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Abstract

Music consumption has changed drastically in the last few years. With the
arrival of digital music, the cost of production has substantially dropped. The
expansion of the World Wide Web has helped to promote the exploration of
many more music content. Online stores, such as iTunes or Amazon, own music
collections in the order of millions of songs. Accessing these large collections
in an effective manner is still a big challenge.

In this dissertation we focus on the problem of annotating music collections
with semantic words, also called tags. The foundations of all the methods
used in this dissertation are based on techniques from the fields of information
retrieval, machine learning, and signal processing. We propose an automatic
music annotation algorithm that uses content-based audio similarity to propa-
gate tags among songs. The algorithm is evaluated extensively using multiple
music collections of varying size and quality of the data, including a large music
collection of more than a half million songs, annotated with social tags derived
from a music community. We assess the quality of our proposed algorithm
by comparing it with several state of the art approaches. We also discuss the
importance of using evaluation measures that cover different dimensions; per—
song and per-tag evaluation. Our proposal achieves state of the art results,
and has ranked high in the MIREX 2011 evaluation campaign. The obtained
results also show some limitations of automatic tagging, related to data incon-
sistencies, correlation of concepts and the difficulty to capture some personal
tags with content information. This is more evident in music communites,
where users can annotate songs with any free text word. In order to tackle
these issues, we present an in-depth study of the nature of music folksonomies.
We concretely study whether tag annotations made by a large community (i.e.
a folksonomy) correspond with a more controlled, structured vocabulary by
experts in the music and the psychology fields. Results reveal that some tags
are clearly defined and understood both by the experts and the wisdom of
crowds, while it is difficult to achieve a common consensus on the meaning of
other tags. Finally, we extend our previous work to a wide range of semantic
concepts. We present a novel way to uncover facets implicit in social tagging,
and classify the tags with respect to these semantic facets. The latter findings
can help to understand the nature of social tags, and thus be beneficial for
further improvement of semantic tagging of music.

Our findings have significant implications for music information retrieval sys-
tems that assist users to explore large music collections, digging for content
they might like.
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Resumen

El consumo de la musica ha cambiado drasticamente en los tltimos anos. Con
la llegada de la musica digital, el coste de produccién se ha reducido conside-
rablemente. La expansion de la Web ha ayudado a promover la exploracion de
mucho mas contenido musical. Algunas tiendas musicales on-line, como iTu-
nes o Amazon, poseen millones de canciones en sus colecciones. Sin embargo,
acceder a estas colecciones de una manera eficiente es todavia un gran reto.
En esta tesis nos centramos en el problema de anotar colecciones musicales con
palabras seménticas, también conocidas como tags. Los métodos utilizados en
esta tesis estan cimentados sobre los campos de recuperacion de la informacion,
la inteligencia artifical, y el procesamiento del sefial. Proponemos un algorit-
mo para anotar musica autométicamente, usando similitud de audio a nivel de
contenido para propagar tags entre canciones. El algoritmo se evaltia exten-
samente usando multiples colecciones musicales de distinto tamano y calidad
de los datos, incluyendo una colecciéon de mas de medio milléon de canciones,
anotadas con tags sociales derivados de una comunidad musical. Evaluamos
la calidad de nuestro algoritmo mediante una comparaciéon con algoritmos del
estado del arte. Adicionalmente, discutimos la importancia de usar medidas de
evaluacion que cubren diferentes dimensiones; es decir, evaluaciones a nivel de
canciéon y a nivel de tag. Nuestro algoritmo ha sido evaluado y se ha clasificado
en altas posiciones en el concurso de evaluacién internacional MIREX 2011. Los
resultados obtenidos también demuestran algunas limitaciones de la anotacién
automatica, relacionadas con las inconsistencias en los datos, la correlacion de
conceptos y la dificultad de capturar algunos tags personales con informacion
del contenido. Esto es méas evidente en las comunidades musicales, donde los
usuarios pueden anotar canciones con cualquier palabra, sea esta contextual o
no. Con el fin de abordar estas limitaciones, presentamos un amplio estudio so-
bre la naturaleza de las folksonomias musicales. Concretamente, estudiamos si
las anotaciones hechas por una gran comunidad de usuarios concuerdan con un
vocabulario méas controlado y estructurado por parte de expertos en el campo.
Los resultados revelan que algunos tags estan claramente definidos y compren-
didos tanto desde el punto de vista de los expertos como el de la sabiduria
popular, mientras que hay otros tags sobre los cuales es dificil encontrar un
consenso. Por tltimo, extendemos nuestro previo trabajo a un amplio abani-
co de conceptos semanticos. Presentamos un método novedoso para descubrir
conceptos semanticos implicitos en los tags sociales, y clasificar dichos tags
con respecto a los conceptos semanticos. Los dltimos hallazgos pueden ayudar
a entender la naturaleza de los tags sociales, y por consiguiente ser beneficiales
para una adicional mejora para la anotacién automética de la musica.
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Resum

El consum de la musica ha canviat drasticament en els dltims anys. Amb
I’arribada de la musica digital, el cost de produccié s’ha reduit considerable-
ment. L’expansié de la Web ha ajudat a promoure ’exploracié de molt més
contingut musical. Algunes botigues musicals on-line, com iTunes o Amazon,
posseeixen milions de cangons a les seves colleccions. No obstant, accedir a
aquestes colleccions d’una manera eficient és encara un gran repte.

En aquesta tesis ens centrem en el problema d’anotar colleccions musicals
amb paraules semantiques, també conegudes com tags. Els métodes utilit-
zats en aquesta tesi estan fonamentats sobre els camps de recuperacié de la
informaci6, lintelligéncia artificial, i el processament del senyal. Proposem
un algorisme per anotar misica automaticament, utilitzant similitud d’audio a
nivell de contingut per propagar tags entre cancons. L’algorisme s’avalua ex-
tensament utilitzant multiples colleccions musicals de diferent mida i qualitat
de les dades, incloent una colleccié de més de mig milié de cangons, anota-
des amb tags socials derivats d’una comunitat musical. Avaluem la qualitat del
nostre algorisme mitjancant una comparacié amb algorismes de ’estat de 'art.
Addicionalment, discutim la importancia d’utilitzar mesures de avaluacié que
cobreixen diferents dimensions, és a dir, avaluacions a nivell de cang6 i a nivell
de tag. El nostre algorisme ha estat avaluat i s’ha classificat en altes posicions
en el concurs d’avaluacié internacional MIREX 2011. Els resultats obtinguts
també demostren algunes limitacions de ’anotacié automatica, relacionades
amb les inconsisténcies en les dades, la correlacié de conceptes i la dificultat
de capturar alguns tags personals amb informacié del contingut. Aixo és més
evident en les comunitats musicals, on els usuaris poden anotar cancons amb
qualsevol paraula, sigui aquesta contextual o no. Per tal d’abordar aquestes
limitacions, presentem un ampli estudi sobre la naturalesa de les folksonomies
musicals. Concretament, estudiem si les anotacions fetes per una gran comu-
nitat d’usuaris coincideixen amb un vocabulari més controlat i estructurat per
part d’experts en el camp. Els resultats revelen que alguns tags estan clara-
ment definits i compresos tant des del punt de vista dels experts com el de
la saviesa popular, mentre que n’hi ha d’altres sobre els quals és dificil tro-
bar un consens. Finalment, estenem el nostre previ treball a un ampli ventall
de conceptes semantics. Presentem un nou métode per a descobrir conceptes
semantics implicits en els tags socials, i classificar aquests tags pel que fa als
conceptes semantics. Les darreres troballes poden ajudar a entendre la natu-
ralesa dels tags socials, i per tant ser beneficials per a una addicional millora
de la anotaci6 automatica de la misica.
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Introduction

We are entering an era of unprecedented choice. And that’s a good thing.
—CHRIS ANDERSON (2006)

1.1. Motivation

Music is unquestionably a fundamental part of the society. It generates big
communities of listeners and also artists. The expansion of the World Wide
Web, together with the popularization of music production equipments, have
helped to promote and to make known many artists and bands. Indeed, it
enables any local garage band to control the creative process from the beginning
till the end. On the other hand, music consumption has changed drastically
in the last few years. Users are provided with large storage computers, media
players, or more recently the ability to use the cloud for storing and accessing
large music collections. Commercial systems — such as iTunes, Amazon, or
Spotify — own music collections in the order of millions of songs, and are
continuously growing.

Paradoxically, while this “paradigm” of infinite choices seems beneficial for the
creation of more distinctive and complex music profiles, accessing such large
musical collections — in terms of retrieval, browsing and recommendation —
becomes more and more difficult.

One way to ease the access of large music collections is to keep annotations
of all the music resources. Manual annotation of multimedia data, however, is
an arduous task, and very time consuming. Automatic annotation methods,
normally fine—tuned to reduced domains, such as music genre classification, are
not mature enough to label with great detail any possible sound. Yet, in the
music domain the annotation becomes more complex due to the time domain
aspect. The purpose of making music easily accessible implies a condition
of describing music in such a way that machine learning can uncover it (Pa-
chet, 2005). Specifically, these two steps must be followed: to build music
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descriptions which can be easily maintained, and to exploit these descriptions
to build efficient systems to access music and that help users finding music
in large collections. There are a lot of ways to describe music content, but
we can basically classify the descriptors in three groups: editorial meta-data,
cultural meta-data, and acoustic meta-data (Pachet, 2005). As a paradigmatic
example, the Music Genome Project is a big effort to “capture the essence of
music at the fundamental level” by using over 400 attributes to describe songs.
To achieve this, more than 40 musicologists have been annotating thousands
of files since 2000. Based on this knowledge, a well-known system named
Pandora! creates playlists by exploiting these human-based annotations. It
is clear that helping these musicologists can reduce both time and cost of the
annotation task.

Music autotagging is a very recent research problem. It is in fact encompassed
within the research field of Music Information Retrieval (MIR), which, al-
though having reached a certain level of maturity (Downie et al., 2009), is still
in its early stages, when compared to research areas such as signal processing
or speech processing. Indeed, the first international conference fully devoted
to MIR, the International Society for Music Information Retrieval (ISMIR),
was held in Plymouth, Massachusetts, in the year 2000. The first research
works on automatic genre classification? date back to 2001 (Tzanetakis et al.,
2001), and mood classification in 2003 (Liu et al., 2003). As for the music
automatic tag classification, or music autotagging, the first research findings
date back to late 2005 (Mandel & Ellis, 2005; Turnbull et al., 2006). Since
then, several algorithms have been proposed for the task of automatic tagging
from audio (Aucouturier et al., 2007b; Bertin-Mahieux et al., 2008; Burred &
Peeters, 2009; Eck et al., 2008; Hoffman et al., 2009; Panagakis et al., 2010;
Sordo et al., 2007; Turnbull et al., 2008b). Most of these approaches rely on
the bag of acoustic features extracted from the audio?, combined with Machine
Learning algorithms — which classify or discriminate between the different con-
cepts of music — and a set of previously labeled datasets, usually referred to
as Ground Truth, or Gold Standard.

1.2. The problem of music autotagging

Music classification is a very complex and arduous task, specially due to the
time domain aspect of the audio. Research questions about automatically clas-
sifying music in specific aspects, such as musical genre, instruments, or moods,
are far from being completely solved. Music autotagging might be even harder
than other music related classification task, in the sense that it includes all of
the mentioned music aspects, whilst adding many other concepts — includ-

"Mttp://www.pandora. com
2 As indexed by Google Scholar on December 11th, 2011, http://scholar.google.com/.
3based on the bag of words representation in classical Information Retrieval from text.


http://www.pandora.com
http://scholar.google.com/

1.2. THE PROBLEM OF MUSIC AUTOTAGGING 3

ing performance, cultural, geographic locations, decades, content interaction,
etc. — that current acoustic features cannot capture with a high accuracy, or
cannot capture at all. Moreover, many of these aspects tend to be correlated.
For example, synthesizers or beat machines are usually correlated with hip—hop
music, which is sometimes also characterized by using strong male vocals that
produce aggressive music.

Current research on music autotagging emphasizes the use of contextual infor-
mation to improve the automatic annotations. Some authors (Marques et al.,
2011; Miotto et al., 2010; Ness et al., 2009) exploit the aspect of tag correlation,
proposing two—stage algorithms which (1) learn the probabilistic/weighted rela-
tion between tags and audio, and (2) use the previous probabilities to generate
improved annotations. Other authors (Barrington et al., 2009; Coviello et al.,
2011; Knees et al., 2009; Mandel et al., 2011) focus on combining audio based
annotations with contextual information (such as social tags, mp3 web logs,
record reviews, etc.) to further improve the algorithm predictions.

Datasets

One of the crucial steps towards having a valid algorithm is the use of ground
truth datasets. It is strongly encouraged that these datasets be:

= As balanced as possible. That is, there should be a similar number of
instances per each tag.

= As complete as possible. They should describe music excerpts in all
possible ways.

= Shared among the scientific community, in order to encourage exhaustive
evaluation and comparison among the different algorithms.

The first proposed Ground Truth datasets relied on controlled vocabularies as
defined by a group of music experts. These vocabularies are usually structured
in hierarchies or taxonomies, and include well-known concepts of music such as
musical genres, moods or instrumentation. However, there exists no consensual
taxonomy for music (Pachet & Cazaly, 2000).

In the last few years, there has been a growing interest in using social networks
for sharing individual tastes. Social music websites, such as Last.fm?, allow
users to inform what they are currently listening to in their music devices. In-
terestingly, it also allows users to tag music items (artists, albums and tracks)
either for personal organizational purposes, or to communicate their musical
taste. The combination of the annotations provided by thousands of music
users leads to the emergence of a large body of domain specific knowledge,
usually referred to as folksonomy. By the time of submitting this dissertation,

‘http://www.last.fm
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Last.fm has collected over 11 million artist annotations, and 33 million track
annotations, built from over 2.9 million distinct tags®. This shared knowl-
edge enables the creation of community—based Ground Truth datasets that
are useful for the task of music autotagging®.

One of the main advantages of using folksonomies is that they ideally en-
compass all possible “ways to talk about music”, including both expert and
non—expert points of view. However, the simplicity and user-friendliness of
community-based tagging imposes a toll: there is usually no way to explicitly
relate tags with the corresponding music facets. For instance, a user may use
the tag Bulgarian hip—hop for songs such as “West Side Na Slonski Dozi” or
artists like “Zelenata Kamora”, while not explicitly expressing that this tag cor-
responds to a music genre (hip—hop) from a specific geographic location (Bul-
garia). An autotagging algorithm, thus, might have no clue or prior knowledge
about what kind of tags it is predicting or learning.

1.3. Owur approach

This thesis addresses the problem of music tagging in different aspects. Fig-
ure 1.1 depicts the basic elements covered in the thesis. First, we propose
an automatic approach to tag music from the raw audio, using content—based
acoustic similarity as a way to propagate tags. Then, we tackle the problem of
prior knowledge about semantic words, that is to say, we infer semantic facets
and assign them to the tags, in order to improve the predictions made by our
autotagging algorithm.

Automatic annotation from audio

We propose an automatic tagging algorithm that differs from state of the art
approaches in two aspects. Firstly, it differs on the audio features. We use a
wide range of audio features that includes timbre information (Mel Frequency
Cepstral Coefficients, or MFCC) and spectral information, but also informa-
tion related to tonality (Gomez, 2006; Serra et al., 2008), rhythm (Gouyon,
2005), energy (bark bands) and high level features (such as genres, moods,
danceability, etc.). Secondly, we use the concept of audio similarity to propose
tags. A weighted vote nearest neighbor classifier (or k-NN) assigns a tag to a
new audio excerpt based on the distance measure between the audio excerpt
and a previously labeled dataset (Ground Truth dataset). Figure 1.2 illustrates

this process’.

5This information was obtained through personal communication with Mark Levy, MIR
team leader at Last.fm (2011).

6See for instance the recently published One Million Dataset (Bertin-Mahieux et al.,
2011).

"Figure borrowed from the Music Recommendation tutorial, ISMIR 2007 (Celma &
Lamere, 2007).
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Figure 1.1: Diagram depicting the key parts of the thesis.

The distance measure is built upon the feature representation of each audio
excerpt. Some of the advantages of using a memory—based classifier include:

1. There is no need for designing and learning or re—learning tags each time
a tag or a song is added to the Ground Truth dataset.

2. Experimental results in this thesis show that the algorithm is scalable
to music collections of a considerable size, comparable to current music
collections in the music industry.

Additionally, in order to open a discussion regarding the performance of differ-
ent classifiers, we propose a modification of our k-NN algorithm, which takes
into account the class (i.e. tag) of the music tracks. Basically, it computes a
centroid (Han & Karypis, 2000; Kim et al., 2006; Park et al., 2003) for each tag
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Figure 1.2: Figure that depicts the process of propagating tags to a new song from
nearest neighbors in the “acoustical space”.

in the ground truth dataset. The classification is then accomplished by calcu-
lating the minimum distances between the feature representation of the music
excerpt and the tag centroids. Experimental results in Chapter 3 show that our
algorithms perform as well as, or better than the state of the art approaches
— which use more complex and time and resource consuming algorithms — in
tasks such as music annotation and retrieval.

Folksonomies and Taxonomies

Music folksonomies have an extensive tag coverage, while being updated reg-
ularly; whereas taxonomies have a more precise and structured vocabulary,
but rarely updated, as defined by music experts. In this sense, it seems that
autotagging algorithms can only work with the latter option. One of the re-
search questions that we try to answer in this thesis is the following: can a
music autotagging algorithm rely on social tags as a Gold Standard? In other
words, can we build data models from music folksonomies that can be use-
ful for annotating music? Focusing on a large collection of tags crawled (i.e,
extracted) from the Last.fm website, we first study two key aspects of music:
musical genres and moods, since they are two important aspects when defining
and classifying music. We show in exhaustive experiments that the knowledge
inherent in the use of these social tags can be comparable to a controlled,
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structured vocabulary defined by a group of music experts.

Based on the findings mentioned previously, we extend our research to a wide
variety of music facets, including very specific and contextual information,
such as music festivals, record labels, or music competitions. More concretely,
we approach an essential question that is relevant to bridge the semantic gap
between what humans perceive about music, and what pure content—based ap-
proaches to music classification use for discriminating between different classes
(tags): is it possible to automatically infer the semantic facets inherent to a
given music folksonomy? If so, is it then possible to classify tags from that
music folksonomy with respect to the inferred semantic facets?

We propose an automatic method for (1) uncovering the set of semantic facets
implicit to the tags of this music folksonomy, and (2) classify tags with re-
spect to these facets. We anchor semantic facets on meta-data of the semi-
structured repository of general knowledge Wikipedia. Our rationale is that as
it is dynamically maintained by a large community, Wikipedia should contain
grounded and updated information about relevant facets of music, in practice.

1.4. Outline of the Thesis

This thesis is structured as follows: Chapter 2 introduces the formalization
and framework of music automatic tagging, referencing related work. Once the
music autotagging has been introduced, Chapter 3 presents our proposed auto-
tagging approach. It encloses an extensive evaluation against several Ground
Truth datasets, from different sources, and compares our approach to a variety
of state of the art autotagging methods. We exploit semantic aspects of music
tags from folksonomies in Chapters 4 and 5, which will provide the possibility
of categorizing tags and hence adding prior knowledge to the music autotagging
algorithm. Finally, Chapter 6 discusses open issues and future work, as well as
drawing some conclusions. To summarize the outline of this thesis, Figure 1.3
extends Figure 1.1 showing the corresponding chapters for each element of the
thesis.
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Framework of Automatic
Tagging

2.1. Introduction

Nowadays, there is a vast amount of digital multimedia material available on
the World Wide Web and on different types of digital storage media. For that
reason, there is a need to organize and make this content easy to search, nav-
igate, filter and retrieve in an efficient way. Searching in digital libraries has
been studied for several years, mostly using text—based methods. These meth-
ods can be complemented with new strategies of retrieval, like those focused on
content—based descriptors — extracted directly from the music files. However,
these descriptors do not refer to any object in the real word, so that means that
music is not strictly a type of knowledge. Another way of describing music,
usually called meta—data, could help — in combination with the music content
descriptors — to create some musical knowledge management, classification
and representation.

The purpose of making all music easily accessible implies a condition of de-
scribing music in such a way that machine learning can uncover it, as (Pachet,
2005) states. Specifically, these two steps must be followed:

= Build descriptions of music easy to maintain, and

= Exploit these descriptions to build efficient music access systems that
help the users finding music in large collections.

There are several ways for describing music content, but we can basically clas-
sify the descriptors in three groups (Celma, 2006; Pachet, 2005):

» Editorial meta—data: this kind of meta—data is obtained by the editor.
Editorial meta—data includes songs and albums, but also information
about artists. It can be either objective (song name, artist name, etc.) or

9
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subjective, like artists’ biographies®, genre information, etc. Depending
on the nature of the human source, editorial meta—data could be also
described as:

e prescriptive, where the information is decided by well-defined ex-
perts.

e non—prescriptive, where the information is classified based on col-
laborative scheme (a community of users).

= Cultural meta—data: the meta—data is obtained by the environment or
culture. The information is not explicitly entered in an information sys-
tem, rather is calculated using user profiles — also known as the so—called
collaborative filtering. However, it does not depend only on these profiles
— since it is very poor — but on other sources like search engines, ency-
clopedias, music radio programs, etc. The techniques — borrowed from
natural language processing — are most of them based on co—occurrence
analysis: associate items that are closer in some sense, for example, sim-
ilar in genres, etc.

» Acoustic meta—data: obtained by the analysis of the audio file (no other
kind of information is used), i.e, the content descriptors of the sounds.
The intention is to have purely objective information about the music
files. The descriptors can be either Tempo (in bps?) or other more com-
plex descriptors like rhythm, timbre, instrument recognition (Herrera
et al., 2005), etc.

We can see these three groups as different points of view of music annotation
(meta—data). Moreover, recent research in Music Information Retrieval (MIR)
is heading towards the use of perception and user contextual information. This
kind of meta—data is obtained by exploring various external factors that in-
fluence how a listener perceives music (Schedl & Knees, 2011). These factors
encompass many types of user contextual information, including environment
(people, weather, noise, etc.), personal (physiological or psychological), task
(activities such as sports or driving), social (friends, relatives, social networks,
etc.) and spatio-temporal (location, time, etc.) (Goker & Myrhaug, 2002).
Hence, if we take into account more than one point of view at a time, the
result could be a better description of music.

2.2. Obtaining tags

We can annotate music files by means of tags, but what does this word mean?
Tags are keywords, category names, or meta data that describe web content.

!Personal description of a human is almost always subjective information.
Zbeats per second.
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Person

Resource Tag

Date-Time

Figure 2.1: The tagging process.

Tags® can be whatever words that describe web content for users. But their
job is not to organize all the information over the world wide web into tidy
categories, rather it is to add value to the huge amount of data available
nowadays (Beckett, 2006). Tagging is then a process to describe web content
using these tags. This process is actually a combination of 4 entities, as shown
in Figure 2.1.

= Person: who performs the operation, also called tagger.
= Tag: set of tags being used.
= Date-Time: when the tagging process was performed.

= Resource: the resource URI being described.

In the music field, tags are keywords that describe the audio files, and resource
is the audio file itself.

Tags can be obtained in four different ways (Bertin-Mahieux et al., 2010; Turn-
bull et al., 2008a): conducting human surveys* (Turnbull et al., 2007a), de-
ploying games with a purpose (Law et al., 2007; Mandel & Ellis, 2007; Turnbull
et al., 2007b), collecting web documents (Schedl & Pohle, 2010; Whitman &
Ellis, 2004) or harvesting social tags (Lamere, 2008; Levy & Sandler, 2008).

2.2.1. Web documents

The Web contains a huge amount of music-related content. This content, as
other type of web content, is very heterogeneous in terms of data structure
and information (Knees, 2010). Due to this heterogeneity, web data is also
noisy, containing many irrelevant documents or irrelevant text contents inside

3In the rest of this thesis, both “tag” and “label” words will refer to the same concept.
“hiring musical experts to annotate music can be regarded as a special case of human
surveys.
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the documents (Levy & Sandler, 2007). The challenge lies on how to efficiently
retrieve relevant data from the Web. Several contributions have been made to
this task within the MIR community (Celma et al., 2006; Ellis et al., 2002;
Knees, 2007; Knees et al., 2006, 2007a,a; Knees & Widmer, 2007; Schedl et al.,
2005a,b, 2006; Whitman & Ellis, 2004; Whitman & Lawrence, 2002; Whitman
& Rifkin, 2002).

For instance, Celma et al. (2006) exploited the semi-structured data from MP3
web logs, which contain links to audio content and some textual information
referring to that content.

Whitman & Ellis, on the other hand, crawled websites for music artist-related
information. In (Whitman & Lawrence, 2002) the authors proposed some
methods for unsupervised learning of unstructured music profiles retrieved from
the web, with the purpose of understanding the “semantic profile” of an artist,
through a “ feature space that maximizes generality and descriptiveness”. These
methods can help to infer artists’ descriptions, represented as vector spaces,
and similarity between artists by means of a peer—to—peer similarity.
(Whitman & Rifkin, 2002) presented a query—by—description (QBD) system
that makes use of language processing, information retrieval and machine learn-
ing technique to answer queries such as “rock with guitar riffs”. Their system
treats the relation between web—based descriptions and music content as a ’se-
vere multiclass’ problem, using regularized least—squares classification (RLSC)
(Rifkin et al., 2003). In a posterior work, Whitman et al. (2003) extended
this technique by using a “linguistic expert”, Wordnet®, a lexical database, for
finding parameter spaces that would help to describe better and more precisely
the artists’ descriptions.

Knees et al. (2008) queried search engines and extracted knowledge from the
retrieved documents. The queries are of the form artist music, artist album
name music review or artist song music review. The authors collected the top
100 hits and ranked them with a novel algorithm called rank-based Relevance
Scoring (RS), which the authors have shown to outperform algorithms which
use classical vector space representations (Knees et al., 2007b).

2.2.2. Surveys

Another way for obtaining tags for music is by conducting a survey, either
for commercial or research purposes. As a paradigmatic example, the Music
Genome Project is a big effort to “capture the essence of music at the fun-
damental level” by using over 400 attributes to describe songs. To achieve
this, more than 40 musicologists have been annotating thousands of files since
2000. Based on this knowledge, a well-known system named Pandora® cre-
ates playlists by exploiting these human—based annotations. This approach,
though, suffers from several drawbacks: On one hand, as Turnbull et al. (2008a)

Shttp://wordnet.princeton.edu/
Shttp://www.pandora.com/
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points out, each song can take up to 330 minutes to annotated and ~ 15000
songs are annotated every month, which seems insufficient given the (growing)
amount of digital music available nowadays. On the other hand, the company
spends such an effort, in terms of time, money and human resources, to use the
resulting annotations for commercial purpose, making it unfeasible for them
to make these annotations public, not even for research purpose.

To overcome this issue, a group of researchers from the Computer Audition
Lab in San Diego (Turnbull et al., 2007a, 2008b) have conducted a survey
(paying undergraduate students to fill out the questionnaire) on a collection of
500 western popular songs (from 500 different artists, in an effort to maximize
variation). Each tag annotation is confirmed /voted by three different listeners.
The resulting dataset is given the name of CAL500.

As one can observe in both cases, commercial or research surveys suffer from
a serious drawback: the amount of resources needed to perform such surveys
make annotating large music collections an unfeasible task.

2.2.3. Games with a purpose

In the last few years, there has been a growing interest in collecting meta-data
for multimedia resources using games (Von Ahn, 2006). Above all proposed
systems, the most known game is ESP game, proposed by Von Ahn & Dabbish
(2004). The ESP game is a double player game where each player is presented
an image (the same as their opponent) and she is asked to start describing
the image using words. When the two players agree in a description, they are
rewarded with points. In the music domain, four games have been proposed:

TagATune (Law et al., 2007), a double—player game where each partuner is
presented with a tune (a song or a sound). The players start describing the
tune from a specific category, defined a priori or set by one of the players.
Based on this description, the players have to decide if they agree on whether
they are annotating the same tune or not.

Major Miner (Mandel & Ellis, 2007) is a non—paired off line game, where a
player requests a new music clip and annotates the clip with tags. The player
wins points based on the originality and agreement of the tags.

ListenGame (Turnbull et al., 2007b), a multi-player on line game, where
a player is presented with a music clip and a list of semantic words, from
different categories, such as genre, mood, instrumentation, etc. The player
is then asked to check the best and worst words describing the music piece.
The player receives immediate feedback to see his agreement amongst other
players. The authors propose also a freestyle mode of the game, where the
players, given a specific category, are allowed to introduce semantic keywords
that better describe the song.



14 CHAPTER 2. FRAMEWORK OF AUTOMATIC TAGGING

MoodSwings (Kim et al., 2008), a double player game, where each player
is given 5 short music clips, drawn from a music database of popular music,
uspop2002 (Ellis et al., 2003), and a game board representing the continuous
2-dimensional representation of moods (valence and arousal). The player is
then asked to dynamically (every 1 second) express the mood of the music
playing by moving the cursor of their mouse in the continuous space defined
by the board. The player wins points when her cursor overlaps with her part-
ner.

The motivation behind these kind of games for purpose, as compared to hu-
man surveys, is that while still rewarding the human annotators (in this case
intrinsically), they overcome the problem of cost in terms of money. Two
years after the presentation of their game, the authors of TagATune released a
database named Magnatagatune’, containing tags for more than 20000 songs.
Nevertheless, these games suffer from some problems. First, a player can game
the system, using words to intentionally mislead other players. This problem
though can be easily tackled by keeping track of the user behavior. Second,
some years after the release of these games, it is still not clear how they can
scale up to hundreds of thousands or even millions of songs, an average dataset
size in the music industry.

2.2.4. Social tags

As mentioned earlier, tags are keywords, category names or meta-data that
describe web/multimedia content. These tags can be either obtained from a
controlled vocabulary (Taxonomy) or by putting no restrictions on the vocab-
ulary, that is, tags as free text. When these “free text” tags are introduced
by users (usually non—-experts) of any system to describe a content, they are
known as social tags (Lamere, 2008). A usual representation of social tags is
on the form of a tag cloud. A tag cloud is a visual representation of keywords
in web or multimedia content. Different font sizes or colors are used for de-
scribing the importance of a keyword in the whole vocabulary. For instance,
Figure 2.2 illustrates a tag cloud with the top most used tags in Last.fm.

The main shortcoming of social tags is sparseness. Few tags are applied to
a large number of audio items, whilst most of the tags are very rarely used.
Indeed, Lamere (2008) states that in Last.fm a track is annotated in average
with 0.26 tags. However, as Lamere points out, even if tags from a non expert
user may suffer from different problems, such as the cited sparseness, polysemy,
Spam, noise, etc., when these tags are combined with other tags from thousands
of other users a rich and complex view may emerge. This complex view is often
referred to as Folksonomy.

"http://tagatune.org/Magnatagatune . html
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Figure 2.2: Tag cloud of Last.fm top tags.

Motivations for tagging

An interesting point to take into account is that “why people started using
tags?” or “which are the motivations that led users to tag digital objects, in
our case, multimedia objects?”

To answer such questions, Ames and Naaman (Ames & Naaman, 2007) have
developed an experiment and arrived to offering a taxonomy of motivations for
annotation. Their work is focused on annotating images, but it can be useful
for other kind of multimedia objects. The taxonomy consists of 2 dimensions,
“sociality” and “function”, as it can be observed in Table 2.1. Sociality refers
to the purpose of the tags, either for personal use (self) or for other users. The
function dimension distinguishes the fact of using tags for organizing content
or — as a new contribution from the authors — for communicating some
additional context to the multimedia objects.

Table 2.1: A taxonomy of tagging motivations.

Organization Communication
Self
= Retrieval, Directory = Context for self
= Search = Memory
Social

= Contribution, atten- = Content descriptors

tion L .
= Social signaling

In the same way, Lamere (2008) describes a list of motivations for tagging
music, which shares, with more or less details, most of the motivations with
the previous taxonomy, and adding a new motivation: play & competition. We
now describe more in detail some of these motivations, for the specific field of
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music tagging.

Self-organization. People tag music content in order to ease the task of
search and retrieval of this content for themselves. For example, a user might
tag a song with the genre “Hip—Hop” or “To listen” so they can access this song
in a future.

Social-organization. Willingness of making music easily findable by others,
either by reinforcing tags which users think represent better the music piece,
or by proposing new tags that contradict some of the previously assigned tags
(Bertin-Mahieux et al., 2010; Lamere, 2008), in an effort to clean the tag cloud
from undesirable or misleading tags. For instance, a user might tag an artist
“not Rap”, because she thinks the artist is not representative of such genre tag.

Social-communication. People tag music content in order to add some
context for other people, or by signaling themselves in their social community,
that is, showing their music taste to other people. For instance, a user might
tag an artist “sxsw” or “seen live”, to show some contextual information about
the type of music that the user follows or enjoys at a concert. Another way
of social communication is when a user expresses her opinion about a music
resource, for example, using words such as “awful” or “amazing”.

Table 2.2 summarizes the benefits and drawbacks of using each one of the dif-
ferent alternatives to obtaining tags for music. While crawling web documents
allows to obtain tags in an automated fashion, it undergoes different problems,
such as noise, popularity and tags at artist level instead of song level. Manual
approaches, such as conducting surveys or deploying games, try to overcome
the problems of the previous approach (getting a more consistent vocabulary,
mixing known and unknown music and getting tags at song level (Turnbull
et al., 2008a)), but still suffer from two big problems. First, they are not
scalable to an average music database size found nowadays, in the order of
thousands or millions of songs. And second, they are expensive in terms of
cost (money, human resources and time, in the case of surveys), or the lack
of motivation (popularity of the game). Harvesting social tags seems (able) to
solve the problem of cost and motivation (a different motivation than winning
a game), and based on recent research (Laurier et al., 2009b; Levy & Sandler,
2008; Sordo et al., 2008), when a folksonomy emerges, it tends to follow an
inherent structure and in some cases it can be comparable to expert annota-
tions. Collecting tags via social networks is also a scalable approach. By the
time of writing this thesis, the social web Last.fm has collected over 11 mil-
lion artist annotations, and 33 million track annotations, built from over 2.9
million distinct tags, artists and albums. Nevertheless, besides the problem of
vocabulary (as in the case of web documents) and malicious tagging, the main
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Table 2.2: A list of pros and cons of using different approaches to obtaining tags for
music.

Pros Cons

Web Documents
= Automatic way of obtaining = Noise

tags = Tags at artist level instead of
» Linear/scalable song level

= Not clear if the words are re-
ferring to the song/artist itself

» Polysemy / Synonymy
= Popularity bias

Human Surveys
Y = Large, but semi-structured = Expensive in terms of money,
vocabulary human resources and time
» Consistent (agreement) » Non-attention
= Expert vs. non—expert

= Not scalable

Games . . o .
= Contribution, rewarding, at- = Motivation/popularity of the

tention game

= Large, but semi-structured = Gaming the system (mali-
vocabulary cious/misleading)

= Not scalable

Social Tags
! & » Easy and pleasurable (cheap) = Cold start

= No restrictions on the vocab- = Polysemy / Synonymy

ulary « Hacking / SPAM |/
= No hierarchy Malevolous tagging

= No limits on the number of
tags per resource

drawback is again the popularity bias. While popular artists and songs get
hundreds of tags, new or unpopular music resources do not get any tags or few
tags. The term popularity in this case has a different “effect”. According to
Lamere (2008), the typical tagger in social websites has a sense of popularity
that may differ considerably from the music sales, a classic measure of popu-
larity in music. In order to face all or some of the limitations of the previous
approaches, researchers in the MIR community have proposed an automatic
alternative for tagging music based on the acoustic description of the audio
itself. This approach, often called autotagging (automatic tagging), extracts
audio-related features from the audio and tries to infer tags for new music,
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either by learning the relation of tags with the audio to tag new, unseen music;
or by using the features to create a similarity distance and proposing tags to
new music pieces based on their neighborhood. This approach is described
more in detail in the following section.

2.3. General framework

Different algorithms have been proposed for the task of music autotagging,
though, in general, they follow the same structure depicted in Figure 2.3. The
main structure is built upon previous MIR related tasks, such as genre (McKay
& Fujinaga, 2004; Tzanetakis & Cook, 2002) or mood classification (Liu et al.,
2003). In fact, many academicians see or treat autotagging as a generalization
of the genre or mood classification to any type of words (tags).
An autotagging algorithm receives a Ground Truth composed of audio related
features and tags as input, and produces models as output. These models
are learned by using any of the state of the art Machine Learning algorithms
(Alpaydin, 2004). The models will be then tested against a Test dataset® in
order to check how well the algorithm performs. These models will be then
used to propose tags to new, unseen music.
In the remainder of this subsection we focus more in detail on each one of the
components which constitute the basic structure of an autotagging method,
underlining related work in the state of the art.
>
Labeled |-

data
(Tags)

Machine Tag
-
Learning Models

Audio
Features

IJ..LLMLJ‘, & TRAINING

Fpor Feature \ . /Dimensiony—p1 — — — — — — — — = = = = = — — — — — — b — — — — — = = — — — — — — — -
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Discrimination.
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Audio
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Figure 2.3: General framework for automatic tagging of audio.

8which can be extracted from the Ground Truth, that is, splitting the Ground Truth into
a training an a testing set; or defined separately.



2.3. GENERAL FRAMEWORK 19

2.3.1. Feature extraction

Cook (2001) states that the musical aspects that humans use to describe music
are pitch, loudness, duration and timbre, but also with terms such as style or
texture. Similarly, Orio (2006) summarizes the most important facets of music
as: timbre, orchestration, acoustics, rhythm, melody, harmony and structure.
Several approaches exist for representing acoustic description of audio as input
for a machine learning algorithm. Most of them, though, rely on the “bag
of frames” representation (Aucouturier et al., 2007a), taking advantage of the
“bag of words” representation from the classic text Information Retrieval field
(Baeza-Yates et al., 1999).

Audio features are normally extracted from a waveform representation of the
digital audio files. The aim is to have a compact representation of audio that
can help to represent the aforementioned key aspects of music. The audio
features can range from low level (closer to the signal) to high level (close to
human semantics) description of music. They are often captured on a short-
time frame-by-frame basis, using half-overlapping windows (Gaussian, Han-
ning, Hamming) of short duration (typically 46ms—50ms). It is out of scope of
this thesis the description of all the common audio features in the literature. A
more detailed explanation on how most common audio features are computed
can be found in (Gouyon et al., 2008). These features are then aggregated to a
list or “bag” (hence the name of “bag of frames”). The bag of audio features is
further compressed by means of random sub-sampling (Turnbull et al., 2008b)
or summarizing, using statistics such as mean, variance and derivatives. The
bag of frames approach has been widely used in the Music Information Re-
trieval domain (Aucouturier et al., 2007a). A large list of publications discuss
the application of this approach to specific music classification problems, such
as genre (Guaus, 2009; McKay & Fujinaga, 2004; Tzanetakis & Cook, 2002)
mood (Laurier, 2011; Liu et al., 2003), artist (Mandel & Ellis, 2005) or tag
classification (Bertin-Mahieux et al., 2008; Hoffman et al., 2009; Sordo et al.,
2007; Turnbull et al., 2008b).

The most prominent audio features in MIR research are the Mel-Frequency
Cepstral Coefficients?, which have shown to be of a high importance for Speech
Processing, since they tend to capture the human auditory system’s response
more closely (Rabiner & Juang, 1993). These features were then first used by
Logan (2000) for music modeling.

In the case of automatic tagging, for instance, Mandel & Ellis (2005) used
the 20 first MFCC coefficients to describe the audio, taking the recommenda-
tion from Aucouturier & Pachet (2004), who used this specification to improve
timbre similarity, and more recently to propose an improved method of classi-
fication by combining signal and context (Aucouturier et al., 2007b).

More recently, Mandel & Ellis (2008) used additional audio features related
to temporal information, following (Rauber et al., 2002). This temporal in-

9from now on, MFCC’s.
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formation, as the authors state, “summarizes the beat, tempo, and rhythmic
complezity of the music in four different frequency bands”. These bands are
represented by a 200-dimensional feature vector, which are then combined with
180 unique elements from the covariance matrix of 18-MFCC’s, resulting in a
380—dimensional feature vector.

Turnbull et al. (2008b) computed time series of MFCC-Delta feature vectors,
by moving through a half-overlapping short time window ( 23ms) over the
whole music file. They took the 13 first MFCC coefficients, and computed
the first and second instantaneous derivatives, resulting in a 39-dimensional
feature vector per frame, which means a total of 5200 feature vectors per
minute of audio. Empirical results though made them randomly subsample the
audio file and represent it with 10,000 feature vectors. The authors state that
this process reduces time computation without suffering from any significant
decrease in overall performance.

Similar to Turnbull et al. (2008b), Hoffman et al. (2009) used the 10,000 39—
dimensional MFCC—delta feature vectors per song, as distributed with the
CALS500 dataset (Turnbull et al., 2007a)'°. Additionally, Hoffman et al. (2009)
vector—quantized the MFCC—delta features instead of using them directly. The
result of vector quantizing the deltas is a discrete “bag of codewords” represen-
tation, a considerably reduced feature set, but, as the authors state, it is still
effective.

Bertin-Mahieux et al. (2008), on the other hand, used 20-MFCC coefficients,
plus 176 autocorrelation coefficients and 85 spectrogram coeflficients sampled
by Constant—Q transform. These features are computed over windows of 100
ms size, with a 25% overlap. To reduce dimension, they aggregated features
by taking means and standard deviations over 5—second windows.

2.3.2. Dimension reduction

The feature extraction process can provide the classifier a large amount of
data. In most of the cases, not all of the computed descriptors provide useful
information for classification.

There exist different techniques to reduce the dimension of feature vectors
according to their discrimination power. Dimension reduction techniques can
be classified in Feature selection (such as CFS Subset Evaluation (Hall, 1998),
Entropy-based algorithms (Witten & Frank, 1999) or Gain ratio (Quinlan,
1986)), and Feature transformation (Principal Component Analysis, Linear
Discriminat Analysis, Independent Component Analysis, Non-negative Matrix
Factorization, Relevant Component Analysis). We briefly present a relevant
dimension reduction algorithm for this thesis.

0the features in this dataset are provided randomly, which means no temporal information
rather than the 69ms per each feature vector
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Principal Component Analysis (PCA). Principal Compnent Analysis is
an unsupervised statistical technique for identifying patterns in data (Jolliffe,
2002), specially for high-dimensional data, where graphical representation is
unfeasible. In the case of music information retrieval, given a d—dimensional
vector representation of each audio piece, PCA proceeds by projecting the
original space (of the whole music dataset) to a new subspace, whose basis
vectors represent the maximum-—variance directions in the original space. Let X
be a d—dimensional representation of the audio features (of the whole dataset),
and let @ represent the transformation that maps X onto an f-dimensional
feature subspace (normally f < d). The new feature vectors y;(€ R/) are
computed as:

yi = ¢p (X —p) (2.1)

The mean is subtracted from X to center the data in the origin. ® is a deter-
ministic matrix whose columns are the Eigenvectors ¢;, which are obtained by
solving the Eigendecomposition:

Yadi = Aig; (2.2)

where 3, is the covariance matrix, and \; the Eigenvalue associated with the
Eigenvector ¢;'!. Basically, this transformation enables the data to be ex-
pressed in terms of the patterns between them, instead of the original axes.
Furthermore, the Eigenvectors with (normalized) higher Eigenvalues cover
more variance of the original data, which means we can remove the Eigen-
vectors with low Eigenvalues, and thus reducing the dimension of the data,
without loosing too much information. If the patterns (dimensions, acoustic
features in our case) are highly correlated, a smaller number of Eigenvectors
will have large Eigenvalues, hence f will be much smaller than d, and conse-
quently, a large reduction of dimension can be obtained.

