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A G R A Ï M E N T S

Aquesta tesi doctoral recull els resultats de la recerca acadèmica
que he dut a terme els darrers quatre anys, però també és el fruit de
tota la meva trajectòria professional, acadèmica i personal. Hi ha un
munt de persones amb les qui he conviscut durant tots aquests anys
i a qui estic molt agraït per diversos motius: perquè m’han instruït,
recolzat i ajudat o, senzillament, perquè he tingut la sort de poder-les
conèixer i compartir temps amb elles. Malgrat que no deixi constàn-
cia en aquestes línies de tots els seus noms, les he tingut presents en
molts moments.

Sóc incapaç d’imaginar com hagués estat aquesta tesi sense el guiat-
ge d’en Miguel i de la Montse, els meus directors. Entre moltes de les
seves virtuds en destacaria la passió que tots dos tenen per la recerca,
la seva capacitat incansable de treball i la seva habilitat per fer enten-
dor i senzill allò que a molts de nosaltres ens podria semblar intricat.
La seva implicació en aquest projecte ha estat total des d’un bon inici,
des del moment en el qual els vaig plantejar les idees que tenia més
o menys embastades com a punt de partida. Immediatament em van
ajudar a fixar objectius, a ampliar i enriquir el contingut, a centrar es-
forços i a esbossar un pla de treball que permetés, en algun moment
dels quatre anys següents, donar per enllestida la meva tesi doctoral.
I la seva feina ha estat tan encertada que aquest moment finalment
ha arribat. Com en qualsevol procés de dissertació, hi ha hagut mo-
ments d’eufòria i moments de desencís: en Miguel i la Montse sempre
m’han fer tocar de peus a terra en els primers i m’han animat i enco-
ratjat en els segons. A més, tots dos han fet gala d’una inesgotable
paciència, perquè he de reconèixer que sóc força tossut i, de vegades,
empipadorament pessimista. Em podria estendre llargament sobre
les coses que n’he après de tots dos, en àmbits purament acadèmics i
de recerca però també en altres àmbits, com en la gestió de persones
o en el treball en equip. Espero continuar gaudint de la seva compa-
nyia i aprenent d’ells tot allò que pugui: a part de l’evident satisfacció
personal que comporta concloure una tesi doctoral, m’enduc la sen-
sació d’haver fet dos nous amics d’aquells que ho són per tota la vida.

També vull donar les gràcies als meus companys al Riskcenter i a la
Facultat d’Economia i Empresa de la Universitat de Barcelona. M’han
envoltat d’un ambient de treball agradable i motivador, i m’han acol-
lit amb els braços oberts des del primer moment. Manuela, Ana
María, Helena, Óscar, Rosina, Tono, Maria,... trobaré a faltar les con-
verses dels dinars (gairebé tant com els menjars que m’ha preparat
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tantes vegades l’Emi, a qui li donc mil gràcies i una forta abraçada).
Ramon, Merche i Cati, merci pel vostre suport, per poder comp-
tar sempre amb els vostres consells. José María, moltes gràcies per
introduir-me al món dels operadors d’agregació. Esther, em vas fer
sentir molt a gust en el teu equip dedicat a la recerca en emprenedo-
ria. Coloma i Dolors, un fort petó a totes dues.

Les meves experiències professionals en el sector financer i assegu-
rador han contribuït decisivament en el resultat final d’aquest treball.
Tinc molt bons records de diferents persones amb les que he tingut
el gust de treballar a KPMG, als seus clients i, també, a Seguros Cata-
lana Occidente, i els vull agrair a totes elles les vivències compartides.

No em vull oblidar de la meva colla d’amics. Fa molts anys que
tinc la sort de compartir amb tots ells moments inoblidables, i vull
aprofitar l’ocasió per agraïr-los que pugui formar part de cadascuna
de les seves històries personals. A tots ells els duc ben aprop del cor.

La Lidia i la Marina omplen de comfort i d’amor la meva esfera més
íntima. Són la meva llar i per mi és tot un orgull poder dir que són
la meva dona i la meva filla. Tinc la impressió que tenim l’estrany
privilegi d’haver-nos trobat i de poder i voler compartir les nostres
vides. Senzillament, ens estimem. Moltíssimes gràcies Lidia per la
teva paciència: ja sé que de vegades dius que no en tens gaire, però
no totes les parelles poden dir que han superat la redacció d’una tesi
doctoral!

Per acabar, un agraïment molt especial per tota la meva nombrosa
i fantàstica família, particularment als meus pares Mario i Maria Do-
lors i als meus germans Màrius, Cristina, Damià i Lola. En aquests
darrers quatre anys ens han passat un munt de coses, algunes de molt
bones (la Muriel i la Marina en són els millors exemples) i altres de
molt tristes. Sé que el pare estaria tan orgullós com tota la resta de
poder veure impresa aquesta tesi. En nombroses ocasions al llarg de
la meva vida he sentit que els tetes i els pares tenien una gran fe en les
meves aptituds i capacitats. Sense el seu alè de suport hagués estat
impossible arribar fins aquí.
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A B S T R A C T

This work is focused on the study of risk measures and solutions to
capital allocation problems, their suitability to answer practical ques-
tions in the framework of insurance and financial institutions and
their connection with a family of functions named aggregation ope-
rators. These operators are well-known among researchers from the
information sciences or fuzzy sets and systems community.

The first contribution of this dissertation is the introduction of Glue-
VaR risk measures, a family belonging to the more general class of
distortion risk measures. GlueVaR risk measures are simple to un-
derstand for risk managers in the financial and insurance sectors, be-
cause they are based on the most popular risk measures (VaR and
TVaR) in both industries. For the same reason, they are almost as easy
to compute as those common risk measures and, moreover, GlueVaR
risk measures allow to capture more intricated managerial and regu-
latory attitudes towards risk.

The definition of the tail-subadditivity property for a pair of risks
may be considered the second contribution. A distortion risk mea-
sure which satisfies this property has the ability to be subadditive
in extremely adverse scenarios. In order to decide if a GlueVaR risk
measure is a candidate to satisfy the tail-subadditivity property, con-
ditions on its parameters are determined.

It is shown that distortion risk measures and several ordered weigh-
ted averaging operators in the discrete finite case are mathematically
linked by means of the Choquet integral. It is shown that the over-
all aggregation preference of the expert may be measured by means
of the local degree of orness of the distortion risk measure, which is
a concept taken over from the information sciences community and
brung into the quantitative risk management one.

New indicators for helping to characterize the discrete Choquet in-
tegral are also presented in this dissertation. The aim is complement-
ing those already available, in order to be able to highlight particular
features of this kind of aggregation function. Following this spirit, the
degree of balance, the divergence, the variance indicator and Rényi
entropies as indicators within the framework of the Choquet integral
are here introduced.
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A major contribution derived from the relationship between distor-
tion risk measures and aggregation operators is the characterization
of the risk attitude implicit into the choice of a distortion risk measure
and a confidence or tolerance level. It is pointed out that the risk atti-
tude implicit in a distortion risk measure is to some extent contained
in its distortion function. In order to describe some relevant features
of the distortion function, the degree of orness indicator and a quo-
tient function are used. It is shown that these mathematical devices
give insights on the implicit risk behavior involved in risk measures
and entail the definitions of overall, absolute and specific risk attitudes.

Regarding capital allocation problems, a list of key elements to de-
limit these problems is provided and mainly two contributions are
made. Firstly, it is shown that GlueVaR risk measures are as useful
as other alternatives like VaR or TVaR to solve capital allocation prob-
lems. The second contribution is understanding capital allocation
principles as compositional data. This interpretation of capital alloca-
tion principles allows the connection between aggregation operators
and capital allocation problems, with an immediate practical applica-
tion: Properly averaging several available solutions to the same cap-
ital allocation problem. This thesis contains some preliminary ideas
on this connection, but it seems to be a promising research field.
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R E S U M

Aquest treball se centra en l’estudi de mesures de risc i de solucions
a problemes d’assignació de capital, en la seva capacitat per respon-
dre qüestions pràctiques en l’àmbit de les institucions asseguradores i
financeres, i en la seva connexió amb una família de funcions anome-
nades operadors d’agregació. Aquests operadors són ben coneguts
entre els investigadors de les comunitats de les ciències de la infor-
mació o dels conjunts i sistemes fuzzy.

La primera contribució d’aquesta tesi és la introducció de les mesu-
res de risc GlueVaR, una família que pertany a la classe més general
de les mesures de risc de distorsió. Les mesures de risc GlueVaR són
senzilles d’entendre per als gestors de risc del sector financer i asse-
gurador, perquè estan basades en les mesures de risc més populars
(el VaR i el TVaR) en aquestes indústries. Per la mateixa raó, són
quasi tan fàcils de calcular com aquestes mesures de risc més comuns
però, a més, les mesures de risc GlueVaR permeten capturar actituds
de gestió i regulatòries davant del risc més complicades.

La definició de la propietat de la subadditivitat en cues per a una
parella de riscos es pot considerar la segona contribució. Una mesura
de risc de distorsió que satisfà aquesta propietat té la capacitat de ser
subadditiva en escenaris extremadament adversos. Per tal de decidir
si una mesura de risc GlueVaR és candidata a satisfer la propietat
de la subadditivitat en cues es determinen condicions sobre els seus
paràmetres.

Es mostra que les mesures de risc de distorsió i diversos operadors
de mitjanes ponderades ordenades en el cas finit i discret estan mate-
màticament relacionats a través de la integral de Choquet. Es mostra
que la preferència global d’agregació de l’expert pot mesurar-se us-
ant el nivell local d’orness de la mesura de risc de distorsió, que és un
concepte traslladat de la comunitat de les ciències de la informació
cap a la comunitat de la gestió quantitativa del risc.

Nous indicadors per a ajudar a caracteritzar les integrals de Cho-
quet en el cas discret també es presenten en aquesta dissertació. Es
pretén complementar-ne els ja existents, per tal de ser capaços de
destacar característiques particulars d’aquest tipus de funcions d’agre-
gació. Seguint aquest esperit, es presenten el nivell de balanç, la
divergència, l’indicador de variança i les entropies de Rényi com a
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indicadors en l’àmbit de la integral de Choquet.

Una contribució rellevant que es deriva de la relació entre les mesu-
res de risc de distorsió i els operadors d’agregació és la caracterització
de l’actitud davant del risc implícita en la tria d’una mesura de risc de
distorsió i d’un nivell de confiança. S’assenyala que l’actitud davant
del risc implícita en una mesura de risc de distorsió està continguda,
fins a cert punt, en la seva funció de distorsió. Per tal de descriure al-
guns trets rellevants de la funció de distorsió s’usen l’indicador nivell
d’orness i una funció quocient. Es mostra que aquests instruments
matemàtics aporten informació relativa al comportament davant del
risc implícit en les mesures de risc, i que d’ells se’n deriven les defini-
cions de les actituds davant del risc de tipus general, absolut i específic.

Quant als problemes d’assignació de capital, es proporciona un llis-
tat d’elements clau per a delimitar aquests problemes i es fan prin-
cipalment dues contribucions. En primer lloc, es mostra que les
mesures de risc GlueVaR són tan útils com altres alternatives com
el VaR o el TVaR per resoldre problemes d’assignació de capital. La
segona contribució consisteix en entendre els principis d’assignació
de capital com a dades composicionals. Aquesta interpretació dels
principis d’assignació de capital permet establir connexió entre els
operadors d’agregació i els problemes d’assignació de capital, amb
una aplicació pràctica immediata: calcular degudament la mitjana de
diferents solucions disponibles per al mateix problema d’assignació
de capital. Aquesta tesi conté algunes idees preliminars sobre aque-
sta connexió, però sembla un camp de recerca prometedor.
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R E S U M E N

Este trabajo se centra en el estudio de medidas de riesgo y de solu-
ciones a problemas de asignación de capital, en su capacidad para
responder cuestiones prácticas en el ámbito de las instituciones asegu-
radoras y financieras, y en su conexión con una familia de funciones
denominadas operadores de agregación. Estos operadores son bien
conocidos entre los investigadores de las comunidades de las ciencias
de la información o de los conjuntos y sistemas fuzzy.

La primera contribución de esta tesis es la introducción de las medi-
das de riesgo GlueVaR, una familia que pertenece a la clase más gen-
eral de las medidas de riesgo de distorsión. Las medidas de riesgo
GlueVaR son sencillas de entender para los gestores de riesgo de los
sectores financiero y asegurador, puesto que están basadas en las me-
didas de riesgo más populares (el VaR y el TVaR) de ambas industrias.
Por el mismo motivo, son casi tan fáciles de calcular como estas me-
didas de riesgo más comunes pero, además, las medidas de riesgo
GlueVaR permiten capturar actitudes de gestión y regulatorias ante
el riesgo más complicadas.

La definición de la propiedad de la subadditividad en colas para
un par de riesgos se puede considerar la segunda contribución. Una
medida de riesgo de distorsión que cumple esta propiedad tiene la
capacidad de ser subadditiva en escenarios extremadamente adver-
sos. Con el propósito de decidir si una medida de riesgo GlueVaR es
candidata a satisfacer la propiedad de la subadditividad en colas se
determinan condiciones sobre sus parámetros.

Se muestra que las medidas de riesgo de distorsión y varios ope-
radores de medias ponderadas ordenadas en el caso finito y discreto
están matemáticamente relacionadas a través de la integral de Cho-
quet. Se muestra que la preferencia global de agregación del experto
puede medirse usando el nivel local de orness de la medida de riesgo
de distorsión, que es un concepto trasladado des de la comunidad
de las ciencias de la información hacia la comunidad de la gestión
cuantitativa del riesgo.

Nuevos indicadores para ayudar a caracterizar las integrales de
Choquet en el caso discreto también se presentan en esta disertación.
Se pretende complementar a los existentes, con el fin de ser capaces
de destacar características particulares de este tipo de funciones de
agregación. Con este espíritu, se presentan el nivel de balance, la
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divergencia, el indicador de varianza y las entropías de Rényi como
indicadores en el ámbito de la integral de Choquet.

Una contribución relevante que se deriva de la relación entre las
medidas de riesgo de distorsión y los operadores de agregación es la
caracterización de la actitud ante el riesgo implícita en la elección de
una medida de riesgo de distorsión y de un nivel de confianza. Se
señala que la actitud ante el riesgo implícita en una medida de riesgo
de distorsión está contenida, hasta cierto punto, en su función de
distorsión. Para describir algunos rasgos relevantes de la función de
distorsión se usan el indicador nivel de orness y una función cociente.
Se muestra que estos instrumentos matemáticos aportan información
relativa al comportamiento ante el riesgo implícito en las medidas de
riesgo, y que de ellos se derivan las definiciones de les actitudes ante
el riego de tipo general, absoluto y específico.

En cuanto a los problemas de asignación de capital, se proporciona
un listado de elementos clave para delimitar estos problemas y se ha-
cen principalmente dos contribuciones. En primer lugar, se muestra
que las medidas de riesgo GlueVaR son tan útiles como otras alterna-
tivas tales como el VaR o el TVaR para resolver problemas de asig-
nación de capital. La segunda contribución consiste en entender los
principios de asignación de capital como datos composicionales. Esta
interpretación de los principios de asignación de capital permite es-
tablecer conexión entre los operadores de agregación y los problemas
de asignación de capital, con una aplicación práctica inmediata: cal-
cular debidamente la media de diferentes soluciones disponibles para
el mismo problema de asignación de capital. Esta tesis contiene algu-
nas ideas preliminares sobre esta conexión, pero parece un campo de
investigación prometedor.
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I N T R O D U C T I O N

background and motivation

Since the appearance in 1988 of the first Basel Capital Accord for
worldwide banking, quantitative risk management has become an es-
sential instrument both in the financial and the insurance sectors. The
Bank of International Settlements (BIS) was the leader of this agree-
ment, which has been updated twice: once in year 2004 (Basel II
agreement) and once more in 2010 after the worldwide spread of
the last financial crisis (Basel III accord, see http://www.bis.org/

list/bcbs/index.htm). The European Commission with the assis-
tance of the European Insurance and Occupational Pensions Author-
ity (EIOPA) has been developing, in parallel, the Solvency II regula-
tory framework for the insurance sector (see http://ec.europa.eu/

internal_market/insurance/solvency/index_en.htm). The growing
interest for quantitative risk management has possibly taken place be-
cause all the decision makers involved in the financial industry have
endorsed it: from entities to local supervisory authorities, including
audit, consultancy and advisory firms.

Quantitative risk management is one of the main concerns of man-
agement teams in the insurance and financial sectors. Among all the
possible elements of interest that can be associated to this topic, it is
my belief that risk measurement and the duality of risk aggregation
and disaggregation are two key issues. This dissertation tries to shed
some light on them.

This work is focused on the study of risk measures and solutions
to capital allocation problems, and their suitability to answer practi-
cal questions in the framework of insurance and financial institutions.

The selection of appropriate risk measures and of solutions to cap-
ital allocation problems are issues under on-going discussion among
researchers and practitioners. Insurance firms are subject to the capi-
tal requirements established by regulators’ guidelines and directives.
These requirements are typically equal to, or proportional to, a risk
measure value that determines a minimum cushion of economic liq-
uidity. The selection of such risk measures and tolerance levels is
crucial therefore from the regulators’ point of view.
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Companies in the insurance sector prefer to minimize the level of
capital reserves required by solvency regulations, because they must
contend with many restrictions on how this capital can be invested
and, as such, the return on their capital reserves is usually lower than
that provided by other opportunities. For this reason, companies
typically favor regulations that impose risk measures and tolerance
levels that are not overly conservative. Managers also prefer simple,
straightforward risk measures rather than more complicated alterna-
tives, since they claim that the former are more easily communicated.

From the regulators’ perspective, controlling the risk of insurance
companies is fundamental in order to protect consumers and investors,
which may have conflicting objectives. Strict solvency capital require-
ments may limit the capacity of firms, but they also reassure con-
sumers and guarantee the position of the insurance industry in the
economy. Thus, the debate as to what constitutes a suitable risk mea-
sure and what represents a suitable tolerance level is interminable,
without apparently having been much investigation as to what might
represent an appropriate compromise.

So with respect to risk measures, it seemed adequate to deepen
in advantages and pitfalls of most commonly used risk measures in
the actuarial and financial sectors, because the discussion could re-
sult attractive both to practitioners and supervisor authorities. This
perspective allowed to list some of the additional proposals that can
be found in the academic literature and, even, to devise some alterna-
tives.

Capital allocation problems fall on the disaggregation side of risk
management. These problems are associated to a wide variety of pe-
riodical management tasks inside the entities. In an insurance firm,
for instance, risk capital allocation by business lines is a fundamen-
tal element for decision making from a risk management point of
view. A sound implementation of capital allocation techniques may
help insurance companies to improve their underwriting risk and to
adjust the pricing of their policies, so to increase the value of the firm.

This piece of work is, to some extent, a theoretical study. Departing
from an appropriate literature review, theoretical connections have
been deduced. Nonetheless, the obtained theoretical results may be
applied in practice. In order to support this statement, most of the
theoretical developments have been illustrated with examples, which
have been chosen as close to real practice as possible.

4



outline of the thesis

This dissertation is structured in five parts. The first one is this
introduction, while the fourth part is devoted to conclusions. The part
number five contains the Appendix. The contributions of this thesis
are exposed in the central parts, where they have been grouped as
follows. The part number two consists of six chapters (from number
1 to 6) dedicated to investigate risk measures and their relationship
with aggregation operators. The third part is devoted to provide an
overview on capital allocation problems and to highlight how these
problems may be related to aggregation functions. The last three
chapters (from number 7 to 9) belong to this part. In what follows,
some comments on the content of each chapter are presented, in order
to get an overall picture of the work that has been done.

Chapter 1 - Beyond Value-at-Risk

A new family of risk measures, called GlueVaR, is defined within
the class of distortion risk measures. The relationship between Glue-
VaR, Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR) is explained.
Analytical closed-form expressions are shown for the most frequently
used distribution functions in financial and insurance applications, as
well as first order Cornish-Fisher approximations for general skewed
distribution functions. In addition, relationships between GlueVaR
and Tail Distortion risk measures are shown to close this first chap-
ter.

Chapter 2 - Tail-subadditivity for a pair of risks

This chapter is devoted to the definition of tail-subadditivity for
a pair of risks given a confidence level, and to discuss the reasons
for introducing this new property for risk measures in general. The
tail-subadditivity for a pair of risks is, to some extent, a property
of risk measures concerning their ability to indicate the benefits of
diversification in extremely adverse situations. A proposition that
states which GlueVaR risk measures are likely to meet that property
is proven, and the chapter ends with a first discussion on the rela-
tionship between GlueVaR parameters and attitudes regarding risk
measurement.

Chapter 3 - Risk measurement with GlueVaR

This chapter is devoted to illustrate different practical situations
in which GlueVaR can be used. Two examples are presented. The
same data set on insurance claim costs is used in both examples. One
of them shows the values that different risk measures belonging to
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the GlueVaR family give to a set of random variables. Different as-
sumptions on the type of distribution function that characterize these
random variables are considered. The second one illustrates the tail-
subadditivity property and compares it with the subadditivity prop-
erty.

Chapter 4 - Distortion risk measures and ordered averaging operators

Distortion risk measures summarize the risk of a loss distribution
by means of a single value. In fuzzy systems, the ordered weighted
averaging (OWA) and weighted ordered weighted averaging (WOWA)
operators are used to aggregate a large number of fuzzy rules into a
single value. In this chapter it is shown that these concepts can be
derived from the Choquet integral, and then the mathematical rela-
tionship between distortion risk measures and the OWA and WOWA
operators for discrete and finite random variables is presented. This
connection offers a new interpretation of distortion risk measures
and, in particular, Value-at-Risk and Tail Value-at-Risk can be un-
derstood from an aggregation operator perspective. The theoretical
results are numerically illustrated and the local degree of orness con-
cept is discussed.

Chapter 5 - Indicators for the discrete Choquet integrals

As it has already been mentioned in the previous chapter, ordered
weighted averaging operators are powerful tools used in numerous
decision-making problems and each OWA may be understood as a
discrete Choquet integral. Aggregation operators are usually charac-
terized by indicators. In this chapter four indicators usually associ-
ated with the OWA operator are extended to the discrete Choquet
integral: namely, the degree of balance, the divergence, the variance
indicator and Rényi entropies. All of these summarizing indicators
are considered from a local and a global perspective. Linearity of
indicators for linear combinations of capacities is investigated and,
to illustrate the usefulness of results, indicators of the probabilistic
ordered weighted averaging (POWA) operator are derived.

Chapter 6 - On the implicit risk attitude of a distortion risk measure

Understanding the risk attitude that is implicit in a risk assessment
is crucial for decision makers. This chapter takes advantage of all the
work made in the previous ones to characterize the underlying risk at-
titude involved in the choice of a risk measure, where it belongs to the
family of distortion risk measures. A two-stage strategy is developed
therein to reach this goal. First, it is shown that aggregation indicators
defined for discrete Choquet integrals provide valuable information
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related to the implicit risk attitude in aggregate terms, which leads to
the definition of overall risk attitude. In the second stage a graphical
analysis based on the distortion function is carried out to provide a lo-
cal description of the underlying risk behavior. Here, the concepts of
absolute risk attitude and specific risk attitude arise in a natural manner.
The data set of insurance claim costs used in chapter 3 is used again
to provide an example that shows the usefulness of this strategy in
practice. This strategy is followed to solve a feasible problem that in-
surance companies under the Solvency II regulatory framework could
face, and the impact of extreme observations is analyzed.

Chapter 7 - An overview on capital allocation problems

There is a strong relationship between risk measures and capital
allocation problems. Briefly speaking, it may be assumed that each
solution to a capital allocation problem is determined by a capital
allocation criterion and a given risk measure. This chapter is intended
to detect additional key elements involved in a solution of a capital
allocation problem, in order to obtain a detailed initial picture on
risk capital allocation proposals that can be found in the academic
literature.
Personal notations and points of view are stated here and used from
this point forward. Additionally, some particular solutions of interest
are commented, trying to highlight both advantages and drawbacks
of each one of them.

Chapter 8 - Contributions to capital allocation based on GlueVaR

This chapter is devoted to show how GlueVaR risk measures can be
used for risk measurement purposes and to solve problems of propor-
tional capital allocation through examples. The same data set is ana-
lyzed in both situations and, once more, it is the data set on insurance
claim costs used in previous chapters. Regarding capital allocation,
a first theoretical step is done for convenience: the capital allocation
framework suggested by Dhaene et al. [2012b] is generalized to al-
low the application of the Value-at-Risk measure in combination with
a stand-alone proportional allocation criterion (i.e., to accommodate
the Haircut allocation principle). Afterwards, two new proportional
capital allocation principles based on GlueVaR risk measures are de-
fined an the example is presented, in which allocation solutions with
tail-subadditive GlueVaR risk measures are discussed and compared
with the solutions obtained when using the rest of alternatives.
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Chapter 9 - Capital allocation principles as compositional data

In the last chapter, some connections between capital allocation
problems and aggregation operators are emphasized. The approach
is based on functions and operations defined in the standard simplex
which, to best of my knowledge, remained an unexplored approach.

Appendix

Some of the largest or most intricate proofs have been gathered in
the appendix to ease the reading.

preliminary definitions

A few preliminary comments, notations and definitions should be
helpful to keep this dissertation as self-contained as possible.

Definition 1 (Probability space). A probability space is defined by three
elements (Ω,A,P). The sample space Ω is a set of the possible events of a
random experiment, A is a family of the set of all subsets of Ω (denoted as
A ∈ ℘ (Ω)) with a σ−algebra structure, and the probability P is a mapping
from A to [0, 1] such that P (Ω) = 1, P (∅) = 0 and P satisfies the σ −

additivity property.

A probability space is finite if the sample space is finite, i.e. Ω =

{$1,$2, ...,$n}. Then ℘ (Ω) is the σ− algebra, which is denoted as
2Ω. In the rest of this work, N instead of Ω and m instead of $ are
used when referring to finite probability spaces. Hence, the notation
is
(
N, 2N,P

)
, where N = {m1,m2, . . . ,mn}.

Definition 2 (Random variable). Let (Ω,A,P) be a probability space. A
random variable X is a mapping from Ω to R such that X−1 ((−∞, x]) :=
{$ ∈ Ω : X ($) 6 x} ∈ A, ∀x ∈ R.

A random variable X is discrete if X (Ω) is a finite set or a numer-
able set without cumulative points.

Definition 3 (Distribution function of a random variable). Let X be a
random variable. The distribution function of X, denoted by FX, is defined
by FX (x) := P

(
X−1 ((−∞, x])

)
≡ P (X 6 x).

The distribution function FX is non-decreasing, right-continuous
and lim

x→−∞ FX (x) = 0 and lim
x→+∞ FX (x) = 1. The survival function of

X, denoted by SX, is defined by SX (x) := 1 − FX (x), for all x ∈ R.
Note that the domain of the distribution function and the survival
function is R even if X is a discrete random variable. In other words,
FX and SX are defined for X (Ω) = {x1, x2, ..., xn, ...} but also for any
x ∈ R.

8



Definition 4 (Risk measure). Let Γ be the set of all random variables
defined for a given probability space (Ω,A,P). A risk measure is a mapping
ρ from Γ to R, so ρ (X) is a real value for each X ∈ Γ .

9





Part II

O N R I S K M E A S U R E S A N D A G G R E G AT I O N
F U N C T I O N S





1
B E Y O N D VA L U E - AT- R I S K

Value-at-Risk (VaR) has been adopted as a standard tool to assess
the risk and to calculate capital requirements in the insurance indus-
try. Value-at-Risk at level α is the α-quantile of a random variable X
(which is often called loss), i.e.

VaRα (X) = inf {x | FX (x) > α} = F−1X (α) ,

where FX is the cumulative distribution function (cdf) of X and α is
the confidence or the tolerance level 0 6 α 6 1. However, VaR is
known to present a number of pitfalls when applied in practice. A
disadvantage when using VaR in the insurance or financial contexts
is that the capital requirements for catastrophic losses based on this
measure can be underestimated, i.e. the necessary reserves in adverse
scenarios may well be less than they should be. The underestima-
tion of capital requirements may be aggravated when fat-tailed losses
are incorrectly modeled by mild-tailed distributions, such as the Nor-
mal distribution. There are attempts to overcome this kind of model
risk when using VaR or, at least, to quantify the risk related to the
modelling [Alexander and Sarabia, 2012]. But, in addition, a second
drawback is that the VaR may fail the subadditivity property. A risk
measure is subadditive when the aggregated risk is less than or equal
to the sum of individual risks. Subadditvity is an appealing property
when aggregating risks in order to preserve the benefits of diversifi-
cation. VaR is subadditive for elliptically distributed losses [McNeil
et al., 2005]. However, the subadditivity of VaR is not granted, as
indicated in Artzner et al. [1999] and Acerbi and Tasche [2002].

Tail Value-at-Risk (TVaR) is defined as

TVaRα (X) =
1

1−α

∫1
α

VaRλ (X)dλ.

Roughly speaking, the TVaR is understood as the mathematical ex-
pectation beyond VaR. The TVaR risk measure does not suffer the
two drawbacks discussed above for VaR and, as such, would appear
to be a more powerful measure for assessing the actual risks faced
by insurance companies and financial institutions. However, TVaR
has not been widely accepted by practitioners in the financial and in-
surance industry. VaR is currently the risk measure contemplated in
the European solvency regulation for the insurance sector (Solvency
II), and this is also the case of solvency regulation for the banking
sector (Basel accords). The TVaR measures average losses in the most
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14 1 beyond value-at-risk

adverse cases rather than just the minimum adverse loss, as the VaR
does. Therefore, capital reserves based on the TVaR have to be con-
siderably higher than those based on VaR and significant differences
in the size of capital reserves can be obtained depending on which
risk measure is adopted.

This chapter is motivated, therefore, by an attempt to respond to
the following question. Can a risk measure be devised that would
provide a risk assessment that lies somewhere between that offered
by the VaR and the TVaR? To this end, a new family of risk measures
(GlueVaR) is proposed, which forms part of a wider class referred
to as distortion risk measures. The subadditivity properties of these
GlueVaR risk measures are analyzed and it is shown that a subfamily
of GlueVaR risk measures satisfies tail-subadditivity.

GlueVaR risk measures are defined by means of a four-parameter
function. By calibrating the parameters, GlueVaR risk measures can
be matched to a wide variety of contexts. Specifically, once a con-
fidence level has been fixed, the new family contains risk measures
that lie between those of VaR and TVaR and which may adequately
reflect the risk of mild-tailed distributed losses without having to re-
sort to VaR. In certain situations, however, more conservative risk
measures even than TVaR may be preferred. It is shown that these
highly conservative risk measures can also be defined by means of the
GlueVaR family. Analytical closed-form expressions of GlueVaR for
commonly used statistical distributions in the insurance context are
derived. These closed-form expressions should enable practitioners
to undertake an effortless transition from the use of VaR and TVaR
to GlueVaR. First order Cornish-Fisher approximations to GlueVaR
risk measures for general skewed distribution functions are also in-
troduced in this chapter. Finally, the relationship between GlueVaR
and Tail Distortion risk measures is shown.

1.1 overview on risk measures

Two main groups of axiom-based risk measures are coherent risk
measures, as stated by Artzner et al. [1999], and distortion risk measures,
as introduced by Wang [1996] and Wang et al. [1997]. Concavity of
the distortion function is the key element to define risk measures that
belong to both groups [Wang and Dhaene, 1998]. Suggestions on new
desirable properties for distortion risk measures are proposed in Bal-
bás et al. [2009], while generalizations of this kind of risk measures
can be found, among others, in Hürlimann [2006] and Wu and Zhou
[2006]. As shown in Goovaerts et al. [2012], it is possible to link dis-
tortion risk measures with other interesting families of risk measures
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developed in the literature.

The axiomatic setting for risk measures has extensively been de-
veloped since seminal papers on coherent risk measures and dis-
tortion risk measures. Each set of axioms for risk measures corre-
sponds to a particular behavior of decision makers under risk, as it
has been shown, for instance, in Bleichrodt and Eeckhoudt [2006]
and Denuit et al. [2006]. Most often, articles on axiom-based risk
measurement present the link to a theoretical foundation of human
behavior explicitly. For example, Wang [1996] shows the connection
between distortion risk measures and Yaari’s dual theory of choice
under risk; Goovaerts et al. [2010b] investigate the additivity of risk
measures in Quiggin’s rank-dependent utility theory; and Kaluszka
and Krzeszowiec [2012] introduce the generalized Choquet integral
premium principle and relate it to Kahneman and Tversky’s cumula-
tive prospect theory.

Many articles have appeared in recent years that pay attention to
risk measures based on distortion functions or on generalizations of
the quantiles. An example of the first group is Zhu and Li [2012].
Bellini and Gianin [2012] and Bellini et al. [2014] fit to second group.
An interplay between both groups is found in Dhaene et al. [2012a]
and Goovaerts et al. [2012].

1.2 distortion risk measures

Consider a probability space and the set of all random variables
defined on this space. Any risk measure [see, for instance, Szëgo,
2002] ρ is a mapping from the set of random variables to the real
line R, X 7→ ρ (X) ∈ R. Distortion risk measures were introduced
by Wang [Wang, 1995, 1996] and are closely related to the distortion
expectation theory [Yaari, 1987]. A review on how risk measures can
be interpreted from several perspectives is provided in Tsanakas and
Desli [2005], and a clarifying explanation of the relationship between
distortion risk measures and distortion expectation theory is included.
A detailed literature review of distortion risk measures is available in
[Denuit et al., 2005; Balbás et al., 2009]. There are two key elements
to define a distortion risk measure: first, the associated distortion
function; and, second, the concept of the Choquet [Choquet, 1954]
Integral. The distortion function, Choquet Integral and the distortion
risk measure can be defined as follows:

Distortion function. Let g : [0, 1] → [0, 1] be a function such
that g (0) = 0, g (1) = 1 and g is injective and non-decreasing.
Then g is called a distortion function.
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Choquet Integral The (asymmetric) Choquet Integral with re-
spect to a set function µ of a µ-measurable function X : Ω → R

is denoted as
∫
Xdµ and is equal to

∫
Xdµ =

∫0
−∞
[
Sµ,X(x) − µ (Ω)

]
dx+

∫+∞
0

Sµ,X(x)dx,

if µ (Ω) < ∞, where Sµ,X (x) = µ ({X > x}) denotes the survival
function of X with respect to µ. Note that Ω denotes a set, which
in financial and insurance applications is the sample space of a
probability space. A set function µ in this context is a func-
tion defined from 2Ω (the set of all subsets of Ω) to R. A µ-
measurable function X is, widely speaking, a function defined
on Ω such that expressions like µ ({X > x}) or µ ({X 6 x}) make
sense. See Denneberg [1994] for more details.

Distortion risk measure. Let g be a distortion function. Con-
sider a random variable X and its survival function SX(x) =

P (X > x). Function ρg defined by

ρg (X) =

∫0
−∞ [g (SX (x)) − 1]dx+

∫+∞
0

g (SX (x))dx

is called a distortion risk measure.

From the previous definitions, it is straightforward to see that for
any random variable X, ρg (X) is the Choquet Integral of X with re-
spect to the set function µ = g ◦ P, where P is the probability function
associated with the probability space in which X is defined.

The mathematical expectation is a distortion risk measure whose
distortion function is the identity function [Denuit et al., 2005], this
is, ρid (X) = E (X). Therefore, a straightforward way to interpret a
distortion risk measure is as follows: first, the survival function of
the random variable is distorted (g ◦ SX); second, the mathematical
expectation of the distorted random variable is computed. From a
theoretical point of view, note that this interpretation fits the discus-
sion that risk may be defined as an expected value in many situations
[Aven, 2012].

VaR and TVaR measures are in fact distortion risk measures. The
associated distortion functions of these risk measures are shown in
Table 1.1.

Based on the distortion functions shown in Table 1.1, once α is fixed
it can be proved that VaRα (X) 6 TVaRα (X) for any random variable
X.
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Table 1.1: VaR and TVaR distortion functions

Risk measure Distortion function

VaR ψα (u) =

{
0 if 0 6 u < 1−α

1 if 1−α 6 u 6 1

TVaR γα (u) =


u

1−α
if 0 6 u < 1−α

1 if 1−α 6 u 6 1

For a confidence level α ∈ (0, 1).

Remark 1.2.1. Let g and g∗ be two distortion functions and let ρg and ρg∗
be their respective distortion risk measures. Suppose that g (u) 6 g∗ (u) for
all u ∈ [0, 1]. Then ρg (X) 6 ρg∗ (X) for any random variable X.
This result follows immediately from the definition of distortion risk mea-
sures, because

ρg (X) =

∫0
−∞[g (SX (x)) − 1]dx+

∫+∞
0

g (SX (x))dx 6∫0
−∞[g∗ (SX (x)) − 1]dx+

∫+∞
0

g∗ (SX (x))dx = ρg∗ (X) .

1.3 a new family of risk measures : gluevar

A new family of risk measures, named GlueVaR, is here defined.
Any GlueVaR risk measure can be described by means of its distor-
tion function. Given a confidence level α, the distortion function for
GlueVaR is:

κh1,h2
β,α (u) =



h1
1−β

· u, if 0 6 u < 1−β

h1 +
h2 − h1
β−α

· [u− (1−β)] ,

if 1−β 6 u < 1−α

1, if 1−α 6 u 6 1

(1.1)

where α,β ∈ [0, 1] such that α 6 β, h1 ∈ [0, 1] and h2 ∈ [h1, 1]. Param-
eter β is the additional confidence level besides α. The shape of the
GlueVaR distortion function is determined by the distorted survival
probabilities h1 and h2 at levels 1−β and 1−α, respectively. We call
parameters h1 and h2 the heights of the distortion function.

A wide range of risk measures may be defined under this frame-
work. Note that VaRα and TVaRα are particular cases of this new
family of risk measures. Namely, VaRα and TVaRα correspond to
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distortion functions κ0,0
α,α and κ1,1

α,α, respectively. By establishing suit-
able conditions on the heights h1 and h2, the GlueVaR family is very
flexible. For example, risk managers might like to select α, β, h1 and
h2 so that

VaRα (X) 6 GlueVaRh1,h2
β,α (X) 6 TVaRα (X) :

this can be achieved by selecting a set of parameters for their associ-
ated distortion functions to ensure that ψα(u) 6 κ

h1,h2
β,α (u) 6 γα(u)

for any u ∈ [0, 1], following remark 1.2.1, i.e. by forcing condition

h1 6
1−β

1−α
. An example of such a case is shown in Figure 1.1 (left-

hand side).

