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Preface 
 

 

 

 Photonic crystals are periodic dielectric or metal-dielectric nanostructures 

that are designed to affect the propagation of electromagnetic waves in the same 

way as the periodic potential in semiconductor crystals affects the electron motion 

by defining allowed and forbidden energy bands. If the photonic crystal consists 

of a material whose properties do not depend on the intensity of the propagating 

light, it is called linear. In contrast, if the properties of the constituent material 

depend on the intensity, the photonic crystal is called nonlinear. Nonlinear 

photonic crystals can be made from dielectrics, glasses, polymers or ferroelectrics. 

 This dissertation represents a summary of the author's work in the last four 

years in developing a numerical approach for designing and analysing Kerr 

nonlinear photonic crystal and all-optical devices based on them. The work 

carried out is theoretical in nature. It is concerned with such issues as numerical 

methods, calculations of dispersion characteristics, design and analysis of all-

optical devices with possible applications to optical communication systems and 

optical chips. 

 The author hopes that his experience with the numerical method employed 

could be useful as a hint and a guide for other researchers working in the same 

field.
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Objectives of the dissertation, practical 

importance and author's contribution 
 

 

 

 The objectives of the work are: 

• developing a finite-difference time-domain-based numerical approach to 

calculate dispersion characteristics of Kerr nonlinear photonic crystals; 

• analysing the basic characteristics of the numerical approach such as the 

spatial resolution, stability, convergence, numerical errors, etc.; 

• application of the numerical approach developed to study the 

characteristics of Kerr nonlinear photonic crystals both perfect and with 

defects; 

• design and analysis of a novel all-optical switching structure for 

application in optical communication systems or optical chips. 

 

 The methods of investigation applied in the dissertation can be classified 

as follows. First, a novel numerical approach proposed by the author, based on the 

finite-difference time-domain (FDTD) simulation of the oscillating dipole 

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



8 
 

radiation and combined with the Kerr nonlinear model, is used to calculate 

dispersion characteristics in the both linear and nonlinear regimes. In it, the Bloch 

periodic boundary conditions are imposed to simulate the periodic nature of 

photonic crystals and the super-cell technique is applied to simulate various 

defects introduced, for instance, by removing a row of scatterers. In addition, the 

plane wave expansion method is used as an auxiliary tool to calculate linear 

dispersion characteristics with the purpose of validating the FDTD-based 

approach. Secondly, another FDTD-based approach known in the literature as the 

Order-N method is used to analyse the dispersion characteristics of nonlinear 

photonic crystal slabs. Absorbing boundary conditions are combined with the 

Order-N method to take into account the confinement in the vertical direction. In 

the final part of the work, the information on physical processes in the studied 

nonlinear photonic crystals serves as a generator of ideas to be implemented in 

novel optical devices. 

 The scientific novelty of the work consists in proposing a novel approach 

for analysing dispersion characteristics of Kerr nonlinear photonic crystals and 

considering for the first time the behaviour of the oscillating dipole in infinite 

nonlinear periodic media. The super-cell technique is combined with the approach 

proposed to calculate dispersion characteristics of nonlinear photonic crystal 

waveguides and directional couplers. Regarding to the calculation of dispersion 

characteristics of nonlinear photonic crystal slabs, it is also proposed for the first 

time to combine the Order-N method with the models of the Kerr nonlinearity. 

The results achieved by analysing the dispersion characteristics have allowed to 

understand inherent physical processes in nonlinear photonic crystals. Such an 

understanding results in new ideas that can be implemented in promising solutions 

for novel optical devices. 
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 The viability of the results achieved in this dissertation is partially 

confirmed by comparison with the previous results reported by other authors. 

However, a few works related to the theme of this dissertation had been published 

when the work was started. Therefore, the correctness of the results presented in 

the dissertation is examined by means of the comparison between the results 

obtained by using different numerical approaches. 

 The practical importance of the work: 

• the numerical approach proposed for analysing dispersion 

characteristics is a powerful tool that can be applied in designing novel 

photonic crystal integrated optical devices that will be widely used in 

the future in such areas as telecommunications and optical computing; 

• the FDTD source code developed during the doctoral work can be used 

to simulate various optical devices and investigate their basic 

characteristics. It serves to design novel optical devices with such 

optimized characteristics as the size and the power consumption; 

• from the theoretical point of view, the investigation of the dipole's 

behaviour in nonlinear periodic media helps to obtain the deeper 

understanding of physical processes in photonic crystal optical 

devices. 

 

 The basic results of the dissertation were presented and discussed at 

international and national conferences and published in papers in international 

referred journals. The author's contributions to the papers consist in formulation of 

the problem, choosing the numerical method, developing the source code and 

performing the calculations. The author would like to underline the help of Mr. M. 

Ustyantsev. During the author's previous work, he contributed to four scientific 
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works published in a national journal (both in Russian) and in two international 

conferences. The subject of these publications is closely related to that of the 

dissertation. 

 

 The dissertation is organised as follows: 

 In Chapter 1, a brief introduction to the photonic crystal technology is 

given. It is started with the discussion of the basic concepts of photonic crystals, 

the possible areas of application and the fabrication technologies. After that, the 

attention is focused on the nonlinear photonic crystals that, unlike their linear 

analogues, allow to control the propagation of light beams by means of other 

beams of light. An example of such a control is presented. The fabrication 

technologies that are used to create nonlinear photonic crystals are briefly 

reviewed. 

 Chapter 2 is of theoretical character. In it, a brief overview of the third-

order nonlinear effect is presented and the impact of this effect on photonic crystal 

devices is discussed. This discussion starts with the Maxwell's equations for 

nonlinear media and in continuation several physical mechanism responsible for 

the intensity dependent change in the refractive index are reviewed. After that, the 

attention is paid to the light propagation in nonlinear waveguides. In particular, it 

is demonstrated that the capacity limit of these waveguides depends on the 

nonlinearity. The discussion on how to enhance the nonlinearity by light slowing 

in photonic crystal waveguides finishes this chapter. 

 Chapter 3 is devoted to the numerical methods. First, the methods of 

theoretical investigation of photonic crystals are presented and compared by 

taking into consideration the possibility of their application to different problems. 

Secondly, the FDTD method employed in the dissertation is described and 
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discussed. The basics of the conventional FDTD algorithm are outlined including 

such important issues as the discretization of the computational domain, the 

stability condition, the initial and the boundary conditions, the approach for 

computing the transmission and reflection spectra and the models of Kerr 

nonlinearity. In what follows, one of the modifications of the FDTD – the 

numerical simulation of radiation of oscillating dipole embedded in photonic 

crystal – is presented. It is shown how this approach can be combined with a Kerr 

nonlinear model with the aim of analysing dispersion characteristics of nonlinear 

photonic crystals. 

 In Chapter 4, the FDTD method presented in Chapter 3 is applied to 

calculate dispersion characteristics of Kerr nonlinear photonic crystals. First, one-

dimensional structures are considered. Apart from the dispersion characteristics, 

the energy density spectra calculated for both linear and nonlinear regimes are 

compared showing the impact of the nonlinearity. Such issues as the unit cell 

discretization and the convergence are presented. Secondly, two-dimensional 

structures are considered for which the same calculations as above have been 

performed for both TE and TM polarisations. In continuation, dispersion 

characteristics of such two-dimensional structures with defects as line-defect and 

coupled-cavity waveguides are calculated and the impact of the group velocity is 

discussed. Thirdly, the discussion switches to nonlinear photonic crystal slabs. 

 In Chapter 5, a novel all-optical switching device based on a nonlinear 

two-dimensional photonic crystal decoupler is presented and analyzed. In this 

device, an enhancement of nonlinear effects is achieved with a slow wave 

structure embedded into the coupling region. The behaviour of the device is 

examined by means of the FDTD method. 

 Chapter 6 presents an approach of taking the two-photon absorption effect 
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into account. This approach is applied to analyze the all-optical switch from 

Chapter 5 by means of the FDTD method. It is shown for a shortened model of 

the device that the impact of the two-photon absorption (TPA) on the functionality 

of the device is drastic. 

 The last Chapter 7 contains the summary and conclusions of the thesis. 

Some ideas on how the feature work could be carried out are formulated. 

 In the author’s publications, both the SI and Gaussian systems of units are 

used. In Appendix A, the Maxwell's equations are presented in both these systems 

of units. In addition, it is shown for the SI system how the Kerr coefficient is 

related to the nonlinear refractive index. 
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Chapter 1 
 

Introduction to photonic crystals 
 

 

 

 We are living in the information age with an over-abundance of 

information everywhere we turn. The use of optical fibres, wireless and computer 

technologies are now realized for anyone. The Internet enables a lot of 

information services to be accessed on a global basis and the demand for broad 

networks increases considerably as increases the number of users. In order to 

satisfy this demand, the search must be on for faster and more efficient 

components to increase the bandwidth of the existing networks. The current 

optoelectronic devices are expected to work at up 100 Gbit/s [1]. Beyond that 

speed, pure all-optical devices are needed [2]. Such devices can be achieved by 

using the photonic crystal technology [3-4] that is one of the most important 

scientific areas with a huge industrial potential. A combination of nanoscale 

photonic crystal devices with the nonlinearity in some materials is expected to 

provide a possibility to create all-optical devices with convenient characteristics. 
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These devices can substitute their conventional optoelectronic analogues and they 

can become the basic element base of optics in the XXI century. 

 One of the main advantages of the photonic crystal technology is the 

possibility of the full integration of optical devices on all-optical chips that can 

operate at much higher frequency and consume less power than today's electronic 

silicon chips. The application of these chips together with optical interconnections 

makes it possible to create novel optical systems such as, for example, optical 

computers with extremely high speed of digital data processing [5]. In order to use 

the advantages of the photonic crystal technology, much theoretical and practical 

work must be carried out in the following areas: theoretical investigation, 

information recording, input/output devices, light sources, fabrication technology 

and measurements. 

 In the last decade, a considerable progress has been achieved in all these 

areas. In particular, theoretical investigations and developing of new fabrication 

technologies have allowed for the realization of new types of photonic crystal 

devices such as all-optical switches, two-state and many-state memories, all-

optical limiters, all-optical modulators and all-optical transistors [2, 6]. Much of 

these activities are exploiting the nonlinear optical effects in polymers, glasses 

and semiconductors in order to achieve desired characteristics of the devices [7]. 

When designing these devices, a special attention should be paid to inherent 

physical limitations that hamper signal manipulation in the optical domain. 

Consequently, there is a need to find novel solutions that would improve the 

ability to manipulate the light. 

 In the quest for the optimal solutions, the numerical analysis, design and 

simulation play an important role. It is because they are able to make use of the 

advantages of the photonic crystal technology by predicting novel devices and 
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helping to understand their behaviour in realistic conditions [8]. Therefore, it is 

extremely important to improve the existing numerical techniques as well as 

develop novel ones. 

 

1.1 Basic concepts of photonic crystals 
 

 Photonic crystals are periodic dielectric or metal-dielectric nanostructures 

that are designed to affect the propagation of electromagnetic waves in the same 

way as the periodic potential in semiconductors crystals affects the electron 

motion by defining allowed and forbidden energy bands. The simplest form of the 

photonic crystal is a one-dimensional periodic structure such as a multilayer film. 

The propagation of the electromagnetic wave in such structures was first studied 

 
Fig. 1.1 Possible configurations of photonic crystals 
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by Rayleigh in 1887; it was shown that such a system has a forbidden band gap. 

The possibility to create two- and three-dimensional photonic crystal with two- 

and three-dimensional forbidden band gaps was suggested independently by 

Yablonovich and Jonh in 1987 [9-10]. However, a concept similar to that of 

photonic crystal was developed in 1950s and called the artificial dielectrics and 

metal-dielectrics [11-12]. The main difference between the photonic crystal and 

the artificial dielectric consists of the following: in photonic crystals the 

wavelength of the electromagnetic field interacting with the structure is 

comparable with the distance between the atoms, whereas in artificial dielectrics 

the distance between the atoms is much larger. At the present day, the concept of 

artificial dielectric is extended and called metamaterials [13] which are of great 

interest to researchers. 

 In order to illustrate the possible configurations of photonic crystals, Fig. 

1.1 shows schematically the one-, two- and three-dimensional photonic crystals. 

As was mentioned, one-dimensional photonic crystals shown in Fig. 1.1(a) are 

simple multilayer films consisting of layers with high and low refractive index. 

The alternating of the layers takes place in only one direction. Fig. 1.1(b) shows a 

two-dimensional photonic crystal (top view), which is a system of air holes drilled 

in a high refractive index background material. This structure is periodic in two 

dimensions and infinite in the third one. A membrane of finite height shown in 

Fig. 1.1(c) with the same hole pattern is also classified as a two-dimensional 

photonic crystal. This structure is frequently referred to as the photonic crystal 

slab. Fig. 1.1(d) shows a three-dimensional photonic crystal, which is an 

arrangement of dielectric bulks of high refractive index situated in air. This is so-

called “woodpile” photonic crystal structure [8]. It is periodic in all dimensions 

and, unlike the structures in Figs. 1.1 (a), (b) and (c), it demonstrates a complete 
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forbidden band gap that means that the light concentrated within has no way to 

escape. 

 In order to discuss the concept of the forbidden band gap, the theory from 

Sakoda’s book [14] can be adopted. As is well known, there is the following 

relation between the frequency f , the velocity c  and the wavelength 0λ , of the 

radiation field in free space 

 

fc 0λ= .     (1.1) 

 

When the wave number is defined as 0/2 λπ=k , the relation between the angular 

frequency and k is obtained as 

 

ck=ω .      (1.2) 

 

This equation is called the dispersion relation of the radiation field. The density of 

 
Fig. 1.2. Schematic illustration of the density of states of the radiation field (left) in free 

space and (right) in a photonic crystal. (After [14]). 
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states of the radiation field in the volume V  of free space is denoted as ( )ωD  and 

proportional to 2ω . It can be written as 

 

( )
32

2

c
VD

π
ωω = .      (1.3) 

 

The density of states in the uniform material is obtained by replacing c  by v  in 

this equation. The optical properties of atoms and molecules strongly depend on 

( )ωD . It is possible to design and modify ( )ωD  by changing the optical properties 

of atoms and molecules. This is the key idea of photonic crystals and it is 

schematically illustrated in Fig. 1.2. Unlike the density of state of the radiation 

field in free space, the photonic crystal’s one has a forbidden band gap for a range 

of angular frequency. 

In textbooks, the one-dimensional photonic crystal shown in Fig. 1.1 (a) is 

usually examined in detail to gain an understanding of the origin of this forbidden 

photonic band gap. Fig. 1.3 shows the geometry of the calculation of the 

 
Fig. 1.3. Geometry of the calculation of the dispersion relation of a one-dimensional photonic 

crystal. 
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dispersion characteristic that demonstrates the forbidden band gap. Only the 

electromagnetic wave propagated in the x direction and polarized linearly is 

considered. The y axis is taken in the direction of the polarization. The electric 

field of the propagated wave is denoted by a complex function ( )txE , . The wave 

equation for ( )txE ,  is given by 

 

( ) 2

2

2

22

t
E

x
E

x
c

∂
∂

=
∂
∂

ε
,     (1.4) 

 

where ( )xε  denotes the position-dependent relative dielectric constant of the 

photonic crystal. In (1.4) it is assumed that the magnetic permeability of the 

photonic crystal is equal to that in free space. Because ( )xε  is a periodic function 

of x, the dielectric constant can be written as 

 

( ) ( )xax εε =+ ,      (1.5) 

 

where a is the lattice constant. The function ( )x1−ε  is also periodic and can be 

expanded in a Fourier series 

 

( ) ∑
∞

−∞=

− ⎟
⎠
⎞

⎜
⎝
⎛=

m
m x

a
mikx πε 2exp1 ,     (1.6) 

 

where m is an integer and { }mk  are the Fourier coefficients. Since ( )xε  has been 

assumed to be real, *
mm kk =− . It is known from the solid-state theory [15] that the 

Bloch’s theorem holds for the electronic eigenstates in ordinary crystals because 
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of the spatial periodicity of the potential energy that an electron feels due to the 

regular array of atomic nuclei. The same theorem holds for electromagnetic waves 

in photonic crystals. Any eigenmode in the one-dimensional crystal is thus 

characterized by a wave number k  and expressed as follows 

 

( ) ( ) ( ) ( ){ }tkxixutxEtxE kkk ω−=≡ exp,, ,    (1.7) 

 

where kω  denotes the eigen-angular frequency and ( )xuk  is a periodic function 

 

( ) ( )xuaxu kk =+ .     (1.8) 

 

Therefore it can also be expanded in a Fourier series. As a result, (1.7) becomes 
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where { }mE  are the Fourier coefficients. 

 In what follows, it is assumed for simplicity that only components with 

0=m  and 1±  are dominant in the expansion (1.6) 
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When (1.9) and (1.10) are substituted into the wave equation (1.4), one obtains 
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Sakoda showed that 0E  and 1−E  are dominant and all other terms can be 

neglected. Under this assumption one obtains the following coupled equations 
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These linear equations have a nontrivial solution when the determinant of 

coefficients vanishes 
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If one introduces akh /π−= , the solutions are then given by 
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as far as ah /π<< . So, there is no mode in the interval 
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ckk
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c
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πωπ .     (1.16) 

 

This gap disappears when 01 =k . This result can be interpreted that the modes 

with ak /π≈  and ak /π−≈  were mixed with each other in the presence of the 

periodic modulation of the dielectric constant and this mixing led to a frequency 

splitting. 

 In general, those wave vectors which differ from each other by a multiple 

of a/2π  should be regarded as the same because of the presence of the periodic 

spatial modulation of the dielectric constant. When the spatial modulation is 

 
Fig. 1.4. Dispersion characteristic of a one-dimensional photonic crystal (solid lines). The 
boundary of the first Brillouin zone is denoted by two vertical lines. The dispersion lines in
the uniform material are denoted by the dashed lines. When the dispersion lines cross, they
repel each other and a forbidden photonic band gap appears. (After [14]). 
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small, the dispersion relation in the photonic crystal is not so far from vk=ω , but 

it should thus be expected with the wave vector in the first Brillouin zone 

[ ]aa /,/ ππ− . In addition, if two dispersion lines cross each other, a frequency gap 

appears. All these things are schematically illustrated in Fig. 1.4. There are an 

infinite number of frequency gaps in the spectrum. However, one should note that 

this is true only as far one deals with electromagnetic waves travelling along the x 

direction and that there is no gap when one takes into consideration the modes 

travelling in other directions. 

 The dispersion relation of a two-dimensional photonic crystal is quite 

different because of the fact that all wave vectors are not parallel to each other in 

two dimensions [8, 14]. As the first example, Fig. 1.5 shows the reciprocal lattice 

space of a two-dimensional square lattice. The first Brillouin zone is surrounded 

by a dashed line. There are three highly symmetric points in the first Brilloun 

 
Fig. 1.5. First Brillouin zone of the square lattice. 

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



24 
 

zone, that is, the Γ point (0,0), the X point ( a/π , 0) and the M point ( a/π , a/π ). 

The second example, the reciprocal lattice space of a two-dimensional hexagonal 

lattice, is presented in Fig. 1.6. The three highly symmetric points are the Γ point 

(0,0), the K point ( a3/4π ,0) and the M point ( a/π , 3/ aπ− ). The configuration 

of the first Brilloin zone of three-dimensional photonic crystals depends on the 

type of the lattice. For instance, it can be the simple cubic or the fcc lattice. It this 

dissertation, no calculation is made for three-dimensional photonic crystals and 

therefore any attention is paid to their dispersion relations. 

 

1.2 Areas of application 
 

 The photonic crystal technology gave rise to a big group of novel optical 

devices that potentially can play a very important role in optical-communication 

 
Fig. 1.6. First Brillouin zone of the hexagonal lattice. 
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systems being integrated on optical chips [1]. The first example of photonic 

crystal-based optical devices are light-emitting diodes (LEDs). Usually, these 

devices are made from photoemissive materials that emit photons excited 

electrically or optically. These photons are typically emitted in many different 

directions and also have a range of wavelengths that is not ideal for 

communications applications. It possible to create an LED that only emits light in 

one direction by using a reflector. However, the efficiency of such an LED 

depends on that of the reflector. The photonic crystal technology can be used to 

design a mirror that reflects selected wavelengths of light with very high 

efficiency. In addition, such a mirror can be integrated within the photoemissive 

layer to create an LED that emits light of a specific wavelength and direction. 

Ideally, one needs to create a three-dimensional photonic crystal to achieve a full 

control of light in all three dimensions. In order to do this, the fabrication method 

proposed by Yablonovitch [16] can be employed. Alternatively, a “woodpile” 

structure shown in Fig. 1.1(d) can be used [8]. Fortunately, some of the properties 

of three-dimensional photonic crystals can be attained with two-dimensional 

photonic crystal slabs, where the light is confined by both the periodic structure 

 
 

Fig. 1.7. Example of a microcavity made by decreasing the radius of the hole 
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and the bulk of the constitutive material. Their main advantage is the relative 

simplicity of the fabrication process and the possibility of to be easy incorporated 

within planar waveguides [17]. 

 The second group of photonic crystal based devices are microcavities (see 

Fig. 1.7) [1, 8, 18], which are very important for creating photonic crystal lasers. 