PCA can also be interpreted as a probabilistic function (Collins et al., 2001).
Each point can be thought of as random number drawn from an unknown
distribution Fy. P denotes a normal distribution with mean 6. The original
points (say z1, x2, ..., ) are considered to be noise-corrupted versions of some
true points (say 61, 6o, ...0,) that lay on a low—dimensional subspace. The aim
is to find the latter points, assuming that the noise is Gaussian. The main
shortcoming of PCA is the linearity of the model. It assumes that the data
follows a Gaussian distribution, however there are a number of situations where
the data might follow other type of exponential or non-linear distributions
(Collins et al., 2001).

"' The Eigenvectors of a matrix have the property of being orthonormal.
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2.3.3. Labeled data

Collecting a Ground Truth for machine learning is a crucial step towards having
a more or less successful algorithm'2. The Ground Truth is composed of audio
related features, extracted automatically from the music piece, and a set of
semantic meta-data (tags) related to this music.

As mentioned in Section 2.2, tags for music can be collected in 4 different ways.
None of these approaches seems scalable to handle large music collections.
However, they can be useful for the creation of a Ground Truth dataset for
training and evaluating an autotagging algorithm. As Bertin-Mahieux et al.
(2010) mention, a labeled dataset can vary in quality and size. It can be either
small and clean (e.g., surveys) or large and noisy (social tags, web documents).
Choosing a specific dataset will depend on the type of application (e.g., music
recommendation vs. classification) and the type of algorithm (e.g., neural
networks vs. SVM).

For instance, the CAL500 dataset, a small and clean dataset obtained from a
thorough survey conducted by the CAL laboratory in San Diego'?, has been
extensively used in the last few years (Bertin-Mahieux et al., 2008; Hoffman
et al., 2009; Marques et al., 2011; Ness et al., 2009; Panagakis et al., 2010;
Seyerlehner et al., 2010; Turnbull et al., 2008b). Bertin-Mahieux et al. (2008)
and Eck et al. (2008) collected tags from Last.fm!4, a music social website
which allows users to scrobble music they are listening to, as well as the ability
to add tags to their music, either for artists, tracks or albums. Mandel & Ellis
(2005), on the other hand, used the uspop2002 collection (Ellis et al., 2003), a
dataset of 8764 tracks with corresponding styles as meta—data, retrieved from
the expert music web site AllMusicGuide!®. The AllMusicGuide web site was
also used by Turnbull et al. (2006) in previous experiments, where the authors
crawled album reviews and extracted words based on predefined vocabulary of
musical words. Magnatagatune'®, which consists of human annotations from
the TagAtune game (Law et al., 2007) and audio clips from the DRM-free
Creative Common licensed music website Magnatune!”, has been used by a
number of publications related to audio tag classification (Hamel et al., 2011;
Marques et al., 2011; Ness et al., 2009). More recently, Bertin-Mahieux et al.
(2011) published the Million song dataset, “a freely-available collection of audio
features and metadata for a million contemporary popular music tracks”.

2the success of an autotagging algorithm will also depend on the type of application the
algorithm is built for (Bertin-Mahieux et al., 2010).

http://cosmal.ucsd.edu/cal/

Yhttp://www.last.fm

Yhttp://www.allmusic. com/

Yhttp://tagatune.org/Magnatagatune . html

http://magnatune . com/
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2.3.4. Machine learning

Broadly speaking, Machine Learning is a process of making computers learn
or improve/optimize models, by using observations (example data) or past
experience. The resulting models can be predictive, that is, they can make
future predictions; or descriptive, obtaining more knowledge about the data
at hand. Machine Learning is mainly used in complex problems which can
be resolved by humans, but either they cannot explain exactly how they solve
them, or the process of solving the problems is very time and cost consuming,
Basically, we want computers to learn rules (models) which will help us decide
whether a future sample belongs to a certain class (or multiple classes) or
not, or even to how much degree does the sample belong to the class. This
class of problems is known as Supervised Learning, since we are supervising the
algorithm on the classes to be learned, as opposed to Unsupervised Learning,
where we want algorithms to learn regularities in the data, if there are any.
In Supervised Learning, the problem is narrowed down to solving the following
equation:

y = g(x[0) (2.3)
where g(-) is the model with parameters 6 to be solved; z is the input and y
is the output. The value of the output y can be a discrete value, if we are
considering classification, or a continuous function of real-valued elements, in
the case of regression,
Nowadays, several supervised algorithms have been proposed, differing in the
way they learn models in order to discriminate between different classes. Some
methods proceed by estimating the densities of the data distribution inside
class regions (Alpaydin, 2004). which will give a series of discriminant func-
tions. This kind of methods are known as Likelihood—-based Classification.
Other methods, often called Discriminant—based Classification, may decide to
bypass the estimation of those densities and focus directly on the discrimi-
nants/boundaries between the class regions.
In the field of music tagging, which started as a generalization of previous MIR
tasks such as genre or mood classification, we define the input, z, as a series
of acoustic features extracted from the audio and usually presented as a bag
of features (unordered in time, or averages and variances of the whole audio
piece). The output, y, can be any word defined by the vocabulary.
In the remainder of this subsection, we briefly describe some of the different
types of Machine Learning algorithms, and how they are used or modified by
the state of the art.

Likelihood—based Classification. As we briefly mentioned before, Super-
vised Learning algorithms learn models given by Equation 2.3. y takes a dis-
crete value in a classification task or a continuous real-valued function in re-
gression. The model g(-) to be learned is thus a discriminant function or a
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regression function, respectively. The Machine Learning algorithm optimizes
parameters 6 such that the approximation error to the training set is minimized
(Alpaydin, 2004).

Depending if we make an assumption on the structure of the data distribution
and the variables that define it, we can classify Likelihood—based Classification
methods in parametric, semi—parametric and non—parametric.

Parametric methods. If we assume there exists a model valid over the
whole input space (a same linear function in regression), all samples of a class
are drawn from the same density. Therefore, the goal reduces to finding only
the parameters 6 to solve the problem. The most prominent density distribu-
tion function in statistics and Machine Learning is the Gaussian or Normal
distribution. Given Equation 2.3, if we assume = normal distributed with mean
p and variance o2, the density is defined as:

p(z) = \/2;7@[_(2>] (2.4)

if the input is univariate, that is, x is a unique input or as:

z—p) s 1(z—
1 w21 u>]

M) = Gy

(2.5)
if the input is multivariate, that is, x is d—dimensional and normal distributed
(x ~ Ng(p, X2)). In the latter case, p is the mean vector and X is the covariance
matrix. The main asset of parametric methods is that models are defined with
just few parameters. For instance, in a Gaussian distribution we only need to
estimate two parameters,  and o2, in the case of univariate classification, or
a mean vector and covariance matrix in multivariate classification. Once these
parameters are estimated, the model is known (Alpaydin, 2004).

The aim then is to estimate the density function p(x). In classification, the
densities are the different classes (e.g., genres, tags) to learn, denoted by C;.
Therefore, the method estimates p(z|C;) and priors P(C;), by Maximum Like-
lihood Estimation (MLE), in order to compute posteriors P(C;|z), by using
the Bayes’ rule, and classify samples (Jaynes & Bretthorst, 2003). Given a set
of independent and identically distributed samples X = {2}, and assuming
that 2! are drawn from the same probability distribution family, p(z|@), the
Maximum Likelihood Estimation method tries to find 6 that makes sampling
2! from p(z|f) more likely.

When estimating the covariance matrix in multivariate classification using a
Gaussian model, we might end up with a unstable covariance, specially if we
have few samples in the training set. In these cases, it is encouraged to reduce
the dimension of the input.

Dimension reduction can be achieved in two different ways:
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= by performing feature selection, that is, picking a subset of features s
from the original features d, where s < d, that correlate well with the
classes, but have lower inter-correlation.

= by combining the original d dimensions to a reduced k¥ < d dimen-
sions. Typical feature combination algorithms (also known as feature
extraction) include Principal Components Analysis (PCA), which was
described in Section 2.3.2, Linear Discriminant Analysis (LDA), Rele-
vant Component Analysis (RCA) and Non-negative Matrix Factorization
(NMF).

Semi—parametric methods. Most of the times, we cannot make an
assumption that the data is drawn from a known density distribution (e.g,
normally distributed). Instead, we tend to use a mixture of distributions to
estimate the input sample. The mixture density is given by:

k
p(x) = p(x|Gi)P(G:) (2.6)

i=1
where G; is a mixture component and k (specified beforehand) is the number of
mixtures. Such methods are commonly known as semi—parametric, since they
are run in two steps. In the first step, the algorithm learns each component
density and proportion. In this step, we do not know which observation belongs
to which component. Hence, we are facing an unsupervised learning problem.
Estimating the mixture components is fulfilled by using an algorithm such as
K-means, or more significantly, Expectation Maximization (EM). Once the
components are estimated, the second step considers each class as a mixture

of a given number of components.

k;
p(|C;) =Y p(x|Gij) P(Gij) (2.7)

J=1

In other words, as Alpaydin (2004) states, preceding a supervised learner with
unsupervised clustering means that we first learn what normally happens in
the data, and then learn what that means.

Non—parametric methods. Another approach to estimating an output
for a given input is to consider that the data speaks for itself. In other words,
similar inputs have similar outputs. There is no need to learn parameters to
fit a global distribution model. Given an instance sample, a non—parametric
method attempts to find similar past samples from the training set using a
certain distance measure and interpolate from it to find the suitable output.
Non—parametric methods work on local models (similar instances) rather than
a single global model. These methods are also known as Lazy learning methods,
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since, unlike parametric methods, they do not need to compute the models
beforehand, but rather postpone the computation until they are presented with
a test instance. The operation of finding similar instances is of order O(N)
(where N is the number of samples in the training set), which is significantly
higher than parametric approaches (of order O(d) or O(d?)). Additionally, in
parametric approaches the training is done once for the whole test set, whilst
the non—parametric requires finding similar instances for each sample in the test
set. To overcome this problem, techniques such as dimension reduction (e.g.,
PCA) are used to reduce the feature space while still keeping the structure of
the data. Examples of non—parametric algorithms include Histograms, Kernels,
and more specially K-Nearest Neighbors.

k—Nearest Neighbor. The k—Nearest Neighbor (from now on £—NN)
classifier is a non—parametric method which, given an input sample, assigns a
class having most examples among the k neighbors of the input. The samples
are represented as points in a d-dimensional space. (Alpaydin, 2004; Cover &
Hart, 1967) The k-NN density estimate is given by:

. k

plz) = m (2.8)
where k is a fixed number of nearest neighbors, N is the total number of in-
stances in the “training” dataset, and V*(z) is the volume of the d-dimensional
hypersphere centered at x, with radius H:B — x(k)H, being z(;) the k-th near-
est observation to x. The k—NN density estimate conditioned to a class of
instances is represented as:

k.
H(2|C;) = —— 2.9

where k; is the number of nearest neighbors out of the k nearest neighbors that
belong to class C;, and N; is the number of instances of class C; in the whole
dataset. We can then classify an input instance by solving the following Bayes
rule:
P(x]|Ci) P(Ci)

(z)
The Maximum Likelihood Estimate (MLE) of the prior density P (C;) is given
by:

Q

B(Cilz) = (2.10)

3>

5(Cy) = % (2.11)

Substituting equations (2.8), (2.9) and (2.11) into (2.10) yields:
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p(Cilx) = PEEETX _Ki (2.12)
NVEE)

All neighbors have equal votes, and the class is decided by averaging the num-
ber of votes obtained from the k nearest neighbors. In the case of music au-
totagging, where each song can be annotated with different and not mutually
exclusive tags, the algorithm assigns a number of tags having a given threshold
of examples/votes among the k nearest neighbors.

Two main problems arise when using a non—parametric algorithm, such as
k-NN, for estimating densities in high dimensional spaces (in our case, d is
in the order of hundreds). First, the cost/complexity of the algorithm is of
order O(N)'®, which can make the problem computationally unfeasible if the
dimension (d) is high. And second, the concept of closeness (for example,
an Euclidean distance between two points) becomes more and more unclear
when the dimension increases, the so-called curse of dimensionality (Aggarwal,
2005; Beyer et al., 1999; Korn et al., 2001). One way of dealing with both
shortcomings is to reduce the dimension of the data, while still preserving the
“essential” information.

Discriminant—based Classification. Whilst Likelihood—based Classifica-
tion requires estimating densities of class regions, Discriminant—based Classi-
fication focus instead on the correct estimation of the boundaries between the
class regions. Interestingly, Cortes & Vapnik (1995) state that estimating dis-
criminants (boundaries) is an easier task estimating the densities. This theory
only holds if the discriminants can be approximated by a simple function, e.g.,
linear functions.

The most prominent algorithm for finding discriminants is the Support Vector
Machines (SVM) algorithm, proposed by Cortes & Vapnik in 1995 , where
basically we need to learn an optimal separating hyperplane, between instances
belonging to one class and instances not belonging to that class. Support
Vector Machines is thus a supervised binary linear classification algorithm.

If the problem to be solved is not linear, instead of using a non—linear method
to fit the discriminant, we apply some non—linear transformations, making use
of basis functions (Kernel functions in the case of SVM), to map the problem to
a new space and then employ a linear model on this new space, hence reducing
considerably the complexity of the problem.

Boosting. Boosting is not exactly a Machine Learning algorithm, but rather
a meta-algorithm built upon a set of weak classifiers'?, which, after an iterative
process of performing weak learning, re-weighting the data and focusing more

18V is the total number of instances.
9classifiers that produce a hypothesis which is only slightly better than random guessing.
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on the misclassified instances, will produce at the end a strong classifier that is
more correlated to the correct classification, in other words, it has an arbitrar-
ily low error ratio of misclassifying instances. The most significant proposed
boosting algorithm that adjusts to the errors of weak learning is AdaBoost,
published by Freund & Schapire (1997).

From a total of ¢t = 1,2,...T iterations, specified beforechand, AdaBoost calls a
weak learner iteratively with a distribution p! = > fv"t — where w is a weight
vector drawn initially from the distribution and N _ils the number of labeled
samples. The weak learner returns a hypothesis h;, that has an error .
This error rate is used to re-weight the vector w, by increasing the weights of
misclassified instances, or alternatively by decreasing the weight of correctly
classified instances, therefore the new learner focuses more on the misclassified
examples.

2.4. FEvaluation

Once a classifier is trained, different methods to evaluate its performance can be
used. This section presents some of the methods that are used to evaluate the
performance of a classifier. The section in divided in two parts. Section 2.4.1
describes the evaluation measures used to compare the outputs obtained with
a classifier to the original data. Usually, classifiers are trained and tested
with the same data sets. This technique, however, reduces the generality of
the classifier and does not provide any idea on the behavior of the trained
classifier in front of new data. For that reason, Section 2.4.2 presents some
well known techniques in statistics and machine learning that enable the use
of the same data set for training and for testing an algorithm.

2.4.1. Evaluation measures

In this subsection, we introduce the measures used throughout the evaluation
of our autotagging algorithm. These measures have been adopted in a vari-
ety of fields such as Information Retrieval, Data Mining or Machine Learning.
We consider the evaluation of our autotagging algorithm in two different but
related tasks: annotation and retrieval. Each task has a different set of evalu-
ation measures.

Annotation

The annotation task can be regarded as a multiclass classification problem
where, given a non annotated song, the autotagging system proposes a set
of tags, based on an average vote of tags from the most similar songs?® in

2Oneighbors if we are considering K-NN as a classification algorithm.
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the annotated dataset. Therefore, evaluating annotation means evaluating the
relevance (quality) and the ratio (quantity) of the obtained tags.

Based on the table of truthfulness/falseness of the null hypothesis in hypothesis
testing (Lehmann & Romano, 2005), the so—called Type I and Type II errors,
Table 2.3 shows the contingency table of the terms True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN), which compare
the predicted class (classes in multiclass classification) of an item with the
actual class.

Table 2.3: Contingency Table of truthfulness/falseness.

Actual Class
True False
Predicted | True | True Positive (TP) | False Positive (FP)
Class False || False Negative (FN) | True Negative (TN)

Precision. measures the ratio of predicted classes that are relevant. The
equation is given by:

TP
P=— 2.1
TP+ FP (2.13)
Recall. , on the other hand, measures the ratio of relevant classes that
were predicted. The equation is:
TP
= 2.14
R TP+ FN ( )
F—measure. ,or Fj—score, is a weighted harmonic mean average measure
of both precision and recall:
2 PR
F= =2 (2.15)
1 1
5+ 5 P+ R

Alternatively, we can define different values for the Fj, to put more emphasis
on either precision or recall. The general formula of the Fg—measure for a given
positive real number f is:

1+ B2 5. PR
Fs = = (1 —_— 2.1

For example, when 8 = 2, we are putting more emphasis on recall than preci-
sion.
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Spearman’s rank correlation coefficient. Sometimes, we want to
evaluate the effectiveness of our system beyond the binary decisions of pre-
dicted or not predicted. Our algorithm, by definition, proposes tags with a
corresponding frequency for each tag. This frequency is based on the weighted
votes among the similar songs to a given one. Neither precision nor recall (and
consequently neither f~measure) take into account the frequencies (i.e. rank-
ing) of the tags obtained from the similar songs. Thus, we used the Spearman’s
rank correlation coefficient, or Spearman p, which is defined as:

2
p=1- n(ﬁgilil) (2.17)

Where d; represents the distance between each rank of pair of values —in our
case labels in the ground truth and labels in the proposed tags— and n the
number of all possible pair of values. To compute the distances, if it is not
explicitly set, we assume that the frequency of manually annotated labels is
equal to 1.

Retrieval

In the task of music retrieval, we want to emulate the functionality of a search
engine. Given a query tag, we want to measure how well our system is able to
return relevant songs. The retrieved songs are normally ranked /ordered based
on the relevance to the given query tag. As mentioned in the annotation task,
precision and recall (and consequently f-measure) are suitable for unordered
sets. Thus, we need to refine these measures or define new ones for ordered
sets. We described Spearman rho in the annotation task. In the case of music
retrieval, we use the following evaluation measures.

Mean Average Precision. Average Precision, for a given query tag g;,
is the average precision measure of the top n documents after each relevant
document is found, as we are moving down through the ranked list. The
formula of Average Precision is given by:

M;
AvePj = ML Zprecision(Rjn) (2.18)
J n=1
where M is the number of relevant songs for query tag g;, and R;y, is the set of
ranked retrieved songs from the top until we get a relevant song s,,. The Mean
Average Precision, or MAP, is the arithmetic mean of the Average Precision
for all tags in the test set. That is:

Q)
MAP(Q = a0 a2 ZAveP (2.19)
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where @ is a set of tag queries {q1, g2, ..., ¢j }. MAP can be regarded (roughly/approximately)
as the area under the Precision—Recall curve.

Precision—at—N. Traditional text—based search engines (due to screen
limitations) tend to return a limited number of documents in the first page of
results. This value is normally 10 or 30. In such cases, we want to measure
the precision at a fixed level of retrieved results.

Thus, we use the Precision—at—N measure, which is a modification of the plain
Precision measure. If the Precision for retrieval is defined as:

_ #frelevant songs retrieved

P

(2.20)

#retrieved items
The Precision—at—N, or PQn, is:

_ #trelevant songs retrieved out of n

P@n (2.21)

n
This measure is very useful if we do not know a priori the exact number of
relevant songs to a given tag. However, it is strongly affected by the number
of relevant songs for a given query tag g;.

R—Precision. R-Precision is a related measure that mitigates the prob-
lem of Precision—-at—N, by defining a priori a set of R relevant songs for a tag
21
query g;=.

#relevant songs retrieved

i (2.22)

R—Prectsion =

Area under the ROC curve. Asthe Mean Average Precision is roughly
the area under the precision—recall curve, the Area under the ROC curve, or
AUC, as its name suggests, is the area under the Receiver Operating Charac-
teristic curve. Basically, the ROC curve is the plot of the rate of false positive
rates (also known as 1-specificity) and true positives (sensitivity), as we are
moving down through the ranked list of retrieved songs. The True Positive
Rate (TPR) and False Positive Rate (FPR) are defined as:

TP
TPR= ——— = 2.2
R TPLFN Recall (2.23)
FP
FPR= 557N (224)

2.4.2. Validation

The following is a list of techniques that are used to allow training and testing
a classifier with the same dataset.

2Lthis list can be complete or incomplete.
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v—fold cross—validation. The original dataset is splitted into v equally dis-
tributed and mutually exclusive subsamples. Then, a single subsample is re-
tained as the test set, and the remaining v — 1 subsamples are used as training
data. This process is repeated v times (the folds), with each of the v subsam-
ples used exactly once as the test set. The K results from the folds then can
be averaged (or otherwise combined) to produce a single estimation.

Leave-one-out. This technique uses a unique observation from the original
dataset to validate the classifier, and the remaining observations as the training
data. This process is repeated until each sample in the original dataset is used
once as the test set. This process is similar than v—fold cross—validation but
setting v as the number of observations in the original dataset.

Holdout. This method reserves a certain number of samples for testing and
uses the remainder for training. In other words, it is equivalent to randomly
splitting the dataset into two subsets: one for training and the other for testing.
It is common to hold out one-third of the data for testing. From the conceptual
point of view, Holdout validation is not cross-validation in the common sense,
because the data is never crossed over.

Bootstrap. This technique estimates the sampling distribution of an esti-
mator by sampling the original sample with replacement with the purpose of
deriving robust estimates of standard errors of a population parameter (mean,
median, correlation coefficient, etc.).

The Leave-one-out method tends to include unnecessary components in the
model, and has been provided to be asymptotically incorrect (Stone, 1977).
Furthermore, the method does not work well for data with strong clusterization
(Eriksson et al., 2000) and underestimates the true predictive error (Martens &
Dardenne, 1998). Compared to Holdout, cross-validation is markedly superior
for small data sets (Goutte, 1997);

2.5. Related work

In the last few years, several algorithms have been proposed for the task of au-
tomatic tagging of music. All these algorithms are instances or modifications
of the algorithms proposed in related classification tasks . Most of these algo-
rithms are based on previous algorithms proposed and used in other related
Music Information Retrieval (from now on MIR) research areas, such as genre,
mood, instrumentation or even sound classification (Cano & Koppenberger,
2004; Cano et al., 2005; Herrera-Boyer et al., 2003; Liu et al., 2003; Logan,
2000; Tzanetakis & Cook, 2002).

Although not specifically oriented to tag classification, the work of Whitman
et al. (2004; 2002; 2002) is considered one of the first referenced works in music
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semantic annotation/description literature. Whitman (2005) attempts to learn
the relationship of text found in web documents (such as album /record reviews
(Whitman & Ellis, 2004)) and the actual acoustic description of a music piece.
They accomplish so by using Power Spectrum Density over one second of audio,
and then reducing the dimension of the data by means of Principle Component
Analysis (PCA), to a final 20 dimensions. Thereafter, an algorithm based on
Regularized Least Squares Classification (RLSC) (Rifkin et al., 2003) is used.
This algorithm is similar to SVM in that it is also a linear (discriminant—based)
algorithm. However, unlike the SVM algorithm, which requires the solution
to a convex quadratic programming problem, training a RSLC algorithm only
requires solving a single system of linear equations (Rifkin et al., 2003).

On the other hand, a considerable amount of work in classification has been
published in the sound effects domain. For instance, Slaney (2002) addressed
the problem of audio retrieval by creating separate hierarchical models in the
test and the audio space, and then making links between the two spaces for
either retrieval or annotation. Similarly, Cano & Koppenberger (2004) propose
a sound effects annotation approach based on nearest neighbor classification.
In other related work, Cano et al. (2005) used an extended WordNet version,
and a one nearest neighbor decision rule to classify sound effects. Both studies
used a repository that centralizes audio content, corresponding meta data,
taxonomies and algorithms (Cano et al., 2004a). In fact, our autotagging
algorithm builds upon the previous findings of Cano & Koppenberger.

Mandel & Ellis (2005) proposed the use of SVM’s for automatically tagging
music. As mentioned in Section 2.3.4, the SVM algorithm attempts to find the
optimal margin hyperplane to separate two different classes, in terms of the
distance of the closest points from each class to that hyperplane. If the data
is not linear (which happens most of the times), it is projected to a higher
dimensional space using Kernel functions. Mandel and Ellis suggested the use
of 3 different distance measurements: 1) Mahalanobis distance, 2) Kullback—-
Leibler divergence (approximated by Monte Carlo methods) over 1 or 3) 20
gaussian Gaussian components (GMM’s), which were trained from 3000 MFCC
frames of the whole music piece (representing 10-20% of the total frames per
song).

Turnbull et al. (2007a), based on the work by Carneiro & Vasconcelos (2005)
in the image annotation domain, proposed to view the problem of semantic
annotation (autotagging) as a Multi—class classification problem rather than
a one—versus—all binary problem. According to the authors, the advantage
of such an approach is that, since one—vs—all approaches require the use of
negative examples, in a weekly labeled training dataset, if a word does not
appear in the list of tags of a given song, it does not necessarily mean that the
song cannot be annotated with that word. The distribution to fit in their case
is given by:
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C
p(X|Z) = Z 71'c~/\/’(37|ﬂc; Ec) (2.25)
c=1

where N () is a multivariate Gaussian distribution with mean vector p and
covariance matrix . In order to avoid overfitting of the data, the authors use
diagonal covariance matrices. The parameters are then estimated using the
Expectation Maximization (EM) algorithm. The estimation is done directly
over the word-level distribution, by taking a reduced set of random samples, or
by first estimating song—level distribution and then averaging. More recently
(Turnbull et al., 2008b), the authors suggested a weighted Mixture Hierar-
chies estimation, which is computationally much less expensive than model
averaging, while still using all the training data without sub-sampling.

Eck et al. (2008), used the AdaBoost algorithm to automatically tag music.
Following the same idea, Bertin-Mahieux et al. (2008) used FilterBoost, an
on-line version of the former, which employs rejection sampling with the result
that it can handle sampling of arbitrarily large music data sets.

More recently, Hoffman et al. (2009) proposed a probabilistic model, called
Code Bernoulli Average (CBA). Unlike other probabilistic methods, which
assume that songs (data) depend on the tags (classes), the CBA algorithm
attempts to predict to how much degree does a tag apply to a song, based
on a reduced, Vector Quantization representation of that song. The authors
first discretize the data representation by using Vector Quantization?2. Then,
the model parameters of the CBA are estimated with Maximum Likelihood
estimation using the EM algorithm.

In the last few years, there has a been a growing interest in the use of two—
stage algorithms. Broadly speaking, a two—stage algorithm uses the output of
a content—based algorithm as input feature vectors to model each tag in the
vocabulary. The rationale behind two—stage algorithms is that they explicitly
tackle the problem of tag correlation (Aucouturier et al., 2007b). A number
of authors report on the performance improvements using this method (e.g.
Coviello et al., 2011; Miotto et al., 2010; Ness et al., 2009; Pachet & Roy,
2009).

For instance Aucouturier et al. (2007b) presented a hybrid classification algo-
rithm, consisting of 2 components. The first component is an acoustic clas-
sifier which models acoustic features with 50—state Gaussian Mixture Models
(GMM) and uses K-NN with Kulback Leibler divergence as a distance mea-
sure. The idea is that similar songs are supposed to lie on a similar space. The
second component is a set of decision—tree classifiers which exploit symbolic—
level correlations between meta-data to improve previous classifications. This
second component is an iterative procedure that will stop when there is no

more significant improvements of precision between successive iteration®3.

22 . . . .
using K—means as a method for dimension reduction.
2gach iteration corresponds to a decision—tree classifier instance.



Automatic annotation
of music from audio

3.1. Introduction

Automatic tagging of music, or simply music autotagging, refers to the task of
classifying audio items in terms of high-level concepts, such as musical genre,
instrumentation, moods, etc.

As it has been presented in previous chapters, most of the autotagging ap- —_—

proaches are extensions of previous work in related tasks, including genre,
mood and artist classification. Classification is carried out by learning models
automatically from the mapping between low level audio features and semantic
labels, or tags. Nevertheless, as pointed out recently by Marques et al. (2011),
the task at hand is much more difficult than genre or mood classification, for
several reasons. We try to summarize these differences as follows:

s The number of tags to classify are in the order of hundreds, and it is
much higher than genre or mood classification.

» The number of facets (categories) is also higher. Genre and mood are
only two facets among many others.

= Some of these tags are subjetive or not clearly linked with the audio
content. For example, usage tags such as cleaning the house or driving
might have different meanings for different people. Some personal tags
are very hard to classify, like favorite or seen live.

= Autotagging is a multiclass problem. An audio excerpt is usually anno-
tated with more than one tag.

= Tags are often correlated. That is, two or more tags can share concepts
(e.g., rock music and guitar playing), they can be synonyms (e.g., a
vigorous or energetic performance).

35
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» Tags can have multiple meanings (polysemy). For example, the tag piano
might refer to the instrument or the tempo.

= Because of the multiplicity of potential relevant facets and tags, available
datasets are often weakly labeled, i.e. the absence of a particular tag
annotation for a given excerpt does not necessarily mean that the tag is
not relevant to the excerpt.

= For the same reason, available datasets are often noisy and inconsistent.

In this chapter, we introduce our automatic music tagging approach!. Our
algorithm proposes tags from already annotated songs that are acoustically
similar to the given one, as opposed to many other approaches that learn
models or discriminants from the observations beforehand (as in the case of
parametric and semi-parametric methods, such as Gaussian Mixture Models,
Boosting methods or Support Vector Machines). That is to say, our algorithm
propagates tags to an unlabeled song, say s, from the k nearest neighbors in
the “acoustic space”.

Our approach is built upon previous work by Cano & Koppenberger (2004),
which automatically annotate sound effects using nearest neighbor classifica-
tion. However, our work differs on the way similarity distance is calculated,
and all the heuristics and parameters that are constructed on top of the nearest
neighbor classifier.

Figure 3.1 depicts the general framework of our proposed autotagging algo-
rithm. The raw audio files of the Ground Truth training dataset are analyzed
by extracting acoustic features and performing a feature selection. Classifica-
tion is then achieved by applying the same set of transformations for each test
song, and then using similarity distances to infer tags from neighbors in the
training dataset. In other words, given a seed song, our audio analysis module
extracts the acoustic features and performs the same feature selection as the
Ground Truth training dataset. The resulting output of the audio analysis
module, a d-dimensional feature vector, is queried into the autotagging mod-
ule. This module returns a list of k£ nearest neighbors of s in the projected
d-dimensional space. Then, based on a voting function of the neighbors’ tags,
the autotagging module proposes a list of tags to the query song s, where each
tag has a corresponding frequency/weight given by the voting method.

As mentioned in Section 2.3.3, a Ground Truth dataset can vary in size and
quality of the data, depending on the methodology used to collect the data.
Ground Truth tags can be obtained in four different ways: conducting human
surveys?, deploying games (with a purpose), collecting web documents or har-
vesting social tags (Turnbull et al., 2008a). In order to assess the strength

'From this point now on, the concept of automatically classifying an audio with tags, or
automatic tagging, will be simply referred as “autotagging”.

2hiring musical experts to annotate music can be regarded as a special case of human
surveys.
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Figure 3.1: Proposed general framework for automatic tagging of music.

of our autotagging algorithm, we carry out a thorough evaluation using six
datasets from different sources.

In the remainder of this chapter, we focus on the different aspects of our au-
totagging algorithm, following the diagram depicted in Figure 3.1. Section 3.2
describes our proposed autotagging algorithm. We provide details on the fea-
ture extraction, as well as the feature selection process that was followed to
reduce the dimension of the audio data. Furthermore, we describe the learning
algorithm used, and the parameters that can be tuned to modify the perfor-
mance of our algorithm. Section 3.3 presents the first experimental results —as
a proof of concepts— of our algorithm. The aim of Section 3.4, is to analyze if
our approach can also apply to sound effects. In Section 3.5 we run statistical
tests to assess whether different parameter selection can significantly affect the
performance of our algorithm. Then, in Sections 3.5, 3.6 and 3.7 we report on
the evaluation of our system in different experiments, using the output of the
statistical tests in Section 3.5 as a parameter configuration for our approach.
Finally, we conclude in Section 3.8.
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3.2. Autotagging algorithm description

3.2.1. Feature extraction

The most prominent audio features in MIR tasks such as audio genre classifi-
cation and audio tag classification, are the Mel Frequency Cepstral Coeflicients
(MFCC’s). In our case, we use the first 13 coefficients as one of many other
sets of features (descriptors), ranging from low-level spectral features (such as
centroid, rolloff, kurtosis, etc.), to tempora/rhythm (bpm, onset), tonal de-
scriptors (chords, key) and more high—level descriptors (moods, genres, dance-
ability,...). The latter features are learned — in a first stage — as probability
estimations made by Support Vector Machines using a set of internal Ground
Truth datasets. For more details about these high level features please refer
to Bogdanov et al. (2011).

Table 3.1 summarizes the list of features that are used by our autotagging
algorithm, which were extracted with the Essentia library (Wack, 2011). The
audio features are captured on a short-time frame-by-frame basis, using sliding
windows of 46ms, and a hop size of 23ms. For tonal features, we set these values
to 92ms and 46 ms, respectively. The decision of choosing a bigger window for
tonal features — such as pitch class profiles — is based on two reasons. First,
the feature tries to model the time required by humans to identify a chord.
And second, it is necessary to get good frequency resolution, thus a large frame
is required (Fujishima, 1999; Gomez, 2006). The features are then averaged
over the whole audio excerpt (Tzanetakis & Cook, 2002). We take the means,
variances and their corresponding derivatives. These values are then used to
represent each audio excerpt as an N—dimensional vector.

Then, depending on the parameter configuration (refer to Section 3.2.4) and
the distance measure we deploy in our k~NN implementation, we use different
subsets of these features.

3.2.2. Feature selection

Machine learning algorithms learn and optimize models from previous obser-
vations of data, in order to make future predictions of unseen events. In the
Music Information Retrieval field, an observation usually consists of different
audio features, extracted from the music excerpt in the time and frequency
domain. These features are normally extracted from small windows. Consider,
for example, a 5 minute song. A single (real valued or string) feature com-
puted from a sliding window of 46ms and a hop size of 23ms will result in a
%goo-l ~ 13043 dimensional vector. If there are 60 features, a song will
be represented by 60 vectors of 13043 dimensions each. The main problems of

using such amount of information for a single music item are the following:

= Songs of different lengths will consequently have feature vectors of dif-
ferent length.
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Table 3.1: Summary list of the acoustic features used by our autotagging algorithm.

* average loudness
* bark bands (bands, spread, skewness, kurtosis)
* dissonance
* High Frequency Content
* MFCC
Low level | * pitch (pitch, salience, instantaneous confidence)
* silence rate (at 20dB, 30db and 60dB)
* spectral (centroid, complexity, contrast, crest, decrease
energy, energy band, flatness db, flux, kurtosis,
rms, rolloff, skewness, spread, strong peak)
* zero crossing rate
* beats (position, loudness, loudness bass)
* bpm (bpm, confidence, estimates, intervals)
* first peak (bpm, spread, weight)
Rhythm * second peak (bpm, spread, weight)
* onset (rate, times)
* rubato (start, stop)
* chords (key, scale, progression, histogram,
strength, changes rate, number rate)
* key (key, scale, strength)
Tonal * hpep
* tuning (frequency, diatonic strength,
non-tempered energy ratio, equal tempered deviation)
* genres (from 5 different collections)
* moods
* gender
* western /non-western
High level | * live/studio
* speech /music
* rhythm (fast, medium or slow)
* timbre (bright or dark)
* voice/instrumental

= As we mentioned in Section 2.3.4, in parametric models, the covariance
matrix becomes unstable when the data is described with many dimen-

sions, and there are only few samples from which to build a model.

= As digital collections keep growing at a fast pace, current hardware speci-
fications — although there has been a significant improvement in personal
computation — cannot handle such amount of information.
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In the last 30 years, many feature selection methods have been proposed for
dimension reduction. These techniques are used to remove noisy information
from the original feature representation so that learning models becomes a
more feasible task (Samet, 2006).

In our case, the following steps are applied for feature selection. For each au-
dio feature® we extract the mean, variance and their corresponding derivatives.
Then, we concatenate these values into a vector. This reduces the observation
to a single vector of 611 dimensions (including high level features). We further
reduce the dimension by means of Principal Component Analysis (PCA), after
mean centering the 611-dimensional vector. The PCA method can be regarded
as a flattening technique (see Section 2.3.2 for more details). It projects the
original space into a new subspace, whose basis vectors — also known as com-
ponents — represent the maximum—variance direction in the original space.
PCA is a non—parametric method, and as such, the dimension reduction —
with this technique — is unique and independent of the user. Furthermore,
the components of a PCA are, by definition, orthogonal (Jolliffe, 2002). This
may have a positive effect, but sometimes it can lead to undesirable effects,
especially when the data presents patterns that cannot be described with an
orthogonal basis. Many other dimension reduction techniques have been pro-
posed. Some of them follow the same idea of linear combination of variables,
such as Linear Discriminant Analysis (LDA) or Non-negative Matrix Factor-
ization (NMF). Others, such as Relevant Components Analysis (RCA) or In-
dependent Component Analysis (ICA) impose constraints on the classes or
the dependecy of the reduced dimensions, respectively, and can consequently
improve data separability.

Nevertheless, experimental tests in Section 3.5.2 — and subsequent results —
show that applying PCA to the original data does not harm the evaluation
results significantly* while reducing the complexity of the algorithm consid-
erably. For instance, given the 611-dimensional vector mentioned earlier, the
PCA projection that keeps the 75% variance of this vector will contain barely
29-30 components (depending on the dataset), that is, a song can be then
described by solely a 30-dimensional vector.

3.2.3. Learning algorithm

The purpose of annotating songs with semantic labels, or simply tagging, is
manifold. Nevertheless, we can define two basic scenarios where tagging is
useful: music annotation and music retrieval. For the former, given a
song, we want the autotagging algorithm to propose a list of tags which is, at
the same time, sensitive (recall) and not noisy (precision). For the latter, we

3Except for the features with a single value (e.g., key, chords, bpm, etc.) or high-level
features, which consist of a string value and a probability value.

‘by using standard Information Retrieval evaluation measures such as F-measure and
Mean Average Precision.
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want the autotagging algorithm to propose a list of tags to songs such that,
given a query tag —or a list of tags— the retrieved songs are relevant to the
query.

In this section we present two versions of our autotagging algorithm. The main
approach is to consider the k nearest neighbors of a given song s, assigning to
s the labels that these neighbors share. Sometimes, depending on the shape
of the dataset (i.e how the points are spread in the d-dimensional space, after
extracting and selecting features from the raw audio files), the vocabulary size,
and the number of instances per class, the k~NN method may fail to cover
all the vocabulary. In order to tackle this issue, we take another approach.
Instead of considering songs that “sound similar,” the similarity or likelihood
is computed from the query song to tag models. A tag model is built from the
training songs that are annotated with that tag. We call this approach Class-
Based Distance Classification (CBDC). A detailed description and discussion
of the two approaches is presented in the next subsections.

It should be noted though that when we generally use the term “our autotagging
algorithm,” we tend to refer to the first approach, the Weighted vote k—NN.
The Class-Based Distance Classification model is mainly used in Section 3.5 to
study the effects produced in the evaluation methods by different autotagging
paradigms.

Weighted vote k-NN

As we mentioned in Section 2.3.4, a k~NN method for multi-class classifica-
tion proceeds as follows: given a seed song s, the algorithm assigns the best
classes from the k nearest neighbors. These classes are decided by taking into
account the votes of all the k£ neighbors. Algorithm 3.1 summarizes how our
weighted vote k-NN algorithm works. First, a set of k£ nearest neighbor songs
is retrieved for song s. Then, the tags of the k nearest neighbors — with
their corresponding weight — are merged into a candidate list. Finally, the
candidate list is filtered by frequency, producing a reduced list of proposed
tags.

For music annotation, all the k nearest neighbors have equal vote, that is,
weight(t) = 1 for all the neighbors’ tags. The threshold parameter is defined
as a cut—off value that limits the number of proposed tags. For example, in a
10-NN classifier, if 4 out of 10 neighbors of song s have the tag rock, and 1
neighbor has the tag punk , then the algorithm proposes tags rock and punk
to song s with a frequency 14—0 = 0.4 and % = 0.1, respectively. If the threshold
is set to 0.3, the algorithm will only propose tag rock to song s.

In the case of music retrieval, or tag ranking, the concept of voting thresh-
old is removed, since the ranking is done for all the tags in the Ground Truth
vocabulary. Instead, we take the £k = R-nearest neighbors, where R is the
number of songs in the training dataset, and rank tags based on the following
weighting function:
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Data: s, a song represented as a point in a d—dimensional space;
k, number of nearest neighbors;
threshold, a cut-off threshold to limit the number of proposed tags;
Result: P, a list of proposed tags;
T = 0;
P=0;
N = k—Nearestneighbors(s);
foreach n € N do
foreach t € tags(n) do
T < T U (t,weight(t,n));
end
end

foreach t € T do
if (freq(t) > threshold)* then
‘ P+ PUt
end

end
Algorithm 3.1: Pseudo-code for the weighted vote k-NN algorithm.* The
cut—off threshold (if condition) is only defined for music annotation, not for
retrieval.

1 ifn>k
weight(t,n) = { | nn=

) (3.1)
~3, otherwise

where weight(t, n) is the weight or score of tag ¢ in rank n (n—nearest neighbor).
The value of k is taken from the music annotation task. In other words,
the first k& nearest neighbors will affect the classification equally, whilst the
furthest neighbors (R — k) are defined by a reciprocal quadratic function. This
function is set to give a marginal weight for the furthest neighbors, so the
nearest neighbors will have more influence on the highly ranked tags, while
still allowing the ranking of all the tags in the Ground Truth vocabulary.

Comments on the algorithm. The choice of a memory-based nearest
neighbor classifier avoids the design and training of every possible tag. Fur-
thermore, there is no need to use negative labels (e.g., rock and not rock),
since there are no tag models to be learned. Another advantage of using an
NN classifier is that it does not need to be redesigned nor trained whenever a
new class of audio excerpts is added to the system. The autotagging problem
is then reduced to finding a suitable similarity distance between songs.

Nevertheless, it is well known that the k—NN classifier has some limitations, for
some of which we tried to find a solution in the case of music tag classification:
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= kNN can be easily misled in high—dimensional spaces. Our feature se-
lection step (using PCA) reduces considerably the number of dimensions
while still keeping the essential information of the original data.

= kNN is a lazy algorithm, that is, it postpones the classification until the
test instances are provided. For each test instance, the algorithm has
to compute the distance from this instance to all the training instances.
Thus, k&~NN will require as many distance calculations as the number of
instances in the Ground Truth dataset. While we do not face this problem
directly —in this algorithm—, computing distances between points in a
reduced dimension (In our algorithm, in the order of 7% of the original
data representation) can be efficiently computed in current hardware
specifications (see Section 3.7.2 for computational costs).

