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Thesis Advisors: Antoni Morell Pérez and Gonzalo Seco Granados
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Abstract

Wireless Sensor Networks (WSNs) have emerged as one of the most promis-

ing wireless communication systems in the last decade. They can be used

in a wide variety of applications such as environmental monitoring, natu-

ral disaster prediction, healthcare, transportation, indoor positioning, and

military tasks. The cost and the complexity of the nodes within a WSN are

typically low, which results in constraints such as energy limitation, low

computational speed, and reduced communication bandwidth. With the

advances in wireless communications and the growing demand of new and

more complex applications, WSNs must be optimized in order to overcome

their intrinsic limitations in terms of complexity and power.

In this dissertation, and according to these constraints, we propose a

set of techniques that provide to a WSN the following interesting features:

1. Distributed operation without the need of signaling among sensing

nodes.

2. Energy-efficient communications.

3. Low complexity at the sensing nodes.

4. Low resource (i.e., bandwidth, time, etc.) utilization.

5. Low distortion level at the receiver.
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6. Secret communications at the physical layer.

First, we study the zero-delay downsampling transmission. This tech-

nique allows the system to reduce the number of transmissions and hence

decrease the total energy spent. In particular, we study the performance

of deterministic, probabilistic and conditional downsampling encoding-

decoding pairs for the case of the autoregressive signal model. We obtain

closed form expressions for the quadratic error of the deterministic and

probabilistic encoder-decoders, while accurate approximations are derived

for the quadratic error of the conditional downsampling schemes.

Second, we analyze data compression applied to large WSNs. For the

realistic case where the correlation parameters are not known a priori, we

obtain two enhanced correlation estimators: i) one for the linear Wiener fil-

ter vector and ii) one for the achieved mean square error. Both estimators

are employed in the two key steps of the distributed source coding algo-

rithm. These estimators notably improve the performance of the algorithm

in comparison to the application of classical sample estimators, specially

when the dimension of the observation vector is comparable in magnitude

to the number of samples used in the training phase.

Then, we propose a distributed and energy-efficient communication

scheme named Amplify-and-Forward Compressed Sensing. This scheme is

based on compressed sensing and exploits the correlation present in the

signal in order to reduce both the resource utilization and the energy con-

sumption. More specifically, the system is designed according to a cost

function that controls the trade-off between the quadratic error in the re-

construction and the energy consumption of the network. In order to aid

the system design, a simple model that accurately approximates the per-

formance of the proposed scheme in terms of the quadratic error has been

derived. Furthermore, we contribute to the compressed sensing theory with

a tighter relationship between the minimum number of measurements that

are required for a given network dimension and the sparsity level of the
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transmitted signal.

Finally, the proposed Amplify-and-Forward Compressed Sensing scheme

is also studied in terms of secrecy and wiretap distortion at the physical

layer. It is shown that the proposed scheme is perfectly secret in the pres-

ence of one or even a small group of eavesdroppers whereas for a larger

eavesdropping set, it is still possible to notably deteriorate its espionage

capabilities thanks to a proposed technique specifically designed to intro-

duce extra uncertainty only in the channel estimation of the eavesdroppers.





Resum

Les xarxes de sensors sense fils (WSNs) han esdevingut un dels sistemes de

comunicació amb més projecció d’aquesta dècada. Abasten una àmplia vari-

etat d’aplicacions tals com la monitorització del medi ambient, la predicció

de desastres naturals, en medicina, en transport, posicionament en inte-

riors, i tasques militars. Els nodes que composen la xarxa, són t́ıpicament

de baix cost, cosa que atorga una sèrie de limitacions en termes d’energia,

velocitat de càlcul i d’ample de banda. Amb els avenços de les comunica-

cions sense fils i la creixent demanda de noves i més complexes aplicacions,

les WSNs s’han d’optimitzar per tal de minimitzar aquestes limitacions.

Aquesta tesi proposa un conjunt de tècniques que proporcionen a una

WSN les següents caracteŕıstiques:

1. Implementació distribüıda sense necessitat de senyalització entre

nodes sensors.

2. Comunicacions energèticament eficients.

3. Poca complexitat als nodes sensors.

4. Empra pocs recursos (temps, ample de banda, etc.).

5. Presenta un error quadràtic mig baix en reconstrucció al receptor.

6. Comunicacions secretes a capa f́ısica.
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Primer, s’estudia la transmissió seqüencial de mostreig redüıt. Aquesta

tècnica permet la disminució del nombre de transmissions i, per tant, reduir

la despesa energètica associada a la comunicació a la xarxa. En particu-

lar, s’estudia el rendiment dels codificadors determińıstics, probabiĺıstics i

condicionals de mostreig redüıt per senyals autoregressius. S’obtenen ex-

pressions tancades de l’error quadràtic mig pel cas de mostreig redüıt de-

termińıstic i probabiĺıstic, mentre que pel cas condicional es deriven aprox-

imacions ajustades.

A continuació, s’analitza la compressió de la informació per WSNs grans.

Pel cas on els paràmetres de correlació del senyal són desconeguts a priori,

es proposen dos estimadors millorats: i) un per la predicció emprant el filtre

de Wiener i ii) un per l’error quadràtic mig obtingut. Ambdós estimadors

s’empren pels dos passos claus de l’algorisme de codificació distribuida de

canal. Aquests estimadors milloren notablement el rendiment de l’algorisme

en comparació amb els estimadors de mostres clàssics, especialment quan

la dimensió del vector d’observacions és comparable en magnitud amb el

nombre de mostres usades a la fase d’entrenament de l’algorisme.

Posteriorment, es proposa un esquema de comunicació distribüıda i e-

nergèticament eficient anomenat Amplify-and-Forward Compressed Sens-

ing. Aquest esquema es basa en la tècnica de sensat comprimit i aprofita la

correlació existent al senyal rebut per tal de reduir tant el nombre de re-

cursos emprats com les despeses energètiques del sistema. Espećıficament,

el sistema es dissenya seguint una funció de cost que controla el compromı́s

existent entre error quadràtic i consum energètic de la xarxa. Per aconseguir

aquest disseny, es deriva un model simple que aproxima el rendiment de

l’esquema proposat en termes d’error quadràtic mig. A més, es contribueix

a la teoria de sensat comprimit amb una nova i més ajustada relació en-

tre el mı́nim nombre de mesures necessàries donades unes determinades

propietats del senyal.

Finalment, s’estudia l’esquema proposat Amplify-and-Forward Com-
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pressed Sensing des d’un punt de vista de secretisme a capa f́ısica. Es de-

mostra que aquest esquema assoleix secretisme perfecte sota la presència

d’un o d’un grup redüıt d’espies, mentre que per un nombre més gran, és

possible deteriorar notablement les seves capacitats d’espionatge gràcies

a una tècnica proposta especialment dissenyada per introduir un extra

d’incertesa solament a l’estimació dels espies.





Resumen

Las redes de sensores inalámbricas (WSNs) se han convertido en uno de

los sistemas de comunicación con mayor proyección de la década. Abarcan

una gran variedad de aplicaciones tales como la monitorización del medio

ambiente, la predicción de desastres naturales, la medicina, el transporte,

posicionamiento en interiores, y tareas militares. Los nodos que componen

una WSN son comúnmente de bajo coste, lo que otorga una serie de limita-

ciones en términos tales como de enerǵıa, velocidad de cálculo y de ancho

de banda. Con los recientes avances en el campo de las comunicaciones

inalámbricas y el continuo crecimiento de la demanda de nuevas y más

complejas aplicaciones, las WSNs deben ser optimizadas para minimizar

estas limitaciones.

Esta tesis propone un conjunto de técnicas que proporcionan a una

WSN las siguientes caracteŕısticas:

1. Implementació distribuida sin necesidad de señalización entre los no-

dos sensores.

2. Comunicaciones energéticamente eficientes.

3. Se requiere poca complejidad en los nodos sensores.

4. Utiliza pocos recursos (tiempo, ancho de banda, etc.)
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5. Presenta un bajo error cuadrático medio en reconstrucción en el re-

ceptor.

6. Comunicaciones secretas en capa f́ısica.

Primero, se estudia la transmisión secuencial de muestreo reducido. Esta

técnica permite disminuir el número de transmisiones y, por tanto, reducir

el gasto energético asociado a la comunicación en la red. En particular, se

estudia el rendimiento de los codificadores determińısticos, probabiĺısticos y

condicionales de muestreo reducido para señales autoregresivas. Se obtienen

expresiones cerradas del error cuadrático medio para el caso de muestreo

reducido determińıstico y probabiĺıstico, mientras que para el caso condi-

cional se derivan aproximaciones ajustadas.

A continuación, se analiza la compresión de información para WSNs

grandes. Para el caso práctico donde los parámetros de correlación de la

señal no se conocen a priori, se proponen dos estimadores mejorados: i)

uno para la predicción usando el filtro de Wiener y ii) otro para el error

quadrático medio obtenido. Ambos estimadores se usan en los dos pasos

clave del algoritmo de codificación distribuida de canal. Estos estimadores

mejoran notablemente el rendimiento del algoritmo en comparación a los

estimadores de muestras clásicos, especialmente cuando la dimensión del

vector de observaciones es comparable al número de muestras usadas en la

fase de entrenamiento del algoritmo.

Posteriormente, se propone un esquema de comunicación distribuido y

energéticamente eficiente llamado Amplify-and-Forward Compressed Sens-

ing. Este esquema está basado en sensado comprimido y aprovecha la co-

rrelación existente en la señal recibida para reducir tanto el número de

recursos utilizados como el gasto de enerǵıa. Especificamente, el sistema se

diseña según una función de coste que controla el compromiso existente en-

tre el error cuadrático y consumo energético de la red. Para conseguir este

diseño, se deriva un modelo simple que aproxima el rendimiento del esquema

propuesto en términos de error cuadrático medio. Además, se contribuye
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a la teoŕıa de sensado comprimido con una nueva y mas ajustada relación

entre el mı́nimo número de medidas necesarias dadas unas determinadas

propiedades de la señal.

Finalmente, se estudia el esquema propuesto Amplify-and-Forward

Compressed Sensing desde un punto de vista de secretismo en capa f́ısica. Se

demuestra que el esquema logra secretismo perfecto bajo la presencia de uno

o un grupo reducido de esṕıas mientras que para un número más grande,

es posible deteriorar notablemente sus capacidades de espionaje gracias a

una técnica propuesta especialmente diseñada para introducir una extra de

incertidumbre solamente a la estimación de los esṕıas.





Notation

In general, boldface upper-case letters denote matrices (A), boldface lower-

case letters denote column vectors (a), and italics denote scalars (a).

AT ,A∗,AH Transpose, complex conjugate, and conjugate trans-

pose (Hermitian) of matrix A, respectively.

A−1 Inverse of a full-rank matrix A.

aT ,a∗,aH Transpose, complex conjugate, and conjugate trans-

pose (Hermitian) of vector a, respectively.

[A]i,j The (ith, jth) element of matrix A.

[a]i The ith element of vector a.

[A]i The ith row of matrix A.

[A]:,i The ith column of matrix A.
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|a| Absolute value of the scalar a.

‖a‖
l
0 l0− (pseudo)norm of vector a. It counts the number

of non-zero elements in a vector a.

‖a‖l1 l1− norm of vector a, ‖a‖l1 =
∑

i |[a]i|.
‖a‖2 or ‖a‖ Euclidean norm of vector a, ‖a‖2 = (aHa)1/2.

‖A‖ or ‖A‖F Frobenius norm of a matrix A, ‖A‖ =
√

Tr(AHA).

IM Identity matrix of dimension M .

0 All-zero matrix with convenient dimensions.

ei Canonical vector with all the elements being zero

except the ith position, which is equal to one.

A1/2 Positive definite Hermitian square root of A,

A1/2A1/2 = A.

Tr(A) Trace of A.

Â, â, â Estimation of matrix A, vector a, and scalar a, re-

spectively.

aK K-sparse approximation of vector a, ‖a‖l0 = K.

E[·] Statistical expectation.

E[·|a < b] Conditional expectation given the condition a < b.

var(·) Statistical variance.

var(·|a < b) Conditional variance given the condition a < b.

N (µ,R) Gaussian vector distribution with mean µ and co-

variance matrix R.

σ2
x Variance of x.

erf(x) Error function of variable x, erf(x) = 2√
π

∫ x
0 e−t2dt.

erfc(x) Complementary error function of variable x,

erfc(x) = 1− erf(x).
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a! Factorial of a, a! =
∏a

i=1 i.

(a)+ Maximum between the real value a and 0, max(0, a).(
S

E

)
Binomial coefficient,

(S
E

)
= S!

(S−E)!E!

Π(x) Rectangular function, Π(x) = 0 if |x| > 0.5, Π(x) =

1 if |x| < 0.5, and Π(x) = 0.5 if |x| = 0.5.

δ(x) Dirac delta function.

(·)⋆ Optimal value.

⌈·⌉ Ceil function

I(a ≤ b) Indicator function of the condition a ≤ b.

log(·) Natural logarithm.

logb(·) Logarithm in base b.

N, Z, R, C, The set of natural, integer, real and complex num-

bers, respectively.

RM , CM The set of M -dimensional vectors with real and

complex entries, respectively.

RM×N , CM×N The set of M × N matrices with real and complex

entries, respectively.

(a, b), [a, b] Open interval (a < x < b) and closed interval (a ≤
x ≤ b), respectively.

∪, ∩ Intersection and union of sets.

∅ Empty set.

\ Set substraction.

˚ Almost surely convergence.

:= Defined as.

∼ Distributed according to.

≈ or h Approximate equivalence.





Acronyms

a.s. almost surely

A/D Analog-to-Digital

AF Amplify-and-Forward

AF-CS Amplify-and-Forward Compressed Sensing

AR Auto-Regressive

AR-1 Auto-Regressive process of order 1

AWGN Additive White Gaussian Noise

bps Bits per Second

CA Classical Approach

CDE Conditional Downsampling Encoder

cdf Cumulative Density Function

CDMA Code Division Multiple Access

CS Compressed Sensing

CSD Compressed Sensing Decoder

CSI Channel State Information

CSIR Channel State Information at the Receiver

CWS Compressed Wireless Sensing

DCT Discrete Cosine Transform

DDE Deterministic Downsampling Encoder
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DL Diagonal Loading

DPCM Differential Pulse Code Modulation

DSC Distributed Source Coding

ECSI Eavesdropper Channel State Information

edf Empirical Distribution Function

FC Fusion Center

FDMA Frequency Division Multiple Access

GCWS Generalized Compressed Wireless Sensing

GSA Generalized Statistical Analysis

i.i.d. Independent and Identically Distributed

LASSO Least Absolute Shrinkage and Selection Operator

LWF Linear Wiener Filter

MAC Multiple Access Channel

MC Markov Chain

MIMO Multiple-Input Multiple-Output

MLE Maximum Likelihood Estimatior

MMSE Minimum Mean Square Error

MSE Minimum Square Error

NP Nondeterministic Polynomial time

OFDM Orthogonal Frequency Division Multiplexing

PCA Principal Component Analysis

PCM Pulse Code Modulation

PD Predictive Decoder

PDE Probabilistic Downsampling Encoder

pdf Probability Density Function
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PER Packet Error Rate

PFA Probability of False Alarm

PHY-Layer Physical Layer

PoD Probability of Detection

RIP Restricted Isometric Property

RMT Random Matrix Theory

s.t. subject to

SCM Sample Covariance Matrix

SD Step Decoder

SER Symbol Error Rate

SNR Signal-to-Noise Ratio

TDMA Time Division Multiple Access

WSN Wireless Sensor Network
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Chapter 1

Introduction

1.1 Motivation

Wireless Sensor Networks (WSNs) have become one of the hottest research

topics in the last ten years. They have been intensively and extensively stud-

ied from different disciplines such as information theory, signal processing,

and communications among many others since WSNs collect a wide variety

of challenging constraints and peculiarities. Hence, WSNs have been used

as the ideal testbed scenario in order to apply and study the performance

of different techniques under such features. In this dissertation, we mainly

focus on the following ones.

1.1.1 Energy-limited network

A WSN is typically composed of many tiny, low-powered and inexpensive

wireless sensing nodes to monitor a certain physical measurement, such as

temperature, humidity, pressure, light, pollution, etc, and transmit their

measurement wirelessly to a central entity that is usually called fusion cen-

ter. In most cases, the sensing nodes are powered by small batteries that

cannot be recharged due to practical reasons. Hence, they are strongly

energy-limited and the lifetime of the WSN is strongly constrained to the

1
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lifetime of the battery of the sensing nodes. Therefore, the usage of energy-

efficient techniques is in many cases mandatory.

Following with this motivation, one can find many energy-efficient

strategies in order to mitigate the energy costs and hence increase the

lifetime of the WSN. Without the aim of being exhaustive, we point out

some examples:

• Energy-aware routing for cooperative WSNs and ad-hoc networks

[Toh01] [You04]. These techniques seek the optimum path that mini-

mizes the total spent energy in multi-hop WSNs.

• Signal processing techniques for minimum-power distributed trans-

mission schemes [Mud09] [Zar11]. Using distributed beamforming

techniques, the nodes can decrease the transmitted power at the same

time that they increase the total throughput of the network.

• Data-aware techniques to reduce energy by using efficient information

processing [Pra02]. By means of signal processing techniques, the net-

work exploits the inherent structure and properties of the measured

signal in order to compress the data and therefore reduce the associ-

ated energy costs.

Our study falls in the third category and may be complementary to the

other approaches.

1.1.2 Distributed network

The sensing nodes of the WSN are spatially distributed over a given area

of coverage, where each one of the sensing nodes acts as an autonomous

entity. This derives to a distributed configuration at the transmitted side.

On the other hand, the receiver is typically one entity that gathers (and

processes) the information coming from the sensing nodes.
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Although a large number of works deal with cooperative communica-

tions, where the signaling among sensing nodes is totally allowed, we re-

strict as much as we can the communication among sensing nodes mainly

because of energy constraints. It is clear that the more signaling load, the

more number of transmissions and hence the more power power.

In order to be consequent with the energy constraints of WSNs exposed

before, we are motivated to seek fully distributed architectures at the trans-

mitter side (i.e., the set of sensing nodes), where the communication among

them is minimized.

1.1.3 Space-time correlated sources

As we have already mentioned above, WSNs are typically composed of a

large number of sensing nodes within a delimited area of coverage. There-

fore, it is common to assume that the sensing nodes are spatially close

enough that their measurements present some similarities with each other.

The degree of similarity usually depends on the distance between the nodes.

Furthermore, the measured signal is usually slow-varying in time (e.g.,

the temperature of a field is expected to change slowly). In addition to

that, the sampling frequency of the sensing nodes is high enough that the

sample taken in one time instant retain some information from the past

measurements and also gives information about future samples.

Accordingly, we assume that the measured signal presents correlations

in both the spatial and the temporal domain. Therefore, the final aim of

this dissertation is to exploit these characteristics of the signal in order to

design and assess distributed and energy-efficient techniques for the WSN

scenario.
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1.2 Organization of Dissertation

1.2.1 Outline

The present dissertation is organized in six chapters. The outline is as

follows.

• Chapter 1 presents the motivation and the context of this research

work. It also presents the outline of the dissertation where the rela-

tions and dependences among de chapters are specified.

• Chapter 2 introduces a particular type of encoding-decoding strate-

gies, the zero-delay downsampling transmissions. These strategies are

studied for the particular case of autoregressive signal models, which

conveniently describe physical measurements as the ones present in

WSNs. In particular, we study the performance for both deterministic

and statistic downsampling encoder-decoders. We obtain closed form

expressions for the quadratic error of the deterministic and proba-

bilistic encoders, while error approximations are derived for the con-

ditional encoders.

• Chapter 3 proposes two enhanced correlation estimators of the well-

known Linear Wiener Filter (LWF) and its derived Mean Square Error

(MSE) for the two key steps of a practical distributed source coding

scheme. It is shown in Chapter 3 that the proposed enhanced estima-

tors notably improve the classic sample estimations when the number

of samples used in the training phase is comparable in magnitude to

the dimension of the observation vector. On the other hand, when the

number of samples is much higher than the observation dimension,

our proposed enhanced estimators perform as the classical estimators.

• Chapter 4 considers compressed sensing as a convenient signal pro-

cessing tool in order to design energy-efficient communication schemes
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in a distributed way. In this chapter, we propose a novel com-

pressed sensing transmission scheme named Amplify-and-Forward

Compressed Sensing (AF-CS) that significantly reduces the resource

utilization and the energy consumption. We also propose a simple

model that accurately approximates the reconstruction error intro-

duced by the proposed scheme. Furthermore, we contribute to the

compressed sensing literature with a new and tighter relation among

the minimum number of measurements for a given dimension and

sparsity level of the original vector. The analytical model and this

new relation allows us to dimension the WSN (i.e., number of active

sensing nodes and number of relays) based on a cost function that

controls the trade-off between reconstruction error and energy con-

sumption. We also show by simulation that the AF-CS outperforms

other techniques in the literature in terms of distortion and energy-

efficiency, providing at the same time, significant reduction in the

number of channel uses.

• Chapter 5 addresses the physical layer secrecy topic in wireless sensor

networks. In particular, the AF-CS scheme is proposed as a secret

scheme against passive eavesdropping. The secrecy performance of our

proposed technique is studied in terms of perfect secrecy and wiretap

distortion. Chapter 5 also proposes a channel estimation technique

based on random pilots that allows the system to introduce extra

uncertainty only in the channel estimation of the eavesdroppers. It is

shown how this technique can dramatically increase the secrecy of AF-

CS even for the case of several coordinated eavesdroppers listening at

the same time.

• Finally, Chapter 6 concludes the dissertation with a summary of the

main contributions and listing the remaining tasks for future work.
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1.2.2 Relations and dependences among chapters

Albeit each chapter has been written in the most self-contained way pos-

sible for clarity and readability, there exist strong relations and depen-

dences among them. The existing relations and dependences are illustrated

in Fig. 1.1 and they are properly referenced during the reading of the dis-

sertation. With some abuse of language, we will say that a Chapter A

depends on a Chapter B when the reading of Chapter B is needed in order

to properly understand Chapter A. Moreover, we will say that a Chapter

C is related to a Chapter D when some of the results in Chapter D can be

used (but they are not necessary) in Chapter C.

The relations and dependences of Chapters 1, 6 with Chapters 2-5 are

obvious since Chapters 1, 6 introduce and conclude Chapters 2-5. The rest

are linked as follows.

• Chapter 2 uses the LWF estimation in one of the proposed encoders

and one of the proposed decoders. However, it assumes perfect knowl-

edge of the correlation matrix. In a real transmission environment,

this quantity needs to be estimated. Therefore, Chapter 2 is related

to Chapter 3 since this last one proposes enhanced correlation esti-

mators that can be used in Chapter 2 in order to estimate the linear

Wiener filter and its related MSE with fewer samples than for the

conventional sample estimators.

• Chapter 3 follows the AR−1 signal model, which is detailed in Chap-

ter 2. Chapter 3 also applies the convenient matrix notation of the

AR− 1 process introduced in Chapter 2. Hence, Chapter 3 is related

to Chapter 2.

• Chapter 4 presents the AF-CS. This scheme is based on the Con-

ditional Downsampling Encoder (CDE) and the Predictive Decoder

(PD), that are studied in detail in Chapter 2. Thus, Chapter 4 depen-

dends on Chapter 2. Furthermore, both CDE and PD use the LWF
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Chapter 5: Amplify-and-Forward 
Compressed Sensing as a Physical-

Layer Secrecy Solution

Chapter 4: Amplify-and-Forward 
Compressed Sensing as a Energy-

Efficient Solution

Chapter 3: Enhanced Correlation 
Estimators for Distributed Source 

Coding 

Chapter 2: Distortion of Zero-Delay 
Downsampling Schemes for Auto-

Regressive Sources

Chapter 6: Conclusions and Future 
Work

Chapter 1: Introduction

Relation

Dependence

Chapters with main contributions

Figure 1.1: Relations and dependences among chapters.
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as a predictor, and hence the estimators proposed in Chapter 3 can

be used. In addition, Chapter 4 presents an analytical model that

describes the performance of AF-CS in terms of quadratic distortion.

Hence, the MSE estimator proposed in Chapter 3 can be used if the

correlation parameters are estimated (instead of the true ones). We

conclude that Chapter 4 is related to Chapter 3 as well.

• Finally, Chapter 5 explores the physical-layer secrecy properties of

the AF-CS introduced and detailed in Chapter 4. Hence, Chapter 5

strongly depends on Chapter 4. Furthermore, the signal model fol-

lows the one in Chapter 2, and hence the reading of Chapter 2 is

recommended (but not needed) before reading Chapter 5.

1.3 Research contributions

The related research contributions are concentrated in Chapters 2-5 and

listed as follows:

Chapter 2 The results regarding to downsampling encoding can be found

in the following Journal paper reference

[BL12c] J. E. Barcelo-Llado, A. Morell, G. Seco-Granados, “Dis-

tortion of Zero-Delay Downsampling Schemes for Auto-Regressive

Sources with Incomplete Observation Vectors,” EURASIP Journal on

Advances in Signal Processing (submitted June 2012).

Chapter 3 The derivation of the proposed enhanced correlation estima-

tions has been introduced in the following conference paper and studied in

detail in the following journal paper

[BL10] J. E. Barcelo-Llado, A. Morell, G. Seco-Granados, “Dis-

tributed Source Coding for Large Wireless Sensor Networks,” in Proc.

44th Asilomar Conf. on Signals, Systems and Computers, Nov 2010,

Monterey, CA.
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[BL12e] J. E. Barcelo-Llado, A. Morell, G. Seco-Granados, “Enhanced

Correlation Estimators for Distributed Source Coding in Large Wire-

less Sensor Networks,” IEEE Sensors Journal (accepted for publica-

tion).

Chapter 4 The AF-CS scheme has been introduced in the following con-

ference paper and studied in detail in the following journal paper

[BL11] J. E. Barcelo-Llado, A. Morell, G. Seco-Granados, “Optimiza-

tion of the Amplify-and-Forward Transmission in a Wireless Sensor

Network Using Compressed Sensing,” in Proc. 19th European Con-

ference on Signal Processing (EUSIPCO), Aug 31 2011, Barcelona,

Spain.

[BL12b] J. E. Barcelo-Llado, A. Morell, G. Seco-Granados, “Amplify-

and-Forward Compressed Sensing as an Energy-efficient Solution for

Wireless Sensor Networks,” ACM Transactions on Sensor Networks,

(submitted March 2012).

Chapter 5 The PHY-Layer secrecy properties of the AF-CS scheme have

been introduced in the following conference paper and detailed in the fol-

lowing journal paper

[BL12a] J. E. Barcelo-Llado, A. Morell, G. Seco-Granados, “Amplify-

and-Forward Compressed Sensing as a PHY-Layer Secrecy Solution

for Wireless Sensor Networks,” in Proc. 7th Sensor Array and Mul-

tichannel Signal Processing (SAM 2012), 2012, New Jersey, US.

[BL12d] J. E. Barcelo-Llado, A. Morell, G. Seco-Granados, “Amplify-

and-Forward Compressed Sensing as a Physical Layer Secrecy Solu-

tion for Wireless Sensor Networks,” IEEE Transactions on Informa-

tion Forensics and Security, (submitted July 2012).





Chapter 2

Distortion of Zero-Delay

Downsampling for

Auto-Regressive Sources

2.1 Summary

In this chapter, we assess the performance of various zero-delay encoding-

decoding strategies. The proposed analytical study addresses the perfor-

mance degradation at the receiver side when some of the samples are miss-

ing or have been removed at a given ratio. Concretely, a Gaussian autore-

gressive signal model is considered. Hence, the analyzed encoder-decoder

pairs exploit their knowledge about the signal structure in different ways.

In particular, we study the performance in terms of quadratic distortion of

three downsampling encoders, which are the deterministic downsampling

encoder (DDE), the probabilistic downsampling encoder (PDE), and the

conditional downsampling encoder (CDE), combined with two decoders:

the step decoder (SD) and the predictive decoder (PD). We derive closed

form expressions of the quadratic distortion for the pairs DDE-SD, DDE-

PD, PDE-SD and PDE-PD. For the case of CDE-SD and CDE-PD we

11
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derive closed approximations for their quadratic distortion. Alse, we pro-

pose two strategies in order to design the threshold of the condition of the

CDE that decides whether a sample is transmitted or not at a given time

instant. Numerical simulation validates our analytical results, and the ac-

curacy of the approximations regarding CDE-SD and CDE-PD. Moreover,

we compare the obtained quadratic distortion and extract the conclusions

of the capabilities of the studied encoding-decoding schemes.

2.2 Introduction

2.2.1 Motivation and previous work

With the emergence of increasingly heterogeneous communication technolo-

gies, the encoding-decoding schemes have been diversified in order to satisfy

the constraints for a given system. This makes it impossible to obtain a sin-

gle optimal encoding-decoding solution valid for all transmission schemes.

Instead, one of the most important steps in the design of a transmission

scheme is the selection of the encoder-decoder pair that meets the system

requirements.

Many transmission schemes use non-causal transmissions such as block-

coding. In these cases, the source collects a number of contiguous samples in

order to compress them by removing part of (or all) the redundancy among

them. Within this group of encoders-decoders a large amount of different

techniques can be found. Albeit these transmissions are very appropriate for

high-rate transmissions and/or delay-tolerant communications, these non-

causal transmission schemes may not be applicable because block transmis-

sions are not always allowed due to delay constraints and/or low symbol

rates of the source.

For delay sensitive applications such as real-time monitoring applica-

tions, where the reconstruction of the signal must take place at the same

time instant as the corresponding input sample, causal source codes are
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more convenient. Hence, a source code is said to be causal if the nth decoded

sample depends on the output signal only through its first n components,

or in other worlds, depends on the past and present outputs but not on fu-

ture ones. Quantizers, delta modulators, differential pulse code modulators,

and adaptive versions of these are all causal in the above sense. The basic

properties of causal source codes have been introduced in 1982 in [Neu82],

and related works have been expanded so far. The work in [Wei05] extends

the general results of [Neu82] for the case where side information, i.e. extra

information that is correlated with the source, is available at the encoder

and the decoder.

In addition, a causal source code is called zero-delay or sequential code

if both the encoder and the decoder are causal (note that for the causal

source code definition, the assumption of causality is only at the decoder)

[Der12], [Vis00]. Some applications of zero-delay schemes can be found in

the speech coding or the encoding of a certain physical phenomenon that

is monitored in real time, such as in wireless sensor networks.

In the literature, there are several zero-delay coding systems. One of

the most common is the well-known Differential Pulse Code Modulation

(DPCM). In a nutshell, the current sample to be coded is predicted from

previously coded samples. This prediction is used as a reference and it

is compared with the current sample. Hence, the output of the encoder

is the prediction error. The inverse operation takes place at the decoder

side. According to [Zam08], DPCM was first introduced in a U.S. patent

by C. Cutler in 1952. Since then, many results have been appeared. In

particular, the autoregressive (AR) model has received a special attention

for the study of the zero-delay coding schemes. Some of the early works

on AR models date back to the 60s. The works in [O’N71a] and [Pro67]

analyze the quadratic rate distortion of DPCM (the reader can find an

extended description of the rate distortion in Chapter 13 of [MC91]). The

work in [O’N71b] extends this results assuming a Gaussian distribution
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of the predicted error. Other works proposed algorithms for nonuniform

quantizers optimized in order to minimize the distortion rate [Far85].

