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Abstract

Sound synthesis technologies have been applied to speech, instruments, and
singing voice. These technologies need to take two aspects into account. On
the one hand, the sound representation needs to be as close to the original
sound as possible. On the other hand, the control of the sound synthesis should
also be able to reproduce the characteristics of the original sound. Thus, we
refer about emotional speech synthesis, expressive performances of synthesized
instruments, as well as expression in singing voice synthesis. Actually, the
singing voice has some commonalities with both speech (the sound source is the
same) and instruments (concerning musical aspects like melody and expression
resources).

This thesis focuses on the control of a singing voice synthesizer to achieve
natural expression similar to a real singer. There are many features that
should be controlled to achieve natural expression related to melody, dynam-
ics, rhythm, and timbre. In this thesis we focus on the control of pitch and
dynamics with a unit selection-based system and two statistically-based sys-
tems. These systems are trained with two possible expression databases that
we have designed, recorded, and labeled. We de�ne the basic units from which
the databases are built of, which are basically sequences of three notes or rests.

Concerning the unit selection-based system, we de�ne the cost functions
for unit selection as well as the unit transformations and concatenation steps.
Regarding the statistically-based system, we de�ne the context-dependent in-
formation to model both sequences of notes and sequences of note transitions
and sustains. The �rst type of sequences are trained with the absolute pitch
values, while the second type of sequences are trained with the pitch �uctua-
tions around a nominal score. A third system is also proposed as a combination
of the two previously de�ned systems.

Modeling singing voice expression is a di�cult task, since as humans, we are
completely familiarized with the singing voice instrument, and thus we easily
detect whether arti�cially achieved results are similar to a real singer or not.
The wide variety of contributing features make achieving natural expression
control a complex task. Our perceptual evaluation compares the proposed
systems with other systems to see how these relate to each other. The objective
evaluation focuses on the algorithms e�ciency.

This thesis contributes to the �eld of expression control of singing voice syn-
thesis: a) it provides a discussion on expression and summarizes some expres-
sion de�nitions, b) it reviews previous works on expression control in singing
voice synthesis, c) it provides an online compilation of sound excerpts from
di�erent works, d) it proposes a methodology for expression database creation,
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e) it implements a unit selection-based system for expression control, f) it pro-
poses a modi�cation on statistical-based systems for expression control, g) it
combines the two previous systems on a hybrid system for expression control,
h) it compares the proposed systems with other state of the art systems, i) it
proposes another use case in which the proposed systems can be applied, j) it
provides a set of proposals to improve the evaluation.



Resum

Les tecnologies de síntesi de so s'han aplicat a diversos camps, com a la parla,
a instruments musicals, i a la veu cantada. Aquestes tecnologies han de tenir
en compte dos aspectes. Per una banda, la representació del so ha de ser el
més propera possible a l'original. Per l'altra banda, el control del so sintetitzat
ha de poder reproduir les característiques del so original. Així, podem parlar
de síntesi expressiva de parla, d'actuacions expressives d'instruments, així com
de síntesi expressiva de veu cantada.

Aquesta tesi es centra en el control dels sintetitzadors de veu cantada per
aconseguir una expressivitat natural semblant a la d'un cantant real. Hi ha
moltes caractarístiques que s'haurien de controlar per aconseguir una expres-
sivitat natural relacionades amb la melodia, la dinàmica, el ritme i el timbre.
En aquesta tesi ens centrem en el control de la freqüència fonamental i de la
dinàmica amb un sistema basat en selecció d'unitats i dos sistemes estadístics.
Aquests sistemes són entrenats amb dues possiblees bases de dades expressives
que hem dissenyat, enregistrat i etiquetat. Hem de�nit les unitats bàsiques
a partir de les quals les bases de dades s'han construit i que són bàsicament
seqüències de tres notes o silencis.

Pel que fa al sistema de selecció d'unitats, hem de�nit les funcions de costos
per a la selecció d'unitats així com els passos per la transformació i concatenació
d'unitats. Respecte als sistemes estadístics, hem de�nit la informació que
depèn dels contextos per modelar tant seqüències de notes com seqüències
de transicions i sosteniments. El primer tipus de seqüències són entrenades
amb valors absoluts del pitch, mentre que el segon tipus de seqüències són
entrenades a partir de les �uctuacions del pitch al voltant de la partitura
nominal. Finalment, també presentem un tercer sistema que combina els dos
anteriors tipus sistemes.

Modelar l'expressivitat de la veu cantada és una tasca difícil, ja que nosal-
tres els humans estem totalment familiaritzats amb l'instrument en qüestió, de
manera que podem detectar fàcilment si els resultats obtinguts arti�cialment
són similars a un cantant real o no. A més a més, la gran varietat de caracta-
rístiques que hi participen fan del control natural de l'expressivitat una tasca
complexa. La nostra avaluació perceptual compara els sistemes proposats amb
altres sistemes per tal de veure com els podem relacionar. L'avaluació objectiva
es centra en l'e�ciència dels sistemes.

Aquesta tesi contribueix en el camp del control de l'expressivitat de la sín-
tesi de veu cantada: a) analitzem la discussió actual sobre l'expressivitat i en
resumim algunes de les de�nicions, b) repassem diversos treballs anteriors en el
control de l'expressivitat de la síntesi de la veu cantada, c) presentem un recull
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online de sons que mostren els resultats de diversos treballs, d) proposem una
metodologia per la creació de bases de dades expressives, e) implementem un
sistema basat en selecció d'unitats pel control de l'expressivitat, f) proposem
la modi�cació dels sistemes estadístics pel control de l'expressivitat, g) com-
binem els dos sistemes anteriors per obtenir un sistema híbrid pel control de
l'expressivitat, h) comparem els sistemes proposats amb altres sistemes actu-
als, i) proposem un altre cas d'ús on aplicar els sistemes proposats, i �nalment,
j) proporcionem una sèrie de propostes per millorar l'avaluació de sistemes de
síntesi de veu cada.
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CHAPTER 1

Introduction

This chapter aims to provide the context to the research described in the sub-
sequent chapters. First, we explain the reasons that motivate this work on
expression control in singing voice synthesis. Based on (Umbert et al., 2015),
this context is presented with several systems using singing voice synthesis
technologies, showing where these could be applied, and highlighting the im-
portance of expression in such cases. The research carried out at the Music
Technology Group is also presented. We explain how the Vocaloid singing
voice synthesizer inspired the research that we have carried out. Next, we also
provide speci�c details on the author's own trajectory. Then, expression is
de�ned and put into context in the case of the singing voice. Also, a short
excerpt is analyzed in order to illustrate the concept we are studying. Next,
expression is related to the singing voice and other �elds like speech and music
performance. After that, we provide an overview of the proposed systems.
Finally, we describe the goals and organization of this dissertation.

1.1 Motivation

1.1.1 Singing voice synthesis systems

Ins recent decades, several applications have shown how singing voice synthesis
technologies can be of interest for composers (Cook, 1998; Rodet, 2002). Tech-
nologies for the manipulation of voice features (mostly pitch, loudness, and
timbre) have been increasingly used to enhance tools for music creation and
post-processing, singing live performance, to imitate a singer, and even to gen-
erate voices di�cult to produce naturally (e.g. castrati). More examples can
be found with pedagogical purposes or as tools to check acoustic properties of
the voice as a way to identify perceptually relevant voice properties (Sundberg,
2006). These applications of the so-called music information research �eld may
have a great impact on the way we interact with music (Goto, 2012).

Expression control is a particular aspect of such systems that aims to ma-
nipulate a set of voice features related to a particular emotion, style, or singer.

1
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Research projects Website
Cantor http://www.virsyn.de

Cantor Digitalis http://www.cantordigitalis.limsi.fr

ChaNTeR https://chanter.limsi.fr

Flinger http://www.cslu.ogi.edu/tts/flinger

Lyricos http://www.cslu.ogi.edu/tts/demos

Orpheus http://www.orpheus-music.org/v3

Sinsy http://www.sinsy.jp

Symphonic Choirs http://www.soundsonline.com/Symphonic-Choirs

VocaListener https://staff.aist.go.jp/t.nakano/VocaListener

VocaListener2 https://staff.aist.go.jp/t.nakano/VocaListener2

Vocaloid http://www.vocaloid.com

VocaRe�ner https://staff.aist.go.jp/t.nakano/VocaRefiner

VocaWatcher https://staff.aist.go.jp/t.nakano/VocaWatcher

Commercial products Website
Melodyne http://www.celemony.com/

Utau http://www.utau-synth.com

CeVIO http://cevio.jp

Sinsy (integrated in Band-in-a-Box) http://www.pgmusic.com/bbwin.new.htm

VocaListener (product version) http://www.vocaloid.com/lineup/vocalis

Vocaloid (integrated in Cubase) http://www.vocaloid.com/lineup/cubase

Table 1.1: Projects using singing voice synthesis technologies.

In the context of singing voice synthesis, these features are generated either
automatically or through the user interaction. Also known as performance
modeling, expression control has been approached from di�erent perspectives
and for di�erent purposes, and di�erent projects have shown a wide extent of
applicability.

Examples of research projects and commercial products using singing voice
synthesis technologies are listed in Table 1.1. In Figs. 1.1 and 1.2, we show the
interfaces of the Sinsy and the Vocaloid1 synthesizers. In both cases the lyrics
of a song are synthesized following the indications of a score which speci�es
the notes at which each phoneme or syllable has to be reproduced. In the �rst
project, the score is introduced with a MusciXML �le 2, and in the second one
the user introduces notes and lyrics (either manually via the piano roll or by
importing MIDI �les). Di�erent technologies are used for voice synthesis and
di�erent degrees of interaction with the user may be allowed, from just setting
vibrato properties to the possibility of manually tuning a wide set of control
parameters in order to generate a voice as natural and expressive as possible.

There are several possible applications one can imagine where the singing
voice synthesis technologies could be applied. Concerning music notation soft-
ware or score writers, like Sibelius3 or Finale4 amongst others, they o�er the

1http://es.vocaloid.wikia.com/wiki/Vocaloid3/
2http://www.musicxml.com/
3http://www.sibelius.com/
4http://www.finalemusic.com/
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Figure 1.1: Sinsy interface Figure 1.2: Vocaloid interface

functionality of reproducing the score that it is being edited, which is usually
done with an instrumental sound like a piano. However, singing voice libraries
have not been included so far despite the realism that would represent using a
voice that sings the edited songs not only in a natural but also in an expressive
way. There is one case in this direction, which is the integration of Sinsy into
the Band in a Box 5 music arranger software. To our knowledge, the closest
attempt in other available software has been to replace the lyrics of the song
by a single vowel which is then used to sing the notes of the song. The usage
of expressive singing voice synthesis can be applied not only to new created
songs, but also to listen to long collections of songs so to have a �previsual-
ization� of how these sound when a recording is not available (for instance, in
online score repositories like MuseScore6) so that composers can listen to their
compositions in a straightforward way.

Beyond singing voice synthesis, expression control can be useful in music
production for instance. Imagine that the recorded voice track of a singer
could be slightly modi�ed, not only in terms of intonation, but also following a
particular singing style, something would require time and a skillfull user if it
is done manually. To some extent this is what Melodyne8 aims to (corrections
on intonation, timing, phrasing, and dynamics). However, it could also be
envisaged the possibility of improving the singer's expression by providing a
modi�cation of the pitch contour for a given note, phrase, or even the whole
song by combining the singer speci�c expression with automatically generated
features which improve the original performance. The voice quality would be
another relevant aspect to be modi�ed, for instance by changing the voice to
sound with a growl e�ect.

In these applications based on singing voice synthesis technologies we have
emphasized the importance of expression, whose control is the topic of this
dissertation. Expression appears to highly contribute in the overall quality of

5http://www.pgmusic.com/
6https://musescore.com or Choral Public Domain Library7
8http://www.celemony.com/en/melodyne/what-is-melodyne

http://www.pgmusic.com/
https://musescore.com
http://www.celemony.com/en/melodyne/what-is-melodyne
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synthesized sounds (musical, speech, or singing voice) together with the sound
quality itself. Expression shapes a musical sound, speech, or singing voice so
to convey the message content more e�ectively. More details on expression
are provided in section 1.2. In short, in this dissertation we have envisaged
a system that can �mimic� the style of a particular singer so that it can be
reproduced when synthesizing any other song by a virtual singer.

1.1.2 Research at the Music Technology Group

This research has been carried out at the Music Technology Group (MTG)9 of
the Universitat Pompeu Fabra (UPF)10 in Barcelona, founded in 1994 by Dr.
Xavier Serra. It is part of the Department of Information and Communica-
tion Technologies11, and focuses its research on sound and music computing.
More concretely, around 50 researchers make the MTG a multidisciplinary
environment where �elds like signal processing, machine learning, semantic
technologies, and human computer interaction meet to cover 4 research teams:

• Music and multimodal interaction lab: this line of research cur-
rently focuses its research on tabletop and tangible interaction. More
speci�cally, it focuses on the study on how these interfaces can favor
multi-dimensional and continuous real-time interaction, exploration and
multi-user collaboration.

• Audio signal processing lab: where their work is focused to develop
audio signal processing techniques, and more concretely to model sounds
and music by using signal processing methods as well as contextual cul-
tural and social information.

• Music and machine learning lab: where their main interest is
modeling expression in music performances and the use of emotions in
brain-computer (music) interfaces.

• Music information research lab: focused in music information re-
trieval and in voice and audio processing. In the �rst area of research,
the team is involved in the study of descriptors that represent features
like rhythm, timbre, tonality, melody, and structure in musical signals.
Concerning the second area, the team focuses on the study of singing
voice synthesis, voice transformation, audio source separation, music and
audio processing, and automatic soundscape generation.

Regarding the voice and audio signal processing team within the Music
information research lab, lead by Dr. Jordi Bonada, for more than 15 years

9http://www.mtg.upf.edu/
10http://www.upf.edu/
11http://www.upf.edu/dtic/en/

http://www.mtg.upf.edu/
http://www.upf.edu/
http://www.upf.edu/dtic/en/
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the MTG has collaborated with Yamaha Corporation12. As a result, several
projects have been jointly researched and some of them commercialized given
the group's focus on technology transfer:

• Kaleivoicecope13: it is a library with signal processing algorithms that
convert and modify the human voice, based in a set of transformations
(like vibrato, changes in the fundamental frequency and amplitude, con-
trol of the spectral and physical voice characteristics, and timbre modi-
�cations) that preserve its natural quality.

• Elvis14: although it is no longer maintained, this singing voice imperson-
ator project is a voice morphing system is able to transform in real-time
(using the Spectral Modeling Synthesis technique) the voice of an ama-
teur singer and make it resemble the voice of a professional singer.

• Vocaloid: it is a sample-based singing voice synthesizer (Bonada &
Serra, 2007; Kenmochi & Ohshita, 2007), where diphones and triphones
are selected from the singer database recordings according to a cost cri-
teria that measures the degree of time and frequency transformations
applied to each sample. The selected units are then transformed and
concatenated in order to generate the output waveform.

1.1.3 The source of inspiration

The Vocaloid synthesizer has been the main tool used in this dissertation to
synthesize singing voice performances. Actually, this tool and its limitations
inspired the research carried out in this dissertation. As introduced in sec-
tion 1.1.1, Vocaloid synthesizes songs according to the lyrics and the notes
introduced with the piano roll. In order to achieve a realistic virtual singer
performance in terms of naturalness and expressive resources, the user can tune
a wide set of control parameters. However, this is a di�cult task which requires
time and skills to obtain the desired results. Therefore, it becomes desirable
a system to automatically tune such control parameters, which can besides
represent the style of a particular singer and achieve much better results than
done manually. The outcome of such a system can represent a starting con�g-
uration which is much richer than the synthesizer's default expression in terms
of the expressive resources used by the virtual singer. Therefore, it does not
exclude the manual task of �ne tuning the control parameters as a last step.

The sample-based system behind the Vocaloid synthesizer inspired our �rst
approach for expression control based on unit selection. In our case, the main
di�erence is that units are not directly voice samples but they correspond to
pitch and dynamics contours. The subsequent statistically based approaches

12http://www.yamaha.com
13http://www.mtg.upf.edu/project/kaleivoicecope
14http://mtg.upf.edu/10years-yamaha/demos.htm

http://www.yamaha.com
http://www.mtg.upf.edu/project/kaleivoicecope
http://mtg.upf.edu/10years-yamaha/demos.htm
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are inspired by this �rst approach, since these keep working with a similar idea
of unit.

1.1.4 Personal trajectory

The research presented in this dissertation spans over the last 4 years. Besides
the work presented here, I have participated in teaching tasks and supervised
several undergraduate and master thesis within the MTG Sound and Music
Computing Master (SMC)15. In this subsection I provide some details on these
tasks and �nally comment on my own trajectory prior to the PhD research.
Concerning the subjects that I have taught within the UPF Degree in Audio-
visual Engineering Systems16:

• Teaching:

1. Lab sessions of �Senyals i Sistemes� (Signals and Systems).

2. Lab sessions of �Processament de la Parla� (Speech Processing).

• Undergraduate thesis:

1. �Síntesis de voz cantada y canto coral: Herramienta de ensayo para
integrantes de coros clásicos� (Justel Pizarro, 2014)17

2. �Síntesis de voz cantada y canto coral: criterios musicales y estadís-
ticos� (Iserte Agut, 2014)18

3. �Talking summaries� (L. Díaz, 2015)

• Master thesis:

1. �Expressive speech synthesis for a Radio DJ using Vocaloid and
HMM's� (Floría, 2013)19

2. �F0 Modeling For Singing Voice Synthesizers with LSTM Recurrent
Neural Networks� (Ozer, S. 2015)

Concerning the personal background, my academic and professional career
has been related to speech processing since the my undergraduate thesis in the
Technical University of Catalonia (UPC)20 in 2004 on pitch estimation. Since
then, I have been working in speech technologies both at the UPC and in the
private sector at Verbio Technologies21. In 2010, I obtained the SMC master

15http://www.upf.edu/smc/
16http://www.upf.edu/esup/en/titulacions/grau-eng_audiovisuals/presentacio/
17http://repositori.upf.edu/handle/10230/22897
18http://repositori.upf.edu/handle/10230/22885
19http://mtg.upf.edu/node/2835
20http://telecombcn.upc.edu/en/
21http://verbio.com

http://www.upf.edu/smc/
http://www.upf.edu/esup/en/titulacions/grau-eng_audiovisuals/presentacio/
http://repositori.upf.edu/handle/10230/22897
http://repositori.upf.edu/handle/10230/22885
http://mtg.upf.edu/node/2835
http://telecombcn.upc.edu/en/
http://verbio.com
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degree with a thesis entitled �Emotional Speech Synthesis for a Radio DJ: Cor-
pus Design and Expression Modeling� (Umbert et al., 2010). Before starting
the PhD research, I made a 5 months research stay with the Vocaloid team at
the YAMAHA Corporate Research and Development Center22 in Hamamatsu,
Japan, where I worked on generating the growl e�ect to the singing voice. Dur-
ing these last years I have also improved my musical skills by learning music
theory and by joining a Gospel Choir.

1.2 Expression in music

1.2.1 De�nition

Expression is an intuitive aspect of a music performance, but complex to de�ne.
In Kirke, Alexis, Miranda (2013), it is viewed as �the strategies and changes
which are not marked in a score but which performers apply to the music� (p.
2). In Canazza et al. (2004), expression is �the added value of a performance
and is part of the reason that music is interesting to listen to and sounds alive�
(p. 1). A quite complete de�nition is given in Widmer (2001), relating the
liveliness of a score to �the artist's understanding of the structure and `meaning'
of a piece of music, and his/her (conscious or unconscious) expression of this
understanding via expressive performance� (p. 150).

From a psychological perspective, Juslin de�nes it as �a set of perceptual
qualities that re�ect psychophysical relationships between `objective' properties
of the music, and `subjective' impressions of the listener � Juslin (2003) (p.
276). With respect to these objective properties of the music, an extensive
summary of acoustic cues for a selection of emotions can be found in Juslin
& Laukka (2003). The authors also pose the question of what is the message
the performer expresses in a music performance. This is actually analyzed in
Gabrielsson & Juslin (1996), where the authors identify the key elements in
a performance. These are the composer (with a musical intention containing
a certain emotion), the musical score (that encodes that emotion, not present
in case of improvisation), one or several performers (who evoke an emotion
in a performance that may vary in some aspects compared to the score), the
actual sounding music, and the listener (who perceives emotions expressed in
the music).

Expression has a key impact on the perceived quality and naturalness.
As pointed out by Ternström, �even a single sine wave can be expressive to
some degree if it is expertly controlled in amplitude and frequency� (Ternström,
2002). Ternström says that musicians care more about instruments being ad-
equately expressive than sounding natural. For instance, in Clara Rockmore's
performance of Vocalise by Sergei Vasilyevich Rachmanino� a skillfully con-
trolled Theremin expresses her intentions to a high degree, despite the limited

22http://www.yamaha.com/about_yamaha/research/vocaloid/

http://www.yamaha.com/about_yamaha/research/vocaloid/
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degrees of freedom. This audio �le and all other sounds mentioned in this
thesis have been collected in a single website23. The corresponding audio �le
to the mentioned performance can be found in the Signal Processing Magazine
2015 section in the website.

1.2.2 Expression control in singing voice

In the case of the singing voice, achieving a realistic sound synthesis implies
controlling a wider set of parameters than just amplitude and frequency, as
mentioned in section 1.2.1 for the case of a sinusoid. These parameters can
be used by a singing voice synthesizer or to transform a recording. From a
psychological perspective, pitch contour, vibrato features, intensity contour,
tremolo, phonetic timing, and others related to timbre are the main control
parameters that are typically used to transmit a message with a certain mood
or emotion (Juslin & Laukka, 2003) and shaped by a musical style (Thalén &
Sundberg, 2001).

Nominal values for certain parameters can be inferred from the musical
score, such as note pitch, dynamics and note duration and its articulation like
staccato or legato marks. However, these values are not intrinsically expressive
per se. In other words, expression contributes to the di�erences between these
values and a real performance.

It is important to note that there is more than one acceptable expressive
performance for a given song (Friberg et al., 2009; Rodet, 2002; Sundberg,
2006). Such variability complicates the evaluation and comparison of di�erent
expression control approaches.

In this dissertation, we adopt a signal processing perspective to focus on the
acoustic cues that convey a certain emotion or evoke a singing style in singing
performances. As mentioned in Juslin & Laukka (2003), �vocal expression is
the model on which musical expression is based � (p. 799), which highlights the
topic relevance for both the speech and the music performance community. Ex-
pression has also been studied in speech and instrumental music performance,
as presented in the section 1.2.4.

1.2.3 Singing voice performance analysis

The precise elements that contribute to expression in singing voice are studied
in detail in section 2.3. The idea of the current section is to provide intro-
ductory insights on expression by processing a singing performance to visually
present some of these features.

To illustrate the contribution of the acoustic features to expression, we
analyze a short excerpt24 of a real singing performance. The result of the

23http://www.mtg.upf.edu/publications/ExpressionControlinSingingVoiceSynthesis
24Excerpt from �Unchain my heart� song: http://www.mtg.upf.edu/publications/

ExpressionControlinSingingVoiceSynthesis

http://www.mtg.upf.edu/publications/ExpressionControlinSingingVoiceSynthesis
http://www.mtg.upf.edu/publications/ExpressionControlinSingingVoiceSynthesis
http://www.mtg.upf.edu/publications/ExpressionControlinSingingVoiceSynthesis
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Figure 1.3: Expression analysis of a singing voice sample (a) score, (b) modi�ed score,
(c) waveform, (d) note onsets and pitch, (e) pitch and labeled notes, (f) extracted
energy.

analysis is shown in Figs. 1.3 and 1.4. The excerpt contains clear expressive
features like vibrato in pitch, dynamics, timing deviations in rhythm, and growl
in timbre. The original score and lyrics are shown in Fig. 1.3a, where each
syllable corresponds to one note except the �rst and last ones, which correspond
to two notes. The singer introduces ornamentation and syncopation changes,
shown in Fig. 1.3b. The recorded waveform is shown in Fig. 1.3c.

In Fig. 1.3d the note pitch is speci�ed by the expected frequency in cents
and the note onsets are placed at the expected time using the note �gures and
a 120 bpm tempo. Fig. 1.3e shows the extracted F0 contour in blue and the
notes in green. The micro-prosody e�ects can be observed, for example in a
pitch valley during the attack to the `heart' word (around 1.6 seconds). At the
end, vibrato is observed. The pitch stays at the target pitch for a short period
of time, especially in the ornamentation notes.

In a real performance, tempo is not generally constant throughout a score
interpretation. In general, beats are not equally spaced through time, leading
to tempo �uctuation. Consequently, note onsets and rests are not placed where
expected with respect to the score. In Fig. 1.3e, time deviations can be
observed between the labeled notes and the projection colored in red from the
score. Also, note durations di�er from the score.

The recording's energy extracted from the waveform, aligned to the esti-
mated F0 contour, is drawn in Fig. 1.3f. The intensity contour increases/de-
cays at the beginning/end of each segment or note sequence. Energy peaks are
especially prominent at the beginning of each segment, since a growl voice is
used and increased intensity is needed to initiate this e�ect.

We can take a closer look at the waveform and spectrum of a windowed
frame, as in Fig. 1.4. In the former, we can see the pattern of a modulation in
amplitude or macro-period which spans over several periods. In the latter we
can see that, for the windowed frame, apart from the frequency components
related to F0 around 320 Hz, �ve sub-harmonic components appear between
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Figure 1.4: Growl analysis of a singing voice sample: waveform and spectrum.

F0 harmonics, which give the `growl' voice quality. Harmonics are marked with
a dashed line and sub-harmonics between the second and the third harmonics
with a red circle.

If this set of acoustic features is synthesized appropriately, the same percep-
tual aspects can be decoded. Several approaches that generate these features
are presented in the literature review (Sec. 2.4).

We may think of other elements which may have an in�uence on them
beyond the actual melody of the score. Lyrics, that is to say their meaning,
in the context of a given singing style do probably also play an important
role. Relevant words in the song lyrics in a given phrase of the melody may
be emphasized for example changing the voice quality from modal voice to
breathy or growl voice (as is the case in the analyzed excerpt). This is not
studied in this dissertation, although it may be worth considering it for future
research as written in the conclusions (Sec. 8.4).

1.2.4 Connection to other �elds

There are several aspects in performing expressively in singing voice that are
common to speech utterances and musical instruments performances. In this
section we shortly review how expression has been tackled in these other �elds
which are close to the topic of this dissertation.

Emotional speech and prosody

In speech, the �ve acoustic attributes of prosody have been widely studied
(Obin, 2011), for instance to convey emotions (Schröder, 2009). The most
studied attribute is the fundamental frequency (F0) of the voice source sig-
nal. Timing is the acoustic cue of rhythm and it is a rather complex attribute
given the number of acoustic features it is related to (Obin, 2011) (p. 43).
Other attributes are intensity, voice quality (related to the glottal excitation),
and articulation (largely determined by the phonetic context and speech rate).
Emotional speech synthesis has been approached via formant synthesis, con-
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catenative synthesis, and with statistical methods and prosody has been con-
trolled to convey emotions (Widmer & Goebl, 2004).

An emotional space was set in Russell (1980) and Posner et al. (2005), where
emotions are placed in a two-dimensional space (circumplex model of a�ect)
relating them to two main processes: arousal (or activation or alertness) and
valence (how positive or negative the emotion is). Also, in Ilie & Thompson
(2006) the extended version of the emotion space to three dimensions of a�ect
(energy arousal, tension arousal and valence) was used to compare acoustic
parameters in both music and speech. The authors studied the degree of
overlap between a�ective qualities in music and speech by directly comparing
intensity, pitch and tempo. They conclude that there is a general mechanism
that links acoustic features (like the ones modi�ed in their experiments) to
emotions. However, some di�erences were found in the behaviour of features
with respect to dimensions and emotions, which could be taken into account.
Nonetheless, these di�erences show that di�erent strategies may be used for
speech and music.

In Schröder (2001) a review of how emotional speech is approached in
the di�erent techniques. It is worth mentioning that in unit selection good
results are obtained using separated databases for each emotion, and therefore
selecting units according to the emotion willing to synthesize. In this case,
the voice quality is determined by the database, and the control parameters
contours can be directly extracted from a real utterance (copy synthesis). Also
explicit prosody models/rules are used to modify pitch, duration and loudness
by setting general settings for each emotion (F0 level and range, tempo and
loudness level, their relationship to phonemes and syllables).

Within the statistical speech synthesis, in Tachibana et al. (2005) emotions
are modelled using a Hidden Markov Model (HMM) framework and at the
same time it is possible to interpolate between 2 di�erent styles. In this case,
separate models per emotion are created, and control parameters like pitch,
timbre and loudness are predicted.

Instrumental musical performance
Expressive music performance with instruments has also been widely stud-

ied. In this subsection we mention the basic characteristics of di�erent works.
An exhaustive review can be found in Kirke, Alexis, Miranda (2013), where
30 systems are classi�ed into non-learning methods, linear regression, arti�-
cial neural networks, rule/case-based learning models among others. Several
computational models are reviewed in Widmer & Goebl (2004), like the KTH
model, which is based �on performance rules that predict the timing, dynamics,
and articulation from local musical context� (p. 205). The Todd model links
the musical structure to a performance with simple rules like measurements
of human performances. The Mazzola model analyzes musical structure fea-
tures like tempo and melody and iteratively modi�es expressive parameters of
a synthesized performance. Finally, a machine-learning model discovers pat-
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terns within large amounts of data, it focuses for instance on timing, dynamics,
and more abstract structures like phrases, and manipulates them via tempo,
dynamics, and articulation.

In Mion et al. (2010), di�erent expressive intentions are analyzed and both
acoustical and perceptual commonalities of instrumental songs are studied.
Machine learning techniques are applied to observe how expressive intentions
are organized. PCA technique is applied to get a visual 2D representation.

An approach for modelling and controlling the expressiveness can be found
in Canazza et al. (2004). The authors apply morphing techniques to change
expressive intentions continuously working both at high (symbolic) and low
(features) levels. Still with the idea of synthesis control and how expression
is mapped, there is the work of Maestre (2009). In this case, it is worth
mentioning that the control parameters are the bowing contours and are used
to get a natural violin sound, extracted from an annotated input score. Two
sound synthesis approaches (physical modelling synthesis and sample-based
synthesis) were taken into consideration.

In Lindemann (2007), reconstructive phrase modelling (RPM), the ap-
proach used in the Synful Orchestra, is explained. It combines additive syn-
thesis with concatenative synthesis. The �rst one is used to represent sounds
as combination of �time-varying harmonic plus noise elements�, for example,
rapidly varying components are separated from slowly varying ones in each
harmonic envelope. The second one is used to realistic sound quality of sam-
pling. It di�ers from the traditional technique in the sense that it captures the
transition between notes. In this framework, the �ne details from pitch and
amplitude are stored in the phrase database. When searching for a matching
phrase in real time performance, slow varying features are directly mapped
from the MIDI control stream, and rapidly varying details from the database.
RPM also uses the relationship of timbre with pitch and loudness in order to
predict separately slow varying amplitudes of each harmonic based on neural
networks. Rapid variations of the harmonics are stored in the database by
subtracting the predicted harmonic contour form the original harmonic.

Finally, case-based reasoning (CBR) has also been used for the generation
of expressive performances (Arcos et al., 1998). CBR is an approach to prob-
lem solving and learning where new previously solved problems are used to
solve new ones. It needs �rst to retrieve solved problems using some similarity
criteria and then it adapts the corresponding solutions to the current problem
to solve. In SaxEx, the musical knowledge for the model is provided by mu-
sical perception and understanding theories. SaxEx uses Spectral Modelling
Synthesis to extract the expressive parameters and to apply transformations
to an inexpressive performance. In this framework, predictions of expressive
performances are done based on how other similar pieces were played by mu-
sicians.
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1.3 Proposed Systems

The aim of the section is to provide a general idea of the approaches we
have been working on and their building blocks. We give this comprehen-
sive overview in order to make the details of the remaining chapters easier to
read and to help see how these are related. We cover from the fundamental
concepts of our work to the designed databases and how we model the recorded
expression from unit selection and Hidden Markov Model perspectives.

1.3.1 Basic ideas

In this section, we �rst introduce the basic ideas behind our work, which are the
expression contours and what we consider as units. Based on these concepts,
we build the expression databases that are used by all our approaches (Sec.
1.3.2). Next, we introduce the main building blocks of the unit selection-based
approach (Sec. 1.3.3) and the Hidden Markov-based approach (Sec. 1.3.4).
Finally, the hybrid approach which combines elements of the two previous
approaches is presented (Sec. 1.3.5).

Expression contours

In section 1.2.3 we have introduced that expression in singing voice perfor-
mances can be analyzed and partly visualized by plotting the evolution over
time of some features. The pitch, dynamics, timing, and the subharmonics in
growl voices of a recorded performance are visualized, which represent one of
the possible ways a song can be expressively sung.

