
 
 
 
 

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents 
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha 
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats 
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats 
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la 
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita 
de parts de la tesi és obligat indicar el nom de la persona autora. 
 
 
ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes 
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha 
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos 
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción 
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR. 
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing). 
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus 
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la 
persona autora. 
 
 
WARNING. On having consulted this thesis you’re accepting the following use conditions:  
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the 
titular of the intellectual property rights only for private uses placed in investigation and teaching 
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability 
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the 
TDX service is not authorized (framing). This rights affect to the presentation summary of the 
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate 
the name of the author 



Modeling Biotechnological Processes under Uncertainty
Anaerobic Digestion as Case Study

Živko Južnič-Zonta

UPC



 

 

 



 

 

 
 
Acta de qualificació de tesi doctoral 

Curs acadèmic: 2011/2012 

Nom i cognoms 
Živko Južnič-Zonta 

DNI / NIE / Passaport 
Y0093083Q 
Programa de doctorat 
Enginyeria Ambiental 

 

Unitat estructural responsable del programa 
Institut Universitari de Recerca en Ciència i Tecnologies de la Sostenibilitat 

 

 

 
Resolució del Tribunal 
 
Reunit el Tribunal designat a l'efecte, el doctorand / la doctoranda exposa el tema de la seva tesi doctoral titulada       

                  Modeling Biotechnological Processes under Uncertainty. Anaerobic Digestion as Case Study 

_________________________________________________________________________________________. 

Acabada la lectura i després de donar resposta a les qüestions formulades pels membres titulars del tribunal, 

aquest atorga la qualificació: 

 APTA/E  NO APTA/E 

 

(Nom, cognoms i signatura) 
 
 
 
 
President/a 

(Nom, cognoms i signatura) 
 
 
 
 
Secretari/ària 

(Nom, cognoms i signatura) 
 
 
 
 

Vocal 

(Nom, cognoms i signatura) 
 
 
 
 

Vocal 

(Nom, cognoms i signatura) 
 
 
 
 

Vocal 

 
______________________, _______ d'/de __________________ de _______________ 

 
 

El resultat de l’escrutini dels vots emesos pels membres titulars del tribunal, efectuat per l’Escola de Doctorat, a 

instància de la Comissió de Doctorat de la UPC, atorga la MENCIÓ CUM LAUDE: 

 SI  NO 

 

(Nom, cognoms i signatura) 
 
 
 
 
 
Presidenta de la Comissió de Doctorat 

(Nom, cognoms i signatura) 
 
 
 
 
 
Secretària de la Comissió de Doctorat 

 

Barcelona, _______ d'/de __________________ de _______________ 
 
 
 
 
 
 
 
 



 

 

 



PhD Thesis
UPC - Program on Environmental Engineering

Modeling Biotechnological Processes under
Uncertainty

Anaerobic Digestion as Case Study

Živko Južnič-Zonta

July 2012, Barcelona

Universitat Politècnica de Catalunya
Department of Agrifood Engineering and Biotechnology

GIRO Joint Research Unit IRTA-UPC



Supervisor

Prof. Dr. Xavier Flotats i Ripoll

Co-supervior

Dr. Albert Magrí Aloy



Acknowledgments

I would like to thank Xavier Flotats i Ripoll and Albert Magrí Aloy for their advice
throughout my PhD; Belén Fernández, Laura Tey and Angela Rodríguez-Abalde for
assisting me in acquiring laboratory skills and for their frutful discussions. I would
like to thank my co-authors in the submitted publications leading up to my thesis:
Jordi Palatsi, Albert Magrí Aloy, Darko Vrečko, Juš Kocijan, Maria Magdalena Alves,
and Xavier Flotats i Ripoll. I thank Darko Vrečko for making possible my stage at
Department of Systems and Control, “Jožef Stefan” Institute, and for providing an
exiting working atmosphere. I would like to thank Universitat Politècnica de Catalunya
and GIRO Joint Research Unit IRTA-UPC (formerly GIRO Technological Centre), which
funded my studentship.

I





Summary

In engineering practice, when an explicit model of a system is available, numerical exper-
iments can be performed in order to predict the future behavior of the system, explain
or describe its hidden state, guide data collection, etc. Typically, the dynamics of the
system are complex and difficult to observe with precision. Any approximation of the
observed reality within an explicit model necessary implies uncertainty, which should be
characterized and quantified to build confidence over model results. Uncertainty associ-
ated with model-parameter and its implications for bio-process optimization are of main
concern in this PhD work.
As a bio-process case study, the anaerobic digestion is considered for modeling. The

production of biogas by controlled anaerobic digestion could be a profitable activity,
apart of being a renewable energy source. However, the margins to improve this tech-
nology are wide. Anaerobic co-digestion with two or more input materials is a way
to make low biogas yield biomass applicable at industrial scale. Among the possible
co-substrates, lipids-rich wastes are attractive for their high energetic potential. The
main limiting factor for this strategy is the inhibition of anaerobic digestion by long
chain fatty acids. Modeling provides a useful approximation of the complex and delicate
microbiology activity of this anaerobic digestion system.
The underlying goal of the PhD project is to improve biotechnological processes with

the aid of modeling and uncertainty analysis. With this goal in mind, a general purpose,
user-friendly, simulation environment called “virtual plant” (VP) was build and applied
to anaerobic co-digestion and activated sludge modeling. Within the VP tool, new core
dynamics of the long chain fatty acids (LCFA) inhibition process were proposed and
tested and different inferential procedures for the estimation of parameter-uncertainty
were compared. Finally, a proposed multi-criteria analysis under uncertainty and mul-
tiplicity was applied to an industrial anaerobic co-digestion biogas plant.
In conclusion, the developed VP toolkit was found reliable and user-friendly when

modeling activated sludge and anaerobic digestion systems. The proposed LCFA-inhibition
model was able to reproduce correctly the experimental data at hand and enabled its
interpretation. However, uncertainty estimation of parameters and falsification of the
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proposed model of LCFA-inhibition are still missing. The Bayesian procedure was proved
useful when addressing the estimation of parameter uncertainty of anaerobic digestion
and activated sludge models. A considerable improvement in the operation efficiency and
reliability of an industrial biogas plant was possible within the proposed multi-criteria
analysis. However, future work is needed to improve the procedure of elicitation of the
inputs for this multi-criteria analysis and decrease its computational burden.
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Resum

En la pràctica de l’enginyeria, quan un model explícit d’un procés està disponible, es po-
den realitzar experiments numèrics per tal de predir el comportament futur del sistema,
explicar o descriure el seu estat ocult, guiar la recopilació de dades,... Generalment,
les dinàmiques del sistema són complexes i difícils d’observar amb precisió. Qualsevol
aproximació de la realitat observada per mitjà d’un modelatge implica necessàriament
incertesa. Per fomentar la confiança en els resultats del model, aquesta incertesa ha de
ser caracteritzada i quantificada de forma explícita. En aquest projecte de tesi, partic-
ular atenció es proporciona a la incertesa associada als paràmetres del model i les seves
implicacions per a l’optimització de bio-processos.
Com a cas d’estudi, es considera per a la modelització la digestió anaeròbia. La

producció controlada de biogàs per digestió anaeròbica s’ha trobat una activitat rendible,
a més de ser una font d’energia renovable. No obstant això, els marges de millora per
a aquesta tecnologia són amplis. La co-digestió anaeròbia amb dos o més materials
d’entrada és una manera de fer que la biomassa de baixa producció de biogàs sigui
aplicable a escala industrial. Entre els possibles co-substrats, els residus orgànics rics
en lípids resulten atractius pel seu alt potencial energètic. El principal factor limitant
per a aquesta estratègia és la inhibició de la digestió anaeròbica pels àcids grassos de
cadena llarga. La modelització matemàtica ofereix una aproximació útil de la complexa
i delicada activitat microbiologia d’aquest sistema de digestió anaeròbica.
L’objectiu subjacent del projecte de tesi és millorar ells processos biotecnològics amb

l’ajuda de la modelització i l’anàlisi d’incertesa. D’acord amb aquest objectiu, es desen-
volupa un entorn de simulació anomenat “planta virtual” (VP) amb la fi de aplicar-lo al
modelatge de la co-digestió anaeròbia i fangs activats. A l’entorn de la VP, es proposa i
testeja noves dinàmiques fonamentals del procés d’inhibició pels àcids grassos de cadena
llarga i es compara diferents procediments d’inferència per l’estimació del la incertesa
dels paràmetres. D’altra banda, es proposa una anàlisi de criteris múltiples en condi-
cions d’incertesa y multiplicitat d’equilibris. El mètode s’aplica a una planta industrial
de co-digestió anaeròbica.
Com a conclusió, l’eina de la “planta virtual” es va trobar fiable i fàcil d’usar en el
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modelat dels processos de tractament biològics com fangs activats i digestió anaeròbia.
El model d’inhibició per àcids grassos a cadena llarga ha estat capaç de reproduir i ha
consentit de interpretar les dades experimentals obtingudes en prèvies investigacions.
No obstant això, l’estimació de la incertesa dels paràmetres i la falsificació del model
d’inhibició són tasques d’investigació futura. El procediment d’inferència Bayesiana s’ha
demostrat útil per enfrontar-se amb èxit al problema de l’estimació de la incertesa dels
paràmetres relatius a models de la digestió anaeròbia i dels fangs activats. La anàlisi
de criteris múltiples ha permès una considerable millora en l’eficiència i de la fiabilitat
d’operació d’una planta industrial de biogàs. No obstant això, com a treball futur es
fa necessari millorar el procediment d’obtenció de les entrades a l’anàlisi de criteris
múltiples i disminuir la càrrega computacional requerida per aquesta anàlisi.
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Resumen

En la práctica de la ingeniería, cuando un modelo explícito de un proceso está disponible,
se pueden realizar experimentos numéricos para predecir el comportamiento futuro del
sistema, explicar o describir su estado oculto, guiar la recopilación de datos,. . . Gen-
eralmente, las dinámicas del sistema son complejas y difíciles de observar con precisión.
Cualquier aproximación de la realidad observada a través de un modelado implica nece-
sariamente incertidumbre. Para fomentar la confianza en los resultados del modelo, esta
incertidumbre debe ser caracterizada y cuantificada de forma explícita. En este proyecto
de tesis, particular atención se proporciona a la incertidumbre asociada a los parámetros
del modelo y sus implicaciones para la optimización de bio-procesos.
Como caso de estudio, se considera para la modelización la digestión anaerobia. La

producción controlada de biogás por digestión anaeróbica se ha encontrado una actividad
rentable, además de ser una fuente de energía renovable. Sin embargo, los márgenes de
mejora para esta tecnología son amplios. La co-digestión anaerobia con dos o más
materiales de entrada es una manera de hacer que la biomasa de baja producción de
biogás sea aplicable a escala industrial. Entre los posibles co-sustratos, los residuos
orgánicos ricos en lípidos resultan atractivos por su alto potencial energético. El principal
factor limitante para esta estrategia es la inhibición de la digestión anaeróbica por los
ácidos grasos de cadena larga. La modelización matemática ofrece una aproximación
útil de la compleja y delicada actividad microbiológica de este sistema de digestión
anaeróbica.
El objetivo subyacente del proyecto de tesis es mejorar los procesos biotecnológicos

con la ayuda de la modelización y el análisis de incertidumbre. De acuerdo con este
objetivo, se desarrolla un entorno de simulación llamado “planta virtual” (VP) con el fin
de aplicarlo al modelado de la co-digestión anaerobia y fangos activados. En el entorno
de la VP, se propone y testea nuevas dinámicas fundamentales del proceso de inhibición
por ácidos grasos de cadena larga y se compara diferentes procedimientos de inferencia
para la estimación del la incertidumbre de los parámetros. Por otra parte, se propone
un análisis de criterios múltiples en condiciones de incertidumbre y multiplicidad de
equilibrios. El método se aplica a una planta industrial de co-digestión anaeróbica.
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Como conclusión, la herramienta de la “planta virtual” se encontró fiable y fácil de
usar en el modelado de los procesos de tratamiento biológicos como lodos activados y
digestión anaerobia. El modelo de inhibición por ácidos grasos a cadena larga ha sido
capaz de reproducir y ha permitido de interpretar los datos experimentales obtenidos en
previas investigaciones. Sin embargo, la estimación de la incertidumbre de los parámet-
ros y la falsificación del modelo de inhibición son tareas de investigación futura. El
procedimiento de inferencia Bayesiana se ha demostrado útil para enfrentarse con éxito
al problema de la estimación de la incertidumbre de los parámetros relativos a modelos
de la digestión anaerobia y de los lodos activados. La propuesta análisis de criterios
múltiples ha permitido una considerable mejora en la eficiencia y de la fiabilidad de op-
eración de una planta industrial de biogás. Sin embargo, como trabajo futuro se rende
necesario mejorar el procedimiento de obtención de las entradas al análisis de criterios
múltiples y disminuir la carga computacional requerida por tal análisis.
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1.1 Problem Setting

1.1 Problem Setting

In the last decades, the growing concern for global warming issues and a more strin-
gent environmental legislation has boosted the growth of the renewable energy sector.
Biomass usage for biogas production, through anaerobic digestion, is one of the many
renewable energy alternatives to reduce CO2 emissions by substitution of fossil fuels and
reducing uncontrolled CH4 emissions from the same biomass. Apart from the concern
for global warming, the production of biogas by controlled anaerobic digestion (AD)
could be a profitable activity, since biogas is a valuable product that could be converted
to thermal and electrical energy, or simply by injecting it after treatment in the local
natural gas network. Moreover, digestate produced during AD can be used as fertilizer
or soil conditioner.

Unfortunately, there are many types of biomass that could not be used in AD directly
because of their low economic viability at industrial scale. For example, animal manure
has a low biogas yield, but on the other hand it has the advantage to be abundant
in regions with a dense animal farming activity. Anaerobic co-digestion with two or
more input materials is a way to make low biogas yield biomass applicable at real scale.
Among the possible co-substrates, lipids-rich wastes are attractive for their high energetic
potential in terms of biogas specific production. The drawback of using lipids-rich wastes
is the inhibitory, even though reversible, effect on the anaerobic process by their first
degradation products, the long chain fatty acids (LCFA).

The co-digestion process emerges from a complex interaction of heterogeneous microor-
ganism populations. Moreover, the reactor environment is of multiphase type, since a
solid-liquid-gas interface is present. Those multiphysics processes can be described in
a rigorous way by an explicit mathematical model. When this explicit model is coded
inside a simulation environment, numerical experiments can be performed in order to
predict the future behavior of the system, explain or describe its hidden state, guide
data collection, etc.

In the last decade the Anaerobic Digestion Model No.1 (ADM1), developed by Bastone
et al. (2002), has been the reference explicit model for AD. ADM1 has already been
modified for anaerobic co-digestion modeling (Boubaker and Ridha, 2008; Galí et al.,
2009; Zaher et al., 2009; Astals et al., 2011). However, the uncertainty involved in the
model results used for the optimization of the co-digestion process has not been explicitly
acknowledged so far.
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1.2 Anaerobic Digestion (AD)

Anaerobic microbiological digestion is a series of processes in which a heterogeneous
population of micro-organisms breakdown biodegradable materials in the absence of
oxygen in order to derive energy for their growth with a resulting production of CH4.
A simplified schematic representation of AD of a general complex organic substrate

Xc is given as Figure1.2.1. There are four main bio-process phases that take place:

Hydrolysis. Fermentation bacteria secrets multiple extracellular enzymes in order to
breakdown complex suspended compounds and colloidal materials. Reactions cat-
alyzed by cellulase, protease and lipase reduce carbohydrates Xch, proteins Xpr

and lipids Xli into their correspondent monomers of sugars Ssu, amino acids Saa
and long chain fatty acids Sfa.

Acidogenesis. Converts the soluble organic compounds produced during hydrolysis to
volatile fatty acids (VFA), NH+

4 , H2 and HCO−3 . Long chain fatty acids are
proceeded via β−oxidation reactions. During β−oxidation, two-carbon molecules
acetyl-CoA are repeatedly cleaved from the fatty acid. Acetyl-CoA can then enter
the TCA cycle, which produces NADH and FADH, which are subsequently used
in the electron transport chain to produce ATP.

Acetogenesis. Converts the VFA (mainly butyrate Sbu, propionate Spro and valerate
Sva) to acetate Sac and H2.

Methanogenesis. Acetate is converted to CH4 by acetoclastic bacteria, while hydrogenotrophic
bacteria produce CH4 from H2 and CO2.

The disintegration process (Figure1.2.1) is considered as a non-biological pre-lysis step,
since the complex particulate substrates Xc breakdown into its biodegradable and inert
parts simply by phase separation, inter-particle shearing and lysis by thermal or other
types of external energy supply. Moreover, the disintegration step serves as a repository
for the death biomass, which is recirculated as a co-substrate in the anaerobic bio-process.
During stable digestion, disintegration and hydrolysis are the limiting steps of the pro-

cess for particulate organic substrates. With “stable” we mean that various biological
conversions remain sufficiently coupled during the process in order to prevent the accu-
mulation of intermediate compounds. On the other side, methanogenesis phase is the
most sensible to environmental changes in the process. For example, an accumulation of
VFA will decrease pH, which will in turn inhibit the methanogenesis process and reduce
the consumption of acetate even more.
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Figure 1.2.1: The main anaerobic process metabolites. Particulate compounds are:
decayed biomass (Xdec), complex organic substrate (Xc), carbohydrates
(Xch), proteins (Xpro), inerts (Xi), lipids (Xli) and micro-organism biomass
(Xbio). Soluble compounds are: amino acids (Saa), sugars (Ssu), long chain
fatty acids (Sfa), butyrate (Sbu), valerate (Sva), propionate (Spro), acetate
(Sac), methane (Sch4), hydrogen (Sh2), inorganic carbon (Shco3−) and ni-
trogen (Snh4+).
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Apart from pH, another environmental factor affects considerably the anaerobic pro-
cess: temperature determines psychrophilic (10 − 20 ◦C), mesophilic (20 − 40 ◦C), or
thermophilic 50 − 60 ◦C digestion . Since industrial plant anaerobic reactors are built
with control of temperature in mind, it is kept constant at a relative optimal level in
relation to the objective of the treatment. The choice to maintain as constant as pos-
sible the temperature is dictated by the fact that the bio-process could slow down if
biomass should acclimatize to varying environmental condition. The same applies to the
fed substrate composition. Thus, it is important to determine optimal feed substrate
mixtures.
Several compounds could exhibit toxic\inhibitory effects: free ammonia (NH3), sul-

phide, LCFA, cations (Na+, K+ and Ca2+ and Mg2+), light and heavy metal ions and
xenobiotics. Free ammonia is formed by the protonation of ammonia, which is produced
by biological degradation mostly from urea and proteins present in the feed substrate.
Ammonia production is especially abundant where wastes from slaughterhouse, fish and
dairy industry are fed in co-digestion. Nevertheless, ammonia is needed because it is an
essential micro-nutrients.
Methanogenic inhibition from sulfide is present only when sulfate is present in the

feed, and is mostly caused by competition for lactate and acetate between acetoclastic
and sulfate reducing bacteria. Moreover, sulfide is toxic for various bacteria groups.
Lipids are present in high quantities in the wastes produced by slaughterhouses and

meat-processing, dairy, fish-processing, starch-processing, livestock farms, wool scouring
facilities and edible and oil processing facilities. For example, in the EU, approximately
17 · 106 tonn/year of slaughter byproducts are produced by the meat industry, where only
50% of the total meat production is for human consumption (Woodgate and van der
Veen, 2004). The remaning animal byproducts are a considerable potential resource
for anaerobic co-digestion plants. Moreover, there are promising estimations of biogas
yields from different lipids-rich substrates. If biomass growth is neglected, the theoretical
estimation of the CH4 yield from lipids (C57H104O6) is of 1.014 m3CH4/kgVS, while for
proteins (C5H7ON5) is of 0.496 m3CH4/kgVS and for carbohydrates ([C6H10O5]n) is of
0.415 m3CH4/kgVS (Angelidaki et al., 1999). The theoretical CH4 content in biogas is
of 70% from lipids, while it is only of 50% for proteins and carbohydrates.
From practice, there has been found for example that slaughterhouse waste reach

a biogas yield production of 0.3 to 0.7 m3CH4/kgTS, while animal fat could reach
1 m3CH4/kgTS (Hejnfelt and Angelidaki, 2009). Unfortunately, this high lipid-methane-
yields come along with a significant inhibitory effect caused by digestion intermediates
of LCFA and thus could not reach the high theoretical potentials mentioned above. To
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avoid LCFA inhibition/toxic effects over AD, lipid rich wastes are fed in co-digestion
with, for example, liquid pig manure in order to dilute the eventually accumulated
LCFAs in the anaerobic reactor, although this mixture can lead to a high ammonia
concentration medium.

1.3 Modeling of Anaerobic Digestion

For waste-water applications, deterministic models like the ASM No.1-3 (Henze et al.,
2000) or ADM No.1 (Bastone et al., 2002) are widely used, while stochastic differential
equation (SDE) representations or agent-based models that has become very popular
during the last decade in the filed of biology and social sciences are somehow left aside.
The reason why macroscopic deterministic models are still preferred to SDE or agent-
based models, is that they are typicaly as effective as microscopic representations and
computationally less expensive. Nevertheless, stochastic models offer a unique insights
over the micro-scale, which fosters the interpretation of basic theory of the system process
(Picioreanu et al., 2005). Moreover, Gujer (2002) has shown that one of the main
drawbacks of deterministic models is that they are only system specific: the estimated
lumped kinetic parameters can only be valid for specific flow schemes. On the other
hand, microscopic models are applicable to any flow schema.
In recent years, there has been a considerable effort of the AD community to extend

the applicability of the standard ADM1 model, as reported by Appels et al. (2008) and
references therein. There are two main reasons why the detail of description of the bio-
chemical processes considered by ADM1 has been constantly rising. The first is that a
better substrate characterization has become available and because of the need to ap-
ply ADM1 for anaerobic co-digestion simulations, e. g. agro-waste (Galí et al., 2009),
slaughterhouse solid waste (López and Borzacconi, 2010) or cattle manure and renewable
energy crops (Lübken et al., 2007) AD-applications. The second reason is that there is
a need to extend farther the ADM1 model frame definition, in order to simulate pro-
cesses under inhibition conditions (Chen et al., 2008). For example, Angelidaki et al.
(1999) has proposed a Haldane-type substrate inhibition function in order to model the
case of LCFA inhibition/toxic effects over the AD-population. More recently, Palatsi
et al. (2010) proposed an inhibition-adsorption model to account for the LCFA inhi-
bition/toxic effect, improving the standard ADM1 model fitting over slightly inhibited
AD-populations (2-3 days of inhibition lag time).
Integrated modeling of activated sludge and AD wastewater has lead to the develop-

ment of different modeling methodologies. Grau et al. (2007a) developed a new plant-
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wide modelling methodology for WWTPs, which does not require the development of
specific transformers to interface the ADM and ASM models. On the other side, Zaher
et al. (2007) and Nopens et al. (2009) have proposed interface units that try to pre-
serve the element and charge balance. The integration of WWTP sub-units opens the
possibility of global process optimization and to test control strategies and concurrent
operation scenarios on a plant-wide scale.

1.4 The Uncertainty Challenge

Pieter Eykhoff (1974) defined a mathematical model as “a representation of the essential
aspects of an existing system (or a system to be constructed) which presents knowledge
of that system in usable form”. Since the AD process is quite complex, only essential
aspects can be represented by explicit models. This approximation of reality implies that
predictions derived from such a model can never be completely accurate. The EPA’s
“Guidance on the Development, Evaluation, and Application of Environmental Models”
(Gaber et al., 2009) proposes a taxonomy of uncertainties that may cause error in a
model’s predictions.

Input uncertainty. There is typically uncertainty about data measurement, inconsisten-
cies between measured values and those used by the model, and parameter value
uncertainty.

Niche uncertainty. It may result when the model is used outside the domain for which it
was originally developed (i. e. extrapolation problem) and/or it is build on several
existing models with different spatial or temporal scales.

Framework uncertainty. An explicit model is a simplified abstraction of the reality.
Even if there is no input and niche uncertainty, the predictions from the model
will not equal those from the system because some factors that control the behavior
of the system are unknown or were left outside of the model.

Apart from the above sources of uncertainty, complex systems may not always take the
same value even if the same experimental conditions are repeated. Thus, when compar-
ing the values of a deterministic model with the true values of the system, a residual
variability may be present. Finally, uncertainty may arise from numerical approxima-
tions, called “code uncertainty”. An example is uncertainty analysis, where we wish to
propagate uncertainty in inputs through the model in order to identify the most salient
output uncertainties, regions of robustness, and important thresholds. One approach is
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to use a Monte Carlo sampling of inputs. The sampling error in the Monte Carlo esti-
mates is an instance of code uncertainty. For a given model, one of the crucial elements
is to determine how significant the single sources of uncertainty are over the results.
In practice, professionals deal with uncertainty implicitly by applying factors of safety

provided by design codes, engineering textbooks or derived from personal experience.
The consequence in plant operation practice is that conservative decisions are made,
maintaining large safety margins in the plant designs and operation. An explicit treat-
ment of uncertainty prevents information losses and stimulates rational decision making.
When assumptions are clearly stated, possible flaws in the model used for decision mak-
ing can promote new questions and a scientific habit of mind. The potential benefits
of estimating or reducing the uncertainty in models used for a rational operation of
biotechnological processes are many:

• Maintain the plant efficiency closer to its maximum by improved operation.

• Minimize the plant environmental impact.

• Increase the amount of organic waste that can be treated per unit process capacity.

• Decrease the frequency of gross process failures by increased process control.

• Run plants with less skilled personnel or decrease time devoted to plant manage-
ment.

• The procedure for plant start-up can be shortened.

• Integrate the dynamics of the receiving organic wastes within the control of the
plant.

The number of different approaches to model bio-systems is perhaps greater than the
number of biological systems. In the present work, nonlinear models of ordinary differen-
tial equations are used. Those models are a combination of mechanistic and phenomeno-
logical models, frequently called “gray-box” models, characterized by parameters that
may or may not be known with precision. The main question is how to represent explic-
itly precision or uncertanity in parameters. All the forms of uncertainty are uniquely
represented and quantified by probability (O’Hagan and Oakley, 2004). In practice,
however, experts may find it difficult to express their knowledge in probabilistic form.
In particular, parameter value uncertainty elicitation is of great importance to achieving
the above benefits relative to biotechnological process modeling.
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Among many inferential choices, the Bayesian is particularly appealing for dealing with
uncertainty. When a model parameter θ is represented by a random variable, expert’s
prior knowledge is expressed as a probability distribution, p(θ). This prior knowledge
can be updated if information is introduced via the probability distribution for the data,
p(D|θ), where D denotes the collected data. Since data is fixed, p(D|θ) is viewed as a
function L(θ;D), known as the likelihood function. Bayes’ theorem allows to combined
data and prior information:

p (θ|D) = p (D, θ)
p (D) = p (D|θ) p (θ)

p (D) .

p(θ|D) is called the posterior distribution and reflects the probability of θ, given the
observed evidence. The normalizing constant p(D) =

´
p(D, θ)dθ is sometimes termed

the marginal likelihood or just “evidence”. Closed form solution of p(θ|D) are available
only for few special cases. In practice, the posterior is numerically approximated by
sampling from a probability distributions that is only proportional to the true posterior
distribution.
Markov chain Monte Carlo (MCMC) sampling methods and the increasing computa-

tional power has made possible that Bayesian inference has become one of the leading
theory frameworks in the field of physics and of biology (Hibbert and Armstrong, 2009).
Some popular MCMC samplers are reviewed by Andrieu (2003): the Metropolis-Hastings
sampler, the Gibbs sampler, the Slice sampler (a generalized form of the Gibbs sampler),
the Hybrid Monte Carlo, the Adaptive MCMC sampler, the Particle Filters sampler, the
Reversible jump MCMC sampler and the Simulated annealing sampler. Unfortunately,
there has not been found any theoretical result to determine how many steps a Markov
chain should have in order to reach its equilibrium (Murray, 2007). Anyway, there is an
extensive literature on standard diagnostic tools (Adlouni et al., 2006) that could check
the convergence properties of a chain (e. g., auto-correlation function, Gelman-Rubin
statistics, etc.) and that could find analytical or coding errors in posterior simulators
(Geweke, 2004). Bayesian inference is not immune to criticism (e.g. Gelman, 2008a;
Kadane, 2008; Senn, 2008; Wasserma, 2008; Gelman, 2008b), since it gives an alterna-
tive definition of probability, which differs from the classical frequentist view.

1.5 Objectives and Questions

The underlying objective of the PhD work is to improve biotechnological processes, in
particular the anaerobic co-digestion process, with the aid of modeling and uncertainty
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analysis. The objective is threefold:

1. Build a user-friendly simulation environment with direct access to powerful statis-
tical methods and propose a new explicit model for the LCFA-inhibition process.

2. Identify gains and limitations when applying classical and Bayesian approaches for
parameter uncertainty estimation.

3. Improve by simulation anaerobic co-digestion plant efficiency by explicitly account-
ing for input uncertainty.

In specific, the following questions shall be addressed:

• How to build a user-friendly simulation environment and how to use it? (Chapter
2)

• What explicit model is adequate to represent the LCFA-inhibitory process? How
to quantify the overall cell-damage of sensible anaerobic populations? (Chapter 3)

• When to use classical frequentist and Bayesian inferential procedures? What is
the quality of computed inferential results? (Chapter 3, 4)

• How to explicitly account for uncertainty, when optimizing the operation of an
industrial co-digestion biogas plant? Under model uncertainty and multiplicity,
what is the set of choices that are Pareto efficient in a multi-criteria analysis of the
system? (Chapter 5) What is the payoff of an uncertanity reduction relative to a
particular set of parameters? (Appendix A)

1.6 Thesis Outline

Chapter 2. Reviews some gains and limitations of popular simulation environments used
for biotechnological process modeling and in particular for AD modeling. Our
alternative simulation environment for continuous dynamic systems, called “virtual
plant” (VP) toolkit is presented. Statistical tools used by the VP are described
and a simple modeling case study of an industrial biogas plant is presented.

Chapter 3. Proposes two explicit models to answer a retrospective question regarding
causes of LCFA-inhibition. ADM1 framework was used. Simple kinetics are consid-
ered to describe the bio-physics of the inhibitory process: i) adsorption of LCFA
over granular biomass and ii) specific LCFA-degrader populations. In the first
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model, a commonly used non-competitive inhibition function is assumed. Contrary,
in the second model, a new state variable is presented, which tries to account for a
loss of cell-functionality induced by the adsorbed LCFAs. A comparison between
the two models is performed and an explanatory analysis of the LCFA-inhibition
process is given.

Chapter 4. A comparative study on how parameter uncertainty is estimated according
to classical frequentist (linear) and Bayesian (non-linear) inferential procedures
is performed. A modified wastewater treatment activated sludge model (ASM)
was used for this purpose. Results were compared to evidence the strengths and
weaknesses of both approaches.

Chapter 5. Presents a multi-criteria evaluation methodology for determining the op-
erating strategies for biotechnological process models under an uncertainty and
multiplicity. Based on the proposed uncertainty analysis, a reliability map is built
for an industrial anaerobic co-digestion biogas plant for a given set of substrates
mixture input loads.

Chapter 6. Briefly summarizes the major findings of the thesis by answering the above
stated questions.

Appendix A. Presents a value of information analysis relative to the case study of Chap-
ter 5. In particular, a partial expected value of perfect information analysis in
computationally expensive models is tested; and an economic report on methane
production is reported using this methodological framework.

Appendix B. Includes the source code of the VP and some screen-shots of the user-
interface.
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2.1 Abstract

2.1 Abstract

The virtual plant (VP) toolkit, developed during the present work, is a simulation en-
vironment for continuous dynamic systems, which are described in terms of ordinary
differential/algebraic equations (ODEs/DAEs). The system-equations are expressed in
an Excel-sheet, which symbolic representation is converted in C-mex language by auto-
code generation. The Simulink block-oriented environment of MATLAB is used for
simulation. Parameter inference and process-optimization routines are integrated in the
VP-toolkit. Moreover, auto-code is generated for two external applications: Graphviz
and GEM-SA. The first visualizes the reaction pathways as a directed graph and the
last performs global sensitivity analysis. Some of the VP-functionalities are shown on a
simple case study modeling of an anaerobic digestion biogas plant.

List of Abbreviations

VP Virtual Plant
ODEs Ordinary Differential Equations
DAEs Differential Algebraic Equations

SUNDIALS SUite of Nonlinear and DIfferential/ALgebraic equation Solvers
FD Finite Difference

MCMC Markov Chain Monte Carlo
MLE Maximum Likelihood Estimation
MAP Maximum A posteriori Probability
SS Scatter-Search

GEM-SA Gaussian Emulator Machine for Sensitivity Analysis
GSA Global Sensitivity Analysis
SA Sensitivity Analysis

DRAM Delayed Rejection Adaptive MCMC
FIM Fisher Information Matrix
MH Metropolis-Hastings
AM Adaptive MCMC
DR Delayed Rejection
GP Gaussian Process

LCFA Long Chain Fatty Acids
AHM Anaerobic Haldane Model
AMM Anaerobic Monod Model
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PNM Pathway Network Model
GMM Gaussian Mixture Model

2.2 Introduction

Ordinary differential/algebraic equations (ODEs/DAEs) are the building-blocks for many
mathematical models in sciences and engineering. When describing wastewater treat-
ment processes with ODEs, the model is integrated beginning with specified initial values
and, typically, events are scheduled dynamically as the simulation proceeds. The pro-
cess of system-simulation can be divided in two steps: mathematical system-description
and its numerical integration. A simulation environment helps to implement those two
steps, facilitating the re-use of knowledge in process models, while maintaining a high
performance in simulation speed and accuracy. However, it is not straightforward to
build a simulation environment where code-maintenance and simulation-performance
are both maximized. For example, if the mathematical system-description is coded in
a programming language like Fortran or C, the result is a very-fast code execution, but
low re-usability since only skilled programmers have enough knowledge to modify or
maintain the code.
During the last decade, a large number of simulation environments have been built

with the aim of expanding the practice of model-simulation to “occasional” program-
mers. The long summary list of software for simulation of the “Systems Biology Markup
Language” is an example. In particular, in the field of wastewater treatment, commer-
cial simulators like GPS-X1, Biowin2, Simba 3 and WEST4, among others, were built to
satisfy the criteria of re-usability and simulation performance. An example of an open-
source counterpart to those commercial tools is the wastewater library of OpenModelica
(Reichl, 2003). All those simulation packages use some sort of graphical block diagram-
ming (e. g., Simulink blocks), which makes it easy to visualize the units (i. e. sub-models)
of a complex system.
Process-simulation is the building-block for further analysis and optimization of the

process. Thus, it is important that a simulation environment has (or is linked to) a
powerful statistical or optimization set of methods. The majority of ad-doc simulation
environments miss the analysis flexibility provided by libraries of algorithms and math-
ematical tools such as SciPy, Octave/MATLAB, R, and others. Simba is an exception

1© 2012 Hydromantis Environmental Software Solutions
2© 2003 EnviroSim
3© 2012 ifak system GmbH
4© 2012 MOSTforWater
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2.2 Introduction

Figure 2.2.1: Virtual Plant toolkit structure.

since it is implemented within the MATLAB/Simulink environment, but its commercial
license makes its use restricted. A very interesting option is the simulation environment
ACADO (Automatic Control and Dynamic Optimization) toolkit for MATLAB (Houska
et al., 2011), but it misses the block-diagramming representation.
In order to alleviate some of the above limitations, we have built our own model-

ing/simulation environment: the Virtual Plant (VP) toolkit. The main structure of the
VP is shown in Figure 2.2.1. Setting of model-parameters, events, process-data and
mathematical process-description are stored in Excel-sheets. In this way, a low-trained
user can test or modify models and use available data to learn about the process at
hand. The Excel-sheets are loaded in MATLAB and translated in a C-mex code, which
is compiled and used in a Simulink-block. Numerical performance is guaranteed by the
ODE-suite of MATLAB (i. e. ode15s, ode45, etc.). Another option available is the “suite
of nonlinear and differential/algebraic equation solvers” (SUNDIALS), but simulation
performance is reduced because the code is not compiled. The SUNDIALS allowes for
the solution of differential algebraic equations (DAEs) too. Because model-simulation is
performed in MATLAB, a wide variety of statistical tools are available.
When measurements of the process are available, a common task is model calibra-

tion. There are two general methods for parameter inference: frequentist and Bayesian.
Both are implemented in the VP toolkit (see Figure 2.2.1). The common denominator
of those two procedures is the maximum likelihood estimation (MLE) of the unknown
parameter set (Chapter 4), which can be found numerically using optimization meth-
ods. The VP uses a scatter-search (SS) global optimization algorithm (Larrosa, 2008;
Rodriguez-Fernandez et al., 2006a) discussed in Sub-section 2.3.1. MLE is not only used
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for summarizing observed data, but it is also useful for testing hypotheses or construct-
ing frequentist (linear) confidence regions. The finite difference (FD) method called
“Adaptive Robust Numerical Differentiation” (D’Errico, 2006) was included in the VP
since frequentist confidence regions are based on a Hessian matrix approximation at the
MLE-value. On the other hand, Bayesian inferential procedure needs an efficient Markov
Chain Monte Carlo (MCMC) sampler. In the VP-toolkit, the “Delayed Rejection Adap-
tive MCMC” (DRAM) sampler (Laine, 2008) was included.
It is often valuable to know how the solution changes with model-parameters. VP

implements a local and a global method for parameter sensitivities evaluation. The
local method is based on sensitivity function trajectories (Dochain and Vanrolleghem,
2001; Petersen et al., 2001; Marsili-Libelli et al., 2003), which are evaluated exactly
if the Symbolic toolbox of MATLAB is available or approximated numerically by the
CVODES solver from the SUNDIALS-suite. The global sensitivity analysis (GSA) is
based on an external free-application called “Gaussian Emulator Machine for Sensitivity
Analysis (GEM-SA)” (Oakley and O’Hagan, 2004). VP generates automatically the
necessary input files for the GEM-SA application. Another VP-external application is
Graphviz, a visualization tool that can represent structural information as diagrams of
abstract graphs and networks. The Graphviz-code is automatically generated by the VP
and reaction pathways can be displayed or exported by Graphviz.
In this chapter, we present in detail the SS-optimization routine (Sub-section 2.3.1),

the MCMC-sampler (Sub-section 2.3.3) and the probabilistic GSA method (Sub-section
2.3.4), while we postpone the presentation of frequentist and Bayesian inferential pro-
cedures to Chapter 4. A short example of the VP-toolkit is given in Section 2.4, where
we model an industrial anaerobic digestion reactor.

2.3 Methods

In the following sub-sections, the different routines/tools/procedures used for the VP
built-up are described.

2.3.1 Scatter-Search Global Optimization

Scatter-search (SS) optimization is a class of evolutionary algorithm based on generalized
path constructions in Euclidean space and strategic decision rules. The SS algorithm
were developed by the “Process Engineering Group” of the “Instituto de Investigaciones
Marinas”, Spain (Larrosa, 2008; Rodriguez-Fernandez et al., 2006a) and implemented in

22



2.3 Methods

MATLAB as a free toolbox. The SS-optimization is based on the following six rules, or
better methods (Larrosa, 2008):

Method 1. Diversification generation method generates proposal vectors for the initial
set P . This is accomplished by dividing the suggested parameter space into sub-
ranges, which are kept fixed during the optimization. Anytime DGM is called, it
randomly selects a sub-range based on its past “degree” of exploration. When the
range scale is wide, the logarithmic distribution is better suited for fast convergence
than the uniform one. The proposal vector is randomly chosen from the selected
sub-range.

Method 2. Reference set build method builds the reference set S. It has two strategies:
the first one combines proposals based on quality and diversity when building S
(fast convergence), whereas the second focuses only on diversity (less simulations).
The first strategy selects two sub-sets of vectors from P : the best b/2 solutions from
P (quality) and the b/2 selections that maximize the minimum distance between
the remaining candidate solution of P and the solutions currently in S (diversity).
The second strategy, instead of selecting the b/2 best solutions, only set in S the
lower, the middle and the upper bound vector. S is completed by b vectors using
the diversity strategy.

Method 3. Subset generation and combination method operate on S, to produce several
subsets of its solutions as a basis for creating combined solutions. Generation
involves selecting all pairs of proposals in S. Repeated pairs are avoided by using a
memory record of the already used combinations. Combination is based on hyper-
rectangles generated from the pairs, called “parent”. During combination every
generated vector, called child, is compared with its parent. If the child outperforms
its parent in terms of quality a new hyper-rectangle defined by the distance between
the parent and the child is constructed. The procedure is repeated until there is a
gain in performance, with the only difference that the hyper-rectangle is increased
by two times, since it is a very promising area of search.

Method 4. Reference set update method updates S by working on the high-quality and
diverse proposals and the new combined solutions from Method 3. There are two
types of filters: a distance filter that prevents similar proposals to enter S through
the use of a threshold value and a diversity filter that prevents vectors in the same
flat area to join S. Both the filters restrict the incorporation of proposals that
contribute only slightly to the quality and diversity of the current S. Intensification
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is a procedure that stores in a secondary reference set Ŝ the proposals that were
rejected by the distance and diversity filters. Every ifreq number of iterations, the
proposals from Ŝ are combined trough Method 3 with the proposals from S in
order to speed-up the convergence to the global optimum.

Method 5. Improvement method performs a local search (e. g., sequential quadratic
programming method) starting from a carefully selected solution. A merit filter
avoids Method 5 to be applied to a low-quality solution and a distance filter pre-
vents Method 5 application to a solution close to other for which the Method 5
was applied in previous iterations. Another constrain in order to avoid performing
many local searches from similar initial proposals is to fix a minimum number of
function evaluations between two local searches. After this minimum number of
evaluations, a local search is performed if the algorithm finds a better solution.

Method 6. Rebuilding method is applied whenever Method 3 fails to provide any new
proposal to S. In the first step, g worst solutions from S are deleted, the best
solution is selected as the center of gravity and connected trough segments to the
remaining b−g−1 solutions of S. In the second step,m new proposals are generated
by the Step 1 method, which are connected once again to the center of gravity.
Finally, the new proposals that are included in S are those which maximize the
orthogonality with the solutions already in S.

It is interesting to note that the IM method is needed only if high quality outcomes
are desired, but can be omitted because of the problem’s nature or because of the high
computation costs associated with the function evaluations.
For our applications, the SS-optimization is applied to estimate the maximum a pos-

teriori probability (MAP) estimate, i. e. the mode of the posterior distribution p(θ|D).
In particular, when the prior is uninformative the posterior is entirely defined by the
likelihood function L(θ;D) and thus the MAP estimate is called maximum likelihood
estimation (MLE).

2.3.2 Frequentist inference

Briefly, Frequentist estimation of parameter value uncertainty, relay on the estimation
of the covariance matrix C. Suppose that data D = d1, ..., dn is available. If the additive
noise model

di = fi (θ) + εi, ε ∼ Norm
(
0, σ2In

)
,
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is selected, where f (θ) is a linear model of process dynamics and ε is an indepen-
dent Gaussian error term with a homoscedastic variance error parameter, σ2, then the
100 (1− α) % confidence region for θ ∈ Rp is

{
θ :

(
θ − θ̂

)T
C−1

(
θ − θ̂

)
≤ pFαp,n−p

}
, (2.3.1)

where Fαp,n−p is the Fisher-Snedecor distribution. The covariance matrix C is esti-
mated as CJ = s2

(
JTJ

)−1
, where Ĵ = [∂f/∂θ]θ̂ is the Jacobian matrix of the model

estimated at the MLE-parameter nominal location θ̂ and s2 = SS
(
θ̂
)
/ (n− p) is an

unbiased approximation of the residual variance σ2. SS is the sum of squares function

SS
(
θ̂
)

=
n∑
i=1

(
di − fi

(
θ̂
))2

.

Note that CJ

(
θ̂
)

= FIM−1 is the inverse of the Fisher Information Matrix (FIM). It
is also possible to estimate C trough the Hessian matrix H =

[
∂2SS (θ) /∂θ∂θT

]
θ̂
, since

CH = 2s2H−1. Theoretically, the estimation of C trough CJ or CH will differ only if
for some numerical or other reason the SS (θ) minimum is not reached. This is because
H and FIM differ by a term involving the curvature of the SS (·) function. Finally,
the individual parameter confidence interval is estimated as δi = ±t1−(α/2)

n−p
√
Cii, where

t
1−(α/2)
n−p is the two-tails Student’s t distribution (Seber and Wild, 1989).
When f (θ) is nonlinear in parameters, Eq. (2.3.1) gives only a linear approximation

of the uncertainty in the vicinity of the MLE solution. The Frequentist approximation
may be a reasonable approach for very informative data sets (i. e. large enough n),
but for sparse data and non-Gaussian measurement error models the confidence region
given in Eq. (2.3.1) may underestimate parameter-uncertainty (Vrugt and Bouten, 2002).
Moreover, when data are sparse, the condition number should be checked in order to
avoid high approximation errors during the operation of inversion.
Correct estimation of the covariance matrix C implies a robust numerical procedure

for the approximation of the Jacobian or Hessian matrix. Apart of symbolic explicit
solutions, finite difference (FD) approximations are generally used. The main problem
for FD methods that there is no general solution for nonlinear functions on how to
evaluate the perturbation parameter h ≈ ∂θ (Press et al., 1997). Model simulation and
parameter estimation software packages like PEAS (Checchi et al., 2007) or SIMAQUA
(Reichert et al., 1995) use an arbitrary fixed perturbation parameter value, since they
assume that it would be acceptable for most applications. Pauw (2005) has compared
different estimation techniques for the Hessian matrix and has shown empirically that
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the influence of h is parameter specific. Thus, fixing a global perturbation parameter
value is not a very good choice.
Dochain and Vanrolleghem (2001) has given in their book a practical advice: to com-

pare the results for halving the perturbation value h until the results are sufficiently close.
For example, this advice is followed by Checchi and Marsili-Libelli (2005). In our VP, the
free-MATLAB toolbox called “Adaptive Robust Numerical Differentiation” (D’Errico,
2006) was used to estimate H. The estimation routine is based on a FD, fourth-order
Romberg-extrapolation method with an adaptive routine for the determination of the
step-size-perturbation parameters.

2.3.3 Delayed Rejection Adaptive MCMC

The adaptive version of the random walk Metropolis-Hastings (MH) algorithm with a
Gaussian proposal distribution called “Delayed Rejection Adaptive MCMC” (DRAM)
has been provided as open-source MATLAB toolbox by Marko Laine Laine (2008); Laine
and Tamminen (2008). In order to understand how DRAM algorithm works, a short
description of the MH algorithm is presented first.
The MH algorithm draws samples from a distribution that is only known up to a

constant. Random numbers are generated from a distribution with a target distribution
π (θ) that is equal to or proportional to a proposal function p. In most cases the tar-
get will be the posterior distribution for the model unknowns, π (θ) = p (θ | D). The
algorithm generates a discrete random process called the Markov chain, in which each
state θt+1 depends only on the previous state θt. To generate the chain the algorithm
proceeds as follows:

Step 1. Assume an initial value θt and set a proposal (or prior) distribution q1 (θ) of
the target π (θ).

Step 2. Draw a new sample, θ∗, from a proposal distribution q1 (θ).

Step 3. Calculate the first stage acceptance probability α1 (θt | θ∗) = min {1, ab}, where
the likelihood ratio is a = π (θ∗) /π (θt) and the ratio of the proposal density is
b = q1 (θ∗ | θt) /q1 (θt | θ∗)5.

Step 4. If ab ≥ 1 than θt+1 = θ∗, else θt+1 =

θ
∗ with probability α

θt with probability 1− α
(drawing

from a uniform distribution).
5b = 1 because q1 is a Gaussian proposal symmetric-type of probability distribution.
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Step 5. Steps 2, 3 and 4 are repeated until a desired number of samples is reached.

The Markov chain has to be run until the initial state is “forgotten”. These samples,
which are discarded, are known as “burn-in”. The remaining set of accepted values
represent a sample from the distribution π (θ). The limitation of the MH algorithm is
that in order to converge rapidly to the target distribution, it is required that π (θ∗) ≈
q1 (θt | θ∗). Since in practice the proposal is often unknown, the variance parameter σ2

of a Gaussian proposal is used to optimize the “burn-in” period by α1, which is the
fraction of proposed samples that is accepted in a window of the last samples.
There are two cases when the chain will converge very slowly to π (θ) (poor mixing).

