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Abstract

Online learning has altered music education remarkable in the last
decade. Large and increasing amount of music performing learn-
ers participate in online music learning courses due to the easy-
accessibility and boundless of time-space constraints. However,
online music learning cannot be extended to a large-scale unless
there is an automatic system to provide assessment feedback for
the student music performances.

Singing can be considered the most basic form of music perform-
ing. The critical role of singing played in music education cannot
be overemphasized. Automatic singing voice assessment, as an im-
portant task in Music Information Research (MIR), aims to extract
musically meaningful information and measure the quality of learn-
ers’ singing voice.

Singing correctness and quality is culture-specific and its assess-
ment requires culture-aware methodologies. Jingju (also known as
Beijing opera) music is one of the representative music traditions in
China and has spread to many places in the world where there are
Chinese communities. The Chinese tonal languages and the strict
conventions in oral transmission adopted by jingju singing training
pose unique challenges that have not been addressed by the cur-
rent MIR research, which motivates us to select it as the major mu-
sic tradition for this dissertation. Our goal is to tackle unexplored
automatic singing voice assessment problems in jingju music, to
make the current eurogeneric assessment approaches more culture-
aware, and in return, to develop new assessment approaches which
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can be generalized to other music traditions.

This dissertation aims to develop data-driven audio signal process-
ing and machine learning (deep learning) models for automatic
singing voice assessment in audio collections of jingju music. We
identify challenges and opportunities, and present several research
tasks relevant to automatic singing voice assessment of jingju mu-
sic. Data-driven computational approaches require well-organized
data for model training and testing, and we report the process of
curating the data collections (audio and editorial metadata) in de-
tail. We then focus on the research topics of automatic syllable and
phoneme segmentation, automatic mispronunciation detection and
automatic pronunciation similarity measurement in jingju music.

It is extremely demanding in jingju singing training that students
have to pronounce each singing syllable correctly and to reproduce
the teacher’s reference pronunciation quality. Automatic syllable
and phoneme segmentation, as a preliminary step for the assess-
ment, aims to divide the singing audio stream into finer granular-
ities — syllable and phoneme. The proposed method adopts deep
learning models to calculate syllable and phoneme onset proba-
bilities, and achieves a state of the art segmentation accuracy by
incorporating side information — syllable and phoneme durations
estimated from musical scores, into the algorithm.

Jingju singing uses a unique pronunciation system which is a mix-
ture of several Chinese language dialects. This pronunciation sys-
tem contains various special pronounced syllables which are not
included in standard Mandarin. A crucial step in jingju singing
training is to pronounce these special syllables correctly. We ap-
proach the problem of automatic mispronunciation detection for
special pronunciation syllables using a deep learning-based classi-
fication method by which the student’s interpretation of a special
pronounced syllable segment is assessed. The proposed method
shows a great potential by comparing with the existing forced
alignment-based approach, indicates its validity in pronunciation
correctness assessment.

The strict oral transmission convention in jingju singing teaching
requires that students accurately reproduce the teacher’s reference
pronunciation at phoneme level. Hence, the proposed assessment
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method needs to be able to measure the pronunciation similarity
between teacher’s and student’s corresponding phonemes. Acous-
tic phoneme embeddings learned by deep learning models can cap-
ture the pronunciation nuance and convert variable-length phoneme
segment into the fixed-length vector, and consequently to facilitate
the pronunciation similarity measurement.

The technologies developed from the work of this dissertation are
a part of the comprehensive toolset within the CompMusic project,
aimed at enriching the online learning experience for jingju music
singing. The data and methodologies should also be contributed to
computational musicology research and other MIR or speech tasks
related to automatic voice assessment.






Resumen

El aprendizaje en linea ha cambiado notablemente la educacion mu-
sical en la pasada década. Una cada vez mayor cantidad de estudi-
antes de interpretacion musical participan en cursos de aprendizaje
musical en linea por su fécil accesibilidad y no estar limitada por
restricciones de tiempo y espacio. Sin embargo, el aprendizaje mu-
sical en linea no puede extenderse a gran escala a menos que haya
un sistema automatico que proporcione una evaluacion sobre las
interpretaciones musicales del estudiante.

Puede considerarse el canto como la forma mas bésica de inter-
pretacion. No puede dejar de recalcarse el critico papel que desem-
pefia el canto en la educacion musical. La evaluacion automatica
de la voz cantada, como tarea importante en la disciplina de Recu-
peracion de Informacion Musical (MIR por sus siglas en inglés)
tiene como objetivo la extraccion de informacién musicalmente
significativa y la medicion de la calidad de la voz cantada del estu-
diante.

La correccion y calidad del canto son especificas a cada cultura
y su evaluacion requiere metodologias con especificidad cultural.
La musica del jingju (también conocido como opera de Beijing)
es una de las tradiciones musicales mas representativas de China y
se ha difundido a muchos lugares del mundo donde existen comu-
nidades chinas. Las lenguas tonales chinas y las estrictas conven-
ciones de transmision oral adoptadas en la formacién del canto del
jingju plantean dificultades singulares que no han sido tratadas en
la investigacion actual de MIR, lo que nos ha motivado para elegirla
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como la principal tradicion musical para esta tesis. Nuestro obje-
tivo es abordar problemas ain no explorados sobre la evaluacion
automatica de la voz cantada en la musica del jingju, hacer que
las propuestas eurogenéticas actuales sobre evaluacion sean mas
especificas culturalmente, y al mismo tiempo, desarrollar nuevas
propuestas sobre evaluacion que puedan ser generalizables para
otras tradiciones musicales.

El objetivo de esta tesis consiste en el desarrollo de modelos basa-
dos en datos de procesamiento de sefial de audio y de aprendizaje
automatico (aprendizaje profundo) para la evaluacion automatica
de la voz cantada en colecciones de musica del jingju. Definimos
sus retos y oportunidades, y presentamos varias tareas relevantes
para la evaluacion automatica de la voz cantada en la musica del
jingju. Los métodos computacionales basados en datos requieren
datos bien organizados para el entrenamiento y testeo del modelo,
y describimos en detalle el proceso de gestion de las colecciones de
datos (audio y metadatos de edicion). Después nos centramos en
los temas de investigacion de segmentacion automatica de silaba y
fonema, deteccion automatica de pronunciacion incorrecta y medi-
cion automatica de similitud de pronunciacién en la musica del
jingu.

Es de una extrema exigencia en el estudio del canto de jingju que
los alumnos pronuncien cada silaba cantada correctamente y repro-
ducir la calidad de pronunciacién que proporciona la referencia del
profesor. La segmentacion automatica de silaba y fonema, como
un paso preliminar para la evaluacion, tiene como objetivo dividir
la corriente sonora del canto en niveles mas especificos, a saber, la
silaba y el fonema. El método propuesto adopta modelos de apren-
dizaje profundo para calcular las probabilidades de inicio de silabas
y fonemas, y alcanza una precision de segmentacion similar a la
mas avanzada en el estado de la cuestion actual mediante la incor-
poracion en el algoritmo de informacion extra, como la duracion de
las silabas y los fonemas, estimada a partir de partituras musicales.

El canto del jingju utiliza un sistema de pronunciacion tnico que
combina diferentes dialectos de la lengua China. Este sistema de
pronunciacion contiene varias silabas con pronunciacion especial
que no estan incluidas en el mandarin estandar. Un paso crucial en
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el estudio del canto de jingju es la correcta pronunciacion de estas
silabas especiales. El problema de la deteccion automatica de la
pronunciacion incorrecta de caracteres de pronunciacion especial
es tratado mediante un método de clasificacion basado en apren-
dizaje profundo por el cual se evalua la interpretacion del estudi-
ante de un segmento silabico de pronunciacion especial. El método
propuesto muestra un gran potencial comparado con el método ac-
tual basado en alineacion forzada, indicando su validez para la eval-
uacion de pronunciacion correcta.

(Translated from English by Rafael Caro Repetto)
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Chapter ]. .

Introduction

We live in a world with explodingly increasing data and infor-
mation. The Information and Communication Technologies (ICT)
help us assimilate, organize, interpret, interact, consume and gen-
erate these data and information, enhancing the experience with
knowledge of the world. The technologies keep developing to fol-
low the fast-evolving sociocultural context, in which we build tools
and devise new methods.

Music is a necessary part of many people’s lives. Teaching and
learning music is not only a hobby but a professional commitment
of many people. The knowledge-learning experience has been up-
dating rapidly in the past few years along with the fast developing
ICTs. A large amount of amateur or professional learners are con-
verted into the online education environment, thus benefited from
its easy-accessibility, various course content, and most importantly,
the automatic practice assessment feedback which is used to keep
the learners aware their shortcomings and gets their skill improved.
Music performance, as a type of knowledge and skill, although dif-
ferent and more abstract than other subjects. Its online learning re-
quires automatic tools to adapt to such context and widely diverse
learners.

Music Information Retrieval (MIR) is a specialized field within
the music technology, in which people invent and develop methods
and tools to analyze, synthesize, understand and represent the mu-
sic. It aims to explain the music concepts at various levels and
build computational models for the human music perception and
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understanding aspects, such as melody, rhythm, timbre, harmony,
structure, mood. Automatic music performance assessment in MIR
aims to extract perceptual and semantic representations in music
performance recordings and devise computational models for the
performance assessment.

Music has many elements. The singing voice is one of those
elements which plays the central role in songs, and it’s the main at-
traction for listeners. The pronunciation aspect of the singing voice
is essential in many music traditions as it conveys the semantic
information of the lyrics and the aesthetic pleasure to the listen-
ers. This work takes the MIR point of view dealing with automatic
singing voice assessment and focusing on the pronunciation aspect:
to segment pronunciation meaningful singing voice events, extract
pronunciation meaningful representations and develop computa-
tional models to detect the mispronunciation and measure the pro-
nunciation similarity.

The work presented in this dissertation lies in the automatic
music performance assessment subject of the MIR field, aiming at
domain-specific analysis and assessment approach within a culture-
specific context. We now reach the context and motivation of the
thesis. The scope and objectives are then defined. Finally, we de-
scribe the organization and thesis outline.

1.1 Context and relevance

In the last two decades, many new methods, models and algorithms
have been developed in the MIR community, which significantly
promoted the advancement of the fields of sound and music com-
puting, and music technology. Initially, the MIR research has been
restrained to eurogeneric music. Not until recently, we witness
an increasing amount of researchers who devote themselves to the
MIR research of non-eurogeneric music. The CompMusic project
plays an essential role in boosting this trend.

CompMusic (Computational Models for the Discovery of the
World’s Music) is focused on the advancement in the field of MIR
by approaching new challenges from a culture-specific perspec-
tive. CompMusic aims to develop computational models for sev-
eral non-western music traditions and in the meantime, advance the
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overall development of MIR. CompMusic studies five music tra-
ditions: Jingju (also known as Beijing opera, China), Hindustani
(North India), Carnatic (South India), Turkish-makam (Turkey),
and Arab-Andalusian (Maghreb). The current information tech-
nologies in MIR field are typically targeting to solve the problems
emerging from the western music. However, a wide range of music
traditions other than western music can bring many new challenges.
The motivation behind CompMusic is to face these new challenges
by studying the five non-western music traditions, and to develop
MIR technologies to embrace the richness of the world’s music.

CompMusic further aims to understand music both perceptually
and semantically. The typically MIR methods revolve around the
audio-centric idea, which parses the incoming audio into high-level
music events or concepts, such as onsets, notes, beats, melodies and
chords. Although all music traditions share some common con-
cepts, each one has its unique perceptual or semantic attributes that
require different interpretations. Additionally, music is encapsu-
lated in a complex sociocultural and historical context, which af-
fects deeply the way of how we interpret it. Many attributes of the
five non-western music traditions studied in CompMusic project
cannot be explained by the audio or the western music knowledge
themselves. Thus, a deeper understanding can only be achieved by
considering additional culture-specific information.

Delving into the problems brought by diverse music traditions
will not only help develop technologies for the specific tradition,
but also will extend the scope of the existing MIR technologies,
making them more adaptable and robust, and eventually open a new
path in the MIR research field. Delving into these problems can
also break off the limitation of current MIR technologies by posing
new issues.

CompMusic focuses on the extraction of the features from mu-
sic audio recordings related to melody, rhythm, timbre, pronun-
ciation and on the perceptual and semantical analysis of the con-
textual information of these recordings. The goal is to identify
and describe the culture-specific music perspective and to develop
perceptual and semantical meaningful computational models with
them. The research in CompMusic is data-driven, hence it builds
upon research corpora. The types of data collected for the corpora
of each music tradition are mainly audio recordings, then accom-
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panied with metadata, scores, lyrics, etc. To construct the research
corpora is one of the main goals of CompMusic project.

The work presented in this dissertation has been conducted
in the context of the CompMusic project, focusing on automatic
singing voice pronunciation assessment for jingju music from a
data-driven perspective using signal processing and machine learn-
ing methodologies. This dissertation assimilates the aimings and
context of the CompMusic project as applied to automatic singing
voice analysis and assessment. By facing the challenge and build-
ing the culture and domain-specific singing voice analysis and as-
sessment models, we also acquire a better understanding the ex-
isting MIR tools, and would eventually improve their capabilities.
The development of the newer algorithms, models and technologies
allow enriching the current knowledge of world’s music and pro-
vide a novel sociocultural and musical perceptual insight. Such a
work in this dissertation is relevant since we push the boundaries of
automatic singing voice assessment to address the new challenges
of different music traditions in the world.

1.2 Motivation

Singing can be considered the most basic form of music-performing
and making since it doesn’t require any external musical instru-
ment. The important role of the singing played in the music educa-
tion and performing cannot be over-emphasized. Since everyone
can practice singing without an instrument, all the music aspects —
melody, rhythm, timbre, dynamic, pronunciation, expression and
so on can be studied by singing and also internalized by singers.

Singing is an act of producing musical sounds by voice using
augmented speech tonality, thythm, pronunciation and various vo-
cal techniques. The music of singing contains events and structures
organized in time, in other words, it’s an event-based occurrence.
Thus segmenting the musical events is an important task in con-
ducting singing analysis and assessment. The automatic segmenta-
tion, analysis and modeling of these singing events can help us to
elaborate perceptual and semantical meaningful measures for the
singing voice assessment.

Musical events are often organized in a hierarchical way which
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further forming the musical structure. Estimating event onsets and
boundaries related with the singing is indispensable for the fur-
ther analysis and assessment from a microscopic perspective. All
the melodic, rhythmic or lyrical phrases in singing voice are es-
tablished upon the basic musical or articulative event, such as the
musical notes, singing phonemes, syllables and words. Each of the
events can be estimated in an isolated way. However, due to the hi-
erarchical structuring of them, a hierarchical estimation approach
needs to be exploited as an important MIR task.

Singing voice can be perceptually appreciated from several mu-
sical or articulative dimensions (pitch, rhythm, timbre, dynamic,
expression, pronunciation). Some of them are musically well-
defined and can be assessed by relatively objective measures, such
as melody, rthythm, dynamic. Others are more abstract and sub-
jective due to the natural character of these dimensions. To sing
in an accurate pitch and rhythm, have a pleasurable dynamic vari-
ation and be expressive are some high-quality singing traits com-
monly shared with many music traditions. However, due to the
specificity of the Chinese tonal language and the stringency of the
mouth and heart teaching method (174402 #%, oral teaching), jingju
singing education is extremely demanded in reproducing accurately
the teacher’s singing pronunciation at syllable and even phoneme
level.

Tools developed for automatic singing voice assessment can
be useful in a large number of applications such as computer-
aided singing teaching, enhanced navigation of music collections
and content-based music retrieval. The target users of these tools
extend across professional singers who pursue to convey perfect
singing details, amateur singing students who seek to have a profes-
sional assessment feedback to improve their singing abilities, musi-
cologists who can use these tools for visualizing some singing per-
ceptual concepts and music streaming services who can use these
tools to align the lyrics to the audio.

Due to the artistic nature of the music, music performance
teaching should be done individually regarding the different skill
level of the students, hence it’s a time-consuming and resource-
intensive work. A music teacher is only able to tutor a limited num-
ber of students in a class. However, with large and ever-growing
students participating in online music performance courses, the
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limited teacher human power cannot meet the requirement of such
large amount of audience. Thus, automatic assessment and feed-
back need to be provided to achieve an effective learning experi-
ence in a scalable way.

The automatic assessment of singing voice can be conducted on
different singing events granularities (entire song, melodic phrases,
lyrical lines, onsets, syllables, phonemes) and on various dimen-
sions (pitch, rhythm, dynamic, timbre, pronunciation, expression).
Further, the assessment can be template-based, where the student’s
singing is compared by measuring the similarity with a reference
singing; or non-template-base, where the student’s singing is as-
sessed by a predefined model. In the template-based case, there is
a need to develop perceptual relevant and content-based similar-
ity measure; and in the non-template-based case, it necessitates to
define the assessment model.

As specified earlier, a meaningful singing voice assessment
model can be better achieved by taking into account the context of
the music tradition - incorporating high-level musical knowledge
into the assessment of the singing voice on the culturally mean-
ingful event granularities and musical dimensions. This requires
identifying unique challenges for the current MIR technologies and
combining information from both raw data sources and high-level
musical knowledge to build computational models.

With a unique spoken language system and a strict convention
of oral transmission, jingju music singing poses a big challenge to
the state of the art in automatic singing voice assessment. Several
automatic singing voice assessment tasks in jingju music singing
have not or very few studied before. With such unique character-
istics, studying the automatic singing voice assessment for jingju
music can help to pinpoint the limitations of current approaches,
improve their performance, and eventually open up new paths for
further research on this topic. As mentioned earlier, the gap be-
tween the current state of the art capacities of MIR technologies
and the need of the multicultural world is huge. This applies as well
to jingju music, in which the current methods come short of using
its culture-specific knowledge and restrict the assessment perfor-
mance. Being well-established music tradition in China and with
a large amount of audience around the world, jingju music is an
ideal candidate to develop novel automatic singing voice assess-



1.3 Score and objectives 7

ment methods.

1.3 Score and objectives

The work presented in this dissertation on automatic singing voice
assessment comes to the crossroad of audio signal processing, ma-
chine learning, musicology and the application of online music ed-
ucation. Automatic singing voice assessment can be a very broad
topic and may extend to many detailed sub-topics. Thus, it is nec-
essary to define the scope of the research in this dissertation and
elucidate the research questions and objectives. The objectives of
this research are listed below:

* To identify challenges and opportunities in automatic singing
voice assessment of jingju music and formulate pertinent auto-
matic singing voice assessment problems. Convert musical def-
initions and concepts into engineering formulations compliant
with computational modelling using signal processing and ma-
chine learning approaches.

* To build annotated jingju singing voice audio and symbolic col-
lections focusing on automatic pronunciation assessment for the
computational model training and testing.

* To construct culture-aware computational models for automatic
jingju singing voice analysis and assessment.

* To develop novel machine learning models for the music event
segmentation, pronunciation representation and assessment of
jingju singing voice.

» To explore the application of the specific computational models
to western music culture with the application of automatic solfége
assessment.

The final goal of this dissertation is to devise culture-specific
representations for jingju singing voice events, and to use these
representations for the automatic assessment modelling. The fo-
cus of the research is on jingju music singing voice, while we also
explore application to western solfége assessment problem.
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Reference singing audio (teacher)

I . |‘| I || Mispronunciation detection

Singing event
Imitative singing audio (student) segmentation

Pronunciation similarity
St ”’ measurement

Figure 1.1: Example of automatic singing voice assessment from the ref-
erence and imitative singing audio recordings, estimating singing event
segments, detecting the mispronunciation and measuring the pronuncia-
tion similarity. The methods in this dissertation follows the similar dia-
gram, with the audio recordings as the major information source.

This dissertation investigates data-driven signal processing and
machine learning approaches for automatic assessment of singing
voice audio recordings. An audio recording is thus the primary
source of information on which the computation models are built.
Figure 1.1 shows an example of such diagram, presenting three as-
sessment tasks - singing event segmentation, mispronunciation de-
tection and pronunciation similarity measurement all adopt the au-
dio recordings as the major information source. Other musical data
sources such as musical scores, lyrics and editorial metadata are
secondary, however, used in some tasks. The approaches adopted
in this dissertation are mainly audio signal processing and machine
learning (deep learning and probabilistic graphical models), inves-
tigating supervised learning methods to develop automatic singing
voice assessment models.

