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Abstract

In this dissertation we apply the Circular Restricted Three – Body Problem to the Earth
– Moon system both for astrodynamical and astronomical purposes. We take advantage
of the hyperbolic invariant manifolds associated with the central invariant manifold of the
collinear equilibrium point either L1 and L2 to construct transfers from either Moon and
Earth to a nominal libration point orbit and to study some tracks leading to collisional
events on the Moon. Also, we develop an effective methodology for the refinement of such
trajectories into a more realistic vector field and we show the consequences of omitting
the Sun. Throughout the work, we exploit the tools of Dynamical Systems Theory and
optimal control strategies.





Resum

L’objectiu d’aquest treball és mostrar la utilitat de l’explotació del Problema Circular
Restringit dels Tres Cossos (CR3BP) pel sistema Terra – Lluna. Aquest sistema dinàmic
considera el moviment d’una partícula amb massa negligible sota l’atracció gravitatòria
de Terra i Lluna i pot ser usat pel disseny de missions espacials a la nova era d’exploració
lunar, així com per simular el comportament d’asteroides i cometes que s’apropen a la
Terra. Les eines de la Teoria dels Sistemes Dinàmics serveixen per identificar els objectes
invariants que existeixen dins de l’aproximació definida pel CR3BP i entendre’n la seva
funció segons el tipus d’aplicació considerada.
Els cinc punts d’equilibri, o de libració, del CR3BP que apareixen al sistema de referència
giratori, juguen un paper fonamental: la força gravitatòria i les degudes al sistema no
inercial es compensen de tal manera que una partícula situada en aquests punts pot
romandre aturada, almenys en teoria, per un temps infinit. Ens centrarem en dos punts
de libració col·lineals, L1 i L2, que estan situats sobre l’eix que uneix els primàris (Terra
i Lluna) prop del més petit (Lluna). El seu comportament és inestable i qualsevol petita
pertorbació és capaç d’allunyar una partícula del punt d’equilibri en un temps molt curt.
Per raons tant teòriques com pràctiques, també convé tenir en compte les varietats
invariants centrals i hiperbòliques que hi ha a l’entorn de L1 i L2. La varietat invariant
central està ocupada per diversos tipus d’òrbites periòdiques i quasi-periòdiques, que
poden ser concebudes com solucions d’estacionament per a un vehicle espacial. Qualsevol
d’aquestes òrbites té associada una varietat estable i una d’inestable, que es corresponen
amb la component sella associada al punt d’equilibri, i serveixen com a canals per arribar
lluny o prop de les òrbites centrals per t ≥ 0. Farem ús de la dinàmica associada a
aquestes varietats per a la construcció de transferències des de la Terra i la Lluna a una
òrbita de libració (LPO) i per investigar alguns camins que podrien guiar asteroides que
impacten amb la Lluna.
En el primer capítol de la tesi, expliquem les propietats bàsiques del CR3BP i com cal-
cular les òrbites periòdiques i quasi-periòdiques, juntament amb les seves corresponents
varietats invariants hiperbòliques. A més de l’aproximació lineal, usarem abastament
desenvolupaments en sèrie de Lindstedt–Poincaré, que produeixen solucions amb un alt
nivell de precisió. La geometria de les varietats invariants estable i inestable és crucial
per a les nostres aplicacions, especialment per a la part astronòmica del treball. També
mostrarem com les varietats invariants hiperbòliques associades a les òrbites periòdiques
de Lyapunov plana i vertical delimiten les fronteres d’energia per a una partícula que
es mou dins de la varietat invariant hiperbòlica associada a tota la varietat invariant



central de L1 o L2.
Al mateix capítol, s’introdueixen dos sistemes dinàmics més elaborats: el Problema
Restringit Bicircular dels Quatre Cossos (BR4BP) i el Problema Restringit de n Cossos
(RnBP). Els usarem per analitzar l’efecte del Sol i d’altres planetes en les trajectòries
que verifiquen les equacions del CR3BP.
Desprès d’aquest capítol introductori, la tesi es divideix en dues parts: en la primera
s’estudien diferents tipus de transferències que una nau espacial pot realitzar i a l’altra
les òrbites que poden produir la formació de cràters d’impacte a la Lluna.
Pel que fa a la primera qüestió, quaranta anys després del primer pas d’un home a la
Lluna, actualment som testimonis d’un debat, més viu que mai, sobre un possible retorn.
No només la NASA, sinò també la India, la Xina i el Japó han dissenyat missions no
tripulades, que molt recentment han acabat de fer (o estan a punt de fer-ho) observa-
cions al voltant de la Lluna a la recerca d’aigua, de provar noves tecnologies i d’obtenir
una caracterització detallada dels satèl·lits pensant en una instal·lació humana en el fu-
tur. A més, les noves companyies de turisme espacial estan planejant estendre la seva
potencialitat, oferint viatges lunars.
En aquest context, l’entorn de L1, situat entre la Terra i la Lluna, sembla ser el lloc
més apropiat per posar una estació espacial, que pot servir, per exemple, per obres de
construcció i reparació d’una base lunar o de satèl·lits que li donguin servei. D’altra
banda, L2 seria útil per observar i/o controlar la cara oculta de la Lluna.
En el passat, diversos autors han proposat missions basades en LPOs del sistema Terra
– Lluna. Les referències es remunten als anys 60, amb les obres de Colombo (1961),
Farquhar (1966) i Conley (1968), i arriben fins al dia d’avui (veure, per exemple, Lo, Ross
(2001); Carpenter et al. (2004); Hill et al. (2005); Howell, Ozimek (2007)). No obstant
això, fins ara encara no s’ha fet cap explotació pràctica, tot i que tant les solucions
Keplerianes clàssiques com les de baix impuls són del tot operatives.
De tota manera, les òrbites que anem a estudiar també poden ser útils per altres tipus
d’exploracions del Sistema Solar, que actualment també desperten molt d’interès, com
ara les relacionades amb l’exploració de Mart o dels asteroides. En particular, una estació
espacial al sistema Terra – Lluna podria ser molt adequada (Lo, Ross, 2001) per ampliar
les finestres de llançament de les transferències interplanetàries, que normalment són
molt estretes. D’altra banda, metodologies similars a les desenvolupades en la memòria
es poden aplicar a diferents sistemes satèl·lit-planeta, com ara, les llunes galileanes de
Júpiter.
En el capítol 2 s’utilitzen les varietats invariants estable i inestable, associades amb
òrbites halo i de Lissajous al voltant dels punts d’equilibri L1/L2, per tal de connectar
la superfície de la Lluna amb aquestes LPOs. Veurem que, gràcies a la dinàmica natural
del problema, es poden usar aquestes transferències sense gairebé cap esforç energètic
addicional.
En el capítol 3 s’estudia un tipus de transferència inversa a la considerada en el capítol
anterior: ara partirem d’una òrbita nominal al voltant de la Terra per arribar a una LPO
al voltant de L1 o L2. Aquesta situació és una mica més complicada perquè requereix
dues maniobres, una per sortir de l’òrbita terrestre i una altra per inserir-se en la varietat



invariant estable associada amb la LPO considerada. Mentre que el cost de la primera
maniobra sols es pot reduir a partir d’altures molt grans, el cost de la segona varia, per
les transferències a L1, en funció de la distància entre la Terra i la varietat, mentre que
per L2 depèn del temps que s’ha de passar a la varietat.
En el capítol 4 ens preguntem com les solucions de referència calculades d’acord amb
l’aproximació CR3BP poden canviar quan s’afegeixen diferents forces al model dinàmic.
Descriurem dos possibles enfocaments que poden aplicar-se per fer front a aquest prob-
lema, destacant els seus punts forts i febles. En particular, definirem una estratègia
de control òptim pel refinament de les òrbites i es posarà a prova la seva eficàcia en
comparació amb un procediment de tir múltiple. D’entrada, no s’estableix cap concidió
de continuïtat com a lligam per l’optimització. Mitjançant un procediment de correcció
diferencial s’estableix la continuïtat en posicions, mentre que les discontinuïtats en ve-
locitat es minimitzen mitjançant una funció de cost adequada. Els resultats obtinguts
mostren que també al marc Terra – Lluna el CR3BP dóna solucions properes a les que
s’utilitzaran en la realitat, tot i que el CR3BP omet la influència del Sol.
A la segona part de la tesi (capítol 5), investiguem la col·lisió d’asteroides amb la Lluna.
Aquest fenòmen té lloc contínuament a tots els planetes rocosos i els satèl·lits del Sistema
Solar, com es pot deduir dels cràters que han modelat les seves superfícies. A la web es
poden trobar imatges fantàstiques que ilustren aquest fenòmen.
Hi ha molta literatura dedicada al procés de formació de cràters, ja que proporciona
informació sobre la cronologia del cos objectiu, sobre els asteroides i, per tant, sobre
l’evolució del Sistema Solar, no només en termes dinàmics, sinó també en termes as-
tronòmics i geològics. El nostre objectiu és lluny de derivar una comprensió completa
d’aquest tipus d’esdeveniments, però estem interessats en el desenvolupament d’una
metodologia diferent que pot ajudar en aquesta recerca.
Considerem el paper exercit per les trajectòries de baixa energia en la creació de cràters
lunars d’impacte, preguntant-nos si, per a certs rangs d’energies, produeixen una dis-
tribució específica de col·lisions sobre la superfície lunar.
Simulem el comportament de les trajectòries de trànsit situades a l’interior del tub
dinàmic estable que s’acosta a l’entorn de L2. Com que el bombardeig més intens a la
Lluna va passar entre 4 i 3.8 Ganys, analitzarem diversos valors per la distància Terra
– Lluna. A més, veurem si l’elecció de la distribució de les condicions inicials afecta al
resultat final.
Veurem que, si per les inclinacions inicials respecte al pla orbital Terra – Lluna no
seleccionem cap interval especial, la major part dels impactes tenen lloc en el rang de
longituds (80◦W, 180◦W ), i la densitat de probabilitat més alta es concentra en l’àpex
lunar, és a dir, a l’entorn de (90◦W, 0◦).
Si sumem la força gravitatòria exercida pel Sol sobre la partícula a les de la Terra i la
Lluna, detectem una disminució en la quantitat total de col·lisions, variant el percentatge
segons la posició relativa del Sol en l’època inicial.
Finalment, a les conclusions es fa un resum del resultats obtinguts i s’esbossen algunes
idees futures.





Preface

The objective of this work is to show the effectiveness of the exploitation of the Circular
Restricted Three – Body Problem (CR3BP) in the Earth – Moon framework. Such
dynamical model considers the motion of a massless particle under the gravitational
attraction of Earth and Moon and can be used either to design missions in the new era
of lunar exploration and simulate the behavior of Solar System minor bodies that get
close to the Earth. The tools of the Dynamical Systems Theory help to identify the
invariant objects which exist within the CR3BP approximation and to understand their
function according to the applications we have in mind.
A fundamental role is played by the five equilibrium, or libration, points that appear in
the rotating reference system: there the gravitational force and the ones due to the non-
inertial frame compensate each other in such a way that the small body can stand, at
least theoretically, for an infinite long time. We will focus on two, L1 and L2, collinear
libration points, which are those lying on the axis joining the primaries and whose
behavior is unstable. This means that any negligible perturbation is capable of bringing
the particle far away the equilibrium point in a very short time.
For practical and theoretical reasons, it is worth to take into account the central and
hyperbolic invariant manifolds, which exist in the neighborhood of either L1 and L2.
Various types of periodic and quasi-periodic orbits, that can be conceived as station
locations for a spacecraft, occupy the central invariant manifold. A stable and an unstable
invariant manifold are associated with any of these orbits: they arise from the saddle
component associated with the equilibrium point and serve as channels to get far or
close to the central orbits for t ≥ 0. We will make use of the corresponding dynamics to
construct transfers from either Earth and Moon to a libration point orbit (LPO) and to
investigate some paths that might guide asteroids impacting onto the Moon.
In the first chapter of the dissertation, we will explain the basics properties of the
CR3BP and how to compute periodic and quasi-periodic orbits along with their associ-
ated hyperbolic invariant manifolds. Apart from a linear approximation, we will exploit
Lindstedt–Poincaré series expansions, which provide initial conditions characterized by
a high accuracy. The geometry of the stable and the unstable invariant manifolds is
crucial for our applications, especially for the astronomical part of the work. We will
also show how the hyperbolic invariant manifolds associated with planar and vertical
Lyapunov periodic orbits act as energy boundaries for a particle which moves inside the
hyperbolic invariant manifolds associated with the whole central invariant manifold of
either L1 or L2.



In the same chapter, two more elaborate dynamical systems are introduced, the Bicir-
cular Restricted Four – Body Problem (BR4BP) and the Restricted n – Body Problem
(RnBP). We will take advantage of them to analyze the effect of the Sun and other
planets on the trajectories satisfying the CR3BP equations of motion.
After this introductory chapter, the dissertation is divided in two main blocks: one
concerning transfers that can be achieved by a spacecraft and the other regarding orbits
that can yield the formation of impact craters on the surface of the Moon.
With respect to the former issue, forty years after the first step by a man on the Moon
we are witnesses of a debate, active more than ever, on a possible return. Not just NASA,
but also India, China and Japan have designed unmanned missions that very recently
have completed (or are about to) observations around the Moon, looking for water,
testing new technology and obtaining a detailed characterization of the satellite in view
of a future human installation. Besides, the space tourism companies are planning to
extend their potentiality by offering lunar trips.
In this context, the neighborhood of L1, located between the two primaries, seems to be
the most appropriate place to put a space hub, serving for instance as a construction and
repair facility. On the other hand, L2 would be profitable to monitor the lunar farside.
In the past, several authors have proposed missions based on LPOs in the Earth – Moon
system, dating back to the 60’s with the works of Colombo (1961), Farquhar (1966) and
Conley (1968) up to the present day (see, for instance, Lo, Ross (2001); Carpenter et al.
(2004); Hill et al. (2005); Howell, Ozimek (2007)). However, none practical exploitation
has been seen so far, being either low-thrust and classical Keplerian solutions operational.
Anyway, the orbits we will investigate would be also useful if we consider other types
of Solar System explorations that are now drawing much attention, e.g. in relation to
Mars or a minor body. In particular, a Earth – Moon space station could be suitable if
we mean to extend the usually narrow launch window (Lo, Ross, 2001) required for such
interplanetary transfers. Moreover, similar methodologies to those developed here can
be applied to different planet-satellite systems, as example in the Jupiter framework.
In Chapter 2, we will use the stable and the unstable invariant manifolds associated
with either halo and Lissajous orbits around the L1/L2 equilibrium points in order to
connect the surface of the Moon with such LPOs. We will see that almost no effort
should be put to follow these transfers thanks to the natural dynamics we consider.
In Chapter 3, we will study the counter-case, that is, how to depart from a nominal orbit
around the Earth and arrive to a LPO either around L1 or L2. This situation is slightly
more complicated because it requires two maneuvers, one to leave the Low Earth Orbit
and another to insert into the stable invariant manifold associated with the given LPO.
While the first can be reduced only starting from high altitudes, the cost of the second
one varies depending on the distance existing between the Earth and the manifold for
L1 transfers, on the time to be spent on the manifold for L2.
In Chapter 4, we will wonder how the above reference solutions and further ones can
change whenever different forces are added to the dynamical model. We will describe
two possible approaches that can be implemented to face this problem, highlighting their
strong and weak specific points. In particular, we will define an optimal control strategy



for the refinement of orbits and we will test its efficacy when compared with a multiple
shooting procedure. The requirement of continuity is not set as a constraint for the
optimization, rather is accomplished in position by a differential correction procedure
and in velocity by defining an appropriate cost function. The results demonstrate that
also in the Earth – Moon framework the CR3BP gives solutions which are quite close to
the ones to be used in reality, though it omits the presence of the Sun.
In the second part of the work (Chapter 5) we will cope with the collision of asteroids
onto the Moon. Such phenomenon takes place continuously on all the rocky planets
and satellites populating the Solar System, as it can be inferred from the craters that
moulded their surface. If one is interested, marvelous images are available on the web.
There exists a huge literature devoted to the cratering process, because it provides
information on the chronology of the target body, on the impacting asteroids and thus
on the Solar System evolution, not only in dynamical terms but also in astronomical and
geological terms. Our aim is far from deriving a complete comprehension of this kind of
events, but we are interested in supplying a different methodology that can aid in this
way.
We will address the problem of the role played by low-energy trajectories in the creation
of lunar impact craters, asking whether they produce a specific distribution of collisions,
for instance on the farside of the Moon, when considering a particular range of energies.
We will simulate the behavior of transit trajectories lying inside the dynamical stable
tube which approaches the neighborhood of L2. Since the most intense bombardment
on the Moon happened between 4 and 3.8 Gy ago, we will analyze several values for the
Earth – Moon distance. Also, we will see if the choice of the dissemination of initial
conditions can affect the final outcome.
It turns out that the most of the impacts occurs in the longitude range of (80◦W, 180◦W )
if we do not select any special interval of inclination with respect to the Earth – Moon
orbital plane. The most likely case is focused on the apex of the lunar surface, that is,
in the neighborhood of (90◦W, 0◦).
If we sum up the gravitational force exerted by the Sun on the particle to the ones of
Earth and Moon, we detect a decrease in the total amount of collisions, whose percentage
varies according to the position of the Sun at the initial epoch.
Finally, in the Conclusions we will resume all the results achieved and outline some
future directions.
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1.1 Introduction

The work we are going to present is established on the Circular Restricted Three – Body
Problem (CR3BP). This dynamical model treats the motion of a pointless body with
negligible mass that is affected by the gravitational forces exerted by two punctiform
masses, Earth and Moon in our case.
It is well-known that the CR3BP, in a proper reference system, admits five equilibrium
points and that central and hyperbolic invariant manifolds originate from those three
which lie on the axis joining the two primaries. Both the astrodynamical and astro-
nomical applications we will examine make an extensive usage of these invariant objects
and thus they deserve here a detailed description. We will introduce their mathematical
derivation, their behavior and the numerical tools we adopt for their computation.
On the other hand, we are aware that the influence of the Sun plays a significant role
on the dynamics which takes place in the Earth – Moon framework. This is why we will
review the outcome obtained with the CR3BP model by assuming more complicated
vector fields.
In particular, the impact trajectories that can be responsible of the formation of part of
the Moon’s craters (see Chapter 5) are also investigated with the Bicircular Restricted
Four – Body Problem (BR4BP). The main difference between the CR3BP and the
BR4BP is that in the latter neither equilibrium points nor first integrals exist. Ac-
tually, it does not represent a realistic model of forces, in the sense that Earth, Moon
and Sun do not follow the Newtonian law. Though it is a mathematical construction,
the BR4BP is helpful to get an insight of the consequences that the presence of the Sun
can take.
As we account only for gravitational forces and not for any other effect that can occur
in the Solar System, the most comprehensive dynamical model we can adopt is the
Restricted n – Body Problem (RnBP). In this case, the reference frame is inertial and
we allow for all the planets, Moon and Sun to interact with the massless particle. In
principle, we could also add the attractions furnished by other minor bodies, for instance
the more massive asteroids, but for our purposes it is not needed. To make the orbits of
the primaries as close as possible to the reality, we mutuate from the JPL ephemerides
their position and velocity at each instant of time. We exploit the RnBP to refine (see
Chapter 4) the transfers computed in Chapter 3. Two formulations are presented, one
centered at the Solar System barycenter, the other at the Earth.
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Figure 1.1: Left: the Circular Restricted Three-Body Problem in the synodical reference sys-
tem with adimensional units. Right: the five equilibrium points associated with the problem.

1.2 The Circular Restricted Three – Body Problem

The Circular Restricted Three – Body Problem (Szebehely, 1967) studies the behavior
of a particle P with infinitesimal mass m3 moving under the gravitational attraction of
two primaries P1 and P2, of masses m1 and m2, revolving around their center of mass
on circular orbits.
To remove time from the equations of motion, it is convenient to introduce a synodical
reference system {O, x, y, z}, which rotates around the z−axis with constant angular
velocity ω equal to the mean motion n of the primaries. The origin of the reference
frame is set at the barycenter of the system and the x−axis on the line joining the
primaries, oriented in the direction of the largest primary. In this way we work with m1

and m2 fixed on the x−axis, as shown in Fig. 1.1.
The units are chosen to set the gravitational constant, the sum of the masses of the
primaries, the distance between them and the modulus of the angular velocity of the
rotating frame to be unitary. For the Earth – Moon system, the unit of distance equals
384400 km, the unit of velocity equals 1.02316 km/s and the dimensionless mass of
the Moon is μ = m2

m1+m2
= 0.012150582. With these reference system and units, the

equations of motion can be written as

ẍ− 2ẏ =
∂Ω

∂x
= x− (1− μ)

r31
(x− μ)− μ

r32
(x+ 1− μ),

ÿ + 2ẋ =
∂Ω

∂y
= y − (1− μ)

r31
y − μ

r32
y, (1.1)

z̈ =
∂Ω

∂z
= −(1− μ)

r31
z − μ

r32
z,

where

Ω(x, y, z) =
1

2
(x2 + y2) +

1− μ

r1
+

μ

r2
+

1

2
(1− μ)μ,
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C > C1 C2 < C < C1 C3 < C < C2

C4 < C < C3 C < C4

Figure 1.2: Evolution of the zero-velocity surfaces with the Jacobi constant for μ > 0. The
case C < C4 = C5 is not displayed since the motion is allowed everywhere.

and r1 = [(x− μ)2 + y2 + z2]
1

2 and r2 = [(x+ 1− μ)2 + y2 + z2]
1

2 are the distances from
P to P1 and P2, respectively.
System (1.1) has a first integral, the Jacobi integral, which is given by

2Ω(x, y, z)−
(
ẋ2 + ẏ2 + ż2

)
= C, (1.2)

where C is the so called Jacobi constant.
The CR3BP admits a Hamiltonian formulation, in which the value of the Hamiltonian
H is related to the one of the Jacobi constant by C = −2H + μ(1− μ).
In the synodical reference system, there exist five equilibrium (or libration) points.
Three of them, the collinear ones, are in the line joining the primaries and are usually
denoted by L1, L2 and L3. If xLi

(i = 1, 2, 3) denotes the abscissa of the three collinear
points, we will assume that

xL2
< μ− 1 < xL1

< μ < xL3
.

The other two equilibrium points, L4 and L5, the triangular ones, are in the plane of
motion of the primaries and form an equilateral triangle with them. See Fig. 1.1.
If Ci (i = 1, . . . , 5) denotes the value of the Jacobi constant at the Li equilibrium point,
it holds that

C1 > C2 > C3 > C4 = C5 = 3.
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Figure 1.3: Intersection of the zero-velocity surfaces with the {z = 0} plane for μ > 0. The
motion is forbidden in the filled areas. The case C < C4 = C5 is not displayed since the
motion is allowed everywhere. The tick marks on the horizontal axis show the position of the
primaries: P1 on the positive x−axis and P2 on the negative x−axis.

Depending on the value of the Jacobi constant, it is possible to know where the particle
can move in the configuration space. According to (1.2), the regions where the motion is
forbidden are characterized by 2Ω(x, y, z)−C < 0 and their boundaries (2Ω(x, y, z) = C)
are the zero-velocity surfaces. For a given value of the mass parameter, there exist five
different geometric configurations, four of them displayed in Figs. 1.2 and 1.3. The
regions of allowed motion are also known as Hill’s regions.

1.2.1 Dynamics around the Collinear Points

The collinear libration points behave, linearly, as the product of two centers by a saddle
(Szebehely, 1967). To be precise, by performing a linearization around a given collinear
point, we see that the motion in the vertical direction is uncoupled from the planar one
and it is a harmonic oscillator with vertical frequency ωv =

√
c2 > 0, where

c2 =
1

γ31

[
μ+ (1− μ)

γ31
(1− γ1)3

]
, for L1,

c2 =
1

γ32

[
μ+ (1− μ)

γ32
(1 + γ2)3

]
, for L2,

c2 =
1

γ33

[
(1− μ) + μ

γ33
(1 + γ3)3

]
, for L3,

and γi (i = 1, 2, 3) is the distance between Li and the closest primary.
On the other hand, the planar motion is determined by the characteristic polynomial
p(λ) of the matrix

J ·Hess(H2|z=pz=0) =

⎛
⎜⎜⎝

0 1 1 0
−1 0 0 1
2c2 0 0 1
0 −c2 −1 0

⎞
⎟⎟⎠ , (1.3)
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where J is the canonical symplectic matrix and H2 is the second order term of the
Hamiltonian, expanded around Li (i = 1, 2, 3). An easy computation shows that

p(λ) = λ4 + (2− c2)λ
2 + (1 + c2 − 2c22). (1.4)

Introducing η = λ2, the roots of p(λ) = 0 are given by

η1 =
c2 − 2−

√
9c22 − 8c2

2
,

η2 =
c2 − 2 +

√
9c22 − 8c2

2
. (1.5)

So, according to the value of c2, we have η1 < 0 and η2 > 0. We call ωp =
√−η1 the

planar frequency.
This means that around a collinear point we deal with bounded orbits, which are due to
the central part, and also with escape trajectories which depart exponentially from the
neighborhood of the collinear point for t → ±∞ and are due to the saddle component.
The former kind of motion belongs to the central invariant manifold Wc(Li), the latter
to the hyperbolic invariant manifolds associated with the central invariant one. The
hyperbolic manifolds consist, in particular, in one stable and one unstable, Ws(Li) and
Wu(Li) respectively.