The GlueVaR family also allows us to define a highly conservative
risk measure GlueVaRh1,h2

β,α , such that

TVaRα (X) 6 GlueVaRh1,h2
β,α (X) 6 TVaRβ (X)

for any X and that the associated distortion function κh1,h2
β,α is concave

in [0, 1]. In this case,
1−β

1−α
6 h1 and h2 = 1 must be fulfilled, as

occurs in the example shown in Figure 1.1 (right-hand side).

1.4 linear combination of risk measures

Given a random variable X and for fixed tolerance levels α and β
so that α < β, GlueVaRh1,h2

β,α (X) can be expressed as a linear combina-
tion of TVaRβ (X), TVaRα (X) and VaRα (X). This result allows us to
translate the initial graphical-based construction of GlueVaR risk mea-
sures into an algebraic construction based on standard risk measures.

If the following notation is used,
ω1 = h1 −

(h2 − h1) · (1−β)
β−α

ω2 =
h2 − h1
β−α

· (1−α)

ω3 = 1−ω1 −ω2 = 1− h2,

(1.2)

then the distortion function κh1,h2
β,α (u) in (1.1) may be rewritten as

(details can be found in the Appendix):

κh1,h2
β,α (u) = ω1 · γβ (u) +ω2 · γα (u) +ω3 ·ψα (u) (1.3)

where γβ, γα, ψα are the distortion functions of TVaR at confidence
levels β and α and of VaR at confidence level α, respectively (see
Table 1.1). Therefore GlueVaR is a risk measure that can be expressed
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Figure 1.1: Examples of GlueVaR distortion functions.
Left. Distortion function is concave in [0, 1−α) and VaRα (X) 6
GlueVaRh1,h2

β,α (X) 6 TVaRα (X) for a random variable X;
Right. Distortion function is concave in the whole range [0, 1]
and TVaRα (X) 6 GlueVaRh1,h2

β,α (X) 6 TVaRβ (X) for a random
variable X.
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as a linear combination of three risk measures: TVaR at confidence
levels β and α and VaR at confidence level α,

GlueVaRh1,h2
β,α (X) = ω1 · TVaRβ (X)+

ω2 · TVaRα (X) +ω3 · VaRα (X) .
(1.4)

Given this relationship, some abuse of notation may be employed
for GlueVaRh1,h2

β,α (X) and its related distortion function. The notation
GlueVaRω1,ω2

β,α (X) or κω1,ω2
β,α (u) may, on occasions, be preferred to

that based on heights h1 and h2. The bijective relationship between
pairs (h1,h2) and (ω1,ω2) is also shown in the Appendix.

Specifically, in order to simplify the statement of Proposition 1.5.1,
the expression of κω1,ω2

β,α (u) is

κω1,ω2
β,α (u) =



[
ω1
1−β

+
ω2
1−α

]
· u if 0 6 u < 1−β

ω1 +
ω2
1−α

· u if 1−β 6 u < 1−α

1 if 1−α 6 u 6 1

(1.5)

1.4.1 Analytical closed-form expressions of GlueVaR

A useful consequence of (1.4) is that when analytical closed-form
expressions of VaRα (X) and TVaRα (X) are known for a random vari-
able X, the closed-form expression of GlueVaRh1,h2

β,α (X) can automat-
ically be derived without further complications. Otherwise, using
the definition of GlueVaR as a distortion risk measure, the Choquet
Integral of X with respect to the set function κh1,h2

β,α ◦ P should be
calculated.

1.4.1.1 Illustration: GlueVaR expression for Student t distribution

Let X be a random variable such that X̃ =
X− µ

σ
is distributed as

a Student t random variable with ν degrees of freedom (df). In such

that case, X has µ mean and a standard deviation equal to
√
ν·σ2
ν−2 .

Then

VaRα (X) = µ+ σ · tα

TVaRα (X) = µ+ σ · τ
(tα)

1−α
·
(
ν+ t2α
ν− 1

)
,

where tα is the α-quantile of a Student t distribution with ν df and τ
is its density function.
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Using (1.4) the GlueVaR of X random variable is

GlueVaRh1,h2
β,α (X) = ω1 ·

[
µ+ σ ·

τ
(
tβ
)

1−β
·

(
ν+ t2β
ν− 1

)]
+

ω2 ·
[
µ+ σ · τ

(tα)

1−α
·
(
ν+ t2α
ν− 1

)]
+

(1−ω1 −ω2) · (µ+ σ · tα) =

= µ+ σ ·

[(
h1
1−β

−
h2 − h1
β−α

)
· τ
(
tβ
)
·

(
ν+ t2β
ν− 1

)
+

h2 − h1
β−α

· τ (tα) ·
(
ν+ t2α
ν− 1

)
+ (1− h2) · tα

]
.

1.4.1.2 Analytical expressions for other frequently used distributions

Normal (N), Lognormal (LN) and Generalized Pareto (GP) distri-
butions have simple closed-form expressions of GlueVaR. Notation
conventions are used. Namely, φ and Φ stand for the standard Nor-
mal pdf and cdf, respectively. The standard Normal distribution α
and β quantiles are denoted as qα = Φ−1 (α) and qβ = Φ−1 (β).
For the GP distribution, the definition provided in Hosking and Wal-
lis [1987] is considered, where the scale parameter is denoted by σ
and k is the shape parameter. The GP distribution contains the Uni-
form (k = 1), the Exponential (k = 0), the Pareto (k < 0) and the
type II Pareto (k > 0) distributions as special cases. Closed-form
expressions of GlueVaR for several distributions are presented in Ta-
ble ??. Note that there are some exceptions to the general rule to
deduce these closed-form expressions to be considered. When X fol-
lows a Pareto distribution with k 6 1 and for any confidence level α,
TVaRα(X) = +∞. But when h1 = 0 GlueVaRh1,h2

β,α (X) is finite. There
is a compensation effect between TVaRα (X) and TVaRβ (X). This is
taken into account in Table ??. This table is inspired by a similar one
regarding VaR and TVaR that can be found in Sandström [2011].
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1.4.2 The Cornish-Fisher approximation of GlueVaR

Approximations to GlueVaR risk measures for general skewed dis-
tribution functions using a Cornish-Fisher expansion of their quan-
tiles are provided in this section. In insurance applications managers
often face to highly skewed random variables with right fat tails. In
many of these situations, however, they do not know whether the
underlying random variable of interest is distributed according to a
known parametric distribution function. In those situations that the
distribution is unknown, the value of the common quantile-based
risk measures is routinely approximated by practitioners. It is shown
that approximations of GlueVaR risk measures for general unknown
skewed distribution functions can be straightforwardly obtained by
means of the relationship of GlueVaR risk measures and the standard
quantile-based risk measures.

The Cornish-Fisher expansion is widely used by practitioners to
approximate the VaRα(X) and TVaRα(X) values when the random
variable follows a skewed unknown distribution [see Cornish and
Fisher, 1937; Fisher and Cornish, 1960; Johnson and Kotz, 1970; Mc-
Cune and Gray, 1982]. The VaR and TVaR measure values can be
approximated as VaRα(X) ' µ+ qv,ασ and TVaRα(X) ' µ+ qtv,ασ,
where µ = E [X], σ2 = V [X] and both qv,α and qtv,α are modified
quantiles of the standard normal distribution that take into account
the skewness of the distribution function of X.

Following Sandström [2007], the modified quantiles qv,α and qtv,α

are computed as follows. Let us consider γ = E
[
(X− µ)3

]
/σ3 as a

measure of the skewness of the distribution. If qα = Φ−1 (α) and φ
are the α-quantile and the density function of the standard normal
distribution, respectively, then qv,α and qtv,α can be written as,

qv,α = Φ−1 (α) +
γ

6

[(
Φ−1 (α)

)2
− 1
]
= qα +

γ

6

[
q2α − 1

]
,

qtv,α =
φ
(
Φ−1 (α)

)
1−α

[
1+

γ

6

(
Φ−1 (α)

)3]
=
φ (qα)

1−α

[
1+

γ

6
q3α

]
.

Extensions of the Cornish-Fisher expansion that consider moments
of higher order than γ have been provided in the literature [see, for
instance, Giamouridis, 2006]. More details can be found in Appendix
B of Sandström [2011].

According to the interpretation of GlueVaR measure as a linear
combination of risk measures shown in (1.4), the approximation for
the GlueVaR of X random variable following the Cornish-Fisher ex-
pansion can be obtained as
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GlueVaRh1,h2
β,α (X) ' µ+ σ

[(
h1
1−β

−
h2 − h1
β−α

)
φ(qβ)

(
1+

γ

6
q3β

)
+

(
h2 − h1
β−α

)
φ(qα)

(
1+

γ

6
q3α

)
+ (1− h2)

(γ
6

(
q2α − 1

)
+ qα

)]
.

The error of the approximation is upper bounded by the maxi-
mum error incurred when approximating VaRα(X), TVaRα(X) and
TVaRβ(X) using the equivalent Cornish-Fisher expansion for skewed
distributions. This result is straightforwardly derived from the linear
relationship shown in expression (1.4) and taking into account that
weights ω1, ω2 and ω3 are lower or equal than one, satisfying that
ω1 +ω2 +ω3 = 1.

1.5 relationship between gluevar and tail distortion

risk measures

As it has been aforementioned, different works that pay attention
to risk measures based on distortion functions or based on several
generalizations of quantiles have been appeared in recent years. See,
for instance,Zhu and Li [2012]; Bellini and Gianin [2012]; Bellini et al.
[2014]; Dhaene et al. [2012a] and Goovaerts et al. [2012].

Next paragraphs are devoted to reveal the connections between
GlueVaR risk measures and Tail Distortion risk measures. To the best
of my knowledge, Tail Distortion risk measures were introduced in
Zhu and Li [2012]. Here the notation used for these family of risk
measures is adapted from that in Lv et al. [2013]. Consider a distor-
tion function g, this is, a non-decreasing and injective function g from
[0, 1] to [0, 1] such that g(0) = 0 and g(1) = 1, and a confidence level
α ∈ (0, 1). The Tail Distortion Risk Measure Tg,α associated to g and
α is defined as the distortion risk measure with distortion function
gα, where

gα(u) = g

(
u

1−α

)
· 1[0 6 u < 1−α] + 1[1−α 6 u 6 1].

In other words, if X is a random variable representing a loss in a prob-
ability space (Ω,A,P) and its survival function is SX(x) = P (X > x),
therefore

Tg,α (X) =

∫0
−∞ [gα (SX (x)) − 1]dx+

∫+∞
0

gα (SX (x))dx . (1.6)

Note that gα is continuous in 1−α or, alternatively, gα (1−α) = 1.
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Proposition 1.5.1. Consider a GlueVaRω1,ω2
β,α risk measure with parame-

ters α,β,ω1 and ω2. This GlueVaR is equivalent to a Tail Distortion risk
measure Tg,α if, and only if, ω2 = 1−ω1 and

g(t) =

(
ω1 · (1−α)
1−β

+ 1−ω1

)
· t · 1

[
0 6 t < (1−α)−1 · (1−β)

]
+

(ω1 + (1−ω1) · t) · 1
[
(1−α)−1 · (1−β) 6 t 6 1

]
.

(1.7)

The proof is provided in the Appendix.

It is worth noting that only GlueVaR risk measures withω3 = 0 can
be represented as Tail Distortion risk measures, because ω1 +ω2 +
ω3 = 1 must hold as part of the definition of a GlueVaRω1,ω2

β,α risk
measure. In other words, one can only represent as Tail Distortion
risk measures those GlueVaR that do not give weight to VaRα.

The origin of GlueVaR risk measures is in my master’s thesis Belles-
Sampera [2011]. As a curiosity, the definition of a parametric family
of risk measures named PUp-TVaR can also be found therein, which
are exactly the Tail Distortion risk measures linked to Proportional
Hazards Distortion functions g(u) = u

1
a ,a > 1 from the perspective

of Zhu and Li [2012].





2
TA I L - S U B A D D I T I V I T Y F O R A PA I R O F R I S K S

2.1 subadditivity in the tail

This chapter is devoted to an analysis of the properties of the Glue-
VaR family of risk measures, with special attention to subadditivity.
The main reason for defining these GlueVaR risk measures is a re-
sponse to the concerns expressed by risk managers regarding the
choice of risk measures in the case of regulatory capital requirements.
However, an axiomatic approach to define or represent risk measures
is more frequent in the literature [Artzner et al., 1999; Föllmer and
Schied, 2002; Frittelli and Rosazza Gianin, 2002; Denuit et al., 2006;
Song and Yan, 2009; Cerreia-Vioglio et al., 2011; Ekeland et al., 2012;
Goovaerts et al., 2012; Grechuk et al., 2012].

In a seminal article [Artzner et al., 1999] the following set of ax-
ioms that a risk measure should satisfy was established: positive
homogeneity, translation invariance, monotonicity and subadditivity.
Authors referred to such risk measures as coherent risk measures. Dis-
tortion risk measures always satisfy the first three properties, but sub-
additivity is only guaranteed when the distortion function is concave
[Denneberg, 1994; Wang and Dhaene, 1998; Wirch and Hardy, 2002].
Therefore, VaR, unlike TVaR, is not coherent. In some situations, co-
herence of risk measures is a requirement [Cox, 2012] but, nonethe-
less, some criticisms can be found [Dhaene et al., 2008]. Additional
properties for distortion risk measures are provided in [Jiang, 2008;
Balbás et al., 2009].

As shown in the previous chapter, GlueVaR risk measures may be
interpreted as a linear combination of VaR and TVaR risk measures.
Therefore, a GlueVaR risk measure is coherent when the weight as-
signed to VaR is zero and the weights of TVaR are non-negative. In
terms of the parameters of the distortion function, GlueVaR is subad-

ditive (and thus coherent) if h2 = 1 and
1−β

1−α
6 h1. More generally,

any property satisfied by TVaR but not by VaR will be inherited by
GlueVaR if ω1 > 0 and ω3 = 0 in expression (1.2).

Subaddtitivity in the whole domain is a strong condition. When
dealing with fat tail losses (i.e. low-frequency and large-loss events),
risk managers are especially interested in the tail region. Fat right-
tails have been extensively studied in insurance and finance [Wang,
1998; Embrechts et al., 2009a,b; Degen et al., 2010; Nam et al., 2011;

27
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Chen et al., 2012] and the behavior of aggregate risks in the tail region
has received huge attention by researchers in last years [Cheung, 2009;
Song and Yan, 2009; Hua and Joe, 2012]. To the best of my knowledge,
however, previous studies of the subadditivity of risk measures in the
tail region are scarce [Danielsson et al., 2005; Hua and Joe, 2012]. The
milder condition of subadditivity in the tail region is investigated
here.

The concept of subadditivity in the right tail for a pair of risks
is introduced. Note that if interested in the left -as opposed to the
right- tail, a simple change of sign in the random variable suffices.
Subadditivity in the right tail is defined in this discussion for dis-
tortion risk measures. Consider a probability space with sample
space Ω. Let sα (Z) the α-quantile of random variable Z, sα (Z) =

inf {z | SZ(z) 6 1−α}. Let Qα,Z be defined by

Qα,Z := {ω | Z (ω) > sα (Z)} ⊆ Ω,

so Qα,Z means here the tail region of random variable Z given a con-
fidence level α. Let X, Y be two risks defined on the same probability
space. When aggregating two risks, the common tail for both risks
must be taken into account. This common tail region is defined here
as follows: Qα,X,Y := Qα,X ∩Qα,Y ∩Qα,X+Y .

Definition 2.1.1. Given a confidence level α ∈ [0, 1], a distortion risk mea-
sure ρg is subadditive in the tail for the pair X, Y if Qα,X,Y 6= ∅ and∫

Qα,X,Y

(X+ Y)d (g ◦ P) 6
∫
Qα,X,Y

Xd (g ◦ P) +
∫
Qα,X,Y

Yd (g ◦ P) ,

where the integral symbol stands for Choquet Integrals with respect to the
set function g ◦ P.

When there is no ambiguity as to which confidence level α and ran-
dom variables X, Y are taken into account, tail-subadditivity is used to
refer to this property. If notation mα,Z = inf {z ∈ Z (Qα,X,Y)}, is intro-
duced, the integral condition used in the definition can be rewritten,
in terms of survival functions, as

∫0
inf{0,mα,X+Y}

[g (SX+Y(z)) − 1]dz+∫+∞
sup{0,mα,X+Y}

g (SX+Y(z))dz 6
∫0

inf{0,mα,X}

[g (SX(x)) − 1]dx+∫+∞
sup{0,mα,X}

g (SX(x))dx+

∫0
inf{0,mα,Y}

[g (SY(y)) − 1]dy+∫+∞
sup{0,mα,Y}

g (SY(y))dy.
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Theorem 2.1.1. Given a confidence level α and a pair of risks X and Y so
that Qα,X,Y 6= ∅, a GlueVaR risk measure is tail-subadditive if its associated
distortion function κh1,h2

β,α is concave in [0, 1−α).

The proof is contained in the Appendix.

Tail-subadditivity is a desirable property, because it implies that
the benefits of diversification may not be valid in every situation but,
at least, they hold in extreme cases.

Note that, in terms of parameters h1 and h2, a GlueVaR risk mea-

sure may be tail-subadditive if, and only if, h2 6 h1 ·
1−α

1−β
, as a

corollary of Theorem 2.1.1.

2.2 risk attitudes in gluevar

An interesting interpretation in the context of decision making and
risk management is that GlueVaR risk measures arise as a linear com-
bination of three possible scenarios. So, two levels of severity can be
fixed, namely α and β, with α < β. Then, the risk can be measured
in the highly conservative scenario with TVaR at level β; in the con-
servative scenario with TVaR at level α; and in the less conservative
scenario with VaR at level α.

Each combination of these risk scenarios reflects a concrete risk at-
titude. Therefore, it can be said that the combination of these risk
scenarios in this context is something that is directly identified by an
explicit GlueVaR risk measure. To some extent, these risk attitudes
could be related to risk appetite [Aven, 2013].

From the practitioner’s point of view, four parameters must be
fixed in order to define the GlueVaR risk measure. The α and β

values correspond to the confidence levels used for bad and very
bad scenarios, respectively. For instance, α = 95% and β = 99.5%
could be selected, which are equivalent to one bad event every twenty
years or one bad event every two hundred, respectively. The other
two parameters are directly related to the weights given to these sce-
narios. For instance, it could be said that the three components of
GlueVaR in expression (1.4) are equally important. This would imply
ω1 = ω2 = ω3 = 1/3, so the corresponding h1 and h2 parame-
ters could be found. When ω1 = ω2 = ω3 = 1/3 and α = 95%,
β = 99.5%, these parameters are h1 = 11/30 and h2 = 2/3.
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2.3 geometrical discussion on risk attitudes

Given α and β, the shaded areas in Figure 2.1 delimit feasible
weights (ω1,ω2) for GlueVaRω1,ω2

β,α . The point (1/3, 1/3) corresponds
to a balanced risk attitude on the part of risk managers when faced by
the three components shown in (1.4). The corresponding distortion
function κω1,ω2

β,α is concave on [0, 1−α) in the lightly shaded area and,
thus, the associated GlueVaR risk measure can be tail-subadditive.
Yet, the distortion function is not concave on [0, 1− α) in the darkly
shaded area and, thus, the associated GlueVaR risk measure cannot
be tail-subadditive. The distortion function is concave in [0, 1] in the
boldest continuous segment and, thus, the associated GlueVaR risk
measure is subadditive.

If ω1 < 0, risk managers are optimistic regarding the impossibility
of the occurrence of the worst case scenario, and so attach a negative
weight to it.

Note that any pair of weights (ω1,ω2) on the boldest line in Fig-
ure 2.1 leads to ω3 = 0. This means that a zero weight is allocated
to the less conservative scenario, i.e. the one associated with the
VaRα (X). This is indicative of the decision makers’ conservative ap-
proach. Nonetheless, differences in just how restrictive this conserva-
tive attitude is can be found among the weights lying on this line: the

nearer to (ω1,ω2) =
(
β− 1

β−α
,
1−α

β−α

)
, the less restrictive it is, while

the nearer to (ω1,ω2) = (1, 0), the more conservative it is.

Figure 2.1: Given α and β, the shaded areas delimits feasible weights
(ω1,ω2) for GlueVaRω1,ω2

β,α .



3
R I S K M E A S U R E M E N T W I T H G L U E VA R

3.1 an example of risk measurement on claim costs

Data for the cost of claims involving property damages and medi-
cal expenses from a major Spanish motor insurer are used to illustrate
the application of GlueVaR measures in risk measurement. The sam-
ple consists of n = 518 observations of the cost of individual claims in
thousands of euros. These data were previously analyzed in Bolancé
et al. [2008] and Guillén et al. [2011].

In Table 3.1 a set of quantile-based risk measures including three
different GlueVaR are displayed. The table is divided into three
blocks, each block representing the corresponding risk figures for
the cost of claims for property damage (X1), the cost of claims of
medical expenses (X2) and the aggregate cost of claims (X1 + X2).
Risk measure values using the empirical distribution (first row) are
compared with outcomes when Normal, Lognormal, Student t with
4 df and Generalized Pareto distributions are fitted to data. In the
last two rows of each block outcome results are shown when risk
measure values are approximated by the Cornish-Fisher expansion
shown in Chapter 1. The sample mean (µ̂ = z̄), the sample deviation
(σ̂2 =

∑
i (Zi − z̄)

2 /(n− 1)) and the sample skewness (calculated as
γ̂ = σ̂−3(

∑
i (Zi − z̄)

3 /n)) are considered as estimators of µ, σ and γ
when Z is one of the three random variables X1,X2,X1 +X2. Sample
statistics were computed using observations that fall below the 99.5%
quantile in order to exclude the effect of extreme losses on estimates
(first Cornish-Fisher approximation). That means, a subsample of the
first 516 increasingly ordered elements of the random variable were
used to estimate parameters. Let remind that the sample size is 518

observations. Therefore, the two highest values were considered as
extreme losses and were not included. Outcome values of risk mea-
sures were compared with the risk measure approximations when all
the observations are included on sample estimates (second Cornish-
Fisher approximation). All the calculations were made in R and MS
Excel.

The selection of the three GlueVaR risk measures included in Ta-
ble 3.1 deserves further explanation. The two confidence levels con-
sidered are α = 95% and β = 99.5%. The heights (h1,h2) are
(11/30, 2/3), (0, 1) and (1/20, 1/8) respectively. Different attitudes
in front of the three scenarios of risk assessment are represented.
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GlueVaR11/30,2/3
99.5%,95% corresponds to a balanced attitude because the three

quantile-based risk measures TVaR99.5%, TVaR95% and VaR95% are
equally important, i.e. ω1 = ω2 = ω3 = 1/3. A different attitude is
symbolized by GlueVaR0,1

99.5%,95% with associated weights ω1 = −1/9,
ω2 = 10/9 andω3 = 0. It corresponds to a scenario in which the man-
ager overweights TVaR95% and allocates the lowest feasible weight
to TVaR99.5% given that a zero weight is allocated to VaR95%. Fi-
nally, GlueVaR1/20,1/8

99.5%,95% reflects a risk measurement attitude just a lit-
tle bit more conservative than the one represented by using VaR95%,
assigning low weights to TVaR99.5% and TVaR95% (ω1 = 1/24 and
ω2 = 1/12).

As it is shown in Table 3.1, GlueVaR11/30,2/3
99.5%,95% is more conservative

than the other two selected GlueVaR measures. This result can be
generalized to all situations because the associated distortion func-
tion of GlueVaR11/30,2/3

99.5%,95% is greater than the other two distortion func-
tions in the whole domain. Note that it is also observed in Table
3.1 that GlueVaR1/20,1/8

99.5%,95% 6GlueVaR0,1
99.5%,95%. It is only valid to

these data and an ordering between them can not be generalized.
However, a relationship between these two GlueVaR risk measures
and quantile-based risk measures can be established. In Chapter
1 it has been shown that VaRα 6 GlueVaRh1,h2

β,α 6 TVaRα if h1 6
(1−β)/(1−α). That means, VaR95% 6 GlueVaR0,1

99.5%,95% 6 TVaR95%,

because 0 6 0.1, and VaR95% 6 GlueVaR1/20,1/8
99.5%,95% 6 TVaR95%, be-

cause 0.05 6 0.1. Although results in Table 3.1 invite to deduce that
TVaR95% 6 GlueVaR11/30,2/3

99.5%,95% 6 TVaR99.5%, it can not be asserted be-
cause conditions on the parameters of the GlueVaR risk measure to
satisfy TVaRα 6 GlueVaRh1,h2

β,α 6 TVaRβ are h1 > (1−β)/(1−α) and
h2 = 1. In this case it holds 0.37 > 0.1 but h2 6= 1.

Some comments related to outcome values for the Cornish-Fisher
approximation of the quantile-based risk measures should be made.
According to obtained results, it seems that this kind of risk mea-
surement corresponds to a conservative attitude for the two types
of approximations shown in Table 3.1. Relevant differences are ob-
served depending on the approximation finally used. If the first
Cornish-Fisher approximation is considered, i.e. when sample statis-
tics were estimated excluding extreme losses, it is observed that the
outcome values for this approximation are in most of the cases larger
than those values associated with the empirical or the parametric
distributions. It happens in thirteen cases among the sixteen exam-
ples. Although conservative values are obtained with this approxi-
mation, results are in general comparable with those computed with
the empirical and parametric distributions. Unlike values of this first
Cornish-Fisher approximation, outcome values related to the second
Cornish-Fisher approximation are drastically larger than the rest in
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Table 3.1: Examples of risk measurement of costs of insurance claims using
quantile-based risk measures

GlueVaRh1 ,h2
99.5%,95%

Model VaR95% TVaR95% TVaR99.5%

(
11
30

,
2
3

)
(0, 1)

( 1
20

,
1
8

)

X1

Empirical 38.8 112.5 440.0 197.1 76.1 61.7

Normal 78.9 96.1 130.4 101.8 92.3 82.5

Lognormal 42.5 110.1 388.3 180.3 79.2 62.5

Student t (4 d.f.) 99.0 143.2 272.1 171.4 128.9 109.9

Pareto 38.3 82.4 264.5 128.4 62.2 51.4

Cornish-Fisher(1a) 61.3 169.2 724.3 318.3 107.5 98.0

Cornish-Fisher(1b) 262.1 1,081.9 5,437.9 2,260.6 597.9 546.1

X2

Empirical 6.4 18.4 54.2 26.3 14.4 9.4

Normal 10.2 12.4 16.7 13.1 11.9 10.7

Lognormal 6.6 15.4 50.1 24.0 11.5 9.1

Student t (4 d.f.) 12.8 18.3 34.5 21.9 16.5 14.2

Pareto 5.9 12.4 38.5 18.9 9.5 7.8

Cornish-Fisher(2a) 14.3 45.4 207.3 89.0 27.4 24.9

Cornish-Fisher(2b) 22.1 76.1 359.4 152.5 44.6 40.6

X1+X2

Empirical 47.6 125.5 479.0 217.4 86.2 72.1

Normal 87.0 105.9 143.4 112.1 101.7 90.9

Lognormal 49.1 124.1 428.8 200.7 90.2 71.2

Student t (4 d.f.) 109.0 157.5 298.6 188.4 141.8 120.9

Pareto 44.2 94.6 301.4 146.7 71.6 59.1

Cornish-Fisher(3a) 71.3 198.0 850.7 373.3 125.4 114.4

Cornish-Fisher(3b) 283.6 1,164.0 5,840.3 2,429.3 644.4 588.5
(1a) µ̂ = 9.0, σ̂ = 17.9 and γ̂ = 4.5. Subsample without extreme losses.

The two largest values of X1 are excluded.
(1b) µ̂ = 11.0, σ̂ = 41.3 and γ̂ = 15.6. Full sample.
(2a) µ̂ = 1.5, σ̂ = 3.7 and γ̂ = 6.4. Subsample without extreme losses.

The two largest values of X2 are excluded.
(2b) µ̂ = 1.7, σ̂ = 5.2 and γ̂ = 8.0. Full sample.
(3a) µ̂ = 10.5, σ̂ = 20.6 and γ̂ = 4.6. Subsample without extreme losses.

The two largest values of X1+X2 are excluded.
(3b) µ̂ = 12.7, σ̂ = 45.2 and γ̂ = 15.3. Full sample.
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all the examples. These outcome values would be associated to a
excessively conservative (unrealistic) attitude. Let remind that only
the two largest losses are not included in the sample estimates in-
volving the first approximation. In other words, the Cornish-Fisher
approximation shows a poor performance when the data are severely
right skewed distributed, as in this case. However, the performance
of this approximation seems to be improved when extreme losses are
excluded for the sample estimates of parameters.

An important issue that arises from results is the model risk. Even
when the same risk measure is used, huge differences are observed
depending on the hypothesis about the underlying distribution of
the claim cost random variables. Let us assume that the regulator is
focused on the VaR95% for the aggregate cost X1 + X2 as a measure
of pure underwriting risk (without taking into account the premium
paid by the policyholders). If it is supposed that the random variable
is Pareto distributed, then the institution will need 44.2 thousands
of euros for regulatory solvency purposes. The company should set
aside almost 2.5 times this economic amount whether the underlying
distribution is Student-t with 4 degrees of freedom. This topic is out
of the scope of this dissertation. The interested reader is addressed,
for instance, to the study of Alexander and Sarabia [2012] which deals
with VaR model risk.

3.2 insights on the tail-subadditivity property

In order to preserve the benefits of diversification when aggregat-
ing risks, an appealing property of a risk measure is subadditivity.
The subadditivity property ensures that the risk measure value of the
aggregated risk is lower than or equal to the sum of individual risk
measure values. The subadditivity characteristic is guaranteed for
the TVaR but not for the VaR risk measure.

It has been argued in Chapter 2 that, in practice, main concerns
of managers are related to the performance of aggregated risks in
the tail region. The properties of GlueVaR risk measures in tails have
been investigated from a theoretical point of view, where foundations
of the tail-subadditivity were established. It has been shown that a
subfamily of GlueVaR risk measures may satisfy this property.

Implications of tail-subaddititivy are now investigated not only
from a theoretical perspective: implications of this property for in-
surance institutions in comparison to subadditivity in the whole do-
main are analyzed. To reach this goal, the subadditivity and tail-
subadditivity properties of GlueVaR risk measures in the aggregation
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of risks are empirically examined, and both illustrated with a numer-
ical example based on real insurance claim data.

3.3 an example of tail-subadditivity on claim costs

Although subadditivity in the whole domain is in general not sat-
isfied by GlueVaR risk measures, it has been shown in Chapter 2 that
a subfamily of GlueVaR measures may satisfy the subadditivity prop-
erty in the tail region. Recall the definition of tail-subadditivity for a
pair of risks, following the notation used in Section 2.1.

The idea is that the risk of a sum is smaller than or equal to the
sum of risks when focusing on the extreme region, without worry-
ing about whatever relationship exists between the risk of the sum
and the sum of risks outside the extreme region. Remember that,
given a confidence level α, a GlueVaR risk measure only can be tail-
subadditive if its associated distortion function is concave in [0, 1−α).
In this chapter it is shown through an example that tail-subadditivity
is a convenient property to preserve the benefits of diversification in
extremely adverse cases.

Now the example described at the beginning of this chapter is fol-
lowed to investigate the tail-subadditivity property of GlueVaR risk
measures. In that example GlueVaR11/30,2/3

99.5%,95% and GlueVaR1/20,1/8
99.5%,95%

are candidates to satisfy subadditivity in tails for a pair of risks at
confidence level α = 95%. Note that it holds in both cases that
h2 6 h1 (1−α) / (1−β) (2/3 6 11/3 and 1/8 6 1/2, respectively).
However, this inequality is not fulfilled by GlueVaR0,1

99.5%,95% and,
then, this GlueVaR risk measure does not satisfy the tail-subadditivity
property. In fact, Table 3.1 seems to reflect subadditivity of the two
risk measures GlueVaR11/30,2/3

99.5%,95% and GlueVaR0,1
99.5%,95%. Indeed, the

risk measure outcomes for the aggregate risk are lower than the sum
of individual risk values in all of the models with the exception of
the outcomes associated to the second Cornish-Fisher approximation
considered. It must be emphasized that this result is strongly related
to these data but the subadditivity property can not be generalized
to all the circumstances.

A comment on the subadditivity of risk measures when the Cornish-
Fisher approximation is used should be made. Unlike the VaR risk
measure, it was previously discussed that the TVaR risk measure sat-
isfies the subadditivity property. In the example, however, the second
Cornish-Fisher approximation of the TVaR risk measure value fails
subadditivity. Note that it is deduced from the results displayed in
Table 3.1 that TVaRβ(X1) + TVaRβ(X2) < TVaRβ(X1 + X2) (this is,
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5, 797.3 < 5, 840.3) and TVaRα(X1) + TVaRα(X2) < TVaRα(X1 + X2)
(this is, 1, 158.0 < 1, 164.0). Therefore, the subadditivity property of
the TVaR measure is not ensured when the risk measure value is ap-
proximated by the second Cornish-Fisher approximation in the exam-
ple. This result supports the statement that the second Cornish-Fisher
approximation shown is not adequate to estimate quantile-based risk
measure values for highly right skewed data.

Let us focus on the outcomes for the GlueVaR1/20,1/8
99.5%,95% when the

empirical distribution is considered. Table 3.1 shows that, in this
case, GlueVaR1/20,1/8

99.5%,95% fails to be subadditive for X1 and X2, since
61.7+ 9.4 6 72.1. In order to analyze the tail-subadditivity property
for this GlueVaR risk measure, the common right tail of the empirical
distribution has to be firstly isolated. The common 5%-right tail for
the empirical distribution is separated as follows. A subsample is se-
lected which satisfies the criterion that each individual risk values are
above its respective 95%-quantile given that the values of the aggre-
gate random variable fall above its 95%-quantile and the values of the
other individual random risk fall above its respective 95%-quantile as
well. Risk measure values are then computed for this subsample,
where the survival probabilities associated to the observations of this
subsample have not been changed. Table 3.2 displays the values of
their common 5%-right tail for the individual random variables and
the aggregate random variable.

An illustration of tail-subadditivity of the GlueVaR1/20,1/8
99.5%,95% risk

measure is provided in Table 3.3, where results obtained for the risk
measure GlueVaR1/20,1/8

99.5%,95% when aggregating risks in the whole do-

main are compared with those GlueVaR1/20,1/8
99.5%,95% outcomes in the

common 5%-right tail. In the second block, risk measure values
are computed for the three random variables in the common 5%-
right tail, i.e. using data shown in Table 3.2. Outcome results of
the GlueVaR1/20,1/8

99.5%,95% are in bold type to highlight differences be-
tween subadditivity in the whole range and subadditivity in tails.
The last row of the second block illustrates numerically the 95% tail-
subadditivity property of GlueVaR1/20,1/8

99.5%,95% for the pair of risks X1
and X2, where diversification benefit is computed as the difference
between the sum of GlueVaR outcome values for individual risks and
the outcome value of the aggregate risk. On the common 5%-right
tail, a benefit of diversification of 2.2 thousands of euros is observed
for the GlueVaR1/20,1/8

99.5%,95% risk measure. In other words, the aggregate
risk X1+X2 is preferable than these risks individually taken in simul-
taneously adverse events for X1 and X2, according to the results of
the GlueVaR1/20,1/8

99.5%,95%. However, it does not hold whether the whole
domain of the random variables is considered. Last row in the first
block shows a negative value for the diversification benefit associated
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Table 3.2: Common 5%-right tail for X1, X2 and X1 +X2

i
x1,i x2,i si = x1,i + x2,i

1 829.0 71.3 900.3

12 108.2 23.7 131.9

32 55.0 44.3 99.3

185 121.6 32.5 154.1

189 74.2 13.2 87.4

198 88.8 30.1 118.9

213 57.5 10.0 67.5

214 148.7 10.2 158.9

289 145.4 42.2 187.6

294 44.8 7.5 52.3

297 221.5 8.3 229.8

A discrete finite probability space Ω = {$1,$2, ...,$518} is considered.

Each ith observation (x1,i,x2,i,si) corresponds to a realization

of random event $i.

Note that all values in last three columns are greater or equal than

their empirical quantiles at 95% level, where

VaR95%(X1)=38.8; VaR95%(X2) = 6.4;VaR95%(X1+X2)=47.6.
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to the GlueVaR1/20,1/8
99.5%,95% on the whole domain.

The underlying idea in the assessment of the incurred risk in this
context is that the benefit of diversification in simultaneously adverse
events is balanced by the cost of diversification in the rest of cases.
Therefore, divergence decisions would be taken by managers depend-
ing on where the attention is paid, all the scenarios or highly adverse
scenarios. As it is shown in Table 3.3, this phenomenon is due to the
lack of subadditivity of VaR95% on the whole domain. By considering
the common 5%-right tail, the effect of VaR95% on the whole domain
is blurred on the tail.

Table 3.3: Subadditivity and tail-subadditivity

X1 X2 X1 + X2 Difference(∗)

(a) (b) (c) (a+b-c)

Whole
range

VaR95% 38.8 6.4 47.6 -2.4

TVaR95% 112.5 18.4 125.5 5.4

TVaR99.5% 440.0 54.2 479.0 15.2

GlueVaR1/20,1/8
99.5%,95% 61.7 9.4 72.1 -1.0

Common
5%-right
tail(∗∗)

VaR95% 0.0 0.0 0.0 0.0

TVaR95% 75.3 12.5 76.8 11.0

TVaR99.5% 411.3 46.7 426.7 31.3

GlueVaR1/20,1/8
99.5%,95% 23.4 3.0 24.2 2.2

(∗) Benefit of diversification.

(∗∗) The figures represent the contributions to the overall value

of each risk measure that are linked to the common 5% right tail.
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T H E C O N N E C T I O N B E T W E E N D I S T O RT I O N R I S K
M E A S U R E S A N D O R D E R E D W E I G H T E D
AV E R A G I N G O P E R AT O R S

GlueVaR risk measures have been introduced in the previous chap-
ters. In this one, some relationships between two different worlds,
namely risk measurement and fuzzy systems, are investigated. Risk
measurement evaluates potential losses and is useful for decision
making under probabilistic uncertainty. Broadly speaking, fuzzy logic
is a form of reasoning based on the ‘degree of truth’ rather than on
the binary true-false principle. But risk measurement and fuzzy sys-
tems share a common core theoretical background.