These lasers [19] can be integrated with other components in optical 

communication systems or optical chips. They are made by introducing defects 

into the perfect lattice of the photonic crystal. It gives rise to a defect state situated 

within the forbidden photonic band gap. While the material emits light in a wide 

spectral range, only the wavelength that corresponds to that of the defect mode is 

amplified because only it can propagate freely in the photonic crystal. In the 

microcavity, the intensity of the propagated light increases as it undergoes lots of 

reflections and travels back. The light at other wavelengths is trapped within the 

photonic crystal and cannot escape. This means that the laser light is emitted in a 

narrow wavelength range that is directly related to the dimension of the cavity. 

The linewidth can be modified by searching for unusual geometries of the 

 
 

Fig. 1.8. Bend photonic crystal waveguide. (After [8]) 
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photonic crystal lattice. In addition, apart from the lasers, such microcavities can 

improve the efficiency of LEDs. 

 Photonic crystal microcavities that are fabricated from passive materials 

can also be used to create filters that only transmit a very narrow range of 

wavelengths. Such filters can be used to select a wavelength channel in a WDM 

communications system. Indeed, arrays of these devices can be integrated onto an 

optical chip to form the basis of a channel demultiplexer that separates and sorts 

light pulses of different wavelengths [20]. 

 Miniature waveguides that can be used to transmit light signals between 

different devices are a key component for integrated optical circuits. However, the 

development of such nanoscale optical interconnects was a difficult deal because 

of the problem of guiding light efficiently round very tight bends. Conventional 

optical fibres and waveguides work by the process of total internal reflection [1]. 

The contrast in refractive index between the glass core of the fibre and the 

surrounding cladding material determines the maximum radius through which the 

light can be bent without any losses. For conventional glass waveguides this bend 

 
 

Fig. 1.9. SEM photograph of a holey fibre. (After [23]) 
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radius is about a few millimetres. However, the interconnects between the 

components in an integrated optical circuit require bend radii of 10 µm or less. In 

order to solve this problem, it is possible to form a narrow-channel waveguide 

within a photonic crystal by removing a row of holes or rods from an ideal 

photonic crystal lattice [21]. Light will be confined within the line of defects (see 

Fig. 1.8) for wavelengths that lie within the band gap of the surrounding photonic 

crystal. Under this condition one can introduce a pattern of sharp bends that will 

either cause the light to be reflected backwards or directed round the bend. 

 The advantages of the photonic crystal technology can help to speed up the 

Internet by improving the transmission of long-distance optical signals. In 

conventional optical fibres, the light of different wavelengths can travel through 

the material at different speeds. Over long distances, time delays can occur 

between signals that are encoded at different wavelengths. This phenomenon 

known as dispersion [22] is worse if the core is very large, as the light can follow 

different paths or modes through the fibre. A pulse of light travelling through such 

 
Fig. 1.10. Comparison of the functionality of a conventional and a holey fibres 
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a fibre broadens out, thereby limiting the amount of data that can be sent. These 

problems can be solved by using a so-called "holey fibre" [23] shown in Figs. 1.9 

and 1.10. This fibre has a regular lattice of air cores running along its length and 

transmits a wide range of wavelengths without suffering from dispersion. It is 

made by packing a series of hollow glass capillary tubes around a solid glass core 

that runs through the centre. This structure is then heated and stretched to create a 

long fibre that is only a few microns in diameter. The fibre has the unusual 

property that it transmits a single mode of light, even if the diameter of the core is 

very large.  

 

1.3 Fabrication technologies 
 

 In this subsection, the general technologies for fabricating photonic 

crystals are discussed. It should be noticed that the key parameter here is the 

working wavelength μm=λ 1.5  used in optical communication systems. All the 

applications proposed for photonic crystal use the existence of the forbidden 

photonic band gap. The frequencies at which this band gap can be found are 

directly related to the dimensions of the scattering elements of photonic crystals 

(radii of holes or rods, height of slab, etc.). Specifically, the size of the features 

should be of the order of 2/PBGλ , where PBGλ  is the wavelength at which the 

band gap occurs. Consequently, in order to achieve a photonic crystal that can be 

used in optical communication systems, fabrication technologies to create lattice 

element of 0.25μm should be available. 

 One of the most general methods for fabricating photonic crystal is the 

lithography, which is used to pattern the substrate for two-dimensional lattices. In 
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this case, the standard photolithography techniques are not applicable because the 

size of the lattice elements varies between 0.2 and 0.6 μm. The most popular 

alternative is the electron beam lithography (EBL), in which photons for resist 

exposure are replaced by electrons. Since the wavelength of an electron is much 

smaller than that of a photon, the resolution is not limited by the diffraction. 

Usually, a focused electron beam is scanned across the surface to generate the 

pattern. The quality of the resist and the properties of the substrate are the factors 

that limit the resolution of this process. EBL has been used by a variety of groups 

to generate patterns that are designated for use in devices for optical 

communication systems [24-26]. 

 Another popular method for fabricating photonic crystals is dry etching. 

There are various versions of dry-etching processes, which have the following 

acronyms: RIE, DRIE, RIBE, CAIBE, ets. A comprehensive review of these 

techniques is very complicated and it is beyond the scope of this thesis. Generally, 

dry etching covers a family of methods by which a solid surface is etched in the 

gas or vapour phase physically by ion bombardment, chemically by a chemical 

reaction o by a combined mechanism. Most dry-etching techniques are plasma-

assisted. They can be classified as chemical plasma etching (PE), synergetic 

reactive ion etching (RIE) and physical ion-beam etching (IBE). A special 

attention should be paid to chemically assisted ion beam etching (CAIBE) [25, 

27-28], which is the most widely used dry-etching technique for fabricating two-

dimensional planar photonic crystals, waveguides and microcavities. CAIBE is 

also used to fabricate photonic crystal based light emitting devices from GaAs. 

The InP systems can be fabricated by using inductively coupled plasma reactive 

ion etching (ICP-RIE) [29]. 

 Soft lithography technique [30] is a nonphotolithographic technique based 
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on self-assembly and replica moulding for nanofabrication. It is used to generate 

patterns with feature sizes ranging from 30 nm and 10 μm. This technique is 

useful in fabricating both two- and three-dimensional photonic crystal (by 

iterative processing). 

 The capillary plate is the first material used to successfully fabricate a two-

dimensional photonic crystal in both near-IR and visible wavelength region [31]. 

The method consists of drawing a bundle of optical fibres in which the core (SiO2) 

and the cladding (PbO) are selectively dissolved. Hundreds of glass fibres are 

bundled together to form a hexagonal lattice. The bundle is then heated and drawn 

out to reach the desired lattice parameters. Next, the core is selectively dissolved 

to leave a hexagonal lattice of air holes in glass. The attainable feature size is of 

0.2 μm [32]. 

 The next group of fabrication methods is usually called the anodization 

techniques. They are wet etching techniques that use selective etching phenomena 

that depend on the semiconductor crystal direction. Unlike dry etching methods, 

in which the anisotropy of the etching process is controlled by the plasma 

conditions, the anodic etching of a single crystal semiconductor formed from Si, 

InP or GaAs is a selective etching process and its selectivity depends on the nature 

of the crystal direction. By using this tecnique, both two- and three-dimensional 

photonic crystals can be created. In particular, the anodization of Si in acid 

solutions (for example HF) gives rise to macroporous silicon photonic crystals 

[33-34]. The etching process proceeds upon provision of positive carriers (holes), 

which takes part in the chemical dissolution reaction. In p-type Si, the holes are 

the majority carriers, while in n-type Si they must be generated by illumination. 

The sample characteristics (doping level, orientation), the applied voltage and the 

etching current are the main etching parameters that control the pore size and 
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morphology. 

 An alternative approach for producing two-dimensional photonic crystals 

that display bang gaps in the visible is the anodic growth of porous alumina [35]. 

After the anodic oxidation of alumina in an acid solution, a porous oxide film of 

vertical holes is formed on the surface. The covering film, known as anodic 

porous alumina, is the result of the formation of a regular structure, in which an 

amorphous state of alumina grows via self-organisation. 

 In addition, the both macroporous Si and porous alumina can be used as 

templates for creating photonic crystal consisting of pillars grown through the 

porosity [34]. 

 

1.4 Kerr nonlinear photonic crystals 
 

 Although there are many analogies between the semiconductors and 

photonic crystals, the full parallel cannot be drawn because photons, in contrast to 

electrons, are not easily tuneable. It prevents the use of ordinary photonic crystal 

as active components of optical chips and communication systems. This is the 

reason why the scientific community is looking for a possibility of controlling 

light with light [2] by means of material nonlinearities from which the photonic 

crystal are made. These photonic crystals are called nonlinear [36]. Their 

properties depend on the intensity of the interacting electromagnetic field or an 

additional (control) electromagnetic wave. In this dissertation, the attention will 

be only paid to the Kerr nonlinear photonic crystals, i.e., the photonic crystals 

consisting of Kerr nonlinear materials such as semiconductors, glasses and 

polymers [7]. This type of photonic crystals has been recently applied to such 
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nonlinear optical devices as low-threshold optical limiters [37], short pulse 

compressors [38], nonlinear optical diodes [39], all-optical switches and 

modulators [40] and others. In these devices, the refractive index is changed by 

the high-intensity control laser beam to dynamically control the transmission of 

the light. 

 In order to gain an understanding of the basic idea of nonlinear photonic 

crystals, one should consider the structure shown in Fig. 1.11 and solve the wave 

equation (1.17) where the dielectric constant depends on the Kerr coefficient and 

the intensity of the electric field. Eq. (1.17) is derived from Eq. (1.4) and it can be 

written as 
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with ( )3χ  being the Kerr coefficient. As it can be seen, the wave equation (1.17) 

has become nonlinear and its solution is complicated considerably. In order to 

 
Fig. 1.11. Geometry of the calculation of the dispersion relation of a one-dimensional 

nonlinear photonic crystal. 

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



34 
 

avoid some problems than one could encounter in solving it, a simple approach 

for estimating the change in the dispersion characteristic due to the incident 

intensity is proposed. In this approach, the term ( ) ( )| |23 Exχ  is assumed to be 

invariable. It is possible to make such an assumption because at some moment of 

time the field distribution stabilizes. In this dissertation and also in other works 

devoted to nonlinear photonic crystals this approach is successfully applied. 

Under the assumption made, Eq. (1.17) can be written as 
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.     (1.18) 

 

Eq. (1.18) is solved using the same technique presented in [14].  

 Fig. 1.12 shows a qualitative evaluation of the dispersion characteristic for 

the nonlinear regime made by using the approach proposed above. In this 

 
 

Fig. 1.12. Dispersion characteristic of a one-dimensional nonlinear photonic crystal operating in 
the (a) linear and (b) nonlinear regimes. 
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evaluation, the value of εΔ  is assumed to be positive. As it can be seen, in the 

nonlinear regime ( 0>Δε ) the dispersion curves (solid lines) are red-shifted with 

regard to the linear regime (dashed lines). This shift can be qualified by the 

following argument. In the frequency domain, the band gap exists due to the 

difference between the dielectric constants of the material that forms the photonic 

crystal and that of the background. This difference can be expressed as 

 
( )| |[ ] Background

23
Crystal Photonic εEχ+ε=Δε − ,    (1.19) 

 

where Crystal Photonicε  and Backgroundε  are respectively the dielectric constants of the 

materials that form the photonic crystal and its background. The value of Δε  

increases as the intensity of the electric field increases if ( ) 03 >χ  and decreases if 
( ) 03 <χ . As the electromagnetic wave excites the structure, the value of Δε  

changes and the position of the forbidden band gap dynamically shifts. This 

process is the basis for intensity-driven optical limiting and all-optical switching. 

Along with the shift of the band gap, other important characteristics such as defect 

modes and the density of state are changed. In this dissertation, these changes will 

be investigated in detail and a considerable use of them will be made. 

In the following section, some examples of the devices based on the 

nonlinear photonic crystals will be presented. 

 

1.4.1 Examples of application 
 

 In optical communication systems and optical chips, the active nonlinear 

photonic crystal-based devices can substitute their optoelectronic analogues. In 
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order to provide an example of such a substitution, Figs. 1.11 and 1.12 show two 

optical modulators based on the Mach-Zehnder interferometers. The first of them 

is based on the conventional nonlinear dielectric waveguides whereas the second 

one is constructed using the nonlinear photonic crystal technology. 

 The optical modulator shown in Fig. 1.13 encodes 1s and 0s by first 

splitting a signal laser beam in two and then applying an electric field to the 

beams. One of the beams is delayed by half a wavelength relative to the other. 

When the beams recombine, both beams will be out of phase, and they will cancel 

out. When no electric field is applied, the beams remain in phase when 

recombined. Encoding the beam with 1s and 0s means making interfere (0) or 

keeping them in phase (1). The structure shown in Fig. 1.13 is usually made of 

LiNbO3 and it occupies the area of 1-2 cm2. 

 Fig. 1.14 schematically shows the photonic crystal device that was 

 
 

Fig. 1.13. Conventional optical modulator 
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proposed to be used as an optical modulator [41-42]. It is composed of the two 

photonic crystal line-defect waveguides and nonlinear optical phase shift arms are 

selectively embedded with quantum dots that exhibit large nonlinear properties. A 

signal beam is split in two by using two bend photonic crystal waveguides. The 

rotated splitter is used to produce an output signal. Another two bend waveguides 

are used to launch control beams. 

 The principle of the functionality of the structure shown in Fig. 1.14 is the 

following. A switch-on control beam incident on the upper nonlinear arm causes a 

change in the refractive index, which leads to a phase shift for a signal beam. 

Similarly, another phase shift is generated in the lower arm by the second switch-

off beam. When the beams recombine, they experience the same physical 

processes that take place in conventional optical modulators. 

 Thus, the optical modulator based on the nonlinear photonic crystal 

provides the same functionality as that in Fig. 1.13. In addition, it demonstrates 

several advantages over its conventional counterpart. The first of them arises from 

the fact that the photonic crystal technology dramatically downsizes the area that 

 
Fig. 1.14. Nonlinear photonic crystal based optical modulator 
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is of 1 mm2 and reduces the optical switching energy. The second advantage is 

due to the possibility to integrate active and passive photonic crystal-based 

components on a chip. It also makes it possible to considerably increase the 

working frequency by excluding the electronic parts from the circuit and keeping 

all signals in the optical domain. 

 Other examples summarise the activity of different research groups 

working on numerical design and analysis of novel all-optical bistable devices 

based on nonlinear photonic crystals.  

First, a high-contrast all-optical switching device based on a waveguide 

coupled to a cavity [43] is considered. Both the waveguide and the cavity are 

made in a square lattice rod-type nonlinear photonic crystal. The waveguide is 

made by removing a row of rods and the cavity is a point defect with an elliptical 

dielectric rod. The defect region possesses instantaneous Kerr nonlinear response 

 
Fig. 1.15. Electric field distribution for (a) the high transmission state and (b) the low 

transmission state. (After [43]) 

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



39 
 

achievable in many semiconductors. A numerical simulation reveals that in the 

linear regime at a low incident power the structure behaves linearly. In the 

nonlinear regime, however, the structure shows bistable behaviour. Fig. 1.15 

shows the field patterns for the two bistable states for the same level of the input 

power. Fig. 1.15 (a) corresponds to the high transmission state. In it, the field 

inside the cavity is low and thus the decaying field amplitude from the cavity is 

negligible. Fig. 1.15 (b) corresponds to the low transmission state. Here, the field 

intensity inside the cavity is higher, shifting the cavity resonance frequency down 

to the excitation frequency of the incident field. Therefore there exists the 

interference between the wave propagating in the waveguide and the decaying 

amplitude from the cavity that results in the high contrast ratio in transmission. 

 A structure based on the concept similar to that of the device presented 

above, was proposed in [44]. Here, a waveguide is directly coupled to a cavity. In 

such a system, the ratio of outgoing to incoming power displays a hysteresis loop 

even when the photonic crystal is made from an instantaneous-response material. 

This relationship can be used for many applications: logic gates, memory, 

 
Fig. 1.16. (a) Ratio of outgoing to incoming power and (b) the electric field at 100 % 

transmission. (After [44]) 
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amplification, noise reduction and so on. The relationship between the outgoing 

and the incoming power and the field pattern of the devices are shown in Fig. 

1.16. 

 The following exemplifies a structure that could be suitable for performing 

an optical transistor [44]. The structure consists of a cavity weakly coupled to four 

single-mode waveguides. It is up-down and left-right symmetric.  

The cavity supports two dipole-type states. One state is odd with respect to 

the x axis and the other one is even. The mode propagating in the left or right 

waveguide can couple only to the cavity state that is even with respect to the x 

axis. The mode propagating in the up or down waveguide can couple only to the 

odd cavity state. Thus no portion of the signal travelling along the x-direction can 

be transferred into the y-direction. By making the central rod elliptical one can 

break the degeneracy between the two states and have different resonant 

frequencies for them. When light is present in only a single direction, it does not 

travel through the structure. But when the signals are present in the both 

 
Fig. 1.17. (Left panel) Ratio of outgoing to incoming power and (right panel) the electric field 

at 100 % transmission. (After [44]) 
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directions, they can control each other. Fig. 1.17 shows how this device can 

operate as an all-optical logical AND gate. The results similar to those presented 

above are also obtained by other researchers [45-49]. 

 A special attention is also paid to the devices based on parallel nonlinear 

photonic crystal waveguides [49-54]. The examples are nonlinear directional 

couplers whose functionality depends on the intensity of the input signal or a 

control beam. When this intensity is low, the device functions in the cross state 

and its behaviour is similar to that of the linear directional coupler. As the 

intensity increases, the coupling condition worsens and the device becomes a 50% 

power splitter. At a high incident intensity, however, the device switches to the 

bar state. The field patters corresponding to these regimes are shown in Fig. 1.18. 

In articles [50] and [54], a similar device is proposed where a control beam of 

high intensity controls the propagation of the low-intensity input signal. 

 

 

 
 

Fig. 1.18. Nonlinear directional coupler operating (a)in the cross state, (b) as a power 
splitter and (c) in the bar state. (After [50]) 
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1.4.2 Fabricating nonlinear photonic crystals 
 

 Before describing the technologies for fabricating nonlinear photonic 

crystal, it should be stressed that, in the general case, the technologies available 

for linear photonic crystals are still valid for their nonlinear counterparts. These 

technologies are described in one of the previous subsections and the following 

will describe the details that are only related to fabrication of Kerr nonlinear 

photonic crystals. 

 The first technology described here is related to the example given in the 

previous subsection. The nonlinear photonic crystal based optical modulator 

presented in [41-42] is created as an air-bridge-type two-dimensional photonic 

crystal slab. It consists of a GaAs core layer with three stacked layers of InAs 

quantum dots grown on top of a Al0.6Ga0.4As clad layer that, in turn, is situated on 

a GaAs substrate. The molecular beam epitaxy technology is used to perform 

these steps. The quantum dots are formed in Stranski-Krastanov mode growth by 

a two-step growth technique [55]. The air-bridge photonic crystal structure is 

fabricated using high-resolution electron-beam lithography, dry etching and 

selective wet etching techniques [56]. 

 The next fabrication technology - the anodization for creating porous 

silicon [34] - is also widely used to create both linear and nonlinear photonic 

crystals. For example, one-dimensional photonic crystals and cavities based on the 

porous silicon can be created for generating the third harmonic [57]. The control 

of the porosity of silicon allows to achieve both high quality factors and 

reflectance. The samples prepared in [57] are fabricated by the conventional 

electro-chemical etching procedure [34] using p-type Si wafers with resistivity of 
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0.005 Ωcm. The modulation of the refractive index is achieved by the time 

variation of the etching current. The thickness is controlled with the etching time. 

The typical pore size achieved is of 30 nm. 

 Nonlinear optical polymers (NLO) are very useful materials that can be 

used to fabricate nonlinear photonic crystals optical devices because they exhibit 

high nonlinear properties over a wide frequency range. In order to fabricate a 

nonlinear photonic crystal waveguide [58], the following steps are made. Disperse 

Red 1 (DR1) doped poly(methylmethacrylate) (PMMA) is the nonlinear optical 

polymer used as the waveguide core layer. It is deposited on the metal cladding by 

spin coating and curing techniques. To pattern the nonlinear optical polymer, a 

150 nm spin-on glass hard mask is used. Resist patterns formed by electron beam 

lithography are transferred to the hard mask by inductively coupled plasma (ICP) 

etching [29] in plasma. Finally, the polymer in waveguide core is patterned by 

ICP using hard mask pattern. 

