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Abstract

Deep learning has recently been enjoying an increasing popularity due to its suc-

cess in solving challenging tasks. In particular, deep learning has proven to be

effective in a large variety of computer vision tasks, such as image classification,

object recognition and image parsing. Contrary to previous research, which re-

quired engineered feature representations, designed by experts, in order to suc-

ceed, deep learning attempts to learn representation hierarchies automatically from

data. More recently, the trend has been to go deeper with representation hierar-

chies. Learning (very) deep representation hierarchies is a challenging task, which

involves the optimization of highly non-convex functions. Therefore, the search

for algorithms to ease the learning of (very) deep representation hierarchies from

data is extensive and ongoing.

In this thesis, we tackle the challenging problem of easing the learning of (very)

deep representation hierarchies. We present a hyper-parameter free, off-the-shelf,

simple and fast unsupervised algorithm to discover hidden structure from the input

data by enforcing a very strong form of sparsity. We study the applicability and

potential of the algorithm to learn representations of varying depth in a handful

of applications and domains, highlighting the ability of the algorithm to provide

discriminative feature representations that are able to achieve top performance.

Yet, while emphasizing the great value of unsupervised learning methods when

labeled data is scarce, the recent industrial success of deep learning has revolved

around supervised learning. Supervised learning is currently the focus of many

recent research advances, which have shown to excel at many computer vision

tasks. Top performing systems often involve very large and deep models, which

are not well suited for applications with time or memory limitations. More in

line with the current trends, we engage in making top performing models more

efficient, by designing very deep and thin models. Since training such very deep



models still appears to be a challenging task, we introduce a novel algorithm that

guides the training of very thin and deep models by hinting their intermediate rep-

resentations. Very deep and thin models trained by the proposed algorithm end

up extracting feature representations that are comparable or even better perform-

ing than the ones extracted by large state-of-the-art models, while compellingly

reducing the time and memory consumption of the model.
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Thanks to my parents, Gilbert and Maria Antònia, for all the support, for the under-
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1. INTRODUCTION

Building machines that see is a long lasting dream of many researchers. But what does it

mean to see? According to David Marr [1], “... vision is the process of discovering from images

what is present in the world, and where it is”. Computer vision a discipline that aims to enable

machines to see and interpret the visual world. But how can machines see? Computer vision

is often approached from a learning perspective, where a large amount of visual information

is presented to a machine in order to acquire knowledge and improve its own understanding

of the visual world. The study of computer algorithms that can learn from data is referred to

as machine learning. In the case of vision, machine learning algorithms use visual sensory

data to acquire knowledge and improve their own understanding of the visual world. This

learning is useful to accomplish many computer vision tasks, such as image classification,

object recognition, object detection and scene understanding among other.

Data used for learning is composed of input observations, sometimes followed by a desired

output value, called label. When desired output values are provided, the learning is said to

be supervised and is directed by the desired output values that algorithms attempt to predict.

When desired output values are not available, the learning is said to be unsupervised and aims

to discover hidden structure in the input data.

No matter the kind of learning, capturing visual information, such as what is present in the

world and where, directly from the raw input data is not trivial and often involves extremely

complex and non-linear functions [2] that are hard to discover. Many machine learning prob-

lems become easier if the input data is transformed into a representation that emphasizes its

most relevant characteristics.

Data representation is a crucial step to many machine learning algorithms. Representa-

tions provide meaningful features, which constitute explicit pieces of relevant information to

describe the observed data. There is no unique way to describe the data; outlining certain in-

formation comes at the expense of ignoring other information that may be hard to recover [1].

A good example to illustrate is presented by David Marr in [1] based on the Arabic and Roman

numeral systems: The Arabic system represents an integer as a sum of multiples of powers of

10, whereas the Roman system represents an integer as a combination of letters. However, the

usefulness of a representation relies on the task that we want to perform. Following the pre-

vious example, operations such as addition, subtraction or multiplication are easier to perform

when using the Arabic representation of numbers.

In this thesis, we will focus on representations of visual data for computer vision tasks.

There have been many attempts in the literature to handcraft representations, such as [3, 4].
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Nevertheless, handcrafted representations require a fair amount of domain knowledge and it is

not trivial how to evaluate whether such designed features are useful for a given task. Repre-

sentation learning is a field of machine learning, which explores and learns relevant represen-

tations, also called features, from the data. In the recent years, learned features have proven to

compete well or even outperform manually designed ones in many vision tasks such as image

classification and object recognition [5, 6, 7]. The goal of representation learning is to seek

and disentangle high level explanatory factors of variations in the observed data [8]. Factors

of variations are high level concepts that influence the way we perceive the data. For exam-

ple, if we consider an image of a dog, the factors of variations may include the position of the

dog, its morphology, its color, the viewing angle, and the illumination, among others. Rep-

resentations should capture the desirable factors of variations and discard the irrelevant ones.

Therefore, discovering useful representations is a non-trivial task, which requires a high level

of abstraction and understanding of the data.

Compositionality is a fundamental aspect of cognition [9, 10, 11]; we build complex con-

cepts out of simpler ones, e.g. the concept “young man” is composed of the simpler concepts

“young” and “man”. Likewise, we can apply composition rules to visual data: pixels can be

combined to form edges, which in turn can be combined to form more complex contours or

objects. Hence, discovered representations should be able capture the hierarchical (compo-

sitional) nature of the visual world. Figure 1.1 shows a representation hierarchy, also called

feature hierarchy, with increasing level of abstraction, following a natural progression from

lower level (pixels) to higher level structures (object contours).

Deep learning is a branch of representation learning based on the idea of compositional-

ity, which describes the world as a hierarchy of concepts, where more complex concepts are

defined in terms of simpler ones [12]. Deep learning assumes distributed representations of the

observed information and models high level concepts with increasing level of abstraction. The

depth in deep learning models refers to the number of levels of abstraction we want to learn.

The deeper we go in a representation hierarchy, the more abstract representations we expect to

find. Learning such a representation hierarchy is a challenging task [13, 14]. Deep learning

was popularized in 2006 with the introduction of successful approaches to learn deep feature

hierarchies [15, 16] and has been receiving increasing attention ever since. In 2012, deep learn-

ing became a major breakthrough in the computer vision community by outperforming, by a

large margin, classical computer vision methods on ILSVRC challenge [17]. Since then, deep

learning models have been successfully applied to a large variety of computer vision tasks.
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1. INTRODUCTION

(a) Pixels (b) Edges

(c) Object contours (d) More complex object contours

Figure 1.1: Visual data representation hierarchy: (a) pixels are combined to form (b) edges, which
are combined to form object contours (c), which in turn are combined to form complex object
contours (d). Visualizations (b)-(d) excerpted from [20].

More recently, the trend has been to go deeper with representation hierarchies. A fair amount

of work has been devoted to design very deep models that excel at many vision tasks. The

top performers of ILSVRC 2014 challenge [18, 19] built deep models with 19 and 22 levels

of abstraction respectively, highlighting the importance of depth. Along with the same trend,

research has also been devoted to proposing new approaches to tackle the challenging problem

of training very deep models.

In this thesis, we will study algorithms that attempt to learn deep representation hierarchies

from visual data. We will start from the early ideas of [15, 16] to train deep models and proceed

with a few steps in the same direction to tackle the problem of training deep models. Despite

the existing literature on unsupervised learning, current state-of-the-art algorithms can often

be unwieldy and, in many cases, are computationally intensive. We will attempt to address

the just-mentioned concerns with the introduction of a novel algorithm to learn discriminative

hierarchical features from the data. The main advantages of the proposed algorithm rely on

extracting potentially relevant characteristics of the input data and simplifying the training

process for practitioners, while being computationally efficient. We will exploit and extend

the properties of the algorithm to learn deep representations on a variety of image types and

problems, showing its ability to learn discriminative hierarchical features in different domains.

Yet, while emphasizing the usefulness of unsupervised methods when labeled data is scarce,

the recent industrial success of deep learning has revolved around supervised learning. Com-
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puter vision state-of-the-art top performing systems usually involve very large models, which

are not well suited for applications with time or memory limitations. Therefore, more in line

with the current trends, we will engage in making top performing models more efficient, by

designing very deep models with a limited number of features per representation level. Since

training the lower representation levels of very deep models still appears to be a challenging

task, we will contribute with a novel algorithm that guides the training of very deep models by

hinting their intermediate representations.

This thesis will proceed as follows:

Chapter 2: Background. In this chapter, we will cover the necessary background material

to understand the contributions of this thesis. To that end, we will introduce the notation and

terminology that we will use throughout the thesis.

Chapter 3: Meta-parameter free unsupervised sparse feature learning. In this chapter,

we will present one of the main contributions of this thesis. The great majority of state-of-

the-art algorithms involve tuning a few meta-parameters in order to train deep architectures

and/or are computationally expensive. Therefore, we will introduce a meta-parameter free, off-

the-shelf, simple and fast unsupervised learning algorithm, called Enforcing Population and

Lifetime Sparsity (EPLS), which provides discriminative features that generalize well. Results

will highlight the potential of the method when compared to other existing approaches.

Chapter 4: Training deep architectures by means of EPLS. In this chapter, we will build

on top of the previous idea and will exploit the algorithm’s properties to train deep learning

models. To that end, we will choose two applications that could benefit from our approach. We

will first consider the application of the algorithm to remote sensing data, which is character-

ized by its scarcity of labeled data. We will use this data to provide an in-depth analysis on

the benefits of our method to extract hierarchical representations as well as the influence of the

model’s design on its performance. Second, we will tackle an image parsing problem and will

extend our method to make it proficient at this task. Results will again highlight the potential

of the method compared to other standard approaches.
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Chapter 5: FitNets: Hints for Thin Deep Nets. In this chapter, we will present another

important contribution of this thesis, which addresses the model compression problem, to mit-

igate the time and memory requirements of state-of-the-art models. We will design very deep

models by limiting their number of features per representation level. In order to ease the train-

ing of such models, we will use hints from a top performing state-of-the-art model to assist the

training of our compressed model. Results will show that compressed very deep models are

able to extract feature representations that are comparable or even better performing than the

ones extracted by state-of-the-art models, while compellingly reducing the time and memory

consumption of the model.

Chapter 6: Conclusions. In this chapter, we will draw conclusions on the work presented in

this thesis. To that end, we will emphasize the impact of the presented contributions, we will

present possible future lines of research and will discuss some of the many problems that still

remain unaddressed.

Much of the work presented in the above-described chapters has appeared in other publica-

tions. The results of Chapter 3 first appeared in [21]. Chapter 4 includes remote sensing results

that came out in [22] and that are accepted for publication in [23]; and image parsing results

that appeared in [24]. Finally, Chapter 5 was presented in [25].
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2. BACKGROUND

In this chapter, we will introduce the necessary notation and most relevant concepts that we

will use throughout this thesis. We will start by describing how deep learning models are built

in Section 2.1. Then, in Section 2.2, we will review the classical methods to train such models,

discuss the difficulties encountered in this process and detail several state-of-the-art methods

that attempt to overcome these difficulties, paying special attention to the ones that will show

up later in the thesis. We will also outline how to use deep learning models to extract feature

hierarchies in Section 2.3 and, finally, we will comment on commonly used pre-processing

methods to prepare the data for training in Section 2.4.

2.1 Deep Learning Models

As introduced in Chapter 1, deep learning seeks to describe the world as a hierarchy of ab-

stractions. Deep learning refers to a type of computational models based on artificial neural

networks. These networks are learning systems composed of interconnected processing units,

called neurons, which communicate with each other. These units are organized in layers. Each

layer corresponds to one level of abstraction in the feature hierarchy. Deep learning models

are built by stacking together multiple layers. The design of a network, i.e. number of layers,

number of units or connections among units, defines its architecture. The number of layers

defines the depth of the architecture.

In this thesis, we will focus on a specific type of architectures, where there are no intra-layer

connections between units and the information moves from the input units to the output units.

Moreover, we will refer to architectures with one representation layer as shallow or single layer

architectures, whereas we will refer to architecture with at least two representation layers as

deep architectures.

2.1.1 Single layer Perceptron

A Single Layer Perceptron (SLP) [26] is the simplest kind of neural network trained as a binary

classifier. It consists of a set of input units connected to an output unit by means of a set of

learnable weights. The unit has an additional type of weight called bias, which allows to shift

its output. Biases and weights form the parameters of a neural network. Figure 2.1(a) illustrates

the SLP architecture.
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2.1 Deep Learning Models

(a) Single Layer Perceptron

(b) Multi-Layer Perceptron

Figure 2.1: Difference between (a) Single Layer Perceptron and (b) Multi-Layer Perceptron archi-
tectures. For simplicity, the biases have been omitted without loss of generality.

The output of the network is computed as learned affine transformation followed by a

threshold function non-linearity:

h =

{
1 if xw + b ≥ 0

0 otherwise,
(2.1)

where x is the input vector, w is the learnable weight vector, xw denotes the dot product, and

b is a learnable bias. The threshold function determines the classifier output, i.e. whether or

not an input belongs to a class.

Note that SLP can generalize to multi-class problems by changing its output unit for an

output vector with as many output units as pre-defined classes. In this case, all input units are

connected to all output units and each output unit has its own bias term. Given its nature, SLP

can only learn linear classifiers and, therefore, cannot classify non-linearly separable input vec-

tors properly. Figure 2.2 shows an example of linearly separable samples versus non-linearly

separable samples.
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(a) Linearly separable (b) Non-linearly separable

Figure 2.2: Difference between (a) linearly separable and (b) non-linearly separable samples.
Image courtesy of Kyunghyun Cho.

2.1.2 Multi-layer Perceptron

A Multi-Layer Perceptrons (MLP) is a kind of neural network, which overcomes the SLP

limitations by adding intermediate representation layers, called hidden layers, to build a feature

hierarchy. MLP consists of an input layer, a number of hidden layers and an output layer. All

these layers are stacked together such that the output of a layer is the input to the next layer.

As in SLP, each unit within a layer is connected to each unit in the adjacent layers, i.e. layers

are fully-connected. Connections between units are called weights. The weights connected to

the same unit form a filter, also called kernel. MLPs’ hidden and output units also have a bias

associated to them. Figure 2.1(b) illustrates the architecture of an MLP with an input layer, two

hidden layers and an output layer. The number of hidden layers and the number of units per

hidden layer are hyper-parameters of MLP architectures.

Each layer of a MLP applies a non-linear transformation to the input data. Since MLP stack

multiple layers together, its output can be computed as a function composition as

gL(· · · g2(g1(x; θ1); θ2) · · · ; θL), (2.2)

where x is an input vector, θl = {Wl,bl} are layer l’s parameters, gl is layer l’s non-linearity,

l ∈ [1 · · ·L] and L is the number of layers. The idea is to apply successive non-linear transfor-

mations to the input data in order to project it into a space, where it becomes (ideally) linearly

separable. Figure 2.3 shows an example of non-linearly separable input data. The data is

projected into a new space by each MLP layer until it becomes linearly separable.

MLPs’ layers non-linear transformations consists in (1) computing a learned affine trans-

formation of an input vector; and (2) applying an element-wise non-linearity. Section 2.1.2.1
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input

1st hidden 

layer

2nd hidden 

layer

3rd hidden 

layer
output

Figure 2.3: MLP non-linear projection of the data. Image courtesy of Kyunghyun Cho.

details how the affine transformation is performed and Section 2.1.2.2 enumerates the most

commonly used non-linearities.

2.1.2.1 Affine Transformation

The learned affine transformation performed by each layer l of an MLP is computed as a matrix

multiplication followed by a bias addition as

al = hl−1Wl + bl, (2.3)

where hl−1 ∈ RNl−1
h is the input of layer l, Wl ∈ RNl−1

h ×Nl
h is the learnable weight matrix

connecting input and output units within the layer, bl ∈ RNl
h is the layer’s learnable bias vector

and al ∈ RNl
h is the output of the affine transformation, also called pre-activation. Note that

Nl−1h and Nlh are the input and the pre-activation dimensionality, respectively.

2.1.2.2 Non-linearity

An element-wise non-linearity f , also called activation function, is applied to the output of

each layer’s affine transformation al as

hl = f(al), (2.4)

where hl ∈ RNl
h is the output of layer l, also called activation. Note that both pre-activation

and activation usually have the same dimensionality.
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Figure 2.4: Non-linearities typically applied after the affine transformation of a layer: (a) Logistic;
(b) Tanh; (c) Absolute value; (d) ReLU; (e) Softplus; (f) Leaky ReLU; (g) Example of learned
Parametric ReLU; (h) Example of how maxout can approximate a convex function.

Non-linearities are typically used to restrict the range of the output of the networks’ layers.

Many non-linearities have been successfully used in the literature; the most common ones are

depicted in Figure 2.4 and listed below.

Logistic Squashing functions are among the most commonly used activation functions, since

they allow to bound the output of units to a given range. The logistic function, shown in Figure

2.4(a), is a differentiable monotonically increasing function that asymptotes 0 as it approaches

−∞ and 1 as it approaches +∞. It is defined as

hl = σ(al) =
1

1 + e−(al)
. (2.5)

This activation function can be used to model probabilities. However, its gradient vanishes as

we increase/decrease al.

Hyperbolic Tangent (tanh), depicted in Figure 2.4(b), is another commonly used squashing

function, which is differentiable and monotonically increasing. It asymptotes -1 and 1 as it

approaches −∞ and +∞, respectively. It is defined as

hl = tanh(al) =
1− e−2(al)

1 + e−2(al)
. (2.6)
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Although tanh sigmoid has the same vanishing gradient problem as logistic sigmoid, it is

preferred due to its symmetry w.r.t. the axes’ origin, which makes the learning process converge

faster (the average of its outputs is close to 0) [27]. In practice, a scaled version of the tanh

non-linearity, 1.7159 tanh(23 al) [27], is often used to further help convergence, by seeking the

variance of the inputs transformed by the tanh to be close to 1.

Absolute Value (see Figure 2.4(c)) is a non-differentiable activation function, which has been

used for object recognition tasks [28]. It is defined as

hl = abs(al) = |al|. (2.7)

As stated in [12], such non-linearity is useful for tasks “[...] where it makes sense to seek

features that are invariant under a polarity reversal of the input illumination”.

Rectifiers Rectifier Linear Unit (ReLU) non-linearity has been highly successfully applied

to achieve state-of-the-art in many computer vision tasks and has proven to accelerate learning

convergence [17, 29, 30, 31]. ReLU activation function is defined as

hl = max(0,al), (2.8)

thus, the function has range [0,+∞). Such non-linearity encourages sparse representations by

setting to 0 the negative values of al. However, the function is non-differentiable and has zero

gradient in the negative part of the rectifier (see Figure 2.4(d)).

Soft versions of ReLU have been proposed in the literature to deal with the zero gradient

and/or its differentiability. Softplus [32], shown in Figure 2.4(e), is a smooth approximation of

ReLU defined as

hl = log(1 + ea
l
). (2.9)

Leaky ReLU (LReLU) [33], shown in Figure 2.4(f), was introduced to allow a small, non-zero

gradient when the unit is saturated and not active. LReLU is defined as

hl =

{
al if x > 0
0.01al otherwise.

(2.10)

Such alternatives have a negligible impact on the performance when compared to standard

ReLU.

More recently, Parametric ReLU (PReLU) [34] was introduced as a generalization of

ReLU. It has the same motivation as LReLU, i.e., avoid zero gradients. However, PReLU
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non-linearity adaptively learns the coefficient β of the negative part of the rectifier, instead of

fixing it to a small value (see Figure 2.4(g) for an example). PReLu is defined as

hl =

{
al if x > 0
β al otherwise.

(2.11)

Maxout [35] is a cross-feature pooling activation function defined as

hlk = max
j∈F

alj (2.12)

where hlk is a maxout unit and F is a set of consecutive, non-overlapping, pre-activation indices

j. Maxout learns a convex activation function of each hidden unit by approximating it with a

|F|-piece piece-wise linear function, where |F| is the number of elements in F. Note that

maxout pre-activation and activation have different dimensionality. Figure 2.4(h) shows how

maxout can approximate the quadratic function with a 5-piece piece-wise linear function.

Softmax is an activation function, which maps a vector to a categorical probability distribu-

tion and, which is typically used as output non-linearity. Each softmax output represents the

probability of a class j and is computed as

hlj = softmax(al) =
eaj∑
k

eak
(2.13)

Note that softmax non-linearity is the generalization of the logistic non-linearity that allows to

handle multiple classes.

2.1.3 Convolutional Neural Networks

As mentioned in Section 2.1.2, the full connectivity of an MLP requires each unit within a layer

to be connected to each unit within the next layer. This design makes the number of learnable

weights grow very rapidly with the input dimensionality, making it computationally unfeasible

for large input dimensions. One way to deal with this problem is to remove full connectivity

between adjacent layers.

A Convolutional Neural Network (CNN) [36, 37] is a type of network, which enforces a

sparse connectivity among units of adjacent layers by restricting each hidden unit to be con-

nected to only a small subset of contiguous input units. The region of contiguous units that

defines the local connectivity of a hidden unit is called receptive field. Receptive fields can be
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extracted at arbitrary input locations; we call stride the distance between consecutive receptive

field centers. In addition, CNNs adopt a weight sharing scheme. By encouraging the re-use of

weights, CNNs reduce significantly the number of parameters and memory requirements of the

model. Note that, given their architecture, CNNs only capture local interactions and, thus, their

design is valid when the input shares the same statistics at all locations, i.e. features learned at

one location can be applied elsewhere.

A CNN is composed of a number of convolutional and pooling layers stacked together, op-

tionally followed by fully-connected layers such as the ones described in Section 2.1.2. Convo-

lutional layers consist of (1) a convolution of the input with a set of learnable weights, followed

by a learnable bias addition, to extract local features; and (2) an element-wise non-linearity to

allow deep architectures to learn non-linear representations of the input data. Pooling layers

consist of a subsampling operation that aggregates the statistics of the features at nearby loca-

tions [12], to reduce the computational cost (by reducing the spatial size of the images), while

providing a local translation invariance. The output of each layer is composed of feature maps.

The output of a CNN is computed as a function composition

gL(· · · g2(g1(x))), (2.14)

where x is the input and gl is a function that returns the output of either a convolutional, a

pooling or, eventually, a fully-connected layer.