In some situations where the tag frequency is considerably unbalanced and the
data representation is not spread —that is, if the songs are not well distributed
in the “acoustic space”™— the weighted vote kNN method is not able to cover
all the tags while classifying in a cross—validation basis. Since the singularity of
a non-parametric method is that data speaks for itself, on one hand, songs that
“sound similar” in our data representation but are annotated with different®
tags, may consequently end up confusing the system. We tackle this problem
by using a voting threshold that limits the number of proposed tags. On the
other hand, given the aforementioned voting threshold and the nature of the
algorithm, tags that are less frequent are then less prone to be proposed. One
way to deal with such problem is to disable the voting threshold and reduce
the number of nearest neighbors. Experimental results (see Section 3.5.3)
show an increment of the covered tags, especially for the tags that are used
less frequently in the training dataset. Interestingly, this finding shows an
improvement in per-tag evaluations and a decay in per—song evaluations. The
increment of covered tags, however, was not enough to cover all the tags in
the vocabulary. Based on these findings, we propose the use of an alternative
approach, which is aware of the tags of each song in the acoustic space.

Class—based Distance Classifier

The Class—based Distance Classifier (CBDC) is an instance of a centroid-based
distance classifier (Han & Karypis, 2000; Kim et al., 2006; Park et al., 2003).
It uses the same feature representation as in the previous algorithm. However,
instead of looking at the nearest songs, it focuses on the nearest tags (hence,
class-based). For each tag ¢ in the vocabulary, we compute a clustered rep-
resentation of all the songs that are annotated with this tag in the Ground
Truth. The process is summarized in Algorithm 3.2.

5Here different means tags that differ in their names. Sometimes tags with different
names can refer to the same or a related semantic concept, as we are going to see in the
following chapters.
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Data: s, a song represented as a point in a d—dimensional space;
GT, a list of tags in the Ground Truth;
Result: P, a list of proposed tags;
C = 0;
P = 0;
foreach t € GT do
S < songs_with_tag(t);
C <+ C U centroid(S);
end
foreach c € C' do
‘ P + P U (tag(c), distance(s,c));
end
P « sorted(P);
Algorithm 3.2: Pseudo-code for the class-based distance algorithm.

Once the centroids are obtained, the algorithm computes the distance of a
test song s to the |V| centroids, where |V| is the size of the Ground Truth
vocabulary. We consider four different distance measures: Fuclidean, cosine,
weighted Euclidean (with a diagonal matrix) and Mahalanobis (with a full
covariance matrix) distance.

The generalized Mahalanobis distance (Mahalanobis, 1936) is defined as:

d(3,7)= /(7 - )5 (7 - 2) (3.2)

where & and ¢ are two vectors corresponding to the test song feature vector
and the tag centroid, respectively. S is a covariance matrix obtained from the
feature vectors of all the songs that are annotated with the same tag. When
S is a diagonal matrix, the resulting distance measure is called weighted (or
normalized) Euclidean:

(3.3)

where s;; is the standard deviation of the test song feature vector (?) and the
tag centroid (?) in the sample distribution. When S is the Identity matrix,

then the resulting measure is as easy as a Euclidean distance between vectors
S and ¢:

(3.4)

Finally, the cosine distance, or cosine similarity, is defined as:
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R S S s X 6
40 = e NS ST (35)

The first two distance measures (equations 3.2 and 3.3) can be regarded as a
modelization of a single Gaussian for each tag.

Comments on the algorithm. While this approach might seem naive and
generic, we show in experimental results (see Section 3.5.3) that, when the
audio feature representation is good enough to differentiate between classes, it
can perform — in terms of per—tag evaluations — as well as or better than the
state of the art approaches that use more complex, time and resource consum-
ing algorithms. As for the computational cost, the tag centroids, including the
covariance matrices, are computed only once, and they scale linearly with the
number of tags and the number of instances per tag. Once the centroids are
obtained, the classification process is reduced to calculating |V |-distances per
song, where |V| is the size of the vocabulary, as compared to the R—distances
of a k—NN classifier, where R corresponds to the number of instances in the
training dataset, and |V| < R. The classification, thus, scales linearly with the
number of classes.

3.2.4. Parameter selection

Most machine learning algorithms have a set of parameters® that can be tuned
to change the performance of the algorithm. In our case, we define five tuning
parameters for our main algorithm, the Weighted vote k—NN.

PCA covered variance. With the Principal Component Analysis tech-
nique, we want to reduce the dimension of the original data without losing
too much information. In other words, keeping as much variance of the origi-
nal data as possible. In this case we can choose either the number of dimensions
(number of eigenvectors) or the amount of variance to keep.

Use of high-level features. As we mentioned in Section 3.2.1, high-level
descriptors refer to features such as genre, mood, danceability, etc. learned —
in a first stage — as probability estimations made by Support Vector Machines
using a set of internal Ground Truth datasets. For more details please refer to
Bogdanov et al. (2011).

5To not be confused with the parametric-non-parametric types of machine learning al-
gorithms.
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Distance metric. Different measures of distance lead to different results.
Casey et al. (2008) proposed a set of minimum distances for high-dimensional
music spaces. In our case, we use three types of distances: 1) a Euclidean
distance between feature vectors in the reduced d-dimensional space, 2) a
Kullback-Leibler divergence based on single Gaussian MFCC modeling, and 3)
a linear combination of both Euclidean and Kullback-Leibler distances. The
Fuclidean distance includes the means of the first 13 MFCC coefficients —
averaged over the whole audio — as additional features.

Number of nearest neighbors. This parameter affects the value of k in
the k-NN algorithm. A lower number means less neighbors, and probably less
tags. It depends on how the transformed feature vectors are distributed in
the d-dimensional space. If the distribution is spread, a lower number would
make the proposed tags more accurate than a higher number. With a higher
value, the algorithm can have more tags to choose from, which can increase
the probability of having a higher recall.

Voting threshold. The voting threshold parameter affects the number of
proposed tags. If the value of this threshold is closer to 1, few tags are propa-
gated, yet we are more confident about them, that is, we increase the probabil-
ity of having lower recall and higher precision. Otherwise, when the threshold
is closer to 0, we are propagating as many tags as all the k neighbors have,
which obviously increases the probability of having a higher recall and a lower
precision. Empirical results — after the evaluation of our system in all the
datasets we used — have shown that a threshold of 0.2 has a good trade-off
between precision and recall.

3.3. Experiment 1: Magnatune-5K dataset

3.3.1. Dataset

The first dataset, used in the first experiment as a proof of concepts, consists
of more than 5000 songs annotated with style and mood tags. The dataset and
the annotations were obtained from the Magnatune website” in February, 2007.
Magnatune (Buckma, 2004) is a California-based independent music label that
offers DRM—free Creative Common licensed music, aiming at treating artists
and consumers fairly. The dataset is divided in two subsets (style and moods),
corresponding to the two sub-experiments in Section 3.3.2.

The style subset contains 29 different style labels in 5481 annotated songs,
with an average of 3.06 tags per song. Table 3.2 shows additional information
about the dataset.

"http://www.magnatune . com
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Table 3.2: Additional information about the Magnatune-5K dataset, gathered from
www.magnatune.com during February, 2007.

#Tracks #Tags Tags/Track Top Tags Bottom Tags
5481 29 p=3.06  Instrumental (2182) Blues (118)
o0 =113  Classical (2175) Opera (69)
Baroque (1386) Indian (60)
Rock (961) Other (33)

World (870) Children (13)

For the moods experiment, the first issue is the choice of the taxonomy. As
advised in (Juslin & Sloboda, 2001), in order to make our experiment and
to build a ground truth that achieves the best agreement between people, we
should consider few categories. We used a reduced version of the Magnatune
on-line library. This collection offers a set of playlists based on mood®. We
clustered the 150 mood playlists to fit in our few categories paradigm. The
adjectives proposed by Juslin: happiness, sadness, anger and fear in (Juslin
& Sloboda, 2001) have been applied in (Feng et al., 2003) and proved to give
satisfying results. As the collection is mostly focused on popular and classi-
cal music, the “fear” adjective has been extended to a larger category called
“mysterious.” Using Wordnet? we have joined the possible playlists together in
the following four categories : happy, sad, angry and mysterious. After that,
a musicologist validated each song label.

We obtained a ground truth database of 191 songs with the distribution in
mood shown in Table 3.3. For each song, there is only one mood label. It is not
an equal distribution but there is enough data in each category to experiment
with the CB similarity.

Table 3.3: Mood distribution of the ground truth.

Mood Songs
Happy 67
Sad 61
Angry 34

Mysterious 29

8http://www.magnatune . com/moods/
%http://wordnet.princeton.edu/
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3.3.2. Experimental results

The goal of this experiment is to prove empirically how content-based similarity
can help to propose labels to yet unlabeled songs, and thus reducing the hard
effort of manually annotating songs.

We present two different experiments. The first one propagates labels that
are related with the style of the piece, whereas the second experiment deals
with mood labels. The problem with the Magnatune collection is that there is
only one human that annotated the tracks, when normally a ground truth of
this nature should be pair-reviewed. Yet, we validated a large amount of the
annotated songs by listening to them.

Propagation of music style labels

The ground truth for the style experiment consists of 29 different labels (like
Rock, Instrumental, Classical, Relazing, etc.), and 5481 annotated songs.

The evaluation process was the following, for a partially annotated collection
(10%,..., 50%), we use the CB module to get the ith—similar (i=10, 20 and
30) songs —and their tags— to a given one, to propose tags based on the
tags from these similar songs. However, we did not propose those tags that
appeared with a frequency less than 20% (i.e., a voting threshold of 0.2)

Evaluation metrics. The metrics used to evaluate the styles experiments
were initially Precision/Recall and F>-Measure (giving more weight to Recall).
In our case, Recall seems to be more informative since our purpose is to know
how well the tags can be propagated. We also used Spearman’s rank correlation
coefficient (or Spearman p) to take into account the frequencies (i.e. ranking)
of the tags obtained from the similar songs.

Results. For the style experiment, we ran different configurations and we
computed the average metrics. A special case is when using the 100% an-
notated songs (see the results in Table 3.4). This experiment is used to test
whether the CB similarity is good for propagating labels. There are four dif-
ferent configurations when retrieving the most similar songs to a given one:
do not apply any constraint, or filter by artist/album. The constraints, then,
are: filtering the similarity results by same Artist, same Album, or by same
Artist and Album. The latter case makes only sense when the songs appears
in compilations, various artists albums, etc. When filtering by artist or by al-
bum we make sure that the most similar songs to a given one are not from the
same artist or the same album. That of course decreases the Precision/Recall
measure. We can see from the results, that to achieve more precision and recall
when applying a constraint, we need to increase the number of similar songs,
which makes sense because we are not taking into account similar songs that
are closer to a given one.
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Table 3.4: Experiments with the 100% annotated collection. The Precision/Recall
measure, the Fo-measure and the Spearman p measure are proportional to the number

of similar songs. When constraints are present, these measures decrease.

Sims. Constraint P R Fy P
None 0.56 0.84 0.72 0.51
10 Artist 0.41 0.58 0.51 0.23
Album 0.50 0.71 0.62 0.34
Artist & Album 0.43 0.59 0.53 0.19
None 0.56 0.82 0.71 0.49
20  Artist 0.48 0.61 0.56 0.26
Album 0.53 0.72 0.64 0.35
Artist & Album 048 0.61 0.56 0.24
None 0.60 0.77 0.70 0.45
30 Artist 0.50 0.58 0.55 0.28
Album 0.56 0.67 0.63 0.37
Artist & Album 0.50 0.59 0.55 0.27

Figure 3.2: Propagating tags in a partially annotated collection.

Annotated

Now, Table 3.5 shows the results of propagating a partially annotated collec-
tion (see Figure 3.2). The Spearman p coefficient, as well as Precision/Recall
and Fh-measure, grows when increasing the percentage of songs annotated in
the collection. Interestingly enough, the values decrease when increasing the
number of neighbors (from 10 to 30) for a given song.

Finally, we propose another experiment that is to automatically annotate songs
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Table 3.5: Experiments with the 20%, 40% and 50% annotated collection. The
Precision, Recall and Fy-measure and the Spearman p values grow with a higher
percentage of annotated songs, and a smaller number of similar songs.

Annotation Sims. P R Fy p

10 0.32 0.29 0.30 0.24
20% 20 0.22 0.17 0.19 0.16
30 0.08 0.05 0.06 0.06

10 0.57 0.59 0.58 0.43
40% 20 056 0.52 0.53 041
30 049 039 042 0.34

10 0.61 0.67 0.64 0.47
50% 20 061 0.61 061 045
30 057 0.51 053 041

in a music collection by means of the propagation process. The results are pre-
sented in Table 3.6. It is clear that the percentage of songs automatically
annotated by CB similarity increases when the number of already annotated
songs grows. But, we can see an interesting exception here, that is the 40% an-
notated collection performs better (up to 38.68% new propagated labels, with
a low Recall 0.4) than the 50% one. This could be due to the random process
of splitting the ground truth and the test set from the collection. Furthermore,
we can see how the percentage of songs automatically annotated is inversely
proportional to the number of similar songs used by the CB similarity module
(in contrast with the results from the 100% annotated collection, see Table 3.4,
when applying any constraint).

Propagation of mood labels

Evaluation metrics. To evaluate the mood results, we used two measures.
First we wanted to check if the system was able to guess the correct mood
label (there is only one possible label per song). We evaluated the Precision
just considering the first result using Precision at 1, also called PQ1.

1, best proposed label = real label
0, otherwise

pal = { (3.6)

We averaged this value over all the examples. This metric helps us to under-
stand if the system can predict the correct mood label. However it does not
take into account the relative frequencies. Then another measure would be
needed to evaluate this aspect. We weighted the frequencies of the proposed
label and normalized to compute a weighted Precision at 1, that we will call
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Table 3.6: Extending annotations of a music collection by means of CB similarity.
We observe that the propagation grows with a smaller number of similar songs and a
higher percentage of annotated songs, except for the case of 40% and 50%.

Propagation with Recall

Annotation Sims. > 0.8 > 0.6 > 0.4

10 17.515% 21.365% 24.977%
20% 20 8.666% 12.352% 15.453%
30 2.554%  3.758%  5.145%

10 28.01%  33.46%  38.68%
40% 20 22.50%  28.92%  34.32%
30 15.22%  20.82%  26.22%

10 26.77%  31.62%  35.92%
50% 20 22.66%  28.74%  33.37%
30 17.48%  23.15%  28.44%

Table 3.7: Confusion matrix for the mood experiment with a 100% annotated col-
lection.

GT \Predicted Angry Happy Mysterious Sad

Angry 27 7 1 1
Happy 4 55 1 2
Mysterious 8 6 7 )
Sad 4 16 2 35

wP@1. It is equal to the frequency value of the correct label over the sum of
all the proposed label frequencies:

freq. correct label

wP@1 = (3.7)

> freq. proposed labels

Results. To have an overview of the system performance for each mood,
we built a confusion matrix in Table 3.7. It has been computed using 100%
of the collection annotated. Each row gives the predicted mood distribution
(considering only the best label) for each mood in the ground truth. Looking at
the confusion matrix we observe that a CB similarity approach can propagate
relatively well the “happy,” “angry,” and “sad” labels. However the “mysterious”
label does not give good results. We can explain this by the fact that it might
be the most ambiguous concept of these categories. Table 3.8 presents the
average PQ1 and wP@1 values per mood.
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Table 3.8: PQ1 and wP@1 values averaged for each mood.

Angry Happy Mysterious Sad All

pail 0.72 0.89 0.27 0.61 0.62
wP@1  0.65 0.62 0.22 0.59 0.52

It confirms what we have in the confusion matrix, the “happy” category gives
the best result. However looking at the values of wP@1, we note that if “happy”
is the most guessed mood, the system gives more reliability to its results about
the label “angry.”

In our last experiment we wanted to evaluate how well the mood labels can be
propagated if we annotate just partially the collection. We computed the P@1
for 70%, 50% and 30% of the database and obtain the results written in Table
7. It shows that for 30% of the collection annotated, the system can propagate
correctly the tags up to 65% of the collection.

Table 3.9: Evaluation of the mood label propagation with the initially percentage of
annotated songs.

Initial annotation P@1 Correctly annotated after prop.

70% 0.60 88%
50% 0.44 2%
30% 0.50 65%

As the content—based approach may not consider important aspects that can
infer the mood, all these performances should be improved by using dedicated
descriptors and meta-data, like information about the title, the style or the
lyrics.

3.3.3. Discussion

Our objective was to test how the content—based similarity can propagate la-
bels. For styles, we have shown that with a 40% annotated collection, we
can reach a 78% (40%+38%) annotated collection with a recall greater than
0.4, only using content—based similarity. In the case of moods, with a 30%
annotated collection we can automatically propagate up to 65% (30% +35%).
These results are quite encouraging as content—based similarity can propagate
styles and moods in a surprisingly effective manner. Of course there are some
limitations as the example of the “mysterious” label, the concept has to be
clearly encoded in the music for the content—based propagation to work. For
the moods we will try to experiment with a larger database, different tax-
onomies and more concepts. With our current mood results it may not be
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possible to generalize but it shows the potential of the technique. In general,
to enhance the performance of such an automatic annotation system we would
use a hybrid approach combining content—based, user feedback and social net-
works informations. But as shown by the satisfying results, our propagation
system based on content—based similarity would already ease a lot the anno-
tation process of huge music collections.

3.4. Experiment 2: Freesound.org dataset

3.4.1. Introduction

Freesound.org is a collaborative sound database where people from different
disciplines share recorded sounds and samples under the Creative Commons
license, since 2005. The initial goal was to giving support to sound researchers,
who often have trouble finding large sound databases to test their algorithms.
After four years since its inception, Freesound.org serves more than 23,000
unique visits per day. Also, there is an engaged community—with almost a
million registered users—accessing more than 66,000 uploaded sounds.

Yet, only few dozens of users uploaded hundreds of sounds, whilst the rest
uploaded just a few. In fact, 80% of the users uploaded less than 20 sounds,
and only 8 users uploaded more than one thousand sounds each. It is worth
noting that these few users can highly influence the overall sound annotation
process.

Tag behavior

In this section we provide some insights about the tag behavior and user ac-
tivity in the Freesound.org community. We are interested in analyzing how
users tag sounds assets, as well as the concepts used when tagging. The data,
collected during March 2009, consists of around 66,000 sounds annotated with
18,500 different tags

Figure 3.3 shows the number of tags used to annotate the audio samples.
The x-axis represent the number of tags used per sound. We can see that
most of the sounds are annotated using 3-5 tags. Also, around 7,500 sounds
are insufficiently annotated using only 1 or 2 tags. These sounds represent
more than 10% of the whole collection. It would be desirable, then, to—
automatically—recommend relevant tags to these scarcely annotated sounds,
enhancing their descriptions. This is the main goal of the experiments pre-
sented in Section 3.4.3.

Interestingly enough, in (Cano, 2007), the author analyzed a sound effects
database, which was annotated by only one expert. A similar histogram dis-
tribution to the one presented in Figure 3.3 was obtained. Specifically, most
of the sounds were annotated by the expert using 4 or 5 tags, as it is our
case. This could be due to human memory constraints when assigning words
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Figure 3.3: A linear—log plot depicting the number of tags per sound. Most of the
sounds are annotated using 3-5 tags, and only a few sounds are annotated with more
than 40 tags.

to sounds or to any object, in order to describe them (Miller, 1956). Based
on Figure 3.3, we classify the sounds in three different categories, according to
the number of tags used. Table 3.10 shows the data for each class.

Table 3.10: Sound-tag classes and the number of sounds in each category.

Tags per sound Sounds

Class I 1-2 7,481
Class 11 3-8 42,757
Class III > 8 7,148

Tag frequency distribution is presented in Figure 3.4. The x-axis refers to the
18,500 tags used, ranked by descending frequency. On the one hand, 44% of
the tags were applied only once. This reflects the subjectivity of the tag pro-
cess. Thus, retrieving these sounds in the heavy tail area is nearly impossible
using only tag—based search (to overcome this problem, Freesound.org offers a
content—based audio similarity search to retrieve similar sound samples). On
the other hand, just 27 tags were used to annotate almost the 70% of the whole

collection. The best fit of the tag distribution is obtained with a log—normal

_n@-p?
function, %e 202 | with parameters mean of log u = 1.15, and standard

deviation of log, o = 1.46 (Clauset et al., 2007).
The top—5 most frequent tags are presented in Table 3.11, and it gives an idea
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Figure 3.4: A log—log plot showing the tag distribution in Freesound.org. The curve
follows a log—normal distribution, with mean of log ;¢ = 1.15, and standard deviation
of log, o = 1.46.

about the nature of the sounds available in the Freesound.org collection. Field—
recording is the most frequent tag used to describe 6,787 different sounds. All
these frequent tags are very informative when describing the sounds, in contrast
to the photo domain in flickr.com, were popular tags are considered too generic
to be “useful” (Sigurbjornsson & van Zwol, 2008).

Table 3.11: Top-5 most frequent tags from Figure 3.4.

Rank Tag Frequency
1 field—recording 6,787
2 noise 5,650
3 loop 5,487
4 electronic 4,329
5 synth 4,307

Tag categorization

In order to understand the vocabulary that the Freesound.org community uses
when tagging sounds, we mapped the 18,500 different tags to broad categories
(hypernyms) in the Wordnet!? semantic lexicon. In some cases, a given tag

Onttp://wordnet.princeton.edu/
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matches multiple entries, so we bound the tag (noun or verb) to the highest
ranked category. The selected Wordnet categories are: (i) artifact or object,
(7i) organism, being, (7ii) action or event, (iv) location, and (v) attribute or
relation. Yet, 20.3% of the tags remain unclassified.

Most of the tags (38%) are related with objects (e.g., seatbelt, printer, missile,
guitar, snare, etc.), or about the qualities and attributes of the objects (30%);
such as state attributes (analog, glitch, scratch), or magnitude relation charac-
teristics (bpm). Then, some tags (19%) are classified as an action (hiss, laugh,
glissando, scream, etc.), whilst 11% are related with organisms (cat, brass band,
etc.). Finally, only a few tags (2%) were bound to locations (e.g., iraq, viet-
nam, us, san francisco, avenue, pub, etc.). Therefore, we conclude that the
tags are mostly used to describe the objects that produce the sound, and the
characteristics of the sound. In this case, the wisdom of crowds concords with
the studies of (Schaeffer, 1966) and (Gaver, 1993). The former study focused
on the attributes of the sound itself without referencing the source causing it
(e.g pitchiness, brightness), while the latter introduced a taxonomy of sounds,
on the assertion that they are produced by means of interaction of materials.

3.4.2. Dataset

The sounds selected for the experiments were a subset of the Class I (see
Table 3.10). We selected those sounds whose tags’ frequency was very low (i.e.
rare tags, in the ranking of ~ 10* in Figure 3.4). In fact, all the sounds which
were annotated with one tag whose frequency was equal to 1 were selected.
Also, for the sounds annotated with 2 tags, we selected those which had at
least one tag with frequency 1. The test dataset for the experiments consists of
260 sounds. The goal here is to automatically extend the annotation of these
sounds, insufficiently annotated with one or two very rare tags. Table 3.12
presents additional information about this test dataset.

Table 3.12: Additional information about the Freesound.org test dataset, gathered
from www. freesound. org during March, 2009.

#Tracks #Tags Tags/Track Top Tags Bottom Tags

260 399 p#=176  Drum (17) Chords (1)
0 =043  Heavy (5) Rain2 (1)
Synth (5)  Wash-hand (1)
Wind (4)  Time (1)
Water (3)  Clapsticks (1)
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3.4.3. Experimental results

Our goal is to evaluate the quality of the recommended tags, for some specific
sounds available in Freesound.org. By means of content—based audio similarity,
our algorithm selects a set of candidate tags for a given sound (autotagging
process). Then, the evaluation process is based on human assessment. Three
subjects validated each candidate tag for all the sounds in the test dataset.
We used a nearest neighbor classifier (k-NN, & = 10) to select the tags from the
most similar sounds of a given sound. The choice of a memory—based nearest
neighbor classifier avoids the design and training of every possible tag. Another
advantage of using an NN classifier is that it does not need to be redesigned
nor trained whenever a new class of sounds is added to the system. The NN
classifier needs a database of labeled instances and a similarity distance to
compare them. An unknown sample will borrow the metadata associated with
the most similar registered sample.

Procedure

Our technique for calculating the candidate tags consists on finding the 10-th
most similar sounds from the Freesound.org database, for a given seed sound of
the test dataset. That is, given a seed sound, we get the tags from the similar
sounds. A tag is proposed as a candidate if it appears among the neighbors
over a specific threshold. For example, a threshold of 0.3, means that a tag
is selected as candidate when it appears at least in 3 sounds of the 10 nearest
neighbors. This way we select the set of candidate tags for each sound in the
test dataset.

The experiments have been computed using two thresholds: 0.3 and 0.4. When
using a threshold of 0.3 the number of candidate tags is higher than for 0.4,
but also there are more “noisy” or potentially irrelevant tags, since it is using a
less constrained approach. Afterwards, all the candidate tags will be evaluated
by human assessment. The differences between both thresholds is presented in
Section 3.4.3.

Evaluation

In order to validate the candidate tags for the test sounds, we use human
assessment. The aim is to evaluate the perceived quality of the candidate tags.
It is worth noting that neither Precision nor Recall measures are applicable
as the test sound contains only two or less tags, and these are very rare in
the vocabulary. We performed a listening experiment where the subjects were
asked to listen to the sounds, and decide whether they agreed or not with
the candidate tags. For each candidate tag, they had to select one of these
options: Agree (recommend candidate tag), Disagree (do not recommend), or
Don’t know. Each sound was rated by three different subjects.
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Similar to (Turnbull et al., 2007a), to evaluate the results we group human
responses for each sound s, and score them in order to compact them into a
single vector per sound. The length of the vector is the number of candidate
tags of s. Each value of the vector, w,;,, contains the weight of the subjects’
scores for a candidate tag ¢; in sound s. If a subject agrees with the candidate
tag, the score is +1, —1 if disagrees, and 0 if she does not know. The formula
for calculating the weight of the candidate tag in s is:

#(PositiveVotes) — #(NegativeV otes)
#Subjects

A candidate tag is recommended to the original sound if wy,, is greater than
zero, otherwise, the tag is rejected (either because it is a bad recommendation,
or the subjects cannot judge the quality of the tag). For example, given a
candidate tag t; for s, if the three subjects scored, respectively, +1, —1, +1
(two of them agree, and one disagree), the final weight is wg;, = 1/3. Since
this value is greater than zero, ¢; is considered a good tag to be recommended.
Furthermore, we use wg;, to compute the confidence agreement among the
subjects. First, we consider all the sounds where the system proposed j candi-
date tags, S;. We sum, for each sound s € S}, the weights of all the candidate
tags t; whose values were greater than zero. Then, we divide this value with
the total score that the candidate tags would had if all the subjects would
agree. The formula for calculating the agreement of S; sounds, A;, is:

(3.8)

Ws,ti ==

ZSESJ' [wsyti > O]
Aj = :
#Subjects - Zsesj length (3)}

Similarly, to compute the agreement of the bad candidate tags, we use the
weights of candidate tags whose values were lesser than zero (wg, < 0), in the
numerator of the Equation 3.9. Finally, to get the total agreement for all the
sounds in the test set, Asyq1, We use the weighted mean of all A;, according to
the number of sounds in A;.

(3.9)

Results

Perceived quality of the recommended tags. Using 10-NN and the
content—based audio similarity, and setting a threshold of 0.3, the system pro-
posed a total of 781 candidate tags, distributed among the 260 sounds of the
test dataset. Besides that, setting a threshold of 0.4 the system proposes 358
candidate tags, which represents almost the half compared with a threshold of
0.3.

Table 3.13 shows the human assessment results. As expected, a slightly higher
percentage of candidate tags were recommended with a threshold of 0.4 (66.23%).
Yet, using a threshold of 0.3, more than half of the candidate tags (56.6%) were
finally recommended to the original sounds, with an agreement confidence of
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Table 3.13: Percentage of recommended tags, with confidence agreement among the
subjects. The table shows the results using thresholds 0.3 and 0.4 (in parenthesis, it
is shown the total number of candidate tags).

Threshold Recommend tag % Atotal

Yes 56.60%  0.74

0.3 (781) No 31.59%  0.62
Don’t know 11.41% —

Yes 66.23%  0.78

0.4 (358) No 23.11%  0.58
Don’t know 10.66% —

0.74. This human agreement is sufficiently high to rely on the perceived qual-
ity of the recommended tags. The rest of the candidate tags (43.4%) were not
recommended, either because the tags recommended were not appropriated
(31.59%), or the tags were not sufficiently informative (11.41%). Even though
with a threshold of 0.3 we get less percentage of recommended tags, the abso-
lute number of candidate tags is more than twice the ones with a threshold of
0.4. Therefore, we can consider a threshold of 0.3 a good choice for this task.

Recommended tags per class. On the one hand, using a threshold of 0.4
we are able to enhance the annotation of half of the sounds (128 sounds out
of 260). On the other hand, with a threshold of 0.3, we have enhanced the
annotation of 200 sounds, which represent the 77% of the sounds in the test
dataset used. The rest of the sounds (60) from the test set did not get any
plausible tags to extend its current annotation.

Table 3.14 shows the results using a threshold of 0.3, and it classifies the 200
autotagged sounds according to the classes defined in Table 3.10. Originally,
all the test sounds belonged to Class I. We can observe now the number of
sounds per class, after extending the annotation of these 200 sounds. Note
that most of the sounds have 3 or more tags (Class II), and some even have
more than 8 tags (Class III). However, there are 20 sounds still belonging to
Class I. This happens because before the experiment they only had one tag,
and now they have another one, the one recommended.

The results obtained so far look promising; using a simple classifier we were
able to automatically extend sound annotations that were difficult to retrieve.
Furthermore, due to the classifier method used (k—NN), there is a strong corre-
lation among the more frequently proposed tags, and their frequency of usage
(rank position in Figure 3.4). The ten most proposed tags are also in the
top—15 ranking of frequency use. Although our approach is prone to popular
tags, once the sounds are autotagged it allows the users to get a higher recall
of those scarcely annotated sounds when doing a keyword—based search.
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Table 3.14: Number of sounds in each category, after automatically extending the
annotations of 200 sounds from the test dataset.

Tags per sound Sounds

Class I 1-2 20
Class 11 3-8 171
Class III > 8 9

3.4.4. Conclusions

In this section we presented an analysis of the Freesound.org collaborative
database, where the users share and browse sounds by means of tags, and
content—based audio similarity search. First we studied how users annotate
the sounds in the database, and detected some well-known problems in collab-
orative tagging, such as polysemy, synonymy, and the scarcity of the existing
annotations.

Regarding the experiments, we selected a subset of the sounds that are rarely
tagged, and proposed a content—based audio similarity to automatically extend
these annotations (autotagging). Since the sounds in the test set contained only
one or two rare tags, neither precision nor recall were applicable, so we used
human assessment to evaluate the results. The reported results show that 77%
of the test collection were enhanced using the recommended tags, with a high
agreement among the subjects.

3.5. Experiment 3: Statistical testing on the
CAL500 dataset

The purpose of this third experiment is two fold. First, we want to investigate
how different parameters (as defined in Section 3.2.4) can affect the perfor-
mance of our algorithm. Moreover, we analyze if the impact of the different
parameters is statistically significant. Second, after selecting a parameter con-
figuration from the first step, we evaluate our algorithm against a considerable
number of state of the art approaches.

3.5.1. Dataset

The CAL500 dataset (Turnbull et al., 2007a), is a music collection consisting of
500 songs from 500 artists, with a vocabulary of 174 tags, grouped in 6 different
categories. The categories are emotion, musical genre, instrumentation, solo
instrument, usage and vocal characteristics. Table 3.15 shows some additional
information about this dataset.

The collection is distributed with the basic metadata (artists and tracks names),
the annotation matrix, and a set of 10,000 39-dimensional feature vectors
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Table 3.15: Additional information about the CAL500 Dataset.

#Tracks #Tags Cat./Track Tags/Track Top Tags Bottom Tags
500 174 ©=>5.85 n=26.04 Recorded (438) Monotone (6)
oc=113 oc=>574 Male Lead Vocals  Swing (5)
(335)
Texture Electric Bebop (5)
(324)

Not Angry / Ag- Soul (4)

gressive (314)

Not Bizarre / With the family
Weird (291) (4)

per music piece, consisting in 13 MFCC coefficients, 13-Delta MFCC coeffi-
cients and 13 Delta—Delta MFCC coefficients. The MFFC coefficients are ex-
tracted from the audio file with a sliding, half-overlapping short—time window
(12 msec), together with their corresponding deltas, making a total of about
10,000 39-dimensional vectors per minute of audio. Nevertheless, Turnbull
et al. (2007a) found that randomly sub-sampling the delta cepstrum feature
vectors, resulting in 10,000 feature vector representation per audio file, reduces
the computation time for parameter estimation without sacrificing much over-
all performance. The audio collection, on the other hand, is not distributed,
due to copyright reasons. Thus, we matched the CAL500 dataset against our
own music collection.

3.5.2. Parameter selection

The aim of this experiment is to investigate how different parameters can
affect the performance of our algorithm, following the idea of Aucouturier &
Pachet (2004) for music tag classification. We create different instances of
our algorithm, by tuning the parameters mentioned in Section 3.2.4. A 10—
fold cross-validation is performed to evaluate the algorithm in both annotation
and retrieval tasks (please refer to Section 2.4.1 for more details regarding the
evaluation measures). We compare the mean F-measure for annotation, and
Mean Average Precision for retrieval. We also check whether the impact of
any of the different parameters are statistically significant (Flexer, 2006).

Table 3.16 presents the different values we use in our experiment. The vari-
ables to study are the amount of variance that the dimension-reduced feature
representation covers from the original data, the use of high level features, the
distance metric, and the number of nearest neighbors (the k£ in k-NN). To
reduce the number of combinations, we sample the range of nearest neighbors
to the subset (1,2,5,10,15,18). This gives (5x2x2x6)+(5x1x1x6) =150
different combinations. It should be noted that choosing to use high level fea-
tures does not affect the Kullback-Leibler distance, since it is computed over
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Table 3.16: List of the different parameter values used for tuning our autotagging
algorithm.

Parameter Values

PCA covered variance 75%, 80%, 85%, 90%, 100%

High level features Yes, No

Distance metric Euclidean, Kullback-Leibler,

Linear Combination
Number of nearest neighbors (1,2, 3, ...,20)

the MFCC covariance matrix only.

Annotation

The hypothesis of running different instances of the algorithm by tuning the 4
available parameters!! is manifold.

1.

We want to check if reducing the covered variance of the original feature
representation with Principal Component Analysis from 100% to 75% —
which decreases the dimension significantly — affects the performance of
the algorithm.

Different results for F—-measure should be achieved by using a Euclidean
distance over the reduced space, or the Kullback-Leibler over the MFCC
covariance matrix only, or a Linear Combination of both, since we are
changing both the data representation and the way we measure the sim-
ilarity distance.

High level features, which are probability estimations of high level con-
cepts such as genres or moods, when used, should have a positive effect
on the evaluation results. First, these features are capturing, by defi-
nition, more human readable concepts. For the same reason, it is more
likely that tag correlation might be found with these features while learn-
ing. For example, if a song has, a priori, a high probability of having
genre classical as an audio high level feature, then it is unlikely that this
song would be annotated with instrument electric guitar

Different number of similar songs, that is, different values for k, should
lead to a higher (or lower) precision/recall values, thus affecting the F—
measure 2.

' As mentioned earlier in Section 3.2.4 the voting threshold parameter is set to 0.2 from
empirical evaluations.

121t is worth recalling that F-measure is a weighted harmonic mean, and not an arithmetic
mean. Hence it will depend on the goodness of both precision and recall.
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We chose the mean per—song F-measure — averaged over a 10—fold cross—
validation basis — as a measure to evaluate the performance of the different
classifiers. Since the evaluation results are specific for each song, we considered
the song as a factor too, and thus we tested and validated our hypothesis by
performing a multi-factor within—subjects ANOVA, also known as repeated
measures ANOVA (Hinkelmann et al., 2005).

The results indicate that there was no statistically significant difference among
the different values for the PCA covered variance parameter (p = 0.172 for
Mauchly’s spherificity and p = 0.207 for lower-bound). This means that there
is no statistical evidence to support the hypothesis that reducing the amount
of covered variance would significantly affect the performance. Nevertheless,
since there was no significant change in F—-measure while decreasing the amount
of covered variance, we choose the parameter value of 75%, which compresses
the feature vector dimensions considerably ( ~ 29-30 dimensions from the
original 611), and thus reducing the complexity of the algorithm. Interest-
ingly, Seyerlehner et al. (2010) show, via experimental results, that a feature
set capturing about 70%-80% of the total variance achieves optimal results
in terms of tag classification. On the other hand, significant differences were
found (p < 0.001) with the rest of the parameters, namely high level features,
distance metrics and number of nearest neighbors (k). Interestingly, the multi-
factor ANOVA allows us to consider the combination of factors as well. In this
case, the combination of high level features and distance metrics was also sig-
nificant (p < 0.001). Tukey’s test is then applied as a post—hoc test to evaluate
the differences among the different values for each parameter. Figure 3.5 de-
picts the box—and—whisker plot for the parameters. We found that using high
level features combined with Euclidean distance increases the F-measure of
the autotagging algorithm. This combination outperforms the results using
the Kullback-Leibler divergence over the MFCC covariance matrix, which can
add more support to the assertion that MFCC coefficients are not a sufficient
representation of music signals for tasks such as music tag classification (Au-
couturier & Pachet, 2004).

Surprisingly, it is found that by using 18 nearest neighbors, which is a rela-
tively high number, the global (per-song) performance of the algorithm im-
proves significantly. This may be due to multiple reasons. First, it depends on
the distribution of the audio feature vectors in the d-dimensional space, the
tag frequency, and the number of tags per song. Second, having 18 nearest
neighbors will make the voting threshold of 0.2 to discard tags that are used in
less than 0.2 x 18 = 3.6 =~ 4 songs. Hence, although increasing the probability
of having more tags to choose from (recall), the voting threshold also increases,
which may have a positive effect on the precision.

It is worth mentioning that a value of k¥ = 18 is not aligned with the results
previously achieved in Sections 3.3 and 3.4, where the best results were ob-
tained with £ = 10 (in this dataset, the marginal f-measure mean difference
between k£ = 18 and k& = 10 is 0.012). These findings might suggest that the
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Figure 3.5: Box and whisker plot of the parameter selection for the music annotation
task, using the CAL500 dataset.

results achieved with this last experiment are biased to the CAL500 collec-
tion. Nevertheless, we will use the parameter configuration k = 18 for further
experiments, where different music collections will be used to assess its validity.
Last but not least, our decision to use within—subject tests instead of between—
subject test was also supported by Figure 3.5, where it can be observed the
large variability of the subjects (in this case, songs).

Retrieval

In the music retrieval task, we are interested in evaluating how well our al-
gorithm returns a relevant list of songs, given a query tag. As in the case
of music annotation, there are 4 parameters that can be tuned to modify the
performance of the system. The parameters values are chosen as described in
Table 3.16.

To compare the performance of the different configurations, Mean Average
Precision (MAP) is used. The voting threshold parameter is disabled in this
scenario, since we are ranking all the tags in the vocabulary (see Section 3.2.3
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Figure 3.6: Box and whisker plot of the parameter selection for the music retrieval
task, using the CAL500 dataset.

After running the different configurations and performing a multi-factor within—
subjects ANOVA, we obtained the same results as in the case of music anno-
tation. That is, changing the PCA covered variance did not significantly affect
the performance (p = 0.244 for Mauchly’s spherificity and for lower-bound),
whilst the other 3 parameters presented a statistical significance (p < 0.001).
Again, the combination of high level features and distance metrics was also sig-
nificant (p < 0.001). The difference is even bigger in the high level and metric
parameters. As for the number of nearest neighbors, while still agreeing with
the results found in the music annotation evaluation —that is to say, a higher
number of similar songs produces statistically better results—, the difference
is now lower. This can be due to the fact of disabling the voting threshold
parameter, which had a positive effect in the annotation precision.

Based on the statistical test results in both annotation and retrieval tasks, we
select the parameter values that give the best results. Henceforth, if it is not
explicitly defined, our parameter configuration for the following experiments
is as presented in Table 3.17.
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Table 3.17: Final parameter values, after performing statistical tests to check which
is the best configuration for our algorithm.

Parameter Value
PCA covered variance 75%

Use high level audio features Yes
Distance metric Euclidean

Number of nearest neighbors 18-NN

3.5.3. Experimental results

In this section, the autotagging algorithm for music annotation and retrieval is
evaluated, using the CAL500 dataset. Additionally, the results are compared
with other state of the art autotagging algorithms which used the same dataset
for evaluation (Bertin-Mahieux et al., 2008; Coviello et al., 2011; Hoffman et al.,
2009; Turnbull et al., 2008Db).

The audio features extracted are illustrated in Table 3.1. Then, a 10-fold cross
validation is performed over the whole dataset. That is, each fold iteration
consists 450 songs for training and 50 songs for testing.

Annotation

In this experiment we focus on the annotation task. That is, we want to test
the ability of the autotagging algorithm to annotate songs with few relevant
words. Table 3.18 presents quantitative results for music annotation. The
results are means and standard errors computed from 10—fold cross validation.
Standard IR measures Precision, Recall and F-measure are used for evalu-
ation. We annotate songs with 10 and 26 tags. 26 corresponds to the average
annotation in the Ground Truth dataset (see Table 3.15), while 10 is taken
from Turnbull et al. (2008b), in order to select which algorithm instances will
be used for comparison.

The “Random” model is taken from Turnbull et al. (2008b). This model sam-
ples tags, without replacement, from a multinomial distribution of the prior
probability of tags, which is estimated using the tag’s frequency. Whilst the
standard IR measures such as mean per—song Precision, Recall and F-measure
indicate how well the systems proposes tags to new, unseen songs, tag coverage
informs us whether the autotagging algorithm is able to predict all the tags in
the vocabulary.

It is interesting to note that the system having the best overall per—song F—
measure, 18-NN, has the poorest tag coverage. In order to tackle this issue,
results were also generated for a 2-NN classifier. Our rationale is that disabling
the voting threshold and reducing the number of nearest neighbors should
increase the number of predicted tags, without affecting the global (per—song)



3.5. EXPERIMENT 3: STATISTICAL TESTING ON THE CAL500
DATASET 67

Table 3.18: Music annotation results for the CAL500 dataset, computed from 10—
fold cross validation. A = Annotation length. Tag coverage measures how many tags,
from the total 174 of the dataset vocabulary, the system is able to predict. We test
our k-NN algorithm with the configuration given in Table 3.17, which uses k = 18,
and also with £ = 2. CBDC refers to the class—based distance classifier mentioned
in Section 3.2.3. EUC = Euclidean, COS = cosine, and MAHAL = Mahalanobis
distance.

