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Resum

La imatge amb tensor de difusió (DTI) és una nova modalitat de ressonància mag-
nètica (RM) capaç de generar mapes del desplaçament a nivell microscòpic de l’aigua
a dins del teixits del cervell com a part del procés físic de la difusió. Aquesta tècnica ha
esdevingut una important eina en la investigació de les estructures i funcions cerebrals
perquè ens permet tenir dades in vivo de l’orientació de les fibres de matèria blanca.
Per aplicar el DTI en la pràctica clínica cal extreure i representar la informació de forma
entenedora aplicant tècniques i processos de visualització especialitzats. La informa-
ció capturada per la màquina de RM pot ser reduïda a un tensor simètric positiu de
segon ordre, que pot ser descomposat en valors i vectors propis. Per una banda tenim,
les tècniques de visualització unidimensionals (1D) que redueixen la informació del
tensor a un valor escalar que es representa en una imatge en escala de grisos o de col-
ors. Actualment aquesta estratègia és la més utilitzada en la pràctica clínica, ja que les
imatges en escala de grisos o de colors són molt fàcils d’interpretar. Per un altra costat
tenim, les tècniques de visualització tridimensionals (3D) que redueixen la informació
del tensor a un camp vectorial, tenint en compte com la principal direcció de difusió
la direcció donada pel vector propi principal. Llavors, es poden utilitzar tècniques de
tractografia per tal de trobar patrons de continuïtat dins del camp vectorial, a partir de
fer el seguiment pas a pas del camí seguit per un conjunt de partícules que es deixen
en el camp vectorial. D’aquesta forma és com s’obtenen els mapes de fibres de matèria
blanca.

Donada la importància de les tècniques de visualització 1D i 3D en un context
mèdic, el nostre propòsit és estudiar com es poden millorar aquestes tècniques. En
primer lloc, analitzarem i introduirem un nou índex d’anisotropia per millorar la in-
terpretació de les dades de DTI. En segon lloc, proposarem una nova tècnica de trac-
tografia, basada en teoria de la informació, per obtenir mapes de fibres de matèria
blanca. En tercer lloc, proposarem un nou mètode per automatitzar i optimitzar el
procés de determinació de llavors necessari per les tècniques de tractografia per tal que
generin grups de fibres que millorin la interpretació dels mapes de fibres de matèria
blanca. Finalment, presentarem el DTIWeb que és el programari desenvolupat en el
marc d’aquesta tesis per tal d’integrar totes les tècniques proposades. Volem remarcar
que el nostre treball ha estat fet amb una estreta col·laboració amb un equip de metges,
ja que el principal objectiu d’aquesta tesis és l’aplicació de les nostres contribucions en
un entorn mèdic real.





Abstract

Diffusion Tensor Imaging (DTI) is a new magnetic resonance (MR) imaging modal-
ity capable of producing quantitative maps of microscopic natural displacements of
water molecules that occur in brain tissues as part of the physical diffusion process.
This technique has become a powerful tool in the investigation of brain structure and
function because it allows for in vivo measurements of white matter fiber orientation.
The application of DTI in clinical practice requires specialized processing and visual-
ization techniques to extract and represent acquired information in a comprehensible
manner. The information captured by MR devices can be reduced to a second order
symmetric positive tensor that can be decomposed in eigenvalues and eigenvectors. On
the one hand, one dimensional (1D) visualization techniques reduce the information
of the tensor to scalar values that can be represented as a grey or a color scale image.
Currently, this strategy is the most used in clinical practice since grey and color coded
images are very easy to interpret. On the other hand, three dimensional (3D) visualiza-
tion techniques reduce the information of the tensor to a vector field by considering the
main diffusivity direction given by the principal eigenvector. Then, tracking techniques
are used to infer patterns of continuity in the vector field by following in a step-wise
mode the path of a set of particles dropped into the field. In this way, white matter
fiber maps can be obtained.

Due to the importance of 1D and 3D visualizations techniques in the medical con-
text, our purpose is to study how these techniques can be improved. First, we will
explore and introduce new anisotropy indices to interpret DTI data more accurately.
Second, we will propose a new tracking technique based on information theory to ob-
tain white matter fiber maps. Third, we will propose a new method to automate and
optimize the seeding process required in fiber tracking techniques in order to create
clusters of fibers that enhance the interpretation of white matter maps. Finally, we will
present DTIWeb, which is a software platform developed in the scope of the thesis to
integrate all the proposed techniques. We want to remark that our work has been done
in close collaboration with a medical team, since a main objective of this thesis is the
application of our contributions in a real medical context.
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CHAPTER 1

Introduction

1.1 Motivation

Medical imaging has become a key discipline within medicine. Technological advances,
in both computers and scanners, have allowed us to raise challenges until now unimag-
inable, and to provide new aspects that could never previously be studied in living
humans. In this context, Diffusion Tensor Imaging (DTI) [17, 16] has emerged as a
widely used technique in the investigation of brain structure and function, since it al-
lows for in vivo measurements of white matter fiber orientation. This technique is a
new magnetic resonance (MR) image modality capable of producing quantitative maps
of microscopic natural displacements of water molecules that occur in tissues as part
of the physical diffusion process. Applied to brain tissues, it provides the information
required for generating white matter connectivity maps. Since the advent of DTI, its
processing, analysis, and visualization have become main focuses of research in medi-
cal imaging and especially in brain studies.

The amount of information obtained with DTI exacerbates the task of effectively
communicating information for use in diagnosis. The main challenge is in the develop-
ment of strategies to extract and visualize information in a comprehensive manner to
be used in medical context. Currently, the most popular approach characterizes DTI in-
formation representing the local diffuse behavior of water in a voxel by a second order
symmetric positive tensor. By diagonalizing this tensor we can obtain eigenvectors and
eigenvalues, from which different graphical representations can be obtained. Among
them, the most applied techniques are based on one-(1D) and three-(3D) dimensional
representations. 1D visualization techniques use eigenvalues and eigenvectors to re-
duce tensor information to a scalar index that can be represented in a grey or color
coded image. Such images are very easy to compute and interpret. 3D visualization
techniques generate white matter fiber maps by reproducing the path of imaginary
particles dropped into a vectorial field. This vector field is created by considering, for
each tensor, the main eigenvector which represent the principal diffusivity direction.
This strategy is known as fiber tracking or tractography. Despite the large number of
tracking techniques that have been proposed, there are still many aspects that need
further development. On the one hand, most of the techniques require user interaction
which is a limiting factor in a real medical context since the technique becomes user
dependent. On the other hand, the interpretation of generated maps is difficult since
fibers are represented individually and not grouped into anatomical structures. In this
case, user interaction is again required to tackle the problem.

The motivation behind this work is to go one step further proposing new techniques
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that enhance DTI data interpretation. With this aim, we will apply information theory
tools to improve DTI data visualization and validation. The information theory [146]
is used with success in fields such as physics, computer science and neurology [43].
In particular, it has been proved that information theory provides powerful tools for
medical imaging [13]. In this thesis, Shannon entropy and mutual information will be
used to capture different interpretation aspects of DTI data. Our work will be done in
close collaboration with a medical team to ensure that our proposals can be applied in
medical context.

1.2 Objectives

The main goal of this thesis is the development of new visualization and processing
techniques for DTI interpretation using information theory tools. To reach this objective
we aim to:

1. Explore and introduce new anisotropy indices to interpret DTI data more
accurately

In the last decade, several visualization approaches have been proposed to in-
terpret DTI data. The simplest one reduces DTI data to a 1D scalar index and
visualizes it as a grey or color coded image. Currently, this approach is the most
applied in clinical practice since the obtained images can be easily interpreted
and used as a first step towards the identification of normal and pathological
brain tissue.

In this thesis we will study the different indices that have been proposed and we
will present a new set of anisotropy measures obtained from the DTI that can
better represent some tensor information.

2. Study tractography techniques and propose new strategies for the stream-
line-based approach

Despite the popularity of 1D visualization techniques, they are only capable of
representing part of the tensor information. To overcome this limitation, new
techniques able to create white matter connectivity maps have been proposed.
These techniques are known as fiber tracking or tractography strategies. Ba-
sically, by diagonalizing tensor in every voxel we can decompose DTI data in
eigenvalues and eigenvectors. The main diffusion direction, which corresponds
to the eigenvector associated with the largest eigenvalue, is taken into account to
define a vector field. Then, fibers are obtained by following the paths of particles
dropped in this field. The point where the particle is dropped is the seed point.
The strategy used to approximate these paths is the main difference between
tracking methods.

In this thesis we will study tracking techniques and we will analyze how entropy
can be applied to obtain a new tracking method that will perform all the pro-
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cess automatically without user interaction. Automaticity is a feature of special
interest in medical context since it enhances reproducibility.

3. Automate and optimize the seeding process required by fiber tracking tech-
niques

The majority of tracking techniques require as an initialization step the defini-
tion of seed points where the tracking process will start. To carry out this step,
two basic alternatives can be considered: the brute-force approach that places
seeds all over the volume, and the region-based approach that places seeds in
the regions-of interest (ROIs) determined by the user. The brute-force approach
is computationally more expensive than the ROI-based seeding but it guarantees
that all tracks are detected. However, the large amount of generated fibers may
turn into cluttered images that make the interpretation and extraction of useful
information difficult.

In this thesis, we will propose a new method to automate VOI detection for
seeding. This new method will detect without user interaction the main brain
structures and will optimize the seeding process required by tractography too.

4. Propose new clustering techniques for fiber map interpretation

The DTI information combined with fiber-tracking techniques allows us to gen-
erate connectivity maps that represent the spatial organization of human white
matter [123]. Fiber-tracking maps are difficult to interpret, due to the numbers
of drawn fibers. The organization of fibers into anatomically meaningful struc-
tures instead of individual fibers is a good strategy to enhance the interpretation
of the maps.

In this thesis we will study how information theory tools can be used to define
new clustering techniques capable of automatically generating new comprehen-
sible visualizations.

5. Evaluate most of proposed techniques in a clinical environment

An important part of our research will be the evaluation of proposed techniques
in a clinical environment. This process will be done in collaboration with the
medical doctors in our research group. We will focus our interest on acute stroke
patients, and we will evaluate how the proposed techniques could be used in
the diagnosis of this pathology. To carry out this process we will integrate all
the developed techniques in a common framework denoted DTIWeb. Such a
framework will provide all required functionalities for diagnosis from DTI data.

1.3 Thesis Outline

Besides this introductory chapter, this document is organized into the following six
chapters.
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• Chapter 2. Background

In this chapter, the background on DTI required for the comprehension of the
main issues that are going to be analyzed in the scope of the thesis will be in-
troduced. First, the DTI imaging techniques will be briefly reviewed and, then,
computation and visualization techniques will be surveyed. To end the chap-
ter, the main information theory tools, that will be used in the thesis, will be
described.

• Chapter 3. Anisotropy measures

In this chapter, we describe how our first objective is reached. A new anisotropy
measure derived from compositional data distance will be presented. We show
how this measure detects white matter more accurately than classical ones and
makes its interpretation easier.

• Chapter 4. Fiber tracking

The principles and the state of the art of fiber tracking techniques will be an-
alyzed. A new tracking method based on stochastic and information-theoretic
methods will be proposed. In this chapter, our second objective, is reached.

• Chapter 5. Automatic VOI detection for DTI seeding

In this chapter, the third and fourth objectives are reached. An automatic VOI
detection approach accompanied with an optimized seeding process that allow
us to generate fiber bundles with the minimal user interaction, will be proposed.

• Chapter 6. Software: DTIWeb

The processing and visualization framework developed in the context of this the-
sis to integrate all evaluated and developed techniques, will be described. In this
chapter, we will present the software tool used to reach our last objective.

• Chapter 7. Conclusions

Finally, conclusions of the thesis and future work will be presented. In addition,
the publications related with this thesis will be summarized.



CHAPTER 2

Background

Recently, theoretical and experimental bases of DTI have advanced significantly and
the importance of this MRI modality has also grown considerably. DTI describes lo-
cal water diffusion within tissues from measurements of molecular displacement in
several directions with a MR device. Currently, the most common DTI application is
in the study of brain white matter anatomy and different neurological pathologies
in which an accurate anatomic knowledge of the white matter is needed. Despite
the advantages of this technique, there are still many factors that make its appli-
cation difficult to use in daily clinical practice. The purpose of this chapter is to
introduce the background on DTI and the information theory tools required for the
comprehension of the main issues that are going to be analyzed in this thesis.
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2.1 Introduction

Our brain is composed of approximately 100 billion nerve cells, called neurons. Each
neuron communicates with other neurons that form networks among the cells. The
specialized networks in the white matter are called fiber tracts. These tracts define a
very complex architecture that allows for the communication to and from the grey mat-
ter and to and from other areas of the body. Over the years, many different studies have
been carried out to describe the anatomy of these brain connections. These are based
on fiber dissection and histology of post-mortem brains or invasive studies of primates,
amongst others [160, 148, 106, 140, 61]. Classical medical imaging techniques, such
as magnetic resonance imaging (MRI) or functional-MRI, have also played a decisive
role in these studies, although these techniques are not capable of reproducing tract
information and only can provide tissue information.

In the last decade, with the advent of DTI [16, 17], a new era in the study of brain
anatomy has started. DTI is an MRI technique capable of capturing the displacements
of particles that are subject to Brownian motion within brain tissues. These displace-
ments give us information about the structural organization and orientation of white
matter fibers and, through the technique of tractography, the trajectories of cerebral
white matter tracts can be obtained.

The anatomical information provided by DTI is oversimplified compared to the un-
derlying neuroanatomy. However, this technique is an important tool to view anatomi-
cal structures since it allows in vivo identification of white matter regions, and, should
provide new insights into white matter integrity, fiber connectivity, surgical planning,
and patient prognosis.

This chapter has been structured as follows. In Section 2.2, the theoretical bases
of DTI imaging are reviewed. Section 2.3 presents the different visualization tech-
niques related with DTI data. Section 2.4 describes in a summarized manner the main
open problems related to DTI processing and visualization. Section 2.5 introduces
information-theoric tools that will be used in the scope of the thesis. Finally, Sec-
tion 2.6 presents a brief summary.

2.2 Diffusion Tensor Imaging (DTI)

DTI is an MRI technique that can be used to characterize the orientational properties
of the diffusion process of water molecules. Molecular diffusion refers to the random
translational motion of molecules (Brownian motion) that results from the thermal
energy carried by these molecules [100]. The displacement of the molecules varies
according to the features of the analyzed environment. Basically, two diffusion move-
ments can be found, isotropic and anisotropic (see Figure 2.1). Isotropic movement
corresponds to environments without a concentration gradient, where the probabil-
ity of displacement of molecules is equal in all directions, and the mean molecular
displacement and the flux are zero. The random mobility of these molecules is statis-
tically well described by a Brownian motion. Anisotropic movement corresponds to a
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Figure 2.1: Diffusion movements of a molecule in an isotropic environtment (left) and
anisotropic one (right).

medium with highly oriented barriers where the tortuosity is different for each direc-
tion in the space leading to an anisotropic diffusion. Water molecules located in fiber
tracts are more likely to be anisotropic, since they are restricted in their movement
as they move more in the dimension parallel to the fiber tract rather than in the two
dimensions orthogonal to it, whereas water molecules dispersed in the rest of the brain
have less restricted movement and therefore show more isotropy.

The diffusion is a three-dimensional process and the anisotropy is the character-
istic of a medium in which physical properties have different values when measured
along axes oriented in different directions. To capture diffusion information two main
parameters are considered: diffusion anisotropy, which represents the amount of direc-
tionality, and orientation of the axis, along which water molecules move preferentially.
The diffusion coefficient measured by MRI is also called apparent diffusion coefficient
(ADC). The diffusion anisotropy might result from the presence of obstacles that limit
molecular movement in some directions. ADC depends on the interactions of the dif-
fusing molecules with the cellular structures over a given diffusion time and is not a
measure of the intrinsic diffusion coefficient.

2.2.1 Acquisition Process

DTI captures information of diffusion in several directions and reduces it to a ten-
sor that describes the local water diffusion at voxel level. To measure diffusion, the
Stejskal-Tanner imaging sequence is used [153]. This sequence uses two strong gra-
dient pulses, symmetrically positioned around a 180◦ refocusing pulse, allowing for
controlled diffusion weighting (see Figure 2.2). The first gradient pulse will invert this
phase shift, thus canceling the phase shift for static spins. Spins, having completed a
change of location due to Brownian motion during the time period (∆ in Figure 2.2),
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Figure 2.2: The Stejskal-Tanner imaging sequence.

will experience different phase shifts by the two gradient pulses, which means they are
not completely refocused and consequently will result in a signal loss.

The dependence of the observed echo signal intensity S on diffusion weighting is
given by

S = S0e−bD, (2.1)

where the constant b is the diffusion-weighting factor, S0 is the signal obtained
without diffusion sensitizing gradient (with b = 0), and D is the water diffusion con-
stant, also known as the apparent diffusion coefficient (or ADC value, previously in-
troduced), which can be calculated from Equation 2.1 by performing a logarithmic
transformation:

D = ADC =
ln(Sk

S0
)

b
. (2.2)

For rectangular gradients, the diffusion-weighting factor b is defined by

b = γ2δ2G2(∆−
δ

3
), (2.3)

where γ is the gyromagnetic ratio, δ and G the duration and the amplitude of the
diffusion sensitizing gradient pulse along a given direction, and ∆ is the time interval
between the diffusion gradient pulses.

To calculate the diffusion tensor for the case of anisotropic diffusion, Equation 2.1
has to be re-written in a more general form:

S = S0e−bg t Dg = S0e−b
∑

i, j=x ,y,z

(gi g j)Di j , (2.4)

where g represents the normalized diffusion sensitizing gradient vector, i.e., gk =
(gx , g y , gz)t =

G
|G| , and D̄ is a 3x3 diffusion tensor:

D̄ =







Dx x Dy x Dzx

Dx y Dy y Dz y

Dxz Dyz Dzz
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Figure 2.3: Sequence of DTI images S0, S1, ..., S6 and its corresponding gradients gk

(k = 0,...,6).

that has six degrees of freedom (the number of independent coefficients in a matrix
representation). To estimate the tensor, at least six measurements (taken from different
non-collinear gradient directions) are needed in addition to the baseline image data S0.
Thus, for each acquisition plane in the data set, seven images need to be collected with
different diffusion weighting and gradient directions. Figure 2.3 shows an example of
such data with the corresponding gradient directions, where S0, S1, ...S6 represent the
signal intensities in the presence of gradients gk (k = 0,...,6). S0 is the signal intensity
in the absence of a diffusion-sensitizing field gradient (|g0|= 0), giving the baseline to
which the remaining measurements can be related.

Performing the natural logarithm on both sides of the Equation 2.4, re-arranging
the terms, and introducing the following two vectors [16]

D̄ = [Dx x Dy y Dzz Dx y Dyz Dy x]
t (2.5)
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and

ḡk = [g
2
x g2

y g2
z 2gx g y 2g y gz 2g y gx]

t , (2.6)

we have

∑

i, j=x ,y,z

Di j = ḡ t
k·D̄ = ln

(Sk/S0)
b

= ADC . (2.7)

By considering the different gradients gk (k = 1,...,K) and the corresponding ac-
quired signals Sk, we obtain a system of equations from which the tensor can be calcu-
lated:

ḡ t
k·D̄ =

1

b
(ln(S0)− ln(Sk)) k = 1...K . (2.8)

This system can be rewritten compactly in a matrix form:

A·D̄ = B, (2.9)

where A is a Kx6 matrix

A=













ḡ t
1

ḡ t
2
...

ḡ t
k













(2.10)
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(2.11)

and B is a K-dimensional ADC vector

B =
�

ADC1 ADC2 · · · ADCK

�t
. (2.12)

The matrix A only depends on the diffusion gradient directions, while the vector B
is composed of ADC maps derived from each of the diffusion directions. The solution
D̄ of the equation system is obtained by multiplying the pseudo-inverse of the matrix
A, denoted as A†, and vector B:

D̄ = A†B = (AT A)−1AT B. (2.13)

Finally, we obtain the diffusion tensor D̄, which is described in each voxel by a
positive second-order diagonally symmetric tensor [19]:

D̄ =







Dx x Dy x Dzx

Dx y Dy y Dz y

Dxz Dyz Dzz









2.2. Diffusion Tensor Imaging (DTI) 11

The diagonal elements of D̄, (Dx x , Dy y and Dzz), represent the ADC along the x ,
y and z axes. The off-diagonal elements represent the correlation for the diffusion in
perpendicular directions.

2.2.1.1 Diffusion Tensor Eigenvalues and Eigenvectors

By diagonalizing D̄ we can determine the main diffusion directions in every voxel.
Since second order tensors can be represented by a matrix, they can also be decom-
posed into eigenvalues and eigenvectors. An eigenvector of the tensor D̄ and its corre-
sponding eigenvalue λ have the property that the inner product of the original tensor
and the eigenvector results in a vector that is a scalar multiple of the original eigenvec-
tor:

D̄x = λi x x 6= 0. (2.14)

The solutions λi of Equation 2.14 are the eigenvalues of D̄. The vectors −→ei associ-
ated with each eigenvalue are the eigenvectors of D̄. Since the null vector is omitted,
Equation 2.14 can be re-written as (D̄ − λi I)x = 0, where I represents the identity
matrix. This implies that the matrix D̄ − λI is singular and its determinant is zero,
which corresponds to the eigenvalues being the solutions to the secular equation:

|D̄−λi I |= 0. (2.15)

For each eigenvalue λi , the corresponding eigenvector −→ei can be found by solving

(D̄−λi I)
−→ei = 0. (2.16)

The eigenvector-eigenvalue pairs together represent the information available in
the original tensor. The tensor can be written as a weighted sum of the outer products

3
∑

i=1

(λi D̄ =
−→ei
−→ei

T ). (2.17)

In general the eigenvalues may be real or complex. However, for a real symmetric
tensor, like D̄, the eigenvalues are always real and the eigenvectors will be orthogonal
to each other.

The diffusion tensor and its eigenvalues may be used to express the degree of dif-
fusion anisotropy present in the tissue of interest. The eigenvector corresponding to
the largest eigenvalue will point to the direction of the largest diffusion coefficient and
the vector with the smallest eigenvalue points to the smallest diffusion coefficient direc-
tion. Eigenvalues and eigenvectors are the base of different DTI visualization strategies
(see Section 2.3).

To end this section, in Figure 2.4 we summarize the main steps that lead from the
DTI acquisition process to a visual representation. First, the patient is introduced in the
MRI device and, according to the defined protocol, images for each defined gradient
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Figure 2.4: Schema of all the steps needed from the acquisition of the DTI data to
its visualization. (a) Data acquisition process, (b) representations of the images in
a voxel model, (c) data processing to obtain the diffusion tensor, and (d) DTI data
visualization.

are generated. These images are stored in a DICOM1 file composed of a header file with
patient and device information, and, raw data with all the images. To process these
images, they are generally represented in a voxel model. For each voxel the diffusion
tensor, from which eigenvalues and eigenvectors are obtained, can be calculated. To
interpret and represent the DTI information, processing and visualization techniques
can be applied (see Section 2.3).

2.2.2 Processing DTI Data

DTI data represents information at voxel level. To interpret this data and obtain the
white matter fiber distribution, several strategies can be applied [12]. These can be
grouped into two main groups (see Figure 2.5). The first one is formed by tensor-based
approaches which reduce the information acquired by the MRI device to a diffusion
tensor as described in the previous section. Eigenvectors and eigenvalues are the main
components to be taken into account for computations. The second group is formed by
approaches that are based on the orientation distribution function (ODF). This covers
a variety of methods that reconstruct different functions of the sphere and use them as
estimates of the ODF .

We review below the most representative methods of each group.