Later works, as the one in [Gul01], try to particularize the results ob-

tained by the DPCM also for the case of low bit rates. In such cases the

system performance becomes worse. Then, the classic DPCM encoder is

modified in order to achieve better performance in terms of rate distortion

for a low bit rate regime.

Recent works on this field have tried to unify the theoretical limits

of the DPCM (and other zero-delay schemes) for AR models with other

information theory concepts. The authors in [Zam08] provide analytical

results for the existing duality between the rate distortion of an AR process

with the capacity of the inter-symbol interference channels.

By contrast, other works as [Der12] adjust upper and lower limits of the

rate distortion for generic zero-delay schemes from a information theoretical

point of view using the mutual information as a measure of the rate.

2.2.2 Our contribution

Our proposed work also follows the same sequential transmission approach

presented above. In particular, we study downsampling encoding-decoding

schemes in which the samples of an input signal are either blocked or trans-

mitted following a given criterion. We analyze the performance loss of dif-

ferent encoding-decoding pairs when the number of samples is reduced by

a factor γ. We study the following three downsampling criteria: i) a De-

terministic Downsampling Encoder (DDE), a Probabilistic Downsampling

Encoder (PDE), and a Conditional Downsampling Encoder (CDE).

A DDE works as a decimator, i.e., it reduces the number of samples

following a deterministic pattern. Hence, the DDE selects only one in γ−1

samples, where γ−1 is typically a natural number.

A PDE slightly differs from a common decimator since it reduces the

number of samples following a probabilistic pattern, i.e., one sample will
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be transmitted with probability γ and otherwise blocked with probability

1−γ. This method eliminates the restriction of γ−1 to be a natural number.

However, we analytically show that a DDE outperforms a PDE in terms of

quadratic distortion.

A CDE uses side information in order to sequentially elaborate the

decimator pattern. Basically, it predicts the current sample using linear

estimation and uses this prediction as a reference. Then, the transmission

is blocked if the prediction error does not exceed a given threshold, and

transmitted otherwise. It is clear that a key step of the CDE design is to

determine the threshold that ensures a sample rate reduction of a factor γ.

Therefore, two different threshold designs are proposed in this chapter.

Clearly, this last encoder presents some similarities with the DPCM in

the sense that both schemes use (linear) prediction as a reference in order

to encode the input signal. However, they present important differences as

well, which can be summarized as:

• A DPCM produces an outcome sample for each input sample. In

other words, it does not change the sample rate. On the contrary, the

CDE (and also the DDE and the PDE) reduces the sample rate. This

behavior is very convenient in some energy-constrained scenarios, such

as wireless sensor networks, since the total number of transmissions is

reduced by a factor γ, increasing the energy efficiency of the network.

• While a DPCM works at symbol level, the CDE does at sample level.

Thus, the downsampling encoder-decoder schemes studied in this pa-

per are not exclusive to the DPCM or other zero-delay coding tech-

niques. Actually, they can be used on top of them when the signal is

transmitted.

On the other hand, the decoder recovers the original sampling rate by

upsampling the signal. We study two possible decoders: i) a Step Decoder

(SD), and a Predictive Decoder (PD). A SD reconstructs the missing sam-
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ples by replicating the last decoded samples. This do not require any side

information knowledge. On the contrary, the PD reconstructs the missing

samples by linear prediction (as in the CDE case). We analytically show

the improvements in terms of quadratic distortion when the samples have

been predicted rather than simply replicated.

We give analytical expressions for the quadratic distortion of the follow-

ing downsampling encoding-decoding pairs: DDE-SD, DDE-PD, PDE-SD,

and PDE-SD. Furthermore, we also provide accurate approximations for

the quadratic distortion of CDE-SD and CDE-PD. Numerical simulations

support our proposed analytical expressions.

In order to analytically address this problem, we focus in this chapter

on an AR model. This probabilistic model is particularly interesting for

both its analytical simplicity and its applicability in modeling real physical

sources [Has80].

2.2.3 Organization of the chapter

The rest of the chapter is organized as follows. In Section 5.3 we introduce

the problem statement and the scenario considered throughout the chapter.

Section 2.4 presents the encoding-decoding schemes under study. The ana-

lytical expressions of the downsampling distortion for each encoder-decoder

pair are detailed in Section 2.5. Two different design strategies for the case

of conditional encoding and their performance are presented in Section 2.6.

Simulation results are shown in Section 5.6. Conclusions and suggestions

for future research are drawn in Section 5.7.

2.3 System Model and Assumptions

The transmission model under consideration is illustrated in Fig. 5.3.

Let x(n) be a real and time-discrete auto-regressive (AR) model of order
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encoder decoder

x(n) y(n) x̃(n)

R γR R
[samples/s] [samples/s] [samples/s]

source sink

Figure 2.1: Block diagram of a generic encoder-decoder transmission

scheme. The source is generating the desired signal x(n) at a rate R sam-

ples/s. The signal y(n) is the encoded version of x(n) and it is transmitted

at a rate γR, where γ ≤ 1. The signal x̃(n) is the reconstruction of the

desired signal x(n) after the decoder.

N and variance σ2
x, sampled at a rate R. It is defined as

x(n) = wTx(n) + z(n), for n = 1, 2, . . . (2.1)

The vector x(n) ∈ RN , stacks the previous N samples of the stochastic

process, i.e., x(n) = [x(n − 1)x(n − 2) . . . x(n −N)]T , the auto-regression

coefficients are denoted by the vector w ∈ RN and assumed constant during

the transmission. The vector z(n) is a Gaussian process with zero mean and

variance σ2
z . Hence, note that x(n) has also zero mean and it is uncorrelated

with z(n) but not with z(n− i) for i = 1, 2, ....

We assume x(n) to be a continuous-valued process. Although a continu-

ous random measurement requires infinite precision in order to be digitally

sent with zero error [MC91], we assume that the quantization error to be

negligible in comparison with the quadratic distortion of the downsampling

encoder-decoder pair. This assumption is supported by the rate-distortion

theory, since we can select a symbol rate such as the quantization error

would be as small as we want.

Furthermore, we require that the signal x(n) is transmitted in a zero-

delay manner from the source to the destination. Throughout this chapter,

we understand for zero-delay transmission when for each sample at time n

the receiver will have a reconstruction of the signal x(n). Furthermore, for
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time instant n we are not interested in x(n− 1) anymore, so delay tolerant

strategies (such as block encoding schemes) are not feasible. Following this

constraint, we will look for encoders that allows us to reduce the sample

rate sample-by-sample in real time.

Hence, we consider a non-linear encoder with a coding rate γ. In our

particular case, the encoder selects which samples from x(n) are going to

be transmitted with a rate of γ and the rest will be discarded. The selected

samples are represented by y(n), therefore, note that y(n) is only defined for

those time slots in which the encoder decides to transmit. In the following

Section, we will revise different downsampling encoding criteria and we

study their performance.

Moreover, we consider non-linear decoders in order to recover an ap-

proximation of x(n), i.e. x̃(n), from y(n). Roughly speaking, the decoder

will construct x̃(n) copying the samples of y(n) when the transmission exists

and predicting the rest otherwise.

Definition 2.1 For a given pair of encoder-decoder, the sink will receive

x̃(n) with a given downsampling distortion. It defines the quadratic distor-

tion introduced by the given downsampling encoder-decoder pair e-d, as

D(e, d) = E[(x(n)− x̃(n))2]. (2.2)

In the next sections we present the different encoder-decoder pairs and we

evaluate their downsampling distortion.
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2.4 Zero-Delay Transmission Schemes and Their

Downsampling Distortion

2.4.1 Available information about the desired signal x(n)

Let R ∈ RN×N be the covariance matrix of the observation vector x(n),

defined as

R =




r0 r1 · · · rN−1

r1 r0 · · · rN−2
...

...
. . .

...

rN−1 rN−2 · · · r0




, (2.3)

where ri = E[x(n)x(n − i)]. This matrix is assumed to be known since it

can be efficiently estimated after a training phase of M samples as

R = lim
M→∞

1

M

M∑

n=1

x(n)xT (n). (2.4)

There are many ways to estimate the coefficients of an AR process. We

select the Linear Wiener Filter (LWF) solution since it is optimal in terms

of the Minimum Square Error (MSE). The LWF solution, w satisfies the

Wiener-Hopf equations [Hay01]:

r = Rw ⇒ w = R−1r, (2.5)

where r = [r1 r2 . . . rN ]T ∈ RN is the cross-correlation vector defined as

r = E[x(n)x(n)].

Hence, one can predict x(n) using the LWF with a given observation

vector x̃(n) = [x̃(n− 1) x̃(n− 2) . . . x̃(n−N)] as

x̂(n) = wT x̃(n) = (R−1r)T x̃(n). (2.6)

where x̃(n) is the decoded sample at time instant n.
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For the case that the observation vector x̃(n) is x(n), the MSE in the

prediction of an AR process for an arbitrary w is:

MSE(w) = E[(x(n)− x̂(n))2] = E[x(n)2]− E[x(n)x̂(n)] + E[x̂(n)2],

= σ2
x − 2wT r + wTRw. (2.7)

Lemma 2.1 The MSE lower-bound MSE(w) = σ2
z can be achieved by the

LWF solution.

Proof The MSE for the LWF solution, i.e. w = R−1r, is

MSE(R−1r) = σ2
x − rTR−1r. (2.8)

Following the initial model in (2.1), we represent σ2
x in terms of R, r

and w, and we get

σ2
x = E[x(n)2] = E[(wTx(n) + z(n))2]. (2.9)

Since z(n) is uncorrelated with x(n), we obtain

σ2
x = wT E[x(n)T x(n)]w + E[z(n)2]

= wTRw + σ2
z . (2.10)

Substituting the result in (2.10) in (2.8), and taking into account that

using the LWF solution in (2.5) the term wTRw = rTR−1r, we get the

well-known result

MSE(R−1r) = wTRw + σ2
z − rTR−1r = σ2

z (2.11)

2.4.2 The Auto-Regressive model of order 1, AR− 1

In signal processing it is usual to assume time correlated signals in order

to model real sources. One of the correlation models commonly used is

[R]n,n−i = ri = ρi, where ρ ∈ [0, 1] is the correlation factor. One example
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is [Ram10] where this model is used to represent the spatial correlation

among sensors in a Wireless Sensor Network monitoring light, temperature

and humidity, and compares the obtained results for a correlation factor of

ρ = 0.95 with the ones obtained from a real environment.

This correlation model turns out to be an auto-regressive model of order

1 (AR−1). It is easy to observe that for [R]n,n−i = ri = ρi the autoregressive

coefficients obtained from the LWF solution in (2.5) are of the form w =

[ρ 0 0 . . . ]T . Hence, the AR model can be written as an AR− 1 as

x(n) = wTx(n) + z(n) = ρ x(n− 1) + z(n). (2.12)

Without loss of generality, we assume that σ2
x = 1. Therefore, the MSE

obtained using the LWF solution is:

MSE(w) = E[|x(n)− ρx(n− 1)|2]
= 1− 2ρE[x(n)x(n − 1)] + ρ2E[x(n− 1)x(n − 1)]

= 1− 2ρ2 + ρ2 = 1− ρ2. (2.13)

It means that we can predict our signal of interest x(n) with an error

bound of 1 − ρ2 for the case we have perfect knowledge of the correlation

parameters R and r and x(n) models an AR − 1 process. This function is

illustrated in Fig. 2.2.

2.4.3 Different encoding alternatives

We select three downsampling encoders among many other possibilities.

They have been chosen for their simplicity and because many other strate-

gies can be derived from them.

In order to describe the selected encoders, we first need to introduce

the following definition:

Definition 2.2 The transmission support function of an encoder e, named

ge(n), is an indicator function which takes the value one when the trans-

mission exists and zero otherwise.
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Figure 2.2: MSE lower-bound in the prediction of a AR − 1 process as a

function of the AR coefficient.

2.4.3.1 Deterministic Downsampling Encoder (DDE)

This encoder is the simplest one and acts as a decimator. Its transmission

support function is:

gDDE(n) =

{
1 when n mod γ−1 = 0

0 otherwise
(2.14)

Note that for uniform downsampling, the DDE is only defined for com-

pression rates γ of the form γ−1 ∈ N.
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2.4.3.2 Probabilistic Downsampling Encoder (PDE)

This encoder solves the limitation of DDE that γ−1 is a natural number.

Basically, the symbol x(n) will be transmitted following a given probabilis-

tic pattern. Thus, the transmission support function is:

gPDE(n) =

{
1 with probability p

0 with probability 1− p
(2.15)

It is straightforward to see that in order to guarantee a compression

rate of γ, the value of the transmission probability p should be p = γ.

2.4.3.3 Conditional Downsampling Encoder (CDE)

Previous encoders do not assume any memory or prior information of the

signal of interest x(n). On the contrary, the CDE uses the available infor-

mation in order to decide whether the signal should be transmitted or not.

In particular, we analyze the cases where the available information is either

the last decoded sample x̃(n−1) or a linear prediction using the LWF solu-

tion in (2.5) with a given observation vector x̃(n). The available information

is compared with the signal of interest x(n). If the absolute value of the

difference is higher than a given threshold ∆, the encoder will transmit the

signal. Otherwise, if the difference is below ∆, the transmission is blocked.

Mathematically, for the first case,

gCDE(n) =

{
1 if |x(n)− x̃(n− 1)| > ∆

0 otherwise
(2.16)

For the LWF prediction, the CDE is

gCDE(n) =

{
1 if |x(n)− x̂(n)| > ∆

0 otherwise
(2.17)

Although this scheme is quite simple, it has two main complications: i)

the LWF predictor assumes the knowledge of the correlation parameters R
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and r or at least good estimates of them, and ii) the threshold ∆ should be

designed in such a way that it ensure a coding rate of γ. The first problem

adds some complexity to the system but can be efficiently solved using

existing correlation estimators [BL12e] (as it is detailed in Chapter 3). The

second one is addressed later in Section 2.5.

2.4.4 Different decoding alternatives

As for the encoding strategies, we select two decoders from a bunch of

possible solutions. The first one is probably the simplest and it does not

require any knowledge of the correlation parameters, while the second uses

this knowledge in order to reconstruct the received signal.

2.4.4.1 Step Decoder (SD)

It is the simplest decoder. It just copies the value of y(n) into x̃(n) when

ge(n) = 1 or maintains the last decoded value x̃(n − 1) if ge(n) = 0. The

decoder function is described as

dSD(n) =

{
x̃(n) = y(n) if ge(n) = 1

x̃(n) = x̃(n− 1) otherwise.
(2.18)

This approach is very typical when the source is sensing a given time-

correlated phenomena. Since it is assumed slow changing, the magnitude is

maintained until we receive an update.

2.4.4.2 Predictive Decoder (PD)

If we take advantage of the time correlation properties of x(n), we can

obtain lower downsampling distortion than for the SD case. The behavior is

similar than the previous decoder SD, but in this case, when ge(n) = 0, the

PD predicts x(n) using LWF instead of replicating x̃(n). Mathematically,
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dPD(n) =

{
x̃(n) = y(n) if ge(n) = 1

x̃(n) = x̂(n) otherwise.
(2.19)

2.5 Downsampling Distortion of the Encoder-

Decoder Pairs

2.5.1 Signal prediction using incomplete observation vectors

Let the observation vector x̃(n) ∈ RN is x̃(n) = [x̃(n−1) x̃(n−1) · · · x̃(n−
N)]T be an incomplete version of x(n). The vector x̃(n) is constructed

using the N last decoded samples. This is because the decoder does not

necessarily know all the values of x(n) and only knows the decoded ones.

Hence, some values of x̃(n) are replicas of x(n) and the rest are predicted

values x̂(n).

Definition 2.3 Let the vector x̃t be an instance of x̃(n) where the last true

sample was received at time n− t. Mathematically,

[x̃t(n)]j =

{
x̂(n − j) if j < t

x(n − j) if j = t
(2.20)

Theorem 2.1 If x̃t(n) is used as the observation vector of the LWF, the

MSE is degraded as

MSEt = 1− ρ2t (2.21)

Proof It is proved by induction. First let us assume the case where the

vector x̃2(n) is of the form x̃2(n) = [x̂(n− 1) x(n− 2) . . . x(n−N)]T , that

is, all the positions in the vector correspond to true measurements except
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the first one. In this case,

E[|x(n)−wH x̃2(n)|2] = E[|x(n)− ρx̂(n − 1)|2]
= E[|x(n)− ρwH x̃1(n− 1)|2]
= E[|x(n)− ρ2x(n− 2)|2]
= 1− 2ρ2E[x(n)x(n − 2)] + ρ4E[x(n− 2)x(n − 2)]

= 1− ρ4. (2.22)

For the case where x̃3(n) is of the form x̃3(n) = [x̂(n−1) x̂(n−2) x(n−
3) . . . x(n−N)]T , the MSE is degraded as

E[|x(n)−wH x̃3(n)|2] = E[|x(n)− ρx̂(n − 1)|2]
= E[|x(n)− ρwH x̃2(n− 1)|2]
= E[|x(n)− ρ2x̂(n− 2)|2]
= E[|x(n)− ρ2wH x̃1(n− 2)|2]
= E[|x(n)− ρ3x(n− 3)|2]
= 1− 2ρ3E[x(n)x(n − 3)] + ρ6E[x(n− 3)x(n − 3)]

= 1− 2ρ6 + ρ6 = 1− ρ6. (2.23)

It is straightforward to conclude that, for the general case where x̃t(n)

is of the form x̃t(n) = [x̂(n− 1) . . . x̂(n− t + 1)x(n− t) . . . x(n−N)]T , the

MSE is degraded as

E[|x(n)−wH x̃t(n)|2] = 1− ρ2t. (2.24)

Corollary 2.1 For a given ρ, the MSE is only a function of the position of

the last true measurement in the observation vector for an AR− 1 process.

Furthermore, it is not dependent on the dimension N of x̃t(n).

Proof The proof of the first statement is straightforward and it is enough

to verify that the MSE obtained by x̃t(n) and x̃′
t(n), where

x̃′
t(n) = [x̂(n− 1) . . . x(n− t) . . . x̂(n−N)]T , (2.25)
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is the same. Then, let us consider for example t = 2,

E[|x(n)−wH x̃′
2(n)|2] = E[|x(n)− ρx̂(n− 1)|2]

= E[|x(n)−wH x̃2(n)|2] = 1− ρ4. (2.26)

Moreover, for observation vectors that only contain estimated measures

(i.e., t > N), the MSE also follows (2.21). One can see that if t = N + 1,

then the MSE is:

E[|x(n)−wH x̃N+1(n)|2] = E[|x(n)− ρT x̂(n−N)|2]
= E[|x(n)− ρNwH x̃1(n−N)|2]
= E[|x(n)− ρN+1x(n−N − 1)|2]
= 1− ρ2(N+1). (2.27)

Hence, the probability that the last true sample of the vector x̃(n) is

in the position t depends directly on the downsampling criteria used at

the encoder. Therefore, in order to compute the downsampling distortion

for a given encoder-decoder pair, we need to compute the probability of

occurrence of the event t, or what is the same, the probability that the

observation vector x̃ is actually x̃t. Next, we illustrate this problem using

a Markov Chain (MC) model.

2.5.2 The Markov Chain solution for the incomplete obser-

vation vector case

Let a MC model a discrete-time process where a random variable E(n) is

changing in time. The MCs have the property that to be in a state t, i.e.

E(n) = t, only depends on the previous state, i.e., E(n− 1). This property

is very interesting in order to model AR − 1 processes. Moreover, a MC

is said to be homogeneous when the probability of transition between the

states of E(n) is invariant in time, i.e.,

pi,j = P (E(n) = j|E(n − 1) = i) ∈ [0, 1]. (2.28)
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where i, j = 0, 1, . . . , T−1. For a given i, the pi,j follows a given distribution

probability, and hence

T−1∑

j=0

pi,j = 1, (2.29)

since in any step, E(n − 1) = i can change to any E(n) = j with a given

probability pi,j ∈ [0, 1] and they are mutually exclusive. Let us introduce

the following two definitions.

Definition 2.4 Let the matrix T ∈ RT×T denote the transition matrix of

an homogeneous MC process of T states where

T =




p0,0 p0,1 · · · p0,T−1

p1,0 p1,1 · · · p1,T−1
...

...
. . .

...

pT−1,0 pT−1,2 · · · pT−1,T−1




, (2.30)

and each row represents a probability distribution as in (2.29), so [TT ]i1 =

1.

Definition 2.5 Let the vector p ∈ RT denote the stationary probability

vector of an homogeneous MC process of T states any vector that holds the

stationary condition

pT = pTT, and pT1 = 1 (2.31)

where p = [P0 P1 . . . PT−1]
T contains the probabilities to be in each state

t = 0, 1, . . . , T in the stationary regime of the MC process.

2.5.3 The downsampling distortion of the encoder-decoder

pairs

In this section we analytically evaluate the performance of the proposed

encoder-decoder pairs in terms of the downsampling distortion.
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Figure 2.3: Finite Markov Chain of T states that models the encoder DDE.

2.5.3.1 The pair DDE-SD

The DDE can be modeled following the finite Markov Chain of T states in

Fig. 2.3. The state E(n) = 0 means that in time n the transmission exists.

Similarly, the state E(n) = t means that the sample n− t was the last to be

transmitted. The transition matrix that describes the process of the DDE

is:

TDDE =




0 1 0 · · · 0

0 0 1 0
...

...
. . .

0 0 0 1

1 0 0 · · · 0




, (2.32)

where the first diagonal above the main diagonal and the position (1, T )

are loaded with ones while the rest are zeros.

Lemma 2.2 The DDE-SD pair introduces at the state t the following error:

MSEDDE-SD
t = 2

(
1− ρt

)
. (2.33)
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Proof The index t denotes the time spacing between the last available

sample with the current one. Thus, we can compute the MSEDDE-SD
t as

MSEDDE-SD
t = E[(x(n)− x(n− t))2]

= E[(x(n))2]− 2E[(x(n)x(n − t))] + E[(x(n− t))2]

= 1− 2ρt + 1 = 2
(
1− ρt

)
. (2.34)

Theorem 2.2 The downsampling distortion for the DDE-SD pair is:

D(DDE,SD) = 2− 2γ
ρ1/γ − 1

ρ− 1
. (2.35)

Proof The downsampling distortion will be the sum of the MSE contri-

butions for each state. Applying the definition of stationary probability

vector in Definition 2.5 we extract that Pi = Pj for all i, j = 0, 1, . . . , T .

Since we impose a coding rate of γ, the probability of transmission, i.e. P0,

is P0 = 1/T = γ. The stationary probability vector is p = γ1. Hence, the

downsampling distortion can be computed as

D(DDE,SD) =
T−1∑

t=0

PtMSEDDE-SD
t =

2

T

T−1∑

t=0

(1− ρt) = 2− 2

T

T−1∑

t=0

ρt

= 2− 2

T

ρT − 1

ρ− 1
= 2− 2γ

ρ1/γ − 1

ρ− 1
. (2.36)

2.5.3.2 The pair DDE-PD

The MC in Fig. 2.3 also models the behavior of the DDE-PD pair. However,

the knowledge of the correlation parameters are available at the PD and

hence it can predict the non-transmitted samples using the LWF. Therefore

the MSE associated to the state t obeys Theorem 2.1.

Theorem 2.3 The downsampling distortion for the DDE-PD pair is:

D(DDE,PD) = 1− γ
ρ2/γ − 1

ρ2 − 1
. (2.37)
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pt,0p2,0p1,0

Figure 2.4: Infinite Markov Chain that models the encoder PDE.

Proof Following Theorem 2.1, the MSEDDE-PD
t = 1−ρ2t. Hence, the down-

sampling distortion can be computed as

D(DDE,PD) =

T−1∑

t=0

PtMSEDDE-PD
t =

1

T

T−1∑

t=0

(1− ρ2t) = 1− 1

T

T−1∑

t=0

ρ2t

= 1− 1

T

ρ2T − 1

ρ2 − 1
= 1− γ

ρ2/γ − 1

ρ2 − 1
. (2.38)

2.5.3.3 The pair PDE-SD

The PDE can be modeled following the infinite MC in Fig. 2.4. As defined

before, the state E(n) = 0 means that the transmission exists in time n.

Similarly, the state E(n) = t for t 6= 0, means that the sample n − t was

the last to be transmitted. The transition matrix (with dimension T →∞)
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that describes the process of the PDE is:

TPDE =




p0,0 p0,1 0 · · ·
p1,0 0 p1,2
...

...
. . .


 . (2.39)

From the stationary condition in (2.31) we can obtain the following

relations.

Pt = pt−1,tPt−1, thus Pt = P0

t∏

i=1

pi−1,i. (2.40)

where by definition
∑∞

i=1 Pi = 1− P0. Moreover, and after some algebraic

manipulations

1− P0

P0
=

∞∑

t=1




t∏

j=1

pj−1,j


 . (2.41)

It is easy to observe that there are infinite solutions for the transition

probabilities pi,j. For simplicity, we assume that all pt−1,t are equal, i.e. the

uniform probability case. It gives us two main advantages:

1. It is the easiest solution to be implemented in practice. The source

decides either to transmit or not regardless of what is the current

state t.

2. It reduces the problem to a closed from solution.

Lemma 2.3 The uniform solutions of the non-zero transition probabilities

and for the stationary probability vector are:

p0,0 = γ, (2.42)

pt−1,t = 1− γ, for t = 1, 2, . . . (2.43)

Pt = γ(1− γ)t. (2.44)
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Proof Let us first impose that P0 = γ. Hence, for the uniform probability

case pt−1,t = p, and using (2.41)

1− γ

γ
=

∞∑

t=1

pt,

1− γ

γ
− 1 =

1

1− p
,

p = 1− γ. (2.45)

So, if p0,1 = 1 − γ, we obtain that p0,0 = γ. In order to compute the

probability of each state, and considering (2.40), we get

Pt = γpt = γ(1− γ)t. (2.46)

Theorem 2.4 The downsampling distortion for the PDE-SD pair is:

D(PDE,SD) = 2

(
1− γ

1− ρ(1− γ)

)
. (2.47)

Proof Using the MSEt of the decoder SD in Lemma 2.2, we obtain

D(PDE,SD) =

∞∑

t=0

PtMSEPDE-SD
t

=
∞∑

t=0

γ(1− γ)t2(1 − ρt) = 2γ
∞∑

t=0

(
(1− γ)t − ρt(1− γ)t

)

= 2γ

(
1

1− (1− γ)
− 1

1− ρ(1− γ)

)

= 2

(
1− γ

1− ρ(1− γ)

)
. (2.48)

2.5.3.4 The pair PDE-PD

The MC in Fig. 2.4 also models the behavior of the PDE-PD pair. The

MSE associated to the state t obeys Theorem 2.1.
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Theorem 2.5 The downsampling distortion for the PDE-PD pair is:

D(PDE,PD) = 1− γ

1− ρ2(1− γ)
. (2.49)

Proof The downsampling distortion can be computed as

D(PDE,PD) =

∞∑

t=0

PtMSEPDE-PD
t

=
∞∑

t=0

γ(1− γ)t(1− ρ2t) = γ
∞∑

t=0

(
(1− γ)t − ρ2t(1− γ)t

)

= γ

(
1

1− (1− γ)
− 1

1− ρ2(1− γ)

)

= 1− γ

1− ρ2(1− γ)
. (2.50)

2.5.3.5 The pairs CDE-SD and CDE-PD

The CDE can be also modeled using the infinite MC of Fig. 2.4. Hence,

the transmission matrix TCDE has the same structure than TPDE in (2.39)

and the expressions (2.40) and (2.41) are valid as well. However, the rest is

different. We address their performance and design in the next section.

2.6 Design and Performance of CDE-SD and

CDE-PD

Following the scheme in (2.17), our aim is to design the threshold value ∆

in order to guarantee that the source only transmits a fraction γ of the total

samples. For the general case, we may have different values of ∆ according

to each state t of the MC. Therefore, we define the threshold ∆t as the

threshold value applied to the state t.

The condition in (2.17) modifies the pdf of the error.
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|x (n ) − wT x̃ t(n ) | > ∆ t |x (n ) − wT x̃ t(n ) | < ∆ t

←− Π
(

x
2∆ t

)
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f (x
∣∣|x | < ∆ t)

Figure 2.5: Qualitative representation of the conditional pdf f(x
∣∣|x| < ∆t)

due to that the measurements that |xs(n) − wT x̃t(n)| < ∆t are not in-

troducing error since they are not estimated. The parameter ∆t should be

chosen in order to guarantee that a fraction γ of the total measurements

are transmitted.
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Definition 2.6 Let the conditional pdf f(x
∣∣|x| < ∆t) be the pdf of x con-

ditioned to |x| < ∆t. Mathematically,

f(x
∣∣|x| < ∆t) = β(∆t)

−1f(x) Π

(
x

2∆t

)
, (2.51)

where f(x) is the original pdf of x and β(∆t) ∈ (0, 1) is:

β(∆t) =

∫ ∆t

∆t

f(x)dx. (2.52)

Moreover, the rectangular function Π(x) is defined as follows: Π(x) = 0 if

|x| > 0.5, Π(x) = 1 if |x| < 0.5, and Π(x) = 0.5 if |x| = 0.5. This definition

is summarized in Fig. 2.5.

Lemma 2.4 Let x ∼ N (0, σ2). Then, the variance of the conditional pdf

f(x
∣∣|x| < ∆t) is:

var(x
∣∣|x| < ∆t) =

2√
2πσ2

(
−∆tσ

2 e
−∆

2
t

2σ2 +
1

2

√
2πσ6 erf

(
∆t√
2σ2

))
.(2.53)

Proof Let x′ define the random variable

x′ ∼ {x1

∣∣|x| < ∆t} (2.54)

where x1 ∼ N (0, σ2). Hence,

var(x′) = var(x
∣∣|x| < ∆t) =

∫ ∞

−∞
x2f(x

∣∣|x| < ∆t)dx. (2.55)

Using the relation:

f(A|B) =
f(A,B)

P (B)
. (2.56)

we obtain

var(x′) =

∫ ∞

−∞
x2 f(x, |x| < ∆t)

P{|x| < ∆t}
dx. (2.57)
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The term P{|x| < ∆t} in the denominator is:

P{|x| < ∆t} =

∫ ∆t

−∆t

f(x)dx = β(∆t). (2.58)

So,

var(x′) = β−1(∆t)

∫ ∞

−∞
x2f(x, |x| < ∆t)dx. (2.59)

Applying the same relation than in (2.56), we obtain

var(x′) = β−1(∆t)

∫ ∞

−∞
x2f(x)P{|x| < ∆t

∣∣x}dx, (2.60)

where the term P{|x| < ∆t

∣∣x} is

P{|x| < ∆t

∣∣x} = Π

(
x

2∆t

)
. (2.61)

Thus,

var(x′) = β−1(∆t)

∫ ∆t

−∆t

x2f(x)dx

=
2

β(∆t)
√

2πσ2

(
−∆tσ

2 e
−∆

2
t

2σ2 +
1

2

√
2πσ6 erf

(
∆t√
2σ2

))
,

(2.62)

that comes from the relation

∫ ǫ

0
x2e−αx2

dx = − ǫ

2α
e−αǫ2 +

1

4

√
π

α3
erf
(
ǫ
√

α
)
. (2.63)

Definition 2.7 We define the conditional function h(σ2|∆t) : R→ R as

h(σ2|∆t) = var(x
∣∣|x| < ∆t) (2.64)
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2.6.1 Approximations for the downsampling distortion of

CDE-PD and CDE-SD

For simplicity, we have changed the previous order and we assess first the

pair CDE-PD.