Algorithm A Tag coverage Precision Recall F-Measure
Random 10 174 0.144  (0.005) 0.059  (0.002) 0.079
26 174 0.149  (0.003) 0.149  (0.003) 0.149
18-NN (EUC) 10 66 0.690 (0.008) 0.271 (0.002) 0.390
26 103 0.529 (0.006) 0.533 (0.005) 0.531
2-NN (EUC) 10 122 0.551  (0.007) 0.215  (0.003) 0.309
26 170 0.432  (0.006) 0.433  (0.005) 0.433
CBDC (EUC) 10 174 0.287  (0.008) 0.109  (0.003) 0.158
26 174 0.301  (0.006) 0.296  (0.005) 0.298
CBDC (COS) 10 173 0.275  (0.008) 0.104  (0.003) 0.151
26 174 0.298  (0.006) 0.294  (0.005) 0.296
CBDC (W.EUC) 10 163 0.365  (0.009) 0.140  (0.004) 0.202
26 167 0.383  (0.006) 0.384  (0.005) 0.383
CBDC (MAHAL.) 10 147 0.475  (0.008) 0.185  (0.003) 0.266
26 159 0.425  (0.006) 0.428  (0.005) 0.426

evaluation substantially. Indeed, results show a significant increase in the
tag coverage, combined with a slight decrease in per—song performance, when
compared to the proposed class—based distance classifier (CBDC). A deeper
inspection of the individual results in Figure 3.10, shows that the 18-NN (and
to a lesser extent 2-NN) follows the original Ground Truth tag distribution.
That is, more frequent tags are more prone to be proposed than less frequent
tags. In fact, many of the less popular tags are not proposed at all, hence the
lower tag coverage.

The proposed class—based distance classifier (CBDC) is able to predict all the
tags in the vocabulary. CBDC can be regarded as a tag “democratizer,” that is,
it treats all the tags similarly, regardless of their popularity, once the centroids
are computed!®. The per-song measures for the CBDC model, specially for
the one using a plain Euclidean distance, are considerably lower than the other
approaches, probably due to the fact that very popular tags are not predicted
as often as they were used in the original Ground Truth, a fact that can be
observed in Figure 3.10.

In the following experiments, we comparatively evaluate the music annota-
tion of our algorithms against state—of—the—art approaches. Further references
to the CBDC approach will refer to the class—based distance classifier with

131t should be noted, however, that tag popularity does have an impact on the centroid
computation.
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Euclidean distance.

Comparative evaluation — Entire vocabulary. We compare the perfor-
mance of our algorithm against other state of the art approaches which also
used the CAL500 dataset. These approaches include the Mixture Hierarchies
Estimation of Gaussian Mixture Models proposed by Turnbull et al. (2008b),
the Code Bernoulli Average method presented by Hoffman et al. (2009), and the
FilterBoost (an adaptation of AdaBoost) proposed by Bertin-Mahieux et al.
(2008). Please refer to Section 2.5 for more details on these algorithms. An
overview of the audio features used by each algorithm is presented in Table 3.19.
It should be noted though, that we use the results as they were published by
their corresponding authors in (Bertin-Mahieux et al., 2008; Hoffman et al.,
2009; Turnbull et al., 2008b). We did not re-run nor re-implement the algo-
rithms.

Table 3.19: Comparative description of the acoustic features used by each algorithm
in the CAL500 dataset evaluation.

Low Level
Algorithm Spectral ~ Timbre Tonal Rhythm  High Level Autocorrelation
GMM Yes
CBA Yes
BOOST Yes Yes Yes
DTM Yes Yes
k-NN / CBDC Yes Yes Yes Yes Yes

For the comparison, the evaluation measures proposed in Turnbull et al. (2008b)
are adopted. These measures are per—word Precision, Recall and F—measure.
Per—word Precision and Recall are defined as:
- [Wel [Wel

Precision = Wil Recall = Wl (3.10)
where |Wp| is the number of tracks that are annotated with word w in the
Ground Truth, |W 4] is the number of tracks which the system automatically
annotates with word w, and |[W¢| is the length of the intersection between
|[Wa4| and |Wpg/|, that is, the number of tracks for which the system correctly
assigns word w.
Following the evaluation of Turnbull et al. (2008b), we annotate each track with
ten words. Since the average number of tags per track is 26, the Upperbound
for per—word Precision and Recall is less than 1. Table 3.20 presents the over-
all per—word results using all words in the vocabulary, and Table 3.21 depicts
the results for each tag category. The “Random” and “Upperbound” models’
results are taken from Turnbull et al. (2008b). The “Random” model samples
tags, without replacement, from a multinomial distribution of the prior prob-
ability of tags, which is estimated using the tag’s frequency The Upperbound
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model, on the other hand, uses the Ground Truth dataset for annotation. If
the annotation length (number of tags per song) is fixed to some value N, we
select random N tags from the Ground Truth. If the song has less than N
tags, we add random tags. Since the purpose of this evaluation, as stated by
Turnbull, is to verify if the systems are able to predict as many words from the
vocabulary, and given the limitation of automatically annotating songs with
only 10 tags, we decided to use the 2-NN and CBDC-EUC models for compari-
son. Additionally, we report results for the Kullback-Leibler distance based on
a single Gaussian MFCC modeling. The overall results in Table 3.20 show that
the CBDC algorithm outperforms the other models in recall, supporting our
claim in Section 3.3, where we discussed the relevance of recall for an autotag-
ger. The consequence of such relative good recall is also a higher F—measure
for our proposed approach. The results also show that when kNN uses a
Euclidean distance over PCA components, it improves the results obtained by
a Kullback-Leibler distance, but just slightly, as we could also observe in the
parameter estimation step in Section 3.5.2.

Table 3.20: Overall results of the music annotation task using the CAL500 dataset.
A = Annotation length, |V| = Vocabulary size (Turnbull et al., 2008b). GMM-
MH refers to the Mixture Hierarchy Gaussian Mixture Model algorithm proposed by
Turnbull et al. (2008b). CBA is the Code Bernoulli Average method proposed by
Hoffman et al. (2009). Boost is the FilterBoost algorithm of Bertin-Mahieux et al.
(2008). We compare against the FilterBoost using MFCC deltas as acoustic features,
and the one using more features (afeats exp). Random and UpperBound are taken
from Turnbull et al. (2008b). Best results are indicated in bold.

Category A/ V| Algorithm Precision Recall F-Measure
Random 0.144 (0.004) 0.064  (0.002) 0.089
Upper-Bound 0.712 (0.007)  0.375 (0.006) 0.491
GMM-MH 0.265 (0.007) 0.158  (0.006) 0.198
Allwords 10 /174  Boost (MFCC)  0.281  (0.066) 0.131  (0.019) 0.179
Boost (afeats exp.) 0.312 (0.060) 0.153  (0.015) 0.205
CBA 0.286  (0.005) 0.162  (0.004) 0.207

" kNN (MFCC) = = 0.205 (0.008)  0.090 ~ (0.004) ~ ~ 0.125

k-NN (pca) 0.231  (0.008) 0.101  (0.004) 0.141
CBDC 0.277  (0.008) 0.192 (0.007)  0.227

Regarding the categories in Table 3.21, our CBDC model obtained the best
per—word F—measure in all but one category, instrument solo, where the 2—
NN approach performed better. From the recall values for each category, we
observe that our approaches do not perform so well in the instrument solo
and vocal categories. The timbre information, which has shown to be very
informative for instrument recognition (Agostini et al., 2003; Herrera-Boyer
et al., 2003), is reduced in our case to using the mean of the first 13 MFCC
coefficients for the whole audio excerpt, thus losing information about the
dynamics.



70

CHAPTER 3. AUTOMATIC ANNOTATION

OF MUSIC FROM AUDIO

Table 3.21: Results of the music annotation task, divided by categories, using the
CAL500 dataset. A = Annotation length, |V| = Vocabulary size (Turnbull et al.,
2008b). GMM-MH refers to the Mixture Hierarchy Gaussian Mixture Model algo-
rithm proposed by Turnbull et al. (2008b). Boost is the FilterBoost algorithm of
Bertin-Mahieux et al. (2008). We compare against the FilterBoost using MFCC deltas
as acoustic features, and the one using more features (afeats exp). Random and Up-
perBound are taken from Turnbull et al. (2008b).. The best results are indicated in

bold.
Category A/ V| Algorithm Precision Recall F-Measure
Random 0.055 (0.012) 0.113 (0.004) 0.160
Upper-Bound 0.957  (0.005) 0.396  (0.010) 0.560
GMM-MH 0.424 (0.008) 0.195 (0.004) 0.267
Emotion 4 /36  Boost (MFCC)  0.444  (0.025) 0.192  (0.016) 0.268
Boost (afeats exp.) 0.449 (0.026) 0.176  (0.011) 0.253
" kNN (MFCC) =~ 0.346  (0.017) ~ 0.146 = (0.010) =~ ~ 0.205
k-NN (pca) 0.397 (0.018) 0.171  (0.010) 0.239
CBDC 0.448 (0.016) 0.231 (0.011) 0.305
Random 0.055 (0.005) 0.079 _ (0.008) 0.065
Upper-Bound 0.562  (0.026) 0.777  (0.018) 0.652
GMM-MH 0.171 (0.009) 0.242 (0.019) 0.200
Genre 2 /31  Boost (MFCC)  0.154 (0.024) 0.168  (0.021) 0.161
Boost (afeats exp.)  0.236  (0.047) 0.234  (0.016) 0.235
" kNN (MFCC) =~ 0.152  (0.016) 0.165 = (0.016) =~ ~ 0.158 ~ ~
k-NN (pca) 0170  (0.016) 0.189  (0.017) 0.179
CBDC 0.279 (0.020) 0.291 (0.022) 0.285
Random 0.141 (0.009) 0.195 (0.014) 0.164
Upper-Bound 0.601  (0.015) 0.868  (0.018) 0.710
Instrumen- GMM-MH 0259 (0.010) 0.381  (0.021) 0.308
tation 4/24  Boost (MFCC)  0.267 (0.047) 0.363  (0.021) 0.308
Boost (afeats exp.)  0.276  (0.044) 0.350  (0.033) 0.309
" kNN (MFCC) ~ ~ 0235  (0.017)  0.261 = (0.021) =~ 0.247
k-NN (pca) 0264 (0.018) 0289  (0.021) 0.276
CBDC 0.323 (0.017) 0.445 (0.022) 0.374
Random 0.031  (0.007) 0.155  (0.035) 0.052
Upper-Bound 0.197 (0.019) 0.760 (0.052) 0.313
Instrument 1/9 GMM-MH 0.060 (0.012) 0.261 (0.050) 0.098
Solo Boost (MFCC)  0.054  (0.002) 0.374  (0.035) 0.094
Boost (afeats exp.)  0.056  (0.001) 0.396 (0.017) 0.098
" k-NN (MFCC) =~ '0.045 (0.008)  0.141 = (0.029) =~ 0.069
k-NN (pca) 0.076  (0.020) 0217 (0.042)  0.113
CBDC 0.075 (0.020) 0.169  (0.038) 0.104
Random 0.073  (0.008) 0.154  (0.016) 0.099
Upper-Bound 0.363  (0.014) 0.814  (0.031) 0.502
GMM-MH 0122 (0.012) 0264 (0.027) 0.167
Usage 2/15 Boost (MFCC) 0.122  (0.011) 0.239  (0.028) 0.162
Boost (afeats exp.)  0.118  (0.007)  0.237  (0.015) 0.157
" k-NN (MFCC) =~ 0.107 ~ (0.013) ~ 0.211 = (0.026) ~ ~ 0.142 =~
k-NN (pca) 0120 (0.015) 0.231  (0.028) 0.158
CBDC 0.148 (0.014) 0.307 (0.028)  0.200
Random 0.062 (0.007) 0.153  (0.018) 0.088
Upper-Bound 0.321 (0.017) 0.788 (0.019) 0.456
GMM-MH 0.134  (0.005) 0.335 (0.021) 0.191
Vocal 2 /16  Boost (MFCC) 0116 (0.011) 0.252  (0.029) 0.159
Boost (afeats exp.)  0.108  (0.009) 0.228  (0.019) 0.147
" k-NN (MFCC) =~ 0.124  (0.017)  0.224 = (0.025) =~ ~ 0.160
k-NN (pca) 0.147  (0.017) 0254  (0.026)  0.186
CBDC 0.155 (0.016) 0.307 (0.025) 0.206
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A special emphasis should be given to the genre category, where our CBDC
model clearly outperforms the rest of the algorithms. The k~NN models show,
on the other hand, significantly lower performance than the CBDC model or
the GMM-MH model, since they are focusing on the more popular tags.

Comparative evaluation — Filtered vocabulary. A closer look at the
CAL500 dataset (see also Table 3.15) shows a considerable tag imbalance.
While a few tags are used more than 300 times, some others are used less than
10 times. Indeed, this is a common aspect when dealing with (social) tagging
(Lamere & Pampalk, 2008). Following Miotto et al. (2010), the tag vocabulary
is filtered so that only tags with at least 30 positive examples are used.

This process reduces the vocabulary to 97 tags: 11 musical genres, 14 instru-
ments, 25 acoustic qualities, 6 vocal characteristics, 35 emotions and 6 usages.
The overall results for music annotation are presented in Table 3.22. Our
approach is compared to the previously mentioned Mixture Hierarchies Esti-
mation of Gaussian Mixture Models proposed by Turnbull et al. (2008b), and
the FilterBoost algorithm introduced by Bertin-Mahieux et al. (2008). More-
over, other newly proposed autotagging models are also used. Content—-DTM
refers to the Dynamic Texture Mixture autotagger proposed by Coviello et al.
(2010), which models short audio fragments as the output of linear dynami-
cal systems. The context models, Context-DTM and Context-SVM (Coviello
et al., 2011), are two—stage algorithms that use the output of a content—based
autotagger as input feature vectors to model each tag in the vocabulary. These
feature vectors can be regarded as Semantic Multinomials (SMNs). The ra-
tionale behind two—stage algorithms is that they explicitly tackle the problem
of tag correlation. Finally, a combination of the Mixture Hierarchy GMM and
the Context—-DTM is also reported. The idea behind this combination, called
Decision Fusion (Coviello et al., 2011), suggests that each algorithm focuses
on different aspects of music. Combining such different algorithms would lead
to improved results. The evaluation, in this case, is performed with 5—fold
cross validation. As in the previous experiment, each track is annotated with
ten words, which is still less than the average Ground Truth annotation. This
issue imposes again the definition of an upper bound for per—word Precision
and Recall.

Results in Table 3.22 show once more that our CBDC model has relatively the
best recall, clearly outperforming the content autotaggers (except the DTM
model), though only slightly better than the context models. In order to have
a better understanding of the algorithms’ behavior, we compare the perfor-
mance of the models for the individual CAL500 tags'4. Figures 3.7 and 3.8
present the F—measure of each tag, organized in each corresponding category.
The categories are emotion, musical genre, instrumentation, usage and

14The Semantic Multinomials of the algorithms compared in this section were kindly
provided by Emanuele Coviello.
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Table 3.22: Results of the music annotation task, using a 5—fold cross validation
evaluation of the CAL500 dataset. A = Annotation length, |V| = Vocabulary size
(Turnbull et al., 2008b). The dataset is filtered by tag popularity (we consider tags
that are used at least 30 times). GMM-MH refers to the Mixture Hierarchy Gaussian
Mixture Model algorithm proposed by Turnbull et al. (2008b). Boost is the FilterBoost
algorithm of Bertin-Mahieux et al. (2008). Context DTM (Coviello et al., 2011) is a
contextual modeling of the Dynamic Texture Mixture autotagger proposed by Coviello
et al. (2010) Context Fusion is a combination of different autotaggers. In this case
we compare against the combination of GMM and DTM. Results are averaged from a
5-fold cross validation. Random and UpperBound are taken from Miotto et al. (2010).

A/ V) Algorithm Precision Recall F-Measure
Random 0.231 0.101 0.140
Upper-Bound 0.716 0.471 0.568
GMM-MH 0.374 0.205 0.264
10 / 97 Boost 0.334 0.144 0.201
Content DTM 0.446 0.217 0.292
Context SVM 0.343 0.223 0.270
Context DTM 0.461 0.236 0.312
Context Fusion (GMM, DTM) 0.484 0.230 0.311
S ¢BpC 0.426 ~ 0.244 0310

vocal characteristics. Moreover, tags within each category are sorted in
descending order, using our CBDC approach as a reference key to sort.

For the evaluation of the emotion category, we use the concepts of arousal
and valence, based on Rusell’s model of emotion (Russell, 1980). In psychol-
ogy studies (Csikszentmihalyi, 1997; Frijda, 1986), arousal refers to the state
of reacting to a certain stimuli. Valence, on the other hand, describes the
attractiveness or aversiveness of an event, object or situation.

Our system performs comparatively well for emotions that lay on the arousal
dimension —emotions such as angry, boring, calm, relax, exciting, etc.— whilst
not so well for tags in the valence dimension —specially for happy, sad and their
negative examples. These results confirm the findings of Laurier (2011); Yang
& Chen (2011) for the specific task of mood classification from audio, where
happy songs —which lay on the valence dimension— were the most difficult to
classify. Furthermore, Laurier (2011) shows that spectral (complexity, kurtosis,
flatness, skewness), tonal (mode) and temporal (onset, zero crossing rate) audio
features play an important role on capturing the essence of emotion in music.

As for the musical genre category, no significant difference was found among
the compared models. The tag filtering process has unfortunately removed 20
genres — out of 31 — from the evaluation. Empirical analysis of the Euclidean
distances between the genre tags’ centroids shows that tags alternative, classic
rock and rock are very close in the 29-dimensional reduced feature representa-
tion. A plot of the first 2 PCA components of the genre tag centroids used by
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Figure 3.7: Comparative evaluation of the emotion category, using per—tag F-—
measure.

the CBDC model is presented in Figure 3.9. Although not synonyms, these
terms share a similar semantic concept, so it makes sense that they are close
together. Confusing a rock song with an alternative rock one is less harmful
than confusing a rock song with an r&b one. Strict measures such as Precision
and Recall, unfortunately, cannot capture these subtle semantic correlations
between tags. Further reading of Figure 3.9 suggests the existence of 3 clusters
of genres: {(alternative, rock, classic rock), (r&b, pop), (folk, country, jazz)}.
A closer look at the contribution of all the features to the PCA components
(see Appendix B.1) suggests that high level features such as party, aggressive,
relaxed, fast/slow rhythm, or low level features such as Zero Crossing Rate are
most prominent in the first component, which covers 22% of all the variance in
the original feature representation. The latter feature, Zero Crossing Rate, can
be specially relevant for distinguishing distorted music such as metal. The sec-
ond PCA component, which covers 9% of variance, has strong loads of moods
(happy), cultural (western vs. non western), rhythm (fast/slow), timbre and
spectral information (energy). The X axis can probably be interpreted as tim-
bre information, from more acoustic to more electric music. Regarding the
contribution coefficients of these features in Appendix B.1, it is worth men-
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Figure 3.8: Music annotation. Comparative evaluation of the genre, instrument, usage and vocal categories, using per—tag F—measure.
Our approach, CBDC, is depicted using a star symbol.
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tioning that the negative coefficients can be easily interpreted for higher level
features, such as moods (party Vs. not party, not relaxed and aggressive Vs.
relaxed) or rhythm (fast Vs. slow). It is also interesting to see the positive
contribution of western music. Indeed, The CAL500 dataset consists of 500
songs from 500 western artists (Turnbull et al., 2008b).
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Figure 3.9: Plot of the first 2 PCA components of the CBDC model’s genre tag
centroids.

As for the usage category, our model outperforms the other algorithms in 4
out of 6 tags. The use of rhythm /temporal features and mood features such as
aggressive or party, probably have a positive effect on this category. Some of
these usage tags, such as going to sleep, party or studying, can be correlated to
the emotion category, specially in the arousal dimension of Rusell’s “circumflex
model of affect” (Russell, 1980). Music to use in a party generally suggest more
festive, exciting emotions, while music for going to sleep or studying tend to be
more relaxing. The tags cleaning the house, and driving did not obtain good
results. We believe that these tags are more subjective than the other usage
tags. People may have a diverse range of music preferences for playing music
while performing tasks such as driving or cleaning the house.

Finally, as regards to the vocal characteristics category, our model achieves
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comparatively good results for tags such as aggressive, strong and altered with
effects. The first two tags can be indirectly related to the arousal dimension
of emotion, but also to perceptual features, like loudness.

It is worth mentioning the surprisingly high F—measure obtained by the Fil-
terBoost algorithm (Bertin-Mahieux et al., 2008) for a set of tags where the
other models, including ours, failed completely. However, the FilterBoost fails
to predict many other tags that the rest of the models could. This may be due
to the nature of boosting algorithm, where the focus goes to the weak learners
with more misclassified instances.

On the analysis of per—song and per—tag evaluation measures — Fil-
tered vocabulary. An important aspect to analyze in this section is on the
use of different evaluation measures. Turnbull et al. (2008b) state that using
per—song Precision and Recall can lead to artificially good results if the algo-
rithm is only able to predict few popular tags to many songs, and ignoring
the rest. While this is a key aspect for annotation —it is more relevant for a
system to have as many detailed description of the music as possible— it is
not answering the problem formulation correctly. In other words, music anno-
tation refers to predicting the best classes for a given song. The element to be
evaluated, thus, is a song, not (only) a tag.

Table 3.23: Overall per—song and per—word results for music annotation, using the
filtered CAL500 dataset.

Per—song measures Per—word measures
Algorithm Tag coverage  Prec. Rec. F-meas. Prec. Rec. F-meas.
Random 82 0.486 0.210 0.293 0.231 0.101 0.140
Upper-Bound 97 0.990 0.443 0.612 0.716 0.471 0.568
GMM-MH 97 0.377 0.158 0.223 0.374 0.205 0.264
Boost (MFCC) 76 0.677 0.292 0.408 0.334 0.144 0.201
Content—-DTM 97 0.506 0.214 0.300 0.446  0.217 0.292
Context—-SVM 93 0.404 0.170 0.239 0.343 0.223 0.270
"7 2NN (pca) = 97"~ 0551 0236  0.331 ~ 0.376 ~ 0.158  0.222°

18-NN (pca) 61 0.684 0.296 0.413 0.299 0.147 0.197
CBDC 97 0.432 0.186 0.260 0.426  0.244 0.310

For this purpose, Table 3.23 presents per—song and per—word overall results for
the different algorithms!®, using the filtered vocabulary (i.e., 97 tags) of the
CAL500 dataset and a 5—fold cross validation. It is interesting to note how
many systems that perform well for per—-song measures do not do so well on
per—word measures, and, more interestingly, vice versa. The former case seems
reasonable, since autotaggers with good per—song performance (Boost, 18-NN)
tend to focus on the few popular tags and thus have low tag coverage. The
rest of the models (GMM-MH, DTM, SVM, CBDC) are able to predict most

15 the semantic multinomials of the Context-DTM were not available at the time of writing
this chapter.
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of the tags, yet not performing so well on per—song evaluation. Content—-DTM
model seems to perform relatively well on both evaluations. In our case, we
specially highlight the results of the 2-NN, which has a complete tag coverage,
with a good per—song performance, but not very good per—tag results.

Figure 3.10 gives an insight about how the evaluated autotaggers behave when
annotating songs with 10 tags. CAL500 represents the original Ground Truth
tag distribution, from more popular to less popular tags. The “Upperbound”
model uses the Ground truth for autotagging. Both “Random” and “Upper-
bound” were reproduced from the definition in Turnbull et al. (2008b).

500 T T
- CAL500

450 — GMM

—— BOOST (MFCC)
DTM

— S5VM
UpperBound

400

350
300}

250

Frequency

200

150

—— EUC, 18-NN
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Figure 3.10: Tag distribution of the different autotaggers using the filtered CAL500
dataset. The lower figure shows the distribution for our algorithms, while the upper
figure displays the distribution for the rest.

If we assume that the GT dataset is complete and consistent, then the perfect
model should perform well in both per—song and per—word evaluations. As
we can observe, our 2-NN approach follows a similar curve as the original
dataset, yet the per—word evaluation gets worse with the less popular tags.
Nevertheless, as Turnbull et al. (2008b) state, the CAL500 dataset suffers
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from vocabulary selection, given the fact that is done by students'. Indeed,
the authors claim that annotations might not be of the same quality as an
annotation made by musical experts, who will focus into more psychoacoustic
description of music (Tingle et al., 2010). If, on the other hand, we assume that
the annotation is not exhaustive and consistent, then an objective evaluation
is not enough to assess the quality of our models, and therefore an alternative,
subjective evaluation might be required.

Retrieval

For each query tag, we rank order its affinity to the dataset songs. In fact,
this ranking is taken from the affinity of all the tags to each test song. Mean
Average Precision (MeanAP) and Mean Area under the ROC curve (Mea-
nAROC) are used as evaluation measures. Please refer to Section 2.4.1 for more
details about these measures.

Table 3.24 presents experimental results for music retrieval using 10—fold cross
validation and all the words in the dataset. The “Random” model is again
taken from Turnbull et al. (2008Db).

For the k-NN approach, the parameter configuration tested in Section 3.5.2 is
chosen for music retrieval (see Table 3.17 for more information). That is, with
k = 18, built on top of a PCA reduced data representation that keeps 75% of
the original data variance (i.e. each song is represented by a vector of ~ 29—30
dimensions), using the highlevel descriptors mentioned in Section 3.2.1 and a
Fuclidean distance measure. The results show that the Mixture Hierarchy
GMM is the best performing algorithm at modeling the affinity of tags, al-
though there is no significant difference with our k~-NN (k = 18) approach. It
is interesting to note that k~NN (pca) outperforms CBDC for retrieval task.
This demonstrates that even though k~NN is not good enough at covering the
whole tag vocabulary!'”, due to popularity bias, it still shows an improvement
in the affinity estimation of tags to songs.

Table 3.25 presents results for music retrieval, organized by the same categories
as in the music annotation task. Our approaches still show better results in
the first two categories: emotion and genre. The performance of the instru-
mentation category is only slightly better in MeanAROC for the CBDC and
k—NN models, and in MeanAP for the Mixture Hierarchies GMM model.

3.5.4. Discussion

In this section, we have presented a thorough evaluation of our kNN autotag-
ging algorithm for music annotation and retrieval, using the CAL500 dataset.
First, a statistical test is performed for a wide range of parameter values, in
order to tune our algorithm. Table 3.17 illustrates the best configuration we

16who would sometimes not pay attention to the annotation.
"taking into account the limitation of annotating songs with only 10 tags.
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Table 3.24: Overall results of the music retrieval task using the CAL500 dataset.
|V| = Vocabulary size. GMM-MH refers to the Mixture Hierarchy Gaussian Mixture
Model algorithm proposed by Turnbull et al. (2008b). Boost is the FilterBoost al-
gorithm of Bertin-Mahieux et al. (2008). We compare against the FilterBoost using
MFCC deltas as acoustic features, and the one using more features (afeats exp). Ran-
dom and UpperBound are taken from Turnbull et al. (2008b). The best results are
indicated in bold.

Category % Algorithm MeanAP MeanAROC

Random 0231  (0.004) 0.503  (0.004)

GMM-MH 0.390 (0.004) 0.710 (0.004)

Allwords 174  Boost (MFCC)  0.305 (0.057) 0.678  (0.015)
Boost (afeats exp.)  0.385  ( ) )

kNN (MFCC) 0341~ (0.006) ~ 0.643 ~ (0.005)
k-NN (pca) 0.388  (0.007) 0.702  (0.005)
CBDC 0.374  (0.006) 0.694  (0.004)

found for both music annotation and retrieval. That is, with £ = 18, built on
top of a PCA reduced feature representation that keeps 75% of the original
data variance, using the highlevel descriptors mentioned in Section 3.2.1 and
a Euclidean distance measure.

Quantitative results, however, have shown that using 18-NN for music annota-
tion, although improving per—song evaluation, results in a lower tag coverage.
In order to tackle this problem, we presented a modification of the algorithm
that takes into account the tag modelization from the songs. We call this ap-
proach class—based distance classifier (CBDC). Based on centroid—based clas-
sifiers from (Han & Karypis, 2000; Kim et al., 2006; Park et al., 2003), this
approach computes a centroid (cluster) for each class in the Ground Truth. A
song is annotated based on a distance between the song d-dimeGaussianfeature
vector (where d = 29 in this particular dataset) and the tag clusters. Four dif-
ferent distance measures were tested for the CBDC model, namely Euclidean,
cosine, weighted Euclidean and Mahalanobis distance. The latter two dis-
tances can be regarded as a single Gaussian modelization of each tag. Results
in Table 3.18 show that Euclidean distance has a larger tag coverage, and con-
sequently in Table 3.20 it achieves better per—word precision and recall. This
issue can be explained in two ways. On one hand, Principal Component Anal-
ysis (Jolliffe, 2002) is only applicable when model parameters are elements of a
Euclidean space. If we assume that this holds for the acoustic features we use
in our algorithm, then it makes sense that a Euclidean distance can achieve
good results. On the other hand, a covariance matrix is built assuming that
the data follows a normal (Gaussian) distribution. Nevertheless, empirical re-
sults have shown that not all the acoustic features that are used in this thesis
follow a Gaussian distribution. Many other audio features ensue, for example,
an exponential distribution. Examples of features with a Gaussian distribution
include low level features such as bark bands, skewness, pitch salience, spectral
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Table 3.25: Results of the music retrieval task, divided by categories, using the
CAL500 dataset. A = Annotation length, |V| = Vocabulary size (Turnbull et al.,
2008b). GMM-MH refers to the Mixture Hierarchy Gaussian Mixture Model algo-
rithm proposed by Turnbull et al. (2008b). Boost is the FilterBoost algorithm of
Bertin-Mahieux et al. (2008). We compare against the FilterBoost using MFCC deltas
as acoustic features, and the one using more features (afeats exp). Random and Up-
perBound are taken from Turnbull et al. (2008b). The best results are indicated in
bold.

Category V] Algorithm MeanAP MeanAROC
Random 0.327  (0.006) 0.504  (0.003)
GMM-MH 0.506 (0.008) 0.710 (0.004)
Emotion 4 /36  Boost (MFCC) 0503 (0.031) 0.702  (0.005)
Boost (afeats exp.)  0.478  (0.023) 0.655  (0.006)

k-NN (MFCC) 0.460 0.010) 0.653  (0.006

)

k-NN (pca) 0.515 (0.009) 0.717 (0.005)

CBDC 0.452  (0.008) 0.663  (0.007)

Random 0.132  (0.005) 0.500  (0.005)

GMM-MH 0.320  (0.009) 0.719  (0.005)

Genre 2/31  Boost (MFCC)  0.094 (0.013) 0.705 (0.013)
Boost (afeats exp.)  0.117  (0.036) 0.720  (0.011)

kNN (MFCC)~ ~ 0259 7(0.018) ~ 0.667 ~ (0.013)
k-NN (pca) 0.334  (0.017) 0.742  (0.012)
CBDC 0.342 (0.016) 0.764 (0.011)
Random 0.221 (0.007) 0.502 (0.004)
Instrumen- GMM-MH 0.399 (0.018) 0.719  (0.006)
tation 4/24  Boost (MFCC)  0.137 (0.022) 0.707  (0.005)
Boost (afeats exp.)  0.173  (0.030) 0.705  (0.006)
" kNN (MFCC) =~ 0.371 (0.018) 0.681 (0.012)
k-NN (pca) 0371  (0.017) 0.716  (0.012)
CBDC 0.389  (0.016) 0.731 (0.011)
Random 0.106  (0.014) 0.502 _ (0.004)
Instrument 1 /9 GMM-MH 0.180 (0.028) 0.712 (0.006)
Solo Boost (MFCC)  0.052  (0.002) 0.565  (0.025)
Boost (afeats exp.)  0.051  (0.002) 0.650  (0.010)
" kNN (MFCC) =~ 0.150 (0.024)  0.577  (0.026)
k-NN (pca) 0.180  (0.026) 0.589  (0.031)
CBDC 0.170  (0.022) 0.635  (0.025)
Random 0.169 (0.012) 0.501 _ (0.005)
GMM-MH 0.240 (0.016) 0.707  (0.004)
Usage 2/15  Boost (MFCC) 0.120  (0.009) 0.621  (0.022)
Boost (afeats exp.)  0.127  (0.007)  0.637  (0.008)
" k-NN (MFCC) = 0.186 (0.013)  0.589  (0.017) ~
k-NN (pca) 0227 (0.017) 0.609  (0.019)
CBDC 0.234  (0.016) 0.665 (0.017)
Random 0.137  (0.006) 0.502 _ (0.004)
GMM-MH 0260 (0.018) 0.705  (0.005)
Vocal 2 /16  Boost (MFCC) 0111 (0.012) 0.652  (0.018)
Boost (afeats exp.)  0.105  (0.012)  0.628  (0.009)
" kNN (MFCC) = 0.231° (0.020) 0.614 (0.021)
k-NN (pca) 0.263 (0.021) 0.670  (0.019)
CBDC 0262 (0.019) 0.674  (0.018)

centroid, spectral complexity, spectral decrease, spectral energy, spectral spread.
On the other hand, low level features average loudness, dissonance, spectral
flatness db spectral kurtosis, and rhythm first and second peak weights follow
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an exponential distribution. These distributions were computed using an in-
ternal test database. For more information about the features’ distributions,
please refer to (Freesound.org, 2011).

One way to solve this issue is by transforming the original data distribution into
a normal distribution, using non linear functions such as Gaussianization (Chen
et al., 2001) or box—cox (Box & Cox, 1964). These transformations, however,
will change the original data representation. In our case, we decided to use
PCA — a linear flattening technique — for the following reasons:

= To reduce the dimension of the data, without losing the variance of the
original distribution.

= Since the PCA technique is a linear transformation of the original feature
representation, adding new songs to the database or performing classifica-
tion is easily achieved by simply applying the same linear transformation
to the songs.

= Experimental results in this section show that this approach performs as
well as or better than the state of the art algorithms.

Tables 3.20, 3.21, 3.24 and 3.25 presented comparative results of our algorithm
with other state of the art approaches which used the same dataset for evalua-
tion. Based on the obtained results, our CBDC model performs comparatively
well for annotation, whereas k~NN has, on the other hand, slightly better
results in music retrieval.

An additional set of experiments were carried out to analyze the effect of using
per-song and per—tag evaluation measures. Results showed that many au-
totagging models perform well either in per—song or per—tag evaluation, not
both. Further evaluation of individual tags, organized by categories, depicted
the particularities of each algorithm. Our CBDC system performed compar-
atively well for emotions that lay on the arousal dimension —emotions such
as angry, boring, calm, relax, exciting, etc.— whilst not so well for tags in
the valence dimension — specially for happy, sad and their negative examples.
These results confirm the findings of Laurier (2011) for the specific task of
mood classification from audio, where happy songs — which lay on the valence
dimension — were the most difficult to classify. As for the other categories, our
CBDC system still performed as well as (genre, instrument) or better (vocal,
usage) than the compared algorithms. The proposed CBDC model, altough it
might seem simple and generic (a tag is represented by solely a ~ 29-30 dimen-
sion vector), has revealed in experimental results that, when the audio feature
representation is good enough to differentiate between classes, it can perform
(in terms of per-tag evaluations) as well as or better than the state of the art
approaches that use more complex, time and resource consuming algorithms.
Our aim was to present additional evidence that a special care must be taken
in selecting and capturing a more complete audio-related information, in order
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to build successful models for automatic classification of music (Herrera-Boyer
et al., 2006).

There are some cases where the models predict tags that, while not exactly
the same as there were in the original annotation, are synonyms or have a se-
mantic correlation concept. For example, given a rock song, if the autotagging
algorithm does not predict the tag rock, but instead proposes guitar, then the
objective evaluation will fail to assess the quality of this annotation. Strict
measures such as Precision and Recall, unfortunately, cannot capture these
subtle nuances. A human evaluation can be proposed to tackle this problem.
However, it is a time and resource consuming task. Torres et al. (2007) suggest
the use of vocabulary selection to limit the tags to those that are musically
meaningful. Turnbull et al. (2008b) point out to using larger datasets, this
time obtained through a web based game. Following a similar idea, in the next
section we evaluate our models against a web—based game dataset that has
been used in the MIREX evaluation fest since the beginning of the Audio Tag
Classification task, the MajorMiner dataset (Mandel & Ellis, 2007).

3.6. Experiment 4: MIREX 2011

The Music Information Retrieval Evaluation eXchange (MIREX!8) is an annual
evaluation contest for Music Information Retrieval algorithms. Coupled to
the International Society for Music Information Retrieval conference (ISMIR),
and hosted by the IMIRSEL group'?, it aims at providing a framework with
standardized datasets such that any MIR research laboratory can test their
algorithms and exhaustively evaluate their results with other research teams,
using community-defined evaluation metrics. The advantages of using such a
contest are multiple, some of them include:

» The definition of a common Input and Output (I/O) format.

= The algorithms are compared in the same setup condition, which allows
a more proper comparison.

= [t favors discussion among the different research laboratories, thus re-
inforcing improvement of existing algorithms and the generation of new
research ideas.

Several tasks have been defined within the MIREX contest, including genre or
mood classification, melody extraction, tempo estimation, etc. In alignment
with our research, the Audio Tag Classification task was first proposed and ran
in MIREX 2008. It tests the ability of the participating algorithms to assign
a variety of tags to 10—second audio clips of songs. This is “achieved” in two

18http ://www.music-ir.org/mirex/wiki/MIREX_HOME
Yhttp://www.music-ir.org/


http://www.music-ir.org/mirex/wiki/MIREX_HOME
http://www.music-ir.org/

3.6. EXPERIMENT 4: MIREX 2011 83

ways. On one hand, the task evaluates the binary relevance of the annotations,
that is, the classification of some few relevant words to each audio clip. On
the other hand, it evaluates the affinity of the audio clips to each tag in the
dataset vocabulary. In order to avoid bias towards a single dataset, the task
uses two different datasets for evaluation, namely the MajorMiner dataset and
MIREX’09 Mood Tag dataset.

3.6.1. Dataset
MajorMiner

MajorMiner (Mandel & Ellis, 2007) is a web—based, non—paired off-line game,
where a player requests a new music clip and annotates the clip with tags.
The player wins points based on the originality and agreement of the tags.
The MajorMiner game has collected a total of about 73000 taggings, 12000 of
which have been verified by at least two users. The collection?® used in this
task consists of 2300 10-second music clips, annotated with 45 different tags,
which have been verified at least 35 times, making a total of ~ 9000 verified
annotations. Table 3.26 gives a a description of the dataset. For further details,
please refer to (IMIRSEL, 2011a; Mandel & Ellis, 2007).

Table 3.26: Additional information about the MajorMiner Dataset.

#Tracks #Tags Categ./Track Tags/Track Top Tags Bottom Tags

2300 45 w=2.23 w=3.82 Drums (962)  Acoustic (40)
oc=0.83 o =2.07 Guitar (845) Trumpet (39)
Male (724) Loud (37)
Rock (658) Organ (35)
Synth (498)  Metal (35)

Although the tags are not organized by semantic categories, we manually as-
signed a facet to each tag in the vocabulary, using some thesaurus specifically
built for music. The categories are gender, musical genre, instrumentation,
tempo and acoustic qualities.

MIREX’09 Mood Tag dataset

Proposed by Hu et al. (2009), the MIREX’09 Mood Tag dataset is derived from
mood related tags in Last.fm. The authors identified tags by using a general
affect lexicon, Wordnet Affect, which is an extension of the lexical database
Wordnet?!. This extension assigns affective labels to concepts such as emotions
or moods. The matched Last.fm tags in Wordnet Affect were then manually
cleaned up by two human experts in Music Information Retrieval. At the end,

20ht‘cp ://www.music-ir.org/mirex/wiki/2011:Audio_Tag_Classification
2ttp://wordnet.princeton.edu/
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there were 135 unique mood tags which were grouped together in 18 mood tag
groups. Each audio clip can belong to multiple mood tag groups. Table 3.27
gives a brief summary of the dataset. Fore more information, please refer to
(Hu et al., 2009).

3.6.2. Experimental results

In this section we present the MIREX 2011 Audio Tag Classification results.
The algorithms were evaluated using a constrained (artist-filtered) 3-fold cross-
validation. The constraint implies that all the songs from the same artist must
appear either in the training set or the test set, not in both. This artist filtering
process has shown to be of valuable importance in music similarity research
(Flexer, 2007) and it is applied to avoid overfitting and bias when building the
autotagging models.

Table 3.28 presents a comparative description of the acoustic features used by
the different MIREX 2011 Audio Tag Classification participants. We submitted
two versions of our algorithm, namely SC1 and SBC1. They both share the
concept of audio similarity and a final stage k-NN classifier, but differ on the
way the similarity distance between songs is computed. Model SC1 is built
using the algorithm and the parameter configuration tested in Section 3.5.2.
That is, the SC1 model consists of a k-NN algorithm, with k& = 18, built
on top of a PCA reduced data representation that keeps 75% of the original
data variance (i.e. each song is represented by a vector of ~ 29 dimensions),
using the highlevel descriptors mentioned in Section 3.2.1 and a Euclidean
distance measure. The second measure is a hybrid distance that combines
the output of the first distance with a Kullback-Leibler divergence based on
single Gaussian MFCC modeling, a tempo-based distance, and a semantic
classifier—based distance. The latter distance component employs probability
estimations of different classes of genre, mood, and instrumentation made by
Support Vector Machines. For more details on the hybrid measure, please refer
to Bogdanov et al. (2011).

The evaluation is divided in two different sections, corresponding to the two
different aspects of audio tag classification, namely binary relevance —which
measures tag classification— and affinity estimation, measuring tag ranking.

Binary relevance evaluation

In this experiment, our algorithm is evaluated on its performance at tag clas-
sification, that is, how well the model predicts a few relevant words. Ta-
bles 3.29 and 3.30 show comparative results of the MIREX 2011 Audio Tag
Classification participants’ performance at binary relevance evaluation, using
the MajorMiner dataset and the MIREX’09 Mood Tag dataset, respectively.
Results are presented as means and standard deviations computed from the 3
folds. The measures are computed on a per—song basis. Accuracy and Nega-
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Table 3.28: Comparative description of the acoustic features used by the different
participants of the MIREX 2011 Audio Tag Classification task.

Algo- Spectral/ Tonal Rhythm/ High Highlighted

rithm Timbre Tonal Tempo level characteristic

BAx Yes spitting method that re-
moves irrelevant audio fea-
tures

CLCBI1 Yes dynamic texture mixtures

ECL1 Yes uses a bag of systems ap-
proach

JRx Yes multilabel sparse coding

TCCPx Yes with pretrained Universal
Background Model (UBM)

PH2 Yes PCA whitening

SSKS1 Yes Yes blocks of frames

SBC1 Yes Yes Yes Yes hybrid distance

SC1 Yes Yes Yes Yes

tive Example Accuracy results are also reported. Accuracy is defined as the
rate of correctly predicting positive examples and ignoring negative ones. This
evaluation, however, is not always reliable, specially if songs are annotated
with few words, where negative examples will dominate the statistic, hence
not measuring performance correctly. To overcome this issue, the MIREX
evaluation members suggested the use of negative example accuracy —also
known as specificity in binary classification— and positive example accuracy,
which is the same as recall and it is not presented to avoid redundancy.

Our 2 participating algorithms performed third and fourth overall, out of 15
participants. Both approaches achieved practically the best recall results??
without hampering significantly the precision. This fact is more evident in the
Mirex’09 Mood Tag dataset results (Table 3.30). Although per—song evaluation
measures give us a rough estimation of how the different algorithms behave,
they do not allow us to compare how well the algorithms detect and classify
different concepts. Thus, global measures are combined with local, per—tag
evaluation measures. Figures 3.11 and 3.12 display the per-tag F-measure
evaluation of the MajorMiner dataset and the Mirex’09 Mood Tag dataset,
respectively.

