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“It was mid-1800s in France. The father looked at the teacher. Would he help?  
 
The teacher looked at the father. He did not want to say no. He did not want to disappoint the 
father of one of his pupils. But, how could he possibly help? What did he, a science teacher, know 
about turning beetroots into alcohol? 
 
But the father was looking so hopefully. Surely (his gaze seemed to say) you will come and look. You, 
Monseiur Pasteur, have set the boys of our city of Lille on fire with your fascinating lessons about 
the wonders of natural world.  
 
Surely you, of all people, can solve our terrible problem at the sugarbeet factory?”  
 

From: “Pasteur’s fight against microbes” 

 

 

 

We see in nature not words, 
but rather only the first letters of words, 

and if we then wish to read,  
we discover that the new so-called words 

are again merely first letters of others. 
 

Georg Christoph Lichtenberg 
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SUMMARY 

In this thesis, the use of antimicrobial photodynamic therapy as alternative to antibiotics 

has been assessed. First, the potential of phenothiazinium dyes, and specifically new 

methylene blue, to inactivate multidrug-resistant strains has been demonstrated 

against Acinetobacter baumanii in vitro and in a mouse burn model. In this regard, it 

also has been investigated the potential of aryl cationic porphycenes as 

photosensitizing drugs in APDT in vitro and in vivo, successfully inactivating different 

gram-positive and negative bacteria, and fungal cells. 

Second, the kinetics of singlet oxygen (1O2) production and fate in E. coli have been 

investigated by means of an ultrasensitive near-infrared spectrometer with 

submicrosecond time resolution. The results allowed us to gain insight into the 

mechanism of APDT, i.e., the localization of the photosensitiser (PS) in the bacteria 

and the reactivity of 1O2. On one hand, the microenvironment of the PS changes when 

the distribution of the cationic charges changes. On the other hand, depending on the 

site of production, 1O2 reacts with the nearest microenvironment or is able to escape 

out of the cells.  

Third, the ability of fluorescent proteins (GFPs), as genetically-encoded 

photosensitisers, to produce reactive oxygen species has been studied by means of 

fluorescent probes and time-resolved techniques. Thus, for the first time, the quantum 

yield of 1O2 production of some of the studied proteins has been calculated showing a 

value similar to that of the synthetic GFP chromophore. 

Finally, the plasmonic effect of silver island films on 1O2 has been investigated using 

the near-infrared spectrometer, demonstrating a maximum enhancement of the 1O2 

luminescence signal  at 1270 nm ca. 30-fold in some cases.  





RESUMEN 

En esta tesis se ha evaluado el uso la terapia fotodinámica antimicrobiana (APDT) 

como alternativa a los antibióticos. Inicialmente, se ha demostrado, in vitro y en un 

modelo de quemaduras en ratón, el potencial de las fenotiazinas, y más 

concretamente del nuevo azul de metileno, para inactivar una bacteria resistente a 

antibióticos como Acinetobacter baumanii. Además, también se ha investigado el 

potencial de los porficenos aril catiónicos como agentes fotosensibilizadores para 

APDT in vitro e in vivo, inactivando exitosamente distintos tipos de bacterias gram 

positivas y negativas, así como hongos.  

 

Por otro lado, se ha estudiado las cinéticas de formación y decaimiento de oxígeno 

singlete (1O2) en E. coli mediante un espectrofotómetro ultrasensible en el infrarrojo 

cercano con resolución temporal por debajo del microsegundo. Los resultados nos 

permiten profundizar en el mecanismo de la APDT, es decir, en la localización del 

fotosensibilizador (PS) en la bacteria y la reactividad del 1O2. Por un lado, el entorno 

del PS cambia cuando la distribución de las cargas catiónicas varía. Por otro lado, en 

función del lugar de formación, el 1O2 reacciona con el entorno cercano o es capaz de 

escapar fuera de las células.  

 

En tercer lugar, también se ha estudiado, mediante sondas fluorescentes y técnicas 

con resolución temporal, la habilidad de una proteína fluorescente para producir 

especies reactivas de oxígeno, actuando pues como agentes fotosensibilizadores 

genéticamente codificados. Así, se ha calculado por primera vez el rendimiento 

cuántico de formación de 1O2 mostrando un valor similar al del cromóforo sintético de 

las GFP.  

Finalmente, se ha investigado mediante el espectrofotómetro en el infrarojo cercano el 

efecto plasmon producido por films de islas de plata sobre 1O2, observando un 

incremento máximo de la luminiscencia de 1O2 a 1270 nm alrededor de 30 veces en 

algunos casos. 

 





RESUM 

En aquesta tèsi s’ha avaluat l’ús de la teràpia fotodinàmica antimicrobiana (APDT) com 

a alternativa als antibiòtics. Inicialment, s’ha demostrat in vitro i en un model de 

cremades en ratolins el potencial de les fenotiazines, i més concretament del nou blau 

de metilè, per inactivar un bacteri resistent a antibiòtics com Acinetobacter baumanii. A 

més, també s’ha investigat el potencial dels porficens aril catiònics com a agents 

fotosensibilitzadors per a APDT in vitro i in vivo, inactivant exitosament diferents tipus 

de bacteris gram positius i negatius, així com fongs.  

 

Per altra banda, s’han estudiat les cinètiques de formació i decaïment d’oxigen singlet 

(1O2) en E. coli mitjançant un espectrofotòmetre ultrasensible a l’infraroig proper amb 

resolució temporal per sota del microsegon. Els resultats ens permeten profunditzar en 

el mecanisme de l’APDT, és a dir, en la localització del fotosensibilitzador (PS) en el 

bacteri i la reactivitat de l’1O2. Per un costat, l’entorn del PS canvia quan la distribució 

de les càrregues catiòniques varia. Per l’altre, en funció del lloc de formació, l’1O2 

reacciona amb l’entorn proper o és capaç d’escapar fora de les cèl·lules.  

 

En tercer lloc, també s’ha estudiat, mitjançant sondes fluorescents i tècniques amb 

resolució temporal, l’habilitat d’una proteïna fluorescent per produir espècies reactives 

d’oxigen, actuant com a agents fotosensibilitzadors genèticament codificats. Així, s’ha 

calculat per primera vegada el rendiment quàntic de formació d’1O2 obtenint un valor 

similar al del cromòfor sintètic de les GFPs.  

Finalment, s’ha investigat mitjançant l’espectrofotòmetre en l’infraroig proper l’efecte 

plasmó produït per films d’illes de plata sobre l’1O2, demostrant un increment màxim en 

la luminescència d’1O2 a 1270 nm al voltant de 30 vegades en alguns casos. 
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Introduction 

 

 

A general introduction to the subject of this thesis and the aim of this 

work is given in this chapter. The history and the basis of antimicrobial 

photodynamic therapy are reviewed and new perspectives for this 

therapy are also presented.  
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1.1. THE “ANTIBIOTIC” ERA 

Since the discovery of penicillin by Fleming in 1928, many different families of 

antibiotics have been approved in the EU and in the US (Fig 1), being the cell wall and 

the protein synthetic processes the most important targets.  

 

 
Fig. 1: Discovery of new classes of antibiotics. Color refers to the principal target. Orange: Inhibition of 

folic acid synthesis. Blue: Inhibition of cell wall synthesis. Maroon: inhibition of protein synthesis. Green: 

inhibition of DNA or RNA synthesis. Modified from [1]. 

 

Antibiotics have become the “panacea” of medicine and are being used to treat even 

the most common and trivial types of infections, many of these non-bacterial in nature. 

However, during the last decades, the number of clinical drug-resistant isolates –such 

as methicillin-resistant Staphylococcus aureus (MRSA), cephalosporin-resistant 

Escherichia coli, carbapenem-resistant Pseudomonas aeruginosa, etc. has 

significantly increased and grown to be a global pandemic and unavoidable problem in 

hospitals (Fig. 2) [2-4].  

 

Even Alexander Fleming, in 1945, warned that the inappropriate use of penicillin could 

lead to the selection of resistant “mutant forms” of S. aureus [5]. Transferable genetic 

elements such as plasmids encoding resistance enzymes and efflux pumps that can be 

transferred between species, the inappropriate prescription of antibiotics and the failure 

of some patients to complete their treatment regimen, the widespread use of antibiotics 

in livestock feedstuff; all of them are causes by which the most resistant strain is 

selected [3].  
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Fig. 2: Global distribution of relative risk of an emerging infectious disease event caused by drug-resistant 

pathogens. Relative risks mapped on a linear scale from green (lower values) to red (higher values). From 

[6]. 

 

As a result, infections by a drug or, in some cases a pandrug-resistant bacteria strains 

that are resistant to all available antibiotics result in extra health care costs and 

productivity losses of at least 1.5 billion euros in the EU and 5 billion dollars in the US 

per year. What is even more important is that, each year, about 25000 patients in the 

EU and 90000 patients in the US die from an infection caused by these bacterial 

strains. 

 

The problem of increased resistance is not only restricted to bacteria. Some fungal 

strains such as Candida albicans and Kodamaea ohmeri have already developed 

resistance to antifungal agents such as amphotericin B, flucytosine and fluconazole [7-

10]. As regards protozoan parasites, it has been clinically demonstrated that 

uncompleted treatments of leishmaniasis with meglumine antimoniate and sodium 

stibogluconate induces selection of the drug-resistant strains increasing 10 to 17 fold 

the 50% inhibitory concentration for L. mexicana and L. braziliensis isolates. 

 

Therefore, an important research effort is being made to find alternative antimicrobial 

therapies to which these “superbugs” cannot easily develop resistance. Examples of 

these relatively novel therapies are bacteriophages [11], naturally occurring or synthetic 

antimicrobial peptides [12,13], and photodynamic therapy (PDT) [14].  
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1.2. ANTIMICROBIAL PHOTODYNAMIC THERAPY 

Among all the alternative treatments to antimicrobial agents, antimicrobial 

photodynamic therapy (APDT) seems to be a promising one. Indeed, the first recorded 

observations using photodynamic processes to inactivate microbial cells were made by 

Raab et al. more than 100 years ago [15]. They observed that low concentrations of 

acridine orange were able to kill Paramecium caudatum in the presence of sunlight, 

whereas in darkness these microorganisms survived.  

 

Two main advantages have to be highlighted about PDT. On one hand, it has been 

demonstrated that drug-resistant microorganisms are as susceptible to APDT as their 

native counterparts [16], or even more susceptible [17]. On the other hand, it has not 

been possible to artificially induce resistance to APDT yet [18-20], presumably because 

of the short-lived species related to the photodynamic effect and the non-specific 

nature of the photooxidative damage that leads to cell death. 

 

1.2.1. Molecular basis of photodynamic therapy 

Photodynamic therapy (PDT) involves the administration of a photoactive dye that is 

able to produce reactive oxygen species (ROS) upon irradiation with light. Thus, when 

the dye absorbs a photon, an electron is promoted from its ground state to an 

electronically-excited state that returns the energy through three main pathways (Fig. 

3) [21]: 

 
a) Non-radiative processes. The excited state species release the excess of energy 

as heat by three different processes: 

 Vibrational relaxation (VR): the excited molecule decreases its vibrational 

energy within a single electronic state. 

 Internal conversion (IC): transition between two electronic states with the same 

spin multiplicity, generally followed by vibrational relaxation. 

 Intersystem crossing (ISC): transition between two electronic states with 

different spin multiplicity, generally followed by vibrational relaxation. 

 
b) Radiative processes. The excited state species return the excess of energy as 

electromagnetic radiation. Divided in two kinds of processes: 

 Fluorescence (F): spontaneous emission of radiation upon transition between 

two electronic states with the same spin multiplicity. 
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 Phosphorescence (P): spontaneous emission of radiation upon transition 

between two electronic states with different spin multiplicity. 

 

 
Fig. 3: Jablonski diagram depicting the possible photophysical processes. 

 

c) Other deactivation processes. The excited state molecules can undergo 

photochemical or photophysical reactions or photosensitisation.  

Photosensitisation is the process by which a photochemical or photophysical alteration 

occurs in one molecular entity (A) as a result of initial absorption of radiation by another 

entity called photosensitiser (PS) [22]. It can schematically be represented as follows:  

 

PS + h → PS* 

Photochemical: PS* + A → PS' + B 

Photophysical:  PS* + A → PS + A* 

 
When molecular oxygen is involved in photosensitisation, such process is termed 

“photodynamic action” and two different mechanisms are possible: 

 
 Type I mechanism: the PS in its singlet or triplet excited state reacts with a 

substrate via (a) electron transfer or (b) hydrogen abstraction to yield free 

radicals, which will readily react with oxygen to form peroxides radicals, and in 

turn starting a radical chain reaction. 

 
       PS + h → PS* 

a)   PS* + R → PS- + R+ 

PS- + 3O2 → PS + O2
- 

R + O2
- → R- + 3O2 

b)   PS* + RH → PSH + R  

R + 3O2 → ROO 

ROO + RH→ ROOH + R



Introduction 

 
 

 27

 

 Type II mechanism: in this process, the sensitiser in its excited state (commonly 

in its triplet state) transfers its energy to ground-state molecular oxygen, giving 

rise to the PS in its ground state and singlet oxygen (1O2), a very reactive 

oxygen species towards electron rich substrates such as alquenes, aromatic 

rings, phenols, amines and thioethers [23]. 

 

PS + h → PS*  

PS* + 3O2 → PS + 1O2  

 
 

In general, in biological media, the photodynamic effect occurs simultaneously by either 

the two mechanisms (Fig. 4). The relative importance of one mechanism over the other 

depends, among other factors, on the substrate and oxygen concentrations and on the 

distance between the PS and the substrate. However, both mechanisms can produce 

the photooxidation of relevant biomolecules, such as aminoacids, nucleic bases and 

lipids, which leads to damage on proteins, DNA and membranes, i.e., leading to cell 

death.  

 

 
Fig. 4: Mechanisms of ROS generation by combination of light, photosensitiser (PS) and ground-state 

oxygen. Ground-state photosensitiser (S0) is irradiated with visible light generating excited-state 

photosensitiser (S1). S1 can relax back to excited-triplet PS state (T1), generating radicals (Type I 

mechanism) and / or singlet oxygen (Type II mechanism).   
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1.2.2. Advantages of antimicrobial photodynamic therapy 

One of the greatest hits of photodynamic therapy is the double selectivity obtained by 

targeting (1) the PS, derived from its high affinity for microbial cells, and (2) the light, 

implying that only the infected area is irradiated and, consequently, treated. However, 

many other advantages can be found compared to antimicrobial drugs [24,25]: 

 

 Practical advantages: APDT is safe for human tissue as the PS typically shows 

a higher affinity against microbial cells. The results are instantaneous while 

antibiotics take several days to act. It can be used to treat damaged or dead 

tissue, e.g. burns.  

 

 Effective: The therapeutic window of APDT is broader than other antimicrobial 

therapies, even against pathogenic biofilms. Because of the high reactivity of 

ROS, secreted virulence factors can be destroyed as these are commonly 

proteins, enzymes or aminoacid residues. Besides, APDT cannot easily induce 

the development of microbial resistance.  

 

1.2.3. Possible applications of antimicrobial photodynamic therapy  

As previously said, one of the main advantages of APDT versus other antimicrobial 

agents is the broader therapeutic window. Hence, it can be applied to many different 

infectious diseases as presented in Fig. 5. 

 
Fig. 5: Candidate infectious diseases for PDT. A wide variety of localized infections could be clinically 

treated by antimicrobial PDT. From [24]. 

 



Introduction 

 
 

 29

Thus, there are many different possible applications of APDT against a wide range of 

pathogenic microorganisms, some of them in clinical trials. Herein, a brief summary 

with examples of possible applications for different microbial cells is presented: 

  

 Antibacterial photodynamic therapy: Dental infections are the largest growth area of 

clinical antibacterial PDT. Indeed, three different companies in North America, 

Austria and UK use APDT with phenothiazinium dyes and red light to treat 

periodontitis, endodontics and caries. This field will be more extensively treated in 

the following section.  

 Antifungal photodynamic therapy: Teichert et al. [26] demonstrated in a mouse 

model that methylene blue mediated PDT can efficiently inactivate C. albicans upon 

irradiation with red light in order to treat mucocutaneous oropharyngeal candidiasis. 

Also, APDT was used clinically by Calzavara-Pinton et al. [27] to treat interdigital 

mycosis of the feet by Candida or Tricophyton species by means of an -

aminolevulinic acid (ALA) preparation and red light.  

 Antiprotozoan photodynamic therapy: The most important application in this field is 

the use of APDT to treat leishmaniasis. PDT was shown to be more effective than 

tropical paromomycin and methylbenzethonium chloride in the therapy of 

cutaneous leishmaniasis [28-30]. 

 Antiviral photodynamic therapy: Although virus are not microorganisms because 

they are not considered living cells, it has been demonstrated the efficiency of 

APDT against them [31]. Diseases such as herpesvirus infections and 

papillomatosis are susceptible to be treated with APDT. However, the most general 

application in this field is blood sterilization. Mohr et al. [32,33] reported the 

inactivation of hepatitis B and C viruses, human immunodeficiency virus, parvovirus 

B19 and west nile virus with phenothiazinium dyes in blood products or plasma.  

 

 

1.3. ANTIBACTERIAL PHOTODYNAMIC THERAPY 

As mentioned above, the first recorded observations of photodynamic processes in 

medicine refer to the inactivation of microorganisms [15]. However, the potential of 

PDT against diseases of microbial origin was not exploited for several decades, largely 

for two reasons: (a) the discovery of antibiotics; (b) early discouraging results that 

some well known pathogens, especially gram-negative bacteria, were poorly 

responsive to PDT with the most traditional photosensitising agents.  
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1.3.1. Gram positive and negative bacteria 

 

The domain Bacteria is divided in two groups based on the cell’s reaction to a staining 

method called Gram stain. The differences between gram-positive and gram negative 

bacteria relate to differences in their cell wall structure and chemical composition.  

Thin sections of gram-positive bacteria reveal thick walls, almost uniformly dense 

layers (Fig. 6; left). In contrast, the cell walls of gram-negative bacteria are much more 

complex, because in addition to a peptidoglycan layer they have another layer, called 

an outer membrane. The structural differences between the cell walls of both kinds of 

bacteria reflect differences in biochemical composition.  

 

 

 

Fig. 6: Schematic representation of the cell wall and cytoplasmic membrane structure in gram positive 

(left) and negative bacteria (right).  

 

Peptidoglycan is the major constituent of the cell wall of gram-positive bacteria. This is 

made up by chains of the amino sugar backbone glycan (N-acetylglucosamine and N-

acetylmuranic acid linked) that are held together by peptide bridges. It makes up about 

40% to 80% of the cell wall weight depending on the species and has a tensile strength 

similar to that of reinforced concrete. Teichoic and teichuronic acids are also 

constituents of gram-positive cell walls. Teichoic acids are polyol phosphate polymers, 
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such as polyglycerol phosphate and polyribitol phosphate. Sugars (e.g., glucose and 

galactose), amino sugars (e.g., glucosamine), and the amino acid D-alanine are found 

in some of these compounds. Teichuronic acids are polymers of two or more repeating 

subunits, one of which is always a uronic acid (such as glucuronic acid), or the uronic 

acid of an amino sugar (such as aminoglucuronic acid). Both teichoic and teichuronic 

acids are linked covalently to peptidoglycan. 

 

In gram-negative bacteria (Fig. 6; right), peptidoglycan is present, but it makes up a 

much smaller portion of the cell wall composition. In contrast to gram-positive bacteria, 

which have several layers of peptidoglycan encasing the cell, gram-negative have only 

a single or a few macromolecular sheets. Indeed, the peptidoglycan makes up about 

5% by weight of the gram-negative cell wall, but it still plays an important role as a rigid 

barrier outside the cell membrane.  

The outer membrane of gram-negative cells seems similar to the cell membrane: there 

is a predominance of lipids and proteins, but there are polysaccharides that extend into 

the aqueous environment as well. As in the cell membrane, the outer membrane has 

two leaflets, each of them consisting of lipid molecules with their hydrophilic moieties 

facing away from the membrane toward the aqueous environment, and their 

hydrophobic portions facing inward and holding the two leaflets together. Lipid A 

attaches to the outer leaflet of the membrane and is bound covalently to a 

polysaccharide forming a complex. This complex lipid-polysaccharide is called 

lipopolysaccharide (LPS). LPS is a high-molecular-weight, strongly negatively charged 

molecule. The outer membrane of gram-negative bacteria contains less proteins than 

the cell membrane. The most prevalent protein is a small polypeptide that contains a 

lipid moiety. This lipoprotein is joined covalently to the diaminoacid of the peptidoplycan 

forming a complex called peptidoglycan-lipoprotein. Therefore, the lipoprotein is the 

bridge that joins the outer membrane to the cell wall peptidoglycan layer. Other 

important proteins are those that serve as transport proteins (porins), which allows the 

passage of molecules through the outer membrane. 

 

There are two main features of outer membrane structure that influence its functioning 

as a selective permeability barrier. The first is given by porins, which form water-filled 

channels that work as general or substrate-selective conduits for free diffusion of 

certain hydrophilic molecules, such as sugars and amino acids, as well as inorganic 

ions. The second is the high net negative charge on LPS molecules, which provides a 

polyanionic external surface that is partly neutralised by divalent cations, such as Mg2+ 

and Ca2+, and can be considered to bridge adjacent LPS molecules [34]. 
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The space between the cell wall and the cell membrane is called the periplasm. This is 

important to the cell because, although small, a great enzymatic activity takes place 

inside. 

 

1.3.2. Photosensitisers 

A good photosensitising agent with potentially optimal properties for APDT (Fig. 7) 

should be endowed with specific features in addition to the expected photophysical 

characteristics [35,36]. Such features include the possibility to identify a therapeutic 

window which allows (a) the extensive killing of the disease-inducing microbial cells 

with minimal damage to the host tissue in the area of infection, and (b) the prevention 

of the regrowth of the pathogens after the treatment [25].  

 

 

Fig. 7: Examples of PS used in antimicrobial photodynamic therapy. 

 

As seen above, gram-positive and gram-negative bacteria differ in the composition of 

their cell wall. This difference gives rise to a different response to antimicrobial agents 

depending on the kind of bacteria. Gram-positive bacteria can easily take up molecules 

such as neutral or anionic PS used for PDT and can be easily photoinactivated by them 
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[37]. In the case of gram-negative bacteria, photoinactivation is not so easy since they 

are relatively impermeable to neutral or anionic drugs due to their highly negatively 

charged surface. Notwithstanding, it was proved that many of these PS were effective 

against gram-negative bacteria if they were supplied with an agent able to disrupt the 

cell wall of the bacterium sufficiently to allow the access of the drug that can then 

cause lethal damage to the cell when it is exposed to light. Thus, disrupting agents 

such as polymixin B nonapeptide [38,39], oligomers of lysine [38,39] and 

ethylenediaminetetraacetic acid (EDTA) [40] were used. 

 

However, it is desirable for clinical applications to avoid the coadministration of a 

disrupting agent, so an alternative strategy was preferred. A work carried out 

simultaneously by Merchat et al. [41], Minnock et al. [42], and Wilson et al. [43] showed 

that PS positively charged at physiological pH were active against both gram-positive 

and gram-negative bacteria, and consequently avoided the coadministration of the 

disrupting agent. Thus, cationic phenothiazines, porphyrins, phthalocyanines and even 

fullerenes containing quaternary groups have been synthesized [44-48].  

 

Despite the potential and the wide range of these cationic PSs, some other strategies 

may overcome the lower affinity of typical PDT photosensitisers against gram-negative 

bacteria. 

 

Another different strategy was performed by attaching covalently non-cationic PS to 

higher structures which provide the high affinity against bacterial cells, e.g. polymers 

with basic amino groups, such as polylysine or polyethylenimine [18,49-51], or even 

nanoparticles [52] or biomolecules [53]. The covalent attachment would preclude the 

coadministration of a second species, but keeping the disrupting effect produced by 

these molecules intact. The main advantages of these conjugates are that (1) they 

increase the specificity for microbial over human cells [54], and (2) PSs that were not 

accessible due to their low solubility in water can be used as the solubility is provided 

by the higher structure [52]. However, the targeting against specific regions in microbial 

cell, i.e., the increase in the specificity and resulting decrease in the number of target 

sites in the microbial cell, could potentially promote development of resistance against 

APDT [54].  

 

Active-targeted photosensitisers can increase the selectivity for bacterial cells, but the 

ideal selectivity would be realized if a photosensitiser is efficiently and exclusively 

confined in the pathogenic cells. In relation to that, it is worthy to be note that very 
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recently, the first genetically-encoded PS has been reported, namely a phototoxic 

homolog of the green fluorescence protein (GFP) designed to produce ROS upon 

irradiation with green light [55]. Further studies carried out by Serebrovskaya et al. [56] 

concluded that 1O2 was not involved in the cytotoxic effect of a conjugate between an 

antibody and that GFP-homolog. Since then, many other GFP-analogues have been 

synthesized and studied. Jimenez-Banzo et al. [57] reported the singlet oxygen 

quantum yield () value of the GFP-chromophore in its anionic form, namely = 

0.004 ± 0.001. In addition, for the first time, the time-resolved 1O2 phosphorescence at 

1270 nm upon photosensitisation by a GFP-mutant was reported, demonstrating a 

clear shielding effect from oxygen of the GFP -can. Although in its initial steps of 

research, genetically-encoded PS would open new perspectives for photodynamic 

therapy. 