2.6.1.1 The pair CDE-PD

As we mentioned previously, some of the results for the CDE encoder are

the same than for the PDE encoder. However, the knowledge of some prior

information about the signal notably reduces the MSE at the decoder. This

is because only the samples with lower MSE are predicted, i.e. the ones

that satisfy |x(n) −wT x̃t(n)| < ∆t, since they introduce less noise power

at the decoder.

Lemma 2.5 Let the MSECDE-PD
t define as the mean square error when the

observation vector is x̃t(n). Then, the MSECDE-PD
t is an approximation of

MSECDE-PD
t (i.e., the error introduced by the CDE-PD pair at the state t)

and it is defined as

MSECDE-PD
t = h

(
1− ρ2 + ρ2MSECDE-PD

t−1 |∆t

)
≃ MSECDE-PD

t . (2.65)

Proof For t = 1, the error MSECDE-PD
1 follows the conditional variance1

such that

MSECDE-PD

1 = E
[
(x(n)−wT x̃1(n))2

∣∣|x(n)−wT x̃1(n)| < ∆1

]

= E
[
(ρx(n− 1) + z(n)− ρx(n− 1))2

∣∣|ρx(n− 1) + z(n)− ρx(n− 1)| < ∆1

]

= E
[
z(n)2

∣∣|z(n)| < ∆1

]
=

∫ ∞

−∞

z(n)2f ′(z(n)
∣∣|z(n)| < ∆1)dz(n), (2.66)

1The conditional variance of a continuous random variable X given the condition

Y = y is defined as var(X|Y = y) = E[X2|Y = y] =
R

∞

−∞
x2f(X|Y = y)dx, where

f(X|Y = y) is the conditional pdf of X given Y = y.



2. Distortion of Zero-Delay Downsampling for Auto-Regressive
Sources 39

Using Definition 2.7 and since z(n) ∼ N (0, σ2
z ) where σ2

z = 1− ρ2, the

MSECDE-SD
1 is

MSECDE-PD
1 = h(1− ρ2|∆1). (2.67)

For t = 2 the available knowledge is twofold; i) we know that |x(n) −
wT x̃2(n)| < ∆2, and ii) we also know that in t = 1 the error was |z(n−1)| <
∆1. Therefore, the MSECDE-PD

2 can be written as

MSECDE-PD
2 = E

[
(x(n)−wT x̃2(n))2

∣∣
|x(n)−wT x̃2(n)| < ∆2, |z(n − 1)| < ∆1

]
,

= E
[
(ρx(n − 1) + z(n)− ρwT x̃1(n− 1))2

∣∣
|x(n)− ρwT x̃1(n− 1)| < ∆2, |z(n − 1)| < ∆1

]
,

= E
[
(ρz(n − 1) + z(n))2

∣∣
|ρz(n− 1) + z(n)| < ∆2, |z(n − 1)| < ∆1] . (2.68)

The expectation in (2.68) can be computed as

MSECDE-PD
2 =

∫∫ ∞

−∞
(z(n) + ρz(n− 1))2f(z(n) + ρz(n − 1)

∣∣

|z(n − 1)| < ∆1, |ρz(n − 1) + z(n)| < ∆2)dz(n)dz(n − 1).

(2.69)

This expression is actually the computation of the variance of a bivariant

truncated normal distribution. The solution of a singly truncated bivariate

distribution can be found in [Ros61]. For higher orders, i.e. t > 2, the so-

lution refers to the calculation of the variance of a truncated multivariate

normal distributions [Man09]. Although a solution already exists in the lit-

erature, it turns out to be quite complex. Moreover, its complexity increases

in t. For that reason, we are considering the following approximation:

{ρz(n − 1) + z(n)
∣∣|z(n − 1)| < ∆1} ∼

∼ N (0, E
[
(ρz(n− 1) + z(n))2

∣∣|z(n − 1)| < ∆1

]
). (2.70)
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but in the general case, it does not necessarily follow a Gaussian distri-

bution. The variance E
[
(ρz(n− 1) + z(n))2

∣∣|z(n − 1)| < ∆1

]
can also be

expressed as

E
[
(ρz(n − 1) + z(n))2

∣∣|z(n− 1)| < ∆1

]
=

= E [z(n)] + ρ2E
[
z(n− 1)

∣∣|z(n − 1)| < ∆1

]
,

= 1− ρ2 + ρ2MSECDE-PD
1 , (2.71)

so, the MSE introduced at t = 2 is approximated by

MSECDE-PD
2 ≃ h

(
1− ρ2 + ρ2MSECDE-PD

1 |∆2

)
. (2.72)

It is easy to conclude that for the general case t, the MSECDE-PD
t is:

MSECDE-PD
t ≃ MSECDE-PD

t = h
(
1− ρ2 + ρ2MSECDE-PD

t−1 |∆t

)
. (2.73)

and hence the D(CDE,PD) is approximated by;

D(CDE,PD) ≃
∞∑

t=0

PtMSECDE-PD
t . (2.74)

However, this is still an open problem. It is because the values of Pt are

not determined yet. We study this issue afterwards in Section 2.6.2.

2.6.1.2 The pair CDE-SD

If x̂(n) is constructed from a linear prediction using the LWF, the MSE in

prediction is directly the power of the noise z(n) as we mentioned in (2.11).

However, using other strategies, the error will increase. In particular, the

pair CDE-SD constructs x̂(n) as the last transmitted sample, i.e., x̂(n) =

x(n− t). This prediction scheme not only introduces error due to z(n) but

also due to x(n).
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Lemma 2.6 The MSECDE-SD
t is an approximation of MSECDE-SD

t (i.e., the

error introduced by the CDE-SD pair at the state t) and it is defined as

MSECDE-SD
t = h

(
1− ρ2 + MSECDE-SD

t−1 |∆t

)
≤ MSECDE-SD

t . (2.75)

Proof Similarly to the CDE-SD, for t = 1 the error MSECDE-SD
1 follows

the conditional variance such that

MSECDE-SD
1 = E

[
(x(n)− x(n− 1))2

∣∣|x(n)− x(n− 1)| < ∆1

]

= E
[
(z(n)− (1− ρ)x(n− 1))2

∣∣
|z(n)− (1− ρ)x(n− 1)| < ∆1]

= E
[
z′(n)2

∣∣|z′(n)| < ∆1

]

=

∫ ∞

−∞
z′(n)2f(z′(n)

∣∣|z′(n)| < ∆1)dz′(n), (2.76)

where z′(n) = z(n)− (1 − ρ)x(n − 1) contains both the error contribution

due to z(n) and x(n) with variance σ′2
z equal to

σ′2
z = E

[
(z(n)− (1− ρ)x(n− 1))2

]

= E [z(n)] + (1− ρ)2E [x(n− 1)] = 2(1− ρ). (2.77)

Therefore, the MSECDE-SD
1 is

MSECDE-SD
1 = h(2(1 − ρ)|∆1). (2.78)

For t = 2 the available information is twofold; i) we know that |x(n)−x(n−
2)| < ∆2, and ii) we also know that in t = 1 the error was |z′(n− 1)| < ∆1.

Therefore, the MSECDE-SD
2 can be written as

MSECDE-SD
2 = E

[
(x(n)− x(n− 2))2

∣∣
|x(n)− x(n− 2)| < ∆2, |z′(n− 1)| < ∆1

]

= E
[
(ρz(n − 1) + z(n)− (1− ρ2)x(n− 2))2

∣∣
|ρz(n − 1) + z(n)− (1− ρ2)x(n− 2)|
< ∆2, |z′(n− 1)| < ∆1

]
. (2.79)
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To solve the MSECDE-SD
t in a recursive way may be harder than for the

CDE-PD case. It is because we cannot apply directly the conditional func-

tion since the expectation in (2.79) is not of the form h(σ2
x|∆) = E[x2

∣∣|x| <
∆]. Hence, in order to simplify, we propose a lower-bound for (2.79) such

as

MSECDE-SD
2 ≥ E

[
(z′(n− 1) + z(n))2

∣∣
|z′(n − 1) + z(n)| < ∆2, |z′(n− 1)| < ∆1

]
. (2.80)

One can easily check that it is in fact an lower-bound since

E [(z(n)− (1− ρ)x(n− 1))2] ≤ E
[
(ρz(n)− (1− ρ2)x(n− 1))2

]

(1− ρ2) ≤ 2(1− ρ). (2.81)

Our proposed lower-bound is very close to the real value for high values

of ρ. Using the same approximation as in the CDE-PD case, and after some

simple algebra, we can find a lower-bound of (2.79) as

MSECDE-SD
2 = h

(
1− ρ2 + MSECDE-SD

1 |∆2

)
≤ MSECDE-SD

2 . (2.82)

It is easy to conclude that for the general case t, the MSECDE-SD
t is:

MSECDE-SD
t = h

(
1− ρ2 + MSECDE-SD

t−1 |∆t

)
≤ MSECDE-SD

t . (2.83)

and hence the D(CDE,SD) is lower-bounded by;

D(CDE,SD) ≥
∞∑

t=0

PtMSECDE-SD
t . (2.84)

As for the case of the CDE-PD pair, this is still an open problem and

it is studied afterwards in Section 2.6.2.
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2.6.2 Design of the CDE-SD and the CDE-PD

From the design point of view, our aim is to obtain a set of ∆t’s that assure

a coding rate at the CDE of γ. However, there are infinite solutions. That

is why we propose two possible approaches to face with the design of ∆t.

• Fixed ∆t, i.e., ∆t = ∆ for all t.

• Variable ∆t in order to maintain constant transition probabilities, i.e.,

pt−1,t = p for all t.

2.6.2.1 Fixed ∆t design

This is probably the simplest approach in order to design the CDE since

the encoder do not have to change the value of ∆t according to the current

state since ∆t = ∆ for all t.

First, we want to make explicit the existing relation between ∆ and

pt−1,t, as

pt−1,t(∆) =

∫ ∆

−∆
ft(x)dx. (2.85)

where ft(x) is the pdf of the error at state t.

As we have been doing, we assume that x(n)− x̂(n) follows a Gaussian

distribution with zero mean and variance MSECDE
t (∆), where

MSECDE
t (∆) =

{
1− ρ2 + MSECDE-SD

t (∆) if CUE-SD

1− ρ2 + ρ2MSECDE-PD
t (∆) if CUE-PD.

(2.86)

Thus2,

pt−1,t(∆) = 1− 2

∫ ∞

∆
ft(x)dx = erf


 ∆√

2MSECDE
t−1 (∆)


 , (2.87)

2It comes from the definition of the cumulative density function of a Gaussian variable

such that
R

a

−∞
f(x)dx = 1

2

„

1 + erf

„

a√
2σ2

a

««
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Figure 2.6: Numerical solution of ∆ for the fixed ∆t design. The values of

γ are γ = {0.125, 0.25, 0.5}, the values of ρ are ρ = {0.25, 0.5, 0.75} and the

value of T is 100. The (red) × are the ∆ solutions for a given ρ and γ.
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where erf(x) is the error function of x. Solving for ∆ we obtain

∆ =
√

2MSECDE
t−1 (∆)erf−1 (pt−1,t) , for t = 0, 1, . . . (2.88)

Using the result in (2.41), we can numerically approximate ∆ that as-

sures P0 = γ as the unique solution of

T∑

i=1




i∏

t=1

erf


 ∆√

2MSECDE
t (∆)




 =

1− γ

γ
, for T →∞. (2.89)

The solution of ∆ for different values of γ and ρ can be graphically seen in

Fig. 2.6.

2.6.2.2 Variable ∆t design

This approach allows for a slightly easier computation of the values of ∆t.

The main difference with the previous design scheme is that we can use the

result in Lemma 2.3, such that, pt−1,t = 1 − γ and p0,0 = γ. Hence, ∆t is

directly

∆t =
√

2MSECDE
t−1 (∆t−1)erf

−1 (1− γ) . (2.90)

To graphically validate our design framework, we have proposed the

following experiment.

Experiment 2.1 We have simulated the CUE-SD and the CUE-PD for

γ = [1/8 1/4 1/2] and for ρ ∈ [0, 1]. The signal has been generated fol-

lowing the AR-1 process of 5000 samples (for each value of ρ). We have

computed the probability of transmission P0 obtained using our threshold

design framework.

From Experiment 2.1, we have plotted the probability of transmission

P0 as a function of ρ and for each value of γ. We have used the variable ∆t
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design. In Fig. 2.7, we have compared the obtained results with the target

coding rate γ and we have observed that for the case of CUE-PD, the fitting

is very accurate. For the case of CUE-SD, is slightly worse. It is due to the

approximation in (2.81). We said that this approximation improves when

ρ→ 1. This behavior can be observed in Fig. 2.7.

2.7 Performance Evaluation

In this section, we evaluate and compare the performance of the differ-

ent encoder-decoder pairs as a function of the downsampling distortion.

Moreover, we introduce an experimental evaluation in order to confirm the

validity of our theoretical results. For that, we have generated a signal x(n)

as a sequence of 5000 samples using the AR − 1 model in (2.12) and for

different values of the autoregressive parameter ρ ∈ [0, 1] with resolution

0.01. The results are computed for γ = [1/8, 1/4, 1/2].

2.7.1 The pair DDE-SD and the pair DDE-PD

We analyze the downsampling distortion for the DDE-SD and the DDE-PD

pair. We compare the theoretical results with the experimental results.

So, Fig. 2.8 confirms the validity of our theoretical model for the down-

sampling distortion.

Also we compare the difference in performance according to the decoder

used. The PD takes into account the signal correlation information in the

decoding process and hence, the total performance is increased notably for

low values of ρ. On the contrary, if ρ→ 1, both decoders perform similarly

since x(n)− ρtx(n− t) ≈ x(n)− x(n− t).

In Fig 2.8, we can also graphically evaluate the impact of γ. In our

scenario, the signal x(n) is transmitted by the DDE one in {8, 4, 2} times

following a uniform pattern. It is easy to see that the larger the γ the lower
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Figure 2.7: Experimental results from Experiment 2.1. The empirical prob-

ability of transmission is compared with the target coding rate γ for the

CUE-SD and CUE-PD schemes. We have used the variable threshold de-

sign.
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Figure 2.8: Experimental and theoretical downsampling distortion of the

pairs DDE-SD and DDE-PD as a function of ρ. The coding rates are γ =

{0.125, 0.25, 0.5}.
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Figure 2.9: Experimental and theoretical downsampling distortion of the

pairs PDE-SD and PDE-PD as a function of ρ. The coding rates are γ =

{0.125, 0.25, 0.5}.
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the distortion. However, there exists a trade of between the downsampling

distortion and the compression rate.

2.7.2 The pair PDE-SD and the pair PDE-PD

The downsampling distortion for the PDE-SD and the PDE-PD is plotted

in Fig. 2.9. However, the conclusions that one can extract from these results

are basically the same than for the pairs DDE-SD and DDE-PD. In order

to be concise, we compare the downsampling distortion performance of the

different pairs later in Section 2.7.4.

2.7.3 The pair CDE-SD and the pair CDE-PD

The performance of the previous encoder-decoder pairs can be notably im-

proved by using conditional transmission at the encoder site. In particular,

we study and compare the downsampling distortion of the two design ap-

proaches, i.e., the fixed ∆t design and the variable ∆t design (with uniform

transition probabilities), depicted in Fig. 2.10 and Fig. 2.11, respectively.

As in the previous pairs, we compare both the experimental results with the

theoretical results. However, in that case our theoretical results are limited

to an approximation rather than the real system performance. Even so, we

can observe that the approximations are very accurate for all the different

simulations. For the case of CUE-PD, the approximation is so close to the

system performance that the difference cannot be observed because it is

masked by the small amount of noise due to the simulation. For the case

of CUE-SD, the difference is slightly bigger because the approximation in

(2.81).

Another conclusion is that the downsampling distortion is notably

higher for the fixed design. It is because their transition probabilities pt−1,t

are increasing in t, and it facilitates to achieve higher states t in the MC

with higher probability (i.e., higher MSEt’s). On the contrary, the variable

design concentrates the states in lower t values.



2. Distortion of Zero-Delay Downsampling for Auto-Regressive
Sources 51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

ρ

D
o
w

n
sa

m
p

li
n

g
d

is
to

rt
io

n

C DE- SD, γ = 0 .125
C DE-PD, γ = 0 .125
C DE-SD, γ = 0 .25
C DE-PD, γ = 0 .25
C DE-SD, γ = 0 .5
C DE-PD, γ = 0 .5

ex p e rim ental
th e ore tic al

Figure 2.10: Experimental and theoretical approximation of the downsam-

pling distortion of the pairs CDE-SD and CDE-PD following a fixed ∆t

design. The coding rates are γ = {0.125, 0.25, 0.5}.



52 2.7. Performance Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−4

10
−3

10
−2

10
−1

10
0

ρ

D
o
w

n
sa

m
p

li
n

g
d

is
to

rt
io

n

C DE- SD, γ = 0 .125
C DE-PD, γ = 0 .125
C DE-SD, γ = 0 .25
C DE-PD, γ = 0 .25
C DE-SD, γ = 0 .5
C DE-PD, γ = 0 .5

ex p e rim ental
th e ore tic al

Figure 2.11: Experimental and theoretical approximation of the downsam-

pling distortion of the pairs CDE-SD and CDE-PD following a variable ∆t

design. The coding rates are γ = {0.125, 0.25, 0.5}.
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Figure 2.12: Comparison of the downsampling distortion of the different

encoding-decoding pairs as a function of ρ. The coding rate is γ = 0.25.
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From a practical point of view, the CDE is simpler if it follows a fixed

design since the encoder only needs to know the value of ∆ and also it

does not need to track the current state t. However, from a computational

point of view, the variable approach is simpler since it can be computed

analytically, instead of numerically.

2.7.4 Comparison of the downsampling distortion

Finally, we compare the performance of the different encoder-decoder pairs.

Although Fig. 2.12 does not provide any extra information, it allows us to

better compare the performance of the different schemes. For the sake of

simplicity, we only compare the theoretical results for the case of γ = 0.25.

One can observe that the performance of the DDE and PDE encoders

are similar. However, the deterministic encoder works slightly better since

it only uses the lowest γ−1 states of the finite MC, while PDE uses higher

states that are related to higher errors. However, the main disadvantage

of the DDE encoder in front of the PDE is its lack of flexibility, since the

uniform solution is only valid for natural values of γ−1. Furthermore, the

PDE with uniform transition probabilities do not need to track the current

state t of the process and hence it is simpler.

The big hop in performance is observed for the CDE. This encoder elim-

inates the transmissions of the samples with most redundant information.

Thus, only the most “unpredictable” samples are transmitted.

2.8 Conclusions

In this chapter, we have evaluated the performance of different encoding-

decoding strategies in order to reduce the number of transmitted samples. In

particular, we define the downsampling distortion function in order to eval-

uate the performance of the combination of three downsampling encoders,

which are the deterministic downsampling encoder (DDE), the probabilistic
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downsampling encoder (PDE), and the conditional downsampling encoder

(CDE), with two decoders: the step decoder (SD) and the predictive de-

coder (PD).

We have obtained closed form expressions for the pairs DDE-SD, DDE-

PD, PDE-SD and PDE-PD and accurate approximations for CDE-SD and

CDE-PD. Moreover, we have proposed two strategies in order to design the

threshold of the condition in the CDE, i.e., the fixed threshold design and

the variable threshold design.

The simulation results validate our theoretical results. Furthermore, we

have compared the performance of the different pairs and we have showed

the impact of taking into account the signal model in the encoding-decoding

process. Hence, the pair CDE-PD (with variable threshold design) outper-

forms by far the rest of the studied strategies. However, finding the opti-

mum threshold values in terms of minimizing the downsampling distortion

remains as an open problem.





Chapter 3

Enhanced Correlation

Estimators for Distributed

Source Coding

3.1 Summary

In this chapter, we propose two estimators based on correlation parameters

for the two key steps of a practical distributed source coding scheme, namely:

i) the computation of the side-information at the receiver side, and ii)

the estimation of the required number of bits to compress the readings in

order to guarantee a certain symbol error probability. We show that using

the proposed enhanced estimators, the distributed source coding algorithm

performs better in terms of both the compression rate and the symbol

error rate. In particular, this improvement is specially significative when

the number of snapshots used in the training phase is only slightly larger

than the dimension of the observation vector. On the contrary, when the

number of snapshots is much higher than the observation dimension, our

proposed estimators perform similarly to the classical estimators.

57
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3.2 Introduction

Sample estimators are widely used in statistical signal processing and it

is well-known that their performance is highly conditioned to the number

of considered samples [Hay01]. In particular, sample correlation estimators

perform the best when the number of samples is sufficiently large in com-

parison with the dimension of the observation vector. However, when both

magnitudes are similar, the performance may be severely degraded and

other techniques should be addressed.

In this chapter, we propose two enhanced correlation estimators derived

from Generalized Statistical Analysis (GSA) (introduced by V. L. Girko

in [Gir90] and extended in [Gir98]). This discipline comes from Random

Matrix Theory (RMT) [Meh91, Tul04] and provides consistent estimators

when both the number of snapshots of the training phase N and the obser-

vation dimension M are arbitrarily large and comparable in magnitude.

Following this approach, the main motivation is to include such derived

estimators for Distributed Source Coding (DSC) applied to a large Wireless

Sensor Network (WSN) framework, which typically are formed by a large

number of high space-time correlated sources (e.g. fire control in forests

monitoring the temperature or humidity levels, or tracking the location

of the products in large stores), where DSC may be used to remove the

inherent redundancy in such a correlated readings [Pra02] , [Pra03] and

hence send compressed messages with the subsequent energy savings.

3.2.1 Previous results of DSC in WSNs

Surprisingly, existing results from information theory (precisely, from the

work of Slepian and Wolf [Sle73]) show that this compression can be ex-

ecuted in a fully blind manner, i.e., only with the knowledge of the local

data. It means that sensors compress the data without the knowledge of

the signals of the other sensors, and interestingly, without any loss of per-
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formance in comparison with the centralized approach. Theoretically, the

DSC achieves the maximum sum rate, however, practical algorithms still

perform far from the theoretical limits [Pra03].

However, practical (and suboptimal) solutions can be found in the lit-

erature. For a star-topology WSN, the authors in [Old08b] propose a DSC

scheme divided in two phases: the training phase and the compression

phase. During the training phase, the correlation parameters are estimated.

Hence, the duration of this phase depends on the network configuration and

the requirements of the application. In particular, they consider a network

composed only of two source nodes and one sink. For higher number of

sources, the number of snapshots used in the correlation estimation notably

increases. The authors extend their results in [Old08a] to a cluster-based

WSN, where each cluster manages a total of four nodes and acts separately

to the rest of the clusters. However, in both [Old08b] and [Old08a], the

estimation of the correlation parameters is not detailed.

For a relay WSN scenario, the authors in [Tan07] also present a two-

phase DSC algorithm. As in [Old08b] and [Old08a], they assume that the

training phase is large enough to achieve the desired accuracy in the cor-

relation estimation for an arbitrary number of source nodes. Even so, the

sources are managed into smaller groups or clusters. Following this grouping

approach, the DSC algorithm cannot fully exploit all the spatial correla-

tions within the network, since only the correlations among the sensors of

a cluster are used. Therefore, a lot of useful information is missed.

For a multi-hop WSNs, the scheme proposed in [Wan08] exploits the

“redundancy free” nature of the DSC to optimize jointly the DSC and the

routing paths in order to increase the lifetime of the network. More recent

results in [Sax10] extend the DSC algorithm for a multistage scheme. The

authors particularize the results for two sources and two layers.

Many other interesting DSC algorithms are also being actively studied,

with new alternatives that continuously improve many aspects of DSC. In
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this chapter, we extend the work in [Cho03], where the authors propose a

simple DSC algorithm in order to compress the signal from multiple space-

time correlated sources. Although their analysis is for an arbitrarily large

number of nodes, they particularize for the case of two nodes.

3.2.2 Our contribution

In the literature of DSC, there exists a lack of study regarding the perfor-

mance drop in the correlation estimation due to a large number of correlated

sources.

In order to overcome this limitation, we address the case of a DSC al-

gorithm applied to a large WSN scenario, where the observation dimension

M is typically large (since it depends on the number of sensors that com-

poses the network) and classical sample estimators may fail unless a very

long training phase is considered (becoming in most cases unpractical). On

the contrary, our proposed estimators improve the trade-off between the

training phase duration N and the accuracy of the estimation of the corre-

lation parameters. The main contributions of this chapter are summarized

as follows:

i) We analyze the performance of the DSC algorithm for large WSNs,

and in particular, we study the correlation estimation problem in such

a scenario.

ii) We propose two enhanced estimators to mitigate the performance

drop of DSC algorithm when the number of sources is arbitrarily

large and conventional estimators are used.

iii) We numerically compare the performance of conventional sample es-

timators with our enhanced estimators. Our enhanced DSC algorithm

turns out to decrease largely the training phase duration and allows

us to reduce the number of transmitted bits in comparison with the

conventional approach.
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Although our DSC algorithm is based on the Algorithm in [Cho03], it

presents many differences. The most significative ones are:

1. We incorporate our enhanced estimators that improve the DSC per-

formance in a large WSN scenario, which is the core of the Section III.

2. We use different assumptions of the prediction error than the ones

in [Cho03]. In particular, we study Gaussian signals (the ones most

present in the nature), and therefore our expressions are derived ac-

cordingly to their distributions. On the contrary, in [Cho03] they do

not assume any statistical structure of their signals.

3. The authors in [Cho03] perform the correlation tracking and the signal

compression simultaneously at the same phase since they use an adap-

tive LMS approach. Instead, we use a two phase algorithm, i.e. sensing

phase and compression phase, as the ones in [Old08b], [Old08a] and

[Tan07]. A detailed description can be found next in Algorithm 3.1:

sensing node and in Algorithm 3.2: fusion center.

3.2.3 Organization of the chapter

The rest of the chapter is organized as follows: In Section 3.3 we describe

the system model. The DSC algorithm is presented in Section 3.4. The

derivation of the enhanced estimators is detailed in Section 3.5. Simulation

results are given in Section 3.6, and conclusions are drawn in Section 3.7.

3.3 System Model and Assumptions

We assume a large and dense WSN scenario that measures a certain phys-

ical phenomena such as temperature or humidity. For large WSN we mean

that the number of sensing nodes may be arbitrarily large, i.e. of hundreds

or thousands of nodes, and for dense WSN we mean that the sensing nodes
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Figure 3.1: Illustrative example of a correlation dominated large WSN field,

composed of a set S of S sensing nodes (black dots) measuring a certain

scalar magnitude and transmitting their readings to one fusion center (white

dot).
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are close enough to present spatial correlations in their measured data.

This scenario is graphically summarized in Fig. 3.1. The final interest of

this chapter is to study the impact when the fusion center receives the in-

formation from a large number of sensing nodes. Thus, although we assume

a WSN configured in star topology for simplicity, our proposed algorithm

is also compatible with multi-hop techniques or with other network config-

urations.

Therefore, the network is composed of two types of nodes: i) a set S of

S sensing nodes that transmit the measurements when they are requested,

and ii) one fusion center that manages the sensing nodes, and gathers and

processes their measured data. We assume that the limitations in terms of

computing power and energy consumption are in the sensing nodes, instead

we assume no constraints for the fusion center.

We consider that the signals are space-time correlated and modeled as

an S-dimensional stochastic process, namely,

X = [x(1)x(2) . . . x(N) ] =




x1(1) x1(2) · · · x1(N)

x2(1) x2(2) · · · x2(N)
...

...
...

xS(1) xS(2) · · · xS(N)




, (3.1)

where xs(n) denotes the measurement of the sth sensor at the sample time

n and N denotes the number of time samples in the observation window.

The main assumptions throughout this chapter are collected as follows:

3.3.1 Assumptions on the signal model

Let xs(n) be a real and time-discrete auto-regressive model of order 1 (AR−
1), which is commonly assumed in the signal processing literature in order

to model real sources [Has80]. It is defined as:

xs(n) = ρtxs(n− 1) + zt(n), for n = 1, 2, . . . (3.2)
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The auto-regression time coefficient is denoted by ρt ∈ [0, 1] and assumed

to be constant during the transmission. The random process zt(n) is a

sequence of Gaussian distributed and independent random variables with

zero mean and variance σ2
t .

In the same way, xs(n) can be also modeled as a space AR−1 following,

xs(n) = ρxxs−1(n) + zs(n), for s = 1, 2, . . . S. (3.3)

The auto-regression space coefficient is denoted by ρx ∈ [0, 1] and it is also

assumed to be constant during the transmission. The random process zs(n)

is a sequence of Gaussian distributed and independent random variables

with zero mean and variance σ2
s .

Hence, following with the results in Chapter 2, the time-covariance ma-

trix of the time sequence of length T , i.e., [xs(n) xs(n−1) · · · xs(n−T +1)]T

follows

[Rt]n,n−i = ρi
t. (3.4)

and the space-covariance matrix of the spatial vector

[x1(n) x2(n) · · · xS(n)]T follows

[Rs]s,s−i = ρi
x. (3.5)

Without loss of generality, we assume that σ2
x = 1. Therefore, following

the Lemma 2.1, the variance of the noise zt(n) is σ2
t = 1 − ρ2

t , while σ2
s =

1− ρ2
x denotes the variance of zs(n).

3.3.2 Assumptions on the channel and the system model

We assume noiseless communication from S to the fusion center. Although

any real application measurement will be corrupted by at least a small

amount of noise, we consider noise-free communication paths in order to

better evaluate the system performance, since the communication noise
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will only affects by incrementing the total Symbol Error Rate (SER) at the

fusion center.

We assume Time Division Multiple Access (TDMA) with successive de-

coding. First, sensor 1 transmits its reading using only the knowledge of its

own past samples. After, sensor 2 codifies its readings according to its past

samples and the reading of sensor 1, and so on. Without loss of general-

ity, we focus on the study of the sth sensor where already S′ sensors have

been decoded. Hence, sensor s uses the information from the S′ previously

decoded sensors and its past readings to codify xs(n).

3.4 Distributed Source Coding Algorithm

3.4.1 DSC background

In order to explain the idea behind DSC, the concept of entropy is needed.

If X and Y denote two discrete random variables, the entropy of a discrete

random variable H(X) can be seen as the minimum number of bits required

to encode X without any loss of information. Similarly, the joint entropy of

two discrete random variables H(X,Y ) can be seen as the minimum number

of bits needed to encode X and Y jointly. If X contains any information

about Y (i.e., they are somehow correlated), thenH(X,Y ) < H(X)+H(Y ).