Due to space limitations, and given that most of the research laboratories sub-
mitted two or more versions of their algorithms, we compare our approach
with a subset of the best performing algorithms per each research team. In
order to ease the comparison between the different participants in Figure 3.11,
we group tags by similar concepts, including music genre, gender, instrumen-
tation, tempo, perceptual characteristics and time (decades). Moreover, the
tags within each group are sorted in descending order, using our approach as

22The recall in CLCB1 (Coviello et al., 2010) is artificial, given the low precision achieved.
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Table 3.30: Comparative results (means and standard deviations) for Binary Relevance, using the Mirex’09 Mood Tag dataset. The
best results are indicated in bold. *The high recall in this case is artificial, given the low precision achieved. ** If we take into account
both precision and recall, we can see that our approach achieves a good recall without hampering somehow the precision.
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Algorithm Accuracy Neg. Ex. Accuracy Precision Recall F—measure
BA1 0.7420 (0.0117) 0.7363 (0.0159) 0.2585 (0.0075) 0.7915 (0.0263) 0.3895 (0.0058)
BA2 0.7526 (0.0140) 0.7490 (0.0181) 0.2663 (0.0090) 0.7837 (0.0229) 0.3973 (0.0080)
BA3 0.7392 (0.0068) 0.7327 (0.0101) 0.2566 (0.0051) 0.7952 (0.0268) 0.3878 (0.0056)
CCL1 0.5090 (0.0021) 0.4741 (0.0012) 0.1517 (0.0016) 0.8109 (0.0122) 0.2555 (0.0027)
CLCB1 0.5204 (0.0021) 0.4804 (0.0012) 0.1619 (0.0025) 0.8654* (0.0091) 0.2727 (0.0039)
ECL1 0.5102 (0.0020) 0.4747 (0.0012) 0.1527 (0.0014) 0.8165 (0.0122) 0.2573 (0.0025)
JR4 0.7937 (0.0349) 0.8383 (0.0433) 0.2192 (0.0228) 0.3939 (0.0551) 0.2789 (0.0192)
JR5 0.8070 (0.0120) 0.8423 (0.0093) 0.2556 (0.0516) 0.4915 (0.1505) 0.3356 (0.0796)
JR6 0.7231 (0.0021) 0.7175 (0.0010) 0.2406 (0.0021) 0.7717 (0.0123) 0.3667 (0.0037)
PH2 0.8813 (0.0152) 0.9120 (0.0164) 0.4446 (0.0396) 0.6104 (0.0095) 0.5134 (0.0275)
SSKS1 0.9007 (0.0027) 0.9383 (0.0009) 0.4601 (0.0099) 0.5259 (0.0172) 0.4908 (0.0131)
TCCP1 0.8563 (0.0006) 0.9147 (0.0005) 0.2560 (0.0043) 0.2862 (0.0039) 0.2703 (0.0041)
TCCP2 0.8561 (0.0007) 0.9150 (0.0005) 0.2587 (0.0053) 0.2867 (0.0039) 0.2720 (0.0046)
SBC1 0.8483 (0.0025) 0.8708 (0.0042) 0.3703 (0.0062) 0.6550** (0.0141) 0.4730 (0.0044)
SC1 0.8501 (0.0018) 0.8737 (0.0033) 0.3723 (0.0051) 0.6460** (0.0099) 0.4723 (0.0015)
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Figure 3.11: Per-tag Binary relevance evaluation of the MajorMiner MIREX 2011
Audio Tag Classification, using F-measure as a comparison metric.

a reference key to sort. A quick overview of the figure indicates that there is
generally no significant difference among the participants, specially in music
genre and instrumentation — which cover most of the tags in the MajorMiner
dataset vocabulary. The results for the instrumentation tags seem to be pro-
portional to the tag frequency. That is, the more positive examples of a tag in
the dataset, the higher F—measure result is achieved — except for instrumental
and voice tags. As regards to music genres, some results can be correlated with
previous MIREX editions for the specific task of Music Genre Classification.
Concretely, rap/hiphop and dance are genres that have been usually predicted
accurately.

Figure 3.12 illustrates the per—tag F—measure evaluation results of the MIREX’09
Mood tag dataset, using the same subset of participants as in Figure 3.11. In
this case, mood tags are merged into groups that share a semantic concept.
Thus, the evaluation is not on a strictly per—tag basis, but rather on a “per—
group of tags” basis. We highlight the four best performing groups using
F—measure. These groups are: relax, sad, happy and angry. Interestingly,
these four concepts correspond to the four core mood categories used in Lau-
rier (2011) for the task of music mood classification. The results obtained can
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Figure 3.12: Per-tag Binary relevance evaluation of the Moods’09 MIREX 2011
Audio Tag Classification, using F—measure as a comparison metric.

reinforce the claim in Laurier (2011) that the four concepts are regarded as the
basic mood categories, although the high frequency of these four tag groups
(see Table 3.27) might have also had a significant impact on the final results.

Affinity estimation evaluation

The affinity estimation evaluation measures how well the models rank tags
in songs, and vice versa. Tables 3.31 and 3.32 present results for the affinity
estimation of tags to songs in the MajorMiner dataset and the MIREX’09
Mood Tag dataset, respectively. Results are presented as means and standard
deviations computed from the 3 folds. Two different evaluation measures are
used in this case: mean Area Under the ROC (AROC) curve and Precision-
at-N (N={3,6,9,12,15}). The ROC (Receiver Operating Characteristic) curve
is a plot of the True Positive Rate (sensitivity) as a function of the False
Positive Rate (1-specificity) as we are moving down through the ranked list
of tags. AROC is then computed by integrating the ROC curve. A random
guessing would yield a mean AROC of 0.5. The Precision—at—N, on the other
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hand, measures whether the models rank relevant tags higher than less relevant
or irrelevant ones.

The results show, again, that our two participating algorithms performed third
and fourth overall. It is worth noting that our algorithm is very stable among
the different folds, given the low standard deviations obtained. This is spe-
cially interesting since the first ranked algorithm, PH2, has a significantly high
deviation. Indeed, looking at the original per—fold results (IMIRSEL, 2011b),
it shows that the algorithm is improving systematically on average 3-4% (and
6-7% in binary relevance) in each consecutive folder.

Figures 3.13 and 3.14 report on the AROC curve results for individual Ma-
jorMiner and MIREX’09 Mood tags, respectively. For comparison purposes,
we keep the same subset of MIREX participants as in the binary relevance
evaluation.
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Figure 3.13: Per—tag Affinity ranking evaluation of the MajorMiner MIREX 2011
Audio Tag Classification, using Area under the ROC curve as a comparison metric.

In MajorMiner dataset, except for the TCCP1 and BA2 algorithms —which
show results for most tags that are only slightly better than random guessing
—, there is generally no perceived significant difference among the different
models, although our approach seems to perform relatively well on genre and
tempo categories. Regarding the instrumentation tags, it is worth mentioning
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Table 3.31: Comparative results (means and standard deviations) for Affinity ranking, using the Major Miner Dataset. The best results

are indicated in bold.

Algorithm

AUC-ROC

pPa3

P@é6

P@i12

P@is

BA1
BA2
BA3
CCL1
CLCB1
ECL1
JR4
JR5
JR6
PH2

0.7798 (0.0039)
0.7801 (0.0017)
0.7793 (0.0058)
0.7900 (0.0006)
0.8120 (0.0033)
0.7980 (0.0019)
0.8533 (0.0007)
0.8502 (0.0018)
0.8290 (0.0016)
0.9094 (0.0261)
0.8917 (0.0026)
0.7942 (0.0040)
0.7937 (0.0042)

0.8725 (0.0031)
0.8704 (0.0029)

0.4411 (0.0061)
0.4342 (0.0123)
0.4396 (0.0086
0.2525 (0.0

0.3316 (0.0057
0.2627 (

0.4895 (

0.4826 (

0.5049 (
0.5902 (0.0539)
0.5510 (0.0104)

0.0063

)
96)
)
0.0080)
)
0.0082)

)

0.0005

0.3783 (0.0123)
0.3775 (0.0114)

0.5321 (0.0146)
0.5201 (0.0140)

0.3720 (0.0107)
0.3737 (0.0070)
0.3722 (0.0092)
0.2596 (0.0017)
0.2967 (0.0005)
0.2619 (0.0003)
0.3905 (0.0046)
0.3878 (0.0045)
0.3864 (0.0039)
0.4473 (0.0338)
0.4286 (0.0054)
0.3100 (0.0030)
0.3094 (0.0026)

0.4107 (0.0056)
0.4090 (0.0092)

P@9
0.2976 (0.0041)
0.2998 (0.0035)
0.2969 (0.0053)
0.2446 (0.0036)
0.2641 (0.0020)
0.2458 (0.0052)
0.3122 (0.0043)
0.3104 (0.0035)

(

0.3076 (0.0024)
0.3522 (0.0202)
0.3410 (0.0062)
0.2688 (0.0033)
0.2682 (0.0036)

0.3266 (0.0039)
0.3234 (0.0051)

0.2378 (0.0043)
0.2387 (0.0032)
0.2382 (0.0044)
0.2225 (0.0032)
0.2375 (0.0017)
0.2233 (0.0039)
0.2613 (0.0028)
0.2598 (0.0047)
0.2540 (0.0021)
0.2883 (0.0119)
0.2820 (0.0037)

0.2336 (0.0049)

0.2335 (0.0050)

0.2729 (0.0025)
0.2696 (0.0039)

0.1954 (0.0033)
0.1963 (0.0033)
0.1966 (0.0040)
0.2005 (0.0017)
0.2125 (0.0023)
0.2033 (0.0027)
0.2240 (0.0018)
0.2220 (0.0028)
0.2157 (0.0017)
0.2439 (0.0063)
0.2391 (0.0023)
0.2013 (0.0041)
0.2013 (0.0042)

0.2322 (0.0024)
0.2296 (0.0030)
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Figure 3.14: Per-tag Affinity ranking evaluation of the Moods’09 MIREX 2011
Audio Tag Classification, using Area under the ROC curve as a comparison metric.

that even if the SBC1 participation makes an explicit use of timbre-related
audio features, such as MFCCs, results do not improve significantly when
compared to our original SC1 approach. This again questions the usefulness
of MFCCs as a (unique) feature representation of a music audio excerpt.

As for the MIREX’09 Mood tags, similar to the binary relevance evaluation,
the 4 basic mood concepts rank in the top 8 mood tag groups. Our algorithms
tend to perform better on the concepts lying on the arousal dimension than
the valence dimension, using the paradigm introduced by Russell (1980) of
classifying moods in a discrete 2—dimensional space (Csikszentmihalyi, 1997;
Frijda, 1986; Juslin & Sloboda, 2001). This perception agrees with the results
obtained by Laurier (2011) in the task of Music Mood tag classification, given
that we are using the same library for audio feature extraction (Wack, 2011).
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3.6.3. Statistical significance tests

A statistical significance test (Lehmann & Romano, 2005), also called statis-
tical hypothesis test, is a method of making decisions using data, either from
controlled or uncontrolled experiments. An experimental result is statistically
significant if it is unlikely to have occurred by chance alone, according to a pre-
determined threshold probability, namely the significance level. The MIREX
Audio Tag Classification task utilizes Friedman’s ANOVA as a statistical test,
along with Tukey-Kramer Honestly Significant Difference (HSD) as a post—
hoc single—step comparison of significant difference among multiple evaluation
means (Jones et al., 2007). The main goal is to compare the different submis-
sions over a number of rows. The factors to be tested can be the accuracy
and/or precision metrics, and a row corresponds to each tag on each fold in
the 3-fold cross—validation. As stated in (IMIRSEL, 2011a), The Friedman
ANOVA test should handle the variance between tags. Given the fact that the
same tag can occur in different setup conditions of positive/negative examples
caused by the folds, the Friedman test should replace the scores achieved by
each system on each tag with their corresponding rank. Such an assumption
of equal importance of rows, regardless of the unequal variance among folds, is
also an often used approach at the Text REtrieval Conference (TREC) (Har-
man, 1993; Tague-Sutcliffe & Blustein, 1995).

Once the Friedman’s ANOVA results are computed, the Tukey-Kramer Hon-
estly Significant Difference multiple comparisons are applied. These tests are
used to assess whether there is a statistically significant difference between one
system and the rest.

The statistical tests’ results for the MIREX 2011 Audio Tag Classification,
which can be accessed in (IMIRSEL, 2011b), are summarized in Table 3.33.

3.6.4. Discussion

In this section we have presented a detailed evaluation of our submission to the
MIREX 2011 Audio Tag Classification task. First, we presented an overview of
the two datasets used for evaluation, namely MajorMiner and MIREX’09 Mood
Tags dataset. Then, we reported the results for binary relevance (classification)
and affinity estimation of tags. The evaluation was performed on a 3—fold
cross—validation basis, using both per—-song and per-tag measures.

Our algorithm achieved a good overall rank (between second and fourth) in
almost all the experimental results. It is worth mentioning the high recall
achieved in the binary relevance (classification) evaluation. This coincides
with the claim we made in the first experiment (Section 3.3.2) that recall is
more informative in our case, since we are interested in knowing how well the
algorithm can propose all the relevant tags. Indeed, we believe that recall
is slightly more important than precision in the audio tag classification task.
This is explained by the fact that music collections for autotagging are usually
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Table 3.33: Statistical significance tests for the MIREX 2011 Audio Tag Classifica-
tion task.

Eval. measure Dataset Statistical significance

Binary relevance

F-measure by Fold MajorMiner —
Mood Tags —
F-measure by Tag ~ MajorMiner (PH2,SSKS1, BAx) > (SC1,SBC1)
SC1,SBC1 >TCCPx
Mood Tags —

Affinity estimation

AUC-ROC by Fold MajorMiner —
Mood Tags —
AUC-ROC by Tag  MajorMiner PH2 > SBC1, PH2 > SC1
SBC1 > (JR4 — 5, BAz, TCCPxz),
SC1 > (JR5, BAz, TCCPx)
Mood Tags PH2 > SBC1
Precision at N MajorMiner —
Mood Tags —

weakly labeled. That is to say, the absence of a particular tag annotation for
a given excerpt does not necessarily mean that the tag is not relevant to the
excerpt. Moreover, proposed results with high recall can be filtered out in a
post-processing step using additional information, e.g., contextual information,
which can improve precision significantly.

Besides the good qualitative results obtained in this experiment, we specially
highlight the following characteristics of our approach:

1. It is fast. Using a server machine with an Intel Xeon 4—core CPU and
8GB of RAM, it took, on average, 32 seconds to train and classify a fold
of 1533 songs for training and 767 songs for testing.

2. It is scalable. In our original approach, SC1, for example, each audio
excerpt is defined by a single vector of 29-30 dimensions.

3. It is easy to implement. Built on top of a k-NN classifier, our approach
defines simple heuristics for classification and affinity.

4. It is consistent. The overall results, averaged per fold, show a very low
standard deviation (see, for instance, how does PH2 perform in different
folds (IMIRSEL, 2011b)).

The MIREX 2011 Audio Tag Classification task also includes a set of statistical
significance tests, in order to check whether the practical difference of results
is statistically significant or not. Statistical significance was found mainly in
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MajorMiner at tag level, probably due to the diverse concepts used in the tag
vocabulary. Yet, in many evaluation results there was no statistical signifi-
cance. This issue is not new in MIREX Audio tag classification. Indeed, very
few algorithms have shown to be statistically significant, which raises an open
research question: are all the evaluation measures used in the statistical tests
good and sufficient to discriminate between different algorithms? Or, on the
hand, are we actually reaching a “glass ceiling” (Aucouturier & Pachet, 2004)
for audio tag classification, even with novel algorithms that take into account
correlations between higher level concepts?

Regarding the evolution of results in the MIREX Audio Tag Classification, if
compared with those from 2010’s edition 22, the results of the MIREX 2011
edition show a slight improvement. In our case, we got the same results as the
best performing algorithm in 2010.

Results showed that a simple model using a variety of audio features, ranging
from low level (spectral, timbre, pitch,etc), tonal, temporal and high level, can
achieve as good results as or even better results than many other models that
use much more complex, time and resource consuming algorithms. Interest-
ingly, these aforementioned models rely on spectral and/or timbre information
only. We believe that these results are yet another additional evidence that
special care must be taken in selecting and capturing a more complete audio—
related information, in order to build successful models for automatic tagging
of music.

3.7. Experiment 5: iTMS-500K dataset

3.7.1. Dataset

The last dataset is a large collection consisting of almost 550,000 annotated
songs. The tags were collected from the Last.fm?* repository during March,
2009. Each audio-tag pair has an associated weight, a value in the range 1-
100, which represents the relevance of the tag to the corresponding song?’.
The original (noisy) dataset contained 261,603 different tags, making a total
of 3,705,566 annotations. However, many of the these tags were misspellings
(for example: hip-hop, hip hop and hiphop), or poorly and rarely used tags.
Hence, we proceeded to clean the dataset by following the next steps:

= Removing spaces and special characters. For example, hip-hop, hip hop,
and hiphop are all converted into one tag: hiphop.

Znttp://www.music-ir.org/mirex/wiki/2010:MIREX2010_Results

nttp://www.last.fm/

25The exact formula is a trade secret of Last.fm, but it takes into account how many times
that tag has been applied to the song.
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= Merging tags and their weights. If a song has tag hip-hop with weight 66
and hip hop with weight 40, the merged tag hiphop will have a weight of
66 + 40 = 106 (though we limit it to 100, that is the maximum weight.

= Filter by tag weight to remove poorly associated tags. We only consider
tags in a song with a weight > 20.

= Filter by tag popularity. We keep tags that were used at least 10 times.

Finally, we ended up with a dataset of 546,386 tracks and 26,324 unique tags.
Table 3.34 shows some additional information about the dataset, while Fig-
ure 3.15 displays the distribution of tags in this dataset. The best fit of the
tag distribution is obtained with a power law function z~<, with parameter
a = 1.951939. It is worth noting that from the total 26324 tags, 82 are used
more than 5000 times, whilst 12314 tags (which represents roughly the 47%
of all the tags) are used less than 20 times. Then, Figure 3.16 depicts a tag
cloud of the 500 most frequent tags in the iTMS-500k dataset. As one can
observe, most of these tags are related to musical genre, which coincides with
the findings of Lamere (2008).

Table 3.34: Additional information about the iTMS-500k Dataset. Tags were gath-
ered from Last.fm during March, 2009.

#Tracks #Tags Tags/Track Top Tags Bottom Tags
546386 26324 1=95.52 Rock (94765) Flower (10)
o =5.14 Alternative (44796) Bathory (10)
Pop (43624) Crushing riffs (10)
Indie (43271) Great drummer (10)
Jazz (40246) Bag of tricks (10)

3.7.2. Experimental results

In this section, we evaluate our system using a considerably large music collec-
tion. Our goal is to carry out the evaluation qualitatively and quantitatively.
In order to have a sense of performance quality, we compare our results to
random baseline and one of the representative state—of-the art autotagging
algorithms, proposed by Mandel & Ellis (2008). The latter approach, as de-
scribed in Section 2.5, trains tag models using a one—versus—all Support Vector
Machine algorithm over a set of audio features, including Mel Frequency Cep-
stral Coefficients (MFFCs) and rhythm descriptors (Mandel & Ellis, 2008) 26,
An audio excerpt is finally represented by a 380—dimensional feature vector.
The algorithm uses Platt et al. (1999) scaling to convert SVM decision function

26the code for this algorithm was kindly provided by Michael Mandel in April 2010, http:
//www.music-ir.org/mirex/abstracts/2010/MP1.pdf.
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Figure 3.15: A log-log plot showing the tag distribution in the iTMS-500K dataset.
The curve follows a power law distribution, with o = 1.951939.
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Figure 3.16: A tag cloud of the top 500 tags in the iTMS-500k dataset.

scores to probabilities so that tag relevance can be compared across multiple
SVMs. Besides the standard, qualitative evaluations of classification and affin-
ity ranking, we additionally report on quantitative results for both algorithms.
We perform tests to assess the scalability of these models, in terms of CPU
time.
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Quantitative evaluation

Several experiments were conducted to assess the computational cost of train-
ing and classifying a large music collection. CPU time is used as a factor for
comparison. Each experiment consists of a different dataset size. That is, we
want to figure out whether the models scale linearly in time, while increasing
the dataset size, let us call it D. The following dataset sizes were defined:
{500, 1000, 2000, 5000, 10,000, 20,000, 50,000, 100,000, 200,000, 546,386}.

A 5-fold cross validation is used to test each experiment — which means 80%
training and 20% testing. We compute the CPU time of each fold iteration
and take the mean as the representative CPU time for each experiment. This
time includes training models and ranking all the tags in the dataset.

All the experiments were conducted using a server machine with Intel Xeon
4—core CPU and 8GB of RAM, running Debian Linux 64-bit as an Operating
System. Figure 3.17 depicts a lin—lin plot of the CPU time required by both
models for each dataset size. Results for the SVM model (Mandel & Ellis,
2008) are reported up to a dataset size of 50,000 audio excerpts, since the
machine unfortunately ran out of memory with a 100,000 excerpts dataset.
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Figure 3.17: A lin—lin plot of the time consumed by the two compared algorithms
for learning and ranking all the tags in the test set. The results are means taken from
a b—fold basis.

For D = 50,000, our algorithm required, on average, 61 minutes for performing
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feature selection and learning from a training set?’ of 40,000 audio excerpts,

and finally classifying a test set of 10,000 audio excerpts. In the case of Man-
del’s SVM algorithm, it took, on average, 1142 minutes for the same experi-
ment, ~ 19 times slower than our approach. It should be considered, though,
that the authors use the LibSVM library, which has shown to have a very high
computational cost in large databases, especially when the training strategy
for multiclasses is one—versus—all (Dong et al., 2005). Other techniques have
been proposed to adapt SVMs in order to handle very large datasets (Dong
et al., 2005; Tsang et al., 2006).

Our algorithm uses an efficient implementation of PCA and k-NN (Wack,
2011). In order to apply dimension reduction, the algorithm proceeds by split-
ting the collection in random sub-datasets of 30,000 audio excerpts. It applies
PCA over one dataset, and then uses the same linear transformation for the
remaining sub-datasets.

It should be noted that the classification step includes the affinity ranking of
all tags in the training dataset. In order to compute this ranking using our
memory—based model (k-NN), each test query needs to iterate over R results,
where R is the size of the training dataset. For instance, when D = 50, 000,
with R = 40,000 audio excerpts for training and 7 = 10,000 for testing,
our algorithm needs R x 7 = 40,000 x 10,000 = 4.0 x 10® iterations. The
entire iTMS-500K dataset — which consists of 546386 audio excerpts — requires
437109 x 109277 = 4.8 x 1019 iterations. If our goal is to annotate a song with a
few relevant tags, then the number of operations (the complexity) depends on
the number of similar songs we chose, that is to say, the k in a k—NN classifier,
and it would scale linearly with the number of testing instances.

Qualitative evaluation

This section presents experimental results on audio tag classification, using
similar evaluation measures as in previous experiments. A constrained 5—fold
cross—validation is performed for each dataset size as defined in Section 3.7.2.
The constraint implies that tracks from the same artist must appear either in
the training set or the testing set, not both. This artist filtering process has
shown to be of valuable importance in music similarity research (Flexer, 2007)
and it is applied to avoid overfitting and bias when building the autotagging
models. Our system is again built using the algorithm and the parameter
configuration tested in Section 3.5.2, and illustrated in Table 3.17. That is,
the model consists of a k-NN classifier, with & = 18, built on top of a PCA
reduced feature representation that keeps 75% of the original audio features
variance (i.e. each song is represented by a vector of ~ 29 dimensions). The
audio features include the high level semantical descriptors mentioned in Sec-

27 A memory-based algorithm, such a k-NN, does not require a training step, but instead
it postpones the training to when a test query is presented.
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tion 3.2.1. Finally, similarity distance between audio excerpts is computed via
a Euclidean distance measure.

Table 3.35: Comparative results for audio tag classification using the iTMS-500K
dataset and per—song evaluation measures. The best results are indicated in bold.

Dataset Size  Algorithm  Vocabulary  Tag coverage Precision Recall F-Measure

500 Random 159 159 0.026 0.064 0.037

SVM 156 0.065 0.193 0.098

2-NN 159 0.104 0.182 0.133

18-NN 63 0.216 0.169 0.189

1000 Random 325 325 0.015 0.033 0.020

SVM 275 0.061 0.154 0.087

2-NN 324 0.088 0.154 0.113

18-NN 101 0.221 0.159 0.185

2000 Random 628 628 0.010 0.017 0.013

SVM 472 0.037 0.079 0.050

2-NN 627 0.077 0.120 0.094

18-NN 147 0.229 0.136 0.171

5000 Random 664 664 0.009 0.015 0.011

SVM 575 0.064 0.144 0.089

2-NN 664 0.084 0.132 0.103

18-NN 212 0.233 0.150 0.182

10,000 Random 1340 1340 0.005 0.008 0.006

SVM 1016 0.044 0.090 0.059

2-NN 1327 0.074 0.108 0.088

18-NN 287 0.233 0.134 0.170

20,000 Random 2766 2766 0.003 0.004 0.003

SVM 2024 0.033 0.065 0.044

2-NN 2708 0.068 0.098 0.080

18-NN 378 0.233 0.125 0.163

50,000 Random 6326 6326 0.001 0.001 0.001

SVM 3712 0.030 0.054 0.039

2-NN 6205 0.064 0.086 0.073

18-NN 556 0.235 0.117 0.157

100,000 Random 10837 10837 0.001 0.001 0.001
SVM N/A — — —

2-NN 10683 0.062 0.084 0.071

18-NN 699 0.238 0.114 0.154

200,000 Random 17848 17848 0.000 0.001 0.000
SVM N/A — — —

2-NN 17605 0.063 0.088 0.073

18-NN 874 0.243 0.116 0.157

546,386 Random 26324 26324 0.000 0.000 0.000
SVM N/A — — —

2-NN 25923 0.062 0.093 0.075

18-NN 1026 0.248 0.132 0.172

Our algorithm is evaluated on its performance at tag classification, that is,
how well the model predicts a few relevant words for each audio excerpt. The
results are compared with the SVM model, proposed by Mandel & Ellis (2008).
Table 3.35 presents the comparative results using different — and growing —
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dataset sizes, taken from the original iTMS-500K dataset. The evaluation
measures, which are standard IR measures, are computed on a per—song basis.
Additionally we report the tag coverage of each model. Tag coverage captures
information about the number of tags that were predicted by the different
models 28,

Unfortunately, we found that the compared models have different tagging be-
havior. While the SVM model proposed by Mandel & Ellis (2008) for instance
returns a considerably large list of predicted tags, the 18NN model predicts
fewer tags per test song, probably due to the restrictions imposed by the vot-
ing threshold. Based on these findings, we also report the results for a less
restrictive 2-NN model. Indeed, the voting threshold does not have any effect
when k < 2, since 0.2 x 2 = 0.4 ~ 0%?, which means that each test track is
annotated with all the tags from the 2 nearest neighbor, without any filter-
ing, that is: 7(s) = 7(n1) U 7(n2). With the aim of comparing the different
models, we impose a limitation of top ten tags per song. Following Turnbull
et al. (2008b), the “Random” model samples tags, without replacement, from
a multinomial distribution of the prior probability of tags, which is estimated
using the tag’s frequency.

The results show that the 18NN model outperforms the other two algorithms
in terms of per—song F—measure, in all the dataset sizes. Nevertheless, the
tag coverage (number of predicted tags) is considerably low. These results
agree with those obtained in Section 3.5.3 for the CAL500 dataset. The 2—
NN model predicts many of the tags in the original Ground Truth dataset,
consequently decreasing in per—song performance, still the results are slightly
better than the SVM model of Mandel & Ellis (2008). Results for the latter
method are only reported up to a dataset size D = 50,000, since the server
machine unfortunately ran out of memory with a 100,000 excerpts dataset.

Table 3.36: Summary of predicted tags by algorithm for the iTMS-500K dataset.

Per—-word F—-measure > 0.1

Dataset size Vocabulary SVM 2-NN 18-NN

500 159 44 o1 30
1000 325 49 (6] 43
2000 628 o1 70 42
5000 664 86 80 56

10,000 1340 93 83 61
20,000 2766 111 92 61
50,000 6326 128 102 74

As for the per—tag evaluation, Table 3.36 presents a summary of the number
of predicted tags by algorithm. In this experiment, a tag is considered to be

28Tt should be noted though that the term predicted does not mean accurately predicted.
2The rounding has also an effect on the algorithm’s voting.
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predicted if the per—tag F—measure of that tag is greater than a threshold of
0.1. Tt is interesting to note the significantly low number of predicted tags.
In this case, Mandel & Ellis (2008) is slightly better than our models. This
is probably due to the nature of such an unbalanced dataset, where 82 tags
are used more than 5000 times, while 12314 tags are used less than 20 times.
In order to have a thorough look at the predicted tags, Figures 3.18 and 3.19
depict a comparative per—tag evaluation of the three compared models, for
genre and the rest of categories, respectively. Musical genre is indeed the
most prominent music concept/facet used in social tagging web sites such as
Last.fm (Lamere, 2008).

In Figure 3.18, tags are sorted from the best predicted genre tags using the
SVM model of Mandel & Ellis (2008) to the best performing genre tags with our
18-NN model. As one can observe, there are some genres where all the models
perform well, namely rap, hiphop and ambient. These results agree with the
MIREX audio tag and genre classification tasks (IMIRSEL, 2011b), showing
for instance that rap/hiphop is the easiest model to learn. The SVM model
tends to perform well on genres that might benefit from rhythm information,
such as house, trance, drum and bass or reggaeton. On the other hand, the
18-NN model’s predictions cover a variety of music genres, from more acoustic
(country, folk), to more electric (alternative, metal, death metal); from relax
music (chillout) to more party music (dance, pop).

Appendix B.1 shows a list of audio features that contribute more to the first
two PCA components (which already count for the 33% of the original feature
variance). This list includes high level features related to mood (party vs. not
party, relaxed, aggressive, party), rhythm (fast, slow), and a variety of musical
genres, which can confirm the results obtained for music genres in Figure 3.18.
The list also includes information about tonal, timbre and the distinction be-
tween voice and instrumental music. The latter might have influence on the
instrumentation facet in Figure 3.19.

3.7.3. Discussion

The aim in this last experiment was to evaluate our autotagging algorithm
with a very large dataset, both quantitatively and qualitatively. We addressed
this experiment by performing evaluations with different and growing dataset
sizes. In order to assess the quality of our results, we compared them against a
representative algorithm in the state-of-the-art (Mandel & Ellis, 2008). This
approach uses v—SVM (Schélkopf et al., 2000) as a Machine Learning algo-
rithm, included in the LibSVM library (Chang et al., 2001).

The quantitative evaluation consisted in capturing the time complexity of each
algoritm. We monitored the CPU time needed by each algorithm for training
and ranking all the tags in the dataset. Results for SVM added more evidence
that classic SVM algorithms cannot scale to large data. Our implementation,
on the other hand, scaled reasonably well for a half a million song dataset.
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Figure 3.19: Comparative evaluation of the iTMS-500K dataset, using per-tag F-—
measure. Results are reported for the rest of categories.

Several experiments were performed for qualitatively evaluating our approach,
using both local (per-tag) and global (per-song) evaluation measures. The
results showed that our models outperform Mandel & Ellis (2008) in per—
song evalations, while the latter performs slightly better in per—tag evaluation.
A clooser look at the predicted tags indicates that each model is good at
predicting different tags, belonging to the same or to different music facets.
In musical genre, Mandel & Ellis (2008) performed releatively well for house,
trance, drum and bass or reggaeton, where rhythm is more prominent. Our
k—NN model, on the other hand, was able to predict a variety of other music
genres, ranging from acoustic to electric, from relax to party or aggressive
music.

Yet, the generally low results achieved in this experiment might suggest that
the task at hand is very difficult to solve. Even though the original Last.fm tags
were cleaned and filtered, the tag frequency follows a power law distribution
(see Figure 3.15). While 82 tags are used more than 5000 times, 12314 tags
(which represents roughly the 47% of all the tags) are used less than 20 times.
The dataset also suffers from weak labeling. If a tag is not used in a song
it does not necessarily mean that this song cannot be associated with that
tag. Moreover, some tags are synonyms (e.g., vigorous and energetic) or share
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concepts (e.g., rock music and guitar playing). Standard Information Retrieval
evaluation measures, such as Precision, Recall or F—measure, cannot capture
these subtle nuances.

The following example illustrates this issue. Given the song “Wish You Well”
by artist Philipp Frankhauser. The original (filtered) Last.fm tags are:

allboutguitar (100)
allboutguitar.com (100)
blues und rock club Karlsruhe (100)

Our autotagging algorithm was able to produce the following list of predicted
tags:

rock
singer-songwriter
pop

guitar

favorites

classic rock

By listening to the song, one can perceive a blues rock song with predominant
use of guitar, which means that tags such as rock, guitar, or even singer—
songwriter can make more sense for the song, from a musicological point of
view, than the original tags. Yet, the per—song Precision, Recall and F-
measure give all a zero score. This might suggest that objective evaluation
are not the perfect way to assess the quality of an autotagging algorithm. Fu-
ture work includes a subjetive evaluation (e.g., through user surveys) of the
algorithm’s predictions, although it should be considered the impracticabillity
for such evaluation, specially for large datasets. Another alternative that can
be considered is by using the proposed annotations in a higher level task such
as music recommendation (Eck et al., 2008; Zhao et al., 2010). An additional
research problem to tackle is on the reliability of social tags. Are tags gen-
erated by collaborative effort of a community (the so—called wisdom of the
crowds) as consistent as those generated by musicologists? We address this
research question in Chapter 4.

The concept of tag similarity can be exploited using contextual information,
retrieved from the social data itself. Folksonomies tend to encompass various
groups of tags that should reflect the underlying semantic facets of the domain
including not only traditional dimensions (e.g., instrumentation), but also more
subjective ones (e.g., mood) (Sordo et al., 2010).

Figure 3.20 depicts the tag cloud of the song “Razor Face” by artist Elton John.
The tags in this case belong to more than one musical concept, thus indicating
the richness of this source. Concretely, these tags can be (manually) classified
into:
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Figure 3.20: Tag cloud of song “Razor Face” by artist Elton John.

Genre (pop, rock, classic rock), Locale (british), Time period (70s), Vocal
characteristics (male vocalists), Artist name (elton john), Artist characteristics
(singer-songwriter), Instrument (piano), and even more complex tags which
include more than one facet, such as {Instrument, Genre} (piano rock).
However, the simplicity and user-friendliness of community-based tagging im-
poses a toll: there is usually no way to explicitly relate tags with the corre-
sponding music facets. We address this research problem in Chapter 5, by
uncovering the set of semantic facets implicit to the tags of this music folk-
sonomy, and classify tags with respect to these facets. This information, if
available, can be used as an additional heuristic for the autotagging algorithm.
Learning the meaning of tags is especially helpful for improving the perfor-
mance of a music autotagger. It can also be extended to solve complementary
problems such as tag expansion or ambiguity reduction (Pan et al., 2009).

3.8. Conclusions

In this chapter, we have introduced our proposed automatic music tagging
approach. The algorithm predicts tags based on acoustic similarity, using a
labeled training dataset. That is, given a seed audio excerpt it propagates
tags from previously labeled excerpts that are acoustically similar to the given
one, which is opposed to many other approaches that learn models or discrim-
inants from the observations beforehand. This is the case of parametric and
semi-parametric methods, such as Gaussian Mixture Models (Turnbull et al.,
2008b), Boosting methods ((Bertin-Mahieux et al., 2008)), or Support Vector
Machines (Mandel & Ellis, 2008; Ness et al., 2009). In other words, our algo-
rithm propagates tags to an unlabeled audio excerpt, say s, from the k nearest
neighbors in the “acoustic space”.

Section 3.2 describes our proposed autotagging algorithm. We provided details
on the feature extraction, as well as the feature selection process that were
followed to reduce the dimension of the audio data, the learning algorithm
used, and the parameters that can be tuned to modify the performance of our
algorithm.

In order to assess the strength of the proposed autotagging algorithm, we
carried out a thorough evaluation of the proposed algorithm in the remaining
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sections (3.3, 3.4, 3.5, 3.6 and 3.7), using six datasets from different sources.

A summary of all the datasets used through this chapter for evaluation is
illustrated in Table 3.37.

Table 3.37: Summary of the different datasets used for evaluation.

Dataset Tag source  #Tracks #Tags Categ./Song Tags/Song
Magnatune-5K ~ Web/ 5481 29 N/A w=3.06
(Section 3.3) Expert oc=113
Freesound.org  Social tags 260 399 N/A w=1.76
(Section 3.4) =043
CALS500 Survey 500 174 n=585  u=26.04
(Section 3.5) oc=1.13 oc=2>5.74
MajorMiner Web game 2300 45 w=2.23 uw=4.04
(Section 3.6) o =0.383 o =212
Mood Tags Social tags/ 3469 18 — —
(Section 3.6) Expert — —
iTMS-500K Social Tags 546386 26324 N/A W ="5.52
(Section 3.7) oc=2>5.14

Our objective in the first experiment (Section 3.3) was to test how the con-
tent—based similarity can propagate labels. For styles, we showed that with a
40% annotated collection, we can reach a 78% (40%+38%) annotated collection
with a recall greater than 0.4, only using content—based similarity. In the case
of moods, with a 30% annotated collection we can automatically propagate up
to 65% (30% +35%). These results are quite encouraging as content—based
similarity can propagate styles and moods in a surprisingly effective manner.
Of course there are limitations for some concepts that have to be clearly en-
coded in the music for the content—based propagation to work.

As for the experiment with sound effects (Section 3.4), using the Freesound.org
database, we first analyzed the tagging behavior of users in the Freesound.org
community, where we detected some well-known problems in collaborative tag-
ging, such as polysemy, synonymy, and the scarcity of the existing annotations.
Then, we selected a subset of the sounds that are rarely tagged, and proposed
a content—based audio similarity to automatically extend these annotations
(autotagging). Since the sounds in the test set contained only one or two rare
tags, neither precision nor recall were applicable, so we used human assess-
ment to evaluate the results. The reported results show that 77% of the test
collection were enhanced using the recommended tags, with a high agreement
among the subjects. Although our approach is prone to popular tags, once
the sounds are autotagged it allows the users to get a higher recall of those
scarcely annotated sounds when doing a keyword—based search.
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The aim of the third experiment (Section 3.5) was to first ascertain the pa-
rameter estimation for our proposed k—NN autotagging algorithm, and then
to present a thorough evaluation of this algorithm for music annotation and
retrieval, using the CAL500 dataset (Turnbull et al., 2008b). A qualitative
statistical test was performed for a wide range of parameter values, in order
to tune the proposed algorithm. Table 3.17 illustrates the best configuration
found for both music annotation and retrieval. That is, with k£ = 18, built on
top of a PCA reduced feature representation that keeps 75% of the original
data variance, using the highlevel descriptors mentioned in Section 3.2.1 and
a Euclidean distance measure. Quantitative results on this dataset, however,
revealed that using 18-NN for music annotation, although improving per—song
evaluation, resulted in a lower tag coverage. In order to tackle this problem,
we presented a modification of the algorithm that takes into account the tag
modelization from the songs. We call this approach class—based distance clas-
sifier (CBDC). Based on centroid-based classifiers from (Han & Karypis, 2000;
Kim et al., 2006; Park et al., 2003), this approach computes a centroid (cluster)
for each class in the Ground Truth. A song is annotated based on a similarity
distance between the song d-dimensional feature vector and the tag clusters.
Four different distance measures were tested for the CBDC model, namely Eu-
clidean, cosine, weighted Euclidean and Mahalanobis distance. The latter two
distances can be regarded as a single Gaussian modelization of each tag. Ex-
perimental results showed that Euclidean distance had a larger tag coverage,
and consequently it achieved better per—tag precision and recall. Moreover,
additional experiments using both per—song and per—tag evaluation measures
revealed that many autotagging models perform well either in per—song or per—
tag evaluation, not both. Further evaluation of individual tags, depicted the
particularities of each algorithm. For instance, our CBDC model performed
comparatively well for emotions that lay on the arousal dimension — emotions
such as angry, boring, calm, relax, exciting, etc.— whilst not so well for tags in
the valence dimension — specially for happy, sad and their negative examples.
These results confirm the findings of Laurier (2011); Yang & Chen (2011) for
the specific task of mood classification from audio, where happy songs — which
lay on the valence dimension — were the most difficult to classify.

Another purpose of using a naive model such as CBDC was to emphasize
the evidence that a special care must be taken in selecting and capturing a
more complete audio—related information, in order to build successful models
for automatic tagging of music. In other words, the problem of audio tag
classification (and other types of classification as well) cannot be addressed by
focusing only on how algorithms learn, but also by understanding what are
they learning (Marques et al., 2011).

The fourth experiment (Section 3.6) presented a detailed evaluation of our sub-
mission to the MIREX 2011 evaluation contest, for the specific task of Audio
Tag Classification. First, the two datasets used for evaluation, namely Ma-
jorMiner and MIREX’09 Mood Tags dataset, were introduced. Then, results



3.8. CONCLUSIONS 111

were reported for binary relevance (classification) and affinity estimation of
tags. The evaluation was performed on a 3—fold cross—validation basis, using
both per—song and per—tag measures. Our algorithm achieved a good overall
rank (between second and fourth) in almost all the experimental results. It
is worth mentioning the high recall achieved in the binary relevance (classi-
fication) evaluation. We believe that recall is slightly more important than
precision in the audio tag classification task. This is explained by the fact that
music collections for autotagging are usually weakly labeled. That is to say,
the absence of a particular tag annotation for a given excerpt does not neces-
sarily mean that the tag is not relevant to the excerpt. Moreover, proposed
results with high recall can be filtered out in a post-processing step using addi-
tional information, e.g., contextual information, which can improve precision
significantly.

Finally, in the last experiment, our autotagging algorithm was evaluated with a
very large dataset, both quantitatively and qualitatively. In order to assess the
quality of our results, we compared them against a representative algorithm
in the state-of-the-art (Mandel & Ellis, 2008). The quantitative evaluation
consisted in capturing the time complexity of each algoritm, by iteratively
incrementing the dataset from a small subset of songs to the whole dataset.
We monitored the CPU time needed by each algorithm for training and ranking
all the tags in the dataset. Results for SVM added more evidence that classic
SVM algorithms cannot scale to large data. Our implementation, on the other
hand, scaled reasonably well for a half a million song dataset.

Regarding the qualitative evaluation, several evaluations were performed, using
both per—tag and per—song evaluation measures. The results showed that our
models outperform Mandel & Ellis (2008) in per—song evalations, while the
latter performs slightly better in per-tag evaluation. A clooser look at the
predicted tags indicated that each model is good at predicting different tags,
belonging to the same or to different music facets. In musical genre, Mandel
& Ellis (2008) performed releatively well for house, trance, drum and bass or
reggaeton, where rhythm is more prominent. Our £&~NN model, on the other
hand, was able to predict a variety of other music genres, ranging from acoustic
to electric, from relax to party or aggressive music.

All the datasets, with their corresponding editorial and social metadata, are
available online at http://www.dtic.upf.edu/ "msordo/thesis/.

