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UNIVERSIDAD POLITÈCNICA DE CATALUÑA
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Abstract

Non-classical correlations, usually referred as entanglement, are ones of the most studied

and discussed features of Quantum Mechanics, since the initial introduction of the concept

in the decade of 1930s. Even nowadays, a lot of efforts, both theoretical and experimental,

are devoted in this topic, that covers many distinct areas of physics, such as a quantum

computing, quantum measurement, quantum communications, solid state physics, chem-

istry and even biology. The fundamental tasks that one should consider related to the

entanglement are:

• How to create quantum entangled states.

• How to maintain entanglement during propagation against sources of decoherence.

• How to effectively detect it.

• How to employ the benefits that entanglement offers.

This thesis, divided into four chapters, concentrates on the first and last tasks considered

above.

In Chapter 1, a brief introduction and overview of what it is entanglement is given,

starting with the famous paper of Einstein, Podolsky and Rosen, and continuing with John

Bell’s formulation of the so-called Bell’s inequalities. We define here general concepts about

entangled quantum states and introduce important entanglement measures, that are later

used all over the thesis. In this chapter, sources of entangled particles (namely photons)

are also mentioned. The importance is put on sources based on the nonlinear process of

spontaneous parametric down-conversion. The last part of this chapter is then dedicated

to a list of applications that benefit from the use of entangled states.

Chapter 2 is devoted to the systematic study of the generation of entangled and non-

entangled photon pairs in semiconductor Bragg reflection waveguides. Firstly, we present

a source of photon pairs with a spectrally uncorrelated two-photon amplitude, achieved

by a proper tailoring of the geometrical and material dispersions via structural design of

ix



ABSTRACT

waveguides. Secondly, Bragg reflection waveguides are designed in a such way, that results

in the generation of spectrally broadband paired photons entangled in the polarization

degree of freedom. Finally, we present experimental results of entangled photon pairs

generation in this type of structures.

In Chapter 3, we explore the feasibility of the generation of photon pairs entangled in

the spatial degree of freedom, i.e. in the orbital angular momentum (OAM). Firstly, we

examine how to create a highly multidimensional Hilbert space using OAMmodes obtained

in a chirped-poled nonlinear bulk crystals. Here, we show, how an increase of the chirp

of the poling can effectively increase the Schmidt number by several orders of magnitude.

Secondly, we investigate periodically poled silica glass fibres with a ring-shaped core, that

are capable to support the generation of simple OAM modes.

The final Chapter 4 is dedicated to the Anderson localization and quantum random

walks. At the beginning of this chapter, we present an experimental proposal for the

realization of a discrete quantum random walk using the multi-path Mach-Zehnder inter-

ferometer with a spatial light modulator, that allows us to introduce different types of

statistical or dynamical disorders. And secondly, we show how the transverse Anderson

localization of partially coherent light, with a variable first-order degree of coherence, can

be studied making use of entangled photon pairs.
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J. Svoziĺık, R. de Jesus Leon-Montiel, and J. P. Torres, Implementation of a spatial two-

dimensional quantum random walk with tunable decoherence, Phys. Rev. A 86, 052327

(2012).
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Chapter 1

What is entanglement?

1.1 Entanglement vs Correlations

1.1.1 Origin of Entanglement

The beginning of quantum theory is usually traced back to the quantization used by Max

Planck in 1900 to explain the features of blackbody radiation [1]. The theory was put into

solid physical ground in the decade of 1920s by the works of Heisenberg, Schrödinger, Born

and others, who gave birth to Quantum Mechanics, arguably one of the most important

and successful physical theories that mankind has ever developed.

Einstein, Podolsky and Rosen published in 1935 a paper [2] that described a Gedanken

experiment concerning correlations between quantum particles. They considered a couple

of particles that have been allowed to interact in the past, and as a consequence, show

certain correlations in position and momentum between them. Performing measurements

of the position of first particle and of the momentum of the second particle, one could,

according to their considerations, obtains a completed description of the quantum state

of both particles. That would lead to a contradiction with the Heisenberg Uncertainty

principle.

In the same year 1935, E. Schrödinger introduced the concept of entanglement [3] to

describe the correlations of the two particles considered in the EPR paper:

When two systems, of which we know the states by their respective represen-

tatives, enter into temporary physical interaction due to known forces between

them, and when after a time of mutual influence the systems separate again,

then they can no longer be described in the same way as before, viz. by en-

dowing each of them with a representative of its own. I would not call that one

1



1. What is entanglement?

but rather the characteristic trait of quantum mechanics, the one that enforces

its entire departure from classical lines of thought. By the interaction the two

representatives (or Ψ-functions) have become entangled.

The strange behaviour of entangled quantum states is essentially an inherent feature of

Quantum Mechanics. Entanglement is thus one of the main traits of quantum theory, for

some it is even the weirdest feature of quantum mechanics [4].

Discussions about the existence of entanglement between spatially distant particles

have however continued, especially about the possible existence of a more basic and fun-

damental local hidden-variables theory that could explained all of the weird features of

entanglement. The most important contribution to resolve this discussion was made by

John Bell in 1964 [5], fifty years ago now. He showed that any theory of local hid-

den parameters should impose certain constraints (in the form of an inequality) on the

possible results obtained in measurements performed on the two-particle system. Surpris-

ingly, non-classically correlated (entangled) quantum states can violate these constraints.

Shortly after Bell’s paper, in 1969 Clauser, Horne, Shimony simplified the original Bell’s

inequality making it more experimentally suitable [6]. The CHSC inequality is nowadays

used as one, among many others, basic test of the presence of entanglement due to its

straightforward experimental attainability (for more details see the Subsection 2.4.3).

1.1.2 Definition of Bipartite Entangled States

We now proceed to a formal mathematical definition of entangled bipartite states, which

are of prime interest in this thesis. Let us assume that the full Hilbert space of interest is

of the form H12 = H1 ⊗H2, where H1 and H2 are Hilbert subspaces. A pure state |ψ〉12
is separable(non-entangled) if it can be expressed as

|ψ〉12 = |ψ〉1 ⊗ |ψ〉2, (1.1)

where |ψ〉1 ∈ H1 and |ψ〉2 ∈ H2. Otherwise is entangled. A mixed state ρ̂12 ∈ H12 is

separable if it can be written as a convex sum

ρ̂12 =
∑

i

piρ̂i,1 ⊗ ρ̂i,2, (1.2)

where pi > 0 are probabilities, ρ̂i,1 ∈ H1 and ρ̂i,2 ∈ H2.

In many circumstances, the knowledge of the amount of entanglement, how much are

quantum states non-classically correlated, is of paramount importance [7, 8]. The Bell’s

2



1.1

inequality can be used as an indicator of the presence entanglement, but the degree of

violation of the inequality cannot be used as a good measure of entanglement. For a pure

state ρ̂12 ∈ H12, where Tr
(

ρ̂212
)

=1, the amount of entanglement is usually characterized

via the Von Neumann entropy E

E = −Tr (ρ̂1 ln ρ̂1) = −Tr (ρ̂2 ln ρ̂2) . (1.3)

where ρ̂1 (ρ̂2) is the density matrix that describes the quantum state of subsystem 1 (2).

For a separable state E is equal to zero. The entanglement can also be quantified by the

Von Neumann mutual information I

I (ρ̂1, ρ̂2, ρ̂12) = E (ρ̂1) + E (ρ̂2)− E (ρ̂12) . (1.4)

Alternatively, as an entanglement measure one can employ the relative entropy S defined

as

S (ρ̂12 ‖ σ̂12) = Tr (ρ̂12 log ρ̂12 − ρ̂12 log σ̂12) , (1.5)

where σ̂12 ∈ H12 is the closest separable state to ρ̂12.

The separability of quantum states can be also quantified by means of the Schmidt

number K [9]. This number reflects the amount of effectively excited modes that constitute

the whole state |ψ〉12. This measure is based on the use of the Schmidt decomposition [10]

applied on the quantum state |ψ〉12. For the sake of example, let us consider that the

Hilbert space H is the two-dimensional continuous space containing the state

|Ψ〉12 =

∫

dx

∫

dyA (x, y) |x〉1|y〉2, (1.6)

where |x〉1 ∈ H1 and |y〉2 ∈ H2. The function A is the two-photon amplitude satisfying

the normalization condition
∫

dx
∫

dy|A(x, y)|2 = 1. Applying the Schmidt decomposition

on this function, we can express A as a sum of a set of orthonormal functions {fn} and

{gn}

A(x, y) =

∞
∑

n=1

√

λnfn(x)gn(y), (1.7)

where λn are Schmidt coefficients that correspond to each pair of functions fn and gn.

The Schmidt number K is obtained as:

K =
1

∑

n λ
2
n

. (1.8)

3



1. What is entanglement?

In the case that in the decomposition of A only one mode is present, there is only one

non-vanishing coefficient λn, the state is separable and K = 1. The decomposition also

allows to recover the Shannon entropy S [10, 11] from Eq. (1.3)

S = −
∞
∑

n=1

λn log2(λn). (1.9)

1.2 Generation of Entangled States

Various techniques to prepare entangled fields (or particles) have been developed during

the last few decades. In order to be used in many different applications, sources of en-

tanglement should satisfy several requirements as a high efficiency, broad tunability and

compactness, and the possibility of integration with other optical components. The most

common sources of entangled fields are based on the emission of photons. Photons pose

several degrees of freedom, such as a position, momentum, frequency, polarization and

spatial shape (or orbital angular momentum, OAM) [12, 13] [A1]. Entanglement can be

realized in any of above mentioned degrees of freedom or even in a combination among

them, which result in the so-called hyper-entanglement [14, 15]. The minimal interaction

of photons with an environment predetermines them as a perfect carrier of information.

The first entangled photon sources developed in the seventies of the 20th century used

transitions between energy levels of Ca atoms, which allow the generation of photons

entangled in polarization [16,17]. Based on a similar principle, but some time later, it has

been shown that also quantum dots allow the generation of entangled photons employing

the bi-exciton radiative decay [18,19].

Spontaneous parametric down-conversion (SPDC) is one of the most commonly used

nonlinear phenomenon for preparing various types of quantum states of multiphoton sys-

tems. This process is mediated by the atoms of a non-centrosymmetric non-linear medium.

A pump photon with high frequency is converted to two photons of lower frequency ac-

cording to the energy and moment conservation laws, i.e., the phase-matching conditions.

Studies of photon pair generation presented in Chapters 2 and 3 are based on this process.

The initial experimental observation of correlated photons based on SPDC in a nonlin-

ear medium was reported in 1970 by Burnham et al. [20]. The experimental preparation

of entangled photon pairs in polarization followed [21], being the demonstration of tele-

portation one of the greatest achievement achieved making use of polarization entangled

photons [22]. Due to the low efficiency of the SPDC process, new approaches has generally

pursued the generation of increasingly larger flux rates of entangled photons. This was

4



1.3

the case, for instance of the scheme demonstrated by Kwiat et al., who presented the idea

of increasing photon flux utilizing two glued anisotropic crystals with mutually crossed

optical axes [23]. Besides bulk crystals, waveguides represent a high-efficient alternatives.

Namely, due to advance semiconductor technologies, the generation of entangled photons

in AlGaAs materials [24,25] [A2–A4] and Silica [26] has been reported. The modal entan-

glement in waveguides has been presented in [27, 28]. We should mention that entangled

photon pairs can be also generated employing other nonlinear optics processes, such as

four-wave mixing [29,30].

1.3 Applications of Entanglement

Quantum communications protocols use the unique feature of entanglement, which allows

to transfer, in principle, higher amounts of information together with a higher security, in

comparison to classical communication channels. Super-dense coding represents a way to

enhance channel throughput by using only one bit of quantum information to transfer 2 bits

of classical information [31]. Quantum teleportation works on a similar principle [22,32].

Here the initially unknown state of a particle is transferred, using an entangled pair, to a

far away receiving station. Even quantum cryptography benefits from the use of entangled

photons [33].

Many quantum computing algorithms are based on entanglement [8]. D. Deutsch has

shown that quantum entanglement allows to speed up a certain group of computing tasks

when compared to the same tasks being processed on classical computers [34]. For in-

stance, Deutsch’s algorithm allows to determine, with a lower number of measurements,

if an unknown function is whether constant for all input cases or not. In a classical

procedure, one has to try all possible combinations of input variables to accomplish this

task. Employing an entangled state, this task can be done in a single step. The famous

Shore’s algorithm for factorization of large integer numbers [35] and Grover’s searching

algorithm [36] are also based on the use of entangled states.

Another area of research where entanglement has pivotal consequences quantum metrol-

ogy [37]. For instance, Ramsey spectroscopy of n-ions exhibits an increase of precision

when measuring the frequency of atomic transitions by a factor
√
n [38]. Probing of bio-

logical tissue using quantum optical coherence tomography makes use of entangled photon

pairs, showing an increase of the axial resolution of interferometry and some immunity to

the presence of certain harmful dispersive effects [39].

Regardless of the high amount of still open questions, there is an on-going discussion

regarding the possible role that entanglement can play in the so-called quantum biology

5



1. What is entanglement?

[40,41]. Some evidences have been reported for the harvesting complexes of green plants.

There, entanglement seems to play a role accelerating the speed of transfer of excitons [42].

Another system where the role of entanglement in under current discussion is the magnetic

navigation compass of sea birds, located in their eyes [43]. The interaction of the planetary

magnetic field with an entangled pair of radicals results in certain chemical reactions that

might indicate to the bird’s brain its orientation with respect to this field.

6



Chapter 2

Generation of entanglement in

semiconductor Bragg Reflection

Waveguides

2.1 Introduction

In nonlinear optics, waveguides are a very convenient tool for enhancing the efficiency of

nonlinear conversion interactions. By confining electromagnetic field to a small transverse

area, one can increase the efficiency of a nonlinear interaction by several orders of mag-

nitude in a comparison to bulk crystals, as shown, for instance, in [44, A13]. In SPDC

in bulk crystals, photons are emitted into a large continuum spatial modes, consequently

the use of waveguides provides us a way of reducing the number of spatial modes wherein

photons are generated. In a typical waveguide, only a few number of discrete guided

modes are supported [45]. Thus the overall efficiency of nonlinear interactions is dramat-

ically boosted [44]. Moreover, waveguide structures offer a broad tunability to tailor the

characteristics of quantum states, the spatial shape and frequency content of the down-

converted photons generated. Compactness makes possible to use the photon source under

a greater variety of circumstances, such as, for instance, would be the case of free space

applications [46].

A fundamental challenge in the design of waveguide structures is to ensure the perfect

phase-matching (PM) of all interacting fields. Several methods have been developed to

overcome the natural phase-mismatch caused by a material dispersion. The easiest way

for birefringent materials is to use differences in the index of refraction for different polar-

ization of fields. The collinear regime of propagation in waveguides precludes to achieve

7



2. Generation of entanglement in semiconductor Bragg Reflection Waveguides
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Figure 2.1: Illustration of a Bragg reflection waveguide, showing also the basic guided
modes involved in the SPDC process, whose profiles are presented in 1D cuts along the
y-axis.

the phase-matching via the non-collinear regime typical for bulk crystals. However, since

guided spatial modes exhibit distinct propagation constants, modal phase-matching can be

accomplished between different types of modes [47–50]. Alternatively, PM can be achieved

by an additional structural modification which introduces a periodic modulation of the

non-linear susceptibility χ(2) [51]. The periodic poling [52] is a standard fabrication tech-

nique now. This modulation can be achieved in ferroelectric crystals, such as LiNbO3,

SLT and KTP materials. The basic principle is the application of a high voltage static

field that cases a permanent reorientation of ferroelectric domains in a crystal, generating

a corresponding periodic alternation of the sign of χ(2). The advantage of this method is

a wide tunability of phase-matching conditions between different degrees of freedom.

Semiconductor Bragg reflection waveguides (BRWs) make use of the previously men-

tioned modal-phase-matching in non-linear materials, since they lack birefringence [50].

This kind of waveguides is usually composed of two Bragg mirrors placed around the core

(see Fig.2.1), allowing light to be trapped in the transverse direction. BRWs support

generally two basic types of guided modes. The first one, the Bragg mode, is guided by

distributed reflections in the mirrors and the second one is the total-internal-reflection

(TIR) mode. Methods of solving the Helmholtz equation for BRWs are described in the

Appendix A. If the pump beam propagates as the Bragg mode and down-converted pho-

8
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Figure 2.2: Effective indices of Bragg (at 775 nm) and TIR modes (at 1550 nm) as a
function of the core of the waveguide thickness. This represents one of many ways how
to reach PM. Structural parameters of the representative waveguide were taken from [50]
and guided modes were found using the FEM method A.2. As it is easily noticed, the
Bragg mode exhibits strong modal dispersion in comparison to TIR modes, which are less
dispersive regardless of wavelength.

tons as TIR modes, the phase-matching between them can be achieved by the proper

design of the structure. This is the principle of modal phase-matching in BRWs as de-

picted in Fig.2.2. As shown, the Bragg mode exhibits a strong modal dispersion on the

contrary to the fundamental TIR mode, which is less dispersive [53,54]. Additionally, the

strong modal dispersion in BRWs offers significant control over the spectral width [55] and

the type of spectral correlations of the emitted photons (see the next section). Recently,

the possibility of generation of hyper-entangled fields in BRWs has been considered [15].

BRWs based on the III-V ternary semiconductor materials, such as AlxGa1−xAs and

AlxGa1−xN , benefit from mature fabrication technologies that offers many possibilities of

integration of all optical elements in a single semiconductor platform. Even more, since

typical operation wavelengths lie close to the material bang gap, they exhibit extraordinary

large non-linear coefficients (dGaAs
eff ∼ 119 pm/V [56] and dGaN

eff ∼ 3 pm/V [57,58]). Other

important properties are broad transparency windows, large damage thresholds and low

linear propagation losses.

In the last few years, different non-linear processes have been experimentally observed

in AlxGa1−xAs BRWs, such as second-harmonic generation [50, 59], difference-frequency

generation [60] and SPDC [25]. Furthermore , BRWs have been demonstrated as edge-

emitting diode lasers where the fundamental lasing mode is the photonic band-gap mode

or the Bragg mode [61]. Electrically pumped parametric fluorescence employing BRWs

9



2. Generation of entanglement in semiconductor Bragg Reflection Waveguides

has been demonstrated subsequently [62].

In the following sections, we present two applications of BRWs. Firstly, in Section

2.2, we introduce a novel approach for the generation of separable quantum state using

BRWs based on the AlGaN semiconductor. The separability in the frequency domain is

shown for two different scenarios of spectral properties of photon pairs, which are reached

by a proper engineering of modal dispersion. In the next Section 2.3, BRWs are proposed

as part of a scheme aimed at developing an integrated source of polarization-entangled

photon pairs highly suitable for its use in a multi-user quantum-key-distribution system.

Finally, in Section 2.4, an experimental realization of SPDC in BRW is presented. In the

experiment, entangled photon pairs in the polarization degree of freedom are generated at

the telecommunication wavelength. The non-classicality of such generated photon pairs is

confirmed by the violation of the Clauser-Horne-Shimony-Holt Bell-like inequality.

2.2 BRW as a Source of Uncorrelated Photon Pairs

In most applications the goal of using SPDC is the generation of entangled photon pairs.

However, the generation of photon pairs that lack any entanglement (quantum separa-

bility), but are generated in the same time window, is also of paramount importance for

quantum networking and quantum information processing [63–65]. By and large, sepa-

rable photon pairs are not harvested directly at the output of the down-converting crys-

tal [66] and their generation in a separable quantum state requires intricate control of the

properties of the down-converted photons in all the degrees of freedom. Although one

can always resort to strong spectral filtering to enhance the quantum separability of the

two-photon state [67], this entails a substantial reduction in the brightness of the pho-

ton source. Alternatively, for example, elimination of the frequency correlation of photon

pairs can be achieved when the operating wavelength, the nonlinear material and its length

are appropriately chosen [68], as has been demonstrated in [69]. The use of achromatic

phase matching, or tilted-pulse techniques, allows the generation of separable two-photon

states independently of the specific properties of the nonlinear medium and the wavelength

used [70–72]. Non-collinear SPDC also allows the control of the generation of frequency-

uncorrelated photons by controlling the pump-beam width and the angle of emission of

the down-converted photons [73, 74]. It is indeed possible to map the spatial character-

istics of the pump beam into the spectra of the generated photons (spatial-to-spectral

mapping) [75], thus providing another way to manipulate the joint spectral amplitude of

the biphoton, as has been demonstrated in [76]. The combination of using the pulse-tilt

techniques described above together with using non-collinear geometries further expands

10
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the possibilities to control the joint spectrum of photon pairs [77]. Another approach to

control the frequency correlations is to use nonlinear crystal superlattices [78].

The methods mentioned above are based on tuning the dispersive properties of the

nonlinear medium by steering the propagation of light in a bulk crystal. However, as it

has already been mentioned, waveguides do not allow this, so the quantum separability has

to be achieved via another approach. In this section, we demonstrate that BRWs made of

N slabs of Alx Ga1−x can be tailored to generate photon pairs in a quantum separable state.

For obtaining separability in the frequency domain, the signal photon has to propagate as

a Bragg mode and pump beam as a TIR mode. Since PM cannot be achieved in the usual

way (by appropriate design of the BRW layers), quasi-phase-matching (QPM) of the core

slab is used to satisfy the phase-matching condition, while the tailoring of the dispersive

properties of the waveguide allows us to control the frequency correlations between the

down-converted photons.