2.2.2.1 Tensor-Based Processing Techniques

The most representative tensor-based techniques are:

• Single tensor approach

The single tensor approach considers for each voxel, all the diffusion directions
needed to calculate the corresponding ADC ’s [16]. These ADC ’s are used to

1DICOM (Digital Imaging and Communications in Medicine) is a standard for handling, storing, print-
ing, and transmitting information in medical imaging. It includes a file format definition and a network
communications protocol.
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Figure 2.5: Diagram of diffusion tensors. (a) The diffusion tensor is shown as an
ellipsoid (an isosurface) with its principal axes along the eigenvectors (e1,e2,e3). (b)
The diffusion tensor is shown as an orientation distribution function (ODF).

fit a 3D ellipsoid or a single tensor model into the voxel (see Figure 2.5(a)).
The single tensor model reflects the shape of a Gaussian distribution p, since p
has approximately ellipsoidal contours, and the principal direction gives a good
estimate of the regions where there is only one fiber population, because fibers
are aligned along a single axis.

The single tensor approach is the most popular one. A main feature of this tech-
nique is that it has a lowest computational cost.

Its main limitation is that it only provides a good estimate of the mean fiber
direction, and does not reflect the full complexity of the fibers configuration,
which can lead to fiber tract reconstructions vulnerable to severe artifacts.

• Multi-tensor approach

The multi-tensor model [159, 129] is a generalization of the single tensor ap-
proach, which replaces the Gaussian model considered in the single tensor with
a mixture of n Gaussian densities. The model assumes that the voxel contains
n distinct groups or ’populations’ of fibers and that diffusing molecules are not
exchanged between them, i. e., they stay within a single population. The ap-
proach models each population by a separate single tensor. For the multi-tensor
analysis, the data of the directional ADCs are fitted to a 2-tensor model.

The main advantage of the multi-tensor model is its capability to reveal fiber pop-
ulation mixtures that could not be visualized in the original principal eigenvector
map [159].

As a limitation, we have to mention that the multi-tensor model can become un-
stable when only one population is present and then it produces spurious results.
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2.2.2.2 Orientation Distribution Function Processing Techniques

Basically, the ODF quantifies the fraction of fiber portions contained in a voxel, while
tensor-based approaches only consider a finite number of dominant directions. An ODF
may be considered a deformed sphere whose radius in a given direction is proportional
to the sum of values of the diffusion probability density function in that direction (see
Figure 2.5(b)). Mathematically, the ODF is a probability distribution on the sphere, as
each point on the sphere corresponds to a unique orientation. The peaks of the ODF
provide estimates of the dominant fiber orientations. The diffusion ODF contains the
full angular information of the diffusion probability distribution function (PDF) and is
defined as

ψ(θ ,φ) =

∫ ∞

0

P(r,θ ,φ)dr, (2.18)

where θ and φ obey physics convention (θ ∈ [0,π],φ ∈ [0, 2π]).
The most representative ODF techniques are:

• Diffusion spectrum imaging (DSI)

DSI [169] measures the microscopic spin displacement function entirely. The
DSI is a full 3D Fourier inversion with high radial and high angular measure-
ments of the diffusion PDF .

The main advantage of DSI is that it can resolve complex intravoxel distribu-
tions of fiber orientation including white fiber intersections irresolvable by the
tensor model. For example, at intersections of white matter fascicles the DSI
exhibits multiple discrete peaks with each peak directed towards a component
fiber population.

The major limitation of DSI is given by the acquisition requirements [168, 12]
which is incompatible with clinical applications. To cover the required 3D grid of
points in q-space [15] typically requires more measurements than standard DT I
acquisition schemes. This fact restricts whole-brain studies. DSI requires very
high magnetic gradients to explore this q-space according to [168].

• Q-Ball imaging (QBI)

QBI [158] is based on a spherical tomographic inversion called the Funk-Radon
transform. QBI is a high angular resolution diffusion imaging (HARDI) tech-
nique which has been proven very successful in resolving multiple intravoxel
fiber orientations in MR images.

The main advantages of this technique are its simplicity and its ability to resolve
intravoxel fiber orientations. Both have made it popular for fiber tracking and
characterizing white matter architecture.

Although results seem correct in important brain areas, accuracy is not guaran-
teed in all the regions, and a further validation is required. Another limitation
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is that hardware requirements are high. QBI requires approximately 60 samples
on the sampling sphere and is less demanding than that of DSI .

• Spherical deconvolution (SD)

The key idea of SD [157] is to assume that all white matter fiber bundles in
the brain share identical diffusion characteristics. The diffusion-weighted signal
attenuation measured over the surface of a sphere can then be expressed as the
convolution over the sphere of a response function (the diffusion-weighted at-
tenuation profile for a typical fiber bundle) with the fiber ODF . The fiber ODF
within the voxel can therefore be obtained using spherical deconvolution.

The main advantage is that SD estimates directly the ODF within a voxel from
HARDI data without making prior assumptions regarding the number of fiber
populations present.

The main disadvantage is that a major limitation of SD is its susceptibility to
noise, which often results in spurious peaks in the recovered fiber ODF . Several
regularization techniques have been developed to avoid these peaks [157, 81].

• Diffusion orientation transform (DOT)

DOT [126, 127] describes how the diffusivity profiles ADC can be transformed
into probability profiles PDF . From this PDF diffusion, the ODF can be obtained
by integrating the radial component of the PDF . The key idea is to note that the
Fourier transform can be done using the Rayleigh expansion of a plane wave in
spherical coordinates.

The main advantage of DOT is that it is robust and improves the reliability of
tractography schemes making the correct identification of neural connections
possible.

DOT makes no assumption about the signal attenuation and has some acquisi-
tion requirement that make its daily uses in clinical practice difficult. As in the
case of QBI , DOT requires approximately 60 samples on the sampling sphere.

• Persistent angular structure MRI (PAS)

The PAS method reconstructs the radially persistent angular structure [74], p̂, of
the diffusion PDF . Formally, the PAS is the function p̂ of the sphere that, when
embedded in three-dimensional space on a sphere of radius r, has the Fourier
transform that best fits the normalized measurements. PAS is a projection of
p̂ onto the sphere designed to have a similar structure to the ODF , assuming
independence of the angular and radial structure of the diffusion PDF .

The method is accurate and produces ODFs that look sharper than the QBI esti-
mation of the diffusion ODF .

Like the DOT , the PAS is a property of p̂ rather than the true ODF and the precise
relationship is unclear. Non-linear optimization and numerical integration make
the PAS algorithm much slower than others. The reconstruction is extremely
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heavy computationally and can take several hours/days to reconstruct a full brain
dataset of PAS functions.

To end this section, in Table 2.1 we summarize the main features of the related
strategies [81, 12]. From left to right, in each column we present:

• Acquisition requirements, that evaluates the complexity of acquisition process
based on the number of different gradient directions needed, and consequently
the time required to obtain the input raw DTI data. Acquisition times have been
obtained considering a thickness of 3 mms and with a 3.0 Tesla MRI device [62].
Methods are classified as high, if more than 200 measurements are needed (25-
60 minutes), medium, if between 200 and 60 required measurements are needed
(10-20 minutes), and, finally, low, if less than 60 measurements are needed (3-6
minutes).

• Computation time, that describes the difference of time required to obtain pro-
cessed DTI data of a full brain. Methods are classified as: high, if hours to days
are required, medium, if minutes to hours are required, and finally, low, if sec-
onds to minutes are required.

• Accuracy, that evaluates the good-performance of the processed DTI data. Meth-
ods are classified as: high, if almost all fiber distribution are well-described,
medium, if a great number of fiber distribution are detected correctly, and, fi-
nally, low, if only main fiber distributions are obtained.

• Interaction, that measures the level of user interaction needed by the method.
Methods are classified as: high, if a great number of values and parameters can
be selected, medium, if some parameters can be changed, and, finally, low, if
none or few parameters can be tuned.

METHOD
ACQUISITION

REQUIREMENT

COMPUTATION

TIME
ACCURACY INTERACTION

Single Tensor [16] low/medium low low/medium low
Multi-Tensor [159, 129] low/medium medium medium low

DSI [169, 168] very high medium high medium
QBI [158] medium/high low medium/low medium
SD [157] medium medium medium low

DOT [126, 127] medium/high medium medium medium
PAS [74] medium high high low

Table 2.1: Main features of DTI processing techniques.

In this thesis we are going to consider single tensor techniques, taking the diffusion
tensor defined at each voxel as the key data to deal with.
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2.3 Visualization

Visualization techniques are fundamental for DTI interpretation. They generate im-
ages representing DTI processed data. Focusing in tensor-based processing techniques,
most of the visualization strategies that have been proposed are based on reducing the
dimensionality of the data by extracting relevant information from the diffusion tensor.
Following the classification proposed by Vilanova et al. [164], this data can be reduced
to 1D, 2D or 3D and hence 1D, 2D and 3D visualization strategies can be considered. In
this section, the main approaches that have been proposed for each of these categories
are presented.

2.3.1 1D Visualization Techniques

1D visualization techniques generate 2D images from 1D scalar values or indices ob-
tained from tensor within voxels. These scalar values are visualized using a grey or a
color scale 2D images. Currently, such an approach is the most used in clinical practice
since grey and color coded images are simple and easy to interpret.

The different indices that have been proposed [17, 14, 19] are obtained from dif-
fusion tensor eigenvalues or eigenvectors. The challenge has been the definition of a
scalar index representing a meaningful physical quantity, maintaining invariance with
respect to rotation and translation, and reducing the effect of noise. Below we present
some of the most popular indices that have been proposed:

• Trace, that can be seen as the orientational diffusivity and summarizes the total
diffusivity [17]:

trace= λ1+λ2+λ3. (2.19)

• Mean Diffusivity (〈λ〉), that characterizes the overall mean-squared displacement
of molecules and the overall presence of obstacles to diffusion [19]:

〈λ〉=
trace

3
. (2.20)

• Fractional Anisotropy (FA), that measures how far the tensor is from a sphere [19]:

FA=

p
3
p

2

p

(λ1− 〈λ〉)2+ (λ2− 〈λ〉)2+ (λ3− 〈λ〉)2
p

(λ1)2+ (λ2)2+ (λ3)2
. (2.21)

• Relative Anisotropy (RA), that measures the ratio of the magnitudes of the anisotropic
and isotropic parts of the diffusion tensor [19]:

RA=

p
6

6

p

(λ1− 〈λ〉)2+ (λ2− 〈λ〉)2+ (λ3− 〈λ〉)2

〈λ〉
. (2.22)
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• Volume Ratio (VR), that measures the ratio between the ellipsoid volume and the
sphere volume, calculated from mean diffusivity [14]:

VR=
λ1λ2λ3

〈λ〉3
. (2.23)

In Figure 2.6 visual representations of the indices are shown. RGB images provide
more information than grey scale ones, since they use color to represent the direction-
ality of the fibers. In this way, red regions denote left-right fibers, blue regions denote
head-feet regions, and green regions, denote anterior-posterior fibers.

A more detailed description of these techniques is given in Chapter 3, where a new
set of anisotropy scalar indices will be proposed.

2.3.2 2D Visualization Techniques

The main drawback of 1D visualization techniques is the fact that only one part of
DTI data is represented in the image and hence important information is lost. To
overcome this limitation, 2D visualization techniques are proposed. These techniques
use a graphical representation of eigenvalues (λi) and eigenvectors (−→ei ) to express the
degree of diffusion anisotropy present in the tissue of interest. This information can
be viewed as an ellipsoid [17, 14] (see Figure 2.7), with the length of principal axes
described by the tensor eigenvalues and the directions given by the tensor eigenvectors
and the length to eigenvalues (see Figure 2.7). Depending on λ values, three basic
configurations can be considered [173]:

• Linear (or prolate), when the diffusion is only along one direction (i.e., λ1 >>

λ2
∼= λ3).

• Planar (or oblate), when the diffusion is restricted to the plane defined by the
two equal eigenvalues (i.e., λ1

∼= λ2 >> λ3).

• Spherical, when the diffusion is isotropic (i.e., λ1
∼= λ2

∼= λ3).

Tensor shapes are described by a combination of linear, planar, and spherical mea-
sures, and anisotropic measures are interpreted by considering how much the diffusion
ellipsoid deviates from the isotropic case represented as a sphere (Figure 2.8).

Obviously not all configurations can be reduced to one of these three basical config-
urations. However, there is a continuum of classifications within these extremal cases.
To quantify this continuum, Westin [174] introduced three anisotropy coefficients, cor-
responding to linear diffusion (Cl), planar diffusion (C p), and spherical diffusion (Cs)
cases. These coefficients are obtained as follows:

Cl =
λ1−λ2

λ1+λ2+λ3
, (2.24)

C p =
2(λ2−λ3)
λ1+λ2+λ3

, and (2.25)
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FA RA VR

Main
Direction

FA weighting
Main Direction

Figure 2.6: Visualization of 1D anisotropy indices. Grey images are obtained by
assigning a grey codification to the anisotropy measure. RGB images are obtained by
assigning red to regions that denote left-right fibers, blue to regions that denote head-
feet regions, and green to regions that denote anterior-posterior fibers.
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Figure 2.7: Diffusion ellipsoid. The major axes are given by the diffusion tensor eigen-
vectors.

Figure 2.8: From left to right, graphical representation of linear, planar and spherical
diffusion.
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Figure 2.9: Tensor shapes with cuboids, cylinders, and ellipsoids.

Cs =
3λ3

λ1+λ2+λ3
. (2.26)

The three indices fall in the range [0,1], and by design

Cl + C p+ Cs = 1. (2.27)

The three metrics Cl, C p, and Cs parameterize a barycentric space in which the
three extremal shape (linear, planar and spherical) are the corners of a triangle, as
shown in Figure 2.9. Although ellipsoids are the most common glyphs applied in 2D
visualization techniques, there are other glyphs that can be applied as cylinders and
cuboids (see Figure 2.9). In Figure 2.10, visualizations of DTI data using the cuboid
and ellipsoid glyphing techniques are shown. In this case, glyphs are colored following
the RGB 1D map, where RGB values are assigned to the main eigenvector, red regions
denote left-right fibers, blue regions denote head-feet regions, and green regions de-
note anterior-posterior fibers.

The advantage, beside its simplicity is that this approach can be very useful for
displaying detailed information in a small local area. The exploration of large areas or
volumes is difficult due to glyph overlaps that can generate ambiguities in the interpre-
tation.

More advanced techniques, such as superquadric tensor glyphs [88] or glyph pack-
ing [89] overcome these limitations. Superquadric tensor glyphs have the necessary
symmetry properties of ellipsoids and, if it is appropriate, also imitating cuboids and
cylinders to better convey shape and orientation. Glyph packing uses a particle system
with anisotropic potential energy profiles to arrange glyphs into a dense pattern that
displays some of the visual continuity of texture-based visualizations, while maintain-
ing the ability to discern the full tensor information at each glyph.

2.3.3 3D Visualization Techniques

1D and 2D visualization techniques only represent a part of the information obtained
from DTI. Moreover, they are not capable of reproducing fiber tracts or generate a com-
prehensive view of the whole brain model. To overcome this limitation, 3D visualiza-
tion techniques have been proposed. These do not consider the information distributed
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Figure 2.10: DTI 2D visualizations considering cuboids and ellipsoids as glyphs. RGB
colors are assigned according to main eigenvector direction.

Figure 2.11: Two fiber tracking examples.

onto a single plane, but the information of the 3D model. The basic approaches reduce
the tensor data created from the DTI model to a vector field where the vector direction
is given by the maximum eigenvector obtained from the tensor (see Section 2.2.1.1).
Then, tracking techniques can be applied to generate paths representing fiber tracts
and reproduce in this way white matter fiber maps (see Figure 2.11).

Currently, fiber tracking techniques and the development of strategies to improve
the interpretation of white matter fiber maps are two important focuses of research
and are also analyzed in this thesis.

2.3.3.1 Fiber Tracking Techniques

The most popular fiber tracking technique is the streamline approach [18, 118]. Stream-
line algorithms assume that the direction of a fiber is collinear with the maximum dif-
fusivity direction given by the main eigenvector of tensor D. To create the white matter
connectivity map, a set of tracking points or seeds are defined. Then, for each seed,
a pathway that follows the maximum diffusivity direction is traced until the boundary
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Figure 2.12: Example of different partial volume effects, from left to right: kissing
fibers, crossing fibers, and branching fibers.

of the data set is reached or the value of certain measures at the current curve point
lies outside a previously specified admissible range of values. Hyperstreamlines are ex-
tensions of streamlines that employ all eigenvalues and eigenvectors to represent the
fibers [184].

These techniques can be grouped into different categories: deterministic, that fol-
lows the major diffusion tensor eigenvector [39, 170, 96, 110], non deterministic,
that randomly perturbs the main fiber direction at each location [97, 25, 64, 138],
probabilistic, that calculates a spatial probability distribution of connectivity from the
seed point [90, 129, 22, 20], and finally, global optimization algorithms, that gener-
ate the most optimal path between two brain regions by minimizing a cost function
that usually describes the smoothness of the path and the goodness of fit of the path
configuration to the underlying diffusion signal [76, 63, 143, 177].

Despite the popularity of fiber tracking techniques, these present several limitations
that require further investigation and developments. Next, some of them are described:

• A first limitation of streamline methods arises when the tensor does not have a
strong directional component because of image noise [96], partial volume ef-
fects [7, 118, 33], or crossing, branching or kissing fiber configurations (see
Figure 2.12). In these cases, the direction that the fiber has to follow is not
clear. To overcome this limitation, fiber tracking algorithms based on high an-
gular resolution acquisitions [169, 159, 129, 74, 62], regularization [25], tensor
deflection [99, 170], and stochasticity [97, 25, 64] have been proposed.

• The seeding process can also be another limiting factor of the approach [36, 35].
In the majority of fiber-tracking algorithms, the user determines where the seeds
have to be placed based on anatomical criteria. However, in the case of unhealthy
people, part of the anatomical information can be unclear making location of
seeds difficult and leading to erroneous trackings or creating maps that represent
only a part of the information. To solve this problem, the seeds can be placed
over the whole volume. This solution is computationally expensive and generates
cluttered images that make the extraction of useful information difficult. Another



24 Chapter 2. Background

Figure 2.13: Fibers of a human brain created by a fiber tracking algorithm. On the
left, fibers of well-known areas grouped by colors, and, on the right, whole brain fiber
tracking.

strategy is to place seeds in pre-defined regions of interest. In this case, the
reproducibility of the reconstructions is limited due to the high degree of user
interaction.

• The interpretation of generated white matter maps is also a difficult task. It is not
clear how to correlate obtained data with 3D white matter atlas. In practice, this
means that there are no standard methods to determine how fiber information
has to be given to experts.

To enhance fiber maps interpretation, different strategies that group fibers into
anatomical bundles have been proposed (see Figure 2.13). At a broad level, these
methods can be divided into the three following categories:

– Interactive segmentation (also known as virtual dissection [32]), that groups
fiber paths driven by regions of interest defined by the user based on his
knowledge [21]. Based on this technique fiber tract atlas [117], several
studies in humans [131, 121], and animals [37] have been performed.

The manual placement of ROIs is a simple but incomplete, time consuming
and subjective segmentation technique [85], owing to the complex shapes
of most tracts. Complete segmentation by hand is extremely difficult and its
reproducibility is limited as has been demonstrated by Clayden et al. [36,
35].

– Automatic clustering methods, that group fibers, usually obtained from a
whole brain fiber tracking, according to a similarity criterion and a cluster-
ing algorithm [147, 51, 27, 26, 186, 187]. Some proximity measures are
used to establish this relationship between fibers [47, 185, 27, 26, 42]. The
proximities are compiled in a proximity matrix, in which rows and columns
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correspond to fibers. The proximity matrix is the input to a clustering algo-
rithm [72, 73].
These methods generate different groups of fibers. It is unclear which clus-
tering methods and parameter settings give the best results. In [113] we
can find a good evaluation and review of some of the most significant auto-
matic fiber clustering methods for DTI.

– Automatic atlas-based segmentation incorporates brain prior knowledge,
obtained from atlas or parcellation maps, to white-matter fiber tracking.
Several approaches have been proposed [109, 122, 123, 188, 189, 102].
For this segmentation, we need to build up a white-matter atlas before, and
then perform non-linear registration. Other technique is based on termina-
tion of the fibers. In this case, we can use a grey matter anatomical labeling
to guide the clustering process of white-matter fibers.

2.4 DTI Challenges

DTI processing is a very active area of research involving many scientific fields. Contin-
uous progress is made in order to acquire data with more resolution, to reduce image
acquisition time [8, 190], or to reduce noise and distortion effects [105, 119]. Different
methods to better reconstruct and interpret DTI data are proposed [12]. DTI medical
applications are also enlarged and better diagnosis and treatments can be made thanks
to DTI information. However, despite these advances, there are still many different
aspects that need further development. In this section we want to review the ones that
can influence our results.

2.4.1 Noise

One of the main limitations of DTI is caused by noise and artifacts, which degrade the
quality of MR images causing poor estimation of dominant diffusion directions in DTI.

There are different sources of noise. Amongst them, the thermal noise, that arises
from the random fluctuation of the currents in the body and the detection system [40,
134]. The thermal noise is an independent source from the MRI signal that also affects
DTI measurements. Another noise effect is the eddy current produced by the large and
rapidly switched magnetic field gradients during a pulse sequence [77]. Eddy currents
have two undesirable effects [84]: first, the field gradient at the sample differs from
the prescribed field gradient, and second, a slowly decaying field during readout of the
image causes geometrical distortion of the diffusion weighted images.

Recently, a huge number of articles on noise artifacts and denoising methods have
been published [40, 77, 9, 66, 96, 67, 56, 33, 84].

2.4.2 Partial Volume Effect

The partial volume effect is the loss of contrast between two adjacent tissues in an
image caused by insufficient resolution so that more than one tissue occupies the same
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voxel. Since the organization of tissues in the brain is heterogeneous and complex,
partial volume effects may significantly influence the accuracy of DTI measurements.

In the voxels, where diffusion is high in more than one direction (i.e., where planar
anisotropy is high), the partial volume effect arises. In these areas we are not able to
determine correctly the direction of the contained fibers because different fiber patterns
can be given. In Figure 2.12, three possible ambiguous cases are illustrated. These
voxels have the same tensor D but contain different fiber distributions. To solve this
problem, several strategies have been proposed [170, 159, 118, 23, 33].

2.4.3 Visualization

The architecture of the brain is composed of millions and millions of fibers. Therefore,
their independent visualization is not possible due to the high amount of information
available in each sample point. Individual structures are virtually indistinguishable and
it is very difficult to extract any useful information. To tackle this problem, researchers
look for techniques that not only render data but also provide medical doctors with
comprehensive images. Different clustering methods have been proposed to organize
the fibers into clusters corresponding to different anatomic areas. These methods are
still in a phase of development since the automatic definition of clusters is not triv-
ial [147, 185, 186, 26, 187, 112].

2.4.4 Validation

The last topic we want to mention is related to the validation of DTI processing re-
sults. Different to other image modalities, there is not a gold standard to validate
with. Validation requires an evaluation carried out by experts, who base their opin-
ions on the knowledge acquired from the atlas generated by dissection processes. The
definition of a gold standard to automate this validation process is essential but it is
still lacking. Several research groups are working on the definition of such a brain
atlas [165, 117, 103, 189].

2.5 Information Theory Tools

In this section, we present some basic concepts of information theory required for the
comprehension of the thesis. Very good references are the books by Cover and Thomas
[43] and Yeung [182].

2.5.1 Entropy

In 1948, Claude Shannon published “A mathematical theory of communication” [146]
which marked the beginning of information theory. In this paper, he defined measures
such as entropy and mutual information2, and introduced the fundamental laws of
data compression and transmission.