3.8.1. Contributions

The following is a list of the contributions made in this chapter.

1. An automatic, memory—based, music tagging algorithm that uses acous-
tic similarity and nearest neighbor classification to propagate labels among
songs. The algorithm has the following advantages:
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a) It avoids the design and training of each possible tag, specially for
datasets based on folksonomies, where there are thousands of tags.

b) From the industry perspective, it shows to be scalable in both mem-
ory and CPU time consumption, for datasets in the order of tens
of thousands of tags and hundreds of thousands of music excerpts
(Section 3.7)

2. An exhaustive evaluation of the autotagging algorithm using multiple
datasets, for both music and sound effects.

a) It compares the experimental results with several approaches that
are representative of the state of the art of music autotagging (Sec-
tions 3.5, 3.6 and 3.7)

b) It reports and emphasizes the importance and granularity level of
different evaluation measures, local or global, for the task of music
autotagging (Sections 3.5, 3.6 and 3.7).

c¢) Following Aucouturier & Pachet (2004), a set of statistical tests were
used for parameter tunning of an audio tag classifier. The outcome
of such tests was used throughout Sections 3.5, 3.6 and 3.7 to check
the validity of the chosen parameters, and the implications in the
achieved performances, both in per—song and per—word evaluations.

d) Experimental results reveal that a simple model, combined with
an audio feature representation that covers a variety of music con-
cepts (including timbre, tonal, temporal and higher level features,
such as moods, styles, etc.) can perform as well as, or better than
many state of the art approaches. Interestingly, many of the afore-
mentioned state of the art approaches use more complex, time and
resource consuming algorithms, though they rely only in timbre in-
formation. These results are an additional evidence that a special
care must be taken in selecting and capturing a more complete and
descriptive audio-related information, in order to build successful
models for automatic tagging of music.

e) In order to add more support to the findings in (b), (c) and (d), an-
other simple autotagging model, called CBDC, was proposed (Sec-
tion 3.5). The CBDC approach (which stands for Class—Based Dis-
tance Classifier) computes a cluster for each class in the Ground
Truth. A song is annotated based on a similarity distance between
the song feature vector and the tag clusters.

f) Some additional issues with autotagging were also analyzed, con-
cretely data scarcity, tag correlation (similarity, polysemy) and the
impossibility of objective evaluation methods to capture these sub-
tle nuances.
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3.8.2. Limitations and future work

In general, the low results in audio tag classification? imply that the task at
hand is very hard to solve. In this chapter, the results were especially low with
a dataset annotated with social tags (Section 3.7). The following subsections
highlight the common limitations of current autotagging algorithms, some spe-
cific limitations of our proposed algorithm, and finally draw some directions
for future work.

Common limitations of autotagging algorithms

On the datasets. Ground Truth datasets for autotagging are usually unbal-
anced. While some few tags are frequently used, many tags are barely
used, which further complicates the problem of learning all the tags in
the dataset vocabulary. Datasets are also weakly labeled, the absence of
a particular tag annotation for a given excerpt does not necessarily mean
that the tag is not relevant to the excerpt. For the same reason, avail-
able datasets are often noisy and inconsistent, specially those relying on
social tags. Morevover, the nature and source of tags to be used will also
depend on the desired application. For example, acoustically objetive
tags (Tingle et al., 2010; Torres et al., 2007) can be very useful for high
level tasks such as track or artist similarity. Social tags, on the other
hand, can be specially valuable for recommending music (e.g., music to
listen to while at a party). An open question then is: can we rely on tags
obtained from social communities, the so—called wisdom of crowds? We
address this problem in Chapter 4.

On the audio features. Most of the state of the art autotagging algorithms
follow the bag of frames approach (Aucouturier et al., 2007a). This tech-
nique considers the audio signal in a blind way. The audio features are
captured on a short-time frame-by-frame basis, using half-overlapping
windows of short duration (typically 46ms—50ms). These features are
then aggregated to a list or “bag”. Finally, a small subset, or the aver-
age of this bag of features, is used to train a classifier, using a database
of labeled audio excerpts (also known as training dataset). The bag of
frames approach has been used in many classification tasks within the
MIR field, such as genre (McKay & Fujinaga, 2004; Tzanetakis & Cook,
2002), mood (Laurier, 2011), artist (Mandel & Ellis, 2008) or tag classifi-
cation (Bertin-Mahieux et al., 2008; Hoffman et al., 2009; Turnbull et al.,
2008b; 7). However, this approach presents some limitations when the
problem to be solved is hard (Aucouturier et al., 2007a). For instance,
the averaging or the random subsampling process imply the loose of in-
formation about temporal dynamics of the audio signal (Aucouturier &

3%tate of the art reports per-song F-measure values ~ 0.5 and per-tag F-measure of
~ 0.3 in CAL500 dataset and MIREX audio tag classification, for instance.
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Defreville, 2009; Seyerlehner, 2010). An alternative is to analyze the au-
dio signal block by block (such as the block level features in (Seyerlehner
et al., 2010)), thus capturing some local temporal information from the
signal itself.

the evaluation. Several experiments in this thesis have revealed that
there is no unique way to assess the quality of autotagging algorithms.
Some algorithms perform well in per—song evaluations, however they fail
to predict all the tags, especially those that were less frequently used,
hence resulting in worse per—tag evaluations. Other algorithms are, a
priori, more robust at learning models for all the tags and predict most of
the tags, which results in higher per—tag but lower per—song performance.
These evaluations are, however, very generic, and do not uncover the
particularities of each autotagging system.

the tag models. Most music autotagging algorithms use the same set
of features for training all the tags in the ground truth dataset. Marques
et al. (2011) suggest that some tags might benefit from short time audio
descriptors, while others only from global features.

the two stage algorithms. Two stage algorithms use the output of
a content—based autotagger as input feature vectors to model each tag
in the vocabulary. The rationale behind two—stage algorithms is that
they explicitly tackle the problem of tag correlation (Aucouturier et al.,
2007b). Results in (Coviello et al., 2011; Ness et al., 2009) show an
improvement in classification performance. However the gain of this al-
gorithms in the MIREX evaluation campaign (IMIRSEL, 2011a) is not
very significant. In that sense, are we actually reaching a “glass ceil-
ing” (Aucouturier & Pachet, 2004) for audio tag classification, even with
novel algorithms that take into account correlations between higher level
concepts? Marques et al. (2011) and Coviello et al. (2010) state that
some tags might benefit from these two stage algorithms, while some
tags won’t.

the tag facets. When using social tags, an autotagging algorithm has
no explicit way to relate tags with their corresponding facets (or con-
cepts, or categories). For example, given the tag Bulgarian hip—hop, the
autotagging algorithm will not have any clue that this tag corresponds to
a music genre (hip—hop) from a specific geographic location (Bulgaria).
Is it possible to capture this kind of information, in order to help to im-
prove the autotagging algorithm in terms of precision? We address this
issue in Chapter 5.
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Specific limitations of our proposed autotagging algorithm

On the k—NN algorithm. The Weighted vote k—NN suffers from popularity
bias, specially when £ is large and /or the voting threshold is more restric-
tive (see Section 3.2.4 for more details). Tags that are more frequent are
more prone to be correctly proposed than less frequent ones. However,
the effects of this popularity will depend on the desired application. For
example, a weighted vote 18—NN model might predict less tags, but can
still be very useful for music search, specially for those audio excerpts
that were not annotated or weakly annotated. The 2-NN model (or the
CBDC model), on the other hand, might be more valuable for music
similarity and recommendation (Eck et al., 2008).

On the dimension reduction. The Principal component analysis (PCA)
technique assumes that data is normally distributed (Jolliffe, 2002), but
this is not always the case. Empirical results have shown that not all
the acoustic features that are used in this thesis follow a Gaussian dis-
tribution. Many other audio features ensue, for example, an exponential
distribution. Examples of features with a Gaussian distribution include
low level features such as bark bands, skewness, pitch salience, spectral
centroid, spectral complexity, spectral decrease, spectral energy, spectral
spread. On the other hand, low level features average loudness, disso-
nance, spectral flatness db spectral kurtosis, and rhythm first and second
peak weights follow an exponential distribution. These distributions were
computed using an internal test database. For more information about
the features’ distributions, please refer to (Freesound.org, 2011). Future
work includes using generalized PCA, which can work also for exponen-
tial distributions (Collins et al., 2001). We plan to use other alternatives
for dimension reduction, for instance Non-negative Matrix Factorization
or Relevant Component Analysis (RCA). The latter can help to keep rel-
evant variability only, and to remove irrelevant variability (Shental et al.,
2006).

Future work

There are many avenues for future work in music autotagging. Some of these
avenues include:

Cross—collection. Traditional research in MIR related Machine Learning
tasks consists of using the same Ground Truth dataset for learning mod-
els and testing their quality (by performing any validation method). Mar-
ques et al. (2011) remark that using a dataset for training and another
different dataset for testing negatively influences the evaluation results,
and that special care must be taken to understand what are we learning.
An additional line of research may include the use of different datasets
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for training. A high level autotagger can be built by aggregating several
autotaggers trained with a different dataset, as it has been recently ad-
dressed by Ellis et al. (2011). In addition, each dataset can be defined
for a specific music concept (moods, genres, usage, etc.), or alternatively
with overlapping concepts which can help to reinforce the classification
or misclassification of an audio excerpt. The main drawback of this latter
approach is that datasets from different sources tend to share few con-
cepts or use different words for expressing the same concepts. Further
work on tag similarity should help overcome these shortcomings.

Evaluation. Future work includes a subjetive evaluation of the algorithm

predictions, although it should be considered the current impracticabil-
lity for such evaluation, especially for large datasets. Another alternative
that can be considered is using the proposed annotations in a higher level
task such as music recommendation (Eck et al., 2008; Zhao et al., 2010).

Features. Future work includes selecting features that discriminate each

concept separately, or uncovering features that are common for a com-
bination of concepts. The latter approach can be helpful for solving
the problem of tag correlation. Further work should be devoted also to
the way features are aggregated, beyond the classical bag of frames ap-
proach (Aucouturier et al., 2007a; Seyerlehner, 2010; Seyerlehner et al.,
2010).

Hybrid approach. A multi-faceted approach using expert based classifica-

tions, dynamic associations derived from the community driven annota-
tions, and content—based analysis would improve audio tag classification.
Some work has already been done for combining such sources of informa-
tion (Barrington et al., 2009; Knees et al., 2009), with promising results.
Future work can be carried out regarding how to effectively combine these
diverse sources of information.



Exploring the Semantic Space:
Folksonomies and Taxonomies

Never underestimate the power of a million amateurs with keys to the
factory.

—CHRIS ANDERSON (2006)

4.1. Introduction

Tags are keywords, category names, or metadata that describe web assets and
multimedia content. Tags can be selected either from a controlled vocabulary
(e.g., a taxonomy), or just by entering a “free text” with no restrictions. When
free text tags are introduced by a large community of users to describe the
content, they are known as social tags (Lamere, 2008).

For instance, users of the social music website Last.fm! tagged the artist Elton
John as “70s”, “80s”, “pop”, “classic-rock”, “singer-songwriter”, and “british”,
among others. The combination of all the annotations provided by a com-
munity leads to the emergence of a large body of domain-specific knowledge,
usually called folksonomy.

In Chapter 3, we presented an evaluation of a large music collection anno-
tated with social tags. The obtained results (which achieve state of the art
results) were not outstanding —mainly due to the remarkable imbalances, weak
tag labelings and inconsistencies in the data. Nevertheless, the experimental
results also revealed the limitations of the proposed evaluation measures. Ob-
jective measures are not capturing all the subtle details of tag correlations,
and also depend on the annotated ground truth. Hence, in this chapter, we
try to answer the following research question: can a music autotagging algo-
rithm rely on social tags as a Gold Standard? In other words, can we build
data models from music folksonomies that can be useful for annotating music?

"http://www.last.fm/
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Folksonomies have an extensive tag coverage, while being updated regularly;
whereas taxonomies have a more precise and structured vocabulary. In order
to explore this, we analyze whether there is any agreement between a group of
music experts and a large community of users, when defining a set of musical
concepts, and their relationships. We focus on musical genres and moods, since
they are two important aspects when defining music. Also they have been used
extensively for the task of music classification, and there exists a lot of expert
and social data on these two facets.

4.2. Musical genres

Music genres are connected to emotional, cultural and social aspects, and all
of them influence our music understanding. The combination of these factors
produce a personal organization of music which is, somehow, the basis for
(human) musical genre classification. Indeed, musical genres have different
meanings for different people, communities, and countries (Fabbri, 1982).

The use of musical genres has been deeply discussed by the MIR community.
A good starting point is the review by McKay (Mckay & Fujinaga, 2006).
The authors suggested that musical genres are an inconsistent way to organize
music. Yet, musical genres remain a very effective way to describe and tag
artists.

Broadly speaking, there are two complementary approaches when defining a
set of genre labels: (i) the definition of a controlled vocabulary by a group
of experts or musicologists, and (7i) the collaborative effort of a community
(social tagging). The goal of the former approach is the creation of a list of
terms, organised in a hierarchy. A hierarchy includes the relationships among
the terms; such as hyponymy. The latter method, social tagging, is a less for-
mal bottom—up approach, where the set of terms emerge during the (manual)
annotation process. The output of this approach is called folksonomy.

The aim of this section is, then, to study the relationships between these two
approaches. Concretely, we want to study whether the controlled vocabulary
defined by a group of experts coincide with the tag annotations of a large
community.

Section 4.2.1 introduces the pros and cons of expert—based taxonomies and
music folksonomies. To compare the similarities between both approaches, we
gathered data from two different websites: a musical genre taxonomy from
MP3.com, and a large dataset of artists’ tags gathered from the last.fm com-
munity. Section 4.2.2 presents these datasets. The experimental results, pre-
sented in Section 4.2.3, are conducted in order to analyze the relationships
between the genres used in the MPS3.com taxonomy, and the genre-tags anno-
tated in the artist dataset from last.fm. Finally, Section 4.2.4 concludes and
summarizes the main findings.
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R&B-Soul-Urban,

Blaxploitation Contemporary-R&B. New-Jack-swing

Figure 4.1: Partial view of the MP3.com taxonomy, starting with the seed genre
RE&B-Soul-Urban.

4.2.1. Musical genres classification
Expert—based taxonomies

Depending on the application, taxonomies dealing with musical genres can
be divided into different groups (Pachet & Cazaly, 2000): Music industry
taxonomies, Internet taxonomies, and specific taxonomies.

Music industry taxonomies are created by recording companies and CD
stores (e.g., RCA, Fnac, Virgin, etc.). The goal of these taxonomies is to guide
the consumer to a specific CD or track in the shop. They usually use four
different hierarchical levels: (1) Global music categories, (2) Sub-categories,
(3) Artists (usually in alphabetical order), and (4) Album (if available).
Internet taxonomies are also created under commercial criteria. They are
slightly different from the music industry taxonomies because of the multiple
relationships that can be established between authors, albums, etc. The main
property is that music is not exposed in a physical space (shelves). Obviously,
exploiting the relationships among the items allows the end—user a richer nav-
igation and personalization of the catalogue.

Furthermore, (Pachet & Cazaly, 2000) shows that there is little consensus
among the experts when defining a taxonomy. As an example, using three
different musical genre taxonomies (AllMusicGuide, Amazon, and MP3.com)
only 70 terms from more than 1500 were common in all the taxonomies.

Music Folksonomies

Since 2004, the explosion of Web 2.0 (e.g., tagging, blogging, user—generated
content, etc.) questioned the usefulness of controlled vocabularies (Shirky,
2005). Internet sites with a strong social component, like Last.fm, allow users
to tag music according to their own criteria. This scenario made the world of
taxonomies even more complex.

Nowadays, users can organize their music collection using personal tags like
late night, while driving, etc. As mentioned earlier, new strategies for music
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classification have emerged. Folksonomies exploit user—generated classification
through a bottom—up approach (Scaringella et al., 2006).

On the one hand, this non-hierarchical approach allows users to organize their
music with a better confidence. On the other hand, it creates difficulties for the
design and maintenance of expert—based taxonomies, as new terms may emerge
from time to time. Thus, in this scenario, up to date expert—based taxonomies
become more and more difficult. Yet, it seems reasonable to analyze whether
the genres derived from the annotation process share some patterns with the
experts’ controlled vocabulary.

4.2.2. Datasets
Expert—based taxonomy from MP3.com

The MPS.com dataset was gathered during September 2005. Table 4.1 shows
the relevant information about the genre taxonomy. Experts and musicologists
from MP3.com identified 749 genres, and organized them in 13 different com-
ponents, or in other words, the taxonomy has 13 seed-genres. The maximum
depth is 6 levels, however, in most of the cases each component has 3 levels
(plus the seed—genre at the top). Related with the staticness of this vocabulary,
as of 2008 it remains the same (only a few more genres were added).

Table 4.1: Dataset gathered during September 2005 from the MP3.com expert—based
taxonomy. In parenthesis it is shown the number of matched genres in the folksonomy.

Total number of genres | 749 (511)
Levels 7
Seed—genres 13

Num. genres at level 1 | 66

Num. genres at level 2 | 347
Num. genres at level 3 | 8

Num. genres at level 4 | 48

Num. genres at level 5 | 34

Num. genres at level 6 | 8

A partial view of the MP3.com taxonomy is depicted in Figure 4.1. It shows
a component of the taxonomy. The seed genre is R&B-Soul-Urban, and the
component consists of 3 different levels. A directed edge, e.g., Urban — New-
Jack-Swing, represents the parent genre (Urban) and its subgenre(s), New-
Jack-Swing.

Folksonomy from the last.frn community

A large dataset of artists’ tags was gathered from the last.fm community during
December 2007. Table 4.2 shows some basic information about the dataset.
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It is interesting to note that from the average number of tags per artist, 39%
correspond to matched genres from the expert taxonomy, whilst the other
61% are distributed among other kinds of tags; including unmatched genres,
decades, instruments, moods, locations, etc. For example, the artist Jade has
the following tags (with their corresponding last.fm normalized weight):

Jade: urban(100), rnb(81), 90s(68),
new jack swing(55), illinois(50),
r and b(36),

Table 4.2: Dataset gathered from the last.fm community during December, 2007.

Num. artists 137,791
Num. distinct tags 90,078
Avg. tags per artist 11.95
Avg. MP3.com genres per artist | 4.68
Mapped MP3.com genres 511

Nevertheless, since the experiments aim to analyze the agreement between
expert genres and genre-tags, we need to match artists’ tags with the expert
defined genres.

Matching MP3.com genres and last.fm artist tags. In order to match
those tags from the folksonomy that correspond to a genre in the expert tax-
onomy, a two-step process is followed:

= Compute a normalized form for all the folksonomy tags and expert genres,
by:

e converting them into lowercase,

e unifying separators to a single common separator

e treating some special characters, such as “&”, which can be expanded
to “and” and “n”.

= Compute a string matching between the normalized folksonomy tags and
expert genres.

The former step is inspired from (Geleijnse et al., 2007). For the latter, a string
matching algorithm by Ratcliff and Metzener (Ratcliff & Metzener, 1988) is
used to get all possible matches of a tag against a genre from the taxonomy.
The algorithm is based on the following measure:

2 - match(sy, s2)

sim(s1, 52) = len(s1) + len(s2) (41)
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where match(si, s2) represents the sum of the lengths of all the matched sub-
strings between s; and so. The similarity value goes from 0 to 1. Values
close to 0 mean that the two strings are very dissimilar, and a 1 value means
that the strings are identical. Deciding which is the threshold for identifying
“nearly-identical” words is not trivial. Yet, (Schuth et al., 2007) shows that a
threshold of 0.85 gives the best results (the highest F-measure).

The following example shows artist Jade’s tags that are mapped to an MPS3.com
genre (90s and illinois tags disappear, and rnb and r and b are merged):

Jade: Urban(100), R&B(100),
New-Jack-Swing(55)

Once the matching process is complete, the next step is to analyze whether
the tagging behavior of the community shares any resemblance with the expert
taxonomy. The following section presents the experimental results.

4.2.3. Experimental results

In order to measure the agreement between expert genres and the genre—tags
defined by the wisdom of crowds, we perform several experiments. Beforehand,
we have to compute the “distances” among genres. The next subsection ex-
plains the process of computing distances in the expert taxonomy (using the
shortest path between two genres), and the tag distances in the folksonomy
(by means of a classic Information Retrieval technique, called Latent Semantic
Analysis).

The experiments are divided in two main groups. The first set of experiments
deal with measuring the agreement at component level (a seed—genre and its
subgenres). That is, to validate whether this taxonomy partition (13 compo-
nents) correspond to the view of the community. Section 4.2.3 present these
experiments. The other experiment focuses on the hierarchical structure (lev-
els) of the expert taxonomy. In this experiment the goal is to reconstruct the
taxonomy based on the genre distances from the folksonomy (Section 4.2.3).

Computing genre distances

Expert taxonomy. To compute genre distances in the expert taxonomy we
simply choose the shortest path between two genres, as an analogy with the
number of mouse clicks to reach one genre from a given one (e.g., distance
between genres New-Jack-Swing and Soul is 3, according to Figure 4.1).
Since the taxonomy contains 13 seed genres, a virtual root node is added at
the top, thus making the graph fully connected. This way we can compute the
path between any genre in the graph.
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Folksonomy. Latent Semantic Analysis (LSA), plus cosine similarity, is used
as a measure of distance among genres within the folksonomy. LSA assumes a
latent semantic structure that lies underneath the randomness of word choice
and spelling in “noisy” datasets (Bellegarda, Sept. 2005), such as the one we
are using. A significant paper that applies LSA in the music domain is (Levy
& Sandler, 2007). The authors show the usefulness of social tags —in a low 102
space— to several relevant MIR problems, such as music similarity and mood
analysis. LSA makes use of algebraic techniques such as Singular Value De-
composition (SVD) to reduce the dimensionality of the Artist—-Genres matrix.
After this step, either artist or genre similarity can be computed using a cosine
distance. Moreover, Information Retrieval literature (Bellegarda, Sept. 2005;
Papadimitriou et al., 1998) states that, after raw data has been mapped into
this latent semantic space, topic (in our case, genre) separability is improved.
For each artist we create a vector based on their (last.fm normalized) genre-
tags’ frequencies. Once the matrix is decomposed by columns, using SVD with
50 dimensions, we obtain genre similarities. For example, the closest genres to
Heavy Metal in the semantic space are Power Metal, British Metal and Speed
Metal, all with a similarity value above 0.6. On the other hand, similarity
between Heavy Metal and Pop yields a near—zero value.

Agreement between expert and community genres

To measure the agreement between expert defined genre components and com-
munity genres we perform two experiments. The first one carries out a coarse—
grained similarity (at genre component level), where the main goal is to sep-
arate the expert genre clusters according to the genre distances in the folk-
sonomy. The second experiment performs a fine-grained similarity (at genre
node level) in order to see the correlations between the genre distance in the
taxonomy and the distance in the LSA space derived from the folksonomy.

Coarse-grained similarity. The first experiment aims to check how sepa-
rable are the expert defined genre components according to the genre distances
in the folksonomy (as defined earlier in Section 4.2.3). The experiment is per-
formed in two steps: (i) compute the LSA cosine similarity among all the
subgenres within a component (intra—component similarity); and (i7) compute
the LSA cosine similarity among components, using the centroid of each com-
ponent (inter—component similarity).
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Figure 4.2: Intra—component coarse grained similarity.

The results for intra—component similarity are presented in Figure 4.2. The
most correlated components are Bluegrass, Hip-Hop and Blues. Note however
that the Bluegrass component has only 3 subgenres mapped in our last.fm
dataset. The components with less community—expert agreement are Electronic-
Dance and Rock-Pop. For the latter genre, it is worth noting that it is an
ill-defined seed-genre, and it is also the one including the highest number of
subgenres. Some of these Rock-Pop subgenres are so eclectic that they could
belong to more than one component. For instance, Obscuro subgenre is de-
fined in Allmusic? as “...a nebulous category that encompasses the weird, the
puzzling, the ill-conceived, the unclassifiable, the musical territory you never
dreamed existed”.

Regarding the inter—component similarity, we proceed as follows: we compute
the centroid vector of each component, and then compare it with the remaining
components’ centroids. The results are presented in Table 4.3. Note that the
results in the diagonal represent the intra—components similarity. For each row,
we mark in bold the highest value. Subgenres of Bluegrass, Hip-Hop and Blues,

2http://www.allmusic.com/
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as it has been observed for the intra—component case, are highly correlated in
the semantic space. Thus, they are the ones with more agreement between the
community and the experts classification. However, only Hip-Hop and Blues
are clearly distinguishable from the rest. On the other hand, according to
the community, Bluegrass and Country genres are very similar. Indeed, other
available internet taxonomies, such as Amazon or Allmusic, include Bluegrass
as a subgenre of Country. Similarly, Gospel-Spiritual genre is merged into
RE&B-Soul-Urban.

Fine-grained similarity. In this experiment we focus on the genre level
(instead of components). The hypothesis is that genres closer in the semantic
space of the folksonomy should also be closer in the expert taxonomy, and
vice versa. To validate this formulation a one-way Anova is performed. The
independent groups are considered the path distances in the expert taxonomy
(ranging from 1..10, the diameter of the taxonomy), whilst the dependent
variable is the LSA cosine distance.

Figure 4.3 depicts the box—and—whisker plot. Indeed, a large value of the F-
statistic as well as a p-value smaller than 5% corroborates the hypothesis.
Furthermore, to determine the distances that are statistically significant we
perform the Tukey’s pairwise comparisons test. The results show that path
distances 1 and 2 are significant among the rest of the distances, at 95% family—
wise confidence level.

Reconstruction of the taxonomy from the folksonomy

In this experiment we try to reconstruct the taxonomy from the folksonomy’s
inferred semantic structure (LSA cosine distance). We follow a bottom—up
approach, starting from the components’ leaves. At each step of the process,
we record the differences between the inferred and original taxonomies in order
to have a similarity metric between them.

The reconstruction of the expert taxonomy from the folksonomy is based on
the correct selection of a parent genre, according to the LSA cosine similarity
derived from the folksonomy.

The metrics used are: mean reciprocal rank, and root hit. The mean reciprocal
rank (M RR) is a statistic widely used in information retrieval. The reciprocal
rank (RR) is defined as the inverse of the correct answer’s rank, RR(tag) =
1/ranky,q. For instance, given the New-Jack-Swing genre, see Figure 4.4, the
closest genre parents (according to the LSA cosine distance) are: (1) Ré&B, (2)
Urban, (3) Traditional-Gospel, etc. The correct parent genre, Urban, is found
in the second position, thus RR(New — Jack— Swing) = % = 0.5. Furthermore
we compute whether the top-1 parent belongs to the same component as the
child genre (root hit). In this example, it is a root hit because both the genre
New-Jack—-Swing and the selected (wrong) parent, Ré/B, belong to the same
component, R&B-Soul-Urban.
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Figure 4.3: Box—and—whisker plot depicting the correlation between genre path
distances in the taxonomy and semantic distance from the community (LSA cosine
distance). The Anova experiment (p — value < 0.05) shows that there is a statistical
significance among path distances.
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Figure 4.4: Reconstruction of the expert taxonomy from the folksonomy. Selection
of parent is made according to the LSA cosine similarity derived from the folksonomy.

Table 4.4 shows the results for each seed—genre. Bluegrass’ perfect hit rate
should be ignored, as the component has only 3 subgenres mapped. The lowest
MRR is in Rock—Pop genre, which is also the largest (135 genres), and least
cohesive component (lowest inter-genre similarity, see Table 4.3). Hip—Hop, on
the other hand, is a highly cohesive component with a very high MRR. Finally,
a lower MRR in Folk and World-Reggae could be interpreted as a consequence
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Table 4.4: Expert matching with Last.fm data.

Seed-genre (component size) Root Hits (%) MRR

Folk (22) 36.3 0.447
Bluegrass (3) 100 1.000
Country (35) 85.8 0.636
Electronic-Dance (36) 30.6 0.391
New-Age (5) 40.0 0.700
Rock-Pop (135) 48.2 0.295
Jazz (83) 83.2 0.638
Hip-Hop (22) 81.8 0.894
R&B-Soul-Urban (26) 75.4 0.694
Gospel-Spiritual (7) 38.6 0.558
Vocal-Easy-Listening (11) 27.3 0.446
Blues (43) 81.4 0.455
World-Reggae (83) 53.0 0.389
Weighted Avg. (511) 60.4 0.478

of the taxonomy being too geographically biased. Bluegrass and Country are
seed—genres, even though, as discussed in Section 4.2.3, the folksonomy does
not differentiate them clearly; at the same time, disparate genres of all kinds
and from all over the world are to be considered sub—genres of Folk and World—
Reggae.

4.2.4. Conclusions

This section presented some interesting findings around musical genres. First
of all, the consensus to create a universal taxonomy seems unfeasible. While
expert taxonomies are useful for cataloguing and hierarchical browsing, the
flat view of folksonomies allows better organization and access of a personal
collection.

We presented three different experiments to analyze the agreement between
expert—based controlled vocabulary and bottom—up folksonomies. The first
two experiments focused on measuring the agreement between genres from the
folksonomy and expert genres. A third experiment emphasized the hierarchical
structure of a taxonomy, but using information from a folksonomy. In all the
experiments the conclusions were the same: some genres are clearly defined
both by the experts and the wisdom of crowds, reaching a high agreement
between these two views, while it is difficult to get a common consensus of the
meaning of other genres.

All in all, experts, wisdom of crowds, and machines® agree in the classification

3See the results of MIREX’07 in http://www.music-ir.org/mirex/2007/index.php/
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and cohesion of some genres (e.g., Blues, Hip-Hop), and clearly disagree in oth-
ers (e.g., Rock). A musical genre multi-faceted approach using expert based
classifications, dynamic associations derived from the community driven anno-
tations, and content—based analysis would improve genre classification, as well
as other relevant MIR tasks such as music similarity or music recommendation.

4.3. Moods

Music classification by mood? recently emerged as a topic of interest in the
Music Information Retrieval (MIR) community. The first task to tackle this
problem is to find a relevant representation of mood. In this work, we study
mood representations with a bottom—up approach, from a community point of
view.

Several works have shown a potential to model mood in music (like (Laurier
et al., 2009a; Li & Ogihara, 2003; Yang et al., 2008) , see (Laurier & Herrera,
2009) for an extensive review). Although this task is quite complex, satisfying
results can be achieved, especially if we concentrate on the mood expressed by
the music rather than the mood induced (Laurier & Herrera, 2009). However,
almost every work differs in the way that it represents emotions. Similarly to
psychological studies, there is no real agreement on a common model. Com-
paring these different techniques is a very arduous task. With the objective
to evaluate several algorithms within the same framework, MIREX (Music In-
formation Retrieval Evaluation eXchange) (Downie, 2008) organized a task on
this topic for the first time in 2007. To do so, it was decided to frame the
problem into a classification task with 5 mutually exclusive categories. How-
ever, it was shown that these clusters might not be optimal as we suspect some
semantic overlap between categories (Hu et al., 2008). In a nutshell, finding
the right mood representation is complex.

In this study, we want to address this problem using data collected in an "ev-
eryday life" context (not in controlled laboratory settings like in psychological
studies). From this data, we want to create a semantic space for mood. In
(Sordo et al., 2008), the authors studied the agreement between experts and a
community (also based on last.fm tags) for genre classification. Levy in (Levy
& Sandler, 2007), studied how tags can be used for genre and artist similarity
and proposed a visualization of certain words in an emotion space. Both stud-
ies inspired our approach of using social tags to compare the semantics of the
wisdom of crowds with expert knowledge.

The goal of this section is to create a semantic mood space where we can rep-
resent mood and compare it with existing representations. There are two main
motivations for this study. First we aim to verify if the knowledge extracted

Audio_Genre_Classification_Results.
“In order to simplify the terminology, we will use the words emotion and mood indepen-
dently for the same meaning: a particular feeling characterizing a state of mind.
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Table 4.5: Clusters of mood adjectives used in the MIREX Audio Mood Classification
task.

Clusters Mood Adjectives

Cluster 1 passionate, rousing, confident, boisterous, rowdy

Cluster 2 rollicking, cheerful, fun, sweet, amiable/good natured
Cluster 3 literate, poignant, wistful, bittersweet, autumnal, brooding
Cluster 4 humorous, silly, campy, quirky, whimsical, witty, wry

Cluster 5 aggressive, fiery, tense/anxious, intense, volatile, visceral

from social tags and the knowledge from the experts (psychologists) converges.
Then, we want to generate mood representations that can serve as a basis for
further works like music mood classification. In Section 4.3.1, we expose the
expert mood representations. In Section 4.3.2, we detail the dataset of tags
and then, in Section 4.3.3, its transformation into a semantic space. In Sec-
tion 4.3.4, we study the categorical representations. In Sections 4.3.4(1) and
4.3.4(2), we generate and analyze dimensional and hierarchical representations.
Finally, Section 4.3.5 concludes and summarizes the main findings.

4.3.1. Expert representations

Two main types of representation coexist in the literature. The first one is the
categorical model, using for instance basic emotions with around four or five
categories including: happiness, sadness, fear, anger and tenderness (Juslin
& Sloboda, 2001). Some works propose mood clusters like the eight clusters
from Hevner (Hevner, 1936) (see Figure 4.5) or the five clusters used in the
MIREX Audio Mood Classification task, detailed in Table 4.5. The second
type of representation is the dimensional model, based originally on Russell’s
circumplex model of affect (Russell, 1980) (see Figure 4.6). The two dimensions

mostly used are arousal and valence®.

4.3.2. Dataset

Our objective is to obtain a mood space based on social tags. In order to
achieve this goal, we need two components: a list of mood words and social
network data.

Mood list

For this study, we want to observe the way people use mood words in a social
network. We selected words related to emotions based on the main articles in

5In psychology, the term valence describes the attractiveness or aversiveness of an event,
object or situation.
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Figure 4.5: Hevner’s (Hevner, 1936) model with adjectives grouped into eight clus-
ters.

music and emotion research. We included words from different psychological
studies like Hevner (1936) or Russell (1980). We also added words representing
basic emotions and other related adjectives (Juslin & Sloboda, 2001). Finally,
we aggregated the mood terms mostly used in MIR (Laurier & Herrera, 2009)
and the ones selected for the MIREX task (Hu et al., 2008). At the end of this
process, we obtained a list of 120 mood words.

Social Tags

Last.fm® is a music recommendation website with a large community of users
who are very active in associating tags with the music they listen to. With

Shttp://www.last.fm
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Figure 4.6: Russell’s (Russell, 1980) “circumplex model of affect” with arousal and
valence dimensions.

over 30 million users in more than 200 countries’, this social network is a
good candidate to study how people tag their music. We crawled 6,814,068
tag annotations from 575,149 tracks in all main genres. From those, 492,634
tags were distinct. This huge dataset contains tags of any kind. From the
original 120 mood words, 107 tags were found in our dataset. However some
of them did not appear very often. We decided to keep only the tags that
appeared at least 100 times, resulting in a list of 80 words. We also chose to
keep the tracks where the same mood tag has been used by several users. This
subset contains 61,080 tracks. We observe that the mood tags mostly used
are sad, fun, melancholy and happy. For instance, the tag sad has been used
11,898 times in our dataset. On the contrary, the least used tags are rollicking,
solemn, rowdy and tense, applied in less than 150 tracks. In average, a mood
tag is used in 754 tracks.

"http://blog.last.fm/2009/03/24/1astfm-radio-announcement
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4.3.3. Semantic Mood Space

We aim to compare mood terms by their co-occurences in tracks. Intuitively
happy should co-occur more often with fun or joy than with sad or depressed.
This co-occurence information included in the data we crawled from last.fm
is embodied in a document-term matrix where the columns are track vectors
representing tags.

The main problem we have when dealing with this matrix is its high dimen-
sionality and its sparsity (Levy & Sandler, 2009). Consequently, we applied a
Latent Semantic Analysis (LSA) (Deerwester et al., 1990) to project the data
into a space of a given lower dimensionality, while maintaining a good approx-
imation of the distances between data points. This technique has been shown
to be very efficient to capture tag representations for genre and artists simi-
larity (Levy & Sandler, 2007). LSA makes use of algebraic techniques such as
Singular Values Decomposition (SVD) to reduce the dimensionality of the ma-
trix. We decided to use a dimension of 100, which seems to be good trade-off
for similarity tasks (Levy & Sandler, 2007). In the following experiments, we
tried to change this dimension parameter (from 10 to 10 000 on a logarithmic
scale), with no significant impact on the outcomes except less relevant results
when selecting a too low or too high dimension. Once we have the data into
this semantic space, we compute the distance between terms using the cosine
distance. The distance values are included in the range [0, 1]. Here are some
examples of distances between mood tags:

deos(happy, sad) = 0.99
deos(cheer ful, sleepy) = 0.97
deos(anger, aggressive) = 0.06
deos(calm, relaxed) = 0.03

We observe that happy and sad are quite far from each other, as well as
cheerful and sleepy. On the other hand, we note that anger is close to aggressive
and that calm is similar to relaxed. Even if we show here some prototypical
examples, values in the whole distance matrix intuitively make sense.

4.3.4. Experimental Results
Categorical Representations

To study the categorical mood representations, we first derive a folksonomy
(community-based taxonomy) representation by means of unsupervised clus-
tering from the social data. Then, we evaluate how the expert taxonomies fit
into the semantic mood space.

Folksonomy representation. From our semantic space, we want to infer
what would be the ideal categorical representation. To achieve this goal, we
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apply an unsupervised clustering method using the Expectation maximization
(EM) algorithm. This algorithm and the implementation we used (WEKA)
are described in (Witten & Frank, 1999). The first important question to be
answered is how many clusters should we consider. As we want this number
to be inferred by the data itself, we used the v-fold cross validation algorithm.
We divided the dataset in v folds, training on v — 1 folds and testing on the
remaining one. We measure the log-likelihood computed for the observations
in the testing samples. The results for the v replications are averaged to yield
a single measure of the stability of the model. In Figure 4.7, we show the
results of this process, displaying an average cost value (in our case 2 times the
negative log-likelihood of the cross-validation data). Intuitively the lower is the
value, the better is the cluster. To choose the "right" number of clusters, we
look at the cost value while increasing the number of clusters. Practically, we
stop when the mean cost value stops decreasing and select the current number
of clusters.

Graph of "Cost function"
EM Clustering
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Figure 4.7: Plot of the cost values (2 times the negative log-likelihood) depending
on the number of clusters.

We observe that the cost rapidly decreases with the number of clusters until
four clusters. After that, it is stable and even increases, meaning that the data
is overfitted. Consequently, the optimal number of clusters is four. Using this
number for the EM algorithm, we obtained the clusters exposed in Table 4.6.
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Table 4.6: Folksonomy representation. Clusters of mood tags obtained with the EM
algorithm. For space and clarity reasons, we show only the first tags.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

angry sad tender happy
aggressive  bittersweet soothing joyous
visceral sentimental sleepy bright
rousing tragic tranquil cheerful
intense depressing  good natured happiness
confident sadness quiet humorous
anger spooky calm gay
exciting gloomy serene amiable
martial sweet relax merry
tense mysterious  dreamy rollicking
anxious mournful delicate campy
passionate poignant longing light
quirky lyrical spiritual silly

wry miserable wistful boisterous
fiery yearning relaxed fun

These four clusters are very similar to the categories posed by the main basic
emotion theories (Juslin & Sloboda, 2001). Moreover, these clusters represent
the four quadrants of the classical arousal-valence plane from Russell previ-
ously shown in Figure 4.6:

Cluster 1: angry (high arousal, low valence)

Cluster 2: sad, depressing (low valence, low arousal)
Cluster 3: tender, calm (high valence, low arousal)
Cluster 4: happy (high arousal, high valence)

To summarize, the semantic space we created is relevant and coherent with ex-
isting basic emotion approaches. This result is very encouraging and assesses
a certain quality of this semantic space. Moreover, it confirms that the com-
munity uses mood tags in a way that converges with the basic emotion theory
from psychology.

Agreement between experts and community. In this section, we want
to measure the agreement between experts and community representations.
To do so, we performed a coarse-grained similarity, where we measured how
separable the expert-defined mood clusters are in our semantic space. First,
we computed the LSA cosine similarity among all moods within each clus-
ter (intra-cluster similarity) and then we computed the dissimilarity among
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clusters, using the centroid of each cluster (inter-cluster dissimilarity). The
expert representations we selected for this experiment are the eight clusters
from Hevner (see Figure 4.5) where we could match more than 50% of the tags
and the five clusters from the MIREX taxonomy (see Table 4.5) where all 31
tags were matched.

Intra-cluster similarity. For each cluster of the expert representations,
we compute the mean cosine similarity between each mood tag in the clus-
ter. The results for intra-cluster similarity are presented in Figure 4.8 for the
Hevner representation and in Figure 4.9 for the MIREX clusters.

Hevner clusters
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Figure 4.8: Intra-cluster cosine similarity for Hevner’s representation.

In the results for the Hevner clusters, we note a high intra-cluster similarity
value for cluster 1, which is the one including spiritual and sacred (please look
at Figure 4.5 for the complete list). Cluster 6 performs also quite well (joyous,
bright, gay, cheerful, merry). However we have poor intra-cluster similarity
for cluster 8, which includes wigorous, martial and majestic. This might be
because these words are also some of the less used in our dataset, but we
hypothesize that they are less descriptive today than when the taxonomy was
created (1936). Moreover, these words were selected for classical music which
is not the main content of the lasf.fm music. The rest of the intra-cluster



4.3. MOODS 137

similarity values are in average quite low, meaning that this representation is
not optimal in the semantic mood space.
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Figure 4.9: Intra-cluster cosine similarity for MIREX representation.

For the MIREX clusters, we remark that the lowest intra-cluster similarity is
for cluster 2 (sweet, good natured, cheerful, rollicking, amiable, fun). Maybe
is it quite clear that this category is about happy music, however the words
used are not so common and may lower this value. In average, the intra-cluster
similarity value is quite high for this representation. For comparison purpose,
we note that the intra-cluster similarity of the folksonomy representation has
an average intra-cluster similarity value of 0.82 (see Table 4.8). Obviously, as
the folksonomy representation was made from the semantic space itself, it has
better results than the other models.

In this part, we have looked at the consistency inside each cluster, however it
is also crucial to look at the distances between clusters to evaluate the quality
of the clustering representations.

Inter-cluster dissimilarity. To measure how separable are the different
clusters, we compute the mean cosine distance from each cluster centroid to the
other cluster centroids. If we look at our folksonomy representation clusters
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from Section 4.3.4, the cosine distance between centroids of clusters are all
quite high (0.9 in average, see Table 4.8). This is not very suprising as the
representation was designed with this data.

Table 4.7: Confusion matrix for the inter-cluster dissimilarity for the MIREX clusters
(C1 means cluster 1, C2 cluster 2 and so on). The values marked with an asterisk are
the most similar and in bold are the less similar values.