One can first encode Y to H(Y ) and then encode X to H(X|Y ), which is

the entropy of X if Y is known. By definition, H(X,Y ) = H(Y )+H(X|Y ).

In Fig. 3.2(a), one can see an example scheme of how this can be performed.

The main novelty of DSC (introduced first in [Sle73] by Slepian and

Wolf in 1973) is that the coding rate (i.e., H(X|Y ) bits/sample) can be

guaranteed without loss of information even when the encoder does not

have full access to the random variable Y . Hence, the knowledge of Y

is only assumed available at the decoder, as in Fig. 3.2(b). Three years

later, Wyner and Ziv extend these results to the case of lossy encoding of

continuous-valued gaussian variables [Wyn75].
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decoder
H(X|Y )

encoder

Y

X X̂

H(X|Y ) bits/sample

H(Y ) bits/sample

(a)

decoder
H(X|Y )

encoder

Y

X X̂

H(X|Y ) bits/sample

H(Y ) bits/sample

(b)

Figure 3.2: (a) shows the block diagram of encoding the random variable

X to H(X|Y ) bits/sample where Y is known at both the encoding and the

decoding blocks. Otherwise, in (b), X is encoded to H(X|Y ) bits/sample,

where Y is only known at the decoding block.



3. Enhanced Correlation Estimators for Distributed Source
Coding 67

a1

a1

a1

a2

a2

a2

a3

a3

a3

a4

a4

a4

a5

a5

a5

a6

a6

a6

a7

a7

a7

a8

a8

a8

a9

a9

a9

a10

a10

a10

a11

a11

a11

a12

a12

a12

a13

a13

a13

a14

a14

a14

a15

a15

a15 a16

a16

a16

A
∆

2∆

4∆

0 0

0 1

11

.

.

.

.

.

.

.

.

.

.

.

.

A1,1 A1,2

A2,2A2,1 A2,3 A2,4

Figure 3.3: Graphical representation of the sub-codebooks using a tree-

based scheme. In this example, the alphabet A contains 16 symbols, and a

4th level of sub-codebooks is shown.
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3.4.2 Practical DSC algorithm

Since there are no practical techniques to achieve the theoretical limits

of [Sle73] and [Wyn75], suboptimal algorithms are used instead. In this

chapter, we follow the approach in [Cho03], where the authors propose the

construction of a codebook based on the decomposition of a given finite

alphabet A in several sub-codebooks. Fig. 3.3 gives a graphical intuition on

how the codebook can be decomposed in several sublevels.

In general, the DSC algorithm is divided in two phases that involve both

the sensing nodes and the fusion center (see Algorith 3.1 and Algorithm 3.2

respectively):

1. The training phase of length N , where the sensing node maps its l-

bit reading xs(n) according to the alphabet A = {ai}i=1,2...,2l , with a

quantization step of |ai+1− ai| = ∆, and sends an uncompressed ver-

sion of its data coded in l-bits. After collecting the N snapshots of the

training phase, the fusion center estimates the correlation parameters

for each sensor.

2. The coding phase, where a given side-information y(n) is available at

the fusion center and the sensing node can encode its reading using

only b(n) ≤ l bits. Hence, the sensor transmits only the index B of

a sub-codebook AB ⊆ A (B is codified in b(n) bits) that contains

the mapped reading xs(n). Thus, the fusion center receives the sub-

codebook identifier B, and selects the symbol in AB closer to the

side-information y(n),

xs(n) = arg min
ai∈AB

|y(n)− ai|. (3.6)

Let us concentrate on the following two steps of the coding phase.
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Step A. Compute the side-information y(n)

First, let us define the observation vector x(n) ∈ RM with covariance

matrix R ∈ RM×M as the information available at the fusion center and rx

is the cross-correlation vector, rx = E[x(n)xs(n)]. The vector x(n) collects:

i) the K past readings of the sensor, and ii) the readings of the set S ′
of already-decoded sensors in time slot n (where S ′ ⊂ S with cardinality

S′), hence M = K + S′. Note also that the covariance matrix R will be

constructed from the corresponding entries of Rs and Rt. Then, the side-

information y(n) is a linear prediction of xs(n) and it is computed as a

linear combination of the entries of x(n), i.e.,

y(n) = wHx(n), (3.7)

following the Linear Wiener Filter (LWF) solution. The LWF solution,

w⋆ = R−1rx, is known to be optimal in the Mean Square Error (MSE)

sense [Hay01]. Mathematically,

MSE(w) = σ2
xs
− 2Re[wHrx] + wHRw. (3.8)

∂MSE(w)

∂wH
= −rx + wHR = 0;

w⋆ = R−1rx, (3.9)

and then, the MSE achieved is minimum and is given by

MSE(w⋆) = σ2
xs
− rH

x R−1rx. (3.10)

However, to compute w⋆ the perfect knowledge of R−1 and rx is necessary

but not available. Classical methods replace R−1 and rx directly by their

sample estimators denoted by R̂−1 and r̂x, respectively. Although when

N ≫ M this classical approach provides good results, better estimators

can be used instead when N has the same order of magnitude as M , but

still N > M .
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Algorithm 3.1 Sensing node

1. Training phase

Get l-bit reading from A/D converter

Transmit l-bit symbol.

2. coding phase

Get l-bit reading from A/D converter

Encode and transmit b(n)-bit codeword.

Step B. Compute the number of bits in transmission b(n)

In order to determine the number of bits b(n) to encode xs(n) without

decoding error, one must guarantee that |xs(n)−y(n)| < 2b(n)−1∆. However,

since the reading xs(n) is not yet available at the fusion center, we compute

the number of bits to encode xs(n) in order to guarantee a given Symbol

Error Rate threshold, SERt.

Assuming xs(n)− y(n) ∼ N (0,MSE(w)), the SER can be expressed as

SER = erfc

(
2b(n)−1∆√
2MSE(w)

)
. (3.11)

We have focused on the particular case of Gaussian prediction errors.

For a general case, other approaches can be used, as e.g., the Chebychev’s

inequality in [Cho03].

Solving for b(n) in (3.11) for a given SERt, we get

b(n) ≥
⌈
log2

(√
2MSE(w)

∆
erfc−1(SERt)

)
+ 1

⌉
. (3.12)

It should be iteratively repeated for every sensing node as it is repre-

sented in Algorithm 3.2.

In large WSNs, the number of already-decoded sensors S′ (and hence M)

is typically large. Therefore, maintaining a training phase such that N ≫M
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Algorithm 3.2 Fusion center

1. Training phase

for n = 1 to N do

for s = 1 to S do

Request sth sensor for a l-bit reading (i.e., uncoded).

end for

end for

Estimate the correlation parameters for each sensor, i.e., R and rx and

compute ŵ and M̂SE(ŵ) as in (3.35) and (3.45), respectively.

2. Coding phase

for n > N to end do

for s = 1 to S do

Step A. Compute side-information as y(n) = ŵHx(n).

Step B. Compute b(n) following (3.12).

Request sth sensor for a b(n)-bit reading (i.e., encoded).

Decode xs(n) using (3.6).

end for

end for.

may become inefficient in most cases. On the other hand, eq. (3.12) requires

an accurate estimation of MSE(w) in order to obtain the smallest b(n)

possible, while SERt is guaranteed. Thus, our aim is to look for enhanced

estimators for both w and MSE(w) that improve the classical estimators

when N and M are large and comparable in magnitude.

3.5 Enhanced Correlation Estimators

First, let us consider a collection of N random observations of a certain

M -dimensional stochastic process, denoted by XN = [x(1)x(2) . . . x(N)].

We assume, without loss of generality, that these observations have zero
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mean E[x(n)] = 0, and E[‖x(n)|2] = 1, and covariance matrix R.

The Sample Covariance Matrix (SCM), here denoted by R̂, is con-

structed from the observations as in [Rub09],

R̂ =
1

N

N∑

n=1

x(n)x(n)H

=
1

N
XNXH

N =
1

N
R1/2ΞHΞR1/2, (3.13)

where Ξ defines a N ×M random matrix with i.i.d. complex entries, zero

mean and unit variance. Moreover, let r̂x be the sample cross-correlation

vector between the observation vector x(n) and the desired response xs(n),

defined as

r̂x =
1

N

N∑

n=1

x(n)xs(n). (3.14)

The classical estimator ŵclass for the solution of the LWF (3.9) is given

by

ŵclass = R̂−1r̂x. (3.15)

3.5.1 Enhanced estimator for the Linear Wiener Filter

It is well-known that the classical LWF estimator (3.15) is a N -consistent

estimator of the LWF solution, i.e., |ŵclass −w| → 0, as N →∞.

In practice, ŵclass provides good estimates when the training phase N is

sufficiently large compared to the observation dimension M . However, when

M → ∞, while M/N → c ∈ (0, 1), it does not necessary provide N,M -

consistency (indeed, [Mes08] shows that (3.15) is not N,M -consistent), and

better estimators can be derived. Mathematically,

|ŵclass −w|9 0, as N,M →∞; M/N → c. (3.16)

In practice, it may occur when the training phase is short and compa-

rable in magnitude with the dimension of the observation vector.



3. Enhanced Correlation Estimators for Distributed Source
Coding 73

In the literature of consistent estimation, structures of the type of (3.9)

are usually addressed assuming that the vector rx is a non-random deter-

ministic vector [Mes06]. Thus, from the best of the author’s knowledge, the

estimation of (3.9) where both R and rx are random and statistically de-

pendent is still an open problem. However we have checked using numerical

simulations that the results for the random case addressed here behaves

similarly to what is expected for the case where rx is deterministic. The

deterministic case is already solved in the RMT literature, e.g., [Gir98].

Considering this, we can improve the classical estimator in (3.15) and pro-

pose an enhanced estimator for the LWF.

We focus on the estimation of scalar functionals of the inverse of R̂, i.e.,

ϕ(R̂−1) : RM×M → R of the type:

ϕ(R̂−1) = aHR−1b. (3.17)

First let us to introduce the following definitions that can be found

in [Tul04] and [Mes05]. Let A denote a generic positive semidefinite M×M

matrix.

Definition 3.1 Let the function FA : R → [0, 1] be the empirical spectral

distribution of the eigenvalues of A, here denoted as λm:

FA(x) =
1

M

M∑

m=1

I(λm ≤ x), (3.18)

whose Stieltjes transform is defined by (for both the continuous and the

finite size cases)

sA(z) =

∫
1

λ− z
dFA(λ) =

1

M

M∑

m=1

1

λm − z
. (3.19)
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Definition 3.2 Let the function HA : R → [0, 1] be an instance of the

empirical distribution of the eigenvalues and eigenvectors of A, denoted as

νm:

HA(x) =
M∑

m=1

aH
νmν

H
mb I(λm ≤ x), (3.20)

whose Stieltjes transform is defined by (again for both the continuous and

the finite size cases)

mA(z) =

∫
1

λ− z
dHA(λ) =

M∑

m=1

aH
νmν

H
mb

λm − z

= aH (A− zIM )−1 b, z ∈ C. (3.21)

Furthermore, we make use of the Marc̆enco-Pastur Theorem [Mar67,

Theorem 1], for matrices of the form Φ = Υ + 1
N ΞRΞH , where:

• Υ is an arbitrary Hermitian N ×N matrix.

• Ξ is an N ×M matrix such that its entries are iid complex random

variables with zero mean and variance 1, i.e. [Ξ]i,j ∈ C, E[Ξi,j] = 0

and E[‖Ξi,j‖2] = 1.

• R is the true covariance matrix, and the empirical distribution func-

tion of its eigenvalues {λ1, λ2, . . . , λM} converges almost surely in

distribution to a nonrandom cumulative distribution function FR(λ)

as N →∞.

Then, the Steltjes transform of FΦ can be written as

sΦ(z) = sΥ

(
z − c

∫
λdFR(λ)

1 + λsΦ(z)

)
. (3.22)

Furthermore, we assume

Υ = 0N , and Φ =
1

N
ΞRΞH =

1

N
ΞR1/2R1/2ΞH . (3.23)
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Hence, the Stieltjes transform of Υ is given by

sΥ(z) =
1

0− z
= −z−1. (3.24)

Using (3.22), we get the equation

sΦ(z) = −
(

z − c

∫
λdFR(λ)

1 + λsΦ(z)

)−1

. (3.25)

Typically, to make Φ define an arbitrary SCM R̂, it should have di-

mension M ×M rather than N ×N . So, we introduce the M ×M SCM as

R̂ = 1
N R1/2ΞHΞR1/2. Matrix R̂ has the same structure than in (3.13).

Note that the non-zero eigenvalues of Φ and R̂ are the same, however

Φ has N − M zero eigenvalues extra. So, we can relate the eigenvalue

distributions (and hence their Stieltjes transforms [Bai07]) for both Φ and

R̂ as follows,

dFΦ

dλ
=

M

N

dF
R̂

dλ
+

(N −M)

N
δ(λ),

FΦ =
M

N
F

R̂
+

(N −M)

N
u(λ),

sΦ(z) = cs
R̂

(z) − (1− c)

z
. (3.26)

Substituting (3.26) in (3.25), and after some algebraic manipulations, we

obtain (for both the continuous and the finite size approach)

s
R̂

(z) =

∫
dFR(λ)(

1− c− czs
R̂

(z)
)
λ− z

, (3.27)

=
1

M

M∑

m=1

1(
1− c− czs

R̂
(z)
)
λm − z

. (3.28)

Now, let the function HR(x) be an instance of the empirical distribution

of the eigenvalues (denoted as λm) and eigenvectors of R (denoted as νm)



76 3.5. Enhanced Correlation Estimators

as in [Mes05]:

HR(x) =

M∑

m=1

aH
νmν

H
mb I(λm ≤ x), (3.29)

whose Stieltjes transform is defined by (for both the continuous and the

finite size cases)

mR(z) =

∫
1

λ− z
dHR(λ),

=

M∑

m=1

aH
νmν

H
mb

λm − z

= aH (R− zIM )−1 b, z ∈ C. (3.30)

where vectors a and b are two generic and deterministic vectors.

Following some general assumptions, the asymptotic behavior of sA(z)

and mA(z) is the same [Mes08, Th. 1], and hence one can apply the results

above for m
R̂

, and evaluate it for the case of z = 0. Then

m
R̂

(z) ˚

∫
dHR(λ)

w(z)λ − z
=

1

M

M∑

m=1

aH
νmν

H
mb

w(z)λm − z

= aH (w(z)R − zI)−1 b, (3.31)

where w(z) = 1 − c − czs
R̂

(z), where s
R̂

(z) is defined in [Mes08] as the

unique solution to the following equation in the set {s
R̂

(z) ∈ C : −(1 −
c)/z + cs

R̂
(z) ∈ C+}:

s
R̂

(z) =
1

M

M∑

m=1

1

w(z)λm − z
. (3.32)

Evaluating m
R̂

(z) for the case of z = 0 one can easily observe that

(1− c)aHR̂−1b ˚ aHR−1b. (3.33)



3. Enhanced Correlation Estimators for Distributed Source
Coding 77

In our case, the vector a is selected as an all-zero vector with a one at the

ith position (usually represented as ei) and b = r̂x, then

[w⋆]i ˚ (1− c)eH
i R̂−1r̂x. (3.34)

Hence, an enhanced estimator of the LWF solution is given by

ŵ = (1− c)R̂−1r̂x. (3.35)

The estimator in (3.35) can be seen as a scaled version of the classical

LWF estimator as:

ŵ = α⋆ŵclass, (3.36)

where α is a scaling factor and α⋆ is its optimal value in terms of MSE and

computed as

α⋆ = argmin
α
{MSE(αŵclass)}. (3.37)

We test by simulation that the minimum MSE is obtained when α is actu-

ally α⋆ = (1− c) (see Fig. 3.4 of the Numerical Results section).

The intuition behind the estimator in (3.35) can be seen as follows: The

parameter α ∈ (0, 1) represents the confidence in the classical estimator. If

ŵclass has been estimated with a large number of samples in comparison

with M , the degree of confidence will be high and ŵ ≃ ŵclass for i =

1, . . . ,M . Otherwise, when N > M but comparable in magnitude, ŵclass

is not expected to be the best weighting vector. In order to mitigate the

performance reduction due to the missadjustment in ŵclass, the vector is

attenuated.

3.5.2 Enhanced estimator for the Mean Square Error

A traditional approach to estimate the MSE is by simply replacing the

true correlations by their sample estimators. From (3.8), one can derive an

estimator of the MSE given ŵclass as

M̂SEclass(ŵclass) = σ̂2
xs
− r̂H

x R̂−1r̂x. (3.38)
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When ŵ is given, the theoretical expression of the MSE is:

MSE(ŵ) = σ2
xs
− 2Re[ŵHrx] + ŵHRŵ. (3.39)

Using the classical approach, one can estimate MSE(ŵ) as:

M̂SEclass(ŵ) = σ̂2
xs
− 2(1− c)r̂H

x R̂−1r̂x

+ (1− c)2r̂H
x R̂−1r̂x, (3.40)

where σ̂2
xs

is the sample estimator of the signal variance σ2
xs

, defined as:

σ̂2
xs

=
1

N

N∑

n=1

xs(n)2. (3.41)

The estimator M̂SEclass(ŵ) is proved to be N -consistent (one can directly

check the case when c → 0), but indeed it is not consistent when the

observation dimension M increases without bound and at the same rate as

N .

In order to overcome this problem, we proposed an enhanced estimator

of (3.39). The first two terms of MSE(ŵ) are directly estimated by their

sample estimators, i.e., σ̂2
xs
−2Re[ŵH r̂x], since they do not involve unknown

matrices in the estimation. Hence, the critical part resides in the estimation

of the last term (1 − c)2r̂H
x R̂−1RR̂−1r̂x which is a function of the true

covariance matrix. Hence we define the function

β(z) = hH
1 (R̂− zI)−1Rh2, (3.42)

where h1 = r̂x, and h2 = R̂−1r̂x. Using the result in (3.31) we can rewrite

β(z) as

β(z) ˚ hH
1 (w(z)R − zI)−1Rh2, (3.43)

and evaluating β(z) for z = 0, one can estimate β(0) as

β̂ = (1− c)−1hH
1 h2. (3.44)



3. Enhanced Correlation Estimators for Distributed Source
Coding 79

Once we have the enhanced estimator β̂ = r̂H
x R̂−1r̂x for the term β(0) =

r̂H
x R̂−1RR̂−1r̂x, we substitute each term of (21) for its estimate. Hence, an

enhanced estimator of MSE(ŵ) is given by:

M̂SE(ŵ) = σ̂2
xs
− (1− c)r̂H

x R̂−1r̂x. (3.45)

Note that the approach taken in this chapter is slightly different to the

MSE estimator in [Rub09], where the authors give an N,M -consistent esti-

mator for the optimal MMSE. Otherwise, in this chapter we are interested

in estimating the practical MSE obtained by using a certain weighting vec-

tor (in our case ŵ in (3.35)), which not necessarily provides the MMSE

lower bound.

3.6 Numerical Results

The simulated scenario is composed of 200 sensing nodes and one fusion

center configured in star topology. Their measurements are assumed to be

space-time correlated following the correlation model [Rs]i,i+k = [Rt]i,i+k =

ρ|k|, where ρ = 0.9. Although any real application measurement will be

corrupted by at least a small amount of noise, we have considered noise-free

communication paths in order to better evaluate the system performance.

In particular, we study the behavior of the following figures as a function

of c and how they affect to the SER performance:

1. MSE(w): the MSE for a given filter w in (3.8).

2. M̂SEclass(ŵclass): the classical MSE estimator in (3.38).

3. M̂SEclass(ŵ): the classical MSE estimator in (3.40).

4. M̂SE(ŵ): the proposed MSE estimator in (3.45).
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Table 3.1: simulation parameters

Parameter Value

Number of fusion centers: F = 1

Already-decoded sensing nodes: S′ = 200

Number of past samples: K = 200, hence M = 400

Length of the training phase: N = 1000

Aspect ratio (M/N): c = 0.4

Correlation model,

[Rs]i,i+k = [Rt]i,i+k = ρ|k|: ρ = 0.9

SER threshold: SERt = 10−2

A/D converter depth: l = 12 bits

The 2-4) have been computed using the corresponding mathematical ex-

pressions. On the other hand, the MSE(w) has been computed experimen-

tally. We have developed a WSN simulation environment in Matlab and we

have implemented in it our proposed DSC algorithm.

Table 5.1 summarizes the parameters that configure the basic setup of

the simulation environment.

3.6.1 Performance of the proposed LWF estimator, ŵ

In this subsection, we evaluate the MSE performance obtained by simula-

tion of the proposed LWF estimator involved in the side-information y(n).

Following the approach exposed in Subsection 3.5.1, Fig. 3.4 draws the

simulation results for the MSE obtained with the LWF as a function of

the parameter α and for different configurations of M and N . From this

simulation experiment, we can compute the optimal α as in (3.37), which

is represented in Fig. 3.4 as solid line with markers +. Moreover, we show
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Figure 3.4: MSE performance of the LWF estimator for different values

of α is represented by the colormap and the contour lines. The optimal

α obtained as in (3.37) (solid line with marker +) is also compared with

the expression 1 − c (dashed line). The configuration is M = 200 and

c = [0.1, 0.9]. This figure has been averaged over 100 realizations.
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that α⋆ actually fits with the theoretical limit α⋆ = 1− c (dashed line), as

predicted in Section 3.5.

Fig. 3.5 compares the performance in terms of MSE of our proposed

estimator with some of the most popular estimation techniques, i.e., the

classical sample estimator (3.15), the sample estimator with Diagonal Load-

ing (DL), and three instances of the Principal Component Analysis (PCA)

method.

However, there is still a gap between the MSE obtained with the pro-

posed method and the one obtained assuming full correlation knowledge of

R and rx.

3.6.1.1 Classical sample estimator

The behavior is clear; for low values of c−1, the proposed LWF estimator

outperforms the classical method. On the other hand, when we let c−1

increase, both estimators perform similarly.

3.6.1.2 DL estimator

Namely,

ŵDL = (R̂ + γI)−1r̂x. (3.46)

Although for low values of c−1 DL presents lower MSE, our proposed

method shows two important advantages; i) DL is not consistent when

c−1 →∞, and ii) the optimum loading factor γ⋆ that minimizes the MSE

may vary according to the scenario, and in the literature there is not a clear

expression to obtain γ⋆ analytically but only iteratively or by simulation.

We use γ = 0.8, which gives the minimum MSE for c = 0.4.

3.6.1.3 PCA estimator

Keeping only the M ′ < M largest eigenvalues of R̂ (because the smallest

are more difficult to be estimated and hence they may introduce higher
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MSE (ŵc lass)
MSE (ŵ)
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Figure 3.5: MSE performance of the classical, DL, PCA, and the proposed

estimators as a function of the inverse of the aspect ratio c−1.
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errors), the MSE can be improved [Jol02]. Therefore, R̂PCA is a lower rank

projection onto the subspace generated by the M ′ larger eigenvalues of R̂.

Thus

ŵPCA = R̂−1
PCAr̂x. (3.47)

PCA presents the same limitations as DL but with the difference that

this trade-off is balanced changing M ′. In addition, when M,N →∞, the

eigendecomposition may become hard to handle by practical small sensors.

In order to analyze the impact of the proposed estimator ŵ on the

system performance, we compare in Fig. 3.10 the experimental SER for

each of the LWF estimators as a function of the compression level b(n)/l.

One can observe that for large values of b(n)/l, e.g., b(n)/l = 0.75, the

SER obtained is eight times smaller for ŵ than for ŵclass. Even so, one may

make the following argument: If we want to achieve a certain SERt (e.g.

SERt = 10−2), we can compress up to 0.75 using the classical estimator,

and 0.72 using the proposed. At first glance, it seems that the gain is quite

moderate. However, we show next in Example 3.1 that it has an important

impact on the total system performance when both the proposed estimators

are combined.

3.6.2 Performance of the proposed MSE estimator, M̂SE(ŵ)

The MSE is involved in the computation of b(n) in (3.12). Hence, a good

estimation of the MSE is required in order to not overestimate (getting a

too conservative result) or underestimate (inducing potential errors) the

parameter b(n), and thus maintain the system requirements, such as the

SERt.

Fig. 3.7 plots the MSE curve obtained experimentally (solid line). It

is compared with our proposed MSE estimator (3.45) and the classical

approach of (3.40). It is easy to see that our proposed estimator fits con-

siderably better with the experimental results, while the classical estimator

is clearly underestimating, especially for low values of c−1. In fact, the
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MSE(w⋆)

Figure 3.6: Performance of the experimental SER using the classical ŵclass

and the proposed ŵ estimators as a function of the compression rate for

c = 0.4.
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Figure 3.7: Performance of the classical M̂SEclass(ŵ) and the proposed

M̂SE(ŵ) estimators compared to the experimental reference MSE(ŵ) (solid

line) as a function of the inverse of the aspect ratio c−1.
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tors. It is compared to the experimental SER for c = 0.4.



88 3.6. Numerical Results

classical approach is underestimating the MSE. Following (3.12), the DSC

algorithm will be stingy with the number of bits used, and almost certainly,

the SER requirements will not be achieved.

From a user point of view, the experimental SER curves of Fig. 3.10 are

not available a priori, so the user should use a predicted version of the SER

instead to determine which is the maximum compression rate that one can

apply in order to guarantee a given SERt.

In Fig. 3.8 we compare the experimental SER with the following:

1. Predicted SER when the classical MSE estimator is used and ŵ is

given, i.e., M̂SEclass(ŵ).

2. Predicted SER when the proposed MSE estimator is used and ŵ is

given, i.e., M̂SE(ŵ).

3. Predicted SER when the classical MSE estimator is used and ŵclass

is given, i.e., M̂SEclass(ŵclass).

They are calculated using the formula (3.11) replacing the MSE(w) of

the denominator by their respective estimators.

In Fig. 3.8 we observe that the proposed estimator curve fits the best

with the experimental SER (which is also shown in Fig. 3.10). However, all

the estimators are indeed underestimating. The consequences of this fact

are illustrated in the following example.

Example 3.1 Let us take as a system requirement SERt = 10−2. Ob-

serving the predicted SER curves in Fig. 3.8, we may decide to compress

our messages with a ratio of 0.66 if we are using M̂SEclass(ŵclass), 0.68 if

M̂SEclass(ŵ), and 0.71 if M̂SE(ŵ). Now, we map these three points to their

respective experimental curves, i.e., M̂SEclass(ŵclass) to MSE(ŵclass), and

M̂SEclass(ŵ) and M̂SE(ŵ) to MSE(ŵ). The real output SER of the system

would be 2 ·10−1 and about 10−1 for the first and second option respectively,
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both the classical and proposed methods for the case of c = 0.4. This figure

has been averaged over 100 realizations.
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which is one order of magnitude larger than the expected SER. On the other

hand, we get 1.2·10−2 (instead of 10−2, so it is still slightly underestimated),

obtaining a more accurate solution.

Hence, using the proposed estimators the gain in front of the classical

methods is twofold; on the one hand we can obtain higher compression (thus

higher energy savings) since MSE(ŵ) < MSE(ŵclass), and on the other

hand the proposed estimators adjust substantially better to the system

requirements than the classical estimators do. Moreover, the more stringent

the SERt the higher the gain.

3.6.3 Symbol Error Rate as a function of SERt

The final purpose of DSC is the reduction of the transmitted bits in order to

reduce power consumption. However, system requirements must be taken

into account in the design phase. Thus we analyze the performance in terms

of the SER fidelity. In other words, we compare the SER obtained with the

proposed and classical techniques as a function of the SERt.

Graphically, Fig. 3.9 shows the SER performance for the case c = 0.4.

Ideally, the SER performance curve should be below but as close as possible

to the SER threshold (the solid line in the figure). Our proposed method is

actually below the threshold, except for a small area around SERt = 10−3.

The curve is staircase-shaped due to the ceiling function of (3.12).

On the contrary, the classical approach does not fit the system require-

ments. One possible solution to counteract this effect is to increase the

training phase N (i.e., decrease c). This conclusion is supported by the

following result.

3.6.4 Symbol Error Rate as a function of c−1

We set the SER threshold of 10−2. Fig. 3.10 shows that the tendency of

the classical DSC approach is to fulfill the SER requirements only for high
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values of c−1 due to its N-consistency property. However for low values of N

(i.e., when the ratio c increases), it cannot fit with the system requirements.

Therefore, the system experiments higher SER than expected.

One can observe that the classical method requires a training phase

at least eight times longer than the observation dimension M to fulfill the

SERt. On the other hand, using the proposed estimators, one can guarantee

the requirements even for values of c close to one.

3.7 Conclusions

This chapter has proposed two enhanced correlation estimators for the Lin-

ear Wiener Filter and the Mean Square Error to operate when the number

of snapshots N and the dimension of the observation vector M are large

and comparable in magnitude, or equivalently for short training phases.

This scenario is very suitable for large WSNs due to its large number of

sensors. Concretely, the enhanced estimators have been designed to carry

out the two key steps in a Distributed Source Coding algorithm, i.e., the

computation of the side-information y(n) based on the existing space-time

correlations, and the computation of the minimum number of bits to encode

the readings in order to guarantee a certain Symbol Error Rate.

Numerical results show that our proposed estimators perform far better

for values of the aspect ratio M/N close to one. Furthermore, they perform

as the corresponding sample estimators when M/N → 0 (i.e., for very long

training phases). In practice, it allows us to reduce the number of trans-

mitted bits (and hence reduce the energy consumption) at the same time

that the system requirements (in terms of maximum Symbol Error Rate)

are guaranteed. On the contrary, it does not happen when the conventional

estimators are used. Therefore, it allows us to decrease largely the training

phase in Distributed Source Coding schemes.



Chapter 4

Amplify-and-Forward

Compressed Sensing as an

Energy-Efficient Solution

4.1 Summary

Sensor measurements typically show space-time correlations and com-

pressed sensing techniques can exploit this feature in order to improve the

existing trade-off among reconstruction error, energy consumption and re-

source utilization. However, due to the distributed structure of wireless

sensor networks, most of the compressed sensing algorithms are hardly ap-

plicable, or at least they are very costly in terms of signaling due to the

centralized nature of compressed sensing approaches. In this chapter, we

propose a novel distributed compressed sensing transmission scheme which

is referred to as amplify-and-forward compressed sensing (AF-CS). The un-

derlying idea is twofold: First, we take advantage of the time correlation

in order to produce sparse versions of the signal vector, which collects the

transmitted signals of the sensors. Second, we take advantage of the multi-

ple access channel in order to perform random measurements of the signal

93
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vector. We also propose a simple model that accurately approximates the

distortion introduced by the proposed scheme. It allows us to dimension

the network (i.e., number of active nodes and relays) based on a cost func-

tion that controls the trade-off between reconstruction error and energy

consumption. Simulation results show that our proposed algorithm outper-

forms other techniques in terms of distortion and number of transmissions,

providing at the same time, energy savings and significant reduction in the

number of channel uses.

4.2 Introduction

Wireless Sensor Networks (WSNs) design is currently one of the most chal-

lenging topics in the wireless communications field. In particular, WSNs are

severely energy-constrained because they consist of many small, cheap and

power limited nodes, whose batteries cannot be recharged in most cases.

Hence, the application of energy-efficient algorithms turns out to be crucial.