Figure 2.5 shows a classical CNN architecture with two convolutional layers and two sub-

sampling (pooling) layers, followed by a fully-connected layer and an output layer. Section

2.1.3.1 to 2.1.3.3 detail the operations performed by convolutional and pooling layers. Note

that CNN architectures have a significant number of hyper-parameters, such as the number of

layers, the number of units per layer, the receptive field size, the stride and the spatial pooling

size.

2.1.3.1 Convolution

A convolution is a mathematical operator, which applies a function repeatedly by translating

it across the output of another function. By analogy, in the context of CNNs, the convolution

operator replicates the weights of each layer over their entire input and computes the output of

each feature at each input position.

Let Hl−1 ∈ RRl−1×Cl−1×Nl−1
h be the input to the l-th layer, which corresponds to the output

of the previous layer and, which is composed of Nl−1h feature maps of size Rl−1 × Cl−1. Let
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Figure 2.5: CNN architecture. Image from http://deeplearning.net/tutorial/

lenet.html.

bl ∈ RNl
h be the learnable biases of the layer and Wl the learnable weights of the layer. As

for MLP, the weights connected to the same output unit form a filter, also called kernel. These

filters have a spatial size wlr × wlc, which corresponds to the size of the receptive field of the

units of the layer. Hence, Wl ∈ Rwl
r×wl

c×N
l−1
h ×Nl

h is defined as a 4-D tensor

The result of applying a convolution to an input image (or feature map) is computed as

Al
j = Hl−1 ?Wl

j + blj ∀j, (2.15)

where the symbol ? stands for the convolution operator and j is the index of the computed

feature map. A convolution is performed for each filter Wl
j ∈ Rwl

r×wl
c×N

l−1
h . The output of

the convolution Al
j ∈ RRl×Cl

, called pre-activation, is a feature map indicating how well the

filter matches the input at each location.

2.1.3.2 Non-linearity

As MLP affine transformations, CNNs’ convolutions are followed by an element-wise non-

linearity

Hl
j = f(Al

j) ∀j, (2.16)

where Hl
j is the output, also called activation, of a feature in the convolutional layer. Again,

the feature’s pre-activation and activation usually have the same dimensionality.

Non-linearities such as the ones summarized in Section 2.1.2.2 have been successfully

used in conjunction with CNNs. Early works on CNNs used sigmoid non-linearities to build a

feature hierarchy. In 2012, ReLU was shown to have significant benefits over squashing non-

linearities and was successfully employed to learn the feature hierarchy that won ILSVRC2012

classification challenge [17]. Later on, maxout non-linearity was introduced to learn feature

interactions and demonstrated to be able to extract powerful feature hierarchies for computer
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vision tasks [35]. More recently, a CNN with PReLU non-linearity beat state-of-the-art results

in computer vision applications [34]. Besides the above-mentioned non-linearities, Network In

Network [38] was also used in conjunction with CNNs to learn the non-linearities to be applied.

Network In Network (NIN) [38] is a cascaded cross-feature pooling activation function,

which adds an MLP within each layer of the network. Thus, the cross-feature pooling is per-

formed as a weighted linear recombination of the output feature maps, followed by a ReLU

non-linearity. Since MLPs are universal function approximators [39], using them as cross-

feature pooling structures endows the model with more representation capability.

2.1.3.3 Pooling

Pooling layers, which are often stacked on top of convolutional layers, perform a subsampling

operation, which reduces spatial dimensionality and achieves invariance to small translations

by aggregating the statistics of the features at nearby locations. The purpose of the aggregation

is to give invariance to the features by making them less sensitive to the exact location of the

structures.

The result of applying a pooling operation to the output of a convolutional layer is computed

as

Hl+1
j = pool(Hl

j) ∀j, (2.17)

where pool is the subsampling operation, which is applied to each feature map Hl
j of the pre-

vious convolutional layer. The resulting pooled feature maps Hl+1
j ∈ RRl+1×Cl+1

are spatially

smaller than their respective inputs Hl
j . Note that in some particular cases, the number of fea-

tures may also be reduced by the pooling operation. The most typically used pooling operations

are listed below.

Average pooling is a conventional subsampling technique, which computes the average value

of a feature j over a spatial region Rp, i.e. 1
|Rp|

∑
i∈Rp

Hl
j
(i), where |Rp| is the number of elements

in the spatial region. In some cases, an equivalent form of pooling called sum pooling is used

instead. Sum pooling computes the sum of a feature j over a spatial region Rp, i.e.
∑
i∈Rp

Hl
j
(i).

In both pooling forms, we consider all elements of the region. This may lead to low pooled

responses when ReLU is used as non-linearity, since strong responses are down-weighted by
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the presence of zero outputs; or even worse, when tanh is used as non-linearity, since positive

and negative responses might cancel each other out.

Max pooling is another conventional subsampling operation applied after the convolutional

layer. It computes the maximum value of a feature j over a spatial region Rp, i.e. max
i∈Rp

Hl
j
(i).

Max pooling does not have the same problems as average/sum pooling, but is more prone to

overfit the training set. However, this form of pooling is the most widely used in practice,

combined with a plethora of regularization methods to avoid overfitting.

p-norm pooling is a natural generalization of the previous pooling forms. It computes the

statistics of a feature j over a spatial region Rp under the p-norm, i.e. (
∑
i∈Rp

|Hl
j
(i)|p)1/p. For

non-negative pooling inputs, if p = 1, the pooling is equivalent to average pooling, whereas if

p→ +∞ it is equivalent to max pooling.

Stochastic pooling [40] accounts for both strong and low outputs by applying a stochas-

tic procedure to select a response within a pooling region. The procedure randomly picks

an activation within the pooling region according to a multinomial distribution, given by the

activations within the region. To do so, the probabilities p are computed for each location i

within each region Rp as pi =
Hl

j
(i)∑

k∈Rp

Hl
j
(k) . After that, a location s ∈ Rp is picked by sam-

pling s ∼ P (p1, p2, · · · , p|Rp|) and the value Hl
j
(s) of the selected location s is used as pooled

response.

All Convolutional Net [41] analyze the possibility of replacing the conventional max-pooling

operator by a convolutional layer with increased stride. Increasing the stride results in reduc-

ing the spatial resolution and, thus, acts as a subsampling technique. All Convolutional Nets

achieve competitive results on several benchmark object recognition tasks. It is worth noticing

that pooling operations usually have a feature-wise nature, i.e. they are applied to each feature

independently. Therefore, substituting a pooling operation with a convolution operation adds

inter-feature dependencies. This kind of cross-feature pooling is related to the maxout [35] and

NIN [38] non-linearities (see Sections 2.1.2 and 2.1.3.1, respectively). In particular, all convo-

lutional nets can be seen as a variant of NIN when only one 1× 1 convolution is performed as

substitute for spatial pooling.
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2.2 Training Deep Learning Models

As introduced in Section 2.1, deep learning architures are built by stacking together compu-

tational modules, called layers. The output of a deep learning model is computed as a com-

position of L functions, where L is the number of layers in the architecture. Since each layer

introduces a non-linearity, deep learning models result in highly non-linear functions. The pa-

rameters of these models are learned from the input data, such that the model’s representation

hierarchy is suitable for a given task. Finding a good parameter configuration with regard to

some training criterion can be framed as an optimization problem.

In this section, we will describe how deep learning models are trained. In section 3.2.2,

we will review standard optimization methods to train deep learning models and highlight the

difficulties encountered while training these models. Then, in sections 2.2.2.1 to 2.2.4, we

will present current state-of-the-art approaches to overcome the difficulties of training deep

architectures.

2.2.1 Optimization

The optimization problem of training deep learning models consists in minimizing a function

defined according to some training criterion. The function to be minimized is called loss func-

tion. The loss function (also called objective or error function) maps a set of inputs to a real

number representing the error associated to them. The training process consists in tweaking

the model parameters while minimizing the empirical average loss over the training set. An el-

ement of the training set is called training sample. The ultimate goal of training is to minimize

the expected loss on unseen example, i.e. to generalize to new samples.

2.2.1.1 Loss Function

There are many loss functions used to train deep learning models.

In supervised learning, we have a training set

D = {(x(n),y(n))}Nn=1 (2.18)

composed of N pairs of samples x(n) and labels y(n). Each pair (x(n),y(n)) constitutes a

training sample. The goal of supervised learning is to learn a function

ŷ = g(x), (2.19)
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which approximates as well as possible the mapping of an input sample x, potentially not

included in D, to its corresponding label y. The output ŷ of the learned function is called

prediction. In order to learn the mapping g, we define a loss function L(y, ŷ). One of the most

popular choices for L is the Mean Squared Error (MSE), defined as follows

L(y, ŷ) =
1

N

∑
n∈[1...N]

||ŷ(n) − y(n)||2. (2.20)

However, when labels y are discrete and predictions ŷ contain probabilities, Average Cross-

Entropy error (ACE) is the most widely used:

L(y, ŷ) = H(y, ŷ) = − 1

N

∑
n∈[1...N]

∑
k∈[1...K]

1{y(n) = k} log ŷ
(n)
k , (2.21)

where K is the number of classes and 1{·} is the indicator function.

In unsupervised learning, we have a training set

D = {x(n)}Nn=1 (2.22)

solely composed of N training samples; no labels are provided. Each x(n) constitutes a training

sample. The goal of unsupervised learning is to discover hidden structure in the unlabeled data.

In this case, loss functions commonly follow sparsity or reconstruction constraints (see Section

2.2.2.1 for a detailed review of existing unsupervised criteria).

In both learning scenarios, it is important to have models that do well on unseen samples.

Regularization is a technique that encourages the models to generalize beyond training sam-

ples. Regularizers often impose preferences, e.g. priors to the model parameters, such that

some parameter configurations are more likely to be chosen than others. A common way to

introduce regularization is by adding penalties to the loss function. One of the most frequent

choices is the L2 regularizer, also called weight decay, which penalizes large values of param-

eters. Large parameter values can potentially hurt generalization, since they may introduce

excessive variance of the output. Weight decay is applied to the weights of each layer of a

deep learning model and is defined as λ||Wl||22, where λ is a hyper-parameter controlling its

strength. Following a similar spirit, L1 regularizer has also been commonly used in the litera-

ture. As weight decay, L1 regularizer also penalizes large weights. However, L1 regularization

results in numerous weights driven to zero.

Radically different regularization techniques, such as dropout [42], have been introduced

in the literature in order to improve the way deep learning models learn and generalize. These
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techniques do not rely on modifying the loss function. Dropout has become extremely popular

and successful in recent years. It trains an ensemble of models that share their parameters. To

do so, it randomly deactivates a set of hidden units in the network at each training iteration.

This results in a set of weights and biases learnt under the conditions in which some hidden

units are deactivated. Heuristically, it is like training many (sub-)models for one step using

different subsets of data. Therefore, dropout effects are similar to the effects of averaging a

very large number of different networks

2.2.1.2 Gradient-based Learning

Training deep learning models is an optimization problem that involves minimizing a loss

function. Therefore, after defining the loss function, we need an optimization algorithm to find

the model’s parameters that minimize the empirical loss.

Gradient-based learning methods solve optimization problems by searching the direction

of greatest increase rate of a loss function L. The direction of greatest increase is given by the

gradient of the function. Therefore, in order to minimize L, one must move in the direction

of the negative gradient (direction of greatest decrease). This procedure is known as gradient

descent.

Gradient descent (GD) looks for a local minima of the loss function by iteratively taking

steps along the negative direction of gradient and updating the parameters with the following

rule

θ′ = θ − ε∇θL, (2.23)

where θ = {Wl,bl}Ll=1 are the model parameters and ε is the size of the step, called learn-

ing rate. Each GD update corresponds to one iteration. However, GD optimization is usually

defined in terms of epochs. An epoch measures the number of times all samples in the train-

ing set have been presented to the model to update its parameters. The number of epochs in

an optimization depends on the stopping criterion, also called termination criterion, which

determines when to stop running the training algorithm.

The performance of GD optimization depends critically on the choice of the learning rate.

There are different ways to determine the learning rate value: (1) set it to a small constant value

and, optionally, apply an annealing schedule through time; (2) apply a line search strategy,

i.e., try different values of ε and pick the one that minimizes the loss function the most; (3)
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adopt adaptive learning rate schemes such as [43, 44]. Gradient descent converges when the

parameter updates are barely noticeable, i.e., when all elements of the gradient are close to 0.

Gradient descent can be performed in a batch or in a stochastic fashion:

Batch Gradient Descent (BGD) computes the average gradient throughout the whole train-

ing set before updating the model parameters. Therefore, it has a smooth convergence, which

reaches the local minimum lying in the basin of attraction of the parameter initialization [45].

Stochastic Gradient Descent (SGD) approximates the gradient with one single example of

the training set. This results in a noisy gradient to update the model parameters, which is able

to jump through different basins of attraction [45]. SGD is faster (it only computes the gradient

of one sample per iteration) and often results in better solutions, since it can explore a broader

range of possible solutions.

Mini-batch Stochastic Gradient Descent (mini-batch SGD) finds a compromise between

BGD and SGD. It computes the average gradient of a subset of training samples in order to

update the model parameters. Mini-batch SGD provides a slightly less noisy estimate of the

gradient and, therefore, has a smoother convergence than SGD, while still being faster than

BGD.

2.2.1.3 Back-propagation

Back-propagation [46] is an algorithm that efficiently computes the gradient of a loss function

w.r.t. all the parameters (weights and biases) of a deep learning model. The algorithm is used

in conjunction with gradient descent to find a good minimum of the loss function. Backprop-

agation takes advantage of the fact that deep learning models are function compositions (see

Section 2.1.2) and applies the chain rule in order to compute the gradients w.r.t. the network’s

parameters. For simplicity, the bias terms will be omitted in the algorithm’s description without

loss of generality.

More precisely, the steps of the backpropagation algorithm can be summarized as

1. Perform a forward pass through the network, computing the activations of all the layers

in the network. Figure 2.6(a) shows how the forward pass is performed and how the

activation hlj of a unit j within each layer is computed.
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2. Perform a backward pass through the network, computing the partial derivatives of the

loss function w.r.t. all parameters. Figure 2.6(b) shows how the backward pass is

performed and how the partial derivatives w.r.t. all parameters are computed. First,

the derivative of the loss function is computed w.r.t. each unit k of the output layer.

Since the output units are a composition of two functions, the chain rule is applied

as ∂L
∂al

k

= ∂L
∂hl

k

∂hl
k

∂al
k

. Then, the derivatives of the loss function w.r.t. each hidden unit

are computed. These derivatives involve a weighted sum of the derivatives of the loss

function w.r.t. the pre-activation of the units in the layer above. As output units, hid-

den units compute a function composition. Therefore, the chain rule is applied analo-

gously. Finally, the derivative of the loss function w.r.t. a weight Wl
ij is computed as

∂L
∂Wl

ij

= ∂L
∂al

j

∂al
j

∂Wl
ij

= ∂L
∂al

j

hl−1i .

Once the derivatives of the loss function w.r.t. each weight are obtained, the model param-

eters are updated by means of Eq. (2.23).

2.2.1.4 Optimization Difficulties

Training deep architectures has proven to be challenging [14, 47], since they are composed of

successive non-linearities and, thus have highly non-convex and non-linear associated objective

functions. These highly varying and non-linear objective functions present numerous non-

optimal local minima as well as saddle points, which often make gradient-based optimization

get stuck in poor solutions [48]. Moreover, random initialization of the parameters might lead

to different solutions, which often do not provide equivalent solutions. Figure 2.7 shows how

SGD follows different paths depending on the parameters initialization.

Moreover, gradient-based learning has the problem of vanishing/exploding gradients, when

training deep architectures. Recall that deep architectures compute function compositions.

Following the chain rule, the gradient of a function composition is computed as a product

of terms of the derivatives. When the product terms are smaller than 1, the resulting gradient

exponentially decreases. The tendency of the gradients to get smaller as we move to the bottom

layers of the network is known as the vanishing gradient problem, which results in bottom

layers learning more slowly than top layers. Analogously, there might be cases where the

product terms are greater than 1. In this case, the resulting gradient blows up. The tendency

of the gradients to get larger as we move to the bottom layers of the network is known as the
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(a) Forward pass

(b) Backward pass

Figure 2.6: Backpropagation steps: (a) forward pass to compute activations, and (b) backward pass
to propagate the gradients. For simplicity, bias terms have been omitted without loss of generality.

exploding gradient problem. In both cases, the network layers learn at different speeds and the

optimization of the bottom layers gets hurt, leading to bad hidden representations of the data.

Significant effort has been devoted to alleviate the optimization problems of deep architec-

tures. In the following sections, we will outline different approaches that have been introduced

in the literature to assist the training of deep learning models.
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Figure 2.7: Given a loss function L with two parameters θl1 and θl2 to adjust, SGD finds different
solutions depending on the parameter initialization. Image from http://blog.datumbox.

com/tuning-the-learning-rate-in-gradient-descent.

2.2.2 Unsupervised Greedy Layer-wise (Pre-)training

Unsupervised pre-training strategies have been introduced in the literature to alleviate the op-

timization problems of training deep architectures. In [15, 16, 49, 50], unsupervised greedy

layer-wise pre-training was presented to train deep architectures one layer at a time. Layers are

trained in isolation by means of an unsupervised learning algorithm with the aim to discover

hidden structure in the input data. These algorithms follow some criterion, e.g. sparsity1 or

reconstruction, to learn the layer’s parameters. Layers are then stacked together to build a (pre-

)trained deep architecture. The unsupervised pre-training strategy has the effect of leveraging

the knowledge of the input data [51] and sets the network’s parameters in a potentially good

basin of attraction [48]. Note that in the case of CNNs, pooling layer may appear in between

the convolutional layers. Whenever defined in the architecture, pooling operations are applied

after pre-training the convolutional layer, and their output is used to pre-train the subsequent

convolutional layer. Figure 2.8 shows the layer-wise pre-training of a 2-layer network. For

simplicity, we have omitted the pooling layers, without loss of generality. The approach con-

sists in training the first layer of the network from the input data. Then, use the output of the

first layer as data to train the second layer of the network in isolation. Finally, the two layers

are stacked together producing a (pre-)trained architecture.

1Sparsity is a desirable property of feature representations. Sparse features consist of a large amount of units,
which respond rarely and provide high responses when they do respond. The concept of sparsity will be further
discussed in Chapter 3.
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Figure 2.8: Greedy layer-wise pre-training of a deep architecture. For simplicity, we have omitted
the pooling layers, without loss of generality. Image courtesy of Kyunghyun Cho.

In this section, we will review state-of-the-art unsupervised learning algorithms, which

have been successfully applied to pre-train shallow and/or deep architectures in a greedy layer-

wise fashion.

2.2.2.1 Unsupervised Learning Algorithms

Auto-encoders (AE) [13, 46, 52, 53] learn the mapping of the input data to a representation

by means of an encoder of the following form

hl = f(hl−1WE
l + bE

l), (2.24)

where WE
l are the encoder weights and bE

l its biases. The representation is then mapped

back to the input space by means of a decoder of the following form

h̃l−1 = f(hlWD
l + bD

l), (2.25)

where WD
l are the decoder weights and bD

l its biases. In many cases, the decoder weight

matrix is constrained to be the transpose of the encoder weight matrix, i.e. WD
l = WE

lT.

This kind of auto-encoder is said to have tied weights. AE’s parameters are optimized such that

the reconstruction error is minimized. The most common way to measure the reconstruction

error is the following

L(hl−1, h̃l−1) =
∑
n

||hl−1(n) − h̃l−1
(n) ||22. (2.26)
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Setting the reconstruction values h̃l−1 to be equal to the inputs hl−1 enforces the AE to

learn an approximation of the identity function. When limiting the number of representation

units, AE can discover interesting structure and properties of the input data, endowing them

with compression capabilities. However, allowing the number of representation units to be

overcomplete is also interesting. Overcompleteness implies the dimensionality of the represen-

tation to be greater than the dimensionality of the input.

Overcomplete AE are usually trained by enforcing sparsity constraints on the output repre-

sentation. Sparse AE (SAE) [5] enforce representation units to have a small mean activation.

To do so, a sparsity penalty is added to the classical auto-encoders’ loss function:

L(hl−1, h̃l−1) =
∑
n

||hl−1(n) − h̃l−1
(n) ||22 + λ

∑
j

KL(ρ||ρj), (2.27)

where ρ defines target mean activation, ρj defines the mean activation of representation unit j, λ

is a hyper-parameter that controls the weight of the sparsity penalty. KL denotes the Kullback-

Leibler divergence between a Bernoulli random variable with mean ρ and a Bernoulli random

variable with mean ρj . SAE seek to maintain similar activation statistics through all training

samples among all representation units, thus ensure sparse representation of the data.

Other AE variants such as Denoising AE (DAE) [49] and Contractive AE (CAE) [54] have

also been used in the literature to (pre-)train deep architectures [50, 54]. On one hand, DAE

are trained to be robust in reconstructing the true input from a corrupted version of it. The

algorithm encodes the corrupted input into a representation and, then, decodes the representa-

tion back to the input space, seeking to minimize the average reconstruction error between the

output of the decoder and the true input. On the other hand, CAE add a penalty to the classical

AE’s reconstruction cost, which encourages local feature invariance (robust representations)

and results in a space contraction. The penalty introduced by CAE is the squared Frobenius

norm of the Jacobian of the activations w.r.t. the inputs.

Restricted Boltzmann Machines (RBM) [15, 55, 56] are energy based probabilistic mod-

els that learn non-linear representations of the input data. RBM are parameterized by weights

connecting input (also called visible) and output (also called hidden) units and bias terms con-

nected to each input/output unit. There is no interaction among units of the same layer. RBM’s

objective is to minimize the following energy function

E(hl−1,hl) = −
∑

i∈visible
elih

l−1
i −

∑
j∈hidden

bljh
l
j −

∑
i,j

hl−1i hljW
l
ij , (2.28)
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where ei and bj are the visible and hidden units’ biases. In a RBM, units are random variables.