2In Shannon’s paper, the mutual information is called rate of transmission.
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Figure 2.14: Grouping property of the entropy.

Shannon asked himself for a measure to quantify the information produced by an
information source. “Suppose we have a set of possible events whose probabilities of
occurrence are p1, p2, . . ., pn. These probabilities are known but that is all we know
concerning which event will occur. Can we find a measure of how much “choice” is
involved in the selection of the event or of how uncertain we are of the outcome?

If there is such a measure, say H(p1, p2, . . . , pn), it is reasonable to require of it the
following properties:

1. H would be continuous in the pi .

2. If all the pi are equal, pi =
1
n
, then H should be a monotonic increasing function

of n. With equally likely events there is more choice, or uncertainty, when there
are more possible events.

3. If a choice is broken down into two successive choices, the original H should be
the weighted sum of the individual values of H. The meaning of this is illustrated
in Figure 2.14.

On the left, we have three possibilities p1 =
1
2
, p2 =

1
3
, p3 =

1
6
. On the right, we

first choose between two possibilities each with probability 1
2
, and if the second

occurs, we make another choice with probabilities 2
3
, 1

3
. The final results have the

same probabilities as before. We require, in this special case, that H(1
2
, 1

3
, 1

6
) =

H(1
2
, 1

2
) + 1

2
H(2

3
, 1

3
). The coefficient 1

2
is because this second choice only occurs

half the time.”

After these requirements, he introduced the following theorem: “The only H satis-
fying the three above assumptions is of the form:

H =−K
∑

x∈X
p(x) log p(x), (2.28)
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where K is a positive constant”. When K = 1 and the logarithm is log2, information is
measured in bits.

Shannon called this quantity entropy. The Shannon entropy is the classical measure
of information, where information is simply the outcome of a selection among a finite
number of possibilities. Entropy also measures uncertainty or ignorance.

Thus, the Shannon entropy H(X ) of a discrete random variable X with values in the
set X = {x1, x2, . . . , xn} is defined as

H(X ) =−
∑

x∈X
p(x) log p(x), (2.29)

where p(x) = Pr[X = x], the logarithms are taken in base 2 (entropy is expressed
in bits), and we use the convention that 0 log0 = 0, which is justified by continuity.
We can use interchangeably the notation H(X ) or H(p) for the entropy, where p is the
probability distribution {p1, p2, . . . , pn}. As − log p(x) represents the information asso-
ciated with the result x , the entropy gives us the average information or uncertainty of a
random variable. Information and uncertainty are opposite. Uncertainty is considered
before the event, information after. So, information reduces uncertainty. Note that the
entropy depends only on the probabilities.

Some other relevant properties [146] of the entropy are

1. 0≤ H(X )≤ log n

• H(X ) = 0 if and only if all the probabilities except one are zero, this one
having the unit value, i.e., when we are certain of the outcome.

• H(X ) = log n when all the probabilities are equal. This is the most uncertain
situation.

2. If we equalize the probabilities, entropy increases.

When n= 2, the binary entropy (see Figure 2.15) is given by

H(X ) =−p log p− (1− p) log(1− p), (2.30)

where the variable X is defined by

X =

¨

1 with probability p
0 with probability 1− p.

If we consider another random variable Y with probability distribution p(y) cor-
responding to values in the set Y = {y1, y2, . . . , ym}, the joint entropy of X and Y is
defined as

H(X , Y ) =−
∑

x∈X

∑

y∈Y
p(x , y) log p(x , y), (2.31)

where p(x , y) = Pr[X = x , Y = y] is the joint probability.
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Figure 2.15: Binary entropy.

Also, the conditional entropy is defined as

H(X |Y ) =−
∑

y∈Y

∑

x∈X
p(x , y) log p(x |y), (2.32)

where p(x |y) = Pr[X = x |Y = y] is the conditional probability.
The Bayes theorem expresses the relation between the different probabilities:

p(x , y) = p(x)p(y|x) = p(y)p(x |y). (2.33)

If X and Y are independent, then p(x , y) = p(x)p(y).
The conditional entropy can be thought of in terms of a channel whose input is the

random variable X and whose output is the random variable Y . H(X |Y ) corresponds
to the uncertainty in the channel input from the receiver’s point of view, and vice versa
for H(Y |X ). Note that in general H(X |Y ) 6= H(Y |X ).

The following properties are also met:

1. H(X , Y )≤ H(X ) +H(Y )

2. H(X , Y ) = H(X ) +H(Y |X ) = H(Y ) +H(X |Y )

3. H(X )≥ H(X |Y )≥ 0

2.5.2 Mutual Information

The mutual information between two random variables X and Y is defined as

I(X , Y ) = H(X )−H(X |Y )
= H(Y )−H(Y |X )
= −

∑

x∈X
p(x) log p(x) +

∑

y∈Y

∑

x∈X
p(x , y) log p(x |y)

=
∑

x∈X

∑

y∈Y
p(x , y) log

p(x , y)
p(x)p(y)

. (2.34)
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Figure 2.16: Venn diagram of a discrete channel.

Mutual information represents the amount of information that one random variable,
the output of the channel, gives (or contains) about a second random variable, the
input of the channel, and vice versa, i.e., how much the knowledge of X decreases
the uncertainty of Y and vice versa. Therefore, I(X , Y ) is a measure of the shared
information between X and Y .

Mutual information I(X , Y ) has the following properties:

1. I(X , Y )≥ 0 with equality if, and only if, X and Y are independent.

2. I(X , Y ) = I(Y, X )

3. I(X , Y ) = H(X ) +H(Y )−H(X , Y )

4. I(X , Y )≤ H(X )

The relationship between all the above measures can be expressed by the Venn
diagram, as shown in Figure 2.16.

The relative entropy or Kullback-Leibler distance between two probability distribu-
tions p(x) and q(x), that are defined over the set X , is defined as

DK L(p‖q) =
∑

x∈X
p(x) log

p(x)
q(x)

, (2.35)

where, from continuity, we use the convention that 0 log0 = 0, a log a
0
= ∞ if a > 0,

and 0 log 0
0
= 0.

The relative entropy is “a measure of the inefficiency of assuming that the distribu-
tion is q when the true distribution is p” [43].

The relative entropy satisfies the information inequality DK L(p‖q)≥ 0 , with equal-
ity only if p = q. The relative entropy is also called discrimination and it is not strictly
a distance, since it is not symmetric and does not satisfy the triangle inequality. More-
over, we have to emphasize that the mutual information can be expressed as

I(X , Y ) = DK L({p(x , y)}‖{p(x)p(y)}). (2.36)
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2.5.3 Important Inequalities

Some of the above properties can be deduced from the inequalities presented in this
section [43]. In addition, these will also play an important role in obtaining funda-
mental results in this thesis.

2.5.3.1 Jensen’s inequality

A function f (x) is convex over an interval (a, b) (the graph of the function lies below
any chord) if for every x1, x2 ∈ (a, b) and 0≤ λ≤ 1,

f (λx1+ (1−λ)x2)≤ λ f (x1) + (1−λ) f (x2). (2.37)

A function is strictly convex if equality holds only if λ= 0 or λ= 1. A function f (x) is
concave (the graph of the function lies above any chord) if − f (x) is convex.

For instance, x log x for x ≥ 0 is a strictly convex function, and log x for x ≥ 0 is a
strictly concave function [43].

Jensen’s inequality: If f is convex on the range of a random variable X , then

f (E[X ])≤ E[ f (X )], (2.38)

where E denotes expectation. Moreover, if f (x) is strictly convex, the equality im-
plies that X = E[X ] with probability 1, i.e., X is a deterministic random variable with
Pr[X = x0] = 1 for some x0.

One of the most important consequences of Jensen’s inequality is the information
inequality DK L(p‖q) ≥ 0. Other previous properties can also be derived from this
inequality.

Observe that if f (x) = x2 (convex function), then E[X 2]− (E[X ])2 ≥ 0. So, the
variance is invariably positive.

If f is substituted by the Shannon entropy, which is a concave function, we obtain
the Jensen-Shannon inequality [28]:

JS(π1,π2, . . . ,πn; p1, p2, . . . , pn)≡ H

 

n
∑

i=1

πi pi

!

−
n
∑

i=1

πiH(pi)≥ 0, (2.39)

where JS(π1,π2, . . . ,πn; p1, p2, . . . , pn) is the Jensen-Shannon divergence of probability
distributions p1, p2, . . . , pn with prior probabilities or weights π1,π2, . . . ,πn, fulfilling
∑n

i=1πi = 1. The JS-divergence measures how ‘far’ are the probabilities pi from their
likely joint source

∑n
i=1πi pi and equals zero if and only if all the pi are equal. It

is important to note that the JS-divergence is identical to I(X , Y ) when πi = p(x i)
and pi = p(Y |x i) for each x i ∈ X , where p(X ) = {p(x i)} is the input distribution,
p(Y |x i) = {p(y1|x i), p(y2|x i), . . . , p(ym|x i)}, n= |X |, and m= |Y | [28, 151].

2.5.3.2 The log-sum inequality

Log-sum inequality: If a1, a2, . . . , an and b1, b2, . . . , bn are non-negative numbers, then
n
∑

i=1

ai log
ai

bi
≥ (

n
∑

i=1

ai) log

∑n
i=1 ai

∑n
i=1 bi

, (2.40)
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with equality if and only if ai

bi
= constant.

Note that the conditions in this inequality are much weaker than for Jensen’s in-
equality.

From this inequality, certain results can be derived:

1. DK L(p‖q) is convex in the pair (p, q).

2. H(X ) is a concave function of p.

3. If X and Y have the joint pdf p(x , y) = p(x)p(y|x), then I(X , Y ) is a concave
function of p(x) for fixed p(y|x) and a convex function of p(y|x) for fixed p(x).

2.5.3.3 Data processing inequality

Data processing inequality: If X → Y → Z is a Markov chain, then

I(X , Y )≥ I(X , Z). (2.41)

This result demonstrates that no processing of Y , deterministic or random, can
increase the information that Y contains about X .

2.5.4 Information Bottleneck Method

The information bottleneck method, introduced by Tishby et al. [156], extracts a com-
pact representation of the variable X , denoted by bX , with minimal loss of MI with
respect to another variable Y (i.e., bX preserves as much information as possible about
the relevant variable Y ). Soft [156] and hard [150] partitions of X can be adopted.
In the first case, every cluster x ∈ X can be assigned to every cluster x̂ ∈ cX with
some conditional probability p( x̂ |x) (soft clustering). In the second case, every cluster
x ∈ X is assigned to only one cluster x̂ ∈ cX (hard clustering).

In this subsection, we focus our attention on the agglomerative information bottle-
neck method [150]. Given a cluster x̂ defined by x̂ = {x1, . . . , x l}, where xk ∈ X , and
given probability distributions p( x̂) and p(y| x̂) defined by

p( x̂) =
l
∑

k=1

p(xk), (2.42)

p(y| x̂) =
1

p( x̂)

l
∑

k=1

p(xk, y) ∀y ∈ Y , (2.43)

the following properties are fulfilled:

• The decrease in the mutual information I(X , Y ) due to the merge of x1, . . . , x l is
given by

δI x̂ = p( x̂)JS(π1, . . . ,πl ; p1, . . . , pl)≥ 0, (2.44)

where πk =
p(xk)
p( x̂) and pk = p(Y |xk). An optimal clustering algorithm has to

minimize δI x̂ .
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• An optimal merge of l components can be obtained by l − 1 consecutive optimal
merges of pairs of components.

Dhillon et al. [45] presented a co-clustering algorithm applied to text-document
clustering that simultaneously clusters X and Y into disjoint or hard clusters. An opti-
mal co-clustering algorithm has to minimize the difference I(X , Y )− I(bX , bY ).

2.6 Summary

In this chapter, we have introduced the fundamental basis of DTI and information
theory. DTI data describe local water diffusion, calculated for each voxel, from mea-
surements of molecular displacement in several directions with a MR device. The main
diffusion directions in every voxel can be determined and, then, a three-dimensional
vector field map representing fiber orientation is obtained. By extracting and manipu-
lating this information from each voxel, we can use a set of 1D, 2D or 3D visualization
techniques over the DTI data obtained. Despite the large number of algorithms dealing
with the visualization of DTI data, a lot of research can be done to improve the per-
formance, accuracy, and robustness of these techniques. In this chapter, we have also
reviewed the main information theory concepts since we aim to apply information-
theory tools for developing new approaches in DTI.





CHAPTER 3

Anisotropy measures

Anisotropy measures reduce the information of the tensor to a single scalar value.
In this chapter, our purpose is to evaluate diffusion anisotropy from diffusion ten-
sor imaging using new measures derived from Hellinger divergences and from com-
positional data distances. The evaluation was done using the 3 Phase-plot. The
measures were compared with regard to their sensitivity to detect white and grey
matter changes on human brain. The proposed compositional Kullback-Leibler
Anisotropy and the classical Fractional Anisotropy showed a similar behavior, al-
though Kullback-Leibler Anisotropy detects the transitions between white and grey
matter more accurately, and shows a better discrimination in areas with great con-
fluence of fibers.



36 Chapter 3. Anisotropy measures

3.1 Introduction

DTI characterizes the water diffusion in tissue on a voxel by voxel basis representing
the local diffuse behavior of water in a voxel by a second order symmetric positive ten-
sor D. Since the advent of DTI, its processing, analysis and visualization have become
main focuses of research in medical imaging. The challenge is on the development of
strategies to extract and visualize information from the tensor data in a comprehen-
sive manner, i.e., using local and global information simultaneously. The amount of
information contained in datasets exacerbates the task of effectively communicating
information to use in diagnosis.

To tackle this problem, some authors [19, 128, 39, 174] proposed to reduce the
information of the tensor to a single scalar value representing an anisotropy measure
1D. In this way, classical visualization techniques could be applied and DTI graphical
representations could be obtained. Since the complete description of diffusion tensor
cannot be fully characterized by a simple scalar quantity, the obtained visualizations
represent only a small part of the tensor information. However, these images are easily
interpreted and used as a first step towards the identification of normal and patholog-
ical brain tissue.

In this chapter, we will focus on measures that reduce the 6D information of the
tensor to a 1D scalar value. Our goal is to propose new measures and compare them
with the classical ones. We will consider measures from two different families, on the
one hand, the Matusita and the Logarithmic anisotropies, that can be derived from
the family of Hellinger divergences, and, on the other hand, the Aitchison and Com-
positional Kullback-Leibler anisotropies, which can be deduced from a compositional
approach [3, 107]. To evaluate and compare the measures, we will use the ternary
diagram, also referred to as a reference triangle or a barycentric coordinate space [2].
In the context of DTI data, this graphical representation was first proposed by Alexan-
der et al. [6]. In this chapter, we extend their work with a detailed description of the
foundations behind it. As a result, we obtain a framework that can be used to evaluate
any 1D measure extracted from a tensor. Finally, we give a detailed description of the
study that has been carried out to evaluate the different measures on several volumes
of interest located in white matter (WM), grey matter (GM), and cerebrospinal fluid
(CSF) of five normal volunteers. The obtained results will show the good-performance
of the Kullback-Leibler measure with respect to classical measures.

This chapter has been structured as follows. Section 3.2 presents different anisotropy
measures and the ternary diagram. Section 3.3 proposes new anisotropy measures.
Section 3.4 describes our validation methodology. Section 3.5 and Section 3.6 show
the results obtained and discussion, respectively. Finally, Section 3.7 presents the con-
clusions.
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3.2 Background and Related Work

In this section, we introduce the most basic anisotropy measures and the concept of
the 3 Phase-plot (3P-plot).

3.2.1 Diffusion Anisotropy Measures

As we have presented in the previous chapter, the diffusion tensor D can be described
by a 3×3 symmetric matrix, where Di j is the diffusion coefficient measured in the ijth
direction:

D=







Dx x Dx y Dxz

Dy x Dy y Dyz

Dzx Dz y Dzz







Diagonalization of D provides three eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0 and three eigen-
vectors e1,e2 and e3 that define the directions of main, medium and minimum diffu-
sivity, respectively [16]. Based on λ1, λ2 and λ3, different measures to quantify the
diffusion tensor properties have been proposed [134, 39, 174, 162]. In Table 3.1 we
summarize the most representative scalar indices: Trace, Mean Diffusivity (〈λ〉), Frac-
tional Anisotropy (FA), Relative Anisotropy (RA), Volume Ratio (VR), linear coefficient
(Cl), planar coefficient (C p), and spherical coefficient (Cs). For each index we describe
the equation that defines it and also its interpretation.

In medical environments, the most common strategy to interpret these measures
are grey and color coded images generated by mapping measure values to intensities.
A main limitation of scalar measures is that they represent only part of the tensor infor-
mation. As we have seen in Section 2.3.2 and Section 2.3.3, more detailed information
can be obtained using 2D and 3D visualizations techniques.

3.2.2 From the Barycentric Diagram to the 3 Phase-plot

The shape of a diffusion ellipsoid is inherently related to the eigenvalues and eigen-
vectors of the diffusion tensor since the three principal radii are proportional to the
eigenvalues and the axes of the ellipsoid aligned with the three orthogonal eigenvec-
tors of the diffusion tensor [171]. In this context, we can define the relative importance
of each ellipsoid axis as

pi =
λi

trace
, i = 1,2, 3, (3.1)

where trace= λ1+λ2+λ3 represents the diffusion magnitude. The importance can
be interpreted as the percentage of diffusion associated to the orthogonal direction,
and then the different geometric shapes can be determined by the relative values of
p1 ≥ p2 ≥ p3 ≥ 0, where p1 + p2 + p3 = 1. The importance vector −→p = (p1, p2, p3)
belongs to the unit simplex S3, i.e., the sample space of compositional data S3 = {x =
(x1, x2, x3) : x1 > 0, x2 > 0, x3 > 0;

∑

x i = k}, where k is a constant, generally 1
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Indices Equation Interpretation

Trace trace= λ1 +λ2 +λ3
The trace can be seen as the orientational
diffusivity or diffusion magnitude [17].

Mean
diffusivity

(〈λ〉)
〈λ〉= trace

3

It characterizes the overall mean-squared
displacement of molecules and the overall
presence of obstacles to diffusion [19].

Fractional
Anisotropy

(FA)
FA=

Æ

3
2

p
(λ1−〈λ〉)2+(λ2−〈λ〉)2+(λ3−〈λ〉)2p

(λ1)2+(λ2)2+(λ3)2

FA measures how far the tensor is from a
sphere [19].

Relative
anisotropy

(RA)
RA=

p
6

6

p
(λ1−〈λ〉)2+(λ2−〈λ〉)2+(λ3−〈λ〉)2

〈λ〉

Ratio of the magnitudes of the anisotropic
and isotropic parts of the diffusion ten-
sor [19].

Volume Ratio
(VR)

VR= λ1λ2λ3

〈λ〉3
Ratio of ellipsoid volume to sphere volume
with the same eigenvalue mean [14].

Linear
Coefficient

(Cl)
Cl = λ1−λ2

λ1+λ2+λ3

Linear case, anisotropic diffusion. We can
observe highly organized white matter re-
gions [173].

Planar
Coefficient

(C p)
C p = 2(λ2−λ3)

λ1+λ2+λ3

Planar case, planar diffusion. It is gen-
erally associated with diffusion sheets
or may describe regions of crossing
fibers [173].

Spherical
Coefficient

(Cs)
Cs = 3λ3

λ1+λ2+λ3

Spherical case, isotropic diffusion. Grey
matter and fluids such as CSF [173].

Table 3.1: Scalar indices which reduce the 6D information of a tensor to a scalar value.
For each index we present the equation required to obtain it and also its interpretation.
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Figure 3.1: (a) The ternary diagram (b) The 3P-plot, and (c) Representation of RA in
the 3P-plot.

for proportions and 100 for percentages [2]. In other words, compositional data are
vectors of positive components whose sum is a constant.

A well-known strategy to graphically interpret data from the simplex is the ternary
diagram, also referred to as reference triangle, barycentric coordinate space or Finetti
diagram [2]. Figure 3.1(a) illustrates a ternary diagram with vertices P1, P2, and P3.
This triangle is equilateral, has an altitude of one and for any vector −→p = (p1, p2, p3) in
the triangle the perpendiculars p1, p2 and p3 from −→p to the opposite sides P1, P2, and
P3, satisfies p1+p2+p3 = 1. The importance vectors:

−→
Pl = (1, 0,0),

−→
Pp = (1/2, 1/2,0),

and
−→
Ps = (1/3,1/3,1/3) which are respectively associated to the linear, planar, and

spherical shapes previously described are also represented in the diagram. Observe that
−→
Pl is located in the bottom-left corner P1,

−→
Pp in the middle of the bottom edge, and the

spherical shape
−→
Ps is the barycenter of the triangle. Moreover, since any importance

vector −→p verifies that p1 ≥ p2 ≥ p3 any geometric shape associated to the diffusion
ellipsoid is located in the bottom-left part of the ternary diagram, i.e., the triangle with
the vertices

−→
Pl ,
−→
Pp ,
−→
Ps . Therefore, to interpret tensor data we have to consider only

this part of the diagram. In order to enhance the interpretation, the triangle
−→
Pl ,
−→
Pp ,

−→
Ps we can use the 3P-plot represented in Figure 3.1(b), where the triangle

−→
Pl ,
−→
Pp ,
−→
Ps

has been transformed in a full triangle with the vertices corresponding to linear (Cl),
planar (C p), and spherical (Cs) shapes, respectively.

These two representations, the ternary diagram (see Figure 3.1(a)) and the 3P-plot
(see Figure 3.1(b)), are related by the expressions:

Cl = p1− p2 =
λ1−λ2

3〈λ〉
, (3.2)

C p = 2(p2− p3) =
2(λ2−λ3)

3〈λ〉
, and (3.3)

Cs = 3p3 =
λ3

〈λ〉
, (3.4)

where 〈λ〉 = trace/3 is the mean diffusion magnitude. In this way, any importance
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vector −→p can be transformed into a vector shape
−→
C = (Cl, C p, Cs). For instance, the

spherical isotropic case
−→
Ps = (1/3,1/3, 1/3) converts into the top vertex (0, 0,1) in the

3P-plot.
The anisotropy measures emphasize different tensor features and hence they can

lead to confusion in interpreting results from different studies. The advantage of this
framework is that it provides us with an environment that can be used to graphically
analyze the behavior of diffusion anisotropy measures interpreting them as the distance
from the importance vector −→p to the spherical isotropic case (

−→
Ps = (1/3, 1/3,1/3)).

As an example, consider Figure 3.1(c) which corresponds to the graphical repre-
sentation of

RA= s





p

(λ1− 〈λ〉)2+ (λ2− 〈λ〉)2+ (λ3− 〈λ〉)2

〈λ〉



 , (3.5)

where s(x) =
p

6
6

x is a function for scaling the measure from 0 (isotropic) to 1 (aniso-
tropic) cases. Observe that the numerator measures the Euclidean distance between

the vector
−→
λ and the vector

−→
〈λ〉= (〈λ〉, 〈λ〉, 〈λ〉) corresponding to the spherical tensor

with the same eigenvalue mean. In the denominator, we have the norm of the vector
−→
〈λ〉. Applying Equation 3.1, it turns out that RA (Equation 3.5) is equivalent to

RA=

p
6

2

p

(p1− 1/3)2+ (p2− 1/3)2+ (p3− 1/3)2 =

p
6

2
de(
−→p ,
−→
Ps ). (3.6)

From this expression it can be seen that RA simply calculates the Euclidean distance
de between the percentage diffusion vector and the spherically isotropic case. The iso-
contours represented in Figure 3.1(c) correspond to the 0.25, 0.5, and 0.75 anisotropy
levels, and the brightest areas to the anisotropic voxels, the darkest to the isotropic,
and the grey intensities to intermediate anisotropy values.

This interpretation of the anisotropy measures suggests us the possibility to define
new measures using different distances over the sphere. Some of these measures are
presented below.