This dissertation works toward to bring knowledge related to
jingju music teaching and jingju music language to the methods.
We aim to build knowledge-informed machine learning methods
so that the extracted representations of the musical events and com-
putational models are culturally relevant. High-level knowledge is
taken as the determinants in the task and computational model de-
signing.

The data-driven methods adopted in this dissertation require
good quality and real-world data collections. We carefully col-
lected, annotated and compiled the research datasets in align with
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the goal of building assessment models. The algorithms are devel-
oped to perform on the real world music teaching scenarios — on
the singing audio recordings of the actual classroom teaching.

The investigation in this dissertation is focused on developing
novel automatic singing voice assessment methods and technolo-
gies, which are based on well-studied musicological knowledge of
jingju music culture. Although the data and methods presented can
eventually be adopted by musicologists for large-scale corpus anal-
ysis, the work does not aim to make any musicological contribu-
tions.

The musicological and music teaching knowledge adopted in
this work is borrowed partly from the consultation with jingju per-
forming teachers, students and jingju musicologists. The assess-
ment models developed in this dissertation are by no means a re-
placement of expert music teachers, but only serve within the sup-
port of music teachers, musicologists, and as a guidance to jingju
singing learners. In addition to developing novel approaches for
automatic singing voice assessment, this dissertation aims to an-
swer the following research questions:

1. How do existing automatic music performance assessment
methods developed within different musical context extend to
jingju music? What limitations can we pinpoint from the cur-
rent state of the art?

2. We assume the high-level musicological and music teaching
knowledge is useful for defining research problems, tasks and
helping design computational models. What kind of high-level
knowledge are insightful? How and to what extent can such
knowledge be used to achieve the goal?

3. It is hypothesized that music performance assessment is con-
ducted on various musical or articulative event granularities and
different musical dimensions. Which event granularities and
which musical dimensions can bring new and unique challenges
to this research topic, and in return, to generalise the existing
state of the art methods?

4. What are machine learning methods or deep learning architec-
tures which are able to learn the musical dimension-relevant rep-
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resentations on the variable-length musical events? What kind
of side information is useful for the singing voice event seg-
mentation and assessment? How can these side information be
included in the machine learning framework?

5. It is assumed that the methods devised in this work are culture-
specific. Generally, it is desirable to have a generalised method
that can be transferred to other music cultures. How can the
methods proposed in this work be adapted to a different music
culture?

In general, this dissertation identifies the challenges and oppor-
tunities in automatic singing voice assessment of jingju music, for-
mulates several assessment problems and tasks, tackles the issues
with constructing datasets, and finally focus on the tasks of singing
events segmentation, mispronunciation detection and pronuncia-
tion, overall quality similarity measurement. The scope of this dis-
sertation within CompMusic is to support singing voice assessment
methods and tools to be a part of the inclusive set of content-based
analysis approaches.

One of the main advocacies of the CompMusic project is open
and reproducible research — openly sharing ideas, objectives, data,
code and experimental results. All the data, code and experimen-
tal results presented in this dissertation will be openly accessible
via open source platform (Github, Zenodo) under open and non-
commercial licenses.

1.4 Organization and thesis outline

The dissertation has eight chapters. Each chapter is written on a
main topic of the thesis and is aimed to be self-contained unit with
introduction, main content and summary. After an introduction of
the dissertation in Chapter 1, Chapter 2 presents an overview of the
jingju music background and a state of the art review of the related
research topics. Chapter 3 is engaged in elucidating several new au-
tomatic singing voice assessment problems in jingju music. Chap-
ter 4 discusses the jingju music research corpora and mainly the a
cappella singing voice datasets that will be used for several singing
voice assessment tasks. Chapter 5, Chapter 6 and Chapter 7 are
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the major chapters of this dissertation presenting the works of au-
tomatic singing syllable and phoneme segmentation, syllable-level
mispronunciation detection and phoneme-level pronunciation sim-
ilarity measurement. Chapter 8 presents applications, conclusions
and future works. The links of external resources such as data, code
are listed in Appendix D.

Chapter 2 provides the necessary music and technical back-
ground for understanding the work presented in the thesis. We es-
tablish a consistent terminology for jingju music concepts. We de-
scribe pronunciation related concepts in jingju singing. We present
an overview of the state of the art for the automatic singing voice
pronunciation assessment problem tackled in the thesis. And fi-
nally we describe the technical concepts necessary to understand
the algorithms and methods presented in this thesis.

Chapter 3 presents the attempts to open up the research topic of
automatic singing voice assessment. We first elucidate the impor-
tant role of pronunciation played in jingju singing training. Then
we introduce several relevant research problems, with a review of
the state of the art for jingju music or other music traditions in the
context of CompMusic project. We present the background of all
the relevant research problems. We formulate the thesis problems
of syllable and phoneme segmentation, mispronunciation detection
for special pronunciation, and pronunciation similarity measures at
phoneme level.

In Chapter 4, we compile and analyse the research corpus and
test datasets for the research of this dissertation. We will discuss
the corpus building criteria and evaluation methodologies. We de-
scribe the corpus and the test datasets, emphasizing the research
problems and tasks relevant to this thesis. We describe a set of
corpus design criteria and methodologies, then use them to eval-
uate the jingju a cappella singing voice corpus. We present both
corpus-level and test dataset-level musically meaning data analy-
sis and visualization. We mainly emphasize on presenting a scien-
tific approach for corpus building and the evaluation of its coverage
and completeness. Apart from the corpus description, the musically
meaningful data analysis and visualization is another contribution
of this chapter. Finally, the research corpus and test datasets pre-
sented in this chapter will be made available for further jingju MIR
research.
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Chapter 5 aims to address the automatic syllable and phoneme
segmentation task within the context of jingju music, presenting
several methods and an evaluation of these methods. The prob-
lem is formulated in two ways — duration-informed lyrics-to-audio
alignment and duration-informed syllable or phoneme onset de-
tection. Several approaches are proposed to address the problem.
We present a detailed description of HSMM-based segmentation
method and the proposed onset detection-based method for syllable
and phoneme segmentation. Finally, we present an evaluation of
HSMM-based alignment method and the proposed onset detection-
based method and explore various deep learning architectures to
improve the onset detection-based method.

Chapter 6 aims to address the automatic mispronunciation de-
tection task within the context of jingju singing, presenting sev-
eral methods and an evaluation of these methods. The problem is
formulated as building discriminative machine learning models to
classify binarily the singing syllables into mispronounced or cor-
rectly pronounced class. Several neural network architectures are
experimented to address this problem. We present a description
of the forced alignment-based baseline method and the discrimi-
native model-based method for mispronunciation detection. We
present an evaluation of the forced alignment-based method and the
discriminative model-based method, and explore two deep learn-
ing architectures intending to improve the discriminative detection
model.

Chapter 7 aims to address the pronunciation and overall quality
similarities measurement task in the context of jingju singing train-
ing, presenting several methods and an evaluation of these meth-
ods. The problem is formulated as building machine learning mod-
els to perform phoneme embedding regarding pronunciation and
overall quality aspects. Several neural network architectures are
experimented to address this problem. We present a description of
the classification model for phoneme embedding, and to explore the
siamese network model for the same purpose. Finally, we present
an evaluation of the classification model and the siamese model.

Chapter 8 presents some of the applications, conclusions, and
the pointers for future work.

To our knowledge, this thesis is the first attempt at singing voice
pronunciation assessment of jingju music. By tacking the problems
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presented in this thesis, we aim to develop useful tools and algo-
rithms for automatic singing voice assessment of jingju music. In
this process, we also hope to obtain a better understanding into the
nature of pronunciation in jingju singing, and contribute to improv-
ing the state of the art.






Chapter 2 .

Background

This chapter provides the necessary music and technical back-
ground for understanding the work presented in the thesis. The
main aims of this chapter are:

1. To establish a consistent terminology for jingju music concepts.
2. To describe pronunciation related concepts in jingju singing.

3. To present an overview of the state of the art for the automatic
singing voice pronunciation assessment problem tackled in the
thesis.

4. To describe the technical concepts necessary to understand the
algorithms and methods presented in this thesis.

2.1 Jingju music

Jingju (also known as Beijing or Peking opera) is the most rep-
resentative form of Chinese opera which assimilates the essence
of various Chinese opera forms such as (il (Anhui opera), &
i (Kun opera), %1% (Qin giang) and & i (Gao qiang). It arose
in the late 18th century and became fully developed in the mid-
19th century. Now it is regarded one of the cultural treasures in
China and inscribed in the UNESCO representative list of the in-
tangible cultural heritage of humanity. Jingju is widely practised

15
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over mainland China, Hong Kong, Taiwan, and overseas countries
where there is Chinese communities presence. Major jingju per-
forming troupes are located in big mainland China cities such as
Beijing, Tianjin and Shanghai. A significant amount of jingju mu-
sicological literature can be used to formulate MIR problems. The
presence of a large audience and musicological literature are an im-
portant motivation to carry a computational research for this music
culture.

This section describes the focus of this dissertation — jingju mu-
sic culture. The emphasis is on singing concepts in this music cul-
ture. This section is not a comprehensive introduction to this cul-
ture but is aimed to be sufficient to support the following chapters
of the dissertation.

We use simplified Chinese characters (computer encoding:
GB2312) to introduce jingju terminologies for the first time in this
dissertation. We also introduce the pinyin, the romanization sys-
tem of Mandarin Chinese, for each terminology. Only the pinyin
form of the terminology will be used throughout the dissertation.

2.1.1 A synthetic art form

Professor Li in National Academy of Chinese Theatre Arts
(NACTA) said “The three basic elements of Chinese opera are Hf
(pinyin: qu, tune), F£ 2 (pinyin: chengshi, conventions — a strict
set of rules) and UK (pinyin: xu ni biao yan, virtual acting).
These three elements are ultimately aiming to support X% (pinyin:
xi), which can be approximately understood as ‘entertainment’.”
Of the three elements, “tune” is the most important one, which rep-
resents all the musical dimensions of the jingju music. However,
this representation is not only limited to music but constructs the
whole skeleton of the jingju performing.

Jingju is a synthetic art form which includes four disciplines
— P& (pinyin: chang, singing), & (pinyin: nian, declamation),
i (pinyin: zuo, physical acting) and 4] (pinyin: da, acrobatics).
Singing is directly related to tune, and the other three disciplines are
integrated together by the music and rhythm of jingju performing.

The jingju technical training for performers consists in becom-
ing proficient of the conventions of the four disciplines as men-
tioned earlier which are established by tradition. The jingju per-
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formers use these conventions to construct characters and convey
stories. For example, they use singing conventions to express the
character’s emotional state. The jingju performance is codified
through the conventions which are not aimed at hinder the creativ-
ity and artistry. The appreciation of the beauty of jingju is to see
how the performers are conveying the conventions. In jingju train-
ing, a performer will have more creativity if she/he can master more
conventions.

2.1.2 Singing and instrumental accompaniment

“In the aural performance of Beijing opera, two types of sounds are
actually heard: song and speech vocalized by the stage performers,
and instrumental music played by the musicians of the orchestra.
The voice of the Beijing opera performer, is the featured component
of aural performance.” — Elizabeth Wichmann (Wichmann, 1991).

In a jingju play, the sections where singing occurs are g Bt
(pinyin: chang duan, literally translated as singing section). The
closest form to chang duan in Western opera is “aria”, which sig-
nifies “any closed lyrical piece for solo voice (exceptionally for
more than one voice) with or without instrumental accompaniment,
either independent or forming part of an opera, oratorio, cantata
or other large work.” The difference between chang duan and aria
is that latter is a self-sufficient piece conceptually, whereas chang
duan is formulated in a dramatic continuum, although it is usually
performed and recorded individually (Repetto, 2018).

Jingju chang duan is started actually before the performer starts
to sing. The declaration of the starting point of a chang duan is {4
(pinyin: jiaoban, literally translated as “calling the banshi”’). Ban-
shi is the rthythmic framework concept that we will introduce it in
Section 2.1.7. Jiaoban is included in every chang duan of the com-
mercial recordings and teached in conservatory jingju performing
classes. The percussion pattern {33k (pinyin: zhu tou) is to signal
the end of a chang duan (Mu, 2007).

Jingju instrumental ensemble is divided into two sections — 3
3 (pinyin: wenchang, literally translated as “civil scene”) and I,
3 (pinyin: wuchang, literally translated as “martial scene”). Wen-
chang is the orchestral accompaniment, and wuchang is formed
by percussion instruments. There are five basic percussion instru-
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ments — ¥ )% &% (pinyin: danpigu, drum), #% (pinyin: ban, clap-
pers), B&%K (pinyin: naobo, cymbals), K4 (pinyin: daluo, big
gong), /N8 (pinyin: xiaoluo, small gong). The first two instru-
ments are played normally by the same person, so they have a com-
bined term — bangu. The musician who plays the bangu is called =]
&% (pinyin: si gu), literally translated as “the man who is in charge
of the bangu”. The primary functions of wuchang are playing %% &%
2% (pinyin: luo gu jing, rhythm patterns) and supporting the rhyth-
mic aspect of the actor/actress’ performing.

The main instrument of wenchang is 5{ # (pinyin: jinghu).
Having loud volume, and very bright and penetrating sound, jinghu
1s the aural representative of jingju sound. The musician who plays
jinghu is called 32l (pinyin: qin shi, master instrumentalist). The
major role played by qinshi is supporting the jingju melody. Tra-
ditionally, qinshi is the musician who has the closest collaboration
with the performer. Jingju line sustains the singing line to form an
uninterrupted melody stream, which impels the singing (Repetto,
2018).

The other instruments in wenchang are H % (pinyin: yueqin),
— 5% (pinyin: sanxian), 5{ . # (pinyin: jingerhu), Bt (pinyin:
ruan), "1 it (pinyin: zhongruan) and Kt (pinyin: daruan). They
all play the same melody as the jinghu line in the same or different
octave, and in a heterophonic structure. The performer, sigu and
qinshi take turns in coordinating the jingju performing tempo.

2.1.3 Lyrics structure

The primary function of the lyrics in jingju is telling stories. Music
structure in jingju is closely related to lyrics structure. The tune se-
quences in jingju are inherited from the creation principle in poetry
of Tang dynasty (618 - 907 AC), that the melody and poetic struc-
ture are taken from the preexisting poems or songs, and new lyrics
are arranged to fit in that schema (Repetto, 2018). The new lyrics
are labelled with the name of the original poem or song, so that the
performer knows how to sing the tune. The label of the original
poem or song is called {i}# (pinyin: qu pai, literally translated as
tune label). Different qupai have different forms which represent
not only different melodies but also a different number of melodic
lines and a different number of characters in each line. This kind
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of lyrics structure is called £ 7] (pinyin: chang duan ju, literally
translated as long and short lines). A jingju chang duan consists of
a sequence of these chang duan ju.

The basic structure of lyrics stanza consists of two symmetrical
lines which have the same number of characters. The most common
term in jingju circles for describing this two symmetrical lines is I
") (pinyin: shang xia ju, literally translated as upper and lower
lines). The most common English terminology for shang xia ju
is couplet for the stanza, opening line for upper line and closing
line for lower line (Repetto, 2018). A standard line has either 7
or 10 characters, grouped in three sections -2 +2+3 or3 +3 +
4. These sections, namely 12 (pinyin: dou), are the basic semantic
and rhythmic units (Wichmann, 1991).

The lyrics structure mentioned above can be modified in actual
singing. A typical case is the variation of the number of characters
in each line, for example, # % (pinyin: chenzi), the characters do
not have semantic meaning, but serve to help the performer pro-
long the singing of certain nasal or vowel sounds. Another form of
increasing the number of characters is £ (pinyin: duozi), which
inserts semantic units containing 3 or 4 characters into the line.

2.1.4 Linguistic tones and pronunciation

It is commonly assumed that the linguistic intonation of a tonal
language singing needs to agree with its melody to a certain extent
to make sure the intelligibility. For jingju which is sung by using
mainly Chinese Mandarin language and various dialects, its music
features are related to the dialects. In other words, The Chinese
dialects used in jingju singing determines its melody characteristics
to a certain extent.

In jingju circles, it exists an expression to describe the relation
between linguistic tones and melody — 1F Ji# [ (pinyin: zi zheng
qiang yuan, literally translated as “characters should be straight,
tune should be round.”). This expression can be understood as that
the performer needs to attain both the intelligibility of the lyrics
and the smooth sounding of the melody. The most critical prob-
lem to be avoided in jingju singing is 8] (pinyin: dao zi, literally
translated as upside-down character), which means that the lyrics is
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misunderstood because the performer mispronounces certain char-
acters.

Most of the jingju scholars agree in that jingju singing uses
mainly two Chinese dialects — 1t 5T % (pinyin: Beijing yin, the
dialect of Beijing) and ] % (pinyin: Huguang yin, the dialect
of Huguang). Some scholars consider that jingju singing also uses
a third Chinese dialect — H JI/#J (pinyin: Zhongzhou yun, literally
translated as rhymes from Zhongzhou). All three dialects share the
same tone categories Ff1° (yin ping), FHF* (yang ping), _I- (shang)
and % (qu), although the pitch contours of the same characters re-
alized in the same categories are different for the three dialects.

The three dialects result in the complexity of the pronunciation
in jingju singing. Such complexity influences the linguistic tones
as well as the pronunciation of the syllabic initials and finals. The
standard Chinese used in Mainland China — ¥ i 1/ (pinyin: pu
tong hua), very close to Beijing yin, is taken as the reference for
jingju pronunciation. All the special pronunciations different from
the reference putonghua can be divided into two categories — 2 [4]
“7* (pinyin: jiantuanzi, literally translated as pointed and rounded
characters) and |- 1% (pinyin: shangkouzi, literally “up to the
mouth” characters). Jiantuanzi has two sub-categories of charac-
ters — 237 (pinyin: jianzi) and 4] (pinyin: tuanzi), which are
separated by the fricative and affricative consonants of a syllable.
When studying a new play, jingju performer should learn which
characters belonging to tuanzi in putonghua should be pronounced
as jianzi. The jian tuan zi qualities are considered extremely impor-
tant for both listening comprehension and aesthetic effect (Repetto,
2018). Shangkouzi are generally a set of characters of which the
pronunciation is different from the standard Mandarin, adopting
from southern Chinese dialects — Huguang yin and Zhongzhou yun.
By shangkouzi and converting certain tuanzi to jianzi, the language
of jingju is made more appealing to speakers of the diverse range
of dialects throughout China than is Mandarin alone (Wichmann,
1991). Jiantuanzi and shangkouzi are one of the main study focuses
of this dissertation. Thus a more specific extended description will
be presented in Section 2.2.3 and Section 2.2.4.
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2.1.5 Role-types

174 (pinyin: hang dang), commonly translated as role-type, is
a colloquial term for the “acting profiles” of a jingju perform-
ing character. There are four role-types in jingju — 4 (sheng), H.
(dan), # (jing) and T (chou), which respectively have their spe-
cific styles of performing, speaking, singing, costume, and make-
up. These oral and visual means of expression define the gender,
approximate age, social status, profession, personality and singing
style (Yung, 1989). Due to the various and complicate conventions
that each role-type possesses, every performer has to specialize one
role-type and practice these conventions along the performing ca-
reer.

Table 2.1: Jingju four role-types and their sub role-types. The role-types
with * superscript are the main research objects of this dissertation be-
cause singing is their major discipline.

Main role-types ‘ sheng dan jing chou
laosheng” qingyi" tongchui wenchou
Sub role-types xiaosheng 111;1:)1((11:;1 jiazi wuchou
wudan

Sheng role-type is specialized in the performance of male char-
acters, whereas dan role-type is specialized in that of female char-
acters. Jing role-type depicts the male characters with an exagger-
ated temperament. Chou role-type is used for male or female comic
characters (Repetto, 2018). The most obvious difference between
the male’s voice and the female’s voice is the timbre. Male role-
types sing with chest voice, while female role-types use falsetto.
Regarding the singing pitch register, there is a displacement of the
pitch range in the female singing to a higher region, where female
sings a fourth to an octave higher than male singing. Regarding
melodic contours, female singing is usually more melismatic than
male singing (Wichmann, 1991).