The aim of any of the proposed systems is to simulate the behavior of such
expression features so to control a singing voice synthesis system. We have
devoted our e�orts into generating pitch and dynamics controls, as an initial
step to a more comprehensive approach that controls also timing and timbre
aspects of the voice. Therefore, our aim is to model the time evolution of pitch
and dynamics at frame level. The singing voice synthesizer will then use the
provided values in order to generate an expressive performance.

These contours represent a (virtual) singer rendition of a given target song,
which is de�ned by a sequence of notes and rests, with their durations and pitch
values. According to music theory, if we focus on any sequence of three notes,
we can distinguish several topologies which are next detailed.

Unit representation: from Narmour to triphones

The basic element in our work are units, which we de�ne as a sequence of three
notes or rests. We can think of it in terms of a central note and the surrounding
ones which provide contextual information. For instance, the transition or
attack to a central note from a silence is generally di�erent than that from a
note.
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Figure 1.5: Narmour group structures.

We can relate units to music theory aspects, like the basic grouping struc-
tures on which the Narmour's Implication-Realization Model (Narmour, 1990,
1992) is founded. This model, as summarized by Mantaras & Arcos (2002),
allows to analyze the melody of a piece based on the basic units of the listener's
perception and the ful�llment of the expectations. As shown in Fig. 1.5, the
patterns described by these structures cover the di�erent trends a sequence
of notes may follow and are typically de�ned by the distances between note
pitches. The direction of these intervals may be all ascending, descending,
or interleaved directions and the magnitude of such intervals is also used to
di�erentiate them between steps (small intervals) or leaps (large intervals).

Melodies can be segmented into a sequence of Narmour structures or units,
as done in Arcos et al. (1998). In the SaxEx project, these structures are
identi�ed in the target score, and then used to retrieve similar examples from
an expressive database based on the assumption that notes with a similar
Narmour structure should be played in a similar way.

If we set to three the number of notes of these structures we can �nd a simi-
larity between the generic concept of units and the one used in our approaches.
In Fig. 1.6 we show a symbolic representation of the unit concept with three
labeled notes and the corresponding pitch contour. In the following sections we
explain several approaches we have been working on in which these units are
being modeled either individually with the unit selection-based approach or
either statistically with the Hidden Markov Model-based approach to generate
a longer sequence of pitch and dynamics contours.

We can also relate our unit concept to how units are typically de�ned in
speech synthesis. Several unit types are being used by concatenative text-to-
speech systems, which may range from simple phonemes, to phoneme transi-
tions or diphones, to three phonemes or triphones, or even to longer units.

1.3.2 Expression contours database creation

Our approaches need to work with an expression database that ful�lls very
speci�c requirements, which range from the coverage of di�erent combinations
of note durations and pitch intervals, to the lyrics' content. Given these re-
quirements, we have designed, recorded, and labeled two databases ourselves.
These steps are detailed in Chapter 3.

In short, the requirements related to coverage that we have adopted imply
that we want that our database contains di�erent combinations of note dura-
tions, pitch interval and note strength, which a measure of the beat accent of a
note taking into account its onset within a measure. For simplicity, we have left



1.3. PROPOSED SYSTEMS 15

Figure 1.6: Unit: 3 consecutive notes and pitch contour.

out the lyrics and restricted our interest to the pitch and dynamics contours
of the singer performance of the recorded scores. However, these parameters
are a�ected by phonetics by what is known as the microprosody e�ects. For
instance, unvoiced consonants produce pitch segments without pitch content,
and velar consonants produce pitch valleys which are not related to expression
but to phonetics. Therefore in our case it is preferable not to use any lyrics in
the recordings, hence we will use simply vowels.

The main idea behind the expression databases is that we want to capture
how a singer interprets expressively a set of melodies. As we have explained, we
are not recording lyrics but vowels. We have approached the database design
from two perspectives. On one hand, we have recorded a database of jazz
songs, where we have changed the original lyrics to vowels. On the other hand,
we have prepared a set of systematic exercises that cover several combinations
of note pitch intervals, durations, and note strengths.

We have designed a methodology for labeling these recordings after pitch
and dynamics estimation. Note onsets, its durations, and note transitions
and sustains are estimated in a semi-automatic way. That is to say, we have
designed an algorithm that manually segments these data, but we manually
re�ne the boundaries. Vibratos �rst are manually segmented and afterwards
rate and depth are automatically estimated by an algorithm that we have
designed as well.

The output of the labeling process is on the one side the sequence of notes
and rests per song and the sustains and transition segmentation. On the other
side we also have the dynamics contour and the pitch information which is
split into three contours: the baseline pitch (from which we have extracted the
vibrato), the vibrato depth and rate (which are both null when no vibrato is
present).

The resulting databases with the labeling information are used by both
the unit selection and the statistical approach we have designed. In the �rst
case, the pitch contour is directly generated from the selected units. In the
second case, the expressive contours are statistically modeled and then used
at synthesis.
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1.3.3 A unit selection-based system

The unit selection-based approach aims to generate expressive singing voice
contours by capturing the �ne details of the recorded databases. This is done
following the typical steps in unit selection approaches, but in our case the
units are segments of pitch and dynamics contours. Therefore, other voice
features like timbre are not represented. First, units are selected based on the
cost criteria we have de�ned. Then, units are transformed to match the target
score. Next, the transformed units are concatenated. Finally, the output sound
is rendered using the Vocaloid synthesizer. These steps are next summarized.

Unit selection

Given a target score to synthesize, its set of notes and rests can be expressed as
a sequence of units. In the unit selection step we want to select a sequence of
units from the expression database which is as similar as possible to the target
sequence. The similarity measure is provided by the transformation and con-
catenation costs that we have de�ned. The transformation costs measure how
much the unit notes need to be transformed in time (duration) and frequency
(intervals) to match the target score. Note that we are not using the absolute
pitch values to measure the amount of transformation in frequency, since we
can easily transpose a pitch contour and reuse it with a given o�set di�erence.
By contrast, the concatenation costs favor the selection favor the selection of
units from close contexts. This is done both by favoring the selection of con-
secutive units in the database and also by favoring the selection of units of the
same phrase.

Unit transformation

Once the sequence of units has been selected, the unit transformation step
aims at transforming the units' pitch and dynamics contours to match the
corresponding target units. Our representation of the pitch contour allows the
system to do a separate transformations in time and frequency. The pitch
contour is decomposed into the baseline pitch on one side and the vibrato rate
and depth contours on the other side. The baseline pitch is an estimation
of the pitch without vibratos. The vibrato features are 0 when there are no
vibratos, and their values are estimated for the vibrato segments.

Regarding the note duration, the transformation process is done mainly
in the sustain segments and to keep the pitch contour transitions duration as
much as possible. Concerning the pitch transformation, the baseline pitch and
vibrato depth and rate contours are time-scaled to preserve their shape in the
target note durations. The vibrato model we are using allows us to recreate
a new vibrato pitch oscillation that preserves the properties of the original
vibrato adapted to the new note duration.
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Unit concatenation

Once all units have been transformed, we need to concatenate them. This step
mainly keeps the shape of the transition and sustain part of the central note of
each unit. To do so, the transformed contours are masked before cross-fading.
These masks are basically weights equal to 1 during the parts that we want to
preserve and 0 otherwise (with a smooth transition between these two areas).
The weights are complementary between consecutive masks so that there are
no discontinuities when cross-fading.

Contour generation

After unit concatenation, the dynamics contour is already generated by over-
lapping the transformed unit contours weighted by the corresponding masks.
However, the �nal pitch contour requires one more step. At this point, we have
three contours that need to be joined: the baseline pitch, the vibrato depth,
and the vibrato rate. First, the baseline pitch can be tuned if necessary in case
there is some deviation with respect to the target pitch during the sustain part.
Then, the vibrato features are combined to generate the oscillation which is
then added to the baseline pitch, resulting in the �nal pitch contour.

Sound generation

The last step is the generation of the Vocaloid readable �les (or VSQX format).
These contain all the information of the generated contours for pitch and dy-
namics. The VSQX �les contain the sequence of notes and the lyrics phonetic
transcription which is automatically generated. In this thesis we have worked
with Spanish and English databases, and therefore the songs we synthesize are
in these languages.

1.3.4 A statistical system

The Hidden Markov model-based approach aims to statistically and jointly
model the behaviour of the expression contours. In this case we are adapting
the HTS framework25 for speech synthesis to singing voice synthesis. Therefore,
the main adaptation steps are to de�ne the contextual factors and also the
actual contour data to be modeled in the training step. In the synthesis step,
the contextual data for the target song is used by the trained models to generate
the output contours. These steps are reviewed here below.

Contextual data

The contextual data used by the HTS framework is an extended version of the
unit concept. It uses information related to a central note and the previous

25http://hts.sp.nitech.ac.jp

http://hts.sp.nitech.ac.jp
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and succeeding ones. It also uses pitch intervals between these three notes as
well as their durations. HMM-based systems extend the contextual data by
adding more information like the number of notes in the song to extend the
information.

Model training

Another di�erence with respect to the unit selection-based approach is the
input training contour data. One possibility would be to use the absolute
pitch values. However, this would force us to cover a wide pitch range of several
octaves for any possible song we think it might be synthesized. An alternative is
to use the pitch di�erence between the absolute pitch contour and a theoretical
pitch contour which is computed as a piecewise cubic interpolation from the
sequence of notes and transitions.

The models that we train are di�erent from what is typically done in speech.
In our case we do not model phonemes, nor notes, but sequences of note
transitions and sustains. Within the transition models, we make di�erences
depending on the pitch interval direction (ascending, descending, or similar).

Contour synthesis

In order to synthesize the target pitch and dynamics contours, the same format
of the contextual data is used for the target song. Since we have trained the
pitch di�erence, we can synthesize any sequence of notes even if the absolute
pitch was not present in the training data.

The generate data is on the one hand the dynamics, and on the other hand
the baseline pitch vibrato depth, and vibrato rate which have to be combined
as explained in order to generate the pitch contour.

1.3.5 A hybrid system

The hybrid approach attempts to combine both the unit selection-based and
the Hidden Markov model-based approaches into a single one. First, we run the
statistical approach. Then, its output is used to enrich the subcost functions
of the unit selection step. More concretely, the statistical approach guides
the unit-selection approach by providing a baseline of the pitch and dynamics
contours. These steps are reviewed here below.

Combination of approaches

We have realized that the unit selection-based approach has a set of subcost
functions in order to select the units that will contribute to generate the output
contours. However, we can only use the labeling data (note durations and pitch
intervals) to measure the cost of unit transforming and concatenating units.
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The cost functions could be enhanced if we had a target pitch contour which
we want to be similar to. Such an improvement can be done using the HMM-
based approach to generate an initial baseline of the dynamics and baseline
pitch contours which can be included in the unit selection step.

Extended unit selection

During the computation of the cost functions, the candidate units from the
expressive database are compared to the statistically generated baseline pitch.
A distance measure can be computed to complement the other subcosts. In
our case, we use the dynamic time warping (DTW) cost value between the unit
baseline pitch (without vibrato �uctuations) and the proposed baseline pitch
from the HMM-based approach as the distance measure.

1.4 Goals and organization of the thesis

As introduced in sections 1.1.1 and 1.1.2, the main objective of this thesis is to
develop new systems that reproduce the expressive style of a particular singer
when synthesizing a song sung by virtual singers. We focus our research on
basic units of 3 notes, where a central note is contextualized by the preceding
and succeeding notes. This contextual data surrounds the relevant part of a
unit: the transition and sustain of the central note. Our hypothesis is that
starting from such working unit, we can use unit selection-based and statistical
methods to generate the expression control parameters of any target song.
Units are obtained from analyzing singer recordings, and stored in labeled
databases, which contain not only the pitch and dynamics from recordings but
also information on which are the notes pitches, start and end times, vibrato
features and their start and end times, and other score information like note
strength.

In all the proposed systems, these contextual data are used either to re-
trieve, transform, and concatenate units, or to train statistical systems. It is
important to remind at this point that the output of the proposed methods
are pitch and dynamics contours which are meaningful for the target song, and
are used to control the singing voice synthesizer.

The organization of the remainder of this thesis is as follows. We start
by providing the literature review on the main scienti�c background which is
relevant for this dissertation in Chapter 2. First, we describe how the singing
voice is produced, both physically in the human body and arti�cially in singing
voice synthesis systems (Sec. 2.2). Then, we go through the di�erent control
parameters that have an e�ect on expression (Sec. 2.3). Next, we provide an up
to date classi�cation, comparison, and description of a selection of approaches
to expression control (Sec. 2.4). Finally, we describe and discuss on how these
methods are currently evaluated (Sec. 2.5).
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The following chapters proceed to detail the di�erent elements introduced
in Section 1.3. We provide the block diagram Fig. 1.7 to help understand the
�ow of the thesis and to visualize how the chapters are interrelated. Chapter
3 is devoted to the creation of the expression databases. First, we de�ne a set of
requirements prior to the design of the recordings (Sec. 3.2). Then, the designs
for the timing deviation, the systematic expression, and the song expression
databases are detailed (Secs. 3.3 and 3.4, respectively). The common labeling
methodology for all these databases is �nally described (Sec. 3.5).

The unit selection-based approach is explained in Chapter 4. In this case,
the �rst step is to select units according to a set of cost functions (Sec. 4.2).
Then, the selected units are transformed preserving note transition shapes and
vibrato features (Sec. 4.3.3), and �nally concatenated (Sec. 4.4) before syn-
thesizing the sound (Sec. 4.5). A hidden markov model approach is explained
in Chapter 5. Its main components are the contextual data used to describe
the training data (Sec. 5.2), the training process, and the synthesis of the
expression contours. These steps are slightly di�erent in the two methods that
we describe, a baseline HMM-based system which models note sequences (Sec.
5.3) and our proposal of a modi�cation of the HMM-based method which mod-
els transition and sustain sequences (Sec. 5.4). In Chapter 6 we present how
the unit selection-based and the HMM-based approaches can be combined in a
hybrid approach. The HMM-based system is used to generate expression con-
tours (Sec. 6.2) which are then used to extend the cost functions in the unit
selection-based approach (Sec. 6.3). In Chapter 7 we evaluate and compare
several synthesized performances. Both perceptual (Sec. 7.2) and e�ciency
(Sec. 7.3) evaluations have been conducted. We also consider some more use
case in which the proposed systems could be applied (Sec. 7.4) and discuss on
possible aspects that the community should face to improve the evaluation of
singing voice synthesis systems (Sec. 7.5).

Finally, inChapter 8 we provide the conclusions of this dissertation. First,
we summarize the contributions (Sec. 8.2), then we discuss the future perspec-
tives (Sec. 8.3), and �nally describe the challenges that we currently foresee
(Sec. 8.4).
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CHAPTER 2

Literature review

In this second chapter we provide the state of the art as the required scien-
ti�c background for the next chapters. It is mainly divided into four parts:
the explanation of the production mechanism of the singing voice, the main
features that control its performance, a categorization of the approaches that
have been typically used to control the singing voice expression, and �nally
the evaluation strategies.

The succeeding chapters of this dissertation present several approaches that
aim to broaden the amount of categories within the topic of expression control
in singing voice synthesis.

2.1 Introduction

This literature review, mainly based on Umbert et al. (2015), starts by in-
troducing the mechanism of singing voice production (Sec. 2.2), both from a
physical and a synthesis perspectives. Next, we present the commonly studied
set of voice parameters that, from a perception perspective, have an e�ect on
expression (Sec. 2.3). Then, we provide an up to date classi�cation, compar-
ison, and description of a selection of approaches to expression control (Sec.
2.4). Next, we describe and discuss how these methods are currently evaluated
(Sec. 2.5). Finally, we conclude the main ideas presented in this chapter (Sec.
2.6).

2.2 The singing voice

In order to better understand the signal we are dealing with and how it has
been modeled, in this section we describe the generation of the singing voice.
First, we explain the physical mechanism of the air coming from the lungs
until the voice sound is generated (Section 2.2.1). Then, we overview the main
blocks of the singing voice synthesis systems (Section 2.2.2).

23
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Figure 2.1: Vocal folds representation from Kob (2002)

2.2.1 How is the singing voice produced?

The voice organ anatomy

The principal systems of the voice organ are the breathing apparatus, the vocal
folds (see Fig. 2.1), and the vocal tract. Here we provide a short overview,
the reader is referred to (Sundberg, 1987) for a comprehensive description of
all the elements in the voice organ.

The �rst system (breathing apparatus) is formed by the lungs, which are
connected to the vocal folds through the trachea. The sound production starts
by a compression of the lungs that send air to the vocal folds and vocal tract.
The vocal folds (or vocal cords) are a set of muscles protected by a membrane.
The length of the vocal folds is related the pitch (the longer the vocal folds the
lower the pitch range) and it is correlated to the perimeter of the neck. The
glottis is the opening between the vocal folds. These may be brought together
by the so called adduction movement (the vocal folds vibrate), or separated
by the abduction movement. Depending on the balance between these two
movements the output sounds may be a combination of voiced and unvoiced
phonemes (e.g. �ow/breahy phonation).

The vocal folds (from the glottis) are joined to the vocal tract through the
larynx and pharynx tubes. The vocal tract starts at the pharynx and continues
with the mouth and nasal cavities. When we produce sounds, the air may pass



2.2. THE SINGING VOICE 25

Figure 2.2: Vocal folds1

through the nasal cavity producing nasal sounds.

Speech and singing voice production mechanism

The singing voice is produced in the voice organ, which also produces speech.
Therefore, both speech and singing voice are quite similar. The singing voice is
a broader phenomena that includes speech and modi�cations of speech sounds
(notes), but both are generated by the same mechanism (Sundberg, 1987).

Simply put, in voiced phonemes, the air coming from the lungs triggers
the vocal folds vibration. The vibration of the vocal folds is periodic and re-
sults in what we call the fundamental frequency or pitch. Pitch refers to a
perceptual characteristic, but it is broadly used as equivalent to fundamen-
tal frequency. The temporal evolution of the pitch, is related to prosody in
speech and to melody in singing voice. This voice source signal is shaped by
the larynx constriction together with the �ltering applied in the vocal tract
generating a signal with time-varying properties. The variation of vocal trach
�lter depends broadly on the jaw opening, the tongue position, or whether the
air pass through the nose. The vocal tract �lter can be described by a set of

1Figure from Sundberg (1987) reproduced with the author's permission.



26 CHAPTER 2. LITERATURE REVIEW

Figure 2.3: Generic framework blocks for expression control.

emphasized frequencies which are named formants. More details on the for-
mant frequencies are given in section 2.3.5. In unvoiced phonemes, the �ltered
source signal is approximated by noise. These features have a great impact on
the way singing performance expression is perceived.

We can also have a look at the di�erent signals that intervene in this mech-
anism and specially to how their spectrum is being shaped at each step. These
signals are shown in Fig. 2.2. First, the vibration of the vocal folds generates
a set of pulses. This signal is shown at the bottom part of the �gure, show-
ing how the pressure at the vocal folds increases and decreases periodically,
at the same rhythm these open and close. This signal spectrum has a fun-
damental frequency and the corresponding multiple frequencies or harmonics.
Their amplitude decreases as the frequency increases. This signal is �ltered
by the vocal tract �lter. In the radiated signal the amplitude of the harmonic
frequencies depend therefore on both the vocal tract shape and on the voice
source characteristics.

2.2.2 How is the singing voice synthesized?

Synthesis systems' building blocks

The generic framework of the singing voice synthesis systems is represented in
Fig. 2.3, based on Kirke, Alexis, Miranda (2013). The input may consist of
the score (e.g. note sequence, contextual marks related to loudness, or note
transitions), lyrics, and the intention (e.g. the style or emotion). Intention
may be derived from the lyrics and score content (dashed line).

The input may be analyzed to get the phonetic transcription, the alignment
with a reference performance, or contextual data. The expression control gen-
eration block represents the implicit or explicit knowledge of the system as
either a set of reference singing performances, a set of rules, or statistical mod-
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Signal models
Physical models

Time domain Frequency domain

PSOLA, MBROLA

formant synthesis, FM, FOF,
LPC, HMMs, spectral mode-
ling synthesis (SMS), sinusoi-
dal plus residual, (phase)
vocoder

acoustic tube models, mass
model, wave propagation
models, �nite di�erential
equations

Table 2.1: Voice model classi�cation.

els. Its output is used by the synthesizer to generate the sound, which may be
used iteratively to improve the expression controls.

Synthesis systems' voice model

A key element of such technologies is the singer voice model. Although it is
out of the scope of this dissertation to describe it in depth, Table 2.1 shows
the groups in which these are typically classi�ed (Bonada & Serra, 2007; Cook,
1998; Rodet, 2002; Schwarz, 2007) and the corresponding synthesizer control
parameters. These are organized in waveform synthesizers (distinguishing be-
tween perceptual or production mechanisms), and concatenative synthesizers.

The main di�erence between perceptual perspective (signal models) and
production perspective (physical models) is found in the type of controls. In
the former, controls are related to perceptual aspects such as pitch and dy-
namics, while in the latter ones controls are related to physical aspects of
the voice organ. In concatenative synthesis, samples (called units) retrieved
from a corpus are transformed and then concatenated to generate the output
utterance according to some concatenation-cost criteria. Units may cover a
�xed length (e.g. diphones cover the transition between two phonemes), or
a more �exible and wider scope. Inspired by the speech synthesis commu-
nity, a wide variety of techniques can be found in the literature, from acoustic
tubes, (phase) vocoder, linear prediction coding (LPC), frequency modulation
(FM), spectral modeling synthesis (SMS), formant wave functions (FOF), and
formant synthesis to combinations such as sinusoidal modeling with PSOLA
(SM-PSOLA) or sinusoidal modeling with glottal excitation and resonances
in the frequency domain. Finally, statistical methods have also been used to
train Hidden Markov Models (HMMs) and to generate a singing voice signal.
In Table 2.1 we classify these voice models, and relate them to what is being
modeled (signal vs. physical mechanism) and the type of representation (time
vs. frequency domain).
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Model-based synthesis Concatenative synthesis

Signal models Physical models Fixed length Non uniform

Parameters F0, resonances (centre fre-
quency and bandwidth), si-
nusoid frequency, phase, and
amplitude, glottal pulse spec-
tral shape, phonetic timing

Vocal apparatus related pa-
rameters (tongue, jaw, vocal
tract length, and tension, sub-
glottal air pressure, phonetic
timing)

F0, amplitude, timbre, pho-
netic timing

Table 2.2: Singing voice synthesis systems and control parameters.

Synthesis systems' control parameters

For the purpose of this dissertation, it is more interesting to classify singing
synthesis systems with respect to the control parameters. As shown in Table
2.2, those systems are classi�ed into model-based and concatenative synthe-
sizers. While in signal models the control parameters are mostly related to a
perception perspective, in physical models these are related to physical aspects
of the vocal organs. In concatenative synthesis, a cost criterion is used to re-
trieve sound segments (called units) from a corpus which are then transformed
and concatenated to generate the output utterance. Units may cover a �xed
number of linguistic units, e.g. diphones that cover the transition between two
phonemes, or a more �exible and wider scope. In this case, control parameters
are also related to perceptual aspects.

Within the scope of this dissertation, we focus on the perceptual aspects of
the control parameters which are used to synthesize expressive performances
by taking a musical score, lyrics or an optional human performance as the
input. This work therefore, does not discuss voice conversion and morphing in
which input voice recordings are analyzed and transformed (Doi et al., 2012;
Kawahara et al., 2009). In these cases, a real voice recording, playing the role
of the voice model, is analyzed and transformed (e.g. timbre and prosodic
features). This transformation in some cases is done via statistical methods
such as Gaussian Mixture Models (GMMs) or Hidden Markov Models (HMMs).

2.3 Singing voice performance features

In Section 1.2.2 we introduced a wide set of low-level parameters for singing
voice expression. In this section we relate them to other musical elements.
Then, the control parameters are described, and �nally we illustrate them by
analyzing a singing voice excerpt.

2.3.1 Feature classi�cation

As in speech prosody introduced in Section 1.2.4, music can also be decomposed
into various musical elements. The main musical elements such as melody, dy-
namics, rhythm, and timbre are built upon low-level acoustic features. The
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Melody Dynamics Rhythm Timbre

Vibrato and tremolo (depth and rate) Pauses Voice source
Attack and release Phoneme time-lag Singer's formant

Articulation Phrasing Sub-harmonics
F0 contour Intensity contour Note/phone onset/dur Formant tuning

F0 frame value
Intensity frame value

Timing deviation
Aperiodicity spectrum

Detuning Tempo

Table 2.3: Singing voice expression features' classi�cation.

relationships between these elements and the acoustic features can be repre-
sented in several ways (Lesa�re, 2006) (p. 44). Based on this, Table 2.3 relates
the commonly modeled acoustic features of singing voice to the elements to
which they belong. Some acoustic features spread transversally over several
elements. Some features are instantaneous such as F0 and intensity frame
values, some span over a local time window like articulation and attack, and
others have a more global temporal scope like F0 and intensity contours, or
vibrato and tremolo features. Next, for each of these four musical elements,
we provide introductory de�nitions to their acoustic features.

2.3.2 Melody related features

The F0 contour, or the singer's rendition of the melody (note sequence in a
score), is the sequence of F0 frame-based values (Salamon et al., 2014). F0
represents the �rate at which the vocal folds open and close across the glottis�,
and acoustically it is de�ned as �the lowest periodic cycle component of the
acoustic waveform� (Juslin & Laukka, 2003) (p. 790). Perceptually it relates to
pitch, de�ned as �the aspect of auditory sensation whose variation is associated
with musical melodies� (Plack & Oxenham, 2005) (p. 2). In the literature,
however, pitch and F0 terms are often used indistinctly to refer to F0.

The F0 contour is a�ected by micro-prosody (Saino et al., 2010), that is
to say, �uctuations in pitch and dynamics due to phonetics (not attributable
to expression). While certain phonemes like vowels may have stable contours,
other phonemes such as velar consonants may �uctuate due to articulatory
e�ects.

A skilled singer can show the expressive ability through the melody rendi-
tion and modify it more expressively than unskilled singers. Pitch deviations
from the theoretical note can be intentional as an expressive resource (Sund-
berg, 2006). Moreover, di�erent articulations, that is to say the F0 contour in
a transition between consecutive notes, can be used expressively. For example,
in `staccato' short pauses are introduced between notes. In Section 2.3.6 the
use of vibratos is detailed.
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2.3.3 Dynamics related features

As summarized in Juslin & Laukka (2003), intensity (related to the perceived
loudness of the voice) is a �measure of energy in the acoustic signal � usually
from the waveform amplitude (p. 790). It �re�ects the e�ort required to produce
the speech� or singing voice, and is measured by energy at a frame level. A
sequence of intensity values provides the intensity contour, correlated to the
waveform envelope and the F0 since energy increases with the F0 so to produce
a similar auditory loudness (Sundberg, 1987). Acoustically, vocal e�ort is
primarily related to the spectrum slope of the glottal sound source rather than
to the overall sound level. Tremolo may also be used, as detailed in Section
2.3.6.

Micro-prosody has also an in�uence on intensity. The phonetic content of
speech may produce intensity increases as in plosives or reductions like some
unvoiced sounds.

2.3.4 Rhythm related features

Perception of rhythm involves cognitive processes such as �movement, reg-
ularity, grouping, and yet accentuation and di�erentiation� (Scheirer, 1998)
(p. 588), where it is de�ned as �the grouping and strong/weak relationships�
amongst the beats, or �the sequence of equally spaced phenomenal impulses
which de�ne a tempo for the music�. Tempo corresponds to the number of
beats per minute. In real life performances, there are timing deviations from
the nominal score (Juslin & Laukka, 2003).

Similarly to the role of speech rate in prosody, phoneme onsets are also
a�ected by singing voice rhythm. Notes and lyrics are aligned so that the �rst
vowel onset in a syllable is synchronized with the note onset and any preceding
phoneme in the syllable is advanced (Saino et al., 2006; Sundberg, 2006).

2.3.5 Timbre related features

Timbre depends mainly on the vocal tract dimensions and on the mechanical
characteristics of the vocal folds which a�ect the voice source signal (Sundberg,
1987). Timbre is typically characterized by an amplitude spectrum represen-
tation, and often decomposed into source and vocal tract components.

The voice source can be described in terms of its F0, amplitude, and spec-
trum (vocal loudness and mode of phonation). In the frequency domain, the
spectrum of the voice source is generally approximated by an average slope
of -12 dB/octave, but typically varies with vocal loudness (Sundberg, 1987).
Voice source is relevant for expression and used di�erently among singing styles
(Thalén & Sundberg, 2001).

The vocal tract �lters the voice source emphasizing certain frequency re-
gions or formants. Although formants are a�ected by all vocal tract elements,
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some have a higher e�ect on certain formants. For instance, the �rst two for-
mants are related to the produced vowel, with the �rst formant being primarily
related to the jaw opening and the second formant to the tongue body shape.
The next three formants are rather related to timbre and voice identity, with
the third formant being particularly in�uenced by the region under the tip
of the tongue and the fourth to the vocal tract length and dimensions of the
larynx (Sundberg, 1987). In western male operatic voices the 3rd, 4th, and 5th
typically cluster, producing a marked spectrum envelope peak around 3 kHz,
the so-called singer's formant cluster (Sundberg, 1987). This makes it easier to
hear the singing voice over a loud orchestra. The a�ected harmonic frequencies
(multiples of F0) are radiated most e�ciently towards the direction where the
singer is facing, normally the audience.

Changing modal voice into other voice qualities can be used expressively
(Loscos & Bonada, 2004). Rough voice results from a random modulation of
the F0 of the source signal (jitter) or of its amplitude (shimmer). In growl voice
sub-harmonics emerge due to half periodic vibrations of the vocal folds and in
breathy voices the glottis does not completely close, increasing the presence of
aperiodic energy.

2.3.6 Transverse features

Several features from Table 2.3 can be considered transversal given that they
spread over several elements. In this section we highlight the most relevant
ones.

Vibrato is de�ned (Sundberg, 1987) as a nearly sinusoidal �uctuation of
F0. In operatic singing, it is characterized by a rate that tends to range from
5.5 to 7.5 Hz and a depth around 0.5 or 1 semitones. Tremolo (Sundberg,
1987) is the vibrato counterpart observed in intensity. It is caused by the
vibrato oscillation when the harmonic with the greatest amplitude moves in
frequency, increasing and decreasing the distance to a formant, thus making
the signal amplitude vary. Vibrato may be used for two reasons (Sundberg,
1987) (p. 172). Acoustically, it prevents harmonics from di�erent voices from
falling into close regions and producing beatings. Also, vibratos are di�cult to
produce under phonatory di�culties like pressed phonation. Aesthetically, vi-
brato shows that the singer is not running into such problems when performing
a di�cult note or phrase like high pitched notes.

Attack is the musical term to describe the pitch and intensity contour
shapes and duration at the beginning of a musical note or phrase. Release is
the counterpart of attack, referring to the pitch and intensity contour shapes
at the end of a note or phrase.

As summarized in (Mantaras & Arcos, 2002), grouping is one of the mental
structures that are built while listening to a piece that describes the hierarchical
relationships between di�erent units. Notes, the lowest-level unit, are grouped
into motifs, motifs into phrases, and phrases into sections. The piece is the
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highest-level unit. Phrasing is a transversal aspect that can be represented
as an �arch-like shape� applied to both tempo and intensity during a phrase
(Friberg et al., 2009) (p. 149). For example, a singer may increase tempo at
the beginning of a phrase or decrease it at the end for classical music.

2.4 Expression control approaches

In Section 2.3, we de�ned the voice acoustic features and related them to as-
pects of music perception. In this section we focus on how di�erent approaches
generate expression controls. First, we propose a classi�cation of the reviewed
approaches and next we compare and describe them. As it will be seen, acous-
tic features generally map one-to-one to expressive controls at the di�erent
temporal scopes, and the synthesizer is �nally controlled by the lowest-level
acoustic features (F0, intensity, and spectral envelope representation).

2.4.1 Classi�cation of approaches

In order to see the big picture of the reviewed works on expression control,
we propose a classi�cation in Fig. 2.4. Performance-driven approaches use
real performances as the control for a synthesizer, taking advantage of the im-
plicit rules that the singer has applied to interpret a score. Expression controls
are estimated and applied directly to the synthesizer. Rule-based methods
derive a set of rules that re�ect the singers' cognitive process. In analysis-
by-synthesis, rules are evaluated by synthesizing singing voice performances.
Corpus-derived rule-based approaches generate expression controls from the
observation of singing voice contours and imitating their behavior. Statistical
approaches generate singing voice expression features using techniques such as
Hidden Markov Models (HMMs). Finally, unit selection-based approaches se-
lect, transform, and concatenate expression contours from excerpts of a singing
voice database. Approaches using a training database of expressive singing
have been labeled as corpus-based methods.

The di�culties of the topic studied in this dissertation center on how to
generate control parameters which are perceived as natural. The success of con-
veying natural expression depends on a comprehensive control of the acoustic
features introduced in Section 2.3. Currently, statistical approaches are the
only type of system that jointly model all the expression features.

2.4.2 Comparison of approaches

In this section we review a set of works which model the features that control
singing voice synthesis expression. Physical modeling perspective approaches
can be found for instance in Kob (2003).