3.3 New anisotropy measures

The new set of anisotropy measures proposed in this section are inspired by the com-
positional origin of the 3P plot. For their evaluation, we will compare them with FA,
considered the best measure in a similar study carried out by Alexander et al. [6].
Different to them, we propose to look for the best anisotropy measure by considering
more accurately the measure when there is greater discrimination from the spherical
case.

Since the degree of discrimination can be expressed as a distance, in our study
we will consider three different families of distances. All the considered measures
are listed in Table 3.2. They have been expressed in terms of λ’s and also in terms
of p’s and, in order to be representable in the 3P-plot, they have been scaled from 0
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(isotropic) to 1 (anisotropic) using a specific function s(x). Let us describe the most
important features of these measures.

(i) In the first group of measures we consider is FA and the Angular Anisotropy
(AA), represented in the first and second rows of Table 3.2, respectively. FA [19]
is very similar to RA. Both, in their numerator, measure the Euclidean distance

between the vector
−→
λ and the vector

−→
〈λ〉. While the value 〈λ〉 appears in the

denominator of RA, FA includes the norm of the vector
−→
λ . On the other hand,

FA projects the percentage diffusion vector −→p –or equivalently
−→
λ – into the unit

sphere and calculates the Euclidean distance to its mean vector. On the other

hand, AA measures the angular separation between the vector
−→
λ and the vector

−→
〈λ〉 [167]. AA also measures the angular separation between the projection of
the vectors −→p and

−→
Ps . In order to reproduce the study carried out by Alexander

in [6], we include in this first group the Component Anisotropic index (CA),
obtained from the sum of linear and planar shape measures, i.e., CA= Cl + C p.

(ii) In the second group of measures, we consider two Hellinger distances [141]:
Matusita (MA) and Logarithmic (LA), represented in the third and fourth rows
of Table 3.2, respectively. By analogy to FA, MA calculates the Matusita dis-

tance between the vectors
−→
λ and

−→
〈λ〉, and divides it by the Matusita norm of

the vector
−→
λ . It is well known that another possibility of projecting percentage

diffusion vectors −→p into the unit sphere consists simply taking its square root.
In this regard, MA is also equivalent to project −→p and

−→
Ps and measures its Eu-

clidean distance. The Matusita distance is functionally related to the Chord and
the Bhattacharyya distances [141]. All are widely used in several areas such as
paleontology or genetics. In information theory, Matusita distance belongs to the
family of Hellinger divergences. In this family, the Euclidean and the Logarithmic
distances are also included. In this second group of anisotropy measures, we also
consider the LA measure which is based on the Euclidean distance between the
logarithm transformed vectors of

−→
λ and

−→
〈λ〉. Equivalently, LA log-transforms the

vectors −→p and
−→
Ps and calculates its Euclidean distance.

(iii) In the third group, we consider two compositional data measures: Aitchison
(AitA) and compositional Kullback-Leibler (K LA), represented in the fifth and
sixth rows of Table 3.2. To calculate the AitA measure, we take the logarithm

of vector
−→
λ , and then we calculate the Euclidean distance between this vector

−−→
ln(λ) and the mean vector

−−−−→
〈ln(λ)〉. In other words, AitA is based on the Aitchison

distance [3].

In terms of importance vectors, the AitA measure is equivalent to measuring the
Aitchison distance between the compositional vectors −→p and

−→
Ps . The Aitchison

distance is widely used in compositional data analysis for non-parametrics prob-
lems. On the other hand, Martín-Fernàndez et al. [107] proposed a different
compositional measure of difference which is related to the Kullback-Leibler di-
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vergence. Using this measure, we consider the measure of anisotropy K LA which
consists in calculating the divergence between the compositional vectors −→p and
−→
Ps or the divergence between the vectors

−→
λ and

−→
〈λ〉.

In Figure 3.2, the intensity maps of each of the studied measures are illustrated.
Observe the different behaviour of the measures with respect to the tensor shapes. In
addition, note that the K LA measure produces isocontours more spreadly distributed
on the 3P-plot. This behavior suggests the capability of K LA to reasonably discriminate
between the different tensor shapes.

FA RA CA AA

LA MA AitA KLA

Figure 3.2: Evaluation of anisotropy measures in the 3P-plots. The brightest voxels cor-
respond to the case with anisotropy = 1, the darkest voxels correspond to the isotropic
case and the grey intensities correspond to intermediate anisotropy values. It is clear
from these intensity maps that each anisotropy measure has significantly different de-
pendencies on the tensor shape. In particular, each anisotropy measure is weighted
very differently by the planar anisotropy.

3.4 Methodology

In this section, we introduce the methodology used to compare different anisotropy
measures.

3.4.1 Index of Detectability

Broadly speaking, in our context, detectability refers to an ability to correctly identify
events that are non chance regardless of how dramatic or subtle. The capability of a
measure to discriminate between tissue classes can be expressed in terms of detectabil-
ity. This detectability can be produced by comparison of the arithmetical means of the
anisotropy values for the samples of tissues. In particular, the detectability index pro-
posed in this work is based on the usual standardized difference between two sample
means A1 and A2:
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d =
< A1 >−< A2 >
q

σ2
1

N1
+
σ2

2

N2

, (3.7)

where N1 and N2 respectively are the sample sizes of each tissue, and σ1, σ2 are the
variances of the anisotropy values for the two tissue classes. Note that when the two
tissue samples have the same size then the index (see Equation 3.7) is equivalent to
the index proposed in [6]. In the other cases, d is more general than the approxima-
tion proposed in [6] since it takes into account the size of the samples as is usual in
statistical analysis

Our objective is to obtain the anisotropy measure with the greatest detectability
index, i.e., the measure that better detects white matter changes. With this purpose in
mind, we will evaluate the behavior of each measure on different real DTI datasets.

3.4.2 Protocol

Data was acquired as follows. DTI was performed on five volunteers. Consent was
obtained from all subjects in accordance with the guidelines of the Hospital Universitari
Josep Trueta of Girona institutional review board for human subject studies.

Images were obtained using a Gyroscan Intera NT 1.5T scanner (Philips Medical
Systems, Best, the Netherlands) whose hardware consists of 22 mT/m and maximum
slew rate of 120 mT/m per millisecond.

DTI data was acquired by using a single-shot echo-planar imaging sequence with
parallel-imaging scheme (acceleration factor of 3) using b values of 0 and 1000 sec/mm2.
Coverage of the full cerebrum was obtained by acquiring fifty-five 2.5 mm thick slices
without gap.

Imaging matrix was 96×96 zero filled to 192×192, with a field of view of 230×230
mm and resultant voxel dimensions were 1.2×1.2×2.5 mm3. Other imaging parame-
ters used were TR = 9500msec, T E = 79msec, N EX = 5. The data sets were acquired
along fifteen different diffusion directions using a rotated frame of reference known as
"Gradient overplus" (Philips Medical Systems) that resulted in greater gradient strength
and shorter T E values.

Furthermore, a volumetric T1 weighted fast field echo was acquired for anatomic
guidance. The scan parameters were field of view 240×240, TR= 25ms, T E = 4.6ms,
flip angle=30o and voxel size was 1× 1× 1 mm. Total scan time for each volunteer
was approximately 25 minutes.

3.4.3 VOI Selection

To obtain tissue specific statistics for all the measures, we have selected representative
grey and white matter regions of the brain (see Figure 3.3). The evaluated grey matter
regions are cortical grey matter, striatum, and the thalamus. The white matter regions
are subcortical white matter corresponding to short association fibers, also known as
u-fibers, corpus callosum corresponding to commissural fibers, arcuate fasciculus, and
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Figure 3.3: Brain regions considered in the evaluation of anisotropy measures: grey
matter, subcortical white matter, internal capsule, arcuate fasciculus, corpus callosum,
cingulum, striatum, and thalamus.
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cingulum corresponding to long association fibers, and internal capsule corresponding
to projection fibers. To avoid possible bias in favor of a certain anisotropy measure, we
used for the selection of the VOIs a high resolution T1 image. To ensure the spatial
correspondence, a 12-parameter affine registration between T1 and the b0 images has
been performed. The selection of the volume of interest (VOI) has been done using
AMIRA 3.1 software[155].

The T1 image has been segmented using SPM5 [11] obtaining three probability
maps: grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF).

To select cortical grey matter voxels, a threshold of 0.7 has been applied to the GM
image. The obtained mask (GMm) has been superimposed with the T1 image and the
misclassified voxels have been removed. The VOI only contains the voxels upper to the
axial plane superior to the thalamus.

To obtain subcortical white matter VOI, a three-step process has been done: (i)
the mask (WMm) from the probability map of white matter with a 0.7 threshold has
been obtained, (ii) a three voxels dilatation of GMm has been performed, and (iii) the
intersection of WMm and the dilated GMm has been done obtaining the subcortical
white matter VOI.

The corpus callosum voxels have been selected from the 10 mid-sagittal slices of
the WMm.

The thalamus and the striatum (including putamen, caudate nucleus, and accum-
bens bilateraly) have been obtained manually using the 3D editor of AMIRA.

The cingulum has been selected from the subcortical white matter VOI considering
the underlying cingulate gyrus voxels.

To delimit the arcuate fasciculus voxels (also named superior longitudinal fascicu-
lus), we draw circular regions of interest (ROI), on coronal sections from the anterior
pole to the posterior pulvinar of the thalamus. ROIs were specifically located over the
T1 white matter above circular insular sulcus that do not intersect with the subcortical
white matter VOI.

Finally, the internal capsule VOI has been manually delimited on the T1 map using
a prelabel of the WM probability map and comparing the FA color and the T1 maps to
perform corrections.

Furthermore, we have verified the correspondence of all subcortical VOIS (thala-
mus, striatum, arcuate fasciculus, cingulum, and internal capsule) with the FA and the
FA color maps. Finally, a smooth filter to all the VOIS has been applied (see Figure 3.4).
As seen in Figure 3.3, there are no intersections between the VOIs considered in the
study.

3.5 Results

Figure 3.2 shows in the 3P-plot the different anisotropy measures considered in our
study. In order to compare the shapes of the plots with the images of the measures, we
present in Figure 3.6 the T1 map with some of the evaluated VOIs and the images of
the anisotropy measures for one of the studied subjects. All the maps are scaled to the
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same relative grey scale range (0 to 255).
To analyze the behavior of the measures, all voxels from a given VOI type in all

subjects were pooled and then we computed the mean and standard deviation of the
anisotropy measures for each of the evaluated VOIs. These results are listed in Ta-
ble 3.3. For each VOI, the parameter N represents the number of voxels defining the
VOI. From the data of Table 3.3, we computed the coefficient of variation (CV), that is,
the ratio of the standard deviation to the mean. The obtained results are plotted in Fig-
ure 3.7. Table 3.4 collects the detectability indices d (Equation 3.7) for different pairs
of tissues. Detectability indicates the capability of a measure to discriminate between
tissue classes, so the greater the value the better the measure.

The good performance of the K LA measure leads us to compare it with the FA. In
Figure 3.5, we evaluate the capability of these measures to separate tissues by repre-
senting both measures simultaneously in the 3P-plot. For each tissue, the mean and
standard deviation of its Cl, C p, and Cs values have been calculated and represented
as a point and a contour, respectively. To evaluate the ability of FA and K LA to discrim-
inate white matter voxels, we designed a test where for each of the measures we select
the voxels where the measure is greater than the mean of the subcortical white matter,
(i.e., FA> 0.363 and K LA> 0.541). These thresholds represent the boundary between
grey matter and white matter. We calculate the difference between K LA and FA masks,
and we only consider the voxels contained in the WM mask. Figure 3.8 illustrates the
obtained images where the yellow voxels are voxels of WM that have been detected by
both K LA and FA, red voxels are the ones that have been detected by K LA and not by
FA, and the blue voxels are the ones detected by FA and not by K LA.

3.6 Discussion

As expected, white matter features appear different for each of the anisotropy mea-
sures (see Figure 3.6). In a first visual inspection, we can observe that the differences
between FA and AA maps are practically indistinguishable, and that LA and AitA are

Figure 3.4: Representative axial regions of grey matter, subcortical white matter and
striatum and thalamus ROIS considered for the evaluation of anisotropy measures.
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Figure 3.5: K LA and FA isometric contour lines superimposed on a 3P-plot where the
distributions of the tissue shape measurements are also represented. The different
labels correspond to: (1) Striatum, (2) Thalamus, (3) Internal Capsule, (4) Corpus
Callosum, (5) Subcortical White Matter, (6) Grey Matter, (7) Arcuate Fasciculus, and
(8) Cingulum.

FA RA CA AA LA MA AitA K LA
GM(N = 202200) 0.194 0.116 0.189 0.168 0.193 0.066 0.180 0.401
Standard deviation 0.110 0.071 0.117 0.098 0.113 0.045 0.101 0.103
CING(N = 3645) 0.459 0.300 0.445 0.408 0.460 0.178 0.402 0.601

Standard deviation 0.173 0.135 0.174 0.162 0.177 0.086 0.149 0.109
EST(N = 21929) 0.250 0.151 0.243 0.217 0.250 0.087 0.230 0.455

Standard deviation 0.121 0.081 0.120 0.108 0.123 0.049 0.106 0.097
TH(N = 15970) 0.330 0.202 0.323 0.287 0.332 0.123 0.301 0.523

Standard deviation 0.115 0.081 0.117 0.105 0.118 0.053 0.102 0.081
SCW(N = 125449) 0.363 0.227 0.354 0.318 0.365 0.133 0.327 0.541
Standard deviation 0.149 0.105 0.155 0.136 0.156 0.068 0.135 0.108

AF(N = 3098) 0.520 0.341 0.548 0.463 0.557 0.161 0.498 0.657
Standard deviation 0.132 0.104 0.165 0.124 0.162 0.066 0.149 0.089

IC(N = 3549) 0.596 0.410 0.567 0.538 0.588 0.244 0.503 0.679
Standard deviation 0.157 0.138 0.181 0.153 0.178 0.101 0.159 0.094

CC(N = 7651) 0.673 0.490 0.601 0.617 0.641 0.282 0.528 0.707
Standard deviation 0.165 0.161 0.183 0.166 0.181 0.113 0.155 0.094

Table 3.3: Comparison of estimated means and standard deviations of the anisotropy
measures as a function of tissue type from 5 volunteers.
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T1 FA RA

CA AA LA

MA AitA KLA

Figure 3.6: Grey scale maps corresponding to the evaluated anisotropy measures: Frac-
tional Anisotropy (FA), Relative Anisotropy (RA), Component Anisotropic index (CA),
Angular Anisotropy (AA), Logaritmic Anisotropy (LA), Matusita Anisotropy (MA),
Aitchison Anisotropy (AitA), and Kullback-Leibler Anisotropy (K LA).
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Volunteer KLA FA
1 4471 335
2 5432 313
3 6166 396
4 5796 350
5 5780 376

Mean 5529 354
Standard deviation 645.92 32.81

Table 3.5: Difference in the number of voxels detected by K LA and FA.

Figure 3.7: For each of the evaluated VOIs, (a) the mean of the anisotropy measures,
and (b) the coefficient of variation.
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Figure 3.8: Different axial slices of the same patient that illustrate the different WM
voxels detected by K LA (red) and by FA (blue).

also very similar, while MA corresponds to the darkest image and K LA to the bright-
ness one. This behavior agrees with the features of their corresponding 3P-plots (see
Figure 3.2). For instance, the 3P-plots of FA and AA are practically the same and the
same occurs with LA and AitA. In this first visual inspection, we note that white and
grey matter are discriminated better with FA and K LA measures. In particular, the
internal capsule and corpus callosum confluence area are defined more clearly with
K LA. These effects are illustrated in a more detailed observation in Figure 3.10, where
the FA and K LA maps of the anterior corona radiata and forceps minor, and the maps
of the posterior corona radiata are shown. Note that the transition between white and
grey matter is represented more clearly with K LA. There is also a better distribution
of K LA values that leads to a better distribution of intensity values in the areas with a
great confluence of fibers. K LA reaches maximum values in the central regions of the
structures while FA decreases in these areas(see Figure 3.9). This better performance
is presumably because in these regions (see Figure 3.6) a more ’planar’ tensor results.
This behavior can be observed in the confluence area between corpus callosum and the
anterior corona radiata and also in the posterior corona radiata.

From the data collected in Table 3.3, we can observe that all the anisotropy mea-
sures show the same tissue class hierarchy of increasing anisotropy as plotted in Fig-
ure 3.7 (a). Observe that K LA takes the higher values, while MA the lower ones, lead-
ing to bright and dark images, respectively. From the data of Table 3.3, we compute
the CV . The obtained results are plotted in Figure 3.7 (b). Observe that K LA exhibits
the lower values, and this indicates a lower dispersion of the measure justifying its
capability to reflect better continuity of white matter.

From Table 3.4, we can observe that when comparing GM versus W M tissues (the
six first columns of the table) K LA shows the greatest separability in all the cases. On
the other hand, when comparing W M versus W M , none of the studied measures stands
out from the rest. It can be seen that FA discriminates better between the thalamus
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and internal capsule, corpus callosum versus subcortical white matter, and internal
capsule versus subcortical white matter. In these three cases, although K LA has a
lower detectability, the difference is minimal. In the case of arcuate fascicules versus
corpus callosum and internal capsule, MA is the best measure, while RA is the best
for separating corpus callosum versus internal capsule. Note that K LA only performs
better in the case of arcuate fasciculus versus subcortical white matter. In this case the
difference between FA and K LA is very small. From these results, we conclude that
FA and K LA have a low performance in structures with a strong tissue organization,
such as corpus callosum or arcuate fasciculus, while in the central regions K LA is the
measure that performs better.

This behavior can be interpreted from a geometric point of view on a 3P-plot (see
Figure 3.5). Note that the distributions of the tissue shape measurements, analogous to
Alexander et al. [6], are mostly radial orientations relative to the Cs vertex, revealing
that more vertical running isolines facilitate the differentiation of different W M struc-
tures, whereas more horizontal running isolines are preferred for separating white and
grey matter structures. Therefore, in general, a measure is more sensitive to a change
between white and grey matter tissues the more orthogonal to the Cs direction are its
isometric contour lines. This coherent behavior appears when we compare the K LA
lines against the FA lines in the central regions. Observe that, while the K LA lines
reveal departures from isotropy towards either linear or planar anisotropy, FA favors
linear anisotropy.

Finally, when evaluating the ability of FA and K LA to discriminate white matter
voxels (see Table 3.5), we observe that the mean of voxels detected by K LA is 645.92
while for FA is 32.81. Hence, K LA detects the difference between W M and GM better
(see Figure 3.8). This shows that K LA is a good measure for segmenting white matter
from grey matter.

Figure 3.9: Histograms that show the distribution of images intensities of FA and K LA.
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Figure 3.10: FA (a) and K LA (b) maps of the anterior corona radiata and forceps minor.
FA (c) and K LA (d) maps of the posterior corona radiata.

3.7 Conclusions

We have presented a new set of anisotropy measures that can be derived from the
DTI data. The evaluation of these measures, with regard to their sensitivity to detect
white and grey matter changes on human DTI data, have shown that compositional
Kullback-Leibler anisotropy (K LA) and fractional anisotropy (FA) have a similar be-
havior, although K LA detected the transitions between white and grey matter better.
The K LA measure also exhibits a lower coefficient of variation with respect to FA. This
fact reflects a lower dispersion of the measure and hence a better capability to detect
white matter continuity. It is also important to note that K LA has a better distribu-
tion in areas with greater confluence of fibers. As a future work we will study the
possibilities of applying K LA to fiber tracking pipeline and clinical studies.



CHAPTER 4

Fiber Tracking

Fiber tracking techniques are able to create white matter connectivity maps from
DTI data. Fibers are obtained by following the paths of particles dropped in a vector
field. The strategy used to approximate these paths is the main difference between
the methods analyzed. In this chapter, we analyze the principles and the state of
art of the fiber tracking techniques, and we propose a new Monte Carlo-based fiber
tracking approach to estimate brain connectivity. One of the main characteristics
of our approach is that all parameters of the algorithm are automatically deter-
mined at each point using the entropy of the eigenvalues of the diffusion tensor.
Experimental results show the good performance of the proposed approach.
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4.1 Introduction

The most common technique used to visualize DTI data is the streamline tracking ap-
proach, also called fiber tracking or tractography. This approach considers the direc-
tional information encoded in the diffusion tensor to infer patterns of continuity in a
tensor field. Since water in white matter diffuses more along ’brain fibers’ than perpen-
dicular to it, the fiber tracking technique assumes that the eigenvectors of the diffusion
tensor provide a good estimate of the fiber orientation. In this way, the tensor field
obtained from DTI data can be reduced to a vector field where only the main eigen-
vector of each tensor is considered. To create the fiber, the vector field is interpreted
as a velocity field, and the tracking technique reconstructs, step by step, the trajectory
followed by a particle. The point where the particle is dropped is the seed point, and
the criterion that determines when the track finishes is the stopping criterion.

The main drawback of this approach arises when the tensor does not have a strong
directional component. In addition, DTI data noise [96] and partial volume effects [7]
make the computation of the fiber direction difficult. To overcome all these limitations,
more sophisticated fiber tracking techniques such as high angular resolution acquisi-
tions [159], regularization [173], tensor deflection [99], and stochasticity [25] are
used.

At the broad level, white matter tractography algorithms can be classified into de-
terministic and non deterministic. The first only considers the main eigenvector direc-
tion to reconstruct the tract and the second introduces some perturbation to modify
the vector direction at each location [97, 25, 64, 138]. In this chapter, we focus on non
deterministic tracking techniques over single tensor data models. We propose a new
tracking technique that uses both a Monte Carlo approach and the entropy of diffusion
tensor to obtain the track direction and also the step size. To evaluate the proposed
approach we compare it with different tracking techniques using the DTI based human
brain atlas from the International Consortium for Brain Mapping (ICBM) database.

This chapter is structured as follows. Section 4.2 surveys background and related
work. Section 4.3 proposes a new tracking technique based on the introduction of the
entropy of the diffusion tensor to obtain the track direction and the step size. Sec-
tion 4.4 describes the evaluation framework used to compare the surveyed tracking
techniques with the proposed one. Section 4.5 discusses the experimental results. Fi-
nally, Section 4.6 presents the conclusions.

4.2 Background and Related Work

In this section we introduce the notation. Then, we describe the main steps of a fiber
tracking technique. Finally, we review the main deterministic and non deterministic
tracking techniques that have been proposed.
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4.2.1 Notation

A fiber path p can be described as a sequence of points xn ∈ V , where V is a volume
in R3. Tracking algorithms determine how to obtain the sequence of points xn, being
x0 the starting point of a fiber path. The eigenvectors of tensor D(xn) are denoted by
ei(D(xn)), where e1 is the main eigenvector. We will refer to the eigenvalues of tensor
D(x i) as λ1, λ2, and λ3, where λ1 ≥ λ2 ≥ λ3. A normalized vector ~v

‖v‖ is denoted by v.

The normalized direction of the starting point is ~v0 = e1(D(x0)), then xn+1 = xn+µ~vn,
where ~vn is the normalized propagation direction and µ is the step size. The incoming
vector direction is denoted as ~vn−1. The exponent k is used to power the diffusion
tensor matrix D(xn)k.

Non deterministic or stochastic fiber tracking techniques introduce randomness in
the deterministic tractography. In these algorithms, εn is an independent standard
normal random vector, rn is a random vector uniformly distributed over a unit sphere,
and σ is the intensity of artificial noise that is added to generate stochastic tracks.

4.2.2 Main Steps of Fiber Tracking Techniques

Several techniques have been proposed to define fiber trajectories in a diffusion tensor
field. Most of them reduce tensor data to a vector field and define a fiber path. These
algorithms are based on solving the next equation:

p =

∫ m

0

e1(D(xn))d x (4.1)

where p(x0) and p(xm) are, respectively, the initial and the ending point of the
fiber path.