2 'E (pinyin: laosheng) role-type portrays adult or old male
characters, which is also the representative of male singing. All
textbooks use the examples of laosheng role-type to explain ele-
ments of jingju music system. Two representative sub role-types
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in dan are 754X (pinyin: qingyi) and {£ H. (pinyin: huadan). The
former is most representative role-type of female singing, and gen-
erally used for building female characters from a higher social
classes. The latter is used for building female characters with a
playful personality.

We list the major jingju role-types in Table 2.1, where laosheng
and qingyi are the main research objects of this dissertation since
singing is their major discipline.

2.1.6 Shenggqiang

There is no agreed definition of jingju 7 ¥ (pinyin: shengqiang)
between scholars. Some of them define shengqgiang as tune families
of jingju music, meaning a tune which has been evolved into differ-
ent versions in the performing and transmission process throughout
the history. Although these tunes share certain tonal, modal, and
dramatic function, they tend to differ from each other in metrical,
rhythmic, and melodic details (Yung, 1989). The shengqiang defi-
nition of Elizabeth Wichmann deviated from tune family, and char-
acterize a group of related shengqgiang as system. Each shengqiang
system is identified by its unique patterns of modal rhythm, song
structure, melodic contour and construction, and keys and cadences
(Wichmann, 1991).

Jingju contains mainly eight shengqiang — V4 J¢ (xipi), —
¥ (erhuang), /% V4 J% (fanxipi), x — 3% (fanerhuang), VY-V
(sipingdiao), B4 #f T (nanbangzi), 1= & T (gaobozi) and X JiF
(chuiqiang). Two shengqgiang with the most significant presence
in jingju arias are xipi and erhuang. Fanxipi and fanerhuang are
respectively first degree shifted versions of xipi and erhuang. Ad-
ditionally, shengqiang is related to the emotional content of the
aria. For example, Wichmann describes the emotional content of
erhuang as dark, deep, profound, heavy and meticulous, and xipi as
sprightly, bright, clear, energetic, forceful, purposeful (Wichmann,
1991).

2.1.7 Banshi

Ban means the percussion instrument clappers used in jingju
wuchang. Banshi can be understood as the jingju rhythmic patterns.
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There are four types of banshi in jingju — —#X—HR (one ban and
one eye), — M — ¥ (one ban and three eyes), 5 # JGHR (ban but no
eye) and JGH JCHR (no ban and no yan), where ban and eye indicate
respectively accented and unaccented beats. The first three banshi
are metred types, and usually notated in jianpu scores correspond-
ingly with the time signatures 2/4, 4/4 and 1/4. The last is assigned
to FUBX (pinyin: sanban), meaning unmetred type. Wichmann de-
scribes that each banshi has a characteristic tempo, is associated
with certain characteristic melodic tendencies, and is perceived as
appropriate for certain dramatic situations (Wichmann, 1991).

Table 2.2: Jingju metred banshi.

Tempo Banshi Time signature Melodic tendencies

slow manban 4/4 melismatic
zhongsanyan 4/4
kuaisanyan 4/4
yuanban 2/4
erliu 2/4
liushui 1/4

fast kuaiban 1/4 syllabic

The primary or original banshi is called J& 8 (pinyin: yuan-
ban), with time signature 4/4. When it is transformed into 1/4, the
corresponding banshi is 4% (pinyin: kuaiban), and the tempo is
also accelerated. When yuanban is transformed into 4/4, the result-
ing banshi is 2 #X (pinyin: manban), meaning slow banshi. When
yuanban is transformed into manban, not only the time duration
of syllables are extended, but also the number of ornamentations
within each syllable are increased. However, when yuanban is con-
verted to kuaiban, the singing style becomes almost syllabic — one
beat for one syllable.

—HR (pinyin: sanyan, literally translated as three eyes) is an-
other name for manban. Sanyan banshi can be divided into three
sub-banshi — 2 —Hl (pinyin: mansanyan, equal to manban), "
— R (pinyin: zhongsanyan), #t K (pinyin: kuaisanyan). The
tempo of kuaisanyan is faster than zhongsanyan, and they both
faster than mansanyan but slower than yuanban. Except for yuan-
ban, the banshi of time signature 2/4 category also contain — /N
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(pinyin: erliu, literally translated as two six) because their couplet
has six accented beats. In terms of shengqiang xipi, there is an-
other metred banshi — i 7K (pinyin: liushui, literally running wa-
ter) which uses 1/4 time signature, is faster than yuanban but slower
than kuaiban. We list major jingju metred banshi in Table 2.2.

Three main unmetred banshi are ‘F#X (daoban), [F] ¥ (huilong)
and 5¢:k (kutou). Daoban is the first melodic line of a chang duan.
Huilong follows daoban, and is used to draw out the metred banshi.
Kutou, literally crying head, is used for a grievous outburst and can
occur after any section of the couplet (Repetto, 2018). The variety
of'banshi is needed to convey the emotional content of the lyrics. In
general, yuanban is related to neutral and narrative lyrics content;
manban reflects introspective, and deep emotions; while kuaiban
expresses agitation, nervousness.

The precise, clear pronunciation is critical to jingju listening
comprehension, and also form an important aural aesthetic value
of jingju. The primary focus of this dissertation is the pronunci-
ation aspect of jingju singing. An in-depth description of jingju
pronunciation concepts is given in the following section.

2.2 Pronunciation in jingju singing

Mandarin is a tonal language and there are in general 4 lexical tones
and 1 neutral tone in it. Every character of spoken Mandarin lan-
guage is pronounced as mono-syllable (C.-H. Lin, Lee, & Ting,
1993). When the differences in tones are disregarded, the total
number of different pronounced syllables is 408. The jingju singing
is the most precisely articulated rendition of the spoken Mandarin
language. Basic pronunciation of a jingju syllable is categorized as
precisely shaping the throat and mouth to articulate (1) four vowel
types — PUIT (pinyin: sihu) and (2) five consonants types 115
(pinyin: wuyin). As been briefly discussed in Section 2.1.4, in
jingju singing pronunciation, certain sounds are spotted as either
jianzi (pointed) or tuanzi (rounded). The jiantuanzi (pointed and
rounded sounds) is an extremely important jingju pronunciation as-
pect, such that the precision and exaggeration of its sound qualities
is one of the remarkable attribute of all jingju vocalization. Due
to the adoption of certain regional dialects, and the ease or vari-
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ety in pronunciation and projection of sound, certain special pro-
nunciations in jingju theatrical language differ from their normal
Mandarin pronunciations. However, the mono-syllabic pronounc-
ing structure of the standard Mandarin doesn’t change (Wichmann,
1991).

2.2.1 lJingju singing syllable

Definitions for the syllable in speech have been provided from a va-
riety of perspectives; phonetically, Roach (Roach, 2000) describes
a syllable as “consisting of a center which has little or no obstruc-
tion to airflow and which sounds comparatively loud; before and
after that center (...) there will be greater obstruction to airflow
and/or less loud sound.” This definition allows for a conceivable
way for detecting syllables in speech.

A syllable of jingju singing is composed of three distinct parts in
most of the cases: 3k (pinyin: tou, head), i (pinyin: fu, belly) and
J& (pinyin: wei, tail). Some syllables are only composed of an head
and a belly or a belly alone. The head is normally not prolonged
and consists of the initial consonant or semi-vowel, and the medial
vowel if the syllable includes one, which itself is normally not pro-
longed in its pronunciation except for the one with a medial vowel.
The belly follows the head and consists of the central vowel. It is
prolonged throughout the major portion of the melodic-phrase for a
syllable. The belly is the most sonorous part of a jingju singing syl-
lable and can be analogous to the nuclei of a speech syllable. The
tail is composed of the terminal vowel or consonant (Wichmann,
1991). The head, belly, tail structure of a syllable is illustrated in
the upper part of Figure 2.1.

Another Mandarin syllable structure describes a syllable con-
sisting of two components — j B} (initial) and #J 5} (final). An
initial is the consonant or semi-vowel, and a final is the combina-
tion of optional medial vowel, central vowel and terminal vowel or
consonant. The initial and final structure grouping is used widely in
Mandarin language teaching textbooks. The initial and final struc-
ture of a syllable is illustrated in the bottom part of Figure 2.1.

For example, Mandarin syllable i\ (pinyin: xian) is composed
of the initial ‘x’ and the final ‘ian’, or the head ‘xi’, the belly ‘a’
and the tail ‘n’; syllable 3% (pinyin: po) is composed of the initial
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head belly tail
head, belly, talil
syllable structrue /\ |
consonant or medial terminal vowel
K central
semi-vowel vowel or consonant
. . vowel
o ) (optional) (optional) (optional)
initial and final \I/
structure |
initial final

Figure 2.1: An illustration of two Mandarin Chinese syllable structures.

‘p’ and the final ‘0’, or the head ‘p’ and the belly ‘o’, without a
tail. A complete table of Mandarin sounds noted in pinyin, I.P.A
and Extended Speech Assessment Methods Phonetic Alphabet (X-
SAMPA) formats can be consulted in Appendix A.

The speech syllable only contains one prominent sonority max-
imum due to its short duration (average < 250 ms and standard
deviation < 50 ms for Mandarin (J. Wang, 1994)). In contrast,
a singing voice syllable may consists of numerous local sonority
maxima, of which the reason is either intentional vocal dynamic
control for the needs of conveying a better musical expression or
unintentional vocal intensity variation as a by-product of the FO
change (Titze & Sundberg, 1992) or vocal ornaments such as vi-
brato (Horii & Hata, 1988).

2.2.2 Sihu and wuyin — basic jingju pronuncia-
tion units

Sihu means four basic shapes for the throat and mouth when pro-
nouncing the semi-vowel and central vowel parts of a syllable,
whereas wuyin indicates five portions of the mouth deemed to the
articulation of initial consonants. In jingju circles, it is believed that
the throat and mouth must be shaped and the correct portion of the
mouth needs to be used for producing the desired vowel and con-
sonant sound. The detailed throat and mouth shapes for producing
sihu and portions of mouths for articulating wuyin are described in
Wichmann’s book (Wichmann, 1991). In this section, we list the
vowels and consonants which are related to each category of sihu
and wuyin.
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The four shapes for the throat and mouth are 5% i Ff' (pinyin:
gichi, level-teeth), & 1" (pinyin: hekou, closed-mouth), i [}
(pinyin: cuokou, scooped-lips) and Jf 1 (pinyin: kaikou, open-
mouth).

qichi: syllables using the pinyin /i/ as its medial vowel or
central vowel, e.g. qi, ji.

hekou: syllables using the pinyin /u/ as its medial vowel or
central vowel, e.g. lu, kuan.

cuokou: syllables using the pinyin /ii/ (also written ‘v’) as its
medial vowel or central vowel, e.g. yun, jun.

kaikou: syllables which central vowel is not /i, u, i/ and with-
out a medial vowel, e.g. da, cheng.

The five portions for the mouth are % (pinyin: hou, larynx), 7
(pinyin: she, tongue), i (pinyin: chi, jaw and palate), 2I* (pinyin:
ya, teeth) and J& (pinyin: chun, lips).

hou: syllables starting with the semi-vowels /i, u/ (written

[ Y

y’, ‘w’) and consonants /g, k, h/, e.g. guo, ke, he.

she: syllables starting with the consonants /d, t, n, 1/, e.g. da,
ta, ni, liao.

chi: syllables starting with the consonants /zh, ch, sh, 1/, e.g.
zhi, chi, shi, ri.

ya: syllables starting with the consonants /j, q, x, z, c, s/, e.g.
Zuo, cong, cai, jia, que, xiao.

chun: syllables starting with the consonants /b, p, m, f/, e.g.
bang, fang, miao, fa.

2.2.3 Jiantuanzi — pointed and rounded sylla-

bles

The concept of jiantuanzi is associated with certain consonant and
vowel combinations, and there is no unified definition for jiantu-

anzi.

Wichmann defineds jiantuanzi in three senses (Wichmann,

1991):
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« Strict sense: pointed syllables are those starting with the con-
sonants /z, ¢, s/ and followed by the vowel /i/ or /u/, e.g. zi,
zu, ci, cu, si, su; rounded syllables are those starting with the
consonants /j, q, X, zh, ch, sh, r/ and followed by the vowel
/i/ or [ii/, e.g. zhi, chi, shi, 11, ji, jia, qu, quan, Xi, xia, Xian.

 Broader sense: all syllables that start with /z, ¢, s/ are pointed,
and all syllables that start with /j, q, x, zh, ch, sh, 1/ are
rounded.

 Broadest sense: all syllables that do not start with /z, c, s/ are
rounded.

According to the strict sense of this definition, the rounded syl-
lables are those begin with wuyin types chi and /j, q, x/ of ya,
and use two sihu types — qikou and cuokou. Whereas, the pointed
syllables are those begin with wuyin type /z, ¢, s/ of ya, and use
sihu types qikou and hekou. Wichmann only uses the aural per-
spective of Mandarin syllables to define jiantuanzi. However, the
polyphonic case of a written-character — whether it should be pro-
nounced as jianzi or tuanzi, is not discussed. As a supplemen-
tary to Wichmann’s definition, Tonglin Shu (Tonglin Shu, 2011)
discussed that certain rounded syllables in Mandarin can be pro-
nounced as pointed syllables in jingju singing or speech due to the
influence of several regional Chinese dialects. The rule of this pro-
nunciation alteration is /j, zh/ — /z/, /q, ch/ — /¢/ and /x, sh/ — /s/.
For example, % (pinyin in Mandarin: xiao) can be pronounced as
the pointed sound siao, i (qi) can be pronounced as ci, i (chu)
can be pronounced as cu in certain jingju scenarios. Tonglin shu
also pointed that this alteration of pronunciation can be seen as one
type of special pronunciation which will be introduced in the next
section. To maintain the traditional flavor of jingju singing, it is
important for a performer to articulate precisely certain syllables
of which their sounds are altered from rounded to pointed.

2.2.4 Special jingju singing pronunciation

The definition of special pronunciation in jingju music is quite sim-
ple — All pronunciations of written-character which are different
from those in standard Mandarin Chinese. These special pronun-
ciations come from two sources — traditional Chinese sounds and
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sounds from various regional Chinese dialects. As jingjuis evolved
from several regional Chinese opera, such as Anhui opera, Kun
opera, Qingiang and Gaoqiang, certain regional pronunciations of
written characters were adopted (Wichmann, 1991).

No overall set of rules can be found by which special pronun-
ciations can be analytically established. In other words, all special
pronunciations are set up by tradition. “The performer must simply
memorize the sounds and specific written-characters whose pro-
nunciation may be given special pronunciations ... This process of
memorization is an ongoing one; it occurs each time a student of
professional performer learns an established play from a particu-
lar school (7it¥K), in which the words that have special pronunci-
ations and their specific altered pronunciations have been set by
tradition.” — Elizabeth Wichmann. A non-complete list of special
pronunciations is given in Wichmann’s book (Wichmann, 1991).
However, we will not copy directly this list in the dissertation, but
will organize another one regarding our jingju singing data collec-
tions that will be presented in Section 4.2.2.

2.3 The pronunciation of jingju singing
and Western opera singing: a com-
parison

We compare some of the pronunciation concepts in jingju and
Western opera singing, so that it can be used for better clarifica-
tion of the unique assessment approaches for jingju singing.

Western opera is a vowel-centric singing genre since vowels
are easy to be prolonged and can carry rich resonance. Conso-
nants, especially non-pitch ones which interfere with that goal, are
regarded as “unfriendly”, hard to manipulate. Thus non-pitched
consonants are often sung in a low volume, and pitch consonants
are employed far more resonance in the formation than is common
in speech (Nair, 1999). Whereas, it is attached much importance to
fully pronounce syllable initials (non-pitched consonants) in jingju
singing. In fact, in certain cases, to show the physical strength of
the mouth, the initials should be pronounced in an “overstressed”
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way than is in the normal speech. This “overstressed” pronuncia-
tion technique of jingju consonants is called " [T (pinyin: penkou).

Italian is the most important language for the Western opera
singing not only because many long-established opera classics
are written in Italian, but also because some characteristics of
this language such as the openness of the vowels, richly resonant
phonemes and free from any local dialectal influence, makes it very
well suitable for singing (Nair, 1999). However, other European
languages, especially English, do not possess those innate advan-
tages as Italian do. To facilitate the formation of a rich resonance,
opera singers often adopt Italian vowels or make subtle vowel shift
(Nair, 1999) when they sing in these languages. Jingju singing is
free from the influence of other languages than Chinese since it is
only sung in Chinese dialects.

In both Western opera and jingju, to maintain the purity of the
phonemes, it is required to sing with a great precision for the re-
duction of certain coarticulation. For example, the diphthong /ai/
in both genres are sung separately as two vowels connected by a fast
transition (Nair, 1999). However, for certain coarticulation such as
transiting from the semi-vowel /j/ to a central vowel, it is adopted a
slow fashion in jingju singing while is maintained fast in Western
opera singing.

Finally, it is found that in both genres, singers do formant tun-
ing to adapt the first resonance frequency to the note frequency
(Sundberg, La, & Gill, 2013).

Weakening the volume of the non-pitched consonants, vowel
shift, fast transition between two phonemes in coarticulation and
formant tuning are all deemed as the causes to decrease the intelli-
gibility of singing voice. In general, jingju singing is more demand-
ing than Western opera singing regarding a clear pronunciation of
both consonant and vowel.

2.4 A review of automatic assessment
of musical performance

A review of the state of the art of the automatic assessment of mu-
sical performance is presented to provide a starting point for the
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main research works in this dissertation. The review in this section
is generic, and not specific to jingju music.

In most of the previous automatic assessment of music perfor-
mance studies, the assessment are conducted for the entire music
piece (Nakano et al., 2006; Cao et al., 2008; Liu et al., 2011; Tsai
& Lee, 2012; Molina et al., 2013; C. Gupta, Li, & Wang, 2017). In
the other studies, the assessment are performed at musical event-
level (Schramm et al., 2015; Robine & Lagrange, 2006; C. Gupta,
Grunberg, et al., 2017). Regarding the latter case, Pre-processing
methods should be performed on the entire musical piece to seg-
ment it into musical event units. The relevant pre-processing top-
ics that will be reviewed in this section are musical onset detection,
text-to-speech alignment and lyrics-to-audio alignment.

Template or
model-based
assessment

Musical
performance

Pre-processing
musical event
segmentation

B

Figure 2.2: The general flowchart of automatic assessment of musical
performance. A: assessment for the entire music piece. B: assessment for
musical event units.

The automatic assessment methods can be either template-
based (Cao et al., 2008; Tsai & Lee, 2012; Molina et al., 2013;
Bozkurt et al., 2017; C. Gupta, Li, & Wang, 2017) or model-based
(Nakano et al., 2006; Schramm et al., 2015; Robine & Lagrange,
2006; Han & Lee, 2014; Luo et al., 2015; C. Gupta, Grunberg, et
al., 2017). The former case means that the reference performance
are provided for a comparision with the target assessing perfor-
mance. While the latter case indicates that the reference perfor-
mance are not given, and the target performance are assessment
using a pre-trained model. Regarding the templated-based assess-
ment, the similarity calculation between the reference and target
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musical performance segments is usually involved. Thus we re-
view the neural acoustic embedding technique which can faciliate
the similarity calculation. A general flowchart of automatic assess-
ment of musical performance is illustrated in Figure 2.2.

2.4.1 Automatic assessment of musical perfor-
mance

We introduce the overview of the studies on general automatic
assessment of musical performance in this seciton. A significant
number of authors adopt the regression or classification model to
predict the human rating of the musical performance with acous-
tic features. In this following part of this section, we firstly present
the studies of automatic singing voice assessment. Then we present
those of instrumental performance assessment.

