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together, and for his support and advice, which has never been just academic. I am also
indebted with C. Simó, who has always been aware of this work and has given many
hints and ideas that have been critical for its developement. I would like to thank also
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F. Naselli and J. Puig, for their friendship and support during my last year there. And
finally, I would like to thank my family. Whithout their support, this work would never
have been done.



vi Acknowledgements



Preface

This work has been organized in three parts. The first two ones contain the main results,
and the last one, which has been divided in several appendices, has complementary results.

The first part of the work (Chapters 1 to 5) is dedicated to the development and
study of a procedure for the accurate computation of frequencies, as well as the related
Fourier coefficients, of a quasi–periodic function, using as only input input a equally–
spaced sampling of the function to be analyzed over a finite time interval.

The first technique for the accurate determination of frequencies has been introduced
by J. Laskar ([18], [20], [19]). It is based on the maximization of the formula that gives
the Fourier coefficients of a function with respect to the harmonic index, but taking it as
a real number. This procedure has been applied to the study of the long–term dynamics
of the Solar System ([18]), as well as to the study of chemistry and particle accelerator
models through the computation of frequency maps ([19]). Some methodology for fre-
quency determination has also been introduced in [12],[13],[10],[11]. In these works, the
determination of frequencies has been applied to development of semi–analytical models
for the motion in the Solar System.

Our procedure takes the methodology developed in [12],[13],[10][11] as a starting point.
It is based in asking for equality between the Discrete Fourier Transform (DFT) of the
analyzed function and its quasi–periodic approximation. Error estimates are obtained
and illustrated with numerical examples. Also, in the line of the previously–mentioned
works, we apply our procedure to the development of simplified models for the motion in
the Solar System.

The second part of the work (Chapters 6 to 7) is devoted to the study to the dynamics
in the vicinity of the collinear equilibrium points of the three–dimensional Restricted
Three–Body Problem (RTBP) for the Earth–Moon mass parameter.

The first systematic study of this vicinity has been done in [10] and [16], using as a tool
the reduction to the central manifold of the collinear equilibrium points. This is a semi–
analytical technique, which limits the region that can be explored by the convergence of
the expansions computed. The same methodology has also been applied to the study of
the collinear equilibrium points of a model for the Earth–Moon system, called the Quasi–
Bicircular Problem ([3]). In this last study, the convergence constraints are still more
severe.

In this work, we follow the families of periodic orbits and invariant 2D tori of the
center manifolds of the three collinear libration points using purely numerical procedures.
With this approach, we can extend the analysis of the phase space done in [10] and [16] to
a wider range of energy values, that now include several bifurcations, and also to the L3

libration point. The methodology used for the continuation of invariant tori is based in [7],
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with some modifications in order to account for variable excitations and some additional
parameters needed for our exploration. We have followed parallel strategies in order to
cope with the large amount of computations required. They have been carried out on
HIDRA, one of the Beowulf clusters of the Barcelona Dynamical Systems Group.

The third and last part of this report consists in several appendices, which give some
additional results that have been taken apart from the main text in order to improve its
readability.
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Part I 3

This part is devoted to the development and study of a procedure to compute the
frequencies and the related amplitudes of a quasi–periodic function. In Chapter 1 we in-
troduce some notation and methodology related to the Discrete Fourier Transform (DFT),
which is the main tool in which our procedure is based. In Chapter 2 we describe the
procedure, as well as some aspects of its computer implementation. Chapter 3 is devoted
to the obtention of error estimates, which are collected in Theorem 3.4.1 and illustrated
with a numerical example in Chapter 4. In Chapter 5, we apply the methodology to the
development of simplified models for the motion in the Solar System.
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Chapter 1

The Discrete Fourier Transform
(DFT)

This chapter gives the basic notation and definitions needed to develop our Fourier analysis
procedure in Chapter 2. It is started with the introduction of the DFT and some related
notation. After that, we discuss the concept known in the literature as leakage, which
leads to the introduction of filtering through the use of Hanning functions. We end the
Chapter with some comments about how the concept known as aliasing arises in our
setting.

1.1 Preliminaries and notation

Let D be the space of real valued functions defined on a discrete set of N equally spaced
points t0, ..., tN−1 over the interval [0, T ], i.e. tl = l · ∆t, with ∆t = T/N . The equality
of the spacing is only a technical requirement, since the DFT could be adapted to a non
equally spaced set of samples. Nevertheless, all what follows has been written assuming
∆t constant. From now on N is assumed to be even. If f, g ∈ D, we define their discrete
scalar product as

〈f, g〉 =
N−1∑
l=0

f(tl)g(tl).

The set of functions {{ϕj}N/2j=0 , {ψj}
N/2−1
j=1 } ⊂ D, being

ϕj(t) = cos(
2πjt

T
), ψj(t) = sin(

2πjt

T
),

form an orthogonal basis of D. Therefore, every function f ∈ D can be written as

f(tl) = Pf,T,N(tl) l = 0, . . . , N − 1,

where

Pf,T,N(t) =
1

2

(
cf,T,N(0) + cf,T,N(

N

2
) cos(

2πN
2
t

T
)
)

+

N/2−1∑
j=1

(
cf,T,N(j) cos(

2πjt

T
) + sf,T,N(j) sin(

2πjt

T
)
)
. (1.1)
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with

cf,T,N(j) = δj
〈f, ϕj〉
〈ϕj, ϕj〉

, j = 0, . . . ,
N

2
, sf,T,N(j) =

〈f, ψj〉
〈ψj, ψj〉

, j = 1, . . . ,
N

2
− 1,

with

δj =


2, j = 0,
1, j = 1, ..., N/2− 1,
2, j = N/2,

Equation (1.1) defines the Discrete Fourier Transform in sines and cosines (DFT)
of f ∈ D as a function of the discrete set of frequencies j/T , j = 0, . . . , N/2. The
values cf,T,N(j) and sf,T,N(j) are the coefficients related to the j/T frequency of the
trigonometric interpolating polynomial Pf,T,N(t) of the function f at the nodes {tl}N−1

l=0 .
All the frequencies of Pf,T,N(t) are multiples of 1/T . The DFT coefficients can be explicitly
written as

cf,T,N(j) =
2

N

N−1∑
l=0

f(tl) cos(2π
j

N
l), j = 0, ..., N/2,

sf,T,N(j) =
2

N

N−1∑
l=0

f(tl) sin(2π
j

N
l), j = 1, ..., N/2− 1.

For a general complex–valued function f , using the discrete scalar product 〈f, g〉 =∑N−1
l=0 f(tl)g(tl) and the orthogonal basis {e2πi j

T
t}N−1
j=0 , we can define the DFT as

Ff,T,N(j) =
1

N

N−1∑
l=0

f(tl)e
−2πi j

T
tl , j = 0, ..., N − 1. (1.2)

If f takes real values, FN−j(f) = Fj(f), the Ff,T,N(j), cf,T,N(j), sf,T,N(j) coefficients are
related by

Ff,T,N(j) =
1

2
(cf,T,N(j)− isf,T,N(j)) j = 0, . . . ,

N

2
,

where we assume sf,T,N(0) = sf,T,N(N/2) = 0. This allows to compute efficiently the
cf,T,N(j), sf,T,N(j) coefficients using a standard Fast Fourier Transform (FFT) algorithm
(see, for instance, [6], [5] or [21]).

The complex–valued function

φf,T (α) =
1

T

∫ T

0

f(t)e−i2παtdt

will be called Truncated Continuous Fourier Transform (TCFT) of f . Note that φf,T,N( j
T
),

j ∈ Z, are the coefficients of the Fourier series of f on the interval [0, T ]. Note also that
the DFT can be seen as a Riemann sum of the TCFT, more concretely

φf,T

( k
T

)
=

1

T

∫ T

0

f(t)e−2πi k
T
tdt ≈ 1

T

N−1∑
l=0

f(tl)e
−2πi k

T
tl
T

N
= Ff,T,N(k). (1.3)

Consequently, we can obtain the TCFT as the limit when N →∞ of the DFT. In section
3, Lemma 3.2.4, we will give an explicit bound of the difference between the DFT and
the TCFT of a complex exponential term ei2πωt.
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1.2 Leakage effect and filtering

For periodic functions, when the length T of the time interval spanned by the samples is
not an integer multiple of the period of the function (or equivalently, when the frequency
of the function is not an integer multiple of the “basic frequency” 1/T associated to the
sample interval [0, T ]), there appear in the DFT spurious frequencies, that is, the DFT
is different from zero at frequencies not being multiple of the frequency of the function.
This is a phenomenon known as leakage, for which we give a graphical example in figure
1.1. Leakage also affects the TCFT.

-0.2

0

0.2

0.4

0.6

0.8

1

45 46 47 48 49 50 51 52 53 54 55

(a)

-0.2

0

0.2

0.4

0.6

0.8

1

45 46 47 48 49 50 51 52 53 54 55

(b)

Figure 1.1: Plot of [(cf,T,N(j))2 + (sf,T,N(j))2]1/2 as a function of j (dashed line) and for
j = 45, . . . , 55 (solid vertical lines), with f(t) = cos(2πωt), T = 64 and N = 256. In (a)
ω = 0.75, so 48 · (0.75)−1 = 64 = T and there is no leakage. This is not the case for (b),
where ω = 0.76.

For the procedures that will be described later, we are interested in reducing leakage
for functions of the form e2πiωt. The way to do this is to use a filter or window function.

Definition 1.2.1 H(t) is said to be a filter function of degree r ≥ 0 for the interval [0, T ]
if it is a positive function of class Cr−1 with H(j)(0) = H(j)(T ) = 0 for j = 0, . . . , r − 1,
such that H(r) is continuous except for a finite set of jump discontinuities, and has bounded
variation. We also assume that

1

T

∫ T

0

H(t)dt = 1. (1.4)

It is enough to focus on the TCFT, since it is the limit of the DFT when N → ∞
(equation (1.3)). The reduction of leakage for the TCFT of H(t)e2πiωt, which depends
directly on the regularity of the filter function, is given by corollary 1.2.1.

Proposition 1.2.1 If g is a filter function of degree r for the interval [0, 2π], then∣∣∣∫ 2π

0

g(t)eiαtdt
∣∣∣ ≤ 2B(g(r)) + V (g(r))

|α|r+1
,
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where B(g(r)) is a bound for g(r) in [0, 2π] and V (g(r)) is the variation of g(r) in the same
interval. Moreover, if we assume g(r)(0) = g(r)(2π) = 0, then∣∣∣∫ 2π

0

g(t)eiαtdt
∣∣∣ ≤ V (g(r))

|α|r+1
.

Proof: Let t1, . . . tm−1 be the jump discontinuities of g(r) in (0, 2π), and let t0 = 0,
tm = 2π (which may be jump discontinuities or not). Successive integrations by parts
yield∫ 2π

0

g(t)eiαtdt =
[
g(t)

eiαt

iα

]t=2π

t=0
− 1

iα

∫ 2π

0

g′(t)eiαtdt

= . . . =
(−1

iα

)r−1
m−1∑
j=0

∫ tj+1

tj

g(r−1)(t)eiαtdt

=
(−1

iα

)r−1
(m−1∑
j=0

[
g(r−1)(t)

eiαt

iα

]t=tj+1

t=tj
+
−1

iα

m−1∑
j=0

∫ tj+1

tj

g(r)(t)eiαtdt

)
.

The first sum vanishes because it is a telescopic sum and g(r−1)(0) = g(r−1)(2π) = 0.
Given ε > 0, let δj be such that, for t∗, t∗∗ ∈ [tj, tj+1], if |t∗ − t∗∗| < δj then |g(r)(t∗)−

g(r)(t∗∗)| < ε (j = 0÷m− 1). These δj exist because g(r) is uniformly continuous in each
interval [tj, tj+1]. Reducing δj if necessary, we can assume tj+1 − tj = njδj for nj ∈ N.
Define M = n0 + . . .+ nm−1 and

s0 = t0, s1 = t0 + δ0, . . . , sn0−1 = t0 + (n0 − 1)δ0, sn0 = t0 + n0δ0 = t1,

sn0+1 = t1 + δ1, . . . , sn0+...+nm−1−1 = tm−1 + (nm−1 − 1)δm−1, sM = tm.

Denoting by ξj = 1
2
(sj + sj+1),∫ 2π

0

g(t)eiαtdt =
(−1

iα

)r M−1∑
j=0

∫ sj+1

sj

(g(r)(ξj) + g(r)(t)− g(r)(ξj))e
iαtdt

=
(−1

iα

)r M−1∑
j=0

(
g(r)(ξj)

eiαsj+1 − eiαsj

iα
+

∫ sj+1

sj

(g(r)(t)− g(r)(ξj))e
iαtdt

)
=

(−1

iα

)r[ 1

iα

(
−g(r)(ξ0)e

iαs0 + g(r)(ξM−1)e
iαsM

+
M−1∑
j=1

(g(r)(ξj−1)− g(r)(ξj))e
iαsj

)
+

M−1∑
j=0

∫ sj+1

sj

(g(r)(t)− g(r)(ξj))e
iαtdt

]
,

and hence ∣∣∣∫ 2π

0

g(t)eiαtdt
∣∣∣ ≤ 1

|α|r
[ 1

|α|
(2B(g(r)) + V (g(r))) + 2πε

]
.
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Since ε > 0 is arbitrary, doing ε → 0 we get the first equality of the proposition. The
second bound follows immediately from the above computations. �

For α = j/T , the above Proposition is a standard result about the decaying of the
Fourier coefficients (see, e.g., [5] and references therein). The above proof covers the case
α 6= j/T .

Corollary 1.2.1 If H is a filter function of degree r for [0, T ], then

φH(t)e2πiνt/T ,T (α/T ) = O
( 1

|ν − α|r+1

)
.

Proof: We have

φH(t)e2πiνt/T ,T (α/T ) =
1

T

∫ T

0

H(t)e2πi(ν−α)t/Tdt =
1

2π

∫ 2π

0

H(
T

2π
s)ei(ν−α)sds,

and hence

|φH(t)e2πiνt/T ,T (α/T )| ≤ 2B(H(r)) + V (H(r))

2π|ν − α|r+1
.

�

We will use as a filter function the Hanning window function, which is defined as

HT (t) = 1− cos

(
2π

1

T
t

)
.

and has degree 2. To increase the degree of the filter, the Hanning function can be iterated
and we can consider Hanning functions of order nh ∈ N, defined as

Hnh
T (t) = qnh

(
1− cos

(
2π

1

T
t

))nh

,

where the constants qnh
are computed in order to fulfill (1.4), so

qnh
=

[
1

T

∫ T

0

(
1− cos

(
2π

1

T
t

))nh

dt

]−1

=
nh!

(2nh − 1)!!
.

The advantage of the Hanning function with respect to other well-known window
functions (see [21]) is its degree of differentiability. For instance, Hnh(t) has degree 2nh,
whereas a general “triangle window function” T nt(t) defined as

T nt(t) =
nt + 1

nt

(
1−

∣∣∣ 2
T
t− 1

∣∣∣nt
)
.

has degree just nt. The Parzen window and the Welch window are the particular cases
nt = 1 and nt = 2 of T nt(t) respectively. The Hanning function has its simplicity as an
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additional advantage. The properties of trigonometric functions allow to obtain relations
like Lemma 1.2.1.

The DFT coefficients with Hanning order nh of f(t) are defined as the DFT coefficients
of Hnh

T (t)f(t), and will be denoted by

F nh
f,T,N(j) = FHnhf,T,N(j),

cnh
f,T,N(j) = cHnhf,T,N(j),

snh
f,T,N(j) = sHnhf,T,N(j).

Analogously, for the TCFT we will have

φnh
f,T,N(α) =

1

T

∫ T

0

Hnh(t)f(t)e−2πiαtdt.

The following lemma relates the coefficients of filtered and non–filtered transforms of
a function f(t):

Lemma 1.2.1 The following relations hold:

(a) F nh
f,T,N(j) =

qnh

2nh

nh∑
l=−nh

(−1)l
(

2nh
nh + l

)
Ff,T,N(j + l) =

nh∑
l=−nh

(−1)l(nh!)
2Ff,T,N(j + l)

(nh + l)!(nh − l)!
.

(b) φnh
f,T,N(α) =

qnh

2nh

nh∑
l=−nh

(−1)l
(

2nh
nh + l

)
φf,T,N(α+

l

T
) =

nh∑
l=−nh

(−1)l(nh!)
2φf,T,N(α+ l/T )

(nh + l)!(nh − l)!
.

Proof: We only prove (a). Similar calculations are valid for (b). Using that 1− cosx =
2 sin2 x

2
, we have

F nh
f,T,N(j) =

N−1∑
l=0

qnh

(
1− cos(2π

1

T
tl)
)nh

f(tl)e
−2πi j

T
tl

=
N−1∑
l=0

qnh
2nh sin2nh(π

1

T
tl)f(tl)e

−2πi j
T
tl

=
N−1∑
l=0

qnh
2nh

(eπi
1
T
tl − e−πi 1

T
tl)2nh

(2i)2nh
f(tl)e

−2πi j
T
tl

=
N−1∑
l=0

qnh

(−2)nh

2nh∑
l=0

(
2nh
l

)
eπi

2nh−l

T
tl(−1)le−πi

l
T
tlf(tl)e

−2πi j
T
tl

=
qnh

2nh

2nh∑
l=0

(−1)l−nh

(
2nh
l

)N−1∑
l=0

f(tl)e
−2πi

j+(l−nh)

T
tl .

Shifting the index by nh units, and using that

qnh

2nh

(
2nh
nh + l

)
=

(nh!)(nh!)(2nh)!

(nh!)2nh(2nh − 1)!!(nh + l)!(nh − l)!
=

(nh!)
2(2nh)!

(2nh)!(nh + l)!(nh − l)!
,
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we get (a). �

For cnh
f,T,N(j) and snh

f,T,N(j) relations similar to those of Lemma 1.2.1(a) hold. For
instance, for nh = 1, 2 we get

F 1
f,T,N(j) = −1

2
Ff,T,N(j−1)+Ff,T,N(j)− 1

2
Ff,T,N(j+1),

F 2
f,T,N(j) =

1

6
Ff,T,N(j − 2)− 2

3
Ff,T,N(j−1)+Ff,T,N(j)− 2

3
Ff,T,N(j+1)+

1

6
Ff,T,N(j+2).

As Hnh is a filter function of degree 2nh, according to Corollary 1.2.1 we have

φnh

e2πiνt/T ,T
(α/T ) = O

( 1

(|ν − α|)2nh+1

)
.

In fact, it can be explicitly calculated that

φnh

e2πiνt/T ,T
(α/T ) =

(−1)nh(nh!)
2(e2πi(ν−α) − 1)

2πiψnh
(ν − α)

(1.5)

being

ψnh
(x) =

nh∏
l=−nh

(x+ l). (1.6)

1.3 Aliasing effect

Apart from leakage, another common effect when performing DFT is aliasing. It consists
in the fact that any frequency greater than half the frequency associated to the sampling
width, i.e. any frequency greater than ωc := N

2T
, is aliased in a frequency less than ωc.

This is due to the following fact. Denoting pnh
f,T,N(j) = ((cnh

f,T,N(j))2 + (sf,T,N)2(j))1/2, we
have that

pnh

cs(2π(ω+N
T

)t,T,N
(j) = pnh

cs(2πωt),T,N(j),

pnh

cs(2π(−ω)t),T,N(j) = pnh

cs(2πωt)(j),

where cs stands for any of the functions cos or sin. If ω > N
2T

and m ∈ Z is such that
ω̃ := ω − mN

T
∈ [− N

2T
, N

2T
], then the frequencies ω and |ω̃| are undistinguisheable from

a DFT point of view when using the p function. The frequency ωc is called the Nyquist
critical frequency in the literature.

Indeed, when all the frequency components are confined to the interval [−ωc, ωc], the
function is called band-width limited. More concretely, in terms of the continuous Fourier
Transform, this means∫ ∞

−∞
f(t)e−2πiωtdt = 0, for |ω| > ωc.
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In this case, assuming that we have a sampling of infinite size {j ·∆t}j∈Z, the Shannon
sampling theorem (see [5], [21]) allows to reconstruct the function f(t) from its samples,
namely

f(t) = ∆t
∞∑

j=−∞

f(tj)
sin(2πωc(t− tj))

π(t− tj)
,

where ωc = 1
2∆t

. Note that quasi–periodic functions are not band–width limited.



Chapter 2

Procedures for the refined Fourier
analysis

This chapter is devoted to the description of our Fourier analysis procedure. It starts with
the detailed description of the three steps in which it is carried out, namely: first approx-
imation of frequencies, computation of the related amplitudes and iterative improvement
of both frequencies and amplitudes. After that, we discuss some aspects regarding to its
practical implementation: the algorithm to follow, the use of trigonometric recurrences
and the accurate evaluation of the DFT of sines and cosines.

2.1 Introduction

Given N values, {f(tl)}N−1
l=0 , tl ∈ [0, T ] of a certain function f(t), which is assumed to be

quasi–periodic, we want to find a polynomical trigonometric approximation with a fixed
number of frequencies Nf ,

Qf (t) = Ac0 +

Nf∑
l=1

(Acl cos(
2πνlt

T
) + Asl sin(

2πνlt

T
)). (2.1)

A standard approach to detect the frequencies of a given signal is to look for “peaks”
of the modulus of the DFT, pnh

f,T,N(j), which is also known as power spectral density
in the literature. J. Laskar ([18], [20], [19]) introduced a refinement of this procedure,
which consists in looking for maxima of |φnh

f,T,N(j/T )|, assuming that j takes real values.
Additional methodology for frequency determination has been introduced in [13],[11]. It
is the starting point for the methodology that will be developed here.

Our procedure is based entirely on the DFT for reasons that will be given below. The
basic idea is to ask for the equality between the DFT of the sampled initial function and
the DFT of its quasi–periodic approximation. It has three main steps: to get first approx-
imations of the frequencies (either following the standard approach or using the method
of Laskar), to compute the related approximated amplitudes and, finally, to perform a
simultaneous improvement of frequencies and amplitudes.
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2.2 First approximation of frequencies

If f has only one complex exponential term f(t) = ae2πi
ν
T
t, it follows from (1.5) that the

modulus of its TCFT is

|φnh
f,T (α/T )| = (nh!)

2|a||1− ei2π(ν−α)|
2π|ψnh

(ν − α)|
.

This function has a maximum at α = ν (see Fig. 2.1). So, the problem of finding ν can
be reduced to maximize the previous function with respect to α.