The Central Invariant Manifold

The center × center part generates a 4–dimensional center invariant manifold around
each collinear equilibrium point, when considering all the energy levels. On a given
energy level this is a 3–dimensional set filled with periodic and quasi-periodic solutions
lying on invariant tori, plus some stochastic regions in between.
There exist families of periodic orbits which in limit have frequencies related to both
centers: ωp and ωv. They are known as planar Lyapunov family and vertical Lyapunov

family and their existence is ensured by the Lyapunov’s center theorem, unless one of
the frequencies is an integer multiple of the other (which only happens for a countable
set of values of the mass ratio (Siegel, Moser, 1971)). See Fig. 1.4.
Halo orbits are 3–dimensional periodic orbits that show up at the first bifurcation of
the planar Lyapunov family. In fact, there appear two families of halo orbits which are
symmetrical with respect to the {z = 0} plane. They are known as north and south

class halo families or also first class and second class halo families. See Fig. 1.5.
Near the libration points we can also expect 2–dimensional tori, with basic frequen-
cies that go to ωp and ωv when we approach the point. They are characterized by an
harmonic motion in the {z = 0} plane (the "in–plane component") and an uncoupled
oscillation in z−direction (the "out–of–plane component") with different periods. See
Fig. 1.9. The rigorous proof of the existence of these tori is more problematic. First,
the basic frequencies at the collinear point can be too close to resonant. Furthermore,
the frequencies change with their amplitudes and so, they go across resonances when the
amplitudes are changed. This leads to a Cantor set of tori. The proof of the existence
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Figure 1.4: Examples of Lyapunov planar (left) and vertical (right) periodic orbits around
the equilibrium point L2 in the Earth – Moon system.

-0.86 -0.85 -0.84 -0.83 -0.82-0.06
-0.04
-0.02
 0
 0.02
 0.04
 0.06

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

z

L1

north
south

x

y

z

-0.86
-0.85

-0.84
-0.83

-0.82

-0.06
-0.04

-0.02
 0

 0.02
 0.04

 0.06

-0.003
-0.002
-0.001

 0
 0.001
 0.002
 0.003

z
L1

south
north

xy

z

Figure 1.5: Examples of halo (left) and quasi-halo (right) orbits around the equilibrium point
L1 in the Earth – Moon system.

of these tori can be done following the lines of what is done in Jorba, Villanueva (1997)
to show the persistence of low-dimensional tori under quasi-periodic perturbations.
There are also quasi-periodic solutions around the halo periodic orbits. They are known
as quasi-halo orbits (Gómez, Masdemont, Simó, 1998) and one of their basic frequencies
is the one of the halo orbit around which they move. See Fig. 1.5.
In Fig. 1.6, we represent the intersections of the different kinds of orbit with the {z = 0}
plane. For any energy level, the boundary of the plot is always a planar Lyapunov orbit
and the fixed point in the center corresponds to the vertical one.
Apart from those just mentioned, there exist other families of orbits belonging toWc(Li),
but Lyapunov, halo, Lissajous and quasi-halo are the most exploited ones. Throughout
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Figure 1.6: Poincaré section at {z = 0} corresponding to the L2 point of the Earth – Moon
system for C =3.142003. In this (x, y) projection we can distinguish clearly different types of
periodic and quasi-periodic orbits, all belonging to the central invariant manifold associated
with L2 and thus denoted as central orbits. See Gómez, Mondelo (2001).

this work, we refer to all these orbits as central orbits.
Figs. 1.7 and 1.8 show the evolution of the central manifolds of L1 and L2 according to
the Jacobi constant (Gómez, Mondelo, 2001). For values of the Jacobi constant close to
Ci (i = 1, 2, 3) the central manifolds are only foliated by families of Lissajous orbits that
connect the vertical Lyapunov periodic orbit with the planar one. For these values of the
Jacobi constant, the motion is essentially quasi-periodic, except if the two frequencies of
the Lissajous orbits are commensurable, in which case the motion is periodic. Decreasing
the value of the Jacobi constant, we reach the energy level at which the halo orbits appear
(they are represented by the two fixed points close to the boundaries of the plot). The
value of the Jacobi constant at the bifurcation varies according to the mass ratio of the
system and to the equilibrium point. Surrounding the fixed points associated with the
halo orbits we have invariant curves related to quasi-periodic motion. These are the
intersections of the quasi-halo orbits with the {z = 0} plane. Decreasing further the
Jacobi constant we detect several bifurcations of the halo orbits (by period triplication
and doubling) as well as the invariant tori surrounding them.

The Hyperbolic Invariant Manifolds

Due to the saddle component of the linear approximation, the dynamics close to the L1,
L2 and L3 libration points is that of an unstable equilibrium. This means that each
type of central orbit around a collinear point has a stable and an unstable invariant
manifold. Each manifold has associated two branches, a positive and a negative one.
They look like tubes (empty or solid) of asymptotic trajectories tending to, or departing
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Figure 1.7: Energy slices of the {z = 0} section, corresponding to the L1 point of the Earth
– Moon system. See Gómez, Mondelo (2001).
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from, the corresponding orbit. These tubes have a key role in the study of the natural
dynamics of the libration regions. When going forwards in time, the trajectories on the
stable manifold approach exponentially the periodic/quasi-periodic orbit, while those on
the unstable manifold depart exponentially. As a matter of fact (Conley, 1968; Llibre,
Martínez, Simó, 1985; Gómez et al., 2004), these orbits separate two types of motion.
The transit solutions are those orbits belonging to the interior of the manifold and passing
from one region to another. The non-transit ones are those staying outside the tube and
bouncing back to their departure region.
We refer to the stable/unstable invariant manifold associated with the central invariant
manifold of a given equilibrium point as the union of the stable/unstable manifolds
associated with each type of periodic and quasi-periodic orbits.

1.2.2 Invariant Manifolds Computation

The computation of the central and the hyperbolic objects can be done in different ways.
Here, we describe how to compute hyperbolic manifolds associated with periodic orbits
by means of a linear approximation and halo and Lissajous orbits, together with the
corresponding stable and unstable manifolds, by a Lindstedt–Poincaré procedure. The
reader interested in other approaches should refer to Masdemont (2005).

Numerical Linear Approximation

The linear approximation makes use of the eigenvectors, corresponding to the hyperbolic
directions, of the monodromy matrix of a given periodic orbit.
Let x0(t = 0) be the initial condition of a T−periodic orbit, ϕt the flow at time t under
the CR3BP vector field, Dϕt its differential and M := DϕT (x0) the monodromy matrix.
If the periodic orbit is hyperbolic, then there exist λj , λ

−1
j ∈ Spec(M) such that λj ∈ R/

{−1, 1}. In this case, there exist a stable and an unstable manifold, which are tangent,
respectively, to the λj and λ−1

j eigendirections at x0(0).
Let vS(0) and vU (0) be, respectively, the normalized stable and unstable eigenvector
corresponding to the point x0(0) on the periodic orbit considered, being the normal-
ization performed in such a way that the position components of vS,U (0) have modulus
equal to 1. We recall that in the CR3BP case, just one hyperbolic eigenvector is sufficient
to determine both branches of both manifolds, since the stable and the unstable direc-
tions are related by a symmetry relationship. More concretely, if (v1, v2, v3, v4, v5, v6)
is the eigenvector associated with λj , then (v1,−v2, v3,−v4, v5,−v6) is the eigenvector
associated with λ−1

j .
The linear approximation for the initial conditions of the stable and the unstable man-
ifold at x0(0) is given, respectively, by

xS(0) = x0(0)± εvS(0),
xU (0) = x0(0)± εvU (0),

(1.6)

where ε is some small positive parameter. The value of ε fixes the size of the displacement
we are performing from the periodic orbit to the hyperbolic manifold, if we use the above
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mentioned normalization for vS(0) and vU (0). Its value must be chosen in such a way to
guarantee that x0(0)± εvS,U (0) are still points where the linear and nonlinear manifolds
are close. However, it cannot be too small to prevent from rounding errors. A typical
value of ε = 10−4 (in the adimensional set of units) has been adopted in our computations.
The sign of ε determines the branch of the manifold.
If t �= 0, we can exploit the following relations:

xS(t) = ϕt(x0(0))± εDϕt · vS(0),
xU (t) = ϕt(x0(0))± εDϕt · vU (0),

(1.7)

where the position components of Dϕt · vS/U (0) are normalized to 1.
The stable and unstable manifolds of the periodic orbits are 2–dimensional. Once a
displacement ε has been selected, given a point x0(0) on the periodic orbit, xS,U (t),
t ∈ [0, T ], provide initial conditions on the stable/unstable manifolds, which can be
globalized by numerical integration. In this way, x0(t), t ∈ [0, T ], can be thought as
one of the parameters that generate the manifolds. It is usually called the parameter

along the orbit or phase. The other parameter is the elapsed time for going, following
the flow with increasing/decreasing t, from the initial condition to a certain point on the
manifold. This time interval is usually called the parameter along the flow.
We remark that this parametrization depends on the choice of ε and on the way in
which the stable/unstable direction is normalized. A small change in ε produces an
effect equivalent to a small change in x0(0), in the sense that with both changes we get
the same orbits of the manifold. Only a small shift in the parameter along the flow will
be observed. This is because the stable/unstable directions are transversal to the flow.
This procedure can be extended to the quasi-periodic orbits, see Simó (1998).

Semi-analytical Approximation

The Lindstedt–Poincaré method finds semi-analytical expressions for the invariant ob-
jects (orbits and manifolds) in terms of suitable amplitudes and phases by series expan-
sions (Masdemont, 2005). This technique takes in consideration high order terms of the
equations of motion and produces a formal series expansion of the solution of the equa-
tions of motion with high degree of accuracy. Although these expansions are in general
divergent, some practical domains of convergence can be computed (see below).
Following Richardson (1980), the CR3BP equations of motion can be written as

ẍ− 2ẏ − (1 + 2c2)x =
∂

∂x

∑
n≥3

cnρ
nPn

(x
ρ

)
,

ÿ + 2ẋ+ (c2 − 1)y =
∂

∂y

∑
n≥3

cnρ
nPn

(x
ρ

)
, (1.8)

z̈ + c2z =
∂

∂z

∑
n≥3

cnρ
nPn

(x
ρ

)
,

where ρ2 = x2 + y2 + z2, Pn is the Legendre polynomial of order n and the cn are
suitable constants that only depend on the libration point and the mass ratio. Skipping
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the non-linear terms (which only appear on the right hand side of the equations) we find
that the general solution of the linear system is

x(t) = α1 expλ0t + α2 exp (−λ0t) + α3 cos(ω0t+ φ1),

y(t) = k2α1 expλ0t − k2α2 exp (−λ0t) + k1α3 sin(ω0t+ φ1), (1.9)

z(t) = α4 cos(ν0t+ φ2),

where

ω0 = ωp, ν0 = ωv, λ0 =
√
η2, k1 = −

ω2
0 + 1 + 2c2

2ω0
, k2 =

λ2
0 − 1− 2c2

2λ0
,

and η2 is the positive root of the characteristic polynomial of the linear system at the
libration point (see Section 1.2.1).
The solution restricted to the central manifold (bounded orbits) is obtained setting
α1 = α2 = 0. The values of α3 and α4 characterize the size of the orbit and are,
respectively, the in–plane and the out–of–plane amplitudes, while φ1 and φ2 are the
phases.
When considering the non-linear terms, the formal series solution is of the type

x(t) =
∑

exp [(i− j)θ3][x
pq
ijkm cos (pθ1 + qθ2) + x̄pqijkm sin (pθ1 + qθ2)]α

i
1α

j
2α

k
3α

m
4 ,

y(t) =
∑

exp [(i− j)θ3][y
pq
ijkm cos (pθ1 + qθ2) + ȳpqijkm sin (pθ1 + qθ2)]α

i
1α

j
2α

k
3α

m
4 ,

z(t) =
∑

exp [(i− j)θ3][z
pq
ijkm cos (pθ1 + qθ2) + z̄pqijkm sin (pθ1 + qθ2)]α

i
1α

j
2α

k
3α

m
4 ,

(1.10)

where θ1 = ωt+ φ1, θ2 = νt+ φ2 and θ3 = λt and

ω =
∑

ωijkmαi
1α

j
2α

k
3α

m
4 , ν =

∑
νijkmαi

1α
j
2α

k
3α

m
4 , λ =

∑
λijkmαi

1α
j
2α

k
3α

m
4 ,

and summations are extended over all i, j, k,m ∈ N and p, q ∈ Z.
We notice that the Lindstedt–Poincaré expansion (1.10) corresponds to the solution of
the Birkhoff normal form equations (Delshams, Masdemont, Roldán, 2008).
The Lindstedt–Poincaré procedure computes the coefficients xpqijkm, ypqijkm, zpqijkm, ωijkm,
νijkm and λijkm up to a finite order N = i+j+k+m. In this way, for a given equilibrium
point and for a certain epoch t, we can compute the position and the velocity of the
particle in terms of the four amplitudes and the two phases. Setting α1 = α2 =0 we
obtain Lissajous orbits of amplitudes α3 and α4 and phases φ1 and φ2; setting α1 =,
and α2 �= 0 (α2 =0, α1 �= 0) we get their stable (unstable) manifold.
Throughout this work, we refer to square Lissajous orbits as Lissajous orbits with
equal in–plane and out–of–plane amplitudes, α3 = α4. In turn, this means that the
x−amplitude is equal to the z−one (the y− amplitude is usually 3 times larger). In
Fig. 1.9, we show a square Lissajous orbit around L1 and the (x, y) projection of some
orbits of the positive branch of the associated stable invariant manifold.
In practice, the order N is defined as a pair (n1, n2). The sub-order n1 = i+j corresponds
to the hyperbolic part whilst the sub-order n2 = k +m corresponds to the central part.
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Figure 1.9: Left: Lissajous quasi-periodic orbit with α3 = α4 = 0.09 normalized units (≈
6000 km) around the point L1 in the Earth – Moon system. Right: trajectories of the positive
branch of the stable invariant manifold associated with this Lissajous orbit ((x, y) projection).
We take 15 values of φ1 ∈ [0, 2π] and 15 values of φ2 ∈ [0, 2π].

This is useful since to compute the terms of order (n1, n2) only the terms of order (n1, n2)
with n1 < n1 and n2 < n2 are needed. This fact allows us to truncate the Lindstedt–
Poincaré expansions at order (n1, n2) not necessarily with n1 = n2.
Halo orbits appear when the two frequencies are equal, that is, when the in–plane motion
and the out–of–plane one have the same period. However, substituting ω0 = ν0 in the
linear solution does not produce a solution of the linear part of (1.8). To this end, we
must add a term like Δz (with Δ = c2 − ω2

0) to the third equation in (1.8) in order to
obtain the same in–plane and out–of–plane frequency. When considering the non-linear
part, we look for expansions of the solution analogous to (1.10), adding to the third
differential equation the Δz term, with

Δ =
∑

Δijkmαi
1α

j
2α

k
3α

m
4 = 0. (1.11)

As a consequence, the in–plane and out–of–plane amplitudes α3 and α4 are no longer
independent.
In Fig. 1.10, we show the positive and the negative branch of the stable manifold of the
halo orbit around the L1 point with α4 = 0.15 normalized units (≈ 8500 km).

On the Convergence of the Series

The Lindstedt–Poincaré procedure has the drawback to depend on the order of the
expansion used. Because of this, we tested the library of routines, that implement the
semi-analytical approach, in order to understand how much we could rely on it.
We compared the results obtained by the numerical integration and those given by formal
series expansion to find the maximum time at which they coincide under a given tolerance
(10−6). This experiment was performed on halo and Lissajous orbits, by computing the
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Figure 1.10: (x, y) projections of the positive (left) and the negative (right) branch of the
stable manifold of the halo orbit around the L1 point with α4 = 0.15 normalized units (≈
8500 km).
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Figure 1.11: Test on the Lindstedt–Poincaré series expansion of the halo orbits in the Earth
– Moon system. Left: order 15; right: order 25. The shade of gray of the points refers to
the time of agreement (in terms of adimensional units) between the semi-analytical series
expansion and the numerical integration. See explanation in the text.

difference in position and the difference in velocity of the two approximations. We
considered the series expansion reliable if the time in modulus was greater than 1.5
adimensional units (about 6.5 days). We notice that this type of test cannot be done for
an arbitrarily high interval of time, due to the high instability of the region under study.
The results associated with the halo case are showed in Fig. 1.11: on the left, the
expansion up to order 15, on the right up to order 25. In Fig. 1.12, we can see what
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happens for the Lissajous case with an order 25 series expansion. Both in the halo and
in the Lissajous case, the smaller the value of the Jacobi constant, that is, greater the
amplitude of the orbit, the smaller the time of agreement. We notice that around the L1

point the range of satisfactory amplitudes is smaller when compared to the L2 case. It
is also worth to observe that for order 25 expansions, the maximum time of agreement
for halo orbits is of about 11 adimensional units, for Lissajous orbits this value gets at
most to 3.5 adimensional units.
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Figure 1.12: Test on the order 25 Lindstedt–Poincaré series expansion of the Lissajous orbits
in the Earth – Moon system. On the left, around the L1 point; on the right, around the
L2 point. The darker the shade of gray of the points the smaller the time of agreement (in
terms of adimensional units) between the semi-analytical series expansion and the numerical
integration. See explanation in the text.

We stress that all the tests above have been performed on the central part associated
with the equilibrium points and that we consider the two phases φ1 and φ2 equal to 0. For
further results concerning the hyperbolic components and other values of φi (i = 1, 2),
see Masdemont (2005).

1.2.3 Transit Orbits

As said before, transit orbits live inside the tubes represented by the hyperbolic invariant
manifolds. In principle, one can compute these trajectories starting from a given kind
of periodic or quasi-periodic orbit. However, it can be of interest to describe the behav-
ior of transit trajectories associated with the whole stable/unstable invariant manifold
corresponding to the central invariant manifold of a nominal collinear equilibrium point
Ws/u(Wc

Li
) (i = 1, 2, 3) for a certain value of the Jacobi constant.

To this end we develop an efficient way to represent the dynamics driven by Ws/u(Wc
Li
)

(i = 1, 2, 3) for each energy level, with no distinction on central orbits. This can be
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of utility also in case of high energy levels, where we have seen that the Lindstedt–
Poincaré procedure is not able to produce accurate either Lissajous/halo orbits or the
corresponding hyperbolic manifolds.
The main idea is to determine Ws/u(Wc

Li
) (i = 1, 2, 3) using only the desired hyper-

bolic invariant manifolds of the planar and vertical periodic orbits, Ws/u(PLLi
) and

Ws/u(V LLi
) (i = 1, 2, 3), respectively. In particular, for a well-defined value of C and a

given collinear point, the stable/unstable invariant manifold associated with the central
invariant manifold is included in the product of the stable/unstable invariant manifold
associated with the planar Lyapunov orbit and the stable/unstable invariant manifold
corresponding to the vertical Lyapunov orbit, namely,

Ws/u(Wc
Li
) ⊂ Ws/u(PLLi

)×Ws/u(V LLi
), i = 1, 2, 3. (1.12)

Transit trajectories of the stable/unstable invariant manifold associated with any central
orbit lie inside the above product. The meaning of such inclusion (1.12) will be explained
in what follows with more details, taking as example Ws(Wc

L2
).

Geometric Behavior

For a fixed value of C, around a given equilibrium point there are one planar and one
vertical Lyapunov periodic orbit plus several Lissajous orbits of different amplitudes
and other types of periodic and quasi-periodic motions, whose existence depends on the
energy level considered (Gómez, Mondelo, 2001).
Let us consider, for a well-defined energy level, the first crossing of the stable invariant
manifold associated with different central orbits with the {x = 0} plane (see Fig. 1.13).
In the (y, ẏ) and (z, ż) projections, the hyperbolic manifold associated with the vertical
Lyapunov periodic orbit gives rise to a single closed curve, the one associated with the
planar Lyapunov periodic orbit generates, respectively, a single closed curve and a point
at the origin. On the other hand, in both projections the hyperbolic manifold associated
with a Lissajous orbit, which has dimension 3, produces an annular region, composed by
infinitely many closed curves chained together. Clearly, this is because a periodic orbit
is a S

1 object, a Lissajous orbit is a T
2 one. If we fix the value of one of the two phases

characterizing a Lissajous orbit, say φ1, and let the value of the other, say φ2, to vary in
[0, 2π] we get one of the closed curves forming the annular region, as shown in Fig. 1.13
on the right.
Keeping constant the value of C, distinct Lissajous orbits are found by increasing the
out–of–plane amplitude and decreasing the in–plane one or vice versa. The (y, ẏ) and
(z, ż) projections corresponding to the hyperbolic manifolds associated with different
Lissajous orbits with similar values of the amplitudes may cross each other, but they
tend to stay one inside the other. Furthermore, the greater the out–of–plane amplitude of
a nominal Lissajous orbit the closer the projections of the associated hyperbolic manifold
to the projections associated with the vertical Lyapunov periodic orbit. In the limit case,
when the Lissajous orbit takes vertical amplitude almost as big as that of the vertical
Lyapunov periodic orbit, the two projections overlap. The same argument holds with
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Figure 1.13: (y, ẏ) and (z, ż) projections of the first crossing with the {x = 0} plane of the
stable invariant manifold associated with different types of central orbits of energy C =3.163,
around the L2 point. On the top left, one can see that the projection corresponding to the
manifold associated with the planar Lyapunov orbit is a single closed curve which contains the
projections of all the other central orbits. On the bottom left, the projection corresponding to
the manifold associated with the vertical Lyapunov orbit is again a single closed curve which
contains all the other projections. On the right, we represent the same behavior, underlining
that each closed curve constituting the projection of the hyperbolic manifold associated with
the Lissajous orbit corresponds to a fixed value of one of the two phases.

respect to the planar Lyapunov periodic orbit when increasing the in–plane amplitude.
This is shown in Fig. 1.14.
If we consider other sections or other types of central orbits apart from the Lissajous
ones, the same qualitative behavior is found. In turn, the role of outer bound is played
by the hyperbolic manifold associated with the planar Lyapunov periodic orbit in the
(y, ẏ) projection, by the one associated with the vertical Lyapunov periodic orbit in the
(z, ż) plane. This result is analogous to the well-known Poincaré map representation of
the central manifold dynamics (see Fig. 1.6).
This explains how the hyperbolic manifolds associated with planar and vertical Lya-
punov orbits act as energy boundaries for transit orbits lying inside Ws/u(Wc

Li
).
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Figure 1.14: (y, ẏ) and (z, ż) projections of the first crossing with the {x = 0} plane
of the stable invariant manifold associated with different types of central orbits of energy
C =3.163, around the L2 point. On the top, the Lissajous orbit has a considerable out–of–
plane amplitude (and a very small in–plane one) and thus the projections of the associated
stable manifold tend to overlap with the ones associated with the vertical Lyapunov periodic
orbit. On the bottom, the Lissajous orbit has a considerable in–plane amplitude (and a very
small out–of–plane one) and thus the projections of the associated stable manifold tend to
overlap with the ones associated with the planar Lyapunov periodic orbit.