Within each type of approach in Fig 2.4, there are one or more methods
for expression control. In Table we provide a set of items we think can be
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Figure 2.4: Classi�cation of Expression Control Methods in Singing Voice Synthesis.

useful for comparison. From left to right, Type refers to the type of expression
control from Fig. 2.4 to which the Reference belongs. In Control features we
list the set of features that the approach deals with. Next, we provide the type
of Synthesizer used to generate the singing voice, followed by the emotion, style
or sound to which the expression is targeted. Also, we detail the Input to the
system (score, lyrics, tempo, audio recording, etc). The last column lists the
language dependency of each method, if any.

We have collected samples from most of the approaches in order to help
to easily listen to the results of the reviewed expression control approaches.
The reader will observe several di�erences among them. First, some samples
consist of a cappella singing voice, and others are presented with background
music which may mask the synthesized voice and complicate the perception
of the generated expression. Second, samples correspond to di�erent songs,
which makes it di�cult to compare approaches. Concerning the lyrics, though
in most cases these belong to a particular language, in some the lyrics are made
by repeating the same syllable, such as /la/. We believe that the evaluation of
a synthesized song can be performed more e�ectively in a language spoken by
the listener. Finally, the quality of the synthetic voice is also a�ected by the
type of synthesizer used in each sample. The di�culties in comparing them
and the subsequent criticism are discussed in section 2.5 as well as in Chapter
7.

2.4.3 Performance driven approaches

These approaches use a real performance to control the synthesizer. The knowl-
edge applied by the singer, implicit in the extracted data, can be used in two
ways. In the �rst one, control parameters like F0, intensity, timing, etc from
the reference recording are mapped to the input controls of the synthesizer
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Figure 2.5: General framework for performance-driven approaches.

so that the rendered performance follows the input signal expression. Alter-
natively, speech audio containing the target lyrics is transformed in order to
match pitch and timing of the input score. Fig. 2.5 summarizes the commonali-
ties of these approaches on the inputs (reference audio, lyrics, and possibly the
note sequence) and intermediate steps (phonetic alignment, acoustic feature
extraction, and mapping) that generate internal data like timing information,
acoustic features, and synthesizer controls used by the synthesizer.

In Table 2.5 we summarize the correspondence between the extracted acous-
tic features and the synthesis parameters for each of these works. The extracted
F0 can be mapped directly into the F0 control parameter, processed into a
smoothed and continuous version, or split into the MIDI note, pitch bend, and
its sensitivity parameters. Vibrato can be implicitly modeled in the pitch con-
tour, extracted from the input, or selected from a database. Energy is generally
mapped directly into dynamics. From the phonetic alignment, note onsets and
durations are derived, mapped directly to phoneme timing, or mapped either
to onsets of vowels or voiced phonemes. Concerning timbre, some approaches
focus on the singer's formant cluster and in a more complex case the output
timbre comes from a mixture of di�erent voice quality databases.

Approaches using estimated controls achieve di�erent levels of robustness
depending on the singing voice synthesizers and voice databases. In the sys-
tem presented in Meron (1999), a unit selection framework is used to create
a singing voice synthesizer from a particular singer's recording in a nearly au-
tomatic procedure. In comparison to sample-based system, where the design
criterion is to minimize the size of the voice database with only one possible
unit sample (e.g. diphones), the criterion in unit selection is related to re-
dundancy in order to allow the selection of consecutive units in the database,
at the expense of having a larger database. The system automatically seg-
ments the recorded voice into phonemes by aligning it to the score and feeding
the derived segmentation constraints to an HMM recognition system. Units
are selected to minimize a cost function that scores the amount of time, fre-
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Acoustic
features

Meron
(1999)

Janer et al.
(2006)

Nakano & Goto
(2009)

Nakano & Goto
(2011)

Saitou et al.
(2007)

F0 F0
Smoothed and
continuous pitch

MIDI note number,
pitch bend and sen-
sitivity

MIDI note number,
pitch bend and sen-
sitivity

F0

Vibrato
Included in F0
implicitly

Vibratos from in-
put or from DB
singer

Included in F0 im-
plicitly

Included in F0 im-
plicitly

Included in F0
implicitly

Energy Dynamics Dynamics Dynamics Dynamics Dynamics

Phonetic
alignment

Phoneme tim-
ing

Onsets of vow-
els or voiced
phonemes

Note onset and dura-
tion

Note onset and dura-
tion

Phoneme timing

Timbre
Singer's for-
mant cluster
amplitude

Not used Not used
Mixing di�erent
voice quality DBs

Singer's formant
cluster amplitude
and AM of the
synthesized signal

Table 2.5: Mapping from acoustic features to synthesizer controls.

quency, and timbre transformations. Finally, units are concatenated. In this
approach, the main e�ort is put on the synthesis engine. Although it uses
a unit selection-based synthesizer, the expression controls for pitch, timing,
dynamics, and timbre like the singer's formant are extracted from a reference
singing performance of the target score. These parameters are directly used
by the synthesizer to modify the selected units with a combination of sinu-
soidal modeling with PSOLA called SM-PSOLA. Editing is allowed by letting
the user participate in the unit selection process, change some decisions, and
modify the unit boundaries. Unfortunately, this approach only manipulates
the singer's formant feature of timbre so that other signi�cant timbre related
features in opera singing style are not handled.

In Janer et al. (2006), the followed steps are: extraction of acoustic features
like energy, F0, and automatic detection of vibrato sections, mapping into
synthesis parameters, and phonetic alignment. The mapped controls and the
input score are used to build an internal score that matches the target timing,
pitch, and dynamics, and minimizes the transformation cost of samples from
a database. However, this approach is limited since timbre is not handled and
also because the expression features of the synthesized performance are not
compared to the input values. Since this approach lacks a direct mapping of
acoustic features to control parameters, these di�erences are likely to happen.
On the other hand, the possibility of using a singer DB to produce vibratos
other than the extracted ones from the reference recording provides a new
degree of freedom to the user.

Toward a more robust methodology to estimate the parameters, in Nakano
& Goto (2009) the authors study an iterative approach that takes the tar-
get singing performance and lyrics as. The musical score or note sequence is
automatically generated from the input. The �rst iteration provides an initial-
ization of the system similar to the previous approach (Janer et al., 2006). At
this point these controls can be manually edited by applying pitch transposi-
tion, correction, vibrato modi�cations, and pitch and intensity smoothing. The
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iterative process continues by analyzing the synthesized waveform and adjust-
ing the control parameters so that in the next iteration the results are closer to
the expected performance. In Nakano & Goto (2011), the authors extend this
approach by including timbre. Using di�erent voice quality databases from the
same singer, the corresponding versions of the target song are synthesized as
in the previous approach. The system extracts the spectral envelopes of each
one to build a 3-dimensional voice timbre space. Next, a temporal trajectory
in this space is estimated from the reference target performance in order to
represent its spectral timbre changes. Finally, singing voice synthesis output is
generated using the estimated trajectory to imitate the target timbre change.
Although expression control is more robust than the previous approach thanks
to iteratively updating the parameters and by allowing a certain degree of tim-
bre control, these approaches also have some limitations. First, it cannot be
assured that the iterative process will converge to the optimal set of parameter
values. Secondly, the timbre control is limited to the variability within the set
of available voice quality databases.

In Saitou et al. (2007), naturally-spoken readings of the target lyrics are
transformed into singing voice by matching the target song properties described
in the musical score. Other input data are the phonetic segmentation and the
synchronization of phonemes and notes. The approach �rst extracts acoustic
features like F0, spectral envelope, and the aperiodicity index from the in-
put speech. Then, a continuous F0 contour is generated from discrete notes,
phoneme durations are lengthened, and the singer's formant cluster is gener-
ated. The fundamental frequency contour takes into account four types of �uc-
tuations, namely, overshoot (F0 exceeds the target note after a note change),
vibrato, preparation (similar to overshoot before the note change), and �ne
�uctuations. The �rst three types of F0 �uctuations are modeled by a single
second-order transfer function that depends mainly on a damping coe�cient,
a gain factor and a natural frequency. A rule-based approach is followed for
controlling phoneme durations by splitting consonant-to-vowel transitions into
three parts. First, the transition duration is not modi�ed for singing. Then,
the consonant part is transformed based on a comparative study of speech and
singing voices. Finally, the vowel section is modi�ed so that the duration of
the three parts matches the note duration. Finally, with respect to timbre,
the singer's formant cluster is handled by an emphasis function in the spectral
domain centered at 3 kHz. Amplitude modulation is also applied to the synthe-
sized singing voice according to the generated vibratos parameters. Although
we have classi�ed this approach into the performance-driven section since the
core data is found in the input speech recording, some aspects are modeled
like the transfer function for F0, rules for phonetic duration, and a �lter for
the singer's formant cluster. Similarly to Meron (1999), in this approach tim-
bre control is limited to the singer formant, so that the system cannot change
other timbre features. However, if the reference speech recording contains voice
quality variations that �t the target song, this can add some naturalness to
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Acoustic features Dependencies

Consonant duration Previous vowel length
Vowel onset Synchronized with timing
Formant frequencies Voice classi�cation
Formant frequencies Pitch, if otherwise F0 would exceed the �rst formant
Spectrum slope Decrease with increasing intensity
Vibrato Increase depth with increasing intensity
Pitch in coloratura passages Each note represented as a vibrato cycle
Pitch phrase attack (and release) At pitch start (end) from (at) 11 semitones below target F0

Table 2.6: Singing voice related KTH rules' dependencies.

the synthesized singing performance.
Performance-driven approaches achieve a highly expressive control since

performances implicitly contain knowledge naturally applied by the singer.
These approaches become especially convenient for creating parallel database
recordings which are used in voice conversion approaches (Doi et al., 2012).
On the other hand, the phonetic segmentation may cause timing errors if not
manually corrected. The non-iterative approach lacks robustness because the
di�erences between input controls and the extracted ones from the synthesized
sound are not corrected. In Nakano & Goto (2011) timbre control is limited
by the number of available voice qualities. We note that a human voice in-
put for natural singing control is required for these approaches, which can be
considered as a limitation since it may not be available in most cases. When
such a reference is not given, other approaches are necessary to derive singing
control parameters from the input musical score.

2.4.4 Rule-based approaches

Rules can be derived from work with synthesizing and analyzing sung perfor-
mances. Applying an analysis-by-synthesis method an ambitious rule-based
system for Western music was developed at KTH in the 1970s and improved
over the last three decades (Sundberg, 2006). By synthesizing sung perfor-
mances, this method aims at identifying acoustic features that are perceptually
important either individually or jointly (Friberg et al., 2009). The process of
formulating a rule is iterative. First a tentative rule is formulated and imple-
mented and the resulting synthesis is assessed. If its e�ect on the performance
needs to be changed or improved, the rule is modi�ed and the e�ect of the
resulting performance is again assessed. On the basis of parameters such as
phrasing, timing, metrics, note articulation, and intonation, the rules modify
pitch, dynamics, and timing. Rules can be combined to model emotional ex-
pressions as well as di�erent musical styles. Table 2.6 lists some of the acoustic
features and their dependencies.

The rules re�ect both physical and musical phenomena. Some rules are
compulsory and others optional. The Consonant duration rule, which length-
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ens consonants following short vowels, applies also to speech in some languages.
The Vowel onset rule corresponds to the general principle that the vowel onset
is synchronized with the onset of the accompaniment, even though lag and lead
of onset are often used for expressive purposes (Sundberg & Bauer-Huppmann,
2007). The Spectrum slope rule is compulsory, as it re�ects the fact that vocal
loudness is controlled by subglottal pressure and an increase of this pressure
leads to a less steeply sloping spectrum envelope. The rule Pitch in coloratura
passages implies that the fundamental frequency makes a rising-falling ges-
ture around the target frequency in legato sequences of short notes (Sundberg,
1981). The Pitch phrase attack, in the lab jargon referred as the �Bull's roaring
onset�, is an ornament used in excited moods, and would be completely out of
place in a tender context. Interestingly, results close to the KTH rules have
been con�rmed by machine learning approaches (Marinescu & Ramirez, 2011).

A selection of the KTH rules (Friberg et al., 2009) has been applied to
the Vocaloid synthesizer (Alonso, 2004). Features are considered at note level
(start and end times), intra and inter note (within and between note changes)
and to timbre variations (not related to KTH rules). The system implementa-
tion is detailed in Bresin & Friberg (2000), along with the acoustic cues which
are relevant for conveying basic emotions such as anger, fear, happiness, sad-
ness, and love-tenderness (Juslin & Laukka, 2003). The rules are combined in
expressive palettes indicating to what degree rules need to be applied to con-
vey a target emotion. The relationship between application level, rules, and
acoustic features is shown in Table 2.7. As an example of the complexity of
the rules, the punctuation rule at note level inserts a 20 milliseconds micro-
pause if a note is three tones lower than the next one and its duration is 20%
larger. Given that this work uses a sample-based synthesizer, voice quality
modi�cations are applied to the retrieved samples. In this case, the timbre
variations are limited to rules a�ecting brightness, roughness, and breathiness,
and therefore do not cover the expressive possibilities of a real singer.

Apart from the KTH rules, in corpus-derived rule-based systems heuristic
rules are obtained to control singing expression by observing recorded perfor-
mances. In Bonada & Serra (2007), expression controls are generated from
high-level performance scores where the user speci�es note articulation, pitch,
intensity, and vibrato data which is used to retrieve templates from recorded
samples. This work, used in the Vocaloid synthesizer (Kenmochi & Ohshita,
2007), models the singer's performance with heuristic rules (Bonada, 2008).
The parametric model is based on anchor points for pitch and intensity, which
are manually derived from the observation of a small set of recordings. At
synthesis, the control contours are obtained by interpolating the anchor points
generated by the model. The number of points used for each note depends
on its absolute duration. The phonetics relationship with timing is handled
by synchronizing the vowel onset with the note onset. Moreover, manual edit-
ing is permitted for the degree of articulation application as well as its dura-
tion, pitch and dynamics contours, phonetic transcription, timing, vibrato and
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Level Rules A�ected acoustic features

Note

Duration contrast
Decrease duration and intensity of short notes placed
next to long notes

Punctuation
Insert micro-pauses in certain pitch interval and du-
rations combinations

Tempo
Constant value for the note sequence (measured in
bpm)

Intensity
Smooth/strong energy levels, high pitch notes inten-
sity increases 3 dB/octave

Transitions
Legato, staccato (pause is set to more than 30% of
inter-onset interval)

Phrasing arch
Increase/decrease tempo at phrase beginning/end,
same for energy

Final ritardando Decrease tempo at the end of a piece

Inter note

Attack
Pitch shape from starting pitch until target note, en-
ergy increases smoothly

Note articulation
Pitch shape from the starting to the ending note,
smooth energy

Release
Energy decreases smoothly to 0, duration is manually
edited

Vibrato and tremolo
Manual control of position, depth, and rate (cosine
function, random �uctuations)

Timbre
Brightness Increase high frequencies depending on energy
Roughness Spectral irregularities

Breathiness
Manual control of noise level (not included in emotion
palettes)

Table 2.7: Selection of rules for singing voice: level of application and a�ected
acoustic features.

tremolo depth and rate, and timbre characteristics.
The advantage of these approaches is that they are relatively straight-

forward and completely deterministic. Random variations can be easily intro-
duced so that the generated contours are di�erent for each new synthesis of
the same score, resulting in distinct interpretations. The main drawbacks are
that either the models are based on few observations that do not fully repre-
sent a given style, or they are more elaborate but become unwieldy due to the
complexity of the rules.

2.4.5 Statistical modeling approaches

Several approaches have been used to statistically model and characterize ex-
pression control parameters using Hidden Markov Models (HMMs). They have
a common precedent in speech synthesis (Yoshimura et al., 1999), where the
parameters like spectrum, F0 and state duration are jointly modeled. Com-
pared to unit selection, HMM-based approaches tend to produce lower speech
quality, but they need a smaller dataset to train the system without need-
ing to cover all combinations of contextual factors. Modeling singing voice
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HMM-based approaches Levels Contextual factors

Saino et al. (2006)
Phoneme P/C/N phonemes

Note
P/C/N note pitches, durations, and positions within
the measure

Oura & Mase (2010)

Phoneme
Five phonemes (central and two preceding and suc-
ceeding)

Mora
Number of phonemes in the P/C/N mora
Position of the P/C/N mora in the note

Note

Musical tone, key, tempo, length, and dynamics of the
P/C/N note
Position of the current note in the current measure
and phrase
Ties and slurred articulation �ag
Distance between current note and next/previous ac-
cent and staccato
Position of the current note in the current crescendo
or decrescendo

Phrase Number of phonemes and moras in the P/C/N phrase
Song Number of phonemes, moras, and phrases in the song

Saino et al. (2010)
Note region

Manually segmented behaviour types (beginning, sus-
tained, ending)

Note
MIDI note number and duration (in 50 ms units)
Detuning: model pitch by the relative di�erence to the
nominal note

Table 2.8: Contextual factors HMM-based systems (P/C/N stands for: Previous,
Current, and Next).

with HMMs amounts to using similar contextual data as for speech synthesis,
adapted to singing voice speci�cities. Moreover, new voice characteristics can
be easily generated by changing the HMM parameters.

These systems operate in two phases: training and synthesis. In the train-
ing part, acoustic features are �rst extracted from the training recordings like
F0, intensity, vibrato parameters, and mel-cepstrum coe�cients. Contextual
labels, that is to say, the relationships of each note, phoneme, phrase with
the preceding and succeeding values, are derived from the corresponding score
and lyrics. Contextual labels vary in their scope at di�erent levels, such as
phoneme, note, or phrase, according to the approach, as summarized in Table
2.8. This contextual data is used to build the HMMs that relate how these
acoustic features behave according to the clustered contexts. The phoneme
timing is also modeled in some approaches. These generic steps for the train-
ing part in HMM-based synthesis are summarized in Fig. 2.6. The �gure shows
several blocks found in the literature, which might not be present simultane-
ously in each approach. We refer to Yoshimura et al. (1999) for the detailed
computations that HMM training involves.

In the synthesis part, given a target score, contextual labels are derived
as in the training part from the note sequence and lyrics. Models can be
used in two ways. All necessary parameters for singing voice synthesis can be
generated from them, therefore state durations, F0, vibrato and mel-cepstrum
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Figure 2.6: Generic blocks for the training part of HMM-based approaches.

observations are generated to synthesize the singing voice. On the other hand,
if another synthesizer is used, only control parameters such as F0, vibrato
depth and rate, and dynamics need to be generated which are then used as
input of the synthesizer.

As introduced in Section 2.4.1, statistical methods jointly model the largest
set of expression features among the reviewed approaches. This gives them a
better generalization ability. As long as singing recordings for training involve
di�erent voice qualities, singing styles or emotions, and the target language
phonemes, these will be reproducible at synthesis given the appropriate con-
text labeling. Model interpolation allows new models to be created as a com-
bination of existing ones. New voice qualities can be created by modifying the
timbre parameters. However, this �exibility is possible at the expense of hav-
ing enough training recordings to cover the combinations of the target singing
styles and voice qualities. In the simplest case, a training database of a set of
songs representing a single singer and style in a particular language would be
enough to synthesize it. As a drawback, training HMMs with large databases
tends to produce smoother time series than the original training data, which
may be perceived as non-natural.

In Saino et al. (2006), a corpus-based singing voice synthesis system based
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Approach DB style Length Feature extraction

Saino et al. (2006) 60 Japanese children's
songs (male singer)

72 min sampling at 16 KHz, 25ms Blackman window,
5ms shift 0-24 MFCCs, log F0 spectral and log
F0 feature vectors also include delta and delta-
deltas

Oura & Mase (2010) 70 Japanese children's
songs (female singer)

70 min sampling at 48 KHz, windowed, 5ms shift 0-
48 STRAIGHT MFCCs, log F0 (Â± a halftone
pitch shifts), vibrato depth (cents) and rate (Hz)
spectral, log F0 and vibrato feature vectors also
include delta and delta-deltas

Saino et al. (2010) 5 Japanese childen's
Songs (deep bendy)

5 min 25ms window, 5ms shift melody, vibrato shape
and rate, dynamics feature vectors include delta
and delta-deltas

Table 2.9: Training DBs and extracted features in HMM-based systems.

on HMMs is presented. The contexts are related to phonemes, note F0 values,
and note durations and positions, as we show in Table 2.8 (dynamics are not
included). Also, synchronization between notes and phonemes needs to be
handled adequately, mainly because phoneme timing does not strictly follow
the score timing; and phonemes might be advanced with respect to the nominal
note onsets (negative time-lag).

In this approach, the training part generates three models. One for the
spectrum where MFCCs are estimated with STRAIGHT and excitation (F0)
parts, extracted from the training database, another for the duration of context-
dependent states, and a third one to model the time-lag. The latter ones model
note timing and phoneme durations of real performances, which are di�erent
to what can be inferred from the musical score and its tempo. Time-lags
are obtained by forced alignment of the training data with context-dependent
HMMs. Then, the computed time-lags are related to their contextual factors
and clustered by a decision-tree. Feature extraction and training con�guration
details are shown in Table 2.9.

The singing voice is synthesized in �ve steps. First, the input score (note
sequence and lyrics) is analyzed to determine note duration and contextual
factors. Then, a context-dependent label sequence of contextual factors as
shown in Table 2.8 is generated. Then, the song HMM is generated and its
state durations are jointly determined with the note time-lags. Next, spectral
and F0 parameters are generated, which are used to synthesize the singing
voice. The authors claim that the synthesis performance achieves a natural
singing voice which simulates expression elements of the target singer such as
voice quality and the singing style (F0 and time-lag).

In this work, the training database consists of 72 minutes of a male voice
singing 60 Japanese children's songs in a single voice quality. These are the
characteristics that the system can reproduce in a target song. The main
limitation of this approach is that contextual factors scope is designed only
to cover phoneme and note descriptors. Longer scopes than just the previous
and next note are necessary to model higher level expressive features such
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as phrasing. Although we could not get samples from this work, an evolved
system is presented next.

The system presented in Saino et al. (2006) has been improved, and is
publicly available as Sinsy, an online singing voice synthesizer (Oura & Mase,
2010). The new characteristics of the system include reading input �les in Mu-
sicXML format2 with F0, lyrics, tempo, key, beat, and dynamics, also extended
contextual factors used in the training part, vibrato rate and depth modeling,
and a reduction of the computational cost. Vibrato is jointly modeled with
the spectrum and F0 by including depth and rate in the observation vector in
the training step.

The new set of contexts, automatically extracted from the musical score
and lyrics, used by the Sinsy approach are also shown in Table 2.8. These
factors describe the context such as previous, current, and next data at di�erent
hierarchical levels, namely, phoneme, mora (the sound unit containing one or
two phonemes in Japanese), note, phrase, and the entire song. Some of them
are strictly related to musical expression aspects, such as musical tone, key,
tempo, length and dynamics of notes, articulation �ags, or distance to accents
and staccatos.

Similarly to the previous work, in this case the training database consists
of 70 minutes of a female voice singing 70 Japanese children's songs in a single
voice quality. However, it is able to reproduce more realistic expression control
since vibrato parameters are also extracted and modeled. Notes are described
with a much richer set of factors than the previous work. Another major
improvement is the scope of the contextual factors shown in Table 2.8, which
spans from the phoneme level up to the whole song and therefore being able
to model phrasing.

In Saino et al. (2010), a statistical method is able to model singing styles.
This approach focuses on baseline F0, vibrato features like its extent, rate,
and evolution over time, not tremolo, and dynamics. These parameters control
the Vocaloid synthesizer, and so timbre is not controlled by the singing style
modeling system, but is dependent on the database.

A preprocessing step is introduced after extracting the acoustic features
like F0 and dynamics in order to get rid of the micro-prosody e�ects on such
parameters, by interpolating F0 in unvoiced sections and �attening F0 valleys
of certain consonants. The main assumption here is that expression is not
a�ected by phonetics, which is re�ected in erasing such dependencies in the
initial preprocessing step, and also in training note HMMs instead of phoneme
HMMs. Also, manual checking is done to avoid errors in F0 estimation and
MIDI events like note on and note o� estimated from the phonetic segmen-
tation alignment. A novel approach estimates vibrato shape and rate, which
at synthesis is added to the generated baseline melody parameter. The shape
is represented with the low frequency bins of the Fourier Transform of single

2http://www.musicxml.com/

http://www.musicxml.com/
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vibrato cycles. In this approach, context-dependent HMMs model the expres-
sion parameters which are summarized in Table 2.8. Feature vectors contain
melody, vibrato shape and rate, and dynamics components.

This last HMM-based work focuses on several control features except tim-
bre, which is handled by the Vocaloid synthesizer. This makes the training
database much smaller in size. It consists of 5 minutes of 5 Japanese children's
songs, since there is no need to cover a set of phonemes. Contextual factors
are rich at a note level, since the notes are divided into 3 parts (begin, sustain,
and end), and the detuning is also modeled relatively to the nominal note. On
the other hand, this system lacks of the modeling of wider temporal aspects
such as phrasing.

2.4.6 When to use each approach?

The answer to this question has several considerations: from the limitations of
each approach, to whether singing voice recordings are available or not since
these are needed in model training or unit selection, the reason for synthesizing
a song which could be for database creation or rule testing, or �exibility re-
quirements like model interpolation. In this section we provide a brief guideline
on the suitability of each type of approach.

Performance-driven approaches are suitable to be applied, by de�nition,
when the target performance is available, since the expression of the singer is
implicit in the reference audio and it can be used to control the synthesizer.
Another example of applicability is the creation of parallel databases for di�er-
ent purposes like voice conversion (Doi et al., 2012). An application example
for the case of speech to singing synthesis is the generation of singing perfor-
mances for untrained singers, whose timbre is taken from the speech recording
and the expression for pitch and dynamics can be obtained from a professional
singer.

Rule-based approaches are suitable to be applied to verify the de�ned rules
and also to see how these are combined, for example to convey a certain emo-
tion. If no recordings are available, rules can still be de�ned with the help of
an expert, so that these approaches are not fully dependent on singing voice
databases.

Statistical modeling approaches are also �exible, given that it is possible
to interpolate models and to create new voice characteristics. They have the
advantage that in some cases these are part of complete singing voice synthesis
systems, that is to say, the ones that have the score as input and that generate
both the expression parameters and output voice.

Similarly to rule-based and statistical modeling approaches, unit selection
approaches do not need the target performance, although they can bene�t from
it. On the other hand, unit selection approaches share a common characteristic
with performance-driven approaches. The implicit knowledge of the singer is
contained in the recordings, although in unit selection it is extracted from
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shorter audio segments. Unlike statistical models, no training step is needed,
so that the expression databases can be improved just by adding new labeled
singing voice recordings.

In the following section we review the evaluation strategies of the expression
control approaches, identify some de�ciencies, and �nally propose a possible
solution.

2.5 Evaluation

2.5.1 Current strategies

In Section 1.2.2, we introduced that a score can be interpreted in several ac-
ceptable ways, which makes expression a subjective aspect to rate. However,
�procedures for systematic and rigorous evaluation do not seem to exist today�
(Rodet, 2002) (p. 105), especially if there is no ground-truth to compare with.
In this section, we �rst summarize typical evaluation strategies.

Expression control can be evaluated from subjective or objective perspec-
tives. The former typically consists of listening tests where participants percep-
tually evaluate some psychoacoustic characteristic like voice quality, vibrato,
and overall expressiveness of the generated audio �les. A common scale is the
mean opinion score (MOS), with a range from 1 (bad) to 5 (good). In pair-
wise comparisons, using two audio �les obtained with di�erent system con-
�gurations, preference tests rate which option achieves a better performance.
Objective evaluations help to compare how well the generated expression con-
trols match a reference real performance by computing an error. Within the
reviewed works, subjective tests outnumber the objective evaluations. In Table
2.10 the evaluations are summarized. For each approach, several details are
provided like a description of the evaluation (style, voice quality, naturalness,
expression, and singer skills), the di�erent rated tests, and information on the
subjects if available. Objective tests are done only for performance-driven
approaches, that is to say, when a ground-truth is available. In the other ap-
proaches, no reference is directly used for comparison, so that only subjective
tests are carried out. However, in the absence of a reference of the same tar-
get song, the generated performances could be compared to the recording of
another song, as is done in the case of speech synthesis.

2.5.2 Discussion

In our opinion, the described evaluation strategies are devised for evaluating
a speci�c system, and therefore focus on a concrete set of characteristics par-
ticularly relevant for that system. For instance, the evaluations summarized
in Table 2.10 do not include comparisons to other approaches. This is due to
the substantial di�erences between systems, which make the evaluation and
comparison between them a complex task. These di�erences can be noted in
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the audio excerpts of the accompanying website to this dissertation, which
have been introduced in Section 2.4.2. At this stage, it is di�cult to decide
which method more e�ciently evokes a certain emotion or style, performs bet-
ter vibratos, changes the voice quality in a better way, or has a better timing
control. There are limitations in achieving such a comprehensive evaluation
and comparing the synthesized material.

2.6 Conclusion

This chapter was devoted to review the scienti�c background on singing voice
synthesis and expression control. We have explained the singing voice pro-
duction mechanism both from a physical perspective and an arti�cial point of
view. We have also detailed the main expression features related to melody,
dynamics, rhythm, and timbre. The approaches for expression control have
been described, compared, and classi�ed into performance-driven, rule-based,
and statistical models. Finally, the evaluation strategies have been reviewed
and discussed.

Throughout this chapter, we also addressed the advantages and disadvan-
tages of the selected approaches. The drawbacks of the reviewed approaches
show the requirements for any new proposed system. It should not su�er from
requiring the target song to control the synthesizer, it should not be too com-
plex, and it should avoid the smoothing issues from the statistical methods.
In the next chapter we proposed the unit-selection based method as a possible
solution.



CHAPTER 3

Expression database creation

In the previous chapters we have provided an overview of the systems we
propose in this thesis as well as the state of the art context on expression
control for singing voice synthesis. As we have shown in Fig. 1.7, several
expression databases (DB) are shared between the building blocks. In this
chapter we describe how each database is designed, recorded, and labeled.

3.1 Introduction

In the proposed systems, several expression databases are used to control pitch
and dynamics. To do so, we have considered handling pitch and dynamics
jointly taking the corresponding contours from the same recordings.

The aim of this chapter is to explain the design of the recording scripts that
the singer sang in the studio and from which pitch and dynamicsneed to be
estimated to model the singer's particular style. In this thesis we have selected
jazz as the target style. Such scripts need to ful�ll several requirements as
explained in section 3.2. One of them is related to how well the sequences of
notes in the script represent the target style that are designed to cover. Another
requirement refers to the lyrics content, which should help to have continuous
pitch and dynamics contours which are not a�ected by microposody.

We have devised two strategies to build the expression database for pitch
and dynamics. The note sequences can be generated automatically from the
study of several scores belonging to the same style (Sec. 3.3) deriving into a
set of melodic exercises that contain the most common note combinations in
terms of its duration, pitch, and position in the measure. On the contrary,
real songs from the same style can be directly taken as melodic exercises (Sec.
3.4). These two databases, namely the Systematic and the Song expression
databases respectively, are summarized in Table 3.1.

In section 3.5 we detail the methodology we have followed to label each
database, which basically aims to obtain a set of note characteristics (note
pitch values, start and end times, note transition times, and the note strength)

49
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DB name # �les Duration (mm:ss)

Systematic DB 70 11:59
Song DB 17 18:29

Table 3.1: Summarized data of the Systematic and the Song expression databases.

and also vibrato related characteristics (start and end times, and depth and
rate evolution over time). Finally, in section 3.6 we explain the advantages
and disadvantages of the 2 proposed expression databases.

3.2 Database design requirements

There are several conditions that we impose as requirements to be met by the
expression databases, either related to the content or the way of recording.
We have identi�ed 3 requirements, namely, the notes coverage (Sec. 3.2.1), the
need to avoid microprosody e�ects on the extracted features (Sec. 3.2.2), and
the usage of a musical background to convey the appropriate style (Sec. 3.2.3).
These requirements are explained in this section.

3.2.1 Coverage

Our interest is that the expression databases contain as many elements (and
their combinations) that can appear in a target score as possible. By ele-
ments we especially mean several properties of notes, like pitch, duration, and
strength (related to the note position within the measure).

In the unit selection proposed system, covering a high amount of combina-
tions of note properties implies that the selected notes would, in theory, su�er
from less amount of transformation, since the selected units will be closer to
the target score. In the statistical based systems, a high coverage implies that
the system can be provided with enough observations for the training step.

Such a high coverage can be achieved in several ways. The simplest way
is by recording lots of data, although this is a time consuming task both in
recording time and especially to label all the data. However, regarding pitch
coverage, we can generate new contexts by pitch shifting the pitch contours.
Although the note intervals and durations do not change with such transfor-
mation, adding the shifted contours provide new contours as if these had been
recorded at a higher or lower pitch. The second option is the one we have
chosen to increase the coverage.