0
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0.4

0.5

0.6
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-6 -4 -2 0 2 4 6
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nh = 3

Figure 2.1: Plot of |φnh

e2πiνt/T ,T
(α/T )| as a function of (ν − α) for nh = 0, 1, 2, 3.

In a more general case, if f(t) has m different frequencies,

f(t) =
m∑
l=1

ale
2πi

νl
T
t,

then |φnh
f,T (α/T )| does not have its maxima exactly at ν1, . . . , νm, but we can write

|φnh
f,T (α/T )− φnh

aje
i2πνjt/T ,T

(α/T )| ≤
m∑
l=1
l 6=j

|φnh

ale
i2πνlt/T ,T

(α/T )|.

If α is close to νj, then
∑

l 6=j |φ
nh

ale
i2πνlt/T ,T

(α/T )| (that is, leakage from the other fre-

quencies) will be small, so |φnh
f,T (α/T )| will be close to |φnh

aje
i2πνjt/T ,T

(α/T )|, and therefore

will have a maximum near νj. In this way, looking to the local maxima of the function
|φnh
f,T (α/T )|2, we get a first procedure for computing an estimate of the frequencies. This

is the method used by Laskar ([18], [20], [19]). In his procedure, used for the computation
and analysis of frequency maps related to dynamical systems defined by the function f(t),
he looks for the local maxima of the function |φnh

f,T (α/T )|2 using some numerical quadra-
ture formula for the evaluation of the TCFT at a discrete set of values of the argument α.
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Once some values of α near the maxima have been computed, the values of the maxima
are refined by interpolation.

Since leakage is responsible for the maxima of |φnh
f,T (α/T )| not being the true frequen-

cies, the use of filtering improves this procedure, since it reduces leakage. However, it
is not advisable to take nh too large, since as we increase nh the “peaks” of the TCFT
become wider and may shade nearby frequencies (see Fig. 2.1).

In our procedure, we maximize the modulus of the filtered DFT of the initial function,
|F nh
f,T,N(j)| (where j may take real values), instead of approximating the TCFT using a

numerical quadrature formula and maximizing this approximation. The reasons for this
are:

• Although the DFT suffers from aliasing, whereas the TCFT does not, numerical
quadrature formulae suffer aliasing at least as much as the DFT does. For instance,
using a Newton-Côtes formula with all the sampling points as nodes, which is as-
sumed to be written as

∫ T
0
f(t)dt ≈

∑N−1
l=0 Alf(lT/N), we have

φnh
f,T

(α+N

T

)
=

1

T

∫ T

0

Hnh
T (t)f(t)e

−i2π(α+N)t
T dt

≈ 1

T

M∑
l=0

AlH
nh
T (l T

N
)f(l T

N
)e

−i2π(α+N)
T

l T
N

=
1

T

M∑
l=0

AlH
nh
T (l T

N
)f(l T

N
)e

−i2πα
T

l T
N ≈ φnh

f,T (
α

T
)

• The use of a numerical quadrature formula does not guarantee the accuracy of the
theoretical TCFT, since the error formulas include a power of the integration step,
which in our case is the sampling width, and it does not need to be small. However,
the DFT is close to the TCFT when there is no aliasing, as it will be shown in
Lemma 3.2.4.

We use Newton’s method to maximize |F nh
f,T,N(j)|. For that, we need to evaluate

∂
∂j
|F nh
f,T,N(j)|, and ∂2

∂j2
|F nh
f,T,N(j/T )|. Expressions for these functions can be obtained from

(1.2). We take the “peaks” of the DFT as initial approximations for Newton’s method.
That is, given j0 such that pj0−1 < pj0 > pj0+1, we use α = j0 as initial approximation.

2.3 Computation of the amplitudes assuming known

frequencies

Once we know the frequencies {νl}
Nf

l=1 in (2.1), we can compute the related amplitudes

{Acl}
Nf

l=0, {Asl }
Nf

l=1 by asking the DFT of the current quasi–periodic approximation Qf of
f to be equal to the DFT of the sampled data {f(tl)}N−1

l=0 . That is,

F nh
Qf ,T,N

(j) = F nh
f,T,N(j), (2.2)
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for suitable values of j. Since we are interested in real functions, we will use the sines–
cosines form of the DFT instead of the complex one. In order to get a square system for
the 1 + 2Nf unknowns, we select values of j in (2.2) in such a manner that we get

Ac0 +

Nf∑
l=1

( Acl c
nh
νl,N

(0) + Asl c̃
nh
νl,N

(0) ) = cnh
f,T,N(0),

Ac0c
nh
1 (ji) +

Nf∑
l=1

( Acl c
nh
νl,N

(ji) + Asl c̃
nh
νl,N

(ji) ) = cnh
f,T,N(ji),

Nf∑
l=1

( Acls
nh
νl,N

(ji) + Asl s̃
nh
νl,N

(ji) ) = snh
f,T,N(ji),

(2.3)

where
cnh
1 (j) = cnh

1,T,N(j),

cnh
ν,N(j) = cnh

cos( 2πν
T

),T,N
(j), snh

ν,N(j) = snh

cos( 2πν
T

),T,N
(j),

c̃nh
ν,N(j) = cnh

sin( 2πν
T

),T,N
(j), s̃nh

ν,N(j) = snh

sin( 2πν
T

),T,N
(j),

(2.4)

and the ji are chosen as the closest integers to νi, that is, such that |ji − νi| ≤ 1/2 for
i = 1÷Nf . Note that cnh

1 (j) is independent of T and N . The fact that cnh
ν,N(j), snh

ν,N(j),
c̃nh
ν,N(j) and s̃nh

ν,N(j) do not depend on T will be shown in Section 2.5.3.
In this way we get a (1 + 2Nf ) × (1 + 2Nf ) linear system, which, assuming that

ji ≥ 1 + nh for i = 1÷Nf , can be written in compact block form as
2 u1 . . . uNf

0 B1
1 . . . B1

Nf

...
...

. . .
...

0 B
Nf

1 . . . B
Nf

Nf




Ac0
v1
...
vNf

 =


cnh
f,T,N(0)

w1
...

wNf

 , (2.5)

where

ul =
(
cnh
νl,N

(0) c̃nh
νl,N

(0)
)
, Bi,l =

(
cnh
νl,N

(ji) c̃nh
νl,N

(ji)
snh
νl,N

(ji) s̃nh
νl,N

(ji)

)
,

vi =

(
Aci
Asi

)
, wi =

(
cnh
f,T,N(ji)

snh
f,T,N(ji)

)
.

(2.6)

Since the DFT decreases as |ν − j| goes away from zero, this system is near to block–
diagonal and therefore is well conditioned. In theorem 3.4.1 we give a bound of the inverse
of its coefficient matrix. Moreover, because of its structure, it is very well suited for a
2× 2 block Jacobi method, which can be written, if we remove the first equation of (2.5),
as

v
(n+1)
i = B−1

i,i

(
−

Nf∑
j=1
j 6=i

Bi,jv
(n)
j + wi

)
, i = 1÷Nf . (2.7)

Once we have values for {Acl , Asl }
Nf

l=1, we can compute Ac0 from the first equation of (2.5). In
corollary 3.4.1 we give a result about the convergence of this Jacobi procedure. In practice,
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the results have shown that the convergence is very fast when starting from the values
given directly by the DFT. Usually 3 or 4 iterates of the block Jacobi method are enough
for Hanning level nh = 2 and a tolerance of 10−15 for the maximum difference between two
consecutive iterates (these values correspond to the analysis of a trigonometric polynomial
with three frequencies).

2.4 Simultaneous improvement of frequencies and

amplitudes

Given approximations of frequencies and amplitudes, we can improve them simultaneously
by solving a system of equations similar to the one used in the previous section. With
respect to that system, we need now an additional equation for each frequency, since
frequencies are now unknown. We therefore solve iteratively the system

Ac0 +

Nf∑
l=1

( Acl c
nh
νl,N

(0) + Asl c̃
nh
νl,N

(0) ) = cnh
f,T,N(0),

Ac0c
nh
1 (ji) +

Nf∑
l=1

( Acl c
nh
νl,N

(ji) + Asl c̃
nh
νl,N

(ji) ) = cnh
f,T,N(ji),

Nf∑
l=1

( Acls
nh
νl,N

(ji) + Asl s̃
nh
νl,N

(ji) ) = snh
f,T,N(ji),

Ac0cs
nh
1 (j+

i ) +

Nf∑
l=1

( Acl cs
nh
νl,N

(j+
i ) + Asl c̃s

nh
νl,N

(j+
i ) ) = csnh

f,T,N(j+
i ),

(2.8)

for {νl}
Nf

l=1, {Acl}
Nf

l=0, {Asl }
Nf

l=1, where ji and j+
i are defined as

ji = [νi], j
+
i = [νi] + 1 if νi − [νi] ≤ 1/2,

ji = [νi] + 1, j+
i = [νi] otherwise,

for i = 1 ÷ Nf . In the last equation of (2.8), cs denotes either c or s; the criterium to
choose one or the other is given bellow.

If ji ≥ 1 + nh for i = 1÷Nf , the differential of (2.8) with respect to the unknowns(
Ac0 ν1 Ac1 As1 . . . νNf

AcNf
AsNf

)
,

which is needed in order to apply Newton’s method, can be written as

M =


2 v1 . . . vNf

0 B1
1 . . . B1

Nf

...
...

. . .
...

0 B
Nf

1 . . . B
Nf

Nf

 ,
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being

vl =
(
Acl∂c

nh
νl,N

(0) + Asl ∂c̃
nh
νl,N

(0) cnh
νl,N

(0) c̃nh
νl,N

(0)
)
,

Bi,l =

 Acl∂c
nh
νl,N

(ji) + Asl ∂c̃
nh
νl,N

(ji) cnh
νl,N

(ji) c̃nh
νl,N

(ji)
Acl∂s

nh
νl,N

(ji) + Asl ∂s̃
nh
νl,N

(ji) snh
νl,N

(ji) s̃nh
νl,N

(ji)
Acl∂cs

nh
νl,N

(j+
i ) + Asl ∂c̃s

nh
νl,N

(j+
i ) csnh

νl,N
(j+
i ) c̃snh

νl,N
(j+
i )

 ,
(2.9)

where ∂ denotes derivative with respect to ν. As in the preceding section, this matrix is
close to block–diagonal and, therefore, the system to be solved at each Newton iteration
is well conditioned.

For each block Bi,l, the criterium to choose cs from c and s is to set it equal to the
one that minimizes ‖B−1

i,i ‖∞. This further improves the well–conditioning of the system,
and is theoretically justified in Section 3 (Lemma 3.2.9).

With the exception of rounding errors, the only source of error in this procedure is the
leakage from frequencies that we are skipping, as will be shown in Section 3. In particular,
this method is exact for trigonometric polynomials (the combination of the procedures of
Sections 2.2 and 2.3 is not).

As a final remark note that, because of the use of the DFT, both this procedure and
the one of the previous section suffer from the aliasing effect introduced in Section 1.3.

2.5 Implementation details

In this section we give some details for the implementation of the procedures described
in the previous section.

2.5.1 Algorithm for the procedure

Starting from the sampling {f(tl)}N−1
l=0 of a function which is known to have a quasi–

periodic behavior, we carry out its Fourier analysis by finding initial approximations for
the frequencies using the procedure of Section 2.2, obtaining the related amplitudes using
Section 2.3 and iteratively refining the approximations of frequencies and amplitudes
through Section 2.4.

In order to prevent some frequencies to “hide” nearby frequencies of lower amplitude,
it is advisable to proceed iteratively, in such a way that at each iteration we only consider
those frequencies whose amplitude is greater than a given tolerance.

Concretely, the algorithm used for the numerical examples of the last section is the
following.

Algorithm 2.5.1 Provided a minimum amplitude bmin for the frequencies to be computed,
and a number of iterations n for the procedure, first define

pmax = max
j=1÷N

2

pnh
f,T,N(j), db = (bmin/pmax )

1/n,

where pnh
f,T,N(j) = ((cnh

f,T,N(j))2 + (snh
f,T,N(j))2)1/2, and set

Qf (t) = 0, b = pmax , Nf = 0.
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Qf (t) will be the current quasi–periodic approximation of f , b the minimum amplitude of
the frequencies to be detected in the current iteration, and Nf the number of frequencies
computed. Then, while b > bmin , proceed as:

1. Set b← b·db. Let kNf+1, . . . , kNf+m be the peaks of the modulus of the DFT of f−Qf

with minimum amplitude b, that is, {kNf+1, . . . kNf+m} = {j ∈ Z : nh + 2 ≤ j ≤
N
2
− nh − 2, pnh

f−Qf ,T,N
(j) ≥ b, pnh

f−Qf ,T,N
(j − 1) ≤ pnh

f−Qf ,T,N
(j) ≥ pnh

f−Qf ,T,N
(j + 1)}.

For each kl, apply the procedure of Section 2.2 to obtain νl.

2. Solve (2.3), according to Section 2.3, to get {Acl}
Nf+m

l=0 and {Asl }
Nf+m

l=1 from {νl}
Nf+m

l=1 .

3. Solve (2.8), according to Section 2.4 to iteratively refine {νl}
Nf+m

l=1 , {Acl}
Nf+m

l=0 and

{Asl }
Nf+m

l=1 .

4. Update the number of frequencies and the current quasi–periodic approximation,

Nf ← Nf +m, Qf (t)← Ac0 +

Nf∑
l=1

(Acl cos(
2πνlt

T
) + Asl sin(

2πνlt

T
))

and go to step 1.

We stop the algorithm if

• Nf reaches a given maximum number of frequencies, or if

• maxl=0÷N−1 |f(tl)−Qf (tl)| is under a given tolerance, or if

• maxj=0÷j/2 p
nh
f−Qf ,T,N

(j) is under a given tolerance, or if

• there appear two frequencies too close. We usually consider νl1, νl2 to be too close
if |νl1 − νl2| < 2 + nh.

In practice, the DFT approximation is good enough for Newton’s method of Section
2.4 to converge. That is, we can skip the preliminary determination of the frequencies of
Section 2.2 by setting νl = kl in step 1, and then compute the amplitudes related to these
frequencies following step 2. It may be useful to use the procedure of Section 2.2 anyway
when Nf is very large and we want to save some Newton iterates in step 3, since we have
to solve a (1 + 3Nf )× (1 + 3Nf ) linear system at each Newton iterate.

2.5.2 Use of trigonometric recurrences

Large amounts of computing time can be saved if we avoid the evaluation of the sin and
cos functions when we have to evaluate the DFT using its definition in the procedure of
Section 2.2, or when we have to compute {f(tl) − Qf (tl)}N−1

l=0 in step 1 of the algorithm
given above. This can be accomplished through the use of trigonometric recurrences for
the evaluation of cos(lx) and sin(lx) for l ∈ N and x ∈ R. One has to be careful in choosing
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such recurrences, in order to avoid numerical instability (see [29] for a discussion). The
recurrence we have used is given in [29], p. 24: first set

dc1 := −2 sin2 x

2
, t := 2dc1, ds1 :=

√
−dc1(2 + dc1), s0 := 0, c0 := 1,

and then compute, for m := 1, 2, . . .,

cm := cm−1 + dcm, dcm+1 := t · cm + dcm,
sm := sm−1 + dsm, dsm+1 := t · sm + dsm.

Just for illustrating purposes, we compare in Fig. 2.2 the errors produced by the
trigonometric recurrence previously given with the following one: first set

cc0 = 1, cc1 = cos x, ss0 = 0, ss1 = sinx,

and then compute, for m := 2, 3, . . .,

ccm+1 = (2 cosx)ccm − ccm−1,

ssm+1 = (2 cosx)ssm − ssm−1.

2.5.3 Evaluation of the DFT of sines and cosines

Special care must be taken in the evaluation of the DFT of sines and cosines, in order
to avoid cancellations and singularities. In this section we describe some of the strategies
followed in our implementation, especially those related to small values of ν − j.

The DFT of sines and cosines can be evaluated from the complex DFT of a complex
exponential term through the following formulae:

cnh
ν,N(j) = ReF nh

ei2πνt/T ,T,N
(j) + ReF nh

ei2π(−ν)t/T ,T,N
(j),

snh
ν,N(j) = − ImF nh

ei2πνt/T ,T,N
(j)− ImF nh

ei2π(−ν)t/T ,T,N
(j),

c̃nh
ν,N(j) = ImF nh

ei2πνt/T ,T,N
(j)− ImF nh

ei2π(−ν)t/T ,T,N
(j),

s̃nh
ν,N(j) = ReF nh

ei2πνt/T ,T,N
(j)− ReF nh

ei2π(−ν)t/T ,T,N
(j).

Derivating with respect to ν, we get similar relations that allow to obtain ∂cnh
ν,T,N(j),

∂c̃nh
ν,T,N(j), ∂snh

ν,T,N(j), ∂s̃nh
ν,T,N(j) from ∂F nh

ei2π(−ν)t/T ,T,N
(j). As before, ∂ denotes derivative

with respect to ν.
The non-filtered complex DFT of a complex exponential term is a geometric progres-

sion,

Fei2πνt/T ,T,N(j) =
1

N

N−1∑
l=0

ei2π(ν−j)l/N =
1− ei2π(ν−j)

N(1− ei2π(ν−j)/N)
,

and its derivative with respect to ν is

∂F nh

ei2πνt/T ,T,N
(j) =

i2π

N
·

1
N
ei2π(ν−j) − ei2π(ν−j) + N−1

N
ei2π(N+1)(ν−j)/N

(1− ei2π(ν−j)/N)2
.
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Figure 2.2: Illustration of the numerical instability of trigonometric recurrences. For x = 2π×
10−6 and n = 106, we have evaluated {cos(mx), sin(mx)}nm=0 and the values {cm, sm}nm=0

and {ccm, ssm}nm=0 using the recurrences detailed in the text. In the left–hand plots we show
the differences cos(mx) − ccm (top) and cos(mx) − cm (bottom). In the right–hand ones,
we show the differences sin(mx) − ssm (top) and sin(mx) − sm. These values are machine
and compiler–dependent. The program that has computed these plots has been compiled with
GNU gcc 2.95.2 with the optimization option ’–O3’ on an Intel Pentium II processor.
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Using the relations of Lemma 1.2.1 and its derivatives, we can get the filtered complex
DFT of ei2πνt/T , as well as its derivatives with respect to ν, from the non–filtered values.

The computation of Fei2πνt/T ,T,N(j) is organized as follows:

Fei2πνt/T ,T,N(j) =
1

N

(ac+ bd

c2 + d2
+ i

bc− ad
c2 + d2

)
,

being

a = 1− cos(2π(ν − j)) = 2 sin2(π(ν − j)), b = − sin(2π(ν − j)),
c = 1− cos(2π(ν − j)/N) = 2 sin2(π(ν − j)/N), d = − sin(2π(ν − j)/N).

For a and c, we use the second expressions in order to avoid cancellations.
Concerning to ∂Fei2πνt/T ,T,N(j), we compute it as

∂Fei2πνt/T ,T,N(j) =
2π

N

(ad− bc
c2 + d2

+ i
ac+ bd

c2 + d2

)
,

being

a =
1

N
cos
(2π(ν − j)

N

)
− cos(2π(ν − j)) +

N − 1

N
cos
(2π(N + 1)(ν − j)

N

)
=

2

N
sin
(π(2+N)(ν−j)

N

)
sin(π(ν−j))− 2 sin

(π(2N+1)(ν−j)
N

)
sin
(π(ν − j)

N

)
,

b =
1

N
sin
(2π(ν − j)

N

)
− sin(2π(ν − j))− 2 sin

(π(2N + 1)(ν − j)
N

)
sin
(π(ν − j)

N

)
= − 2

N
cos
(π(2+N)(ν−j)

N

)
sin(π(ν−j)) + 2 cos

(2π(N+1)(ν−j)
N

)
sin
(π(ν−j)

N

)
,

e = 1− cos
(2π(ν − j)

N

)
= 2 sin2

(π(ν − j)
N

)
,

f = − sin
(2π(ν − j)

N

)
,

c = e2 − f 2,

d = 2ef.

As before, for a, b, and e we use the second form in order to avoid cancellations, although
the second expression of b does not remove cancellations completely.

Since Fei2πνt/T ,T,N(j) = h(ν − j), being

h(α) =
1

N

N−1∑
l=0

ei2παl/N =
1− ei2πα

N(1− ei2πα/N)
,

we can use the Taylor expansion of h to evaluate Fei2πνt/T ,T,N(j) and ∂Fei2πνt/T ,T,N(j) for
|ν − j| small. Indeed, we could use this Taylor expansion for any |ν − j|, because h is an
entire function (it is a finite sum of exponentials), but the convergence of the expansion
is slow for large |ν − j|. We have set a threshold δ in such a way that for |ν − j| ≥ δ we
use the previous formulation and for |ν − j| < δ we use the Taylor expansion. The value
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of δ is chosen in order to have fast convergence of the Taylor expansion and a small error
due to the cancellation in the second expression of b. We have taken δ = 0.1, since

lim
N→∞

−β + γ

β
= 0.1563,

being

β =
2

N
cos
(π(2 +N)δ

N

)
sin(πδ), γ = 2 cos

(2π(N + 1)δ

N

)
sin
(πδ
N

)
,

and, in this way, the maximum loss of precision due to the cancellation of the second
expression of b is one order of magnitude. Moreover, since∣∣∣h(k)(0)

k!
δk
∣∣∣ ≤ (2π)k

(k + 1)!
|δ|k,

the convergence of the Taylor expansion is fast for |ν − j| < δ.
For the evaluation of the Taylor expansion of h, we have used that

h(k)(0) =
(i2π)k

Nk+1

N−1∑
l=0

lk,

and, for k ≥ 1,

N−1∑
l=1

lk =
(N − 1)k+1

k + 1
+

(N − 1)k

2
+

1

2

(
k

1

)
B2(N − 1)k−1 +

1

4

(
k

3

)
B4(N − 1)k−3 + . . . ,

where the sum ends at either N − 1 or (N − 1)2, and Bi are the Bernoulli numbers.
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Chapter 3

Error estimates

In this Chapter we develop error estimates for the numerical procedure described in the
previous Chapter. We cover both the case of computation of the amplitudes from known
frequencies and the iterative improvement of frequencies and amplitudes. The Chapter
is ended with Theorem 3.4.1, which gives bounds for the error of our Fourier analysis
procedure in terms of the parameters used for the analysis and the properties of the
analyzed function.