2.2.1 Quantum State of Uncorrelated Photon Pairs

The quantum state of the down-converted photons (the signal and idler) at the output

face of the waveguide, while neglecting the vacuum contribution, can be written as

|Ψ〉 =
∫

dΩsdΩiΦ(Ωs,Ωi)â
†
s(ω

0
s +Ωs)â

†
i (ω

0
i +Ωi)|0〉s|0〉i, (2.1)

where â†s(ωs + Ωs) and â†i (ωi + Ωi) designate the creation operators of signal and idler

photons at frequencies ω0
s+Ωs and ω

0
i +Ωi, respectively. ω

0
s = ω0

i are the central frequencies

of the signal and idler photons, and Ωs,i designate the frequency deviations from the

corresponding central frequencies. The signal and idler photons are generated in specific

spatial modes of the waveguide as will be described later.

The biphoton amplitude Φ(ωs, ωi) is given by

Φ(Ωs,Ωi) = NEp(ω
0
p +Ωp)sinc

(

∆kL

2

)

exp

(

i
skL

2

)

, (2.2)

where ∆k = kp − ks − ki and sk = kp + ks + ki. kp,s,i are the longitudinal (z) components

of the wavevector of all the interacting photons. Ep is the spectral amplitude of the pump

beam at the input face of the waveguide, which is assumed to be Gaussian, with central

frequency ω0
p = ω0

s + ω0
i . As such, Ep(Ωp) ∼ exp

(

−Ω2
p/∆ω

2
p

)

, where Ωp = Ωs +Ωi. N is

a normalizing constant, which ensures that
∫ ∫

dΩsdΩi|Φ(Ωs,Ωi)|2 = 1.

The spatial modes of the pump, signal and idler photons that we will considered here
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Figure 2.3: General scheme for generating frequency-uncorrelated photon pairs. The
waveguide is pumped by a TIR mode with TE polarization. The down-converted photons
with TE polarization propagate in a Bragg mode, while the down-converted photons with
TM polarization propagate in a TIR mode. The two structures presented here make use
of the same combination of modes and the spatial shapes of the modes are almost identical
for both structures. The Bragg and TIR modes have different group velocities that can
be properly engineered by modifying the waveguide structure.

are shown schematically in Fig. 2.3. The pump and idler photons propagate as TIR modes.

The signal photons propagate as Bragg modes. The use of different spatial modes for the

signal and idler enhances the control of the dispersive properties of the SPDC process.

In order to get further insight into the procedure to search for BRW configurations

that generate separable paired photons, we expand the longitudinal wavevectors to first

order, so that kj = k0j +NjΩj with j = p, s, i. k
(0)
j are the longitudinal wavevectors at the

central frequencies ω0
j , and Nj are the inverse group velocities. Under these conditions,

the biphoton amplitude can be written as

Φ(Ωs,Ωi) = N exp

{

−(Ωs +Ωi)
2

∆w2
p

}

sinc

{

[(Np −Ns)Ωs + (Np −Ni) Ωi]
L

2

}

× exp

{

i [(Np +Ns)Ωs + (Np +Ni)Ωi]
L

2

}

. (2.3)

Upon inspecting of Eq.(2.3), one can show that if the inverse group velocities of the signal
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(idler) and pump are equal Np = Ns (Np = Ni), increasing the bandwidth of the pump

beam bandwidth such that ∆ωp ≫ 1/|Np − Ns,i|L allows us to erase all the frequency

correlations between the signal and idler photons. Notice that in this case, even though

there is no entanglement between the signal and idler photons, the bandwidth of one the

photons is larger than the bandwidth of the other photon. The quantum state is separable

but the photons are distinguishable by their spectra.

To generate uncorrelated and indistinguishable photon pairs, the condition Np = (Ns+

Ni)/2 should be fulfilled together with the condition for the bandwidth

∆ωp ≃
2

αL
√

Ns −Np

√

Np −Ni

. (2.4)

This condition is obtained from approximating the sine cardinal function sinc(x) in Eq.

(2.3) by a Gaussian function exp [−(αx)2] with α = 0.439.

To quantify the degree of entanglement of the generated two-photon state, we calcu-

late the Schmidt decomposition of the biphoton amplitude (introduced on page 2) , i.e.,

Φ(Ωs,Ωi) =
∑∞

n=0

√
λnUn(Ωs)Vn(Ωi), where λn are the Schmidt eigenvalues and Un and

Vn are the corresponding Schmidt modes. The degree of entanglement of the two-photon

state is then quantified by means of the Schmidt number K defined by Eq. (1.8) and the

entropy E given by Eq. (1.9).

2.2.2 Design of BRW Structures to Generate Uncorrelated Photon pairs

Let us consider the generation of paired photons in the C-band of the optical commu-

nication window, i.e., let the central wavelength of both emitted photons be 1550 nm.

Therefore, for the frequency-degenerate case, the central wavelength of the pump beam

must be 775 nm. The main parameters that characterize the dispersion properties of the

Bragg modes, and that can be engineered to tailor the spectral properties of the down-

converted photons, are the thickness of the layers and their aluminium fraction.

BRW structures for the generation of frequency-uncorrelated photon pairs were ob-

tained by numerically solving the Maxwell equations inside the waveguide using the finite

element method described in the Appendix A.2 for the 1D case. Since many solutions

were found, a genetic algorithm was used to select waveguides with the properties that

are most suitable for practical implementation. The thicknesses and the corresponding

aluminium fractions of two of the structures obtained are given in Table 2.1.

The refractive indices for the calculations were taken from [79]. The Bragg reflection

waveguides are composed of 12 bi-layers above and below the core. Both structures were

13



2. Generation of entanglement in semiconductor Bragg Reflection Waveguides

Table 2.1: (a) Parameters of the waveguide structure: tc - core thickness; t1,2 - thicknesses
of the alternating layers of the Bragg reflector; xc - aluminium concentration in the core;
x1,2 - aluminium concentration in the reflector’s layers; Λ - quasi-phase-matching period.
Both structures are 4 mm long and they are optimized for type-II SPDC. (b) Profile of
the refractive index along the y-axis of the Bragg reflection waveguide.

(a)

Parameter Structure 1 Structure 2

tc(nm) 1037 986
t1(nm) 463 430
t2(nm) 810 533
xc(%) 57 56
x1(%) 44 39
x2(%) 88 65
Λ(µm) 10.4 7.4

(b) tc

t1

t2

nc n1n2

y

optimized for the Bragg mode propagation at the quarter-wave condition for the central

wavelength, which maximizes the energy confinement in the core. The spatial shapes of

the modes (pump, signal and idler) that propagate in Structure 1 are shown in Fig.2.3.

The spatial modes corresponding to Structure 2 are almost identical and therefore are not

shown.

Type-II SPDC interactions are considered for both structures, even though structures

with type-I or type-0 interactions can also be designed. One of the advantages of type-II

phase-matching is that the generated photons can easily be separated at the output of the

waveguide by its different polarization. The pump and signal photons have TE polarization

and the idler photons have TM polarization. The signal photon propagates as a Bragg

mode, whereas the idler photon propagates as a TIR mode. The quasi-phase-matching

can be achieved, for example, by the method described in [80]. The quasi-phase-matching

periods Λ were calculated from the phase-matching condition ∆k − 2π/Λ = 0, where the

phase-mismatch function ∆k is taken at the central frequencies of all the interacting waves.

The spatial overlap between the modes of the interacting photons is defined as

Γ =

∫

dxup(x)u
∗
s(x)u

∗
i (x), (2.5)

where uj(x), j = p, s, i are the mode functions describing the transverse distribution of the

electric field in the waveguide. The overlap reaches 40.5% for Structure 1 and 19.4% for

Structure 2. The combination of the high effective nonlinear coefficient and the overlap
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Figure 2.4: The Schmidt number K as a function of the bandwidth of the pump beam
∆λp for (a) Structure 1 and (b) Structure 2.

results in an efficiency that is still much higher than with other phase-matching platforms

in waveguides or in bulk media. Although the thickness of the core of both structures

is sufficiently large so that higher-order modes (both TIR and Bragg modes) could exist,

they lack phase-matching and their overlap is very small.

Uncorrelated photon pairs with different spectra

Structure 1 provides a configuration to generate a quantum separable state with different

spectral bandwidths for the signal and idler photons. The group velocities of the pump

and signal photons are equal. We find that vp = vs = 0.445c, where c is the speed of light

in vacuum. The dependency of the Schmidt number K on the pump beam bandwidth is

plotted in Fig.2.4(a). A highly separable quantum state can be obtained for a pump beam

bandwidth ∆λp ≥ 10 nm. For values of ∆λp < 1 nm, the paired photons turn out to be

!
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Figure 2.5: (a) Joint spectral intensity of the biphoton generated in Structure 1 for ∆λp=10
nm. (b) The Schmidt decomposition corresponding to this quantum state.
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2. Generation of entanglement in semiconductor Bragg Reflection Waveguides

anti-correlated.

The joint spectral intensity of the biphoton is showed in Fig.2.5(a). It shows a cigar-

like shape oriented along the signal wavelength axis, as expected from the fulfillment of

the condition Np = Ns. The Schmidt decomposition is shown in Fig. 2.5(b). Clearly,

this decomposition corresponds to a nearly ideal case of frequency-uncorrelated photons.

For the case shown in Fig. 2.5, with a pump beam bandwidth (FWHM) of 10 nm, the

bandwidths of the signal and idler photons are 47.5 nm and 8 nm, respectively. The

entropy of entanglement is used as a measure of spectral correlation [8] and is defined by

Eq.1.9. The obtained value is 0.257 in this case.

(a)

1544

1548

1552

1556

Si
gn

al
w

av
el

en
gt

h
(n

m
)

1544 1548 1552 1556

Idler wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
to

f
th

e
m

od
e

0 1 2 3 4 5

Mode number

(c)

1544

1548

1552

1556

Si
gn

al
w

av
el

en
gt

h
(n

m
)

1544 1548 1552 1556

Idler wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

(d)

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
to

f
th

e
m

od
e

0 1 2 3 4 5

Mode number

(e)

1530

1540

1550

1560

1570

Si
gn

al
w

av
el

en
gt

h
(n

m
)

1530 1540 1550 1560 1570

Idler wavelength (nm)

0.0

0.2

0.4

0.6

0.8

1.0

(f)

0.0

0.2

0.4

0.6

0.8

1.0

W
ei

gh
to

f
th

e
m

od
e

0 1 2 3 4 5

Mode number

Figure 2.6: Joint spectral intensity of photons generated in Structure 2 for different pump
bandwidths: (a) ∆λp = 1.3 nm, (c) ∆λp = 0.3 nm and (e) ∆λp = 4.8 nm. Plots (b), (d)
and (f) in the second column are the corresponding Schmidt decompositions.
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Uncorrelated photon pairs with identical spectra

Structure 2 is designed for the generation of a separable two-photon state where both

photons exhibit the same spectra. The calculated values of the group velocities of all the

waves are vp = 0.441c, vs = 0.425c and vi = 0.456c. Figure 2.4(b) shows the value of

the Schmidt number K as a function of the pump beam bandwidth. The optimum pump

bandwidth for the generation of frequency-uncorrelated photons is found to be ∆λp = 1.3

nm, for which K achieves its lowest value. The value of K cannot reach the ideal value

of 1 due to the presence of the side-lobes of the sinc function in the anti-diagonal direc-

tion and a Gaussian profile in the diagonal direction that introduces a slight asymmetry

(see Eq.(2.3)). Figure 2.6(a) shows the joint spectral intensity of frequency-uncorrelated

photons, when this optimum value of the pump bandwidth is used. Figure 2.6(b) shows

the corresponding Schmidt decomposition. The entropy of entanglement is 0.267 and the

bandwidth is 4.5 nm for both signal and idler photons.

For smaller values of the pump beam bandwidth, the photons generated in Structure 2

correspond to photon pairs that are anticorrelated in frequency (see Fig. 2.6(c)), whereas

the use of larger values allows the generation of frequency-correlated photon pairs (see

Fig. 2.6(e)). Figures 2.6(d) and (f) show the Schmidt decompositions corresponding to

each of these cases.

2.3 BRW as a Source of Polarization-Entangled Photon Pairs

One application that is attracting recently a lot of interest due its potential key role in

future quantum communication networks is multi-user quantum key distribution (QKD)

[81]. In order to implement a multi-user QKD network, one needs various frequency

channels that can expediently be employed for transmitting individual entangled pairs. In

this way, one can re-route on demand specific channels between users located in different

sites of the optical network. Similar schemes, considering the emission of photon pairs

in different spectral and spatial modes, have been presented in [82, 83] for an on-demand

single-photon source based on a single crystal.

To prepare polarization-entangled paired photons in many frequency channels at the

same time, one needs to engineer an SPDC process with an ultra-broad spectrum. Usu-

ally type-I or type-0 configurations are preferred. With the type-II phase-matching, the

two down-converted photons have different polarizations and consequently different group

velocities, which reduces dramatically their bandwidth. For instance, the FWHM band-

width of an SPDC process in a type-II periodically-poled (PP) KTP crystal at 810 nm
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Figure 2.7: General scheme for the generation of polarization-entangled photon pairs in
various frequency channels by making use of the Bragg reflection waveguide. In this
scheme, a dichroic mirror or a grating can be used as the wavelength demultiplexer.

is ∆λ(nm) = 5.52/L(mm), where L is the length of the crystal [84]. For L = 1 mm, the

bandwidth is ∆λ ∼ 5.5 nm. On the other hand, in a type-0 PPLN configuration with the

same crystal length L = 1 mm, Lim et al. [85] achieved an approximate tenfold increase

of the bandwidth ∆λ ∼ 50 nm. Even though one can always reduce the length of the

nonlinear crystal in a type-II configuration to achieve an increase of the bandwidth, this

results in a reduction of the spectral brightness of the source.

Alternatively to short bulk crystals, Bragg reflection waveguides (BRWs) based on III-

V ternary semiconductor alloys (AlxGa1−xAs) offer the possibility to generate polarization-

entangled photons with an ultra-large bandwidth, as is shown in this section. The most

striking feature of the use of BRW as a photon source is the capability of controlling the

dispersive properties of all interacting waves in the SPDC process, which in turn allows

the tailoring of the bandwidth of the down-converted photons: from narrowband (1 − 2

nm) to ultra-broadband (hundreds of nm) [55, 86, 87], considering both type-I and type-

II configurations. Therefore, one can design a type-II SPDC process in BRWs with a

bandwidth typical for type-I or type-0 processes.

2.3.1 Quantum State of Entangled Photon Pairs

In order to investigate the potential of the proposed design for generating wavelength-

multiplexed polarization-entangled photon pairs over many frequency channels, let us

examine biphoton generation in a collinear type-II phase-matching scheme in the Bragg

reflection waveguide (see Fig. 2.7). A continuous-wave TM-polarized pump beam with
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frequency ωp illuminates the waveguide and mediates the generation of a pair of photons

with mutually orthogonal polarizations (signal: TE polarization; idler: TM polarization).

The frequencies of the signal and idler photons are ωs = ω0 + Ω and ωi = ω0 − Ω,

respectively, where ω0 is the degenerate central angular frequency of both photons, and

Ω is the angular frequency deviation from the central frequency. The signal photon (TE)

propagates as a TIR mode of the waveguide with spatial shape Us(x, y, ωs) and propagation

constant βs(ωs). The idler photon (TM), also a TIR mode, has a spatial shape Ui(x, y, ωi)

and propagation constant βi(ωi). The pump beam is a Bragg mode of the waveguide with

spatial shape Up(x, y, ωp) and propagation constant βp(ωi).

At the output face of the nonlinear waveguide, the quantum state of the biphoton can

be written as [88]

|Ψ1〉 = |vac〉s|vac〉i + σLF 1/2
p

∫

dΩΦ (Ω) |TE, ω0 +Ω〉s|TM, ω0 − Ω〉i, (2.6)

where the nonlinear coefficient σ is

σ =

[

~ω2
0ωp

[

χ(2)
]2

Γ2

16πǫ0c3 ns(ω0)ni(ω0)np(ωp)

]1/2

. (2.7)

Fp is the flux rate of pump photons, Γ =
∫

dr⊥Up(r⊥)U
∗
s (r⊥)U

∗
i (r⊥) is the overlap integral

of the spatial modes of all interacting waves in the transverse plane, and np,s,i are their

refractive indices. The joint spectral amplitude Φ(Ω) has the form

Φ(Ω) = sinc [∆k(Ω)L/2] exp {isk(Ω)L/2} . (2.8)

The ket |TE, ω0 +Ω〉s (|TM, ω0 − Ω〉i) designates a signal (idler) photon that propagates

with polarization TE (TM) in a mode of the waveguide with the spatial shape Us (Ui)

and frequency ω0 + Ω (ω0 − Ω). The phase-mismatch function reads ∆k(Ω) = βp −
βs(Ω)− βi(−Ω), and sk(Ω) = βp + βs(Ω) + βi(−Ω). The function |Φ(Ω)|2 is proportional

to the probability of detection of a photon with polarization TE and frequency ω0 +Ω in

coincidence with a photon with TM polarization and frequency ω0 − Ω.

After the waveguide, a wavelength demultiplexer is used to separate all n frequency

channels into coupled fibers leading to the users of the network. The bandwidth of

each channel is ∆ω and their central frequencies are ωn
U,L = ω0 ± n∆, where ∆ is the

inter-channel frequency spacing and the letter U(L) indicates the upper (lower) path (see

Fig. 2.7). After the demultiplexer, the quantum state of the down-converted photons can
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be written as

|Ψ2〉 = |vac〉s|vac〉i
+1/

√
2 σLF 1/2

p

∫

Bn

dΩ {Φ (Ω) |TE, ω0 +Ω〉U |TM, ω0 − Ω〉L

+Φ(−Ω) |TM, ω0 +Ω〉U |TE, ω0 − Ω〉L} , (2.9)

where
∫

Bn
designates the frequency bandwidth from ωn

U,L−∆ω/2 to ωn
U,L+∆ω/2 coupled

into every single fiber. Since we are interested in generating polarization-entangled paired

photons coupled into single-mode fibers, the signal and idler photons in the upper and lower

paths are projected into the fundamental mode (U0) of the fiber. The coupling efficiency

between the signal and idler modes, and the fundamental mode of the single-mode fiber are

given by Γs = |
∫

dxdyUs(x, y, ωs)U
∗
0 (x, y, ω0)|2 and Γi = |

∫

dxdyUi(x, y, ωi)U
∗
0 (x, y, ω0)|2.

They yield a value of Γs = Γi ≈ 0.88 in the whole bandwidth of interest, showing a minimal

frequency dependence. All the modes are normalized so that
∫

dxdy|Uj(x, y, ω)|2 = 1 for

j = s, i, 0.

Neglecting the vacuum contribution in the final quantum state, normalizing and tracing

out the frequency degree of freedom, the two-photon state can be represented by the

following density matrix, where we use the conventional ordering of rows and columns as

{|TE〉U |TE〉L, |TE〉U |TM〉L, |TM〉U |TE〉L, |TM〉U |TM〉L}:

ρ̂n =













0 0 0 0

0 αn γn 0

0 γ∗n βn 0

0 0 0 0













, (2.10)

where

αn = 1/2

∫

Bn

dΩ|Φ(Ω)|2,

βn = 1/2

∫

Bn

dΩ|Φ(−Ω)|2,

γn = 1/2

∫

Bn

dΩΦ (Ω)Φ∗ (−Ω) , (2.11)

with Tr[ρ̂n] = αn + βn = 1.
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Table 2.2: Parameters of the structure: tc - core thickness; t1,2 - thicknesses of the al-
ternating layers of the Bragg reflector; xc - aluminium concentration in the core; x1,2 -
aluminium concentrations in the reflector’s layers; nc - the refractive index in the core;
n1,2 - refractive indices in the reflector’s layers; ∂βs(i)/∂Ω -the inverse group velocity of
the signal (idler) photon. The structure is optimized for the collinear type-II SPDC.

Parameter Value

tc (nm) 370
t1 (nm) 127
t2 (nm) 309

nc(xc = 0.7) 3.177
n1(x1 = 0.4) 3.655
n2(x2 = 0.9) 3.064

Ridge width (nm) 1770
∂βs/∂Ω (ns/m) 10.55
∂βi/∂Ω (ns/m) 10.56

Waveguide length (mm) 1

2.3.2 Numerical Results

In the waveguide structure considered, the pump wavelength is 775.1 nm. The frequency

spacing between channels is ∆ = 50 GHz and the bandwidth of each channel is 50 GHz,

which corresponds approximately to 0.4 nm at 1550 nm. The channel width and the

spacing between channels were chosen according to the typical values used in commercial

WDM systems. Channel n = 1 corresponds to the wavelength 1549.6 nm in the upper

path and to 1550.6 nm in the lower path.

In order to reach a high number of frequency channels, the BRW structure must be

designed in such way, so as to permit the generation of signal-idler pairs with an ultra-broad

spectrum in the type-II configuration. This is achieved when the group velocities of the TE

and TM modes are equal [72,89], i.e., |∂βs

∂Ω − ∂βi

∂Ω | → 0. The modes of the structure and its

propagation constants are obtained as a numerical solution of the Maxwell equations inside

the waveguide using the finite element method (see the Appendix A.2). The waveguide

design has been optimized by a genetic algorithm according to the requirements. The

final BRW design is composed of two Bragg reflectors, one placed above and one below

the core. Each reflector contains 8 bi-layers. The Sellmeier equations for the refractive

indices of the layers were taken from [90]. Table 2.2 summarizes the main parameters of

the structure.