Automatic assessment of singing voice

In Table 2.3, we list the goal and methods of each work. A model-
based method is presented by (Nakano et al., 2006) for evaluating
unknown melodies. The Support Vector Machine (SVM) is trained
with semitone stability and vibrato features to classify the good and
poor singers. The evaluation dataset contains 600 songs sung by 12
singers — 6 good and 6 poor. (Daido et al., 2014) identifies that three
features — A-weighted power, FO fall-down and vibrato extent, are
relevant to singing enthusiasm. Then they build a regression model
to predict the human rating scores of singing enthusiam by combing
these three features.

As we have mentioned above, most of the works are template-
based and build regression or classification model for the predic-
tion of human rating. (Cao et al., 2008) calculate features on four
categories — intonation, rthythm, timbre brightness and vocal clar-
ity, then adopt Support Vector Regression (SVR) regression model
to predict the expert rating scores of the singing quality. (Liu et
al., 2011) propose a two-step method for solfege assessment. In
the first step, they use Dynamic Time Warping (DTW) to align the
reference and target performance pitch tracks. In the second step,
they calculate intonation and rhythm features using the aligned mu-
sical notes. Relative pitch interval and lagged tempo reference are
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identified respectively as the most correlated features for intona-
tion and rhythm rating. (Tsai & Lee, 2012) model intonation rating
using DTW cost between reference and target pitch tracks, model
volume rating using DTW cost between reference and target loga-
rithmic energy curves, model rhythm rating using Hidden Markov
Model (HMM) classification score between pitch strength time se-
quences, and predict the overall score with linear regression model
by combining these three dimension ratings.

(Molina et al., 2013) explore both low-level and high-level fea-
tures for singing voice intonation and rhythm assessment. The ref-
erence used in their work is not symbolic MIDI but singing au-
dio. Low-level features are calculated based on the DTW alignment
path, and high-level features are calculated on the transcribed musi-
cal notes. They calculate the correlation coefficients between each
individual feature and expert rating score, and find that low-level
total intonation error and high-level pitch difference are correlated
with the intonation rating and low-level Root Mean Square (RMS)
of the alignment path is correlated with the rhythm rating. Finally,
they use quadratic polynominal regression model with all the fea-
tures to predict the overall singing quality. (Bozkurt et al., 2017)
develop a dataset and a baseline model for the singing assessment of
the conservatory entrance exam. Their dataset contains 2599 piano
references and 1018 singing performance of 40 different melodies.
These singing performances are labeled as pass or fail categories
by 3 experts. They use DTW to align the pitch tracks between
the singing performance and the piano reference. The baseline is
built by using a multilayer perceptron model with 3 featuers — pitch
difference histogram, DTW alignment cost and the amount of the
length change of the DTW alignment. (C. Gupta, Li, & Wang,
2017) construct the singing assessment model on 6 aspects — into-
nation accuracy, rhythmic consistency, pronunciaiton, vibrato, vol-
ume and pitch range. To avoid the alignment error caused by the
intonation mistake, they use Mel-Frequency Cepstral Co-efficients
(MFCC) as the representation for the DTW alignment between ref-
erence and target. They also experiment cognition modeling for
obtaining the perceptual relevant features. Finally, both linear re-
gression and multilayer perceptron models are explored to predict
human ratings with various feature combinations.

In the works mentioned above, the model are built to assess
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the singing performance in the entire musical excerpt granularity.
However, several works explore the assessment of detailed musical
events, such as note, expression segment and syllable. (Mayor et
al., 2006) proposed a probablistic and rule-based method for note
alignment and expression segmentation. They use HMM frame-
work with Viterbi algorithm for the note alignment. The cost prob-
ablity is calculated by a set of heurstic rules which are defined
on timing, pitch, energy, vibrato and timbre. The similar idea is
adopted for expression segmentation. They define several rules for
the expressions such as attack, sustain, vibrato, release and transi-
tion. The HMM topology of the expression is constrained by the
note segmentation. (Schramm et al., 2015) construct a Bayesian
classifier to assess the performing correctness of solfége note. They
first transcribe the pitch track and notes for the target singing per-
formance, and devise a special DTW algorithm to align the refer-
ence score the transcribed notes. For each assessment dimension
— note-level pitch, onset and offset, they construct Gamma proba-
bility density functions for both correct and incorrect classes. Fi-
nally, they identify the fuzzy boundary between two classes using
a Bayesian classifier. In (C. Gupta, Grunberg, et al., 2017)’s work,
they first generalize the mispronounciation rules for the singing
voice of Southeast Asian English dialects. Then they use Auto-
matic Speech Recognition system with an adapted dictionary to
detect the mispronunciation.
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Automatic assessment of instrumental music performance

In Table 2.4, we list the goal and methods of each work. We have
identified that in three works, the assessment is conducted at music
excerpt level. Several pitch and rhythm score-independent features
and score-based features are proposed in (Vidwans et al., 2017)’s
work. A SVR regression model is experimented with various fea-
ture combinations to predict the expert ratings of Alto Saxophone
performance. (Wu & Lerch, 2018) use sparse coding to learn rep-
resentations in a unsupervised way on the local histogram matrix
features. The learned features are used in a SVR model to pre-
dict the expert ratings for the percussive music performance. (Pati
et al., 2018) use fully-convolutional neural networks and covolu-
tional recurrent neural networks to predict the expert ratings for the
saxophone, clarinet and flute music performance. Pitch track and
logarithmic Mel band energies are adopted as the input representa-
tions of the networks. They also discuss the learned representation
for the musicality dimension using network inspection techniques.

In other works, the asessment is done at musical note-level.
(Robine & Lagrange, 2006) assess the note quality of saxophone
performance. They extract pitch and amplitude related features for
stable, crescendo/decrescendo and vibrato notes. Then, the fea-
ture values are mapped to the expert ratings. (Knight et al., 2011)
develop models to assess the trumpet performance at note-level.
They use a SVM classifier to predict the expert ratings with 56
dimensional features of which are mostly spectral features. (Luo
et al., 2015) build a bag-of-features classifciation model to detect
violin performing mistake. Their note and expression segmenta-
tion are achieved using a photo resistor and four rings of surface-
mounted light-emitting diodes (SMD LEDs). (Han & Lee, 2014)
detect three types of flute performing errors — assembeling error,
fluctuated sound and mis-fingering by using handcrafted features
and Random Forest classifier.
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2.4.2 Musical onset detection

Musical Onset Detection (MOD) is aimed to automatically detect
musical onsets such as musical note, singing syllable onsets, in the
musical signal. Most of the MOD methods follow this pipeline
— (1) calculating audio input representation, (2) Onset Detection
Function (ODF) computation, (3) onset selection. In Table 2.5, we
list the method used in each MOD work.

Various audio input representations are used for the first step
of the pipeline, such as filtered logarithmic magnitude and phase
spectrum (Bello et al., 2005; Bock & Widmer, 2013b). The former
can be subdivided by the filterbank type — Bark scale bands (Bock,
Arzt, et al., 2012), Mel scale bands (Eyben et al., 2010; Schluter &
Bock, 2014) or constant-Q bands (Lacoste, 2007; Bock, Krebs, &
Schedl, 2012).

Depending on the techniques used, we classify ODF computa-
tion methods into three categories:

Unsupervised methods: Methods in this category estimate ODF in
an unsupervised way. Earlier methods in this category are based on
calculating temporal, spectral, phase, time-frequency or complex
domain features, such as energy envelope, high-frequency content,
spectral difference, phase deviation and negative log-likelihoods.
Bello et al. (Bello et al., 2005) and Dixon (Dixon, 2006) both re-
view these methods thoroughly. The state-of-the-art methods in
this category are based on spectral flux feature (Bock, Krebs, &
Schedl, 2012). Some variants such as SuperFlux (Bock & Widmer,
2013b), local group delay weighting (Bock & Widmer, 2013a) are
proposed to suppress the negative effect of vibrato, primarily for
pitched non-percussive instruments. The advantage of these meth-
ods is that no data is needed for training the ODF, and they are
computationally efficient and can often operate in online real-time
scenarios.

Non-deep learning-based supervised methods: Some methods in
this category are probabilistic model-based, such as using Gaussian
autoregressive models to detect the onset change point (Bello et al.,
2005). Toh et al. (Toh et al., 2008) propose a method using two
Gaussian Mixture Models to classify audio features of onset frames
and non-onset frames. Chen (Chen, 2016) detect the onset candi-
dates from two ODFs, extracted features around these candidates,
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then used support vector machine technique to classify them.
Deep learning-based supervised methods: The state-of-the-art
performance in the MIREX Audio Onset Detection is defined by
deep learning-based methods. Lacoste et al. (Lacoste & Eck, 2007;
Lacoste, 2007) are the earliest researchers who apply feed-forward
or CNN to esimtate the ODF. Eyben et al. (Eyben et al., 2010) pro-
pose using RNN with Long Short-Term Memory (LSTM) units to
predict the input frames binarily as onset or non-onset. Schliiter and
Bock (Schluter & Bock, 2014) use the similar idea but replace RNN
by CNN and adopt several novel deep learning techniques, which
achieve the best performance in the MIREX Audio Onset Detection
task. Huh et al. (Huh et al., 2018) estimate time-to-event (TTE) or
time-since-event (TSE) distributions from Mel-spectrograms by a
CNN, then use them as a onset density predictor.

The last step of the pipeline — onset selection can be done by
peak-picking (Bock, Krebs, & Schedl, 2012) algorithm.
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2.4.3 Text-to-speech alignment

Text-to-speech alignment is a process that the orthographic tran-
scription is aligned in temporal axis with the speech audio at word,
syllable or phone-level. In Table 2.6, we list the method used in
each text-to-speech alignment work. Most of the non-commercial
alignment tools are built on Hidden Markov model Toolkit (HTK)
(Young et al., 2006) or Kaldi (Povey et al., 2011) frameworks,
such as Montreal forced aligner (McAuliffe et al., 2017) and
Penn Forced Aligner (Penn Phonetics Lab Forced Aligner, n.d.).
These tools implement an intermediate step of Automatic Speech
Recognition (ASR) pipeline, train the HMM acoustic models it-
eratively using Baum-Welch or Viterbi algorithm and align audio
features (e.g. MFCC) to the HMM monophone or triphone model.
Brognaux and Drugman (Brognaux & Drugman, 2016) explore
the forced alignment in a small-dataset case using supplementary
acoustic features and initializing the HMM silence model by Voice
Activity Detection (VAD) algorithm. To predict the confidence
measure of the aligned word boundaries and to fine-tune their time
positions, Serriere et al. (Serriere et al., 2016) explore an align-
ment post-processing method using a DNN. Usually, no manually
boundary labeled dataset is needed for the HMM acoustic model
training which is initialized by flat-start training method (Young et
al., 2006). (Pakoci et al., 2016) experiment to train HMM acoustic
model by making use of a manually boundary labeled dataset in a
small-dataset scenario.

The forced alignment is a language-dependent method, in
which the acoustic models should be trained by using a corpus
of certain language. Another category of text-to-speech methods
is language-independent, which relies on detecting the phoneme
boundary change in the temporal-spectral domain (Esposito &
Aversano, 2005; Almpanidis et al., 2009). The drawback of these
methods is that the segmentation accuracies are usually poorer than
the language-dependent counterparts.
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2.4.4 Lyrics-to-audio alignment

To goal of lyrics-to-audio alignment is similar to text-to-speech
alignment — aligning the lyrics with the singing voice audio at
word, syllable or phone-level. In Table 2.7, we list the method
used in each lyrics-to-audio alignment work. Most of these works
(Mesaros & Virtanen, 2008; Loscos et al., 1999; Fujihara et al.,
2011; Mauch et al., 2012; Iskandar et al., 2006; Gong et al., 2015;
Kruspe, 2015; G. B. Dzhambazov & Serra, 2015) use the speech
forced alignment method accompanied with music-related tech-
niques. Loscos et al. (Loscos et al., 1999) use MFCCs with ad-
ditional features and also explore specific HMM topologies to take
into account of singing aspiration, silence and different pronunci-
ation possibilities. To deal with mixed recordings, Fujihara et al.
(Fujihara et al., 2011) use voice/accompaniment separation to ex-
tract clean singing voice. They also adopt vocal activity detection,
fricative detection techniques to recover the consonant information
lost in the separation process.

Additional musical side information extracted from the musi-
cal score is used in many works. Mauch et al. (Mauch et al.,
2012) use chord information such that each HMM state contains
both chord and phoneme labels. Iskandar et al. (Iskandar et al.,
2006) constrain the alignment by using musical note length distri-
bution. Gong et al. (Gong et al., 2015), Kruspe (Kruspe, 2015),
Dzhambazov and Serra (G. B. Dzhambazov & Serra, 2015) all use
syllable/phoneme duration extracted from the musical score as side
information, and decode the alignment path by duration-explicit
HMM models. Chien et al. (Chien et al., 2016) introduce an ap-
proach based on vowel likelihood models. Chang and Lee (Chang
& Lee, 2017) use canonical time warping and repetitive vowel pat-
terns to find the alignment for vowel sequence. Some other works
achieve the alignment at music structure-level (Miiller et al., 2007)
or line-level (Y. Wang et al., 2004).
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2.4.5 Neural acoustic embeddings

Neural acoustic embeddings is a technique to convert variable-
length acoustic sequence into fixed-length vector using neural net-
works. It is a common technique that is adopted in speech field,
and applied to various tasks such as Query-by-Sample search and
speech recognition. In those tasks that involve measuring the sim-
ilarity between speech segments, acoustic embeddings generated
from neural networks allows a more efficient and accurate compu-
tation because the alignment between variable-length speech seg-
ments can be avoided. In Table 2.8, we list the method used in each
speech neural acoustic embedding work.

To embed variable-length representation of acoustic word seg-
ment such as MFCCs into fixed-length vector. (Kamper et al.,
2016) experiment two neural network architectures — classification
CNN and Siamese CNN. Softmax units are used in the output layer
of the classification CNN, which allows it to classify input word
segment into word categories in a fully-supervised fashion. The
vector output from the last CNN layer is taken as the word embed-
ding. The hinge cosine triplet loss is used by the Siamese CNN
of which the network training is done in a semi-supervised way.
The penultimate layer of the Siamese CNN is taken as the word
embedding such that the dimension is adjustable. RNN is a natu-
ral choice for the sequential data modelling. In the work of Settle
et al. (Settle & Livescu, 2016), the CNN is replaced by RNN in
both classification and Siamese architectures. A weighted random
sampling method is also devised to accelerate the Siamese RNN
training. The acoustic word embeddings learned from the Siamese
RNN is then used in a Query-by-Example search task with a small
training dataset (Settle et al., 2017).

Apart from exploring different neural network architectures to
obtain an efficient word embedding, we can also take advantage of
multiple information sources. Zeghidour et al. (Zeghidour et al.,
2016) jointly learn phoneme and speaker embeddings by a single
Siamese network which minimize simutanously two objectives. In
the work of He et al. (He et al., 2017), acoustic word segment and
text word segment are embeded by two different RNNs. The em-
beddings of the two different sources are projected into a common
space and used in the objective function in a mixed way.
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Neural acoustic embeddings can also be learned in an unsu-
pervised way. Chung et al. (Chung et al., 2016) adopt sequence-
to-sequence model commonly used in natural language processing
tasks to learn the word embeddings. They experiment skipgrams
and continous bag-of-words training methods and show a superior
performance than simply reconstructing the input representation
(Chung & Glass, 2018)
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2.4.6 Evaluation metrics
Onset detection metrics

A simple evaluation metric for onset detection — onset detection
accuracy is adopted in many state of the art works (Eyben et al.,
2010; Bock, Krebs, & Schedl, 2012; Bock, Arzt, et al., 2012; Bock
& Widmer, 2013a, 2013b; Schluter & Bock, 2014). We use the
same metric for our evaluation. To define a correctly detected on-
set, a tolerance threshold of 7 = 25ms is chosen. If the detected
onset o4 lies within the tolerance of its ground truth counterpart o:
log—o0,4| < 7, we consider that it’s correctly detected. A more strict
metric can be defined by requiring that the label of the detected on-
set and that of the ground truth are identical. The F-measure is a
number between 0 and 1 calculated as the harmonic mean of the
precision and recall. Precision is the ratio between the number of
correctly detected onsets and all detected onsets, and recall is the
ratio between the number of correctly detected onsets and the total
annotated onsets.

.. number of correctly detected onsets
Precision =

2.1)

number of all detected onsets

number of correctly detected onsets
Recall = y

2.2
number of total annotated onsets (2:2)

Precison - Recall
F- =2- 2.3
measure Precision + Recall (2.3)

The metric presented above can also be used to evaluate align-
ment algorithm. However, we apply another metric for the align-
ment evaluation — percentage of correct segments, which is de-
fined as the ratio between the duration of correctly aligned seg-
ments and the total duration of the music piece. This metric has
been suggested by Fujihara et al. (Fujihara et al., 2011) in their
lyrics alignment work.

Percentage of correct segments =
duration of correctly aligned segments 2.4)

total duration of the music piece



2.4 A review of automatic assessment of musical performance 51

Binary classification evaluation metric

In binary classification task, such as mispronunciation detection,
which classifies the singing syllable or phoneme segment into mis-
pronounced or correctly pronounced class, we use classification
accuracy as the evaluation metric. The classification accuracy is
defined as:

TP+ NP
number of total population

Accuracy = (2.5)

Where TP is true positive — correctly classified as positive
(e.g., mispronunciation in mispronunciation detection task), and
N P is true negative — correctly classified as negative (e.g., correct
pronunciation in mispronunciation detection task).

Similarity measurement metrics

In this dissertation, the acoustic embedding will be always used as
a representation for the similairy (distance) computation. Thus the
evaluation of acoustic embedding needs to be done with the help of
a simlarity (distance) measure. The ground truth label is set to 1 if
two singing segments belong to the same class (phoneme, special
pronunciation, etc.), 0 vice versa. We report the Average Preci-
sion (AP) between the pairwise similarities of the segments and
the ground truth as the evaluation metric. The AP is used previ-
ously to evaluate speech word acoustic embedding (Kamper et al.,
2016; Settle & Livescu, 2016). It is also suggested as the metric for
imbalanced test set (Davis & Goadrich, 2006), which is the case of
the pronunciation aspect evaluation.

AP is defined as the area under the precision-recall curve. In
pratice, it is calculated by a finite sum (Su et al., 2015):

Average precision = Z p(i)Ar(i) (2.6)

i=1

where p(i) is the precision in index ¢, and Ar(7) is the change in
recall from ¢ — 1 to <.

In Figure 2.3, we illustrate an example of calculating AP for
the pairwise similarities of three segments, e.g. segment 1 and 2
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belong to the class A, and their ground truth similarity and calcu-
lated similarity are respectively 1.0, 0.8.

segment 1 segment 2 segment 1 segment 3 segment 2 segment 3

class A class A class A class B class A class B
Ground
truth 1.0 0.0 0.0
Similarity 0.8 0.4 0.8
Average 0.75
precision

Figure 2.3: An example of calculating average precision for the pairwise
similarities of three segments.

2.5 Relevant technical concepts

This thesis uses several well-studied machine learning models and
techniques to tackle the automatic singing voice pronunciation as-
sessment problem. There are extensive resources available to study
those models and techniques, hence a brief mention of those tech-
niques with references to the resources are provided in this section
for the background study.

2.5.1 Deep learning

Deep learning is a subfield of machine learning concerned with
algorithms inspired by artificial neural networks. Deep learning
refers to large neural networks and deep refers to the number of
neural network layers (Dean, n.d.). It is a scalable algorithm which
can be fit into huge amounts of data. Almost all value today of deep
learning is through supervised learning — learning from labeled data
(Ng, n.d.).

Deep learning is a hierarchical feature learning. Yoshua Ben-
gio described deep learning as algorithms seek to exploit the un-
known structure in the input distribution in order to discover good
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representations, often at multiple levels, with higher-level learned
features defined in terms of lower-level features (Bengio, 2012).

Although equally requiring network weights initialization, and
using the backpropagation algorithm to update the network param-
eters, deep learning differs from the traditional artificial neural net-
works (ANNs) regarding below aspects:

 Using specific layers to deal with different data types, e.g.,
convolutional layers which learns automatically the repre-
sentations for image data, recurrent layers for modeling se-
quential data.

 Using more advanced non-linear activation functions, which
facilitates to train very deep architectures.