3.1 Introduction and notation

In order to derive error bounds, we will assume through this section that the function f
to be analyzed is real analytic and quasi–periodic, that is

f(t) =
∑
k∈Zm

ake
i2πkωt = Ac0 +

∑
k∈Zm

kω>0

(Ack cos(2πkωt) + Ask sin(2πkωt)) (3.1)

where kω = k1ω1 + . . . + kmωm, Ak = 2 Re ak, Bk = −2 Im ak, the frequency vector
ω = (ω1, . . . , ωm) is assumed to satisfy a Diophantine condition of the form

|kω| ≥ D

|k|τ
, (3.2)

with D, τ > 0, and the Fourier coefficients of f satisfy the Cauchy estimates,

|ak| ≤ Ce−δ|k|, ∀k ∈ Zm. (3.3)

We will also assume that we want to compute the frequencies of f up to order |k| ≤ r0−1
as well as its related amplitudes. That is, we want to approximate f by a trigonometric
polynomial

p(t) = Ac0 +

Nf∑
l=1

(Acl cos(
2πνl
T

t) + Asl sin(
2πνl
T

t)),

being
{ν1, . . . , νNf

} = {Tkω : k ∈ Zm, 1 ≤ |k| ≤ r0 − 1, Tkω > 0}. (3.4)
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We will give error bounds for two cases: the case in which we want to compute the
amplitudes from known frequencies (Section 2.3) and the case in which both frequencies
and amplitudes are unknown (Section 2.4). In order to perform error analysis for the
second case, we split the right–hand side of (2.8) and rewrite it as

Ac0 +

Nf∑
l=1

(Acl c
nh
νl,N

(0) + Asl c̃
nh
νl,N

(0)) = cnh
p,T,N(0) + cnh

f−p,T,N(0)

Ac0c
nh
1 (ji) +

Nf∑
l=1

(Acl c
nh
νl,N

(ji) + Asl c̃
nh
νl,N

(ji)) = cnh
p,T,N(ji) + cnh

f−p,T,N(ji)

Nf∑
l=1

(Acls
nh
νl,N

(ji) + Asl s̃
nh
νl,N

(ji)) = snh
p,T,N(ji) + snh

f−p,T,N(ji)

Ac0cs
nh
1 (j+

i ) +

Nf∑
l=1

(Acl cs
nh
νl,N

(j+
i ) + Asl c̃s

nh
νl,N

(j+
i ))︸ ︷︷ ︸

g(y+∆y)

= csnh
p,T,N(j+

i )︸ ︷︷ ︸
b

+ csnh
f−p,T,N(j+

i )︸ ︷︷ ︸
∆b

.

(3.5)
We would get the exact frequencies and amplitudes, which we denote as y for short, if we
solved g(y) = b. But the system to be solved is g(y+∆y) = b+∆b, and therefore the error
we have (assuming no rounding errors) can be bounded (in the first order approximation)
by

‖∆y‖∞ . ‖Dg(y)−1‖∞‖∆b‖∞
A similar argument is applied to the case in which the frequencies are known and we

want to compute the amplitudes. In this case, g, y, ∆y, b and ∆b are defined as

Ac0 +

Nf∑
l=1

(Acl c
nh
νl,N

(0) + Asl c̃
nh
νl,N

(0)) = cnh
p,T,N(0) + cnh

f−p,T,N(0)

Ac0c
nh
1 (ji) +

Nf∑
l=1

(Acl c
nh
νl,N

(ji) + Asl c̃
nh
νl,N

(ji)) = cnh
p,T,N(ji) + cnh

f−p,T,N(ji)

Nf∑
l=1

(Acls
nh
νl,N

(ji) + Asl s̃
nh
νl,N

(ji))︸ ︷︷ ︸
g(y+∆y)

= snh
p,T,N(ji)︸ ︷︷ ︸

b

+ snh
f−p,T,N(ji)︸ ︷︷ ︸

∆b

.

(3.6)

This section is devoted to the computation of bounds for ‖Dg(y)−1‖∞ and ‖∆b‖∞ in
terms of T , N , nh and the properties of the analyzed function f . From now on, and unless
otherwise stated, we will use the supremum norm.

3.2 Error bounds for ‖Dg(y)−1‖∞
In order to simplify the expressions to be manipulated, we will bound the TCFT instead
of the DFT. That is, we will use Cnh

f,T and Snh
f,T defined by

φnh
f,T (

j

T
) =

1

2
(Cnh
f,T (j)− iSnh

f,T (j)), (3.7)
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(here i =
√
−1). As in the discrete case (2.4), we will note

Cnh
1 (j) = Cnh

1,T,N(j),

Cnh

ν (j) = Cnh

cos( 2πνt
T

),T
(j), Snh

ν (j) = Snh

cos( 2πνt
T

),T
(j),

C̃nh
ν (j) = Cnh

sin( 2πνt
T

),T
(j), S̃nh

ν (j) = Snh

sin( 2πνt
T

),T
(j),

and the derivatives of Cnh

ν (j), Snh

ν (j), C̃nh
ν (j) and S̃nh

ν (j) with respect to ν will be denoted

as ∂Cnh

ν (j), ∂Snh

ν (j), ∂C̃nh
ν (j) and ∂S̃nh

ν (j), respectively. We give expressions for these
transforms in the following

Lemma 3.2.1 Denote ψnh
(x) =

∏nh

l=−nh
(x+ l). We have

Cnh

ν (j) =
(−1)nh(nh!)

2

2π

(sin (2π(ν − j))
ψnh

(ν − j)
+

sin (2π(−ν − j))
ψnh

(−ν − j)

)
,

C̃nh
ν (j) =

(−1)nh(nh!)
2

2π

(1− cos (2π(ν − j))
ψnh

(ν − j)
− 1− cos (2π(−ν − j))

ψnh
(−ν − j)

)
,

Snh

ν (j) =
(−1)nh(nh!)

2

2π

(
− 1− cos (2π(ν − j))

ψnh
(ν − j)

− 1− cos (2π(−ν − j))
ψnh

(−ν − j)

)
,

S̃nh
ν (j) =

(−1)nh(nh!)
2

2π

(sin (2π(ν − j))
ψnh

(ν − j)
− sin (2π(−ν − j))

ψnh
(−ν − j)

)
,

∂Cnh

ν (j) =
(−1)nh(nh!)

2

2π

( hr(ν − j)
ψnh

(ν − j)
− hr(−ν − j)
ψnh

(−ν − j)

)
,

∂C̃nh
ν (j) =

(−1)nh(nh!)
2

2π

( hi(ν − j)
ψnh

(ν − j)
+

hi(−ν − j)
ψnh

(−ν − j)

)
,

∂Snh

ν (j) =
(−1)nh(nh!)

2

2π

(
− hi(ν − j)
ψnh

(ν − j)
+

hi(−ν − j)
ψnh

(−ν − j)

)
,

∂S̃nh
ν (j) =

(−1)nh(nh!)
2

2π

( hr(ν − j)
ψnh

(ν − j)
+

hr(−ν − j)
ψnh

(−ν − j)

)
,

where

hr(x) = 2π cos(2πx)− rnh
(x) sin(2πx),

hi(x) = 2π sin(2πx)− rnh
(x)(1− cos(2πx)),

rnh
(x) =

nh∑
l=−nh

1

x+ l
=
ψ′nh

(x)

ψnh
(x)

.

Proof: We have

Cnh

ν (j) = Cnh

cos(2πνt/T ),T (j)
(3.7)
= 2 Reφnh

cos(2πνt/T ),T (j/T )

= 2 Reφnh

(ei2πνt/T +ei2π(−ν)t/T )/2,T
(j/T )

= Reφnh

ei2πνt/T ,T
(j/T ) + Reφnh

ei2π(−ν)t/T ,T
(j/T ),
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C̃nh
ν (j) = Imφnh

ei2πνt/T ,T
(j/T )− Imφnh

ei2π(−ν)t/T ,T
(j/T ),

Snh

ν (j) = − Imφnh

ei2πνt/T ,T
(j/T )− Imφnh

ei2π(−ν)t/T ,T
(j/T ),

S̃nh
ν (j) = Reφnh

ei2πνt/T ,T
(j/T )− Reφnh

ei2π(−ν)t/T ,T
(j/T ).

Then, the lemma follows from (1.5) and

d

dν
φnh

ei2πνt/T ,T
(j/T ) =

(−1)nh(nh!)
2

2πψnh
(ν − j)

(
2πei2π(ν−j) − i(1− ei2π(ν−j))

nh∑
l=−nh

1

ν − j + l

)
.

�

In order to bound the error due to the approximation of the DFT by the TCFT, we
need the following lemmas.

Lemma 3.2.2 (Discrete Poisson summation formula) If nh ≥ 1, we have

F nh
f,T,N(j) =

∞∑
l=−∞

φnh
f,T

(j + lN

T

)
.

In particular, cnh
ν,N(j) =

∞∑
l=−∞

cnh
ν (j+lN), and analogous identities hold for c̃nh

ν,N(j), snh
ν,N(j),

s̃nh
ν,N(j), and their derivatives with respect to ν.

Proof: This is a known result (see, for instance, [5]). We give a proof here for complete-
ness, and also to clarify the need for the hypothesis nh ≥ 1.

We first note that, by definition of the TCFT, the Fourier expansion of Hnh
T (t)f(t)

with respect to the interval [0, T ] is

∞∑
k=−∞

φnh
f,T (

k

T
)e

i2πkt
T .

The function Hnh
T (t)f(t) coincides with its Fourier expansion for all t ∈ [0, T ] because,

since nh ≥ 1, we have Hnh
T (0)f(0) = Hnh

T (T )f(T ) = 0.
Then, using the definition (1.2) of the complex DFT and the above Fourier expansion,

F nh
f,T,N(j) =

1

N

N−1∑
l=0

( ∞∑
k=−∞

φnh
f,T (

k

T
)e

i2πk
T

l T
N

)
e−

i2πj
T
l T
N

=
1

N

∞∑
k=−∞

φnh
f,T (

k

T
)
N−1∑
l=0

e
i2π(k−j)l

N ,

and the lemma follows from the fact that the inner sum above is equal to N if k− j is an
integer multiple of N and zero otherwise. �
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Lemma 3.2.3 For |x| ≥ nh + 2 we have

|rnh
(x)| ≤ ln(|x|+ nh)− ln(|x| − nh − 1),

|hr(x)|, |hi(x)| ≤ 2π + 2( ln(|x|+ nh)− ln(|x| − nh − 1)).

Proof: For the first inequality, we have

|rnh
(x)| =

nh∑
l=−nh

1

|x|+ l
≤
∫ |x|+nh+1

|x|−nh

1

z − 1
dz = ln(|x|+ nh)− ln(|x| − nh − 1).

The bounds for |hr(x)|, |hi(x)| follow from this one. �

Lemma 3.2.4 For j ≥ 0, N − j − |ν| − nh > 0, we have

|F nh

ei2πνt/T ,T,N
(j)− φnh

ei2πνt/T ,T,N
(
j

T
)| ≤

2(nh!)
2(1 + 1

2nh
)

π(N − j − |ν| − nh)1+2nh
,

for j, ν ≥ 0, N − j − ν − nh > 0,

|c̃snh

ν,N(j)− C̃S
nh

ν (j)| ≤
4(nh!)

2(1 + 1
2nh

)

π(N − j − ν − nh)1+2nh
,

and for j, ν ≥ 0, N − j − ν − nh ≥ 2,

|∂c̃snh

ν,N(j)− ∂C̃S
nh

ν (j)| ≤
4(nh!)

2(1 + 1
2nh

)(π + ln(N−j−ν+nh)− ln(N−j−ν−nh− 1))

π(N−j−ν−nh)1+2nh
.

In the previous expressions, c̃s denotes one of c, c̃, s, s̃, and C̃S denotes one of C, C̃, S,
S̃.

Proof: For the first inequality, using the Discrete Poisson summation formula (Lemma
3.2.2),

|F nh

ei2πνt/T ,T,N
(j)− φnh

ei2π ν
T

t,T
(
j

T
)| ≤

∞∑
l=1

(
|φnh

ei2π ν
T

t,T
(
j + lN

T
)|+ |φnh

ei2π ν
T

t,T
(
j − lN
T

)|
)

(1.5)

≤
∞∑
l=1

( (nh!)
2

πψnh
(|ν − j − lN |)

+
(nh!)

2

πψnh
(|ν − j + lN |)

)
.

Now, if N − j − |ν| > nh, we have |ν − j ± lN | ≥ |j ± lN | − |ν| ≥ lN − j − |ν|, and we
can bound the previous series by

∞∑
l=1

2(nh!)
2

π(lN − j − |ν| − nh)1+2nh

≤ 2(nh)
2

Nπ

( N

(N − j − |ν| − nh)1+2nh
+

∫ ∞

2N−j−|ν|−nh

1

(y −N)1+2nh
dy
)

≤ 2(nh)
2

Nπ

( N

(N − j − |ν| − nh)1+2nh
+

1/(2nh)

(N − j − |ν| − nh)2nh

)
≤

2(nh!)
2(1 + 1

2nh
)

(N − j − |ν| − nh)1+2nh
.
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Regarding to the other two inequalities, if we take into account that

|C̃S
nh

ν (j)| ≤ 2(nh!)
2

πψnh
(|ν − j|)

,

|∂C̃S
nh

ν (j)| ≤ 2(nh!)
2(π + ln(|ν − j|+ nh)− ln(|ν − j| − nh − 1))

πψnh
(|ν − j|)

,

we can easily adapt the previous sequence of inequalities to both cases. Note that, for
the second inequality above, we need the hypothesis N − j− ν−nh ≥ 2 in order to apply
Lemma 3.2.3. �

In order to bound ‖Dg(y)−1‖, we will further simplify Cnh

ν (j), C̃nh
ν (j), etc., by elim-

inating the second term in the sums given by Lemma 3.2.1. For this we introduce c, c̃,
. . . , according to the following

Definition 3.2.1 We define

cnh
ν (j) =

(−1)nh(nh!)
2

2π
· sin (2π(ν − j))

ψnh
(ν − j)

, snh
ν (j) = −c̃nh

ν (j),

c̃nh
ν (j) =

(−1)nh(nh!)
2

2π
· 1− cos (2π(ν − j))

ψnh
(ν − j)

, s̃nh
ν (j) = cnh

ν (j),

∂cnh
ν (j) =

(−1)nh(nh!)
2

2π
· hr(ν − j)
ψnh

(ν − j)
, ∂snh

ν (j) = −∂c̃nh
ν (j),

∂c̃nh
ν (j) =

(−1)nh(nh!)
2

2π
· hi(ν − j)
ψnh

(ν − j)
, ∂s̃nh

ν (j) = ∂cnh
ν (j).

In the following lemma, we bound the error after this simplification.

Lemma 3.2.5 If |ν + j| > nh + 2, we have

|∂cnh
ν (j)− ∂Cnh

ν (j)| ≤ (nh!)
2(π + ln(| − ν − j|+ nh)− ln(| − ν − j| − nh − 1))

π(| − ν − j| − nh)1+2nh
,

and the same bound holds for |∂c̃nh
ν (j)−∂C̃nh

ν (j)|, |∂snh
ν (j)−∂Snh

ν (j)|, |∂s̃nh
ν (j)−∂S̃nh

ν (j)|.
We also have

|cnh
ν (j)− Cnh

ν (j)| ≤ (nh!)
2

π(| − ν − j| − nh)1+2nh
,

and the same bound holds for |̃cnh
ν (j)− C̃nh

ν (j)|, |snh
ν (j)− Snh

ν (j)|, |̃snh
ν (j)− S̃nh

ν (j)|.

Proof: It is a direct application of Definition 3.2.1 and Lemma 3.2.3. �
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3.2.1 Error estimation for known frequencies

If we assume in (3.6) that ji ≥ nh + 1 for i = 1 ÷ Nf , then cnh
1 (ji) = 0 for i = 1 ÷ Nf

and the first equation of system (3.6) is uncoupled with the other ones. Therefore, we
can write Dg(y) as

M =


2 B0,1 . . . B0,Nf

0 B1,1 . . . B1,Nf

...
...

. . .
...

0 BNf ,1 . . . BNf ,Nf

 ,

where B0,l = ul are 1×2 blocks, being vl as defined in (2.6), and Bi,l, i, l = 1÷Nf , are 2×2
blocks defined as in (2.6). Let us split M in its block–diagonal and block–off–diagonal
parts, that is M = MD +MO, being

MD =


2 0 . . . 0
0 B1,1 . . . 0
...

...
. . .

...
0 0 . . . BNf ,Nf

 , MO =


0 B0,1 . . . B0,Nf

0 0 . . . B1,Nf

0
...

. . .
...

0 BNf ,1 . . . 0

 .

From Definition 3.2.1 and lemmas 3.2.5 and 3.2.4, under suitable hypothesis, csnh
ν,N(j) and

c̃snh
ν,N(j) decrease as ν goes away from j, and therefore M is close to its diagonal part.

What we will do is to obtain bounds for ‖M−1
D ‖ and ‖MO‖ and then use them to bound

‖M−1‖ using the following

Lemma 3.2.6 If M and ∆M are n × n matrices satisfying that M is invertible and
‖M−1‖‖∆M‖ < 1, then M + ∆M is inversible and satisfies

‖(M + ∆M)−1‖ ≤ ‖M−1‖
1− ‖M−1‖‖∆M‖

Proof: See [29], p. 188. �

To simplify notation, we introduce the following

Definition 3.2.2 We will denote by M, MD, MO and Bi,l the equivalents of M , MD,

MO and Bi,l, respectively, but replacing cnh
ν , c̃nh

ν , etc. by Cnh

ν , C̃nh
ν , etc. That is, by replacing

the DFT by the TCFT. We will also denote by M, MD, MO and Bi,l the equivalents of
M , MD, MO and Bi,l, respectively, but replacing cnh

ν , c̃nh
ν , etc. by cnh

ν , c̃nh
ν , etc. In this

way, for instance,

Bi,l =

(
cnh
νl

(ji) c̃nh
νl

(ji)

snh
νl

(ji) s̃nh
νl

(ji)

)

In the following proposition, we give bounds for ‖M−1
D ‖ and ‖MO‖.
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Proposition 3.2.1 If TD
(2r0−2)τ >

1
2
+ nh, where D, τ are given by (3.2) and r0 is given by

(3.4), then

‖M−1
D ‖ ≤

5

3
, ‖MO‖ ≤

√
2Nf (nh!)

2

π( TD
(2r0−1)τ − 1

2
− nh)1+2nh

.

Proof: From the definitions of MD and MO, we have

‖M−1
D ‖ ≤ max( max

i=1,...,Nf

‖(Bi,i)
−1‖, 1

2
), ‖MO‖ ≤ max

i=0,...,Nf

Nf∑
l=1

‖Bi,l‖ (3.8)

For the second bound, we have used the fact that the bounds that will be found for ‖Mi,l‖
are valid for ‖vl‖. So, in order to take into account the first row of ‖MO‖, we have allowed
the sum to run for l = i.

Denoting ρi,l = νl− ji and using the trigonometric identities sin(2ε)/2 = sin(ε) cos(ε),
(1− cos(2ε))/2 = sin2(ε), we can write

Bi,l =
(−1)nh(nh!)

2 sin(πρi,l)

πψnh
(ρi,l)

(
cos(πρi,l) sin(πρi,l)

− sin(πρi,l) cos(πρi,l)

)
.

Therefore

(Bi,l)
−1 =

πψnh
(ρi,l)

(−1)nh(nh!)2 sin(πρi,l)

(
cos(πρi,l) − sin(πρi,l)

sin(πρi,l) cos(πρi,l)

)

and

‖Bi,l‖ =
∣∣∣(nh!)2 sin(πρi,l)

πψnh
(ρi,l)

∣∣∣(| cos(πρi,l)|+ | sin(πρi,l)|),

‖(Bi,i)
−1‖ =

∣∣∣ πψnh
(ρi,i)

(nh!)2 sin(πρi,i)

∣∣∣(| cos(πρi,i)|+ | sin(πρi,i)|). (3.9)

Let us define

F1(ρi,i) =
∣∣∣ πψnh

(ρi,i)

(nh!)2 sin(πρi,i)

∣∣∣
Recalling that the ji, i = 1 ÷ Nf , were chosen such that |νi − ji| < 0.5, we only have to
bound (3.9) for −0.5 ≤ ρi,i ≤ 0.5. From the definition (1.6) of ψnh

, we can write F1(ρi,i)
as

F1(ρi,i) =
∣∣∣ πρi,i
sin(πρi,i)

∣∣∣ nh∏
l=1

l2 − ρ2
i,i

l2
,

and it is readily checked that if −0.5 ≤ ρi,i ≤ 0.5 then F1(ρi,i) decreases as nh →∞. The
limit is a positive value because of the Weierstrass factorization formula for the sine (see,
for instance, [31]):

sin(πz) = πz

∞∏
n=1

(
1− z2

n2

)
for z ∈ C. (3.10)
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Therefore, Bi,i is invertible and we can bound ‖(Bi,i)
−1‖ for nh ∈ N by the bound for

nh = 0, which is

‖(Bi,i)
−1‖ ≤

∣∣∣ πρi,i
sin(πρi,i)

∣∣∣(| cos(πρi,i)|+ | sin(πρi,i)|) ≤
5

3
for −0.5 ≤ ρi,i ≤ 0.5. (3.11)

For the actual behavior of ‖B−1
i,i ‖ in terms of ρi,i, see Fig. 3.1.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

-0.4 -0.2 0 0.2 0.4
ρi,i

nh=0
nh=1
nh=2
nh=7

nh=15

Figure 3.1: Graph of ‖B−1
i,i ‖∞ for −0.5 ≤ ρi,i ≤ 0.5 and nh = 0, 1, 3, 5, 15.

Concerning ‖Bi,l‖, for ρi,l ∈ R and nh ∈ N, we have

‖Bi,l‖ ≤
(nh!)

2

π|ψnh
(ρi,l)|

max
x∈R

(| cos(πx)|+ | sin(πx)|) =

√
2(nh!)

2

π|ψnh
(ρi,l)|

. (3.12)

If we define j0 = 0, the previous bound is also valid for ‖B0,l‖. For the actual behavior
of ‖Bi,l‖ in terms of ρi,l, see Fig. 3.2.

Now from (3.8), (3.11) and (3.12),

‖M−1
D ‖ ≤ 5/3, ‖MO‖ ≤ max

i=0÷Nf

Nf∑
l=1

√
2(nh!)