Inspection of Eq. (2.7) shows that the effective nonlinearity σ of the waveguide SPDC
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Figure 2.8: Joint spectral intensity ∼ |Φ(λ)|2 of the biphoton generated in the Bragg
reflection waveguide for type-II phase-matching (TM → TE+ TM).

process depends on the effective area (Aeff = 1/Γ2), which is related to the spatial overlap

of the pump, signal and idler modes. For the structure considered, the effective area

exhibits only minimal frequency dependence in the bandwidth of interest and it is equal

to Aeff = 35.3 µm2. Despite the fact that the large effective area will reduce the strength

of the interaction, the high nonlinear coefficient still results in an efficiency that is a much

higher than for other phase-matching platforms in waveguides or in bulk media. The

total emission rate [91] can be expressed using Eq. (2.8) as R = σ2L2
∫

dΩ|Φ (Ω) |2. For

our BRW, the emission rate is RBRW ≈ 5.7 × 107 photons/s/mW. For comparison, for

a typical PPLN waveguide (type-0) similar to the one used in [85], we obtain RPPLN ≈
3.3×107 photons/s/mW. The intensity of the joint spectral amplitude, given by Eq. (2.8),

is displayed in Fig. 2.8. Even though we are considering a type-II configuration, the width

(FWHM) of the spectrum is a staggering 160 nm.

The degree of entanglement in each spectral channel can be quantified by calculating

the concurrence Cn of the biphoton [92,93]. The concurrence is equal to 0 for a separable

state and to 1 for a maximally entangled state. For the density matrix of Eq. (2.10) we

obtain [94]

Cn = 2|γn|, (2.12)

so the degree of entanglement depends on the symmetry of the spectral amplitude Φ (Ω),

i.e., if Φ (Ω) = Φ (−Ω) the concurrence is maximum.

Figure 2.9 shows the values of αn, βn and Cn for the first 200 channels. Cn > 0.9

is reached for the first 179 channels. The decrease (increase) of the parameters βn
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Figure 2.9: Coefficients Cn (solid line), αn (dashed line) and βn (dotted-and-dashed line)
as a function of the frequency channel.

(αn) reflects the fact that for frequency channels with a large detuning from the cen-

tral frequency, one of the two polarization components of the polarization entangled state,

|TE〉1|TM〉2 or |TM〉1|TE〉2, shows a greater amplitude probability. In this case, one of

the two options predominates. Therefore, if the goal is to generate a quantum state of

the form |Ψ2〉 = 1/
√
2 ( |TE〉1|TM〉2 + |TM〉1|TE〉2 ) in a specific frequency channel with

αn, βn 6= 1/2, one can always modify the diagonal elements of the density matrix with a

linear transformation optical system, keeping unaltered the degree of entanglement.

The number of frequency channels available depends on the concurrence required for

the specific application. A good example is a linear optical gate relying on the interference

of photons on a beam splitter [95, 96]. This would be especially important for the imple-

mentation of quantum teleportation, where the fidelity of the protocol depends strongly

on the spectral indistinguishably between polarizations of the entangled state [97]. In

Fig. 2.10 we plot the number of frequency channels available as a function of the minimum

concurrence required. For instance, if we select only frequency channels with Cn > 0.95,

we have at our disposal 162 channels, while for Cn > 0.99 this number is reduced to 121

channels.

In the implementation of the system considered here in a real fiber-optics network, the

number of frequency channels available can be limited by several factors. For instance, it

can be limited by the operational bandwidth of the demultiplexer (see Fig.1). This device

should be designed to operate with the same broad spectral range of the photon pairs

generated in the BRW waveguide.

When using a large number of channels, inspection of Fig. 2.8 shows that channels
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Figure 2.10: Number of channels available as a function of the minimum value of the
concurrence required.

far apart from the central frequency will exhibit a lower brightness. In this case, spectral

shapers or appropriately designed filters, should be used to flatten the emission spectrum,

similarly to the case of broadband gain-flattened Erbium doped fiber amplifiers (EDFA).

Notwithstanding, this might introduce some losses in the generation process, especially

when considering a large number of channels, deteriorating the flux rate of the source.

Interestingly, a similar problem appears in the context of optical coherence tomography

(OCT), where large bandwidths are required to increase the imaging resolution. In OCT,

spectral shapers are used to obtain an optimum (Gaussian-like) spectral shape [98].

Finally, we should mention that the generation of polarization-entangled photons with

the large bandwidths considered here require a precise control the group velocities of the

interacting waves, which in turn requires a precise control of the waveguide parameters:

refractive index and layer widths. The effective number of available frequency channels in

a specific application is inevitably linked to the degree of control of the fabrication process.

Since both down-converted photons are propagating as TIR modes, they are more resistant

to fabrication imperfections. For example, a change of about 10% in the aluminium

concentration in the core will reduce the spectral bandwidth to 145 nm. Notwithstanding,

it has to be stressed that the phase-matching condition for interacting waves is highly

sensitive to any fabrication imperfection, therefore any small change of the structural

parameters will lead to a shift of the central (phase-matched) wavelength.
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2.4 Experimental Results for a typical Bragg Reflection Waveg-

uide

In a previous work [25], the existence of time-correlated paired photons generated by

means of SPDC in BRWs was reported, but the existence, and quality, of the entanglement

present was never explored. The generation of polarization entanglement in alternative

semiconductor platforms has been demonstrated recently in a silicon-based wire waveguide

[26], making use of four-wave mixing, a different nonlinear process to the one considered

here, and in a AlGaAs semiconductor waveguide [99], where as a consequence of the

opposite propagation directions of the generated down-converted photons, two type-II

phase-matched processes can occur simultaneously.

In this section, we experimentally demonstrate that the use of BRWs allows the genera-

tion of highly entangled pairs of photons in polarization via the observation of the violation

of the Clauser-Horne-Shimony-Holt (CHSH) Bell-like inequality [6]. Bell’s inequalities are

a way to demonstrate entanglement [100], since the violation of a Bell’s inequality makes

impossible the existence of one joint distribution for all observables of the experiment,

returning the measured experimental probabilities [101].

2.4.1 Device Description and Waveguide Characterization with Second

Harmonic Generation

A schematic of the BRW used in the experiment is shown in Fig. 2.11. Grown on an

undoped [001] GaAs substrate, the epitaxial structure has a three-layer waveguide core

consisting of a 500 nm thick Al0.61Ga0.39As layer and a 375 nm Al0.20Ga0.80As matching-

layer on each side. These layers are sandwiched by two symmetric Bragg reflectors, with

each consisting of six periods of 461 nm Al0.70Ga0.30As/129 nm Al0.25Ga0.65As. A de-

tailed description of the epitaxial structure can be found in [102]. The wafer was then

dry etched along [110] direction to form ridge waveguides with different ridge widths. The

device under test has a ridge width of 4.4 µm, a depth of 3.6 µm and a length of 1.2 mm.

The structure supports three distinct phase-matching schemes for SPDC, namely: type-I

process where the pump is TM-polarized and the down-converted photon pairs are both

TE-polarized; type-II process where the pump is TE-polarized while the photons of a pair

have mutually orthogonal polarization states, and type-0 process where all three interact-

ing photons are TM-polarized [103]. For the experiment here, we investigate type-II SPDC,

which is the nonlinear process that produce the polarizations of the down-converted pho-

tons required to generate polarization entanglement. Since both photons show orthogonal
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2. Generation of entanglement in semiconductor Bragg Reflection Waveguides

Figure 2.11: Bragg reflection waveguide structure used to generate paired photons corre-
lated in time and polarization (type-II SPDC) at the telecommunication window (1550
nm). The insets show the spatial shape of the pump mode that propagates inside the
waveguide as a Bragg mode, and the spatial shape of the down-converted, which are
modes guided by total internal reflection (TIR). W: width of the ridge; D: depth of the
ridge.

polarizations, after traversing a non-polarizing beam splitter and introducing in advance

an appropriate temporal delay between them, they can result in a polarization-entangled

pair of photons.

During the fabrication process of the BRW, slight changes in the thickness and alu-

minium concentration of each layer result in small displacements of the actual phase-

matching wavelength from the design wavelength. For this reason, we first use second har-

monic generation (SHG) before examining SPDC to determine the pump phase-matching

wavelength for which the different schemes (type-I, type-II or type-0) are more efficient.

The experimental arrangement for SHG is shown in Fig. 2.12(a). The wavelength

of a single-frequency tunable laser (the fundamental beam) was tuned from 1545 nm to

1575 nm. An optical system shapes the light into a Gaussian-like mode, which is coupled

into the BRW to generate the second harmonic beam by means of SHG. At the output,

the power of the second harmonic wave is measured to determine the efficiency of the SHG

process. Figure 2.12(b) shows the phase-matching tuning curve showing the dependency of

generated second-harmonic power on the fundamental wavelength. From the figure, three

resonance SH features could be resolved corresponding to the three supported phase-

matching schemes. As mentioned earlier, the process of interest here is type-II. For this

particular type of phase-matching, maximum efficiency takes place at the fundamental

wavelength of 1555.9 nm. To generate the second harmonic beam by means of type-II
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Figure 2.12: (a) Experimental setup for SHG. The pump laser is a tunable external-
cavity semiconductor laser (TLK-L1550R, Thorlabs). The Optical System consists of a
linear power attenuator, polarization beam splitter and a half-wave plate. The Filtering
System consists of a neutral density filter and low-pass filter. SMF: single-mode fiber; AL:
aspheric lens; BRW: Bragg reflection waveguide; Obj: Nikon 50×; DM: dichroic mirror;
FL: Fourier lens; CCD: Retiga EXi Fast CCD camera; P: polarizer; MMF: multi-mode
fiber; Det: single-photon counting module (SPCM, PerkinElmer). (b) Phase-matching
curve of the BRW as a function of the wavelength of the fundamental wave. (c) Beam
profile of the Bragg mode of the second harmonic wave generated by means of the SHG
process, captured with a CCD camera after imaging with a magnification optical system
of 100× (Fourier lens with focal length f=400 mm).

SHG in Fig. 2.12(b), we use a half-wave plate to rotate the polarization of the fundame

ntal light coming from the laser by 45-degrees, to generate the required fundamental beams

with orthogonal polarizations.

In BRW, phase-matching takes place between different types of guided modes which

propagate with different longitudinal wavevectors. The fundamental beam (around 1550

nm) corresponds to a total internal reflection (TIR) mode, and the second harmonic beam

(around 775 nm) is a Bragg mode. The measured spatial profile of this Bragg mode is

shown in Fig. 2.12(c).
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Figure 2.13: (a) Experimental setup for SPDC. The Optical System is composed of a
linear power attenuator, spatial filter and beam expander. SNOM: scanning near-field
optical microscope probe; BRW: Bragg reflection waveguide; Objectives: Obj1 (Nikon
100×) and Obj2 (Nikon 50×); DM: dichroic mirror; Filtering System: 2 DMs, band-pass
and long-pass filters; DL: delay line (birefringent plate); BS: beam splitter; P1 and P2:
linear film polarizers; MMF: multi-mode fiber; D1 and D2: InGaAs single-photon counting
detection modules; D3: low-power silicon detector; C.C.: coincidence-counting electronics.
(b) Amplitude profiles of the theoretical Bragg mode and the Gaussian-like pump beam.

2.4.2 Generation of Polarization Entangled Photons

The experimental setup used to generate polarization-entangled paired photons and the

measurement of the Bell-like inequality violation is shown in Fig. 2.13(a). The pump

laser is a tunable single-frequency diode laser with an external-cavity (DLX 110, Toptica

Photonics) tuned to 777.95 nm. Light from the laser traverses an optical system, with an

attenuator module, spatial filter and beam expander, in order to obtain the proper input

beam. Even though the optimum option for exciting the pump Bragg mode would be to

couple directly into the photonic bandgap mode using a spatial light modulator (SLM), the

small feature size in the field profile of the Bragg mode and its oscillating nature imposed

serious challenges for using an SLM. Therefore, we choose instead to pump the waveguide

with a tightly focused Gaussian pump beam (see Fig. 2.13(b)) with a waist of ∼ 1.5 µm,

that is coupled into the waveguide using a 100× objective. Our calculations show that

the estimated modal overlap between the Gaussian pump beam and the Bragg mode of

the waveguide is around 20%, which should be added to the total losses of the system.

A scanning near-field optical microscope (SNOM) probe was attached to the support of

the BRW, in order to perform sub-micrometric 3D beam profile scans to maximize the
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coupling efficiency of the incident pump beam into the pump Bragg mode. The power of

the laser light before the input objective was measured to be 13 mW. Taking into account

the transmissivity of the objective for infrared light (70%), the transmissivity of the facet

of the BRW (73%) and the calculated overlap between the laser light and the Bragg mode

of the waveguide (around 20%), the estimated pump power available for SPDC process

inside the waveguide is ∼ 1.3 mW.

The generated down-converted photons are collected using a 50× objective and sepa-

rated from the pump photons using four dichroic mirrors (DM), band-pass and long-pass

filters. Each DM has a 99% transmissivity at the pump wavelength. The attenuation

of the band-pass filter (45 nm FWHM bandwidth centered at 1550 nm) is 10−4, and the

long-pass filter (cut-on wavelength: 1500 nm) introduces an additional attenuation of 10−3

at the pump wavelength.

In general, photons propagating in a waveguide with orthogonal polarizations have

different group velocities (group velocity mismatch, GVM), which in conjunction with

non-negligible group velocity dispersion (GVD), result in different spectra for the cross-

polarized photons [89]. As a consequence, the polarization and frequency properties of

the photons are mixed. The two photons of a pair could be, in principle, distinguished by

their time of arrival at the detectors, as well as their spectra, which diminishes the qual-

ity of polarization entanglement achievable. In order to obtain high-quality polarization

entanglement, it is thus necessary to remove all the distinguishing information coming

from the temporal/frequency degree of freedom. For this reason, the 45 nm band pass

filter was applied to remove most of the distinguishing spectral information, and off-chip

compensation was implemented with a delay line to remove arrival time information.

A quartz birefringent plate with a length of 1 mm, vertically tilted around 30◦ was

used to introduce a 32 fs time delay between photons, which is experimentally found to

be the optimum value to erase temporal distinguishing information caused by the group

velocity mismatch (GVM) and the GVD. The calculated group velocities for TE and TM

down-converted photons are 8.98×107 m/s and 9.01×107 m/s, respectively. The GVD

parameter is D ∼ -7.9×102 ps/(nm·km) for both polarizations. When considering these

values of the GVM and GVD, our calculations show that the optimum delay for generating

the highest degree of polarization entanglement is ∼ 31.2 fs, which agrees with the value

obtained experimentally.

The down-converted photons are separated into arms 1 and 2 with a 50/50 beam
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splitter (BS) in order to generate a polarization-entangled two-photon state of the form

∣

∣Ψ+
〉

=
1√
2
{|H〉1 |V 〉2 + |V 〉1 |H〉2} , (2.13)

where |H〉 and |V 〉 denote the two possible polarizations of the photons (horizontal and

vertical), propagating in arms 1 or 2. Horizontal (vertical) photons corresponds to pho-

tons propagating inside the waveguide as TE (TM) mode. We neglect cases where both

photons leave the BS through the same output port, by measuring only coincidences be-

tween photons propagating in arms 1 and 2 (post-selection), which implies that 50% of the

generated pairs are not considered. Finally, to measure Bell’s inequality violations, the en-

tangled photons are projected into different polarization states with linear film polarizers,

and coupled into multi-mode fibers connected to InGaAs single-photon detection modules

(id201, idQuantique), where optical and electronic delays are introduced to measure co-

incidental events with time-to-amplitude converter (TAC) electronics. The coincidences

window for all measurements was set to 3 ns.

2.4.3 Violation of the CHSH Inequality

To obtain a first indication that the pairs of photons propagating in arms 1 and 2 are truly

entangled in the polarization degree of freedom, so that their quantum state can be written

of the form given by Eq. (2.13), one detects one of the photons, i.e., the photon propagating

in arm 1, after projection into a specific polarization state |Ψ〉1 = cos θ1 |H〉1−sin θ1 |V 〉1 1,

and measures in coincidence the remaining photon after projection into a set of polarization

bases |Ψ〉2 = cos θ2 |V 〉2 + sin θ2 |H〉2, with θ2 spanning from 0 to 2π [104]. Ideally, the

coincidence counts as a function of θ2 should follow the form of cos2(θ1+ θ2), which yields

a visibility V = (Max−Min)/(Max+Min) of 100%. Therefore, the highest the visibility

measured, the highest the quality of the generated polarization-entangled state.

Figures 2.14(a) and (b) show the results of the measurements for two specific cases:

θ1 = 0◦ and θ1 = 45◦. The measured visibility, subtracting the accidental coincidences, is

98% for θ1 = 0◦, and to 91% for θ1 = 45◦. Without subtraction of accidental coincidences,

the corresponding measured visibility is 80% for θ1 = 0◦ and 77% for θ1 = 45◦. The

accidental coincidences, with respect to the total number of events counted, were measured

experimentally, introducing an electronic delay in the trigger of the second detector driving

it out of the detection window of the first detector. The same electronic delay had to be

introduced before the TAC electronics in order to have the coincidence events from the

1The chosen polarization states mirror the experimental arrangement implemented
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Figure 2.14: Normalized coincidence measurements as a function of the polarization state
of photon 2 when photon 1 is projected into a polarization state with: (a) θ1 = 0◦ and (b)
θ1 = 45◦. The data shown in (a) and (b) is subtracting from the raw data the number of
accidental coincidences. (c) Violation of the CHSH inequality. Parameter S as a function
of the angle θ. The small blue circles with error bars represent the experimental data with
their standard deviations. The blue solid curves in (a) and (b) are theoretical predictions
assuming that the visibility is 98% in (a) and 91% in (b). The red (upper) curve in (c)
is the theoretical prediction for S. The blue curve in (c) is the best fit. The inequality
holds if S ≤ 2. The maximum value attained is S = 2.61± 0.16. The data shown in (c) is
without subtraction of accidental coincidences.

same amount of single events, but totally uncorrelated in this case. This technique made

possible to measure the correct visibility of the fringes using the maximum efficiency

detector settings, in order to obtain lower standard deviation of the measurements. The

optimum trigger rate for this experiment was found to be 100 KHz, measuring an average

of 3, 550 and 6, 200 photon counts per second in each detector, and a maximum flux rate

of coincidences of 3 pairs of photons per second. The low trigger rate is one of the reasons

for the observation of such a low flux rate of down-converted photons observed, since it

implies that the detectors are closed most of the time. The detection window for these

measurements was set to 100 ns.

In a CHSH inequality experiment [6], one measures photon coincidences between pho-

ton 1, after being projected into a polarization state defined by angles θ1 or θ
′
1, and photon

2, after a similar polarization projection defined by angles θ2 or θ′2. The CHSH inequality

holds if

S = |E(θ1, θ2)− E(θ1, θ
′

2) + E(θ
′

1, θ2) + E(θ
′

1, θ
′

2)| ≤ 2, (2.14)

where
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E(θ1, θ2) =
C(θ1, θ2) + C(θ⊥1 , θ

⊥
2 )− C(θ⊥1 , θ2)− C(θ1, θ

⊥
2 )

C(θ1, θ2) + C(θ⊥1 , θ
⊥
2 ) + C(θ⊥1 , θ2) + C(θ1, θ⊥2 )

(2.15)

and θ⊥1,2 = θ1,2 + 90◦. Figure 2.14(c) shows the value of the parameter S as a function of

the angle θ, where θ ≡ θ2 − θ1 = θ
′

2 + θ
′

1 = −θ2 − θ
′

1, which attains the maximum possible

violation, i.e., S = 2
√
2. For the ideal case, one would obtain S(θ) = 3 cos 2θ−cos 6θ, which

is the red (upper) curve depicted in Fig. 2.14(c). Sixteen measurements were performed

for each value of the angle θ. For the maximum inequality violation (θ = 22.5◦), the

polarizer settings were θ1 = 0◦, θ
′

1 = −45◦, θ2 = 22.5◦ and θ′2 = 67.5◦. In this case, we

obtained a value of the inequality of S = 2.61±0.16, which represents a violation by more

than 3 standard deviations. This represents a stronger violation of the CHSH inequality

than previously reported [99] for a vertically pumped BRW structure, where the measured

value was S = 2.23 ± 0.11.

Regarding the measurements of the S parameter, no accidental coincidences were sub-

tracted from the absolute measurement obtained. In order to increase the signal-to-noise

ratio, the detection window in both detectors was decreased to 20% of its previous time

duration (from 100 ns to 20 ns), having thus a corresponding decrease in total number

of single and coincidence counts detected. Now, the measured average flux rate is 600

and 500 photon counts per second in each detector, and a maximum value of 0.3 pairs of

photons per second.

To estimate the efficiency of the SPDC process, we take into account that the detection

window is τ = 20 ns, and the trigger rate of detection is 100 kHz. The efficiency of each

single-photon detector is 25%. The pump power injected into the BRW waveguide is

estimated to be around 1.3 mW. Assuming that the transmissivity of each optical system,

traversed by signal/idler photons, not including detection efficiency, is ∼ 10%, it results

in an estimated SPDC efficiency of ∼ 10−10 in the filtering bandwidth.