Despite the differences between methods, three main steps are required to solve
this equation.

1. Definition of seeds. To start the tracking process, we have to define the number
and the position of the seeds in the voxels. Basically, two alternatives can be
considered. The first strategy places seeds in all the voxels of the model. This
guarantees the reconstruction of all the structures, but it is computationally ex-
pensive and leads to cluttered images (Figure 4.1). The second strategy defines
regions or volumes of interest and only places seeds in the voxels contained in
these regions. In this case, the approach is completely dependent of the user’s
anatomical knowledge and for this reason the reproducibility is reduced.

2. Selection of an integration strategy. Fiber trajectories can be generated by inte-
grating Equation 4.1 with the initial conditions given by specified seed positions.
Different integration methods can be applied. The difference between them stem
from the methodology of calculating the propagation direction ~vn and the step
size µ. The most applied strategies are:
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Figure 4.1: Illustration of whole brain fiber tracking. In this example it is difficult to
interpret anatomic areas.

• Euler integration method, that calculates the new position xn+1 by step-
ping along a direction ~vn for a step size µ and from a position xn. Euler
integration method is defined as

xn+1 = xn+µ~vn. (4.2)

• Runge-Kutta of fourth order (RK4) integration method which requires four
evaluations of the propagation direction: one at the beginning, two at the
midpoint, and one at the end of the step. The positions of the midpoint and
the end of the step are approximated by taking several trial steps. The next
fiber point xn+1 is a weighted combination of the four estimated vectors
added to xn:

~k1 = µ~vn, (4.3)

~k2 = µe1(D(xn+
1

2
~k1)), (4.4)

~k3 = µe1(D(xn+
1

2
~k2)), (4.5)

~k4 = µe1(D(xn+~k3)), (4.6)

where ~vn is the propagation direction calculated using a fiber tracking tech-
nique. Then, xn+1 is defined as

xn+1 = xn+
~k1

6
+
~k2

3
+
~k3

3
+
~k4

6
. (4.7)

Detailed descriptions and implementations of RK4 method can be found in
the literature [137, 29, 110].
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• Fiber Assignment by Continuous Tracking (FACT) is an approach introduced
by Mori et al. [116] and uses as propagation direction the value of ~vn ob-
tained from the current voxel, and no interpolation is performed. The step
size varies from step to step according to the distance between the bound-
aries of the voxel at the entry and exit points. As a result, the trajectory
will be formed by a series of segments of variable length. This integra-
tion method has a high computational efficiency. Fiber tract point xn+1 is
defined as

xn+1 = xn+ s~vn, (4.8)

where xn is the first point where the fiber intersects the voxel, and xn+1

is the intersection point where the fiber path leaves the current voxel and
enters the next, and s represents the length of the segment connecting both
intersection points.

3. Definition of stopping criteria. The stopping criteria determine when the track-
ing process has to finish. The stopping criteria are user-defined and are based
on, amongst others, anisotropy indices (for instance, FA < 0.2 [118]) and fiber
curvature (for instance, the radius of curvature of the tract is smaller than ap-
proximately two voxels [18]).

To represent the tracking more accurately, the algorithm can be combined with
the definition of regions or volumes of interest that determine which fibers have to be
represented.

4.2.3 Classification of The Fiber Tracking Techniques

The main difference between fiber tracking techniques is on the strategy applied to
determine how to obtain the different points that define the tract once seeds are placed
and the stop criteria have been defined.

In this section, we review some of the tracking techniques that have been proposed.
We have grouped them into two different groups, deterministic and non deterministic
techniques.

4.2.3.1 Deterministic Algorithms

Deterministic algorithms were the first fiber tracking algorithms to appear. These al-
gorithms use a linear propagation approach where fiber trajectories are generated in
a stepwise fashion deriving the direction of each step from the local diffusion ten-
sor [39, 116, 170, 18]. The most representative approaches of this category are:

• The streamline approach proposed by Contouro et al. [39], which generates
fibers following the direction of faster diffusion, i.e., the main eigenvector. The
propagation direction is described by
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~vn = e1(D(xn)). (4.9)

The main drawback of this approach appears in areas of nonlinear diffusion, such
as planar regions, since the trace of the fiber cannot be determined due to par-
tial volume effects, such as crossing, kissing, and branching (see Section 2.4.2).
Different strategies have been proposed to approximate paths in these configu-
rations [163, 184].

• The tensor deflection approach [170, 99, 96] was proposed in order to improve
propagation in regions with low anisotropy, such as crossing fiber regions, where
the direction of fastest diffusivity is not well defined [172]. The idea is to use the
entire D to deflect the incoming vector direction ~vn−1 and to obtain a smoother
tract reconstruction result. Thus, the current direction ~vn is given as

~vn = D(xn)~vn−1. (4.10)

• The tensorline propagation method proposed by Weinstein et al. [170] incorpo-
rates information about the voxel orientation, as well as the anisotropic classifica-
tion of the local tensor [172] given by Cl, C p, and Cs indices (see Section 2.3.2).
Tensorline propagation direction is a combination of the previous direction (main
eigenvector) and the tensor deflection direction. The ~vn direction is given as

~vn = Cl e1(D(xn)) + (1− Cl)
�

(1−wpunct)~vn−1+wpunct
D(xn)
λ1

~vn−1

�

, (4.11)

where wpunct is a user-controlled parameter that takes values from 0 to 1, and af-
fects to what extent the propagation should be encouraged to ’puncture’ through
planar tensors oriented normal to its path, versus turning into the plane.

4.2.3.2 Non Deterministic Algorithms

Non-deterministic fiber tracking techniques [25, 97, 64, 138] aim at overcoming the
shortcomings of deterministic methods by adding some randomness to the determinis-
tic tractography. They simulate a macroscopic random walk of a particle through the
set of voxels. This random walk is defined by one-to-one jumps where the step of the
jump and its direction is determined by the parameters of the algorithm. These tech-
niques can be applied directly or combined with probability maps. These probability
algorithms trace different paths and calculate a spatial probability distribution of con-
nectivity for each seed point [90, 129, 22, 20]. It is considered that the final tracking
is the most probable. Some non deterministic algorithms are described below.

• The white matter tractography using a random vector perturbation algorithm
(RAVE) proposed by Lazar et al. [97], generates multiple fiber pathways by per-
turbing the major eigenvector according to the tensor shape. For instance, if
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the major eigenvector is oriented along x axis, the new propagation direction is
defined by randomly generating y and z offsets. To generate these random off-
sets, perturbation functions such as standard deviation, which can be weighted
by a proportionality factor α, can be used. Given vn = (x , y, z), the propagation
direction is obtained as follows:

~vn+1 =
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• The method, proposed by Björnemo et al. [25], uses sequential importance sam-
pling and resampling to sequentially build up a set of weighted samples repre-
senting all possible fiber paths originating from a starting point x0. Connectivity
is derived from these weighted samples. This method introduces the parameters
α and σ to vary the influence of the regularization of direction and to control the
stochasticity, respectively. The algorithm is given as

D(xn) =
D(xn)
λ1

, (4.13)

Dreg(xn) = D(xn) +α~vn−1~v
T
n−1, (4.14)

δn = Dreg(xn)rn− (Dreg(xn)rne1(Dreg(xn)))e1(Dreg(xn))
T , and (4.15)

~vn = e1(Dreg(xn)) +δnσ. (4.16)

• Hagmann et al. [64] propose a hybrid approach combining Monte-Carlo random
walk simulation with information about the white fiber track curvature func-
tion. This method considers that in each voxel the probability of a fiber to be
propagated in a given direction is proportional to the corresponding diffusion
coefficient. It also assumes that axonal trajectories, or more cautious trajectories
of axonal bundles, follow regular curves. They make use of all of the available
diffusion information in order to explore many potential connections and select
an appropriate tract by measuring a posteriori the mean diffusion along the tra-
jectory. The propagation direction is obtained by

~vn =
σdn+ ~vn−1

‖σdn+ ~vn−1‖
, (~vn−1 · ~vn)> 0 (4.17)

where

dn = D(xn)
krn, (4.18)

andσ can take values from 0 to 1 and is a constant tuning the relative importance
of the random diffusion component versus the curve regularizing term.
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• Prigarin et al. [138] propose three different tracking algorithms.

The first one, denoted E extends the streamline approach by the addition of ran-
dom perturbations directly to the integration method. The following equations
are used to obtain ~vn and xn+1:

~vn = e1(D(xn)), (~vn−1 · ~vn)> 0, and (4.19)

xn+1 = xn+µ~vn−1+
p
µσεn, (4.20)

where εn is an independent standard normal random vector, and µ and σ are
parameters of the algorithm. The step parameter µ is assumed to be less than 1.
For this algorithm, the parameter σ defines the intensity of artificial noise that
is added to generate stochastic tracks. If σ = 0, then the algorithms become
deterministic and the tracks are defined in a unique non-random way.

The second algorithm, denoted T1, in some aspects is similar to the tensor de-
flection approach proposed by Lazar et al. [99] with the addition of random
perturbations. In this case, the computation of fiber tracks is done by applying
the following equations:

~vn = D(xn)
k~vn, and (4.21)

xn+1 = xn+µ~vn+
p
µσεn. (4.22)

When k > 1, the influence of the main eigenvector onto the track increases and
therefore this direction may be more relevant than the other directions of the
tensor.

The third algorithm, denoted T2, considers not only the principal eigenvectors
but the whole tensor. In this case, the computation of fiber tracks is done by
applying the following equations:

~v0 = c0
e1(D(x0))
‖e1(D(x0))‖

, a0 = 0, (4.23)

an+1 =
D(xn)k~vn−1

‖D(xn)k~vn−1‖
− c1~vn−1, and (4.24)

~vn = ~vn−1+µan+1+
p
µσεn+1. (4.25)

For the T2 algorithm, the Euler integration method can be used to calculate xn+1.

If we compare E, T1, and T2 algorithms, it can be seen that since the E method
follows the directions of principal eigenvectors, this can be unstable under noisy
fluctuations of the elements of the tensor (especially, when some eigenvalues are
close to each other) or they can be simply undefined in case of multiple eigen-
values. T1 and T2 algorithms overcome these limitations taking into account the
directions of principal eigenvectors and also other information from the tensor
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field. Moreover, the T1 algorithm generates smoother and more stable tracks
than the E algorithm. Note that in all the algorithms the values of ~vn can be
interpreted as the velocity of a particle, and for the T2 algorithm the values of an

can be interpreted as the acceleration of a particle.

To conclude this section, in Table 4.1, we summarize the main features of each of
the related methods. From left to right, in each column, we represent: the name of
the method, the required parameters, the initialization of the propagation direction,
the equation used to calculate the next fiber point, and the equations to calculate the
propagation direction.

4.3 Entropy-Based Method

In this section, we propose a new Monte Carlo approach to estimate the fiber tracks.
This method is based on the introduction of the entropy of the diffusion tensor to obtain
the track direction and the step size. The main characteristic of this method is that it
is completely automatic. The degree of randomness introduced in the track direction
computation and the step size depends on the Shannon entropy of the eigenvalues of
the diffusion tensor.

As we have seen in Section 2.5.1, the Shannon entropy H(X ) of a discrete random
variable X with values in the set X = {x1, x2, . . . , xn} is defined as

H(X ) =−
∑

x∈X
p(x) ln p(x), (4.26)

where p(x) = Pr[X = x]. The logarithms are now taken in base e and entropy is
expressed in nats. The Shannon entropy H(X ), also denoted by H(p), measures the
average uncertainty of random variable X [43]. For more details see Section 2.5.

4.3.1 Algorithm Description

Our algorithm takes into account the diffusion uncertainty within a voxel to calculate
the position of the next point of the fiber path. This uncertainty is proportional to
Shannon entropy of the eigenvalues of the diffusion tensor. Taking into account this
consideration, we establish the basis of our approach as follows:

• First, randomness is added to previous ~vn−1 using the Shannon entropy (see
Equation 4.26). If uncertainty is large, the track can probably take a bigger
deviation and vice versa.

• Second, the resulting vector ~vn is multiplied by the diffusion tensor and, hence,
the tensor deflects the perturbed propagation direction towards the major eigen-
vector direction while limiting the curvature of the deflection, resulting in smoother
tract reconstruction [96].

• Third, the step size µn is small if the uncertainty is large, and vice versa.
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Considering these three assumptions, the proposed approach is described as fol-
lows. From the starting point x0, the next position xn+ 1 is computed as:

xn+1 = xn+µn~vn, (4.27)

where the normalized direction ~vn is given by

~vn = D(xn)(~vn−1+δnrn) (4.28)

and the initial direction ~v0 is taken as

~v0 = e1(D(x0)). (4.29)

A random vector δnrn is computed using

δn = cH(xn), (4.30)

where c is a constant and H(xn) is the normalized Shannon entropy of the eigenvalues,
which is given by

H(xn) =
H(xn)
ln 3

, (4.31)

where

H(xn) =−
3
∑

i=1

ρi(xn) lnρi(xn) (4.32)

is the Shannon entropy of the normalized eigenvalues

ρi(xn) =
λin

λ1n
+λ2n

+λ3n

. (4.33)

The maximum value of the Shannon entropy is ln3 and is obtained when the eigen-
values are equal. In this case, we have the maximum uncertainty in the path direction.
On the contrary, the entropy is minimum when two eigenvalues are zero. In this case,
there is no uncertainty in the track direction.

Finally, the step size µn is given by

µn = 1−H(xn). (4.34)

Observe that the maximum step size will be obtained with the minimum entropy, i.e.,
the minimum uncertainty in the path direction. Therefore, an increase in uncertainty
will lead to a step size decrease.

To properly adjust the parameter c of our method, we place seeds in different
well-known anatomical structures of the brain and then we apply the method with c
ranging from 0.1 to 0.4. The obtained results were evaluated by an expert anatomist
to determine the best one. In all the tests, the selected track corresponds to values
ranging from 0.2 to 0.3. In our experiments, we propose to use 0.2 as c value.

In Figure 4.2, the results obtained when a seed is placed in the genus of the corpus
callosum, with c values from 0.1 to 0.4, are shown. Obtained tracks are compared
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c=0.1 c=0.2 c=0.3 c=0.4

Figure 4.2: Results obtained with the proposed fiber tracking methods taking a seed
in the middle of the genus of the corpus callosum and considering different c values.
The yellow track has been obtained by a deterministic approach.

with the deterministic track (in yellow). Observe how the dispersion of the fiber paths
increases with c.

To evaluate the performance of the proposed approach, and compare it with other
reported methods, we considered different validation strategies. In the next section,
we summarize some of them.

4.4 Validation of Fiber Tracking Techniques

Fiber tracking can provide valuable and important information for clinical diagnosis.
However, it is difficult to guarantee the correctness of the techniques and this makes its
application in real environments difficult [33]. With the aim of evaluating fiber track-
ing techniques, different validation frameworks and techniques have been proposed.
These can be grouped into four different groups:

• Simulated phantoms, which reproduce common anatomical structures or com-
plex configurations such as crossing, kissing, and branching patterns [5, 98, 59,
44, 30]. In general, simulated phantoms are created by designing the true trajec-
tory, choosing the sample orientation, assuming a diffusion profile, simulating a
diffusion-weighted signal, adding noise, and finally reconstructing the simulated
track.

• Physical phantoms, which are constructed from real synthetic fibers such as rayon,
cotton, and nylon [145, 133, 135, 50]. With the physical phantoms, we add an
extra layer of realism into the model at the expense of a degree of control over
the ground truth.

• In vivo and in vitro, are techniques that are based on the comparison of tractog-
raphy results with models obtained from the classical dissection of post-mortem
brain tissue or with histological tracer studies to validate fiber tracking tech-
niques [49, 95, 10, 106].
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• Circumstantial validation, are frameworks that use the results of functional imag-
ing methods as complementary information that assists in the validation pro-
cess [60, 82, 130, 152]. The functional brain regions not only serve as a seed
site for the fiber tracks, but also test the reliability of the tracks by proposing
termination sites.

From all these strategies, we selected in vivo and in vitro techniques. In particular,
we used the DTI based human brain atlas from the International Consortium for Brain
Mapping (ICBM) database. This atlas is based on probabilistic tensor maps obtained
from 81 subjects acquired under an initiative of the ICBM. The subjects were healthy
right-handed adults ranging from 18 to 59 years of age. A hand-segmented white
matter parcellation map was created from this averaged map. This map can be used
for automated white matter parcellation. The precision of the affine-based image nor-
malization and automated parcellation was measured for a group of healthy subjects
using manually defined anatomical landmarks. For the tests, we have considered the
parcellation provided by this second atlas.

4.5 Results

In this section, we present the different tests that have been carried out to evaluate
the proposed approach. To carry out the experiments, we have implemented reported
methods and we have integrated them in a common visualization platform, see Chap-
ter 6. In Table 4.2 we report the parameters used for each of the tested methods. From
left to right in each column, we represent, the name of the method, the step size and
other parameters required by the method. To evaluate our approach we considered
two different c values, c = 0.2 and c = 0. This last is the deterministic version of the
method. The definition of the seeding points and the stopping criteria depend on the
experiment.

All tests have been done on the DTI based human brain atlas. To carry out the
experiment, we have selected four VOIs corresponding to the corticospinal tract, the
arcuate fasciculus, the body of corpus callosum, and the fornix (see Figures 4.3 and
4.4). These VOIs have been obtained from a hand-segmented white matter parcellation
map that was created from the DTI based human brain atlas.

For all the methods, to generate tracts, we have set a start criterion that uses
FA> 0.3, a stopping criterion FA< 0.1, and angle < 100o. In the case of the methods
using FACT, the stopping criterion does not consider angle restrictions. Seeds have only
been placed inside the VOIs provided with the atlas data. Four significant bundles of
fibers, such as the corticospinal tract, the arcuate fasciculus, the body of corpus callo-
sum, and the fornix have been reconstructed. Intersection ROIs have been defined for
each evaluated structure as in Catani et al. [32]. We have applied each of the evalu-
ated methods to reconstruct the structures. The obtained results (see Figures 4.6-4.11)
have been evaluated by an expert anatomist.
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Corticospinal tract

Arcuate fasciculus

Figure 4.3: Schematic representation of the corticospinal tract and the arcuate fascicu-
lus.
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Body of corpus callosum

Fornix

Figure 4.4: Schematic representation of the body of corpus callosum and the fornix.
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Method Step size (µ) Other parameters
Entropy-based (c = 0.2) Adaptive c = 0.2
Entropy-based (c = 0) Adaptive c = 0
Streamline 0.5
Tensor deflection 0.5
Tensorline 1.0 wpunct = 0.2
Prigarin E 0.1 σ = 0.2
Prigarin T1 0.1 σ = 0.2, k = 2
Prigarin T2 0.1 σ = 0.2, k = 2, c0 = 1, c1 = 1
Hagmann 0.75 σ = 0.1, α= 2
Streamline + RK4 Adaptive [110]
Streamline + FACT Adaptive [96]
Tensor deflection + FACT Adaptive [96]

Table 4.2: The evaluated fiber tracking techniques with their corresponding parame-
ters. From left to right in each column, we represent the name of the method, the step
size, and other parameters required by the method.

The first evidence, and also difference between methods, is observable at the bot-
tom of the corticospinal tract (see Figures 4.6 and 4.7). In this part, Streamline with
FACT and Tensor deflection with FACT have less numbers of fibers. The same situa-
tion can be seen at the top of the corticospinal tract. Other important characteristic
can be observed with the non deterministic algorithms. In the coronal view of the
corticospinal tract, a greater openness of the endings of the fibers can be seen (see Fig-
ure 4.7). Such terminations are desired for such structures, even if it is expected that
some fibers cover all corona radiata, and consequently need be ’more open ended’. In
the sagittal view of the corticospinal tract, it can be observed that Prigarin T1, Prigarin
T2 and Hagmann obtain a compact result of the superior part of the corticospinal tract.
This effect is due to an increase in the exponent k of the power of the tensor since the
smoothing effect in long fibers also contributes to greater compaction. In Figure 4.5,
we illustrate the influence of k in the shape of the ellipsoid that represents the tensor
matrix. Observe that by increasing k, the shape of the ellipsoid becomes more planar.
We test values between 1 and 4.

Arcuate fasciculus is a fiber bundle that is very difficult to reconstruct due to its
curvature (see Figure 4.8). The connectivity of this structure has been analyzed by
Bernal et al. [24] and their reconstructions are similar to the ones obtained by the
Entropy-based algorithm with c = 0.2 and c = 0, and Streamline with Runge Kutta 4.
For this structure, methods Entropy-based (c = 0), Streamline, Tensor deflection, and
Streamline with Runge Kutta 4 obtain optimal reconstructions with a few erratic fibers,
all in the frontal part. Observe that the best reconstruction is achieved by Entropy-based
with c = 0.2. Streamline with FACT and Tensor deflection with FACT show bad results
due to each step crossing the entire voxel. This demonstrates that FACT approaches
have serious difficulties turning.

In the body of the corpus callosum, as expected, all methods have been able to
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k = 1 k = 2

k = 3 k = 4

Figure 4.5: From left to right and top to bottom tensor/ellipsoid deformation increasing
the k factor with values of 1, 2, 3 and 4 in each image.
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successfully reconstruct the U-shape callosal fiber (see Figures 4.9 and 4.10). The most
interesting results are obtained by Entropy-based method with c = 0.2. This method
has been the only technique able to reconstruct the longer projection fibers that cross
a high planar region like the corona radiata. This is thanks to the adaptive step size
and randomness, both weighted by entropy. The detection of the lateral projections of
the corpus callosum is one of the main limitations of the fiber tracking techniques over
simple tensor data [165, 69].

In Figure 4.11, the obtained reconstructions of the fornix are shown. In comparison
with the structures of fornix described by Concha et al. [38] and Wakana et al. [165],
Entropy-based (c = 0.2) perfectly detects the columns and the body of fornix, and
partially the crus of fornix. In fact, the body of fornix has been detected by all the
methods, but columns and crus of fornix have obtained different results depending on
the techniques. Streamline with FACT, Tensor deflection with FACT, and Hagmann do
not detect the columns of fornix. In the reconstruction of the crus of fornix, Tensorline,
Prigarin T2, and Hagmann obtain erratic fibers that draw the corpus callosum due to
the proximity of the two structures.

In the atlas-based model, the effect of adaptive step is difficult to analyze. A big
adaptive step size has problems turning, as we can see in the Streamline with FACT and
Tensor deflection with FACT methods. On the other hand, a lower adaptive step size, as
in Entropy-based (c = 0.2), Entropy-based (c = 0) and Streamline with Runge Kutta 4,
gets excellent results in the reconstruction of all structures.

In conclusion, the deflection, the adaptive step size, and the randomness have
demonstrated a good performance over the atlas-based DTI data. Deflection, in com-
bination with adaptive step size, have allowed us to reconstruct in a better way the
curve of arcuate fasciculus. The adaptive step size mixed with randomness has been a
good choice in deciding the paths to follow. Entropy-based (c = 0.2) is the algorithm
that uses all of them. We must also consider the good quality and resolution of the
data model, which has allowed us to develop the algorithms in an ideal situation. In
this ideal situation, Entropy-based (c = 0.2) has shown to behave in a very good way
to rebuild the selected fiber bundles. Other methods such as Entropy-based (c = 0),
Tensor deflection, Tensorline, and Streamline with Runge Kutta 4, have obtained good
results too.