C1 C2 C3 C4 C5

C1|0 0.74 0.128 0.204 0.108*
C2 0.7 0 0.859 0.816 0.876
C3 10128 0859 0 0.319 0.265
C410.204 0816 0.319 0 0.526

C5 | 0.108* 0.876 0.265 0.526 0

In Table 4.7, we show the confusion matrix of the inter-cluster dissimilarity for
the MIREX clusters. We notice that the lowest value is between cluster 1 and
cluster 5, meaning that these clusters are quite similar. This finding correlates
with the results from the MIREX task, in which the confusion between these
two classes was found significant (Hu et al., 2008). However the confusion
between clusters 2 and 4, also relevant in the MIREX results analysis, is not
reflected here. Additionally, we observe that the most separated clusters (5 and
2), are also the less confusing in the MIREX results. Looking at the confusion
matrix for the Hevner clusters (not shown here for space reasons), we remark
that the highest values (dissimilarity above 0.95) are between clusters 7 and
8, and between clusters 1 and 2. On the contrary, the lowest value (0.09) is
between clusters 1 and 4. Indeed both clusters have words than can appear
similar like spiritual and serene for instance. We summarize the results of both
intra and inter-cluster measures for the different taxonomies in Table 4.8.

Table 4.8: Intra-cluster similarity and inter-cluster dissimilarity means for each mood
taxonomy.

Mood Taxonomy Intra-cluster Inter-cluster
similarity dissimilarity

Hevner 0.55 0.70

MIREX 0.73 0.56

Folksonomy 0.82 0.9

In a nutshell, the Hevner clusters are less consistent but are more separated
than the MIREX ones. Indeed, even if the latter has more intra-cluster sim-
ilarity, it suffers from confusions between some categories as reflected in our
results.



4.3. MOODS 139

Dimensional representation

Dimensional representation is an important paradigm in emotion studies. To
project our semantic mood space into a bi-dimensional space, we used the Self-
Organizing Map algorithm (SOM). We decided to use SOM for its topology
properties and because it stresses more on the local similarities and distin-
guishes groups within the data. Because less than half of the Russell’s ad-
jectives are present in our dataset, we prefer to compare qualitatively more
that quantitatively the expert and the community models. We trained a SOM
and mapped each tag onto its best-matching unit in the trained SOM. In Fig-
ure 4.10, we plot the resulting organization of mood tags (for clarity reasons,
we show here a subset of 58 tags).

aggressive rowdy intense bittersweet sadness
melancholy
angry anger ) o
boisterous autumnal plaintive
sentimental
majestic sad rousing fiery amiable
passionate
dreamy tragic gloomy spooky anxious
. witty wr
pathetic ywry

dramatic depressing

whimsical playful

lyrical campy
relaxed sleepy humorous silly quirky
calm -
llick
spiritual tranquil tender rofiicking joyous bright gay
soothing S€Tene (I:Ictlriegn happiness
& ging scary light cheerful merry
relax .
mysterious
dark fun

Figure 4.10: Self-Organizing Map of the mood tags in the semantic space.

We observe in the 2D projection four main parts. At the top-left, terms related
to aggressive, below calm and other similar words, at the top-right tags related
to sad and below words close to happiness. We notice the four clusters corre-
sponding to the basic emotions and our folksonomy representation mentioned
in Section 4.3.4. This is somehow expected as we already got these clusters
from this data. However, having the same results with a second technique
confirms our findings. Comparing with Russell’s dimensions, we find that the
diagonal from top-left to bottom-right is of high arousal. On the contrary,
the diagonal from top-right to bottom-left is of low arousal. The vertical axis
represents the valence dimension. Even though the 2D representation is not
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equal, there is a clear correlation between the community and the experts when
framing the problem into two dimensions.

Hierarchical representation

The semantic mood space can be visualized in many different ways. In this part
we experimented hierarchical clustering techniques to produce a tree diagram
(dendrogram). We applied a common agglomerative hierarchical clustering
method with a complete linkage (Xu & Wunsch, 2009) and the cosine metric.
We used the hcluster® implementation. With the 20 most used tags in our
dataset, we computed the clustering and plot the resulting dendrogram in
Figure 4.11 .
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Figure 4.11: Dendrogram of the 20 most used tags.

8http://code.google.com/p/scipy-cluster
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Although there exists some dendrogram representation of emotions in the psy-
chology literature (Juslin & Sloboda, 2001), the comparison is complex because
many of the terms employed are not present in our dataset and also because
finding the right metric to measure the similarity between both is not trivial.
The hierarchical clustering starts with two branches. Looking at the tags of
this first branching, we observe a very clear separation in arousal with dreamy
and calm on the left and angry and happy on the right. Then the two following
branching (resulting in four clusters) represents the four basic emotions also
found as the best categorical representation in Section 4.3.4 (from left to right
in the dendrogram: calm, sad, angry and happy). This confirms another time
our findings about the relevancy of these four clusters. Moreover, we notice
that the first separation is related to arousal, often considered as the most
important dimension. The remaining branches group together similar terms
like angry and aggressive or sad and depressing.

4.3.5. Conclusions

This last section presented convergent evidence about mood representations.
We created a semantic mood space based on a community of users from last. fm.
We derived different representations from this data and compared them to the
expert representations. We demonstrated that the basic emotions: happy, sad,
angry and tender, are very relevant to the social network. We also found
that the arousal and valence dimensions are pertinent. Moreover we have
shown that both Hevner’s and MIREX representations have advantages and
limitations when evaluated in the semantic mood space. The former having
better separated clusters and the latter having more consistent clusters. Ob-
servations on the confusion and similarity between MIREX clusters confirmed
results from previous analysis. We also presented a dendrogram visualization
validating again the basic emotion point of view and offering a new representa-
tion of the mood space. All these findings show the relevancy of using a mood
semantic space derived from social tags. Folksonomy representations can be
used in tasks like mood classification or regression to improve the quality of
the audio ontent processing algorithms. We can also imagine a visualization
of a user emotional states based on his listening habits or history. Moreover,
one’s musical library can be mapped and explored with a folksonomy repre-
sentation derived from the whole social network or a particular subset. Finally
this approach can be generalized to find other domain-specific representations.

4.4. Summary

In this chapter we studied whether the precise and controlled vocabulary de-
fined by a group of experts correspond with the tag annotations of a large
community, the so—called wisdom of the crowds. We ran experiments in two
basic musical concepts: music genre and mood, since they are two important
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aspects when defining music, and they also have been used extensively for the
task of music classification. Regarding music genre, the experimental results
show a clear agreement for some components of the taxonomy (Blues, Hip-
Hop), whilst in other cases (e.g., Rock) there is no correlations. Interestingly
enough, the same results are found in the last editions of MIREX results for
audio genre classification task. Thus, showing the fact that a musical genre
could have a multi—faceted definition. As for moods, we demonstrated that
the basic emotions happy, sad, angry and tender are very relevant to the social
community. With respect to expert—defined mood clustering representations,
we found that the arousal and valence dimensions based on Rusell’s model
of emotion (Russell, 1980) can also be captured. Moreover, we have shown
that both Hevner’s and MIREX representations have advantages and limita-
tions when evaluated in the semantic mood space. The former having better
separated clusters and the latter having more consistent clusters.

This chapter focused on the two facets, music genre and mood, since they
are two important aspects when defining music. They have also been used
extensively for the task of music classification, and there exist multiple ex-
pert representations of genres and moods. Nevertheless, folksonomies cover
all possible “ways to talk about music”, beyond the musical genres or moods,
which are only two facets among many others (e.g., musical culture, record
labels, or music software). In Chapter 5, we address this issue. That is, we
propose a model to infer the set of semantic facets implicit to the tags of a
music folksonomy, and to classify tags with respect to these facets.



Semantic Facets of Music Tags

Knowledge is the conformity of the object and the intellect
—AVERROES

5.1. Introduction

Music is a complex phenomenon that can be described according to multi-
ple facets. Descriptive facets of music are commonly defined by experts (e.g.,
stakeholders in the music industry) in professional taxonomies, which typically
include all dimensions that can be accounted for in the production and edi-
tion of a music piece (e.g., name of artists, recording studio, producer, music
genre, etc.). Multifaceted descriptions are especially useful for music browsing
and recommendation, as they facilitate non-linear exploration. For instance,
recommendations of the Pandora! Internet radio use around 400 music at-
tributes grouped in 20 facets (Westergren, 2010),2 as for instance Roots (e.g.,
“Afro-Latin Roots”), Instrumentation (e.g., “Mixed Acoustic and Electric In-
strumentation”), Recording techniques (e.g., “Vinyl Ambience”), or Influences
(e.g., “Brazilian Influences”).

However, there exists no consensual taxonomy for music. Previous research
showed the music industry uses inconsistent taxonomies (Pachet & Cazaly,
2000), even when restricting to a single and widespread facet such as the mu-
sic genre. Also, expert-defined taxonomies (music-related or not) have two
fundamental problems. First, they are very likely to be incomplete, since it is
impossible for a small group of experts to incorporate in a single structure all
the knowledge that is relevant to a specific domain. Second, since domains are
constantly evolving, taxonomies tend to become quickly outdated —in music,
new genres and techniques are constantly emerging. Current lack of consensus

http://www.pandora. com/
2http://en.wikipedia.org/wiki/List_of _Music_Genome_Project_attributes
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on which are the relevant semantic facets of music, and the inherent inconsis-
tency of some facets (e.g., genre) make the design of a consensual, complete
and stable music ontology (including hundreds of facets) a daunting task.

An alternative strategy for describing music consists in relying on the broadness
of the web and making use of the “wisdom of the crowds”. Many music websites
allow users themselves to assign their own descriptive tags to music items
(artists, albums, songs, playlists, etc.). For instance, users of the social music
website Last.fm3 tagged the artist Elton John as “70s”, “80s”, “pop”, “classic-
rock”, “singer-songwriter”, and “british”, among others. Their combination of
annotations provided by thousands of music users leads to the emergence of
a large body of domain-specific knowledge, usually called folksonomy. Due to
its informal syntax (i.e. direct assignment of tags), the tagging process allows
the collective creation of very rich tag descriptions of individual music items.
When compared to taxonomies defined by experts, music folksonomies have
several advantages. First, completeness, they ideally encompass all possible
“ways to talk about music”’, including both lay and expert points of view.
Second, due to the continuous nature of the tagging process, folksonomies tend
to be well updated. Third, they usually incorporate both commonly accepted
and generic concepts, as well as very specific and local ones.

It seems reasonable to assume that folksonomies tend to encompass various
groups of tags that should reflect the underlying semantic facets of the domain
including not only traditional dimensions (e.g., instrumentation), but also more
subjective ones (e.g., mood).

Tags:
pop
classic rock
singer-songwriter
rock
piano
british
80s
70s
elton john
male vocalists

Figure 5.1: List of Last.fm tags assigned to Elton John artist.

For instance, Figure 5.1 shows a picture of an artist together with a selection of
tags attributed by the users of Last.fm (the complete list of tags is available on

Shttp://www.last.fm/
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http://www.last.fm/music/Elton+John/+tags). A manual categorization
of tags in Figure 5.1 in music facets shows the richness of the tag description
of that particular artist: Genre (pop, rock, classic rock), Locale (british),
Time period (70s, 80s), Vocal characteristics (male vocalists), Artist
characteristics (singer-songwriter) and Instrument (piano).

However, the simplicity and user-friendliness of community-based tagging im-
poses a toll: there is usually no way to explicitly relate tags with the cor-
responding music facets. When browsing the tag description of a particular
artist, Last.fm users browse a —albeit very rich— flat list of terms. It is for
example not explicit in Figure 5.1 that those tags related to music genre are
in fact about music genre.

In this chapter, we approach an essential research question that is relevant
to bridging this gap: Is it possible to automatically infer the semantic facets
inherent to a given music folksonomy? A related research question is whether
it is then possible to classify instances of that music folksonomy with respect
to the inferred semantic facets.

In this chapter, we focus on the music folksonomy obtained from the social
music website Last.fm. We propose an automatic method for (1) uncovering
the set of semantic facets implicit to the tags of this music folksonomy, and
(2) classify tags with respect to these facets. We anchor semantic facets on
metadata of the semi-structured repository of general knowledge Wikipedia.
Our rationale is that as it is dynamically maintained by a large community,
Wikipedia should contain grounded and updated information about relevant
facets of music, in practice.

The rest of this chapter is structured as follows: After a review of related
work (Section 5.2), we explain in Section 5.3 our approach to obtaining the
inherent semantic facets of Last.fm tags, and to automatically assigning facets
to tags. Results and evaluations are proposed in Section 5.4. We conclude
with a summary and directions for future work in Section 5.5.

5.2. Related work

5.2.1. Tag categorization

In (Bischoff et al., 2009) the authors propose an approach, using rule— and
model-based methods, to automatically infer the semantic category (facet) of
the tags. Rule-based methods rely on regular expressions and predefined lists,
whilst the model-based ones employ attributes such as: tag popularity, number
of words, number of characters, part of speech, and word sense disambiguation
(using WordNet?). The list of facets used is: Topic, Time, Location, Type,
Author/Owner, Opinions/Qualities, Usage, and Self reference. Then,
they compare automatic tag classification against a ground truth of around

“http://wordnet.princeton.edu/
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2,100 manually classified tags based on these list of facets. Experimental results
using Last.fm, Delicious.com and Flickr datasets show that these two methods
can identify tag facets with an accuracy higher than 80%. The results vary
significantly across the different domains. Nonetheless, the manual creation of
the ground truth—using a handcrafted lists of terms—Ilimits the coverage for
these three different domains.

Except the work presented by Bischoff et al. (Bischoff et al., 2009) that includes
the music domain in their evaluations, most of the previous work has been
focused on the image domain. Overell et al. present in (Overell et al., 2009) a
method for classifying Wikipedia articles using structural patterns as features,
and WordNet semantic categories as a classification scheme. Then, they apply
this method to also classify Flickr tags to WordNet semantic categories. Their
results show an increase by 115% of the Flickr vocabulary coverage, compared
to the WordNet baseline. A similar approach by the same authors is also
presented in (Sigurbjornsson & van Zwol, 2008).

The Semantic Web community has also been working on the problem of in-
ducing an ontology from a corpora derived from social tagging activity (Mani,
2002; Mika, 2005; Schmitz, 2006; Wu et al., 2006).

5.2.2. Social Tagging in Music

Music tags have recently been the object of increasing attention by the re-
search community (Celma, 2010; Lamere, 2008). A number of approaches
have been proposed to associate tags to music items (e.g., a particular artist,
or a music piece) based on an analysis of audio data (Bertin-Mahieux et al.,
2008; Turnbull et al., 2008b), on the knowledge about tag co-occurence (Levy
& Sandler, 2008), or on the extraction of tag information from community-
edited resources (Sarmento et al., 2009). However, in most cases, such ap-
proaches consider tags independently, i.e. not as instances in structured hi-
erarchies of different music facets. When hierarchies of facets are considered,
they are usually defined a priori, and greatly vary according to authors. For
example, (Lamere, 2008) groups tags in the following facets: Genre, Locale,
Mood, Opinion, Instrumentation, Style, Time period, Recording label,
Organizational, and Social signaling.

Alternatively, Pachet et al. (Pachet & Roy, 2009) use 935 labels grouped
in 16 facets: Style, Genre, Musical setup, Main instruments, Variant,
Dynamics, Tempo, Era/epoch, Metric, Country, Situation, Mood, Character,
Language, Rhythm and Popularity. Aucouturier (Aucouturier, 2009) consid-
ers 801 labels grouped in 18 facets, the same as (Pachet & Roy, 2009), with the
exception of Popularity, and 3 extra facets: Affiliate, Special creative
period, and Text category. On the other hand, Turnbull et al. (Turnbull
et al., 2008b) use 135 concepts grouped in only 6 facets: Instruments, Vocal
characteristics, Genres, Emotions, Acoustic quality and Usage.
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To our knowledge, however, few efforts have been dedicated to the particular
task of automatically identifying the relevant facets of music tags. In their
work on inferring models for genre and artist classification, Levy et al. apply
dimensionality reduction techniques to a data set of tagged music tracks in or-
der to obtain their corresponding compact representations in a low-dimensional
space (Levy & Sandler, 2008). They base their approach on tag co-occurrence
information. Some emerging dimensions can be associated to facets such as Era
(e.g., the dimension [90s]). However, most of the dimensions thus inferred are,
in fact, a combination of diverse music facets, such as for example the dimension
[guitar; rock|, which includes concepts of Instrumentation and of Genre, or
[seen live; world music| (including concepts of Social signaling and Genre),
or [new wave; 80s| (including concepts of Genre and Time period).

Cano et al. use the WordNet ontology to automatically describe sound ef-
fects (Cano et al., 2004b). Albeit the very large amount of concepts in Word-
Net, they report that it accounts for relatively few concepts related to sound
and music, and propose an extension specific to the domain of sound effects.
On the one hand, they illustrate that browsing can indeed be greatly enhanced
by providing multifaceted descriptions of items. On the other hand however,
it is our belief that, because of their necessary stability, existing ontologies
are not the most adapted tool to describe domains of knowledge with inherent
open and dynamic semantics, such as music.

5.2.3. Expert-defined music facets

Table 5.1 provides a review of 45 music facets commonly used in the litera-
ture. In this review, we refrained from attempting to group together facets
with apparent polysemic meanings (e.g., Style, Rhythm) or facets with differ-
ent denominations yet apparent similar meanings (e.g., Style and Stylings, or
Acoustic qualities and Texture). From the list of referenced literature in this
table, we specially mention the Music Ontology(Raimond et al., 2010), which
is an attempt to provide a vocabulary for linking a wide range music-related in-
formation. The ontology is a formal framework for dealing with music-related
information on the Semantic Web, including editorial, cultural and acoustic
information.

Obtaining detailed taxonomies for all these facets is an elusive task because
of two factors: the current lack of consensus in musical taxonomies, and the
scarcity of resources (for instance, most references in Table 5.1 do not provide
the full list of instances for each facet used nor the full mapping between facets
and their instances).

Nevertheless, we gathered specific expert taxonomies for four particular facets,
chosen for their relevance in current literature, namely, Genre, Mood, Musical
Instruments and Country and Language. See Section 5.4.1 for more details.
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Table 5.1: Expert-defined music facets and corresponding examples of use in the literature and references. Different meanings of a facet

appear in different lines.

Facet Example (as used in the literature) References

Genre Blues Lamere, 2008) (Pachet & Roy, 2009) (Aucouturier, 2009)
Levy & Sandler, 2008) (Turnbull et al., 2008b)

uan et al., 2008) (Bertin-Mahieux et al., 2008)

Raimond on al., 2010)

Style (1) BeBop Pachet & Roy, moowv (Aucouturier, 2009)

Style (2) Political, Humor Lamere, 2008) (Bertin-Mahieux et al., 2008)

Leanings/Stylings Classical Stylings Westergren, 2010)

Character Child-oriented Pachet & Roy, 2009) (Aucouturier, 2009)

Roots Acid jazz roots, Funk roots Westergren, 2010)

Influences Flamenco influences Westergren, 2010)

Time period, era/epoch
Recording label
Locale, country, nationality

Language
Musical setup
Main instrument
Instrumentation , instrument
Instrumentation
Orchestration, arrangement
Performance

Vocal characteristics

Vocals (1)

Vocals (2)

Acoustic qualities

Variant
Texture

70s, 1989, Romantic period
Kill Rock Stars
Germany

Spanish

String ensemble
Double-bass

Piano, female vocal

Acoustic rock instrumentation

n/a

n/a

Agressive, breathy

Male, group

Breathy, unintelligible vocal delivery
Catchy, heavy beat,

fast tempo, acoustic texture
Natural, acoustic

Acoustic
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5.3. Method

Our method consists in using metadata from Wikipedia to infer the semantic
facets of the Last.fm music folksonomy. This is performed in two steps. In
the first step, we specialize the very large network of interlinked Wikipedia
pages to the specific domain of the Last.fm music folksonomy. This is done by
maximizing the overlap between Wikipedia pages and a list of frequent tags
from the folksonomy. As the resulting network still represents a very large
number of nodes, in a second step, we focus on the most relevant ones (node
relevance being defined as an intrinsic property of the network). This step also
includes additional refinements.

5.3.1. Data

Our data consists of a large dataset of artist tags gathered from Last.fm during
April 2010 via the API provided by Last.fm.> The dataset consists of around
600,000 artists and 416,159 distinct tags. This dataset was cleaned in order to
remove noisy /irrelevant data: (1) tags were edited in order to remove special
characters such as spaces, etc.; (2) tags were filtered by weight,% only tags with
a weight > 1 were kept; and (3) tags were filtered by usage, keeping only those
tags that were applied > 10 times. As a result, the final dataset consists of
582,502 artists, 39,953 distinct tags, and an average of 9 tags per artist.

5.3.2. Obtaining a music-related network

Wikipedia pages are usually interlinked, and we use the links between two
particular types of pages (i.e. articles and categories) to construct a music-
related network. Concretely, we use the DBpedia’ knowledge base. that pro-
vides structured, machine-readable descriptions of the links between Wikipedia
pages (DBpedia uses the SKOS vocabulary, in its 2005 version).® In partic-
ular, we make use of two properties that connect pages in DBpedia: (1) the
property subjectOf, that connect articles to categories (e.g., the article “Samba”
is a subjectOf of the category Dance_music, and (2), the property broaderOf,
that connect categories in a hierarchical manner (e.g., the category Dance is a
broaderOf of the category Dance_music, which is a broaderOf of the category
Ballroom_dance_music).

We start from the seed category “Music” and explore its neighbourhood from
the top down, checking whether connected categories can be considered rele-
vant to the music domain. A category is considered relevant if it satisfies any
of the two following conditions:

Shttp://www.last.fm/api

Si.e. Last.fm “relevance weight”, which goes from 0 to 100.
"http://dbpedia.org/

8http://www.w3.org/TR/2005/WD- swbp- skos- core-spec-20051102/


http://www.last.fm/api
http://dbpedia.org/
http://www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102/
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» It is a Last.fm tag, such as for example “Rock and Roll”. (This condition
will be referred to as isMusical);

= At least one of its descendants is a tag from Last.fm and the substring
“music” is included in the title or the abstract of the corresponding
Wikipedia article. (This condition is further referred to as isTextMu-
sical.)

The descendants of a category are fetched from DBpedia using the two con-
necting properties previously described. These descendants can be either “suc-
cessors” (i.e. all direct subjectOf and broaderOf of this category), or successors
of successors, and so on. This iterative search is limited by a maximum depth,
empirically fixed to a value of 4. Indeed, experiments with smaller values
yielded a significant reduction of the tag coverage, while experiments with
greater values did not increase significantly the coverage.

If any of the previous conditions is satisfied, the category, its successors and
their edges are added to the network. Otherwise, the category and all incident
edges are removed. The algorithm proceeds iteratively (following a Breadth-
First search approach) until no more categories can be visited. A summarized
version of the method for obtaining a music-related network is described in
Algorithm 5.1.

Data: C' =0, a list of categories (a queue, initially empty); N = (V| E),
a directed network with a set of nodes V and a set of edges
(initially empty);

Result: N, network with music nodes;

C + CU “Music";

while C # () do

c « first element of C;

C+C-—c¢

if (¢ isMusical) vV ((at least one descendant of ¢ isMusical) N\ (c

isTextMusical)) then

N { V + V UcU successors(c)

E + E Uedges between ¢ and successors(c)

C <+ C U successors(c)

else
N { VV-c
E < E — all edges incident in c
end
end

Algorithm 5.1: Pseudo-code for the creation of a network of music-related
facets from Wikipedia.
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5.3.3. Finding relevant facets

Once the network of music-related facets is built, the next step is to find the
nodes that are potentially more relevant to the network than others.
We invert the direction of the edges of the network in order to point back
in the direction of the most generic category, i.e. “Music”’, and we compute
the PageRank of the resulting network. PageRank (Page et al., 1999) is a
link analysis algorithm that measures the relative relevance of all nodes in a
network. In PageRank, each node is able to issue a relevance vote on all nodes
to which it points to (thus the need for reorienting the edges). The weight of
the vote depends on the relevance of the voting node (i.e. relevant nodes issue
more authoritative votes). The process runs iteratively, and (under certain
conditions) converges to a stable relative ranking, where nodes to which more
edges from other relevant nodes converge (directly or indirectly) are considered
more relevant. For initializing the PageRank algorithm, we set the initial
weight of each node to 0.
In order to capture general yet complementary facets of music, we aim at
reducing semantic overlap as much as possible by applying the following filters:
Stub Filter: We remove all categories with substring“ by ” and “_ from ”.
We noticed that many categories in Wikipedia are actually combinations
of two more general categories, as for instance “Musicians by genres”,
which is halfways between “Musicians” and “Music_genres” (see also
Figure 5.2). Further, we also remove categories that include “ mu-
sic(al) _groups” (e.g., “Musical _groups from California” that has hun-
dreds of connected categories, hence a high PageRank). Most of these
categories are used as stubs, even sometimes explicitly so we also excluded
categories with the word “stub”.

Over-Specialization Filter: We exclude all categories that include lexically
a more relevant category. Many relevant categories are specializations
of other more relevant ones, this occurs mostly with concepts related to
anglophone music, which are described in great detail in Wikipedia (e.g.,
“American _Musicians” includes “Musicians” that has a higher PageR-
ank).

Tag Filter: We remove all categories that are Last.fm tags. Our objective is
to uncover music facets that are implicit to the tags that make up the
folksonomy. In general, tags are instances of such facets, not the facets
themselves.

5.3.4. Assigning facets to tags

In order to assign a set of facets to a given Last.fm tag, we process the sub-
network of Wikipedia pages specialized to the Last.fm folksonomy (obtained
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in Section 5.3.2), as described in Algorithm 5.2 (Note that this process is re-
stricted to tags that can be matched to one of the nodes in the network).
Given a Last.fm tag t, we look at its predecessor categories ¢, or more formally:

predecessors(t) = {c|(t € broaderOf(c)) V (t € subjectOf(c))}

If any of these predecessors is a top-N facet (we set N = 50), it is then assigned
to t. The process continues iteratively until no more facets can be assigned
to the tag, or a maximum number of iteration (maxIter) is exceeded. This
condition can be interpreted as the maximum distance in the network between
a tag and a facet.

Data: C = (), a list of categories (initially empty); F, a list of top-N
music facets; t, a Last.fm tag;
Result: TF, list of facets applied to tag t;

iter < 1;
TF = (),
while (F # 0) V (iter < mazIter) do
C + C U predecessors(t);
if (3f € (FNC(C)) then
TF <+ TFUFf
F+—F—f
end

iter < iter + 1
end
Algorithm 5.2: Pseudo-code for assigning Wikipedia facets to Last.fm tags.

5.3.5. Tag/Facet relevance

The relevance Ry of a music facet f to a tag ¢ is computed as the normalized
inverse distance d;y —in number of successive edges— between ¢ and f:

-1
dyy
i
>idn

An example of tag/facet relevance is provided in Figure 5.2.

Ry = (5.1)

5.4. Results and Evaluation

After running both stages of our method (sections 5.3.2 and 5.3.3), we obtained
a list of 333 candidate facets. Table 5.3 contains the top-50 facets, ordered by
pagerank (top to bottom, left to right).

Table 5.4 presents a subset of the obtained facets, followed by a subset of their
corresponding list of top tags. Top tags are chosen based on the distance (in
number of successive edges in the music network) to the given facet.
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Table 5.3: Top-50 Wikipedia music facets.

Music__genres
Music__geography
Musical _groups
Music__industry
Musicians
Musical _culture
Occupations in_music
Music__people
Record _labels
Music__technology
Sociological _genres of music
Music_ publishing companies
Musical _instruments
Anglophone music
Music_of United_States_subdivisions
Western European music
American_styles _of music
Radio_ formats
Music_ publishing
Albums
Musical _techniques
Wiki_music
Music_ history
Music_ performance
Music_publishers “people”

Aspects_of music
Hip hop_ genres
Music_of California
Music_theory

Rock _and Roll Hall of Fame inductees

Musical _subcultures
Recorded music
Musical _quartets
Music_ festivals
East _Asian _music
Centuries_in_music
Musical _composition
Musical _quintets

Southern European music

Music_ software
Incidental music
Years_in_music
Music_ websites
Guitars
Music__competitions
Musical _eras

Music_and_ video

Musical _terminology
Music_halls of fame

Dates in_music

Table 5.4: Random sample of tags

inferred for various music facets.

Music software

Music genres Occupations in music Musical instruments Aspects of music
Sufi__music Troubadour Melodica Rhythm
Dance music Bandleaders Tambourine Melody
Indietronica Pianist Drums Harmony
Minimalism Singer-songwriter Synthesizers Percussion

Singer-songwriter Flautist Piano Chords

Music websites Music competitions Musical eras

Nanoloop Mikseri.net Nashville_ Star Baroque music
Scorewriter PureVolume American_Idol Ancient music
MIDI Allmusic Melodifestivalen Romantic_music
DrumCore Jamendo Star__Search Medieval music
Renoise Netlabels Eurovision _Song_Contest Renaissance_music

Figure 5.2 illustrates an example of subnetwork in our data. Given the tag bul-
garian hip-hop, our method starts navigating through the predecessors of this
tag until finally reaching two music facets: Music_genres and Music_ geography.
In this particular example, computing the relevance of each facet with Equa-
tion 5.1 yields the following:

bulgarian hip-hop: {(Music_genres, 0.4),
(Music_geography, 0.6)}
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Music_geography

- - -

- . .
\Musical_genres_by_reg \of‘

- - — =~
\Muswcfbyfnat\onallty/\

{ Bulgarian_music

Bulgarian_hip_hop“:::

Figure 5.2: Example of subnetwork in our data. Dotted lines correspond to
Wikipedia categories that are also Last.fm tags. Dashed lines correspond to cate-
gories not kept. Plain lines correspond to facets kept.

5.4.1. Evaluation methodology

In this section, we propose to evaluate two aspects of our system. First, in
Section 5.4.2, we evaluate the quality of the facets inferred: Is our system
able to infer commonly-accepted facets akin to the ones found in taxonomies
designed by experts? Is our system able to effectively infer useful facets from
the broad, and up-to-date, domain-specific knowledge about music contained
in Wikipedia? In order to evaluate the quality of inferred facets, we make use
of the expert-defined facets mentioned in Section 5.2.3.

Second, in Section 5.4.3, we evaluate the classification of tags with respect to
the inferred facets: Are the tag assignments done by our system similar to what
could be found in expert-defined classification systems? In order to evaluate
tag classification, we can also make use of the expert-defined facets mentioned
in Section 5.2.3, however for this task, we need more than just accepted facets,
we also need a ground truth for tags/facets assignments. As mentioned in
Section 5.2.3, obtaining detailed taxonomies for all the facets of Table 5.1 is an
elusive task. Hence we only focus on four particular facets that are especially
relevant in current literature, namely, Genre, Musical Instruments, Country
and Language, and Mood (see Table 5.1). We call this evaluation dataset our
Gold Standard, which is detailed in Section 5.4.1.

As put forward in the introduction of this chapter, a central objective to our
system is to be able not only to infer music facets and replicate tag/facet classi-
fication that could be found in expert systems, but more importantly to provide
a richer and more up-to-date representation of “the words of music.” In order
to evaluate that particular aspect, we propose to focus part of the evaluation
on the comparison of our system with another tag classification system which
we call Baseline System (detailed in Section 5.4.1). Following the evaluation
methodology of (Overell et al., 2009), the Baseline System replicates the be-
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havior of our system, but instead of relying on community-based information
from Wikipedia, it relies on expert-based information from WordNet.

The two systems are first compared in Section 5.4.3 in terms of tag coverage
with respect to the Gold Standard, and also in terms of general quality of
tag/facet assignments.

A last evaluation in Section 5.4.4 aims at testing the applicability of our system
and at verifying whether community-based information can produce a better
faceted description of artists’ tag sets than expert-based information. In this
endeavour, we compare our system with the Baseline system in the task of
identifying the facets that exist in the tag description that users have assigned
to Last.fm artists.

Gold Standard

In this chapter, the Gold Standard (GS) is a list of tags/facets assignments
gathered from expert information sources that will serve as ground-truth for
evaluation. It is restricted to four particular facets that are especially relevant
in current literature on music tags.

Expert-defined instances of the four GS facets have been gathered from Allmu-
sic (http://allmusic.com/) for the Genre facet, from references in the psy-
chological literature and taxonomies used in MIREX evaluations (Laurier et al.,
2009b) for the Mood facet, from MusicBrainz (http://musicbrainz.org/)
for the Musical Instruments facet and from the United Nations (http://
unstats.un.org/), Index Mundi (http://www.indexmundi.com/) and Eth-
nologue (http://www.ethnologue.com/) for the Country and Language facet.
There is a total of 1715 tags for the 4 facets in our Gold Standard. Table 5.5
describes the number of tags for each one of these facets, as well as some
examples of these tags.

Table 5.5: Number of tags per facet and example of tag/facet assignments in the
Gold Standard.

GS Facet Tags per facet examples

Genres 711 rock, ambient dub, tango, post-
punk, etc.

Instruments 280 bass guitar, trombone, flugel-
horn, lute, etc.

Locations & Languages 609 arabic, hungarian, spain, etc.

Moods 115 excited, dark, calm, happy, etc.

Baseline system

The creation of the Baseline System follows the evaluation methodology of (Overell

et al., 2009). It is based on a method for network creation and tag catego-


http://allmusic.com/
http://musicbrainz.org/
http://unstats.un.org/
http://unstats.un.org/
http://www.indexmundi.com/
http://www.ethnologue.com/
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rization that follows a similar overall rationale than the method described in
Section 5.3.2 (for the network creation part) and Section 5.3.4 (for the tag
categorization part), but it is built on top of expert knowledge from WordNet.
Namely, the Baseline System:

1. Uses a third-party knowledge repository (WordNet).

2. Creates a music-related network, in a top-down fashion, starting with
initial selected “seeds” from WordNet, and following the links inherent
to the knowledge base at hand, adding descendants iteratively to the
network.

3. Navigates the network from the bottom to the top, starting from tags
of the Last.fm music folksonomy, pruning nodes in the network, and
attributing facets to tags.

The main difference between the Baseline system and our proposed method
(Section 5.3) are:

1. The use of WordNet instead of Wikipedia as third-party knowledge repos-
itory;

2. The connecting properties from WordNet we use are “meronyms” and
“hyponyms”;

3. The Baseline system does not try to infer facets, they are defined before-
hand (expert-defined facets in Table 5.1), and serve as starting seeds to
the algorithm (instead of the single “Music” seed in our proposed sytem).

For further details, see Algorithm 5.3. It is important to emphasize the fact
that, unlike our system, the Baseline system does not infer facets. It uses
expert-defined facets as background knowledge, retrieve corresponding con-
cepts in WordNet and uses WordNet link structure to assign tags to facets.
However, not all of the 45 expert-defined facets (Table 5.1) can be matched
to WordNet concepts. Only 36 facets were matched. Expert-defined facets
that could not be matched to WordNet concepts are: Acoustic qualities, Affec-
tive, Dynamics, Lyrical content, Main instrument, Musical qualities, Recording
techniques, Social signaling, Variant, and Vocal characteristics.

5.4.2. Evaluating inferred facets

Our system is able to infer 333 facets (Table 5.3 shows the top—50 ones). Unlike
for the Baseline system, the facets inferred by our system cannot be exactly
matched to corresponding expert-defined facets of Table 5.1. Therefore, we
performed a manual match between facets from both sets. In a first stage, we
proceed in a strict fashion, only considering matches that can be unequivocally
done. This results in matching 8 inferred facets, and are presented in Table 5.6.
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Data: C = (), a list of categories (a queue, initially empty); S, a list of
seed facets (in the form of WordNet synsets), used as a starting
point to navigate through the WordNet structure; N = (V, E), a
directed network with a set of nodes V' and a set of edges E
(initially empty);
Result: N, network with music nodes;
C+CUS;
while C # () do
c < first element of C;
C+ C—c
N { V + V UcU successors(c)
E <+ E Uedges between ¢ and successors(c)
C + C U successors(c)
end
while N has Leaves do
v =any Leaf(N);
if v isNotMusical then
N { VeV-u
E < E — all edges incident in v

end

end

Algorithm 5.3: Pseudo-code for the creation of a closed-network of music-
related facets from WordNet, using the expert-defined facets as a starting
point. The concept of leaf here refers to nodes with out degree = 0, while
isNotMusical is true if the leaf v is not a tag in the folksonomy.

As

facets) relatively high. Indeed, seven out of eight (i.e. all except Music_Production)

shown in Table 5.6, our system ranks relevant facets (i.e. expert-defined

of the expert-defined facets that our system could infer are ranked among the
50 most relevant facets.

Table 5.6: Strict match between inferred and expert-defined facets.

Inferred facet Expert-defined facet Inferred facet PageRank
Music_ genres Genre 1

Music _geography Locale, country, nationality 2

Record labels Recording label 9

Musical instruments Instrumentation, instrument 13

Music_performance  Performance 24

Music_ festivals Place, festival 34

Musical eras Time period, era/epoch 46

Music_production Production 242
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In a second stage, we consider also approximate matches, where one can ar-
gue that inferred and expert-defined facets do correspond to similar or related
concepts. For a total of 33 additional expert-defined facets, we could produce
such “soft” matches. For instance, for some of the inferred facets presented in
Table 5.6, we can also obtain the following “soft” matches: Music_geography
can be matched to Language, Musical_instruments can be matched to Main
instrument, or even Instrumentation. Music_production can also be matched
to Recording techniques. Musical_scales can be matched to Tonality.
Additionally, we can also find matches between some inferred facets and other,
more specific, expert-defined-facets. For instance Aspects_of_music can be
matched to Rhythm, to Tempo, to Metric, to Tonality, and to Dynamics.
Conversely, some inferred facets are more specific than corresponding expert-
defined facets. For example, Centuries_in_music, Years_in_music, Musical_eras,
and Dates_in_music can be matched to the single expert-defined facet time
period, Era/epoch.

Globally, i.e. up to rank 242, considering both “soft” and strict matches, we
are able to match 41 expert-defined facets, while the Baseline system matches
36 expert-defined facets.

We could also notice cases in which our system was not able to infer correct
facets for expert-defined concepts despite the fact that they correspond to
existing categories in Wikipedia. For instance, Rhythm, and Lyrics were not
inferred because they are also Last.fm tags and our system includes a Tag
Filter (see Section 5.3.3).

It is important to notice here that some facets that were inferred do not cor-
respond to any of the expert-defined facets, yet they are potentially useful for
music categorization. For instance, the facet “Music_publishing companies”
inferred by our system (see Table 5.3) is clearly relevant (at the very least to
actors in the music publishing business), yet is not present in our list of expert-
defined facets. Another example are the inferred facets Music_competitions,
or Music_websites (see Table 5.4).

There are also examples of inferred facets which are difficult to evaluate when
comparing to expert-defined taxonomies. For example, our system infers the
facet Guitars, to which are assigned Last.fm tags such as Bass guitars, Por-
tuguese guitar, John Frusciante, or The Beatles. Clearly, there is no match
with any expert-defined facet. However, one could argue that expert-defined
taxonomies focus on describing the qualities of the music itself, and leave aside
other parts of the universe of music, that are in fact meaningful to (at least
some) users. Indeed associating The Beatles to a “guitar-type music” does
make sense.

Another important aspect of our system is the specifity of the inferred tags,
such as iPhone, American Idol, Jamendo, Garage Band, or even artist’s names,
which could not be found in the Baseline system. For instance, our system
proposes the following description for tag iPhone:
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IPhone: {(Music_software, 0.625),
(Music_technology, 0.375)}

These particular examples can show the importance of using a community-
edited knowledge repository, in terms of being more up-to-date. Nevertheless,
there is no way to objectively evaluate such new and unseen tags (instances in
classification). This task can only be done by performing a human evaluation
of these inferred tags (see Section 5.5).

Looking at the list of top facets generated by our method, we can also observe
that there is a certain bias towards anglophone music. For example among
the top 50 tags, there are four facets that are clearly related with Anglophone
culture <‘Anglophone Music”, “Music of United States subdivisions” , “Amer-
ican styles of music” or even “Music of California” — while there are only two
facets explicitly related with other parts of the world — “East Asian Music” and
“Southern European Music”. We believe that this is a direct consequence of
several factors. First, despite the fact that Last.fm’s music repository is open
to many different cultures and sub-cultures, musical content and correspond-
ing tag assignment is probably biased towards anglophone music. Second, the
Last.fm’s folksonomy itself is mostly in English. Third, the english-language
version of the Wikipedia used by our methods has obviously an intrinsic bias
towards anglophone cultures.

5.4.3. Evaluating assignment of facets to tags

Another important aspect that we want to evaluate is the assignment of (in-
ferred) facets to tags: we wish to evaluate whether the different facets we
infer are correctly related with tags. For that we focus on the four facets that
are part of our Gold Standard (see Table 5.5). For each of these four refer-
ence facets, we compare the tag/facet assignments of our system with the ones
obtained by the WordNet-based Baseline System.

We consider two different scenarios. In scenario Sp, we focus on Precision
and Recall, we compute the overlap between all tags assigned by each system
to each Gold Standard facet, and the actual ground-truth tags in those Gold
Standard facets. In scenario Sa, we focus on Precision@N.

Precision and Recall

Figure 5.3 depicts the Precision/Recall curve of our system assignments of tags
to the facets Music_genres (Genre in the GS), Music_geography (Locale,
country, nationality in GS) and Musical_instruments (Instrument in
GS). For the Genre and Instrument facets, it seems that threshold of 4
(maxIter in Algorithm 5.2, i.e. the maximum distance from the tag to the
candidate facet) gives the best trade off between precision and recall (largest
AUC, or Area Under the Curve), whilst this value is reduced to 2 in the case
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Figure 5.3: Precision/Recall curve of the assignment of facets (Genre, Instrument
and Location) to tags, when we vary the threshold for attribution of facets to tags in
our system.

of Locale, country, nationality. This particular case gives a good insight
of our system. In fact, when we impose a threshold of 2, our method is able
to assign the facet Music_geography to 140 tags, where 79% are actually tags
in the GS facet Locale, country, nationality. When the threshold is in-
creased to 3, Precision drops dramatically to 29% (165 out of 559). However,
by manually looking at these false positives, one can see that effectively most
of them are music genres (Rai, Merengue), artists (due to the nature of the
last.fm tags used in this work”) or the combination of two facets, such as, e.g.,
Spanish_rock or Finnish_hip_hop. For instance, given the tag Rai, which the
GS describes as a Genre, our system, based on Algorithm 5.2 and Equation 5.1,
and using the whole list inferred facets (333), is able to produce the following
description:

Rai: {(Algerian_styles_of_music, 0.67),
(Music_genres, 0.16),
(Music_geography, 0.16)}

which is a more complete semantic description of the tag Rai. In this case, it
seems also clear that a human evaluation (either expert or lay) is needed for
evaluating these complex semantics.

Setting our system’s threshold to 4 (value chosen after evaluating its per-
formance using the Precision/Recall curve, see Figure 5.3), we compare our

9people tend to tag an artist with the name of the artist.
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system to the Baseline System in terms of Recall (in Table 5.7) and precision
(in Table 5.8).

Table 5.7: Evaluation scenarion S;: Overlap with the Gold Standard ground truth
tags in number of tags (Recall value in parenthesis).

GS Facet (total number of Baseline system Our System classifica-
tags) classification tion

Genres (711) 32 (R—0.045) 272 (R=0.382)
Instruments (280) 67 (R=0.239) 79 (R=0.282)
Locations & Languages (609) 89 (R=0.146) 133 (R=0.218)
Moods (115) 3 (R=0.026) 0 (R-0)

Table 5.8: Evaluation scenarion S;: Number of tags assigned to each facet (Precision
value in parenthesis).