 

1.3.3. Selectivity 

An important observation about cationic antimicrobial PSs concerns their selectivity for 

microbial cells compared to host mammalian cells [58]. It is thought that cationic 

molecules are only slowly taken up by host cells by the process of endocytosis, while 

their uptake into bacteria is relatively rapid. If illumination is performed at short intervals 

after PS application (minutes) then PDT damage to host tissue will be minimized. 

There have been relatively few in vitro studies demonstrating selective killing of 

microbes under conditions in which mammalian cells were unharmed. Soukos et al. 

showed that Streptococcus sanguis was killed by toluidine blue and red light using 

parameters that spared human gingival keratinocytes and fibroblasts [59]. Zeina et al. 

used human keratinocytes that resisted killing by methylene blue-mediated PDT under 

conditions that killed several cutaneous microbial species [60]. Soncin et al. reported 

that certain cationic Zn-phthalocyanines, combined with a short incubation time (5 min) 

and relatively low light fluences, killed both wild-type and methicillin-resistant S. aureus, 

while human fibroblasts and keratinocytes were unharmed [61]. Maisch et al. reported, 

with porphyrin-based PSs, the effective killing of different MRSA strains via reactive 

oxygen species without harming fibroblasts or keratinocytes cells at the same 

concentrations [46].  

 

1.3.4. Mechanisms of bacterial inactivation 

Notwithstanding the vast progress made over the last few years, the mechanistic 

details of how APDT affects microbial cells are not fully understood.  
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As regards the uptake pathways of anionic and cationic PS, George et al. [62] reported 

that the uptake of anionic PSs by bacterial cells may be mediated through a 

combination of electrostatic charge interaction and by protein transporters, while the 

uptake of cationic PSs is mediated by electrostatic interactions and “self promoted” 

uptake pathways. 

 

In relation to the mechanism of photodynamic inactivation, Jori et al. [25] proposed two 

alternative pathways of cationic PS for gram-positive and gram-negative bacteria (Fig. 

8). 

 
Fig. 8: Scheme illustrating the essential steps involved in the process of photosensitiser binding to 

microbial cells and subsequent photoinactivation. Pathway I is operative for gram-positive bacteria; 

pathway II is operative for gram-negative bacteria. From [25]. 

 

An important goal in the investigation of photosensitisation processes in antimicrobial 

PDT is elucidation of the mechanism of action of a selected PS to determine whether a 

specific reaction proceeds via a type I or a type II pathway.  

On one hand, some mechanistic studies involved type I mechanisms (via electron 

transfer and radicals) in APDT of bacteria. Martin and Logsdon investigated a set of 

thiazine, xanthene, acridine and phenazine dyes and their phototoxicity towards E. coli 

[63], concluding that oxygen radicals were primarily responsible for the oxygen-
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dependent toxicity of the dyes examined. Strong et al. compared two structurally 

different PS immunoconjugates targeted against P. aeruginosa that had different 

photophysical properties [64]. One had a lower singlet oxygen quantum yield, yet was 

more efficient in APDT, this was explained by hydroxyl radical generation due to the 

chemical structure of the conjugate. 

On the other hand, other mechanistic studies have implicated type II mechanisms (via 

energy transfer and 1O2). Maisch et al. [46] studied the inactivation mechanism of 

several cationic porphyrins against different S. aureus and E. coli strains, concluding 

that the killing was mediated predominantly by 1O2. Phototoxicity efficacy was not 

affected when mannitol was used as a type I scavenger, but was modified when either 

1,4-diazabicyclo-(2,2,2)octane (DABCO) or sodium azide was used as type II 

scavenger. A similar conclusion was reported by Ergaieg et al. using Enterococcus 

hirae and E. coli as gram-positive and negative bacteria, respectively. Their conclusion 

was that bacterial inactivation by TMPyP photosensitisation predominantly involved 

type II reactions mediated by the formation of 1O2, but participation of other active 

oxygen species could not however be neglected [65]. 

 

As regards the cytotoxic damage, two basic mechanisms have been proposed to 

explain the lethal effect caused to bacteria after APDT treatment [37]:  

 

a) Damage to DNA. DNA modification, breaks in both single- and double-stranded 

DNA and photomodification or disappearance of the plasmid supercoiled 

fraction of the cytoplasm have been detected in both kinds of bacteria upon PDI 

using structurally different types of sensitisers [66-69]. Guanine residues were 

found to be the most easily oxidized [70]. 

b) Damage to the cytoplasmic membrane followed by a leakage of cellular 

contents or inactivation of membrane transport systems and enzymes [67,69].  

 

These mechanisms achieving cellular damage necessary for the success of APDT lead 

to cell lysis and, consequently, to its death.  
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1.4. OBJECTIVES 

The main goal of this thesis is to study the details of antimicrobial photodynamic 

therapy by gaining insight into three different questions: (1) does it work?, (2) how does 

it work?, and (3) what can we do to improve it?. This is divided in the following specific 

objectives: 

 

 Assess the potential of phenotiazinium dyes and a new tricationic porphycene 

against multidrug-resistant microbial cells in vitro and in vivo, on infected mouse 

burns. 

 

 Mechanistic study of the production and fate of 1O2 photosensitised by model 

porphyrin, phthalocyanine and phenothiazinium photosensitisers of the different 

families used in APDT in a gram-negative bacterium such as Escherichia coli. 

 

 Investigate the ability of a red fluorescent protein to produce ROS and its 

potential as a genetically-encoded photosensitiser for CALI application. 

 
 Investigate the plasmonic effect of silver island films on the 1O2 luminescence 

produced by photosensitisers and its implications in 1O2-detection and APDT. 
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General Techniques and Methods 

 

 

This chapter describes the common photophysical techniques and 

specific methods used for the determination of photophysical properties 

in the light-induced reaction processes involved in this work. Specific 

details will be described in the experimental section of each chapter. 
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2.1. STEADY-STATE OPTICAL TECHNIQUES 

 
2.1.1. Absorption and Transmittance. 

Spectra were recorded in a Varian Cary 4E spectrophotometer periodically calibrated 

with a holmiun oxide filter. Transmittance measurements were recorded in a Varian 

Cary 4E spectrophotometer equipped with a 110 mm diameter integrating sphere and a 

high performance R928 photomultiplier tube. Integrating spheres have the ability to 

collect most reflected or transmitted radiation from turbid, translucent or opaque 

samples, removing any directional preferences and presenting an integrated signal to 

the detector. 

 

Method 

 Photosensitisers absorption in cell suspensions 

Suspensions of the same amount of cells with and without photosensitiser were used in 

all cases as sample and baseline, respectively.  

 

2.1.2. Emission. 

Emission and excitation spectra were recorded in a Jobin-Ybon Spex Fluoromax-2 

spectrofluorometer, ensuring that the absorbance of the sample was less than 0.05 in 

the overlap region between absorption and emission to avoid inner filter effects in the 

measurement of fluorescence. 

 

Methods 

 Fluorescence quantum yield (F) 

The fluorescence quantum yield is defined as the number of photons emitted by the 

sample per absorbed photon. The fluorescence intensity integrated over the entire 

emission spectrum was measured as a function of the sample absorption factor (1-

10-A) for the sample and a suitable reference (i.e. with a similar emission spectrum 

as the sample), excited at the same wavelength. The quantum yields (F) were 

determined using Eq. 1. 
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where Fi is the integrated fluorescence vs the absorption factor and ni is the 

refractive index of the solvent used in each case. 

 

 Quantum yield of O2(a
1g) formation () using fluorescent probes 

The quantum yield of singlet oxygen photosensitisation is defined as the number of 

photosensitized 1O2 molecules per absorbed photon. The quantum yield of singlet 

oxygen production () was determined by comparison of the fluorescence intensity 

of a 1O2 fluorescent probe (FP) upon light exposure of optically-matched solutions 

of the sample and reference photosensitisers under the same conditions, namely 

with the same amount of probe and in the same solvent mixture, upon irradiation at 

the same wavelength. Specifically, the fluorescence of the probe was measured at 

different irradiation times for both sample and reference and the slopes of the 

corresponding intensity vs irradiation time plots were determined. The  values 

were then calculated with Eq. 2: 

 

sample

ref

Slope
(sample) · (ref ) (2)

Slope     
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2.2. TIME-RESOLVED OPTICAL TECHNIQUES 

The time-resolved techniques used in this work involve the observation, through 

absorption or emission, of excited states or other reaction intermediates generated 

upon pulsed-laser irradiation of a sample. The formation of a large concentration of 

transient species upon absorption of light produces a change in the intensity of an 

analyzing beam (in the case of absorption spectroscopy) or in the intensity that 

emerges from the sample (in the case of emission spectroscopy), which the system is 

able to monitor with time resolution. 

 
2.2.1 UV-VIS nanosecond laser flash photolysis  

Transient absorption experiments in the UV-VIS region were carried out using a home-

built nanosecond laser flash photolysis system. In this instrument, the 2nd harmonic 

(532 nm) and the 3rd harmonic (355 nm) of a Continuum Surelite I-10 Nd:YAG laser 

was directed into the sample to irradiate the sample (10 Hz, 5 ns pulsewidth, 1-10 mJ 

per pulse). Changes in the sample absorbance were detected using a Hamamatsu 

R928 photomultiplier to monitor the intensity variations of an analyzing beam produced 

by a 75 W short arc Xe lamp (USHIO) and spectral discrimination was obtained using a 

PTI 101 monochromator. The signal was fed to a Lecroy Wavesurfer 454 oscilloscope 

for digitizing and averaging (typically 10 shots) and finally transferred by an GPIB 

interface (National Instruments) to a PC computer for data storage and analysis. A Si 

photodiode (Laser-Optotronic BPX 65) capturing a reflection of the laser beam was 

used to trigger the oscilloscope. The energy of the laser pulse was varied by neutral 

density filters and measured with a pyroelectric energy meter (RJP 735 and RJP) from 

Laser Precisition Corp. The system was controlled by the home-developed LKS 

sofware (LabWindows, National Instruments).  

A schematic representation of our setup is depicted in Fig. 1: 

 
Fig. 1: Experimental setup for nanosecond UV-VIS laser flash photolysis. 
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2.2.2. Time-Correlated Single Photon Counting (TCSPC) 

Time-Correlated Single Photon Counting is the most commonly used technique for 

singlet state lifetime determination. It is based on the detection of single photons of a 

periodical light signal, the measurement of the detection times of the individual photons 

and the reconstruction of the waveform from the individual time measurements. 

TCSPC technique makes use of the fact that for low-level, high-repetition-rate pulses, 

the produced light intensity is so low that the probability of detecting one photon in one 

signal period is less than one. Therefore, is not necessary to provide for the possibility 

of detecting several photons in one signal period. It is sufficient to record the photons, 

measure their time in the signal period, and build up a histogram of the photon times. 

The principle is shown in Fig. 2: 

 

 

Fig. 2: Schematic representation of the TCSPC technique. From [2]. 

 

In most cases, the lifetime of the sample to be measured is on the same time scale as 

the response function of the system. In these cases, the actual decay may be obtained 

by deconvolution of the measured signal using an instrumental response function (IRF) 

generated from a light scattering sample. 

TCSPC experiments were carried out using a PicoQuant Fluotime 200 fluorescence 

lifetime system. Excitation was achieved by means of picosecond diode lasers or LEDs 

(PicoQuant, 10 MHz repetition rate) and the counting frequency was always below 1 %. 

Singlet state lifetimes were determined using the PicoQuant FluoFit data analysis 

software.  
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Methods 

 Singlet state decay kinetics (S) 

A solution of the sample in the proper solvent was prepared ensuring that the 

absorbance of the sample was less than 0.05 in the overlap region between absorption 

and emission to avoid inner filter effects. The deconvolution of the TCSPC 

fluorescence signal with the instrument response function (IRF) signal –reference 

sample (ludox in water) that directs a small fraction of the excitation light into the 

detection path– yields the singlet lifetime. 

 

2.2.3. Time-resolved NIR phosphorescence detection (TRPD) 

This technique is commonly used for directly and specifically monitoring the formation 

and decay of singlet oxygen (1O2 or O2(a
1g)), the measurement of its lifetime () and 

its quantum yield of formation () [3]. It is based on the detection of the weak O2(a
1g) 

phosphorescence, centred at 1270 nm.  

 

The singlet oxygen spectrophotometer used is based on the Picoquant Fluotime 200 

fluorescence lifetime system which has been subjected to the following modifications: 

(1) A diode-pumped solid-state Q-switched Nd:YAG laser (CryLas, FTQ355-QS) is 

used for excitation. This laser works at 10 kHz repetition rate, producing ca. 1 ns 

pulsewidth laser pulses at either 355 nm (5 mW, 0.5 J per pulse) or at 532 nm (12 

mW, 1.2 J per pulse). (2) The original single-grating monochromator was replaced by 

a dual grating one, which allows extending its dispersion range from 200 to 2000 nm. A 

flip mirror is used to direct the dispersed light beam either to the visible or to near-IR 

detector ports. (3) A TE-cooled Hamamatsu near-IR photomultiplier (model H9170-45), 

sensitive from 950 to 1400 nm, is used to detect the weak O2(a
1g) phosphorescence. 

(4) The output of the PMT is sent to a mutichannel scaler (Becker and Hickl, model 

MSA300 or Picoquant, NanoHarp 250MSC). In order to block NIR background 

radiation from the excitation source, either a KG-5 filter (CVI Laser Corporation, 

Alburquerque, USA) or a 1064 nm rugate notch filter (Edmund Optics, UK) is placed at 

the exit port of the laser. Likewise, a cold mirror (Edmund Scientific, Barrington, USA) 

is placed at the entry port of the dual grating monocromator to prevent any visible 

radiation form reaching the detector. Data was processed using PicoQuant’s FluoFit 

4.0 software.  
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Methods 

 Photosensitiser’s triplet lifetime (T) and O2(a
1g)  lifetime () 

Singlet oxygen lifetime was obtained by fitting Eq. 3 to the signal detected at 1270 nm,  

 

( ) (0) · · (3)
t t

S t S e e 
 

 
 



 
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where S(0) is the zero-time amplitude of the signal and  and  are the actual 

lifetimes of the photosensitiser triplet state and singlet oxygen, respectively. 

Photosensitiser’s triplet lifetime was determined, if possible, by fitting Eq. 4 to the signal 

obtained at a wavelength where the triplet state of the photosensitiser emits,  

/3
1[ PS]                                          (4)Tt

t K e    

where K1 reflects the concentration of triplet excited-states of the photosensitiser and 

 is the actual lifetime of the photosensitiser triplet state. 

 
 Quantum yield of O2(a

1g) formation () 

The pre-exponential factor S(0), which is proportional to , was determined by 

fitting Eq. 3 to the time-resolved phosphorescence intensity at 1270 nm. The 

quantum yields of 1O2 production were determined from the comparison of S(0) to 

that produced by an optically matched reference in the same solvent and at the 

same excitation wavelength and intensity (Eq. 5) [3]. 

 

(0)
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(0)
sample

ref

S
sample ref

S     

 
 Lifetime quenching. 

Stern-Volmer analysis was used to calculate reaction rate constants (k
q
) from time-

resolved data, by means of Eq. 5:  

 

 
0

1 1
                              (5)qk Q

 
   

 

where  and  are the lifetimes of the reacting species in the presence and 

absence of a quencher Q, respectively. 
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2.2.4. Bioluminescence imaging 

The bioluminescence imaging system (Hamamatsu Photonics KK, Bridgewater, NJ) has 

been described elsewhere in detail [1]. Briefly, an ICCD photon-counting camera (Model 

C2400-30H; Hamamatsu Photonics, Bridgewater, NJ) was used. The camera was 

mounted in a light-tight specimen chamber, fitted with a light-emitting diode, a set-up that 

allowed for a background gray-scale image of the entire mouse to be captured. By 

accumulating many images containing binary photon information (an integration time of 

2 minutes was used), a pseudo-color luminescence image was generated. 

Superimposition of this image onto the gray-scale background image yielded information 

on the location and intensity in terms of photon number. The camera was also 

connected to a computer system through an image processor (Argus-50, Hamamatsu 

Photonics). Argus-50 control program (Hamamatsu Photonics) was used to acquire 

images and to process the image data collected.  

A gray-scale background image was made, followed by a photon count of the same 

region. This entire photon count was quantified as relative luminescence units (RLUs) 

and was displayed in a false color scale ranging from pink (most intense) to blue (least 

intense).  
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2.3. MICROBIOLOGICAL TECHNIQUES 

2.3.1. Microbial strains 

The microbial strains used for the photodynamic inactivation experiments in Chapters 3 

and 4 were Staphylococcus aureus 8325-4 (Novick, 1967), methicilin-resistant 

Staphylococcus aureus Xen 31 (Caliper Life Sciences) and Enterococcus faecalis 

ATCC 29212 as Gram-positive bacteria; Acinetobacter baumanii ATCC 51393, A. 

baumannii ATCC BAA 747 transduced with the lux CDABE operon [4], Escherichia coli 

ATCC 53868, Proteus mirabilis ATCC 51393 and Pseudomonas aeruginosa ATCC 

19660 as Gram-negative bacteria; and Candida albicans ATCC 18804 and Candida 

krusei (ATCC 6258) as yeasts.  

E. coli CECT101 was used for the steady-state and the time-resolved optical 

measurements of Chapter 5 and 6.  

 

2.3.2. Culture conditions 

Bacterial cells were aerobically grown overnight at 37ºC in brain-heart infusion (BHI) or 

luria-bertani (LB) broth. Bacteria were then subcultivated in new medium at 37ºC in an 

orbital shaking incubator to an attenuance value of 0.5 at 600 nm or 0.35 at 660 nm, 

corresponding to ca. 108 colony forming unit (CFU)·mL-1. The cell suspensions were 

then centrifuged (5 min, 3000 rpm) and resuspended with sterile phosphate buffered 

saline (PBS) at pH 7.4 at the same concentration. 

Bacterial luminescent strains were stored and grown in the presence of the appropriate 

amount of antibiotics in the media, namely 250 µg/mL of carbenicillin for A. baumanii 

and 200 μg/mL of kanamycin for MRSA. 

C. albicans was grown overnight at 30ºC in Yeast Peptone Dextrose (YPD) broth, 

centrifuged (5 min, 3500 rpm) and resuspended with sterile PBS at pH 7.4 up to ca. 107 

CFU·mL-1 for phototoxicity experiments. C. krusei was grown overnight at 35ºC in 

Sabouraud broth (Merck), and then subcultivated in new Sabouraud medium at 35ºC in 

an orbital shaking incubator at 130 rpm to an Abs600 = 0.7, corresponding to ca. 107 

CFU/mL. The suspensions were then centrifuged (5 min, 3500 rpm) and resuspended 

with sterile PBS at pH 7.4 at the same concentration for phototoxicity experiments. 
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2.3.3. Photosensitiser binding and quantification 

Despite the words binding and uptake are commonly used interchangeably, binding of 

a photosensitiser is more generic terminology involving the PS located anywhere 

outside and/or inside the cell, while uptake implies the internalisation of the molecule.   

The amount of photosensitiser bound to bacterial cells was determined by fluorescence 

spectroscopy using standard procedures [5,6].  

 

Method 

Bacterial suspensions were incubated in the dark at room temperature with different 

concentrations of PS and contact times (5 min to 20 hours) under gentle stirring. 

Afterwards, the cells were washed by centrifugation (10 min, 3000 rpm, 3 times) to 

remove any excess of PS. After the last centrifugation, a solution of 1% sodium 

dodecyl sulphate (SDS) in 0.1 M NaOH was added to the pellets and shaken for a 

minimum of 24 h. The extent of bound PS was then assessed by comparison of the 

fluorescence of this solution to that of standard solutions of known concentration under 

the same conditions. The fluorescence intensity values obtained for each sample were 

normalized by the total number of cells in the suspension to correct for variations 

between samples. Each experiment was repeated three times. 

 

 

2.3.4. Spectroscopic measurements in cell suspensions 

Spectroscopic measurements were recorded on the systems previously described. Cell 

suspension samples were prepared using the following method. 

 
Method 

Bacterial suspensions were incubated in the dark with the desired amount of PS for a 

given period of time. The cells were then washed three times with PBS and 

resuspended in PBS or deuterated (D)-PBS to a final concentration of ~ 5 x 108 

CFU·mL-1.  

For time-resolved phosphorescence measurements, 3 mL of the bacterial suspensions 

were irradiated with 3 million laser pulses at 532 nm. The suspensions were gently 

stirred during the measurements. 
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2.3.5. Spheroplasts formation 

A spheroplast is a bacterial cell from which the cell wall has been almost completely 

removed. The samples were prepared by means of the following protocol described by 

Segalla et al. [7]. 

 

Method 

Spheroplasts were obtained by resuspending E. coli cells in Tris-HCl 0.05 M buffer at 

pH = 6.8 containing 0.01 M EDTA, 0.3 M sucrose and lysozyme (1 mg mL-1) under 

stirring. After 1 h incubation at 37 ºC, tubes were centrifuged twice at 2000 rpm for 10 

min. The pellet was then resuspended in PBS solution at pH 7.4.  

PS-loaded spheroplasts were obtained by first incubating whole E. coli cells with PS 

and then subjecting them to the above procedure.  

 

2.3.6. Photodynamic inactivation experiments in vitro  

The light source used in the inactivation experiments was selected in order to provide 

the highest possible overlay between the irradiation range and the absorption spectrum 

of the PSs. 

 

Method 

Cell suspensions in PBS were incubated in the dark at room temperature for 30 min 

with the appropriated amount of PS in PBS. Centrifugation (3 min, 12000 rpm) of 1 mL 

aliquots was used to remove the excess of PS that was not taken up by the bacteria 

when experiments required it.  

Then, 1 mL aliquots of the bacterial suspensions were placed in 24-well plates. The 

wells were illuminated from the top of the plates by use of the selected light, an optical 

fiber, and a lens (to form a 2-cm diameter spot).  

At the time points when the requisite fluences had been delivered, 200 L aliquots 

were taken from each well (the suspensions were thoroughly mixed before sampling to 

avoid the settlement of bacteria).  

Light alone controls without PS were performed for all experimental conditions in order 

to rule out any inactivation effect due to the light.  

 

For determination of CFUs, the aliquots were serially diluted, streaked on nutrient agar 

plates and incubated in the dark for 18 h at 37ºC (bacterial cells and C. krusei) or for 36 

h at 30ºC (C. albicans). Experiments were carried out in triplicate for each condition. 
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2.3.7. In vivo burn infection model 

Adult female BALB/c mice (Charles River Laboratories, Wilmington, MA), 6-8 week old 

and weighing 17-21 g, were used in the in vivo studies. The animals were housed one 

per cage and maintained on a 12-hour light/dark cycle with access to food and water 

ad libitum. All animal procedures were approved by the Subcommittee on Research 

Animal Care (IACUC) of Massachusetts General Hospital and met the guidelines of 

National Institutes of Health. 

 

Method 

Burn infections were performed by means of the protocol used by Dai et al. fully 

described elsewhere (Fig. 3) [4]. Briefly, mice were anesthetized by intraperitoneal (IP) 

injections of ketamine/xylazine cocktail. Then, burns were created by applying two pre-

heated (95°C) brass blocks (Small Parts, Inc., Miami, FL) to the opposing sides of an 

elevated skin-fold on the dorsal surface of mice [8] for 10 seconds (non-lethal, full-

thickness, third-degree burns). The combined brass block area was 15 mm  10 mm 

giving an area of 150 mm2, corresponding to a 4% of total body surface area (TBSA) 

[9]. Immediately after the creation of burns the mice were resuscitated with IP injections 

of 0.5 mL sterile saline (Phoenix Scientific Inc, St. Joseph, MO) to prevent dehydration. 

Then, a bacterial suspension containing 108 cells in 50 μL sterile PBS was inoculated 

onto the surface of each burn with a pipette tip and then was smeared onto the burn 

surface with an inoculating loop. The mice were imaged with the luminescence camera 

immediately after applying the bacteria to ensure that the bacterial inoculum applied to 

each burn was consistent.  

 
Fig. 3: Schematic depiction of the steps involved in performing antimicrobial PDT on a burn infection in 

mice. From [10]. 
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2.3.8. Photodynamic inactivation experiments in vivo 

The in vivo inactivation experiments were performed using the burn infection model 

described above (Fig. 3).  

 

Method 

Thirty minutes after application of the bacteria to the burns, the PS solution was applied 

to the PDT treated burns and also to dark controls. Thirty minutes after the addition, to 

allow the PS to bind to and/or penetrate the bacteria, the mice were again imaged 

using luminescence camera to quantify any dark toxicity to the bacteria. Mice were 

then illuminated with light delivered by a non-coherent light source. The light fluence 

rate was routinely measured using a LaserMateTM power meter (Coherent, Portland, 

OR), and the fluence rate used was 100 mW·cm-2. Mice were given total light doses in 

aliquots with luminescence imaging taking place after each aliquot of light. Immediately 

after PDT, the mice were resuscitated with a second IP injection of 0.5 mL sterile saline 

to prevent dehydration. 

 

2.3.9. Mouse follow-up 

The regrowth of microbial infections after PDT treatment was controlled by means of 

the following procedure. 