First, if σ2 is too small, α1 will be high but successive samples will move around the
space slowly. On the other hand, if σ2 is too large,α1 will be very low because the
proposals are likely to land in regions of much lower probability density (very low a).
The DRAM algorithm, enhances chain mixing using an adaptive MC (AM) algorithm,

which is applied on the covariance matrix of the proposal. In the following, the AM
algorithm is presented as given by Laine (2008):

Step 1. Start from an initial value θ0 and give an initial proposal covariance C = C0,
that could be find by an initial fit of SS (θ) and the relative Jacobian matrix
estimation C0 =

(
JTJ

)−1
s2. This sampler initialization is valid, since these

samples will be discarded in the “burn-in”. Select a covariance scaling factor s, a
small number ε for regularizing the covariance (prevent matrix singularity), and
an initial non-adapting period n0.

Step 2. At each step, propose a new θ∗ from a Gaussian distribution centered at the
current value N (θt, C).

Step 3. Accept or reject according to the MH acceptance probability α1.

Step 4. After an initial period of simulation, say for t ≥ n0, adapt the proposal covari-
ance matrix using the chain generated so far by C = cov (θ0, θ1, . . . , θt) s + Iε.
Adapt from the beginning of the chain or with an increasing sequence of values.
Adaptation can be done at fixed or random intervals.

Step 5. Iterate from Step 2 until enough values have been generated in order to approx-
imate π (θ).

As can be noted, AM depends on the past values generated in the chain, thus the problem
is to find a feasible initial proposal in order to start the adaptation process. One way
to solve this proposal initialization problem, is to apply a “delayed rejection method”
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(DR). This method exploits the rejected proposals θ∗ from the MH-step, in order to
make a second proposal θ∗∗: in this way, proposal rejection is delayed. In DR a second
stage acceptance probability is defined as

α2 (θt, θ∗ | θ∗∗) = min
{

1, π (θ∗∗) q1 (θ∗∗ | θ∗) q2 (θ∗∗, θ∗ | θt) [1− α1 (θ∗∗ | θ∗)]
π (θt) q1 (θt | θ∗) q2 (θt, θ∗ | θ∗∗) [1− α1 (θt | θ∗)]

}
,

where θ∗∗ is drawn from a given q2 (θt, θ∗ | ·) and the acceptance test is performed in
the same way as in MH. The procedure can be iterated further for higher-stage proposals,
even if for most cases one or two tries are enough. In this way, rejected values drives a
local adaptation to the current location of the target distribution π (θ). Another strength
of this local adaptation, is that positivity constraints in the unknowns of the model can
be implemented, since DR would reject proposed values which are non-positive.
Note that the proposal ratio of q1 for the second stage acceptance, for example, do

not cancel out and it has to be calculated explicitly. If Gaussian independent proposal
is assumed, then the proposal ratio of q1 for α2 is simply stated as

q1 (θ∗∗ | θ∗)
q1 (θt | θ∗)

= exp
{
−1

2 (θ∗∗ − θ∗)T (Ct)−1 (θ∗∗ − θ∗) + 1
2 (θt − θ∗)T (Ct)−1 (θt − θ∗)

}

and the posterior ratio need in MH is

π (θ∗)
π (θt)

= exp
{
− 1

2σ2 (SS (θ∗)− SS (θt)) + 1
2 (SSpri (θ∗)− SSpri (θt))

}
,

where the error variance σ2 is assumed homoscedastic.

2.3.4 Probabilistic Sensitivity Analysis with GEM-SA

Saltelli et al. (2006) in their review of sensitivity analysis (SA) tools, concluded, that in
spite of considerable development in this filed during the last forty years, only primitive
SA tools are used in practice, manly based on the local derivatives or ‘‘one-factor-at-
a-time’’ approaches. They demonstrate that in the context of model corroboration,
methods based on local sensitivity analysis are illicit and unjustified, unless the model
under analysis is proved to be linear Cariboni et al. (2007); Saltelli et al. (2006). Finally,
they show that variance-based measures for glabal SA enter in what they call a “good
practice methods”, making the factors importance ranking (e. g., sensitivity ranking of
parameters) univocal. As it is well known, the main disadvantage of the local methods
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is to not account for interactions between variables and the local sensitivity indexes are
related to a fixed nominal point in the space of parameters.
A global SA tool used to work in tandem with the VP: the “Gaussian Emulation

Machine for Sensitivity Analysis” (GEM-SA) free-software (Kennedy and O’Hagan, 2001;
Oakley and O’Hagan, 2004). This Bayesian approach to probabilistic SA is both robust
and highly efficient, allowing sensitivity analysis to be applied to expensive models. The
method is appropriate for a class of models that can respond continuously to changes in
its inputs. It implements statistical analysis of uncertainty in the outputs of computer
models, using Gaussian process (GP) emulation Kennedy (2004). An emulator duplicates
the functions of one system y = f (x) using a different system ŷ = fGP (x), so that the
second system behaves like the first one. The advantage of building an emulator fGP (·)
is to perform much cheaper evaluates than the original model f (·), while accounting for
the uncertainty in the approximation. Moreover, the number of training inputs required
to build a GP based-emulator is very small, and thus it needs only few computer model
evaluations of the original code.
In GEM-SA, the following GP prior probability distribution is adopted:

[fGP (·) | β, σ, r] ∼ Norm
(
m (·) , σ2c (·, ·)

)
,

where the mean and the correlation functions take the form

m (·) = βTh (·) ,

c (·, ·) = exp
{
− (x− x̀)T R (x− x̀)

}
∀x, x̀ ∈ X.

Here h (x) is a vector of q known regression functions, β is a vector of regression
coefficients, σ2 is the variance and R = diag (ri) is a diagonal matrix of (positive)
roughness parameters. Typical regression functions are h (x) = 1 or h (x)T =

[
1, xT

]
.

After the prior specification of the GP emulator is given, carefully selected design
points x1, ..., xn evaluated by f (·) are used to obtain the corresponding outputs y =
y1, . . . , yn. Note that the discussed GP is a multiple-input, single-output system. Given
these data, the marginal posterior process for the model f (·), conditional upon the
roughness matrix R is

[f (·) | R, y] ∼ tn−q
(
m∗ (x) , σ̂2c∗ (·, ·)

)
, (2.3.2)

which is a Student’s distribution, where
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m∗ (x) = h (x)T β̂ + t (x)T A−1
(
y −Hβ̂

)
,

c∗ (x, x̀) = c (x, x̀)− t (x)T A−1t (x) +

+
(
h (x)T t (x)T A−1H

) (
HTA−1H

)−1 (
h (x̀)T − t (x̀)T A−1H

)T
.

t (x)T = [c (x, x1) , . . . , c (x, xn)] ,

HT =
[
h (x1)T , . . . , h (xn)T

]
,

A =


1 c (x1, x2) · · · c (x1, xn)

c (x2, x1) 1
...

... . . .
c (xn, x1) · · · 1

 ,

β̂ =
(
HTA−1H

)−1
HTA−1y,

σ̂2 = yT
{

A−1 −A−1H
(
HTA−1H

)−1
HTA−1

}
y 1
n− q − 2 .

The hyper-parameters β̂ and σ̂2 are generalized least squares estimators of β and σ2, so
that the only hyper-parameters to guess are the roughness coefficients ri ∈ [0, 1]. A high
value of the roughness hyper-parameter indicates that the emulated function responds
strongly to quite small change in inputs and this implies that many more data are
needed to accurately emulate a rough function. In practice, the roughness coefficients ri
are estimated from a set of training data, which are subsequently validated by predicting
new data points.
Once the emulator is build, it can be used to perform probabilistic SA of the original

model (Oakley and O’Hagan, 2004). In order to understand how probabilistic SA works,
some important measures of variance-based SA has to be introduced.
The uncertainty of the input X is expressed by some probability distribution g, such

that the elements of X are mutually independent. The sample vector is denoted as
x = {x1, . . . , xd} and the sub-vector (xi, xj , . . . , xp) is denoted as xp where p is a set of
indexes. The sub-vector of x containing all elements except xi is defined as x∼i.
As a starting point to derive useful SA measures, consider the following function

decomposition
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y = f (x) = E (Y ) +
d∑
i=1

zi (xi) +
∑
i<j

zi,j (xi,j) + . . .+ z1,2,...,d (x) , (2.3.3)

where

zi (xi) = E (Y | xi)− E (Y )

zi,j (xi,j) = E (Y | xi,j)− zi (xi)− zj (xj)− E (Y )

and so on. The function is decomposed in a sum of main effects zi (xi) and first-order
joint effects zi,j (xi,j) (even called “interactions”) and so on components. Variance-
based methods of SA quantify the sensitivity of the output Y to the model input in
terms of a reduction in the variance of Y . Thus, measuring the expected amount Vi =
var {E (Y | Xi)} by which the uncertainty in Y will be reduced if we learn the true value
of xi, quantify the sensitivity of the output Y to the model input. To normalize the
scale of the Vi measure, we simply divide by var (Y ) and thus

Si = Vi
var (Y ) = var (zi)

var (Y ) , (2.3.4)

referred to as the main effect index of xi. In a similar way, the first-order joint effect
index Si,j can be defined, as

Si,j = var {E (Y | Xi,j)}
var (Y ) = var {zi + zj + zi,j}

var (Y ) . (2.3.5)

In general, Vp = var {E (Y | Xp)} is the expected reduction in variance that is achieved
when we learn xp. Another, useful measure is the total effect index of xi, ST i = 1−S−i,
which represents the sum of all main, interaction and higher order terms in which an
input is involved. It is interesting to note, that the propriety of mutual independence of
X permits to decompose the variance of Y into terms relating to the main effects and
various interactions between the input variables

var (Y ) =
d∑
i=1

Wi +
∑
i<j

Wi,j + . . .+W1,...,d, (2.3.6)

where Wp = var {zp}. Thus, we have that Wi = Vi and that Vi,j = Wi + Wj +
Wi,j , where could be found that ∑d

i=1 Si 6 1 6
∑d
i=1 ST i, with equality only if all the

interactions are zero. In this way, the difference between Si and ST i is an indicator of
the presence or absence of joint effects or higher order interactions for a given input xi.
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The inference of the main effects, joint effects and variance through the use of a GP
emulator is straight forward, since for a normal or an uniform input distribution g,
constant or linear h (x) and Gaussian covariance c (·, ·), it is possible to evaluate these
SA measures analytically. Consider the case of inference of

E (Y | xp) =
ˆ

X−p

fGP (x) dg−p|p (x−p | xp) .

Since this is a linear functional of fGP (x), its posterior will be a Student’s distribution,
which posterior mean can be derived as

E∗ {E (Y | xp)} = Rp (xp) β̂ + Tp (xp) e,

where

Rp =
ˆ

X−p

h (x)T dg−p|p (x−p | xp) ,

Tp =
ˆ

X−p

t (x)T dg−p|p (x−p | xp) ,

e = A−1
(
y−Hβ̂

)
.

In a similar way the posterior cov∗ {E (Y | xp) , E (Y | xp)} is derived, where the terms
of the integrals, such as Rp and Tp can be solved analytically. At this point, for example,
the expectation of E∗ (Vi) = var [E∗ {zi (Xi)}]+E [var∗ {zi (Xi)}] can be estimated. Note
that the second right-hand term of E∗ (Vi) tend to be very small, if the design set is
sufficiently large and well chosen (GP emulator is a good approximate of the real system).

2.3.5 Metabolic Pathways Representation with Graphviz

Graph visualization is a way of representing structural information of network systems
as diagrams of abstract graphs and networks. Graphviz is a collection of open-source
software for viewing and manipulating abstract graphs, with several main graph layout
programs. Abstract directional graphs can be represented by an adjacency matrix A,
which is a n × n matrix, were n is the number of vertexes in the graph. If there is an
edge from some vertex i to some vertex j, then the element ai,j is 1, otherwise it is zero.
Biological reaction network models are fully described by the stoichiometric matrix

S ∈ Rn×p, which elements si,j are the stoichiometric coefficients. Columns correspond
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to reaction rates and rows correspond to compounds. The stoichiometric matrix S is a
linear transformation of the reaction rate vector r = (r1, . . . , rp), since

dx
dt = Sr

is the system of differential equations of mass balances that characterizes all functional
states x = (x1, . . . , xn) of a reconstructed biochemical reaction network.
In order to close the mass balance, since chemical reactions cannot create or destroy

elements, it should be verified that

ES = Ø,

where E is the elemental matrix, which columns correspond to compounds, and rows
correspond to elements, typically carbon, oxygen, nitrogen, hydrogen, phosphorous, and
sulfur.
Defined the stoichiometric matrix, it is now possible to represent the dynamics of

the network (reaction rate vector r) and its structure (stoichiometric matrix S) into a
slightly modified adjacency matrix representation. If we define a vertex as a compound
(or a state of the system) and the corresponding edges as mass flows, the biochemical
adjacency matrix is Â = dim (A), with n the number of compounds of the biochemical
network. If there is an mass flux (edge) from some compound i to some compound j,
then the element âi,j is (si,j , rj), otherwise it is zero.
As an example, consider Figure 2.3.1, where the proposed long chain fatty acids

(LCFA) adsorption/inhibition model from Chapter 3 is represented as a graph by the
dot-layout in Graphviz. This layout is particularly suitable for drawings ”hierarchical”
directed graphs, since it is designed to avoid edge crossings and reduce edge length.
Because the model of the process is an open-system, three compartments are present:
inflow, bio-reactor (CSTR), and products. All the edges of the graph has a label, that
represent the âi,j element.
In order to show the flexibility of the Graphviz visualization, the proposed LCFA

adsorption/inhibition model was represented in a circo-layout (Figure 2.3.2). Compart-
ments boundaries are lost but, on the other hand, the multiple cyclic structure of the
network and the degree of connectivity between the notes (states) become more evident.
As an interesting application of this visualization tool to biochemical networks, is the

possibility to visualize in time the evolution of a simulated system: if we model the
vertexes as reservoirs and the edges as pipe lines, the shape size of a vertex can be
associated with the compound concentration. Similarly, the thickness of an edge can be
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Figure 2.3.1: Graphviz-dot representation of the proposed LCFA-adsorption/inhibition
model from Chapter 3.
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Figure 2.3.2: Graphviz circo representation of the proposed LCFA adsorption model
from Chapter 3.
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Figure 2.4.1: Pig manure mass inflow rates (Qin) and inflow COD concentration (Xin)
measurements (dots) for the biogas plant of SAVA. Data are smoothed
by local regression using a first degree polynomial model weighted over a
moving window of 20-days span (- line).

related to the mass flow rate. This is a simple way to visualize the overall dynamics of
the system.

2.4 A Short VP-example

Consider the case of an industrial biogas plant reactor, where a simulation-model is
needed for further operation analysis or to estimate missing measurements. In this short
VP-example we will consider a full-scale biogas plant (SAVA, Miralcamp, Lleida, Spain),
with two mesophilic AD-reactors operating in parallel. The total liquid volume (Vliq)
is 6000 m3 and an average hydraulic retention time (HRT) of 20 days is maintained
to treat a pig manure inflow. Daily measurements are available for a period of 470
days, starting from the start-up of the plant. In particular, measurements of particulate
inflow and outflow COD concentration (Xin/out), with relative mass inflow rates (Qin/out)
were collected (Figure 2.4.1). The average inflow COD concentration (Xin) was of 43
kgCOD/m3, while the pH was stable (∼7.8). A substrate characterization analysis
confirmed that 32% of Xin was inert COD (results not shown, pending of publishing).
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Table 2.2: Stoichiometric matrix S for AHM in an Excel-format.

A B C D E F G
1 r/ẋ r1 r2 r3 r4 r5 DAE
2 Ext -1 -1 -1 -1 0
3 Ssub -1 1 0
4 Xbio Y 1 0
5 Xi 1 0
6 Vliq 1 0

Table 2.3: Reaction rate vector r for AHM in an Excel-format. r1 : methanogenesis
process rate; r2: substrate diluition rate; r3: biomass diluition rate; r4: inert
diluition rate; r5: mass balance of the reactor.

A B C
1 r1 mumax*Ssub/(Ssub+Ks+Ssub*Ssub/Ki)*Xbio 0
2 r2 D*(uSsub-Ssub) 1
3 r3 -D*Xbio 0
4 r4 D*(uXi-Xi) 1
5 r5 uQin-uQout 1

2.4.1 VP-Excel interface

A possible mathematical representation for the SAVA-biogas reactor system is by a
anaerobic Haldane model (AHM), which is a simple model considering a single organic
soluble substrate (Ssub) and a bacterial population (Xbio). We added one more state
variable to AHM to account for the accumulation of the particulate inert COD concen-
tration (Xinert) inside of the reactor. The influent particulate substrate is considered
to be already fully hydrolised and the nitrogen balance is not considered. The methane
production calculation is a rough estimation based on Ssub consumption rate. Relevant
inhibition effects such as excess of free ammonia or H2 are lumped in the Haldane inhibi-
tion term. The dynamic system is given by the stoichiometric matrix S and the reaction
rate vector r described in an Excel-format in Table 2.2 and 2.5, respectively.
The state variable Ext in Table 2.2 is introduced because the AD-reactor is an open

system, with inflow- and outflow-masses. Column-G specifies if the relative equation is
of DAE-type. In our case, the AHM is described by a set of ODEs and thus, the rows
relative to column-G are set to false. The reaction rates in Table 2.3 depend on a set of
functions defined in Table 2.4. The “u” letter in front of a system variable (e. g., uXsub,
uQin, etc.) denotes that the profile of the relative variable is known a priori (see below).
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Table 2.4: AHM-functions in an Excel-format.

A B
1 uSsub uXsub*(1-fi)
2 uXi uXsub*fi
3 Qch4 Vliq*km*mumax*Ssub/(Ssub+Ks+pow(Ssub,2)/Ki)*Xbio
4 D uQin/Vliq

Column-C in Table 2.3 specify if the reaction is bi-directional: for example, the mass
flux of substrate (r2) can assume positive or negative values depending on the profile
of the inflow substrate COD concentration (uSsub). Functions from the math C-library
are available, as for example pow(Ssub, 2). Moreover, the table of functions (Table 2.4)
is not only useful to make the reaction terms compact, but also allows to define variable
stochiometric coefficients.

Information relative to model-parameters are reported in Table 2.5. Parameters are
classified in three groups: reaction-rate (idx=1), stochiometric (idx=2) and initial-
condition (idx=3). Providing units allows to comput a dimensional verification. Pa-
rameters that need to be estimated are defined in column-I (target) by a true/false
value. In this example, we first estimated the maximum degradation rate (µMAX), the
semi-saturation coefficient (Ks), the Haldane inhibition coefficient (Ki), and the initial
biomass concentration of Xbio. Second, an alternative model of the process was assumed:
the inhibition parameter Ki was set to a very high value, reducing the Haldane term to a
Monod kinetic. We called such a model the anaerobic Monod model (AMM). Parameter
inference was computed for AHM and the simpler AMM.

The substrate to methane ratio (km) was assumed perfectly known: the usual theoret-
ical value of 0.35 m3CH4/kgCOD was taken. The biomass yield coefficient value (Y ) of
0.1 kgCOD/kgCOD was taken from literature (de Gracia et al., 2006), while the value for
the inert fraction (fi) was provided from our own substrate characterization analysizes
performed during the PSE-PROBIOGAS (2009) project. Column-E and -F in Table 2.5
define the range of definition for each parameter, which describe the uniform distribution
g when global sensitivity analysis is performed. Column-G and -H define a normal prior
distribution if Bayesian inference is computed. In our case the prior is uniform, since
the variance of the normal distribution is infinite. Column-J identifies the parameters
that are local to particular experimental designs. For example, if multiple batches are
run, with different initial biomass concentrations, then the initial condition in column-D
relative to Xbio would be written as a vector of values enclosed by squared-parenthesis.
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Table 2.5: Parameters of the AHM model in an Excel-format. Column-A: idx=1 refers
to the reaction rate vector; idx=2 refers to stoichiometric matrix; and idx=3
refers to initial condition values of the system. Parameters that need to be
estimated are defined in column-I (target), while column-E and -F define the
range of definition for each parameter. If Bayesian inference is computed then
column-G and -H define a normal prior distribution. Column-J identifies the
parameters that are changed during multiple experimental designs.

A B C D E F G H I J
1 idx units name init min max mu sig target local
2 1 1/d mumax 1.0 0.1 10 nan inf 1 0
3 1 kg/m^3 Ks 5 0.1 50 nan inf 1 0
4 1 kg/m^3 Ki 10 0.01 200 nan inf 1 0
5 1 kg/kg fi 0.32 0.15 0.45 0.32 0.05 0 0
6 1 m^3/m^3 km 0.35 0.1 0.8 nan inf 0 0
7 2 kg/kg Y 0.1 0.01 0.3 0.1 0.05 0 0
8 3 kg/m^3 Ext 0 -inf inf nan inf 0 0
9 3 kg/m^3 Ssub 13.6 0 inf nan inf 0 0
10 3 kg/m^3 Xbio 1.0 0 10 nan inf 1 0
11 3 kg/m^3 Xi 6.4 0 inf nan inf 0 0
12 3 m^3 Vliq 6000 6000 6000 nan inf 0 0

This data-structure of parameters is the same as in the DRAM toolbox (Laine, 2008).
The inflow/outflow profiles of the SAVA-plant are partially reported in Table 2.6, while

the measurements are given in Table 2.7. The last are used for parameter inference if this
type of analysis is performed. It is possible to specify multiple experimental conditions
within column-A. Measurements (e. g., yXout) are associated with weights (i. e. wXout)
that specify the quality of the collected data. Missing measurements are expressed by
not-a-number (nan).
Model-outputs are defined in an output-spreadsheet (Table 2.8). During parameter

inference, the yXout-measurement (Table 2.7) are compared with the yXout-model out-
put defined in Table 2.8 in order to find the MLE-value or the parameter-posterior
probability distribution.

2.4.2 VP-script interface

After the AHM-structure is defined and measurements are organized in the spreadsheet,
the Excel-file is uploaded to MATLAB by the following script:
%General Model i n f o
Code . modelname=’AHM’ ;
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Table 2.6: Inflow/outflow profiles in an Excel-format. Column-A is an identifier for the
relative experimental design.

A B C D E
1 # d kg/m^3 m^3/d m^3/d
2 Nexp time uXsub uQin uQout
3 1 0 49.3 159 159
4 1 1 40.8 160 160
... ... ... ... ... ...
301 1 470 21.7 284 284

Table 2.7: Inflow/outflow measurements from the SAVA-plant in an Excel-format.
Column-A is an identifier for the relative experimental design.

A B C D
1 Nexp time yXout wXout
2 1 0 14.9 1
3 1 1 16.0 1
4 1 2 nan 1
... ... ... ... ...
302 1 470 17.5 1

Table 2.8: AHM-simulation outputs as defined in an Excel-table format.

A B C
1 ySsub Ssub kg/m^3
2 yXbio Xbio kg/m^3
3 yXi Xi kg/m^3
4 yQch4 Qch4 m^3/d
5 yXout Xbio+Xi+Ssub kg/m^3
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Code . i n f oauthor={ ’ Zivko Juznic−Zonta ’ ; [ ’ Copyrigth , ’ date ] ; . . .
’ Mol let  de l  Val l e s ,  BCN,  Spain ’ ; ’UPC/GIRO−CT’ } ;

Code . in fomodel={ ’ Modif ied  Haldane model f o r  AD − SAVA plant ’ } ;
%Load the model from Exce l
S=l oadx l s (Code ) ;
%Transform in a symbo l i c r e p r e s e n t a t i o n and prepare f o r MCMC−sampling
S=sy s i n f o (S ) ; S=mcmcparam(S ) ;

The information relative to AHM is stored in the data-structure S. For example,
the differential equation relative to the soluble substrate COD concentration is simply
recovered by typing
>> dSsub_dt=S . fullODE (2 , 1 )
dSsub_dt = −(Ssub−uSsub )∗D−(Ssub∗Xbio∗mu)/(Ks+Ssub+pow( Ssub , 2 ) / Ki )

When the symbolic toolbox of MATLAB is available, data-structure S contains the
sensitivity trajectory function for each state/parameter combination. For example, if
we are interested in how Ssub change with a local change of µMAX , then the following
command returns the sensitivity trajectory function dSsub/dµMAX :
>> dSsub_dmumax=S . SensFunc (1 , 2 )
dSsub_dmumax = −(Ssub∗Xbio )/ (Ks+Ssub+pow( Ssub , 2 ) / Ki )

The adjacency matrix A for AHM is returned by
%Path network diagram ( . dot f i l e f o r Graphviz ) and the adjacency matrix
Adj_s=pathnet (S , Code )
Adj_s =

4 1 1 1 1
0 2 1 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1

where at the same time the corresponding Graphviz-code (i. e. the file AHM.dot) is
generated. The relative Graphviz-diagram is represented in Figure 2.4.2. Note how
the bi-directional arrows evidence the fact that the reaction rate r2, r4 and r5 may be
positive or negative, since there is an exchange of mass between the external environment
(Ext state) and the AD-reactor. The only internal process of the AD-reactor is the bio-
reaction r1.
The script below builds the data-structure C (buildCode), which contains all the

necessary information to build the Cmex-code (or MATLAB-code) is saved in the AHM.c
file. This file is then compiled (CmexModel) to build the AHM.mex32 file that is used
inside an S-function Simulink block. Finally the data-class PNM (Pathway Network
Model) is built to perform simulations.
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Figure 2.4.2: AHM-structure graph by Graphviz-dot representation.

%Bui ld the Code s t r u c t u r e
Code=buildCode (S , Code ) ;
%Bui ld and compi le the Cmex−code f o r the S−f unc t i on ( Simul ink )
CmexModel (Code , t rue ) ;
%. . . or M−code f o r SUNDIALS s o l v e r
%Mfi leModel (Code , ’ sund ia l s ’ , S . x l s .DAE) ;
%Generete the data c l a s s o f the model
PNM=mode lc la s s (S , Code ) ;

Before performing parameter inference, it is useful to perform a global SA of the
defined goodness-of-fit measure. In our case, the mean square error (MSE) was used,
but any likelihood function could be considered. The framework for sensitivity analysis
in model-calibration is described in detail by Ratto et al. (2001) and in the following
Chapter 3 and 4. Briefly, by applying a global SA to goodness-of-fit measure, parameters
driving model runs with good fit-to-data are identified. Moreover, parameter interaction
features are highlighted. Because the sensitivity indexes are calculated by the GEM-
SA tool, we first need to provide the model input/output training data to build a GP
emulator. We run the model over 256 parameter-samples taken from a latin hypercube
design, where 20% of sampels were used for cross-validation of the GP emulator. The
following script was executed to build the input/output txt-file for the GEM-SA tool:

%Input f i l e f o r GEM−SA
s t r={ ’ \mu_{MAX} ’ ’K_s ’ ’K_i ’ ’X_{bio }(0) ’ } ;
[ param_lhs ,MSE_lhs]=SAsslhs (PNM, 256 , s t r ) ;

The MSE measure relative to each parameter-sample for AHM is represented in Figure
2.4.3. Parameters µMAX and Ks have a high influence over the MSE variance and
thus, it is expected that they have a better chance of reducing the variance of the
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Figure 2.4.3: Mean square error (MSE) relative to the latin hypercube sample of AHM-
parameters. The black-filled point identifies the minimum MSE-value for
the given LHS-design.
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Table 2.9: SA sensitivity indexes for AHM and AMM model-parameters. Si: main effect
index, STi: total effect index. Units: %.

AHM-parameters, θi AMM-parameters, θi
Si,j µMAX Ks Xbio(0) Ki µMAX Ks Xbio(0)
Ks 30.1 32.14

Xbio(0) 1.13 0.43 0.94 0.04
Ki 2.68 0.65 0.09
Si 39.3 16.2 0.12 0.28 56.65 9.59 0.44
STi 82.1 55.8 7.7 8.6 89.93 41.97 1.62

MSE value. In particular, µMAX has a strong non-monotonic relation with MSE and
expresses the majority of the MSE variance: this suggests that its precision of estimated
is relatively high. We suspect that Ki and Xbio(0) are unidentifiable since they cannot
influence directly the MSE-value. It is impossible to make any statement regarding
the interaction effects between parameters if only the 1D-scatter-plots are investigated.
The same procedure was repeated for the AMM-model and very similar scatter-plots to
Figure 2.4.3 were found.
The results of SA, obtained from the GEM-SA tool, are given in Table 2.9 for the

AHM- and the AMM-model. The analysis confirms that µMAX andKs can be considered
practically identifiable because of their significant main effect indexes (Si). On the other
hand, Ki and Xbio(0) are unidentifiable since they cannot influence alone (i. e. through
main effects) the MSE measure. The main effect index SXbio(0) is low because Xbio(0)
influences the system only during the start-up period of the SAVA-plant operation. The
model-structure of AHM should provide insight over a possible inhibition process, but
since Ki is unidentifiable the AHM-model looses its explanatory advantage over AMM.
When AHM is considered, the main effects alone expresses only 55.9% of the total

MSE-variance (Table 2.9), which means that a larger reduction in variance may be
achieved if one could identify the interacting parameters. Large differences between Si
and ST i are a sign of over-parametrization. For both models, µMAX is the most influen-
tial parameter (high ST i value) and the first-order interaction effect between µMAX and
Ks (SµMAX ,Ks) is the most important. This implies that µMAX and Ks are very needed
for a good fit-to-data. The sum of main and first-order interactions for AHM is of 90.1%,
which means that the remaining 9.9% of variance is due to higher-order effects. On the
other hand, for the AMM-model, all the MSE-variance (99.8%) is explained by the main
effect and first-order interactions. Thus, we expect that the correlation structure of
AHM would be more complex (i. e. nonlinear) than for AMM.
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Table 2.10: MLE-parameter values.

Parameters, θi AHM AMM
µMAX 2.49 0.86
Ks 48.65 12.17

Xbio(0) 4.26 3.94
Ki 15.86 (inf)
σ 2.81 2.80

The above SA gives quantitative and synthetic information about the parameter-
structure after conditioning on data, but gives no information about the most probable
parameter-estimate or the behavioural regions of the parameters. In order to obtain
this “topological” information of the parameter-structure the following script-code com-
putes the maximum likelihood estimate (MLE) and the parameter posterior probability
distribution (Bayesian inference):

%C a l i b r a t i o n o f parameters (MLE) wi th s c a t t e r−search rou t ine
ResultsMLE=optimizationGO (PNM) ;
%Bayesian i n f e r e n c e wi th the DRAM−sampler
ResultsPOST=optimizationMCMC(PNM) ;

The MLE-parameter values estimated by the SS-optimization routine for AHM and
AMM are reported in Table 2.10. Note that for both models the estimated measurement
standard deviation error σ (i. e. MSE) is approximately the same. The extra functional-
flexibility that the inhibition term provides is not useful in this model-calibration sce-
nario. Thus, based on the Occam’s razor criteria we should prefer AMM.
Because the estimation of MLE involves a maximization problem of a likelihood func-

tion, it is regarded as a simple problem if compared with the multi-dimensional inte-
gration problem of finding the mean estimate of the posterior-parameter distribution.
However, in our case, the likelihood function is multi-modal and that converts the es-
timation of MLE in a difficult optimization problem. In practice, the SS-optimization
algorithm has many internal parameters that should be specified with care to achieve
satisfactory results. Moreover, because of time-discretization errors and parameter iden-
tifiability issues finding the MLE may be impossible. The time-discretization errors can
be resolved by setting the relative/absolute error of the ODE/DAE solver to a very low
value, but this implies that time per simulation-run increases considerably. We preferred
to set a reasonable ODE-solver precision and permit a noisy objective surface, but this
choice forced us to disabled the local searches during the SS-optimization. However,
above we found that some parameters are unidentifiable and thus, the surface of the
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Table 2.11: Simple statistics of the posterior distribution MCMC-samples for AHM and
AMM. Geweke’s diagnostic measure Geweke (1992) is used to verify the
convergence of the MCMC-chains.

AHM-model
Parameter, θi mean std MCMC error median 2.5% 97.5% Geweke

µMAX 1.51 0.51 0.044 1.33 0.89 2.56 0.91
Ks 25.66 10.67 0.821 22.50 11.68 47.59 0.90
Ki 73.92 57.82 4.729 54.38 10.98 191.57 0.87

Xbio(0) 4.08 0.51 0.026 4.05 3.21 5.20 0.98
σ 2.80 0.12 0.001 2.80 2.59 3.04 0.99

AMM-model
Parameter, θi mean std MCMC error median 2.5% 97.5% Geweke

µMAX 0.94 0.15 0.004 0.90 0.74 1.31 0.98
Ks 14.24 4.37 0.119 13.23 8.57 25.50 0.97

Xbio(0) 4.15 0.50 0.019 4.13 3.31 5.28 0.99
σ 2.81 0.11 0.004 2.56 2.81 3.04 0.99

likelihood is flat in those parameter-directions: in such case there is no guarantee of
convergence.
The above problems are easily handled by the Bayesian procedure. Bayesian inference

via MCMC has a theoretic guarantee than the MCMC algorithm will converge if run long
enough. In our case, the total chain length was of 65,000, with a burn-in period of 5,000
and a post-burn-in of 5,000 MCMC-samples. Convergence was verified by the Geweke’s
diagnostic measure Geweke (1992). Summarizing statistics of the parameter-posterior
distribution parameters for AHM and AMM are given in Table 2.11. A comparison of
the MLE-values from Table 2.10 with the mean value from Table 2.11 suggests that the
AHM-posterir distribution is heavily asymmetric, while the AMM-posterior is just slighly
asymmetric. It is well known that when the posterior is asymmetric the mode (i. e. MLE)
is the poorest choice of centrality measure and the mean may be more appropriate. High
difference between the mode and the mean could indicate that the AHM-posterior is
multi-modal. We decomposed the AHM-posterior distribution as a mixture of Gaussian
distributions (McLachlan and Peel, 2000) as suggested by Carreira-Perpiñán (2000) and
found that the AHM-posterior was bi-modal. Briefly, a Gaussian mixture model (GMM)
was build on the MCMC-samples and only high-probability components were retained.
Two high-probability regions were found for the AHM-posterior.
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Figure 2.4.4: Histograms for the relative marginal posterior distributions of the AHM-
parameters. MLE are estimated from SS-optimization (- line), GMM-
approximation of the posterior (- - line) and sub-optimal mode of GMM (:
line).
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Figure 2.4.5: Histograms for the relative marginal posterior distributions of the AMM-
parameters. MLE are estimated from SS-optimization (- line) and GMM-
approximation of the posterior (- - line).

Marginal posterior distributions relative to AMH are represented in Figure 2.4.4. The
relative MLE-values were also reported. The highest mode (- - line in Figure 2.4.4) was
approximately the MLE found by the SS-optimization routine (- line in Figure 2.4.4).
The highest mode was associated with the GMM-component that accounted for ∼40%
of the entire posterior mass. On the other hand, the sub-optimal mode (: line in Figure
2.4.4) was associated with the renaming 60% of the AHM-posterior mass. Thus, the
usual recommendation to choose the highest mode could be misleading since the highest
mode is uncharacteristic of the majority of the posterior. Choosing the global or the sub-
optimal MLE value would lead to very different conclusions about the process operation
since their relative values are quite different. In this case, we are in doubt which mode to
consider, not only to interpret model-parameters but even to build frequentist confidence
regions. When multi-modality is an issue, it may simply result impossible to characterize
parameter-precision if the frequentist procedure is selected.
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Figure 2.4.6: Pairs of MCMC-samples of AHM-parameters with a 2D-kernel estimation
contours (62%, 90% and 95%) and Spearman’s rank correlation coefficient.

In Figure 2.4.5, the marginal posterior distributions relative to AMM are represented.
The AMM-posterior is uni-modal and slightly asymmetric. In this case, the mean and
particularly the median are more robust summary statistics of centrality then the mode.
In a similar way, the inter-quartile range is more robust then the standard deviation
to describe the variation of the distribution. If we imagine that uniform distribution
component is subtracted from the AMH-posterior, then the marginal AMM-posterior
distributions (Figure 2.4.5) is similar to the AHM’s (Figure 2.4.4). This uniform dis-
tribution is mainly associated with the nonidentifiability of Ki. The marginal posterior
distribution associated with Xbio(0) is preserved. Even if the marginal posterior distri-
bution of Xbio(0) is quite narrow, we remark that the relative main effect index SXbio(0) is
very low. This implies that the marginal of Xbio(0) may be very sensible to the particular
choice of other parameters rather then data. Note that the MLE of AMM-parameters
(Figure 2.4.5) is closer to the sub-optimal MLE of AHM-parameters (Figure 2.4.4). This
result confirms the importance of the above “sub-optimal” GMM-component.
Correlation analysis of the posterior joint distribution of AHM-parameters is rep-

resented in Figure 2.4.6. The posterior distribution reveals a strong linear correlation
between µMAX and Ks. Note, that from SA analysis we expected an interaction between
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Figure 2.4.7: Pairs of MCMC-samples of AMM-parameters with a 2D-kernel estimation
contours (62%, 90% and 95%) and Spearman’s rank correlation coefficient.

µMAX and Ks, but only analyzing the “topology” of the posterior (i. e. the likelihood in
our case) we could determine the structure of such interaction. Nonlinear correlations
are observed for µMAX vs Ki and Ks vs Ki interactions, while Xbio(0) is not involved in
any first-order interaction. The banana-shape of the posterior joint distribution and the
strong correlation between parameters reveals why convergence to MLE-value is difficult
for gradient-based optimization algorithms.
Correlation analysis of the posterior joint distribution of AMM-parameters is repre-

sented in Figure 2.4.7. Monod-term parameters, µMAX and KS , are still very correlated.
In contrast with the AHM-case, we observe that correlation between Xbio(0) and the
Monod-prameters is significant. However, the influence of this correlation on the MSE-
measure is marginal because the first-order interaction sensitivity index (Sij) relative to
Xbio(0) is very low. When data are sparse relative to model-complexity, taking a simpler
model may simplify the analysis of the parameter-posterior. In the case of AMM-model,
the multi-modal parameter-posterior present in the AHM-case disappears.
Even if the AMM-model is still over-parametrized (i. e. high value of ST i − Si) the

parameter-structure is useful to estimate missing measurements or hidden states of the
system. In particular, the methane production and the total biomass concentration of
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Figure 2.4.8: AHM prediction of methane production, Qch4, and total COD concentra-
tion at the outlet, Xout, for the SAVA biogas plant. The gray envelop is the
parameter prediction uncertainty envelop (95% credible interval), and the
light-gray envelop is the measurement prediction uncertainty (95% credible
interval).
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the SAVA biogas plant can be estimated conditional on the above inferred parameter-
uncertainty. In Figure 2.4.8 the parameter prediction uncertainty envelop at 95% (gray)
is represented for the biomass concentration (Xbio), methane production (Qch4), and
total COD outflow concentration (Xout). The light-gray envelop is the measurement
prediction uncertainty. The measurement prediction uncertainty envelop is not avail-
able for Qch4 because measurements for methane production were not available. Even if
the model cannot be used for extrapolation because of its highly correlated parameters,
the parameter-uncertainty structure do not compromise its filtering ability over Xtot.
The uncertainty of Xbio at time zero is equal to the estimated parameter-uncertainty of
Xbio(0) and it considerably decreases as the system reaches its semi-steady-state. The
small variance of Xbio over the entire simulation is because perfect knowledge over the
value of the biomass yield (Y ) was assumed. The parameter prediction uncertainty en-
velops for Xtot and Qch4 are quite tiny. This is because methane production estimation
is based on the assumption that the substrate to methane ratio, km, was considered per-
fectly known. However, if we do not agree with this assumption we could characterize km
(or Y ) as a random variable, described by a suitable probability distribution (or prior)
that represents our knowledge over the possible values of km. Then, the parameter pre-
diction uncertainty envelop for the methane production can be recomputed conditional
on km-uncertainty. One advantage of Bayesian inference is that it provides the input
for uncertainty analysis, which is conditioned not only on prior expert’s knowledge but
even on collected data.
It is evident from Figure 2.4.8 that residuals are auto-correlated. We left this crucial

observation for the end to highlight its importance. In fact, in order to achieve a reliable
information on parameter uncertainty the statistical model assumes that residuals should
be independent and identically distributed (IID). A very simple empirical approach to
account for auto-correlation in residuals is data whitening (Dochain and Vanrolleghem, 2001;
Daebel, 2006). Pre-withening procedure proposed by Daebel (2006) was applied to meet
statistical IID assumptions. Results for parameter uncertainty estimation relative to
AMM are presented in Table 2.12. For uncorrelated residuals, the parameter uncertainty
increased more than two times (e. g. inter-quartile ranges) if compared with the results
relative to auto-correlated residuals (Table 2.11). Auto-correlation of the residuals leads
to underestimation of parameter errors. Thus, evaluation of parameter uncertainty is
reliable only if the relative statistical model is shown correct.
The following script allows to estimate the error covariance matrix within the frequen-

tist procedure.

% Estimated mode va lue o f the model−parameters i f l i k e m i s f i t
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Figure 2.4.9: 2D-kernel estimation contours (- line) and frequentist confidence ellipses
(- gray line) relative to AMM with pre-withening.

Table 2.12: Simple statistics of the posterior distribution MCMC-samples for AMM
within a pre-whitening of data.

AMM-model (Data whitening with addition of normal noise, Norm(0, 52) )
Parameter, θi mean std MCMC error median 2.5% 97.5% Geweke

µMAX 1.07 0.35 0.020 0.96 0.66 2.09 0.98
Ks 18.72 10.51 0.119 15.27 6.40 45.84 0.94

Xbio(0) 5.02 1.05 0.019 4.86 3.40 7.58 0.92
σ 6.17 0.25 0.008 6.18 5.70 6.66 0.99
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x_mode=ResultsMLE . xbest ;
% M i s f i t f u nc t i on i s a n e g a t i v e normal log− l i k e l i h o o d
l i k em i s f i t=true ;
J=@(x ) ssobject iveGO (x ,PNM, l i k em i s f i t ) ;
% Estimate the Hessian (D’ Errico , 2006)
H_est=he s s i a n e s t (J , x_mode ) ;
% Covariance matrix e s t imate
Ch_est=2∗inv (H_est ) ;
% Confidence i n t e r v a l s a t 95%
de l t a=sqrt (diag (Ch_est ) ) ∗ t inv (1−0.05/2 ,v ) ;
c i =[(x_mode(:)− de l t a ) (x_mode ( : ) + de l t a ) ] ;

For AMM with pre-withening, Figure 2.4.9 represents the frequentist confidence el-
lipses (- gray line) and the Bayesian MCMC-posterior estimate (- line in Figure 2.4.9).
The linear approximation underestimates the parameter-uncertainty because of the strong
asymmetric shape of the posterior. In this case, the linear approximation provided by the
frequentist procedure was found unreliable to describe parameter uncertainty. However,
the covariance matrix estimated from the Hessian could be found still useful: remark
that the DRAM-sampler adapt the proposal covariance matrix using the chain gener-
ated during its HM-steps. The frequentist covariance matrix could be used as an initial
candidate for the proposal covariance matrix of the DRAM-sampler in order to speed-up
convergence of the chain.
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3.1 Abstract

3.1 Abstract

Causal modeling of anaerobic digestion within the International Water Association
Anaerobic Digestion Model Nº1 (ADM1) framework was used to answer a retrospec-
tive question regarding causes of long chain fatty acids (LCFA) inhibition. Data was
obtained from methanogenic activity tests, batch-assays at different initial LCFA con-
centration and batch-assays including bentonite addition, using two different granular
anaerobic biomasses. New kinetics were considered to describe the bio-physics of the
inhibitory process: i) adsorption of LCFA over granular biomass and ii) specific LCFA-
degrader populations. Furthermore, a new state variable was introduced to describe the
state of damage of the acetoclastic population, in order to account for a loss of cell-
functionality induced by the adsorbed LCFAs. A comparison was performed between
models that use a conventional non-competitive inhibition function and the proposed
a “healthy-state” description for the LCFA-inhibition process. The model-parameter
practical identifiably was assessed by global sensitivity analysis. Calibration and model
structure validation were performed on independent data sets. The importance of mi-
crobial population structure (saturated/in-saturated LCFA-degraders) was evidenced
for a successful degradation process. We show that, under the ADM1 framework, reli-
able simulations of the LCFA-inhibition process can be achieved if the model includes
the description of the adsorptive nature of the LCFAs and the LCFA-damage over the
biomass.

3.2 Introduction

Despite the fact that LCFA-inhibition is well documented and has a significant im-
pact on the anaerobic digestion process, this phenomenon has still not been included
in ADM1 reference model (Bastone et al., 2002). In other developed models, LCFA
inhibition is mainly modeled as a non-competitive process on the lipolytic, acetogenic or
methanogenic activities (Angelidaki et al., 1999; Salminen et al., 2000; Lokshina et al.,
2003). However, the physical adsorption of LCFA and its inhibition process or the
microbiological aspects of LCFA-degradation remain poorly characterized.
Up today, Hwu et al. (1998) have proposed one of the most detailed descriptions

of the LCFA’s bio-sorption, degradation and inhibition processes. The description is
based on a four-phase theoretical conceptual model. First, after a LCFA-pulse, LCFA
rapidly disappears from the aqueous phase and adsorbs onto the solid phase. Because
of the LCFA-toxicity effect, the methane production is negligible. Second, depending
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on the initial LCFA-pulse concentration, an LCFA-concentration increase is detected in
the aqueous phase, because of a biologically mediated desorption. Third, the LCFA-
concentration decrease in the aqueous phase because of a biological degradation of the
adsorbed LCFA. Finally, the methane formation is recovered when the remaining LCFA-
adsorbed concentration is low.
The cell-membrane seems to be the prime common target for most of the described

LCFA-inhibition experiences According to Kim and Gadd (2008), cell-membrane expo-
sure to high concentrations of LCFA promotes macromolecular crowding and disruption
of mechanisms such as proton-motive-force, DNA-docking and ATP-synthesis. More
recently, Pereira et al. (2004) and Pereira et al. (2005) proven that LCFA-inhibition
was reversible and was related to physical transport limitation effects. The irreversible
cell-damage, due to the adsorption of LCFA was discarded after this evidence and new
technological perspectives emerged for the high-rate treatment of anaerobic wastewater
with lipids (Alves et al., 2007). Also impairment of nutrient uptake or inhibition of
specific enzyme activity were reported (Desbois and Smith, 2010). Archaea favor active
maintenance over survival modes because they are adapted to thrive with chronic energy
stress. Methanogens, for example, can adapt in several ways the structure and dynamics
of their membranes (Valentine, 2007). The commonly used non-competitive inhibition
functions (Angelidaki et al., 1999; Palatsi et al., 2010) implicitly assume that, after a
LCFA-shock, the time to restore cell-functionality is negligible. Consequently, those
classical models may result inappropriate to simulate heavily LCFA-inhibited systems.
A number of studies have discussed the addition of competing adsorbents into sys-

tems treating grease and fats (Angelidaki et al., 1999; Beccari et al., 1999; Nielsen and
Ahring, 2006; Palatsi et al., 2009) as a possible strategy to limit LCFA inhibitory effects.
However, solid-liquid adsorption dynamics were not included in those studies, and thus,
only approximations to LCFA-adsorption (ratio inhibitor/biomass) were considered for
modeling purposes (Pereira et al., 2004; Palatsi et al., 2010). To our knowledge, a math-
ematical model that includes adsorption-inhibition-degradation processes has not yet
been tested.
Recent advances in the molecular microbial ecology have brought new insights on the

specific microorganisms that are involved in the ß-oxidation process and the syntrophic
methanogens interactions (Hatamoto et al., 2007; Sousa et al., 2007). Those microorgan-
isms are not always abundant in non-adapted systems and their dynamics are difficult to
follow. In this context, mathematical models can be used as a valuable tool to interpret
collected data and test hypothesis.
This chapter aims to propose a LCFA-adsorption-inhibition sub-model that can be
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integrated into the ADM1-model. Unknown model-parameters are inferred within two
independent data sets obtained from previous batch experiments (Palatsi et al., 2012).
A simple LCFA inhibition-adsorption model is compared with a slightly more complex
model that tries to represent the damage of the acetoclastic population after a LCFA
overload. Biomass structure is analyzed and its implications are discussed.

3.3 Material and Methods

3.3.1 Experimental Observations

The experimental set-up consisted on several specific batch tests performed with two
different anaerobic granular sludges (sludge-A and sludge-B) and with bentonite as a
clay-mineral adsorbent. The experimental set-up is extensively described in Palatsi
et al. (2012). Here, the experimental observations obtained in Palatsi et al. (2012) were
grouped in three main data-sets, summarized as follows:

Data set D1: LCFA-adsorption, batch-test with chemically inactivated biomass (sludge-
A) and bentonite; monitoring the soluble-LCFA time evolution (LCFAl).

Data set D2: Sluge methanogenic activity test (SMA) with sludge-A (D2,A) and sludge-
B (D2,B) to acetate (Ac) and hydrogen (H2) as biogas formation substrates; mon-
itoring the accumulated methane production (CH4). In addition, blank assays
(vials with biomass but without added substrates) were performed for sludge-A
and sludge-B.

