
Mathematical models of physiologically
structured cell populations

Ricardo Borges Rutz
Tesi Doctoral - 2012

Departament de Matemàtiques
Facultat de Ciències

Universitat Autònoma de Barcelona

Directors: Àngel Calsina Ballesta
Sílvia Cuadrado Gavilán





Contents

Introduction 5

Preliminaries 15

1 The age and cyclin cell population model. An oversimplified version 23
1.1 The complete model . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2 An ordinary differential equations system . . . . . . . . . . . . . 28

2 A cyclin-structured cell population model 37
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2 Existence, uniqueness and positiveness . . . . . . . . . . . . . . . 39

3 Equilibria of the cyclin-structured model 61
3.1 Steady states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 The eigenvalue problem . . . . . . . . . . . . . . . . . . 64
3.1.2 Properties of the function λĜ and existence and unique-
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Introduction

It is commonly asserted that the study of population dynamics started at the end
of the 18th-century with a model proposed in 1798 by T.R. Malthus, [52]. In his
work, Malthus supposed that the growth rate of the population was proportional
to the total population size. Malthus was concerned with the evolution of society
and his model reflects that the growth of the population opposes to the unlim-
ited progress of society. This model was very criticized for being not realistic.
However, if we look at the predictions of the model, maybe it will not seem so un-
realistic (see [55], pg.2). In the 19th-century more realistic models were proposed
to deal with the effects of limitations of resources or crowding, for instance, the
work of Verhulst in 1838, [68], is an example of it.

An important advance in population dynamics was the introduction of struc-
tured population models, the first ones being the age structured models. The first
work on a population which takes into account the age of individuals can be traced
back to L. Euler (1760), see [37]. Much later, and along similar lines, F.R. Sharpe
and Lotka in 1911 in [61] (and A.G. McKendrick in 1926, [51]) proposed models
were the age structure was considered. These models motivated the development
of many mathematical tools, in particular, the study of (Volterra) integral equa-
tions. The main result already stated in the work of Sharpe and Lotka was the
(continuous version of the) so called fundamental theorem of demography (see
[71]). Despite this progress, all the models were linear, which did not allow
to include effects of limitations of resources or crowding. It was in 1974 when
M.Gurtin and R.C. MacCamy (see [42]) introduced the first model of nonlinear
age population dynamics. Since then, a variety of structured population models
have been studied where the vital rates considered: fertility, mortality, individ-
ual growth rate, the rate of cell differentiation, etc., depend on internal variables
(of the individuals). These internal variables are often, the age (in models of
demography, [72]), the size (see [44] and [53]), the age of infection (models in
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epidemiology, [27], [22] and [32]), the degree of cell differentiation (see [33])
and also the content of certain proteins (see [13] and [12]). In all these models,
interesting mathematical properties were analyzed, trying to connect the results
with biological behaviors.

The use of the theory of structured population dynamics in order to study cell
populations began in 1959 with the paper [69] where Von Foerster derived the
complete differential equation for the age density function of cells (and later on
that of Bell and Anderson [15]). Since then, many researchers have contributed
to this field (see for instance [53], [7], [2]). Two of them were M. Gyllenberg and
G. F. Webb. They published several works were they divided the cells into two
types: proliferating and quiescent cells. In many cases, in cell populations, not
all the individuals are growing and proliferating, but some of them are in a rest
phase. In particular, it is known that the quiescence is responsible for prolonged
periods of apparent tumor inactivity. Bertuzzi et al. in [16] claim that every re-
alistic model of tumor cell population must consider quiescence. Normally, the
proliferating cells are growing and some of them become quiescent, that is, in a
resting stage and later, they can return to the proliferating phase. The quiescent
cells do not lose their reproductive capacity, only that they do not divide while
they remain quiescent. Moreover, the reasons why some cells become quiescent
and why some quiescent cells come back to the proliferating phase are not exactly
known.

L. H. Hartwell, R. T. Hunt and P. M. Nurse have discovered two groups of pro-
teins, namely cyclin and CDK (cyclin dependent kinases), that control the transi-
tion phases on the cell cycle. In 2001 these three researchers received the Nobel
Prize in Physiology or Medicine for their complete description of the cyclin and
CDK mechanisms, which are central to the regulation of the cell cycle. These pro-
teins act as regulators of the transition between the proliferating and the quiescent
phase. It has been shown (see [47], [63]) that an overexpression of cyclin reduces
this transition rate. In [12] and [13] a nonlinear cell population model for both,
tumoral and healthy tissue is introduced in which cells are structured with respect
to age and with respect to the content of cyclin and CDK.

In this thesis we will consider a model similar to the one presented in [12] and
[13], but here we assume that the parameter functions are age independent, which
gives a model where the structure is only with respect to the cyclin content. The
resulting system is still a first order nonlinear partial differential equations system
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with non local terms. To study this system we will use the theory of positive linear
semigroups and the semilinear formulation, which are very powerful tools to deal
with the analysis of this kind of models, both from the point of view of the initial
value problem as well as the existence and stability of steady states. In the last
chapter we also present an alternative model (where some hypotheses change a
little bit and others are introduced) and use the so called cumulative or delayed
formulation of structured population dynamics ([22] and [23]). This last part of
the study was suggested by Prof. Odo Diekmann from Utrecht University.

The model proposed

Bekkal Brikci et al. presented in [12] and [13] a nonlinear model of cell popu-
lation dynamics. In these works, a cell population model for both, tumoral and
healthy tissue is introduced in which cells are structured with respect to age and
with respect to the content of a group of proteins called cyclin and CDK (Cyclin
Dependent Kinases). As Hartwell et al. show in [46], these proteins play a central
role in the regulation of the cell cycle (see also [67]).

They propose the following nonlinear system:





∂

∂t
p(t, a, x) +

∂

∂a
p(t, a, x) +

∂

∂x

(
Γ(a, x)p(t, a, x)

)
=

= −[
L(a, x) + F (a, x) + d1

]
p(t, a, x) + G(N(t))q(t, a, x),

∂

∂t
q(t, a, x) = L(a, x)p(t, a, x)− [

G(N(t)) + d2

]
q(t, a, x)

(1)
where p(t, a, x) and q(t, a, x) are the densities of proliferating and quiescent

cells, respectively, at time t with respect to age a and content x of cyclin.

To this system it is added the boundary condition (at a = 0)

p(t, 0, x) = 2

∫ xm

0

∫ +∞

0

F (a, y)

y
χ

[0,y]
(x)p(t, a, y)dady

and the definition
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N(t) =

∫ xm

0

∫ +∞

0

[
φ∗(a, x)p(t, a, x) + ψ∗(a, x)q(t, a, x)

]
dadx.

This describes the following biological situation: the cells are structured both
with respect to age and with respect to the content of a certain group of proteins
called cyclin and CDK. The proliferating cells grow and divide, giving birth at the
end of the cell cycle to new cells, or else transit to the quiescent compartment,
whereas quiescent cells do not age nor divide nor change their cyclin content but
either transit back to the proliferating compartment or else stay in the quiescent
compartment. Moreover, both proliferating and quiescent cells may experiment
apoptosis, i.e. programmed cell death. The only nonlinear term is a recruitment
term of quiescent cells going back to the proliferating phase. This term depends
on a measure of the total population and tends to zero when the total number of
cells goes to infinity in the case of healthy tissue but remains bounded away from
zero in the tumoral case. In the first chapter we will explain the main hypotheses
and how to derive the dependence of cyclin content with respect to age.

In the major part of this thesis we work out an age independent version of the
model considered in [12] and [13], that is, the following first order nonlinear par-
tial differential equations system with nonlocal terms structured only with respect
to the cyclin content





∂

∂t
p(x, t) +

∂

∂x

(
Γ(x)p(x, t)

)
= −[

L(x) + F (x) + d1

]
p(x, t)

+G(N(t))q(x, t) + 2
∫ xM

x
F (y)

y
p(y, t)dy,

∂

∂t
q(x, t) = L(x)p(x, t)− [

G(N(t)) + d2

]
q(x, t)

(2)
where p(x, t) and q(x, t) are the density of proliferating and quiescent cells

(respectively) at time t with respect to the cyclin content x.

If we think in a compartment description, we could represent it as described
in figure 1.
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Figure 1: Compartmental description

The functions that appear in the system have the following biological interpre-
tation:

Γ(x) denotes the evolution speed of cyclin content with respect to time. In
[12] the authors develop an ordinary differential equations model at an intracel-
lular scale for the cyclin synthesis based on the works [3], [11] and [62] which
produces a growth speed Γ vanishing at 0 and at the maximum value of cyclin
content xM .
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The transition rate L(x) from proliferating to quiescent is assumed to be de-
creasing to take into account that, as we mentioned before, a larger amount of
cyclin content inhibits this transition.

Since high levels of cyclin enhance the progression through the cell cycle until
mitosis (see for instance [70], [63]), the cell division rate F (x) is assumed to be
increasing (as a function of the cyclin content).

A particular feature of the birth term in (2),

2

∫ xM

x

F (y)

y
p(y, t)dy (3)

is that the distribution of the cellular material between daughter cells is assumed to
be unequal. Mathematical models of cell population with unequal cell division can
be found in [49], [5] and [6] where distribution of RNA content between daughter
cells is studied. In [14], a model for the progression through the cell cycle with
unequal distribution of the cyclin content between daughter cells is considered. In
system (2), the non local term (3) gives the inflow of newborn cells. It assumes
that cells with cyclin content y (> x) divide at a rate F (y) producing two new
cells with cyclin content x and y − x where (as in [12], [13], [17] and [18]) x is
a uniformly distributed (on [0, y]) random variable. In the last Chapter we gener-
alize the probability distribution of the cyclin content of the newborn cells to any
absolutely continuous distribution with bounded density.

The transition rate G from quiescent to proliferating stage is assumed to de-
pend on a weighted total population number N (to take into account those cells
that are qualified to be recruited again for the proliferating stage, see [12], [13]).

For the age and cyclin cell population model, the authors prove, under suitable
hypotheses, the boundedness of the solutions in the case of healthy tissue, as well
as the exponential growth of the solutions in the tumoral case. They also give
conditions which imply polynomial growth.
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Structure of the thesis

In this work we start, at Chapter 1, by understanding the production of cyclin de-
pending on the cell age as a synthesis process enhanced by others molecules that
are taken into account as some aggregated variable. Based on this we obtain the
shape of a very important ingredient of the model, the function Γ that represents
the evolution speed of cyclin with respect to the time/age. The other functions
that appear in the system are also introduced. Next, the age and cyclin system
(which is studied in [12] and [13]) is derived using the compartmental point of
view. Once we have this system, and since the functional dependence on age is
not so important (for instance, for Γ, the age dependence is negligible if we as-
sume that some constants are large), we assume that the functions Γ, L, F, φ∗, ψ∗

are age independent. With this at hand we derive system (2) which is still a system
of first order nonlinear partial differential equations. One important thing in this
work is that the system considered is simpler that the one presented in [12] but it
retains the biological interest, the properties and the mathematical behavior.

In the first Chapter we also make other assumptions to simplify further the
system and derive an ordinary differential equations system. This part does not
have biological interest because we have to assume that the parameter functions
are cyclin independent, i. e., they are constant. This model is not a particular case
of system (2) because the functions do not depend on cyclin, but it helps us to
understand the mathematical behavior of system (2). In the ordinary differential
equations model we can analyze the complete behavior of the system and show
that for certain parameter values we can obtain an unstable non trivial equilibrium
point. These results help us to earn insight on the main system. In Chapters 3 and
4 we use these results in order to find parameter values that give rise to unstable
non trivial equilibrium solutions. From the known results for the finite dimen-
sional reduced case, we obtain that the steady state remains stable for a large set
of values of the parameters, but it becomes unstable through a Hopf bifurcation
for others, giving rise to periodic oscillations of the populations.

In Chapter 2 we start by explaining model (2). The hypotheses about every
function that appear in the system are made, as well as some biological interpre-
tation. Once we have all the ingredients, first of all we prove global existence,
uniqueness and positiveness of the solutions of the initial value problem. In order
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to do it we rewrite system (2) in an abstract form

d

dt
u(t) = Au(t) + f(u(t))

and show that the linear operator A is the infinitesimal generator of a positive
C0 semigroup. For this we work out all the details (see Proposition 2). Even
though the proof is based in the characterization of the generator of the translation
semigroup (see [9], A-I 2.4), it is much more involved due to the fact that the char-
acteristic lines of the first equation in (2) are neither straight lines nor level curves
of the solutions. We also use a C1-linearization result (Lemma 2.2.1) for the char-
acteristic equation around the extreme points of the interval. On the other hand
we use the standard semilinear formulation (see [57]) for the nonlinear (abstract)
equation since f is locally Lipschitz in L1, and obtain a unique global positive
solution for any positive initial condition in L1 (Theorems 2.2.4 and 2.2.5).

In Chapter 3 we prove the existence and uniqueness of a nontrivial steady state
of system (2) under suitable hypotheses (see Theorem 3.1.5). As it is often done in
similar situations, the problem is related to proving the existence (and uniqueness)
of a positive normalized eigenvector. This eigenvector corresponds to the dom-
inant eigenvalue of a certain positive linear operator parameterized by the value
of the (one dimensional) feedback variable G. The existence of both dominant
eigenvalue and (unique) positive eigenvector is given by a version of the infinite
dimensional Perron-Frobenius theorem. In the proof we also show that the exis-
tence and uniqueness of a nontrivial steady state also needs that the eigenvalue
vanishes at a certain value Ĝ of the parameter and then the steady state is obtained
as a scalar multiple of the eigenvector such that it closes the feedback loop in the
sense that the value of the feedback variable for it equals Ĝ. These results are
substantially included in [17].

In [12] and [13] there is numerical evidence of stability of the steady state for
the healthy tissue in all the cases they analyze. In Chapter 4 we include numer-
ical simulations based on the integration along the characteristic lines (see [1]).
With the help of these numerical simulations we find instability of the steady state
for parameter values compatible with the ones which give instability in the finite
dimensional model of Chapter 1. We also include a computation showing the ex-
istence of x-independent solutions for a very particular choice of the parameter
values and functions defining the model. These results are substantially included
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in [18].

In Chapter 5 we use the so-called cumulative or delayed formulation of the
structured population dynamics (see [28], [29] and [30]). In particular we have
considered a different version of the model studied in the previous chapters, where
one assumes that proliferating cells can become quiescent only once opposed to
the other approach where these transitions can occur infinitely many times and
moreover, we also assume that there is a particular value xb of the cyclin content
that separates cells which still cannot divide from the others which are able to
divide. Furthermore, here the state variables are no more densities but the flux of
the cells across the point xb and the feedback variable. Finally, the model equa-
tion turns out to be a delay equation relating the current values of these variables
with their history (their value in the past). Using this, one can prove existence and
uniqueness of solutions of the initial value problem, and the linear stability prin-
ciple by means of a semi-linear formulation in the framework of dual semigroups,
and so different from the one used in Chapter 2.
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Preliminaries

In this preliminary chapter we introduce some definitions, notations and theo-
rems that we will use later.

Definitions and notations
Definition 0.1. A linear semigroup on a Banach space X is a one-parameter fam-
ily (S(t))t≥0 of bounded linear operators on X such that,

S(0) = Id,

S(t)S(s) = S(t + s),

for all t, s ≥ 0.

Definition 0.2. A one-parameter semigroup (S(t))t≥0 is called strongly continu-
ous if

lim
t→t0

‖S(t)f − S(t0)f‖ = 0

for all f ∈ X and t, t0 ≥ 0.

In this work all the semigroups that we will consider will be strongly con-
tinuous one-parameter semigroups of linear operators on a Banach space X . The
semigroup property S(t + s) = S(t)S(s), for all t, s > 0 implies that in the
definition it suffices to take t0 = 0.

On the other hand, for any strongly continuous semigroup S(t) there exist
M ≥ 1 and w ∈ R such that

‖S(t)‖ ≤ Mewt.

15
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Definition 0.3. By the growth bound of the semigroup (S(t))t≥0 we understand
the number

ω := inf{w ∈ R : there exists M ∈ R such that ‖S(t)‖ ≤ Mewt for t ≥ 0}.

Definition 0.4. To every semigroup (S(t))t≥0 there belongs an operator (A,D(A)),
called the generator and defined on the domain

D(A) := {f ∈ X : lim
h→0+

S(t)f − f

h
exists in X}

by

Af := lim
h→0+

S(t)f − f

h
for f ∈ D(A).

Definition 0.5. We say that a strongly continuous semigroup (S(t))t≥0 is bounded
if there exists M ∈ R such that for every t ≥ 0 we have ‖S(t)‖ ≤ M .

We say that this semigroup is compact if S(t) is compact for all t > 0 (i.e.,
S(t) sends bounded sets to sets with compact closure).

Definition 0.6. The resolvent set of a linear operator A on a Banach space X is
defined by

ρ(A) = {λ ∈ C : (λ−A)−1 exists with domain X and it is a bounded linear operator.}

i.e., λ− A is a bijection from D(A) to X and (λ− A)−1 is continuous.

Definition 0.7. By spectrum of an operator A we understand the set σ(A) =
C\ρ(A).

We denote by Pσ(A) the set of eigenvalues of A, i.e., those λ such that ker(λ−
A) 6= {0}.
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Definition 0.8. We say that an operator K is A-compact if K(λ0 − A)−1 is com-
pact for some λ0 ∈ ρ(A).

Definition 0.9. We define the spectral radius of a bounded linear operator S by

r(S) := sup{|λ| : λ belongs to the spectrum of S} = sup ‖Sn‖1/n ≤ ‖S‖.

The spectral bound of the generator A is defined by

s(A) := sup{Reλ : λ belongs to σ(A)}.

The growth bound of the generator A is ω(A) := ω = ω(S(t)).

Definition 0.10. In the case that λ0 is an isolated point of the spectrum of A, we
define the algebraic multiplicity of λ0 as the dimension of the spectral subspace
corresponding to λ0 (i.e., the subspace

⋃
n ker(λ0 − A)n), while the geometric

multiplicity is the dimension of the kernel of the operator λ0 − A.
In the case that the algebraic multiplicity of λ0 is 1 we call λ0 an algebraically

simple pole.

Definition 0.11. We say that a positive linear operator K (i. e., such that Kv ≥ 0
whenever v ≥ 0) is irreducible in L1(α, β) if for all f > 0 and for all [a, b] ⊂
(α, β) , there exists n ∈ N such that

∫ b

a
Knf > 0.

We say that a positive semigroup S(t) is irreducible in L1(α, β) if for all p0 >

0 and for all [a, b] ⊂ (α, β) , there exists t > 0 such that
∫ b

a
S(t)p0 > 0.

A characterization of irreducible semigroup is that the resolvent operator of
the generator is strictly positive i. e., it maps nonnegative (nonzero) functions to
strictly positive functions a. e.

Definition 0.12. Let us consider the following semilinear initial value problem
{

d
dt

u(t) + Au(t) = f(u(t)), t > 0,
u(0) = u0,

(4)

where A is the infinitesimal generator of a C0−semigroup S(t), t > 0, on a Ba-
nach space X , f : X → X satisfies a Lipschitz condition in u, and u0 ∈ X .
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We define a Mild solution of (4) as a continuous function u which is a solution
of the following integral equation

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(u(s))ds.

Theorems on positive semigroups

Theorem 0.13. Suppose that A is the generator of a positive linear semigroup
and K is a positive bounded linear operator.

If A is K-compact and if s(A + K) > s(A) then s(A + K) is a pole of finite
algebraic multiplicity of the resolvent operator of A+K and hence an eigenvalue.

Proof.: See [9], pages 317-319.

Theorem 0.14. Suppose that B is the generator of an irreducible positive semi-
group on a Banach lattice X . If s(B) is a pole of the resolvent, then it has alge-
braic (and geometric) multiplicity 1.

The corresponding residue has the form P =< ·, φ > u, where φ ∈ X ′ is a
positive eigenvector of B′, u ∈ X is a positive eigenvector of B and < u, φ >= 1.

Proof.: See [9], pages 310.

Theorem 0.15. Suppose that S is an irreducible semigroup on the Banach lattice
X and let B be its generator. Assume that s(B) = 0 and that there exists a positive
linear form ψ ∈ D(B′) (where B′ denotes the adjoint of B) with B′ψ ≤ 0.

If Pσ(B) ∩ iR is non-empty, then the following assertions are true:

(a) 0 is the only eigenvalue of B admitting a positive eigenvector.

(b) If Bh = iαh (h 6= 0, α ∈ R), then |h| is a quasi-interior point (a strictly
positive function a. e. when X is L1).

Proof.: See [9], page 312.
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Theorem 0.16. Let A be the generator of a positive semigroup and K a positive
bounded linear operator. Then the following alternative holds:

(i) The spectral radius of K(λ− A)−1 is less than 1, for all λ > s(A). Then
s(A + K) = s(A).

(ii) There exists λ > s(A) such that the spectral radius of K(λ − A)−1 is
larger than or equal to 1. Then s(A + K) > s(A).

Proof.: See Theorem 3.3 in [66], where it is stated in a more general setting,
more precisely for the so-called resolvent positive θ operators.

Proposition 0.17. Let C be the generator of a positive semigroup (in particular a
positive bounded linear operator). Then

s(C) ≥ sup{λ ∈ R : Cf ≥ λf for some 0 < f ∈ D(C)}.
Proof.: Let λ > s(C) and 0 < f ∈ D(C) such that Cf ≥ λf . Then (λ −

C)f ≤ 0, and hence, since the resolvent operator (λ− C)−1 of the generator of a
positive semigroup is positive (see [9]) we have f = (λ − C)−1(λ − C)f ≤ 0, a
contradiction.

See Corollary B-II, 1.14 in [9] where the same proposition is stated in spaces
of continuous functions.

Theorem 0.18. Let A be the generator of a strongly continuous semigroup (S(t))t≥0

and let K be a bounded linear operator. Then A + K with domain D(A + K) =
D(A) is the generator of a strongly continuous semigroup (S̃(t))t≥0.

Moreover, (S̃(t)) is the solution of the following integral equation

S̃(t)f = S(t)f +

∫ t

0

S(t− s)KS̃(s)fds for t ≥ 0, f ∈ X.

Proof.: See [9], page 44 and its references.

Theorem 0.19. (Rellich-Kondrachov Theorem for bounded domains)
Let Ω be a bounded C1 domain. Then the injection W 1,1(Ω) ⊂ L1(Ω) is a

compact operator.
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Proof.: See [19], page 169.

Theorem 0.20. Let B1 and B2 be two linear operators with strictly positive re-
solvent and such that

(λ−B1) ≥ (λ−B2) for λ > max
(
S(B1), S(B2)

)

and that S(Bi) is a pole of the resolvent of Bi, i = 1, 2.

Then s(B1) > s(B2).

Proof.: See [10].

Dual semigroups

Definition 0.21. Given a linear semigroup S(t) on a Banach space X , we define
the dual semigroup S∗(t) by taking the adjoint operator S∗(t) for any t, i. e.,

< u, S∗(t)φ >=< S(t)u, φ > for u ∈ X, φ ∈ X∗.

Definition 0.22. The subspace X¯ of the dual space X∗ with respect to a strongly
continuous semigroup S(t) is defined as the (closed) maximal invariant subspace
on which S∗(t) is strongly continuous, i. e.,

X¯ = {φ ∈ X∗ : lim
t→0+

‖S∗(t)φ− φ‖ = 0}.