1.3 The Bicircular Restricted Four – Body Problem

The Bicircular Restricted Four – Body Problem (Cronin, Richards, Russell, 1964) con-
siders the infinitesimal mass P to be affected by the gravitational attractions of three
primaries.
We introduce this model in order to include the effect of the Sun in the Earth – Moon
system. Earth and Moon revolve in circular orbits around their common center of mass
and, at the same time, this barycenter and the Sun move on circular orbits around the
center of mass of the Earth – Moon – Sun system.
The usual framework to deal with is the synodical reference system with origin at the
Earth – Moon barycenter: in this way Earth and Moon are fixed on the x−axis as before
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Figure 1.15: The Bicircular Restricted Four – Body Problem in the synodical reference system
with adimensional units.

and the Sun is supposed turning clockwise around the origin. We notice that the three
massive bodies are assumed to move in the same plane and that the model is not coherent
in the sense that the motion of the primaries does not satisfy the Newton’s equations.
Let us take adimensional units as in the CR3BP and let mS = 328900.5614 be the mass
of the Sun in such units, aS be the distance between the Earth – Moon barycenter and
the Sun, ω be the mean angular velocity of the Sun in synodical coordinates and θ0
be the value associated with the rotation of the Sun with respect to the Earth – Moon
barycenter at t = 0. See Fig. 1.15.
If θ = ωt, then the position of the Sun is described by

xS = aS cos (θ − θ0), yS = −aS sin (θ − θ0), (1.13)

and the equations of motion for the particle P can be written as

ẍ− 2ẏ = x− (1− μ)

r31
(x− μ)− μ

r32
(x+ 1− μ)− (x− xS)

mS

r3S
− cos (θ − θ0)

mS

a2S
,

ÿ + 2ẋ = y − (1− μ)

r31
y − μ

r32
y − (y − yS)

mS

r3S
− sin (θ − θ0)

mS

a2S
, (1.14)

z̈ = −(1− μ)

r31
z − μ

r32
z − z

mS

r3S
,

where μ has the same meaning and value as the one introduced in Section 1.2 and
r1 = [(x−μ)2+y2+z2]

1

2 , r2 = [(x+1−μ)2+y2+z2]
1

2 , rS = [(x−xS)
2+(y−yS)

2+z2]
1

2

are the distances from P to Earth, Moon and Sun, respectively.
We recall that this problem does not admit either first integrals or equilibrium points.
We note that in the case of a planet without a moon it is still possible to apply the
BR4BP by considering two planets and the Sun. For instance, we can assume Sun and
Mercury to move as in the CR3BP and Venus to move around their barycenter on a
circular orbit lying on the same plane. For more details, refer to Gabern (2003).
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1.4 The Restricted n – Body Problem

In the Restricted n – Body Problem framework, we assume the massless particle P to
move under the gravitational influence of n − 1 massive bodies. We consider the nine
planets, Moon and Sun. The conventional formulation considers an equatorial reference
system centered at the Solar System barycenter with physical units of distance, time
and mass (AU, day and kg). In this work, the position and velocity for the massive
bodies, say Xp ≡ (xp, yp, zp, ẋp, ẏp, żp), at a given instant of time are furnished by the
JPL ephemerides DE405, which range from JED 2305424.50 (December 9, 1599) to JED
2525008.50 (February 20, 2201). The equations of motion for the spacecraft can be
written as

ẍ = −
11∑
p=1

Gmp
(x− xp)

r3p
,

ÿ = −
11∑
p=1

Gmp
(y − yp)

r3p
, (1.15)

z̈ = −
11∑
p=1

Gmp
(z − zp)

r3p
,

where rp =
√

(x− xp)2 + (y − yp)2 + (z − zp)2 is the distance between the planet p and
the particle, G is the gravitational constant and mp is the mass of the body p.
We recall that the JPL ephemerides DE405 (Standish, Williams) result from a least-
squares adjustment of a previously existing ephemeris to a variety of observational mea-
surements, followed by a numerical integration of the equations of motion which describe
the physics of the Solar System. These fundamental ephemerides are the bases for com-
puting the planetary and lunar positions and other related phenomena. The equations
of motion used for the creation of DE405 include contributions from pointmass interac-
tions among the Moon, planets, and Sun; general relativity; Newtonian perturbations of
selected asteroids; action upon the figure of the Earth from the Moon and Sun; action
upon the figure of the Moon from the Earth and Sun; libration of the Moon, modeled as
a solid body with tidal and rotational distortion, including both elastic and dissipational
effects; the effect upon the Moon’s motion caused by tides raised upon the Earth by the
Moon and Sun.
The internal reference system for such ephemerides, the so-called J2000, is a Cartesian
frame, with origin at the Solar system barycenter, the x−y plane is parallel to the mean
Earth Equatorial plane, the z−axis is orthogonal to this plane, the x−axis points to the
vernal point and the y−axis is selected to have a positive oriented reference system. All
these references are taken at January 1st, 2000, at 12:00 UT.
Since we are going to focus our study in the Earth – Moon neighborhood, it might
be convenient to evaluate the position and velocity of P with respect to the Earth. In
other words, we attempt to avoid the cancellation problems which might occur when
considering a trajectory far from the Solar System barycenter. To this end, we perform
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Figure 1.16: Change of coordinates performed in order to describe the behavior of the probe
with respect to the Earth and not the Solar System barycenter.

the following change of coordinates:

Ξ := X−XE ≡ (x−xE , y−yE , z−zE , ẋ− ẋE , ẏ− ẏE , ż− żE) =: (ξ, η, ζ, ξ̇, η̇, ζ̇), (1.16)

where XE represents position and velocity of the Earth. See Fig. 1.16.
The vector field to be considered is now

ξ̈ = −
11∑
p=1

Gmp
(xE − xp + ξ)

r3Ep

− ẍE ,

η̈ = −
11∑
p=1

Gmp
(yE − yp + η)

r3Ep

− ÿE , (1.17)

ζ̈ = −
11∑
p=1

Gmp
(zE − zp + ζ)

r3Ep

− z̈E ,

where rEp =
√
(xE − xp + ξ)2 + (yE − yp + η)2 + (zE − zp + ζ)2.
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Rescue Lunar Orbits 2

2.1 Introduction

The problem we address in this chapter is the computation of trajectories that can
connect the surface of the Moon and a libration point orbit (LPO). Within the framework
of the CR3BP, the transfers lie on the hyperbolic invariant manifolds associated with
the central invariant manifold of the collinear points L1 and L2.
We are motivated by the new interest that lunar missions have recently gained. In
September 2007, the Japanese space agency (JAXA) launched the mission SELENE,
designed to obtain scientific information about the lunar surface and environment and to
develop the appropriate technology for a future lunar exploration. Other lunar missions
have been successful in the latest years: in 2007 Chang’e 1 was launched by China, in
2008 Chandrayaan-1 by India and LRO and LCROSS by U.S. in 2009. Major objectives
of such missions are a deeper understanding of the lunar origin and evolution, the study
of the global dynamics of terrestrial plasmasphere and the return of humans to the Moon.
In this context, L1 and L2 LPOs could play an important role. Orbits around L1 may
stand for optimal rendezvous location between the Earth and the Moon, while LPOs
around L2 can either be used to observe the lunar farside or serve as intermediate step
for interplanetary transfers. All these ideas have already been considered by Lo, Ross
(2001) in relation to the lunar gateway station.
With respect to a manned installation on the Moon, it would aim at the creation of
a new platform to observe the universe and explore the Solar System. Clearly, this
would require usable resources in terms of material and water. A special attention is
devoted to the polar regions of the Moon where continuous access to solar illumination
may be possible. Besides, two impactors from the LCROSS mission corroborated the
presence of water in some permanently shadowed areas of south polar craters and further
confirmations on the existing amount are expected.
We recall that the Apollo missions were planned by adopting the so-called lunar ren-

dezvous scheme. This is, a Keplerian equatorial orbit around the Moon from which the
lunar module descends to the lunar surface. After having made the proper observations,
it would rejoin the orbiting command module. At the present day, the scientific commu-
nity is looking for different solutions that could guarantee low transfer time, great amount
of allowed payload, total lunar surface access and affordable propellant consumption.
Keeping this in mind, we focus on halo and Lissajous orbits either around L1 or L2.
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We examine the behavior of the corresponding stable invariant manifold if we look for
rescue orbits that depart from the Moon, the behavior of the unstable one for trajectories
landing on the Moon. We recall that a stable invariant manifold is composed by orbits
which approach the periodic/quasi-periodic orbit forwards in time, so if they depart from
the surface of the Moon is because they arrive there backwards in time after starting
close to the reference periodic/quasi-periodic orbit. Vice versa, the unstable manifold
gets to the Moon forwards in time.
We analyze how the trajectories on these invariant objects can leave/reach the Moon’s
surface, that is: the accessible regions on the Moon, the velocity and the angle of de-
parture/arrival and the time required for the transfer. Special emphasis will be put on
direct transfers, which land almost tangentially and depart almost orthogonally to the
lunar surface.
Baoyin, McInnes (2006) studied an analogous problem, this is, how to go from the Moon
to a planar L1/L2 Lyapunov periodic orbit in the framework of the Planar Circular
Restricted Three – Body Problem. We note that the planar Lyapunov orbits correspond
to Lissajous orbits with the vertical amplitude α4 equal to zero. They focused their
attention to lunar surface coverage, initial and arrival flight path angles, transfer time
and initial velocity. They found out that a whole surface coverage can be obtained only
at specific energy levels and that the smallest attainable orbit around L1 can be reached
in about 11 days (14 days for L2).

2.2 Methodology

The design of trajectories that can depart from the surface of the Moon and arrive to
the neighborhood either of L1 or L2 is established on the numerical globalization of the
stable invariant manifold of a nominal LPO. For orbits landing on the Moon we take
advantage of the corresponding unstable invariant manifold, instead. In both cases, we
assume the Moon to be a sphere of radius rM = 1737.53 km. The computation of halo
and Lissajous families of orbits together with the associated Ws/u is done by means of
an order 25 Lindstedt–Poincaré series expansion (see Section 1.2.2).
We implement a Poincaré map strategy by defining the Poincaré section as

S := r22 − r2M = 0, (2.1)

where r2 represents the distance from the minor primary to the particle.
Given an initial condition on the suitable branch of the hyperbolic manifold we are
interested in, we propagate it backwards in time if we deal with Ws, forwards otherwise.
The numerical integration is performed by means of a 7-8 Runge-Kutta-Fehlberg method
with local truncation error ε = 10−14.
The construction of the Poincaré map is done as follows. At each integration step we
check if the value of S changes sign and in this case, we refine the point obtained using
the Newton’s method within a tolerance of |S| = 10−12. This is, denoting by X(i) the
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Figure 2.1: (x, y) projection of three trajectories of the stable invariant manifold associated
with the L1 halo orbit with α4 = 0.2 normalized units (≈ 11000 km) in the Earth – Moon
system. From left to right, the trajectory reaches the Moon backwards in time without
minima of the r2 function, after one close encounter and after four loops around the Moon.

i−iteration of the procedure, we compute the sequence of points

X(i+1) = X(i) − S

DS
, where DS = 2(x− μ+ 1)ẋ+ 2yẏ + 2zż, (2.2)

until the stopping condition is fulfilled.
Whenever we get a trajectory arriving to the Moon backwards/forwards, we compute
the lunar latitude β and longitude λ corresponding to the point obtained, namely,

β = tan−1
( z√

(x− μ+ 1)2 + y2

)
, λ = tan−1

( y

x− μ+ 1

)
. (2.3)

In our exploration (β = 0◦, λ = 0◦) corresponds to the Moon’s point which is the closest
to the Earth.
In addition, we calculate the physical velocity of departure/arrival, the physical transfer
time and the departure/arrival angle ϑ, defined as the angle between the velocity vector,
v, and the vector which is normal to the Moon’s surface, ∇S, namely,

cosϑ =
v · ∇S

‖v‖ ‖∇S‖ . (2.4)

Of course, not all the orbits of a certain manifold can reach the surface of the Moon.
To prevent from long time integrations we set some controls. If after 10 adimensional
time units (about 43.5 days) the function S has not changed sign, we move to the next
trajectory of the manifold to be explored. Increasing the final time we get some more
collision orbits but, from a qualitative point of view, the results are almost identical.
The second control takes into account how many times the orbit has gone close to the
Moon without getting to it. We are interested in almost direct transfers and we do not
see operational advantages in trajectories winding around the Moon indefinitely. For
this purpose we compute the number of minima of the r2 function along the orbits. This
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is, how many times the function

ṙ2 =
(x− μ+ 1)ẋ+ yẏ + zż

r2

changes sign and simultaneously

r̈2 =
ẋ2 + ẏ2 + ż2 + (x− μ+ 1)ẍ+ yÿ + zz̈ − ṙ22

r2
> 0.

If we get more than 5 minima, then we discard such trajectory and we proceed to explore
the next initial condition on the manifold. Indeed, we have seen that in this case the
orbit remains revolving around the Moon up to a considerably large time.
We remark that we discard the minima associated with the loops exhibited by the
trajectories before leaving the neighborhood of the periodic/quasi-periodic orbit.
For illustration purposes, in Fig. 2.1 we display three trajectories of the stable invariant
manifold of the L1 halo orbit with z−amplitude α4 = 0.2 normalized units (≈ 11000 km).
The one on the left reaches the Moon directly, the one in the middle after performing
one loop around the Moon and the one on the right after performing four.

2.3 Numerical Results

We apply the above procedure using as reference L1 and L2 halo and Lissajous orbits. As
already said, each hyperbolic invariant manifold has two branches and only one of them
goes directly towards the Moon, depending on the sign of α2 and α1. For trajectories
departing from the Moon having as target orbits around L1, we take α2 > 0; if they
are expected to arrive to L2, α2 < 0. The same holds for α1 if the orbits belong to the
unstable invariant manifold and thus arrive to the Moon.

2.3.1 Halo Arrival/Departure

For halo orbits around the L1 point we take values of the z−amplitude α4 ∈ [0.01, 0.45]
normalized units, that is, approximatively up to 23000 km (or, equivalently, the Jacobi
constant ranges from 3.14100 to 3.18633). For L2, we allow the z–amplitude to vary up
to 0.35 normalized units, that is, approximatively 28000 km, or C ∈ [3.14254, 3.16410].
The exploration is carried out varying the z−amplitude at step equal to 10−3 normalized
units in both cases. For the suitable branch of each manifold, we explore 5000 different
orbits associated with values of the parameter along the orbit equally spaced in [0, 2π].
In Figs. 2.2 and 2.3, we display the accessible departure regions on the Moon associated
with I class halo orbits around the L1 and L2 equilibrium points. The orbits which give
rise to such regions are trajectories of the stable invariant manifold that, starting at a
given halo orbit (and integrating backwards in time), reach the lunar surface after having
0 (left) and up to 5 (right) close approaches with the Moon (minima of the r2 function).
The departure regions corresponding to II class orbits are symmetric with respect to
the {β = 0} axis to the ones obtained for I class orbits, provided the same number of
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Figure 2.2: Longitude and latitude of the accessible departure zones of the Moon associated
with I class halo orbits around the L1 libration point. The two plots correspond to rescue
orbits with 0 loops around the Moon before reaching the halo orbit (left) and with 5 or
less loops (right). The range of amplitudes explored goes from α4 = 0.01 normalized units
(≈ 500 km) to α4 = 0.45 normalized units (≈ 23000 km).
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Figure 2.3: Longitude and latitude of the accessible departure zones of the Moon associated
with I class halo orbits around the L2 libration point. The two plots correspond to rescue
orbits with 0 loops around the Moon before reaching the halo orbit (left) and with 5 or
less loops (right). The range of amplitudes explored goes from α4 = 0.01 normalized units
(≈ 1000 km) to α4 = 0.35 normalized units (≈ 28000 km).
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Figure 2.4: Density of opportunities of departure from the Moon’s surface per unit of length
of the arrival orbit and per unit of area element. The lighter the shade of gray the greater
the chance. On the left, the L1 case; on the right, the L2 one.

minima. This is expected from the existing symmetry between northern and southern
halo orbits with respect to the {z = 0} plane.
In general, the patterns defining the accessible regions displayed in the figures are com-
posed by different curves, each one associated with a halo orbit of a certain amplitude.
Depending on the amount of close approaches to be performed, we can distinguish several
families of longitude/latitude curves. For direct transfers, the curves in the middle of
the pattern, that is, the shortest ones, are associated with halo orbits with the smallest
amplitudes. On the other hand, for the L1 case the curves covering almost the whole
longitude’s range are those with α4 ≥ 0.43 normalized units (≈ 22000 km).
As it is clear from the plots corresponding to 0 minima, the regions on the lunar surface,
from which we can reach a halo orbit without performing any loop around the Moon in
between, cover (approximatively) only one half of the total surface. As we increase the
number of allowed loops, the area of the region increases and by means of 3 or more
loops the surface of the Moon is completely covered. In other words, if we allow at least
3 minima, one can reach the halo families departing from any point of the surface of the
Moon.
However, we remark that the points of allowed departure are not uniformly distributed
on the Moon’s surface. There exist regions where we have more chances to take off joining
the stable invariant manifold associated with a given halo orbit. This is illustrated in
Fig. 2.4, where a lighter shade of gray corresponds to a greater probability of departure.
For this representation, we considered the Moon’s surface as a rectangle of dimensions
[−180◦, 180◦] × [−90◦, 90◦] in terms of longitude and latitude and we discretize it in
small squares of 15◦ = 180◦/12 of side. For each nominal halo orbit, independently
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Figure 2.5: Longitude and latitude of the accessible arrival regions of the Moon associated
with I class halo orbits considered around L1 on the left, L2 on the right. The two plots
correspond to direct transfers.
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Figure 2.6: Modulus of the departure velocity (km/s) as a function of the Jacobi constant
of the target halo orbit. On the left, the plot corresponds to the results obtained for the halo
orbits considered around L1; on the right, for the halo orbits around L2.

of the number of minima needed, we compute the number of departures found in each
of these squares and we weight this value taking into account the length of the arrival
periodic orbit. Finally, the sum of the values obtained is divided by the total number of
departures and by the area of the spherical square considered.
The above considerations are still valid if we talk about trajectories that lead to the
Moon. In Fig. 2.5, we display the regions where we can land with direct transfers.
Comparing Figs. 2.2 and 2.3 with Fig. 2.5, we note the symmetry already introduced in
Section 1.2.2 occurring between the stable and the unstable invariant manifold.
Concerning the modulus of the velocity at the departure from the surface of the Moon,
we note that in all the cases it is almost equal to the lunar escape velocity (about 2.375
km/s). This result follows from the conservation of the Jacobi integral, taking into
account that all the orbits of the stable manifold of a certain halo orbit have the same
value of the Jacobi constant as the halo orbit itself.
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If |v| denotes the modulus of the velocity, the Jacobi integral can be written as

|v|2 = 2Ω− C = (x2 + y2) + 2
(1− μ

r1
+

μ

r2

)
+ (1− μ) μ− C. (2.5)

When we move on the surface of the Moon, r2 = rM is constant and, since x varies
within [μ− 1− rM , μ− 1 + rM ], the value of r1 =

√
r22 − 1 + 2μ− 2x goes from rM − 1

to rM +1. If we compute the extrema of 2Ω we get that the variations of |v|, for a fixed
value of C, are of the order of 10−5 adimensional velocity units or, equivalently, of 10−2

m/s. As a consequence, the main change on the modulus of the departure velocity is
due to the variation of the Jacobi constant along a given family of halo orbits.
In Fig. 2.6, we display how this modulus varies, as a function of the Jacobi constant, for
the two families of halo orbits considered. As it can be seen from the plots, the maximum
variations along the two families are of the order of 10 m/s.

Figure 2.7: Longitude and latitude of departure as a function of the arrival angle. The
arrival takes place on the I class halo family considered around L2. Orthogonal departure is
associated with 0◦, tangential with 90◦.

As mentioned before, we also compute the departure/arrival angle from the surface of
the Moon. Because of the definition we assumed, it takes values between 0◦ (orthogonal
departure/arrival) and 90◦ (tangent departure/arrival). If we consider direct and non-
direct rescue trajectories and any halo orbit as target orbit, we find rescue trajectories
with departure/arrival angles taking any value in [0◦, 90◦] (see Fig. 2.7). In Fig. 2.8, we
display the regions characterized by almost orthogonal departure, that is, from which
we can leave with an angle less than 10◦; in Fig. 2.9 the regions characterized by almost
tangential landing. Indeed, we consider these two situations as the most natural to take
off and land.
Furthermore, there exists a very large range of phases (more than one half of the full
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Figure 2.8: Regions of almost normal departure (the white ones) from the Moon to the halo
family considered around L1 (left) and L2 (right). The two plots correspond to trajectories
performing up to 3 loops around the Moon before reaching the halo orbit.

Figure 2.9: Regions of almost tangential arrival (the white ones) to the Moon from the halo
family considered around L1 (left) and L2 (right). The two plots correspond to trajectories
performing up to 3 loops around the Moon before reaching it.

range) which are not attained by rescue orbits. In Fig. 2.10 we show the behavior
corresponding to direct landing on the Moon starting from a L1 halo orbit. Increasing
the number of loops the range of phases clearly increases, but not as much as to cover
the whole interval [0, 2π].
Concerning the transfer time, we recall first that a hyperbolic manifold is established
on asymptotic trajectories. This means that to go from the Moon to a nominal libration
point orbit (and vice versa) on such trajectories would take, in principle, an infinite
time. More precisely, we consider the interval of time elapsed going from the initial
conditions on the hyperbolic manifold, that is, about 70 − 90 km from the given halo
orbit, to the Moon’s surface. In this way, both in the L1 and in the L2 case, direct orbits
need approximately 10 days, while the non-direct ones need about 10 more days for each
further loop.
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Figure 2.10: Longitude and latitude of landing as a function of the parameter along the
periodic orbit. The departure takes place on the I class halo family around L1.

2.3.2 Lissajous Arrival

To complete the study, we proceed to the numerical globalization of the stable invariant
manifold associated with Lissajous orbits around L1 and L2. Looking to the crossing
with the surface of the Moon we are able to determine the basic characteristics of the
rescue transfer orbits. As in the previous case, we integrate backwards in time the
trajectories on Ws starting close to the Lissajous orbit. If they reach the Moon, then we
compute the longitude and the latitude of the intersection point, the velocity and the
angle of arrival and the time of flight. Here, we skip the case associated with Wu, as we
have just understood the relationship existing between the two situations.
We stress that the main difference between this exploration and the one corresponding
to the halo orbits is the amount of data to treat and the computational time. The reason
is clear: in the halo case, for each equilibrium point and for a fixed energy level we have
only two symmetric periodic orbits, now we have an infinite number of Lissajous orbits
characterized by an in–plane and an out–of–plane amplitude, α3 and α4. In addition,
for each pair of amplitudes we have two phases φ1 and φ2 to explore, in order to reach
all the points of the orbit. To afford the consequent computational effort, we restrict the
exploration to square Lissajous orbits (α3 = α4).
In particular, for L1 we have α3 = α4 ∈ [0.001, 0, 101] normalized units, that is, up to
about 6500 km or C ∈ [3.18598, 3.20034]; for L2 α3 = α4 ∈ [0.001, 0, 171] normalized
units, that is up to about 12000 km or C ∈ [3.16356, 3.18416]. These amplitudes are
varied at step of 3× 10−3. Concerning φ1 and φ2, we pick up 300 equally spaced values
in [0, 2π] for both of them.
It is worth to recall that the hyperbolic invariant manifolds associated with halo orbits
are 2–dimensional, so the corresponding intersection with the Moon’s surface is a curve.
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Figure 2.11: Departure region from the surface of the Moon associated with the square
Lissajous orbit of amplitude equal to 0.09 normalized units (≈ 6000 km) around the L1

equilibrium point obtained from direct (without loops around the Moon) rescue orbits. See
explanation in the text.

The hyperbolic invariant manifolds associated with Lissajous orbits are 3–dimensional,
so their intersection with the surface of the Moon gives rise to 2–dimensional regions.
For a given Lissajous orbit, that is, for fixed values of the amplitudes α3 and α4, its
stable invariant manifold can be parametrised by the two phases φ1, φ2 and the time.
Assume that this stable manifold reaches the Moon. If we fix one of the phases, say φ1,
and allow the other one to vary within [0, 2π], the intersection with the surface of the
Moon is a curve, which is closed if any value of φ2 generates an orbit which gets the
Moon’s surface backwards in time. As we change the value of φ1, the intersection curve
changes both in shape and in position in the (λ, β) plane. Of course, it might happen
that the intersection disappears for certain intervals of values of any of the phases. The
envelope of all the intersection curves defines the boundary on the surface of the Moon
of the 2–dimensional intersecting region associated with the stable invariant manifold of
the Lissajous orbit.
In the left plot of Fig. 2.11, we show the intersection curves corresponding to toy-values
of φ1 for the stable invariant manifold associated with the square Lissajous orbit of
amplitude equal to 0.09 normalized units (≈ 6000 km) around the L1 point. On the
right, the whole region achieved by allowing φ1 and φ2 to vary in a continuous way in
[0, 2π]. The curves are due to orbits that reach the Moon without performing any loop
around it. The range of successful values for φ1 is (0.75, 2.1).
For the two kinds of Lissajous orbit that we consider as target, we find that most of the
rescue can take place in a direct way if we aim at reaching the L1 point, otherwise there
exist more chances with two loops around the Moon. Moreover, the neighborhood of L1

is attainable with any number of minima only departing from almost half of an equatorial
strip of 40◦ in terms of latitude. In the L2 case, the accessible region on the Moon is quite
larger, though we do not have full coverage. This is shown in Fig. 2.12. Certainly, the
reason of the two different behaviors resides on the wider range of amplitudes explored
in the second case.
In Fig. 2.13, we display the allowed departure regions for direct trajectories, in the L1
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Figure 2.12: Regions (black) of allowed departure from the surface of the Moon, considering
as target square Lissajous orbits and trajectories performing up to 5 loops around the Moon.
On the left, the L1 case; on the right, the L2 one.