 Recently, it has been shown that all-optical switching with high switch 

efficiency can be observed in two-dimensional organic nonlinear photonic crystals 

made of polystyrene [59-60]. In the fabrication process, polystyrene powder is 

dissolved in toluene with a weight ratio of 1:14. Completely dissolved polystyrene 

solution is obtained in about 40 hours. In order to prevent formation of 

microbubbles in the solution, additional shaking is needed. The spin coating 

method is used to fabricate the thin film slab of polystyrene on silica substrates, 

which should be precleaned. Ion-beam etching is employed to prepare the periodic 

patterns of two-dimensional photonic crystals. The lattice constant and the radius 

of the air holes achieved are 220 and 90 nm, respectively. 
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Chapter 2 
 

Third-order nonlinear effect: physics and 

impact on photonic crystal devices 
 

 

 

 This chapter presents a brief overview of the third-order nonlinear effect 

and its impact on photonic crystal-based optical devices. First, the Maxwell's 

equations for nonlinear media are presented and several physical mechanisms 

responsible for the intensity-dependent change in the refractive index are 

reviewed. Secondly, the attention is paid to the electromagnetic wave propagation 

in nonlinear waveguides. In particular, it is shown how the capacity limit of these 

waveguides depends on nonlinearity. The chapter is finished with discussion on 

how to enhance the nonlinearity by light slowing in photonic crystal waveguides.  
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2.1 Third-order nonlinearity 
 

2.1.1 Nonlinear refractive index 
 

 Nonlinear optics studies phenomena that take place as a result of the 

modification of the optical properties of a material by the presence of light. Only 

laser light is sufficiently intense to modify the optical properties of a material and 

this was the reason why the beginning of the nonlinear optics is dated back to the 

creation of lasers narrated in detail in [1]. In order to describe the optical 

nonlinearity, the theoretical consideration is started with the Maxwell's equation 

that in SI units are written as [2] 

 

t
B=E
∂
∂

−×∇
r

r
,      (2.1) 

J+
t
D=H

r
r

r

∂
∂

×∇ ,      (2.2) 

0=B
r

⋅∇ ,      (2.3) 

ρ=D
r

⋅∇ ,      (2.4) 

 

where ρ  and J
r

 are the free electric charge and the current density, respectively, 

and c is the speed of light. The relations among the four electromagnetic field 

vectors are known as the constitutive relations. These relations, even in presence 

of nonlinearities, have the form 

 

EP+E=D
rrr

0ε ,      (2.5) 
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MP+H=B
rrr

0μ .      (2.6) 

 

In linear optics the polarisation ( )tPE

~  depends linearly upon the electric field 

strength ( )tE~  (the tilde is used to denote a quantity that varies rapidly in time) and 

can often be expressed as  

 

( ) ( ) ( )tEχ=tPE

~~ 1
0ε ,     (2.7) 

 

where ( )1χ  is known as the linear susceptibility. In nonlinear optics, however, the 

optical response can often be described by expressing the polarisation ( )tPE

~  as a 

power series in the field strength ( )tE~  as 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )...~~~~ 33221
0 +tEχ+tEχ+tEχ=tPE ε ,   (2.8) 

 

where ( )2χ  and ( )3χ  are known as the second- and third-order nonlinear optical 

susceptibility, respectively. ( ) ( ) ( ) ( ) ( )tEχ=tP 22
0

2 ~~ ε  is refereed as the second-order 

nonlinear polarisation and ( ) ( ) ( ) ( ) ( )tEχ=tP 33
0

3 ~~ ε  as the third-order nonlinear 

polarisation, respectively. 

 In the general case, ( )tE~  is made up of several different frequency 

components and the expression for ( ) ( )tP 3~  is very complicated. For this reason, a 

simple case in which the applied field is monochromatic, is only considered 

 

( ) ( )ωtE=tE cos~ .      (2.9) 
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If the formula ( ) ( ) ( )ωt+ωt=ωt cos
4
33cos

4
1cos3  is used, one can obtain 

 

( ) ( ) ( ) ( ) ( ) ( )ωtEχ+ωtEχ=tP cos
4
33cos

4
1~ 33

0
33

0
3 εε .   (2.10) 

 

The first term of Eq. (2.10) describes a response at the frequency ω3  that is due to 

an applied field at frequency ω . This term leads to the process of third-harmonic 

generation. The second term of Eq. (2.10) describes a nonlinear contribution to 

the polarisation at the frequency of the incident field. It leads to a nonlinear 

contribution to the refractive index experienced by a wave at frequency ω . The 

refractive index in the presence of this type of nonlinearity can be represented as 

 

In+n=n 20 ,      (2.11) 

 

where 0n  is the usual (linear) refractive index, 
( )

0
2
0

3

2 εcn
χ=n  is an optical constant 

that characterises the strength of the optical nonlinearity and 2
002

1 cEn=I ε  is the 

intensity of the incident wave. 

 

2.1.2 Physical mechanisms 
 

 Several physical mechanisms [3] that contribute to the intensity-dependent 

refractive index are discussed below. 
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 Electronic polarization. This mechanism involves a distortion of the 

electron cloud about an atom or molecule by the optical field. If the atom or 

molecule is highly polarizable, then it can exhibit significant electron nonlinearity. 

The nonlinear susceptibility is related to the second hyperpolarizability, which is a 

microscopic parameter and can be computed from quantum mechanics using 

perturbation theory. These computational methods are beyond the scope of this 

thesis, but they are described in the literature [4]. For nonresonant electronic 

processes in dielectrics, a typical value for second hyperpolarizability is 
3461 /10 VmC~γ −−  and ( ) 22223 /10 Vm~χ − . Nonresonant electronic processes are very 

fast with typical time response sec~τ 1510 − . 

 Raman induced Kerr effect. This effect is related to stimulated Raman 

scattering and is an example of a strong beam inducing a refractive index change 

for a weak probe beam. The strong beam incident on a Raman active medium is 

from a laser at frequency 2ω . A weak probe beam of frequency sω  is also incident 

on the medium. The weak beam is referred to as a Stokes beam with 2ω<ωs . 

 
Fig. 2.1. Schematic diagram of Raman scattering. 

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



55 
 

 Linear Raman scattering is a two-photon process wherein a laser photon 

scatters into a Stokes photon, which is down-shifted in frequency from the laser 

frequency by an amount equal to a Raman active mode in the medium, for 

example, molecular vibration quantum (see Fig. 2.1). 

 Stimulated Raman scattering is a four photon process wherein a Stokes 

beam incident on the Raman active medium is amplified. The gain in the Stokes 

beam is at the expense of photons lost from the laser beam. However, for a strong 

laser beam and weak Stokes beam, the laser field can be treated as approximately 

constant (nondepleted pump approximation). 

 The real part of the third order Raman susceptibility has a typical value of 
( ){ } 22203 /10Re Vm~χ R

− . This is about two orders of magnitude larger than typical 

nonresonant electronic processes because of the resonant nature of the Raman 

effect. The response times of these effects are of the order of the lifetime of the 

Raman induced material excitations and is typically sec~τ 1210 − . 

 Molecular orientational effects. Anisotropic molecules tend to exhibit an 

 
Fig. 2.2. Anisotropic molecular reorientation by a strong electric field. 
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optically isotropic behaviour in the bulk when they are disordered, i.e., when their 

orientations are randomly distributed. This is true of several liquids (e.g., CS2) and 

of liquid crystals. When a strong electric field is applied to such system (see 

Fig. 2.2), the induced dipole moments of the molecules experience a torque 

attempting to align the most polarizable axis with the applied field, working 

against the thermal fluctuation forces (i.e., molecular collisions). 

 When the applied field is dc, the effect is called the Kerr effect. Similarly, 

the field could be due to a strong optical field. The system then responds not to 

the instantaneous field but to the time averaged field squared and the effect is then 

termed the ac optical Kerr effect. When the alignment field and the incident 

optical field are one and the same, this leads to a self-induced refractive index 

change expressible by an 2n  as long as the induced dipole – electric field 

interaction energy is small compared to the thermal energy, which is typically the 

case. 

 Typical nonlinearities associated with small anisotropic molecular systems 

are ( ) 2221223 /1010 Vm–~χ −− . The response time is sec~τ 1210 − . 

 Electrostriction. This is a phenomenon that depends on the presence of an 

inhomogeneous intensity, i.e., a spatially varying, time averaged electric field. 

This would occur, for example, in the superposition of coherent waves to form an 

interference pattern of light and dark fringes, or along the transverse direction to a 

propagating Gaussian shaped beam. Such an inhomogeneous field produces a 

force on the molecules or atoms comprising a system called the electrostrictive 

force. This force can be understood from the fact that the induced dipoles in the 

medium will experience a translational force in a nonuniform field that is 

proportional to the gradient of the field. The force is such as to move the dipoles 
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into a region of higher intensity. This produces an increase in the local density 

resulting in an increase of the refractive index locally. For this physical 

mechanism, the typical nonlinearity is ( ) 22203 /10 Vm~χ − . The response time is 

sec~τ 910 − . 

 Thermal contributions. The change in index due to a temperature rise ΔT  

can be expressed as  

 

ΔT
dT
dn=Δn ,     (2.12) 

 

where dTdn /  is called the thermooptic coefficient. In most liquids and solids it is 

due to the density change (i.e., expansion) with the temperature. Since the density 

decrease in expansion and the refractive index is proportional to density, this 

contribution to dTdn /  is generally negative. In some semiconductors, the 

absorption band edge will red-shift with temperature (Franz-Keldish effect). This 

produces a positive thermooptic coefficient. 

 Population redistribution. When the frequency of incident radiation is 

near a resonant energy transition of an atom or molecule, then real transitions are 

induced. This means that electrons can occupy real excited states for a finite 

period of time. This is called population redistribution. Since the optical 

polarization is ordinarily determined by the total number of atoms or molecules in 

the ground electronic state (for low intensity light), this population redistribution 

produces a change in the index of refraction. This effect can be seen in atomic 

vapours, molecular gases, liquid solutions of organic molecules, transparent 

dielectric solids doped with metal ions or colour centres, and semiconductors. 
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 In some situations, the near resonant interaction can be described as if the 

material had only two energy levels. This is because the resonant interaction 

between the radiatively connected ground and excited states is so strong that other 

nonresonant interactions can be ignored. It is assumed that the resonant frequency 

for a transition from the excited state to a higher lying state is far removed from 

that of the ground and excited states. The situation of semiconductors, with finite 

valence and conduction energy bands, is somewhat different depending on the 

time scale of the optical interaction. 

 A simple two-level system is illustrated in Fig. 2.3. It consists of the two 

levels are the ground (g) and excited (e). The resonant transition frequency 

connecting these states is defined by egω . The system is also characterized by a 

transition dipole moment, egμ , and an equilibrium population difference 

( )eq
cg

eq N–N=ΔN , where gN  and cN  are the number densities of atoms or 

molecules in the ground and excited states, respectively, long after or before the 

radiation is incident on the medium. 

 
Fig. 2.3. Two-level system. 
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 The average dipole moment of such a system described above is usually 

derived by density matrix theory. The polarization is then given as the average 

dipole moment per unit volume. In two particular time regimes, defined as the 

steady-state and the adiabatic following regimes, the resulting polarization P  can 

be written as a constant times the applied field E . The susceptibility of the system 

is then given by EP=χε /0 . 

 The steady-state regime is the typical case of the response of a two-level 

system to a CW laser. The applied optical field is close to resonance, and a 

detuning parameter is defined by 

 

egωω=Δ − .      (2.13) 

 

Since the frequency is near resonance, the susceptibility will be complex, with its 

real part related to the index of refraction and its imaginary part related to the 

absorption coefficient. The susceptibility is also proportional to the 

nonequilibrium population difference, which is itself dependent on the intensity of 

the incident radiation due to optically induced resonant transitions from the 

ground to excited states (i.e., absorption). Typical values are 
( ) 2216173 /1010 Vm–~χ −− . 

 

2.2 Wave propagation in nonlinear optical waveguides 
 

2.2.1 Capacity limit of nonlinear optical waveguides 
 

 The performance of a practical transmission system depends on a large 
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number of factors such as the detection method, the choice of the modulation 

format and so on. But the most fundamental factor is the channel capacity. The 

channel capacity is the maximum possible bit rate at which the information can be 

transmitted without errors over a channel with a certain noise level. The capacity 

(C) is determined by the usable bandwidth (B) of the channel and the spectral 

efficiency. The spectral intensity usually depends only on the ratio between the 

signal and the noise power, that is on the signal to noise ratio ( )NS / . The Shannon 

formula (sometimes called Kotelnikov-Shannon formula because Kotelnikov 

passed ahead of Shannon) [5-6] for a linear transmission system with the additive 

Gaussian noise gives 

 

( )NS+B=EB=C /1log2⋅⋅ .    (2.14) 

 

In order to provide an example, the following case is considered. If the usable 

bandwidth (in the wavelength range) is 7.5 nm and it is centred at the wavelength 

1.55 μm, the frequency bandwidth is calculated as  

 

GHz
λ

cΔλΔf 100
2

≈
⋅

≈ .     (15) 

 

For a signal ratio of 25 dB it gives the channel capacity of about 470 Gbit/s. 

 In the information theory, the channel is considered as linear where the 

noise is additive and independent on the signal power. The capacity of the channel 

increases as the power of the signal increases. But the realistic waveguides, like 

for example optical fibres, are nonlinear. If the signal power is increased, the 

intensity and therefore the efficiency of nonlinear effects will be increased. Thus 
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the signal power and the noise are not independent of each other because an 

increase in the signal power leads to an increase of the noise. In addition, there is 

a power threshold which means that no additional power can enter into the 

waveguide. Therefore, the equations used to determine the capacity cannot be 

used. 

 In a nonlinear channel, the capacity cannot be increased up to infinity with 

the signal power and an optimum signal power should exist at which the capacity 

of the channel reaches its maximum. If the intensity is increased further, the 

stronger nonlinear effects will lead to a higher noise power and hence, to a 

reduction of the channel capacity. 

 Nonlinear effects in nonlinear waveguides can be divided into two groups 

[7]. The origin of the first group is the nonlinear refractive index. The origin of 

the second group are nonlinear scattering effects [2-3] (the Raman and the 

Brillouine scattering). The effects related to the nonlinear change in the refractive 

index can be estimated by using the third order nonlinear polarisation as 

 
( ) ( ) ABCχε=P 3

0
3

r
,     (16) 

 

where A, B and C are the three different electric fields that can be coupled with 

each other by means of the nonlinear susceptibility ( )3χ . An example is a WDM 

system where the bandwidth is divided into separately modulated sub bands. The 

two most important cases should be considered: 

• In the case of self-phase modulation (SPM) [7-8], all three electric fields 

A, B and C come from the same channel and act back on this channel. For 

the SPM, the phase of the pulse is changed by its own intensity. This 
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change leads to a frequency change (chirp) and, together with the 

dispersion of the fibre, can affect the temporal width of the pulse. Thus the 

SPM determines the minimal guard time between adjacent time channels. 

But if the pulses are injected with an opposite chirp, the temporal 

broadening due to SPM can be compensated. 

• In the case of cross-phase modulation (XPM) [7-8], two fields of another 

channel in the system (for instance B and C) act on the channel A. As in 

the case of SPM, this can lead to a temporal broadening of the pulses and 

to the additional noise in the system and, therefore, a reduction of the 

capacity. Unlike SPM, this effect cannot be suppressed because the 

information in the other channels is independent of the information in 

channel A. 

 

 SPM effect has a very small influence on the parameters of the channel. 

The XPM, however, must be borne in mind when designing all-optical devices. 

 

2.2.2 Nonlinear pulse propagation in slow wave 

structures 
 

 Light waves at different wavelength can interact by means of 

nonlinearities of the propagation medium. The development of all-optical devices 

has traditionally been focused on materials with strong nonlinearities. But for 

most of materials the nonlinearity is weak and it is followed by high absorption 

rate, which means that long devices or very high optical powers are required for 

creating efficient devices. 

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



63 
 

 It is known that nonlinear interactions can be enhanced inside optical 

resonators such as Fabry-Pérot cavities and microrings [9]. For a single resonator, 

a high level of enhancement implies narrow bandwidth. It does not permit 

developing of devices based on single resonators because of low operating 

efficiency. This problem disappears when a series of directly coupled resonators is 

cascaded to produce an optical slow wave structure (SWS) [10]. In optical SWS, 

additional resonators can be cascaded to increase nonlinear interaction length 

without affecting bandwidth. Spectral response can also be optimized to allow 

efficient optical signal processing on wideband channels. 

 The idea of direct-coupled resonators comes from the microwave field. 

Since such structures support waves with a group velocity that is significantly 

slower that the phase velocity of the wave, they are generally referred to as slow 

wave structures. 

 The SWS can be employed at optical frequencies. As in the case of 

microwave devices, optical SWS can be realized by forcing an optical wave to 

bounce back and forth through a number of direct-coupled resonators inserted into 

an optical waveguide. An optical SWS can be made by using Bragg gratings, by 

coupling of a sequence of microdisk resonators or by introducing defects in a 

photonic crystal [10-11]. Fig. 2.4 shows these three examples: direct-coupled 

Fabry-Pérot SWS (a), direct-coupled microring SWS (b) and photonic crystal 

SWS (c). The main property of SWS is the strong reduction of the group velocity 

[10] grv  compared to that of the group velocity 0/ nc=v  of the wave in the same, 

but unloaded waveguide and expressed by the slowing factor grvv=S / . 

 Inside a SWS the internal power mP  is increased by the resonant 

propagation with respect to the input power inpP . According to the conservation of 
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the energy flux, the enhancement factor inpm PP /  results once more equal to the 

slowing ratio S . The nonlinear effective phase shift effφ  can be related to the input 

power inpP  as [12] 

 

inp

m

m

eff

inp

eff

dP
dP

dP
dφ

dφ
dφ

=
dP
dφ .     (2.17) 

 

 In Eq. (2.17), the first and the last derivatives are both equal to the slowing 

ratio S . The second term of this equation expresses the dependence of the 

nonresonant phase shift dφ  of the internal power mP  and it is proportional to the 

nonlinear constant effcAωn=γ /2 , where effA  is the effective mode area. Now the 

nonlinear effect in SWS can be described by defining an effective nonlinear 

constant effγ  as 

 

 
Fig. 2.4. Slow wave structures. 
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21 γSc=
dP
dφ

d
=γ n

inp

eff
eff ,     (2.18) 

 

where the constant nc  depends on the particular kind of the structure and the 

values to be used in the case of SPM and XPM in SWS. It is evident from Eq. 

(2.18) that the slow wave propagation enhances both SPM and XPM by a factor 

proportional 2S  

 

References 
 

[1] R. D. Dupuis, “The diode laser – the first thirty days forty years ago”, LEOS 

Newsletter, vol. 17, no. 1, Feb. 2003. 

[2] R. W. Boyd, Nonlinear Optics (Academic Press, Boston, 1992). 

[3] R. L. Sutherland, Handbook of nonlinear optics (Marcel Dekker, New York, 

1996). 

[4] P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in 

Molecules and Polymers (John Wiley, New York, 1991). 

[5] C. E. Shannon, “Communication in the presence of noise”, Proceedings of 

Institute of Radio Engineers, vol. 37, no. 1, pp. 20-21, Jan. 1949. 

[6] V. A. Kotelnikov, “On the carrying capacity of the ether and wire in 

telecommunications”, Materials of the 1st All-Union Conference on Questions of 

Communications, Izd. Red. Upr. Svyazi RKKA, Moscow, 1933 (in Russian). 

[7] T. Schneider, Nonlinear optics in Telecommunications (Springer-Verlag, 

Berlin, 2004). 

[8] G. P. Agrawal, Nonlinear fiber optics (Academic Press, 1989). 

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



66 
 

[9] A. Yariv, Optical Electronics in Modern Communications (Oxford University 

Press, New York, 1997). 

[10] A. Melloni, F. Morichetti and M. Martinelli, “Linear and nonlinear pulse 

propagation in coupled resonator slow-wave optical structures”, Opt. Quantum. 

Electron. 35, 365 (2003). 

[11] S. Mookherjea and A. Yariv, “Coupled resonator optical waveguides”, IEEE 

J. Select. Topics Quant. Electron. 8, 448 (2002). 

[12] J. E. Heebner and R. W. Boyd, “'Slow' and 'fast' light in resonator-coupled 

waveguides”, J. Modern Opt. 49, 2629 (2002)..

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



67 
 

 

 

 

Chapter 3 
 

Numerical methods 
 

 

 

 This chapter describes and discusses the numerical methods that are 

employed in the dissertation. The description starts with the presentation and 

discussion of the methods of theoretical investigation of photonic crystals. These 

methods are compared by taking into consideration the possibility of their 

application to different problems. In this chapter, the main attention is devoted to 

the finite-difference time-domain (FDTD) method. The discussion is commenced 

by outlining the basic concepts of the method, existing types of boundary 

conditions and also some of its modifications and extensions including models of 

nonlinearity. In what follows, the special attention is paid to one of the specific 

applications of the FDTD method – numerical simulation of radiation of 

oscillating dipole embedded in photonic crystals. In this dissertation, the 

behaviour of oscillating dipoles embedded in nonlinear photonic crystal is studied 

for the first time. The finite-difference expression for the nonlinear regime are 
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derived and presented in this chapter. A brief review of secondary numerical 

details finishes the chapter. 

 

 

3.1 Methods of theoretical investigation of photonic 

crystals 
 

 

 As it was notices in the introduction, the theoretical investigation of 

photonic crystal's properties is one of the up-to-date tasks of the scientific 

community. The calculation of characteristics of the nonlinear photonic crystals is 

extremely important if all-optical devices are to be designed and analysed. In this 

section, existing approaches used for analysing photonic crystals are classified by 

considering their mathematical apparatus and then discussed taking into account 

the applicability to solve different classes of problems. First, these approaches can 

be mainly divided into four big groups that include the analytical, numerical-

analytical, numerical grid and hybrid grid methods. Secondly, the secondary 

classification can be made by considering what kind of parameters has to be 

calculated. For example, the calculation of transmission and reflection consists in 

exploring analytically or numerically the propagation of the electromagnetic 

waves in finite structures like waveguides, cavities or photonic crystal lattices 

consisting of finite number of periods. By taking the Fourier transform of the 

temporal evolution of the field, one obtains the transmission and reflexion spectra. 