2

π|ψnh
(νl − ji)|

.

Since by definition |νi− ji| ≤ 1/2, we have |νl− ji| ≥ |νl− νi| − 1/2 = T |(kl− ki)ω| − 1/2.
Using the Diophantine condition (3.2),

T |(kl − ki)ω| −
1

2
≥ TD

|kl − ki|τ
− 1

2
≥ TD

(2r0 − 2)τ
− 1

2
.

Now since by hypothesis TD
(2r0−2)τ >

1
2

+ nh, we get

‖MO‖ ≤
√

2Nf (nh!)
2

π( TD
(2r0−2)τ − 1

2
− nh)1+2nh

,
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Figure 3.2: Graph of ‖Bi,l(ρi,l)‖∞ for nh = 0, 1, 2.

and this ends the proposition. �

From the bounds of ‖M−1
D ‖ and ‖MO‖ and Lemma 3.2.6, we can get a bound for

‖M−1‖. For that, we need bounds of ‖MD −MD‖, ‖MD −MD‖, ‖MO −MO‖ and
‖MO −MO‖, which are given in the following lemmas.

Lemma 3.2.7 If [νmin ] > nh, where νmin = min{ν1, . . . , νNf
} and [ ] denotes integer part,

we have

‖MD −MD‖ ≤
2(nh!)

2

π(2[νmin ]− nh)1+2nh
, ‖MO −MO‖ ≤

2Nf (nh!)
2

π([νmin ]− nh)1+2nh

Proof: We have

‖MD −MD‖ ≤ max
i=1÷Nf

‖Bi,i −Bi,i‖

= max
i=1÷Nf

(|CSnh

νi
(ji)− csnh

νi
(ji)|+ |C̃S

nh

νi
(ji)− c̃s

nh

νi
(ji)|),

where either CS = C and cs = c or CS = S and cs = s. Now, using Lemma 3.2.5 and the
hypothesis, we get the first inequality:

‖MD −MD‖ ≤ max
i=1÷Nf

2(nh!)
2

πψnh
(−νi − ji)

≤ 2(nh!)
2

π(2[νmin ]− nh)1+2nh
.

As for the second inequality,

‖MO −MO‖ ≤ max
i=0÷Nf

Nf∑
l=1
l 6=i

(|CSnh

νl
(ji)− csnh

νl
(ji)|+ |C̃S

nh

νl
(ji) + c̃s

nh

νl
(ji)|),
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where we denote j0 = 0. Using Lemma 3.2.5 again,

‖MO −MO‖ ≤ max
i=0÷Nf

Nf∑
l=1

2(nh!)
2

πψnh
(−νl − ji)

≤ 2Nf (nh!)
2

π([νmin ]− nh)1+2nh
.

We lose the factor 2 in front of [νmin ] with respect to the bound of ‖MD −MD‖ because
we have to consider the first row (i = 0). �

Lemma 3.2.8 Assume that N−T (2r0−2)‖ω‖∞− 1
2
−nh > 0, where r0 is given by (3.4).

Then

‖MD −MD‖ ≤
8(nh!)

2(1 + 1
2nh

)

π(N − T (2r0 − 2)‖ω‖∞ − 1
2
− nh)1+2nh

,

‖MO −MO‖ ≤
8(nh!)

2Nf (1 + 1
2nh

)

π(N − T (2r0 − 2)‖ω‖∞ − 1
2
− nh)1+2nh

.

Proof: Using Lemma 3.2.4,

‖MD −MD‖ ≤ max
i=1÷Nf

‖Bi,i − Bi,i‖ ≤ max
i=1÷Nf

8(nh!)
2(1 + 1

2nh
)

π(N − ji − νi − nh)1+2nh
,

and, since by definition |ji − νi| < 1/2 and as νi = Tkiω with |ki| ≤ r0 − 1, we have that
ji + νi ≤ 2νi + 1/2 ≤ T (2r0 − 2)‖ω‖∞ + 1/2, and the first inequality follows immediately.
A similar argument proves the second inequality. �

The bound for ‖M−1‖ that follows from the previous results will be given in Theorem
3.4.1.

3.2.2 General case

As in the case of known frequencies, we assume in (3.5) that ji > nh for i = 1 ÷ Nf so
the first equation of system (3.5) is uncoupled with the other ones and M = Dg(y) can
be written as

M =


2 B0,1 . . . B0,Nf

0 B1,1 . . . B1,Nf

...
...

. . .
...

0 BNf ,1 . . . BNf ,Nf


where B0,l = vl are 1 × 3 blocks, being vl as defined in (2.9), and Bi,l, i, l = 1 ÷ Nf , are
3× 3 blocks defined as in (2.9). We split M in its block–diagonal and block–off–diagonal
parts,

MD =


1 0 . . . 0
0 B1,1 . . . 0
...

...
. . .

...
0 0 . . . BNf ,Nf

 , MO =


0 B0,1 . . . B0,Nf

0 0 . . . B1,Nf

0
...

. . .
...

0 BNf ,1 . . . 0

 .
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As before, we will obtain bounds for ‖M−1
D ‖ and ‖MO‖ and then use them to bound ‖M‖

through Lemma 3.2.6.
In order to obtain bounds for ‖MD‖, we first state the following

Definition 3.2.3 We will denote by M, MD, MO and Bi,l the equivalents of M , MD,

MO and Bi,l, respectively, but replacing cnh
ν , c̃nh

ν , etc. by Cnh

ν , C̃nh
ν , etc. That is, by replacing

the DFT by the TCFT. We will also denote by M, MD, MO and Bi,l the equivalents of M ,
MD, MO and Bi,l, respectively, but replacing cnh

ν , c̃nh
ν , etc. by cnh

ν , c̃nh
ν , etc. For instance,

Bi,i =

 Aci∂c
nh
νi,N

(ji) + Asi∂c̃
nh
νi,N

(ji) cnh
νi,N

(ji) c̃nh
νi,N

(ji)
Aci∂s

nh
νi,N

(ji) + Asi∂s̃
nh
νi,N

(ji) snh
νi,N

(ji) s̃nh
νi,N

(ji)
Aci∂cs

nh
νi,N

(j+
i ) + Asi∂c̃s

nh

νi,N
(j+
i ) csnh

νi,N
(j+
i ) c̃s

nh

νi,N
(j+
i )

 ,

where cs denotes either c or s.

In order to invert MD, we only have to invert a block Bi,i. The possibility to do that
is established by the following

Lemma 3.2.9 If (Asi , A
c
i) 6= (0, 0), Bi,i is invertible either setting cs = c or cs = s.

Proof: Consider the matrix

A =


∂cnh

νi
(ji) ∂c̃nh

νi
(ji) cnh

νi
(ji) c̃nh

νi
(ji)

∂snh
νi

(ji) ∂s̃nh
νi

(ji) snh
νi

(ji) s̃nh
νi

(ji)
∂cnh

νi
(j+
i ) ∂c̃nh

νi
(j+
i ) cnh

νi
(j+
i ) c̃nh

νi
(j+
i )

∂snh
νi

(j+
i ) ∂s̃nh

νi
(j+
i ) snh

νi
(j+
i ) s̃nh

νi
(j+
i )

 ,

and denote by Ai1,i2,i3
l1,l2,l3

the submatrix of A obtained by selecting the rows i1, i2, i3 and the
columns l1, l2, l3. Then, the determinant of a block Bi,i is

det Bi,i =

{
Aci det A1,2,3

1,3,4 + Asi det A1,2,3
2,3,4 if we set cs = c,

Aci det A1,2,4
1,3,4 + Asi det A1,2,4

2,3,4 if we set cs = s.

To see that there exists a choice of cs that makes det Bi,i 6= 0 is equivalent to see that the
system {

Aci det A1,2,3
1,3,4 + Asi det A1,2,3

2,3,4 = 0

Aci det A1,2,4
1,3,4 + Asi det A1,2,4

2,3,4 = 0
,

with unknowns Aci , A
s
i , has unique solution. That is, that the determinant

det D =

∣∣∣∣∣ det A1,2,3
1,3,4 det A1,2,3

2,3,4

det A1,2,4
1,3,4 det A1,2,4

2,3,4

∣∣∣∣∣ (3.13)

is different from zero. From Definition 3.2.1, and since νi − j+
i = νi − ji − sign(νi − ji),

this determinant only depends on the difference ε = νi − ji which, by definition, ranges
from −1/2 to 1/2. In order to prove the lemma, we only need to see that the previous
determinant is different from zero in this range (see Fig. 3.3 for the numerical evidence).
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In order to simplify the notation, we denote

A =


a1 a2 a3 a4

−a2 a1 −a4 a3

a5 a6 a7 a8

−a6 a5 −a8 a7


and

A = A1,2,3
1,3,4, B = A1,2,4

1,3,4, C = A1,2,3
2,3,4, D = A1,2,4

2,3,4,

so that det D = detA detD − detB detC.

First note that, using −(ε − sign(ε)) = −ε − sign(−ε) and the fact that cnh
ν (j) and

c̃nh
ν (j) are even and odd in ε respectively, we can check that det D is even in ε and therefore

we can restrict to [0, 1/2] the range of ε to be considered.

Let 0 < ε < 1/2 and assume det D = 0. We note that detA = detD and detB =
− detC, so that det D = (detA)2 + (detB)2 and we have detA = detB = 0. Expanding
through the first column, we get

detA = −a1(a3a7 + a4a8) + a2(a3a8 − a4a7) + a5(a
2
3 + a2

4)

detB = a2(a3a7 + a4a8) + a1(a3a8 − a4a7)− a6(a
2
3 + a2

4)

The a3a8 − a4a7 term is readily checked to be zero. We denote ψ = ψnh
(ε) and ψm =

ψnh
(ε − 1). We check that a3a7 + a4a8 has the same numerator as a2

3 + a2
4, due to the

1–periodicity in ε of the numerators of a1, . . . , a8. The denominators are different: ψψm
for a3a7 +a4a8 and ψ2 for a2

3 +a2
4. Setting detA = detB = 0 and simplifying numerators,

we get

a1ψ = a5ψm, a2ψ = a6ψm.

Now, using the expressions for a1 and a5 from Definition 3.2.1, as well as a1ψ = a5ψm, we
obtain rnh

(ε) = rnh
(ε−1), that is ψ′/ψ = ψ′mψm (here ′ denotes derivative), and therefore

d

dε

ψm
ψ

=
ψ′mψ − ψmψ′

ψ2
m

= 0. (3.14)

The condition a2ψ = a6ψm leads to the same conclusion.

But
ψm
ψ

=
ε− nh − 1

ε+ nh
= 1− 2nh + 1

ε+ nh
,

and its derivative with respect to ε is different from zero for 0 < ε ≤ 1
2
, which is in

contradiction with (3.14).

For ε = 0, det D is checked to be different from zero using the expressions of Definition
3.2.1 (it is necessary to compute the limits when ε→ 0). �

Now that we know that a block Bi,i is invertible, in order to actually invert it we state
the following
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Figure 3.3: Plot of the determinant (3.13) for −1/2 ≤ νi − ji ≤ 1/2 and nh = 0, 1, 2, 3.

nh 0 1 2 3
Gnh

4.84 8.83 13.3 17.7

Table 3.1: Some values of the Gnh
constants.

Definition 3.2.4 For nh ∈ N, we define Gnh
to be an upper bound of

max
θ∈[0,2π]

|ν−j|≤ 1
2

min
cs∈{c,s}

∥∥∥
 (cos θ)∂cnh

ν,N(j) + (sin θ)∂c̃nh
ν,N(j) cnh

ν,N(j) c̃nh
ν,N(j)

(cos θ)∂snh
ν,N(j) + (sin θ)∂s̃nh

ν,N(j) snh
ν,N(j) s̃nh

ν,N(j)
(cos θ)∂csnh

ν,N(j+) + (sin θ)∂c̃s
nh

ν,N(j+) csnh
ν,N(j+) c̃s

nh

ν,N(j+)

−1 ∥∥∥.
In table 3.1 we give some values of the Gnh

constants found numerically. Just for
illustration purposes, in figure 3.4 we display the behavior of

min
cs∈{c,s}

∥∥∥
 (cos θ)∂cnh

ν,N(j) + (sin θ)∂c̃nh
ν,N(j) cnh

ν,N(j) c̃nh
ν,N(j)

(cos θ)∂snh
ν,N(j) + (sin θ)∂s̃nh

ν,N(j) snh
ν,N(j) s̃nh

ν,N(j)
(cos θ)∂csnh

ν,N(j+) + (sin θ)∂c̃s
nh

ν,N(j+) csnh
ν,N(j+) c̃s

nh

ν,N(j+)

−1 ∥∥∥ (3.15)

in terms of θ and ν − j.
In order to relate the bound of the previous definition to the bound of an actual block

Bi,i, we will use the following

Lemma 3.2.10 Let λ 6= 0 be a real number and v1, v2, v3 3–dimensional row vectors.
Then ∥∥∥

 λv1 v2 v3

−1∥∥∥
∞
≤ max(

1

λ
, 1)
∥∥∥
 v1 v2 v3

−1∥∥∥
∞
.

Proof: Define w1, w2, w3 according to v1 v2 v3

−1

=
1

det(v1, v2, v3)

 w>1
w>2
w>3

 .
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Figure 3.4: Plot of (3.15) for 0 ≤ θ ≤ 2π and −1/2 ≤ νi − ji ≤ 1/2.

Then, λv1 v2 v3

−1

=
1

det(λv1, v2, v3)

 w>1
λw>2
λw>3

 =
1

det(v1, v2, v3)

 w>1 /λ
w>2
w>3

 ,

and therefore,

∥∥∥
 λv1 v2 v3

−1∥∥∥
∞

=
1

| det(v1, v2, v3)|

∥∥∥
 w>1 /λ

w>2
w>3

∥∥∥
∞

=
max( 1

λ
‖w1‖1, ‖w2‖1, ‖w3‖1)
|det(v1, v2, v3)|

≤ max(
1

λ
, 1)

max(‖w1‖1, ‖w2‖1, ‖w3‖1)
|det(v1, v2, v3)|

= max(
1

λ
, 1)
∥∥∥
 v1 v2 v3

−1∥∥∥
∞
.

�

Let us denote Ai = ((Aci)
2 + (Asi )

2)1/2. Using Definition 3.2.4 and Lemma 3.2.10 we
have

‖(Bi,i)
−1‖ ≤ max(A−1

i , 1)Gnh
,

and therefore,
‖M−1

D ‖ ≤ max(A−1
min , 1)Gnh

,

where Amin = min{A1, . . . , ANf
}.

Now we bound the simplified off–diagonal part of M .
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Lemma 3.2.11 Assume TD
(2r0−2)τ > 3 + nh. Then,

‖MO‖ ≤
(nh!)

2
[√

2(
∑Nf

l=1Al)
(
π + ln ( TD

(2r0−2)τ − 1 + nh)− ln ( TD
(2r0−2)τ − 2− nh)

)
+ 2Nf

]
π( TD

(2r0−2)τ − 1− nh)1+2nh

Proof: We first note that, from Lemma 3.2.3 and Definition 3.2.1,

|cnh
ν (j)|, |̃cnh

ν (j)|, |snh
ν (j)|, |̃snh

ν (j)| ≤ (nh!)
2

π(|ν − j| − nh)1+2nh
,

|∂cnh
ν (j)|, |∂c̃nh

ν (j)|, |∂snh
ν (j)|, |∂s̃nh

ν (j)| ≤
(nh!)

2(π + ln(|ν − j|+ nh)− ln(|ν − j| − nh − 1))

π(|ν − j| − nh)1+2nh
.

Therefore, using |Acl |+ |Asl | ≤
√

2((Acl )
2 + (Asl )

2)1/2 =
√

2Al,

‖Bi,l(j)‖ ≤ max
j=ji,j

+
i

cs=c,s

(
|Aci ||∂c̃s

nh

νi
(j)|+ |Asi ||∂c̃s

nh

νi
(j)|+ |c̃snh

νi
(j)|+ |c̃snh

νi
(j)|
)

≤ max
j=ji,j

+
i

(nh!)
2(
√

2Al(π + ln(|νl − j|+ nh)− ln(|νl − j| − nh − 1)) + 2)

π(|νl − j| − nh)1+2nh
.

Now, for i, l = 1 ÷ Nf and j = ji, j
+
i there exists ij such that j ∈ {[νij ], [νij ] + 1}, so

|νij − j| ≤ 1. As stated at the beginning of this section, we also have that there exists kij ,
with |kij | ≤ r0 − 1, such that νij = Tkijω. Then, using the Diophantine condition (3.2),
we obtain

|νl − j| ≥ |νl − νij | − |j − νij | ≥ T |(kl − kij)ω| − 1 ≥ TD

|kl − kij |τ
− 1

≥ TD

(2r0 − 2)τ
− 1,

and the lemma follows from

‖MO‖ ≤ max
i=0÷Nf

Nf∑
l=1

‖Bi,l‖,

where we denote j0 = 0. �

In order to bound ‖M−1‖ from ‖M−1
D ‖ and ‖M−1

O ‖ by applying Lemma 3.2.6, we need
the bounds of ‖MD −MD‖, ‖MD −MD‖, ‖MO −MO‖ and ‖MO −MO‖. We calculate
them in the following lemmas.

Lemma 3.2.12 Denote νmin = min{ν1, . . . , νNf
}, Amax = max{A0, . . . , ANf

}. If [νmin ] ≥
2 + nh, we have

‖MD −MD‖ ≤
(nh!)

2
(√

2Amax [π + ln(2[νmin ] + nh)− ln(2[νmin ]− nh − 1)] + 2
)

π(2[νmin ]− nh)1+2nh
,
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‖MO −MO‖ ≤
(nh!)

2
(√

2(
∑Nf

l=1Al)(π + ln([νmin ]+nh)− ln([νmin ]−nh−1)) + 2Nf

)
π([νmin ]− nh)1+2nh

,

Proof: From Definition 3.2.3 and Lemma 3.2.5,

‖Bi,l − Bi,l‖ ≤ max
j=ji,j

+
i

( |Acl ||∂csnh
νl

(j)− ∂CSnh

νl
(j)|+ |Asl ||∂c̃s

nh

νl
(j)− ∂C̃S

nh

νl
(j)|+

|csnh
νl

(j)− CSnh

νl
(j)|+ |c̃snh

νl
(j)− C̃S

nh

νl
(j)|

)

≤
(nh!)

2
(√

2Al(ln(| − νl − j|+ nh)− ln(| − νl − j| − nh − 1)) + 2
)

π(| − νl − j| − nh)1+2nh
,

where either cs = c and CS = C or cs = s and CS = S. For the second inequality we have
used that

|Acl |+ |Asl | ≤
√

2((Acl )
2 + (Asl )

2)1/2 =
√

2Al.

Now, the first inequality of the lemma follows from

‖MD −MD‖ ≤ max
i=1÷Nf

‖Bi,i − Bi,i‖

and the fact that | − νi − ji|, | − νi − j+
i | ≥ 2[νmin ] for i = 1÷Nf . The second inequality

follows from

‖MO −MO‖ ≤ max
i=0÷Nf

Nf∑
l=1
l 6=i

‖Bi,l − Bi,l‖

and the fact that | − νl − ji|, | − νl − j+
i | ≥ [νmin ] for i = 0 ÷ Nf , l = 1 ÷ Nf (we denote

j0 = j+
0 = 0). �

Lemma 3.2.13 Assume N − T (2r0 − 2)‖ω‖∞ > 3 + nh. Then,

‖MD −MD‖

≤
4(nh!)

2
(√

2Amax (π + ln(N−Ω+nh)− ln(N−Ω−1−nh)) + 2
)
(1 + 1

2nh
)

π(N − Ω− nh)1+2nh
,

‖MO −MO‖

≤
4(nh!)

2
(√

2(
Nf∑
l=1

Al)(π + ln(N−Ω+nh)− ln(N−Ω−1−nh)) + 2Nf

)
(1 + 1

2nh
)

π(N − Ω− nh)1+2nh
.

being Ω = T (2r0 − 2)‖ω‖∞ + 1.
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Proof: For a 3× 3 block, we apply Lemma 3.2.4 and obtain

‖Bi,l − Bi,l‖

≤ max
j=ji,j

+
i

( |Aci ||∂CSnh

νl
(j)− ∂csnh

νl
(j)|+ |Asi ||∂C̃S

nh

νl
(j)− ∂c̃snh

νl
(j)|+

|CSnh

νl
(j)− csnh

νl
(j)|+ |C̃S

nh

νl
(j)− c̃snh

νl
(j)|,

)

≤
4(nh!)

2
(√

2Ai(π + ln(N−j−νl+nh)− ln(N−j−νl−nh− 1)) + 2
)
(1 + 1

2nh
)

π(N − j − νl − nh)1+2nh
,

where either cs = c and CS = C or cs = s and CS = S. As j ∈ {ji, j+
i } and νl = Tklω

with 1 ≤ |kl| ≤ r0− 1, we have that j + νl ≤ Tkiω+ 1 + Tklω ≤ T (2r0− 2)‖ω‖∞ + 1 = Ω
for some |ki| ≤ r0 − 1. Using this, the lemma follows from

‖MD −MD‖ ≤ max
i=1÷Nf

‖Bi,i − Bi,i‖,

‖MO −MO‖ ≤ max
i=0÷Nf

Nf∑
l=1

‖Bi,l − Bi,l‖,

where we denote j0 = j+
0 = 0. �

From these lemmas follows a bound for ‖Dg(y)−1‖, as will be stated in theorem 3.4.1.

3.3 Error bounds for ‖∆b‖∞
We give first three definitions and one lemma in order to be able to bound finite sums of
the type

∑r1
j=r0

jαe−δj, with r1 either finite or infinite.

Definition 3.3.1 Given z ∈ R, we define

∀x ∈ R, [x]z = max{z + n : n ∈ Z, z + n ≤ x} = z + [x− z],

where [ ] denotes integer part.

Note that, for all m ∈ Z, we have [x]z = [x]z+m.

In what follows, we will use the incomplete Gamma functions γ(α, x) and Γ(α, x),
which are defined as (see, for instance, [1])

γ(α, x) =

∫ x

0

e−ttα−1dt, Γ(α, x) =

∫ ∞

x

e−ttα−1dt.