 Devising new techniques to help model generalization.

» Using new optimizers to facilitate rapid model convergence.

We will briefly introduce each of the core techniques in deep
learning. The purpose is to provide adequate references for the
background study, and hence the section is not comprehensive.

Convolutional neural networks

Fully-connected neural network (also known as Multilayer Percep-
tron (MLP)) is the most basic type of the neural networks. Each
layer in MLP is contained by a set of neurons, where each neuron is
fully-connected to all neurons in the previous layer (Stanford Uni-
versity CS23In: Convolutional Neural Networks for Visual Recog-
nition, n.d.). CNN shares some common characteristics with MLP.
For example, they both have learnable weights and biases. Each
neuron receives inputs, performs dot product and follows by a non-
linear activation function. And the whole network can be expressed
by a single differentiable score function, which has loss function on
the last layer.

The difference between CNNs and MLP is that firstly the in-
put of CNNs is three-dimensional image or audio spectrogram,
whereas the input of MLP can be only a vector. Then, CNNs have
more types of layers than MLP. The most important layers in CNNs
are Convolutional Layer (Conv), fully-connected layer (FC) and
pooling layer.
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Conv layer computes the output of neurons that are connected to
local regions in the input, each computing a dot product between
their weights and a small region they are connected to in the input
volume.

Pooling layer performs a downsampling operation along the spatial
dimensions (width, height).

FC layer computes the class scores. As with ordinary ANNs and
as the name implies, each neuron in this layer will be connected to
all the numbers in the previous volume.

Compared with MLP, CNNs are more efficient in learning spa-
tially local input patterns by using the “filters” and convolution op-
eration. Stacking many Conv layers leads to filters that learn global
input patterns. Additionally, the receptive fields of the deeper lay-
ers increasingly cover a larger area than their shallow counterparts
(Wikipedia, n.d.-a). CNNs benefit as well from the weight sharing,
where each filter convolves on the input image and form a feature
map. The learned weights are contained in the filter itself, and each
output feature map uses the same weights, which greatly reduces
the number of parameters. As a consequence, CNNs are more
memory-saving and better to learn different levels of representa-
tions than MLP. Pooling layer is used in CNNs to reduce the spatial
size of the representation, and thus reduce the number of parame-
ters of the network. It is often inserted in-between two Conv layers.
The most often used pooling operation is max-pooling, which takes
the maximum value of a non-overlapped filter, e.g., 2 X 2, on the
feature map.

Recurrent neural networks

Recurrent neural networks (RNNs) is another type of deep learn-
ing architecture which is commonly used to model the symbolic
or acoustic sequential data such as text, speech, and music. RNNs
is called recurrent because it performs the same operation for the
input of each timestamp of the sequence. The calculation of the
output of the current timestamp depends on all the previous com-
putations with the help of hidden states. The hidden state is the
memory of the network, which is calculated based on the previous
state and the input of the current timestamp.
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The basic RNN architecture introduced above (also known as
vanilla RNNs) suffers from the vanishing or exploding gradient
problem (Pascanu, Mikolov, & Bengio, 2013), which make them
hard to learn long-term dependencies in a sequence. Certain types
of RNNs such as Gated Recurrent Unit (GRU), LSTMs have been
designed to cope with such problems. The most popular extension
of the vanilla RNNs is the LSTMs (Hochreiter & Schmidhuber,
1997) of which the calculation of the hidden state is modified to
contain various cell states and connections. An extensive walk-
through of the complicate LSTMs cells can be found in this blog
post (Olah, 2015).

Sometimes we want that the output of the current timestamp not
only depends on the previous hidden states but also the future ones.
For example, to detect if a frame of the spectrogram is a syllable or
instrumental onset, we usually want to check both the spectral con-
text in both left and right directions. Bidirectional RNNs (BiRNNs)
(Schuster & Paliwal, 1997) allows us to access to the information of
the future timestamps by stacking two RNNs on top of each other.

Non-linear activation functions

Activation functions (or non-linearity) is a set of operations exerted
on the output of neurons, which introduce non-linearity to the net-
work in order to adapt to the complexity of the input. The common
activation functions could be used in a neural network are sigmoid,
softmax, tanh, ReLU, Exponential Linear Unit (ELU) (Clevert, Un-
terthiner, & Hochreiter, 2015), etc. Sigmoid squashes the input into
arange between 0 and 1, which is commonly used on the last layer
output for the tasks such as multilabel classification and regression
(Stanford University CS231n.: Convolutional Neural Networks for
Visual Recognition,n.d.). Softmax is an extension of sigmoid func-
tion which is also used on the last layer output, however, for the
task of multiclass logistic regression. Tanh function squashes the
input into a range between -1 and 1 and gives a zero-centered out-
put, which is commonly used as the default activation function in
the vanilla RNNs. ELU is a very popular activation function which
is used extensively in CNNs. It is a linear activation thresholded
at zeros. The use of ELU holds two major benefits — accelerat-
ing the convergence of the network training, computational non-
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expensive. The main drawback of ELU is that some neurons in the
network could be “died” during the training due to the zero thresh-
olding on the entire left x-axis. Some extensions of ELU attempt to
fix this problem by introducing a negative slope on the left x-axis,
such as that ELU uses an exponential function.

Regularization

Large neural networks with many trainable parameters are prone to
overfit on small datasets. There are several ways of controlling the
capacity of neural networks to prevent overfitting (Stanford Uni-
versity CS23In: Convolutional Neural Networks for Visual Recog-
nition, n.d.).

L2 regularization is the most common form of regularization. It
is implemented normally by penalizing the squared magnitude of
all parameters in the objective. That is, for every weight w in the
network, we add the term 1/2\w? to the objective, where A is the
regularization strength.

Dropout is an extremely effective, simple regularization technique
introduced by Srivastava et al. (Srivastava, Hinton, Krizhevsky,
& Salakhutdinov, 2014). While training, dropout is implemented
by only keeping a neuron active with some probability p (a hyper-
parameter). In practice, it is common to use a single, global L2
strength combining with dropout applied for all layers.

Batch Normalization is a network weights initialization technique
developed by loffe and Szegedy (Ioffe & Szegedy, 2015), explicitly
forcing the activations throughout a network to take on a unit Gaus-
sian distribution at the beginning of the training. In the implemen-
tation, applying this technique usually amounts to insert the Batch
Normalization layer immediately after fully-connected layers or
convolutional layers, and before non-linearities. In practice net-
works that use Batch Normalization are significantly more robust to
bad initialization and accelerate the network training (Stanford Uni-
versity CS231n: Convolutional Neural Networks for Visual Recog-
nition, n.d.).

Batch Normalization can also be looked as a way of regular-
ization which is similar to dropout in the sense that it multiplies
each hidden unit by a random value at each step of training. In this
case, the random value is the standard deviation of all the hidden



2.5 Relevant technical concepts 57

units in the minibatch. Because different examples are randomly
chosen for inclusion in the minibatch at each step, the standard de-
viation randomly fluctuates. Batch norm also subtracts a random
value (the mean of the minibatch) from each hidden unit at each
step. Both of these sources of noise mean that every layer has to
learn to be robust to a lot of variation in its input, just like with
dropout (Goodfellow, 2016).

Early stopping: it is a simple technique to prevent overfitting by
stopping the training iteration when the loss of the validation data
doesn’t go down certain training epochs (also known as patience).

Loss functions

A loss function or a cost function is a function representing the cost
associated with the algorithm output. It is a method that evaluates
how well the algorithm models the data. A optimization problem
used during the training phase of a deep learning model seeks to
minimize a loss function. The choice of the loss function depends
on the type of the deep learning task:

Classification: in binary classification, the model prediction p is
output from a sigmoid activation function. The loss function is a
binary cross-entropy loss:

108 Spinary = —(ylog(p) + (1=y)log(1-p)) (2.7)

In multi-class classification, we calculate separate loss for each
class label per observation and take the sum:

M
lossmulticlass = Z Yo,c log(po,c) (28)
c=1

where c is the class label; p is the predicted probability observation
o of class c; y is the binary indicator (0 or 1) if class label c is the
correct classification for observation o.

Similarity measures with Siamese network: Siamese network
(H. Gupta, 2017) is a special type of neural network architecture.
The network learns to differentiate between two or three inputs and
learns the similarity between them. Siamese network contains two
or three base networks which share the same weights. The objective
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of'a Siamese network is to differentiate between input samples, thus
a contrastive loss is used to achieve this goal.

In a triplet Siamese network, we use weak supervision in the
form of pairs of samples labeled as same or different. The out-
put of the base network has linear activation functions. In order
to learn the model parameters, we simultaneously feed three sam-
ples to the model. One input sample is an “anchor”, x,, the second
is another sample with the same label, x,, and the third is a sam-
ple corresponding to a different label, x4;. Then, the network is
trained using a “cos-hinge” loss (or triplet contrastive loss) (Settle
& Livescu, 2016):

lcoshinge = maX{O, m+ dcos(xaa xs)_dcos (xaa xd)} (29)

where d,s(71, x2) = 1—cos(x1, z5) is the cosine distance between
T, To.

Other loss functions are used for other types of machine learn-
ing tasks. For example, L1 or L2 norm losses are used for the re-
gression task. Since other loss functions will not be applied in the
tasks of this dissertation, please consult this reference (Stanford
University CS231n: Convolutional Neural Networks for Visual
Recognition, n.d.) for their details.

Optimizers

The gradient of a deep learning model is calculated by the back-
propagation algorithm. The gradient is then used to update the
model parameters. There are many approaches — optimizers to per-
form this update:

Stochastic Gradient Descent (SGD): This is the simplest form to
update the model parameters along the negative gradient direction.

ot = —lr-d, (2.10)

where z is the vector of parameters, and d, is the gradient. The
learning rate [r is a fixed constant. In deep learning optimization,
stochasticity of the gradient descent is represented by randomly
choosing using a mini-batch of samples to calculate the gradient.
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SGD with momentum: The simplest SGD algorithm has a prob-
lem in optimization — the network get stuck in a shallow local min-
imum. With the momentum, the network can slide through such a
minimum (MATLAB, n.d.):

v=p-v—Ir-d, (2.11)
rT=x4+v (2.12)

where v is the velocity of the gradient that is initialized at zero.
(1 is the hyperparameter of momentum. When the gradient is zero,
there is still a possibility that the optimization maintains a veloc-
ity of p - v, which helps the network to surpass the local mini-
mum. Another more advanced optimization technique is SGD with
Nesterov momentum incorporated with “lookahead” gradient term,
which works slightly better than the standard momentum (Bengio,
Boulanger-Lewandowski, Pascanu, & Montreal, 2012).
Adam: the standard SGD or SGD with momentum use a fixed
learning rate equally for all parameters. In practice, it requires to
tune the learning rate to reach a better model convergence. Many
adaptive learning rate methods have been devised to automatically
meet this requirement. Adam (Kingma & Ba, 2014) is one of the
most popular adaptive learning rate methods recommended as the
default algorithm to use (Stanford University CS231In: Convolu-
tional Neural Networks for Visual Recognition, n.d.). It uses a
smooth version of gradient and a “cache” variable to perform the
parameter update.

2.5.2 Hidden Markov models and hidden semi-
Markov models

An HMM is a statistical model of which the goal is to recover a
data sequence that is not observable. It has a wide range of applica-
tions such as lyrics-to-audio alignment, audio-to-score alignment,
speech recognition, speech synthesis, handwriting recognition, ma-
chine translation and alignment of bio-sequences. An HMM con-
sists of four basic components:

1. Hidden states: they are not observable and need to be inferred
from the observations.
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2. Observations: they are observable and depend on the hidden
states.

3. State transition probabilities: they are the probabilities of
transiting between hidden states.

4. Emission probabilities: they are the probabilities that obser-
vations can be emitted from hidden states.

A Markov process has the property that the conditional prob-
ability distribution of future states depends only upon the present
states, and thus it is memoryless. We give an example of speech
recognition application to better illustrate the concepts of HMM.
The basic HMM in speech recognition is the monophone model
which consists of commonly three sub-phoneme hidden states. The
observations are the acoustic representation of the speech signal
which needs to be inferred. A common acoustic representation
could be MFCC. The state transition probabilities are either the
probabilities of transiting between sub-phoneme hidden states or
those of transiting between the monophone HMM. The emission
probabilities are the probabilities emitting an acoustic representa-
tion from sub-phoneme hidden states, which are usually modeled
by Gaussian mixture models (GMMSs) or neural networks (NNs).

In practice, we usually encounter two types of HMM related
problems. The first problem is to train the model parameters,
mainly the state transition probabilities and emission probabilities
given the hidden states and the observation. The second problem
is to recover the hidden state sequence from the observations given
the model parameters. The solution of these two problems are quite
mature and can be consulted in many references such as HTK book
(Young et al., 2006), Rabiner’s HMMs tutorial (Rabiner, 1989).
Commonly, the first problem can be solved by the Baum-Welch
algorithm and the second problem can be solved by Viterbi algo-
rithm.

An HSMM is an extension of the HMM where the time elapses
on a hidden state is defined explicitly by an occupancy distribution.
In a standard HMM, the occupancy distribution is defined implic-
itly by a geometric distribution. However, in the HSMM, the prob-
ability of being a change in the hidden state depends on the amount
of time has been elapsed on the current state (Wikipedia, n.d.-b).
The two basic problems mentioned above in HMM become more
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complicated for HSMM such that the Baum-Welch algorithm and
the Viterbi algorithm need to be modified. The detailed description
of HSMM and the adaptation of these two algorithms for HSMM
can be consulted in Guédon’s work (Guédon, 2007).

2.56.3 Speech recognition tools

Automatic speech recognition is an important research topic in ICT,
which has received a great attention from a large research commu-
nity over the past few decades and has evolved into a mature re-
search area with state of the art methods (Huang & Deng, 2010).
There is a potential to use some of its technologies and tools to
analogous task in the automatic assessment of singing voice, such
as syllable and phoneme segmentation and mispronunciation de-
tection.

HTK (HTK Speech Recognition Toolkit, n.d.) and Kaldi (Povey
etal., 2011) are the two most popular tools for constructing a speech
recognition related system. The first version of HTK can be dated
to the year 1993. It is a mature toolkit which has a large user and de-
veloper communities and a comprehensive documentation (Young
et al., 2006). Being a younger project started in 2009, Kaldi is get-
ting more attention because of its extensive functionalities, support-
ive community and many ready to use recipes for various speech
recognition tasks. With the help of the Kaldi recipes, one can con-
figure a speech recognition system in a few lines of code.






Chapter 3 .

Automatic assessment
of singing voice
pronunciation

of jingju music

Automatic assessment of singing voice of jingju music has not been
explored systematically, which means that the challenges, opportu-
nities and relevant research problems have not been formally stud-
ied. This chapter presents the attempts to open up this research
topic. We first elucidate the important role of pronunciation played
in jingju singing training. Then we introduce several relevant re-
search problems, with a review of the state of the art for jingju mu-
sic or other music traditions in the context of CompMusic project.
We present the background of all the relevant research problems.
We formulate the thesis problems of syllable and phoneme seg-
mentation, mispronunciation detection for special pronunciation,
and pronunciation similarity measures at phoneme level. The main
objectives of the chapter are:

1. To present, and discuss the role of pronunciation in jingju
singing training.

2. To identify, present, and discuss main challenges to automatic
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assessment of singing voice pronunciation in jingju music.

3. To identify, present, and discuss main opportunities in auto-
matic assessment of singing voice pronunciation in jingju music

4. To identify several relevant research problems within the con-
text of jingju music and identify key challenges in addressing
them, as a way to indicate future work in singing voice assess-
ment.

5. From the relevant problems, identify a subset of research prob-
lems and formulate them in detail, to be addressed in the scope
of this dissertation.

3.1 The role of pronunciation in jingju
singing training

Assessment of singing performance can be conducted in various
musical dimensions such as intonation, rhythm, loudness, tone
quality and pronunciation. The automatic assessment method can
be devised either for a special dimension or the overall performing
quality (C. Gupta, Li, & Wang, 2017). Due to the various and com-
plicate conventions existed in jingju singing performance, and also
the strictness of jingju singing training, the automatic system con-
ceived for the assessment of jingju singing needs to have the ability
to judge the performance in each dimension. However, due to time
and energy constraints, it is not possible to address the relevant re-
search problems of all the musical dimensions in this dissertation.

In this section, we attempt to answer the question: how the
jingju singing teachers and students value the importance of each
musical dimension? By answering this question, we can identify
the most important dimension consistently considered by teachers
and students — pronunciation.

3.1.1 Jingju singing training and correction oc-
currence

Jingju singing is traditionally taught between teacher and student by
using the mouth/heart (I %:/0>4%, oral teaching) and face-to-face
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methods — “Jingju tuition requires demonstration, and teachers tell
students the secrets for certain skills that they learned from their
masters or that they worked out from their experience. The close
relationship of the teacher-student or the master-disciple is based
on the mouth/heart teaching method that stresses through oral in-
struction and intuitive understanding. Imitation is certainly the first
step, and it is crucial for our learning proces... not even one com-
ponent in the ‘four skills (singing, speech, dance-acting, combat)’
can be learned by the student himself. Much of the nuance of the
singing can only be learned from face-to-face teaching.” (L1, 2010)

' |

Teacher gives
Student’s tentative Student identifies verbal or Student's revised
singing . the problem » demanstrative . singing

singing feedback

Figure 3.1: The flowchart of a single correction occurrence.

After five months research stay in NACTA (leading institute
in China dedicated to the training of professionals in performing
and studying traditional Chinese opera), we had a firsthand expe-
rience of the month/heart teaching method of jingju singing. In
class, the teacher teaches several melodic lines selected from an
aria. In the first part of the class, the teacher gives a short intro-
duction to the teaching content such as the story and the character
setting of the aria, the special pronunciations. Then she/he gives
a demonstrative singing of these lines. In the second part of the
class, the students imitate the demonstrative singing line by line,
and the teacher corrects the imitations. The process of the second
part can be generalized as (i) the teacher asks the students to give
a tentative singing individually at melodic line-level, or syllable-
level. (ii) Then the teacher identifies the singing problems, (iii)
gives verbal or demonstrative singing feedback. (iv) Finally, the
students do a revised singing with the feedbacks in mind. The step
from (ii) to (iv) could be iterated until the student’s singing satis-
fies the teacher’s criteria. We name one single such process as a
correction occurrence (see Figure 3.1).
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The verbal feedback is a semantic comment given by the
teacher. It is the description that is aimed to help the student to
improve her/his singing performance, and it is the most valuable
information which can clarify the singing problems.

In paper (Geringer & Madsen, 1998), the musicians have rated
the performance of western arias in 5 musical dimensions: phras-
ing/expression, intonation, rhythm, loudness, tone quality. In our
study, we borrow the concept of musical dimensions for music per-
formance assessment and adapt them according to jingju singing
background.

Almost all jingju aria contains lyrics, and as we will prove in
later chapters — to be able to pronounce the singing lyrics accu-
rately is a key skill in jingju singing, we thus add the pronuncia-
tion as an independent dimension to the dimension set mentioned
above. Besides, we discard phrasing/expression because it is a
“meta-dimension” constructed above other basic dimensions — “A
musician accomplishes this by interpreting the music, from mem-
ory or sheet music, by altering tone, tempo, dynamics, articulation,
inflection, and other characteristics”'. Overall, 5 dimensions will
be taken into account in this paper — intonation, rhythm, loudness,
tone quality and pronunciation. Accordingly, we give their defini-
tions:

* Intonation: accuracy of pitch in singing.

* Rhythm: singing a rhythmic pattern on time, which means
that the notes or syllable are not ahead of the time or behind
the time.

* Loudness: the dynamic loudness variation between
notes/syllables or phrases.

 Tone quality: the color or timbre of the singing voice.

» Pronunciation: the act or result of producing the sounds of
speech, including articulation and stress.

In the next section, we explain our methods — classifying teach-
ers’ correction occurrence and surveying the students. These meth-
ods aim to answer the question: how teachers and students value the

'https://en.wikiquote.org/wiki/Musical_phrasing Retrieved 25
July 2018
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importance of each jingju singing dimensions — intonation, rhythm,
loudness, tone quality and pronunciation. By classifying the cor-
rection occurrences, we will find out the dimensions on which
teachers lay stress or students tend to have problems. On the other
hand, we conduct a simple survey to investigate the importance of
each dimension from the students’ perspective.