4.6 Conclusions

In this chapter, we have described main fiber tracking techniques, and presented a new
stochastic approach for fiber tracking based on the introduction of the Shannon entropy
of the eigenvalues of the diffusion tensor to obtain the track direction and the step size.
One of the main characteristics of this approach is that all parameters of the algorithm
are automatically determined at each point using the entropy of the eigenvalues of the
diffusion tensor.
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Entropy-based (c = 0.2) Entropy-based (c = 0) Streamline

Tensor deflection Tensorline Prigarin E

Prigarin T1 Prigarin T2 Hagmann

Streamline + RK4 Streamline + FACT Tensor deflection + FACT

Figure 4.6: Sagittal view of the corticospinal tract from DTI brain atlas data recon-
structed with each of the evaluated methods.
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Entropy-based (c = 0.2) Entropy-based (c = 0) Streamline

Tensor deflection Tensorline Prigarin E

Prigarin T1 Prigarin T2 Hagmann

Streamline + RK4 Streamline + FACT Tensor deflection + FACT

Figure 4.7: Coronal view of the corticospinal tract from DTI brain atlas data recon-
structed with each of the evaluated methods.
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Entropy-based (c = 0.2) Entropy-based (c = 0) Streamline

Tensor deflection Tensorline Prigarin E

Prigarin T1 Prigarin T2 Hagmann

Streamline + RK4 Streamline + FACT Tensor deflection + FACT

Figure 4.8: Sagittal view of the arcuate fasciculus from DTI brain atlas data recon-
structed with each of the evaluated methods.
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Entropy-based (c = 0.2) Entropy-based (c = 0) Streamline

Tensor deflection Tensorline Prigarin E

Prigarin T1 Prigarin T2 Hagmann

Streamline + RK4 Streamline + FACT Tensor deflection + FACT

Figure 4.9: Sagittal view of the body of corpus callosum from DTI brain atlas data
reconstructed with each of the evaluated methods.
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Entropy-based (c = 0.2) Entropy-based (c = 0) Streamline

Tensor deflection Tensorline Prigarin E

Prigarin T1 Prigarin T2 Hagmann

Streamline + RK4 Streamline + FACT Tensor deflection + FACT

Figure 4.10: Coronal view of the body of corpus callosum from DTI brain atlas data
reconstructed with each of the evaluated methods.
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Entropy-based (c = 0.2) Entropy-based (c = 0) Streamline

Tensor deflection Tensorline Prigarin E

Prigarin T1 Prigarin T2 Hagmann

Streamline + RK4 Streamline + FACT Tensor deflection + FACT

Figure 4.11: Sagittal view of the fornix from DTI brain atlas data reconstructed with
each of the evaluated methods.
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To evaluate the proposed approach we have selected four anatomical structures
from the DTI human brain atlas: corticospinal tract, arcuate fasciculus, body of corpus
callosum, and fornix. We have reconstructed them with each of the reported meth-
ods. The obtained results have been evaluated by an expert. The obtained results have
shown the good performance of the entropy-based approach. Our algorithm recon-
structs better than others the selected fiber tracks and detects the lateral projections
of corpus callosum, one of the main difficulties of fiber tracking techniques over single
tensor data.





CHAPTER 5

Automatic VOI Detection for DTI
Seeding

Fiber tracking is the most popular technique for creating white matter connectivity
maps from diffusion tensor imaging (DTI). This approach requires a seeding pro-
cess which is challenging because it is not clear how and where the seeds have to
be placed. On the other hand, to enhance the interpretation of fiber maps, seg-
mentation and clustering techniques are applied to organize fibers into anatomical
structures. In this chapter, we propose a new approach to obtain automatically
and rapidly bundles of fibers grouped into anatomical regions. This method ap-
plies an information-theoretic split-and-merge algorithm that considers fractional
anisotropy and fiber orientation information to automatically define volumes of in-
terest (VOIs). For each VOI, a number of planes and seeds is automatically placed
and, then, fiber bundles corresponding to the VOIs are created. The whole process re-
quires less than a minute and minimal user interaction. The agreement between the
automated and manual approaches has been measured for 10 tracts in a DTI-brain
atlas and found to be almost perfect (kappa> 0.8) and substantial (kappa> 0.6).
This method has also been evaluated on real DTI-data considering 5 tracts. Agree-
ment was substantial (kappa> 0.6) in most of the cases.
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5.1 Introduction

The information provided by DTI combined with fiber-tracking techniques allows us
to generate connectivity maps that represent the spatial organization of human white
matter (see Chapter 4). The most popular fiber tracking representation is the streamline-
based approach, which assumes that the direction of fibers is collinear with the maxi-
mum diffusivity direction, i.e., the main eigenvector of tensor D. All techniques start
placing a set of seeds. For each seed, a pathway that follows the maximum diffusivity
direction is traced until the boundary of the data set is reached or the value of certain
measures at the current curve point lies outside a previously specified admissible range
of values.

The seeding strategy, or the placement of seeds, is a key component of the fiber
tracking process. To carry out this step two basic alternatives can be considered: the
brute-force approach, that places seeds all over the volume, and the region-based ap-
proach, that places seeds in the regions-of interest (ROIs) determined by the user. The
brute-force approach is computationally more expensive than the ROI-based seeding
but it guarantees that all tracks are detected. However, the large amount of gener-
ated fibers may turn into cluttered images that make the interpretation and extraction
of useful information from the maps difficult. To enhance fiber maps interpretation,
different strategies have been proposed. Amongst them, tractography segmentation
techniques [123, 124], clustering methods, such as closest point, the mean, and the
Hausdorff distances [185, 26, 42, 123, 83, 79], and atlas-based segmentation strate-
gies [104, 178, 109, 122, 123].

In this chapter, we propose a new VOI-based approach that allows us to automati-
cally and almost interactively create bundles of fibers grouped into anatomical regions.
Our method uses an information-theoretic split-and-merge algorithm that considers the
fractional anisotropy (FA) and also the fiber orientation information to automatically
define VOIs. For each VOI, the user fixes a seeding rate and, then, fiber tracking is
performed. To enhance the interpretation of the created fiber map, a different color is
assigned to each of the VOIs and this is also used to color the fiber tracks. The main
advantage of this approach is that it requires minimal user interaction and hence the
reproducibility is ensured. This method has been validated through comparison with
the manual one. For the tests, two different datasets have been considered, the DTI-
based human brain atlas ICBM-DTI-81 from the Laboratory of Brain Anatomical MRI
from the Johns Hopkins University and DTI-data from different healthy subjects.

This chapter has been structured as follows. Section 5.2 describes some related
seeding strategies and the partitioning algorithm used to define the VOIs. Section 5.3
introduces our automated fiber reconstruction approach. Section 5.4 describes the
evaluation framework that uses real DTI data and DTI atlas-based data. Section 5.5 and
5.6 show and discuss the obtained results, respectively. Finally, Section 5.7 presents the
conclusions.



5.2. Background and Related Work 83

5.2 Background and Related Work

In this section, we review the main seeding strategies that have been proposed. We also
describe the 2D image partitioning algorithm that will be extended in our approach.

5.2.1 Seeding

Over the years, different researchers have attempted to develop effective seed place-
ment algorithms for a better visualization of streamlines [80, 111, 161, 180]. However,
most of them were developed for 2D vector fields and, thus, cannot be directly applied
to visualize 3D data. The visualization of 3D vector fields is still challenging due to the
visual cluttering and computational cost of fiber generation. In the context of DTI, most
of the streamline algorithms do not incorporate seeding strategies at all or only make
use of the anisotropy measure for seeding purposes. Two seedings strategy groups
are used in DTI. First, seeds are placed over the whole volume and, second, seeds are
placed in pre-defined regions of interest.

In the first seeding strategy group, Zhang et al. [184] proposed a uniform seeding
throughout the entire volume and then used culling algorithms based on a geometric
distance between pairs of streamtubes to control the streamline density for a better
visualization. The metrics for the culling process include the length of a trajectory, the
average linear anisotropy along a trajectory, and the similarity between a trajectory
and the group of trajectories already selected. Yonas et al. [154] proposed an adaptive
seeding strategy based on tensor dissimilarity metrics that take into account both diffu-
sion magnitudes and directions. They used tensor dissimilarity measures based on the
Log-Euclidean framework and the J-divergence metric. Vilanova et al. [164] extended
Jobard’s seeding algorithm [80] for 3D DTI-data. They determine the seeding and
generation of streamlines by a parameter that defines the density of the streamlines,
given by the minimal distance between streamlines. A limitation of the method arises
when the density is set to a low value since it does not guarantee that the important
structures are visible.

In the second seeding strategy group, there are ROI-based approaches that are
computationally less expensive than the previous methods. However, they could be
more time consuming since they require a skilled operator to delineate the ROIs cor-
responding to the tracks of interest [118, 131, 121, 37]. Moreover, since approaches
are completely user dependent, their reproducibility are limited. Several techniques
have been proposed to automate the ROI definition process, such as atlas-based strate-
gies [188, 189, 102]. The idea of these methods is simple because an expert defines
3D ROIs in a representative 3D brain image, denoted atlas. This atlas, with the pre-
defined ROIs, is linearly or non-linearly warped to the subject data. The accuracy of
the warping of the atlas to the subject and the feasibility of tract reconstruction are the
main limitations of the approach [189].

The method that we present can be considered as an interactive approach, whose
difference to other methods is that it reduces the user interaction by defining VOIs
automatically. A main part of this method is the split-and-merge algorithm applied
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to define the VOIs. This algorithm is based on the information-theoretic 2D image
partitioning algorithm [144] described below.

5.2.2 2D Image Partitioning Algorithm

Rigau et al. [144] proposed an information-theoretic partitioning algorithm. In this
algorithm, the partitioning of a 2D image is guided by the maximization of mutual
information gain and is constructed from an information channel X → Y between the
random variables X (input) and Y (output), which represent, respectively, the set of
regions X of an image and the set of intensity bins Y . These notions of information
theory can be found in Section 2.5 and in Cover and Thomas’ book [43].

To describe the method, first, we define the information channel and, then, we
review the partitioning algorithm. The channel X → Y is defined by a conditional
probability matrix p(Y |X )which expresses how the pixels corresponding to each region
of the image are distributed into the histogram bins. Note that the capital letters X and
Y as arguments of p() are used to denote probability distributions. For instance, while
p(X ) represents the input distribution of the regions, p(x) denotes the probability of a
single region x .

Given an image with N pixels, the three basic elements of the channel X → Y are:

• The conditional probability matrix p(Y |X ), which represents the transition prob-
abilities from each region of the image to the bins of the histogram, is defined by
p(y|x) = n(x ,y)

n(x) , where n(x) is the number of pixels of region x and n(x , y) is the
number of pixels of region x corresponding to bin y . Conditional probabilities
fulfil

∑

y∈Y p(y|x) = 1, ∀x ∈ X .

• The input distribution p(X ), which represents the probability of selecting each
image region, is defined by p(x) = n(x)

N
(i.e., the relative area of region x).

• The output distribution p(Y ), which represents the normalized frequency of each
bin y , is given by p(y) =

∑

x∈X p(x)p(y|x) = n(y)
N

, where n(y) is the number of
pixels corresponding to bin y .

The mutual information (MI) between Y and X is given by

I(X , Y ) =
∑

x∈X
p(x)

∑

y∈Y
p(y|x)

p(y|x)
p(y)

(5.1)

and represents the shared information or correlation between X and Y . It is important
to note that the maximum M I that can be achieved in the partitioning process is the
entropy H(Y ) of the histogram, given by

H(Y ) =−
∑

y∈Y
p(y) log p(y). (5.2)

The entropy H(Y ) represents the information content of the image.
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Figure 5.1: Pipeline of the proposed approach. The core of the method is the split-
and-merge algorithm. (a) FA and RGB maps, (b) VOIs obtained from the splitting
process, (c) VOIs with FA> 0.4, (d) VOIs obtained from the merging process. (e) seed
placement, and (f) obtained tracks.

The partitioning algorithm is a greedy top-down procedure which partitions the
image in quasi-homogeneous regions. The partitioning strategy takes the full image as
the unique initial partition and progressively subdivides it with vertical or horizontal
lines chosen according to the maximum M I gain for each partitioning step. This al-
gorithm produces a binary space partition (BSP) driven by the maximum information
gain and stops when a given mutual information ratio M IR = I(X ,Y )

H(Y ) or a predefined
number of regions is achieved.

5.3 Automated Fiber Reconstruction Algorithm

The kernel of our information-theoretic approach for automated white matter fiber
tract reconstruction is a split-and-merge strategy applied to decompose the DTI volume
in a set of VOIs. Before defining the details of this strategy, we give a global view
of the whole approach composed of seven steps (see Figure 5.1). We also show an
example of the obtained result for each step. In the first step, from the DTI-data we
generate both the FA and the RGB maps representing the main diffusivity direction
e1 (see Figure 5.1(a)). In the second step, we apply a splitting process (described in
detail below) to decompose the volume in regions (see Figure 5.1(b)). These regions
are represented as nodes of a hierarchical data structure. In the third step, from this
hierarchical structure, we eliminate the terminal nodes with FA ≤ 0.4, considering
that the FA of a node is the mean of the FA of all the voxels represented in the node
(see Figure 5.1(c)). In the fourth step, we apply a merging process (described in
detail below) that returns the final VOIs corresponding to the terminal nodes of the
hierarchical structure (see Figure 5.1(d)). The fifth step is optional and consists in
the edition of the results. The user can apply boolean operations to the VOIs that
have been automatically obtained. In the sixth step, the user defines a seeding rate
for each VOI and we automatically place the corresponding seeds (see Figure 5.1(e)).
In the last step, we perform the fiber tracking using the Lazar [99] technique. We
assign a different color to each VOI and this is used to render the generated fibers (see
Figure 5.1(f)).
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5.3.1 Split-and-Merge Algorithm

The core of our approach is the split-and-merge algorithm used to decompose the DTI
model in a set of VOIs. This algorithm is based on the information-theoretic image
partitioning algorithm described in Section 5.2.2.

To reach our goal, instead of considering the original DTI data, we take as input
of the method two different measures that can be derived from DTI: the FA values,
represented by a grey scale volume, and the main diffusivity direction e1, represented
by an RGB volume, where R, G and B correspond to the X , Y and Z components of
e1. We consider FA ≥ 0.4 as a cutoff to indicate white matter regions and e1 as the
information required to identify the direction of the fibers contained in one anatomical
structure. Since directional information is represented as an RGB value, the direction
of the voxels is examined by considering the color codification.

The proposed split-and-merge algorithm proceeds in two different phases. The first
one is the split phase that extends the 2D partitioning algorithm presented by Rigau
et al. [144] (see Section 5.2.2) to a 3D volume data set. The main novelty in our 3D
algorithm is that the FA and RGB values are considered together in order to segment
the volume (or define the VOIs). Unlike the original 2D split algorithm, where only one
information channel is taken into account, four information channels are now defined,
respectively, between the random variable V , which represents the set of obtained VOIs,
and the histograms of random variables FA, R (red), G (green) and B (blue), which
represent the input data. In all cases, the bins of these histograms are normalized
in the range [0..255]. To start the split phase, the full volume is taken as the initial
partition and it is progressively subdivided using planes in the X , Y or Z directions
according to the maximum mutual information (MI) gain for each partitioning step
(see Section 5.2.2). This gain is obtained by the sum of the specific M I gains of each
channel. The process stops when the mutual information ratio (MIR) provided by the
user is reached. The mutual information ratio is now defined as

M IR=
I(V, FA) + I(V, R) + I(V, G) + I(V, B)

H(FA) +H(R) +H(G) +H(B)
, (5.3)

where the terms I(V, .) and H(.) express, respectively, the information gain obtained
using the different channels and the entropy of random variables FA, R, G and B.
Finally, the split phase returns a binary space partition of the volume data set coded in
a hierarchical data structure.

Before starting the merging, we remove the VOIs (terminal nodes of the created
tree) with the mean of FA less than 0.4. We consider that these nodes are not good
candidates for seeding since we cannot ensure that their fibers are coherently orga-
nized [6, 118, 136]. The second phase of the algorithm performs the merging of the
VOIs according to the directional information of the fibers contained in them. That is,
we successively merge the terminal nodes that have the lowest directional dissimilarity
and the same dominant direction (or color). Remember that the directional informa-
tion of each terminal node is coded as an RGB value, obtained from the mean of RGB
values of all voxels of the node. The dissimilarity between two neighbor terminal nodes
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Figure 5.2: VOIs obtained at different levels of the merging process with M IR = 0.5.
The number of VOIs is (a)125, (b)100, (c)75 and (d)50.

is calculated by the Euclidian distance between their respective RGB values. Thus, since
we only merge VOIs with the same principal color, the main merging criterion is given
by the minimum directional dissimilarity. Observe that, if we do not introduce a spe-
cific stopping criterion (i.e., a predefined number of nodes), the merging process will
end when adjacent VOIs have a different color.

The obtained nodes are the VOIs where seeds will be placed. It is important to
emphasize that the proposed algorithm is completely automatic and only requires the
definition of a M IR parameter and, if desired, the final number of VOIs.

To store all computations, the algorithm creates a hierarchical data structure that
allows us to obtain and consult intermediate results. These results are given by images
that can be obtained interactively. Therefore, the user can consult them before selecting
the final option. Figure 5.2 illustrates results of the merging at different levels of the
process. All the images have been obtained with M IR = 0.5, and from left to right the
number of VOIs is 125, 100, 75 and 50, respectively.

At the end of the algorithm, the results can be edited by the user before starting
the next phase. In this edition step, voxels can be added or removed from the VOIs and
also boolean operators between VOIs can be applied. As we will see in Section 5.5, in
most cases, the required edition is minimal.

5.3.2 Seeding

To avoid seeding all the VOIs we propose to automatically define ROIs into the VOIs.
These ROIs are created as follows. First, we consider the dominant direction of the
VOI, which is obtained from the mean of RGB values of all voxels of the VOI. Then, we
compute the intersection planes perpendicular to the dominant direction. These inter-
section planes are considered as ROIs and can be used as seeding planes or as reception
planes. The reception planes are used to determine if a fiber has to be considered or
not as a member of the anatomical region to be reconstructed. We have imposed the
restriction that all reconstructed fibers in a VOI have to intersect two reception planes.

The user determines the number of planes to be placed and the number of seeds
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per voxel contained in the ROI. The number of planes is expressed as a percentage (%)
with respect to the size of the VOI. Then, we automatically place the planes or ROIs.
We start placing the first ROI in the middle of the VOI and the subsequent ones at the
same distance from the first one in the opposite directions. In addition, for each VOI
we define two reception planes. Although they can be located in different positions
of the VOI, we have experimentally observed that the best results are obtained when
they correspond to the two largest planes located between the middle of the VOI and
its extremes. In the second column of Figures 5.9 and 5.10, we show the VOIs and the
reception planes automatically created to reconstruct different anatomical structures.

Finally, seeds are randomly placed in the seeding planes and the fiber tracking
algorithm is applied. The obtained fibers are colored according to an arbitrary color
assigned to the VOI at the end of the split-and-merge process. In this way, the created
fibers can be seen as bundles of fibers corresponding to the created VOIs. Note that
during all the process the user interaction is minimal.

5.4 Validation Framework

In this section, we present the basis of our validation framework.

5.4.1 MRI Data

DTI-data sets have been obtained from five volunteers as described in Section 3.4.2.
Moreover, the DTI-based human brain atlas has been obtained from the International
Consortium for Brain Mapping (ICBM) database (see Section 4.4 for a more detailed
description).

5.4.2 Manual Fiber Reconstruction

To create the manual fiber reconstruction for the real DTI data, a medical expert con-
sidered eight different anatomical structures: the corticospinal, the corpus callosum,
the cingulum, the inferior fronto-occipital fasciculus left and right, the superior longi-
tudinal fasciculus left and right, and the middle cerebellar peduncle.

For each subject, the medical expert defined these structures as follows. First, he
defined different ROIs to reconstruct the evaluated structures using the 3D editor of
AMIRA [155]. Then, since the corticospinal tract is composed by the fibers that traverse
the middle pons and finish at the subcortical white matter [70, 117], the expert drew
one square ROI at the base of the middle pons and a VOI covering all the subcortical
white matter located above the slice corresponding to the superior part of the corpus
callosum, mainly containing the frontal and parietal lobes. To define this last region,
the T1 image has been segmented using SPM5 [11], obtaining three probability maps:
grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF). To select cortical
grey matter voxels, a threshold of 0.7 has been applied to the GM probability map. It
has been experimentally proven that this threshold value separates the GM voxels with
a high probability. The obtained mask (GMm) has been superimposed with the T1
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image and the misclassified voxels have been removed by editing manually. Since
the obtained VOI only contains the voxels upper to the axial plane superior to the
thalamus, the medical expert has applied a three step process to obtain the subcortical
white matter VOI: (i) the mask (WMm) from the probability map of white matter with
a 0.7 threshold has been obtained, (ii) a dilatation of three voxels of GMm have been
performed, and (iii) the intersection of WMm and the dilated GMm has been carried
out obtaining the subcortical white matter VOI.

To define the structure of the corpus callosum [179, 117], the 10 mid-sagittal slices
of the WMm have been selected and four rectangular ROIs have been defined around
it. Three of these ROIs have been used to obtain the fibers of the genu, the body, and
the splenium of the corpus callosum, and the fourth has been defined to avoid the
association with corpus callosum of fibers from the corticospinal tract.

The cingulum has been selected from the subcortical white matter VOI by con-
sidering the underlying cingulate gyrus voxels and adding two perpendicular squared
ROIs at the extremes. The VOIs defined on the high resolution T1 image have been
registered with the b0 images using a 12-parameter affine registration.

To define the inferior fronto-occipital fasciculus, two ROIs along the course of the
inferior fronto-occipital fasciculus [32, 165] in the coronal plane of the T1 images at
the level of the anterior commissure and the pontine crossing fibers have been placed,
respectively. The defined VOIs have been registered with the b0 images using a 12-
parameter affine registration.

The superior longitudinal fasciculus has been defined as in Bernal et al. [24], plac-
ing bilaterally squared ROIs at the triangular-shaped region lateral to each of the cor-
ticospinal tracts in a coronal plane along the rostral aspect of the corpus callosum. A
sagittal colored based FA image has been used to determine the rostral endpoint of the
superior longitudinal fasciculus fibers in the white matter pertaining to specific gyri or
pars of the frontal lobe.

To obtain the middle cerebellar peduncle, two ROIs have been defined. The first
one placed across the pons, for selecting lateral fibers contained in this region, and the
second one, on the cerebellum.

After defining all the VOIs, to reconstruct the fiber tracks, three seeds per voxel
have been placed all over the brain and, then, the Lazar method [99] has been ap-
plied. We have only considered the fibers intersecting the defined VOIs and, for each
one, we have created a mask containing all the voxels intersected by the fibers of the
corresponding structure.

For the evaluation of the DTI-brain atlas we have selected from the white matter
parcellation map, provided together with the DTI-brain atlas, the following structures:
the corticospinal tract left and right, the corticospinal tract complete, the corpus callo-
sum, the cingulum, the inferior fronto-occipital fasciculus left and right, the superior
longitudinal fasciculus left and right, and finally the middle cerebellar peduncle. To
create the tracts, we applied the Lazar method [99] with one seed per voxel in voxels
with FA > 0.4. The stop criteria in all the cases is FA < 0.2 and the angle < 100o.
To delineate the fiber bundles more accurately, the medical expert has defined some
selection ROIs, in addition to the provided parcellation, following [39, 32, 165].
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5.4.3 Evaluation Metrics

To evaluate the accuracy of the proposed approach we compared the automated track-
ing results with the manually-based tractography results for the set of selected anatom-
ical structures.