In order to be able to bound sums by integrals taking into account the intervals of
monotonicity is convenient to introduce the following
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Definition 3.3.2 For j1, j2, α, δ > 0 we define the functions

Gf (j1, j2, α, δ) =
1

δα+1
χ{j1≤α

δ
−1}

(
γ(α+ 1, δmin ([

α

δ
]j1 , j2 + 1))− γ(α+ 1, δj1)

)
+

χ{j1≤α
δ
,j2>

α
δ
−1}([

α

δ
]j1)

αe−δ[
α
δ
]j1 +

χ{j1<α
δ
+1,j2>

α
δ
}([
α

δ
]j1 + 1)αe−δ([

α
δ
]j1+1) +

1

δα+1
χ{j2>α

δ
+1}

(
γ(α+ 1, δj2)− γ(α+ 1,max([

α

δ
]j1 + 1, j1 − 1))

)
,

and

G∞(j1, α, δ) =
1

δα+1
χ{j1≤α

δ
−1}

(
γ(α+ 1, δ[

α

δ
]j1)− γ(α+ 1, δj1)

)
+

χ{j1≤α
δ
}([
α

δ
]j1)

αe−δ[
α
δ
]j1 +

χ{j1<α
δ
+1}([

α

δ
]j1 + 1)αe−δ([

α
δ
]j1+1) +

1

δα+1
Γ(α+ 1, δmax ([

α

δ
]j1 + 1, j1 − 1)).

In the above formulas, χ{condition} equals 1 if condition is true and 0 otherwise.

Lemma 3.3.1 The functions Gf and G∞ satisfy

j2∑
j=j1

jαe−δj ≤ Gf (j1, j2, α, δ),
∞∑
j=j1

jαe−δj ≤ G∞(j1, α, δ).

Proof: To obtain the expressions for Gf , G∞ in Definition 3.3.2 we have bounded the
previous sums by integrals. This can be done easily for the subintervals of j of length 1,
starting at j0, for which the function jαe−δj is monotone. Some care must be taken for
the intervals around the maximum of the function, which is attained at j = α

δ
. This is

the reason for the definition 3.3.1. Both inequalities follow after a careful examination of
all the possibilities for the relative position between [j1, j2] and the maximum α

δ
. �

We recall from (3.5) that ∆b is defined as,

∆b =


cnh
f−p,T,N(0)

cnh
f−p,T,N(ji)

snh
f−p,T,N(ji)

csnh
f−p,T,N(j+

i )

 ,

where i ranges from 1 to Nf and cs denotes either c or s. We want to determine the
trigonometric approximation p(t) of f(t) using frequencies up to order r0 − 1, that is,
{kω : |k| ≤ r0 − 1}, so

f(t)− p(t) =
∞∑

|k|=r0

ake
i2πkωt.
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Therefore, denoting by J the set of indices {0, ji, j+
i : i = 1÷Nf}, we have

‖∆b‖ ≤ 2 max
j∈J
|F nh
f−p,T,N(j)|

≤ 2 max
j∈J

∑
|k|≥r0

|ak||F nh

ei2πkωt,T,N
(j)| (3.16)

≤ 2 max
j∈J

r∗∑
|k|=r0

|ak||F nh

ei2πkωt,T,N
(j)|+ 2

∞∑
|k|=r∗+1

|ak|.

We will keep r∗ as an unknown quantity for the moment, and bound the first term of
the above sum but replacing the DFT by the TCFT.

Lemma 3.3.2 The following inequality is fulfilled:

#{k : |k| = j} ≤ 2m

(m− 1)!

(
j +

m

2

)m−1

.

Proof: See [17], p. 114. �

Lemma 3.3.3 If TD
(r∗+r0−2)τ > 1 + nh, we have

r∗−1∑
|k|=r0

|ak||φnh

ei2πkωt,T
(
j

T
)| ≤

2mC(nh!)
2eδ(r0−1)

m−1∑
l=0

(
m−1
l

)
(m

2
−r0+1)

m−1−l
Gf (2r0 − 1, r∗ + r0 − 2, l + τ(1 + 2nh), δ)

E∗(m− 1)!π(TD)1+2nh

where

E∗ =
(z∗ − 1− nh)1+2nh

z1+2nh
∗

, z∗ =
TD

(r∗ + r0 − 1)τ
.

Proof: Using the Cauchy estimates and (1.5),

r∗−1∑
|k|=r0

|ak||φnh

ei2πkωt,T
(
j

T
)| ≤ C

r∗−1∑
|k|=r0

e−δ|k|
(nh!)

2

πψnh
(|Tkω − j|)

≤ C(nh!)
2

π

r∗−1∑
|k|=r0

e−δ|k|

(|Tkω − j| − nh)1+2nh
(3.17)

≤ C(nh!)
2

π

r∗−1∑
|k|=r0

e−δ|k|

( TD
(|k|+r0−1)τ − 1− nh)1+2nh

(3.18)
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For the last step we have used that, since j ∈ {ji, j+
i } for some i = 1 ÷ Nf , there exists

kj ∈ Zm such that |j − Tkjω| ≤ 1, so

|Tkω − j| ≥ |Tkω − Tkjω| − |j − Tkjω| ≥ T |(k − kj)ω| − 1 ≥ TD

|k − kj|τ
− 1

≥ TD

(|k|+ r0 − 1)τ
− 1.

In order to be able to sum the above series with the aid of the incomplete Gamma
functions, we choose E∗ such that (x− 1− nh)1+2nh ≥ E∗x

1+2nh for x ∈ { TD
(|k|+r0−1)τ }r∗−1

|k|=1.

This is accomplished setting E∗ = (z∗−1−nh)1+2nh

z
1+2nh
∗

with z∗ = TD
(r∗+r0−2)τ . Therefore,

Φ :=
r∗−1∑
|k|=r0

|ak||φnh

ei2πkωt,T
(
j

T
)| ≤ C(nh!)

2

E∗π

r∗−1∑
|k|=r0

e−δ|k|

( TD
(|k|+r0−1)τ )1+2nh

=
C(nh!)

2

E∗π(TD)1+2nh

r∗−1∑
|k|=r0

e−δ|k|(|k|+ r0 − 1)τ(1+2nh).

Now we apply Lemma 3.3.2,

Φ ≤ C(nh!)
2

E∗π(TD)1+2nh

r∗−1∑
j=r0

2m

(m− 1)!
(j +

m

2
)m−1e−δj(j + r0 − 1)τ(1+2nh),

shift the index j,

Φ ≤ 2mC(nh!)
2

E∗(m− 1)!π(TD)1+2nh

r∗+r0−2∑
j=2r0−1

(j +
m

2
− r0 + 1)m−1e−δ(j−r0+1)jτ(1+2nh),

and expand by Netwon’s binomial,

Φ ≤ 2mC(nh!)
2

E∗(m− 1)!π(TD)1+2nh

m−1∑
l=0

(
m− 1

l

)
(
m

2
− r0 + 1)m−1−l

r∗+r0−2∑
j=2r0−1

jl+τ(1+2nh)e−δ(j−r0+1)

=
2mC(nh!)

2eδ(r0−1)

E∗(m− 1)!π(TD)1+2nh

m−1∑
l=0

(
m− 1

l

)
(
m

2
− r0 + 1)m−1−l

r∗+r0−2∑
j=2r0−1

jl+τ(1+2nh)e−δj.

Now, to show the lemma, we only have to apply Lemma 3.3.1. �

In the proof of the previous lemma, we bounded the continuous Fourier transform of
a complex exponential term as

|φnh

ei2πkωt,T
(
j

T
)| ≤ (nh!)

2

π( TD
(|k|+r0−2)τ − 1− nh)1+2nh

.

Therefore, an intrinsic way to choose r∗ is to take it equal to the last value of |k| for
which the previous bound is < 1. In addition to that, and in order to avoid an excessive
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amplification of the bound due to the introduction of the E∗ constant in the proof of the
previous lemma, we will restrict r∗ so that z∗ ≥ 2(1 + nh) and

E∗ ≥
1

21+2nh
. (3.19)

Therefore,

r∗ =

[( TD

max(( (nh!)2

π
)

1
1+2nh + 1 + nh, 2(1 + nh))

) 1
τ

− r0 + 2

]
.

Now that we have chosen r∗, we need to bound the error due to the approximation of
the discrete Fourier transform by the continuous one. This is done in the two following
lemmas.

Lemma 3.3.4 If N − T (r∗ + r0 − 2)‖ω‖∞ > 1 + nh, then∣∣∣ r∗−1∑
|k|=r0

akF
nh

ei2πkωt,T,N
(
j

T
)−

r∗−1∑
|k|=r0

akφ
nh

ei2πkωt,T
(
j

T
)
∣∣∣ ≤

2m+1C(nh!)
2(1 + 1

2nh
)eδ

m
2 Gf (r0 + m

2
, r∗ − 1 + m

2
,m− 1, δ)

π(m− 1)!(N − T (r∗ + r0 − 2)‖ω‖∞ − 1− nh)1+2nh

Proof: Using Lemma 3.2.4 and the Cauchy estimates (3.3),∣∣∣ r∗−1∑
|k|=r0

akF
nh

ei2π Tkω
T

t,T,N
(
j

T
)−

r∗−1∑
|k|=r0

akφ
nh

ei2π Tkω
T

t,T
(
j

T
)
∣∣∣ ≤

≤ C
r∗−1∑
|k|=r0

e−δ|k|
2(nh!)

2(1 + 1
2nh

)

π(N − T (r∗ + r0 − 2)‖ω‖∞ − 1− nh)1+2nh
,

since, for |k| = r0÷ r∗−1 and j ∈ {0, ji, j+
i : i = 1÷Nf} there exists kj with |kj| ≤ r0−1

and |Tkjω − j| ≤ 1, and therefore

j + |Tkω| ≤ T |kjω|+ 1 + T |kω| ≤ T (|kj|+ |k|)‖ω‖∞ + 1 ≤ T (r0 + r∗ − 2)‖ω‖∞ + 1.

Using Lemmas 3.3.2 and 3.3.1 and shifting the summation index by m
2

units, we get

r∗−1∑
|k|=r0

e−δ|k| ≤ 2meδ
m
2

(m− 1)!

r∗−1+m
2∑

j=r0+m
2

jm−1e−δj

≤
2meδ

m
2 Gf (r0 + m

2
, r∗ − 1 + m

2
,m− 1, δ)

(m− 1)!
,

from which the lemma follows. �

Note that the hypothesis of the previous lemma gives a new constraint for r∗, which
is fulfilled if we take

r∗ = min

([( TD

max(( (nh!)2

π
)

1
1+2nh + 1 + nh, 2(1 + nh))

) 1
τ

− r0 + 2

]
,
[N − 1− nh

T‖ω‖∞
− r0 + 1

])
Now, in order to complete the bound for ‖∆b‖ we only have to bound the remainder.
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Lemma 3.3.5 The following inequality holds:

∞∑
|k|=r∗

|ak| ≤
2mCeδ

m
2 G∞(r∗ + m

2
,m− 1, δ)

(m− 1)!

Proof: It follows from the Cauchy estimates (3.3), Lemma 3.3.2 and Definition 3.3.2. �

From lemmas 3.3.3, 3.3.4 and 3.3.5 follows a bound for ‖∆b‖∞ that is stated in The-
orem 3.4.1.

A more explicit description of the behavior of
∑∞

|k|=r∗+1 |ak| is given in proposition
3.3.1. First we need two lemmas.

Lemma 3.3.6 Define Pl(j) = #{k ∈ Zl : |k| = j}. Then, for j ≥ 1 the following
recurrence is satisfied:

Pl(j) = 2 + 2

j−1∑
s=1

Pl−1(s) + Pl−1(j), (3.20)

with P1(j) = 2. Moreover, Pl(j) is a polynomial in j of degree l − 1.

Proof: It is obvious that P1(j) = 2. Assume l ≥ 2. Then every k ∈ Zl can be splitted as
k = (k1, k2) with k1 ∈ Zl−1 and k2 ∈ Z. In this way

{k ∈ Zl : |k| = j} = {(0,±j)} ∪
(j−1⋃
s=1

{(k1,±(j − s)) : |k1| = s}
)
∪ {(k1, 0) : |k1| = j},

and (3.20) follows from the fact that #{(0,±j)} = 2, #{(k1,±(j − s)) : |k1| = s} =
2Pl−1(s) and #{(k1, 0) : |k1| = j} = Pl−1(j).

We see that Pl(j) has degree l − 1 in j by induction on l. For l = 0 it is true by
definition. Assume it true for l − 1, that is

Pl−1(j) =
l−2∑
r=0

crj
r.

Then

Pl(j) = 2 + 2

j−1∑
s=1

l−2∑
r=0

crs
r + Pl−1(j) = 2 + 2

l−2∑
r=0

cr

j−1∑
s=1

sr + Pl−1(j),

and the property follows from the fact that

j−1∑
s=1

sr =
1

r + 1

r∑
s=0

(
r + 1

s

)
Bsj

r−s+1

(Bs are the Bernoulli numbers, see e.g. [22]) is a polynomial in j of degree r + 1. �
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Lemma 3.3.7 (a) For l, r ∈ N, x ∈ C, |x| < 1 we have

∑
j≥r

jlxj =
Ql(x)

(1− x)l+1
, (3.21)

where Q0(x) = xr and Ql(x) = (x− x2)Q′
l−1(x) + lxQl−1(x) for l ≥ 1.

(b) Ql(x) is a polynomial in x with minimum degree r and maximum degree r + l.
Moreover, every coefficient in x is a polynomial in r with maximum degree l.

Proof: For l = 0, (3.21) is the sum of a geometric series. Assume (3.21) true for l − 1.
Then ∑

j≥r

jlxj = x
∑
j≥r

jlxj−1 = x
d

dx

∑
j≥r

jl−1xj,

and using the induction hypothesis,

x
d

dx

∑
j≥r

jl−1xj = x
d

dx

Ql−1(x)

(1− x)l

=
(x− x2)Q′

l−1(x) + lxQl−1(x)

(1− x)l+1
.

As for (b), Q0(x) verifies (b) trivially and, assuming that (b) is true for Ql−1(x), it is
readily checked that Ql(x) = (x− x2)Q′

l−1(x) + lxQl−1(x) also verifies (b). �

Proposition 3.3.1 We have

∞∑
|k|=r

|ak| = O(rm−1e−rδ) as r → +∞.

Proof: Using the Cauchy estimates (3.3) and Lemma 3.3.6,

∞∑
|k|=r

|ak| ≤ C
∞∑

|k|=r

e−δ|k| ≤ C
∞∑
j=r

Pm(j)e−δj, (3.22)

where Pm(j) has degree m − 1 in j. Assume Pm(j) =
∑m−1

s=0 cm,sj
s and define x = e−δ.

Then

C

∞∑
j=r

Pm(j)e−δj = C

m−1∑
s=0

cm,s

∞∑
j=r

jsxj = C

m−1∑
s=0

cm,s
Qs(x)

(1− x)s+1

= C
m−1∑
s=0

( cm,s
(1− x)s+1

s∑
l=0

ps,l(r)x
r+l
)
,
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where, following Lemma 3.3.7(b), we have expanded Qs(x) as
∑s

l=0 ps,l(r)x
r+l, with ps,l(r)

of maximum degree s in r.
To show that this expression is O(rm−1xr) when r →∞, it is enough to see that

lim
r→∞

1

rm−1xr
C

m−1∑
s=0

( cm,s
(1− x)s+1

s∑
l=0

ps,l(r)x
r+l
)

=

C
m−1∑
s=0

( cm,s
(1− x)s+1

s∑
l=0

(
lim
r→∞

ps,l(r)

rm−1

)
xl
)

does not depend on r. This is true, since from Lemma 3.3.7(b) the ps,l polynomials are of
degree ≤ s ≤ m− 1 and therefore the limit in the right-hand side of the above equation
does not depend on r. �

Lemmas 3.3.6 and 3.3.7 also allow to improve the bound of Lemma 3.3.5 for concrete
values of m. For instance, if m = 2 we have∑

|k|≥r
|k|∈Z2

|ak| ≤ 4C
re−δr + (1− r)e−δ(r+1)

(1− e−δ)2
.

3.4 Final results

We end this section by gathering all the previous results in a single theorem that gives the
bound for the error in frequencies and amplitudes. We consider both the case of known
and the case of unknown frequencies in a single theorem.

Theorem 3.4.1 Assume that we perform Fourier analysis of an analytic quasi–periodic
function

f(t) =
∑
k∈Zm

ake
i2πωt,

that satisfies the Cauchy estimates with constants C, δ > 0,

|ak| ≤ Ce−δ|k|,

and whose frequency vector ω = (ω1, . . . , ωm) satisfies a Diophantine condition of the form

|kω| > D

|k|τ
,

with D, τ > 0. Assume we sample f in N points equally spaced over the interval [0, T ],
and that we want to determine the frequencies Tkω with 1 ≤ |k| ≤ r0 − 1, Tkω > 0,
and the related amplitudes, from which we have approximations close enough to the actual
ones. Assume that we carry out the procedure of section 2.4 with nh ≥ 1 and get an
approximation of f of the form

p(t) = Ac0 +

Nf∑
l=1

(
Acl cos(

2πνlt

T
) + Asl sin(

2πνlt

T
)
)
.
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Assume also that N is such that N − T (2r0 − 2)‖ω‖∞ > 3 + nh, and T is such that
TD

(2r0−2)τ > 3 + nh and [νmin ] > 2 + nh. Then, the error in frequencies and amplitudes,
which we denote as ∆y, can be bounded, in the first order approximation, as

‖∆y‖ . ‖M−1‖‖∆b‖, (3.23)

where

‖M−1‖ ≤ ‖M−1
D ‖

1− ‖M−1
D ‖‖MO‖

and

‖MO‖ ≤
(nh!)

2

π

(√2(
Nf∑
l=1

Al)(π + ln( TD
(2r0−2)τ − 1 + nh)− ln( TD

(2r0−2)τ − 2− nh)) + 2Nf

( TD
(2r0−2)τ − 1− nh)1+2nh

+

√
2(

Nf∑
l=1

Al)(π + ln([νmin ] + nh)− ln([νmin ]− 1− nh)) + 2Nf

([νmin ]− nh)1+2nh

+

4
(√

2(
Nf∑
l=1

Al)(π+ln(N−Ω0+nh)−ln(N−Ω0−1−nh))+2Nf

)
(1+ 1

2nh
)

(N − Ω0 − nh)1+2nh

)
and

‖M−1
D ‖ ≤

‖M−1
D ‖

1− ‖M−1
D ‖ε1

, ‖M−1
D ‖ ≤

‖M−1
D ‖

1− ‖M−1
D ‖ε2

, ‖M−1
D ‖ ≤

Gnh

min(1, Amin)
,

with Gnh
as in Definition 3.2.4, being

ε1 =
4(nh!)

2
(√

2Amax (π + ln(N − Ω0 + nh)− ln(N − Ω0 − 1− nh)) + 2
)
(1 + 1

2nh
)

π(N − Ω0 − nh)1+2nh
,

ε2 =
(nh!)

2
(√

2Amax (π + ln(2[νmin ] + nh)− ln(2[νmin ]− nh − 1)) + 2
)

π(2[νmin ]− nh)1+2nh
,

Ω0 = T (2r0 − 2)‖ω‖∞ + 1,

As for ‖∆b‖,

‖∆b‖ ≤ 2m+1C

(m− 1)!

(

χ{r∗>r0}

(nh!)
2eδ(r0−1)

m−1∑
l=0

(
m−1
l

)
(m

2
−r0+1)m−1−lGf (2r0−1, r0+r∗−2, l+τ(1+2nh), δ)

E∗π(TD)1+2nh

(3.24)

+ χ{r∗>r0}
2(nh!)

2eδ
m
2 (1 + 1

2nh
)Gf (r0+

m
2
, r∗−1+m

2
,m−1, δ)

π(N − Ω− nh)1+2nh

+ eδ
m
2 G∞(r∗ +

m

2
,m− 1, δ)

)
,
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where

Ω = T (r∗ + r0 − 2)‖ω‖∞ + 1

r∗ = max

(
r0,min

([( TD

max(( (nh!)2

π
)

1
1+2nh + 1 + nh, 2(1 + nh))

) 1
τ − r0 + 2

]
,

[N − 1− nh
T‖ω‖∞

− r0 + 1
]))

(3.25)

E∗ =
(z∗ − 1− nh)1+2nh

z1+2nh
∗

,

z∗ =
TD

(r∗ + r0 − 2)τ
,

and the Gf , G∞ functions are those of Definition 3.3.2.
If we assume that the frequencies {Tkω}|k|≤r0−1 are known and want to compute the

amplitudes using the procedure described in Section 2.3, formula (3.23) is still valid, where
the bounds for ‖∆b‖ are the same as before and the bounds for ‖M−1‖ are given by

‖M−1‖ ≤ ‖M−1
D ‖

1− ‖M−1
D ‖‖MO‖

being

‖MO‖ ≤
Nf (nh!)

2

π

( √
2

π( TD
(2r0−1)τ − 1

2
− nh)1+2nh

+
2

π([νmin ]− nh)1+2nh

+
8(1 + 1

2nh
)

π(N − T (2r0 − 2)‖ω‖∞ − 1
2
− nh)1+2nh

)
and

‖M−1
D ‖ ≤

‖M−1
D ‖

1− ‖M−1
D ‖ε1

, ‖M−1
D ‖ ≤

‖M−1
D ‖

1− ‖M−1
D ‖ε2

, ‖M−1
D ‖ ≤

5

3
,

being

ε1 =
8(nh!)

2(1 + 1
2nh

)

π(N − T (2r0 − 2)‖ω‖∞ − 1
2
− nh)1+2nh

, ε2 =
2(nh!)

2

π(2[νmin ]− nh)1+2nh
.

Remark 3.4.1 The bound for ‖∆y‖ given by the previous theorem can be improved by
replacing the first term in the bound for ‖∆b‖ by any of the intermediate inequalities of
the proof of Lemma 3.3.3. In this case, it may be necessary to modify the definition of r∗.
We will give examples in the following section.

Corollary 3.4.1 The block Jacobi method as stated in (2.7), used to obtain the amplitudes
from known frequencies, is convergent provided that

‖M−1
D ‖‖MO‖ < 1,

where for ‖M−1
D ‖ and ‖MO‖ we use the bounds given in the previous theorem in the case

of known frequencies, but replacing Nf by Nf − 1.
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Proof: The norm of the iteration matrix of the block Jacobi method (2.7) is

max
i=1÷Nf

(
‖B−1

i,i ‖
Nf∑
l=1
l 6=i

‖Bi,l‖
)
< ‖M−1

D ‖‖MO‖.