Definition 0.23. We call S¯(t) to the restriction of S∗(t) to X¯.
So, we have that X¯¯ is the subspace of the dual X¯∗ where the (bi)dual

semigroup S¯∗(t) is strongly continuous.

Definition 0.24. We define the embedding j : X → X¯∗ by

< jx, φ >=< x, φ >

for x ∈ X and φ ∈ X¯.
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Remark 1. The range of j lies in X¯¯.
Indeed, given any x ∈ X we must show that

lim
t→0+

‖S¯∗(t)jx− jx‖ = 0,

i.e., that we have limt→0+ < S¯∗(t)jx − jx, φ¯ >= 0 uniformly for φ¯ ∈ X¯

with norm equal 1. But,
∣∣< S¯∗(t)jx− jx, φ¯ >

∣∣ =
∣∣< jx, S¯(t)φ¯ − φ¯ >

∣∣

=
∣∣< x, S¯(t)φ¯ − φ¯ >

∣∣ =
∣∣< S(t)x− x, φ¯ >

∣∣ ≤ ‖S(t)x− x‖−→
t→0+

0,

where the inequality follows from ‖φ¯‖ = 1.

Definition 0.25. We say that a Banach space X is sun-reflexive with respect to a
semigroup S(t) if the embedding j is such that j(X) = X¯¯.

Definition 0.26. Let us consider the following semilinear initial value problem
{

d
dt

u(t) + Au(t) = f(u(t)), t > 0,
u(0) = u0,

(5)

where A is the infinitesimal generator of a C0−semigroup S(t), t > 0, on a Ba-
nach space X , f : X → X¯∗ satisfies a Lipschitz condition in u, and u0 ∈ X .

We define as Mild solution of (5) a continuous function u which is a solution
of the following integral equation

u(t) = S(t)u0 + j−1

(∫ t

0

S¯∗(t− s)f(u(s))ds

)
.

Remark 2. In order that this variation of constants equation makes a sense we
need that the integral takes values in the range of j. What is always true is that
it takes values in X¯¯ provided that t → f(u(t)) is norm continuous (see [24],
Theorem 3.2). So, this suffices in the case that X is sun reflexive. Otherwise, it is
still possible to prove directly that the integral takes values in j(X) in some very
important cases, significantly for our purposes in the case of delay equations (see
[29] [30] and Chapter 5).
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Chapter 1

The age and cyclin cell population
model. An oversimplified version

In the first part of this chapter we present the model studied in [12] and [13] which
is a structured cell population model. The structure is based on internal variables
(age and the content of a certain protein called Cyclin as we explained before).
Here we also introduce the functions that appear on the system and we do some
basic assumptions on them. This assumptions will allow us to simplify the model.
Assuming that the main functions do not depend on age, it leads us to a first order
nonlinear partial differential equations system without boundary condition. More
than that, if we simplify further the model assuming that some functions do not
depend on the cyclin content, we can show that it is possible to find an unstable
nontrivial equilibrium. This will be studied in section 1.2.

To present the model studied in [12] and [13], let us start by considering the
variation of the amount of the cyclin with respect to the age.

1.1 The complete model

Let x be the amount of the complex cyclin inside a cell and w an aggregated vari-
able representing the amount of the various molecules involved in the synthesis of
cyclin. We consider x and w as regulating variables in a simple nonlinear system
of ordinary differential equations (ODEs) with respect to the cell age a. The syn-
thesis of x occurs at a rate c1 and its degradation at a rate c2; we assume that the
synthesis of w is induced by growth factors at a constant rate c3, its degradation

23
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occurring at a rate c4. The ODE model can thus be written as follows:





dx

da
= c1

x

1 + x
w − c2x, x(0) = x0 > 0,

dw

da
= c3 − c4w, w(0) = w0 > 0.

(1.1)

The only nonlinearity of this model is located in the term c1

x

1 + x
representing

a positive autoregulation coefficient with saturation for x under the linear influ-
ence of the lumped variable w. Substituting the solution of the second equation of
(1.1), we can reduce (1.1) to an equation in x:

dx

da
= c1

x

1 + x

(
c3

c4

+ e−c4a
(
w0 −

c3

c4

))− c2x, x(0) = x0. (1.2)

A natural quantity arises in the qualitative analysis of (1.2), the x-nullcline:

X(a) =
c1

c2

(
c3

c4

+ e−c4a
(
w0 −

c3

c4

))− 1.

We assume that w0 ≤
c3

c4

and c1c3 > c2c4 which is a way to express that the

lumped variable w is increasing from its initial to its asymptotic value. There-
fore, a fundamental property of equation (1.2) is that the cyclin concentration x is
limited by:

xM =
c1c3

c2c4

− 1 > 0. (1.3)

We keep this simple model for our next purpose which is to describe a popu-
lation of cells, in a proliferative or quiescent state.

Before introducing the system, we have to define some functions.

The function Γ represents the evolution speed of cyclin with respect to time

which is given by equation (1.2), with w1 = w0 −
c3

c4

≤ 0:

dx

da
= Γ(a, x) = c1

x

1 + x

(
c3

c4

+ e−c4aw1

)
− c2x. (1.4)
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Let p(t, a, x) and q(t, a, x) be the densities of proliferating and quiescent cells,
respectively, at time t with respect to age a and content x of cyclin.

We also consider a "total weighted population", i.e., an effective population
density, N defined by:

N(t) =

∫ xM

0

∫ +∞

0

[
φ∗(a, x)p(t, a, x) + ψ∗(a, x)q(t, a, x)

]
dadx.

Here the weights φ∗(a, x) and ψ∗(a, x) represent environmental factors such
as growth and anti-growth factors acting on the populations of proliferating and
quiescent cells, respectively.

Exits from the quiescent compartment are due either to apoptosis (physiolog-
ical cell death) at a rate d2 or to transition to the proliferative phase according to
a "recruitment" or "getting in the cycle" function G, which is assumed to be a
smooth strictly decreasing function of the total weighted population N while, in
the case of healthy tissue, tends to 0 when N goes to infinity. We also assume
that cells may leave the proliferative compartment due either to apoptosis, with
rate d1, or to cell division with rate F (a, x) or finally entering the quiescent one
according to a "demobilization" or "leak" function L(a, x). The functions L and
G represent the core mechanism of exchange from proliferation to quiescent and
vice-versa, respectively. Quiescent cells are assumed to be halted in their individ-
ual physiological evolution, in the sense that once a cell becomes quiescent, its
age and cyclin content are fixed at their last values as belonging to a proliferative
cell. In this way, quiescent cells do not age and do not change their cyclin content.

In [12], [13], the following nonlinear system is proposed to model the biolog-
ical situation just described:





∂

∂t
p(t, a, x) +

∂

∂a
p(t, a, x) +

∂

∂x

(
Γ(a, x)p(t, a, x)

)
=

= −[
L(a, x) + F (a, x) + d1

]
p(t, a, x) + G(N(t))q(t, a, x),

∂

∂t
q(t, a, x) = L(a, x)p(t, a, x)− [

G(N(t)) + d2

]
q(t, a, x)

(1.5)
with the boundary condition (at a = 0)
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p(t, 0, x) = 2

∫ xm

0

∫ +∞

0

F (a, y)

y
χ

[0,y]
(x)p(t, a, y)dady

and the definition

N(t) =

∫ xm

0

∫ +∞

0

[
φ∗(a, x)p(t, a, x) + ψ∗(a, x)q(t, a, x)

]
dadx.

The boundary condition corresponds to the birth rate of cells with a cyclin
content x and assumes that a dividing cell with cyclin content y(> x) and any age
a divides at a rate F (a, y) producing two cells (of age 0) with cyclin content x and
y − x following a uniform probability distribution on the interval [0, y].

Now let us assume that the functions Γ, L, F, φ∗, ψ∗ do not depend on a, i. e.

Γ(a, x) = Γ(x), L(a, x) = L(x), F (a, x) = F (x),

φ∗(a, x) = φ∗(x), ψ∗(a, x) = ψ∗(x).

In [12] and [13] a somehow particular form of functions L, F and G is as-
sumed. In the forthcoming we assume, apart from the above mentioned hypothe-
ses on G, that L and F are bounded, positive continuous functions of x and that
F (x)

x
is also bounded.

Let us introduce

P (t, x) =

∫ +∞

0

p(t, a, x)da, Q(t, x) =

∫ +∞

0

q(t, a, x)da.

Assuming that Γ(a, x) = Γ(x) corresponds to assuming c3 and c4 very large
in order to still have c3

c4
> w0 and e−c4aw1 be negligible. Then (1.4) reduces to

Γ(x) = c1

x

1 + x

(
c3

c4

)
− c2x = c2

(
c1c3

c2c4

x

1 + x
− x

)
=

= c2x

((c1c3

c2c4

− 1
) 1

1 + x
− x

1 + x

)
,

i. e.,
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Γ(x) = c2

x(xM − x)

1 + x
. (1.6)

Integrating system (1.5) with respect to a we have




∂

∂t
P (t, x) + p(t, a, x)

∣∣∣
a=+∞

a=0
+

∂

∂x

(
Γ1(x)P (t, x)

)
=

= −[
L(x) + F (x) + d1

]
P (t, x) + G(N(t))Q(t, x),

∂

∂t
Q(t, x) = L(x)P (t, x)− [

G(N(t)) + d2

]
Q(t, x),

where, moreover,

lim
a→+∞

p(t, a, x) = 0

and

p(t, 0, x) = 2

∫ xM

0

∫ +∞

0

F (y)

y
χ

[0,y]
(x)p(t, a, y)dady =

= 2

∫ xM

x

F (y)

y
P (t, y)dy.

Then





∂

∂t
P (t, x) +

∂

∂x

(
Γ(x)P (t, x)

)
=

= −[
L(x) + F (x) + d1

]
P (t, x) + G(N(t))Q(t, x) + 2

∫ xM

x
F (y)

y
P (t, y)dy,

∂

∂t
Q(t, x) = L(x)P (t, x)− [

G(N(t)) + d2

]
Q(t, x).

(1.7)
System (1.7) is still a first order nonlinear partial differential equations system.

In contrast to (1.5) there is no boundary condition (this is related with the fact that
Γ(0) = 0) and now the inflow term corresponding to newborn cells appears into
the (first) equation as a non local (integral) term. In the next chapter we will dis-
cuss about the hypotheses on the functions that appear on system (1.7) and their
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biological interpretation.

On the other hand, in the next section we will analyze a simpler case just to
increase intuition. This reduced model cannot be considered a particular case of
the structured model because we have to assume that the functions involved are
independent of the cyclin content.

1.2 An ordinary differential equations system
Here we will study a simplified case that does not have biological interest. Even
though, this mathematical model can help us to understand the behavior of the
model (1.7). We will assume that the parameter functions in the model are con-
stant (also cyclin-content independent), which reduces it to a system of two ordi-
nary differential equations. With these assumptions we can analyze the complete
asymptotic behavior of the system and show that it is possible to find conditions to
have an unstable non trivial equilibrium point. The instability appears through a
Hopf bifurcation which leads to the existence of stable self-sustained oscillations
of the populations. Unfortunately, this reduced model cannot be considered a par-
ticular case of the structured model because we have to assume that the functions
involved are independent of the cyclin content.

To consider this simpler case, let us assume that the functions L, F, φ∗, ψ∗ do
not depend on x, i. e. they are constant. We also assume that

d1 < F < d1 + L. (1.8)

Integrating system (1.7) with respect to x and with the notation

P (t) =

∫ xM

0

P (t, x)dx, Q(t) =

∫ xM

0

Q(t, x)dx

we have





∂

∂t
P (t) + Γ(x)P (t, x)

∣∣x=xM

x=0
= −(L + F + d1)P (t)+

+G(N(t))Q(t) + 2F
∫ xM

0

∫ xM

x
P (t,y)

y
dydx,

∂

∂t
Q(t) = LP (t)− [

G(N(t)) + d2

]
Q(t).
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Now using that Γ(0) = Γ(xM) = 0, we have

2F

∫ xM

0

∫ xM

x

P (t, y)

y
dydx = 2F

∫ xM

0

∫ y

0

P (t, y)

y
dxdy =

= 2F

∫ xM

0

P (t, y)dy = 2FP (t)

from where we derive the following system of ordinary differential equations:
{

Ṗ (t) = −(L− F + d1)P (t) + G(N(t))Q(t),

Q̇(t) = LP (t)− [
G(N(t)) + d2

]
Q(t).

(1.9)

Next we will analyze this ordinary differential equations system to see that
under some hypotheses it is possible to find an unstable non trivial equilibrium
and hence oscillations via a Hopf bifurcation.

Let us set

(0 < ) α = L−F +d1, and N(t) = φ∗P (t)+ψ∗Q(t), with φ∗, ψ∗ ∈ R+. (1.10)

For system (1.9), the equilibrium points satisfy:

0 = −αP + G(N)Q that implies P =
G(N)Q

α
,

0 = LP − (
G(N) + d2

)
Q that implies P =

(
d2 + G(N)

)
Q

L
.

Then, the first possibility is (0, 0) or, if Q 6= 0 then

G(N)

α
=

d2 + G(N)

L
or equivalently G(N) =

αd2

L− α
.

Therefore (0, 0) is always an equilibrium solution and, since we are assuming
that G is strictly decreasing and tends to 0 when N tends to infinity, there exists a
non trivial equilibrium (P̂ , Q̂) if and only if G(0) > αd2

L−α
(> 0) (where αd2

L−α
> 0

because F > d1), because then there exists a unique solution N̂ of the equation
G(N) = αd2

L−α
. Now using (1.10), this equilibrium is given by

(P̂ , Q̂) =

(
N̂d2

(L− α)ψ∗ + d2φ∗
,

N̂(L− α)

(L− α)ψ∗ + d2φ∗

)
.



30 CHAPTER 1. THE AGE AND CYCLIN CELL POPULATION MODEL

Notice that the condition on existence of nontrivial equilibrium can be written
as

G(0)(α− L) + αd2 < 0.

Now we will study the stability of the equilibrium points.

The Jacobian matrix of the system is:

J(P , Q) =

(−α + φ∗G′(N)Q Qψ∗G′(N) + G(N)
L−Qφ∗G′(N) −Qψ∗G′(N)− (d2 + G(N))

)
.

Then, for the point(0, 0) we have

J(0, 0) =

(−α G(0)
L −(d2 + G(0))

)

|J(0, 0)− λI| = λ2 +
(
α + d2 + G(0)

)
λ +

(
αd2 + (α− L)G(0)

)
.

So,

λ =
−(

α + d2 + G(0)
)±

√(
α + d2 + G(0)

)2 − 4
(
αd2 + (α− L)G(0)

)

2
.

We have two cases: If G(0)(α−L) + αd2 ≥ 0, then (0, 0) is the unique equi-
librium point and it is asymptotically stable because when the strict inequality
holds, either λ1,2 ∈ R with λ1, λ2 < 0 or λ = a± ib, a < 0.

In the other case, if G(0)(L−α) + αd2 < 0, then there is another equilibrium
point (P̂ , Q̂), and moreover λ1,2 ∈ R, λ1 < 0, λ2 > 0 which implies that (0, 0)
is a saddle point.

For the equilibrium point (P̂ , Q̂) we have

J(P̂ , Q̂) =

(−α + φ∗G′(N̂)Q̂ Q̂ψ∗G′(N̂) + G(N̂)

L− Q̂φ∗G′(N̂) −Q̂ψ∗G′(N̂)− (d2 + G(N̂))

)
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and

|J(P̂ , Q̂)− λI| = λ2 − tr(J(P̂ , Q̂))λ + det(J(P̂ , Q̂)),

where

tr(J(P̂ , Q̂)) = −α + φ∗G′(N̂)Q̂− Q̂ψ∗G′(N̂)− (d2 + G(N̂)) =

= −α− d2 −G(N̂) + (φ∗ − ψ∗)G′(N̂)Q̂

and

det(J(P̂ , Q̂)) =
(
α− φ∗G′(N̂)Q̂

)(
Q̂ψ∗G′(N̂) + d2 + G(N̂)

)−

−(
L− Q̂φ∗G′(N̂)

)(
Q̂ψ∗G′(N̂) + G(N̂)

)
=

=
[
αψ∗Q̂G′(N̂)+αd2+αG(N̂)−φ∗ψ∗Q̂2G′(N̂)

2−φ∗d2Q̂G′(N̂)−φ∗Q̂G′(N̂)G(N̂)
]−

−Lψ∗Q̂G′(N̂)− LG(N̂) + φ∗ψ∗Q̂2G′(N̂)
2
+ φ∗Q̂G′(N̂)G(N̂) =

= αd2 + (α− L)
αd2

L− α
+ Q̂G′(N̂)

[
αψ∗ − φ∗d2 − Lψ∗

]
=

= Q̂G′(N̂)
[
(α− L)ψ∗ − φ∗d2

]
.

So,

|J(P̂ , Q̂)−λI| = λ2+
[
α+d2+G(N̂)+(ψ∗−φ∗)G′(N̂)Q̂)

]
λ+Q̂G′(N̂)

[
(α−L)ψ∗−φ∗d2

]
.

Then we have that

λ =

[
−

(
α + d2 + G(N̂) + (ψ∗ − φ∗)G′(N̂)Q̂

)
±

√(
α + d2 + G(N̂) + (ψ∗ − φ∗)G′(N̂)Q̂

)2

− 4Q̂G′(N̂)
[
(α− L)ψ∗ − φ∗d2

]]/
2.
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To simplify notation, let us define

A := α + d2 + G(N̂) + (ψ∗ − φ∗)G′(N̂)Q̂

and

B := 4Q̂G′(N̂)
[
(α− L)ψ∗ − φ∗d2

]
.

Then we can write

λ =
−A±√A2 −B

2
.

By (1.8), we have that

(α− L)ψ∗ − φ∗d2 = (d1 − F )ψ∗ − φ∗d2 < 0,

and by hypothesis,

G(N̂) > 0,

G′(N̂) < 0

and then, we can see that

α + d2 + G(N̂) > 0,

and

B = 4Q̂G′(N̂)
[
(α− L)ψ∗ − φ∗d2

]
> 0.

We have to consider 2 cases:

(i) 0 ≤ ψ∗ ≤ φ∗ and ψ∗ + φ∗ > 0.
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Then A > 0, B > 0 which gives us an asymptotically stable equilibrium point,
because either λ1,2 < 0 or Reλ1,2 < 0.

(ii) 0 ≤ φ∗ < ψ∗.

Since B > 0, the point (P̂ , Q̂) is unstable if

A = α + d2 + G(N̂) + (ψ∗ − φ∗)G′(N̂)Q̂ < 0

or equivalently,

G′(N̂) < −α + d2 + G(N̂)

(ψ∗ − φ∗)Q̂
.

Assuming that G(x) =
1

1 + xn
, we have that

G′(x) = − nxn−1

(1 + xn)2

and then the following inequality must hold

− nN̂n−1

(1 + N̂n)2
= G′(N̂) < −α + d2 + G(N̂)

(ψ∗ − φ∗)Q̂
= − α + d2 + αd2

L−α

(ψ∗ − φ∗)
N̂(L− α)

(L− α)ψ∗ + d2φ∗

=

= −

(
α(L− α) + d2(L− α) + αd2

)(
(L− α)ψ∗ + d2φ

∗
)

N̂(ψ∗ − φ∗)(L− α)2
,

which is equivalent to

n >
(1 + N̂n)2

N̂n

(
α(L− α) + d2L

)(
(L− α)ψ∗ + d2φ

∗
)

(ψ∗ − φ∗)(L− α)2

and as G(N̂) =
1

1 + N̂n
=

αd2

L− α
we have that the inequality can be written

also as
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n >
1 + N̂n

N̂n
(1 + N̂n)

(
α(L− α) + d2L

)(
(L− α)ψ∗ + d2φ

∗
)

(ψ∗ − φ∗)(L− α)2
=

=
1 + N̂n

N̂n

L− α

αd2

(
α(L− α) + d2L

)(
(L− α)ψ∗ + d2φ

∗
)

(ψ∗ − φ∗)(L− α)2
=

=
1 + N̂n

N̂n

(
α(L− α) + d2L

)(
(L− α)ψ∗ + d2φ

∗
)

αd2(ψ∗ − φ∗)(L− α)

i.e., n must satisfy the following condition

n >
1 + N̂n

N̂n

(
α(L− α) + d2L

)(
(L− α)ψ∗ + d2φ

∗
)

αd2(ψ∗ − φ∗)(L− α)
. (1.11)

In particular, if φ∗ = 0, this condition reduces to

n >
1 + N̂n

N̂n

(
L− α

d2

+
L

α

)
. (1.12)

To show an example, let us assume

d1 = 2, d2 = 1, φ∗ =
1

2
, ψ∗ = 3, F = 4, L = 3. (1.13)

Then α = 1 and

G(N̂) =
αd2

L− α
=

1

2
=

1

1 + N̂n
⇔ N̂ = 1 ⇒ Q̂ =

2

6 + 1
2

=
4

13
.

To have instability, the condition (1.11) must hold:

n >
1 + 1

1

(
1(3− 1) + 3

)(
(3− 1)3 + 1

2

)

1(3− 1
2
)(3− 1)

=
2 ∗ 5 ∗ 13

2
5
2
∗ 2

= 13,

i.e., with n = 14 we have instability.
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Figure 1.1: Illustration for the problem with assumptions (1.13).

To show that it is possible to have instability with smaller n, let ε be small and
let us take

d1 = 0, d2 =
1

8
, φ∗ = 0, ψ∗ = c, c constant, F = ε, L = 5ε.

Then α = 4ε and

G(N̂) =
αd2

L− α
=

1

2
=

1

1 + N̂n
⇔ N̂ = 1 ⇒ Q̂ =

ε

εc
=

1

c
.

To have instability, the condition (1.12) must hold:

n >
1 + 1

1

(5ε− 4ε
1
8

+
5ε

4ε

)
= 2(8ε +

5

4
) = 16ε +

5

2
.
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i.e., for ε sufficiently small, we have instability with n = 3.

In the next chapter we will explain the model and the main hypotheses on
the functions, as well the biological meaning of each one. We also prove, under
suitable hypothesis, the existence, uniqueness and the positivity of the solution for
the problem (1.7).



Chapter 2

A cyclin-structured cell population
model

2.1 Introduction
In this chapter we present the age independent version of the model considered in
[12] and [13]. This model was studied in [17] and in section 1.1 we have given
a basic introduction of it. At this point we will explain with more detail this
model. We will also change a little bit the notation of system (1.7) to present the
following first order nonlinear partial differential equations system with nonlocal
terms structured only with respect to the cyclin content





∂

∂t
p(x, t) +

∂

∂x

(
Γ(x)p(x, t)

)
= −[

L(x) + F (x) + d1

]
p(x, t)

+G(N(t))q(x, t) + 2
∫ xM

x
F (y)

y
p(y, t)dy,

∂

∂t
q(x, t) = L(x)p(x, t)− [

G(N(t)) + d2

]
q(x, t)

(2.1)
where p(x, t) and q(x, t) are the densities of proliferating and quiescent cells

(respectively) at time t with respect to the cyclin content x.