Both fields are related to the human behavior under risk, ambigu-
ity or uncertainty. The expected utility theory by von Neumann and
Morgenstern [1947] was one of the first attempts to provide a the-
oretical foundation to human behavior in decision-making, mainly
based on setting up axiomatic preference relations of the decision
maker. Similar theoretical approaches are, for instance, the certainty-
equivalence theory [Handa, 1977], the cumulative prospect theory
[Kahneman and Tversky, 1979; Tversky and Kahneman, 1992], the
rank-dependent utility theory [Quiggin, 1982], the dual theory of
choice under risk [Yaari, 1987] and the expected utility without sub-
additivity [Schmeidler, 1989], where the respective axioms reflect pos-
sible human behaviors or preference relations in decision-making.

The study of the relationship between risk measurement and fuzzy
systems is a topic of ongoing research from both fields. Goovaerts
et al. [2010a], for instance, discuss the hierarchical order between risk
measures and decision principles, while Aliev et al. [2012] propose a
decision theory under imperfect information from the perspective of
fuzzy systems.

Previous attempts to link risk management and fuzzy logic ap-
proaches are mainly found in the literature on fuzzy systems. Most
authors have focused on the application of fuzzy criteria to financial
decision making [Engemann et al., 1996; Gil-Lafuente, 2005; Merigó
and Casanovas, 2011], and some have smoothed financial series un-
der fuzzy logic for prediction purposes [Yager and Filev, 1999; Yager,
2008]. In the literature on risk management, contributions made by
Shapiro [2002, 2004, 2009] regarding the application of fuzzy logic in

39
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the insurance context must be remarked.

In this chapter the mathematical relationship between risk measure-
ment and some aggregation instruments used in fuzzy systems for
discrete random variables is analyzed. It is known that a risk mea-
sure quantifies the complexity of a random loss in one value that re-
flects the amount at risk. A key concept in fuzzy systems applications
is the aggregation operator, which also allows to combine data into a
single value. The relationship between the well-known distortion risk
measures introduced by Wang [1996] -presented in this dissertation at
Section 1.2 of Chapter 1- and two specific aggregation operators, the
Ordered Weighted Averaging (OWA) operator introduced by Yager
[1988] and the Weighted Ordered Weighted Averaging (WOWA) op-
erator introduced by Torra [1997] is shown in this chapter.

Distortion risk measures, OWA and WOWA operators can be ana-
lyzed using the theory of measure. Classical measure functions are
additive, and linked to the Lebesgue integral. When the additivity
is relaxed, alternative measure functions and, hence, associated inte-
grals are derived. This is the case of non-additive measure functions
[see, for instance, Denneberg, 1994], often called capacities as it was
the name coined by Choquet [1954]. It is shown that the link between
distortion risk measures and OWA and WOWA operators is derived
by means of the integral linked to capacities, i.e. the Choquet inte-
gral. I present the concept of local degree of orness for distortion risk
measures and illustrate its usefulness.

4.1 the owa and wowa operators and the choquet inte-
gral

Aggregation operators (or aggregation functions) have been exten-
sively used as a natural form to combine inputs into a single value.
These inputs may be understood as degrees of preference, member-
ship or likelihood, or as support of a hypothesis. Let us denote by
R = [−∞,+∞] the extended real line, and by I any type of interval
in R (open, closed, with extremes being ∓∞,...). Following Grabisch
et al. [2011], an aggregation operator is defined.

Definition 4.1.1 (Aggregation operator). An aggregation operator in In

is a function F(n) from In to I, that is non-decreasing in each variable; ful-
fills the following boundary conditions, inf

~x∈In
F(n) (~x) = inf I, sup

~x∈In
F(n) (~x) =

sup I; and F(1) (x) = x for all x ∈ I.

Some basic aggregation operators are displayed in Table 4.1.
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Table 4.1: Basic aggregation operators.

Name Mathematical expression Type of interval I

Arithmetic mean AM (~x) =
1

n

n∑
i=1

xi Arbitrary I. If I = R, the
convention +∞ + (−∞) =

−∞ is often considered.

Product Π (~x) =

n∏
i=1

xi I ∈ {|0, 1|, |0,+∞|, |1,+∞|},
where |a,b| means any kind
of interval, with boundary
points a and b, and with the
convention 0 · (+∞) = 0.

Geometric mean GM (~x) =

(
n∏
i=1

xi

)1/n
I ⊆ [0,+∞], with the con-
vention 0 · (+∞) = 0.

Minimum func-
tion

Min (~x) =

min {x1, x2, ..., xn}
Arbitrary I.

Maximum func-
tion

Max (~x) =

max {x1, x2, ..., xn}
Arbitrary I.

Sum function
∑

(~x) =

n∑
i=1

xi I ∈
{|0,+∞|, |−∞, 0|, |−∞,+∞|},
with the convention
+∞+ (−∞) = −∞.

k-order statistics OSk (~x) = xj, k ∈ {1, ...,n}
where xj is such that
#
{
i|xi 6 xj

}
> k and

#
{
i|xi > xj

}
< n− k

Arbitrary I.

kth projection Pk (~x) = xk, k ∈ {1, ...,n} Arbitrary I.

~x denotes (x1,x2, ...,xn).

Source: Grabisch et al. [2011].
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There is a huge amount of literature on aggregation operators and
its applications. See, among others, Beliakov et al. [2007], Torra and
Narukawa [2007] and Grabisch et al. [2009, 2011]. Despite the large
number of aggregation operators, I focus on the OWA operator and
on the WOWA operator. Several reasons lead me to this selection.
The OWA operator has been extensively applied in the context of de-
cision making under uncertainty because it provides a unified formu-
lation for the optimistic, the pessimistic, the Laplace and the Hurwicz
criteria [Yager, 1993], and there are also some interesting generaliza-
tions [Yager et al., 2011]. The WOWA operator combines the OWA
operator with the concept of weighted average, where weights are a
mechanism to include expert opinion on the accuracy of information.
This operator is closely linked to distorted probabilities.

Ordered Weighted Averaging operator

The OWA operator is an aggregation operator that provides a pa-
rameterized family of aggregation operators offering a compromise
between the minimum and the maximum aggregation functions. It
was introduced in Yager [1988] and it can be defined as follows.

Definition 4.1.2 (OWA operator). Let ~w = (w1,w2, ...,wn) ∈ [0, 1]n

such that
∑n
i=1wi = 1. The Ordered Weighted Averaging (OWA) operator

with respect to ~w is a mapping from Rn to R defined by

OWA~w (x1, x2, ..., xn) :=
n∑
i=1

xσ(i) ·wi,

where σ is a permutation of (1, 2, ...,n) such that xσ(1) 6 xσ(2) 6 ... 6
xσ(n), i.e. xσ(i) is the ith smallest value of x1, x2, ..., xn.

Unlike the original definition, an ascending order in ~x instead of a
decreasing one is here considered. This definition is convenient from
the risk management perspective since ~x may be a set of losses in as-
cending order. The relationship between the ascending OWA and the
descending OWA operators is already provided by Yager [1993].

The OWA operator is commutative, monotonic and idempotent,
and it is lower-bounded by the minimum and upper-bounded by
the maximum operators. Commutativity is referred to any permu-
tation of the components of ~x. That is, if the OWA~w operator is
applied to any ~y such that yi = xr(i) for all i, and r is any per-
mutation of (1, ...,n), then OWA~w (~y) = OWA~w (~x). Monotonic-
ity means that if xi > yi for all i, then OWA~w (~x) > OWA~w (~y).
Idempotency assures that if xi = a for all i, then OWA~w (~x) = a.
The OWA operator accomplishes the boundary conditions because
it is delimited by the minimum and the maximum functions, i.e.
mini=1,...,n {xi} 6 OWA~w (~x) 6 maxi=1,...,n {xi}.
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The OWA~w is unique with respect to the vector ~w (the proof is pro-
vided in the Appendix). The characterization of the weighting vector
~w is often made by means of the degree of orness indicator [Yager,
1988].

Definition 4.1.3 (Degree of orness of an OWA operator). Let ~w ∈
[0, 1]n such that

∑n
i=1wi = 1, the degree of orness of OWA~w is defined by

ω (OWA~w) :=

n∑
i=1

(
i− 1

n− 1

)
·wi.

Note that the degree of orness represents the level of aggregation
preference between the minimum and the maximum when ~w is fixed.
The degree of orness can be understood as the value that the OWA
operator returns when it is applied to ~x∗ =

(
0
n−1 , 1

n−1 , ..., n−2n−1 , n−1n−1

)
.

In other words, ω (OWA~w) = OWA~w

(
~x∗
)
. It is straightforward to

see that ω (OWA~w) ∈ [0, 1], because ~x∗, ~w ∈ [0, 1]n. If ~w = (1, 0, ..., 0),
then OWA~w ≡Min and ω (Min) = 0. Conversely, if ~w = (0, 0, ..., 1),
then OWA~w ≡ Max and ω (Max) = 1. And when ~w is such that
wi =

1
n for all i, then OWA~w is the arithmetic mean and its degree

of orness is 0.5. As it is seen later, orness is closely related to the α
level chosen in risk measures.

Alternatively to the degree of orness, other measures can be used
to characterize the weighting vector, such as the entropy of dispersion
[Yager, 1988] based on the Shannon entropy [Shannon, 1948] and the
divergence of the weighting vector [Yager, 2002], as it is shown in Chap-
ter 5.

The OWA operator has been extended and generalized in many
ways. For example, Xu and Da [2002] introduced the uncertain OWA
(UOWA) operator in order to deal with imprecise information, Merigó
and Gil-Lafuente [2009] developed a generalization by using induced
aggregation operators and quasi-arithmetic means called the induced
quasi-OWA (Quasi-IOWA) operator and Yager [2010] introduced a
new approach to cope with norms in the OWA operator. Although it
is out of the scope of this chapter, the OWA operator is also related
to the linguistic quantifiers introduced by Zadeh [1985], and a subset
of them may be interpreted as distortion functions.

Weighted Ordered Weighted Averaging operator

The WOWA operator is the aggregation function introduced by
Torra [1997]. This operator unifies in the same formulation two other
functions, the weighted mean function and the OWA operator. It is
defined in the following way.

Definition 4.1.4 (WOWA operator). Let~v = (v1, v2, ..., vn) ∈ [0, 1]n and
~q = (q1,q2, ...,qn) ∈ [0, 1]n such that

∑n
i=1 vi = 1 and

∑n
i=1 qi = 1.
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The Weighted Ordered Weighted Averaging (WOWA) operator with respect
to ~v and ~q is a mapping from Rn to R defined by

WOWAh,~v,~q (x1, x2, ..., xn) :=
n∑
i=1

xσ(i) ·

h
 ∑
j∈Aσ,i

qj

− h

 ∑
j∈Aσ,i+1

qj

,

where σ is a permutation of (1, 2, ...,n) such that xσ(1) 6 xσ(2) 6 ... 6
xσ(n), Aσ,i = {σ (i) , ...,σ (n)} and h : [0, 1] → [0, 1] is a non-decreasing

function such that h (0) := 0 and h
(
i

n

)
:=

n∑
j=n−i+1

vj; and h is linear if

the points

 i
n

,
n∑

j=n−i+1

vj

 lie on a straight line.

Note that this definition implies that weights vi can be expressed

as vi = h
(
n− i+ 1

n

)
− h

(
n− i

n

)
and that h (1) = 1.

It has to be mentioned that in the original definition ~x components
are in descending order, while the ascending order is used in this
dissertation. An additional subindex to emphasize dependence on
function h is also introduced here.

Remark 1

The WOWA operator generalizes the OWA operator. Given a
WOWAh,~v,~q operator on Rn, if weights wi are defined by

wi := h

 ∑
j∈Aσ,i

qj

− h

 ∑
j∈Aσ,i+1

qj

 ,

and OWA~w where ~w = (w1, ...,wn), then the following equality
holds WOWAh,~v,~q = OWA~w. As it can easily be shown, vector ~w

satisfies the following conditions:
(i) ~w ∈ [0, 1]n;

(ii)
n∑
i=1

wi = 1.

Condition (i) is straightforward. Let us denote si =
∑
j∈Aσ,i

qj and
sn+1 := 0. Hence, si > si+1 for all i due to the fact that Aσ,i ⊇ Aσ,i+1

and that qj > 0. Then h (si) > h (si+1) since h is a non-decreasing
function. Finally, as si ∈ [0, 1] and h(s) ∈ [0, 1] for all s ∈ [0, 1], then it
follows that wi = h(si) − h(si+1) ∈ [0, 1] for all i.

To prove condition (ii), note that Aσ,1 = N,
∑
j∈N qj = 1 and that

h (1) = 1 and h (0) = 0, then
n∑
i=1

wi =

n∑
i=1

(h(si) − h(si+1)) = h(s1) −

h(sn+1) = 1− 0 = 1.
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Remark 2

Let me analyze the particular case when OWA and WOWA opera-
tors provide the expectation of random variables. Suppose that X is
a discrete random variable that takes n different values and ~x ∈ Rn

is the vector of values, where the components are in ascending order.
Let ~p ∈ [0, 1]n be a vector consisting on the probabilities of the com-
ponents of ~x. Obviously, it holds that OWA~p (~x) = E (X). Besides,

WOWAh,~v,~p (~x) =

n∑
i=1

xi ·

h
 n∑
j=i

pj

− h

 n∑
j=i+1

pj


=

n∑
i=1

xi · [h (SX (xi−1)) − h (SX (xi))] .

If h is the identity function then WOWAh,~v,~p (~x) = E (X) since
SX (xi−1) − SX (xi) = pi for all i (with the convention x0 := −∞).

Remark 3

Note that if X is discrete and uniformly distributed then SX (xi−1) =
n− i+ 1

n
for all i = 2, ...,n+ 1, and hence

h (SX (xi−1)) = h

(
n− i+ 1

n

)
=

n∑
j=i

vj.

This remark is helpful to interpret the WOWA operator from the per-
spective of risk measurement. In the WOWA operator the subjective
opinion of experts may be represented by vector ~v. Let us suppose
that no information regarding the distribution function of a discrete
and finite random variable X is available. If it is assumed that X is dis-
crete and uniformly distributed, then vector ~v directly consists of the
subjective probabilities of occurrence of the components xi according
to the expert opinion. Another possible point of view in this case is
that ~v represents the subjective importance that the expert gives to
each xi.

Remark 4

Since the domain of the survival function is R, then the selected
function h is crucial from the risk measurement point of view, espe-
cially for a small n.

The Choquet integral in the finite and discrete case

The Choquet integral presented in Section 1.2 of Chapter 1 has
become a familiar concept to risk management experts since it was
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introduced by Wang [1996] in the definition of distortion risk mea-
sures. OWA and WOWA operators can also be defined based on the
concept of the Choquet integral. In this subsection Grabisch et al.
[2011] is followed to provide several definitions which are needed in
Section 4.2.

Definition 4.1.5 (Capacity). Let N = {m1, ...,mn} be a finite set and
2N = ℘ (N) be the set of all subsets of N. A capacity or a fuzzy measure on
N is a mapping from 2N to [0, 1] which satisfies

(i) µ (∅) = 0;

(ii) A ⊆ B⇒ µ (A) 6 µ (B), for any A,B ∈ 2N (monotonicity).

If µ (N) = 1, then it is said that µ satisfies normalization, which is a fre-
quently required property.
A capacity µ is additive if µ (A∪B) + µ (A∩B) = µ (A) + µ (B) for any
A,B ⊆ N.
A capacity µ is symmetric if µ (A) = µ (B) for all A,B with the same cardi-
nality (i.e., |A| = |B|).

Definition 4.1.6 (Dual capacity). Let µ be a capacity on N. Its dual or
conjugate capacity µ̄ is a capacity on N defined by

µ̄ (A) := µ (N) − µ
(
Ā
)

,

where Ā = N\A (i.e., Ā is the set of all the elements inN that do not belong
to A).

If a finite probability space
(
N, 2N,P

)
is considered, note that the

probability P is a capacity (or a fuzzy measure) on N that satisfies
normalization. In addition, P is its own dual capacity.

Definition 4.1.7 (Choquet integral for discrete positive functions). Let
µ be a capacity on N, and f : N → [0,+∞) be a function. Let σ be a per-
mutation of (1, ...,n), such that f

(
mσ(1)

)
6 f

(
mσ(2)

)
6 ... 6 f

(
mσ(n)

)
,

and Aσ,i =
{
mσ(i), ...,mσ(n)

}
, with Aσ,n+1 = ∅. The Choquet integral

of f with respect to µ is defined by

Cµ (f) :=

n∑
i=1

f
(
mσ(i)

)
(µ (Aσ,i) − µ (Aσ,i+1)) .

If f
(
mσ(0)

)
:= 0, then an equivalent expression for the definition

of the Choquet integral is

Cµ (f) =

n∑
i=1

[
f
(
mσ(i)

)
− f
(
mσ(i−1)

)]
µ (Aσ,i) .
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The concept of degree of orness introduced for the OWA opera-
tor may be extended to the case of the Choquet integral for positive
functions as

ω (Cµ) :=

n∑
i=1

(
i− 1

n− 1

)
· (µ (Aid,i) − µ (Aid,i+1)) . (4.1)

This is not the only way to define this concept, as it is discussed in
next chapters. In order to distinguish definition linked to expression
4.1 from other alternatives, I refer to it as local degree of orness. Let me
illustrate the degree of orness for three simple capacities. The first
one, denoted as µ∗, is such that µ∗ (A) = 0 if A 6= N and µ∗ (N) = 1.
In this case, Cµ∗ ≡ Min and it is deduced through expression (4.1)
that ω (Min) = 0. The second case, denoted as µ∗, is such that
µ∗ (∅) = 0 and µ∗ (A) = 1 if A 6= ∅. In this situation, Cµ∗ ≡ Max

and, as expected, it is obtained that ω (Max) = 1. Finally, consider
capacity µ# such that µ# (A) solely depends on the cardinality of A
for all A ⊆ N. Then µ# (Aσ,i) −µ

# (Aσ,i+1) is defined by i. If notation
wi = µ# (Aσ,i) − µ

# (Aσ,i+1) is used for all i, it follows that Cµ# is
equal to OWA~w. In the particular case where µ# (A) = #A

n for any
A ⊆ N, then wi =

n−(i−1)
n − n−i

n = 1
n . So, in this situation Cµ# is the

arithmetic mean, and it can be easily verified that ω
(
Cµ#

)
= 0.5:

ω
(
Cµ#

)
=

n∑
i=1

(
i− 1

n− 1

)
·
(
µ# (Aid,i) − µ

# (Aid,i+1)
)

=

n∑
i=1

(
i− 1

n− 1

)
· 1
n

=
1

2
.

(4.2)

In order to be able to work with negative functions, the Choquet in-
tegral of such functions needs to be defined also for them. Below the
asymmetric Choquet integral is defined, which is the classical exten-
sion from real-valued positive functions to negative functions. Note
that symmetric extensions have gained an increasing interest [Greco
et al., 2011; Mesiar et al., 2011], but I am not going to use them in this
dissertation.

Definition 4.1.8 (Asymmetric Choquet integral for discrete negative
functions). Let f : N → (−∞, 0] be a function, µ a capacity on N and µ̄
its dual capacity. The asymmetric Choquet integral of f with respect to µ is
defined by Cµ (f) := −Cµ̄ (−f) .

Given the previous definition, the definition of the Choquet integral
can now be extended to any function f from N to R.

Definition 4.1.9 (Choquet integral for discrete functions). Let µ be a
capacity on N and f a function from N to R. It is denoted by f+ (mi) =

max {f (mi) , 0} and f− (mi) = min {f (mi) , 0}. Then the Choquet inte-
gral of f with respect to µ is defined by

Cµ (f) := Cµ
(
f+
)
+ Cµ

(
f−
)
= Cµ

(
f+
)
− Cµ̄

(
−f−

)
. (4.3)
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4.2 the relationship between distortion risk measures ,
owa and wowa operators

Three results for discrete random variables are presented in this
section. First, the equivalence between the Choquet integral and a
distortion risk measure is shown, when the distortion risk measure is
fixed on a finite probability space. Second, the link between this dis-
tortion risk measure and OWA operators is provided. And, third, the
relationship between the fixed distortion risk measure and WOWA
operators is given. Finally, it is shown that the local degree of orness
of the VaRα and TVaRα risk measures may be defined as a function
of the confidence level when the random variable is given. To my
knowledge, some of these results provide a new insight into the way
classical risk quantification is understood, which can now naturally
be viewed as a weighted aggregation.

The link between the Choquet integral and distortion risk measures
for arbitrary random variables is well-known since the inception of
distortion risk measures [Wang, 1996], and has lead to many interest-
ing results. For example, the concept of Choquet pricing and its asso-
ciated equilibrium conditions [De Waegenaere et al., 2003]; the study
of stochastic comparison of distorted variability measures [Sordo and
Suarez-Llorens, 2011]; or the conditions for optimal behavioral insur-
ance [Sung et al., 2011] and the analysis of competitive insurance mar-
kets in the presence of ambiguity [Anwar and Zheng, 2012]. Here the
discrete version is presented, which is useful for the following pre-
sentation.

The relationship between the WOWA operator and the Choquet in-
tegral is also known by the fuzzy systems community [Torra, 1998],
as well as the relationship between distorted probabilities and aggre-
gation operators [Honda and Okazaki, 2005]. However, the results
shown in this section provide a comprehensive presentation that al-
lows for a connection to risk measurement.

Proposition 4.2.1. Let
(
N, 2N,P

)
be a finite probability space, and let X be

a discrete finite random variable defined on this space. Let g : [0, 1]→ [0, 1]
be a distortion function, and let ρg be the associated distortion risk measure.
Then, it follows that

Cg◦P (X) = ρg (X) .

Proof. Let N = {m1, ...,mn} for some n > 1 and let me suppose that
I can write X (N) = {x1, ..., xn}, with X ({mi}) = xi, and such that
xi < xj if i < j; additionally, let k ∈ {1, ...,n} be such that xi < 0 if
i = {1, ...,k− 1} and xi > 0 if i = {k, , ...,n}. In order to obtain the Cho-
quet integral of X, a capacity µ defined onN is needed. As previously
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indicated, P is a capacity on N that satisfies normalization, although
it is not the one needed.

Since g is a distortion function, µ := g ◦ P is another capacity
on N that satisfies normalization: µ (∅) = g (P (∅)) = g(0) = 0,
µ (N) = g (P (N)) = g(1) = 1, and if A ⊆ B, the fact that P (A) 6 P (B)

and the fact that g is non-decreasing imply that µ (A) 6 µ (B).

Regarding X+, the permutation σ = id on (1, ...,k− 1,k, ...,n) is
such that x+

σ(i) 6 x
+
σ(i+1) for all i or, in other words, x+1 6 x

+
2 6 ... 6

x+k−1 6 x
+
k 6 x

+
k+1 6 ... 6 x+n . Then, Aσ,i = {mi, ...,mn} and taking

into account x+i = 0 ∀i < k, I can write Cg◦P (X+) as

Cg◦P (X+) =

n∑
i=1

(
x+i − x+i−1

)
(g ◦P) (Aσ,i)

=

n∑
i=k

(
x+i − x+i−1

)
g

 n∑
j=i

pj

 .
(4.4)

Additionally, the permutation s on (1, ...,k− 1,k, ...,n) such that
s (i) = n + 1 − i, satisfies −x−

s(i) 6 −x−
s(i+1) for all i, so −x−n 6

−x−n−1 6 ... 6 −x−k 6 −x−k−1 6 −x−k−2 6 ... 6 −x−1 .
I have As,i =

{
ms(i), ...,ms(n)

}
= {mn+1−i, ...,m1} and, therefore,

Ās,i = {mn+2−i, ...,mn}. Taking into account that x−i = 0 ∀i > k, I
can write Cg◦P (−X−) as

Cg◦P (−X−) =

n∑
i=1

(
−x−
s(i) + x

−
s(i−1)

) (
g ◦P

)
(As,i)

=

n∑
i=1

(
−x−n+1−i + x

−
n+2−i

) (
g ◦P

)
(As,i)

=

n∑
i=1

(
−x−i + x−i+1

) (
g ◦P

)
(As,n+1−i)

=

n∑
i=1

(
−x−i + x−i+1

) [
1− (g ◦P)

(
Ās,n+1−i

)]
=

n∑
i=1

(
−x−i + x−i+1

)
[1− (g ◦P) ({mi+1, ...,mn})]

=

k−1∑
i=1

(
x−i+1 − x

−
i

)1− g
 n∑
j=i+1

pj

 .

(4.5)
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Expressions (4.4) and (4.5) lead to

Cg◦P (X) = Cg◦P (X+) − Cg◦P (−X−)

= −

k−1∑
i=1

(
x−i+1 − x

−
i

)1− g
 n∑
j=i+1

pj


+

n∑
i=k

(
x+i − x+i−1

)
g

 n∑
j=i

pj


= −

k∑
i=2

(xi − xi−1)

1− g
 n∑
j=i

pj


+xk

1− g
 n∑
j=k

pj


+

n∑
i=k+1

(xi − xi−1)g

 n∑
j=i

pj

+ xkg

 n∑
j=k

pj


= −

k∑
i=2

(xi − xi−1)

1− g
 n∑
j=i

pj


+xk +

n∑
i=k+1

(xi − xi−1)g

 n∑
j=i

pj

 .

(4.6)

Now consider ρg (X) as in Section 1.2 of Chapter 1, and note that
the random variable X is defined on the probability space (N, 2N,P).
Given the properties of Riemann’s integral, if I define x0 := −∞ and
xn+1 := +∞, then the distortion risk measure can be written as

ρg (X) = −

[
k∑
i=1

∫xi
xi−1

[1− g(SX(x))]dx−

∫xk
0

[1− g(SX(x))]dx

]

+

∫xk
0

g(SX(x))dx+

n+1∑
i=k+1

∫xi
xi−1

g(SX(x))dx.

(4.7)

If x ∈ [xi−1, xi) is considered, then FX(x) =

i−1∑
j=1

pj, since FX(x) =

P (X 6 x) and SX(x) = 1−

i−1∑
j=1

pj =

n∑
j=i

pj. Given that the distortion
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function g is such that g(0) = 0 and g(1) = 1, expression (4.7) can be
rewritten as

ρg (X) = −

k∑
i=1

∫xi
xi−1

1− g
 n∑
j=i

pj

dx+ ∫xk
0

1− g
 n∑
j=k

pj

dx
+

∫x0
0

g

 n∑
j=k

pj

dx+ n+1∑
i=k+1

∫xi
xi−1

g

 n∑
j=i

pj

dx
= −

∫x1
−∞ [1− g (1)]dx−

k∑
i=2

∫xi
xi−1

1− g
 n∑
j=i

pj

dx
+

∫xk
0

1− g
 n∑
j=k

pj

dx+ ∫xk
0

g

 n∑
j=k

pj

dx
+

n∑
i=k+1

∫xi
xi−1

g

 n∑
j=i

pj

dx+ ∫+∞
xn

g (0)dx

= −

k∑
i=2

(xi − xi−1)

1− g
 n∑
j=i

pj


+xk

[
1− g

(∑n
j=k pj

)
+ g

(∑n
j=k pj

)]
+

n∑
i=k+1

(xi − xi−1)g

 n∑
j=i

pj


= −

k∑
i=2

(xi − xi−1)

1− g
 n∑
j=i

pj


+xk +

n∑
i=k+1

(xi − xi−1)g

 n∑
j=i

pj

 .

(4.8)

And then the proof is finished because ρg (X) = Cg◦P (X) using
(4.8) and (4.6).

Let me present Cg◦P (X) in a more compact form. I denote Fi−1 =

1− g

 n∑
j=i

pj

 and Si−1 = g

 n∑
j=i

pj

 for i = 1, ...,n+ 1, so Fi−1 =

1− Si−1. Note that F0 = 0 and Sn = 0, so

k∑
i=2

(xi−1 − xi) Fi−1 =

k−1∑
i=1

xi (Fi − Fi−1) − xkFk−1,

and

n∑
i=k+1

(xi − xi−1)Si−1 =

n∑
i=k+1

xi (Si−1 − Si) − xkSk.
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The previous expressions applied to Cg◦P (X) lead to

Cg◦P (X) =

k−1∑
i=1

xi (Fi − Fi−1) − xkFk−1 + xk

+

n∑
i=k+1

xi (Si−1 − Si) − xkSk

=

n∑
i=1

xi (Si−1 − Si)

=

n∑
i=1

xi

g
 n∑
j=i

pj

− g

 n∑
j=i+1

pj

 .

(4.9)

It has to be noted that a similar expression is used by Kim [2010]
as an empirical estimate of the distortion risk measure, where the
probabilities are obtained from the empirical distribution function.
If g = id, then ρid(X) = E (X). The same result for a continuous
random variable is easy to prove using the definition of distortion
risk measure and Fubinni’s theorem. Expression (4.9) is useful to
prove the following two propositions.

Proposition 4.2.2 (OWA equivalence to distortion risk measures). Let
X be a discrete finite random variable and

(
N, 2N,P

)
be a probability space

as defined in proposition 4.2.1. Let ρg be a distortion risk measure defined
in this probability space, and let pj be the probability of xj for all j. Then
there exist a unique OWA~w operator such that ρg (X) = OWA~w (~x). The
OWA operator is defined by weights

wi = g

 n∑
j=i

pj

− g

 n∑
j=i+1

pj

 . (4.10)

The proof is straightforward. From proposition 4.2.2 it follows that
a finite and discrete random variable X must be fixed to obtain a one-
to-one equivalence between a distortion risk measure and an OWA
operator.

Proposition 4.2.3 (WOWA equivalence to distortion risk measures).
Let X be a discrete finite random variable and

(
N, 2N,P

)
be a probability

space as in proposition 4.2.1. If ρg is a distortion risk measure defined on this
probability space, and pj is the probability of xj for all j, consider the WOWA

operator such that h = g, ~q = ~p and vi = g
(
n− i+ 1

n

)
− g

(
n− i

n

)
for

all i = 1, ...,n. Then

ρg (X) =WOWAg,~v,~p (~x) . (4.11)
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Proof. Using proposition 4.2.2 it is known that there exists a unique
~w ∈ [0, 1]n such that OWA~w (~x) = ρg (X):

wi = g

 n∑
j=i

pj

− g

 n∑
j=i+1

pj

 = g (SX (xi−1)) − g (SX (xi)) .

(4.12)

In addition, there exists an OWA~u operator such that OWA~u =

WOWAg,~v,~p defined by

ui = g

 ∑
Ωj∈Aid,i

pj

− g

 ∑
Ωj∈Aid,i+1

pj


= g (SX (xi−1)) − g (SX (xi)) .

(4.13)

Expressions (4.12) and (4.13) show that ~w = ~u and, due to the
uniqueness of the OWA operator, it is concluded that

ρg (X) = OWA~w (~x) =WOWAg,~v,~p (~x) ,

where vi = g
(
n− i+ 1

n

)
− g

(
n− i

n

)
.

Again, the one-to-one equivalence between a distortion risk mea-
sure and a WOWA operator is obtained given that the discrete and
finite random variable is fixed.

To summarize the results, for a given distortion function g and a
discrete and finite random variable X, there are three alternative ways
to calculate the distortion risk measure that lead to the same result
than using the definition provided in Section 1.2 of Chapter 1:

1. By means of the Choquet integral of X with respect to µ = g ◦P
using expression (4.9).

2. Applying the OWA~w operator to ~x, following definition 4.1.2

with wi = g

 n∑
j=i

pj

− g

 n∑
j=i+1

pj

 , i = 1, ...,n, and pj the

probability of xj for all j.

3. And, finally, applying the WOWAg,~v,~p operator to ~x, following

definition 4.1.4, where vi = g

(
n− i+ 1

n

)
− g

(
n− i

n

)
and pj

the probability of xj for all j.
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4.3 first interpretations of the local degree of orness

An interesting application from expression (4.9) can be derived. In
particular, the concept of degree of orness introduced for the OWA
operator may be formally extended to the case of Cg◦P (X), as:

ω
(
Cg◦P (X)

)
:=

n∑
i=1

(
i− 1

n− 1

)
· [g (SX (xi−1)) − g (SX (xi))] . (4.14)

This will be called local degree of orness of Cg◦P (X). Note that this
expression is similar to (4.1). This result is now applicable to both
positive and negative values and only the distorted probabilities are
considered among capacities.

Let me show risk management applications of the local degree of
orness of the distortion risk measures. Note, for instance, that the reg-
ulatory requirements on risk measurement based on distortion risk
measures may be reinterpreted by means of the local degree of or-
ness. Given a finite and discrete random variable X, when the value
ρg (X) of the distortion risk measure applied to it is required there
is an implicit preference weighting rule with respect to the values of
X, which takes into account probabilities. This preference weight-
ing rule can be summarized by ω (OWA~w), where ~w is such that
wi = g (SX (xi−1)) − g (SX (xi)).

There are some cases of special interest, such as the mathematical
expectation, the VaRα and TVaRα risk measures:

If g = id, then Cg◦P ≡ E and

ω (E (X)) =

n∑
i=1

(
i− 1

n− 1

)
· [SX (xi−1) − SX (xi)]

=

n∑
i=1

(
i− 1

n− 1

)
· pi.

(4.15)

In particular, if the random variable X is discrete and uniform,
i.e. pi = 1

n , then expression (4.15) equals 1/2.

Given a confidence level α ∈ (0, 1), let kα ∈ {1, 2, ...,n} be such that
xkα = inf{xi|FX (xi) > α} = inf{xi|SX (xi) 6 1 − α}, i.e. xkα is the
α−quantile of X.
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Regarding VaRα, from Table 1.1 it is known that ψα (SX (xi)) =

1 [1−α 6 SX (xi) 6 1]. Since ψα (SX (xi−1)) − ψα (SX (xi)) =

1[i = kα], the local degree of orness of VaRα is obtained as

ω (VaRα (X)) =

n∑
i=1

(
i− 1

n− 1

)
· [ψα (SX (xi−1)) −ψα (SX (xi))]

=
kα − 1

n− 1
.

(4.16)

In the case of TVaRα, recall from Table 1.1 that γα (SX (xi)) =

min
{
SX (xi)

1−α
, 1
}

. Taking into account that

γα (SX (xi−1))−γα (SX (xi)) =


0 i < kα

1−
1

1−α

n∑
j=kα+1

pj i = kα

pi
1−α

i > kα.

,

therefore

ω (TVaRα (X)) =

n∑
i=1

(
i− 1

n− 1

)
· [γα (SX (xi−1)) − γα (SX (xi))]

=

(
kα − 1

n− 1

)
·

1− 1

1−α

n∑
j=kα+1

pj


+

n∑
i=kα+1

(
i− 1

n− 1

)
· pi
1−α

=
kα − 1

n− 1
+

1

1−α
·

n∑
i=kα+1

(
i− kα
n− 1

)
pi.

(4.17)

Note that for VaRα and TVaRα, the local degree of orness is directly
connected to the α level chosen for the risk measure, i.e. the value
of the distribution function at the point given by the quantile. In the
following example an application of the local degree of orness in the
context of risk measurement is presented.

4.4 an illustration

A numerical example taken from Wang [2002] is provided. This
example is selected as a particular case where common risk measures
show drawbacks in the comparison of two random variables, X and
Y. Table 4.2 summarizes the probabilities, distribution functions and
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Table 4.2: Example of loss random variables X and Y.

Loss px FX SX py FY SY

0 0.6 0.6 0.4 0.6 0.6 0.4

1 0.375 0.975 0.025 0.39 0.99 0.01

5 0.025 1 0

11 0.01 1 0

survival functions of both random variables.

Distortion risk measures for X and Y using aggregation operators
can be calculated. In particular, I am interested in E, VaRα and
TVaRα for α = 95%, which follow from expression (4.9) and ψα and
γα as in Table 1.1. In this example E, VaR95% and TVaR95% have the
same value for the two random variables.

The weighting vectors linked to the OWA operators (see expression
4.10) for E, VaR95% and TVaR95% are displayed in Table 4.3. The val-
ues of the distortion risk measures for each random variable and the
associated local degree of orness are shown in Table 4.4. In addition,
the weighting vectors linked to the WOWA operators (see expression
4.11) are listed in Table 4.5.

Table 4.3: Distorted probabilities in the ordered weighted averaging opera-
tors for X and Y (~w).

E (X) E (Y) VaR95% (X) VaR95% (Y) TVaR95% (X) TVaR95% (Y)

Loss ~w ~w ~w ~w ~w ~w

0 0.6 0.6 0 0 0 0

1 0.375 0.39 1 1 0.5 0.8

5 0.025 0 0.5

11 0.01 0 0.2

First, note that point probabilities are distorted and a weighted av-
erage of the random values with respect to this distortion (OWA~w)
is calculated to obtain the distortion risk measures. Second, the re-
sults show that weights ~v for the WOWA represent, to some extent,
a risk attitude. It is taken into account how the random variable is
distributed by means of weights ~p. In this example, the decision mak-
ers are only worried about the maximum loss when they consider
VaR95% and TVaR95%. All values have the same importance in the
case of the mathematical expectation.
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Table 4.4: Distortion risk measures and the associated local degree of orness
for X and Y.

E (X) E (Y) VaR95% (X) VaR95% (Y) TVaR95% (X) TVaR95% (Y)

Risk
value

0.5 0.5 1 1 3 3

Degree
of
orness

0.2125 0.205 0.5 0.5 0.75 0.6

Table 4.5: Weighted ordered weighted averaging operator vectors linked to
distortion risk measures for X and Y.

E (X) E (Y) VaR95% (X) VaR95% (Y)

Loss ~p ~v ~p ~v ~p ~v ~p ~v

0 0.6 1/3 0.6 1/3 0.6 0 0.6 0

1 0.375 1/3 0.39 1/3 0.375 0 0.39 0

5 0.025 1/3 0.025 1

11 0.01 1/3 0.01 1

TVaR95% (X) TVaR95% (Y)

Loss ~p ~v ~p ~v

0 0.6 0 0.6 0

1 0.375 0 0.39 0

5 0.025 1

11 0.01 1
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Note that VaR95% and TVaR95% have equal ~v and ~p for each ran-
dom variable, although the distortion risk measures have different
values. It is due to the fact that function h in WOWA plays an im-
portant role to determine the particular distortion risk measure that
is calculated, since function h is the distortion function for VaRα and
TVaRα.