 

Method 

Once a day, the mice were anesthetized by IP injection of the ketamine/xylazine 

cocktail prior to imaging and then placed on an adjustable stage in the specimen 

chamber, and the wounds were positioned directly under the camera. The bacterial 

luminescence from the mouse burns was recorded daily until the bioluminescence 

disappeared or the animals were determined to be moribund and euthanized.  
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Photodynamic inactivation of Acinetobacter baumannii 

using phenothiazinium dyes 

 

Phenothiazinium dyes have been reported to be effective photosensitisers 

inactivating a wide range of microorganisms in vitro after illumination with 

red light. However, their application in vivo has not extensively been 

explored. This study evaluates the bactericidal activity of phenothiazinium 

dyes against multidrug-resistant Acinetobacter baumanii both in vitro and in 

vivo. 
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3.1. INTRODUCTION 

The use of photodynamic therapy (PDT) [1] to treat localized infections generally 

involves the topical application of a photosensitiser (PS) into the infected tissue, 

followed by illumination with visible or near-infrared light [2,3]. In the presence of 

oxygen, light induces the formation of reactive oxygen species by energy or electron 

transfer from the PS excited state, that are able to oxidize biomolecules and, thereby, 

kill cells [4]. The selectivity of the PS for bacteria over host tissue can be obtained by 

the appropriate chemical design [5-7] to ensure that the molecule will preferentially bind 

to bacterial cells rather than mammalian cells [8]. Three different classes of compounds 

have been used as photosensitisers to inactivate bacteria: 1) phenothiazinium salts [9] 

2) tetrapyrroles such as phthalocyanines [10] and porphyrins with cationic charges [11], 

and 3) conjugates between tetrapyrroles with cationic polymers [12-14]. 

Phenothiazinium-based PS have been widely used against a range of microorganisms, 

demonstrating the efficacy of PDT to inactivate resistant forms of bacteria which are 

not easily killed by antibiotics such as methicillin [15] or vancomycin [16]. The 

substitution pattern of the phenothiazinium core has been varied to introduce important 

changes in the photochemical properties, like maximal absorption wavelength [15], or 

the lipophilicity [17], which affects the PS uptake and the location where the 

photodamage will be produced.  

 

Phoenix et al. [18] observed that, for inactivation of a gram-negative species, 

Escherichia coli, dimethylmethylene blue (DMMB) was the most phototoxic 

phenothiazinium dye, while Wainwright et al. demonstrated that the inactivation of 

Pseudomonas aeruginosa was most efficient with toluidine blue O (TBO) that had the 

lowest minimal lethal concentration [7]. Indeed, it has been observed that even for 

different strains of the same species, the minimum lethal concentration of a dye may 

vary [15] indicating that minor changes in the bacterial wall could produce differences 

in the affinity of a dye for bacterial cells.  

However, neither in vitro nor in vivo studies have been done using phenothiazinium-

based PS for inactivating Acinetobacter baumannii, a gram-negative pathogenic 

bacterium that has recently attracted much attention due to its remarkable acquisition 

of multidrug resistance [19,20]. Indeed, a pandrug resistant A. baumannii strain with a 

tremendous ability to develop synergistic resistance mechanisms and, subsequently, 

very persistent chronic infections, has been found [21-23]. Thus, it is interesting to test 

the efficacy of PDT and phenothiazines against such new and hazardous pathogen. 
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Fig. 1: Chemical structures and absorption spectra of the four phenothiazinium dyes: methylene blue (MB; 

green), toluidine blue O (TBO; orange), dimethylmethylene blue (DMMB; red) and new methylene blue N 

(NMB; blue). Counter-ions are not shown. 

 

In this study we first performed in vitro studies using four different phenothiazinium  

dyes (Fig. 1) against a multidrug-resistant bioluminescent strain of A. baumannii in 

order to select the most phototoxic dye. Subsequently, we applied this selected PS and 

performed an in vivo experiment using mouse burns infected with bioluminescent A. 

baumannii. 
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3.2. EXPERIMENTAL SECTION 

 

Photosensitisers and light sources  

Toluidine blue O (TBO), methylene blue (MB), new methylene blue N (in the form of 

zinc chloride double salt; NMB), and 1,9-dimethylmethylene blue chloride (DMMB) 

were purchased from Sigma (St. Louis, MO, USA). These PS were dissolved in distilled 

water to give stock solutions with a dye concentration of 1 mM. All PS stock solutions 

were stored at 4°C in the dark for no more than 2 weeks, and immediately before 

experiments, were diluted in PBS without Ca2+ or Mg2+. Red light at 635±15 nm or 

652±15 nm was delivered using a noncoherent light source with interchangeable fiber 

bundles (LumaCare, Newport Beach, CA). The range given corresponds to the full 

width at half maximum.  

 

Statistical methods 

To compare the dose response curves obtained using bioluminescence assay with 

colony formation assay, the slopes between neighboring points were calculated and 

compared for statistical significance using a Student’s t test. 

The time courses of bacterial luminescence of the burn, were calculated by the use of 

numerical integration [24]. Differences in the areas under the curves between all the 

groups were compared for statistical significance by 1-factor ANOVA. P values of < 

0.05 were considered significant. 
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3.3. RESULTS 

In vitro experiments 

Suspensions of a bioluminescent A. baumanii strain (108 CFU·mL-1) in PBS were 

incubated in the dark at room temperature for 30 min with 0.1-20 M of the PS in PBS. 

Centrifugation (3 min, 12000 rpm) was used to remove the excess of PS that was not 

taken up by the bacteria when experiments required it.  

The cells were illuminated by means of either 635 nm light for TBO and NMB or 652 

nm light for MB and DMMB. Under these conditions, all PSs absorbed comparable 

amounts of incident photons, thereby allowing the assessment of their relative 

efficiencies. Fluences ranged from 0 to 30 J·cm-2, using a fluence rate of 125 mW·cm-2. 

Fig. 2A shows the dye-concentration responses of A. baumannii survival with respects 

to all the phenothiazinium dyes. As observed, after 22.5 J·cm-2 irradiation with a dye 

concentration of only 2 M, NMB was able to reduce the bacterial viability up to 6-log. 

DMMB, MB and TBO could only achieve a reduction of A. baumannii between 2 and 3-

log under the same conditions.  

 

Dye-concentration response after removing the excess of PS was also performed (Fig. 

2B), observing that higher dye concentrations were needed to induce the same 

reduction to the bacterial viability compared with the concentrations needed without the 

removal of the excess PS. In that case, both NMB and DMMB were able to completely 

eliminate A. baumannii using a 10 M concentration and 22.5 J·cm-2 light irradiation. 

However, neither 20 M of MB nor TBO could produce such an effect, inducing only a 

3-log reduction of bacterial viability in both cases.  

 

Light-dose response curves were performed as well using a 10 M concentration of the 

dyes (Fig. 2C). Both NMB and DMMB reduced 6-log of A. baumannii after 15 J·cm-2 

irradiation without removing the PS, while 30 J·cm-2 irradiation was needed for MB and 

TBO to produce the same effect. After removing the PS, only NMB and DMMB were 

able to inactivate 6-log of bacteria after 30 and 22.5 J·cm-2 light had been delivered, 

respectively. Only 3-log reduction was obtained for MB and TBO after 30 J·cm-2 in the 

1-wash curves. 
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Fig. 2: In vitro photodynamic inactivation of A. baumannii with methylene blue (MB; squares), toluidine 

blue (TBO; triangles), dimethylmethylene blue (DMMB; diamonds) and new methylene blue N (NMB; 

circles), removing the PS from the solution (open symbols) and without removing it (filled symbols). The 

irradiation wavelength was 635 nm for TBO and NMB, and 652 nm for MB and DMMB. (A, B) Dye-dose 

response curves upon irradiation with 22.5 J·cm-2. (C) Energy-dose response with a dye-dose of 10 M. 

Error bars are SEM and in some cases are smaller than the diameter of the symbols. 

 

Correlation between bacterial luminescence and CFU 

Light-dose response curves were performed using a 0.5 M and 1 M concentration of 

NMB against A. baumanii. The survival fraction of bacteria was measured both by a 

colony formation assay and with the bioluminescence emitted by those bacteria.  

Bacterial luminescence was measured on aliquots of bacterial suspensions by means 

of a luminescence plate reader. As observed in Fig. 3, the trend with 0.5 M of NMB 

was the same for both bioluminescence and CFU·mL-1 providing a p value of 0.65. 
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Fig. 3: Light-dose response of A. baumannii with 0.5 µM (circles) and 1 µM (squares) of new methylene 

blue N followed using a colony formation assay (solid line) and bacterial bioluminescence (dotted line).  

 

With 1 M concentration of NMB, similar survival fractions where observed using both 

methods after 7.5 and 15 J·cm-2 irradiation (p = 0.97), while clear differences were 

observed after 22.5 and 30 J·cm-2 irradiation (p = 0.02).  

 

In vivo PDT treatment 

Thirty minutes after application of the bacteria to the burns, NMB solution was applied. 

Three different aliquots of the PS were added. Initially, 50 μL of the PS solution was 

added to the burn and then two more additional aliquots of 20 L were added during 

PDT after 84 and 240 J·cm-2 had been delivered. Mice were illuminated with 635±15 

nm light to total light doses of up to 360 J·cm-2. 

 

Fig. 4A shows the successive bioluminescence images obtained from three 

representative mouse burns infected with A. baumannii. The PDT burn was treated 

with 800 M of NMB and 635 nm light up to 360 J·cm-2, the dark control with the same 

amount of NMB and no light, while the light control received 635 nm light up to 360 

J·cm-2.  

 

The light-dose responses of normalized bioluminescence of the different mouse groups 

are shown in Fig. 4B. PDT induced a reduction of ca. 3.2-logs of the bioluminescence 

while only 0.8 and 0.4-logs reduction were observed for the dark controls and the light 

controls, respectively.  
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Fig. 4: (A) Dose response of bacterial luminescence from burns infected with luminescent A. baumannii 

and treated with 800M new methylene blue N, NMB, and light (PDT), with 800 M of NMB only (DC), and 

with light (LC) only. (B) Light-dose response curves of the normalized bioluminescence for mice treated 

with photodynamic therapy (red), mice treated only with NMB (brown), mice treated only with light (yellow). 

(C) Time course of normalized bacterial luminescence values and (D) areas under the curves of the 

infected burns in mice treated with photodynamic therapy (red; PDT), mice treated only with NMB (brown; 

DC), mice treated only with light (yellow; LC) and non treated mice (green; NTC). 

 

Fig. 4C shows the time courses of the mean bacterial luminescence from day 0 to day 

15 for the PDT treated group, the dark control group, the light control group and a non-

treated control group where neither light nor PS was applied. Six mice were used for 

each group. As shown in the graph, all the controls exhibited a similar time course of 

bioluminescence signal from day 2 until day 15, with a decrease of the signal at day 1 

after the infection followed by an increase at day 2 observed in the PS alone dark 

control.  

The areas under the bioluminescence-time curves of each mouse group are 

represented in Fig. 4D. Analysis using an ANOVA 1-factor test showed statistically 

significant differences among the areas under the curves of all tested groups. (p < 

0.001). Student’s t tests were performed to compare the areas under the curves 

between each control and the PDT-treated group, obtaining statistically significant 

differences between all the controls and the PDT-treated group (p < 0.008).  
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3.4. DISCUSSION 

Phenothiazinium dyes have been commonly reported as lethal photosensitisers for 

both gram-negative and gram-positive bacteria [18]. Four different phenothiazinium 

dyes were tested in this study in order to select the most phototoxic dye against A. 

baumannii for the in vivo experiments. NMB was found to be the most active with and 

without removing the excess of PS from the solution, showing in the last case very 

similar results to those observed with DMMB. The results can be rationalized by the 

different lipophilicity of the dyes. It is known that the logP values for MB and TBO are 

similar (-0.1 and -0.21, respectively) and lower than the ones for NMB and DMMB (1.2 

and 1.01, respectively) [25]. Thus, MB and TBO should be more easily removed upon 

centrifugation than NMB and DMMB, as observed in our experiments.  

 

It is clear that the photobactericidal effect of the dyes is affected by the initial interaction 

between dyes and bacteria and, subsequently, by the location of the dye and its 

strength of binding to the bacterial cell surface. Tegos and Hamblin [26] demonstrated 

that phenothiazinium dyes are substrates of microbial multidrug resistance pumps 

(MDRs). They used different wild-type, MDR-deficient and MDR-overexpressing 

bacterial strains, observing a higher inactivation for the MDR-deficient mutants and a 

higher resistance for the MDR-overexpressing mutants, relative to the wild-type strains. 

Since in our experiments we used a wild-type multidrug-resistant strain of A. baumanii, 

that will certainly possess MDRs, pumping out the PS from the outer structure of the 

gram-negative bacteria might contribute to the results obtained.  

In addition, it has previously been shown that many phenothiazinium dyes, such as MB 

[27], TBO [27,28] and DMMB [29], interact with the bacterial lipopolysaccharides (LPS) 

that compose most of the outer structure of gram-negative bacteria. If DMMB and NMB 

interact with the LPS of the bacterial cell surface leading to either a stronger binding or 

to a deeper location within the bacterial cell wall than MB and TBO, this would lead 

either to a higher amount of ROS formed or to a higher proximity of the ROS formed to 

the cell wall critical targets. Consequently, this would explain the higher 

photobactericidal effect after removing the excess of PS observed for DMMB and NMB 

than the killing observed for MB and TBO at the same concentrations. 

 

According to the results for both the dye-concentration and light-dose response curves 

in vitro, we decided to perform the in vivo experiments with NMB as PS. As the 

detection method of the survival fraction in vivo was the bioluminescence exhibited by 

A. baumanii, correlation between a colony formation assay and bioluminescence had to 
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be demonstrated. It has been previously shown that A. baumannii CFUs quantified 

using serial dilutions of bacterial suspensions correlate linearly with the 

bioluminescence emitted by those bacteria [30]. In the present study, we confirmed that 

the bacterial bioluminescence reduction, measured in real time during PDT, correlated 

with the corresponding CFU reduction measured after serial dilution and colony 

formation as no statistical significant difference between both detection methods was 

observed with a 0.5 M. However, the difference observed with 1 M concentration of 

NMB can be rationalized as a result of the lower sensitivity exhibited by the 

bioluminescence detection method, i.e., because the dynamic range for the reduction 

in bioluminescence signal is ca. 3-log reduction.  

These results allowed us to use the bioluminescence signal exhibited by A. baumannii 

for the infected burn in the in vivo experiments. However, they demonstrate that higher 

light doses must be given to the infection, even after complete elimination of the 

bioluminescence signal, to assure the inactivation of the remaining bacteria during the 

PDT treatment in order to avoid a regrowth of the infection.  

 

As for the in vivo experiments, it is interesting that there is no report on the use of NMB 

as PS in an in vivo infection model. Regarding other phenothiazinium dyes, these have 

not been extensively used in vivo to treat infections. TBO has been used in rats by Qin 

et al. [31] and Kömerik et al. [32] in order to treat periodontitis by reducing the total 

bacterial flora or inactivating inoculated Porphyromonas gingivalis. Wong et al. [33] 

used TBO as well in order to treat wounds infected with Vibrio vulnificus in a mouse 

model, obtaining a 50% survival fraction of the PDT treated mice. MB has also been 

used in some in vivo experiments. Teichert et al. [34] used PDT with MB to treat oral 

candidiasis in an immunosuppressed murine model. Also Zolfaghari et al. [35] used MB 

as PS against methicillin-resistant Staphylococcus aureus in two different wound 

models obtaining a 1.4 and a 1.15-log reduction in the number of viable bacteria 

recovered from the wounds. 

In our experiments with A. baumanii, a complete elimination of the bioluminescence 

signal was observed after a light dose of 180 J·cm-2 in the presence of NMB. After that, 

in order to inactivate the remaining bacteria that were not detectable by 

bioluminescence imaging and, subsequently, avoid the recurrence of infection, an 

additional 200 J·cm-2 of light was given to each mouse. It is known that 

phenothiazinium dyes can be photobleached after long exposures to red light, and the 

photobleaching can be magnified in the presence of either biomolecules [36] or 

bacteria [37]. In order to replace the PS destroyed by photobleaching, two additional 

aliquots of 20 L of NMB were subsequently added during the irradiation process -after 
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180 J·cm-2 and after 300 J·cm-2. These results are consistent with those obtained by 

Dai et al. using a conjugate between polyethylenimine and chlorin(e6) as PS and the 

same mouse model [30], where a 3.6-log reduction of the bacterial luminescence was 

observed. 

 

Additionally, a key feature of a successful antimicrobial PS is that the damage inflicted 

to the bacterial cells in vivo is so extensive that regrowth of the microbial pathogens is 

effectively prevented [38]. In our case, the mean bioluminescence of the PDT treated 

mice was 1.5 to 2 logs lower than the mean bioluminescence of all three control groups 

at every time point over the two week period, demonstrating the absence of a 

significant regrowth of the infection, and therefore the effectiveness of the PDT 

treatment. As regards the decrease in the signal at day 1 for the dark control, this was 

presumably due to significant dark toxicity of the NMB to the bacteria. 
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3.5. CONCLUSIONS 

 

We have demonstrated that new methylene blue is the most powerful phenothiazinium 

dye tested for inactivating multi-drug resistant A. baumannii and is able to reduce more 

than 6-log the survival fraction of bacteria after an irradiation of 30 J·cm-2 of red light 

with a dye concentration of 10 M or 2 M with and without removing the excess of PS 

respectively. 

In addition, we have shown that bacterial luminescence can be used as a real time 

marker to monitor the survival fraction of bacteria during the initial 3-logs reduction of 

bacterial viability. There is no statistically significant difference between the light-dose 

responses quantified by the bacterial luminescence of the A. baumannii strain and a 

colony formation assay. 

Moreover, we have obtained more than 3-log reduction in the bacterial luminescence 

from the mouse burns infected with A. baumannii, and demonstrated that there is a 

statistically significant difference between the areas under the bioluminescence-time 

curves for the normalized bioluminescence between all the controls and the PDT 

treated mice. 

In conclusion, new methylene blue is an effective antimicrobial photosensitiser for 

treating A. baumannii burn infections in vivo. As methylene blue and toluidine blue are 

already photosensitisers in clinical practice, and based on the efficacy pattern obtained 

in this study, it may be interesting to clinically test NMB as a potential photosensitiser in 

a wide range of localized infections. 
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A tricationic porphycene as potential photosensitiser in 

antimicrobial photodynamic therapy 

 

Structures of typical photosensitisers in antimicrobial photodynamic therapy 

are based on porphyrins, phthalocyanines and phenothiazinium salts with 

cationic charges at physiological pH values. However, derivatives of the 

porphycene macrocycle (a porphyrin isomer) have barely been investigated 

as antimicrobial agents. In this chapter, we describe the basic 

photochemical properties of the first aryl tricationic water-soluble 

porphycene and assess its potential in vitro and in vivo as an APDT 

photosensitiser. 
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4.1. INTRODUCTION 

Antimicrobial photodynamic therapy (APDT) [1] is being actively studied as a possible 

alternative to antibiotic treatment for localized infections [2,3]. The basic principles are 

well understood: in essence, the interaction between light and photoactive drugs, 

usually called photosensitisers (PSs), forms reactive oxygen species (ROS) created 

through either electron transfer (type I) or energy transfer (type II) reactions [4]. These 

ROS will react with many cellular components that will induce oxidative processes 

leading to cell death [5-7].  

 

PSs belonging to a variety of chemical structures have been used to inactivate 

microbial cells, most of them were porphyrin-based [8], phthalocyanine-based [9] and 

phenothiazinium-based [10]. Porphycene, a structural porphyrin isomer, is endowed 

with favorable photophysics that allows it to act as a photodynamic agent [11], but has 

barely been used in the field of APDT. The only two studies using polylysine-

porphycene conjugates [12,13] showed promising results but that research was not 

pursued, likely due to the lengthy and complex synthesis of this kind of macrocycles. 

The recent discovery in our laboratory of a straightforward, four-step synthesis of 

porphycenes [14] provides an opportunity for the assessment of the potential of these 

compounds in APDT.  

 

The use of outer wall-disrupting agents, such as EDTA [15] or cationic polypeptide 

polymixin B [8,16], and the conjugation of the PS with polymers [17], nanoparticles [18], 

or biomolecules [19], provides a higher affinity of the PSs against microbial cells. 

Nevertheless, the discovery that positively charged PSs at physiological pH values 

promote the photoinactivation of microbial cells [20-22] has stimulated the development 

of new synthetic routes to develop new useful cationic PSs for APDT. 

 

 
Fig. 1: Molecular structure of 2,7,12-tris(p-(p-(pyridilmethyl)phenyl)–17-(p-(metoximethyl)phenyl) 

porphycene (Py3MeO-TBPo). 
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In addition, Caminos et al. showed that, in porphyrins with cationic (A) and non-cationic 

(B) groups, the photosensitized inactivation of E. coli cellular suspensions with those 

compounds follows the order: A3B
3+ > A4

4+ >> ABAB2+ > AB3
+ [23].  

 

In this chapter, we present the photochemical characterization of the first aryl cationic 

water-soluble porphycene (Fig.1; see Annex) as well as the results of a study designed 

to evaluate in vitro the broad-spectrum antimicrobial efficacy of this novel light-

activated PS against a panel of prototypical human pathogenic microbes. Besides, its 

potential in vivo application to infection using a 3rd degree mouse burn model infected 

with a drug-resistant bacterial strain, methicillin-resistant Staphylococcus aureus 

(MRSA), is also evaluated. 
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4.2. EXPERIMENTAL SECTION 

 

Chemicals and light source 

Py3MeO-TBPo was synthesized as described in the Annex. Photochemical 

measurements were performed in MeOH of spectrophotometric grade, purchased in 

Solvents Documentation Synthesis (SDS, Peypin, France), and water of Milli-Q purity. 

Dimethylacetamide (DMA) was provided by Sigma (St. Louis, MO, USA). Brain heart 

infusion (BHI) medium and yeast peptone dextrose medium (YPD) were provided by 

Fisher Scientific (Pittsburgh, PA, USA). Red light at 652±15 nm was delivered using a 

noncoherent light source with interchangeable fiber bundles (LumaCare, Newport 

Beach, CA). Red light at 635±10 nm was delivered using a Sorisa Photocare LED light 

source. 

 

Statistics 

Survival fractions are expressed as means ± standard error of the mean (SEM) of three 

independent experiments. Differences between the killing curves were evaluated by 

means of paired Student’s t test. Differences between three or more means were 

compared by a one-way ANOVA. p values of < 0.05 were considered as significant. 
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4.3. RESULTS 

Physical and photophysical properties 

The photophysical properties of Py3MeO-TBPo are summarized in Table 1. As 

observed in Fig. 2, Py3MeO-TBPo shows the typical porphycene absorption spectrum 

in MeOH, with three bands in the red range of the spectrum and absorption coefficients 

in the 50.000 M-1 cm-1 range. The spectrum in water loses much of the structure, 

indicating not surprisingly that aggregation is occurring in aqueous media despite the 

three positive charges. The extent of aggregation can be controlled by changing the 

ionic strength of the solution, i.e., the compound is substantially more aggregated in 

PBS than in pure water. 

 
Fig. 2: (A,C) Absorption and (B,D) fluorescence spectrum of porphycene 3 in (A,B) MeOH and (C,D) water 

and PBS (solid and dotted line, respectively). Insets: (A,C) Excitation spectrum of the fluorescence at 661 

nm. (B,D) Time-resolved fluorescence of Py3MeO-TBPo. Signal, fit and instrument response function at 

661 nm upon excitation at 375 nm. 

 

However, both in water and in MeOH, the fluorescence spectra match the typical 

fluorescence spectrum of porphycenes where a main band and a weaker shoulder at 

lower energies are observed that are the mirror image of the S1  S0 absorption 

transition [11]. Interestingly, the excitation spectrum matches in all cases the 

absorption spectrum of the monomer, indicating that the aggregates are not emissive. 

 



Cationic porphycenes as APDT photosensitisers 

 
 

 85

 

The fluorescence quantum yield, 
F
, was determined by comparing the integrated 

fluorescence intensity of the porphycene to that of an optically-matched solution of 

cresyl violet in MeOH as reference (
F
 = 0.54) [24]. A value of F. = 0.075 ± 0.005 was 

found in MeOH, while in water the results showed a marked dependence on the 

excitation wavelength, reflecting the fraction of monomers that were excited at each 

wavelength. The fluorescence decay was monoexponential in both solvents (Fig. 3), 

with lifetime 1.8 ± 0.1 ns in water and 2.6 ± 0.1 ns in MeOH.  

 

 

 
Fig. 3: (A) Transient absorption spectrum of the triplet excited state of porphycence 3 in water (blue) and 

MeOH (red). Inset: Transient absorbance at 420 nm upon excitation at 355 nm. (B) Singlet oxygen 

phosphorescence kinetics at 1270 nm of an aqueous solution (blue) and MeOH solution (red) of Py3MeO-

TBPo. 

 

 

Transient absorption spectra of Py3MeO-TBPo in argon atmosphere are shown in Fig. 

3. Again, they present a shape similar to that of the triplet-minus-singlet spectrum of 

TPPo, confirming that only the monomeric species can undergo intersystem crossing 

[25]. The decays at 420 nm showed a triplet lifetime of 330 µs in water and 152 µs in 

MeOH (Fig. 3A Inset), with rate constants of oxygen quenching (kq) of 1.5 x 109 M-1·s-1 

and 3.5 x 109 M-1·s-1, respectively.  

 

The singlet oxygen (1O2) production quantum yield, , was determined by means of its 

phosphorescence at 1270 nm (Fig. 3B), comparing the intensity of the 1O2 signal 

shown by the porphycene to that of optically-matched solutions of reference PSs [26]. 