Figure 2.13: Regions (black) of allowed departure from the surface of the Moon, considering
as target square Lissajous orbits around L1 on the left, around L2 on the right. We display
here the case of direct rescue.

and in the L2 case. Apart from the forbidden region, in the L2 case we find a greater
density of opportunities on the nearside of the Moon at equatorial latitudes.
As a further consideration, our simulation has revealed that the stable manifold arrives
to the Moon only if the amplitudes α3 = α4 are big enough, this is: α3 = α4 > 0.064
(≈ 4000 km) for L1 and α3 = α4 > 0.075 (≈ 5000 km) for L2.
Concerning the phases, the greater the amplitude of the Lissajous the wider the interval
of values φ1 that give rise to rescue orbits.
By the same reasons described in the halo case, the departure velocity is almost the
same for all the transfer orbits associated with a given Lissajous orbit and depends only
on the value of the Jacobi constant. The behavior of the transfer time is quite analogous
to that found for the halo orbits. The departure angle for direct rescue trajectories is
represented in Fig. 2.14 as a function of the amplitudes α3 = α4 and one phase φ1.
Considering any number of loops, we do not find almost orthogonal departure in the L1

case, while for L2 the departure region characterized by an angle less than 10◦ is shown
in Fig. 2.15.
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Figure 2.14: Departure angle for direct rescue trajectories in degrees as a function of the
phase φ1 (rad) and of the amplitude (normalized units) of the square Lissajous orbit. On the
left, the L1 case; on the right, the L2 case.

Figure 2.15: Region of almost normal departure (the white one) from the Moon to square
Lissajous orbits around L2. The plot corresponds to trajectories performing up to 5 loops
around the Moon before reaching the quasi-periodic orbit.

2.4 Comments and Possible Developments

The dynamics corresponding to the hyperbolic invariant manifolds associated with the
central invariant manifold of the collinear points L1 and L2 allows the design of rescue
orbits from the surface of the Moon to a libration point orbit and vice versa, at least in
the CR3BP model.
The results offer some distinctions depending on the type of LPO and of the transfer.
In case of direct rescue orbits, there are large regions on the Moon’s surface from which
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the landing and the take off is not possible, independently of the nominal LPO selected.
For non-direct transfers, which are characterized by a longer transfer time, rescue can
take place from much larger regions. In all the cases, the departure velocities are the
lowest possible.
If we plan to set a lunar hub, it seems that the most suitable region is located at
equatorial latitudes. Indeed, there Wu is able to provide tangential arrival and Ws

orthogonal departure. However, we should allow for non-direct transfers in order to
exploit the two dynamics, in the sense that the longitude-latitude coverage attained by
the two manifolds overlaps only if the spacecraft can ring around the Moon at least once.
On the other hand, if indeed a relevant quantity of water ice will be confirmed at polar
latitudes, we should refer to as great as possible amplitudes for the nominal LPO. This
consideration holds especially if we are interested in Lissajous orbits, which represent
a more flexible solution for a space station. Unfortunately, the order 25 Lindstedt–
Poincaré semi-analytical approximation implemented does not permit to analyze the
behavior corresponding to very large quasi-periodic orbits. Other techniques should be
implemented, as example a Fourier parametrization (Gómez, Mondelo, 2001; Jorba, Ollé,
2004).
The main drawback of these rendezvous schemes might be the transfer time. A period
of 10 days for a direct transfer is big compared with a standard Hohmann Earth – Moon
connection. If we choose to perform one loop around the Moon, this value increases
of about 10 days. It is something expected, due to the low-energy dynamics we are
considering. An analogous time flow was already noticed by Baoyin, McInnes (2006).



Transfers from a Low Earth

Orbit to a Libration Point

Orbit

3

3.1 Introduction

As a natural continuation of the previous analysis, now we look for trajectories going
from a nominal orbit around the Earth to a libration point orbit around either L1 or
L2 of the Earth – Moon system. Our purpose is to provide a global picture of the
dynamics driving these transfers, putting special emphasis on the role played by the
geometry of the arrival orbits and the hyperbolic invariant manifolds. We will show that
the distance existing between the Earth and the points on the manifold is crucial for a
cheap connection.
As a matter of fact, in the Earth – Moon system the hyperbolic invariant manifolds
associated with L1/L2 central orbits pass quite far from our planet, which means that
the transfer can not take place using only these invariant structures. It is mandatory to
design an additional leg that allows the spacecraft to join Ws, which is the manifold we
are interested in, as it approaches the neighborhood of L1/L2 forwards in time. At least
two maneuvers are required: one to depart from the Low Earth Orbit (LEO) and one to
insert either into the LPO or into one of the branches of its stable invariant manifold.
In this chapter we consider only square Lissajous orbits as target. While in the Sun –
Earth framework the practical application of this central type of solutions is consolidated
(just think about the recent Herschel and Planck missions), in the Earth – Moon reference
system there is not any exploitation yet.
From our point of view, there exist several reasons to plan a mission based on Lissajous
orbits. First of all, this 2-parameter family of solutions imposes less constraints to the
mission designer than the widely used halo orbits, essentially because the in–plane and
the out–of–plane amplitudes can be chosen independently one from the other. As a
further advantage, the occultation avoidance problem can be solved in a non-expensive
way: following Canalias, Cobos, Masdemont (2003) and Renk (2009) it is possible to
skip out the exclusion zone by means of either a phase jump or synchronization. Finally,
a methodology for transfers involving quasi-periodic orbits can be extended and applied
to the periodic orbit case.
Other authors have considered the same problem with different methodologies. Rausch
(2005) and Parker (2007) fixed as arrival locations halo orbits around the point L1 in
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Figure 3.1: Sketch of the procedure implemented. In a backwards integration, we depart
from a nominal Lissajous orbit and we get to a sphere around the Earth of given radius (LEO
sphere).

the Earth – Moon system. The first author used a shooting technique to construct
a continuous arc linking two given points in a fixed time of flight. Parker computed
a 2-maneuvers connection by means of a Two – Body Problem (2BP) approximation
refined including the gravitational effect of the Moon. Renk, Hechler (2008) exploited
optimization techniques in order to transfer from a nominal LEO to a LPO (halo and
Lissajous) either around L1 or L2. The trajectories computed follow the escape directions
associated with the LPO and may perform a lunar fly-by. Gordon (2008) focused his work
on LEO-LPO around the point L2. In his approach, a differential correction procedure is
used to meet some constraints at the departure and at the insertion either into a planar
Lyapunov orbit or into a halo orbit.

3.2 2−Manoeuvres Transfers

As just mentioned, our aim is to establish a transfer to go from a given LEO to a nominal
square Lissajous orbit either around L1 or L2 in the Earth – Moon system. We assume
to be able to perform two maneuvers and to exploit one of the branches of the stable
invariant manifold associated with the arrival orbit.
The procedure implemented can be sketched as follows (see Fig. 3.1).

1. We choose the arrival orbit, that is, the amplitude α3 = α4, and we compute
the initial conditions on the proper branch of the corresponding stable invariant
manifold by means of the order 25 Lindstedt–Poincaré series expansion (1.10).
This is, we set α2 �= 0 and determine the initial conditions associated with equally
spaced values of the phases φ1 and φ2 both inside the range [0, 2π].

2. We integrate each initial condition backwards in time up to a certain point (that
will be specified later) defining t = 0 when the x component of the trajectory fulfills
a given requirement (generally x > xmin, where xmin depends on the amplitude of
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the Lissajous orbit). In this way, we intend to start our computation at a distance
of about 100 km from the Lissajous quasi-periodic orbit.

3. Then we perform a first maneuver, say Δv1, to change the energy of the particle
and the direction of its motion. With Δv1 we aim at reaching (backwards in time)
a sphere of radius R = REarth + hLEO (LEO sphere), assuming REarth = 6378.14
km and hLEO to be a given altitude for a set of LEOs.

4. If, after performing the first velocity correction Δv1, we obtain a trajectory which
reaches the LEO sphere, then a second maneuver is needed, say Δv2. This is done
assuming the velocity on the sphere, say vc, to be constant and given by the 2BP
approximation. In particular, vc =

√
μ2/R where μ2 = 1−μ is the mass parameter

for the 2BP (recall that, due to the adimensional set of units adopted, the universal
gravitational constant is unitary).

Let v be the velocity of the spacecraft at the arrival to the LEO, then

Δv2 =
√
||v||2 + v2c − 2||v||vc cos (0.5π − ϑ). (3.1)

Here ϑ is the angle between v and the normal to the LEO sphere, say ∇G, where
G = (x− μ)2 + (y)2 + (z)2 −R2. It is computed as in (2.4).

5. For each initial condition considered on the stable invariant manifold, we look for
the minimum Δvtot = Δv1 + Δv2 which guarantees the connection. To this end,
we implement a differential correction procedure with respect to Δv1 in order to
make Δv2 minimum, that is, ϑ = 0.5π, as stated by (3.1).

Figure 3.2: The negative branch of the stable invariant manifold associated with the square
Lissajous orbit of α3 = 0.09 normalized units around the point L1 in the Earth – Moon
system. The central dot represents the Earth; the points labeled as perigee are the points
on the manifold which correspond to a minimum of the distance to the Earth function; the
points labeled as apogee are the ones which correspond to a maximum.
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6. Finally, if we reach the LEO sphere, we compute the longitude β and the latitude
λ corresponding to the point obtained, namely,

β = arctan
y

x− μ
, λ = arctan

z√
(x− μ)2 + y2

.

They give information on the inclination characterizing the LEOs that can be
considered with our technique.

We remark that we can decide to apply Δv1 at a certain epoch or at a certain distance
from the Earth. In the second case, we refer as perigee and apogee the points at which
the distance to the Earth function attains a minimum and a maximum, respectively (see
Fig. 3.2). Also, we can achieve the transfer by inserting directly into the Lissajous orbit
without using the stable invariant manifold. In this case, Δv1 is applied to the initial
conditions given by the Lindstedt–Poincaré expansion setting α1 = α2 = 0.

3.2.1 First Approximation

As a first approximation for Δv1 we consider a Hohmann-like transfer between the ellipse
which osculates the point chosen on the manifold and a co-planar circular orbit with
radius R around the Earth.
Let us start by recalling how a point in the synodical reference system with origin at the
Earth – Moon barycenter is seen in the sidereal coordinate system whose reference plane
is the Earth – Moon orbital plane and origin is set at the Earth, this is, how to move
from (xsyn, ysyn, zsyn, ẋsyn, ẏsyn, żsyn) to (xsid, ysid, zsid, ẋsid, ẏsid, żsid). In the CR3BP
adimensional units, we have⎛

⎝ xsid

ysid

zsid

⎞
⎠ = R

⎛
⎝ xsyn − μ

ysyn

zsyn

⎞
⎠ , (3.2)

and ⎛
⎝ ẋsid

ẏsid

żsid

⎞
⎠ = R

⎛
⎝ ẋsyn

ẏsyn

żsyn

⎞
⎠+ Ṙ

⎛
⎝ xsyn − μ

ysyn

zsyn

⎞
⎠ , (3.3)

where

R =

⎛
⎝ cos (t) − sin (t) 0

sin (t) cos (t) 0
0 0 1

⎞
⎠ ,

and Ṙ is the derivative of R with respect to t.
Given these equations, if we consider a certain point on the hyperbolic invariant manifold
in synodical coordinates, we can always look at it as a point of the 2BP in sidereal
coordinates and compute the corresponding orbital elements, provided a far enough
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R
Δv

1

R
m

Figure 3.3: Hohmann-like transfer considered as initial guess for the differential procedure
implemented.

distance from the primary we would like to neglect (the Moon in our case).
The maneuver to be computed in the inertial framework is given by

Δv1 =

√
2
μ2

Rm
− 2

μ2

Rm +R
−

√
2
μ2

Rm
− μ2

a
, (3.4)

where Rm is the distance from the point on the manifold to the Earth and a is the
semi-major axis of the osculating ellipse (see Fig. 3.3).
In particular, if vsid

old is the inertial velocity corresponding to the point on the manifold,
we apply to it a tangential maneuver Δv1 which results in vsid

new, namely,

(vsid
new)i = (vsid

old)i +Δv1
(vsid

old)i

||vsid
old||

, i = 1, 2, 3. (3.5)

The last step is to apply the inverse transformation of (3.3) in order to obtain from vsid
new

a first approximation for the velocity at the beginning of the transfer path in the CR3BP
reference frame, say v

syn
new.

In turn, the procedure can be summarized as

v
syn
old

(3.3)−−−→ vsid
old

Δv1−−→ vsid
new

(3.3)−1

−−−−→ vsyn
new.

We stress that while vsid
new and vsid

old are parallel, this is not true in general for v
syn
new

and v
syn
old . Indeed, by considering a rotating reference system we have to account for

additional components due to the Coriolis force.

3.2.2 Differential Correction

The maneuver (3.1) is minimum if the following condition is satisfied at the LEO:

g := rsid · vsid = v · ∇G = 0. (3.6)
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Because of this, starting from the point on the manifold (rsyn,vsyn
new) we integrate the

equations of motion of the CR3BP up to fulfill the requirement above. At this step, if
the distance between the spacecraft and the Earth is not the desired one, we apply a
differential correction procedure with respect to Δv1.
Let X

syn
0 ≡ (rsyn,vsyn

new) be the initial condition on the Hohmann-like trajectory and
X

syn
f the point computed when g = 0. We implement the Newton’s method in order to

obtain also G = 0, namely,

DG ·ΔXsid
0 =

[ ∂G

∂Xsyn
f

· (Φ + F ·Dt) · ∂X
syn
0

∂Xsid
0

]
·ΔXsid

0

= −G, (3.7)

where Φ =
∂Xsyn

f

∂Xsyn
0

is the variational matrix, F =
∂Xsyn

f

∂tf
is the CR3BP vector field,

Dt =
∂tf

∂Xsyn
0

= −Dg·Φ
Dg·F , ΔXsid

0 is the correction we apply to the initial conditions in the

sideral reference system and

∂Xsyn
0

∂Xsid
0

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0
−1 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.8)

Notice that, since the initial position on the manifold is fixed and because of (3.5), we
need to change just the value of Δv1.

3.3 Numerical Results

We implement the above procedure to reach Lissajous orbits around either the point L1

and L2. Due to the presence of the Moon in the latter situation, we deal with quite
different results. In particular, we decide to analyze the branch of Ws(L2) which does
not approach directly the second primary and thus the behavior of the dynamical tube
with respect to the Earth is not as relevant as in the former case.
We report the results corresponding to the two equilibria one independently from the
other.

3.3.1 L1 Lissajous Orbits

We begin by considering to depart from a LEO of altitude hLEO = 360 km and to
arrive to square Lissajous orbits of various sizes around the equilibrium point L1. In
particular, we take amplitudes α3 = α4 = 0.01, 0.03, 0.06 and 0.09 normalized units,
which correspond to 600, 1700, 3500 and 6000 km, respectively. The negative branch
of the stable invariant manifold associated with these quasi-periodic orbits is the most
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Lissajous amplitude minimum dEarth maximum dEarth

600 120286.1 294330.0
1700 114278.9 295327.4
3500 105986.8 296946.1
6000 98279.1 298769.5

Table 3.1: Minimum and maximum altitude (km) with respect to the center of the Earth
attained in 40 days by the negative branch of the stable invariant manifold associated with a
square Lissajous orbit of given amplitude (km).

suitable to our purpose (compare Figs. 1.9 and 3.2). From Fig. 3.2 we see that the
distance to the Earth function, say dEarth, attains several local minima and maxima in
the branch of the manifold considered. In the first exploration, we take these extrema as
insertion locations, as they are expected to be also extrema of the total Δv cost. Later
on, we study the possibility of injecting into any point on the manifold and also to vary
the value of hLEO. We notice that dEarth is Rm introduced in (3.4).

Perigees and Apogees

To analyze the transfers associated with perigees and apogees, we take 100 values of φ1

and 100 values of φ2 obtaining 10000 initial conditions on the negative branch of Ws.
In Tab. 3.1 we show the minimum and maximum distance that this branch of the stable
invariant manifold associated with a given square Lissajous orbit can attain in about 40
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Figure 3.4: Examples of transfers obtained in the CR3BP synodical reference system with
adimensional units. LEO of hLEO = 360 km; arrival Lissajous orbit of amplitudes α3 =
α4 = 0.09 normalized units (≈ 6000 km) around the point L1 of the Earth – Moon system.
Left: insertion into one of the perigees of the corresponding stable invariant manifold. Right:
insertion into one of the apogees.
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branch of the stable invariant manifold associated with the square Lissajous orbit of α3 = 0.09
normalized units (≈ 6000 km) around the point L1 in the Earth – Moon system.
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Figure 3.7: Total cost (km/s) of the transfer as a function of the total time (days), that is,
the time spent on the manifold plus the time from the LEO to the manifold. The results are
associated with apogees and perigees on the negative branch of the stable invariant manifold
corresponding to the square Lissajous orbit of α3 = 0.09 normalized units (≈ 6000 km)
around the point L1 in the Earth – Moon system.

days. In Fig. 3.4 we show two of the transfers obtained, one arriving to a perigee of Ws

and one to an apogee.
From these simulations, it turns out that the most expensive maneuver takes place at
the LEO (see Fig. 3.5). This is something expected if we think that we depart from
the neighborhood of the Earth with a speed close to the velocity of escape of the Earth
(≈ 11.2 km/s) and the velocity on a LEO is constant (≈ 7.7 km/s in the case considered).
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arrival Lissajous orbits around the point L1 in the Earth – Moon system. Left: the apogee
case; right: the perigee one.

Moreover, the apogees seem to be more convenient in order to obtain cheaper transfers
in terms of total Δv. Looking to Fig. 3.5, we can realize that getting further from the
Earth we save almost 0.7 km/s. A similar behavior can be appreciated when considering
different maxima/minima. We notice that the modulus of the velocity on the manifold
at the apogees is smaller than the one associated with perigees (see Fig. 3.6). In a 2BP
framework, this means that in the first case we are close to the apogee of the osculating
ellipse and to the perigee in the other one.
In Fig. 3.7 we display the total Δv cost as a function of the total transfer time, that is,
the time spent on the manifold plus the time on the Hohmann-like leg. Going from the
LEO to the manifold requires about 3 days if inserting into an apogee and about 1 day
if inserting into a perigee.
If we consider arrival orbits of various amplitudes and different apogees/perigees, we
obtain as minimum total cost the value showed in Tab. 3.2. In the same table, they
are displayed the two maneuvers performed and the time corresponding to go from the
LEO to the manifold. The best path computed corresponds to the first apogee of the
stable manifold associated with the square Lissajous orbit of α3 = 0.09 normalized units
(≈ 6000 km): it takes about 3.4 days on the Hohmann-like leg and the total change
in velocity is of about 3.6 km/s. As general finding, the larger the nominal orbit, the
cheaper and longer the transfer. From Fig. 3.8, it can be inferred that the total cost
of the transfer follows a behavior which is almost linear with respect to the size of the
Lissajous arrival orbit.
In Tab. 3.3 we show the maximum inclinations with respect to the Earth – Moon orbital
plane of the LEOs the whole procedure allows us to depart from. We notice that, while
arriving to a perigee is possible only from a very narrow range, there exist many chances
to reach an apogee. Moreover, the greater the amplitude of the target Lissajous orbit,
the wider the interval of inclinations that can be considered.
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α3 = α4 = 0.09 (6000 km)

arrival Δv1 Δv2 Δvtot TOF

apogee 1 0.5717 3.0425 3.6142 3.4292
apogee 2 0.5781 3.0424 3.6205 3.3901
apogee 3 0.5972 3.0425 3.6397 3.3912
perigee 1 1.3374 2.9421 4.2795 1.3931
perigee 2 1.3533 2.9381 4.2914 1.3544
perigee 3 1.4426 2.9132 4.3558 1.1638

α3 = α4 = 0.06 (3500 km)

arrival Δv1 Δv2 Δvtot TOF

apogee 1 0.5979 3.0417 3.6396 3.4001
apogee 2 0.6028 3.0415 3.6443 3.3549
apogee 3 0.6147 3.0414 3.6561 3.3479
perigee 1 1.4018 2.9242 4.3260 1.2417
perigee 2 1.4213 2.9189 4.3402 1.2032
perigee 3 1.4663 2.9056 4.3719 1.1125

α3 = α4 = 0.03 (1700 km)

arrival Δv1 Δv2 Δvtot TOF

apogee 1 0.6243 3.0411 3.6653 3.3721
apogee 2 0.6267 3.0406 3.6673 3.3228
apogee 3 0.6323 3.0405 3.6728 3.3158
perigee 1 1.4656 2.9054 4.3710 1.1108
perigee 2 1.4878 2.8989 4.3867 1.0719
perigee 3 1.5051 2.8933 4.3984 1.0393

α3 = α4 = 0.01 (600 km)

arrival Δv1 Δv2 Δvtot TOF

apogee 1 0.6421 3.0407 3.6828 3.3571
apogee 2 0.6420 3.0401 3.6821 3.3041
apogee 3 0.6440 3.0401 3.6841 3.3018
perigee 1 1.5083 2.8923 4.4006 1.0326
perigee 2 1.5317 2.8851 4.4168 0.9941
perigee 3 1.5365 2.8832 4.4197 0.9846

Table 3.2: Minimum total cost (km/s), maneuvers performed (km/s) and time of flight
(days) on the Hohmann-like leg to go from LEOs of hLEO = 360 km to the stable invariant
manifold associated with different Lissajous orbits. From the top, α3 = 0.09, α3 = 0.06,
α3 = 0.03, α3 = 0.01 normalized units around the point L1 in the Earth – Moon system.
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Lissajous amplitude arrival maximum i

600 apogee 3.37◦

1700 apogee 12.70◦

3500 apogee 47.23◦

6000 apogee 69.61◦

600 perigee 0.14◦

1700 perigee 0.41◦

3500 perigee 0.89◦

6000 perigee 1.60◦

Table 3.3: Maximum inclination (degree) with respect to Earth – Moon orbital plane of
the LEOs, that can be considered with our procedure. The perigees and apogees taken as
target belong to the negative branch of the stable invariant manifold associated with square
Lissajous orbits of given amplitude (km).

Different Insertion Locations

With this outcome in mind we extend the results to the case where the Δv1 maneuver
is performed at any point along the manifold. To this end we take insertion points on
the stable invariant manifold every Δt = 0.01 adimensional units (about 1 hour) up to
t = 9 normalized units (about 40 days), starting from 20 × 20 initial conditions along
the Lissajous orbit.
In a first step we look for the minimum Δvtot corresponding to each instant of time.
This is displayed in Fig. 3.9. The oscillations that appear in such curves are related to
the distance, dEarth, between the Earth and the point on the manifold which corresponds
to a given value of time. For the biggest Lissajous orbit analyzed the cheapest transfer
requires about 12 days of journey along the stable invariant manifold.
To perform a deeper analysis we fix the value of φ1 obtaining the behavior showed in
Fig. 3.10. We notice that while Δv2, the maneuver at the LEO, is almost constant
whenever we insert into the manifold, Δv1 is driven by the Earth-manifold distance. In
turn, Δv1 controls the behavior of Δvtot and maxima of Δv1 are associated with minima
of dEarth. We observe that the cost of the first maneuver turns is minimum when the
velocity of insertion into the manifold and the velocity associated with the manifold are
aligned but with opposite directions.
If we fix both φ1 and φ2, that is, we examine the behavior of a given trajectory, we
notice that the minimum Δvtot over the whole time span takes place at an apogee. This
is a further confirmation of the role played by dEarth.
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Figure 3.9: Minimum Δvtot (km/s) found for each t (days) considered in the 20× 20 mesh
of points set. On the top left, Lissajous orbit of α3 = 0.01; on the top right, α3 = 0.03; on
the bottom left, α3 = 0.06; on the bottom right, α3 = 0.09 normalized units.