Γ(x) denotes the evolution speed of cyclin content with respect to time. In
[12] the authors develop an ordinary differential equations model at an intracel-

37
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lular scale for the cyclin synthesis based on the works [3], [11] and [62] which
produces a growth speed Γ vanishing at 0 and at the maximum value of cyclin
content xM (see also Chapter 1).

The transition rate L(x) from proliferating to quiescent is assumed to be de-
creasing to take into account that, as we mentioned in the introduction, a larger
amount of cyclin content inhibits this transition.

On the other hand, since high levels of cyclin enhance the progression through
the cell cycle until mitosis (see for instance [63], [70]), the cell division rate F (x)
is assumed to be increasing.

A particular feature of the birth term in (2.1) is that the distribution of the
cellular material between daughter cells is assumed to be unequal. Mathematical
models of cell population with unequal cell division can be found in [5], [6] and
[49], where distribution of RNA content between daughter cells is studied. Also in
[14] a model for the progression through the cell cycle with unequal distribution
of the cyclin content between daughter cells is considered. In (2.1), the non local
term gives the inflow of newborn cells. It assumes that cells with cyclin content
y (> x) divide at a rate F (y) producing two new cells with cyclin content x and
y−x where (as in [12], [13], [17] and [18]) x is a uniformly distributed (on [0, y])
random variable.

The transition rate G from quiescent to proliferating stage is assumed to de-
pend on a weighted total population N (to take into account those cells that are
qualified to be recruited again for the proliferating stage, see [12], [13]).

We denote the total weighted population by

N(t) = N(p(x, t), q(x, t)) :=

∫ xM

0

[
φ(x)p(x, t) + ψ(x)q(x, t)

]
dx

where φ(x) and ψ(x) are positive bounded functions. Cells can leave the quies-
cent stage because of apoptosis, that is assumed to occur at a rate d2, or because
of transition back to the proliferating stage that is assumed to occur according to
a “recruitment” function G which is assumed to be a smooth strictly decreasing
function of the total weighted population, satisfying G(0) > 0 and that tends to 0
when N goes to infinity (case of healthy tissue, see [12]). We also assume that G
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satisfies a uniformly Lipschitz condition.

In this chapter we proved, under some assumptions, the existence and unique-
ness of a steady state for model (2.1) when the rate of quiescent cells going back
to the proliferating stage decreases to zero as the total weighted population grows
to infinity (this corresponds to the case of healthy tissue, see [12], [13]).

We assume that L and F are bounded, positive and continuous functions
and that F (x)

x
has a finite positive limit when x goes to 0 (implying in particu-

lar F (0) = 0). Γ(x), as we said before, represents the evolution speed of cyclin
content with respect to time. We assume that Γ ∈ C2[0, xM ], Γ(0) = Γ(xM) = 0,
Γ(x) > 0 for all x ∈ (0, xM) and the lateral derivatives satisfy Γ′(0) > 0,
Γ′(xM) < 0. In particular, there exists K > 0 such that −K < Γ′(x) < K
for all x ∈ (0, xM).

Finally, for simplicity in the notation, let us denote L̄ = supx L(x), F̄ =
supx F (x), Γ̄ = supx Γ(x), let Ḡ be any number larger than G(0) and M :=
max {d2 + Ḡ, L̄ + F̄ + d1}.

2.2 Existence, uniqueness and positiveness
Let us show the existence and uniqueness of solutions of model (2.1) with initial
conditions (p0, q0) ∈ (L1(0, xM))2 =: X .

In order to see this, we start by adding and subtracting Ḡq(x, t) to the second
equation of (2.1) and rewriting the resulting system in an abstract form as

d

dt
u(t) = Au(t) + f(u(t)) (2.2)

where u(t)(x) :=

(
p(x, t)
q(x, t)

)
,

Au(t)(x) :=


 − ∂

∂x

(
Γ(x)p(x, t)

)− [
L(x) + F (x) + d1

]
p(x, t)

L(x)p(x, t)− [
Ḡ + d2

]
q(x, t),


 (2.3)

and
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f(u(t))(x) =

(
G(N(t))q(x, t) + 2

∫ xM

x
F (y)

y
p(y, t)dy[

Ḡ−G(N(t))
]
q(x, t)

)
.

We will show that the operator A is the infinitesimal generator of a positive
C0 semigroup on X . To see this we rewrite A as the sum of two operators, A1

and A2, where

A1

(
p(x)
q(x)

)
=


 − ∂

∂x

(
Γ(x)p(x)

)

0


−M

(
p(x)
q(x)

)
,

and

A2

(
p(x)
q(x)

)
=

( [
M − (

L(x) + F (x) + d1

)]
p(x)

L(x)p(x) +
[
M − (

Ḡ + d2

)]
q(x)

)
.

The operator A2 is positive and bounded (by the definition of M ), and using
Theorem 1.3 and Theorem 1.10 from [36], in order to see that A is the infinites-
imal generator of a positive C0 semigroup, it is enough to see that A1 is the in-
finitesimal generator of a positive C0 semigroup. Moreover, as M is a constant, to
see that A1 is the infinitesimal generator of a positive C0 semigroup it suffices to
show that the operator

Ā

(
p(x)
q(x)

)
:=


 − ∂

∂x

(
Γ(x)p(x)

)

0


 =:

(
Ā1p(x)

0

)
(2.4)

defined on a suitable domain generates a positive strongly continuous semi-
group. Furthermore, the domain of A will coincide with the domain of Ā, which
is given in Proposition 2.

We will use the Method of Characteristics to prove that Ā is the infinitesimal
generator of a positive C0 semigroup. So, at this point we need to consider the
solution of {

z′(t) = Γ(z(t)),
z(0) = x.

(2.5)

Let φ(t, x) be the unique solution of the initial value problem for the charac-
teristic equation (2.5).

It is well known that, setting ξ = φ(t, x), then the derivative of the solution
satisfies
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∂

∂t

∂ξ

∂x
= Γ′(φ(t, x))

∂ξ

∂x
,

∂ξ

∂x
(0) = 1,

which implies that
∂ξ

∂x
= e

∫ t
0 Γ′(φ(σ,x))dσ. (2.6)

We will see that the operator Ā is the infinitesimal generator of the positive
semigroup T (t) explicitly given by

(
T (t)

(
p0

q0

))
(x) =

(
p0(φ(−t, x))e−

∫ t
0 Γ′(φ(s−t,x))ds

q0(x)

)

=:

(
(T 1(t)p0)(x)

q0(x)

)
.

(2.7)

Proposition 1. (2.7) defines a strongly continuous semigroup.

Proof. We first show that (2.7) defines a semigroup. Obviously, T (0) = Id. Now,
let us show that T 1(t) : L1 → L1 and also T (t) : (L1)2 → (L1)2 have the semi-
group property.

For all p0 ∈ L1, x ∈ (0, xM), denoting by

pt(x) := p0(φ(−t, x))e−
∫ t
0 Γ′(φ(σ−t,x))dσ,

we have

(
T 1(s)

(
T 1(t)p0

))
(x) =

(
T 1(s)pt

)
(x) = pt(φ(−s, x))e−

∫ s
0 Γ′(φ(σ−s,x))dσ

= p0(φ(−t, φ(−s, x)))e−
∫ t
0 Γ′(φ(σ−t,φ(−s,x)))dσe−

∫ s
0 Γ′(φ(σ−s,x))dσ

= p0(φ(−s− t, x))e−
∫ t
0 Γ′(φ(σ−t−s,x))dσe−

∫ s+t
t Γ′(φ(τ−t−s,x))dτ

= p0(φ(−(s + t), x))e−
∫ s+t
0 Γ′(φ(τ−(s+t),x))dτ =

(
T 1(s + t)p0

)
(x),
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where we have used that φ is solution of (2.5) and the change of variables
τ = σ + t. Using that T 1(t) has the semigroup property it is immediate to see that
T (t) has the same property.

Indeed, for all p0, q0 ∈ L1, x ∈ (0, xM), we have

(
T (s)

(
T (t)

(
p0

q0

)))
(x) =

(
T (s)

(
T 1(t)p0

q0

))
(x)

=

(
T 1(s + t)p0

q0

)
(x) =

(
T (s + t)

(
p0

q0

))
(x).

To see that the semigroup defined by (2.7) is strongly continuous we have to
see that for any initial condition p0(x) ∈ L1(0, xM),

lim
t→0

‖ (T 1(t)p0)(x)− p0(x) ‖L1 = 0.

We have that, for ε > 0, there exists p1 ∈ C∞
0 (with the absolute value of the

derivative bounded by C) such that ‖ p0 − p1 ‖< ε
6
.

Then let us estimate ‖ T 1(t)p0 − T 1(t)p1 ‖ and ‖ T 1(t)p1 − p1 ‖.

Let us first show that ‖ T 1(t) ‖ = 1. In fact,

‖ T 1(t)p0 ‖ =

∫ xM

0

| p0(φ(−t, x))e−
∫ t
0 Γ′(φ(s−t,x))ds | dx

=

∫ φ(−t,xM )

φ(−t,0)

| (p0(ξ) | dξ =

∫ xM

0

| p0(ξ) | dξ,

which holds for all p0 ∈ L1(0, xM), which implies that ‖ T 1(t) ‖ = 1. Here we

made ξ = φ(−t, x) (and then, by (2.6),
dξ

dx
= e−

∫ t
0 Γ′(φ(s−t,x))ds). It comes directly

from here that

‖ T 1(t)p0 − T 1(t)p1 ‖≤‖ T 1(t) ‖‖ p0 − p1 ‖≤ ε

6
.

Let t1 be such that teKtCΓ̄xM < ε
6

for all t ≤ t1 (where recall that K is such
that −K < Γ′(x) < K for all x ∈ (0, xM)), and t2 such that ‖ p1 ‖| eKt− 1 |< ε

6
,

for all t ≤ t2. Then, for all t ≤ t̄ where t̄ = min{t1, t2} we have that the last
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inequalities hold and

‖ T 1(t)p1 − p1 ‖ =

=
∫ xM

0
| p1(φ(−t, x))e−

∫ t
0 Γ′(φ(s−t,x))ds − p1(x) | dx

≤ ∫ xM

0
| (p1(φ(−t, x))− p1(x))e−

∫ t
0 Γ′(φ(s−t,x))ds | dx

+
∫ xM

0
| p1(x)

(
e−

∫ t
0 Γ′(φ(s−t,x))ds − 1

) | dx
≤ N

∫ xM

0
| φ(−t, x)− x | eKtdx +

∫ xM

0
| p1(x) || eKt − 1 | dx

≤ teKtCΓ̄xM+ ‖ p1 ‖| eKt − 1 |< ε
6

+ ε
6

= ε
3
.

(2.8)

Then for t ≤ t̄ we have

‖ (T 1(t)p0)(x)− p0(x) ‖
≤‖ T 1(t)p0 − T 1(t)p1 ‖ + ‖ T 1(t)p1 − p1 ‖ + ‖ p0 − p1 ‖< ε,

which concludes the proof.

The next step is to show that the linear operator Ā given in (2.3) with a suit-
able domain generates the semigroup given by (2.7). Let us see some previous
results that will help in this proof.

A direct and rigorous characterization of the domain is technically difficult
due to the fact that Γ vanishes at both extreme points of the interval [0, xM ]. On
the other hand, this fact is also responsible for the absence of boundary condi-
tions restricting the domain (see Lemma 2.2.1 below). In particular, to deal with
the limit appearing in the definition of infinitesimal generator we will use the fol-
lowing version of the C1-linearization around an equilibrium of a scalar ordinary
differential equation (see for instance [39] where the analytic case is considered).

Lemma 2.2.1. Let Γ(x) be a Lipschitzian function such that Γ(0) = 0, Γ′(0) =

a 6= 0, and
∫ x

0

Γ(s)− as

s2
ds < ∞, and let φ(t, x) be the solution of the initial

value problem (2.5).
Then

H(x) := xe
− ∫ x

0

Γ(s)− as

Γ(s)s
ds

is a C1 function with H ′(0) = 1,

Γ(x)H ′(x) = aH(x)

and such that H(φ(t, x)) = eatH(x) in a neighborhood of 0.
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Proof. First of all, notice that the last hypothesis is equivalent to the integrability

of
Γ(s)− as

Γ(s)s
at 0 which implies that the function H is well defined in a neighbor-

hood of 0.
For x 6= 0,

H ′(x) = e
− ∫ x

0

Γ(s)− as

Γ(s)s
ds

− xe
− ∫ x

0

Γ(s)− as

Γ(s)s
ds(Γ(x)− ax

Γ(x)x

)

= e
− ∫ x

0

Γ(s)− as

Γ(s)s
ds ax

Γ(x)
,

i.e., Γ(x)H ′(x) = aH(x).
For x = 0 we have that

lim
x→0

H(x)

x
= e

−limx→0

∫ x
0

Γ(s)− as

Γ(s)s
ds

= 1 = H ′(0).

Moreover, H is C1 because

lim
x→0

H ′(x) = lim
x→0

e
− ∫ x

0

Γ(s)− as

Γ(s)s
ds ax

Γ(x)
= a lim

x→0

x

Γ(x)
= 1.

To see that H(φ(t, x)) = eatH(x) we set φ(t, x) := H−1(eatH(x)) and show
that φ satisfies (2.5). Indeed,

∂φ

∂t
=

1

H ′(H−1(eatH(x)))
aeatH(x)

=
Γ(φ(t, x))

aH(H−1(eatH(x)))
aeatH(x) = Γ(φ(t, x)),

and φ(0, x) = H−1(H(x)) = x, which ends the proof.

Remark 3. If Γ(x) ∈ C2 and Γ(0) = 0, Γ′(0) = a 6= 0, then Lemma 2.2.1 holds,
since by Taylor’s Theorem, we can write

Γ(x) = Γ′(0)x + Γ′′(ξx)
x2

2
,
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for some ξx ∈ (−x, x) and

lim
x→0

Γ(x)− ax

x2
= lim

x→0

Γ′′(ξ)

2
=

Γ′′(0)

2
.

Remark 4. There exist C1 functions such that H(x) cannot be defined. For in-
stance, let us consider

Γ(x) =





x +
x

ln | x |, x 6= 0, x ∈ (−1, 1),

0, x = 0.

For x 6= 0, we have that

Γ′(x) = 1 +
ln | x | − 1

(ln | x |)2 .

Then Γ belongs to C1 since

Γ′(0) = lim
x→0

Γ(x)

x
= 1 + lim

x→0

1

ln | x | = 1

and

lim
x→0

Γ′(x) = lim
x→0

(
1 +

ln | x | − 1

(ln | x |)2

)
= 1.

On the other hand, we cannot define H(x) since

∫ 1/2

0

Γ(s)− as

s2
ds =

∫ 1/2

0

1

s ln | s |ds = −∞.

Remark 5. There exist functions which are not of class C2 (e.g., Γ(x) = x +
|x|3/2) and even functions that do not belong to class C1, such that Lemma 2.2.1
still holds. For instance, consider

Γ(x) =





x + x2 sin(
1

x
) x 6= 0,

0, x = 0.
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For x 6= 0, we have that

Γ′(x) = 1 + 2x sin(1/x)− cos(1/x),

whereas Γ′(0) = limx→0

Γ(x)

x
= 1.

So Γ does not belong to C1 class since

lim
x→0

(
1 + 2x sin(1/x)− cos(1/x)

)

does not exist.

Nevertheless, here we can apply the Lemma because Γ satisfies a Lipschitz
condition and ∫ x

0

Γ(s)− as

s2
ds =

∫ x

0

sin(1/s)ds < ∞.

Lemma 2.2.2. Let φ(t, x) be defined as the solution of the initial value problem

(2.5). Then for all t0 > 0, the continuous function F̄ (x, t) :=
φ(−t, x)− x

Γ(x)t
defined for (x, t) ∈ (0, xM) × (0, t0] can be extended to a continuous function
(also denoted) F̄ on [0, xM ]× [0, t0] such that F̄ (x, 0) = −1.

Moreover, denoting by LH and LH−1 the Lipschitz constants of H and H−1

respectively, we have that
∣∣∣∣∣
φ(−t, x)− x

Γ(x)t

∣∣∣∣∣ ≤ LHLH−1

e−Γ′(0)t − 1

Γ′(0)t
.

Proof. It suffices to show the existence of the limit at points of the form (0, t), (xM , t)
and (x, 0), and that it equals −1 in the last case. Let us recall that γ(x) > 0 on
(0, xM) and so a := Γ′(0) > 0.

Rewriting the function
φ(−t, x)− x

Γ(x)t
by means of the function H given by

Lemma 2.2.1, we have in a neighborhood of x = 0,

φ(−t, x)− x

Γ(x)t
=

H−1(e−atH(x))−H−1(H(x))

H(x)at
H ′(x)

= (H−1)′(ξx,t)
e−at − 1

at
H ′(x)
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where e−atH(x) < ξx,t < H(x).

Using this it is not difficult to see that

F̄ (0, t) = lim
(x,τ)→(0,t)

F̄ (x, τ) =
e−at − 1

at
.

In the same way, if Γ′(xM) = b, an appropriate version of Lemma 2.2.1 gives

F̄ (xM , t) =
e−bt − 1

bt
.

On the other hand, using that

∂

∂τ
φ(τ, x) = lim

t→τ

φ(t, x)− x

t
= Γ(φ(τ, x)),

we can also see that F̄ (x, 0) = −1.

We also need a bound for the function
φ(−t, x)− x

Γ(x)t
. Using the function H

given by Lemma 2.2.1 we have that
∣∣∣∣∣
φ(−t, x)− x

Γ(x)t

∣∣∣∣∣ =

∣∣∣∣∣
H−1(e−Γ′(0)tH(x))−H−1(H(x))

Γ′(0)H(x)t
H ′(x)

∣∣∣∣∣

≤ LHLH−1

∣∣∣∣∣
e−Γ′(0)tH(x)−H(x)

Γ′(0)H(x)t

∣∣∣∣∣ ≤ LHLH−1

∣∣∣∣∣
e−Γ′(0)t0 − 1

Γ′(0)t0

∣∣∣∣∣ .

The next result connects the linear operator Ā with the semigroup T and plays
a very important role in order to establish the existence and uniqueness result.

The proof is a little technical and it is somehow similar to the corresponding
one in the case of the translation semigroup (see [9], A-I, 2.4), being the main
difficulty the presence of the characteristic system, which can be dealt with thanks
to Lemma 2.2.2.

Proposition 2. The infinitesimal generator of the semigroup given explicitly by
(2.7) is the linear operator Ā defined by (2.4) with domain
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D = {u(x) = (p0(x), q0(x)) ∈ (L1(0, xM))2 : (Γp0)
′(x) ∈ L1(0, xM)}. (2.9)

Proof. We divide the proof into two parts. In the first one we prove that, for the
functions u belonging to the set D, the limit involved in the definition of the gen-
erator exists and equals Āu. In the second one, we prove that a function v in the
domain of the generator AG belongs to the set D. As a consequence, AGv = Āv.

Part 1:

Let us take (p0(x), q0(x)) ∈ D. We want to show that

lim
t→0+

∥∥∥∥∥
T 1(t)p0(x)− p0(x)

t
− Ā1p0(x)

∥∥∥∥∥
L1

= 0.

That is, let us consider

∫ xM

0

∣∣∣∣∣
(T 1(t)p0 − p0)(x)

t
− Ā1p0(x)

∣∣∣∣∣ dx

=

∫ xM

0

∣∣∣∣
1

t

(
p0(φ(−t, x))e−

∫ t
0 Γ′(φ(s−t,x))ds − p0(x)

)
+ (Γp0)

′(x)

∣∣∣∣ dx

≤
∫ xM

0

|p0(φ(−t, x))|
∣∣∣∣∣
Γ(x)e−

∫ t
0 Γ′(φ(s−t,x))ds − Γ(φ(−t, x))

Γ(x)t

∣∣∣∣∣ dx

+

∫ xM

0

∣∣∣∣∣
Γ(φ(−t, x))p0(φ(−t, x))− Γ(x)p0(x)

Γ(x)t
+ (Γp0)

′(x)

∣∣∣∣∣ dx =: I1 + I2

where we will see that both terms go to 0 when t goes to 0. Here we will use
Lebesgue dominated convergence theorem (LDCT) several times.

Step 1:
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Let us show that the first term of the expression above, I1, tends to 0 as t goes
to 0. Let us observe that making the change of variables ξ = φ(−t, x) (see (2.6))
and using the semigroup property of φ, we have that

∫ xM

0

|p0(φ(−t, x))|
∣∣∣∣∣
Γ(x)e−

∫ t
0 Γ′(φ(s−t,x))ds − Γ(φ(−t, x))

Γ(x)t

∣∣∣∣∣ dx

=

∫ φ(−t,xM )

φ(−t,0)

|p0(ξ)|
∣∣∣∣∣
Γ(φ(t, ξ))− Γ(ξ)e

∫ t
0 Γ′(φ(s−t,φ(t,ξ)))ds

Γ(φ(t, ξ))t

∣∣∣∣∣ dξ

=

∫ xM

0

|p0(ξ)|
∣∣∣∣∣
Γ(φ(t, ξ))− Γ(ξ)e

∫ t
0 Γ′(φ(s,ξ))ds

Γ(φ(t, ξ))t

∣∣∣∣∣ dξ.

Now, in order to apply the LDCT we show that the integrand converges point-
wise to 0 when t goes to 0. In fact, for a fixed x ∈ (0, xM), applying the l’Hôpital
rule we have

lim
t→0

Γ(φ(t, ξ))− Γ(ξ)e
∫ t
0 Γ′(φ(s,ξ))ds

Γ(φ(t, ξ))t

= lim
t→0

Γ′(φ(t, ξ))Γ(φ(t, ξ))− Γ(ξ)e
∫ t
0 Γ′(φ(s,ξ))dsΓ′(φ(t, ξ))

Γ′(φ(t, ξ))Γ(φ(t, ξ))t + Γ(φ(t, ξ))

= lim
t→0

(
Γ′(φ(t, ξ))

Γ(φ(t, ξ))

)(
Γ(φ(t, ξ))− Γ(ξ)e

∫ t
0 Γ′(φ(s,ξ))ds

Γ′(φ(t, ξ))t + 1

)
= 0

whenever ξ ∈ (0, xM).
On the other hand, since p0 belongs to L1, to apply the LDCT we only have to

show that ∣∣∣∣∣
Γ(φ(t, ξ))− Γ(ξ)e

∫ t
0 Γ′(φ(s,ξ)))ds

Γ(φ(t, ξ))t

∣∣∣∣∣
is bounded by a constant on [0, xM ]× [0, t0] for some t0 > 0.