Data set D3: Batch-tests with increasing LCFA-concentration and batch-tests with spe-
cific prevention/recovering strategies where bentonite was introduced as an exoge-
nous LCFA adsorbent. The experiments for sludge-A (D3,A) included vials with
bentonite addition after a LCFA-pulse (TA vials). The experiments for sludge-B
(D3,B) included vials with bentonite-LCFA mixed compound added to LCFA-free
biomass (TB vials). Control vials with LCFA but without bentonite (CA and
CB vials) were also considered. Concentration-measurements were taken for solid-
LCFA (LCFAs), liquid-LCFA (LCFAl), volatile fatty acids (VFA) and methane
production (CH4).

3.3.2 Models Development

The developed models were based on a simplification of the anaerobic process as de-
scribed by the ADM1 model. The same structure, nomenclature and units of the ADM1
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model were used (Bastone et al., 2002). The first proposed model, LCFA-M1, included a
LCFA-adsorption process and non-competitive inhibition functions. The second model,
LCFA-M2, also included a new state variable called healthy-state that considers the
LCFA-inhibitory stage of biomass. The models were implemented in MATLAB (The
Mathworks, USA) within the Simulink Cmex-coded environment.

For the proposed LCFA-inhibition models, the differential equations for the LCFA-
soluble matter in the liquid phase are:

dSc18,l
dt = −P1 − P2 (3.3.1)

dSc16,l
dt = −P5 − P6 (3.3.2)

+P5 + (1− Yfa) (1− βac − βh2) P7 − P8, (3.3.3)

while in the solid phase are:

dSc18,s
dt = P1 + (1− Yfa) (1− βac − βh2) P3 − P4 (3.3.4)

dSc18,ben
dt = P2 − P3 (3.3.5)

dSc16,s
dt = (1− Yfa) (1− βac − βh2) P4 +

+P5 + (1− Yfa) (1− βac − βh2) P7 − P8 (3.3.6)
dSc16,ben

dt = P6 − P7. (3.3.7)

Differential equations for acetate, hydrogen andCH4 in the liquid phase are:

dSac,l
dt = (1− Yfa)βacP3 + (1− Yfa)βacP4 + (1− Yfa)βacP7 + (3.3.8)

+ (1− α) (1− Yfa) P8 − P9 + 0.8 (1− fXi) P15 (3.3.9)
dSh2,l
dt = (1− Yfa)βh2P3 + (1− Yfa)βh2P4 + (1− Yfa)βh2P7 + (3.3.10)

+α (1− Yfa) P8 − P10 + 0.2 (1− fXi) P15 (3.3.11)
dSch4,l
dt = (1− Yac) P9 + (1− Yh2) P10, (3.3.12)

while for the particulate matter are:
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dXc18
dt = YfaP3 + YfaP4 − P11 (3.3.13)

dXc16
dt = YfaP7 + YfaP8 − P12 (3.3.14)
dXac

dt = YacP9 − P13 (3.3.15)
dXh2
dt = YacP10 − P14 (3.3.16)

dXdec

dt = P11 + P12 + P13 + P14 − P15 (3.3.17)
dXi

dt = fXiP15. (3.3.18)

Next, we report the relative process(es) expressed in kg COD m−3 d−1 for Sc18,l (C18
= oleate) adsorption over biomass

P1 = kads,bio · Sc18,l · (qsat,bio ·Xbio − Sc18,s)− kdes,bio · Sc18,s, (3.3.19)

Sc18,l adsorption over bentonite

P2 = kads,ben · Sc18,l · (qsat,ben ·Xben − Sc18,ben)− kdes,ben · Sc18,ben, (3.3.20)

Sc18,ben biological desorption from bentonite

P3 = km,fa ·
Sc18,ben

KS,fa + Sc18,ben
·Xc18 · Ih2 · IXfa, (3.3.21)

Sc18,s degradation

P4 = km,fa ·
Sc18,bio

KS,fa + Sc18,bio
·Xc18 · Ih2 · IXfa, (3.3.22)

Sc16,l (C16 = palmitate) adsorption over biomass

P5 = kads,bio · Sc16,l · (qsat,bio ·Xbio − Sc16,s)− kdes,ben · Sc18,ben, (3.3.23)

Sc16,l adsorption over bentonite

P6 = kads,ben · Sc16,l · (qsat,ben ·Xben − Sc16,ben)− kdes,ben · Sc16,ben, (3.3.24)

Sc16,ben biological desorption from bentonite
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P7 = km,fa ·
Sc16,ben

KS,fa + Sc16,ben
·Xc16 · Ih2 · IXfa, (3.3.25)

Sc16,s degradation

P8 = km,fa ·
Sc16,bio

KS,fa + Sc16,bio
·Xc16 · Ih2 · IXfa, (3.3.26)

Sac degradation

P9 = km,ac ·
Sac

KS,ac + Sac
·Xac · IXac, (3.3.27)

Sh2 degradation

P10 = km,h2 ·
Sh2

KS,h2 + Sh2
·Xh2, (3.3.28)

biomass decay

P11 = kdec ·Xc18, (3.3.29)

P12 = kdec ·Xc16, (3.3.30)

P13 = kdec ·Xac, (3.3.31)

P14 = kdec ·Xh2, (3.3.32)

and Xdec slowly-biodegradable COD recirculation

P15 = khyd ·Xdec · IXfa, (3.3.33)

where the inhibition functions I will be defined in the following, since they constitute
the main contribution of this work.
In order to clarify the meaning of the above equations, a scheme of the simplified

anaerobic digestion model is presented in Figure 3.3.1, based on the following assump-
tions:

• Only LCFA (Sfa), acetate (Sac), hydrogen (Sh2) and methane (Sch4) were consid-
ered as the main model components in order to keep the structure of the model
simple. No other substrates as lipids (Xli), proteins (Xpr) and carbohydrates (Xch)
were considered. In accordance with the experimental results (Palatsi et al., 2012),
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Figure 3.3.1: Process scheme of the assumed LCFA-adsorption and degradation pathway
with/without clay mineral (bentonite) addition as exogenous adsorbent.
The process Pi is represented, where Xc18/c16 are the oleate/palmitate de-
graders, Xac/h2 are the methanogens and Xdec is the decayed biomass and
the considered slowly bio-degradable substrate. The LCFA-substrates are
the oleate/palmitate present in the liquid (Sc18/c16,l), adsorbed on biomass
(Sc18/c16,bio) and on bentonite (Sc18/c16,ben).
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butyrate (Sbu), valerate (Sva) and propionate (Spro) were not considered as they
are in the ADM1 model. Thus, Sacand Sh2 were the only products of the ß-
oxidation process of LCFA (P4 and P8 in Eq. (3.3.22) and Eq. (3.3.26), respec-
tively). Sodium oleate (Sc18) was assumed as the main substrate. Particulate
decayed biomass Xdecwas considered as a storage for all the slowly biodegradable-
substrates. Xdecwas estimated for each experimental design by the COD mass
balance of the system. It was assumed that 1 gCOD of Xdec is converted through
hydrolysis to 0.58 gCOD of acetate (Sac), 0.14 gCOD of hydrogen (Sh2) and 0.30
gCOD of inerts (Xi). A first-order rate (khyd) was assumed for the hydrolysis
process of Xdec (P15 in Eq. (3.3.33)).

• The total LCFA concentration Sfa was split into oleate Sc18 and palmitate Sc16 since
palmitate has been proposed to be the main intermediate during the anaerobic
degradation of oleate (Lalman and Bagley, 2001; Pereira et al., 2002). Oleate
and palmitate can be found free in liquid media (Sc18,l or Sc16,l) or adsorbed onto
biomass (Sc18,bio or Sc16,bio) and bentonite (Sc18,ben or Sc16,ben), when this clay-
mineral is added to the media as an exogenous adsorbent. Moreover, during oleate
degradation (P4), palmitate was accumulated onto biomass as suggested before by
Pereira et al. (2002) and Palatsi et al. (2012). According to Hwu et al. (1998), the
LCFA adsorption onto anaerobic biomass (Sfa,s) is described as a pre-requisite for
its biological degradation (P1 and P5 in Eq. (3.3.19) and Eq. (3.3.23), respectively).
The process of LCFA-adsorption over bentonite was also considered (P2 and P6

in Eq. (3.3.20) and Eq. (3.3.24), respectively) when bentonite was added in the
system. The biological-mediated desorption was not considered in the adsorption-
model as proposed by Hwu et al. (1998). For simplicity, the desorption from solid
to liquid was assumed dependend only on the adsorbed LCFA-concentration, Sfa,s.
The liquid-solid transport dynamics were approximated by a Langmuir adsorption
isotherm kinetic (Mouneimne et al., 2004), which was expressed by the following
differential equation form:

dSfa,s
dt = kadsSfa,l (qsatXads − Sfa,s)− kdesSfa,s (3.3.34)

where Sfa,s and Sfa,l are respectively the LCFA concentration in the solid and liquid
phase, kads is the adsorption rate, kdes is the desorption rate, Xads is the adsorbent
concentration, and qsat is the adsorbante over adsorbent saturation coefficient. The
considered adsorbents (Xads) were bentonite (Xben) and granular sludge (Xbio).
The notation of LCFA concentration adsorbed only on bentonite (or biomass)
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is Sfa,ben (or Sfa,bio), while LCFA adsorbed over all the present solids is written
as Sfa,s. Adsorption interactions effects between multiple components that are
present in the liquid-solid system were not considered in the adsorption-model. The
concentration of the overall biomass-adsorbent Xbio was considered time-variable
since it is the sum of specific substrate-degraders (e. g., Xfa, Xac, Xh2, etc.), inerts
(Xi) and the slowly-biodegradable substrates (Xdec). On the other hand, Xben was
assumed constant when it was used.

• Only one ß-oxidation step was considered (process P3 and P7 in Eq. (3.3.21) and
Eq. (3.3.25), respectively) in order to model the transference of the adsorbed LCFA
on bentonite (Sfa,ben) to biomass (Sfa,bio). An exo-enzymatic action was assumed
to be mediated by the LCFA-degraders since they may grow on the outmost shell of
the granule (Picioreanu et al., 2005) in direct contact with the surface of bentonite.

• Two different groups of specific LCFA-degraders microorganisms (Xfa) were con-
sidered: i) the oleate-degraders, Xc18, and ii) the palmitate-degraders, Xc16. Sousa
et al. (2008) reported that oleate/palmitate-degrading cultures showed a different
microbial composition, concluding that the community structure in a reactor might
depend on the saturation degree of the LCFA-feed. This result suggests that not
all the ß-oxidative degraders have the ability to degrade saturated (e. g., Sc18) and
unsaturated (e. g., Sc16) fatty acids. Thus, specific LCFA-degraders microorgan-
isms are needed to process a saturated or unsaturated LCFA-substrate.

• A non-competitive inhibition function of LCFA over ß-oxidazing population (Xc18

or Xc16) was considered, defined as

IXfa = KXfa (KXfa + Sfa,bio)−1 , (3.3.35)

where KXfa is the inhibitory concentration coefficient and Sfa,bio is the adsorbed
LCFA onto biomass We assumed that only Sfa,bio causes LCFA-inhibition since
other possible LCFA-species as Sfa,l or Sfa,ben are not involved in the disruption
of the cell-functionality. The non-competitive LCFA-inhibition function IXfa was
also considered as an inhibitory function for the hydrolysis process as suggested
by Angelidaki et al. (1999).

• According to Hanaki et al. (1981), the aceticlastic methanogens (process P10 in
Eq. (3.3.28)) are probably the most LCFA-affected microorganisms. Thus, for the
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aceticlastic population, we assumed a secondary non-competitive LCFA-inhibition
function (Salminen et al., 2000; Lokshina et al., 2003), defined as

IXac = IXac,noncomp = KXfa (KXac + Sfa,bio)−1 , (3.3.36)

where KXac is the corresponding inhibitory concentration coefficient. Here, the
non-competitive LCFA-inhibition function IXac -Eq. (3.3.36)- was used in the first
proposed version of the LCFA-inhibition model (LCFA-M1). In the following,
we propose a second model for the LCFA-inhibition process of the aceticlastic
population (LCFA-M2). We introduce a new state variable, HXac, called healthy-
state of the aceticlastic population Xac, which is defined as

dHXac

dt = rmax · (1−HXac)− Sfa,bio ·HXac, (3.3.37)

where rmax is the maximum cell recovery rate. The healthy state HXac is defined
within a finite range [0, 1]: i) if HXac is one then the average functionality of the
cell-membrane is optimal (methanogenic patway is on); while ii) if HXac is zero
then the cell-membrane is severely damaged and the methanogenic pathway is
interrupted to other cell-maintenance/recovery pathways. The cell-damage, DXac,
can be quantified as DXac = 1 - HXac. The rate of recovery depends on the level of
damage of the cell (first term on the right-hand side of Eq. (3.3.37)): if the cell is
highly damaged then the recovery rate is maximal. The rate of the damage (second
term on the right-hand side of Eq. (3.3.37)) depends directly on the present value
of Sfa,bio and HXac: if the LCFA-adsorbed concentration on the biomass is high
then the damage to the cell is high. However, if HXac is almost zero then no further
damage is possible. We assumed that under extreme environmental pressure (rich-
LCFA concentrations) the acetoclastic population becomes more resilient to LCFA-
damages because of its biochemical adaptation (Valentine, 2007; Kim and Gadd,
2008) and its increased effort to restore the cell-functionality (i. e. increase the
recovery rate). When the healthy-state is zero (HXac = 0) it does not mean that
biomass has reached a state of decay. In the present study, the rate of decay of
the biomass is independent of HXac.

We assumed that an acetoclastic microorganism switches from a survival-mode to
a metanogenic-mode only when its cell-functionality is restored to a given level.
The LCFA-inhibition function is assumed smooth since it is an average measure of
the overall acetoclastic population transition from the survival to the normal func-
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tionality mode. Thus, the LCFA-inhibition function for the acetoclastic population
is a continuous function, defined as:

IXacthe = IXac,healthy = Hγ
Xac, (3.3.38)

where γ is the state of health coefficient and is defined over the interval [1, +∞).
Note that after a LCFA-shock for a value of γ > 1, the recovery of the methanogenic
activity is fully re-activated only when the average cell-damage is considerably
reduced. Because HXac is defined in a finite range [0, 1], IXac,healthy takes values in
finite range [0, 1].

Summarizing, the diference between LCFA-M1 and LCFA-M2 is only in how the
inhibition function IXac is defined: LCFA-M1 is characterized by IXac,noncomp

defined in Eq. (3.3.36), while LCFA-M2 is characterized by IXac,healthy defined
by Eq. (3.3.38).

• Contrary to other proposed models (Palatsi et al., 2012), no LCFA-inhibition effect
was considered for the hydrogenotrophic methanogens (process P9 in Eq. (3.3.27)).
This choice is supported by the experimental evidence from activity tests over an
LCFA-adsorbed (inhibited) biomass (Pereira et al., 2003). The activity tests with
hydrogen, acetate, propionate and butyrate indicated a positive activity only for
the vial fed with H2 (Pereira et al., 2003). LCFA-inhibited biomass, which was fed
respectively with acetate, propionate and butyrate, activated the methane produc-
tion only when the adsorbed LCFA was completely depleted. Pereira et al. (2003)
suggested that the LCFA-adsorbed layer on the membrane of the methanogenic-
degraders hindered the transport of the substrates from the bulking liquid onto
the cells. The authors suggested that the diffusion of H2 through the LCFA-layer
was faster than for the other substrates, because its molecular weight was very
low. Thus, even if an inhibitory concentration of LCFA was adsorbed over the
biomass, vials fed with the H2-substrate immediately transformed this substrate
into methane.

• We assumed the following non-competitive inhibition function over the LCFA-
degraders population

Ih2 = KI,h2 (KI,h2 + Sfa,bio)−1 , (3.3.39)

where KI,h2 is the corresponding inhibitory concentration coefficient, in order to
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account for the effect of a possible high partial pressure of hydrogen (Bastone et al.,
2002).

3.3.3 Practical Identification and Global Sensitivity Analysis

Environmental models are known to contain ill-defined or non-identifiable parameters.
When the same mathematical model is calibrated, practical non-identifiablity of param-
eters depends not only on the model-structure, but even on the evidence D (available
data) with which it is compared. Parameter practical identifiably can be precisely as-
sessed within a global sensitivity analysis (SA) by studying how model-parameters affect
a misfit function, J. Performing a SA of J, involves the decomposition of its variance over
the parameter-space. Variance-based methods (Sobol’, 1976) are well suited to account
for the parameter interactions when non-linear models are considered (Saltelli et al.,
2010). A variance-based main effect for a generic parameter θi (i = 1,. . . , k) can be
written as

Vθi (Eθ∼i {J | θi}) , (3.3.40)

where θi is the i-th parameter and θ∼i denotes the matrix of all parameters but θi.
The meaning of the inner expectation operator, E, is that the mean of J is taken over all
possible values of θ∼i while keeping θi fixed. The outer variance, V, is taken over all the
possible values of θi. When the main effect is normalized by the unconditional variance,
V(J ), we obtain the associated sensitivity measure (main effect index, Si) written as
(Saltelli et al., 2010)

Si = Vθi (Eθ∼i {J | θi})
V (J) . (3.3.41)

In a similar way, the first-order interaction effect index (Si,j) can be written as

Si,j =
Vθi,j

(
Eθ∼i,j {J | θi,j}

)
V (J) . (3.3.42)

Another popular variance based measure is the total effect index (STi), defined as

ST i = Eθ∼i (Vθi {J | θ∼i})
V (J) = 1− VX∼i (Eθi {J | θ∼i})

V (J) , (3.3.43)

which measures the first and higher order effects (interactions) of the parameter θi. In
probabilistic SA, the parameter θ is a stochastic variable characterized by a distribution
g(θ) that describes our prior assumptions over θ. In the present work, two types of
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uncertainty parameter distributions g(θ) with respective parameters a and b were used
as needed: a uniform distribution, Unif (a,b), and a normal distribution, Norm(a,b2).
When g(θi) was of uniform-type, during model-calibration (i. e. least-square function J
minimization), the parameter θi was constrained over a finite range interval given the
relative uniform parameter interval [ ai, bi ], while when it was of normal-type, θ was
constraint positive with a six-sigma (i. e. 6×bi) variation around its location parameter,
ai.
Provided with the above sensitivity measures, Ratto et al. (2001) proposed general

guidelines to asses the practical identifiability of model-parameters: i) parameters with
a high main effect (high Si) affect J singularly, independent of interactions and thus
can be considered precisely estimated; ii) parameters with a small main (Si) and total
effect (STi) have a negligible effect over J and thus cannot be estimated precisely; iii)
parameters with a small main effect (Si) but high total effect (STi) affect J mainly
through interactions.
In our case, we used a sum-of-squares misfit function J (θ; D). Weights relative to the

number of samples and measurement-errors were not applied. Because the number of
CH4 samples was very high in relation to other measurements (e. g., Ac, LCFAs and
LCFAl) we implicitly prioritized the fit to the methane production samples. The SA was
performed by a Bayesian sensitivity analysis tool for estimating the main, first-order and
total effect indexes (Oakley and O’Hagan, 2004).

3.3.4 Sequential Model Calibration

The model-parameter, least-squares (LS) estimate of θ was computed within a “scatter-
search” global optimization routine (Rodriguez-Fernandez et al., 2006a). Because many
different data sets were available (data set D1, D2,A, D2,B, D3,A and D3,B) from the
experimental work of Palatsi et al. (2012), the calibrations of the proposed models were
performed in a sequential mode as explained below:

LCFA-M1 model

Step 1. Data set D1 was used to determinate the LS-estimate θ1 = [kads qsat kdes] for
the LCFA-adsorption model of Eq. (3.3.34). Because the experimental design
was such that the adsorption process was independent from the biological process
(inactivated biomass), the calibration of θ1 was performed in batch-mode. The
relative SA indices for θ1 was obtained conditional on an uniform distribution
g(θ1) where the i-th parameter was assumed independent.
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Step 2. Data set D2 was used to estimate the initial methanogenic populations (Xac and
Xh2), the organic matter recirculation in the system (initial Xdec) and the first-
order hydrolytic kinetics (khyd) for sludge-A and sludge-B. The parameter vector
θ2 = [Xdec Xac Xh2 khyd] was constrained over a finite range interval given by an
assigned g(θ2). Sensitivity indices were calculated. During the LS-estimation and
SA for the parameter vector θ2, parameters associated with the LCFA-inhibition
process (e. g., KXfa, KXac, Xc18 and Xc16) were kept constant on their arbitrary
optimization-starting-point values. Because the SMA assays are LCFA-free, the
parameters associated with the LCFA-inhibition process cannot influence the misfit
function J. Nominal values for the remaining model parameters (see Table 3.1) were
assumed according to Rosen and Jeppsson (2006).

Table 3.1: Biochemical parameter values assumed from Rosen and Jeppsson (2006).

Parameter Units Value Parameter Units Value
km,fa d-1 6 Yfa kg CODX ·kg COD−1

S 0.06
KS,fa kg COD m-3 0.4 Yh2 kg CODX ·kg COD−1

S 0.06
km,ac d-1 8 Yac kg CODX ·kg COD−1

S 0.05
KS,ac kg COD m-3 0.15 α kg CODX ·kg COD−1

S 0.3
km,h2 d-1 35 βac kg CODS ·kg COD−1

S 0.0784
KS,h2 kg COD m-3 7.0·10−6 βh2 kg CODS ·kg COD−1

S 0.0196
KI,h2,fa kg COD m-3 5.0·10−6 fXi kg CODS ·kg COD−1

S 0.3

Step 3. The SA is performed over data set D3,A and D3,B in order to evaluate their
relative quality for the estimation of θ3,M1 = [KXfa KXac] and θ4,M1 = [Xc18 Xc16].
The high-informative data set is used for the calibration of θ3,M1 and θ4,M1 .

Step 4. The parameter vector θ3,M1, estimated within the high-informative data set
(Step 3), is used to decrease the under-determination of the low-informative cal-
ibration scenario: the SA is run in order to assess the information-gain. The
LCFA-degrader initial concentration parameter θ4,M1 is estimated within the im-
proved calibration scenario for the low-informative data set. The idea is that the
high-informative data set is used to calibrate the model, while the low-informative
data set is used to “semi-validate” the structure of the proposed model.

When one sub-model at a time SA is performed, it is possible to overlook interactions
among parameters in different sub-models (type II error).

74



3.4 Results and Discussion

LCFA-M2 model

The same sequential calibration mode was performed for the second proposed model
LCFA-M2 with the only difference that the parameter vectors θ3,M2 = [KXfa rmax γ] and
θ4,M2 = [Xc18 Xc16] were only calibrated for the high-informative data set obtained in
Step 3.

3.4 Results and Discussion

3.4.1 Initial Parameter Estimation

The experimental design was such that data sets D1 and D2 were independent from the
biological LCFA degradation-inhibition process (focus of the present study), or indepen-
dent from any introduced ADM1 model modifications (LCFA-M1/LCFA-M2). Conse-
quently, the calibration of θ1 and θ2 can be performed in a batch-mode and their values
can be used in further data set modeling.
Table 3.2 summarized the LS-estimates and the sensitivity indices of the parameter

θ1 . We observe that the estimated saturation coefficient (qsat) for bentonite is higher
than for inactivated biomass. Thus, bentonite seems to be a better adsorbent media
than inactivated biomass. Those results are in accordance with Mouneimne et al. (2004)
where the authors observed a higher affinity of oleate for adsorption onto bentonite than
onto biomass. The desorption rate for bentonite, kdes,ben, is higher than for inactivated
biomass, kdes,bio, which suggests that the oleate adsorbed onto bentonite can be more
easily desorbed than the oleate adsorbed onto biomass. Nevertheless, it must be con-
sidered that the main effect index (Si) for the adsorption/desorption rate coefficients
(i. e. kads and kdes) are relatively low in comparison to the total effect index (STi). In
particular, for the inactivated biomass adsorbent, it appears that there is not enough
data-information in order to estimate precisely the values of kads and kdes. Thus, the
causal interpretation of those parameters should be considered with reserve. However,
since the estimated values are in accordance with other studies, we expect that the
calibrated adsorption-model is a reasonable model of the process.
Table 3.3 summarized the LS-estimates of the parameter θ2 . The relative sensitivity

indices, conditional on data set D2,A and D2,B, are also reported in Table 3.3. The
main effect index, Si, explains almost all the variance of the misfit function J, which
implies that the parameter θ2 can be well determined. This result was expected since
the under-determination of the estimation problem was reduced by assuming the values
of the ADM1’s maximum uptake rates and half saturation constants of the anaerobic
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Table 3.2: Sensitivity indexes and LS-estimates of the adsorption-parameter vector θ1
for data set D1.

Parameter Units Data Set g(θ) Si STi LS-estimate
kads,ben d-1 D1 Unif (1e-2, 2) 8.93 31.84 0.35
kdes,ben d-1 D1 Unif (1e-2, 2) 9.46 25.99 0.2
qsat,ben kg COD kg TS-1 D1 Unif (1e-2, 5) 46.14 79.49 0.82
kads,bio d-1 D1 Unif (1e-2, 2) 16.31 58.02 0.4
kdes,bio d-1 D1 Unif (1e-2, 2) 8.64 37.35 0.64
qsat,bio kg COD kg TS-1 D1 Unif (1e-2, 5) 25.10 72.14 2.95

Table 3.3: Sensitivity indexes and LS-estimates of parameter vectors θ2 for sludge-A
and sludge-B.

Parameter Units Data Set g(θ) Si STi LS-estimate
khyd d-1 D2,A Unif (1e-4, 2) 5.10 7.59 2.98·10−3

Xac kg COD m-3 D2,A Unif (1e-4, 5) 30.23 33.16 0.0727
Xh2 kg COD m-3 D2,A Unif (1e-4, 5) 30.79 33.69 3.61·10−3

Xdec kg COD m-3 D2,A Unif (1e-4, 2) 28.43 31.68 0.36
khyd d-1 D2,B Unif (1e-4, 2) 13.06 18.60 8.19·10−4

Xac kg COD m-3 D2,B Unif (1e-4, 5) 12.81 15.89 0.02391
Xh2 kg COD m-3 D2,B Unif (1e-4, 5) 12.08 14.90 7.19·10−4

Xdec kg COD m-3 D2,B Unif (1e-4, 2) 54.18 59.90 1.41

biomass populations involved (Rosen and Jeppsson, 2006), as reported in supporting
information (Table 3.1).
Biomass concentration in SMA tests for sludge-A was slightly higher than in sludge-B

(Table 3.3). Contrary, the residual slowly-biodegradable organic-matter, Xdec, is signif-
icantly lower for sludge-A than for sludge-B (fresh granules obtained from a running
UASB reactor from a fruit juice processing industry).

3.4.2 Data Set Selection for LCFA-M1 Calibration

The relative sensitivity analysis indices (Si and STi) of the parameters KXfa, KXac, Xc18

and Xc16 were reported in Table 3.4. SA indices are conditional on their relative data sets
D3,A and D3,B. The main and the first-order interaction effects explained the 91.6% and
the 92.5% of the total misfit-function variance for data set D3,A and D3,B, respectively.
The remaining variance is explained by higher-order interactions of the parameters. We
observe that the main effect indices relative to the parameter θ3,M1 are lower for data
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Table 3.4: Sensitivity indexes of parameter vectors θ3,M1 and θ4,M1 for sludge-A and
sludge-B.

Parameter Units Data Set g(θ) Si STi

KXfa kg COD m-3 D3,A Unif (1e-4, 2) 38.4 53.8
KXac kg COD m-3 D3,A Unif (1e-4, 2) 1.4 9.2
Xc18 kg COD m-3 D3,A Unif (1e-4, 5) 18.5 29.4
Xc16 kg COD m-3 D3,A Unif (1e-4, 5) 24.6 35.1
KXfa kg COD m-3 D3,B Unif (1e-4, 2) 35.4 71.8
KXac kg COD m-3 D3,B Unif (1e-4, 2) 0.2 2.8
Xc18 kg COD m-3 D3,B Unif (1e-4, 5) 11.82 7.9
Xc16 kg COD m-3 D3,B Unif (1e-4, 5) 15.0 43.2

set D3,B than for data set D3,A. Thus, the high-informative data set of our case study
is data set D3,A. The parameter θ3,M1 estimated within data set D3,B can be considered
unidentifiable but still important in order to correctly fit data since its total effect index
is not negligible.
We observe that for almost all the parameters the difference between Si and STi is

consistently higher for data set D3,B then for data set D3,A, which implies that for data
set D3,B the interaction effects between parameters are stronger then for data set D3,A.
In particular, for data set D3,B, the first-order interaction of KXfa with Xc18 and Xc16

explains the 28.6% of the total variance of the misfit- function, while for data set D3,A

this interaction effect accounts only for a 6.4% of the total variance of J (results not
shown). Moreover, the main effect indices Si relative to θ4,M1 are higher for data set
D3,A then for data set D3,B (see Table 3.4).
We conclude that data set D3,A is more appropriate than data set D3,B in order to

estimate the parameters associated with the LCFA-inhibition process KXfa and KXac.
data set D3,A is considered as the high-informative data set, while data set D3,B is
considered as the low-informative in relation to our model calibration set-up.
From the above SA-results, it was decided to use the experimental design of sludge-A

in order to estimate the parameter θ3,M1 for the LCFA-M1 model. Here, we limit our
discussion on the model simulation outcomes and on the goodness of the fit, since data
set D3,A (and D3,B) was presented and discussed in detail in Palatsi et al. (2012).

3.4.3 LCFA-M1 Model Calibration. Sludge-A

Figure 3.4.1 shows the simulation of the liquid-solid LCFA phases, the Ac concentration
and the CH4 production, for the vials with bentonite addition TA (dash line) and the
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control vial CA (continuous line). The goodness of the fit is quantified within the root-
mean, squared-error (rmse) statistic. Simulation results of the batch experiments with
an increasing oleate concentration (also included in data set D3,A) are reported in Figure
3.4.2. The LS-estimated parameters are summarized in Table 3.5.

We observe from Figure 3.4.1, that the oleate concentration in the liquid (C18l) is well
described by the adsorption model (i. e. Sc18,l and Sc18,l model outcomes). The adsorp-
tion process is a very fast process if compared with the biological-mediated process, as
reported by Hwu et al. (1998). The sampling frequency of the measurements was insuf-
ficient to ketch the fast-adsorption dynamics at the beginning of the experiment. The
uncertainty of the adsorption-parameter vector θ1 can influence only slightly the misfit
function value. Remark that the estimation of the parameter vector θ2 can be achieved
by high precision. Thus, we expect that the SA performed over parameter vectors θ3

and θ4 should lead to a negligible type II error, i. e. assessing as non-important an
important parameter.
We observe from Figure 3.4.1 an accumulation of oleate on the solid phase (C18s),

which degradation is followed by a palmitate accumulation in the solid phase (C16s).
Pereira et al. (2002) also identified palmitate as key intermediate specie during oleate
degradation in not-adapted systems. The simulated palmitate concentration of LCFA-
M1 were almost entirely adsorbed into biomass (Sc16,s ≈ Sc16,ben since Sc16,ben ≈ 0),
confirming the microscopy observations of granules performed on day 10 (Palatsi et al.,
2012). According to the model simulation of LCFA-M1 for the strategy TA and the
control CA, we observed that the C16bio concentration time evolution was approximately
the same. This evidenced that the strategy tested in TA vials (bentonite addition after
LCFA pulse) is not efficient for LCFA-inhibition prevention.
The main problem with the LCFA-M1 model is the poor data-fit of the accumulation

process of C16s (see Figure 3.4.1). In fact, the modeled degradation of C16s is delayed
almost 10 days (i. e. approximately from day 25 to day 35) if compared with data.
Remark that the misfit function favors the fit of the CH4 measurements. Consequently,
in order to fit well the CH4 measurements, the LCFA-M1 model artificially extends the
LCFA-inhibition effect with a larger C16bio accumulation. The problem is that the inhi-
bition function for the acetoclastic population IXac (Eq. 3.3.36) depends directly on the
LCFAs concentration present in the system. This delay between the LCFA-consumption
and the methane-formation was also reported in previous experiments (Palatsi et al.,
2009). Despite the model-structure limitation of LCFA-M1, it is capable to reproduce
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Figure 3.4.1: Calibration of the LCFA-M1 model with Sludge-A (data set D3,A). The
bentonite addition (TA) model-outcome (dash line) and observations (cross
dots) are compared with the control-experiment (CA) model-outcome (con-
tinuous line) and observations (circle dots).
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Figure 3.4.2: LCFA-M1 model-fit for sludge-A LCFA-toxicity assay. The empty-circle
measurments were not used for model calibration.
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Table 3.5: LS-estimate of parameter vectors θ3,M1 and θ4,M1 for sludge-A.

Parameter Units Data Set LS-estimate
KXfa kg COD m-3 D3,A 0.324
KXac kg COD m-3 D3,A 0.045
Xc18 kg COD m-3 D3,A 0.496
Xc16 kg COD m-3 D3,A 0.020

reasonably well the main trends of the system.
The LS-estimate for the LCFA-inhibition parameter of acetogenic-degraders, KXfa,

was 0.324 kgCODm-3 (see Table 3.5), while the LCFA-inhibition parameter of acetoclasitic-
degraders, KXac, was 0.045 kgCODm-3. This result suggests that the acetoclastic popu-
lation is more sensitive to the LCFA-inhibition than it is the acetogenic population, in ac-
cordance with previous reports (Salminen et al., 2000; Lokshina et al., 2003; Palatsi et al.,
2010). According to the obtained model parameters, the initial acetogenic-degraders
structure was dominated by the oleate-degraders Xc18, creating a potential condition for
a palmitate-accumulation that may lead to a long lasting LCFA inhibition of the system.

3.4.4 LCFA-M1 Model Structure Semi-Validation. Sludge-B

If the two data sets D3,A and D3,B would be obtained within the same sludge then model
validation would be possible. Since it is not the case, the LS-estimates of Xc18 and Xc16

for sludge-A cannot be used to validate the model over data of sludge-B. However, we will
use the improper name of “semi-validation” to refer to the scenario where we calibrate
θ4,M1 for sludge-B conditional on the parameter vector θ3,M1 that was calibrated for
sludge-A (data set D3,A). In this way, we make the strong assumption that for sludges
of different origins the LCFA-inhibition effect depends only on the LCFA-population
structure distribution, while the LCFA-resiliance (KXfa and KXac) of the biomass is
approximately constant.
Apart of performing the semi-validation of LCFA-M1, the lack of information of data

set D3,B (sludge-B) can be improved when perfect knowledge is assumed over the pa-
rameter θ3,M1 . Because the sensitivity indices relative to θ3,M1 would be zero for this
perfect-knowledge, SA-scenario, a small amount of uncertainty was added to θ3,M1. The
uncertainty of θ3,M1 was modeled within a normal distribution. Table 3.6 summarized
the repeated SA for sludge-B observations. We observe that the variance of the mis-
fit function is mainly explained within the initial concentration of the LCFA-degraders
(Xc18 and Xc16); the Si index improves (see Table 3.6), while the KXfa interaction first-
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Table 3.6: Sensitivity indexes and LS-estimates of parameter vectors θ3,M1 and θ4,M1
for sludge-B. An informative SA scenario is considered where the parameter
vector θ3,M1 is known with a low degree of uncertainty modeled with a normal
distribution g(θ3,M1).

Parameter Units Data Set g(θ) Si STi LS-estimate
KXfa kg COD m-3 D3,B Norm (0.324, 0.0232) 1.1 7.9 0.324
KXac kg COD m-3 D3,B Norm (0.045, 0.0062) 0.0 0.0 0.045
Xc18 kg COD m-3 D3,B Unif (1e-4, 5) 48.6 67.7 0.067
Xc16 kg COD m-3 D3,B Unif (1e-4, 5) 29.1 49.5 0.242

order effect with Xc18 and Xc16 decreases to only 2.9% (not shown in Table 3.6). If
we compare in Table 3.4 and 3.6 the values of Si relative to data set D3,B, we can ob-
serve that the estimation-precision of parameters Xc18 and Xc16 is improved when the
a-priori information about KXfa and KXac rules out unrealistic possibilities. The model-
fit to data of LCFA-M1 for the semi-validation scenario is represented in Figure 3.4.3
(LCFA-batch assays at increasing oleate concentrations model-fit results are represented
in Figure 3.4.4).
Similarly as for sludge-A, the adsorption model cannot be evaluated because of the

low sampling frequency; the low rmse value for C18l and C16l should be considered
with reserve. The simulated LCFAs, Sfa,s, was equivalent to the LCFA-bentonite ad-
sorbed concentration, Sfa,ben, because bentonite was mixed with the LCFA-inhibition
concentration before its addition to the anaerobic system (Palatsi et al., 2012). If the
control experiment (CB) is considered, the simulation reproduce quite well the C18s
and C16s observations, while if we consider the prevention-strategy experiment (TB) the
model under-estimates those data. Moreover, we observe a relevant misfit for Ac data if
the prevention-strategy experiment (TB) is considered: the Ac accumulation reproduced
within the LCFA-M1 model is not detected by the measurements. The misfit of C18s and
Ac are necessary in order to correctly reproduce the methane production measurements.
Since the methane measurements are of high-fidelity (more available data, including
batch assays with increasing oleate concentrations, D3) we can reasonably suspect that
the experimental results of C18s and Ac at day 7 were erroneous (from COD balance).
Note that C18s and Ac measurements were conducted within a vial sacrifice (Palatsi
et al., 2012) and thus it is possible that the day-7 vial was an outlier.
Considering sludge-B informative scenario (see Table 3.6), the LS-estimates for the

initial concentration of Xc18 and Xc16 were 0.067 kgCODm-3 and 0.242 kgCODm-3,
respectively. The high palmitate-degraders population concentration can be explained

82



3.4 Results and Discussion

0
5

10
15

20
25

30
0123

C18l (gCOD/L)

−
−

(+
) 

rm
se

T
 =

 0
.0

44
−

 (
o)

 r
m

se
C
 =

 0
.0

24

0
5

10
15

20
25

30
0123

C18s (gCOD/L)

−
−

(+
) 

rm
se

T
 =

 0
.2

−
 (

o)
 r

m
se

C
 =

 0
.1

1

0
5

10
15

20
25

30
0123

C16l (gCOD/L)

−
−

(+
) 

rm
se

T
 =

 0
.0

13
−

 (
o)

 r
m

se
C
 =

 0
.0

08
1

0
5

10
15

20
25

30
0123

C16s (gCOD/L)

−
−

(+
) 

rm
se

T
 =

 0
.1

2
−

 (
o)

 r
m

se
C
 =

 0
.0

68

0
5

10
15

20
25

30
0123

Ac (gCOD/L)

−
−

(+
) 

rm
se

T
 =

 0
.3

9
−

 (
o)

 r
m

se
C
 =

 0
.2

T
im

e 
(d

)
0

5
10

15
20

25
30

0123

CH4 (gCOD/L)

−
−

(+
) 

rm
se

T
 =

 0
.1

2
−

 (
o)

 r
m

se
C
 =

 0
.2

7

T
im

e 
(d

)

Figure 3.4.3: Semi-validation of the LCFA-M1 model with Sludge-B (data set D3,B).
The bentonite addition (TB) model-outcome (dash line) and observations
(cross dots) are compared with the control-experiment (CB) model-outcome
(continuous line) and observations (circle dots).
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Figure 3.4.4: LCFA-M1 model-fit for sludge-B LCFA-toxicity assay. The empty-circle
measurments were not used for model calibration.
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in part for the absence of the palmitate accumulation as observed for sludge-A. During
molecular profiling of biomass A and B, by PCR-DGGE techniques (Palatsi et al., 2012)
it was not possible to confirm this hypothesis. Now, results of process modeling give
new insights about the importance of the specific microbial structure of ß-oxidative
organisms. Remark that the estimated Xdec concentration for sludge-B was higher than
the Xdec for sludge-A (during θ2 estimation, Table 3.3). This fact was previously pointed
out by Pereira et al. (2004) and Palatsi et al. (2010) as a possible factor influencing
the LCFA-degradation dynamics, since the presence of other biodegradable substrates
(considered in Xdec pull) may enhance LCFA-degradation rates (Kuang et al., 2006).
The LCFA-M1 model is able to reproduce well the main system trends also for sludge-

B, confirming the adsorptive nature of LCFA inhibitory process, with the simulated dif-
ferences between TB and CB vials (Figure 3.4.3). The results confirm the opportunity of
using bentonite as a synthetic adsorbent (additive) to interfere in the LCFA-adsorption-
inhibition process (Palatsi et al., 2012). Moreover, under a slight LCFA-inhibition of the
system, the LCFA-M1 model seems to confirm the hypothesis that the acetogenic and the
acetoclastic LCFA-inhibition coefficients are invariant within different sludges. However,
in order to predict the evolution of an anaerobic system the relative LCFA-degraders
population structure distribution should be known or estimated.

3.4.5 LCFA-M2 Model Calibration. Sludge-A

The LCFA-M2 model SA is resumed in Table 3.7, where the main and the total indices
are reported for the respective model-parameters. Note that the parameter θ4,M2 =
[Xc18 Xc16] alone explains almost all the variance of the misfit function J (i. e. 87%).
This implies that we can estimate θ4,M2 with high precision within the LCFA-M2 model
structure and data set D3,A. On the other hand, the parameter vector θ3,M2 = [KXfa rmax

γ] affects J only within interactions and, thus, it cannot be well determined. However,
the estimation of the parameter vector θ3,M2 is still very important in order to fit well
the collected data. Moreover, we report that the first-order interaction index Si,j (not
shown in Table 3.7) for all the parameter-pairs was negligible. Thus, the presence of
higher-order interactions suggests that the interaction structure is quite complex.
The LS-estimate of parameter vectors θ3,M2 and θ4,M2 for sludge-A are reported in

Table 3.4. The LS-estimate of the parameter KXfa was 0.260 kgCODm-3. This value
was of the same order of magnitude of the LS-estimate relative to the LCFA-M1 model
(Table 3.3). The LS-estimate for the parameter γ was higher than one (γ = 2.41); for
example, when the average damage of the cell-functionality DXac is of 25% then we can
expect that only the 50% ( =(1-0.25)2.41) of the Ac-degraders have fully re-activated
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Table 3.7: Sensitivity indexes and LS-estimates of parameter vectors θ3,M2 and θ4,M2 for
sludge-A.

Parameter Units Data Set g(θ) Si STi LS-estimate
KXfa kg COD m-3 D3,A Unif (1e-4, 2) 1.14 4.92 0.260
rmax d-1 D3,A Unif (1e-4 2) 3.07 8.98 0.066
γ - D3,A Unif (1 5) 0.54 4.91 2.415

Xc18 kg COD m-3 D3,A Unif (1e-4, 5) 41.16 45.51 0.300
Xc16 kg COD m-3 D3,A Unif (1e-4, 5) 45.91 50.74 0.053

their methanogenic pathways.
The initial concentrations of LCFA-degraders estimated within the LCFA-M2 model

(see Table 3.7) are qualitatively the same as those of the LCFA-M1 model (see Table
3.4). The oleate-degraders are found to be the dominant population in the sludge-A,
explaining the higher or longer palmitate-accumulation respect to sludge-B. The model-
fit of data set D3,A within the LCFA-M2 model is reported in Figure 3.4.5. Simulation
results of the batch experiments with an increasing LCFA concentration (also included
in data set D3,A) are reported in Figure 3.4.6. We observe from Figure 3.4.5 that the
misfit of C18l is practically the same as for the LCFA-M1 (see Figure 3.4.1) since the
adsorption-model is the same and the adsorption process is very fast when compared
with the biological processes. If we compare the model-fit of LCFA-M2 and LCFA-M1
then the LCFA-M2 model gives as a slightly worse result for the oleate concentration
on the solid phase (Sc18,s≈ Sc18,ben since Sc18,ben ≈ 0). However, the LCFA-M2 model
performs very well if C16s is considered. Note that the LCFA over-accumulation artifact
observed when the LCFA-M1 model is used to simulate the sludge-A experiment (see
Figure 3.4.1) is not present when the LCFA-M2 model is considered (see Figure 3.4.5).
In fact, we observe from Figure 3.4.5 that the period that goes from the total C16s
depletion to the re-start of the CH4-production (delay of ten days) is correctly simulated
within the LCFA-M2 model. This is because the LCFA-inhibition effect in the LCFA-M2
model is not directly dipendent on the current value of the concentration of the LCFA-
adsorbed on biomass. Thus, no artificial delay of LCFA-concentration is necessary in
order to correctly fit the methane production measurements. In our case, the majority
of the delay period is characterized by an increase of the healthy-state HXac. The only
active bacteria are the acetogens that promote the Ac-accumulation. The simulated
Ac-accumulation is quite pronounced in order to satisfy the COD balance (see Figure
3.4.5). In particular, at the start-up of the experiment, the simulated degradation of
the acetate-pulse is faster than the Ac-measurement seems to suggest. However, the
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Figure 3.4.5: Calibration of the LCFA-M2 model with Sludge-A (data set D3,A). The
bentonite addition (TA) model-outcome (dash line) and observations (cross
dots) are compared with the control-experiment (CA) model-outcome (con-
tinuous line) and observations (circle dots).
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Figure 3.4.6: LCFA-M2 model-fit for sludge-A LCFA-toxicity assay. The empty-circle
measurments were not used for model calibration.
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start-up CH4-production data is very well fitted. Because we are more confident in the
CH4 measurements (more data available with a low measurement error), the LCFA-M2
model-simulation probably evidence a problem with the few-first Ac-samples. Note that
the LCFA-M1 model was not able to represent correctly the CH4-production at the
start-up of the experiment (see Figure 3.4.1).
The LCFA-M2 model was superior to the LCFA-M1 model in order to describe the

CH4-production data from the toxicity assays (compare also Figure 3.4.2 and 3.4.6 in
supporting information) and the LCFA-monitored observations (compare Figure 3.4.1
and 3.4.5). However, the LCFA-M2 model use one degree of freedom (parameter) more
then the LCFA-M1 model and thus it is expected to be more flexible for data fitting.
Since the LCFA-inhibition parameters KXfa, rmax and γ are difficult to identify with data
set D3,A, the semi-validation of LCFA-M2 with data set D3,B would probably produced
unsatisfactory results.
Provided that the LCFA-M2 model is calibrated only on data from the experimental

set-up of sludge-A, its use (e. g., optimization and control routines) should be constrained
only over its calibration domain. Extrapolation with the LCFA-M2 model (calibrated
over sludge-A) should be avoided because of its over-parametrized structure. Therefore,
if extrapolation is considered the LCFA-M1 model seems to be more robust then the
LCFA-M2 model. However, the LCFA-M2 model performes better on specific interpola-
tion rotines since its structure can describe the LCFA-inhibition process on a lower-scale
than the LCFA-M1 model structure.

3.5 Conclusions

Two new LCFA-inhibition models (i. e. LCFA-M1 and LCFA-M2) were proposed that
can be easily integrated into the full ADM1 framework. The adsorptive nature of LCFA
over granular biomass and specific LCFA-degrader populations were included in both
models. The main distinction between the two models was on how the acetoclastic
LCFA-inhibitory phenomena was represented: i) a common non-competitive inhibition
function (LCFA-M1) or ii) a new state variable that accounts directly for the damage
of the cell-functionality (LCFA-M2). Both models were proven to reproduce the main
trends of a LCFA-inhibited system operated in a wide range of experimental designs.
However, the simpler LCFA-M1 model was not able to reproduce correctly the dynamics
of the the LCFA-degradation as the LCFA-M2 model did. Causal modeling within the
two proposed models confirmed that the acetoclasitic population is more sensible to the
LCFA-inhibition than it is the acetogenic population. In addition, it was evidenced that
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the distribution of the saturated/unsaturated degraders plays an important role on the
system evolution.
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4.1 Abstract

4.1 Abstract

The confidence region computed with the Fisher (FIM) or the Hessian matrix is based on
the linear approximation of the model-parameter uncertainty. This linearity assumption
is commonly accepted when assessing the model-parameter uncertainty for wastewater
treatment activated sludge models (ASMs). The aim of this work is to test the validity
of the linear-approximation assumption for an ASM-type model (non-linear in parame-
ters) considering simultaneous storage and growth processes for the biomass. Practical
identifiability was addressed exclusively considering respirometric profiles based on the
oxygen uptake rate (OUR) and with the aid of a global probabilistic sensitivity analysis.
Model-parameter uncertainty was thereafter estimated according to classical frequentist
(linear) and Bayesian (non-linear) inferential procedures. Results were compared to evi-
dence the strengths and weaknesses of both approaches. Since it was demonstrated that
the Bayesian inference can be reduced to a frequentist approach under particular hy-
potheses, the first can be considered as more generalist and flexible methodology. Hence,
its use is encouraged for tackling inferential issues in ASM environments.