Such an approach corresponds to that used in realistic measurement techniques. In 

contrast, the dispersion characteristic calculation is carried out for infinite 
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structures where the periodic boundary conditions are imposed to model the 

periodicity. It is evident that in the reality no measurements can be made to verify 

theoretical results. However, the information on the structure obtained through the 

dispersion characteristic calculation really helps in developing optical devices. 

The following describes and discusses the approaches used for analysing the 

characteristics of nonlinear photonic crystals. 

 The first approach discussed here is analytical. It is borrowed from the 

solid-state theory where it was widely used to solve the Schrödinger equation [1]. 

This equation is one of the basics of the solid-state theory and it describes the 

behaviour of a particle in an arbitrary potential. Contrary to that, the photonic 

crystal analysis is based on the classical Maxwell theory that describes the 

behaviour of a wave packet in a medium. But under particular circumstances 

wave packets behave like particles thus justifying the application of the analytical 

approach to solve Maxwell's equations. However it can only be made in one-

dimensional case where, due to the complexity of calculations, a lot of 

simplifications are made to achieve a result. In the linear regime, it is used to 

obtain both the transmission/reflexion spectra and the dispersion characteristics. 

In the nonlinear regime this approach is still very useful, but a lot of 

simplifications should be made [2-4]. 

 The numerical-analytical approaches for investigating nonlinear photonic 

crystals are very useful in calculating dispersion characteristics. The plane wave 

expansion method is the brightest representative member of this group. It was also 

widely used in the solid-state theory and its application to photonic crystals is the 

result of the already mentioned analogy between them and semiconductors. The 

algorithm of the plane wave expansion method has lots of modifications [5-9]. 

Their goal is to solve the master equation for the magnetic modes of the photonic 
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crystal. Doing so allows to determine the allowed mode frequencies for a given 

photonic crystal and also define which wave vectors k
r

 are associated with these 

modes. In other words, it determines the dispersion characteristic. Usually, the 

master equation is written as 

 

( ) ( ) ( )rH
c
ω=rH

rε ωω

rrrr
r

21
⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎦

⎤
⎢
⎣

⎡
×∇×∇ ,    (3.1) 

 

where ( )rHω

rr
 is the magnetic field vector, ( )rε

r  is the position-dependent dielectric 

constant, c is the light speed andω is the angular frequency. The subscript ω  in 

( )rH ω

rr
 means that the magnetic field pattern is different at each angular frequency. 

In addition to Eq. (3.1), the transversality requirement forces ( ) 0=rH ω

rr
⋅∇ . 

 The next step consists in expanding the field pattern into a set of plane 

waves. This converts the differential equation into a system of linear equations 

that can be solved numerically with one of the known methods [10]. Requiring 

that ( )rH
rr

 shares the periodicity of ( )rε
r  amounts to only including the reciprocal 

lattice G
r

 of the photonic crystal in the expansion 

 

( ) ( )rGki

λλGλG

k
ω eeh=rH

rrr

rr

r rr +
∑ ˆ .     (3.2) 

 

By means of Eq. (3.2) each mode with a wave vector k
r

 is identified and each 

mode is built out of plane waves with wave vector G+k
rr

 for all reciprocal lattice 

vectors G
r

. The polarization of each plane wave is one of the two unit vectors λê , 

indexed by the label λ . The transversality requirement forces to consider only 
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plane waves with ( ) 0ˆ =G+keλ
rr

⋅ . 

 Before inserting this expansion into the master equation, the dielectric 

function ( )rε
r  should be also expanded in plane waves. As before, only plane 

waves whose wave vectors are reciprocal lattice vectors are considered because of 

the periodicity. Here, ( )'G,Gε
rr

 is called as the coefficient on the plane wave with 

wave vector ( )G'–G
rr

. Inserting both expansions into the master equation (3.1), a 

system of linear equations is obtained 

 

( ) ( ) ( )
( )

( )λ
λ

λλλ

ω
G

G
G

k

GG
h

c
h r

r

r

r

rr

r
∑

′
′ ⎟

⎠
⎞

⎜
⎝
⎛=⋅Θ

2

,
,     (3.3) 

 

where the k
r

-dependent matrix Θ  is defined as the following quantity 

 

( ) ( )
( )[ ] ( )[ ] ( )GGeGkeGkk

GG
′×′+⋅×+=Θ −

′′

rrrrrrr r

rr ,ˆˆ 1

,
ελλλλ

.    (3.4) 

 

After that a technique to solve Hermitian eigenvalue problems is employed [11]. 

The following procedure is based on a complex expression for the variational 

energy of the eigenvalue problem [5]. Beginning with some guess for ( )λ,Gh
r

, the 

program calculates the variational energy and updates its guess so as to lower the 

variational energy. The guesses are enforced to be orthogonal to any eigenvectors 

that were found previously. In this manner, all the eigenvalues ( )2/ cω  can be 

obtained for a given value of k
r

. This information allows to plot dispersion 

characteristics. 

 In this dissertation, the author uses a freely available package MIT MPB 
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[12] based on the PWM to validate his codes in the linear regime. However, some 

of the modifications of the plane wave expansion method can be used to calculate 

dispersion characteristics of nonlinear photonic crystals [13]. In this case, an 

auxiliary iteration process is introduced to evaluate the amplitude of the electric 

field together with its influence on the intensity-dependent refractive index. Other 

representatives in the group of numerical-analytical approaches are presented in 

Table 3.1, which gives the information on their usability. 

 Considering the popularity of approaches from the following group – the 

group of the numerical grid methods -, the description here should be started with 

the finite-difference method [29]. This method is used to analyse both finite and 

infinite structures of all kinds and geometries. This fact makes it one of the most 

robustness numerical approaches for analysing characteristics of photonic 

crystals. There are two modifications of the finite-difference method. The type of 

the modification depends on whether the time derivative is considered in the 

Table 3.1. Numerical-analytical approaches.
 

Method T/R Disp. charact. Nonlinearity 
Mode expansion [14] Yes Yes Yes 

Korringa-Kohn-Rostoker [15] Yes Yes No 

Fourier [16-17] No Yes Yes 

Modal [18] Yes No Yes 

Integral equation [19-22] Yes No Yes 

Spherical-wave [23-26] No Yes Yes 
Transfer matrix [27-28] Yes Yes Yes 
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calculation or not. If it is considered, the method should be called by its very 

famous acronym FDTD [29], which means the “finite-difference time-domain”. 

This acronym was introduced by A. Taflove in 1980. At the present day, the word 

“FDTD” means an independent numerical method with tens of modifications and 

extensions [29]. However, if the time derivative is omitted, the acronym FD or 

finite-difference is used. 

 In the FDTD, the Maxwell's equations are discretized in both time and 

space and then iteratively solved for a finite number of iterations. All the 

dimensions can be considered. The simplest case is when a wave propagates in 

only one direction. In the two-dimensional case, when a wave propagates in a 

plane, the Maxwell's equations are divided into two sets for the TM and TE 

polarisations. Consequently, one should perform two independent calculations for 

each polarisation. In the three-dimensional case, all the field components and all 

the direction in space are considered, which means that the difference between the 

calculation and the natural electromagnetic field propagation is only due to 

discretization errors and computation limitations. 

 Unlike the FDTD method, the FD does not take into account the time 

derivatives and its algorithm is limited to solution of the Helmholtz equations. 

One equation contains the electric field vector and another one deals with the 

magnetic field vector. Here, no iteration process is made because the solution 

consists in solving a matrix equation, which takes into account the geometry of 

the photonic crystal and the boundary conditions. The main disadvantage arises 

when one tries to apply the FD method for computing dispersion characteristics of 

nonlinear photonic crystals. It is evident, that there is no manner to deal with 

nonlinearity if the basic equation does not include the electric field vector. 

 The second representative of the group of numerical grid methods is the 
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finite element method [30-31]. It is known to be a very flexible and powerful 

numerical tool due to the possibility to discretize arbitrary computation domains 

with fine grids of arbitrary configuration. The finite element method is used to 

calculate both dispersion characteristics and transmission spectra of nonlinear 

photonic crystal [32]. It was shown [33] that at the same memory requirements the 

finite element method is 10 times more complex than the FDTD method. It is the 

reason why a hybrid approach based on these two methods was proposed. In it, 

the central part of the computation domain is calculated with the FDTD and the 

finite element method is applied at the boundaries with a “complex” geometry. 

 The last group of the approaches for analysing the characteristics of 

nonlinear photonic crystal consists of hybrid grid methods. This group includes 

the method-of-lines [34], the beam propagation method [35-36], the finite-volume 

time-domain method [37] and the transmission line method [38-39]. The main 

attention should be paid to the beam propagation and the transmission line 

methods. The first of them is known to be a very efficient numerical tool, which is 

widely used in calculating the characteristic of nonlinear optical devices including 

photonic crystals. The second method, to the author's knowledge, was only 

implemented in one-dimensional nonlinear photonic crystal. Nevertheless, it can 

be extended to be applied to any geometry. 

 The comparison of the methods that belong to these four groups reveals 

that many of them can be applied to analyse nonlinear photonic crystals. 

However, each of them suffers from some disadvantages that arise from 

differences in algorithms and aims for which they were created. There is also one 

problem common for almost all the methods connected with a lack of universality. 

For example, the Fourier method was applied only for calculating dispersion 

characteristics of one-dimensional nonlinear photonic crystals. The Korringa-
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Kohn-Rostoker (KKR) method has a very complex mathematical apparatus and its 

program realisation is a difficult task. The spherical-wave method is only valid for 

three-dimensional photonic crystals. Although the plane wave expansion method 

and the transfer matrix method are very suitable for calculating dispersion 

characteristics and transmission spectra, their application is limited because a 

change in geometry results in a change in the analytical expression in their 

algorithms. It prevents their application to structures with complex geometries, 

which cannot be described analytically. The finite element method seems to be 

universal, but its program realisation is difficult because very sophisticated mesh 

generators must be used. 

 Unlike all these methods, the finite-difference time-domain method looks 

like the most universal numerical tool for analysing nonlinear photonic crystals. A 

review of the up-to-date scientific software market reveals that this method is 

employed in the most powerful commercial programs such as FULLWAVE, 

OptiFDTD, Lumerical FDTD, XFDTD, CrystalWave and others. All these 

packages include models of nonlinear effects in various materials. In addition, 

they use the FDTD algorithm for analysing dispersion characteristics of photonic 

crystals. However, all they have the same problem in doing it. The procedure of 

dispersion characteristic calculation consists in computing energy spectra for each 

wave vector of the first Brilloune zone of a photonic crystal. The resonant peaks 

in these energy spectra give the eigenfrequencies, which are used to plot 

dispersion characteristics. Sometimes the amplitudes of the peaks can be very 

small or more than one peak can be situated in a narrow frequency interval as it 

frequently happens at the edges of the first Brilloune zone. It results in difficulties 

in plotting the dispersion characteristics that means that some parts of dispersion 

curves or even whole curves are not displayed. In the nonlinear regime, additional 
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problems occur because a noise is produced by the nonlinear calculation. Tran 

[40], who was the first to calculate dispersion characteristics of Kerr nonlinear 

photonic crystals, encountered this problem and tried to explain it reasonably. 

 In order to avoid these problems, the developers complete their programs 

with band structure solvers based on the plane wave expansion method [6, 41]. 

These solvers are very efficient in the linear regime and some of them [42] can 

deal with nonlinear materials. But the question on the accuracy of the calculation 

is still open. The comparison of results obtained with the nonlinear plane wave 

expansion method [13, 43] and, for example, the nonlinear finite element method 

[44] shows a discrepancy when estimating intensities that induce the nonlinearity. 

Apart from the accuracy, there is also a difference between the mathematical 

apparatus of the FDTD and the plane wave expansion methods. For example, 

sometimes it is desirable to compare the positions of the forbidden bang gap 

defined via the dispersion characteristic with that taken from the transmission 

spectrum. In the most of the linear calculations the difference is negligible. In the 

nonlinear regime, however, it does exist due to the difference in treating the 

impact of the light intensity. 

 Many of these problems would be solved if the band structure solvers were 

based on the FDTD method. This method is very popular now and as the 

computer power rises it becomes possible to solve more and more complex 

problems with it. The accuracy of the FDTD method depends on only the CPU 

speed and amount of RAM available for calculation. In addition, a considerable 

effort in developing material models for use with this method makes it possible to 

employ the FDTD for a wide set of optical problems. 
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3.2 Finite-difference time-domain method 
 

3.2.1 Basics of the method 
 

 The finite-difference time-domain (FDTD) method is extensively 

explained in book of A. Taflove [29], which can be called the FDTD Bible. The 

explanation of the method should be started with the Maxwell's equations (2.1) – 

(2.4). Here, a linear and isotropic material and no free charges or currents are 

assumed for simplicity. In the FDTD method, the notation proposed by Yee [45] 

is used. Following his notation, a space point in a uniform rectangular lattice can 

be represented as 

 

( ) ( )zky,jx,i=kj,i, ΔΔΔ .    (3.5) 

 

Here Δx , Δy  and Δz  are, respectively, the lattice space increments in the x , y  

and z  coordinate directions, and i , j  and k  are integers. Further, any function u  

of space and time evaluated at a discrete point in the grid and at a discrete point in 

time can be written as 

 

( ) kj,i,
nu=tnz,ky,jx,iu ΔΔΔΔ ,     (3.6) 

 

where Δt  is the time increment and n  is an integer. The time increment must 

satisfy the Courant stability condition 
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( ) ( ) ( )222

111
Δz

+
Δy

+
Δx

cΔt ≤ .     (3.7) 

 

The first partial space derivative of u  in the x-direction evaluated at time 

tn=tn Δ  is then expressed as 

 

( ) ( )[ ]22,/12,/1 ΔxO+
Δx

uu=tnz,ky,jx,i
x
u kj,i

n
kj,+i

n
−−

ΔΔΔΔ
∂
∂ .   (3.8) 

 

Yee's expression for the first time partial derivative of u  evaluated at a fixed 

space point ( )kj,i,  follows by an analogy 

 

( ) ( )[ ]2
2/12/1

ΔtO+
Δt

uu=tnz,ky,jx,i
t
u kj,i,

n
kj,i,

+n −−
ΔΔΔΔ

∂
∂ .   (3.9) 

 

 Yee chose this notation because he wished to interleave his E
r

 and H
r

 

components in time at intervals of ( )t2/1  for purposes of implementing a leapfrog 

algorithm. 

 Eqs. (2.1) – (2.4) in two-dimensions immediately reduce to two sets of 

equations for the TE polarisation ( xE , yE  and zH are nonzero) and TM 

polarisation ( xH , yH  and zE  are nonzero). In the TE case, one obtains 

 

y
E

x
E

=
t

H xyz

∂
∂

−
∂

∂

∂
∂

− 0μμ ,     (3.10) 
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y
H

=
t

D zx

∂
∂

∂
∂ ,      (3.11) 

x
H

=D
t

z
y ∂

∂
∂
∂

− ,      (3.12) 

 

The xE  and yE  components are found by using the constitutive relations 

( )0/ εεD=E xx  and ( )0/ εεD=E yy , respectively, where ε  is the dielectric constant 

and 0ε  is the electric permittivity of free space. In the TM case, one has the 

following formulae 

 

y
H

x
H

=
t

D xyz

∂
∂

−
∂

∂

∂
∂ ,     (3.13) 

y
D

=
t

H
zy

∂
∂

∂

∂
0μμ ,     (3.14) 

x
D

=
t

H zx

∂
∂

∂
∂

− 0μμ ,     (3.15) 

 

where the zE  component is found by using the constitutive relation ( )0/ εεzz D=E .  

 The finite-difference equations corresponding to Eqs. (3.10)-(3.12) are 

 

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −

2
1

2
1

2
1

2
1 2/12/1 +j,+iH=+j,+iH n

z
+n

z  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

−
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

⋅
Δ

Δy

j,+iE+j,+iE

Δx

+ji,E+j+iE
t

n
x

n
x

n
y

n
y 2

11
2
1

2
1

2
11,

-
0μμ

, (3.16) 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛⋅

Δ
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
11 j,+iH+j,+iH

Δy
t+j,+iD=j,+iD +n

z
+n

z
n

x
+n

x , (3.17) 

⎥
⎥
⎦

⎤
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⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟
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Δ
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⎟
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⎜
⎝
⎛

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
11 +j,iH+j,+iH

Δx
t+ji,D=+ji,D n+

z
n+

z
n

y
n+

y . (3.18) 

 

The constitutive relations are 0
11 /

2
1

2
1 εεj,+iD=j,+iE +n

x
+n

x ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛  and 

0
11 /

2
1

2
1 εε+ji,D=+ji,E +n

y
+n

y ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ . The finite-difference expressions for Eqs. (3.13)-

(3.15) are 

 

( ) ( )ji,D=ji,D n
z

+n
z

1  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛

−
⎟
⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛

⋅Δ
Δy

ji,H+ji,H

Δx

j,iHj,+iH
t+

+n
x

+n
x

+n
y

+n
y 2

1
2
1

2
1

2
1 2/12/12/12/1

, (3.19) 

( ) ( )[ ]ji,E+ji,E
Δy

t+ji,H=+ji,H n
z

n
z

n
x

+n
x −⋅

Δ
−⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ − 1

2
1

2
1

0

2/12/1

μμ
,  (3.20) 

( ) ( )[ ]ji,Ej+iE
Δx

t+j,+iH=j,+iH n
z

n
z

n
y

+n
y −⋅

Δ
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ − 1,

2
1

2
1

0

2/12/1

μμ
.  (3.21) 

 

The constitutive relation is ( ) ( ) 0
11 / εji,D=ji,E +n

z
+n

z ε . Eqs. (3.16)-(3.21) are 

iteratevly solved for the total number of time steps tN , which defines the total 

simulated time. 
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3.2.2 Boundary conditions 
 

 Obviously, the FDTD method cannot be used to describe electromagnetic 

fields in an infinite area in space. If a propagating wave reaches the unbounded 

edge of the grid, the calculation becomes unstable and the program “hangs up”. 

The problem of free surrounding space can be solved by using the absorbing 

boundary conditions that can be of two types: the analytical (for example, Mur 

[46] or Liao [47] approaches) and the numerical (various modifications of PML 

originally proposed by Berenger [48]). The analytical approaches absorb well 

only the electromagnetic waves incident on the boundary at about o90 . Therefore 

their implementation is not acceptable if an accurate modelling is required. 

However, in some cases it turns out that their implementation results in satisfying 

absorption and simple realisation in the program. This is true for example for the 

Mur's second order absorbing boundary conditions imposed only in one of the 

directions. The author uses it in one of his programs [49]. Regarding to the PML, 

the author implements one of the modifications called the convolutional PML or 

simply CPML [50]. The CPML has been known to be one of the robustness 

implementations of the PML because of simplicity in coding and extremely high 

ability to absorb wave propagating at all angles and of almost all frequencies. All 

the approaches mentioned here are well-known by the scientific community and 

their implementation with the FDTD method is widely discussed in the literature 

[29, 51-53]. 

 Another type of boundary conditions consists in assuming that the 

structure modelled is infinite. These boundary conditions are called periodic and 

come directly from the Bloch theorem [54]. They are widely used in analysing the 
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photonic crystal while calculating their dispersion characteristics. If the structure 

is infinite in only one or two dimensions, the periodic boundary condition can be 

combined with absorbing boundary conditions. Here, the applications of the 

periodic boundary conditions will be considered for the two most common lattices 

of photonic crystal: the square and the triangle. 

 The most common form to express the periodic boundary conditions is the 

following 

 

( ) ( ) ( )akjt,rΦ=t,a+rΦ
rrrrr ˆexp ,     (3.22) 

 

where Φ
r

 is any field component ( E
r

 or H
r

), a
r  is the period, k

r
 is the wave vector 

in the first Brillouin zone and 1ˆ −=j . The FDTD implementation of Eq. (3.22) is 

graphically shown for the square lattice (Fig. 3.1) and triangular lattice (Fig. 3.2). 

In this work, only the orthogonal finite-difference grid is used and, if even the 

 
Fig. 3.1. Periodic boundary conditions for the square lattice. 
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triangular lattice is considered, it remains useful. 

 In Fig. 3.1, the computation domain is a square area discretised by the 

finite-difference grid. The circle corresponds to the area of high refractive index 

while the white area is the background with 1=ε . Only the first two and the last 

two nodes of the grid are meaningful in implementing Eq. (3.22). The black 

arrows show how the field components at the edges of the computation domain 

are updated. Considering the two-dimensional case and the TM polarisation, one 

should only impose the boundary conditions for the electric field components xE  

and yE  because only they lie in the plane of periodicity. One has 

 

( ) ( ) ( )akji,E=+nyi,E yxx
ˆexp11 ,    (3.23) 

( ) ( ) ( )akjnyi,E=i,E yxx
ˆexp0 − ,    (3.24) 

( ) ( ) ( )akjjE=j+nxE xyy
ˆexp1,1, ,    (3.25) 

( ) ( ) ( )akjjnx,E=jE xyy
ˆexp0, − .    (3.26) 

 
Fig. 3.2. Periodic boundary conditions for the triangular lattice. 

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



84 
 

 

where i  and j  run from 0  to Nx  or Ny , and xk  and yk  are the components of the 

wave vector. 