3.2.2 Lyrics and microprosody

Our aim is to estimate pitch and dynamics contours from the recordings which
are continuous and with the least amount of �uctuations not attributable to
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Figure 3.1: Recording room Figure 3.2: Sound studio

expression. In other words, we want to avoid microprosody e�ects on the
extracted features, that is �uctuations originated by the sequence of phonemes
sung.

Lyrics, and more concretely their corresponding phonetics, have an e�ect on
the estimated pitch and dynamics contours from the recordings. For instance,
in unvoiced phonemes (like /s/) the pitch contour cannot be extracted, and in
velar sounds (like /g/) pitch valleys are produced.

Taking these into account, we have decided to record our scripts without
normal lyrics. Instead, we have used vowels, which are interleaved at every
note change. These timbre changes are used to semi-automatically segment
the pitch into notes. This is explained in section 3.5. For instance, the vowels
we would use for a sequence of 4 notes would be /ua-i-a-i/, where the �rst note
starting from silence would be the diphtong /ua/. We did some experiments
with the syllable /na/ per note, which might useful for note onset detection but
we discarded them because the consonant /n/ also introduces microprosodic
e�ects as well.

3.2.3 Recordings

As we have introduced, the scripts recorded in the studio represent a particular
style, which can either be songs from that style or melodic exercises generated
automatically. However, acapella singing of these scripts with no external help
may produce out of tune singing, variable tempo throughout a piece, and it
may become di�cult to evoke the singing style the scripts represent.

In order to try to avoid these problems and help the singer, we use back-
ground music during the recording session which is listened by the singer
through the headphones. The melodic exercises share the same type of back-
ground music, since the sequence of notes are taken from the same scale and
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Figure 3.3: Singer at the studio.

the same chord sequence is used. In the songs, although it may be easier to
convey the style than in melodic exercises since they are known by the singer,
it is still useful to use the background music to keep the tempo and sing in
tune. To generate the accompaniments we have used the Sibelius score editor.
One of its functionalities is to create the harmony for a sequence of notes.

The studio recordings have been held at the UPF facilities of La Nau build-
ing1 at the Communication Campus in Poblenou neighbourhood, with a record-
ing2 and control rooms3. In Fig. 3.1, Fig. 3.2 we show images of the control
and recording rooms. In Fig. 3.3 we show how the singer was placed with
respect to the microphone.

3.3 Systematic expression database

In this section we explain the generation of melodic exercises not from real
repertoires but automatically by looking at which note properties should be
covered. Songs from real repertoires typically have the disadvantage of being
redundant, so only a portion of an entire song introduces new note sequences.
Also, in order to select which parts of a song to include as an exercise, it should
be carefully studied.

1http://www.upf.edu/campus/en/comunicacio/nau.html
2http://www.upf.edu/bibtic/serveis/audiovisuals/edlanau/lanau01.html
3http://www.upf.edu/bibtic/serveis/audiovisuals/edlanau/lanau02.html

http://www.upf.edu/campus/en/comunicacio/nau.html
http://www.upf.edu/bibtic/serveis/audiovisuals/edlanau/lanau01.html
http://www.upf.edu/bibtic/serveis/audiovisuals/edlanau/lanau02.html
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Figure 3.4: Unit of three notes with preceding silence and following note.

Figure 3.5: Unit and context features.

In the process of creating the expression database described in this section,
the aim is to obtain melodic exercises by concatenating short melodic units
generated in a systematic way, also including musical knowledge. First, a set
of scores is statistically analyzed in order to know which feature values (note
strengths and �gures and pitch intervals in semitones) should be covered, their
relevance and how these are connected. Then, dynamic programming is applied
in order to generate melodic exercises as sequences of concatenated units. This
section is based on Umbert et al. (2013b).

3.3.1 Units versus contexts

The basic elements of our systematic process of melodic exercises creation are
units made up as sequences from one to three notes surrounded by a previous
and following note or silence. An example is shown in Fig. 3.4. In this
dissertation a note is de�ned mainly by the following properties: note strength,
note duration (seconds), and the �gure and pitch interval with the next one.
Note strength (NS) is a measure for the accentuation of a note beat within
a bar. Figure interval (FI) refers to the relationship between two consecutive
note durations and the same applies to pitch interval (PI) with respect to the
note frequencies. This data is shown in Fig. 3.5. We can see that for a sequence
of 3 notes, there are 2 pitch intervals, 2 �gure intervals, 3 note strength, and a
previous and succeeding note or silence.

For each note property there are many possible combinations, which imply
a great amount of units, especially in the case of sequences of three notes. This
relates to the goal of the systematic database, which is to cover a high amount
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Figure 3.6: Figure interval distribution (in oc-
taves) and clusters.

Cluster Range of FI values

1 [-3, -1.585]
2 [-1.41, -1]
3 [-0.585, 0.585]
4 [1, 1.415]
5 [1.585, 3.585]

Figure 3.7: Figure interval
cluster values.

of relevant note combinations. Therefore, the coverage criteria is not de�ned
with respect to the units but related to a higher abstract unit or context. Each
context comprises several possible units.

Thus, the relationship between units and contexts has to be de�ned by
grouping the set of values of each note property into clusters. Once the clusters
are set, it is possible to statistically analyze the transition probabilities between
contexts according to the analyzed database. These probabilities are used to
generate the systematic melodic exercises. Next, we explain both steps.

3.3.2 Statistical analysis and clustering

In order to study the values of the note properties that need to be covered,
a set of songs belonging to the same style have been processed using Music21
(Cuthbert & Ariza, 2010), a Python toolkit to process music in symbolic form.

Since most of the processed units are three notes long, and each note is
de�ned in terms of its strength, duration, and �gure and pitch intervals, the
possible number of units is enormous. As previously explained, in order to
reduce the amount of units to cover, these are clustered into similar contexts.

In general, clusters have been organized so that close values are represented
by the same cluster. In the case of pitch interval clusters, it has also been
taken into account that within the same cluster all pitch intervals correspond
to only ascending or descending intervals since we do not want to transform
an ascending pitch contour to synthesize a descending one (and vice versa).
Therefore, an interval of zero semitones (same consecutive notes) is grouped
in a separate cluster. In the case of the �gure interval, clusters do not need to
follow the same constraint concerning the direction of the interval (ascending
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Figure 3.8: Note strength distribution and clus-
ters.

Cluster Range of NS values

1 [0.5, 1]
2 [0.25]
3 [0.125, 0.625]

Figure 3.9: Note strength
cluster values.

or descending). Note strength clusters have been grouped according to the
note accentuation within a measure.

In Fig. 3.6 and Table 3.7, the values distribution for the �gure interval and
their clustering is shown. Similarly, the note strength data is presented in Fig.
3.8 and Table 3.9, and the pitch interval data in Fig. 3.10 and Table 3.11.

Using this cluster representation, the context frequencies have been counted
and the 90% most common ones have been selected to be covered, generating
a list of 993 contexts of three notes. Also, the amount of connections between
these selected contexts (by overlapping two or one notes or just concatenat-
ing them) has been computed to measure the transition probabilities among
contexts. These contexts are a higher level representation of 1480 units.

3.3.3 Melodic exercises generation

Next, we proceed to explain the process followed to generate the melodic ex-
ercises as sequence of three note long units by dynamic programming (Viterbi
algorithm). In a similar way exercises of two and one notes were generated.
In these cases, the previous and following notes are considered to be silences,
so the Viterbi algorithm was no longer necessary since unit overlapping does
not apply. These exercises were generated in a more straightforward manner
by taking one value per cluster to generate the contexts to cover.

Note strength grid

The Viterbi algorithm has been used in order to generate the sequence of
melodic exercises of the systematic database. The temporal resolution, or tick,
of each melodic exercise is de�ned by the minimum note length. In our case



56 CHAPTER 3. EXPRESSION DATABASE CREATION

Figure 3.10: Pitch interval distribution (in semi-
tones) and clusters.

Cluster Range of PI values

1 [-12, -8]
2 [-7, -3]
3 [-2, -1]
4 [0]
5 [1, 2]
6 [3, 7]
7 [8, 12]

Figure 3.11: Pitch interval
cluster values.

we have used a tick of an eighth note. The sequence of ticks de�nes a note
strength grid which is used in order to know which units �t at each position
in time.

Given the minimum note length that will be used in the systematic score,
a grid can be generated which sets where notes can be placed and which their
note strengths are at those positions. The length of this grid is related to the
amount of measures per exercise.

For a minimum note length of an eighth note, the note strength grid for a
single measure (4 beats, 8 ticks) is musically de�ned as shown in the following
vector:

[1, 0.125, 0.25, 0.125, 0.5, 0.125, 0.25, 0.125] (3.1)

Cost measures

At each (forward) step of the Viterbi algorithm, the cumulated cost of inserting
a given database unit at a certain tick is computed using a set of cost functions.
These cost functions handle the transitions between units according to the
statistical information at context level computed (section 3.3.2). The cost
functions also measure whether an instance �ts in the grid and reusing a context
is penalized. Harmony is managed by the preset accompaniment chords of the
melodic exercises and how these and the unit notes match. Inserting silences
in the middle of the exercise is also favored considering readability, in order to
help the singer to breath in the middle of the performance. Also, the generated
note pitches are constrained to the singers tessitura in order to facilitate singing
the exercises. The cumulated cost for an evaluated node of the Viterbi matrix
is obtained by adding these cost measures and are next detailed.
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Table 3.2: Harmony costs.

Bar Chord C D E F G A B

1 C7 0 1 0 2 0 1 0
2 Am7 0 1 0 2 0 0 1
3 Dm 1 0 1 0 2 0 2
3 G7 2 0 2 0 0 1 0
4 C7 0 1 0 2 0 1 0.5

• Note strength cost: The �rst computed cost checks whether the note
strengths features of the unit match the note strengths related to the
tick position where is is intended to be inserted. If the unit does not �t,
then it is not necessary to check all the other costs, and the total cost is
set to in�nity. For units that do �t, the cost is set to zero.

• Unit transition cost: The second computed cost relates to the transition
between units. The result of the statistical analysis (the transition prob-
ability cost) provides this cost for an overlapping of two, one or zero notes
(concatenation). These transition is computed for the current selected
unit with respect to all possible previous units.

• Context repetition: Since the aim is to have the highest coverage possi-
ble with the minimum amount of melodic exercises, context repetition
is taken account for penalization. Therefore, a history of all previously
selected contexts is kept, so that if in the currently evaluated node path
there is a context repetition, a cost proportional to the amount of repe-
titions is added. Although some context repetitions may appear in the
�nal score, this cost favors the selection of di�erent contexts. We handle
this cost with an array that counts the number of times each context
appears.

• Harmony cost: The harmony cost takes into account the chords for the
melodic exercises. The same sequence of chords has been prede�ned for
all exercises in order to make it easy for the singer: C7 (1st bar), Am7
(2nd bar), Dm (3rd bar 1st half), G7 (3rd bar 2nd half), C7 (4th bar).
Those notes with cost zero are the ones belonging to the chord. Other-
wise, it is more costly to add notes which do not match with the chord
note information. In Table 3.2 the harmony costs are shown relating
which notes are favored (zero cost) per chord and which ones are more
penalized (non-zero cost).

• Silence insertion: Finally, since melodic exercises are four measures long
(plus one as a break between exercises), and in order to make them less
exhausting to sing, a silence has been included in the middle, at the end
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Figure 3.12: First systematic exercises.

of the second measure and at the beginning of the third one. Several tick
candidates for inserting the pause are considered in the Viterbi paths
and the least costly one is chosen.

Stop criteria

The algorithm stops generating melodic exercises depending on two conditions.
The �rst one is related to the coverage. If all 993 contexts have been selected
(one unit per context is enough) after the generation of a melodic exercise, the
generation of exercises is stopped. This is controlled by the history of selected
contexts as explained in the previous section.

The second stop criteria is related to the available recording session dura-
tion and the tempo of the generated score. If the accumulated duration of all
exercises reaches the recording time, given the amount of measures per exercise
and the bpm, then no more melodic exercises are generated.

Results

The systematic script has been generated by taking 57 jazz standard songs,
setting the tessitura to one octave, a tempo of 71 bpm and a limit for the
recording time of one hour. These constraints generate a recording script of
236 exercises and a coverage of 82% of contexts.

The generated melodic exercises as concatenation of three note long units
can be downloaded in pdf and audio �les are online 4 for Umbert et al. (2013b).
The �rst 4 exercises of the systematic database are shown in Fig. 3.12. The

4http://mtg.upf.edu/publications/ExpressionControlinSingingVoiceSynthesis/

http://mtg.upf.edu/publications/ExpressionControlinSingingVoiceSynthesis/
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Index Song name Index Song name

1 A foggy day 10 Polka dots and moonbeams
2 Alone together 11 Skylark
3 Angel eyes 12 Summertime
4 But not for me 13 Stella by starlight
5 Body and soul 14 The days of wine and roses
6 Everything happens to me 15 The nearness of you
7 Like Someone In Love 16 Time after time
8 Misty 17 When I fall in love
9 My funny valentine

Table 3.3: List of songs in the Song expression database.

database that had time to record in the studio corresponds to the �rst 70
melodic exercises and the voice material lasts 11 minutes and 59 seconds, as
shown in Table 3.1.

3.4 Song expression database

The song expression database is the second type of database introduced in
section 3.1. In this case, the recording script has not been systematically cre-
ated with melodic exercises that cover as much contexts as possible. Instead, a
group of jazz standard songs has been selection without analyzing the coverage
of its notes pitches, �gures, and strength.

The list of songs from this database is shown in Table 3.3. As a whole,
these 17 songs last 18 minutes and 29 seconds as shown in Table 3.1. The
songs in this expression database where selected by the singer from a much
longer list. The only criteria was to record the songs that she already knew by
heart, in order to make it easy for her to sing them in jazz style.

The songs score were available in Musical XML format. Therefore, the
musical accompaniment was generated with the Sibleius software as explained
in section 3.2.3.

3.5 Labeling

The recorded songs were labeled in a semiautomatic procedure. The informa-
tion needed to represent units are the song pitch and dynamics contours, note
values and timing, note strength as well as vibrato parameters. The following
subsections describe how these data are extrected. This section is based on
Umbert et al. (2013a).
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3.5.1 Feature extraction

Pitch is estimated based on the spectral amplitude correlation (SAC) algorithm
described in Gómez & Bonada (2013). In terms of dynamics, the extracted
energy sample values are normalized and smoothed using a sliding window of
0.5 seconds. This is to keep the tendency of dynamics instead of the energy at
frame level.

3.5.2 Note segmentation

The segmentation of the recordings provides the note pitch and timing infor-
mation. Since recordings were done with the modi�ed lyrics (only vowels), this
task is easier than by score following or detecting pitch changes. Given that
notes and vowel changes are strictly related, note segmentation is equivalent
to vowel change detection.

In order to detect the vowel changes, GMM models were trained for clus-
tering and regression (in our case we used 3 di�erent GMM components given
that we want to segment the /a/, /i/, and /ua/ vowels). The data used for
training were 13 MFCCs extracted from sustained vowel recordings that were
done at the beginning of the recording session. We asked the singer to sing
sustained vowels (/a/, /i/) covering all her vocal range. Since the automatic
segmentation is not completely correct, its outcome was manually checked and
corrected. The code we used for the GMM clustering and regression

3.5.3 Transitions segmentation

Note to note transition times are needed to preserve note transition shape dur-
ing transformation in the unit selection-based systems. Also, note transition
times are important for the HMM-based approach since we model sustain and
transition sequences.

Transitions are estimated as the time instants when pitch deviates a thresh-
old from the labeled note pitch. The threshold is set to 10% of interval (with
a minimum of a quarter semitone). We have also manually re�ned the auto-
matically detected transitions boundaries. An example of the note transition
segmentation is shown in Fig. 3.13, where the vertical lines show the pitch
transition boundaries.

3.5.4 Note strength estimation

Similarly to the note durations, although the note strength values can be ex-
tracted from the score, if we compare the �nally recorded melodies with the
score there usually is some delay due to the performance itself. Thus, the note
strength values can be estimated from the note onset position of the labeled
notes.
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Figure 3.13: Transition segmentation.

To this purpose, for each measure we generate the note strength curve in
Fig. 3.14 (in this case for a

(
4
4

)
time signature). First, the anchor points for

note strength are de�ned as in eq. 3.1 from the note strength grid. Note that
the �rst frame has the highest note strength (1), and in the middle point note
strength is 0.5, and at a fourth part of the measure the note strength is 0.25.
Then, the note strength curve is generated by interpolating these points for
each time frame. Finally, the note strength are sampled from this curve at the
note onset times. This process is done both for the expression database songs
and also for the target songs to synthesize.

3.5.5 Vibrato modeling and baseline pitch estimation

In this section we explain the methodology we follow to separate the vibrato
features (depth and rate) and the baseline pitch. The baseline pitch corre-
sponds to the pitch without the modeled �uctuations of the vibrato regions.

Basic idea

The vibrato parameters allow resynthesis keeping the shape of the original vi-
brato at any note pitch and duration. The extracted parameters are depth,
rate, baseline pitch and reconstruction error. The estimation of these parame-
ters is semiautomatic, where the �rst step is to manually indicate the �rst and
last peak or valley for each vibrato. The relationship of these parameters to
the reconstructed pitch contour with vibrato F̃0(n) is:

F̃0(n) = F̄0(n) + d(n)sin(ϕ(n) + ϕsign) (3.2)
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Figure 3.14: Note strength curve for a single measure.

ϕ(n) =

n−1∑
k=0

2πr(k)∆t + ϕcorrec(n) (3.3)

where, in equation 3.2, F̄0(n) is the estimated baseline pitch (without vi-
brato) at frame n, ϕsign is a constant value that indicates whether the sinusoid's
initial phase is 0 or π, d(n) is the pitch deviation (depth) with respect to the
baseline, and ϕ(n) is the sinusoid phase. In equation 3.3, r(k) is the vibrato
rate at frame k, ∆t is the frame shift time and ϕcorrec(n) is the reconstruction
error.

In Fig. 3.15, we show an example of vibrato parameters extraction and
resynthesis. The top most sub�gure represents the original pitch, its resyn-
thesis and the baseline estimated parameters are plot. In the other three
sub�gures, depth, rate and reconstruction error are shown respectively.

In the following subsection we detail how vibrato features are estimated.
Initially, the �rst and last peaks or valleys are manually indicated, and a set
of constraints are imposed. Then, vibrato rate and the baseline pitch are
iteratively estimated to re�ne the results. Finally, vibrato depth and the phase
are estimated.

Initialization

Before starting the iterative process that estimates and re�nes depth and rate,
we need to detect where vibratos are present. We do so by manually indicating
the �rst and last time instants where there is a peak or a valley. We impose as
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Figure 3.15: Vibrato resynthesis and parameters: depth, rate, reconstruc-
tion error and baseline pitch.

constraints for vibratos to have at least one cycle and a depth above a certain
threshold (just a few cents would not be considered a vibrato). It is also worth
mentioning that rate is initialized to a constant value (13 Hz in our case).

Iterative feature estimation

The baseline pitch and vibrato features estimation involves iterating over three
steps, namely, 1) the detection of peaks and valleys within the vibrato segment,
2) the rate estimation from the peaks and valleys time instants, and 3) the
baseline pitch estimation as the pitch curve placed between peaks and valleys.

Regarding peaks and valleys, their computation is illustrated in Fig. 3.16.
Their time position (or anchor times) is set as the derivative zero-crossings.
The derivative is computed by convolving the pitch with a sinusoidal kernel in
order to avoid false detections due to pitch irregularities or estimation errors.
The kernel is composed of a half negative cycle followed by a half positive cycle.
Its length corresponds to one cycle of the estimated rate at each frame, so it
can be di�erent for consecutive frames. Next, we compute each peak or valley
pitch values using a polynomial regression over a third part of a period.
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Figure 3.16: Vibrato model: peaks and valleys computation. We have added
an o�set of -1500 cents to the pitch derivative for visualization purposes.

The rate contour is �rst estimated as half the inverse of the time between
consecutive anchor times, and afterward smoothed by convolving it with a
Gaussian window of 61 frames length.

The baseline pitch in a vibrato segment is obtained by smoothing the pitch
with a Gaussian window that spans over 2.5 rate cycles. In Fig. 3.17 we show
the original pitch contour, the estimated baseline pitch, and the estimated
vibrato rate.

Next, we re�ne the estimated features iterating again over the previous
three steps. After this iteration, the �nal baseline and depth estimations are
computed as follows. Since a vibrato does not start or end at peaks or valleys,
we extend the manual segmentation of the vibrato segment by a quarter of a
period according to the rate values at boundaries. Next, as illustrated in Fig.
3.18, we compute a set of anchor points as the mean time and pitch values of
consecutive peaks and valleys pairs. An intermediate baseline pitch (dashed
black line) is obtained by a spline regression over these anchor points and the
pitch frames outside the vibrato segment. Note that the �rst and last anchor
points are left out. Next, a smooth baseline pitch (cyan dashed line) is com-
puted by convolving the intermediate baseline pitch with a gaussian window.
The �nal baseline estimation (red line) is obtained interpolating the two pre-
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Figure 3.17: Vibrato model: baseline pitch computation.

vious baseline contours so that the central part of the vibrato corresponds to
the smooth baseline, and special care is taken to ensure smooth transitions in
the �rst and last vibrato cycles.

The depth contour is computed interpolating the absolute di�erences be-
tween the original pitch and the �nal baseline at peaks and valleys, as shown
in Fig. 3.19.

Finally, we apply one more step to re�ne the results. First, in the case
of the vibrato example we are showing in the �gures, the initial phase ϕsign
(eq. 3.2) is set to π since the �rst peak/valley has a lower amplitude than
the estimated baseline pitch. Then we check that the phase at the peaks and
valleys is the expected value. That is to say, a peak or a valley in a sinusoid
should have a phase value equal to ϕsign + k × π

2 , with k = 0, 1, 2... For each
peak and valley, we compute the di�erence between the cumulated phase and
the expected one. In Fig. 3.20 we show the computed phase error from the
original pitch and detected peaks and valleys. With the phase error at the
peaks and valleys we can generate the phase error contour (middle subplot).
The phase error di�erence between consecutive frames is the phase correction
we add to the previously computed rate contour as a way to compensate the
phase error within the rate contour.
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Figure 3.18: Vibrato model: baseline pitch reestimation.
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Figure 3.19: Vibrato model: depth estimation.
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Figure 3.20: Vibrato model: phase correction.

3.6 Conclusion

In this section we have explained our method to design, record, and label
the expression databases used by our methods. Both the unit selection-based
and the HMM-based methods need a set of features (dynamics, pitch, and
vibrato depth and rate) and metadata which is automatically estimated (and
then manually re�ned). These metadata are the note characteristics (onset,
duration, pitch, and note strength), as well as the note transitions start and
end times.

Each strategy for the creation of the expression databases has its own
advantages and disadvantages. The Systematic database aims to cover a set
of note features combinations, so that any target song can be represented by
units or contextual data that its not very di�erent. A high coverage means that
units are not transformed too much in the unit selection-based approaches, or
that any target song can be statistically well represented, in the case of the
HMM-based methods. Besides the di�culty of building such type of database,
another disadvantage is that systematic databases are di�cult to record, not
only because of the limited time that may shorten the amount of melodic
exercises �nally recorded, but also because the songs are not known by the
singer and cannot be learned by heart either. There are no lyrics and the
melodies are short, random, the same chord progression is followed by all of
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them, and there are too many exercises, so that these are di�cult to remember.
Regarding the Song expression database, it is easy to design, it can even

be recorded without the score, and the fact that songs are known by the singer
favors to sing them in the required style. On the other hand, the units coverage
may not be ensured if the songs are not previously analyzed and selected
according to the coverage criteria. In our case, the only criteria were that the
songs should belong to the same singing style and also known by the singer.
This could have been done di�erently if we had a pool of several hundreds of
songs, then selected the ones that the singer knows, and from this subset select
the scores that cover a wider variety of note features combinations.

All the labeling information described in this chapter is needed for all meth-
ods, either to de�ne the units or the contextual information in the HMM-based
methods. Our labeling consists on extracting pitch and dynamics, semiauto-
matic note segmentation, semiautomatic note transition times annotations,
note strength estimation, and extraction of the baseline pitch and the vibrato
features.



CHAPTER 4
A unit selection-based system

for expression control

This chapter details the approach for expression control of pitch and dynamics
based on unit selection. Inspired by unit selection methodologies applied to
speech, a unit selection approach typically consists of the selection, transfor-
mation, and concatenation of a set of units that match the target utterance.
In this chapter, we propose to adapt these building blocks to generate the
expression contours.

4.1 Introduction

We have introduced the unit selection approach for expressive contour gener-
ation on section 1.3.3. In this chapter we explain the di�erent blocks in which
this approach is built upon.

First, units are selected according to a set of cost functions (Sec. 4.2).
Then, the selected units are transformed and concatenated (Sec. 4.3). The
transformation is done in time and frequency in order to match the target
sequence of notes and rests. The �nal pitch contour is eventually obtained by
generating the vibrato shape which is added to the baseline pitch (Sec.4.4).
Finally, the voice is synthesised with the Vocaloid synthesizer (Sec. 4.5). For
each section, we present some �gures that illustrate the described concepts.
This chapter is partly based on Umbert et al. (2013a) and Umbert et al. (2015).

4.2 Unit selection

4.2.1 Description

Unit selection aims to retrieve short melodic contexts from the expression
database that, ideally, match the target contexts or units. Since perfect
matches are unlikely, this step retrieves the optimal sequence of units according
to a cost function.

69
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Cost Description Computation

Time-scaling
Favour similar source and
target unit durations

Octave ratio
(source/target unit notes)

Pitch shift
Favour similar source and
target unit intervals

Octave ratio
(source/target unit intervals)

Note strength
Favour similar source and
target unit note strength

Octave ratio
(source/target note strength)

Concatenation Favor compatible units
from the DB

Zero if consecutive units, or
depends on transition times

Phrasing Favor selection of groups
of consecutive units

Penalize selection of
nonconsecutive units

Table 4.1: Unit selection: sub-cost functions.

The cost criterion consists of the combination of several subcost functions,
as summarized in Table 4.1. In this case, there are four functions and unit
selection is implemented with the Viterbi algorithm. This algorithm is useful
to select from the huge amount of units that may be theoretically possible to
transform to match the target unit.

The overall cost function considers the amount of transformation in terms
of note durations (time-scaling cost) and pitch interval (pitch interval cost)
to preserve as much as possible the contours as originally recorded. Note
that while the note duration cost is de�ned in terms of the absolute note
durations (in seconds), the pitch interval cost is de�ned by the pitch di�erence
(in semitones) of consecutive notes and this value is compared in the source
and target unit. The absolute pitch di�erence between the candidate source
unit and the target unit is not used because we have considered that a pitch
contour can be pitch shifted and reused some semitones higher or lower.

The overall cost function also measures how appropriate it is to concatenate
two units (concatenation cost) as a way of penalizing the concatenation of
units from di�erent contexts. Finally, the overall cost function also favors the
selection of long sequences of consecutive notes (continuity cost), although the
�nal number of consecutive selected units depends on the resulting cost value.
This last characteristic is relevant to be able to re�ect, to some extent, the
recorded phrasing at synthesis. A third subcost function, the note strength
cost, computes how well the source unit �ts at the measure position of the
target unit.

We can easily imagine the Viterbi trellis as a matrix in which each node
is placed at a given column and row. Each column represents a position in
time, in our case the target units, and the elements in that column are all the
possible units from the expression database (described in chapter 3). The unit
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selection process links elements from one column to the next one depending
on the least cumulated cost up to that point taking into account on the cost
functions described in the following section.

4.2.2 Cost functions

Transformation cost

The transformation cost measures how much a source unit ui has to be modi�ed
to match a target unit ti. It can be expressed in terms of the mean of two sub-
cost functions (amount of pitch shift ps and time-scaling ts) as in equation
4.1:

Ct(ti, ui) =
1

3

(
Ctts(ti, ui) + Ctns(ti, ui) + Ctps(ti, ui)

)
(4.1)

These subcosts functions are a weighted sum of note durations (in seconds)
dur ratios (in the case of the time-scaling cost), note strength values ns ratios
(in the case of the note strength cost) between source and target units, and
similarly, unit interval pitch values (in semitones) int ratios (in the case of the
pitch shift cost) between source and target units. The Ctts cost computation is
shown in equations 4.2 and 4.3:

Ctts(ti, ui) =
3∑

n=1

‖ωts(n)‖min
(

50, x+ (x− 1)3
)

(4.2)

x =

[
log2

(
dur(ui(n))

dur(ti(n))

)]2
(4.3)

where x is the actual computation of the octave-based cost, and we have �ne
tuned it with the third degree function, and set a threshold of 50 in order to
avoid to high values in the computation. The note index within the unit is rep-
resented by n, and the normalized time-scaling weights ‖ωts(n)‖ are computed
by dividing the ωts weights by their sum. These weights give more relevance
to the central unit note transformation:

ωts = [0.75, 1.5, 0.75] (4.4)

Similarly, Ctns is computed with the note strength ratios. In this case, this
cost is computed using 4.5 and 4.6 as the x and weigths ωns, respectively:

x =

[
log2

(
ns(ui(n))

ns(ti(n))

)]2
(4.5)

ωns = [1, 1, 1] (4.6)
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Note that, in the Ctns computation, we also have 3 note strength values per
unit, and that in this case we have considered that each note strength should
be equally weighted. There is no speci�c reason why the weights have change
from function to function, a more in depth study could have been done in this
respect, probably.

Di�erently from the 2 �rst subcost functions, the Ctps cost involves 2 values
(in a unit of 3 notes there are 2 pitch intervals). The x computation is shown
in equation 4.7:

x =

[
log2

(
int(ui(n))

int(ti(n))

)]2
(4.7)

where n points to the two pitch intervals, and pitch shift weights ωps give the
same importance to both intervals,

ωps = [1, 1] (4.8)

Note that the Ctts, C
t
ns, C

t
ps subcost functions are de�ned in terms of the

log2 computation. Based on the octave concept, we have used it to de�ne
these costs. Therefore, doubling a note duration is equivalent to an octave, or
having to change a note interval from 1 semitone to 2 semitones is also related
to the octave idea. In the case of the pitch interval, the octave would not refer
to the absolute pitch values, but to the ratio between the pitch intervals.

Besides, an extra rule is applied to avoid selecting some source units. We
have assumed that an ascending interval should not be used to generate a
descending interval (and vice-versa). Also, silences must be present in the
same note in the source and target units, otherwise that unit should not be
selected. If this requirements are not met, the transformation cost is set to
in�nity.

Concatenation cost

The concatenation cost measures how appropriate two units are for overlap-
ping. Consecutive units in the selected sequence share two notes, and cross-
fading has to be applied to obtain smooth transitions. The crossfading step
(or concatenation in section 4.3.3) is done with a mask that speci�es which
frames of a given unit contribute to the output pitch contour. This mask gen-
erally focuses on the transition to a unit central note, the central note, and the
transition to the next note. This cost handles any possible mismatch between
the shapes of the crossfading masks of consecutive units.

For example, if the source units in consideration are consecutive in the
expression db, this cost is zero, because the notes that are crossfaded share
the same transitions. Otherwise, the transition start and end times of the
two source units to concatenate are used to penalized a couple of situations.
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The ideal situation when source units are not consecutive would be to ensure
that the sustain of the central note of the �rst unit lasts until the end of the
transition to the central note of the second source unit. Thus, we want to avoid
the situations in which very distant transition times between the �rst unit and
the second unit may derive into unstable crossfading results.

The �rst situation we want to penalize is when in the �rst unit the transition
to the third note (end of the sustain of the central note) has already started
but the transition to the central note of the second unit has not �nished yet.
The second situation we want to penalize is when the start of the transition
to the central note of the second unit starts before the end of the transition to
the third note of the �rst note. What we actually penalize is the time distance
between the times values we are comparing, and the cost is directly this time
distance having expressed the time instances relatively (as a percentage) within
the unit duration.

For e�ciency, and given that the computation of this cost does not depend
on the target score (transition times are expressed relative to the source unit
duration), this concatenation cost is processed and stored before computing all
the other costs that depend on the target score (transformation and continuity).
Once the expression database is labeled, this cost can be processed and stored
in a sqared matrix with the cost values computed for any pair of source units,
so that for any target score this subcost can be retrieved.

Phrasing cost

The ideal situation in a unit selection-based system would be to have the
target song in the expression database, as in a performance driven approach.
Being this unlikely to happen, with the costs used up to this point, the most
probable situation is that units are selected from very di�erent songs and
contexts. However, the more di�erent the contexts are, the higher impact it
has on the resulting contour. At a very local context, this is managed by the
concatenation cost, although it only takes into account whether two candidate
units are consecutive in the database or not. A higher scope of concatenation
is managed by this cost, towards the musical concept of phrasing.

The phrasing cost is included to favor the selection of a certain amount L of
consecutive source units. Thus, more similar contexts and easy to concatenate
(already done by the original singer) can be selected. The starting point is set
to a silence or from a point in the path of selected units where two units are
not consecutive in the database. While L consecutive units are not chosen,
selecting non-consecutive units is penalized (the penalization cost is set to
2, following the criteria of octave-based costs as in the transformation cost).
When L is reached, a new starting point is set in order not to force very
restrictive constraints to the Viterbi costs.

