would slightly reduce risk-sharing.

Finally, in figure 4 we plot the average effects of a 10% shock to endowments of
agent 1 on consumption of agent 1. In the long run the impulse responses look the
same under different T's, but in the first 2 years the impact on consumption is higher,
the smaller the 7T'.

Fig. 4 Impulse response of agent i consumption to a 10 %
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A way to interpret this result is the following: as T decreases, the temptation to
default when the agent faces a good shock increases. Therefore the compensation that
the planner has to give him, at ¢, in order to stay in the agreement increases. Since
also the continuation value rises, the higher increase in consumption persists for some
periods.
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2.4.5 Decentralizing the Efficient Allocations: Interest rate and As-
set prices

In a limited commitment environment with permanent reversion to autarchy, Alvarez
and Jermann (2000) show how to decentralize the planner solution into an equilibrium
with endogenous solvency constraints. The main intuition behind this decentralization
is that an agent would like to sell state-contingent claims on future consumption in
those states in which he will be well endowed. But in those high endowment states he
will also have an incentive to default; limiting the volume of debt that he is able to carry
into those high endowment states will restrain him from doing so. As a consequence,
his consumption and continuation value increase when he enters one high endowment
state precisely because he has been prevented from selling enough claims to smooth
his consumption.

With the definition of competitive equilibrium with solvency constraints we have
a simple and intuitive representation of the prices of securities. In this context, one-
period contingent claims (Arrow securities) are priced by the agent with the highest
marginal rate of substitution, which is the agent that is not constrained with respect
to his holding asset. The equilibrium Arrow price corresponds to the highest marginal
rate of substitution of the two agents, so that for the one period (gross) return of a
risk free asset R} , the following must hold (see Alvarez and Jermann, 2000):

() e

=12\ v (cjt)

The idea is that the agent with the highest valuation of an asset is going to buy
it. Buyers of state contingent securities are unconstrained, so the price of the asset is
equal to their marginal rate of substitution.

The constraint of the agent with a low endowment will not bind. Unconstrained
agents expect to have a declining consumption allocation, since the continuation values
of the constrained agents have to increase. Low interest rates can reconcile buyers
to accept a declining continuation value. A central result in Alvarez and Jermann
(2000) is that interest rates are lower in economies with solvency constraints than in
corresponding economies without such constraints.

Here we study how the interest rate behaves under different lengths of the pun-
ishment period. For lower T’s, the economy displays less risk sharing, meaning that
individual consumptions become more dissimilar and thus the maximum of the mar-
ginal rate of substitutions increases, leading to an increase in the pricing kernel. The

first row in Tab. 7 compares the behavior of risk free annual (gross) interest rate for
different T's.
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Tab. 7 Risk-free (Gross) interest rate and risk-premium

T PO oo 100 60 44 40 36 20
E|R{] 114 105 1.047 1.035 1024 1.02 1012 1.00
Std [R{] 0 001 001 001 002 003 004 0.04
E[rR—R[]|001 01 01 011 o012 012 013 0.4

In economies with tighter participation constraints and less risk sharing, the inter-
est rate is lower. In these economies, unconstrained agents’ consumption will decline
more than in economies with more risk sharing, as the consumption of the constrained
agents increases more (Figure 4). Lower interest rates will make them accept the
stronger decline in consumption. In particular, going from an economy with perma-
nent exclusion to one with a 10 years exclusion, the risk free interest rate reduces by 3
percentage points. Notice that in an economy with a 25 years punishment (T = 100)
the equilibrium interest rate is very close to the one under permanent exclusion.

In Table 7 we also consider the risk-premium for one-period assets that pay a
random dividend di1 = wys41. The (gross) return on these assets at time ¢ is denoted
by Rf. As the number of periods that the agent has to stay in autarchy decreases, the
risk premium E [R$ — Rtf ] increases, as a consequence of the increase in individual
consumption volatility. Increasing the number of punishment periods from 10 to 25
years, reduces the risk premium of about 2 percentage points.

2.5 Conclusions

The objective of this chapter of the thesis was to derive the optimal solution and
to document quantitative implications in a model of limited enforcement under the
threat of temporary exclusion. First of all we have shown how to formulate the model
recursively and we have developed an algorithm that implements the recursive solution
involving computational costs similar to those faced under the threat of permanent
exclusion. Maintaining the assumption of permanent exclusion cannot be justified by
just appealing to numerical simplicity.

We have shown how to use our framework in a two-agent endowment economy
to determine the effects of different lengths of exclusion. We found that for shorter
periods of exclusion participation constraints are binding more often and consumption
is more volatile. We have obtained that a punishment corresponding to staying 10
years (as in Chapter 7 legislation) in autarchy implies an incentive to default and a
frequency of binding constraints considerably higher than under permanent exclusion
and an amount of risk-sharing sensibly lower.
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We have also analyzed the welfare implications of the reduction in risk-sharing.
We found that a period of 10 years is not very costly if compared to permanent
exclusion: the permanent decrease in consumption, with respect to the perfect risk-
sharing economy, is around half percentage point higher in an economy with a 10 year
punishment than in one with permanent exclusion. Finally, we have decentralized
the allocation into an equilibrium with endogenous solvency constraints a la Alvarez
& Jermann, in order to obtain predictions on the risk-free interest rate and the risk
premium. The risk-free interest rate was 3 percentage point lower in an economy
with an exclusion of 10 years than in that with permanent exclusion, while the risk-
premium was 2 percentage points lower in this last case. Finally, we have found that
in an economy with a 25 years punishment the equilibrium interest rate and the risk-
premium were very close to those obtained under the threat of permanent exclusion.

Since in most real life situations the threat of permanent exclusion is hardly
credible, we think that our approach improves on the standard limited enforcement
economies. Further analysis is needed to determine whether temporary punishment
can help or hurt in explaining empirical evidences.
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