Further Considerations

If we extend the simulations just explained to LEOs of different altitudes, we are able to
reproduce the same outcome as above. The only thing we can notice is that the higher
the altitude the smaller both maneuvers Δv1 and Δv2, as expected. This is showed in
Fig. 3.11.
Finally, we construct transfers that do not exploit the stable invariant manifold, this
is, the procedure is applied directly to the Lissajous nominal orbits. As it could also be
deduced from Fig. 3.9, we cannot detect any improvement, apart from the total time of
flight, which is now of about 4 days. The behavior of the total cost now varies according
to the size of the Lissajous arrival orbit, but in general is higher than the one obtained
at the apogees, apart from small ranges of (φ1, φ2).
The total outcome is coherent with the simulations done by Parker (2007). For fast
transfers he observed that the smallest velocity corrections are associated with the points
on the manifold which lay at the greatest distance with respect to the Earth. In other
words, he found that the best transfers take place at the apogee of the branch of the
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Figure 3.10: As a function of the value of time corresponding to the insertion into the
manifold, the behavior of Δv1, Δv2 and Δvtot (top), of Δvtot and dEarth (middle) and of
the angle between the velocity on the manifold and the velocity of insertion into the manifold
(bottom). We fix the value of φ1 as φ1 = 7π/10 and we consider the negative branch of
the stable invariant manifold corresponding to the square Lissajous orbit of α3 = α4 = 0.09
normalized units (≈ 6000 km) around the point L1 in the Earth – Moon system.
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orbit of α3 = 0.09 normalized units (≈ 6000 km) around the point L1 in the Earth – Moon
system.

stable manifold of the chosen halo orbit. The cheapest value he got for the perigee
scenario is a little lower than the ours (about 4.14 km/s for a fixed central orbit), while
for the open-point scenario his least expensive cost (about 3.62 km/s) is almost the same
as our 3.61 km/s. We recall that he computed even better connections by exploring a
very wide range of amplitudes for the nominal halo orbit.
On the other hand, we have obtained better results than those of Rausch (2005) in what
concerns the insertion into the manifold, but not with respect to the direct transfers to
the L1 orbits. Indeed, he found that the best connections arrive to the halo orbits, both
in what refers to the time of flight and the cost of the maneuvers.

3.3.2 L2 Lissajous Orbits

As the point L2 stays beyond the Moon, there exist several manners in which our problem
can be addressed. If we consider the inner branch of the stable invariant manifold, this is,
the one which goes directly toward the Earth passing by the Moon, it would be possible
to establish the transfer by means of heteroclinic connections and also by achieving
lunar gravity assists. The first approach essentially reduces to the case treated before
(see Fig. 3.12), apart from the maneuver (usually small (Canalias, Masdemont, 2006))
required to link manifolds coming from Lissajous orbits around different equilibrium
points. Indeed, in case of a zero-cost heteroclinic connection a LEO-L2 transfer will be
as expensive as a LEO-L1 one in terms of Δvtot. With respect to the fly-by formulation,
recent results can be found in Renk, Hechler (2008).
Here we analyze the efficiency of the methodology developed, for transfers joining a
nominal LEO and the positive branch of the stable invariant manifold, which is the
one moving away from the Earth – Moon neighborhood. In this case, the procedure of
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Figure 3.12: Heteroclinic connection between libration point orbits.

inserting into one of the local minima/maxima does not make sense and thus we proceed
immediately to discretize the whole branch at 1 hour steps up to 140 days. The altitude
of the LEOs considered is hLEO = 360 km.
Around L2, the Lindstedt–Poincaré series expansion allows us to consider greater arrival
orbits than before. Our simulations are performed setting as amplitudes α3 = 0.01, 0.03,
0.06, 0.09, 0.12 and 0.15 normalized units, which correspond to 600, 2000, 4000, 6000,
8000 and 10000 km, respectively.
The general behavior detected is showed in Fig. 3.13. As the time to be spent on the
manifold increases, the cost of the two maneuvers decreases, tending exponentially to a
total cost of about 3.3 km/s. We remark that this value is lower than those computed
by Renk, Hechler (2008), with a wide range of strategies. This remark holds whatever
Lissajous amplitude we are considering.
If we want to compare our results with the work of Gordon (2008), we can state that
the main advantage of the lunar fly-by approach is to decrease the time of flight in a
considerable way. Indeed, skipping the Δv corresponding to the maneuver at the LEO
(that cannot be avoided or reduced), and choosing a suitable point on the manifold, we
obtain a cost as cheap as the one he found for the manifold insertion. However, our
simulation does not reveal that this Δv depends on the z-amplitude of the arrival L2

orbit.
Also in Fig. 3.13 we can notice that there exist some discontinuities. They are due to
the presence of the Moon, which is encountered by some of the Hohmann-like legs built.
This fact can be appreciated looking to Fig. 3.14 on the left, where it is clear the gap
between trajectories.
With respect to the time of flight, a convenient Δvtot always corresponds to a very long
transfer, both in what refers to the time to be spent on the manifold and to the time
required to link the LEO with the manifold. The latter can take values in the range
[4 : 30] days for the Lissajous amplitudes explored.
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Figure 3.13: As a function of the time to be spent on the manifold, Δv1, Δv2 and Δvtot
required to connect a LEO of hLEO = 360 km and the positive branch of the stable invariant
manifold associated with the L2 square Lissajous orbit of amplitude α3 = 0.12 normalized
units (≈ 8000 km) in the Earth – Moon system.
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Figure 3.14: x− y projection of some of the transfers computed. In red, the positive branch
of the stable invariant manifold associated with the L2 square Lissajous orbit of amplitude
α3 = 0.15 normalized units (≈ 10000 km) in the Earth – Moon system; in green the
Hohmann-like legs. Right: just some legs inserting into the manifold at the yellow points.

3.4 Comments and Possible Developments

In turn, a LEO – LPO transfer requires at least two maneuvers: the most expensive one
takes place at the LEO and the other is needed to insert either into the target arrival
orbit or into its stable invariant manifold. The first maneuver can be made small if we
start from a GEO instead of a LEO: indeed the cost can be diminished from about 3 to
about 1 km/s.
In the L1 situation the most advantageous connections take place when the fixed quasi-
periodic orbit increases in size and it is worth to spend at least about 12 days on the
corresponding stable invariant manifold to obtain cheaper velocity corrections. In par-
ticular, at the maxima of the distance function between the Earth and the manifold, we
find the minima values for the total cost. This behavior can be explained in terms of
the angle formed by the velocity of insertion into the manifold and the velocity which
is proper of the manifold. When these velocities lay on the same line, but on opposite
directions, the cost of the insertion maneuver is minimum.
Moreover, if the Lissajous orbit is large enough it can be convenient to transfer directly
there, both in terms of fuel and time consumption.
In the L2 case arrival orbits of different amplitudes share the same properties with
respect to the total cost. We could obtain cheaper transfers than the ones associated
with L1, provided a long time of flight, which, of course, may not always be feasible
from a practical point of view. To avoid this problem, we could take advantage of the
Moon with the implementation of a strategy based on the negative branch of the stable
invariant manifold and accounting also for a lunar fly-by.
It would be interesting to establish the technique on a bi-elliptic transfer, as dEarth is
quite high. Especially the case of a bi-elliptic transfer with apogee in the L1 Sun – Earth
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libration region, like in low-energy transfers to the Moon. However, this choice would
lead to a reduction in the less expensive part of the connection.





Refinement of Orbits as a

Constrained Optimization

Problem

4

4.1 Introduction

The transfers implemented previously are achieved within the approximation of the
CR3BP, which gives results working in several situations, though it does not comprehend
all the forces acting on a pointless particle moving in the Solar System. This lack might
result in meaningful consequences especially in the Earth – Moon framework, where the
influence of the Sun should not be neglected.
Having this in mind, in this chapter we wonder how a nominal trajectory satisfying a
given simplified model can change when considering a different (but related) physical
approximation. In particular, we are thinking on a general procedure allowing the re-
finement of orbits from the 2BP to the CR3BP, from the CR3BP to the BR4BP, from
the CR3BP to the RnBP, etc..
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Figure 4.1: Initial guess for the refinement problem. The trajectory obtained by means of a
given vector field is discretized in N − 1 sub-arcs.
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Such issue is addressed with two main approaches: a multiple shooting method and the
definition of an ad hoc optimal control problem with direct transcription. The former
procedure consists in fractionating the initial trajectory into a number of boundary
value problems and adjusting the corresponding system of equations in order to avoid
either ill conditioning or dynamical instability. The second method exploits optimization
techniques to compute an orbit which verifies the desired equations of motion, some
specific constraints and attains a minimum of a nominal objective function. In this case,
the idea is to define a more adaptable tool, capable to accomplish different conditions
depending on the problem and also to find trajectories that can be not natural in the
sense that they can require maneuvers. Indeed, the objective function accounts for any
discontinuity in velocity that might exist along the path.
For both methods, the following inputs have to be provided:

• a discretization in time of the trajectory computed by means of the reduced vector
field. If we take N instants of time (see Fig. 4.1), we deal with N − 1 sub-arcs and
hence with N nodes of the type

(t,X)i ≡ (ti, xi, yi, zi, ẋi, ẏi, żi), i = 1, . . . , N. (4.1)

We notice that the N nodes do not need to be equally spaced in time.

• the vector field the refined trajectory has to verify, namely,

Ẋi = f(ti,Xi), f : R7 → R
6. (4.2)

In the notation adopted, ϕ(ti; ti−1,Xi−1) will denote the image of (ti−1,Xi−1)
under the flow associated with (4.2) at t = ti.

The examples we will face assume as new model of forces the RnBP (see Section 1.4),
which is not autonomous. We consider the refinement of Lissajous quasi-periodic orbits
either in the Earth – Moon and in the Sun – Earth system, of transfers connecting
a LEO with a Lissajous orbit in the Earth – Moon system (see Chapter 3) and of
heteroclinic connections between two coupled CR3BP. In particular, we take as reference
the trajectories computed by Canalias (2007), which link Sun – Earth LPOs with Earth
– Moon LPOs, aiming at understanding their role in the phase space associated with a
full model.
We will figure out that in the above situations a combined implementation of both pro-
cedures, the multiple shooting approach and the constrained optimization, is mandatory
as we are not able to obtain satisfactory results using only one method.
Finally, we stress that the optimal control algorithm developed is quite general and
robust, that is, it can be applied to other problems apart from those treated here. For
instance, we can think about handling with trajectories established on low-thrust arcs
and also with equations of motion which consider effects beyond the gravitational ones.
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4.2 Multiple Shooting Method

The first approach we adopt for the refinement of orbits is the multiple shooting strategy.
It looks for the solution of the following system of equations

F

⎛
⎜⎜⎝

X1

X2

. . .
XN

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

ϕ(t2; t1,X1)
ϕ(t3; t2,X2)

. . .
ϕ(tN ; tN−1,XN−1)

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

X2

X3

. . .
XN

⎞
⎟⎟⎠ = 0. (4.3)

The unknowns of the problem are Xi (i = 1, . . . , N), because the time variables ti needed
for the numerical integration are not modified during the process.
We note that system (4.3) contains (N − 1)× 6 equations with 6×N unknowns. One
option to overcome this under-determination is to add some additional conditions, for
instance by fixing specific constraints either at t = t1 and t = tN , but depending on
this choice and on the problem under study it may happen to converge to non-likely
trajectories or encounter troubles due to ill conditioned matrices (Gómez et al., 2000a).
To prevent this from happening, we implement the Newton’s method asking for the
correction to be minimum. If X(j) = (X

(j)
1 ,X

(j)
2 , . . .X

(j)
N ) denotes the j−iterate of the

procedure and ΔX(j) = X(j+1) −X(j), then Newton’s equations can be written as

DF (X(j)) ·ΔX(j) = −F (X(j)),

and we want to minimize ||ΔX(j)||2.
Introducing the Lagrange function L(ΔX, μ) with vector multiplier μ, namely,

L(ΔX, μ) = ΔXTΔX+ μT · (F (X) +DF (X) ·ΔX), (4.4)
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Figure 4.2: Two examples of refinement performed with the multiple shooting approach.
They both belong to the Earth – Moon synodical reference system.
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we get to

ΔX(j) = −DF (X(j))T · [DF (X(j)) ·DF (X(j))T ]−1 · F (X(j)). (4.5)

It is convenient to perform a Cholesky factorization of M ≡ DF (X(j)) · DF (X(j))T to
solve the problem recursively and avoid the instability matters that can arise due to the
bad conditioning of DF (X).
For further details, refer to Gómez, Masdemont, Simó (1998). We only remark that
there exists the possibility to assign a weight, say wi ≡ (wt

i , w
x
i , w

y
i , w

z
i , w

ẋ
i , w

ẏ
i , w

ż
i )

(i = 1, . . . , N), to each node in order to create a sort of hierarchy: the greater the weight
the more effort should be put to displace the corresponding node. As a matter of fact,
the correction which is actually applied to a given variable is the one offered by (4.5),
divided by the weight wi.

4.2.1 Tests

We have applied the above procedure to refine LEO – LPO transfers and heteroclinic
connections between two coupled CR3BP. With various attempts, we have figured out
that this is not the most appropriate tool for our situations. The main difficulties we
have detected reside in the fact that to obtain convergence becomes much and much
harder as the trajectory gets close to a major body, for instance the Earth. Also, the
refined orbit often lies quite far from the original one. For some examples, see Fig. 4.2.
Clearly, a very important responsible of such drawbacks is the sensitivity characterizing
the Earth – Moon system. Since nearby initial conditions can evolve easily in a very
different manner, in order to preserve the shape and the usefulness of the initial transfers
we must force the algorithm not to move significantly from the initial guess, by exploiting
at least the functionality of the weights.
Unfortunately, this is not sufficient for our intentions, because we also need the option
to consider boundary conditions or specific constraints. Moreover, this multiple shooting
method tries to cancel out any discontinuity in velocity (and position) that can appear.
Some kind of transfers are founded on maneuvers that can be reduced but not avoided,
provided their utility to the final purpose of the designed orbit.

4.3 Optimal Control Problem

The second strategy used consists in an optimal control problem. In a nutshell, we
look for some control functions such that the states Xi fulfill the physical properties
we are interested in, and a given performance criterion is minimized (or maximized).
We introduce such formulation because it has the advantage of setting some specific
requirements when desired. These constraints can be equalities or inequalities and can
involve the controls, the states, or both.
We refer to the direct transcription approach, that is, we discretize the dynamical vari-
ables in time, as stated by (4.1), and we define a finite dimensional non-linear program-
ming problem. The variables are modified in order to optimize directly the nominal
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Figure 4.3: Each node is characterized by a value of time, position and two velocities. See
more explanation in the text.

objective function, hence analytic expressions for the necessary conditions for optimality
are not needed neither is an initial guess for the adjoint variables (or co-states) (see, for
instance, Bryson, Ho (1975)).
In contrast with the previous methodology, now the time t represents a variable of the
problem and two velocities (see Fig. 4.3) correspond to each node: a departure and an
arrival one, defined as

vA
i = ϕ(ti; ti−1,Xi−1)|v, i = 1, . . . , N,

vD
i = (ẋi, ẏi, żi), i = 1, . . . , N,

where |v refers to the velocity components of the state. The first and the last node are
‘special’ nodes, in the sense that we choose the velocity of arrival for the first node vA

1 ,
and the velocity of departure for the last one vD

N .
In the way we set the problem, only the variables representing time and position can be
changed in order to minimize the objective function, which depends on the maneuvers,
Δvi = vA

i − vD
i , required at each i−node for i = 1, . . . , N . In fact, we look for N nodes

(t,X)i (i = 1, . . . , N) meeting the following conditions:

1. to provide a trajectory which is continuous in position:

ϕ(ti; ti−1,Xi−1)|r = (xi, yi, zi) ≡ ri, i = 2, . . . , N, (4.6)

where |r refers to the position components of the state.

2. A well-defined objective function is at a local minimum in a given domain D of the
phase space:

min Fobj(Δv1, . . . ,Δvi, . . . ,ΔvN ) = min
(t,r)∈D

Fobj(t, r), (4.7)

where Δv1(t1, r1, t2, r2), ΔvN (tN−1, rN−1, tN , rN ) and Δvi(ti−1, ri−1, ti, ri, ti+1, ri+1)
(i = 2, . . . , N − 1).
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Figure 4.4: Main ingredients of the optimal control approach implemented.

3. Some linear and non-linear relationships are accomplished:

l ≤

⎛
⎜⎜⎝

ti
Xi

A(t,X)i
g(ti,Xi)

⎞
⎟⎟⎠ ≤ u, i = 1, . . . , N, (4.8)

where l and u are lower and upper bounds set, respectively, and A and c represent
linear and non-linear constraints, respectively.

In particular, (4.8) allows to define boundary conditions.

In turn, vD
i are the controls we search out. In an ideal situation the trajectory computed

is continuous also in velocity and thus Δvi = 0 (i = 1, . . . , N), but, as already mentioned,
some maneuvers might be unavoidable depending on the circumstance.
To find the minimum of Fobj we take advantage of an optimizer, which is aided by a target

procedure for satisfying the continuity in position. The whole algorithm is structured as
a package made of several modules (see Fig. 4.4), which are described in the forthcoming
sections.

4.3.1 General Algorithm

The fundamental aspects of the second refinement procedure can be sketched as follows.

• We take advantage of IPOPT (Interior Point Optimizer) (Wäcter, Biegler, 2004;
Laird, Wäcter, 2006) which is based on a sequence of barrier problems, that are
solved by means of a primal–dual interior point algorithm with a filter line–search.
The underlying concept is that trial points are accepted if they improve the objec-
tive function or improve the constraint violation instead of a combination of those
two measures defined by a merit function.
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• IPOPT makes use of the gradient of Fobj and of any constraint required. These
gradients form the row of the Jacobian matrix used in the optimization algorithm.

• Instead of setting as a constraint the requirement (4.6) we guarantee its fulfillment
by implementing a differential correction (or target) procedure for each leg of the
discretized initial guess trajectory (see Section 4.3.2). In this way, in the easiest
situation IPOPT works only on the minimization of Fobj .

• The objective function is defined as the sum of the square of the maneuvers required
at each node, that is,

Fobj =
N∑
i=1

wi||Δvi||2 =
N∑
i=1

wi||vA
i − vD

i ||2, (4.9)

where wi represents a weight associated with the i−node, that can be a simple
constant or a function depending on either the index i or the associated initial
state. We borrow such useful tool from the multiple shooting method introduced
before in order to control the size of the maneuvers. Here, wi appears as a factor
and not as a divisor, because we want to minimize Fobj . Again, a big wi with
respect to the other weights helps to obtain a smaller cost at the i−node.

• We provide some general restrictions (see Section 4.3.3) that can be imposed de-
pending on the problem considered, in particular to bound the displacement either
in time and position that can be applied to each node constituting the initial guess,
and also Δvi for any given i = 1, . . . , N . Apart from these, it is possible to add
any specific requirement, by providing the corresponding definition and gradient.

Whenever IPOPT either reaches the maximum allowed number of iterations or encoun-
ters an acceptable solution, we check the value of Δvi for any i = 1, . . . , N : if they do
not fully agree with our requirement we restart the algorithm setting as initial guess the
solution found, changing wi and eventually also the nodes and the associated constraints.
When an optimal refinement is obtained, we neglect the nodes at which Δvi is lower than
a given tolerance and we apply the optimization algorithm to a more realistic objective
function, namely,

Fobj =
N∑
i=1

wi||vA
i − vD

i ||. (4.10)

In the unlucky case of unfeasibility matters, the procedure must be restarted with a
different choice of discretization and constraints.

4.3.2 Target Procedure

To meet the condition of continuity in position (4.6) and to compute vD
i (i = 1, . . . , N−1)

and vA
i (i = 2, . . . , N), we implement a target procedure. With this formulation, the

velocity does not appear as a variable of the problem but it is computed by means of
the Newton’s method.
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Starting from the time ti and position ri associated with the i−node (i = 1, . . . , N − 1)
and a suitable initial guess, we look for the closest vD

i which ensures to reach ri+1 in a
time equal to ti+1 − ti. Once obtained convergence within a precision depending on the
problem addressed, we get vD

i and also vA
i+1.

Concretely, we aim at finding vD
i such that

ϕ(ti+1; ti, ri,v
D
i )|r = ri+1, i = 1, . . . , N − 1.

This is achieved by an iterative correction procedure, which provides vD
i and vA

i+1. The
initial guess is usually offered by the trajectory obtained by means of the simplified
vector field.

Derivatives

As just said, the optimization process needs the differential of Fobj and of all the equa-
tions defining the constraints. The target procedure makes the optimizer to act only on
(ti, xi, yi, zi) (i = 1, . . . , N) and thus the derivatives of Fobj and any function containing
vA
i and vD

i (i = 1, . . . , N) are not explicit. Here, we explain how to cope with their
computation.
Let us define Φ6×7 as1

Φ6×7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ϕx

∂t
∂ϕx

∂x
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∂ż
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∂x
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∂ϕẋ

∂ẋ
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∂ẏ
∂ϕẋ

∂ż
∂ϕẏ

∂t
∂ϕẏ

∂x
∂ϕẏ

∂y
∂ϕẏ

∂x
∂ϕẏ

∂ẋ
∂ϕẏ

∂ẏ
∂ϕẏ

∂ż
∂ϕż

∂t
∂ϕż

∂x
∂ϕż

∂y
∂ϕż

∂x
∂ϕż

∂ẋ
∂ϕż

∂ẏ
∂ϕż

∂ż

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡

(
Λ3×1 A3×3 B3×3

Γ3×1 C3×3 D3×3

)
.

(4.11)
Then, we can write the variations in position and velocity at the final time, ΔrAi+1 and
ΔvA

i+1, as a function of the variations in position and velocity at the initial time, ΔrDi
and ΔvD

i , and also of the variations in the initial and final time, ΔtDi and ΔtAi+1 in the
following way

(
ΔrAi+1

ΔvA
i+1

)
≈ Φ

⎛
⎝ ΔtDi

ΔrDi +ΔtDi ṙi
D

ΔvD
i +ΔtDi v̇i

D

⎞
⎠+

(
ΔtAi+1 ṙAi+1

ΔtAi+1 v̇A
i+1

)
, (4.12)

where i = 1, . . . , N − 1.
Starting from (4.12), the derivatives desired are found by setting successively equal to

1From now on, we simplify the notation in such a way that ϕx ≡ ϕ(ti+1; ti,Xi)|x.
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0 the variations we are not interested in. This implies:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ΔvD
i

ΔrDi
= −B−1A,

ΔvD
i

ΔrAi+1

= B−1,

ΔvD
i

ΔtDi
= −B−1Aṙi

D − v̇i
D −B−1Λ,

ΔvD
i

ΔtAi+1

= −B−1ṙAi+1,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ΔvA
i+1

ΔrDi
= C −DB−1A,

ΔvA
i+1

ΔrAi+1

= DB−1,

ΔvA
i+1

ΔtDi
= Γ+ C ṙi

D +Dv̇i
D −D ·B−1(Λ +Aṙi

D +Bv̇i
D),

ΔvA
i+1

ΔtAi+1

= −DB−1ṙAi+1 + v̇A
i+1.

The optimization is forced to take into account the dynamics we want to see satisfied
because of (4.12).
We notice that we need to integrate numerically from ti to ti+1 (i = 1, . . . , N − 1) not
only the equations of motion but also the variational equations with respect to position
and time. In our development we adopt a 7-8 Runge-Kutta-Fehlberg method with local
truncation error ε = 10−14. The variational equations associated with the RnBP model
can be found in Appendix A.

4.3.3 Regular Constraints

The algorithm includes a set of regular constraints that can be imposed at each node.
In particular, if ρi and τi are, respectively, the position and time associated with the
i−node at the initial seed for i = 1, . . . , N , then we can choose:

• not to move the position of the i−node more than a fixed amount Ri (see Fig. 4.5):

||ri − ρi||2 < R2
i ;

• not to move the time associated with the i−node more than a fixed amount Ti:

(ti − τi)
2 < T 2

i ;

• to bound the maneuver required at the i−node a certain amount νi:

||vA
i − vD

i ||2 < ν2i .

Note that Ri, Ti and νi do not need to be the same for every i.
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Figure 4.5: One of the regular constraint that can be set: to bound the displacement in
position with respect to the initial guess.

4.3.4 Input

As it was stated beforehand, the inputs of the procedure are the following:

1. the initial guess for the trajectory;

2. the domain where the variables (ti, xi, yi, zi) (i = 1, . . . , N) vary;

3. the standard constraints to impose at each node;

4. vA
1 and vD

N ;

5. the weight corresponding to each node;

6. the minimum and maximum tolerance allowed to the target procedure;

7. the implementation of a Lambert strategy (Simó, 1973) (whenever it can apply)
for a more accurate initial guess if the target fails;

8. any extra requirement to be satisfied. If this is the case, it is mandatory to pro-
vide the corresponding function and its gradient with respect to all the nodes the
optimizer can handle.

We underline that there exists the possibility to load some variables into the program,
choosing not to optimize them. This option can help, for instance, in order to reduce
the computational effort; to employ some nodes just in the target procedure; if we want
to arrive to a given position at a well-defined epoch.
Also, vA

1 and vD
N can be given as bare coordinates or as complicated functions.