In our case, we have set L = 3 in order to favour the selection of sequences
of 3 consecutive source units (or 5 notes). Of course, including this cost it
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Figure 4.1: Cumulated Viterbi cost.

does not ensure that sequences of such length are present in the selected units,
since the this might be to costly compared to the other costs depending on the
Viterbi path.

4.2.3 Results

In this section we present some �gures on the described costs. First, we present
the time evolution of the overall Viterbi cost (the cumulated cost in each node
of the Trellis). We have computed it for the 5 songs that we have evaluated in
Chapter 7. More details on these songs can be found in this chapter. Besides
the cumulated costs, we also present each subcost separately.

In Fig. 4.1 we present the time evolution of the cumulated Viterbi cost for
the 5 songs. We have normalized the cost by the total amount of units in each
song in order to be able to compare them. Otherwise, longer songs tend to
have higher cumulated costs simply because these songs have more notes. The
time axis is referred to the units indexes, but these are also normalized to the
length of each song, so that all of them are placed between 0 and 1. On the
bottom �gure we show the cost increment among consecutive nodes, which we
can see that have a range of values below 5 in general.

In Figs. 4.2, 4.3, and 4.4 we show the histograms of all values of the 3 unit
transformation subcosts related to note duration, note strength, and pitch
interval, respectively. The computation has been done for the same 5 songs.
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Figure 4.2: Duration cost histogram.
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Figure 4.3: Note strength cost histogram.
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Figure 4.4: Pitch interval cost histogram.
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Figure 4.5: Concatenation cost histogram.
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Figure 4.6: Phrasing cost histogram.

In all cases we have positive cost values lower than 5, and the histogram shape
tends to decrease with the cost value, showing that most units are transformed
at a low cost.

In Fig. 4.5 we show the histogram for the concatenation cost, which has
values lower than 1. Finally, in Fig. 4.6 we show the histogram for the �phras-
ing� cost. In this case, this cost only takes 2 values: 2 is used to penalize
taking a unit which is not part from a consecutive phrase in the source unit,
and 0 otherwise. In the processed songs, around 20% of the units were selected
although these were penalized.

We have also analyzed the e�ect of the concatenation and phrasing costs
from another perspective. If we take the sequences of units which are consec-
utive in the expression database, we may �nd sequences of length 1 when a
unit is surrounded by units which are from other contexts in the database, but
we can also �nd longer sequences which are consecutive in the database. In
Figs. 4.8 and 4.7 we show the length of these sequences. We have used both
the Song and the Systematic database to synthesize the same 5 songs.

In the case of the Song database, we have around a 18% of units which
taken from a di�erent context than the surrounding ones, and there is around
22% of units which are grouped in pairs (length = 2). The remaining 60% of
units have a length of 3 or more. In the case of the Systematic database, single
units are a 20%, and paired units a 32%. The remaining 48% are sequences of
at least 3 consecutive units in the database.
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Figure 4.7: Sequences of consecutive units (Song DB).

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40
Consecutive source units [Unit Selection − Systematic DB]

Sequence length

P
er

ce
nt

ag
e

Figure 4.8: Sequences of consecutive units (Systematic DB).
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Figure 4.9: The performance feature (F0) generated by unit selection.

From this perspective, we can say that the unit selection-based system
is capable of retrieving longer sequences from the Song database than the
Systematic database (60% vs 48%, respectively).

4.3 Unit transformation and concatenation

4.3.1 Description

This step deals with the transformation of the selected sequence of units.
Source notes have to match target notes in pitch and duration. Therefore,
once a sequence is retrieved, each unit is time scaled and pitch shifted. The
time scaling is not linear; instead, most of the transformation is applied in
the sustain part and keeping the transition (attacks and releases) durations as
close to the original as possible. Vibrato is handled with a parametric model,
which allows the original rate and depth contour shapes to be kept. Source
unit dynamics contour is also scaled according to the target unit duration.

In Fig. 4.9 we show the basic idea for the expression contours generation.
A target sequence of four notes (bottom image), can be generated by overlap-
ping a couple of source units (A and B) which share two notes. The target
pitch contour (pink dashed line) is generated by transforming them in time
(according to the target note durations) and frequency (target note pitches).
Vibratos appearing in the source units are also rendered, preserving the orig-
inal depth and rate and spanning over the target note duration. In parallel
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Figure 4.10: Example of unit time-scaling mapping curve.

to unit transformation, crossfading is applied between the transformed units
pitch contours in order to generate expression contours.

4.3.2 Unit transformation

Time scaling: articulations vs. sustains

Time scaling aims to transform the selected notes so to match the duration of
the target notes. One consideration is that besides notes, the pitch contour
consists of a sequence of sustains and transitions and those can be treated
di�erently. While sustain durations are typically correlated with note durations
(so they can have any duration within a wide range), transition durations are
less dependent on the note duration and therefore their durations are less
variable. Hence, naturalness would be theoretically better preserved if most
of the time-scaling transformation is applied to the sustains. With this aim,
we apply a non-linear time-scaling transformation through a mapping function
between target and source notes. This is illustrated in Fig. 4.10, where we
can clearly see di�erent time-scaling factors applied to transition and sustain
segments.

Pitch shifting

The main idea behind the pitch shifting step is that a pitch contour can be
transposed as if that note sequence had been sung at a higher or lower fre-
quencies. Besides transposing pitch contours, we also might need to change
the note intervals in order to match the target note sequence.
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Figure 4.11: Example of unit pitch shifting.

Unit pitch contour is transformed by adding an o�set value per note. This
o�set is the di�erence between target and source notes. O�set values during
note transitions are interpolated linearly in order to have smooth changes. In
Fig. 4.11 we show an example of the original and transformed baseline pitches
(top �gure) and the pitch shift mask used for this case. During note sustains
the mask has a constant o�set. In note transitions, the mask is obtained by
interpolating with the cubic method from one note to the next one.

Dynamics o�set level

The main transformation applied to dynamics is time-scaling as explained be-
fore. We also add an o�set level to the source unit dynamics contour. The
dynamics contour is placed around 0.6 o�set value since the Vocaloid synthe-
sizer treats this value as an average level. By doing this step we ensure that
all phonemes will be assigned high enough dynamics to be heard.

4.3.3 Unit concatenation

The transformed units are concatenated in order to generate the expression
contours for each expression feature. This process is basically an overlap and
add iterative process applied to every consecutive unit.

The overlapping step of the transformed pitch, dynamics and vibrato pa-
rameter contours is handled with a crossfading mask. This mask is computed
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per unit in order to determine the samples that contribute to the output con-
tour. More relevance is given to the attack to the central unit note and its
sustain, until next the start time of the attack to the third unit note.

In Figs. 4.12 and 4.13 we show how the crossfading masks are generated
from the transformed unit (after the time-scaling and pitch shifting step ex-
plained in the previous section) for the baseline pitch and dynamics expression
contours, respectively. In both �gures, the top subplot shows the baseline pitch
(or dynamics) with the note onsets and transitions start and end times marked
with vertical dashed lines. In the middle subplot there is the transformed unit
in time and frequency (note that the time axis do not match with the previous
one because the target unit is placed at another time instant in the target
song). The bottom subplot represents the crossfading mask that is used in the
concatenation step. The mask's shape gives more importance to the attack
(transition) to the central unit note and the corresponding note sustain. From
another perspective, the masks controls the frames' contribution to the �nal
expression contour. Right before the attack the mask reaches 1, and right
before the transition to the next note it reaches 0 again. Similarly, we do the
same steps for dynamics.

4.3.4 Results

In this section we present some further graphical results for the unit trans-
formation step. In the previous subsection we have already introduced some
partial results, like the time-scaling mapping curve, the pitch shifting mask,
the transformed baseline pitch, and the transformed dynamics.

We have collected the values of the time-scaling factors (ratio of note dura-
tion between the central note of the source and target units) which have been
applied to the Song database and to the Systematic database. This information
is shown in the histograms of Figs. 4.14 and 4.15. The experiment has been
done for the same 5 target songs as in section 4.2.3. In both databases, source
units have been time scaled with a factor between 0 and 2. That is to say, in
a few cases notes are shortened, in other cases notes' durations are doubled.
The average time-scaling factor is 1.16 and 1.18, and the histogram peaks are
placed at 0.77 and 0.71 for the Song and Systematic databases, respectively.

Similarly to the time-scaling factors, interval transformations have been ap-
plied to the selected units. The semitone di�erence between the �rst interval
(attack to the central unit note) of selected units and the target units is rep-
resented in Figs. 4.16 and 4.17. The average pitch interval is -0.27 and -0.08,
and the histogram peaks are placed at 0.12 and -0.71 for the Song and System-
atic databases, respectively. In both cases, most of the semitones di�erence
between source and target units is less than 2.5 semitones.

Next, in Fig. 4.18 we present an example of the unit concatenation step
with 5 units. On the top �gure we show the contours of the 5 transformed
units with the e�ect of each crossfading mask. When the masks reach 1, the
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Figure 4.14: Time-scaling factors (Song DB).
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Figure 4.15: Time-scaling factors (Systematic DB).
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Figure 4.16: Pitch interval di�erence (Song DB).
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Figure 4.17: Pitch interval di�erence (Systematic DB).
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Figure 4.18: Example of cross-fading masks.

transformed unit shapes are preserved (attack and sustain of the unit central
note). In the preceding and succeeding frames, the mask tends to 0 and so
does the contour. Since consecutive overlapping masks do the transition from
0 to 1 (or viceversa) in same previous frames to the note attack (or release),
the crossfading handles the weight or contribution of overlapping frames. The
thickest dashed line (in black) in this �gure is the result of the concatenated
baseline F0.

An example showing the concatenation of the vibrato features are shown
in the following section 4.4 on the generation of the expression contours.

4.4 Contour generation

4.4.1 Description

After concatenating the transformed units, we obtain di�erent pitch expression
contours that need to be joined. First, the baseline pitch is tuned in the
note sustains to correct any possible mistake in the labeling process and to
ensure the singer is in tune. Then, vibratos are rendered and added to the
baseline pitch. Dynamics are no longer processed since these are obtained in
the previous step of unit concatenation.
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Figure 4.19: Transformed unit pitches and vibrato control contours concatenation.

4.4.2 Baseline pitch tuning

In order to ensure that sustains are at the right target pitch, the baseline pitch
is tuned. A similar process to auto-tuning techniques was followed before
rendering the �nal pitch contour.

This step consists on adding a correction o�set to each pitch frame value.
First, a sliding window is used to compute local pitch average values through
each note duration. The deviation of each frame average value with respect to
the target note pitch is weighted in order to get the correction o�set. Given
the shape of the applied weights (tukey window), boundary note frames are
less modi�ed than middle note frames.

4.4.3 Vibrato generation

Vibratos are synthesized using the depth and rate generated for the target
song. Those frames with depth equal to zero contained no vibrato. Otherwise,
the procedure introduced in section 3.5.5 is followed for synthesis.

An example of the result is shown in Fig. 4.19 (dashed line), with most
frames belonging to a vibrato segment. The contributing units contours are
represented in continuous lines. The top-most sub�gure shows the pitch values
of the transformed source units and the resulting pitch with vibrato. This
vibrato has been synthesized with the depth shown in the second sub�gure,
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1 <mCtrl>
2 <posTick>32036</posTick>
3 <at t r id="DYN">55</ a t t r>
4 </mCtrl>
5 <mCtrl>
6 <posTick>32036</posTick>
7 <at t r id="BRI">55</ a t t r>
8 </mCtrl>
9 <mCtrl>
10 <posTick>32036</posTick>
11 <at t r id="PIT">1210</ a t t r>
12 </mCtrl>

Listing 4.1: Code example: VSQX format for dynamics, brightness, and pitch bend

where the two contributing units can also be observed. The vibrato rate is
shown in the bottom sub�gure.

4.5 Sound synthesis

4.5.1 Description

In this section we explain the last step for the sound synthesis generation with
the Vocaloid singing voice synthesizer, and then we evaluate the generated
audio �les. In short, in section 4.5.2 we explain the basic �le format in which
lyrics, notes, and frame pitch bend and dynamics values are speci�ed, and in
section 4.5.3 the synthesized �les are compared to the expression achieved by
the synthesizer default con�guration and we also compare it to the expression
achieved by manually tuning the expression parameters.

4.5.2 File formatting

In Vocaloid �les (*.vsqx) the song score and expressions controls are repre-
sented in XML (eXtensible Markup Language) format. Besides a header con-
taining information on the �le version and enconding, the most important tags
with the score information are:

• <VoiceTable>: it contains the con�guration of the voice bank.

• <mixer>: it speci�es the mixer con�guration, for instance on the com-
pression or reverberation.

• <masterTrack>: it speci�es score information like the time signature or
the tempo.

• <vsTrack>: it speci�es values at frame and note level.
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1 <note>
2 <posTick>4581</posTick>
3 <durTick>211</durTick>
4 <noteNum>55</noteNum>
5 <ve l o c i t y>64</ v e l o c i t y>
6 <l y r i c><! [CDATA[ For ] ]></ l y r i c>
7 <phnms><! [CDATA[ f @` r ] ]></phnms>
8 <noteSty l e>
9 <at t r id=" accent ">50</ a t t r>
10 <at t r id="bendDep">8</ a t t r>
11 <at t r id="bendLen">0</ a t t r>
12 <at t r id="decay">50</ a t t r>
13 <at t r id=" f a l l P o r t ">0</ a t t r>
14 <at t r id="opening ">127</ a t t r>
15 <at t r id=" r i s ePo r t ">0</ a t t r>
16 <at t r id="vibLen">0</ a t t r>
17 <at t r id="vibType">0</ a t t r>
18 </ noteSty l e>
19 </note>

Listing 4.2: Code example: VSQX format for notes

The part that contains the relevant data is the <vsTrack> tag which con-
tains 2 typs of data values. The �rst set of values are the expression control
feature values at frame level, which may be the pitch bend (pitch deviation
between the pitch value and the note pitch), dynamics, or brightness (see code
example in listing 4.1 with 3 feature values for the same frame). Next, the note
information is speci�ed with the note onset, duration, MIDI note number, the
lyrics orthographic and phonetic transcription (see code example in listing 4.2
for the word For). In this format, frames are indicated by the posT ick integer
which is internally mapped to a time position.

It is important to highlight how the expression control parameters are
mapped in the VSQX �les. Regarding the pitch contour, the F0 frame in-
formation is provided through the note pitch and the deviation from the note
to the frame value (or pitch bend). Concerning dynamics, we are not only
mapping dynamics directly to the dynamics feature, but also to the brightness
feature since it we can obtain more realistic results by slightly changing timbre
as well. Both contours are almost the same. While timbre brightness (BRI)
is entirely controlled by the dynamics value, so that higher dynamics values
imply more timbre brightness, the synthesizer dynamics (DYN) is handled by
the lower values of the generated dynamics expression contour according to
expression in 4.9:

DYN = min(0.5, dynamics) (4.9)

The synthesizer interface has an export functionality which allows to gen-
erate the audio �le from the speci�ed XML format.
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4.5.3 Evaluation and results

Aim of the study

The evaluation explained in this section is based on Umbert et al. (2013a).
The aim of this perceptual evaluation is to compare the perceived naturalness,
expressiveness, and the singer skills of three di�erent methods of controlling
the singing voice expression. We have to clarify that by the time of this publi-
cation note strength feature was not included, and therefore the corresponding
subcost feature is not used.

Before starting the perceptual test, the 3 parameters to rate were explained
to them. The naturalness was explained to the participants based on whether
the singing voice was perceived rather synthetic or human. Expressiveness
could range from very inexpressive to very expressive, and we refer to singer
skills as an overall perception also related to elements like a very bad or good
timing and tuning.

The three methods we have compared in this evaluation are the baseline
method based on heuristic rules, manual tuning of dynamics, pitch bend and
vibratos, and �nally the synthesis using the proposed unit selection-based sys-
tem.

Experimental setup

We evaluated the achieved expression by conducting a Mean Opinion Score
(MOS) test with 16 participants. The subjects rated the synthesized perfor-
mances from 1-5 in terms of naturalness, expressiveness, and the singer skills.

Three excerpts of 30 seconds were synthesized. For each of these excerpt,
three versions were synthesized using the three di�erent methods of generating
expression contours. All versions had background music.

The heuristic rules or default con�guration was obtained following the al-
gorithm described in Bonada (2008) and also introduced in section 2.4.4. The
manually tunned �les have been generated by skilled experts who are used to
generate singing performances with Vocaloid.

The expression database built for this evaluation contained melodic sections
from four recorded songs in soul/pop style. In total, six minutes of a cappella
singing voice were recorded by a female trained singer. The target songs were
not present in this database. Although the database used in this experiment
is neither the song or systematic databased described in chapter 3, it was built
following the same principles. It was initially built to test the unit selection-
based framework.

The subjects �rst listened the three versions of the song being rated to
get an overview of the variability within examples and then listened to them
again in order to rate them individually. This was done separately for each
song. The order in which songs were listened to was not always the same and
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Figure 4.20: Unit Selection: Results of listening tests.

versions were presented in a random order. These songs were synthesized using
a Spanish voice bank. The rating task took around 15 minutes.

Results and discussion

In order to evaluate how the three di�erent versions compare to each other,
the results are grouped in terms of the control parameter con�gurations within
each rated question. These are shown in �gure 4.20, where the boxplots refer to
naturalness, expressiveness and singer skills, respectively. The statistics show
the mean opinion scores, standard deviations (above and under mean) and
minimums and maximums. Paired-samples t-tests were conducted to deter-
mine the statistical di�erences between the evaluated synthesis con�gurations
with respect to a p-value threshold of 0.05.

Concerning naturalness, the three versions have been rated quite similarly.
Although the proposed system has a slightly higher mean value, this di�erence
is not statistically signi�cant with respect to the baseline method and the
manual tuning.

In terms of expressiveness, it can be observed that the baseline method
has the lowest mean rating, followed by the manually tuned version which
is slightly improved by our method. In this case, the di�erences between
both the proposed system and the manual con�guration with respect to the
baseline method are statistically signi�cant (p=2.64×10−6 and p=3.23×10−6,
respectively). On the other hand, no statistically signi�cant di�erence is ob-
served between the proposed system and the manual con�guration (p=0.76).
Therefore, we can conclude that the proposed system improves expression and
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achieves a similar level to the manual con�guration.
Finally, with respect to whether the singer is good or bad, the three versions

have a similar mean value. The di�erences between both the proposed system
and the manual con�guration with respect to the baseline method are not
statistically signi�cant.

The sound �les used in the listening tests are online1 related to Umbert
et al. (2013a).

4.6 Conclusion

In this chapter we have introduced a new method for generating expression
contours for singing voice synthesis based on unit selection. It is worth men-
tioning that this system does not rely on statistical models and therefore it
is capable of preserving the �ne details of the recorded expression. With re-
spect unit selection process, the costs that are taken into account have been
explained. These costs involve unit transformation and concatenation, con-
tinuity, and phrasing cost. Unit transformation in time and frequency, unit
concatenation with the crossfading masks, and contours rendering have been
described.

From the listening tests, we have concluded that this system is capable
to automatically generate a performance which is as expressive and natural
sounding as can be achieved by manual tuning of parameters. Also, its natu-
ralness and perceived singer skills are not worse than the baseline rule-based
system.

Automatic generation of expression controls for a given target style has sev-
eral advantages. It contributes to reducing the time a user spends in providing
expression to singing performance. Another advantage is that it provides a
richer starting point than the default con�guration for manual expression tun-
ing. More importantly, the proposed system paves the way towards modeling
all of the aspects of expression for a singer in a particular style.

1http://mtg.upf.edu/publications/ExpressionControlinSingingVoiceSynthesis

http://mtg.upf.edu/publications/ExpressionControlinSingingVoiceSynthesis


CHAPTER 5

A statistical-based system for

expression control

In the previous chapter we have explained the unit selection approach for ex-
pression control of pitch and dynamics. Alternatively, Hidden Markov Models
(HMMs) can also be used to statistically model time series. In this chapter
we model pitch and dynamics with HMMs in two di�erent ways. The �rst one
is our Note HMM-based system, which model either sequences of notes (as it
has been introduced in section 2.4.5 by previous works). Alternatively, HMMs
can also be used to model sequences of note transitions and sustains. Both
HMM-based systems are explained in this chapter.

5.1 Introduction

In speech, statistical methods like Hidden Markov Models have proven to be
�exible and it has also been applied to singing voice synthesis by jointly model-
ing timbre with pitch and dynamics (Oura & Mase, 2010) where HMMs model
phoneme units. Their note pitches and durations are used as contextual data
together with the surrounding phonemes and notes amongst others. Thus, as
we explain in section 5.2, the same unit concept applies, considering the cen-
tral note of a unit the item to model, and the previous and succeeding note as
contextual data.

In this chapter we explain how we have modi�ed an HMM-based speech
synthesis system (also known as HTS1) to model pitch and dynamics. First,
we have created an HMM-based system to model note sequences (section 5.3).
Next, we have modi�ed this framework to model sequences of transitions and
sustains (section 5.4). By transition we refer to the pitch contour articulation
from one note to the next one (or an attack from a silence to a note, or a
release from a note to a silence). On the other hand, a sustain has its pitch

1http://hts.sp.nitech.ac.jp
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contour around a note (although there might be some deviations like possible
detunings or oscillations due to a vibrato).

Apart from the type of sequence that it is being modeled (note vs. transi-
tions and sustains), another di�erence is that in the �rst case absolute pitch
(and dynamics) values are used in the training and synthesis step, while in the
second system pitch values relative to the melody are used, that is to say, the
di�erence between the pitch contour and the theoretical melody based on the
score.

5.2 Main concepts

The HTS system for speech synthesis is a complex framework, with many
di�erent options concerning its con�guration. In this section we only introduce
the aspects that we have used to build both HMM-based systems for expression
control.

In sections 1.3.1 and 3.3.1 we have introduced and explained the concept of
unit. It basically consists of a central note and the corresponding previous and
succeeding notes or rests. These three elements are described mainly by their
duration and, in the case of notes, also by their pitch. Similarly, a central note
and its contextual data is also used in the HTS framework. Although there
are some di�erences, the main idea is basically the same. The contextual data
used in the default HMM-based system (section 5.2.1) has been simpli�ed in
the proposed HMM-based systems.

The information described in the contextual data is used to distinguish
models according to their context and to group the training data into clusters
(section 5.2.2) from which its mean, variance, and their �uctuations or dynamic
features (delta and delta-delta) are computed and used at synthesis. Finally,
the data preprocessing is also described (section 5.2.3).

5.2.1 Contextual data

Since the HTS system for speech and singing voice jointly models timbre, pitch,
and dynamics, its original contextual-dependent labels contains information on
the phoneme identity, syllables, duration, and pitch. Detailed format on the
HTS context-dependent labels can be found in Appendix A. These two pages
correspond to the guide provided in the HTS demo.

The idea of such labels is to provide in a single line information of the
elements that are being modeled, following the format in Fig. 5.1, where a
set of �elds are separated by di�erent delimiters. Since the �elds' left and
right delimiters are di�erent for each �eld, these are used to identify the �elds
location and �eld values. Each new line has a di�erent central phoneme, and
therefore the contextual-dependent labels change as well. The main aspects of
such format is that �rst we �nd �ve labels specifying the identity of the current
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An example of context-dependent label format
for HMM-based singing voice synthesis in Japanese

HTS Working Group

December 25, 2012

p1ˆp2-p3+p4=p5 p6%p7ˆp8

/A:a1-a2-a3@a4 /B:b1 b2 b3@b4 /C:c1+c2+c3@c4

/D:d1!d2#d3$d4%d5|d6&d7[d8-d9

/E:e1]e2ˆe3=e4∼e5!e6@e7#e8+e9]e10$e11|e12[e13&e14]e15=e16ˆe17∼e18#e19@e20!e21$e22&e23%e24[e25|e26]e27-e28ˆe29+
e30∼e31=e32@e33$e34!e35%e36#e37|e38|e39-e40&e41&e42+e43[e44;e45]e46;e47∼e48∼e49ˆe50ˆe51@e52;e53=e54=e55!e56∼e57+e58

/F: f1# f2# f3- f4$ f5$ f6+ f7% f8; f9

/G:g1 g2 /H:h1 h2 /I:i1 i2

/J: j1∼ j2@ j3

p1 the phoneme identity before the previous phoneme
p2 the previous phoneme identity
p3 the current phoneme identity
p4 the next phoneme identity
p5 the phoneme idendity after the next phoneme
p6 falsetto flag
p7 training flag
p8 pitch-shift
a1 the number of phonemes in the previous syllable/mora
a2 position of the previous syllable/mora identity in the note (forward)
a3 position of the previous syllable/mora identity in the note (backward)
a4 the language dependent context of the previous syllable/mora
b1 the number of phonemes in the current syllable/mora
b2 position of the current syllable/mora identity in the note (forward)
b3 position of the current syllable/mora identity in the note (backward)
b4 the language dependent context of the current syllable/mora
c1 the number of phonemes in the next syllable/mora
c2 position of the next syllable/mora identity in the note (forward)
c3 position of the next syllable/mora identity in the note (backward)
c4 the language dependent context of the next syllable/mora
d1 the absolute pitch of the previous note (C0-G9)
d2 the relative pitch of the previous note (0-11)
d3 the key of the previous note (the number of sharp)
d4 the beat of the previous note
d5 the tempo of the previous note

(SS: 1-75 SM: 76-90 SH: 91-105 MS: 106-120 MM: 121-135 MH 136-150 HS: 151-165 HM: 166-180 HH: 181-)
d6 the length of the previous note by the syllable/mora
d7 the length of the previous note by 0.1 second (1-99)
d8 the length of the previous note by three thirty-second note (1-199)
d9 breath mark of the previous note
e1 the absolute pitch of the current note (C0-G9)
e2 the relative pitch of the current note (0-11)
e3 the key of the current note (the number of sharp)
e4 the beat of the current note
e5 the tempo of the current note

(SS: 1-75 SM: 76-90 SH: 91-105 MS: 106-120 MM: 121-135 MH 136-150 HS: 151-165 HM: 166-180 HH: 181-)
e6 the length of the current note by the syllable/mora
e7 the length of the current note by 0.1 second (1-99)
e8 the length of the current note by three thirty-second note (1-199)
e9 breath mark of the current note
e10 position of the current note identity in the current measure by the note (forward, 1-49)
e11 position of the current note identity in the current measure by the note (backword, 1-49)
e12 position of the current note identity in the current measure by 0.1 second (forward, 1-49)
e13 position of the current note identity in the current measure by 0.1 second (backward, 1-49)
e14 position of the current note identity in the current measure by three thirty-second note (forward, 1-99)
e15 position of the current note identity in the current measure by three thirty-second note (backward, 1-99)
e16 position of the current note identity in the current measure by % (forward)
e17 position of the current note identity in the current measure by % (backward)

Figure 5.1: Context-dependent labels line format in HTS framework.

(central) phoneme (p3 ), as well as the identity of the two previous (p1, p2 )
and succeeding phonemes (p4, p5 ).

After the phoneme identities, the contextual label format speci�es informa-
tion on the previous/current/next syllable (A, B, and C labels, respectively),
the previous/current/next note (D, E, and F labels), the previous/curren-
t/next phrase (G, H, and I labels), and the whole song (J label).

The context label format can be simpli�ed since in this thesis we are fo-
cusing on pitch and dynamics expression contours. For instance, timbre labels
related to phonetics can be erased. The context labels that we have �nally
used are described in each system section.

5.2.2 Clustering

The clustering is mainly based on a set of yes/no pre-de�ned questions which
separate the data based on the context. These questions de�ne a �tree� with
its branches (yes/no answers) and leaves (grouped data with the same an-
swers). The contextual data impacts on how data is clustered together when
the clustering tree and its leaves nodes are build.

The set of yes/no questions ask for all possible values in the contextual
data. Thus, the original questions in the HTS framework try to split and
group the data based on the possible values of the contextual data in the
format shown in Fig. 5.1. The original HTS framework generates one tree
for each of the 5 emitting states. Within each tree, the questions on the
phoneme identity clusters the data, so that in the node leaves there usually
are di�erent central phonemes, although close phonemes in similar conditions
may be grouped together.

In our HMM-based systems, we model either sequences of notes or se-
quences of sustains and transitions. Thus, we have introduced some changes
regarding the clustering step.

5.2.3 Data preparation

Splitting songs in phrases

Our training data consists of labeled songs or systematic exercises with the
corresponding notes and rests. Each audio �le, apart from the beginning and
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the ending silences, has one or several silences within the melody. Therefore,
in each audio �le there are at least two phrases.

According to our initial tests, we have seen that training the HMM models
with the entire �les cause some problems.The beginning and ending silences
may be several seconds long, although the target songs that we may want to
synthesize do not have such long silences in their score. As a consequence,
the contexts re�ected in the training �les are a bit distant to what is later
synthesized. Moreover, the alignment of the model sequence to the training
data may be worse when having long silences at the beginning of the training
�les.

This was solved by splitting the audio �les used for training in phrases.
Therefore, for each original song or melodic exercise we generated as many
�les (lf0, vib, dyn, and contextual data) as phrases there are. The silences
surrounding each phrase are as long as in the original recorded data, except
for the begining and ending silence which where shortened to their original
value or shortened to the duration of a measure.

Data format

The data format in the HTS framework is logarithmic when the stream refers
to frequencies. In the logarithmic domain the frequencies have a more gaussian
distribution. Therefore, the trained and synthesized baseline pitch and vibrato
rate values are not directly in the units we might expect, but its logarithmic
value. For unvoiced frames, the corresponding value is −1010.

In the HTS framework, data is organized in �streams�, which in our case are
the expression contours that we want to train and synthesize. Similarly to the
unit selection-based system, we have a stream for the baseline dynamics, one for
the baseline pitch, and another one which contains both vibrato depth and rate.
In the HTS framework, data is organized in �streams�, which in our case are the
expression contours that we want to train and synthesize. Similarly to the unit
selection-based system, we have a stream for the baseline dynamics, one for the
baseline pitch, and another one which contains both vibrato depth and rate.
Streams of one dimension like dynamics and baseline pitch are called univariate,
while the 2 dimensional stream of the vibrato features is a multivariate stream.

5.3 Note HMM-based system

5.3.1 System description

In this section we describe the Note HMM-based system based on the HTS
framework for speech synthesis. The main characteristics of this system are
summarized in Table 5.1, together with the characteristics of the modi�ed
HMM-based system explained in the next section.
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Feature Note HMM-based system Sustain/transition HMM-based system

Modeled sequence Note Sustain and transition
Score change - Sustain and transition prediction
States/model 5 5
Dynamics contour Absolute Absolute
Pitch contour Absolute Di�erence with score
Depth contour Absolute Absolute
Rate contour Absolute Absolute
Database modi�cation Pitch shift -

Table 5.1: Comparison of the HMM-based systems.

This system is characterized by modeling sequences of notes. Thus, the
song score is not changed since the note onsets and duration contain the nec-
essary information. The default HTS framework works with 5 states per model
(phonemes). We have used the same number of states per model (notes). We
tried modeling notes with 7 states per model but no relevant changes were
observed. The input data to the system are absolute pitch and dynamics val-
ues from the expression database. The same type of data is predicted for any
given target score. In the training section we detail why the database used for
training has been modi�ed.

5.3.2 Contextual labels for clustering

In this system, and with the unit concept as a reference, the questions are
related to features of the modeled note sequence, like the note pitch, duration,
amount of notes in the target song. We are not using timbre related questions
to the phonemes for instance. Besides, we want to help the clustering step and
ensure that di�erent notes are not clustered together, and this is the reason
we have di�erent trees for each model and state.

As an example of contextual labels, in Listing 5.1 we show how the �rst 3
notes for one song (Alone together) may be speci�ed. Each line has the start
and end time followed by the contextual labels. These have the central note,
with the 2 preceeding and succeding notes (xx refers to no context, sil refers to
silence). The central note is surrounded by the - and + delimiters. Next, we
have more contextual information separated by several �elds (D, E, F, and J)
and unique delimiters (characters like !, ∼, +, /, and #). These labels specify
information on the previous note identity and duration (D �eld), the central
note identity, duration, the interval with the previous note, and the interval
with the next note (E), the succeeding note identity and duration (F), and the
number of notes in this song (J �eld).