Summary of this Section

In Section 2.2, we have presented and analyzed a new source for photon pairs that al-

lows the generation of paired photons that lack any frequency correlation. These are of

paramount importance for quantum networking technologies and quantum information

processing. The source is based on Bragg reflection waveguides composed of AlxGa1−xN .

Quasi-phase-matching of the waveguide core is used to achieve phase-matching at the de-

sired wavelength. The control of waveguide dispersion is used to control the frequency

correlation between the generated photons. Two Bragg reflection waveguide structures
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have been presented. One of the structures allows us to generate uncorrelated photons

with different spectra. The down-converted uncorrelated photons generated in the second

structure are spectrally indistinguishable. This technique offers a promising route for the

realization of electrically pumped, monolithic photon–pair sources on a chip with versatile

characteristics.

In Section 2.3, BRWs are shown as a highly efficient waveguide source for generating

polarization-entangled photon pairs for its use in multi-frequency QKD networks. In spite

of being a type-II SPDC source, the achieved bandwidth is even larger than the bandwidth

usually obtained with type-I or type-0 sources. The key enabling factor that allows us to

achieve high efficiency of the nonlinear process together with a bandwidth increase is the

fact that we can use a longer nonlinear material in a type-II configuration, while at the

same time keeping the broadband nature of the SPDC process through the appropriate

design of the Bragg reflection waveguide structure.

Finally, in Section 2.4, we have demonstrated that polarization-entangled paired pho-

tons generated in a semiconductor Bragg reflection waveguide (BRW) show a visibility

higher than 90% in all the bases measured, a requisite for obtaining high quality entangle-

ment. It has also been experimentally demonstrated that the generated two-photon state

clearly violate the CHSH inequality, and that the presented BRW source can be considered

an expedient source of high-quality polarization-entangled two-photon states.
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Chapter 3

Entanglement in the Spatial

Degree of Freedom: new sources

3.1 Introduction

The boom of interest in light possessing orbital angular orbital momentum (OAM) was

ignited by a paper published in 1992 by Allen et al. [105], which showed that certain light

beams, easily generated, such as Laguerre Gauss beams, posses indeed OAM as a natural

feature. Prior to this paper, there were many studies considering waves with singularities,

waves with an helical phase profile around these singularities (see, for instance, [106,107]).

Production of the above mentioned phase-singularities in light has been shown by Vaughan

andWilletts [108], who make use of the fact that a combination of Hermite-Gaussian modes

leads to Laguerre-Gaussian beams, which show a helically-phased wave-front. These beams

also represents an important modeling tool of laser dynamics [109].

The basic property of light with OAM is a helical phase-front with the amount of

interwined helices corresponding to the OAM (winding) number l ∈ Z [110]. This number

is unbounded and its limitation, in experiments, is given only by selected technologies.

For these beams, it is characteristic an azimuthal field dependence of the formexp (ilθ).

As a paraxial light beam can posses both spin angular momentum (SAM) σ (which is

related to the right- or left- handed circular polarization) together with the OAM, the

total angular momentum of light can be expressed as (l + σ)~. This expression has a lot

of physical implications, namely in the case of mechanical effects of light [111]. Besides

the above mentioned Laguerre- Gaussian beams, also Mathieu beams and Bessel beams

can exhibit a non-zero orbital angular momentum. Bessel beams are considered later

as a natural orthogonal basis for the transverse domain mode decomposition and the
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subsequent determination of the spiral spectra [112]. These spectral decompositions can

be related to the concept of Heisenberg uncertainty in the transverse domain of light [113].

During the last few years, many effective ways to create and measure the OAM of light

have been developed. Most of these methods can be reversed and used for the estimation of

the winding number l. The simple use of a forked diffraction grating transforms an incident

beam to a helical one, and vice versa, in the first diffraction order [114]. Other method is

based on the use of spiral phase-plates [115]. Anisotropic and inhomogeneous crystals, so

called ”q-plate”, can be used to mutually couple the spin and orbital angular momentum

degrees of freedom [116]. Additionally, a set of cylindrical lenses provides a conversion

method of Hermite- Gaussian modes to Laguerre-Gaussian modes [105]. Recently, a large

amount of fiber-based techniques for preparing ligth with OAM light have been presented

[117, 118]. For instance, a ring resonator with periodic grating was shown to be able

generate vortex beams [119]. Optical fields with a non-zero OAM are of great interest

in a myriad of scientific and technological applications, such as secure communications

[120], ultra-precise measurements [13, 121], nano-particle manipulation [122] or quantum

computing [123].

In Section 3.2, we present an scenario for the generation of many entangled OAM

modes in a periodically poled nonlinear crystal. We make use of crystals with chirped

quasi-phase-matching that leads to an enormous enhancement of the spectrum of OAM

modes generated. In the next Section 3.3, we introduce a novel method of generation

of photon pairs with a well-defined OAM in a non-linear SiO2 silica fiber with a ring

shaped core (that allows to preserve OAM modes). We consider thermally induced χ2

non-linearity, since standard silica-based fibers lack this kind of non-linearity.

3.2 High Spatial Entanglement via Chirped Quasi-Phase-

Matched Optical Parametric Down-conversion

Entangling systems in higher dimensional systems (frequency and spatial degrees of free-

dom) is important both for fundamental and applied reasons. For example, noise and deco-

herence tend to degrade quickly quantum correlations. However, theoretical investigations

predict that physical systems with increasing number of dimensions can maintain non-

classical correlations in the presence of more hostile noise [124, 125]. Higher dimensional

states can also exhibit unique outstanding features. The potential of higher-dimensional

quantum systems for practical applications is clearly illustrated in the demonstration of

the so-called quantum coin tossing protocol, where the power of higher dimensional spaces
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is clearly visible [126].

The amount of spatial entanglement generated depends of the SPDC geometry used

(collinear vs non-collinear), the length of the nonlinear crystal (L) and the size of the

pump beam (w0). To obtain an initial estimate, let us consider a collinear SPDC ge-

ometry. Under certain approximations 1, the entropy of entanglement can be calculated

analytically. Its value can be shown to depend on the ratio L/Ld, where Ld = kpw
2
0/2 is

the Rayleigh range of the pump beam and kp is its longitudinal wavenumber. Therefore,

large values of the pump beam waist w0 and short crystals are ingredients for generating

high entanglement [127]. However, the use of shorter crystals also reduce the total flux-rate

of generated entangled photon pairs. Moreover, certain applications might benefit from

the use of focused pump beams. For instance, for a L = 1 mm long stoichiometric lithium

tantalate (SLT) crystal, with pump beam waist w0 = 100 µm, pump wavelength λp = 400

nm and extraordinary refractive index ne(λp) = 2.27857 [128], one obtains E ∼ 8.5. For a

longer crystal of L = 20 mm, the amount of entanglement is severely reduced to E ∼ 4.2

ebits.

We put forward here a scheme to generate massive spatial entanglement, i. e., an

staggering large value of the entropy of entanglement, independently of some relevant

experimental parameters such as the crystal length or the pump beam waist. This would

allow to reach even larger amounts of entanglement that possible nowadays with the usual

configurations used, or to attain the same amount of entanglement but with other values of

the nonlinear crystal length or the pump beam waist better suited for specific experiments.

Our approach is based on a scheme originally used to increase the bandwidth of para-

metric down-conversion [129, 130, A5]. A schematic view of the SPDC configuration is

shown in Fig.3.1. It makes use of chirped quasi-phase-matching (QPM) gratings with

a linearly varying spatial frequency given by Kg(z) = K0 − α(z + L/2), where K0 is

the grating’s spatial frequency at its entrance face (z = −L/2), and α is a parameter

that represents the degree of linear chirp. The period of the grating at distance z is

p(z) = 2π/Kg(z), so that the parameter α writes:

α =
2π

L

pf − pi
pfpi

(3.1)

where pi is the period at the entrance face of the crystal, and pf at its output face.

The key idea is that at different distances along the nonlinear crystal, signal and

1The approximation consist of substituting the sinc function appearing later on in Eq. (3.7) by a
Gaussian function, i.e. sinc bx2

≈ exp
[

−γbx2
]

with γ = 0.499, so that both functions coincide at the
1/2-intensity. For a detailed calculation, see K. W. Chan, J. P. Torres, and J. H. Eberly, Phys. Rev. A
75, 050101 (2007).
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Figure 3.1: Scheme of SPDC in a linearly chirped quasi-phase-matched nonlinear crystal.
The pump beam is a Gaussian beam, and p and q designate the transverse wave numbers
of the signal and idler photons, respectively. K0 is the grating wave-vector at the input
face of the nonlinear crystal, and K0−αL at its output face. The signal and idler photons
can have different polarizations or frequencies. The different colors (or different direction
of arrows) represent domains with different sign of the nonlinear coefficient.

idler photons with different frequencies and transverse wavenumbers can be generated,

since the continuous change of the period of the QPM gratings allows the fulfillment

of the phase-matching conditions for different frequencies and transverse wavenumbers.

If appropriately designed narrow-band interference filters allow to neglect the frequency

degree of freedom of the two-photon state, the linearly chirped QPM grating enhance only

the number of spatial modes generated, leading to a corresponding enhancement of the

amount of generated spatial entanglement.

3.2.1 Theoretical Model

In order to determine how much spatial entanglement can be generated in SPDC with the

use of chirped QPM, let us consider a nonlinear optical crystal illuminated by a quasi-

monochromatic laser Gaussian pump beam of waist w0. Under conditions of collinear

propagation of the pump, signal and idler photons with no Poynting vector walk-off,

which would be the case of a noncritical type-II quasi-phase matched configuration, the

amplitude of the quantum state of the generated two-photon pair generated in SPDC
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(a) (b)

Figure 3.2: Weight of the Schmidt coefficients λnl for (a) α = 0 µm−2 and (b) α =
10× 10−6 µm−2. The nonlinear crystal length is L = 20 mm and the pump beam waist is
w0 = 100 µm.

reads in transverse wavenumber space:

|Ψ〉 =
∫

dp

∫

dqΨ(p,q) |p〉s|q〉i, (3.2)

where p (q) is the transverse wavenumber of the signal (idler) photon. Ψ is the joint

amplitude of the two-photon state, so that |Ψ(p,q) |2 is the probability to detect a signal

photon with transverse wave-number p in coincidence with an idler photons with q.

The joint amplitude that describes the quantum state of the paired photons generated

in a linearly chirped QPM crystal, using the paraxial approximation, is equal to

Ψ (p,q) = C exp

(

−w
2
0

4
|p+ q|2

)

(3.3)

×
∫ L/2

−L/2
dz exp

[

i
|p− q|2

2kp
z + iα

(

z +
L

2

)

z

]

,

where C is a normalization constant ensuring
∫

dq
∫

dp|Ψ(p,q) |2 = 1. Notice that the

value of K0 = 2π/p(−L/2) does now show up in Eq.(3.4), since we make use of the fact

that there is phase matching for p = q = 0 at certain location inside the nonlinear crystal,

which in our case it turns out to be the input face (z = −L/2).
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After integration along the z-axis one obtains

Ψ(p,q) = C

√

iπ

4α
exp

[

−w
2
0

4
|p+ q|2 − i

(

αL2

16
+
L|p− q|2

8kp
+

|p−q|4
16αk2p

)]

×
[

erf

(

3
√
αL

4
√
i

+
|p− q|2
4kp

√
iα

)

− erf

(

−
√
αL

4
√
i
+

|p− q|2
4kp

√
iα

)]

, (3.4)

where erf refers to the error function. Notice that Eq.(3.4) is similar to the one describing

the joint spectrum of photon pairs in the frequency domain, when the spatial degree of

freedom is omitted [130,A5]. The reason is that both equations originate in phase matching

conditions along the propagation direction (z axis).

Since all the configuration parameters that define the down conversion process show

rotational symmetry along the propagation direction z, the joint amplitude given by Eq.

(3.4) can be written as

Ψ (p,q) =
∞
∑

l=−∞
Bl (p, q) e

il(ϕp−ϕq). (3.5)

Here, we have made use of polar coordinates in the transverse wave-vector domain for

the signal, p = (p cosϕp, p sinϕp), and idler photons q = (q cosϕq, q sinϕq), where ϕp,q

are the corresponding azimuthal angles, and p, q are the radial coordinates. The specific

dependence of the Schmidt decomposition on the azimuthal variables ϕp and ϕp reflects

the conservation of orbital angular momentum in this SPDC configuration [131], so that

a signal photon with OAM winding number +l is always accompanied by a corresponding

idler photon with OAM winding number −l. The probability of such coincidence detection

for each value of l is the spiral spectrum [132] of the two-photon state, i.e., the set of

values Pl =
∫

pdp qdq |Bl(p, q)|2. Recently, the spiral spectrum of some selected SPDC

configuration have been measured [133].

The Schmidt decomposition [9, 134] of the spiral function, i.e.,

Bl(p, q) =

∞
∑

n=0

√

λnlfnl(p)gnl(q), (3.6)

is the tool to quantify the amount of entanglement present. λnl are the Schmidt coefficients

(eigenvalues), and the modes fnl and gnl are the Schmidt modes (eigenvectors). Here we

obtain the Schmidt decomposition by means of a singular-value decomposition method.

Once the Schmidt coefficients are obtained, one can obtain the entropy of entanglement as

E = −∑nl λnl log2 λnl. An estimation of the overall number of spatial modes generated is

obtained via the Schmidt number K = 1/
∑

nl λ
2
nl, which can be interpreted as a measure
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of the effective dimensionality of the system. Finally, the spiral spectrum is obtained as

Pl =
∑

n λnl.

3.2.2 Numerical Results

For the sake of comparison, let us consider first the usual case of a QPM SLT crystal with

no chirp, i.e., α = 0µm−2, and length L = 20 mm, pumped by a Gaussian beam with

beam waist w0 = 100µm and wavelength λp = 400 nm. In this case, the integration of

Eq. (3.4) leads to [135]

Ψ(p,q) = C exp

(

−w
2
0

4
|p+ q|2

)

sinc

(

L|p− q|2
4kp

)

. (3.7)

The Schmidt coefficients are plotted in Fig. 3.2(a), and the corresponding spiral spectrum

is shown in Fig. 3.3(a). The main contribution to the spiral spectrum comes from the

spatial modes with l = 0. The entropy of entanglement for this case is E = 6.4 ebits and

the Schmidt number is K = 42.9.

Nonzero values of the chirp parameter α lead to an increase of number of generated

modes, as it can be readily seen in Fig. 3.2(b) for α = 10×10−6 µm−2 and w0 = 100 µm.

This broadening effect is also reflected in the corresponding broadening of spiral spectrum,

as shown in Fig. 3.3(b). Indeed, Fig. 3.4(a) shows that the entropy of entanglement

increases with increasingly larger values of the chirping parameter, even though for a

given value of w0, its increase saturates for large values of α. For w0 = 300µm and

α = 10 × 10−6 µm−2, we reach a value of E = 16.6 ebits. On the contrary, the Schmidt

number K rises linearly with α, as can be observed in Fig. 3.4(b), for all values of w0.

For sufficiently large values of w0 and α, K reaches values of several thousands of spatial

modes, i.e. K = 87113 for the same w0 and α. For large values of E, a further increase of

E requires an even much larger increase of the number of spatial modes involved, which

explain why an increase of the number of modes involved only produces a modest increase

of the entropy of entanglement. Notice that the spiral spectrum presented in Fig. 3.3(b) is

discrete. Notwithstanding, it might look continuous since it is the result from the presence

of several hundreds of OAM modes with slightly decreasing weights.

We have discussed entanglement in terms of transverse modes which arise from the

Schmidt decomposition of the two-photon amplitude and, as such, they attain apprecia-

ble values in the whole transverse plane. Alternatively, the existing spatial correlations

between the signal and idler photons can also be discussed using second-order intensity

correlation functions [136]. In this approach, correlations are quantified by the size of the
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Figure 3.3: The spiral spectrum Pl for (a) α = 0 µm−2 and (b) α = 10× 10−6 µm−2. The
nonlinear crystal length is L = 20 mm and the pump beam waist is w0 = 100 µm.
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Figure 3.4: (a) The entropy of entanglement E and (b) the Schmidt number K as a
function of the chirp parameter α for w0 = 100 µm (solid black line), w0 = 200 µm
(dashed blue line) and w0 = 300 µm (dotted-and-dashed red line).

correlated area (∆p) where it is highly probable to detect a signal photon provided that

its idler twin has been detected with a fixed transverse wave vector q. We note that the

azimuthal width of correlated area decreases with the increasing width of the distribution

of Schmidt eigenvalues along the OAM winding number l. On the other hand, the increas-

ing width of the distribution of Schmidt eigenvalues along the remaining number n results

in a narrower radial extension of the correlated area. An increase in the number of modes

K results in a diminishing correlation area, both in the radial and azimuthal directions.

The correlated area drops to zero in the limit of plane-wave pumping, where attains the

form of a δ function. The use of such correlations in parallel processing of information

represents the easiest way for the exploitation of massively multi-mode character of the

generated beams.
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3.3 Generation of Photon Pairs With Nonzero Orbital An-

gular Momentum in a Ring Fiber

The observation of OAM entanglement in bulk materials has been already demonstrated

[137–140], but in optical fibres it still represents a challenge. There are mainly two

problems to overcome. On the one hand, the presence of inverse symmetry in ideally

cylindrically-shaped silicon optical fibres excludes the existence of χ(2) nonlinearity. For

this reason, photon pairs in optical fibers are generally generated by means of an alter-

native nonlinear process (four-wave mixing) which utilizes instead the third-order nonlin-

earity of silicon [30,141,142]. Small values of the elements of χ(3) nonlinear tensor can be

compensated by increasing the interaction length of the fiber to give higher photon-pair

fluxes. Unfortunately, this is accompanied by an equal enhancement of other effects, i.e.,

Raman scattering, that cause unwanted higher noise contributions to the generated flux.

The inverse symmetry of silicon optical fibers can be broken by the method of thermal

poling [143,144] which provides a nonzero χ(2) nonlinearity [145–147].

On the other hand, the propagation of photons with OAM in the usual step-index

long optical fibers do not prevent cross-talk among modes with different OAM from being

strong, which results in the fast deterioration of the purity of the OAM propagating modes.

However, modern technology suggest also here a solution in the form of ring and vortex

fibers with ring-shaped cores [148] that are more resistant against cross-talk. Here, we

show that photon pairs entangled as OAM modes can be generated in this type of SiO2

fiber with a thermal poling.

3.3.1 Theoretical Model of a Ring Fiber

The profile of the ring fiber considered here, with a ring-shaped core, is shown in Fig.

3.5. Since the location of two holes, serving for poling wires, is far away from the ring

core (typically around 31 µm [149]), we can neglect their presence in the determination

of optical fields in proximity of the core. This considerably simplifies subsequent calcula-

tions of the characteristics of propagating guided modes as one can assume modes with a

rotational symmetry that solve the Maxwell equations.

In rotationally symmetric systems, the full electric (E) and magnetic (H) fields can

be derived from their longitudinal components Ez and Hz. Moreover, they can be writ-

ten as the product of a function that depends only on the azimuthal coordinate (θ),

and an another function that depends only on the radial coordinate (r), i.e., Ez, Hz ∼
f(r)g(θ) exp[i(βz − ωt)], where functions f(r) and g(θ) describe spatial profiles of fields
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Figure 3.5: (a) Sketch of the vortex fiber with poling wires and (b) the radial profile of
pump index of refraction around the fiber core for θ = 0 deg for the fiber made of SiO2

(at 1550 nm).

along the radial and azimuthal directions, respectively. The functions f(r) and g(θ) thus

satisfy the eigenvalue equations:

r2
d2f(r)

dr2
+ r

df(r)

dr
+ r2

(

ω2εr
c2

− β2
)

f(r)

−n2f(r) = 0, (3.8)

d2g(θ)

dθ2
+ n2g(θ) = 0, (3.9)

where β is the propagation constant (eigenvalue) of a guided mode with frequency ω; c

denotes the velocity of light in the vacuum and εr means the relative dielectric permittivity.

Radial profile of
√
ǫr is shown in Fig.3.5b. To simplify our calculations, we consider εr only

as a scalar-function. Integer number n counts eigenmodes that are solutions of Eq.(3.9)

describing azimuthal properties of optical fields. Details of procedure of solving Eq.(3.8)

and (3.9) can be found in the Appendix A.3. Solutions of Eq.(3.9) have the form of

harmonic functions with frequencies determined by n. On the other hand, solutions of

Eq.(3.8) for a fixed value n are expressed in terms of the Bessel functions. For fixed values

of frequency ω and index n, the continuity requirements on core boundaries admit only

a discrete set of eigenmodes with suitable values of propagation constants β [150, 151].

If we take into account field polarizations, we reveal the usual guided modes of optical
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fibers that are appropriate also for describing photon pairs. Spatial modes characterized

by an OAM (winding) number l are th en obtained as suitable linear combinations of the

above fiber eigenmodes eη(ω) classified by multi-index η that includes azimuthal number

n, radial index of solutions of Eq. (3.8) and polarization.

At the single-photon level, the nonlinear process of SPDC converts a pump photon

into a photon pair described by a state |ψ〉 given as a first-order perturbation solution of

the Schrödinger equation:

|ψ〉 = − i

~

∫ ∞

−∞
dt ĤI(t)|vac〉; (3.10)

|vac〉 denotes the initial signal and idler vacuum state and ~ is the reduced Planck constant.