4.2.1 Is the compressed sensing a good candidate to build

energy-efficient WSNs?

Usually, WSNs are designed to perform one specific task such as the detec-

tion of some chemical agents; the measurement of temperature, humidity

or light; location, estimation and positioning. Hence, each node senses some

specific physical magnitude from the environment. When the measurements

x(n), x(n− 1), x(n− 2), and so on, are sampled at a sufficiently high rate,

the elements of the signal of interest are assumed to be time-correlated, i.e.,

E[x(n)x(n− t)] 6= 0, (4.1)

where t is the sampling difference between samples x(n) and x(n− t).

Furthermore, as the WSNs are conformed of many different sensing

nodes, the measures at a given sample time n are not totally independent,
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and therefore spatial correlation among nodes is also assumed. In the same

way,

E[xi(n)xj(n)] 6= 0, i, j ∈ S, (4.2)

where xi(n) and xj(n) are the measurements of the ith and the jth sensing

nodes respectively, and S describes the set of total sensing nodes in the

WSN.

Under space-time correlated assumptions, the resulting signal turns out

to be a smooth and slowly varying signal in the time and space domains.

Hence, the level of “uncertainty” is quite low in such signals. This is the

reason why Compressed Sensing (CS) appears as a good candidate to take

advantage of this fact.

In a nutshell, CS allows to recover a given signal x ∈ RS (under some

assumptions) from a small number of measurements. This is possible when

x can be accurately (or exactly) represented by a linear combination of

K vectors taken form a desirable basis Ψ [Don06b]. If so, we say that the

vector x is compressible or that it has a K-sparse representation in Ψ.

Roughly speaking, the CS theory says that it is possible to recover the

signal x with a number of measurements proportional (up to a logarithmic

factor [Can06a]) to the information contained in the signal x, i.e. K, instead

of to the number of samples S.

As we can easily see, the CS framework is very suitable for WSN with

correlated sources. In theory we are able to recover a given signal x with a

number of measurements much smaller than the original number of samples.

This approach reduces notably the number of measurements, hence it turns

out to be an energy-efficient solution scheme for WSNs. In other words, the

question formulated at the title of the section has a positive answer.
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4.2.2 Are the current CS schemes good energy-efficient so-

lutions for WSNs?

Recent signal processing results exploit Compressed Sensing (CS) tech-

niques as a powerful solution to compress the information based on the

fact that the signal has an approximate sparse representation in a given

transformed linear basis. However, the application of CS to distributed sys-

tems is not straightforward and this is why CS has not been widely extended

to WSNs yet.

Before answering the question of the title, we review some of the dif-

ferent CS-based techniques that have been recently appeared in WSN lit-

erature. Authors in [Men09] propose a detection technique that uses CS in

order to significantly reduce the number of active sensors or, what is the

same, to reduce the sampling rate. In [Nik11], a localization mechanism ex-

ploits the sparse nature of the position of the nodes within a grid to apply

CS techniques. Although that paper presents the results for a wireless local

area network, they could also be extended to a WSN scenario.

The CS literature related to distributed communications is quite hetero-

geneous, nevertheless we point out some examples of different applications.

Authors of [Luo09, Gup05] deal with data compression in tree-based net-

works. The compression is carried out by the data gathering nodes, but all

the sensors need to be active. In [Cho09], projection methods for multi-

hop networks are proposed. The message is distributed from the source to

the sensors following a given route (projection), where each node adds its

measurement. In such techniques all sensors have to be listening, and for

the generic case, they need to transmit once per measurement. It results

in over-expensive star-WSNs in terms of energy consumption. In order to

mitigate this effect, the authors of [Cho09] present some heuristics that

modifies the CS scheme.

Probably one of the most relevant work (and also one of the most refer-

enced) in the field of CS applied to WSNs is [Baj06], where the authors first
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proposed what they called Compressive Wireless Sensing (CWS). Although

we do not go into the details of the work in [Baj06], we briefly explain the

main idea and extract some straightforward conclusions1.

Let x(n) ∈ RS be the measured vector at the sample time n,

x(n) = [x1(n)x2(n) . . . xS(n)]T , (4.3)

where xs(n) is the measured signal of the sth sensor at the sample time

n. No assumptions are made for x(n) other than it is compressible in a

certain (and previously fixed) orthonormal basis Ψ ∈ RS×S. Up to some

scaling factors needed to meet the power constraints of the sensors and the

corresponding additive noise of the wireless channel, the signal model is

ω(n) = Ψx(n), (4.4)

where the vector ω(n) ∈ RS is the (pseudo) sparse representation of x(n)

in the basis Ψ. The paper [Baj06] includes an extra (and hard) assumption

that is the knowledge of the ordering of the elements in ω(n), or in other

words, the authors in [Baj06] assume that the elements of ω(n) are sorted

in a descending absolute value, i.e.,

|[ω(n)i]| ≥ |[ω(n)]j |, i < j. (4.5)

Furthermore, it defines x̂(n) as the best K-term approximation of x(n) in

terms of Ψ as:

x̂(n) = ΨT
KωK(n), (4.6)

where ΨK ∈ RS×S is a replica of the first K rows of Ψ and the rest are

zeros, and ωK(n) ∈ RS is a replica of the first K entries of ω(n) and

the rest are zeros. In order to simulate these computations from a WSN

perspective, they propose an iterative algorithm where each sensor sends in

1let us make use of our notation for the sake of homogeneity of the document.
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the kth round the measurement [Ψ]k,s[x]s(n) to the fusion center following

an uncoded coherent transmission scheme as in [Che06] and [Gas03]. Under

such transmission schemes, the fusion center receives (again up to some

constants and noise)

[ω(n)]k =
S∑

s=1

[Ψ]k,sxs(n). (4.7)

This transmission should be repeated K times in order to get an approxi-

mation of x̂(n) and the system uses K ≪ S channel uses for a total of K×S

transmissions. Similarly, we can compare this algorithm with the classical

approach where each sensor uses one channel use to send its measurement

to the fusion center. Similarly to (4.8), and ignoring the channel loses and

the noise, the signal at the fusion center can be modeled as:

ω(n) = ISx(n), (4.8)

where it is clear that “only” S transmissions are used. So, in theory, the

transmission scheme proposed in [Baj06] will be energy efficient if the ma-

trix Ψ holds the following condition,

‖ΨK‖2 < ‖IS‖2 = S, (4.9)

where ‖A‖ indicates the Frobenius norm of a matrix A of dimension A×B

and it is defined as:

‖A‖ =

√√√√
A∑

i=1

B∑

j=1

|[A]i,j |2 (4.10)

Following the same approach than in [Baj06], but relaxing the assump-

tion in (4.5), we reformulate the problem in a more general form (using a

general CS framework such as the one in [Hau08]). This is crucial given the

fact that the assumption of the knowledge of the ordering of ω(n) directly
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violates one of the most important premises in CS, that is: it is not required

the knowledge of the location of the K principal components of ω(n) and

one can still recover the original vector with a number of measurements

proportional to K (up to a logarithmic factor) [Can06a].

This modification is referred as Generalized Compressed Wireless Sens-

ing (GCWS) and it is detailed as follows

y(n) = Φω(n) = ΦΨx(n), (4.11)

where Φ ∈ RR×S is the sensing matrix (it will be properly defined next) that

models R generic and nonadaptive measurements of ω(n). In fact, the re-

construction will be exact if ω(n) is sparse and the number of measurements

is proportional to its sparseness. Now we reformulate the energy-efficient

condition in (4.9) according to this more generic scheme as,

‖ΦΨ‖2 < ‖IS‖2 = S. (4.12)

Albeit this is easily met for some pairs ΦΨ, the energy-efficient condi-

tion in (4.9) and (4.12) is far to be realistic. This is because it is proved

that the sensors spend most of their power while they are active and,

otherwise, the energy cost is negligible while they remain silent (in sleep

mode) [Rug07]. We can graphically see this behavior in Fig. 4.1 with the

data borrowed from [Rug07]. It shows us that minimizing the total amount

of transmitted power at the expense of the number of transmissions turns

out to be not the best option in terms of energy consumption. Instead, it

seems that we can obtain better results with schemes focused on directly

reducing the number of transmissions (in consequence, they also reduce the

total transmission power and meets the condition in (4.9) is still satisfied).

Hence, the answer of the question at the heading of this section is that

better and more realistic energy-efficient algorithms for WSNs can be for-

mulated.
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Figure 4.1: Sensor node power requirements.

This figure is not obtained by any experiment carried out by the authors,

instead it is borrowed from [Rug07].

4.2.3 Our contribution

The main contribution of this chapter is to provide an energy-efficient

compressed sensing approach for WSNs. The resulting technique is called

Amplify-and-Forward Compressed Sensing (AF-CS) that relax some of the

strong assumptions or limitations introduced by the other works in the lit-

erature, as it is explained next. The AF-CS was first introduced in [BL11]

and has been detailed in [BL12b].

We do not assume previous knowledge of either the position or the order-

ing of the principal components of the transformed vector. This knowledge

would only be available with the presence of an “oracle”. Furthermore, we

do not assume pure sparse input vectors. On the contrary, our scheme may

face with more general signals, which are not exactly sparse (also called

pseudosparse). Indeed, our proposed design is able to obtain a pure sparse

version of the signal (using lossy transformations) in a fully distributed
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way, which (up to the best of the author’s knowledge) is novel in the lit-

erature about CS applied to distributed communications. This approach is

notably more realistic in the sense that signals corresponding to physical

phenomena are never exactly sparse even in a transformed domain.

As we will see in detail next, the sparse version of the input signal

can be obtained in a distributed way by using downsampling encoding.

A downsampling encoder with ratio γ = K/S that ensures an average

of K active sensors at a time. In particular, we assume throughout the

explanation of AF-CS that the Conditional Downsampling Encoder (CDE)

is used at the sensing node side (introduced and detailed in Chapter 2). We

have selected it because of its low Minimum Square Error (MSE) at the

reconstruction . The price to pay for such a good performance is the need

to know the time correlation coefficients among the samples of the same

sensor or at least a good estimations of them (the correlation estimation

issue is also extensively revised in Chapter 3). It will be clear that taking

advantage of the time correlation instead of the spatial correlation keeps the

distributed character of the proposed technique. This is due to that the time

information only depends on the sensor itself and not on the measurements

from other sensors.

Furthermore, the proposed scheme reduces the required number of

transmissions. This technique is based on the spatial diversity that is in-

troduced using several relays. Hence, R sensors act as relays performing

random measurements y(n) over the set of S sensors. These random mea-

surements are in fact achieved by the proper random nature of the Mul-

tiple Access Channel (MAC) taking advantage of its randomness. On the

other hand, the scheme in [Baj06] tries to compensate it with power control

techniques. These coeffitients are in fact represented by the sensing matrix

Φ previously introduced in (4.11). Nevertheless, it implies perfect chan-

nel state information at the receiver (CSIR), which the reader will know

that it is a common assumption in the wireless communication and signal
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processing literature.

One of the main problems (if not the biggest) is the selection of the min-

imum number of measurements R required to obtain an accurate recovery

of the signal of interest. At the time of writing this chapter, the literature

agrees that a signal with K non-zero entries can be faithfully recovered

from about K log S random measurements, i.e.,

R ≤ C0K log S, (4.13)

where the only information we know about C0 is that it is a positive (and

not very big) constant.

The reconstruction of the signal ωK(n) is carried out by the fusion

center. The most extended CS decoder (for the noiseless case) is the l1-

norm minimization program P1,

P1 : minimize
ω̂K (n)∈RS

‖ω̂K(n)‖l1

subject to y(n) = Φω̂K(n), (4.14)

which is a convex relaxation of the original NP-hard problem P0 (with the

l0-norm) as in e.g., [Don06b], [Can06a]:

P0 : minimize
ω̂K (n)∈RS

‖ω̂K(n)‖l0

subject to y(n) = Φω̂K(n)), (4.15)

We also take into account the noisy case where the measurements of

the relays are contaminated with some additive noise vector w(n) ∈ RR at

the measurements, such as w(n) ∼ N (0, σ2
w), and we study its impact in

the reconstruction process. For this purpose, we consider the minimization

program which solves the l1-norm [Can08a],

P2 : minimize
ω̂K (n)∈RS

‖ω̂K(n)‖l1

subject to ‖y(n)−Φω̂K(n)‖2 < ε, (4.16)
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for ε as an upper bound on the magnitude of the noise, i.e, ε ≥ ‖w(n)‖2.
We can also find other approaches in the literature as the unconstrained

LASSO problem for the noisy case in [Can11], [Par11].

In addition to the distributed CS scheme, we also propose a framework

in order to model the distortion. This model allows us to predict the in-

troduced error as a function of the system parameters (i.e. K, R, and S).

This is extremely important since it allows us to also propose an analyti-

cal design scheme in order to control the existing trade-off between energy

consumption and reconstruction accuracy.

4.2.4 Organization of the chapter

The rest of the chapter is organized as follows. In Section 5.3 we present the

problem statement and the assumptions considered throughout the chapter.

Section 4.4 explains the proposed CS algorithm. The expressions of the

distortion analysis are detailed in Section 4.5. The cost function and the

subsequent optimization problem are presented in Section 4.6. Simulation

results are shown in Section 5.6, and conclusions are drawn in Section 5.7.

4.3 System Model and Assumptions

Let us consider a WSN configured in star-topology that monitors a given

physical scalar magnitude (e.g., temperature or humidity). In particular,

let us assume the scheme in Fig. 4.2, where:

• A set S of S sensing nodes is connected (wirelessly) to one fusion

center.

• A subset K(n) ⊆ S (of average cardinality K) of active sensors are

transmitting at sample time n. The remaining sensors in Q(n) =

S \ K(n) (of average cardinality Q) stay silent (sleep mode).
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Figure 4.2: Multiple access channel scenario composed by K active sensing

nodes, R relay nodes and one fusion center.

• A subset R(n) ⊆ S (of cardinality R) acts as Amplify-and-Forward

(AF) relay sensors at sample time n.

Note that the subsets K(n) and R(n) are not necessarily disjoint (i.e., they

do not need to satisfy K(n) ∩R(n) = ∅).

In CS nomenclature, K also corresponds to the number of non-zero

elements of the transmitted vector x(n) ∈ RS , and R is the number of

projections used in the reconstruction process, i.e., the number of rows

of the sensing matrix, Φ ∈ RR×S (defined next in 4.20), where typically

K < R < S.

We consider that the signals are space-time correlated and modeled as

an S-dimensional stochastic process, namely,

X = [x(1)x(2) . . . x(N) ] =




x1(1) x1(2) · · · x1(N)

x2(1) x2(2) · · · x2(N)
...

...
...

xS(1) xS(2) · · · xS(N)




, (4.17)

where xs(n) denotes the measurement of the sth sensor at the sample time

n and N denotes the number of time samples in the observation window.
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The main assumptions throughout this chapter are collected as follows:

4.3.1 Assumptions on the signal model

Let x(n) be a real and time-discrete auto-regressive model of order 1 (AR−
1), which is commonly assumed in the signal processing literature in order

to model real sources [Has80]. It is defined as:

x(n) = ρx(n− 1) + z(n), for n = 1, 2, . . . (4.18)

The auto-regression coefficient is denoted by ρ ∈ [0, 1] and assumed to be

constant during the transmission. The random process z(n) is a sequence

of Gaussian distributed and independent random variables with zero mean

and variance σ2
z .

As we showed in Chapter 2, the covariance matrix of an AR− 1 model

follows

[R]n,n−i = ρi. (4.19)

That is why it is also referred to as the correlation factor.

Without loss of generality, we assume that σ2
x = 1. Therefore, following

the Lemma 2.1, the variance of the noise is σ2
z = 1− ρ2.

We also assume that x(n) is a continuous-valued process or, in other

words, that the quantization error is assumed to be zero. Although a contin-

uous random measurement requires infinite precision in order to be digitally

sent with zero error, we assume the quantization error to be negligible in

comparison with the distortion introduced by our proposed scheme. This

assumption is supported by the rate-distortion theory [MC91], since we

can select a symbol rate such that the quantization error is as small as

desired. However, we want to stress out that this assumption only responds

to pedagogical reasons, and that our proposed scheme works in practice

with quantized signals as well.
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4.3.2 Assumptions on the channel and the system model

We assume perfect channel state information (CSI) at the fusion center for

all the links that go from a sensing node to a relay node. This assumption

is quite common in the communications and signal processing literature.

It is traditionally addressed with the transmission of a training sequence

composed by pilot symbols with known amplitude that allows us to estimate

the channel at the receiver side. The same can be achieved using blind

methods that exploit the knowledge of the structure of the transmitted

signals. In particular, we assume that the channel matrix, here relabeled

as sensing matrix Φ ∈ RR×S follows the Gaussian measurement ensemble,

where:

[Φ]i,j ∼ N (0, R−1). (4.20)

The variance of the sensing matrix R−1 is a convention in the literature in

order to maintain the relation

E
[
‖Φx‖2

]
= E

[
‖x‖2

]
(4.21)

for an arbitrary vector x. This assumption is just for convenience and it

does not affect in the generality of the model since the channel gain can be

adjusted at the receiver if needed.

Moreover, we do not assume anything regarding the links from R to the

fusion center further than these links are controlled by a certain orthogonal

policy that requires R channel uses for each sample time n in order to

transmit the data from the relays to the fusion center.

4.4 Amplify and Forward Compressed Sensing

This section details our proposed CS scheme called AF-CS. It is divided

in three phases, i) the sensing phase, ii) the projection phase, and iii)

the signal reconstruction phase (see i) and ii) graphically represented in

Fig. 4.3).
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Figure 4.3: WSN scenario composed by K active sensing nodes, Q quiet

sensing nodes, R relay sensors, and one fusion center. The signal reconstruc-

tion phase is carried out by the fusion center after the projection phase.
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4.4.1 Sensing phase

Compressed sensing exploits sparsity to acquire high-dimensional signals

represented in a low-dimensional subspace. A priori, physical phenomena

are not necessarily sparse, but expected to be correlated in time and space.

Thus, correlated signals may have a (pseudo)sparse representation if they

are expressed in a proper basis. Wavelets are in general considered as a good

candidate to construct the sparsity basis matrix, Ψ ∈ CS×S [Hau08]. The

main difficulty in projecting a signal onto a given wavelet basis is that this

is a centralized problem. In order to carry out this task, some central entity

is needed to gather all the measurements (i.e., collect x(n)) and compute

all the wavelet coefficients Ψx(n) (or at least the K most important). This

is not a problem in centralized scenarios as image processing, but to do

so in a distributed fashion is not straightforward and strong assumptions

appear in the literature (e.g., [Baj06]) as we have detailed previously.

In a WSN scenario, the computation of the transformed coefficients re-

quires all the S sensing nodes to transmit their readings towards this central

entity in order to get a sparse version of x(n) afterwards. One can easily

see that this approach is signaling intensive and highly energy consuming.

In order to overcome this problem, one possible solution is to artificially

create a sparse representation of x(n) with only K loaded entries and to

set the rest to zero. One can easily do that by substituting the linear trans-

formation Ψx(n) by a non-linear downsampling encoder for each sensor. In

principle, this procedure is not efficient at all since we are drastically re-

moving a huge amount of information about the vector x(n), in particular
S−K

S of the total entries (remember that K ≪ S). In order to counteract

this effect, we propose to use a Conditional Downsampling Encoder (CDE),

which benefits from the time correlation properties of the signal. As we pre-

viously showed in Chapter 2, the distortion introduced for high-correlated

signals (i.e., ρ→ 1) is quite low, even for high downsampling rates.

Shortly, the CDE uses the time correlation of the signal in order to
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Algorithm 4.1 Sensing nodes

for n = 1 to end do

during the sensing phase

for each s ∈ S do

get the sth measurement xs(n).

compute linear prediction x̂s(n) as in (4.22).

compute xs(n)− x̂s(n).

if |xs(n)− x̂s(n)| > ∆ then

active sensor mode (i.e., belongs to K(n))

broadcast [xK(n)]s = xs(n).

store xs(n).

else

stay in sleep mode (i.e., belongs to Q(n))

store x̂s(n).

end if

end for

end for.

decide whether the current sample should be transmitted or not. In partic-

ular, the CDE uses a linear prediction of xs(n) denoted as x̂s(n). The value

x̂s(n) is compared to the signal of interest xs(n). If the absolute value of

the difference is higher than a given threshold ∆, the encoder transmits the

sample. Otherwise, if the difference is below ∆, the transmission is blocked.

The value of ∆ can be chosen to ensure that K active sensors are active in

mean, as it is detailed in Section 4.5.

Then, the goal is to obtain a predictor x̂s(n) of each element of x(n)

based on the N past readings of each sensor. This allows us to obtain a

sparse version of x(n), named xK(n), containing (on average) only the K

most relevant readings with low distortion.

The predictor x̂s(n) can be computed as a linear combination of the N
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previously decoded readings at the sth sensor. We use the Linear Wiener

Filter (LWF) to predict xs(n) because it is optimal in terms of the MSE.

Mathematically,

x̂s(n) = wH x̃s(n), (4.22)

where w = R−1r is the N -dimensional LWF solution, r is known and

denotes the N × 1 cross-correlation vector between the past stored samples

and the desired measurement xs(n), and the observation vector x̃s(n) ∈ RN

collects the N past decoded values of sth sensor by the fusion center. It is

defined as:

[x̃s(n)]j =

{
x(n− j) if s ∈ K(n− j)

x̂(n− j) otherwise
(4.23)

Note that both the sensing nodes and the fusion center should have the

same version of the observation vector. That is why the observation vector

is not constructed simply as [x̃s(n)]j = x(n − j). Thus if the sth sensor

transmits, xs(n) is stored in the observation vector at the sensing node.

Otherwise, if the sth sensor is silent, it stores x̂(n) (see Algorithm 4.1).

Following this approach, only the subset of sensors K(n) transmit their

readings while the rest Q(n) remain sleep. Algorithm 4.1 reviews the action

executed by the sensing nodes.

4.4.2 Projection phase

Some existing CS-based techniques solve the problem of making projec-

tions by assuming a tree-based WSN and computing them in the gathering

nodes [Luo09]. Others circulate the message from the source through the

network and each node adds its contribution [Cho09]. Then, the message

returns to the sink with all the contributions forming one projection.

On the contrary, in [Baj06] each sensor sends its contribution

[Ψ]k,sxs(n) for k = 1, . . . ,K, under the unfeasible assumption that the
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Algorithm 4.2 Relay nodes

for n = 1 to end do

for each r ∈ R do

while during the sensing phase do

collect readings from K(n).

end while

compute projection yr(n) = [Φ]rxK(n) + w(n).

transmit yr(n) to the fusion center.

end for

end for.

transformed vector is sorted in decreasing order of the absolute value of its

entries as in (4.5). The fusion center receives each contribution as

yk(n) = [Ψ]kx(n) + w(n), for k = 1, . . . ,K, (4.24)

where w(n) models the additive white Gaussian noise (AWGN) with zero

mean and variance σ2
w present in the wireless channel. Each sensor repeats

this algorithm K times per sample.

Furthermore, if we assume the GCWS scheme that we have introduced

in Section 4.2, the fusion center receives the sum of all contributions as

yr(n) = [ΦΨ]rx(n) + w(n), for r = 1, . . . , R. (4.25)

Obviously, the approaches in [Cho09] and [Baj06] may become expensive

in terms of the number of transmissions since, in the worst case, K · S
transmissions for each field measurement in [Baj06] and R·S for the GCWS

are required. To cope with this problem, the authors in [Cho09] search

(heuristically) K-sparse projection vectors to compensate the high energy

costs (at the expenses of reconstruction accuracy).

On the contrary, our proposed algorithm does not assume either a pre-

vious knowledge of the principal components of the signal or the sparse
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projection vectors and still its cost is (K + R)≪ (R · S) transmissions, or

even (K + R)≪ (K · S).

First, let yr(n) define the received signal at the rth relay node as:

yr(n) =
∑

s∈K
[Φ]r,sxs(n) + w(n),

= [Φ]rxK(n) + w(n), for r = 1, . . . , R. (4.26)

where [Φ]r,s models the flat-fading channel from the active sensor s towards

the relay r. In the CS literature, random Gaussian matrices with i.i.d.

entries have been extensively used as sensing matrices like Φ due to its

simplicity and incoherence properties with respect to any fixed basis Ψ

[Can08b].

The reader may notice that the matrix Φ drawn from the Gaussian

ensemble may model the channel only when K(n)∩R = ∅. In other works,

when any of the relay sensors does not act as active sensor simultaneously.

If we relax this assumption, i.e. we allow K(n) ∩ R 6= ∅, the sensing ma-

trix Φ is not a purely Gaussian random matrix anymore. It is because the

element [Φ]k,r (which refers to the same physical node that acts as the kth

active sensor in the sensing phase and as the rth relay in the projection

phase) is [Φ]k,r = 1 or even [Φ]k,r = 0 if this sensor adds its contribu-

tion after receiving yr(n) or not. This fact may degrade the incoherence

property of Gaussian matrices and may be a problem because the coher-

ence between basis is very important in the accuracy of the reconstruction

process [Can08b], [Can11]. For that reason, it needs to be preserved.

In order to overcome this problem, the active node k acting also as relay

r can add its contribution as [Φ]k,rxk(n) where [Φ]k,r is pseudo randomly

generated as N (0, R−1) as in [Baj06]. In principle it may incur in extra

signaling. However, each sensor can locally draw the elements of [Φ]k,r in

an efficient manner by using the seed of a pseudo-random generator and its

network identifier. Similarly, the fusion center only needs to know the seed

in order to reconstruct [Φ]k,r. Therefore the fusion center does not need to
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Algorithm 4.3 fusion center

for n = 1 to end do

while during the sensing phase do

compute available information x̃s(n) for each sensor.

end while

while during the projection phase do

collect y1(n) . . . yR(n) projection from relays.

end while

solve P ′1 or P ′2 in (4.28) and (5.15) respectively to recover x̂K(n).

obtain x̂(n) replacing the zeros by their estimations x̂s(n).

end for.

signal extra data.

From a medium access control point of view, there is no need to make

orthogonal transmissions during the sensing phase, so this phase has a cost

of one channel use as we can see in (4.26). Differently, during the projection

phase, it is assumed that the relay nodes transmit through R orthogonal

channels to send a coded version of the projected values yr(n). This phase

has a total cost of R channel uses (this process is summarized in Algorithm

4.2).

4.4.3 Signal reconstruction phase

The fusion center gathers all the received measurements in the R di-

mensional projection vector, denoted as y(n) = [y1(n) y2(n) . . . yR(n)]T .

Hence, the goal of the reconstruction phase is to recover an approximation

of xK(n), i.e. x̂K(n), given y(n) and Φ. The most prevalent decoder for

the noiseless case in the CS literature is the l1-norm minimization program

which is a convex relaxation of the original NP-hard problem (with the
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l0-norm) as in e.g., [Don06b], [Can06a]:

P1 : minimize
x̂K (n)∈RS

‖Ψx̂(n)‖l1

subject to y(n) = ΦΨx̂(n). (4.27)

Note that this problem is the same than in (5.18) with the notation of

Ψx̂(n) = ω̂K(n).

Unfortunately we cannot directly apply P1 as the decoder of the pro-

posed AF-CS scheme. This is because we have substituted the linear trans-

formation Ψx(n) by the non-linear encoder CDE in the sensing phase.

Hence, we propose the following AF-CS decoder, which has two main build-

ing blocks: i) a CS decoder (CSD) block, called P ′1, that recovers x̂K(n),

and ii) a Prediction Decoder (PD) with x̂(n) as its output.

Thus, the CS decoder P ′1 for the noiseless case is defined as:

P ′1 : minimize
x̂K (n)∈RS

‖x̂(n)‖l1

subject to y(n) = Φx̂(n). (4.28)

For the noisy case, we use a modification of the minimization problem

previously formulated in (4.16) as:

P ′2 : minimize
x̂K (n)∈RS

‖x̂(n)‖l1

subject to ‖y(n) −Φx̂(n)‖2 < ε. (4.29)

Afterwards, the algorithm should replace the S −K zeros by their cor-

respondent predicted entries (see Algorithm 4.3). Therefore, we propose to

use an instance of the PD with the following non-linear decoding function,

dPD(n) =

{
[x̂(n)]s = [x̂K(n)]s if [x̂K(n)]s 6= 0

[x̂(n)]s = x̂s(n) otherwise
(4.30)
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Figure 4.4: Block diagram of the AF-CS transmission scheme.
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Furthermore, we assume that both the sensing nodes and the fusion

center have perfect knowledge of the time correlation parameters R and r.

In practice, one can use different methods to reduce the number of snapshots

needed to obtain good correlation estimators, as we show in Chapter 3.

The proposed technique has three main sources of distortion; i) the

l1-norm minimization problem in the reconstruction of the active node’s

measurements, ii) the error in the prediction of the LWF to reconstruct

the silent sensors, and iii) the noise of the wireless channel.

We showed in [BL11] that the distortion introduced by the proposed

algorithm is very sensitive to the values of K, R, and S and hence we need

an error model in order to configure a priori the network. In the following

section we propose a framework to model the error introduced by the first

two sources pointed out above.

4.5 Distortion analysis of the AF-CS decoder

In this section, we asses the error introduced by the AF-CS decoder,DAF-CS.

As we mentioned previously, it can be seen as a combination of two partial

decoders: i) a CS decoder, named CSD, and ii) a predictive decoder named

PD. In the following we analyze the distortion introduced by both steps

separately.

4.5.1 Distortion due to the CSD step

In this subsection we focus our analysis on the distortion introduced by the

CS decoder, denoted as DCSD:

DCSD = E
[
‖xK(n)− x̂K(n)‖22

]
. (4.31)

In particular, we study the design conditions for K, R, and S that
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guarantee an upper-bound of the distortion as in [Can11], i.e.,

DCSD <

(
K

R
σ2

w log S

)
. (4.32)

The reader will notice that this bound is applicable to both the noiseless

and the noisy problems P ′1 and P ′2 respectively. For the noiseless case, we

directly get DCSD = 0, so it means that we look for the design conditions

for K, R, and S in such a way that we can expect perfect recovery of the

sparse sensor xK(n).

What we know from the current state-of-the-art of the CS theory

[Can11] is not much more than if the number of random measurements

R are on the order of K log S (with R≪ S), it is possible to recover xK(n)

with an error bounded for (4.32). This condition was first introduced for the

Fourier basis case in [Can06a] and for the Gaussian ensemble in [Can06b].

From this result, other variations to R > C0K log S have appeared for

the Gaussian ensemble case, e.g., R > C0K log
(

S
K

)
in [Che98], [Can06a],

R > C0K log
(

S
R

)
in [Don06a], R > C0K log2(S) in [Can11]. However,

little more than C0 > 0 is known. Because of this limitation, we can

also find some practical results as R should be of the order of 3K to

5K [Can08a], [Can08b], and maybe others that we have unintentionally

omitted. One can conclude that the bounds in the literature are quite het-

erogeneous. In fact, it is still unknown whether or not the perfect recovery

(for the noiseless case) can be guaranteed when the number of measure-

ments R is on the order of K log S [Can11], and to solve it is still an open

problem in the CS literature (at the time of writing the current chapter).