 In dealing with the TE polarisation, one should use xH  and yH  instead of 

xE  and yE . If a dispersion characteristic is calculated for all directions of the first 

Brillouin zone, one should take into account the following points: ( )0,0Γ , ( )0/ a,πX  

and ( )aπa,πM // , where the first and the second values in parenthesis correspond to 

xk  and yk , respectively. 

 In Fig. 3.2, the computation domain is a rectangular area, which includes a 

rhombus corresponding to the triangular lattice [29]. The grey area corresponds to 

the area of the background (high refractive index). The circles show the position 

of the holes drilled in the background. The black arrows show how the field 

components at the edges of the computation domain are updated. Both the 

rectangular area and rhombus are on the same orthogonal finite-difference grid, 

but the periodic boundary conditions are imposed only on the sides of the 

rhombus. In this case, the analogues of Eqs. (3.23)-(2.26) can be written as 

 

( ) ( ) ( )akja+iE=+nyi,E yxx
ˆexp2,1/1 ,    (3.27) 

( ) ( ) ( )akjnyi,E=a+iE yxx
ˆexp2,0/ − ,    (3.28) 

( )( ) ( )( ) ( )akjj,nyE=ja+nyE x
o

y
o

y
ˆexp60cos/2,/60cos/ ,   (3.29) 

( )( ) ( )( ) ( )akjja+nyE=j,nyE x
o

y
o

y
ˆexp2,/60cos/60cos/ − .   (3.30) 

 

As before, in dealing with the TE polarisation, one should use xH  and yH  instead 

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



85 
 

of xE  and yE . If a dispersion characteristic is calculated for all directions of the 

first Brillouin zone, one should take into account the following points: ( )0,0Γ , 

( )3// aπa,πK  and ( )03a/4 ,πM . 

 

3.2.3 Order-N method 
 

 Order-N is the name of an FDTD-based approach for analysing dispersion 

characteristics of photonic crystals [29, 55]. This method uses the same finite-

difference time-domain scheme and boundary conditions as those described in the 

previous sections. However, it differs from the standard FDTD in the initial 

condition and postprocessing operations. 

 In the original Order-N [55], a set of plane waves that include all wave 

number taken into account in the simulation is used as the initial condition. In this 

dissertation, however, the incident intensity is simulated with the Dirac delta pulse 

of amplitude incI  whose value varies depending on the goal of the simulation 

[49]. In the first step of the calculation process, only field components situated in 

randomly chosen nodes of the finite-difference grid are excited, while all field 

components in other nodes are set to be zero. Fig. 3.3 schematically shows an 

example of such an initial distribution. Here, the open circles correspond to those 

nodes that are chosen with a random number generator and excited.  

 The calculation is limited by two factors: the total simulated time T  and 

the step in time Δt . The first factor is connected with the total number of time 

steps, which should be sufficiently large to obtain high resolution in the frequency 

domain. Usually, the number of time steps varies between 1614 22 ÷  and it defines 
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the lowest frequency that can be simulated, i.e. Tπ~ωMIN /2 . The second factor is 

governed by the Courant stability condition. It defines the highest frequency that 

can be simulated, i.e. Δtπ~ωMAX /2 . 

 The calculation is carried out for each value of the wave vector. The 

components of electric and magnetic fields are recorded at each step in time and 

after that multiplied by the Gaussian pulse to filter the noise produced by the 

calculation. After the multiplication has finished, the fields are Fourier 

transformed to the frequency domain to obtain the spectral intensities. The peaks 

in the spectra give the eigenfrequencies.  

 

3.2.4 Models of the Kerr nonlinearity 
 

 In the last decades, much attention has been paid to model nonlinear media 

with the FDTD method. Merewether and Radasky [56] were the first who used the 

FDTD method in this way. Various techniques to model Kerr nonlinear media and 

 
 

Fig. 3.3. Randomly chosen nodes of the FD grid. 
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dispersive nonlinear effects were presented independently by different authors 

[57-59]. With these techniques, one can investigate the propagation and scattering 

of femtosecond electromagnetic pulses. Alternative approaches such as the 

combined Maxwell-Bloch FDTD scheme and the Z-transform based FDTD 

scheme were later proposed [60-64] to model more complicated dispersive and 

nonlinear materials. Particularly, the dynamic nonlinear optical skin effect and 

self-induced transparency were studied. Tran in 1995 [40] was first who 

calculated dispersion characteristics of Kerr nonlinear photonic crystals. He did it 

only for the TM polarisation case and showed the problems that were encountered 

in the calculation. To the author's knowledge, the FDTD method has not been 

more used to this end. In the calculation of transmission spectra, however, the 

FDTD method is the absolute leader. Apart from other applications, it is used to 

model such optical devices as couplers, switches, splitters and modulators. 

 It was shown that in the linear regime the constitutive relation that relates 

D
r

 to E
r

 can be written as 

 

( ) ( ) ( )t,rErε=t,rD
rrrrr

⋅0ε ,     (3.31) 

 

where the dielectric constant ε  is connected with the refractive index n  as 

 

ε=n .      (3.32) 

 

In the nonlinear regime, however, Eq. (3.31) becomes more complex because it 

must account for the Kerr effect. Using Eq. (11), one can rewrite Eq. (3.31) as 
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( ) ( ) ( ) ( )( )| |( ) ( )t,rEt,rEχ+rε=t,rD L

rrrrrrr
⋅

23
0ε ,    (3.33) 

 

where ( )rεL

r  denotes an intensity independent (linear) dielectric constant, which 

equals to that from Eq. (3.32); ( )3χ is the Kerr coefficient. It should be noticed that 

the Kerr coefficient ( )3χ  is measured in 22 /Vm , but in the literature it sometimes is 

substituted by other parameter called the nonlinear index of refraction and 

denoted as 2n . Unlike ( )3χ , 2n  is expressed in terms of intensity. In order to relate 

them, the following formula is used 

 
( )

c
χ=n

0

3

2 εε
.     (3.34) 

 

 The FDTD standard scheme is still valid to solve the Maxwell's equations 

(2.1) – (2.4) with the constitutive relation (3.33). For example, in the two-

dimensional case the same equations (3.16)-(3.21) are used, but the finite-

difference equation for the constitutive relation (TM polarisation) is 

 

( ) ( )
( ) ( ) ( ) ( )| |{ }23

0

1
1

ji,Eji,χ+ji,ε
ji,D=ji,E

n
z

+n
z+n

z
ε

,    (3.35) 

 

where, following the notation used in this work, the modulus square of the electric 

field taken from the previous time step is used to calculate a change in the 

dielectric constant. Such an approach was found to be stable by the author [65] 

and also in the paper [66]. However, the selection of the instant in time Δt  

requires a special care because no stability condition was derived until now for the 
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nonlinear regime. The author found that it was possible to use a restricted Courant 

stability condition  

 

( ) ( ) ( )222

111
Δz

+
Δy

+
Δx

cSΔt ⋅
≤ ,     (3.36) 

 

where 10.75 ≤≤ S  is an experimentally fitted coefficient. The smaller the instant in 

time, the more stable the nonlinear scheme. But the numerical errors increase as 

S  decreases [29]. Sometimes it leads to some inconveniencies in automatization 

of calculations because each run of the program requires revising of the value of 

Δt . These inconveniencies can be avoided if the approach proposed by Tran in 

[40] is applied. Instead of taking the modulus square of the electric field from the 

previous time step, Tran proposed to analytically solve the following cubic 

equation, which can be obtained from Eq. (3.35) 

 

( ) ( )[ ] 0Re2
2
0

2

2333 =−⋅+⋅+⋅ ∗

ε
εχεχ

D
AAA

r

,   (3.37) 

 

Where | |2E=A
r

 is the modulus square of the electric field, ∗ε  is the complex 

conjugated of ε  and the operator Re  takes the real part of a complex number. 

Because the modulus square can be neither negative nor complex, only a real 

positive root is taken into account. 

 Once A  is obtained, the electric field E
r

 is calculated as 
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( )( )Aχ+ε
D=E

L ⋅3
0ε

r
r

.     (3.38) 

 

3.2.5 Simulation of radiation of oscillating 

dipole embedded in photonic crystals 
 

 Sakoda [54] proposed another technique to calculate dispersion 

characteristics of photonic crystals. It consists in simulating of the radiation of the 

oscillating dipole embedded into the photonic crystal by means of the FDTD 

method. The dipole is situated in the unit cell of the photonic crystal truncated 

with the periodic boundary conditions. The frequency of oscillation changes in a 

range of interest. For each frequency from this range the electromagnetic energy 

density radiated by the dipole is calculated by means of the FDTD method. The 

FDTD algorithm is repeated cN  times in the so-called oscillating cycle. The 

electromagnetic energy density radiated in each oscillating cycle is accumulated 

 
Fig. 3.4. Two-dimensional photonic crystal with an embedded oscillating 

dipole. The dashed line denotes the unit cell. 
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in all nodes of the finite-difference grid and saved when the cycle is finished. This 

procedure is repeated for all wave vector of the first Brillouin zone. As a result, 

one obtains the energy density spectra for these wave vectors. The dispersion 

characteristics are obtained from the resonance peaks of these spectra. 

 Fig. 3.4 illustrates the Sakoda's idea. The 12-point star denotes the dipole 

situated within the unit cell (dash line). The periodic boundary conditions are 

imposed on the edges of the unit cell as it shown in Fig. 3.1. 

 In the language of formulae, the Sakoda's technique is described with the 

Maxwell's equations (2.1)-(2.4) together with the constitutive relations 

 

( ) ( ) ( )[ ]t,rP+t,rH
t

=t,rE M

rrrrrr
0μμ

∂
∂

−×∇ ,    (3.39) 

( ) ( ) ( )[ ]t,rP+t,rD
t

=t,rH E

rrrrrr

∂
∂

×∇ ,     (3.40) 

 

where the polarisation fields ( )t,rPM
rr

 and ( )t,rPE
rr

 are respectively for the electric 

and magnetic oscillating dipole embedded into the lattice of the photonic crystal. 

In the explicit form the polarisation fields can be expressed as 

 

( ) ( ) ( )ωtjrrδe=t,rP μE
ˆexp0 −−

rrrrr
,     (3.41) 

( ) ( ) ( )ωtjrrδh=t,rP μM
ˆexp0 −−

rrrrr
,     (3.42) 

 

where ( )t,reμ

rr  and ( )t,rhμ

rr
 are the amplitudes of the electric and magnetic dipoles, 0r

r  

denotes their position within the photonic crystal and ω  is the angular frequency 

of the oscillation; ĵ  refers to the imaginary unit and ( )0rrδ
rr

−  denotes the Dirac 
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delta function. 

 The electromagnetic energy density emitted per unit time by the oscillating 

dipole at 0r
r  can be calculated by using the following expression [67] 

 

( ) ( ) ( )| |[ ]2

02
1 rH+rDrE=W

rrrrrr
μμ⋅ .     (3.43) 

 

 Taking into account the changes made, Eqs. (3.10)-(3.15) have now the 

following form 

 

( ) ( ) ( )[ ]
y

E
x

E
=ωtjyyδxxδh+H

t
xy

zμz ∂
∂

−
∂
∂

−−−
∂
∂

− ˆexp000μμ ,   (3.44) 

y
H=D

t
z

x ∂
∂

∂
∂ ,      (3.45) 

x
H=D

t
z

y ∂
∂

∂
∂

− ,      (3.46) 

 

and 

 

( ) ( ) ( )[ ]
y

H
x

H
=ωtjyyδxxδe+D

tc
xy

zμz ∂
∂

−
∂
∂

−−−
∂
∂ ˆexp1

00 ,   (3.47) 

y
D

=
t

H
zy

∂
∂

∂

∂
0μμ ,     (3.48) 

x
D

=
t

H zx

∂
∂

∂
∂

− 0μμ .     (3.49) 

 

 It can be seen that only Eqs. (3.44) and (3.47) are changed. Their finite-
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difference analogues are the following 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

2
1

2,
1

2
1

2,
1 2/12/1 +j+iH=+j+iH n

z
+n

z  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
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⎞
⎜
⎝

⎛
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⎛
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⎟
⎠

⎞
⎜
⎝

⎛
−⎟

⎠

⎞
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⎝

⎛

⋅
Δ

−
Δy

j,+iE+j,+iE

Δx

+ji,E+j+iE
t

n
x

n
x

n
y

n
y 2

1
1

2
1

2
1

2
1

1,

0μμ
 

( )ωnΔtjδδ
ΔxΔy
ωhj

+ jjii
zμ ˆexp

ˆ
00

−⋅  (3.50) 

 

( ) ( )ji,D=ji,D n
z

+n
z

1  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
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1
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( )ωnΔtjδδ
ΔxΔy
ωej

+ jjii
zμ ˆexp

ˆ
00

−⋅  (3.51) 

 

The expressions 
0iiδ  and 

0jjδ  denote the position of the dipole on the finite-

difference grid. The energy density is calculated using the fields obtained from the 

Maxwell's equations. For the TE polarisation it has the following form 

 

∑
=

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛⋅⎟

⎠
⎞

⎜
⎝
⎛yNxN

ji
zyyxx +j,+iH++ji,D+ji,E+j,+iDj,+iE=W

,

0,

2
0 2

1
2
1

2
1

2
1

2
1

2
1

2
1 μμ  

(3.52) 

 

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



94 
 

while for the TM polarisation it is 

 

( ) ( )∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛⋅

yNxN

ji
yxzz j,+iH++ji,H+ji,Dji,E=W

,

0,

22
0 2

1
2
1

2
1 μμ .   (3.53) 

 

 Fig. 3.5 shows the flow chart of the calculation process for a component of 

the wave vector k
r

 (so-called k-point). In this figure, ω  denotes the angular 

frequency, which varies between 1ω  and 2ω  with the step Δω ; ci  denotes the 

number of the current oscillating cycle, which varies between zero and the total 

 
Fig. 3.5. Flow chart of the calculation process. 
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number of oscillating cycles cN . The grey blocks correspond to the flow chart of 

the sequence of operations within the main body of the FDTD algorithm for the 

TE polarization. If the polarization were TM, the field components xD , xE , yD , 

yE  and zH  would be substituted for xH , yH , zD  and zE , correspondingly. In the 

first step, the k-point is set up. All further calculations are carried out only for this 

k-point. In the second step, the current angular frequency ω  is chosen for which 

the radiated energy will be calculated. In the third step, the time step Δt  is 

calculated and the counter of the oscillating cycles ci  is zerorized. The fourth step 

consists of cN  of dipole's oscillating cycles. In the fifth step, the radiated energy 

for the current angular frequency ω  set up in the second step is calculated. These 

steps are repeated for all angular frequencies. After this process has finished for 

all k-points (it is enough to take into account about 10–15 k-points for a wave 

vector), the accumulated electromagnetic energy density distribution W  is a 

function of the angular frequency for the specified wave vector. The dispersion 

characteristic is obtained from the resonance peaks of this electromagnetic energy 

density distribution. 

 Unlike in classical FDTD approaches [29], the stability condition of the 

algorithm presented in Fig. 3.5 depends on the angular frequency at which the 

dipole oscillates. If the spatial steps Δx  and Δy  are normalised as nxπa /2  and 

nyπa /2 , and the step in time is ( )tωNπ=Δt /2  ( tN  is the total number of steps in 

time and a  is period of the photonic crystal), the Courant stability condition can 

be written as 

 

ωa
ny+nx

Nt

22

≥ .     (3.54) 
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The condition (3.54) means that one should carry out 6000 and 60 time steps to 

calculate the energy radiated by the dipole oscillating at ( )aπc=ω /20.01  and 

( )aπc=ω /21.0 , respectively. 

 

 

3.2.6 Calculation of reflexion and transmission 

spectra 
 

 Reflexion and transmission spectra are very important characteristics of 

photonic crystals and optical devices based on them. Unlike the dispersion 

characteristics showing the complete forbidden bang gap for all directions of the 

first Brillouin zone, the transmission spectra are calculated for only one of the 

propagation directions possible in a realistic device and they suggest a frequency 

 
Fig. 3.6. Photonic crystal line waveguide connected with two dielectric waveguides via tapers. 
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band where the light cannot propagate. In addition, the transmission spectra show 

how the propagating wave is attenuated at each frequency that is not possible with 

dispersion characteristics. 

 The calculation of a transmission spectrum can be demonstrated by the 

example of a photonic crystal line waveguide connected with two conventional 

dielectric waveguides via tapers (see Fig. 3.6). 

 The point at which the electromagnetic wave is originated is called the 

source. This wave propagates in the direction indicated by the arrow. Usually, the 

so-called “hard” source is used [29]. A “hard” source is set up simply by 

assigning a desired time function to specific components of electric or magnetic 

field in the FDTD grid. The time function is independent of anything else in the 

model. For example, in a three-dimensional FDTD grid at point with coordinates 

( )sss k,j,i  the zE  or zH  components (TM or TE polarisation) should be excited to 

generate a continuous sinusoidal wave of frequency 0f  that is switched on at 

0=n : 

 

( ) ( )tnπfE=k,j,iE sssz
n Δ00 2sin .     (3.55) 

 

 The use of this source in calculating the transmission is not desired 

because a lot of calculation should be repeated if a wide range of frequencies are 

to be covered. Instead, another type of the hard source providing a bandpass 

Gaussian pulse with zero DC content is used 

 

( ) ( ) ( )[ ]( )2
000 /exp2sin decaysssz

n nnntnπfE=k,j,iE −−Δ .   (3.56) 
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The Fourier spectrum of this pulse has even symmetry about 0f . The pulse is 

centred at time step 0n  and has a e/1  characteristic decay of decayn  time steps. The 

main advantage of this pulse is the possibility to carry out only one simulation 

covering a wide range of frequencies. 

 The observation sites A, B, C, D and E shown in Fig. 3.6 are used to save 

the temporal evolution of the fields. After the FDTD algorithm has finished, the 

field observed at these sites are Fourier transformed and the Poynting vector is 

calculated as [67] 

 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ ×−= ∫ ∗

width

rdrHrEP vrrrrr
ωω ,,Re

2
1 ,    (3.57) 

 

where the ( )ω,rE
rr  and ( )ω,rH

rr
∗  are the Fourier transformed electric and magnetic 

fields; the asterisk denotes the complex conjugated. Using the Poynting vectors 

calculated at the source point and the site E, one can calculate the transmission 

through the whole structure as 

 
| |
| |source

E

P
P=T .      (3.58) 

 

Using Eq. (3.57) and the Pointing vector calculated at other sites, one can also 

calculate the efficiency of the taper used to couple the dielectric waveguides with 

the photonic crystal line waveguide or the transmission only through the line 

waveguide. 

 It should be noticed, that the application of the point sources like those 

described by Eqs. (3.55) and (3.56) instead of the total field/scattered field 
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technique [29] is preferable because the point sources allow for the so-called 

waveguide source conditions. One of the main difficulties in exciting dielectric 

waveguides is to find a transverse distribution of the modal field in these 

waveguide, which is the initially unknown because the energy is not strictly 

bounded by the walls, but instead decays with distance from the centre of the 

structure. The application of point sources solves this problem. When the point 

source situated in the dielectric waveguide (as it is shown in Fig. 3.6) is switched 

on, it generates a lot of modes including undesirable ones. However, the 

waveguide “filters” these undesired modes which are immediately absorbed by 

the boundary conditions. 

 

3.2.7 Some remarks on the nonlinear FDTD 

method for analysing dispersion characteristics 
 

 The previous subsections have provided detailed information on how the 

FDTD technique is applied for analysing the basic characteristics of photonic 

crystals. The purpose of this subsection is to show what kind of changes should be 

made in order to apply the FDTD to nonlinear problems. It also makes clear what 

are the contributions made by the author in this area. 

 First of all, unlike in [54], an oscillating dipole has been embedded in a 

nonlinear photonic crystal. It has resulted in the combination of the Sakoda's 

approach, based on simulation of radiation of oscillating dipole, with the model of 

the Kerr nonlinearity. To author's knowledge, it has been done for the first time. 

 The fact that the nonlinearity has been considered has offered a problem. 

In the linear regime, the amplitudes of the both electric and magnetic dipoles were 
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not of great importance. In the nonlinear regime, however, the magnitudes of their 

amplitudes control the intensity that induces the nonlinearity. The relation 

between the amplitude of the electric dipole and the intensity is evidently direct. 

In the case of the magnetic dipole, however, it is not clear. It has been found that 

the same nonlinearity is induced when the amplitude of the magnetic dipole is 

lower than that of the electric dipole. The physical interpretation of such a 

difference in amplitudes of the electric and magnetic dipoles has not yet been 

clarified. It could be explained as follows. In both linear and nonlinear photonic 

crystals, the Purcell effect [68-69] has to be taken into account. It has been shown 

that for the linear photonic crystals and angular frequencies 1.02/ ≤πcωa , the 

electric and magnetic dipoles behave like in a linear homogeneous medium [70-

71]. It can be assumed that the behaviour of the dipoles in the nonlinear regime is 

similar to that in the linear one, i.e., in the nonlinear photonic crystal the dipoles 

behave like in a nonlinear homogeneous medium. 