All these data have to be written into specific given input files. The algorithm reads
from there and creates the proper structures that will be used throughout the whole
process. We note that we deal with object-oriented programming.
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4.3.5 Extra Functions

We incorporate some extra features in the program, that can be useful according to the
situation. In particular, we can

• transform between different reference systems;

• compute orbital elements;

• plot the trajectory at each iteration of the optimization;

• add/remove nodes;

• save/retrieve information at each iteration of the optimization (e.g. Fobj);

• perform some accuracy tests at the end of the whole process.

4.4 Examples

To illustrate the application of the optimal control approach we consider three examples:

1. Earth – Moon and Sun – Earth Lissajous orbits;

2. heteroclinic Earth – Moon and Sun – Earth connections;

3. LEO – LPO transfers (see Chapter 3).

They all have been refined considering as new vector field the RnBP introduced in Section
1.4. The requirements we look for vary according to the example.
In general, it turns out that the accuracy of the initial guess, the values of the weights
wi and the extra constraints set are crucial ingredients to obtain the refinement of a
nominal trajectory.
Besides, an optimizer is a quite expensive tool from a computational point of view and
it usually approaches the minimum of Fobj in an asymptotic way, that is, quite slowly.
Because of this, we decide to mix the two methodologies above explained in order to get
to the desired level of accuracy. Precisely, it means that after up to 5 implementations
of the optimal control algorithm we plug the corresponding solution into the multiple
shooting method as initial guess and the trajectory we converge to is then set as initial
seed for a last constrained optimization. If the refined trajectory needs control maneuvers
that cannot be avoided, the multiple shooting approach is applied independently on the
legs of the trajectory separated by such Δvs. This method reveals to be very effective.

4.4.1 Lissajous Orbits

First of all, we consider the refinement of a Lissajous quasi-periodic orbit around the
L1 equilibrium point in the Sun – Earth system. We take a 44 years long one and we
discretize it at intervals of about 40 days, obtaining 400 nodes. Such discretization is
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Figure 4.6: On the left, the discontinuities (km/s) in velocity obtained at each node for a
L1 Lissajous quasi-periodic orbit in the Sun – Earth system after the refinement procedure.
On the right, the differences (km) in position between the refined trajectory requiring such
small maneuvers and the orbit integrated numerically departing from the refined initial point.
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Figure 4.7: The refined L1 Sun – Earth Lissajous quasi-periodic orbit (blue) and the initial
guess (red) in the synodical (left) and inertial (right) reference systems.

chosen according to the target procedure, that is, the maximum arc length such that
it can converge within an accuracy of 1 mm. As constraints, we impose the time as-
sociated with each node not to move from the initial guess and also Δvi < 1 mm/s
(i = 1, . . . , 400). As vA

1 and vD
400 we set the ones which characterize the initial seed.

The RnBP, the vector field we want to move to, takes the origin at the Solar System
barycenter and the initial epoch is set at JED 2451544.5 (January 1, 2000).
In Fig. 4.6 on the left, we show the maneuvers obtained at each node at the end of the
whole procedure: they are all less than 1 mm/s. We can claim that the total cost to
maintain the quasi-periodic orbit is less than the one resulting from standard station-
keeping approaches, though our strategy is established on different hypotheses. The Δvi

(i = 1, . . . , 400) found are likely too small to be performed in a real application, but
if we integrate numerically the RnBP equations of motion taking as initial condition
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the initial point of the refined trajectory, we get a trajectory which is close to the one
requiring such small maneuvers, the differences in position between them being always
less than 1 m, as shown in Fig. 4.6 on the right.
In Fig. 4.7 we display the trajectory we adopt as initial guess for the optimal control
approach and the one refined, in the synodical and in the inertial reference system.
Furthermore, we apply the refinement to a Lissajous quasi-periodic orbit around the
L1 equilibrium point in the Earth – Moon system. In this case, we take a 4 years long
trajectory split in 4 days long legs, obtaining 400 nodes as before. Now, the RnBP is
centered at the Earth. The above considerations hold, as we can see from Figs. 4.8 and
4.9.
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Figure 4.10: Relative configuration between Sun – Earth and Earth – Moon coupled CR3BP
defined by Canalias (2007) to compute initial seeds for heteroclinic connections.

4.4.2 Heteroclinic Connections

The second example we present regards the refinement of heteroclinic connections be-
tween two coupled Sun – Earth and Earth – Moon CR3BP. The trajectories considered
depart from a nominal Lissajous quasi-periodic orbit around the L2 equilibrium point in
the Earth – Moon system and arrive to a given Lissajous quasi-periodic orbit around the
L2 equilibrium point in the Sun – Earth system. The connections are accomplished by
matching the unstable invariant manifold associated with the Earth – Moon L2 Lissajous
orbit with the stable invariant manifold corresponding to the Sun – Earth L2 nominal
orbit. Such transfers can require a maneuver at the intersection point.
As initial guess for our procedure, we take the data provided by Canalias (2007). We
notice that apart from developing a technique aimed at the computation of such trajec-
tories within the CR3BP approximation, she applied a modified version of the multiple
shooting method (Section 4.2) to refine some of them into the RnBP. In some sense,
the optimal control strategy implemented here was born from those attempts in order
to have at our disposal a more flexible and working tool.
A determinant aspect to refine this kind of transfers is the relative configuration assumed
for the two CR3BP. In particular, three angles define the coupling (see Fig. 4.10):

1. the inclination of the Earth – Moon orbital plane with respect to the ecliptic
(i = 5◦14′);

2. the angle α from the axis joining the Sun and the Earth – Moon barycenter to the
line of nodes of the lunar orbit, measured on the ecliptic plane;

3. the angle β from the line of nodes to the position of the Moon, measured on the
plane of motion of the Moon around the Earth, or the plane of relative motion of
the Earth and the Moon.
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Because of this, it is very important to set properly the epoch at which the connection
takes place, as we want the Earth, Moon and Sun configuration to be close to the values
adopted for α and β.
In the examples analyzed, the Lissajous orbit winds around the Earth – Moon L2 equi-
librium point for about 2 months, the one around the Sun – Earth L2 for about 1 year.
In the discretization adopted, we have 1 day long arcs in the Earth – Moon part, and 10
days long arcs for the Sun – Earth part.
The constraints set ask all the variables to move less then 1 hour in time and less than
100 km in position from the initial guess. Moreover, we require any discontinuity in
velocity to be smaller than 1 mm/s.
It turns out that we can refine heteroclinic connections at zero-cost into the RnBP, whose
origin is fixed at the Solar System barycenter, if the matching maneuver computed with
the coupled CR3BP approximation is not greater than 250 m/s.
The main drawback, we are not able to avoid in some cases, is the modification of the
size of the Earth – Moon Lissajous orbit: it very often becomes twice as big as the
nominal one.
In Figs. 4.11, 4.12, 4.13 and 4.14, we show some results in the Sun – Earth and Earth
– Moon reference systems together with the maneuvers required at each node.
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Figure 4.11: The refinement obtained for several heteroclinic connections between Sun –
Earth and Earth – Moon coupled systems (black) together with the initial guess (red). On
the left, in the Sun – Earth synodical reference system; on the middle, the Earth – Moon
leg. On the right, the maneuvers (km/s) required. The vertical amplitude of the Sun – Earth
Lissajous orbit is the greatest possible, that is, about 550000 km.
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Figure 4.12: The refinement obtained for several heteroclinic connections between Sun –
Earth and Earth – Moon coupled systems (black) together with the initial guess (red). On
the left, in the Sun – Earth synodical reference system; on the middle, the Earth – Moon
leg. On the right, the maneuvers (km/s) required. The vertical amplitude of the Sun – Earth
Lissajous orbit is the greatest possible, that is, about 550000 km.
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Figure 4.13: The refinement obtained for several heteroclinic connections between Sun –
Earth and Earth – Moon coupled systems (black) together with the initial guess (red). On
the left, in the Sun – Earth synodical reference system; on the middle, the Earth – Moon
leg. On the right, the maneuvers (km/s) required. The vertical amplitude of the Sun – Earth
Lissajous orbit is the smallest possible, that is, about 15000 km.
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Figure 4.14: The refinement obtained for a heteroclinic connection between Sun – Earth and
Earth – Moon coupled systems for two different epochs (blue and green) together with the
initial guess (red). On the left, in the Sun – Earth synodical reference system; on the middle,
the Earth – Moon leg. On the right, the maneuvers (km/s) required.

4.4.3 LEO – LPO Transfers

Finally, the most challenging refinement regards LEO – LPO transfers (see Chapter
3). In this case, we make use of equations (1.17) and we must add some extra custom
constraints to the optimal control algorithm. They are:

1. the distance between the first node and the center of the Earth to be the one
desired (for instance 6378.14+360 km);

2. vA
1 · r1 = 0.

In particular, condition 2 implies the definition of vA
1 as

vA
1 :=

√
GmE

||r1||3
1

||r1 × r2||
(r1 × r2)× r1. (4.13)

Apart from that, we require all the maneuvers to be less than 1 mm/s except for Δv1

and the one needed to insert into the stable invariant manifold.

Perigee

model Δv1 (km/s) Δv2 (km/s)

CR3BP 1.53 2.89
RnBP 1.51 2.91

Apogee

model Δv1 (km/s) Δv2 (km/s)

CR3BP 0.65 3.04
RnBP 0.66 3.05

Table 4.1: Cost of the two maneuvers required to perform a transfer from a LEO to a LPO
within the framework of the CR3BP Earth – Moon system and the RnBP. The corresponding
orbits are displayed in Fig. 4.15.
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Figure 4.15: Two refinements of LEO – LPO transfers in the synodical Earth – Moon (left)
and in the inertial (left) systems. On the top, the case of insertion into a perigee of the
stable invariant manifold; on the bottom into one apogee. See Chapter 3.

It turns out that we can maintain the same shape of the transfer on condition that
we also keep the two maneuvers. In Fig. 4.15 we show two examples, in Tab. 4.1 the
corresponding costs. In both cases, the initial epoch is set at JED 2451544.5.

4.5 Comments and Possible Developments

The purpose of this chapter is the analysis and implementation of two methodologies
devoted to refine trajectories obtained by means of a simplified model of forces to a more
complex one. In particular, we aim at making realistic transfers and reference orbits
that can be designed within the CR3BP framework.
The multiple shooting procedure is built in such a way that any discontinuity either in
position and velocity is reduced up to a tolerance that depends on the problem considered.
It represents a good approach whenever we do not get close to a massive body nor we
deal with paths that require either specific maneuvers or properties.
The optimal control technique is more flexible, as it allows to define any constraint and
boundary condition we eventually need. However, it is like a black box which gets to the
refined trajectory quite slowly and it can become computationally very expensive.
In both cases, an accurate initial guess is strongly recommended.
We provide some examples in which the desired result is found by combining the two
approaches. This is done in order to take advantage of the best capabilities of both and
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skip their characteristic drawbacks. In all the cases, we are able to reproduce and even
improve the trajectories provided by the CR3BP. As it was already known, it is a good
framework to start a mission design.
More examples have to be treated, not only for the types of transfer and equations
of motion studied here, but also for low-thrust trajectories and vector fields including
effects, which are not purely gravitational.



ASTRONOMICAL APPLICATION





Low-Energy Impacts on the

Surface of the Moon
5

5.1 Introduction

In the second part of this work, we show how the dynamics induced by the invariant
objects of the CR3BP can help in the comprehension of Solar System natural transport
phenomena. Bodies such as comets and asteroids could be able to follow trajectories
lying on or inside the hyperbolic invariant manifolds associated with periodic and quasi-
periodic orbits around the collinear libration points. This kind of approach has already
been adopted in the past, for example to explain the behavior of comets that are tem-
porarily captured by Jupiter (Koon et al., 2001) or the origin of well-defined galactic
structures (Romero–Gómez et al., 2006).
Here, we deal with asteroidal motions that caused the formation of lunar craters. It is
known that the minor bodies belonging to the Main Asteroid Belt can reach the Inner
Solar System as a consequence of different types of resonance (Bottke et al., 2002): when-
ever they encounter a rocky planet (or satellite) they imprint its surface with information
which is relevant for several branches of science.
First of all, the flux of impacts offers information on the Solar System minor bodies
population. Moreover, by comparing densities of craters on different surfaces it is possible
to derive the relative age of the corresponding terrains (see, for instance, Neukum, Ivanov,
Hartmann (2001); Stoffler, Ryder (2001); Marchi et al. (2009)). Roughly speaking, the
higher the density the older the surface. Thanks also to the space missions that provide
radiometric age estimates for different regions, the geological chronology of the terrestrial
planets is now becoming more and more accurate. This is especially true if we take as
reference case the Moon, for which a great amount of data is now available. From
investigations of this kind, a new insight on the Solar System evolution can be obtained.
The main problem in such studies lies on the fact that the crater’s formation is a
phenomenon not fully understood yet. There does not exist a predictive, quantitative
model of crater formation, that is, a reliable methodology that can be applied to all
situations. The size of the crater that forms at the end of the excavation stage depends
on the asteroid’s size, speed and composition, on the collision angle, on the material and
structure of the surface in which the crater forms and on the surface gravity of the target
(Melosh, 1999). The problem in the determination of the crater’s dimension concerns
with the poorness of the experimental or observational data. This difficulty is usually
overcome by extrapolating beyond experimental knowledge through scaling laws.



84 Moon’s Surface Features

The objective of this chapter is the analysis of some paths that impacting asteroids
might have followed, but the geological background is important in order to understand
which craters actually correspond to the orbits we simulate.
To be more precise, we deal with low-energy trajectories, first derived in the CR3BP
framework applied to the Earth – Moon system and then analyzed accounting also for
the Sun gravitational attraction by means of the BR4BP. We assume the minor bodies
to have already left the Main Asteroid Belt and we consider as main entrance to the
Earth – Moon neighborhood the stable invariant manifold associated with the central
invariant manifold corresponding to the L2 equilibrium point Ws(Wc

L2
). We look for the

distribution of impacts that such orbits can create, paying attention to the fact that the
Moon is locked in a 1:1 spin-orbit resonance. In particular, we wonder if, for the range
of energy under consideration, the Moon acts as a shield for the Earth or if the greatest
concentration of collisions still takes place on the leading side of the surface, as other
authors have pointed out with different approaches. See, for example, Horedt, Neukum
(1984); Morota, Furumoto (2003); Le Feuvre, Wieczorek (2005).
In our analysis, we consider different selections of initial conditions, in particular distri-
butions which are uniform either inside the stable invariant tube or in a given level of
energy.
Under the hypotheses of the CR3BP we also make an endeavor to discover any other
gate (apart from Ws(Wc

L2
)) that can produce a lunar impact within low-energy regimes.

In this way, we get some evidence that low-energy ejecta originated from high-energy
impacts are also responsible of the phenomenon we are considering.
We recall that while for the terrestrial planets the impact cratering epoch occurred
between 4.5 and 3.85 Gy ago, for the Moon it is generally accepted the hypothesis of the
Late Heavy Bombardment (LHB) or Lunar Cataclysm: the intense bombardment took
place between 4 and 3.8 Gy ago and at the present day the meteroidal flux is about 103

lower (Hartmann, 1986) than in those days.
In turn, to determine the role of low-energy orbits in the cratering process, we have to
look upon which craters may arise from low-velocity collision; the craters we are able to
observe on the Moon and the position of the Moon at the epoch of LHB. In particular, due
to the small energy values we consider, the impacts can yield craters with a diameter at
most 60 km wide. This value has been computed by applying the scaling laws of Melosh
(1999) to the Moon’s surface with an impact velocity corresponding to the escape lunar
velocity (about 2.375 km/s).

5.2 Moon’s Surface Features

The surface of the Moon (Bussey, Spudis, 2004; Carbognani, 2006) consists of two major
types of terrain: the bright highlands, called terrae, and the darker, smoother plains,
called maria. The terrae are characterized by an ‘infinite’ sequence of overlapping craters,
created by the impact of solid bodies. As just mentioned, between 4 and 3.8 billions years
ago the top few kilometers of the lunar crust have been broken up, crushed and repeatedly
mixed by the force of these collisions. The maria cover roughly 16% of the surface and
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they are mostly situated in the hemisphere facing the Earth. They are the result of
volcanic outflows and thus their dark color depends on the high iron concentration.
Because of their significantly younger age (from 3.8 to 3.1 billions years), the maria have
accumulated fewer craters.
As suggested by this rough analysis, the surface of the Moon was formed through a
diverse set of processes. In general, the surface of celestial bodies can be shaped by four
types of phenomena: external impacts, volcanic activity, tectonic activity or atmospheric
degradation. On the Moon the most important effect is the first one, while the last one
is essentially not present. For sake of completeness, we give a short description of all
them.

5.2.1 Impact Craters

The impact craters originated from the collision of asteroids with the lunar surface.
We can identify different phases in the formation mechanism. At the beginning, we
have the so-called contact and compression phase. Upon striking the Moon, the kinetic
energy of the bolide is transferred to a shock wave which both goes down into the Moon’s
surface and rearward into the bolide itself. The shock wave is so powerful that most of
the bolide vaporizes. The effect on the Moon is to vaporize a fraction of the external
part of the surface, to melt the layers of rock below it and to fracture the surface deeper
yet. The excavation phase begins with a release wave that develops at the edges of
the impact and forms a route of escape for some of the rock involved. This escape of
material produces the crater itself and the material that escapes forms the ejecta that
goes outward onto the Moon’s surface. At the end, in the modification phase the liquid
material on the crater’s sidewall and semi-stable rim materials slip down to the floor of
the crater.
The initial crater is a circular, bowl-shaped cavity with a depth-diameter ratio between
1:4 and 1:3. This form is independent of its diameter, of the impact velocity, impact angle,
gravitational acceleration and of other properties of the projectile and of the target. On
the other hand, the final crater morphology is sensitive to all these conditions. The entire
process of modification as a result of gravitational instability and collapse is not fully
understood yet, because it is not still completely known how rocks respond to sudden
rocks.
There exit different types of impact craters, whose morphological diversity is not a di-
rect result of the crater excavation process but develops only after most of the material
has been expelled from the crater. The first classification that can be done distinguishes
between simple and complex craters. Simple craters (see Fig. 5.1) are circular, bowl-
shaped depressions with raised rims and approximately parabolic interiors profiles. The
rim–to–floor depth of them is about 1:5 of the rim–to–rim diameter. A simple crater
forms by the relatively straightforward collapse of the rim of the transient crater immedi-
ately after it forms. Complex craters (see Fig. 5.2) may possess single or multiple central
peaks, flat inner floors and terraced rims. Their depth increases with increasing diame-
ter, but much more slowly than the depth of simple craters. Moreover, the central peak
may break up and form an inner ring of mountains. The transition between simple and
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Figure 5.1: An example of simple crater: Crater Moltke.

Figure 5.2: An example of complex crater: Crater Copernicus.

Figure 5.3: Mare Orientale: a multi-ring impact basin.
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complex craters occurs over a narrow diameter range and seems to scale as the inverse
power of the surface gravity. On the Moon this transition is determined at about 15 km.
The very largest impact craters have many rings and therefore they are said multi-ring
basins (see Fig. 5.3). They apparently formed by a type of collapse qualitatively different
from the collapse that yields complex central peak or peak ring craters.
As a final note, some craters may be elliptical instead of circular only if a grazing
impact has taken place, this is, the asteroid has collided almost tangentially with the
lunar surface.

Crater’s Diameter

Since our aim is to construct trajectories that have quite likely led to the formation of
impact craters on the Moon, we need to know the parameters that affect the size of the
craters in order to compare the craters which would originate from our computations
with the craters that really exist on the Moon’s surface. Thus, we provide a description
of the physical properties of the known asteroids and we clarify how the final crater’s
diameter is usually estimated.
Asteroids are metallic, rocky bodies whose size ranges from 1000 km to that of a small
stone. Most of them are concentrated in the so-called Main Asteroid Belt, a region
between Mars and Jupiter from about 2 to 3.3 AU with respect to the Sun. They follow
slightly elliptical orbits, revolving in the same direction as the Earth and taking from
three to six years to complete a full revolution. The Near Earth Asteroids (NEAs) have
orbits with a perihelion distance less than 1.3 AU and appear to be representative of
most asteroid types found in the Main Asteroid Belt.
There are three main categories of asteroids according to their albedo, which is a mea-
surement of how well the object reflects light. A white, perfectly reflecting surface has
an albedo of 1; a black, perfectly absorbing surface has an albedo of 0. The first class
contains the carbonaceous or C–type asteroids, which represent the 75% of all asteroids
detected. They are most commonly found in the outer regions of the Main Asteroid
Belt and they are very dark objects with albedos of 0.03 to 0.09. These asteroids have
approximately the same chemical composition as the Sun, but lack hydrogen, helium,
and other volatiles. The second class includes the silicaceous or S–type asteroids, which
represent about the 17% of the known asteroids. They have fairly bright albedos ranging
from 0.10 to 0.22. Moving in orbits within the inner regions of the Main Asteroid Belt,
S–type asteroids are composed of rocky materials plus a small amount of nickel and iron.
Finally, the metallic or M–type asteroids are mid-region Main Belt objects relatively
bright, with albedos ranging from 0.10 to 0.18. M–type asteroids are mainly composed
of nickel and iron.
With respect to the size of the crater, we have mentioned that it can be computed by
means of scaling laws and that it depends on the asteroid’s size, speed and composition,
on the collision angle, on the material and structure of the surface in which the crater
forms and on the surface gravity of the target. To determine the diameters we are con-
cerned with, we use the program written by Melosh (1999). It is based on the equations
of the hydrodynamics, which roughly speaking are the mass conservation equation, the
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Figure 5.4: Diameter of the craters which may have formed on the surface of the Moon by
low-energy impacts. On the x−axis the size of the bolid (km); on the y−axis the size of the
craters (km). The three pictures refer to the three densities assumed for the bolid. Different
curves refer to different impact angles.

momentum conservation equation and the energy conservation equation.
Taking the Moon as target, the characteristic parameters are the density ρt =3340
kg/m3 and the surface gravity g =1.62 m/s2. We vary the impact angle between 15◦ and
90◦ at step of 15◦ and the projectile’s diameter between 10 and 4910 m at step of 100 m,
provided the fact that most of the Main Belt Asteroids do not exceed a km in the largest
direction. Moreover, hyperbolic invariant manifold trajectories guarantee the velocity of
impact to be the smallest possible. Thus, we set v =2.375 km/s. Because of the above
considerations on the composition of the asteroids, we perform these computations for
three values of density ρp, that is, 1500 kg/m3, 3000 kg/m3 and 8000 kg/m3, which
correspond, respectively, to porous rock, dense rock and iron.
The results associated with the final crater are displayed in Fig. 5.4. It turns out that a
big metallic asteroid striking the lunar surface in an almost orthogonal way can generate
a crater of about 60 km in diameter, which is the largest possible in our energy level.

Catalogue of Moon’s Craters

We conclude this analysis with some considerations on the craters we can see nowadays
on the Moon. Ideally we would like to know the position and size of all of them, in order
to have a comparison criterion for the low-energy dynamics.
There exists an official catalogue of lunar craters (Andersson, Whitaker, 1982), con-
taining the ones which have been ‘baptized’ (all the features of the Moon are classified
according to their name). It provides information on longitude, latitude and diameter
(ranging from hundreds of m to hundreds of km) of 8649 craters. Unfortunately, this list
is quite incomplete as they appear only the objects with an assigned name.
The most complete source is still represented by the images furnished by the lunar
missions, such as the Clementine one (Bussey, Spudis, 2004), but it seems a hard task
to obtain a comprehensive characterization of the craters formed during the LHB from
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Figure 5.5: Number of craters with diameter up to 60 km per unit of area element. For this
computation, we analyze the images offered by Bussey, Spudis (2004) and we discretize the
Moon in elements of 20◦ × 20◦ in terms of longitude and latitude. A darker shade of gray
refers to a lower value of density.

them. This is due to their resolution, which is not as good as we would need on the
whole Moon’s surface and also due to later soil modifications. At the present day several
probes (Chang’e 1, Chandrayaan-1 and SELENE) have just terminated their observations
around the Moon, while LRO is still orbiting and getting valuable information. Soon we
are expecting fresh high-quality data, in particular from the Japanese and the American
projects.
Nevertheless we make an attempt and we analyze the pictures offered by Bussey, Spudis
(2004), trying to obtain a distribution of impacts (see Fig. 5.5). To this end, first we
discretize the surface of the Moon, considered as a rectangle of dimensions [−180◦, 180◦]×
[−90◦, 90◦], in small squares of 20◦ of side. Next, in each of these squares, we compute
the number of craters with diameter belonging to the desired range. Finally, this number
is divided by the total number of craters belonging to the selected range and by the area
of the spherical square considered. We stress that this computation has been done by
hand.
We have already remarked that several authors devoted their effort to provide different
types of size – frequency distributions of lunar craters (Arvidson et al., 1978; Neukum,
Ivanov, Hartmann, 2001; Stoffler et al., 2006; Marchi et al., 2009). This kind of work
helps to reconstruct the chronology of the Moon and the characteristics of the impactors,
if the absolute age of a specific lunar region is available together with the scaling laws
above introduced. Unfortunately, such wide literature is not very useful to our purpose.
Instead, an analysis such that the ones performed by Morota, Furumoto (2003) and Le
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Figure 5.6: An example of graben: Rima Ariadaeus.