Using the mean value theorem, the bound K for the absolute value of the
derivative of Γ and Lemma 2.2.2, we have that

∣∣∣∣∣
Γ(φ(t, ξ))− Γ(ξ)e

∫ t
0 Γ′(φ(s,ξ))ds

Γ(φ(t, ξ))t

∣∣∣∣∣
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=

∣∣∣∣∣
Γ(φ(t, ξ))− Γ(φ(t, ξ))e

∫ t
0 Γ′(φ(s,ξ))ds

Γ(φ(t, ξ))t

+
Γ(φ(t, ξ))e

∫ t
0 Γ′(φ(s,ξ))ds − Γ(ξ)e

∫ t
0 Γ′(φ(s,ξ))ds

Γ(φ(t, ξ))t

∣∣∣∣∣

≤
∣∣∣∣∣
e

∫ t
0 Γ′(φ(s,ξ))ds− 1

t

∣∣∣∣∣ +
∣∣∣e

∫ t
0 Γ′(φ(s,ξ))ds

∣∣∣
∣∣∣∣∣
Γ(φ(t, ξ))− Γ(ξ)

Γ(φ(t, ξ))t

∣∣∣∣∣

≤
∣∣∣e

∫ τξ
0 Γ′(φ(τξ,ξ))dsΓ′(φ(s, ξ))

∣∣∣ + eKtK

∣∣∣∣∣
φ(t, ξ)− ξ

Γ(φ(t, ξ))t

∣∣∣∣∣

≤ KeKt + KeKt
∣∣F̄ (φ(t, ξ), t)

∣∣ ≤ KeKt0
(
1 + LHLH−1

1− e−Γ′(0)t0

−Γ′(0)t0

)
,

since
1− e−Γ′(0)t

−Γ′(0)t
is increasing.

This implies that

lim
t→0+

∫ xM

0

|p0(φ(−t, x))|
∣∣∣∣∣
Γ(x)e−

∫ t
0 Γ′(φ(s−t,x))ds − Γ(φ(−t, x))

Γ(x)t

∣∣∣∣∣ dx = 0.

Step 2:

To finish the Part 1 of the proof we have to show that, when t goes to 0,

lim
t→0+

∫ xM

0

∣∣∣∣∣
Γ(φ(−t, x))p0(φ(−t, x))− Γ(x)p0(x)

Γ(x)t
+ (Γp0)

′(x)

∣∣∣∣∣ dx = 0.

This step is more technical. We will decompose this integral in two terms and
show that each one goes to 0 when t goes to 0. Indeed,

∫ xM

0

∣∣∣∣∣
Γ(φ(−t, x))p0(φ(−t, x))− Γ(x)p0(x)

Γ(x)t
+ (Γp0)

′(x)

∣∣∣∣∣ dx
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=

∫ xM

0

∣∣∣∣∣
1

Γ(x)t

∫ φ(−t,x)

x

(Γp0)
′(s)ds + (Γp0)

′(x)

∣∣∣∣∣ dx

=

∫ xM

0

∣∣∣∣∣
1

Γ(x)t

∫ φ(−t,x)

x

(
(Γp0)

′(s)− (Γp0)
′(x)

)
ds

+

(
1 +

φ(−t, x)− x

Γ(x)t

)
(Γp0)

′(x)

∣∣∣∣∣ dx

≤
∫ xM

0

1

Γ(x)t

∫ x

φ(−t,x)

|(Γp0)
′(s)− (Γp0)

′(x)|dsdx

+

∫ xM

0

∣∣∣∣∣1 +
φ(−t, x)− x

Γ(x)t

∣∣∣∣∣ |(Γp0)
′(x)|dx =: I21 + I22.

Let us first see that I22 goes to 0 when t goes to 0.

As (Γp0(x))′ ∈ L1 and moreover by Lemma 2.2.2,
φ(−t, x)− x

Γ(x)t
→ −1 point-

wise when t goes to 0, the integrant of I22 goes to 0 pointwise when t goes to 0.
Moreover, also by Lemma 2.2.2,

∣∣∣∣∣1 +
φ(−t, x)− x

Γ(x)t

∣∣∣∣∣ |(Γp0)
′(x)|

≤
(

1 + LHLH−1

∣∣∣∣
e−Γ′(0)t0 − 1

Γ′(0)t0

∣∣∣∣
)
|(Γp0)

′(x)|,

for t < t0. Therefore the claim follows from the LDCT.

Finally, we shall show that I21 also tends to 0 when t goes to 0. Here we will
make a linear change of variables (s = x + Γ(x)tz) and we will also use that,

since
φ(−t, x)− x

Γ(x)t
is continuous, it attains its minimum value. We denote by

mφ(t) := min
x∈[0,xm]

(φ(−t, x)− x

Γ(x)t

)
.

Then we have
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I21 =

∫ xM

0

1

Γ(x)t

∫ x

φ(−t,x)

|(Γp0)
′(s)− (Γp0)

′(x)|dsdx

=

∫ xM

0

∫ 0

φ(−t, x)− x

Γ(x)t

|(Γp0)
′(x + Γ(x)tz)− (Γp0)

′(x)|dzdx

≤
∫ 0

mφ(t)

∫ xM

0

|(Γp0)
′(x + Γ(x)tz)− (Γp0)

′(x)|dxdz.

Given ε > 0 there exists a function g of class C1 such that

∫ xM

0

|(Γ(x)p0)
′(x)− g(x)|dx <

ε

6
. (2.10)

Since z ∈ [
φ(−t, x)− x

Γ(x)t
, 0], by Lemma 2.2.2,

|Γ′(x)tz| ≤ KLHLH−1

e|Γ
′(0)|t − 1

|Γ′(0)| ,

we have that there exists a small enough t0 such that

1 + Γ′(x)tz ≥ 1−KLHLH−1

e|Γ
′(0)|t0 − 1

|Γ′(0)| > 1/2.

So,
∫ xM

0

|(Γp0)
′(x + Γ(x)tz)− g(x + Γ(x)tz)|dx

≤
∫ xM

0

1

1 + Γ′(x)tz
|(Γp0)

′(s)− g(s)|ds

≤ 2

∫ xM

0

|(Γp0)
′(s)− g(s)|ds <

ε

3
, (2.11)

where we have made the change of variables s = x+Γ(x)tz and used the fact
that it does not change the integration limits.

On the other hand, as g is a function of class C1, we can write that
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∫ xM

0

|g(x + Γ(x)tz)− g(x)|dx ≤ ‖g′‖∞
∫ xM

0

|Γ(x)tz|dx

≤ ‖g′‖∞t
e|Γ

′(0)|t − 1

|Γ′(0)|
∫ xM

0

|Γ(x)|dx <
ε

3
, (2.12)

which holds for any t < t1, for some t1 smaller than t0.

Finally, using (2.10), (2.11), (2.12) we can write that

I21 ≤
∫ 0

mφ(t)

∫ xM

0

|(Γp0)
′(x + Γ(x)tz)− (Γp0)

′(x)|dxdz

≤
∫ 0

mφ(t)

∫ xM

0

|(Γp0)
′(x + Γ(x)tz)− g(x + Γ(x)tz)|dxdz

+

∫ 0

mφ(t)

∫ xM

0

|g(x)− g(x + Γ(x)tz)|dxdz

+

∫ 0

mφ(t)

∫ xM

0

|g(x)− (Γp0)
′(x)|dxdz ≤ ε|mφ(t)|

which by Lemma 2.2.2 implies that I21 goes to 0 when t goes to 0, and ends
this part of the proof.

Part 2:

To conclude the proof we only have to see that all the functions in the domain
of the generator belong to the set D.

Let us assume that (p0(x), q0(x)) belongs to the domain of the generator, i.e.,
that there exists

lim
t→0+

(
T 1(t)p0

q0

)
(x)−

(
p0(x)
q0(x)

)

t
=: AG

(
p0(x)
q0(x)

)
. (2.13)

Denoting the first component of AG by AG
1 and the second by AG

2, it is
obvious that AG

2 = 0.
Using the Taylor expansion for φ, φ(−t, a) = a − Γ(a)t + Γ′(c)Γ(c)

2
t2, where

c ∈ (φ(−t, a), a), we can write,
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1

t

∫ a

φ(−t,a)

p0(x)dx =
1

t

∫ a

a−Γ(a)t+
Γ′(c)Γ(c)

2
t2

p0(x)dx

=
(
Γ(a)− Γ′(c)Γ(c)

2
t
)( 1

Γ(a)t− Γ′(c)Γ(c)
2

t2

) ∫ a

a−Γ(a)t+
Γ′(c)Γ(c)

2
t2

p0(x)dx.

So, assuming that a is a Lebesgue point of p0 (see [60]), we have

lim
t→0+

1

t

∫ a

φ(−t,a)

p0(x)dx = Γ(a)p0(a). (2.14)

On the other hand, for a, b ∈ (0, xM), we have

∫ b

a

(T 1(t)p0)(x)− p0(x)

t
dx

=
1

t

∫ b

a

p0(φ(−t, x))e−
∫ t
0 Γ′(φ(s−t,x))dsdx− 1

t

∫ b

a

p0(x)dx

=
1

t

∫ φ(−t,b)

φ(−t,a)

p0(ξ)dξ − 1

t

∫ b

a

p0(x)dx =
1

t

∫ a

φ(−t,a)

p0(x)dx− 1

t

∫ b

φ(−t,b)

p0(x)dx,

i.e.,

1

t

∫ a

φ(−t,a)

p0(x)dx =

∫ b

a

(T 1(t)p0)(x)− p0(x)

t
dx +

1

t

∫ b

φ(−t,b)

p0(x)dx, (2.15)

where, in the last but one equality we made the change of variable ξ =
φ(−t, x) and use (2.6).

We fix a Lebesgue point b of p0. Using (2.15) and (2.14),

lim
t→0+

1

t

∫ a

φ(−t,a)

p0(x)dx

= lim
t→0+

∫ b

a

(T 1(t)p0)(x)− p0(x)

t
dx + lim

t→0+

1

t

∫ b

φ(−t,b)

p0(x)dx

=

∫ b

a

AG
1p0(x)dx + Γ(b)p0(b).
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Then, for all Lebesgue points x ∈ (0, xM), we can write, using (2.14) again ,

Γ(x)p0(x) = lim
t→0+

1

t

∫ x

φ(−t,x)

p0(s)ds = Γ(b)p0(b) +

∫ b

x

AG
1p0(s)ds,

which holds a.e. since the set of non-Lebesgue points has zero measure (see
[60]).

With this we have that the function Γp0 is absolutely continuous, which im-
plies that (Γp0)

′ ∈ L1 by the Fundamental Theorem of Calculus (for instance, see
[60], Theorem 7.20), i.e., we have that (p0, q0) ∈ D.

Corollary 1. The linear operator A defined by (2.3) with domain given by (2.9) is
the infinitesimal generator of a C0 semigroup on the Banach space X = (L1(0, xM))2.

Proof. It follows from the beginning of section 2.2 and Proposition (2.9).

Now we will prove the local existence and uniqueness result. Even though
negative solutions do not have biological meaning, in order to apply a general
result in semilinear evolution equations, we extend the definition of the function
G to the whole real line, assuming that the extension satisfies the same condi-
tions, i.e., it is smooth, bounded above by Ḡ and its derivative is bounded by G′.
So the theorem below is stated in the whole space X and we leave the proof of
positiveness of solutions with positive initial conditions until Theorem 2.2.5.

Theorem 2.2.3. For all initial conditions u0 = (p0, q0) ∈ X = L1×L1, there ex-
ists a unique mild solution u(t) of (2.2) (see definition 0.12) defined on a maximal
interval of existence [0, TM). Moreover, if TM < ∞, then

lim
t→TM

‖u(t)‖ = ∞.

Proof. We use Theorem 1.4 from ([57], Chapter 6, page 185).
In order to apply the Theorem we need to prove two things:

(i) A is the infinitesimal generator of a C0 semigroup on X .

This holds from the Corollary above.

(ii) f satisfies a local Lipschitz condition on the Banach space X .



56 CHAPTER 2. A CYCLIN-STRUCTURED CELL POPULATION MODEL

We have that G is globally Lipschitzian with constant G′. As we want to show
that f is locally Lipschitzian, we assume that

∫ xM

0

|q(x)|dx < Q.

With this considerations, let
(

p1(x)
q1(x)

)
and

(
p2(x)
q2(x)

)
∈ X = (L1(0, xM))2.

Denoting by

Ni =

∫ xM

0

[
φ(x)pi(x) + ψ(x)qi(x)

]
dx

for i = 1, 2, and assuming that φ(x) ≤ φ∗, ψ(x) ≤ ψ∗, we have
∥∥∥∥f

(
p1(x)
q1(x)

)
− f

(
p2(x)
q2(x)

)∥∥∥∥

=

∥∥∥∥∥∥


 (G(N1)q1(x)−G(N2)q2(x)) + 2

∫ xM

x

F (y)

y
(p1(y)− p2(y))dy

[
Ḡ−G(N1)

]
q1(x)− [

Ḡ−G(N2)
]
q2(x)




∥∥∥∥∥∥
.

First of all, let us point out that

|N1 −N2| =
∣∣∣∣
∫ xM

0

[
φ(x)(p1(x)− p2(x)) + ψ(x)(q1(x)− q2(x))

]
dx

∣∣∣∣

≤ φ∗
∫ xM

0

|(p1(x)− p2(x))|dx + ψ∗
∫ xM

0

|(q1(x)− q2(x))|dx

≤ φ∗
∥∥∥∥
(

p1(x)
q1(x)

)
−

(
p2(x)
q2(x)

)∥∥∥∥ + ψ∗
∥∥∥∥
(

p1(x)
q1(x)

)
−

(
p2(x)
q2(x)

)∥∥∥∥

≤ (φ∗ + ψ∗)

∥∥∥∥
(

p1(x)
q1(x)

)
−

(
p2(x)
q2(x)

)∥∥∥∥ ,

which implies
∫ xM

0

|G(N1)q1(x)−G(N2)q2(x)|dx
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≤
∫ xM

0

|G(N1)(q1(x)− q2(x))|dx +

∫ xM

0

|(G(N1)−G(N2))q2(x)|

≤ Ḡ

∫ xM

0

|q1(x)− q2(x)|dx + G′
∫ xM

0

|(N1 −N2)q2(x)|

≤ Ḡ

∥∥∥∥
(

p1(x)
q1(x)

)
−

(
p2(x)
q2(x)

)∥∥∥∥

+ G′(φ∗ + ψ∗)

∥∥∥∥
(

p1(x)
q1(x)

)
−

(
p2(x)
q2(x)

)∥∥∥∥
∫ xM

0

|q2(x)|

≤
(

Ḡ + G′(φ∗ + ψ∗)Q
) ∥∥∥∥

(
p1(x)
q1(x)

)
−

(
p2(x)
q2(x)

)∥∥∥∥ . (2.16)

On the other hand,

∫ xM

0

|2
∫ xM

x

F (y)

y
(p1(y)− p2(y))dy|dx

≤ 2

∫ xM

0

∫ xM

x

|F (y)

y
(p1(y)− p2(y))|dydx

= 2

∫ xM

0

∫ y

0

F (y)

y
|p1(y)− p2(y)|dxdy = 2

∫ xM

0

F (y)|p1(y)− p2(y)|dy

≤ 2F̄

∫ xM

0

|p1(y)− p2(y)|dy ≤ 2F̄

∥∥∥∥
(

p1(x)
q1(x)

)
−

(
p2(x)
q2(x)

)∥∥∥∥ . (2.17)

And finally,
∫ xM

0

|Ḡq1(x)− Ḡq2(x)|dx

= Ḡ

∫ xM

0

|q1(x)− q2(x)|dx ≤ Ḡ

∥∥∥∥
(

p1(x)
q1(x)

)
−

(
p2(x)
q2(x)

)∥∥∥∥ . (2.18)
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Therefore, using (2.16), (2.17) and (2.18),
∥∥∥∥f

(
p1

q1

)
(x)− f

(
p2

q2

)
(x)

∥∥∥∥

∫ xM

0

∣∣∣∣∣(G(N1)q1(x)−G(N2)q2(x)) + 2

∫ xM

x

F (y)

y
(p1(y)− p2(y))dy

∣∣∣∣∣ dx

∫ xM

0

∣∣[Ḡ−G(N1)
]
q1(x)− [

Ḡ−G(N2)
]
q2(x)

∣∣ dx

≤ 2

∫ xM

0

|G(N1)q1(x)−G(N2)q2(x)|dx

+

∫ xM

0

|2
∫ xM

x

F (y)

y
(p1(y)− p2(y))dy|dx +

∫ xM

0

|Ḡq1(x)− Ḡq2(x)|dx

≤
[
2

(
Ḡ + G′(φ∗ + ψ∗)Q

)
+ 2F̄ + Ḡ

] ∥∥∥∥
(

p1(x)
q1(x)

)
−

(
p2(x)
q2(x)

)∥∥∥∥ ,

which ends the proof.

Let us now prove the global existence of the solutions.

Theorem 2.2.4. For all initial conditions u0 = (p0, q0) ∈ (L1(0, xM))2, there
exists a unique mild solution u(t) of (2.2) defined on [0,∞).

Proof. By Theorem 2.2.3, let u(t) be the solution of (2.2) defined on [0, TM).
First of all, let us point out that if f : X → X satisfies

‖f(u)‖ ≤ C1‖u‖+ C2, (2.19)

then, as u is the solution of the integral equation

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(u(s))ds,
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for t ∈ [0, tM), where S is a C0-semigroup such that ‖S(t)‖ ≤ Cewt, we have
that

‖u(t)‖ ≤ Cewt‖u0‖+ Cewt

∫ t

0

e−ws(C1‖u(s)‖+ C2)ds

= Cewt‖u0‖+ CC2

ewt − 1

w
+ CC1e

wt

∫ t

0

e−ws‖u(s)‖ds.

Since w can be assumed to be positive, this implies

e−wt‖u(t)‖ ≤
(
C‖u0‖+

CC2

w

)
+ CC1

∫ t

0

e−ws‖u(s)‖ds.

Applying the Gronwall inequality (for instance see [43]), we have that

e−wt‖u(t)‖ ≤ C
(
‖u0‖+

C2

w

)
eCC1t,

i.e.,

‖u(t)‖ ≤ C
(
‖u0‖+

C2

w

)
e(CC1+w)t,

and this inequality holds for all t ∈ [0, TM ].
Applying Theorem 2.2.3, we have that TM = ∞ provided that f satisfies

(2.19).
In fact, for u(x) = (p(x), q(x)) ∈ (L1(0, xM))2,

‖f(u(x))‖ =

∥∥∥∥∥∥


 (G(N)q(x) + 2

∫ xM

x

F (y)

y
p(y)dy

[
Ḡ−G(N)

]
q(x)




∥∥∥∥∥∥

≤
∫ xM

0

|(G(N)q(x))|dx + 2

∫ xM

0

∫ xM

x

F (y)

y
|p(y)|dydx+

∫ xM

0

|(Ḡ−G(N))q(x)|dx

≤ Ḡ

∫ xM

0

|q(x)|dx + 2F̄

∫ xM

0

|p(y)|dy + Ḡ

∫ xM

0

|q(x)|dx,
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i.e.,

‖f(u)‖ ≤ 2(Ḡ + F̄ )‖u‖
which finishes the proof.

Once we have existence and uniqueness, another natural question is about
the positiveness of the solution. It is natural if we want that our problem makes
biological sense.

Theorem 2.2.5. For all positive initial conditions u0 = (p0, q0) ∈ L1 × L1, the
solution of (2.2) will be positive on (0, +∞).

Proof. We recall the fixed point argument that provides the mild solution. A so-
lution of (2.2) satisfies the following integral equation

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(u(s))ds, (2.20)

where S is the positive semigroup generated by the operator A.
As we saw before, S is positive and since u0 is positive and because f maps

positive functions on positive functions, we have that

u1(t) = S(t)u0 +

∫ t

0

S(t− s)f(u0)ds

will be positive too. By induction we can construct a positive sequence (un)n

given by

un+1(t) = S(t)un +

∫ t

0

S(t− s)f(un(s))ds.

Since the cone of positive functions on L1 is closed, we have that the limit of the
sequence, u(t), is positive.



Chapter 3

Equilibria of the cyclin-structured
model

It this chapter we will show the existence of steady states of system (2.1). The hy-
potheses on the functions are the same that appear on the section 2.1. As we saw
before, this is a simplified version of the model introduced in [12], [13] where we
assume that the parameter functions are age-independent, which leads to a system
where the structure is only with respect to cyclin content, that is still a first order
nonlinear partial differential equations system with non local terms.

The abstract structure of the model allows the reduction of the problem of
finding nontrivial equilibria to the problem of existence of a positive eigenvector
corresponding to the dominant eigenvalue of a certain linear operator which is
the infinitesimal generator of an irreducible positive semigroup. This linear op-
erator is obtained from considering the vital and transition rates given by fixing
the values of an interaction variable, which summarizes the competition effect of
the population on each individual. In the literature dealing with dominant eigen-
values, positive eigenvectors and asynchronous exponential growth of structured
populations, the theory of linear semigroups (the first paper [71] applying this
theory to population dynamics considers the age-structured case) and the theory
of positive operators (see [53] and [45] where size structured cell populations are
considered) have been used extensively.

We use positive linear semigroup theory (see [9], [23]) in order to estab-
lish conditions for the existence of the dominant eigenvalue and uniqueness of a
(normalized) corresponding positive eigenvector of the linear operator mentioned

61
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above. As a consequence we prove in Theorem 3.1.5 existence and uniqueness of
a non trivial steady state under additional hypotheses which only amount to say
that the population increases in "ideal" conditions with respect to competition (i.e.
when the population is very small) and decreases in "starvation" conditions (i.e.
when the population is very large).

We will start by reducing the existence of steady states to the eigenproblem. In
the next section, following the lines of the book [9] (Chapter III), we decompose
the operator as the sum of a generator A of a positive semigroup and a compact
perturbation K. As usual the most difficult condition to check is that the spectral
bound of the perturbed operator A + K is strictly larger than the spectral bound
of the operator A. Theorem 3.3 in [66] states that the previous condition holds
whenever the spectral radius of the compact operator KR(λ, A) (where R(λ,A)
is the resolvent operator) is larger than or equal to 1 for some λ larger than the
spectral bound of A. In [66] the author applies the theorem to a population struc-
tured by age and size for which the spectral radius of this compact operator can
be explicitly computed, being the clue that the size distribution at birth is a fixed
measure, which in its turn implies that the operator is of rank one.

In our case this explicit computation is no longer possible and we obtain the
condition on the spectral radius under some hypotheses by using a pointwise in-
equality for a test function (Lemma 3.1.2 and Proposition 6). We also give condi-
tions ensuring non existence of an eigenvalue of the operator A + K larger than
the spectral bound of A (Theorem 3.1.4).

An alternative approach to the existence of solution to the eigenproblem in
a single equation for a size structured cell population is given in [54] by means
of proving the convergence of an approximate problem. The paper [31] gives a
proof of existence and uniqueness of the steady state of the model proposed in
[12] by means of regularization and application of the classical Krein-Rutman
theorem in the case that the transition rate from proliferating to quiescent stages
is independent of cyclin content.

3.1 Steady states
A steady state of system (2.1) is a solution (p(x), q(x)) ∈ (L1(0, xM))2 of the
system of equations
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0 = − ∂

∂x

(
Γ(x)p(x)

)− [
L(x) + F (x) + d1

]
p(x)

+G(N)q(x) + 2
∫ xM

x
F (y)

y
p(y)dy,

0 = L(x)p(x)− [
G(N) + d2

]
q(x),

(3.1)

with N =
∫ xM

0

(
φ∗(x)p(x) + ψ∗(x)q(x)

)
dx. For each (p, q), N is a real number

and G(N) too. We will denote G(N) by Ĝ.