4.2 Introduction

Respirometry is a fast and relatively inexpensive technique for wastewater activated
sludge characterization based on the measurement of oxygen uptake rate (OUR) and
it is commonly used for the calibration of kinetic models (Vanrolleghem et al., 1999;
Magrí and Flotats, 2008). However, because respirometry data used for the calibration
of wastewater models are often sparse in relation to model-complexity it is not always
possible to practically identify all the parameters included (Dochain and Vanrolleghem,
2001). In practice, given the evidence provided by data, the onset of non-identifiability is
gradual (Renard et al., 2010) because there are model-parameters (i) informative only for
a model regime but data do not force the model in this regime, and/or (ii) informative in
groups that cannot be resolved into individual components (i. e. correlated parameters).
On this regard, more a parameter is practically identiable, more accurate is its estimate.
It is quite common for wastewater activated sludge models (ASMs) to assess the model-

parameter accuracy (or uncertainty) within a frequentist confidence region (Marsili-
Libelli and Tabani, 2002; Checchi and Marsili-Libelli, 2005; Sin et al., 2005a; Hoque
et al., 2009). Briefly, the frequentist procedure is random while a model-parameter is
assumed as a fixed, unknown quantity. Once the optimal parameter-value is estimated,
its uncertainty is assessed from a quadratic expansion of the goodness-of-fit function
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(i. e. through the Hessian) or from a local linearization in parameter of the model-
outcome (i. e. involving the Fisher Information Matrix, FIM).
While “frequentists” understand model-parameters as single unknown values, “Bayesians”

treat them as random variables defined by a probability distribution. In the Bayesian
framework, the initial degree of belief over the parameter-uncertainty is expressed by
a prior distribution (before data is collected), while the likelihood distribution indi-
cates how likely it would be to observe the data, given a particular parameter-value.
The updated degree of belief over the model-parameter is represented with a poste-
rior distribution, which is an aggregation of the information contained in the prior and
the likelihood. If the prior is non-informative (i. e. flat and uniform distribution) and
the model-structure is fixed, then the relative posterior depends only on available data
through the likelihood; in this case, the posterior-mode is known as the maximum like-
lihood estimator (MLE).
When model is linear in parameters or data sample size is large, frequentist and

Bayesian procedures yield the same result (D’Agostini, 2003). From a Bayesian per-
spective this justifies the common scientific practice of interpreting frequentist inference
(point estimates and regions) in a Bayesian fashion (i. e. probability statements about
confidence regions). However, for non-linear environmental models (including ASM-
type models) with sparse data the frequentist approach may under-estimate parameter-
uncertainty (Omlin and Reichert, 1999; Vrugt and Bouten, 2002). Moreover, if the
Hessian or the FIM matrixes are badly conditioned (i. e. high ratio-value between the
highest and lowest eigenvalue of the matrix) then the advice given in most textbooks is
to re-think the model and re-run the analysis or, in some cases, to get more data. Rather
than re-thinking the model or collecting more data, it is common to fix the problematic,
non-identifiable parameters at some nominal values and thereafter re-run the uncertainty
estimation. Contrary, Bayesian procedure allows keeping the non-identifiable parame-
ters during the uncertainty estimation since they are represented as random variables
by their respective “subjective” priors.
For linear models in parameters, the covariance matrix (i. e. estimated by the FIM

or Hessian inversion) fully describes the practical identifiability of model-parameters; if
it has zero eigenvalues then some model-parameters are non-identifiable (Renard et al.,
2010). In the wastewater community, local trajectory sensitivity analysis (i. e. based on
the use of the FIM) is commonly used to assess the practical identifiability of model-
parameters (Dochain and Vanrolleghem, 2001; Petersen et al., 2001; Guisasola et al.,
2005). For non-linear models, near-zero eigenvalues of the covariance matrix remain
only indicative of non-identifiability (Renard et al., 2010) and a local derivative-based
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approach may be inconclusive (Saltelli et al., 2006). As an alternative to the local tra-
jectory sensitivity analysis, a global sensitivity analysis (GSA) approach can be applied
(Sin et al., 2011). When the GSA is performed over the goodness-of-fit function (Ratto
et al., 2001), it is possible to assess which model-parameters (i. e. model input factors)
drive, alone or within interactions, the model fitting to data.
The aim of this chapter is to apply and compare frequentist and Bayesian inference

methods to an activated sludge model, which considers simultaneous storage and growth
processes for heterotrophic biomass under aerobic conditions (Sin et al., 2005a). The
case study is interesting because the model-parameter inference exercise tends to be
“ill-posed” if only are used OUR data.

4.3 Material and Methods

4.3.1 Global Sensitivity Analysis (GSA)

Sensitivity analysis is the study of how uncertainty in the model-output can be ap-
portioned to different sources of uncertainty in the model input factors (Saltelli et al.,
2010). Global sensitivity analysis (GSA) focuses on the output uncertainty over the en-
tire range of possible values of the input factors. When non-linear models are considered,
“variance-based” methods are well suited to account for interactions between factors. On
this regard, given a model of the form Y = f (θ), with Y a scalar, a variance-based main
effect for a generic factor θi (i = 1, ..., P) can be written as (Saltelli et al., 2010)

Vθi (Eθ∼i {Y | θi}) , (4.3.1)

where θi is the i-th factor and θ∼i denotes the matrix of all factors but θi. The
meaning of the inner expectation operator, E, is that the mean of Y is taken over all
possible values of θ∼i while keeping θi fixed. The outer variance, V, is taken over all
possible values of θi. When Eq. (4.3.1) is normalized by the unconditional total vari-
ance V (Y ) = Vθi (Eθ∼i {Y | θi})+Eθi (V θ∼i {Y | θi}), we obtain the associated sensitivity
measure (main effect index, Si) written as

Si = Vθi (Eθ∼i {Y | θi})
V (Y ) . (4.3.2)

In a similar way, the first-order interaction effect index (Si,j) can be written as

Si,j =
Vθi,j

(
Eθ∼i,j {Y | θi,j}

)
V (Y ) . (4.3.3)

99



4 Bayesian and Frequentist Inference under Comparison

Another important sensitivity measure is the total effect index (STi), defined as

ST i = Eθ∼i (Vθi {Y | θ∼i})
V (Y ) = 1− VX∼i (Eθi {Y | θ∼i})

V (Y ) , (4.3.4)

which measures the main, first- and higher- order interaction effects of factor θi. In
probabilistic GSA, the factor θ is a stochastic variable characterized by a distribution
g(θ) that describes our prior knowledge over θ. In our case, the model input factor
θ is the model-parameter to be inferred while the function f (θ) is the sum-of-squares
(SS) defined in the following Sub-section 4.3.2. Intuitively, a model-parameter θ can be
estimated with precision if it drives alone the model fitting to available data (i. e. Si is
high). A parameter involved in interactions (i. e. STi>�>Si) that cannot be estimated
with precision (i. e. Si is low) should still be considered as important in order to achieve
good fitting to data.

4.3.2 Bayesian Inference

In the Bayesian framework the concept of probability, p, is defined as the “degree of
belief” or the plausibility that a proposition is true and is quantified as a real, positive
number in the range of [0, 1]. Suppose we want to determine the probability of a
continuous parameter, θ, given data, D, with the k-th element Dk (k = 1, ..., N ), and
considering the prior information on the parameter θ. Inference concerning θ is based
on its posterior distribution (D’Agostini, 2003),

p (θ|D) ∝ p (θ) p (D|θ) , (4.3.5)

which depends both on our “subjective” belief over the parameter θ through the prior
p(θ) and on data D through the likelihood p(D|θ). The prior p(θ) is formulated “before”
data are observed while the likelihood p(D|θ) is a conditional probability in function of
θ, with D held fixed. Note that commonly the likelihood p(D|θ) = L(θ;D) is seen as
a mathematical function of θ, with parameters D. At this point, the uncertainty in the
future model predictions y = f (θ) can be inferred as:

p (y|D) =
ˆ
p (y, θ|D) dθ =

ˆ
p (y|θ) p (θ|D) dθ, (4.3.6)

where y and D are assumed to be conditionally independent given the value of θ.
A typically used measurement model for the observations D is

Dk = fk (θ) + ε, ε ∼ Norm
(
0, σ2

)
, (4.3.7)
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where the error term ε is an independent and identically distributed (IID) random
variable with a homoscedastic variance error parameter, σ2; the corresponding likelihood
for this measurement model takes the form

p
(
D|θ, σ2

)
∝ exp

{
− 1

2σ2SS (θ;D)
}
, (4.3.8)

where

SS (θ;D) =
N∑
k=1

(Dk − fk (θ))2 (4.3.9)

is the sum-of-squares. For a general likelihood function, SS(θ;D) corresponds to twice
the negative log-likelihood, -2ln(p(D|θ)) (Laine, 2008). In practice, the assumed mea-
surement model (i. e. including error as a normal distribution -Eq. (4.3.7)- is tested
against the relative distribution of residuals; if the statistical model is miss-specified, a
common procedure is to evaluate how much the posterior change when other reasonable
measurement models are used (Gelman et al., 2004).
Finally, note that we expressed the posterior p(θ|D) in Eq. (4.3.5) to be only propor-

tional to the product of a given prior and likelihood. The reason is that for commonly
used numerical methods the posterior is not provided in a closed form solution. For
example, algorithms based on Markov chain Monte Carlo (MCMC) produce correlated
samples {θ(s), s = 1, ..., S} (i. e. a Markov chain) that has the posterior p(θ|D) as its
equilibrium distribution. Based on the sample θ(s), the posterior is “recovered” within
a histogram or kernel density approximation. Thus, the quality of such approximation
improves as a function of the number of samples from the posterior (Gelman et al.,
2004).

4.3.3 Frequentist Inference

Under specific assumptions, the frequentist approach is nothing but a particular case of
the Bayesian inference. Assuming that a uniform distribution is a practical choice for
the prior, Eq. (4.3.5) becomes (D’Agostini, 2003)

p (θ|D) ∝ p (D|θ) = L (θ;D) . (4.3.10)

The set of θ that is most likely is that which maximizes L(θ;D): a result that fits
with the maximum likelihood principle. Thus, if the error ε is assumed as a normal
distribution as in Eq. (4.3.7), the likelihood-dominated result becomes,
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p (θ|D) ∝ exp
[
−1

2χ
2
N

]
, (4.3.11)

where

χ2 = χ2
N = 1

σ2

N∑
k=1

(Dk − fk (θ))2 (4.3.12)

is the chi-square statistic with N degrees of freedom. Maximizing the likelihood is
equivalent to minimizing χ2, and the most probable value of θ (i. e. the MLE) is the
least-square (LS) estimate, θm (index “m” stands for mode). Moreover, if f (θ) is a linear
model in parameters the shape of χ2 is parabolic and thus the posterior is multi-variate
Gaussian (MVG). It is then possible to estimate the uncertainty of the LS-estimate
θm since the posterior is completely defined by its covariance matrix, C, estimated for
example from the Hessian, H, (Marsili-Libelli et al., 2003) as

C = SS (θm)
N − P

2H (SS (θm))−1 . (4.3.13)

Summarizing, the frequentist uncertainty estimation procedure for θ was obtained by
starting from a more general framework (i. e. Bayesian framework), under clearly state
hypotheses:

• The prior probability p(θ) is uniform.

• The measurement error ε is Norm(0,σ2IN), with N×N identity matrix IN.

• The LS-estimate θm is asymptotically θ∗ (the true value of θ).

• f (θ) is a linear model in parameters (at least locally around θm).

In routine applications involving non-linear models in parameters, the linear approxima-
tion of the uncertainty of θ often holds because the above hypotheses are just slightly
violated (e. g., the model is only “slightly” non-linear) or because the posterior exhibits
an approximate MVG shape (e. g., large data set in relation to the number of inferred
parameters).

4.3.4 Activated Sludge Model Structure

The model structure considered was the modified version of the ASM3 (Gujer et al.,
1999) proposed by Sin et al. (2005a). This model includes simultaneous storage and
growth processes for heterotrophic biomass and exclusively considers aerobic conditions.
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Accounting for all the bioprocesses included in the model (i. e. the liquid-gas oxygen
transference due to aeration is not encompassed here), the oxygen uptake rate (OUR =
-dSO2/dt) outcome is given by Eq. (4.3.14)

OUR =
(1− YSTO

YSTO

)
·
(
1− e−t/τ

)
· kSTO ·

SS
KS + SS

·XH +

+
(

1− YH,S
YH,S

)
·
(
1− e−t/τ

)
· µMAX,S ·

SS
KS + SS

·XH +

+
(

1− YH,STO
YH,STO

)
· µMAX,STO ·

KS

KS + SS
·

(
XSTO
XH

)2

K2 +K1 · XSTOXH

·XH +

+ (1− fXI) · bH ·XH + bSTO ·XSTO, (4.3.14)

and the corresponding storage products production rate (SPR = dXSTO/dt) by Eq.
(4.3.15),

SPR =
(
1− e−t/τ

)
· kSTO ·

SS
KS + SS

·XH +

−
(

1
YH,STO

)
· µMAX,STO ·

KS

KS + SS
·

(
XSTO
XH

)2

K2 +K1 · XSTOXH

·XH +

−bSTO ·XSTO, (4.3.15)

where the following nomenclature was used: SO2: dissolved oxygen (DO, mg O2/L);
SS: substrate (mg COD/L); XH: biomass (mg COD/L); XSTO: storage products (mg
COD/L); t: time (min); τ : first-order time constant (min); kSTO: maximum storage rate
of XH (1/d); KS: SS affinity constant (mg COD/L); K2: a lumped parameter related to
the affinity of XH towards XSTO/XH (mg COD/mg COD); K1: regulation constant of
XH as function of XSTO/XH (mg COD/mg COD); µMAX,S : maximum growth rate of XH

on SS (1/d); µMAX,STO: maximum growth rate of XH on XSTO (1/d); fXI: production
of inert COD in endogenous respiration (mg COD/mg COD); bH: endogenous decay
coefficient of XH (1/d); bSTO: endogenous decay coefficient of XSTO (1/d); YSTO: yield
coefficient of XH for storage on SS (mg COD/mg COD); YH,S: yield coefficient of XH for
growth on SS (mg COD/mg COD); YH,STO: yield coefficient of XH for growth on XSTO

(mg COD/mg COD); COD: Chemical Oxygen Demand. According to the assumptions
done by Sin et al. (2005), the three yield coefficients (YSTO, YH,S, and YH,STO) were
considered to exclusively depend on the efficiency of the oxidative phosphorylation (δ)
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(mol ATP/mol NADH2), model-parameters kSTO and µMAX,S were considered to depend
on the fraction of substrate used for storage and the maximum substrate uptake rate,
and model-parameters µMAX,S and µMAX,STO were assumed equals. Furthermore, it
was considered that the concentrations of DO and ammonium were high enough to not
affect kinetics.

4.3.5 Model Implementation and Computational Analyses

The model was implemented in MATLAB (Mathworks Inc., USA) as a Simulink S-
function Cmex code block. A free-MATLAB toolbox called “Adaptive Robust Numerical
Differentiation” (D’Errico, 2006) was used for the estimation of the Hessian matrix,
H. The estimation routine is based on a finite-difference (FD), fourth-order Romberg-
extrapolation method with an adaptive routine for the determination of the step-size-
perturbation parameters. The measurement model defined in Eq. (4.3.7) was considered
as the reference statistical model for data. A strictly positive uniform prior were assumed
in order to preserve the physical meaning of the parameters. The error variance σ2 was
considered as an unknown stochastic parameter, characterized by the inverse gamma
distribution prior (Gelman et al., 2004; Laine, 2008) with mean of 0.01 and accuracy
of 4. We verified that the computed posterior was insensible to the relative choice of
the gamma prior parameter. The posterior p(θ | D) was approximated with a sample
size S of 15,000 (burn-in sample of 5,000), obtained after convergence of the “Delayed
Rejection Adaptive MCMC” (DRAM) sampler (Laine, 2008). The Markov chain was
considered stationary if the value of the Geweke’s convergence diagnostic (Geweke, 1992)
was higher than 0.9.

For a one-dimensional case, the Kolmogorov-Smirnov (K-S) statistic is defined as
(Peacock, 1983)

K−S = sup
x

∣∣∣F 1
S (x1)− F 2

S (x1)
∣∣∣ , (4.3.16)

where K-S is used to quantify the distance between the empirical cumulative distri-
bution function F 1

S and F 2
S with S IID observations from the stochastic variable X1.

In a two dimensional case (with a new stochastic variable X2), the Peacock’s algorithm
considers the four quadrants (x1<X1, x2<X2), (x1<X1, x2>X2), (x1>X1, x2<X2) and
(x1>X1, x2>X2) in turn, and adopt the largest of the four differences between the two
empirical cumulative distributions as the final K-S statistic.
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4.3.6 Data Sources

The experimental data analyzed consisted of three OUR profiles. In all cases, the initial
substrate to biomass ratio was low, with feast plateaus elapsing 15 min. Feast periods
were followed by famine periods; that is when OUR suddenly drops from its maximum
level to a level higher than the endogenous OUR and thereafter gradually decreases to
the endogenous level. For each respirogram, a sub-sampled number of measurements
were considered for inference (from 1.5 to 2.8 min/sample).

Data set A was kindly provided by authors Sin et al. (2005a). It consisted in two
acetate pulses of 40 mg COD/L added according to an optimal experimental de-
sign to activate sludge collected from a municipal wastewater treatment plant
(WWTP) performing N-removal. The authors Sin et al. (2005a) also provided
for the same experiment the off-line measurements of XSTO (measured as poly-β
-hydroxybutyrate, PHB). XH(0) was calculated as 800 mg COD/L, and XSTO(0)
was measured as 6.8 mg COD/L.

Data set B was taken from the work of Hoque et al. (2009). It consisted in a single
acetate pulse of 50 mg COD/L (pH 7.8, 20ºC) added to activated sludge collected
from a WWTP. In this case, XH(0) was calculated as 900 mg COD/L.

Data set C was obtained in our lab and consisted in a single acetate pulse of 40 mg
COD/L (pH 8.0, 20ºC) added to activated sludge purged from a sequencing batch
reactor (SBR) fed with raw leachate under pulse feeding (4 pulses/day), loading
rate of 1 g COD/(Ld), and intermittent aeration. The composition of the leachate
was equivalent to 9.81 g CODVFA/L (VFA: volatile fatty acid; 25% acetate, 9%
propionate, 52% butyrate, and 14% valerate) with 48% CODVFA/COD and 1.01
g N/L. The respirometric test was carried out in a 2.5-L LFS respirometer with
flowing gas and static liquid (Spanjers et al., 1998). The OUR value was then esti-
mated off-line from DO measurements (Inolab 740 - CellOx 325, WTW, Germany)
by applying an optimal local polynomial filtration paradigm called “Lazy Learn-
ing” (Bontempi et al., 1997). The initial content of storage products in biomass,
XSTO(0), was assumed as 7.6 mg COD/L. Similarly to Sin et al. (2005a) and
Hoque et al. (2009), once fixed parameters bSTO (0.2 d−1), bH (0.2 d−1), and fXI

(0.2 mg COD·mg COD−1) according to the values given in the ASM3, the initial
concentration of biomass, XH(0), was calculated from the endogenous OUR as 214
mg COD/L.
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Figure 4.3.1: Schema of the uncertainty analysis procedure including frequentist and
Bayesian inference.

4.3.7 Data Analysis Procedure

The estimated parameter vector was θ = [τ KS kSTO µMAX,S δ K1 K2]. Because the
parameters K1 and K2 were found non-identifiable by Sin et al. (2005a) and Hoque et al.
(2009) the parameter θ was divided in two sub-parameters: potentially “problematic”
θp = [K1 K2] and “non-problematic” θ∼p = [τ KS kSTO µMAX,S δ]. At this point, the
uncertainty analysis procedure was the following (see Figure 4.3.1):

Step 1. GSA based on the analysis of the three OUR profiles was performed by a
Bayesian-GSA, free-software tool (Oakley and O’Hagan, 2004), which is able to
compute the main effect index (Si), the first-order effect index (Si,j), and the total
effect index (STi). The distribution g(θi) was assumed uniform, i. e. Unif (ai,bi),
for all the model-parameters; in particular: τ ∼ Unif(0.1, 5), Ks ∼ Unif(0.1, 10),
K1 = Unif(10−2, 1),K1 = Unif(10−4, 10−2), δ = Unif(1, 8), ksto ∼ Unif(0.1, 12),
and µMAX,S ∼ Unif(1, 20).

Step 2. After running the DRAM routine, a sample from the posterior p(θ|D) was ob-
tained and θm = [θpm θ∼pm ] was calculated from the kernel-approximation of the
MCMC-sample. Residuals analysis was carried out based on residuals histograms.
Auto-correlation plots (Dodge, 2008) were performed in order to check the ap-
propriateness of the measurement model used (i. e. including error as a normal
distribution). The effect of the measurement model on the posterior was subse-
quently analyzed considering three additional error distribution alternatives: t-
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distribution, Laplace, and Normal with weighted residuals.

Step 3. The subset θp was fixed to θpm and the posterior p(θ∼p|D,θpm) was sampled by
the DRAM algorithm. The mode-estimate θ∼p,*m of the posterior p(θ∼p|D,θpm) was
calculated.

Step 4. The covariance matrix C for the parameter point-estimation θ∼pm and the co-
variance matrix C*relative to θ∼p,*m were estimated based on Eq. (4.3.13), while
θp was fixed to θpm.

Step 5. The posterior distribution p(θp|D) was compared with its linear approximation,
Norm(θ∼pm ,C); for simplicity, we called this case “full-case”. The “reduced-case”
comparison was performed over the posterior p(θ∼p|D, θpm) and its linear approx-
imation, Norm(θ∼pm ,C*). Differences between posteriors and relative approxima-
tions were evaluated with a two-sample, two-dimensional, K-S statistic.

4.4 Results and Discussion

4.4.1 Global Sensitivity Analysis (GSA)

The main effect index (Si) and the total effect index (STi) for the three data sets analyzed
are reported in Table 4.1. Based on the GSA-interpretation guidelines provided by Ratto
et al. (2001), we observed the following:

• δ and µMAX,S drive the model-fit to data, since they have the highest indexes Si (δ:
53.25-58.44%, µMAX,S : 4.78-14.56%) and STi (δ: 79.23-89.91%, µMAX,S : 29.32-
35.71%). The majority of the interaction effects including these model-parameters
is attributed to first-order interactions (i. e. Si,j indexes are high, with total values
of 19.0-24.1%). Because these two model-parameters have relatively high main
effects, both are expected to be well-estimated during the inference exercise.

• kSTO can be judged as the less influent model-parameter over the SS-variance, as
it has the lowest STi (0.01-0.7%), and non-identifiable because Si (0.01-0.08%) is
negligible.

• Ks and τ are almost non-identifiable (low precision of estimation), as their indexes
Si are low, leaving the main contribution to the SS-variance to the interaction
terms.

• Non-identifiable, but still important parameters are K1 and K2.
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Table 4.1: GSA sensitivity indexes for model-parameters. Si: main effect index, STi:
total effect index. Units: %.

Parameter (θ) Data set A* Data set B Data set C
Si STi Si STi Si STi

τ 2.97 6.0 3.25 8.96 0.38 2.66
kSTO 0.01 0.01 0.08 0.08 0.06 0.70
KS 1.24 4.0 1.23 3.45 1.21 8.12

µMAX,S 14.56 32.83 13.42 29.32 4.78 35.71
K1 0.09 2.80 0.10 4.10 0.23 7.05
K2 0.05 2.87 0.06 3.65 0.28 5.98
δ 58.44 79.23 58.75 79.82 53.25 89.91

Total main effect§[a] 77.4 76.9 60.2
Total first-order inter. effect#[b] 19.0 24.1 24.1

Sum [a + b] 96.3 95.1 92.3
*Data set A: Sin et al. (2005). Data set B: Hoque et al. (2009). Data set C: own data.
§Total main effect: ΣS i
#Total first-order interaction effect: ΣS i,j. Individual first-order interaction effect indexes are not shown.

• The high differences between Si and STi for a given model-parameter imply that
the model is over-parameterized with respect to available OUR data. However,
all the model-parameters are still necessary in order to keep the structure of the
model and to reproduce data correctly.

We also observed that the condition number for H relative to θ∼p = [τ KS kSTO

µMAX,S δ] was 103 and thus, the covariance-matrix estimation can be considered as
“non-problematic”. On the other hand, the condition number for θ was higher than the
machine precision, confirming the “problematic” nature of the parameter θp = [K1 K2]
for the estimation of the covariance matrix.
Based on the above considerations, we conclude that only δ and µMAX,S are ex-

pected to be well-estimated when exclusively considering OUR profiles. According to
model assumptions detailed in section 2.4, appropriate estimation of δ will favor precise
calculations of the three yield coefficients (YSTO, YH,S, and YH,STO). Availability of
additional experimental data may help in reducing differences between indexes Si and
STi, and thus, in enhancing practical identifiability of some model-parameters.

4.4.2 Bayesian Inference

The marginal posteriors of θi for data sets A, B, and C are depicted in Figure 4.4.1. The
relative modes θm of the data sets A and B are close to those initially reported by the
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Figure 4.4.1: Marginal parameter posteriors for data set A (-), data set B (–) and data
set C (-·-). Y-axis represents qualitatively the probability density.

respective authors (Sin et al., 2005a; Hoque et al., 2009).
The only exemption is the first-order time constant τ for data set A, where the mode

is 1.67 ±0.36 min while the value estimated by the authors was 0.51 ±0.07 min. The
difference may be caused by the sub-sampling pre-processing of the data set A, necessary
to reduce the auto-correlation of the relative residuals. The MLE obtained for δ when
analyzing data sets B (4.57 ±0.6) and C (5.00 ±0.2) are higher than the theoretically
expectable values, of between 1 and 3 (Beun et al., 2000; Dias et al., 2008), making the
mechanistic meaning of the δ-parameter questionable. Such high values of δ also lead to
high yield coefficients. For all cases, YSTO (0.80-0.90) is found to be the highest yield
coefficient. Direct biomass formation on acetate (YH,S) (0.57-0.75) is estimated as very
similar to the indirect biomass formation via storage products (YSTO·YH,STO) for the
three data sets (within a narrow ratio between both pathways of 0.96-0.98), which is in
agreement with the findings of Beun et al. (2000). Values for model-parameters kSTO,
µMAX,S and KS were higher for data set C than for data sets A and B. Also, inference
results for data set C are the only providing kSTO lower than µMAX,S . Thus, different
values are assessed for a given model-parameter depending on the data set analyzed.
This may be because model-parameter values are expected to be highly influenced by
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Figure 4.4.2: OUR and XSTO predictive envelopes (95% credibility) relative to the
Bayesian inference of θ. The light-grey envelope is due to measurement
errors (only for the OUR case, upper row) while the dark-grey envelope is
due to parameter uncertainty (always wider in the case of XSTO than in
the case of OUR). Left column for data set A, middle column for data set
B, and right column for data set C.

many factors such as wastewater composition, bioreactor operating conditions, dominant
microbial communities, etc. (Ni and Yu, 2008). On the other hand, boundary conditions
considered may affect decisively on the results obtained through the inference exercise.
This may be the case of XSTO(0), a potential source of problems for the identification of
model-parameters when using OUR alone (Sin et al., 2005a). Also, may be the case of
XH(0), which was calculated taking into account the endogenous OUR and assuming the
fixed values for fXI and bH proposed by Gujer et al. (1999). Any miscalculation of this
boundary condition will be propagated during the inference exercise, and may result in
non-realistic results.

The estimated kSTO-parameter uncertainty is relatively low (see Figure 4.4.1). That
seems to be controversial with the GSA-result where it was found non-identifiable and
un-important. Therefore, in problems where parameters have a substantial meaning,
Bayesian statistics will be useful if identifiability is warranted. Otherwise, the analysis
will only provide illusory solutions (San Martín and González, 2010). On this regard,
if an informative prior for kSTO (or additional data) would be used instead of the non-
informative prior we should expect that the marginal posterior of kSTO would be easily
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displaced towards the informative prior since the OUR data provide only weak informa-
tion for the inference of kSTO. Such displacement of the marginal posterior would take
place without affecting the model-fit to data since kSTO was found un-important with
respect to model-outcomes during GSA (i. e. STi ≤ 0.7%).
Predictive envelopes for the OUR and XSTO model-outcomes are represented in Figure

4.4.2. In the case of data set A, XSTO-measurements were available but not considered
for the inference of parameters. Because parameter-inference was based only on OUR
data sets, the OUR-predictive parameter uncertainty envelopes (Figure 4.4.2, upper row)
were found narrower than those of the XSTO-envelopes (Figure 4.4.2, lower row). How-
ever, there is still variability in the OUR prediction (i. e. wideness of the predictive
measurement envelope), especially for data set A, which might be due to measurement
error or model inadequacy. The high value of σ (0.052 ±9·10-3) for data set A (see Fig-
ure 4.4.1) reflects that the model have some problems in reproducing the dynamic phase
of the OUR response. Indeed, Sin et al. (2005a) already reported that the model was
unable to perfectly fit the second peak in the OUR profile. In our study, the model was
unable to perfectly fit the first peak. Although it seems a contradiction in the results,
when considering the predictive parameter uncertainty envelope it is shown that both
results are possible. Lower values of σ were obtained for data set B (0.035 ±7·10-3) and
C (0.018 ±3·10-3) among other reasons because of the simpler experimental designs. It
is also interesting to observe that the XSTO-predictive parameter uncertainty envelopes
for data sets B and C are narrower than for data set A, even thought the latter was
optimally designed.

4.4.3 Residuals Analysis

The validity of the above statistical inferences (frequentist or Bayesian) is dependent on
the assumptions taken for the measurement model defined in Eq. (4.3.7). In Figure 4.4.3
the residuals analysis are depicted based on histograms and auto-correlation plots. The
histogram of the residuals for each data set is then compared with the corresponding
measurement model (Figure 4.4.3, upper row). The auto-correlation function of the
residuals (Figure 4.4.3, lower row) is within the significance interval levels and thus the
independence requirement is fulfilled. It seems interesting to remark that, if all the
samples from a modern respirometer device (with a high frequency of sampling) were
used raw and without further processing, the residuals would be highly auto-correlated,
which would lead to under-estimation of parameter uncertainty. In order to avoid this
situation, apart from sub-sampling, whitening and correction of the residuals by means
of auto-regressive models can be applied to weight them properly (Neumann and Gujer,
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Figure 4.4.3: Residuals analysis. Upper row: histograms of the residuals and their rela-
tive most probable measurement models, Norm(0,σ2

m), in solid lines. The
measurement model is given within its 95% prediction intervals in dashed
lines since its parameter σ2 is estimated during the inference of the model-
parameter θ. Lower row: auto-correlation (ACF) plot with 95% signifi-
cance intervals. Left column for data set A, middle column for data set B,
and right column for data set C.

2008).
It is difficult to assess if the normality assumption over ε is appropriate or it should

be rejected from the comparison between the histograms of the residuals and the cor-
responding measurement model (Figure 4.4.3, upper row). Kleinbaum et al. (2008)
reported that “the confidence intervals used in a regression analysis are robust in the
sense that only extreme departures of the distribution of the residuals from normality
yield spurious results”. In order to check the robustness of the posteriors to possible de-
partures of the residuals from normality, in Figure 4.4.4 it is shown (adopting data set A
as example) the effect of considering other measurement models rather than Normal (the
reference): t-distribution with one degree-of-freedom, Laplace (or double-exponential),
and Normal with weighed residuals (Normal-WLS). In the Normal-WLS case, the resid-
uals corresponding to the feast phase were weighted in order to achieve approximate
homoscedasticity. On this regard, only the marginal posterior of τ seems to be signif-
icantly affected by such election, although it is not considered as a problematic case
since the parameter τ is not included in ASM models. Thus, here the posterior can
be considered relatively insensitive to the particular measurement model choice. Such
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Figure 4.4.4: Effect of the measurement model on the marginal parameter posterior (data
set A). Y-axis represents qualitatively the probability density.

posterior insensitivity to a particular measurement model was verified also for data sets
B and C (results not shown).
It could be argued that there are a large number of measurement models applicable

while we only tested four simple items. However, if the number of residuals (i. e. number
of measurements) is low, the estimation of the “true” measurement distribution is diffi-
cult since any complex-enough distribution could fit the empirical histogram of residuals
equally well. Thus, it seems fair to consider the Normal distribution to describe the
residual-model variability when the noise process is unknown. This is because the pos-
terior seems insensible to the model choice, making possible to maintain the normality
assumption of the errors needed to proceed with the frequentist approximation from the
Bayesian posterior (see Sub-section 4.3.3).

4.4.4 Comparison of Frequentist and Bayesian Inference

In order to verify the quality of the frequentist uncertainty assessment, we compared the
MVG-approximation with the Bayes posterior. The comparison was performed over a
two-dimensional parameter space.
For the “reduced-case” comparison, and only considering data set B as case study,

we present the MCMC-sample and subsequent kernel-approximation of the posterior
p(θ∼p|D,θpm), and its linear approximation Norm(θ∼pm ,C*) (Figure 4.4.5). It is necessary
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and the linear approximation Norm(θ∼pm ,C*) confidence ellipses -dashed
line-. “Reduced-case” for data set B.

to remark that for this “reduced-case” the model parameter θp = [K1, K2] is not con-
sidered (i. e. it is assumed as perfectly known according to authors’ values) because of
its multi-collinearity effect. The MVG-approximation seems to be a good approxima-
tion of the shape of the Bayesian posterior (i. e. the likelihood). However, the MVG-
approximation over-estimates the uncertainty with respect to the Bayesian posterior in
those cases where it is truncated as strictly positive (see for example KS vs. kSTO).
This is because the MVG distribution is defined over an un-bounded parameter-space.
On the other hand, if it is considered the case where inference is not affected by the
parameter-positivity-constrain (see for example τ vs. µMAX,S), the MVG-approximation
may under-estimate the parameter-uncertainty, confirming the observations of Omlin
and Reichert (1999) and Vrugt and Bouten (2002). The above results were also con-
firmed for data sets A and C (data not shown); the MVG-approximation is a reasonable
approximation for the posterior.

For both, the “reduced-case” (Figure 4.4.6, upper row) and the “full-case” (Figure
4.4.6, lower row) comparisons, and considering the three data sets, the quality of the
frequentist-approximation is analyzed through the K-S statistics. Although for the
“reduced-case” the MVG-approximation is a reasonable approximation for the poste-
rior, for the “full-case”, the same MVG-approximation is not appropriate as suggested
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Figure 4.4.6: The two-dimensional K-S statistics for the “reduced-case” (upper row) and
the “full-case” (lower row) comparisons relative to data set A -black bars-,
data set B -grey bars- and data set C -white bars-. Figure 4.4.5 is evaluated
in the upper row -grey color-. In the “reduced-case” the linear approxima-
tion is reasonable, while in the “full-case” it is unsatisfactory.

by the higher values of the K-S statistics. It is worth to remark that in the “full-case”
the Bayesian posterior accounts for θp through a uniform, finite-range prior, while the
corresponding MVG-approximation, Norm(θ∼pm ,C), is estimated fixing the problematic
parameter θp at θpm, the modal-values of p(θ|D). In other words, during Bayesian in-
ference θp is weakly specified, while during the frequentist inference θp is considered
as perfectly known. Note that, the assumption of a perfectly known θp is questionable
(i. e. if θp is problematic because its value is highly uncertain, then how is it possi-
ble to assume it as perfectly known?) but rather necessary to make the computation
of the covariance matrix feasible. Hence, the disparity in assumptions about the prior
distribution of θp between Bayes and the MVG-approximation (i. e. vague vs. per-
fect prior knowledge) may lead to the quantitative differences observed through the K-S
statistics. Furthermore, as the model is non-linear in parameters, the goodness of the
MVG-approximation to the posterior can change just with the location of the estimation,
which depends on available data.

Finally, the estimated Hessian matrix depends on the MLE obtained by a kernel-
approximation of the posterior. For non-linear systems, the Hessian includes the effect
of the curvature, reflecting the degree of non-linearity induced by the model structure

115



4 Bayesian and Frequentist Inference under Comparison

(Seber and Wild, 1989). The covariance matrix based on the Hessian is a linear approx-
imation to the likelihood only when the curvature effect vanishes in the neighborhood
of the MLE. Thus, it is important to reach the MLE to have a reliable linear approxi-
mation of the likelihood surface. In our case, we run a large number of MCMC samples
in order to achieve a reliable MLE. However, as it has been shown above, this is a nec-
essary but still not sufficient condition to be satisfied in order to have a reliable linear
approximation of the parameter uncertainty estimation.

4.5 Conclusions

Parameter uncertainty estimation for an activated sludge model (Sin et al., 2005a) was
addressed exclusively based on the analysis of (three) OUR profiles within Bayesian and
frequentist inference frameworks. It was discussed how under particular hypotheses,
Bayesian inference can be reduced to a frequentist derivation. Hence, comparing the
results of the two inferential procedures it is possible to test if the assumed hypotheses
that lead to the linear (i. e. frequentist) approximation formulae are justified. Global
sensitivity analysis helped in elucidating best identifiable parameters. Effect of the mea-
surement model choice on the Bayesian posteriors was also assessed. For the model
and data at hand, only two model-parameters, δ and µMAX,S , could be estimated with
appropriate precision. We found that the goodness of the frequentist approximation en-
hanced when non-identifiable parameters where assumed as perfectly known. This is a
quite common procedure in wastewater treatment modelling with sparse data. However,
although this “perfect-knowledge” assumption may be questionable in many situations,
it is still necessary for the computation of the frequentist-approximation. On the other
hand, Bayesian inference was shown as a more flexible methodology since it allowed rea-
sonable probabilistic description of the problematic parameter. Moreover, as there are
many situations where a priori it is not possible to assess suitability of the linear approx-
imation methods for addressing the estimation of parameter uncertainty when working
with ASM-type models, it may result advisable to use Bayesian inference instead.
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5.1 Abstract

5.1 Abstract

This chapter presents a multi-criteria evaluation methodology for determining the oper-
ating strategies for bio-chemical, wastewater treatment plants based on a model analysis
under an uncertainty that can present multiple steady states. The method is based on
Monte Carlo (MC) simulations and the expected utility theory in order to deal with the
analysis of choices among risky operating strategies with multi-dimensional outcomes.
The motivation is given by a case study using an anaerobic digestion model (ADM)
adapted for multiple co-substrates. It is shown how the multi-criteria analyses’ compu-
tational complexity can be reduced within an approximation based on Gaussian-process
regression and how a reliability map can be built for a bio-process model under uncer-
tainty and multiplicity. In our uncertainty-analyses case study, the reliability map shows
the probability of a biogas-production collapse for a given set of substrates mixture input
loads.

Nomenclature and Notations

X1 Pig manure substrate inflow COD concentration (kgCOD/m3)
X2 Beet energy crop co-substrate inflow COD concentration (kgCOD/m3)
kdis First-order disintegration rates (1/d)

KI,NH3 Free-ammonia inhibition constant (kmoleN/m3)
xch Inflow COD fraction of carbohydrate (-)
xpr Inflow COD fraction of protein (-)
xli Inflow COD fraction of lipids (-)

xinert Inflow COD fraction of inerts (-)
µmax,ac Acetoclastic maximum rate (1/d)
Xac(0) Initial acetoclastic population (kgCOD/m3)
S Number of days for the dynamic start-up period (d) - t = 1,. . . ,S
T Number of days of model-simulation (d) - index t = 1 ,. . . ,T
M Number of uncertain inputs sampled from probability models - index j = 1,. . . ,M
Z Number of criteria (or objectives) to be optimized - index z = 1,. . . ,Z
E Number of steady-states (equilibria) - index i = 1,. . . ,E

Emax Maximum number of steady-states possible for a fixed uncertainty analysis framing
N Number of feasible actions - index k = 1,. . . ,N
D Number of manipulative (or control) variables - index d = 1,. . . ,D
Q1 Pig-manure substrate inflow (m3/d)
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Q2 Beet energy crop co-substrate inflow (m3/d)

5.2 Introduction

Nowadays, most wastewater treatment bio-process operators still find it difficult to se-
lect a compromise between a high-efficiency process performance and operational safety.
However, a very common solution to this decision-making problem is to perform an ex-
pensive and long-lasting pilot-plant experiment. One of the reasons why plant operators
trust the experimental method is that it implicitly takes into account the uncertainty
inherent to the bio-chemical system. On the other hand, an outcome from the system’s
mechanistic model is distrusted since it fails to represent the epistemic uncertainties
explicitly. Nevertheless, in many areas of wastewater treatment science and technology,
mathematical models are built to simulate complex processes in order to find appropriate
operating strategies. Since the process of modeling real-world phenomena is more or less
biased by our epistemic uncertainty, scenario analyses by means of Monte Carlo (MC)
simulations for multi-criteria evaluations are attracting increasing attention amongst the
users of such “uncertain” models.
Recently, model-parameter uncertainty was included for multi-criteria evaluations of

waste-water treatment plants (WWTPs) operating under different control strategies
(Flores-Alsina et al., 2008; Benedetti et al., 2010) and different uncertainty analyses
(UA) scenarios (Sin et al., 2009). Under uncertainty, the criterion is a stochastic quan-
tity, since the uncertainty in the model parameters is propagated through the computer
code. A limitation of the above-proposed UA is that the probability density function
(PDF) that generated the criterion is constrained to be uni-modal. In other words,
the UA framing should be such that only one fixed-point, steady-states solution (or
equilibria) is possible.
However, it is well known that a multiplicity of steady states is very common in chem-

ical and biological systems. Isothermal multiplicity that is the result of non-monotonic
kinetics occurs only when the non-monotonic kinetic dependence of the rate of the re-
action upon the species concentration is sharp enough (Elnashaie et al., 2007). For
example, the WWTP models ASM (Henze et al., 2000) and ADM1 (Bastone et al.,
2002) are known to have non-monotonic kinetics due to multiplicative inhibition.
Recently, stability, phase-state and bifurcation analyses were proposed in order to

determine the appropriate operating-condition strategies for anaerobic digestion (AD)
bio-reactors (Shen et al., 2007; Volcke et al., 2010; Sbarciog et al., 2010). Simple control
laws based on this type of analysis are attractive because of their ease of implementation
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and the guaranteed process stability. Unfortunately, however, some difficulties arise if
a real-scale, co-digestion plant that is processing complex substrates is considered. For
example, the influent composition can hardly be considered as a time-invariant “param-
eter” of the system (e. g., manure composition depends on the animal diets, unknown
dilution factors, aging times, storage conditions and other environmental disturbances).
Moreover, the stability, phase state and bifurcation analyses suffer from dimensional
complexity and thus only simplified models or models with a very limited number of
uncertain parameters can be used.
This chapter proposes a multi-criteria evaluation methodology that can deal with a

multiplicity of steady states and have no restrictions on the type of uncertainty descrip-
tion. Full environmental-system models can be used. The main idea presented in this
contribution is: i) the multi-modal PDF of the multi-criteria evaluations is approximated
with a Gaussian mixture model (GMM) and ii) its expected utility PDF is computed in
order to reduce the multi-modal, multi-criteria problem to a standard uni-modal, multi-
criteria problem. In order to reduce the UA’s computational complexity, the Pareto
front is estimated by an approximation within the Gaussian process regression (GPR).
The chapter is organized as follows. The AD plant case study, its process model

and the UA framing is presented in Section 5.3, where the GMM and the GPR are
also introduced as methods used during the proposed decision-making methodology. In
Section 5.4 we present the results of the decision-making methodology applied to the AD
case study. The results are discussed and observations about the proposed methodology
are made in Section 5.5. Finally, in Section 5.6, our conclusions and future research
directions are presented.

5.3 Methods

In this chapter an anaerobic, co-digestion, biogas plant is chosen in order to test the
decision-making methodology proposed in the following. The uncertainty in the influent-
substrate concentration profiles is modeled with stochastic time-series surrogates, while
the uncertainty of the most influential model parameters is described within PDF mod-
els. The parameter correlations are accounted for. The problem is interesting because
every increase in the co-substrate’s concentration and dilution rates increases the biogas
production, but inevitably deteriorates the system’s robustness (Shen et al., 2007). This
sort of conflict gives rise to the system’s multiplicity. We show how it is possible to find
an optimal trade-off between robustness and biogas productivity under the uncertainty
for a “real” case scenario.
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5.3.1 AD Case Study Used as a Reference

A full-scale mesophilic AD plant feed with pig manure (SAVA, Miralcamp, Lleida, Spain)
was taken as a reference in this work. The total liquid volume of the anaerobic reactors
was of 6000 m3, with an average hydraulic retention time (HRT) of 20 days. The data
were collected on a daily basis during a period of 472 days. The available data included
the pH, the bio-gas outflow and the pig-manure inflow/outflow COD concentrations.
Thus, the mean COD value for the inflow, Xc1, was 43 kgCOD/m3. A beet energy crop
was considered as a potential co-substrate to be fed into the plant. Its mean inflow
COD concentration Xc2 was 244 kgCOD/m3. According to the methodology used by
(Galí et al., 2009), the first-order disintegration kinetic constant for the pig manure was
found to be 0.18 1/d, while for the beet energy crop it was 0.47 1/d. The inflow COD
fractions of the substrates (reported in Sub-section 5.3.3, Table 5.2) were estimated from
the substrates’ characterization (Galí et al., 2009).

5.3.2 Process Simulation

The ADM1 model (Bastone et al., 2002) was adapted to consider the digestion of multiple
co-substrates (Galí et al., 2009); for each co-substrate, a disintegration process with its
relative COD fractions were added (inorganic carbon and nitrogen balance was adjusted
accordingly). According to the methodology used by Galí et al. (2009), the first-order
disintegration rates (kdis) for the pig manure was found to be 0.18 1/d, while for the beet
energy crop it was 0.47 1/d. The inflow COD fractions of the substrates (reported in
Sub-section 5.3.3, Table 5.2) were estimated from the substrates’ characterization (Galí
et al., 2009).
The model was implemented in MATLAB (Mathworks Inc., USA) as a Cmex-S-

function block in the Simulink simulation environment and a stiff ODE solver was used
(ode15s) for its simulation. The model code was validated against the ADM1/ode model
of the benchmark simulation framework BSM2 (Rosen et al., 2006). If not specified oth-
erwise, the ADM1 parameters were held at their nominal values, as defined in Rosen
and Jeppsson (2006). The sources of inorganic carbon and nitrogen were assumed to be
proportional to the pig-manure inflow COD concentration: the assumed proportionality
constants were 0.001 kmoleC/kgCOD and 0.0039 kmoleN/kgCOD, respectively. Since
a wide range of inhibiting ammonia concentrations has been reported in the literature
(Chen et al. (2008) and references therein) the free-ammonia inhibition constant KI,NH3

was calibrated by minimizing the sum of the squared errors of the total COD outflow
concentrations and the pH, considering that ammonia is the main inhibitor for this sub-

126



5.3 Methods

strate. The estimated value of KI,NH3 was 0.0027 kmoleN/m3. This value is higher then
the nominal value of 0.0018 kmoleN/m3, as given in Rosen and Jeppsson (2006). This
result is probably due to a microorganism selection mechanism since the SAVA plant
has been working for more than two years with a rich-ammonia substrate.

5.3.3 Model Input Uncertainty

The collection of all the sources of uncertainty is generally called the “input uncertainty”.
Two sources of input uncertainty were considered in our case: i) the model parameters
and ii) the time-variable composition in the COD substrates.