The network assigns a probability to each state configuration; the joint probability of the model

is defined as

P (hl−1,hl) =
e−E(hl−1,hl)

Z
, (2.29)

where Z is the partition function, i.e. sum over all possible (hl−1,hl) pairs. Then, the marginal

probability of P (hl−1)

P (hl−1) =
∑
hl−1

P (hl−1,hl), (2.30)

In order to train a RBM, we aim to minimize the average negative log-likelihood (NLL)

argmin
Wl,bl,cl

−
∑
n

logP (hl−1
(n)

). (2.31)

Proceeding with gradient-based learning involves the computation of the expectation over

the joint distribution (summing over hl−1 and hl), which is computationally intractable (see

[13] for a detailed explanation). However, RBM’s hidden units hlj are conditionally indepen-

dent of each other when conditioning on hl−1. Likewise, visible units hl−1i are conditionally

independent of each other when conditioning on hl. These properties ease the training of RBM,

since the conditionals can be used as basis of Gibbs sampling to recover samples from the joint

distribution [13]. Contrastive Divergence (CD-k) [57] approximates the expectation over the

joint distribution with a point estimate with a single observation h̃l−1 by means of a k steps

Gibbs sampling starting at a state configuration hl−1 corresponding to a true training sample,

where k is chosen to be small. Nevertheless, starting each Gibbs chain with a true training

sample limits the region of the energy function that we are going to explore. Persistent CD-

k (PCD-k) [58] overcomes this limitation and allows to move further away from the training

samples by starting each Gibbs sampling with the h̃l−1 of the previous training iteration. Train-

ing RBM with PCD-k obtains a better model of the probability distribution that generated the

training samples, which provides better performance in terms of NLL on new examples.

RBM have also been trained with sparsity constraints [59] such as the one defined in SAE.

Sparse Coding (SC) [60, 61, 62] learns sparse over-complete representations of the input

data as a linear combination of a set of filters
∑
j

hljW
l
j , where hlj are the coefficients applied
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to each filter. In order to obtain sparse codes, SC sets most of the coefficients hlj to be close to

0. SC’s optimization problem is defined as

argmin
hl(n),Wl

∑
n

||hl−1(n) −
∑
j

hlj
(n)

Wl
j
T||22 + λ

∑
j

S(hlj
(n)

),

subject to ||Wl
j ||22 = 1,∀j,

(2.32)

where S is a sparsity penalty, e.g. L1 penalty. Therefore, SC training optimizes over hlj for

each sample and, then, optimizes over all Wl
j . Note that, after training, SC still has to optimize

the coefficients hlj to obtain the representation of each test example. Therefore, the method has

a very computationally expensive inference.

Predictive Sparse Decomposition (PSD) [63] is a successful variant of sparse coding, which

alleviates the expensive inference by learning a predictor to approximate a sparse representa-

tion. The method jointly learns the SC set of filters and an efficient predictor function. The

learned predictor function will then be used as encoder. PSD’s optimization problem is defined

as

argmin
hl(n),Wl,θE

l

∑
n

||hl−1(n) − hl
(n)

WlT||22 + λ
∑
n

||hl(n)||1 + ||hl
(n) − f(hl−1(n), θEl)||22

(2.33)

where the first term of the loss function is the reconstruction penalty, the second term is the

sparsity penalty and the third the encoder’s penalty, i.e. it measures the discrepancy between

the code predicted by the encoder and the sparse code. In this case, f represents the encoder

function, with its respective parameters θEl and λ is a hyper-parameter controlling the weight

given to the sparsity penalty.

Orthogonal Matching Pursuit (OMP-k) [64, 65, 66] learns the mapping of the input data

to a sparse representation. The sparse representation is defined such that it contains at most

k non-zeros, thus seeking sparsity. OMP-k is an iterative algorithm, which greedily picks a

unit of the representation to be made non-zero in order to minimize the residual reconstruction
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error. OMP-k’s optimization problem is defined as

argmin
Wl,hl(n)

∑
n

||hl−1(n) − hl
(n)

WlT||22,

subject to ||Wl
j ||22 = 1, ∀j

and ||hl(n)||0 ≤ k, ∀i

(2.34)

Therefore, it applies an alternating minimization to learn the weights Wl: at each iteration, it

selects a unit to be made non-zero and updates the representation accordingly to minimize the

loss function. Units are selected based on argmax
j
|hl−1(n)Wl

j |.

Sparse Filtering [67] is an unsupervised feature learning method that optimizes for sparsity

in the feature distribution. The method ensures (1) each sample to be represented by only a few

active features and (2) features to have similar activity. To do so, the features are computed as

hlj = f(hl−1j ; θl), (2.35)

and then normalized to be equally active across all samples

h̃lj =
hlj

||hlj ||2
. (2.36)

After that, features are normalized to lie in the `2 ball and optimized to be sparse as follows

argmin
θl

∑
n

∣∣∣∣∣
∣∣∣∣∣ h̃l(n)

||h̃l(n)||2

∣∣∣∣∣
∣∣∣∣∣
1

. (2.37)

The output of each layer is computed as usual, by applying a non-linearity after the convo-

lution operator or the affine transformation.

Independent Component Analysis (ICA) [68, 69] learns a set of weights Wl to map the

input data to the representation space. ICA’s most typical constraint is to enforce the filters to

be orthonormal [69] to prevent degenerate solutions [70]. ICA’s loss function is defined as [70]

argmin
Wl

∑
n

f(hl−1
(n)

Wl),

subject to WlWlT = I,

(2.38)
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where I is the identity matrix. In order to provide sparse representation, the non-linearity f is

usually chosen to be the L1 norm penalty.

As mentioned in [70], ICA is sensitive to whitening (see Section 2.4 for a detailed expla-

nation of whitening). In addition, its optimization problem involves an expensive orthonormal-

ization at each iteration (after updating Wl). Moreover, the orthonormality constraint limits

the method to map input data into a representation space with lower or equal dimension, i.e.

overcomplete representations cannot be learned. For all these reasons, ICA scales poorly to

large and high-dimensional inputs and feature representations.

Reconstruction ICA (RICA) [70] was introduced to overcome the previously mentioned

limitations. The algorithm substitutes the orthonormality constraint by a reconstruction penalty

as non-degeneracy control measure. RICA’s optimization problem is defined as [70]

argmin
Wl

λ
∑
n

||hl−1(n)WlWlT − hl−1
(n)||22 +

∑
n

∑
j

f(hl−1
(n)

Wl
j), (2.39)

where the first term corresponds to a reconstruction penalty, the second term corresponds to

ICA’s objective and λ balances both terms.

Other variants such as Topographic ICA (TICA) [69] and Tiled CNN [71] based on TICA

have also been used in the literature to pre-train deep architectures.

2.2.2.2 Convolutional vs. Patch-based Training

The simplest way to learn convolutional layers’ parameters by means of unsupervised learning

algorithms is patch-based training [8]. Patch-based training consists in using a set of randomly

extracted patches from input images (or feature maps) to train each layer. After that, the layer

weights are applied to each input location to obtain output convolutional feature maps that will

serve as input to the next layer. Pre-trained convolutional deep architectures are then built by

stacking the unsupervised patch-based trained layers.

However, convolutional layers’ parameters can also be learnt by means of unsupervised

criteria in a convolutional fashion [8]. Convolutional training of convolutional layers has been

shown to reduce the redundancy among learnt filters. Convolutional versions of the methods

introduced in Section 2.2.2.1 have been proposed in the literature, such as Convolutional RBM

[72, 73], Convolutional PSD [74], Convolutional SC [63, 75] or Convolutional AE [76].
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2.2.3 Semi-supervised Learning

Semi-supervised strategies have been introduced in the literature to alleviate the optimization

problems of training deep architectures. The goal of semi-supervised learning is to use un-

labeled data to improve generalization of a supervised task. First, an unsupervised criterion

is employed to transform the input data into a representation, such that points with the same

label lie within the same structure [12, 77]. Then, the extracted representations are fed to a

supervised criterion to learn the task at hand. Both unsupervised and supervised criteria can be

optimized sequentially or jointly.

In the context of deep learning models, semi-supervised methods are either trained se-

quentially by performing an unsupervised greedy layer-wise pre-training (see Section 2.2.2.1),

followed by a supervised finetuning [15, 16, 78] or jointly by training a trade-off of the unsu-

pervised and supervised criteria simultaneously [77, 79]. Although the literature on this subject

is much broader, in this section, we will describe only a subset of the most relevant methods to

the full understanding of this thesis.

Unsupervised pre-training followed by supervised finetuning [15, 16] is a commonly used

strategy to train deep networks in a semi-supervised fashion. The networks are trained in two

sequential stages: (1) using some unsupervised criterion on unlabeled samples to pre-train the

network (as described in Section 2.2.2.1) and (2) finetune the whole network according to a

supervised criterion. The role of unsupervised pre-training is to find a parameter configuration

that helps supervised learning yield better performance in terms of generalization. As argued in

[51], unsupervised pre-training acts as a regularizer that minimizes the variance and introduces

bias towards more useful and more effective parameter configurations [51]. The idea is to

define a particular initialization of parameters, in a potentially better basin of attraction, for

supervised finetuning to follow. Initializing the network’s parameters with unsupervised pre-

training has shown to improve generalization w.r.t. random initialization of the parameters

[15, 16, 51]. The role of supervised finetuning is to adjust all layer’s parameters together by

means of backpropagation in order to approximate as well as possible the mapping of an input

sample to its corresponding label. This strategy has been applied to a diversity of tasks with

varying amounts of labeled data and has shown to be successful, especially when labeled data

is scarce [15, 16, 78].
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Semi-supervised embedding [77] is a semi-supervised strategy to improve the training of

deep architectures. It consists in adding an unsupervised embedding criterion to any (or all)

layers of the network and optimize for both the embedding and the standard supervised criteria

simultaneously. The method reveals itself to be a compelling strategy to improve the training

of deep architectures, highlighting its benefits when dealing with complex tasks.

Discriminative RBM [79] are a kind of hybrid RBM, in which a discriminative component is

introduced to make the RBM a stand-alone non-linear classifier. In the semi-supervised setting,

the deep architecture is jointly optimized to be a good generative model of unlabeled data as

well as a good hybrid (generative-discriminative) model of the labeled data.

2.2.4 Supervised Guidance

Supervised algorithms have also been used in the literature to alleviate the optimization prob-

lem of deep architectures. In this section, we will briefly review a few state-of-the-art super-

vised learning techniques, which assist the training of deep architectures.

Supervised pre-training [16] is a method to pre-train deep architectures in a supervised

greedy layer-wise fashion. Layers are trained one after another as the hidden layer of a super-

vised network. To do so, a supervised output layer is stacked on top of the layer to be trained.

After optimization, the supervised output layer is thrown away and the trained parameters are

used to extract the input representation of the subsequent layer. Using a supervised criterion to

pre-train deep architectures in a greedy layer-wise fashion has proven to be helpful in assisting

the training of deep architectures. However, as stated in [16], such pre-training might not be

able to capture all relevant information about the target using a single hidden layer neural net-

work at each stage and, therefore, might yield poorer solutions than unsupervised pre-training.

Knowledge matters [80] guides the training of supervised deep learning models by intro-

ducing prior information for optimization. It is motivated by the fact that some tasks appear

to be extremely difficult for state-of-the-art methods. The idea is to provide context informa-

tion on the task at hand to the intermediate layer of the deep architecture. The ultimate task is

then divided into two presumably simpler subtasks during training. The first task consists in

optimizing the first half of the deep architecture w.r.t. the context information. The output of
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the first half of the network is then used as input to the second half, which is in turn optimized

w.r.t. the supervised end-task.

Auxiliary supervision strategies [19] have been used in the literature to assist the training

of supervised deep learning models. The idea consists in adding an auxiliary supervised layer

to any intermediate layer of the network in order to make the output of the layer more discrim-

inative w.r.t. the true labels and provide regularization. The whole architecture is then trained

by jointly optimizing the general supervised loss of the network as well as the losses of the

auxiliary supervised layers.

Deeply-supervised nets [81] propose to assist the training of deep networks by introducing

a companion objective to each individual hidden layer, in addition to the overall network ob-

jective. The companion objective is defined as a source of supervision that encourages highly

discriminative intermediate feature maps. The deep network is trained to jointly optimize its

output objective as well as the companion objective of each hidden layer.

2.2.5 Curriculum Learning

Curriculum Learning strategies [82] have been introduced in the literature to alleviate the op-

timization problem of learning deep architectures. Curriculum learning is a radically different

approach, which aims to ease the optimization problem by organizing the data/concepts pre-

sented to the learner in a meaningful way. To do so, the method re-weights the training distribu-

tion according to some criterion, such that the learner network gradually receives examples of

increasing and appropriate difficulty w.r.t. the already learned concepts. This strategy provides

guidance during the training process of deep architectures. As a result, curriculum learning

can dramatically speed up and improve the quality of the learning process, achieving a faster

convergence and finding potentially better local minima of highly non-convex loss functions.

Therefore, curriculum learning leads to a potentially better model generalization by properly

choosing the sequence of training samples/concepts seen by the learner: from simple sam-

ples/concepts to more complex ones.

It is worth mentioning that the design of the curriculum tends to be problem-specific. For

example, in [82], the simplicity of an example in a sequence is measured by means of hand-

designed heuristics. However, in the Knowledge Matters approach [80] presented in Section
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2.2.4, the curriculum is built by decomposing the end-task into simpler subtasks and introduc-

ing the subtasks to the learning in increasing order of complexity. In this case, each subtask

requires some prior knowledge on the end-task. Moreover, providing a meaningful ranking

of the samples is not trivial. Attempts to alleviate this problem have been introduced in the

literature. For instance, self-paced learning [83] defines a measure of “easiness” that adapts to

the learner’s abilities. This measure has been extended in [84] to account for diversity in the

samples shown to the learner.

2.3 Feature Encoding

After training the parameters of a shallow/deep architecture (see Section 2.2) in an unsuper-

vised fashion, we can proceed to use the model to extract feature representations. To do so, we

must choose an encoder to map the input of the model to its representation. The encoder is

defined as the non-linearity fenc to be applied as follows

hl = fenc(h
l−1Wl + bl). (2.40)

As discussed in [66], the encoding choice can critically affect the performance of a system.

Moreover, the use of polarity split has shown to further improve the performance of many

encoding strategies [66]. Polarity splitting takes into account the positive and negative compo-

nents of a code in the following way:

hl+ = fenc(h
l−1Wl + bl)

hl− = fenc(h
l−1(−Wl) + bl)

hl = [hl−,h
l
+],

(2.41)

where hl is the concatenation of hl− and hl+. Note that this is usually applied to the last

representation layer of the network. As a result, the number of features in the last representation

layer is doubled. Note that, the same encoding procedure can be applied to convolutional

architectures. In that case, the encoding might be followed by a pooling operation.

In the remaining part of this section, we will present the most commonly used encoding

methods in the literature.

Natural encoding is the straightforward choice of encoding. Natural encoding corresponds

to whichever non-linearity is associated to the learning algorithm.
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Soft-threshold applies a fixed threshold non-linearity as

hlj = max{0,hl−1j Wl
j − t}, (2.42)

where t is the threshold to be tuned. When applying polarity split, the encoding of each feature

is computed as

hlj+ = max{0,hl−1j Wl
j − t}

hlj− = max{0,hl−1j (−W)lj − t}.
(2.43)

Sparse coding computes the sparse code s associated with the input by optimizing Eq. 2.32

over hl, holding Wl fixed. When applying polarity split, the encoding of each feature is

computed as in [66] as follows

hlj+ = max{0, s}

hlj− = max{0,−s}.
(2.44)

2.4 Data Pre-processing for Images

Data pre-processing is crucial to many deep learning methods. In this section, we will briefly

describe the most commonly used pre-processing methods in practice when dealing with im-

ages.

2.4.1 Contrast and Brightness Normalization

This normalization is commonly applied to images. Each input image is normalized by sub-

tracting its mean and dividing by its standard deviation

xnorm
(n)
j =

x
(n)
j − µ(n)

σ(n)
, (2.45)

where µ(n) and σ(n) are the mean and the standard deviation accros the elements x
(n)
j of the

sample x(n), respectively.

2.4.2 Feature Standardization

This normalization is widely used in both machine learning and computer vision literature. It

consists in normalizing each feature (data dimension) independently such that it has zero mean

and unit variance

xstd
(n)
j =

x
(n)
j − µj
σj

, (2.46)
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where µj and σj are the mean and the standard deviation of each feature j throughout the whole

training set.

2.4.3 Whitening

Besides standard normalizations such as contrast normalization and/or feature standardization,

whitening is often applied to help deep learning algorithms obtain better representations and

speed up their training. Whitening consists in decorrelating a set of features, since raw input

images exhibit a high redundance (adjacent pixels are highly correlated). To do so, it transforms

an input set of features with covariance matrix Σ into a set of features with identity covariance

matrix.

PCA Whitening allows us to decorrelate the features and optionally reduce the data dimen-

sionality. To do so, we first center the data to ensure that it has zero mean. Then, we compute

the covariance matrix Σ of the input data. After that, we compute the eigenvectors and eigen-

values of Σ. The eigenvectors are stored one per column in a matrix U and the eigenvalues are

stored in a diagonal matrix V. Finally, the output of PCA whitening is computed as

x
(n)
PCAw =

UTx(n)√
diag(V) + η

(2.47)

As a result, the features are uncorrelated and have unit variance. Optionally, the dimensionality

of the projected data can be reduced by keeping k components of x
(n)
PCAw.

ZCA Whitening computes a different transformation to get the set of features to have iden-

tity covariance matrix and does not perform any dimensionality reduction. More precisely, it

computes its output as

x
(n)
ZCAw = Ux

(n)
PCAw = U

UTx(n)√
diag(V) + ε

(2.48)
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As discussed in Chapter 2, training deep architectures is known to be a challenging opti-

mization problem, which has received much attention in the last decade. Unsupervised greedy

layer-wise pre-training [15, 16] was introduced as a successful procedure to learn deep feature

hierarchies. The method trains the layers of a deep architecture one after another by means of

an unsupervised learning algorithm, which usually follows some sparsity and/or reconstruction

criterion.

One of the main criticism to state-of-the-art unsupervised feature learning methods is that

they require a significant amount of hyper-parameters. Note that, in this chapter, the term

hyper-parameter refers to any parameter of an unsupervised learning algorithm. The tuning

of these hyper-parameters is a laborious task that requires expert knowledge, rules of thumb

or extensive search and, whose setting can vary for different tasks [85]. Therefore, there is

great interest for hyper-parameter free methods [67] and automatic approaches to optimize the

performance of learning algorithms [85]. Nevertheless, little effort has been devoted to address

this problem (see Table 3.1 for a comparison of hyper-parameters required by various unsuper-

vised learning algorithms). To the best of our knowledge, work in this direction includes ICA

[68, 69] and sparse filtering [67].

Computational complexity is also a major drawback of many state-of-the-art methods. ICA

[68, 69] requires an expensive orthogonalization to be computed at each iteration. Sparse cod-

ing [60, 61, 62] has an expensive inference, which requires a prohibitive iterative optimization.

Significant amount of work has been done in order to overcome this limitation [63, 86]. Pre-

dictive Sparse Decomposition (PSD) [63] is a successful variant of sparse coding, which uses

a predictor to approximate the sparse representation and solves the sparse coding computation-

ally expensive encoding step.

In this chapter, we will present one of the main contributions of this thesis [21], namely,

a hyper-parameter free, off-the-shelf, simple and fast unsupervised feature learning algorithm,

which exploits a new way of optimizing for sparsity and provides discriminative features that

generalize well. In Section 3.1, we will define the concept of sparsity and explain how it relates

to various state-of-the-art unsupervised feature learning algorithms. Then, in Section 3.2 we

will describe the method that we propose. After that, Section 3.3 will show the results achieved

by the proposed method on benchmark datasets. Sections 3.4 and 3.5 will be devoted to high-

lighting the importance of sparsity and discussing the computational complexity, respectively.

In Section 3.6, we will discuss the obtained results. Finally, we will summarize the contribution

in Section 3.7.
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Table 3.1: Hyper-parameters to tune of various state-of-the-art unsupervised feature learning meth-
ods.

Sparse RBM target activation, sparsity penalty
Sparse Auto-encoder target activation, sparsity penalty
Sparse Coding (SC) sparsity penalty

RICA reconstruction penalty
PSD sparsity penalty, prediction penalty

OMP-k k (non-zero elements)
ICA -

Sparse Filtering -

3.1 Sparsity

As mentioned in Chapter 2, many state-of-the-art unsupervised learning algorithms follow

sparsity criteria. Sparsity is among the desirable properties of a good feature representation

[5, 8, 59, 60, 67, 70, 87]. Sparse features consist of a large amount of units, which respond

rarely and provide high responses when they do respond. Sparsity can be described in terms

of population sparsity and lifetime sparsity [88]. Both lifetime and population sparsity are im-

portant properties of the feature distribution. On one hand, lifetime sparsity plays an important

role in preventing bad solutions such as numerous dead features. A feature is said to be dead

when it does not activate for any training data. There seems to be a consensus to overcome

such degenerate solutions, which is to ensure similar statistics among features [5, 67, 87, 88].

On the other hand, population sparsity helps providing a simple interpretation of the input data

such as the ones found in early visual areas. To the best of our knowledge, the proportion of

features to be active per sample remains ambiguous.

A common way to enforce sparsity in the feature representation is by adding an L1 penalty

term in the objective function. The great majority of state-of-the-art methods described in

Chapter 2 optimize either for one or both sparsity forms. On one hand, sparse auto-encoders

and sparse RBM seek lifetime sparsity by optimizing for a target activation. This target acti-

vation requires tuning and does not explicitly control the level of population sparsity. On the

other hand, OMP-k and sparse coding solely seek population sparsity. OMP-k defines the level

of population sparsity by setting k to the maximum expected number of non-zero elements per

feature representation, whereas sparse coding [60] ensures population sparsity by constraining

the number of active features per sample to be small.
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Although different in the sparsity form imposed to their features, the above-mentioned

methods share the objective of explicitly modeling the data distribution by minimizing the

reconstruction error. A completely different perspective is introduced by sparse filtering [67].

Rather than attempting to explicitly model the input distribution, the method focuses on the

properties of the feature distribution, by optimizing for population sparsity while trying to

maintain similar activation among features. As a result, lifetime sparsity is somehow achieved

in the features.

Although learning a good approximation of the data distribution may be desirable, ap-

proaches such as sparse filtering [67] highlight that this seems not so important if the goal is to

build a discriminative sparse system.

3.2 Method

In this section, we will describe how the proposed method learns a sparse feature representation

of the data in terms of population and lifetime sparsity. The method iteratively builds a sparse

target and optimizes the parameters of a system, namely a layer of a deep architecture, by

minimizing the error between the system output and the sparse target. In section 3.2.1, we will

highlight the algorithm to enforce lifetime and population sparsity in the sparse target. Then, in

Section 3.2.2 we will provide implementation details on the system and optimization strategies

used to minimize the error between the system output and the sparse target.