Using m-THPP and TMPyP as standards (
ref = 0.69 and 0.74, respectively) [27,28], 


 values of 0.004 ± 0.001 and 0.19 ± 0.01 were determined in water and MeOH 

respectively, upon excitation at 532 nm. While in MeOH the  values were 
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independent of the excitation wavelength, we obtained 
 = 0.03 ± 0.01 in water upon 

excitation at 355 nm using sulfonated phenalenone as standard (
ref ~ 1) [29]. It can 

thus be concluded that the photophysical properties of 3 in MeOH are very similar to 

those of typical tetraphenylporphycenes [11], while in aqueous media aggregation 

strongly prevents its photosensitizing ability. This finding is fully in line with the results 

of several decades of research on related tetrapyrrole macrocycles. 

 

In vitro photoinactivation of bacteria 

All bacterial species were tested in a porphycene-concentration (Fig. 4) and energy-

dose (Fig. 5) dependent manner with and without removing the excess of PS. No 

significant statistical difference was obtained in any case when the excess of Py3MeO-

TBPo was eliminated (p > 0.26), which implies that the porphycene displays strong 

binding to the bacterial cells.. 

 

 
Fig. 4: Bacterial photoinactivation with Py3MeO-TBPo. (A,C) Survival curves of MRSA (squares), S. 

aureus (circles), E. faecalis (triangles) with (dashed line) and without (solid line) removing the excess of 

photosensitiser (PS) from the solution after 30 J·cm-2 of 652-nm light. (B,D) Survival curves of A. baumanii 

(circles), E. coli (squares), P. mirabilis (triangles) with (dashed line) and without (solid line) removing the 

excess of PS from the solution after 60 J·cm-2 (E. coli) and 100 J·cm-2 (A. baumanii and P. mirabilis) of 

652-nm light. 

 

All gram-positive species were completely eliminated (no colonies observed) by PDT 

using Py3MeO-TBPo. E. faecalis was the most sensitive species against Py3MeO-
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TBPo-PDT showing 6-log10 reduction in bacterial viability with a 0.5 M porphycene 

concentration and an energy dose of 30 J·cm-2. A porphycene concentration of 1 M or 

2 M proved adequate to produce a similar effect for S. aureus and MRSA, 

respectively, upon irradiation with 15 J·cm-2.  

Gram-negative species could be similarly inactivated, although higher concentrations 

and light doses were needed. For instance, 8 M concentration of Py3MeO-TBPo and 

100 J·cm-2 were needed to induce a 6-log10 reduction in the bacterial viability for A. 

baumanii, while 10 M and 60 J·cm-2 were needed in the case of E. coli. Only a 3-log10 

reduction in the survival fraction was achieved for P. mirabillis even at 50 M and 100 

J·cm-2, and no relevant inactivation (< 1-log10 reduction in the survival fraction) could be 

observed for P. aeruginosa even at 100 M porphycene concentration and a light dose 

of 100 J·cm-2. 

 

Fig. 5: Light-dose response inactivation curves of bacteria upon irradiation with light of 652-nm at 125 

mW·cm-2. (A,C) Survival curves of MRSA (triangles), S. aureus (circles), E. faecalis (squares) with 

(dashed line) and without (solid line) removing the excess of PS from the solution with a bulk concentration 

of Py3MeO-TBPo of 0.5 M (E. faecalis) and 1 M (MRSA and S. aureus). (B,D) Survival curves of A. 

baumanii (squares), E. coli (circles), P. mirabilis (triangles) with (dashed line) and without (solid line) 

removing the excess of PS from the solution with a bulk concentration of 5 M (A. baumanii and E. coli) 

and 20 M (P. mirabilis). Error bars show the standard error of the mean of 3 different experiments. 

 

In vitro photoinactivation of yeasts 

Candida species are generally used in APDT as representative models of fungal cells 

as they grow as single cell suspensions. Both species were completely eliminated by 



Chapter 4 

 
 

 88

Py3MeO-TBPo in a concentration (Fig. 6A) and light-dose dependent manner (Fig. 6B), 

irrespective of the removal or not of the porphycene excess from the solution. As 

observed in figure, while 50 M concentration of Py3MeO-TBPo and 30 J·cm-2 were 

needed to obtain a 5-log10 reduction in the cell viability of C. albicans, only 10 M 

concentration and 15 J·cm-2 proved necessary to produce the same reduction in the 

cell viability of C. krusei. Removing the excess of PS did not produce any significant 

difference (p > 0.75). 

 

 

Fig. 6: Yeast photoinactivation with Py3MeO-TBPo. Survival curves with (dashed line) and without (solid 

line) removing the excess of photosensitiser (PS) from the solution. (A) Drug-dose response of C. albicans 

(circles) after 30 J·cm-2 of 652-nm light and C. krusei (triangles) after 15 J·cm-2 of 635-nm light. (B) Light-

dose response of C. albicans and C. krusei with a bulk concentration of Py3MeO-TBPo of 20 M and 10 

M, respectively. 

 

In vivo photoinactivation of MRSA in infected burns 

Bioluminescent MRSA (Xen31) has a stably integrated lux operon that has been 

optimized for expression in Gram-positive bacteria [30] and leads to spontaneous light 

emission at 37ºC in the absence of any exogenously added substrate. It has been 

previously demonstrated that MRSA CFUs quantified using serial dilutions of bacterial 

suspensions correlate linearly with the bioluminescence emitted by those bacteria.  

Fig. 7A shows the successive bioluminescence images obtained from four 

representative mouse burns infected with MRSA [30].  

The burn treated with PDT received 100 M of Py3MeO-TBPo and 652 nm light up to 

180 J·cm-2, the dark control burn received the same amount of porphycene and no 

light; while the light alone burn received 652 nm light up to 180 J·cm-2 and no 

porphycene. A non-treated control burn, received neither PS nor light. A complete 

elimination of the bioluminescence signal was observed in the PDT treated burn after a 

light dose of 180 J·cm-2 in the presence of Py3MeO-TBPo. 



Cationic porphycenes as APDT photosensitisers 

 
 

 89

The light-dose responses of normalized mean bioluminescence values (n = 5) of the 

different mouse groups are shown in Fig. 8B. PDT induced a reduction of ca. 2.6-log10 

of the bioluminescence while less than 0.3-log10 reduction was observed for all the 

control groups. The statistical analysis at each energy-dose by 1-factor ANOVA test 

showed significant differences among all the control groups and the PDT-treated group 

(p < 0.001). 

 
Fig. 7: In vivo MRSA photoinactivation with Py3MeO-TBPo. (A) Dose response of bacterial luminescence 

from burns infected with luminescent MRSA and treated with 100 M of Py3MeO-TBPo and 652 nm light 

(PDT), with 100 M of Py3MeO-TBPo only (DC), with light (LC) only, and without treatment (NTC). (B) 

Light-dose response curves of the normalized bioluminescence for mice treated with photodynamic 

therapy (red), mice treated only with Py3MeO-TBPo (brown), mice treated only with light (yellow), and 

without treatment (green). Every point is an average of five independent mice. *, p < 0.001. 
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4.4. DISCUSSION 

A potential PS for APDT must have appropriate photophysical properties, such as a 

large long wavelength absorption band and a high quantum yield for the generation of 

both long-lived triplet excited state and cytotoxic ROS species. It also has to be water 

soluble and must have a high affinity for microbial cells and a low affinity for host cells; 

characteristics that are strongly related to the presence of cationic charges in the 

molecular structure. 

 

Table 1. Photophysical properties of the porphycene. 

Solvent abs / nm f / nm f  
[a] S / ns T / µs [b] kq / M-1s-1 [c]  (ex / nm)[d] 

H2O 644 656 0.005 1.8 330 1.5 x 109 
0.03 (355) 

0.004 (532) 

MeOH 655 661 0.075 2.6 152 3.5 x 109 0.19 

[a] Cresil violet was used as reference. [b] Lifetime of the decays at 420 nm in argon-saturated solutions. [c] 

Rate constant for triplet quenching by oxygen. Error bar 10%. [d] Singlet oxygen quantum yield in air-

saturated solutions. Excitation wavelength in parentheses. 

 

As observed in the absorption spectrum and despite the cationic charges, Py3MeO-

TBPo is soluble although aggregated in water, which deteriorates its photophysical 

properties. The differential behavior in aqueous and more lipophilic environments may 

be valuable for unmistakably ascertaining the localization of the porphycene bound to 

the cells by means of fluorescence microscopy. From the point of view of APDT 

applications, it can be expected that Py3MeO-TBPo would be a good PS if binding to 

microbial cells prevents its aggregation. Conversely, any non-bound PS will be 

aggregated and thus will not be able to cause photodamage to surrounding tissue. The 

fact that the absorption spectrum of the aggregates shows lower absorption coefficients 

is also an advantage as these non-bound molecules will see their light-filtering ability 

reduced. The presence of aggregates can also be observed in the F and values in 

water. For instance, as observed in Table 1, the  drops from 0.03 to 0.004 when 

changing the excitation wavelength. This change is due to the different absorption 

coefficient ratio monomer/aggregates at both wavelengths. At 355 nm, the ratio is 

higher, leading to a lower light-filtering effect, i.e., to a higher  The different trend 

observed in the lifetime values of the singlet (s) and triplet (T) excited states can be 

explained by two different factors. On one hand, the presence of aggregates in H2O 

enables a new deactivation pathway by intermolecular interactions of the porphycene 

molecules, leading to a decrease in thes value. Compared to TPPo (T = 4.8 ns in 

toluene) [31], s in MeOH is lower probably due to the higher freedom degree of the 
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residues bound to the porphycene ring. On the other hand, the triplet excited state 

population is basically controlled by the oxygen concentration in the solutions (kq ~ 109 

M-1s-1). Thus, despite the measurements having been performed in argon-saturated 

solutions, the solubility of oxygen in H2O is lower than in MeOH, i.e., the remaining 

amount of oxygen molecules in the solutions is lower, leading then to a longer T value. 

As regards kq, the values are in the range of those observed in diffusional controlled 

quenching reactions, and the reduction observed in H2O, relative to that in MeOH, is 

due to the higher viscosity of water.  

 

Concerning the in vitro experiments of Gram-positive bacteria, it was observed that low 

concentrations of porphycene (< 2 M), as well as low light doses (< 30 J·cm-2) were 

enough to completely eliminate all the strains. On the other hand, because of the 

generally higher resistance of Gram-negative species [16], higher light doses (> 60 

J·cm-2) were needed in order to inactivate the Gram-negative bacterial strains tested 

with somewhat larger PS concentrations (< 10 M). However, neither high 

concentrations of porphycene nor high light doses were able to completely eliminate P. 

mirabilis or significantly inactivate P. aeruginosa. As previously demonstrated by Tegos 

et al. [32], the number of cationic charges in the PS’ structure strongly affects the ability 

to inactivate bacteria, suggesting that a porphycene with higher number of cationic 

charges in its structure might be able to inactivate such species. 

 

Consistent with the photophysics results there are no significant differences between 

the inactivation curves recorded in the presence or absence of the excess PS (p > 

0.26), suggesting a high lipophilicity of the porphycene, i.e., a high affinity against 

bacterial cells, which indicates that only the PS bound to the cells is involved in the 

photodynamic effect. Thus, according to the classification of PSs established by 

Deminova and Hamblin [17], the porphycene might be tightly bound to the microbial 

cell and might be able to penetrate into microorganisms, as happened when poly-L-

lysine chlorin(e6) conjugate was used as PS.  

 

As for the yeast studies, Candida species were selected as model to study the activity 

of porphycenes against fungal cells. Our data show that porphycenes can be used as a 

valuable alternative to typical anti-fungal PSs, as they are able to completely inactivate 

both C. albicans and C. krusei using lower light doses and lower porphycene 

concentrations than for currently-used PSs [17,33-35]. 
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Despite the optimal properties of the porphycene in vitro, its value as PS must be 

further assessed from experiments in vivo. The test in burns infected with MRSA 

demonstrate that porphycenes can clearly produce statistically significant differences 

between the controls and the PDT-treated group (p < 0.001), reducing by 2.6-log10 

units the bioluminescence of MRSA in an energy-dose dependent manner upon 

irradiation with 180 J·cm-2 and a porphycene concentration of 100 M. These results 

compare favorably to those obtained by Dai et al. [36], where a 2.7-log10 reduction of 

the bioluminescence signal was obtained in a skin abrasion wound infected with MRSA 

by using a PS such as polyethylenimine-chlorin(e6) conjugate and 660-nm red light, 

and by Zolfaghari et al. [37], where 1.4-log10 and 1.15-log10 where obtained in excision 

and superficial scarified wounds treated with methylene blue and 670-nm red light, 

respectively. 
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4.5. CONCLUSIONS 

 

The synthetic availability of cationic porphycenes, as well as their optimal physical and 

photophysical properties, suggests the porphycene-core macrocycle can be a 

potentially interesting antimicrobial PS. The demonstrated high photodynamic activity 

against a broad spectrum of microbial cells in vitro as well as an in vivo infection model, 

supports the further scrutiny of this family of compounds. 



Chapter 4 

 
 

 94

4.6. REFERENCES 

 

 1.  Wainwright M. Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob 

Chemother 1998; 42: 13-28. 

 2.  Wainwright M. Photoantimicrobials--so what's stopping us? Photodiagn Photodyn 

Ther 2009; 6: 167-169. 

 3.  Dai T, Huang YY, and Hamblin MR. Photodynamic therapy for localized 

infections--state of the art. Photodiagn Photodyn Ther 2009; 6: 170-188. 

 4.  Schweitzer C and Schmidt R. Physical mechanisms of generation and 

deactivation of singlet oxygen. Chem Rev 2003; 103: 1685-1757. 

 5.  Michaeli A and Feitelson J. Reactivity of singlet oxygen toward amino acids and 

peptides. Photochem Photobiol 1994; 59(3): 284-289. 

 6.  Stark G. Functional consequences of oxidative membrane damage. J Membr Biol 

2005; 205: 1-16. 

 7.  Ravanat JL, Di Mascio P, Martinez GR, Medeiros MHG, and Cadet J. Singlet 

oxygen induces oxidation of cellular DNA. J Biol Chem 2000; 275: 40601-40604. 

 8.  Nitzan Y, Gutterman M, Malik Z, and Ehrenberg B. Inactivation of gram-negative 

bacteria by photosensitized porphyrins. Photochem Photobiol 1992; 55: 89-96. 

 9.  Bertoloni G, Rossi F, Valduga G, Jori G, Ali H, and Vanlier JE. Photosensitizing 

activity of water-soluble and lipid-soluble phthalocyanines on prokaryotic and 

eukaryotic microbial-cells. Microbios 1992; 71: 33-46. 

 10.  Romanova NA, Brovko LY, Moore L, Pometun E, Savitsky AP, Ugarova NN, and 

Griffiths MW. Assessment of photodynamic destruction of Escherichia coli O157 : 

H7 and Listeria monocytogenes by using ATP bioluminescence. Appl Environ 

Microbiol 2003; 69: 6393-6398. 

 11.  Stockert JC, Canete M, Juarranz A, Villanueva A, Horobin RW, Borrell J, Teixido 

J, and Nonell S. Porphycenes: Facts and prospects in photodynamic therapy of 

cancer. Curr Med Chem 2007; 14: 997-1026. 



Cationic porphycenes as APDT photosensitisers 

 
 

 95

 12.  Polo L, Segalla A, Bertoloni G, Jori G, Schaffner K, and Reddi E. Polylysine-

porphycene conjugates as efficient photosensitizers for the inactivation of 

microbial pathogens. J Photochem Photobiol B:Biol 2000; 59: 152-158. 

 13.  Lauro FM, Pretto P, Covolo L, Jori G, and Bertoloni G. Photoinactivation of 

bacterial strains involved in periodontal diseases sensitized by porphycene-

polylysine conjugates. Photochem Photobiol Sci 2002; 1: 468-470. 

 14.  Sanchez-Garcia D, Borrell JI, and Nonell S. One-pot synthesis of substituted 2,2 

'-bipyrroles. A straightforward route to aryl porphycenes. Org Lett 2009; 11: 77-

79. 

 15.  Bertoloni G, Rossi F, Valduga G, Jori G, and Vanlier J. Photosensitizing activity of 

water-soluble and lipid-soluble phthalocyanines on Escherichia coli. FEMS 

Microbiol Lett 1990; 71: 149-155. 

 16.  Malik Z, Ladan H, and Nitzan Y. Photodynamic inactivation of gram-negative 

bacteria -problems and possible solutions. J Photochem Photobiol B:Biol 1992; 

14: 262-266. 

 17.  Demidova TN and Hamblin MR. Effect of cell-photo sensitizer binding and cell 

density on microbial photoinactivation. Antimicrob Agents Chemother 2005; 49: 

2329-2335. 

 18.  Guo YY, Rogelj S, and Zhang P. Rose bengal-decorated silica nanoparticles as 

photosensitizers for inactivation of gram-positive bacteria. Nanotechnol 2010; 21. 

 19.  Friedberg JS, Tompkins RG, Rakestraw SL, Warren SW, Fischman AJ, and 

Yarmush ML. Antibody-targeted photolysis - bacteriocidal effects of Sn (IV) 

chlorin e6- Dextran-monoclonal antibody conjugates. Ann NY Acad Sci 1991; 

618: 383-393. 

 20.  Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, and Brown SB. 

Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine 

to photoinactivate both gram-negative and gram-positive bacteria. J Photochem 

Photobiol B:Biol 1996; 32: 159-164. 

 21.  Merchat M, Bertolini G, Giacomini P, Villanueva A, and Jori G. Meso-substituted 

cationic porphyrins as efficient photosensitizers of gram-positive and gram-

negative bacteria. J Photochem Photobiol B:Biol 1996; 32: 153-157. 



Chapter 4 

 
 

 96

 22.  Wainwright M, Phoenix DA, Marland J, Wareing DRA, and Bolton FJ. A study of 

photobactericidal activity in the phenothiazinium series. FEMS Immunol Med 

Microbiol 1997; 19: 75-80. 

 23.  Caminos DA, Spesia MB, and Durantini EN. Photodynamic inactivation of 

Escherichia coli by novel meso-substituted porphyrins by 4-(3-N,N,N-

trimethylammoniumpropoxy)phenyl and 4-(trifluoromethyl)phenyl groups. 

Photochem Photobiol Sci 2006; 5: 56-65. 

 24.  Magde D, Brannon JH, Cremers TL, and Olmsted J. Absolute luminescence yield 

of cresyl violet - Standard for the red. J Phys Chem 1979; 83: 696-699. 

 25.  Rubio N, Borrell JI, Teixido J, Canete M, Juarranz A, Villanueva A, Stockert JC, 

and Nonell S. Photochemical production and characterisation of the radical ions 

of tetraphenylporphycenes. Photochem Photobiol Sci 2006; 5: 376-380. 

 26.  Nonell S and Braslavsky SE. Methods in Enzimology, Academic Press, 2000. 

 27.  Wilkinson F, Helman WP, and Ross AB. Quantum yields for the photosensitized 

formation of the lowest electronically excited singlet state of molecular oxygen in 

solution. J Phys Chem Ref Data 1993; 22: 113-262. 

 28.  Redmond RW and Gamlin JN. A compilation of singlet oxygen yields from 

biologically relevant molecules. Photochem Photobiol 1999; 70: 391-475. 

 29.  Nonell S, Gonzalez M, and Trull FR. 1H-Phenalen-1-one-2-sulfonic acid - An 

extremely efficient singlet molecular-oxygen sensitizer for aqueous-media. 

Afinidad 1993; 50: 445-450. 

 30.  Francis KP, Joh D, Bellinger-Kawahara C, Hawkinson MJ, Purchio TF, and 

Contag PR. Monitoring bioluminescent Staphylococcus aureus infections in living 

mice using a novel luxABCDE construct. Infect Immun 2000; 68: 3594-3600. 

 31.  Rubio N, Prat F, Bou N, Borrell JI, Teixido J, Villanueva A, Juarranz A, Canete M, 

Stockert JC, and Nonell S. A comparison between the photophysical and 

photosensitising properties of tetraphenyl porphycenes and porphyrins. New J 

Chem 2005; 29: 378-384. 

 32.  Tegos GP, Demidova TN, Arcila-Lopez D, Lee H, Wharton T, Gali H, and 

Hamblin MR. Cationic fullerenes are effective and selective antimicrobial 

photosensitizers. Chem Biol 2005; 12: 1127-1135. 



Cationic porphycenes as APDT photosensitisers 

 
 

 97

 33.  Foley JW, Song XZ, Demidova TN, Jilal F, and Hamblin MR. Synthesis and 

properties of benzo[a]phenoxazinium chalcogen analogues as novel broad-

spectrum antimicrobial photosensitizers. J Med Chem 2006; 49: 5291-5299. 

 34.  Zeina B, Greenman J, Purcell WM, and Das B. Killing of cutaneous microbial 

species by photodynamic therapy. Br J Dermatol 2001; 144: 274-278. 

 35.  Codling CE, Maillard JY, and Russell AD. Aspects of the antimicrobial 

mechanisms of action of a polyquaternium and an amidoamine. J Antimicrob 

Chemother 2003; 51: 1153-1158. 

 36.  Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, and Hamblin MR. Photodynamic 

therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin 

abrasion model. Lasers Surg Med 2010; 42: 38-44. 

 37.  Zolfaghari PS, Packer S, Singer M, Nair SP, Bennett J, Street C, and Wilson M. 

In vivo killing of Staphylococcus aureus using a light-activated antimicrobial 

agent. BMC Microbiol 2009; 9: 27. 

 38.  Jux N. o-(bromomethyl)-substituted tetraarylporphyrin building blocks. Org Lett 

2000; 2: 2129-2132. 

 39.  Yamashita T, Uno T, and Ishikawa Y. Stabilization of guanine quadruplex DNA by 

the binding of porphyrins with cationic side arms. Bioorg Med Chem 2005; 13: 

2423-2430. 

 40.  Ikawa Y, Moriyama S, Harada H, and Furuta H. Acid-base properties and DNA-

binding of water soluble N-confused porphyrins with cationic side-arms. Org 

Biomol Chem 2008; 6: 4157-4166. 

 

 



Chapter 4 

 
 

 98

4.7. Annex 

 

Synthesis 

The synthetic process followed to obtain the aryl cationic porphycene is shown in Fig. 

A1 and was performed by Ruben Ruiz and David Sánchez-García. 

Porphycene 1 was available from earlier studies and was prepared using previously 

described procedures [14]. Then, the methoxy ethers of porphycene 1 were 

deprotected to the corresponding bromo derivative by means of the addition of a HBr 

solution to a dichloromethane solution of compound 1. The procedure was adapted 

from that described by Jux [38]. Reaction of porphycene 2 with pyridine yielded the 

substitution of the bromide atom followed by precipitation of a dark solid corresponding 

to porphycene 3, namely Py3MeO-TBPo [39,40].  

 

 
Fig. A1: Synthetic pathway used for the synthesis of the cationic porphycene. 

 



The work described in this chapter is adapted from Xavier Ragàs, Montserrat Agut and Santi Nonell in Free Rad Biol 
Med 2010, 49, 770-776. 
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Singlet oxygen in E. coli : new insights for antimicrobial 

photodynamic therapy 

 

Antimicrobial photodynamic therapy is an emerging treatment for bacterial 

infections that is becoming increasingly more attractive. However, there is a 

limited knowledge about the localization of the photoactive drug in the 

bacteria and about the details of production of the main cytotoxic species 

singlet oxygen. This chapter describes a combination of spectroscopic and 

time-resolved photophysical techniques that provide such information for a 

cationic porphyrin photosensitiser in gram-negative Escherichia coli 

bacteria.  
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5.1. INTRODUCTION 

Pathogenic microorganisms and viruses, including those resistant to antibiotics, e.g. 

MRSA, can be inactivated successfully in vitro and in vivo using antimicrobial 

photodynamic therapy (APDT), often referred to as photodynamic inactivation  [1-8]. 

The fundamentals of APDT are now well understood: a photoactive drug, referred to as 

the photosensitiser (PS), is delivered to the microorganism and then is irradiated with 

per se harmless visible light. The photoexcited PS forms reactive oxygen species 

(ROS) [9] that react with substrates in the proximate environment of the PS, affecting 

the integrity and function of microbial cell walls, membranes, enzymes or nucleic acids 

[10-13]. The large variety of molecular targets and the ability to cause damage to the 

pathogen without PS internalisation, suggest that APDT is very unlikely to develop 

resistance [14]. As such it is being increasingly recognized as an attractive alternative 

to antibiotics [8,15]. 

 

Notwithstanding the vast progress made over the last few years, the mechanistic 

details of how APDT affects microbial cells are not fully understood. Of specific 

concern, little is known about the localization of the PS and hence about the site where 

the primary photodamage is produced. Fluorescence microscopy is a very useful 

technique to assess the localization of a PS in eukaryotic cells [16]. However, the 

resolution of current microscopes is not sufficient for prokaryotic cells, disenabling 

fluorescence microscopy as a useful tool for mechanistic understanding in APDT.  

 

While free radicals may contribute to the photodamage observed, singlet oxygen (1O2) 

is regarded as the ROS that plays the major role in APDT with porphyrins [17]. 

Production of 1O2 occurs by energy transfer from the electronic triplet excited-state of 

the PS (3PS) to molecular oxygen [18]. The kinetics of this process are strongly 

affected by the environment, thereby allowing to distinguish among different cell sites 

[19,20]. Monitoring both 3PS and 1O2 through their time-resolved phosphorescence can 

thus overcome the limitations of fluorescence microscopy in prokaryotic cells.  