The yes/no questions for clustering the contextual labels are speci�ed in
questions.hed �le. These questions are speci�ed by following the patterns de-
scribed in the contextual labels. For instance, the set of questions that check if
the central note (C-note) belongs the the 4th octave are shown in Listing 5.2.
Other questions, ask on the note pitch of the left most note, the left note, the
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1 0 16892517 xx^ s i l −F4+D4=E4/ D : s i l ! 9/ E:F4 ]17~xx+m3/F:D4#3/J:62
2 16892517 20375510 s i l ^F4−D4+E4=s i l /D:F4 !17/E:D4 ]3~m3+p2/F:E4#17/J :62
3 20375510 37732427 F4^D4−E4+s i l=D4/D:D4 !3/ E:E4 ]17~p2+xx/ F : s i l #4/J :62

Listing 5.1: Note HMM-based system: Contextual labels example

1 QS "C−Note_C4" {∗−C4+∗}
2 QS "C−Note_Db4" {∗−Db4+∗}
3 QS "C−Note_D4" {∗−D4+∗}
4 QS "C−Note_Eb4" {∗−Eb4+∗}
5 QS "C−Note_E4" {∗−E4+∗}
6 QS "C−Note_F4" {∗−F4+∗}
7 QS "C−Note_Gb4" {∗−Gb4+∗}
8 QS "C−Note_G4" {∗−G4+∗}
9 QS "C−Note_Ab4" {∗−Ab4+∗}
10 QS "C−Note_A4" {∗−A4+∗}
11 QS "C−Note_Bb4" {∗−Bb4+∗}
12 QS "C−Note_B4" {∗−B4+∗}

Listing 5.2: Note HMM-based system: question �le example

right note, and the right most note. Also, the start and end note (after/before
silence as central note) of the phrase, the upper bound in pitch and duration
of the left note, central note, and right note, as well as, the left and right pitch
intervals.

5.3.3 Training

We have used the Systematic and the Song expression databases to train the
systems. Since the system is modeling note sequences using the absolute pitch
values, we have had to pitch shift the expression databases in order to cover
a wide tessitura range which contains all possible note values for the target
songs. Thus, the used training databases are the original one plus the pitch-
shifted versions at ±1 and ±6 semitones. Therefore, the training databases
are 5 times bigger than the original size.

5.3.4 Synthesis

Vibrato features postprocessing

As we will see in the results section, the system generates depth and rate which
are coherent (in the sense that most of the time these are 0, and when there
is vibrato both contours are di�erent than 0). However, sometimes a vibrato
segment (consecutive non-zero values) are too short to be realistic. In such
cases, we are not considering the vibrato to appear in the real output of the
system. We have considered that shorter vibratos than 0.1 seconds should be
�ltered out.

Moreover, for longer vibratos, it usually happens that if vibratos are syn-
thesized from these contours, the vibrato may end at any phase from the last
vibrato cycle. A random cycle phase may produce a discontinuity after the last
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vibrato frame, since vibratos are added to the baseline pitch, and the values
are not continuous in most cases. Therefore, we have enlarged vibrato rates
by computing the amount of frames that are needed to �nish a vibrato cycle
appropriately. The corresponding vibrato depth frame are extrapolated from
the predicted values.

Final expression contours

Similarly to the unit selection-based system, the �nal pitch contour is generated
by generating the vibrato contour from the depth and rate contours, and the
result is added to the synthesized pitch. The details have been explained in
section 4.4. Concerning dynamics, we can directly use the output values from
the system.

5.4 Transition and sustain HMM-based system

5.4.1 System description

In this section we describe a modi�cation of the Note HMM-based system.
In this case, the system is characterized by modeling sequences of transitions
and sustains instead of notes. Then, the �rst changes that we have had to
introduce are related to the yes/no questions to build the corresponding tree
and leaf nodes (section 5.4.3).

As described in Chapter 3, the expression databases labeling includes the
start and end time of transitions. However, if this information is not available
for the target score it has to be estimated for this system (section 5.4.4). We
have used the labeled expression databases to learn how transitions deviate
from note onsets and this model is applied to the target scores.

Concerning the input data, this system uses the absolute dynamics and the
di�erence between the pitch contour and the reference pitch contour estimated
from the nominal score (section 5.4.5). The generated data is of the same
type of data, absolute dynamics and pitch di�erence. Therefore, the �nal
pitch contour has to be reconstructed by estimating the baseline pitch from
the score and adding the �uctuation around it, that is to say, the synthesized
pitch di�erence contour.

The advantage of using the pitch di�erence instead of the absolute value,
is that what is being modeled is the �uctuation around the estimated pitch
reference from the nominal score. Thus, it is no longer necessary to pitch
shift the input data in order to cover a wide tessitura. As a consequence, the
training database has a smaller footprint compared to the database used in
the Note HMM-based system.

The systems' characteristics are compared in Table 5.1. In this table we
summarize the main features: what is being modeled (note vs. sustain and
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1 s1 e1 xx^ s i l −attack+sus=tranm/D2:xx/D:9/E:17~xx+xx ; p0 !m2/F:17/F2:3/ J :62
2 s2 e2 s i l ^attack−sus+tranm=sus /D2:9/D:17/E:17~xx+xx ; p3 !m2/F:3/F2:3 / J :62
3 s3 e3 attack^sus−tranm+sus=tranp/D2:17/D:17/E:3~xx+m3; p0 ! p0/F:3/F2:17/ J :62
4 s4 e4 sus^tranm−sus+tranp=sus /D2:17/D:3/E:3~xx+m3;m2! p0/F:17/F2:17/ J :62
5 s5 e5 tranm^sus−tranp+sus=r e l e a s e /D2:3/D:3/E:17~m3+p2 ; p0 ! xx/F:17/F2:4 / J :62
6 s6 e6 sus^tranp−sus+r e l e a s e=s i l /D2:3/D:17/E:17~m3+p2 ; xx ! xx/F:4/F2:4 / J :62
7 s7 e7 tranp^sus−r e l e a s e+s i l=attack /D2:17/D:17/E:4~p2+xx ; xx !m2/F:4/F2:7 / J :62

Listing 5.3: Transition and sustain HMM-based system: Contextual labels example

transition sequence), the amount of states per model (5 in both cases), and
how the expression contours are speci�ed (absolute vs. di�erence value).

5.4.2 Transition and sustain sequence modeling

The transition and sustain HMM-based system models sequences of sustains
and transitions instead of note sequences. In this case, instead of having only
these 2 possible models, we have distinguished among di�erent types of tran-
sitions. Thus, we have grouped intervals equal or lower than ±1 semitones in
the same cluster (which we call tran0 ), and on the other side ascending inter-
vals of more than 1 semitone (tranp), and descending intervals of less than -1
semitone (tranm). Besides, we have also distinguished the transitions to the
�rst note, and from the last note, or attack and release, respectively.

According to these categories, we have 1 model for sustains and 5 models for
transitions (attack, release, and 3 more models according to the pitch intervals).

5.4.3 Contextual labels for clustering

In this section we describe the changes to the questions.hed �le which speci�es
the set of questions used to cluster the data from the yes/no questions. In
Listing 5.3 we show an transition-sustain sequence for the same phrase as in
Listing 5.1. In this case we are not showing the start and end times of each
line due to space constraints. The �rst label �elds contain the central sustain
(sus) or transition (attack, release, tran0, tranm, or tranp) information with
the 2 previous and the 2 succeeding elements.

Next, we have the �elds which specify information on their duration and
pitch. These labels specify information on the 2 previous notes durations (D2
and D �elds), the central note identity, duration, the interval with the previous
note, and the interval with the next note (E), the 2 succeeding notes durations
(F and F2), and the number of notes in the song (J �eld).

The yes/no questions for clustering the contextual labels are speci�ed in
a new questions.hed �le. For instance, the set of questions that check if the
central element is one type or another of transition, a sustain, or a silence are
shown in Listing 5.4. Similarly, the questions of the Note HMM-based system
have been adapted with the new type of sequence that it is being modeled.
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1 QS "C−Note_tranp" {∗−tranp+∗}
2 QS "C−Note_tranm" {∗−tranm+∗}
3 QS "C−Note_tran0" {∗−tran0+∗}
4 QS "C−Note_sus" {∗−sus+∗}
5 QS "C−Note_attack" {∗−attack+∗}
6 QS "C−Note_release " {∗− r e l e a s e+∗}
7 QS "C−Note_si l " {∗− s i l +∗}

Listing 5.4: Transition and sustain HMM-based system: question �le example

5.4.4 Transition prediction

One important aspect in the Transition and Sustain system with respect to the
Note HMM-based system is that transitions and sustains are modeled instead
of notes. However, in a target score only note onsets and their durations are
available. Therefore, transitions and sustains should be predicted from the
input score in order to create a new score. This new score is a sequence of
transitions and sustains instead of a sequence of notes.

In order to be able to predict the start and end times of transitions from
the input score, we have used the Systematic expression database to train and
test several algorithms. The Systematic database has been split into the 70%
and the 30%to generate the train and test datasets, respectively, and we use
one song from the Song expression database as the validation dataset.

We have trained several possible estimators like regression trees, regres-
sion with K-Neighbors, and random forests with the Scikit-learn python mod-
ule2. For each one, several con�gurations have been tested (with 10-fold cross-
validation) in order to see which one provides the least mean square error. For
instance, several regression trees have been trained by varying the minimum
number of examples per leaf in the tree from 1 to 100. Several K-nearest neigh-
bour regressors has been trained by varying the number of neighbors from 2
to 80. Finally, several con�gurations for the random forests have been trained
similarly to the regression trees.

For all the tested algorithms we have used the same contextual information
as input in order to predict the start and end transition times. This contextual
information refers to the central note duration and the pitch interval with the
next note, and the same information for the 2 previous and 2 succeeding notes.
Besides, the number of notes in the song is also used. From this contextual
information, the 2 transition times are trained. These time instants are trained
and predicted in their relative value. Concerning the start transition time, the
relative value is computed with respect to the duration of the �rst note of the
corresponding interval. The relative end transition time, is computed with
respect to the duration of the second note of the corresponding interval.

In order to choose one algorithm for transition times prediction, we have
computed several parameters from the predicted time values. The mean square
error has been computed for the best algorithm con�guration in absolute and

2http://scikit-learn.org/

http://scikit-learn.org/
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Dataset
Relative or
absolute value

MSE value
Kneighbours
Regressor

Regression
Tree

Random
Forest

Test
perc

start time 0.0078 0.0048 0.0042
end time 0.0113 0.0076 0.0073

abs
start time 0.0083 0.0051 0.0044
end time 0.0137 0.0093 0.0089

Validation
perc

start time 0.1101 0.1153 0.1050
end time 0.1682 0.1642 0.1640

abs
start time 0.0943 0.0862 0.0721
end time 0.0948 0.0772 0.0738

Table 5.2: Mean square error for the transition start and end times (in seconds).

relative values for the start and end times prediction of the test and validation
datasets. These values are summarized in Table 5.2. From these �gures, we
have selected random forests as the algorithm to predict the start and end
transition times.

Next, we present several results focusing on the random forests predictions.
The con�guration with the least mean square error (MSE) with the training
data uses at least 2 samples per leaf in the prediction of the start transition
time, and at least 1 samples per leaf in the prediction of the end transition
time. The evolution of the MSE according to the minimum number of samples
per leaf is shown in Fig. 5.2. Besides, a set of histograms on the predicted
transition times are presented in Fig. 5.3. First, we show the distribution of
the ratio between the predicted and the real transition durations (it should be
as close to 1 as possible, the peak is around 1.25), as well as the distribution of
the ratio between the duration of the overlaping region and the real transition
duration (It should be around 1, where the peak is placed). Next, we show the
distribution of the error in the prediction of the start time, which is presented
as the ratio with respect to the �rst interval note duration (it should be placed
around 0.0 and the mean is around 0.2). Similarly, we show the distribution
of the end transition time prediction error expressed also as a ratio with the
second interval note duration (in this case the mean is aournd -0.27, although
the peak is placed around 0).

We note that although this is the con�guration proposed by the python
module we have used to predict note transitions and sustains, there might be
over-�tting given both the MSE errors that we get and the low number of
samples used in the leaf nodes. This issue should be further studied in future
research works.

5.4.5 Pitch di�erence

As we have introduced, the Transition and Sustain HMM-based system models
the �uctuation of the pitch contour around the nominal pitch contour esti-
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Figure 5.2: Random Forests: MSE vs. minimum number of samples/leaf.
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Figure 5.4: Pitch di�erence computation.

mated from the score. The nominal pitch contour is estimated from the score
segmentation into sustains and transitions.

More concretely, the nominal pitch is the cubic interpolation of the tran-
sitions segmentation and the pitch values at these time instants according to
the score. Therefore, during sustains the interpolated pitch values at the HTS
frame rate (5ms) is a �at line. In transitions, the interpolation has a smooth
(cubic) shape from the start of a transition time and its note pitch to the
corresponding end time and note pitch.

These details can be observed in Fig. 5.4. Note that the contours are in
the log scale since this is the format we use for pitch with the HTS framework.
In the top �gure we show the pitch from the performance (blue), the labeled
notes (black) and transitions (green), and the estimated nominal pitch (red
dashed line). The cubic shape of the estimated nominal pitch can be observed
between the transitions segmentation marks. In the lower �gure, we show
the di�erence between the pitch contour and the estimated nominal pitch.
During sustains, the di�erence tends to be around the 0 threshold (black). In
transitions, depending on the which pitch contour is greater, the shape of the
di�erence is positive or negative. In the example, we show 4 transitions. While
the pitch di�erence in the �rst one is positive (the pitch is greater than the
nominal pitch), the di�erence in the second and fourth ones is negative. The
third transition is a special case in which the pitch contours cross each other
and therefore the di�erence is partly positive and partly negative.
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5.4.6 Training

The training of the Transition and Sustain HMM-based system is done in a
similar way as the Note HMM-based model. The most important di�erence is
that in this case there is no need to pitch shift the database to cover a wide
note range. Since we are modeling the di�erence between the pitch and the
nominal pitch contour, these di�erences can be applied to any note pitch. We
have trained our system with both the Systematic and the Song expression
database to synthesize a set of songs which are evaluated in the Chapter 7.

5.4.7 Synthesis

The synthesis step for this HMM-based system is very similar to the Note
HMM-based system. Thus, the vibrato features are also postprocessed before
generating the �nal pitch contour. The only di�erence is that the synthesized
pitch is the �uctuation around the nominal pitch. Hence, the �nal baseline
pitch is generated by computing the nominal pitch from the input score which
is then added to the synthesized pitch contour.

5.5 Results

In this section we visualize how the yes/no questions have clustered the training
data as well as the synthesized expression contours. We evaluate the synthe-
sized voices in Chapter 7 on the Evaluation.

Clustered data

The yes/no questions in the questions.hed �le cluster the contours according
to the answers to the speci�ed questions. Concerning the F0 feature tree clus-
tering, we show an example in Fig. 5.5, in this case with much less questions,
although other trees use more questions to reach the leaf nodes. This tree
corresponds to the transition between 2 notes with an interval of ±1 semitone
or less. The �rst question checks if the pitch interval between the 2 left notes
is lower than -2 semitones. The second level question check if the central note
(C) length is shorter than 11 × 0.1 seconds. The last questions check if the
pitch interval between the 2 left notes is lower than -3 semitones, and if the
right most note (C) length is shorter than 2× 0.1 seconds.

On the other hand, for the dynamics feature in Fig. 5.6 we show how
the contexts have been grouped for one of states of the transition model of ±1
semitones or less. Trees from other models contain more questions to reach the
leaf nodes, we have chosen these one since it is small enough to be shown. The
lines that join the node questions have di�erent colors depending on the answer.
The yes is marked in blue, while the no is marked in red. The �rst question
refers to note interval between the 2 left most notes of the contextual data, and
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Figure 5.5: Transition and Sustain HMM-based system: Clustered F0 data.

checks if it is lower than 2 semitones. The second level has 2 questions. The
�rst one refers to whether the central note (C) length is shorter than 8 × 0.1
seconds. The second question checks whether the duration of the right most
note (RR) is shorter than 7× 0.1 seconds. Other levels have questions related
to the other context notes durations, pitch intervals, etc.

We can visualize the expression contours in the di�erent leaf nodes to check
if the contours have a similar shape. For instance, in Figs. 5.7, 5.8, 5.9 we
show the similar contour shapes within the clustered leaf nodes for the sustain
contours, an ascending interval transition, and an attack, respectively.

Synthesized expression contours

In order to visualize the synthesized pitch and dynamics we have synthesized
a set subset of songs from the Song database. In Figs. 5.10 and 5.11 we show
the di�erent expression contours for the Note and the Transition and Sustain
systems, respectively. Both �gures have 4 subplots. The �rst one shows the
target score (black horizontal lines) and the synthesized pitches (baseline pitch,
pitch with vibrato, and pitch with extrapolated vibrato features). The second
subplot shows the predicted vibrato depth, the selected segments (longer than
0.1 seconds) and the extrapolated frames (although the di�erences may be
appreciated). Similarly, the vibrato rate is shown in the third subplot. Finally,
the last subplot shows the predicted dynamics.

5.6 Conclusion

In this chapter we have described the Note HMM-based system for expression
control as well as the modi�cations we introduced. The �rst system models
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sequences of notes using absolute pitch and dynamics frame values as training
data. The context-dependent data has been related to the unit in the previous
chapter, and the di�erent �elds that we use have been described (note onsets,
note durations, note pitch values, pitch intervals, and number of notes).

The Transition and Sustain HMM-based system models sequences of sus-
tains and transitions and uses absolute dynamics frame values and pitch dif-
ference frame values (�uctuation of the pitch around the nominal pitch). Sim-
ilarly, the context-dependent labels have also been described, as well as the
methodology to compute the transition start and end times from the input
score.

In the following chapter we combine the ability of modeling time series
with comprehensive context-dependent labels from the statistical systems with
the synthesis of contours that contain the recordings' �ne details from the
unit selection-based systems. The combination of these approaches is done by
estimating the baseline pitch with the statistical methods and then using this
contour as a reference pitch which is considered by extending the unit selection
cost functions.
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Figure 5.7: Transition and Sustain HMM-based system: sustain clustered contours.
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Figure 5.8: Transition and Sustain HMM-based system: ascending transition clus-
tered contours.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−350

−300

−250

−200

−150

−100

−50

0

50

100

time (relative to duration)

ce
nt

s

Model: lf0−s2−attack−, Leaf Node: 10[N] [16 examples]

Figure 5.9: Transition and Sustain HMM-based system: attack clustered contours.
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Figure 5.10: Note HMM-based system: synthesized contours.
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Figure 5.11: Transition and Sustain HMM-based system: synthesized contours.



CHAPTER 6

A hybrid-based system for

expression control

The current chapter is devoted to explain how the two previous chapters can
be combined in order to have a hybrid system for expression control. The
basic idea is that the cost functions of the unit selection-based system can
be enriched by adding an initial baseline pitch contour which is obtain by
the Hidden Markov Model-based system. First, we start by explaining the
new �rst building block of the hybrid system, which is the generation of the
baseline pitch by Hidden Markov Models. Next, we explain how this contour
can be used to extend the unit selection cost functions by means of Dynamic
Time Warping (DTW) as a distance measure among units.

Although this chapter is shorter than the previous systems' descriptions,
we have considered appropriate to describe the hybrid system after the unit
selection-based system and the statistical-based system have been presented.
Since the hybrid system is based on these other 2 systems, only the system's
building block and the DTW cost function are detailed. As we have also
done in the previous chapters, we provide a set of �gures to complement the
description.

6.1 Introduction

In this chapter proposing a third new system for expression control of pitch
and dynamics we wanted to explore whether the best characteristics of the
unit selection system (chapter 4) and the statistical system (section 5.4) could
be combined. The resulting hybrid system would bene�t from two aspects in
which each system is best at. For instance, the unit selection-based system
has the advantage of capturing the �ne details of the transformed units, while
the generated expression contours with statistical systems are smooth. On the
other hand, the statistical systems use more complete contextual information
than the unit selection-based system.

111
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Considering these advantages and disadvantages of each method we have
combined both systems in the following manner (section 6.2). First, given a
target score the statistical system can be used to generate the dynamics and
baseline pitch expression contours (vibrato features are not considered at this
stage). Then, these generated contours are used as a reference in the unit
selection-based system by including a new subcost function which measures
the distance between them and the candidate source unit expression contours.
In short, the �rst step takes into account the richer contextual information
of the statistical systems (indirectly through the generated contours), and the
second steps tackles the generation of expression contours with �ner details
and without the oversmoothing problems.

The distance measure between the target unit and the candidate source
unit is done by computing the Dynamic Time Warping (DTW) of both the
baseline pitch and dynamics expression contours (section 6.3). The lower the
DTW values are, the more similar the compared contours are. Again, the
advantage of preferring the unit contours over the statistical contours is that
the latter ones are smoother than the former.

6.2 Building blocks

In order to visualize how the unit selection-based system and the statistical
system are combined, in this section we show a clearer �gure than the one
introduced in section 1.4. In Fig. 6.1 we can see the order in which the
steps of both systems are organized. First, as in the statistical-based system,
contextual data is prepared, the sustain and transition models are trained, and
the contours are synthesized. We are only using the baseline pitch without
rendering vibratos, and the sound synthesis step is done at the end of the unit
selection-based system.

In the hybrid system, the unit selection step in section 4.2 is extended by
including a distance measure between expression contours based on DTW. As
we have already introduced, this distance is computed to �nd source units that
have a similar baseline expression contours to the contours generated by the
statistical-based system.

After the source units have been selected with this new subcost measure
based on DTW (and also the other subcost functions), the next steps are
the unit transformation and concatenation, contour generation, and the sound
synthesis as explained in chapter 4 for the unit selection-based system.

6.3 Hybrid unit selection

The unit selection step in the hybrid system adds one more subcost function
to the set of cost functions in the unit selection in chapter 4. Therefore, the
complete list of subcost functions is shown in Table 6.1 where the last row is the
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Figure 6.1: Block diagram of the hybrid system.



114
CHAPTER 6. A HYBRID-BASED SYSTEM FOR EXPRESSION

CONTROL

Cost Description Computation

Time-scaling
Compare source and
target unit durations

Octave ratio
(source/target unit notes)

Pitch shift
Compare source and
target unit intervals

Octave ratio
(source/target unit intervals)

Note strength
Compare source and
target unit note strength

Octave ratio
(source/target note strength)

Concatenation Favor compatible units
from the DB

Zero if consecutive units, or
depends on transition times

Phrasing Favor selection of groups
of consecutive units

Penalize selection of
nonconsecutive units

Similarity Favor selection of pitch
contours close to reference

Dynamic Time Warping cost

Table 6.1: Hybrid system: subcost functions.

new subcost that we add. This similarity cost measures the distance between
the pitch contour (in cents) between two units: the transformed candidate
source unit and the pitch contour of the target unit which has been obtained
with the HMM-based system.

In 6.2 and 6.3 we show an example of the computation of the DTW cost
from 2 pitch contours. The former �gure shows the 2 pitch contours from
which the distance measure is computed. The latter shows the accumulated
distance matrix and optimal path to align the two signals.

In eq. 6.1 we show the computation of the DTW as the normalized dis-
tance between the two unit pitch contours (ti and ui), so that we divide the
unnormalized cost (DTW (ti, ui)) by the length of the optimal path (DTWlen).
Thus, the DTW cost is independent of the signals length. Finally, since the
normalized cost tends to have to higher values compared to the other sub-
cost functions, we compute its log2 value to obtain the �nal CtDTW (ti, ui) cost,
which again introduces the idea of octave-based costs explained in section 4.2.2.

CtDTW (ti, ui) = log2

(
DTW (ti, ui)

DTWlen

)
(6.1)

Hence, the CtDTW (ti, ui) cost is added to the transformation cost in eq. 6.2
and is now computed as:

Ct(ti, ui) =
1

3

(
Ctts(ti, ui) + Ctns(ti, ui) + Ctps(ti, ui)

)
+ CtDTW (ti, ui) (6.2)
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Figure 6.4: Cumulated Viterbi cost.

6.4 Results

Similarly to Chapter 4, we present some �gures on the described costs for the
hybrid system. First, we present the time evolution of the overall Viterbi cost
(the cumulated cost in each node of the Trellis). We have again computed it
for the 5 songs that we have evaluated in Chapter 7. More details on these
songs can be found in this chapter. We also present the distribution of costs
for this system, the length of the selected sequences of consecutive units in
the expression database, the time-scaling and pitch interval factors, and a
comparison of the reference and generated pitch contours.

Cumulated Viterbi cost

In Fig. 6.4 we present the time evolution of the cumulated Viterbi cost for
the 5 songs. The same methodology as in the unit selection system has been
followed, we have normalized the cost by the total amount of units in each song
in order to be able to compare them. The time axis is referred to the relative
position of the units, so that all of them are placed between 0 and 1. On the
bottom �gure we show the cost increment among consecutive nodes, which we
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Unit selection Hybrid

Cost mean std mean std

Time-scaling 0.89 3.06 0.88 3.03

Pitch shift 0.58 0.86 0.61 1.10

Note strength 0.44 0.62 0.46 0.75

Concatenation 0.20 0.28 0.21 0.28

Phrasing 0.45 0.84 0.58 0.91

Similarity - - 3.87 0.85

Table 6.2: Mean and standard deviation of the subcost functions.

can see that have a wider range than in the unit selection system (below 5 in
general) since the DTW cost has been included (below 10 in general).

As a di�erence with respect to Chapter 4, in this �gure the normalized
Viterbi cost seems to have a more similar evolution in time between songs
than in the unit selection system. This may be because the Similarity cost has
a greater range of values than the rest of subcost functions in eq. 6.2 as we
will see in the next section.

Distribution of the subcost functions

In Figs. 6.5, 6.6, we have plotted the duration and note strength costs to
see if the introduction of the DTW cost had some side e�ect on these other
costs. Since the corresponding cost functions have not changed we can see
that the distributions of values are very similar to the distributions in the unit
selection system. Similary, in Figs. 6.7, 6.8, and 6.9 we show the pitch interval,
concatenation, and phrasing costs distributions which behave similarly to the
unit selection system.

Besides visual inspection of the distributions in these �gures, in Table 6.2
we con�rm the low variability in the mean and standard deviation of each of
these subcosts when have been applied to the same 5 songs with the Song
expression database. Regarding the DTW cost (Similarity), its distribution
is shown in Fig. 6.10, with most values within 2 and 6, a mean of 3.87, and
a standard deviation of 0.85, therefore having much more relevance than the
other cost functions.

Consecutive source units sequence length

In Figs. 6.11 and 6.12 we show the histograms concerning the length of the
selected sequences of consecutive units in the expression database. Although
there are some variations, the percentages shown in these distributions are very
similar to the ones in section 4.2.2 for the unit selection system.
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Figure 6.5: Duration cost.
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Figure 6.6: Note strength cost.
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Figure 6.7: Pitch interval cost.
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Figure 6.8: Concatenation cost.
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Figure 6.9: Phrasing cost.
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Figure 6.10: DTW pitch cost.
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Figure 6.11: Unit sequences (Song DB).

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40
Consecutive source units [Hybrid − Systematic DB]

Sequence length

P
er

ce
nt

ag
e

Figure 6.12: Unit sequences (Syst. DB).
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Time-scaling and pitch interval factors

Concerning the degree of transformations actually applied to the selected units
we have computed the time-scaling (ratio of note duration between the cen-
tral note of the source and target units) and pitch interval factors (semitone
di�erence between the selected units and the target units in the central note
attack interval). The time-scaling factor is represented in Figs. 6.13 and 6.14
for the Song database and to the Systematic database, respectively. Simlarly,
the pitch interval factor is shown in Figs. 6.15 and 6.16 for both databases as
well.

The experiment has been done for the same 5 target songs. Similarly to
the unit selection system, in both databases source units have been time-scaled
with a factor between 0 and 2. The average time-scaling factor are 1.16 and
1.16, and the histogram peaks are placed at 0.87 and 1.05 (almost no change
in note duration) for the Song and Systematic databases, respectively.

Concerning the pitch interval, the average factors are -0.01 (nearly no dif-
ference in the pitch intervals) and -0.12, and the histogram peaks are placed at
1.02 and -1.11 for the Song and Systematic databases, respectively. As in the
unit selection system, in both cases, most of the semitones di�erence between
source and target units is less than 2.5 semitones.

Baseline pitch comparison

Finally, given that the Similarity cost (based on DTW) measures the distance
between the candidate source units pitch contour and a reference pitch con-
tour (generated by the HMM-based system in 5.4) we have considered worth
visualizing the two pitch contours .

In Fig. 6.17 we show the expression pitch contours generated by the hybrid
system and the HMM-based system (in this case both include vibratos as
well). The red line (hybrid system) follows the blue dashed line (reference),
although there might be some di�erences like the second note attack, which in
the reference pitch it is �atter than in the generated pitch.

6.5 Conclusion

In this chapter we have explained the hybrid system for the generation of pitch
and dynamics expression contours. The hybrid systems aims at combining the
baseline pitch generated by rich contextual data (used in the modi�ed HMM-
based system( with the ability to capture the �ne details (used in the unit
selection system).

We have described that the unit selection step includes one more subcost
function based on Dynamic Time Warping which measures the distance be-
tween the reference unit baseline pitch and the candidate source units. The
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Figure 6.13: Time-scaling (Song DB).
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Figure 6.14: Time-scaling (Syst. DB).
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Figure 6.15: Pitch interval (Song DB).
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Figure 6.17: Hybrid system: Comparison example of pitch contours

DTW cost is normalized and its log2 is computed in order to have a kind of
octave-based cost value.

In the results section we have visualized the time evolution of the overall
Viterbi cost, the distribution of costs for this system, the length of the selected
sequences of consecutive units in the expression database, the time-scaling and
pitch interval factors, and a comparison of the reference and generated pitch
contours.

This chapter concludes the presentation of the 3 systems in which we have
worked in this thesis. The next chapter is devoted evaluate with a percep-
tual evaluation how the naturalness of the expression is perceived by a set of
subjects. Also, we evaluate the computational e�ciency of the systems.



CHAPTER 7

Evaluation

In the previous chapters we have described a set of systems that generate ex-
pression contours for pitch and dynamics. In this chapter we evaluate them
both subjectively and an objectively. First, with the perceptual evaluation we
want to know whether the performance of the described systems is perceived
natural and at the same time we compare them to other existing systems.
Regarding the objective evaluation, we focus on the algorithms e�ciency. Be-
sides, we also present a di�erent use case in which the expression contours
could be applied, which is to transform a real singing voice recording in order
to improve the naturalness of expression. Finally, we discuss on a couple of
topics related to the evaluation of the singing voice synthesis systems.

7.1 Introduction

As we have de�ned in section 1.2.1, although expression is an intuitive aspect of
music, it is actually a di�cult term to de�ne. Thus, its evaluation is neither an
easy task. Nevertheless, either an objective or subjective evaluation of singing
voice synthesis systems is necessary in order to gather some knowledge on the
task these are asked to perform. As we have presented in in table 2.10, previous
works choose one of these two strategies for the evaluation. The evaluation is
also adapted to the task being evaluated. For instance, in subjective tests, the
group of participants (ranging from 14 to 50 subjects) is asked to rate some
aspects of the synthesized voices like voice quality, naturalness, or singing style.
In objective tests, an error is computed by comparing the synthesized features
with a reference one (F0, intensity, or timbre representation).

In our case, we have envisaged both a subjective and an objective evalua-
tion. Many aspects could probably be evaluated from both perspectives. From
the subjective point of view, in section 7.2 we describe the online test. We
wanted to know how well di�erent methods perform and whether there is an
in�uence from the training database.

123
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Although the original website of the online test is no longer active, we have
collected the same information in the PhD Evaluation tab in the thesis site1.

Next, in section 7.3 we compare the e�ciency of each proposed system.
Although we cannot compare unit selection methods vs. HMM-based methods
due to implementation details, we compare di�erent con�gurations within each
type of method. Then, in section 7.4 we present another use case in which ex-
pression control is applied to improving expression in singing voice recordings.
This example has been developed at the very end of this thesis and it has not
been properly evaluated. Nevertheless, we consider it is worth mentioning it.

Finally, in section 7.5 we discuss on a couple of topics related to the evalua-
tion of the singing voice synthesis systems. On the one hand, we consider that
the �eld would bene�t from going towards a common evaluation framework to
easily evaluate and compare di�erent singing synthesis systems. On the other
hand, adopting perceptually-motivated objective measures would contribute
to do comprehensive objective evaluations correlated to subjective measures.

7.2 Perceptual evaluation

The aim of the subjective evaluation is to test up to what point the systems de-
scribed in this thesis provide naturalness to the expression control of a singing
voice synthesizer concerning pitch and dynamics. More details on the aim of
the evaluation are detailed in section 7.2.1. In section 7.2.2 we explain the
criteria behind the selection of methods, databases, songs, and participants.
Next, the conditions that constraint the design of the perceptual evaluation
are explained in section 7.2.3. Then, in section 7.2.4 we explain the details
of the experiment that we have �nally carried out. Finally, the participants
demographics is summarized in section 7.2.5, and in section 7.2.7 we provide
the analysis based on the provided ratings.

7.2.1 Aim of the evaluation

The aim of the perceptual evaluation is to compare how the naturalness of
expression is perceived by a group of participants given a set of systems which
use several expression databases. The participants are presented with a set of
song excerpts which have been generated by the combination of one method
and one expression database.