The interaction nonlinear Hamiltonian ĤI occurring in Eq. (3.10) is written in the radial

coordinates as:

ĤI(t) = 2ε0

∫

S⊥

rdrdθ

∫ 0

−L
dz χ(2)(z) : E(+)

p (r, θ, z, t)

×Ê(−)
s (r, θ, z, t)Ê

(−)
i (r, θ, z, t) + h.c., (3.11)

where subscripts p, s and i denote in turn the pump, signal and idler fields. Symbol : is

tensor shorthand with respect to three indexes of χ(2) tensor and ε0 denotes the vacuum

permittivity and h.c. replaces the Hermitian conjugated term. Symbol S⊥ means the

transverse area of the fiber of length L. Nonlinear susceptibility χ(2) with spatial periodic

rectangular modulation such that it gives quasi-phase-matching of the interacting fields

is assumed. Quasi-phase-matching is reached by thermal poling of the SiO2 fiber that

provides the following non-zero χ(2) elements: χ
(2)
xxx ≃ 3χ

(2)
xyy and χ

(2)
xyy = χ

(2)
yxx = χ

(2)
yxy =

0.021 pm/V [144].

The fiber is pumped by a strong (classical) pump beam which positive-frequency part

E
(+)
p of the electric-field amplitude can be decomposed into the above introduced eigen-

modes ep,ηp(ωp) as:

E(+)
p (r, θ, z, t) =

∑

ηp

Ap,ηp

∫

dωp Ep(ωp)ep,ηp(r, θ, ωp)

× exp
(

i[βp,ηp(ωp)z − ωpt]
)

. (3.12)

In Eq. (3.12), Ap,ηp gives the amplitude of mode ηp and Ep denotes the normalized pump

amplitude spectrum. Similarly, the negative-frequency parts Ê
(−)
s and Ê

(−)
i of the signal
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and idler electric-field operators can be written as:

Ê(−)
a (r, θ, z, t) =

∑

ηa

∫

dωa

√

~ωa

4πε0n̄ac
â†a,ηa(ωa)

×e∗a,ηa(r, θ, ωa) exp (i[βa,ηa(ωa)z − ωat]) , a = s, i, (3.13)

where n̄a stands for an effective refractive index of field a. The creation operators â†a,ηa(ωa)

give a photon into field a with multi-index ηa and frequency ωa.

Using Eq.(3.10-3.13), the state |ψ〉 describing a photon pair at the output face of the

fiber can be written as a quantum superposition comprising states of all possible eigenmode

combinations (ηs, ηi):

|ψ〉 = − i
c

∑

ηs,ηi

∑

ηp

Ap,ηp

∫

dωs

∫

dωi

√

ωsωi

n̄sn̄i
Ep(ωs + ωi)

× Iηp,ηsηi(ωs, ωi)â
†
s,ηs(ωs)â

†
i,ηi

(ωi)|vac〉. (3.14)

Function Iηp,ηsηi(ωs, ωi) quantifies the strength of interaction among the indicated modes

at the given signal and idler frequencies,

Iηp,ηsηi(ωs, ωi) =

∫

S⊥

rdrdθ

∫ 0

−L
dz χ(2)(z) exp[i∆βηp,ηsηi(ωs, ωi)z];

: ep,ηp(r, θ, ωs + ωi)e
∗
s,ηs(r, θ, ωs)e

∗
i,ηi(r, θ, ωi) (3.15)

∆βηp,ηsηi(ωs, ωi) ≡ βp,ηp(ωs+ωi)−βs,ηs(ωs)−βi,ηi(ωi) characterizes phase-mismatch (PM)

of the nonlinear interaction among individual modes.

Using the state |ψ〉 in Eq. (3.14), a signal photon-number density nηs (ωs) observed in

mode ηs is computed along the formula

nηs (ωs) =
∑

ηi

∫

dωi〈ψ|â†s,ηs(ωs)â
†
i,ηi

(ωi)âs,ηs(ωs)âi,ηi(ωi)|ψ〉. (3.16)

3.3.2 Numerical Results

In the analysis, we consider an SiO2 fiber with a ring-shaped core created by doping the

base material with 19.3 mol% of GeO2 (for details, see [152]). The SPDC process is

pumped by a monochromatic beam of wavelength λp0 = 0.775 µm that effectively couples

the power of 1 W into the fiber. The fiber was designed such that photon pairs are emitted

around the wavelength 1.550 µm used in fiber communication systems. A right-handed

circularly polarized HEp
21,R mode with OAM number l = 1 (for the nomenclature, see [150])
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Figure 3.6: Phase mismatch ∆βηp,ηsηi as it depends on signal wavelength λs for three
different combinations of eigenmodes fulfilling the OAM selection rule. The horizontal
grey line indicates the maximum of spatial spectrum of χ(2) modulation expressed in
−∆β. The period of modulation Λ = 42.9 µm is chosen such that perfect PM occurs for
λs0 = 1.5 µm and process HEp

21,R → HEs
21,R,+HEi

11,R.

has been found suitable for the pump beam. It gives minimal crosstalk with other pump

modes (namely TM01) at the given wavelength. It also belongs, together with modes TE01

and TM01, to the group of the most stable guided modes. The generated signal and idler

photons fulfil the energy conservation law (ωp = ωs + ωi) and also the selection rule for

OAM numbers (lηp = lηs + lηi) that originates in the radial symmetry of the nonlinear

interaction. Under these conditions, efficient photon-pair generation has been found for

a signal photon in mode HEs
21,R (ls = 1) and an idler photon in mode HEi

11,R or HEi
11,L

(li = 0) which represent the right- and left-handed polarization variants of the same spatial

mode. As the phase-matching curves in Fig.3.6 show, also other efficient combinations of

signal and idler modes are possible, namely HE21,R → TEs
01 +HEi

11 and HE21,R → TMs
01

+ HEi
11.

However, quasi-phase-matching reached via the periodic modulation of χ(2) nonlinear-

ity allows to separate different processes. The right choice of period Λ of χ(2) nonlinearity

tunes the desired process that is exclusively selected provided that the χ(2) spatial spec-

trum is sufficiently narrow. For our fiber, the χ(2) spatial spectrum has to be narrower

than 1×10−3 µm−1. This is achieved in general for fibers longer than 1 cm. The analyzed

fiber 1 m long with the width of spatial spectrum equal to 7.6 × 10−6 µm−1 allows to

separate the desired process from the other ones with the precision better than 1:100.

According to Fig. 3.7 the greatest values of signal photon-number density ns,ηs occur

for mode HEs
21,R with an OAM number l = +1 around the wavelength λs = 1.5 µm. The

full width at the half of maximum of the peak equals ∆λs = 0.96 nm. The second largest
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Figure 3.7: Signal photon-number density nηs as a function of signal wavelength λs for a
1 m-long fiber with period Λ = 42.9 µm. Different modes recognized in the signal field are
indicated.

contribution belongs to the processes involving modes HEs
11,R and HEs

11,L that interact

with mode HE21,R. They build a common peak found at the wavelength λs = 1.603 µm.

In signal photon-number density ns,ηs , there also exits two peaks of mode HEs
11,R that

form pairs with the peaks created by modes TM01 and TE01. These peaks are shifted

towards lower and larger wavelengths, respectively, due to their propagation constants.

Whereas the peak belonging to mode TMs
01 occurs at the lower wavelength λ = 1.4 µm,

the peak given by mode TEs
01 is located at the longer wavelength λ = 1.635 µm. Spectral

shifts of these peaks allow their efficient separation by frequency filtering. The generated

photon-pair field is then left in the state with a signal photon in mode HEs
21,R and an idler

photon either in state HEi
11,R or HEi

11,L. The weights of both possible idler states HEi
11,R

and HEi
11,L in quantum superposition are the same which gives a linear polarization of

the overall idler field. The fiber 1 m long provides around 240 photon pairs per 1 s and

1 µW of pumping in these modes. Strong spectral correlations between the signal and

idler frequencies result in fast temporal correlations between the signal and idler detection

times occurring in the time window 7 ps long. We note that the analysed process can also

be considered in its left-handed polarization variant, in which the pump beam propagates

as a HE21,L mode.

Quasi-phase matching allows also other efficient combinations of modes. For example,

the pump beam in mode HE11,R (or HE11,L) with lp = 0 provides spectrally broad-band

SPDC that may give photon pairs with temporal correlations at fs time-scale. Also photon

pairs entangled in OAM numbers can be obtained in this configuration. We note that

vortex fibers [120] are also suitable for SPDC as they provide similar conditions for photon-

pair generation as the analyzed ring fibers. Moreover, their additional core gives better
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stability to the modes participating in the nonlinear interaction. Both ring and vortex

fibers thus have a large potential to serve as versatile fiber sources of photon pairs in OAM

states useful both in metrology and quantum communications.

Summary of this Section

In Section 3.2, we have presented a new way to increase significantly the amount of two-

photon spatial entanglement generated in SPDC by means of the use of chirped quasi-

phase-matching nonlinear crystals. This opens the door to the generation of high en-

tanglement under various experimental conditions, such as different crystal lengths and

sizes of the pump beam. QPM engineering can also be an enabling tool to generate truly

massive spatial entanglement, with state of the art QPM technologies [130] potentially

allowing to reach entropies of entanglement of tens of ebits. Therefore, the promise of

reaching extremely high degrees of entanglement, offered by the use of the spatial degree

of freedom, can be fulfilled with the scheme put forward here. The experimental tools re-

quired are available nowadays. The use of extremely high degrees of spatial entanglement,

as consider here, would demand the implementation of high aperture optical systems. For

instance, for a spatial bandwidth of ∆p ∼ 2µm−1, the aperture required for λp = 400 nm

is ∆θ ∼ 4◦ − 6◦.

In Section 3.3, a ring fiber with thermally induced χ(2) nonlinearity and periodical

poling has been presented as a promising source of photon pairs being in eigenmodes of

orbital angular momentum. Spontaneous parametric down-conversion is pumped by a

beam with nonzero orbital angular momentum that has been transferred into one of the

down-converted beams. Several mutually competing nonlinear processes exploiting differ-

ent modes occur in the fiber simultaneously. However, they can be spectrally separated.

Other configurations also allow for the emission of spectrally broad-band photon pairs as

well as photon pairs entangled in orbital-angular-momentum numbers. This makes the

analyzed ring fiber useful for many integrated fiber-based applications.

Publications related to the content of this Section

The main results presented in this chapter have been published in the following papers:

J. Svoziĺık, J. Peřina Jr., and J. P. Torres, Phys. Rev. A 86, 052318 (2012).

D. Jav̊urek, J. Svoziĺık, and J. Peřina Jr., submitted to Opt. Lett.
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Chapter 4

Anderson Localization of partially

coherent light and Quantum

Random Walk of Photons with

tunable decoherence

4.1 Introduction

More than fifty years ago, P. W. Anderson described in a seminal paper [153] how diffusion

in the process of electron transport in a disordered (random) semiconductor lattice can

be arrested, leading to the localization of the wavefunction in a small region of space, the

so-called Anderson localization. This unique phenomena has been observed in a myriad

of physical systems [154], including electron gas [155], matter-waves (atoms) [156–158]

and acoustic waves [159]. The observation of transverse localization of light in a photonic

system was predicted by De Raedt et al. [160], considering the similarities existing between

the Schrodinger equation and Maxwell equations. This led to the observation of Anderson

localization in photonic systems [161–164] in various scenarios.

The underlying physical principles that lead to Anderson localization are also respon-

sible for changes on the spreading of the wavefunction in a quantum random walk (QRW,

see Appendix B), which since its first description have become a fundamental paradigm

in quantum science [165, 166]. The idea of QRWs was originally conceived by Aharonov

et al. [167] as an extension of the well-known classical random walk (CRW) [168]. The

main distinguishing feature of a QRW, compare to a CRW, is the possibility of interference
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between the multiple paths that can be simultaneously traversed by a quantum walker,

enabling thus a faster spreading of the uncertainty of location of the walker than in the

classical case [169,170].

The temporal evolution of a quantum system, such as a QRW, depends on the presence,

and specific characteristics, of the environmental effects (decoherence) which can modify

it [171]. In most cases, the influence of decoherence during the evolution of a quantum

walker transforms an originally pure state into a mixed state, lowering the uncertainty

about the location of the walker as it propagates. In the limiting case, when all cross-

interference terms between different lattice sites are completely erased, the state of pure

diffusive classical propagation is reached [170].

QRWs have been theoretically explored for the case of one-dimensional lattices [169,

172], and experimentally implemented by means of different physical platforms, such as

photon-based systems [163, 173–177], optical lattices [178] and waveguide arrays [179].

Also, QRWs have been implemented using trapped ions [180] and nuclear magnetic reso-

nance systems [181]. In a sense, generalizations of quantum protocols such as the Shor’s

factorization algorithm [182] and the Groover’s searching algorithm [183] can also be

analyzed in similar terms, since they can be viewed as quantum random walks. The

consequences of introducing static disorder in a quantum random walk (leading to An-

derson localization) has been studied, for example, for one dimensional [184–186] and

two-dimensional [187] systems.

In Section 4.2 we describe a versatile and highly-scalable experimental setup for the

realization of discrete two-dimensional quantum random walks with a single-qubit coin

and tunable degree of decoherence. The proposed scheme makes use of a small number

of simple optical components arranged in a multi-path Mach-Zehnder-like configuration,

where a weak coherent state is injected. Environmental effects (decoherence) are generated

by a spatial light modulator, which introduces pure dephasing in the transverse spatial

plane, perpendicular to the direction of propagation of the light beam. By controlling the

characteristics of this dephasing, one can explore a great variety of scenarios of quantum

random walks: pure quantum evolution (ballistic spread), fast fluctuating environment

leading to a diffusive classical random walk, and static disorder resulting in the observation

of Anderson localization.

In Section 4.3, we propose an experimental configuration to observe transverse An-

derson localization of partially coherent light beams with a tunable degree of first-order

coherence. The scheme utilizes entangled photons propagating in disordered waveguide

arrays, and is based on the unique relationship between the degree of entanglement of a

pair of photons and the coherence properties of the individual photons constituting the
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pair. The scheme can be readily implemented with current waveguide-on-a-chip technol-

ogy, and surprisingly, the tunability of the coherence properties of the individual photons

is done at the measurement stage, without resorting changes of the light source itself.

4.2 Implementation of a Spatial Two-Dimensional Quantum

Random Walk with Tunable Decoherence

Although the implementation of one-dimensional QRWs has showed to be useful when

describing several quantum information systems, there is a great interest in expanding the

concept to multidimensional lattices. Along these lines, two-dimensional QRWs provide a

powerful tool for modeling complex quantum information and energy transport systems

[188, 189]. Notwithstanding, their realization represents a challenge because of the need

of a four-level coin operation [187, 190, 191]. One way to overcome this drawback is to

make use of different degrees of freedom of photons, such as polarization and orbital

angular momentum, as it has been shown in [189]. Another approach is to mimic the

two-dimensional QRWs evolution by performing two subsequent one-dimensional QRWs

[192,193].

Here, we make use of the latter approach to put forward an experimental setup for the

realization of two-dimensional QRWs. We include the environmental effects (decoherence)

as pure dephasing by means of the introduction of random phase patterns, generated by a

spatial light modulator (SLM), which can be different from site to site (spatial disorder).

By controlling the degree of decoherence, we study the transition from the quantum bal-

listic spreading to the diffusive classical walk. Also, by adding static disorder, we show

the possibility of observing Anderson localization [153]. Importantly, our proposal pro-

vides a versatile, highly-scalable experimental setup, which may be used as a tool for

understanding quantum processes whose underlying physics can be somehow traced to

the concept of random walks, such as energy transport in photosynthetic light-harvesting

complexes [194,195] and material band gap structures [196].

4.2.1 A two-dimensional quantum random walk with dephasing

A typical discrete quantum random walk comprises two operations: a coin-tossing opera-

tion and a shift operation (see Appendix B). Here, the coin-tossing operation is performed

in the Hilbert space Hp spanned by vectors {|H〉, |V 〉}, corresponding to the photon po-

larization. The random walk is performed in the Hilbert space HX ⊗HY , corresponding

to the position of the photon in the transverse plane, spanned by vectors {|i, j〉} (i, j in-
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tegers), which indicate sites (i, j) in the transverse plane (i, j = ... − 2,−1, 0, 1, 2...). The

global quantum system thus evolve in the Hilbert space

H = HX ⊗HY ⊗Hp. (4.1)

The state of the system is described by the density matrix ρ̂(n), which is transformed

to a new density matrix each step n via the CP map

ρ̂(n+1) = P̂ (n)ŜY ĤŜXĤρ̂
(n)Ĥ†Ŝ†

XĤ
†Ŝ†

Y P̂
(n)†. (4.2)

Ĥ denotes the Hadamard operator

Ĥ =
1√
2

(

1 1

1 −1

)

, (4.3)

which acts on the polarization degree of freedom. The operators ŜX and ŜY , which

describe the walker’s shift n the transverse dimensions x and y, independently, read as

ŜX =
∑

i,j

|i− 1, j,H〉〈i, j,H| + |i+ 1, j, V 〉〈i, j, V |, (4.4)

and

ŜY =
∑

i,j

|i, j − 1,H〉〈i, j,H| + |i, j + 1, V 〉〈i, j, V |. (4.5)

The coupling of the quantum walker with the environment is described by pure de-

phasing [197]. The form of the unitary dephasing operator considered here can be written

as

P̂ (n) =
∑

ij

e−
i
2
φ
(n)
ij σ̂z |i, j〉〈i, j|, (4.6)

where φ
(n)
ij is a random phase matrix and σ̂z is the Pauli operator. Inspection of Eq. (4.6)

shows that φ
(n)
ij represents a newly introduced phase difference between the horizontal

and vertical polarizations at each site. Concerning this, we will consider three physically

relevant scenarios, that can be easily implemented in the set-up proposed here. In the

general case, the phase differences φ
(n)
ij are independent random variables, but with the

same probability distribution. Moreover, the ensemble of phase differences φ
(n)
ij can change

from step n to step n+1. In the following, we will refer to this case as a QRW influenced

by dynamical spatial disorder.

The easiest probability distribution that we can consider is an uniform probability
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Figure 4.1: General scheme for the implementation of a two-dimensional random walk with
decoherence. AT: attenuator; BS: beam splitter; HWP1 and HWP2: half-wave plates that
act as coins in the random walk; HBD and VBD: horizontal and vertical beam displacers;
M1,M2 and M3: mirrors; SLM: spatial light modulator; CCD: spatial light sensor with
single-photon sensitivity.

distribution. If phases can be chosen arbitrarily between the extreme values −ζ and ζ,

there is a constant probability 1/(2ζ) to obtain any phase in this interval. ζ = π is

the maximal phase which we can have between the two orthogonal polarizations. ζ =

0 corresponds to the absence of any spatial disorder. If phases do not change during

propagation, even though they might differ from site to site, i.e. φ
(n)
ij = φ

(n+1)
ij , then we

have static spatial disorder. Finally, if all phase differences are the same for all sites, but

they can still change from one step to the following, we have dynamical dephasing without

spatial disorder.

The probability of detecting a photon in the site (i, j) is

p(n)(i, j) = 〈i, j|Trp[ρ̂(n)]|i, j〉, (4.7)

where the density matrix that describes the whole system is traced out over the polarization

degree of freedom (Trp).

The spreading of the uncertainty of photon location is characterized by the dependence

of the variance on the step index n
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V (n) =
∑

i,j

p(n)(i, j) |rij − µ|2 . (4.8)

where rij = (i, j) represents the lattice site with indexes (i, j) and µ is the mean position,

i.e., µ =
∑

i,j p
(n)(i, j)rij .

4.2.2 Proposal of the Experimental Setup

The main building block of the QRW setup is the multi-path Mach-Zehnder-like configu-

ration shown in Fig. 4.1. It allows to make several runs of the QRW without the necessity

of using a large amount of optical components, as it is the case, for instance, of the ex-

periment described in [174]. A similar scheme, based on a single-path Mach-Zehnder-like

configuration has been used [163,175]. However in these cases, the walker moves in time,

whereas in our proposal the walker moves in the two-dimensional transverse plane, offering

a way to simplify the experimental implementation of the two-dimensional QRW.

As source of photons one can use a highly attenuated short coherent pulse, prepared

by the combination of a photon source and attenuator (AT), generating the initial state

|Ψ(0)〉 = |0, 0〉 ⊗ 1√
2
(|H〉+ i|V 〉) , (4.9)

where (0, 0) is the central site. The duration of the pulse has to be sufficiently smaller than

the time-of-fly through the setup in one cycle. The transverse size of the Gaussian beam

profile of the pulse has to be carefully chosen, so that two adjacent sites are not overlapping

in the space due to diffraction. For instance, by making use of a Gaussian beam of 2 mm

beam waist, corresponding to a Rayleigh range of 23.6 m (for a wavelength λ = 532

nm), along with typical-sized optical components, we could in principle perform a QRW

of approximately more than 20 steps. The number of steps can be further improved by

applying smaller beams together with a re-focusing system placed along the walker’s path.

Alternatively, a spontaneous parametric down-conversion source can be used, provided

each down-converted photon is generated in a pure state. Then, the photon is transmitted

via the beam splitter (BS) to the system.

To get a clearer picture of the working of the quantum random walk, let us con-

sider in detail the quantum state of the photon in its first passage through the system.