3.2.1 Enforcing Population and Lifetime Sparsity by Defining a Target

We define population and lifetime sparsity as properties of a sparse feature representation.

Given N training samples and their corresponding feature representations of dimensionality

Nlh, we define the first property of a feature representation as:

1. Strong Lifetime Sparsity: Each feature representation must be composed solely of

active and inactive units (no intermediate values between two fixed scalars are allowed)

and all units must activate for an equal number of inputs. Activation is exactly distributed

among the Nlh features.

Our Strong Lifetime Sparsity definition is a more strict requirement than the high dispersal

concept introduced in [67], which only requires that “the mean squared activations of each

feature [...] should be roughly the same for all features”. While high dispersal attempts to
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diversify the learned filters, it does not guarantee the feature distribution, in the lifetime sense,

to be composed of only a few activations. Furthermore, our definition ensures the absence of

dead features.

Given our definition of Strong Lifetime Sparsity, we define population sparsity as:

2. Strong Population Sparsity: For each training sample only one feature must be active.

The rationale of our approach is to appropriately generate a sparse target that fulfills prop-

erties (1) and (2), and then learn the parameters of the system by minimizing the L2 error

between the sparse target and the feature representation generated by the system during train-

ing. In this way, we seek a system optimized for both population and lifetime sparsity in an

explicit way.

The key component of our approach is how to define the sparse target based on the above-

mentioned properties. However, to ensure that the optimization of the system parameters con-

verges, we add a third property:

3. Minimal Perturbation: The sparse target should be defined as the best approximation

of the system’s generated feature representation, as measured by L2 error, that fulfills

properties (1) & (2).

Creating the sparse target that ensures the above-mentioned properties is analogous to solv-

ing an assignment problem. The Hungarian method [89] is a combinatorial optimization algo-

rithm, which solves the assignment problem. However, its computational cost O((NNlh)
3/2)

is prohibitive. Therefore, in the next subsection we propose a simple and fast O(NNlh) algo-

rithm to generate the sparse target, which ensures sparsity properties (1) & (2) and provides an

approximate solution for minimal perturbation property (3).

3.2.1.1 Sparse Target Generation: the Enforcing Population and Lifetime Sparsity (EPLS)
Algorithm

Let us assume that we have a system, which produces a row feature vector hl ∈ RNl
h . We use

the notation hlj to refer to one element of hl. We define a feature matrix Hl (e.g., built as the

output of a network’s layer l, see Section 3.2.2 for details), composed of N feature vectors. We

define Hl(b) as a matrix containing a subset of Nb rows of Hl, where Nb ≤ N. Likewise, we

define a sparse target matrix T(b) of the same size. Algorithm 1 details the EPLS algorithm
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Algorithm 1 EPLS

Input: Hl(b), c, N
Output: T(b), c

1: T(b) = 0

2: Hl(b) = Hl(b)−min(Hl(b))

max(Hl(b))−min(Hl(b))

3: for n = 1→ Nb do
4: hlj = Hl

n,j
(b) ∀j ∈ {1, 2, . . . ,Nlh}

5: k = argmaxj
(
hlj − cj

)
6: T

(b)
n,k = 1

7: ck = ck +
Nl

h

N

8: end for
9: Remap T(b) to active/inactive values

to generate the sparse target T(b) from Hl(b). For the sake of simplicity, every step of the

algorithm where the subscript j (feature index) appears must be applied ∀j ∈ {1, 2, . . . ,Nlh}.

Starting with no activation in T(b) (line 1) and the feature matrix Hl(b) normalized between

[0,1] to adapt the method to any active/inactive values (line 2), the algorithm proceeds as fol-

lows. A row vector hl from Hl(b) is processed at each iteration (line 4). The crucial step is

performed in line 5: the feature k that has to be activated in the nth row of T(b) is selected as

the one that has the maximal activation value hlj minus the inhibitor cj . The inhibitor cj can

be seen as an accumulator that “counts” the number of times a feature j has been selected, in-

creasing its inhibition progressively by Nlh/N until reaching maximal inhibition. This prevents

the selection of a feature that has already been activated N/Nlh times. The rationale behind the

equation in line 5 is that, while selecting the maximal responses in Hl(b), we have to take care

to distribute them evenly among all features (in order to ensure Strong Lifetime Sparsity). In

line 6, the algorithm activates the kth element of nth row of the sparse target T(b). By activating

the “relative” maximum, we approximate property (3). After that, the inhibitor c is updated in

line 7. Finally, in line 9, the complete sparse target T(b) is remapped to the active/inactive val-

ues of the chosen activation function, e.g. {−1, 1} for tanh and identity function (see Section

3.2.2).

3.2.2 System and Optimization Strategies

Let us assume that we have a system composed of the l-th layer of a deep architecture param-

eterized by θl = {Wl,bl}, with activation function f , which takes as input an input vector
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Figure 3.1: EPLS pipeline (see text for details). For simplicity, we assumed Nb = N and omitted
the super-script (b) without loss of generality.

hl−1 and produces a feature vector hl = f(hl−1, θl). We use the same notation as in Section

3.2 and define a data matrix Hl−1 composed of N rows and Nl−1h columns, where Nl−1h is the

input dimensionality.

The feature matrix Hl ∈ RN×Nl
h is computed as

Hl = f
(
Hl−1Wl + bl

)
, (3.1)

where f is an element-wise non-linearity. The proposed training algorithm is independent of

the activation function f . To compare our training strategy to previous well known systems, we

tested our algorithm using the logistic, scaled tanh (as suggested in [27]) and identity functions

as element-wise non-linearity. When f is the identity function, an extremely fast algorithm can

be used to train the system, as detailed in subsection 3.2.2.2.

3.2.2.1 Standard Optimization Strategy

The system is trained by means of an off-the-shelf mini-batch Stochastic Gradient Descent

(SGD) method with adaptive learning rates such as variance-based SGD (vSGD) [44]. Algo-

rithm 2 details the latter training process. The mini-batch size Nb can be set to any value,

in all the experiments we have set Nb = Nh. Starting with θl set to small random numbers
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as in [27] (line 1), at each epoch we shuffle the samples of the training set (line 3), reset the

EPLS inhibitor c to zero (line 4) and process all mini-batches. For each mini-batch b, samples

Hl−1(b) are selected (line 6); the feature matrix Hl(b) is computed (line 7); and the EPLS is

invoked to compute the sparse target T(b) and update the inhibitor c (line 8). After that, the

gradient of the error is computed (line 9) and the learning rate ε is estimated as in [44] (line

10). The system parameters are then updated to minimize the L2 error E = ||Hl −T||22 (line

11). Finally, the weights Wl in θl are limited to have unit norm (line 13) to: (1) avoid satura-

tion of non-linear activation functions, (2) help generating smoother mappings and, (3) avoid

numerical issues due to large weights. This procedure is repeated until a stop condition is met;

in our experiments, when the relative decrement error between epochs is small (< 10−6).

When updating the system parameters, we assume that T(b) does not depend on θl, thus
∂T(b)

∂θl
= 0; we carried out experiments that show that this approximation does not significantly

influence the gradient descent convergence nor the quality of the minimization. Moreover,

this assumption makes the algorithm much faster, since we remove the need of computing the

numerical partial derivatives of T(b). Figure 3.2 shows how ∂Hl(b)

∂θl
predominates over ∂T(b)

∂θl

throughout the training epochs.

Note that this optimization strategy is valid for any activation function, since the feature

matrix Hl(b) is normalized within the EPLS algorithm (see Algorithm 1). Moreover, the mini-
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batch vSGD allows to scale the algorithm easily, especially with respect to the number of

samples N.

Algorithm 2 Standard EPLS training

Input: Hl−1

Output: θl

1: θ = small random values
2: repeat
3: Shuffle Hl−1 randomly
4: c = 0

5: for b = 1→ bN/Nbc do
6: Select mini-batch samples Hl−1(b)

7: Hl(b) = f(Hl−1(b), θl)

8: (T(b), c) = EPLS(Hl(b), c,N)

9: G = ∇θl ||Hl(b) −T(b)||22
10: Estimate learning rate ε as in [44]
11: θl = θl − εG
12: end for
13: Limit the weights Wl in θ to have unit norm
14: until stop condition verified

Figure 5.1 summarizes the steps of the proposed method. Given an input Hl−1 ∈ RN×Nl−1
h

(a), the algorithm computes its feature output Hl ∈ RN×Nl−1
h by applying the activation func-

tion f (b), invokes EPLS to generate the sparse target T (c) and then learns its parameters θl

by minimizing E = ||Hl −T||22.

3.2.2.2 Special Optimization Case: Identity Activation

An interesting case appears when the activation function is the identity, since the linear system

Hl−1(b)Wl = T(b) can be solved by alternately fixing Wl and T(b) for N ≥ Nl−1h Nlh, where

the bias bl of each feature is incorporated in Wl as an additional weight and a column of ones

is attached at the end of Hl−1(b). In this context, we set Nb = N; thus, in the remaining part of

the explanation, we will drop the super-script (b).

In this particular case, at each epoch, Wl can be estimated in closed form for a fixed T.

Hence, the system can be trained by means of an extremely fast algorithm. The optimization

process alternatively fixes Wl and T to find Hl, which better approximates T. Starting with a

random initialization of Wl as in [27], we compute the pseudo-inverse Hl−1
inv of the input data

Hl−1. Note that this operation is performed only once before the optimization process. Then,
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the optimization proceeds as follows: Starting from a flat activation in the EPLS inhibitor c,

(1) the output of the system is computed using a fixed Wl; (2) EPLS algorithm is invoked to

generate the sparse target T and; (3) the parameters Wl are updated keeping T fixed. The

procedure is repeated until a stop condition is met. Note that the described algorithm is espe-

cially useful when the training set is relatively small, since the optimization process becomes

extremely fast. However, when the training set is large, and computing the pseudo-inverse of

Hl−1 becomes critical, the standard optimization process in Algorithm 2 can be used with the

identity activation.

3.3 Experiments on Benchmark Datasets

The performance of training and encoding strategies in single layer networks has been exten-

sively analyzed in the literature [7, 66, 90] on CIFAR-101, STL-102 and UCMerced3 datasets.

CIFAR-10 [91] dataset provides a fully labeled training set used for both unsupervised and

supervised learning, whereas STL-10 [7] provides a large unlabeled training set for unsuper-

vised learning and a small number of labeled samples for supervised learning. UCMerced [92]

presents a less heterogeneous dataset, with highly overlapping classes and fewer images per

class. In this section, we will evaluate the proposed unsupervised feature learning algorithm on

the three benchmark datasets.

3.3.1 Test with a Few Supervised Examples: STL-10

STL-10 dataset consists of 96× 96 pixels color images belonging to 10 different classes. The

dataset is divided into a large unlabeled training set containing 100K images and smaller la-

beled training and test sets, containing 5K and 8K images, respectively. The test set is divided

into 10 folds of 1K images. It has to be considered that in STL-10, the primary challenge is

to make use of the unlabeled data (100K images), which is 100 times bigger than the labeled

data used to train the classifier (1K per fold). In this case, the supervised training must strongly

rely on the ability of the unsupervised method to learn discriminative features. Moreover, since

the unlabeled dataset contains other types of animals (bears, rabbits, etc.) and vehicles (trains,

1http://www.cs.toronto.edu/$\sim$kriz/cifar.html
2http://www.stanford.edu/$\sim$acoates/stl10/
3http://vision.ucmerced.edu/datasets/landuse.html
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3.3 Experiments on Benchmark Datasets

Figure 3.3: Random subset of filters learned by EPLS using the logistic activation function, a
receptive field of 10 × 10 pixels and Nlh = 1600 (better seen in color).

buses, etc.) in addition to the ones in the labeled set, the unsupervised method should be able

to generalize well.

To validate our method, we follow the experimental pipeline of [7]. We first extract random

patches and normalize them for local brightness and contrast. Note that EPLS does not require

any whitening of the input data. Then, we train the system in a patch-based fashion. After that,

we apply the system to retrieve sparse features of patches covering the input image, sum-pool

them into 4 quadrants and finally train a L2 Support Vector Machine (SVM) for classification.

We tune the SVM parameter using 5-fold cross-validation. As in [67], we use a receptive

field of 10 × 10 pixels and a stride of 1. The number of features is set to Nlh = 1600 for

fair comparison with state-of-the-art methods. We also provide the results of our method with

polarity split (Nlh = 1600 × 2, using Wl and −Wl for encoding as in [66]) and using the

sparse coding (SC) encoder, which [66] found to be the best when small number of labeled

data is available. For this encoder, we searched over the same set of parameter values as [66],

i.e., λ = {0.5, 0.75, 1.0, 1.25, 1.5}. Note that the parameter λ is part of the encoder and, thus,

does not belong to the unsupervised learning method that we propose.

Table 3.2 summarizes the results obtained on this dataset compared to state-of-the-art meth-

ods at the time we carried out the research. When pairing each training method with its asso-

ciated natural encoding, EPLS outperforms all other methods, independently of the activation

function. When pairing the training methods with sparse coding, EPLS outperforms the state-

of-the-art best performer in single layer networks as well, achieving 61.0% (0.58%) accuracy

when the logistic function is used to train the system’s parameters. Moreover, the standard

deviation of the folds is lower than the one provided by OMP-1 with sparse coding encoding.

4We used a rectified linear unit as natural encoding of tanh and linear activations to avoid sum pooling cance-
lations.
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Table 3.2: EPLS Classification accuracy on STL-10. Natural and Sparse Coding (SC) refer to the
type of encoding used after training the network (see Chapter 2). Complete denotes a system with
equal number of inputs and outputs.

.

Algorithm Accuracy

Single-Layer with hyper-parameters

RICA [70] (1600/Natural) 52.9%

OMP-k (k = 1) (1600/Natural) 51.8% (0.47%)

OMP-k (k = 1) (whitening, 1600/Natural) 53.1% (0.52%)

OMP-k (k = 1) (whitening, 1600 × 2/Natural) 54.5% (0.66%)

OMP-k (k = 1) (whitening, 1600 × 2/SC) 59.0% (0.80%)

Single-Layer without hyper-parameters

Raw pixels 31.8% (0.62%)

ICA (whitening, Complete/Natural) 48.0% (1.47%)

K-means-tri (whitening, 1600) 51.5% (1.73%)

Sparse Filtering (1600/Natural) 53.5% (0.53%)

EPLS
HHH

HHHf

Enc. Natural
(1600)

Natural
(1600x2)

SC
(1600x2)

tanh4 55.4% (0.70%) 55.4% (0.62%) 59.2% (0.64%)

logistic 56.6% (0.66%) 56.9% (0.50%) 61.0% (0.58%)
identity4 55.4% (0.76%) 55.6% (0.59%) 58.7% (0.85%)
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Results are even more impressive if we compare them to hyper-parameter free algorithms.

Figure 3.3 shows a subset of 100 randomly selected filters learned by our method using the

logistic activation function, 10× 10 pixel receptive field and a system of Nlh = 1600 features.

As shown in the figure, the method learns not only common filters such as oriented edges/ridges

in many directions and colors but also corner detectors, tri-banded colored filters, center sur-

rounds and Laplacian of Gaussians among others. This suggests that enforcing lifetime sparsity

helps the system to learn a set of complex, rich and diversified bases.

3.3.2 Test with All Supervised Examples: CIFAR-10

CIFAR-10 dataset consists of 32×32 pixel color images belonging to 10 different classes. The

dataset has a large amount of labeled data (50K images) to be used for training. We follow the

experimental pipeline of [7], with a stride of 1 pixel, a receptive field of 6× 6 pixels and a data

normalization for local brightness and contrast. We do not perform any whitening of the input

images. The number of features is again set to Nlh = 1600, consistent with [7]. We also provide

the results of our method with polarity split (Nlh = 1600× 2) and using the soft-thresholding,

which [66] found to be the best encoder on CIFAR-10. We searched over the same set of values

as [66] to tune the value of the soft-threshold t = {0.1, 0.25, 0.5, 1.0}. Note that the parameter

t is part of the encoder and, thus, does not belong to the unsupervised learning method that we

propose.

Table 3.3 presents the results obtained on this dataset compared to state-of-the-art methods

at the time we carried out the research. The results of sparse filtering [67] were computed

following the same procedure, using the code provided by the authors5. As reported in Table

3.3, the performance of our training strategy matches the contemporary state-of-the art, while

requiring no hyper-parameter tuning. When compared to training methods using their natural

encoding, our approach provides results that outperform the state-of-the-art accuracy. When

considering soft-threshold encoding, OMP-1 provides slightly higher performance. When the

hyper-parameter k is properly tuned, OMP-k achieves better results. However, as suggested

by the results, OMP-k strongly relies on data whitening previous to the parameters learning

(decreasing its performance by 5.9% when no whitening is used and k = 1). The whitening

pre-processing might be critical, since it can not always be computed exactly for high dimen-

sional data [70]. Moreover, when setting the number of features to Nlh = 6000, EPLS matches

OMP-k performance, with a performance gain of 3.29% w.r.t. Nlh = 1600. Sparse coding also

provides competitive results when properly combining its training and inference parameters.
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In [66], authors do not report the results of sparse coding using its natural encoding (i.e., using

the same λ for both training and encoding). It has to be noted that the method involves an

expensive training (with very slow convergence), an expensive inference (with an extra loop

of optimization) as well as hyper-parameter tuning to achieve best performance. When com-

pared to single layer training methods without hyper-parameters, EPLS paired with its natural

encoding outperforms state-of-the-art results, except for k-means (tri), whose performance is

significantly higher than the others. It has to be considered that the CIFAR-10 dataset provides

a large set of labeled data, so that the pipeline performance depends on the proper combination

of unsupervised and supervised learning algorithms. As stated in [7], k-means coupled with

a triangle activation and whitening especially benefits from the large amount of labeled data

that CIFAR-10 provides. This is stressed by its significantly lower ranking on STL-10 (−5.1%

w.r.t. our method paired with its natural encoding and the same number of features).

3.3.3 Test with Less Heterogeneous Dataset: UCMerced

UCMerced dataset consists of 256 × 256 pixels color images belonging to 21 aerial scene

categories. The dataset contains highly overlapping classes and therefore, is less heterogeneous

than both CIFAR-10 and STL-10. The dataset has only 100 images per class. We follow the

experimental pipeline described in [90] and randomly select 80 images from each class to be

used for training and leave the 20 remaining ones for testing. We report the mean accuracy

obtained over five runs.

To validate our method, we reproduce the experimental setting of [90] and use a receptive

field of 16 × 16 pixels, a stride of 8 pixels and Nlh = 1000 features. We first extract random

patches from the training images, normalize them for local brightness and contrast and use them

to train the system. We train the system by means of EPLS with logistic activation function.

After that, we apply the system to retrieve sparse features using natural encoding with polarity

split, to be consistent with the number of features in [90]. We sum-pool the features into 4

quadrants and, finally, train a linear SVM for classification. As in the previous experiments,

we tune the SVM parameter using 5-fold cross-validation.

5lhttp://cs.stanford.edu/$\sim$jngiam/papers/NgiamKoh\ChenBhaskarNg2011_

Supplementary.pdf
6We used a rectified linear unit as natural encoding of tanh and linear activations to avoid sum pooling cance-

lations.
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Table 3.3: EPLS Classification accuracy on CIFAR-10.

Algorithm Accuracy

Single-Layer with hyper-parameters
Sparse RBM (1600/Natural) 72.4%
Sparse auto-encoder (1600/Natural) 73.4%
Sparse coding (1600x2/different λ) 78.8%
OMP-k (k = 1) (whitening, 1600x2/Natural) 71.4%
OMP-k (k = 1) (1600x2/t) 73.5%
OMP-k (k = 1) (whitening, 1600x2/t) 79.4%
OMP-k (k = 10) (whitening, 1600x2/t) 80.1%
OMP-k (k = 10) (whitening, 6000x2/t) 81.5%

Single-Layer without hyper-parameters
Raw pixels 37.3%
K-means-hard (whitening, 1600/Natural) 68.6%
K-means (whitening, 1600/tri) 77.9%
Sparse Filtering (1600/Natural) 71.2%

EPLS
HHH

HHHf

Enc. Natural
(1600)

Natural
(1600x2)

t
(1600x2)

tanh6 77.1% 77.2% 78.9%
logistic 74.7% 75.8% 77.3%

identity6 76.4% 76.5% 78.4%

tanh (6000x2/t) 81.5%
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Table 3.4: EPLS Lifetime and Population Sparsity.

Method
Lifetime

(KL)
Population
(Kurtosis)

Sparse Coding7 0.0371 45.44
Sparse Auto-encoders 0.0002 18.24

OMP-17 0.0869 45.55
Sparse Filtering 0.0189 3.48

EPLS (logistic) 0.0006 27.42
EPLS (tanh)7 0.0081 7.47

EPLS (linear)7 0.0068 10.11

We achieve an accuracy of 74.34±3.0%, which is significantly higher than the 62.7±1.72%
reported in [90] when pairing OMP-1 training with soft-threshold encoding (tuned to achieve

maximum performance) on raw pixels. Note that when considering the result reported in [90]

using OMP-1 with its natural encoding on normalized raw pixels (13.86±1.31%), our method’s

results are even more impressive.

The reported results suggest that the EPLS is able to learn good representations even when

training from fewer images and exhibits an especially remarkable performance on less hetero-

geneous datasets.

3.4 Analysis of Population and Lifetime Sparsity

It is interesting to analyze how well our method can achieve population and lifetime sparsity,

and compare it to state-of-the-art methods, which claim to seek a sparse feature representation

of the data. We trained single layer systems by means of sparse coding, sparse auto-encoders,

OMP-1, sparse filtering and EPLS on N = 400K color patches of 6x6 pixels of CIFAR-10

dataset, and only Nlh = 100 features. The majority of state-of-the-art methods ensure lifetime

sparsity by enforcing similar mean activation among features [5, 67]. To evaluate how well

these methods achieve their objective, we take the training set and generate the output fea-

tures of the system. After that, we compute the mean activation of each feature and normalize

them (dividing by the sum of all feature’s mean activations) in order to obtain a probability

distribution. Then, we compute the Kullback-Leibler divergence (KL) between the resulting

probability distribution and an uniform (flat) distribution with equal probability 1
Nl

h

. Note that

this is not a strict measure of lifetime sparsity, but a measure of the activation statistics among
7We applied a rectified linear unit to the features extracted by these methods.
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features. The lower the value, the closer to the objective of maintaining similar mean activa-

tion among features. Likewise, we want to evaluate all these methods in terms of population

sparsity. To ensure population sparsity, we want a small subset of features to be strongly ac-

tive at the same time. Therefore, we compute the population kurtosis, as proposed in [88], to

measure the infrequency of strong neural response. The population kurtosis increases as the

population sparsity increases. Table 3.4 summarizes the obtained results. OMP-1 and sparse

coding typically enforce population sparsity and, thus, exhibit the highest population sparsity

level among methods. However, these methods do not achieve good lifetime sparsity, e.g.