GS Facet Baseline system Owur System clas-
classification sification

Genres 103(P=0.311) 1757 (P=0.155)

Instruments 200 (P=0.335) 208 (P=0.380)

Locations & Languages 248 (P=0.358) 1207 (P=0.110)

Moods 51 (P=0.058) 0 (P=0)

An interesting result of Table 5.7 is the fact that our system more than doubles
the coverage of Gold Standard tags of the Baseline system: where the Baseline
system covers 191 tags out of the 1715 tags of the Gold Standard, we cover
484, this represents an increase of 153%.

On the negative side however, our system is not able to infer tags from the
Mood facet. In fact, this facet was not discovered by our method, starting from
the seed Music and following our algorithm, our system is unable to reach the
facet Mood, although the concept does exist as a category named Emotion in
Wikipedia, but our algorithm could not uncover the path in Wikipedia between
Music to Emotion.

We can also notice that our system scores worse than the Baseline system in
terms of precision (see Table 5.8), except for the case of the Instruments facets.
This is due to the fact that our system tends to be much more productive (i.e.
it classifies more tags) than the Baseline System. We propose to scrutinize this
aspect further by considering an additional evaluation scenario, Ss, where the
metric is Precision@N.

Precision@N

As our system tends to be much more productive than the Baseline system, one
could argue that precision values would not be directly comparable because
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of different numbers of tags retrieved by the two systems. Therefore, the
objective of evaluation scenario Sy is to compare precision of the two systems
on a comparable base of retrieved tags. For a given facet, we limit the number
of tags used in computing precision to the number of tags retrieved by the less
productive system, which is always the Baseline system.!’ For instance, for
the Genre facet, we compute the precision with respect to the GS ground truth
over a set of 103 tags. In the case of the Baseline system, all tags retrieved are
used, while in the case of our system, a selection of 103 tags among the 1784
tags retrieved are used.

In order to select among the tags retrieved by our system those that will be used
for computing precision, we retrieve the top—N tags (hence, Precision@N) for
each facet (where N is the limit number). For each facet, the tags are ordered
by relevance. This relevance is measured as the distance between the facet to
the candidate tag (i.e. the lower this value, the more relevant the tag is).

Table 5.9: Evaluation scenario So: Precision@N, where N varies with the facets.

GS Facet (N) Baseline system Owur System classifi-
classification cation

Genres (103) 32 (Pa103=0.311) 27 (Pa103—0.262)

Instruments (200) 67 (Pa200=0.335) 76 (Pa200=0.38)

Locations & Languages (248) 89 (Pa245=0.358) 118 (Pa245=0.476)

It is interesting to compare the results of Table 5.8 to those of this scenario,
described in Table 5.9. Logically, the performance of the Baseline system are
the same in both tables, but our system appears to perform better with the
Precision@N metrics than with Precision.

One can see in Table 5.9 that our system outperforms the Baseline system on
the Instruments and Locations and Languages facets. The Baseline system
still shows higher precision on the Genres facet, but in a much smaller measure
than in Table 5.8.

For the case of Genres, it should be noted that relatively low precision does not
necessarily mean that retrieved items are bad. For instance, it is informative
to consider examples among the 76 (i.e. 103 — 27 = 76) top ranked genres
that our system retrieves and that are not part of the Gold Standard, as well
as the remaining, supposedly not relevant, 71 genres retrieved by the Baseline
system that were not part of the Gold Standard either (Tables 9 and 10 in
the Appendix provide lists of these genres). One can observe that, even if
not part of the Gold Standard, many of the tags retrieved and classified as
genres are actually relevant music genres. Both systems were able to retrieve
what appears to be very specific genres, such as Cool Jazz, Neo Jazz and

Except in the case of Mood for which our system does not retrieve any tag (see above).
For this reason, we will not consider the Mood facet in evaluation scenario Sa.
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Psychedelicrock (from the Baseline system); or Zarzuela, Levenslied, Schlager,
Rautalanka (from our system). This illustrates the reported fact (Pachet &
Cazaly, 2000) that expert-based taxonomies of musical genres such as the Gold
Standard used here tend to be incomplete and outdated, albeit comprising over
700 genres.

Moreover, an advantage of our system over the Baseline is to be geared to-
wards retrieving tags that do not necessarily exist in expert-based taxonomies,
while the Baseline is biased to be conservative and to retrieve tags correspond-
ing to expert knowledge (either from the Gold Standard, or from WordNet).
Therefore, even if the Baseline appears to have a high precision, it is precisely
biased towards high precision, the downside of this being its relatively low re-
call (much lower than that of our system, see Table 5.7). Further, most of the
71 genres from the Baseline system that are not part of the Gold Standard but
that are nevertheless relevant are also inferred by our system, beyond the top
103, e.g., Zydeco, Progressiverock, Punkrock, etc. Finally, looking at examples
of genres retrieved by our system (see Appendix C) also shows tags not present
neither in the Gold Standard, nor in the set retrieved by the Baseline, but that
are still relevant, such as e.g., Indietronica or Ethereal wave (in the top 103),
and e.g., Mexican _Cumbia, UK _Hard_ House (beyond the top 103). The fact
that our system can retrieve such genres is interesting especially because they
correspond to a very specialized (either culturally or temporally) corner of hu-
man knowledge about music, hardly reachable for small groups of experts, but
at the reach of folksonomies.

5.4.4. Use case: assigning semantic facets to artist tags
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Figure 5.4: The Long Tail for artist popularity. A log-linear plot depicting the total
number of plays. Data gathered during April, 2010, for a list of 594,989 artists.
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Figure 5.5: The Long Tail model. It shows the cumulative percentage of playcounts
of the 594,989 music artists from Figure 5.4. Only top—955 artists, 0.16% of all the
artists, accumulates the 50% of total playcounts (N50). Also, the curve is divided in
three parts: head, mid and tail (Xpead—mid = 104, and X,i4-tas = 10, 860), so each
artist is located in one section of the curve.

Here, we wish to verify whether we can produce a meaningful faceted descrip-
tion of music artists’ tag sets. We are particularly interested in evaluating the
worth of community-based information (i.e. Wikipedia) in generating applica-
ble facets and tag/facet assignments for music artists in the Last.fm commu-
nity. Furthermore, we focus on artist popularity (number of total playcounts
in Last.fm) in order to understand the intrinsic differences that exist in any
social tagging system. That is, users tend to tag more the popular artists
rather than those that are less known.

Artist Popularity

Figure 5.4 depicts the Long Tail popularity, using total playcounts, for 594,989
artists. The horizontal axis contains the list of artists ranked by its total play-
counts. E.g. The Beatles, at position 1, has more than 250 million playcounts.
The Long Tail model, F(z), simulates any heavy—tailed distribution (Kilkki,
2007). It models the cumulative distribution of the Long Tail data. F(x)
represents the share (%) of total volume covered by objects up to rank x:

__b
(Bo)e 41

xT

Flz) = (5.2)

where « is the factor that defines the S—shape of the function, 5 is the total
volume share (and also describes the amount of latent demand), and N5g, the
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median, is the number of objects that cover half of the total volume, that is
F(Nsp) = 50.

Once the Long Tail is modelled using F'(x), we can divide the curve (Figure 5.4)
in three parts: head, mid, and the tail. The boundary between the head and
the mid part of the curve is defined by:

2/3
Xhead—smid = N5({ (53)
Likewise, the boundary between the mid part and the tail is:

4/3
Xmid%tail = N5({ s Xl%ead—nnid (54)

Figure 5.5 depicts the cumulative distribution of the Long Tail from Figure 5.4.
Now, we randomly select 50 artists in each portion of the Long Tail (head, mid

and tail), in order to answer these questions: (1) how many artist tags can we
classify?, and (2) how many facets do they correspond to?

In order for the Baseline system and our system to be comparable, we use
the same set of 8 facets corresponding to a strict match between inferred and
expert-defined facets (see Table 5.6).

Table 5.10: Classify Artist tags (the threshold parameter of our system is set to 4).

Long-tail Portion Baseline system as- Our system assigns at
signs at least one facet least one facet

Head 29.4% 41.1%
Mid 25.3% 33.4%
Tail 16.9% 17.1%

Table 5.11: Average number of assigned facets per artist.

Long-tail Portion Baseline system Our system

Head 1.74 2.26
Mid 1.58 2.16
Tail 0.84 1.24

In order to assign facets to artist tags, we proceed in two steps: (1) for each
artist tag, we compute the top facets using Algorithm 5.2, and (2) we merge
the tags’ top facets using the following equation:

I‘af = War- Rtf (55)
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where W,; represents the weight of tag ¢ for artist a!', and Ry represents
the relevance of facet f for the tag ¢t (R;; is computed using Equation 5.1).
For the Baseline system, since it is biased by definition towards the Golden
Standard, we did not consider different relevances for facets. In other words,
Riy =1V (t, f) € Baseline.

Table 5.10 and 5.11 present the results. We can observe that, thanks to at-
tributing a higher number of tags per facet, our method assigns on average
more facets to artists than the Baseline system (independently of the popular-
ity of that artist). Yet, the more unknown the artist is the less facets and tags
we can assign to her.

Table 5.12: Assignment of facets for artist Elton John’s tags.

Tags Baseline system Our System
Matched Facets Matched Facets
pop X Genre X Music_genres, Mu-

sic_ geography

classic rock X Music_genres,
Record labels

singer-songwriter X Occupations _in_music.
Music_genres,
Music_performance,
Record _labels

rock X Genre X Music_genres, Mu-
sic_ geography

piano X Instrument X Musical _instruments,
Aspects_of music

british X Locale, country, na- X Music__geography
tionality

80s X Time period, era /
epoch

70s X Time period, era /
epoch

elton john X Musicians, Mu-

sic_ people

male vocalists

An Example

As an illustrative example, we consider the Elton John example, shown in Fig-
ure 5.1. Table 5.12 shows the process of assigning facets to artist tags described

this weight is given by the last.fm dataset, and it is computed according to how many
times tag ¢ has been applied to artist a. The exact formula, though, is a trade secret of
last.fm.
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in the previous section. In this example, we fix the threshold parameter of our
system to a value of 4.

Both systems are able to classify correctly the tags “pop”, “rock”, “piano” and
“british”. The Baseline system was not able to classify “classic rock” nor “singer-
songwriter”. This is an illustration of the fact that WordNet does not cover
a broad description of the Music domain, a similar problem was reported
in (Cano et al., 2004b) about the Sound Effects domain. On the other hand,
our system could classify these tags. The tag “singer-songwriter” is classified as
Occupations_in_music, Music_genres and Music_performance, which are
correct. However, it also classified it as Record_labels. A broader analysis
of our system’s resulting network (as described in Section 5.3) permits us to
explore the path between this tag and the facet Record_labels (given the
threshold limit of 4), namely:

Record _labels — Mwusic_industry — Occupations _in_music — Singer—songwriter

Similarly, our system classifies the tag “Classic rock” as Record_labels. The
path there is the following:

Record_labels — Music_industry — Radio — Radio _formats — Classic_rock

After analyzing the Wikipedia categorization, it appears that there are both
broaderOf and subjectOf links, in both ways, between Music_industry and
Record_labels. While considering that Music_industry is a broaderOf of
Record_labels, the opposite does not seem to make sense. This “bug” in the
structure of Wikipedia is the reason why an erroneous facet was attributed to
these tags. This situation shows us that our system is somehow fragile with
respect to noise and inconsistencies in the Wikipedia categorization.

Unlike the Baseline system, our method was not able to classify the tags “70s”
and “80s”. This is due to the design characteristics of this system (as in the
case of Moods described in Section 5.4.3): our method, starting from the seed
“Music”, was unable to reach these specific time periods, known as decades,
although the facet Decades does exist in fact in Wikipedia.

We propose in the next section lines of future work, inspired by (Suchanek
et al., 2008), to remedy both this problem and the problem of fragility to noise
in the knowledge base.

5.5. Summary and future work

When comparing folksonomies to expert-based taxonomies, the former usually
have the advantage to be more complete, and more up-to-date. However, the
former have the drawback of lacking structured categories, i.e. terms are not
explicitly related to categories.
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In this chapter, we focused on the particular domain of knowledge related to
Music, and proposed a system addressing the complementary research prob-
lems of (1) uncovering the semantic facets of the popular music folksonomy
Last.fm, and (2) automatically categorizing music tags according to this set
of facets. The Wikipedia repository of knowledge was used as backbone for
semi-structured semantic categories.

Our system was able to infer 333 semantic facets of music. By comparing these
facets to those of taxonomies defined by experts, we showed that our system is
able to cover a significant portion of expert descriptions of music. There were
however some expert facets of music that our system could not infer, notably
Mood. The main reason is that Mood (or Emotion) is a very generic concept,
and can be applied in different contexts. It is then not directly related to music.
If our system is exploring explicitely music-related topics, it may not reach this
concept. Importantly, we also argued that among the inferred facets, many of
those facets that cannot be matched to expert facets are in fact meaningful
and do represent valid ways to describe music, at least within the particular
realm of the Last.fm folksonomy.

We also showed the relevance of our system in the task of tag categorization on
a subset of Gold Standard facets (namely Genre, Instruments, and Locations
and Languages), and in the task of automatically categorizing tags of music
artists.

There are many avenues for future work. First and foremost regarding eval-
uations. We intend to proceed to a manual evaluation of the facets inferred
by our system that do not correspond to facets commonly found in expert-
based taxonomies. We will proceed to this evaluation via a questionnaire-based
methodology targeting different participant profiles: experts of the music busi-
ness, musicians, experts in the scientific research on social music tagging, and
lay music lovers.

Further work should also be dedicated to evaluating the worth of the obtained
facets and the whole system in a number of tasks, such as music recommen-
dation and browsing, or tag expansion. In particular, we also plan to further
study the distributions of music facets with respect to artist popularity and
evaluate in what respect our system could be useful for tackling the problem
of cold-start in music recommendation (Celma, 2010).

We also plan to modify our system so that it includes the advantages of the
Baseline system, without its drawbacks. Namely, instead of starting from the
single category “Music”, our system could be based on hierarchies of facets
that are known to be relevant to music (through the inclusion of expert-
based ontologies), and expand /refine this initial knowledge via specializing the
Wikipedia general knowledge base with the same methods as described in this
chapter. This may permit to combine in the same system both expert knowl-
edge on specific parts of the universe of music (e.g., Mood taxonomies) with
the grounded and updated underlying knowledge of music lovers (Suchanek
et al., 2008).
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Last, but not least, we plan to study different measures for evaluating the
relevance of a music facet to a given tag. This would improve the precision of
our system in tasks such as tag classification.

The whole system, its data and source code are available on the website http:
//www.dtic.upf.edu/"msordo/wikifacets in order to stimulate its use by
fellow researchers.


http://www.dtic.upf.edu/~msordo/wikifacets
http://www.dtic.upf.edu/~msordo/wikifacets

Conclusions and Future Work

At first, science has a bitter taste, but at the end it is sweeter than honey.
—THE BRETHREN OF PURITY — IKHWAN AL—-SAFA (10TH CENTURY)

6.1. Introduction

When this thesis started, there was almost no published work related with
music autotagging, although a number of research works using contextual in-
formation for music mining and classification (Celma et al., 2006; Ellis et al.,
2002; Geleijnse et al., 2007; Knees et al., 2006, 2007a; Schedl et al., 2005a,b,
2006; Whitman & Ellis, 2004; Whitman & Lawrence, 2002; Whitman & Rifkin,
2002) were available. The first autotagging approaches (Eck et al., 2007; Turn-
bull et al., 2006) were built upon previous specific Music Information Retrieval
tasks, such as genre, mood or artist classification. Since then, several contribu-
tions have been made to the field, including data gathering, machine learning
algorithms, and methological form (Marques et al., 2011). Nowadays, tags
are one of the key subjects in the Music Information Retrieval field (Downie,
2003).

In Chapter 2 we presented the formalization and framework of music automatic
tagging, referencing related work. In Chapter 3 we introduced our proposed au-
tomatic music tagging approach. The algorithm predicts tags based on acoustic
similarity, using a memory-based classifier and a pre-defined labeled training
dataset. The audio features used in this thesis cover a wide range of musical
concepts, including timbre (e.g., MFCC), tonal (e.g., pitch class profiles), tem-
poral (e.g., bpm, onset, peak weights) and a set of high level features, such as
moods, genres, etc. In order to assess the strength of the proposed autotagging
algorithm, we carried out a thorough evaluation in several experiments, using
six datasets and different methods for music annotation. Experimental results
revealed that a simple model, combined with an audio feature representation
that covers a variety of music concepts can perform as well as, or better than

171
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many state of the art approaches. Interestingly, many of the aforementioned
state of the art approaches use much more complex, time and resource con-
suming algorithms, though they rely only on timbre information. These results
are additional evidence that special care must be taken in selecting and cap-
turing more complete and descriptive audio—related information, in order to
build successful models for automatic tagging of music (Herrera-Boyer et al.,
2006).

The last few years have also shown a significant increase in social tagging.
Since 2004, the explosion of Web 2.0 (e.g., tagging, blogging, user—generated
content, etc.) questioned the usefulness of controlled vocabularies (Shirky,
2005). Internet sites with a strong social component, like Last.fm, allow users
to tag music according to their own criteria. This scenario made the world
of taxonomies even more complex. Nowadays, users can organize their music
collection using social tags like late night, while driving, etc. The combina-
tion of tags from thousands of users lead to the emergence of a large body of
domain-specific knowledge, often referred to as Folksonomy. Folksonomies ex-
ploit user—generated classification through a bottom—up approach (Scaringella
et al., 2006). On the one hand, this non-hierarchical approach allows users
to organize their music with a better confidence. On the other hand, it cre-
ates difficulties for the design and maintenance of expert—based taxonomies, as
new terms may emerge from time to time. Thus, in this scenario, up to date
expert—based taxonomies become more and more difficult. Moreover, the sim-
plicity and user-friendliness of community—based tagging imposes a toll: there
is usually no way to explicitly relate tags with the corresponding music facets.
When browsing the tag description of a particular artist, Last.fm users browse
a —albeit very rich— flat list of terms.

We tackled these last issues in the chapters 4 and 5. In Chapter 4 we studied
whether the controlled vocabulary defined by a group of experts correspond
with the tag annotations of a large community, the so—called wisdom of the
crowds. We ran experiments in two basic musical concepts: music genre and
mood. Regarding music genre, we found that some genres are clearly defined
both from the experts and the wisdom of crowds, reaching a high agreement
between these two views, while other genres are difficult to get a common con-
sensus of its meaning. As for moods, we demonstrated that the basic emotions
happy, sad, angry and tender are very relevant to the social community. With
respect to expert—defined mood clustering representations, we found that the
arousal and valence dimensions based on Rusell’s model of emotion (Russell,
1980) can also be captured.

In Chapter 5, we proposed a system addressing the complementary research
problems of: uncovering the semantic facets of the popular music folksonomy
Last.fm, and automatically categorizing music tags according to this set of
facets. The Wikipedia repository of knowledge was used as a backbone for
semi-structured semantic categories. Our system was able to infer 333 semantic
facets of music. By comparing these facets to those of taxonomies defined by
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experts, we showed that our system is able to cover a significant portion of
expert descriptions of music. There were however some expert facets of music
that our system could not infer, notably Mood. The main reason is that
Mood (or Emotion) is a very generic concept, and can be applied in different
contexts. It is then not directly related to music. If our system is exploring
explicitely music-related topics, it may not reach this concept. Importantly, we
also argued that among the inferred facets, many of those facets that cannot be
matched to expert facets are in fact meaningful and do represent valid ways to
describe music, at least within the particular realm of the Last.fm folksonomy.
We also showed the relevance of our system in the task of tag categorization on
a subset of Gold Standard facets (namely Genre, Instruments, and Locations
and Languages), and in the task of automatically categorizing tags of music
artists.

6.2. Summary of contributions
The main contributions of this thesis are:

1. An automatic music tagging algorithm that uses acoustic similarity and
nearest neighbor classification to propagate tags among songs. The al-
gorithm has the following advantages:

a) It avoids the design and training of each possible tag, specially for
datasets based on folksonomies, where there are thousands of tags.

b) From the industry perspective, it shows to be scalable in both mem-
ory and CPU time consumption, for datasets in the order of tens of
thousands of tags and hundreds of thousands of music excerpts.

2. An extensive evaluation of the autotagging algorithm using multiple
datasets, for both music and sound effects. It compares the experimental
results with several approaches that are representative of the state of the
art of music autotagging. Additionally, it discusses and emphasizes the
importance of different evaluation measures, local or global, for the task
of music autotagging.

3. An in-depth study of the nature of music folksonomies, focusing on the
social music website Last.fm. The aim of such study is to assess whether
the tag annotations made by a large community concord with a con-
trolled, structured vocabulary of experts in their field, by reconstructing
taxonomies from the inherent correlation amongst the semantic terms
(tags). This study focuses on two main aspects of music: musical genres
and moods.

4. A generalization of the previous contribution to a wide range of semantic
concepts. This thesis presents a novel way to uncover a set of semantic
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facets implicit in the tags of the Last.fm music folksonomy, and classify
tags with respect to these facets, using the semi-structured repository of
general knowledge Wikipedia as a backbone for tag categorization.

6.3. Limitations and future work

The problem of annotating music with semantic words is far from being solved.
There are many open issues and avenues for future work.

Consistent datasets and labeled data. As Bertin-Mahieux et al. (2010)
state, current research in music autotagging is moving towards the use of large
datasets, principally retrieved from web documents or social data. The ratio-
nale is that large datasets can help to overcome the inconsistencies inherent in
the tagging vocabulary. In this thesis, however, it is presented experimentally
that the problem of annotating music from a large dataset of social tags, is far
from being solved. Datasets usually suffer from data scarcity or tag correlation
(similarity, polysemy). Moreover, social tags can evolve over time, and new
or more complex concepts can appear. One of the contributions of this thesis
consisted in building an automatic model to uncover the semantic facets in-
herent to social tags. The semantic facets are anchored upon the structure of
Wikipedia, a dynamic and evolving encyclopedia repository of universal knowl-
edge. Interestingly, this aspect of evolution can help overcome the problem of
new, emerging concepts in tagging. A clear plan for future work is to include
these models in the proposed autotagging algorithm.

Features and learning algorithms. Selecting the best set of features that
discriminate different objects in a classification task is crucial. Indeed, Herrera-
Boyer et al. (2006) state that “choosing good features is more crucial than the
choice of the classification algorithm, and the classification itself becomes eas-
ier if the features chosen are informative enough”. It should be noted, though,
that tag classification covers much more concepts than traditional MIR clas-
sification tasks, including mood, genre, or artist classification. For instance,
genre and mood are only 2 facets among many others. Future work includes
selecting features that discriminate each concept separately, or uncovering fea-
tures that are common for a combination of concepts. The latter approach
can be helpful for solving the problem of tag correlation. Further work should
be devoted also to the way features are aggregated, beyond the classical bag
of frames approach (Aucouturier et al., 2007a; Seyerlehner, 2010; Seyerlehner
et al., 2010).

Cross—collection tagging. Traditional research in MIR related Machine
Learning tasks consists of using the same Ground Truth dataset for learning
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models and testing their quality (by performing any validation method). Mar-
ques et al. (2011) remark that using a dataset for training and another different
dataset for testing negatively influences the evaluation results, and that spe-
cial care must be taken to understand what are we learning. An additional
line of research may include the use of different datasets for training. A high
level autotagger can be built by aggregating several autotaggers trained with
a different dataset, as it has been recently addressed by Ellis et al. (2011). In
addition, each dataset can be defined for a specific music concept (moods, gen-
res, usage, etc.), or alternatively with overlapping concepts which can help to
reinforce the classification or misclassification of an audio excerpt. The main
drawback of this latter approach is that datasets from different sources tend
to share few concepts or use different words for expressing the same concepts.
Further work on tag similarity should help overcome these shortcomings.

Evaluation. Several experiments in this thesis have revealed that there is no
unique way to assess the quality of autotagging algorithms. Some algorithms
perform well in per—song evaluations, however they fail to predict all the tags,
especially those that were less frequently used, hence resulting in worse per—
tag evaluations. Other algorithms are, a priori, more robust at learning models
for all the tags and predict most of the tags, which results in higher per—tag
but lower per—song performance. These evaluations are, however, very generic,
and do not uncover the particularities of each autotagging system. For this
purpose, individual evaluations for each tag were also considered. Further-
more, the characteristics of each autotagging approach can be more or less
valuable depending on the application of the “autotags” (e.g., search, simi-
larity, recommendation). Future work includes a subjetive evaluation of the
algorithm predictions, although it should be considered the current impracti-
cability for such evaluation, especially for large datasets. Another alternative
that can be considered is using the proposed annotations in a higher level task
such as music recommendation (Eck et al., 2008; Zhao et al., 2010). Among
many other aspects, Urbano (2011) states that evaluation should go beyond
the comparison of evaluation results. The author exposes a wide list of rec-
ommendations for improving MIR related algorithms, including standardized
collections, baselines or evaluation models.

For semantic facets and concepts, we intend to proceed to a manual evaluation
of the facets inferred by our system that do not correspond to facets com-
monly found in expert-based taxonomies. We will proceed to this evaluation
via a questionnaire-based methodology targeting different participant profiles:
experts of the music business, musicians, experts in the scientific research on
social music tagging, and lay music lovers.

Refining the music semantic facets. Regarding the presented algorithm
for uncovering music facets, instead of starting from the single category “Mu-
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sic”, our system could be based on hierarchies of facets that are known to be
relevant to music (through the inclusion of expert—based ontologies). This may
permit combining in the same system both expert knowledge on specific parts
of the universe of music (e.g., Mood taxonomies) with the grounded and up-
dated underlying knowledge of music lovers (Suchanek et al., 2008). Finally,
we plan to study different measures for evaluating the relevance of a music
facet to a given tag. This would improve the precision of our system in tasks
such as tag classification.

Hybrid approaches. Last but not least, we strongly believe that neither
a pure content—based approach nor a system that relies only on contextual
information (e.g., social tags) can solve the problem of tagging music sepa-
rately. Each one of these approaches has advantages and shortcomings. A
multi—faceted approach using expert based classifications, dynamic associa-
tions derived from the community driven annotations, and content—based anal-
ysis would improve audio tag classification. Some work has already been done
for combining such sources of information (Barrington et al., 2009; Knees et al.,
2009), with promising results. Future work can be carried out regarding how
to effectively combine these diverse sources of information.

I hope you enjoyed reading this thesis.



Mohamed Sordo, Barcelona, December 20, 2011.
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Appendix B: supplementary
material

Chapter 3: PCA covered variance

The following appendix presents additional material for the evaluations of the
proposed music autotagging algorithm in Chapter 3. It includes a plot of the
PCA components used in the aforementioned autotagging algorithm. Addi-
tionally, it depicts the list of the audio features which have the highest positive
and negative contribution coefficient in the first and the second PCA compo-
nents.

CAL500 dataset

CAL500
25 T T T

20 R

15 b

101 R

Covered variance (%)

01357911131517192123252729
PCA components

Figure 1: CAL500 dataset. Covered variance of each PCA component.
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Table 1: CAL500 dataset. List of the 25 audio features which have the highest
positive contribution coefficient in the first PCA component

Category Feature Value Contrib.
High level Mood (acoustic) not acoustic 0.172
High level Mood (sad) not sad 0.171
High level Mood (party) party 0.162
High level Mood (relaxed) not relaxed  0.158
High level Mood (aggressive) aggressive 0.135
High level Rhythm fast 0.109
High level Ballroom jive 0.108
Low level  Pitch dmean 0.107
High level ~Genre (electronica)  dnb 0.105
Low level  Spectral centroid mean 0.104
Low level  Zerocrossingrate mean 0.103
Low level  Spectral rolloff mean 0.102
Low level  Pitch dvar 0.098
Low level  Spectral complexity —dmean 0.097
Low level  Pitch var 0.093
Low level  Average loudness - 0.091
High level ~Genre (rosamerica)  roc 0.091
Low level = Barkbands spread mean 0.085
High level Mood (happy) happy 0.081
Low level  Hfc dmean 0.081
Low level  Spectral complexity var 0.081
Low level  Spectral energyband mean 0.079
middle high
High level ~Genre (dortmund)  rock 0.078
Low level  Spectral flux mean 0.078

Low level  Hfc mean 0.076
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Table 2: CAL500 dataset. List of the 25 audio features which have the highest
negative contribution coefficients in the first PCA component

Category Feature Value Contrib.
High level Mood (acoustic) acoustic —0.172
High level Mood (sad) sad —0.171
High level Mood (party) not party —0.162
High level Mood (relaxed) relaxed —0.158
High level Genre (electronica) ambient —0.136
High level Mood (aggressive)  not aggressive —0.135
High level Mood cluster3 —0.096
High level Rhythm slow —0.091
High level Mood (happy) not happy —0.081
High level Timbre bright —0.069
High level Ballroom waltz —0.067
High level Gender female —0.065
High level ~Genre (dortmund)  folkcountry —0.064
High level  Voice/instrumental instrumental — —0.063
Low level  Dissonance dmean —0.062
High level Mood (electronic)  not electronic  —0.058
High level ~Genre (rosamerica) cla —0.051
Low level  Pitch instantaneous mean —0.050
confidence
High level ~Genre (tzanetakis) cou —0.050
Low level  Spectral crest var —0.050
Low level  Silence rate 60dB mean —0.050
High level Genre (dortmund)  jazz —0.049
Low level  Dissonance var —0.048
Low level  Spectral crest mean —0.048
Temporal  First peak spread - —0.045
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Table 3: CALS500 dataset. List of the 25 audio features which have the highest
positive contribution coefficients in the second PCA component

Category Feature Value Contrib.
High level Mood (electronic) not electronic  0.168
High level Culture western 0.152
High level ~Genre (rosamerica)  roc 0.149
High level Rhythm fast 0.130
High level Timbre bright 0.123
High level ~Genre (dortmund) rock 0.112
High level Mood (happy) happy 0.111
High level ~Genre (tzanetakis)  roc 0.101
Low level  Spectral energyband mean 0.097
middle high
High level Ballroom jive 0.095
High level Gender male 0.094
Low level  Spectral rms mean 0.087
Low level  Spectral strongpeak mean 0.086
Low level  Spectral energy mean 0.083
Low level  Spectral complexity —mean 0.079
High level ~ Genre (dortmund) folkcountry 0.076
High level Mood (aggressive) aggressive 0.075
Low level  Spectral strongpeak dmean 0.070
Temporal  First peak spread - 0.068
Low level  Hfc mean 0.065
High level ~Genre (electronica)  trance 0.062
High level ~Genre (tzanetakis)  cou 0.062
High level Mood (relaxed) not relaxed 0.062

High level  Genre (dortmund) alternative 0.061
Tonal Hpep [21] mean 0.058
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List of the 25 audio features which have the highest

Category Feature Value Contrib.
High level Mood (electronic) electronic —0.168
High level ~ Genre (dortmund) raphiphop —0.163
High level Culture non western —0.152
High level Timbre dark —0.123
High level Rhythm medium —0.112
High level Mood (happy) not happy  —0.111
High level =~ Genre (electronica) house —0.104
Temporal Beats loudness bass dvar —0.102
Low level  Spectral crest dvar —0.099
High level ~ Genre (rosamerica) hip —0.095
Low level  Spectral energyband low dmean —0.095
High level =~ Genre (tzanetakis) hip —0.095
Temporal Beats loudness bass var —0.095
High level Gender female —0.094
Low level  Pitch salience dvar —0.094
High level =~ Genre (tzanetakis) reg —0.091
Low level  Spectral rolloff dvar —0.091
Low level  Silence rate 60dB mean —0.090
Temporal Beats loudness bass mean —0.089
Low level  Spectral rolloff var —0.086
Low level  Spectral rolloff dmean —0.085
Low level  Spectral flux var —0.081
Low level  Spectral rms dmean —0.081
Low level  Zerocrossingrate var —0.081
Low level  Spectral flux dmean —0.079
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1TMS-500K dataset

iTMS-500K
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Figure 2: iTMS-500K dataset. Covered variance of each PCA component.
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Table 5: iTMS-500K dataset. List of the 25 audio features which have the highest
positive contribution coefficients in the first PCA component

Category Feature Value Contrib.

High level Mood (sad) not sad 0.200
High level Mood (acoustic) not acoustic 0.192
High level Mood (aggressive)  aggressive 0.188
High level Mood (relaxed) not relaxed  0.187

High level Mood (party) party 0.181
High level Ballroom jive 0.141
High level ~Genre (rosamerica) roc 0.133
High level Rhythm fast 0.130
High level ~Genre (dortmund) rock 0.122
High level Genre (electronica) dnb 0.109
Tonal Thpcep [2] - 0.093
High level Mood (happy) happy 0.092
Tonal Thpep [3] - 0.088
High level Gender male 0.087
Tonal Thpcep [32] - 0.086
Tonal Thpcep [4] - 0.085
Tonal Thpcep [34] - 0.085
Tonal Thpep [17] - 0.083
Tonal Thpcep [33] - 0.082
High level Mood cluster) 0.082
Low level  Barkbands spread  mean 0.081
Tonal Thpcep [18] - 0.080
Low level  Spectral flux mean 0.078
Tonal Thpcep [19] - 0.077

Tonal Thpcep [31] - 0.077
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Table 6: iTMS-500K dataset. List of the 25 audio features which have the highest
negative contribution coefficients in the first PCA component

Category Feature Value Contrib.
High level Mood (sad) sad —0.200
High level Mood (acoustic) acoustic —0.192
High level Mood (aggressive)  not aggressive ~ —0.188
High level Mood (relaxed) relaxed —0.187
High level Mood (party) not party —0.181
High level ~Genre (electronica) ambient —0.169
High level Mood cluster3 —0.132
High level Rhythm slow —0.097
High level Mood (happy) not happy —0.092
High level Gender female —0.087
High level Ballroom waltz —0.081
High level Timbre bright —0.072
High level Voice/instrumental —instrumental —0.070
Low level  Silence rate 60dB mean —0.066
High level Genre (dortmund)  jazz —0.064
High level ~Genre (rosamerica) jaz —0.061
Low level  Pitch instantaneous mean —0.060
confidence
High level Genre (dortmund)  folkcountry —0.060
High level ~Genre (rosamerica) cla —0.059
Low level  Spectral crest mean —0.053
High level ~Genre (tzanetakis) cla —0.047
High level Genre (rosamerica) rhy —0.047
High level Ballroom rumba-internat. —0.044
Low level  Silence rate 60dB var —0.042

High level Mood (electronic)  not electronic —0.036
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Table 7: iTMS-500K dataset. List of the 25 audio features which have the highest
positive contribution coefficients in the second PCA component

Category Feature Value Contrib.
High level Voice/instrumental instrumental 0.308
High level Mood (happy) not happy 0.259
High level Timbre dark 0.251
High level Mood (electronic)  electronic 0.160
High level Mood (aggressive)  aggressive 0.141
High level Gender female 0.105
High level Mood cluster) 0.089
High level Rhythm medium 0.086
High level ~Genre (tzanetakis) met 0.086
High level Rhythm slow 0.085
High level ~Genre (rosamerica) roc 0.084
High level Genre (dortmund) electronic 0.078
High level ~Genre (tzanetakis) cla 0.068
High level Ballroom waltz 0.068
High level Mood (relaxed) relaxed 0.062
High level Culture non western  0.055
High level ~Genre (rosamerica) cla 0.054
High level ~Genre (dortmund) jazz 0.054
High level Mood (acoustic) not acoustic  0.052
High level ~ Speech/music speech 0.049
Tonal Thpcep [3] - 0.047
High level ~Genre (rosamerica) jaz 0.043
Low level  Pitch mean 0.040
Tonal Thpep [2] - 0.037
Tonal Tuning equal - 0.036

tempered deviation
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Table 8: iTMS-500K dataset. List of the 25 audio features which have the highest

APPENDIX B: SUPPLEMENTARY MATERIAL

negative contribution coefficients in the second PCA component

Category Feature Value Contrib.
High level = Voice/instrumental voice —0.308
High level Mood (happy) happy —0.259
High level Timbre bright —0.251
High level Rhythm fast —0.171
High level Mood (electronic)  not electronic  —0.160
High level ~Genre (rosamerica) pop —0.146
High level Mood (aggressive) not aggressive —0.141
High level ~Genre (tzanetakis) pop —0.129
High level Gender male —0.105
Low level  Silence rate 60dB  var —0.104
High level Mood cluster2 —0.103
High level ~Genre (rosamerica) rhy —0.083
High level ~Genre (dortmund)  folkcountry —0.081
High level Ballroom quickstep —0.074
Tonal Key strength - —0.070
High level ~Genre (tzanetakis) cou —0.068
High level Genre (dortmund) pop —0.066
High level Mood (relaxed) not relaxed —0.062
Tonal Thpep [21] - —0.061
High level Culture western —0.055
Tonal Thpcep [15] - —0.055
High level Mood cluster4 —0.054
Tonal Tuning diatonic - —0.054
strength
Temporal  First peak weight — — —0.052
High level Mood (acoustic) acoustic —0.052
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Chapter 5: extended results on assigning facets to

tags

Table 9: List of the 76 top genres (from the top 103) produced by our system which

are not present in the Gold Standard

Aida Filmi Political
Al Green Freak folk Polka
American Indian music George Michael Popular
Andreas_ Scholl Gnawa Rautalanka
Art Gospel _blues Religious
Bittersweet Indietronica Rhythm and_blues
Boy soprano Indigenous Russian__chanson
brianmcknight Indigenous Australian _music Schlager
Cabaret Islamic Selena
Cantautori Jeff Buckley Side project
Chamber Jesus Song
Circus Levenslied Soprano
Classical _composers Lisa_ Gerrard Sopranos
Contemporary Maritime Sufi
Contemporary Christian music Mercedes Sosa Symphonic_rock
Contraltos Mezzo-soprano Tenor
Countertenor Mezzo-sopranos Tenors
Countertenors Military Tin Pan Alley
Dansband Minimalism Tosca
Death Minimalist Traditional
Drone Music_ hall VIA music
Electronic dance music Nico Wedding
Ethereal Wave Nusrat _Fateh Ali Khan World
Ethnic Oldies Zarzuela
Featuring Operetta Zolo
Film
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Table 10: List of the 71 top genres produced by the Baseline system (from a total
of 103) which are not present in the Gold Standard

Act Gregorian _Chant Postmodernism
African-American_Music | Hillbilly Music Progressive_ Rock
Anthem Hot Jazz Prose
Aria Hymn Psychedelicrock
Ballroom Landscape Punk Rock
Beat Lead Religious
Bebop Light Opera Requiem
Black Macumba Rhythm and Blues
Blue Note March Rock'n’Roll
Boogie Marching Scat
Cantata Martial Scat Singing
Chamber Mass Scene
Chant Melodrama Serious
Chorale Military Sitcom
Christmas Carol Modernism Skiftle
Church Modern Jazz Sonata
Comedy Movement Spiritual
Cool _Jazz Neo Jazz Stream of Consciousness
Country _and_Western New Jazz Symphonic
Drama Operetta Trad
Ethnic Oratorio Tragedy
Folksong Personal Verse
Genre Poetry Zydeco
Gospel Popular




Appendix C: definition of
terms

The following is a list of some of the most used terms throughout this disser-
tation.

Cold start: a phenomena, usually prevalent in recommender systems, where
a system cannot draw any inferences from users or items for which it has
not yet gathered enough information.

Folksonomy: a system of classification derived from the practice of collab-
oratively and freely creating and managing tags, attached to any infor-
mation resource.

Latent Semantic Analysis (LSA): a theory and method for extracting
and representing the contextual-usage meaning of words by statistical
computations applied to a large corpus of text. The underlying idea is
that words appearing or not appearing in a document provide a set of
mutual constraints, which determine the similarity of words or documents
to each other.

Long tail: a term popularized by Chris Anderson (2006), it is a statistical
property which informs that a larger share of population rests within
the tail of a probability distribution, while a large mass is applied to a
small subset of the population. Typically, this distribution is fitted into
a power law distribution.

Popularity bias: when a system is more prone to propose / predict / recom-
mend popular items more accurately, but ignoring or poorly performing
in the rest.

Power law: a statistical relationship between two variables (p(z) o z%),
where the frequency of an event varies as a power of some attribute of
that event.

Semantic facet: a model describing a specific semantic concept of an item.

Semantic space: a mathematical representation of a large body of text.
Every term or combination of terms has a high dimensional vector rep-
resentation. In Latent Semantic Analysis, two terms are compared using
the cosine of the angle between the vectors representing the terms. This
occurs within a specific semantic space. A word cannot be directly com-
pared between different semantic spaces.
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Social tag: a tag introduced by users of any system to describe a content.

Tag: a keyword, category name, or meta data that describes any information
resource.

Tag category: a group of tags with similar semantic meaning; related to
semantic facets.

Tag vocabulary: a (structured or unstructured) set of tags.

Taxonomy: a system of classification arranged in a hierarchical structure or
classification scheme, as defined by experts in the field.

Unbalanced dataset: a dataset that has many instances of some tags, but
very few of others.

Weak labeling: a dataset is weakly labeled if the absence of a tag within a
song does not necessarily mean that this song cannot be associated with
that tag.






	Abstract
	Contents
	List of figures
	List of tables
	Introduction
	Motivation
	The problem of music autotagging
	Our approach
	Outline of the Thesis

	Framework of Automatic Tagging
	Introduction
	Obtaining tags
	Web documents
	Surveys
	Games with a purpose
	Social tags

	General framework
	Feature extraction
	Dimension reduction
	Labeled data
	Machine learning

	Evaluation
	Evaluation measures
	Validation

	Related work

	Automatic annotation  of music from audio
	Introduction
	Autotagging algorithm description
	Feature extraction
	Feature selection
	Learning algorithm
	Parameter selection

	Experiment 1: Magnatune-5K dataset
	Dataset
	Experimental results
	Discussion

	Experiment 2: Freesound.org dataset
	Introduction
	Dataset
	Experimental results
	Conclusions

	Experiment 3: Statistical testing on the CAL500 dataset
	Dataset
	Parameter selection
	Experimental results
	Discussion

	Experiment 4: MIREX 2011
	Dataset
	Experimental results
	Statistical significance tests
	Discussion

	Experiment 5: iTMS-500K dataset
	Dataset
	Experimental results
	Discussion

	Conclusions
	Contributions
	Limitations and future work


	Exploring the Semantic Space: Folksonomies and Taxonomies
	Introduction
	Musical genres
	Musical genres classification
	Datasets
	Experimental results
	Conclusions

	Moods
	Expert representations
	Dataset
	Semantic Mood Space
	Experimental Results
	Conclusions

	Summary

	Semantic Facets of Music Tags
	Introduction
	Related work
	Tag categorization
	Social Tagging in Music
	Expert-defined music facets

	Method
	Data
	Obtaining a music-related network
	Finding relevant facets
	Assigning facets to tags
	Tag/Facet relevance

	Results and Evaluation
	Evaluation methodology
	Evaluating inferred facets
	Evaluating assignment of facets to tags
	Use case: assigning semantic facets to artist tags

	Summary and future work

	Conclusions and Future Work
	Introduction
	Summary of contributions
	Limitations and future work

	Bibliography
	Appendix A: publications by the author
	Appendix B: supplementary material
	Appendix C: definition of terms