Now, the most widely used tool for addressing such problems is the so-

called Restricted Isometry Property (RIP), which was first introduced by

Candès and Tao in [Can05].

If a given sensing matrix Φ verifies the RIP, it means that it behaves

like a nearly orthogonal system but only for sparse linear combinations. It

is shown in [Can08b] and [Can06a] that this condition allows for the exact
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reconstruction of sparse linear combination of these vectors.

Definition 1 [Can05]: A matrix Φ satisfies the RIP of order K with

restricted isometry constant δK ∈ (0, 1) if

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22, (4.33)

where ΦK ∈ RR×K is formed by retaining any set of K or less columns

from Φ, x is any K-sparse vector of the appropriate size, and δK is the

smallest number (and not too close to one) that holds the RIP condition for

each integer K = 1, 2, ...

In order to see the connection between CS and RIP, we can observe the

following example.

Example 4.1 [Can11] Suppose unique reconstruction of a K-sparse vector

failed. Then, there would exist at least two K-sparse vectors, x and x′, that

obey y = Φx = Φx′. Thus we have

Φc = 0, (4.34)

where c = x− x′ is a (at most) 2K-sparse vector lying in the null space of

Φ. This cannot be possible if RIP holds or δ2K < 1 [Can06a], so we get a

contradiction. In other words if we apply norms of both sides to (4.34) and

apply the RIP condition, we have,

(1− δ2K)‖c‖22 ≤ ‖Φc‖22 ≤ (1 + δ2K)‖c‖22, (4.35)

and (5.19) only can be held if δ2K ≥ 1, so we reach the same contradiction.

We can also relate the RIP with P0 and P1 (or even P ′1). In theory

[Can08b], P0 and P1 are formally equivalent in the following sense:

i) if δ2K < 1 the P0 has a unique K-sparse solution.

ii) if δ2K <
√

2 − 1 the solution of P1 is identical to the one of P0. In

other works, the solution is unique as well.
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Following the results of Example 4.1 for δ2K , the condition in equation

(4.33) is equivalent to require all the eigenvalues of Σ = ΦT
KΦK ,Σ ∈ RK×K

to be inside the interval [1 − δ2K , 1 + δ2K ] as it is said in [Bar07], where

ΦK ∈ RR×K is formed by retaining any set of K or less columns from Φ,

i.e.,

1− δ2K < λmin < λmax < 1 + δ2K , (4.36)

where λmin and λmax denote the limiting support of the eigenvalues of

Σ. Thus, using the asymptotic results from the work of Marc̆enko and

Pastur [Mar67], we characterize the matrix Σ as a Wishart matrix and

thus the asymptotic density function of its eigenvalues, fΣ(λ), follows the

well-known Marc̆enko-Pastur distribution:

fΣ(λ) =

(
1− 1

α∗

)+

δ(λ) +

√
(λ− λmin)+(λmax − λ)+

2πα∗λ
, (4.37)

where λmin = (1 − √α
∗
)2 and λmax = (1 +

√
α
∗
)2 are the support region

boundaries of fΣ(λ) and α∗ = limK,R→∞ K/R.

Let us first consider the case of P0 for simplicity. To keep δ2K < 1, one

needs to consider only the λmax since the λmin is always positive because

Σ is positive semidefinite by definition. Then λmax must obey:

λmax < 1 + δ2K < 2 =⇒ (1 +
√

α)2 < 2. (4.38)

Then, the condition for the ratio α, denoted as CP0, is given by

CP0 : α < (
√

2− 1)2 = 0.1716. (4.39)

In Fig. 4.5 we plot fΣ(λ) for different values of α∗. Surprisingly these

results are excellent approximations even for quite small systems [Tul04]. In

Fig. 4.5, we also compare with the normalized histogram of the average of

100 empirical distribution functions (edf) for a quite small Wishart ensemble



120 4.5. Distortion analysis of the AF-CS decoder

0 0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

 
α ∗ = 0 .75
α ∗ = 0 .5
α ∗ = 0 .1716
α ∗ = 0 .05
α = 0 .1709 (edf )

Figure 4.5: The Marc̆enko-Pastur density function of the eigenvalues of a

Wishart matrix for different values of α. We also compare with the nor-

malized histogram of the average of 100 edfs for a Wishart matrix of size

K = 20, R = 117 and α = 0.1709 which is the best approximation for

α⋆ = 0.1716.
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of size K = 20 and α = 0.1709 in order to graphically show the fitness

accuracy.

Similarly to (4.39), we can also find the matrix ratio α that makes

δ2K <
√

2−1 hold as a function of the maximum and minimum eigenvalues

of Σ as

1− (
√

2− 1) < λmin < λmax < 1 + (
√

2− 1), (4.40)

One can solve the system of inequalities as:

1− (
√

2− 1) < (1−√α)2 =⇒ α < 0.0551 (4.41)

1 + (
√

2− 1) < (1 +
√

α)2 =⇒ α < 0.0358 (4.42)

Then, the condition for the ratio α of the problem P1, CP1, is related to

the condition for λmax because it is the most restrictive.

CP1 : α < 0.0358. (4.43)

In order to graphically observe the performance of these two limits, we

show the result of the following experiment.

Experiment 4.1 We have simulated for S = 200, R = [0, S/2], and K =

10, solving the P ′1 problem for the noiseless case. We have used CVX, a

package for specifying and solving convex programs [Gra11,Gra08]. In our

experiment, xK(n) have been generated as a S dimensional all-zero vector

except for K loaded entries with independent and Gaussian values with

zero mean and unit variance, and located randomly along the dimension of

xK(n). The R × S matrix Φ have been generated following the Gaussian

ensemble with entries distributed according to N (0, R−1). We have averaged

the problem 1000 times for each value of R using in each iteration different

realizations of xK(n) and Φ.
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Figure 4.6: Empirical results from Experiment 4.1. The empirical probabil-

ity of recovery is compared with the recovery bounds CP0, CP1, 3K, and

5K. The vertical lines mean that the left-hand side of them is for perfect

recovery while the right hand side is where the recovery is not guaranteed

with high probability.
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From Experiment 4.1, we have plotted the empirical probability of re-

covery in Fig. 4.6. We have also compared the experimental results with

the CP0, CP0, and the practical conditions 3K − 5K from [Can08a].

Although the condition CP0 is derived for P0, it probably brings the best

accuracy with the experimental results. The case 3K − 5K is shown to be

more aggressive and thus the signal is perfectly reconstructed with higher

probability for the values closed to 5K case and with lower probability for

the values closed to 3K. On the other hand, the condition CP1 turns out to

be too conservative.

It is clear that the RIP is intimately related to the maximum and min-

imum eigenvalues of Σ throughout (4.36). Therefore, in order to relate the

probability of recovery with the eigenvalues of Φ (as the RIP suggests) we

have proposed the following experiment.

Experiment 4.2 The setup is the same as in Experiment 4.1, with the dif-

ference that we have only simulated for the values α = [1/4, 1/5, 1/6, 1/7].

In this case, we represent the probability of recovery as a function of the

eigenvalues of Σ instead of α. To obtain accurate results, we have averaged

the problem 3 · 104 times for each value of R.

Although the curves in Fig. 4.7 are quite noisy in the extremes due to the

low probability of occurrence of those values of λ{min,max}, we can extract

two important conclusions about the relation between the eigenvalues of Σ

and the probability of recovery. Those are,

i) We can observe that only the minimum eigenvalue has a significative

impact in the recovery capabilities of P1. Instead, we can extract from

the results that there is not a restriction regarding to the maximum

eigenvalue. It contradicts the second inequality of the RIP statement

in (4.36).

ii) Matrices with the same λ{min,max} but with different ratios α perform
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Figure 4.7: Empirical results for Experiment 4.2. We plotted the probability

of recovery for different configurations of α as a function of the minimum

eigenvalue λmin (left) and maximum eigenvalue λmax (right) of the matrix

Σ.
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differently. Therefore, one can conclude from this observation, that it

is not sufficient to focus on the eigenvalue support region of Σ.

From Experiment 4.1 and Experiment 4.2, we can conclude that there

is still a lot of research to do in the field of modeling the performance of CS

as a function of the matrix Φ and the number of measurements R. Actually,

a recent work in [Can11], have proposed a new approach to face with this

problem using RIPless theory.

Because these results are still at an early stage, we use empirical re-

sults in order to obtain an accurate model that describes the performance

precisely. To do so, we introduce the following experiment.

Experiment 4.3 The setup is the same as in Experiment 4.1 and Exper-

iment 4.2, but with the following input parameters: S = 200, K = [0, S],

and R = [0, S]. We averaged 5 times for each combination of K and R.

In Fig. 4.8 we represent the results of the Experiment 4.3. We plot

the probability of recovery as a function of both K and R. The grey zone

indicates that the probability of recovery is zero. The white zone means

that perfect recovery occurs with high probability. We can see that the

division of the recovery and non-recovery zones is well defined.

In the same plot, we also compare the empirical performance of P1 with

the different relations in the literature that we introduced at the top of the

section. Although we set all constants C0 = 1 for simplicity, one can see that

even tuning C0 a posteriori using the knowledge of the experimental results,

none of the models accurately adjusts to the result of the experiment for

the whole range of values.

Moreover, note from the results that two boundary points must be nec-

essarily included. The first one is the trivial point (K,R) = (0, 0), and

all the proposed models already contain this point. The second point that

should be present in the model is (K,R) = (S, S). The proof is straightfor-

ward; Φ is a square full rank matrix (with almost sure probability [Fen07]),
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Figure 4.8: Empirical results for Experiment 4.3. The empirical probability

of recovery map for each value of K,R ∈ 1, ..., S is compared with different

models in the literature. The white area means perfect recovery with high
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the parameter C0 present in some of the models for simplicity.
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and hence one may solve P1 (or even P ′1) with zero error by solving

x̂K(n) = Φ−1y(n) for any value of K (even for K = S). However, none of

the proposed methods contain this second point. This is probably because

they are only valid under the assumption K ≪ S.

In order to overcome this problem, we propose an empirical model called

CCS that accurately fits for all the points, namely

CCS : R > K + K log

(
S

K

)
(4.44)

and it is plotted as a double-width solid line in Fig. 4.8.

This can be seen as a modification of the condition R > K log
(

S
K

)

in [Can06a], that takes into account the entire set of values for K and

R. Additionally, some multiplicative constants may be added in order to

improve the accuracy in certain scenarios as in the other models in the

literature.

The mathematical validation of this model is still missing, however it

has been numerically tested in several other experiments.

4.5.2 Distortion due to the PD step

In this section we focus on the distortion introduced by the Predictive

Decoder (PD) step, denoted as DPD:

DPD = E
[
‖x(n)− x̂(n)‖22

]
, (4.45)

assuming that no distortion is propagated from the previous CSD step, or

in other words, that we have achieved perfect recovery of the vector xK(n),

i.e., xK(n) = x̂K(n).

In the following, we focus, without loss of generality, on the performance

of the sth sensor. The transmission block diagram for the sth sensor is

simplified as Fig. 4.9.
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Center

Figure 4.9: Simplified transmission block diagram for a given sensor s under

the assumption that there is no distortion due to the CS decoder.

Following this simplified approach, the resulting system turns out to be

similar than the one analyzed in the Chapter 2 for the particular case of

the CDE-PD decoder pair2.

Let us assume the AR− 1 process as the signal model of sensor s,

xs(n) = ρxs(n− 1) + z(n), (4.46)

where z(n) models the uncertainty in the model as z(n) ∼ N (0, σ2
z ).

The CDE-PD performs Linear Wiener Filter (LWF) prediction at both

the encoder and the decoder. The LWF predictor is optimal in the sense

that its MSE is σ2
z . This is proved in Lemma 2.1, and it also relates the

correlation factor with the LWF prediction error as σ2
z = 1− ρ2. However,

this error only can be achieved if the observation vector contains the true

value of the last transmitted sample, i.e., xs(n− 1).

As we have previously detailed in the sensing phase, the observation

vector at the CDE (sensing node) should be identical to the one at the PD

(fusion center). Hence, it follows the structure introduced in (4.23). Using

this “incomplete” version of the observation vector, the MSE is degraded

as the sensor s does not transmit. This degradation is approximated by

(Lemma 2.5):

MSEt ≃ h
(
1− ρ2 + ρ2MSEt−1|∆t

)
, (4.47)

2for a more self-contained explanation of Chapter 4, we particularize some results

already introduced in Chapter 2 with the corresponding change of notation.
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where MSE0 = 0, t indicates the time index of the last transmitted sample,

∆t is the threshold value applied in the CDE at time t, and the conditional

function h(σ2|∆t) is introduced in Definition 2.7 as:

h(σ2|∆t) =
2√

2πσ2

(
−∆tσ

2 e
−∆

2
t

2σ2 +
1

2

√
2πσ6 erf

(
∆t√
2σ2

))
. (4.48)

Furthermore, following the results in Chapter 2, the value of ∆t can be

related to the compression rate γ = K/S as:

∆t =
√

2πMSEterf
−1(1− γ) (4.49)

It is easy to conclude that the distortion introduced by the pair CDE-

PD can be numerically approximated by

DPD ≃
∞∑

t=0

PtMSEt. (4.50)

where Pt = γ(1 − γ)t (see Lemma 2.3).

4.6 Design of the Parameters K and R: Error ver-

sus Energy Trade-off

The parameters K and R have a direct influence on the distortion level of

AF-CS decoder. The higher K, the lower the distortion of the PD. At the

same time, a sufficiently large number of R ensures zero distortion at the

CSD.

On the other hand, K and R also influence in terms of energy consump-

tion as we have seen previously.

One of the possible approaches to design the network is to add a new

degree of freedom. We define the utility function ν(β) as:

ν(β) = βDAF-CS + (1− β)E , (4.51)
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Table 4.1: Simulation Parameters

Parameter Value

Number of fusion nodes: F = 1

Number of sensing nodes: S = 200

Number of active sensors: K = [0, 200]

Number of relay nodes: R = [0, 200]

Cost factor: β = 0.5

Correlation model, [R]n,n+k = ρ|k|: ρ = 0.99

where E is the energy consumption modeled as the number of transmissions

normalized by the total number of sensors, i.e., E = K+R
S , since the most of

the energy consumption occurs when the sensor is in active mode [Rug07].

Therefore, the cost factor β controls the trade-off between energy consump-

tion and error. Hence, for a given β, the design problem corresponds to the

solution of K⋆ and R⋆ that minimizes P3 as:

P3 : minimize
K ,R

ν(β),

subject to CCS. (4.52)

As discussed before, the distortion of the AF-CS decoder can be modeled

as DAF-CS = DPD if CCS holds. Thus, this problem can be solved very fast

since DPD is only a function of K and one can solve P3 for K and then

compute the lowest value of R that satisfies CCS.

4.7 Numerical Results

In this section, we provide simulation results to show the performance of

our proposed energy-efficient scheme. Table 5.1 summarizes the parameters

that we consider in our simulations.
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Table 4.2: Results of the Utility Function ν(β)

K R

min{ν̃(β)} Ksim = 13 Rsim = 38

min{ν(β)} s.t. CCS K⋆ = 11 R⋆ = 43

min{ν(β)} s.t. C′CS K ′⋆ = 9 R′⋆ = 48

4.7.1 Results about the proposed CS design rules.

In order to study the accuracy of our analytical design model, we compare

the theoretical to the real (simulated) results. Fig. 4.10 shows the map

formed by the contour lines of the empirical cost function ν̃(β), defined as

ν̃(β) = βDsim
AF-CS + (1− β)E . (4.53)

It replaces the DAF-CS calculated using the analytical model in Section 4.5

by the empirical Dsim
AF-CS, defined next in (4.54). In this simulation, we set

β = 0.5 in order to prioritize equally the energy consumption and the

reconstruction error. Clearly, we can observe a cold region for low values

of K and R (i.e., the contour lines around the marker ×). This is a direct

consequence of the CS principia; the signal can be accurately recovered

from a small amount of the total data. On the contrary, for high values of

K and R, the proposed CS scheme performs inefficiently due to either a

wrong CS recovery or higher energy consumption, or due to both cases.

We have also plotted in Fig. 4.10 the feasible regions and the optimal

results for the minimization problem P3 for two different constraints for the

number of measurements R, i.e.: i) the proposed CCS : R > K +K log
(

S
K

)
,

and ii) the classical C′CS : R > K log S.

In Fig. 4.11 we evaluate the existing gap between the design parameters

obtained in (4.52) using both CCS and C′CS, i.e., K⋆ and R⋆, and K ′⋆ and

R′⋆, respectively, and the ones obtained a posteriori minimizing ν̃(β) by

simulation, i.e., Ksim and Rsim.
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Figure 4.10: Contour map of ν̃(β) for β = 0.5. Cold colors represent low

values and high values are hot-colored (in color printed version). For black

and white version, contours near the cross marker are showing the minimum

values. This figure has been averaged over 100 realizations. The areas under

the curves CCS and C′CS correspond to the feasible set of P3 subject to CCS

and C′CS respectively.
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Although C′CS guarantees an exact reconstruction of xK(n), the results

in Fig. 4.11 show that this constraint is too conservative. On the other hand,

we can observe that our proposed model using CCS performs much closer

to the real performance of the system. Indeed, it slightly upper-bounds

the actual results, giving a slightly conservative solution for the network

design parameters. However, the gap between R⋆ and Rsim is 9.8 sensors

on average (it means only a relative error of 4.9% over the total number

of sensors). The gap between K⋆ and Ksim is even smaller, 1.4 on average

(0.7%). On the other hand, using C′CS, the error increases up to 17.5 in

mean (8.75%) for R′⋆ and 12.35 (6%) for K ′⋆.

For low values of β, our approach prioritizes the energy savings decreas-

ing the number of active sensors. Although it provides less accuracy, this sit-

uation may be interesting for some cases in WSN monitoring, for instance:

temperature or humidity monitoring for long periods of time where changes

are not expected, or for periods of less interest, e.g., during the nights. On

the contrary, other situations would require higher accuracy levels in the

measurements at the cost of being more energy expensive. Using the pro-

posed approach, one can tune the parameter β in order to accommodate all

these situations. In the following subsections, we only consider the results

of P2 using C′CS.

4.7.2 Comparison with standard CS schemes available in

the WSN literature

We compare the performance of AF-CS scheme with three reference systems

in the WSN literature:

• Classical Approach (CA). The group of S sensing nodes transmit their

measurements directly to the fusion node each time slot.

• Compressive Wireless Sensing (CWS). Following the approach in

[Baj06], the group of S sensing nodes simultaneously transmit their
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readings multiplied previously by the corresponding element of Ψ to

the fusion center. This process should be repeated K times.

• Generalized Compressed Wireless Sensing (GCWS). It is based on

CWS but relaxing the assumption about the prior knowledge of the

transform coefficients in (4.5). Instead of sending the larger K trans-

formed coefficients, it produces R random measurements as in (4.11)

and (4.24) for the noiseless and the noisy case, respectively.

For a fair comparison, we add a space correlation (i.e., a correlation

among the measures of the sensors) equal to the applied time correlation in

Table 5.1, since algorithms of the type of the CWS scheme use this property

to compress the readings. In addition, the matrix Ψ is constructed following

a DCT basis and Φ is a gaussian random matrix (with i.i.d. entries). In

principle, this type of transform is suitable for temperature-like readings,

as it is showed in [Cho09].

We compare the following figures of merit:

1. Empirical distortion, Dsim
AF-CS, defined as:

Dsim
AF-CS = E[|x(n)− x̂(n)|2], (4.54)

averaged over 100 realizations and for different instances of Φ.

2. The relative energy consumption E measures the energy consump-

tion in comparison to a standard star-topology WSN (in terms of the

number of transmissions), so:

• E = 1 for the case of CA. All S sensors transmit their readings

to the fusion center.

• E = K for CWS. All S sensors transmit using the same re-

source to the fusion center to perform one projection. This pro-

cess should be repeated K times.
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• E = R for GCWS. All S sensors transmit using the same re-

source to the fusion center to perform one projection. This pro-

cess should be repeated R times.

• E =
(

R+K
S

)
for AF-CS. The subset of sensors K broadcast their

messages towards the R relays, involving K transmissions. In

addition, the relay nodes retransmit the computed R projections

to the fusion center.

3. The number of channel uses measures the number of the required

resources for each scheme, thus;

• CA permforms S channel uses assuming a given orthogonal MAC

policy.

• CWS requires K channel uses. This is only possible under the

assumption that all the nodes knows a priori the correct order

of the transformed coefficients.

• GCWS requires R channel uses.

• AF-CS uses one channel use in the sensing phase and R in the

relay phase, hence a total of R + 1 channel uses.

4. The empirical cost function ν̃(β) is an indicator of the trade-off be-

tween energy savings and accuracy. We have set β = 0.5 for a better

viewing of such a trade-off.

Fig. 4.12 summarizes the results for the configuration K⋆ = 11, R⋆ = 43

for β = 0.5 obtained in Fig. 4.10 for the evaluated topologies.

We consider the link among relays and the fusion center as error-free

because this link can include error correction protocols making the com-

munication more robust. However, this is not possible in the link between

active nodes and relays.

First, in terms of MSE, it is obvious that the best performance is ob-

tained with the CA, since there is no reconstruction error. Moreover, our
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Figure 4.12: Graphic bar comparison of the different figures of merit among

the studied CS schemes. Lower values are better.

proposed method performs slightly better than CWS (0.17 against 0.19,

or even 0.20). Although the DCT is very suitable for smooth signals (the

signal is already quite smooth since ρ = 0.99), for smoother signals the

performance of CWS improves.

The major difference among the schemes can be observed in terms of the

energy consumption. Our method performs the best compared to the other

evaluated techniques. One can see that CWS performs even worse than the

CA, and that the GCWS is extremely inefficient. The same conclusions can

be extracted from ν̃(β).

Regarding the number of channel uses, CWS performs the best with 11

channel uses. However, our proposed method performs similar to GCWS

with 44 in front of 43. Besides, a big improvement in comparison to CA

can be appraciated with 200 channel uses.
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4.7.3 Robustness against additive white Gaussian noise

Most of the wireless systems are contaminated by some amount of noise

in the communication link. In this section, we evaluate by simulation the

performance reduction due to the AWGN comparing our method with three

different instances of the CWS approach:

• Classic CWS: It is the case studied in the previous section where we

keep the K most important DCT coefficients of ωK = ΨKx(n), while

the rest are set to zero.

• Random CWS: The unfeasible assumption that the sensors know the

ordering of the K-largest DCT coefficients is relaxed, and thus, K

coefficients are randomly selected.

• Low CWS: The fusion center selects the first K DCT coefficients,

because typically smooth signals concentrate the most information in

low frequencies.

• GCWS: It is the case proposed in the previous sections where R linear

combinations of the transformed vector are selected, that is ΦΨx(n).

Simulation results in Fig. 4.13 show the performance of the methods

analyzed as a function of the SNR. For the AF-CS, the SNR is defined as

the ratio between the power of the useful signal ΦxK(n) and the power of

the noise w(n):

SNRAF-CS = 10 log

(‖ΦxK(n)‖2
‖w(n)‖2

)
. (4.55)

For the CWS, the SNR has de form,

SNR
{classic, random, low}
CWS = 10 log

(‖ωK(n)‖2
‖w(n)‖2

)
, (4.56)



4. Amplify-and-Forward Compressed Sensing as an
Energy-Efficient Solution 139

−15 −10 −5 0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

D
is

to
rt

io
n

SNR

 

 
Classic CWS
Random CWS
Low CWS
GCWS
AF−CS

Figure 4.13: Comparison between the MSE as a function of the SNR for

different instances of CWS, the GCWS, and AF-CS by solving P2 and P ′2,
respectively. The simulation setup is for K = 11 and R = 43 (results in

Table 4.2). The figure has been averaged over 100 realizations.
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where

SNRrandom
CWS ≤ SNRlow

CWS ≤ SNRclassic
CWS , (4.57)

holds for the same configuration setup. For the case of GCWS, the SNR is

approximated by,

SNRGCWS = 10 log

(‖ωK(n)‖2
‖w(n)‖2

)
≃ 10 log

(
R‖x(n)‖2
S‖w(n)‖2

)
. (4.58)

The physical intuition behind (4.57) and (4.58) is that the Classical

CWS selects the K larger coefficients. They concentrate the most power of

the transformed vector ω(n). Hence for a given configuration, the SNR is

higher than the other cases. Similarly, the Low CWS selects high power co-

efficients with higher probability than the Random CWS case. On the other

hand, GCWS measures R linear combinations among all the coefficients of

ω(n), thus the power is a fraction R/S of the total power of x(n).

First we study the impact of the selection of the DCT coefficients. It

is easy to conclude from the simulation results that a random selection of

the coefficients is not a good choice for the simulated scenario. Even for

high SNR levels, the distortion is not lower than 0.8. Otherwise, the low

CWS achieves a distortion performance quite close to the actual Classical

CWS performance. So, it can be a good alternative in order to relax the

assumption of the K largest coefficients.

Furthermore, we evaluate and compare the robustness against the noise

contamination. We observe that the Classical CWS, the Low CWS, and the

GCWS have similar performance while AF-CS outperforms clearly the rest

of the schemes in terms of the SNR. That is why for a given configuration,

the AF-CS spends much less energy per time slot. However, we can see that

the AF-CS scheme is more robust than the CWS-based schemes since the

slope of its curve decays more slowly.
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4.8 Conclusions

This chapter has introduced a distributed solution for a compressed sens-

ing implementation in a Wireless Sensor Network scenario, which is referred

to as Amplify-and-Forward Compressed Sensing (AF-CS). In particular, it

presents an energy-efficient design for a star-topology sensor network based

on an Amplify-and-Forward configuration. First, the sensing nodes exploit

inner time correlation in order to reduce the number of transmissions, only

keeping as active nodes the K sensors with the most unpredictable read-

ings. In such a way, we distributedly transform the vector of interest x(n) in

a K-sparse approximation xK(n). Second, the relay nodes receive random

projections formed from the linear combination of the K readings of the

active sensors, each one multiplied by its channel gain. In order to do so,

the active nodes transmit time-synchronized. Thus, the number of channel

uses may be drastically reduced. The relay nodes retransmit the received

random projections to the fusion center. Afterwards, the fusion center re-

constructs the original vector using an l1-norm minimization (widely used

in the compressed sensing framework).

Furthermore, we have described an analytical procedure in order to

characterize the distortion caused by both the linear prediction and the

compressed sensing reconstruction process. The obtained error model allows

us to dimension a priori the sensor network, i.e., the number of active

sensors K and the minimum number of relay nodes R that are needed in

order to guarantee the established performance requirements, which take

into account the energy consumption and the signal distortion. To do so, we

propose a design criteria based on a cost function that controls the existing

trade-off between the energy consumption and the signal distortion.

The simulation results (we show the case when the number of transmis-

sions and the distortion are equally weighted) indicate that our proposed

scheme drastically reduces the number of transmissions and the number

of channel uses compared to a classical transmission scheme. the AF-CS
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scheme also outperforms other distributed compressed-sensing-based tech-

niques for wireless sensor networks not only in terms of energy-efficiency

but also in terms of robustness agains noise.

In summary, the main contributions of our proposed scheme in front of

other CS techniques in the literature are listed as:

• AF-CS presents a practical and distributed scheme that does not re-

quire some unrealistic assumptions of other schemes in the literature.

• AF-CS focuses on the minimization of the number of transmissions

and not only the transmitted power. This approach is proved to be

way more realistic and more suitable for energy-constrained scenarios

as WSNs.

• AF-CS reduces drastically the number of channel uses in front of

classical schemes and at the same time maintain similar number of

channel uses than other distributed CS techniques.



Chapter 5

Amplify-and-Forward

Compressed Sensing as a

Physical-Layer Secrecy

Solution

5.1 Summary

Physical layer secrecy is an emerging security concept that achieves secure

data transmission in presence of eavesdropping nodes at the physical layer.

Results in compressed sensing show that this technique can be applied to

wireless sensor networks in order to reduce the power consumption and

the amount of channel uses. In this chapter we extend the results on the

amplify-and-forward compressed sensing scheme (AF-CS) with the study

of the physical layer secrecy performance for the case when malicious eaves-

dropping nodes are listening. In particular, we investigate the robustness

of the AF-CS scheme in presence of a group of coordinated eavesdrop-

ping nodes under the assumption that they have a corrupted channel state

information. In order to fulfill this assumption, we propose a channel esti-

143
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mation technique based on random pilots. This technique introduces extra

uncertainty only in the channel estimation of the eavesdroppers. Our sim-

ulation results evaluate the physical layer robustness as a function of the

total number of coordinated eavesdroppers and the level of channel esti-

mation distortion of the eavesdroppers. We demonstrate that this scheme

achieves perfect secrecy in presence of a small number of eavesdroppers

(the meaning of small will be defined later on). We also show that a very

high number of eavesdropping nodes are required to perfectly recover the

signal in comparison to other distributed compressed sensing schemes in

the literature.

5.2 Introduction

Wireless communications have been extended to virtually all the possible

scenarios and applications. Unfortunately, security risks are inherent in any

wireless transmission. This is mainly because the communication channel is

open to any intruder. Therefore, unauthorized entities may exploit this sce-

nario in order to obtain confidential information, to corrupt the transmitted

data, to degrade the network performance, etc.

For our convenience, we differentiate these attacks in two groups [Sri08]:

• Physical layer attacks. They benefit from the wireless connection na-

ture. Mainly, there exist two kind of attacks at physical layer: i) the

eavesdropping that refers to the existence of one/many unauthorized

receiver/s trying to extract information from the signal present in the

wireless channel, and ii) the jamming [Kas04, Sha05], that refers to

the existence of a malicious transmitter (or a group of them) that

intentionally degrades the intended communication by introducing

additional interference. Although both approaches are extremely in-

teresting, we focus our study on the robustness of the AF-CS scheme

against eavesdropping attacks.
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• Upper layer attacks. They are mostly related to the application layer

and hence they can be performed in both wired and wireless systems.

The analysis of these attacks is beyond the scope of this thesis.

5.2.1 Physical-Layer secrecy background

Physical-Layer Security proposes different mechanisms in order to protect

the wireless communication against mainly malicious jammers and/or unau-

thorized eavesdroppers. We address the latter case, and throughout this

document, this case is referred to as Physical-Layer (PHY-layer) secrecy.

Therefore, the basic aim of the PHY-layer secrecy is to allow reliable trans-

mission of confidential messages over a wireless link in presence of eaves-

droppers.

This issue has been traditionally addressed using spread spectrum tech-

niques such as Code Division Multiple Access (CDMA). Thanks to the

pseudorandom codes that can be seen as secret keys, the intended signal

is converted in a noise-like signal for any receiver that does not possess

the code. However, in general CDMA has the limitation of short keywords

(about 24 bits [Sri08]) and a persistent eavesdropper could get the key with

some little effort. That is why upper-layer cryptographic techniques have

been used so far. These techniques assume large keys that make the mes-

sage almost impossible to decipher. However, cryptographic mechanisms

have two main problems in the wireless scenario: first, the distribution of

the key over a public medium, and second, the high computational com-

plexity of the cryptographic mechanisms which goes beyond the hardware

and power limitations of some devices such as in Wireless Sensor Networks

(WSNs).