The reason for replacing Nf by Nf − 1 in the bounds of the previous theorem is that we
apply the block Jacobi method to system (2.3) without its first equation. �



Chapter 4

A numerical example

In this Chapter we apply the procedure developed in Chapter 2 to a family of quasi–
periodic functions for which explicit expressions for its frequencies and amplitudes can be
computed. These expressions are used to test the error estimates developed in Chapter
3.

4.1 The family of functions analyzed

In order to illustrate the procedures described and to test the error bounds obtained, we
have analyzed a family of quasiperiodic functions from which the Fourier coefficients can
be explicitly calculated. The functions are

fµ(t) =
sin(2πω1t+ ϕ1)

1− µ cos(2πω1t+ ϕ1)
· sin(2πω2t+ ϕ2)

1− µ cos(2πω2t+ ϕ2)
, µ ∈ [0, 1).

They verify fµ(t) =
∑

k∈Z2 a
µ,ϕ
k e2πi(ω,k)t with

aµ,ϕk =

{
− sign(k1k2)

µ2 c
|k|
2 e

i(k,ϕ) if k1, k2 6= 0

0 if k1 = 0 or k2 = 0
(4.1)

being

ω = (ω1, ω2), ϕ = (ϕ1, ϕ2) and c =
1−

√
1− µ2

µ

The parameter µ is directly related to the parameter δ in the Cauchy estimates (3.3),
namely

δ = Im arccos
1

µ
= − log c.

4.2 Numerical results

In this section we will show the results corresponding to apply the algorithm described
in 2.5.1 to the fµ functions for ω = (1,

√
2), ϕ = (

√
0.2,
√

0.3), nh = 2 and several values
of µ, T and N . For the chosen value of ω, the parameters D and τ of the Diophantine
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condition (3.2) are 0.85355 and 1, respectively. We have stopped the procedure when all
the frequencies (with nonzero amplitudes) of order |k| ≤ 5 have been refined. The error
of the Fourier approximation as well as the corresponding bound, as given by theorem
3.4.1, are shown in Fig. 4.1.

It must be noted that the error in frequencies and amplitudes is much smaller than
the difference between the analyzed function f and its computed quasi–periodic approx-
imation Qf . For instance, in the case of µ = 0.9, from (4.1) the maximum amplitude of
the frequencies not determined is c2

6/µ2 = 0.6268, whereas we reach errors as small as
10−14 for some values of T and N . This is due to the fact that the truncation error of
our procedure is not introduced by the difference f − Qf but by its DFT, as is seen in
Section 3.

We observe that, for every value of T , as N increases the error decreases and becomes
constant after a value of N . We also note that the minimum error for each value of T
decreases as we increase T . This behavior of the error in terms of the parameters T , N ,
can be explained in terms of the bound (3.16).

Let r1 be such that 2C
∑∞

|k|=r1 e
−δ|k||F nh

ei2πkωt,T,N
(Tkω − j)| is small (this might be

different from the order r∗ of Section 3, which is “the order up to which the TCFT
helps”). Then the frequencies of order greater than r1 can be considered irrelevant and
we can focus in frequencies of orders from r0 to r1 − 1. If N is large enough, we can
replace the DFT by the TCFT in (3.16), that is

‖∆b‖ . max
j∈{0,ji,j+i }

Nf
i=1

2C

r1−1∑
|k|=r0

e−δ|k||φnh

ei2πkωt,T
(
Tkω − j

T
)|.

In order to normalize, we note that |φnh

ei2πkωt,T
(Tkω−j

T
)| ≤ |gnh(Tkω− j)| = |g̃nh(Tkω− j)|,

being

gnh(α) =
(−1)nh(nh!)

2(ei2πα − 1)

2πiψnh
(α)

, g̃nh(α) =
(−1)nh(nh!)

2

πiψnh
(α)

.

The moduli of these functions are plotted in Fig. 4.2. As T increases, the differences
|Tkω − j| become larger and, since |g̃nh(α)| decreases with |α|, this explains why, for
sufficiently large N , the error decreases as T increases.

In order to consider the case in which N is not large, we note |F nh

ei2πkωt,T,N ,T,N
(j)| =

|hnh
N (Tkω − j)| ≤ |h̃nh

N (Tkω − j)|, being

h0
N(α) =

1− ei2πα

N(1− ei2πα/N)
, hnh

N (α) =
qnh

2nh

nh∑
l=−nh

(−1)l
(

2nh
nh + l

)
h0
N(α+ l),

h̃0
N(α) =

2

N(1− ei2πα/N)
, h̃nh

N (α) =
qnh

2nh

nh∑
l=−nh

(−1)l
(

2nh
nh + l

)
h̃0
N(α+ l).

The moduli of these functions are plotted in Fig. 4.2. Now, if N is not large enough, it
may happen that one of the |Tkω − j| approaches N and raises the bound (3.16). This
explains the fact that, for a fixed value of T , as we decrease N the error ends up increasing.

The qualitative behaviour of the bound given by theorem 3.4.1 is not the same as the
one of the real error. For each value of T , as N increases, the bound given by theorem
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Figure 4.1: Fourier analysis of the fµ functions for µ = 0.5, 0.7, 0.9 and several values of T
and N . Points corresponding to analysis with the same value of T have been joined by lines.
The solid lines represent the error in frequencies and amplitudes of the corresponding Fourier
analysis. This means that we have represented the maximum value between the error in the
frequencies in the error in the amplitudes. The points joined by dashed lines correspond to
the bound given by theorem 3.4.1. The right–hand figures are the (y, z) projection of the
left–hand side ones.
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Figure 4.2: Top: graph of the functions |gnh(α)| (dashed line) and |g̃nh(α)| (solid line) for

nh = 0. Bottom: graph of the functions |hnh
N (α)| (dashed line) and |h̃nh

N (α)| (solid line) for
nh = 0 and N = 16.

3.4.1 decreases up to a minimum value, then increases slightly and becomes constant.
This increasing is due to the introduction of the E∗ constant in the proof of the Lemma
3.3.3, which can enlarge the bound by a factor 1/E∗ (at most 32 for nh = 2, see (3.19)).
In Fig. 4.3, we evaluate the bound for ‖∆y‖ replacing the first term in (3.24) by (3.18),
which is the last bound in the proof of 3.3.3 before the introduction of E∗. We see how
the increasing of the bound after the minimum of Fig 4.1 disappears.

The drawback of this approach is that the sum in (3.18) runs over multiindices |k| =
r0 ÷ r∗ − 1 instead of their orders j = r0 ÷ r∗ − 1, and its evaluation can be prohibitive
in terms of computing time, especially if the number of basic frequencies m is large. An
alternative could be to lower r∗ in (3.25) in order to raise the minimum value of E∗. For
instance, if we set r∗ equal to

r∗ = max
(
r0,min

([
(

TD

max(( (nh!)2

π
)

1
1+2nh + 1 + nh,

1+nh

1−(1/2)1/(1+2nh) )
)1/τ − r0 + 2

]
,

[N − 1− nh
T‖ω‖∞

− r0 + 1
]))

,

then the minimum allowed value of E∗ is 1/2. But this can lead to a worse global bound
if the Fourier coefficients |ak| decrease slowly, as we illustrate in table 4.1. A different
alternative is to take as value of r∗ the one that minimizes the bound given by theorem
3.4.1. The results in this case are given in Fig. 4.5. Of course, they are worse that the
ones of Fig. 4.3.
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Figure 4.3: This is the same exploration as the one of Fig. 4.1, except that the dashed lines
represent the bound obtained replacing the first term in (3.24) by (3.18).
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max 1/E∗ µ T N r∗ actual 1/E∗ bound
32 0.9 1024 262144 61 3.53332 4.53023E–06
32 0.9 1024 524288 121 16.4812 2.08997E–05
32 0.9 1024 1048576 141 31.2714 3.96552E–05
2 0.9 1024 262144 33 1.97207 1.32447E–02
2 0.9 1024 524288 33 1.97207 1.32447E–02
2 0.9 1024 1048576 33 1.97207 1.32447E–02

Table 4.1: Computation of the bound given by theorem 3.4.1 using two different maximum
allowed values for 1/E∗. We see how, by lowering the maximum value of 1/E∗, the bound
can increase drastically.

In Fig. 4.3, the bound is still several orders of magnitude larger than the actual error.
This is due to the Diophantine condition, which give only a lower bound for the difference
between frequencies. This difference reaches the Diophantine condition in very few cases,
as shown in Fig. 4.4. In Fig. 4.6 we evaluate the bound of theorem 3.4.1 by replacing the
first term of the bound of ‖∆b‖ by (3.17). We see that in this case there is a very good
agreement between the error predicted and the actual error.
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Figure 4.4: Illustration of the non–optimality of the Diophantine condition. The points rep-
resent the values of min|k|=const. |kω| for |k| = 1 ÷ 1000. The curve represents the values of
the Diophantine condition 0.85355/|k|. The only points that are approximately on the curve
0.85355/|k| correspond to the values |k|=1, 2, 5, 12, 29, 70, 169, 408, 985.
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Figure 4.5: This is the same exploration as the one of Fig. 4.1, except that the error bound
represented by the dashed lines is obtained by minimizing ‖∆b‖ with respect to r∗ in theorem
3.4.1, instead of using (3.25).
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Figure 4.6: This is the same exploration as the one of Fig. 4.1, except that the error bound
represented by the dashed lines is obtained by replacing the first term of (3.24) by (3.17).



Chapter 5

Application to the development of
Solar System models

In this chapter we apply the procedures of Chapter 2 to the development of simplified
models for the motion in the Solar System. They are based on Fourier analysis of the time–
dependent part of the real Solar System equations of motion written as a perturbation
of the RTBP (see Appendix A). We develop models for the Earth–Moon and Sun–
Earth+Moon systems by selecting frequencies from the computed Fourier expansions in a
suitable manner. These models are tested against other well–known models through the
computation of residual accelerations along selected orbits.

5.1 Introduction

Through this chapter, we will denote the bodies of the Solar System as

S = {P1, . . . , P9, P10, P11} (5.1)

where P1,. . . ,P11 denote Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune,
Pluto, the Moon and the Sun, respectively. We will also denote the Earth, the Moon and
the Sun as E, M and S, respectively. The mass of PI ∈ S will be denoted as mPI

.
Sometimes we will be interested in considering the Earth and the Moon as a single

body, located at the Earth–Moon barycentre. We will denote this “virtual” body as P12.
In this case, we will consider a modified Solar System

S = {P1, P2, P4, . . . , P9, P11, P12}, (5.2)

which is denoted as before in order to reduce notation.
Let us consider two bodies I, J ∈ S (either the “true” Solar System or the modified

one) with mI > mJ , which we will call primaries. We can choose coordinates (x, y, z)>

and time units t such that

• the bodies I, J remain fixed at the positions (µI,J , 0, 0)> and (µI,J − 1, 0, 0)>, re-
spectively, being

µI,J =
mJ

mI +mJ

,
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• the body J completes a revolution around I in 2π time units.

Such coordinates will be called adimensional and are introduced in Appendix A (Section
A.4). In these coordinates, the equations of motion of a particle under the Newtonian
attraction of the bodies of the Solar System can be written as

ẍ = c1 + c4ẋ+ c5ẏ + c7x+ c8y + c9z + c13
∂Ω

∂x
,

ÿ = c2 − c5ẋ+ c4ẏ + c6ż − c8x+ c10y + c11z + c13
∂Ω

∂y
,

z̈ = c3 − c6ẏ + c4ż + c9x− c11y + c12z + c13
∂Ω

∂z
,

(5.3)

being

Ω =
1− µI,J√

(x− µI,J)2 + y2 + z2
+

µI,J√
(x− µI,J + 1)2 + y2 + z2

+
∑
j∈S
j 6=I,J

µI,J,j√
(x− xj)2 + (y − yj)2 + (z − zj)2

(5.4)

where
µI,J,j =

mj

mI +mJ

,

and (xj, yj, zj)
> are the adimensional coordinates of the body j ∈ S. In system (5.3),

{ci}i=1÷13 are time–dependent functions which can be computed in terms of the positions,
velocities, accelerations and over–accelerations of the two primaries I, J . The actual
formulae are given in Appendix A. If we set c5 = 2, c7 = c10 = c13 = 1 and the remaining
ci equal to zero, and we skip the sum in (5.4), then (5.3) become the RTBP equations
(A.1) with mass parameter µI,J . Therefore, we can see (5.3) as a perturbation of the
RTBP equations. We can get an idea of the order of this perturbation by looking at the
coefficient A1 of the Fourier expansions of the ci functions in Appendix A, tables C.1 to
C.13 and C.41 to C.53.

In order to evaluate the previous system of equations, we need the positions of the
bodies of the Solar System, as well as its derivatives with respect to time up to order three.
They can be computed from any analytical or numerical planetary ephemeris. In the
computations we have used the JPL ephemeris DE406, because of its high precision over
a 6000–year time span. It has the drawback of introducing discontinuities in accelerations
and over–accelerations, which are discussed in Appendix B. Higher precision can be
obtained by using DE405, but the time span is reduced to 600 years in this case.

In the following sections, we will develop intermediate models between the RTBP
and the “real” Solar System (5.3). The strategy followed is to “add basic frequencies”
to the RTBP, these frequencies being computed by applying the techniques described in
Chapter 2 to the {ci}i=1÷13 and {(xj, yj, zj)>}j∈S functions. The models will be developed
for

• the Earth–Moon case, which means to consider I = P3 and J = P10, being S as in
(5.1), and
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• the Sun–Earth+Moon case, which means to consider I = P11 and J = P12, being S
as in (5.2).

Although we will only cover these two cases, the methodology used can be applied to any
pair of primaries.

5.2 Fourier analysis of the time-dependent part of

the real Solar System in adimensional coordi-

nates

We give in this section the results of the Fourier analysis of the time–dependent part of
system (5.3).

5.2.1 Fourier analysis of the ci functions

Applying the algorithm described in section 2.5.1, we have performed Fourier analysis
of the {ci}i=1÷13 functions, both for the Earth–Moon case and the Sun–Earth+Moon
case. The parameters used have been: number of total iterates in the Fourier procedure
n = 10, minimum value of the frequency threshold bmin = 1E–10, Hanning level nh = 2
and several values of the length of the time interval T and the number of points N whose
choice will be discussed bellow. The frequency threshold b of the algorithm of 2.5.1 has
never reached the value bmin , because all the analysis have finished due to the detection of
close frequencies. In each analysis, we have computed the maximum difference between
the analyzed ci function and its quasi–periodic approximation, that is,

dmax = max
l=0÷N−1

|ci(l TN )−Qci(l
T
N

)|, (5.5)

where ci is the analyzed function and Qci its quasi–periodic approximation. In figures 5.1
(Earth–Moon case) and 5.2 (Sun–Earth+Moon case), we have represented the minimum
of dmax with respect to N for each value of T .

Since we have no a priori information of the behavior of the ci functions, we have
based our choice of the T,N parameters according to the following criteria:

• We have chosen time intervals starting at Jan 1st 2001 and of length at least 95
years.

• We have followed strategies to avoid aliasing.

• We have considered that a set of frequencies is “better” than another if the value
of dmax related to the first set is smaller than the one related to the second one.

Due to our implementation of the Fourier analysis procedures, the N parameter must
range over powers of two. For consistency, the T parameter has also been chosen to
range over a geometric progression. The time interval of all analysis starts in January
1st, 2001. The smallest time interval length, Tmin , has been taken of 95 years (34698.75
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Figure 5.1: Error results of the Fourier analysis of the ci functions in the Earth–Moon case.
For each value of T explored, we have represented the minimum value of dmax with respect
to N .
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Figure 5.2: Same as Fig. 5.1 but for the Sun–Earth+Moon case.
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Julian days). The greatest time-interval length, Tmax , has been chosen as the maximum
time interval given by the JPL DE406 ephemerides after Jan 1st 2001, which is 364938
Julian days (999.15 years). Therefore, we have let T range over the set {δnTmin}10n=0 where
δ = (Tmax/Tmin)1/10. The time units used for these Fourier analysis are revolutions of the
secondary (J) around the primary (I), or equivalently, adimensional time divided by 2π.
The reason for this is that, in this way, the frequency 1.0 corresponds to one revolution
of J around I, which has a more intuitive meaning (one lunar month in the Earth–Moon
case, one sidereal year in the Sun–Earth+Moon case). Moreover, in order to evaluate the
trigonometric approximations of the ci functions, we only have to multiply the frequencies
found by adimensional time, without the need of an additional 2π factor. For instance,
Tmin is equal to 7979.72 in the Earth–Moon case, which means that during this time span
the Moon has given 7979.72 revolutions around the Earth. For the Sun–Earth+Moon
case, Tmin = 596.891 (see Appendix A.4 for the details).

The maximum number of samples Nmax has been chosen to be 220, in order to allow
for “comfortable” runs on machines with 64MB of memory (or, equivalently, bi–processor
machines with 128MB). For each value of T , the minimum number of samples has been
chosen such that T

2N
≥ 1.5, in order to make the maximum detectable frequency to be at

least 1.5.
In order to control aliasing, two different strategies have been followed. The first one

is based on time–domain, and consists in computing the difference between the initial
function and its quasi-periodic approximation over a refinement of the grid used for the
Fourier analysis. This difference will be denoted as α1. If it increases significantly with
respect to the difference over the Fourier samples, then aliasing is very likely to occur.
We usually take 16N points equally spaced on [0, T ] for this test.

The second anti–aliasing strategy is based on frequency–domain. It consists in com-
puting the number of rightmost consecutive harmonics of the residual DFT that have
modulus less than a fraction of the maximum modulus of the residual DFT. Then, we
divide this number by N/2, the total number of harmonics. That is, we compute

α2 =
max{j : pnh

ci−q,T,N(i) ≤ pmax/25 for i = j ÷N/2}
N/2

being pmax := maxj=0÷N/2 p
nh
ci−q,T,N(j), where pnh

ci−q,T,N(j) is defined as in Section 1.3, ci
is the analyzed function and q its quasi–periodic approximation. Then, for instance,
a value of 0.2 for α1 means that there are no frequencies greater than 0.8ωmax , being
ωmax = N

2T
, with amplitude greater than 1/25 times the modulus of the residual DFT,

so we do not expect aliasing in the corresponding Fourier analysis. We are assuming
here that amplitudes decrease as frequencies increase, which is ensured by the Cauchy
estimates (3.3) for an analytic quasi–periodic function.

As an example of aliasing and how the two previously–described strategies detect it,
we have represented in Fig. 5.3 the residual DFT of some of the Fourier analysis of the c1
function in the Earth-Moon case. We give some details about these analysis in Table 5.1.
In the left plot, we see that for N = 16384 there are frequencies of high amplitude near
ωmax = T

2N
= 16384

2×2033.24
= 4.02903. As we increase N , the amplitude of the frequencies

near ωmax decrease and the values of dmax and the first anti–aliasing strategy of Table 5.1
become closer.
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Figure 5.3: Modulus of the residual DFT some of the Fourier analysis of the c1 function in the
Earth–Moon case. From left to right, the values ωmax of the right–end of the DFT window
are: 4.02903, 8.05806 and 16.1161.

day0 dayf T N pmax dmax α1 α2

366 55917.4 2033.24 16384 2.66E–05 4.90E–04 2.29E–03 0.0007
366 55917.4 2033.24 32768 2.66E–05 5.30E–04 5.67E–04 0.1633
366 55917.4 2033.24 65536 2.66E–05 5.63E–04 5.67E–04 0.5816

Table 5.1: Parameters associated to the Fourier analysis of Fig. 5.3. From left to right: day0

and dayf are the starting and ending Julian days of the time interval used for each Fourier
analysis, taking Jan 1st, 2001 as origin, T is the length of the Fourier interval, in J–revolutions,
N is the number of points used, pmax is the maximum modulus of the residual DFT, dmax

is the maximum difference between c1 and its quasi–periodic approximation over the Fourier
analysis samples, and α1, α2 are the values of the two anti–aliasing strategies described in the
text.

According to this, for the results displayed in figures 5.1 and 5.2 only those analysis
with α ≥ 0.2 have been taken into account.

For the generation of simplified models for the Solar System, among all the analysis
performed we have selected the best ones in terms of minimum pmax . They are given in
tables 5.2 (Earth–Moon) and 5.3 (Sun–Earth+Moon).