 

There is one single report on the kinetics of 1O2 in bacteria, namely that by Maisch et 

al. [21], who used porfimer sodium to photosensitise 1O2 in bacterial suspensions. 

These authors explored the effects of oxygen and bacterial concentration on the 1O2 

phosphorescence kinetics. Unfortunately, their studies were restricted to 

Staphylococcus aureus, a gram-positive species. It is known that gram-negative 

bacteria are less susceptible to APDT [22] than their gram-positive counterparts, owing 
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to the higher complexity of the cell wall [23]. It appears therefore of interest to gain 

insight into the mechanism of photodynamic inactivation of gram-negative bacteria as 

this could give clues for the design of more efficient photosensitisers for such 

pathogens.  

 

This study reports on the kinetics of 1O2 production and decay in Escherichia coli, a 

model for gram-negative bacteria, by monitoring the phosphorescence of both 1O2 and 

its precursor 3PS in bacterial suspensions. The tetracationic porphyrin 5,10,15,20-

tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine (TMPyP) was chosen as PS, building on 

the fact that cationic dyes are the most effective towards gram-negative bacteria 

[24,25]. The results obtained may explain why there is no need to internalize a 

photodynamic drug into the pathogen for its effective killing. 

 

 
Fig. 1: Chemical structures of 5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine (TMPyP) and 5-

mono(N-decyl-4-pyridyl)-10,15,20-tri(N-methyl-4-pyridyl)-21H,23H-porphine (MDPyTMPyP). 
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5.2. EXPERIMENTAL SECTION 

 

Chemicals  

5,10,15,20-tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine tetratosylate (TMPyP) and 5-

mono(N-decyl-4-pyridyl)-10,15,20-tri(N-methyl-4-pyridyl)-21H,23H-porphine 

dihydrochloride tetrachloride (MDPyTMPyP) were supplied by Frontier Scientific 

(Logan, UT, USA) and had a minimal purity of 99% (Fig. 1). Deuterium oxide (99.9%) 

was purchased from Solvents Documentation Synthesis (SDS, Peypin, France). Bovine 

serum albumin (98%), lysozyme, sodium dodecyl sulphate (SDS), trizma, and 

Dubelcco’s phosphate buffered saline (PBS) were purchased from Sigma-Aldrich Co. 

(St. Louis, MO, USA). Saccharose and ethylenediamine tetraacetic acid (EDTA) were 

provided by Panreac S.A. (Barcelona, Spain).  

Deuterated PBS (D-PBS) was prepared by dissolving PBS powder in deuterium oxide. 
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5.3. RESULTS 

TMPyP binding to E. coli 

The uptake of TMPyP was determined by measuring its fluorescence in cell lysates 

obtained by treatment with NaOH 0.1 M / 1 % SDS. The uptake of TMPyP increases up 

to a plateau value after ca. 18 h. The largest uptake was observed at 8 M bulk 

concentration of TMPyP, resulting in ca. 5 x 105 TMPyP molecules per E. coli cell (Fig. 

2). The next higher concentration tested (16 M) lead to unacceptable dark toxicity, as 

assessed by colony-formation assays carried out before and after contact with the PS. 

 

 

Fig. 2: TMPyP binding to E.coli expressed as molecules per cell, with a bulk concentration of 8 M. 

The new microenvironment experienced by TMPyP upon bacterial uptake lead to 

measurable changes in its photophysical properties. The absorption spectrum showed 

a bathochromic shift of 20 nm relative to that in the buffer (Fig. 3A). The fluorescence 

emission spectrum showed two well-resolved bands, in contrast with the single, 

structureless broad band found in the buffer (Fig. 3B). Two bands were also observed 

in the NaOH-SDS micellar media, corresponding to the Q(0-0) and Q(0-1) transitions.  

 

Time-resolved fluorescence measurements provided additional insight on the effects of 

photosensitiser uptake. In buffered solution, the fluorescence, observed either at 655 or 

714 nm, decayed monoexponentially with a lifetime of 4.6 ± 0.2 ns, in very good 

agreement with literature reports [26]. In contrast, the signals obtained in E. coli 

required two additional exponential terms with lifetimes 2.0 ± 0.5 and 10.5 ± 1 ns, 30% 

and 10% relative amplitudes respectively. A third set of experiments carried out on E. 

coli spheroplasts showed an intermediate behaviour, namely biexponential decay with 

lifetimes 2.3 ± 0.5 ns and 10.5 ± 1 ns, 60% and 40% relative amplitudes respectively 

(Fig. 4).  
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Fig. 3: Normalized (a) absorption and (b) fluorescence spectra of TMPyP in E. coli (solid line), PBS 

(dashed line), and NaOH 0.1 M / 1% SDS (dotted line). 

 

Phosphorescence of 1O2 and TMPyP in E. coli cells in PBS  

Pulsed-laser irradiation of TMPyP-loaded E. coli cells suspended in phosphate buffer 

solution at pH 7.4 (PBS) produced clear time-resolved phosphorescence signals. At 

1280 nm, where 1O2 emits, the signals grew with a lifetime 12801
PBS = 2.5 ± 1 s, and 

decayed biexponentially with lifetimes 12802
PBS = 3.5 ± 1 sand 12803

PBS = 20 ± 2 s, 

respectively (Fig. 5a). At 960 nm, where the phosphorescence of TMPyP is observed 

instead, the signal decayed with two exponential terms, 9601
PBS = 2.5 ± 1 s and 

9602
PBS = 20 ± 3 s, respectively (Fig. 5b). 

 

Effect of solvent deuteration  

It is well known that the lifetime of 1O2 is increased in deuterated solvents [18]. 

Irradiation of E. coli cells in deuterated PBS (D-PBS) produced differences in the 

phosphorescence signals relative to those in PBS. At 1280 nm, the signals grew 

biexponentially with lifetimes 12801
D-PBS = 2.5 ± 1 s and 12802

D-PBS = 20 ± 2 s, and 

decayed with a single exponential component with lifetime 12803
D-PBS = 66 ± 4 s (Fig. 

5c). At 960 nm, the phosphorescence of TMPyP showed the same kinetics as in PBS, 

namely 9601
D-PBS = 2.5 ± 1s and 9602

D-PBS = 20 ± 3s (Fig. 5d). 
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Fig. 4: Time-resolved fluorescence of TMPyP at 655 nm upon excitation at 405 nm. Signal, instrument 

response function, and fit in PBS at pH 7.4, E. coli, and E. coli spheroplasts. 

 

Effect of bovine serum albumin  

Bovine serum albumin (BSA) is an efficient 1O2 quencher (quenching rate constant kq = 

5 x 108 M-1 s-1) that, because of its large size (molecular weight of 65 kDa), cannot 

penetrate the cell and remains in the buffer [20]. Addition of 0.75 mM BSA to D-PBS 

suspensions of E. coli cells loaded with TMPyP induced significant changes to the 1O2 

kinetics. Thus, the rise and decay of the signal at 1280 nm became monoexponential, 

with lifetimes 12801
BSA = 3 ± 1 s and 12802

BSA = 20 ± 3 s, respectively (Fig. 5e). In 

contrast, the kinetics of TMPyP phosphorescence, monitored at 960 nm, were not 

affected by BSA, i.e., the decay was still biexponential with lifetimes 9601
BSA = 3 ± 1 s 

and 9602
BSA = 20 ± 3 s (Fig. 5f).  

 

 



Singlet oxygen in E. coli 

 
 

 107

Effect of cell wall: E. coli spheroplasts  

In order to assess the role of the external structure of the cell wall, the 

phosphorescence of 1O2 and TMPyP was measured in E. coli spheroplasts, i.e., 

bacteria from which the cell wall has been almost completely removed. 

In contrast to the observations made in whole cells, the signal of 1O2 in D-PBS rose 

monoexponentially, with lifetime 12801
D-PBS = 20 ± 2 s. Its decay matched that in whole 

cells, namely a single component with 12802
D-PBS = 69 ± 4 s (Fig. 5g). The 

phosphorescence of TMPyP was observed to decay monoexponentially, with 9601
D-PBS 

= 20 ± 2 s (Fig. 5h).  

When 0.75 mM BSA was added to the spheroplasts suspension, the growth of the 1O2 

signal was much faster (12801
BSA = 2 ± 1 s), while its decay, as well as that of TMPyP 

phosphorescence, remained unchanged (12802
BSA = 9601

BSA = 22 ± 2 s; Fig. 5i and 5j, 

respectively).  

 

Effect of the sensitiser’s side chain length 

Reddi et al. observed that increasing the length of a single N-alkyl substituent from 1 to 

14 carbon atoms enhances the efficiency of N-substituted tetrapyridylporphyrin 

accumulation in E. coli and reduces its release during centrifugations [27]. Following 

this reference, we hypothesized that the longer chain in 5-mono(N-decyl-4-pyridyl)-

10,15,20-tri(N-methyl-4-pyridyl)-21H,23H-porphine (MDPyTMPyP) would preclude its 

penetration into the cytosol of the cells. As such, a change of kinetics relative to 

TMPyP would provide additional insight on the localization of TMPyP. Accordingly, the 

phosphorescence of 1O2 was recorded in E. coli cells loaded with MDPyTMPyP under 

the same concentration and contact time conditions as for the TMPyP experiments.  

In agreement with our expectations, the signal in D-PBS at 1280 nm grew and decayed 

now with monoexponential kinetics, with lifetimes 12801
D-PBS = 3 ± 1 s and 12802

D-PBS = 

67 ± 3 s, respectively (Fig. 5k). Unfortunately, we were not able to observe any 

phosphorescence of MDPyTMPyP at 960 nm. 
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Fig. 5: Left panels: 1O2 phosphorescence at 1280 nm. Right panels: TMPyP phosphorescence at 960 nm. 
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Control measurements in bacterial suspensions 

Different controls have been performed in order to assure: 

1) Origin of the luminescence signals: It was critical in our experiments to eliminate 

any photosensitiser molecule from the external aqueous buffer in order to 

ensure that the observed fluorescence or phosphorescence was produced by 

cell-bound molecules. The external aqueous solutions were routinely tested 

before and after the in vitro measurements.  

 

2) Light dose: Irradiation during APDT may induce the release or relocalization of 

the PS from its initial binding site [23]. Also, the kinetics of 1O2 formation and 

decay may change upon irradiation due to the photodynamic modification of cell 

components [28,29]. In order to prevent these effects, all the experiments were 

performed with the lowest possible amount of energy per bacterial cell (7 

nJ/cell), well below the doses reported by Kuimova et al. [28] in eukaryotic cells 

(ca. 0.5 mJ/cell) and comparable to those used by Schlothauer et al. (2-40 

nJ/cell) [29].  

 

3) Identification of 1O2 as the species responsible for the emission recorded at 

1280 nm: Many controls have been carried out to demonstrate that we were 

indeed looking at 1O2 photosensitized by TMPyP in the luminescence 

experiments with E. coli: 

 No signal could be detected in the absence of TMPyP. 

 No signal was observed at 1150 nm under any conditions, i.e., the spectrum 

of the signal matched that of 1O2 [18].  

 The phosphorescence disappeared when oxygen was excluded from the 

medium by flowing a stream of argon above the cell suspension for 1 hour.  

 The duration of the luminescence increased when H2O was replaced by 

D2O in the buffer. 
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5.4. DISCUSSION 

The main goal of this study was to obtain insight into the mechanism of photodynamic 

inactivation of gram-negative bacteria. 

Our first efforts were aimed at identifying the optimal conditions to obtain unambiguous 

time-resolved phosphorescence signals from viable bacterial cells. A concentration of 8 

M in the medium and a contact time of 18 h proved adequate to this respect. While 

such TMPyP concentration is in the range of those used to photoinactivate E. coli [30], 

the contact time is much longer than those typically used in APDT [31,32]. A contact 

time of 18 h was nevertheless chosen as it provided a higher drug uptake at such 

concentration, allowing us to minimize the light dose necessary to obtain proper 

luminescence signals (vide supra). This is an essential requirement as the kinetics of 
1O2 in cells changes with increasing light exposure. Specifically, as the light dose 

accumulates, the extent of reaction between singlet oxygen and cell components 

increases, which changes the cellular microenvironment and therefore the singlet 

oxygen kinetics [28,29]. Control experiments showed no significant dark toxicity under 

those conditions. The sensitiser load achieved with this procedure was about 5 x 105 

TMPyP molecules per bacterial cell, within the typical range for APDT studies [33].  

 

The localization of a PS determines where the ROS are produced and it is therefore 

important to establish it in order to understand the mechanism of APDT. Since 

fluorescence microscopy techniques lack the necessary resolution, an alternative 

approach had to be sought. Our results, based on spectroscopic and photophysical 

measurements, suggest a double localization of TMPyP in E. coli cells. First, the 

bathochromic shift in the absorption spectrum and the appearance of structure in the 

fluorescence spectrum upon binding to E. coli reveal a change in the TMPyP’s 

microenvironment [26,34,35]. This conclusion is confirmed by time-resolved 

fluorescence measurements.  While in PBS the fluorescence kinetics were 

monoexponential (lifetime 4.6 ns), three exponential terms were detected in E. coli cells 

(4.6, 2.0, and 10.5 ns), whereas only two were found in spheroplasts (2.3 and 10.5 ns). 

It is worth noting that in either case the supernatant obtained after centrifugations 

showed no signal, confirming that the fluorescence stems from cell-bound TMPyP 

molecules. Thus, it can safely be concluded that a fraction of TMPyP molecules is 

bound to the external structure of the cell wall, experiencing an aqueous-like 

environment (4.6 ns), and the rest has been internalized. It is well known that TMPyP 

readily binds to the nucleic acids, either intercalated between guanine-cytosine base 

pairs, or groove bound at adenine-thymine sites [36]. The fluorescence lifetime 

changes concomitantly to 1.7-2.5 ns (intercalation) [35] and 10-11 ns (groove binding) 
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[37], values close to those observed in this work. This seems to indicate that 

internalized TMPyP molecules are bound to the cytosolic nucleic acids. Salmon-Divon 

et al. [30] have demonstrated that TMPyP induces photodamage to E. coli nucleic 

acids in the order genomic-DNA > total RNA > plasmid-DNA. 

 

The observed kinetics for 3PS and 1O2 can be interpreted in the light of these findings. 

In the first place, the dual localization of TMPyP is reflected in its triplet-state kinetics, 

as evidenced by the biexponential decay of its phosphorescence at 960 nm in intact 

cells. The shorter component decays with a lifetime of 2.5 s, close to the value 

reported for TMPyP in air-saturated aqueous environments [38]. We assign it to 

TMPyP molecules bound to the cell wall in concurrence with the fluorescence results. 

Thus, external binding to E. coli does not shield TMPyP from oxygen and allows the 

production of 1O2.  The longer component (20 s) is assigned in turn to TMPyP 

molecules bound to the nucleic acids groove, because nucleic acid-intercalated TMPyP 

molecules are subject to reductive electron-transfer quenching by guanine residues 

[26] and are therefore not expected to contribute to the observed phosphorescence. 

Hence, binding to the nucleic acids does not preclude the formation of the triplet state 

of TMPyP but shields it from dissolved oxygen, as evidenced by its 20-s lifetime in air-

saturated media. Consistent with this interpretation, the TMPyP phosphorescence 

decay in spheroplasts is monoexponential and its lifetime (20 s) matches that of the 

internalized PS. 

 

Likewise, the kinetics of 1O2 phosphorescence at 1280 nm reflects both the dual 

localization of the PS and the environment of the nascent 1O2. In order to facilitate the 

interpretation of the signals, it must be borne in mind that 1O2 is formed by energy 

transfer from 3PS to oxygen and therefore the kinetics of its formation match those of 
3PS decay (Eq. 1). This helps assigning which of the observed components 

corresponds to 1O2 formation (= 3PS decay) and which to its decay.  

 

3 1
2 2PS O   PS O  ProductsT       (1)  

 

Eqs. 2 and 3 are readily derived from this simplified scheme: 

 

/3
1[ PS] Tt

t K e    (2) 
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where T  and  are the lifetimes of 3PS and 1O2, respectively; K1 and K2 reflect the 

concentration of 3PS and 1O2 formed by the laser pulse and their values depend on the 

laser energy used in each particular experiment. Thus, the phosphorescence of 3PS is 

expected to decay monotonically while that of 1O2 is expected to rise and decay. It is 

worth noting that due to the sign of the pre-exponential term in Eq. 3, the signals at 

1280 nm rise with the shortest of the two lifetimes, T or , and decay with the longest 

one [39]. 

 

In heterogeneous systems, it is often assumed that each site behaves independently, 

and therefore the observed phosphorescence is the sum of the signals from each site 

[40]. Assuming this to be valid in our case, we have assigned the observed lifetimes to 

T and  for all experiments. They are collected in table 1.   

 

Analysis of the data in table 1 reveals that both populations of triplet TMPyP molecules 

are able to produce 1O2, as evidenced by the biexponential growth of the signals in D-

PBS suspensions of E. coli cells. This is confirmed by the results in spheroplasts and 

when TMPyP was replaced by MDPyTMPyP, conditions that selectively eliminate the 

components due to the external and internal PS populations, respectively.  

 

The second observation is that 1O2 decays with a single lifetime, irrespective of the site 

of formation. This suggests a fast equilibration between internal and external 

populations of 1O2 prior to its decay [41]. The  values are similar to those obtained in 

aqueous solution (3.5 s in PBS and 67 s D-PBS) [42], indicating that, for those 1O2 

molecules we can observe, the most important pathway for 1O2 deactivation is through 

interactions with water, the reactive pathway contribution, leading to cell death [17], 

being of lesser importance. Of course, the possibility that another fraction of 1O2 

molecules reacts with or is quenched by cell components so fast that it does not 

contribute to the observed signal cannot be excluded. 
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Table 1: Triplet TMPyP and 1O2 lifetimes (T and , respectively) assigned from the phosphorescence 

signals observed at 960 nm and 1280 nm.  

 

A consequence of the previous observation is that 1O2 must be able to cross the cell 

wall. This is deduced from the BSA quenching experiments: in spheroplasts, the 

lifetime of 1O2 produced inside the cell decreases when BSA is added to external 

aqueous buffer. Thus, 1O2 can at least cross the inner membrane. In intact cells, 1O2 is 

unequivocally produced both inside and outside. The facts that in this situation (1) there 

is a single decay lifetime for 1O2 and that (2) in the presence of the external quencher 

BSA this lifetime decreases, imply that the inner population is able to cross the cell wall 

prior to its decay. Should this not be the case, we would see independent decay 

kinetics for the inner and outer populations. The relevance of this conclusion is that it 

 960 nm 1280 nm 

PBS T = 2.0 s 
T = 2.0 s 
 = 3.5 s 

D-PBS T = 2.5 s 
T = 2.5 s 
 = 64 s 

E. coli / PBS 
T1 = 2.5 s; T2 = 20 

s 
T1 = 2.5 s; T2 = 20 s 

 = 3.5 s 

E. coli / D-PBS 
T1 = 2.5 s; T2 = 20 

s 
T1 = 2.5 s; T2 = 20 s 

 = 66 s 

E. coli / D-PBS + BSA 
0.75 mM 

T1 = 3.0 s; T2 = 20 
s 

T1 = 3.0 s; T2 = 20 s 
 = 3.0 s 

E. coli spheroplasts / D-
PBS T = 20 s 

T = 20 s 
 = 69 s 

E. coli spheroplasts / D-
PBS + BSA 0.75 mM T = 22 s T = 22 s 

 = 2.0 s

MDPyTMPyP / E.coli / D-
PBS 

T = 3.0 s 
 = 69 s
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provides direct evidence for the observation that the PS does not need to be 

internalized for inflicting photodamage on vital structures of the cell [43], strengthening 

the view that APDT is not likely to develop resistance in microorganisms, as the typical 

bacterial responses to antibiotics, e.g., enhanced drug metabolism, changes in the 

drug binding sites, efflux pumps, etc., cannot counteract the singlet oxygen mobility.  
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5.5. CONCLUSIONS 

An overall mechanistic picture emerges from all observations reported above, namely 

that after an initial binding to E. coli cells driven by electrostatic interactions, TMPyP is 

partially internalized into the bacterium, where it binds to the nucleic acids (Fig. 6).  

 

Likewise, exposure to visible light induces the formation of 1O2 both inside and outside 

the cells. Our data demonstrate that 1O2 can cross the cell wall and that the main 

deactivation mechanism for those molecules is by interactions with water.  

 

 
Fig. 6: Pictorial representation of the dual localization of TMPyP in E. coli. 
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Mechanistic aspects of antimicrobial photodynamic 

therapy in E. coli : Photosensitiser-dependent singlet 

oxygen formation and decay. 

 

Many different families of photosensitisers, with distinct physical and 

photochemical properties, have been used in antimicrobial photodynamic 

therapy. These differences can lead to different kinetics of singlet oxygen 

production and decay when the PS is taken up by bacterial cells. It is 

therefore intriguing to study the mechanism of those PSs against gram-

negative bacteria to better understand the structure-activity relationship of 

the different families of PSs.  
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6.1. INTRODUCTION 

Antimicrobial photodynamic therapy (APDT) [1] has been shown as a viable alternative 

to antibiotics against microbial pathogens, even those whom have developed 

resistance [2,3]. Briefly, the combination of a drug, usually called photosensitiser (PS), 

light and molecular oxygen leads to the production of reactive oxygen species (ROS), 

via electron or energy transfer (type I or type II reaction, respectively) from the triplet 

excited-state of the PS to molecular oxygen [4].  

 

Many different PSs have been used over the years in APDT as antimicrobial agents 

[5,6]. Nowadays, the most typical ones are those cationic at physiological pH, such as 

phenothiazines, porphyrins and phthalocyanines [7-9]. These PSs exhibit a higher 

affinity than conventional PSs used in photodynamic therapy against microbial cells, 

especially against gram-negative bacteria, due to the negative net charge found in the 

microbial cell wall [10-12].  

 

In the previous chapter we reported how, by means of a combination of spectroscopic 

and time-resolved photophysical techniques, it is possible to understand where the PS 

localizes and how singlet oxygen (1O2), one of the species that plays a major role in 

APDT [13], react with the nearest environment. In that case, tetra-N-

methylpyridylporphyrin (TMPyP) was used as a model, demonstrating a double 

localization both inside and outside the cell, and the ability of 1O2 to cross the cell wall 

and react with the external aqueous media [14].  

 

 
Fig. 1: Chemical structures of the photosensitisers used in the study. 
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Thus, in this paper we report the differences in the kinetics of 1O2 production and decay 

in Escherichia coli upon photosensitisation with different cationic PSs chosen as 

representative members of the aforementioned families, i.e., new methylene blue 

(NMB) as a phenothiazine, a hydrophobic porphyrin with a cationic alkyl chain 

(ACS268), and a tetracationic zinc(II) pyridoporphyrazine (ZnTMPyPz) (Fig. 1). These 

compounds are efficient antimicrobial photodynamic agents in vitro [15,16].  

 

Notwithstanding the cationic charges, each PS possesses different physical and 

photophysical properties [6]. These variations should likely lead to a different PS 

localization and therefore, to a different microenvironment. It may be therefore 

insightful to study the details of 1O2 photosensitisation by different PSs to better 

understand the structure-activity relationship of different families of PS.  
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6.2. EXPERIMENTAL SECTION 

 

Chemicals  

New methylene Blue (NMB) was supplied by Sigma-Aldrich Co. (St. Louis, MO, USA). 

Zinc-tetramethyltetrapyridino[3,4-b: 39,49-g: 30,40-l: 3-,4-q]porphyrazinium salt 

(ZnTMPyPz) was synthesised as described by Marti et al. [17].  

5,10,15-tris(2,6-dichlorophenyl)-20-[N-(12-trimethyl ammonium chloride)-dodecyl-p-

sulphonamidophenyl]porphyrin (ACS268) was synthesised by means of the procedure 

described in the Annex. Deuterium oxide (>99.9%) and dimethylformamide were 

purchased from Solvents Documentation Synthesis (Peypin, France). Bovine serum 

albumin (98%), lysozyme, sodium dodecyl sulphate (SDS), trizma, and Dubelcco’s 

phosphate buffered saline (PBS) were purchased from Sigma-Aldrich Co. Saccarose 

and ethylendiamine tetraacetic acid (EDTA) were supplied by Panreac S.A. (Barcelona, 

Spain). 

Deuterated PBS (D-PBS) was prepared by dissolving PBS powder in deuterium oxide. 

 

Control experiments 

Controls were performed to unmistakably ascertain the origin of the luminescence 

signals, the light doses and the identification of 1O2 as the emissive species (see 

results section, Chapter 5) for all the experiments in bacterial suspensions and all the 

PSs. 
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6.3. RESULTS 

PSs binding to E. coli 

The uptake of NMB and ACS268 was studied by means of its fluorescence in cell 

lysates obtained by treatment with NaOH 0.1 M / 1 % sodium dodecyl sulphate (SDS). 

Bulk concentrations of 10 µM and 7.5 µM were used, respectively. While the uptake of 

ACS268 reaches a plateau value after only 1 h, the uptake of NMB requires ca. 20 h 

for completion (Fig. 2). For ZnTMPyPz we adopted the uptake conditions described by 

Dupouy et al. [18], namely 30 min contact time at 37 ºC and 10 µM bulk concentration. 
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Fig. 2: Binding to E. coli of (A) NMB and (B) ACS268, with a bulk concentration of 10 µM and 7.5 M, 

respectively. 