OMP-1 potentially leaves a significant amount of dead (or almost dead) features. Sparse fil-

tering claims to ensure both population and lifetime sparsity, but seems to achieve the lowest

level of both sparsities when compared to other state-of-the-art methods. Sparse auto-encoders

explicitly enforce lifetime sparsity. Results show that the method achieves one of the highest

lifetime sparsity levels when tuned to achieve maximum performance. Moreover, the method

also provides reasonable population sparsity. As shown in the table, the EPLS achieves a good

compromise between lifetime and population sparsity by imposing sparsity in the objective

function in a very strict way. Note that the extreme form of quantization in the EPLS sparse

target will never be reached while training, since we constrain the filters to have at most unit

norm (see Algorithm 2 line 13).

To highlight the benefits of encouraging Strong Lifetime Sparsity, we analyze the impact

of allowing each feature to activate for a different number of inputs. To do so, we apply a

coefficient λ ≤ 1 to the ratio Nlh/N in line 7 of Algorithm 1 to decrease the inhibition of

each feature and allow each feature to activate 1
λ times more than the others, while maintaining

Strong Population Sparsity property. For each λ, we trained a network of Nlh = 100 features

and measured the accuracy of the network as well as the achieved lifetime sparsity.

Figure 3.4 shows the accuracy as a function of the lifetime sparsity (KL). We also evaluated

the percentage of dead features of each network, reported between brackets. Enforcing Strong

Lifetime Sparsity (λ = 1) achieves maximum accuracy and lowest KL. The farther we move

from the Strong Lifetime Sparsity definition (λ decreases), the higher the KL and the lower the

accuracy. Moreover, dead features do not appear until λ ≤ 1
32 . Therefore, the reduced lifetime

sparsity is the only responsible for the performance drop when λ is slightly smaller than 1.

Note that, for λ ≤ 1
32 , the performance is also affected by the presence of dead features.

This experiment suggests that enforcing Strong Lifetime Sparsity is indeed crucial to achieve

good results.
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Figure 3.4: Accuracy changing lifetime sparsity in a single layer network of Nlh = 100. The
percentage of dead features of each network is reported between brackets

3.5 Computational Complexity

The EPLS algorithm requires the computation of T, which has O(NNlh) cost, and therefore

scales linearly on both N and Nlh. Since we can use vSGD for optimization, the method scales

linearly on N given a fixed number of epochs. Finally, applying the activation function, the

cost of computing the derivative is linear with Nl−1h , since we use the analytical expression of
∂E
∂θl

, with ∂T
∂θl

= 0.

The memory complexity is related to the mini-batch size Nb. Consequently, the method

can scale gracefully to very large datasets: theoretically, it requires to store in memory the

mini-batch input data Hl−1(b) (NbN
l−1
h elements), output Hl−1(b) (NbN

l
h elements), target

T(b) (NbN
l
h elements) and the system parameters to optimize θ (Nlh

(
Nl−1h + 1

)
elements); a

total amount of Nh

(
Nl−1h + 1

)
+Nb

(
Nlh + 2Nlh

)
elements.

3.6 Discussion

Our results show that simultaneously enforcing both population and lifetime sparsity helps in

learning discriminative filters, which translates into better performance, especially when com-

pared to other hyper-parameter free methods [67, 70]. Experiments suggest that our algorithm
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is able to extract features that generalize well on unseen data. When comparing the perfor-

mance on CIFAR-10 and STL-10 datasets, our algorithm ranks much better on the STL-10

than on CIFAR-10. Note that on STL-10, we outperform contemporary state-of-the-art best

performers, whereas on CIFAR-10, we match the best performer at the time this research was

published (OMP-10 in conjunction with a soft-threshold encoding). Results on STL-10 sug-

gest that our algorithm helps the classifier in generalizing with a few training examples (1% of

the dataset), gaining 2% accuracy w.r.t. the state-of-the art best performer (OMP-1 paired with

sparse coding) with a lower standard deviation across folds, suggesting more robustness to vari-

ations in the training folds. Moreover, on UCMerced, the EPLS exhibits extremely compelling

results when compared to OMP-1. This suggests that sufficiently heterogeneous datasets might

help state-of-the-art algorithms to implicitly achieve lifetime sparsity.

It is important to highlight that OMP-1 can be seen as a special case of our algorithm,

where the activation function is |Hl−1W| and lifetime sparsity is not taken into account in the

optimization process (potentially leading to dead features). Our algorithm has several advan-

tages over OMP-1: (1) It can use any activation function; (2) by enforcing lifetime sparsity it

does not suffer from the dead feature problem, thus not requiring ad-hoc tricks to avoid it; (3)

it does not require whitening, which can be a problem if the input dimensionality is large [70].

With our proposal, we advance in the hyper-parameter free line of ICA [68] and sparse

filtering [67]. It is clear that the advantage of sparse filtering over ICA comes from removing

the orthogonality constraint, and imposing some sort of “competition” between features, which

also permits overcomplete representations. Following this spirit, our algorithm imposes an even

more strict form of competition to prevent dead features by means of Strong Lifetime Sparsity

and confirms the trend of [67, 68] that data reconstruction seems not so important if the goal is

to have a discriminative sparse system.

Last and most importantly, it is worth highlighting five interesting properties of the EPLS

algorithm. First, the method is hyper-parameter free, which highly simplifies the training pro-

cess for practitioners, especially when used as a greedy pre-training method in deep architec-

tures. Second, the method is fast and scales linearly with the number of training samples and

the input/output dimensionalities. Third, EPLS is easy to implement. We implemented the

EPLS in Algorithm 1 in less than 50 lines of C code. The mini-batch vSGD is a general pur-

pose optimizer; our Matlab implementation of vSGD plus the EPLS mex source are publicly

available8. Fourth, the proposed learning strategy is not limited to perceptrons. Fifth, there is

an interest in the literature in avoiding redundancy in the image representation by performing
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a convolutional training [63] instead of a patch-based one. For this purpose, the EPLS can be

slightly modified to apply the procedure to a whole image at once and consider the mini-batch

size to be the image divided into patches. Furthermore, combining the EPLS in transformation-

invariant frameworks such as [93] is potentially interesting. These aspects are not considered

in the thesis and are left for future investigation.

3.7 Summary

In this chapter, we presented a hyper-parameter free, off-the-shelf, simple and computa-

tionally efficient approach for unsupervised sparse feature learning. The method seeks both

lifetime and population sparsity in an explicit way in order to learn discriminative features. We

evaluated the method on single layer systems following the standard state-of-the-art pipeline.

Experiments were aimed at highlighting the importance of explicitly enforcing lifetime sparsity

to achieve good results. Finally, results on benchmark datasets showed that the method signifi-

cantly outperforms hyper-parameter free best performers, as well as many other state-of-the-art

methods, even when dealing with fewer samples and less heterogeneous datasets.

8https://sites.google.com/site/adriromsor/epls
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In Chapter 3, we introduced EPLS, an unsupervised learning algorithm to extract sparse

feature representations. The algorithm was evaluated on single layer models, demonstrating its

potential to provide discriminative features and achieving state-of-the-art results. Yet the ques-

tion of training deep architectures with the proposed unsupervised algorithm remains unan-

swered. In this chapter, we will exploit the properties of the EPLS to train deep architectures

in a greedy layer-wise fashion [15, 16]. To that end, we choose two different applications that

could benefit from our approach. The first application, that will be discussed in Section 4.1, is

remote sensing image and pixel classification. We will use this context to perform a detailed

analysis of both (1) the benefits of our method to train deep architectures; and (2) the influence

of several deep architecture’s hyper-parameters on the system’s performance. The second ap-

plication, that will be tackled in Section 4.2, is image parsing. We will use this application to

extend the method and make it proficient at the image parsing task.

4.1 Application to Remote Sensing Data

Earth observation through remote sensing techniques is a research field where a huge vari-

ety of physical signals is measured from instruments on-board space and airborne platforms.

A wide diversity of sensor characteristics is nowadays available, ranging from medium and

very high resolution (VHR) multispectral imagery to hyper-spectral images that sample the

electromagnetic spectrum with high detail. These myriad of sensors serve to particularly dif-

ferent objectives, focusing either on obtaining quantitative measurements and estimations of

geo-bio-physical variables, or on the identification of materials by the analysis of the acquired

images [94, 95, 96]. Among all the different products that can be obtained from the acquired

images, segmentation maps are perhaps the most relevant ones. The remote sensing image

classification and pixel classification problems are very challenging and ubiquitous because

land cover and land use maps are mandatory in multi-temporal studies and constitute useful

inputs to other processes.

Despite the high number of advanced, robust and accurate existing classifiers [97], the field

faces very important challenges:

1. Complex statistical characteristics of images: The statistical properties of the acquired

images pose important difficulties for automatic classifiers. The analysis of these images

turns out to be very challenging, especially because of the high dimensionality of the

pixels, the specific noise and uncertainty sources observed, the high spatial and spectral

60



4.1 Application to Remote Sensing Data

redundancy and collinearity, and their potentially non-linear nature1. Beyond these well-

known data characteristics, we should highlight that spatial and spectral redundancy also

suggest that the acquired signal may be better described in sparse representation spaces,

as recently reported in [97, 99, 100, 101].

2. High computational problems involved. We are witnessing the advent of a Big Data Era,

especially in remote sensing data processing. The upcoming constellations of satellite

sensors will acquire a large variety of heterogeneous images of different spatial, spectral,

angular and temporal resolutions. In fact, we are witnessing an ever increasing amount

of data gathered with current and upcoming earth observation satellite missions, from

multispectral sensors like Landsat-8 [102], to VHR sensors like WorldView-III [103],

the super-spectral Copernicus’ Sentinel-2 [104] and Sentinel-3 missions [105], as well

as the planned EnMAP [106], HyspIRI [107] and ESA’s candidate FLEX [108] imaging

spectrometer missions. This data flux will require computationally efficient classification

techniques. The current state-of-the-art SVM [109, 110] is not, however, able to cope

with more than some few thousands of labeled data points.

3. Scarcity of labeled data. Remote sensing data is typically characterized by the insuf-

ficiency of labeled data. As in many application domains, collecting labeled data has a

very high cost in terms of time and human resources, whereas unlabeled data is relatively

easier to obtain.

A convenient way to alleviate these problems is to extract relevant, potentially useful, non-

redundant, non-linear features from images in an unsupervised fashion in order to facilitate

the subsequent classification step. The bottleneck would then be the unsupervised feature

learning step. Thus, learning expressive spatial-spectral features from hyper-spectral images

in an efficient way is of paramount relevance.

Therefore, we propose to train convolutional deep architectures in a greedy layer-wise fash-

ion [15, 111] by means of EPLS unsupervised learning algorithm [21] introduced in Chapter

3. Convolutional deep architectures allow us to address the first challenge in remote sensing,

given (1) their highly non-linear nature, well-suited to cope with the difficulties of non-linear

spatial-spectral image analysis; and (2) their ability to capture local interactions, appropriate

1Factors such as multi-scattering in the acquisition process, heterogeneities at sub-pixel level, as well as atmo-
spheric and geometric distortions lead to distinct non-linear feature relations, since pixels lie in high dimensional
curved manifolds [97, 98].
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when the input shares similar statistics at all location, i.e. when there is high redundancy.

Moreover, the EPLS unsupervised learning algorithm allows to handle both the second and

third previously mentioned remote sensing challenges, since (1) it provides a purely unsuper-

vised pipeline to train each layer of a deep architecture, not suffering from labeled data scarcity;

and (2) it is able to handle large numbers of high dimensional data efficiently, alleviating the

high computational problems. In addition to that, EPLS enforces a sparse representation of the

data, which is supposed to be convenient to describe remote sensing data [97, 99, 100, 101].

The proposed pipeline is applied to retrieve hierarchical sparse representations of remote sens-

ing data, which are then used for image classification and pixel classification. Experimental

results outline the applicability and potential of the method introduced in the previous chapter

to extract potentially useful hierarchical representations of hyper-spectral, very high resolution

and multispectral images.

4.1.1 Related Work

Given the typically high dimensionality of remote sensing data, feature extraction techniques

have been widely used in the literature to reduce the data dimensionality. While the classical

Principal Component Analysis (PCA) [112] is still one of the most popular choices, a plethora

of non-linear dimensionality reduction methods, manifold learning and dictionary learning al-

gorithms have been introduced in the last decade.

State-of-the-art manifold learning methods [113] include: local approaches for the descrip-

tion of remote sensing image manifolds [114]; kernel-based and spectral decompositions that

learn mappings optimizing for maximum variance, correlation, entropy, or minimum noise

fraction [115]; neural networks that generalize PCA to encode non-linear data structures via

autoassociative/autoencoding networks [116]; as well as projection pursuit approaches lead-

ing to convenient Gaussian domains [117]. In remote sensing, auto-encoders have been widely

used [118, 119, 120, 121]. However, a number of (critical) free parameters are to be tuned; reg-

ularization is an important issue, which is mainly addressed by limiting the network’s structure

heuristically; and only shallow (or not very deep) structures are considered due to the limita-

tions on computational resources and efficiency of the training algorithms. On top of this, very

often, auto-encoders employ only the spectral information, and in the best of the cases, spatial

information is naively included through stacking hand-crafted spatial features.

In recent years, dictionary learning has emerged as an efficient way to learn sparse im-

age features in unsupervised settings, which are eventually used for image classification and
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object recognition: discriminative dictionaries have been proposed for spatial-spectral sparse-

representation and image classification [122], sparse kernel networks have been recently in-

troduced for classification [123], sparse representations over learned dictionaries for image

pansharpening [124], saliency-based codes for segmentation [125, 126], sparse bag-of-words

codes for automatic target detection [127], and unsupervised learning of sparse features for

aerial image classification [90]. These methods describe the input images in sparse representa-

tion spaces but do not take advantage of the high non-linear nature of deep architectures.

Finally, there is some evidence of the good performance of deep architectures in remote

sensing image classification: [128] introduces a deep learning algorithm for classification of

(low-dimensional) VHR images; [129] explores the robustness of deep networks to noisy class

labels for aerial image classification; and [130] introduces hybrid Deep Neural Networks to

enable the extraction of variable-scale features to detect vehicles in satellite images; [131] pro-

poses a hybrid framework based on Stacked Auto-Encoders for classification of hyper-spectral

data. Although deep learning methods can cope with the difficulties of non-linear spatial-

spectral image analysis, the issues of sparsity in the feature representation and efficiency of

training algorithms are not obvious in state-of-the-art frameworks.

4.1.2 Feature Learning Pipeline

The system we use to learn and extract features for this application is based on a convolutional

deep architecture trained in a greedy layer-wise fashion. Each convolutional layer is trained by

feeding random patches from their input feature maps to the EPLS algorithm. The input images

of the first layer are normalized for contrast and brightness. Moreover, the input of each layer

is standardized to help the training process. The hyper-parameters of the deep architecture are

selected according to the experiment at hand. After learning the feature hierarchy, the higher

level features (the ones coming from the last representation layer) are fed to a simple classifier,

such as SVM or k-Nearest Neighbor with k = 1 (1-NN). Figure 4.1 shows how the trained

deep architecture is built. In this case, we have a network with two convolutional layers and

two pooling layers. We train the first convolutional layer by feeding random patches from

the normalized input images to the EPLS. Then, we use the layer’s parameters to extract the

activation feature maps. After that, we apply the pooling layer. From the pooled feature maps,

we extract random patches and feed them to the EPLS to train to the second convolutional

layer. Finally, we compute the activation feature maps from the second layer, pool them and

use them for classification purposes.
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Figure 4.1: Remote sensing feature learning pipeline: Convolutional layers are trained in isolation
one after another by means of EPLS and then stacked together with the pooling layers to extract
the feature maps to be fed to the classifier.

4.1.3 Experiments

In this section, we will provide an in-depth analysis on the trends of the presented feature

learning pipeline in different problems of image classification and pixel classification of re-

mote sensing images. On one hand, in Section 4.1.3.1, we will extend the land use image

classification problem of Chapter 3 by evaluating the effects of varying the number of features

and the architecture’s depth on a validation set. Moreover, we will analyze whether the benefits

of sparsity are still applicable to deep scenarios. On the other hand, we will tackle the pixel

classification problem in a wide diversity of scenarios differing in their input dimensionality,

number of classes and amount of data available. In Section 4.1.3.2, we will consider a chal-

lenging hyper-spectral pixel classification problem to assess the impact of many architecture’s

hyper-parameters, such as the number of features, the number of layers, the size of the receptive

field and the pooling regions. We will also investigate the robustness of the extracted features

to the number of labeled samples used for training. Finally, we will explore the applicability of

the method to segment very high spatial resolution images in Section 4.1.3.3 and multispectral

images in Section 4.1.3.4.
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4.1.3.1 Aerial Scene Classification

In this section, we will extend our experiments on UCMerced dataset2. Recall that UCMerced

dataset contains 256×256 pixels color images from 21 aerial scene categories, with resolution

one foot per pixel and highly overlapping classes. The images were manually extracted from

the USGS National Map Urban Area Imagery collection. In order to validate our method, we

follow the experimental setup described in [90] and randomly select 80% of the images per

class for training and leave the remaining 20% ones for validation. As in [90], we report the

mean accuracy obtained over five runs. From the training images, we train deep architectures

as shown in Figure 4.1. Specifically, we (1) extract random patches and normalize them for

contrast and brightness; (2) train a network by means of EPLS with logistic activation; (3)

use the trained network parameters and an encoding strategy to retrieve sparse representations;

(4) pool the upper-most feature map into four quadrants via sum-pooling; and (5) feed the

pooled features to a linear SVM classifier. Following this pipeline, we define the following

experimental settings to highlight the competitiveness of our method.

In the first setting, we aim to analyze the influence of varying the number of features N1
h in

single layer networks. To do so, we use a receptive field of 15×15 pixels with stride 1 pixel and

follow the previously described pipeline to train the system, extract the features and classify

them. Figure 4.2 (left) shows the classification performance of our single layer approach (solid

red line), compared to the best results reported in [90] (solid green line), for different N1
h

values. As shown in the figure, our method outperforms the method in [90] for all N1
h in terms

of average performance in the 5 runs, while having no training nor encoding meta-parameters

to tune. Moreover, [90] requires to train the single layer network on SIFT features to achieve

such performance, whereas we train all our networks on raw image patches normalized for

contrast and brightness, i.e. we do not require any prior feature extraction.

To strengthen the results, we report the per class users and producers for the single layer

network with N1
h = 1000 and compare the producer’s accuracy to the best results reported

in [90, 92]. Figure 4.3 (left) shows the users and producers obtained by our approach. The

proposed method achieves a very high sensitivity and specificity for most of the classes, in par-

ticular for chaparral, harbor, parking lot and runway. Errors are mainly in scenes with similar

spatial structures, such as buildings and residential areas, for which the database contains three

similar subclasses (medium, sparse and dense residential areas). We also compare in Figure 4.3

2http://vision.ucmerced.edu/datasets/landuse.html
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Figure 4.2: Left: UCMerced validation accuracy given different number of features and different
network architectures (best seen in color). Right: Comparison of EPLS training against OMP-1 for
Nlh = 100 on architectures of increasing depth (best seen in color).

(right) our approach to previously reported results [90, 92]. The producers’ accuracy is in gen-

eral favorable for our method: in 14 out of 21 classes, we obtained better results than in [92],

and in 15 out of 21 in [90]. These results encourage the use of the method, and the exploitation

of combined approaches in future research.
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Figure 4.3: UCMerced per class users and producers results. Left: per class users and producers
of the proposed method. Right: comparison of our method to previous works in the literature in
terms of producers (per class accuracy) [90, 92]. We took the results for the best algorithms in both
[92] (their Figure 8, ‘color’ model) and [90] (his Fig. 13, dense SIFT descriptors) (best seen in
color).

In the second setting, we analyze deep architectures to further exploit the possibilities of our

66



4.1 Application to Remote Sensing Data

method. In this case, we use a receptive field of 7×7 pixels, with a stride of 1 pixel and train

deep architectures composed of two and three layers, respectively. We apply a max-pooling

layer on non-overlapping regions of size 2× 2 pixels after each convolutional layer, except for

the last max-pooling layer, which divides the activation feature maps into four quadrants and

applies sum-pooling for fair comparison with single layer architectures. We train each layer by

means of EPLS with a logistic non-linearity using 100K patches per layer. After training, we

apply a linear encoding (i.e. identity activation function) to each hidden representation layer

and a rectifier encoding with polarity split to the last representation layer. As in the first experi-

mental setting, we train deep architectures with varying number of features Nlh. For simplicity,

all layers within a deep architecture have the same number of features. Figure 4.2 (left) shows

the classification performance of both the 2-layer (solid blue line) and 3-layer architectures

(solid black line), for different Nlh values. As shown in the figure, 2-layer networks improve

the previous single layer results, for all Nlh. The 2-layer network with Nlh = 500 ∀l ∈ {1, 2}
outperforms the single layer network with Nlh = 1000, whereas the 2-layer network with

Nlh = 1000 ∀l ∈ {1, 2} outperforms all previous results. However, when increasing the num-

ber of layers to 3, the accuracy starts dropping. We argue whether the UCMerced dataset

could benefit from a higher level of abstraction in its feature representation, given the (high)

amount of texture present in its images. Even if it could benefit from the higher abstraction, the

layer-wise pre-training might be too greedy and a fine-tuning step might be required to achieve

better performance as we increase the depth of the network. Furthermore, the receptive field

size could be appropriately tuned to improve the results; note that the image region considered

in the 3rd layer is much bigger than the ones considered by the 1st and 2nd layers. Finally, it

is worth noticing that as we increase the number of layers, the number of parameters increases

dramatically and the model becomes more prone to overfit.

Finally, after highlighting the impact of stacking hierarchical (deep) representations, we

would like to assess the importance of sparsity to achieve good hierarchical representations.