Finally, it is interesting to note that the local degree of orness of a
distortion risk measure can be understood as another risk measure
for the random variable, with a value that belongs to [0, 1]. In this
particular illustration, the additional riskiness information provided
by the local degree of orness can be summarized as follows:

It is shown that ω (E (X)) 6= ω (E (Y)), and both are less than
0.5. Note that 0.5 is the local degree of orness of the mathe-
matical expectation of an uniform random variable. The greater
the difference (in absolute value) between the local degree of
orness of the mathematical expectation and 0.5, the greater the
difference between the random variable and an uniform. In the
example, both random variables are far from a discrete uniform,
but Y is farther than X;

The ω (VaR95% (X)) is equal to ω (VaR95% (Y)), because the
number of observations is the same and VaR95% is located at
the same position for both variables;

The local degree of orness of TVaR95% is different for both
random variables, although they have the same value for the
TVaR95%. Given these two random variables with the same
number of observations, VaR95%, local orness of VaR95% and
TVaR95%, more extreme losses are associated to the random
variable with the lower local degree of orness of TVaR95%. There-
fore, this additional information provided by the local degree of
orness may be useful to compare X and Y, given that they are
indistinguishable in terms of E, VaR95% and TVaR95%.

More details on the risk information that local degree of orness
provides are given in Chapter 6.



5
I N D I C AT O R S F O R D I S C R E T E C H O Q U E T
I N T E G R A L S

Aggregation operators are very useful functions for summarizing
information and have been widely used in recent decades [Beliakov
et al., 2007; Grabisch et al., 2009; Torra and Narukawa, 2007]. In
this context, the Choquet integral [Choquet, 1954], a class of integral
linked to non-additive measures, has taken a leading role. Integrals
are used to aggregate values of functions, and as such can be un-
derstood as aggregation operators. The Choquet integral includes a
wide range of aggregation operators as particular cases. Over the last
few years, the Choquet integral has received much attention from re-
searchers, and this has generated new extensions and generalizations
of this class of integral. For instance, Greco et al. [2011] proposed an
extension of the Choquet integral in which the capacity depends on
the values to be aggregated. Similarly, Yager [2004a] presented new
induced aggregation operators inspired by the Choquet integral and
Xu [2010] introduced some intuitionistic fuzzy aggregation functions
also based on the Choquet integral. Klement et al. [2010] presented a
universal integral that covers the Choquet and the Sugeno integral for
non-negative functions, while Torra and Narukawa [2010] studied a
generalization of the Choquet integral inspired by the Losonczi mean.
Bolton et al. [2008] connected the Choquet integral with distance met-
rics and, more recently, Torra and Narukawa [2012] introduced an
operator that generalizes the Choquet integral and the Mahalanobis
distance.

Two particular cases of aggregation operators that can be under-
stood as Choquet integrals are the weighted arithmetic mean (WAM)
and the ordered weighted averaging (OWA) operator [Yager, 1988].
As pointed out in Chapter 4, several authors have turned their at-
tention to the study of the OWA operator [Yager et al., 2011], since it
serves to provide a parameterized family of aggregation operators be-
tween the minimum and the maximum. In order to assess OWA oper-
ators appropriately, indicators for characterizing the weighting vector
are required. Initially, Yager [1988] introduced the orness/andness in-
dicators and the entropy of dispersion for just this purpose. Later, he
proposed complementary indicators, including the balance indicator
[Yager, 1996] and the divergence [Yager, 2002], to be used in excep-
tional situations. Meanwhile, Fullér and Majlender [2003] suggested
the use of a variance indicator and Majlender [2005] introduced the
Rényi entropy [Rényi, 1961] as a generalization of the Shannon en-

59
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tropy [Shannon, 1948] in the framework of the OWA operator. Some
of these indicators have been extended for the Choquet integral. For
example, Marichal [2004] and Grabisch et al. [2009] presented several
types of degree of orness indicators: Marichal [2004] for the Choquet
integral, while Grabisch et al. [2009] for general aggregation func-
tions. Likewise, Yager [2000], Marichal [2002] and Kojadinovic et al.
[2005] studied the entropy of dispersion in the framework of the Cho-
quet integral. Marichal and Roubens [2000] analyzed the relationship
between the alternative definitions of the entropy of dispersion indi-
cator introduced by Yager [2000] and Marichal [2002]. However, to
the best of my knowledge, additional indicators have yet to be de-
fined for the Choquet integral.

The aim of this chapter is to further enrich the present set of indi-
cators for the Choquet integral, by incorporating new ones to earlier
contributions and by presenting an unified compilation of indicators
for describing its aggregation features. Hopefully, these indicators
may be helpful to enrich our vision on distortion risk measures. Four
indicators commonly used for the OWA operator -that is, the degree
of balance, the divergence, the variance indicator and Rényi entropies-
are extended to the discrete Choquet integral. The advantage of in-
corporating these additional indicators is that they can help to cover a
wide range of situations, including exceptional types of aggregation
that cannot be correctly identified by means of the degree of orness or
the entropy of dispersion. Two different perspectives are considered
so as to allow both local and global indicators to be defined.

The linearity of indicators is investigated when dealing with lin-
ear combinations of capacities. Indicators are presented for the prob-
abilistic OWA (POWA) operator [Merigó, 2011, 2012], which deals
with a linear combination of two particular cases of the Choquet in-
tegral (the OWA and the WAM) in order to obtain more complex
aggregations. The importance of these two aggregation operators is
determined by the particular weight assigned to them in the linear
combination.

5.1 averaging operators and capacities

Let ~w and ~p be two vectors with components belonging to [0, 1]
such that

∑n
i=1wi = 1 and

∑n
i=1 pi = 1, and consider the aggrega-

tion operators OWA~w and WAM~p. The representation of OWA and
WAM operators as Choquet integrals has been shown in the literature
[Grabisch, 1995; Grabisch et al., 2011]. Proposition 10(v) and Proposi-
tion 10(vi) in Grabisch et al. [2011] imply that OWA and WAM oper-
ators can be understood as Choquet integrals with respect to normal-
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ized capacities µ and P respectively, OWA~w = Cµ and WAM~p = CP.
These capacities are such that:

µ (A) =
∑i−1
u=0wn−u, for all A ∈ N with cardinality i (|A| =

i), i = 1, ...,n. Because of |Aσ,i| = n − i + 1, then µ (Aσ,i) =∑n
k=iwk for all i = 1, ...,n, being σ a permutation as in the

definition of OWA~w;

P ({mi}) = pi for all i = 1, ...,n, being P additive. That is, the
probability P understood as an additive capacity on N.

5.2 indicators for aggregation operators

5.2.1 Indicators associated with OWA operators

Various indicators associated with OWA operators can be found in
the literature and the main ones are briefly explained here. A sum-
mary of these indicators, their analytical expressions and references
are shown in Table 5.1.

Table 5.1: Summary of indicators associated with ordered weighted averag-
ing operators

Indicator Analytical expression Reference

Degree of orness ω (~w) =

n∑
i=1

(
i− 1

n− 1

)
·wi

Yager
[1988]

Dispersion (Shannon entropy)1 Disp (~w) = −

n∑
i=1

ln(wi) ·wi
Yager
[1988]

Degree of balance Bal (~w) =

n∑
i=1

(
2 · i−(n+ 1)

n− 1

)
·wi

Yager
[1996]

Divergence Div (~w) =

n∑
i=1

(
i− 1

n− 1
−ω(~w)

)2
·wi

Yager
[2002]

Variance indicator D2 (~w) =
1

n
·
n∑
i=1

w2i −
1

n2 Fullér and
Majlender
[2003]

Rényi entropy (α 6= 1) Hα (~w) =
1

1−α
· log2

(
n∑
i=1

wαi

)
Majlender
[2005]

1 If the Shannon entropy of ~w is denoted by HS (~w) = −

n∑
i=1

log2(wi) ·wi,

then Disp (~w) = ln(2) ·HS (~w).
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Degree of orness

The definition of this indicator has been previously provided in
Chapter 4 (see Definition 4.1.3). The degree of orness of an OWA~w

operator was defined in Yager [1988] as representing the level of ag-
gregation preference between the minimum and the maximum oper-
ators given by ~w ∈ [0, 1]n. Therefore, the degree of orness highlights
how much disjunctive is the aggregation function. The degree of
orness of OWA~w can be understood as the value that the OWA~w op-
erator returns when it is applied to ~x∗ =

(
0
n−1 , 1

n−1 , ..., n−2n−1 , n−1n−1

)
or,

alternatively, as the value of WAM~w

(
~x∗
)
.

Dispersion (Shannon entropy)

The dispersion indicator of an OWA~w operator was introduced by
Yager [1988] to measure the amount of information given by ~x that
is used when OWA~w (~x) is computed. This indicator provides the
same information as the entropy introduced by Shannon [1948] but
at a different scale, as shown in Table 5.1.

Degree of balance

The concept of degree of balance of an OWA~w operator was intro-
duced by Yager [1996] and it is closely related to the degree of orness,
providing the same information but at a different scale. It is defined
as Bal (~w) = 2 ·ω (~w) − 1.

Divergence indicator

The divergence indicator of an OWA~w operator was introduced
by Yager [2002]. The definition is provided in Table 5.1. Note that
it can be understood to be the value of the WAM~w applied to ~z =

(z1, z2, ..., zn) where zi =
(
i−1
n−1 −ω(~w)

)2
for all i = 1, ...,n. In gen-

eral, zi 6 zj does not hold if i 6 j. That is, components of ~z are not in
increasing order, so divergence indicatorDiv (~w) cannot be expressed
as OWA~w (~z).

Recall that the variance of a random variable X with respect to
a probability P is VarP (X) := EP

[
(X− EP (X))2

]
, where EP (X) de-

notes the mathematical expectation of random variable Xwith respect
to probability P. In the discrete and finite case, EP (X) =

∑n
i=1 xi · pi

and VarP (X) =
∑n
i=1 (xi −

∑n
i=1 xi · pi)

2 · pi. Bearing this in mind
and from a statistical viewpoint, if the random variable X∗ is consid-
ered with x∗i = i−1

n−1 and the probabilities P
(
X∗ = x∗i

)
are equal to

wi for all i = 1, ...,n, then Div (~w) is just the variance of the ran-
dom variable X∗ with respect to the probabilities ~p when the lat-
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ter are equal to the weights ~w, i.e. ~p = ~w. In other words, the
divergence indicator can be understood as Div (~w) = Var~w (X∗) =

E~w

[
(X∗)2

]
− (E~w [X∗]) 2.

The divergence indicator describes how much scattered and dis-
persed the evaluation supplied by the aggregation function is. There-
fore, the divergence indicator highlight different aspects of the ag-
gregation function at hand than those aspects pointed out by the de-
gree of orness and the dispersion indicators. As Yager [2002] claimed
when analyzing the OWA operator, the degree of orness and the dis-
persion indicator are insufficient for characterizing a weighting vector
~w. For example, OWA operators with different weighting vectors can
share the values of the degree of orness and the dispersion indicator.
Let us consider two vectors in R9, ~w = (0, 0.5, 0, 0, 0, 0, 0, 0.5, 0) and
~w∗ = (0, 0, 0, 0.5, 0, 0.5, 0, 0, 0). An analysis of the degree of orness

and the dispersion of OWA~w and OWA ~w∗ provides the same results:
ω (~w) = ω

(
~w∗
)
= 0.5 and Disp (~w) = Disp

(
~w∗
)
= 0.693. Thus, in

order to distinguish between OWA~w and OWA ~w∗ operators, an addi-
tional measure is required. By using the divergence indicator (Table
5.1), such a distinction can be achieved. In this particular example,
Div (~w) = 0.140625 and Div

(
~w∗
)
= 0.015625. Thus, although OWA~w

and OWA ~w∗ present identical degrees of orness and dispersion, the
latter has a lower divergence than the former.

Variance indicator

The variance indicator is defined as D2 (~w) = 1
n ·
∑n
i=1w

2
i −

1
n2

.
This indicator computes the variance of the weighting vector ~wwhere
each component is considered equally probable. It has been used, for
instance, in Fullér and Majlender [2003] to determine the analytical
expression of a minimum variability OWA~w operator.

Rényi entropies

Entropy measures other than dispersion can be used to character-
ize the weighting vector. Generalizations of the Shannon entropy that
could be used include Rényi entropies [Majlender, 2005; Rényi, 1961].
Recall that the Rényi entropy of ~w ∈ Rn with degree α ∈ R\{1} is
defined as Hα (~w) = 1

1−α · log2
(∑n

i=1w
α
i

)
. Thus, given the OWA~w,

Hα (~w) can be considered as the Rényi entropy of degree α of this
OWA operator. The Shannon entropy can be obtained from Rényi
entropies as HS (~w) = lim

α→1
Hα (~w): this result can be proved using

l’Hôpital rule.
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The parameter α, when positive, can be related to the underlying
Lα-norm linked to each Hα, as follows Hα (~w) =

α

1−α
· log2 (||~w||α).

Therefore, the parameter α can be interpreted to distort the distance
between the vector ~w and ~0 ∈ Rn, a distance required to compute the
entropy of ~w. Rényi entropies are not only a mathematical general-
ization of the Shannon entropy. Applications of Rényi entropies are
found in several fields of knowledge, including coding theory, statisti-
cal physics and multifractal systems [Csiszár, 1995; Lenzi et al., 2000;
Jizba and Arimitsu, 2004].

5.2.2 Existing indicators extended to the Choquet integral

Some of the indicators described above have already been gener-
alized for the discrete Choquet integral, particularly, the degree of
orness and the dispersion indicator (Shannon entropy). The purpose
of this chapter is to propose indicators that have not yet been defined
for the Choquet integral. However, the existing indicators are here
described in order to provide a complete compilation of indicators
for identifying features linked to the Choquet integral. Hereinafter,
the indicators are considered from two perspectives, the global and
the local. Global indicators involve the computation of the n! permu-
tations of (1, 2, ...,n) while local indicators take into account only one
of the n! permutations. Broadly speaking, a global indicator does
not depend on the assumption of ordering on the input data set to
be aggregated by the Choquet integral while a local one does. Local
indicators are an interesting alternative to global indicators, partic-
ularly appealing for applications in which the input data set to be
aggregated is increasingly ordered. This is the case, for instance, of
statistical analysis of empirical distribution functions. A practical con-
sequence is that the computation of local indicators is in general eas-
ier, something especially important whether the number of elements
of N is large.

The terminology is inspired by Dujmović [2006], who proposes a
classification of orness indicators by means of a three-letter code. I
extend this categorization to all of the indicators but my classification
is exclusively based on whether ordering in the input data set is as-
sumed or not. This being the case, the categories can be determined
solely by one letter. So here the categories are seen as global and lo-
cal, respectively, and denoted as G and L. In other words, the last two
letters of the codes used in the classification of Dujmović are common
to both categories in this context, which means that I only consider
direct indicators that depend on the number of variables.

A similar terminology is also adopted by Kolesárová and Mesiar
[2009] who explain the meaning that they provide to both global and
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local perspectives and, in addition, introduce a generalized character-
ization which they refer to as the ‘mixed approach’.

Degree of orness for the Choquet integral

A generalization of the global degree of orness for the Choquet in-
tegral has been proposed by Marichal [2004]. As shown in expression
(1.2), if Cµ is the Choquet integral with respect to µ, then

ωG (Cµ) =
1

n− 1
·
n−1∑
i=1

(ni
)−1

·
∑
A⊆N
|A|=i

µ (A)

 . (5.1)

Likewise, a local degree of orness for a Choquet integral has been
suggested in chapter 4 by means of expression (4.1),

ωL (Cµ) =

n∑
i=1

(
i− 1

n− 1

)
· (µ (Aid,i) − µ (Aid,i+1)) .

This expression can be rearranged to obtain

ωL (Cµ) =
1

n− 1
·
n−1∑
i=1

[µ (Aid,n−i+1)] . (5.2)

Differences between expression (5.1) and (5.2) are highlighted when
noting that the number of elements of the set Aid,n−i+1 is equal to i,
for all i = 1, ...,n− 1. Expression (5.1) takes into account all permu-
tations on (1, 2, ...,n), so an ordering on function values to be aggre-
gated through the Choquet integral is not assumed when computing
ωG (Cµ). Therefore, ωG (Cµ) is called global. On the other hand, it is
implicitly assumed that function values to be aggregated through the
Choquet integral are increasingly ordered when computing ωL (Cµ)

and, consequently, ωL (Cµ) is called local.

The idea underpinning this local generalization is to transfer to the
Choquet integral the fact that the degree of orness of OWA~w can be
understood as the value that the OWA~w operator returns when it is
applied to ~x∗ =

(
0
n−1 , 1

n−1 , ..., n−2n−1 , n−1n−1

)
and, at the same time, as

the value of WAM~w

(
~x∗
)
. When considering a Choquet integral with

respect to a normalized symmetric capacity µ (that is, when deal-
ing with OWA operators), the local and global degrees of orness are
equal, i.e. ωG (Cµ) = ωL (Cµ). On the other hand, if µ is normalized
and additive (Cµ = WAM~p with pi = µ({mi}) for all i = 1, ...,n), it
is straightforward to prove that ωG (Cµ) 6= ωL (Cµ). The difference
derives from the fact that ωL (Cµ) only takes into account one of
the n! feasible permutations of (1, 2, ...,n) - the identity permutation
- while ωG (Cµ) considers them all. In order to simplify the notation,
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hereinafter, ωL (µ) and ωG (µ) will be used instead of ωL (Cµ) and
ωG (Cµ), respectively.

Alternative generalizations of the degree of orness for the Choquet
integral and other aggregation functions can be found in Grabisch
et al. [2009].

Dispersion (Shannon entropy) for the Choquet integral

The dispersion indicator (Shannon entropy) associated with the
OWA operator has been analyzed and generalized in several stud-
ies [Yager, 2000; Dukhovny, 2002; Marichal, 2002; Kojadinovic et al.,
2005]. Unlike the degree of orness, the Shannon entropy is always
a global indicator because the value of Disp (~w) is not modified if
wσ(i) instead of wi is used for all i (see Table 5.1). The analytical
expression of the generalization proposed in Yager [2000] is shown in
Table 5.2.

Table 5.2: Summary of existing indicators extended to the Choquet integral

Indicator Analytical expression Reference

Global
degree of
orness1

ωG (µ) =
1

n− 1
·
n−1∑
i=1

(ni
)−1

·
∑
A⊆N
|A|=i

µ (A)


Marichal
[2004]

Local
degree of
orness

ωL (µ) =

n∑
i=1

(
i− 1

n− 1

)
· (µ (Aid,i)−µ (Aid,i+1))

Belles-
Sampera
et al.
[2013b],
chapter
4 in this
disserta-
tion

Dispersion
(Yager’s
Shannon
entropy)2,3

HY (µ) = −

n∑
i=1

φi (µ) · ln [φi (µ)]

Yager
[2000]

1 Other degrees of orness can be found in Grabisch et al. [2009].
2 Following notation used in Kojadinovic et al. [2005], where φi (µ) stands for
the ith component of the Shapley value of µ.
3 Alternative entropy measures can be found in Dukhovny [2002]; Marichal
[2002] and Kojadinovic et al. [2005].

5.3 new indicators extended to the choquet integral

Generalizations of the degree of balance, the divergence, the vari-
ance indicator and Rényi entropies for the Choquet integral are pro-
posed in this section. Each of these generalizations satisfies the fol-
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lowing property: when the capacity µ linked to the Choquet integral
Cµ is symmetric and normalized (implying that a weighting vector
~w exists such that Cµ = OWA~w), then the indicators for Cµ coincide
with the respective indicators for OWA~w. That is, the information
provided by indicators associated to the Choquet integral Cµ with
symmetric and normalized capacity µ corresponds to the informa-
tion provided by indicators of the OWA~w operator, although former
indicators cover a wider range of aggregation operators.

Degree of balance for the Choquet integral

Expressions (5.3) for the global and local degrees of balance indi-
cators associated with Choquet integrals are proposed. Note that the
degree of balance introduced by Yager [1996] was in the range [−1, 1],
where values of the degree of orness from [0, 1] were rescaled. Here,
the degree of balance is defined for any interval [a,b] ⊆ R where
b > a.

BalG,[a,b] (Cµ) := (b− a) ·ωG (µ) + µ (N) · a,

BalL,[a,b] (Cµ) := (b− a) ·ωL (µ) + µ (N) · a.
(5.3)

Note that definitions (5.3) are linear transformations of the degree
of orness. If µ is not normalized, the values of the degree of balance
belong to the interval [a · µ (N) ,b− a · (1− µ (N))]. These definitions
fulfill linearity conditions with respect to capacities, as shown in Sec-
tion 5.4.

It is straightforward to check that when µ is symmetric then the
following holds BalL,[a,b] (Cµ) = BalG,[a,b] (Cµ). If, in addition, µ is
normalized and a = −1 and b = 1 then Bal (~w) = BalL,[−1,1] (Cµ) =

BalG,[−1,1] (Cµ).

As in the case of the degree of orness, if µ is additive and normal-
ized, then in general BalL,[a,b] (Cµ) 6= BalG,[a,b] (Cµ). In particular,

BalG,[a,b] (Cµ) =
a+ b

2
and BalL,[a,b] (Cµ) = b+ a ·

n∑
i=1

(
n− i

n− 1

)
· pi

are both satisfied.

Divergence indicator for the Choquet integral

Extensions of the divergence indicator to the Choquet integral level
are provided in this section. As mentioned previously in the con-
text of OWA~w operators, situations exist in which the degree of or-
ness and the dispersion indicator are insufficient for characterizing a
weighting vector ~w. In such instances, a supplementary measure pro-
viding additional information is required. The divergence indicator
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is a good candidate to fill this gap.

The divergence indicator of a Choquet integral is defined from a
global and a local perspective.

Definition 5.3.1. Let Cµ be the Choquet integral with respect to a capacity
µ defined on N. The global divergence indicator of Cµ is defined as

DivG (Cµ) :=

n∑
i=1

(
i− 1

n− 1
−ωG(µ)

)2
·



∑
A⊆N

|A|=n−i+1

µ (A)

(
n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

µ (A)

(
n

n− i

)
 .

(5.4)

It can be interpreted that the global divergence provides a mean
variability around the degree of orness of the aggregation function.
In other words, the value of the global divergence is associated with
the scattering of the aggregation function around the global degree
of orness. So, as the global divergence increases, the global degree of
orness (the level of disjunction) becomes less important in the aggre-
gation process.

It should be pointed out that the divergence indicator of the OWA
operator was interpreted as Div (~w) = E~w[(X

∗)2] − (E~w [X∗]) 2 in Sec-
tion 5.2. So, the divergence indicator of the OWA operator can be
understood as a function of statistical moments of random variable
X∗. Expression (5.4) can be interpreted in a similar way. In order to
achieve this parallelism for the divergence indicator of the Choquet
integral, the introduction of an additional concept is required. With
this purpose, I propose a new capacity linked to µ.

Definition 5.3.2 (AQWA capacity). Let µ be a capacity defined on the set
N = {m1, ...,mn}, where the subindex indicates an ordering on the elements
of N. The ascending quadratic weighted additive (AQWA) capacity linked
to µ is an additive capacity η on N defined by

(i) η
({
mj
})

:= 2 ·
(
j− 1

n− 1

)2
·



∑
A⊆N

|A|=n−i+1

µ (A)

(
n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

µ (A)

(
n

n− i

)
 ,

for all j = 1, ..,n;

(ii) η (A) :=
∑
mk∈A

η ({mk}); and η (∅) := 0.

A proof that η is a capacity on N is provided in the Appendix.
Intuitively, the AQWA capacity can be interpreted as an additive ca-
pacity which assigns a part of the global orness of Cµ to each element
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mj multiplied by a convenient factor. Note that the definition of the
AQWA capacity is based on the capacity µ. It has to be mentioned
that, although the underlying idea is the same, this definition slightly
differs from the one provided in Belles-Sampera et al. [2013d]. The
goal in both cases is to devise an additive capacity linked to µ which
includes in its definition the weights ((j− 1)/(n− 1))2 for j = 1, ...,n.
Then, a compact expression for (5.4) may be obtained as shown in the
Appendix. In Belles-Sampera et al. [2013d] capacities were restricted
to take values in [0, 1]. Here, this restriction is relaxed and capacities
are permitted to take any non-negative value. My opinion is that this
definition is more elegant and appealing expressions can be derived.
Taking advantage of this capacity linked to µ, it is possible to trans-
form expression (5.4) into a more compact expression in the following
proposition.

Proposition 5.3.1. The global divergence indicator for a discrete Choquet
integral given by expression (5.4) is equivalent to

DivG (Cµ) = ωG(η) − [2− µ (N)] ·ω2
G(µ) , (5.5)

where η is the AQWA capacity linked to µ.

A proof of Proposition 5.3.1 is given in the Appendix. Let me em-
phasize that expression (5.5) remindsDiv (~w) = E~w[(X

∗)2]− (E~w [X∗]) 2

where the role that the mathematical expectation was playing for
Div (~w) is now the role of the global degree of orness, using η and
µ instead of X∗2 and X∗. Proposition 5.3.1 allows a straightforward
computation of the value of the divergence indicator when ωG(η)

and ω2
G(µ) are known.

The definition of the local divergence indicator is as follows:

DivL (Cµ) :=

n∑
i=1

(
i− 1

n− 1
−ωL(µ)

)2
· (µ (Aid,i) − µ (Aid,i+1)) . (5.6)

This definition is inspired by the fact that Div (~w) = WAM~w (~z) in
the case of OWA operators (see Section 5.2.1) and corresponds to the
local perspective.

When µ is symmetric and normalized, it holds that

DivL (Cµ) = DivG (Cµ) = Div (~w) . (5.7)

If µ is additive and normalized, ωG (µ) =
1

2
and ωG (η) =

2 ·n− 1

6 · (n− 1)
,

and hence

DivG (Cµ) =
2 ·n− 1

6 · (n− 1)
− (2− 1) · 1

4
=
1

12
· n+ 1

n− 1
, (5.8)

so, in general, it is easy to observe that DivG (Cµ) 6= DivL (Cµ) when
µ is additive and normalized. The proofs of (5.7) and (5.8) are given
in the Appendix.
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Variance indicator and Rényi entropies for the Choquet integral

In Section 5.2.1 above two additional indicators for OWA operators
were shown, namely the variance indicator of the weighting vector
and the Rényi entropy of degree α. The generalized definitions of
these global indicators for the Choquet integral can be provided but
the local perspective for this indicators is not considered. The reason
for this being that the two indicators are only defined in terms of the
weighting vector in the case of OWA operators, but not in terms of
i− 1

n− 1
or
2 · i− (n+ 1)

n− 1
.

The global variance indicator of a capacity linked to a Choquet
integral may be defined as

D2G (Cµ) =
1

n
·
n∑
i=1



∑
A⊆N

|A|=n−i+1

µ (A)

(
n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

µ (A)

(
n

n− i

)


2

−
µ(N)2

n2
.

(5.9)

The global Rényi entropies of degree α ∈ R\{1} for a Choquet inte-
gral with respect to µ may be defined as

HG,α (Cµ) =
1

1−α
· log2


n∑
i=1



∑
A⊆N

|A|=n−i+1

µ (A)

(
n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

µ (A)

(
n

n− i

)


α .

(5.10)

A summary of the set of indicators extended to the Choquet inte-
gral is presented in Table 5.3. As it is shown, global indicators involve
the computation of all permutations of elements from N. Note that
it can be a cumbersome task whether the number of elements of N is
large. Unlike global indicators, local indicators are computationally
tractable even in the case of a large N.

5.4 indicators with respect to a linear combination of

capacities

5.4.1 Linearity features of the extended indicators

Let me denote any global or local indicator associated with a Cho-
quet integral with respect to a capacity µ as F(µ). My intention is
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Table 5.3: Summary of new indicators extended to the Choquet integral.

Indicator Analytical expression

Global
degree of
balance

BalG,[a,b] (Cµ) = (b−a) ·ωG (µ)+µ (N) ·a

Local
degree of
balance

BalL,[a,b] (Cµ) = (b−a) ·ωL (µ)+µ (N) ·a

Global di-
vergence

DivG (Cµ) =

n∑
i=1

(
i− 1

n− 1
−ωG(µ)

)2
·



∑
A⊆N

|A|=n−i+1

µ (A)

(
n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

µ (A)

(
n

n− i

)


Local di-
vergence

DivL (Cµ) =

n∑
i=1

(
i− 1

n− 1
−ωL(µ)

)2
· (µ (Aid,i)−µ (Aid,i+1))

Variance
indicator

D2G (Cµ) =
1

n
·
n∑
i=1



∑
A⊆N

|A|=n−i+1

µ (A)

(
n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

µ (A)

(
n

n− i

)


2

−
µ(N)2

n2

Rényi
entropy
(α 6= 1)

HG,α (Cµ) =
1

1−α
· log2


n∑
i=1



∑
A⊆N

|A|=n−i+1

µ (A)

(
n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

µ (A)

(
n

n− i

)


α

to assess the expressions of F(λ1 · µ1 + λ2 · µ2), where λ1, λ2 ∈ [0, 1]
and µ1,µ2 are capacities defined on N. If the indicator is linear with
respect to capacities then F(λ1 · µ1 + λ2 · µ2) = λ1 · F(µ1) + λ2 · F(µ2)
must hold.

Linearity of the degree of orness and the degree of balance

The global and the local degrees of orness are both linear with re-
spect to capacities. From expressions (5.1) and (5.2) with µ = λ1 ·
µ1 + λ2 · µ2, and noting that (λ1 · µ1 + λ2 · µ2) (A) = λ1 · µ1 (A) + λ2 ·
µ2 (A) for anyA ∈ 2N, then it is deduced that ωG (λ1 · µ1 + λ2 · µ2) =
λ1 ·ωG (µ1)+ λ2 ·ωG (µ2) and ωL (λ1 · µ1 + λ2 · µ2) = λ1 ·ωL(µ1)+

λ2 ·ωL(µ2).

The linearity of the degree of balance (global and local) with respect
to capacities can be assessed using the above expressions and the fact
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that this indicator is a linear transformation of the degree of orness
(as shown in Section 5.3). The expression

Bal∗,[a,b]
(
Cλ1·µ1+λ2·µ2

)
= (b− a) ·ω∗(λ1 · µ1 + λ2 · µ2) + (λ1 · µ1 + λ2 · µ2) (N) · a

= λ1 · (b− a) ·ω∗(µ1) + λ1 · µ1 (N) · a
+λ2 · (b− a) ·ω∗(µ2) + λ2 · µ2 (N) · a

= λ1 ·Bal∗,[a,b] (Cµ1) + λ2 ·Bal∗,[a,b] (Cµ2) ,

(5.11)

holds for global and local indicators (i.e., either if ∗ = G or ∗ = L).
Thus, the degree of balance is linear with respect to capacities.

Non-linearity of the divergence, the dispersion, the variance indicator and
Rényi entropies

The divergence indicator is not linear with respect to capacities in
the general case, as can be deduced from expressions (5.5) and (5.6).
Nonetheless, a result that characterizes the geometric locus where the
divergence indicator satisfies linearity is presented in Belles-Sampera
et al. [2013c]. Although not explicitly proved, the lack of linearity of
the dispersion, the variance indicator and Rényi entropies is evident
due to the lack of linearity (in the general case) of functions ln(x), x2

and log2(x), respectively.

5.4.2 Application: inherited indicators of POWA operators

Indicators for the Probabilistic Ordered Weighted Averaging (POWA)
operator are derived. The POWA operator was introduced in Merigó
[2011], Merigó and Wei [2011] and Merigó [2012]. Let a vector ~w,
~w = (w1,w2, ...,wn) ∈ [0, 1]n, be such that

∑n
i=1wi = 1 and let

~p = (p1,p2, ...,pn) ∈ [0, 1]n be such that
∑n
i=1 pi = 1. In addition,

consider β ∈ [0, 1]. The POWA operator with respect to ~w,~p and β is
a mapping from Rn to R defined by

POWA~w,~p,β (x1, ..., xn) := β ·
n∑
i=1

xσ(i) ·wi+(1−β) ·
n∑
i=1

xσ(i) ·pσ(i),

(5.12)

where σ is a permutation of (1, 2, ...,n) such that xσ(1) 6 xσ(2) 6 ... 6
xσ(n), i.e. xσ(i) is the ith smallest value of x1, x2, ..., xn.

An alternative expression to (5.12) is

POWA~w,~p,β (x1, ..., xn) =
n∑
i=1

xσ(i) · vi,σ, (5.13)
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where vi,σ = β ·wi + (1− β) · pσ(i) for all i = 1, ..n. It is straightfor-
ward to see that vi,σ ∈ [0, 1] and

∑n
i=1 vi,σ = 1. Note that the POWA

operator can be understood as a weighted average between an OWA
operator and a WAM. When a random variable X that can take n dif-
ferent values denoted by {xi}i=1,...,n is such that P (X = xi) = pi for
all i = 1, ...,n, then the POWA operator can also be understood as a
weighted average between an OWA operator and the mathematical
expectation of the random variable X:

POWA~w,~p,β (~x) = β ·OWA~w (~x) + (1−β) ·WAM~p (~x)

= β ·OWA~w (~x) + (1−β) ·E (X) .
(5.14)

Alternatively, POWA operators may be viewed as convex combina-
tions of projections and order statistics. In other words, note that
expression (5.12) is equivalent to

POWA~w,~p,β (~x) = β ·
n∑
i=1

wi ·OSi (~x) + (1−β) ·
n∑
i=1

pi ·Πi (~x) ,

where OSi (~x) denotes the ith order statistic of ~x and Πi (~x) the ith
projection of ~x. Whether only projections have non zero weights, then
WAM are recovered; if only order statistics have non zero weights,
then POWA is actually an OWA operator.

Taking into account the relationship between OWA operators and
Choquet integrals (Section 5.1), expression (5.14) may be formulated
as POWA~w,~p,β = β · Cµ + (1 − β) · CP. The capacities µ and P are
normalized, where the former is symmetric and the latter a probabil-
ity. This expression is a convex combination of two Choquet integrals
that combines an OWA and a probabilistic perspective. Considering
now the linearity of Choquet integrals with respect to the capacity
(see Proposition 9(i) in [Grabisch et al., 2011]), the representation of
the POWA operator as a Choquet integral is directly derived as

POWA~w,~p,β = Cβ·µ+(1−β)·P . (5.15)
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Therefore indicators for the POWA operator may be defined as fol-
lows:

ω∗(POWA~w,~p,β) := ω∗(β · µ+ (1−β) ·P)
= β ·ω∗(µ) + (1−β) ·ω∗(P),

HY
(
POWA~w,~p,β

)
:= −β ·

n∑
i=1

φi (µ) · ln [β ·φi (µ) + (1−β) ·φi (P)]

−(1−β) ·
n∑
i=1

φi (P) · ln [β ·φi (µ) + (1−β) ·φi (P)] ,

Bal∗,[a,b](POWA~w,~p,β) := Bal∗,[a,b](Cβ·µ+(1−β)·P)

= β ·Bal∗,[a,b](Cµ) + (1−β) ·Bal∗,[a,b](CP),

Div∗(POWA~w,~p,β) := Div∗(Cβ·µ+(1−β)·P),

D2G(POWA~w,~p,β) := D
2
G(Cβ·µ+(1−β)·P),

HG,α(POWA~w,~p,β) := HG,α(Cβ·µ+(1−β)·P).

Note that the linearity properties of the degree of orness and the de-
gree of balance allow the degree of orness and the degree of balance
indicators to be defined for the POWA operator as linear combina-
tions of the indicators associated to the underlying OWA and WAM
operators. The dispersion, the divergence, the variance indicator and
Rényi entropies of the POWA operator are not linear combinations
of the dispersion, the divergence, the variance indicator and Rényi
entropies of the underlying OWA and WAM operators. Only in spe-
cial cases, such as those derived in Belles-Sampera et al. [2013c] for
the divergence, is linearity satisfied. Note that the dispersion and the
divergence for the POWA operator introduced in Merigó [2012] rep-
resents an alternative approach. There, the author proposes a linear
combination of these indicators for the underlying OWA and WAM
operators.

To conclude, I have derived indicators for the POWA operator. How-
ever, the POWA operator is only one of a set of possible examples.
For instance, the weighted ordered weighted averaging (WOWA) op-
erator introduced by Torra [1997] might also be considered and the
inherited indicators shown [Belles-Sampera et al., 2013d], due to the
relationship between the WOWA operator and the Choquet integral
with respect to particular capacities (see Theorem 4 in Torra [1998]).



6
O N T H E I M P L I C I T R I S K AT T I T U D E O F A
D I S T O RT I O N R I S K M E A S U R E

Up to my knowledge scarce attention has been paid to the implicit
risk attitude that the decision maker is assuming when using the VaR
and TVaR risk measures. Given a α-confidence level, the TVaRα(X)
is always more conservative than VaRα(X). This direct comparison
between the two risk measures can not be longer made if a higher
confidence level is associated to the VaR risk measure. For instance,
let suppose that the decision maker wants to compare the implicit
risk attitude between TVaR90%(X) and VaR95%(X). In that case it is
not easy to select the risk measure that involves the most conservative
attitude. Even more, what does it happen if the implicit risk attitude
of other risk measures different to these two quantile-based risk mea-
sures is studied? In this context a risk attitude comparison between
measures seems to be even less intuitive.

This chapter pursues to contribute into the study of the underly-
ing risk behavior in risk assessment. The study focus the attention
on the analysis of the risk attitude implicit into distortion risk mea-
sures, where the VaR and TVaR are particular cases of this class of
risk measures. The characterization of the implicit risk attitude of a
distortion risk measure is carried out by means of the computation of
aggregation indicators, as shown in Chapters 4 and 5, and a graph-
ical analysis based on the distortion function. It is argued that the
combination of these two tools provide a precise portrait of the un-
derlying risk behavior of a decision maker when using a particular
risk measure.