 In the homogeneous Kerr-nonlinear medium, there is a growth of the 

transverse field components at the cost of the longitudinal one. In the TE case, the 

transverse electric field components play an important role in inducing the 

nonlinearity. The amplitudes of these field components increase at the cost of the 

magnetic dipole radiation. As a result of this process, the induced nonlinearity 

increases as the amplitudes of the electric field components increases. In the TM 

case, however, the transverse electric field is absent by definition. Consequently, 

the energy transfer mechanism from the electric dipole to the transverse magnetic 

field components does not facilitate the induction of the nonlinearity and, 

therefore, the larger amplitudes of the electric dipole should be applied to induce 

the same nonlinearity as with the smaller amplitudes of the magnetic dipole. 

 In addition to the problem with the excitation by means of the oscillating 
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dipoles, considering the nonlinear model has led to unfulfilling of the Courant 

stability condition. This situation has been repaired by decreasing the instant in 

time. 

 The calculation of dispersion characteristics in the nonlinear photonic 

crystal slab has also required to make some changes in the standard algorithm. 

Here, the Mur's absorbing boundary conditions have been combined with the 

periodic boundary conditions. To the author's knowledge, it has been also made 

for the first time. Unlike in the original Order-N method, the Dirac delta functions 

situated at randomly chosen nodes of the finite-difference grid have been used to 

create an initial field distribution. In the work, it has been investigated how many 

nodes of the finite-difference grid should be chosen with the random number 

generator to induce a considerable nonlinearity. 

 

3.3 Conclusions 
 

To conclude, this chapter has described and discussed the numerical 

methods that are employed in the dissertation. The description has been started 

with the presentation and discussion of the methods of theoretical investigation of 

photonic crystals. These methods have been compared by taking into 

consideration the possibility of their application to different problems. The main 

attention has been devoted to the finite-difference time-domain (FDTD) method. 

Its discussion has been commenced by outlining the basic concepts of the method, 

existing types of boundary conditions and also some of its modifications and 

extensions including models of nonlinearity. 

The special attention has been paid to one of the specific applications of 
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the FDTD method – numerical simulation of radiation of oscillating dipoles 

embedded in photonic crystals. This is a new approach proposed by the author and 

it is intended for analysing dispersion characteristics of Kerr-nonlinear photonic 

crystals. It can be used to analyze the dispersion characteristics of Kerr-nonlinear 

one- and two-dimensional photonic crystals as a function of the intensity of the 

oscillating dipoles. 
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Chapter 4 
 

Dispersion characteristics of Kerr nonlinear 

photonic crystals 
 

 

 

 This chapter presents and discusses the results of dispersion characteristics 

calculation for one- and two-dimensional Kerr nonlinear photonic crystals. First, 

the discussion is started with the one-dimensional structure. In the one-

dimensional case, the calculation clearly shows the physicals processes that take 

place when the photonic crystal switches from the linear working regime to the 

nonlinear one. Secondly, the procedure of calculation of dispersion characteristics 

is generalized to deal with two-dimensional structures. Due to much practical 

importance, both perfect lattices and lattices with defects are considered. Another 

practical aspect – the influence of the light confinement in the third direction – is 

studied by calculating and discussing dispersion characteristics of a nonlinear 

photonic crystal slab. 

 In most of the calculations carried out in this chapter, the FDTD approach 
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based on the simulation of radiation of oscillating dipole embedded in the perfect 

lattice is used. When dealing with defects introduced into the perfect lattice, this 

approach is combined with the super cell technique. The slab structure is studied 

with the nonlinear Order-N method. 

 

4.1 One-dimensional nonlinear photonic crystals 
 

 In order to calculate the dispersion characteristics of the one-dimensional 

nonlinear photonic crystal (1-D NLPC), the numerical approach presented in 

subsection 3.2.5 is used. The magnetic oscillating dipole is embedded in the unit 

cell and the TE polarization, for which the magnetic field is parallel to z-axis, is 

only considered. For one-dimensional photonic crystals in the in-plane case the 

TM polarisation, for which the electric field is parallel to z-axis, gives the same 

dispersion characteristics as that in the case of the TE polarisation. But in this case 

the electric dipole must be substituted for the magnetic one. In this section, the 

magnetic dipole is used and the TE polarisation case is considered because there 

is an interest in exciting the photonic crystal with the magnetic field. Unlike the 

excitation with the electric field, the magnetic field excitation is more complex 

because it is more difficult to control the incident intensity, which is a function of 

the electric field, not of the magnetic one. Although the polarisation and the type 

of the dipole are not of great importance in the one-dimensional in-plane case, 

they play the very important role in the two-dimensional case. It will be shown in 

the following sections. 

 The general geometry of the 1-D NLPC considered in this section is 

illustrated in Fig. 4.1. It consists of alternating layers of materials with high 1ε  
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Fig. 4.1. Schematic of the 1-D NLPC 

and low 2ε  dielectric constants. The optical thickness of the layers with a high 

dielectric constant is b  and the optical thickness of the layers with a low dielectric 

constant is ba − , where a  is the period. The layers with a high dielectric constant 

are doped with a Kerr-nonlinear material and are also characterized by the Kerr 

coefficient ( )3χ . It is apparent that the structure in Fig. 4.1 is invariant when 

changing y  to –y  

 
( ) ( ) ( ) ( )yx,χε,=yx,χε, 33 − .      (4.1) 

 

Therefore only the region where Cy ≤≤0  is considered for calculation and in the 

y-direction the 1-D NLPC is truncated by the symmetric boundary condition (BC) 

that can be written as 
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),()0,( yxx ΔΦ=Φ
rr

,     (4.2) 

),(),( yCxCx Δ−Φ=Φ
rr

,     (4.3) 

 

where Φ
r

 is any field component ( E
r

 or H
r

). The periodic BC truncates the 

structure in the x-direction. In the z-direction the structure is assumed to be 

infinite. The oscillating dipole is situated at ( )00,0 yx=r . The parameters xn  and yn  

denote the number of subcells, which divide the unit cell (the period a ). The 

parameters Δx  and Δy  characterize the dimensions of the single subcell and they 

are defined as is suggested in subsection 3.2.5.  

 The parameters that will be used for all further calculations are as follows: 

1=a , 0.2=b , 13.01 =ε , 12 =ε , 0.01
2

1 =
πc
aω , 1.0

2
2 =
πc
aω , 0.001

2
=

πc
Δωa  and 606000 ÷=Nt  

(depending on the frequency). The behaviour of the band structure at 0=ω  is 

well-known. Therefore the angular frequencies 10 ωω ≤≤  are not taken into 

account because of an enormous increase in tN . In order to calculate band 

structures in the 1-D NLPC the Kerr coefficient is chosen to be ( ) 0.013 =χ  [1]. For 

the 1-D LPC, however, it is zero. The magnetic dipole is used for excitation. It is 

situated in the region with a low dielectric constant. The unit cell is divided into 

2040×  subcells. Information about unit cell discretization and convergence can be 

found in subsection 4.1.4. 

 

4.1.1 Energy Density Spectra 
 

 Following the sequence of the operations shown in Fig. 3.5, the energy 
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density spectra must be first calculated. 

Fig. 4.2 shows the accumulated electromagnetic energy density 

distribution calculated for the 1-D LPC (a) and 1-D NLPC (b) as a function of the 

number of oscillating cycles for ( ) 0.52/ =πka . In both cases, the amplitude of the 

 
(a) 

 
(b) 

Fig. 4.2. Accumulated electromagnetic energy density distribution calculated for the 1-D 
LPC (a) and 1-D NLPC (b). 
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magnetic dipoles is 100=h
zμ

 arb. units. The abscissa represents the angular 

frequency and ▼, ○, ◊, □ denote the accumulated electromagnetic energy density 

after 10, 20, 50 and 100 oscillating cycles, respectively. In Fig. 4.2 (a), a 

resonance is clearly observed at ( ) 0.2032/ =πcωa  for all numbers of oscillating 

cycles. The amplitude of the peak grows as the result of energy accumulation 

process. Such behaviour of the energy oscillated by the dipole is well-known and 

described in the literature [2]. However, to the author's knowledge, the dipole's 

behaviour in Kerr-like nonlinear media was not yet investigated. The nonlinear 

simulations performed in this work reveal that the nonlinearity leads to a drift in 

the resonance peaks that depends on the number of oscillating cycles. For 

example, in Fig. 4.2 (b) a resonance peak is observed at ( ) 0.1892/ =πcωa  for 10 

cycles while it is at ( ) 0.1852/ =πcωa  for 50 cycles. The last number of the 

oscillating cycles is suitable to accurately calculate dispersion characteristics. It is 

because any increase in this number almost does not contribute more to the shift 

of the resonance peaks and it makes it possible to state that the method converges. 

 Fig. 4.3 shows the normalized accumulated electromagnetic energy density 

distribution calculated for the 1-D LPC (a) and 1-D NLPC (b) as a function of the 

angular frequency for ( ) 0.52/ =πka . The amplitudes of the magnetic dipoles used 

for the calculation were 1=h
zμ

 arb. unit and 100=h
zμ

 arb. units, respectively. 

There were 50 oscillating cycles. 

 As can be seen from Fig. 4.3 (a), in the linear regime the electromagnetic 

energy density distribution is very clean. No shift in the peak's position was 

produced because the simulation did not take into account the Kerr effect. In 

Fig. 4.3 (b), however, the electromagnetic energy density distribution is not clean 

because a noise is produced by the nonlinear calculation. Therefore, each peak in 

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



115 
 

the energy distribution cannot be taken as an individual mode. Tran [3] reported 

the same problem. He stated that in the nonlinear regime the energy distribution is 

very similar to that of the linear regime, which indicates that the Kerr 

nonlinearity, apart from shifting its angular frequency, does not drastically affect 

 
(a) 

 
(b) 

Fig. 4.3. The normalized accumulated electromagnetic energy density distribution for the 1-D 
LPC (a) and the 1-D NLPC (b). 
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Fig. 4.4. The comparison between the band structures in the 1-D LPC calculated with the 

FDTD method (open circles) and the plane wave expansion method (solid line). 

the linear solution. Following this statement, in Fig. 4.3 (b) only the peaks 

indicated by an arrow are meaningful for plotting dispersion characteristics. 

 In accordance with the flow chart in Fig. 3.5, the energy spectra like those 

in Fig. 4.3 are calculated for both linear and nonlinear regimes. As it was 

mentioned, the dispersion characteristics are plotted by using the resonant 

frequencies taken from these energy spectra by means of a program for detecting 

local maxima. In the following subsections, the dispersion characteristics are 

presented for the linear and nonlinear regimes. 

 

4.1.2 Dispersion characteristics in the linear 

regime 

 

 In this subsection, the dispersion characteristics of the 1-D LPC calculated 
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with the FDTD method are presented and compared with an etalon. The etalon 

used is the dispersion characteristic calculated for the same 1-D LPC but with the 

plane wave expansion method [4]. In Fig. 4.4, this dispersion characteristic is 

represented by open circles and the etalon one is represented by a solid line. As 

can be seen, the FDTD method provides the accurate result for the 1-D LPC. 

 

4.1.3 Dispersion characteristics in the nonlinear 

regime 
 

 Fig. 4.5 shows the dispersion characteristics in the 1-D LPC (dashed line) 

and 1-D NLPC (solid line) calculated with the FDTD approach. In the nonlinear 

regime, the results are presented for the amplitudes of the magnetic dipole 

100=h
zμ

 arb. units and 450=h
zμ

 arb. units. The open circles correspond to the 

dispersion characteristic calculated by Huttunen and Törmä [1], who presented 

dispersion characteristics in an analogical 1-D NLPC. Therefore, their results are 

used to validate the FDTD approach. They calculated the dispersion characteristic 

with the nonlinear Fourier method and, in contrast to the geometry shown in 

Fig. 4.1, their 1-D NLPC was surrounded by the metal. Another difference is that 

the additional pump wave was used to control the switching. 

 In Fig. 4.5, the amplitudes of the dipoles are not numerically equivalent to 

the amplitudes of the control waves in Huttunen's paper. Their magnitudes were 

fitted from the numerical experiment. In this experiment, the dispersion 

characteristics were calculated for the amplitudes of the magnetic dipole 

50050 ÷=h
zμ

 arb. units with the step 10=Δh
zμ

 arb. units. As can be seen from 

Fig. 4.5, for the selected amplitudes the dispersion curves of the dispersion 
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(a) 

 
(b) 

Fig. 4.5. Nonlinear dispersion characteristics calculated for different amplitudes of the 
oscillating dipole. 

characteristics are red-shifted. This red-shift is in good agreement with [1]. 

Consequently, the conclusion can be drawn that they have the same effect on the 

dispersion characteristic. It should be noticed that because the metal does not 

surround the 1-D NLPC shown in Fig. 4.1, one does not observe the flat 

dispersion curves, which take place in the presence of the metal. 
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 The following discusses the physical origins of the red-shift of the 

dispersion curves. For the 1-D NLPC, the red-shift can be explained with 

Scalora’s argumentation [5]. Because the dielectric constant depends on the field 

intensity, the dispersion characteristic changes dynamically with the incident 

field. This can be qualified by the following argument. In the frequency domain, 

the dispersion characteristic is determined by the difference between the dielectric 

constants of the materials, which form the photonic crystal. From Eq. (3.33) this 

difference can be expressed as 

 
( ) ( )| |[ ] 2

23
1 εt,rEχ+ε=Δε −

rr .     (4.4) 

 

 The value of Δε  increases as the intensity increases if ( ) 03 >χ  and 

decreases if ( ) 03 <χ . As the magnetic dipole excites the structure, the value of Δε  

changes and the dispersion curves of the dispersion characteristic dynamically 

shift. This process is the basis for intensity-driven optical limiting and all-optical 

switching. The results show that for the positive Kerr coefficient the value of Δε  

increases and the dispersion curves dynamically red-shift. This red-shift increases 

as the intensity of the oscillating dipole increases. For example, as can be seen 

from Fig. 4.5 (a), the intensity of the dipole just slightly shifts the dispersion 

curves while the more than four-time increase in the amplitude of the dipole in 

fact significantly shifts them. The existing difference between the amplitudes (100 

arb. units and 450 arb. units) is due to need to significantly change the value of 

Δε  and, consequently, significantly induce the degree of nonlinearity. It is not yet 

studied, which rule obeys the red-shift. At least, it is a nonlinear dependence, i.e., 

any uniform linear increase in the amplitude with the step 
zμ

Δh  does not mean that 
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the dispersion curves would be red-shifted on the same value of πcωa 2/  with 

regard to the previous shift. The study of the degree of the shift’s nonlinear 

dependence on the dipole’s amplitude is one of the possible directions for future 

investigations. 

 

4.1.4 Unit cell discretization and convergence 
 

 Fig. 4.6 shows the convergence of the FDTD method used to the calculate 

dispersion characteristics. The abscissa represents the number of mesh points N  

in the unit cell in the x-direction. The ordinate corresponds to the angular 

frequency. The curves marked by ○, ◊ and ▼ correspond to the first, second and 

third dispersion curves of the dispersion characteristic of the 1-D NLPC. The 

values of the angular frequency are taken for ( ) 0.52/ =πka . The parameters are the 

same as in Fig. 4.5 (a). 

 
Fig. 4.6. Convergence of the FDTD method 
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 As can be seen, the method is convergent for 40≥N . Any decrease in this 

number will give inaccurate results. Due to the symmetry in the y-direction, the 

number of parts into which the unit cell is divided in this direction can be selected 

as 2/N . 

 

4.2 Two-dimensional nonlinear photonic crystals 
 

 In this section, the two-dimensional nonlinear photonic crystal (2-D 

NLPC) is considered. Fig. 4.7 schematically shows the unit cell used for the 

calculation of dispersion characteristics. In order to demonstrate the validity of the 

two-dimensional numerical method, a square lattice of air holes with the same 

parameters that were used in [3] is considered. These parameters are: 1=a , 

0.5a=r , 1=εa , 5.0=εb , ( ) 03 =χ a , ( ) 0.0053 =χ b , 0.01
2

1 =
πc
aω , 1.0

2
2 =
πc
aω , 0.001

2
=

πc
Δωa  and 

606000 ÷=Nt . For the two-dimensional linear photonic crystal (2-D LPC) the 

 
Fig. 4.7. Schematic of the 2-D NLPC. 
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parameters are the same, but both Kerr coefficients are zero. In the case of the TE 

polarization, the magnetic dipole is used for excitation while the electric one is 

used in the case of the TM polarization. For all calculations, 50 oscillating cycles 

are used. The unit cell is divided into 50x50 subcells. 

 

4.2.1 Dispersion characteristics in the linear regime 
 

 This subsection presents the dispersion characteristics (TM and TE 

polarizations) in the 2-D LPC calculated with the FDTD method and compared 

with etalons. The etalons used for the comparison are the dispersion 

characteristics calculated in the same 2-D LPC for the TM and TE polarizations 

but with the plane wave expansion method [4]. In Figs. 4.8 (a) and (b), the 

dispersion characteristics calculated with the proposed FDTD method are 

represented by open circles and the etalon dispersion characteristics are 

represented by solid lines. As can be seen, the FDTD method provides the 

accurate result for both TE and TM polarizations. 

 

4.2.2 Dispersion characteristics in the nonlinear regime 
 

 Figs. 4.9 (a) and (b) show the dispersion characteristics in the 2-D LPC 

(solid line) calculated with the plane wave method and in the 2-D NLPC (open 

circle) calculated with the FDTD method for TM (a) and TE (b) polarizations.  

 The solid circles in Fig. 4.9 (a) show the result for the TM polarization 

borrowed from [3] (only the first four dispersion curves were calculated there and 

the TE polarization was not considered). It can be seen that the FDTD method 
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provides the same result as in work [3]. Furthermore, it can be seen that the third 

(antisymmetric) dispersion curve in the ГX and ГM direction appears in the 

dispersion characteristic. In reference [3], Tran did not calculate it and, therefore, 

did not show it.  

 The reason why Tran did not show it can be found for example in [6]. If 

 
(a) 

 
(b) 

Fig. 4.8. The comparison between the dispersion characteristics for the TM (a) and TE (b) 
polarisations. 
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the initial field is incident along the high-symmetry axes of the first BZ (for 

example ΓX-direction), it cannot excite the modes with odd parity (antisymmetric 

modes) with respect to the axes. This is because the initial field is even 

(symmetric) with respect to the axes. In general, if the oscillating dipole is 

situated at a point that does not coincide with the high-symmetry axes of the first 

 
(a) 

 
(b) 

Fig. 4.9. The dispersion characteristics in the 2-D NLPC and 2-D LPC for the TM (a) and TE 
(b) polarisations. 

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



125 
 

BZ, one does not encounter any problem with the excitation of all modes. So it 

makes it possible to conclude that the FDTD approach with the embedded 

oscillating dipole is more thorough. 

 The amplitudes of the electric and magnetic dipole used to calculate the 

dispersion characteristics for the TM and TE polarizations were 1500=e
zμ

 arb. 

units and 225=h
zμ

 arb. units, respectively (see subsection 3.2.7). They were 

selected to obtain the same red-shift of the dispersion curves as Tran [3] did. This 

can be seen from Figs. 4.9 (a) and (b) where the dispersion curves of the 

dispersion structures are red-shifted with regard to the linear regime. The 

forbidden band gap that takes place in the dispersion characteristic for TM 

polarization is also red-shifted due to the shift of the first and the second 

dispersion curves which make it up. The dispersion characteristic for the TE 

polarization has no forbidden band gap for the range of frequencies considered.  

 

4.2.3 Field intensity estimation 
 

 In all the calculations presented so far, both the magnetic and the electric 

fields are given in arbitrary units (arb. units). To estimate the feasible intensities 

needed to induce the nonlinearity which shifts the dispersion curves, a parallel 

between the arb. units and the SI units should be drawn. From the analysis of the 

changes in the dielectric constant [7-9], it can be deduced that after 50 oscillating 

cycles the magnetic dipole with an amplitude 1=h
zμ

 arb. unit corresponds to an 

intensity of about 0.020.01− kW/cm2. After the same number of oscillating cycles, 

the electric dipole with an amplitude 1=e
zμ

 arb. unit corresponds to an intensity of 

about 0.0030.0015 − kW/cm2.  
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 There is another approach to estimate the intensity needed to induce the 

redshifting of dispersion characteristics, the electric field amplitude is obtained in 

the main body of the FDTD algorithm and taken at the angular frequency and the 

wave vector of interest. These values correspond to the working point of the 

photonic crystal device, which is modelled. The intensity is calculated as 

 

( )( )| |202
1

kω,t,rEεcε=I
rr ,     (4.5) 

 

where c  is the light velocity in vacuum. In order to draw a parallel between the 

amplitude of the electric dipole e
r  and the intensity I  one should use the 

following rule. The dipole should be situated at the centre of the computation 

domain. A test calculation is carried out in which the electric field amplitude 

induced by the dipole is obtained. The intensity induced depends on the size of the 

computational domain and, if the size is changed, the amplitude of the electric 

dipole must be increased and the test calculation must be repeated. 

 

4.3 Nonlinear waveguides for integrated optical circuits 
 

4.3.1 Line-defect nonlinear photonic crystal waveguide 
 

 Fig. 4.10 (a) shows the geometry of the line-defect nonlinear photonic 

crystal waveguide, which is made by removing a row of rods in the ΓX direction 

of the first BZ. In order to calculate the dispersion characteristics of such a 

structure, the super cell approach is used. As Fig. 24 (a) shows, the super cell 
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(grey area) takes both the defect and the surrounding rows of rods into account. 