In order to highlight the relevance of lifetime sparsity in deep scenarios, we use OMP-1 as

a substitute of EPLS to reproduce the experiments in Figure 4.2 (left) for Nlh = 100. Note

that OMP-1 does not promote any kind of lifetime sparsity but enforces a very strict form a

population sparsity instead (see Chapter 2 for details). Figure 4.2 (right) reports the obtained

results. In the case of the single layer network (red circle), EPLS achieves slightly better results

than OMP-1. However, as shown in the figure, OMP-1 seems not to be able to take advantage

of depth. When adding a second layer to the architecture (blue circle), OMP-1 experiences
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a performance drop of 10.38%, whereas ELPS improves its performance by 5.52%. When

adding a third layer to the architecture (green circle), both OMP-1 and EPLS decrease their

performances. OMP-1’s performance drop is particularly dramatic (from 72.90% in the single

layer architecture to 43.14% in the 3-layer architecture). We argue this dramatic performance

drop is related to the OMP-1’s lack of lifetime sparsity, which makes the algorithm suffer from

dead features. While increasing the network’s depth, the dead features’ effect becomes more

significant and impacts the performance of the method. Therefore, enforcing lifetime sparsity

is crucial for EPLS to achieve good performance.

4.1.3.2 Hyper-spectral Image Classification

This section illustrates the performance of the feature learning pipeline on a challenging hyper-

spectral pixel classification problem: the well-known AVIRIS Indiana’s Indian Pines test site

acquired in June 19923. A subset of the original image (145×145 pixels) has been extensively

used as a benchmark for comparing classifiers4. However, we consider the whole image, which

consists of 614× 2166 pixels and 220 spectral bands, with a moderate spatial resolution of 20

m. This dataset represents a very ambitious land cover classification scenario.

The image presents some crops at early stages of growth, covering a very small portion of

the image. Therefore, from the 58 different land cover classes available in the original ground

truth, we discard 20 classes given the insufficient number of training samples available5.The

background pixels are not considered for classification. As is standard practice, we remove

several bands due to noise and water absorption phenomena, finally working with 200 spectral

bands. Figure 4.4 shows a RGB composite of the AVIRIS Indian Pines image (left) along with

its labeled ground truth (right).

In this experiment, we aim to analyze the influence of various hyper-parameters, in order

to better understand the potential of deep architectures. To do so, we design different archi-

tectures. For each deep architecture, we choose different number of layers (L ∈ {1 · · · 7}) to

verify the benefits of having increasing levels of abstraction and different receptive field sizes

(1 × 1, 3 × 3 or 5 × 5), using the same receptive field for all layers, to study the relevance of

3We would like to thank Prof. Antonio Plaza from the University of Extremadura, Spain, for kindly providing
the AVIRIS dataset.

4ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C.lan
5less than 1000 samples
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RGB Composition Ground truth

Figure 4.4: Color composition (left) and the available reference data (right) for the hyper-spectral
AVIRIS Indian Pines dataset.

spatial information. Moreover, we build architectures both with and without pooling layers to

assess the effect of the downscaling factor.

We train all deep architectures as shown in Figure 4.1. We employ the logistic non-

linearity during training and, after that, we apply a natural encoding without polarity split

to extract the hierarchical features. Finally, we compare the extracted features in terms of

performance on the validation set and robustness to the number of labeled examples to the

ones extracted by PCA and kPCA, which are the standard dimensionality reduction tech-

niques employed in remote sensing. More precisely, we extract different numbers of features

Nf = {5, 10, 20, 50, 100, 200} by means of PCA and kPCA and design networks with the
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same number of features per layer Nlh = {5, 10, 20, 50, 100, 200} ∀l. For simplicity, all layers

have the same number of features. We evaluate the feature extraction in all scenarios varying

the rates of training samples per class, {1%, 5%, 10%, 20%, 30%, 50%}. Then, we feed the

extracted features to a 1-NN classifier with Euclidean distance in order to measure the perfor-

mance of each system by means of Cohen’s kappa statistic, κ, in an independent validation set

made of the remaining samples.

For kPCA, we use an RBF kernel defined as

K(x(i),x(j)) =
1

(2πσ2)N
0
h/2

e−(||x
(i)−x(j)||22)/(2σ2), (4.1)

where x(i) and x(j) are two input samples of dimensionality N0
h and σ is the scale parameter.

We set σ to the average distance between all training samples as a reasonable estimate; note

that the feature extraction is unsupervised, so there are no labels at this stage to tune kernel

parameter.

Figure 4.5(a) shows the κ statistic for several numbers of extracted features using PCA,

kPCA and single layer networks (Nf and N1
h, respectively). Both kPCA and the networks yield

poor results when a low number of features are extracted, and drastically improve their perfor-

mance for more than 50 features. Single layer networks stick around κ = 0.3 for pixel clas-

sification, even with increased number of features. Nevertheless, there is a relevant gain when

spatial information is considered. The best results are obtained for N1
h = 200 features and 5×5

receptive fields. With these encouraging results, we train deeper networks using 30% of the

available training samples per class, Nlh = 200 features per layer, and receptive fields of 3× 3

at each layer. Results with and without the max-pooling layers are shown in Figure 4.5(b). Two

main observations can be made: first, deeper networks improve the performance enormously

(the 6-layer network reaches the highest performance with κ = 0.84), and second, including

the max-pooling layers after each convolutional layer reveals to be extremely beneficial.

Another question to be addressed is the robustness of the features in terms of number

of training samples. Figure 4.5(c) highlights that using a few supervised samples to train a

deep architectures can provide better results than using far more supervised samples to train

a single layer one (see Figure 4.5(a)). Note, for instance, that the 6-layer network using 5%

samples/class outperforms the best single layer network using 30% of the samples/class.

Special attention should be devoted to the 7-layer network. In this case, the performance

decreases since the potential contribution of an additional layer is strongly counterbalanced

by the heavily reduced spatial resolution of the additional max-pooling. To corroborate this
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Figure 4.5: AVIRIS pixel classification performance estimated by means of Cohen’s kappa statis-
tic, κ, on the validation set for (a) increasing numbers of features, different size of the receptive
fields (for single layer networks) or the included Gaussian filtered features (for PCA and kPCA) us-
ing 30% of the training data; (b) deep architectures with different number of convolutional layers,
either followed or not by pooling layers; (c) for architectures (containing pooling layers) trained
on different rates of training samples per class, {1%, 5%, 10%, 20%, 30%, 50%}. The last figure
(d) shows the percentage of ground truth pixels as a function of labeled region areas (see text for
details).

explanation, we created the histogram in Figure 4.5(d), which shows the percentage of ground

truth pixels as a function of labeled region areas. As it can also be seen in Figure 4.4(right), the

labeled regions are mainly rectangular with an average area around 500 pixels. Vertical lines in

Figure 4.5(d) show the theoretical spatial resolution in the case the last representation layer is

resized using a nearest neighbor interpolation. As it can be observed, when using 7 layers (L7,

green), the resolution is too low to capture regions smaller than 4096 pixels (64×64). It has to

be noted that we perform the upscaling of the last representation layer by means of a bilinear
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interpolation; this explains why, despite the lower spatial resolution, the result using 6 layers is

still superior to the one with 5 layers.

An important aspect of the proposed deep architectures lies in the fact that they typically

give rise to compact hierarchical representations. The best three features extracted by the

networks according to the mutual information with labels are depicted in Figure 4.6 for a subset

of the whole image. It is worth stressing that deeper layers retrieve more complicated and

abstract features, except for the seventh layer that provides spatially over-regularized features

due to the downscaling impact of the max-pooling layers. Interestingly, it is also observed that,

features in the bottom layers present high levels of redundancy (they look more alike) and, the

deeper we go, the higher spatial decorrelation of the best features we obtain.

Figure 4.6: Best three AVIRIS features (in rows) according to the mutual information computed
between the classification labels and the features extracted by the different layers (1st to 7th in
columns) for a subregion of the whole image.

4.1.3.3 Very High Resolution Image Pixel Classification

This section studies the application of the proposed method to segment very high resolution

images (VHR). Very high spatial resolution has been one of the major achievements of satellite

imagery of the last decades. Sensors providing sub-metric resolution have been developed and

satellites such as QuickBird, GeoEye-1 or WorldView-3 have been or are about to be launched.

These sensors provide images that are unique in terms of spatial detail and open a wide range

of challenges for geospatial information processing.
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We validate our framework on two VHR images gathered by Quickbird II, an imaging

satellite that employs a four-band sensor with 2.4-m spatial resolution for blue, green, red and

near-infrared spectral wavelengths in addition to a 0.6-m resolution panchromatic (black and

white) band ( c©2008 Digitalglobe, all rights reserved). Images were taken in late summer or

early fall periods, coinciding with seasonal base flow conditions and field surveys. Each im-

age was geo-referenced using field-collected ground control points that yielded an average root

mean square geo-location error of less than 1.5 m. The scenes were acquired over Nayak-

Middle Fork (1659×1331×4) of the Flathead River in the Nyack flood plain bordering Glacier

National Park, Montana, and the Kol flood plain (1617×1660×4), during 20086. Both images

have been widely used to study and characterize the physical complexity of North Pacific Rim

rivers to assist wild salmon conservation. Therefore, the labeled land use classes of these scenes

correspond to shallow shore, parafluvial and orthofluvial salmon habitat types [132, 133]. Fig-

ure 4.7 shows the RGB composite of the two VHR images used for pixel classification.

Figure 4.7: RGB composition of the two VHR images considered for pixel classification: ‘Nayak
- Middle Fork’ (left) and ‘Kol’ (right).

The experimental setting involves an independent feature extraction and pixel classification

per image, which is a standard scenario in remote sensing pixel classification. The aim of

the experiment is to assess the capabilities of sparse hierarchical representations to capture

spectral-spatial structure for habitat classification. To do so, we design models of varying

depth and fix the number of features per layer to Nlh = 200 ∀l. For single layer architectures,

we use a receptive field of 5× 5 pixels, while for deep architectures we use a receptive field of

6We would like to thank Prof. Diane Whited at the University of Montana for providing the VHR imagery.
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3 × 3 pixels. We apply a max-pooling layer on non-overlapping regions of size 2 × 2 pixels

after each convolutional layer, except for the last convolutional layer.

We train the deep architectures following the framework depicted in Figure 4.1. We employ

the logistic non-linearity during training and, after that, we apply a natural encoding without

polarity split to extract the hierarchical features. Finally, we feed the features of the last rep-

resentation to a 1-NN classifier with Euclidean distance. As in experiment 4.1.3.2, validation

results are compared to PCA and kPCA followed by 1-NN classifier in terms of performance

and robustness to the number of training samples.

Figure 4.8 shows the pixel classification results in terms of overall accuracy and κ statistic

on the validation sets of the two VHR images, as a function of the number of training samples

per class ({0.5%, 1%, 2.5%, 5%, 10%}) and layers (1–6). Three main observations are made

from the experiments: 1) results are improved when increasing the number of training samples;

2) non-linear feature extractors (both kPCA and the deep representations) outperform the linear

PCA; and 3) deeper networks tend to achieve better performance. We observe an average gain

with a deep architecture of about +10% for the Nayak image and of +20% for the Kol image

in terms of κ statistic. Again, results saturate for 6 layers and for more than 5% of training

samples per class (this issue has been also observed in the hyper-spectral image classification

problem in section 4.1.3.2).

4.1.3.4 Multispectral Image Classification

This section tackles the challenging problem of cloud screening using multispectral images. We

validate our framework on seven images taken by the Medium Resolution Imaging Spectrom-

eter (MERIS) instrument on-board the Environmental Satellite (ENVISAT). In particular, we

use images acquired over Abracos (2004), Ascension Island (2005), Azores (2004), Barcelona

(2006), Capo Verde (2005), Longyearbyen (2006) and Mongu (2003). These images not only

cover different geographic locations but were taken in different seasons and, therefore, present

different types of clouds and surfaces. Moreover, the scenes include different landscapes; soils

covered by vegetation or bare; or even ice and snow. All images consist of 321×490 pixels

and have 16 channels. In this case, we consider all 16 channels for the feature extraction. The

leftmost column of Figure 4.10 shows a RGB composite of the seven cloud screening images

used in this experiment.

The proposed experimental setup aims to assess the expressive power and robustness of

sparse hierarchical features. To do so, we design a deep architecture, where each layer has
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Figure 4.8: VHR classification results (overall accuracy and κ statistic on the validation set) in the
form of the average ± standard deviation bars over 10 realizations of the pixel classification ex-
periment in two VHR images, as a function of the number of training samples and the architecture
depth.

the same number of features. We use the same receptive field size (3 × 3 pixels) for each

layer and apply a max-pooling layer on non-overlapping regions of size 2× 2 pixels after each

convolutional layer, except for the last convolutional layer. We train the deep architecture as

shown in Figure 4.1 by means of EPLS with logistic non-linearity7. Then, we apply a natural

encoding without polarity split to extract the hierarchical features. Finally, the features of the

last representation layer are fed to a 1-NN classifier with Euclidean distance. In this case, we

follow an image-fold cross-validation scheme, i.e. we train on six out of seven images and

validate on the remaining one.

7We also tried with a linear activation function but the extracted features were less performing.
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As in experiments 4.1.3.2 and 4.1.3.3, validation results are compared to PCA and kPCA

followed by 1-NN classifier in terms of performance and robustness to the number of training

samples. For the sake of a fair comparison, we extract a fixed number of features in all cases.

We set a number of features Nf = 120 for both PCA and kPCA and use Nlh = 120 ∀l for the

deep architecture (in this experiment, L = 2 exhibited the best performance). Note that the

cloud screening images shown in the leftmost column of Figure 4.10 contain more texture than

structure, and the details are usually very smooth. We validate our method both quantitatively

and qualitatively.

Figure 4.9 shows the pixel classification results in terms of overall accuracy and κ statistic

over the seven multispectral images, as a function of the number of training samples. Results

show that both measures are consistent and follow the same trends. As it can be observed, the

proposed deep architecture generally outperforms the other feature extractors, especially when

few training samples are used for pixel classification. This suggests that the extracted features

are potentially richer and more discriminative, which can be compensated with the information

conveyed by using more labeled samples. Note that tuning the kernel parameter for kPCA did

not yield better results.
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Figure 4.9: Classification results for the multispectral MERIS images (mean and standard devia-
tion) over the seven multispectral images, as a function of the number of training samples.

Figure 4.10 shows the different MERIS images (1st column) along with the classification

maps obtained with a 1-NN classifier on top of the raw spectral information (2nd leftmost

column), the features extracted by kPCA (2nd rightmost column) and the ones extracted by

the deep architecture (rightmost column). In terms of κ statistic, the deep architecture (NNET

on the figure) demonstrates a significant gain over the other approaches in most of the cases.
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Abracos Spectral, κ=0.57 KPCA, κ=0.50 NNET, κ=0.81

Ascension Island Spectral, κ=0.26 KPCA, κ=0.21 NNET, κ=0.33

Azores Spectral, κ=0.93 KPCA, κ=0.83 NNET, κ=0.94

Barcelona Spectral, κ=0.66 KPCA, κ=0.58 NNET, κ=0.72

Capo Verde Spectral, κ=0.64 KPCA, κ=0.53 NNET, κ=0.65

Longyearbyen Spectral, κ=0.73 KPCA, κ=0.51 NNET, κ=0.73

Mongu Spectral, κ=0.40 KPCA, κ=0.35 NNET, κ=0.58

Figure 4.10: Classification maps for the different multispectral MERIS images (1st column) ob-
tained by a 1-NN classifier on top of raw spectral information (2nd column), the features extracted
by kPCA (3rd column) and our trained deep architecture (4th column). The obtained κ statistic is
shown on top of the maps.
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Nevertheless, in some particular cases, such as Azores, Capo Verde and Longyearbyen, the

deep architecture’s improvement is only apparent when compared to kPCA. This might be

explained by a potentially low efficiency in extracting spatially relevant features from areas

highly affected by clouds over snowy mountains (as in Longyearbyen) or by sunglint (as in

the east part of Capo Verde). Additionally, the hierarchical features extracted by the deep

architecture may not have an added value when dealing with very easy scenes, such as compact

clouds over sea (as in Azores).

It is worth noting that in other cases with sunglint conditions (as Ascension island), the

gain obtained by the proposed deep architecture is noticeable (+7% w.r.t raw spectral features

and +12% w.r.t. kPCA), especially because of the high rate of positive detections in the part

of the scene not affected by the sunglint. Another interesting case of study is the image from

Barcelona. Although all methods obtain visually similar maps, the deep architecture yields a

lower false alarm rate in compact structures (southern and northern big clouds), demonstrating

that the spatial-spectral information has been well captured. Note that this property of the

method is highlighted in the Abracos and Mongu scenes. These scenes strongly benefit from

a reduced false alarm rate in clouds over flat landscapes, attaining a remarkable performance

improvement of +31% and +23% w.r.t. kPCA features and an improvement of 24% and 8%

w.r.t. raw spectral information.

4.1.4 Summary

In this section, we exploited the properties of EPLS to train deep architectures in a greedy

layer-wise fashion [15, 16]. We applied the proposed framework to learn unsupervised features

from a wide variety of remote sensing images of different spatial and spectral resolutions, from

multi- and hyper-spectral images, to very high resolution problems. We provided and in-depth

analysis on the impact of depth, sparsity, number of features, pooling, receptive field size and

number of labeled training samples required on the performance of the system.

Results revealed that the trained deep architectures are very effective at encoding spatio-

spectral information of the images. Experiments showed that (1) lifetime sparsity is indeed

important to achieve good hierarchical representations; (2) depth is crucial to improve the

performance of a system, as long as the spatial resolution of the features is not excessively

reduced; (3) including spatial information is essential in order to avoid poor performance in

single layer networks; and (4) max-pooling layers are crucial to achieve good performance.
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Furthermore, hierarchical features extracted by deep architectures proved to be more robust to

low numbers of labeled training samples.

4.2 Application to Image Parsing

After analyzing the potential of EPLS to learn hierarchical features in Section 4.1, we aim

to apply the algorithm to the image parsing problem. Image parsing (also known as scene

parsing, scene labeling, semantic segmentation or pixel classification) decomposes an image

into its visual components, i.e. it seeks a semantically meaningful label for each pixel. The

main challenge of image parsing is to capture basic underlying structure of the image that not

only models the global and local appearance and geometry of the image but also exploits the

spatial interaction between labels. Global features provide information on the whole image;

local features describe a given receptive field (even a large one); whereas semantic features

encode the spatial relations between classes.

As in many other computer vision problems, convolutional deep architectures have shown

to extract effective hierarchical features for image parsing, reaching state-of-the-art perfor-

mance on several datasets and being faster than previous methods at inference [134, 135, 136].

Deep architectures allow to capture local features with larger spatial dependencies by succes-

sively applying convolutional layers. However, they do not extract any global nor semantic

feature from the images, which has shown to improve image parsing performance [137]. In

order to include semantic information, approaches such as [135] add a post-processing step

based on conditional random fields or optimal purity cover criteria. This post-processing turns

out to be crucial to achieve state-of-the-art performance. Other approaches attempt to endow

the system with the necessary structure to learn semantic features. This is the case of [136],

which adds a top-down semantic feedback by means of a recurrent version of convolutional

networks. The training of all these (modified) architectures relies on back-propagation (or

back-propagation through time), which is a slow learning technique and, in the case of [136] is

the main reason to limit the number of recursions.

In this section, we propose to train convolutional deep architectures in a greedy layer-

wise fashion (see Section 2.2.2.1) by means of EPLS unsupervised learning algorithm [21]

introduced in Chapter 3. We incorporate top-down semantic feedback from the output of the

softmax layer of the network, which computes the class posterior probabilities of the input sam-

ples. Moreover, we include global and semantic features in a simple and intuitive way, with-
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out substantially increasing the training and inference computational burden. The approach

is characterized by an efficient training and a sufficiently fast inference. Experimental results

outline the advantages of he proposed architecture. Table 4.1 summarizes the main properties

of state-of-the-art convolutional deep networks compared to our proposal. Note that the ap-

proach presented in this section incorporates global/local appearance/semantic features as well

as top-down feedback and has significantly faster training than the others.

Table 4.1: Characteristics of our image parsing method compared to convolutional-based state-of-
the-art image parsing approaches. Training and testing times are excerpted from respective papers
for the configurations that gave the best results as reported in Table 4.2. Training time for the
method in [136] has been provided by the author in a personal communication. We present the
testing speed in kilo pixels per second, to make it independent on the image size.

Method
Local features Global features Top-down

feedback
Training

Time
Testing
SpeedAppearance Semantic Appearance Semantic

[135] Learned No No No No 2∼5d 1.3 kpx/s

[136] Learned Learned No No Yes > 1w 8.9 kpx/s

Ours Learned Learned Learned Learned Yes 3h50’ 3.7 kpx/s

4.2.1 Image Parsing Architecture

The system we design to learn local and global appearance and semantic features for image

parsing is based on a convolutional deep network. The network is trained in a greedy layer-

wise fashion [15, 16] by means of EPLS [21]. Features extracted from all layers are combined,

to account for different levels of abstraction, and fed to a softmax classifier as in [138].

Figure 4.11(a) shows how the proposed image parsing architecture is built. An input image

H0 is fed to the convolutional deep architecture and propagated from the first to the last rep-

resentation layer. Feature maps Hl extracted from each convolutional layer take two different

paths: (1) they are propagated through a max-pooling layer to the next convolutional layer;

and (2) they are upscaled, if necessary, to match the size of the input image H0 by means of a

bicubic interpolation. After that, the upscaled feature maps are concatenated into one vector.

Optionally, a feature vector providing information on prior spatial classes distribution (O) is

added. The complete feature vector is then fed to a softmax classifier, which provides a vector

P of class posterior probabilities for all image pixels. During the training phase, the softmax

classifier receives the ground truth (GT) information as input as well.
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Figure 4.11: Image parsing: (a) The basic deep architecture coupled with a softmax classifier. (b)
The addition of a top fully-connected layer, which provides a compact global appearance descriptor.

Note that the input data corresponding to the photometric RGB image is normalized for

contrast and brightness. Moreover, all layers’ input data is standardized to accelerate the gra-

dient descent convergence during training.

4.2.2 Top Fully-connected Layer: a Global Appearance Descriptor

The architecture presented in Section 4.2.1 applies successive convolutional layers, followed

by pooling layers and leads to an output representation of spatial size Rout × Cout. Hence, the

top-most representation is a 3-D tensor of size Rout × Cout × Nouth , summarizing the content

of the whole input image. This representation might still be too high-dimensional, especially if

Nouth is large, and possible correlations between the representation spatial support Rout ×Cout

are not explicitly encoded.