Feuvre (2008) could be of interest: they supply a distribution of craters as a function of
the angular distance from the apex of the lunar orbital motion. The main idea behind
this approach is that the motion of the satellite against the random impactors causes a
relative flow of the impactors. The leading side of the satellite intercepts more impactors
than the trailing side.

5.2.2 Other Processes

The next major geologic force on the Moon is the volcanism, that can be summarized
as follows. Radioactive elements reheated areas of the lower crust and upper mantle,
creating a series of partial melts. These melts were less dense than the surrounding rock
and therefore began rising toward the surface. The eruption of lava preferentially took
place in basins and it sometimes flowed long distances before finding a final position.
The process of flooding resulted in large, flat lava sheets that covered the basins.
The volcanic structures on the Moon are well observable on the maria because of their
lower rate of craterization. These plains are thought to be formed from the fluid material
oozed out from the Moon’s interior, after impacts caused by asteroids. The Dark-Halo

Craters (DHC) are small, irregular craters, surrounded by a dark halo. They probably
have a volcanic origin and they can be found on the lines of fracture characterizing several
big craters on the Moon. Moreover, there exist the Dark-Halo Impact Craters (DHIC),
impact craters characterized by a diameter of 1-3 km and surrounded by dark ejecta.
This dark material came from an underlying deposit of lava. If the emission of lava took
long time and the viscosity was high, the lunar volcano assumed the shape of a dome.
Another phenomenon that can deform the lunar surface is the tectonic activity. On
the Moon the geological processes are quite easier than the terrestrial ones. We can
distinguish phenomena of compression and phenomena of relaxation of the lunar crust:
the dorsals are due to the compression, the faults to the extension. A pair of faults,
moving in parallel directions and characterized by a lower height with respect to the
surrounding area, is called graben (see Fig. 5.6). The dorsals are usually located in the
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Figure 5.7: The red tube is Ws(PLL2
), the gray trajectories inside it are transit orbits, in

blue we display the planar Lyapunov periodic orbit, Moon and Earth. On the right, we show
a closer view of the dynamics around the Moon.

inner part of the lunar maria, while the graben are on the edges. This can be explained
thinking that a mare is formed by the lava that fills the impact basin and that the weight
to be supported is greater toward the center of the basin, where, as a consequence, the
ground tends to fall in. On the edges the surface tends to dilate.
Finally, the lunar atmosphere is very tenuous, because of the Moon’s low gravity. Light
atoms escape in just a few hours, thanks to the kinetic energy obtained via solar heating.
Heavier atoms are lost in few months, after being ionized by the Sun’s radiation, and
then carried away by the solar wind.

5.3 Ws(Wc
L2
) as Impact Gate

To study the role that low-energy orbits might have in the formation of lunar impact
craters, we assume as main channel to get to the Moon the stable invariant manifold
associated with the central invariant manifold around the L2 point. This hypothesis is
based on the fact that we admit as energy levels only those belonging to the third regime
depicted in Fig. 1.3. Indeed, under either the first or the second regime, there does not
exist the possibility that a particle coming from the Outer Solar System collides with
the Moon. On the other side, by discarding the more energetic configurations we force
the asteroids to approach the Moon before arriving to the Earth.
More precisely, we focus on the behavior of transit trajectories belonging toWs(Wc

L2
) for

C3 < C < C2, that is, C ∈ (3.024150, 3.184163). In Fig. 5.7, we show the Hill’s region
this energy range corresponds to, the boundary of Ws(Wc

L2
) in red and some transit

trajectories in gray. We want to figure out if there exists a specific distribution of impact
brought by this kind of dynamics, without forgetting that the relative distance between
Earth and Moon, say dEM , could affect the total outcome, as well as the distribution of
initial conditions.
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First, we have to consider that the more intense lunar bombardment happened some
billions years ago and that the Moon is receding from the Earth. As the rate of recession
has not been constant in the past and it did not behave linearly either (see, for example,
Tomasella, Marzari, Vanzani (1996); Mazumder, Arima (2005); Gordon (2008)), we take
4 values for dEM : 232400, 270400, 308400, 384400 km, respectively. According to Le
Feuvre (2008), they correspond approximately to 4., 3.4, 2.5 and 0 Gy ago.
With respect to the initial conditions, the computations are carried out following the
considerations of Section 1.2.3, this is, for a given C we approximate Ws(Wc

L2
) as the

product Ws(PLL2
)×Ws(V LL2

). Inside such dynamical tube, we pick up initial states
in 4 different ways (see below) in order to highlight any consequence that a given choice
could induce.
Starting from such initial conditions we integrate the equations of motion of the CR3BP
forwards in time up to a maximum allowed time for impacting onto the surface of the
Moon of 60 years, provided the assumption of a no longer life in the region under consid-
eration. If a trajectory collides with the Moon we calculate the longitude and latitude
corresponding to the site of impact, together with the velocity and the angle of arrival.
The minor bodies can either:

• collide with the Moon without overcoming the L1 border;

• collide with the Moon after overcoming the L1 border and thus performing several
loops around the Earth;

• keep wandering around the Earth inside the area delimited by the zero-velocity
surface;

• escape from the Earth – Moon neighborhood just after jumping on the L2 gate;

• exit from the Earth – Moon neighborhood after wandering for a certain interval of
time around the Earth.

Note that just the first two cases cause the formation of craters of impact onto the surface
of the Moon.

5.3.1 Homoclinic Connections as Re-fostering Channels

The mechanism of escaping is displayed in Fig. 5.8 and is produced by Wu(Wc
L2
). In this

sense, it is interesting to analyze how the impact phenomena are fostered by homoclinic
connections associated with L2. They represent cycling paths, which bring the particle
in and out the region demarcated by the zero-velocity surface.
Because of the procedure we adopt to determine Ws(Wc

L2
) and Wu(Wc

L2
), a homoclinic

connection in a well-defined energy level is constructed by finding succeeding intersec-
tions between the stable and the unstable manifold associated with the planar Lyapunov
periodic orbit and simultaneously between the stable and the unstable manifold associ-
ated with the vertical Lyapunov one.
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To find these intersections we propagate the hyperbolic invariant manifolds up to the
Poincaré section {|x| > 1; y = 0}. Let k − C(s/u)xẋ and k − C(s/u)zż denote, respectively,
the projection on the (x, ẋ) plane and on the (z, ż) plane of the k−intersection of the

stable/unstable manifold with the Poincaré section: k − C(s/u)xẋ are obtained from the

hyperbolic invariant manifolds of the planar Lyapunov orbit, k−C(s/u)zż from those of the
vertical Lyapunov orbit. We say that an orbit follows a (k, j)−homoclinic connection if

at {y = 0} the x− ẋ coordinates belong to the interior of k − C(s)xẋ and to the interior of

j − C(u)xẋ and, at the same time, the z − ż coordinates belong to the interior of k − C(s)zż
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Figure 5.10: For C = 3.050057, the region an (1, 1)−homoclinic point must belong to. Left:
(x, ẋ) projection. Right: (z, ż) projection.
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Figure 5.11: Behavior of 1− C(s/u)xẋ as a function of C. The intersection can be lost.

and to the interior of j − C(u)zż . We stress that k and j are positive integers, that can be
different from each other.
In Fig. 5.9 on the left, we display the first two intersections between the stable and the
unstable manifolds associated with the planar Lyapunov periodic orbit around the L2

point at C = 3.167456. On the right, the 8 curves supplied in the (x, ẋ) plane by 4
crossings of such manifolds. In Fig. 5.10, the region in the (x, ẋ) and (z, ż) planes an
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(1, 1)−homoclinic point must belong to, for C = 3.050057.

We notice that, while k−C(s)zż and j −C(u)zż always have a common interior, k−C(s)xẋ and

j − C(u)xẋ can lose the intersection depending on the value of C. See Figs. 5.11 and 5.12.

5.4 Distributions of Initial Conditions inside Ws(Wc
L2
)

As already explained, in a given level of energy the dynamics corresponding to Ws(Wc
L2
)

is determined starting from the invariant stable manifolds of the planar and vertical
Lyapunov periodic orbits existing around L2. In particular, we propagate these manifolds
backwards in time until they cross a given section for the first time. We consider the
branch which moves away from the Moon and the plane of intersection is chosen in such
a way that we can assume the asteroids to have already left the Main Asteroid Belt and
to move in the Earth – Moon neighborhood.
The transit trajectories are generated by taking initial positions and velocities inside
the two closed curves obtained in this way (see Figs. 1.13 and 1.14). The trajectories
corresponding to such initial conditions are driven by the stable component of Wc(L2),
without lying on Ws(Wc

L2
) but staying inside this dynamical tube.

In what follows, we describe how the points at t = 0 are taken using four different
strategies and the corresponding results we obtain. All the random variables needed are
derived by means of a Knuth shuffle algorithm (Knuth, 1997) (see Appendix B). We
consider 20 equally spaced energy levels C in the range C3 < C < C2. We notice that
the smaller the value of C, the larger the two curves.
We devote a special effort in investigating the dynamics provided by an uniform distri-
bution of initial conditions inside Ws(Wc

L2
). This means that for such transit orbits we

consider the 4 different values of dEM and also the possibility of homoclinic connections.
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For the other three choices of initial conditions, we take dEM = 384400 km and we do
not analyze the re-fostering loops.
In all the cases, the distributions of impact on the Moon is represented by discretizing
the lunar spherical surface in squares of 15◦ × 15◦ in terms of longitude and latitude.
According to the number of collisions per unit of area, normalized with respect to the
total number of impacts obtained, each square can assume a different shade of gray: in
the figures we show the lighter it is the greater the density of impact.
In general, we notice that to assume 60 years as maximum allowed time to impact is
not a restrictive condition. In this time interval the most of the asteroids escapes from
the region we are interested in and it looks like just few of them are able to go back to
the Earth – Moon neighborhood later. It is reasonable to think that they remain in the
Inner Solar System and occasionally are pushed towards the Earth again.
Concerning the velocity of arrival, it holds the remark done in Section 2.3.1, that is,
it almost coincides with the velocity of escape of the Moon. The angle of impact can
assume all the values between 0◦ and 90◦.

5.4.1 To Be Uniform in Ws(Wc
L2
)

The first selection of initial states we study is uniformly distributed inside each curve
produced by Ws(PLL2

) and Ws(V LL2
) on the Poincaré section. This means that we

want any transit trajectory inside the tube to be as probable as any other.
For each given value of C we fix {x = 0} as the section to move from and we generate
one pair of random numbers in (y, ẏ) and one in (z, ż); if at the same time they belong
to the interior of the (y, ẏ) and (z, ż) curve, respectively, then we complete the set of
initial conditions setting x = 0 and determining ẋ from the Jacobi first integral.
For each energy level we analyze the behavior of 106 initial conditions.

Numerical Results

We can point out the following outcomes:

• the percentage of impacting orbits over all the initial conditions launched is at least
13%;

• the smaller dEM , the higher the above percentage, see Tab. 5.1;

• the amount of particles that still wanders around the Earth inside the zone bounded
by the zero-velocity surface after 60 years is 0.1%;

• most of the impacts take place within 20 years, though in the first 10 years we
observe the greatest number;

• the heaviest probability of impact takes place at the apex of the lunar surface
(90◦W, 0◦).
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Figure 5.13: Density of impact (number of impacts per unit of area normalized with respect
to the total number of impacts obtained) computed by exploiting the CR3BP equations of
motion and initial conditions uniformly distributed insideWs(Wc

L2
). The surface of the Moon

is discretized in squares of 15◦× 15◦ in terms of longitude and latitude and 4 different values
for the Earth – Moon distance are considered. The color bar indicates that the lighter the
shade of gray the greater the impact density.

In Fig. 5.13, we show the density of impact found for the 4 values of dEM introduced
previously. We remark that to consider another discretization of the lunar surface would
not bring any relevant difference from a qualitatively point of view. Compare Figs. 5.13
and 5.14.
Furthermore, we compute the orbital elements associated with the osculating ellipses
at t = 0, corresponding to colliding initial conditions. This means that every set
(x, y, z, ẋ, ẏ, ż) producing a collision with the Moon is transformed into an inertial ref-
erence system whose origin is set at the Earth and reference plane is the Earth – Moon
orbital one. Such coordinates are then turned into orbital elements (Bate, Mueller,
White, 1971). In particular, we get the semi-major axis a, the eccentricity e, the incli-
nation i, the longitude of the ascending node Ω, the argument of perigee ω and the true
anomaly ν. We notice that the initial conditions are taken far enough (at least about
500000 km if we assume dEM = 384400 km) from the Moon to be allowed to assume a
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dEM(km) % Moon impacts

232400 17.9
270400 15.6
308400 14.3
384400 13.2

Table 5.1: For different values of Earth – Moon distance dEM the percentage of impact onto
the Moon adopting the CR3BP approximation and initial states uniformly distributed inside
Ws(Wc

L2
).
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Figure 5.14: Density of impact (number of impacts per unit of area normalized with respect
to the total number of impacts obtained) computed by exploiting the CR3BP equations of
motion and initial conditions uniformly distributed insideWs(Wc

L2
). The surface of the Moon

is discretized in squares of 10◦×10◦ (top) and of 5◦×5◦ (bottom) in terms of longitude and
latitude. The color bar indicates that the lighter the shade of gray the greater the impact
density.

2BP approximation and perform this analysis.
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a (dEM) e i

[1.5 : 3] [0.4 : 0.7] [1.5◦ : 3.5◦]

Table 5.2: For each initial condition belonging to Ws(Wc
L2
) and colliding with the lunar

surface, we compute the orbital elements corresponding to the osculating ellipse at t = 0.
The impact is more likely if the semi-major axis a, the eccentricity e and the inclination i
with respect to the Earth – Moon orbital plane lie in the range shown here.

From these computations, it turns out that the impact is more likely if (a, e, i) belong
to the intervals showed in Tab. 5.2. In Fig. 5.15, we display such probabilities for the
case dEM = 384400 km. As before, the lighter the shade of gray associated with a
given (i, a)/(i, e) square, the greater the probability that such orbital elements would
correspond to a colliding trajectory. The probability is normalized with respect to the
total number of impacts obtained.
Finally, we set dEM = 384400 km and we propagate the transit trajectories up to 150
years, taking into account also the impacts deriving from (1, 1)−homoclinic connections.
It turns out that the most of the particles can live inside the region bounded by the
zero-velocity surface until about 100 years in the very limit situation. If they do not
impact onto the Moon, they escape, but only a 0.4% of the total initial amount is able
to collide with the Moon at the second entrance. In this case, they need at most 5 years
more to produce a crater.
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Figure 5.15: Number of impacts over the total number found considering as variables the
inclination i with respect to the Earth – Moon orbital plane and the semi-major axis a; the
one on the right takes as variables i and the eccentricity e. The lighter the shade of gray the
greater the probability. Here, dEM = 384400 km and the i and a ranges are discretized at
steps of 0.5 degrees and dEM , respectively. The e range is discretized at steps of 0.1.
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Figure 5.16: In red the branch containing the transit trajectories, in black the Poincaré
section they move from, in blue the Moon.

5.4.2 To Belong to the Ecliptic

As explained in the previous section, to each initial condition we consider we can associate
an orbital inclination, say i, with respect to the Earth – Moon orbital plane, provided
the fact to be not too close to the Moon. First, we have to move to an inertial system of
coordinates whose reference plane is the Earth – Moon orbital one and whose origin is
set at the Earth (recall also Section 3.2.1) and then perform a classical transformation
to orbital elements (see, for instance, Bate, Mueller, White (1971)).
We implement this procedure also to understand how orbits coming from the ecliptic
can affect the distributions of impacts on the Moon. Therefore, the second set of initial
conditions we propagate is selected according to i.
Now, the Poincaré section is defined as y = 0.700207x + 1.281813 (see Fig. 5.16) and
random points are computed inside the (x, ẋ) and (z, ż) curves. They are accepted as
initial conditions only if they correspond to a value of i < 10◦. We recall that the ecliptic
lies at about 5◦14′ with respect to the Moon’s orbit.
In this case, we do not consider the same Poincaré section as in the previous section for
two reasons:

• at t = 0 the transit orbit should lie close enough to the Earth to prevent i from
changing meaningfully over the time span set;

• the initial condition should stay far enough from the Moon to permit the 2BP
approximation to make sense.

Also in this exploration, for each energy level we analyze the behavior of 106 initial
conditions.
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Figure 5.17: (z, ż) curve at the intersection with the chosen Poincaré section for C =
3.043549 (left) and C = 3.171551 (right). The points inside are initial conditions corre-
sponding to i ∈ [0◦, 10◦], as indicated by the color bar.
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Figure 5.18: Density of impact produced by initial conditions selected according to the
inclination i with respect to the Earth – Moon orbital plane of the associated osculating
ellipse. The surface of the Moon is discretized in squares of 15◦ × 15◦ in terms of longitude
and latitude and dEM = 384400 km. The color bar indicates that the lighter the shade of
gray the greater the impact density.

Numerical Results

First of all, we notice that as long as C decreases, that is, the particle becomes more and
more energetic, the range of possible i increases. In the (z, ż) curve, the closer the point
to the center the lower the inclination (see Fig. 5.17). The choice of i results essentially
in the area covered by the initial conditions inside the (z, ż) projection: to skip high
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Figure 5.19: The resonances considered for the third set of initial conditions belongs to the
blue triangle. As at t = 0 the asteroid is outside the orbit of the Moon with respect to the
Earth, we always have na > nM .

values of i means to neglect the neighborhood of the (z, ż) boundary, to avoid values of
i close to 0◦ signifies to not sweep the center of the (z, ż) curve’s interior.
As a consequence, the range of admitted i affects the distribution of lunar impacts. In
Fig. 5.18, we show the density of impact obtained setting i ∈ [3◦, 7◦] and i ∈ [0◦, 10◦].
We can notice that we obtain a lower density around 0◦ latitudes in the first case than
in the other. Indeed, almost planar transit orbits yield impacts focused on the lunar
equator. Moreover, the more comprehensive set of i maintains the apex concentration
previously observed.
With respect to the percentage of impact, in both cases we obtain about 13% as before.

5.4.3 To Be in Resonance with the Moon

Another possibility we want to explore is the effect of a hypothetical resonance between
the Moon and the asteroid. It is known that if two bodies experience close approaches
repeatedly in time, the consequent gravitational perturbations accumulate, bringing the
orbits to change drastically. On the contrary, if the resonance and the initial configuration
are such that the two bodies will never encounter, then the system is somehow protected.
In the Solar System, we can find several examples of both situations: just to mention
some, the Kirkwood gaps, which very likely are one of the causes of the Near Earth
Objects, and Pluto and Neptune, whose orbits never cross thanks to the resonance.
In our simulation, we fix the Poincaré section as above (see Fig. 5.16) and for the random
points picked up inside the (x, ẋ) and (z, ż) curves we compute the corresponding orbital
elements, as already explained. We say that an asteroid is in resonance with respect to
the Moon at t = 0 if

naTa = nMTM , (5.1)



Low-Energy Impacts on the Surface of the Moon 103

 2.3e-08

 2.4e-08

 2.5e-08

 2.6e-08

 2.7e-08

 2.8e-08

 2.9e-08

 3e-08

longitude

la
tit

ud
e

-150 -100 -50  0  50  100  150

-80

-60

-40

-20

 0

 20

 40

 60

 80

Figure 5.20: Density of impact produced by initial conditions which are in resonance with the
Moon. The surface of the Moon is discretized in squares of 15◦ × 15◦ in terms of longitude
and latitude and dEM = 384400 km. The color bar indicates that the lighter the shade of
gray the greater the impact density.

where na, nM ∈ N and Ta and TM are the orbital periods of the asteroid and the Moon
around the Earth. As Ta =

√
a34π2μ2, where a is the semi-major axis and μ2 = 1− μ,

we propagate forwards in time only the initial conditions which satisfy

a = (μ2)
1/3

(nM

na

)2/3
. (5.2)

We notice that we always have na > nM , as the asteroids are assumed to move outside
the orbit of the Moon at least at t = 0. In Fig. 5.19, we show the values of na and nM

explored.
For this simulation, we take 106 initial conditions for each energy value.

Numerical Results

In the case of transit orbits which are in resonance with the Moon at t = 0, we get a
distribution of impacts very similar to the ones found above. In Fig. 5.20, we can see it.
This means that a relative Moon – asteroid configuration which repeats in time does not
influence the possibility of collision, when the stable component of the central invariant
manifold of a given equilibrium point controls the dynamics. We note that we take into
account a quite diverse series of initial resonances and that in most of the cases they
break up quite soon and transform into different ones such that na < nM . In Fig. 5.21,
we display some behaviors detected in the inertial and synodical reference systems.
With respect to the percentage of impact, also now we obtain about 13%.
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Figure 5.21: Some behaviors detected for transit orbits which are in resonance with the
Moon at t = 0. Left: inertial reference system (in blue the Moon’s orbit). Right: synodical
reference system.
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5.4.4 To Be Uniform in C

The fourth distribution of initial conditions is uniform in a given level of energy. Due to
the existence of the Jacobi first integral of motion, there exists a 5−dimensional surface,
say M, embedded in the 6−dimensional Euclidean space we deal with.
For any well-defined C the embedding of M is given by the map J : R5 → R

6 defined
as

J1(x, y, z, ẏ, ż) = x,

J2(x, y, z, ẏ, ż) = y,

J3(x, y, z, ẏ, ż) = z,

J4(x, y, z, ẏ, ż) = x2 + y2 + 2
1− μ

r1
+ 2

μ

r2
+ μ(1− μ)− ẏ2 − ż2 − C, (5.3)

J5(x, y, z, ẏ, ż) = ẏ,

J6(x, y, z, ẏ, ż) = ż.

Our purpose is to set the same number of initial conditions per unit of element of volume
on M. This is,

# points

element of volume
= constant. (5.4)

The constant above, say χ, is fixed and the element of volume is computed by means of
the basis of vectors which generates the tangent space of M, say TCM.
Actually we have to calculate a 4−dimensional element of volume, because of the choice
of the Poincaré section, which determines the value of x. Let u ≡ (x, y, z, ẏ, ż), then the
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Figure 5.22: Density of impact produced by initial conditions which are uniformly distributed
in a given level of energy. The two plots refer to two different meshes taken inside the (y, ẏ)
and (z, ż) curves at t = 0. The surface of the Moon is discretized in squares of 15◦ × 15◦

in terms of longitude and latitude and dEM = 384400 km. The color bar indicates that the
lighter the shade of gray the greater the impact density.
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basis of TCM is given by (∂Jk∂ui
), where k = 1, . . . , 6 and i = 2, . . . , 5. For a given u∗, the

element of volume is the square root of the determinant of the matrix V = [gij ], where

gij =
6∑

k=1

∂Jk
∂ui

∂Jk
∂uj

(u∗), i, j = 2, . . . , 5. (5.5)

For further details, see Do Carmo (1992).
In turn, we define the Poincaré section to be {x = 0} and we discretize the interior of the
corresponding (y, ẏ) and (z, ż) curves by some mesh. For each rectangle constituting the
grid, we evaluate

√
det(V ) at the central point and we take as many initial conditions

as many
√
det(V ) and χ suggest.

We notice that the mesh should be fine enough to allow this kind of approximation.
Also, we use the same χ for each energy level considered, which means that we do not
deal with the same number of initial conditions for every C, as the area to be covered
by the mesh is not the same. For 20 equally spaced values of C, we consider different
meshes and different values of χ in order to ensure the results to be consistent.

Numerical Results

The last type of initial conditions reserves a sort of surprise, as they do not provide the
same density of impact encountered with all the previous explorations.
As said, now the total number of transit orbits simulated depends on the mesh set inside
the (y, ẏ) and (z, ż) curves at t = 0. We fix as χ either 108 and 109 and we discretize the
interiors of the (y, ẏ) and (z, ż) curves in order to have at least 105 initial conditions for
every value of C. This means that for the smallest C considered, namely C = 3.043549,
we performed at least 107 numerical integrations.
The percentage of impact oscillates between 4% and 7%, depending on the discretization
considered and the collisions distribution always looks like in Fig. 5.22. It seems that
the apex focusing is now shifted westward around (130◦W, 0◦) and that many collisions
on the lunar trailing side are lost.