The questions we want to answer with the evaluation are the following:

1. Are there perceptual di�erences due to the methods?

2. Are there di�erences due to the databases? And among songs?

3. Do subjects show di�erences in the perceived naturalness of expression?

1http://www.mtg.upf.edu/publications/ExpressionControlinSingingVoiceSynthesis

http://www.mtg.upf.edu/publications/ExpressionControlinSingingVoiceSynthesis
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Type Method Description

Baseline
Performance driven Expression from real singing voice
Vocaloid baseline Default Vocaloid expression control
HMM-based (1) Note models, absolute pitch

Contributions
Unit selection Unit selection based system
HMM-based (2) Sustain/transition models, relative pitch
Hybrid Unit selection and HMM-based (2)

Table 7.1: Baseline and new methods tested in the evaluation.

In the next section we describe the criteria by which we have selected
the di�erent factors that may have an e�ect on the perceived naturalness of
expression.

7.2.2 Selection of methods, databases, songs, and participants

Methods

The methods that we want to evaluate are presented in Table 7.1, which are
divided between methods that we use a baseline, and the methods that are
a contribution of this thesis. The baseline methods are performance driven
(section 2.4.3), the built-in expression in the Vocaloid synthesizer (heuristic
rules in section 2.4.4), and the baseline HMM-based method (section 5.3) which
models notes in absolute pitch values (HTSnote). We expect the performance
driven and the Vocaloid baseline methods to be rated as the most and less
naturally expressive, respectively.

The other evaluated methods are contributions of this thesis. We have the
unit selection-based method described in Chapter 4. Then, there is the modi-
�ed HMM-based system (section 5.4) which models sustains and transitions in
relative values (HTSsustran). Finally, there is the hybrid system (Chapter 6).

Databases

The two databases that the methods use in the perceptual evaluation are the
Systematic and the Song expression databases (Chapter 3). While the unit
selection methods use these database to select, transform, and concatenate
units, the statistical methods train models based on sequences of notes or
sustains and transitions.

The performance driven and the Vocaloid baseline methods do not use
them. The performance driven takes the expression controls directly from
the original recording, and the Vocaloid baseline is already built-in in the
synthesizer.
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Song name Excerpt duration
But not for me 11.0
Body and soul 14.8
My funny valentine 13.2
My funny valentine 6.9
Summertime 6.3

Table 7.2: Songs names and duration (in seconds) used for the evaluation (2 excerpts
where extracted from `My funny valentine').

Songs

We have selected 5 songs for which to generate the pitch and dynamics con-
tours. The songs in Table 7.2 are jazz standards, the same style in which the
expression databases songs and melodic exercises were recorded. Actually, the
5 songs are a subset of the Song expression database, so that the remaining
12 song were used to train our systems. The mean duration of the selected
excerpts is 10 seconds, which we consider a long enough musical context to be
rated.

The idea is to generate the expression contours for each song with the
combination of one method and one database, and then synthesize it.

Participants

Participants are one variable to take into account in the perceptual evaluation.
We encouraged people to participate in this perceptual evaluation through
several mailing lists from the Music Technology Group as well as external
mailing lists from the �eld (ISMIR, Music-dsp, SMC network, and Music-IR).
Two emails were sent to each mailing list as a reminder.

7.2.3 Evaluation constraints

The �rst constraint is related to the time limitations. We have considered that
the perceptual should take less than 30 minutes in order keep the participants
attention and avoid fatigue. The organization of the �les to compare has to
be taken into account as well. Given one con�guration, i.e. one song and one
database, we generate 6 di�erent excerpts (one per method). Depending on
the type of test, all 5 songs may be used for the evaluation or not.

Another constraint is that we want to measure the participants' consistency.
This can be done by repeating one con�guration, i.e. to repeat 6 �les, and
comparing the evaluation results. The repeated questions should take place
during the same 30 minutes time limit. Note that with up to 5 songs, 2
expression databases we have 10 possible con�gurations, and a total of 11
including the repeated con�guration for the consistency issues.
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Con�guration A/B testing Group testing
number of songs 1 2 3 4 5 1 2 3 4 5
n. of ratings 15 30 45 60 75 6 12 18 24 30
n. of �les/rating 2 2 2 2 2 1 1 1 1 1
n. of �les to rate 30 60 90 120 150 6 12 18 24 30
material (min.) 5 10 15 20 25 1 2 3 4 5
1 DB (min.) 12.5 25 37.5 50 62.5 2.5 5 7.5 10 12.5
2 DB (min.) 25 50 75 100 125 5 10 15 20 25
consistency (min.) 37.5 62.5 87.5 112.5 137.5 7.5 12.5 17.5 22.5 27.5

Table 7.3: Evaluation duration for A/B and group testings.

With these constraints, we have to decide which test may be the most
adequate. We have considered that there are 2 possible tests that might be
adequate for what we want to evaluate, A/B testing and a test asking to
compare and rate the 6 audio excerpts. From now on we name this second
type of testing as group testing as opposed to the pair-wise comparisons of
A/B testing. The main criteria to decide which one we should carry out is the
one that allows us to evaluate as much audio excerpts as possible.

In Table 7.3 we summarize this criteria for both tests. The �rst row rep-
resents the amount of songs that we may evaluate (from 1 to 5 songs in both
tests). Note that for each song to evaluate we want to compare the 6 methods
in Table 7.1. Therefore, in the case of the A/B testing we have 15 paire-wise
comparisons for 1 song (�rst column), 30 for 2 songs and so forth. Each com-
parison involves listening to 2 �les to provide a single rating. Thus, 30 �les need
to be listened to for these 15 ratings, which in average last 5 minutes (counting
10 seconds as the average excerpt duration). However, in a real situation each
�le may be listened two or three times. Therefore, taking 2.5 as the ratio a �le
is listened to, it would take 12.5 minutes to rate the 5 minutes audio material
of 1 songs pair-wise ratings. Since we want to compare the results for 2 expres-
sion database, the estimated perceptual evaluation duration would be around
25 minutes. Finally, adding the consistency question (1 song, 1 database, 12.5
minutes), the perceptual evaluation would last 37.5 minutes. The estimation
for the other amount of songs is similarly computed. The closest estimation
duration is 37.5, far beyond the 30 minutes limit. Besides, it would allow us
to extract conclusions from a single song, which is probably not enough.

Similarly, we can estimate the perceptual evaluation duration for the group
testing evaluation. The di�erence is that for a song, the 6 audio excerpts are
listened to one after the other (6 ratings for 1 song), and participants should
rate 6 audio �les per song. Therefore, there is less audio material to rate
for 1 song (1 minute), which becomes 2.5, 5, and 7.5 minutes to rate the
�les for 1 database, 2 database, and the same with the consistency question,
respectively. As we can see in the last column, even rating 5 songs, the 27.5
minutes (highlighted in bold font) estimated perceptual duration is acceptable.
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Figure 7.1: Screenshot of the perceptual evaluation website.

Thus, we have �nally carried out the group testing with 5 songs. In the next
section we explain how we have �nally designed the experiment and the online
website.

7.2.4 The experiment

Given the constraints explained in the previous section, we have decided not
to do pair-wise comparison but to compare all �les within one con�guration at
a time. Since the 6 con�guration excerpts corresponding to the same song are
evaluated together, from now on we will refer to it as a question. An example
of a question is shown in 7.1 as shown to the participants in the online website
that we prepared.

For each question, participants have been asked to �rst listen to all of the
6 sound �les and then to rate them from 1-5 according to the perceived nat-
uralness of singing expression (1 meaning unnatural expression, and 5 natural
expression). We have randomized the order in which questions are presented
in order to avoid any learning e�ect in the participants. Within each question,
the order in which the audio �les are presented is also randomized. Therefore,
there is a low probability that a pair of participants rates the audio �les in the
same order.

Given the number of songs (5) and databases (2), we have a total of 10
questions. We added one more question which was selected from the 10 pre-
vious questions. This repeated question as the consistency question as we
previously introduced. This question can be used it to check how consistent
participants are in the rating process doing the Spearman correlation between
the 2 sets of rated values. The lower the correlation value the less consistent
the participant is with the answers, and therefore his or her answers are less re-
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liable. The Spearman correlation is used because we have small samples (each
vector has 6 values, 1 per method) and the values are from the ordinal scale
(1-5). The consistency measure can then be used to see if there di�erences in
the results between 2 groups of participant: all participants vs. the consistent
ones.

The perceptual evaluation has provided four types of feedback. The main
ones are the actual rating values from which we can extract some statistics
and conclusions on the naturalness of expression. Before the questions, we
introduced the task to the participant and we asked some demographics (like
gender, age, and familiarity with the �eld). More details on the task intro-
duction and demographic questions are explained in Appendix B, like what
to focus on when listening, the ratings values and their meaninings, or the
experiment duration. Besides, the website automatically annotated the time
a participant spent to answer each question. This measure, together with
the consistency question provide an idea of the di�culty of the task. Finally,
we asked participants to voluntarily provide some comments on the task they
had been asked to rate. The participants' comments and our observations are
detailed on Appendix C.

7.2.5 Participants' demographics

In this section we brie�y summarize the results of the �rst part of the percep-
tual evaluation. The demographics of the average participant is a 25-34 male,
who listens to music every day but does not sing in a choir or band. He has
played an instrument for more than 8 years and he is familiarized either with
speech/singing voice synthesis or music technology. The fact that there is such
a clear participant pro�le means that in some aspects the histograms are not
balanced. However, we do not expect any bias coming from unbalanced gender
and age distribution, and in other cases it might be rather positive, like the
fact that many participants have played an instrument for several years and
that are familiar with the �eld.

We present the complete picture of the participants diversity in the follow-
ing �gures. In Fig. 7.2 we show the participants' distribution with respect
to their age (in 6 the groups described in the previous section) and gender.
In Fig. 7.3 we show the answers corresponding to the participants' listening
habits and whether they sing in a band or choir or not. Almost 80% of par-
ticipants listen to music at least �nearly every day� and around 40% of them
sing in a choir or band. In Fig. 7.4 we show the time participants have been
playing an instrument and the participants' relationship with the topic. More
than 45% of participants have played an instrument for at more than 8 years
and around 80% of them are familiar either to speech or singing voice synthesis
or to music technology in general.

Concerning the time devoted to do the task, in Fig. 7.5 we represent a
histogram of the durations of the perceptual evaluation sessions each partici-



130 CHAPTER 7. EVALUATION

Male Female
0

10

20

30

40

50

60

70

80

90

N
or

m
al

iz
ed

 C
ou

nt
 [%

]

Gender [032−users]

15−24 25−34 35−44 45−54 55−64 65+
0

10

20

30

40

50

60
Age [032−users]

N
or

m
al

iz
ed

 C
ou

nt
 [%

]

Figure 7.2: Age and gender of the participants.

Figure 7.3: Listening and singing characteristics of the participants.
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Figure 7.4: Time having played an instrument and familiarity with the topic.
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pant has devoted. The dashed line represents the 30 minutes we considered to
be the maximum time a participant would devote to do the perceptual eval-
uation. Some participants (3) have spent between 40 and 50 minutes, and 3
other participants have spent between 80 and 100 minutes. These might have
probably answered the test questions not in a row but with pauses in between.

7.2.6 Statistical analysis of all participants' ratings

The aim of the perceptual evaluation is to visualize the ratings' distribution
and analyze if any statistically signi�cant di�erence depends on the methods, or
any other �rst degree interaction due to the expression databases, the selected
songs, and participants. We also want to study second degree interactions like
database::song, song::method, or database::method. In this section we do this
analysis for all participants' ratings, and in the next one we will focus on the
consistent ones to check whether there is any di�erence or not. The R statistical
computing software2 is adequate for studying these kind of dependencies.

Descriptive statistics

In this section we graphically describe the ratings' distribution in the percep-
tual evaluation as the basis for the subsequent quantitative analysis of our
data. While boxplots are centered around the median, a red cross is be in-
cluded showing the mean to help see the tendency of the rating values across
methods. Boxplots are ordered from left to right by ascending mean value.

First, we compare the ratings' distribution for each database in Fig. 7.6.
The variances and median seem to be very similar, showing that there is not
a signi�cant di�erence based on the expression database. Next, in Fig. 7.7
we compare the ratings' distribution for each song (the databases are mixed).
We observe similar variances and median, with slightly di�erent means, which
are analyzed in the next section. The last two songs (Body and Soul and
Summertime) seem to present a slightly higher mean value than the rest. In
addition, the last one has a di�erent variance range. In this case, we are
not showing the separate boxplots for the Song and the Systematic databases
because we didn't observe di�erences from the previous one.

In Figs. 7.8, 7.9, and 7.10 we compare the ratings's distribution for each
method, �rst without distinguishing the databases, next for the Song database,
and then for the Systematic database, respectively. In this case we observe
some di�erences with respect to the median and mean values. Concerning
the Song DB, we may observe that the default and the performance driven
systems appear di�erentiated from the other 4 in the middle. Regarding the
Systematic DB, there seem to be 2 groups, the lower three (default and HMM-
based systems), and the upper three systems (performance driven and unit
selection-based systems).

2http://R-project.org/

http://R-project.org/
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Figure 7.10: Ratings' distribution per method (Systematic DB).
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Df Sum Sq Mean Sq F value p value

participant 31 510.05 16.45 15.86 <0.001

database 1 0.01 0.01 0.01 0.91
song 4 67.65 16.91 16.30 <0.001

method 5 116.58 23.31 22.47 <0.001

database::song 4 4.08 1.01 0.98 0.41
song::method 20 148.78 7.43 7.17 <0.001

database::method 5 21.88 4.37 4.21 <0.001

Residuals 1849 1917.89 1.03

Table 7.4: ANOVA test with all participants.

Inferential statistics

In this section we try to reach some general conclusions on the perceptual
evaluation ratings. Basically, we want to check if the di�erences that we observe
in the previous section are statistically signi�cant. In the following tables, we
highlight in bold font the p-values which are lower than α = 0.05, which is a
typical signi�cance level used to reject the null hypothesis.

As we have previously introduced, we want to study the factors that have a
signi�cant e�ect on the ratings. To this purpose, in Table 7.4 we show the re-
sults of an ANOVA test. The factors that have a signi�cant e�ect on the rating
(p<α) are participants, songs, and methods. The interactions song::method
and database::method are also signi�cant. Other factors do not have statis-
tically signi�cant e�ect on the ratings, like the database and the interactions
database::song. Note that we are not including more interactions of level 2
and 3 because we do not expect these to have any e�ect. Actually, the current
analysis is probably enough since we have low residual values in the Mean Sq
column (1.0373).

The �rst row of results corresponds to the participants. Given that there
too many participants to present the data clearly in a plot, we point out that
there are di�erences among participants. Ideally, the di�erences should be only
due to the expression control methods. This may be an indirect measure of
the di�culty of the task we have been asking for in the perceptual evaluation,
together with the low number of highly correlated participants, as we will see
in the next section.

In the previous section, we have seen there are some di�erences in the mean
and variance of the last 2 songs in Fig. 7.7. The p-value con�rms that these
di�erences are statistically signi�cant, and it seems to be due to the ratings of
hte Summertime song.

Next, we want to know if the di�erences that we have observed concerning
the methods perception are statistically signi�cant and how this relates to the
database::method interaction. To this purpose, the Tukey analysis is shown
in Table 7.5. We can conclude that the methods are clustered into several
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Default HTSnote HTSsustrans Hybrid PerformanceDriven

HTSnote 0.0031 - - - -
HTSsustrans 0.0267 0.9895 - - -
Hybrid p<0.001 0.0097 p<0.001 - -
PerformanceDriven p<0.001 p<0.001 p<0.001 0.1682 -
UnitSelection p<0.001 0.0801 0.0126 0.9821 0.0267

Table 7.5: Tukey pair wise comparison of methods (p-value for all participants).

groups. First, the Default system is clustered alone since we see that there are
di�erences with all methods. Next, the HTSnote system is clustered together
with the HTSsustrans and Unit selection systems. However, the p-value with
respect to the second one shows that they might be di�erent since the value
is close to α. A third group might be Hybrid system with the Performance
driven and the Unit selection systems. However, the Performance driven ap-
proach might also clustered alone since the di�erences with Unit selection are
signi�cant. As we can see, these clusters are not homogeneous, but in gen-
eral the HMM-based systems tend to be in di�erent clusters than the unit
selection-based ones.

These results support the fact that the naturalness of the expression syn-
thesized by the unit selection-based methods is closer to a real singer than our
HMM-based approaches. However, this has to be limited to our implementa-
tion of the HMM-based approaches, since these could probably be improved.

7.2.7 Statistical analysis of consistent participants' ratings

In this section focus on the consistent subset of participants and we reproduce
the same steps as in the previous section. First, we identify and �lter the
subset of consistent participants. Then, we do a descriptive analysis of the
ratings. Finally, we extract some conclusions from the inferential analysis.

Consistent participants

As we have previously introduced, the Spearman correlation can be used to
�lter the most reliable participants and take some conclusions based only on
this subset. To visualize this information, we can order all participants by
their correlation value. Typically, the empirical distribution function (ecdf)
is shown as a function of the correlation values, as presented in Fig. 7.11.
For a speci�c correlation value, it indicates the probability of �nding lower
correlation values.

If we set 0.2 as a minimum required correlation value (vertical line), it turns
out that 17 out of 32 subjects should be considered as the most consistent ones,
and therefore more reliable (which corresponds to nearly the 50% ecdf value).
The discarded participants are the contractory (negative correlation) and the
random (correlation around 0) ones.
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Figure 7.11: Participants' consistency distribution.

Descriptive statistics

Similarly to what we have done with all participants, we show the rating's
distribution for per song in Fig. 7.12. Again, there are no di�erences looking
at the 2 boxplots. The rating's distribution per song is shown in Fig. 7.13,
and we can see a similar pattern to the previous section, with a higher mean
for the Summertime song.

Next, in Figs. 7.14, 7.15, and 7.16 we compare the ratings' distribution
for each method with all ratings, the ones from the Song DB database, and
the Systematic database, respectively. In this case we observe more di�erences
among methods than with the whole participants set of values with respect
to the median, variances, and mean values. Looking at these last two �gures,
methods can be similarly clustered as in the previous section.

Inferential statistics

The corresponding ANOVA test with the consistent participants' ratings is
presented in Table 7.6. Similarly to the ANOVA test of the whole set of
participants, the same factors have an e�ect on the ratings. That is to say,
the factors that have a signi�cant e�ect are participants, songs, and methods,
and the interactions song::method and database::method are also signi�cant.
The database and the interactions database::song do not have statistically
signi�cant e�ect on the ratings



138 CHAPTER 7. EVALUATION

SongDB SystDB

1
2

3
4

5

Figure 7.12: Consistent ratings' distribution per database.
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Figure 7.13: Consistent ratings' distribution per song.
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Figure 7.14: Consistent ratings' distribution per method (All DBs).
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Figure 7.15: Consistent ratings' distribution per method (Song DB).
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Figure 7.16: Consistent ratings' distribution per method (Systematic DB).
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Df Sum Sq Mean Sq F value p value

participant 16 153.01 9.56 8.44 p<0.001

database 1 0.10 0.09 0.08 0.76
song 4 16.30 4.07 3.59 0.006
method 5 94.57 18.91 16.70 p<0.001

database::song 4 3.12 0.77 0.68 0.60
song::method 20 103.70 5.18 4.57 p<0.001

database::method 5 21.40 4.27 3.77 0.002
Residuals 964 1091.62 1.13

Table 7.6: ANOVA test with consistent participants.

The Tukey analysis in Fig. 7.7, shows in which pair-wise comparisons
there are statistically signi�cant di�erences on how the methods are perceived.
From these p-values we can extract nearly the same conclusions as for all
participants. With the consistent participants the HTSnote and the Hybrid
systems would be clustered together. However, the p-value is close to α. On
the other hand, the unit selection and the performance driven systems are now
clustered together.

7.3 E�ciency evaluation

In the previous section we have explained the perceptual test that evaluates the
methods for expression control of pitch and dynamics. As described in Table
2.10, the subjective perspective is the most common type of evaluation in the
analyzed works. Nevertheless, we have considered interesting to compare the
e�ciency of the described methods. Thus, in this section we provide some
insights on the computational cost of the di�erent methods.

7.3.1 Constraints and methodology

Ideally, we would like to compare the time it takes the di�erent systems to
generate the expression contours. However, there are 2 expression databases
with di�erent sizes and, more importantly, the systems' di�er on the imple-
mentation. Unit selection-based systems are implemented in MATLAB, while
the HMM-based systems are implemented in C. The machine used for this
computation has a Windows 7 Professional (32 bits) operating system with 2
Intel Core CPUs at 2.4 GHz.

The implementation constraints makes it di�cult to compare unit selection-
based systems versus HMM-based systems. Therefore, we only compare the
di�erent con�gurations for the same type of system. Besides, we are not provid-
ing data for the Vocaloid baseline or the performance-driven systems because
these are straightforward. In the �rst one the Vocaloid synthesizer is in charge
of generating the expression contours according to its internal implementation.
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Default HTSnote HTSsustrans Hybrid PerformanceDriven

HTSnote 0.0042 - - - -
HTSsustrans 0.0502 0.9733 - - -
Hybrid p<0.001 0.0663 0.0060 - -
PerformanceDriven p<0.001 p<0.001 p<0.001 0.6785 -
UnitSelection p<0.001 0.0759 0.0072 1.00 0.6456

Table 7.7: Tukey pair-wise comparison of methods (consistent participants).

In the second one, pitch and dynamics contours are directly computed from
the recorded singing voice performance.

The e�ciency is computed di�erently for each type of system. For each
type of system and expression database, we compute the e�ciency from the
time it takes to process each target song of the perceptual evaluation (the
whole song, not the short excerpts). Next, we explain how we compute the
e�ciency for the two types of systems.

7.3.2 Unit selection-based systems e�ciency

In Table 7.9 we show the computation of the e�ciency for the unit selection and
hybrid systems. First, we have run the systems for the 2 expression databases
(DB name column), which have di�erent sizes (M ), to generate the expression
contours for the same songs (Song name) in the perceptual evaluation. Each
song has a di�erent number of units (N ). We compute the duration (step dura-
tion) of each step: unit selection (US ), unit transformation and concatenation
(TC ), and generation of the contours (G). The duration values of each step is
normalized. The unit selection cost depends on both the size of the expression
database and the number of units of the target song. Therefore, we normalize
this durations as in equation 7.1.

CUS =
durUS
M ×N

(7.1)

The transformation and concatenation cost depends on the size of the target
song. Therefore, we normalize the duration as in equation 7.2. We normalize
the time of the contour generation by the same factor.

CTC =
durTC
N

(7.2)

Then, the steps are normalized. Each column is normalized by the mini-
mum values. Next, for a given song, we can sum the 3 normalized costs (Cost
sum). Then, the e�ciency for a given database and system (DB and system)
is computed as the mean of the 4 songs costs. Finally, the e�ciency for the
whole system (system) is computed as the mean of the two e�ciencies for the
2 databases.
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System DB DB duration Training time

HTSsustrans
Song 18:29 4519
Systematic 11:59 5742

HTSnote
Song 18:29 × 5 shifts 48838
Systematic 11:59 × 5 shifts 31486

Table 7.8: HMM-based systems e�ciency.

With the �gures in Table 7.9 we can quantify the cost of each step. We can
conclude that the Hybrid system is around 15 times more costly than the unit
selection-based system given the ratio of the values in the last column. The
increment on the cost comes basically from the unit selection step of the hybrid
system, since it has to compute the DTW cost between all the candidate source
units and the target units. If we look at the normalized costs, we can see the
other costs are more or less similar given that the most values are between 1
and 1.5.

7.3.3 HMM-based systems e�ciency

The e�ciency computation for the HMM-based systems has to be tackled in a
di�erent way than in the unit selection. First, the synthesis is a quick steps that
takes less than a second for the 5 target songs. Therefore, we should focus on
the training step. However, we cannot consider the HMM-based systems to be
as linear as the unit selection systems, for example due to the clustering step,
which may change the amount of data to process depending on the contexts
and how these are clustered.

In Table 7.8 we just show the duration of the expression databases and
duration of the training step. Note that the databases for the HTSnote system
have been extended to cover a wide pitch range by pitch shifting the original
database 4 times (±1 semitones, ±6 semitones).

7.4 Improving singing voice recordings expression

We have introduced in section 1.1.1 that beyond singing voice synthesis, soft-
ware like Melodyne 3 improve the recorded expression of a real singing perfor-
mance by changing some singing voice features (timing, note durations, tuning,
vibrato depth, erasing artifacts, etc). However, a singing voice performance
could be improved by adding other aspects which are not present in the record-
ing. For instance, changing the expression at di�erent scopes (from just a note
to a whole phrase or song) could provide a signi�cant improvement.

We think that research in this direction could be welcomed in the �eld, and
that more research should be devoted with this respect. Although applying

3http://www.celemony.com/

http://www.celemony.com/
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Figure 7.17: Improved expression contours of a real singing voice recording.

the methods explained in this thesis to transform a real recording is probably
out of the scope of this thesis, we have tried a prove of concept experiment to
show the applicability of the same methods to a recorded singing voice. The
results have not properly been evaluated with participants out of our research
group, we have just shown to some researchers to know their opinion.

Experiment description

The experiment consists of recording a singer in the studio and then to trans-
form the song in pitch to obtain a performance which is more expressive per-
formance since we asked the singer not to sing the song very expressively on
purpose. The recorded song has been processed following these steps:

1. Extract pitch,

2. Segment the notes (onset time, duration, and pitch value),

3. Generate the score from the segmented notes with the unit selection
based system using the Song DB.

The extracted score is the target song for which we want to generate expres-
sion contours for pitch and dynamics. We have used the unit selection-based
system as an example. The extracted expression contours and the generated
ones are shown in Fig. 7.17. The top �gure shows the pitch contours (both
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the extracted and the generated contours) with the estimated notes. The sec-
ond and third �gures correspond to the generated depth and rate contours,
which is helpful to locate to generate vibratos. The bottom �gure shows the
di�erence between the 2 pitch contours, since this sequence of pitch values (in
cents) indicates the pitch shift applied to the original recording.

We have used an in-house tool called Kaleivoicecope (Mayor et al., 2009)
to transform the original recording so that the output sound has the generated
pitch contour. The original and the transformed excerpts are accessible online4.

Experiment evaluation

In this case we have not done a comprehensive evaluation due to time limita-
tions. However, we have observed that the outcome is more expressive while
keeping the naturalness of the voice at the same time.

This new use case could be signi�cantly improved given that only pitch
and has been transformed. Dynamics, timing, and voice quality are not mod-
i�ed. The modi�cation of these features would de�nitely help to obtain more
expressive results. One drawback of the current implementation is that micro-
prosody (see section 2.3.2) is not taken into account, and therefore the pitch
is not following the expected shape in some voiced consonants.

On the other hand, there is mainly one positive aspect of this transforma-
tion. It is similar to the work in Saitou et al. (2007), which is using speech
to generate singing voice. Similarly, in this case, we start from singing voice
to generate singing voice. The timbre quality is already natural since it is
human-like instead of synthesized, which helps to obtain a more natural result
than a synthesized singing voice.

7.5 Discussion

This section, based on Umbert et al. (2015), discusses a couple of topics related
to the evaluation of the singing voice synthesis systems. First, we consider that
the �eld would bene�t from going towards a common evaluation framework to
easily evaluate and compare the singing synthesis systems. Then, we high-
light the importance of adopting perceptually-motivated objective measures
and how this would also help the �eld since such measures would allow for
comprehensive objective evaluations correlated to subjective measures.

7.5.1 Towards a common evaluation framework

In this thesis we have focused on the naturalness of expression control with
respect to pitch and dynamics. However, a comprehensive system for expres-
sion control should include all features related to singing voice, as explained

4http://www.mtg.upf.edu/publications/ExpressionControlinSingingVoiceSynthesis

http://www.mtg.upf.edu/publications/ExpressionControlinSingingVoiceSynthesis
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Figure 7.18: Proposed common evaluation framework.

in section 2.3. Depending on the system, comprehensive expression control
may involve all the building blocks of singing voice synthesis in Fig. 2.3. As
a consequence, if we want to compare di�erent systems, there are too many
aspects that di�er among systems which make the comparison a di�cult task.
In this thesis, since we have focused on pitch and dynamics, we have only used
a common singing voice synthesizer for all methods, avoiding di�erences due
to other aspects.

Having this in mind, the evaluation methodology could be improved by
building the systems under similar conditions to reduce the di�erences among
performances and by sharing the evaluation criteria. Building a common frame-
work would help to easily evaluate and compare the singing synthesis systems.

The main blocks of the reviewed works are summarized in Fig. 7.18. For
a given target song, the expression parameters are generated to control the
synthesis system. In order to share as many commonalities as possible amongst
systems, these could be built under similar conditions and tested by a shared
evaluation criterion. Thus, the comparison would bene�t from focusing on
the technological di�erences and not on other aspects like the target song and
singer databases.

Concerning the conditions, several aspects could be shared amongst ap-
proaches. Currently, there are di�erences in the target songs synthesized by
each approach, the set of controlled expression features, and the singer record-
ings (e.g. singer gender, style, or emotion) used to derive rules, to train models,
to build expression databases, and to build the singer voice models.

A publicly available dataset of songs, with both scores (e.g. in MusicXML
format) and reference recordings, could be helpful if used as target songs in
order to evaluate how expression is controlled by each approach. In addition,
deriving the expression controls and building the voice models from a com-
mon set of recordings would have a great impact on developing this evaluation
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framework. If all approaches shared such a database, it would be possible to
compare how each one captures expression and generates the control param-
eters, since the starting point would be the same for all them. Besides, both
sample-based and HMM-based synthesis systems would derive from the same
voice. Thus, it would be possible to test a single expression control method
with several singing voice synthesis technologies. The main problem we envis-
age is that some approaches are initially conceived for a particular synthesis
system. This might not be a major problem for the pitch contour control, but
it would be more di�cult to apply the voice timbre modeling of HMM-based
systems to sample-based systems.

The subjective evaluation process is worthy of particular note. Listening
tests are a time consuming task and several aspects need to be considered
in their design. The di�erent backgrounds related to singing voice synthesis,
speech synthesis, technical skills, and the wide range of musical skills of the
selected participants can be taken into consideration by grouping the results
according to such expertise, and clear instructions have to be provided on what
to rate like to focus on speci�c acoustic features of the singing voice, and how to
rate using pair-wise comparisons or MOS. Moreover, uncontrolled biases in the
rating of stimuli due to the order in which these are listened can be avoided by
presenting them randomly, and the session duration has to be short enough to
not decrease the participant's level of attention. However, often the reviewed
evaluations have been designed di�erently and are not directly comparable. In
the next section, we introduce a proposal to overcome this issue.

7.5.2 Perceptually-motivated objective measures

The constraints in Section 7.5.1 make una�ordable to extensively evaluate dif-
ferent con�gurations of systems by listening to many synthesized performances.
This could be solved if objective measures that correlate with perception were
established. Such perceptually-motivated objective measures could be com-
puted by learning the relationship between MOS and extracted features at a
local or global scope. The measure should be ideally independent from the
style and the singer, and it should provide ratings for particular features like
timing, vibratos, tuning, voice quality, or the overall performance expression.
These measures, besides helping to improve the systems' performance, would
represent a standard for evaluation and allow for scalability.

The development of perceptually-motivated objective measures could ben-
e�t from approaches in the speech and audio processing �elds. Psychoacoustic
and cognitive models have been used to build objective metrics for assessing
audio quality and speech intelligibility (Campbell et al., 2009) and its e�ec-
tiveness has been measured by its correlation to MOS ratings. Interestingly,
method speci�c measures have been computed in unit selection cost functions
for speech synthesis (Chu et al., 2001). Other approaches for speech quality
prediction are based on a log-likelihood measure as a distance between a syn-
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thesized utterance and an HMM model built from features based on MFCCs
and F0 of natural recordings (Möller et al., 2010). This gender-dependent
measure is correlated to subjective ratings like naturalness. For male data, it
can be improved by linearly combining it with parameters typically used in
narrow-band telephony applications, like noise or robotization e�ects. For fe-
male data, it can be improved by linearly combining it with parameters related
to signal like duration, formants, or pitch. The research on automatic evalua-
tion of expressive performances is considered an area to exploit, although it is
still not mature enough (Katayose et al., 2012), for example, it could be applied
to develop better models and training tools for both systems and students.

Similarly to the speech and instrumental music performance communities,
the progress in the singing voice community could be incentivized through
evaluation campaigns. These types of evaluations help to identify the as-
pects that need to be improved and can be used to validate perceptually-
motivated objective measures. Examples of past evaluation campaigns are the
Synthesis Singing Challenge5 and the Performance Rendering Contest6 (Ren-
con) (Katayose et al., 2012). In the �rst competition, one of the target songs
was compulsory and the same for each team. Performances were rated by 60
participants with a �ve-point scale involving quality of the voice source, quality
of the articulation, expressive quality, and the overall judgment. The organiz-
ers concluded �the audience had a di�cult task, since not all systems produced
both a baritone and a soprano version, while the quality of the voices used
could be quite di�erent (weaker results for the female voice)�5. The Rencon's
methodology is also interesting. Expressive performances are generated from
the same Disklavier grand piano, so that the di�erences among approaches are
only due to the performance and subjectively evaluated by an audience and
experts. In 2004, voice synthesizers were also invited. Favorable reviews were
received but not included in the ranking.