Therefore, we propose to add a top fully-connected unsupervised layer that maps the Rout×
Cout × Nouth elements into a smaller feature representation (see Figure 4.11(b)) that captures

correlations between all the features Nouth and their spatial support Rout × Cout. The resulting

descriptor encodes global information of the whole image. To feed this information to the

softmax classifier, the feature vector must be replicated for all image pixels. The behavior and

the contribution of this additional layer to the deep architecture’s performance is quantitatively

and qualitatively evaluated in Section 4.2.4.1.
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(a) (b)

Figure 4.12: Image parsing semantic information: (a) Schema introducing the loopy top-down
semantic feedback. (b) The unrolled architecture for a two iterations case.

4.2.3 Unrolling Loopy Top-down Semantic Feedback

Up to now, we have built a deep architecture, which is able to capture global information of

the input image. Yet the semantic information is still missing. Figure 4.12(a) shows a possible

way to introduce top-down semantic feedback in the proposed architecture. Since we use the

output of all layers as features, the unfolding approach proposed in [136] cannot be employed

in a straightforward way. Instead, we can replicate the architecture as many times as we want

and feed all the deep networks (except the first one) with the posterior probability generated

by the previous softmax classifier. Figure 4.12(b) shows our approach for the two iterations

case. The parameters of different deep architectures and classifiers cannot be shared since

the deep architectures are trained in an unsupervised way and their input data depends on the

output of previous classifier. While this seems a disadvantage with respect to [136], it in fact

allows to train the whole system without the need of an expensive training algorithm as the

back-propagation through time (BPTT) used in [136]. The BPTT algorithm is the main reason

to limit the number of recurrencies to 3 in [136]. Another advantage of our method is that

subsequent deep architectures can learn different features depending on the input data, thus

being able to blend information from RGB data and posterior probability in an implicit way.

4.2.4 Experimental Results

We test our method on the SIFTflow dataset [139], which is composed of 2688 images and

presents 33 different categories. We use the standard train/test split of [139]. As in [136], we
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re-scale the input image by 1/2 to speed-up both training and testing phases. Nonetheless, for

a fair comparison to other methods, the evaluation is performed by upscaling by a factor 2 the

posterior probability P before comparing the maximum a posteriori labeling with the ground

truth.

The basic architecture is composed of 6 convolutional layers with receptive field of 3×3

pixels, followed by spatial max-pooling operations of non-overlapping 2×2 pixel regions. The

size of the pooling region is set to its minimum possible value, to allow for deeper architectures.

Similarly, the receptive field is set to the minimal symmetric size, so to minimize the computa-

tional cost of convolutions and to delegate, whenever possible, the learning of complex spatial

configuration to higher layers. Each convolutional layer has Nlh = 100 features. The spatial

prior O is computed by accumulating the occurrences of each class in 33 separate maps (at full

resolution) for all the training images; then the resulting maps are normalized and blurred with

a Gaussian filter with σ = 32 pixels. When employed, the top fully connected layer has 33

units such that (1) we match the spatial prior size, for a fair comparison in Section 4.2.4.1; and

(2) when using the unrolled architecture the total number of features is 3 (RGB input) + 6×100

(6 representation layers) + 33 (spatial prior, O) + 33 (fully connected top layer) + 33 (posterior

of previous iteration, P ) = 702. This is specifically designed to have less features than [135]

(768 features).

The training of the above-described architecture has both an unsupervised and a supervised

learning stages. The unsupervised learning stage uses 50K random samples to train the convo-

lutional filters of each layer and the top fully-connected layer. The layers are trained greedily

one after another by means of EPLS. The supervised learning stage uses 1% of the labeled

data per iteration. The regularization term in the softmax classifier is set to λ = 10−3 in all

experiments. Softmax parameters are learned using the LM-BFGS optimizer for a maximum

of 500 iterations.

Following the above-described pipeline, we define two experiments to assess the benefits of

the proposed method. First, in Section 4.2.4.1, we will highlight the advantage of using a fully-

connected unsupervised layer as global descriptor. Second, in Section 4.2.4.2, we will discuss

the advantage of adding the unrolled top-down semantic feedback by means of a quantitative

and qualitative analysis of the results.
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Figure 4.13: Quantitative comparison of 4 configurations with and without the top fully-connected
layer (global descriptor). Global accuracy (left) and per class average accuracy (right) on the
SIFTflow dataset. 6L refers to the basic 6-layer convolutional architecture; 6LO adds the spatial
prior to the basic architecture; 6LFC adds the fully-connected layer instead; 6LOFC adds both the
spatial prior and the fully-connected layer to the basic architecture. See text for details.

4.2.4.1 Unsupervised Global Image Descriptor

In this first set experiment, we analyze the effect of the top fully-connected layer on the sys-

tem’s performance. Since the softmax classifier is fed with the features extracted by all con-

volutional layers, the spatial prior and the output of the fully-connected layer, we separate

these three components to evaluate their contribution. Figure 4.13 shows the results in terms

of global accuracy (left) and average per class accuracy (right) for four configurations. The

first configuration is the basic 6-layer convolutional architecture (6L) using a total of 603 (3 +

100×6) features. The second one adds the spatial prior as an additional feature (6LO, 603 + 33

features). The third one adds the top fully-connected layer to the basic configuration (6LFC,

603 + 33 features). The last one incorporates both the top fully-connected layer and the spa-

tial prior (6LOFC, 603 + 33 + 33 features). Results show that both the spatial prior and the

top fully-connected layer increase the performance of the system significantly. However, the

impact of the top fully-connected layer is superior to the spatial prior one. Therefore, adding a

top fully-connected layer to learn a global image descriptor is a clear advantage of our system.

In order to show the representative power of the top fully-connected layer, we use its output

as a global image descriptor and, given an input image, we perform a ranking based on the angle

between the global descriptor of the input image and all the global descriptors of the training
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set. The angle is a proper measure of (dis-)similarity since the softmax classifier is based on

linear hyperplanes before the exponentiation. Figure 4.14 shows some of the obtained results.

The image on the left is an input image from the test set, and the four images in the same row

are the retrieved and ranked images from the training set. These results show that with our

global descriptor, we achieve a similar effect as [137]. Since the global descriptor is replicated

for all the image pixels, its information acts as a global contextual priming for the classification.

When used in conjunction with the top-down semantic feedback, this descriptor is able to blend

appearance and semantic global features in a very compact way.

4.2.4.2 Effect of Top-down Semantic Feedback

In this second experiment, we analyze the effect of incorporating top-down semantic feedback

to our architecture. This feedback allows to generate successive parsing hypothesis and refine

them progressively. Since the deep architecture learns features from the input image and the

previous posterior probability, the system is able to learn appearance-semantic configurations

from the second iteration. Figure 4.15 shows this effect in terms of pixel accuracy (left) and

per class average accuracy (right) as a function of iterations. The red dashed line represents the

performance of a single iteration when using 10% of the training data (twice the quantity used

in the 5 iterations). Results suggest that the top-down feedback is a fundamental component to

obtain state-of-the-art-performance.

The per class accuracy is also shown in Figure 4.16 separately for each class, ordered by

decreasing performance. From the results, we observe that the top-down semantic feedback

improves the per class accuracy for almost all classes. The improvement is particularly rel-

evant when considering rare classes, showing that semantic feedback contributes to learning

a meaningful context. However, it is also present in the most common classes, showing that

the algorithm is refining the parsing by better delineating boundaries and/or removing noisy

classifications. Figure 4.17 shows some visual results, where the above-mentioned effects can

be observed. The result in the first row is especially interesting: the first iteration presents a

lot of heterogeneous classes, as road, mountain, car, sea, grass and field; this can be explained

by the poor global appearance image prior information (see last row of Figure 4.14). However,

in subsequent iterations, both local and global information allow to reject inconsistent classes

rapidly (first 3 iterations), while refining the boundaries of classification.
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Input 1st 2nd 3rd 4th

Figure 4.14: Six examples of the SIFTflow ranking obtained by using the top fully-connected layer
of our system. See text for a detailed explanation.
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Figure 4.15: SIFTflow global accuracy (left) and per class average accuracy (right) as a function
of the iterations when using the unrolled top-down semantic feedback architecture.
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Figure 4.16: SIFTflow per class accuracy, in descending order for the 1st and 5th iteration.

4.2.5 Comparison to State-of-the-art

In this last experimental section, we aim to highlight the potential of our approach. Table 4.2

summarizes the results obtained on SIFTflow test set compared to the best performing convo-

lutional deep methods. Our method outperforms previous convolutional deep approaches and

gets really close to the result reported by the non-parametric method in [137], which obtains

79.2% and 33.8% for global and average per class accuracy, respectively. The contribution of

the top-down semantic feedback becomes evident, providing an improvement of 4% in accu-

racy and 5.8% in per class average accuracy over 5 iterations.

An important characteristic of our method is that the training procedure is one order of

magnitude faster than previous methods (see Table 4.1). We trained the 5-iteration system in

less than 4 hours on a quad-core i7@2.3Ghz, using mildly-optimised Matlab code. Testing

speed is comparable to previous convolutional deep methods and allows to process a 128×128

87



4. TRAINING DEEP ARCHITECTURES BY MEANS OF EPLS

Input 1st 2nd 3rd 4th 5th Ground truth

unlabeled awning balcony bird boat bridge building bus

car crosswalk door fence field grass mountain person

plant pole river road rock sand sea sidewalk

sign sky staircase streetlight sun tree window

Figure 4.17: SIFTflow test results of image parsing for four test images (top). Color coded legend
(bottom).

pixels image in 4.4 seconds; which compares very well with the 20 seconds per image required

by [137].

4.2.6 Summary

In this section, we proposed a strategy to incorporate top-down semantic feedback to an image

parsing system based on convolutional deep networks. The strategy shows that global appear-

ance/semantic features can be easily incorporated to standard convolutional architectures and

exploits the properties of the EPLS algorithm to achieve an efficient training.

All experiments were designed to study the impact of the method’s novelties and provide

a fair comparison with similar state-of-the-art methods. Results showed that combining both

global appearance descriptor and top-down semantic feedback, we can improve the state-of-

the-art of convolutional deep networks in the field of image parsing. Nevertheless, the perfor-

mance of our method can still be improved in at least two ways: (1) the multi-scale approach
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Table 4.2: Comparison with convolutional deep state-of-the-art methods in terms of global and
average per class accuracy. The improvement from 1st to 5th iteration is provided in the last row.

G
lo

ba
l

Pe
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Farabet et al. [135] 78.5% 29.6%

Pinheiro et al. [136] 77.7% 29.8 %

1st iteration 74.7% 26.3%

5th iteration 78.7% 32.1%

∆ (5th - 1st) +4.0% +5.8%

proposed in [135] could be used in our approach by learning multiple deep architectures and

feeding the result from different scales into the softmax classifier; and (2) adding transforma-

tions to the training set, such as horizontal flipping, rotations, etc, could also help improving the

system performance, as shown in [135]. Moreover, the scalability of the proposed method with

respect to the number of classes is potentially problematic, since the posterior probability map

is used as input to the next iteration, increasing its dimensionality. A classical dimensionality

reduction technique, such as an auto-encoder, could be employed to alleviate this problem.

4.3 Summary of Deep EPLS Applications

In this chapter, we exploited and extended the EPLS algorithm to train deep architectures.

Deep architectures trained by means of EPLS were successfully evaluated in the context of

remote sensing to solve image and pixel classification tasks in a wide variety of scenarios.

Moreover, EPLS was used as a basis to train modified deep architectures that include global

appearance and global semantic features for image parsing. With all these experimental sup-

port, we demonstrated the EPLS potential and ability to find good parameter configurations for

deep architectures, especially when the amount of labeled samples is limited.
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Although unsupervised pre-training has proven to be effective at learning deep architectures

and is a potentially interesting research field, with the appearance of very large labeled dataset

[140], most of the recent industrial success of deep learning has revolved around supervised

learning [12]. Supervised deep networks have recently exhibited state-of-the-art performance

in computer vision tasks such as image classification and object detection [18, 19]. These

top-performing systems usually involve very wide and deep networks, with numerous parame-

ters. Once learned, a major drawback of such wide and deep models is that they result in very

time consuming systems at inference time, since they need to perform a huge number of mul-

tiplications. Moreover, having large amounts of parameters makes the models high memory

demanding. For these reasons, wide and deep top-performing networks are not well suited for

applications with memory or time limitations.

There have been several attempts in the literature to tackle the problem of model compres-

sion to reduce the computational burden at inference time. In [141], authors propose to train

a neural network to mimic the output of a complex and large ensemble. The method uses the

ensemble to label unlabeled data and trains the neural network with the data labeled by the en-

semble, thus mimicking the function learned by the ensemble and achieving similar accuracy.

The idea has been recently adopted in [142] to compress deep and wide networks into shallower

but even wider ones, where the compressed model mimics the function learned by the complex

model, in this case, by using data labeled by a deep (or an ensemble of deep) networks. More

recently, Knowledge Distillation (KD) [143] was introduced as a model compression frame-

work, which eases the training of deep networks by following a student-teacher paradigm, in

which the student is penalized according to a softened version of the teacher’s output. The

framework compresses an ensemble of deep networks (teacher) into a student network of sim-

ilar depth. To do so, the student is trained to predict the output of the teacher, as well as the

true classification labels. All previous works related to Convolutional Neural Networks focus

on compressing a teacher network or an ensemble of networks into either networks of similar

width and depth or into shallower and wider ones; not taking advantage of depth.

As discussed in Chapter 2, depth is a fundamental aspect of representation learning, since

it encourages the re-use of features, and leads to more abstract and invariant representations at

higher layers [8]. The importance of depth has been verified (1) theoretically: deep representa-

tions are exponentially more expressive than shallow ones for some families of functions [144];

and (2) empirically: the two top-performers of ImageNet use convolutional deep networks with
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19 and 22 layers, respectively [18] and [19]. Although, as stated in [145], regularization tech-

niques such as dropout [42] along with new activation functions and proper initialization have

been key factors to train deep networks in a supervised fashion [17], the difficulties encoun-

tered while training the intermediate and lower layers in deep architectures still appear to be

problematic. In the past few years, methods to assist the supervised training of deep architec-

tures have been introduced in the literature (see Chapter 2 for details). These methods often

provide some kind of guidance to intermediate layers to help learning very deep networks

[16, 19, 77, 80, 81, 82].

In this chapter, we will present another important contribution of this thesis [25], which

addresses the network compression problem by trading width for depth. In Section 5.1 we will

propose a novel approach to train thin and deep networks, called FitNets, to compress wide and

shallower (but still deep) networks. The method is rooted in the recently proposed Knowledge

Distillation (KD) [143] and extends the idea to allow for thinner and deeper student models,

by introducing intermediate-level hints from the teacher hidden layers to guide the training

process of the student, i.e. we want the student network (FitNet) to learn an intermediate

representation that is predictive of the intermediate representations of the teacher network.

Hints allow the training of thinner and deeper networks. After that, in Section 5.2 we will

validate the proposed method on benchmark datasets and provide evidence that our method

matches or outperforms the teacher’s performance, while requiring notably fewer parameters

and multiplications. Section 5.3 will be devoted to experimentally confirm that having deeper

models allow us to generalize better, whereas making these models thin help us reduce the

computational burden significantly. Finally, we will summarize the contribution in Section 5.4

5.1 Method

In this section, we will detail the proposed student-teacher framework to train FitNets from

shallower and wider nets. First, in Section 5.1.1 we will review the recently proposed KD.

Second, in Section 5.1.2, we will highlight the proposed hints algorithm to guide the FitNet

throughout the training process. Finally, in Section 5.1.3, we will describe how the FitNet is

trained in a stage-wise fashion.
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5.1.1 Review of Knowledge Distillation

In order to obtain a faster inference, we explore the recently proposed compression frame-

work [143], which trains a student network, from the softened output of an ensemble of wider

networks, teacher network. The idea is to allow the student network to capture not only the

information provided by the true labels, but also the finer structure learned by the teacher net-

work. The framework can be summarized as follows.

Let T be a teacher network with a softmax activation PT = softmax(aT) where aT is

the vector of teacher pre-softmax activations, for some example. In the case where the teacher

model is a single network, aT represents the weighted sums of the units of the last repre-

sentation layer, whereas if the teacher model is the result of an ensemble either PT or aT

are obtained by averaging outputs from different networks (respectively for arithmetic or ge-

ometric averaging). Let S be a student network with parameters WS and output probability

PS = softmax(aS), where aS is the student’s softmax pre-activation. The student network will

be trained such that its output PS is similar to the teacher’s output PT, as well as to the true

labels y. Since PT might be very close to the one hot code representation of the sample’s true

label, a relaxation τ > 1 is introduced to soften the signal arising from the output of the teacher

network, and thus, provide more information during training1. The same relaxation is applied

to the output of the student network (PτS), when it is compared to the teacher’s softened output

(PτT):

PτT = softmax
(aT

τ

)
, PτS = softmax

(aS

τ

)
. (5.1)

The student network is then trained to optimize the following loss function:

LKD(WS) = H(y,PS) + λH(PτT,P
τ
S), (5.2)

where H refers to the cross-entropy and λ is a tunable parameter to balance both cross-

entropies. Note that the first term in Eq. (5.2) corresponds to the traditional cross-entropy

between the output of a (student) network and the labels, whereas the second term enforces the

student network to learn from the softened output of the teacher network.

To the best of our knowledge, KD is designed such that student networks mimic teacher

architectures of similar depth. Although we found the KD framework to achieve encouraging

1For example, as argued in [143], with softened outputs, more information is provided about the relative simi-
larity of the input to classes other than the one with the highest probability.
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results even when student networks have slightly deeper architectures, as we increase the depth

of the student network, KD training still suffers from the difficulty of optimizing deep nets (see

Section 5.3.1).

5.1.2 Hint-based Training

In order to help the training of deep FitNets (deeper than their teacher), we introduce hints from

the teacher network. A hint is defined as the output of a teacher’s hidden layer responsible for

guiding the student’s learning process. Analogously, we choose a hidden layer of the FitNet,

the guided layer, to learn from the teacher’s hint layer. We want the guided layer to be able to

predict the output of the hint layer. Note that having hints is a form of regularization and thus,

the pair hint/guided layer has to be chosen such that the student network is not over-regularized.

The deeper we set the guided layer, the less flexibility we give to the network and, therefore,

FitNets are more likely to suffer from over-regularization. In our case, we choose the hint to be

the middle layer of the teacher network. Similarly, we choose the guided layer to be the middle

layer of the student network.

Given that the teacher network will usually be wider than the FitNet, the selected hint layer

may have more outputs than the guided layer. For that reason, we add a regressor to the guided

layer, whose output matches the size of the hint layer. Then, we train the FitNet parameters

from the first layer up to the guided layer as well as the regressor parameters by minimizing

the following loss function:

LHT (WGuided,Wr) =
1

2
||uh(x;WHint)− r(vg(x;WGuided);Wr)||2, (5.3)

where uh and vg are the teacher/student deep nested functions up to their respective hint/guided

layers with parameters WHint and WGuided, r is the regressor function on top of the guided

layer with parameters Wr. Note that the outputs of uh and r have to be comparable, i.e. uh
and r must be the same non-linearity.

Nevertheless, using a fully-connected regressor increases the number of parameters and

the memory consumption dramatically in the case where the guided and hint layers are con-

volutional. Let RhT × ChT and FhT be the teacher hint’s spatial size and number of features,

respectively. Similarity, let RgS ×CgS and FgS be the FitNet guided layer’s spatial size and num-

ber of features. The number of parameters in the weight matrix of a fully connected regressor

is RhT×ChT×FhT×RgS×CgS×FgS. To mitigate this limitation, we use a convolutional regressor

instead. The convolutional regressor is designed such that it considers approximately the same
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spatial region of the input image as the teacher hint. Therefore, the output of the regressor has

the same spatial size as the teacher hint. Given a teacher hint of spatial size RhT × ChT, the

regressor takes the output of the Fitnet’s guided layer of size RgS × CgS and adapts its kernel

shape wrr×wrc such that RgS−wrr +1 = RhT and CgS−wrc+1 = ChT. The number of parameters

in the weight matrix of a the convolutional regressor is wrr ×wrc ×FhT×FgS, where wrr ×wrc is

significantly lower than RhT × ChT × RgS × CgS.

5.1.3 FitNet Stage-wise Training

We train the FitNet in a stage-wise fashion following the student/teacher paradigm. Figure

5.1 summarizes the training pipeline. Starting from a trained teacher network and a randomly

initialized FitNet (Fig. 5.1 (a)), we add a regressor parameterized by Wr on top of the FitNet

guided layer and train the FitNet parameters WGuided up to the guided layer to minimize Eq.

(5.3) (see Fig. 5.1 (b)). Finally, from the pre-trained parameters, we train the parameters of

whole FitNet WS to minimize Eq. (5.2) (see Fig. 5.1 (c)). Algorithm 3 details the FitNet

training process.

Algorithm 3 FitNet Stage-Wise Training.
The algorithm receives as input the trained parameters WT of a teacher, the randomly initial-
ized parameters WS of a FitNet, and two indices h and g corresponding to hint/guided layers,
respectively. Let WHint be the teacher’s parameters up to the hint layer h. Let WGuided be
the FitNet’s parameters up to the guided layer g. Let Wr be the regressor’s parameters. The
first stage consists in pre-training the student network up to the guided layer, based on the pre-
diction error of the teacher’s hint layer (line 4). The second stage is a KD training of the whole
network (line 6).

Input: WS,WT, g, h

Output: W∗
S

WHint ← {WT
1, . . . ,WT

h}
WGuided ← {WS

1, . . . ,WS
g}

Intialize Wr to small random values
W∗

Guided ← arg min
WGuided

LHT (WGuided,Wr)

{WS
1, . . . ,WS

g} ← {WGuided
∗1, . . . ,WGuided

∗g}
W∗

S ← argmin
WS

LKD(WS)
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Figure 5.1: Training a student network using hints.