Classify the
correction
accurrences

Conduct a survey
among trainees

Y
Identify the
importance of
each dimension

Figure 3.2: The identification process of the importance of musical di-
mensions.

Correction occurrence analysis

During the research stay in NACTA, we audited and recorded the
audio from three singing classes. Three class was taught respec-
tively by three professional teachers, which contain solo and cho-
rus practices. We recorded the class teaching and practicing audio
content by using a SONY PCM-D50 stereo portable audio recorder.
Only the solo practices are kept for the analysis because they can
reveal the singing problems of an individual student, whereas the
individual voices are blurred in the chorus practice recordings. The
audio excerpts of each correction occurrence are then edited and vi-
sualized by signal processing tools — pitch contour, loudness con-
tour and spectrogram, which is helpful in identifying the singing
problem, especially when the teacher’s verbal feedback is too ab-
stract to extract any effective information.

Table 3.1 depicts the information of aria name, role-type, stu-
dent number in the class, melodic line number practiced in the class
and correction occurrence number collected from the recordings.
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Table 3.1: The statistics of the correction occurrence analysis materials.

#Melodic #Correction

Arianame Role-type #Student )
line occurrence

K B
WuliaPo
KEAME
TaiZhen qingyi 3 3 21
WaiZhuan

P
ZhuoFang  hualian 2 28 21

Cao

laosheng 3 11 20

An example of reading this table is “Three students were involved
in the laosheng class WulJiaPo. 11 melodic lines were taught, and
20 correction occurrences were collected from the recordings”.

The ratios between the melodic line number and the correction
occurrence number are widely different for the three classes (Ta-
ble 3.1). For example, during the TaiZhenWaiZhuan class, three
students practiced three lines and were corrected 21 times, which
results in a ratio of 1/7. However, during the ZhuoFangCao class,
two students practiced 28 lines and also were corrected 21 times,
which has a ratio of 4/3. The correction frequency depends on sev-
eral factors, such as the students’ singing levels, the teacher’s teach-
ing method. The low singing level students tend to receive more
corrections than those who have high singing levels.

For each occurrence, we analyze the target recordings and the
teacher’s verbal feedback. Additionally, to achieve the visual anal-
ysis, their pitch, loudness contours and spectrogram are also pre-
sented.

We firstly classify the correction occurrences into five dimen-
sions — intonation, rhythm, loudness, tone quality and pronuncia-
tion. A correction occurrence can be classified into more than one
dimension. For example, the correction with the verbal feedback
“don’t be sloppy, sing it with solidity, make the tone quality sounds
round.” can be classified into intonation (irregular vibrato), loud-
ness (unstable loudness contour) and tone quality (higher harmon-
ics too clear), by analysing comparatively between the teacher’s
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demonstrative singing and student’s tentative singing. Further-
more, a finer inspection of each correction occurrence is conducted,
where we identify the detailed elements.

Five correction occurrences are taken as examples to showcase
our analysis. For each one, we list its aria name, melodic line, target
syllable, the teacher’s verbal feedback, the dimensions classified.
Finally, we give a short explanation accompanied by the visualiza-
tion to justify our classification process.

teacher

72[ .
/ gliding

71

ornament
J0+
69
68
67

66 |-

cents

0.2 0.4 1.0 1.2

72 —\/
71

70+
69

68 -
67+

0.6 0.8
student

cents

0.2 0.4 0.6 0.8 1.0 1.2
time(s)

Figure 3.3: The pitch contours of the syllable “yuan” for occurrence 1.

Occurrence 1:

+ Aria: TaiZhenWaiZhuan (K ELA/M%)

* Melodic line: yi yuan na chai yu he qing yuan yong ding (— )%
IS BB SR E)

* Target syllable: yuan (%)

» Teacher’s verbal feedback: it didn’t jump up. (ABEkHLK)

* Dimension: intonation

* Explanation: The syllable’s second tone in the teacher’s demon-
strative singing has a pitch gliding (ornament). However, the
gliding in the student’s version is not apparent (Figure 3.3).

&
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Figure 3.4: The pitch contours of the syllables “dang nian jie bai” for
occurrence 2.

Occurrence 2:

e Aria: ZhuoFangCao (F2/5H)

+ Melodic line: dang nian jie bai yi lu xiang (CY4E45 FE— P )

» Target syllables: dang nian jie bai (24 /5 45 )

» Teacher’s verbal feedback: swing apart these four syllables
(1,2,3,4 WUADFILIT)

* Dimension: rhythm

* Explanation: In teacher’s demonstrative singing, the temporal
duration of the third syllable “jie”” has been prolonged, in contrast
with the other three syllables, which can be observed by the pitch
contour (Figure 3.4).

Occurrence 3:

+ Aria: TaiZhenWaiZhuan (K ELA/M%)

 Melodic line: yang yu huan zai dian gian shen shen bai ding (1%
FIAE B IRIRTFEE )

« Target syllable: yang (1%)
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teacher
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Figure 3.5: The loudness contours of the syllable “yang” for occurrence
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Figure 3.6: The spectrograms of the syllable “yang” for occurrence 3.



Automatic assessment of singing voice pronunciation of jingju
72 music

» Teacher’s verbal feedback: emphasizing the nasal voice (an &
TR )

* Dimensions: loudness and tone quality

* Explanation: In teacher’s demonstrative singing, a prominent
loudness peak can be found in the head of the syllable, which
maintains a high loudness level in the belly (Figure 3.5). We
also can observe that the higher harmonics are abundant from
the spectrogram (Figure 3.6).

teacher

~ weak hz 5
- inthetai ==

time(s)

Figure 3.7: The spectrograms of the syllable “shang” for occurrence 4.
Occurrence 4:

* Aria: ZhuoFangCao (F2/5#)

 Melodic line: xian xie zuo le na wa shang shuang ([ 2845 7 S
FLFAR)

» Target syllable: shang (_I")

* Teacher’s verbal feedback: terminate the sound at /ng/ (sound Y
EIH] ng)

* Dimension: pronunciation
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» Explanation: The teacher’s demonstrative singing is one octave
lower than the student’s singing. The teacher’s feedback empha-
sizes the pronunciation quality of the syllable tail sound — /ng/.
His demonstrative singing contains fewer harmonics in the tail
than the student’s singing (Figure 3.7).

teacher

resonances.

time(s)

Figure 3.8: The spectrograms of the syllables “kai huai” for occurrence
5.

Occurrence 5:

s Aria: WuliaPo (Ei5 )

* Melodic line: jian liao na zhong da sao xi wen kai huai (iL 7 I8
FROKLE A 2] PR

* Target syllable: kai huai (FFP£)

» Teacher’s verbal feedback: adjust the breath, make the sound
solid even if you sing in the low register (% H <, KA %
JRERAET)

* Dimension: tone quality

* Explanation: This feedback has twofold of meaning. First is to
take enough breath, and have enough air in the chest to sing. Sec-
ond is to adjust the body’s resonance position to make the sound
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more solid. This can be observed as in the spectrogram of the
teacher’s demonstrative singing, which contains less energy for
the lower harmonics and the prominent resonances (energy) in
around 750 Hz and 1250 Hz (Figure 3.8).

A survey among students

We conduct a simple survey of another nine students to investigate
the importance of each dimension from their perspectives. The sur-
vey contains two questions:

Please rate the use frequency of the following media when you
learn to sing arias — score, audio recording or teacher’s classroom
teaching. Please rate the importance of the following jingju singing
dimensions and elements when you learn to sing arias—intonation,
rhythm, loudness, pronunciation, ornament, breath and strength (%]
%)

Nine students have participated in this survey; they are different
from the ones presented in Section 3.1.1. Among them, five are
professional undergraduate students or students already graduated
from NACTA, four are amateurs from the jingju associations in two
non-art universities in Beijing. We use a five-level Likert scale for
each rating term. For example, the “use frequency of the score” in
the first question and the “importance of intonation” in the second
question can be rated from 1 to 5, where 1 means “never used” or
“not important at all” and 5 means “most frequently used” or the
“most important”. Then, we take the average value of each term
for five professional students and four amateurs respectively.

It is worth to mention that three more elements — ornament,
breath and strength have been added to the survey. The consider-
ation for this change is that the survey terms need to be adapted
to the student’s artistic background, and the jingju singing jargons
should be easily accessible by them.

3.1.2 Results and discussion

In this section, we report the results of the analysis of teachers’
correction occurrences and the students’ survey. The correction oc-
currences are classified into five dimensions by using the method
introduced in the Section 3.1.1. Then, we discuss the student’ sur-
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vey result and compare it with the teachers’ correction occurrence
classification result.

Correction occurrence analysis

Table 3.2: The statistics of the correction occurrence dimension classifi-
cation. Inton.: intonation; Loud.: loudness, Pronun.: pronunciation.

Inton. Rhythm Loud. Pronun. Tonp
quality
I
WuliaPo 8 0 ! 6 6
N EAME
TaiZhen 6 1 9 4 11
WaiZhuan
P
ZhuoFangCao 2 7 ? 3
Sum. 19 3 17 19 20

We observe from the Table 3.2 that among the five dimen-
sions, tone quality, pronunciation and intonation dimensions have
the largest and almost equal occurrence number, loudness takes the
second place, and rhythm problem was least mentioned. In other
words, tone quality, pronunciation and intonation are the dimen-
sions which receive particular attention from teachers and cause
problems easily to students.

The correction occurrence analysis results are organized in an
Excel spreadsheet, which consists of the teacher’s verbal feedback,
signal analysis method, and classified dimension.

The survey among students

We gather the survey results by ordering the mean values for each
question. For the first question, the usage frequency ordered from
high to low of three learning media are:

1. Professional group: classroom teaching, audio recording,
score;
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2. Amateur group: audio recording, teacher’s classroom teach-
ing, score.

The music score has been rated as the lowest use frequency by
both professional and amateur groups, which means that the jingju
students we investigated do not use the visual clue — music score
reading, to learn arias. The teacher’s classroom teaching has been
rated as the highest use frequency for the professional and the sec-
ond for the amateurs, which is reasonable because this learning
medium is much easier available for the professional. Lastly, the
high rating of both teacher’s classroom teaching and audio record-
ing shows that the jingju students use mostly the listening and im-
itation methods to learn arias.

For the second question, the importance order from the most
important to most trivial are:

1. Professional group: rhythm, strength, pronunciation, breath,
intonation, loudness, ornament;

2. Amateur group: rhythm, pronunciation, strength, ornament,
breath, intonation, loudness.

Apart from the terms strength and breath, the others have been
analyzed in the correction occurrence perspective. Strength is
a stylistic and abstract word to depict the energy used in jingju
singing and instrument playing. A jingju singing with strength
is conveyed by combining multiple elements, such as loudness
(mostly), rhythm, intonation and tone quality. Breath or spe-
cific methods of breathing (X, 1) described in Wichmann’s book
(Wichmann, 1991) is “these methods allow the exiting breath to
control the pitch, timbre or tone color, and energy of the sound
produced.” In consequence, Strength and breath both are nonspe-
cific terms combining or affecting multiple basic jingju singing el-
ements.

Pronunciation is rated as an essential element by both the pro-
fessional and amateurs, which is coherent with the result of the cor-
rection occurrence analysis. The high importance of rhythm and
low importance of intonation and loudness contradict to the result
of the correction occurrence analysis. For rhythm aspect, one pos-
sible explanation is that the higher importance the students value a
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singing dimension, less prone they are going to sing poorly on it.
For example, the students consider that rhythm is the most impor-
tant singing aspect, they pay much attention to it during the prac-
tice. Thus they are less prone to have the rhythmic problems. For
intonation and loudness, we cannot easily conclude that they are
not important in the learning process. The reasons are twofold: on
the one hand, the students might think that the intonation accuracy
is a basic requirement in jingju singing and its importance is self-
evident; on the other hand, because intonation and loudness are jar-
gons used in acoustic, sound and music technology research fields,
which might be foreign to these students, so they might avoid them
and choose the familiar terms such as strength.

The only jingju singing dimension emphasized in both correc-
tion occurrence analysis, and the survey analysis is pronunciation,
which shows that its crucial role in jingju singing training. As a
consequence, to take advantage of limited time and effort, we will
focus on tackling the research problems related to the assessment
of singing pronunciation. In the following sections of this chapter,
we present challenges, opportunities and research problems which
are only related to the pronunciation dimension.

3.2 Challenges and opportunities

Significant challenges are existed to the automatic assessment of
singing voice pronunciation in jingju music. We present and dis-
cuss challenges and opportunities from the perspectives of jingju
singing characteristics and state of the art. These challenges will
help us to formulate the research problems to be more comprehen-
sive and akin to jingju music tradition. The opportunities, in turn,
help us to pursue new MIR research directions.

3.2.1 Characteristics of jingju singing

We illustrate some signal characteristics of jingju singing voice that
will be helpful to identify challenges for automatic assessment.
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Figure 3.9 shows an example of a dan role-type singing phrase
in which the last syllable lasts approximately 20 seconds. This
singing method — #E /¥ (pinyin: tuogiang, literally translated as the
prolonged melody), used more commonly in dan than in laosheng
singing, extends the duration of last syllable of the melodic line or a
dou (Section 2.1.3). Itis a way of improving artistic expression, and
the prolonged syllable can be used to carry various singing skills
which include breath, intonational and dynamic control techniques,
among others.

In jingju singing, the breath must be under purposeful con-
trol at all times (Wichmann, 1991). fii”< (pinyin: touqi, stealing
breath) is one of the primary methods to taking the breath in jingju
singing. Performer inhales rapidly without exhaling beforehand.
Touqi is performed when a sound is too long to be delivered in
one breath and should be undetectable to the audience (Wichmann,
1991). However, this is not the only technique which can lead to
pauses within a syllable. Another singing technique (zu yin, liter-
ally translated as block sound), provokes also pauses without occur-
ring exhalation or inhalation. This kind of pause can be very short
in duration and can be easily found in jingju singing syllables.

Vibrato (Bii & chanyin and #JK 7 bolangyin) is extremely im-
portant in jingju singing such that a single pitch is rarely prolonged
without a vibrato. Compared to the Western opera, jingju singing
vibrato is slower and wider regarding vibrato rate and extent (Yang,
Tian, & Chew, 2015).

In jingju singing training, correctly pronouncing each written-
character (syllable) is essential. The important role of pronunci-
ation in jingju singing training has been discussed in Section 3.1.
However, in the actual training scenario, the student is likely to
commit the pronunciation errors regarding two types of syllable —
jiantuanzi and special pronunciation, where their definitions have
been introduced in Section 2.2.3 and Section 2.2.4. Jiantuanzi
mispronunciation means that the student mispronounces a pointed
sound syllable (jianzi) as the rounded sound (tuanzi). The mis-
pronunciation of the special syllables means that the student mis-
pronounces a special pronounced syllable as the standard pronun-
ciation in Chinese Mandarin. Figure 3.10 and Figure 3.11 shows
the Mel spectrograms of the mispronounced syllables. We can ob-
serve that the spectral difference between jianzi “siang” and its cor-
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time (s)

Figure 3.10: The Mel spectrograms of pointed syllable (jianzi) “siang”
and its corresponding rounded syllable (tuanzi) “xiang”.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
time (s)

Figure 3.11: The Mel spectrograms of the special pronounced syllable
“ngo” and its corresponding normal pronounced syllable “wo”.

responding tuanzi “xiang” mainly lies in the non-voiced consonant
part, and the difference between special pronounced syllable “ngo”
and its corresponding normal pronunciation “wo” also lies in the
syllable head part. The mispronunciation in jingju singing training
and the formulation of the problem of mispronunciation detection
will be continued to discuss in Section 3.3.3 and Section 3.4.3.
The overall quality of the singing syllable or phoneme can be
easily illustrated by using spectrogram. Figure 3.12 shows the Mel
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Figure 3.12: The Mel spectrograms of teacher and student singing the
same phrase “meng ting de jin gu xiang hua jiao sheng zhen (in pinyin
format)”. Red vertical lines are the onset time positions of each syllable.

spectrograms of a dan role-type singing phrase taken from the aria
it T A5 <6 w5 W 1B ) 7P e — (3 0 W) (meng ting de jin gu xiang
hua jiao sheng zhen — Farewell My Concubine). The upper part of
the figure is the spectrogram of the teacher’s recording, while the
lower part is that of a primary school student’s recording. Although
the student does not commit any mispronunciation, there still exists
a significant gap between the overall quality of her singing and that
of the teacher singing. The gap is reflected in many aspects if we
compare the two spectrograms. For example, the higher harmonics
of the student singing is much weaker than those of the teacher; The
consonants energies of the student singing are weaker than those
of the teacher if we compare the consonants of syllables “xiang”
and “sheng”; The intonation of the student singing is flat and lacks
variation.

3.2.2 Challenges

The basic music event of jingju singing is syllable. In jingju singing
training, the accurate rendition of the syllabic pronunciation is
placed in a more important position than that of the melody. In
jingju circle, there is a saying K 747/} (pinyin: yi zi xing giang,
literally translated as singing according to the syllables), meaning
that the singing melody should be consistent with the syllable tone
and pronunciation, which also shows the importance of an accurate
syllabic pronunciation. In Section 2.2.1, we presented the struc-
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tures and the lower-level components of jingju singing syllable. A
jingju singing syllable consists of four types of phoneme — an ini-
tial consonant or semivowel (optional), a medial vowel (optional),
a central vowel and a tail (optional). As a consequence, at a more
elaborate level, to pronounce a jingju syllable accurately is to ren-
der these elementary phonemes accurately.

According to the jingju singing principles mentioned above, to
assess a jingju singing pronunciation at syllable or phoneme level,
an automatic assessment system of jingju singing needs to have
the ability to segment the singing recording automatically into the
syllabic or phonetic unit. As we have mentioned in Chapter 2, a
jingju aria is arranged hierarchically in several granularities from
the roughest to the finest — banshi, couplet (shangxiaju), melodic
line, syllable. Ideally, the segmentation of a jingju singing in a cer-
tain granularity needs to be performed on top of its parent one. For
example, the segmentation of couplet needs to be done in its par-
ent banshi segment; the segmentation of syllable needs to be done
in its parent melodic line segment. Correspondingly, if the target
recording for the assessment is an entire aria, which is required
to be assessed in syllable or phoneme level, we need systems for
different segmentation granularities — automatic banshi, couplet,
melodic line, syllable and phoneme segmentation.

One way to approach the segmentation problem of different
granularities is the alignment of aria lyrics to audio. Since lyrics can
be annotated with boundaries of banshi, couplet and melodic line,
once each syllable in the lyrics are time-aligned with the singing
audio, the time boundaries of different granularities can be natu-
rally deduced. However, this unified approach might not be opti-
mal regarding the segmentation accuracy. Different banshi has the
different singing characteristics. For example, prolonged singing
syllables are more likely to be sung in unmetered banshi segments,
such as daoban and huilong, and in slow tempo banshi, such as
manban. As it was mentioned in Section 3.2.1, many singing skills
such as ornamentation, breath control, are usually used in interpret-
ing a prolonged syllable. Breath control leads to silences within a
syllable; ornamentation leads the variation of the spectral pattern.
Long syllable, silences within a syllable and spectral pattern varia-
tion are the main sources of lyrics-to-audio alignment error. Thus,
to avoid the alignment error propagating in different banshi seg-
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ments, it is necessary to perform the banshi segmentation.

Different tempi and meters characterise different banshi (Sec-
tion 2.1.7). Thus banshi segmentation is analogous to meter track-
ing (Srinivasamurthy, 2016). Unmetered banshi is an important
category of jingju banshi of which the singing and instrumental per-
forming do not follow any rhythmic beat. Such unmetered banshi
existing in jingju aria present challenge to the segmentation task.

Jingju music tradition does not have the absolute tempo. An
expressive performance without a metronome, combined with a
lack of annotated tempo can lead to a single composition being
performed in different tempi. This lack of an absolute tempo
complicates the choice of a relevant timescale for tracking banshi
(Srinivasamurthy, 2016).