First, the polarization state of the photon is changed by the half-wave plate (HWP1) to
1
2 |0, 0〉 ⊗ [(1 + i)|H〉+ (1− i)|V 〉], i.e., the Hadamard (Ĥ) operation is applied. After this

transformation, the photon is displaced by the horizontal beam displacer (HBD) along
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Figure 4.2: Detail of the SLM part of the setup allowing to generate dynamical spatial
disorder. M3: mirror; EOD1 and EOD2: electro-optic deflectors; FL: Fourier lens; SLM:
spatial light modulator; BS: beam splitter; IS1 and IS2: imaging systems

the x axis according to its polarization, as described by the shift operator ŜX . The pho-

ton is now in the state 1
2 [(1 + i)| − 1, 0,H〉 + (1− i)|1, 0, V 〉] . A second half-wave plate

(HWP2) implements a new Hadamard transformation, which transforms the quantum

state to 1√
8
{(1 + i) (| − 1, 0,H〉 + | − 1, 0, V 〉) + (1− i) (|1, 0,H〉 − |1, 0, V 〉)}. The vertical

beam displacer (VBD) shifts the position of the photon along the y axis. After this, the

quantum state of the photon reads:

|Ψ(1)〉 =
1√
8
[(1 + i) (| − 1,−1,H〉+ | − 1, 1, V 〉)

+ (1− i) (|1,−1,H〉 − |1, 1, V 〉)] . (4.10)

The spatial light modulator (SLM) is used to introduce random phases, given by the

phase-matrix φ
(n)
ij . After the photon passes through the SLM, the whole cycle is repeated

with high probability. If not, the photon escapes through the other output port of the

beam-splitter, which directs it towards a highly sensitive (single-photon sensitivity) inten-

sified CCD camera with integrated photo-multipliers, which allows to spatially resolve a

weak signal with a high efficiency (∼90%) [198]. Moreover, losses in the setup can be com-

pensated by an increase of the amplitude of pulse. The size of whole array of beams can

be reduced by an auxiliary imaging system in order to fit on the limited size of sensitive

area of CCD.

57



4. Anderson Localization of partially coherent light and Quantum Random Walk of
Photons with tunable decoherence

(a)

-20

-15

-10

-5

0

5

10

15

20

Y
-a

xi
s

po
si

tio
n

j

-20 -15 -10 -5 0 5 10 15 20

X-axis position i

0.000

0.005

0.010

0.015

0.020

0.026

0.031

(b)

-20

-15

-10

-5

0

5

10

15

20

Y
-a

xi
s

po
si

tio
n

j

-20 -15 -10 -5 0 5 10 15 20

X-axis position i

0.000

0.003

0.005

0.008

0.010

0.013

0.016

Figure 4.3: Probability distribution function p(n)(i, j), corresponding to the position of
the photon, for a two-dimensional quantum random walk with no dephasing after (a) 10
steps and (b) 20 steps.

Fast exchange of phase matrices

A typical SLM has a response time in the order of tens of ms, which means that it is

too slow for a fast phase-mask exchange. For this reason, the transmission SLM shown in

Fig. 1 has to be supplemented by additional components as it is shown in Fig. 4.2, which

allows us to effectively generate the dynamical spatial disorder and dynamical dephasing

without spatial disorder for a limited amount of steps. The time of exchange of phase

matrices can be done now in tens of ps [199, 200], which is three-orders faster than it is

indeed necessary in our experimental proposal, with a typical time of flight of the pulse

in the order of ns. The scheme in Fig. Fig.4.2 operates in the following manner. At the

beginning, the size of the whole array of beams is reduced by an imaging system (IS1)

to fit into the electro-optical deflector (EOD1). The EOD1, together with a Fourier lens

(FL), serve to address different regions of the SLM along either the vertical or horizontal

direction, which realize then the random phase-matrices φ
(n)
ij in all steps. Just changing the

directions of deflection of the array, both types of dynamical disorders can be simulated.

The EOD2 (and another FL) then serve to return all beams back to the original direction

of propagation, so that all beams remain in the same position in the traverse plane at all

time.

4.2.3 Quantum random walk

Let us consider first the case when the SLM does not introduce any phase shift (φ
(n)
ij = 0

for all (i, j)). This corresponds to the case ζ = 0. Figure 4.2.2 shows the probability

distribution function p(n)(i, j) for (a) n = 10 and (b) n = 20 steps. In both cases, the

58



4.2

(a)

0

50

100

150

200

250

300

V
ar

ia
nc

e
V

(n
)

0 2 4 6 8 10 12 14 16 18 20

Number of steps n

=0
= /8
= /4
= /2
=

(b)

0

50

100

150

200

250

300

V
ar

ia
nc

e
V

(n
)

0 2 4 6 8 10 12 14 16 18 20

Number of steps n

=0
= /8
= /4
= /2
=

Figure 4.4: Spreading of the position of the photon (V (n)) as a function of the number of
steps for several values of ζ and different types of dephasing. a) Dynamical spatial disorder.
b) Dynamic dephasing without spatial disorder. The results are obtained averaging over

500 different realizations of the matrix φ
(n)
ij .

distribution shows a symmetrical shape around the lines x = 0 and y = 0, with four

groups of peaks located along the x and y axes. The resulting symmetry comes from the

specific initial quantum state chosen in Eq. (4.9). When the number of steps is increased,

the peaks move further away from the central site (0, 0). The shapes obtained in Fig.4.2.2

correspond to the probability distributions of a two-dimensional Grover walk [188, 192].

The walker propagates with ballistic speed, characterized by a quadratic dependence of

the variance V (n) with the step index, i.e., V (n) ≈ n2. This case is shown in Figs. 4.4(a)

and (b), corresponding to the case with ζ = 0.

4.2.4 Quantum Random Walk Affected by Dephasing

The dephasing effect introduced by the SLM allows to induce a transition from the quan-

tum to the classical random walk via two mechanisms. First, as shown in Fig.4.4(a), by

means of dynamical spatial disorder. The phase-matrix φ
(n)
ij shows independent and ran-

domly chosen values for each site, and it is refreshed each step. The case ζ = 0 corresponds

to the QRW with no dephasing. Increasing the amount of disorder, characterized by a

corresponding increase of the parameter ζ, reduce the spreading of V (n) as can be seen in

Fig.Fig.4.4(a). In the limiting case, which is reached for ζ = π, the observed dependence

(∼ n) of variance V (n) is a direct indication of the transition to the classical regime of

random walks.

The classical limit can also be reached by means of dynamical dephasing without

spatial disorder, as it is shown in Fig.Fig.4.4(b). The reduction of the uncertainty of the
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Figure 4.5: Observation of the spatial Anderson localization. (a) Example of a matrix φ
(n)
ij

for ζ = π that leads to the Anderson localization. (b) Corresponding probability distribu-
tion p(n)(i, j) after 20 steps. (c) Averaged probability distribution over 500 realizations.
(d) Cuts of the data shown in Fig. 5(c) along the X and Y axes passing the site (0,0).

photon position is less dramatic than in the case with dynamical spatial disorder. For

the dynamical spatial disorder, V (n) ∼ 51.25 for ζ = π after 20 steps. On the contrary,

for dynamical dephasing without spatial disorder, we have V (n) ∼ 98.45 under the same

conditions. Indeed, the n-dependence of the typical deviation, characteristic of the classical

regime, it is not yet reached after 20 steps, as is readily observed in Fig.Fig.4.4(b).

4.2.5 Anderson Localization

In the context of our discussion, the Anderson localization is the reduction of spreading of

the uncertainty of the photon position [153]. We will demonstrate that this effect can also

be observed in the set-up considered here. In [162], Anderson localization was observed
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in the transverse plane of a light beam passing through a crystal with random static

fluctuations of the index of refraction. Since the randomness in the index of refraction is

affecting only the phase of the propagating beam, it is possible to imitate these phase-

fluctuations with a SLM, under the consideration of static spatial disorder, since Anderson

localization does not appear with dynamical spatial disorder.

In Fig.4.2.4(a) we present a typical profile of the phase-matrix φ
(n)
ij , independent of

n, which leads to beam localization. Fig.4.2.4(b) shows the corresponding probability

distribution of the photon position for this specific phase profile. Notice that it contains

a strong peak located in the middle of the lattice. The presence of Anderson localization

is confirmed in Fig.4.2.4(c), where we show the averaged probability distribution function

for ζ = π, exhibiting an exponential suppression of probabilities for sites distant from the

center. For the sake of clarity, we also plotted in Fig.4.2.4(d) two cuts of the averaged

probability distribution along the X and Y axes, to highlight this feature.

4.3 Measurement-Based Tailoring of Anderson Localization

of Partially Coherent light

In most cases, as in the previous section, the input state in a quantum random walk is

chosen to be fully coherent. Since Anderson localization is a consequence of interference

effects, one can dare thinking that an initial coherent state is thus necessary to observe

Anderson localization. However, Čapata et al. [201] have shown that even a partially

coherent input light beam can lead to Anderson localization in a disordered waveguide

array (WGA). Partially coherent beams can be described as a superposition of orthogonal

coherent modes, where the modal coefficients are random variables that are uncorrelated

with one another [202, 203]. Therefore, according to [201], since spreading of each mode,

being a coherent mode, can be arrested in a random medium with static disorder, the

whole partially coherent beam should also suffer localization in a similar way to a fully

coherent beam.

Here we propose an experimental scheme which could lead to the observation of Ander-

son localization of partially coherent beams with a tunable degree of first-order coherence.

The approach is based on two basic ingredients. On the one hand, a single-photon in a

pure quantum state (Von Neumann entropy E = 0) is arguably the most simple example

of a photonic state which shows first-order coherence [204]. Mixed single-photon quantum

states do not show first-order coherence. On the other hand, the degree of entanglement

of a pure two-photon state (photons A and B) is directly related to the purity of the
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quantum state of the photon A (B), which results from tracing out all degrees of freedom

corresponding to photon B (A). The Von Neumann entropy of the quantum state that

describes photon A (B) could be used as a measure of the degree of entanglement of the

paired photons.

Consequently, the manipulation of the degree of entanglement of the two-photon state

can effectively tailor the first-order coherence of the signal (idler) photon [205], generat-

ing a one-photon quantum state which is mixed, and thus partially coherent. Anderson

localization (co-localization) of entangled photon fields in disordered waveguides has been

presented in [206,207]. However, in that case the goal was to look for Anderson localiza-

tion of the two photons that form the entangled pair, while here entanglement is a tool

to tailor the degree of coherence of one of the subsystems (photon A or photon B) which

form the entangled pair.

4.3.1 Proposed Experimental Scheme

In general, the quantum description of a pure entangled two-photon state (photons A and

B) writes

|Ψ〉 =
∫

dp

∫

dqΨ(p, q)â†A(p)â
†
B(q)|0〉 (4.11)

where p and q represent the transverse wavevectors of photons A and B, respectively,

â†A(p) and â
†
A(q) creation operators of photons in modes A and B and Ψ(p, q) is the mode

function that describes the properties of the biphoton [88]. For monochromatic fields, the

positive-frequency electric-field operators are expressed as

Ê
(+)
A (x) ∼

∫

dp âA(p) exp (ipx) , (4.12)

Ê
(+)
B (y) ∼

∫

dq âB(q) exp (iqy) . (4.13)

We note that temporal dependence of the electric-field operators has been omitted for the

sake of simplicity. Defining Ψ(x, y) =
∫

dp
∫

dqΨ(p, q) exp(−ipx − iqy), the normalized

pure entangled two-photon state given by Eq.(4.11) can be written as

|Ψ〉 =
∫

dx

∫

dyΨ(x, y) |x〉A|y〉B , (4.14)

where we have defined |x〉A ≡ Ê
(−)
A (x) |0〉A and |y〉B ≡ Ê

(−)
B (y) |0〉B . Notice that the two-

photon amplitude Ψ(x, y) corresponds to the second-order correlation function Ψ(x, y) =

A〈0|B〈0|Ê(+)
B (y)Ê

(+)
A (x)〉.
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Figure 4.6: Schmidt mode decomposition. Here we show the first 15 Schmidt modes of
the Schmidt decomposition for three cases: a) a separable state with γ0 = 0.5, (b) an
entangled state with γ0 = 1.5 and (c) an entangled state with γ0 = 3. The shape of some
selected Schmidt modes (see the legend) are plotted in (d) for γ0 = 1.5. In all cases σ0 =
1 µm.

The two-photon amplitude Ψ can be described by a Schmidt decomposition (defined

in the Subsection 1.1.1) of the form

Ψ(x, y) =

N
∑

j=1

√

λjfj (x) gj (y) (4.15)

λj are the Schmidt eigenvalues and {fj} and {gj} are the Schmidt modes corresponding

to photons A and B. For the sake of simplicity, the two-photon amplitude Ψ(x, y) is

approximated by the Gaussian function

Ψ(x, y) ∼ exp
[

−α (x+ y)2 − β (x− y)2
]

. (4.16)

In this case, the Schmidt modes correspond to Hermite functions of order j [208, 209].
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Some representative cases are shown in Fig.4.6(d).

The parameters characterizing the spatial correlations between photons A and B, α

and β, can be expressed using more suitable parameters that describe characteristics of

photon A: its rms beam width (σ0) and the beam width-spatial bandwidth product (γ0),

here denoted as incoherence,

α =
1

4σ20

(

2γ20 ± γ0

√

4γ20 − 1

)

, (4.17)

β =
1

4σ20

(

2γ20 ∓ γ0

√

4γ20 − 1

)

. (4.18)

The derivation of Eq.(4.17) and Eq.(4.18) is included in the Appendix C.1. In general,

γ0 ≥ 0.5 and is related to the Schmidt number, K = 2γ0, which is a measure of the size of

the mode distribution involved in Eq.(4.15). This number K is defined by Eq.(1.8). For

α = β, there is not entanglement between photons A and B, the Schmidt decomposition

contains a single mode (see Fig.4.6(a)) and γ0 attains its minimum value, i.e., γ0 = 0.5.

This case yields a pure and first-order coherent photon. In all other cases, the spectrum

of the Schmidt decomposition contains several modes. Fig.4.6(b) shows the weight of the

first 15 Schmidt modes (eigenvalues λj) for γ0 = 1.5 and Fig.4.6(c) for γ0 = 3.

The key point of our scheme is the presence of a detection scheme that projects the

photon B into a restricted set of modes before detection, being a particular case the pro-

jection into a single Schmidt mode gj . In this way, the number of modes that describe the

quantum state of photon A after detection of photon B would be correspondingly reduced.

Importantly, the first-order coherence of photon A depends on the number of modes onto

which the photon B is projected. Projection of photon B into a specific single mode ren-

ders effectively photon A into a first-order coherent photon. On the contrary, detection

of photon B into an increasing number of modes results into a partially coherent signal

photon with a decreasing degree of coherence. Therefore, this can thus be appropriately

called tailoring of the first-order coherence by heralding detection.

By tailoring the first-order coherence of a single photon, we also tailor the character-

istics of the Anderson localization. The projection and detection of photon B into a finite

number M of modes is represented by the quantum operator ŶB =
∑M

j=1 |gj〉B〈gj |B with

|gj〉 =
∫

dygj(y)|y〉B . After detection, the truncated quantum state of photon A reads as

ρ̂A = TrB

[

|Ψ〉〈Ψ|ŶB
]

=

min(N,M)
∑

j=1

λj |fj〉A〈fj |A (4.19)
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Figure 4.7: Sketch of the experimental configuration proposed to observe Anderson lo-
calization of partially coherent photons in a disordered waveguide array (WGA). The
three-slab waveguide (TSW) allows propagation of different numbers of guided modes de-
pending on its core size. EPG: The Entangled-photons generator is the source of photon
pairs; iCCD: intensified CCD; D: single-photon detector; IS: Imaging System.

corresponding to an incoherent superposition of min (N,M) modes with weights λj.

A sketch of the experimental configuration considered is shown in Fig.4.7. A pair of

entangled photons (A and B) is generated. Photon A is injected into a one-dimensional

waveguide array (WGA) with refractive index profile nA(x). The waveguide array con-

tains 101 layers of semiconductor material AlxGa1−xAs with the index of reflection taken

from [90]. The whole structure is created by alternating two different layers: Al0.3Ga0.7As

and Al0.8Ga0.2As of the same thickness 0.6 µm. The disorder is induced by randomizing

the index of refraction of each layer, etc. nA(x) = n0A(x) + ∆nA(x). The probability

distribution of the random disturbances ∆nA(x) is described by a Gaussian function char-

acterized by its typical standard deviation δ.

On the other hand, the photon B can propagate in different three-slab waveguide

(TSW) with refractive index profile nB(y), and different sizes of the core of the waveg-

uide. The material of the core is Al0.3Ga0.7As and two surrounding layers are made of

Al0.8Ga0.2As. The layers surrounding the core are considered to be infinite in their thick-

ness. The number of guided modes supported depends on the core size [see Fig.4.8(a)],

so the three-slab waveguide effectively selects a certain amount of modes of photon B, ef-

fectively tailoring the first-order coherence of photon A. A three-slab waveguide has been

chosen for simplicity, and because its suitability for integration on a chip altogether with

the WGA.
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Figure 4.8: (a) Number of guided modes supported by the three-slab waveguide (TSW)
as a function of the core size of the waveguide. (b), (c) and (d) show the overall spatial
overlap factor between Schmidt modes {gj} and guided modes of the three-slab waveguide
{vj}, as given by the product F =

∏

j |djj|, as a function of the magnification factor Z of
the imaging system. Three different cases, with different value of γ0, are considered. (b)
γ0 = 0.5, (c) γ0 = 1.5 and (d) γ0 = 3. In all cases σ0 = 1 µm. The five curves in each plot
correspond to five different three-slab waveguides supporting various amount of modes, as
given by the legend in (d).

The evolution of the spatial shape of photons A and B, in the waveguide array and the

three-slab waveguide, respectively, can be conveniently described by means of the guided

modes supported by each waveguide, {ui(x)} for the WGA and {vj(y)} for the TSW [210].

The guided modes are obtained as solutions of the Helmholtz equations

∆ui(x) +
[

n2A(x)k
2
0 − κ2i

]

ui(x) = 0, (4.20)

∆vj(y) +
[

n2B(y)k
2
0 − µ2j

]

vj(y) = 0, (4.21)

where κi and µj are the corresponding propagation constants. The index of refraction

is considered to be homogeneous along the direction of propagation (along the z-axis in
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both waveguides). Equation (4.20) has been solved using the finite element method [211]

whereas Eq.(4.21) has been solved by the semi-analytical method [150]. The polarization

of photons A and B is transverse electric (TE), i.e. parallel to the surface boundary

between layers, and their wavelengths are 1550 nm, far below the bang-gap of the material.

Therefore absorption can be omitted in our model. Moreover, the propagation distance

z1 of photon A has been restricted to 0.5 mm in order to prevent reaching the reflective

boundaries of WGA.

The coupling of the input photons, characterized by the Schmidt modes fn and gm,

to the corresponding waveguides, characterized by modes ui and vj, is expressed via the

coupling coefficients

cni =

∫

dxfn(x)u
∗
i (x), (4.22)

dmj =

∫

dygm(y)v∗j (y). (4.23)

Using coefficients cni and dmj the quantum state of two photons after their propagation

at distances z1 and z2 in the two waveguides is

|Ψ〉 =
∑

n

√

λn
∑

ij

cnidnj
exp (iκiz1 + iµjz2) |ui〉A|vj〉B , (4.24)

where |ui〉A ≡
∫

dxui(x)|x〉A and |vj〉B ≡
∫

dyvj(y)|y〉B . We can write z1 = z2 = z

without losing generality.

Detection of photon B after projection via a three-slab waveguide is represented by

the operator ŶB =
∑nmax

i=j |vj〉B〈vj |B , where nmax refers to the limited amount of guided

modes present in the specific three-slab waveguide considered. For fixed values of γ0 and

σ0, the spatial profile of photon B is the same, but the spatial profiles of the guided modes

{vj} differ in their sizes for waveguides with different core size. Modes of the Schmidt

decomposition {gj(y)} and guide modes in the TSW {vj(y)} can be ordered by its mode

order (j = 1, 2, ...), with modes with the same order having similar spatial shapes. In

order to maximize the spatial overlap between the Schmidt modes and the guided modes,

we include an imaging system (IS) designed to maximize the overall spatial overlap factor

F =
∏

j |djj |. Fig. 4.8(b), (c) and (d) show the overall spatial overlap factor as a function of

the magnification factor (Z) of the imaging system for five different three-slab waveguides

which support 1, 3, 5, 10 and 15 guided modes, respectively. For instance, for σ0 = 1µm

and γ0 = 3, the optimum magnification factors are 0.55, 0.82, 1.13, 1.61 and 2.03.

On the contrary, since we are interested in the Anderson localization of photon A after
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propagation in the disordered waveguide array, the spatial profile of photon A is detected

by an intensified coupled-charge detector (iCCD), which allows to detect electromagnetic

signals at the single photon level. Detection of a photon in each pixel of the iCCD is

represented via the photon-number operator n̂A (x) = Ê
(−)
A (x) Ê

(+)
A (x). After detection

of photon B, the spatial shape of the photon A at distance z in the WGA is described by

the photon-number spatial distribution

pA(x) = TrA [ρ̂An̂A (x)] =
∑

m,n

√

λmλnI (m,n)

×
∑

i,j

cmic
∗
nj exp {iz (κi − κj)}ui (x)u∗j (x) , (4.25)

where I (m,n) =
∑

j dmjd
∗
nj. The width of photon A can be characterized by its effective

beam width

weff =

〈

[∫

dxpA(x)
]2

∫

dxp2A(x)

〉

, (4.26)

where 〈〉 refer to averaging over an ensemble of random realizations of a disordered WGA.