System (3.1) can be reduced to a unique equation for p which leads to

0 = − ∂

∂x

(
Γ(x)p(x)

)−
[
L(x)+F (x)+d1− ĜL(x)

Ĝ + d2

]
p(x)+2

∫ xM

x

F (y)

y
p(y)dy.

For values of Ĝ in the range of the function G, let us consider the unbounded
linear operator in L1(0, xM)

BĜp(x) := − ∂

∂x

(
Γ(x)p(x)

)−
[

d2

Ĝ+d2
L(x) + F (x) + d1

]
p(x)

+ 2
∫ xM

x
F (y)

y
p(y)dy.

(3.2)

In order to find nontrivial solutions of (3.1) we have to find positive eigenvec-
tors of eigenvalue zero of the operator BĜ. We will show that for any Ĝ ∈
(0, G(0)), the operator BĜ has, under suitable hypotheses, a simple real eigen-
value λĜ = s(BĜ) (the spectral bound of BĜ), and that λĜ is the unique eigen-
value with corresponding positive eigenvector. Furthermore we will have that the
function Ĝ ∈ (0, G(0)) → λĜ is strictly increasing and continuous. Assuming
that λ0 < 0 < λG(0) the function λĜ has a unique zero that we will denote by Ĝ0.
In this case

BĜ0
cpĜ0

(x) = 0, ∀c ∈ R,

where pĜ0
is an eigenvector associated with the eigenvalue λĜ0

= 0, pĜ0
> 0,∫ xM

0
pĜ0

(x)dx = 1.
In order that cpĜ0

is the first component of a steady state we still have to find the
scalar c which is determined as follows (implying uniqueness of the non trivial



64 CHAPTER 3. EQUILIBRIA OF THE CYCLIN-STRUCTURED MODEL

steady state). As G is strictly decreasing in N and tends to 0 when N goes to
infinity, we have a unique N0 such that Ĝ0 = G(N0). Since the following must
hold

N0 = c

∫ xM

0

(
φ∗(x) +

L(x)ψ∗(x)

Ĝ0 + d2

)
pĜ0

(x)dx,

there exists a unique c0 ∈ R+, namely

c0 =
N0∫ xM

0

(
φ∗(x) + L(x)ψ∗(x)

Ĝ0+d2

)
pĜ0

(x)dx

such that the point
(

c0pĜ0
(x),

c0L(x)pĜ0
(x)

Ĝ0 + d2

)
satisfies (3.1), that is, it is the

unique positive steady state of system (2.1).

3.1.1 The eigenvalue problem

In this section we will prove that under suitable hypotheses the operator BĜ de-
fined in (3.2) has an algebraically simple dominant eigenvalue λĜ for any Ĝ in
(0, G(0)) with a corresponding positive eigenvector and moreover that it is the
only eigenvalue of BĜ with a positive eigenvector.
Let us denote

r
Ĝ
(x) =

d2

Ĝ + d2

L(x) + F (x) + d1

and let us consider the operator BĜ in the following way

BĜp(x) = AĜp(x) + Kp(x), (3.3)

where

AĜp(x) = − ∂

∂x

(
Γ(x)p(x)

)− r
Ĝ
(x)p(x),

Kp(x) = 2
∫ xM

x
F (y)

y
p(y)dy.

(3.4)

The existence of a dominant eigenvalue with a corresponding positive eigenvector
of BĜ will be proved using the following result.
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Theorem 3.1.1. Suppose AĜ +K is the generator of an irreducible positive linear
semigroup. If AĜ is K-compact, i.e. if K(λ − AĜ)−1 is compact for some λ >
s(AĜ) (the spectral bound of AĜ), and s(AĜ + K) > s(AĜ) then s(AĜ + K)
is a simple dominant eigenvalue of AĜ + K and its corresponding eigenvector is
strictly positive. Moreover s(AĜ+K) is the only eigenvalue of AĜ+K admitting
a positive eigenvector.

Proof. The first statement is given by Propositions CIII-3.18 and CIII-3.14 in [9].
The existence of a strictly positive eigenfunction corresponding to the eigenvalue
s(AĜ + K) follows from an application of Theorem 8.17 in [23]. This theorem
also gives existence of a positive eigenfunction of the adjoint operator of AĜ + K
corresponding to s(AĜ + K). Moreover, since 0 is an eigenvalue of the operator
AĜ + K − s(AĜ + K), Theorem CIII-3.8 in [9] gives the last assertion of the
theorem.

Let us now show that the operators AĜ and K fulfill the hypotheses required
in Theorem 3.1.1.

Proposition 3. K is a compact operator.

Proof. Taking the derivative in the L1 sense we have that D(Kp)(x) = −2
F (x)

x
p(x).

Then, if ‖p‖L1 ≤ c′′,

‖Kp‖L1 =

∣∣∣∣
∫ xM

0
2
∫ xM

x

F (y)

y
p(y)dy dx

∣∣∣∣

≤ 2
∫ xM

0

∫ y

0

F (y)

y
|p(y)|dx dy

= 2
∫ xM

0
F (y)|p(y)|dy

≤ 2c′xM‖p‖L1

≤ 2c′c′′xM

and

‖D(Kp)‖L1 =

∣∣∣∣
∫ xM

0

−2
F (x)

x
p(x)dx

∣∣∣∣ ≤ 2c′‖p‖L1 ≤ 2c′c′′,
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where c′ denotes an upper bound on
F (x)

x
. Then ‖Kp‖W 1,1 ≤ c. That is, the

operator K maps L1(0, xM) into W 1,1(0, xM) as a bounded linear operator, and
the operator K : L1(0, xM) −→ L1(0, xM) is compact by the Rellich-Kondrachov
theorem.

Proposition 4. Let AĜ and K be the operators defined by (3.4). The operator
BĜ = AĜ + K generates an irreducible semigroup S(t).

Proof. AĜ is the generator of a positive linear semigroup T0(t) given by the solu-
tion to the initial value problem for the first order linear partial differential equa-
tion

∂
∂t

p(x, t) + ∂
∂x

(Γ(x)p(x, t)) + rĜ(x)p(x, t) = 0,

p(x, 0) = p0,

which can be explicitly solved by the characteristic lines method:

(
T0(t)p0

)
(x) = p0(ϕ(−t, x))e−

∫ t
0

(
Γ
′
(ϕ(s−t,x))+rĜ(ϕ(s−t,x))

)
ds. (3.5)

where ϕ(t, x) is the (unique) solution to the initial value problem
{

z′(t) = Γ(z(t)),

z(0) = x.
(3.6)

Notice that for any x ∈ (0, xM), ϕ is an increasing function of t and
limt→+∞ ϕ(t, x) = xM .
Since K is a positive bounded operator AĜ + K is the generator of a positive
semigroup S(t) (see [57]) given by the solution of the integral equation

S(t)p0 = T0(t)p0 +

∫ t

0

T0(t− s)KS(s)p0ds.

Iterating once this equation we have

S(t)p0 = T0(t)p0 +
∫ t

0
T0(t− s)K

(
T0(s)p0 +

∫ s

0
T0(t− σ)KS(σ)p0dσ

)
ds

= T0(t)p0 +
∫ t

0
T0(t− s)KT0(s)p0ds

+
∫ t

0

∫ s

0
T0(t− s)KT0(t− σ)KS(σ)p0dσds

≥ ∫ t

0
T0(t− s)KT0(s)p0ds =: T1(t)p0.
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So, in order to show that S(t) is irreducible it suffices to show that for any
p0 ∈ L1(0, xM), p0 > 0 and any φ ∈ L∞(0, xM), φ > 0 there exists t0 such that
for t > t0,
∫ xM

0

φ(x)T1(t)p0(x)dx =

∫ t

0

∫ xM

0

φ(x)T0(t− s)KT0(s)p0(x)dxds > 0. (3.7)

For any v ∈ L1(0, xM), let us define

Iv := {x ∈ (0, xM) such that v(y) = 0 a.e. on [x, xM)}.
and

x̂v :=

{
inf Iv, if Iv 6= ∅
xM , if Iv = ∅.

Notice that x̂p0 > 0.
By (3.5) and the definition of ϕ(t, x) we can see that

x̂T0(t)p0 = x̂p0(ϕ(−t,·)) = ϕ(t, x̂p0) ∈ [x̂p0 , xM ].

On the other hand, as
F (y)

y
> 0 for all y and

Kv(x) = 2

∫ xM

x

F (y)

y
v(y)dy = 2

∫ x̂v

x

F (y)

y
v(y)dy

then, for any v > 0, Kv(x) > 0 if and only if x < x̂v.
With this at hand we have that

(KT0(s)p0)(x) > 0 if and only if x < ϕ(s, x̂p0).

Then

(T0(t− s)KT0(s)p0)(x) > 0 if and only if x < ϕ(t− s, ϕ(s, x̂p0)) = ϕ(t, x̂p0)

by the semigroup property of the solutions of the ordinary differential equation
(3.6).

Finally, let us consider φ ∈ L∞(0, xM), φ > 0. Since lims→+∞ ϕ(s, x̂p0) =
xM , there exists t0 such that φ does not vanish a.e. on (0, ϕ(t0, x̂p0)). Then for
t > t0 (3.7) holds.
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In order to see that the operator BĜ = AĜ + K satisfies the hypotheses of
Theorem 3.1.1 it only remains to show that the inequality s(AĜ + K) > s(AĜ)
holds. Theorem 1.1 in [66] states that s(AĜ + K) > s(AĜ) if there exists λ >
s(AĜ) such that the spectral radius of KR(AĜ, λ) is larger than or equal to 1. The
latter will be proved, under suitable hypotheses, by means of the following two
results, the first one of which is a rather abstract lemma whereas the second one is
a result about the semigroup T0(t) and its infinitesimal generator AĜ.

Lemma 3.1.2. Let C be a positive bounded linear operator in a Banach lattice. If
there exists f > 0 such that Cf ≥ f then the spectral radius of C is greater than
or equal to 1.

Proof. Since Cf − f ≥ 0 and C is a positive operator, we have

0 ≤ C(Cf − f) = C2f − Cf ≤ C2f − f,

and, iterating, Cnf ≥ f . Hence, ‖Cnf‖ ≥ ‖f‖ which implies ‖Cn‖1/n ≥ 1 and
the claim follows.

Proposition 5. Let T0 be the positive linear semigroup generated by the operator
AĜ and let us denote by ω0(T0) and s(AĜ) their growth bound and spectral bound
respectively. Then s(AĜ) = ω0(T0) = −min{rĜ(0), rĜ(xM)}.
Proof. The first equality holds for any positive semigroup in L1 (see [23]). As
the differential equation (3.6) is autonomous and Γ(0) = Γ(xM) = 0 < Γ(x) for
x ∈ (0, xM), the map x ∈ (0, xM) → ϕ(t, x) ∈ (0, xM) is a diffeomorphism for
any real t, with inverse x ∈ (0, xM) → ϕ(−t, x) ∈ (0, xM). Moreover,

∂ϕ

∂x
(t, x) = e

∫ t
0 Γ

′
(ϕ(s,x))ds.

From (3.5) it follows

‖T0(t)p0‖ =
∫ xM

0
|p0(ϕ(−t, x))e−

∫ t
0

(
Γ
′
(ϕ(s−t,x))+rĜ(ϕ(s−t,x))

)
ds|dx

=
∫ xM

0
|p0(y)|e−

∫ t
0 r

Ĝ
(ϕ(s,y))dsdy,

where we have made the change of variables y = ϕ(−t, x), i.e., x = ϕ(t, y) and
dx

dy
= e

∫ t
0 Γ

′
(ϕ(s,y))ds. Let us now define M := min{rĜ(0), rĜ(xM)} and recall that
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M > 0. We shall prove that s(AĜ) = −M . By continuity of Γ and rĜ, and the
positivity of Γ in (0, xM), for all sufficiently small ε > 0, there exists an interval
I = (δ, xM − δ) ⊂ (0, xM) such that

Γ(x) > ε if x ∈ I and rĜ(x) > M − ε if x ∈ (0, xM)\I. (3.8)

The first inequality in (5.3.1) implies that for any y ∈ (0, xM), the length of the
interval {s : ϕ(s, y) ∈ I} is smaller than xM

ε
. Then, for t > xM

ε
, by the second

inequality in (5.3.1),
∫ t

0

r
Ĝ
(ϕ(s, y))ds > (M − ε)(t− xM

ε
).

So,
‖T0(t)‖ ≤ exM (M

ε
−1)e(−M+ε)t,

and then, ω0(T0) = limt→+∞
ln(‖T0(t)‖)

t
≤ −M + ε for all sufficiently small

ε > 0, i.e., ω0(T0) ≤ −M .
Moreover, δ can be chosen such that either r

Ĝ
(x) < M + ε if x > xM − δ (when

M = rĜ(xM)) or r
Ĝ
(x) < M + ε if x < δ (when M = rĜ(0)), or both (if

rĜ(0) = rĜ(xM)). In the first case, taking uδ(x) = 1
δ
χ(xM−δ,xM )(x), we have (for

all sufficiently small ε > 0),

‖T0(t)uδ‖ =

∫ xM

xM−δ

1

δ
e−

∫ t
0 r

Ĝ
(ϕ(s,y))dsdy ≥ e(−M−ε)t,

and ω0(T0) = limt→+∞
ln(‖S(t)‖)

t
≥ −M − ε. Finally, in the second case, i.e.,

when M = rĜ(0), for all t > 0 there exists δ0 < δ such that ϕ(s, y) < δ (and
hence r

Ĝ
(ϕ(s, y)) < M + ε) whenever y < δ0 and s < t.

Then, taking uδ0(x) = 1
δ0

χ(0,δ0)(x), we have (for all sufficiently small ε > 0),

‖T0(t)uδ0‖ =

∫ δ0

0

1

δ0

e−
∫ t
0 r

Ĝ
(ϕ(s,y))dsdy ≥ e(−M−ε)t,

which leads to ω0(T0) ≥ −M . With this we finish the proof that ω0(T0) = −M .

Before stating the next result of this subsection, we shall introduce some no-
tation. Let us define the constants c0, c1, c2 and c3 in the following way

c0 = inf
y∈[0,xM ]

(
F (y)

y

)
> 0,
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c1 = sup{c > 0 : Γ(x) ≥ cx(xM − x), ∀x ∈ (0, xM)} = inf
Γ(x)

x(xM − x)
> 0,

c2 = inf{c > 0 : rĜ(x) ≤ rĜ(xM) + c(xM − x), ∀x ∈ (0, xM)},
c3 = inf{c > 0 : rĜ(x) ≤ rĜ(0) + cx ∀x ∈ (0, xM)}.

Using the hypotheses on F (x) and Γ(x), the constants c0 and c1 are well defined,
and with this at hand, we can prove the next result.

Proposition 6. Let us assume that c2 and c3 are well defined and that either

(i) rĜ(xM) ≤ rĜ(0)

or

(ii) rĜ(0) < rĜ(xM) and

2c0xM

( c3
c1

)
c3

c3−c1 (maxx rĜ(x)− rĜ(0))
> 1 (if c3 6= c1)

or
2c0xM

e(maxx rĜ(x)− rĜ(0))
> 1 (if c3 = c1).

Then the spectral radius of the operator KR(AĜ, λ) is larger than or equal to 1.

Proof. The resolvent operator R(AĜ, λ) can be explicitly computed by the varia-
tion of constants formula as the unique L1 solution to the linear ordinary differen-
tial equation

(Γ(x)p(x))′ + (λ + rĜ(x))p(x) = f(x), x ∈ (0, xM),

i.e.
(
R(AĜ, λ)f

)
(x) = 1

Γ(x)

∫ x

0
e−

∫ x
s

λ+r
Ĝ

(σ)

Γ(σ)
dσf(s)ds.

Let us proceed to prove that hypothesis (i) as well as hypothesis (ii) imply that the
hypothesis of Lemma 3.1.2 holds and then the claim follows. For δ0 ∈ (0, xM)
to be chosen later, we define the function f(x) := χ[0,xM−δ0](x). We just have to
show that for some λ > s(AĜ), KR(AĜ, λ)f(x) ≥ f(x), which reduces to see
KR(AĜ, λ)f(x) ≥ 1 for all x ∈ [0, xM − δ0].
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We begin by deriving the following bound:

KR(AĜ, λ)f(x) = 2
∫ xM

x
F (y)

y
1

Γ(y)

∫ y

0
e−

∫ y
s

λ+r
Ĝ

(σ)

Γ(σ)
dσχ[0,xM−δ0](s)dsdy

≥ 2
∫ xM

xM−δ0

F (y)
y

1
Γ(y)

( ∫ xM−δ0
0

e−
∫ y

s

λ+r
Ĝ

(σ)

Γ(σ)
dσds

)
dy

= 2

(
∫ xM−δ0
0

e−
∫ xM−δ0

s

λ+r
Ĝ

(σ)

Γ(σ)
dσds

)

(
∫ xM

xM−δ0

F (y)
y

1
Γ(y)

e
− ∫ y

xM−δ0

λ+r
Ĝ

(σ)

Γ(σ)
dσ

dy

)

≥ 2c0

(
∫ xM−δ0

0
e−

∫ xM−δ0
s

λ+r
Ĝ

(σ)

Γ(σ)
dσds

)

(
∫ xM

xM−δ0
1

Γ(y)
e
− ∫ y

xM−δ0

λ+r
Ĝ

(σ)

Γ(σ)
dσ

dy

)
.

(i) First notice that c2 ≥ 0. Let δ0 be sufficiently small such that δ0 <
c0c1xM

4(c1 + c2)c2

(no condition if c2 = 0). We shall show that
∫ xM

xM−δ0

1

Γ(y)
e
− ∫ y

xM−δ0

λ+r
Ĝ

(σ)

Γ(σ)
dσ

dy ≥ 1

λ + r
Ĝ
(xM) + c2δ0

(3.9)

and for λ + rĜ(xM) > 0 and δ0 > 0 sufficiently small,
∫ xM−δ0

0

e−
∫ xM−δ0

s

λ+r
Ĝ

(σ)

Γ(σ)
dσds ≥ c1xM

4(c1 + c2)
. (3.10)

With this, for all x ∈ [0, xM − δ0],

KR(AĜ, λ)f(x) ≥ 2c0

c1xM

4(c1 + c2)

1

λ + r
Ĝ
(xM) + c2δ0

.

By the choice of δ0, taking λ sufficiently close to s(AĜ) = −r
Ĝ
(xM), we

have



72 CHAPTER 3. EQUILIBRIA OF THE CYCLIN-STRUCTURED MODEL

λ + r
Ĝ
(xM) + c2δ0 ≤

c0c1xM

2(c1 + c2)

and then KR(AĜ, λ)f(x) ≥ 1 for all x ∈ [0, xM − δ0].
Let us now prove (3.9) and (3.10). To see (3.10) we note that for all σ in
(0, xM),

λ + r
Ĝ
(σ)

Γ(σ)
≤ λ + rĜ(xM) + c2(xM − σ)

c1σ(xM − σ)

and then, for s in (0, xM − δ0), a straightforward integration yields

− ∫ xM−δ0
s

λ+r
Ĝ

(σ)

Γ(σ)
dσ ≥ −λ+rĜ(xM )+c2xM

c1xM
ln

(
xM−δ0

s

)

+
λ+rĜ(xM )

c1xM
ln

(
δ0

xM−s

)
,

which implies

e−
∫ xM−δ0

s

λ+r
Ĝ

(σ)

Γ(σ)
dσ ≥

( δ0

xM − s

)λ+r
Ĝ

(xM )

c1xM

( s

xM − δ0

)λ+r
Ĝ

(xM )+c2xM
c1xM .

If s < xM − δ0 then
s

xM − δ0

< 1 and
δ0

xM − s
< 1. So, applying the

Monotonous Convergence Theorem

∫ xM−δ0
0

e−
∫ xM−δ0

s

λ+r
Ĝ

(σ)

Γ(σ)
dσds ≥ ∫ xM−δ0

0

(
δ0

xM−s

)λ+r
Ĝ

(xM )

c1xM

(
s

xM−δ0

)λ+r
Ĝ

(xM )+c2xM
c1xM ds

λ→−r
Ĝ

(xM )+−→ ∫ xM−δ0
0

(
s

xM−δ0

) c2
c1 ds

= (xM−δ0)c1
c1+c2

,

which for λ + rĜ(xM) and δ0 sufficiently small, implies (3.10).
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On the other hand, note that

rĜ(x) ≤ rĜ(xM) + c2δ0 for all x ∈ (xM − δ0, xM).

Using this we obtain

∫ xM

xM−δ0

1
Γ(y)

e
− ∫ y

xM−δ0

λ+r
Ĝ

(σ)

Γ(σ)
dσ

dy ≥ ∫ xM

xM−δ0

1
Γ(y)

e
−(λ+rĜ(xM )+c2δ0)

∫ y
xM−δ0

1
Γ(σ)

dσ
dy

=
1

λ + r
Ĝ
(xM) + c2δ0

,

which finishes this part of the proof.

(ii) Following exactly the same lines and denoting by R = maxσ∈[0,xM ] rĜ(σ),
we can also bound

∫ xM

xM−δ0

1

Γ(y)
e
− ∫ y

xM−δ0

λ+r
Ĝ

(σ)

Γ(σ)
dσ

dy ≥ 1

R− rĜ(0)

when λ + r
Ĝ
(0) > 0 is sufficiently small.

On the other hand, using the definition of c3 (which is necessarily positive)
we bound

λ+r
Ĝ

(σ)

Γ(σ)
≤ λ+r

Ĝ
(0)+c3σ

c1σ(xM−σ)
.

In the same way as in the case (i) we obtain (if c3 6= c1)

∫ xM−δ0
0

e−
∫ xM−δ0

s

λ+r
Ĝ

(σ)

Γ(σ)
dσds ≥ ∫ xM−δ0

0

(
s

xM−δ0

)λ+r
Ĝ

(0)

c1xM

(
δ0

xM−s

)λ+r
Ĝ

(0)+c3xM

c1xM ds

λ→−r
Ĝ

(x0)+−→ ∫ xM−δ0
0

(
δ0

xM−s

) c3
c1 ds

= c1xM

c3−c1

(
δ0
xM
−

(
δ0
xM

) c3
c1

)
.

Hence, for all δ0 ∈ (0, xM)

KR(λ,AĜ)f(x) ≥ 2c0

(
c1xM

c3 − c1

)[
δ0

xM

−
( δ0

xM

) c3
c1

]
1

R− rĜ(0)
,
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and

KR(λ,AĜ)f(x) ≥ 2c0xM

R−rĜ(0)
maxy∈(0,1)

1
c3
c1
−1

(y − y
c3
c1 )

= 2c0xM

R−rĜ(0)
1(

c3
c1

) c3
c3−c1

> 1

The case c3 = c1 is completely analogous.

Theorem 3.1.3. Under the hypotheses on the model and one of those of Proposi-
tion 6, the operator BĜ = AĜ + K has a (dominant) real eigenvalue s(BĜ), the
corresponding eigenvector is positive and s(BĜ) is the unique eigenvalue of BĜ

with a positive eigenvector.

Proof. By the paragraph following the proof of Proposition 4, it follows immedi-
ately from Theorem 3.1.1 and Propositions 3, 4 and 6.

What we have proved so far is that under the hypotheses on the model, when-
ever Proposition 6 holds, there exists a dominant eigenvalue of the operator BĜ.
When s(AĜ) = −rĜ(0) > −rĜ(xM) the dominant eigenvalue does not always
exist. In Proposition 6 we have given a sufficient condition for existence. The next
result gives a sufficient condition for non existence.