For these reasons and according to the proliferation of wireless commu-

nications, the interest on secrecy mechanisms at physical layer has dramat-

ically grown in the last decade. However, this concept is not new in the

literature and comes from 1949, when Shannon postulated the foundations
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of the modern cryptography in his seminal work [Sha49]. The proposed

scheme assumes that a transmitter sends encrypted information using a

non-reusable key over a noiseless channel and with the presence of an eaves-

dropper that has access of the transmit coding scheme and the transmitted

signal. In that paper, the author postulates the conditions for the code to

ensure perfect secrecy, term that is properly defined next. This work opened

a whole branch of key-based secrecy research.

Later in the seventies, Wyner opened a new branch of research about

keyless secrecy techniques in [Wyn75]. In particular, the author assumes

that the eavesdropper has the additional effect of the non-ideal wiretap

channel [Car77], which can be seen as a degraded version of the main chan-

nel. Under this assumption, it obtains the maximum rate over the main

channel while the amount of information is negligible in the wiretap chan-

nel. For the subsequent works, the interested reader may find an excellent

review about PHY-layer secrecy in [Muk10].

In order to quantify the level of secrecy of a proposed method, we can

define the following figures of merit.

• Mutual Information. This metric measures the mutual dependence

of two continuous random variables, the original message X and the

decoded message Y . It is mathematically formulated as

I(X;Y ) = H(X)−H(X|Y )

=

∫

Y

∫

X
f(x, y) log

(
f(x, y)

f(x)f(y)

)
dxdy. (5.1)

whereH(X) andH(X|Y ) denote the entropy of X and the conditional

entropy of X when Y is known. For the discrete random variables case,

the double integral is replaced by summations as

I(X;Y ) =
∑

y∈Y

∑

x∈X

f(x, y) log

(
f(x, y)

f(x)f(y)

)
. (5.2)



5. Amplify-and-Forward Compressed Sensing as a
Physical-Layer Secrecy Solution 147

For the case where X and Y to be independent, the mutual informa-

tion is I(X;Y ) = 0, which means perfect secrecy.

• Equivocation Rate [Mar11]. It is a measure of the amount of informa-

tion that the eavesdropper can get from the message and is defined

as

Re =
H(X|Y )

N
, (5.3)

where N is the codeword length. When Re = H(X)/N , then the

mutual information I(X;Y ) = 0, which means perfect secrecy.

• Wiretap Distortion. It measures the normalized squared error of the

eavesdropper decoded signal with respect to the intended one, i.e.,

De = E
[‖X − Y ‖2
‖X‖2

]
. (5.4)

• Other common metrics in the literature are Secrecy Rate [Ogg08], and

Secrecy Capacity [Sha07].

One of the common ways to protect the intended message against eaves-

dropping is to use opportunistic transmissions when the wiretap channel ex-

periments a fading [Gop08]. Doing so, one can obtain reliable transmissions

even when the eavesdropper has a better average SNR than the legitimate

receiver [Li07]. This approach can be extended to a general MIMO scenario,

where the transmitter adds a precoding matrix which is orthogonal to the

wiretap channel matrix. [Zha10].

These techniques require a perfect knowledge of the Eavesdropper Chan-

nel State Information (ECSI). On the other hand, relatively fewer studies

consider the case of a complete absence of the wiretap channel knowledge by

the intended pair transmitter-receiver. However, other works require only

the knowledge of the statistics of the wiretap channel [Neg05,Goe08]. They
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use an artificial noise injected to the signal in order to degrade the quality

of the wiretap channel. Moreover, the authors of [Muk10] show the poor

performance of waterfilling techniques when no information is available re-

garding the eavesdropper channel.

Many other studies regarding different network configurations are also

being actively studied, with new alternatives and different secrecy perfor-

mances. We do not review these other exciting activities, but focus our at-

tention on the secrecy schemes that we can build using Compressed Sensing

(CS) strategies.

5.2.2 Is the compressed sensing a good candidate to build

PHY-Layer secret strategies?

Compressed Sensing is a novel tool that allows us to sample the signals

below the Nyquist rate [Don06b], and it is specially powerful in scenarios

where the signals are sparse or compressible in a certain basis domain, as

in image signal processing or detection (the interested reader is encouraged

to visit the Rice’s CS database at dsp.rice.edu/cs). However, only a very

few works relates CS with secrecy. In fact, we review the most relevant con-

tributions up to date, that are collected in the following four conference pa-

pers: [Rac08], [May10] for the key-based secrecy case, and [Agr11], [Ree11]

for the keyless secrecy case.

The works in [Rac08], and [May10] consider the scenario in Fig 5.1, with

one source, one receiver, and one eavesdropper. The product of the trans-

form matrix and the sensing matrix, i.e., ΦΨ can be seen as an encryption

key, which is assumed to be unknown by the eavesdropper1.

Thus, the eavesdropper receives an exact copy of the transformed mea-

surements, i.e.,

y(n) = ΦΨx(n). (5.5)

1All the CS parameters are properly defined in the next section.
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Figure 5.1: Block diagram of the key-based PHY-Layer secrecy scenario.

Therefore, the paper studies how difficult it is for the eavesdropper to re-

cover x(n) from the measurements y(n) without the knowledge of the key

ΦΨ. Actually, it has been proved (see Lemma 1 in [Rac08]) that compressed

sensing encryption does not achieve perfect secrecy, i.e., I (x(n);y(n)) > 0.

The mutual information I (x(n);y(n)) = 0 would be zero if and only if x(n)

and y(n) are independent. However, since ΦΨ is lineal, x(n) = 0 implies

that y(n) = 0, and hence P (y(n) = 0|x(n) = 0) 6= P (y(n) = 0), meaning

statistical dependence.

Furthermore, the authors in [Rac08] introduce the concept of Computa-

tional Secrecy. It is applied to the cases when the encrypted data contains

complete information about the message but extracting this information

will be equivalent to solve a computational problem (NP-hard discovery).

According to that definition, they proved that the eavesdropper cannot de-

code the message using a different (wrong) key Φ′Ψ′ in the reconstruction

with probability one, for the case when ΦΨ and Φ′Ψ′ are independent.

The work in [May10] extends the results in [Rac08] and considers the

perfect secrecy problem using CS. They show that under certain conditions,

perfect secrecy via CS is achievable. The conditions are:
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1. The signal x(n) has a uniform distribution over a given alphabet.

2. The key ΦΨ is R × S, where R is the number of measurements, S

is the dimension of the signal x(n), and K is the number of non-

zero values (sparsity level) of x(n). Thus, the condition R > 2K is

imposed.

3. The matrix Φ holds Restricted Isometry Property (RIP) [Can06a]

(already introduced in eq. 4.33).

4. The number of source messages goes to infinity.

On the other hand, the works in [Agr11] and [Ree11] consider the sce-

nario in Fig. 5.2. This scenario is different than the one in Fig. 5.1 because

i) the CS encoding matrix ΦΨ is also known by the eavesdropper, and ii)

they consider the effect of the intended channel and the wiretap channel.

The signal model is:

y(n) = HΦΨx(n) + w(n) (5.6)

for the legitimate user, and

ỹ(n) = H̃ΦΨx(n) + w̃(n) (5.7)

for the eavesdropper, where H ∈ RS×S and H̃ ∈ RS×S are the intended

and the wiretap (flat-fading) channel matrices respectively, and w(n) and

w̃(n) model the Additive White Gaussian Noise (AWGN) of the wireless

channels, both distributed as N (0, σ2
w)

Differently from [Rac08], the authors in [Agr11] do not focus on neither

perfect secrecy nor computational secrecy. They introduce the Wolfowitz

secrecy, which states that the eavesdropper is unable to decode the message

with high probability, or equivalently, that the eavesdropper’s probability

of recovery can be made arbitrarily small. So, it lies between perfect secrecy

(from the information theory perspective) and computational secrecy.
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Figure 5.2: Block diagram of the keyless PHY-Layer secrecy scenario.

The authors demonstrated that it is possible to ensure Wolfowitz secrecy

if the average singular value of H̃ is less than a given constant multiple of

the minimum singular value of H.

In the same line, the authors in [Ree11] study secrecy capacity of the

wiretap channel in Fig. 5.2 when CS-like matrices are using to encode the

message.

5.2.3 Are the current CS schemes a good PHY-Layer se-

crecy solution for WSNs?

Following the references addressed above, CS can be seen as a good candi-

date in order to provide PHY-layer secrecy agains eavesdropping in addition

to the other CS benefits.

However, the scenario that they consider is a point-to-point communi-

cation that involves only a single transmitter that compresses the signal,

one receiver and one eavesdropper. Hence, this scenario follows a central-

ized approach that is not directly applicable to our scheme due to the

distributed nature of the WSN environment. These limitations have been

already addressed in Section 4.2 and can be summarized as follows:
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• If the signal ω(n) = Ψx(n) is not purely sparse, the CS encoding

cannot be directly applied in a distributed fashion, since the K-largest

coefficients of ω(n) have to be selected first.

• High energy consumption and channel uses per measurement are re-

quired.

In order to overcome these problems, a Compressed Wireless Sensing

(CWS)-like approaches can be proposed, as the one in [Baj06] or the Gen-

eralized CWS (GCWS) introduced in Section 4.2. Although they are de-

signed to face with energy-efficient communications, one can expect that

they could provide some PHY-layer secrecy as well.

In order to do so, two main issues have to be taken into account:

• Find a way to send the CS matrix (key) securely over the wireless

channel.

• Design a robust CS matrix that cannot be easily discovered from the

measurements. The authors in [And12] propose an algorithm that

allows to discover the CS matrix from only a few measurements when

the matrix has some structure, e.g., Fourier matrix, Discrete Cosine

Transform (DCT) matrix, Toeplitz matrix, etc.

In conclusion, the current PHY-Layer secure CS schemes are not suit-

able for distributed scenarios. Moreover, the current distributed CS tech-

niques are not designed to provide PHY-Layer secrecy. Hence, new CS

schemes are needed in order to implement secret systems in WSNs.

5.2.4 Our contribution

As a solution of the problems above, we propose the AF-CS as a distributed

and secret CS scheme. The AF-CS was first introduced in [BL11] and de-

tailed in [BL12b]. As we have already shown in Chapter 4, AF-CS is able
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to reduce the energy consumption using, at the same time, a very limited

number of channel uses and following the distributed approach of WSNs.

In this chapter, we address the secrecy level of AF-CS scheme in presence

of not only one but a group of coordinated and passive eavesdroppers.

In order to provide the so-called PHY-layer secrecy, the system takes

advantage of the linear combinations that are produced on the air thanks

to the Multiple Access Channel (MAC). This idea comes from the Net-

work Coding theory, where the messages are not treated as indivisible, but

instead, algebraic manipulations are allowed.

In fact, the MAC matrix is used as the CS matrix and it can be also seen

as the encryption key of the PHY-layer secrecy scheme following the key-

based approach in [Rac08] and [May10]. On the other hand, we also consider

the case that the eavesdroppers suffer from the effect of the wiretap channel

as in [Agr11], [Ree11], where we assume that the eavesdroppers only have

access to a degraded estimation of the wiretap channel matrix.

Actually, our approach cannot be classified as either a key-based or a

keyless approach. Instead, it follows a more general scheme that can be

seen as a combination of both approaches. The subsequent advantages and

contributions with respect to each of the approaches are listed next.

• Key-based PHY-secrecy. One of the challenges in key-based schemes is

to securely exchange the key matrices. In AF-CS, there is no exchange

of CS matrix since the sensing nodes do not need the matrix to encode

the message. Instead, the encoding is performed on the air. It reduces

the computational complexity derived from the encryption process.

Hence, it has a great impact on the design of the WSNs because the

sensing nodes are very hardware limited.

• Keyless PHY-secrecy. Although we consider that both the intended

and the wiretap communications are perturbed by the wireless chan-

nel as in the wiretap scenario, we do not assume any knowledge of the

wiretap channel by the intended nodes. As it is said in [Muk10], very
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few works in the literature consider the case of no ECSI at either the

transmitter or the intended receiver.

In order to relax the assumption that the eavesdroppers only have access

to a degraded estimation of the wiretap channel matrix, we also propose a

secure channel estimation technique based on random pilots that allows the

system to control the distortion introduced to the channel estimate of the

eavesdroppers and hence to guarantee a desired secrecy level. This strategy

is similar than the artificial noise injection proposed in [Neg05, Goe08],

but with the main difference that the noise is not used to encode or mask

the signal but only the pilots in the channel estimation. Doing so, the

energy consumption is reduced in comparison to the artificial noise injection

method.

Moreover, we compare our proposed AF-CS with CWS-like schemes

and we find out that AF-CS dramatically increases the protection agains

eavesdropping at physical layer. We also analyze the secrecy performance

in front of two different approaches: i) a conventional star-topology WSN

monitoring a physical scalar magnitude, e.g., temperature or humidity, and

ii) a detection scenario where only few sensors are active at a time, like in

a wildfire detection application.

5.2.5 Organization of the chapter

The rest of the chapter is organized as follows. In Section 5.3 we present the

problem statement and the assumptions considered throughout the chap-

ter. Section 5.4 details the secrecy properties of the AF-CS. The random

pilot technique is introduced in Section 5.5. Simulation results are given in

Section 5.6, and conclusions are drawn in Section 5.7.
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5.3 System Model and Assumptions

We consider a WSN configured in star-topology that monitors a given phys-

ical scalar magnitude (e.g., temperature, humidity) or detects a physical

event (e.g., wildfire). In particular we assume the scheme in Fig. 5.3, that

is:

• A set S of S sensing nodes connected (wirelessly) to one fusion center,

that acts as the intended receiver. Their measurements at discrete

time n are represented by x(n).

• A subset K(n) ⊆ S (of cardinality K) of active sensors that are

transmitting at a given time n. The transmitted vector is xK(n)

where only K positions are different to zero. The remaining sensors

in Q(n) = S \ K(n) (of cardinality Q) remain silent.

• A subset R ⊆ S (of cardinality R) acts as relay nodes in Amplify-

and-Forward (AF) mode.

• A set E (of cardinality E) of malicious and passive eavesdropping

nodes.

According to the CS nomenclature, K also corresponds to the number of

non-zero elements of the transmitted vector x(n) ∈ RS , and R is the number

of measurements used in the reconstruction process at the fusion center,

i.e., the number of rows of the sensing matrix, Φ ∈ RR×S , where typically

K < R < S. On the contrary, the eavesdroppers use E measurements to

try to decode the signal, i.e., the number of rows of the sensing matrix,

Φ̃ ∈ RE×S, used by the eavesdroppers.
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Figure 5.3: Multiple active channel scenario composed by K active sensing

nodes, R relay nodes, E eavesdropping nodes, and one fusion center.

We consider that the signals are space-time correlated and modeled as

an S-dimensional stochastic process, namely,

X = [x(1)x(2) . . . x(N) ] =




x1(1) x1(2) · · · x1(N)

x2(1) x2(2) · · · x2(N)
...

...
...

xS(1) xS(2) · · · xS(N)




, (5.8)
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where xs(n) denotes the measurement of the sth sensor at the sample time

n and N denotes the number of time samples in the observation window.

The main assumptions throughout this chapter are collected as follows:

5.3.1 Assumptions on the signal model

The assumption on the signal model are assumed to be the same as in

Chapter 4, and they are summarized as follows.

Let x(n) be a real and time-discrete auto-regressive model of order 1

(AR − 1) defined as:

x(n) = ρx(n− 1) + z(n), for n = 1, 2, . . . (5.9)

The auto-regression coefficient is denoted by ρ ∈ [0, 1] and it is assumed to

be constant during the transmission. The random process z(n) is a sequence

of Gaussian distributed and independent random variables with zero mean

and variance σ2
z .

The covariance matrix of an AR− 1 model follows

[R]n,n−i = ρi. (5.10)

Without loss of generality, we assume that σ2
x = 1 and that the noise

variance σ2
z = 1 − ρ2. We also assume that x(n) is a continuous-valued

process or, in other words, that the quantization error is assumed to be

zero.

5.3.2 Assumptions on the channel and the system model

The assumptions regarding the channel and the system model are also

similar to the ones in Chapter 4 with the main difference that we take here

into account also the presence of a set of eavesdroppers.

We assume perfect Channel State Information (CSI) at the fusion center

for all the links that go from any sensing node to a relay node in R. In par-

ticular, we assume that the channel matrix, also referred to as the sensing
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matrix Φ ∈ RR×S follows the Gaussian measurement ensemble, where:

[Φ]i,j ∼ N (0, R−1). (5.11)

The variance of the sensing matrix R−1 is a convention in the literature in

order to maintain the relation

E [‖Φx‖] = E [‖x‖] (5.12)

for an arbitrary vector x. This assumption is just for convenience and it

does not affect in the generality of the model since the channel gain can be

adjusted at the receiver if needed.

On the other side, we assume partial knowledge of the CSI at the eaves-

droppers for all the links that go from any sensing node to a relay node in

R. The wiretap channel matrix, also referred to as wiretap sensing matrix

Φ̃ ∈ RE×S follows the Gaussian measurement ensemble, where:

[Φ̃]i,j ∼ N (0, E−1). (5.13)

However, there is no mutual channel knowledge in the sense that the

eavesdroppers do not have access to Φ, and that the fusion center does not

need to know Φ̃. Therefore, the typical assumption of perfect or partial

ECSI at the intended receiver is relaxed.

Moreover, we do not assume anything regarding the links from R to the

fusion center other than these links are controlled by a certain orthogonal

policy that requires R channel uses for each sample time n in order to

transmit the data from the relays to the fusion center.

5.4 Eavesdropping the Amplify-and-Forward

Compressed Sensing Scheme

In this chapter, we consider the AF-CS algorithm already presented in

Chapter 4, which is summarized in the following three phases:
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1. Sensing phase. It proposes a distributed method in order to select

the K most relevant readings of the transmitted vector x(n) ∈ RS

based on the inner time correlation. These readings are collected in

a K-sparse vector, xK(n) ∈ RK and broadcasted time-synchronized

using uncoded transmissions to the relay nodes.

2. Projection phase. Each relay has received linear combinations of

xK(n) thanks to the MAC, modeled by the sensing matrix, Φ. Then,

it relays them in AF mode to the fusion center using a given orthog-

onal transmission (e.g., time multiplexing).

3. Reconstruction phase. The fusion center collects the projections from

all the relays in the vector y(n) and solves the l1-norm minimization

program P1 [Don06b],

P1 : minimize
x̂K(n)∈RS

‖x̂K(n)‖l1

subject to y(n) = Φx̂K(n) (5.14)

in order to obtain an accurate reconstruction of xK(n), named x̂K(n),

for the noiseless case. For the noisy case, the fusion center solves

P2 : minimize
x̂K (n)∈RS

‖x̂(n)‖l1

subject to ‖y(n) −Φx̂(n)‖2 < ε, (5.15)

for ε as an upper bound on the magnitude of the noise. Afterwards,

the fusion center completes the remaining Q entries of the vector x(n)

using a linear prediction in order to get the full x̂(n).

Next, we assess the PHY-layer secrecy performance of the sensing and

projection phases. Note that we do not study the eavesdropping in the

reconstruction phase because wireless transmissions are involved only in

the first two phases.
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5.4.1 Eavesdropping during the sensing phase

During this phase, all the sensors in K(n) broadcast their readings, and

hence the relay sensors receive linear combinations due to the nature of the

MAC, namely,

y(n) = ΦxK(n) + w(n), (5.16)

where the vector y(n) ∈ RR stacks all the received signals of the nodes in

R, the sensing matrix Φ models the channel between S and R as a random

matrix with i.i.d. Gaussian entries with zero mean and variance σ2
Φ

= R−1.

Finally, w(n) denotes white Gaussian noise with zero mean and variance

σ2
w.

Similarly to (5.16), the received signal at the eavesdroppers is:

ỹ(n) = Φ̃xK(n) + w̃(n). (5.17)

where ỹ(n) ∈ RE stacks the signals received by the nodes in E , and Φ̃ mod-

els the channel between S and E as a random matrix with i.i.d. Gaussian

entries with zero mean and variance σ2
Φ

= E−1 and w̃(n) denotes white

Gaussian noise with zero mean and variance σ2
w.

For the sake of simplicity and without loss of generality, we focus on the

noiseless problem. Moreover, we will address two different cases: i) PHY-

Layer secrecy with perfect CSI at the eavesdroppers, and ii) PHY-Layer

secrecy with imperfect CSI.

5.4.1.1 Eavesdroppers with perfect CSI

Here, we assume that the eavesdroppers have perfect knowledge of the

wiretap sensing matrix Φ̃. Then, the eavesdroppers would have to jointly
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solve the following problem:

P1e : minimize
x̂K(n)∈RS

‖x̂K(n)‖l1

subject to ỹ(n) = Φ̃x̂K(n). (5.18)

This problem is the classical CS decoder, CSD. The most common way to

address its performance is by means of the Restricted Isometric Property

(RIP), which is detailed in Definition 4.33. We reproduce it here using the

new nomenclature for the eavesdropper set as:

Definition 5.1 [Can05]: A matrix Φ̃ satisfies the RIP of order K with

restricted isometry constant δK ∈ (0, 1) if

(1− δK)‖x‖22 ≤ ‖Φ̃x‖22 ≤ (1 + δK)‖x‖22, (5.19)

where Φ̃K ∈ RE×K is formed by retaining any set of K or less columns

from Φ̃, x is any K-sparse vector of the appropriate size, and δK is the

smallest number (and not too close to one) that holds the RIP condition for

each integer K = 1, 2, ....

Most of the CS literature agree that if the elements of the matrix Φ̃ are

selected from an i.i.d. Gaussian measurement ensemble (as in 5.13), then

Φ̃ will satisfy the RIP with overwhelming probability for E ≥ C0K log S

[Can08a] or even E ≥ C0K log(S/K) [Can08b,Don06b], where C0 is some

positive constant. In addition to this already-existing results in the litera-

ture, we have incorporated a new relation, which is

CCS : E < K + K log

(
S

K

)
(5.20)

that fits better with the experimental results as we show in Chapter 4.

Therefore, we will use CCS as the CS condition in order to determine if

xK(n) can be recovered from ỹ(n) with high probability or not.
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Although it is very difficult to predict what happens when E ∼ K +

K log(S/K) [Can11], we will differentiate three possible cases: i) low values

of E, i.e., E ≤ K, ii) moderate values of E, i.e., K < E ≤ K +K log(S/K),

and iii) high values of E, i.e., E > K +log(S/K), or what is the same, that

E satisfies CCS.

For low values of E. We address the PHY-layer secrecy of the sensing

phase with E ≤ K throughout the following lemmas and theorems.

Lemma 5.1 Let X denote the solution set of the eavesdroppers that is

composed of all the possible recovered vectors at the eavesdropper’s decoder.

Hence, the cardinality of X is at least

M =

(
S

E

)
=

S!

(S − E)!E!
, (5.21)

which means that the solution is not unique.

Proof For simplicity, we use the original (but computationally intractable)

decoder P0e instead of its convex relaxation P1e [Don06b], which is defined

as,

P0e : minimize
x̂K(n)∈RS

‖x̂K(n)‖0

subject to ỹ(n) = Φ̃x̂K(n), (5.22)

where ‖ · ‖0 denotes the l0 (pseudo)norm, defined as the sparsity of the

signal.

In order to show that the solution is not unique, it is enough to prove

that there exists at least one E-sparse vector xE with loaded entries ac-

cording to any subset of indices ΩE ⊂ S of cardinality E. Therefore, let the

matrix Φ̃ΩE
denote a E×E measurement matrix obtained by selecting the

E columns of Φ̃ corresponding to the indices ΩE and let the E-dimensional

vector xΩE
collect the E loaded entries of xE. It is verified that

y(n) = Φ̃ΩE
xΩE

(5.23)
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for any ΩE. Since the matrix Φ̃ΩE
is full rank with overwhelming probabil-

ity, a vector xΩE
= Φ̃−1

ΩE
ỹ(n) exists for any ΩE.

Since a number of

M =

(
S

E

)
=

S!

(S − E)!E!
, (5.24)

different index sets of E elements over the set S can be generated, the proof

of Lemma 5.1 is concluded.

Theorem 5.1 For a given y(n) and Φ, let X denote the set of E-sparse

vectors x̂ that are solution of P0e in (5.22) and with cardinality M . Let X ′

denote the set of K-sparse vectors x′ with cardinality M ′ that are solution

of

y(n) = Φx′. (5.25)

Therefore, if E < K, the mutual information between any recovered vector

x̂ and the original vector xK(n) is zero, which means perfect secrecy.

Proof We focus on P0e because, if perfect secrecy holds for P0e, automat-

ically it does for P1e as well. In order to compute the mutual information

between x̂ and x′ we have

I(x̂;x′) = H(x̂)−H(x̂|x′)

= H(x̂)−
∑

x∈X ′

H(x̂|x′ = x)P (x′ = x)

= H(x̂)−H(x̂)
∑

x∈X ′

P (x′ = x) = 0. (5.26)

Note that the conditioned entropy H(x̂|x′ = x) is actually H(x̂) since x is

not a solution of P0e and hence it does not modify X .

The concept of Theorem 5.1 is graphically represented in Fig. 5.4, where

the domains of xK(n) and x̂K(n) are disjointed. It is also shown that xK(n)

cannot be recovered in any case from x̂.
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Theorem 5.2 For the case E = K, the mutual information between a

recovered vector x̂ and the original vector xK(n) is also zero, which means

perfect secrecy.

Proof This case slightly differs from the case where E < K since X = X ′

and the original vector x(n) is a possible solution of P0e. Even knowing that

xK(n) is inside the solution set, the decoder is not able to discriminate the

correct solution among the others since all possible K-sparse (or E-sparse)

x̂ minimize P0e. This fact is similar to the realization of the roll of a dice,

where you know that the solution is one of the six possibilities, but all

solutions are equally possible. Knowing that, H(x̂|x) = H(x̂). Hence, the

mutual information equals zero.

Although for both cases E < K and E = K the system achieves perfect

secrecy, some differences exist in the reconstruction probability.

Lemma 5.2 If E < K, the eavesdroppers will recover the signal xK(n)

with zero probability, which is defined as

P (x̂K(n) = xK(n)) = 0. (5.27)

Proof The rank of Φ̃ is rank(Φ) = E with overwhelming probability

[Fen07], and thus the sparsity on the reconstruction of xK(n) cannot be

higher than an E-sparse signal (instead of K-sparse) [Rac08].

Lemma 5.3 If E = K, the eavesdroppers will recover the original vector

xK(n) with non-zero probability. However, it is asymptotically zero in S.

Proof Since for the case E = K, the vector xK(n) is in the solution set X
(with cardinality M), there is a probability of selecting it among all possible

solutions. Without loss of generality, we assume that the output of the P0e

is uniformly distributed among X . Hence,

P (xK(n) = x) =
1

M
, (5.28)
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where M can be computed in the same way that in (5.21). Thus,

P (xK(n) = x) =
(S −K)!K!

S!
. (5.29)

In the asymptotic regime we have

lim
S→∞

K!(S −K)!

S!
= 0. (5.30)

This asymptotic result make sense in real scenarios since S ≫ K is typically

assumed in CS schemes. In Fig 5.5, the probability of recovery is plotted

for different values of K. This probability decreases quickly as S increases.

Actually, even for small ratios of S/K the probability of recovery is almost

negligible.

For moderate values of E, perfect secrecy cannot be guaranteed for the

case E > K with perfect CSI.

Theorem 5.3 For a given y(n) and Φ, let X denote the set of vectors x′

that are solution of

y(n) = Φx′. (5.31)

Therefore, if E > K, the mutual information between the recovered vector x̂

and the original vector xK(n) is not zero, which means that perfect secrecy

is not achieved.
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xK(n)

x̂

ỹ(n)

Φ̃

Φ̃ X

X
′

Figure 5.4: Graphical representation of the PHY-layer secrecy for the E <

K case. Each circle represents the set of the possible values of each vector.

The matrix Φ̃ maps any xK(n) onto a point in the corresponding set of

ỹ(n). Then, the decoder maps back ỹ(n) onto a set of the possible values

of x̂K(n), which is a disjoint set with the one that corresponds to xK(n).

Finally, the decoder only have the information to project the solution from

the set corresponding to x̂K(n) to the one of ỹ(n) and viceversa. Since they

are disjointed, the recovery of xK(n) is impossible.
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Figure 5.5: Probability of recovery for the case E = K as a function of S.
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Proof The proof follows the same approach than Theorem 5.1. Thus,

I(x̂;x′) = H(x̂)−H(x̂|x′)

= H(x̂)−
∑

x∈X
H(x̂|x′ = x)P (x′ = x)

= H(x̂)−
∑

x∈X ,x6=xK(n)

H(x̂|x′ = x)P (x′ = x)

−H(x̂|x′ = xK(n))P (x′ = xK(n))

(i)
= H(x̂)−

∑

x∈X ,x6=xK(n)

H(x̂|x′ = x)P (x′ = x)

(ii)

≥ H(x̂)−H(x̂)
∑

x∈X ,x6=xK(n)

P (x′ = x) > 0. (5.32)

where:

(i) is because xK(n) is the unique K-sparse solution of P0e. Then,

H(x̂|x′ = xK(n)) = 0 because if the decoder knows xK(n), the solu-

tion set is reduced to a set of cardinality one.

(ii) is because H(x̂|x′ = x) ≤ H(x̂), and
∑

x∈X ,x6=xK(n) P (x′ = x) < 1

since xK(n) is in the set X .

However, the eavesdroppers are only able to successfully decode the

signal with low probability. This probability increases with E. Even for

the cases that the vector xK(n) is successfully decoded, it only contains a

small amount of the sensor readings since the condition S ≫ K holds. The

remaining Q measurements have to be estimated by a LWF predictor at

the eavesdropper’s side. Therefore, the observation vector used in the LWF

for the eavesdroppers will contain, with high probability, erroneous samples

that come from the bad decoding of previous samples and degenerates the

estimation of the remaining Q samples of x(n).
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For high values of E, if the condition CCS is satisfied, the eavesdropper

set E can decode the signal with high probability. Moreover, the eaves-

droppers obtain an accurate version of the observation vector for the LWF

prediction. In this situation, the eavesdroppers obtain a similar performance

as the fusion center.

5.4.1.2 Eavesdroppers with corrupted CSI

Here, we assume that the eavesdroppers have imperfect knowledge of the

wiretap sensing matrix Φ̃. Let Φ̂ denote corrupted wiretap sensing matrix,

which is modeled as

Φ̂ = Φ̃ + Σ, (5.33)

where Σ ∈ RE×S is a random matrix with i.i.d. Gaussian entries with zero

mean and variance σ2
Σ

that models the errors in the channel estimation.

This perturbation in the sensing matrix results in a multiplicative noise,

which is more difficult to analyze than the additive noise (as in Chapter 4)

since it is correlated with the signal of interest [Her10].

Then, the coordinated eavesdroppers would have to jointly solve the

following problem:

P ′1e : minimize
x̂K(n)∈RS

‖x̂K(n)‖l1

subject to ‖Φ̂x̂K(n)‖2 < ε. (5.34)

for some ε > 0.