As it has been shown in previous chapters of this dissertation, dis-
tortion risk measures can be represented as Choquet integrals. In
Chapter 5 it has been argued that a way to describe the characteristics
of a discrete Choquet integral is using a set of aggregation indicators.
These indicators provide information regarding the features of the
underlying aggregation operator. Now, a risk-based interpretation of
aggregation indicators is provided in the context of risk assessment.
Particularly, the degree of orness associated to each risk measure is
estimated, and it is interpreted in terms of the risk attitude of man-
agers when they are using a risk measure in a particular context. The
quantitative information related to the aggregate risk attitude linked
to the risk measure provided by these indicators is investigated. It is
claimed that these indicators may be useful to characterize the overall
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risk behavior implicit in the risk measure.

The overall risk attitude only provides a partial portrait of the un-
derlying risk attitude implicit into the risk measure. It is reasonable
to suppose that decision makers are not worried about all random
events in the same way. Decision makers frequently give different
treatments to different random events. Note that some of these events
can represent benefits or affordable losses. Therefore, the overall risk
behavior of a risk measure has to be completed with local information
about the implicit risk attitude in front of a particular random event.
A quotient function based on the distortion function associated to the
risk measure is defined with this purpose. The quotient function is
graphically analyzed to investigate the risk attitude of the agent at
any point of the survival function when using a certain risk measure.
The graphical evaluation of the risk-appetite pattern of the manager
in the range of feasible values is the basis of the definition of two
concepts, absolute risk behavior and specific risk behavior.

An illustrative example of the risk behavior characterization im-
plicit in a distortion risk measure is included. The example focuses on
regulatory based risk quantification in the European insurance mar-
ket. The risk measure of reference in this framework is the VaR99.5%.
Therefore, it is supposed that the insurance risk manager pursues a
risk assessment equivalent to the regulatory reference returned by
the VaR99.5%. Two scenarios involving different worst losses are pro-
posed to investigate the performance of the VaR and the implicit risk
attitude that is associated to this risk measure. Using a real dataset, re-
serves are estimated by means of the VaR99.5% and the same amounts
are replicated with a set of equivalent GlueVaR. In the example it is
illustrated how the calibration process of GlueVaR parameters can be
performed to obtain equivalent values to the amount returned by the
VaR99.5%. The additional risk attitude information provided by the
GlueVaR measures in comparison to the VaR and its usefulness for
decision makers is examined. As a consequence, in this chapter the
applicability of GlueVaR risk measures on a real environment and
the fact that these risk measures may be useful complementary tools
to the VaR for evaluating risk in the European insurance context are
highlighted.

6.1 risk attitude of agents

The risk behavior of agents when they select a particular distortion
risk measure to assess the risk is analyzed here. The degree of orness
and a graphical analysis of the relative distortion associated to the risk
measure are two useful tools to characterize the risk attitude of agents.
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The former gives an aggregated indicator of the risk attitude of the
agent towards losses. The risk behavior is frequently not constant
over the whole range of losses. The agent’s risk behavior can be
examined in any interval of losses by a graphical inspection of the
relative distortion associated to the risk measure.

6.1.1 Degree of orness and risk attitude

The definitions of the degree of orness given in Section 5.2.2 of
Chapter 5 is here reminded. Let introduce expression (6.1) to provide
compact notation,

S
µ
i,∗ =


µ (Aid,n−i+1) if ∗ = L(
n

i

)−1

·
∑
A⊆N
|A|=i

µ (A) if ∗ = G , (6.1)

where L stands for local and G for global indicators. Remember
from previous definitions thatAid,n−i+1 = {mn−i+1, · · · ,mn}, where
N = {m1, . . . ,mn}.

The degree of orness pursues to summarize the importance of each
ith order statistic, i = 1, ...,n, in the aggregation process associated to
the Choquet integral with respect to capacity µ (sometimes noted as
Cµ). The degree of orness is computed as follows:

ω∗ (Cµ) =

n∑
i=1

(
i− 1

n− 1

)
·
[
S
µ
n−i+1,∗ − S

µ
n−i,∗

]
. (6.2)

Therefore, the degree of orness provides some kind of level of prefer-
ence inherent to such an aggregation function in a [0, 1] scale, where
0 represents the minimum and 1 the maximum order statistic. To
simplify notation, the difference S

µ
n−i+1,∗ − S

µ
n−i,∗ is denoted as wµi,∗,

which can be understood as the weight indicating the importance
given to the ith order statistic represented by the fraction i−1

n−1 , i =
1 . . . n.

The distinction between global and local indicators is related to the
ordering of input data, as it was shown in Chapter 5. In the case of the
local degree of orness, this level of preference related to order statistics
is computed assuming that input data (x1, x2, ..., xn) is increasingly
ordered, while global indicators do not make any assumption on the
ordering of input data. Note that the assumption of ordered data
associated to local indicators may be necessary when n is large. The
calculation of S

µ
i,G involves combinatorial numbers and it may have
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high computational costs if n is large.

To give some additional insights about the information on risk atti-
tude provided by the degree of orness, let me rewrite expression (6.2)
in the following way:

ω∗ (Cµ) =

n−1∑
i=1

1

n− 1
· Sµn−i,∗. (6.3)

If µ = g ◦ P, it is straightforward to check that next expressions hold:

S
µ
n−i,L = g (SX (xi)) = g(

n∑
j=i+1

pj)

S
µ
n−i,G =

(
n

n− i

)−1

·
∑
A⊆N

|A|=n−i

g(
∑
xj∈A

pj) .
(6.4)

Let me put the attention on the local degree of orness. When com-
bining expressions (6.3) and (6.4) one can deduce that ωL

(
Cg◦P

)
pro-

vides an approximation to the area under the function g. The level of
accuracy of the approximation would increase as larger is n, where
n is the number of different values. Figure 6.1.1 illustrates how the
local degree of orness approximates the area under the function g for
the mathematical expectation and the VaRα. Recall that the mathe-
matical expectation can be understood as a distortion risk measure
involving the identity function id as associated distortion function
g. The area under the id function is one half, so the local degree
of orness associated to the mathematical expectation should be ap-
proximately one half. In the case of the VaRα risk measure, the local
degree of orness linked to VaRα must be close to α for an enough
large value of n, since α is the value of the area under the graph of
ψα(u) = 1 [1−α 6 u 6 1]. In Figure 6.1.1 it is shown that the accu-
racy of the approximation depends on the size of n. The area under
the function g is computed by means of n rectangles, where each rect-
angle has a width equal to 1

n−1 . So, a more accurate approximation
of the area under g would be given as larger is n conditioned that a
larger set of distinct values of X is involved when n increases.

As far as the local degree of orness provides an accurate approx-
imation to the area under g, this quantity can be understood as an
indicator of the overall risk behavior of an agent. Decision-makers are
frequently classified as either risk averse, risk neutral or risk loving
agents. Note that a risk neutral agent would not distort the survival
function, so the associated distortion function linked to overall risk
neutrality should be the id function. The area under the id function
is one half and this value could be used as a benchmark of a neutral
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Figure 6.1: Approximation to the area under the distortion function given
by the local degree of orness. Up: the identity function id in the
case of the mathematical expectation. Down: distortion function
ψα of the VaRα risk measure (ψα(u) = 1 [1−α 6 u 6 1]).

overall risk attitude or behavior. An overall risk averse agent would
make an upper distortion of the survival function in accumulated
terms. In consequence, the area under g of an overall risk averse
agent should be larger than one half. Similarly, an agent would have
overall risk appetite if the area under g is lower than one half.

The interpretation of the global degree of orness is less intuitive
from a risk management perspective. Until some extent, one can
think that it returns a different approximation of the area under the
graph of g, which differs from the previous one in the fact that none
ordering on the set {p1,p2, ...,pn} is assumed or, equivalently, on the
input data set {x1, x2, ..., xn}. At each node i−1

n−1 , i = 1, ...,n the sur-
vival value is approximated as the average of

(
n
n−i

)
feasible survival
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values linked to the set {p1,p2, ...,pn}.

An alternative interpretation can be provided. Under the perspec-
tive of aggregation operators, the global degree of orness is inter-
preted as an index that computes the similarity of the Choquet inte-
gral with the maximum function. Remember that the global degree
of orness of an aggregation function is ranged between zero and one.
The global degree of orness takes one whether the weight wµn,G asso-
ciated to the maximum is equal to one and the remaining weights are
zero. It takes zero when the weight of the minimum w

µ
1,G is equal

to one and the rest are zero. So, the value of global degree of orness
indicates how the aggregation performed by the Choquet integral is
ranked between these two boundaries [see, for instance, Torra and
Narukawa, 2007; Fernández Salido and Murakami, 2003].

Adapting this interpretation to the risk measurement context, the
global degree of orness would provide a level of similarity between the
distorted survival function associated to the risk measure and the the-
oretical distorted survival function which returns the maximum loss.
Note that the maximum value is returned in the worst-case scenario,
i.e. the distorted survival function is equal to one in the range (0, 1]
and zero in zero (to be a distortion function). As lower is the global
degree of orness as more dissimilar is the distorted survival function
to the worst-case survival function. Therefore, an agent would be less
risk averse in aggregated terms as lower is the global degree of orness.

6.1.2 Graphical analysis of risk attitude

A graphical analysis is proposed to complement the examination
of risk attitudes of decision makers when using distortion risk mea-
sures. It was previously shown that the local and global degree of
orness could be interpreted as indicators of the overall risk behavior.
These indicators evaluate the accumulated distortion performed all
over the survival function. Unfortunately, these measures do not have
into account which part of the survival function was distorted. From
the point of view of the manager, of course, it is not equivalent to dis-
tort the survival probability associated to the right tail of the random
variable linked to losses or to distort the left tail. Additionally, all dis-
tortion functions with an area equal to one half would be linked to
overall risk neutrality, where the id function is only a particular case.
For instance, the median (the 50%-quantile or the VaR50% ) is another
risk measure whose distortion function ψ50%(u) = 1 [0.5 6 u 6 1] sat-
isfies that condition.
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An option is to define the risk behavior in absolute terms. An ab-
solute risk neutral agent should be the decision-maker who does not
distort any survival probability and, then, who use the id function as
associated distortion function, i.e. g(u) = id(u) = u for all 0 < u < 1.
An absolute risk averse agent should have associated a distortion func-
tion g such that g(u) > u, for all 0 < u < 1. And, in the same line,
an absolute risk loving agent should have a distortion function g such
that g(u) < u, for all 0 < u < 1. This definition of risk behavior is in
absolute terms in the sense that the relationship of ordering between
g(u) and u must be fulfilled in the whole range (0, 1). Note that these
considerations lead to a more restrictive definition of risk behavior
than the previous overall risk behavior. Under the definition of overall
risk behavior it is only required to fulfill the classification criterion in
aggregated terms. So, all absolute risk averse agents are overall risk
averse agents but the opposite does not hold.

The absolute risk behavior definition implies that the implicit risk
attitude of an agent is invariable over the range of values. Neverthe-
less, there are no reasons to have an unique risk attitude on the whole
range. An agent could have a different risk behavior depending on
the interval of values under consideration. The risk attitude implicit
in frequently used risk measures is not invariant. It is the case, for in-
stance, of VaRα. When using VaRα, a risk averse behavior is involved
in the interval [1−α, 1), but a risk loving attitude is associated to the
interval (0, 1− α). So, an absolute risk behavior can not be linked to
the VaRα risk measure. In those situations that the implicit risk atti-
tude is not similar all over (0, 1), the absolute risk behavior criterion
would not be an adequate classification.

The study of the risk behavior of agents when used a particular risk
measure is often more explanatory when it is locally investigated in
each particular area. Let me define the functionQg(u) on u ∈ (0, 1] as
the quotient between the distortion function g and the identity func-
tion, Qg(u) =

g(u)
u for all 0 < u 6 1. The Qg(u) allows the analysis

of the agent’s risk behavior at any survival probability point. It takes
non-negative values. This quotient function provides a function on
survival probabilities u which describes the distortion factor applied
at each u level by g.

The quotient Qg is a quantifier of the specific risk behavior of the
agent at any point. The quotient value represents the specific risk
attitude of the decision maker in comparison to the risk neutral atti-
tude of the agent who is confident with the survival probability. An
agent is risk neutral, risk averse or risk loving at point u if Qg(u)
is equal, higher or lower than one, respectively. The graphical anal-
ysis consists of plotting Qg(u) against the identity function, for all
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0 < u 6 1. Two examples are shown in Figure 6.2, where quotient
functions associated to VaRα and to TVaRα are displayed.

◦ ◦

•
1

1−α

0

1

1−α 1

Qψα

Qid ≡ 1

◦
1

1−α

1

0 1−α 1

Qγα

Qid ≡ 1

Figure 6.2: Quotient functions for VaRα (left) and TVaRα (right). Note that
they only differ on the interval (0, 1 − α). Qid is the quotient
function of the mathematical expectation E.

Let me emphasize that the quotient 1u , for all 0 < u 6 1, marks
out the maximum risk aversion frontier (as it can be deduced from
Figure 6.2). The function Qg(u) computes the ratio between the dis-
torted survival probability and the survival probability, so 1

u is the
maximum value attainable by Qg(u). Note that the function Qg(u)
is equal to 1 in the whole range for a completely risk neutral agent in
absolute terms (absolute risk neutral agent). So, values 0 < Qg(u) < 1
indicate a risk loving behavior of the agent at point u.

If the attention is focused on the Qg(u) associated to the VaRα, it is
shown that a radical risk attitude is implicit in the interval [1− α, 1)
which varies to the opposite extreme position in the interval (0, 1−α).
Indeed, maximum risk aversion is involved in [1 − α, 1) and maxi-
mum risk loving attitude in (0, 1 − α). Some similarities are found
when Qg(u) associated to the the TVaRα is examined. Two ranges
involving a different risk attitude are distinguished as well. Maxi-
mum risk aversion is involved in the interval [1−α, 1) and a constant
(non-boundary) risk aversion attitude is involved in (0, 1−α). Unlike
the VaRα, an absolute risk averse behavior is associated to the TVaRα
since Qg(u) > 1 or, equivalently, g(u) > u, for all 0 < u < 1.

To conclude, it is shown that the quotient function Qg can be used
to characterize the specific risk behavior of an agent at any point.
Note that the area under the quotient function Qg provides the same
information than the area under g, but now it is expressed on the ba-
sis of risk neutrality. This area can also be interpreted as a quantifier
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of the overall risk behavior, where an area equal to one indicates over-
all risk neutrality, an area larger than one overall risk aversion and an
area lower than one overall risk appetite. Remember that in the case
of the distortion function g, the classification criterion of overall risk
behavior was an area equal, larger or lower than one half.

In the case of a GlueVaRh1,h2
β,α , recall expression (1.3) in Chapter 1 for

the distortion function κh1,h2
β,α , which informs that it is the weighted

sum of the distortion functions of a TVaRβ, a TVaRα and a VaRα. Re-
call also the abuse of notation κω1,ω2

β,α used in expression (1.5). There-
fore,

Area(κω1,ω2
β,α )

= ω1 ·Area(γβ) +ω2 ·Area(γα) + (1−ω1 −ω2) ·Area(ψα)

= ω1 ·
(
1+β− 2α

2

)
+ω2 ·

(
1−α

2

)
+α .

An example of the graphical information provided by Qκω1 ,ω2
β,α

is re-
produced in Figure 6.3.
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Figure 6.3: Graphical information provided by Q
κ
ω1 ,ω2
β,α

.

6.2 an example on claim costs

The present section is devoted to illustrate how all previous find-
ings can be applied to characterize the underlying risk attitude in
practice. The illustration pursues to show real challenges faced by
European insurance undertakings. Particularly, it is devised to high-
light situations in which the implicit risk attitude linked to VaR is
not able to detect sensitive changes in potential worst losses. It is
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argued that the use of equivalent GlueVaR risk measures can be help-
ful to overcome this drawback. The section is structured as follows.
First, the risk assessment scenario is described. Next, the calibration
process to obtain equivalent GlueVaR risk measures is defined, and,
finally, outcome results obtained with a particular data set are shown.

6.2.1 Risk assessment in a scenario involving changes in worst losses

Imagine a risk management team of an European insurance com-
pany working under the rules of Directive 2009/138/EC of 25 Novem-
ber 2009 (known as Solvency II Directive). In this framework the VaR
with a confidence level α = 99.5% is required to assess the regulatory
capital.

Main concerns of the risk management team can be related to the
use of VaR as a risk measure, because of the lack of risk-based infor-
mation on worst losses intrinsic to this risk measure. Two firms with
remarkable differences in the amount of potential losses in adverse
events could be associated to the same risk value, although they are
not exposed to the same level of risk, so their disparities would be un-
observable by decision makers when their risks are evaluated by the
VaR measure. Alternatives to VaR99.5% that take into account worst
losses can be considered by risk managers. Traditional approaches
frequently lead to severely higher economic reserves. The manage-
ment team needs to find out a risk measure that generates similar
economic reserves than VaR99.5% for the overall risk faced by the
insurance company and, additionally, the management team needs
that this alternative risk measure provides risk-based information on
worst losses and that, hopefully, it satisfies appealing subadditivity
properties. This is a real practical problem because the Solvency II
Directive allows the insurance undertakings to look for such alterna-
tives (see Article 122(1) of the Directive).

6.2.2 Calibration of GlueVaR parameters

The four-parameter GlueVaRω1,ω2
β,α risk measures can be used as an

alternative to the VaR99.5%. Note that here the weights (ω1,ω2) in-
stead of the heights (h1,h2) are going to be used or, in other words,
expression (1.5) instead of expression (1.1) of the distortion function
of GlueVaR is going to be taken into account from this point forward.
To apply these measures in practice, it is needed to assign values to
the parameters that define the GlueVaR risk measure. All steps to
calibrate GlueVaR risk measures are here developed. The criterion
that is followed in the calibration procedure is to obtain the same
amount at risk with GlueVaR risk measures than the amount at risk
obtained with VaR99.5%. Moreover, the selection of the risk measure
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is restricted to the subfamily of GlueVaR risk measures which may
satisfy tail-subadditivity at a given confidence level.

The strategy to calibrate the parameters of the GlueVaR risk measure
is as follows:

A minimum and maximum admissible value of α and β con-
fidence levels should be determined, αmin and βmax. The se-
lection implies a trade-off between protection and competitive-
ness. The level of policyholders’ protection could be reduced
with a low αmin but it could entail higher tail-subadditivity im-
plications in practice. An increase of the βmax could involve
higher economic reserves and, therefore, policyholders protec-
tion would be increased but it could affect the insurer’s compet-
itiveness;

Let assume that Z random variable represents the overall risk.
A set of d× d constrained optimization problems is defined at
this step:

Pi,j : min
ω1,ω2

| GlueVaRω1,ω2
βj,αi

(Z) − VaR99.5% (Z) |,

subject to
0 6 ω1 6 1,

ω2 > 0,

ω1 +ω2 6 1

(6.5)

where i, j = 1, ...d, αi = αmin +
i− 1

d− 1
(βmax −αmin), βj =

αi +
j− 1

d− 1
(βmax −αi). Flexibility rises with d but computa-

tional costs too. Constraints are fixed to guarantee that the
GlueVaR satisfies αi-tail subadditivity.;

An optimization algorithm should be used to solve that set of
problems. Note that Pi,j problems could have not solutions. If
this was the case then optimization criteria should be revised,
involving a lower αmin, a higher βmax and/or a larger d. But
in general, if Pi∗,j∗ represents the problem for which the min-
imum value of the objective function is reached and

(
ω∗1,ω∗2

)
is the associated solution, then a GlueVaRω

∗
1,ω∗2

βj∗ ,αi∗
is found that

is a candidate to satisfy the αi∗-tail subadditivity property and
gives similar reserve values to those obtained with VaR99.5%

when applied to the overall risk of the company.

More than one GlueVaR solution would be frequently found. Al-
ternative combinations of parameters’ values would return the
same value of the objective function, or with insignificant differ-
ences. In this situation, solutions could be ranked in accordance
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with the underlying risk attitude involved. Aggregation indica-
tors are useful to characterize the underlying risk behavior of
the agent when using each risk measure.
Here, it is proposed to rank solutions depending on the value of
aggregation indicators associated to each optimal risk measure.
With this aim, local and global degrees of orness are computed
for (multiple) optimal GlueVaRω

∗
1,ω∗2

βj∗ ,αi∗
solutions. Two particular

GlueVaR measures among the set of solutions are of especial
interest:

lower-limit solution. Selection of the GlueVaR risk mea-
sure with the associated minimum degree of orness;

upper-limit solution. Selection of the GlueVaR risk mea-
sure with the associated maximum degree of orness.

In other words, boundaries of the local degree of orness and the
global degree of orness are detected or, as it has been shown in
this chapter, solutions with boundary overall risk behaviors are
identified. Optimal GlueVaR risk measures linked to bound-
aries would reflect extreme risk attitudes of agents when the
random variable Z is analyzed.

The calibration procedure is not the primary topic in this study. It
is not my intention to cover all possible calibration criteria. Other
options could have been followed in the selection procedure. The
VaR99.5% is chosen as risk measure of reference due to its real appli-
cation in practice, but the analysis could be easily extended to other
distortion risk measures, and confidence levels. Similarly, indicators
of the Choquet integral different to the degree of orness could be con-
templated. Some examples of such alternatives are the divergence
and the variance indicators shown in Chapter 5.

6.2.3 Results

An illustration of the analysis of implicit risk behavior is provided
under the framework previously described. The example involves
the calibration of GlueVaR risk measures for a real dataset. In the
example two loss random variables X1 and X2 affect a motor insur-
ance company. The aggregate risk faced by the insurer is the sum of
both random variables, Z = X1 + X2. The dataset used in Chapter
3 is chosen to illustrate the calibration procedure. Recall that it is
data for the cost of motor claims provided by a major Spanish motor
insurer. The sample consists of n = 518 observations of the cost of
individual claims in thousands of euros. The dataset contains X1 and
X2, which collect the cost of property damages and the cost of bodily
injury damages respectively. Total claim costs are the sum of both,
Z = X1 +X2. It is assumed that the insurer uses the VaR99.5% as risk
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measure to manage these risks.

One of the main objectives is to illustrate how information related
to the risk attitude of the agent when using VaR99.5% may be en-
riched by means of a set of comparable GlueVaR risk measures. Be-
fore dealing with the calibration of GlueVaR risk measures, first the
VaR99.5%(Z) and associated local and global degrees of orness are
computed. Due to the size of n the calculation of the global degree
of orness is a cumbersome task. For this reason, the value of the
indicator is approximated grouping data in n0 mass points, where
n0 = 20. Taking this remark into account, the risk measure value
is equal to VaR99.5%(Z) = 187.6119, the local degree of orness is
equal to ωL (VaR99.5%) = 0.9958and the global degree of orness is
ωG (VaR99.5%) ' 0.9974.Let me now modify the original dataset in
the following manner. The two pairs of bivariate losses (x1, x2) that
lead to the highest aggregated loss z are multiplied each of them by
10. That is, worst losses are artificially increased. Total claim costs
in the modified dataset are represented by the random variable Z∗,
and the value of the VaR99.5%(Z

∗) and associated degrees of orness
are computed. It is obtained that values of VaR99.5%, ωL and ωG
are equal in both scenarios, for the original and modified datasets.
These results are in accordance with the theoretical discussion devel-
oped in Section 6.1. Note that probabilities and n remain unchanged.
Only Z values located on the specific risk loving zone of VaR99.5% have
been modified. Based on this information, a risk manager comfort-
able with the implicit risk behavior linked to VaR99.5% is not aware
that he faces a sensitive increase of worst case risks. Or, until some
extent, one could think that a less risk averse agent is involved in the
risk assessment of the second scenario.

Let me now focus on the strategy to calibrate GlueVaR parameters.
The next steps are performed to obtain GlueVaR risk measures com-
parable to VaR99.5%(Z): a) the minimum and maximum values of
confidence levels are fixed at 90% and 99.9%, i.e. αmin = 90% and
βmax = 99.9%; b) the number of partitions is stipulated in d = 25,
so 625 optimization problems are considered; c) the empirical dis-
tribution function of total claim costs is used for the risk quantifica-
tion, and, finally, d) outcome GlueVaR solutions are obtained using
constrOptim function from rootSolve library in R. The same phases
are repeated for the modified random variable Z∗.

A set of optimal GlueVaR risk measures which return the same risk
value than VaR99.5% is found for each of these two particular con-
texts. In particular, 341 optimal solutions were found for the random
variable Z and 605 in the case of Z∗. Once a set of GlueVaR risk
measures is given, aggregation indicators are computed to character-
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ize the underlying overall risk attitude of agents when they applied
these risk measures. The attention is first focused on the local de-
gree of orness. Boundary values of the indicator and the associated
GlueVaR risk measures are reported in Table 6.1. Outcomes results
are shown for the original and modified datasets. Let me empha-
size that the maximum local degree of orness is equal to the local
degree of orness of the VaR99.5% in both scenarios. In fact, the opti-
mal GlueVaRω1,ω2

β,α solution with the maximum local degree of orness
is the VaR99.5%. Note that if ω1 = ω2 = 0 then ω3 = 1, so it holds
GlueVaR0,0

99.9%,99.5% = VaR99.5%. This result makes all the sense. It has
been argued in Section 6.1.1 that the local degree of orness is inter-
preted as an approximation of the area under the distortion function
g. The distortion function associated to the VaRα assigns one to sur-
vival values higher than (1 − α) and zero to the rest, so it has the
highest possible area. In other words, given a certain risk value, the
VaRα is the risk measure with the highest area under the associated
distortion function among all the distortion risk measures which re-
turn this value.

Table 6.1: Boundary values of local degree of orness of equivalent GlueVaR
risk measures to VaR99.5% for both Z (original dataset) and Z∗
(modified dataset). Parameters’ values of the associated GlueVaR
measure are displayed.

Minimum orness Maximum orness

Original
dataset

Modified
dataset

Original
dataset

Modified
dataset

Degree
of orness

0.9122644 0.8960470 0.9957627 0.9957627

α 90% 90% 99.5% 99.5%

β 99.9% 99.4875% 99.9% 99.5%

ω1 0.188 0.0386 0 0

ω2 1.21· 10
−6

8.12· 10
−7

0 0

Information related to the underlying overall risk behavior of the
agent can be improved with the minimum degree of orness. Table 6.1
shows that, for the original dataset, there exists an optimal GlueVaR
risk measure for which the area of the associated distortion function
is approximately 0.9122644. So, this GlueVaR risk measure gives an
equivalent reserve than VaR99.5% when it is applied to Z, but, in ag-
gregated terms, it involves a more moderate distortion of the original
survival distribution function. If the local degree of orness is under-
stood as an indicator of the overall risk aversion, it can be concluded
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that the agent could be less risk averse than he is supposed to be
using the VaR99.5% as risk measure. Even more, the minimum local
degree of orness falls to 0.8960470 when the risk value is quantified
for total claim losses in the second scenario. This result would indi-
cate that the underlying overall risk aversion of the agent could be
even lower whether the VaR99.5% risk measure is applied to Z∗ in-
stead of Z. This finding is more consistent with prior expectations
because the amount of reserves does not change but the modified-
data scenario is a more risky scenario involving larger worst losses.

The local degree of orness is an indicator of the overall risk behav-
ior linked to the distortion risk measure. It has been discussed in
Section 6.1.2 that this indicator evaluates the accumulated distortion
made over the survival distribution function. Additional elements
are required for a full understanding of the underlying risk behavior
of the agent. It is claimed that the degree of orness should be comple-
mented with the examination of the quotient function which allows
the analysis of the specific risk behavior at any point of the survival
function. Quotient functions associated to the optimal GlueVaR risk
measures reported in Table 6.1 are examined. Remember that Glue-
VaR risk measures can be understood as a linear combination of a
TVaRβ, a TVaRα and VaRα (see Section 1.4 in Chapter 1). Therefore,
note that all quotient functions are located in the upper risk-aversion
frontier in the range [0.10, 1), where Qg(u) = 1

u for u > 0.10. Plotting
quotient functions in [0.10, 1) do not provide information about dif-
ferences in the implicit risk behavior. To ease comparisons, quotient
functions are rescaled and their left-tails in range (0, 0.10] are plotted
in Figure 6.4.

Remarkable differences are observed on the specific risk attitude
implicit on the left-tail of quotient functions (Figure 6.4). Let me
first examine quotient functions of GlueVaR risk measures with the
highest local degree of orness. In both scenarios the Qg is the quo-
tient function associated to the VaR99.5%. The agent is maximum risk
averse at any point of the interval [0.5%, 1) and maximum risk lover
at (0, 0.5%). That means, the quotient function is located in the upper
frontier at range [0.5%, 1) and in the lower frontier at (0, 0.5%).

Distinct underlying risk behaviors are inferred when GlueVaR mea-
sures with minimum degree of orness are analyzed. Shaped patterns
of left-tails of quotient functions are undoubtedly different to that
linked to VaR99.5%. An interesting finding is that the Qg is not lo-
cated in boundaries at any point of the interval (0, 0.10). That means,
the risk averse attitude is not maximized in the range [0.5%, 0.10) but,
in return, the agent is more risk averse to worst losses in (0, 0.5%)

than when using VaR99.5%. Differences in the implicit risk attitude
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Figure 6.4: Quotient functions of optimal solutions with boundary local de-
grees of orness in both scenarios.
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between scenarios deserve some attention. In accordance with my
prior beliefs, the specific risk aversion of the agent is lower in the sce-
nario involving higher worst losses. It can be interpreted as an alert
that either a change on the risk behavior of the agent or a change on
faced risk is detected. Focusing on the original sample scenario, the
specific risk behavior implicit in the risk measure changes for survival
probabilities in the range (0, 0.10] as shown in Figure 6.4. Precisely,
a risk loving attitude underlies in the interval [0.02, 0.10), where quo-
tient function values stands below one (risk neutrality frontier). On
the opposite, a risk averse behavior is attributed in the range (0, 0.02),
although maximum risk aversion is not attained at any point. Let em-
phasize that a risk loving attitude is implicit in the whole tail range
for the modified sample scenario. Here, two different risk patterns
are also derived. A no-constant risk loving attitude is observed in the
range [0.5%, 0.10) while a constant risk loving behavior in (0, 0.5%).

Before concluding, it is convenient to appoint that the same anal-
ysis of the underlying risk behavior was performed for the global
degree of orness. The global degree of orness was computed to the
set of optimal GlueVaR risk measures and quotient functions of risk
measures with boundary indicators were displayed. Findings were
qualitatively the same than results obtained from the analysis of the
local degree of orness. To avoid an unnecessary extending of the
study they are not reproduced in the text. Interested reader may find
main results about the global degree of orness in the Appendix.
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7
A N O V E RW I E W O N C A P I TA L A L L O C AT I O N
P R O B L E M S

Capital allocation problems of insurance and financial institutions
arise when a management unit must distribute an amount among dif-
ferent business units. This amount may be the total costs faced by the
company, its solvency capital requirement or the total variable eco-
nomic compensation to be shared across business units, among other
examples. This kind of problems are frequent and relevant from an
Enterprise Risk Management (ERM) perspective, mainly if the risk
that each business unit faces is, somehow, taken into account for the
final allocation. Sometimes the capital allocation is merely notional,
as pointed out in Dhaene et al. [2012b]. This does not diminish the
importance of studying these problems at all, because the allocation
may be useful to conduct different business analyses in order to im-
prove the risk management.

There is a large number of academic works related to capital alloca-
tion problems. An extensive literature can be found discussing solu-
tions to capital allocation problems [see, among others. Denault, 2001;
Kalkbrener, 2005; Tsanakas, 2009; Buch et al., 2011; van Gulick et al.,
2012]. Some recent literature focuses on specific probability distribu-
tions of losses Cossette et al. [2012, 2013], risk dependence structures
Cai and Wei [2014], asymptotic of capital allocations based on com-
monly used risk measures Asimit et al. [2011] or modifications of the
optimization function to overcome limitations of allocations based on
minimizing the loss function [Xu and Hu, 2012; Xu and Mao, 2013].
To more precisely detail some recent contributions, You and Li [2014]
analyze capital allocation problems concerning mutually interdepen-
dent risks, mainly where they are tied through an Archimedean cop-
ula. Wang [2014] investigates the usefulness of the Tail Covariance
Premium Adjusted principle in the case of two business lines with ex-
ponentially distributed losses, where their dependence structure cor-
responds to a Farlie-Gumbel-Morgenstern copula. Zaks and Tsanakas
[2014] generalize the framework proposed in Dhaene et al. [2012b],
allowing the inclusion of different hierarchical levels of preferences
about risk in the final solution. And in Urbina and Guillén [2014]
several principles are examined to solve a capital allocation problem
related to operational risk. This list of academic contributions on cap-
ital allocation problems is not exhaustive. In fact, this topic is object
of ongoing research. Two very recent examples are Tsanakas and Mil-
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lossovich [2014] and Li and You [2015].

Main concepts and notations used all along the dissertation regard-
ing capital allocation problems are introduced in next section. These
are the building blocks on which the rest of the discussion is based
and represent a necessary starting point to go further in next chap-
ters. The overview on capital allocation problems is completed with a
description of some particularly interesting solutions and with a list
of properties that particular solutions to these problems may satisfy.

7.1 main concepts and notation

In general terms, a capital allocation problem may be understood
in the following way:

“An amount K > 0 has to be distributed across n ∈ N agents, and
the allocation must be a full allocation.”

Described in such a way, it seems reasonable to think about these
problems as disaggregation problems and, to some extent, as the op-
posite questions that are answered through aggregation operators.
Nevertheless, connections between capital allocation problems and
aggregation functions can be found, and such connections are shown
in next chapters.

Returning to capital allocation problems, several comments must
be made. First of all, on the risk management framework in which
this kind of problems arises. From my point of view, even the name
given to these problems is strongly related to the fact that risk man-
agers from the insurance and banking industries must determine, at
different levels of granularity, the contributions of agents to the risk-
based regulatory capital required to companies. In that sense, the
concept of agent must be understood in a broad way: it may be a
commercial agent, a business unit, a branch of the overall business or
even a particular guarantee included in a set of contracts. Nonethe-
less, it has to be noted that similar risk management problems are
faced by asset management firms when planning investment strate-
gies or when assessing performance of their investment portfolios. In
such contexts it is more usual to refer to these problems as risk attribu-
tion or risk budgeting problems [see, for instance, Grégoire, 2007; Rahl,
2012].

Secondly, it is important to list the main elements that play a role
in a capital allocation problem. My opinion on this particular issue
is that each one of these problems may be described by means of the
following elements:



7.1 Main concepts and notation 97

- The capital K > 0 to be distributed;

- The agents, indexed by i = 1, . . . ,n;

- Random variables linked to each agent, {Xi}i=1,...,n;

- Functions fi, i = 1, . . . ,n used to simplify the information pro-
vided by each Xi;

- A distribution criterion;

- Capitals Ki, i = 1, . . . ,n assigned to each agent as a solution to
the problem;

- The goal. Some examples are cost of risk allocation, reward to
riskless allocation or reward on risk&return allocation.

In words, a solution to a capital allocation problem is a set of n
capitals {Ki}i=1,...,n which add up to K, this is,

∑n
j=1 Kj = K (full allo-

cation). Capital Ki is the one assigned to the ith agent and it is related
to the risk Xi faced by that agent. Commonly risks Xi, i = 1, . . . ,n
are random variables representing losses. Usually a solution to a cap-
ital allocation problem is also known as a capital allocation principle.
One of the fundamental elements characterizing a capital allocation
principle is the distribution criterion, which drives the allocation. Dis-
tribution criteria may be classified under several perspectives, but a
relevant one is the proportionality perspective. Proportional alloca-
tion criteria are such that each capital Ki, i = 1, . . . ,n may be ex-
pressed as the product of capital K times a proportion of the form

fi (Xi)∑n
j=1 fj

(
Xj
) , where fi functions simplify all the information pro-

vided by risk Xi, either in a stand-alone way or in a marginal way with
respect to the rest of risks

{
Xj
}
j6=i. Therefore, the general expression

for a proportional allocation principle is

Ki = K ·
fi (Xi)
n∑
j=1

fj
(
Xj
) , i = 1, . . . ,n. (7.1)

Frequently, functions fi are risk measures or partial contributions to
the value that a risk measure assigns to the whole random loss under-
stood as S =

∑n
j=1 Xj. If fi are simply risk measures, the proportional

allocation principle is classified as an stand-alone one. On the other
hand, when dealing with {fi}i=1,...,n which represent partial contri-
butions to ρ (S) for a given risk measure ρ, the proportional alloca-
tion principle is known to be based on marginal or partial contributions.
The name is inherited by the fact that expression ρ (S) =

∑n
j=1 fj

(
Xj
)

holds. In such those cases, notation fi (Xi) = ρ (Xi | S) is going to
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be used and, therefore, the general expression for proportional allo-
cation principles based on partial contributions is

Ki = K ·
ρ (Xi | S)

ρ (S)
, i = 1, . . . ,n. (7.2)

Among proportional capital allocation principles, the main difference
between stand-alone principles and the ones based on partial con-
tributions is related to diversification effects. Stand-alone principles
do not take into account neither benefits nor penalizations on risk of
each ith agent due to fact that the agent belongs to a set of agents,
while principles based on partial contributions do.

Non-proportional allocation principles are such that an expression
like (7.1) for each of the assigned capitals Ki, i = 1, . . . ,n cannot be
achieved. An example of this kind of principles is the excess based allo-
cation principle shown in section 7.2.3. An important number of such
principles can be devised when using the so-called quadratic optimiza-
tion criterion in the framework provided by Dhaene et al. [2012b]. For
instance, principles like

Ki = ρi(Xi) + vi ·

K−

n∑
j=1

ρj(Xj)

 , (7.3)

where ρi, i = 1, . . . ,n are risk measures and vi are weights such
that

∑n
j=1 vj = 1, which satisfy that at least one of the vi, say vi0 ,

is not equal to ρi (Xi) /
(∑n

j=1 ρj
(
Xj
))

. In other words, there is an

i0 ∈ {1, . . . ,n} such that vi0 6= ρi0 (Xi0) /
(∑n

j=1 ρj
(
Xj
))

.