 

It was critical in our experiments to eliminate any PS molecule from the external 

aqueous buffer in order to ensure that all the spectroscopic data was produced by cell-

bound molecules. Therefore, to unmistakably assign the spectroscopic data, the 

external aqueous solutions were routinely tested before and after the in vitro 

measurements, providing no significant signal in all cases. 

 

Thus, regarding the absorption and fluorescence emission of the PSs bound to E. coli, 

the absorption spectrum of NMB showed a bathochromic shift of 8 nm relative to that in 

the buffer (Fig. 3A), as well as a slight change in the monomer-dimer band ratio. 

However, no significant change was observed in the fluorescence emission spectrum 

(Fig. 3B). For ZnTMPyPz, the absorption spectra both in E. coli and buffer showed a 

similar structureless broad-band distinct from the spectrum obtained in DMF, where it is 

in a monomeric form (Fig. 3C). A 5 nm bathochromic shift was observed in the 

fluorescence spectrum relative to that in DMF (Fig. 3D). For ACS268, the absorption 

spectrum in E. coli showed a 7 nm bathochromic shift relative to that in buffer (Fig. 3E). 
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The fluorescence spectra in E. coli and buffer showed similar structures but with a 5 

nm bathochromic shift (Fig. 3F). 

 

 

0

50

100

0

50

100

Wavelength / nm

600 650 700 750 800
0

50

100

400 500 600 700
0

50

100

N
o

rm
a

li
ze

d
 A

b
so

rb
a

n
c

e
 (

%
) N

o
rm

a
lize

d
 In

te
n

sity
 (%

)

0

50

100

0

50

100

A B

C D

E F

 

Fig. 3: (A,C,E) Absorption and (B,D,F) fluorescence spectra of: (A,B) New methylene blue in E. coli (solid 

line), PBS (dashed line), 1% SDS in 0.1 M NaOH (dotted line). (C,D) ZnTMPyPz in E. coli (solid line), PBS 

(dashed line), DMF (dotted line). (E,F) ACS268 in E. coli (solid line), PBS (dashed line), DMF (dotted line). 

 

 

Time-resolved fluorescence measurements provided additional insight on the uptake of 

the PSs (Fig. 4). The fluorescence kinetics of NMB at 657 nm decayed 

monoexponentially with a lifetime of 0.5 ± 0.1 ns both in E. coli and in buffer. For 

ZnTMPyPz, the time-resolved fluorescence measurement in E. coli at 675 nm required 

only one exponential term with lifetime 2.8 ± 0.5 ns. An additional exponential term was 

necessary in buffer with a lifetime of 0.5 ± 0.1 ns, respectively. Time-resolved 

fluorescence of ACS268 was inconclusive as the kinetics in solution were too complex 

to extract any conclusion. 
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Fig. 4: Time-resolved fluorescence decay of (A,B) NMB at 657 nm and (C,D,E) ZnTMPyPz at 675 nm 

upon excitation at 596 nm. Signal, instrument response function, and fit in (A,C) PBS at pH 7.4, (B,D) E. 

coli, and (E) DMF. 

 

Singlet oxygen kinetics in E. coli cells with NMB as PS 

Pulsed-laser irradiation of NMB-loaded E. coli cells (30 min contact time; 10 M NMB 

bulk concentration) suspended in buffer at pH 7.4 produced clear time-resolved 1O2 

phosphorescence signals at 1270 nm (Fig. 5). The contact time between the NMB 

solution and the bacteria had no effect on 1O2 luminescence kinetics. In PBS, the 

signals grew with a lifetime 1
PBS = 2.5 ± 1 s, and decayed monoexponentially with a 

lifetime 2
PBS = 3.7 ± 1 s. In deuterated-PBS (D-PBS), the signal rise remained 

unchanged with a lifetime 1
D-PBS = 2.5 ± 1 s, but it decayed more slowly, with a 

lifetime 2
D-PBS = 65 ± 2 s. Addition of 0.75 mM bovine serum albumin (BSA), a 1O2 

quencher that is not able to cross the cell wall due to its size [19], clearly modified the 

signal: the rise of phosphorescence was now complete within the time resolution of our 

set-up, and the decay was also faster with lifetime 1
BSA = 7.0 ± 1 s. Saturation of this 

suspension with oxygen led to a further decrease of the decay lifetime to 1
BSA,O2 = 3.5 

± 1 s. Finally, measurements in E. coli spheroplasts, i.e., bacteria from which the cell 

wall had been almost completely removed, led to a 4-fold decrease in the 1O2 

phosphorescence signal intensity, but with the same kinetics as in intact cells. 
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Fig. 5: Medium effects on the NMB-photosensitised singlet oxygen phosphorescence at 1270 nm in E. 

coli: (A) Air-saturated PBS. (B) Air-saturated D-PBS. (C) Air-saturated D-PBS with 0.75 mM BSA added. 

(D) Oxygen-saturated D-PBS with 0.75 mM BSA added. 

 

Singlet oxygen kinetics in E. coli cells with ZnTMPyPz as PS 

Although ZnTMPyPz is a potent 1O2 photosensitiser in solution [17], irradiation of 

ZnTMPyPz-loaded E. coli cells suspended in D-PBS did not produce any clear time-

resolved 1O2 phosphorescence signal at 1270 nm (Fig. 6). Neither a higher contact 

time of ZnTMPyP (3h), nor a higher acquisition time of the 1O2 phosphorescence signal 

(12 million laser pulses) produced any detectable signal.  

 

 

Fig. 6: Singlet oxygen phosphorescence at 1270 nm using ZnTMPyPz as photosensitiser in E. coli cells 

suspended in D-PBS. 
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Singlet oxygen kinetics in E. coli cells with ACS268 as PS 

The quantum yield of singlet oxygen production () of ACS268 was measured in two 

different solvents, DMF and D2O, by comparison of the signal produced by optically-

matched solutions of reference PSs (phenalenone and TMPyP) [20] with that produced 

by ACS268. Thus,  values of 0.87±0.01 and 0.04±0.01 were determined in DMF and 

D2O, respectively. Irradiation of ACS268-loaded E. coli cells produced time-resolved 
1O2 phosphorescence signals clearly different from those observed for NMB (Fig. 8). In 

PBS, the signals grew with a lifetime 1
PBS = 2.1 ± 1 s, and decayed biexponentially 

with lifetimes 2
PBS = 8.6 ± 1 s and 3

PBS = 34.1 ± 1 s. In D-PBS, the rise of the signal 

was slightly slower, 1
D-PBS = 5.2 ± 1 s, but the decay kinetics remained unchanged 

biexponential. Addition of 0.75 mM of BSA shortened only the slowest decay lifetime, 

i.e , 2
BSA = 8.6 ± 1 s and 3

BSA = 34.0 ± 1 s. Finally, measurements in E. coli 

spheroplasts led to a 3-fold decrease in the 1O2 phosphorescence signal intensity, but 

with the same kinetics as in intact cells.  
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Fig. 7: Medium effect on the ACS268-photosensitised singlet oxygen phosphorescence at 1270 nm in E. 

coli cells suspended in: (A) PBS. Inset: Zoom of the first 30 s , (B) D-PBS, (C) D-PBS + 0.75 mM BSA . 
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6.4. DISCUSSION 

The main goal of this study was to seek insight into the kinetics of 1O2 production and 

decay, thereby shedding light on the mechanism of photodynamic inactivation of gram-

negative bacteria. Specifically, we were interested to learn whether representative 

members of three different families of photosensitisers would provide different 

photosensitisation kinetics. 

 

Towards this goal, it was first essential to obtain unambiguous time-resolved 1O2 

phosphorescence signals from viable cells, i.e., (1) to reduce to a minimum the 

acquisition time as the 1O2 kinetics in cells changes with increasing light exposure 

[21,22], and (2) to identify the optimal concentration and contact time of each PS for 

efficient cell binding/uptake. A concentration ca. 10 M, similar to the ones used in 

inactivation experiments for E. coli [18,23], and a 30 min contact time, typical in APDT 

[24,25], proved adequate in this respect notwithstanding the higher amount of NMB 

taken up at longer contact times (Fig. 2). It has been reported that, under similar 

experimental conditions, all these PSs do not show significant dark toxicity [18,26]. 

 

Regarding the phenothiazine group, NMB was chosen as the model due to its highest 

singlet oxygen quantum yield and higher hydrophobicity [27], as well as its ability to 

properly inactivate many bacterial species [27]. Two major changes can be observed in 

the absorption spectrum of NMB upon binding to E. coli: on one hand, the relative 

contribution of the dimer’s band at 600 nm increases, which is consistent with the 

report by Usacheva et al. that phenothiazium dyes tend to dimerize in the presence of 

bacteria [28]. On the other, the monomer’s band maximum shows a slight 

bathochromic shift that reveals a change in the NMB’s microenvironment [29]. 

Somewhat surprisingly, such microenvironmental changes have no effect on the 

fluorescence spectrum, nor in the fluorescence lifetime. The fact that there is no 

change in the fluorescence lifetime indicates that despite the different 

microenvironment, NMB is still surrounded by water molecules (see Annex). This 

conclusion is supported by the 1O2 phosphorescence formation and decay kinetics. 

Both in PBS and D-PBS, the lifetimes obtained for the 1O2 phosphorescence signal 

matched those obtained in neat H2O or D2O, a 2.5 s rise component assigned to the 

triplet lifetime of NMB, and a 3.7 or 65 s component due to 1O2. This indicates that 

NMB is localised in an aqueous-like environment and that 1O2 is deactivated mainly by 

interactions with H2O or D2O [30]. Of course, it cannot be excluded that another fraction 

of 1O2 molecules reacts with or is quenched by cell components so rapidly that it does 

not contribute to the observed signal. Care was taken to ensure that the signals did not 
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originate on NMB molecules that has leaked into the bulk solution during the 

experiments. The supernatant solution was checked before and after the experiments 

and in all cases we could find no signal.  Addition of BSA to the D2O suspensions 

significantly changed the signal kinetics, causing both a faster rise (< 1 s) and a faster 

decay (lifetime of 7 s) in air-saturated suspensions. The latter component was 

decreased further to 3.5 s upon bubbling with oxygen. These results suggest a dual 

effect of BSA: on one hand it quenches 1O2 as one would expect [19] decreasing its 

lifetime below the time resolution of our setup; on the other, it interacts with NMB 

shielding it from oxygen [31], which effectively increases the triplet lifetime from 2.5 s 

to 7 s (in air) or 3.5 s (under oxygen). Therefore, NMB must be located somewhere 

in the external structure of the cell wall, accessible to BSA, or must be able to relocate 

and bind to BSA upon its addition to the solution. This conclusion is consistent with 

Usacheva’s et al. report that phenothiazinium dyes interact with the outer-wall bacterial 

lipopolisaccharides (LPS) [32,33].  

 

Concerning the phthalocyanine family, ZnTMPyPz was chosen as a model since 

Dupouy et al. [18] had shown that, using the same uptake conditions as in this work, 

irradiation with visible light reduced the cell viability by 99.5%. These results can now 

be rationalised in the light of our findings.  

First, as observed in the absorption spectrum, ZnTMPyPz is largely aggregated in E. 

coli. This aggregation would explain why no signal is observed in the 1O2 luminescence 

experiments under conditions similar to those used for the other PSs, even increasing 

the contact time and the acquisition time. Spesia et al. showed that alterations in the 

cell membrane appear to be the major cause of E. coli inactivation upon APDT with 

visible light and a tetracationic zinc(II) phthalocyanine derivative (ZnPc4+) [34]. 

Assuming that (1) ZnTMPyPz and ZnPc4+ localize in a similar microenvironment 

because of the huge structural similarity, and that (2) ZnTMPyPz is basically 

aggregated like in an aqueous media, as observed by the absorption spectrum and the 

absence of 1O2 luminescence signal, a localization to the outer structure of the cell wall, 

comparable to the one obtained with NMB, is tentatively attributed. This conclusion is 

not contradictory to the 99.5% reduction in cell viability, as there is still a small quantity 

of monomer, detectable by time-resolved fluorescence measurements, responsible of 

the production of ROS and the resulting photodynamic effect shown by ZnTMPyPz.  

 

As to the porphyrin’s family, we previously demonstrated that a tetracationic porphyrin 

such as TMPyP, with the cationic charges peripherically-distributed, localizes in E. coli 

at two different sites: (1) externally bound to the cell wall, probably in a similar 
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localization as NMB and ZnTMPyPz, and (2) inside the cell, bound to the nucleic acids 

[14]. We hypothesize that ACS268, which has a unique cationic charge in the alkyl 

chain, would localize in a completely different environment than those of TMPyP, as 

the cationic charge is far away from the photoactive core and the 

lipophilicity/hydrophilicity of the molecule is completely different. The  values in DMF 

and D2O clearly demonstrate that only when ACS268 is on its monomeric form, it is 

able to produce 1O2. 

Both the spectroscopic measurements and the 1O2 phosphorescence in E. coli are in 

agreement with the aforementioned hypothesis. The bathochromic shift observed in the 

absorption and fluorescence spectra in E. coli indicates a different environment 

surrounding the PS relative to that in solution [29,35,36]. As for the triplet-excited state 

of ACS268, two components with lifetimes 8.6 s and 34 s are observed in the 1O2 

phosphorescence experiments in PBS, D-PBS and upon addition of BSA. These 

different lifetimes may indicate two different localizations, both clearly shielded from 

oxygen. Indeed, the results in spheroplasts indicate that ACS268 must be located 

somewhere in the external membrane of the cell wall. As regards to 1O2, the  values 

in E. coli are significantly lower (2.1 s in PBS; 5.2 s in D-PBS) than the ones 

observed in buffer (3.5 s in PBS; 67 s in D-PBS) [30] indicating a new competitive 

process of deactivation of 1O2 within the cell, namely an immediate reaction of the 

produced 1O2 with quenchers surrounding the PS molecule.  

The rate constant of 1O2 decay in microheterogeneous systems under exchange 

equilibrium conditions, kd, is described by Eq. 1 [37]: 

 

, ,(1 )1
                                                      (1)

(1 )
eq m d cell m d water

d
eq m m

K f k f k
k

K f f

    
 

  
 

 

where Keq = [1O2]cell /[
1O2]water is the partition equilibrium of 1O2 between the two phases, 

fm and (1-fm) are the volume fractions of the cell and aqueous phase, respectively, and 

kd,cell and kd,water are the decay rate constants inside and outside the cell, respectively. 

Assuming Keq ≈ 1 and fm ≈ 0.0012 for our suspensions in 5 x 108 CFU/mL, the lifetime 

of 1O2 within the bacterial cell can be estimated as cell ≈ 7 ns, a value that would 

perfectly correlate with the 1O2 phosphorescence kinetics observed upon addition of 

BSA.  

 

It has previously been demonstrated that the presence of external proteins clearly 

modifies the effectiveness of APDT to inactivate microbial cells [38-40]. Such effect can 
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also be observed in the kinetics of 1O2 in the presence of BSA. As observed, the 

addition of BSA clearly modifies the 1O2 phosphorescence signal produced by NMB, 

decreasing  and increasing T, demonstrating an interaction between NMB and BSA. 

However, the effect is barely observed when ACS268 is used as a PS, suggesting a 

deeper localization of ACS268 into the cell wall, leading to a lower accessibility towards 

the PS molecule and a lower 1O2-quenching effect of BSA. 
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6.5. CONCLUSIONS 

 

We have demonstrated that, between the different families used in the study, there are 

significant differences in (1) the microenvironment surrounding the PSs, i.e., in their 

localization, and (2) the kinetics of production and decay of 1O2. 

 

When bound to E. coli, NMB localizes in an aqueous-like microenvironment, accessible 

to external proteins such as BSA and interacting with the LPS in cell-wall, ZnTMPyPz 

might localize similarly to NMB, where it is almost completely aggregated, and ACS268 

localizes in a deeper position of the external structure of the cell wall, namely in the 

outer membrane, shielded from oxygen as demonstrated with the triplet lifetimes. 

 

With regards to the 1O2 produced by the PSs, 1O2 generated by NMB can move freely 

within the cell being mainly deactivated by the aqueous phase, while a completely 

different scenario is observed for ACS268, suggesting that 1O2 cannot escape freely 

from its primary site of production, and thus partially reacts with proximate cellular 

components. On the other hand, ZnTMPyPz did not show 1O2-luminescence under 

conditions similar to those used for the others PSs, correlating with the lower 

photodynamic inactivation effect observed. 
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6.7. Annex 

Synthesis of ACS268 

The synthesis of ACS268 is outlined in Fig. A1 and was performed by António Rocha 

Gonsalves and Arménio Serra in the University of Coimbra. 

 
Fig. A1: Synthethic pathway used for ACS268. 

 

To a solution of 7.0 g (40 mmol) of 2,6-dichlorobenzaldehyde, 0.85 g ( 8.0 mmol ) of 

benzaldehyde in 100 mL of acetic acid, 8 mL of acetic anhydride and 25 mL of 

nitrobenzene at 120 oC, 3.5 mL (50 mmol) of pyrrole were added. The reaction was 

maintained at this temperature for 2 hours. After cooling, 275 mg of a mixture of 5-

phenyl-10,15,20-tris(2,6-dichlorophenyl)porphyrin (A) and tetrakis(2,6-

dichlorophenyl)porphyrin (B) was obtained.  

 

Synthesis of 5,10,15-tris(2,6-dichlorophenyl)-20-[N-(12-amino-dodecyl-p-

sulphonamidophenyl]porphyrin (porphyrin C). At room temperature, 20 ml of 

chlorosulfonic acid was added to 250 mg of the mixture of porphyrin A and B. The 

solution was stirred for 2 h and then carefully poured over ice in order to precipitate the 

chlorosulphonylderivative of porphyrin B and unreacted porphyrin A which does not 

react at this temperature due to ring deactivation. The precipitate was filtered, dried, 

dissolved with chloroform and the solution dried with sodium sulphate (Na2SO4). The 

solution was concentrated to 30 ml and was added to 0.8 g of 1,12-diaminedodecane 

and pyridine (2 ml). The mixture was stirred overnight at 30 ºC and filtered. After 
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concentration the residue was chromatographed on silica gel type 60 with particle size 

of 0.035-0.070 m (Acros Organics). The porphyrin fraction was eluted first with 

dichloromethane and then dichloromethane/ethyl acetate/ethanol (70/30/10). 

Evaporation of the solvent generated 120 mg of porphyrin C (MS (ESI): m/z  1083 

(100%, [M+1]+). 

 

Synthesis of 5,10,15-tris(2,6-dichlorophenyl)-20-[N-(12-trimethyl ammonium chloride)-

dodecyl-p-sulphonamidophenyl]porphyrin (ACS268). Porphyrin C (100 mg) was 

dissolved in DMF (1 mL) and 2 methyl iodide (2 mL) and K2CO3 (150 mg) were added. 

The solution was stirred for 24 h at 60oC in a sealed tube and, after cooling, was 

poured over ice water to precipitate. The solid was filtered, dissolved in 

dichloromethane and dried over Na2SO4. Then, the solution was concentrated to 10 

mL, stirred for 30 min. with Amberlite 400 (Cl), filtered and washed with methanol. 

Evaporation of the solvent gave a solid which was recrystallized (CH2Cl2/hexane) to 

originate 70 mg of ACS268. δH(400 MHz, d6-DMSO) 8.75 (m, 8H, β-H), 8.47 (d, 2H, J= 

7.2 ArH), 8.23 (d, J= 7.2 Hz, 2H, Ar-H), 8.03-7.96 (m, 9H, Ar-H), 3.12-2.90 (m, 13H, 

(CH3)3,CH2N), 1.25 (m, 20H, CH2), HRMS (ESI): m/z calc. for C59H57Cl6N6O2S (M+) 

1123.23778; found, 1123.23894. 

 

Solvent polarity dependence of the fluorescence intensity of NMB 

The fluorescence lifetime of 1 M solutions of NMB in different solvents with increasing 

polarities show a clear dependence as demonstrated in Fig. A2. 
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Fig. A1: Time-resolved fluorescence decay of NMB at 657 nm upon excitation at 596 nm in H2O (0.5 ns; 

blue), MeOH (0.7 ns; violet), EtOH (0.8 ns; green), 1-pentanol (1.0 ns; orange) and 1-hexanol (1.1 ns; red). 
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Singlet oxygen photosensitisation by the fluorescent probe 

Singlet Oxygen Sensor Green 

 

The detection of reactive oxygen species by means of fluorescent probes 

is really extended. In this chapter, the ability of Singlet Oxygen Sensor 

Green, a fluorescein-based probe, to self-sensitize singlet oxygen under 

exposure to UV or visible radiation is investigated.  
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7.1. INTRODUCTION 

Singlet oxygen (1O2) is a highly reactive oxygen species (ROS) that can damage 

biological cell components such as lipids, proteins or nucleic acids. Used intentionally 

as a deleterious species in photodynamic therapy [1,2], its role as a biological 

messenger is being increasingly recognised [3-5]. 

Methods for 1O2 detection include EPR spectroscopy using spin traps [6], 

phosphorescence at 1270 nm [7] and chemical trapping [8]. The current spread of 

fluorescence imaging techniques has lead to the development of a number of 1O2 

fluorescent probes such as trans-1-(2’-methoxyvinyl)pyrene (MVP) [9], dansyl-2,2,5,5-

tetramethyl-2,5-dihydro-1H-pyrrole (DanePy) [10] or fluorescein-based probes such as 

DMAX or DPAX [11]. Invitrogen / Molecular Probes has recently marketed a highly 

selective sensor for 1O2 without any appreciable response to hydroxyl radicals or 

superoxide under the trade name Singlet Oxygen Sensor Green (SOSG) reagent® [12]. 

While the exact structure of SOSG has not been disclosed, its absorption spectrum 

resembles that of DMAX and it may therefore be assumed that it contains a fluorescein 

bound to a dimethylanthracene derivative (Fig. 1). 

 
Fig. 1: UV-Visible spectrum of (A) dimethylanthracene (blue) and fluorescein (green) and (B) SOSG (red). 

 

SOSG has been successfully applied to the detection of 1O2 in fields as diverse as 

light-activated plant defense [13], photoinactivation of Staphylococcus aureus bacteria 



Chapter 7 

 
 

 146

[14], or plasmonic engineering of 1O2 production [15]. A recent review compares the 

benefits of these probes for 1O2 imaging in plants [16]. 

SOSG exhibits weak blue fluorescence peaks at 395 and 416 nm under excitation at 

372 and 393 nm. In the presence of 1O2, SOSG emits a green fluorescence with 

excitation and emission maxima at 504 and 525 nm, respectively [12]. This green 

fluorescence emission was assigned to an endoperoxide generated by the interaction 

of 1O2 with the anthracene component of SOSG as observed for other fluorescein-

anthracene probes such as DMAX or DPAX [11].  

 

In the course of our studies using SOSG as 1O2 probe, we observed the appearance of 

the green fluorescence under exposure of SOSG to either UV or visible radiation, even 

in the absence of external 1O2 photosensitisers. This observation has also been 

reported by other authors [16,17]. Thus, the main goal of the present study is to 

demonstrate that SOSG is able to produce 1O2 under photoirradiation.  
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7.2. EXPERIMENTAL SECTION 

Materials  

Singlet oxygen sensor green was purchased from Invitrogen (Molecular Probes, 

Paisley, UK). Sodium azide, 9,10-dimethylanthracene, fluorescein and 2-

mercaptoethylamine (MEA) were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

Deuterium oxide (D2O; >99.9%), methanol, and methanol-d4 were purchased from SDS 

(Solvents Documentation Synthesis, Peypin, France). Deuterated solvents were used 

since deuterium greatly enhances the 1O2 lifetime and thus makes its detection easier.  

Samples were contained in squared 1 cm optical path fused silica cuvettes (Hellma 

101-QS).  

 

Liquid chromatography conditions 

Liquid Chromatography (HPLC) was performed with an Agilent 1200 series liquid 

chromatograph equipped with a diode array detector. SOSG was analyzed on a 12.5 

mm x 4.6 mm, 5 µm particle, Lichrospher 100 RP-18 column. Detection was obtained 

at 254, 355 and 532 nm. All chromatography was performed at 25 ºC with a mobile 

phase flow rate of 1.0 mL min-1. A gradient elution was performed from 40:60 to 70:30 

MeOH/H2O for the mobile phase (Table 1): 

 

Table 1. Chromatographic conditions for the gradient elution of SOSG. 

Time / min %MeOH % H2O

0 40 60 

2 40 60 

15 70 30 

20 

22 

70 

40 

30 

60 

27 40 60 
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7.3. RESULTS 

Purity of SOSG 

Liquid chromatography was used to assess the purity of SOSG. The sample was 

prepared by solving 100 µg of SOSG in 0.5 mL of MeOH / H2O 70:30. As observed in 

Fig. 2, four different peaks were obtained at 254, 355 and 532 nm with relative total 

areas showed at Table 2.  

 

Table 2. Relative areas of the peaks obtained by liquid chromatography of SOSG shown in Fig. 2. 

Chromatogram obs / nm 
Peak 1 

(%) 

Peak 2 

(%) 

Peak 3 

(%) 

Peak 4 

(%) 

A 254 0.1 0.2 94.9 4.8 

B 355 0.1 0.2 95.3 4.4 

C 532 0.1 0.2 94.9 4.8 

 

 
Fig. 2: Liquid chromatography of SOSG detected at (A) 254 nm, (B) 355 nm and (C) 532 nm. 