Model Parameters

In the case of the ADM1 co-digestion model the parameters can be grouped into three
categories: i) parameters describing the complex nature of the inflow organic substrates
(e. g., the substrate disintegration kinetics, COD fractions, etc.); ii) parameters linked to
the bio-chemical processes (e. g., the hydrolysis rate, acidogenesis rate, etc.), the plant’s
design and operation (e. g., the reactor volume, temperature, etc.), and the transfer
of phases (e. g., Henry constants, etc.); and iii) the parameters related to the initial
state conditions of the system (e. g., the microorganism concentrations, etc.). In our
case, 168 model parameters were present in the adjusted ADM1 model for co-digestion.
Because there were too many potential sources of model-parameter uncertainty, only the
influential over the variance of methane production were selected. First, a sub-set of 21
model-parameters were selected based on our knowledge of the process. Then, over this
sub-set, we performed a variance-based, global sensitivity analysis (SA). The global SA
was based on a Bayesian procedure developed by Oakley and O’Hagan (2004), which
is available as free-software called “Gaussian Emulation Machine for SA” (GEM-SA).
The advantage of this probabilistic SA is its computational efficiency if compared to
other standard global SA methods. In order to keep this study focused on the UA-based
multi-criteria methodology, we present only SA-results. We observed, that when the
inflow substrate loads were included in the SA as uncertain inputs, the most influential
parameters were the disintegration rates (kdis), the inflow COD fractions (carbohydrate
xch, protein xpr, lipids xli and inert fraction xinert), the acetoclastic maximum growth
rate (µmax,ac) and the initial acetoclastic population, Xac(0). Moreover, we performed a
sequential SA over the 21 model-parameters for a fixed value of the pig manure loading
inflow (300 m3/d) and a variable co-substrate COD loading. As expected, the result was
that the µmax,ac and Xac(0) importance increase with the increase of the co-substrate
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COD loading since the bottleneck acetogenic/methanogenic reaction becomes active and
methane production starts to decline. Finally, only the influent COD fractions and inflow
COD concentrations relative to the substrates were assumed uncertain. The reason is
two-fold: first, one should try to keep computational demand of UA low and second,
because of presentation simplicity since our aim is not to achieve a high fidelity analysis
but an overview of the proposed UA-methodology.
The input uncertainty is modeled within probability distributions (O’Hagan and Oak-

ley, 2004). In our case, a Beta probability distribution was used to model the uncertainty
of the inflow COD fractions (carbohydrate xch, protein xpr, and lipids xli) for the respec-
tive substrates. The Beta distribution is defined as

Beta (x|α, β) = Γ (α+ β)
Γ (α) Γ (β)x

α−1 (1− x)β−1 , (5.3.1)

where Γ is the gamma function Γ(n) = (n-1)!. It is defined on the finite interval range
(0, 1) and has only two parameters (α, β). The parameters (α, β) are related to the
Beta distribution’s expected value µb= E(x) and the variance σ2

b = Var(x) within the
following expressions:

α = −
(
µ3
b − µ2

b + µbσ
2
b

)
/σ2

b ,

β =
(
µb − σ2

b + µbσ
2
b − 2µ2

b + µ3
b

)
/σ2

b .
(5.3.2)

The Beta distribution was preferred to the commonly used uniform distribution be-
cause in our case it was unrealistic, since experts can only specify intervals. Because
the Beta distribution has a wide range of shapes (i. e. symmetric and asymmetric)
over a finite range of values, but few free-parameters, the expert’s knowledge about the
parameter-uncertainty can be easily modeled. For example, as the Beta distribution,
inflow COD fraction values are defined on the finite interval range [0, 1]. Moreover, the
exponential, uniform and gamma distributions are all special cases of the Beta distribu-
tion and the normal distribution can be well-approximated by the Beta distribution.
The expected values of the inflow COD fractions µb were assumed to be equal to

the values obtained as part of the laboratory substrate characterization (Table 5.2).
The uncertainty about the precision of the laboratory methods was expressed, based on
the expert’s data and experience, within the standard deviation measure σb, as given
in Table 5.2, for the respective inflow substrates. The total inert fraction xinert was
estimated with the correlation function

xinert = 1− (xch + xpr + xli). (5.3.3)

128



5.3 Methods

Table 5.2: Pig-manure waste substrate and beet energy crop co-substrate inflow COD
fractions.

Substrate Influent COD fractions (kgCOD/kgCOD)
carbohydrate xch protein xpr lipids xli

Pig manure µb 0.41 0.20 0.03
Pig manure σ2

b 0.1 0.1 0.05
Beet µb 0.83 0.08 0.03
Beet σ2

b 0.1 0.05 0.05

The sampling of COD fractions from the distributions was performed by the inverse
method; the random numbers were generated from a Hammersley low-discrepancy se-
quence (Hammersley, 1960), since it is known to perform better than Latin hypercube
sample generators for multi-dimensional MC routines (Wang et al., 2004 and therein
references). Because of the uncertainty propagation associated with Eq. (5.3.3) it was
necessary to apply a simple “acceptance-rejection” method in order to obtain positive
values for the inert fraction, xinert ≥ 0. The ADM1 model distinguishes between the
soluble and particulate inert COD fractions. It was assumed that 50% of the total in-
ert fraction was composed of soluble inerts. For our applications, this assumption was
arbitrary.

Time-Variable Composition in the COD Substrates

The second source of uncertainty was the inflow COD concentrations of the substrates
Xc1 and Xc2. A common procedure in the WWTP simulations is to build an explicit
time-series model in order to simulate the COD inflow concentrations and loads (Ger-
naey et al., 2011). The uncertainty is introduced when MC samples of the time-series
model parameters are taken. The problem with an explicit time-series model is that
there is some ambiguity in selecting the proper model class or order. Instead, we applied
an alternative approach, known as the “surrogate time series”, which is based on the
generation of constrained randomizations of the time series of the data. The advantage
of the surrogate model is that there are no parameters at all: the dynamic sample is
constructed directly from the original measured data by the amplitude-adjusted, Fourier-
transform, re-sampling technique (Schreiber and Schmitz, 2000). The generated random
surrogates are constrained to have the same auto-correlation and the same probability
distribution as the original data sets. In a multi-variate case, the cross-correlation func-
tion between the data channels is preserved. An interesting feature of this re-sampling
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technique is that it allows the construction of surrogates from multivariate, spiky-data
time series, which is useful when simulating unexpected extreme events.
The surrogate time series were constructed from the measured pig-manure COD con-

centrations at the bio-gas plant of SAVA. Time-series COD measurements for the beet
energy crop were not available because it was proposed as a potential co-substrate for the
SAVA plant. Thus, its COD time-series concentration surrogate was assumed to have the
same frequency characteristics as the pig-manure disturbance. However, the expected
COD value of the beet energy crop’s co-substrate was fixed to the value estimated during
the substrate characterization (244 kgCOD/m3), while its standard deviation was as-
sumed to be 10 kgCOD/m3. The steady-state response of the model cannot be reached
in a strict sense because the COD composition from the surrogate models is a station-
ary stochastic process. However, after a dynamic start-up period of S-days, the mean
and the variance of the anaerobic model outcomes are constant. Thus, if T is the total
number of model-simulation days, we can assert that the quasi steady-state is reached
over the time period of interest of T -S days.
Finally, the two sources of input uncertainty are joined in a set {{xch, xpr, xli,

xinert}1,2, X1, X2}j (j = 1, . . . ,M), where M is the number of uncertain inputs to
be taken from the probability models.

5.3.4 Gaussian Mixture Model (GMM)

If the system presents multiplicity for a given UA scenario then E groups of discrete data
are possible within an overall Z -dimensional criteria data set J = {Jz : z = 1, . . . , Z}.
Thus, the i-th group (i = 1,. . . ,E) is directly associated with a particular equilibrium of
the system. Summarizing, a particular value of J for the z-th criteria, i-th equilibria, j-th
uncertain input and t-th simulation time is Jz,i,j,t; as an example of compact notation,
Jz,i,j = {Jz,i,j,t : t = S, . . . , T}. A convenient way to model this data is by mixture
models (McLachlan and Peel, 2000). The mixture-model parametric formulation for J
can be expressed as

g (J) =
E∑
i=1

πigi (J|θi) , (5.3.4)

where gi(J|θi) are the conditional probability densities weighted with the mixing pro-
portions πi (which should sum to one) and θi is the vector of unknown parameters for
the i-th component density in the mixture. The probability operator (·|·) is a condi-
tional operator: the probability of the term on the left-hand side is conditional on the
value or distribution of the term on the right-hand side. The resulting function g(J)

130



5.3 Methods

is a probability density from observing the overall data J. Many types of conditional
probability densities are possible: Binomial, Poisson, Exponential, etc. In our case, a
Gaussian mixture model (GMM) with normal multivariate components was used

gi (J|θi) = 1
(2π)

Z
2 |Σ|

1
2

exp
{
−1

2 (J− µi)
′
Σ−1
i (J− µi)

}
, (5.3.5)

where θi = [µi Σi] with a mean (vector) µi and a covariance matrix Σi = Σ(i =
1,. . . ,E). After the value of E groups is specified, the parameters θi and πi of the GMM
can be inferred by an expectation-maximization algorithm as described in McLachlan
and Peel (2000). The problem is how to assign the value of E. One possible solution is
to observe that the multivariate normal components of GMM can represent clusters. If
the maximum value of E (Emax) is known a priori we can experiment with a range of
E values (i. e. E = 2,. . . ,Emax) and choose the GMM model with the highest average
silhouette value, s (Rousseeuw, 1987). In short, the silhouette value, -1 ≤ s ≤ 1, is used
to validate clustered data: when s is close to 1, data are “well-clustered”, while when s is
about zero, the clusters are “undistinguishable”. The case where s is close to -1 is when
data has been “misclassified”. When only one GMM component is present (E = 1), s is
arbitrary. If there are no clearly distinguishable clusters, i. e. s is lower then a threshold
value s∗, then a GMM model with only one component (E = 1) is a reasonable choice
in order to model the overall data set J.

5.3.5 Multi-Criteria Evaluation Methodology

In the AD operating practice it is interesting to maximize two criteria (Z = 2): the
methane production efficiency, J1(CH4), defined as the methane flow per unit of reactor
volume; and the COD removal efficiency, J2(CODrem), defined as the COD removed
from the reactor per COD entered with the inflow. In other words, the decision-maker
objective is to choose from a set of actions A = {ak : k = 1, . . . , N} the k-th D-
dimensional action vector, ak, which sets the multi-criteria set J(ak) = Jk on the Pareto
front. For convenience, we called A the “action grid”.
In our case, the action a = [Q1 Q2] consisted of fixing the appropriate pig-manure

inflow Q1 and the beet energy crop inflow Q2 rates (D = 2). Thus, we assumed that
actions are not uncertain, but perfectly under control. The admissible actions were taken
from a square region: A = {Q1 : [0, 1000], Q2 : [0, 250]} measured in m3 of inflow per
day. The action N -samples was generated from a Hammersley low-discrepancy sequence
(Hammersley, 1960). For the given UA framing, the following stationary operation states
are possible for a given action a: i) a “stable” AD operation where methane production
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5 Multi-Criteria Analyses under Uncertainty and Multiplicity

Figure 5.3.1: Uncertainty outcomes of the criterium Jz (PDF) for a given action ak under
input uncertainty.

is possible (i. e. E = 1 and index i = {stable}), ii) a “collapsed” AD operation where
the system’s buffer is broken and acidification occurs (i. e. E = 1 and i = {collapse})
and iii) an “unstable” AD operation where only for some input values the AD operation
methane production is possible (i. e. E = 2 and i = {stable, collapse}). This means
that at most two steady states are possible (Emax = 2): a “stable” AD is associated
with methanogenetic bacteria retention, while an AD “collapse” is associated with its
washout, caused by inappropriate operation conditions.

After the UA framing, the treatment plant’s objectives and its admissible decision
actions were defined. We propose a multi-criteria evaluation methodology under input
the uncertainty and multiplicity, as described in the following steps:

Step 1. Take the k-th action ak (k = 1, ..., N ) from a designed action grid A (see Figure
5.3.1).

Step 2. Generate M uncertain input samples.

Step 3. For the given action ak and for each input uncertainty sample, simulate the
model over S+T number of days. Discard the first S-days as start-up period.

Step 4. Repeat Step 3 for j = 1,. . . ,M (UA loop). Store the set of outcomes Jk rel-
ative to the stationary period (see Figure 5.3.1). Approximate the M × (T − S)
uncertain set of observations Jk with the GMM probabilistic model, g(Jk) = gk.
In particular, experiment with a range of E values (E = 2,. . . ,Emax) in order to
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find the most appropriate GMM model for Jk. If for every E value s < s∗, fix E
to 1 and store the relative GMM.

Step 5. Compute the expected utility multivariate normal distribution

uk = u(ak) = Norm

(
µU =

E∑
i=1

πiµi, ΣU =
E∑
i=1

π
′
iΣiπi

)
k

. (5.3.6)

Step 6. Repeat Step 1 to Step 5 for all N samples (action loop in Figure 5.3.1) from
the actions grid A.

The k-th expected utility multivariate normal distribution uk, defined in Eq. (5.3.6), is
simply a “center of mass” distribution of its k-th multi-modal GMM distribution. In
other words, given the i-th (i = 1, ..., E) sub-group, multi-criteria, stochastic variable
The k-th expected utility multivariate normal distribution uk, defined in Eq. (5.3.6),

is simply a “center of mass” distribution of its k-th multi-modal GMM distribution. In
other words, given the i-th (i = 1,. . . ,E) sub-group, multi-criteria stochastic variable
Ji(ak),

Ji (ak) ∼ gi (J (ak) |θi) , (5.3.7)

the expected utility principle (Parmigiani and Inoue, 2009) consists of choosing the
action a that maximizes the expected value of

Uk =
∑E
i=1 πi,kJi,k∑E
i=1 πi,k

∼ u (ak) . (5.3.8)

In our case, U is a stochastic Z -dimensional multivariate outcome and thus we are
more interested finding Pareto-efficient actions based on the mean vector µU = [µU1(CH4)
µU2(CODrem)]. The expected utility mean µU can be considered as a real-valued summary
of the worthiness of the outcomes that may result from it, while the corresponding
standard deviation σU expresses the uncertainty about this summary. As the Neumann-
Morgenstern utility theory requires (Parmigiani and Inoue, 2009), the GMM mixing
proportions πi(ak) are considered fixed since they are regarded as a description of a
well-understood chance mechanism, i. e. the UA framing. Note that the relative choice
of s∗ depends on the degree of “dissimilarity” that we expect between the clusters of
steady-state points: in our case we chosen a relatively high s∗ = 0.8 because “collapse”
and “stability” for an AD-system are very “dissimilar”. Thus, fixing s∗ is performed
with regard to common sense and trial-and-error procedure.
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Note that for a given action ak the GMM models would result in an inappropriate
description of the overall outcomes if the number of uncertain input samples (i. e. the
value of M ) is too low. In order to estimate an adequate number of M, we propose a
simple “greedy” method:

Step 1. Compute the GMMold model with Mold samples for a known unstable or stable
AD case (action a*).

Step 2. Compute the GMMnew model with action a* using Mnew = Mold + ∆ samples.

Step 3. If the difference between θi,new = (µi,new, Σi,new) and θi,old is significant, set
Mold = Mnew and repeat ii) and iii).

Step 4. Otherwise, compute GMMnew and GMMold on a different randomly chosen
action a** (unstable or stable AD case should result) and check if the test of step
iii) is still satisfied. If it is, then Mnew is a valid number of MC samples, otherwise,
go to step ii).

In our case study, the multi-criteria space was two dimensional (Z = 2), and the number
of action samples was limited to N = 80 because of computational complexity issues.
We found that for M = 200 samples (number of COD fractions and profiles) the above
“greedy” algorithm was satisfied (initial try with Mold = 50 and ∆ = 10). The start-
up simulation period was 640 days (S = 640), while the steady-state period was 960
days (T = 1580). The sampling time was fixed to 4 days because the auto-correlation
information was not required to build the GMM models. This choice intuitively suggests
that sufficient MC samples (M × (T − S)/4 = 47,000) were used to calibrate the GMM
model for a given action ak. The initial conditions of the simulated bio-gas plant were
kept constant. Their values were found at the steady-state for a pig-manure feed fixed
to a nominal value of 300 m3/d in order to simulate the scenario where a plant operator
switch from digestion of pig-manure alone to co-digestion. It would be easy to model the
initial biomass concentration uncertainty since its relative probability distribution can
be directly obtained from the nominal, MC-scenario. However, since in our UA-framing
the growth/decay yields are assumed well known the resultant uncertainty of the initial
biomass would be low. Thus, the additional biomass-uncertainty would just slightly
change the outcome uncertainty distribution.

5.3.6 Gaussian Process Regression (GPR)

The computation of only N = 80 action samples (a total of N×M = 16,000 model runs)
required approximately 14 hours of simulation on a Core2 Duo PC with 2 GB RAM,
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under the Windows XP operating system. It is obvious, that if a denser mapping of
µU and σU is desired, an alternative to the “brute-force” approach is necessary. One
approach is to use meta-models (emulators) as a replacement for the original simulation
model. The Gaussian-process regression (O’Hagan, 1978) emulator is an interesting
choice for non-linear interpolation problems because of its relatively simple structure
definition and, due to its probabilistic nature, its automatic estimation of the prediction
variance. This means that a complex nonlinear simulation model containing stochastic
elements is replaced with emulator that is a simpler, but gives equivalent probabilistic
and prediction behavior.
Here, modeling with Gaussian process regression (GPR) is presented only in brief; for

a more detailed explanation see, e. g., Rasmussen and Williams (2006). Assume that
the dependent variables y have a functional relationship of the form

yi = f(xi), (5.3.9)

where x denotes an input vector (covariates) of dimension D. The Gaussian process
is a random function, fully described by its mean and variance. Gaussian processes
can be viewed as a collection of random variables yi with a joint multivariate Gaussian
distribution y ∼ Norm(0,K). The covariance between the values of the function yi

and yj is expressed by the elements Ki,j of the covariance matrix K as cov(yi, yj) =
Ki,j = C (xi, xj). Any function C (xi, xj) can be a covariance function, providing it
generates a non-negative definitive covariance matrix K. One of the many choices for
the covariance function C (·,·) that we found suitable in our case is a rational quadratic
(RQ) covariance function

C (xi,xj) = CRQ (xi,xj) = σ2
s

{
1 + (xi − xj)T R (xi − xj)

2γ

}−γ
, (5.3.10)

where R is a diagonal matrix of D roughness parameters rd (d = 1, ..., D), σ2
s is

the estimate of the vertical scale of variation and γ is the shape parameter determining
the diffuseness of the length-scales. The covariance matrix K depends on the selected
covariance-function parameter vector ϕ = [r1 ... rD σ2

s γ], which is estimated using the
training data (X, y) where X = [x1 x2. . .xN] is the D × N design matrix and y = [y1

y2 ... yN]. A plausible estimate of the GPR parameter vector ϕ can be obtained by
minimizing the log-marginal likelihood

logp (y|X) = −1
2yTK−1y− 1

2log | K | −N2 log (2π) . (5.3.11)
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The minimization of the log-marginal likelihood is computationally demanding since
the inverse of the data covariance matrix K (N × N ) has to be calculated at every
iteration. On the other hand, there are only D + 3 GPR parameters to be estimated,
which means that the “curse of dimensionality” is less problematic than for other black-
box statistical methods.
Once the Gaussian process regression (GPR) parameters are known, it is, due to

probabilistic nature of emulator, possible to calculate a normal predictive distribution
y* | (X, y), x* for a given new prediction input x* as (Rasmussen and Williams, 2006)

µGP (x∗) = k(x∗)K−1y (5.3.12)

σ2
GP = κ(x∗)− k(x∗)KT−1k(x∗) (5.3.13)

where k(x*) = [C (x1, x*) C (x2, x*) ... C (xN, x*)] is the N × 1 vector of the
covariance between the training and the prediction cases, and κ(x*) = C (x*, x*) is the
auto-covariance of the prediction input. The prediction variance can be considered as
a measure of confidence in model predictions, which is based on training data density
and location. The utility of GPR is that of standard regression except that it does
not require a structure resembling the system to be modeled but relying solely on the
emulation of input-output behavior.
The procedure to replace a complex nonlinear AD model with a numerically more

inexpensive, but empirically equivalent black-box GPR model was employed in our case
as follows:

Step 1. A representative set of input data, X, and target data, y, that cover all situations
of interest was generated using the simulation model at hand. Inputs were the
actions X = {ak : k = 1, . . . , N} sampled from the action grid A. Since for the
considered RQ covariance function only a multiple-input, single-output emulator
can be build, we constructed one GPR model for each output of interest: µUCH4,
µUCODrem, σUCH4, σUCODrem and πcollapse. In this way, for example, it is possible to
obtain for any action a∗ of A the relative value µUGP,CH4.

Step 2. GPR model parameters for the selected covariance function, Eq. (5.3.10), were
optimized so that the GPR response is as close to the target one according to the
cost, Eq. (5.3.11).

Step 3. GPR model was validated with the comparison of responses using data that
were not used for identification of GPR model (20% of the training data set) to
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confirm its usefulness for further analyses.

Step 4. The original complex simulation model was replaced with GPR model for the
following analyses.

5.3.7 Pareto Front of the Expected Utility

The Pareto front of µU was computed within a “non-dominated sorting” of 10,000 GPR
model samples µUGP = [µUGP,CH4 µ

U
GP,CODrem]. The goodness of the fit for the relative

µU was expressed in terms of the GPR prediction’s standard deviation σUGP . In order
to find the Pareto front over higher dimensional spaces the “non-dominated sorting”
approach can be substituted, for example, with some multi-objective genetic algorithm
in order to reduce the number of GPR model evaluations. In any case, without a fast
and reliable system emulator, any iterative optimization algorithm would still require an
unreasonable amount of time to converge to the Pareto front.

5.4 Results

A multi-criteria evaluation of the performance of the AD plant is essentially based on
Eq. (5.3.6), where the expected utility multivariate normal distribution uk is evaluated
for each k-th decision operation action. Thus, the first result represented in Figure
5.4.1 is the expected utility distributions uk for each k-th action (k = 1,..., N ). The gray
ellipses are the 95% percentile contours of the respective uk distributions, while the black
dots represent their midpoints (µUk ). The continuous segment from point A to B is the
GPR-approximated Pareto front, while the discontinuous segments are the upper and
lower error bounds estimated from 2σUGP (95% prediction interval). Note that the GPR
approximation assumes noise-free training data. We highlighted two interesting utility-
distribution centroids: point A represents the scenario where the removal of the COD
is maximized, while point B represents the scenario where the methane production is
maximized. Point A is interesting from a practical point of view if a decision maker focus
only on environmental issues, e. g., when dealing with ecologically sensitive rural areas.
In our case, approximately 15% of the COD removal capacity is lost if the methane
production is prioritized; on the other hand, methane production is increased by four
times. Note how the prediction interval of the estimated Pareto front is wide in areas
where the training input space is sparse (e. g., near point A), while it is narrow in areas
where training data are available (e. g., near point B). An operator is free to choose
an efficient policy located on the segment between those two points, depending on its
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Figure 5.4.1: Expected utility uk 95% percentile contours (gray ellipses) and the corre-
sponding midpoints (dark dots). The continuous segment from point A to
B is the GPR-approximated Pareto front µUGP in the multi-criteria space,
while the discontinuous segments are the 2σUGP upper and lower prediction
intervals for the GPR-approximated Pareto front.

objectives. If needed, one could always perform additional UA simulations in order to
refine the Pareto-front estimation where the confidence region is too wide.

The second important result is the information about the process reliability for a given
control action a. The process is unreliable if the AD reactor collapses. The probability
of an AD collapse for a given action a is provided by the GPR-approximated mixing
proportion πGP,collapse. This probability is represented in Figure 5.4.2 as a “process
reliability map”. The continuous segment from point A to B is the set of actions that
are Pareto efficient. Note that those actions are all 100% reliable, but are bordering the
region where 100% reliability is not guaranteed any more. We observe that if methane
production is to be maximized by increasing the co-substrate, rich-COD, inflow load
Q2 (moving from point A to B), then the addition of the buffering solution Q1 (pig
manure) is essential if a reliable AD operation is desired. Point B is a crossway (Figure
5.4.1 and 5.4.2). In fact the system’s 100% reliability and methane productivity cannot
be satisfied at the same time just by adding the pig-manure substrate. If we maintain
Q1 as constant at the nominal value of point B and increase the co-substrate COD
loading rate Q2, the biogas yield may increase, but the reliability of the process will
decrease. If Q1 is increased in an attempt to make the plant operation more robust,
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Figure 5.4.2: Process-reliability map where πGP,collapse is the probability of an AD plant
collapse under a given control action a = [Q1 Q2]. The continuous segment
from point A to B is the GPR-approximated Pareto front µUGP in the action
space A.

biomass washout occurs: the plant’s collapse probability increases within a decrease of
the expected methane productivity. If one tries to force the system to produce more
methane than it produces at point B, a “slide-down” effect of the expected criteria
midpoints is observed in Figure 5.4.1.

Finally, the GPR mapping between the actions and the expected utility means µUGP,z
and the standard deviations σUGP,z is represented in Figure 5.4.3. Actions that are
Pareto efficient are also represented. Under the methane production maximum policy
(point B) the expected methane yield is 2.3 ±0.50 m3CH4/m3Vliq/d. On the other
hand, if the COD removal is maximized then the expected methane yield is 0.4 ±0.08
m3CH4/m3Vliq/d. The standard deviation σUGP,CH4 related to the expected utility of
methane is not constant. In particular, if only the Pareto-efficient actions are considered,
the standard deviation increases by 0.10 m3CH4/m3Vliq/d for a unit increase of methane
production. The relationship is linear. This result can be explained by the fact that the
uncertainty associated with the inert COD fraction scales with the average inflow COD
loading. On the other hand, if we consider the expected utility of the COD removal
efficiency (see 5.4.3, lower right), we observe that its standard deviation σUGP,CODrem is
more or less constant at 0.06 kgCOD/kgCOD (only Pareto-efficient actions considered).
The value of σUGP,CODrem is mainly due to the uncertainty in the COD inert fraction
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Figure 5.4.3: Expected utility means µUGP,z (left) and standard deviations σUGP,z (right)
for the respective criteria (methane production (up) and COD removal
(down)). The continuous segment from point A to B represents actions
that are Pareto efficient. The methane mean µUGP,CH4 and its standard
deviation σUGP,CH4 are linearly dependent. The grayscale colors indicate
the intensity of the respective measures.
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parameters. The best expected COD removal efficiencies µUGP,CODrem is approximately
73% and, as expected, it is obtained for a high hydraulic retention time (HRT) at low
flow rates (see point A in Figure 5.4.3). In fact, the microorganism’s activity is still able
to process the majority of the inflow biodegradable COD. However, if the inflow COD
load is increased, the HRT decrease: µUGP,CODrem decreases at most by 15% because
the inflow COD increase is still compensated by an increase in the degraders activity
(increase in biomass population).

5.5 Discussion

It is important to point out that any result from a UA is closely related to its framing
(Sin et al., 2009): if we are happy with the partial elicitation of uncertainty around the
prediction in question, then we should expect reasonable results. However, the contrary
is always possible. In our case, only inflow COD fractions were assumed to be uncertain.
Other important uncertain inputs may be considered: hydrolysis rates, biomass yields,
etc. In this context, global sensitivity analysis is a valuable tool in order to decide which
model-inputs (or factors) influence most a given model-output (Sin et al., 2011). The
advantage of UA is that assumptions are explicitly stated and thus, they can be changed
at will by different analysts. The task of a treatment-plant operator is to critically assess
the results relative to the given UA framing.
We used a linear affine transformation in order to reduce the multi-modal, multi-

criteria PDF to a uni-modal one. The resulting PDF was the expected utility distribu-
tion, which is a kind of “center of mass” or “centroid” of the original PDF. There are
a number of other possible transformations; however, the linear one is easy to interpret
and commonly applied (e. g., the defuzzification process in fuzzy logic).
The estimation of the expected utility Pareto front from µUGP makes it possible for a

WWTP operator to select efficient actions. The computation of these efficient actions
is fast because we introduced an approximation to the initial problem. It is thus impor-
tant to evaluate how good the approximation is. In our case, the GPR emulator was
able to give an estimate of this approximation within its predictive standard deviation
σUGP . However, this estimation depends on the particular covariance function C (xi, xj)
chosen. The covariance function C (xi, xj) represents our a-priori knowledge about the
shape of the function f (x) in Eq. (5.3.9) to be emulated. Because a rational quadratic
(RQ) covariance function was selected, we implicitly made the assumption that f (x) is
infinitely mean-square differentiable (i. e. smooth). Thus, the prediction variance esti-
mation σUGP , and the GPR emulator itself, depend not only on the number of available
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training data, but also on how reasonable our assumptions are about the shape of f (x).

The results found here agree with those found by Shen et al. (2007) for a two-
population anaerobic digestion model: the addition of an alkali solution to the reactor
improves the robustness by enlarging the attractive domain of the product-formation
equilibria. In our case the buffering agent was the pig-manure substrate. If the buffer-
ing agent was increased while maintaining a constant co-substrate feed Q2, the stability
region (the dark area in Figure 5.4.2) of the AD process reliability map was enlarged.
We similarly found that increasing the inflow co-substrate load leads to high methane
yields, but reduces the robustness of the system if no buffering solution compensation is
provided. This compensation cannot last indefinitely because of biomass washout.

Analyzing the expected utility Pareto front the conflict between the methane produc-
tion (economic objective) and the COD removal capacity (environmental objective) of the
plant is evident. If a plant operator would like to maximize methane production (point
A in Figure 5.4.1), then the COD removal efficiency would be inevitably compromised
because he/she would need to provide high pig-manure substrate loads in order to main-
tain a stable process. A low HRT implies that only the readily available bio-degradable
organic material is converted into methane, while other, slowly bio-degradable, fractions
are passed through the system “untouched”.

In practice, if a plant operator (or investor) is interested in the economic feasibility of a
current or future bio-process plant, the dispersion measure of the product formation can
give a sense of the risks/opportunities associated with the average expected monetary
benefit under the chosen operation scenario. In our case, we found a linear relationship
between the mean methane production µUGP,CH4 and its standard deviation σUCP,CH4
(Figure 5.4.3, upper row). As in modern portfolio theory (Markowitz, 1952), there is
still an “investment” risk associated with the standard deviation of the return that should
be accounted for.

The main advantage of the proposed UA methodology is that it can be applied to
systems that present multiplicity and that the MC computational complexity is reduced
by an appropriate approximation, the goodness of which can be evaluated. However,
the GPR model used for the approximation has its own computational limits: it can be
applied to problems with a moderate number of action dimensions (D < 30) and training
samples (N < 1,000) at the present level of computer technology and interpreted code.
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5.6 Conclusions

We have presented a method to conduct multi-criteria evaluations under uncertainty and
systems multiplicity. It was applied to an anaerobic, co-digestion version of ADM1 in
order to estimate the set of operation actions that are Pareto efficient. The actions were
performed over the dilution rates of the substrates. First, we show how a multi-modal,
multi-criteria distribution can be reduced within the utility theory into a standard uni-
modal, multi-criteria, analysis problem. Second, in order to estimate the expected Pareto
front, we apply a novel statistical approximation technique known as Gaussian process
regression. Because a Gaussian process is a random function, fully described by its mean
and variance, the goodness of the expected Pareto-front approximation can be assessed.
Furthermore, the computational complexity is considerably reduced.

The results show that plant reliability is strongly dependent on the proportions of the
buffering-solution substrate (pig manure) and the co-substrate, rich-COD (beet energy
crop) inflow loads. The estimated plant-reliability map showed how an increase in the
pig-manure substrate load promotes an enlargement of the stability region of the plant’s
operation. In this way, co-substrate loads can be increased in order to achieve higher
methane productivity. However, this stability enlargement is not able to sustain indefi-
nite increases of co-substrate loads since methanogenic bacteria washout occurs. Thus,
an inherent trade-off between robustness and productivity is observed. The estimated
Pareto front shows the degree of conflict between the economic objective of methane
production and the environmental objective of COD removal. We found that even if
Pareto-efficient actions are taken, the standard deviation of methane production is lin-
early dependent on its mean value. This implies that policies aiming to increase methane
yields will have inherently high production uncertainties. In this case, a mean-variance
compromise should be looked for.

Finally, it should be emphasized that the proposed multi-criteria evaluation approach
covers only the case where plant-operation optimization is performed in a static way.
Actions are fixed over time and a static regression model is built in order to emulate the
plant outcomes under uncertainty. However, a possible strategy for the future would be
to build a dynamic Gaussian process model in order to perform a dynamic optimization
of the plant under uncertainty.
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6.1 General Conclusions

6.1 General Conclusions

In this thesis, the main focus was on engineering modeling under uncertainty. Engineer-
ing modeling not only contemplates process-modeling, but also modeling decisions based
on an explicit model of a process. Within this framework, the main contributions of the
work at hand can be summarized as follows:

• A simulation environment called “virtual plant” (VP) was build in order to simplify
the engineering process-modeling step. It was applied to anaerobic co-digestion and
activated sludge modeling, but other biotechnological processes may be considered
for modeling within this simulation environment.

• In ADM environment, new core dynamics of the long chain fatty acids (LCFA)
inhibition process were proposed and tested and it was shown that saturated/un-
saturated LCFA-degraders are determinant for the evolution of the system.

• In ASM environment, instructive comparison between two popular procedures for
model-parameter inference were presented.

• A novel multi-criteria evaluation under model uncertainty in ADM environment
was developed for biotechnological processes that present multiplicity of equilib-
rium.

6.1.1 Modeling Toolkit for Engineering

Even if C/C++, Java and Python rank high in the TIOBE software index, the popula-
tion of users is mainly professional programmers and not engineers. Arguably, the most
popular “programming language” used by engineers is still Excel. One reason is that en-
gineers are not programmers, but modelers. In particular, they model decision processes.
However, today complex engineering decision problems need powerful and flexible mod-
eling environments and Excel was certainly not designed for this task. In engineering
practice, simple models are generally favored over complex models because of sparse
data, ease of interpretation and programming language functionality limitations. Over-
coming the latter implies learning a new programming language or a dedicated software.
This process is both expensive and time consuming, especially if previous programming
skills cannot be reused to accelerate the learning process. For this reason, linking Excel
to a powerful programming language may accelerate this transition process: the user
may feel comfortable within an Excel interface, while gradually migrating to a more
powerful simulation tool. A second reason for the popularity of Excel is its presence
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in almost any office. In this way, an exchange of models between engineers and their
maintenance are promoted.
In this PhD work, a “virtual plant” toolkit was developed for engineering modeling

and decision making (Chapter 2). Linking Excel to MATLAB/Simulink was a positive
experience: it permitted non-programmers to enter in the iterative process of progressive
refinement of biotechnology models and to actively contribute to process optimization.

6.1.2 Modeling in Biotechnology: the case of LCFA-inhibition Process

In the present work, we focused on models based on ordinary differential equations and
proposed two LCFA-inhibition process models (i. e. LCFA-M1 and LCFA-M2 in Chap-
ter 3). Both models were proven to reproduce the main trends of a LCFA-inhibited
system operated in a wide range of experimental designs. However, a systematic mis-
match between the proposed models and measurements (auto-correlated residuals) was
still present. This was the main reason why parameter uncertainty estimation was not
performed for these models. Instead, confidence over the estimated parameter values was
based on a global sensitivity analysis. The main result was that both models evidenced
that the distribution of the saturated/unsaturated degraders plays an important role on
the system evolution under LCFA-inhibition.
Damage of the cell-functionality was modeled by a new state variable (LCFA-M2).

This approach was superior to the usual non-competitive inhibition function approach
(LCFA-M1) when modeling sever LCFA-inhibitory events. The main advantage of the
“healthy-state” variable was that it accounted for the processes that produced a lag-
time between the complete LCFA concentration depletion and the re-start of methane
production. Understanding and correctly predicting this cell-functionality recovery lag-
time would permit the development of optimal control strategies and soft-sensors for
bio-reactors feed with lipid rich substrates.

6.1.3 Estimation of Parameter Uncertainty

When nonlinear models in parameters are used for modeling and their parameters need
to be inferred, two popular inferential procedures are available: Bayesian and frequen-
tist. However, if the parameter value uncertainty is represented as a random variable,
under particular hypotheses, the frequentist result is only a linear approximation of the
parameter-uncertainty. Although the use of Bayesian inference is commonly applied
within different fields of knowledge, it can be considered still as a new approach in the
wastewater community. This work compared the results from the Bayesian and the
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linear (frequentist) procedures under different inferential scenarios. It was found that
because there are many situations where a priori it is not possible to assess suitability
of the linear approximation, it may result advisable to use Bayesian inference instead.
Special focus was put on the comparison between frequentist and Bayesian results

under different inferential scenarios. In particular, when some parameters are non-
identifiable, a common practice in frequentist procedures is to fix those parameters at
some nominal values. The estimation of uncertainty is then performed over the remain-
ing, less problematic, parameters. From the Bayesian point of view, this assumption
implies that perfect knowledge of the values of the non-identifiable parameters are avail-
able, which is a self-contradiction. The Bayesian procedure allows describing the degree
of ignorance about the “true” value of the non-identifiable parameters in a more coherent
way: if no a prior knowledge is available, then a non-informative (or weak) informative
prior is used. Under this inferential scenario, it was empirically shown that the fre-
quentist and Bayesian uncertainty estimations return quite different results. The many
possible causes of this difference were not studied in this work.
Sensitivity analysis of the Bayesian results plays a crucial role in determining the

robustness of the inference. The random errors that are included in the model make
the relationship between measurements and predictors a “statistical” one. Thus, a sta-
tistical model for the random errors must be assumed in advance. This assumption is
as subjective as the assumption over the functional structure that describes the deter-
ministic dynamics of the bio-process under study. When the “true” statistical model is
unknown, many distributional families may be “equally” good candidates to model ran-
dom errors. Estimations of parameter uncertainty that result from concurrent statistical
models must be compared to verify the sensitivity of the Bayesian solutions. We limited
our sensitivity analysis to a qualitative comparison. However, Bayesian procedures offer
a powerful framework for model selection within Bayesian factors: a future goal would
be to apply this framework in model selection problems.
We conclude with the remark that the Bayesian procedure is just a choice between

many other inferential procedures: its use is more or less justified when the relative
assumptions are fulfilled.

6.1.4 Optimization under Uncertainty and its Reduction

We have presented a novel method to conduct multi-criteria evaluations under uncer-
tainty and multiplicity. This method, like other Monte Carlo methods, explicitly trans-
forms input uncertainty, suggesting a degree of objectivity of the computed results.
When input uncertainty elicitation is based only on subjective expert’s beliefs (i. e.
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knowledge), results are necessarily subjective. Contrary, if expert’s beliefs are consid-
ered objective and rational, then results should be considered objective too. Thus,
uncertainty analysis framing is of central importance in providing useful results.
Under specified uncertainty analysis framing, the multi-criteria evaluation method was

applied to an industrial anaerobic co-digestion biogas plant. The method was found use-
ful to optimize the bio-process in environmental and/or economic terms over a long run
operation period, while preserving operation reliability. This results indicates that fur-
ther improvement and application of such multi-criteria evaluation method is potentially
beneficial to other industrial biotechnological processes.
Besides accounting for uncertainty in decision making, reducing uncertainty is another

important task (see the following Appendix A). Additional research, data collection or
experimental designs for reducing parameter uncertainty are generally expensive. From
an engineering point of view, further information collection is valuable only if it reduces
the likelihood of making the wrong decision. Thus, prioritization of uncertainty reduction
should be considered in the context of decision making. During the last decade, because
of increased risks and scarce resources, the expected value of information analysis in
complex health and financial economic models has become a very popular procedure.
Extending its use to engineering decision making, monitoring or planning is an ambitious
task for the future.

6.2 Outlook

Virtual Plant (VP)

The VP toolkit (Chapter 2) is at its early stage of development and thus, as any new
software, it needs a considerable debugging and code-optimization effort. One of the
many solution to speed-up its development could be to make the code available under a
free- or open-source license.

LCFA-inhibition Process Modeling

The proposed models for the LCFA-inhibition process (Chapter 3) needs to be falsified
by the scientific community. Laboratory protocols for LCFA measurements in the solid
and liquid phase should be improved in order to decrease experimental errors. A ranking
of parameters that mostly contribute to the model-output variability is still missing and
thus, a sensitivity analysis of parameters is needed. Moreover, an optimal experimental
designs and a proper likelihood function that accounts for residual correlations should
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be built for a credible inference of parameters.

Parameter Inference

When data are sparse in relation to model-complexity and no prior knowledge is available
over the possible values of the parameters, Bayesian formulation cannot per-se improve
the parameter collinearity problem. However, Bayesian modeling may improve param-
eter non-identifiability when prior information and the imprecision of this information
are entered in the inferential procedure. The frequentist procedure can be modified
to handle collinearity by penalized likelihood (regularization), but the problem is that
parameter-uncertainty estimation is not directly possible within this inferential frame-
work. In the present work, the prior information was marginal in our analysis. However,
the real strength of the Bayesian procedure is the possibility to deal with realistic sit-
uations in which informative prior knowledge can be taken into account and properly
balanced with the experimental information.
In Chapter 4 was found that when modeling complex biological processes, “lumped”

parameters that are assumed uncertain may vary depending upon where the data were
collected. This indicated that parametric relations conditional on particular environmen-
tal factors should exist. A future challenge would be to specify a multilevel stochastic
representation of such environmental variability within a hierarchical Bayesian model-
ing framework, trying to improve the extrapolation capacity of a particular bio-process
model.

Optimal Decisions under Uncertainty

In our case study of a co-digestion biogas plant (Chapter 5), parameter uncertainty
(i. e. COD fractions of the substrates) was modeled by expert’s knowledge base on ex-
perimental evidence. However, a more formal estimation of parameter uncertainty could
have been done within the Bayesian inferential procedure because it combines prior
expert’s knowledge and data. The advantage of using Bayesian inferential results as
an input to uncertainty analysis for decision making is attractive especially for high-
dimensional spaces with correlation parameter-structures. Moreover, some important
uncertain parameters (i. e. µmax,ac and Xac(0)) where not included in the uncertainty
analysis case study and thus, there are certainly margins in order to improve the uncer-
tainty analysis framing.
The multi-criteria evaluation approach presented in this work has a practical limita-

tion: actions are Pareto efficient only if hold over a long-run period. In other words, the
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optimal control strategy is of static type. Beside robustness, flexibility in the operation
of a bio-reactor is a valuable attribute. A possible solution to increase the flexibility
of the plant operation would be to design a model predictive control (MPC) schema
that can work under model uncertainty. The main problem for the development of such
MPC-schema is its computational intractability. One approach to reduce computational
complexity is by approximation. Model prediction uncertainty could be approximated by
Gaussian Process emulation of dynamic systems for multiple outputs. However, build-
ing such emulator machine may result as challenging as running the original uncertain
model and thus, this option should be considered with care.

6.3 Concluding Remarks

The overall impression gained during this project can be best expressed by quoting
Voltaire:

“Doubt is not a pleasant condition, but certainty is absurd.”

Engineering environmental modeling under uncertainty for decision-making is not war-
ranted at the present state of technology and decision making culture. On one side,
technological improvements of models relay on our understanding of complex environ-
mental processes, on the willingness to admit our doubts about this knowledge, and to
provide tools to characterize and quantify those doubts. On the other hand, decision-
makers have their own doubts about the solutions proposed by engineers or scientists,
which compete or are confronted with their own conceptual models for risk assessments.
Integration of both systems of expertise is a necessary condition in order to achieve
balance between the rational and the behavioural aspects of human action.
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Appendix A. Value of Perfect Information
Analysis





Pareto-efficient actions estimated in Chapter 5 are suboptimal because they should
be robust enough in order to perform well for the many possible outcomes. Imagine
that it is possible to perform additional experiments and obtain perfect information
about the uncertain inputs. When uncertainty is removed, model-outcomes are certain
and optimal actions are possible. Expected value of perfect information (EVPI) is the
difference between the expected value conditional on perfect information (EV|PI) and
the expected value under uncertainty (EV). Thus, value of perfect information (VPI)
analysis addresses the question of how much is one willing to pay for perfect information
before performing any action or decision.

In particular, assume we are faced with a set of possible actions A = {ak : k =
1, . . . , N}, which influence the state of a given system modeled by the explicit model
Jk = f(ak,X), where X is the vector of uncertain inputs and Jk is the uncertain benefit
(criteria). The overall EVPI scalar quantity for input X is estimated as

EV PI (X) = EV |PI − EV

= EX
{
max

a
J(a,X)

}
−max

a
EX {J (a,X)} . (6.3.1)

Consider our case study: the AD biogas plant of SAVA. The uncertain input set
was defined as X={{xch, xpr, xli, xinert}1,2, X1, X2}. Assume that X is partitioned
in two subsets: Xp ={xch, xpr, xli, xinert}1,2 is the subset of COD fractions relative
to the pig manure substrate (index=1) and the beet energy crop co-substrate (index=2),
while X∼p = {X1, X2} is the subset of the inflow COD concentrations for the relative
substrates. Assume that it is possible to develop in the near future a new laboratory
substrate characterization procedure. The request is that this new lab-procedure should
provide perfect information over the values of the COD fractions. Contrary, assume
that it is impossible to develop a procedure that can exactly predict the inflow COD
concentration over a long period of time. In this scenario, what is the maximum quantity
of resources provided by a rational policy maker for the development of the “exact” lab-
procedure? The EVPI estimate is a point of reference for the policy maker: for example,
by investing an EVPI amount of money into the “exact” lab-procedure project, the
expected returns would be such that he did not gain nor lose any money by deciding
to finance this project when compared to not financing the project. If the quantity of
resources invested in the project is higher then the EVPI, the policy maker should expect
to take a loss.



Since we are interested in the EVPI estimate for a subset of inputs Xp (COD fractions)
the following partial EVPI is appropriate:

EV PI (Xp) = EXp

{
max

a
EX∼p|Xp [J(a,X)]

}
−max

a
{EX [J (a,X)]} . (6.3.2)

Methane production efficiency, J1(CH4), is easy to monetize and thus, it was considered
for our VPI analysis. Note that an estimation of EX [JCH4 (a,X)] is already available:
it is the expected utility mean value for the methane production, µUCH4 - Eq. (5.3.6).
The first term in the right-hand-side of Eq. (6.3.2) was estimated by using a simple

two-level sampling algorithm (Tappenden et al., 2004; Oakley et al., 2010):

Step 1. Sample once from the group of inputs of interest (Xp) and hold that inputs
constant at their sampled value - inner level sample.

Step 2. Sample L values from the group of inputs not of interest (X∼p) according to
their prior uncertainty - outer level sample.

Step 3. For each of the L sampled inputs, obtain JCH4 = f(a,Xp,X∼p,l) for l =
1, . . . , L, and estimate

max
a
EX∼p|Xp [JCH4] ≈ max

a
1
L

L∑
l=1

1
T − S

T∑
t=S

JCH4,l,t

= max
a

1
L

L∑
l=1

ĴCH4,l = m̂CH4 (Xp) .

Step 4. Repeat M times Step 1 -3 and compute the partial EV|PI as

EXp{m̂CH4(Xp)} ≈
1
M

M∑
m=1

m̂CH4 (Xp,m) .

The total number of model runs is L ×M × N since we have to account for the N
number of action values sampled from the action grid A. The expected steady state
methane production ĴCH4,l is estimated with high precision because of the high number
of samples (i. e. T − S = 960). Note that the following assumptions were necessary to
make the above sampling algorithm feasible:

• Actions were assumed discrete, sampled from A as a Hammersley low-discrepancy
sequence (Hammersley, 1960). Those action samples were fixed constant during
the two-level sampling.
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Figure 6.3.1: Sensitivity analysis of EVPI over the maximum number of neighbors pa-
rameter of the Lazy Learning smoother.

• Given m̂CH4(Xp), the number of parameter samples M is high enough to provide
an unbiased estimate of EXp{m̂CH4(Xp)} (i. e. EV|PI).

• The number of inner level samples L was fixed to one.

The last assumption is critical. In general, if L is very low the estimated EV|PI value
result biased (Oakley et al., 2010), even if the number of outer level samples M is infi-
nite. This problem was handled by assuming that EX∼p|Xp

[
ĴCH4

]
can be approximated

by a kernel smoother. The idea is to locally average ĴCH4 in the neighborhood of ak.
Assume that the variance induced by X∼p over ĴCH4 is constant in the neighborhood
of the relative nominal location ak. Lazy Learning local regression algorithm (Bontempi
et al., 1997) was used as a local regression smoother and its “winner-takes-all” paradigm
was applied: the best local approximation between a constant, a linear and a quadratic
model is automatically selected. Lazy Learning was preferred to GPR because of its
straightforward application to non-stationary noisy functions and unique parameter so-
lution for a local model quarry.
The bandwidth selection of Lazy Learning is adaptive. The minimum number of neigh-

bors was 6, because at last (n+ 1)(n+ 2)/2 samples are needed to compute a quadratic
polynomial function. In our case, n was equal to dim(a) = 2. The maximum number of
neighbors was varied between 6 and 15 to verify the sensitivity of the EVPI estimate.
The results of this sensitivity analysis over EVPI are shown in Figure 6.3.1. Observe that
EVPI is insensitive to the maximum number of neighbors when this parameter is bigger
then eight. However, note that there are still many ways to setup the Lazy Learning
smoother and thus, caution is required when interpreting results.



Figure 6.3.2: Estimated distribution of m̂CH4(Xp), and distributions of the relative op-
timal actions Q1 and Q2. The maximum number of neighbors for the Lazy
Learning smoother is set to twelve.