Theorem 3.1.4. Under the hypotheses on the model, if s(AĜ) = −rĜ(0) >
−rĜ(x) for all x ∈ (0, xM) and

sup
(0,xM )

(
F (y)

rĜ(y)− rĜ(0)

)
<

1

2
, (3.11)

then there is not a real eigenvalue larger than s(AĜ) with positive eigenvector
of the operator AĜ + K.

Proof. Let us assume the existence of a real eigenvalue and a positive eigenvector
of the operator AĜ + K, that is, a positive solution of the equation

(λ− AĜ)u(x) = Ku(x).

Let us assume λ > s(AĜ) = −r
Ĝ
(0). Then defining w = Ku(x) we will have

u = R(AĜ, λ)w and w = KR(AĜ, λ)w. Integrating the operator K we first note
that for all u,
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∫ xM

0

Ku(x)dx = 2

∫ xM

0

∫ xM

x

F (y)

y
u(y)dydx = 2

∫ xM

0

F (y)u(y)dy.

Integrating, interchanging integration order and finally integrating by parts, we
obtain
∫ xM

0
w(x)dx =

∫ xM

0
KR(AĜ, λ)w(x)dx

= 2
∫ xM

0
F (y)R(AĜ, λ)w(y)dy

= 2
∫ xM

0
F (y) 1

Γ(y)

∫ y

0
e−

∫ y
s

λ+r
Ĝ

(σ)

Γ(σ)
dσw(s)dsdy

= 2
∫ xM

0

∫ xM

s

F (y)

r
Ĝ
(y)− r

Ĝ
(0)

r
Ĝ
(y)− r

Ĝ
(0)

Γ(y)
e−

∫ y
s

λ+r
Ĝ

(σ)

Γ(σ)
dσdy w(s)ds

≤ 2 sup(0,xM )

(
F (y)

r
Ĝ
(y)− r

Ĝ
(0)

)
∫ xM

0

∫ xM

s
−e−

∫ y
s

λ+r
Ĝ

(0)

Γ(σ)
dσ

d

dy
e

(
−∫ y

s

r
Ĝ

(σ)−r
Ĝ

(0)

Γ(σ)
dσ

)

dy w(s)ds

= 2 sup(0,xM )

(
F (y)

r
Ĝ
(y)− r

Ĝ
(0)

)

∫ xM

0

(
1− (λ + r

Ĝ
(0))

∫ xM

s
1

Γ(y)
e−

∫ y
s

λ+r
Ĝ

(σ)

Γ(σ)
dσdy

)
w(s)ds

≤ 2 sup(0,xM )

(
F (y)

r
Ĝ
(y)− r

Ĝ
(0)

)
∫ xM

0
w(s)ds,

which obviously implies the necessary condition

sup
(0,xM )

(
F (y)

r
Ĝ
(y)− r

Ĝ
(0)

)
≥ 1

2
.
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Remark 6. Notice that (3.11) does not hold if L(x) decreases (which is assumed
in [12], [13]). Indeed,

F (y)

r
Ĝ
(y)− r

Ĝ
(0)

=
F (y)

F (y) + d2

Ĝ+d2
(L(y)− L(0))

> 1 for all y ∈ (0, xM).

Remark 7. It is easy to see directly that if the hypotheses of Theorem 3.1.4 hold
(nonexistence example), then

2c0xM

( c3
c1

)
c3

c3−c1 (maxx rĜ(x)− rĜ(0))
< 1

meaning that we are not under the hypotheses of Proposition 6 (sufficient condi-
tion for existence). Indeed, (3.11) implies

2c0xM

( c3
c1

)
c3

c3−c1 (maxx rĜ(x)− rĜ(0))
≤ 2F (xM )

xM
xM

( c3
c1

)
c3

c3−c1 (rĜ(xM)− rĜ(0))
<

1

( c3
c1

)
c3

c3−c1

< 1.

3.1.2 Properties of the function λĜ and existence and unique-
ness of the non trivial steady state

The results proved above and the following proposition give the existence and
uniqueness of a steady state of system (2.1).

Proposition 7. The dominant eigenvalue of the operator BĜ, λĜ is a strictly in-
creasing and continuous function of Ĝ.

Proof. s(BĜ) is a pole of R(BĜ, λ) and R(BĜ, λ) is strictly positive because BĜ

generates an irreducible semigroup (see [9]).
Moreover, since BĜ1

≥ BĜ2
if Ĝ1 > Ĝ2,

R(BĜ1
, λ)−R(BĜ2

, λ) = R(BĜ1
, λ)(BĜ1

−BĜ2
)R(BĜ2

, λ) ≥ 0

for λ > max(s(BĜ1
), s(BĜ2

)) and then Proposition A2 in [10] gives s(BĜ1
) >

s(BĜ2
).

Continuity follows from standard perturbation results on eigenvalues ( see [48]).



3.1. STEADY STATES 77

Theorem 3.1.5. Under the hypotheses of Theorem 3.1.3 let λĜ be the dominant
eigenvalue and pĜ the corresponding eigenvector of the operator BĜ. Let us as-
sume that λ0 is negative and that λG(0) is positive. Then, then there exists a unique

positive steady state of system (2.1) given by
(

c0pĜ0
(x),

c0L(x)pĜ0
(x)

Ĝ0 + d2

)
, where

Ĝ0 is the unique zero of λĜ and

c0 =
G−1(Ĝ0)∫ xM

0

(
φ∗(x) + L(x)ψ∗(x)

Ĝ0+d2

)
pĜ0

(x)dx
.

Proof. See Theorem 3.1.3, Proposition 7 and the beginning of section 3.1.

Here we have proved the existence and the uniqueness of a steady state in
the age independent case. In the next chapter we will show that for particular
values of the parameters, there exist solutions that do not depend on the cyclin
content. We will make numerical simulations for the general case obtaining, for
some values of the parameters convergence to the steady state but also oscillations
of the population for others.
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Chapter 4

Oscillations on a cyclin-structured
model

In the present chapter we are interested in the asymptotic behavior of the time
dependent solutions of (2.1) also in the case of healthy tissue. We start by, in the
first section, proving the existence, for some values of the parameters, of solutions
of system (2.1) that do not depend on the cyclin content and hence satisfy an ordi-
nary differential equations system. We analyze the complete asymptotic behavior
of this ordinary differential equations system showing that the unique nontrivial
steady state (when it exists) is asymptotically stable under some conditions and
unstable when the reverse conditions hold. The instability appears through a Hopf
bifurcation which leads to the existence of stable self-sustained oscillations of the
populations. In section 4.2 we use a numerical scheme to illustrate the possible
asymptotic behaviors of system (2.1). We obtain, depending on the values of the
parameters, existence of stable and unstable equilibria as well as stable limit cy-
cles. The equilibrium instability is linked to the delay caused by the quiescent
stage. Moreover it arises when the reverse transition G from quiescent to prolif-
erating depends essentially on the quiescent population. This result is similar to
the one obtained in [38] where the authors study therapy strategies for cyclical
neutropenia which is an haematological disease characterized by oscillations in
the neutrophil population. They build a delayed differential equations model for
the regulation of stem cells and neutrophil production in which the transition rate
only depends on the quiescent population number and they also obtain oscillations
of the population.

The numerical scheme we use is based on a discretization of system (2.1) by

79
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means of a time invariant grid, called the natural grid (see [64], [4], [50], [1])
which is obtained by an explicit integration of the characteristic equation.

The approximate solution is computed by means of a predictor-corrector method
which numerically integrates the system along the characteristics as in [64] and
[4]. It also involves the numerical computations of integrals corresponding to the
non local term in the first equation in system (2.1). In contrast to [64] and [4],
where at any time time step, integration over the whole interval is performed, we
have to approximate the integral value at any point of the grid. To avoid algorith-
mic complication we use a trapezoidal quadrature rule (of second order accuracy).
This explains the use of a second order Runge-Kutta method and not a higher or-
der one. The presence of the non local term in system (2.1), modeling unequal
cell division, is also the main difference with respect to the model in [1] from the
point of view of numerical requirements.

Finally, in the Appendix we have performed two tests for the numerical scheme,
the first one comparing the numerical solution to an exact solution for a simplified
version of system (2.1) without non local terms, and the second one comparing
the numerical solutions of system (2.1) in the case of x-independent solutions with
the solutions of the corresponding ordinary differential system.

4.1 x-independent solutions
In this section we look for solutions of system (2.1) that do not depend on the
cyclin content x, that is, solutions of the form (p(t), q(t)). From the second
equation in (2.1) we obtain that, in order to have solutions that are indepen-
dent of x we must impose that the leak function is constant, that is, we must
assume L(x) = L0 > 0. From the first equation in (2.1) we then have that an
x-independent solution (p(t), q(t)) of (2.1) must satisfy the equality

ṗ(t) + Γ′(x)p(t) = −(L0 + F (x) + d1)p(t) + 2p(t)

∫ xM

x

F (y)

y
dy + G(N(t))q(t),

or, equivalently

ṗ(t) = −(L0 + F (x) + Γ′(x) + d1 − 2

∫ xM

x

F (y)

y
dy)p(t) + G(N(t))q(t),
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which implies that

L0 + F (x) + Γ′(x) + d1 − 2

∫ xM

x

F (y)

y
dy (4.1)

should be constant. Deriving, we have that the equality

F ′(x) + Γ′′(x) + 2
F (x)

x
= 0 (4.2)

must hold. Solving (4.2) and using that limx→0
F (x)

x
=: b < ∞ we have that

F (x) = − 1

x2

∫ x

0

s2Γ′′(s)ds. (4.3)

Substituting (4.3) in (4.1) and evaluating at x = xM we have that

L0 + F (x) + Γ′(x) + d1 − 2

∫ xM

x

F (y)

y
dy = L0 + d1 − A

with

A =
1

x2
M

∫ xM

0

s2Γ′′(s)ds− Γ′(xM). (4.4)

Notice that, integrating the above equation on the interval (0, xM) we also get
A = 1

xM

∫ xM

0
F (x)dx.

So, system (2.1) has x-independent solutions (p(t), q(t)) if L(x) is a constant
L0 and (4.3) holds. Conversely, if the same conditions hold and (p(t), q(t)) satis-
fies the ordinary differential equations system

{
ṗ = (A− L0 − d1)p + G(N(t))q,

q̇ = L0p− (d2 + G(N(t))q,
(4.5)

where N := N(p, q) = p
∫ xM

0
φ(x)dx + q

∫ xM

0
ψ(x)dx =: k1p + k2q with k1, k2

positive real numbers and A given by (4.4), then (p(t), q(t)) is an x-independent
solution of system (2.1).
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4.1.1 Equilibria
Let us now study the existence of equilibria of system (4.5) (which will imply the
existence of x-independent equilibria of system (2.1) under the conditions above).

Proposition 8. System (4.5) has a unique non trivial equilibrium solution if and
only if the inequalities

A

d1 + L0

< 1 <
A

d1 + L0
d2

d2+G(0)

(4.6)

hold.

Proof. A non trivial equilibrium solution (p̂, q̂) of system (4.5) satisfies:

0 = (A− L0 − d1)p̂ + G(N̂)q̂

0 = L0p̂−
(
G(N̂) + d2

)
q̂

that is, p̂ = G(N̂)q̂
L0+d1−A

=

(
d2+G(N̂)

)
q̂

L0
, where N̂ = k1p̂ + k2q̂.

Since q̂ 6= 0 this is equivalent to

G(N̂) =
(L0 + d1 − A)d2

A− d1

(4.7)

Since G is an strictly decreasing function that tends to zero then N tends to infin-
ity, there will be a unique solution, N̂ of (4.7) (and therefore a unique nontrivial
equilibrium point) if and only if

0 <
(L0 + d1 − A)d2

A− d1

< G(0).

And easy computation shows that the previous inequalities are equivalent to (4.6).

Remark 8. If we think of system (4.5) as a model for the dynamics of a popula-
tion with two groups of individuals where A denotes the per capita birth rate of
the first group, d1 and d2 the mortality rates and L0 and G(N) the transition rates
between the two groups, then the inequalities (4.6) can be interpreted using the
concept of the expected number of offspring of an individual in its lifespan R0

assuming a constant value of the "interaction" variable N . Indeed, let us compute
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R0 for this model.

Let X be a random variable denoting the number of offspring in the lifespan of
an individual and Z be a random variable taking the value 0 if an individual taken
at random does not go to the quiescent stage, 1 if it goes once to the quiescent stage
and returns back to the proliferating one, and so on. Note that Z = 0 is the event
that an exponentially distributed random variable with expected value 1

L0
takes a

value larger than another independent exponentially distributed random variable
with expected value 1

d1
and therefore P (Z = 0) = d1

d1+L0
. In the same way we ob-

tain that P (Z = 1) = L0

d1+L0

G(N)
d2+G(N)

d1

d1+L0
, P (Z = 2) =

(
L0

d1+L0

G(N)
d2+G(N)

)2 d1

d1+L0
,..,

P (Z = k) =
(P (Z=1)

P (Z=0)

)k
P (Z = 0).

Then
R0(N) = E(X) =

∑∞
k=0 E(X|Z = k)P (Z = k)

= E(X|Z = 0)P (Z = 0)
∑∞

k=0

(
P (Z=1)
P (Z=0)

)k

= A
d1

( d1

d1+L0
)
∑∞

k=0

(
L0

d1+L0

G(N)
d2+G(N)

)k

= ( A
d1+L0

)( 1

1− L0G(N)
(d1+L0)(d2+G(N))

)

= A

d1+L0
d2

d2+G(N)

where we have used that E(X|Z = k) = E(X|Z = 0) =
A

d1

since system (4.5)

assumes that the second group of individuals do not reproduce,
1

d1

is the expected

lifetime of a reproducing individual and A the per capita and time unit fertility.

The inequalities (4.6) in Proposition 8 correspond to assuming R0(0) > 1 and
R0(∞) < 1 (recall that G(∞) = 0).

4.1.2 Asymptotic behavior

Proposition 9. Let us assume that A

d1+L0
d2

d2+G(0)

≤ 1. Then the trivial equilibrium

is a global attractor of system (4.5).
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Proof. First notice that if A ≤ d1 then (p + q)′ ≤ 0 and the claim follows. Now
let us assume A > d1 and notice that by hypothesis L0 + d1 − A > 0.

By the implicit function theorem, the isoclines of system (4.5) define functions
p = F1(q) and p = F2(q) respectively through the relations

p =
G(N(p, q))q

L0 + d1 − A
and p =

(
d2 + G(N(p, q))

)
q

L0

. (4.8)

We obviously have F1(0) = F2(0) = 0. Moreover, for all positive q we have
that F1(q) < F2(q). Indeed, since A

d1+L0
d2

d2+G(0)

≤ 1 or, equivalently (L0 + d1 −
A)d2 −G(0)(A− d1) ≥ 0, G is strictly decreasing and A > d1 we have

(L0 + d1 − A)d2 −G(N)(A− d1) > 0

for all N > 0.
Let us now assume that there exists a positive q̂ such that p̂2 := F2(q̂) ≤ F1(q̂) =:
p̂1. We will have

p̂2 =

(
d2 + G(N(p̂2, q̂))

)
q̂

L0

≤ p̂1 =
G(N(p̂1, q̂))q̂

L0 + d1 − A
.

Hence

(L0 + d1 −A)d2 −G(N(p̂2, q̂))(A− d1) ≤ L0(G(N(p̂1, q̂))−G(N(p̂2, q̂))) ≤ 0

since p̂2 ≤ p̂1, N is increasing as function of p and G is decreasing; a contradic-
tion. Now notice that for any q0, the regions {(p, q) : q ≤ q0 and p ≤ F2(q)}
are positively invariant and that any trajectory eventually enters some of them
since limq→∞ F2(q) = ∞ and ṗ(t) < 0 if p(t) > F2(q(t)). These bounded re-
gions cannot contain periodic orbits due to the direction of the vector field on
the isocline lines. The statement about asymptotic behavior follows from the
Bendixson-Poincaré theorem.

Proposition 10. Let us assume that A
d1+L0

≥ 1. Then all the trajectories of system
(4.5) are unbounded.

Proof. Under this hypothesis only the isocline of horizontal vector field remains
in the open first quadrant. The direction of the vector field in the first quadrant
gives the statement.
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Remark 9. As before, the results can be interpreted in terms of R0. The assump-
tion in Proposition 9 is that R0 < 1 in ideal conditions (zero population number)
ensuring extinction. The assumption in Proposition 10 is that R0 > 1 in starvation
conditions (infinite population number) giving rise to unbounded population.

The two previous propositions give us the behavior of system (4.5) when there
is not nontrivial steady state. Under the hypotheses of Proposition 8, system (4.5)
has a unique non trivial steady state that can be written

(p̂, q̂) =
( N̂d2

(A− d1)k2 + d2k1

,
N̂(A− d1)

(A− d1)k2 + d2k1

)

where N̂ is the unique solution of G(N̂) = (L0+d1−A)d2

A−d1
. Indeed, using (4.8) and

(4.7) we have p̂ = d2

A−d1
q̂ and so N̂ = k1p̂ + k2q̂ = (k1

d2

A−d1
+ k2)q̂ which clearly

implies the claim.

Theorem 4.1.1. Under the hypotheses of Proposition 8 the unique non trivial
steady state (p̂, q̂) of system (4.5) is (locally) asymptotically stable whenever

(
A−

d1 − L0 − d2 − G(N̂) + q̂G′(N̂)(k1 − k2)
)

< 0 and it is unstable if the reverse
strict inequality holds. In particular it is asymptotically stable if k1 ≥ k2.

Proof. The Jacobian matrix of system (4.5) at the steady state is given by

J(p̂, q̂) =

(
A− d1 − L0 + k1G

′(N̂)q̂ q̂k2G
′(N̂) + G(N̂)

L0 − q̂k1G
′(N̂) −q̂k2G

′(N̂)− (d2 + G(N̂)).

)

Denoting by λ1 and λ2 the two eigenvalues of J(p̂, q̂) and using (4.7) we have that

λ1λ2 = q̂G′(N̂)
(
k2(d1 − A)− k1d2

)
.

Under the hypotheses of Proposition 8 which imply A > d1 and since G′(N̂) < 0
we then always have that λ1λ2 > 0. On the other hand

λ1 + λ2 = A− d1 − L0 − d2 −G(N̂) + q̂G′(N̂)(k1 − k2),

giving the first statement. Assuming k1 ≥ k2 we obtain using (4.6), that λ1 +λ2 <
0 which gives the second statement.
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Since the previous theorem reduces the study of the stability of the non trivial
steady state to the study of the sign of the trace of the Jacobian matrix, in the fol-
lowing we choose particular forms of the function G and find reasonable values
of the parameters that make the trace negative and so give instability.

Let us take G(N) = G(0)e−cN and assume k2 > k1. Then using that G(N̂) =
(L0+d1−A)d2

A−d1
, q̂ = N̂(A−d1)

(A−d1)k2+d2k1
and denoting by A1 := A− d1 we have

λ1 + λ2 = A1 − L0 − d2 − (L0−A1)d2

A1
+ N̂A1

A1k2+d2k1

(− c (L0−A1)d2

A1

)
(k1 − k2)

= A1 − L0 − d2 − (L0−A1)d2

A1
−

ln

(
G(0)

(L0−A1)d2
A1

)
A1

A1k2+d2k1

( (L0−A1)d2

A1

)
(k1 − k2)

We can see then that λ1 + λ2 < 0 is equivalent to

ln(G(0)) < ln
(

(L0−A1)d2

A1

)
+

A1
d2

+
L0

L0−A1

k−1
(k + d2

A1
)

=: H(k, L0, A1, d2)

(4.9)

where we have denoted by k = k2

k1
(assuming k1 > 0). Then, a necessary and

sufficient condition for the eigenvalues to have negative real part is

G(0) < eH(k,L0,A1,d2). (4.10)

Whenever G(0) = eH(k,L0,A1,d2) we will have purely imaginary eigenvalues. Con-
sidering H as a function of A1 and d2 it can be seen that the infimum value of H
is

lim
A1→0

H(k, L0, A1, A1) = ln(L0) + 2
(k + 1

k − 1

)
. (4.11)

Indeed, let us consider, for fixed k and L0, the function

h(u, v) = ln v + ln u + (
1

u
+

L0

v
)
k + u

k − 1

defined on R2+ and notice H(k, L0, A1, d2) = h( d2

A1
, L0−A1). Then we will have

inf{(A1,d2)∈R2+:A1<L0} H(k, L0, A1, d2) = inf{(A1,d2)∈R2+:A1<L0} h( d2

A1
, L0 − A1)

= inf{(u,v)∈R2+:v<L0} h(u, v)

= h(1, L0) = ln L0 + 2k+1
k−1

,
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where the last but one equality is proven as follows. The function h is of class C1

on R := {(u, v) ∈ R2+ : v < L0} with limit equal to infinity at any point of the
two coordinate axes as well as when u tends to infinity, with no critical points in
R since ∂h

∂v
(u, v) = 1

v2 (v − L0
k+u
k−1

) < 0 for v < L0 and such that has a (unique)
minimum point on the remaining part of the boundary of R (v = L0, i.e., A1 = 0)
at u = 1 (d2 = A1) since ∂h

∂u
(u, L0) = (u+k)(u−1)

(k−1)u2 .
From (4.10) and (4.11) we have that, in particular, a sufficient condition for sta-
bility is

G(0) < L0e
2
(

k+1
k−1

)
.

Moreover, if A1 = d2 and they are small enough, then the reverse inequality
gives instability. We use this to find moderate values of the parameters that lead
to instability of the steady state giving rise to a limit cycle as can be seen in figure
4.1. The case k1 = 0 can be analyzed in the same way.

p
0,2 0,4 0,6 0,8 1,0 1,2

q

0,2

0,4

0,6

0,8

1,0

1,2

Figure 4.1: Illustration with k = 6, A1 = d2 = 0.1, L0 = 0.2, G(0) = 7.5. Notice
G(0) = 7.5 > eH(6,0.2,0.1,0.1) = 6.67 .

In a similar way, taking G(N) =
G(0)

1 + Nn
(which is the nonlinearity con-

sidered in [12] and [13]) we can find values of the parameters that also lead to
instability of the steady state going to a limit cycle as can be seen in figure 4.2.
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Figure 4.2: Illustration with k = 4, n = 4, A1 = 0.1, d2 = 0.12, L0 = 0.5, G(0) =
6.5.

4.2 Numerical simulation

We now go back to the full problem (2.1) and describe a numerical scheme and the
numerical results obtained by using it. In particular we emphasize the asymptotic
behavior of x-dependent solutions, showing the existence of stable and unstable
equilibria, as well as stable limit cycles, depending on the different values of the
parameters. To begin with, following the lines of [64] and [4], we build up the so-
called natural grid, i.e. a grid such that, in the case of a single equation, which is
the situation in [4], consists of a set of points {(xi, tj) : −1 ≤ i ≤ n + 1, 0 ≤ j ≤
m} in such a way that (xi−1, tj−1) and (xi, tj) belong to the same characteristic
line. Notice that (2.1) is a system of two first order partial differential equations
and consequently, it has two families of (base) characteristic lines. This fact in
general would complicate the build up of a natural grid, which should be such that
the points of the grid are intersection points of characteristics of the two families.