The material parameters are as follows. The intensity-independent dielectric 

constant of the rods is 11.56=ε  (AlGaAs) and the Kerr coefficient is 
( ) 22193 /104.4 Vm=χ −⋅  (see Appendix A). The background material is air with 1=ε  

and ( ) 03 =χ . The radius of each rod is 0.18a=r . Fig. 4.10 (b) shows the dispersion 

characteristics (only the defect mode) calculated for the ΓX direction of the first 

BZ. It should be noticed that the defect mode no longer exists within the 

 
(a) 

 
(b) 

Fig. 4.10. (a) The geometry of the line-defect nonlinear photonic crystal and (b) its dispersion 
characteristic. 
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forbidden band gap for 0.42/ >πcωa  and, therefore, this range of frequencies is 

not shown. The solid line corresponds to the linear dispersion characteristic 

whereas the dot and dash lines correspond to the nonlinear dispersion 

characteristics calculated at the incident intensities of 2/19 cmGW  and 2/26 cmGW , 

respectively. These values have been calculated at 02/ =πka  by using Eq. (4.5). It 

can be seen that in the nonlinear regime the dispersion curves are red-shifted with 

regard to the linear regime. 

 

4.3.2 Coupled-cavity nonlinear photonic crystal 

waveguide 
 

 In this subsection, the dispersion characteristics of a coupled-cavity 

waveguide made in the nonlinear photonic crystal are presented. Fig. 4.11 (a) 

shows the geometry of this waveguide. Such a waveguide is based on evanescent 

coupling between modes of neighbouring resonators. As it was shown [10], in the 

linear regime the dispersion curve has a cosine form. The group velocity of this 

curve tends to be very small. 

 In order to carry out the calculation, the super cell is extended to take a 

resonator into account. The calculation usually takes less time because the 

dispersion curves are almost flat and therefore a small range of frequency is 

considered. 

 The dispersion curves calculated with the FDTD method are shown in 

Fig. 4.11 (b). The solid line corresponds to the linear dispersion characteristic 

whereas the dot and dash lines correspond to the nonlinear dispersion 

characteristics. The incident intensities are 2/9.5 cmGW  and 2/16 cmGW . These 
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values are calculated at 02/ =πka . As it can be seen, for the nonlinear regimes 

there are again red-shifts. A tiny blue-shift at 0.52/ =πka  is a numerical artefact 

due to a weak numerical noise that appears when calculating the electromagnetic 

energy density at the edge of the first BZ. 

 

 
(a) 

 
(b) 

Fig. 4.11. (a) The geometry of the coupled-cavity nonlinear photonic crystal and (b) its 
dispersion characteristic. 
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4.3.3 Red-shift dependence on the group velocity 
 

 This subsection discusses the properties of the red-shift that has been 

obtained in calculations in the previous subsections. First, it should be noticed that 

the red-shift is not uniform along the ΓX direction of the first BZ (for example, in 

Fig. 4.10 for 0=k  it is larger than for 0.42/ >πcωa ). It can be explained by a 

difference in the group velocities, which correspond to different k-points. As it 

was shown earlier [10-11], the electric field in the waveguide mode is inverse 

proportional to the group velocity and the waveguide modes that correspond to 

lower group velocity, in turn, induce stronger nonlinear effects (for example 

larger red-shift). Fig. 4.12 presents the group velocities calculated by numerical 

differentiation of the frequency manifolds ( )kω
r

. The dash line represents the group 

velocity dispersion of the defect modes of the line-defect waveguide. The group 

velocity dispersion of the coupled-cavity waveguide is marked by the solid line. 

The result obtained demonstrates that the group velocities of both defect modes 

increase as the value of the wave vector increases. On the contrary, the red-shift 

 
Fig. 4.12. Group velocity dispersion of the defect modes of the line-defect (dash line) and 

coupled-cavity (solid line) waveguides. 
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decreases as the wave vector increases. It confirms the above stated. 

Second, it is seen that with the coupled-cavity waveguide one can achieve 

group velocities less that 0.1c  ( c  denotes the light velocity), and thus a large 

decrease in the operating power. One can also use similar structures whose mode 

dispersion is specially engineered and achieve ultra small values of the group 

velocity [12-13]. Such structures are widely used in a variety of devices ranging 

from optical delay components to low-threshold lasers. 

 When developing optical devices, specific attention should be paid to the 

estimation of the intensity enhancement in the coupled-cavity waveguides. The 

intensity inside them is higher than that of the input pulse because the reduction of 

the group velocity results in the spatial compression of the pulse inside the 

cavities. In fact, the incident intensity applied to a coupled-cavity waveguide can 

be written as [14] 

 

( )( )| |202
1

Ceffgr t,rEεεv=I
rr ,      (4.6) 

 

where ( )( )| |2Ct,rE
rr  is the modulus square of the electric field inside the cavities and 

effε  is the effective dielectric constant, which is a function of the both the angular 

frequency and the intensity. Using Eq. (4.6) one obtains that the intensity inside 

the cavities is related to the incident intensity as 

 

SI=IC ⋅ ,      (4.7) 

 

where
effgr εv

c=S is the “slowing” or enhancement factor in accordance with the 
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definition given in section 2.2.2. The group velocities for the line-defect and the 

coupled-cavity waveguides taken at 0.32/ =πka  are 0.53c  and 0.11c , respectively, 

By using these values and assuming that 12.25=εeff , we obtain 0.54=S  and 

2.6=S , respectively. 

Finally, it should be noticed that a twofold increase in the red-shift is not 

necessarily associated with a twofold increase in the intensity. This can be due to 

the nonlinear behaviour of the oscillating dipole (to author's knowledge, its 

behaviour in nonlinear photonic crystals is not yet studied). However, a similar 

result was obtained with the conventional FDTD (see the following section). It 

allows to draw a conclusion that the magnitude of the red-shift is increased by the 

intensity, but this dependence is not generally linear. 

 

 
 

Fig. 4.13. The computational domain for the calculation of dispersion characteristics: (left) top 
view and (right) side section view. A part of the finite-difference (FD) grid is shown together 
with an example of random selection of nodes used for excitation. 
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4.4 Nonlinear photonic crystal slabs 
 

 In this section, a photonic crystal (PC) slab with the triangular lattice of 

circular air rods ( 1=a , 0.24a=r ) in a Kerr nonlinear material ( 12=ε' , ( ) 0.013 =χ ) 

is considered. The PC slab, with a thickness of 0.3a=d  is suspended in air. Fig. 

 
(a) 

 
(b) 

Fig. 4.14. Dispersion characteristics of the 2-D PC slab 
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27 shows the computational domain for the calculation of the dispersion 

characteristic and the BC that are used to truncate it. 

 In the z-direction, the computational domain is divided into 70 cells. In the 

directions of the periodicity, it is divided into 200 cells. With this grid resolution, 

3000 randomly chosen nodes are used for excitation. The total number of time 

steps is about 1514 22 ÷ . On a 1.6 GHz Pentium IV processor with 512 Mb RAM, 

the calculation takes about 80 hours (20 values of the wave vector are taken into 

account in each direction of the irreducible Brillouin zone). In particular, the 

FDTD calculation takes about 75 percent of this time. The rest of time is used for 

postprocessing to obtain the spectral intensities. The postprocessing includes the 

field recording, filtering and fast Fourier transform routines. 

 Figs. 4.14 (a) and (b) show the dispersion characteristics (TE-like modes) 

calculated for the incident intensities 3000=Iinc  and 10000=Iinc  arbitrary units 

(a.u.), respectively. They are compared with the dispersion characteristic in the 

linear 2-D PC slab ( ( ) 03 =χ , 1=Iinc  a.u.). The shaded region denotes the light cone. 

It can be seen that the dispersion curves of the dispersion characteristics in the 

nonlinear slab are red-shifted with regard to the linear regime and that the red-

shift increases as the incident intensity increases. The dynamical change of the 

dispersion characteristic is the basis for intensity-driven optical limiting and all-

optical switching and it is extremely important that it be understood if all-optical 

switching devices are to be modelled. 

 In the calculation, the incident intensities are given in the arbitrary units 

(a.u.). In order to make an estimation of the feasible incident intensities needed to 

induce the nonlinearity, a parallel between the a.u. and the SI units is drawn. It 

offers a problem because the incident intensity is simulated with the Dirac pulses 
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situated in the randomly chosen nodes of the FD grid. Therefore, the excitation 

strength depends on the chosen number of nodes, i.e. 1000 exciting nodes induce 

a much stronger nonlinearity than just exciting one. The solution of the problem is 

in comparing the results with those reported in the literature [8, 15]. In particular, 

the change in the dielectric constant and the incident intensity strength that has led 

to this change are confronted. It is obtained that using 3000 exciting nodes the 

intensity strength 1=Iinc  a.u. corresponds to an intensity of about 2/0.5 cmW . A 

considerable decrease in the number of exciting nodes results in difficulties in 

finding the eigenfrequencies because of low resolution in the frequency domain. 

Any increase in the number of exciting nodes does not enhance this resolution. 

 In what follows, the results of the calculations are discussed. For the 

positive Kerr coefficient the value of Δε  increases and the dispersion curves 

dynamically red-shift. This red-shift increases as the incident intensity increases. 

 
 

Fig. 4.15. Gap maps calculated for TE-like modes 
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For example, as can be seen from Fig. 4.14 (a), the applied intensity only shifts 

the dispersion curves slightly while a more than three-fold increase in the intensity 

(Fig. 4.14 (b)) shifts them significantly. 

 Fig. 29 presents the calculated gap map (TE-like modes) in the Kerr-

nonlinear 2-D PC slab shown in Fig. 4.13. The dot line represents the linear gap 

map. The dash and solid lines represent two nonlinear gap maps calculated at the 

incident intensities 3000=Iinc  a.u. and 10000=Iinc  a.u., respectively. There are no 

band gaps in the TM-like modes for any rod radii and intensities. Therefore, there 

are no complete band gaps. 

 As can be seen from Fig. 4.15, the red-shift of the band gap is maximal 

when the air rod radius is in the range 0.2a  to 0.25a . This is because the portion of 

 
 

Fig. 4.16. Two lowest eigenfrequencies calculated at the K (open circle) and M (solid circle) 
points of the first BZ vs. incident intensity. The radius is changed. The Kerr coefficient is
constant. 
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the nonlinear material decreases as the radius of the air rods increases. As a result, 

the red-shifting decreases. On the other hand, the portion of the nonlinear material 

increases as the radius of the air rods decreases. This decrease in the radius gives 

rise to evanescing band gaps. 

 In order to obtain more thorough information about the band gap, 

additional calculations are performed at the incident intensities which vary 

between 1000 and 15000 a.u. First, the value of the Kerr coefficient is fixed at 
( ) 0.013 =χ  and calculations are performed for three different radii of air rods in the 

range 0.2a  to 0.3a . Secondly, the radius of air rods is fixed at 0.24a=r  and 

calculations are carried out for three different values of the Kerr coefficient. 

 
 

Fig. 4.17. Two lowest eigenfrequencies calculated at the K (open circle) and M (solid circle) 
points of the first BZ vs. incident intensity. The Kerr coefficient is changed. The radius is 
constant. 
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 Fig. 4.16 shows the two lowest eigenfrequencies calculated at the K (open 

circle) and M (solid circle) points of the Brillouin zone for the radii (a) 0.2a=r , 

(b) 0.24a=r and (c) 0.3a=r . The Kerr coefficient is ( ) 0.013 =χ . The width of the 

band gap can be obtained using the information about the first and the second 

eigenfrequencies corresponding to the K and M points, respectively. The dot lines 

denote the edges of the bang gap in the linear 2-D PC slab. Fig. 30 confirms that 

the red-shift increases as the incident intensity increases. In addition, it shows that 

any uniform linear increase in the amplitude does not mean that the dispersion 

curves would be red-shifted on the same value of πcωa 2/  with regard to the 

previous shift. 

 Fig. 4.17 shows how the incident intensity influences the two lowest 

eigenfrequencies calculated at the same points of the Brillouine zone for the 2-D 

PC slab made of nonlinear materials with different values of the Kerr coefficient 

(a) ( ) 0.0053 =χ , (b)  ( ) 0.013 =χ and (c) ( ) 0.053 =χ . The radius is 0.24a=r . The dot 

lines denote the edges of the bang gap in the linear 2-D PC slab. It can be seen 

that if the numerical value of ( )3χ  is changed, the same red-shift is achieved by 

multiplying the incident intensity amplitude correspondingly. 

Analysing the obtained results, the following conclusion is drawn. The 

high values of the nonlinearity lead to the instability of the field within the slab. It 

can be explained by the fact that the change of the permittivity is no longer 

linearly related to the incident intensity as it was in Kerr materials at moderate 

intensities [16]. It was also shown by Nerukh [17] that the instability of the field 

caused the oscillation of the value of the red-shift. It can explain the fluctuation of 

the curves in Figs. 4.16 and 4.17.  
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4.5 Conclusions 
 

To conclude, this chapter has presented and discusses the results of dispersion 

characteristics calculation for one- and two-dimensional Kerr nonlinear photonic 

crystals. In the one-dimensional case, the calculation has clearly shown the 

physicals processes that take place when the photonic crystal switches from the 

linear working regime to the nonlinear one. Similar results have been obtained for 

two-dimensional structures; both perfect lattices and lattices with defects have 

been considered. Another practical aspect – the influence of the light confinement 

in the third direction – has been studied by calculating and discussing dispersion 

characteristics of a nonlinear photonic crystal slab. 
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Chapter 5 
 

Numerical Design and Analysis of an All-

Optical Switching Device 
 

 

 

As was shown in Chapter 1, nonlinear photonic crystals [1] have been one 

of the most promising technologies for implementing integrated optical 

components. Among these components are all-optical [2-4] switches, which are 

fundamental components for high-speed communication systems and integrated 

optical circuits. The devices proposed in these studies are based on photonic 

crystal directional couplers originally studied in [5]. Generally, such all-optical 

switches can be divided into two groups. In the first group [3, 4], the switching 

exploits the nonlinearity of the material by controlling the intensity of the input 

signal. In the second group, the nonlinearity is exploited by launching a control 

beam but maintaining the intensity of the input signal invariable [2]. The devices 

in the second group seem to be more advanced and practical because they control 

light with light and thus take greater advantage of nonlinear optical effects. 
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In this chapter, the idea of controlling light with light is evolved and an all-

optical switching device based on a nonlinear two-dimensional photonic crystal 

decoupler is proposed and discussed. Unlike photonic crystal couplers, photonic 

crystal decouplers minimize the cross-talk between two parallel photonic crystal 

waveguides [5-6]. Consequently, the all-optical switching device proposed is 

based on a concept that is in direct contrast to that of the device presented in [2]: it 

functions in the bar state when its working regime is linear and switches to the 

cross state in the nonlinear regime. In order to design the device, special care is 

taken to modify the coupling region between the two photonic crystal waveguides. 

A line of rods is introduced and the distance between them is varied. Thus, one 

obtains a slow wave structure (SWS) [7] that is used to enhance nonlinear effects 

and improve the efficiency of the device. A linear plane wave expansion (PWE) 

method is used to calculate dispersion characteristics and a nonlinear finite-

difference time-domain (FDTD) method is applied to verify the design and 

analyse the device. As will be demonstrated below, the use of a linear PWE 

method is corroborated by a simulation with the nonlinear FDTD method. 

 

5.1 Guided Mode Analysis of a Photonic Crystal 

Coupler and Decoupler 
 

5.1.1 Conditions for Waveguide Coupling and 

Decoupling 
 

Before describing the switch, the conditions required for waveguide 
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coupling and decoupling shall be discussed. Both directional couplers and 

decouplers consist of two line waveguides obtained by removing two rows of rods 

from a square lattice. The insets in Figs. 5.1 (a) and (b) schematically show the 

possible geometries of these devices. The radius of the rods is taken to be r = 0.2a, 

where a is the lattice constant. In order to operate at the wavelength λ = 1.55 μm, 

widely used in telecommunications, the lattice constant is taken to be a = 510 nm 

and the refractive index of the rods n = 3.4 (AlGaAs). If one takes AlGaAs below 

the half of the electronic band gap, its nonlinear refractive index is 

n2 = -17 1.5·10  m2/W [8]. From the dispersion characteristic shown in Fig. 5.1 (a) 

the coupling length of the coupler can be calculated as 

 
12 −

−= oddevenC kkL π ,    (5.1) 

 

where keven and kodd are, respectively, the values of the normalized wave vectors 

for the even and odd modes with respect to the propagation axis taken at a fixed 

frequency. The dispersion characteristics were calculated with the MIT MPB 

package [9] for the TM polarization (the electric field is parallel to the rods) and 

the ΓX direction of the first Brillouine zone. 

The dispersion characteristic and the schematic (see inset) of the structure 

proposed in [5] for carrying out the waveguide decoupling are shown in 

Fig. 5.1 (b). A new row of rods made from the same nonlinear material was 

introduced into the coupling region. These rods were shifted by half a lattice 

constant in the direction parallel to the waveguides. This additional row of rods 

makes the odd and even modes cross, thus fulfilling the necessary conditions for 

waveguide decoupling. It can be seen that the third mode is detached from the 
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bottom of the forbidden band gap and it now lies below these two modes. This 

mode corresponds to the waveguide formed by the additional row of rods and it is 

not excited at the frequency at which the odd and even modes intersect. This 

waveguide can be used to dynamically control the cross-talk between the line 

photonic crystal waveguides by coupling or decoupling them depending on the 

intensity level. 

 

 

 
 

Fig. 5.1. Dispersion characteristics of the (a) coupler and (b) decoupler. The insets show the
geometries and the super cells used to calculate the dispersion characteristics. 
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5.1.2 Switch Architecture 
 

When designing an all-optical switching device, one should bear in mind 

that the nonlinearities of materials such as AlGaAs are very weak, which means 

that very long devices or very high optical powers are required. This problem is 

solved using optical slow wave structures (SWS’s) [7] similar to those used in 

microwave devices and masers. The main feature of SWS’s is the considerable 

 

 
 

Fig. 5.2. (a) Dispersion characteristic and the schematic (inset) of the proposed device. (b)
Zoomed region of the dispersion characteristic showing the intersection of the odd and even
modes. 
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reduction in the group velocity and, therefore, the enhancement of the propagation 

parameters by a factor called the slowing ratio )/( effgrvcS ε=  [7, 10], where c is 

the light speed, vgr is the group velocity in the SWS and εeff is the effective 

dielectric constant. As an example of implementation, an SWS can be made by 

introducing defects into a photonic crystal [11]. 

In this study, an SWS is implemented to control the cross-talk between the 

waveguides and to design an all-optical switching device. Launching the control 

beam into the SWS induces a considerable change in the refractive index of the 

dielectric rods. It makes it possible to switch the device either to the bar or the 

cross state. In order to create an SWS, the geometry of the additional row of rods 

is modified by doubling the distance between the rods. Fig. 5.2 (a) shows the 

schematic and the dispersion characteristic of the proposed device. Fig. 5.2 (b) 

shows a zoomed region of the dispersion characteristic where the odd and even 

modes are crossed. As can be seen from Fig. 5.2 (b), the odd and even guided 

modes cross at the frequency ωa/2πc = a/λ = 0.329. At this frequency, the 

waveguides are decoupled and no wave can be propagated from one waveguide to 

another. This means that in the linear regime (i.e. when the refractive index of the 

nonlinear rods is not changed by the control beam), the device will function in the 

bar state. In the nonlinear regime, however, it is expected to function in the cross 

state. 

Fig. 5.3 (a) illustrates how the dispersion characteristic changes when the 

device functions in the nonlinear regime. The dispersion characteristic was 

calculated for the same geometry, but the refractive index of the rods that make up 

the SWS was assumed to have increased uniformly by 10 %. Such an increase 

was selected only in order to demonstrate the change in the dispersion 
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characteristic more clearly. The conclusions made under this assumption will be 

further generalized for a smaller increase in the refractive index. 

Like Fig. 5.2 (b), Fig. 5.3 (b) shows a zoomed region of the dispersion 

characteristic presented in Fig. 5.3 (a). In the nonlinear regime, there were two 

important changes in the dispersion curves due to the increase in the refractive 

index of the rods that make up the SWS. The first change is the red-shift of the 

 

 
 

Fig. 5.3. (a) Solid lines correspond to the dispersion characteristic shown in Fig 5.2 (a). Dashed 
lines indicate the dispersion characteristic of the same structure, but with the changed refractive
index of the defect rods. (b) Zoomed region of the dispersion characteristic showing the change
caused by the uniform increase in the refractive index of the defect rods.
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guided mode of the SWS. It is very important to take this shift into account when 

choosing the frequency of the control beam. The second change becomes apparent 

if one closely examines the graph around the frequency a/λ = 0.329. It can be seen 

that at this frequency the two waveguides are not decoupled when the refractive 

index changes. In addition, it can be seen that the phase shift Δk between the odd 

and even modes becomes large enough to consider the device as a directional 

coupler. Indeed, if the values of the normalized wave vector for the even and odd 

modes are measured and put into (5.1), one obtains 

Lc = -10.1353)-260.5a·(0.14  ≈ 68.5a. The device of this length will be analyzed 

numerically in the following section. 