In order to analyze the results presented in the next section, it is important to take into

account that the beam size σ0 and the incoherence γ0 of photon A, defined in Eqs.(4.17)

and (4.18), corresponds to values before projection and detection of photon B. Therefore,

after filtering mediated by the spatial mode projection of photon B using the TSW, the

first-order correlation function of photon A at the input of WGA writes

G
(1)
A (x, x′) =

∑

m,n

√

λnλmI (m,n) fn (x) f
∗
m

(

x′
)

. (4.27)

One can obtain the values of σ and γ for photon A via equations Eq.(C.5), Eq.(C.8) and

Eq. (C.9) in the Appendix C.1.

If photon B propagates in a TSW that supports a single propagating mode, the size

of photon A will corresponds to the size of that single mode, independently of the value

of σ0. When other modes are added via an increase of the guiding capability of TSW,

the beam size σ reaches its initial value σ0, as it is shown in Fig.4.9(a) for a photon with

σ0 = 1µm.

A similar behavior of the value of γ is also shown in Fig. 4.9(b), where a strong

dependence on the effectiveness of the coupling to the TSW is observed. When coupling to

a single mode, γ = 0.5, independently of the value of γ0. When the number of propagating

modes in TSW is enlarged, the value of γ, even though is smaller than γ0, also converges
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Figure 4.9: (a) Beam size σ and (b) Incoherence γ of photon A when photon B propagate
in different TSWs, and afterwards is detected. Each TSW is designed to support a different
number of guided modes, as indicated in the axis. We consider three different two-photon
states (see legend in (b)), characterized by γ0 = 0.5, γ0 = 1 and γ0 = 3. In all cases,
σ0 = 1µm.

to γ0, since now propagation in the waveguide does not effectively filter the input state.

4.3.2 Results

For the sake of comparison, we first consider a separable two-photon state (K = 1), so the

Schmidt decomposition contains a single mode, as shown in Fig.4.6(a). Photon A is in a

first-order coherent state, and since there is no entanglement, there is also no dependence

on the characteristics of the propagation of photon A on photon B being projected and

detected. As expected, when no disorder is considered (δ = 0), the photon A diffracts the

least in comparison to other cases considered in Figs.4.10(c) and (e), which corresponds

to entangled paired photons. When disorder is introduced (δ = 0.02), photon A turns out

to be localized, with the size of the output probability distribution being almost equal to

the input probability. Anderson localization is the result of the coupling of photon A to

localized guided modes of the disordered WGA {ui(x)}.
We now consider two examples with two-photon entangled states with γ0 = 1.5 and

γ0 = 3. This corresponds to two-photon states with Schmidt number K = 3 and K = 6,

and entropy of entanglement E = 2 and E = 3.021. The Schmidt decompositions are

shown in Fig.4.6(b) and (c). Unlike the coherent case (γ0=0.5), the size of photon A

depends on the amount of propagating modes of the TSW used. This phenomena is more

visible with the ordered WGA, as shown in Fig.4.10(c) and (e). Note that each Hermite

function {fi} for i > 1 contains high spatial components that spread even faster than the

narrow Gaussian profile given by f1, but in the overall, they might have a smaller impact
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Figure 4.10: Spreading of the size of photon A after propagation in the WGA, as given
by the ratio weff (z)/weff (0). Photons A and B are part of a two-photon state with three
different values of the amount of entanglement, but with the same value of σ0 = 1 µm.
(a) and (b) correspond to a non-entangled two-photon state with γ0 = 0.5 (K=1). (c)
and (d) corresponds to an entangled state with γ0 = 1.5 (K=3), while for (e) and (f)
we have γ0 = 3 (K=6). (a),(c) and (e) correspond to the propagation of photon A in
a non-disordered WGA, while (b),(d) and (f) corresponds to the propagation of photon
A in a disordered WGA with σ = 0.02. We present averaged results obtained over 100
different realizations of WGA. The curves in all plots represent propagation of photon B
in different TSW which support distinct amounts of guided modes, as shown in the legend
in (f). This legend is valid for all plots.
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on the final size of photon A due to decreasing weights λj for a given state.

For a disordered WGA with δ = 0.02 the effect of the partially coherent nature of

photon A values on its propagation of is more visible, as seen in Fig.4.10(d) and (f). The

lower the degree of coherence, the broader is the output effective width of the spatially

localized photon A. Moreover, Hermite functions {fi} with increasing order localize with a

higher ratio weff (L)/weff (0) than the fundamental Hermite function f1. Our calculations

also predict a noticeable dependence of the amount of localization expected, shown in

Fig.4.10, on important experimental values such as the magnification factor of the imaging

system or the effectiveness of the coupling to the TSW. Therefore, if one would use a

different optimization function F for the imaging system, differences in Fig.4.10(d) and

(f) could be more visible.

Summary of this Section

We have shown in Section 4.2 a new, highly scalable and easily implemented experimental

configuration to observe spatial two-dimensional random walks under a great variety of cir-

cumstances, by means of the implementation of two consecutive one-dimensional random

walks. The proposal makes use of only a small amount of simple optics components, and

allows us to simulate many different quantum systems and protocols based on the quan-

tum random walk concept. Additionally, by carefully controlling the amount and type of

disorder present in the system, we have shown the effects of different environmental ef-

fects: dynamical spatial disorder, dynamical dephasing without spatial disorder and static

spatial disorder. The last case drove us to the observation of Anderson localization. The

control of environmental effects is paramount importance in nearly all quantum systems.

In some cases, it is even crucial to understand the dynamics experimentally observe.

In Section 4.3, we have presented an experimental scheme for the observation of trans-

verse Anderson localization of partially coherent light with a tunable degree of coherence.

The degree of coherence is tuned by injecting one photon of a fully coherent two-photon

entangled state in a waveguide with a finite and controllable amount of propagating modes.

The system can be integrated on a semiconductor chip, since both the disordered waveg-

uide array (WGA) and the three-slab waveguide TSW considered were designed with this

goal in mind. Therefore our proposal is experimentally feasible taking into an account

nowadays mature semiconductor technologies.
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Conclusions

On the one hand, this thesis has been devoted to the investigation of new sources of quan-

tum entanglement of photons, and also to the design of new sources that can produce

paired photons lacking entanglement. We have considered both bulk crystals and waveg-

uides. On the other hand, we have considered new applications based on the presence of

entanglement between pairs of photons. For instance, how to use entanglement to generate

a source of light with a tunable first-order coherence.

In this thesis, more specifically:

• We have shown that the Spontaneous Parametric Down Conversion in Brag Re-

flection Waveguides can be used as a highly versatile source of entangled, as well

as non-entangled, paired photons. Precisely, we have designed and analyzed new

waveguide structures:

1. That can generate paired photons that lack any frequency correlations between

them (a separable quantum states) without decreasing the length of a waveguide

or requiring a strong filtering of emitted photons. The photons can be made

spectrally indistinguishable, if necessary. [Section 2.2]

2. That can generate polarization-entangled photon pairs, for its use in multi-

frequency QKD networks, with an enormous bandwidth (∼ 160 nm for a type

II configuration!!). [Section 2.3]

• We have demonstrated that polarization-entangled paired photons generated in a

semiconductor Bragg reflection waveguide clearly violate the CHSH inequality, so it

can be considered an expedient source of high-quality polarization-entangled two-

photon states. [Section 2.4]

• We have presented a new way how to increase significantly the amount of two-

photon spatial entanglement (massive spatial entanglement) generated via SPDC by
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means of the use of state of the art chirped quasi-phase-matching nonlinear crystals.

[Section 3.2]

• We have demonstrated a novel method of SPDC generation of entangled photon

pairs in the OAM degree of freedom based on the periodically poled silica fibers

with a thermally induced non-linearity. [Section 3.3]

• We have shown a new, highly scalable and easily implementable experimental config-

uration to observe the spatial two-dimensional random walks under a great variety

of circumstances, which allow to simulate many different quantum systems and pro-

tocols based on the quantum random walk concept, under the presence of diverse

environmental effects: dynamical spatial disorder, dynamical dephasing without spa-

tial disorder and static spatial disorder. The last case drove us to the observation of

Anderson localization. [Section 4.2]

• We have proposed an experimental scheme for the observation of transverse Anderson

localization of partially coherent light with a tunable degree of coherence. The

degree of coherence is tuned by injecting one photon of a fully coherent two-photon

entangled state into waveguides with a different finite amount of supported guided

modes. Our proposal is experimentally feasible taking into an account nowadays

mature semiconductor technologies. [Section 4.3]

It is also worthy to mention, that the evolution of communication systems and computing

tools in our world seems to be unstoppable. There will be always a pushing force for

higher transmitting rates, more complex computation tasks and higher securities of com-

munication channels. Where classical technologies might be touching theirs performance

boundaries, the quantum world can offer further enhancement to step over these classi-

cal limits. One of the most distinguishing and peculiar feature of the quantum world is

entanglement, that not only has profound theoretical implications for our understanding

of Nature, but it can also provide some possible practical applications in a not-so-distant

future.
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Appendix A

Searching for all Guided Modes in

Waveguides

The search for all non-radiative guided modes that can propagate in a waveguide represents

a mathematical challenge in many occasions. We describe here three different methods for

obtaining these modes under various circumstances. All methods considered here share

the consideration of longitudinal homogeneity of waveguides that significantly reduces the

complexity of the calculation. The first two methods are dedicated to the analysis of

BRWs. The transfer matrix method is the simplest one and offers a deep physical insight

into the functionality of Bragg reflectors. The other method used to analyze BRW is a

numerical method based on the finite element method in a scalar formulation, which can

be applied for 1D or 2D BRWs with a simple rectangular structure. The last method

considered in this appendix describes a procedure for solving the Helmholtz equation for

ring fibres.

A.1 Transfer Matrix Approach

The simplest case of a periodically stratified media, composed of two layers of thickness

t1 and t2 that alternate with a period Λ = t1 + t2, has been mathematically analysed by

Yeh and his co-workers [212, 213]. We only mention the most important results that are

essential for BRWs. As it can be found in [212], the refractive index profile along the

y-axis for the simplest structure can be expressed as

n (y) =

{

n2 nΛ < y < nΛ+ t2,

n1 nΛ+ t2 < y < (n+ 1)Λ,
(A.1)
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Figure A.1: Stratified medium with two alternating layers representing a Bragg reflector.

where n1 and n2 are refraction indices of layers, as shown in Fig.A.1. According to the

orientation of E andH with respect to the interfaces between layers, we can distinguish two

polarizations - the traverse electric field (TE), where only non-zero components are Ex,Hy

and Hz, and the traverse magnetic field (TM), with non-vanishing components Hx, Ey

and Ez. For a description of propagation is sufficient only to take into account Ex (Hx),

because other components are related to them by the Maxwell equations. The continuity

requirements on the layers interfaces lead to differences in the form of fields transformation

relations. A field propagating along the z-axis, with the propagation constant β, can be

written as E (y, z) = E (y) eiβ.z, where E(y) is the traverse profile of the TE field. The

electric field in each layer can be expressed as a sum of two counter-propagating waves.

The expression for the first layer in a single period n is

E(y, z) =
(

an.e
iky(x−n∆) + bn.e

−iky(x−n∆)
)

eiβz. (A.2)

For the second one, the coefficients only interchange (an, bn) ↔ (cn, dn). Enforcing bound-

ary conditions for TE waves at the interface between layers, one can easily find the trans-

formation matrices between (an, bn) coefficients

(

an−1

bn−1

)

=

(

ATE BTE

CTE DTE

)(

an

bn

)

, (A.3)

where the matrix elements are:
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ATE = e−ik1yt1

[

cos (k2yt2)−
i

2

(

k2y
k1y

+
k1y
k2y

)

sin (k2yt2)

]

,

BTE = eik1yt1
[

− i

2

(

k2y
k1y

+
k1y
k2y

)

sin (k2yt2)

]

,

CTE = e−ik1yt1

[

i

2

(

k2y
k1y

+
k1y
k2y

)

sin (k2yt2)

]

,

DTE = eik1yt1
[

cos (k2yt2) +
i

2

(

k2y
k1y

+
k1y
k2y

)

sin (k2yt2)

]

. (A.4)

Coefficients of the transfer matrix for the TM wave are equal to

ATM = e−ik1yt1

[

cos (k2yt2)−
i

2

(

n21k2y
n22k1y

+
n22k1y
n21k2y

)

sin (k2yt2)

]

,

BTM = eik1yt1
[

− i

2

(

n22k1y
n21k2y

− n21k2y
n22k1y

)

sin (k2yt2)

]

,

CTM = e−ik1yt1

[

i

2

(

n22k1y
n21k2y

− n21k2y
n22k1y

)

sin (k2yt2)

]

,

DTM = eik1yt1
[

cos (k2yt2) +
i

2

(

n21k2y
n22k1y

+
n22k1y
n21k2y

)

sin (k2yt2)

]

. (A.5)

It is relevant to stress that for n22k1y = n21k2y the Brewster angle is reached and both

reflected and incident TM waves are mutually independent.

From solid state theory [214] is well-known that a periodic potential induced by atoms

in crystal lattices governs the movement of electrons in the form of Bloch waves. In the

same way, fields in a periodic photonic structure, as introduced in Eq.(A.1), exhibit similar

behaviour as electrons, when the position is translated by a multiple of period Λ. According

to the Floquet theorem, for a wave propagating in a layered media, EK(y + Λ, z) =

eiKΛEK(y)eiβz, where K is the Bloch wave-number and EK(y +Λ) = EK(y) is a periodic

function. Including this, the transformation (translation) matrix Eq.(A.3) is then equal

to the phase-shift eiKΛ that is the solution of eigenvalue equation

(

A B

C D

)(

an

bd

)

= eiKΛ

(

an

bd

)

. (A.6)

In compliance with the Floquet theorem, the exponential function on the right is the

eigenvalue of the transformation matrix on the left side. Solving this equation for K allows

us to find the relationship of K with β and ω
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K (β, ω) =
1

∆
cos−1

[

1

2
(A+D)

]

. (A.7)

For |12 (A+D) | < 1 the Bloch wave number is a real number and represents a freely

propagating wave. On the other hand, for |12 (A+D) | > 1 K = mπ
Λ + iKi, where Ki

is the imaginary part of K, Bloch waves are evanescent. For the functionality of BRWs,

the most important situation is |12 (A+D) | = 1, because in that situation, the wave-

number K lies in the photonic (forbidden) stop-band of the layered structure. In this

event, the wave is not propagated, but fully reflected, in a layered medium - that is the

underlying principle of BRWs. Modes that are based on this principle are called Bragg

modes. The optimal reflection is reached when a wave acquires in each layer π/4 phase-shift

(t1.k1y = t2.k2y = π/4) , which ensures that K lies in the middle of a stop-band. Note that

when the Brewster angle is reached for TM waves, the width of these stop-bands shrinks

to zero.

Having the basic matrix formalism for layered media in our hand, we proceed with the

simplest case of 1D BRWs with the core in the center surrounded by two Bragg reflectors.

More details can be found in [215] as only main results are shown here. For the purpose

of obtaining the dispersion relation of guided Bragg modes from the Helmholtz equation

∆ ~E +
[

k20n
2(y)− β2

]

~E = 0, (A.8)

the electromagnetic field is considered to have the form

~E(y, z, t) = ~E(y)e(iβz−iω·t). (A.9)

The transverse wave-number of guided modes in each layer of the Bragg reflector is equal

to

kiy =
√

k20n
2
i − β2 for i = 1, 2. (A.10)

Firstly, we consider the case of TE mode. For the lowest order Bragg mode, the electric

field in the core can be described as

Ex (y) =

{

C1 cos (kc.y)
tc
2 ≥ |y|,

C2.EK,TE

(

y − tc
2

)

eiKTE(y− tc
2 ) tc

2 < |y|.
(A.11)

whereEK,TE

(

y − tc
2

)

describes Bragg modes in the claddings, originating from the Floquet

theorem for the Bloch numberKTE . In the Bragg reflector (cladding), we use an expression
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introduced earlier for a layered structure [Eq. (A.2)] and express the electric field in the

cladding as

Ex (y) =

{

ane
ik1y(y− tc

2
−nΛ) + bne

−ik1y(y− tc
2
−nΛ) nΛ ≤

(

y − tc
2

)

≤ nΛ+ t1,

cne
ik2y(y− tc

2
−nΛ−t1) + dne

−ik2y(y− tc
2
−nΛ−t1) nΛ+ t1 ≤

(

y − tc
2

)

≤ (n+ 1)Λ.

(A.12)

Using the continuity requirements for Ex and Hz

(

∼ ∂Ex

∂y

)

at the interface between the

core and adjacent claddings, the obtained dispersion relation is

1

kc
cot

(

tckc
2

)

=

(−i
k1y

)

eiKTEΛ −ATE +BTE

eiKTEΛ −ATE −BTE
. (A.13)

Secondly, we focus on the TM mode that takes the form

Hx (y) =











C1 cos (kc.y) 0 ≤ y ≤ tc
2 , n

2
1k2y < n22k1y,

C1 sin (kc.y) 0 ≤ y ≤ tc
2 , n

2
1k2y > n22k1y,

C2.HK,TM

(

y − tc
2

)

eiKTM(y− tc
2 ) tc

2 < y.

(A.14)

The function HK,TM (y) has the same form of Eq.(A.12) for the Bloch vector KTM . The

boundary requirements for Hx and Ez

(

∼ ∂Hx

∂y

)

lead to following dispersion relations

1

kc
cot

(

tckc
2

)

=
−i
k1

(

n1
nc

)2 eiKTMΛ −ATM +BTM

eiKTMΛ −ATM −BTM
n21k2 < n22k1 (A.15)

and

kc cot

(

tckc
2

)

= ik1

(

nc
n1

)2 eiKTMΛ −ATM −BTM

eiKTMΛ −ATM +BTM
n21k2 > n22k1. (A.16)

Effective indices of Bragg modes are then obtained from Eq.(A.13), Eq.(A.15) and

Eq.(A.16) for given waveguide parameters.

A.2 Numerical Methods Based on Discrete Approximations

Numerical methods based on discrete approximations, such as the finite element method

(FEM) or the finite difference method (FDM), allow us directly determine all guided modes

of a waveguide. We introduce only the principle of 2D-FEM method based on the Galerkin
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approach. As it has been mentioned, waveguides are considered to be homogeneous in the

longitudinal direction (along z-axis). Moreover, we assume that the width of the waveguide

core (along x-axis) is larger than its thickness (along y-axis), and larger than other layers,

then the influence of vertical boundaries can be neglected [151]. These premises simplify

our calculation efforts and allow us to use the scalar finite element method (SC-FEM)

[211, A13]. The main advantage of this method is a high resistance against spurious

(non-physical) eigen-solutions as compared with the finite difference method. Moreover,

resulting matrices for the SC-FEM of the generalized eigen-equation are usually smaller

and also symmetrical. In the following, we briefly describe one of the FEM method called

the Galerkin weighed residual method.

From the Maxwell equations, it is straightforward to derive the following equations for

TE and TM guided modes in a 2D waveguide

∂2Ex

∂x2
+
∂2Ex

∂y2
+
(

k20ǫr − β2
)

Ex = 0, (A.17)

1

ǫr

[

∂2Hx

∂x2
+
∂2Hx

∂y2

]

+

(

k20 −
β2

ǫr

)

Hx = 0. (A.18)

Since both equations are formally similar, the only difference being caused by different

continuity conditions on the boundaries, we only present here the solution of Eq. (A.17). In

order to find an approximated solution of Eq. (A.17), the transverse area of the waveguide

and surroundings is divided into many small areas (Fig.A.2), alias elements. In each

element e = (i, j) Ex(x, y) is approximated by the function ue(x, y). The weighted residual

function re is then defined as

re =

∫

Ωe

dSwe

[

∂2ue

∂x2
+
∂2ue

∂y2
− (β2 − ǫr · k20)ue

]

, (A.19)

where the parameter Ωe is the area of the given element e, with boundary Γe, and we is

the weight function. In each element, the condition re ≈ 0 must be fulfilled.

The shape of each element corresponds to the profile of the waveguide in a such way,

that the boundaries of the element must be aligned with the position of the discontinuities

of the relative permittivity ǫr (x, y). Since we are interested in a rectangular waveguide,

the rectangular shape of elements was selected. The organization of the elements into the

grid is illustrated in Fig.(A.2).