Last but not least, a major feature of a capital allocation problem is
its goal. Three sort of purposes are listed before: cost of risk, reward to
riskless and reward on risk&return. A brief description of each one fol-
lows. Other alternative goals may be considered. The aim of a capital
allocation problem with a cost of risk goal is to distribute a cost among
the agents by taking into account some measure of the risk faced by
each one of them. An example of such a cost of risk allocation should
be the disaggregation of the Solvency Capital Requirement (SCR) of
the whole business of an European insurance company under the
Solvency II regime among its lines of business. On the opposite side,
when the management team wants to stimulate a risk averse attitude
among the business units it has in charge, this management team
may adopt a compensation scheme based on the following idea: the
riskier the business unit is, the lesser the reward it receives. In such
a situation, a capital allocation problem with a reward to riskless objec-
tive is conducted. It is my opinion that this kind of problems rarely
appears in practice, but one can think about them theoretically. For
instance, it could be used to notionally distribute the contribution of
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each agent to the overall diversification benefit, where only there is
information about a final cost of risk allocation and the overall diver-
sification benefit. That is, where there is not information about each
individual diversification benefit. A much more usual situation is to
take into account reward on risk&return allocations, in order to better
reward those agents whose trade-off between return obtained and
risk faced is higher. Therefore, some return-on-risk measure seems to
be the natural choice of functions {fi}i=1,...,n to assign rewards under
this perspective.

Frequently I am going to denote a principle by ~K = (K1,K2, . . . ,Kn).
An abuse of notation is made because K is used both to denote the
vector ~K whose components are Ki and the amount to be distributed
among agents. Given an (absolute) capital allocation principle ~K with
K =

∑n
j=1 Kj, its relative counterpart is defined as ~x, where com-

ponents are xi = Ki/K and satisfy that
∑n
j=1 xj = 1. If there is

no room for confusion, upper-case letters mean absolute principles
while lower-case letters mean relative ones. This notation is going to
be extensively used in chapter 9.

7.2 review of some particular principles

A collection of particular principles is commented in this section.
This section does not pursue to be a deep review of principles found
in the literature. Both the selection and discussion of principles have
been purely driven by subjective criteria. In most cases, the principles
have been chosen in order to have a better understand of them. That
is, explaining them as a way to achieve this goal. The attention has
been paid to specific issues of each capital allocation principle, so an
irregular extension is found in the discussion of each principle.

7.2.1 The gradient allocation principle

This principle is also known as Euler allocation principle [McNeil
et al., 2005] or, from a game-theoretic perspective, as Aumann-Shapley
allocation principle [Denault, 2001]. According to Tasche [1999, 2004,
2007] capital allocation principles based on the gradient are the most
appropriate allocation principles to deal with risk adjusted returns.
As long as I believe that reward on risk&return allocations could be
specially useful in sound ERM systems, key elements of gradient al-
location principles and their usefulness as reward on risk&return allo-
cations are discussed hereinafter. In my opinion, the basic idea that
must be remarked is that the gradient allocation principle takes ad-
vantage of the Euler’s theorem on homogeneous functions applied
to positively homogeneous risk measures. Let me discuss this point,
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beginning with a necessary definition and the statement of a theorem.

Definition 7.2.1 (Homogeneous function of degree r). Let f be a func-
tion from Rn to R, n > 0.
f is homogeneous of degree r⇔ ∀λ ∈ R f(λ · ~u) = λr · f(~u) .

Theorem 7.2.1 (Euler’s theorem on homogeneous functions). Let f :

Rn → R be a differentiable function on Rn. Then,

f is an homogeneous function of degree r⇔
n∑
i=1

ui ·
∂f

∂ui
(~u) = r · f(~u) .

It has to be noted that a differentiable function f defined from Rn to

R has a gradient equal to ∇f (~u) =
(
∂f

∂u1
(~u) ,

∂f

∂u2
(~u) , . . . ,

∂f

∂un
(~u)

)
and, therefore, the right-hand side of the equivalence in Theorem
7.2.1 can be also written as < ~u,∇f (~u) >= r · f(~u), where <,> stands
for the interior product in Rn.

Consider now a positively homogeneous risk measure ρ. This
means that ρ (λ ·X) = λ · ρ (X) for all λ > 0 and for all X ∈ Γ . Now,
given a random vector ~X = (X1,X2, . . . ,Xn) ∈ Γn, consider the fol-
lowing function f~X as well:

(R+)n
f~X=ρ◦s //

s ,,

R

Γ
ρ

LL

~u 7→ s(~u) =

n∑
i=1

uiXi 7→ ρ (s(~u)) = ρ

(
n∑
i=1

uiXi

)
= f~X(~u)

(7.4)

Taking into account definition 7.2.1 restricted to (R+)n; that ρ is a
positively homogeneous risk measure; and that

∑n
i=1 uiXi ∈ Γ for all

~u ∈ (R+)n if ~X ∈ Γn, then the fact that f~X is an homogeneous function
of degree r = 1 is deduced. In such a case, applying Theorem 7.2.1 the
following expression holds:

f~X(~u) =

n∑
i=1

ui ·
∂f~X
∂ui

(~u) =< ~u,∇f~X (~u) > . (7.5)

If ~u = (1, 1, . . . , 1) then the sum
∑n
i=1 uiXi is the sum of all the

components of the random vector ~X. From this point forward, this
sum is denoted as S, so S =

∑n
i=1 Xi. If the following abuse of

notation is used

∂ρ

∂ui
(S) =

∂f~X
∂ui

(~u)|~u=(1,1,...,1) ,
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therefore expression (7.5) becomes

ρ(S) =

n∑
i=1

∂ρ

∂ui
(S) , (7.6)

which is the formula usually related to the underlying idea of the
Euler allocation principle.

Regarding the idea that the gradient allocation principle is reward
on risk&return compatible, let me first consider a particular Return
on Risk Adjusted Capital (RORAC) measure, and some concepts and
notations taken from Tasche [2007]:

Definition 7.2.2. The total RORAC of portfolio S =
∑n
i=1 Xi is defined by

RORAC(S) =
−E(S)

ρ(S)
,

where ρ is a risk measure and each random variable Xi, i = 1, . . . ,n repre-
sents a loss.

Definition 7.2.3. Given a portfolio S =
∑n
i=1 Xi and a set of contributions

ρ(Xi | S), i = 1, . . . ,n to the value of the risk of the portfolio measured by
ρ, i.e. ρ(S) =

∑n
i=1 ρ(Xi | S), the portfolio-related RORAC of each loss Xi

is defined by

RORAC(Xi | S) =
−E(Xi)

ρ(Xi | S)
, ∀i = 1, . . . ,n .

First thing to be noted is that, in common situations, numerators in
definitions 7.2.2 and 7.2.3 are positive, because the mathematical ex-
pectations of S and Xi, i = 1, . . . ,n will be, hopefully, negative: it may
be assumed that ith business unit does not expect losses, so E(Xi) < 0

due to the fact that positive values of Xi mean losses. Secondly, it has
to be remarked that definition 7.2.3 depends on both portfolio S and
partial contributions to ρ(S). Bearing these two previous definitions
in mind, let me now present what the RORAC compatibility is as
defined in Tasche [2007]:

Definition 7.2.4 (RORAC compatible risk contributions). Risk contri-
butions ρ(Xi | S), i = 1, . . . ,n are RORAC compatible if there are some
εi > 0, i = 1, . . . ,n such that

RORAC(Xi | S) > RORAC(S)⇒

RORAC(S+ hXi) > RORAC(S) for all 0 < h < εi

In words, this means that if the partial return&risk performance of
ith agent given by definition 7.2.3 is greater than the return&risk per-
formance of the overall portfolio given by definition 7.2.2 then the re-
turn&risk performance of the overall portfolio is improved by slightly
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increasing the position of ith agent in the portfolio. Alternatively, if
a RORAC(Xi | S) greater than RORAC(S) is found and contribution
ρ(Xi | S) is RORAC compatible, therefore the position on ith agent
should be increased in order to improve the overall performance of
the portfolio.

Assuming that it is possible to slightly increase the position of ith
agent in the portfolio, going from Xi to Xi · (1+h) with h ∈ (0, εi), the
necessary condition expressed in definition 7.2.4 can be understood
as equivalent to the following one

∂RORAC
∂ui

(s (~u))|~u=(1,1,...,1) > 0 , (7.7)

simply by computing

lim
h→0

1

h
[RORAC(S+ hXi) − RORAC(S)] .

Taking advantage of expression (7.7) the RORAC compatibility of
the gradient allocation principle can be proved.

Proposition 7.2.1. Suppose that ρ (s (~u)) and
∂f~X
∂ui

(~u) for all i = 1, . . . ,n

are strictly positive. A gradient allocation principle ~K ∈ Rn of the form

Ki = K ·
ρ (Xi | S)

ρ(S)
where risk contributions are ρ (Xi | S) =

∂ρ

∂ui
(S) for all

i = 1, . . . ,n, is such that all the risk contributions are RORAC compatible.

Proof of Proposition 7.2.1. Let me show that expression (7.7) holds
for each i = 1, . . . ,n:

∂RORAC
∂ui

(s (~u)) =
∂

∂ui

−E
(∑n

j=1 uj ·Xj
)

ρ
(∑n

j=1 uj ·Xj
)


=

∂

∂ui

[
−E

(∑n
j=1 uj ·Xj

)]
· ρ
(∑n

j=1 uj ·Xj
)

[
ρ
(∑n

j=1 uj ·Xj
)]2

−

[
−E

(∑n
j=1 uj ·Xj

)]
· ∂
∂ui

ρ
(∑n

j=1 uj ·Xj
)

[
ρ
(∑n

j=1 uj ·Xj
)]2

=

∂

∂ui

[
−E

(∑n
j=1 uj ·Xj

)]
· ρ (s (~u)) − [−E (s (~u))] ·

∂f~X
∂ui

(~u)

[ρ (s (~u))]2

=
−E (Xi) · ρ (s (~u)) + [E (s (~u))] ·

∂f~X
∂ui

(~u)

[ρ (s (~u))]2
.

As long as the denominator of the previous expression is always pos-

itive, therefore it is deduced that
∂RORAC
∂ui

(s (~u)) > 0 if and only
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if −E (Xi) · ρ (s (~u)) + E (s (~u)) ·
∂f~X
∂ui

(~u) > 0. Consider that both

ρ (s (~u)) and
∂f~X
∂ui

(~u) are strictly positive: these conditions may usu-

ally hold, because of dealing with risk values or risk contributions of
a portfolio of risky positions. Being this the case, this last expression
may be written as

−E (Xi)

∂f~X
∂ui

(~u)

>
−E (s (~u))

ρ (s (~u))
.

Moreover, where restricted to ~u = (1, 1, . . . , ) this last expression is
providing the following information:

∂RORAC
∂ui

(s (~u))|~u=(1,1,...,1) > 0, if and only if

−E (Xi)

∂ρ

∂ui
(S)

>
−E (S)

ρ (S)
⇔ −E (Xi)

ρ (Xi | S)
>

−E (S)

ρ (S)

⇔ RORAC(Xi | S) > RORAC(S) .�

Some final comments on the gradient allocation principle. It is an
elegant approach to proportional capital allocation principles based
on partial contributions, but it has, from my point of view, two main
drawbacks. On the one hand, the assumption that infinitesimal (or
very small) perturbations on the risky position of an agent can be
made is often not realistic in practice. Frequently, it is feasible that
limited small changes can be made but not arbitrarily small changes.
Being this the case, the compatibility of RORAC contributions should
be barely satisfied even for the risk contributions linked to the gradi-
ent allocation principle. The second limitation is related to the com-

putation of risk contributions
∂f~X
∂ui

(~u), where the value of the risk

measure ρ for sums s (~u), ~u ∈ Rn can not be expressed in an analytic
closed-form expression. This is, probably, the most frequent practical
situation. In most of those cases, some decisions must be taken in or-
der to do an allocation (nearly) based on the gradient. This drawback
is known in Tasche [2007], for instance, where the author shows how
the risk contributions of Xi to the VaRα of the portfolio calculated
using kernel estimators do not add up to the natural estimators of
VaRα of the portfolio S. Although differences tend to be small, this
kind of issues break the theoretical elegance of these principles when
they are applied in a real context.

7.2.2 Other proportional capital allocation principles based on partial con-
tributions

There are other examples of proportional capital allocation princi-
ples based on partial contributions fitting expression (7.2). Two exam-
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ples are given here, one from a probabilistic perspective and another
one from a game-theoretic perspective.

7.2.2.1 The covariance allocation principle

This principle is proposed, for instance, in Overbeck [2000]. It takes
into account the variance as the risk measure for the whole portfolio:
ρ(S) = V(S). The partial contribution of the ith agent Xi is the covari-
ance of Xi with respect to S, so ρ(Xi | S) = Cov(Xi,S). Therefore, this
principle is expressed as

Ki = K ·
Cov(Xi,S)

V(S)
, ∀i = 1, . . . ,n. (7.8)

Note that ρ(S) =
∑n
j=1 ρ(Xi | S) because of the (bi)linearity of the

covariance:

ρ(S) = V(S) = Cov(S,S) = Cov(
∑n
j=1 Xj,S)

=

n∑
j=1

Cov(Xj,S) =
n∑
j=1

ρ(Xi | S) .

This is an interesting case because, from the perspective of the Euler’s
Theorem on homogeneous functions, it can be understood in two dif-
ferent (but related) ways. First interpretation is as follows: take as
risk measure ρ the variance in expression (7.4), in order to interpret
the covariance principle similarly to a gradient principle. The result-
ing function f~X = V ◦ s is not an homogeneous function of degree
r = 1 but an homogeneous function of degree r = 2, because the variance
is not a positively homogeneous risk measure but satisfy the follow-
ing relationship: for all λ ∈ R and for all X ∈ Γ , V (λ ·X) = λ2 ·V(X).
From Theorem (7.2.1) this means that expression

2 ·V(

n∑
j=1

uj ·Xj) =
n∑
i=1

ui ·
∂V(
∑n
k=1 uk ·Xk)
∂ui

(7.9)

holds or, in other words, that[
1

2
· ∂V(

∑n
k=1 uk ·Xk)
∂ui

]
|~u=(1,1,...,1)

= Cov (Xi,S) .
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Let me check this last equivalence:

∂

∂ui
V(
∑n
j=1 uj ·Xj)

=
∂

∂ui
Cov

(∑n
j=1 uj ·Xj,

∑n
k=1 uk ·Xk

)
=

∂

∂ui

[∑n
j=1 uj ·Cov

(
Xj,
∑n
k=1 uk ·Xk

)]
=

∂

∂ui

[∑n
j=1

∑n
k=1 uj · uk ·Cov

(
Xj,Xk

)]
=

∂

∂ui
[
∑n
k=1 ui · uk ·Cov (Xi,Xk)

+
∑
j6=i
∑n
k=1 uj · uk ·Cov

(
Xj,Xk

)]
=

∂

∂ui

[
u2i ·Cov (Xi,Xi) +

∑
k6=i ui · uk ·Cov (Xi,Xk)

+
∑
j6=i
∑
k6=i uj · uk ·Cov

(
Xj,Xk

)
+
∑
j6=i uj · ui ·Cov

(
Xj,Xi

)]
= 2 · ui ·Cov (Xi,Xi) + 2 ·

∑
k6=i uk ·Cov (Xi,Xk)

= 2 ·Cov (Xi, s (~u))

If last expression is evaluated at ~u = (1, 1, . . . , 1) then the desired re-
sult is found.

The second interpretation allows to understand the covariance allo-
cation principle as a pure gradient allocation principle as explained
in section 7.2.1. The key is to consider as risk measure ρ in (7.4) the
covariance of a random variable with respect to the sum S of the com-
ponents of ~X. In other words, take as function f~X the following one:
f~X = Cov(·,S) ◦ s. As long as Cov(λ ·X,S) = λ ·Cov(X,S) for all λ ∈ R

and for all X ∈ Γ , f~X is an homogeneous function of degree r = 1 and
Theorem 7.2.1 may be applied in this case as in Proposition 7.2.1.

Finally, some comments on strengths and weaknesses of the covari-
ance principle may be pointed out. As a strength in front of other gra-
dient allocation principles, estimators of both V(S) and Cov(Xi,S) for
all i = 1, . . . ,n can be found satisfying that the sum of the estimated
covariances add up to the estimated variance of the overall portfolio,
whatever set of random variables {Xi}i=1,...,n is in place. In this sense,
the covariance principle skips the second drawback commented at the
end of the previous section. As a weakness, the allocation only takes
care of linear dependence structures between random variables Xi,
i = 1, . . . ,n, and may lead to negative allocated capitals Ki.

It has to be mentioned that recently published research [Wang,
2014] is inspired both by the covariance allocation principle and the
tail variance risk measure presented in Furman and Landsman [2006].
In there, the authors define what they call capital allocation principles
based on the Tail Covariance Premium Adjusted.
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7.2.2.2 The Shapley value principle and one of its simplifications

Another proportional allocation principle based on partial contribu-
tions can be derived by understanding the capital allocation problem
as a cooperative game in which capital K has to be fairly shared by
the agents, taking into account that the cost of a coalition is linked to
the risk that this coalition assumes. It is not the aim of this discussion
to go deeper in this interpretation, but it must be mentioned that the
key concept to find such a fair allocation is the Shapley value (some-
times referred to as Bondareva-Shapley value).

Let me use the following notations: N = {1, . . . ,n}, A ⊆ N denotes
a subset of N with cardinality a = |A| and rho (A) = ρ

(∑
k∈A Xk

)
. A

capital allocation principle based on the Shapley value is of the form
(7.2), where

ρ(Xi | S) =
∑

A⊆N\{i}

a! · (n− a− 1)!
n!

· [rho (A∪ {i}) − rho (A)] . (7.10)

Note that rho(N) = ρ(S). Additionally, it can be proved that ρ(S) =∑n
i=1 ρ(Xi | S) using the properties of the Shapley value. The contri-

bution of ith agent to the overall risk is, basically, a weighted average
of all the marginal contributions that ith agent makes on the risk of
each of the coalitions that can be obtained without ith agent. As it
can be deduced, this principle can be unfeasible where n grows due
to the high computational demand of each ρ(Xi | S). This is, for sure,
the main concern when trying to use this principle.

In order to avoid this drawback, some authors propose an alter-
native that is a simplification of this principle. In Balog [2010] this
alternative is called incremental principle. It is built reducing the terms
added up in expression (7.10) only to the one linked to the set N \ {i}.
In other words, the incremental principle is of the form (7.1) where

fi(Xi) = rho(N) − rho(N \ {i}) = ρ(S) − ρ(
∑
j6=i

Xj) ,∀i = 1, . . . ,n.

This principle assigns as partial contribution of ith agent the differ-
ence between the overall risk and the risk quantified in absence of
the ith agent. Until some extent, this principle can be considered as
an hybrid between a stand-alone proportional principle and a pro-
portional principle based on partial contributions: it seems clear that∑n
j=1 fj(Xj) 6= ρ(S) and, therefore, can not be considered a pure pro-

portional principle based on partial contributions. But, at the same
time, it also seems clear that some relationship between ith agent and
the rest of participants is taken into account by fi, so it can not be
considered a pure stand-alone proportional principle. In my opinion,
this hybridization and the loss of certain information is the price that
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must be paid in order to skip the computational deal of the Shapley
value for large n.

7.2.3 The excess based allocation principle

The last principle commented in this chapter is the one proposed
in van Gulick et al. [2012] and the reason is twofold. On the one hand,
because of its originality and, on the other hand, because of its non-
proportionality. Taken the authors’ own words [cf. page 29]

“The allocation rule that we propose determines the allocation that lexico-
graphically minimizes the portfolio’s excesses among a set of allocations that
satisfies two basic properties. First, no portfolio is allocated more risk capital
than the amount of risk capital that it would need to withhold if it were on
its own. Second, a portfolio is not allocated less than the minimum loss it
can incur”.

To better understand this principle, the following definition from
van Gulick et al. [2012] must be presented.

Definition 7.2.5 (Lexicographical ordering). For m ∈ N and any two
vectors ~x,~y ∈ Rn, ~x is lexicographically strictly smaller than ~y, denoted as
~x <lex ~y, if there exists an i 6 m such that xi < yi, and for all j < i it
holds that xj = yj. Moreover, ~x is lexicographically smaller than ~y, denoted
by ~x 6lex ~y, if ~x = ~y or ~x <lex ~y.

The authors are always considering a coherent risk measure ρ and
that the capital K to be shared among the agents is, in fact, equal to
ρ(S). They use notation N = {1, . . . ,n}. Being these preliminaries
established, the idea of the excess based allocation principle may be
outlined in four steps:

(i) Consider any capital allocation principle ~K such that
∑n
j=1 Kj =

ρ(S) and such that the following boundary conditions are satis-
fied for all i ∈ N: max{0, minω∈Ω Xi(ω)} 6 Ki 6 ρ(Xi). The set
of all the principles satisfying these conditions is called the set
of feasible principles. Let me note it as F.

(ii) Compute, for each feasible principle, the vector of dimension
2n consisting in ē(~K) = (E[

(∑
j∈A(Xj −Kj)

)
+
])A⊆N. So, there

is a component for each subset A ⊆ N, and each component is
the mathematical expectation of the random variable that repre-
sents the non-negative excess of capital that principle ~K assigns
to coalition A.

(iii) For each feasible principle ~K, order the components of ē(~K) in a
decreasing way. The ordered resulting vector in Rn is denoted
by θ[ē(~K)].
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(iv) The excess based allocation principle, denoted by ~KEBA, is the
feasible principle which lexicographically minimizes the θ[ē(~K)].
In other words, ~KEBA is chosen among all feasible principles as
the principle associated to the first position in set of the ordered
θ[ē(~K)], supposing that this order is similar to the one provided
by a librarian who was increasingly ordering vectors θ[ē(~K)]
alphabetically.

Obviously, last comment on step (iv) is not formal. A more precise
way to present the excess based allocation principle is by

~KEBA =
{
~K ∈ F | θ[ē(~K)] 6lex θ[ē(~C)] ∀~C ∈ F

}
, (7.11)

taking into account that the set at the right-hand side of expression
(7.11) is a single value set [as proved in van Gulick et al., 2012] and
that, therefore, there is an abuse of notation identifying a set consist-
ing on a single element with that element.

Although this perspective on the allocation procedure is quite in-
teresting, its computational cost when dealing with a large n should
make the calculation of the principle not affordable. With this respect,
this is a similar concern as the one stated for the capital allocation
principle based on the Shapley value.

Last comment regards properties that capital allocation principles
may satisfy. It is not my intention to go deep in this interesting ques-
tion. The interested reader is referred, for instance, to van Gulick et al.
[2012]. In there, several properties are defined for capital allocation
principles such that K = ρ(S) for a particular risk measure ρ which
is assumed to be coherent in the sense of Artzner et al. [1999]. That
list of properties for capital allocation principles is the following: no
diversification; riskless portfolio; symmetry; translation invariance;
scale invariance; continuity; and monotonicity with respect to the
concordance order.



8
C O N T R I B U T I O N S T O C A P I TA L A L L O C AT I O N
B A S E D O N G L U E VA R

In Section 7.1 of the previous chapter a set of elements to fully de-
scribe a capital allocation problem were identified. Nonetheless, two
of those elements are of main importance: the assignment criterion
and the functions used to simplify the information provided by each
random loss. So one could think that guidelines about how capital
should be shared among firm’s units are basically defined in terms
of two components: (1) a capital allocation criterion and (2) a risk
measure. The choice of the specific form that each component takes
is essential insofar as different capital allocation solutions result from
the combinations selected.

The Haircut allocation principle, for instance, combines a stand-
alone proportional capital allocation criterion with the classical Value-
at-Risk (VaR) measure; however, this principle was not originally in-
cluded in the general theoretical framework provided by Dhaene et al.
[2012b] in which most of the capital allocation principles that can be
found in the academic literature are accommodated. In this chapter it
is shown how the Haircut allocation principle also fits in this frame-
work.

Two new proportional capital allocation principles based on Glue-
VaR risk measures are proposed in next sections. A discussion fol-
lows on how allocation principles based on GlueVaR risk measures
are applied in practice and some of the implications of tail-subadditivity
are described.

8.1 risk capital allocation following the haircut prin-
ciple

In this section we consider the framework suggested by Dhaene
et al. [2012b]. This is a unifying framework in which a capital al-
location problem is represented by means of three elements: a non-
negative function (usually linked to a norm), a set of weights, and
a set of auxiliary random variables. However, the Haircut allocation
principle could not be fitted into this framework despite its simplicity.

Here, we propose a slight modification of the framework forwarded
by Dhaene et al. [2012b] by relaxing some of the conditions so as to

109



110 8 contributions to capital allocation based on gluevar

include the Haircut capital allocation principle.

Assume that a capital K > 0 has to be allocated across n business
units denoted by i = 1, ...,n. Following Dhaene et al. [2012b], any cap-
ital allocation problem can be described as the optimization problem
given by

min
K1,K2,...,Kn

n∑
j=1

vj ·E
[
ζj ·D

(
Xj −Kj
vj

)]
s.t.

n∑
j=1

Kj = K, (8.1)

with the following characterizing elements:

(a) a function D : R→ R+;

(b) a set of positive weights vi, i = 1, ...,n, such that
∑n
i=1 vi = 1;

and

(c) a set of random variables ζi, i = 1, ...,n, with E [ζi] < +∞.

Unlike the original framework provided by Dhaene et al. [2012b]),
a distinction is made in (c) so that each ζi is now no longer forced to
be positive with each E [ζi] equal to 1. Following this modification,
the Haircut capital allocation solution can be obtained from the mini-
mization problem (8.1). If a capital K > 0 has to be allocated across n
business units, the Haircut allocation principle states that the capital
Ki to be assigned to each business unit must be

Ki = K ·
F−1Xi (α)
n∑
j=1

F−1Xj (α)

∀i = 1, ...,n, (8.2)

where Xi is the random loss linked to the ith business unit, F−1Xi is the
inverse of the cumulative distribution function of Xi and α ∈ (0, 1) is
a given confidence level.

Let us consider di = min
{
d > 1 | 0 < |Md [Xi] | < +∞} for all i =

1, ...,n, where Md [Xi] = E
[
Xdi
]

is the moment of order d > 0 of ran-
dom variable Xi. Note that di > 1 for each i to face a feasible capital
allocation problem. In other words, if a business unit presents a ran-
dom loss with no finite moments, then the risk taken by that business
unit is not insurable.

The approach for fitting the Haircut allocation principle in the
framework linked to the optimization problem (8.1) can be summa-
rized as follows: if a constant ri must be expressed as ri = E [ζi ·Xi],
then using ζi =

(
Xdi−1i /Mdi [Xi]

)
· ri, a solution is found because

E [ζi ·Xi] = E
[(
Xdii /M

di [Xi]
)]
· ri = ri. Although this is an elegant

approach, the interpretation of the transformation made by ζi on Xi
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is intricate. I only recommend to follow this strategy when there is
no available alternative involving an interpretable ζi.

Proposition 8.1.1. Let us consider a confidence level α ∈ (0, 1). Then, the
three characterizing elements required to represent the Haircut allocation
principle in the general framework defined by (8.1) are:

(a) D(x) = x2,

(b) vi =
E [ζi ·Xi]
n∑
j=1

E
[
ζj ·Xj

] , i = 1, ...,n; and

(c) ζi =
Xdi−1i

Mdi [Xi]
· F−1Xi (α), i = 1, ...,n.

Proof of Proposition 8.1.1. In this setting it is straightforward to
show that the solution ~K = (K1,K2, ...,Kn) to the minimization prob-
lem (8.1) is the Haircut allocation solution expressed by (8.2). Dhaene
et al. [2012b] show that, if function D is the squared Euclidean norm
(D(x) = x2), then any solution to (8.1) can be written as

Ki = E [ζi ·Xi] + vi ·

K−

n∑
j=1

E
[
ζj ·Xj

] , for all i = 1, ...,n.

(8.3)

In this setting, vi = E [ζi ·Xi] /
∑n
j=1E

[
ζj ·Xj

]
for each i, so

Ki = E [ζi ·Xi] +K ·
E [ζi ·Xi]
n∑
j=1

E
[
ζj ·Xj

] −E [ζi ·Xi] = K ·
E [ζi ·Xi]
n∑
j=1

E
[
ζj ·Xj

] .

And, finally, for all i it is true that E [ζi ·Xi] = F−1Xi (α) because of (c).
Therefore, each Ki in the solution ~K is given by

Ki = K ·
F−1Xi (α)
n∑
j=1

F−1Xj (α)

.�

Some comments on vi weights and ζi auxiliary random variables
follow. These ideas concern expression (8.3), namely the general so-
lution of the optimization problem (8.1) when the squared Euclidean
norm is used as D function in the reference framework. Capital allo-
cation principles driven by (8.3) can be thought of as two step alloca-
tion procedures: in a first step, a particular amount (Ci = E [ζi ·Xi])
is allocated to each business unit and, as the sum of all these amounts
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does not necessarily equal K (i.e.,
∑n
j=1Cj 6= K), in the second step

the difference
(
K−
∑n
j=1Cj

)
is allocated to the business units con-

sidering weights vi. From this perspective, Ci capitals are expected
values of Xi losses restricted to particular events of interest and, there-
fore, ζi auxiliary random variables are used to select those events of
interest for each business unit. On the other hand, vi weights are
related to the second step of the procedure, indicating how the dif-
ference between K and

∑n
j=1Cj must be distributed among business

units. For a deeper interpretation of vi weights and ζi auxiliary ran-
dom variables in more general cases, the interested reader is referred
to Dhaene et al. [2012b].

8.2 proportional risk capital allocation principles us-
ing gluevar

Most of the proportional allocation principles found in the litera-
ture can be described in the framework suggested by Dhaene et al.
[2012b], where the three characteristic elements are the Euclidean
norm, weights vi = E [ζi ·Xi] /

(∑n
j=1E

[
ζj ·Xj

])
, and a set of ap-

propriate ζi, for all i = 1, ...,n. Following the notation used by these
authors, we deal with business unit driven proportional allocation
principles when ζi depends on Xi. If ζi depends on S =

∑n
i=1 Xi

then we have aggregate portfolio driven proportional allocation prin-
ciples. In the former case, the marginal risk contributions of business
units to the overall risk of the portfolio are not taken into account; in
the latter, they are. Adopting the notation introduced in the previous
chapter, principles belonging to the first category are here denoted
as stand-alone proportional allocation principles while principles in
the second category are denoted as proportional allocation principles
based on partial contributions.

In this chapter two new proportional capital allocation principles
are proposed using GlueVaR risk measures. Both principles share the
expressions for two of the three characterizing elements: D(x) = x2

and vi = E [ζi ·Xi] /
(∑n

j=1E
[
ζj ·Xj

])
, for all i = 1, ...,n. They differ

in the set of random variables ζi, i = 1, ...,n, which are presented
below for the case of continuous random variables Xi.
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8.2.1 Stand-alone proportional allocation principles using GlueVaR

Given two confidence levels α and β in (0, 1), α < β, and two
distorted survival probabilities h1 and h2, if ζi is fixed as

ζi = ω1 ·
1

[
Xi > F

−1
Xi

(β)
]

1−β
+ω2 ·

1

[
Xi > F

−1
Xi

(α)
]

1−α

+ω3 ·
Xdi−1i

Mdi [Xi]
· F−1Xi (α) , for all i = 1, ...,n,

(8.4)

then the stand-alone proportional allocation principle using as risk
measure the GlueVaRh1,h2

β,α can be represented in the modified capital
allocation framework. Components of the solution (K1,K2, ...,Kn) are
expressed as

Ki = K ·
GlueVaRh1,h2

β,α (Xi)
n∑
j=1

GlueVaRh1,h2
β,α

(
Xj
) , for all i = 1, ...,n. (8.5)

8.2.2 Proportional allocation principles based on partial contributions us-
ing GlueVaR

Similarly, if there exists a confidence level α∗ ∈ (0, 1) such that
F−1S (α) =

∑n
j=1 F

−1
Xj

(α∗), the proportional allocation principle based

on partial contributions using GlueVaRh1,h2
β,α can be fitted to the mod-

ified capital allocation framework. In this case, ζi has to be equal
to

ζi = ω1 ·
1
[
S > F−1S (β)

]
1−β

+ω2 ·
1
[
S > F−1S (α)

]
1−α

+ω3 ·
Xdi−1i

Mdi [Xi]
· F−1Xi (α

∗) , for all i = 1, ...,n.
(8.6)

Each component of the solution (K1,K2, ...,Kn) is then obtained as

Ki = K ·

[
ω1 ·

E
[
Xi | S > F

−1
S (β)

]
GlueVaRh1,h2

β,α (S)
+ω2 ·

E
[
Xi | S > F

−1
S (α)

]
GlueVaRh1,h2

β,α (S)

+ω3 ·
F−1Xi (α

∗)

GlueVaRh1,h2
β,α (S)

]
.

(8.7)

Alternatively, another approach can be considered. There exists
a set of confidence levels αj ∈ (0, 1) for all j = 1, ...,n such that
F−1S (α) =

∑n
j=1 F

−1
Xj

(
αj
)
. Therefore, the proportional allocation prin-

ciple based on partial contributions using GlueVaRh1,h2
β,α can also be
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fitted to the modified capital allocation framework. In this case, ζi
has to be equal to

ζi = ω1 ·
1
[
S > F−1S (β)

]
1−β

+ω2 ·
1
[
S > F−1S (α)

]
1−α

+ω3 ·
Xdi−1i

Mdi [Xi]
· F−1Xi (αi) , for all i = 1, ...,n.

(8.8)

Each component of the solution (K1,K2, ...,Kn) is then obtained as

Ki = K ·

[
ω1 ·

E
[
Xi | S > F

−1
S (β)

]
GlueVaRh1,h2

β,α (S)
+ω2 ·

E
[
Xi | S > F

−1
S (α)

]
GlueVaRh1,h2

β,α (S)

+ω3 ·
F−1Xi (αi)

GlueVaRh1,h2
β,α (S)

]
.

(8.9)

8.3 an example of insurance risk capital allocation

using gluevar on claim costs

The same dataset linked to the illustrative examples in Chapters
3 and 7 is used here. Three GlueVaR measures are shown in Table
8.1, corresponding to different risk attitudes. GlueVaR11/30,2/3

99.5%,95% re-
flects a balanced attitude, weighting TVaR99.5%, TVaR95% and VaR95%

equally. GlueVaR0,1
99.5%,95% corresponds to a scenario in which a zero

weight is allocated to VaR95%, the TVaR95% is overweighted and the
lowest feasible weight is allocated to TVaR99.5%. Finally, the third risk
measure considered, GlueVaR1/20,1/8

99.5%,95%, reflects a more conservative
attitude than that represented by using VaR95% on its own. Table 8.1
is divided into two blocks. In the first, risk was calculated for the
whole data set and in the second, contributions to the risk shown in
the first block coming only from the 5%-common tail were computed.
Recall the definition of the α-common tail provided in Chapter 2:
thus, in this second block, only the observations that lie simultane-
ously to the right of the 95% quantile of X1, X2 and X1 + X2 were
considered. The last column presents the concentration index, which
is the ratio of the risk of X1 +X2 divided by the sum of the risk of X1
plus the risk of X2. A concentration index smaller than one indicates
subadditivity and, hence, a diversification effect.

In this example, VaR95% and one of the GlueVaR measures are
not subadditive in the whole domain, because their associated dis-
tortion functions are not concave in the whole [0, 1] interval. How-
ever, GlueVaR11/30,2/3

99.5%,95%, GlueVaR0,1
99.5%,95% and GlueVaR1/20,1/8

99.5%,95% sat-
isfy tail-subadditivity at confidence level α = 95%. Note that the
concentration indexes smaller than one reveal that all the measures
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Table 8.1: Risk assessment of claim costs using GlueVaR risk measures

X1 X2 X1 + X2 Difference(∗) Concentration
index

(a) (b) (c) (a)+(b)-(c) (c)/((a)+(b))

Whole domain

VaR95% 38.8 6.4 47.6 -2.4 1.05

TVaR95% 112.5 18.4 125.5 5.4 0.96

TVaR99.5% 440.0 54.2 479.0 15.2 0.97

GlueVaR11/30,2/3
99.5%,95% 197.1 26.3 217.4 6.0 0.97

GlueVaR0,1
99.5%,95% 76.1 14.4 86.2 4.3 0.95

GlueVaR1/20,2/8
99.5%,95% 61.7 9.4 72.1 -1.0 1.01

Common 5%-right tail(∗∗)

VaR95% 0.0 0.0 0.0 0.0 –

TVaR95% 75.3 12.5 76.8 11.0 0.88

TVaR99.5% 411.3 46.7 426.7 31.3 0.93

GlueVaR11/30,2/3
99.5%,95% 162.2 19.7 167.8 14.1 0.92

GlueVaR0,1
99.5%,95% 37.9 8.7 37.9 8.7 0.81

GlueVaR1/20,2/8
99.5%,95% 23.4 3.0 24.2 2.2 0.92

(∗) Benefit of diversification.

(∗∗) Part of the risk measure arising from the intersection of 5%-right tails of

X1, X2 and X1+X2.
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are subadditive in the tail.

Next, a capital allocation application is illustrated where total cap-
ital has to be allocated between the two units of risk, X1 and X2.
Table 8.2 shows particular allocation solutions for two proportional
risk capital allocation principles using GlueVaR.

A similar behavior is observed for the three GlueVaR risk mea-
sures. The capital is allocated primarily to risk X1 regardless of
the allocation criterion. Note that the percentages of capital allo-
cated to X1 are higher when the partial contribution criterion is used
and a confidence level α∗ = 95.37% is set such that F−1S (95%) =

F−1X1 (95.37%) + F−1X2 (95.37%). This is an expected result, because the
right tail of X1 is fatter than that of X2.

Let me focus on capital allocation solutions involving the partial
contribution criterion in which confidence levels αj, j = 1, 2 are not
forced to be equal across the risk units. A notable fall in the risk al-
located to X1 is observed if a partial contribution criterion with no
constant level α∗ and GlueVaR1/20,2/8

99.5%,95% is chosen.

This result is obtained because the impact on the quantile of X1
is the opposite of that on X2 when αj, j = 1, 2, are estimated as
F−1S (95%) = F−1X1 (α1) + F

−1
X2

(α2). These confidence levels are equal
to α1 = 94.78% and α2 = 97.49%. This particular risk measure is
not subadditive in the whole domain and is tail-subadditive for these
data. In fact, the associated quantiles for individual variables are
VaR94.78%(X1) and VaR97.49%(X2), so the risk contribution of X1 is
underweighted compared to the risk of X2.