Figure 6.3.2 represents the distributions of m̂CH4(Xp) and the relative optimal actions
a = [Q1, Q2] when the maximum number of neighbors is twelve. As expected, significant
positive correlation (+0.53) is observed between the beet energy crop substrate inflow
rate, Q2, and the maximum methane production conditional on perfect information,
m̂CH4(Xp). This confirms the strong influence of the co-substrate over the methane pro-
duction. Contrary, a slight negative correlation (-0.31) is present between the pig sludge
inflow, Q1, and m̂CH4(Xp). On average, the range of optimal actions within perfect infor-
mation for Q1 was [0 750] m3/d, while for Q2 was [125 250] m3/d. The estimated EV|PI
value was 2.38 m3CH4/m3Vliq/d, while the estimated EV was 2.16 m3CH4/m3Vliq/d.
Note that this EV (i. e. maxµUCH4) is not equal to the GPR-approximated expected
methane yield (i. e. maxµUCH4,GP ) of 2.30 m3CH4/m3Vliq/d because only discrete ac-
tions were considered. The estimate for EVPI was 0.22 m3CH4/m3Vliq/d, which can
be more informative to a policy maker if converted to a monetary value. For example,
assume the renewable-energy bonus is 0.135 €/kWhel (Spanish scenario 2011), the inter-
nal consumption of electricity for a biogas plant is roughly 10% of the total electricity
produced, the turbine efficiency of electricity conversion is 35% (kWhel/kWhth), and 1
m3 of methane produces 10 kWhth of thermal energy. After one year of operation, the
expected monetary value gain for the SAVA biogas plant (6,000 m3) would be 207,279 €
if perfect information were available. However, to complete our VPI analysis, we should
discount the cost of money (i. e. time value of money) from the estimated EMVPI. Ob-
viously, the motivation for the development of the new laboratory technique increases if
other similar biogas plants exist or are going to be built before the new lab-procedure
project ends.
There are two important drawbacks to consider in the above analysis. The first is

computational: bias and confidence intervals estimates for EVPI are not calculated as
it is required (Oakley et al., 2010). To grantee an unbiased and precise estimation of
m̂CH4(Xp), apart of increasing the number of inner level samples, we could increase
the number of action samples. Because Lazy Learning returns an estimation of the
goodness-of-fit for each local model, an adaptative sampling procedure could be per-
formed to speed-up convergence. Due to the small sample size (limiting computation
time) the above partial EVPI estimate is more an indicator rather than a reliable ab-
solute result. Thus, further work is necessary in order to improve its credibility, since
the role of smoothing techniques could have an instrumental role in estimating EVPI
and its use requires further research. The second drawback is the assumption that the
acquired information is perfect. In reality, perfection is difficult to achieve. However,
the framework can be adopted to account for imperfect (or sample) information too.



Bibliography

Bontempi, G., Birattari, M., Bersini, H., 1997. Lazy learning for local modelling and
control design. International Journal of Control 72, 643–658.

Hammersley, J. M., 1960. Monte carlo methods for solving multivariable problems. An-
nals of the New York Academy of Sciences 86 (3), 844–874.

Oakley, J. E., Brennan, A., Tappenden, P., Chilcott, J., 2010. Simulation sample sizes for
Monte Carlo partial EVPI calculations. Journal of Health Economics 29 (3), 468–477.

Tappenden, P., Chilcott, J. B., Eggington, S., Oakley, J.and McCabe, C., 2004. Methods
for expected value of information analysis in complex health economic models: devel-
opments on the health economics of interferon-β and glatiramer acetate for multiple
sclerosis. Tech. Rep. 27, Health Technology Assessment.



Appendix B. VP-code and -interface





25/07/12 19.49 C:\Documents and Set...\mainAMH1.m 1 of 4

%% Model info

clear

% Define and describe the model

Code.modelname='AMH1';

Code.infoauthor={'Zivko Juznic-Zonta';['Copyrigth,' date];...

                 'Mollet del Valles, BCN, Spain';'UPC/GIRO-CT'};

Code.infomodel={'Simple modified Haldane model (Andrews, 1968) for AD'};

% Load the proyect from xls

S=loadxls(Code);

% Transform in symbolic S

S=sysinfo(S);

S=mcmcparam(S);

% Path network diagram (if stoich is variable, pathnet cannot be computed)

Adj_s=pathnet(S,Code);

% Save the data of the model

eval(['save ' Code.modelname '.mat']);

 

%% Write/Compile the ODE system

 

% Build the Code structure

Code=buildCode(S,Code);

% Write the C S-function for simulink

CmexModel(Code,true);

%MfileModel(Code,'sundials',S.xls.Mass);

% Generete the data class of the model

%clear PNM 

PNM=modelclass(S,Code); 

%clear Code data

 

%% Global SA with GP

 

% Plat the scatter plot matrix

NXlhs = 16;

%str={'\mu' 'K_s' 'K_i' 'X_{bio}(0)'};

str={'\mu' 'K_s' 'X_{bio}(0)'};

[Xlhs,SSlhs] = SAsslhs(PNM,NXlhs^2,str);

 

%% Optimization with GOm

 

% Use the negative log likelihood (MAP) or the LS-estimate.

likemisfit = true;

% Minimize the misfit function

ResultsGO = optimizationGO(PNM,likemisfit);

 

%% Data vs Model Prediction

 

outnames={'yXbio' 'yQm' 'yCODtot'};

PNMopt=PNMplot(PNM,[],outnames,'r');

 

%% Contour Plot for the Objective Function 



25/07/12 19.49 C:\Documents and Set...\mainAMH1.m 2 of 4

 

% Set the sensitivity range in %

settings.Range = 30;

% Sensitivity grid resolution in %

settings.step = 2;

% Upper and lower bounds option

settings.posparam = true;

% Calculate the sensitivity contour

outStr = fcnSensitivityRun('ssobjectiveGO',ResultsGO.xbest,...

    settings,PNM,likemisfit);

% Contour plots setting

outStr.setts.CplotRange = [90:2:100];

% Plot the countour

fcnMLPlot(outStr)

 

%% Sample from the posterior

 

% Run the DRAM-sampler (configure the sampler)

ResultsMCMC = optimizationMCMC(PNM);

 

% Burn-in and thin the MC-sample

burnin=5000; p=1;

chain   =ResultsMCMC.chain(burnin:p:end,:);

s2chain =ResultsMCMC.s2chain(burnin:p:end,:);

sschain =ResultsMCMC.sschain(burnin:p:end,:);

 

% Check autocorrelation of the chains

for i=1:size(chain,2)

    h(i)=plot(acf(chain(:,i),50));hold on 

end

hold off

 

% Visualy inspect the chains

figure(1), mcmcplot(chain,[],ResultsMCMC,'chainpanel',1)

figure(2), mcmcplot(chain,[],ResultsMCMC,'pairs',1)

figure(3), mcmcplot(chain,[],ResultsMCMC,'hist')

 

% Summarizing statistics

[s1,s2] = chainstats(chain,ResultsMCMC);

 

% Correlation matrix from the MC-sample

ResultsMCMC.corr=corrcov(ResultsMCMC.cov);

RHOp = corr(chain,'type','Pearson')

RHOs = corr(chain,'type','Spearman')

 

%% Linear confidence reagions

 

% Check the auto-correlation in residuals before computing the

% parameter-uncertainty

[sse,res] = ssobjectiveGO(ResultsGO.xbest,PNM,likemisfit);
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 % Estimated mode value of the model-parameters

if likemisfit x_mode = ResultsGO.xbest;

else x_mode = ResultsGO.xbest(1:end-1); end

 

% Auto-correlation function plot

figure, max_lags = 10; % Number of lags

stem(0:max_lags,acf(res,max_lags),'Color','k'),hold on 

plot([0 max_lags+.5], 1.96/sqrt(length(res))*ones(1,2),'--k' ); % upper CI

plot([0 max_lags+.5], -1.96/sqrt(length(res))*ones(1,2), '--k'); % lower CI

xlim([0 max_lags+1]),xlabel('Lags'),ylabel('ACF'),ylim([-1,1])

 

% Check the normality of the residuals

figure, normplot(res)

%%

% Function over which to estimate the Hessian matrix. Note that the

% precision of the ode solver should be high (see simulation.m)

J = @(x)ssobjectiveGO(x,PNM,likemisfit);

% Estimate the Hessian with the "Adaptive Robust Numerical Differentiation" 

% toolbox provided by D'Errico (2006). Note that parameters in the

% derivest( ) should be set. We used DerivativeOrder = 1, MethodOrder = 4, 

% Style = 'central', RombergTerms = 2 and MaxStep = 0.9

[H_est,err] = hessianest(J,x_mode);

% cond(X,p) near 1 indicate a well-conditioned matrix.

cond_num = cond(H_est);

% Covariance matrix (Marsili-Libelli2002). If the objective function is a

% sum-of-squares (SS) than the covariance matrix C=inv(H(SS(x_opt))), but

% if the misfit function is a log-likelihood than C=inv(-H(L(x_mode))).

% Note that FIM=2*H and an estime of the varance for the SS misfit is

% SS(x_mode)/(n-p).

 

n = length(res); % Number of measurements

p = numel(x_mode); % Number of parameters

v = n-p; % Degree of freedom

 

% There is no difference between the two methods below

if likemisfit % Negative log-likelihood

    Ch_est = 2*inv(H_est);

else % LS-estimate

    s2 = sse/v;

    Ch_est = 2*s2*inv(H_est);

end

 

% Confidence intervals at 95%

delta = sqrt(diag(Ch_est)) * tinv(1-0.05/2,v);

ci = [(x_mode(:) - delta) (x_mode(:) + delta)];

 

%% Bayesian and Linear ellipses

 

% Linear confidence region from the Hessian (red)

C(:,:,1) = ResultsMCMC.cov;
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% Linear c.r. from the MC-sample (blue)

if likemisfit % s2 is not considered

    C(:,:,2) = Ch_est(1:end-1,1:end-1);

    Mu = [x_mode(1:end-1);x_mode(1:end-1)]; % Ellipses centers

else

    C(:,:,2) = Ch_est;

    Mu = [x_mode;x_mode];

end

% Plot the ellipses and the MCMC samples

ellipse_pairs(Mu,C,ResultsMCMC.names,{'r','g'},0.95,chain);
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function S = loadxls(Code)

% Load the proyect from xls

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

% Get the address where xls is stored

pathname = [cd '\Models\' Code.modelname '.xls']; 

 

% For each xls sheet get the relative data

[ans,ans,input]   = xlsread(pathname,'input');

[ans,ans,param]   = xlsread(pathname,'param');

[ans,ans,stoich]  = xlsread(pathname,'stoich');

[ans,ans,rates]   = xlsread(pathname,'rates');

[ans,ans,func]    = xlsread(pathname,'func');

[ans,ans,output]  = xlsread(pathname,'output');

[ans,ans,dataxls] = xlsread(pathname,'data');

[ans,ans,graph]   = xlsread(pathname,'graph');

 

% Get the stoichometric matrix as cell structure

stoich       = nansetempty(stoich);

S.xls.stoich = stoich(2:end,2:end-1);

S.xls.Mass   = cell2mat(stoich(2:end,end));

 

% Get the model parameters:

param(2:end,4:end) = string2double(param(2:end,4:end));

S.xls.param        = param;

S.xls.rates        = rates;

S.xls.func         = func;

S.xls.input        = input;

S.xls.output       = output;

S.xls.dataxls      = dataxls;

S.xls.graph        = graph;

end

 

function Mzeros = nansetempty(Mnan)

% Change Nan for zeros in the stoichometric matrix

Mzeros = Mnan;

for i = 1:size(Mnan,1)

    for j = 1:size(Mnan,2)

        v = Mnan(i,j);

        if isnan(v{:})

            Mzeros{i,j} = 0;

        end

    end

end

end
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function [Xlhs,SSlhs]=SAsslhs(PNM,Nlhs,param_name)

% I/O for probabilisti sensitivity analysis

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

% Chose the function to evaluate.

% 'MCMC' is the sum of squares for each model output relative to data

% 'misfit' is the likelihood or the mean square of residuals

% 'output' is a given output from the model

ss_type = 'misfit';

% Output index

if strcmp(ss_type,'output')

    idx_out = 1; % Qch4 = 1, Eff_CODrem = 3

end

 

% Number of samples for the LHS

if nargin<2

    Nlhs=200;

end

 

% Location of the parameters to be optimized

optidx    =targetvector(PNM,'global');

opt_param =PNM.Parameters(optidx(1,:));

% Open the PNM data structure of the parameters (DRAM toolbox - Laine)

[names,value,parind,local,upp,low] = ...

    openparstruct(opt_param,length(PNM.Data));

 

% First principle models have positive parameters

low(low==0)   =1e-10;

upp(upp==inf) =1e10;

 

% LHS design for sensitivity analysis

Xlhs_0 =lhsdesign(Nlhs,length(low));

Xlhs   =Xlhs_0.*repmat(abs(upp-low),Nlhs,1)+repmat(low,Nlhs,1);

 

% Simulate the model in order to obtain the SS function

if ~strcmp(ss_type,'MCMC')

    SSlhs=zeros(Nlhs,1);

end

 

for i=1:Nlhs

    switch ss_type

        case 'MCMC'

            ss = ssobjectiveDRAM(Xlhs(i,:),PNM,local,parind);

            SSlhs(i,:) = ss;

        case 'misfit'

            % Mean sum of squares function (modify ssobjectiveGO!)
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            %mse = ssobjectiveGO(Xlhs(i,:),PNM); SSlhs(i)=sqrt(mse);

            % Normal likelihood function

            std_ref = 2.8; % Should provide the std for measur. errors

            param = [Xlhs(i,:),std_ref];

            nloglike = ssobjectiveGO(param,PNM); SSlhs(i)=nloglike;

        case 'output'

            % Change the parameters to be optimized inside the Smodel 

structure

            PNMnew = changeparamGO(Xlhs(i,:),PNM);

            % Get the model simulations for the i-th batch experiment

            ibatch = 1; SampleTime = [0 500]; % steady-state

            [t,x,y] = simulation(PNMnew,ibatch,SampleTime);

            SSlhs(i) = y(end,idx_out); % output variable at steady-state

            % Note. If we use FAST (Saltelli) rutine, then time points can

            % be considered.

    end

end

 

% Plot the param. against the SSlhs value

if ~strcmp(ss_type,'MCMC')

    if nargin==3

        nsub = ceil(sqrt(size(Xlhs,2)));

        [ans,idx_minSS] = sort(SSlhs);

        % Find the approx minima

        idx_minSS = idx_minSS(1:1);

        minSS = SSlhs(idx_minSS);

        for i=1:size(Xlhs,2)

            subplot(nsub,nsub,i)

            plot(Xlhs(:,i),SSlhs,'ok','MarkerFaceColor',...

                [.7 .7 .7],'MarkerSize',4)

            minX = Xlhs(idx_minSS,i);hold on

            plot(minX,minSS,'ok','MarkerFaceColor',...

                [0 0 0],'MarkerSize',6)

            xlabel(param_name{i}),ylabel('MSE')

        end

    end

end

% Get the name of the model

PNM.Code.modelname;

% Save in a txt file for the O'Hogan's SA-GP application

cd( [cd '/Models'])

eval(['save ' PNM.Code.modelname '_SSlhs.txt SSlhs -ascii -double -tabs'])

eval(['save ' PNM.Code.modelname '_Xlhs.txt  Xlhs  -ascii -double -tabs'])

% Return to the current directory

cd('..')
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function [t,x,y,u] = simulation(PNM,nbatch,SampleTime,InitialConditions)

% Simulation of the model

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

if nargin < 2

    nbatch =1;

    SampleTime = 1;

elseif nargin <3

    SampleTime = 1;

end

 

% Open the param_mcmc data structure

[names,value,parind,local] = ...

    openparstruct(PNM.Parameters,length(PNM.Data));

% Get the parameters of the model relative to the batch experiment

theta=value(ismember(local,[0 nbatch]));

 

% Time vector over which the estimations should be performed

if SampleTime == 0 % Discrete

    tsim=PNM.Data{nbatch}.ydata(:,1);

elseif SampleTime == 1 % Adaptative

    tsim=[min(PNM.Data{nbatch}.ydata(:,1)),max(PNM.Data{nbatch}.ydata(:,1))];

else

    tsim=SampleTime;

end

 

% Inflow vector

if iscell(PNM.Inflow)

    simin=PNM.Inflow{nbatch};

else

    simin=PNM.Inflow;

end

 

% Parameters

Parameters=theta(1:(end-PNM.Code.N_states));

 

% Initial conditions for the states

if nargin < 4

    InitialConditions=theta(end-PNM.Code.N_states+1:end);

end

% Solver options

options = simset('solver','ode15s','Reltol',1e-8,'AbsTol',1e-8,...

                 'SrcWorkspace','current','InitialStep',1e-10);

% Model name

model=[PNM.Code.modelname 'sim'];
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% Simualate the model. Reduce the precision of the ode solver if

% singularity in solution accrues.

try

    [t,x]=sim(model,tsim,options);

    u=siminflow;

    y=simoutflow;

catch ME1

    try

    options = simset('solver','ode15s','Reltol',1e-6,'AbsTol',1e-6,...

                 'SrcWorkspace','current','InitialStep',1e-6,'Refine',1);

    [t,x]=sim(model,tsim,options);

    u=siminflow;

    y=simoutflow;

    catch ME2

        options = simset('solver','ode15s','Reltol',1e-3,'AbsTol',1e-6,...

                 'SrcWorkspace','current','InitialStep',1e-3,'Refine',1);

        [t,x]=sim(model,tsim,options);

        u=siminflow;

        y=simoutflow;

  

    end

end

 

 

 



17/07/12 11.09 C:\Documents ...\changeparamDRAM.m 1 of 1

function PNMnew=changeparamDRAM(value,PNM,local,parind)

%Change the parameters for DRAM sampler

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

% Initialize

PNMnew=PNM;

local_target=local(parind)';

value_target=value(parind);

 

% Location of the parameters to be optimized

optidx    =targetvector(PNM,'all');

opt_param =PNM.Parameters(optidx(1,:));

% Change the target parameters that are not local

x_opt = value_target(local_target==0);

for i = 1:length(x_opt)

    opt_param{i}{2}=x_opt(i);

end

PNMnew.Parameters(optidx(1,:))=opt_param;

 

% Change the parameters that are local

if ~isempty(find(optidx(2,:)==1,1))

    opt_param=PNM.Parameters(optidx(2,:));

    x_opt=value_target(local_target~=0);

    p=sum(optidx(2,:),2);

    if p>1

        A=mat2cell(reshape(x_opt,length(opt_param),p)',ones(1,p),p);

    else A={x_opt};

    end

    for i=1:length(opt_param)

        opt_param{i}{2}=A{i};

    end

    PNMnew.Parameters(optidx(2,:))=opt_param;

end

 

    

 

 

 



26/07/12 16.05 C:\Documents an...\changeparamGO.m 1 of 1

function PNMnew=changeparamGO(x_opt,PNM)

%Change the parameters for the GO estimation

 

PNMnew=PNM; % Initialize PNMnew

 

% Change the parameters to be estimamted by GO

c=0; % counter for x_opt

for i=1:length(PNM.Parameters)

     % Check if the parameter is a target, but not local

    if PNM.Parameters{i}{1,7}==true && PNM.Parameters{i}{1,8}==false

        c=c+1;

        PNMnew.Parameters{i}{1,2}=x_opt(c);

        PNMnew.Parameters{i}{1,5}=x_opt(c);

    end

    % Check if the parameter is a target and is local

    if PNM.Parameters{i}{1,7}==true && PNM.Parameters{i}{1,8}==true

        x_local=zeros(1,length(PNM.Data));

        % Put the local values for parameter i-th in x_local

        for j=1:length(PNM.Data)

            c=c+1;

            x_local(j)=x_opt(c);

        end

            % Change the local x_opt with the new values

            PNMnew.Parameters{i}{1,2}=x_local; 

            PNMnew.Parameters{i}{1,5}=x_local;

 

    end

       

end

 

end
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function optidx=targetvector(PNM,typeGO)

% Get a vector of booleans that indicate which parameters has to be

% optimazied by the global optimization (GO) algorithm

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

if nargin < 2

    typeGO = 'all';

end

% Initialize

N_param =size(PNM.Parameters,1);

optidx  =zeros(2,N_param);

for i=1:N_param

    % Only the target parameters could be estimated by the GO since the

    % local parameters should be known, or at last their mean value should

    % be known

    switch typeGO

        case 'global'

            if PNM.Parameters{i}{1,7}==true && ~PNM.Parameters{i}{1,8}==true

                optidx(1,i)=true;

            else

                optidx(1,i)=false;

            end

        case 'all'

            % All the target parameters could be estimated

            if PNM.Parameters{i}{1,7}==true

                optidx(1,i)=true;

            else

                optidx(1,i)=false;

            end

        otherwise

            error('Should assign if all or only global parameters has to be 

estimated.')

    end

end

% The second row indicates the presence of a parameter that has to be

% estimated by the MCMC, but is local. The GO estimation will assume

% that the initial value of this parameter is fixed on the mean value of

% N(mu,sig) relative to MCMC rutine

if PNM.Parameters{i}{1,7}==true && PNM.Parameters{i}{1,8}==true

    optidx(2,i)=true;

else

    optidx(2,i)=false;

end

optidx=logical(optidx);

end
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function ss = ssobjectiveDRAM(value,PNM,local,parind)

% Sum of squares for DRAM sampler

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

% Change the parameters

PNMnew = changeparamDRAM(value,PNM,local,parind);

 

% Get the number of experiments

nbatch = length(PNM.Data);

 

% Initialize the SSE vector

ss = 0;

% Get the indexes of the measured model outputs

[ans,idx_out,idx_meas]=intersect(PNM.Output.Output_names,PNM.Measures);

% Sort the outputs as in the xls file (data sheet)

[ii,II]=sort(idx_meas);

 

% Set the norm type. L1 is more robust over outliers but could have

% multiple modes

p=2;  %L2

%p=1; %L1

 

for ibatch = 1:nbatch

    

    % Do not perform simulation over experiments with weights = 100

    if ~all(all(PNM.Data{ibatch}.weights(:,2:end)==100))

        % Get the data for the i-th batch experiment

        datai = PNM.Data{ibatch};

        % Get the measured data and remove 1st "time" columns

        ydata  = datai.ydata(:,2:end,:);

        % Get the model simulations for the i-th batch experiment

        [ans,ans,y] = simulation(PNMnew,ibatch,0);

        ymodel=y(:,idx_out);

        ymodel=ymodel(:,II);

        % Maximum number of repetitions

        Max_rep=size(ydata,3);

        

        % Squeeze the multidim. arrays of measurements into a 2Dmatrix

        ydata=catmultidim(1,ydata);

        ymodel=repmat(ymodel,Max_rep,1);

        

        % Scale parameter

        %S=PNM.Scale{ibatch}; % for every batch

        S=repmat(PNM.Scale(:)',size(ydata,1),1);

        S=S(:,idx_meas);
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        if isfield(datai,'weights')

            % Get the weights

            weights = 1./datai.weights(:,2:end,:);

            weights = catmultidim(1,weights);

            % Multiply the weights with the relative measurements and

            % compute the residuals

            res = weights.*(ydata-ymodel)./S;

            % Weighted sum of squares

            ss = ss + nansum(abs(res).^p); % Normal pdf likelihood

            %nu = 3;

            %ss = ss + (nu+1)*nansum(log(nu+abs(res).^2)); % t-student

        else

            % Scaled residuals

            res=(ydata-ymodel)./S;

            % Sum of squares

            ss = ss + nansum(abs(res).^p);

            %nu = 3;

            %ss = ss + (nu+1)*nansum(log(nu+abs(res).^2)); % t-student

        end

    end

end

 

% The output Y variances could be estimated (MAP) or fixed known in order

% to account for the different scales of magnitude. In Evans 2001 it is

% proposed  to use as a scale factor for the misfit funtion the maximum

% of a time series of measured data, or if the data has outliers, the 90%

% percentile. More over, the generalized gaussian distribution is proposed,

% as a misfit function: 1/b*abs((Ysim^b-Ymeas^b)/S^b)^p. If p=2 and b=1

% than a gaussian distribution arise. A usual choise is p=2 and b=1/2. We

% should take care that the model parameter estimation is not too sensible

% to the misfit function.
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function Results = optimizationGO(PNM,likemisfit)

% Scatter Search optimization and relative options

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

% Objective funtion to minimize

problem.f='ssobjectiveGO';           

 

% Location of the parameters to be optimized

optidx=targetvector(PNM,'all'); %Only global param can be optimized by GO

opt_param=PNM.Parameters(optidx(1,:));

 

% Open the PNM data structure of the parameters

[names,value,parind,local,upp,low] = ...

    openparstruct(opt_param,length(PNM.Data));

 

% First order model parameters should be positive and non-inf 

low(low==0)  =1e-10;

upp(upp==inf)=1e10;

 

if likemisfit

    % Negative log-Likelihood minimization (MAP-estimate)

    sigma_0 = 1; sigma_L = 1e-1; sigma_U = 10; % std measur. errors

    problem.x_0 = [value' sigma_0];

    problem.x_L = [low    sigma_L];

    problem.x_U = [upp    sigma_U];

else

    % Mean squared error minimization (LS-estimate)

    problem.x_0 = value';

    problem.x_L = low;

    problem.x_U = upp;

end

 

% SS-optimization options 

opts.local.finish='fminsearch';

opts.local.solver=0; % 'fmincon', 'fminsearch', 'solnp', 'n2fb'

opts.maxtime=1e4;

opts.maxeval=3e3; % Number of max evaluations of ObjFun (5e3*1.8/3600=2.5h)

%opts.log_var = 1:length(value)+1;

%opts.plot = 1;    % plot convergence curves in real time

opts.ndiverse = 500;

 

% Run the global optimization. ess_kernel() is the scatter-search

% optimization rutine of Rodriguez-Fernandez (2006) from the GOm toolbox.

Results = ess_kernel(problem,opts,PNM,likemisfit);

 

% Save in Results structure some usefull informations
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Results.problem = problem;

Results.opts    = opts;

 

% Print the estimates

for i=1:length(opt_param)

    disp([opt_param{i}{1} ' = ' num2str(Results.xbest(i))])

end
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function Results = optimizationGO(PNM,likemisfit)

% Scatter Search optimization and relative options

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

% Objective funtion to minimize

problem.f='ssobjectiveGO';           

 

% Location of the parameters to be optimized

optidx=targetvector(PNM,'all'); %Only global param can be optimized by GO

opt_param=PNM.Parameters(optidx(1,:));

 

% Open the PNM data structure of the parameters

[names,value,parind,local,upp,low] = ...

    openparstruct(opt_param,length(PNM.Data));

 

% First order model parameters should be positive and non-inf 

low(low==0)  =1e-10;

upp(upp==inf)=1e10;

 

if likemisfit

    % Negative log-Likelihood minimization (MAP-estimate)

    sigma_0 = 1; sigma_L = 1e-1; sigma_U = 10; % std measur. errors

    problem.x_0 = [value' sigma_0];

    problem.x_L = [low    sigma_L];

    problem.x_U = [upp    sigma_U];

else

    % Mean squared error minimization (LS-estimate)

    problem.x_0 = value';

    problem.x_L = low;

    problem.x_U = upp;

end

 

% SS-optimization options 

opts.local.finish='fminsearch';

opts.local.solver=0; % 'fmincon', 'fminsearch', 'solnp', 'n2fb'

opts.maxtime=1e4;

opts.maxeval=3e3; % Number of max evaluations of ObjFun (5e3*1.8/3600=2.5h)

%opts.log_var = 1:length(value)+1;

%opts.plot = 1;    % plot convergence curves in real time

opts.ndiverse = 500;

 

% Run the global optimization 

Results = ess_kernel(problem,opts,PNM,likemisfit);

 

% Save in Results structure some usefull informations

Results.problem = problem;
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Results.opts    = opts;

 

% Print the estimates

for i=1:length(opt_param)

    disp([opt_param{i}{1} ' = ' num2str(Results.xbest(i))])

end

 

% When using n2fb (or dn2fb) and lsqnonlin as local solvers, the objective 

% function value must be formulated as the square of the sum of differences

% between the experimental and predicted data.
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function PNM=PNMplot(PNMold,Results,outnames,type,batchexp)
% Plot the outputs of the model
 
% Zivko Juznic-Zonta
% Copyrigth,10-Jul-2012
% Mollet del Valles, BCN, Spain
% UPC/GIRO-CT
 
% Do you want to plot?
fig=true; 
 
if ~isempty(Results)
    PNM = changeparamGO(Results.xbest,PNMold);
else
    PNM=PNMold;
end
 
if nargin<4
    type='b';
end
if nargin<5
    batchexp=1:length(PNM.Data);
end
 
% Sampling time for simulation
SampleTime=[0,470];
%SampleTime=0;
 
% Find the measured states
idx_meas=multistrcmp(PNM.Output.Output_names,PNM.Measures);
idx_plot=multistrcmp(PNM.Output.Output_names,outnames);
[idx,idxl]=multistrcmp(PNM.Output.Output_names(idx_plot),PNM.Measures);
 
iii=0;
for ibatch = batchexp;
    
    % Get the data for the i-th batch experiment
    datai = PNM.Data{ibatch};
    ydata  = datai.ydata(:,1:end,:);
    ydata=catmultidim(1,ydata);
    
    % Get the model simulations for the i-th batch experiment
    [t,x,ymodel] = simulation(PNM,ibatch,SampleTime);
    ymodel=ymodel(:,idx_plot);
    % Save the simulation outputs into the PNM structure
    PNM.Data{1,ibatch}.ydatasim=[t,ymodel];
    
    if fig
        iii=iii+1; figure(iii)
        % Plot the single variables of the batch experiment



17/07/12 12.09 C:\Documents and Sett...\PNMplot.m 2 of 2

        smax=length(idx_plot);
        for s=1:smax
            subplot(smax,1,s)
            if idxl(s)
                count = find(strcmp(outnames(s),PNM.Measures));
                hold on
                plot(ydata(:,1),ydata(:,1+count),...
                    'o','MarkerFaceColor',type,...
                    'MarkerEdgeColor',[.5,.5,.5],...
                    'MarkerSize',2)
            end
            hold on
            plot(t,ymodel(:,s),type)
            %ylabel( {PNM.Output.Output_names{idx_plot(s)} ;['(' PNM.Output.
Output_units{idx_plot(s)} ')']})
            ylabel( {PNM.Output.Output_names{idx_plot(s)}} )
            if s==1
                %title(['Experiment No.' num2str(ibatch)])
            end
            a=min(ymodel(:,s));
            if a<0, a=0; end
            b=ceil(max(ymodel(:,s))+.1*max(ymodel(:,s)));
            if b<=0 || isnan(b), b=0.1; end
            ylim([a b])
            %ylim([0 10])
            %xlim([SampleTime(1) SampleTime(end)])
        end
        xlabel('Time')
    end
end
end
 



17/07/12 12.19 C:\Documents...\optimizationMCMC.m 1 of 1

function ResultsMCMC=optimizationMCMC(PNM,MCMCresults0)

% DRAM sampling from the parameter posterior

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

% If available, set the std measur. error

s2=2.5^2;

 

% Bayesian Analysis for all models

 

PNM.ModelMCMC.ssfun   = @ssobjectiveDRAM;

%PNM.ModelMCMC.ssfun   = @ssobjectiveDRAM_gpr; % Not ready yet

 

PNM.ModelMCMC.sigma2  = s2; % initial error variance

%PNM.ModelMCMC.S20 = [];    % initial error variance (multiple measur.)

%PNM.ModelMCMC.N0  = [];    % prior (invchisq) weight for sigma2

 

PNM.OptionsMCMC.method      = 'dram';% adaptation method (mh,am,dr,dram)

PNM.OptionsMCMC.nsimu       = 60000; % n:o of simulations

PNM.OptionsMCMC.burnintime  = 5000;  % Burn-in

%PNM.OptionsMCMC.qcov        = [];    % proposal covariance

PNM.OptionsMCMC.adaptint    = 500;   % adaptation interval

PNM.OptionsMCMC.printint    = 200;   % how often to show info accept.ratios

PNM.OptionsMCMC.verbosity   = 1;     % show output in Matlab window

PNM.OptionsMCMC.waitbar     = 1;     % show garphical waitbar

PNM.OptionsMCMC.updatesigma = 1;     % update error variance

PNM.OptionsMCMC.stats       = 1;     % save extra statistics in results

 

% Run the MCMC chain

if nargin<2

    [ResultsMCMC,chain,s2chain,sschain]=mcmcrun(PNM.ModelMCMC,PNM,...

        PNM.Parameters,PNM.OptionsMCMC);

else

    [ResultsMCMC,chain,s2chain,sschain]=mcmcrun(PNM.ModelMCMC,PNM,...

        PNM.Parameters,PNM.OptionsMCMC,MCMCresults0);

end

 

% Store the main results from MCMC

ResultsMCMC.chain=chain;

ResultsMCMC.s2chain=s2chain;

ResultsMCMC.sschain=sschain;
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function ks_pair = ellipse_pairs(mu,C,names,style,conf,chain)

% Confidence ellipses relative to paired parameters

 

% If MC-sample is provided then a comparison is computed between the

% posterior distribution and its relative linear approximation given by C.

% Two-sample Two-diensional Kolmogorov-Smirnov Test is used to assess the

% goodness of the linear approx to the posterior.

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

skip=1; % Thin the MC-sample points

[n,p,z] = size(C);

count = 0;

 

if p>10

    error('too many pairs')

end

 

% "Subplot" axes with adjustable gaps and margins

h = tight_subplot(p-1,p-1,[.03 .02],[.1 .1],[.1 .01]);

 

%clf

for j=2:p

    for i=1:j-1

        if p==2

            h=gca;

        else

            axes(h((j-2)*(p-1)+i));

            %h=subplot(p-1,p-1,(j-2)*(p-1)+i);

        end

        

        for k=1:z

            Csub=[C(i,i,k),C(i,j,k);C(j,i,k),C(j,j,k)];

            error_ellipse(Csub,'mu',[mu(k,i),mu(k,j)],...

                'style',style{k},'conf',conf);hold on

        end

                

        if nargin == 6

            panellims(chain(:,i),chain(:,j),2,[],0); hold on

            c=[.3,.3,.3]*1;

            plot(chain(1:skip*2:end,i),chain(1:skip*2:end,j),'.',...

                'MarkerFaceColor',c,'MarkerEdgeColor',c,...

                'MarkerSize',2,'Color',[1 1 1]*.5); hold on;

            plot(mu(k,i),mu(k,j),'+k','MarkerSize',6);

            xlim([(min(chain(:,i))),(max(chain(:,i)))])

            ylim([(min(chain(:,j))),(max(chain(:,j)))])

        end
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        if nargout==1

            count=count+1;

            % Posterior sample

            r_1 = chain(1:skip:end,[i j]);

            % Multi-variable normal distribution approximation

            r_2 = mvnrnd([mu(1,i),mu(1,j)],...

                [C(i,i,1),C(i,j,1);C(j,i,1),C(j,j,1)],length(r_1));

            %Two-sample Two-diensional Kolmogorov-Smirnov Test

            [H, pValue, KSstatistic] = kstest_2s_2d(r_1, r_2);

            ks_pair(count,:)=[i,j,KSstatistic, pValue, H];

            text(0.05,0.9,['K-S=' num2str(KSstatistic,2)],...

                'Units','normalized ')

        end

        

        drawnow

        if j~=p

            set(h((j-2)*(p-1)+i),'xtick',[])

        end

        if i~=1

            set(h((j-2)*(p-1)+i),'ytick',[])

        end

        if i==1 & nargin>2 & ~isempty(names)

            ylabel(names{j})

        end

        if i==j-1 & nargin>2 & ~isempty(names)

            if p==2

                xlabel(names{i});

            else

                title(names{i})

            end

        end

    end

end
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function S=sysinfo(S)
% Transform in symbolic S
 
% Zivko Juznic-Zonta
% Copyrigth,10-Jul-2012
% Mollet del Valles, BCN, Spain
% UPC/GIRO-CT
 
% Get the names of the states,rates,parameters,...
S.States_name    =S.xls.graph(2:end,1);
S.Color_name     =S.xls.graph(2:end,2);
S.Rates_name     =S.xls.rates(:,1);
S.Parameters_name=S.xls.param(2:end,3);
S.Output_name    =S.xls.output(:,1);
S.Functions_name =S.xls.func(:,1);
S.Input_name     =S.xls.input(2,2:end)';
S.Data_name      =S.xls.dataxls(1,3:((size(S.xls.dataxls,2)-2)/2+2))';
 
% Text structures for equations and units
[ans,rates_equations]  =parsedata(S.xls.rates(:,2));
[ans,func_equations]   =parsedata(S.xls.func(:,2));
[ans,output_equations] =parsedata(S.xls.output(:,2));
[ans,input_units]      =parsedata(S.xls.input(1,2:end)');
[ans,output_units]     =parsedata(S.xls.output(:,3));
[ans,parameters_units] =parsedata(S.xls.param(2:end,2));
 
% Only for adimensional units with no suplement information
parameters_units(strcmp(parameters_units,''))={'1'};
 
% Symbolic stoich matrix
S.symStoich=cell2sym(S.xls.stoich);
% Symbolic states
S.symStates=cell2sym(S.States_name);
% Symbolic rates
S.symRates=cell2sym(S.Rates_name);
% Symbolic parameters
S.symParam=cell2sym(S.Parameters_name);
% Symbolic funcions
S.symFunc=cell2sym(S.Functions_name);
% Symbolic input
S.symInputs=cell2sym(S.Input_name);
% Symbolic input
S.symOutputs=cell2sym(S.Output_name);
 
% Reactions equations. Those are used in the ode system for computations,
% with the corresponding equations for the rates and the functions. In this
% way we could resolve the sparcity of some dynamic systems, since the zero
% stoichometric elements are not considered in the computations.
S.ODE = S.symStoich*S.symRates;
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% Express the reactions in text format
n=length(S.ODE); ODE_equations=cell(n,1);
 
for i=1:n
    ODE_equations{i}=char(S.ODE(i));
end
S.rates_equations  =rates_equations;
S.rates_direction  =S.xls.rates(:,end-1);
S.states_graph     =S.xls.graph(2:end,:);
S.func_equations   =func_equations;
S.output_equations =output_equations;
S.ODE_equations    =ODE_equations;
S.input_units      =input_units;
S.output_units     =output_units;
S.parameters_units =parameters_units;
 
% Simple chack over the states name
if any(~strcmp(S.states_graph(:,1),S.States_name));
    error('Names of the states in stoich and graph should be the same.')
end
 
% Compute the stoichometric coefficients functions
symarray = [S.Parameters_name;S.States_name;S.Rates_name;...
    S.Functions_name;S.Input_name];
 
for i=1:size(symarray)
    eval([ 'syms ' symarray{i} ]);
end
 
for i=1:size(S.symFunc) % Define symbolic equations for the rates
    if isreal(S.xls.func{i,2})
        eval([ S.xls.func{i,1} '=' num2str(S.xls.func{i,2}) ';']);
    else
        eval([ S.xls.func{i,1} '=' S.xls.func{i,2} ';']);
    end
end
 
% Compute the extended ode system of equations
S.fullODE = subs(S.ODE,S.Rates_name,rates_equations);
 
% Compute sensitivity trajectory functions and Jacobian
if true
    
    symarray = [S.Parameters_name;S.States_name;...
        S.Rates_name;S.Functions_name;S.Input_name];
    
    for i=1:size(symarray)
        eval([ 'syms ' symarray{i} ])
    end
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    for i=1:size(S.symRates) % Define symbolic equations for the rates
        if isreal(S.xls.rates{i,2})
            eval([ S.xls.rates{i,1} '=' num2str(S.xls.rates{i,2}) ';']);
        else
            eval([ S.xls.rates{i,1} '=' S.xls.rates{i,2} ';']);
        end
    end
    
    for i=1:size(S.symFunc) % Define symbolic equations for the functions
        if isreal(S.xls.func{i,2})
            eval([ S.xls.func{i,1} '=' num2str(S.xls.func{i,2}) ';']);
        else
            eval([ S.xls.func{i,1} '=' S.xls.func{i,2} ';']);
        end
    end
    
    % Compute two times the substitution of sym expressions for functions
    % because there could be functions defined by using already defined
    % functions (e.g., pow)
    S.ODE_long=subs(S.fullODE,S.Functions_name,S.func_equations);
    S.ODE_long=subs(S.ODE_long,S.Functions_name,S.func_equations);
    
    % Sensitivity functions
    theta     =[S.symParam]; % parameters
    Num_ODE   =size(S.ODE_long,1);
    Num_theta =size(theta,1);
    Num_React =size(S.symStates,1);
    syms a
    SensFunc(Num_theta,Num_ODE)     =a;
    SensFunc_idx(Num_theta,Num_ODE) ={''};
    
    for i=1:Num_theta
        for j=1:Num_React
            SensFunc(i,j)=diff(S.ODE_long(j),theta(i),1);
            SensFunc_idx{i,j}=['d' char(S.symStates(j))...
                '/d' char(theta(i)) ];
        end
    end
    
    S.SensFunc     =SensFunc; % sensitivity function matrix
    S.SensFunc_idx =SensFunc_idx; % dstate/dtheta matrix
    
    % Jacobian matrix
    try % D[1]pow(x,a) should be evaluated
        S.Jacobian =jacobian(eval(S.ODE_long),S.symStates);
    catch  % no D[1]pow(x,a) is present
        S.Jacobian =jacobian(S.ODE_long,S.symStates);
    end
end
end
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function P=cell2sym(X)
% Cell to symbolic representation
 
[r,c]=size(X);
 
syms P
P(r,c)=0;
for i=1:r
    for j=1:c
        if ~ischar(X{i,j})
            P(i,j)=X{i,j};
        else
            P(i,j)=sym(X{i,j});
        end
    end
end
end
 
function [numericArray,textArray] = parsedata(data)
% Parse data from raw cell array into a numeric array and a text
% cell array
 
% Input:
%        data: cell array containing data from spreadsheet
% Return:
%        numericArray: double array containing numbers from spreadsheet
%        textArray: cell string array containing text from spreadsheet
 
 
% ensure data is in cell array
if ischar(data)
    data = cellstr(data);
elseif isnumeric(data) || islogical(data)
    data = num2cell(data);
end
 
% Check if raw data is empty
if isempty(data)
    % Abort when all data cells are empty.
    textArray = {};
    numericArray = [];
    return
else
    % Trim empty leading and trailing rows
    % find empty cells
    emptycells = cellfun('isempty',data);
    nrows = size(emptycells,1);
    firstrow = 1;
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    % find last of leading empty rows
    while (firstrow<=nrows && all(emptycells(firstrow,:)))
        firstrow = firstrow+1;
    end
    % remove leading empty rows
    data = data(firstrow:end,:);
    
    % find start of trailing empty rows
    nrows = size(emptycells,1);
    lastrow = nrows;
    while (lastrow>0 && all(emptycells(lastrow,:)))
        lastrow = lastrow-1;
    end
    % remove trailing empty rows
    data = data(1:lastrow,:);
    
    % find start of trailing NaN rows
    warning('off', 'MATLAB:nonIntegerTruncatedInConversionToChar');
    while (lastrow>0 && ~(any(cellfun('islogical', data(lastrow,:))))&& ...
            all(isnan([data{lastrow,:}])))
        lastrow = lastrow-1;
    end
    warning('on', 'MATLAB:nonIntegerTruncatedInConversionToChar');
    % remove trailing NaN rows
    data=data(1:lastrow,:);
    
    [n,m] = size(data);
    textArray = cell(size(data));
    textArray(:) = {''};
end
 
vIsNaN = false(n,m);
 
% find non-numeric entries in data cell array
vIsText = cellfun('isclass',data,'char');
vIsNaN = cellfun('isempty',data)|strcmpi(data,'nan')...
    |cellfun('isclass',data,'char');
 
% place text cells in text array
if any(vIsText(:))
    textArray(vIsText) = data(vIsText);
else
    textArray = {};
end
% Excel returns COM errors when it has a #N/A field.
textArray = strrep(textArray,'ActiveX VT_ERROR: ','#N/A');
 
% place NaN in empty numeric cells
if any(vIsNaN(:))
    data(vIsNaN)={NaN};
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end
 
% extract numeric data
data = reshape(data,n,m);
rows = size(data,1);
m = cell(rows,1);
% Concatenate each row first
for n=1:rows
    m{n} = cat(2,data{n,:});
end
% Now concatenate the single column of cells into a matrix
numericArray = cat(1,m{:});
 
 
% trim all-NaN leading rows and columns from numeric array
% trim all-empty trailing rows and columns from text arrays
[numericArray,textArray]=trim_arrays(numericArray,textArray);
 
% ensure numericArray is 0x0 empty.
if isempty(numericArray)
    numericArray = [];
end
end
 
function [numericArray,textArray] = trim_arrays(numericArray,textArray)
% trim leading rows or cols
% if the string result has dimensions corresponding to a column or row of
% zeros in the matrix result, trim the zeros.
if ~isempty(numericArray) && ~isempty(textArray)
    [mn, nn] = size(numericArray);
    [ms, ns] = size(textArray);
    
    if ms == mn
        % trim leading column(textArray) from numeric data
        firstcolm = 1;
        while (firstcolm<=nn && all(isnan(numericArray(:,firstcolm))))
            firstcolm = firstcolm+1;
        end
        numericArray=numericArray(:,firstcolm:end);
    end
    
    if ns == nn
        % trim leading NaN row(s) from numeric data
        firstrow = 1;
        while (firstrow<=mn && all(isnan(numericArray(firstrow,:))))
            firstrow = firstrow+1;
        end
        numericArray=numericArray(firstrow:end,:);
        
        % trim leading empty rows(s) from text data
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        firstrow = 1;
        while (firstrow<=ms &&...
                all(cellfun('isempty',textArray(firstrow,:))))
            firstrow = firstrow+1;
        end
        textArray=textArray(firstrow:end,:);
    end
    
    % trim all-empty-string trailing rows from text array
    lastrow = size(textArray,1);
    while (lastrow>0 && all(cellfun('isempty',textArray(lastrow,:))))
        lastrow = lastrow-1;
    end
    textArray=textArray(1:lastrow,:);
    
    % trim all-empty-string trailing columns from text array
    lastcolm = size(textArray,2);
    while (lastcolm>0 && all(cellfun('isempty',textArray(:,lastcolm))))
        lastcolm = lastcolm-1;
    end
    textArray=textArray(:,1:lastcolm);
    
    % trim all-NaN trailing rows from numeric array
    lastrow = size(numericArray,1);
    while (lastrow>0 && all(isnan(numericArray(lastrow,:))))
        lastrow=lastrow-1;
    end
    numericArray=numericArray(1:lastrow,:);
    
    % trim all-NaN trailing columns from numeric array
    lastcolm = size(numericArray,2);
    while (lastcolm>0 && all(isnan(numericArray(:,lastcolm))))
        lastcolm=lastcolm-1;
    end
    numericArray=numericArray(:,1:lastcolm);
end
end
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function S=mcmcparam(Sold)

% Transform the parameters data to the DRAM toolbox format

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

S=Sold;

N_param=size(Sold.xls.param,1)-1; param_mcmc{N_param,1}=0;

for i=1:N_param

    param_mcmc{i}=Sold.xls.param(i+1,3:end);

end

S.param_mcmc=param_mcmc;
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function [Adj_s,stoich_matrix_val]=pathnet(S,Code,experiment)

% Path network diagram

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

if nargin<4

    % Batch experiment number for which the diagram is build

    experiment=1;

end

 

% Get the number of batch experiments from the data structure (incoplete)

%nbatch=size(data,2);

nbatch=1;

% Open the param_mcmc data structure

[names,value,parind,local] = openparstruct(S.param_mcmc,nbatch);

% Value of the parameters of the corresponding local batch experiment

value_batch=value(ismember(local, [0,experiment]));

% Get the index vector:[bio/chem param==1, stoich coeff==2, IC states==3]

idx=cell2mat(S.xls.param(2:end,1));

% Get only the stoich coeff

Stoich_val=num2cell(value_batch(idx==2))';

% Get the names of the stoich coeff

Stoich_name=S.Parameters_name(idx==2)';

% Compute the numeric stoich matrix

if ~isempty(Stoich_name)

    stoich_matrix_val=subs(S.symStoich,Stoich_name,Stoich_val);

else

    stoich_matrix_val=roundoff(double(S.symStoich),2);

end

 

% Adjont matrix (cell text structure). Comment which info should be

% considered in the graphviz plot

[Adj,Adj_net,arcdir]=stoich2adj(stoich_matrix_val,S);

%[Adj,Adj_net]=stoich2adj(stoich_matrix_val,S.Rates_name,S.stoich_matrix);

 

% Export a Graphviz .dot file of the model network

cd( [cd '/Models'])

graph2dot([Code.modelname '.dot'],Adj,Adj_net,arcdir,S);

 

% Adjacent matrix of the states

N = stoich_matrix_val; N(N~=0)=1; 

Adj_s=triu(N*N');

 

% % Graph in matlab. No arc names are permited since the script has an error

% graph_to_dot(Adj_net, 'filename',[Code.modelname 'Matlab.dot'],...

%     'node_label',node_label,'node_colorfill',node_colorfill,...

%     'width',20,'height',20);
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% %pathname='C:\Programmi\Graphviz2.26.3\bin\dot.exe';

% pathname='C:\Graphviz2.27\bin\dot.exe';

% figure,drawDot2matlab([Code.modelname 'Matlab.dot'],...