Fortunately, the equations in (2.1) are autonomous and moreover, the char-
acteristics of the second one are straight vertical lines in the plane (x, t). This
allows to extend the procedure of [4] to our case, and we shall obtain a rectangu-
lar grid (with edges parallel to the coordinate axes) with uniform time step size
and nonuniform x step size. On the other hand, since Γ vanishes at both ends
of the interval (0, xM), x = 0 and x = xM will be characteristic lines (for both
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equations) whereas the other characteristics (of the first equation) will not cross
the ends of the interval.

Let us call Ψ(t; s, x) the solution of the initial value problem for the charac-
teristic equation

z′(t) = Γ(z(t)), z(s) = x,

and let us also define Φ(t, x) = Ψ(t; 0, x). Unlike [4] we assume that this equa-
tion can be solved explicitly and so we have the exact solution. Indeed, our
computations are all based in taking xM = 1 and Γ(x) = x(1 − x). We be-
gin by choosing an arbitrary (small) positive number x0 and compute T such that
Φ(T, x0) = 1−x0. Then we take n = [T max(Γ)/x0]+1 (here [ ] stands for the
integer part), the time step size h = T/n, a natural number m ≥ n and the grid
defined by:

G = {(xi, tj) : tj = jh, j = 0, ..., m, xi = Φ(ti, x0), i = 0, ..., n, x−1 = 0, xn+1 = 1}.

and notice that

xi = Φ(ti, x0) = Φ(h, Φ(ti−1, x0)) = Φ(h, xi−1)

and so xi − xi−1 ≤ max(Γ)h ≤ x0. Hence, the size of the x steps is bounded by
x0.
We will use this grid to compute an approximate solution of the initial value prob-
lem for (2.1), with initial conditions p(x, t) = p0(x) and q(x, t) = q0(x).

Now we explain how to compute the approximate solution at time tj given an
approximate solution till time tj−1. Let us assume that we already have an ap-
proximate solution up to time step j − 1 (for some j ≥ 1) given by the values
(pj−1

i , qj−1
i ), at the points (xi, tj−1), i = −1, ..., n + 1, taking into account that

p0
i = p0(xi), q0

i = q0(xi), and let us assume that (p(x, t), q(x, t)) is an exact
solution to (2.1) such that p(xi, tj−1) = pj−1

i and q(xi, tj−1) = qj−1
i . Let us also

call S(x, t) = 2
∫ 1

x
F (y)

y
p(y, t)dy and N(t) :=

∫ 1

0
φ(x)p(x, t) + ψ(x)q(x, t)dx.

Now we define, for i = 1, ..., n, Pi(t) = p(Ψ(t; tj−1, xi−1), t) and, for i =
−1, ..., n + 1, Qi(t) = q(xi, t). We also define f(x, p, q, S, N) := −[Γ′(x) +
L(x) + F (x) + d1]p + G(N)q + S and g(x, p, q,N) := L(x)p− (G(N) + d2)q.
We will have, for i = 1, ..., n, the following ordinary differential equations
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dPi

dt
(t) = pt(Ψ(t; tj−1, xi−1), t) + px(Ψ(t; tj−1, xi−1), t)Ψt(t; tj−1, xi−1)

= pt(Ψ(t; tj−1, xi−1), t) + Γ(Ψ(t; tj−1, xi−1))px(Ψ(t; tj−1, xi−1), t)

= f(Ψ(t; tj−1, xi−1), Pi(t), q(Ψ(t; tj−1, xi−1), t), S(Ψ(t; tj−1, xi−1), t), N(t)),

Pi(tj−1) = p(xi−1, tj−1) = pj−1
i−1 ,

and, for i = −1, ..., n + 1,

dQi

dt
(t) = g(xi, p(xi, t), q(xi, t), N(t)),

Qi(tj−1) = q(xi, tj−1) = qj−1
i .

Notice that the boundary values of P have to be treated specially, and in fact, the
following holds for P−1(t) = p(0, t):

dP−1

dt
(t) = f(0, P−1(t), q(0, t), S(0, t), N(t)), P−1(tj−1) = pj−1

−1 ,

and the following for Pn+1(t) = p(1, t):

dPn+1

dt
(t) = f(1, Pn+1(t), q(1, t), 0, N(t)), Pn+1(tj−1) = pj−1

n+1.

So the next time step approximate solution, i.e., the values of the pair (pj
i , q

j
i ) =

(p(xi, tj), q(xi, tj)), i = −1, ..., n + 1, except pj
0, can be approximately computed

as the approximate values of (Pi(tj), Qi(tj)) by means of a (single step appli-
cation of an) explicit two stages Runge-Kutta method as the Heun’s method or
predictor-corrector method. Of course, the computation of the values of f and g
involve quadratures (the values of N(tj−1) and of S(xi, tj−1)) which are simply
approximated by the trapezoidal rule. The value of pj

0 is obtained by interpolation
using pj

−1 and pj
1 since there is no previously computed value of p on the charac-

teristic line through (x0, tj).

Going to some details, the numerical scheme works as follows. Let us first use
the initial conditions to set p0

i = p0(xi), q0
i = q0(xi), i = −1, ..., n + 1. Then,
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assuming we know pj−1
i and qj−1

i for i = −1, ..., n + 1 and some j ≥ 1, we
compute the approximate solution for the next time step j in two steps. For the
first one, let us set, using the trapezoidal rule,

N j−1 =
n∑

i=−1

(φ(xi)p
j−1
i + ψ(xi)q

j−1
i + φ(xi+1)p

j−1
i+1 + ψ(xi+1)q

j−1
i+1 )

xi+1 − xi

2
,

Sj−1
n+1 = 0, and,

Sj−1
i = 2

n∑

k=i

(
F (xk)p

j−1
k

xk

+
F (xk+1)p

j−1
k+1

xk+1

)
xk+1 − xk

2

for i = −1, ..., n (here F (x−1)
x−1

means limx→0+
F (x)

x
). Then we compute

kj
p,−1 = f(x−1, p

j−1
−1 , qj−1

−1 , Sj−1
−1 , N j−1),

kj
p,i = f(xi−1, p

j−1
i−1 , qj−1

i−1 , Sj−1
i−1 , N j−1) i = 1, ..., n,

kj
p,n+1 = f(xn+1, p

j−1
n+1, q

j−1
n+1, S

j−1
n+1, N

j−1),

and kj
q,i = g(xi, p

j−1
i , qj−1

i , N j−1) for i = −1, ..., n + 1.
Then we define the "predicted" values for p and q as

p∗j−1 = pj−1
−1 + hkj

p,−1,

p∗ji = pj−1
i−1 + hkj

p,i i = 1, ..., n,

p∗jn+1 = pj−1
n+1 + hkj

p,n+1

and q∗ji = qj−1
i + hkj

q,i i = −1, ..., n + 1.

As we have already said, the value of p∗j0 is obtained by interpolation. Namely,
p∗j0 = p∗j−1(1− x0

x1
) + p∗j1

x0

x1
.

For the second step, almost as above, we set

N∗j =
n∑

i=−1

(φ(xi)p
∗j
i + ψ(xi)q

∗j
i + φ(xi+1)p

∗j
i+1 + ψ(xi+1)q

∗j
i+1)

xi+1 − xi

2
,
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S∗jn+1 = 0, and,

S∗ji = 2
n∑

k=i

(
F (xk)p

∗j
k

xk

+
F (xk+1)p

∗j
k+1

xk+1

)
xk+1 − xk

2

for i = −1, ..., n (with the same meaning as above of F (x−1)
x−1

).
Analogously as above we now compute,

k∗jp,i = f(xi, p
∗j
i , q∗ji , S∗ji , N∗j)

for i = −1, ..., n + 1 except i = 0, and

k∗jq,i = g(xi, p
∗j
i , q∗ji , N∗j) i = −1, ..., n + 1.

Finally we take the following "predicted-corrected" values for p and q,

pj
−1 = pj−1

−1 +
h

2
(kj

p,−1 + k∗jp,−1),

pj
i = pj−1

i−1 +
h

2
(kj

p,i + k∗jp,i) i = 1, ..., n,

pj
n+1 = pj−1

n+1 +
h

2
(kj

p,n+1 + k∗jp,n+1)

and qj
i = qj−1

i + h
2
(kj

q,i + k∗jq,i) i = −1, ..., n + 1,

and, again by interpolation, pj
0 = pj

−1(1− x0

x1
) + pj

1
x0

x1
.

We have performed some tests of validity of the numerical scheme which are
developed in the appendix. The first one consists in the comparison between the
approximate solution given by the method and the exact solution to a local partial
differential system with the same main part (i.e., the part containing the partial
derivatives) as system (2.1). In the second one we compare the approximate solu-
tion given by the method in the case when there are x-independent solutions, i.e.,
when L(x) ≡ L0, F (x) = 2x

3
(since (4.3) with Γ(s) = s(1 − s)), and the initial

conditions are x-independent with the "exact" solution of System (4.5).

Applying the numerical scheme to system (2.1) we observe different kind of
behavior depending on the parameter values that we show in figures 4.3, 4.4 and
4.5.



4.2. NUMERICAL SIMULATION 93

Note that in order to attain a particular final time (different and not an integer
multiple of T defined at the beginning of the section) we have modified slightly
the construction of the natural grid.
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Figure 4.3: Illustration for oscillation behavior with numerical parameters x0 =
0.02, Tf = 80, n = 98,m = 980, h = 0.0816 and with the model parameters
L(x) = 0.4 − x

4
, F (x) = 0.9x, d1 = 0.2333, d2 = 0.12, G(x) = 8

1+x5 , φ(x) ≡
1, ψ(x) ≡ 5 and p(x, 0) = 1− x, q(x, 0) = 1− x2.
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Figure 4.4: Illustration for convergence to equilibria behavior with x0 =
0.02, Tf = 55, n = 98,m = 980, h = 0.056 and with the parameters L(x) =
0.4 − x

4
, F (x) = 0.6x, d1 = 0.1, d2 = 0.15, G(x) = 5

1+x2 , φ(x) ≡ 1, ψ(x) ≡ 3
and p(x, 0) = 1− x, q(x, 0) = 1− x2.
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Figure 4.5: Illustration for extinction behavior with x0 = 0.02, Tf = 10, n =
100,m = 125, h = 0.08 and with the parameters L(x) = 0.4− x

4
, F (x) = x, d1 =

0.7, d2 = 1, G(x) = 5
1+x2 , φ(x) ≡ 1, ψ(x) ≡ 5 and p(x, 0) = 1 − x, q(x, 0) =

1− x2.



Chapter 5

Renewal equations

In the following we will consider a variation of the model presented in section
2.1 and studied along Chapters 2, 3 and 4. This model was proposed and worked
out in an oral communication by Odo Diekmann and is based on the so-called cu-
mulative or delayed formulation of the structured population dynamics ([28] and
[29]).

This is a work in progress. Our aim is to use the theory of delay equations in
order to linearize around the equilibrium points and obtain a characteristic equa-
tion to study the asymptotic behavior of solutions, which could not be done with
traditional techniques of partial differential equations.

5.1 The model

We consider a model based on the one introduced by Bekkal Brikci et al. (see [12]
and [13]), but using a different approach and different techniques. Our model is
similar to the one studied in the first chapters of this thesis but with some different
hypotheses on the biological system. As in the previous chapters, cells are struc-
tured by the content of cyclin x which is limited by some constant xM > 0. Here
we assume that only cells with a large content of cyclin can divide, i.e., there ex-
ists some positive constant xb < xM such that if a cell has less cyclin than xb, then
it is not able to divide. We also assume that when a cell divides, both resulting
cells from this division have cyclin content bigger than some positive constant xm

and smaller than xb (notice that this requires that xb ≥ xM

2
and xm ≤ xb

2
). When

95
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the cyclin content x of a cell is less than xb, it can be in the proliferating or in
the quiescent stage whereas division can only occur in the proliferating stage and
when x > xb and it happens with rate F (x) (we recall from previous chapters that
F is a positive bounded function). Cells can also leave the proliferating stage by
apoptosis (programmed cell death) which occurs with rate d1 depending on cyclin
content (different from what was assumed in the preceding chapters). The other
way to leave the proliferating stage is to go to the quiescent one.

Another difference is that cells in the proliferating stage can only go to the
quiescent stage once and only when they have less cyclin content than xb. This
transition occurs according to a "leak" function L(x) (which as before, we assume
positive and bounded). In the quiescent stage cells do not change their cyclin
content and only can leave this stage by two ways. One way is by apoptosis
which is assumed to happen with rate d2 that depends on cyclin content (also
different from what was assumed before) and the other way is going back to the
proliferating stage. This transition rate is denoted by I which is a function G(N)
where N stands for a weighted population number as in the previous chapters.

Here we will assume that both death rates d1(x) and d2(x) are bounded below
by a positive constant.

Proliferating cells increase their cyclin content. The function Γ(x) represents
the growth rate (evolution speed) of the cyclin content of each individual cell.
Γ(x) is a smooth strictly positive function of x ∈ [xm, xM) vanishing at xM .

With this we can define the function A(x, ξ) which is the time a cell needs to
increase its cyclin content from ξ to x ignoring a possible quiescent phase, i.e.,

A(x, ξ) :=

∫ x

ξ

dσ

Γ(σ)
.

Let us denote by F0(x, ξ) the probability that a cell does not die and does not
go to the quiescent stage while it increases its cyclin content from ξ to x < xb.
This is given by

F0(x, ξ) := e−
∫ x

ξ
d1(σ)+L(σ)

Γ(σ)
dσ.

In the same way, for cells that have already been in the quiescent stage and
came back to the proliferating stage we define the functionF1(x, ξ) as the survival
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probability from ξ to x, i. e., the probability that a cell does not die while it
increases its cyclin content from ξ to x , i. e.,

F1(x, ξ) := e−
∫ x

ξ
d1(σ)
Γ(σ)

dσ

for xm ≤ ξ ≤ x ≤ xb.
Finally, let F2(x, ξ) be the survival probability from ξ to x, where xb ≤ ξ <

x ≤ xM , that is, the probability that a (proliferating) cell does not die nor divide
while it increases its cyclin content from ξ to x. This is given by

F2(x, ξ) := e−
∫ x

ξ
d1(σ)+F (σ)

Γ(σ)
dσ.

Defining u(t) as the flux at the point xb, we can express the density n at time
t of cells with cyclin content x as

n(t, x) =
1

Γ(x)
u(t− A(xb, x))F2(xb, x),

where xb < x < xM .
In terms of these quantities we compute the population birth rate at time t with

cyclin content η as

b(t, η) = 2

∫ xM

xb

ψ̂(θ, η)
F (θ)

Γ(θ)
F2(θ, xb)u(t− A(θ, xb))dθ,

where ψ̂(θ, ·) is the probability density of the cyclin content of a daughter cell of
a dividing cell with cyclin content θ > xb. For further use, we assume that ψ̂
is a bounded function, by a constant ψ̂∞. This is a slight generalization of the
previous chapters where we assumed a uniform distribution of the cyclin content
of the newborn cells.

Notice that when θ < xb +xm then suppψ̂(θ, ·) ⊂ [xm, θ−xm] and that when
θ > xb + xm (obviously only possible if xb + xm < xM ) then suppψ̂(θ, ·) ⊂
[θ − xb, xb]. Moreover, ψ̂(θ, θ − η) = ψ̂(θ, η) which implies that the expected
cyclin content of the daughter is

∫
ηψ̂(θ, η)dη = θ

2
.

Let us also define p0(t, x) as the density of cells at time t and cyclin content
x < xb that are in the proliferating stage but never were in the quiescent stage,
which is given by

p0(t, x) =
1

Γ(x)

∫ x

xm

b(t− A(x, η), η)F0(x, η)dη.
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The density of quiescent cells will be denoted by q(t, ζ). This is given by all
the proliferating cells with cyclin content ζ that changed to quiescent in the past
and are still alive and remain quiescent. That is

q(t, ζ) =

∫ +∞

0

L(ζ)p0(t− τ, ζ)e−d2(ζ)τ−∫ t
t−τ I(σ)dσdτ.

Finally, the density of proliferating cells at time t and cyclin content x < xb

that have been quiescent is

p1(t, x) =
1

Γ(x)

∫ x

xm

q(t− A(x, ζ), ζ)I(t− A(x, ζ))F1(x, ζ)dζ.

By substitution we can write p0 and p1 as follows

p0(t, x) =
2

Γ(x)

∫ x

xm

∫ xM

xb

ψ̂(θ, η)
F (θ)

Γ(θ)
F2(θ, xb)F0(x, η)

u(t− A(x, η)− A(θ, xb))dθdη, (5.1)

p1(t, x) =
1

Γ(x)

∫ x

xm

∫ +∞

0

L(ζ)p0(t− τ − A(x, ζ), ζ)e−d2(ζ)τ−∫ t−A(x,ζ)
t−τ−A(x,ζ)

I(σ)dσdτ

I(t− A(x, ζ))F1(x, ζ)dζ. (5.2)

5.2 Renewal equation
Let us now introduce parameterized families of linear functionals on the space of
histories of u (the space of integrable real valued functions defined on (−∞, 0]).

Let us define ut(τ) := u(t + τ) for −∞ < τ ≤ 0.
From (5.1) we write

Γ(x)p0(t, x) = L0(x)ut

where L0(x) is a linear map from L1((−∞, 0];R) into R given explicitly by
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L0(x)φ = 2

∫ x

xm

∫ xM

xb

ψ̂(θ, η)
F (θ)

Γ(θ)
F2(θ, xb)F0(x, η)φ(−A(x, η)−A(θ, xb))dθdη.

Similarly from (5.2) we write

Γ(x)p1(t, x) = L1(x, It)ut

where

L1(x, ψ)φ :=

∫ x

xm

∫ +∞

0

L(ζ)

Γ(ζ)
L0(ζ)φ−τ−A(x,ζ)e

−d2(ζ)τ−∫−A(x,ζ)
−τ−A(x,ζ)

ψ(σ)dσ

ψ(−A(x, ζ))F1(x, ζ)dτdζ.

With this we can write a renewal equation

u(t) = Γ(xb)p0(t, xb) + Γ(xb)p1(t, xb),

i.e.,

u(t) =
(L0(xb) + L1(xb, It)

)
ut, (5.3)

which expresses the fact that the flux crossing the point xb is given by the sum
of the flux of proliferating cells that never were into the quiescent stage plus the
flux of proliferating cells that have been quiescent once.

The expression for L0(xb) and L1(xb, It) can be simplified somewhat as fol-
lows.

Defining for xm ≤ η ≤ θ ≤ xM ,

F(θ, η) := e−
∫ θ

η
d1(σ)+F (σ)

Γ(σ)
dσ

where we adopt the convention that F (σ) = L(σ) for σ < xb (we can do this
because this functions have disjoint support), we have

F2(θ, xb)F0(xb, η) = F(θ, η).

Moreover, A(θ, xb) + A(xb, η) = A(θ, η) and then we obtain
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L0(xb)φ = 2

∫ xb

xm

∫ xM

xb

ψ̂(θ, η)
F (θ)

Γ(θ)
F(θ, η)φ(−A(θ, η))dθdη.

In the case of L1, we multiply and divide by e
∫ xb

ζ
L(σ)
Γ(σ)

dσ and use the identi-
ties F2(θ, xb)F0(xb, ζ)F0(ζ, η) = F(θ, η), and A(θ, xb) + A(xb, ζ) + A(ζ, η) =
A(θ, η). We have to use a three step version of these identities and compensate
the fact that from ζ to xb we have survival described by F1 (and not by F0).

L1(xb, ψ)φ := 2

∫ xb

xm

∫ +∞

0

L(ζ)

Γ(ζ)
e

∫ xb
ζ

L(σ)
Γ(σ)

dσ

∫ ζ

xm

∫ xM

xb

ψ̂(θ, η)
F (θ)

Γ(θ)
F(θ, η)

φ(−τ − A(θ, η))dθdη ψ(−A(xb, ζ))e
−d2(ζ)τ−∫−A(xb,ζ)

−τ−A(xb,ζ)
ψ(σ)dσ

dτdζ.

5.2.1 Constant I

When I is independent of time (and positive), the linear renewal equation (5.3) is
time-translation invariant, with a positive kernel. Exponential growth or decay is
fully determined by the value of R0(I) relative to 1, where R0(I) is the integral
of the kernel.

Indeed, left us first prove the following

Proposition 11. For any I ≥ 0, the operator

LI := L0(xb) + L1(xb, I)

is a positive bounded linear form on the space L1
ρ(R−,R) of the locally inte-

grable functions such that
∫ 0

−∞
eρθ|u(θ)|dθ < ∞

for any ρ ∈ (0, d0) where d0 := min(d1, d2), d1 := inf d1(z) and d2 := inf d2(z).

Proof. This can be directly seen as follows:

|L0(xb)φ| ≤ 2ψ̂∞F∞

∫ xb

xm

∫ xM

xb

F(θ, η)

Γ(θ)
|φ(−A(θ, η))|dθdη
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≤ 2ψ̂∞F∞

∫ xb

xm

∫ xM

xb

e−d1A(θ,η)

Γ(θ)
|φ(−A(θ, η))|dθdη

≤ 2ψ̂∞F∞

∫ xb

xm

∫ ∞

0

e−d1t|φ(−t)|dtdη = 2ψ̂∞F∞

∫ ∞

0

∫ xb

xm

dηe−d1t|φ(−t)|dt

= 2ψ̂∞F∞(xb − xm)

∫ ∞

0

e−d1t|φ(−t)|dt = 2ψ̂∞F∞(xb − xm)

∫ 0

−∞
ed1s|φ(s)|ds,

where we made (for any η) the change of variables A(θ, η) = t in the third
inequality and we interchanged the integration limits in the subsequent equality.

So, for ρ ≤ d1 and C = 2ψ̂∞F∞(xb − xm) we have that

|L0(xb)φ| ≤ C‖φ‖L1
ρ
.

For L1 we have to make a similar but more complicated computation. Let us
start by noting that, as above,

∣∣∣∣
∫ ζ

xm

∫ xM

xb

ψ̂(θ, η)
F (θ)

Γ(θ)
F(θ, η)φ(−τ − A(θ, η))dθdη

∣∣∣∣

≤
∫ xb

xm

∫ xM

xb

ψ̂(θ, η)
F (θ)

Γ(θ)
F(θ, η)|φ(−τ − A(θ, η))|dθdη

≤ ψ̂∞F∞(xb − xm)

∫ ∞

0

e−d1t|φ(−τ − t)|dt

≤ ψ̂∞F∞(xb − xm)ed1τ

∫ −τ

−∞
ed1s|φ(s)|ds.