The jingju music characteristics allow a certain freedom of im-
provisation in changing the local tempo such as increasing or de-
creasing the tempo through the melodic line or a few syllables.
However, MIR algorithm has difficulty tracking metrical structures
that have expressive timing and varying tempo (Holzapfel, Davies,
Zapata, Oliveira, & Gouyon, 2012). Thus, the local tempo varia-
tion is a potential source of challenge for banshi tracking.

Regarding segmentations in finer granularities than banshi, as
we have mentioned above, long syllable, silences within a syllable
and spectral pattern variation pose challenge to the relevant seg-
mentation/alignment tasks.

Pronunciation correctness is essential in jing singing training.
According to the discussion of mispronunciation in Section 3.2.1,
the mispronunciation is revealed usually in some parts of a sylla-
ble. If the student mispronounces a jianzi, she/he probably only
pronounces badly the non-voiced consonant part of the syllable.
For example, the mispronunciation of jianzi “siang” to “xiang” is
characterized only by the non-voiced consonant part. If the stu-
dent mispronounces a special pronounced syllable, she/he might
pronounce badly any part of the syllable. Please consult Table B.1
for the mispronunciation patterns regarding the special pronunci-
ation. As a consequence, the model which can discriminate the
mispronounced and correctly pronounced syllables should be able
to locate the relevant parts in the syllable, which is a potential chal-
lenge.

Pronunciation and overall quality of a singing syllable or
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phoneme are both abstract and perceptual related concepts. Pro-
nunciation is a subconcept of the timbre which is defined by what
is not “a set of auditory attributes of sound events in addition to
pitch, loudness, duration, and spatial position”. In a signal point of
view, timbre is related to the spectral envelope shape and the time
variation of spectral content (Pons, Slizovskaia, Gong, Gomez, &
Serra, 2017). While overall quality is a more general concept than
pronunciation since it is a mixture of different musical dimensions
— intonation, loudness, duration and timbre (apart from pronunci-
ation). In consequence, to define a pronunciation similarity mea-
sure requires a perceptual related representation of the time-varying
spectral content, and to define an overall quality similarity measure
requires a representation of all relevant dimensions. To identify the
proper representations for similarity measures is a potential chal-
lenge.

In summary, the absence of an absolute tempo and local tempo
variation are challenging. Long syllable, silences within a syllable
and spectral pattern variation pose challenges to existing segmenta-
tion approaches. The locality of the mispronunciation in a syllable
presents challenges in mispronunciation detection. The fuzziness
of pronunciation and overall quality concepts present challenges in
finding proper representations for their similarity measurement.

3.2.3 Opportunities

There are several unique features in jingju singing which bring new
opportunities to explore new research directions in MIR. The chal-
lenges mentioned above also bring new opportunities to explore
new approaches for automatic singing voice assessment. The com-
plex metrical structure and syllable-based singing framework re-
quires specific methodologies to perform segmentation and pro-
nunciation description, and will be beneficial to the singing assess-
ment of other music cultures based on similar frameworks.

In this dissertation, we mainly use audio for analysis. How-
ever, the corresponding score, lyrics and annotated metadata which
also carry pronunciation and duration information can be used for
a compound approach for building the singing assessment models.

Another important aspect of jingju singing is that its pronuncia-
tion is explicitly shown through the shapes for the throat and mouth
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(Section 2.2.2). In jingju singing training, students are required to
use a standardized throat and mouth shape to pronounce jingju syl-
lables. It is believed a non-standard throat and mouth shape cannot
lead to the correct pronunciation. Thus, a multi-modal approach
to jingju singing pronunciation assessment can be done from video
recordings of student singing practice, a problem is interesting, but
beyond the scope of this dissertation.

The language system of jingju singing is a variant of the stan-
dard Mandarin Chinese. Although various Chinese dialects are
used in jingju singing and bring certain variations to Mandarin
pronunciation, such as special pronunciations — shangkouzi, the
syllabic structure of Mandarin language remains unchanged (Sec-
tion 2.2.1). We can learn methodologies from the mature research
area of speech technologies to resolve segmentation and mispro-
nunciation detection problems.

In summary, the unique metric structure, syllable-based singing
framework and variants of Mandarin language bring new opportu-
nities for exploring new methods in jingju singing. Additionally, a
detailed description of jingju singing pronunciation involves com-
bining various sources of information such as audio, score, lyrics,
annotated information related to pronunciation and visual cues.

3.3 Research problems in the assess-
ment of singing voice pronunciation
of jingju music

We have identified so far several challenges and opportunities for
automatic assessment of singing pronunciation in jingju music.
With such context, we will describe relevant research problems,
discuss possible methods, and review existing works for each prob-
lem. Some associated problems not directly tackled in this disser-
tation such as banshi segmentation, are also discussed for com-
pleteness. Many of the singing assessment problems for jingju
singing have not been tackled before, whereas similar problems
in speech or other music traditions have been aimed to resolve in
speech technology or MIR fields. Most of the tasks for assessment
of jingju singing pronunciation need to be reformulated with the
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jingju singing background such as onset detector is regarded as use-
ful to develop specific syllable/phoneme segmentation algorithm
with the help of other sources of information.

Building data
corpora

Y * *

Automatic singing Mispronunciation Pronunciation and overall quality
event segmentation detection similarity measures

| !

Music theory
practice

Figure 3.13: Related research topics of automatic assessment of singing
voice pronunciation in jingju music.

In this dissertation, the assessment of singing pronunciation
will be devised at syllable or phoneme level. There are several sub-
problems which lead to the final goal —to develop mispronunciation
detection models and to define pronunciation similarity measure
for jingju singing. In Figure 3.13, we show the information flow
between four topics of research problem that will be addressed in
this dissertation — building data corpora, automatic singing event
segmentation, mispronunciation detection and pronunciation and
overall quality similarity measures. There is a significant sequen-
tial order while addressing each problem, e.g. to achieve the assess-
ment at syllable or phoneme level, mispronunciation detection and
similarity measures benefit from the results of automatic singing
event segmentation. The topics of mispronunciation detection and
similarity measures use knowledge derived from music theory and
practice, making them more culture-aware. Each of the topics will
be discussed in detail.

3.3.1 Building data corpora

A crucial part of data-driven research using machine learning ap-
proaches requires good quality data. Data corpora of the music tra-
dition under research are crucial for building and testing the auto-
matic assessment models. The data should contain various sources
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such as audio, score, lyrics and manual annotation made for auto-
matic assessment research.

The dataset created in the work (Repetto & Serra, 2014) is
formed by a collection of commercial recordings, as well as their
metadata. Another jingju music corpus gathered in the (Tian &
Sandler, 2016) also consists of commercial recordings, and anno-
tated for structural segmentation analysis. These recordings are all
mixed with instrumental accompaniment, which means a cappella
(clean) singing voice should be separated during the preprocessing
step if we want to make use of these recordings for the research
of automatic assessment. A collection of 92 jingju music scores
gathered for the analysis of jingju musical system is presented in
the work (Repetto, Zhang, & Serra, 2017), which is transcribed
from published books and stored in machine-readable format. The
a cappella singing separated commercial recording dataset and the
modified score dataset will be integrated into the data corpora of
this dissertation.

The a cappella jingju singing dataset created in the work
(D. A. A. Black, Li, & Tian, 2014) consists of 31 unique arias in
total around 1-hour recordings. However, due to the small size
of this dataset, and that its annotations were made for the task of
mood recognition rather than automatic assessment, we have to re-
annotate this dataset firstly, and then expand it to a proper scale.
One of the main problems tackled in this dissertation is building
suitable and scalable data corpora for the singing pronunciation
assessment research, a problem that is discussed further in Sec-
tion 3.4.1.

3.3.2 Automatic singing event segmentation

Automatic singing event segmentation includes a set of problems
that aim to infer or time align the boundaries of several musical
events in singing recordings related to pronunciation assessment.
The common MIR tasks such as musical structure segmentation,
lyrics-to-audio alignment and singing event onset detection can be
classified as automatic singing event segmentation problems. As
we have mentioned in Section 3.4.1, in the context of the assess-
ment of jingju singing pronunciation, the relevant singing events to
consider are banshi, couplet, melodic line, syllable and phoneme.
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Automatic singing event segmentation is an important prelim-
inary step to achieve automatic assessment, and there are several
applications in which the segmentations are useful, such as rhythm-
based annotation of audio, beat/melodic line/syllable aligned pro-
cessing of music, audio summarization. Each of these problems
will be described in detail.

Banshi segmentation

Banshi segmentation (or banshi tracking) is not the problem which
will be tackled in this dissertation. However, we discuss it for com-
pleteness. Banshi segmentation refers to a set of problems that fo-
cus on segmenting different banshi sections in a jingju aria. By seg-
menting the banshi sections, a complete description of jingju met-
rical structure can be achieved. For such a problem, the subcompo-
nents of a banshi — tempo, accented beat (pinyin: ban, downbeat),
unaccented beat (pinyin: yan, beat) can be obtained.

Banshi segmentation can be done either in an uninformed or
informed fashion. The former fashion means that inferring the
time-varying tempo, beats and downbeats without any prior ban-
shi knowledge of the aria. Informed banshi segmentation is the
case to track tempo, beats and downbeats given the information
of the banshi sequence of the aria. We can classify the subtasks
as tempo tracking, beat tracking and downbeat tracking. Tempo
tracking aims to estimate the time-varying tempo over the record-
ing of a jingju aria. The tracked tempo will be useful for the beat
tracking tasks. As we have mentioned in Section 3.4.1, the tempo
tracking method applied for jingju aria needs to be robust for the
local or long-term tempo change. For metered banshi, the rhythmic
beats are performed by several percussion instruments — danpigu,
ban, naobo, daluo and xiaoluo. Thus, the beat time instance is de-
fined by the onset of each percussion instrument stroke. Although
a specific beat tracking algorithm has not been developed for es-
timating metered jingju banshi, a suitable jingju percussion onset
detection method (Tian, Srinivasamurthy, Sandler, & Serra, 2014)
and several beat tracking methods (Bock, Bock, & Schedl, 2011;
Krebs, Krebs, & Widmer, 2014; Bock, Krebs, & Widmer, 2016) for
eurogeneric music can be adapted for this purpose. In jingju per-
formance, each downbeat is usually marked by the ban (wooden
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clapper) sound and indicates the first beat a measure (Wichmann,
1991). Thus downbeat tracking can be formulated as the problem
of estimating the onset time positions of the ban sound in the beat
sequence. Lastly, metered banshi tracking in jingju aria is a task
analogous to tala tracking in Indian art music, of which the rele-
vant methods have been studied extensively in Srinivasamurthy’s
work (Srinivasamurthy, 2016).

Due to the lack of tempo and beat, segmenting metered banshi
requires a different framework mentioned above. Banshi segmen-
tation is an important step towards any finer segmentation task of
jingju aria. However, since we adopt the melodic line directly as
the input of the assessment pipeline, banshi segmentation will not
be a problem considered in this dissertation.

Couplet, melodic line, syllable and phoneme segmentation

Couplet or melodic line segmentation refers to estimate the time
boundaries of singing couplet or melodic line in a banshi section.
The syllable or phoneme segmentation aims to transcribe the audio
recording of a melodic line into a time-aligned syllable or phoneme
sequence. In jingju singing training scenario, the score, lyrics and
relevant annotations such as starting and ending syllables of the
couplet or melodic line are usually given beforehand. Thus, these
problems can be formulated into a uniformed framework — lyrics-
to-audio alignment. Time-aligning lyrics to audio is a fine-grained
segmentation task, which can be applied to the syllable or phoneme
level singing assessment and analysis.

Jingju is sung in Chinese Mandarin language with regional di-
alect pronunciations of which each written character is pronounced
as a syllable (Section 2.2.1), and several written characters make up
a word. Although not many languages in the world adopt the simi-
lar writing system, the pronunciation of all languages is built upon
basic units — phoneme and syllable (Moran, McCloy, & Wright,
2014). Thus the lyrics-to-audio alignment method can be devised
as either language-dependent or language-independent. Both meth-
ods can be formulated as supervised learning tasks. The former
uses label data to build syllable or phoneme acoustic models; while
the latter uses labelled data to build syllable or phoneme boundary
models.
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As discussed in Section 3.2.2, several jingju singing character-
istics such as long syllable, silences within a syllable and spectral
pattern variation pose challenge to the lyrics-to-audio alignment
task. Apart from that, another challenge is that the mapping from
the written characters to syllables is not unique, due to the exis-
tence of special pronunciations and multi-pronunciation characters
in jingju singing.

The work on lyrics-to-audio alignment for jingju singing has
been very limited so far. Dzhambazov et al. (G. Dzhambazov,
Yang, Repetto, & Serra, 2016) proposed a modified text-to-speech
alignment method for jingju singing. The system is built upon a
duration-explicit hidden Markov model, where the phoneme dura-
tion is empirically set according to lyrics and metric structures of
jingju music.

It is to be noted that prior musical information such as score is
usually available for the assessment of jingju singing, and can be
exploited to tackle the related challenges. Lastly, since we adopt
the melodic line directly as the input of the assessment pipeline,
couplet or melodic line segmentation will not be a problem con-
sidered in this dissertation. Syllable and phoneme segmentation is
one of the problems addressed in this dissertation and is formulated
more concretely in Section 3.4.2.

3.3.3 Mispronunciation detection

Mispronunciation detection refers to build the computational model
to detect the badly pronounced syllables or phonemes in student’s
singing voice. The detection could be done in either syllable or
phoneme granularities. In this dissertation, we tackle only the
problem of building the models to detect the mispronunciation at
syllable-level since syllable or written-character is the basic unit of
which the teacher corrects the pronunciation in the actual singing
training scenario. More specifically, we tackle only the problem of
mispronunciation detection for jiantuanzi and special pronounced
syllables since these two types of the syllable is the main source of
the mispronunciation in jingju singing training. The application of
such detection model is not limited to singing voice. Other poten-
tial applications are the mispronunciation detection in the second
language (L2) learning or broadcasting training.
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The challenge of this topic, as mentioned in Section 3.2.2, is to
take consideration of the locality of the mispronunciation within a
syllable, which is to say, the model should be able to detect the mis-
pronunciation of a syllable according to some parts of the syllable.
We can formulate the detection problem as a supervised discrimi-
nation task, and a labeled dataset which contains mispronunciation
syllable segments (positive samples) and correctly pronounced syl-
lable segments (negative samples) can be used to build the model.

There exist a significant amount of works on the topic of speech
mispronunciation detection applied in L2 learning. The most rele-
vant work in this field is the Goodness of Goodness of Pronuncia-
tion (GOP) measure proposed by S. M. Witt and S. J. Young (Witt
& Young, 2000), which used forced alignment method with a pro-
nunciation dictionary to generate GOP score for the mispronunci-
ation detection task of English phonemes. In the singing voice ap-
plication, Gupta et al. (C. Gupta, Grunberg, et al., 2017) first gen-
eralized the mispronunciation rules for the singing voice of South-
east Asian English accent. Then they also applied forced alignment
with an adapted dictionary for the mispronunciation detection.

Mispronunciation detection is one of the problems addressed in
this dissertation. A more comprehensive problem formulation will
be presented in Section 3.4.3.

3.3.4 Pronunciation and overall quality similar-
ity measures

Pronunciation and overall quality similarity measures refer to build
an objective model to calculate the similarity of corresponding
jingju singing segments between teacher and student respecting
pronunciation and overall quality aspects. The similarities can be
measured in different singing granularities such as banshi section,
couplet, melodic line, syllable and phoneme. In this dissertation,
we tackle only the problem of building the models of phoneme-
level pronunciation and overall quality similarity measures since
phoneme is the finest grained pronunciation unit of jingju singing,
and the composition basis of any higher singing granularities such
as syllable, melodic line, couplet and banshi section. Likewise,
phoneme is also the finest grained pronunciation unit of any other
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languages. The method developed in building similarity measures
at phoneme-level in jingju singing can be easily adapted to singing
similarity measurement at phoneme-level in any other languages.
The application of such similarity measure is not limited to the as-
sessment of singing voice. Other potential applications are the as-
sessment of pronunciation at phoneme-level in the second language
(L2) learning and broadcasting training. In such scenarios, the sim-
ilarity between the phoneme segments of a language learner and a
native speaker needs to be shown to give the learner a clue about
how well her/his pronunciation or overall quality is.

The challenge of this topic, as mentioned in Section 3.2.2, is
to find proper representations for similarity measures — represen-
tation learning. Pronunciation is represented in the signal point
of view as the time-varying spectral change. Overall quality is a
perceptual concept mixed with different musical dimensions such
as intonation, loudness, duration and timbre. The representations
need to capture the time-varying and abstractive natures of these
two concepts. The representation learning can be formulated as
a supervised discriminative or a semi-supervised distance metric
learning tasks. Take overall quality aspect as an example, a su-
pervised discriminative learning uses labeled data (e.g. good/bad
quality) to build a discriminative model, while a semi-supervised
distance metric learning uses data labeled in pairwise or triple-wise
similarity to build a model, e.g. the overall quality of samples A
and B are similar; that of sample B and C are not similar. As a con-
sequence, the learned representation from either the discriminative
model or distance metric learning model is used for the similarity
measurement.

We cannot identify any previous work on the topic of pro-
nunciation or overall quality similarity measure at phoneme-level.
However, there exist a significant amount of works on the topic of
speech phonetic similarity applied in L2 learning. Minematsu et al.
(Minematsu, 2004; Minematsu, Kamata, Asakawa, Makino, & Hi-
rose, 2007; Shiozawa, Saito, & Minematsu, 2016) propose a struc-
tural representation of speech phoneme sounds. They train HMM
for each phoneme class, then compute Bhattacharyya distance be-
tween each HMM pairs. The pairwise distance matrix represents
the phoneme-level linguistic structure. They also claim that this
representation represents purely the linguistic traits of a language
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and free from any distortion such as microphone, room, speaker.
Thomson (Thomson, 2008) develops a method to measure the En-
glish vowel similarity for Mandarin speaker. He builds discrimi-
native models for each English vowel using the recordings of En-
glish native speakers, then uses the models to calculate the pos-
terior probability as the similarity measure for vowel segment of
Mandarin speakers. Wieling et al. (Wieling, Margaretha, & Ner-
bonne, 2011) focus on the multidimensional scaling (MDS) rep-
resentation of vowel segments. They use formant frequencies as
the feature to calculate the euclidean distance for each vowel pair,
then perform MDS to project each vowel onto a two-dimensional
similarity space. Mielke (Mielke, 2012) explores DTW distance
for phonetic similarity measure. He uses MFCC as the representa-
tion of the phoneme segment, and compute DTW distance between
two MFCC vectors. Kyriakopoulos et al. (Kyriakopoulos, Gales,
& Knill, 2017) develop a phoneme similarity measure based on
Jensen-Shannon divergence. They calculate aggregate PLP feature
and fit multivariate Gaussian model for each phoneme. The Jensen-
Shannon distance is computed on the multivariate Gaussian models
of each phoneme pair.

Pronunciation and overall quality similarity measures are one of
the problems addressed in this dissertation. A more comprehensive
problem formulation will be presented in Section 3.4.4.

3.4 Formulation of thesis problems

With an overview of the research problems, challenges, review of
the state of the art works, a subset of those problems that will be
tackled in this dissertation are defined. In this section, we formulate
these problems more comprehensively by discussing their assump-
tions, restrictions, and objectives in an engineering way.

3.4.1 Dataset for research

Building a dataset for MIR research is a scientific problem. Objec-
tive criteria are set up for designing, curating and also measuring
the goodness of a corpus. One of the goals of CompMusic project
is to build such data corpora and make it available for the research
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usage. Collection of good quality data and easily accessible audio
and metadata is crucial for the research reproducibility.

For developing relevant approaches, we focus on collecting
and curating a cappella (clean) jingju singing voice audio in jingju
singing training scenario. The jingju a cappella audio dataset in-
cludes both professional (teacher) singing audio and amateur (stu-
dent) imitative singing audio, which accompanied with hierarchical
jingju musical events annotations. For all of the tasks addressed in
this dissertation, we need singing syllable and phoneme boundary
annotations. Specifically, for mispronunciation detection task, we
annotate special pronunciation singing syllables.