In each element, the unknown function ue is expressed in the form of a summation
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x

y

(1,1) (mx,1)

(1,my) (mx,my)

(i,j)

dx
(i,j)

d y
(i

,j)

Figure A.2: Shape of the grid used in numerical calculations. Numbers of elements along

the x and y axes are denoted as mx and my, respectively; d
(i,j)
x and d

(i,j)
y mean lengths of

an (i, j)-th element. The overall number of used nodes is M = (mx + 1)(my + 1).

ue =

4
∑

j=1

N e
j u

e
j , (A.20)

where N e
j (x, y) are the Lagrange interpolation polynomials in the given element e. The

polynomial N e
j corresponds to node j = 1, 2, 3, 4 with the following form

N e(x, y)1 = − x

dex
− y

dey
+

xy

dexd
e
y

+ 1,

N e(x, y)2 =
x

dex
− xy

dexd
e
y

,

N e(x, y)3 =
xy

dexd
e
y

,

N e(x, y)4 =
y

dey
− xy

dexd
e
y

. (A.21)

According to the formulation of Galerkin’s method, the weight function corresponds

to the interpolation functions N e
j (x, y), j = 1 . . . 4, so

∫

Ωe

dSN e
i

4
∑

j=1

[

∂2N e
j

∂x2
+
∂2Nj

∂y2
− (β2 − ǫr · k20)

]

uej = 0. (A.22)

Using relations
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N e
i

∂2N e
j

∂x2
=

∂

∂x

(

N e
i

∂N e
j

∂x

)

− ∂N e
i

∂x

∂N e
j

∂x
, (A.23)

N e
i

∂2N e
j

∂y2
=

∂

∂y

(

N e
i

∂N e
j

∂y

)

− ∂N e
i

∂y

∂N e
j

∂y
, (A.24)

we obtain

∫

Ωe

dS
[

∂
∂x

(

N e
i

∂Ne
j

∂x

)

− ∂Ne
i

∂x

∂Ne
j

∂x + ∂
∂y

(

N e
i

∂Ne
j

∂y

)

−

− ∂Ne
i

∂y

∂Ne
j

∂y − (β2 − ǫr · k20)N e
i N

e
j

]

uej = 0. (A.25)

Equation (A.25) can be now rewritten as

4
∑

j=1

(−Re
ij +Ge

ij + T e
ij)u

e
j = β2

4
∑

j=1

Ee
iju

e
j ; ∀i = 1 . . . 4. (A.26)

where we define the matrices

Re
ij =

∫

Ωe

dS

[

∂Ni(x, y)

∂x

∂Nj(x, y)

∂x
+
∂Ni(x, y)

∂y

∂Nj(x, y)

∂y

]

, (A.27)

Ge
ij =

∫

Ωe

dS

[

∂

∂x

(

N e
i

∂N e
j

∂x

)

+
∂

∂y

(

N e
i

∂N e
j

∂y

)]

=

∮

Γe

d~s

[

N e
i

∂N e
j

∂x
~x+N e

i

∂N e
j

∂y
~y

]

, (A.28)

T e
ij = k20

∫

Ωe

dSǫrN
e
i N

e
j , (A.29)

Ee
ij =

∫

Ωe

dSN e
i N

e
j . (A.30)

All these components of the matrices are calculated for all nodes in each element.

In Eq. (A.28) the Green’s theorem was used. The matrix components Ge
ij vanish on

the internal boundaries between two neighboring elements. On the boundary Γ of the

computation area, they are equal to zero according to the assumed Dirichlet condition

u|(x,y)∈Γ = 0.

Next, we can define the matrix Ke
ij corresponding to the left side of Eq. (A.26), i.e.

Ke
ij = −Re

ij +Ge
ij + T e

ij . Each component of matrices Ke
ij and Ee

ij describes a correlation
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between two nodes in the discreet grid. As a result, we obtain a generalized eigenvalue

problem of the form Ku = β2Eu. The vector u = (u1, u2, . . . , uNn) describes the ampli-

tude of the field in all nodes. By putting u to Eq. (A.20) the approximated distribution

of the electric (magnetic) intensity field in an entire area is recovered.

Typically, it is necessary to use the sparse-matrix representation for large matrices and

then to apply the iterative eigen-value solver, such as the Arnoldi algorithm [216]. But

that is not necessary in this case, therefore the direct-solver of eiqen-problems from the

Intel MKL library can be used.

A.3 Guided Modes in a Ring Fiber

In order to derive hybrid guided modes of a ring fibre1 presented in Fig.3.5(a),we start

with a re-writing the Helmholtz equation from the Cartesian coordinate system to the

cylindrical system. This means solving

∆E+ k20ǫr (r)E = 0, (A.31)

using the Laplacian operator ∆ in the cylindrical form

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
. (A.32)

For the magnetic field H the equation is similar. Fields E and H can be represented solely

using longitudinal components along the z-axis [150, 151]. Considering the rotational

symmetry of a fiber waveguide, the longitudinal component Ez can be express as

Ez (r, θ, z) = f(r)g(θ)eiβz. (A.33)

The expression Eq.(A.33) is the same forHz. The partial differential equation Eq.(A.31)

can be solved employing the variable separation method. The corresponding functions f(r)

and g(θ) describe azimuthal and lateral profiles of the electric (magnetic) field. Inserting

Eq.(A.33) to Eq.(A.31), one obtains

r2

f(r)

∂2f(r)

∂r2
+

r

f(r)

∂f(r)

∂r
+ r2 [ǫr (r)− neff ] k

2
0 +

1

g (θ)

∂2g (θ)

∂θ2
= 0. (A.34)

1In the previous part of this appendix, solely guided modes (TE,TM) having significant (non-vanishing)
one field component were considered. For the ring fibre, we need to abandon this simplification and look
for a hybrid modes that poses all field components.
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The lateral function g(θ) is considered to be an oscillating periodical function with the

period n, therefore:

1

g (θ)

∂2g (θ)

∂θ2
= −n2 (A.35)

and
r2

f(r)

∂2f(r)

∂r2
+

r

f(r)

∂f(r)

∂r
+ r2 [ǫr (r)− neff ] k

2
0 = n2. (A.36)

Solutions of Eq.(A.35) are equal to:

g(θ) = sin (nθ + φ) for Ez, (A.37)

g(θ) = cos (nθ + φ) for Hz, (A.38)

φ is a constant phase-shift. Solutions of Eq. (A.36) have to reflect a complexity of the

spatial azimuthal profile of a waveguide. The profile, which is shown in Fig.3.5 (b), can

be disintegrated to the three separated areas, that the relative susceptibility reads

ǫr(r) =











ǫ1 0 ≤ r < r1,

ǫ2 r1 ≤ r ≤ r2,

ǫ3 r2 < r <∞.

(A.39)

Upper limit ∞ has been set from a convention and also considering the localization of

field in the proximity of the ring core. It is clear, that the final solution has the form of a

sum of contributions originating in each interval of the azimuthal coordinate r. A solution

of Eq.(A.36) for the electric field Ez is given by

Ez (r, θ, z) = eiβz











AnIn (k1r) rect[0,r1] (r)

+ [BnJn (k2r) + CnYn (k2r)] rect[r1,r2] (r)

+DnKn (k3r) rect[r2,∞] (r)











sin (nθ + φ) (A.40)

and for the magnetic field Hz

Hz (r, θ, z) = eiβz











EnIn (k1r) rect[0,r1] (r)

+ [FnJn (k2r) +GnYn (k2r)] rect[r1,r2] (r)

+HnKn (k3r) rect[r2,∞] (r)











cos (nθ + φ) , (A.41)
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where Jn (Yn) is the Bessel function of the first (second) kind and In (Kn) is the modified

Bessel function of the first (second) kind. The function rect[a,b](r) is equal to 1 for r ∈ 〈a, b〉
and 0 elsewhere. Constants An, Bn, .. etc. are calculated as a solution of the characteristic

equation as we explain in following lines. The magnitude of transversal wave-vector in

each area has form

k21 = β2 − k20ǫ1, (A.42)

k22 = k20ǫ2 − β2, (A.43)

k23 = β2 − k20ǫ3. (A.44)

Missing components of an electromagnetic field can be straightforwardly derived from

the Maxwell equations. Electric field components write as:

Er (r, θ) =
i

ω2ǫrǫ0µ− β2

[

β
∂Ez

∂r
+
µω

r

∂Hz

∂θ

]

(A.45)

and

Eθ (r, θ) =
i

ω2ǫrǫ0µ− β2

[

β

r

∂Ez

∂θ
− µω

∂Hz

∂r

]

. (A.46)

Magnetic field components are following:

Hr (r, θ) =
i

ω2ǫrǫ0µ− β2

[

β
∂Hz

∂r
− ωǫrǫ0

r

∂Ez

∂θ

]

(A.47)

and

Hθ (r, θ) =
i

ω2ǫrǫ0µ− β2

[

β

r

∂Hz

∂θ
+ ωǫrǫ0

∂Ez

∂r

]

. (A.48)

The next basic step towards the characteristic equation is utilization of continuity

requirements at interfaces of the core and inner-and-outer claddings at r = r1, r2 for

Ez,Hz, Eθ and Hθ. All eight conditions put together can be written as

Ez

(

r = r−1 , θ
)

= Ez

(

r = r+1 , θ
)

, Hz

(

r = r−1 , θ
)

= Hz

(

r = r+1 , θ
)

,

Ez

(

r = r−2 , θ
)

= Ez

(

r = r+2 , θ
)

, Hz

(

r = r−2 , θ
)

= Hz

(

r = r+2 , θ
)

,

Eθ

(

r = r−1 , θ
)

= Ez

(

r = r+1 , θ
)

, Hθ

(

r = r−1 , θ
)

= Hθ

(

r = r+1 , θ
)

,

Eθ

(

r = r−2 , θ
)

= Ez

(

r = r+2 , θ
)

, Hθ

(

r = r−2 , θ
)

= Hθ

(

r = r+2 , θ
)

. (A.49)
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Super-scripts + and - mean left and right sides of the interface placed in the position

r. Inserting Eq.(A.40) and Eq.(A.41) to Eq.(A.45-A.48), one obtains a set of equations

from Eq.(A.49) for an unknown vector u = (An, Bn, Cn,Dn, En, Fn, Gn,Hn)
T . The set of

equations can be reorganised to the matrix X as follows



































In (k1r1) −Jn (k2r1) −Yn (k2r1) 0 0

0 Jn (k2r2) Yn (k2r2) −Kn (k3r2) 0

−nβIn(k1r1)
r1k21

−nβJn(k2r1)
r1k22

−nβYn(k2r1)
r1k22

0 ωµI′n(k1r1)
k1

0 nβJn(k2r2)
r2k22

nβYn(k2r2)
r2k22

nβKn(k3r2)
r2k23

0

0 0 0 0 In (k1r1)

0 0 0 0 0

−ωǫ0ǫ1I′n(k1.r1)
k1

−ωǫ0ǫ2J ′
n(k2r1)
k2

−ωǫ0ǫ2Y ′
n(k2r1)
k2

0 nβ.In(k1r1)
r1k21

0 ωǫ0ǫ2J ′
n(k2r2)
k2

ωǫ0ǫ2Y ′
n(k2r2)
k2

ωǫ0ǫ3K ′
n(k3r2)

k3
0

0 0 0

0 0 0
ωµJ ′

n(k2r1)
k2

ωµY ′
n(k2r1)
k2

0

−ωµJ ′
n(k2r2)
k2

−ωµY ′
n(k2r2)
k2

−ωµK ′
n(k3r2)
k3

−Jn (k2r1) −Yn (k2r1) 0

Jn (k2r2) Yn (k2r2) −Kn (k3r2)
nβJn(k2r1)

r1k22

nβYn(k2r1)
r1k22

0

−nβJn(k2r2)
r2k22

−nβYn(k2r2)
r2k22

−nβKn(k3r2)
r2k23

































































An

Bn

Cn

Dn

En

Fn

Gn

Hn

































=

































0

0

0

0

0

0

0

0

































, (A.50)

that writes in the simplest form Xu = 0. The apostrophe in Eq.(A.50) denotes ∂
∂r . A

non-trivial solution of this equation imposes the condition on the determinant of X that

must be equal to zero. This requirement results into the characteristic equation (etc. the

dispersion equation) for the propagation constant β of hybrid modes of order n. Based

on the knowledge of β, the profile of whole electromagnetic field of a guided mode can be

constructed using Eq.(A.45-A.48). We have generally considered only hybrid modes, which

have significantly contributing most of E,H components, however for some values of n the

characteristic equation factorizes in a such way, that only-electric (TE) or only-magnetic

(TM) modes are recovered.
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Appendix B

Classical and Quantum Random

Walk

Here, we make a short overview of the fundamentals of random walks. We start with

the classical random walk (CRW) and later on we introduce the concept of quantum

random walk (QRW), which represents an advance tool for many quantum computing

algorithms [8]. We review both discrete and continuous versions of QRWs.

B.1 Classical Random Walk

We start with the simple case of a classical random walk, which is usually considered

as a Markovian process (or chain), where each step depends only on the actual position

and the transition probabilities of leaving this position to the next ones. The Brownian

movement is a typical example of a classical randomn walk. Classical random walks play

an important role in the modern financial theory, chemistry and biology [168].

The fundamental principle can be understand using the simplest case of walking on a

line, as shown in Fig.B.1(a). However, one can also consider more complicated topological

structures in many dimensions. In the current position i, the classical walker has some

probability of going to the left PL(i) or to the right PR(i), in each step, but it can do

only one particular movement. Without loosing a generality, let set PL(i) = PR(i) = 0.5.

Then, after n-steps the probability distribution of finding the walker in the position i is

equal to
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Figure B.1: (a) Simple random walk on a line. (b) Position probabilities of detecting a
walker after 40 steps for QRW with a different strength of decoherence (see the legend).
Note, that the CRW corresponds to p equal to 1.

P (i, n) =























1
2n

(

n
n+i
2

)

i = −n,−n+ 2, ..., n − 2, n,

0 i = −n+ 1,−n+ 3, ...n − 1,

0 |i| > n,

(B.1)

which corresponds to components of the Pascal triangle. The standard deviation σ depends

on the amount of steps via the function ∼ √
n, which reflects a diffusive propagation. The

probability distribution after 40 steps is depicted in Fig.B.1(b) for p=1.

B.2 Discrete Quantum Random Walk

The main principle of a quantum random walk is the superposition of probability ampli-

tudes, or in other words, the interference effect. This allows the walker to move faster

σ ∼ n. This corresponds to a ballistic propagation.

We first consider the discrete quantum random walk (DQRW), which is a quantum

mechanic analogy of the classical one [167]. The walker moves in the position Hilbert space

HP which is spanned by position (site) vectors {|j〉 : j ∈ Z, 〈i|j〉 = δij}. The decision

of where to go (coin-tossing) is done in the coin Hilbert space Hc spanned by vectors

{| ↑〉, | ↓〉}. The stroboscopic coherent evolution of DQRW is given by the operator

Û = ŜĤ. The coin-tossing is represent an unitary operator, usually by the Hadamard
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operator, with matrix representation

Ĥ =
1√
2

(

1 1

1 −1

)

. (B.2)

The operator Ĥ creates superposition states of input states. In a general case, the coin-

tossing operator can be parametrized by α, θ, ψ and expressed as

Ĥ (α, θ, φ) =

( √
α

√
1− αeiθ√

1− αeiθ −√
αei(θ+φ)

)

. (B.3)

The Hadamard operator is recovered for α = 0.5 and θ = ψ = 0. The operator Ŝ is

responsible for the walker jump to next position according to the result of tossing

Ŝ =
∑

i

(|i+ 1, ↑〉〈i, ↑ |+ |i− 1, ↓〉〈i, ↓ |) . (B.4)

Now, let us consider the walker in an initial state |ψ(0)〉, the next step is |ψ(1)〉 =

Û |Ψ(0)〉, so after performing n-steps, the final state is |ψ(n)〉 = Ûn|ψ(0)〉. An example

of coherent evolution for the initial state |ψ(0)〉 = |0〉 ⊗ 1√
2
(| ↑〉+ | ↓〉) is depicted in Fig.

B.1(b) for p=0.

To incorporate the effect of decoherence on the evolution of walker, density matrices

have to be used. The density matrix ρ̂(n) is in each step transformed to the next ρ̂(n+1)

via a completely positive (CP) map

ρ̂(n+1) = Û ρ̂(n)Û †, (B.5)

Presence of decoherence induces the transition from the quantum regime to the classical

regime. In the concept of QM measurement, this corresponds to a constant observation of

the walker’s actual state in both spaces, i.e., either the position or coin space. There are

several equivalent ways how to introduce decoherence. Firstly, decoherence can be caused

by a pure dephasing [197] represented by random phase kicks in each step (see the Eq.4.6

in the Section 3.2 ). Another source of decoherence is coupling the walker to a reservoir

(bath), representing a typical fluctuating environment. The dynamic of a walker can be

described via the Limblad equation in the following form

ρ̂(n+1) = (1− p) Û ρ̂nÛ † + p
∑

j∈HP

K̂jÛ ρ̂
(n)Û †K̂†

j , (B.6)

where p ∈ 〈0, 1〉 is a dimensionless parameter describing the strength of the reservoir
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coupling, and K̂j , for sites j ∈ Z, are Kraus operators [8]. Only diagonal elements of

the density matrix are preserved in the second non-unitary term of Eq.(B.6). Therefore,

as the parameter p increases, off-diagonal terms of ρ̂, representing correlations (mutual

coherences), are washed out.

B.3 Continuous Quantum Random Walk

Now, we deal with the situation when the walker evolves continuously in time. Once

again, the walker is moving between sites of an infinite line. Its coherent propagation can

be described by the Hamiltonian

Ĥ =
∑

j∈Z
βj â

†
j âj +

∑

k,l∈Z
k 6=l

κk,lâ
†
kâl, (B.7)

βj are site energies and κk,l are coupling (hoping) rates between different sites. Note that

this Hamiltonian also describes the tight-binding model of an electron hoping between

different atom sites in a crystal lattice [217]. For the walk on a line, where the walker moves

only between adjacent sites, couplings can be express as κk,l = κk,k+1δk+1,l + κk,k−1δk−1,l.

The coherent evolution of the state |ψ(t)〉 is governed by the Schrödinger equation

∂|ψ(t)〉
∂t

=
1

i
Ĥ|ψ(t)〉. (B.8)

This equation represents a set of ODEs that can be solved, for example, by the Runga-

Kutta methods [218]. For the uniformly ordered sites on a line, the solution has the form

of Bessel functions [170]. When decoherence is present, the walker’s propagation is driven

by the Limblad master equation for the density matrix [171]

i
∂ρ̂

∂t
=
[

ρ̂, Ĥ
]

+ L [ρ̂] , (B.9)

where L is the Limblad superoperator, which is responsible for the effects of the noisy

environment. This superoperator can be written as

L [ρ̂] =
∑

i

γi

(

Âiρ̂Â
†
i −

1

2
ρ̂Â†

i Âi −
1

2
Â†

i Âiρ̂

)

, (B.10)

where Âi are Limblad operators. The coefficients γi reflect the interaction strength of sites

i with the reservoir.
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Appendix C

Quantifying the First-Order

Coherence of the Single Photon

C.1 Amount of Incoherence

The density matrix that characterizes the quantum state of one of the photons that con-

stitute the pair, for instance ρ̂A for photon A, is obtained by tracing out the variables

describing photon B, so

ρ̂A =

∫

dx

∫

dx′ρA(x, x
′)|x〉A〈x′|A, (C.1)

where

ρA(x, x
′) =

∫

dyΨ(x, y)Ψ∗ (x′, y
)

. (C.2)

Notice that ρA(x, x
′) is the well-known first-order correlation function G

(1)
A (x, x′) of photon

A, defined as

G
(1)
A (x, x′) = Tr

[

ρ̂AÊ
(−)
A (x) Ê

(+)
A

(

x′
)

]

, (C.3)

where Ê
(+)
A and Ê

(−)
A are the positive- and negative-frequency electric-field operators [202].

The first-order correlation function for photon B is defined similarly.

Making use of Eqs.(4.16) and (C.1), we obtain

G
(1)
A (x, x′) ∼ exp

[

− (α+ β) x2 − (α+ β) x′2 +
(α− β)2

2 (α+ β)

(

x+ x′
)2

]

. (C.4)

The Gaussian form of two-photon amplitude, as defined in Eq.(4.16), allows us to quantify
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the width of photon A in the position space using G
(1)
A (x, x′). The rms spatial width of

photon A is

σ2 =

∫

dxx2G
(1)
A (x, x)

∫

dxG
(1)
A (x, x)

=
α+ β

16αβ
. (C.5)

The two-photon amplitude Ψ(p, q) in the transverse wave-number domain is equal to

Φ(q, k) ∼ exp

[

−(q + k)

16α

2

− (q − k)2

16β

]

. (C.6)

Similarly to the case considered above, the first-order correlation function in transverse

wave-number domain reads

G
(1)
A (q, q′) = Tr

[

ρ̂A â
†
A(q)âA(q

′)
]

. (C.7)

One can calculate the rms width of photon A in the transverse wave-number domain as

W 2 =

∫

dq q2G
(1)
A (q, q)

∫

dq G
(1)
A (q, q)

= α+ β. (C.8)

Here we quantify the first-order coherence of photon A as the product of its spatial beam

width (σ) by its width in the transverse wavevector domain (W )

γ = σW =
α+ β

4
√
αβ

, (C.9)

this parameter γ represents the amount of incoherence. For more details concerning quan-

tification of coherence, see [219]. Making use of Eqs.(C.5) and (C.9) one easily obtains

Eqs.(4.17) and (4.18) in the Section 4.3. The minimum value of γ is γ = 0.5. It corre-

sponds to a separable two-photon state with α = β. In this case, photon A (and photon

B) show first-order coherence. For entangled states, photon A is described by an incoher-

ent superposition of Hermite-Gauss modes, whose number increases with a corresponding

increase of the degree of entanglement between photons A and B. Therefore, increasing

values of γ correspond to photons with a lower degree of coherence.
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[A7] J. Svoziĺık and J. Peřina Jr., “Intense ultra-broadband down-conversion from ran-

domly poled nonlinear crystals,” Opt. Express 18, 27130 (2010).
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[A14] J. Svoziĺık and J. Peřina Jr., “Higher-order stochastic quasi-phase-matching in spon-

taneous parametric down-conversion,” Opt. Commun. 306, 113 (2013).
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