5.1.4 Relation to Curriculum Learning

In this section, we argue that our hint-based training with KD can be seen as a particular

form of Curriculum Learning [82]. Curriculum learning has proven to accelerate the training

convergence as well as potentially improve the model generalization by properly choosing a

sequence of training distributions seen by the learner: from simple examples to more complex

ones. A curriculum learning extension [80] has also shown that by using guidance hints on

an intermediate layer during the training, one could considerably ease training. However, [82]

uses hand-defined heuristics to measure the “simplicity” of an example in a sequence and [80]’s

guidance hints require some prior knowledge of the end-task. Both of these curriculum learning

strategies tend to be problem-specific.

Our approach alleviates this issue by using a teacher model. Indeed, intermediate repre-

sentations learned by the teacher are used as hints to guide the FitNet optimization procedure.

In addition, the teacher confidence provides a measure of example “simplicity” by means of
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teacher cross-entropy term in Eq. (5.2). This term ensures that examples with a high teacher

confidence have a stronger impact than examples with low teacher confidence: the latter cor-

respond to probabilities closer to the uniform distribution, which exert less of a push on the

student parameters. In other words, the teacher penalizes the training examples according to

its confidence. Note that parameter λ in Eq. (5.2) controls the weight given to the teacher

cross-entropy, and thus, the importance given to each example. In order to promote the learn-

ing of more complex examples (examples with lower teacher confidence), we gradually anneal

λ during the training with a linear decay. The curriculum can be seen as composed of two

stages: first learn intermediate concepts via the hint/guided layer transfer, then train the whole

student network jointly, annealing λ, which allows easier examples (on which the teacher is

very confident) to initially have a stronger effect, but progressively decreasing their importance

as λ decays. Therefore, the hint-based training introduced in this chapter is a generic curricu-

lum learning approach, where prior information about the task-at-hand is deduced purely from

the teacher model.

5.2 Results on Benchmark Datasets

In this section, we show the results on several benchmark datasets2.

5.2.1 CIFAR-10 and CIFAR-100

The CIFAR-10 and CIFAR-100 datasets [146] are composed of 32x32 pixel RGB images be-

longing to 10 and 100 different classes, respectively. They both contain 50K training images

and 10K test images. CIFAR-10 has 1000 samples per class, whereas CIFAR-100 has 100 sam-

ples per class. Like in [35], we normalized the datasets for contrast normalization and applied

ZCA whitening.

CIFAR-10: To validate our approach, we train a teacher network of maxout convolutional

layers as reported in [35] and design a FitNet with 17 maxout convolutional layers, followed

by a maxout fully-connected layer and a top softmax layer, with roughly 1/3 of the parame-

ters. The 11th layer of the student network is trained to mimic the 2nd layer of the teacher

network. Like in [35, 81], we augment the data with random flipping during training. Table 5.1

summarizes the obtained results. Our student model outperforms the teacher model, while

2Code to reproduce the experiments publicly available: https://github.com/adri-romsor/

FitNets
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5.2 Results on Benchmark Datasets

requiring notably less parameters, suggesting that depth is crucial to achieve better representa-

tions. When compared to network compression methods, our algorithm achieves outstanding

results; i.e. the student network achieves an accuracy of 91.61%, which is significantly higher

than the top-performer 85.8% of [142], while requiring roughly 28 times fewer parameters.

When compared to state-of-the-art methods, our algorithm matches the best performers.

One could argue the choice of hinting the inner layers with the hidden state of a wide

teacher network. A straightforward alternative would be to hint them with the desired output.

This could be addressed in a few different ways: (1) Stage-wise training, where stage 1 opti-

mizes the 1st half of the network w.r.t. classification targets and stage 2 optimizes the whole

network w.r.t. classification targets. In this case, stage 1 set the network parameters in a good

local minima but such initialization did not seem to help stage 2 sufficiently, which failed to

learn. To further assist the training of the thin and deep student network, we could add extra

hints with the classification targets at different hidden layers. Nevertheless, as observed in [16],

with supervised pre-training the guided layer may discard some factors from the input, which

require more layers and non-linearity before they can be exploited to predict the classes. (2)

Stage-wise training with KD, where stage 1 optimizes the 1st half of the net w.r.t. classification

targets and stage 2 optimizes the whole network w.r.t. Eq. (5.2). As in the previous case, stage

1 set the network parameters in a good local minima but such initialization did not seem to

help stage 2 sufficiently, which failed to learn. (3) Jointly optimizing both stages w.r.t. the sum

of the supervised hint for the guided layer and classification target for the output layer. We

performed this experiment, tried different initializations and learning rates with RMSprop [43]

but we could not find any combination to make the network learn. Note that we could ease

the training by adding hints to each layer and optimizing jointly as in Deeply Supervised Net-

works (DSN) [81]. Therefore, we built the above-mentioned 19-layer architecture and trained

it by means of DSN, achieving a test performance of 88.2%, which is significantly lower than

the performance obtained by the FitNets hint-based training (91.61%). Such result suggests

that using a very discriminative hint w.r.t. classification at intermediate layers might be too

aggressive; using a smoother hint (such as the guidance from a teacher network) offers bet-

ter generalization. (4) Jointly optimizing both stages w.r.t. the sum of supervised hint for the

guided layer and Eq. (5.2) for the output layer. Adding supervised hints to the middle layer of

the network did not ease the training of such a thin and deep network, which failed to learn.

Moreover, when hinting the inner layers with the hidden state of a wide teacher network,

one could choose to use more than one hint. Adding extra hint layers does not seem to have
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Algorithm # params Accuracy

Compression
FitNet ∼2.5M 91.61%

Teacher ∼9M 90.18%

Mimic single ∼54M 84.6%

Mimic single ∼70M 84.9%

Mimic ensemble ∼70M 85.8%

State-of-the-art methods
Maxout 90.65%

Network in Network 91.2%

Deeply-Supervised Networks 91.78%

Deeply-Supervised Networks (19) 88.2%

Table 5.1: FitNets accuracy on CIFAR-
10.

Algorithm # params Accuracy

Compression
FitNet ∼2.5M 64.96%

Teacher ∼9M 63.54%

State-of-the-art methods
Maxout 61.43%

Network in Network 64.32%

Deeply-Supervised Networks 65.43%

Table 5.2: FitNets accuracy on CIFAR-
100.

any significant impact on the FitNet’s performance as long as the last training stage has enough

flexibility to adapt the network’s parameters. However, choosing to hint one of the top FitNet’s

layers might result in performance drops due to an over-regularization of the network.

CIFAR-100: To validate our approach, we train a teacher network of maxout convolutional

layers as reported in [35] and use the same FitNet architecture as in CIFAR-10. As in [81],

we augment the data with random flipping during training. Table 5.2 summarizes the obtained

results. As in the previous case, our FitNet outperforms the teacher model, reducing the number

of parameters by a factor of 3 and, when compared to state-of-the-art methods, the FitNet

provides near state-of-the-art performance.

5.2.2 SVHN

The SVHN dataset [147] is composed by 32× 32 color images of house numbers collected by

GoogleStreet View. There are 73,257 images in the training set, 26,032 images in the test set

and 531,131 less difficult examples. We follow the evaluation procedure of [35] and use their

maxout network as teacher. We train a 13-layer FitNet composed of 11 maxout convolutional

layers, a fully-connected layer and a softmax layer.

Table 5.3 shows that our FitNet achieves comparable accuracy than the teacher despite

using only 32% of teacher capacity. Our FitNet is comparable in terms of performance to other

state-of-art methods, such as Maxout and Network in Network.
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5.2.3 MNIST

As a sanity check for the training procedure, we evaluate the proposed method on the MNIST

dataset [148]. MNIST is a dataset of handwritten digits (from 0 to 9) composed of 28x28 pixel

greyscale images, with 60K training images and 10K test images. We train a teacher network

of maxout convolutional layers as reported in [35] and design a FitNet twice as deep as the

teacher network and with roughly 8% of the parameters. The 4th layer of the student network

is trained to mimic the 2nd layer of the teacher network.

Table 5.4 reports the obtained results. To verify the influence of using hints, we train the

FitNet architecture using either (1) standard backprop (w.r.t. classification labels), (2) KD or (3)

Hint-based Training (HT). When training the FitNet with standard backprop from the softmax

layer, the deep and thin architecture achieves 1.9% misclassification error. Using KD, the very

same network achieves 0.65%, which confirms the potential of the teacher network; and when

adding hints, the error still decreases to 0.51%. Furthermore, the student network achieves

slightly better results than the teacher network, while requiring 12 times fewer parameters.

5.2.4 AFLW

AFLW [149] is a real-world face database, containing 25K annotated images. In order to

evaluate the proposed framework in a face recognition setting, we extract positive samples

by re-sizing the annotated regions of the images to fit 16x16 pixels patches. Similarly, we

extract 25K 16x16 pixels patches not containing faces from ImageNet [140] dataset, as negative

samples. We use 90% of the extracted patches to train the network.

Algorithm # params Misclass

Compression
FitNet ∼1.5M 2.42%

Teacher ∼4.9M 2.38%

State-of-the-art methods
Maxout 2.47%

Network in Network 2.35%

Deeply-Supervised Networks 1.92%

Table 5.3: FitNets SVHN error.

Algorithm # params Misclass

Compression
Teacher ∼361K 0.55%

Standard backprop ∼30K 1.9%

KD ∼30K 0.65%

FitNet ∼30K 0.51%

State-of-the-art methods

Maxout 0.45%

Network in Network 0.47%

Deeply-Supervised Networks 0.39%

Table 5.4: FitNets MNIST error.
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In this experiment, we aim to evaluate the method on a different kind of architecture. There-

fore, we train a teacher network of 3 ReLU convolutional layers and a sigmoid output layer. We

design a first FitNet (FitNet 1) with 15 times fewer multiplications than the teacher network,

and a second FitNet (FitNet 2) with 2.5 times fewer multiplications than the teacher network.

Both FitNets have 7 ReLU convolutional layers and a sigmoid output layer.

The teacher network achieves 4.21% misclassification error on the validation set. We train

both FitNets by means of KD and HT. On the one hand, we report a misclassification error of

4.58% when training FitNet 1 with KD and a misclassification error of 2.55% when training it

with HT. On the other hand, we report a misclassification error of 1.95% when training FitNet

2 with KD and a misclassification error of 1.85% when training it with HT. These results show

how the method is extensible to different kind of architectures and highlight the benefits of

using hints, especially when dealing with thinner architectures.

5.3 Analysis of Empirical Results

We empirically investigate the benefits of our approach by comparing various networks trained

using standard backpropagation (cross-entropy w.r.t. labels), KD or Hint-based Training (HT).

Experiments are performed on CIFAR-10 dataset [146].

We compare networks of increasing depth given a fixed computational budget. Each net-

work is composed of successive convolutional layers of kernel size 3×3, followed by a maxout

non-linearity and a non-overlapping 2 × 2 max-pooling. The last max-pooling takes the max-

imum over all remaining spatial dimensions leading to a 1 × 1 spatial support for each. We

only change the depth and the number of features per convolution between different networks,

i.e. the number of features per convolutional layer decreases as a network depth increases to

respect a given computational budget.

5.3.1 Assisting the Training of Deep Networks

In this section, we investigate the impact of HT. We consider two computational budgets of

approximately 30M and 107M operations, corresponding to the multiplications needed in an

image forward propagation. For each computational budget, we train networks composed of 3,

5, 7 and 9 convolutional layers, followed by a fully-connected layer and a softmax layer. We

compare their performances when they are trained with standard backpropagation, KD and HT.
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Figure 5.2: Comparison of Standard Back-Propagation, Knowledge Distillation and Hint-based
Training on CIFAR-10.

Figure 5.2 reports test on CIFAR-10 using early stopping on the validation set, i.e. we do not

retrain our models on the training plus validation sets.

Due to their depth and small capacity, FitNets are hard to train. As shown in Figure 5.2(a),

we could not train 30M multiplications networks with more than 5 layers with standard back-

prop. When using KD, we succesfully trained networks up to 7 layers. Adding KD’s teacher

cross-entropy to the training objective (Eq. (5.2)) gives more importance to easier examples,

i.e. samples for which the teacher network is confident and, can lead to a smoother version of

the training cost [82]. Despite some optimization benefits, it is worth noticing that KD training

still suffers from the increasing depth and reaches its limits for 7-layer networks. HT tends

to ease these optimization issues and is able to train 13-layer networks of 30M multiplica-

tions. The only difference between HT and KD is the starting point in the parameter space:

either random or obtained by means of the teacher’s hint. On the one hand, the proliferation

of local minima and especially saddle points in highly non-linear functions such as very deep

networks highlights the difficulty of finding a good starting point in the parameter space at

random [150]. On the other hand, results in Figure 5.2(a) indicate that HT can guide the

student to a better initial position in the parameter space, from which we can minimize the

cost through stochastic gradient descent. Therefore, HT provides benefits from an optimiza-

tion point of view. Networks trained with HT also tend to yield better test performances than

the other training methods when we fix the capacity and number of layers. For instance, in

Figure 5.2(b), the 7-layers network, trained with hints, obtains a +0.7% performance gain on
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Network # layers # params # mult Acc Speed-up Compression rate

Teacher 5 ∼9M ∼725M 90.18% 1 1
FitNet 1 11 ∼250K ∼30M 89.01% 13.36 36
FitNet 2 11 ∼862K ∼108M 91.06% 4.64 10.44
FitNet 3 13 ∼1.6M ∼392M 91.10% 1.37 5.62
FitNet 4 19 ∼2.5M ∼382M 91.61% 1.52 3.60

Table 5.5: FitNets accuracy/speed trade-off on CIFAR-10.

the test set compared to the model that does not use any hints (the accuracy increases from

89.45% to 90.1%). As pointed by [14], pre-training strategies can act as regularizers. These

results suggest that HT is a stronger regularizer than KD, since it leads to better generalization

performance on the test set. Finally, Figure 5.2 highlights that deep models have better perfor-

mances than shallower ones given a fixed computational budget. Indeed, considering networks

that are trained with hints, an 11-layer network outperforms a 5-layer network by an absolute

improvement of 4.11% for 107M multiplications and of 3.4% for 30M multiplications. There-

fore, the experiments validate our hypothesis that given a fixed number of computations, we

leverage depth in a model to achieve faster computation and better generalization.

In summary, this experiment shows that (1) using HT, we are able to train deeper models

than with standard back-propagation and KD; and (2) given a fixed capacity, deeper models

performed better than shallower ones.

5.3.2 Trade-off Between Model Performance and Efficiency

To evaluate FitNets efficiency, we measure their total inference times required for processing

CIFAR-10 test examples on a GPU as well as their parameter compression. Table 5.5 reports

both the speed-up and compression rate obtained by various FitNets w.r.t. the teacher model

along with their number of layers, capacity and accuracies. In this experiment, we retrain our

FitNets on training plus validation sets as in [35], for fair comparison with the teacher.

FitNet 1, our smallest network, with 36× less capacity than the teacher, is one order of

magnitude faster than the teacher and only witnesses a minor performance decrease of 1.3%.

FitNet 2, slightly increasing the capacity, outperforms the teacher by 0.9%, while still being

faster by a strong 4.64 factor. By further increasing network capacity and depth in FitNets 3

and 4, we improve the performance gain, up to 1.6%, and still remain faster than the teacher.
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Although a trade-off between speed and accuracy is introduced by the compression rate, Fit-

Nets tend to be significantly faster, matching or outperforming their teacher, even when having

low capacity.

A few works such as matrix factorization [151, 152] focus on speeding-up deep networks’

convolutional layers at the expense of slightly deteriorating their performance. Such approaches

are complementary to FitNets and could be used to further speed-up the FitNet’s convolutional

layers.

Other works related to quantization schemes [153, 154, 155] aim at reducing storage re-

quirements. Unlike FitNets, such approaches witness a little decrease in performance when

compressing the network parameters. Exploiting depth allows FitNets to obtain performance

improvements w.r.t. their teachers, even when reducing the number of parameters 10×. How-

ever, we believe that quantization approaches are also complementary to FitNets and could

be used to further reduce the storage requirements. It would be interesting to compare how

much redundancy is present in the filters of the teacher networks w.r.t. the filters of the FitNet

and, therefore, how much FitNets filters could be compressed without witnessing significant

performance drop. This analysis is outside of the scope of this thesis and is left as future work.

5.4 Summary

In this chapter, we proposed a novel framework to compress wide and deep networks into

thin and deeper ones, by introducing intermediate-level hints from the teacher hidden layers

to guide the training process of the student. We were able to use these hints to train very

deep student models with less parameters, which can generalize better and/or run faster than

their teachers. We provided empirical evidence that hinting the inner layers of a thin and deep

network with the hidden state of a teacher network generalizes better than hinting them with the

classification targets. Our experiments on benchmark datasets emphasized that deep networks

with low capacity are able to extract feature representations that are comparable or even better

than networks with as much as 10 times more parameters. The success of hint-based training

suggests that more efforts should be devoted to exploring new training strategies to leverage

the power of deep networks.
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6. CONCLUSION

In the past few years, there have been plenty of theoretical and empirical evidence on the

impact of depth in neural network’s performance [17, 18, 144, 156]. However, increasing depth

makes the training of a network more difficult. Despite the numerous efforts and advances pro-

posed in the literature, the training of very deep networks is still an open problem. In this thesis,

we aimed to present different alternatives to ease the training of deep architectures. We began

the work based on the assumption that learning to represent the world in a general way is likely

to be helpful to perform subsequent specific tasks, such as image classification or image pars-

ing. To that end, we introduced an unsupervised learning algorithm to extract representations

that allowed to efficiently learn deep architectures, providing discriminative features of increas-

ing abstraction. Sparsity, more accurately lifetime sparsity, revealed to be a key component of

the method, improving the discriminability of the extracted features and achieving compelling

results in both shallow and deep settings. Moreover, we provided a detailed analysis on the

influence of sparsity, which outlined the benefits of having sparse representations. Then, we

went on applying the proposed algorithm to a wide variety of image classification and pixel

classification (i.e. image parsing) problems, where the method confirmed its potential.

Unsupervised learning algorithms have proven to be effective at training deep architectures.

However, with the introduction of very large labeled datasets, they seem to have gone into the

background, enjoying only moderate attention but still being of great value when labeled data

is scarce, and being outshone by supervised learning methods.

Supervised learning is currently the focus of many recent research advances, which have

shown to excel at many computer vision tasks. Given their unquestionable success, they have

rapidly found their way in the industry. This industry-wide phenomenon has highlighted new

needs to be addressed. While large deep learning models exhibit state-of-the-art results at

many computer vision tasks, they are not well suited for applications with time or memory

limitations. Moreover, supervised methods still suffer from the difficulties of training the in-

termediate and lower layers of a deep model. Therefore, we proceeded with the proposal of a

novel algorithm to compress state-of-the-art large wide and deep models into thin and deeper

ones. In order to mitigate the optimization difficulties induced by depth and extending the idea

in [143], we trained the compressed model to imitate not only the output but also the intermedi-

ate representation of the large state-of-the-art one, achieving faster-to-run or better-performing

compressed models.

Some of the contributions of this thesis have already influenced the research of other

groups; more specifically, a significant amount of research has followed on the idea of guiding
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the learning process of models that are hard to train. In [157], authors propose to use a simple

convolutional network to assist the training of a complex recurrent neural network. In [158],

authors train a student network from a Bayesian predictive distribution of the teacher, which is

a Monte Carlo ensemble of teacher neural networks (TNN). Most of these methods follow the

student-teacher paradigm introduced in [143] and somehow transfer the knowledge from the

teacher network to the student network.

Moreover, the task of speeding up state-of-the-art top performing models has become an

active topic of research. Following the FitNets hint-based training, [159] incrementally train a

network by iteratively introducing new subsets of the input data and using the network trained

in the previous iteration as a guide to the current one. In [160], authors propose to sparsify the

convolution operations to attain acceleration. In [161], authors speed up very deep networks

by assuming low rank assumptions and decompositions.

Further investigation should be devoted to the topics discussed in this thesis. On one hand,

one lesson we can glean is that, despite the advances in unsupervised learning, it still remains a

holy grail for machine learning and future research should attempt to better understand the kind

of general features that would be useful to succeed at subsequent tasks. Although sparsity has

shown to be an important property of the learned features, it is not clear whether it is equally

influential for all representation layers or whether different layers could benefit from different

levels of sparsity.

On the other hand, supervised learning with very large datasets has become a new academic

and industry-wide trend that is paving the way for many attractive problems that deserve future

attention. First, the encouraging results presented in this thesis highlight the potential of trans-

ferring knowledge from a teacher network to a student network. Hence, the student-teacher

paradigm could be extended in order to give the student network the opportunity to learn and

generalize from different teachers, which would be proficient at different tasks. Second, the

promising results achieved by thin and deep networks highlight the potential of such architec-

tures and suggest that more efforts should be devoted to explore new training strategies that

would be proficient, possibly even without the need for a pre-trained network. Work in this

direction already includes [162], which follows the same spirit of FitNets, aiming to exploit the

advantages of depth, but delves into an alternative that does not require any pre-trained model.

Third, computational complexity remains a challenge, not only from the inference but also

from the training perspective; it is not realistic to keep increasing the computational power in

order to successfully address more ambitious tasks. Last, from a computer vision perspective,
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6. CONCLUSION

it would be interesting to further investigate the quality of the features in FitNets compared to

their teacher or even to similar architectures trained without requiring a pre-trained model. One

way of doing this is by visualizing the learned representations as in [40, 41, 163, 164].
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The work presented in this thesis has appeared in other journal and/or conference publica-

tions. The publications derived from this thesis include:

Meta-parameter free Unsupervised Sparse Feature Learning; Adriana Romero, Petia Radeva,

and Carlo Gatta; IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(8):17161722,

2015.

Unsupervised Deep Feature Extraction Of Hyperspectral Images; Adriana Romero, Carlo

Gatta, and Gustau Camps-Valls; IEEE Transactions on Geoscience and Remote Sensing,

Accepted.

FitNets: Hints for Thin Deep Nets; Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-

hou, Antoine Chassang, Carlo Gatta, and Yoshua Bengio; In Proc. of the International

Conference on Learning Representations, 2015.

Unsupervised Deep Feature Extraction Of Hyperspectral Images; Adriana Romero, Carlo

Gatta, and Gustau Camps-Valls; In IEEE GRSS Workshop on Hyperspectral Image and

Signal Processing (WHISPERS), 2014.

Unrolling Loopy Top-Down Semantic Feedback in Convolutional Deep Networks; Carlo Gatta,

Adriana Romero, and Joost Van De Weijer; In IEEE Conference on Computer Vision &

Pattern Recognition Workshops (CVPRW), Deep Vision, pages 504511, 2014.
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