8.4 further comments on these contributions

Three comments are included to close this chapter. They go from
particular notes to general observations. First of all, let me present a
comment related to the gradient allocation principle. Using the nota-
tion introduced in this chapter and in the previous ones, the gradient
allocation principle can be fitted into the framework of reference fol-
lowing a similar strategy than the one in Proposition 8.1.1, but chang-

ing F−1Xi (α) by
∂ρ

∂ui
(S) for all i = 1, . . . ,n. Or, in other words, letting

be D(x) = x2, vi = E [ζi ·Xi] /
(∑n

j=1E
[
ζj ·Xj

])
and

ζi =

(
Xdi−1i

Mdi [Xi]

)
· ∂ρ
∂ui

(S)
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Table 8.2: Proportional capital allocation solutions using GlueVaR for the
claim costs data

Proportion
allocated to
X1

Proportion
allocated to
X2

Stand-alone criterion

GlueVaR11/30,2/3
99.5%,95% 88.21% 11.79%

GlueVaR0,1
99.5%,95% 84.07% 15.93%

GlueVaR1/20,1/8
99.5%,95% 86.79% 13.21%

Partial contribution criterion with constant(a) α∗

GlueVaR11/30,2/3
99.5%,95%

(a)
90.75% 9.25%

GlueVaR0,1
99.5%,95%

(a)
87.83% 12.17%

GlueVaR1/20,1/8
99.5%,95%

(a)
88.06% 11.94%

Partial contribution criterion with non constant(b) αj
GlueVaR11/30,2/3

99.5%,95%
(b)

89.93% 10.07%

GlueVaR0,1
99.5%,95%

(b)
87.83% 12.17%

GlueVaR1/20,1/8
99.5%,95%

(b)
81.55% 18.45%

(a) A confidence level α∗ such that F−1S (95%) = F−1X1
(α∗)+F−1X2

(α∗). In this
case α∗ = 95.37%.

(b) Confidence levels αj ∈ (0,1) are selected to satisfy F−1S (95%) =

F−1X1
(α1)+ F

−1
X2

(α2). In this case α1 = 94.78% and α2 = 97.49%.
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for all i = 1, . . . ,n. Therefore, it may be assumed that the gradient
allocation principle is a proportional principle based on partial contri-
butions, although the proposed fitting in the framework of reference
scarcely informs about the driving idea of the gradient criterion.

The second comment regards non-proportional capital allocation
principles using GlueVaR. It has to be mentioned that it is possible
to effortless obtain non-proportional principles using any of the aux-
iliary random variables ζi described in expressions (8.4),(8.6) or (8.8).
If function D(x) = x2, therefore the only thing that must be taken
into account is that at least one of the weights vi, i = 1, . . . ,n must be
different of E [ζi ·Xi] /

(∑n
j=1E

[
ζj ·Xj

])
. Under these restrictions,

whatever set of auxiliary random variables ~ζ is chosen among expres-
sions (8.4),(8.6) or (8.8), non-proportional capital allocation principles
~K using GlueVaR are obtained through expression (8.3).

Third and last comment is about links between aggregation func-
tions and the framework proposed by Dhaene et al. [2012b]. As it has
been noted several times before in this dissertation, capital allocation
problems are disaggregation problems and therefore, until some ex-
tent, the goal of capital allocation principles is the opposite of the goal
of aggregation functions, which is a summarizing purpose. Nonethe-
less, the optimization perspective taken into account in expression
(8.1) involves aggregation operators in the objective function. For in-
stance, one can thought of the function

E

 n∑
j=1

vj · ζj ·D
(
Xj −Kj
vj

)
to be minimized in (8.1) as the composition of two main aggregation
operators: one aggregation operator is given by expression

n∑
j=1

vj · ζj ·D
(
Xj −Kj
vj

)
and the other one is the mathematical expectation E. It has to be
noted that a similar perspective is proposed in Xu and Hu [2012],
where the first aggregation function may be represented as

Φ(L(~K)) = Φ(

n∑
j=1

φ(Xj −Kj)) ,

being φ a function usually linked to a distance and Φ an increasing
function (which could be the identity function, for instance). Think-
ing about capital allocation principles as solutions to optimization
problems has become usual in the recent literature [see, for instance
You and Li, 2014; Zaks and Tsanakas, 2014]. Aggregation functions
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may be defined as solutions to optimization problems, as proposed in
De Baets [2013]. Therefore, some relationships between capital alloca-
tion principles and particular aggregation functions may be explored
on further research.





9
C A P I TA L A L L O C AT I O N P R I N C I P L E S A S
C O M P O S I T I O N A L D ATA

In Chapter 7 it was shown that given an (absolute) capital allocation
principle ~K with K =

∑n
j=1 Kj, its relative counterpart is defined as ~x,

where components are xi = Ki/K. This chapter is devoted to show the
main relationship between capital allocation problems and aggrega-
tion operators introduced in this dissertation, which is based on think-
ing about the relative capital allocation principles as belonging to the
(standard) simplex Sn = {~z ∈ Rn | zj > 0, j = 1, . . . ,n,

∑n
j=1 zj = 1}

provided with a particular structure of vector and metric space. Fol-
lowing a nomenclature often used by geologists, any vector ~z ∈ Sn is
called a composition and any set of vectors in the simplex is called com-
positional data. First thing to do is to present this vector space and the
particular distance chosen to give Sn a metric space structure. Sec-
ondly, some comments on how to move forward and backward from
relative capital allocation principles to compositions are provided. Af-
terwards, some applications to exploit the established relationship are
discussed and illustrated with an example extracted from the capital
allocation literature. To close this chapter, ideas on further lines of
research linked to understand a relative capital allocation principle
as a composition are presented.

9.1 the simplex and its vectorial and metric structure

Recall that a set of vectors needs two operations (often called vec-
tor addition and scalar multiplication) to be considered a vector space
over R. Moreover, these operations must satisfy particular properties.
The vector addition must be commutative, associative, and must have
a neutral element and, for each vector, its additive inverse. The scalar
multiplication for a vector space over R combines a real number with
a vector and this combination must belong again to the set of vectors.
Additionally, a neutral element for the scalar multiplication must ex-
ist, and the distributivity of the scalar multiplication with respect to
the vector addition and, on the other side, the distributivity of the
vector addition with respect to the scalar multiplication must be both
satisfied.

Following the notation used in Aitchinson and Egozcue [2005], in
the case of the set Sn the vector addition is called perturbation (de-
noted by ⊕) and the scalar multiplication is called powering (denoted

121
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by �). These operations are defined by expressions (9.1) and (9.2),
respectively, where ~x,~y ∈ Sn and λ ∈ R:

~x⊕ ~y =

(
x1 · y1∑n
j=1 xj · yj

, . . . ,
xn · yn∑n
j=1 xj · yj

)
, (9.1)

λ�~x =

(
xλ1∑n
j=1 x

λ
j

, . . . ,
xλn∑n
j=1 x

λ
j

)
. (9.2)

It is not my purpose to prove that the simplex Sn provided with
operations ⊕ and � has a linear vector space structure of dimension
n − 1 but to take advantage of this fact. Before going on, let me
introduce another commonly used concept regarding compositional
data, the closure function C. Although notation C has been used in
previous chapters to refer to the Choquet integral, it is my believe that
there is no room for confusion in this context. The closure function
applied to a vector in Rn returns another vector whose components
are the components of the original vector divided by the sum of all
the components of the original vector. Keeping this in mind, the
following expressions hold:

~x⊕ ~y = C [(x1 · y1, . . . , xn · yn)] , λ�~x = C
[
(xλ1 , . . . , xλn)

]
.

Moreover, assuming the vector space structure of (Sn,⊕,�), the
neutral element ~0 of ⊕ can be deduced. Given a vector ~x such that
xi > 0 for all i, the relationship ~x⊕~r = ~0 informs that ~r is the inverse
of ~xwith respect to the perturbation operation, so it should be written
as ~r = (−1)�~x. In other words,

~r =

(
1/x1∑n
j=1(1/xj)

, . . . ,
1/xn∑n
j=1(1/xj)

)
.

Then, using this last expression and (9.1),

~0 = ~x⊕~r = C

[
(

1∑n
j=1(1/xj)

, . . . ,
1∑n

j=1(1/xj)
)

]
=

(
1

n
, . . . ,

1

n

)
,

so the neutral element ~0 of the perturbation operation is the compo-
sition with all of its n elements equal to 1/n. I would like to remark
that, as far as I know, there is still some discussion on how composi-
tions with null components should be considered under this frame-
work. This is something to remind in real world applications.

Finally, in order to consider the vector space (Sn,⊕,�) as a metric
space, a distance is needed. The simplicial metric defined in Aitchin-
son [1983] is considered. Given two compositions ~x,~y, the distance
between them from the point of view of the simplicial metric is

∆(~x,~y) =

[
n∑
i=1

[
ln
(

xi
GM(~x)

)
− ln

(
yi

GM(~y)

)]2]1/2
, (9.3)
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where GM(~z) denotes the geometric mean of the components of ~z

vector as in Table 4.1 from Chapter 4.
An equivalent expression for ∆(~x,~y) is the following:

∆(~x,~y) =

 1
2n

n∑
i=1

n∑
j=1

[
ln
(
xi
xj

)
− ln

(
yi
yj

)]21/2 . (9.4)

This simplicial metric is linked to a norm || · ||∆ and to an inner
product <,>∆ in a usual way: given two vectors ~x,~y ∈ Sn,

∆(~x,~y) =|| ~x	 ~y ||∆=
√
< ~x	 ~y,~x	 ~y >∆,

where ~x	 ~y = ~x⊕ [(−1)� ~y], and

< ~u,~v >∆=
1

2n

n∑
i=1

n∑
j=1

[
ln
(
ui
uj

)
· ln
(
vi
vj

)]
. (9.5)

Under all this framework, as it was shown in De Baets [2013], the sim-
plicial arithmetic mean of the compositional data ~x1,~x2, . . . ,~xm may be
understood as a solution of a minimization problem, in the following
way:

AM∆ (~x1, . . . ,~xm) =
1

m
�

m⊕
k=1

~xk = arg min
~z

m∑
k=1

|| ~z	~xk ||2∆ , (9.6)

where �
⊕m
k=1~xk means the perturbation of the set of m composi-

tions {~xk}k=1,...,m.
At first sight, this is an equivalent expression of that of the arithmetic
mean of m real numbers u1,u2, . . . ,um:

AM (u1, . . . ,um) =
1

m
·
m∑
k=1

uk = arg min
v

m∑
k=1

|| v−uk ||22 , (9.7)

so the simplicial metric presented in this section is the natural one
if computation of (simplicial) arithmetic means are going to be con-
ducted or, in other words, expression (9.6) contains the proper defini-
tion of the arithmetic mean of ~x1 . . . ,~xm in the metric space that has
been denoted by (Sn,⊕,�,∆). From the definitions of both perturba-
tion and powering operations, an explicit expression for the simplicial
arithmetic mean presented in (9.6) is

AM∆ (~x1, . . . ,~xm) = C [(G1, . . . ,Gn)] ,

where Gk = GM(x1,k, x2,k, . . . , xm,k), i.e.

Gk = [Πmi=1xi,k]
1/m ∀k = 1, . . . ,n .

(9.8)
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9.1.1 From capital allocation principles to compositional data and back-
wards

Recall again that an absolute capital allocation ~K has its relative
counterpart ~x, satisfying that xi = Ki/K for all i = 1, . . . ,n. Note that
it is satisfied that

∑n
j=1 xj = 1. It could happen that some component

would be negative and then ~x /∈ Sn. For the rest of the chapter it
is assumed that ~x has strictly positive components. This assumption
allows to avoid negative or zero values on components of ~x, which
are an inconvenient for practitioners (the negative ones) and for op-
erating in the simplex (the zero ones). Briefly, I assume that ~x is a
composition with non-zero components.

At this point, some concepts introduced in Chapter 7 to classify
absolute capital allocation problems may be related to some of the
concepts introduced in this chapter. For instance, think about propor-
tional capital allocation principles as stated in expression (7.1). The
relative counterpart ~y of the absolute principle ~K = (K1, . . . ,Kn) may
be interpreted as the closure of the vector with components equal to
fi(Xi), i = 1, . . . ,n:

~K s.t. Ki = K ·
fi(Xi)
n∑
j=1

fj(Xj)

,∀i = 1, . . . ,n

⇔ ~y = C [(f1(X1), . . . , fn(Xn))] .

(9.9)

Moreover, when dealing with stand-alone proportional principles,
last expression helps to clarify why none dependence structure be-
tween random variables {Xi}i=1,...,n is taken into account for the allo-
cation: In a first step, it is assigned to agents the amount of risk faced
by each one of them, which is summarized in fi(Xi), i = 1, . . . ,n.
Subsequently, this amount of risk is scaled by K.

9.2 perturbation inverse , simplicial distance and sim-
plicial arithmetic mean applied to capital alloca-
tion problems

In the previous section it has been shown that relative capital al-
location principles and compositions may be naturally linked. Once
this relationship is established, the idea is to take advantage of the
geometric structure of the simplex to enrich the description of each
capital allocation principle.



9.2 Simplicial concepts applied to capital allocation 125

9.2.1 Cost of risk, reward to riskless and reward on return&risk principles

Given a relative capital allocation principle ~x linked to a cost of risk
goal, one could think to depart from it to allocate rewards instead of
costs, so to fulfill an allocation with a reward to riskless objetive. An
intuitive idea is to invert each of the relative components, in order
to reflect the inverse nature of the allocation (a relative low cost al-
located to ith agent should mean a relative high reward assigned to
it). But one must normalize the sum of all 1/xi in order to provide
a full allocation of reward amount K. This normalization is nothing
else than using the closure function. Note that all components of ~x
must be different than 0 in order to be invertible.

The above idea has a natural interpretation in the simplex Sn. Given
a relative capital allocation principle ~x, let ~r be the closure of the vec-
tor with components 1/xi for i = 1, . . . ,n. As it has been shown in
Section 9.1, ~r is the inverse of ~x with respect to the perturbation oper-
ation: ~r = (−1)�~x.

Using risk based capital allocation principles to determine penal-
izations or rewards may lead to undesirable behaviors of the agents.
Basically, agents would be compelled to conservative business deci-
sions because taking less risk results in a better reward. In order to
prevent it, some return-on-risk measure seems to be preferable to as-
sign rewards. It has been emphasized several times that reward on
return&risk allocations may be of great relevance for a sound ERM
system. But at this point this kind of allocation has only been briefly
discussed in Section 7.2.1 of Chapter 7, when presenting the RORAC
compatibility of the gradient allocation principles. Note now that,
bearing in mind all of the building blocks put in place, there are
some direct absolute reward on return&risk capital allocation princi-
ples that may be considered:

Depart from a given ~x = C [~y] where

yi =
RORAC(Xi | S)

RORAC(S)
∀i = 1, . . . ,n

and then obtain the absolute principle ~K by

Ki = K · xi ∀i = 1, . . . ,n.

(9.10)

The idea is to better reward those agents whose relative RORAC with
respect to the overall RORAC of the portfolio is higher. Note that dif-
ferent definitions of return-on-risk measures than expressions (7.2.3)
and (7.2.2) in Chapter 7 for RORAC(Xi | S) and RORAC(S) may be
considered in (9.10), and the objective of the allocation would not
change.
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9.2.2 Ranking principles using the simplicial distance

It has to be reminded that ~0 ∈ Sn is the composition with all of its n
components equal to 1/n. As there is a simplicial metric or distance ∆
which helps to constitute Sn as a metric space, the distance between
any relative capital allocation principle ~x and ~0 can be computed, or
even the distance between any pair of relative capital allocation prin-
ciples belonging to Sn. It is argued that both uses of the simplicial
distance can be useful to compare different capital allocation princi-
ples in a quantitative way.

For instance, when comparing to ~0, a quantitative indicator of how
far is the allocation principle from a neutral assignment is obtained,
because ~0 ∈ Sn is linked to a capital allocation principle in which no
matter how much risk is each agent assuming: each one of them has
assigned the amount K/n. On the other hand, if an allocation princi-
ple is taken as a reference (for instance, a gradient allocation princi-
ple as explained in Section 7.2.1 of Chapter 7), the distance between
the composition linked to this principle and any other composition
quantifies how far is the principle linked to it from the allocation of
reference. In other words, imagine that four allocation principles are
in hand for the same amount K and the same n agents: a haircut
allocation principle (8.2), ~Kh; a covariance allocation principle (7.8),
~Kc; a stand-alone proportional allocation principle based on GlueVaR
(8.5), ~Ks; and a gradient allocation principle related to (7.5), ~Kg. If
their respective relative allocation principles ~xh,~xc,~xs and ~xg are in
Sn and each of the components of ~xt, t ∈ {h, c, s,g} is strictly positive,
then it is possible to rank them in, for instance, two different ways:

1) Compute ∆(~xt,~0) for t ∈ {h, c, s,g} and increasingly order these
values. In this case, the higher the order position the further the
allocation is from a neutral allocation;

2) Choose one of the principles as reference (for instance, the gra-
dient allocation principle). Compute ∆ (~xt,~xg) for t ∈ {h, c, s}.
These three values are quantifying, until some extent, how far
is each principle from the allocation of reference.

As long as the simplicial distance ∆ is an aggregation function,
these are direct applications of an aggregation function to capital al-
location problems. The idea of using ∆ to quantitatively rank capital
allocation principles is one of the contributions of this dissertation
with regards to the relationship between capital allocation problems
and aggregation functions.
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9.2.3 Averaging principles using the simplicial arithmetic mean

Sometimes several management teams provide different allocations
regarding the same assignment problem. The situation commented at
the end of last section could be one of such examples. In general, let
us imaginemmanagement teams providingm absolute capital alloca-
tion principles ~Kk of amount K to the same n agents, and let ~xk be the
relative capital allocation principles linked to ~Kk, k = 1, . . . ,m. Once
again, taking advantage of the geometric structure of Sn, the concept
of averaging the m points of view on the same allocation problem is
easily derived. In other words, the expression

~z = AM∆ (~x1, . . . ,~xm)

is the proper definition of the arithmetic mean of ~x1 . . . ,~xm in the
metric space (Sn,⊕,�,∆) as it was shown in (9.6). Once the rela-
tive arithmetic mean is obtained, what remains to do is assigning an
amount of K̄i = K · zi monetary units to each ith agent, i = 1, . . . ,n, in
order to provide an allocation principle which balance the opinions
of all the involved management teams.

The arithmetic mean is one of the very first examples given when
talking about aggregation operators. In my opinion, it is interesting
to have found a way of aggregating different capital allocation princi-
ples through an arithmetic mean, because it may be the base to extend
such a summarizing idea to other aggregation operators as the WAM
or the OWA shown in Chapter 4, for instance.

9.2.4 An illustration

In order to illustrate the applications described in this section with
an example, some values from the numerical illustration in van Gulick
et al. [2012] are taken into account. The authors consider an insurance
company that holds portfolios of three types of life insurance:

a (deferred) single life annuity that yields a yearly payment in
every year that the insured is alive and older than 65;

a survivor annuity that yields a yearly payment in every year
that the spouse outlives the insured, if the insured dies before
age 65;

a death benefit insurance that yields a single payment in the
year the insured dies, if the insured dies before age 65.

Without going deep into the details, the number and gender of the
insureds in each of the portfolios is 45, 000 males, 15, 000 males and
15, 000males, respectively. Four capital allocation principles are shown
in van Gulick et al. [2012], while only three of them are going to be
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used here because one of them leads to negative allocated values for
some of the agents. Using the notation introduced in Chapter 7, the
authors consider n = 3 agents, being each one of them the three
aforementioned portfolios of life insurance. The random variables
linked to each agent are the present values of the liability payments
to all insureds in each portfolio, and are represented by Xsl, Xsurv
and Xdb, respectively. The capital amount to be distributed among
the agents is K = TVaR99%(S), being S = Xsl + Xsurv + Xdb, and
two proportional allocation criteria and one non-proportional crite-
rion are considered in this illustration. This leads to three princi-
ples: a proportional allocation principle (7.1) based on the standard
deviation as risk measure; the gradient allocation principle, which
may be also considered proportional as it has been shown in Sec-
tion 7.2.1 of Chapter 7; and the non-proportional excess based allo-
cation principle proposed by the authors. The figures published in
van Gulick et al. [2012] are used to going forward. In that sense,
K = TVaR99%(Xsl + Xsurv + Xdb) = 376, 356 and the allocated capi-
tals by each principle are shown in Table 9.1. Relative capital alloca-
tion principles linked to the absolute ones are also presented in Table
9.1. All the displayed relative principles belong to the simplex S3 and
have non-zero components.

Table 9.1: Absolute capital allocation principles taken from van Gulick et al.
[2012] and their relative counterparts.

Single life
annuity
(Xsl)

Survivor
annuity
(Xsurv)

Death
benefit
(Xdb)

Relative principles

Proportional principle based
on the st.dev.

89.20% 6.57% 4.23%

Gradient allocation principle 96.84% 2.12% 1.04%

Excess based allocation prin-
ciple

95.74% 2.79% 1.47%

Absolute principles

Proportional principle based
on the st.dev.

335,724 24,725 15,907

Gradient allocation principle 364,477 7,979 3,900

Excess based allocation prin-
ciple

360,324 10,495 5,537
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To begin with, the inverse of these capital allocation principles are
deduced following Section 9.2.1. Recall that the idea was to build
allocation principles with a reward to riskless goal from allocation
principles whose original objectives were cost of risk ones. As it has
been argued before, probably the most suitable situation in which
risk managers may be interested in allocation principles with reward
to riskless objectives is when assigning risk diversification benefits to
the agents, mainly where the only available information is a capital
allocation principle with a cost of risk goal and an overall amount
of diversification benefit. As in van Gulick et al. [2012] the follow-
ing values TVaR99%(Xsl) = 364, 477, TVaR99%(Xsurv) = 11, 657 and
TVaR99%(Xdb) = 6, 346 are provided, the diversification benefit can
be computed as

(364, 477+ 11, 657+ 6, 346) − 376, 356 = 382, 480− 376, 356 = 6, 124.

Therefore, in order to put in value the perturbation inverse alloca-
tion, absolute principles shown in Table 9.2 are such that the shared
reward is the diversification benefit, i.e. K = 6, 124. Note that, as
long as in this case the individual diversification benefits could be
calculated for all principles, the results shown in Table 9.2 do not
match with the ones that could be deduced in a direct way. For in-
stance, individual diversification benefits linked to the gradient al-
location principle are, from Table 9.1 and values of TVaR99%(Xsl),
TVaR99%(Xsurv) and TVaR99%(Xdb), the following ones: for the sin-
gle life annuity 364,477-364,477=0; for the survivor annuity,11,657-
7,979=3,678; and for the death benefit, 6,346-3,900=2,446. These val-
ues may be interpreted directly as an absolute allocation principle of
the overall diversification benefit, which leads to the relative princi-
ple (0.00%, 60.06%, 39.94%). There are significant differences between
this relative principle and the one associated to the gradient criterion
in Table 9.2, (0.71%, 32.60%, 66.69%). The first one is mainly focused
on the absolute diversification benefit of each agent, while it is my be-
lief that the second one takes also into account the relative riskiness
of each agent with respect to the rest of agents.

Using the relative principles displayed in Table 9.1 two rankings
of principles are deduced, following the proposal in Section 9.2.2. If
symbols σ,∇, EBA and 0 are now used to refer to the proportional
principle based on the standard deviation, the gradient allocation
principle, the excess based allocation principle and the neutral allo-
cation principle, respectively, then the following simplicial distances
may be calculated from expression (9.3):

∆σ,0 =
√
3.557+ 0.522+ 1.354 = 2.3308 ,

∆∇,0 =
√
7.764+ 1.072+ 3.066 = 3.4499 ,

∆EBA,0 =
√
6.608+ 0.932+ 2.576 = 3.1806 ,

(9.11)
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Table 9.2: Perturbation inverse relative capital allocation principles and their
absolute counterparts assuming that the amount shared is 6,124.

Single life
annuity
(Xsl)

Survivor
annuity
(Xsurv)

Death
benefit
(Xdb)

Relative principles

Proportional principle based
on the st.dev.

2.80% 38.05% 59.15%

Gradient allocation principle 0.71% 32.60% 66.69%

Excess based allocation prin-
ciple

1.00% 34.19% 64.81%

Absolute principles

Proportional principle based
on the st.dev.

172 2,330 3,622

Gradient allocation principle 44 1,996 4,084

Excess based allocation prin-
ciple

61 2,094 3,969

and

∆σ,∇ =
√
0.8107+ 0.0978+ 0.3452 = 1.1197 ,

∆EBA,∇ =
√
0.0466+ 0.0049+ 0.0213 = 0.2698 .

(9.12)

Isolated values are not too much informative but allows to rank the
principles with respect to one principle of reference, as it is graphi-
cally shown in Figure 9.2.4. From results (9.11), it can be deduced that
in this example the gradient allocation principle is the one furthest
from the neutral allocation, followed by the EBA allocation and the σ
one in this order. Looking at Table 9.1 this ranking seems reasonable.
On the other hand, imagine that you do not have the information
(9.11) and decide to take as principle of reference the ∇ one. From
results (9.12), you can find that the EBA one is much similar to the
reference principle than the σ principle. Again, looking at Table 9.1
it seems reasonable. Last comment on results (9.11) and (9.12) is that
the rankings deduced from them are not contradictory.

As a final application, let us average the three relative allocations
displayed in Table 9.1 using the strategy explained in Section 9.2.3. In
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∇

3.4499

0.2698

1.1197EBA

3.1806 σ

2.3308

0

Figure 9.1: Ranking of capital allocation principles using the simplicial dis-
tance in the worked example. Solid lines are linked to the result-
ing classification where comparing against the neutral allocation
principle 0. Dotted lines are linked to the distances where the
principle of reference is the gradient principle ∇.

other words, let ~xσ, ~x∇ and ~xEBA denote each of the three relative
allocations displayed in Table 9.1, this is:

~xσ = (89.20%, 6.57%, 4.23%),

~x∇ = (96.84%, 2.12%, 1.04%) and

~xEBA = (95.74%, 2.79%, 1.47%).

Let me compute the three (n = 3) geometric means of the three (m =

3) components of these relative allocations and call them G1, G2 and
G3, respectively. Their values are

G1 = (89.20% · 96.84% · 95.74%)1/3 = 93.87%,

G2 = (6.57% · 2.12% · 2.79%)1/3 = 3.39% and

G3 = (4.23% · 1.04% · 1.47%)1/3 = 1.88%.

Following expression (9.8), last thing to be done is to calculate the
value of C [(G1,G2,G3)], the closure of the vector with components
being the previous geometric means G1,G2 and G3. Recall that with
this last step the value of AM∆

(
~xσ,~x∇,~xEBA

)
is obtained. This sim-

plicial average is a relative allocation principle. Both relative and
absolute results are shown in Table 9.3.

As it can be checked, the components of the simplicial average are
not equal to the arithmetic mean of the components of the original
absolute (or relative) principles. Actually, the components of the sim-
plicial average are linked to the geometric mean of the components
of the original relative principles.
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Single life
annuity
(Xsl)

Survivor
annuity
(Xsurv)

Death
benefit
(Xdb)

AM∆ (relative principle) 94.71% 3.42% 1.88%

Average (as an absolute prin-
ciple)

356,431 12,859 7,066

Table 9.3: Average of the three capital allocation principles from Table 9.1.
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D I S C U S S I O N A N D F U T U R E C H A L L E N G E S

The first contribution of this dissertation is the introduction of Glue-
VaR risk measures, a family belonging to the more general class of dis-
tortion risk measures. One of the advantages of GlueVaR over other
alternatives that can be found in the actuarial literature is its simplic-
ity. This new family combines the most popular risk measures in both
insurance and financial sectors and considers more than just one pa-
rameter to capture managerial and regulatory attitudes towards risk.
Additionally, it is possible to work out analytical closed-form expres-
sions for many statistical distributions that are frequently used in
insurance and financial applications. As it is discussed in this the-
sis, the GlueVaR family should enhance the way in which regulatory
capital requirements are calculated, as GlueVaR can incorporate more
information about agents’ attitudes to risk and can be useful in help-
ing regulators and practitioners reach a consensus. The incorporation
of qualitative information in decision making tools is essential for risk
managers and, as such, the GlueVaR risk measures can play a key role
in achieving this goal.

The definition of the tail-subadditivity property for a pair of risks
may be considered the second contribution. It has been argued that
this property is related to the ability of risk measures of become sub-
additive in extremely adverse scenarios. Going deeper in its implica-
tions should be a line of further research.

It has been shown that distortion risk measures, OWA and WOWA
operators in the discrete finite case are mathematically linked by
means of the Choquet integral. Aggregation operators are used as
tools to summarize human subjectivity in decision making and have
a direct connection to risk measurement of discrete random variables.
From the risk management point of view, the main contribution is
that it is shown how distortion risk measures may be derived -and
then computed- from ordered weighted averaging operators. The
mathematical links presented in Chapter 4 may help to interpret dis-
tortion risk measures under the information sciences’ perspective. It
is shown that the aggregation preference of the expert may be mea-
sured by means of the local degree of orness of the distortion risk
measure. Regulatory capital requirements and provisions may then
be associated to the aggregation attitude of the regulator and the risk
managers, respectively. The mathematical link between risk measure-
ment and information sciences’ concepts presented in this thesis of-
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fers an extra perspective in quantitative risk management.

New indicators for helping to characterize the discrete Choquet
integral have also been presented in this dissertation. The aim is com-
plementing those already available, so that a more complete formula-
tion might be provided which covers a wider range of situations. This
need arises because at times it is necessary to highlight different fea-
tures of the aggregation function than those provided by the degree
of orness and the entropy of dispersion. The degree of balance, the
divergence, the variance indicator and Rényi entropies as indicators
within the framework of the Choquet integral have been introduced
in Chapter 5, following this spirit. It has been shown that these four
indicators, which are commonly used for the OWA operator, can also
be considered for the Choquet aggregation, and we have discussed
the potential of these indicators to provide supplementary informa-
tion to decision makers.

The indicators for characterizing the discrete Choquet integral were
defined from a local and a global perspective. The local perspective
proposed in the definition of these indicators may be preferred to
the global one in certain applications, those in which the number of
values to be aggregated is large and an increasing ordering of input
values can be assumed, like in some statistical or actuarial applica-
tions. It is the case, for instance, of the example shown in Chapter 6.

Despite the fact that, in practice, risk management decisions are
usually taken in the discrete and finite world, some comments must
be made on the possibility to extend the results to the context of
countable or continuous random variables. Countable and continu-
ous cases have received much less attention in information systems
literature in comparison to the discrete and finite case. Up to the best
of my knowledge, proposals of aggregation functions with countable
[Grabisch et al., 2009] or continuous [Yager, 2004b; Yager and Xu,
2006] arguments are scarcely used by fuzzy experts. A next natural
step in this research might be the analysis of countable probability
spaces. Considering convenient aggregation operators with count-
able arguments and setting additional conditions regarding conver-
gence of series, it seems that results shown in Chapters 4 and 5 might
be extended to the countable case.

A major contribution derived from the relationship between distor-
tion risk measures and aggregation operators is the characterization
of the risk attitude implicit into the choice of a risk measure and a
tolerance level. It has been pointed out that the risk value returned
by a distortion risk measure basically depends on the characteristics
of the random variable, which are collected into the survival distri-
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bution, and the associated distortion function. These two parts are
disaggregated in Chapter 6 and the attention has been focused on
the analysis of the distortion function. The distortion function can
be understood as a weighting function of the survival probabilities.
Therefore, the risk attitude implicit in a distortion risk measure is
to some extent contained in its distortion function. Two aggregation
indicators and a quotient function are used to describe alternative
features of the distortion function. It is shown that these mathemati-
cal devices give insights of the implicit risk behavior involved in risk
measures.

In short, distortion risk measures may be understood as belonging
to a class of aggregation functions (Choquet integrals) and a set of
indicators is developed in the literature for helping to characterize
aggregation functions (as shown in Chapter 5). The local and global
degrees of orness are then interpreted under a risk assessment per-
spective and it is shown that these indicators provide approximations
of the area under the distortion function of the distortion risk mea-
sure. The size of the area reveals the accumulated distortion made
over the survival distribution. So, these indicators provide valuable
information about the overall risk attitude when a particular distor-
tion risk measure is applied. A conclusion drawn from the analysis is
that the degree of orness and the area under the distortion function
can be interchangeably used to study the overall risk behavior.

Risk attitude implicit in a risk measure is not only determined by
the area size of the distortion function. As important as the size of
the overall distortion is how this aggregated distortion is distributed
through the range of values. The risk information provided by aggre-
gation indicators should be complemented by the quotient function
defined in Chapter 6, which is the fraction between the distortion
function and the identity function. It is argued that a graphical anal-
ysis of this quotient function gives local information of the specific
risk behavior associated to the distortion risk measure at any point of
the range of values of the loss. In addition, the area under the quo-
tient function provides similar overall risk information than the area
under the distortion function, so this quotient function could replace
the distortion function in the analysis of overall risk behavior.

As an application of these findings, the risk behavior linked to the
Value-at-Risk is analyzed. It is illustrated that in some situations the
VaRα is not sensitive to changes into more risky scenarios. The reason
is that this risk measure involves two extreme risk attitudes, i.e. maxi-
mum risk aversion in [1−α, 1) and maximum risk loving in (0, 1−α).
It is emphasized that additional risk information may be obtained by
means of comparable GlueVaR risk measures, which are calibrated
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to return the same risk value than VaRα in a particular context. The
distortion functions of these GlueVaR risk measures are examined.
The study of the risk behavior implicit in the choice of these GlueVaR
measures gives a more complex characterization of the risk frame-
work providing, for instance, boundary risk attitudes.

The example shown in Chapter 6 provides an illustration of how
GlueVaR risk measures can be used in practice. It is claimed that
GlueVaR measures should be used by regulators and risk managers
to enrich risk information provided by the standard quantile. Regu-
lators may have a better knowledge of risks faced by regulated firms
and risk managers a deeper control of undertaken risks. Note that the
calibration procedure depends on the risk measure of reference and
also on the random variable. Then, the set of comparable GlueVaR
measures can be different if the random variable changes. This is not
necessarily an unbridgeable drawback when asking the supervisory
authorities to change the risk measure if the insurance undertaking is
able to justify the GlueVaR selection process. For instance, these mea-
sures may be used to analyze variations from one year to the next in
the implicit risk aversion of boundary cases when the VaRα is applied
to assess the annual risk.

In the third part of this thesis, a particular vision on capital alloca-
tion problems has been proposed. It has been argued that capital al-
location principles with a return&risk-reward objective are of special
interest, because insurance risk management practitioners typically
have to deal with two opposing demands: on the one hand, they
want business units to achieve or outperform the objectives fixed by
the firm’s executive committee, yet, on the other, they are responsi-
ble for controlling their economic risks. Finding a trade-off between
these two demands is the challenging task that risk managers face
on a daily basis. Examples of capital allocation principles that cover
this necessity are commented, as it is the case of gradient allocation
principles and of some of the proposals investigated in Chapter 9.

Two main contributions on capital allocation has been made. On
the one hand, it has been shown that GlueVaR risk measures are as
useful as other alternatives like VaR or TVaR to solve capital allo-
cation problems, because both stand-alone and based on risk con-
tributions proportional allocation principles can be obtained using
GlueVaR measures. Moreover, it has been indicated how to obtain
non-proportional allocation principles using GlueVaR with the help
of the framework proposed in Dhaene et al. [2012b]. The second con-
tribution is understanding capital allocation principles as composi-
tional data. This interpretation of capital allocation principles allows
the connection between aggregation operators and capital allocation

138



problems in an appealing way.

This thesis contains some preliminary ideas on this connection,
such as taking advantage of the simplicial distance or the simplicial
arithmetic mean. Most of these ideas were inspired by the opening
plenary session given by professor DeBaets in the AGOP 2013 con-
ference that took place in Pamplona, and later from the lecture of
Aitchinson and Egozcue [2005]. It is my belief that there is room for
further and promising research on this field. Nonetheless, some con-
cerns on this perspective on capital allocation principles should be
addressed, as its economic, financial or actuarial interpretation.

I would like to acknowledge some limitations of this thesis and to
share some ideas that were initially explored. Regarding limitations,
all the theoretical and practical developments both for risk measures
and capital allocation problems have been focused on a static setting
(only one period at a time). Therefore, dynamic perspectives have not
been taken into account. The interested reader in dynamic capital al-
location is referred to Hamada et al. [2006]; Froot [2007]; Diers [2011];
Ai et al. [2012], for instance; the one interested in risk measures in a
dynamic context is referred to Tsanakas [2004]; Riedel [2004]; Weber
[2006]; Artzner et al. [2007] and the references therein. With respect to
GlueVaR, it is an interesting family of risk measures for practitioners,
but this is not a guarantee on their future use in the insurance and
financial sectors. The tail-subadditivity property seems to be difficult
to be satisfied when increasing the number of random variables to ag-
gregate, because each additional random variable involves additional
intersections to find out the common tail. Regarding some relation-
ships between capital allocation problems and aggregation operators
that were initially considered, it was my prior belief that a relation-
ship between mixture operators [Marques Pereira and Ribeiro, 2003;
Calvo et al., 2004; Mesiar and Spirkova, 2006; Mesiar et al., 2008]
and objective functions in the framework proposed by Dhaene et al.
[2012b] should lead to interesting results, but this line of research was
finally not followed.

The theoretical research presented in this thesis regarding risk mea-
sures and capital allocation problems has important practical implica-
tions. Only as an example, in the particular case of insurance compa-
nies in the European Union, both the assessment of their solvency and
capital allocation exercises are required by Directive 2009/138/EC of
25 November 2009 (known as Solvency II directive). Concretely, in-
surance companies are:

forced to calculate standard Solvency Capital Requirements (SCR, Article 101(3) of the
Directivethe minimum cushion of economic liquidity required to the in-
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stitution) using Value-at-Risk (VaR) risk measure at 99.5% con-
fidence level;

allowed to apply for the use of total or partial internal modelsArticle 122 of the
Directive to calculate SCR and, in particular, to select a different risk mea-

sure than VaR and/or a different confidence level than 99.5%;

forced to perform Own Risk and Solvency Assessment (ORSA),Article 45 of the
Directive for wich freedom in the risk measure and the confidence level

used is allowed;

forced to deliver, at least annually, a capital allocation exerciseArticle 123 of the
Directive linked to the Attribution of Profit and Loss Report.