5.5 Uniform Density of Lunar Impacts: Possible Paths

The previous investigation reveals that Ws(Wc
L2
) provides a non-uniform density of

impact onto the surface of the Moon. The question that naturally arises is where minor
bodies producing an uniform distribution of low-energy collisions would come from.
Having this purpose in mind, we start from a set of initial conditions uniformly spread
out on the lunar surface, which is discretized as before in squares of 15◦ × 15◦ in terms
of longitude and latitude. We notice that not only the position coordinates have to be
well distributed, but also the velocity ones.
With respect to the position, if γ ∈ [−π, π] is a random value of latitude, ψ ∈ [0, 2π] a
random value of longitude and ρM = 1737.53/dEM the adimensional radius of the Moon,
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then at t = 0 we compute

x = ρM cos (γ) cos (ψ) + μ− 1, y = ρM cos (γ) sin (ψ), z = ρM sin (γ).

Concerning (ẋ, ẏ, ż) at t = 0, our aim is to fulfill a constraint of uniform distribution
on a semi-sphere of velocities. If g ≡ (gx, gy, gz) = (x − μ + 1, y, z) is the vector which
is normal to the lunar surface at (x, y, z) and w and h are random values in [0, 1], we
implement three approaches that can be sketched as follows. In all the cases, (ẋ, ẏ, ż)
are normalized in order to obtain the modulus of the velocity as the one satisfying the
chosen C.

(1) Let β ∈ [−π, π] and λ ∈ [0, π] be random values. Then

ẋ = gx cos (λ) cos (β), ẏ = gy cos (λ) sin (β), ż = −gz sin (λ).

(2) Let β be a random value belonging to the interval [−π, π] and λ = cos−1 (1− 2w) ∈
[0, π]. Then

ẋ = gx cos (λ) cos (β), ẏ = gy cos (λ) sin (β), ż = −gz sin (λ).

(3) Let γ and ψ as above, ξ = 2w − 1 and η = 2h − 1 such that −1 < ξ, η < 1 and
ξ2 + η2 < 1. Then

ẋ = (2ξ
√

1− ξ2 − η2) cos (γ) cos (ψ),

ẏ = (2η
√

1− ξ2 − η2) cos (γ) sin (ψ),

ż = −[1− 2(ξ2 + η2)] sin (ψ).

We consider 10 values of C3 < C < C2 and we simulate the behavior of 758640 particles
for each C, which means 7586400 particles in total. This value has been chosen to have
an impact density of 2× 10−2 km−2 for each 15◦ × 15◦ square considered on the surface
of the Moon.
The numerical integration is performed backwards up to a maximum allowed time of
5 years and we pay attention on the trajectories which arrive from the {x = 0} section
mentioned before.

5.5.1 Numerical Results

The backwards simulation shows that there exist two main dynamical channels leading to
a lunar collision, for the range of energy under study. In particular, uniform distributed
impacts would come either fromWs(Wc

L2
) or from double collision orbits with the surface

of the Moon.
In the former case, we note that all the orbits arriving to the Moon from {x = 0}
lie inside the (y, ẏ) and (z, ż) curves introduced in Section 1.2.3. This can be seen as
a confirmation of the well-posed procedure adopted previously. In other words, the
strategy defined to determine Ws(Wc

L2
) represents actually the dynamics we are looking
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Figure 5.23: If the impact distribution on the surface of the Moon was uniform, initial
conditions associated with this pattern inside the (y, ẏ) curve would collide with the Moon.
We remark that the uniform distribution would not be due only to Ws(Wc

L2
), but also to

other phenomena. See Figs. 5.24 and 5.25.

for and does not leave out any transit trajectory. The interesting point is that inside the
(y, ẏ) curve we are able to note special patterns, that should be investigated with more
detail (see Fig. 5.23).
The density of impact on the Moon’s surface produced by Ws(Wc

L2
) is depicted in

Fig. 5.24. The reader should be aware that we do not expect an apex concentration as
before, due to the different collocation of points inside the (y, ẏ) and (z, ż) projections.

 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

longitude

la
tit

ud
e

-200 -150 -100 -50  0  50  100  150  200
-100

-80

-60
-40

-20
 0

 20

 40
 60

 80
 100

Figure 5.24: Density of impact caused by the dynamics associated with Ws(Wc
L2
) if the

lunar craters distribution was uniform. The surface of the Moon is discretized in squares of
15◦× 15◦ and that the color bar refers to the number of impacts per unit of area normalized
with respect to the total number of impacts found. The lighter the shade of gray the greater
the impact density. The Earth – Moon distance is dEM = 384400 km.
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Figure 5.25: Three low-energy trajectories departing from the surface the Moon and returning
there after revolving around the Earth. They have been derived assuming an uniform density
of lunar impacts.

On the other hand, there exist orbits that depart from the Moon with about the lunar
escape velocity and return there with the same speed (see Fig. 5.25). They can travel
along different paths, turning around either the Earth or the Moon one or several times.
As explanation, we can hypothesize ejecta deriving from high-energy collisions. Such
effect has already been predicted by other authors (see, for instance, Gladman et al.
(1996)).

5.6 On the Effect of the Sun

Now, our objective is to clarify the role of the Sun on the density of impact found pre-
viously. We focus on the most relevant concentration of impact on the leading side of
the Moon obtained with uniformly distributed transit orbits and we apply the BR4BP
equations of motion to the same initial conditions considered within the CR3BP frame-
work.
Also in this case, we are able to attribute to dEM some specific values, which account
for the rate of recession of the Moon with respect to the Earth. We notice that aS and
ω change accordingly to dEM , as we assume the adimensional set of units defined in
Section 1.2.
The simulation is carried on as in Section 5.3, apart from the fact that now we have
to explore the behavior corresponding to different θ0 and that we have to take care of
impacts on the surface of the Earth. Finally, the maximum time span we allow to give
birth to a lunar collision is 5 years. This choice is essentially due to the increasing
computational effort.

5.6.1 Numerical Results

The results can be summarized as follows:

• the percentage of impact depends on dEM and on the initial phase of the Sun, θ0:
this is displayed in Tab. 5.3;
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dEM(km) θ0 % Moon impacts % Earth impacts

232400 36◦ 22.0 2.7
232400 108◦ 13.9 3.3
232400 180◦ 14.4 3.0
232400 252◦ 21.7 2.6
232400 324◦ 10.5 4.9

270400 36◦ 20.0 2.8
270400 108◦ 10.1 3.7
270400 180◦ 10.5 2.9
270400 252◦ 20.1 2.2
270400 324◦ 6.8 4.2

308400 36◦ 17.0 2.4
308400 108◦ 7.3 3.7
308400 180◦ 8.1 2.1
308400 252◦ 18.7 2.0
308400 324◦ 4.2 2.7

384400 36◦ 13.3 2.2
384400 108◦ 3.2 2.9
384400 180◦ 3.9 1.3
384400 252◦ 14.8 2.1
384400 324◦ 1.2 1.1

Table 5.3: Percentages of impact onto the Moon and the Earth, for different values of Earth
– Moon distance dEM and initial phase of the Sun θ0.

• some trajectories collide with the Earth, the corresponding percentage is also shown
in Tab. 5.3;

• looking to Tab. 5.3, it is clear that there exist values of θ0 more favorable to yield
impacts with the Moon;

• the region of highest density of impact oscillates in longitude in the range [50◦W, 100◦W ]
depending on θ0;

• it looks like the relative Earth – Moon and Earth – Moon – Sun distances, as well
as the adimensional diameter of the Moon, play a significant role in what concerns
with the region of heaviest lunar impact. In particular, the leading side collision
concentration becomes more and more evident as dEM decreases.
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Figure 5.26: Density of impact (number of impacts per unit of area normalized with respect
to the total number of impacts obtained) computed with the BR4BP equations of motion.
The surface of the Moon is discretized in squares of 15◦ × 15◦. The color bar indicates
that the lighter the shade of gray of the square the greater the impact density. On the left,
θ0 = 36◦; on the middle, θ0 = 180◦ and on the right we display the distribution due to all the
five values (see Tab. 5.3) of θ0 considered. On the top, dEM = 232400 km; on the bottom,
dEM = 308400 km.

• If we compare Figs. 5.13 and 5.26 we note that the effect of the Sun reduces the
number of impacts on the trailing side of the Moon, which is quite high when only
Earth and Moon are considered.

In Fig. 5.26, we show the density of impact obtained when dEM = 232400 and dEM =
308400 km, respectively. For these plots, we consider θ0 = 36◦, θ0 = 180◦ and the
distribution deriving from all the values of θ0 evaluated.
To be sure the time span set is not restrictive, we perform a more extensive numerical
simulation up to 60 years setting dEM = 270400 km. The corresponding percentages of
impact are displayed in Tab. 5.4: we see that they increase but not in a meaningful way.
Moreover, in order to understand how the percentage varies according to the initial
phase of the Sun, we consider dEM = 270400 km and analyze the behavior of the impacts
every 12◦ starting from θ0 = 6◦ within a time interval of 5 years. It turns out that the
percentage of impact follows a periodic pattern (see Fig. 5.27), which can be recovered
by a sinusoidal function.
If we plot the trajectories resulting from different values of θ0, we can notice that the
minima detected in Fig. 5.27 are the consequence of a thinning phenomenon that the
dynamical tube undergoes in the proximity of the Moon. Refer to Fig. 5.28. It looks
like the Sun, depending on θ0, can be able to prevent the particle from entering into the
region that is delimitated by the zero-velocity surface in the CR3BP approximation. If
this happens, the asteroid keeps wandering around the Earth – Moon system, but never
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t(year) θ0 % Moon impacts % Earth impacts

5 36◦ 20.0 2.8
60 36◦ 21.2 3.4

5 108◦ 10.1 3.7
60 108◦ 10.7 4.1

5 180◦ 10.5 2.9
60 180◦ 11.3 3.6

5 252◦ 20.1 2.2
60 252◦ 21.1 2.7

5 324◦ 6.8 4.2
60 324◦ 7.9 4.7

Table 5.4: Percentages of impact onto the Moon and the Earth, for different values of
maximum time integration and initial phase of the Sun θ0. Here dEM = 270400 km.
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Figure 5.27: Percentage of impact as a function of θ0, for dEM = 270400 km.

gets into it.
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θ0 = 60◦ θ0 = 105◦ θ0 = 150◦

Figure 5.28: Behavior of the trajectories resulting from different values of θ0 setting dEM =
270400 km. It looks like the width of the dynamical tube can reduce.

5.7 Comments and Possible Developments

The main purpose of this chapter is to establish a relationship between low-energy tra-
jectories in the Earth – Moon system and lunar impact craters. This is actually a quite
wide and challenging topic, which involves knowledge related to mathematics, astron-
omy and geology. The investigation carried out is promising from many points of view,
as it indicates future developments that are worth to be considered. Several outcomes
can be highlighted, even if they have to be seen as patterns that require a more robust
proof: further calculations with different dynamical and astronomical models are under
consideration.
To resume, we make use of the Earth – Moon dynamics pushing a massless particle
under low-energy regimes and we exploit invariant objects that exist within the Circular
Restricted Three – Body Problem context, in particular transit trajectories lying inside
the stable invariant manifold associated with the central invariant manifold of the L2

equilibrium point. We implement a method that allows to reproduce the behavior asso-
ciated with the unstable component of any central orbit and does not need to distinguish
between them. This fits with our investigation, because we are interested in minor bod-
ies collisions that take advantage of the channels represented by the whole hyperbolic
manifolds. With this approach, we perform extensive numerical simulations to deter-
mine both the lunar region of heaviest impact and the sources of a potential uniform
craters distribution, taking into account diverse sets of initial conditions and values for
the Earth – Moon distance.
If we analyze transit orbits which are uniformly distributed inside Ws(Wc

L2
), we get a

confirmation that the neighborhood of the apex of the surface of the Moon is the region
where most collisions take place. The phenomenon is analogous to a car running against
the rain: depending on the speed, it is possible that the back window does not intercept
any drop. In our case, still many collisions occur on the trailing side, although not as
many as around (90◦W, 0◦). We remark that the impact trajectories simulated reach
the surface of the Moon with the lowest possible velocity: this point does not corrupt
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the apex concentration that other authors discovered without this restriction, neither
do different values of dEM . The only parameter that in reality influences the density of
impact obtained is the initial inclination with respect to the Earth – Moon orbital plane
of the orbits propagated.
On the other hand, if the impactors were uniformly distributed inside a specific range of
energy, then a very low percentage of collisions would appear on the lunar trailing side
and the major focusing would take place at a different value of longitude.
What is left regarding such simulations is to obtain a deeper understanding of the re-
fostering cycles as a consequence of homoclinic connections and to find a link between
our methodology and real observational data, concerning either the existing lunar craters
and the orbital parameters at a certain epoch of a given set of Near Earth Objects. This
information would affect especially the way we generate the initial conditions correspond-
ing to transit orbits. So far, the distributions of impact derived from our explorations
do not agree with the analysis carried out on the images of the Clementine mission nor
with the alleged asymmetry between nearside and farside.
Apart from that, we realize that small craters can also be generated by the impact
of dust arising from more energetic collisions than the ones investigated here. Such
phenomenon is related to the existence of periodic orbits that cross the surface of the
Moon, that is, double collision orbits. In the future, we would like to see how they are
transformed by the perturbation of the Sun.
In the last part of the chapter, we look for the influence of the Sun on uniformly dis-
tributed transit orbits, by means of the Bicircular Restricted Four – Body Problem.
The gravitational force exerted by the Sun seems to blur the leading side concentration
experienced under the CR3BP. Changing the ratio between the Earth – Moon – Sun
distance and the Earth – Moon one, we notice different patterns. Moreover, we get
evidence that the position of the Sun at the initial epoch with respect to the Earth –
Moon barycenter affects the distribution of impact. We notice that, according to θ0, the
percentage of impact changes in a periodic way and also the region of largest density
swings in longitude.
A natural step would be to add the gravitational attractions of other planets to see their
consequences on the orbits simulated. For instance, this could be done by means of a
Restricted n – Body Problem, using position and velocity of the primaries given by the
JPL ephemerides and taking several initial epochs to compare the whole outcome. To
consider a more realistic framework is also important in order to account for the libration
effects of the Moon, that can cause variations on the distribution of impact.
Finally, to apply the same kind of analysis to the terrestrial planets would be of large
interest. Starting from the CR3BP approximation, we mean to study the density of
impact provided by Sun – planet low-energy orbits and then to add further gravitational
effects, trying to figure out the orbital elements and also the regions in the phase space
which more likely lead to a collision.



Conclusions

In this dissertation, we have shown the pertinence of the Circular Restricted Three
– Body Problem to the Earth – Moon system, by investigating transfers that can be
accomplished either by a spacecraft and an asteroid or a comet.
The ratio between the masses of the primaries is one of the largest in the Solar System
and thus it can be more reasonable than in other frameworks to take advantage of the
dynamics which corresponds to the CR3BP. In particular, to account for both Earth
and Moon is recommended to obtain accurate results, as we cannot neglect neither the
lunar nor the terrestrial attraction on a small body moving inside the Earth gravitational
sphere of influence. Also, the relevant lunar mass makes the dynamics to be very sensitive
to the initial conditions.
As a first astrodynamical application, in Chapter 2 we have considered how a probe can
move from the Moon to a libration point orbit either around L1 or L2 and vice versa.
The hyperbolic invariant manifolds associated with the chosen LPO provide the whole
connection, fuel is required only to depart from the lunar surface with a velocity equal
to the lunar escape velocity.
Concerning the outcomes, we have identified the regions on the Moon matching with di-
rect and non-direct transfers and characterized the lunar surface according to the number
of opportunities of landing/take off. There exist different symmetries, which are proper
of the CR3BP, that can be reckoned as they result into the Moon’s accessible regions.
In particular, between I and II class halo orbits, stable and unstable invariant manifolds
and L1 and L2 LPOs. Besides, we have devoted a special emphasis in discovering where
landing can take place tangentially and take off normally. The two situations overlap but
very narrowly. If we are interested in reaching polar latitudes, we must design transfers
established on a LPO with a quite high vertical amplitude. The main drawback of such
lunar rescue orbits is the transfer time, at least 10 days.
As a further step, in Chapter 3 we have explained a methodology to move from a Low
Earth Orbit to a L1/L2 Lissajous quasi-periodic orbit. In this case, the stable invariant
manifold is not sufficient, but it has to be aided by an additional leg. Because of this,
we deal with two maneuvers, one is needed to leave the LEO and the other to join the
stable invariant manifold. The differential correction procedure implemented aims at
minimizing the first Δv in such a way that it is performed on the same direction of
the velocity of the circular orbit around the Earth. The magnitude of such maneuver
depends on the altitude chosen for the LEO.



With respect to the second change in velocity, the results show that for a transfer to a L1

LPO the most convenient situation takes place when the distance function between the
Earth and the manifold reaches a maximum and for a L2 transfer when we have traveled
enough time on the stable invariant manifold. While in the former case the amplitude
of the square Lissajous orbit affects the total cost, this does not happen for trajectories
that go beyond the Moon. With our technique to move to L2 is cheaper than to L1, but
the time of flight is too big to think to apply this kind of transfers to real situations.
In Chapter 4 we have described how trajectories computed within the CR3BP frame-
work, such that the ones just mentioned, can be refined into a more comprehensive vector
field. As a matter of fact, we have implemented a procedure established on an optimal
control strategy combined with a multiple shooting method in order to attain the desired
level of accuracy.
The refinement of a nominal trajectory has the objective of computing an orbit continu-
ous both in position and velocity under well-defined equations of motion, but we can deal
with situations where a natural trajectory does not exist or with transfers that require
some maneuvers that can be only partially reduced. This is the main reason a multiple
shooting method is not completely sufficient for our purposes and we have allowed some
discontinuities in velocity for the refined trajectory under the optimal control approach.
In the examples analyzed, we have considered the Restricted n – Body Problem as new
model of forces and we have described how additional requirements can be taken into
account besides the difficulties we have dealt with. A more exhaustive exploitation is
recommended, in particular we mean to use the whole procedure systematically for the
refinement of heteroclinic connections between two coupled CR3BP to understand their
role in the phase space associated with the full model. So far we have figured out that
zero-cost transfers exist but with apparently strong limitations associated with the initial
epoch and the cost of the matching obtained in the CR3BP context.
Moreover, we plan to cope with low-thrust transfers, for instance starting from a 2BP
approximation and representing such kind of propulsion with as many as possible impul-
sive maneuvers in the refinement. The algorithm developed is quite general and should
fit easily with different cases. Another application we might consider is a vector field
with not only gravitational effects.
The last topic we have studied is the impact of minor bodies onto the surface of the
Moon (Chapter 5). We are interested in low-energy trajectories computed within the
approximation of the CR3BP and driven by the stable invariant manifold associated with
the central invariant manifold of the L2 equilibrium point, Ws(Wc

L2
). We have looked for

the distribution of collisions that such dynamics provides, being aware of the complexity
of the phenomenon under consideration. However, we have not faced the geological or
astronomical related aspects.
We have taken into account different selections of initial conditions and values for the
relative Earth – Moon distance dEM , showing their consequences on the outcomes. We
have seen that the heaviest probability of impact takes place at the apex of the lunar
surface (90◦W, 0◦) if the initial conditions are uniformly distributed inside Ws(Wc

L2
),

but that the apex focusing is shifted westward around (130◦W, 0◦) if the trajectories at



the initial epoch are uniformly distributed in the level of energy considered. Also, the
inclination at t = 0 with respect to the Earth – Moon orbital plane can cause a lost
of collisions at equatorial latitudes. In general, 60 years are enough for characterizing
impacts of objects in the Earth – Moon neighborhood.
The main issue to further investigate is how much homoclinic connections corresponding
to L2 represent re-fostering channels for a collision with the Moon and, consequently,
the distribution of impact due to such longer trajectories.
Besides, we have added the influence of the Sun by means of the Bicircular Restricted
Four – Body Problem, noting that the percentage of impact depends on dEM and on
the initial phase of the Sun θ0. We have seen that the presence of the Sun is able to
make the asteroid not to approach the Earth – Moon region, letting it to wander around
indefinitely in time. Also, the leading side collision becomes more and more evident as
dEM decreases, the number of impacts on the lunar trailing side are reduced and the
highest density of impact oscillates in longitude in the range [50◦W, 100◦W ] depending
on θ0.
The weakest point in such explorations concerns with the observational data, for the
asteroids and the craters. In particular, the minor bodies approaching the Earth nowa-
days are characterized by a speed which is usually high and there is not evidence that
in the past it was different. On the other hand, a realistic distribution of impact craters
is very hard to obtain and thus we do not have comparative terms for our results.
However, the same procedure can be applied to different satellites with rocky surface,
for instance in the Jupiter – Callisto framework. In this case, the low-energy constraint
can be more probable. We plan to study this and other systems, such as Sun – Mercury,
also to understand the role of the value of the mass parameter. We recall that Callisto
is locked in a 1:1 spin-orbit resonance as the Moon, while Mercury in a 3:2 one.
Finally, we have simulated the lunar impacts starting from the surface of the Moon
and propagating the equations of motion of the CR3BP backwards in time. We have
discovered trajectories that come from the Moon itself. They can be explained in terms
of ejecta deriving from high-energy collisions and they represent a more likely situation
for the Earth – Moon system.
All the data associated with low-energy collisions have to be confirmed in the future by
adopting as dynamical approximation the RnBP.





Variational Equations

associated with the RnBP
A

If X̃ ≡ (t,X), the variational equations corresponding to (4.2) can be written as

Φ̇ =
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∂ẏ
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∂ż

∂fz
∂t

∂fz
∂x

∂fz
∂y

∂fz
∂x

∂fz
∂ẋ
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As explained in Section 1.4, we adopt two different vector fields to refine transfers
computed under the approximation of the CR3BP. They both describe the motion of a
massless particle under the gravitational influence of Sun, Moon and the nine planets,
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∂z 0 0 0

∂fẏ
∂t

∂fẏ
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Therefore we have, for instance,

∂ϕ̇x

∂t
=

∂ϕẋ

∂t
,

∂ϕ̇x

∂x
=

∂ϕẋ

∂x
,

∂ϕ̇ẋ

∂t
=

∂fẋ
∂t

+
∂fẋ
∂x

∂ϕx

∂t
+

∂fẋ
∂y

∂ϕy

∂t
+

∂fẋ
∂z

∂ϕz

∂t
,

∂ϕ̇ẋ

∂x
=

∂fẋ
∂x

∂ϕx

∂x
+

∂fẋ
∂y

∂ϕy

∂x
+

∂fẋ
∂z

∂ϕz

∂x
.

Concerning the vector field (1.15), the derivatives we look for are of the type:

∂fẋ
∂t

=
11∑
p=1

Gmp

r3ip

(
ẋp − 3(xi − xp)

(xi − xp)ẋp + (yi − yp)ẏp + (zi − zp)żp
r2ip

)
,

∂fẋ
∂x

= −
11∑
p=1

Gmp

r3ip
+

11∑
p=1

3Gmp(xi − xp)
2

r5ip
,

∂fẋ
∂y

=
11∑
p=1

3Gmp(xi − xp)(yi − yp)

r5ip
,

∂fẋ
∂x

=
11∑
p=1

3Gmp(xi − xp)(zi − zp)

r5ip
.

For the variational equations associated with (1.17) the only difference is that now the
time-dependent terms are those corresponding to the position of each body p and also
to the position and acceleration of the Earth. For instance, we have

∂fξ̇
∂t

=

11∑
p=1

Gmp

r3iEp

(
ẋp − ẋE − 3(xE − xp + ξi)

(xE − xp + ξi)(ẋp − ẋE) + (yE − yp + ηi)(ẏp − ẏE) + (zE − zp + ζi)(żp − żE)

r2iEp

)

−dẍE
dt

.



Knuth Shuffle Algorithm B

In this work, to obtain a sequence of random real numbers uniformly distributed between
0 and 1 〈Un〉, we exploit the following linear congruential method. Let m = 231 − 1 =
2147483647, a = 75 = 16807, q = 127773 and r = 2836, then

Tk = a(Xkmod q)− r[Xk/q],

aXkmod m =

{
Tk if Tk ≥ 0

Tk +m if Tk < 0
,

Xk+1 = aXkmod m,

Uk+1 = Xk+1/m.

As a shuffle algorithm, we mean a procedure which aims at reordering a given sequence
〈Un〉 to improve its quality. We adopt this approach:

1. we initialize an auxiliary sequence 〈V0, V1, . . . , Vp〉 with the first p values of the
X−sequence;

2. we define Y = Xp+1;

3. j = �pY/m�;

4. Y = Vj ;

5. Vj = Xp+1;

6. the final output is represented by Y .

For further details, please refer to Knuth (1997).
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