The spatial matching between manual and automated results was examined us-
ing the kappa analysis [93]. The automated and manual tracking results were first
converted to binary images with the same dimension as the DTI data (181x217x181),
where the value 1 was assigned to the voxels occupied by the tracts and the value 0
to non-occupied voxels. The two tracking results were then superimposed, and voxels
were classified into three categories: (1) voxels that did not contain the tract in either
trial (nn); (2) voxels that contained the tract in only one of the two trials (pn, np);
and (3) voxels that contained the tracts in both trials (pp). The κ (kappa) value of
the manual and automated reconstruction of selected tracts was calculated. Accord-
ing to the Landis and Koch criterion [93], a κ value of 0.11− 0.2 is considered slight,
0.21− 0.4 is fair, 0.41− 0.60 is moderate, 0.61− 0.80 is substantial, and 0.81− 1.0 is
almost perfect agreement.

5.5 Results

The presented approach requires different parameters: M IR, for controlling the split-
ting phase, the number of regions, that the merging phase has to return, and, seeding
rate, for reconstructing the fiber bundles. To determine the values of these parameters
we have designed several tests.

All experiments have been done considering the two testing data sets, the atlas and
the five controls DTI-data. The experiments presented in this section have been carried
out on a Laptop with a Core 2 Duo-2.5Ghz and 3Gb RAM.

5.5.1 Setting Algorithm Parameters

First, to determine the optimal M IR, we have evaluated the gain of M IR that is ob-
tained for different partitions, i.e., different levels of splitting and also the computation
time required to obtain the partitions. The obtained results are plotted in Figure 5.3(a),
where axis x corresponds to the total M IR, i.e., the accumulated M IR at the current
partition, and axis y represents the gain of M IR obtained with the current partition.
We also record the computation time of splitting. This is plotted in Figure 5.3(b) where
x represents the M IR and y the computation time in seconds. The red plot represents
the average of the results for each of the controls and the blue plot corresponds to
the atlas. Observe that in both cases computation time increases much more rapidly
than the gain of M IR when M IR> 0.4 (see Figure 5.3). Therefore, we consider that a
trade-off between M IR and processing time is achieved when 0.4 ≤ M IR ≤ 0.5. Com-
putation time is higher for the atlas because it has a higher resolution than the real
DTI-data.
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Controls After splitting With FA≥ 0.4 After merging Time
Control 1 1474 130 28 40
Control 2 2241 293 46 44
Control 3 2441 294 43 46
Control 4 1955 207 37 42
Control 5 2223 225 43 45

Table 5.1: Number of nodes generated at the different steps of the split-and-merge
process. Split-and-merge computation time in seconds.

The proposed method, once the splitting phase has finished, removes the nodes
with FA< 0.4 and then performs the merging of ’similar’ nodes. To stop the merging
process, we can give the M IR or the number of final VOIs. To analyze the effect of
these alternatives we have performed two different experiments. The first experiment
considers the five controls DTI-data and performs merging until no more partitions
(or VOIs) can be merged since their dominant direction is different. In Table 5.1 we
illustrate the evolution of the whole process. From left to right, we have reported for
each of the subjects the number of terminal nodes at the end of the splitting step, after
removing partitions with FA< 0.4 and after the merging step. We have also recorded
in the last column the computation time. Note that during the splitting process the
algorithm approximately decomposes the volume in 2000 partitions. Almost 70% of
regions are discarded since their mean is FA< 0.4. The merging phase returns between
30 and 40 VOIs.

The obtained results for the atlas dataset and for one of the controls are shown in
Figure 5.4. Note that the main anatomical structures are detected. A similar behavior
has been obtained with the other subjects. Observe that although the splitting step
uses horizontal and vertical planes to decompose the volume and this will not result in
meaningful anatomical regions, when the merging phase is applied, these regions are
more correctly delineated.

The second experiment has been carried out on the DTI-brain atlas. In this case we
have considered the 10 selected regions of interest, the left and right corticospinal tract,
the complete corticospinal tract, the corpus callosum, the cingulum, the left and right
inferior fronto-occipital fasciculus, the left and right superior longitudinal fasciculus,
and the middle cerebellar peduncle. We have analyzed the number of regions obtained
at different levels of the merging process (see Figure 5.2). We have observed that when
the number of regions is 90, the selected structures can be identified and only some
boolean operations are required (see Figure 5.4(b)).

5.5.2 Determining the Seeding Rate

To determine the seeding rate, we have considered the two testing data sets and for
each evaluated structure, a different number of planes and also a different number of
seeds for the voxels contained in the planes.

For each structure, we have defined two reception planes corresponding to the
two largest planes located between the middle of the VOI and its extremes following
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(a) (b)

Figure 5.3: Evolution of M IR values. (a) The plot represents the average for 5 controls
of the gain of M IR obtained with each new partition where axis x corresponds to
the accumulated mutual information ratio (M IR). (b) Average computation time in
seconds for 5 controls according to M IR (axis x).

the dominant direction of the VOI. Then we have defined 10%, 25%, 50%, 75%, and
100% of planes, where the % represents the number of planes with respect to the
length (in voxels) of the VOI in the dominant direction, the 100% case is when the
number of planes is equal to the length of the VOI. To evaluate the effect of a different
number of seeds we have placed from 1 to 6 seeds per voxel. After the seeds have
been placed, we have applied Lazar method [99] to reconstruct the bundle of fibers
representing the anatomical structure. Then, we have created the masks composed
of voxels intersected by the fibers of each of the studied structures. Finally, we have
tested the spatial matching agreement between automated and manual methods by
kappa values. Figures 5.5 and 5.6 present the results obtained for the DTI-brain atlas
and, Figures 5.7 and 5.8, for the controls. In Tables 5.2 and 5.3, the best, worst, and
average of the agreement between automated and manual methods over the DTI-brain
atlas and subject DTI-data are given, respectively.

In Figures 5.9 and 5.10, visual comparison between the manual and automated
methods are shown for the cases with the best and worst agreement. From left to right,
we present the manual reconstruction, the VOIs and the reception planes automatically
defined, and the automated reconstructions with the best and worst agreement, respec-
tively.

Figure 5.11 plots the computation time required to perform the split-and-merge
steps for the different evaluated (planes, seeds) configurations.

5.6 Discussion

We have presented a new approach for automated white matter fiber tracts reconstruc-
tion based on information-theory. The basis of our approach is an information-theoretic
split-and-merge algorithm where fractional anisotropy FA and fiber orientation are
used for automatic VOI definition. These VOIs do not aim at representing the structure
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(a)

(b)

Figure 5.4: Volumes of interest (VOIs) obtained automatically using the proposed
approach with (a) M IR = 0.4 for one of the testing data sets and (b) M IR = 0.5 for
ICBM-DTI-81 atlas. The VOIs are labelled following [117], where ACR: anterior corona
radiata, CC: corpus callosum, CING: cingulum, CST: corticospinal tract, IFO: inferior
fronto-occipital fasciculus, ILF: inferior longitudinal fasciculus, MCP: middle cerebellar
peduncle, ML: medial lemniscus, PTR: posterior thalamic radiation and SLF: superior
longitudinal fasciculus.
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Figure 5.5: Agreement between automated and manual methods for different struc-
tures of the DTI-atlas considering different (planes, seeds) configurations. CST: corti-
cospinal tract, CC: corpus callosum, CING: cingulum, MCP: middle cerebellar peduncle.

Figure 5.6: Agreement between automated and manual methods for different struc-
tures of the DTI-atlas considering different (planes, seeds) configurations. IFO: infe-
rior fronto-occipital fasciculus, SLF: superior longitudinal fasciculus, CST: corticospinal
tract.
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Figure 5.7: Agreement between automated and manual methods for different struc-
tures of the DTI-data considering different (planes, seeds) configurations (average of 5
controls). CST: corticospinal tract, CC: corpus callosum, CING: cingulum, MCP: middle
cerebellar peduncle.

Figure 5.8: Agreement between automated and manual methods for different struc-
tures of the DTI-data considering different (planes, seeds) configurations (average of
5 controls). IFO: inferior fronto-occipital fasciculus, SLF: superior longitudinal fascicu-
lus.
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Best Kappa Worst Kappa Average
CST-L 0.807 (10%,3) 0.745 (100%,6) 0.787 ± 0.019
CST-R 0.721 (100%,2) 0.656 (10%,1) 0.705 ± 0.013
CST 0.821 (50%,1) 0.787 (10%,1) 0.808 ± 0.008
CC 0.977 (50%,6) 0.606 (10%,1) 0.964 ± 0.096
CING 0.873 (10%,4) 0.585 (10%,1) 0.846 ± 0.064
IFO-L 0.753 (100%,1) 0.711 (25%,6) 0.723 ± 0.010
IFO-R 0.764 (100%,6) 0.575 (10%,1) 0.674 ± 0.044
SLF-L 0.805 (75%,6) 0.638 (10%,1) 0.792 ± 0.035
SLF-R 0.725 (100%,6) 0.377 (10%,1) 0.628 ± 0.085
MCP 0.722 (10%,1) 0.618 (100%,6) 0.654 ± 0.029

Table 5.2: Best, worst and average of the agreement between automated and manual
methods over the DTI-brain atlas for the ten evaluated tracts (average of 30 seed-
ing possibilities corresponding to the evaluated (planes, seeds) configuration). The
best and the worst result is accompanied by its corresponding configurations given as
(planes, seeds). CST: corticospinal tract, CC: corpus callosum, CING: cingulum, IFO:
inferior fronto-occipital fasciculus, SLF: superior longitudinal fasciculus, MCP: middle
cerebellar peduncle.

Best Kappa Worst Kappa Average
CST 0.562 (100%,4) 0.375 (10%,1) 0.541 ± 0.041
CC 0.725 (100%,6) 0.453 (10%,1) 0.687 ± 0.065
CING 0.702 (100%,6) 0.399 (10%,2) 0.617 ± 0.086
IFO-L 0.722 (100%,4) 0.475 (10%,1) 0.678 ± 0.061
IFO-R 0.735 (100%,6) 0.408 (10%,1) 0.668 ± 0.075
SLF-L 0.598 (75%,4) 0.377 (10%,1) 0.581 ± 0.045
SLF-R 0.600 (75%,6) 0.226 (10%,1) 0.509 ± 0.085
MCP 0.605 (100%,6) 0.448 (10%,1) 0.575 ± 0.037

Table 5.3: Best, worst and average of the agreement between automated and manual
methods over the five controls for the eight selected tracts (average of 30 seeding
possibilities corresponding to the evaluated (planes, seeds) configuration). The best
and the worst result is accompanied by its corresponding seeding configurations given
as (planes, seeds). CST: corticospinal tract, CC: corpus callosum, CING: cingulum, IFO:
inferior fronto-occipital fasciculus, SLF: superior longitudinal fasciculus, MCP: middle
cerebellar peduncle.
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Figure 5.9: From left to right, we present, for the DTI-brain atlas, the manual recon-
struction, the VOIs and the reception planes automatically defined with M IR = 0.5,
and the automated reconstructions with the best and worst agreement, respectively.
The evaluated structures are the corticospinal tract, the corpus callosum, the cingu-
lum, the inferior fronto-occipital fasciculus, the superior longitudinal fasciculus, and
the middle cerebellar peduncle.
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Figure 5.10: From left to right, we present, for the real DTI-data, the manual recon-
struction, the VOIs and the reception planes automatically defined with M IR = 0.4,
and the automated reconstructions with the best and worst agreement, respectively.
The evaluated structures are the corticospinal tract, the corpus callosum, the cingu-
lum, the inferior fronto-occipital fasciculus, the superior longitudinal fasciculus, and
the middle cerebellar peduncle.
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Figure 5.11: Computation time in seconds for creating the fiber tracks with the split
and merge steps, considering different number of planes, and seeds, and taking into
account the VOIs calculation time (average of 5 subjects)

of interest but define a region to place seeds in order to reconstruct the bundle of fibers
corresponding to the structure. The defined VOIs are used to place seeds and we avoid
seeding all the brain. This method is completely automatic and only requires the def-
inition of some input parameters required by the split-and-merge process. This is an
important feature of the approach since it ensures the reproducibility of the white mat-
ter reconstructions. We want to emphasize that the whole process requires less than
a minute and hence reduces considerably the time spent with manual approaches. A
limitation of the approach is the determination of the level of accuracy of the merging
step. Although we can observe on-line the VOIs obtained by this step, the final selection
depends on the user. In the case of the splitting phase, we have been able to propose a
set of optimal values taking into account the gain of information and the computation
time.

The approach has been tested on a DTI-brain atlas and real DTI data. The match-
ing between the manual and automated approaches achieves the best results with the
DTI-brain atlas. In this case, for all the structures, the best kappa is > 0.7 leading to a
substantial and almost perfect agreement in some cases. For the structures that achieve
an almost perfect agreement, the (planes, seeds) configuration is not the maximal one.
This demonstrates that the proposed approach is capable of reproducing these struc-
tures with minimal user interaction. The worst results are achieved when the lowest
(planes,seeds) configuration is applied. In this case, the kappa value is moderate.
The results obtained with real DTI-data are not as satisfactory as the previous ones.
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Matching is substantial for all the evaluated structures except for the corticospinal and
the superior longitudinal fasciculus, which is moderate. If we compare the number
of planes and seeds with the ones used for the DT-brain atlas, we observe that more
seeds are needed. The worst results are achieved with the lowest seeding configura-
tion (10%,1). The results obtained with real DTI-data would probably be improved
with the pre-processing of input data [84] or the aplication of a regularization pro-
cess [65, 173, 66].

Our approach considers FA and fiber direction to define the VOIs. The fact of
considering direction, in some cases, leads to the definition of more than one VOI (i.e.,
superior longitudinal fasciculus or middle cerebellar peduncle) or a VOI containing
only a part of the structure (i.e., inferior fronto-occipital fasciculus or corpus callosum).
However, when planes and seeds are automatically placed, the structure is correctly
created. This may be a limitation at the beginning since it will be difficult for the
user to know if boolean operations have to be applied or not, or if the current VOI
decomposition is the best one. However, this knowledge can be acquired by using the
environment.

5.7 Conclusions

We have presented an automated approach for DTI tract reconstruction based on
information-theoretic split-and-merge algorithm, that considers fractional anisotropy
and fiber orientation information to automatically define volumes of interest (VOIs).
For each VOI, a number of planes and seeds is automatically placed and, then, fiber
bundles corresponding to the VOIs are created. Different experiments have been de-
fined for setting, in a optimal way, the algorithms parameters required: M IR, for con-
trolling the splitting phase, the number of regions that the phase has to return, and the
seeding rate needed to reconstruct fiber bundles.

We have used a validation framework with atlas-based and real DTI data for testing
the accuracy of obtained fiber bundles. For the DTI-atlas, a high level of agreement was
found between the manual and automated approaches. In an ideal model, like a DTI-
atlas, we have demonstrated that the proposed approach is capable of reproducing
the majority of structures with minimal user interaction. We have also observed that
the tracts found are almost perfect (kappa> 0.8) and substantial (kappa> 0.6). The
results obtained with real DTI-data are not so satisfactory because only substantial
agreement is achieved in most of the cases. However, these could be improved using a
pre-processing step or a regularization method.

As a future work we will do a further study with real DTI-data considering more
controls and also pre-processing techniques to improve the results. In addition, we aim
to study the possibility of defining automatically the number of planes and seeds of
each VOI by using information-theoretic measures.



CHAPTER 6

Software: DTIWeb

The development of software platforms and environments that can support medical
image processing and visualization has become a wide work field. In this context,
internet-based applications have opened a big range of opportunities in software
development allowing developers and users to work together in a unique platform.
However, despite the advantages provided by internet applications, in general, the
tendency of medical image research laboratories is to implement its own software
which is often only made available internally or to scientific collaborators. This
situation is still more extreme when the software is designed to process a new im-
age modality such as diffusion tensor imaging (DTI). In this chapter, we present
DTIWeb, a robust, portable, and extensible Java application for visualizing and pro-
cessing DTI data. The proposed framework is based on the Java3D programming
platform that provides an object-oriented programming model and independence
of both computer hardware configuration and operating system. The platform is
designed to work through the world wide web and only requires a web browser.
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6.1 Introduction

Although DTI is a valuable tool for diagnosis, the novelty and complexity of this im-
age modality hinders its application in clinical practice. A good strategy to exploit DTI
capabilities is the development of software in which engineers and practitioners com-
bine their knowledge. Motivated by a common interest, the medical imaging group of
our university and medical researchers from the Hospital Josep Trueta of Girona cre-
ated a working group. We aimed to develop a tool that integrates the operations and
tools required to diagnose from DTI data and also a tool that provides an environment
where different visualization, processing, and evaluation techniques can be tested and
compared. With this aim, DTIWeb has been designed.

The criteria used in the design of DTIWeb are the following:

• Portability: it facilitates the efficient creation of computational tools for DTI pro-
cessing and visualization, independent of the operating systems.

• Reusability: the object toolkit design should follow the object-oriented principle,
so that the object classes are self-encapsulated, with high cohesion and minimum
coupling.

• Flexibility: the platform integrates object classes with reusability features.

• Extensibility: new modules could easily be incorporated into the platform.

• Usability: the platform needs a GUI interface, easy and clear to use.

To develop DTIWeb, we use the Java programming language. The motivation be-
hind the choice of this language is that it supports multiple platforms and enables easy
customization of them. Java also provides some packages that are very helpful in the
development of image processing and visualization functions. The Java Virtual Ma-
chine (JVM) is a platform-specific program that interprets platform-independent Java
software and allows Java code to run on different platforms without being recompiled.
Java supports a rapid development and an easy customization of software with features
such as automatic memory management, object oriented syntax, strong type checking
and a protected runtime environment [58]. The Java3D [48] component provides a
set of higher-level APIs compared to most graphic packages which many developers
are still using, such as OpenGL [149]. In our case, this feature is of great interest in
order to generate 3D visualizations.

This chapter has been structured as follows. Section 6.2 describes related work.
Section 6.3 presents design decisions and implementation details. Finally, Section 6.4
presents the conclusions.

6.2 Related Work

In this section we review some of the most representative DTI data processing and
visualization packages.
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There are several medical imaging toolkits developed using Java, such us Im-
ageJ [142], NeatVision [175], BIL-kit [71], BrainImageJ [183] and Camino [41].
There are also different medical imaging packages that support DTI data processing
and visualization [68]. However, there are few Java toolkits for DTI data evalua-
tion [120]. We briefly review some of the free fiber tractography and visualization
software packages that have been proposed:

• 3DMRI [1], developed at the Laboratory of Brain Anatomical Imaging Johns Hop-
kins University, is a C++ application built on top of the Visualization Toolkit
(VTK) to visualize fiber tracts. Fiber tracts are visualized inside an iso-surface of
human brain generated from brain MRI scan. Users can change the transparency
of the iso-surface and can assign colors and thickness to fiber tracks. Users can
also choose to project the fibers to the brain cortex to estimate possible contact
areas.

• FiberViewer and FiberTracking [57] are open source tools based on ITK [125],
VTK, and SOViewer toolkits. The tools are designed to provide several intercon-
nected modules to perform quantitative analysis of DTI data based on fiber tracts
generated from tractography. Both are complemented by DTIChecker [52, 53],
that is a tool to check and correct DTI data. Slice artifacts and motion artifacts
between shots can be checked. It also creates the best average of different shots.

• DoDTI [92] is a software toolkit developed for the analysis and quantification of
diffusion tensor imaging. It is implemented in Matlab.

• dTV [108], or diffusion tensor visualizer, is an extension of a program developed
for the volume data view program VOLUME-ONE. dTV performs analysis of DTI
data and transfers results to VOLUME-ONE for display.

• DTIStudio [78] is a program developed using C++ and OpenGL on a Windows
platform. The software allows users to perform user DTI related calculations,
fiber tracking and editing, and ROI analysis with 3D visualization.

• DSIStudio [181] is a software in C++ that includes reconstruction (DTI, QBI,
DSI, and GQI), deterministic fiber tracking, and 3D visualization. It has a window-
based interface and operates on Microsoft Windows system.

• DipY [75] is a free and open source software project for DTI analysis. It depends
on a few standard libraries based on Python. With this software, user tractogra-
phies can be warped into another space finding track correspondence between
different brains.

• Teem [87] is a software written in C. It has a group of low-level functions, that
does not include a GUI, and that can be directly called from command-line for
getting data in and out.
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• FSL [176] is a cross-platform comprehensive library of analysis tools for FMRI,
MRI and DTI brain imaging data. Most of the tools can be run from both the
command line and as GUIs. FSL includes FDT package, that is a group of diffu-
sion tools, TBSS for voxel-based analysis, and ProbTrack to perform probabilistic
tracking.

• MedINRIA [53] is a free collection of software packages implemented in C++,
ITK and VTK. It aims at providing to clinicians state-of-the-art algorithms dedi-
cated to medical image processing and visualization, including DTI. Efforts have
been made to simplify the user interface, while keeping high-level algorithms.
Each application is called a module, and can be loaded dynamically from a sin-
gle main window. MedINRIA is cross-platform.

• Camino [41] is a fully-featured toolkit for Diffusion MR processing and recon-
struction, including diffusion tensor techniques, tractography and advanced algo-
rithms for resolving non-Gaussian diffusion profiles, the so-called fiber-crossing
problem. Camino is an open source object-oriented software package written
entirely in Java.

• Explore DTI [101] is a non-commercial package that combines many of the key
DTI tools: visualization of scalar and vector maps of various diffusion tensor
properties, display of principal diffusion vectors, cuboids and ellipsoids with sev-
eral color-encodings, deterministic and probabilistic fiber tractography, cluster-
ing of fiber tracts, data quality assessment tools for HARDI reconstructions (Q-
ball and spherical deconvolution imaging), tract-specific measurements, tract-
segment analysis, and motion/distortion correction.

• TrackVis [166] is a software tool that can visualize and analyze fiber track data
from DTI, DSI, HARDI, and Q-Ball tractography. It is cross-platform. TrackVis
handles large fiber track datasets and also performs intensive 3D rendering in-
teractively, requiring a large system RAM and a high-performance 3D graphics
card that are critical to achieving satisfying performance.

• TracTor (Tractography with R) [34] is a project that includes R packages for read-
ing, writing and visualizing MRI. It also contains functions specifically designed
for working with DTI and tractography, including a standard implementation of
the neighborhood tractography approach to white matter tract segmentation.

• Quantitative DTI [103] is an independent platform tool programmed in C++
that provide a group of modules for quantitative diffusion analysis with Slicer3.
Modules include tools for clustering fiber tracts, summarizing measures over tract
clusters and point-by-point mapping of white matter fiber pathways.

• DTI-TK [115] is a spatial normalization and atlas construction toolkit, designed
from ground up to support the manipulation of DTI with special care taken to re-
spect the tensorial nature of the data. It implements a state-of-the-art registration
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algorithm that drives the alignment of white matter (WM) tracts by matching the
orientation of the underlying fiber bundle at each voxel. The algorithm has been
shown to improve both WM tract alignment and to enhance the power of sta-
tistical inference in clinical settings. It has interoperability with other DTI tools:
Camino, DTIStudio, and FSL.

• CATNAP (Coregistration, Adjustment, and Tensor-solving, a Nicely Automated
Program) [94] is an end-to-end data processing pipeline for Philips MRI data
files. CATNAP performs motion correction for both diffusion and structural im-
ages using FSL FLIRT, adjusts the diffusion gradient directions for scanner set-
tings (i.e., slice angulation, slice orientation, etc.) and motion correction (i.e.,
the rotational component of the applied transformation), and computes tensor
and derived quantities (FA, M D, colormaps, eigenvalues, etc.). The results are
readily compatible with DTIStudio, FSL, and other tensor analysis packages.

• BrainVoyager QX [139] is a software package for the analysis and visualization
of functional and structural MRI data sets. From version 1.9, this software has
a DTI module allowing us to analyze diffusion-weighted MRI data including the
calculation of FA maps, fiber tracking, and FA group comparisons. It has been
completely programmed in C++, Qt, and OpenGL.