 

 

5.2 Numerical Analysis of the All-Optical Switching 

Device 
 

 
 

Fig. 5.4. Schematic of the device analyzed by the FDTD method. 
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In order to analyze the all-optical switching device, a 2-D nonlinear FDTD 

code based on the approach described in [12] and the CPML boundary conditions 

[13] are used. Fig. 5.4 shows the schematic of the simulated device. In the x- and 

y-directions, the device consists of 72 and 12 periods, respectively. In these 

directions, the computation domain is divided into 1600 and 240 cells. Each 

period consists of 20x20 cells. Here 30000 time steps are made to completely 

simulate the propagation of the input signal from Port 1 to Port 3 or Port 4. A 

taper similar to the one presented in [14] connects the optical wire waveguide that 

is used to inject the control beam into the SWS. The distance between the end of 

the optical wire and the first rod of the SWS is 2a. The input signal is launched 

into Port 1 and it is expected to be outputted in either Port 3 or Port 4, depending 

on the working regime. 

The point sources are used for excitation. In both cases, the CW modulated 

 
 

Fig. 5.5 Time delay between the input signal (a) and the control beam (b). 

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



150 
 

Gaussian pulses with spectra centered at the frequencies a/λ = 0.329 and 

a/λ = 0.289 are launched. The choice of the first frequency is explained in the 

second section. The second frequency is for the control beam. At this frequency 

the electric field localizes within the dielectric rods. The control beam and the 

input signal are launched at different time steps because their group velocities are 

different (0.05c and 0.27c, respectively). Fig. 5.5 shows the time delay between 

the input signal and the control beam. The amplitudes of both the signals are 

normalized for the sake of simplicity. This delay is intended to synchronize the 

coupling. In the time domain, the control beam is centered at the 18000th time 

step. Due to the temporal compression that this beam experiences in the SWS, its 

width is chosen to be greater than that of the input signal, which is launched with 

a delay of 3000 time steps.  

Figs. 5.6 (a) and (c) show the distributions of the electric field of the all-

 

 

 
 

Fig. 5.6. Field distributions of the all-optical switching device simulated for the linear (a) and 
nonlinear (c) regimes. (b) Electric field distribution of the SWS. 
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optical switch. These field distributions are calculated for the linear and the 

nonlinear regimes, respectively. Fig. 5.6 (b) shows the distribution of the modulus 

square of the electric field injected into the SWS. All the fields presented in Fig. 

5.6 are outputted after 26000 time steps. 

As it can be seen from Fig. 5.6(a), the input signal is inputted in Port 1 and 

outputted in Port 4. This means that in the linear regime the waveguides are 

decoupled and the switch functions in the bar state. In Fig. 5.6(c), however, the 

input signal is launched in Port 1 but outputted in Port 3. This happened because 

the intensity of the control beam increased the refractive index of the rods that 

make up the SWS. This increase coupled the waveguides, which means that in the 

nonlinear regime the switch functions in the cross state. These results validate the 

switch architecture proposed and analyzed by means of the dispersion 

characteristic calculation in section two. The functionality demonstrated with the 

FDTD simulator shows that this switching device is different from those 

presented earlier [2-4, 21] in which the cross and the bar states are possible in the 

linear and nonlinear regimes, respectively. 

All the computations presented so far have been made under the 

assumption that the device is very short and that the intensity of the control beam 

is very high. Here the length of a feasible all-optical switching device is estimated 

and the intensity of the control beam required for this length is calculated. It is 

evident that longer lengths will result in lower intensities being required to 

perform the switching. An intensity level of ~10 GW/cm2 is frequently used in 

experimental work [15-18], and it can be further reduced if the length of the 

device is decreased. From the FDTD calculation, one can output the amplitude of 

the electric field taken at some nodes of the finite-difference grid situated within 

the rods of the SWS. The intensity of the control beam I, which is to be injected 
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into the SWS, can be calculated by considering that it is related to the intensity 

inside the SWS, as in [19] 

 

S
I

I SWS= ,      (5.2) 

 

where )/( effgr nvcS =  is the slowing factor [7] and vgr is the group velocity in the 

SWS. The intensity inside the SWS is [20] 

 

2

02
1 EncI effSWS ε= ,    (5.3) 

 

where E is the amplitude of the electric field in the SWS, ε0 is the electric 

permittivity, and neff = n + ∆n, where ∆n is the increase in the refractive index. By 

substituting (5.3) into (5.2), we derive the expression that computes the intensity 

of the control beam that should be injected into the SWS 

 

22
02

1 EnvI effgrε= ,     (5.4) 

 

At the frequency a/λ = 0.289 the group velocity is vgr = 0.05c and the 

modulus square of the electric field is |E|2 = 4·1018 V2/m2. These values give rise 

to a peak optical intensity of ~300 GW/cm2. This result can be corroborated 

numerically by taking the amplitude of the electric field at the entrance point of 

the SWS and using (5.3). This result is in good agreement with that obtained using 

(5.4). 
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In what follows, it is assumed that the coupling length increases linearly as 

the intensity decreases. This can be checked by performing a subsidiary 

simulation of the structure shown in Fig. 5.4. In this simulation, the refractive 

index of the rods of the SWS is changed by 20 % and the coupling length 

achieved is roughly half of that required at a 10 % change. Therefore, in order to 

achieve the switching with an intensity of 10 GW/cm2, one should make the 

device approximately thirty times longer (i.e. it should be about 1 mm long). This 

length is comparable with that of similar devices presented in [2, 21], which were 

also constructed on the basis of rod-type photonic crystals. The research interest 

that photonic crystals of this type have aroused can be seen in the numerous 

scientific articles published [22-24]. 

 

 

5.3 Conclusions 
 

 

 To conclude, an all-optical switching device based on a nonlinear photonic 

crystal decoupler has been presented and analyzed. In this device, the nonlinear 

effects have been enhanced with a slow wave structure embedded into the 

coupling region. The dispersion characteristics of the device have been calculated 

with the plane wave expansion method and its behaviour has been examined with 

the finite-difference time-domain method. Its smallness and low power 

consumption mean that it can be used for integrated optical circuits. 
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Chapter 6 
 

Modelling of Two-Photon Absorption in 

Nonlinear Photonic Crystal All-Optical 

Switch 
 

In Chapter 5, an all-optical switching device has been presented and 

simulated by means of the finite-difference time-domain (FDTD) method. A 

shortened model of the device has been considered and no loss has been taken into 

account. However, in order to model numerically a feasible all-optical switch, one 

should consider the two-photon absorption (TPA) because it imposes a severe 

limitation on the usefulness of all-optical devices that exploit the nonlinearity of 

materials [1]. A few papers have been published so far on studying this limitation 

in photonic crystal-based all-optical devices [2]. In this chapter, an approach of 

taking the TPA into account is proposed and applied to analyze an all-optical 

switch [3-4] by means of the FDTD method. Apart of presenting the approach, it 

is shown that although the TPA makes worse the efficiency of the device whose 

shortened model is considered, it does not impede its operation under realistic 
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conditions. 

 

6.1. Numerical details 
 

 This section is started with the formulae relating the conductivity σ  to the 

intensity I . As is well known, the conductivity term is used to consider the 

absorption of materials when solving the Maxwell’s equations. Naturally, it adds 

to the FDTD algorithm. The expressions relating the complex dielectric constant 

( ir iεεε += ) to the complex refractive index ( iknr +=ε ) at the given wavelength 

λ  [5] are: 

 

( )22
0 knrr −= εε ,     (6.1) 

( )knri 20εε = ,      (6.2) 

 

where 0ε  denotes the electric permittivity of free space ( 1210854.8 −⋅  F/m). In the 

presence of the TPA the absorption coefficient can be written as [6] 

 

I20 ααα += ,      (6.3) 

 

where 0α  and 2α  are respectively the linear and nonlinear absorption coefficients. 

For the most of materials commonly used in fabricating nonlinear photonic 

crystals (e.g. AlGaAs or Si), 00 ≈α  at the wavelengths widely used in 

telecommunication systems [7]. The imaginary part of the refractive index is 

related to the absorption coefficient as )4/( πλα=k . Following the reasoning 
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above, one can express it as 

 

π
λα

4
2 I

k = .      (6.4) 

 

After that we write the conductivity σ  as 

 

i

c ε
λ
πσ 2

=       (6.5) 

 

where c  is the light speed in free space. Knowing that 2

02
1 EncI r

v
ε=  where E

r
 is 

the electric field vector, Eqs. (6.2) and (6.4) are then used and the following 

formula for the conductivity is derived 

 
2

22
0

22

2
Enc r

r
ε

α
σ = .     (6.6) 

 

Eq. (6.6) is then used together with the nonlinear FDTD algorithm. For example, 

for the TM polarization (the electric field is parallel to the rods) the finite-

difference equations are written as 

 

( )
( ) ( )

( ) ( )
( )ji,E

tjiji
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2
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, jiEjinc
ji
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z

I
r

I += ε
α

σ .   (6.10) 

 

Similar expressions are obtained for the TE polarization. 

In Eqs. (6.7) and (6.10), the superscript I means a dependence on the 

intensity because of the optical Kerr effect and the TPA. The dielectric constant 

and the refractive index with this superscript should be updated by using one of 

the existing nonlinear FDTD approaches. The Courant stability condition is still 

valid for Eqs. (6.7)-(6.10). 

 

6.2. Results and discussion 
 

 The next step is to analyze an all-optical switch. Fig. 6.1 shows the 

schematic of the device [3, 4]. This is the same device considered in the previous 

chapter. In Fig. 6.1, all the rods of the square lattice are made from AlGaAs 

whose refractive index is nr = 3.4, the nonlinear refractive index is n2 = 1.5·10-

17 m2/W and the nonlinear absorption coefficient is 13
2 10 −=α  m/W [6]. The radius 

of the rods is taken to be r = 0.2a, where a = 510 nm is the lattice constant. In the 
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x- and y-directions, the device consists of 72 and 12 rods, respectively. In these 

directions, the computation domain is divided into 1600 and 240 cells giving the 

resolution of 20x20 cells per period. The control beam of high intensity is inputted 

into the waveguide made by doubling the distance between the rods introduced 

into the coupling region. The input signal is inputted in Port 1 and outputted to 

Port 3 or Port 4 depending on the working regime. The point sources are used for 

excitation. In both cases, the CW modulated Gaussian pulses with spectra centred 

at the frequencies a/λ = 0.329 (input signal) and a/λ = 0.289 (control beam) are 

launched. 

 It should be stressed, that all the computations presented in this papers will 

be made under the assumption that the device modelled is very short and that the 

intensity of the control beam is very high. The application of a shortened model is 

required because the length of feasible photonic-crystal all-optical switches tends 

to be longer than that of photonic-crystal Mach-Zehnder interferometers [2] and 

thus their simulation becomes more time and memory consuming. It is evident 

that longer lengths will result in lower intensities being required to perform the 

 
 

Fig. 6.1 Schematic of the analyzed device. 
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switching. Under the condition that the width of the switch is of 70 periods, the 

intensity required to perform the switching is of about 300 GW/cm2 [3-4]. This 

intensity is not used in experimental work and therefore the impact of the TPA on 

the efficiency of the device will be overestimated. However, it was found 

convenient to demonstrate the viability of the approach. 

 As reported in [3, 4], in the linear regime, when the intensity of the control 

beam is low, the device functions in the bar state because the photonic crystal 

waveguides are decoupled. Here only the results for the nonlinear regime are 

presented. Figs. 6.2 and 6.3 show the electric field distributions of the all-optical 

switch calculated respectively for 02 =α  and 13
2 10−=α  m/W. As we can see from 

Fig. 6.2 (a), the input signal is inputted in Port 1 and outputted in Port 3. This 

Fig. 6.2 Electric field distribution of the all-optical switch without the impact of the TPA: (a) input 
signal and (b) control beam. 
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happened because the intensity of the control beam increased the refractive index 

of the rods that make up the waveguide over which the control beam propagates. 

This increase coupled the photonic crystal waveguides, which means that in the 

nonlinear regime the switch functions in the cross state. Fig. 6.2 (b) shows the 

distribution of the control beam for this case. From Fig. 6.3 (a), however, it can be 

seen that the input signal is inputted in Port 1 but is not completely outputted in 

Port 3. This happened because the control beam losses some of its energy due to 

the TPA. This loss can be seen in Fig. 6.3 (b) as a decreasing of the amount of the 

electric field concentrated within the rods that make up the waveguide for the 

control beam. 

 Transmission characteristics can also help to comprehend the impact of the 

TPA on the functionality of the device. Fig. 6.4 shows the normalized 

Fig. 6.3 Electric field distribution of the all-optical switch with the impact of the TPA: (a) input 
signal and (b) control beam. 
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transmission characteristics of the waveguide for the control beam calculated for 

the linear (solid line) and nonlinear regimes. In the nonlinear regime, the dot and 

the dash lines correspond respectively to the transmission curves calculated for 

02 =α  and 13
2 10−=α  m/W. A technique for calculating the transmission 

characteristic of nonlinear photonic crystals was described in Ref. 8. The width of 

the Gaussian pulse launched into the waveguide covered a narrow band of 

wavelength at which the nonlinear absorption coefficient was assumed to be 

invariable. 

 As it can be seen from Fig. 6.4, in the nonlinear regime (in the both cases 

with and without TPA) the transmission curves are red-shifted with respect to that 

calculated for the linear regime. It can be explained by the typical shift of the 

waveguide mode that lies within the forbidden photonic band gap [3-4, 9]. In the 

presence of the TPA, however, this shift is weaker because a smaller amount of 

 
 

Fig. 6.4 Normalized transmission characteristics calculated for the linear (solid line), nonlinear 
without (dot line) and with the TPA (dash line) regimes 
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the electric field is concentrated within the rods and therefore the strength of the 

nonlinear effect is reduced. It ensues that the shift of the transmission curve can 

measure the impact of the TPA. In particular, it is of importance when choosing 

the frequency of the control beam. 

 

6.3 Conclusions 
 

To conclude, an approach of taking into account the effect of the two-

photon absorption has been presented and examined by the example of analyzing 

an all-optical switching device. A shortened model of the device has been used 

because the full-length simulation would require much computational cost. Due to 

the high intensity applied in the simulations, the impact of the two-photon 

absorption on the shortened model of the device is severe enough to impede the 

correct functionality. Therefore, the two-photon absorption should be borne in 

mind when designing practicable all-optical devices. 
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Chapter 7 
 

Summary and conclusions 
 

 

 

 The work presented in this dissertation has dealt with the following 

subjects: 

• development of the FDTD-based numerical approach for analysing 

dispersion characteristics of Kerr nonlinear photonic crystals; 

• analysis of the basic characteristics of nonlinear one- and two-

dimensional structures; 

• design of an all-optical switching device and its analysis. 

 

 Since much potential applications of nonlinear photonic crystals are based 

on the dynamically tuneable shift of the forbidden band gap, the main attention 

has been paid to the analysis of dispersion characteristics. For this purpose, a 

novel finite-difference time-domain approach has been developed.  The basics of 

the developed approach have been outlined in Chapter 3. In Chapter 4, the 

approach has been tested and used to calculate dispersion characteristics of Kerr 

nonlinear photonic crystals. First, one-dimensional structures have been 
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considered. Secondly, two-dimensional structures have been considered for which 

the same calculations as those made in the one-dimensional case have been 

performed for both TE and TM polarisations. The investigation of these structures 

has allowed to gain understanding of how the nonlinearity affects the properties of 

photonic crystals and how one can make use of it in designing optical devices. 

 Thinking of optical devices, dispersion characteristics of such two-

dimensional photonic crystal structures with defects as line-defect and coupled-

cavity waveguides have been calculated and the impact of the group velocity has 

been discussed. In addition, the discussion has been extended to consider the 

influence of the confinement effect in nonlinear photonic crystal slabs. 

 In what follows, in Chapter 5, a novel all-optical switching device based 

on a nonlinear two-dimensional photonic crystal decoupler has been presented and 

analysed. When designing this device, the information on the possibility to 

dynamically control the properties of nonlinear photonic crystal waveguides has 

been used. In particular, an enhancement of nonlinear effects has been achieved 

with a slow wave structure embedded into the coupling region. The behaviour of 

the device has been examined by means of the FDTD method. 

 Chapter 6 shows how the two-photon absorption effect can be modelled 

with the FDTD method. An example of application is provided where the all-

optical switch from Chapter 5 is modelled in presence of the two-photon 

absorption. 
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Future work 
 

 There are many possibilities for the future work. In author's opinion, one 

of the most interesting of them is the solution of the so-called inverse problem. 

Regarding to photonic crystal devices, this problem consists in the reconstruction 

or optimal design of the geometry of the photonic crystal. The inverse problem is 

closely related to the direct problem that has been solved in this dissertation. The 

solution of the direct problem consists in analysing or simulating a device with a 

previously defined geometry. In the inverse problem, the direct problem is 

included to be solved for many times within the main body of an optimization 

method. 

 The second possible direction consists in advancing as much as possible 

the FDTD source code. The design and analysis of feasible optical devices require 

to take into consideration lots of nonlinear effects such as, for example, the 

second-order nonlinearity, the Raman effect, etc. It also would be very interesting 

to mix nonlinear materials with metals or left-hand materials and thus try to 

achieve new possibilities of controlling light. 

 The third but very important thing that could be made is to perform full-

dimensional 3-D FDTD simulations. The results of these simulations could be 

directly compared with those obtained in experiments. 
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Appendix A 
 

Maxwell's equations in SI and Gaussian 

systems of units 
 

 

 

 This appendix deals with some issues connected with the definition of the 

Maxwell's equations in the SI and Gaussian systems of units. In Table A.1, the 

Maxwell’s equations are presented in the SI and Gaussian systems of units. Table 

A.2 presents the conversion factors for the first, second and third order nonlinear 

optical susceptibilities in the SI and Gaussian units. The basic SI and Gaussian 

electromagnetism units are compared in Table A.3. In the conclusive part, the 

intensity defined in the Gaussian system is related to that in the SI. 
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Table A.1. Maxwell's equation in the SI and Gaussian units.
 

Equation Gaussian system SI system 
Electromagnetic energy 
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Table A.2. Conversion factors for the first, second and third order nonlinear optical 
susceptibilities in the SI and Gaussian units. 

 
Susceptibility SI units Gaussian 

units 
Conversion factor 

(SI→Gaussian) 
χ (1) -- -- χ (1) = 12.56 χ (1) 
χ (2) m/V cm/statvolt χ (2) = 4.19·10-4 χ (2) 

χ (3) m2/V2 cm2/statvolt2 χ (3) = 1.4·10-8 χ (3) 
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Table A.3. SI and Gaussian electromagnetism units.
 
Name of quantity Symbol SI system Gaussian system 

Energy W 1 J (joule) 107 erg 

Intensity (power) P 1 W (watt 107 erg·sec-1 

Current I 1 A (ampere) 3·109 cm3/2·g1/2 sec-2 

Electric charge q 1 C (coulomb) 3·109 cm3/2·g1/2 sec-1 

Electric field 

strength 
E
r

 1 V/m (volt per 

meter) 

1/3·10-4 g1/2·cm-1/2·sec-1 

Polarization P
r

 1 C/m2 

(coulomb per 

squared meter) 

3·105 g1/2·cm-1/2·sec-1 

Electric field 

displacement 
D
r

 1 C/m2 

(coulomb per 

squared meter) 

12·105 g1/2·cm-1/2·sec-1 

Conductivity Σ 1 S/m (siemens 

per meter) 

9·109 sec-1 

Magnetic flux Φ
r

 1 Wb (weber) 108 M (maxwell) 

Magnetic flux 

density 
B
r

 1 T (tesla) 104 G (gauss) 

Magnetic field 

strength 
H
r

 1 A/m (ampere 

per meter) 

4·10-3 Oe (Oersted) 

UNIVERSITAT ROVIRA I VIRGILI 
MODELLING OF PHOTONIC COMPONENTS BASED ON ÷(3) NONLINEAR PHOTONIC CRYSTALS 
Ivan Maksymov 
ISBN:978-84-593-4072-1/DL:T-1163-2010 



177 
 

 

 In the Gaussian system of units, the intensity associated with the field  

 

( ) ccEetE ti .~
+= − ω     (A.1) 

 

is 

 

2

2
EncI

π
= ,     (A.2) 

 

where n is the refractive index, c = 3·1010 cm/sec is the speed of light in vacuum, I 

is measured in erg/cm2, and E is measured in statvolts/cm. 

 In the SI system, the intensity of the field is given by 

 

Table A.4. Intensity in the SI and Gaussian units.
 

Conventional Gaussian system SI system 

I 

 

I 

(erg/cm2·sec) 

E 

(statvolt/m) 

I 

(W/m2) 

E 

(V/m) 

1 W/cm2 107 0.0458 104 1.37·103 

1 kW/cm2 1010 1.45 107 4.34·104 

1 MW/cm2 1013 45.8 1010 1.36·106 

1 GW/cm2 1016 1.45·103 1013 4.34·107 

1 TW/cm2 1019 4.85·104 1016 1.37·109 
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where ε0 = 8.854·10-12 F/m, μ0 = 4π·10-7 H/m, and Z0 = 377Ω. I is measured in 

W/m2, and E is measured in V/m. 

Table A.4 is obtained by using these relations. As a numerical example, a 

pulsed laser of modest energy might produce a pulse energy of Q=1mJ with a 

pulse duration of T=10nsec. The peak laser power would then be of the order of 

P=Q/T=100kW. If this beam is focused to a spot size of w0=100μm, the pulse 

intensity will be I=P/πw0
2≈ 0.3GW/cm2. 
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