%       gca,'layoutengine',pathname); box on

cd('..')

end

 

function [Adj,Adj_net,arcdir]=stoich2adj(Stoich,S)

% Transform the stoichometric matrix to the adjoint state matrix.

% stoich_matrix could be a real number matrix or text cell matrix, in order

% to rapresent on the pathnet graph respectivly the values or the symbolic

% stoich coefficients.

 

% Get the sign of the stoich matrix in order to identify the reactants and

% the product of the reactions

stoich_matrix_sign=sign(Stoich);

 

% Initialize the adjoint state matrix

[N_states,N_rates]=size(stoich_matrix_sign);

Adj=cell(N_states,N_states);

Adj_net=zeros(N_states,N_states);

arcdir=Adj_net;

%idx_Adj=[];

for i=1:N_rates

    for j=1:N_states

        if stoich_matrix_sign(j,i)==-1

            reactant = j;

            for k=1:N_states

                if stoich_matrix_sign(k,i)==1 && k~=j

                    %idx_Adj = [idx_Adj; [reactant,k,i]];

                if iscell(Stoich)

                    if isreal(Stoich{k,i})

                        stoich=num2str(Stoich{k,i});

                    else stoich=Stoich{k,i};

                    end

                else stoich=num2str(Stoich(k,i));

                end

                    Adj(reactant,k)={[stoich ',' S.Rates_name{i}]};

                    Adj_net(reactant,k)=1; 

                    arcdir(reactant,k)=S.rates_direction{i};

                end

            end

        end

    end

end

 

end

 

function graph2dot(filename,adj_val,adj,arcdir,S)

% GraphViz dot file given by a adjacency matrix.
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% Some options

width=30;

height=30;

 

% Get the necessary inforamtion for the arcs and nodes

 

% Open the file to write

fid = fopen(filename, 'w');

fprintf(fid, 'digraph G {\n');

 

% Write the dot file general options

fprintf(fid,... 

 ['graph [rotate=0]\n',...

  'node  [shape=ellipse, fontname="Trebuchet MS", fontsize="10"]\n',...

  'edge  [color="#666666",fontname="Trebuchet MS", fontsize="8"]\n']);

fprintf(fid, 'center = 1;\n');

fprintf(fid, 'size=\"%d,%d\";\n', width, height);

fprintf(fid, 'rankdir=TB;\n');

 

% Process the nodes 

Nnds = length(adj);

for node = 1:Nnds

    str='%d [ label = "%s",style=filled,color="#%s"];\n';

    fprintf(fid,str,node,S.states_graph{node,1},S.states_graph{node,2});

end

 

% Process the subgraphs

Gstr=grouprank_string(grouprank(S));

for sub=1:length(Gstr)

    fprintf(fid,[Gstr{sub} '\n']);

end

 

% Process the arcs

for node1 = 1:Nnds              

    arcs = find(adj(node1,:));  % children(adj, node);

    stropt=['fontcolor="#'  S.states_graph{node1,2} '"'];

    for node2 = arcs

        if arcdir(node1,node2)==0 % unidirected arc

            strarc=[num2str(node1) '->' num2str(node2) ' [label="' adj_val

{node1,node2} '",' stropt ',color="#' S.states_graph{node1,2} '"];\n'];

        else % Bidirected arc

            strbi=['dir=both,color="#' S.states_graph{node1,2} ':#' S.

states_graph{node2,2} '"];\n'];

            strarc=[num2str(node1) '->' num2str(node2) ' [label="' adj_val

{node1,node2} '",' stropt ',' strbi ];

        end

        fprintf(fid,strarc);

    end

end
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% Close the file

fprintf(fid, '\n}');

fclose(fid);

end
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function Code=buildCode(S,Codebasic)

% Build the code for symbolic, C/C++ and Matlab

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

% Define the variables to use for the parameters, the rates and the

% functions declarations. States, derivatives and I/O are fixed since

% simulink use a default nomenclature

var={'p','r','f'};

Code=Codebasic;

 

% Symbolic, C and Matlab defined variables

varStates=var2idx(S.States_name,'x');

varDeriv=var2idx(S.States_name,'dx');

varInput=var2idx(S.Input_name(2:end),'u');

varOutput=var2idx(S.Output_name,'y');

varPar=var2idx(S.Parameters_name(1:end-(size(S.States_name(:),1))+1),...

    var{1});

varRates=var2idx(S.Rates_name,var{2});

varFunc=var2idx(S.Functions_name,var{3});

Code.varStates=varStates;

Code.varDeriv=varDeriv;

Code.varInput=varInput;

Code.varOutput=varOutput;

Code.var=var;

Code.Mass=S.xls.Mass;

Code.Drates=cell2mat(S.xls.rates(:,4));

 

% Find the states that are function of differentials

[r,c] = size(S.xls.stoich); A=zeros(r,c);

for i=1:r

    for j=1:c

        if isfloat(S.xls.stoich{i,j})

            A(i,j)=(S.xls.stoich{i,j}==0);

        elseif ischar(S.xls.stoich{i,j})

            A(i,j)=0;

        end

    end

end

if any(Code.Drates,1)

    Code.Dstates = ~A(:,logical(Code.Drates));

else

    Code.Dstates = zeros(r,1);

end

 

% Symbolic, C and Matlab defined equations

sysvar=addspace([varStates;varPar;varInput;varFunc;varRates;varOutput]);
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C_rates_equations=sym2ode(addspace(S.rates_equations),sysvar);

for i = 1:size(Code.Drates,1) % Raplace the states with the differentials

    if Code.Drates(i)==true

        C_rates_equations(i,2)=...

            regexprep(C_rates_equations(i,2),'x','dx','matchcase');

        C_rates_equations(i,3)=...

            regexprep(C_rates_equations(i,3),'x','dx','matchcase');

    end

end

C_func_equations=sym2ode(addspace(S.func_equations),sysvar);

C_ODE_equations=sym2ode(addspace(S.ODE_equations),sysvar);

C_output_equations=sym2ode(addspace(S.output_equations),sysvar);

 

% Jacobian matrix for Matlab

try

    [n,m]=size(S.Jacobian);

    M_jacobian_matrix=sym2ode(reshape(addspace(S.Jacobian),1,m*n),sysvar);

    Code.Jacobian=reshape(M_jacobian_matrix,n,m,3);

end

 

% Control that there are no improper names

flag=controlname(sysvar);

 

% Couple the variables with the corresponding equations

Code.N_states=size(varStates,1);

Code.N_param =size(varPar,1);

Code.N_input =size(varInput,1);

Code.N_output=size(varOutput,1);

Code.N_func  =size(varFunc,1);

Code.N_rates =size(varRates,1);

Code.Func =cell(Code.N_func,3);

Code.Rates=cell(Code.N_rates,3);

Code.Deriv=cell(Code.N_states,3);

Code.Output=cell(Code.N_output,3);

 

%%%%%%%%% Variables and Parameters in C

Code.CdeclareVar = {['double *' var{1} ];...

    ['double ' var{2} '[' num2str(Code.N_rates) ']=0'];...

    ['double ' var{3} '[' num2str(Code.N_func)  ']=0']};

 

%%%%%%%%% Funtions

for i=1:Code.N_func

    for j=1:3

        Code.Func{i,j} =[varFunc{i,j}  ' = ' C_func_equations{i,j}];

    end

end

%%%%%%%%% Rates

for i=1:Code.N_rates

    for j=1:3

        Code.Rates{i,j}=[varRates{i,j} ' = ' C_rates_equations{i,j}];
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    end

end

%%%%%%%%% Derivatives

for i=1:Code.N_states

    for j=1:3

        Code.Deriv{i,j}=[varDeriv{i,j} ' = ' C_ODE_equations{i,j}];

    end

end

%%%%%%%%% Outputs

for i=1:Code.N_output

    for j=1:3

        Code.Output{i,j}=[varOutput{i,j} ' = ' C_output_equations{i,j}];

    end

end
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function CmexModel(Code,compile)

% Write the Cmex-code and compile it.

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

% Store the generated files in the Models subdirectory

cd( [cd '/Models'])

 

% Open the txt document

fid = fopen([Code.modelname '.c'], 'w');

 

% Author and model general description (notes)

for i=1:length(Code.infoauthor)

    fprintf(fid, ['\n // ' Code.infoauthor{i}] );

end

fprintf(fid,'\n');

 

for i=1:length(Code.infomodel)

    fprintf(fid, ['\n // Notes:']);

    fprintf(fid, ['\n // ' Code.infomodel{i} ] );

end

fprintf(fid,'\n');

 

% Definitions for the Cmex and the libraries used

str=['\n #define S_FUNCTION_NAME ' Code.modelname,...

    '\n #include "simstruc.h" ',...

    '\n #include <math.h>',...

    '\n #define InitialConditions     ssGetSFcnParam(S,0)',...

    '\n #define Parameters        ssGetSFcnParam(S,1)'];

fprintf(fid, [str, '\n']);

 

% Initialize the size of the SimStuct

str=['\n static void mdlInitializeSizes(SimStruct *S)',...

    '\n{',...

    '\n ssSetNumContStates(    S, ' num2str(Code.N_states) ');',...

    '\n ssSetNumDiscStates(    S, 0);',...

    '\n ssSetNumInputs(        S, ' num2str(Code.N_input) ');',...

    '\n ssSetNumOutputs(       S, ' num2str(Code.N_output) ');',...

    '\n ssSetDirectFeedThrough(S, 1);',...

    '\n ssSetNumSampleTimes(   S, 1);',...

    '\n ssSetNumSFcnParams(    S, 2);',...

    '\n ssSetNumRWork(         S, 0);',...

    '\n ssSetNumIWork(         S, 0);',...

    '\n ssSetNumPWork(         S, 0);',...

    '\n }'];

fprintf(fid, [str, '\n']);
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% Define the sample time

str=['\n static void mdlInitializeSampleTimes(SimStruct *S)',...

    '\n {',...

    '\n ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);',...

    '\n ssSetOffsetTime(S, 0, 0.0);',...

    '\n }'];

fprintf(fid, [str, '\n']);

 

% Define the initial conditions of the states

str=['\n static void mdlInitializeConditions(double *x0, SimStruct *S)',...

    '\n {',...

    '\n int i;',...

    '\n for (i=0; i<' num2str(Code.N_states) '; i++) {x0[i]=mxGetPr

(InitialConditions)[i];}',...

    '\n }'];

fprintf(fid, [str, '\n']);

 

%%%%%%%%%%% Outputs

 

str=['\n static void mdlOutputs(double *y, double *x, double *u, SimStruct 

*S, int tid)',...

    '\n {',...

    '\n // outputs',...

    '\n // Declare variables'];

fprintf(fid, str);

 

for i=1:size(Code.CdeclareVar,1)

    fprintf(fid, ['\n ' Code.CdeclareVar{i} ';'] );

end

fprintf(fid,'\n');

 

str=['\n // Parameters',...

    '\n p=mxGetPr(Parameters);',...

    '\n\n // Functions'];

fprintf(fid, str);

 

for i=1:size(Code.Func,1)

    fprintf(fid, ['\n ' Code.Func{i,2} ';'] );

end

fprintf(fid,'\n');

 

for i=1:size(Code.Output,1)

    fprintf(fid, ['\n ' Code.Output{i,2} ';'] );

end

fprintf(fid,'\n }');

 

%%%%%%%%%% Update

str=['\n\n static void mdlUpdate(double *x, double *u, SimStruct *S, int 

tid)',...

    '\n {',...
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    '\n }'];

fprintf(fid, str);

 

%%%%%%%%%%% Continous states

str=['\n\n static void mdlDerivatives(double *dx, double *x, double *u, 

SimStruct *S, int tid)',...

    '\n {',...

    '\n // Declare variables'];

fprintf(fid, str);

 

for i=1:size(Code.CdeclareVar,1)

    fprintf(fid, ['\n ' Code.CdeclareVar{i} ';'] );

end

fprintf(fid,'\n');

 

str=['\n // Parameters',...

    '\n p=mxGetPr(Parameters);',...

    '\n\n // Functions'];

fprintf(fid, str);

 

for i=1:size(Code.Func,1)

    fprintf(fid, ['\n ' Code.Func{i,2} ';'] );

end

fprintf(fid,'\n');

 

str=['\n // Rates']; fprintf(fid, str);

for i=1:size(Code.Rates,1)

    if Code.Drates(i)==false

        fprintf(fid, ['\n ' Code.Rates{i,2} ';'] );

    end

end

fprintf(fid,'\n');

 

str=['\n // Derivatives']; fprintf(fid, str);

for i=1:size(Code.Deriv,1)

    if Code.Dstates(i)==false

        fprintf(fid, ['\n ' Code.Deriv{i,2} ';'] );

    end

end

fprintf(fid,'\n');

 

str=['\n // Differential Rates']; fprintf(fid, str);

for i=1:size(Code.Rates,1)

    if Code.Drates(i)==true

        fprintf(fid, ['\n ' Code.Rates{i,2} ';'] );

    end

end

fprintf(fid,'\n');

 

str=['\n // Derivatives']; fprintf(fid, str);
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for i=1:size(Code.Deriv,1)

    if Code.Dstates(i)==true

        fprintf(fid, ['\n ' Code.Deriv{i,2} ';'] );

    end

end

fprintf(fid,'\n }');

 

 

%%%%%%%%%% End mex statement

str=['\n\n static void mdlTerminate(SimStruct *S)',...

    '\n {',...

    '\n }',...

    '\n\n #ifdef    MATLAB_MEX_FILE',...

    '\n #include "simulink.c"',...

    '\n #else',...

    '\n #include "cg_sfun.h"',...

    '\n #endif'];

fprintf(fid, str);

 

% Close the written file

fclose(fid);

 

if compile==true

    eval(['mex ' Code.modelname '.c']);

end

 

% Return to the current directory

cd( '..')
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function MfileModel(Code,type,Mass_matrix)
 
% Store the generated files in the Models subdirectory
cd( [cd '/Models'])
 
% Open the txt document
fid = fopen([Code.modelname '_f.m'], 'w');
 
% Author and model general description (notes)
for i=1:length(Code.infoauthor)
    fprintf(fid, ['\n %% ' Code.infoauthor{i}] );
end
fprintf(fid,'\n');
 
fprintf(fid, '\n %% Notes:' );
for i=1:length(Code.infomodel)
    fprintf(fid, ['\n %% ' Code.infomodel{i} ] );
end
fprintf(fid,'\n');
 
% Define the DAE-ODE system
switch type
    
    case 'sundials'
        n=size(Code.Deriv,1);
        res=cell(n,1);
        for i=1:n
            if Mass_matrix(i)==true
                res{i}=['-p'  Code.varStates{i,3} ];
            else
                res{i}=' ';
            end
        end
        
        if ~any(Mass_matrix)
            str=['\n function [res, flag, new_data] = ' Code.modelname '_f(t,
x,Data)\n'];
        elseif ~all(Mass_matrix)
            str=['\n function [res, flag, new_data] = ' Code.modelname '_f(t,
x,px,Data)\n'];
        elseif all(Mass_matrix)
            str=['\n function [dx, flag, new_data] = ' Code.modelname '_f(x,
Data)\n'];
        end
        fprintf(fid, str);
        % Define the size of the memory
        fprintf(fid, '\n\n %%Allocate arrays' );
        fprintf(fid,'\n dx=zeros(Data.AllocateMemory(1),1);');
        fprintf(fid,'\n f=zeros(Data.AllocateMemory(2),1);');
        fprintf(fid,'\n r=zeros(Data.AllocateMemory(3),1);');
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        %fprintf(fid,'\n y=zeros(Data.AllocateMemory(4),1);');
        
        % Define the parameters
        fprintf(fid, '\n\n %%Parameters' );
        fprintf(fid,['\n ' Code.var{1} '=Data.Parameters;']);
        % Define the inflow
        fprintf(fid, '\n\n %%Inflow' );
        if ~any(Mass_matrix) || ~all(Mass_matrix)
            fprintf(fid,'\n siminTime=Data.simin(:,1);');
            fprintf(fid,'\n simin=Data.simin(:,2:end);');
            fprintf(fid,'\n u=interp1q(siminTime,simin,t);');
        elseif all(Mass_matrix)
            fprintf(fid,'\n u=Data.simin(1,2:end);');
        end
        % Print the functions
        fprintf(fid, '\n\n %%Functions' );
        for i=1:size(Code.Func,1)
            fprintf(fid, ['\n ' Code.Func{i,3} ';'] );
        end
        fprintf(fid,'\n');
        % Print the process rates
        fprintf(fid, '\n %%Rates' );
        for i=1:size(Code.Rates,1)
            fprintf(fid, ['\n ' Code.Rates{i,3} ';'] );
        end
        fprintf(fid,'\n');
        % Print the derivatives
        fprintf(fid, '\n %%Derivatives' );
        for i=1:size(Code.Deriv,1)
            fprintf(fid, ['\n ' Code.Deriv{i,3} ';'] );
        end
        fprintf(fid,'\n');
        if ~any(Mass_matrix) || ~all(Mass_matrix)
            % Print the residuals
            fprintf(fid, '\n %%Residuals' );
            fprintf(fid, '\n res=[' );
            for i=1:size(Code.Deriv,1)
                fprintf(fid, ['\n ' res{i} ' + ' Code.varDeriv{i,3} ';'] );
            end
            fprintf(fid,'\n ];\n');
        end
        
        %         % Print the outputs
        %         fprintf(fid, '\n %%Outputs' );
        %         for i=1:size(Code.Output,1)
        %             fprintf(fid, ['\n ' Code.Output{i,3} ';'] );
        %         end
        %         fprintf(fid,'\n y=y(:);');
        
        fprintf(fid, '\n flag = 0; \n new_data = [];');
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    case 'ode15s'
        error('ode15s not implemented jet!')
        
    otherwise
        error('Sundials or Ode15s solvers are only available.')
end
 
% Close the written file
fclose(fid);
 
 
 
% Open the txt document for the Jacobian
fid = fopen([Code.modelname '_J.m'], 'w');
 
% Author and model general description (notes)
for i=1:length(Code.infoauthor)
    fprintf(fid, ['\n %% ' Code.infoauthor{i}] );
end
fprintf(fid,'\n');
 
fprintf(fid, '\n %% Notes:' );
for i=1:length(Code.infomodel)
    fprintf(fid, ['\n %% ' Code.infomodel{i} ' - Jacobian matrix'] );
end
fprintf(fid,'\n');
 
switch type
    
    case 'sundials'
        % Print the Jacobian matrix
        if ~any(Mass_matrix)
            str=['\n function [J, flag, new_data] = ' Code.modelname '_J(t,x,
px,Data)\n'];
        else
            str=['\n function [J, flag, new_data] = ' Code.modelname '_J(t,x,
px,rr,cj,Data)\n'];
        end
        fprintf(fid, str);
        
        % Define the parameters
        fprintf(fid, '\n\n %%Parameters' );
        fprintf(fid,['\n ' Code.var{1} '=Data.Parameters;']);
        % Define the inflow
        fprintf(fid,'\n\n %%Inflow' );
        fprintf(fid,'\n siminTime=Data.simin(:,1);');
        fprintf(fid,'\n simin=Data.simin(:,2:end);');
        fprintf(fid,'\n u=interp1q(siminTime,simin,t);');
        % Print the functions
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        fprintf(fid, '\n\n %%Functions' );
        for i=1:size(Code.Func,1)
            fprintf(fid, ['\n ' Code.Func{i,3} ';'] );
        end
        % Define the Jacobian matrix
        fprintf(fid,'\n\n %%Jacobian matrix' );
        for i=1:size(Code.Jacobian(:,:,3),1)
            for j=1:size(Code.Jacobian(:,:,3),2)
                if i==j && Mass_matrix(j) ==1
                    strcj='- cj ;';
                else
                    strcj=' ;';
                end
                fprintf(fid, ['\n J(' num2str(i) ',' num2str(j) ') = ' Code.
Jacobian{i,j,3} strcj]);
            end
        end
        fprintf(fid,'\n');
        
        fprintf(fid, '\n flag = 0; \n new_data = [];');
        
        
    case 'ode15s'
        
        
    otherwise
        error('Sundials or Ode15s solvers are only available.')
end
 
 
% Close the written file
fclose(fid);
 
 
% Return to the current directory
cd('..')
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function PNM=modelclass(S,Code,scaletype)

% Path Network Model class. All the data needed for simulation.

 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

if nargin<3

    % All the measurments are weighted the same

    scaletype='one';

end

 

% Multi-batch input flow

In     =cell2mat(S.xls.input(3:end,2:end));

nbatch =cell2mat(S.xls.input(3:end,1));

Inflow =cell(max(nbatch),1);

 

% Data organization

data=opendatastruct(S.xls.dataxls);

for i=1:length(data)

    Inflow{i}=In(i==nbatch,:);

end

 

% Build the class

PNM            =PNMclass;

PNM.Code       =Code;

PNM.Data       =data;

PNM.Measures   =S.Data_name;

PNM.Parameters =S.param_mcmc;

PNM.Inflow     =Inflow;

PNM.Output.Output_names =S.Output_name;

PNM.Output.Output_units =S.output_units;

PNM.Scale               =scaleval(PNM,scaletype);

 

end

 

function S=scaleval(PNM,type)

 

% Number of batch experiments

nbatch =length(PNM.Data);

S      =cell(nbatch,1);

 

for ibatch = 1:nbatch

    switch type

        case 'one' % No scaling

            S{ibatch}=...

          ones(size(catmultidim(1,PNM.Data{ibatch}.ydata(:,2:end,:)),2),1);

        case 'max' % Scale acording to the maximum value

            S{ibatch}=...
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                nanmax(catmultidim(1,PNM.Data{ibatch}.ydata(:,2:end,:)));

        case 'std' % Use STD as the normalizing constant

            S{ibatch}=...

                nanstd(catmultidim(1,PNM.Data{ibatch}.ydata(:,2:end,:)));

        otherwise

            error('Should specify the type of data scale paramater used.')

    end

end

if nbatch==1

    S=S{:};

    return

end

 

switch type

    case 'one' % No scaling

        S=ones(1,size(PNM.Data{1}.ydata(:,2:end,:),2));

    case 'max' % Scale acording to the maximum value

        S=nanmax(cell2mat(S));

    case 'std' % Use STD as the normalizing constant

        S=nanstd(cell2mat(S));

    otherwise

        error('Should specify the type of data scale paramater used.')

end

 

if sum(S<=0)

    error('The scale value could not be zero or negative.')

end

 

end
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% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

classdef PNMclass

    % Define the PNM class

   properties

      Code;

      Data;

      Measures;

      Parameters;

      Inflow;

      Output;

      Scale;

      ModelMCMC;

      OptionsMCMC;

   end

end
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function [names,value,parind,local,upper,lower,thetamu,thetasig,hpar] = ...
    openparstruct(parstruct,nbatch)
%OPENPARSTRUCT parameter struct utility for mcmc tbx
% [names,value,parind,local,upper,lower,thetamu,thetasig] = ...
%    openparstruct(parstruct,nbatch)
 
% $Revision: 1.8 $  $Date: 2009/08/22 21:25:35 $
 
ntheta    = length(parstruct);
local     = [];
npar      = ntheta;
 
% parstruct has
%    1       2      3    4   5    6     7       8
% {'name', theta0, min, max, mu, sig, sample, local}
 
% for hyperpriors, local = 2
%    1       2      3    4      5         6       7       8
% {'name', theta0, min, max, [mu,tau], [sig,n], sample, local}
% and set up hpar
% hpar.ind, hpar.mu0, hpar.tau20, hpar.sig20, hpar.n0
 
ii = 0; nhpar = 0;
%% scan for local variables
for i=1:length(parstruct)
  ii = ii+1;
  local(ii) = 0;
  if length(parstruct{i})>7
    if parstruct{i}{8}
      if parstruct{i}{8}==2 
    nhpar=nhpar+1;
      end
      local(ii:(ii+nbatch-1)) = 1:nbatch;
%     ntheta=ntheta+nbatch-1; 
      npar=npar+nbatch-1;
      ii = ii+nbatch-1;
      for k=2:7
    if parstruct{i}{8}==2 & (k==5|k==6)
      if not(length(parstruct{i}{k})==1|length(parstruct{i}{k})==2)
        error(sprintf('Error in hyper parameters for %s',parstruct{i}{1}))
      end
    else
      if length(parstruct{i}{k})~=nbatch
        if length(parstruct{i}{k})==1
          parstruct{i}{k} = parstruct{i}{k}*ones(1,nbatch);
        else
          error(sprintf('Not enough values for %s',parstruct{i}{1}))
        end
      end
    end
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      end
    end
  end
end
 
%local
 
value     = zeros(npar,1);
names     = cell(npar,1);
upper     = ones(1,npar)*Inf;
lower     = -ones(1,npar)*Inf;
thetamu   = zeros(1,npar);
thetasig  = ones(1,npar)*Inf;
parind    = ones(npar,1);
 
hpar.ind = zeros(1,npar);
hpar.mu0 = zeros(1,nhpar);
hpar.tau20 = zeros(1,nhpar);
hpar.sig20 = zeros(1,nhpar);
hpar.n0 = zeros(1,nhpar);
hpar.names = {};
 
ii = 0; ihpar = 1;
for i=1:ntheta
  ii = ii+1;
  %  assignin('base',parstruct{i}{1},parstruct{i}{2});
  if local(ii) == 0
    names{ii}   = parstruct{i}{1};
    value(ii)   = parstruct{i}{2};
    
    if length(parstruct{i})>2 & ~isempty(parstruct{i}{3})
      lower(ii)    = parstruct{i}{3};
    end
    if length(parstruct{i})>3 & ~isempty(parstruct{i}{4})
      upper(ii)    = parstruct{i}{4};
    end
    if length(parstruct{i})>=6 
      thetamu(ii)  = parstruct{i}{5};
      thetasig(ii) = parstruct{i}{6};
      if isnan(thetamu(ii))
        thetamu(ii)=value(ii);
      end
      if thetasig(ii) == 0
        thetasig(ii) = Inf;
      end
    end
    if length(parstruct{i})>=7 & parstruct{i}{7}==0% parind-flagi
      parind(ii) = 0;
    end
  



17/07/12 9.56 C:\Documents and...\openparstruct.m 3 of 4

  else
    
    iii = ii:(ii+nbatch-1);
    if nbatch==1
        names(iii(1))    = {sprintf('%s',parstruct{i}{1})};
    else
      for k=1:nbatch
        names(iii(k))    = {sprintf('%s[%d]',parstruct{i}{1},k)};
      end
    end
    value(iii)    = parstruct{i}{2};
 
    if length(parstruct{i})>2 & ~isempty(parstruct{i}{3})
      lower(iii)    = parstruct{i}{3};
    end
    if length(parstruct{i})>3 &~isempty(parstruct{i}{4})
      upper(iii)    = parstruct{i}{4};
    end
    if length(parstruct{i})>=6 
      if length(parstruct{i})>=8 & parstruct{i}{8}==2 % hyperprior
    if isnan(parstruct{i}{5}(1))
      hpar.mu0(ihpar) = parstruct{i}{2}(1);
    else
      hpar.mu0(ihpar) = parstruct{i}{5}(1);
    end
        if length(parstruct{i}{5})>1;
          hpar.tau20(ihpar) = parstruct{i}{5}(2)^2;
        else
          hpar.tau20(ihpar) = Inf;
        end
    hpar.sig20(ihpar) = parstruct{i}{6}(1)^2;
        if length(parstruct{i}{6})>1;
          hpar.n0(ihpar) = parstruct{i}{6}(2);
        else
          hpar.n0(ihpar) = 0;
        end
    hpar.ind(iii) = ihpar;
    hpar.names = {hpar.names{:},sprintf('mu(%s)',parstruct{i}{1}),sprintf
('sig(%s)',parstruct{i}{1})};
    % initial values as mu0 and sig20
    thetamu(iii)  = hpar.mu0(ihpar);
    thetasig(iii) = sqrt(hpar.sig20(ihpar)); %%%
    ihpar = ihpar+1;
      else
      thetamu(iii)  = parstruct{i}{5};
      thetasig(iii) = parstruct{i}{6};
      for i2=iii
        if isnan(thetamu(i2))
          thetamu(i2)=value(i2);
        end
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        if thetasig(i2) == 0
          thetasig(i2) = Inf;
        end
      end
      end
    end
    if length(parstruct{i})>=7 & parstruct{i}{7}==0% parind-flagi
      parind(iii) = 0;
    end
 
    ii = ii + nbatch - 1 ;
    
  end
  
end
parind = find(parind);
 
hpar.ind = hpar.ind(parind);
hpar.nhpar = nhpar;
 
%local=0; %%%%%% not implemented yet
 
 



23/07/12 11.43 C:\Documents an...\tight_subplot.m 1 of 2

function ha = tight_subplot(Nh, Nw, gap, marg_h, marg_w)
 
% tight_subplot creates "subplot" axes with adjustable gaps and margins
%
% ha = tight_subplot(Nh, Nw, gap, marg_h, marg_w)
%
%   in:  Nh      number of axes in hight (vertical direction)
%        Nw      number of axes in width (horizontaldirection)
%        gap     gaps between the axes in normalized units (0...1)
%                   or [gap_h gap_w] for different gaps in height and width 
%        marg_h  margins in height in normalized units (0...1)
%                   or [lower upper] for different lower and upper margins 
%        marg_w  margins in width in normalized units (0...1)
%                   or [left right] for different left and right margins 
%
%  out:  ha     array of handles of the axes objects
%                   starting from upper left corner, going row-wise as in
%                   going row-wise as in
%
%  Example: ha = tight_subplot(3,2,[.01 .03],[.1 .01],[.01 .01])
%           for ii = 1:6; axes(ha(ii)); plot(randn(10,ii)); end
%           set(ha(1:4),'XTickLabel',''); set(ha,'YTickLabel','')
 
% Pekka Kumpulainen 20.6.2010   @tut.fi
% Tampere University of Technology / Automation Science and Engineering
 
 
if nargin<3; gap = .02; end
if nargin<4 || isempty(marg_h); marg_h = .05; end
if nargin<5; marg_w = .05; end
 
if numel(gap)==1; 
    gap = [gap gap];
end
if numel(marg_w)==1; 
    marg_w = [marg_w marg_w];
end
if numel(marg_h)==1; 
    marg_h = [marg_h marg_h];
end
 
axh = (1-sum(marg_h)-(Nh-1)*gap(1))/Nh; 
axw = (1-sum(marg_w)-(Nw-1)*gap(2))/Nw;
 
py = 1-marg_h(2)-axh; 
 
ha = zeros(Nh*Nw,1);
ii = 0;
for ih = 1:Nh
    px = marg_w(1);
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    for ix = 1:Nw
        ii = ii+1;
        ha(ii) = axes('Units','normalized', ...
            'Position',[px py axw axh], ...
            'XTickLabel','', ...
            'YTickLabel','');
        px = px+axw+gap(2);
    end
    py = py-axh-gap(1);
end
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function [H, pValue, KSstatistic] = kstest_2s_2d(x1, x2, alpha, tail)
 
%
% Two-sample Two-diensional Kolmogorov-Smirnov Test
%
% modified from MATLAB built-in function "kstest2" from Statistics Toolbox
% usage: same as "kstest2"
% 
% algorithm summary (Peak, 1983): consider the four quadrants (x<X,y<Y),
% (x<X,y>Y), (x>X,y<Y) and (x>X,y>Y) in turn, and adopt the largest of the
% four differences between the two empirical cumulative distributions as
% the final KS statistic.
%
% Author: Qiuyan Peng @ ECE/HKUST
% Date: 11th May, 2011
%
% References:
% J. A. Peacock, "Two-dimensional goodness-of-fit testing in astronomy", 
%   Monthly Notices Royal Astronomy Society 202 (1983) 615-627.
%
 
 
%%
 
if nargin < 2
    error('stats:kstest2:TooFewInputs','At least 2 inputs are required.');
end
 
 
%%
%
% x1,x2 are both 2-column matrices
%
 
if ((size(x1,2)~=2)||(size(x2,2)~=2))
    error('stats:kstest2:TwoColumnMatrixRequired','The samples X1 and X2 must 
be two-column matrices.');
end
n1 = size(x1,1);
n2 = size(x2,1);
 
 
%%
%
% Ensure the significance level, ALPHA, is a scalar 
% between 0 and 1 and set default if necessary.
%
 
if (nargin >= 3) && ~isempty(alpha)
   if ~isscalar(alpha) || (alpha <= 0 || alpha >= 1)
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      error('stats:kstest2:BadAlpha',...
            'Significance level ALPHA must be a scalar between 0 and 1.'); 
   end
else
   alpha  =  0.05;
end
 
 
%%
%
% Ensure the type-of-test indicator, TYPE, is a scalar integer from 
% the allowable set, and set default if necessary.
%
 
if (nargin >= 4) && ~isempty(tail)
   if ischar(tail)
      tail = strmatch(lower(tail), {'smaller','unequal','larger'}) - 2;
      if isempty(tail)
         error('stats:kstest2:BadTail',...
               'Type-of-test indicator TYPE must be ''unequal'', ''smaller'', 
or ''larger''.');
      end
   elseif ~isscalar(tail) || ~((tail==-1) || (tail==0) || (tail==1))
      error('stats:kstest2:BadTail',...
            'Type-of-test indicator TYPE must be ''unequal'', ''smaller'', or 
''larger''.');
   end
else
   tail  =  0;
end
 
 
%%
%
% Calculate F1(x) and F2(x), the empirical (i.e., sample) CDFs.
%
 
tOp = {'>=','>='; '<=','>='; '<=','<='; '>=','<='};
nOp = 4;
deltaCDF = zeros(nOp,n1+n2);
 
for iX = 1:(n1+n2)
    if (iX<=n1)
        edge = x1(iX,:);
    else
        edge = x2(iX-n1,:);
    end
 
    for iOp = 1:nOp
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        eval(['sel_1 = (x1(:,1)',tOp{iOp,1},'edge(1))&(x1(:,2)',tOp{iOp,
2},'edge(2));']);
        eval(['sel_2 = (x2(:,1)',tOp{iOp,1},'edge(1))&(x2(:,2)',tOp{iOp,
2},'edge(2));']);
        sampleCDF1 = sum(sel_1)/n1;
        sampleCDF2 = sum(sel_2)/n2;
    
        switch tail
            case  0      %  2-sided test: T = max|F1(x) - F2(x)|.
                deltaCDF(iOp,iX)  =  abs(sampleCDF1 - sampleCDF2);
            case -1      %  1-sided test: T = max[F2(x) - F1(x)].
                deltaCDF(iOp,iX)  =  sampleCDF2 - sampleCDF1;
            case  1      %  1-sided test: T = max[F1(x) - F2(x)].
                deltaCDF(iOp,iX)  =  sampleCDF1 - sampleCDF2;
        end
        
    end
    
end
 
KSstatistic   =  max(deltaCDF(:));
 
        
%%
%
% Compute the asymptotic P-value approximation and accept or
% reject the null hypothesis on the basis of the P-value.
%
 
n      =  n1 * n2 /(n1 + n2);
lambda =  max((sqrt(n) + 0.12 + 0.11/sqrt(n)) * KSstatistic , 0);
 
if tail ~= 0        % 1-sided test.
 
   pValue  =  exp(-2 * lambda * lambda);
 
else                % 2-sided test (default).
%
%  Use the asymptotic Q-function to approximate the 2-sided P-value.
%
   j       =  (1:101)';
   pValue  =  2 * sum((-1).^(j-1).*exp(-2*lambda*lambda*j.^2));
   pValue  =  min(max(pValue, 0), 1);
 
end
 
H  =  (alpha >= pValue);
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function varargout=plims2d(xy,lims,smo,rho,xo,yo)

%PLIMS2D  2 dimensional HPD limits

% Calculated 2d highest posterior density probability limits.

% This is used by PANELLIMS.

 

% Marko Laine <Marko.Laine@Helsinki.FI>

% $Revision: 1.4 $  $Date: 2008/01/23 08:02:53 $

 

if nargin < 3

   smo = 1;

end

if nargin < 4

   rho = [];

end

if nargin < 5

   xo=[];

end

if nargin < 6

   yo=[];

end

 

[z,xo,yo]=density2d(xy,xo,yo,smo,rho);

 

%c=cumsum(sort(z(:).*diff(xo).*diff(yo)));

 

% locate the confidence regions

 d  = (xo(end)-xo(end-1))*(yo(end)-yo(end-1));

 zs = sort(z(:));

 g  = zs*d;

 cumu = cumsum(g);

 %disp(sprintf('Total mass: %g\n',cumu(length(cumu))))

 

 sc = zeros(length(lims),1);

 for j=1:length(lims)

      i = find(cumu<(1-lims(j)));

      sc(j) = zs(length(i));

 end

 

 if nargout==1

    varargout{1}=sc;

 elseif nargout==4

    varargout{1}=xo;

    varargout{2}=yo;

    varargout{3}=z;

    varargout{4}=sc;

 end
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function [z,xo,yo,s]=density2d(x,xout,yout,ss,rho,plotit)
%DENSITY2D   2 dimensinal density estimator
% [z,x,y]=density2d(x,xout,yout,s,rho,plotit)
% x size n*2 data used for estimation
% xout  1. coordinate points returned (optional) 
% yout  2. coordinate points returned (optional)
% s relative smoothing factor (default = 1)
% rho correlation coefficient of the Gaussian kernel used (optional)
% plotit 0 = no plot, 1 = contour plot, 2 = mesh plot
%
% output: z,x,y cordinates of the estimator 
 
% ML 2000, see MASS 2nd ed, page 184
 
% Marko Laine <Marko.Laine@Helsinki.FI>
% $Revision: 1.5 $  $Date: 2008/01/23 08:02:52 $
 
numpoints=50;
 
if size(x,2)~= 2
   error('size(x,2)~=2')
end
nx=size(x,1);
if nargin<2 | isempty(xout)
   xmin=min(x(:,1)); xmax=max(x(:,1)); xrange=xmax-xmin;
   xout=linspace(xmin-0.06*xrange,xmax+0.06*xrange,numpoints);
end
if nargin<3 | isempty(yout)
   xmin=min(x(:,2)); xmax=max(x(:,2)); xrange=xmax-xmin;
   yout=linspace(xmin-0.06*xrange,xmax+0.06*xrange,numpoints);
end
s1=1.06*min(std(x(:,1)),iqrange(x(:,1))/1.34)*nx^(-1/6); % -1/5
s2=1.06*min(std(x(:,2)),iqrange(x(:,2))/1.34)*nx^(-1/6); % 
%% fixme, when iqrange = 0
if s1 == 0
  s1 = 1.06*std(x(:,1))*nx^(-1/6);
end
if s2 == 0
  s2 = 1.06*std(x(:,2))*nx^(-1/6);
end
s=[s1,s2];
if nargin>3 & ~isempty(ss)
   s=s.*ss;
end
if nargin<5 | isempty(rho)
% rho=0;
  rho4=corrcoef(x); rho=rho4(1,2);
else
  if abs(rho)>=1
    error('rho should be between -1 and 1')
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  end
end
if nargin<6
   plotit=0;
end
 
[X,Y]=meshgrid(xout,yout);
 
[mX,nX]=size(X);
z=zeros(mX,nX);
 
r = 1-rho.^2;
c = 1./(2*pi*s(1)*s(2)*sqrt(r));
for i=1:(mX*nX)
  if 0
   z(i)=1/nx*sum(norpf((X(i)-x(:,1))/s(1)).*...
      norpf((Y(i)-x(:,2))/s(2)))/prod(s);
  else
   z(i) = 1./nx .* sum(c * exp(-0.5/r*( ...
          ((X(i)-x(:,1))./s(1)).^2 - ...
       2*rho*(X(i)-x(:,1))./s(1).*(Y(i)-x(:,2))./s(2) + ...
          ((Y(i)-x(:,2))./s(2)).^2 )));
  end
end
 
xout(xout<0)=0;
yout(yout<0)=0;
 
if nargout>1
   xo=xout;
end
if nargout>2
   yo=yout;
end
 
if plotit==1 | nargout == 0
   h=plot(x(:,1),x(:,2),'.','MarkerSize',4,'Color',[.5 .5 .5]); 
   hold on;
   contour(xout,yout,z,10); 
   hold off
elseif plotit==2
   mesh(xout,yout,z);
%   hold on;
%   plot(x(:,1),x(:,2),'o'); 
%   hold off 
end
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function y=norpf(x,mu,sigma2)

% NORPF(x,mu,sigma2)  Normal (Gaussian) density function

 

% Marko Laine <Marko.Laine@Helsinki.FI>

% $Revision: 1.3 $  $Date: 2007/05/21 10:37:10 $

 

if nargin < 2, mu=0; end

if nargin < 3, sigma2=1; end

y=1./sqrt(2*pi*sigma2).*exp(-0.5*(x-mu).^2 ./sigma2);
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function [y,xo]=density(x,xout,ss,gaus)
%DENSITY  Density estimator using Gaussian kernel
% Y = DENSITY(X,XOUT,S)
% X is the vector of data values.
% The density estimator is evaluated at XOUT points.
% S is a scale factor for the default kernel bandwidth,
% default S = 1.
% Without output arguments the density is plotted.
 
% Marko Laine <Marko.Laine@Helsinki.FI>
% $Revision: 1.8 $  $Date: 2008/01/15 08:11:10 $
 
if nargin<3
  ss=1;
end
if nargin<4
  gaus=1;
end
 
if nargin<2 | isempty(xout)
  xmin=min(x); xmax=max(x); xrange=xmax-xmin;
  if length(x) > 200
    xout=linspace(xmin-0.08*xrange,xmax+0.08*xrange);
  else
    xout=linspace(mean(x)-4*std(x),mean(x)+4*std(x));
  end
end
y  = zeros(size(xout));
n  = length(xout);
nx = length(x);
 
%%% see MASS 2nd ed page 181.
if iqrange(x)<=0
  s=1.06*std(x)*nx^(-1/5);
else
  s=1.06*min(std(x),iqrange(x)/1.34)*nx^(-1/5);
end
%  s=1.144*std(x)*nx^(-1/5);
if ss>0
  s=ss*s;
elseif ss<0
  s = abs(ss);
end
if gaus
  % Gaussian kernel
  for i=1:n
    y(i) = 1/nx*sum(norpf((xout(i)-x)/s))./s;
  end
else
  % triangular kernel
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  s=s*1.2113;
  for i=1:n
    y(i) = 1/nx*sum(max(0,1-abs(xout(i)-x)/s))./s;
  end
end
 
if nargout>1
  xo=xout;
end
 
if nargout==0
  plot(xout,y)
  clear y % no output
end
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function [gf] = gfit(t,y,varargin)
% GFIT Computes goodness of fit for regression model
%
% USAGE:
%       [gf] = gfit(t,y)
%       [gf] = gfit(t,y,gFitMeasure)       
%
% INPUT:
%           t:  vector of target values for regression model
%           y:  vector of output from regression model.
%   gFitMeasure:  string value representing different form of goodness of fit 
measure as follows
%               '1' - mean squarred error (mse)  
%               '2' - normalised mean squarred error (nmse)
%               '3' - root mean squarred error (rmse)
%               '4' - normalised root mean squarred error (nrmse)
%               '5' - mean absolute error (mae)
%               '6' - mean  absolute relative error  (mare)
%               '7' - coefficient of correlation (r)
%               '8' - coefficient of determination (d)
%               '9' - coefficient of efficiency (e)         
%              
% OUTPUT:
%       gf:  goodness of fit values between model output and target 
%
% EXAMPLES   
%      gf = git(t,y,'3');  for root mean squarred error    
%
% See also 
 
% Copyright 2004-2005 by Durga Lal Shrestha.
% eMail: durgals@hotmail.com
% $Date: 2005/07/03
% $Revision: 1.0.0 $ $Date: 2005/07/03 $
 
% ***********************************************************************
%% INPUT ARGUMENTS CHECK
error(nargchk(2,3,nargin));
if ~isvector(t) || ~isvector(y)
    error('Invalid data size: input data must be vector')
end
t = t(:);
y = y(:);
n = length(t);
if n ~= length(y)
    error('Invalid data size: lenght of t and y must be same')
end
if nargin == 3
    gFitMeasure = varargin{1};    
else
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   gFitMeasure = '1';          % default goodness of fit as mse
end;
e = t - y;
switch gFitMeasure
  
case '1'                      % mean squarred error
    gf = mean(e.^2);        % 0 - perfect match between output and target
    
case '2'                      % normalised mean squarred error
    gf = mean(e.^2)/var(t); % 0 - perfect match 
    
case '3'                      % root mean squarred error
    gf = sqrt(mean(e.^2));  % 0 - perfect match     
    
case '4'                            % normalised root mean squarred error
    gf = sqrt(mean(e.^2)/var(t)); % 0 - perfect match
    
case '5'                      % mean absolute error 
   gf = mean(abs(e));       % 0 - perfect match
   
case '6'                      % mean absolute relative error
   gf = mean((abs(e./t)));  % 0 - perfect match
   
case '7'                      % coefficient of correlation
   cf = corrcoef(t,y);      % 1 - perfect match
   gf = cf(1,2);     
   
case '8'                      % coefficient of determination
   cf = corrcoef(t,y);      
   gf = cf(1,2);
   gf = gf^2;               % 1 - perfect match
   
case '9'                                       % coefficient of efficiency
   gf = 1 - sum(e.^2)/sum((t - mean(t)).^2); % 1 - perfect match
   
otherwise
  error('Invalid goodness of fit measure: It must be one of the strings {1 2 
3 4 5 6 7 8 9}')
end
%**************************************************************************
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function [results,chain,s2chain,sschain, hchain]=mcmcrun(model,data,params,
options,res)
%MCMCRUN Metropolis-Hastings MCMC simulation for nonlinear Gaussian models
% properties:
%  multiple y-columns, sigma2-sampling, adaptation,
%  Gaussian prior, parameter limits, delayed rejection, dram
%
% [RESULTS,CHAIN,S2CHAIN,SSCHAIN] = MCMCRUN(MODEL,DATA,PARAMS,OPTIONS)
% MODEL   model options structure
%    model.ssfun    -2*log(likelihood) function
%    model.priorfun -2*log(pior) prior function
%    model.sigma2   initial error variance
%    model.N        total number of observations
%    model.S20      prior for sigma2
%    model.N0       prior accuracy for S20
%    model.nbatch   number of datasets
%
%     sum-of-squares function 'model.ssfun' is called as
%     ss = ssfun(par,data) or
%     ss = ssfun(par,data,local)
%     instead of ssfun, you can use model.modelfun as
%     ymodel = modelfun(data{ibatch},theta_local)
%
%     prior function is called as priorfun(par,pri_mu,pri_sig) it
%     defaults to Gaussian prior with infinite variance
%
%     The parameter sigma2 gives the variances of measured components,
%     one for each. If the default options.updatesigma = 0 (see below) is
%     used, sigma2 is fixed, as typically estimated from the fitted 
residuals.
%     If opions.updatesigma = 1, the variances are sampled as conjugate 
priors
%     specified by the parameters S20 and N0 of the inverse gamma
%     distribution, with the 'noninformative' defaults
%          S20 = sigma2   (as given by the user)
%          N0  = 1
%     Larger values of N0 limit the samples closer to S20
%     (see,e.g., A.Gelman et all: 
%     Bayesian Data Analysis, http://www.stat.columbia.edu/~gelman/book/)
%
% DATA the data, passed directly to ssfun. The structure of DATA is given
%      by the user. Typically, it contains the measurements
%
%      data.xdata 
%      data.ydata,     
%
%      A possible 'time' variable must be given in the first column of
%      xdata. Note that only data.xdata is needed for model simulations. 
%      In addition, DATA may include any user defined strucure needed by 
%      |modelfun| or |ssfun|
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%
% PARAMS  theta structure
%   {  {'par1',initial, min, max, pri_mu, pri_sig, targetflag, localflag}
%      {'par2',initial, min, max, pri_mu, pri_sig, targetflag, localflag}
%      ... }
%
%   'name' and initial are compulsary, other values default to
%   {'name', initial,  -Inf, Inf,  NaN, Inf,  1,  0}
%
% OPTIONS mcmc run options
%    options.nsimu            number of simulations
%    options.qcov             proposal covariance
%    options.method           'dram','am','dr' or 'mh'
%    options.adaptint         interval for adaptation, if 'dram' or 'am' used
%                             DEFAULT adaptint = 100
%    options.drscale          scaling for proposal stages of dr 
%                             DEFAULT 3 stages, drscale = [5 4 3]
%    options.updatesigma      update error variance. Sigma2 sampled with 
updatesigma=1   
%                             DEFAULT updatesigma=0
%    options.verbosity        level of information printed
%    options.waitbar          use graphical waitbar?
%    options.burnintime       burn in before adaptation starts
%
% Output:
%  RESULTS   structure that contains results and information about
%            the simulations 
%  CHAIN, S2CHAIN, SSCHAIN
%           parameter, sigma2 and sum-of-squares chains
 
% Marko.Laine@helsinki.fi, 2003
% $Revision: 1.51 $  $Date: 2009/10/15 11:48:24 $
 
%% check input structs
goodopt={'nsimu','adaptint','ntry','method','printint',...
        'adaptend','lastadapt','burnintime','waitbar',...
        'debug','qcov','updatesigma','noadaptind','stats',...
        