 

 

Peaks 3 and 4 had the same UV-Vis spectrum as SOSG (Fig. 3) and had a total 

relative area better than 99%. The presence of two different peaks with the same 
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absorption spectra could be explained by the presence of different ionization grades or 

different isomers of SOSG.  

 

UV-Vis spectra of peaks 1 and 2, corresponding to SOSG impurities or degradation 

products, are also presented in Fig. 3. However, sum of its relative area corresponds 

only to 1%.  

 

 
Fig. 3: Absorption spectra from 210 nm to 700 nm for the different peaks obtained by liquid 

chromatography and diode array detection of SOSG. 

 
 
 
Singlet oxygen detection and control experiments  

Irradiation of a methanol-d4 SOSG solution at 355 nm produced a clear time-resolved 

luminescence signal with maximum intensity at 1275 nm. Substitution of air-

atmosphere by bubbling during 20 min a SOSG solution with argon to remove oxygen 

from the solution eliminated the signal at 1275 nm (Fig. 4). 
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Fig. 4: Singlet oxygen phosphorescence photosensitised by SOSG in methanol-d4. The solution was 

irradiated with 1-ns laser pulses at 355 nm (ca. 1 µJ per pulse, repetition rate 10 kHz) and the 

luminescence was observed at 1275 nm. (a) Air atmosphere (b) Argon atmosphere. Inset: Spectral 

distribution of the photoluminescence generated by SOSG. 

 

Addition of different volumes of a 10 mM NaN3 solution to SOSG solved in methanol-d4 

reduced the phosphorescence decay lifetime concomitantly (Fig. 5). 

 

 
Fig. 5: Singlet oxygen phosphorescence photosensitised by SOSG in methanol-d4, air athmosphere and 

sodium azide concentrations ranging from 0 mM (black curve) to 0.54 mM (pink curve). The solution was 

irradiated with 1-ns laser pulses at 355 nm (ca. 1 µJ per pulse, repetition rate 10 kHz) and the 

luminescence was observed at 1275 nm. Inset: Stern-Volmer Plot. 

 

Likewise, removing SOSG from the solution completely eliminated the signal, 

demonstrating that signals did not come from an impurity due to the solvent (Fig. 6).  
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Fig. 6: Singlet oxygen phosphorescence control experiment of methanol-d4 and air athmosphere. The 

solution was irradiated with 1-ns laser pulses at 355 nm (ca. 1 µJ per pulse, repetition rate 10 kHz) and the 

luminescence was observed at 1275 nm.  

 

 

Singlet oxygen quantum yields 

The 1O2 production quantum yield, , was determined by comparing the intensity of 

the 1O2 signal shown by SOSG to that of optically-matched solutions of reference 

photosensitisers [18]. Using phenalenone and rose bengal as standards (
ref = 0.97 

and 0.75, respectively [21-23]), we obtained  values in methanol of 0.03 ± 0.01 and 

0.009 ± 0.003 for excitation at 355 and 532 nm, respectively (Fig. 7a and 7b).  
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Fig. 7: Singlet oxygen phosphorescence photosensitised by SOSG in (a,b) MeOH and (c,d) D2O-MeOH 

95:5 observed at 1275 nm. The solution was irradiated with 1-ns laser pulses at (a,c) 355 nm using 

phenalenone (PN) as reference, and (b,d) 532 nm  using rose bengal (RB) as reference. 

 

As SOSG is intended for use in aqueous environments,  were also measured in 

95:5 D2O:MeOH mixtures, observing a decrease in their values dropping to 0.006 ± 

0.002 at 355 nm and to 0.002 ± 0.001 at 532 nm (Fig. 7c and 7d). 

 
 

Laser-induced kinetics of SOSG  

Irradiation of an SOSG sample, solved in 95:5 H2O:MeOH, at 355 nm induced very 

different effects: while an increase of the green fluorescence was observed at low 

irradiation doses, extended irradiation caused it to decrease. At the same time a fast 

and extensive bleaching of both the fluorescein and anthracene absorption bands 

could be observed. The bleaching could be slowed down by the radical quencher 2-

mercaptoethylamine (MEA, 100 mM), but was insensitive to the addition of 5 mM NaN3 

(Fig. 8A and 8B). 

 

However, irradiation at 532 nm induced different effect, namely a transient 

fluorescence decrease followed by a steady fluorescence rise as the dose was further 

increased. Interestingly, the absorbance of the fluorescein moiety increased 

monotonically to a final constant value, while the anthracene moiety was bleached (Fig. 

8C and 8D).  
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Fig. 8: Time course of the absorption (A, C) and fluorescence (B, D) spectra of SOSG upon irradiation in 

H2O:MeOH (95:5) with 10-ns laser pulses at 355 nm (A, B) and 532 nm (C, D) (ca. 20 mJ per pulse, 

repetition rate 10 Hz). Insets: (A, C) Absorbance at 507 nm (fluorescein moiety, circles) or at 395 nm 

(anthracene moiety, squares) in the presence (open symbols) and absence (filled symbols) of 100 mM 

MEA. (B, D) Area under the fluorescence spectra obtained in the presence (open symbols) and absence 

(filled symbols) of 100 mM MEA. The samples were excited at 480 nm. 

 

Laser flash photolysis of SOSG 

Pulsed-laser irradiation at 355 nm or 532 nm of an air-saturated SOSG solution in 

H2O:MeOH (95:5) produced the transient absorption signals at 428 nm shown in Fig. 9.  

 

Excitation of SOSG at 355 nm produced a long-lived transient with maximum 

absorption at 428 nm that was insensitive to oxygen, but was clearly modified upon 

addition of 100 mM of MEA. Excitation of SOSG at 532 nm produced a long-lived 

transient as well, but it was much weaker than when SOSG was irradiated at 355 nm.  
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Fig. 9: Transient absorption of SOSG in air-saturated H2O:MeOH (95:5) solutions as a function of 

excitation wavelength and added MEA. Observation wavelength: 428 nm. 
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7.4. DISCUSSION 

The main goal of the present study was to demonstrate that SOSG is able to produce 
1O2 under photoirradiation. Therefore, it was important for us to demonstrate the purity 

of SOSG in the samples used for the study. Characterisation of the samples by liquid 

chromatography probed adequate to this respect, showing that both the spectra and 

the relative areas of the different peaks observed were due to the same product with a 

relative area >99%. Mass spectrometry was also performed providing a major signal of 

m/z = 601.1050 correspondent to an empirical formula of C36H22ClO7 (see Annex). 

Additionally, NMR experiments were also performed and are also given in the Annex. 

 

Formation of 1O2 by SOSG has been assessed by time-resolved near-IR 

phosphorescence detection [18,19]. Many control experiments have been performed to 

demonstrated that it was indeed 1O2 photosensitised by SOSG the source of the 

luminescence observed at 1275 nm: (1) the addition of NaN3 reduced the 

phosphorescence decay lifetime, providing a quenching rate of 2.6 x 108 M-1s-1, in 

perfect agreement with bibliographic values [20]. Removing (2) oxygen or (3) SOSG 

from the solution completely eliminated the signal  

 

The  values are modest but non negligible, particularly as SOSG is used as a 1O2 

probe. This is particularly important when UV radiation is used or when the 

photosensitisers under scrutiny show low 1O2 quantum yields, e.g., as for the enhanced 

green fluorescent protein (EGFP) [7]. The excitation wavelength dependence of the  

values indicates that different photochemical processes arise upon excitation of the 

anthracence or fluorescein moieties. In agreement with this observation, the 

absorbance and green fluorescence intensity of SOSG changed in a different fashion 

upon irradiation of either the anthracene-moiety (355 nm) or the fluorescein-moiety 

(532 nm). While the results upon irradiation at 532 nm are consistent with a steady 

production of 1O2 upon irradiation, confirming the time-resolved near-IR luminescence 

results, irradiation at 355 nm induced very different effects. The fact that the bleaching 

of the fluorescein moiety could be slowed down by the radical quencher MEA, but not 

by NaN3 suggests that the bleaching is mediated by radical species but not by 1O2. This 

observation agrees with an earlier report on the photobleaching of fluorescein [24] and 

with our experiments performed by laser flash photolysis.  

 

All these results can be rationalised using the energy diagram depicted in Fig. 10, 

under the assumption that the excited-state energy levels and redox potentials of 



Chapter 7 

 
 

 156

SOSG are close to those of fluorescein and dimethylanthracene [25-27]. Irradiation 

at 355 nm and at 532 nm trigger different photochemical pathways. 

 

 

 

Fig. 10: Energy diagram of the dimethylanthracene – fluorescein photosystem and suggested deactivation 

pathways following excitation at 355 and 532 nm. 

 

Thus, irradiation at 532 pumps the fluorescein to its singlet excited state, which is 

followed by a fast electron transfer from anthracene to fluorescein. As long as the 

anthracene moiety is intact, this pathway competes efficiently with SOSG fluorescence 

and the probe is silent. In the presence of 1O2, anthracene is oxidised and this 

deactivation pathway is no longer available, rendering SOSG fluorescent. However, 

when intact SOSG is exposed to UV radiation an additional photochemical pathway 

becomes possible, namely electron transfer from fluorescein to anthracene, which 

leads to its irreversible bleaching. The observation of a long-lived transient at 428 nm in 

the laser flash photolysis experiments is consistent with the formation of the 

semioxidised form of fluorescein in this case [24]. 
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7.5. CONCLUSIONS 

 

The results above show that SOSG is able to act as 1O2 photosensitiser, particularly 

under UV radiation. Furthermore, UV irradiation leads to its photobleaching due to the 

formation of radical species. While SOSG remains a useful 1O2 probe, these results 

should be taken into account by users of this probe for the design of appropriate 

controls and care must be exercised when using it, particularly in combination with UV 

sources. 
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7.6. ANNEX 

 
Mass spectrometry 

High resolution mass spectrometry was done to know the exact mass of SOSG. A TOF 

spectrometer with ESI gave a major peak of m/z = 601.1050 (Fig. A1) correspondent to 

an empirical formula of C36H22ClO7. 

 

 
Fig. A1: ESI-TOF high resolution mass spectrometry of SOSG. 

 
 
 
1H-NMR 

H (800 MHz; methanol-d4) 3.10 (6 Hant, s, Me), 6.47 (1 Hfluo, s), 6.50 (1 Hfluo, s), 6.72 (1 

Hfluo, s), 6.74 (1 Hfluo, s), 6.94 (1 Hfluo, s), 6.95 (1 Hfluo, s), 7.01 (1 Hfluo, s), 7.02 (1 Hfluo, 

s), 7.20 (1 Hant, dd), 7.23 (1 Hant, dd), 7.32 – 7.43 (7 H6ant + 1fluo, m), 7.47 (2 Hant, dd), 

7.56 (1 Hant, d), 7.58 (1 Hant, d), 7.90 (1 Hfluo, d), 7.91 (1 Hfluo, d), 8.16 (1 Hfluo, d), 8.30 (2 

Hant, d), 8.32 (1 Hfluo, d), 8.34 (2 Hant, d), 8.43 (1 Hfluo, s). 
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 Fig. A2: 1H-RMN of SOSG in methanol-d4. 

 
 
 
2D-COSY 

 
Fig. A3: 2D-COSY of SOSG in methanol-d4. 
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1H-13C HSQC 

 
Fig. A4: 1H-13C HSQC of SOSG in methanol-d4. 

 



 



The work described in this chapter is adapted from X. Ragàs, L. P. Cooper, J. H. White, S. Nonell and C. Flors, 
Angew Chem Int Ed, 2010, submitted. 
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 Genetically-encoded singlet oxygen production by a red 

fluorescent protein 

 

The role of reactive oxygen species (ROS), e.g. singlet oxygen, in 

chromophore-assisted light inactivation (CALI) by fluorescent proteins has 

been demonstrated. In this chapter, we investigate the ability of a red 

fluorescent protein to photoproduce ROS using time-resolved detection of 

the NIR phosphorescence of 1O2 and specific fluorescent probes for the 

detection of ROS.  
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8.1. INTRODUCTION 

Chromophore-assisted laser inactivation (CALI) is a useful technique used to 

specifically inactivate the function of target proteins or organelles by producing 

photochemical damage [1]. CALI is generally achieved by the photosensitised 

production of reactive oxygen species (ROS) [2] by photoactive dyes such as malachite 

green or fluorescein isothiocyanate. The usefulness of CALI has been demonstrated 

against many cellular functional proteins, e.g., -galactosidase, alkaline phosphatase, 

acetylcholinesterase [3,4], and nuclear Ki-67 protein [5]. 

  

One of the problems of the CALI technique is the non-specific binding of the current 

dyes, which often induce uncontrolled photodamage. An alternative approach could be 

the use of fluorescent proteins (FPs), which can be fully genetically encoded and 

therefore expressed at predetermined sites to avoid non-specific damage. 

Unfortunately, all fluorescent proteins tested so far have proven less efficient than the 

typical CALI dyes. Recently, KillerRed, a protein derived from the GFP-like hydrozoan 

chromoprotein anm2CP, was specifically evolved to produce phototoxicity [6]. The 

main mechanism of KillerRed’s phototoxicity involves the generation of the superoxide 

radical anion [7] by photoinduced electron transfer between the excited triplet state of 

the chromophore (at the site of its exocyclic double bond) and molecular oxygen [8]. 

The presence of a long water-filled channel that connects the chromophore with the 

external solvent, which facilitates the diffusion of molecular oxygen and ROS, is also 

crucial in the properties of KillerRed [8,9]. Another important ROS such as singlet 

oxygen (1O2) has also been detected from KillerRed, though to a lesser extent [6], and 

it does not play a major role in the KillerRed CALI effect [7].  

 

Singlet oxygen, however, seems to be the main ROS that participates in CALI when 

using other FPs such as the enhanced (E)GFP. By following the CALI effect in the 

presence of several selective ROS quenchers, a recent study points to 1O2 being the 

main ROS produced and responsible for observed EGFP-CALI effect [10]. Consistent 

with this observation , we have recently shown by means of time-resolved NIR 

detection of 1O2 phosphorescence (TRPD) at 1275 nm that EGFP is able to 

photosensitise singlet oxygen [11]. Our previous work also provided a first 

quantification of the lifetime of 1O2 produced by a FP. However, we were not able to 

quantify a quantum yield of photosensitised 1O2 (), presumably due to the low 

amount produced. 
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In this chapter, we investigate the ROS photosensitising properties of the red FP 

TagRFP, which absorbs at 555 nm and emits at 584 nm (Fig. 1) [12]. This particular 

protein caught our attention because its photobleaching rate showed a clear oxygen 

dependence [13]. This is unusual, and it is commonly accepted that FP photobleaching 

occurs by light-induced decarboxylation [14] and 1O2 participates only marginally [15]. 

We thus anticipated that TagRFP could be a reasonably good 1O2 photosensitiser 

within the FP family.  

 

 

Fig. 1: Absorption (solid line) and fluorescence (dashed line) spectra of TagRFP. 
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8.2. EXPERIMENTAL SECTION 

Materials  

Plasmid TagRFP-N was obtained from Evrogen (Moscow, Russia) and expressed in E. 

coli BL21 cells by Flors et al. in the University of Edinburgh. Singlet oxygen sensor 

green (SOSG) and dihydroethidium (DHE) were purchased from Invitrogen (Molecular 

Probes, Paisley, UK). Sodium azide and potassium dioxide were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Deuterium oxide (D2O; >99.9%), was purchased 

from SDS (Solvents Documentation Synthesis, Peypin, France).  

Samples were contained in squared 1 cm optical path fused silica cuvettes (Hellma 

101-QS).  
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8.3. RESULTS  

Time-resolved singlet oxygen detection 

Pulsed laser irradiation at 532 nm of a 14.5 µM solution of TagRFP in an air-saturated 

mixture of PBS, glycerol and deuterated (D)-PBS (1:1:20) allowed the detection of 1O2 

phosphorescence at 1270 nm (Fig. 2A). The signal, fitted with a biexponential function, 

rose with a lifetime of about 1.1 s and decayed in 3.0 s. The addition of 10 mM 

NaN3, increased the rate of the rise component and only a decay of 2.8 s could be 

resolved (Fig. 2B). Observation of the luminescence at 1140 nm did not provide any 

significant signal (Fig. 2C).  

 

 

Fig. 2: Singlet oxygen phosphorescence photosensitised by TagRFP in a PBS:Glycerol:D-PBS mixture 

(1:1:20) upon irradiation with 1-ns laser pulses at 532 nm (ca. 1 µJ per pulse, repetition rate 10 kHz). (A) 

Luminescence at 1270 nm and no sodium azide (B) Luminescence at 1270 nm with 10 mM sodium azide 

(C) Luminescence at 1140 nm and no sodium azide. 

 

Quantum yield of singlet oxygen production 

SOSG is a 1O2 probe that becomes fluorescent when it reacts with 1O2. Indeed, we 

found that SOSG fluorescence was enhanced in the presence of TagRFP and light, to 

a substantially greater extent than in the presence of TagRFP or light alone. 

Comparison of the SOSG fluorescence enhancement upon irradiation of TagRFP and 
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a known 1O2 photosensitiser yields the  value of TagRFP. Fig. 3A shows the 

fluorescence (ex = 480 nm) of air-saturated solutions of SOSG (10 M) and TagRFP 

(14.5 M) after different pulsed laser irradiation times. The samples were excited at 

532 nm, where only TagRFP absorbs. It can be observed that the SOSG emission 

band at 527 nm increased while the TagRFP fluorescence band at about 590 nm 

decreased and shifted slightly to the blue. 
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Fig. 3: Time course of the fluorescence spectra of optically matched solutions at 532 nm of (A) SOSG and 

TagRFP, and (B) SOSG and Rose Bengal in a PBS:Glycerol:D-PBS mixture (1:1:20) upon irradiation with 

1-ns laser pulses at 532 nm (ca. 1 µJ per pulse, repetition rate 10 kHz). (C) Intensity of fluorescence of 

SOSG at 527 nm and linear fit of TagRFP (circles) and Rose bengal (squares) solutions upon irradiation at 

532 nm. 
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Irradiation at 532 nm of an optically matched solution of Rose bengal in the same 

PBS:Glycerol:D-PBS mixture showed a significant increase of the SOSG fluorescence 

signal already at lower irradiation doses (Fig. 3B). Fig. 3C shows the SOSG 

fluorescence intensity at 527 nm for both TagRFP and rose bengal at the different 

irradiation times, with the linear fits to the data.  

 

Control solutions of SOSG and TagRFP alone were irradiated under the same 

conditions providing a slight increase and decrease in the fluorescence emission at 527 

nm, respectively (Fig. 4). 

 

 

Fig. 4: Normalized fluorescence intensity at 527 nm of TagRFP with SOSG (circles), SOSG alone 

(squares) and TagRFP alone (triangles) in a PBS:Glycerol:D-PBS mixture (1:1:20) upon irradiation with 1-

ns laser pulses at 532 nm (ca. 1 µJ per pulse, repetition rate 10 kHz) 

 

 

Superoxide production by TagRFP 

Pulsed laser irradiation at 532 nm of a 14.5 µM solution of TagRFP in an air-saturated 

mixture of PBS, glycerol and deuterated (D)-PBS (1:1:20) in the presence of 

dihydroethidium, a superoxide probe, did not show any evidence of superoxide. As 

observed in the Inset of Fig. 5, the solution fluorescence was not affected by the 

presence of TagRFP.  
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Fig. 5: Time course of the fluorescence spectra of dihydroethidium (DHE) and TagRFP in a 

PBS:Glycerol:D-PBS mixture (1:1:20) upon irradiation during 25 minutes with 1-ns laser pulses at 532 nm 

(ca. 1 µJ per pulse, repetition rate 10 kHz) Inset: Normalized fluorescence at 410 nm of a TagRFP solution 

with DHE (squares) and DHE alone (circles). 

 

In order to demonstrate that the blue fluorescence exhibited by DHE in solution 

correlated with the amount of superoxide, a positive control was performed by adding 

different amounts of potassium superoxide to the DHE solution (Fig. 6).   

 

 

Fig. 6: Effect of KO2 in the fluorescence spectrum of dihydroethidium in a PBS:Glycerol:D-PBS mixture 

(1:1:20) upon excitation at 330 nm. Inset: Normalized fluorescence intensity at 410 nm. 
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8.4. DISCUSSION 

The main goal of this chapter was to assess the potential of TagRFP as a genetically-

encoded PS for the production of reactive oxygen species. Thus, TRPD and SOSG as 

a 1O2 fluorescent probe probed adequate to this respect. 

 

Irradiation of TagRFP allowed the detection of 1O2 phosphorescence, providing a 1.1 

s component that we attribute to 1O2 and a 3 s component due to the triplet state of 

TagRFP on account of all the experiments carried out. This counterintuitive kinetic 

inversion has been seen before for EGFP and indicates that 1O2 is shorter-lived  than 

its precursor, the FP triplet [11]. The lifetime of the triplet state of TagRFP is thus much 

shorter than that of EGFP (~25 s) [11], suggesting better access of molecular oxygen 

to the chromophore inside the beta-barrel. The 1O2 lifetime is also shorter than that in 

the case of EGFP (4 s), which points to additional quenching by the chromophore or 

the aminoacids in close contact with it. It is worth noting that no signal was detected at 

other NIR wavelengths such as 1140 nm, ruling out other potential signal sources such 

as FP phosphorescence and, therefore, supporting the assignment of the signal to 1O2 

emission.  

 

Photosensitisation of 1O2 by TagRFP was further confirmed by trapping it with the 

specific fluorescent probe Singlet Oxygen Sensor Green (SOSG) [16,17]. The 

decrease and hypsochromic shift of the fluorescent band of TagRFP indicate that 

photobleaching and/or photoconversion of the FP may be occurring. Comparison of the 

slope in the SOSG fluorescence produced by TagRFP and by Rose bengal, as a 

reference [18], allows us to estimate a  value for TagRFP of 0.004 ± 0.001 after 

substracting (see Annex) the contribution of self-sensitised SOSG production of 1O2  

[17]. This value is, however, a lower limit of , as only the 1O2 that is able to escape 

the barrel and react with SOSG will be detected. However, diffusion of singlet oxygen, 

and presumably also 1O2, across the β-barrel seems to be easier in TagRFP compared 

to EGFP, as suggested by the shorter triplet lifetime (vide supra). In any case, it is only 

the 1O2 that does escape the barrel which is relevant in applications such as CALI.  

 

The  estimated above for TagRFP is very similar to that measured for the EGFP 

fluorophore 4-hydroxybenzylidene-1,2-dimethylimidazoline (HBDI). Although it might be 

quite modest, it is certainly not insignificant. For comparison, EGFP photobleaches with 

a quantum yield of about 8 x 10-6 [19] and DsRed has two photobleaching processes 
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with about 10-6 and 10-7 quantum yields [20]. This is the first estimation of  for a 

fluorescent protein.  

 

We also tested if, like KillerRed, TagRFP was able to generate superoxide by using the 

probe dihydroethidium (DHE) [21,22] under the same conditions than the ones used for 

SOSG. No evidence of superoxide was found as the same effect produced upon 

photosensitisation of TagRFP was observed with DHE alone. 

Nevertheless, it is possible to estimate the upper limit of the quantum yield of 

superoxide photosensitisation (SO) assuming that the decrease in the blue 

fluorescence band of DHE was due to its reaction with superoxide. Thus, SO is 

defined as the number of superoxide molecules produced per absorbed photon. By 

means of the number of photons given to TagRFP, the absorbance of the sample, 

and the calibration curve of the fluorescence decrease of DHE with KO2, it is 

possible to estimate that SO < 0.0002, one order of magnitude below . 

 

Given the results above, it is expected that TagRFP will be useful for CALI applications. 

This protein has excellent photophysical and biochemical properties, including high 

brightness, long lifetime, complete chromophore maturation and high pH stability 

[12,23]. More specifically, and in comparison with other FPs used for CALI such as 

EGFP, its longer excitation wavelength will minimize non-specific photodamage. This is 

important since high light intensities are needed in FP-CALI experiments. Another 

important advantage related to the latter point is that TagRFP has the highest two-

photon excitation cross section and brightness of all orange and red FPs tested [24], 

which would be particularly useful for CALI. Multiphoton CALI has already been 

demonstrated with EGFP [25]. From the biochemical point of view, TagRFP is 

monomeric, as opposed to the dimeric KilledRed, and is thus a better fusion partner. 
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8.5. CONCLUSIONS 

 

As discussed before [10,11], the interplay of several factors affects the efficiency of FP-

CALI. The quantification of each factor is thus essential to understand and compare 

CALI effects. In this work, we have demonstrated that TagRFP is able to sensitise 1O2 

but it is not able to produce superoxide. Besides, we have quantified for the first time 

the amount of 1O2 that is able to escape the barrel in TagRFP, providing a  value of 

0.004. Moreover, we have shown that the FP triplet state lifetime can provide 

information about the oxygen accessibility of the chromophore.  

Thus, our results provide important photophysical insight that allows the understanding 

of the mechanism behind CALI, and will aid to direct the evolution of new and more 

efficient mutants. 
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8.7. Annex 

Correction of quantum yield of singlet oxygen production 

The value was determined by comparison of the slope in the fluorescence intensity 

of SOSG produced by optically matched solutions of TagRFP and a reference, Rose 

Bengal, under the same conditions, namely with the same amount of SOSG and in the 

same solvent mixture (Eq. 1). 