Correlation between cost functions and the evaluation ratings

Inspired by the work in Chu et al. (2001) for speech synthesis based on unit
selection, we have done a similar experiment in order to see if we could �nd
a relationship between the participants' mean rating value and the cumulated
cost of the unit selection approach. If the participants' ratings could be clearly
determined as a function of the cost values of the unit selection-based systems,
it would be a possible way of predicting the average participant perception
of the naturalness of expression of an audio excerpt in a scalable manner as
explained in the beginning of this section.

The audio excerpts used in the perceptual evaluation were originally much
longer, and shorter segments were selected in order to be able to do the eval-

5http://www.interspeech2007.org/Technical/synthesis_of_singing_challenge.

php
6http://renconmusic.org/

http://www.interspeech2007.org/Technical/synthesis_of_singing_challenge.php
http://www.interspeech2007.org/Technical/synthesis_of_singing_challenge.php
http://renconmusic.org/
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Method DBname Song # units cost norm. cost rating

Unit
selection

Song

But not for me 19 17.74 0.93 2.97
Body and soul 25 26.14 1.05 3.03
My funny valentine 6 10.91 1.82 3.06
My funny valentine 7 18.13 2.59 3.06
Summertime 8 7.42 0.93 3.44

Systematic

But not for me 19 30.53 1.61 3.44
Body and soul 25 40.1 1.60 3.22
My funny valentine 6 12.83 2.14 3.16
My funny valentine 7 21.02 3.00 3.16
Summertime 8 10.47 1.31 3.34

Hybrid

Song

But not for me 19 82.10 4.32 2.93
Body and soul 25 68.79 2.75 2.87
My funny valentine 6 23.25 3.88 3.23
My funny valentine 7 35.45 5.06 2.97
Summertime 8 38.35 4.79 3.73

Systematic

But not for me 19 89.16 4.69 3.30
Body and soul 25 79.78 3.19 3.37
My funny valentine 6 22.49 3.75 3.30
My funny valentine 7 35.28 5.04 3.33
Summertime 8 43.09 5.39 3.57

Table 7.10: Values used to �nd relationship between ratings and cumulated costs.

uation within a reasonable amount of time. Thus, the unit selection-based
systems were run for the whole song scores. However, we cannot use the whole
song cumulated cost values, since these refer to the complete song, but only a
part of it was evaluated. Therefore, we have taken the cumulated cost of only
the part that was �nally evaluated by using only the cost increment between
the �rst and last excerpt unit. The �nal value has been obtained by dividing
the cumulated cost by the amount of units. This value has been computed per
song and placed in the x axis.

The values involved in this computation are shown in Table 7.10. The �rst
column indicates method, which can be the normal unit selection-based or the
hybrid system. Then, the expression database used to extract the contours
(Song or Systematic). Next, the song name the following �gures are related
to. These �gures are the number of units, the cumulated cost, the normalized
cost (cost/units), and �nally the mean value of the participants' ratings.

We show this information in Fig. 7.19, with the cumulated cost value of
the unit selection-based systems placed in the x axis, and the mean of the
participants' ratings in the y axis. We want to approximate the 5 points for
each method and DB combination. Polynomials of degree 1 and 2 have been
used to approximate the dots for each group. Although we only have 5 points
per method and DB combination, the groups of points seem to be more or
less organized in their respective clouds and that can be approximated by the
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Figure 7.19: Participants mean ratings vs. unit selection normalized cost.

polynomials. We have dropped out some points which seemed to be �outliers�.
However, it remains unclear why the points of the unit selection method with
the Systematic DB (red points) have a negative slope compared to the other
combinations. Besides, we would probably need more points to extract more
conclusions on the type of regression line (linear or polynomial) is appropriate
as a perceptually-motivated measure.

7.6 Conclusion

In this chapter we have evaluated a set of systems that generate expression
contours for pitch and dynamics with a perceptual evaluation and an e�ciency
comparison.

In section 7.2 we have done an online subjective evaluation with 32 partic-
ipants, in which during less than 30 minutes they had to rate from 1 to 5 the
perceived naturalness of expression of 6 audio excerpts in 11 randomly pre-
sented questions. The 6 audio excerpts per question have been generated by 6
methods: the Vocaloid baseline system, performance driven from the original
recording, the proposed unit selection-based methods (hybrid and non-hybrid),
and the proposed HMM-based methods.

In section 7.3, after analyzing the participants' demographics, we have
shown that the di�erences that we observed in several boxplots are statisti-
cally signi�cant. The ANOVA and Tukey tests show that the analysis of all
participants and the consistent ones provide similar results. First, methods
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have a signi�cant e�ect on the ratings and that these are clustered into non
homogeneous groups. On the one side, the HMM-based methods do not dif-
fer from the default Vocaloid method. On the other hand, the unit selection
methods cluster together with the performance driven approach. Secondly, the
databases seem not to have an e�ect on the perceived naturalness. However,
if the interaction database::method is signi�cant as we can see in the boxplots.

Next, in section 7.4 another use case in which the expression contours could
be applied has also been analyzed. It consists on the transformation of a real
singing voice recording in order to improve the naturalness of expression. The
preliminary results show that the naturalness of expression is not degraded and
even improved when the original recording does not contain speci�c expression
resources like vibrato.

Finally, in section 7.5 we have discussed on a couple of topics related to the
evaluation of the singing voice synthesis systems. We have explained that, in
order to easily evaluate and compare several singing synthesis systems, the �eld
would bene�t from going towards a common evaluation framework. We have
also highlighted the importance of adopting perceptually-motivated objective
measures. Such measures would allow for comprehensive objective evaluations
correlated to subjective measures.





CHAPTER 8

Conclusions

In this dissertation, we have addressed expression in singing voice and how it
can be used to control singing voice synthesizers in order to achieve natural
performances. From the wide variety of features that are related to the natu-
ralness of expression, we have focused on the generation of pitch and dynamics
expression contours by proposing 3 systems: a unit selection-based system, a
statistical system based on Hidden Markov Models, and a hybrid system. In
the conducted perceptual evaluation we have compared these methods to each
other, to a performance-driven method and the synthesizer baseline perfor-
mance.

8.1 Introduction

This chapter aims to summarize the contributions this dissertation makes to
the �eld of singing voice synthesis (section 8.2). We highlight the contributions
of each chapter from di�erent perspectives: the discussion on the topic, the
datasets, the methodologies, the proposed expression control systems, the eval-
uation and the proposal for its improvement, and the thesis impact through
the publications.

Following the summary, we present areas of future work that have arisen
through the course of the research. (section 8.3). Some of these ideas have not
been explored before due to time limitations, and some others are proposed now
thanks to the perspective and experience that these last years working on this
topic provide to us. Thus, several improvements are proposed related to the
expression databases, the proposed systems, and the evaluation. Furthermore,
we discuss other use cases not explored in this thesis where expression control
can be applied. Finally, we describe the challenges that we currently foresee
in the �eld of singing voice synthesis (section 8.4).

153
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8.2 Summary of contributions

Discussion, de�nitions, and analysis of expression

Expression is a complex term to de�ne, and natural expression is a complex
task in the music technology �elds and, more concretely, when applied to the
singing voice synthesis, as we have seen in Chapter 1. We have discussed
several musical and psychological de�nitions that have been attached to the
�expression� term, both from a general and a singing voice perspective. A voice
excerpt has been analyzed to illustrate the topic of research.

An in-depth review of expression control in singing voice synthesis

As humans, we are completely familiarized with the singing voice instrument,
and can easily detect whether synthesis results are similar to a real singer or
not. A wide variety of contributing features make achieving a natural expres-
sion control a complex task. Hence, in Chapter 2 we have provided a summary
of the state of the art background on the �eld. These involve an explana-
tion of the singing voice production mechanism and how it may be emulated
algorithmically with computers. We have also presented an in-depth descrip-
tion of the features related to the singing voice expression. We have classi�ed,
described, and compared several systems for expression control, covering per-
formance driven, rule-based, and statistical-based approaches. The strategies
to evaluate the naturalness achieved by these expression control systems have
also been studied.

A compilation of sound excerpts from di�erent works

To our knowledge, the sound examples from previous works on the same topic
of research had not been gathered before, and thus there lacks a repository with
sound excerpts. In the state of the art we have compiled several sound examples
from the reviewed works for ease of comparison and made the compilation
available online1. This is probably best summarized with the feedback provided
by one of the anonymous reviewers of Umbert et al. (2015) who reported that
�Hearing is believing�, pointing out that accompanying research with sound
excerpts helps to better understand the details of the topic being described.

A methodology for expression database creation

The singing voice databases (for jazz style) that we have used for expres-
sion control have some speci�c requirements. In Chapter 3 we have de�ned
a methodology for their design, recording, and labeling. The Systematic ex-
pression database covers a set of note �gures, note pitches, and note strengths
combinations. The methodology to obtain the melodic exercises based on the

1http://www.mtg.upf.edu/publications/ExpressionControlinSingingVoiceSynthesis

http://www.mtg.upf.edu/publications/ExpressionControlinSingingVoiceSynthesis
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Viterbi algorithm has been described. The Song expression database is easier
to create since it is a compilation of jazz standard songs.

Microprosody e�ects in the extracted features from the recordings has also
been considered. Both expression databases have been recorded with inter-
leaved vowels at every note instead of lyrics to remove microprosody due
to phonetics. Regarding the Systematic database, since the corresponding
melodies have no lyrics, it is an appropriate decision to record vowels instead.

Concerning the database labeling, we have proposed to extract note onsets
and durations in a semiautomatic procedure based on GMM. Note transitions
are also automatically estimated and manually corrected. We have also pro-
posed an iterative procedure for vibrato features estimation to generate the
corresponding depth, rate, and baseline pitch contours.

A unit selection-based system for expression control

In Chapter 4 we have introduced a novel unit selection-based system for expres-
sion control. Typically, unit selection approaches are used as synthesizers, thus
considering timbre information as well. In contrast, in the proposed system the
output consists of pitch and dynamics contours used to control a synthesizer.
For this system, the strategies for unit selection (cost functions), unit trans-
formation and concatenation (pitch interval modi�cations, time-scaling, and
crossfading masks), and contour generation (pitch tuning and vibrato genera-
tion) have been described. The proposed system is able to generate expression
control contours with �ne details similar to the expression recordings.

A statistical-based system for expression control

In Chapter 5 we have proposed two HMM-based systems. The �rst one models
note sequences using absolute pitch and dynamics as observations. The second
system models sequences of sustains and transitions, where pitch observations
correspond to the di�erence between the pitch and the estimated nominal
pitch from the score. Within this statistical system we have also proposed the
prediction of the note transitions using random forests.

A hybrid system for expression control

In Chapter 6 we have proposed a system that combines the positive aspects
from the unit selection and the HMM-based system. The hybrid system ex-
tends the unit selection cost function by adding a reference pitch contour. In
our case, the reference pitch contour is generated by the modi�ed HMM-based
system which handles richer contextual data than the unit selection system.
The cost function is a distance measure between pitch contours based on the
Dynamics Time Warping cost.
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A comparison with state of the art systems for expression control

The perceptual evaluation carried out has raised three key points. The �rst
one is that singing voice expression can be generated arti�cially. Secondly,
the best rated systems regarding naturalness of expression (concerning pitch
and dynamics) are hybrid and performance driven ones, with no signi�cant
statistical di�erence between them. Finally, all proposed methods are rated
equally or better than the default expression control found in the Vocaloid
singing voice synthesizer.

Another use case for expression control

We have also shown another use case in which a singing voice recording is
transformed to change its pitch contour. The preliminary results show that
the naturalness of expression is not degraded and even improved when the
original recording does not contain speci�c expression resources like vibrato.

Proposals for evaluation improvement

In Chapter 7 we have contributed to debate on the problems that make the
comparisons between systems a di�cult task. We consider that the research
in this �eld would bene�t from building a common evaluation framework. We
also identify weaknesses in the current evaluation of singing voice performances.
The lack of perceptually motivated objective measures prevents from evaluat-
ing singing voice synthesis systems in a scalable way. Furthermore, we have
studied whether the cost of the unit selection systems is related to the percep-
tual evaluation ratings.

Impact

With regards to the publications, in Appendix D we have summarized the
published work during this thesis as well as contributions to workshops. The
publication with most impact is Umbert et al. (2015), which is the core part
of this thesis state of the art (Chapter 2). Moreover, we plan to make publicly
available the systematic and song expression databases used in this thesis.

8.3 Future perspectives

In this section we outline several future research directions that this thesis could
follow. These are mainly related to the expression databases, improvements
on the proposed systems, and the evaluation.
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Expression database

The methodology for creating expression databases can be improved in several
ways. The current Systematic database covers combinations of pitch intervals,
note �gures, and note strength. However, we designed it for a single tempo.
Although the recording and labeling of singing voice databases are time con-
suming tasks, replicating the same systematic score at di�erent tempos would
ensure having more variety in the coverage, and therefore units may bene�t
from less transformation given the tempo is included in the subcost functions.

Voice quality could also be considered in the expression databases. Expres-
sion databases could be recorded with di�erent voice qualities (for instance with
modal and growl voices). Voice quality feature contours (presence of subhar-
monics, or noise level) could also be extracted and be used together with the
pitch and dynamics expression contours.

Finally, the current labeling process is semi-automatic. However, some
steps could be automated, like the detection of the �rst/last peak/valley of
vibratos, note onsets and durations, or note transition start and end times.

Unit selection-based systems

We have identi�ed at least two aspects in which the unit selection-based sys-
tems could be improved. First, the expression contours could be represented
with a parametric model (for instance, by Bézier curves). This would allow
clustering contour shapes, providing a better understanding of singer and style
particularities. On the other hand, the unit selection cost in the hybrid sys-
tem could be improved in several directions. First, other functions than DTW
could be tested as distance measures. Secondly, dynamics added to the DTW
cost function. Finally, a distance measure considering transition and sustain
segmentation of the HMM-based system and the source units could be included.

HMM-based systems

The statistical systems could be improved by adding more context-dependent
labels. For instance, features regarding the presence of a vibrato in the previ-
ous, current, or succeeding notes. The presence of vibratos could be directly
indicated by some value related to the depth and rate.

Regarding the transition and sustain prediction, we highlighted that there
might be over-�tting. This issue should be further studied in future research
works.

Recurrent neural networks systems

Other systems could be used to model pitch and dynamics. In the last mas-
ter thesis I co-supervised, pitch was modeled using long-short term memory
(LSTM) recurrent neural networks. The contextual data was very similar to
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the contextual data of the HMM-based systems. In this work we compared the
synthesized excerpts to the unit selection-based system and the HMM-based
system. Although no statistical di�erences were observed with the proposed
implementation, this method may provide state of the art results with some
improvements. First, it could be studied which other contextual data could be
added. More importantly, the distribution of the output values could also be
modeled with gaussian distributions parameters. This has proven successfully
for instance to model handwriting in Graves (2013).

Concerning the evaluation, expression databases related to other singing
styles could be used. Then, further perceptual tests would help to evaluate the
impact of the database on the target song depending on the target style. For
instance, is it perceived as more naturally expressive a song when the database
is from the same style as the target song? Up to which point is it important?

Application to other use cases

As we have already mentioned, singing voice expression is related not only to
pitch and dynamics but also to the voice quality or timing. An environment
to evaluate this labeled information on the expression database on recorded
singing voice would be a way to avoid the imperfections of the synthesis it-
self. The use case experiment on the expression contours of a singing voice
performance goes in this direction.

Expression control could also be applied in online repositories of scores or
score editors. As we have introduced in Chapter 1, singing voice synthesis with
natural expression would improve signi�cantly the current status of these ap-
plications, in which scores with vocal tracks are simply rendered with another
instrument or a single vowel.

Finally, the methodology we have described in this thesis could be adapted
to model expression for other instruments. In some cases it may be easier to
adapt than others. For instance, it may be easier for wind instruments which
are monophonic than for polyphonic instruments like the piano.

8.4 Challenges

While expression control has advanced in recent years, there are still many
open challenges. First, we discuss some speci�c challenges and consider the
advantages of hybrid approaches. Next, we discuss important challenges in
approaching a more human-like naturalness in the synthesis. This section is
based on Umbert et al. (2015).

Towards hybrid approaches

Several challenges have been identi�ed in the described approaches. Only one
of the performance-driven approaches deals with timbre, and it depends on the



8.4. CHALLENGES 159

available voice quality databases. This approach would bene�t from techniques
for the analysis of the target voice quality, its evolution over time, and tech-
niques for voice quality transformations so to be able to synthesize several voice
qualities. The same analysis and transformation techniques would be useful
for the unit selection approaches. Rule-based approaches would bene�t from
machine learning techniques that learn rules from singing voice recordings in
order to characterize a particular singer and to explore how these are combined.
Statistical modeling approaches are currently not dealing with comprehensive
databases that cover a broad range of styles, emotions, and voice qualities.
If we could take databases that e�ciently cover di�erent characteristics of a
singer it would lead to interesting results using model interpolation.

We consider the combination of existing approaches to have great potential.
Rule-based techniques could be used as a pre-preprocessing step to modify the
nominal target score so that it contains variations such as ornamentations and
timing changes related to the target style or emotion. The resulting score could
be used as the target score for statistical and unit selection approaches, or a
combination of both, where the expression parameters would be generated.

Towards human-like singing synthesis

One of the ultimate goals of singing synthesis technologies is to synthesize
human-like singing voices that cannot be distinguished from human singing
voices. Although the naturalness of synthesized singing voices has been increas-
ing, perfect human-like naturalness has not yet been achieved. Singing synthe-
sis technologies will require more dynamic, complex, and expressive changes
in pitch, loudness, and timbre. For example, voice quality modi�cations could
be related to emotions, style, or lyrics.

Moreover, automatic context-dependent control of those changes will also
be another important challenge. The current technologies synthesize words
in the lyrics without knowing their meanings. In the future, the meanings
of the lyrics could be re�ected in singing expressions as human singers do.
Human-like singing synthesis and realistic expression control may be a highly
challenging goal, given how complex this has been proven for speech.

In Umbert et al. (2015) we mention other aspects that could be improved,
like interfaces for singing synthesis which avoid time-consuming manual ad-
justments and that work in real-time. Besides, multimodality is also discussed
with respect to the other aspects that surround a virtual singer like its as
voice, face, and body. The simultaneous generation of some of these singer
attributes (voice and face) has also started to be tackled in some projects like
VocaWatcher (Goto et al., 2012).





Martí Umbert, Barcelona, Tuesday 6th October, 2015.
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Appendix A:

Context-dependent labels

An example of context-dependent label format
for HMM-based singing voice synthesis in Japanese

HTS Working Group

December 25, 2012

p1ˆp2-p3+p4=p5 p6%p7ˆp8

/A:a1-a2-a3@a4 /B:b1 b2 b3@b4 /C:c1+c2+c3@c4

/D:d1!d2#d3$d4%d5|d6&d7[d8-d9

/E:e1]e2ˆe3=e4∼e5!e6@e7#e8+e9]e10$e11|e12[e13&e14]e15=e16ˆe17∼e18#e19@e20!e21$e22&e23%e24[e25|e26]e27-e28ˆe29+
e30∼e31=e32@e33$e34!e35%e36#e37|e38|e39-e40&e41&e42+e43[e44;e45]e46;e47∼e48∼e49ˆe50ˆe51@e52;e53=e54=e55!e56∼e57+e58

/F: f1# f2# f3- f4$ f5$ f6+ f7% f8; f9

/G:g1 g2 /H:h1 h2 /I:i1 i2

/J: j1∼ j2@ j3

p1 the phoneme identity before the previous phoneme
p2 the previous phoneme identity
p3 the current phoneme identity
p4 the next phoneme identity
p5 the phoneme idendity after the next phoneme
p6 falsetto flag
p7 training flag
p8 pitch-shift
a1 the number of phonemes in the previous syllable/mora
a2 position of the previous syllable/mora identity in the note (forward)
a3 position of the previous syllable/mora identity in the note (backward)
a4 the language dependent context of the previous syllable/mora
b1 the number of phonemes in the current syllable/mora
b2 position of the current syllable/mora identity in the note (forward)
b3 position of the current syllable/mora identity in the note (backward)
b4 the language dependent context of the current syllable/mora
c1 the number of phonemes in the next syllable/mora
c2 position of the next syllable/mora identity in the note (forward)
c3 position of the next syllable/mora identity in the note (backward)
c4 the language dependent context of the next syllable/mora
d1 the absolute pitch of the previous note (C0-G9)
d2 the relative pitch of the previous note (0-11)
d3 the key of the previous note (the number of sharp)
d4 the beat of the previous note
d5 the tempo of the previous note

(SS: 1-75 SM: 76-90 SH: 91-105 MS: 106-120 MM: 121-135 MH 136-150 HS: 151-165 HM: 166-180 HH: 181-)
d6 the length of the previous note by the syllable/mora
d7 the length of the previous note by 0.1 second (1-99)
d8 the length of the previous note by three thirty-second note (1-199)
d9 breath mark of the previous note
e1 the absolute pitch of the current note (C0-G9)
e2 the relative pitch of the current note (0-11)
e3 the key of the current note (the number of sharp)
e4 the beat of the current note
e5 the tempo of the current note

(SS: 1-75 SM: 76-90 SH: 91-105 MS: 106-120 MM: 121-135 MH 136-150 HS: 151-165 HM: 166-180 HH: 181-)
e6 the length of the current note by the syllable/mora
e7 the length of the current note by 0.1 second (1-99)
e8 the length of the current note by three thirty-second note (1-199)
e9 breath mark of the current note
e10 position of the current note identity in the current measure by the note (forward, 1-49)
e11 position of the current note identity in the current measure by the note (backword, 1-49)
e12 position of the current note identity in the current measure by 0.1 second (forward, 1-49)
e13 position of the current note identity in the current measure by 0.1 second (backward, 1-49)
e14 position of the current note identity in the current measure by three thirty-second note (forward, 1-99)
e15 position of the current note identity in the current measure by three thirty-second note (backward, 1-99)
e16 position of the current note identity in the current measure by % (forward)
e17 position of the current note identity in the current measure by % (backward)
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e18 position of the current note identity in the current phrase by the note (forward, 1-99)
e19 position of the current note identity in the current phrase by the note (backward, 1-99)
e20 position of the current note identity in the current phrase by 0.1 second (forward, 1-199)
e21 position of the current note identity in the current phrase by 0.1 second (backward, 1-199)
e22 position of the current note identity in the current phrase by three thirty-second note (forward, 1-499)
e23 position of the current note identity in the current phrase by three thirty-second note (backward, 1-499)
e24 position of the current note identity in the current phrase by % (forward)
e25 position of the current note identity in the current phrase by % (backward)
e26 whether tied (slur) or not in between the current note and the previous note (0: not tied, 1: tied)
e27 whether tied (slur) or not in between the current note and the previous note (0: not tied, 1: tied)
e28 dynamic mark of the current note
e29 the distance between the current note and the next accent by the note (1-9)
e30 the distance between the current note and the previous accent by the note (1-9)
e31 the distance between the current note and the next accent by 0.1 second (1-99)
e32 the distance between the current note and the previous accent by 0.1 second (1-99)
e33 the distance between the current note and the next accent by three thirty-second note (1-99)
e34 the distance between the current note and the previous accent by three thirty-second note (1-99)
e35 the distance between the current note and the next staccato by the note (1-9)
e36 the distance between the current note and the previous staccato by the note (1-9)
e37 the distance between the current note and the next staccato by 0.1 second (1-99)
e38 the distance between the current note and the previous staccato by 0.1 second (1-99)
e39 the distance between the current note and the next staccato by three thirty-second note (1-99)
e40 the distance between the current note and the previous staccato by three thirty-second note (1-99)
e41 position of the current note in the current crescendo by the note (forward, 1-49)
e42 position of the current note in the current crescendo by the note (backward, 1-49)
e43 position of the current note in the current crescendo by 1.0 second (forward, 1-99)
e44 position of the current note in the current crescendo by 1.0 second (backward, 1-99)
e45 position of the current note in the current crescendo by three thirty-second note (forward, 1-499)
e46 position of the current note in the current crescendo by three thirty-second note (backward, 1-499)
e47 position of the current note in the current crescendo by % (forward)
e48 position of the current note in the current crescendo by % (backward)
e49 position of the current note in the current decrescendo by the note (forward, 1-49)
e50 position of the current note in the current decrescendo by the note (backward, 1-49)
e51 position of the current note in the current decrescendo by 1.0 second (forward, 1-99)
e52 position of the current note in the current decrescendo by 1.0 second (backward, 1-99)
e53 position of the current note in the current decrescendo by three thirty-second note (forward, 1-499)
e54 position of the current note in the current decrescendo by three thirty-second note (backward, 1-499)
e55 position of the current note in the current decrescendo by % (forward)
e56 position of the current note in the current decrescendo by % (backward)
e57 pitch difference between the current and previous notes
e58 pitch difference between the current and next notes
f1 the absolute pitch of the next note (C0-G9)
f2 the relative pitch of the next note (0-11)
f3 the key of the next note (the number of sharp)
f4 the beat of the next note
f5 the tempo of the next note

(SS: 1-75 SM: 76-90 SH: 91-105 MS: 106-120 MM: 121-135 MH 136-150 HS: 151-165 HM: 166-180 HH: 181-)
f6 the length of the next note by the syllable/mora
f7 the length of the next note by 0.1 second (1-99)
f8 the length of the next note by three thirty-second note (1-199)
f9 breath mark of the next note
g1 the number of syllables/moras in the previous phrase (1-99)
g2 the number of phonemes in the previous phrase (1-99)
h1 the number of syllables/moras in the current phrase (1-99)
h2 the number of phonemes in the current phrase (1-99)
i1 the number of syllables/moras in the next phrase (1-99)
i2 the number of phonemes in the next phrase (1-99)
j1 the number of syllables/moras in this song / the number of measures in this song (1-99)
j2 the number of phonemes in this song / the number of measures in this song (1-99)
j3 the number of phrases in this song (1-99)



Appendix B: Perceptual

evaluation instructions

The perceptual evaluation despcribed on Chapter 7 was presented as a two
steps task. In the �rst task, we provided the necessary information to do the
task with the basic instructions (in bold font the relevant ones) in the following
form:

1. First, listen to all audio �les for a given question in order to have a
general idea.

2. Then, compare them and rate the perceived naturalness in the expression
of the singing voice in each �le.

3. You can focus your attention mainly on pitch or melody (for instance,
note articulations, vibratos, etc) and dynamics evolution over time
(is the energy always the same or are there �uctuations that make sense
depending on the part of the song).

4. You should NOT focus on other aspects like timing, the timbre of the
voice, and to how similar to a real singing voice the excerpts are.

5. You will listen to 6 �les (10 seconds each) for each of the 11 questions.
The test will take less than 30 mins.

6. Use headphones to better appreciate the di�erences amongst the audio
�les.

7. You can listen to the sounds as many times as you want.

8. You are allowed to review your ratings at any time (until you hit "Next")

9. You are allowed to rate di�erent audio �les equally.

10. If possible, try to use the whole range of ratings from 1-5.

After the instructions were presented to the participants, an example of 6
audio excerpts were presented so that the participant could hear them and
start familiarizing with the task. No ratings were asked at this point. Next,
a set of demographic information was asked so that we could have a pro�le of
the participants. The information we asked (and the possible values) was:

• Age (15-24, 25-34, 35-44, 45-54, 55-64, more than 65)
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• Gender (male, female)

• How often do you attentively listen to music? (Very rarely, About several
times a month, About once a week, Nearly every day, Every day)

• Do you sing (e.g. in a choir, in a band, etc)? (Yes, No)

• If you play an instrument, how many years have you been playing it? (0,
1-2, 3-4, 5-6, 7-8, more than 8)

• Are you familiar with speech/singing voice synthesis or music technology?
(Yes, No)

The second part of the evaluation was to answer the 11 questions. The in-
structions introduced in the �rst part of the evaluation were reminded to the
participants.



Appendix C: Participants'

feedback

This appendix aims to comment on the feedback provided by some participants
on the perceptual evaluation described on Chapter 7. Only a few of them
commented on the task since this part was optional. We have summarized their
comments here below grouped according to the aspect it is related to (di�culty
of the test, the instructions, and the organization of the audio excerpts). We
also provide our comment within each topic.

Di�culty of the test

Participants' comments:

1. It might be di�cult test to do for people not used to listen to synthetic
singing to appreciate di�erences.

2. As well I �nd the slow sample �you'll make me smile with my heart� very
hard to distinguish between dynamics.

3. As well note that some samples sound on average unnatural (the japanese
voice) and other on average very natural (�with daddy and mommy�). I
think it is not biasing results, just noticed.

4. Your synthesis of the male voice is really good! I �rst thought you just
sang it directly. But than I was mentioned that these are synthesized
versions.

This test might be di�cult for people not used to listen to synthetic voices.
Fortunately, most people was related to the �eld according to the demographics
information (see Fig. 7.4). The fact that in some excerpt the expression
features are more di�cult to distinguish is normal, it depends especially on
the melody. Besides, we are used to listen to all features as a whole instead
of separating dynamics from pitch. Finally, it is good that subjects noticed
di�erences amongst songs, and that some others reported a positive feedback
on the excerpts quality.

Instructions

Participants' comments:
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1. There are no guidelines about what to look at. Maybe this is intentionally,
but for people not used to synthetic singing, they might be lost on how to
evaluate �expression�.

2. In several examples, there are timbre abrupt changes that a�ect the overall
sensation. For example: look at the naturalness of this vibrato in example
X; or look at the note transition <my>-<heart> in example Y, etc.

3. I think the concept of singing badly and unnatural synthesis is quite dif-
ferent. But since some of the singing components (vibrato, depth and
rate) are parameters for singing synthesis, it becomes little fuzzy. In the
sense that several times you feel that the synthesis is good and this is
precisely how a person would make a mistake (like a person singing). So
I am not sure if these two things were same for the evaluation but maybe
this distinction or at least a comment on this aspect should be made in
the instructions.

In the instructions we provided the guidelines on what should participants
focus when rating the songs (pitch and dyanmics in point 3), as described in
the �Website online� description. However, this may have not been read by
the participant, or maybe not clear enough in the instructions. In the same
section we explain that in the description of the task we point out not to focus
on the timbre changes (point 4). Besides, we are not looking to get ratings
on a particular vibrato for instance, but on the overall performance of the
excerpts. Finally, it is true that the quality of singing and the naturalness of
the expression are di�erent concepts. A bad singer is natural although the
expression is natural since it comes from a real human voice. We asked to rate
the naturalness of the expression, so maybe it should have been made clear
that this concept involves all kind of singer qualities, whether these may be
good or bad.

Organization of the audio excerpts

1. I �nd it not optimal that the same audio sample comes twice in the 11
questions.

2. I realize it is not the same output because it has di�erent parameters in
the 6 version and di�erent in the next 6 versions.

3. I feel that the ears are tired of the same sounds and makes then less
succinct to the subtle di�erences.

4. I feel that the ears remember the con�guration of the �rst listen and tend
to compare the second same to the �rst one.

5. At least try to make them not repeat immediately after each other.



The fact that audio excerpts come twice is because we are using two expression
databases. The fact that this participant feels tired indicates that the test
may have been a little bit to long in this case and that for some participants
it may have been better to do it 5-10 minutes shorter and to have less song
repetitions with the two databases. Songs were presented randomly and in
some participant it may have been the case that the same song appeared twice
in a row.





Appendix D: Publications by

the author

Submitted

Umbert, M., Bonada, J., Goto, M., Nakano, T., & Sundberg, J. (Nov. 2015).
Expression Control in Singing Voice Synthesis: Features, Approaches, Evalua-
tion, and Challenges. IEEE Signal Processing Magazine, 32(6), pp. 55-73.

Article contributions to peer-reviewed conferences

Umbert, M., Bonada, J., & Blaauw, M. (2013). Generating singing voice
expression contours based on unit selection. In Stockholm Music Acoustics
Conference (SMAC), pp. 315-320, Stockholm, Sweden.

Pratyush, Umbert M., & Serra X. (2010) A look into the past: Analysis of
trends and topics in the Sound & Music Computing Conference. Sound and
Music Computing Conference (SMC), Barcelona, Spain.

Workshops

Umbert, M., Invited Workshop on the Synthesis of Singing. (2014) 40th In-
ternational Computer Music Conference (ICMC) and the 11th Sound & Music
Computing conference (SMC), Athens, Greece, September.

Umbert, M., Bonada, J., & Blaauw, M. (2013). Systematic database creation
for expressive singing voice synthesis control. In Proc. Int. Speech Com-
munication Association (ISCA), 8th Speech Synthesis Workshop (SSW8), pp.
213-216, Barcelona.

Theses

Umbert, M., Bonada, J., & Janer, J. (2010). Emotional speech synthesis for a
Radio DJ: corpus design and expression modeling. Master's thesis, Universitat
Pompeu Fabra, Barcelona, Spain.

Additional and up-to-date information about the author may be found at the
author's web page2.

2http://martiumbert.weebly.com
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