• Saturn [31] is built using the ITK image processing libraries, the VTK libraries
for 3D visualization, and the Fast Light Toolkit (FLTK) libraries for the graphical
user interface objects. Saturn is open source and written in C++. The main
feature is that it includes a quantification method for DTI data, using an atlas-
based method to automatically obtain equivalent anatomical fiber bundles and
regions of interest among different DTI data sets.

• DTI-Query [4] is written entirely in C++ and is designed to work without any
special hardware requirements. The program makes use of the visualization
toolkit (VTK) for 3D scene generation and interaction. Specifically, the appli-
cation allows neuroscientists to place and interactively manipulate box-shaped
regions to selectively display pathways that pass through specific anatomical ar-
eas.

• DTI & FiberTools [91] is implemented under Matlab. This toolbox provides import-
filters for several MR file standards, a processing unit to calculate the diffusion
tensors, and several GUI-based tools to calculate fiber tracks and to evaluate the
DTI dataset. The results can be filed as images with 3D impression or can be
logged in formatted ASCII files. The toolbox is available upon request.

• Slicer-DTMRI [54] is the DTI module of community platform Slicer, or 3D Slicer.
3D Slicer is a free, open source software package for visualization and image
analysis. 3D Slicer is natively designed to be available on multiple platforms.

• SPM [114] in the version 8 has a set of two toolboxes for DTI: The FA-VBS nor-
malization toolbox is for preparing DTI data for VBM-style voxel-based statistics
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(VBS) of FA images (FA-VBS). The ECMOCO toolbox is for correcting DTI data
for motion and eddy current artefacts.

• Nipype [55] is an open source platform that helps to unify and replicate the
interaction with existing neuroimaging tools.

We can see that the growing importance of DTI has been accompanied by the ap-
pearance of multiple software packages that help us to process DTI data. All of them
have a visualization and a tracking module, and then we can find some more modules
depending on the specialization level of software. Although there are some multiple
platform software packages, there is no any software package that works via web. An-
other shortcoming is their poor usability. This is due to the fact that most of them are
designed for research and not for use in daily clinical practice.

6.3 Platform Description

To describe the DTIWeb platform we are going to present the three different layers that
compose it. These are represented in Figure 6.1 and described below.

1. The Input/Output level integrates all the modules required to read any kind of
medical data, such as DICOM, NRRD, and also the modules required to transform
the obtained results in different formats, such as JPG, EPS.

2. The graphical user interface (GUI) integrates all the modules required for inter-
acting with the user. This layer integrates the functionalities required to show
the images and results to the user.

3. The third layer is the kernel of the application which consists of different mod-
ules, each one designed to support a specific operation, such as visualization,
tracking, clustering, seeding, synthetic data, statistical, segmentation, and regis-
tration.

The protocol that has to be applied to communicate the different layers depends
on the user selected operation. A more detailed description of all these layers is given
below.

6.3.1 Medical Data Input/Output Lawyer

One of the main difficulties, when dealing with medical data, is due to the existence
of multiple data formats. Although Digital Imaging and Communications in Medicine
(DICOM) [46] has become prevalent, there are still differences in file formats depend-
ing not only on the image modality but also on the manufacturers. To tackle this
problem, we have created the input/output layer. This layer is composed of different
modules each one designed to support a specific file format. The module has to read
the data file and generates the voxel model that represents the information. In the case
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Figure 6.1: Structural design of the DTIWeb.

of DTI-data, this module reads DTI-data and computes the tensor that has to be stored
in each voxel. DTIWeb implements the single tensor-based approach, and as a future
work, we will incorporate an ODF-based approach. Currently, our system supports dif-
ferent input DTI formats (Philips file format, Bruker file format, DPF [78], NRRD [86],
NIFTI [132], raw data and DICOM series) and also different MRI sequences.

DTIWeb also supports creation of output files. To maintain the information ob-
tained from the applied visualization or processing techniques supported by the plat-
form. For example, it can generate images in different formats, maintain the traces
generated from a tract, the results obtained from a clustering process, the defined
ROIs, etc. It also allows the creation of output files supported by other medical appli-
cations such as DPF [78], NRRD [86], MHD, DTI Studio Fiber [78], plain text file, and
Analyze.

As shown in Figure 6.1, the medical data input/output layer interacts with the GUI
and also with the kernel. The user through the GUI determines the file and the format
of input and output files. The voxel model created by the Input/Output module is the
main input parameter required by the different techniques integrated in the kernel of
the application.
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6.3.2 Graphical User Interface

The graphical user interface is composed of a menu bar, a tabbed panel, and a visualiza-
tion area (see Figure 6.2). The menu bar is a list of menus where each menu contains a
list of sub-menus. From left to right, the supported operations are File, which includes
Open, Close, Save, and Snapshot functions; Scene, which is used to define regions of
interest on the scene or to change the processed model in case more than one model
is opened simultaneously; Tracking, which includes different configuration parameters
and Help.

Figure 6.2: Main components of the graphical user interface.

The tabbed panel, positioned horizontally on the left, shows the operations that
are in the kernel of the application. Each of the kernel modules has a panel, except
seeding, to enter the parameters related with the selected operation.

The rest of the interface is the visualization area where DTI data is rendered. This
area is split in four windows: the axial, coronal, and sagittal views of the model, and
a 3D multiplanar view. Each of these windows has a slider that allows us to explore
the entire DTI model in the corresponding view. Both orthographic and perspective
projections are supported. Zoom and rotation operation can be performed in an inde-
pendent way on each of the windows. Note that in the bottom of the tabbed panel, the
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information of the point where the mouse is placed is collected. In Figure 6.2, we can
see some information about the patient, model resolution, or the values of different
parameters computed from the tensor, such as FA value, M D value, etc.

6.3.3 Kernel of the Platform

The kernel of the platform is composed of the main modules of the application. These
modules are:

• Visualization module

The visualization module integrates the methods and techniques designed to vi-
sualize data. Taking into account the state-of-the art on visualization (see Sec-
tion 2.3) our platform supports:

(i) 1D Visualization strategies which generate color or grey level scalar maps
of a parameter computed from the tensor. The user enters the parameter to
be rendered and the colors to be used. In Figures 6.3(a) and 6.3(b), two
different scalar maps corresponding to the linear coefficient and fractional
anisotropy indices are illustrated.

(ii) 2D Visualization strategies which represent the information of the tensor
by using tensor glyph. The user selects the glyph (cuboid or ellipsoid), the
number of slices to be visualized, and the color scale. In Figures 6.3(c) and
6.3(d), two ellipsoid-based visualizations considering a single and three
slices are illustrated.

(iii) 3D Visualization strategies which render the tracts obtained from a tracking
algorithm or from a clustering process. In this visualization, the user can
select the background image and the color of the fibers. In Figures 6.3(e)
and 6.3(f), visualizations of a tracking process with different background
scalar maps are shown.

• Tracking module

The tracking supports the main state-of-the art deterministic techniques (see Sec-
tion 4.2.3). The implementation of the methods takes into account the main steps
involved in the tracking process and allows to modify the different parameters.
These are:

(i) Seeding strategies. To place the seeds in the voxel we implemented different
strategies: Monte Carlo, which places the seeds randomly in the voxel; Tra-
ditional, which places the seeds in the inferior edge of the voxel; Random,
which is similar to Monte Carlo, but generates the same random seeds for
each ROI; Stratified, which uses a stratified sampling to place seeds; System-
atic, which uses a systematic sampling with a random offset. The user can
choose to locate seeds in all the voxels or to define a ROI or VOI. The ROI
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(a) (c) (e)

(b) (d) (f)

Figure 6.3: 1D visualization of (a) linear coefficient and (b) fractional anisotropy
indices. 2D visualization using an ellipsoidic glyph considering (a) one slice and (b)
three slices. 3D visualizations using as background (a) fractional anisotropy map and
(b) fractional direction weighted by main direction color map.

can be defined manually, by drawing it on the image (see Figure 6.4(a)),
or semi-automatically by selecting a drawing primitive and then placing the
parameters required to define it. The user can also select the color of the
ROI or VOI which is then used to draw the fibers. Our system supports
boolean operations between different ROIs or VOIs. In Figures 6.4(b) and
(c) we illustrate the tracks generated when different ROIs, R1, R2, and R3,
are defined and different boolean operations have been applied. The sys-
tem has also the capability to store the entered ROI configuration in order
to be applied in other models.

(ii) Stop criteria. The definition of the stopping criteria that determine when
a tract finishes. Different parameters can be used for judging continuity,
including minimal parameters such as FA and local curvature (angle differ-
ence between two consecutive vectors).

(iii) Tracking technique. Currently, our environment supports all the tracking al-
gorithms presented in Section 4.2.3. To add a new method to this module,
the user has to define the integration method, that given a tract point deter-
mines how the next one is computed, and the function that calculates the
propagation direction at each point.
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(a) (b) (c)

Figure 6.4: (a) ROI placed manually and tracking generated for different ROIs and
different operations (b) (R1 and R2 and R3), and (c) (R1 and R2 and (not R3).

• Clustering module

Despite the advantages of tracking algorithms with respect to 1D and 2D visu-
alizations, its evaluation in clinical practice is quite difficult. The large amount
of fibers reconstructed by tracking methods make their interpretation difficult
(see Figure 6.5(a)). To overcome this limitation, different approaches have been
proposed see Chapter 5. One of these strategies is clustering [73], which is sup-
ported by our platform (see Figure 6.5(b)). Fiber clustering methods analyze a
collection of paths in 3D, and separate them into bundles, or clusters, that con-
tain paths with similar shape and spatial position. These bundles are expected to
contain fiber paths with similar anatomy and function. The clustering requires
the definition of a similarity function that measures the distance between points
or between fibers, and also the definition of a clustering strategy. We have im-
plemented different distance functions and different clustering strategies in such
a way that the user can combine them.

• Statistical module

We have integrated into the platform a statistical module able to compute the
main anisotropy indices that are used in medical diagnosis. To show these values,
we can use a tabular mode or a graphical representation.

In Figure 6.6, we show two FA-plots generated from DTI-data of an acute is-
chemic stroke patient. Images (a) and (c) correspond to data obtained within 12
hours from the onset of symptoms, and (b) and (d) 30 days after initial imaging.
In both explorations, fibers of the corticospinal tract were generated bilaterally
in order to compare the damaged side (left side) with the healthy one (right
side). To start the tracking, we apply the ROIs manually placed in the basilar
portion of an axial slice at lower pons, using the anatomical landmarks defined
on color maps by Wanaka et al. [165]. A second target ROI was drawn in an
upper axial slice near the cortex, specifically in the corona radiata at the level
of the pre- and postcentral gyri. Only those trajectories passing through both
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(a) (b)

Figure 6.5: Visualization of tracks (a) before and (b) after applying a clustering strat-
egy.

regions were selected for the analysis. The tracts are terminated when FA is less
than 0.2 or when the change in the direction is less than 70 degrees. To enhance
comprehension, plots are colored with the same color as the fiber bundles.

• Modules under development

Segmentation and registration modules are still in a development phase. We are
also developing a synthetic data module to create and evaluate synthetic models.

6.4 Conclusions

We have designed and implemented DTIWeb, a modular framework for DTI data pro-
cessing and visualization. The environment has been conceived to support different
computer hardware configurations and operating systems, and to be accessed via web.
The modularity of the platform allows for the integration of new functionalities with
minimal effort.

An important part of our research have been the evaluation of DTIWeb in a real clin-
ical environment. This process have been done in collaboration with medical doctors of
our research group. We focus our work on acute stroke patients, and we evaluate how
the proposed techniques implemented in DTIWeb could be used in the diagnosis of this
pathology. This evaluation process has lead to different publications (see Chapter 7).
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(a) (b)

(c) (d)

Figure 6.6: Corticospinal fiber tracts of an acute ischemic stroke patient. (a) and (c)
correspond to data obtained within 12 hours of onset of symptoms, and, (b) and (d)
30 days after initial imaging. The plots represent the evolution of FA parameter along
the fiber tracks.





CHAPTER 7

Conclusions

Diffusion tensor imaging (DTI) is an extension of conventional magnetic resonance
imaging capable of characterizing the diffusion behavior of water in a tissue. The
study of DTI and its visualization has become an emerging focus of research in brain
studies since it provides the information required to reconstruct white matter fiber
paths. Despite the potential of this new technology, there are still many factors that
make its application in daily clinical practice difficult. Continuous progress is made
in order to acquire data with more resolution, to reduce image acquisition time, to
reduce noise and distortion effects, to improve DTI data visualization, or to validate
DTI processing results.

In this thesis, we have focused our interest on techniques that reduce the infor-
mation acquired by MR devices to a tensor per voxel. Specifically, we have studied
how to visualize this tensor data in an effective manner to be applied in a real medical
context. We have evaluated 1D visualization techniques with the idea to propose new
anisotropy measures that provide new insight into the images. In addition, we have
studied 3D visualization techniques. These are based on fiber tracking techniques that
generate white matter fiber maps. Our aim has been the development of strategies
that automate the generation of the fiber maps and also that make their interpretation
easier. Finally, we have integrated all the proposed techniques in a common platform,
denoted DTIWeb that has been used in a medical environment in the study of acute
stroke pathology.

Below, we give a detailed description of the main contributions of the thesis as well
as the publications related to each contribution.

7.1 Contributions

The main goal of this thesis has been the development of new visualization and pro-
cessing of Diffusion Tensor MRI techniques that support and enhance computer aided
diagnosis tools, and the main contributions have been in 1D and 3D visualization.
These contributions can be summarized as follows:

• We have studied 1D anisotropy measures and we have proposed new measures
derived from Hellinger divergences and from compositional data distances to
evaluate diffusion anisotropy. The new anisotropy measures have been com-
pared with classical ones and it has been seen that the proposed Kullback-Leibler
Anisotropy (K LA) detects the transitions between white and grey matter more
accurately. Moreover, it has been shown that K LA discriminates better in areas
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with a greater confluence of fibers. Thus, the measure is a very promising index
for different pathologies.

The work titled Analysis of new diffusion tensor imaging anisotropy measures in
the three-phase plot, has been published in the Journal of Magnetic Resonance
Imaging, 31(6):1435–1444, 2010.

• We have studied fiber tracking techniques and we have introduced a new Monte
Carlo-based fiber tracking approach to estimate brain connectivity. One of the
main characteristics of this line-propagation algorithm has been that all param-
eters are automatically determined at each point using the entropy of the eigen-
values of the diffusion tensor. The automaticity of the technique makes it suitable
for use in medical contexts since it avoids user interaction.

The work titled A Monte Carlo-based Fiber Tracking Algorithm using Diffusion Ten-
sor MRI, has been published in the proceedings of the 19th IEEE Symposium on
Computer-Based Medical Systems (CBMS’06), pages 353–358. IEEE, 2006.

• We have analyzed how to enhance fiber maps interpretation by grouping fibers in
anatomical bundles. We have proposed a new approach to obtain automatically
and rapidly bundles of fibers. This method is based on an information-theoretic
split-and-merge algorithm that considers fractional anisotropy and fiber orienta-
tion information, to automatically define volumes of interest (VOIs). For each
VOI, a number of planes and seeds is automatically placed and, then, fiber bun-
dles corresponding to the VOIs are created.

The work titled Information-theoretical approach for automated white matter fiber
tracts reconstruction, has been submitted to the Journal of Neuroinformatics,
2011.

• We have developed DTIWeb, a software platform that integrates the methods
and tools required to diagnose from DTI data. The main features of the proposed
environment are portability, reusability, flexibility, and extensibility.

The work titled DTIWeb: A Web-based Framework for DTI data Visualization and
Processing, has been published in the Lecture Notes in computer science of the
International Conference on Computational Science and its Applications (ICCSA
2007), 4706/2007:727–740, 2007. DTIWeb has been the first software applica-
tion to win the Info-RESO award of the European Society for Magnetic Resonance
in Medicine and Biology (ESMRMB), 2008.

• We have evaluated how proposed techniques can be used in a clinical environ-
ment in the context of the Hospital Universitari Doctor Josep Trueta of Girona
and using DTIWeb. This evaluation process has led to different publications.

Journal papers

Diffusion tensor imaging, permanent pyramidal tract damage, and outcome in sub-
cortical stroke. (Correspondence Letter) Journal: Neurology, published May
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2011, 76(18) 1606-1607. Authors: S. Pedraza; J. Puig; G. Blasco; F. Prados;
A. Thiel.

Acute damage to the posterior limb of the internal capsule on diffusion tensor trac-
tography as an early image predictor of motor outcome after stroke. Journal: Amer-
ican Journal of Neuroradiology, published May 2011, 32(5) 857-863. Authors:
J. Puig; S. Pedraza; G. Blasco; J. Daunis-i-Estadella; F. Prados; S. Remollo; A.
Prats-Galino; G. Soria; I. Boada; J. Serena.

Wallerian Degeneration in the Corticospinal Tract Evaluated by Diffusion Tensor
Imaging Correlates with Motor Deficit 30 Days after Middle Cerebral Artery Ischemic
Stroke. Journal: American Journal of Neuroradiology, published March 2010,
31(7) 1324-1330. Authors: J. Puig; S. Pedraza; J. Daunis-i-Estadella; A. Prats-
Galino; F. Prados; I. Boada; M. Castellanos; J. Sanchez-Gonzalez; S. Remollo; G.
Lagunillo; A. M. Quiles; J. Serena.

Conference proceedings

Validation of FA as a promising imaging biomarker of motor outcome after stroke.
Congress: International Stroke Conference 2010. San Antonio (Texas) (USA)
2010. Authors: J. Puig; G. Blasco; J. Daunis-i-Estadella; F. Prados; A. Prats-
Galino; I. Boada; J. Sanchez-Gonzalez; M. Castellanos; J. Serena; S. Pedraza.

Wallerian Degeneration Imaging: Conventional MRI and Diffusion Tensor Imaging
Findings. Congress: Radiological Society of North America 95th Scientific As-
sembly and Annual Meeting 2009. Authors: J. Puig; G. Blasco; F. Prados; A.
Prats-Galino; I. Boada; S. Pedraza.

Diffusion Tensor Imaging and Fiber Tractography in Stroke: Technique, Imaging
Postprocessing, and Clinical Applications. Congress: Radiological Society of North
America 95th Scientific Assembly and Annual Meeting 2009. Authors: J. Puig;
G. Blasco; F. Prados; A. Prats-Galino; I. Boada; S. Pedraza.

Corticospinal tract damage correlates with clinical motor deficit in the chronic phase
of middle cerebral artery ischemic stroke patients. Congress: International Stroke
Conference. San Diego, California. 17-20 February 2009. Authors: J. Puig; G.
Blasco; J. Daunis-i-Estadella; F. Prados; A. Prats-Galino; I. Boada; J. Sanchez-
Gonzalez; M. Castellanos; J. Serena; S. Remollo; G. Laguillo; E. Gomez; A.
Quiles; S. Pedraza.

Estudi de la substància blanca cerebral mitjançant tensor de difusió per RM: aspectes
tècnics i aplicacions clíniques. Congress: III Congres Nacional de Radiòlegs de
Catalunya, Sitges 2009. Authors: J. Puig; G. Blasco; J. Daunis-i-Estadella; F.
Prados; A. Prats-Galino; S. Pedraza.

Valoració del dany del tracte corticoespinal mitjançant tensor de difusió en pacients
amb infart cerebral. Congress: Cloenda de Ciències Mèdiques de Catalunya,
Girona 2009. Authors: J. Puig; G. Blasco; J. Daunis-i-Estadella; F. Prados; I.
Boada; A. Prats-Galino; S. Remollo, G. Laguillo, A. Quiles, E. Gómez, M. Castel-
lanos, J. Serena, S. Pedraza.
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Tensor de Difusió per RM: Aspectes tècnics i aplicacions clíniques. Congress: Cloenda
de Ciències Mèdiques de Catalunya, Girona 2009. Authors: J. Puig; G. Blasco; J.
Daunis-i-Estadella; F. Prados; I. Boada; A. Prats-Galino; S. Remollo, G. Laguillo,
A. Quiles, E. Gómez, M. Castellanos, J. Serena, S. Pedraza.

Development of a 3D DTI-Based Atlas of Human Brain White Matter. Congress:
XXIV Congreso de la SAE, Bilbao 2009. Authors: A. Prats-Galino; M. De Notaris;
K. Palma; J. Juanes; J. Puig; G. Blasco; F. Prados; I. Boada; S. Pedraza.

Utilidad clínica de la difusión tensor en la valoración de la evolución clínica de
pacientes con infarto cerebral agudo. Congress: XXIX Congreso Nacional de la
Sociedad Española de Radiología Médica. Sevilla, 23 - 26 May 2008. Authors:
S. Pedraza; J. Puig; G. Blasco; F. Prados; M. Castellanos; A. Prats.

La afectación de la cápsula interna como factor pronóstico de mala evolución fun-
cional motora en pacientes con infarto cerebral agudo. Congress: XXXVII Reunión
Anual de la Sociedad Española de Neuroradiología. Oviedo, 30 October - 1
November 2008. Authors: J. Puig; G. Blasco; F. Prados; J. Daunis-i-Estadella;
I. Boada; A. Prats-Galino; S. Pedraza.

7.2 Future work

Our future work will be focused on the following research lines:

• Study the application of K LA in other phases of DTI processing. The good per-
formance of K LA measure encourages us to use it in the fiber tracking pipeline,
for instance, to define new seeding and stopping criteria. Moreover, we want
to study the application of K LA as a new imaging biomarker of motor outcome
after strokes, as an alternative or to complement FA.

• Define a complete automatic tracking technique. Our proposed approach auto-
mate most of the processes required by tracking techniques, however there are
still some parameters that can be tuned by the use, such as the number of seeds
per voxel or the number of planes per volume of interest. Our purpose is to
extend the method and use information theory tools to define these parameters
automatically using measures such as mutual information or entropy.

• Define new clustering techniques based on information theory tools. Informa-
tion theory tools can be used to compute the similarity between fibers. Different
strategies based on the minimization of mutual information loss of the connec-
tivity channel or the use of Jensen-Shannon divergence will be applied to obtain
efficient clustering algorithms.

• Study the application of multiresolution and level of detail strategies to optimize
the performance of DTI visualization techniques. The idea is to exploit the co-
herence of the images to simplify the computations required to obtain the fibers.
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Abbreviations and Notation

δ Duration of the diffusion
γ Gyromagnetic ratio
εn Independent standard normal random vector
λ Eigenvalue
〈λ〉 Mean diffusivity
µ Step size
σ Intensity of artificial noise
AA Angular anisotropy
ADC Apparent diffusion coefficient
AitA Aitchison anisotropy
b Diffusion-weighting factor
CA Component anisotropic index
Cl Linear anisotropy coefficient
C p Planar anisotropy coefficient
Cs Spherical anisotropy coefficient
CSF Cerebrospinal fluid
CT Computed tomography
D Diffusion tensor matrix
DICOM Digital imaging and communications in medicine
DOT Diffusion orientation transform
DSI Diffusion spectrum imaging
DTI Diffusion tensor imaging
DWI Diffusion weighted imaging
ei Eigenvector
FA Fractional anisotropy
g Normalized diffusion sensitizing gradient vector
G Amplitude of the diffusion
H(x) Shannon entropy of a discrete random variable X
HARDI High angular resolution diffusion imaging
IT Information Theory
K LA Kullback-Leibler anisotropy
LA Logaritmic anisotropy
MA Matusita anisotropy
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MRI Magnetic resonance image
ODF Orientation density function
PAS Persistent angular structure
PDF Probability distribution function
QBI Q-ball imaging
RA Relative anisotropy
RGB Red - Green - Blue color space
rn A random vector uniformly distributed over a unit sphere
S Observed echo signal intensity
SE End points distance
SD Spherical deconvolution
SPECT Single photon emission computed tomography
~vin Incoming vector direction
~vout Next vector direction
VR Volume ratio
TR Repetition time
T E Echo time
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