5.2.2 Fourier analysis of the positions of the planets

In order to complete the quasi–periodic approximation of all the time-dependent part in
the vector–field (5.3), we give in this section the results of the Fourier analysis of the
positions of the Solar System bodies in adimensional coordinates. For each coordinate
xPi

, yPi
, zPi

, we have performed Fourier analysis using the same parameters as for the
analysis of the ci functions. The minimum value of pmax with respect to N for fixed
values of T is plotted in figures 5.4 (Earth–Moon) and 5.6 (Sun–Earth+Moon). The best
analysis are given in tables 5.4 and 5.5.
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function T (days) T (years) T (J–rev.) N pmax dmax

c1 55551.4 152.091 2033.24 65536 2.66E–05 5.63E–04
c2 55551.4 152.091 2033.24 65536 2.67E–05 5.49E–04
c3 55551.4 152.091 2033.24 32768 3.30E–06 5.58E–05
c4 55551.4 152.091 2033.24 65536 2.31E–06 5.01E–05
c5 43904.0 120.203 1606.94 32768 4.85E–06 9.16E–05
c6 70288.7 192.440 2572.64 32768 3.92E–08 1.13E–06
c7 55551.4 152.091 2033.24 65536 3.51E–06 7.81E–05
c8 55551.4 152.091 2033.24 524288 1.96E–07 5.94E–06
c9 70288.7 192.440 2572.64 65536 1.97E–08 5.69E–07
c10 55551.4 152.091 2033.24 65536 3.51E–06 7.83E–05
c11 70288.7 192.440 2572.64 65536 1.67E–08 5.05E–07
c12 43904.0 120.203 1606.94 32768 1.58E–06 3.29E–05
c13 55551.4 152.091 2033.24 65536 3.51E–06 7.99E–05

Table 5.2: Values of the parameters for the best Fourier analyses of the ci functions for the
Earth–Moon case.

function T (days) T (J–rev) N pmax dmax

c1 142382.6 389.815 65536 4.95E–08 4.40E–07
c2 142382.6 389.815 65536 4.95E–08 4.33E–07
c3 112529.5 308.083 131072 2.28E–09 2.68E–08
c4 34698.8 94.998 4096 8.34E–06 6.74E–05
c5 34698.8 94.998 4096 1.75E–05 1.26E–04
c6 88935.7 243.488 262144 1.76E–08 5.71E–07
c7 34698.8 94.998 4096 1.36E–05 9.17E–05
c8 288422.1 789.642 524288 9.65E–08 1.67E–06
c9 88935.7 243.488 131072 9.71E–09 3.19E–07
c10 34698.8 94.998 4096 1.36E–05 9.17E–05
c11 70288.7 192.436 524288 2.35E–08 2.38E–06
c12 34698.8 94.998 4096 3.92E–06 4.06E–05
c13 34698.8 94.998 4096 1.34E–05 9.47E–05

Table 5.3: Values of the parameters for the best Fourier analyses of the ci functions for the
Sun–Earth+Moon case. Note that, in this case, J–revolutions are sidereal years.
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Figure 5.4: Error results of the Fourier analysis of the coordinates of the Solar System bodies
(in adimensional coordinates) for the Earth–Moon case. For each value of T explored, we have
represented the minimum value of dmax with respect to N . They are continued in Fig. 5.5.
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Figure 5.5: Continuation of Fig. 5.4.
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Figure 5.6: Same as Fig. 5.4 but for the Sun–Earth+Moon case (continued in Fig. 5.7).
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Figure 5.7: Continuation of Fig. 5.6.
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body coord. T (days) T (years) T (J–rev) N pmax dmax

Mercury x 70288.7 192.440 2572.64 65536 1.37E–02 3.41E–01
Mercury y 70288.7 192.440 2572.64 65536 1.08E–02 2.89E–01
Mercury z 70288.7 192.440 2572.64 32768 3.18E–03 9.99E–02
Venus x 55551.4 152.091 2033.24 65536 5.13E–03 1.53E–01
Venus y 55551.4 152.091 2033.24 65536 5.60E–03 1.65E–01
Venus z 88935.7 243.493 3255.14 65536 1.25E–03 4.10E–02
Mars x 55551.4 152.091 2033.24 65536 3.61E–02 8.43E–01
Mars y 180155.5 493.239 6593.89 131072 3.21E–02 7.53E–01
Mars z 180155.5 493.239 6593.89 131072 3.26E–03 1.38E–01

Jupiter x 55551.4 152.091 2033.24 32768 1.40E+00 1.53E+01
Jupiter y 112529.5 308.089 4118.71 65536 5.39E–01 1.31E+01
Jupiter z 70288.7 192.440 2572.64 32768 1.37E–01 1.31E+00
Saturn x 70288.7 192.440 2572.64 32768 6.07E+00 6.19E+01
Saturn y 142382.6 389.822 5211.36 65536 2.53E+00 6.46E+01
Saturn z 180155.5 493.239 6593.89 65536 3.87E–01 1.04E+01
Uranus x 142382.6 389.822 5211.36 131072 2.33E+00 3.75E+01
Uranus y 142382.6 389.822 5211.36 131072 2.33E+00 3.76E+01
Uranus z 364938.0 999.146 13357.14 131072 2.42E–01 4.14E+00
Neptune x 288422.1 789.657 10556.57 262144 3.12E+00 4.52E+01
Neptune y 364938.0 999.146 13357.14 262144 2.37E+00 4.51E+01
Neptune z 364938.0 999.146 13357.14 131072 1.80E+00 2.72E+01
Pluto x 364938.0 999.146 13357.14 262144 4.15E+00 1.69E+02
Pluto y 364938.0 999.146 13357.14 262144 2.08E+01 2.93E+02
Pluto z 364938.0 999.146 13357.14 131072 2.42E+00 5.16E+01
Sun x 55551.4 152.091 2033.24 65536 4.41E–03 9.73E–02
Sun y 55551.4 152.091 2033.24 65536 4.41E–03 9.21E–02
Sun z 34698.8 95.000 1270.01 16384 8.49E–04 8.65E–03

Table 5.4: Best Fourier analysis parameters for the positions of the Solar System bodies in
adimensional coordinates in the Earth–Moon case.
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body coord. T (days) T (J–rev) N pmax dmax

Mercury x 55551.4 152.089 16384 6.56E–06 6.68E–05
Mercury y 55551.4 152.089 16384 6.56E–06 7.24E–05
Mercury z 34698.8 94.998 8192 1.64E–06 4.93E–05
Venus x 34698.8 94.998 4096 7.61E–06 7.57E–05
Venus y 34698.8 94.998 4096 7.61E–06 9.32E–05
Venus z 34698.8 94.998 4096 1.93E–06 1.50E–05
Mars x 70288.7 192.436 8192 4.87E–05 5.80E–04
Mars y 70288.7 192.436 8192 4.87E–05 5.11E–04
Mars z 34698.8 94.998 4096 3.00E–06 4.48E–05

Jupiter x 70288.7 192.436 8192 3.56E–03 1.54E–02
Jupiter y 112529.5 308.083 16384 9.35E–04 1.41E–02
Jupiter z 34698.8 94.998 4096 7.68E–05 3.82E–04
Saturn x 70288.7 192.436 8192 1.29E–02 4.29E–02
Saturn y 70288.7 192.436 8192 1.29E–02 4.82E–02
Saturn z 70288.7 192.436 8192 5.39E–04 1.57E–03
Uranus x 142382.6 389.815 16384 5.57E–03 4.82E–02
Uranus y 142382.6 389.815 16384 5.57E–03 5.10E–02
Uranus z 142382.6 389.815 16384 2.45E–04 1.25E–03
Neptune x 288422.1 789.642 32768 5.40E–03 6.15E–02
Neptune y 288422.1 789.642 32768 5.41E–03 6.71E–02
Neptune z 227949.2 624.079 32768 4.10E–03 2.10E–02
Pluto x 364938.0 999.127 65536 1.27E–02 2.92E–01
Pluto y 364938.0 999.127 65536 1.41E–02 3.72E–01
Pluto z 364938.0 999.127 32768 6.19E–03 7.64E–02

Table 5.5: Best Fourier analysis parameters for the positions of the Solar System bodies in
adimensional coordinates in the Sun–Earth+Moon case.
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5.3 Generation of simplified Solar System models

In this section we will develop simplified Solar System models based on the Fourier ex-
pansions computed in the previous section. The models obtained will be compared with
other models though the computation of residual accelerations along selected orbits.

5.3.1 Adjustment by linear combinations of basic frequencies

In order to turn the output of our Fourier analysis procedures into the usual form of a
quasi–periodic function (3.1), we need to adjust frequencies as linear combinations, with
integer coefficients, of basic ones. We will distinguish two cases:

• the case in which we do not know the basic frequencies, which need to be extracted
from the list of frequencies to be adjusted, and

• the case in which the basic frequencies are known.

A simple approach for the first case would be: choose a maximum order of the linear
combinations to be found, and a tolerance for the adjustment of frequencies as linear
combination of the basic ones. Then, for each frequency, try out all the linear combinations
of the current set of basic frequencies up the chosen maximum order. If one of these linear
combinations fulfills the requirements, take it, otherwise add the current frequency to the
set of basic frequencies.

This procedure may add extra basic frequencies (and thus end up with a rationally
dependent set) in some cases, for instance, if the current frequency is an integer divisor
of one of the basic frequencies. In order to avoid this, when the current frequency cannot
be adjusted as a linear combination of the current basis, for each frequency in the current
basis we can try to substitute it by the non–adjusted one and see if all the pre–processed
frequencies adjust to this modified basis. If this is not the case, the new frequency is
added to the basic set.

These considerations lead to the following

Algorithm 5.3.1 Given {f1, . . . , fNf
} the set of frequencies to be adjusted as linear com-

bination of basic ones to be selected in the set, a tolerance tol for the adjustments and
a maximum order maxor for the linear combinations to be found, compute the basis
{ω1, . . . , ωnb

} and the linear combinations {(ki1, . . . , kinb
)}i=1÷Nf

as

ω1 ← f1, k
1
1 ← 1, nb ← 1

for i = 2÷Nf

if fi ∈ lc({ωl}l, tol,maxor)
(ki1, . . . , k

i
nb

) = adjust(fi, {ωl}l, tol,maxor)
else

if ∃j ∈ {1, . . . , nb} : f1, . . . , fi ∈ lc({ω1, . . . ,
(j

fi, . . . , ωNf
}, tol,maxor)

ωj ← fi
for l = 1÷ i

(kl1, . . . , k
l
nb

) = adjust(fi, {ωm}m, tol,maxor)
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else
nb ← nb + 1
(ki1, . . . k

i
nb

) = (0, . . . , 0, 1)
for l = 1÷ i− 1

klnb
= 0

In this formulation, we have introduced two functions lc and adjust, defined as follows:

• lc({ωi}i=1÷nb
, tol,maxor) is defined as the set of real numers f such that there exists

(k1, . . . , knb
) with ki integer, |k1|+ . . .+ |knb

| ≤ maxor and |f−k1ω1− . . .−knb
ωnb
| ≤

tol,

• for f real, adjust(f, {ωi}i=1÷nb
, tol,maxor) returns the first (k1, . . . , knb

), in increas-
ing order and increasing lexicographical order within each order, with order ≤ maxor,
such that |f − k1ω1− . . .− knb

ωnb
| ≤ tol. In the case that there is no (k1, . . . , knb

) of
order less than maxor with |f − k1ω1 − . . . − knb

ωnb
| ≤ tol, the one with minimum

|f − k1ω1 − . . .− knb
ωnb
| is returned.

Of course, in an actual implementation the role of these functions is accomplished by the
same code.

In the second case, in which the basic frequencies {ω1, . . . , ωnb
} are know, we can just

take the best linear combination for each frequency. This can be stated as

Algorithm 5.3.2 Given {f1, . . . , fNf
} the set of frequencies to be adjusted as linear com-

bination of the frequency basis {ω1, . . . , ωnb
}, a tolerance tol for the adjustments and a

maximum order maxor for the linear combinations to be found, compute the linear com-
binations {(ki1, . . . , kinb

)}i=1÷Nf
as

for i = 1÷Nf

(ki1, . . . , k
i
nb

) = adjust(fi, {ωl}l, tol,maxor)

5.3.2 Simplified models for the Earth–Moon case

In a rather accurate theory for the lunar motion, as the simplified Brown theory given in
[8], the fundamental parameters can be expressed in terms of five basic frequencies:

• The mean longitude of the Moon, which is equal to 1.0.

• The mean elongation of the Moon from the Sun, 0.925195997455093. This is the
frequency of the time-dependent part in the Bicircular Problem (BCP) and the
Quasi–Bicircular Problem, (QBCP, see Appendix A).

• The mean longitude of the lunar perigee, which is equal to 8.45477852931292×10−3.

• The longitude of the mean ascending node of the lunar orbit on the ecliptic,
4.01883841204748× 10−3.

• the Sun’s mean longitude of perigee, 3.57408131981537× 10−6.
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The units used for these frequencies are cycles per lunar revolution. In what follows, these
frequencies will be denoted {ω1, . . . , ω5}.

The value of the last frequency in the above set is close to the lower amplitudes of
our Fourier expansions, which is close to the precision we can expect in the determination
of frequencies, since all Fourier analysis have stopped due to the detection of too close
frequencies. In order to avoid the difficulties due this fact, and in order to have a set of
basic frequencies with astronomical meaning, we have adopted these frequencies as the
basic set, instead of the ones provided by Algorithm 5.3.1.

For the simplified models to be developed in this section, we will only take into account
the coordinates of the Sun in (5.4). This avoids the introduction of additional basic
frequencies, and is also enough for our purposes, as it will become clear later. In this way,
we will only use the Fourier expansions of c1, . . . , c13 and xS, yS, zS.

Starting from the frequency basis {ωi}i=1÷5, we will look for a new basis {νi}i=1÷5. In
terms of this new basis, we will generate 5 models SSSMi, i = 1÷ 5, in such a way that
the equations of motion of SSSMi are

ẍ = ci1 + c4ẋ+ ci5ẏ + ci7x+ ci8y + ci9z + ci13
∂Ωi

∂x

ÿ = ci2 − ci5ẋ+ ci4ẏ + ci6ż − ci8x+ ci10y + ci11z + c13
∂Ωi

∂y

z̈ = ci3 − c6ẏ + ci4ż + ci9x− ci11y + ci12z + ci13
∂Ωi

∂z

being

Ω =
1− µE,M√

(x− µE,M)2 + y2 + z2
+

µE,M√
(x− µE,M + 1)2 + y2 + z2

+
µE,M,S√

(x− xiS)2 + (y − yiS)2 + (z − ziS)2
.

Here cij, j = 1÷13 and xiS, y
i
S, z

i
S stand for their Fourier expansions, computed in the pre-

vious section, but keeping only the frequencies that are expressed as linear combinations
(with integer coefficients) of the frequencies ν1, . . . , νi.

We have used Algorithm 5.3.2 of the previous section with tol = 10−6 and maxor = 20
to adjust the frequencies found in the analysis of table 5.2 as linear combinations of the
{ωi}i=1÷5. The results for the first 15 frequencies detected in each ci and xS, yS, zS are
shown in tables 5.6 to 5.16. The full expansions are given in Appendix C.

We will take ν1 = ω2 as the first frequency of our new basis. The reason for that is
that it is the main frequency of c1, c2, xS and yS, and in this way it can be considered
the main “planar frequency”. This is coherent with the fact that ω2 is also the frequency
of the BCP and QBCP models (see Appendix A).

We observe that, except for c3, c6, c9, c11 and zS, the main frequencies of the remaining
functions can be expressed as linear combinations of ω2 and ω1 − ω3. Thus, we will take
ν2 = ω1−ω3. Note that, in this way, ci for i = 3, 6, 9, 11 and zS will be poorly approximated
in SSSM2, but this will not give a poor global approximation because ci for i = 3, 6, 9, 11
are smaller than the remaining ci, and zS is also smaller than xS, yS.
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freq ampl err k1 k2 k3 k4 k5 order
0.00000000000 3.49728E–04 0.00000E+00 0 0 0 0 0 0
0.92519578630 2.16240E+00 –2.11120E–07 0 1 0 0 0 1
1.91674083000 1.77450E–01 –3.88880E–07 1 1 –1 0 0 3
0.85039537680 7.53250E–02 –1.92240E–07 –1 2 0 0 1 4
0.06634926290 7.39730E–02 3.88600E–08 1 –1 –1 0 0 3
1.78404231460 3.41170E–02 –4.56330E–07 –1 3 1 0 0 5
2.77558735940 2.39690E–02 –6.33010E–07 0 3 0 0 0 3
2.90828587990 1.36950E–02 –5.60520E–07 2 1 –2 0 0 5
1.84194060340 7.31080E–03 –1.87100E–07 0 2 –1 0 1 4
1.08284144950 3.91270E–03 –2.29900E–07 2 –1 0 2 0 5

Table 5.6: First 10 frequencies of the Fourier analysis of c1. The frequencies have been
adjusted as linear combinations of {ωi}i=1÷5. From left to right the columns are: frequency,
in cycles per lunar revolution, amplitude, error (freq− k1ω1 − . . .− k5ω5), coefficients of the
linear combination that approximates freq, and order of the linear combination (|k1|+ . . . |k5|).

freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 –6.70000E–09 0.00000E+00 0 0 0 0 0 0
0.92519578630 2.16960E+00 –2.11120E–07 0 1 0 0 0 1
1.91674083000 1.77820E–01 –3.88890E–07 1 1 –1 0 0 3
0.85039537680 7.58320E–02 –1.92220E–07 –1 2 0 0 1 4
0.06634926260 4.64680E–02 3.85950E–08 1 –1 –1 0 0 3
1.78404231460 3.41920E–02 –4.56320E–07 –1 3 1 0 0 5
2.77558735930 2.39940E–02 –6.33040E–07 0 3 0 0 0 3
2.90828587990 1.37170E–02 –5.60520E–07 2 1 –2 0 0 5
1.84194060340 7.33860E–03 –1.87100E–07 0 2 –1 0 1 4
1.08284144950 3.95090E–03 –2.29860E–07 2 –1 0 2 0 5

Table 5.7: Same as table 5.6 but for the c2 function.

freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 –1.41400E–07 0.00000E+00 0 0 0 0 0 0
0.07882283210 1.90520E–01 –8.87040E–09 1 –1 0 1 0 3
0.15362345870 6.56920E–03 1.89270E–07 2 –2 0 1 –1 6
0.91272221270 5.20890E–03 –1.67780E–07 0 1 –1 –1 0 3
1.07036787670 5.21170E–03 –1.85760E–07 2 –1 –1 1 0 5
0.78002369690 1.09620E–03 –2.35620E–07 –2 3 1 –1 0 7
0.93766935940 1.08610E–03 –2.54980E–07 0 1 1 1 0 3
1.92921440450 3.96610E–04 –4.31370E–07 1 1 0 1 0 3
1.77156873960 3.60950E–04 –4.14380E–07 –1 3 0 –1 0 5
0.00402218340 3.31660E–04 –2.29130E–07 0 0 0 1 1 2

Table 5.8: Same as table 5.6 but for the c3 function.
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freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 0.00000E+00 0.00000E+00 0 0 0 0 0 0
0.99154505160 1.07920E–01 –1.69890E–07 1 0 –1 0 0 2
1.85039157300 2.94710E–02 –4.21940E–07 0 2 0 0 0 2
0.85884652970 1.68610E–02 –2.43690E–07 –1 2 1 0 0 4
1.98309009370 8.82140E–03 –3.49210E–07 2 0 –2 0 0 4
2.84193661720 3.80000E–03 –5.99130E–07 1 2 –1 0 0 4
1.77559111020 1.93150E–03 –4.56240E–07 –1 3 0 0 1 5
2.97463513490 6.78820E–04 –5.29470E–07 3 0 –3 0 0 6
2.70923810000 7.14080E–04 –6.68310E–07 –1 4 1 0 0 6
0.78404586970 6.38340E–04 –4.75270E–07 –2 3 1 0 1 7

Table 5.9: Same as table 5.6 but for the c4 function.

freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 2.00003E+00 0.00000E+00 0 0 0 0 0 0
0.99154503470 2.17650E–01 –1.86770E–07 1 0 –1 0 0 2
1.85039156830 4.29420E–02 –4.26650E–07 0 2 0 0 0 2
0.85884653190 3.81670E–02 –2.41550E–07 –1 2 1 0 0 4
1.98309007300 1.48070E–02 –3.69960E–07 2 0 –2 0 0 4
2.84193660360 5.36300E–03 –6.12800E–07 1 2 –1 0 0 4
1.77559105180 2.84910E–03 –5.14630E–07 –1 3 0 0 1 5
0.78404613980 1.55830E–03 –2.05220E–07 –2 3 1 0 1 7
0.91674466300 1.30720E–03 –1.30020E–07 0 1 –1 0 1 3
0.92519587730 1.12100E–03 –1.20200E–07 0 1 0 0 0 1

Table 5.10: Same as table 5.6 but for the c5 function.

freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 0.00000E+00 0.00000E+00 0 0 0 0 0 0
0.84637295300 1.44550E–03 –2.03520E–07 –1 2 0 –1 0 4
1.00401861550 1.44530E–03 –2.22890E–07 1 0 0 1 0 2
0.01247357960 1.89340E–04 –3.72940E–08 0 0 1 1 0 2
0.14517208260 1.88980E–04 1.76520E–08 2 –2 –1 1 0 6
0.77157269570 8.78480E–05 –3.23250E–08 –2 3 0 –1 1 7
0.92921810820 3.54680E–05 –3.01790E–07 0 1 0 1 1 3
1.07881913160 3.51310E–05 –1.35230E–07 2 –1 0 1 –1 5
0.92117316420 1.72620E–05 –4.20780E–07 0 1 0 –1 –1 3
0.21997272480 1.09360E–05 2.31350E–07 3 –3 –1 1 –1 9

Table 5.11: Same as table 5.6 but for the c6 function.
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freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 1.00478E+00 0.00000E+00 0 0 0 0 0 0
0.99154504270 1.65040E–01 –1.78730E–07 1 0 –1 0 0 2
0.85884652970 3.24780E–02 –2.43700E–07 –1 2 1 0 0 4
1.85039157280 1.84070E–02 –4.22070E–07 0 2 0 0 0 2
1.98309009370 1.35090E–02 –3.49200E–07 2 0 –2 0 0 4
2.84193661730 3.29470E–03 –5.99110E–07 1 2 –1 0 0 4
0.13269851610 1.45030E–03 6.80760E–08 2 –2 –2 0 0 6
0.78404586980 1.39870E–03 –4.75200E–07 –2 3 1 0 1 7
1.77559111010 1.25920E–03 –4.56320E–07 –1 3 0 0 1 5
2.97463513460 1.08280E–03 –5.29830E–07 3 0 –3 0 0 6

Table 5.12: Same as table 5.6 but for the c7 function.

freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 –7.00000E–10 0.00000E+00 0 0 0 0 0 0
1.85039159880 8.24730E–03 –3.96070E–07 0 2 0 0 0 2
2.84193667480 9.04550E–04 –5.41620E–07 1 2 –1 0 0 4
0.85884652020 9.17510E–04 –2.53210E–07 –1 2 1 0 0 4
1.77559103310 5.07100E–04 –5.33340E–07 –1 3 0 0 1 5
0.99154507800 1.95970E–04 –1.43510E–07 1 0 –1 0 0 2
2.70923811510 1.73420E–04 –6.53300E–07 –1 4 1 0 0 6
3.70078319630 1.14930E–04 –7.93520E–07 0 4 0 0 0 4
1.92519194710 9.57130E–05 –4.76300E–07 1 1 0 0 –1 3
3.83348174850 8.00900E–05 –6.89320E–07 2 2 –2 0 0 6

Table 5.13: Same as table 5.6 but for the c8 function.

freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 –0.00000E+00 0.00000E+00 0 0 0 0 0 0
0.84637295300 7.24530E–04 –2.03520E–07 –1 2 0 –1 0 4
1.00401861550 7.24450E–04 –2.22890E–07 1 0 0 1 0 2
0.01247357980 4.82170E–05 –3.71330E–08 0 0 1 1 0 2
0.14517208260 4.80940E–05 1.76380E–08 2 –2 –1 1 0 6
0.77157269560 4.41510E–05 –3.24260E–08 –2 3 0 –1 1 7
1.99556365120 4.00140E–05 –4.08710E–07 2 0 –1 1 0 4
1.83791798820 3.99960E–05 –3.89770E–07 0 2 –1 –1 0 4
0.92921810800 1.78950E–05 –3.01960E–07 0 1 0 1 1 3
1.07881913140 1.76710E–05 –1.35470E–07 2 –1 0 1 –1 5