TagRFP' '

ref

Slope
(TagRFP) · (ref )                                 (1)

Slope     

532 532
Sample' SOSG

532 532
Total Total

A A
(sample) · (sample)  · (SOSG) (2)

A A        

 

As it has been demonstrated that SOSG is able to self-sensitise singlet oxygen, and 

the absorption at 532 nm due to SOSG was not negligible (Fig. A1), Eq (2) was used to 

calculate the corrected singlet oxygen quantum yield (’):  

 

Fig. A1: Absorption spectra of the solutions used to quantify the singlet oxygen quantum yield: TagRFP 

with SOSG (red), Rose Bengal with SOSG (blue) and SOSG alone (green).  

 



The work described in this chapter will be submitted for publication to Chem Mater in collaboration with Prof. Chris D. 
Geddes laboratory’s results. Manuscript in preparation. 
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 Singlet oxygen enhancement by silver islands films 

 

Metallic surfaces, colloids and islands are able to induce significant 

changes on the emissive rates of organic species. Thus, processes such 

as metal-enhanced fluorescence or phosphorescence have been 

described. In this chapter, we investigate the ability of silver island films to 

induce a plasmonic effect on singlet oxygen using time-resolved detection 

of the NIR phosphorescence of 1O2.  
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9.1. INTRODUCTION 

Singlet molecular oxygen (1O2) is a reactive oxygen species (ROS) involved in a variety 

of biological processes and known by its high reactivity with many cellular components 

[1]. This makes its detection important in order to gain insights into the mechanism of 
1O2-based clinical therapies such as photodynamic therapy (PDT) [2,3]. Many different 

possibilities have been reported to indirectly detect singlet molecular oxygen, including 

EPR spectroscopy using spin traps [4], chemical trapping [5], and fluorescent probes 

[6-8]. However, the most unambiguous way to detect is by monitoring its 

phosphorescence at 1270 nm [9], which is very weak because the overall deactivation 

is overwhelmingly dominated by non-radiative pathways, invariably providing for an 

extremely low phosphorescence quantum yield [10]. 

 
1O2 is commonly produced via photosensitization processes. Thus, the electronically-

excited states of the photosensitiser (PS), produced upon light absorption, are 

efficiently quenched by molecular oxygen, particularly the longer-lived triplet state. 

Energy transfer between the two species results in the production of 1O2 as outlined in 

the following scheme: 

 

1 *

1 * 3 *

3 * 3 1
2 2

PS + PS

PS PS

PS  + O PS + O

h 



  

 

Over the last years, it has been demonstrated that metallic surfaces, including colloids 

and islands are able to induce significant changes on the emissive rates of organic 

species [11]. Thus, processes such as metal-enhanced fluorescence (MEF) [12] and 

metal-enhanced phosphorescence (MEP) [13,14] have been described. Such effects 

can be explained by a non-radiative energy transfer from excited distal luminophores to 

the surface plasmon electrons in non-continous films, followed by radiation of the 

photophysical characteristics of the coupling luminophores by the surface plasmons 

themselves [15]. Therefore, the application of the plasmon-coupling effect in the 

generation and emission of 1O2 is interesting and potentially important for 1O2 direct 

detection. 

 

Different strategies can be used to enhance the 1O2 production. On the one hand, 

Toftegaard et al. [16] reported an enhancement factor of 3.5 of the radiative rate of 1O2 

by means of gold nanodiscs of a controlled size coated with polystyrene doped with 
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tetraphenylporphyrine as PS. On the other hand, Zhang et al. [17] demonstrated that 

the extent of 1O2 enhancement produced by silver island films (SIFs) is inversely 

proportional to the free space in the 1O2 quantum yield (), a direct result of MEP 

and the ability of surface plamons to pump triplet states and subsequently 

generate more 1O2. Interestingly, the extent of 1O2 generation falls off exponentially 

with distance from the surface, suggesting that an enhanced excitation rate (enhanced 

absorbance cross-section) is the underlying mechanism for enhanced 1O2 generation 

[18].  

 

Thus, the goal of this study is to provide direct evidence of the plasmonic effect caused 

by SIFs of different sizes on the 1O2 production by means of time-resolved singlet 

oxygen luminescence detection. 
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9.2. EXPERIMENTAL SECTION 

Materials  

Silver island films were prepared by Prof. Chris D. Geddes et al. of the University of 

Maryland Biotechnology Institute by means of the protocol described in [12]. 

Fullerene (C60) and carbon disulfide were purchased in Sigma-Aldrich Co. (St. Louis, 

MO, USA). The C60 films were formed by means of a KW-4A Spin Coater (SPI 

Supplies, West Chester, PA, USA) at 4000 rpm for 50 s. 

 

Statistics 

Values are expressed as means ± standard error of the mean (SEM) of three 

independent samples. 
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9.3. RESULTS 

SIFs characterization  

Different SIFs were produced at different formation times. In all cases SIFs exhibited a 

plasmonic band ca. 380 nm, whose absorption maxima and intensity shifted 

hypsochromically and increased concomitantly when the formation time was increased. 

Both of them showed a similar trend as observed in the inset of Fig. 1A. These 

observations were reported recently, for different size silver-islands providing for a 

range of conditions for MEF [19]. 
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Fig. 1: (A) Absorption spectra of silver island films (SIFs) at 1 (violet), 2 (blue), 4 (green), 6 (orange) and 8 

(red) min formation times. Inset: Energy (squares) and absorbance (circles) of the maximum of absorption 

at each formation time. (B) Absorption spectra of the same SIFs spin-coated with C60 from a 3 mg·mL-1 

solution. The spectra are not the simple sum of the individual SIF and C60 spectra. 

 

When a C60 film was coating the SIFs, the absorption spectra changed significantly, 

showing a new band at ca. 500 nm, whose absorption did not correlate with the sum of 

the absorption of C60 plus the absorption of SIFs (Fig. 1B), but is in fact thought due to 

the change in refractive index above the SIFs by the sample. 

 

Singlet oxygen production by a C60 film 

Fig. 2 shows the time-resolved 1O2 phosphorescence produced by a C60 film on a 

quartz slide. As observed, the atmosphere that surrounded the sample strongly 

affected the phosphorescence signal produced by 1O2 modifying the intensity. The 

spectrum of the signal clearly demonstrated that the transient observed is due to 1O2.  

The decays kinetics are multiexponential, requiring typically three exponential terms to 

provide acceptable fits. 
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Fig. 2: Singlet oxygen phosphorescence at 1270 nm photosensitized by a C60 film on a quartz slide. (a) 

Oxygen-saturated atmosphere. (b) Air-saturated atmosphere. (c) Argon-saturated atmosphere. Inset: 

Spectral distribution of the photoluminescence, which matches the phosphorescence spectrum of singlet 

oxygen. 

 

 

Effect of the concentration of C60 

Different concentrations of C60 ranging from 0.5 to 5 mg·mL-1 were tested in the 1O2 

measurements. As observed in Fig. 3A, the decay kinetics were not affected by the 

amount of C60, as no significant change was observed in the lifetime values. With 

regards to the intensity of the signal, as observed in Fig. 3B, the phosphorescence 

signal produced by C60 on glass slides increases with the C60 concentration 

concomitantly. However, when the signal is produced on SIFs, a significant intensity 

enhancement is observed, , the enhancement clearly decreasing  from a 32-fold factor 

to a 7-fold factor when the amount of C60 is increased (Fig. 3C). 
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Fig. 3: Effect of the concentration of C60 (0.5, 1, 2, 3, 4, and 5 mg·mL-1) on the 1270-nm singlet oxygen 

phosphorescence from silver islands films. (A) Singlet oxygen kinetics on a 2 min silver island film at 

increasing concentrations of C60. Inset: Lifetimes of the three components observed for the singlet oxygen 

luminescence signals. (B) Area under the singlet oxygen luminescence curves (circles). Values for C60 

films on glass slides without silver islands are shown for comparison (squares). (C) Enhancement of the 

singlet oxygen luminescence signal observed with increasing concentrations of C60  

 

Effect of SIFs’ formation time 

The formation time and experimental conditions determines the size of the SIFs’ 

nanoparticle [19]. SIFs with different sizes were obtained for deposition times ranging 

from 1 to 8 min. As observed in Fig. 4A, the 1O2 phosphorescence signal produced by 

C60 on SIFs shows an emission maximum for SIFs with 2 min formation time. In 

addition, the decay kinetics showed no correlation with the nanoparticle size.  
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Fig. 4: Effect of the silver island size on the singlet oxygen luminescence. (A) Singlet oxygen kinetics as a 

function of the silver island formation time: 1 min (blue), 2 min (violet), 4 min (green), 6 min (orange), and 8 

min (red). The concentration of C60 was 3 mg·mL-1. Inset: Lifetimes of the three components observed for 

the singlet oxygen luminescence signals. (B) Area under the singlet oxygen luminescence curves (circles) 

and absorbance of C60 at 532 nm (squares) with SIFs at different formation times with a 3 mg·mL-1 

concentration of C60. (C) Enhancement of the singlet oxygen luminescence signal (circles) and the 

absorption at 532 nm (squares) observed with SIFs at different formation times with a 3 mg·mL-1 

concentration of C60. 

 

 

As observed in Fig. 4B, the absorption of C60 at 532 nm and the 1O2 luminescence 

intensity does not correlate with the SIFs’ size either. When compared to the signal 

produced by a C60 film alone, a maximum in the 1O2 enhancement factor is observed at 

2 min formation time with a value ca. 18-fold, close to the one observed with the 4 min 

SIFs (Fig. 4C). With regard to the absorption at 532 nm of C60, the trend is significantly 

different and the signal increases with the SIFs formation time up to ca. a 7-fold 

increment for the 8 min SIFs. 
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Stability and reproducibility 

The stability of the samples was measured as a function of the irradiation cycles with 

the same C60 film. Fig. 5A shows the stability of the 1O2 luminescence signal produced 

upon irradiation of a C60 film with and without SIFs. When the signal produced by a C60 

film is measured, the signal is stable and no trend is observed when increasing the 

irradiation cycles of the same film. However, in the presence of SIFs, the higher the 

number of irradiation cycles, the lower the signal. 

With regard to the reproducibility of the luminescence measurements with SIFs (Fig. 

5B), there is not any trend in the signal, demonstrating that they can be reused 

because there is not any degradation of the SIFs when the irradiation cycles are 

increased. 
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Fig. 5: Stability and reproducibility of the singlet oxygen luminescence produced by C60-coated SIFs. (A) 

Normalized area under the decay curve vs. number of irradiation cycles (5 minutes each) for C60 films 

coated on glass slides (white) or silver islands (black). (B) Same as in panel A but with a C60 film freshly 

coated after each cycle.  
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9.4. DISCUSSION 

C60 is a well-known photosensitizer with a quantum yield of 1O2 production () upon 

excitation at 532 nm ca. 1 in solution and, consequently, a triplet quantum yield close to 

1 [20]. However, in films, the intensity depends markedly on the concentration of 

oxygen, suggesting an inefficient trapping of the precursor triplet excited state of C60 in 

air-saturated films and, consequently, a reduction of .  

 

As demonstrated with Fig. 3C and 4C, the 1O2 phosphorescence signal produced by a 

C60 film is significantly enhanced. According to the photosensitization mechanism of 
1O2 formation, the potential causes for an increased 1O2 phosphorescence can be: (1) 

an enhanced plasmon-induced absorption by C60, (2) an enhanced intersystem 

crossing from the singlet excited-state to the triplet excited-state of C60, or (3) an 

enhanced metal-PS coupled system radiative decay of 1O2. 

 

According to our results, the 1O2 enhancement observed is partially due to an 

enhanced plasmon-induced absorption by C60. The absorption at 532 nm produced by 

a 3 mg·mL-1 C60 film on SIFs does not correlate with the sum of the absorption due to 

C60 film alone plus the absorption due to SIFs. Thus, the C60 absorption enhancement 

factor increases hyperbolically with the SIFs formation time up to 7-fold (8 min SIFs 

formation time). Such an increase in the absorption of C60 should lead to a similar 

increase in the fluorescence signal. Some attempts of measuring the weak 

fluorescence exhibited by the C60 films -fullerene shows a fluorescent quantum yield 

ca. 3 x 10-4 in different solvents [21]- were made but no fluorescence, neither on SIFs 

nor on glass slides, was observed around 750 nm. 

 

Therefore, an additional explanation of the 1O2 enhancement factor is considered. 

Assuming that the triplet quantum yield of C60 films is still close to 1, an enhanced 

intersystem crossing might be excluded.  

 

The fact that the 1O2 enhancement factor vs. SIFs formation time curve shows a 

maximum might be explained by a compromise between two antagonic effects. On one 

hand, the intensity of the plasmon increases at higher deposition times, which would 

result in an increase of the plasmon-induced absorption by C60. On the other hand, the 

energy of the plasmon increases at higher deposition times and therefore becomes 

less resonant to the S0  S1 absorption transition of C60, reducing it.  
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In addition, it has been previously reported by means of FDTD calculations that the 

plasmonic coupling and enhancing effects are extended only through a few 

nanometers from the nanoparticle [17]. This is consistent with our results with 

increasing concentrations of C60, where a decrease in the enhancement is observed at 

high C60 concentrations, induced by larger distances of the C60 molecules to the SIFs 

as additional C60 layers are being deposited in the solid phase samples. 

 

Finally, it is interesting to comment on why the extent of 1O2 decreases when the 

irradiation cycles are increased. At first one may consider the oxidation of SIFs and the 

expected loss of Plasmon resonance to be the explanation. However, as shown in Fig. 

5B, fresh coatings of C60 films provide for very similar extents of 1O2 generation. 

Subsequently, this suggests that the surface remains unperturbed and that 1O2 

decreases as the number of cycles is increased, due to C60 film photophysics, such as 

self photo oxidation. Given the enhanced absorption cross-sections, coupled with the 

significant generation of 1O2, then this result is not surprising. 
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9.5. CONCLUSIONS 

 

We have demonstrated that silver nanoparticles are able to enhance the 1O2 

luminescence signal produced by C60 films with a maximum increase ca. 35-fold, 

obtained with the 2 min formation time SIF and with a C60-concentration of 1 mg·mL-1.  

As deduced from our results, the effect is partially mediated by an enhanced plasmon-

induced absorption of C60, which increases at higher SIFs formation times, and by an 

enhanced radiative decay of 1O2. 

Such effect is interesting to be used both in the 1O2 detection field, i.e., allowing the 

measurements of 1O2 kinetics in shorter periods of time, or even opening the possibility 

to boost the detection of this reactive oxygen species in vivo, and in the photodynamic 

therapy field, allowing a reduction of the light-dose or the drug-dose in APDT 

treatments, or increasing the effectiveness of commonly used PSs by conjugation of 

nanoparticles with ability to produce such plasmonic effect with commonly used 

photosensitisers.   
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General Discussion 

 

An overall discussion of the work described in the previous chapters is 

given. The implications in antimicrobial photodynamic therapy, and 

some suggestions for future research in this field are given in this 

chapter. 
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10.1. DISCUSSION 

On the basis of the work presented in the previous chapters, we have gained insight 

into three different questions that need to be answered when a therapy is proposed: (1) 

does it work, (2) how does it work, and (3) what can we do to improve it.  

With regards to the first question, the answer has been divided into two different 

sections. On the one hand, one of the main advantages of APDT, discussed in Chapter 

1, is that it is able to inactivate even pandrug- or multidrug-resistant bacterial strains 

under similar conditions than those used for “typical” bacterial strains [1,2]. So, we 

have performed some in vitro and in vivo studies against A. baumanii, one of these 

“superbugs”, observing that NMB is the most active dye among all tested 

phenothiazinium dyes. However, only MB and TBO, the PSs with the lowest 

inactivation efficiency, are actually being used in APDT agents in clinical applications. 

These results support the idea expressed by Garland et al. that many of the APDT 

agents used in the clinical practice may not be the most appropriate within a given 

class [3]. Therefore, based on the efficacy pattern obtained in this study, we propose to 

clinically test NMB as a potential PS against a wide range of localized infections. 

Besides, we have demonstrated that, in the in vivo studies, it is interesting to give an 

extra dose of light in order to preclude the regrowth of the infection, one of the most 

important problems found for APDT [4]. 

On the other hand, it is also interesting that the PSs used in APDT can act against a 

wide range of microbial infections [5]. Our group has focused its interest in the 

porphycene family. Since the synthesis of the first porphycene in 1986 [6], a variety of 

substituted derivatives have been prepared, including the 2,7,12,17-

tetraphenylporphycene [7], as well as several of its metal-ion complexes [8]. However, 

it has not been possible until now to synthesize the first aryl cationic porphycene in 

order to test it as an APDT agent. Caminos et al. showed that, in porphyrins with 

cationic (A) and non-cationic (B) groups, the photosensitized inactivation of E. coli 

cellular suspensions follows the order: A3B
3+ > A4

4+ >> ABAB2+ > AB3
+ [9]. Therefore, 

we decided to perform the inactivation experiments with a porphycene molecule 

following the structure A3B
3+. Thus, as shown in Chapter 4, aryl cationic porphycenes 

can be used as potential PSs in APDT against a wide range of microbial cells such as 

gram-positive bacteria, gram-negative bacteria and fungal cells. Indeed, it has been 

successfully used in-vivo against MRSA.  

Nevertheless, as this is only the first step in the development of porphycene 

compounds as APDT agents, it would probably be interesting to synthesize and test 
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new porphycene compounds with (a) a higher number of cationic charges, as it has 

been demonstrated with cationic fullerenes that the higher number of charges, the 

higher inactivation of bacterial strains such as P. aeruginosa [10], or (b) hydrocarbon 

chains of different length on the amino nitrogens [11], as alkyl are not as rigid as pyridyl 

groups and may affect the kinetics and extent of binding with microbial cells [5].  

 

Some answers to the second question, “how does it work?”, have been found by 

means of a mechanistic study performed with paradigm PS representative of the 

different families used in APDT, and a gram-negative bacterium such as E. coli. This 

study has been possible as the state of the art for 1O2 phosphorescence detection has 

improved during the last years [12]. Three main conclusions have been found to this 

respect.  

 

 

Fig. 1: Pictorial representation of the localization of the model PSs used in the mechanistic study: TMPyP 

(red); NMB (blue); ACS268 (maroon); ZnTMPyPz (green). 

 

Firstly, it is worth noting that it has been difficult to assess the localization of PSs in 

APDT as, because of the bacterial size –in the range of 1-10 µM– and the resolution of 

current microscopes, it is not possible to use fluorescence microscopy as for eukaryotic 

cells [13]. Thus, we present a combination of spectroscopic and time-resolved 

photophysical techniques that can be used as an alternative to ascertain the 

localization of the PSs. As observed in Chapters 5 and 6 (Fig. 1), we found that PSs 
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with charged photoactive centers –TMPyP, NMB and ZnTMPyPz– localize in the 

external structure of the cell wall, accessible to external proteins such as BSA. 

Additionally, it has also been observed that TMPyP is partially internalized, therefore 

having a second location inside the cell, bound to the nucleic acids. However, when the 

cationic charge is far from the photoactive center –ACS268– a different localization is 

observed, suggesting an oxygen-shielded position, namely inside the outer membrane.  

 

Secondly, the production and fate of 1O2 clearly depend on the PS internalization and 

localization, thereby on the PS structure. Two different scenarios have been observed. 

While the 1O2 produced in the outer structure of the cell wall by TMPyP and NMB is 

mainly deactivated by the aqueous phase ( ~ 67 µs in D-PBS), equilibrium between 

cell-deactivation and solvent-deactivation pathways is suggested for ACS268 in order 

to explain the singlet oxygen kinetics ( ~ 5 µs in D-PBS; Fig. 2). Thus, in order to 

increase the singlet oxygen reactive efficiency with cellular components, it may be 

interesting to develop asymmetric compounds where the hydrophilic and hydrophobic 

(chromophore) parts of the structure can be differentiated.  

 

 

Fig. 2: Proposed mechanism for the 1O2 formation and decay in E. coli.  

Likewise, we have demonstrated that 1O2 is able to cross the bacterial cell wall and 

move “freely” within the cell. Thus, as shown in Chapter 5, 1O2 produced by both 

localizations of TMPyP is mainly deactivated by the external aqueous phase, as 

observed upon addition of BSA and when the experiments where performed in E. coli 

spheroplasts. This is an important conclusion as some evidences had been previously 

described in eukaryotic cells [14,15] but not in prokaryotic cells. Additionally, strengths 

the view that APDT is not likely to develop resistance in microorganisms as it provides 

direct evidence for the observation that the PS does not need to be internalized for 

inflicting photodamage on vital structures of the cell [16].  
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The third question refers to the future directions of APDT. As mentioned in Chapter 1, a 

possible direction, still in its initial steps, is the development of genetically-encoded PS. 

In 2006, Bulina et al. demonstrated the utility of Killer Red for light-induced killing of E. 

coli and eukaryotic cells [17]. Since then, the research and development of new GFP-

mutants with optimal structure and properties to produce ROS has increased. Our 

group reported in 2008, the value of HBDI, the GFP-chromophore, and the kinetics 

of 1O2 production by EGFP. However, it was not possible to estimate the  value for 

EGFP using time-resolved detection of the NIR phosphorescence of 1O2. 

 

An alternative detection method is the use of fluorescent probes such as SOSG to 

detect ROS species [18,19]. However, as demonstrated in Chapter 7, care must be 

taken when using it, as it is able to self-sensitise 1O2 in the absence of external 

photosensitisers, under exposure to either UV or, to a lesser extent, visible radiation. It 

is therefore important to measure negative controls when using SOSG to detect small 

amounts of 1O2, as false-positive results can be obtained, especially in combination 

with UV light sources. 

 

The knowledge of this fluorescent probe has been used in our studies with red 

fluorescent proteins. The clear oxygen dependence in the photobleaching curves 

shown by TagRFP caught our attention [20]. Thus, as shown in Chapter 8, TagRFP is 

able to photosensitise 1O2 with a  value of 0.004, similar to the one shown by HBDI 

in basic-D2O [21]. To our knowledge, this is the first estimation of a  value for a 

GFP-like photosensitiser. Likewise, it only represents a minimum value for , as only 

the 1O2 that escapes from the -can reacts with SOSG.  

 

A possible future improvement in APDT may be the use of the plasmonic effect 

produced by silver nanoparticles in two different topics. On the one hand, a 35-fold 

increase in the 1O2 luminescence signal may be interesting to increase the detection 

limit of 1O2 with the current methods, therefore, allowing the measurements of 1O2 

kinetics in shorter periods of time, or even opening the possibility to boost the detection 

of this reactive oxygen species in vivo. On the other hand, as there is an enhancement 

effect in the absorption of the PS, the photosensitisation of ROS may be increased, 

allowing a reduction of the light-dose or the drug-dose in APDT treatments, or 

increasing the effectiveness of commonly used PSs. In this regard, Narband et al. 

recently demonstrated that gold nanoparticles enhance the antimicrobial effectiveness 

of Toluidine blue O [22]. 
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1. Among the photosensitisers tested in this thesis, new methylene blue is the most 

active phenothiazinium dye in vitro against multidrug-resistant Acinetobacter 

baumanii, being also able to succesfully treat burn infections of A. baumanii in vivo 

in a mouse model. 

2. Aryl cationic porphycenes are promising photosensitisers for antimicrobial 

photodynamic therapy due to their efficacy in vitro and in vivo against a broad-

spectrum of prototypical human pathogenic microbes including bacteria and yeasts. 

3. The localization of antimicrobial photodynamic therapy cationic photosensitisers in 

gram-negative bacteria depends on the number and topology of the positive 

charges. While photosensitisers with charged photoactive centers localize in the 

external structure of the cell wall, hydrophobic photosensitisers with positive 

charges far from the chromophore localize in oxygen-shielded sites, possibly inside 

the outer membrane. 

4. The kinetics of singlet oxygen deactivation in E. coli depends on the 

internalisation’s degree of the photosensitiser. On one hand, singlet oxygen 

produced in the external structure of the cell wall is mainly deactivated by the 

external aqueous phase, while singlet oxygen produced within the outer membrane 

shows equilibrium between cell-deactivation and solvent-deactivation pathways. On 

the other hand, singlet oxygen produced inside the cell is able to cross the cell wall, 

supporting the idea that the PS does not need to be internalized for inflicting 

photodamage on vital structures of the cell.   

5. The ability of the fluorescent probe Singlet Oxygen Sensor Green to self-sensitise 

the production of singlet oxygen upon irradiation with UV and, to a lesser extent, 

visible light implies that care must be exercised when using this probe to ascertain 

the presence of singlet oxygen in a photosystem. 

6. The ability of fluorescent proteins to photosensitise the production of singlet oxygen 

pave the way for the development of genetically-encoded photosensitisers for 

chromophore-assisted laser inactivation purposes. Specifically, the production of 

singlet oxygen has been quantified for the first time for the red fluorescent protein 

TagRFP, which shows a quantum yield of singlet oxygen production  = 0.004 ± 

0.001, but does not produce superoxide radical to any measurable extent. 
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7. The surface plasmon effect generated by silver island films enhances the 

phosphorescence of singlet oxygen opening the possibility to boost the detection of 

this reactive oxygen species in vivo. Likewise, the also enhanced production of this 

reactive oxygen species shed light into a new alternative to improve the 

effectiveness of commonly used antimicrobial photodynamic therapy agents by 

conjugation with plasmon-active nanoparticles. 
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