Let us use this in the computation of a bound for L1,

|L1(xb, I)φ| ≤ 2

∫ xb

xm

∫ +∞

0

L(ζ)

Γ(ζ)
e

∫ xb
ζ

L(σ)
Γ(σ)

dσ

[ ∫ ζ

xm

∫ xM

xb

ψ̂(θ, η)
F (θ)

Γ(θ)
F(θ, η)

|φ(−τ − A(θ, η))|dθdη

]
Ie−d2(ζ)τ−Iτdτdζ
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≤ 2ψ̂∞F∞(xb−xm)I

∫ xb

xm

∫ +∞

0

L(ζ)

Γ(ζ)
e

∫ xb
ζ

L(σ)
Γ(σ)

dσ

[
ed1τ

∫ −τ

−∞
ed1s|φ(s)|ds

]
e−d2(ζ)τdτdζ

≤ 2ψ̂∞F∞(xb − xm)I

∫ A(xb,xm)

0

∫ +∞

0

L∞eL∞te(d1−d2)τ

∫ −τ

−∞
ed1s|φ(s)|dsdτdt

= 2ψ̂∞F∞(xb − xm)I
(
eL∞A(xb,xm) − 1

) ∫ +∞

0

∫ −τ

−∞
e(d1−d2)τed1s|φ(s)|dsdτ

= 2ψ̂∞F∞(xb − xm)I
(
eL∞A(xb,xm) − 1

) ∫ 0

−∞
ed1s|φ(s)|

∫ −s

0

e(d1−d2)τdτds

At this point we consider three cases:
i) d1 < d2:
We have that, for s < 0,

∫ −s

0

e(d1−d2)τdτ <

∫ +∞

0

e−(d2−d1)τdτ =
1

(d2 − d1)

which implies that

|L1(xb, I)φ| ≤ 2ψ̂∞F∞(xb−xm)I
(
eL∞A(xb,xm)− 1

) 1

(d2 − d1)

∫ 0

−∞
ed1s|φ(s)|ds.

Then, for ρ ≤ d1 and C = 2ψ̂∞F∞(xb − xm)I
(
eL∞A(xb,xm) − 1

) 1

(d2 − d1)
,

we have the claim.

ii) d1 = d2:

Using that xe−αx ≤ 1

αe
for any α > 0, then for any ρ < d1, we have that

|L1(xb, I)φ| ≤ 2ψ̂∞F∞(xb − xm)I
(
eL∞A(xb,xm) − 1

) ∫ 0

−∞
−sed1s|φ(s)|ds
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= 2ψ̂∞F∞(xb − xm)I
(
eL∞A(xb,xm) − 1

) ∫ 0

−∞
−se(d1−ρ)seρs|φ(s)|ds

≤ 2ψ̂∞F∞(xb − xm)I
(
eL∞A(xb,xm) − 1

) 1

(d1 − ρ)e

∫ 0

−∞
eρs|φ(s)|ds = Cρ‖φ‖L1

ρ
,

where Cρ = 2ψ̂∞F∞(xb − xm)I
(
eL∞A(xb,xm) − 1

) 1

(d1 − ρ)e
.

iii) d1 > d2:
In this case we take ρ < d2 and using the Mean Value Theorem for the function

ez we have that

∫ 0

−∞
ed1s|φ(s)|

∫ −s

0

e(d1−d2)τdτds =

∫ 0

−∞

e−(d1−d2)s − 1

d1 − d2

ed1s|φ(s)|ds

=

∫ 0

−∞

ed2s − ed1s

d1 − d2

|φ(s)|ds =

∫ 0

−∞
(−s)

e(d2−ρ)s − e(d1−ρ)s

(d2 − ρ)s− (d1 − ρ)s
eρs|φ(s)|ds

=

∫ 0

−∞
(−s)ez(s)eρs|φ(s)|ds ≤

∫ 0

−∞
(−s)e−(d2−ρ)(−s)eρs|φ(s)|ds

≤ 1

(d2 − ρ)e

∫ 0

−∞
eρs|φ(s)|ds,

where (d1 − ρ)s < z(s) < (d2 − ρ)s and we used the same inequality as in
case ii.

So, taking Cρ = 2ψ̂∞F∞(xb − xm)I
(
eL∞A(xb,xm) − 1

) 1

(d2 − ρ)e
we have

|L1(xb, I)φ|

≤ 2ψ̂∞F∞(xb − xm)I
(
eL∞A(xb,xm) − 1

) ∫ 0

−∞
ed1s|φ(s)|

∫ −s

0

e(d1−d2)τdτds
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≤ 2ψ̂∞F∞(xb − xm)I
(
eL∞A(xb,xm) − 1

) 1

(d2 − ρ)e

∫ 0

−∞
eρs|φ(s)|ds = Cρ‖φ‖L1

ρ
.

In the three cases, taking ρ < d0 the claim follows.

By the Riesz representation theorem, then there exists a positive kernel k ∈
L∞ρ (R+,R) such that

LIu =

∫ ∞

0

k(s)u(−s)ds.

In fact it is immediate to show that k belongs to L1
ρ(R+,R), for any ρ ∈ (0, d0)

(see Corollary 3.2, [30]).
Indeed, let us take ρ′ < ρ. Then

‖k‖L1
ρ′

=

∫ ∞

0

eρ′s|k(s)|ds =

∫ ∞

0

e(ρ′−ρ)seρs|k(s)|ds

≤ ‖k‖L∞ρ

∫ ∞

0

e(ρ′−ρ)sds =
1

ρ− ρ′
‖k‖L∞ρ .

So, in the case of constant I , equation (5.3) can be written as a linear renewal
equation

u(t) =

∫ ∞

0

k(s)u(t− s)ds.

It is well known that the behaviour of the solutions of the last equation depend
on the roots of the equation 1− k̂(λ) = 0, where k̂ is the Laplace transform of the
kernel k, which has an abscissa of convergence not large than d0 (see [41]).

In particular, all the solutions of (5.3) decay at an exponential rate ρ if there
are no roots with real part larger than −ρ (see Theorem 3.12 from [30]), whereas
there are solutions exponentially increasing if and only if there is a positive root
of k̂(λ) = 1.

The "only if" claim follows from the fact that k̂ is a strictly decreasing function
with limit 0 at infinity when restricted to real arguments. Hence, since a complex
(non real) root satisfies
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1 = Re k̂(λ) < k̂(Reλ),

this implies the existence of a real root larger than Reλ.
Finally, the mentioned properties of k̂ as a function of real argument also imply

that there is a positive root if and only if

1 < k̂(0) =

∫ ∞

0

k(s)ds = LI1 =: R0(I).

This allows us to state the following theorem

Theorem 5.2.1. Let us consider a constant positive I in the linear renewal equa-
tion

u(t) =
(L0(xb) + L1(xb, I)

)
ut = LIut.

Then
a) All the solutions of the equation tend exponentially to 0 if R0(I) = LI1 <

1.
b) If R0(I) > 1, there are solutions which grow exponentially.

So, let us compute

R0(I) =
(
L0(xb) + L1(xb, I)

)
1

= 2
∫ xb

xm

∫ xM

xb
ψ̂(θ, η)F (θ)

Γ(θ)
F(θ, η)dθdη

+ 2
∫ xb

xm

L(ζ)
Γ(ζ)

e
∫ xb

ζ
L(σ)
Γ(σ)

dσ I
I+d2(ζ)

∫ ζ

xm

∫ xM

xb
ψ̂(θ, η)F (θ)

Γ(θ)
F(θ, η)dθdηdζ

Since R0(I) is a monotone increasing function, the equation

R0(I) = 1

has a unique solution I = Ī in (0, +∞) if and only if R0(0) < 1 and R0(∞) >
1. Moreover, note that

R0(0) = 2

∫ xb

xm

∫ xM

xb

ψ̂(θ, η)
F (θ)

Γ(θ)
F(θ, η)dθdη

while, integrating by parts after computing the limit when I tends to ∞,
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R0(∞) = 2
∫ xb

xm
e

∫ xb
ζ

L(σ)
Γ(σ)

dσ ∫ xM

xb
ψ̂(θ, ζ)F (θ)

Γ(θ)
F(θ, ζ)dθdζ

= 2
∫ xb

xm
F1(xb, ζ)

∫ xM

xb
ψ̂(θ, ζ)F (θ)

Γ(θ)
F(θ, ζ)dθdζ.

Remark 10. In the case that d2 does not depend on cyclin content, we can com-
pute a little further using also integration-by-parts for the second integral. This
leads to

R0(I) = 2
d2

I + d2

∫ xb

xm

(
1 +

I

d2

e
∫ xb

ζ
L(σ)
Γ(σ)

dσ

)∫ xM

xb

ψ̂(θ, ζ)
F (θ)

Γ(θ)
F(θ, ζ)dθdζ.

5.2.2 Feedback
Let N be the weighted total population size. Here, to avoid confusion, we will
change the name of the weights. We will use w(x) for proliferating and ŵ(x) for
quiescent cells. Then, we define the weighted total population size by

N(t) :=
∫ xb

xm

[
w(x)

(
p0(t, x) + p1(t, x)

)
+ ŵ(x)q(t, x)

]
dx +

∫ xM

xb
w(x)n(t, x)dx

=
∫ xM

xb

w(x)
Γ(x)

F(x, xb)u(t− A(x, xb))dx

+
∫ xb

xm

[
w(x)
Γ(x)

(
L0(x)ut + L1(x, It)ut

)
+ ŵ(x)L2(x, It)ut

]
dx

where

L2(x, ψ)φ := 2
∫ +∞
0

L(x)
Γ(x)

∫ x

xm

∫ xM

xb
ψ̂(θ, η)F (θ)

Γ(θ)
F2(θ, xb)F(x, η)

φ(−τ − A(x, η)− A(xb, θ)) dθdηe−d2(x)τ−∫ 0
−τ ψ(σ)dσdτ.

Now defining

LN(ψ)φ =
∫ xM

xb

w(x)
Γ(x)

F2(x, xb)φ(−A(x, xb))dx

+
∫ xb

xm

[
w(x)
Γ(x)

(
L0(x) + L1(x, ψ)

)
+ ŵ(x)L2(x, ψ)

]
φdx

we can write

N(t) = LN(It)ut.
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So, if we finally require

I(t) = G(N(t)),

then the nonlinear system of renewal equations is given by
{

u(t) =
(L0(xb) + L1(xb, It)

)
ut

I(t) = G(LN(It)ut).
(5.4)

The first thing that we are interested in showing is the existence and unique-
ness of solution for this system.

5.3 Existence and Uniqueness of solution
In order to show the existence and uniqueness of solution for the system (5.4) we
use the theory developed by Odo Diekmann and Mats Gyllenberg. As a reference
we suggest the works [28], [29] and [30].

Let us write

x(t) =

(
u(t)
I(t)

)
,

and

F

(
y1

y2

)
=




(L0(xb) + L1(xb, y2)
)
y1

G(LN(y2)y1).


 ,

Then (5.4) is equivalent to the renewal equation

x(t) = F (xt) (5.5)

where

xt(θ) =

(
ut(θ)
It(θ)

)
=

(
u(t + θ)
I(t + θ)

)
,∀θ ≤ 0.

We will prove existence and uniqueness of solution for (5.5) plus some initial
condition

x(θ) = φ(θ), for θ ∈ (−∞, 0]. (5.6)
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Following the work [29] we will show the existence and uniqueness of solution
for an abstract integral equation (AIE) associated to our problem and after, we will
show the equivalence between the two formulations.

5.3.1 Abstract Integral Equation (AIE)
Here we consider the history space X as the space L1

ρ(R−;R2) with the norm
defined by

‖ψ‖ =

∫ 0

−∞
eρθ|ψ(θ)|dθ, for ψ ∈ X.

Let be T0 := {T0(t)}t≥0 be a strongly continuous semigroup of bounded linear
operators on X = L1

ρ(R−;R2) with infinitesimal generator A0. Strong continuity
means that

lim
t→0

‖T0(t)φ− φ‖L1
ρ

= 0, ∀φ ∈ X.

The adjoint of T0 is T ∗
0 := {T ∗

0 (t)}t≥0 where T ∗
0 (t) : X∗ → X∗ is the adjoint

operator of T0(t). T ∗
0 is a semigroup on the dual space X∗.

Now one defines the sun-subspace of the dual space X∗ where the adjoint
operator T ∗

0 is strongly continuous, i.e.,

X
¯

:= {φ∗ ∈ X∗| lim
t→0

‖T ∗
0 (t)φ∗ − φ∗‖ = 0}.

When T0 is defined by translation to the left and extension by 0, one can show
(see [20], [40], [56] for the case with ρ = 0 and [29] for the case with weight) that
L1

ρ(R−;R2)
¯

= BUCρ(R+;R2) where the space of exponentially bounded and
uniformly continuous functions is endowed with the norm

‖φ¯‖∞ρ = sup
θ∈R+

eρθ‖φ¯(θ)‖∞ < ∞.

For x ∈ X, φ ∈ X¯, φ¯∗ ∈ X¯∗ we will use the convention that

φ(x) =< x, φ > and φ¯∗(φ) =< φ¯∗, φ > .

With this we will define the linear duality mapping j : X → X¯∗ by

< jx, φ >=< x, φ >= φ(x), x ∈ X, φ ∈ X¯.
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If x 6= y, then there exist φ in X¯ such that φ(x) 6= φ(y), which implies that
j is an injection.

Defining T0(t) as the semigroup of translations to the left and extension by 0
and using the variation of constants formula we can write the following Abstract
Integral Equation (AIE):

u(t) = T0(t)ϕ + j−1

∫ t

0

T0
¯∗(t− s)(l ◦ F )(u(s))ds , (5.7)

where F : X → R2 is a nonlinear map and l : R2 → X¯∗ is a bounded linear
injection given by

< lx, φ >= x · φ(0) for all x ∈ R2, φ ∈ X¯

where · is the scalar product in R2 and evaluation at 0 is well defined since φ is a
continuous function.

We need that the integral that appears in (5.7) belongs to the range of j and in
order to use Banach fixed point theorem to prove the existence and uniqueness of
solution we need an estimate of the integral.

The authors in [29] make the following assumption:

Hypothesis 5.3.1. There exist M ≥ 1 and λ ∈ R such that for any continuous
function h : R→ R2 and all t > 0 one has

∫ t

0

T0
¯∗(t− s)lh(s)ds ∈ j(X),

‖j−1

∫ t

0

T0
¯∗(t− s)lh(s)ds‖ ≤ M

∫ t

0

eλ(t−s)|h(s)|ds.

For the case of renewal equations that this hypothesis holds (with λ = −ρ) is
proven in [29], Corollary 2.4 and [30], Corollary 3.5.

The main result that we need at this point is the following:

Theorem 5.3.1. Let Hypothesis 5.3.1 hold and assume that F is (globally) Lips-
chitz continuous. Then for all ϕ ∈ X , the Abstract Integral Equation has a unique
solution u(t) = Σ(t)φ on [0, +∞). The family {Σ(t)}t≥0 of nonlinear operators
is a semigroup on X .



110 CHAPTER 5. RENEWAL EQUATIONS

Diekmann and Gyllenberg prove this theorem in [29] and [30]. With this at
hand, they prove the equivalence between the AIE formulation and the nonlinear
renewal equation 5.5 in Theorem 3.7 in [30] (see also [29], Theorem 3.2).

For the sake of completeness we also give this theorem

Theorem 5.3.2. Let ϕ ∈ X = L1
ρ(R−;R2) be given.

a) Suppose that x ∈ L1
loc((−∞,∞);R2) satisfies (5.5) with an initial condi-

tion x(θ) = ϕ(θ), for θ ∈ (−∞, 0]. Then the function u : [0,∞) → X defined by
u(t) := xt is continuous and satisfies the abstract integral equation (AIE).

b) If u : [0,∞) → X is continuous and satisfies the abstract integral equation,
then the function x defined by

x(t) :=

{
ϕ(t) for −∞ < t < 0,

F (u(t)) for t ≥ 0,

specifies an element of L1
loc((−∞,∞);R2) and satisfies 5.5 with an initial

condition x(θ) = ϕ(θ), for θ ∈ (−∞, 0].

The hypothesis of global Lipschitzianity of the function F is rather restrictive
and, in fact, it is clear that it does not hold for our F (for instance, even if we erase
the exponential factor containing one of the arguments, L1 is still bilinear).

Nevertheless, standard variations of the statements of Theorem 5.3.1 and The-
orem 5.3.2 could be proven in the case of local Lipschitz condition (see [25])
substituting global existence by the well known result that a solution is defined on
a bounded maximal interval only if it escapes to infinity.

On the other hand, since F leaves invariant the positive cone of X , the solu-
tions with positive initial conditions will remain positive.

5.4 Steady state and linearization
Obviously, (0, G(0)) is a trivial stationary solution of (5.4).

To find a nontrivial steady state of (5.4), we first need to be able to solve

R0(I) = 1.
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Since R0 is a monotone increasing function, R0(0) < 1 < R0(∞) are neces-
sary and sufficient condition in order that this equation has a (unique) solution I .
Then any constant u satisfies the first renewal equation in 5.4 if we put I(t) ≡ Ī .
We find the right constant ū from the second equation:

ū =
1

LN(Ī)1
G−1(Ī) (5.8)

provided that Ī belongs to the image of [0, +∞) under G. Since G is monotonously
decreasing, this amounts to G(∞) < Ī < G(0). Summarizing, we can state

Proposition 12. Assuming that G is strictly monotone decreasing, (5.4) has a
(unique) non-trivial stationary solution if and only if

R0(G(∞)) < 1 < R0(G(0)).

Now we are interested in linearizing system (5.4) in order to write a charac-
teristic equation which can help us to find stability criteria for the steady state.

Let us introduce into (5.4) the following "translation to the origin" change of
variables

{
u(t) = ū + y(t),
I(t) = Ī + z(t),

(5.9)

where ū is given by (5.8) and Ī is the unique solution for R0(I) = 1.

In order to prove a linearized stability principle (see Theorem 3.25, [30])
around (y, z) = (0, 0) we need that the function F : L1

ρ(R−,R2) −→ R2 de-
fined by

(
u
I

)
7→

( L0u + L1(I)u
G(LN(I)u).

)

is of class C1.

We can decompose this function in this way:
Let B : R2 −→ R2 be defined as

B

(
x
y

)
7→

(
x

G(y)

)
.



112 CHAPTER 5. RENEWAL EQUATIONS

As G is a continuous differentiable function, B is of class C1.

Let C : L1
ρ(R−,R2)× (L1

ρ(R−,R2)
∗
)
3 −→ R2 be defined by




u
φ
ψ
γ


 7→

(
< u, φ > + < u, ψ >

< u, γ >

)
.

Note that C is a smooth function.

If we define the map D : L1
ρ(R−,R2) −→ L1

ρ(R−,R2)× (L1
ρ(R−,R2)

∗
)
3 by

(
u
I

)
7→




u
L0

L1(I)
LN(I).


 ,

then we have that

F

(
u
I

)
= B

(
C

(
D

(
u
I

)))

and to show that F is continuous differentiable is equivalent to show that D is
continuously differentiable.

This is still in progress. Even though proving the differentiability of D, which
essentially amounts to proving the differentiability of L1(·), seems attainable, the
computation of the representation kernel k ∈ L∞ρ (R+,R2) and hence, that of the
characteristic equation det

(
I − k̂(λ)

)
= 0 is clearly much more difficult.



Appendix for the numerical
simulations

The first test that we have performed compares the approximate solution given by
the method and the exact solution of the following system





∂

∂t
u(x, t) +

∂

∂x

(
x(1− x)u(x, t)

)
= u(x, t) + v(x, t),

∂

∂t
v(x, t) = −v(x, t),

(1)

for t > 0 and x ∈ [0, 1], supplemented by initial conditions of the form
u(x, 0) = u0(x) and v(x, 0) = v0(x). System (1) can obviously be reduced to
a single p.d.e. of the form

∂

∂t
u(x, t) + x(1− x)

∂

∂x
u(x, t) = 2xu(x, t) + v0(x)e−t, u(x, 0) = u0(x).

Assuming that u0 and v0 are C1 functions, the method of characteristics yields an
explicit solution of the above problem in the form

u(x, t) = [
etΦ(−t, x)

x
]2u0(Φ(−t, x))+

xe−t

(1− x)3
[F (x)−F (Φ(−t, x))], s ∈ (0, 1), t ∈ R,

where Φ(t, x) is given, as above, by the solution of the initial value problem

z′(t) = Γ(z(t)), z(0) = x,

and F is a primitive of the function ( 1
y
− 1)2v0(y). This can be checked by means

of a straightforward but tedious computation. Obviously, v(x, t) = v0(x)e−t.

113
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The numerical scheme for this system has to be adapted somehow and of
course it turns to be simpler. In particular, we simply have f(x, u, v) = 2xu +
v, g(x, u, v) = −v.

Table 1 shows the comparative results when one chooses u0(x) = 1− x2 and
v0(x) = x2. The column "error" (relative error in L1 norm) is evaluated as

∫ 1

0
(|ua(x, t)− u(x, t)|dx +

∫ 1

0
|va(x, t)− v(x, t)|dx∫ 1

0
(|u(x, t)|+ |v(x, t)|)dx

,

where the subscript "a" refers to "approximate". Here we consider Tf = 1.

Table 1:
x0 n h m CPU time in seconds error

0.02 117 0.0666 15 - 1.5 · 10−3

0.015 168 0.05 20 0.5 8.7 · 10−4

0.01 230 0.04 25 1 5.5 · 10−4

0.005 530 0.02 50 4.7 1.4 · 10−4

0.002 1612 0.0077 130 42 2.1 · 10−5

0.001 3519 0.00392 255 228 5.6 · 10−6

The second test that we have performed compares the approximate solution
given by the numerical method with the solution of the ordinary differential Sys-
tem (4.5) for values of the parameters that give x-independent solutions and con-
vergence to the steady state. The parameters used are L(x) = 0.4, F (x) =
2x
3
, φ(x) = 1, ψ(x) = 3, d1 = 0.1333, d2 = 0.15, G(N) = 5

1+N2 and the ini-
tial conditions p(x, 0) = 1 and q(x, 0) = 0.7. The results are shown in Table 2.

In Table 3 the parameters have been chosen like in Figure 4.2 in such a way
that we compare approximate solutions given by the method and solutions to Sys-
tem (4.5) in the case of oscillations. The parameters used are L(x) = 0.5, F (x) =
2x
3
, φ(x) = 1, ψ(x) = 4, d1 = 0.2333, d2 = 0.12, G(N) = 6.5

1+N4 and the initial
conditions p(x, 0) = 0.25 and q(x, 0) = 0.45.
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Table 2:
Tf x0 n h m CPU time in seconds error
1 0.1 22 0.2 5 < 0.1 5 · 10−5

0.05 59 0.1 10 < 0.1 1.3 · 10−5

0.01 230 0.04 25 2.5 2 · 10−6

0.002 1612 0.0077 130 99 5 · 10−8

10 0.1 12 0.333 30 0.2 1.7 · 10−5

0.05 30 0.2 50 1 5.8 · 10−5

0.01 234 0.0385 260 18 2.1 · 10−6

0.002 1554 0.00772 1295 1000 1 · 10−7

50 0.1 11 0.4545 110 1 8.9 · 10−9

0.05 30 0.1666 300 5 1.3 · 10−9

Table 3:
Tf x0 n h m CPU time in seconds error
1 0.1 22 0.2 5 < 0.1 5.6 · 10−4

0.01 230 0.04 25 4 2.4 · 10−5

0.002 1612 0.0077 130 122 1.7 · 10−6

10 0.1 12 0.333 30 < 1 2.6 · 10−3

0.01 234 0.0385 260 37 4 · 10−5

50 0.1 11 0.4545 110 1 0.02
0.05 30 0.1666 300 7 3.3 · 10−3
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