Some recent results in the literature study similar problems. The work

in [Yan11] analyzes the effect of a structured perturbation in the sensing

matrix. In particular, the model under study is

Φ̂ = Φ + B∆ (5.35)
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where B ∈ RR×S is known a priori and ∆ is a diagonal matrix of uni-

formly distributed and bounded entries. The authors in [Her10] deals with

more general perturbations in the sensing matrix and follows the model in

(5.33). Their studies are focused on small perturbations, understanding for

small perturbations when ‖Σ‖/‖Φ̃‖ < 1. Under such condition, they show

that an upperbound for the error at the receiver grows linearly with the

perturbation level.

For low values of E, the same results as in the perfect CSI case also

hold, which means perfect secrecy.

For moderate and high values of E, the condition CCS is not valid any-

more and we cannot use it as an orientative bound to decide if the signal can

be decoded with low or high probability. Now, it depends also on the power

of the perturbation introduced in the estimation process. In Section 5.5, we

introduce a new technique in order to control the amount of distortion in

the estimation of the wiretap channel matrix by the eavesdroppers. Here,

a convenient metric to be studied in the results section is how the channel

perturbation affects to the relative wiretap distortion at the eavesdroppers.

5.4.2 Eavesdropping during the projection phase

This phase is very robust against malicious and passive eavesdropping.

Here, the derived results are not dependent on the number of eavesdrop-

pers, since each eavesdropper in E has full access to the signal sent by the

relays, i.e., y(n), to the fusion center (assuming that y(n) is not encrypted)

as it is represented in Fig. 5.3.

This problem is similar to the key-based PHY-layer secrecy works in

[Rac08] and [May10]. However, the main difference is that the sensing nodes

do not encrypt the signal with any key. Instead, they send uncoded signals

and the MAC implicitly performs random linear combinations modeled

according to the matrices Φ and Φ̃.

Actually, this key-less coding mechanism is not new and comes from
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the well-known discipline of Network Coding [Yeu05], where the signals

from different sources are not handled individually and algebraic operations

among them are allowed instead. So, sending linear combinations of the

signals offers a natural way of protection [Fra07].

For perfect secrecy, it is enough to proof that if the eavesdroppers try

to reconstruct the signal with a wrong sensing matrix Φ′ (understanding

’wrong’ as independent to Φ), the eavesdroppers will recover a R-sparse

vector, instead of the K-sparse original one.

Lemma 5.4 Let Φ and Φ′ be two R×S independent matrices following the

Gaussian measurement ensemble. For a K-sparse vector xK(n), let y(n) =

ΦxK(n). Then, all x̂K(n) that satisfy y(n) = Φx̂K(n) are E-sparse with

probability one.

Proof The proof is the same than the one of Theorem 1 in [Rac08].

Remark 5.1 The main difference with [Rac08] is that they obtained com-

putational secrecy since they assume a finite set of key matrices. Hence,

an eavesdropper with unlimited computational complexity may try among

all the possibilities until the recovery was K-sparse. On the contrary, we

can ensure perfect secrecy because there are infinite number of i.i.d. pos-

sible matrices. Hence, the eavesdroppers have zero probability to guess the

correct one if no further information is provided.

5.5 Channel estimation based on random pilots

In this section, we evaluate the assumption about the imperfect CSI at

the eavesdroppers. The corrupted estimation of the wiretap sensing matrix

decreases the eavesdropping capabilities during the sensing phase. Thus, we

propose a novel technique to support this assumption.

Although one may think that even for the case of perfect channel esti-

mation, the required E may become unpractical for relatively high values of
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K, one can design the system in order to protect even more the information

against passive eavesdropping.

We propose a novel technique that allows the sensing nodes to corrupt

the channel estimation of the eavesdroppers without decreasing their own

estimation. In particular we propose a training phase where each sensing

node sends N random pilots with amplitude A + s(n), where A is a known

and constant value and s(n) is a (pseudo)random sequence distributed as

s(n) ∼ N(0, σ2
s ), which has been previously agreed. The pilot signal from

sth sensing node at the rth relay is:

pr,s(n) = (A + s(n))[Φ]r,s + [w(n)]r. (5.36)

On the other hand, the eth eavesdropper will receive the pilot signal

from the sth sensing node as

pe,s(n) = (A + s(n))[Φ̃]e,s + [w̃(n)]e. (5.37)

We assume the general scheme that the eavesdroppers do not have com-

plete information of the pilot amplitudes. Instead, they only know partial

information of the pilot sequence. The part that they know is A, while it is

assumed that the eavesdroppers do not have access to s(n).

5.5.1 Performance of the random pilots technique

The performance of the random pilots technique is summarized in the fol-

lowing two lemmas.

Lemma 5.5 Let [Φ̂]r,s be the estimate of the channel coefficient between sth

sensing node and rth relay. Then, the fusion center can achieve E[
∣∣[Φ]r,s−

[Φ̂]r,s
∣∣2 < ε for an arbitrary small ε > 0.

Proof For notation within this lemma, let the N dimensional vector p rep-

resent the collected N pilots samples pr,s(n), φ represent [Φ]r,s, φ̂ represent
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[Φ̂]r,s and w(n) is [w(n)]r. To actually find the Maximum Likelihood Esti-

mation (MLE) of φ, we first write the pdf of p as a function of φ as [Kay93]

f(p;φ) =
1

(2πσ2
w)

N

2

exp

[
− 1

2σ2
w

N∑

n=1

([p]n − (A + s(n))φ)2

]
. (5.38)

The log-likelihood function of φ becomes as

ln f(p;φ) = −N

2
(2πσ2

w)− 1

2σ2
w

N∑

n=1

([p]n − (A + s(n))φ)2. (5.39)

After some simple algebra and taking its derivative produces

∂ ln f(p;φ)

∂φ
=

1

σ2
w

N∑

n=1

[p]n(A + s(n))− φ

σ2
w

N∑

n=1

(A + s(n))2, (5.40)

and setting it equal to zero and solving for φ̂ we obtain the MLE

φ̂ =

∑N
n=1[p]n(A + s(n))
∑N

n=1(A + s(n))2
. (5.41)

The MSE of the MLE can be computed as

E
[
(φ− φ̂)2

]
= E



(

φ−
∑N

n=1[p]n(A + s(n))
∑N

n=1(A + s(n))2

)2

 (5.42)

If [p]n is replaced by (A + s(n))φ + w(n), we obtain

E
[
(φ− φ̂)2

]
= E



(∑N

n=1 w(n)(A + s(n))
∑N

n=1(A + s(n))2

)2

 , (5.43)

Since the term
∑N

n=1(A + s(n))2 is known by the intended receivers, we

can replace it by its equivalent mean power N(A2 + σ2
s). Hence

E
[
(φ− φ̂)2

]
=

1

N2(A2 + σ2
s)

2
E



(

N∑

n=1

w(n)(A + s(n))

)2

 ,(5.44)
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and since w(n) is independent of A + s(n) we can write

E
[
(φ− φ̂)2

]
=

1

N2(A2 + σ2
s)

2
E

[
N∑

n=1

w(n)2(A + s(n))2

]
,

=
σ2
w

N(A2 + σ2
s)

. (5.45)

So the system may decrease the estimation error as much as desired by

increasing the power of the pilots A2 + σ2
s and/or the number of pilots

N (with the subsequent energy and signaling costs). Therefore, we assume

perfect channel state information at the relays.

Similarly, the eavesdroppers can estimate the channel coefficient [Φ̃]e,s
with the difference that we assume s(n) only known by the intended nodes

but not by the eavesdropping nodes.

Lemma 5.6 Let [ ˆ̃Φ]e,s be the estimate of the channel coefficient between

sth sensing node and eth eavesdropper. Then, the eavesdropper can achieve

a mean square error E[
∣∣[Φ]r,s − [Φ̂]r,s

∣∣2 > ε where ε > 0 is a nonzero error

floor. Furthermore, ε is a function of σ2
s .

Proof For notation within this lemma, let the N dimensional vector p rep-

resent the collected N pilots samples pe,s(n), φ represent [Φ̂]e,s, φ̂ represent

[̂̃Φ]e,s and w(n) is [w(n)]e.

Since s(n) is unknown and treated as multiplicative noise by the eaves-

droppers, the result signal model at the eth eavesdropper is:

[p]n = (A + s(n))φ + w(n) = Aφ + s(n)φ + w(n), (5.46)

where the term Aφ can be seen as the desired signal and s(n)φ + w(n)

as the noise term with variance σ2
t = φ2σ2

s + σ2
w, or for the general case

(and with some abuse of notation) for any entry of the wiretap matrix Φ̃,

σ2
t = σ2

Φ
σ2

s + σ2
w.



5. Amplify-and-Forward Compressed Sensing as a
Physical-Layer Secrecy Solution 175

To actually find the Maximum Likelihood Estimation (MLE) of φ, we

first write the pdf of p as a function of φ as

f(p;φ) =
1

(2πσ2
t )

N

2

exp

[
− 1

2σ2
t

N∑

n=1

([p]n −Aφ)2

]
. (5.47)

The log-likelihood function of φ becomes as

ln f(p;φ) = −N

2
(2πσ2

t )− 1

2σ2
t

N∑

n=1

([p]n −Aφ)2,

= −N

2
(2πσ2

t )− 1

2σ2
t

(
N∑

n=1

[p]2n − 2Aφ
N∑

n=1

[p]n + NA2φ2

)
.(5.48)

Taking its derivative we get

∂ ln f(p;φ)

∂φ
= − 1

2σ2
t

(
−2A

N∑

n=1

[p]n + 2NA2φ

)
, (5.49)

and setting it equal to zero and solving for φ̂ we obtain the MLE

φ̂ =

∑N
n=1[p]n
NA

. (5.50)

The MSE of the MLE can be computed as

E
[
(φ− φ̂)2

]
= E



(

φ−
∑N

n=1[p]n
NA

)2

 (5.51)



176 5.5. Channel estimation based on random pilots

Replacing [p]n by (A + s(n))φ + w(n), we obtain

E
[
(φ− φ̂)2

]
= E



(
−
∑N

n=1(A + s(n))φ + w(n)

NA

)2

 ,

= E



(∑N

n=1 s(n)φ + w(n)

NA

)2

 ,

=
1

N2A2
E



(

N∑

n=1

s(n)φ + w(n)

)2



=
Nσ2

t

N2A2
=

σ2
sσ

2
Φ

+ σ2
w

NA2
. (5.52)

Clearly, the introduction of the pseudorandom sequence s(n) achieves

a double improvement. On the one hand, it reduces the channel estimation

error at the intended nodes, which is an expected consequence since the

system is spending more power in pilots. On the other hand, it introduces

additional error in the estimation of the eavesdroppers.

We evaluate the performance of the proposed technique in the following

two experiments.

Experiment 5.1 We have simulated the channel estimation for N =

[1, 150], A = 5, σ2
w = 0.1, with target values [Φ]r,s = [Φ̃]e,s = 1. In our

experiment, we have generated s(n) as a Gaussian sequence of zero mean

and variance σ2
s = 10 (for a ratio σ2

s/σ
2
Φ

= 10).

From Experiment 5.1, we have plotted the results of channel estimation

for both the MLE of the intended receiver in (5.41) and the MLE of the

eavesdropper in (5.50). We can graphically see the difference in terms of

performance of both estimators even for high values of N (in favor of (5.41)).

As the intended receiver achieves good accuracy for values of N close to

20 (or even lower), the eavesdroppers require much higher values of N to

achieve similar accuracies.
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Experiment 5.2 The setup is the same as in Experiment 5.1 with the dif-

ference that in this case, we set N = 50 and we evaluate the performance in

terms of quadratic error as a function of the ratio σ2
s/σ

2
Φ
. We also compare

the results with the analytical expressions of (5.42) and (5.51).

The results of Experiment 5.2 have been plotted in Fig. 5.7. On the one

hand we observe that the fitting of the analytical MSE estimator (dashed

line) with the experimental squared error (solid line) is sharp.

Furthermore, we can also observe that if we increase the power of the

sequence s(n), we obtain the announced double improvement, that is, in-

creasing the MSE at the eavesdroppers while the MSE at the relays is

decreased.

5.5.2 Secrecy of the random pilots sequence

In this subsection we clarify the assumption that the sequence s(n) is only

known by the intended nodes and not by the eavesdroppers.

In principle, this assumption may seem to be hard in the sense that if we

assume that the sequence is used in a secure scenario, it has to be previously

sent using any other technique. In other words, it looks like a circular

argument where in order to send information securely, it is assumed some

prior information (in this case s(n)) that has been already sent securely.

However, the sensing nodes and the fusion center can use “off air” tech-

niques in order to agree with a given sequence s(n). For example, each

sensor can locally generate a sequence s(n) (which is different for each

sensing node) in an efficient manner by using the same seed of a pseudo-

random generator. This seed may be a function of the network identifier

(or any other parameter related to the management of the network or to

the hardware of the device) that is unknown by any alien node.

Hence, since there is no transmission over the communication channel,

i.e. the airwave, the pseudorandom sequence is protected against eavesdrop-

ping.
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and the eavesdropping nodes (with marker 2) as a function of the number

of pilots N . The actual value of the channel is equal in both cases and is

plotted in dashed line.



5. Amplify-and-Forward Compressed Sensing as a
Physical-Layer Secrecy Solution 179

−10 −5 0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ratio, σ 2
s/σ 2

Φ
(dB )

M
S

E

theo MSE @ relay
theo MSE @ eavesdropper
exp MSE @ relay
exp MSE @ eavesdropper

Figure 5.7: Comparison of the experimental results of the MSE for both

MLEs in (5.41) and (5.50). They are also compared with the analytical ex-

pressions in (5.42) and (5.51) respectively. The values for the experimental

results have been averaged 20 times.



180 5.6. Numerical Results

This technique is not new and it has been used for different purposes in

the literature, e.g., in [Baj06] it is used to generate the same sensing matrix

in a distributed way for the transmitters and the receiver, and in [Rac08],

it is used to create a random key which is know by the transmitter and the

receiver but not by any intruder.

5.6 Numerical Results

In this section, we first summarize the theoretical results obtained in Sec-

tion 5.4. Then, we evaluate the PHY-layer secrecy performance of the AF-

CS throughout simulation.

Table 5.1 summarizes the parameters that we consider in our simula-

tions.

Table 5.1: Simulation Parameters

Parameter Value

Number of fusion nodes: F = 1

Number of sensing nodes: S = 200

Number of active sensors: K = 10

Number of relay nodes: R = 60

Number of eavesdropping nodes: E = [0, 110]

Compressed Sensing Condition: CCS : E > 40

We also define the following figures of merit.

• Channel estimation distortion, D. This metric measures the ratio be-

tween the power of the estimation degradation and the variance of

the channel coefficients, namely,

D = 10 log

(
σ2
Σ

σ2
Φ

)
= 10 log

(
σ2
Φ

σ2
s + σ2

w

σ2
Φ

NA2

)
. (5.53)
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• Packet Error Rate (PER). It measures the reconstruction fail-

ure rate of xK(n), i.e., PER = P (x̂K(n) 6= xK(n)). For prac-

tical reasons, we consider that two vectors are different when

‖xK(n)− x̂K(n)‖2/‖xK(n)‖2 > 0.01.

• Probability of detection, PoD = P (K(n) ⊆ K̂(n)), where K̂(n) is the

estimation of the active sensors set of xK(n). In other words, it mea-

sures the probability that E succeeds in detecting the active nodes.

• Probability of False Alarm, PFA = P (Q(n) * Q̂(n)), where Q̂(n) is

the estimation of the silent sensors subset. It measures the probability

that E fails in detecting the silent sensors.

5.6.1 Summary of the Theoretical Results

Table 5.2: Summary of Theoretical Results

perfect CSI at E corrupted CSI at E

Sensing Phase

E ≤ K Perfect secrecy Perfect secrecy

K < E ≤ CCS Low PoR Low PoR

E > CCS High PoR Low PoR

Projection Phase Perfect secrecy

Table 5.2 summarizes the PHY-secrecy performance for each of the

possible cases. We have divided the analysis of the sensing phase in four

cases depending on the number of eavesdroppers.

For low values of E (i.e., E ≤ K), perfect secrecy can be guaranteed

even in the case that the eavesdroppers have perfect channel estimation and

zero probability of recovery. For the particular case E = K, the probability

of recovery is not zero but asymptotically zero in S.



182 5.6. Numerical Results

For moderate values of E (i.e., K < E ≤ CCS), the eavesdroppers can-

not recover xK(n) with high probability getting high wiretap distortion.

However, perfect secrecy cannot be guaranteed for that configuration.

Only for high values of E (i.e., E > CCS) and with perfect CSI, the

eavesdroppers can decode the signal xK(n) with high probability. However,

thanks to the introduction of the random pilots technique, the intended

nodes can corrupt the CSI of the eavesdroppers and make the wiretap

distortion grow linearly with the introduced noise power.

The projection phase achieves perfect secrecy in any case.

5.6.2 Probability of detection as a function of the number

of eavesdroppers

First, we consider the simple detection scenario case. In such a scenario, a

malicious eavesdropping set may be interested in detecting only the sup-

porting set of xK(n), or in other words, which subgroup K(n) ⊆ S is in

active mode in each timeslot. Hence, in this case the actual value of the

message is not essential.

The numerical simulation has been run in Matlab as follows. For each re-

alization, a new wiretap sensing matrix Φ̃ of dimension E×S has been ran-

domly generated following a Gaussian measurement ensemble N (0, E−1).

Next, for each channel distortion value D, a perturbation matrix Σ has

been generated with entries according to N (0, σ2
Σ

). The K non-zero entries

of a random vector xK(n) of sparsity K are distributed as N (0, σ2
x) and

uniformly located across the S possible positions. Finally, the decoder P ′1e

in (5.34) has been implemented using CVX, a package for specifying and

solving convex programs [Gra11,Gra08].

In Fig. 5.8 we plot the Probability of Detection (PoD) in terms of the

number of eavesdroppers E, or what is the same, the probability that the

estimated support set, K̂(n) contains actually all K(n) nodes.

For perfect CSI at the eavesdroppers, the simulation supports that for



5. Amplify-and-Forward Compressed Sensing as a
Physical-Layer Secrecy Solution 183

0 10 20 30 40 50 60 70 80

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of eavesdroppers, E

P
ro

ba
bi

lit
y

 

 

PD,D = −∞
PD,D = −20dB
PD,D = −15dB
PD,D = −10dB
PD,D = −5dB
PD,D = 0dB
PFA,D = −∞
PFA,D = −20dB
PFA,D = −15dB
PFA,D = −10dB
PFA,D = −5dB
PFA,D = 0dB

Figure 5.8: Probability of detection and probability of false alarm as a

function of the number of eavesdroppers and for different values of channel

estimation distortion. This figure has been averaged over 1000 realizations.
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small E < K, the recovery is infeasible, getting a PoD of 0. Moreover, for

moderate values of E, i.e., K < E < CCS the support set K(n) is recovered

with low probability. On the other hand, for values of E similar or greater

than CCS, the eavesdropping set can recover K(n) with high probability

following the CCS condition. According to Fig. 5.8, we observe that the

bound CCS (i.e., E = 40) divides the low and high PoD for values smaller

and bigger than 0.5, respectively.

For corrupted CSI at the eavesdroppers, the simulation shows how the

PoD is degraded. Even for small values of D, e.g. D = −10dB, the PoD

degenerates drastically and PoD close to 1 can only be achieved for very

large values of E (E > 80 nodes). For values of D = 0dB (which means

that the introduced perturbation is of the order of channel variance), the

supporting set K(n) can be recovered with negligible probability.

The probability of detection is not enough to quantify the detection

performance. This is because one can set the vector x̂K(n) with all the

entries loaded and therefore K(n) ⊆ K̂(n) with probability one. That is

why the Probability of False Alarm (PFA) is also plotted in Fig. 5.8. Here,

we observe that the reconstruction phase is even less accurate since the

reconstructed signal is not purely K-sparse, and instead, many undesired

spikes appear in other positions outside the support set K(n).

5.6.3 Probability of detection compared to CWS-like tech-

niques

Following the same detection scenario case, we compare the AF-CS

with CWS-like methods [Baj06]. Both methods are CS-based distributed

schemes. Although CWS has not been designed from a PHY-layer secure

perspective, we assess its secrecy performance since its approach is one

of the most extended CS schemes in WSN literature (as it is detailed in

Chapter 4).

Simulation results show that a single eavesdropper with a channel dis-
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tortion of less that −15dB suffices in decoding the transmitted signal with

high probability. Furthermore, it can be seen in Fig. 5.9 that for the 110

eavesdroppers configuration, the AF-CS achieves the same performance as

the CWS with only 2 eavesdroppers. The reason of such a big difference

is the natural protection that gives the spacial diversity introduced by the

relays. Therefore, in CWS a single eavesdropper can capture the entire sig-

nal that it is sent by the K sensing nodes (or R for the case of Generalized

CWS, also detailed in Chapter 4).

Furthermore, Fig. 5.9 also shows the PoD results as a function of the

channel estimation distortion D. For very small distortion values (i.e, D <

−20dB) the performance drop is negligible. However, it degrades fast for

values of D > −15dB. For the case of D = 0dB, the probability of detection

is negligible for any configuration.

5.6.4 Packet error rate as a function of the fumber of eaves-

droppers

In this subsection, our approach is slightly different than in the previous

cases because now we do focus on the actual values of the vector xK(n).

Hence, we take as a figure of merit the Packet Error Rate (PER). From a

theoretical point of view, the PER is defined as the success ratio that the

eavesdroppers recover exactly xK(n) from ỹ(n). However, the case where

xK(n) = x̂K(n) can only be achieved for the noiseless case. From a practical

point of view, we set a threshold in order to determine wether the vector

x̂K(n) is an acceptable reconstruction of xK(n) or not, that is if the relative

wiretap distortion is

De = E
[‖xK(n)− x̂K(n)‖2

‖xK(n)‖2
]

< 0.1, (5.54)

we consider that the eavesdroppers succeed in the recovery.

Although it is a different approach, we observe in Fig. 5.10 a similar

behavior than in the PoD analysis, where for the ideal case D = −∞dB.
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Figure 5.9: Probability of recovery as a function of the channel estimation

distortion for different number of coordinated eavesdroppers for K = 10

and S = 200. Solid lines represent the performance of AF-CS while dashed

lines denote CWS. This figure has been averaged over 1000 realizations.
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function of the number of nodes and for different values of channel estima-

tion distortion. This figure has been averaged over 1000 realizations.
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In other works, the eavesdroppers achieve good PER for values of E bigger

than CCS, whereas for low values of E the PER is zero.

5.6.5 Relative wiretap distortion as a function of the esti-

mation channel distortion

Here we study the performance of the relative wiretap distortion as a func-

tion of the channel estimation distortion.

This study actually extends the one in [Her10] and confirm some of

their results. Mainly, we show (as in [Her10]) that the distortion at the

receiver grows linearly with the power of the channel estimation distortion

for values D < 0dB. This is true (up to some error floor) not only for

the case D < 0dB but also when D > 0dB, as we can graphically see in

Fig. 5.11.

We also show that the relative wiretap distortion decreases for lower

values of D up to some error floor, which depends on the number of eaves-

droppers. It means that even for the ideal case of D = −∞dB, the relative

wiretap distortion cannot be decreased further than the error floor.

However, probably the most relevant result of this subsection is the fol-

lowing: for values of D = 0dB all the configurations achieve a similar relative

wiretap distortion of 1. It means that the distortion of the reconstruction

phase performed at the eavesdroppers is equal to the actual variance of the

signal. That is to say, the eavesdroppers do not know anything about the

signal xK(n) as it can be appreciated in the following example.

Example 5.1 A given decoder that does not receive y(n) and does not have

any further information about xK(n) than their entries are zero mean can

guess a decoder vector with a relative wiretap distortion of 1 by setting

x̂K(n) = 0. One can easily check it as

De = E
[‖xK(n)− 0‖2
‖xK(n)‖2

]
= 1, (5.55)
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Figure 5.11: Wiretap distortion as a function of the channel estimation

distortion for different number of coordinated eavesdroppers for K = 10

and S = 200. Solid lines represent the performance of AF-CS while dashed

lines denote CWS. This figure has been averaged over 1000 realizations.
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Hence, an important conclusion is that if the intended nodes set D = 0dB,

the eavesdroppers will achieve a relative wiretap distortion of 1 indepen-

dently of E.

5.7 Conclusions

In this chapter, we have evaluated the Amplify-and-Forward Compressed

Sensing (AF-CS) as a physical layer secrecy solution for Wireless Sensor

Networks (WSNs). In particular, we have studied the robustness for each

of the different phases of the given scheme against a passive eavesdropper

agent composed by several malicious and coordinated nodes.

We have analytically demonstrated that AF-CS achieves perfect secrecy

for the cases when the number of eavesdroppers E is less than or equal to

the sparsity level of the signal K.

For larger number of eavesdroppers, we have proposed a secure training

phase based on random pilots that contaminates their channel estimation.

In fact, the relative wiretap distortion at the eavesdroppers grows linearly

with the power of the introduced perturbation.

The simulation results for both the communication and the detection

scenarios support our claim that the scheme under study is perfectly secret

at physical layer when the number of eavesdropping nodes is less than the

sparsity level of the signal. On the other hand, and assuming the ideal case

of perfect channel estimation at the eavesdropper’s side, high decoding rates

(higher than 0.5) are only achievable when the number of eavesdropping

nodes is high enough to hold the restricted isometric property condition.

Moreover, we show that the required number of eavesdroppers increases

fast as a function of their channel estimation degradation and therefore the

system can adapt the level of introduced distortion in order to control

packet error rate or probability of detection of the eavesdroppers. Actually,

we have observed that for channel perturbations similar to the channel
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variance, the eavesdroppers obtain the same relative wiretap distortion that

almost without any knowledge about the signal. However, the price to pay

is that the more distortion we add at the eavesdroppers, the higher the

energy cost at the sensing nodes.

Furthermore, AF-CS drastically outperforms other distributed com-

pressed sensing solutions for WSNs in terms of physical layer secrecy.





Chapter 6

Conclusions and Future

Work

This dissertation has studied the energy limitation of the Wireless Sen-

sor Networks (WSNs) from a communications perspective. In particular,

it has focused on the realistic case where correlations in the temporal and

spatial domain are present in the input signal. Particular attention has

been placed on the analysis and design of distributed schemaes that exploit

this space-time correlation in order to obtain energy-efficient communica-

tion solutions. Based on existing results in signal processing as Compressed

Sensing, a simple framework called Amplify-and-Forward Compressed Sens-

ing (AF-CS) has been developed throughout this dissertation in order to

design efficient communication schemes with several desired features for

WSNs such as energy-efficient, resource-limited, low complex, high recon-

struction accuracy, and protection agains eavesdropping. Simulation results

have been provided in order to support the theoretical results and quantify

the performance of the proposed schemes. As a result, the proposed schemes

have been shown to improve other results in the literature in many of the

analyzed metrics such as symbol/packet error rate, relative energy con-

sumption, channel uses, mean square error, probability of detection, and

perfect secrecy.
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6.1 Conclusions

The motivation and the organization of the present dissertation has been

given in Chapter 1. Chapter 1 has also emphasized that Chapters 2-5 con-

tain the main research contributions. Therefore the main conclusions of this

dissertation are grouped as follows.

Chapter 2 has evaluated the performance of different encoding-decoding

strategies in order to reduce the number of transmitted samples. Concretely,

the six three encoders and two decoders have been proposed, those are the

Deterministic Downsampling Encoder (DDE), the Probabilistic Downsam-

pling Encoder (PDE), the Conditional Downsampling Encoder (CDE), the

Step Decoder (SD), and the Predictive Decoder (PD). Each of the six pos-

sible encoding-decoding combinations have been analytically studied and

closed forms for their distortion have been obtained (approximations for

the CDE-SD and CDE-PD). Simulation results have been used in order to

validate the theoretical expressions. Moreover, we have concluded that the

pair CDE-PD drastically outperforms the rest of strategies.

Chapter 3 has proposed two enhanced estimations based on the corre-

lation parameters for both the Linear Wiener Filter (LWF) and its derived

Mean Square Error as the main contribution of this chapter. In particular,

they have been incorporated in two key steps of a practical Distributed

Source Coding (DSC) scheme. It is shown that the DSC performs better in

terms of compression rate and symbol error rate when the proposed estima-

tors replace the classical sample estimators. This improvement is specially

significative for the cases when the number of snapshots used in the training

phase and the dimension of the observation vector are similar.

Chapter 4 has introduced the novel AF-CS as a distributed solution for

energy-efficient WSNs. Since it is based on CS, some of the most impor-

tant results on this topic are reviewed and some new contributions have

been proposed, such as a revised relation among the number of required

measurements as a function of the sparsity and the dimension of the input
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signal. According to those results, an analytical model is proposed in order

to design and characterize the AF-CS scheme. Furthermore, the simulation

results have shown that AF-CS drastically reduces the number of trans-

missions and the number of channel uses compared to other transmission

schemes present in the literature.

Chapter 5 has extended the results of Chapter 4 and has evaluated the

AF-CS as a physical-layer secrecy solution for WSNs. In particular, the

presence of a eavesdropper set of nodes has been considered. The secrecy

level for each of the cases according to the number of eavesdroppers have

been separately studied. It has been demonstrated that AF-CS achieves

perfect secrecy for the cases when the number of eavesdroppers is less than

the sparsity of the signal. For larger number of eavesdroppers, a random

pilot technique has been proposed as a training phase in order to contam-

inate the channel estimation of the eavesdroppers and therefore decrease

their performance. Simulation results have supported the theoretical results

and they have validated the random pilot technique as a good candidate to

increase the protection of AF-CS against a large number of eavesdropping

nodes.

6.2 Future Work

Some lines of research regarding Chapters 2-5 remain as future work.

Regarding the downsampling encoders proposed in Chapter 2, the main

open problems are

• To obtain exact analytical expressions for the downsampling distor-

tion of the CDE-SD and CDE-PD pairs instead of approximations.

• To obtain the optimal set of threshold values for the condition in CDE

that minimize the downsampling distortion of CDE-SD and CDE-PD

pairs.
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Regarding the enhanced correlation estimators in Chapter 3, the re-

maining issues are

• To obtain analytical results for both estimators for the case that the

correlation matrix and the cross-correlation vector are dependent each

other.

• To explore the benefits of the enhanced correlation estimators over

other transmission techniques rather than DSC such as zero-delay

downsampling transmissions and therefore apply them for a more

realistic AF-CS scheme.

With respect to the CS theory in Chapter 4, the main open problems is

• Providing an analytical expression for the proposed relation among

the number of required measurements as a function of the sparsity

and the dimension of the input signal instead of the empirical one.

Regarding to the AF-CS in Chapter 4, some extensions can be proposed,

such as

• Extending the results for the case of decode-and-forward transmission

schemes.

• Finding new AF-CS-based schemes for partial or no channel state

information.

• Exploring the possibilities of adding new degrees of freedom such as

Multiple-Input Multiple-Output (MIMO) or Orthogonal Frequency

Division Multiplexing (OFDM) at the transmitters and/or the re-

ceivers.

With respect to the AF-CS as a physical-layer solution in Chapter 5,

the following issue remains as future work
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• Obtaining a more accurate solution in terms of perfect secrecy for the

cases when the number of eavesdroppers is higher than the sparsity

level of the input signal.
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