All the previous arguments lead to the conclusion that the theo-
retical developments shown in this dissertation can be of particular
practical relevance for insurance companies, not only regarding the
selection of a risk measure reflecting multiple risk attitudes but also
when solving capital allocation problems.
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A
A P P E N D I X

a.1 equivalent expression for the gluevar distortion

function

Details on the definition of the GlueVaR distortion function κh1,h2
β,α (u)

as a linear combination of the distortion functions of TVaR at confi-
dence levels β and α, and VaR at confidence level α are provided, i.e.
an explanation of how to obtain expression (1.3) can be found here.
Expression (1.1) of the distortion function κh1,h2

β,α (u) can be rewritten
as,

κh1,h2
β,α (u) = h1 · γβ (u) · 1 [0 6 u < 1−β] +

+

(
h1 +

h2 − h1
β−α

· (1−α) · γα (u)−

h2 − h1
β−α

· (1−β)
)
· 1 [1−β 6 u < 1−α] +

+ψα (u) ,

(A.1)

where 1 [x1 6 u < x2] is an indicator function, so it takes a value of
1 if u ∈ [x1, x2) and 0 otherwise.

Note that

γβ (u) · 1 [0 6 u < 1−β] = γβ (u) −ψβ (u) , (A.2)

1 [1−β 6 u < 1−α] = ψβ (u) −ψα (u) , (A.3)

γα (u) · 1 [1−β 6 u < 1−α] =

γα (u) −ψα (u) −

(
1−β

1−α

)
·
[
γβ (u) −ψβ (u)

]
.

(A.4)
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Taking into account expressions (A.2), (A.3) and (A.4), expression
(A.1) may be rewritten as,

κh1,h2
β,α (u) =

[
h1 −

(h2 − h1) · (1−β)
β−α

]
· γβ (u)+[

−h1 + h1 −
(h2 − h1) · (1−β)

β−α
+

(h2 − h1) · (1−β)
β−α

]
·ψβ (u)+

h2 − h1
β−α

· (1−α) · γα (u)+[
1− h1 +

(h2 − h1) · (1−β)
β−α

−

h2 − h1
β−α

· (1−α)
]
·ψα (u) .

(A.5)

Given that ω1 = h1 −
(h2 − h1) · (1−β)

β−α
, ω2 =

h2 − h1
β−α

· (1−α)
and ω3 = 1− h2, expression (1.3) follows directly from (A.5).�

a.2 bijective relationship between heights and weights

as parameters for gluevar risk measures

Pairs of GlueVaR heights (h1,h2) and weights (ω1,ω2) are linearly
related to each other. The parameter relationships are (h1,h2)

′
=

H · (ω1,ω2)
′

and, inversely, (ω1,ω2)
′
= H−1 · (h1,h2)

′
, where H and

H−1 matrices areH =

 1
1−β

1−α

1 1

 andH−1 =


1−α

β−α

β− 1

β−α
α− 1

β−α

1−α

β−α

,

respectively.

a.3 tail-subadditivity for gluevar risk measures

This appendix is devoted to the proof of Theorem 2.1.1. Given
a confidence level α and a pair of random variables X and Y so that
Qα,X,Y 6= ∅, a GlueVaR risk measure is tail-subadditive if its associated
distortion function κh1,h2

β,α is concave in [0, 1−α).
The subadditivity theorem and the integration on subsets of Ω are

defined as in Denneberg [1994]:

Subadditivity theorem. Let µ : 2Ω → R+ be a monotone, sub-
modular set function. Then for functions X, Y : Ω → R being
µ-essentially> −∞∫

(X+ Y)dµ 6
∫
Xdµ+

∫
Ydµ.
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If µ is continuous from below the assumption on X, Y being µ-
essentially > −∞ can be dropped.

Integration on subsets. Let µ be a monotone set function on a
set system S ⊂ 2Ω with Ω ∈ S and closed under intersection.
For A ∈ S define µA (B) := µ (B∩A), B ∈ S. Then µA is a

monotone set function on S and we define
∫
A

Xdµ :=

∫
XdµA.

A set system is, generally speaking, a collection of sets. Definitions
of monotone, modular or submodular set functions, as well as the
definition of continuity from below, are given in next paragraphs. A
proper definition of a function X µ-essentially > −∞ is not needed
in the proof and, thus, not provided. Interested readers can find this
definition in Denneberg [1994].

According to definition 2.1.1, given a confidence level α and taking
into account that Qα,X,Y 6= ∅ for the fixed pair of random variables,
i.e. X, Y : Ω → R, the tail-subadditivity property is satisfied by a
distortion risk measure ρg if the subadditivity theorem can be applied
to the set function (g ◦ P)Qα,X,Y

, i.e. the set function so that for any
B ∈ 2Ω, (g ◦ P)Qα,X,Y

(B) = g (P (B∩Qα,X,Y)).
Therefore, subadditivity in the tail for a pair of risks is proven if

(g ◦ P)Qα,X,Y
is submodular and continuous from below.

Let me provide at this stage of the proof some definitions regard-
ing the modularity of set functions. A set function µ is modular
if µ (A∪B) + µ (A∩B) = µ (A) + µ (B), and it is submodular if
µ (A∪B) + µ (A∩B) 6 µ (A) + µ (B). A set function µ is monotone if
µ (A) 6 µ (B) for any A ⊆ B in 2Ω.

Now, if ρg is a distortion risk measure such that its associated
distortion function g is concave in [0, 1 − α), then it is shown that
(g ◦ P)Qα,X,Y

is submodular. Consider the set function ν defined by
ν (B) := P (B∩Qα,X,Y), for any B ∈ 2Ω. Note that ν (B) ∈ [0, 1− α)
because P (Qα,X,Y) < 1 − α and P is a monotone set function. The
set function ν is modular because P is modular, i.e. ν (A∪B) +
ν (A∩B) = ν (A) + ν (B) for any A,B ∈ 2Ω. Given A,B ∈ 2Ω sup-
pose, without loss of generality, that A ⊆ B. Let me rename a :=

ν (A), b := ν (B), i := ν (A∩B) and u := ν (A∪B). Because ν is mono-
tone then it holds that i 6 a 6 b 6 u due to A∩ B ⊆ A ⊆ B ⊆ A∪ B.
The modularity of ν implies that i+ u = a+ b, i.e. [i,u] and [a,b]

have common centers,
i+ u

2
=
a+ b

2
. Then, because g is concave in

[i,u] it can be concluded that g (u) + g (i) 6 g (a) + g (b) or, equiva-
lently, that g ◦ ν = (g ◦ P)Qα,X,Y

is submodular.
The property of continuity from below of g ◦ ν = (g ◦ P)Qα,X,Y

must
also be satisfied to use the subadditivity theorem. An arbitrary set
function µ is continuous from below if for any increasing collection
of subsets in the set system (An ∈ S, An ⊆ An+1 for n ∈ N) so that
A := ∪∞n=1An ∈ S then equality lim

n→∞µ (An) = µ (A) holds. So µ =
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(g ◦ P)Qα,X,Y
is continuous from below because (g ◦ P)Qα,X,Y

: 2Ω −→
g ([0, 1−α)), P is a probability (hence, continuous from below) and g
is continuous on [0, 1−α).

Given that (g ◦ P)Qα,X,Y
is submodular and continuous from below,

applying the subadditivity theorem and using integration on subsets,
it is true that, given X and Y:∫

Qα,X,Y

(X+ Y)d (g ◦ P) 6
∫
Qα,X,Y

Xd (g ◦ P) +
∫
Qα,X,Y

Yd (g ◦ P) ,

which prove that the associated risk measure ρg is tail-subadditive.

Consider a GlueVaR risk measure so that weights (ω1,ω2) belong
to the lightly shaded area in Figure 2.1. This is a sufficient condi-
tion to guarantee concavity of the distortion function on [0, 1 − α).
Therefore, these GlueVaR risk measures are candidates to satisfy the
tail-subadditivity property. �

a.4 relationship between gluevar and tail distortion

risk measures

This section of the appendix is intended to present the proof of
Proposition 1.5.1. Following the notation introduced along this work,

as for any random variable X it holds that GlueVaRω1,ω2
β,α (X) =

∫
Xdµ

with µ = κω1,ω2
β,α ◦ P and Tg,α (X) =

∫
Xdη with η = gα ◦ P, proving

proposition 1.5.1 is equivalent to proving that κω1,ω2
β,α = gα under the

proper conditions on ω1,ω2 and g.
On one hand, suppose that ω2 = 1 −ω1 and that g is given by

expression (1.7). First of all, let me rewrite g as

g(t) =

(
ω1 · (1−α)
1−β

+ω2

)
· t · 1

[
0 6 t < (1−α)−1 · (1−β)

]
+

(ω1 +ω2 · t) · 1
[
(1−α)−1 · (1−β) 6 t 6 1

]
(A.6)

Recall that gα is built as g
(
u
1−α

)
·1[0 6 u < 1−α] +1[1−α 6 u 6 1].

If u is less than 1−β therefore t = u
1−α is less than (1−α)−1 · (1−β);

if u is comprised between 1−β and 1−α, then t = u
1−α satisfies that

(1−α)−1 · (1−β) 6 t 6 1. Summarizing,

gα (u) =



[
ω1
1−β

+
ω2
1−α

]
· u if 0 6 u < 1−β

ω1 +
ω2
1−α

· u if 1−β 6 u < 1−α

1 if 1−α 6 u 6 1

(A.7)

which is the definition of distortion function κω1,ω2
β,α as shown in (1.5).
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On the other hand, consider as starting point the aforementioned
expression (1.5) of κω1,ω2

β,α . As pointed out, gα is always continu-
ous in 1− α. Consequently parameters of κω1,ω2

β,α must be such that
guaranty continuity of the equivalent gα in 1 − α. In other words,
limu↑(1−α) κ

ω1,ω2
β,α (u) = ω1 +ω2 = 1 = limu↓(1−α) κ

ω1,ω2
β,α (u). This

is exactly condition ω2 = 1−ω1. Now, forcing gα = κω1,ω2
β,α , it is

straightforward to go backwards from expression (A.7) to expression
(1.7) to complete the proof. �

a.5 proof of the ordered weighted averaging operator

uniqueness

Given two different vectors ~w and ~u from [0, 1]n we wonder if
OWA~w = OWA~u, i.e. if the respective OWA operators on Rn are
the same. It is shown that this is not possible. Suppose that, for all
~x ∈ Rn, OWA~w (~x) = OWA~u (~x). Let vectors ~zk ∈ Rn,k = 1, ...,n be
defined by

~zk,i =

{
0 if i < k

1/ (n− i+ 1) if i > k
.

Then, iterating from k = n to k = 1:

Step k = n. We have ~zn = (0, 0, ..., 0, 1), and permutation σ = id

is useful to calculate OWA~w (~zn) and OWA~u (~zn). Precisely,
OWA~w (~zn) = 1 ·wn and OWA~u (~zn) = 1 · un. If OWA~w =

OWA~u, then un = wn.

Step k = n− 1. We have ~zn−1 =
(
0, 0, ..., 12 , 1

)
, and permutation

σ = id is still useful. So OWA~w (~zn−1) = 1
2 ·wn−1 + 1 ·wn

and, taking into account the previous step, OWA~u (~zn−1) =
1
2 · un−1 + 1 ·wn. If the hypothesis OWA~w = OWA~u holds,
then un−1 = wn−1.

Step k = i. From previous steps we have that uj = wj, j =
i+ 1, ...,n and in this step we obtain ui = wi.

Step k = 1. Finally, supposing again that OWA~w = OWA~u, we
obtain that uj = wj for all j = 1, ...,n. But this is a contradiction
with the fact that ~w 6= ~u.

a.6 an ascending quadratic weighted additive set func-
tion is a capacity defined on N

To prove that η is a capacity on N it is necessary to see that η(A) ∈
[0,Kη] for some Kη > 0 for all A ⊆ N, η(∅) = 0 and that η(A) 6
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η(B) if A ⊆ B. By definition of AQWA capacity, η(∅) = 0. If
η({mk}) > 0 for all mk ∈ N, then η(A) 6 η(B) if A ⊆ B because
η (A) :=

∑
mk∈A

η ({mk}). So let us see that η({mk}) > 0 for all mk ∈ N.

Recall that by definition of AQWA capacity, for all j = 1, ...,n

η
({
mj
})

:= 2 ·
(
j− 1

n− 1

)2
·

( n

n− j+ 1

)−1 ∑
A⊆N

|A|=n−j+1

µ (A)

−

(
n

n− j

)−1 ∑
A⊆N

|A|=n−j

µ (A)

 .

The first factor is less than or equal to 2, because
j− 1

n− 1
6 1. This is,

the first factor is greater than or equal to 0.
For the second factor, and for each j, two situations are considered:

whether sn−j+1 = #{A s.t. |A| = n− j+ 1} =

(
n

n− j+ 1

)
is greater

or less than sn−j = #{A s.t. |A| = n − j} =

(
n

n− j

)
. Once this

notation is introduced, this second factor may be rewritten as

s−1n−j+1

∑
A⊆N

|A|=n−j+1

µ (A) − s−1n−j

∑
A⊆N

|A|=n−j

µ (A) .

So, supposing j is fixed:

If sn−j+1 > sn−j, then

s−1n−j+1

∑
A⊆N

|A|=n−j+1

µ (A) − s−1n−j

∑
A⊆N

|A|=n−j

µ (A)

> s−1n−j+1
∑
A⊆N

|A|=n−j

µ (A) − s−1n−j

∑
A⊆N

|A|=n−j

µ (A)

=

(
(n− j+ 1)!(j− 1)!

n!
−

(n− j)!(j)!
n!

)
·
∑
A⊆N

|A|=n−j

µ (A)

=
(j− 1)!(n− j)!(n+ 1)

n!
·
∑
A⊆N

|A|=n−j

µ (A) > 0.

(A.8)

The hypothesis is used to ensure that the first inequality holds,
because

∑
A⊆N

|A|=n−j+1

µ (A) >
∑
A⊆N

|A|=n−j

µ (A) under the hypothesis.

This is true due to the fact that there are fewer summands on
the right-hand side (sn−j 6 sn−j+1) and, in addition, each sum-
mand on the right is less than or equal to one on the left (µ is
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monotone);

If sn−j+1 < sn−j, then it can be shown that

s−1n−j

 ∑
A⊆N

|A|=n−j+1

µ (A) +
sn−j − sn−j+1

sn−j+1

∑
A⊆N

|A|=n−j+1

µ (A)


−s−1n−j

∑
A⊆N

|A|=n−j

µ (A)

> s−1n−j

 ∑
A⊆N

|A|=n−j+1

µ (A) +
sn−j − sn−j+1

sn−j+1

∑
A⊆N

|A|=n−j+1

µ (A)


−s−1n−j

∑
B⊆N

|B|=n−j

 ∑
A⊆N

|A|=n−j+1

s−1n−j+1 µ (A)

 = 0

(A.9)

In this case, the hypothesis is used to prove inequality: for any
B ⊆ N such that |B| = n − j, µ (B) 6

∑
A⊆N

|A|=n−j+1

s−1n−j+1 µ (A)

under the hypothesis. Otherwise, a contradiction with the fact
that µ is monotone arises.

As this result implies η(A) 6 η(B) if A ⊆ B, if η(N) = Kη > 0 is
shown then η(A) ∈ [0,Kη] will hold for each A ⊆ N. To see that
η(N) = Kη > 0, note first that for all j = 1, ...,n,

η
({
mj
})
6 2 ·

(
j− 1

n− 1

)2
·

( n

n− j+ 1

)−1 ∑
A⊆N

|A|=n−j+1

µ (A)


6 2 ·

(
j− 1

n− 1

)2
·Kµ.

Given previous inequalities,

η(N) =
∑
mj∈N

η
({
mj
})
6

n∑
j=1

2 ·
(
j− 1

n− 1

)2
·Kµ

=
n(2n− 1)

3(n− 1)
·Kµ := Kη > 0 ,

because Kµ > 0 taking into account that µ is a capacity. Hence, the
fact that η is a capacity has been proved.
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a.6.1 Two particular cases of AQWA capacities

Two special cases of AQWA capacities are those linked to symmet-
ric capacities and those linked to additive capacities:

If µ is symmetric then µ (A) depends only on the number of el-
ements of A and not on the particular elements of A. Consider-
ing the weights wj for all j ∈ {1, ...,n}, such that Cµ =OWA~w, it

is known that µ (A) =
n−j∑
u=0

wn−u for a set A ⊆ N with n− j+ 1

elements (as shown in Section 5.1). If index u is changed by

k = n− u, then µ (A) =
j∑

k=n

wk =

n∑
k=j

wk since k = n and k = j

when u = 0 and u = n− j, respectively.

In that case,
∑
A⊆N

|A|=n−j+1

µ (A) =
∑
A⊆N

|A|=n−j+1

n∑
k=j

wk. Given that

weights do not depend on the particular elements of set A and

there are
(

n

n− j+ 1

)
sets of cardinality n − j + 1 in N, then∑

A⊆N
|A|=n−j+1

n∑
k=j

wk =

(
n

n− j+ 1

)
·
n∑
k=j

wk . Bearing these com-

ments in mind, if µ is symmetric, then for all j = 1, ...,n

η
({
mj
})

= 2 ·
(
j− 1

n− 1

)2
·



∑
A⊆N

|A|=n−j+1

µ (A)

(
n

n− j+ 1

) −

∑
A⊆N

|A|=n−j

µ (A)

(
n

n− j

)


= 2 ·
(
j− 1

n− 1

)2
·



∑
A⊆N

|A|=n−j+1

n∑
k=j

wk

(
n

n− j+ 1

) −

∑
A⊆N

|A|=n−j

n∑
k=j+1

wk

(
n

n− j

)


= 2 ·
(
j− 1

n− 1

)2
·

 n∑
k=j

wk −

n∑
k=j+1

wk

 = 2 ·
(
j− 1

n− 1

)2
·wj.

(A.10)
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If µ is additive, then for all j = 1, ...,n

η
({
mj
})

= 2 ·
(
j− 1

n− 1

)2
·



∑
A⊆N

|A|=n−j+1

∑
mk∈A

µ({mk})

(
n

n− j+ 1

)

−

∑
A⊆N

|A|=n−j

∑
mk∈A

µ({mk})

(
n

n− j

)


= 2 ·
(
j− 1

n− 1

)2
·

[
n∑
k=1

(
n−1
n−j

)(
n

n−j+1

)wk − n∑
k=1

(
n−1
n−j−1

)(
n
n−j

) wk
]

= 2 ·
(
j− 1

n− 1

)2
·

[
n∑
k=1

n− j+ 1

n
wk −

n∑
k=1

n− j

n
wk

]

=
2

n
·
(
j− 1

n− 1

)2
·
n∑
k=1

wk.

(A.11)

A proof of the equality DivL (Cµ) = DivG (Cµ) = Div (~w) in (5.7) is
as follows. First, note that the global degree of orness of the AQWA
capacity linked to a symmetric capacity is equal to,

ωG(η) =
1

(n− 1)

n−1∑
i=1

(
n

i

)−1 ∑
A⊆N
|A|=i

η (A)

=
1

(n− 1)

n−1∑
i=1

(
n

i

)−1 ∑
A⊆N
|A|=i

∑
mj∈A

2 ·
(
j− 1

n− 1

)2
·wj

=
2

(n− 1)

n−1∑
i=1

(
n

i

)−1 n∑
j=1

(
n− 1

i− 1

)(
j− 1

n− 1

)2
·wj

=
2

(n− 1)

n−1∑
i=1

i

n

n∑
j=1

(
j− 1

n− 1

)2
·wj

=
2

(n− 1)

n− 1

2

n∑
j=1

(
j− 1

n− 1

)2
·wj

=

n∑
j=1

(
j− 1

n− 1

)2
·wj.

(A.12)
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If µ is symmetric, ωG(η) in expression (5.5) can be replaced by
(A.12) and it holds that

DivG (Cµ) =

n∑
j=1

(
j− 1

n− 1

)2
·wj − [2− µ (N)] ·ω2

G(µ). (A.13)

Given that ω2
G(µ) = ω2

L(µ) when µ is symmetric, expression (A.13)
is equivalent to DivL (Cµ) because

DivL (Cµ) =

n∑
i=1

[(
i− 1

n− 1

)2
− 2 ·

(
i− 1

n− 1

)
·ωL(µ) +ω2

L(µ)

]
· (µ (Aid,i) − µ (Aid,i+1))

=

n∑
i=1

(
i− 1

n− 1

)2
·wi − [2− µ (N)] ·ω2

L (µ) .

(A.14)

From expressions (A.13) and (A.14), it follows that DivL (Cµ) =

DivG (Cµ). Finally, when µ is a symmetric and normalized capacity
such that Cµ =OWA~w, it is easy to check that any of these two previ-
ous expressions is equal to Div (~w) because ωG(µ) = ωL(µ) = ω(~w).
The proof of (5.7) is finished.

In order to proof (5.8) it has to be mentioned that, when µ is addi-
tive and normalized, expression (5.5) can be simplified. Note that η
is additive but not normalized. If µ is additive and normalized then,

from expression (A.11), it follows that η(N) =
2n− 1

3(n− 1)
. Furthermore,

it is known that

ωG (η) =
1

n− 1

n−1∑
i=1

(ni
)−1

·
∑
A⊆N
|A|=i

∑
mj∈A

η({mj})


=

1

n− 1

n−1∑
i=1

(n
i

)−1

·
n∑
j=1

(
n− 1

i− 1

)
η({mj})


=

1

n− 1

n∑
j=1

n−1∑
i=1

(
i

n

)
2

n
·
(
j− 1

n− 1

)2
=

1

n− 1

n∑
j=1

[
n− 1

2
· 2
n
·
(
j− 1

n− 1

)2]
=

2n− 1

6(n− 1)
.

Moreover, since it is known that if µ is additive and normalized,

then ωG (µ) =
1

2
, from expression (5.5) we obtain (5.8):

DivG (Cµ) =
2n− 1

6(n− 1)
− (2− 1)

1

4
=
1

12
· n+ 1

n− 1
.
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a.7 proof of proposition 5 .3 .1

Note that expression (5.4) can be written as

Div (Cµ) =

n∑
i=1

(
i− 1

n− 1

)2


∑
A⊆N

|A|=n−i+1

µ (A)

(
n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

µ (A)

(
n

n− i

)


−2ω(Cµ)

n∑
i=1

(
i− 1

n− 1

)


∑
A⊆N

|A|=n−i+1

µ (A)

(
n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

µ (A)

(
n

n− i

)


+ω(Cµ)
2µ (N) .

(A.15)

In order to prove the proposition, it is enough to check the following

(i) ω(Cη) =

n∑
i=1

(
i− 1

n− 1

)2


∑
A⊆N

|A|=n−i+1

µ (A)

(
n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

µ (A)

(
n

n− i

)
;

and

(ii) ω(Cµ) =

n∑
i=1

(
i− 1

n− 1

)


∑
A⊆N

|A|=n−i+1

µ (A)

(
n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

µ (A)

(
n

n− i

)
,

because using (i) and (ii), expression (A.15) is equivalent to

Div (Cµ) = ω(Cη) − [2− µ (N)]ω(Cµ)
2.
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Item (i) is satisfied:

ω(Cη) =
1

n− 1

n−1∑
i=1

(ni
)−1 ∑

A⊆N
|A|=i

η (A)



=
1

n− 1

n−1∑
i=1

(
n

i

)−1 ∑
A⊆N
|A|=i

∑
mj∈A

η
(
{mj}

)

=
1

n− 1

n−1∑
i=1

(
n

i

)−1 ∑
A⊆N
|A|=i

∑
mj∈A

2

(
j− 1

n− 1

)2


∑
B⊆N

|B|=n−j+1

µ (B)

(
n

n− j+ 1

)

−

∑
B⊆N

|B|=n−j

µ (B)

(
n

n− j

)


=
2

n− 1

n−1∑
i=1

n∑
j=1

(
j− 1

n− 1

)2


(
n− 1

i− 1

) ∑
B⊆N

|B|=n−j+1

µ (B)

(
n

i

)(
n

n− j+ 1

)

−

(
n− 1

i− 1

) ∑
B⊆N

|B|=n−j

µ (B)

(
n

i

)(
n

n− j

)


=
2

n− 1

n−1∑
i=1

i
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Secondly, item (ii) is also true:

ω(Cµ) =
1

n− 1

n−1∑
i=1

(ni
)−1 ∑

A⊆N
|A|=i

µ (A)


=

1

n− 1

n∑
j=2

( n

n− j+ 1

)−1 ∑
A⊆N

|A|=n−j+1

µ (A)


=

n∑
j=2

(
j− 1

n− 1
−
j− 2

n− 1

)( n

n− j+ 1

)−1 ∑
A⊆N

|A|=n−j+1

µ (A)



=

n∑
j=1

(
j− 1

n− 1

)


∑
A⊆N

|A|=n−j+1

µ (A)

(
n

n− j+ 1

) −

∑
A⊆N

|A|=n−j

µ (A)

(
n

n− j

)
 .

a.8 results for global degree of orness in the numeri-
cal example of chapter 6

The selection criterion of optimal GlueVaR risk measures may be
based on the global degree of orness. Information required in the
analysis of the risk attitude implicit in optimal GlueVaR risk mea-
sures with boundary solutions is reported in Table (A.1) and Figure
(??). Findings are in essence very similar than results obtained from
the analysis of local degree of orness. A result that deserves some at-
tention is that the GlueVaR with maximum global degree orness does
not exactly match with the VaR99.5%. This result is due to the use of
n0 = 20 < 518 = n for computational issues. This reduction in the
size of n involves a loss in the precision of the approximation.
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Table A.1: Boundary values of global degree of orness of equivalent Glue-
VaR risk measures to VaR99.5% for both Z (original dataset) and
Z∗ (modified dataset). Parameters’ values of the associated Glue-
VaR measure are displayed.

Minimum orness Maximum orness

Original
dataset

Modified
dataset

Original
dataset

Modified
dataset

Degree of
orness

0.9312850 0.9185759 0.9977952 0.9974090

α 90% 90% 95.54167% 95.54167%

β 99.9% 99.4875% 99.9% 99.9%

ω1 0.1880 0.0386 0.1622 0.0154

ω2 1.21·10
−6

8.12·10
−7

1.60·10
−6

4.09·10
−7

Figure A.1: Quotient functions of optimal solutions with boundary global
degrees of orness in both scenarios.



B I B L I O G R A P H Y

Acerbi, C. and Tasche, D. (2002). On the coherence of expected shortfall.
Journal of Banking & Finance, 26(7):1487–1503. (Cited on page 13.)

Ai, J., Brockett, P. L., Cooper, W. W., and Golden, L. L. (2012). Enterprise
Risk Management Through Strategic Allocation of Capital. Journal of Risk
and Insurance, 79(1):29–56. (Cited on page 139.)

Aitchinson, J. (1983). Principal component analysis of compositional data.
Biometrika, 70(1):57–65. (Cited on page 122.)

Aitchinson, J. and Egozcue, J. (2005). Compositional data analysis: Where
are ae and where should we be heading? Mathematical Geology, 37(7):829–
850. (Cited on pages 121 and 139.)

Alexander, C. and Sarabia, J. M. (2012). Quantile uncertainty and Value-
at-Risk model risk. Risk Analysis, 32(8):1293–1308. (Cited on pages 13

and 34.)

Aliev, R., Pedrycz, W., Fazlollahi, B., Huseynov, O., Alizadeh, A., and Gui-
rimov, B. (2012). Fuzzy logic-based generalized decision theory with im-
perfect information. Information Sciences, 189:18–42. (Cited on page 39.)

Anwar, S. and Zheng, M. (2012). Competitive insurance market in the
presence of ambiguity. Insurance: Mathematics and Economics, 50(1):79–84.
(Cited on page 48.)

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures
of risk. Mathematical Finance, 9(3):203–228. (Cited on pages 13, 14, 27,
and 108.)

Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., and Ku, H. (2007). Coher-
ent multiperiod risk adjusted values and Bellman’s principle. Annals of
Operations Research, 152:5–22. (Cited on page 139.)

Asimit, A. V., Furman, E., Tang, Q., and Vernic, R. (2011). Asymptotics for
risk capital allocations based on Conditional Tail Expectation. Insurance:
Mathematics and Economics, 49(3):310–324. (Cited on page 95.)

Aven, T. (2012). Foundational issues in risk assessment and risk manage-
ment. Risk Analysis, 32(10):1647–1656. (Cited on page 16.)

Aven, T. (2013). On the meaning and use of the risk appetite concept. Risk
Analysis, 33(3):462–468. (Cited on page 29.)

Balbás, A., Garrido, J., and Mayoral, S. (2009). Properties of distortion risk
measures. Methodology and Computing in Applied Probability, 11(3, SI):385–
399. (Cited on pages 14, 15, and 27.)

Balog, D. (2010). Risk based capital allocation. In Proceedings of FIKUSZ ’10
Symposium for Young Researchers, pages 17–26. (Cited on page 106.)

157



158 bibliography

Beliakov, G., Pradera, A., and Calvo, T. (2007). Aggregation Functions: A
Guide to Practitioners. Springer, Berlin. (Cited on pages 42 and 59.)

Belles-Sampera, J. (2011). Capital allocation and distortion risk measures.
Master’s thesis, Department of Econometrics - University of Barcelona.
(Cited on page 25.)

Belles-Sampera, J., Guillén, M., and Santolino, M. (2013a). Generalizing
some usual risk measures in financial and insurance applications. In
Fernández-Izquierdo, M., Muñoz-Torres, M., and León, R., editors, Mod-
eling and Simulation in Engineering, Economics and Management. Proceedings
of the MS 2013 International Conference, volume 145 of Lecture Notes in
Business Information Processing, pages 75–82. Springer-Verlag. (Cited on
page xv.)

Belles-Sampera, J., Guillén, M., and Santolino, M. (2014a). Beyond Value-
at-Risk: GlueVaR distortion risk measures. Risk Analysis, 34(1):121–134.
(Cited on page xv.)

Belles-Sampera, J., Guillén, M., and Santolino, M. (2014b). GlueVaR risk
measures in capital allocation applications. Insurance: Mathematics and
Economics, 58:132–137. (Cited on page xvi.)

Belles-Sampera, J., Guillén, M., and Santolino, M. (2014c). The use of flexible
quantile-based measures in risk assessment. Communication in Statistics –
Theory and Methods, (Accepted). (Cited on page xv.)

Belles-Sampera, J., Merigó, J. M., Guillén, M., and Santolino, M. (2013b).
The connection between distortion risk measures and ordered weighted
averaging operators. Insurance: Mathematics and Economics, 52(2):411–420.
(Cited on pages xv and 66.)

Belles-Sampera, J., Merigó, J. M., Guillén, M., and Santolino, M. (2014d). In-
dicators for the characterization of discrete Choquet integrals. Information
Sciences, 267:201–216. (Cited on page xv.)

Belles-Sampera, J., Merigó, J. M., and Santolino, M. (2013c). Indicators for
the characterization of discrete Choquet integrals. IREA Working Papers
201311, University of Barcelona, Research Institute of Applied Economics.
(Cited on pages 72 and 74.)

Belles-Sampera, J., Merigó, J. M., and Santolino, M. (2013d). Some new defi-
nitions of indicators for the Choquet integral. In H. Bustince, J. Fernández,
T. Calvo and R. Mesiar, editor, Aggregation Functions in Theory and Practice.
Proceedings of the 7th International Summer School on Aggregation Operators,
volume 228 of Advances in Intelligent Systems and Soft Computing, pages
467–476. Springer-Verlag. (Cited on pages xv, 69, and 74.)

Belles-Sampera, J. and Santolino, M. (2013a). Algunas reflexiones sobre los
problemas de asignación de capital y la aplicación de ciertas medidas de
riesgo. In Gómez Déniz, E., Guillén Estany, M., and Vázquez Polo, F., edi-
tors, Investigaciones en Seguros y Gestión del Riesgo: Riesgo 2013, volume 194

of Cuadernos de la Fundación, pages 161–176. Fundación MAPFRE. (Cited
on page xvi.)



bibliography 159

Belles-Sampera, J. and Santolino, M. (2013b). Asignación óptima de capital
en base al perfil de riesgo de las instituciones de inversión colectiva: una
aplicación de las medidas de riesgo distorsionadas. Revista de Métodos
Cuantitativos para la Economía y la Empresa, 15(2):65–86. (Cited on page xvi.)

Bellini, F. and Gianin, E. R. (2012). Haezendonck-Goovaerts risk measures
and Orlicz quantiles. Insurance: Mathematics and Economics, 51(1):107–114.
(Cited on pages 15 and 24.)

Bellini, F., Klar, B., Mueller, A., and Gianin, E. R. (2014). Generalized quan-
tiles as risk measures. Insurance: Mathematics and Economics, 54:41–48.
(Cited on pages 15 and 24.)

Bleichrodt, H. and Eeckhoudt, L. (2006). Survival risks, intertemporal con-
sumption, and insurance: The case of distorted probabilities. Insurance:
Mathematics and Economics, 38(2):335–346. (Cited on page 15.)

Bolancé, C., Guillén, M., Pelican, E., and Vernic, R. (2008). Skewed bivariate
models and nonparametric estimation for the CTE risk measure. Insur-
ance: Mathematics and Economics, 43(3):386–393. (Cited on page 31.)

Bolton, J., Gader, P., and Wilson, J. N. (2008). Discrete Choquet integral
as a distance metric. IEEE Transactions on Fuzzy Systems, 16(4):1107–1110.
(Cited on page 59.)

Buch, A., Dorfleitner, G., and Wimmer, M. (2011). Risk capital allocation
for RORAC optimization. Journal of Banking and Finance, 35(11):3001–3009.
(Cited on page 95.)

Cai, J. and Wei, W. (2014). Some new notions of dependence with appli-
cations in optimal allocations problems. Insurance: Mathematics and Eco-
nomics, 55:200–209. (Cited on page 95.)

Calvo, T., Mesiar, R., and Yager, R. R. (2004). Quantitative weights and
aggregation. IEEE Transactions on Fuzzy Systems, 12(1):62–69. (Cited on
page 139.)

Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., and Montrucchio, L.
(2011). Risk measures: Rationality and diversification. Mathematical Fi-
nance, 21(4):743–774. (Cited on page 27.)

Chen, D., Mao, T., Pan, X., and Hu, T. (2012). Extreme value behavior of
aggregate dependent risks. Insurance: Mathematics and Economics, 50(1):99–
108. (Cited on page 28.)

Cheung, K. C. (2009). Upper comonotonicity. Insurance: Mathematics and
Economics, 45(1):35 – 40. (Cited on page 28.)

Choquet, G. (1954). Theory of Capacities. Annales de l’Institute Fourier, 5:131–
295. (Cited on pages 15, 40, and 59.)

Cornish, E. A. and Fisher, R. A. (1937). Moments and cumulants in the
specification of distributions. Revue de l’Institut International de Statistique,
4:307–320. (Cited on page 23.)



160 bibliography

Cossette, H., Côté, M., Marceau, E., and Moutanabbir, K. (2013). Multi-
variate distribution defined with Farlie-Gumbel-Morgenstern copula and
mixed Erland marginals: Aggregation and capital allocation. Insurance:
Mathematics and Economics, 52:560–572. (Cited on page 95.)

Cossette, H., Mailhot, M., and Marceau, E. (2012). TVaR-based capital allo-
cation for multivariate compound distributions with positive continuous
claim amounts. Insurance: Mathematics and Economics, 50:247–256. (Cited
on page 95.)

Cox, L. A. T. (2012). Confronting deep uncertainties in risk analysis. Risk
Analysis, 32(10):1607–1629. (Cited on page 27.)

Csiszár, I. (1995). Generalized cutoff rates and Rényi’s information measures.
IEEE Transactions on Information Theory, 41(1):26–34. (Cited on page 64.)

Danielsson, J., Jorgensen, B. J., Sarma, M., and de Vries, C. G. (2005). Sub-
additivity re-examined: the case for Value-at-Risk. Technical report, Cite-
Seerx. (Cited on page 28.)

De Baets, B. (2013). Aggregation 2.0. Opening plenary session of the AGOP
2013 conference, Pamplona, Spain. (Cited on pages 119 and 123.)

De Waegenaere, A., Kast, R., and Lapied, A. (2003). Choquet pricing and
equilibrium. Insurance: Mathematics and Economics, 32(3):359–370. (Cited
on page 48.)

Degen, M., Lambrigger, D. D., and Segers, J. (2010). Risk concentration
and diversification: Second-order properties. Insurance: Mathematics and
Economics, 46(3):541–546. (Cited on page 27.)

Denault, M. (2001). Coherent allocation of risk capital. Journal of Risk, 4(1):1–
34. (Cited on pages 95 and 99.)

Denneberg, D. (1994). Non-Additive Measure and Integral. Kluwer Academic
Publishers, Dordrecht. (Cited on pages 16, 27, 40, 144, and 145.)

Denuit, M., Dhaene, J., Goovaerts, M., and Kaas, R. (2005). Actuarial Theory
for Dependent Risks. Measures, Orders and Models. John Wiley & Sons Ltd,
Chichester. (Cited on pages 15 and 16.)

Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R., and Laeven, R. (2006).
Risk measurement with equivalent utility principles. Statistics & Decisions,
24(1):1–25. (Cited on pages 15 and 27.)

Dhaene, J., Kukush, A., Linders, D., and Tang, Q. (2012a). Remarks on quan-
tiles and distortion risk measures. European Actuarial Journal, 2(2):319–328.
(Cited on pages 15 and 24.)

Dhaene, J., Laeven, R. J. A., Vanduffel, S., Darkiewicz, G., and Goovaerts,
M. J. (2008). Can a coherent risk measure be too subadditive? Journal of
Risk and Insurance, 75(2):365–386. (Cited on page 27.)

Dhaene, J., Tsanakas, A., Valdez, E. A., and Vanduffel, S. (2012b). Opti-
mal capital allocation principles. Journal of Risk and Insurance, 79(1):1–28.
(Cited on pages 7, 95, 98, 109, 110, 111, 112, 118, 138, and 139.)



bibliography 161

Diers, D. (2011). Management strategies in multi-year Enterprise Risk
Management. Geneva Papers on Risk and Insurance - Issues and Practice,
36(1):107–125. (Cited on page 139.)
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