'drscale','adascale','savesize','maxmem','chainfile','s2chainfile',...
        
'sschainfile','savedir','skip','label','RDR','verbosity','maxiter',...
    'priorupdatestart'};
goodmod={'sigma2','N','ssfun','modelfun','priorfun',...
     'priortype','priorupdatefun','priorpars','nbatch','S20','N0'};
[yn,bad]=checkoptions(options,goodopt);
if yn==0
  fprintf('bad options for mcmcrun:\n');
  for i=1:length(bad)
    fprintf('\t%s\n',bad{i});
  end
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  fprintf('available options are:\n');
  for i=1:length(goodopt)
    fprintf('\t%s\n',goodopt{i});
  end
  error('please check options');
  return;
end
[yn,bad]=checkoptions(model,goodmod);
if yn==0
  fprintf('bad model options for mcmcrun:\n');
  for i=1:length(bad)
    fprintf('\t%s\n',bad{i});
  end
  fprintf('available options are:\n');
  for i=1:length(goodmod)
    fprintf('\t%s\n',goodmod{i});
  end
  error('please check model options');
  return;
end
 
%% set parameter defaults
%%% mcmc options
% some predefined methods
method = getpar(options,'method','dram');
switch lower(method)
 case 'mh'
  nsimu    = getpar(options,'nsimu',10000);  % length of the chain to 
simulate
  adaptint = 0;
  Ntry     = 1;
 case 'am'
  nsimu    = getpar(options,'nsimu',10000);
  adaptint = getpar(options,'adaptint',100); % update interval for adaptation
  Ntry     = 1;
 case 'dr'
  nsimu    = getpar(options,'nsimu',10000);
  adaptint = 0;
  Ntry     = getpar(options,'ntry',2);       % DR tries (1 = no extra try)
 case 'dram'
  nsimu    = getpar(options,'nsimu',10000);
  adaptint = getpar(options,'adaptint',100);
  Ntry     = getpar(options,'ntry',2);
 otherwise
  error(sprintf('unknown mcmc method: %s',method));
end
printint    = getpar(options,'printint',NaN); % print interval
lastadapt   = getpar(options,'lastadapt',0);  % last adapt
lastadapt   = getpar(options,'adaptend',lastadapt);%  the same
burnintime  = getpar(options,'burnintime',0);
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wbarupd     = getpar(options,'waitbar',1);    % use graphical waitbar
verbosity   = getpar(options,'verbosity',1);  % amout of info to print
shdebug     = getpar(options,'debug',0);      % show some debug information
qcov        = getpar(options,'qcov',[]);      % proposal covariance
updatesigma = getpar(options,'updatesigma',0);
noadaptind  = getpar(options,'noadaptind',[]); % do not adapt these indeses
dostats     = getpar(options,'stats',0);       % convergence statistics
% DR options
dodram   = getpar(options,'dram',0); % DR (not used, use ntry instead)
%DR_scale = getpar(options,'drscale',[60 30 15]);
DR_scale = getpar(options,'drscale',[5 4 3]);
adascale = getpar(options,'adascale',[]); % qcov_scale 
if Ntry > 1, dodram=1; end
 
% save options
savesize   = getpar(options,'savesize',0); % rows of the chain in memory
if savesize <= 0 || savesize > nsimu
  savesize = nsimu;
end
maxmem      = getpar(options,'maxmem',0); % memory available in mega bytes
% temporary files if dumping to file
savedir     = getpar(options,'savedir',tempdir);
fnum = fix(rand*100000); % random number for the default filename
chainfile   = getpar(options,'chainfile',sprintf('chain_%05d.mat',fnum));
s2chainfile = getpar(options,'s2chainfile',sprintf('s2chain_%05d.mat',fnum));
sschainfile = getpar(options,'sschainfile',sprintf('sschain_%05d.mat',fnum));
skip        = getpar(options,'skip',1);
if ~isempty(savedir)
  chainfile   = [savedir,chainfile];
  s2chainfile = [savedir,s2chainfile];
  sschainfile = [savedir,sschainfile];
end
label = getpar(options,'label',sprintf('MCMC run at %s',date));
 
% Model options
sigma2  = getpar(model,'sigma2',[]);     % initial value for the error 
variance
if isobject(data)
    N       = getpar(model,'N',getN(data.Data));  % no of obs
%elseif isstruct(data)
%    N       = getpar(model,'N',getN(data.Data));  % no of obs
else
    N       = getpar(model,'N',getN(data));  % no of obs
end
ssfun   = getpar(model,'ssfun',[]);      % sum of squares function
modelfun= getpar(model,'modelfun',[]);   % model function
priorfun= getpar(model,'priorfun',[]);   % prior function
priortype= getpar(model,'priortype',1);  % prior type, 1 = Gaussian
priorupdatefun = getpar(model,'priorupdatefun',[]); % prior parameter update
priorpars = getpar(model,'priorpars',[]); % prior parameter for 
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priorupdatefun
priorupdatestart = getpar(options,'priorupdatestart',burnintime);
%ssstyle = getpar(model,'ssstyle',1);
ssstyle = 1;
% error variance prior
S20     = getpar(model,'S20',NaN);
N0      = getpar(model,'N0',[]);
 
if isobject(data) 
    nbatch  = getpar(model,'nbatch',getnbatch(data.Data));
%elseif isstruct(data)
%    nbatch  = getpar(model,'nbatch',getnbatch(data.Data));
else
    nbatch  = getpar(model,'nbatch',getnbatch(data)); % number of batches
end
 
if isempty(N)
  error('could not determine number of data points, please specify model.N');
end
if isempty(nbatch)
  message(verbosity,1,'Setting nbatch to 1\n');
  nbatch = 1;
end
% This is for backward compatibility
% if sigma2 given then default N0=1, else default N0=0
if isempty(N0)
  if isempty(sigma2)
    sigma2 = 1;
    N0 = 0;
  else
    N0 = 1;
  end
else
  % if N0 given, then also check updatesigma
  updatesigma = 1;
end
 
% some values from the previous run
if nargin > 4 && ~isempty(res)
  message(verbosity,0,'Using values from the previous run\n')
  params = res2par(res,params, 1 ); % 1 = do local parameters
  qcov   = res.qcov2;
end
 
% open and parse the parameter structure
[names,value,parind,local,upp,low,thetamu,thetasig,hyperpars] = ...
    openparstruct(params,nbatch);
 
if any(thetasig<=0)
  disp('some prior variances <=0, setting those to Inf')
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  thetasig(thetasig<=0) = Inf;
end
 
% hyper prior parameters
hchain = []; % it is allocated after the first call inside the simuloop
if hyperpars.nhpar > 0
  fprintf('NOTE: n:o of parameters with hyper priors is %d\n',hyperpars.
nhpar);
  if isempty(priorpars), priorpars=hyperpars;end
  if isempty(priorupdatefun), priorupdatefun=@hyperpriorupdate;disp('  using 
the default hyper update method');end
end
 
% default for sigma2 is S20 or 1
if isempty(sigma2)
  if not(isnan(S20))
    sigma2=S20;
  else
    sigma2=1; 
  end
end
if isnan(S20)
  S20 = sigma2; % prior parameters for the error variance
end
if isnan(N0)
  N0 = 1;
end
if lastadapt<1
  lastadapt=nsimu;
end
if isnan(printint)
  printint = max(100,min(1000,adaptint));
end
 
if verbosity>0
  fprintf('Sampling these parameters:\nname   start [min,max] N(mu,s^2)\n');
  nprint = length(parind);
  if verbosity == 1
    nprint = min(nprint,40);
  end
  for i=1:nprint
    if ismember(i,noadaptind), st=' (*)'; else st='';end
    if isinf(thetasig(parind(i))), h2=''; else h2='^2';end    
    fprintf('%s: %g [%g,%g] N(%g,%g%s)%s\n',...
            names{parind(i)},value(parind(i)),...
            low(parind(i)),upp(parind(i)),...
            thetamu(parind(i)),thetasig(parind(i)),h2,st);
  end
  if nprint < length(parind), fprintf('...\n'); end
end
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par0 = value(parind);
npar = length(par0);
 
% check ssfun type
if isempty(ssfun)
  if isempty(modelfun)
    error('no ssfun or modelfun!')
  end
  ssstyle = 4;
  ni = 4;
else
  if isa(ssfun,'function_handle')
%    ni = nargin(func2str(ssfun)); % is this needed?
    ni = nargin(ssfun);
  elseif isa(ssfun,'inline') || exist(ssfun) == 2 % ssfun is an mfile
    ni = nargin(ssfun);
  else
    ni = 2;
  end
  if ni == 3
    ssstyle=2;
  elseif ni== 4
      ssstyle = 5;
  end
  if strcmp(char(model.ssfun),'ssobjectiveDRAM_gpr')
  ssstyle = 6; end
end
 
if isempty(qcov)
  qcov = thetasig.^2;
  ii = isinf(qcov)|isnan(qcov);
%  qcov(ii) = [abs(par0(ii))*0.05].^2; % default is 5% std
  qcov(ii) = [abs(value(ii))*0.05].^2; % default is 5% std
  qcov(qcov==0) = 1; % .. or one if we start from zero
  qcov = diag(qcov);
end
 
if isempty(adascale)||adascale<=0
  qcov_scale = 2.4 / sqrt(npar) ; % scale factor in R
else
  qcov_scale = adascale;
end
burnin_scale = 10; % scale in burn-in down/up
qcov_adjust  = 1e-5; % eps adjustment
 
[cm,cn]=size(qcov);
if min([cm cn]) == 1 % qcov contains variances!
  s = sqrt(qcov(parind));
  R = diag(s); % *qcov_scale; % do NOT scale the initial qcov
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  qcovorig = diag(qcov); % save qcov
  qcov = diag(qcov(parind));
else %  qcov has covariance matrix in it
  qcovorig = qcov; % save qcov
  qcov = qcov(parind,parind);
  R    = chol(qcov); % *qcov_scale;
end
%R0 = R; % save R
global invR
global A_count
A_count = 0; % alphafun count
if dodram
  RDR = getpar(options,'RDR',[]); % RDR qiven in ooptions
  if ~isempty(RDR)
    for i=1:Ntry
      invR{i} = RDR{i}\eye(npar);
    end
    R = RDR{1};
  else
    % DR strategy: just scale R's down by DR_scale
    RDR{1} = R;
    invR{1} = R\eye(npar);
    for i=2:Ntry
      RDR{i}  = RDR{i-1}./DR_scale(min(i-1,length(DR_scale)));
      invR{i} = RDR{i}\eye(npar);
    end
  end
  iacce = zeros(1,Ntry);
end
 
starttime=clock;
 
oldpar=par0(:)';
ss = sseval(ssfun,ssstyle,oldpar,parind,value,local,data,modelfun);
ss1 = ss;
ss2 = ss;
 
ny = length(ss);
if length(S20)==1
  S20 = ones(1,ny)*S20;
end
if length(N)==1
  N = ones(1,ny)*N;
end
if length(N)==ny+1
  N = N(2:end); % remove first columns FIXME
end
if length(N0)==1
  N0 = ones(1,ny)*N0;
end
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% default prior function calculates Gaussian sum of squares
if isempty(priorfun)
  priorfun = @(th,mu,sig) sum(((th-mu)./sig).^2);
end
 
oldprior = feval(priorfun,oldpar,thetamu(parind),thetasig(parind));
 
%memory calculations
memneeded = savesize*(npar+2*ny)*8*1e-6;
if (maxmem > 0) && (memneeded > maxmem)
  savesize = max(1000,floor(maxmem/(npar+2*ny)/8*1e6));
  message(verbosity,0,'savesize decreased to %d\n',savesize);
end
if (savesize < nsimu) || (nargout < 2)
  saveit = 1;
else
  saveit = 0;
end
% save parameters, error variance, and SS
chain   = zeros(savesize,npar);
if updatesigma
  s2chain = zeros(savesize,ny);
else
  s2chain = [];
end
sschain = zeros(savesize,ny);
 
%% save chain
if saveit == 1
  savebin(chainfile,[],'chain');
  savebin(sschainfile,[],'sschain');
  if updatesigma
    savebin(s2chainfile,[],'s2chain');
  end
end
 
chain(1,:)   = oldpar;
if updatesigma
  s2chain(1,:) = sigma2;
end
sschain(1,:) = ss;
 
rej=0; reju=0; ii=1; rejl = 0;
%% setup waitbar
if wbarupd; wbar('init'); end
 
% covariance update uses these to store previous values
covchain = []; meanchain = []; wsum = []; lasti = 0;
% no update for these indeses
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noupd = logical(zeros(1,npar));
noupd(intersect(parind,noadaptind)) = 1;
 
chainind = 1; % where we are in chain
for isimu=2:nsimu % simulation loop
  ii = ii+1; % local adaptation index (?)
  chainind = chainind+1;
  
  % waitbar
  if wbarupd; 
    status = wbar('',isimu,nsimu);
    if status == -1 % waitbar killed, cancel the run and keep
                    % the chain so far
      message(verbosity,1,'Cancelling...\n');
      chainind = chainind-1;
      nsimu = isimu;
      chain = chain(1:chainind,:);
      sschain = sschain(1:chainind,:);
      if updatesigma
        s2chain = s2chain(1:chainind,:);
      end
      if size(hchain,1)>1
        hchain = hchain(1:chainind,:);
      end
      break % break the nsimu loop
    end
  end
  message(verbosity,100,'i:%d/%d\n',isimu,nsimu);
 
  % sample new candidate from Gaussian proposal
  newpar=oldpar+randn(1,npar)*R;
 
  % reject points outside boundaries
  if any(newpar<low(parind)) || any(newpar>upp(parind))
    accept = 0;
    newprior = 0;
    tst      = 0;
    ss1      = Inf;
    ss2      = ss;
    outbound = 1;
  else
    outbound = 0;
    % prior SS for the new theta
    newprior = feval(priorfun,newpar,thetamu(parind),thetasig(parind));
    
    % calculate ss
    ss2 = ss;             % old ss
    ss1 = sseval(ssfun,ssstyle,newpar,parind,value,local,data,modelfun);
 
    tst = exp(-0.5*( sum((ss1-ss2)./sigma2) + newprior-oldprior) );
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    if tst <= 0
      accept = 0;
    elseif tst >= 1
      accept = 1;
    elseif tst > rand(1,1)
      accept = 1;
    else
      accept = 0;
    end
    if shdebug && fix(isimu/shdebug) == isimu/shdebug
      fprintf('%d: pri: %g, tst: %g, ss: %g\n',isimu, newprior,tst, ss1);
    end
  end
  %%% DR -----------------------------------------------------
  if dodram == 1 && accept == 0 % & outbound == 0
    % we do a new try according to delayed rejection
    x.p   = oldpar;
    x.ss  = ss2;
    x.pri = oldprior;
    x.s2  = sigma2;
 
    y.p   = newpar;
    y.ss  = ss1;
    y.pri = newprior;
    y.s2  = sigma2;
    y.a   = tst;
 
    trypath = {x,y};
    itry    = 1;
    while accept == 0 & itry < Ntry
      itry = itry+1;
      z.p  = x.p + randn(1,npar)*RDR{itry};
      z.s2 = sigma2;
      if any(z.p<low(parind)) || any(z.p>upp(parind))
        z.a   = 0;
        z.pri = 0;
        z.ss  = Inf;
        trypath = {trypath{:},z};
        outbound = 1;
        continue
      end
 
      outbound = 0;
      z.ss = sseval(ssfun,ssstyle,z.p,parind,value,local,data,modelfun);
      z.pri = feval(priorfun,z.p,thetamu(parind),thetasig(parind));
      trypath = {trypath{:},z};
      alpha = alphafun(trypath{:});
      trypath{end}.a = alpha;
      if alpha >= 1 || rand(1,1) < alpha     %  accept
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        accept   = 1;
        newpar   = z.p;
        ss1      = z.ss;
        newprior = z.pri;
        iacce(itry) = iacce(itry) + 1;
      end
      if shdebug && fix(isimu/shdebug) == isimu/shdebug
        fprintf('try %d: pri: %g, alpha: %g\n',itry, z.pri, alpha);
        fprintf(' p: %g\n',z.p);
      end
    end
  end % DR --------------------------------------------------------
  %%% save chain
  if accept
    %%% accept
    chain(chainind,:) = newpar;
    oldpar     = newpar;
    oldprior   = newprior;
    ss         = ss1;
  else
    %%%% reject
    chain(chainind,:) = oldpar;
    rej        = rej + 1;
    reju       = reju + 1;
    if outbound
      rejl     = rejl + 1;
    end
  end
  %%% Possibly update the prior parameters (for testing hiearchical hyper 
priors)
  %%% [mu,sig]=priorupdatefun(theta, mu, sig, priorpars)
  if not(isempty(priorupdatefun))
    if isimu==2 || isimu>=priorupdatestart
      [muout,sigout,hrowout] = ...
      feval(priorupdatefun,oldpar,thetamu(parind),thetasig(parind),
priorpars);
      if isimu==2 % set up hchain
        hchain = zeros(nsimu,length(hrowout));
    if isfield(priorpars,'mu0') && isfield(priorpars,'sig20') && ...
          length([priorpars.mu0,priorpars.sig20]) == length(hrowout)
      hchain(1,1:2:end) = priorpars.mu0;
      hchain(1,2:2:end) = sqrt(priorpars.sig20);
      hrow = hchain(1,:);
    end
      end
      if isimu>=priorupdatestart; % update mu and theta
    thetamu(parind)  = muout;
    thetasig(parind) = sigout;
    hrow = hrowout;
    % need to update the prior ss value
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    oldprior = feval(priorfun,oldpar,thetamu(parind),thetasig(parind));
      end
    end
    hchain(isimu,:) = hrow;
    %% fix this:
    %% (do?) we need "sum of squares" of the hyper parameters for the 
observation
    %% noise sigma2 update
%    sig2s = hrow(2:2:end).^2; % now assumes that we are using the default 
function
%    sssig = sum(sig2s);
%    sign = length(sig2s)*nbatch;
  else
%    sssig = 0;
%    sign = 0;
  end
  %%%
  %%% update sigma2
  if updatesigma
    for j=1:ny
     sigma2(j) = 1./gammar(1,1,(N0(j)+N(j))/2,2./(N0(j).*S20(j)+ss(j)));
 %     nn = N0(j)+N(j)+sign;
 %     sigma2(j) = invchir(1,1, nn , (N0(j).*S20(j)+ss(j) + sssig)./nn);
 %     sigma2(j) =  1./gammar(1,1,(N0(j)+N(j)+sign)/2,2./(N0(j).*S20(j)+ss(j)
+sssig ));
    end
    s2chain(chainind,:) = sigma2;
  end
  %%%
  sschain(chainind,:) = ss;
  %
  if printint && fix(isimu/printint) == isimu/printint
    message(verbosity,2,'i:%g (%3.2f,%3.2f,%3.2f)\n', ...
            isimu,rej/isimu*100,reju/ii*100,rejl/isimu*100);
  end
  
  %% adaptation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  if adaptint>0 && isimu<=lastadapt && fix(isimu/adaptint) == isimu/adaptint
    if isimu < burnintime
      % During burnin no adaptation, just scaling up/down
      if reju/ii > 0.95
        message(verbosity,2,' (burnin/down) %3.2f',reju/ii*100);
        R = R./burnin_scale;
      elseif reju/ii < 0.05
        message(verbosity,2,' (burnin/up) %3.2f',reju/ii*100)
        R = R.*burnin_scale;
      end
    else
      message(verbosity,2,'i:%g adapting (%3.2f,%3.2f,%3.2f)', ...
              isimu,rej/isimu*100,reju/ii*100,rejl/isimu*100);
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      [covchain,meanchain,wsum] = covupd(chain((lasti+1):chainind,1:npar),1, 
...
                                         covchain,meanchain,wsum);
      lasti = chainind;
      %%% 
      upcov          = covchain;
      upcov(noupd,:) = qcov(noupd,:);
      upcov(:,noupd) = qcov(:,noupd);
      %%%
      [Ra,p] = chol(upcov);
      if p % singular cmat
        % try to blow it
        [Ra,p] = chol(upcov + eye(npar)*qcov_adjust);
        if p % stil singular
          message(verbosity,0,' (cmat singular, no adapt) %3.2f',
reju/ii*100);
        else
          message(verbosity,2,' [adjusted cmat]');
          % scale R
          R = Ra * qcov_scale;
        end
      else
        R = Ra * qcov_scale;
      end
      lasti = isimu;
      if dodram  %%%% delayed rejection
        RDR{1} = R;
        invR{1} = RDR{1}\eye(npar);
        for k=2:Ntry
          RDR{k}  = RDR{k-1}./DR_scale(min(k-1,length(DR_scale)));
          invR{k} = invR{k-1}.*DR_scale(min(k-1,length(DR_scale)));
        end
      end
    end
    message(verbosity,2,'\n');
    reju = 0; ii = 0;
  end
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  %%% save chain
  if chainind == savesize && saveit == 1
    message(verbosity,2,'saving chains\n');
    addbin(chainfile,chain');
    addbin(sschainfile,sschain');
    if updatesigma
      addbin(s2chainfile,s2chain');
    end
    chainind = 0;
    % update covariance
    [covchain,meanchain,wsum] = covupd(chain((lasti+1):chainind,1:npar),1, 
...
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                                       covchain,meanchain,wsum);
    lasti = 0;
  end
  
end % nsimu
 
% save the rest
if chainind>0 && saveit == 1
  addbin(chainfile,chain(1:chainind,:)');
  addbin(sschainfile,sschain(1:chainind,:)');
  if updatesigma
    addbin(s2chainfile,s2chain(1:chainind,:)');
  end
  % update covariance
  [covchain,meanchain,wsum] = covupd(chain((lasti+1):chainind,1:npar),1, ...
                                     covchain,meanchain,wsum);
end
 
if wbarupd; wbar('close'); end
 
value(parind) = oldpar; % update the initial value to the final value
 
%% build the results structure
if nargout>0
  results.class = 'MCMC';
  results.label = label;
  results.method = method;
  results.rejected   = rej/nsimu;
  results.ulrejected = rejl/nsimu;
  results.R      = R;
  results.qcov   = R'*R; % with scale %  ./ qcov_scale.^2 ;
  qcovorig(parind,parind) = results.qcov;
  results.qcov2  = qcovorig; % original size 
  results.cov    = covchain;
  results.mean   = meanchain;
  results.names  = names(parind);
  results.limits = [low(parind)',upp(parind)'];
  results.prior  = [thetamu(parind)',thetasig(parind)'];
  results.theta  = value; % last values
  results.parind = parind;
  results.local  = local;
  results.nbatch = nbatch;
  results.N      = N;
  if updatesigma
    results.sigma2 = NaN;
    results.S20    = S20;
    results.N0     = N0;
  else
    results.sigma2 = sigma2;
    results.S20    = NaN;
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    results.N0     = NaN;
  end
  results.modelfun = modelfun;
  results.ssfun    = ssfun;
  results.priorfun = priorfun;
  results.priortype= priortype;
  results.priorpars= priorpars;
  results.nsimu    = nsimu;
  results.adaptint = adaptint;
  results.adaptend = lastadapt;
  results.adascale = adascale;
  results.skip     = skip;
  results.simutime = etime(clock,starttime);
  results.ntry     = Ntry;
  if dodram
    results.ntry  = Ntry;
    results.drscale = DR_scale; % .^2;
    iacce(1) = nsimu-rej-sum(iacce(2:end));
    results.iacce = iacce;
    results.alpha_count = A_count;
    results.RDR = RDR;
  end
end
 
% check if we need to read the generated chain from binary dump files
if saveit == 1 && savesize < nsimu
  if nargout > 1
    chain = readbin(chainfile,1,skip);
  end
  if nargout > 2 && updatesigma
    s2chain = readbin(s2chainfile,1,skip);
  end
  if nargout > 3
    sschain = readbin(sschainfile,1,skip);
  end
elseif skip>1&&skip<=nsimu
  chain = chain(1:skip:end,:);
  if updatesigma
    s2chain = s2chain(1:skip:end,:);
  end
  sschain = sschain(1:skip:end,:);
end
% calculate some extra statistics (we need the whole chain to do this)
if dostats && (saveit == 1 || savesize >= nsimu)
  results.tau    = iact(chain);
  results.geweke = geweke(chain);
  results.rldiag = rldiag(chain);
  %% calculate DIC = 2*mean(ss)-ss(mean(chain))
  ss = sseval(ssfun,ssstyle,meanchain,parind,value,local,data,modelfun);
  D = mean(sschain);
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  results.dic  = 2*D-ss; % Deviance Information Criterion
  results.pdic = D-ss;   % Effective number of parameters
end
%% end of main function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function ss = sseval(ssfun,ssstyle,theta,parind,value,local,data,modelfun)
% evaluate the "sum-of-squares" function
value(parind) = theta;
if ssstyle == 1
  ss = feval(ssfun,value(:)',data);
elseif ssstyle == 4
  ss = mcmcssfun(value(:)',data,local,modelfun);
elseif ssstyle == 5
  ss = feval(ssfun,value(:)',data,local,parind);
elseif ssstyle == 6
  ss = feval(ssfun,theta,data);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function y=alphafun(varargin)
% alphafun(x,y1,y2,y3,...)
% recursive acceptance function for delayed rejection
% x.p, y1.p, ... contain the parameter value
% x.ss, y1.ss, ... the sum of squares
% x.a, y1.a, ... past alpha probabilities
 
% ML 2003
 
global A_count
A_count = A_count+1;
 
stage = nargin - 1; % The stage we're in, elements in varargin - 1
% recursively compute past alphas
a1 = 1; a2=1;
for k=1:stage-1
%  a1 = a1*(1-varargin{k+1}.a); % already have these alphas
% Thanks to E. Prudencio for pointing out an error here
  a1 = a1*(1-alphafun(varargin{1:(k+1)}));
  a2 = a2*(1-alphafun(varargin{(stage+1):-1:(stage+1-k)}));
  if  a2==0  % we will came back with prob 1
    y = 0;
    return
  end
end
y = lfun(varargin{1},varargin{end});
for k=1:stage
  y = y + qfun(k,varargin{:});
end
y = min(1, exp(y).*a2./a1);
%************************************************************%
function z=qfun(iq,varargin)
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% Gaussian n:th stage log proposal ratio
% log of q_i(y_n,..,y_n-j) / q_i(x,y_1,...,y_j)
 
global invR
 
stage = nargin-1-1;
if stage == iq
  z = 0;                                % we are symmetric
else
  iR = invR{iq};                        % proposal^(-1/2)
  y1 = varargin{1}.p;           % y1
  y2 = varargin{iq+1}.p;        % y_i
  y3 = varargin{stage+1}.p;     % y_n
  y4 = varargin{stage-iq+1}.p;  % y_(n-i)
  z = -0.5*(norm((y4-y3)*iR)^2-norm((y2-y1)*iR)^2);
end
%************************************************************%
function z=lfun(x,y)
% log posterior ratio,  log( pi(y)/pi(x) * p(y)/p(x) )
z = -0.5*( sum((y.ss./y.s2-x.ss./x.s2)) + y.pri - x.pri );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function message(verbosity,level,fmt,varargin)
if verbosity>=level
  fprintf(fmt,varargin{:})
end
if level<=2&&~strcmp(fmt,'\n')
  wbar('message',sprintf(fmt,varargin{:}));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function status=wbar(task,i,nsimu)
%%%% waitbar update
persistent hdl t0 tl hmsg
 
status = 1;
 
switch lower(task)
 case 'init'
  hdl=waitbar(0,'Generating chain...','CreateCancelBtn','delete(gcbf)');
  set(hdl,'Name','MCMC status');
  t0=clock;
  tl=t0;
  hmsg=get(findobj(hdl,'Type','Axes'),'xlabel');
  set(hmsg,'HorizontalAlignment','left');
  set(hmsg,'Position',[0,-1]);
 case 'close'
  if ishandle(hdl);delete(hdl);end
 case 'message'
  if ishandle(hdl)
    txt = i;
    set(hmsg,'String',txt);
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    drawnow
  end
 otherwise
  if ~ishandle(hdl) % cancel pressed
    status = -1;
    return
  end
  if (i/50==fix(i/50))
    % too slow
%  if etime(clock,tl) >= 1 | i < 10 % update every 1 secs
    hh=i/nsimu;
    %    htitle=get(findobj(hdl,'Type','Axes'),'title');
    secs = etime(clock,t0)*(1-hh)/hh;
    mins = floor(secs/60);
    secs = ceil(secs - 60*mins);
    hrs  = floor(mins/60);
    mins = mins - hrs*60;
    %   if wbarupd
    waitbar(hh,hdl, ...
            sprintf('Generating chain, eta: %g:%02g:%02g', ...
                    hrs,mins,secs));
%    set(htitle,'String', ...
%               sprintf('Generating chain, eta: %g:%02g:%02g', ...
%                       hrs,mins,secs));
    drawnow
    tl = clock; % last time updated
  end
end
%%%%% EOF %%%%
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function [out]=fcnSensitivityRun(Objfun, BCcoeff, setts, PNM, likemisfit)

% Performes sensitivity correlation check by pairs for any function

 

% Objfun- objective function with one scalar return

% BCcoeff- base case parameter values

% setts -settings e.g. range,step

% param - additional parameters for the Objfun function

% returns X,Y,Z cells for each parameter pair.

 

% ver. 1.0

% by Levente L. SIMON - ETH Zuerich

% email: l.simon@chem.ethz.ch

 

% Modified by 

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

Rangesize = setts.Range;

Step = setts.step;

 

% Location of the parameters to be optimized

optidx=targetvector(PNM);

opt_param=PNM.Parameters(optidx(1,:));

 

% Open the PNM data structure of the parameters

[names,value,parind,local,upp,low] = ...

    openparstruct(opt_param,length(PNM.Data));

names{4} = 'sigma';

sigma_L = 2.79; sigma_U = 2.80; % std measur. errors

low = [low    sigma_L];

upp = [upp    sigma_U];

 

% Set step

Srange = (-1) * Rangesize :Step: Rangesize;

for i =1: size(BCcoeff,2)

    % Calculate the interval for each coefficient

    Coeffrange(i,:)  = BCcoeff(i) + (Srange./100 .* BCcoeff(i)) ;

    if setts.posparam==true

        % Upper and lower bounds

        Coeffrange(i,Coeffrange(i,:)<=low(i))=low(i);

        Coeffrange(i,Coeffrange(i,:)>=upp(i))=upp(i);

    end

end

 

% Calculation of combinations based on the parameter number

CoeffComb2 = combnk(1:size(BCcoeff,2), 2);

% Sorts matrix from back to front , v 1.1

CoeffComb = CoeffComb2(end:-1:1,:);



23/07/12 12.24 C:\Document...\fcnSensitivityRun.m 2 of 2

 

% Plot settings

MaxSubPlot = ceil(size(CoeffComb,1) / 3);

for n=1:size(CoeffComb,1)

    % Get interval for each data pair

    X = Coeffrange (CoeffComb(n,1), :);

    Y = Coeffrange (CoeffComb(n,2), :);

    clear Z

    for i=1:size(Y,2) % have allways same size, simetric

        for j=1:size(X,2)

            % update vector of BC coefficients

            Scoeff = BCcoeff; Scoeff(CoeffComb(n,1)) = X(j);

            Scoeff(CoeffComb(n,2)) = Y(i); 

            Z(j,i)=feval(Objfun, Scoeff, PNM, likemisfit);

        end

    end

    % Normalize the Z

    Zz = fcnNormalize0_1(Z);

    Xcell{n} = X; Ycell{n} = Y; Zcell{n} = Zz;

    XlabelCell{n} = names{CoeffComb(n,1)};

    YlabelCell{n} = names{CoeffComb(n,2)};

    disp(strcat('Z matrix calculated for pair:',num2str(n)));

end

 

% Function output structure

out.Xcell = Xcell;

out.Ycell =Ycell;

out.Zcell=Zcell;

out.XlabelCell=XlabelCell;

out.YlabelCell=YlabelCell;

out.MaxSubPlot=MaxSubPlot;

out.setts=setts;

 

function y= fcnNormalize0_1(a)

% normalizes matrix between 100 and 0; input, output: matrix

% higheest value = 0; lowest = 100;

% use y= fcnNormalize0_1(-a) for high=100; low=0;

b=[];

for i=1:size(a)

    b = [b a(i,:)]; % converts matrix to a vector

end

n=(b-(min(b)))/max(b-min(b)); % normalizes between 0 and 1

n = abs(n-1);                 % changes the normaliation between 1 and 0

n= n.*100;                      % range = 0 :100

y = reshape ( n,size(a,2),size(a,2)); % converts vector to same size matrix
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>> 
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function y=acf(x,lagmax)

%ACF Autocorrelation function

% ACF(X,maxlag)

% default maxlag is floor(10*log10(length(x)))

 

% There is also acf.mex version which is much faster

% it is used if Matlab finds it

 

% Marko Laine <Marko.Laine@Helsinki.FI>

% $Revision: 1.4 $  $Date: 2007/08/09 13:42:26 $

 

x = x(:)'-mean(x);

n = length(x);

if nargin<2

  lagmax = floor(10*log10(n));

  lagmax = min(lagmax, n-1);

end

y = filter(x(n:-1:1),1,x);

%y  = conv(flipud(x),x);

y = y(n:-1:1)/n;

y = y/y(1);

y = y(1:lagmax+1);
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function [stats,stats2]=chainstats(chain,results,fid)

%CHAINSTATS some statistics from the MCMC chain

% chainstats(chain,results)

%    chain    nsimu*npar MCMC chain

%    results  output from mcmcrun function

 

% $Revision: 1.4 $  $Date: 2009/08/13 15:47:35 $

 

% Modified by

% Zivko Juznic-Zonta

% Copyrigth,10-Jul-2012

% Mollet del Valles, BCN, Spain

% UPC/GIRO-CT

 

if nargin<3, fid=1; end % fid=1, standard output

 

if nargin>1

  if isstruct(results) % results struct from mcmcrun

    names=results.names;

  else

    names = results; % char array of names

  end

end

d=tinv(1-.05/2,size(chain,1)-size(chain,2));

mcerr = bmstd(chain)./sqrt(size(chain,1));

 

[z,p]  = geweke(chain);

tau    = iact(chain);

stats  = [mean(chain)',std(chain)',std(chain)'.*d,mcerr',tau', p'];

 

[m,n] = size(stats);

 

fprintf(fid,'MCMC statistics, nsimu = %g\n\n', size(chain,1));

 

if nargin>1

  fprintf(fid,'% 10s ','');

end

fprintf(fid,'% 10s  % 10s  % 10s %10s  % 10s  % 

10s\n','mean','std','CI95%','MC_err','tau','geweke');

if nargin>1

  fprintf(fid,'-----------');

end

fprintf

(fid,'-----------------------------------------------------------------------

\n');

for i = 1:m

  if nargin>1

    fprintf(fid,'% 10s ',names{i});

  end

  fprintf(fid,'%10.5g  %10.5g %10.5g  %10.5g  %10.5g  %10.5g\n',stats(i,:));



17/07/12 13.27 C:\Documents and S...\chainstats.m 2 of 2

end

if nargin>1

  fprintf(fid,'-----------');

end

fprintf

(fid,'-----------------------------------------------------------------------

\n');

fprintf(fid,'\n');

 

if nargout>1

 

%% more statistics (NOT printed now)

 

for i=1:m

    [f,xi] = ksdensity(chain(:,i));

    %[ans,f,xi] = kde(chain(:,i));

    modei(i,1) = xi(f==max(f));

end

l      = quantile(chain,[0.025,0.5,0.975]);

stats2 = [modei, min(chain)', l',max(chain)',abs(l(1,:)-l(3,:))'];

 

if nargin>1

  fprintf(fid,'% 10s ','');

end

fprintf(fid,'% 10s % 10s  % 10s  % 10s  % 10s  % 10s % 

10s\n','mode','min','Qinf','med','Qsup','max','Qrange');

if nargin>1

  fprintf(fid,'-----------');

end

fprintf

(fid,'-----------------------------------------------------------------------

----------\n');

for i = 1:m

  if nargin>1

    fprintf(fid,'% 10s ',names{i});

  end

  fprintf(fid,'%10.5g %10.5g  %10.5g  %10.5g  %10.5g  %10.5g %10.5g\n',stats2

(i,:));

end

if nargin>1

  fprintf(fid,'-----------');

end

fprintf

(fid,'-----------------------------------------------------------------------

----------\n');

fprintf(fid,'\n');

 

end
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function h=error_ellipse(varargin)
% ERROR_ELLIPSE - plot an error ellipse, or ellipsoid, defining confidence 
region
%    ERROR_ELLIPSE(C22) - Given a 2x2 covariance matrix, plot the
%    associated error ellipse, at the origin. It returns a graphics handle
%    of the ellipse that was drawn.
%
%    ERROR_ELLIPSE(C33) - Given a 3x3 covariance matrix, plot the
%    associated error ellipsoid, at the origin, as well as its projections
%    onto the three axes. Returns a vector of 4 graphics handles, for the
%    three ellipses (in the X-Y, Y-Z, and Z-X planes, respectively) and for
%    the ellipsoid.
%
%    ERROR_ELLIPSE(C,MU) - Plot the ellipse, or ellipsoid, centered at MU,
%    a vector whose length should match that of C (which is 2x2 or 3x3).
%
%    ERROR_ELLIPSE(...,'Property1',Value1,'Name2',Value2,...) sets the
%    values of specified properties, including:
%      'C' - Alternate method of specifying the covariance matrix
%      'mu' - Alternate method of specifying the ellipse (-oid) center
%      'conf' - A value betwen 0 and 1 specifying the confidence interval.
%        the default is 0.5 which is the 50% error ellipse.
%      'scale' - Allow the plot the be scaled to difference units.
%      'style' - A plotting style used to format ellipses.
%      'clip' - specifies a clipping radius. Portions of the ellipse, -oid,
%        outside the radius will not be shown.
%
%    NOTES: C must be positive definite for this function to work properly.
 
default_properties = struct(...
  'C', [], ... % The covaraince matrix (required)
  'mu', [], ... % Center of ellipse (optional)
  'conf', 0.5, ... % Percent confidence/100
  'scale', 1, ... % Scale factor, e.g. 1e-3 to plot m as km
  'style', '', ...  % Plot style
  'clip', inf); % Clipping radius
 
if length(varargin) >= 1 & isnumeric(varargin{1})
  default_properties.C = varargin{1};
  varargin(1) = [];
end
 
if length(varargin) >= 1 & isnumeric(varargin{1})
  default_properties.mu = varargin{1};
  varargin(1) = [];
end
 
if length(varargin) >= 1 & isnumeric(varargin{1})
  default_properties.conf = varargin{1};
  varargin(1) = [];
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end
 
if length(varargin) >= 1 & isnumeric(varargin{1})
  default_properties.scale = varargin{1};
  varargin(1) = [];
end
 
if length(varargin) >= 1 & ~ischar(varargin{1})
  error('Invalid parameter/value pair arguments.') 
end
 
prop = getopt(default_properties, varargin{:});
C = prop.C;
 
if isempty(prop.mu)
  mu = zeros(length(C),1);
else
  mu = prop.mu;
end
 
conf = prop.conf;
scale = prop.scale;
style = prop.style;
 
if conf <= 0 | conf >= 1
  error('conf parameter must be in range 0 to 1, exclusive')
end
 
[r,c] = size(C);
if r ~= c | (r ~= 2 & r ~= 3)
  error(['Don''t know what to do with ',num2str(r),'x',num2str(c),' matrix'])
end
 
x0=mu(1);
y0=mu(2);
 
% Compute quantile for the desired percentile
k = sqrt(qchisq(conf,r)); % r is the number of dimensions (degrees of 
freedom)
 
hold_state = get(gca,'nextplot');
 
if r==3 & c==3
  z0=mu(3);
  
  % Make the matrix has positive eigenvalues - else it's not a valid 
covariance matrix!
  if any(eig(C) <=0)
    error('The covariance matrix must be positive definite (it has non-
positive eigenvalues)')
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  end
 
  % C is 3x3; extract the 2x2 matricies, and plot the associated error
  % ellipses. They are drawn in space, around the ellipsoid; it may be
  % preferable to draw them on the axes.
  Cxy = C(1:2,1:2);
  Cyz = C(2:3,2:3);
  Czx = C([3 1],[3 1]);
 
  [x,y,z] = getpoints(Cxy,prop.clip);
  h1=plot3(x0+k*x,y0+k*y,z0+k*z,prop.style);hold on
  [y,z,x] = getpoints(Cyz,prop.clip);
  h2=plot3(x0+k*x,y0+k*y,z0+k*z,prop.style);hold on
  [z,x,y] = getpoints(Czx,prop.clip);
  h3=plot3(x0+k*x,y0+k*y,z0+k*z,prop.style);hold on
 
  
  [eigvec,eigval] = eig(C);
 
  [X,Y,Z] = ellipsoid(0,0,0,1,1,1);
  XYZ = [X(:),Y(:),Z(:)]*sqrt(eigval)*eigvec';
  
  X(:) = scale*(k*XYZ(:,1)+x0);
  Y(:) = scale*(k*XYZ(:,2)+y0);
  Z(:) = scale*(k*XYZ(:,3)+z0);
  h4=surf(X,Y,Z);
  colormap gray
  alpha(0.3)
  camlight
  if nargout
    h=[h1 h2 h3 h4];
  end
elseif r==2 & c==2
  % Make the matrix has positive eigenvalues - else it's not a valid 
covariance matrix!
  if any(eig(C) <=0)
    error('The covariance matrix must be positive definite (it has non-
positive eigenvalues)')
  end
 
  [x,y,z] = getpoints(C,prop.clip);
  h1=plot(scale*(x0+k*x),scale*(y0+k*y),prop.style);
  set(h1,'zdata',z+1)
  if nargout
    h=h1;
  end
else
  error('C (covaraince matrix) must be specified as a 2x2 or 3x3 matrix)')
end
%axis equal
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set(gca,'nextplot',hold_state);
 
%---------------------------------------------------------------
% getpoints - Generate x and y points that define an ellipse, given a 2x2
%   covariance matrix, C. z, if requested, is all zeros with same shape as
%   x and y.
function [x,y,z] = getpoints(C,clipping_radius)
 
n=100; % Number of points around ellipse
p=0:pi/n:2*pi; % angles around a circle
 
[eigvec,eigval] = eig(C); % Compute eigen-stuff
xy = [cos(p'),sin(p')] * sqrt(eigval) * eigvec'; % Transformation
x = xy(:,1);
y = xy(:,2);
z = zeros(size(x));
 
% Clip data to a bounding radius
if nargin >= 2
  r = sqrt(sum(xy.^2,2)); % Euclidian distance (distance from center)
  x(r > clipping_radius) = nan;
  y(r > clipping_radius) = nan;
  z(r > clipping_radius) = nan;
end
 
%---------------------------------------------------------------
function x=qchisq(P,n)
% QCHISQ(P,N) - quantile of the chi-square distribution.
if nargin<2
  n=1;
end
 
s0 = P==0;
s1 = P==1;
s = P>0 & P<1;
x = 0.5*ones(size(P));
x(s0) = -inf;
x(s1) = inf;
x(~(s0|s1|s))=nan;
 
for ii=1:14
  dx = -(pchisq(x(s),n)-P(s))./dchisq(x(s),n);
  x(s) = x(s)+dx;
  if all(abs(dx) < 1e-6)
    break;
  end
end
 
%---------------------------------------------------------------



23/07/12 11.39 C:\Documents an...\error_ellipse.m 5 of 6

function F=pchisq(x,n)
% PCHISQ(X,N) - Probability function of the chi-square distribution.
if nargin<2
  n=1;
end
F=zeros(size(x));
 
if rem(n,2) == 0
  s = x>0;
  k = 0;
  for jj = 0:n/2-1;
    k = k + (x(s)/2).^jj/factorial(jj);
  end
  F(s) = 1-exp(-x(s)/2).*k;
else
  for ii=1:numel(x)
    if x(ii) > 0
      F(ii) = quadl(@dchisq,0,x(ii),1e-6,0,n);
    else
      F(ii) = 0;
    end
  end
end
 
%---------------------------------------------------------------
function f=dchisq(x,n)
% DCHISQ(X,N) - Density function of the chi-square distribution.
if nargin<2
  n=1;
end
f=zeros(size(x));
s = x>=0;
f(s) = x(s).^(n/2-1).*exp(-x(s)/2)./(2^(n/2)*gamma(n/2));
 
%---------------------------------------------------------------
function properties = getopt(properties,varargin)
%GETOPT - Process paired optional arguments as 'prop1',val1,'prop2',val2,...
%
%   getopt(properties,varargin) returns a modified properties structure,
%   given an initial properties structure, and a list of paired arguments.
%   Each argumnet pair should be of the form property_name,val where
%   property_name is the name of one of the field in properties, and val is
%   the value to be assigned to that structure field.
%
%   No validation of the values is performed.
%
% EXAMPLE:
%   properties = struct('zoom',1.0,'aspect',1.0,'gamma',1.0,'file',[],'bg',
[]);
%   properties = getopt(properties,'aspect',0.76,'file','mydata.dat')
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% would return:
%   properties = 
%         zoom: 1
%       aspect: 0.7600
%        gamma: 1
%         file: 'mydata.dat'
%           bg: []
%
% Typical usage in a function:
%   properties = getopt(properties,varargin{:})
 
% Process the properties (optional input arguments)
prop_names = fieldnames(properties);
TargetField = [];
for ii=1:length(varargin)
  arg = varargin{ii};
  if isempty(TargetField)
    if ~ischar(arg)
      error('Propery names must be character strings');
    end
    f = find(strcmp(prop_names, arg));
    if length(f) == 0
      error('%s ',['invalid property ''',arg,'''; must be one of:'],
prop_names{:});
    end
    TargetField = arg;
  else
    % properties.(TargetField) = arg; % Ver 6.5 and later only
    properties = setfield(properties, TargetField, arg); % Ver 6.1 friendly
    TargetField = '';
  end
end
if ~isempty(TargetField)
  error('Property names and values must be specified in pairs.');
end
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function hc=panellims(x,y,smo,rho,dens,ccolor)

%PANELLIMS 2d density with probability limits added to pairs plot. See PAIRS.

% panellims(x,y,smo,rho,dens,ccolor)

% smo - smoothing factor

% rho - correlation coef for the kernel

% dens - if 1, add marginal densities

% ccolor - contour color

 

% Marko Laine <Marko.Laine@Helsinki.FI>

% $Revision: 1.8 $  $Date: 2008/01/23 08:11:03 $

 

if nargin < 3

   smo = [1 1];

end

if length(smo)<2

   smo = [smo,smo];

end

if nargin<4

  rho = [];

end

if nargin<5

  dens = 1;

end

 

if nargin<6

  ccolor = 'k'; % contour color

end

 

if smo(2)>0

  %lms = [0.95]; % p-limits to draw

  lms = [0.62 0.90 0.95]; % p-limits to draw

  %lms = [0.62 0.90]; % p-limits to draw

  %lms = [0.62 0.95]; % p-limits to draw

  %lms = [0.50 0.95]; % p-limits to draw

  %lms = [0.68 0.95 0.99]; % p-limits to draw

  [xo,yo,z,p]=plims2d([x,y],lms,smo(2:end),rho);

 

  h=gca; hp=findobj(h,'Type','line');

  

%   set(hp,'MarkerSize',1);

%   set(hp(1),'Color',ccolor);

%   set(hp(1),'Color',[.5 .5 .5]); hold on

hold on

   [c,hc]=contour(xo,yo,z,p);hold on

%   

  %get(hc(1))

  for i=1:length(hc); set(hc(i),'LineWidth',1.0); end

  %for i=1:length(hc); set(hc(i),'EdgeColor',ccolor); end

  for i=1:length(hc); set(hc(i),'EdgeColor','k'); end

  %clabel(c,hc)
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end

 

if (dens&smo(1)>0)

% add marginal densities

[yd1,xd1]=density(x,[],smo(1));

[yd2,xd2]=density(y,[],smo(1));

 

dscale=0.15; % marginal density scale

%ylim=get(h,'YLim');

ylim=[min(xd2),max(xd2)];

ymax=max(yd1);

%xlim=get(h,'XLim');

xlim=[min(xd1),max(xd1)];

yymax=max(yd2);

 

y2=(yd1*(ylim(2)-ylim(1))/ymax*dscale + ylim(1));

%plot(xd1,y2,'Color',ccolor,'LineWidth',1.0)

 

yy2=(yd2*(xlim(2)-xlim(1))/yymax*dscale + xlim(1));

%plot(yy2,xd2,'Color',ccolor,'LineWidth',1.0)

 

axis([xlim,ylim])

%axis([min(xd1),max(xd1),min(xd2),max(xd2)])

end

 

hold off

 

 