Table 5.14: Same as table 5.6 but for the c9 function.
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freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 1.00478E+00 0.00000E+00 0 0 0 0 0 0
0.99154504270 1.65030E–01 –1.78730E–07 1 0 –1 0 0 2
0.85884652970 3.24780E–02 –2.43700E–07 –1 2 1 0 0 4
1.85039157280 1.84070E–02 –4.22070E–07 0 2 0 0 0 2
1.98309009370 1.35090E–02 –3.49200E–07 2 0 –2 0 0 4
2.84193661730 3.29470E–03 –5.99110E–07 1 2 –1 0 0 4
0.13269851610 1.45030E–03 6.80760E–08 2 –2 –2 0 0 6
0.78404586980 1.39870E–03 –4.75200E–07 –2 3 1 0 1 7
1.77559111010 1.25920E–03 –4.56320E–07 –1 3 0 0 1 5
2.97463513460 1.08280E–03 –5.29830E–07 3 0 –3 0 0 6

Table 5.15: Same as table 5.6 but for the c10 function.

freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 –0.00000E+00 0.00000E+00 0 0 0 0 0 0
1.00401861560 7.20820E–04 –2.22850E–07 1 0 0 1 0 2
0.84637295300 6.06950E–04 –2.03500E–07 –1 2 0 –1 0 4
0.14517208280 4.66020E–05 1.78760E–08 2 –2 –1 1 0 6
1.99556364910 3.64300E–05 –4.10800E–07 2 0 –1 1 0 4
1.83791798780 3.65390E–05 –3.90160E–07 0 2 –1 –1 0 4
0.77157269620 3.33090E–05 –3.18310E–08 –2 3 0 –1 1 7
0.01247358100 3.15620E–05 –3.59500E–08 0 0 1 1 0 2
2.85441018260 2.40050E–05 –6.50710E–07 1 2 0 1 0 4
2.69676451900 2.36110E–05 –6.32380E–07 –1 4 0 –1 0 6

Table 5.16: Same as table 5.6 but for the c11 function.

freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 –1.61183E–03 0.00000E+00 0 0 0 0 0 0
0.99154502640 5.38970E–02 –1.95110E–07 1 0 –1 0 0 2
1.85039157030 2.69200E–02 –4.24600E–07 0 2 0 0 0 2
0.85884654110 8.04870E–03 –2.32340E–07 –1 2 1 0 0 4
1.98309004860 7.32970E–03 –3.94350E–07 2 0 –2 0 0 4
2.84193659510 4.58070E–03 –6.21280E–07 1 2 –1 0 0 4
1.77559129770 1.70370E–03 –2.68790E–07 –1 3 0 0 1 5
2.70923811570 8.46260E–04 –6.52680E–07 –1 4 1 0 0 6
2.97463506060 7.75820E–04 –6.03790E–07 3 0 –3 0 0 6
3.70078314150 5.70720E–04 –8.48320E–07 0 4 0 0 0 4

Table 5.17: Same as table 5.6 but for the c12 function.
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freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 1.00747E+00 0.00000E+00 0 0 0 0 0 0
0.99154504270 1.64840E–01 –1.78730E–07 1 0 –1 0 0 2
0.85884652970 3.15620E–02 –2.43700E–07 –1 2 1 0 0 4
1.85039157290 2.66550E–02 –4.22010E–07 0 2 0 0 0 2
1.98309009370 1.34800E–02 –3.49210E–07 2 0 –2 0 0 4
2.84193661730 4.19930E–03 –5.99110E–07 1 2 –1 0 0 4
1.77559111020 1.76690E–03 –4.56280E–07 –1 3 0 0 1 5
0.13269851610 1.47040E–03 6.80410E–08 2 –2 –2 0 0 6
0.78404586980 1.34660E–03 –4.75200E–07 –2 3 1 0 1 7
2.97463513490 1.07950E–03 –5.29490E–07 3 0 –3 0 0 6

Table 5.18: Same as table 5.6 but for the c13 function.

freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 –6.27023E–02 0.00000E+00 0 0 0 0 0 0
0.92519578630 3.86480E+02 –2.11130E–07 0 1 0 0 0 1
1.91674083000 3.17140E+01 –3.88890E–07 1 1 –1 0 0 3
0.06634926280 1.32180E+01 3.87440E–08 1 –1 –1 0 0 3
0.99999608230 1.03360E+01 –3.43580E–07 1 0 0 0 –1 2
1.78404231420 6.09200E+00 –4.56710E–07 –1 3 1 0 0 5
2.77558735980 4.27790E+00 –6.32540E–07 0 3 0 0 0 3
0.85039537680 3.79560E+00 –1.92230E–07 –1 2 0 0 1 4
2.90828587090 2.44750E+00 –5.69500E–07 2 1 –2 0 0 5
1.99154129500 1.00420E+00 –3.52350E–07 2 0 –1 0 –1 4

Table 5.19: Same as table 5.6 but for the xS function.

freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 1.60785E–05 0.00000E+00 0 0 0 0 0 0
0.92519578630 3.87760E+02 –2.11130E–07 0 1 0 0 0 1
1.91674083000 3.17800E+01 –3.88890E–07 1 1 –1 0 0 3
0.99999608230 1.03360E+01 –3.43590E–07 1 0 0 0 –1 2
0.06634926280 8.30700E+00 3.87360E–08 1 –1 –1 0 0 3
1.78404231280 6.10530E+00 –4.58110E–07 –1 3 1 0 0 5
2.77558735590 4.28220E+00 –6.36440E–07 0 3 0 0 0 3
0.85039537680 3.85420E+00 –1.92230E–07 –1 2 0 0 1 4
2.90828587990 2.45150E+00 –5.60490E–07 2 1 –2 0 0 5
1.99154129500 1.00460E+00 –3.52360E–07 2 0 –1 0 –1 4

Table 5.20: Same as table 5.6 but for the yS function.
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freq. ampl. err. k1 k2 k3 k4 k5 order
0.00000000000 4.24394E–04 0.00000E+00 0 0 0 0 0 0
0.07882283000 3.40520E+01 –1.09480E–08 1 –1 0 1 0 3
0.91272219540 9.30940E–01 –1.85070E–07 0 1 –1 –1 0 3
0.00402231670 9.11850E–01 –9.57650E–08 0 0 0 1 1 2
1.07036785680 9.31450E–01 –2.05600E–07 2 –1 –1 1 0 5
0.15362321080 3.22470E–01 –5.86630E–08 2 –2 0 1 –1 6
0.93766936950 1.93940E–01 –2.44860E–07 0 1 1 1 0 3
0.78002371740 1.95730E–01 –2.15110E–07 –2 3 1 –1 0 7
1.92921439960 7.07670E–02 –4.36290E–07 1 1 0 1 0 3
1.77156873300 6.44060E–02 –4.20950E–07 –1 3 0 –1 0 5

Table 5.21: Same as table 5.6 but for the zS function.

The remaining νi have been taken in order to make the sequence of models SSSM3,
SSSM4, SSSM5 decreasing in error in the residual accelerations test that will be discussed
bellow. After some trials, we have set

• ν3 = ω1 − ω2 + ω4, which is the main frequency of c3,

• ν4 = ω1 − ω5, which is the first frequency of xS which cannot be expressed in terms
of ν1, ν2, and

• ν5 = ω5−ω2, which is the first frequency of c3 that cannot be expressed in terms of
ν1, ν2, ν3, ν4.

In this way, we have
ν1

ν2

ν3

ν4

ν5

 =


0 1 0 0 0
1 0 −1 0 0
1 −1 0 1 0
1 0 0 0 −1
0 −1 0 0 1




ω1

ω2

ω3

ω4

ω5

 .

Since the above matrix is unimodular, {νi}i=1÷5 is a valid basic set of frequencies.
Using residual accelerations, the SSSMi models, as well as the RTBP, the Bicircular

Problem (BCP) and the Quasi–Bicircular problem (QBCP, see Appendix A) have been
compared with the real Solar System, as given by (5.3) and (5.4) with the ci and xi, yi, zi
functions evaluated from the JPL DE406 ephemeris files. We have proceed as follows.
Given two models to be compared, with differential equations r̈ = f(r, t) and r̈ = g(r, t),
respectively, and given a trajectory (positions and velocities) γ : R → R6, which does
not need to be a trajectory of any of the models, we compute the “mean relative residual
acceleration over γ” as

1

L

∫ T

0

‖f(γ(s), t)− g(γ(s), t)‖
‖g(γ(s), t)‖

‖γ′(s)‖ds, (5.6)
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where t is a fixed epoch (in adimensional units) and

L =

∫ T

0

‖γ′(s)‖ds

is the length of the trajectory.
It must be noted that, the BCP and the QBCP as stated in appendix A assume that,

for t = 0, the vector from the Earth to the Moon and the one from the Earth–Moon
barycenter to the Sun form an angle of 180 degrees. Therefore, we must set the origin
of adimensional time, both in the SSSMi models and the real Solar System, such that
Earth, Moon and Sun are in a configuration close to the one of the BCP and the QBCP
for t = 0. For the test of Table 5.22, we have chosen as t = 0 the first epoch after Jan
1st, 2001 in which the projection of the vector from the Earth–Moon barycenter to the
Sun over the Earth–Moon instantaneous plane of motion forms an angle of 180 degrees
with the vector from the Earth to the Moon. This is the Julian day 2451919.3489 (Jan
9th, 2001).

The results of the residual accelerations test are given in Table 5.22. From this table,
it becomes clear that the best one–frequency models that we can use, using the residual
acceleration criterium, are the BCP and the QBCP. But, when we allow two or more
frequencies, the models we get fit the JPL one much better. As it has been said, only the
Sun has been taken into account in all the intermediate models. By adding additional
Solar System bodies, the residual accelerations are of the same order of magnitude than
the ones obtained just using the Sun.

5.3.3 Simplified models for the Sun–Earth+Moon case

In this case, we will extract the basic frequencies from the Fourier analysis of Section 5.2
using Algorithm 5.3.1 for its determination.

From the numerical data obtained (see Appendix C), we first observe that the maxi-
mum modulus of the highest Fourier coefficient of c1, c2, c3, c6, c8, c9, c11 is 3.521E–05,
whereas the minimum modulus of the highest Fourier coefficient of the remaining ci is
1.669E–02. Therefore, in order to detect basic frequencies, we will only take into con-
sideration the c4, c5, c7, c10, c12 and c13 functions. In addition to this simplification, we
will not consider any Solar System body in (5.4), since, just using the ci, we are already
taking the Sun into account.

Applying Algorithm 5.3.1 to the c13 function, setting tol = 1E–5, maxor = 20, we get
the following 4 basic frequencies:

ν1 = 0.9999926164, ν2 = 0.6255242728, ν3 = 0.9147445983, ν4 = 1.8313395538.

These 4 basic frequencies allow to adjust the frequencies of the best analysis of the c4, c5,
c7, c10 and c12 functions. For that, we have applied the second algorithm of section 5.3.1
with tol = 1E–5 amd maxor = 20. The results are given in tables 5.23 to 5.27. With
these frequencies, we construct the SSSM1, . . . , SSSM4 as we did in the Earth–Moon case.

In Table 5.29, we compare the models RTBP, SSSM1 and SSSM4 with the real Solar
System using the same residual acceleration test that we used in the Earth–Moon case. We
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z-a. RTBP BCP QBCP SSSM1 SSSM2 SSSM3 SSSM4 SSSM5

0.020 0.140126 0.146459 0.138580 0.365299 0.095769 0.010674 0.001374 0.000727
0.022 0.138397 0.144693 0.136908 0.359442 0.094562 0.010534 0.001360 0.000724
0.025 0.136603 0.142856 0.135174 0.353302 0.093293 0.010388 0.001346 0.000720
0.028 0.134760 0.140962 0.133392 0.346913 0.091967 0.010235 0.001331 0.000716
0.031 0.132882 0.139025 0.131578 0.340305 0.090590 0.010076 0.001315 0.000711
0.034 0.130985 0.137059 0.129747 0.333509 0.089166 0.009913 0.001299 0.000707
0.038 0.129087 0.135080 0.127914 0.326550 0.087699 0.009744 0.001282 0.000702
0.043 0.127204 0.133103 0.126097 0.319452 0.086191 0.009570 0.001265 0.000696
0.048 0.125352 0.131141 0.124312 0.312235 0.084643 0.009393 0.001247 0.000691
0.053 0.123549 0.129209 0.122576 0.304915 0.083056 0.009211 0.001229 0.000685
0.059 0.121813 0.127324 0.120905 0.297505 0.081429 0.009024 0.001210 0.000678
0.066 0.120162 0.125502 0.119319 0.290018 0.079760 0.008833 0.001191 0.000671
0.073 0.118614 0.123757 0.117835 0.282462 0.078045 0.008637 0.001171 0.000664
0.082 0.117189 0.122108 0.116473 0.274845 0.076280 0.008436 0.001150 0.000655
0.091 0.115905 0.120571 0.115249 0.267173 0.074461 0.008229 0.001128 0.000646
0.102 0.114778 0.119161 0.114181 0.259453 0.072581 0.008016 0.001105 0.000636
0.113 0.113823 0.117895 0.113283 0.251690 0.070634 0.007796 0.001081 0.000625
0.126 0.113052 0.116784 0.112566 0.243889 0.068612 0.007568 0.001056 0.000612
0.141 0.112471 0.115836 0.112037 0.236056 0.066510 0.007331 0.001030 0.000598
0.157 0.112080 0.115057 0.111695 0.228199 0.064322 0.007085 0.001002 0.000583
0.175 0.111872 0.114443 0.111533 0.220325 0.062042 0.006831 0.000973 0.000566
0.195 0.111829 0.113984 0.111535 0.212440 0.059667 0.006566 0.000942 0.000547
0.217 0.111928 0.113663 0.111672 0.204551 0.057196 0.006292 0.000910 0.000526
0.242 0.112133 0.113450 0.111909 0.196665 0.054632 0.006008 0.000875 0.000504
0.269 0.112400 0.113311 0.112201 0.188782 0.051978 0.005716 0.000840 0.000481
0.300 0.112678 0.113200 0.112492 0.180899 0.049240 0.005417 0.000802 0.000456

Table 5.22: Mean residual accelerations between several models and the real Solar System
over selected halo orbits of the RTBP around L2 in the Earth–Moon case. The first column
displays the z–amplitude of the halo orbit used as test orbit. The remaining columns show the
mean residual acceleration between the corresponding model and the real Solar System over
the test orbit.
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note that the SSSM4 model gives worse results than SSSM1. This is not a contradiction.
Examining table 5.23 to 5.27 we can see that the maximum amplitude of the frequencies
of c4, c5, c7, c10 and c12 that are not multiple of ν1 is 6.695E–05. Because of that, adding
frequencies does not improve significantly the approximation of the ci functions, and in
this way the structure of the equations 5.3 “takes over” the fact that the ci terms of
SSSM4 are closer to the ones of the real Solar System than the corresponding terms of
SSSM1.

Therefore, for the Sun–Earth+Moon case, we will give SSSM1 as simplified Solar
System model. Note that this is a model with very few frequencies that significantly
improves the RTBP.

freq. ampl. err. k1 k2 k3 k4 order
0.00000000000 1.30000E–09 0.00000E+00 0 0 0 0 0
0.99999261980 3.33720E–02 3.38800E–09 1 0 0 0 1
1.99998564390 8.35280E–04 4.11070E–07 2 0 0 0 2
1.25103997640 3.93800E–05 –8.56920E–06 0 2 0 0 2
1.83134352170 3.40050E–05 3.96790E–06 0 0 0 1 1
0.91473091670 2.84920E–05 –1.36820E–05 0 0 1 0 1
2.99997409570 1.97160E–05 –3.75350E–06 3 0 0 0 3
1.87659754110 9.29780E–06 2.47230E–05 0 3 0 0 3

Table 5.23: Frequencies of the best analysis of c4 adjusted as linear combinations of {νi}i=1÷4.
From left to right the columns are: frequency, in cycles per lunar revolution, amplitude, error
(freq. − k1ν1 − . . . k4ν4), coefficients of the linear combination that approximates freq., and
order of the linear combination (|k1|+ . . .+ |k4|).

freq. ampl. err. k1 k2 k3 k4 order
0.00000000000 2.00000E+00 0.00000E+00 0 0 0 0 0
0.99999261700 6.67490E–02 5.51530E–10 1 0 0 0 1
1.99998563790 1.39230E–03 4.05090E–07 2 0 0 0 2
1.25103998380 6.69550E–05 –8.56180E–06 0 2 0 0 2
0.91475203530 6.12480E–05 7.43700E–06 0 0 1 0 1
1.83134663800 4.85690E–05 7.08420E–06 0 0 0 1 1
2.99997541480 3.01690E–05 –2.43440E–06 3 0 0 0 3
0.62552353770 2.92970E–05 –7.35060E–07 0 1 0 0 1

Table 5.24: Same as Table 5.23 but for the c5 function.
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freq. ampl. err. k1 k2 k3 k4 order
0.00000000000 1.00042E+00 0.00000E+00 0 0 0 0 0
0.99999261500 5.00800E–02 –1.41660E–09 1 0 0 0 1
1.99998562010 1.25350E–03 3.87270E–07 2 0 0 0 2
0.91475953220 4.82370E–05 1.49340E–05 0 0 1 0 1
1.25103999430 4.22440E–05 –8.55130E–06 0 2 0 0 2
2.99998010500 3.08040E–05 2.25580E–06 3 0 0 0 3
0.62552269280 2.71900E–05 –1.58000E–06 0 1 0 0 1
1.83133006690 1.76890E–05 –9.48690E–06 0 0 0 1 1

Table 5.25: Same as Table 5.23 but for the c7 function.

freq. ampl. err. k1 k2 k3 k4 order
0.00000000000 1.00042E+00 0.00000E+00 0 0 0 0 0
0.99999261500 5.00800E–02 –1.41650E–09 1 0 0 0 1
1.99998562010 1.25350E–03 3.87270E–07 2 0 0 0 2
0.91475953220 4.82370E–05 1.49340E–05 0 0 1 0 1
1.25103999430 4.22440E–05 –8.55130E–06 0 2 0 0 2
2.99998010500 3.08040E–05 2.25580E–06 3 0 0 0 3
0.62552269280 2.71900E–05 –1.58000E–06 0 1 0 0 1
1.83133006690 1.76890E–05 –9.48690E–06 0 0 0 1 1

Table 5.26: Same as Table 5.23 but for the c10 function.

freq. ampl. err. k1 k2 k3 k4 order
0.00000000000 –1.39300E–04 0.00000E+00 0 0 0 0 0
0.99999262330 1.66930E–02 6.87550E–09 1 0 0 0 1
1.99998564990 6.96230E–04 4.17110E–07 2 0 0 0 2
1.83134558880 3.11050E–05 6.03500E–06 0 0 0 1 1
1.25103987210 2.46550E–05 –8.67350E–06 0 2 0 0 2
2.99997235010 2.26070E–05 –5.49910E–06 3 0 0 0 3
0.91470513360 1.30450E–05 –3.94650E–05 0 0 1 0 1
1.87659675410 8.75900E–06 2.39360E–05 0 3 0 0 3
2.50211836990 5.41250E–06 2.12790E–05 0 4 0 0 4

Table 5.27: Same as Table 5.23 but for the c12 function.
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freq. ampl. err. k1 k2 k3 k4 order
0.00000000000 1.00042E+00 0.00000E+00 0 0 0 0 0
0.99999261640 5.00800E–02 5.35290E–12 1 0 0 0 1
1.99998562580 1.25340E–03 3.93030E–07 2 0 0 0 2
1.25104010020 4.71180E–05 –8.44540E–06 0 2 0 0 2
0.91474459830 4.67440E–05 –4.82540E–11 0 0 1 0 1
2.99997729050 3.07760E–05 –5.58700E–07 3 0 0 0 3
1.83133955380 2.81230E–05 –9.85990E–12 0 0 0 1 1
0.62552427280 1.62760E–05 1.35640E–11 0 1 0 0 1

Table 5.28: Same as Table 5.23 but for the c13 function.

z-a. RTBP SSSM1 SSSM4

0.020000 3.446497E–02 9.901526E–05 8.905454E–04
0.022288 3.429997E–02 9.844882E–05 8.842048E–04
0.024838 3.411184E–02 9.779360E–05 8.768670E–04
0.027680 3.390024E–02 9.701858E–05 8.684772E–04
0.030846 3.366579E–02 9.616913E–05 8.589500E–04
0.034375 3.341007E–02 9.521763E–05 8.482675E–04
0.038308 3.313580E–02 9.416327E–05 8.364166E–04
0.042691 3.284681E–02 9.300703E–05 8.234040E–04
0.047575 3.254789E–02 9.175134E–05 8.092527E–04
0.053018 3.224472E–02 9.039967E–05 7.939978E–04
0.059084 3.194355E–02 8.895610E–05 7.776813E–04
0.065843 3.165101E–02 8.742482E–05 7.603471E–04
0.073376 3.137381E–02 8.582841E–05 7.420444E–04
0.081771 3.111844E–02 8.413352E–05 7.227963E–04
0.091126 3.089082E–02 8.236183E–05 7.026421E–04
0.101551 3.069597E–02 8.051628E–05 6.816096E–04
0.113169 3.053770E–02 7.859979E–05 6.597243E–04
0.126117 3.041819E–02 7.661569E–05 6.370130E–04
0.140545 3.033772E–02 7.450252E–05 6.135638E–04
0.156624 3.029470E–02 7.240496E–05 5.893022E–04
0.174543 3.028516E–02 7.020714E–05 5.643885E–04
0.194512 3.030323E–02 6.801648E–05 5.388121E–04
0.216766 3.034115E–02 6.579492E–05 5.127031E–04
0.241565 3.038961E–02 6.350846E–05 4.862056E–04
0.269202 3.043825E–02 6.123496E–05 4.593820E–04
0.300000 3.047577E–02 5.898080E–05 4.323859E–04

Table 5.29: Mean relative residual accelerations between several models and the real Solar
System over selected halo orbits of the RTBP around L2 in the Sun–Earth+Moon case.
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Part II

The neighborhood of the collinear
equilibrium points in the RTBP