In general, for the research of automatic assessment of jingju
singing voice, we aim to build a data collection which can represent
the real world singing training scenarios. The recordings need to
include the main role-types disciplined in singing, common teach-
ing repertoire. The datasets built in the context of this dissertation
are further presented in Chapter 4.

3.4.2 Syllable and phoneme segmentation

One of the problems addressed in this thesis is syllable and
phoneme segmentation of jingju singing recordings. To the best of
our knowledge, for jingju music, a system which can achieve a cer-
tain segmentation accuracy to be suitable for the needs of automatic
assessment at syllable or phoneme level does not exist yet. Addi-
tionally, to improve the segmentation accuracy, we also explore
incorporating a priori musical information such as the syllable or
phoneme duration extracted from music scores or annotations into
the segmentation algorithm.

To address the problem, we formulate tasks that can inte-
grate a priori syllable or phoneme duration information — duration-
informed syllable and phoneme segmentation. The a priori duration
information is extracted either from the musical score or manual
annotation, which thus represents the coarse syllable or phoneme
duration in the target recording. We then use data-derived audio
representation indicative of syllable or phoneme onset events in the
recording. Finally, we build hidden Markov models that can incor-
porate the a priori duration information into the syllable or phoneme
boundary selection step. The onset detection-based rather than the
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forced alignment-based approach is used since the former is a bi-
nary classification task which requires less training data, and onset
time stamps annotation is available for model training.

In the scope of this work, the target singing recording is as-
sumed to have been already segmented into pieces that are at
melodic line-level. This assumption mainly stems from the fact
that in the actual jingju singing training course, the materials are
taught and practised line by line. We do not assume any restric-
tions on banshi type over the melodic line. We restrict our work to
two role-types —dan and laosheng in jingju music. The restriction is
mainly because dan and laosheng are respectively two major role-
types of female and male singing styles, and that singing is the main
discipline of these two role-types. The proposed method is likely
to extend to the singing of other role-types, provided we have the
a priori duration information for them.

The a priori syllable durations of the target melodic line are
stored in an array M* = pt- - pu™--- 4V, where u™ is the duration
of the nth syllable. The a priori phoneme durations are stored in
a nested array M, = M} --- My --- M}, where M is the sub-
array with respect to the nth syllable and can be further expanded
to My = pi' -« py - - - pf , where K, is the number of phonemes
contained in the nth syllable. The phoneme durations of the nth
syllable sum to its syllable duration: " = ZkK:"l (g In both syl-
lable and phoneme duration sequences — M?*, M,,, the duration of
the silence is not treated separately and is merged with its previ-
ous syllable or phoneme. Let the recording of a melodic line can
be reduced by short-term Fourier transform (STFT). The goal is to
find the best onset state sequence () = ¢q1q2 - - - qn_1 for a given
syllable duration sequence M ® or phoneme duration sequence M,
and impose the corresponding syllable or phoneme label, where ¢;
denotes the onset of the ¢ + 1th or the offset of the ¢th inferred syl-
lable/phoneme.

The approaches, experiments and results for syllable and
phoneme segmentation are presented in Chapter 5.

3.4.3 Mispronunciation detection

The problem of mispronunciation detection at syllable-level is the
third problem that will be addressed in this thesis. The goal is to
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build supervised discriminative deep learning models to classify
between mispronounced and correctly pronounced syllabic seg-
ments. We explore integrating the attention mechanism into the ap-
proach, and the learned model is supposed to concentrate on some
certain parts of the syllable. Differ from the widely adopted forced
alignment-based approach, the proposed method only requires that
the training data has the binary annotation — mispronounced or cor-
rectly pronounced, rather than the detailed mispronunciation pat-
terns.

As the preliminary step, the syllables are segmented automati-
cally by using the approach presented in Section 3.4.2. Although
this approach will cause some segmentation errors which might be
propagated to the mispronunciation detection step, we use it to al-
low a fair comparison with the baseline forced alignment-based
method, since the latter also segment the syllables automatically.
We restrict in this dissertation the mispronunciation detection on
two types of the syllable — jiantuanzi and special pronunciation
since they are the main sources of mispronunciation happened in
actual jingju singing training. Jiantuanzi mispronunciation means
that the student mispronounces a pointed sound syllable (jianzi)
as the rounded sound (tuanzi). The mispronunciation of the spe-
cial syllables means that the student mispronounces a special pro-
nounced syllable as the standard pronunciation in Chinese Man-
darin. The mispronunciation patterns — from correctly pronounced
syllable to mispronounced syllable, is shown in Appendix B. Thus,
two different models will be explored. The first one classifies
the mispronounced special syllables from the correctly pronounced
special syllables, and the second one classifies the mispronounced
jianzi from the correctly pronounced jianzi.

Let the set of variable-length mispronounced special syllable
segments be denoted as S,ositive, and the set of correctly pro-
nounced special syllable segments to be denoted as S,,¢gqative. The
discriminative model should be able to classify binarily the sam-
ples between these two classes. The similar model can be built for
jiantuanzi mispronunciation detection as well.

The approaches, experiments and results for mispronunciation
detection are presented in Chapter 6.
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3.4.4 Pronunciation and overall quality similar-
ity measures at phoneme level

The problem of pronunciation and overall quality similarity mea-
sures is the fourth problem that will be addressed in this thesis. The
approach we explore is to learn phonetic pronunciation and over-
all quality representations using representation learning techniques
and compute the similarity between two representations using dis-
tance measure. The goal is to test the effectiveness of representa-
tion learning techniques in learning pronunciation or overall qual-
ity discriminative representations. Differ from the previous sim-
ilarity measure approaches which use handcrafted features as the
representation, and perform DTW related methods to compute the
similarity between two variable-length features, we present an ap-
proach in this dissertation based on acoustic phoneme embeddings
which map the variable-length phoneme segments into fixed-length
vectors to facilitate the similarity calculation.

We assume that the singing recordings have been segmented
into phoneme units, which is done manually in this dissertation.
Although the segmentation can be done automatically by using the
approach presented in Section 3.4.2, this assumption can make sure
the segmentation accuracy, and thus avoid the error propagated by
the automatic segmentation step. We restrict in our work the over-
all quality to be a binary rubric such that phoneme segments sung
by the teacher have a professional overall quality, and those sung by
the student have an amateur overall quality. Thus, the overall qual-
ity similarity is measured between teacher and student phoneme
segment pair which belong to the same phoneme class. For exam-
ple, the approach can only measure the similarity between phoneme
segments A and B, where A is sung by teacher and B is sung by stu-
dent; A, B belong to the same phoneme class. From the point of
view of the actual jingju singing training, only the case mentioned
above is valid since the similarity between two phoneme segments
sung consistently by teacher or student would not be measured,
and measuring the similarity between two segments belonging to
different phoneme classes is a problem which can be avoided by
mispronunciation detection. Since we can be sure that the student
recordings in our dataset can by no means reach the professional
level, such a restriction is justified.
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Let the set of variable-length phoneme segments be denoted as
A = Ay, Ay, As, ..., An, where each A; is a subset of phoneme
segments belonging to class j. The learned phonetic pronunciation
representation for each phoneme segment in A; should be capable
of minimizing the intra-class similarity and maximizing the inter-
class similarity. Let the set of variable-length phoneme segments
sung by teacher be denoted as B = By, Bs, Bs, ..., By, and an-
other set of variable-length phoneme segments sung by student be
denoted as C = (1,5, (s, ..., Cy, where each B; and C; are the
subsets of phoneme segments belonging to class j. The learned
phonetic overall quality representation should be capable of min-
imizing the intra-class similarity between two segments from one
single set such as B; or C}, and maximizing the inter-class simi-
larity between those from different sets such as B; and C;.

The whole approach can be formulated as a fixed-length repre-
sentation learning problem with pre-segmented phoneme samples
— using the fixed-length representation for the similarity compu-
tation. The approaches, experiments and results for syllable and
phoneme segmentation are presented in Chapter 7.



Chapter 4 .

Data corpora for
research

Computational data-driven MIR research requires a well-curated
data corpus for training and testing the models. The corpus should
meet certain criteria so that the models can be built successfully and
applicable to real-world scenarios. A research corpus is an evolving
data collection which is representative of the research domain under
study. A good corpus can be built by a single research institute or
by crowdsourcing within a community. Regarding MIR research,
a research corpus is a representative subset of one or several music
genres, since it is nearly impossible to work with all the relevant
music pieces. Computational models developed upon this subset
can be assumed generalizable to real-world scenarios.

A test dataset is a subset of the research corpus which is de-
signed for a specific research task. In the research task, the test
dataset is used to develop and evaluate computational models. For
better reproducibility of experiment results, the test dataset is usu-
ally fixed or properly versioned.

Building a research corpus is a research problem itself and
has been studied in many fields. There are many repositories
for the research of speech such as Linguistic Data Consortium!,
Librispeech?, and for the research of musicology such as IM-

"https://www.ldc.upenn. edu/
http://www.openslr.org/
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SLP/Petrucci Music Library® and MusicBrainz*. There have been
efforts to compile large collections for MIR or general sound anal-
ysis research such as Million Song Dataset (Bertin-Mahieux, El-
lis, Whitman, & Lamere, 2011), FMA dataset (Defferrard, Benzi,
Vandergheynst, & Bresson, 2017), AcousticBrainz® and Freesound
datasets (Fonseca et al., 2017). These music data collections are
good resources for developing MIR models on Western Pop mu-
sic. A systematic way of building a research corpus is essential for
the MIR research, and receives attention from the research com-
munity. Serra (Serra, 2014) described a set of criteria to build a
MIR research corpus — Purpose, Coverage, Completeness, Quality
and Reusability. We use these criteria to help develop a corpus for
automatic assessment of jingju singing pronunciation.

In this chapter, we compile and analyse the research corpus and
test datasets for the research of this dissertation. We will discuss the
corpus building criteria and evaluation methodologies. Our main
focus in this chapter will be jingju music, while other relevant test
datasets are also presented. We aim:

1. To describe the corpus and the test datasets, emphasizing the
research problems and tasks relevant to this thesis.

2. To describe a set of corpus design criteria and methodologies,
then use them to evaluate the jingju a cappella singing voice
corpus.

3. To present both corpus-level and test dataset-level musically
meaning data analysis and visualization.

We mainly emphasize on presenting a scientific approach for
corpus building and the evaluation of its coverage and complete-
ness. Apart from the corpus description, the musically meaningful
data analysis and visualization is another contribution of this chap-
ter. Finally, the research corpus and test datasets presented in this
chapter will be made available for further jingju MIR research.

*https://imslp.org/
“https://musicbrainz.org/
Shttps://acousticbrainz.org/
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4.1 CompMusic research corpora

Although different music genres share some basic concepts such
as melody and rhythm, some other important aspects can be de-
scribed only by considering the musical specificity of that tradi-
tion. In the context of CompMusic project, Serra (Serra, 2011)
highlighted the needs for culture-specific MIR research corpora to
develop approaches which benefit from the essential aspects of the
music tradition.

In CompMusic project, we work with five music traditions of
the world which expose different research problems. A significant
effort has been put towards the design the research corpora for the
relevant problems of the specific musical traditions. In this chap-
ter, we focus mainly on the a cappella singing voice of jingju music,
while jingju commercial audio recording (Repetto & Serra, 2014),
lyrics and musical score collections (Repetto et al., 2017) have been
presented by other researchers of the CompMusic project. The Car-
natic and Hindustani research corpora have been described thor-
oughly by (Srinivasamurthy, Holzapfel, & Serra, 2014). The Turk-
ish makam music research corpus has been presented in detail by
(Uyar, Atli, Sentiirk, Bozkurt, & Serra, 2014).

4.1.1 Criteria for the creation of research cor-
pora

Serra (Serra, 2014) listed five criteria for build culture-specific
MIR research corpus:

“Purpose: The first step in the design of a corpus is to define
the research problem that wants to be addressed and the research
approach that will be used. In CompMusic, we want to develop
methodologies with which to extract musically meaningful repre-
sentations from audio music recordings, mainly related to melody,
rhythm, timbre and pronunciation. The approaches are based on
signal processing and machine learning techniques; thus the cor-
pus has to be aligned with this purpose.

Coverage: A corpus has to include data representative of all
the concepts to be studied and given our quantitative approach,
there have to be enough samples of each instance for the data to
be statistically significant. For our research we need to have audio
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recordings, plus appropriate accompanying information, covering
the varieties of pronunciation present in the musical culture.

Completeness: In each corpus, every audio recording is com-
plemented by a set of data fields, and the idea of completeness re-
lates to the percentage of fields filled, thus how complete the corpus
is. For our corpora, this mainly refers to the completeness of the
editorial metadata and the annotations accompanying each audio
recording.

Quality: The data has to be of good quality. The audio has to
be well recorded and the accompanying information has to be accu-
rate. We have used well-produced recordings whenever possible,
and the accompanying information has been obtained from reliable
sources and validated by experts.

Reusability: The research results have to be reproducible, and
that means that the corpus has to be available for the research com-
munity to use. In our case, we have emphasised the use of specific
open repositories such as Zenodo.org® that are either already suit-
able or that can be adapted to our needs.”

Central to the jingju a cappella singing corpus is the audio
recordings with its annotation. We present this corpus in the next
section.

4.1.2 Jingju a cappella singing corpus

The jingju a cappella singing corpus mainly contains audio record-
ings, editorial metadata and musical event annotations. All anno-
tated corpus is the content used by signal processing and machine
learning approaches.

Given that aria is the natural unit of jingju music, most audio
recordings in this corpus are arias. A unique aria might be sung
by different singers with different singing levels — professional or
amateur. To facilitate the development of singing voice assessment
models, the audio recordings in this corpus are all a cappella ver-
sion, meaning without instrumental accompaniment. The singer’s
singing level is most important metadata associated with a record-
ing.

®https://zenodo.org/
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To build the corpus, we consulted jingju professors and musi-
cologists. The main institutional reference is the NACTA, which
is the premier institution dedicated to jingju performing training in
Beijing, China, and is the only institute of its kind in China that
offers both B.A. and M.A. degrees in jingju performing.

We wish to compile recordings sung by both professional and
amateur singers from different backgrounds. The professional
singers are the professors and students of NACTA. The amateur
singers are from various sources — students of jingju associations
in non-art universities, amateurs of jingju groups in community ac-
tivity centers located in Beijing, amateurs of jingju associations lo-
cated in London and students from several primary schools. We
did not keep track the singer information of the amateurs of jingju
groups in community activity centers located in Beijing and the
students from several primary schools due to that a large number
of singers participated in these recording sessions. Otherwise, the
singer information of the other recordings is written in the editorial
metadata.

The corpus has been collected in three different stages and thus
been split into three parts. The audios in the first part are recorded
with the joint effort of two music technology research institutes
— Center for Digital Music, Queen Mary University of London
(C4ADM) (D. A. Black, Li, & Tian, 2014) and Music Technology
Group, Universitat Pompeu Fabra (MTG-UPF). Additionally, an-
other 15 clean singing recordings separated from the commercial
releases have been included in this part. The audios in the second
and third parts are recorded by the author of this thesis during his
two times research stay in Beijing.

The corpus consists of 2 role-types (dan and laosheng), 121
unique arias with 289 recordings, meaning several arias have been
recorded more than once by different singers. The total duration is
13.61 hours. Other information related to the corpus is described
in Table 4.1.
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The editorial metadata associated with each recording has been
stored in MusicBrainz, as well as in Zenodo.org. The primary
metadata is the name of the aria, the name of the play and the
name of the singers. Each entity such as artist, recording, work, in
MusicBrainz is assigned a unique MusicBrainz [Dentifier (MBID),
which helps organize the metadata. The editorial metadata has been
entered using simplified Chinese characters and romanization sys-
tem — pinyin.

A large part of the audio recordings has been annotated. The
annotations consist of (i) melodic line onset and offset time bound-
aries and lyrics in simplified Chinese characters, (ii) syllable onset
time stamps and pinyin label, (iii) phoneme onset and offset time
boundaries and X-SAMPA label (Appendix A), (iv) labels indicat-
ing the melodic lines which contain long syllables and (v) labels
indicating special pronunciations. All annotations have been done
in Praat speech analysis and annotation tool (Boersma, 2001). Two
Mandarin native speakers and one jingju musicologist have dedi-
cated to the annotation. The annotation has been verified and cor-
rected twice by the thesis author to ensure its the boundary accuracy
and label correctness.

The whole corpus including audio recordings, editorial meta-
data and audio annotations are easily accessible from Zen-
odo.org”-%?,

Recording setup

In the first part of the corpus, the information of recording setup
for the audios collected by C4DM has not been given in the orig-
inal release (D. A. Black et al., 2014). However, by listening to
each of them, we confirmed that the audios from this part included
in the corpus are all good quality. Also in this part, the record-
ings whose names ending with ‘upf” are recorded in a professional
studio with jinghu accompaniment. Singers and jinghu accompa-
nists are placed separately in different recording rooms and used
two recording channels to avoid crosstalk. Other recordings whose
name ending with ‘lon’ are recorded by using a Sony PCM-50

"https://doi.org/10.5281/zenodo . 780559
Shttps://doi.org/10.5281/zenodo . 842229
‘https://doi.org/10.5281/zenodo. 1244732
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portable stereo recorder in a classroom with a certain reverbera-
tion. Additionally, another collection of 15 clean singings source-
separated from commercial recordings contain audible artefacts of
the background accompaniment.

For the second part of the corpus, most of the recording sessions
have been conducted in professional recording rooms by using pro-
fessional equipment. We use two recording equipment sets and two
recording rooms:

* Set 1: M-Audio Luna condenser microphone + RME
Fireface UCX audio interface + Apple GarageBand for Mac
DAW;

» Set 2: Mojave MA-200 condenser microphone + ART voice
channel microphone preamp + RME Fireface 800 audio in-
terface + Adobe Audition 2.0 DAW;

* Room 1: The conference room in NACTA’s business incu-
bator with reflective walls, carpet-covered floor, conference
furniture and medium room reverberation;

* Room 2: The sound recording studio in Institute of Automa-
tion, Chinese Academy of Science, with acoustic absorption
and isolation.

Commercial audio recordings are used, or jingju players are
invited for accompanying the singing. When commercial audio
recordings were used as the accompaniment, singers were recorded
while listening to the accompaniment sent through their monitor-
ing headphone. Otherwise, when jinghu players were used as
the accompaniment, to simultaneously record both singing and
jinghu without crosstalk, we placed them separately in two differ-
ent recording rooms and used two recording channels. However,
they were still able to have visual communication through a win-
dow and monitor each other through headphones.

For the third part of the corpus, the recording sessions are done
by using a Sony PCM-50 portable stereo recorder. The professional
singings are recorded during the primary school jingju courses. The
recording sessions of primary school students are done in three
classrooms rather than asking the students to come to the studio.
We believe that recording in the classrooms can represent the room
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acoustic conditions of the actual jingju teaching. The three rooms
are (i) a mid-reflected classroom with the hard wall, marble floor,
wood tables, chairs and a blackboard; (ii) a high-reflected danc-
ing rehearsal room with mirrors, hard wall and wood floor; (iii) a
mid-reflected dancing rehearsal room with carpet floor, mirrors and
glass windows. Lastly, the amateurs of jingju groups in community
activity centers are recorded in (iv) a high-reflected community en-
tertainment room with marble floor and hard wall.

Coverage

A research corpus needs to be representative of the real world in the
concepts that are primary to the music culture (Srinivasamurthy,
2016). The main concepts of jingju music — role-type, shengqgiang
and banshi, are presented previously in Section 2.1. The concepts
of jingju singing — syllable and phoneme are the essential units for
the pronunciation assessment. In this work, the coverage analysis
is presented for role-type, shengqiang, banshi and phoneme. We
do not analyse syllable because there are excessive syllable classes
in the languages of jingju singing.

The corpus includes the two jingju role-types whose main disci-
pline is singing — laosheng and dan. Both professional and amateur
singers have been recorded. For dan role-type, there are 79 amateur
recordings and 83 professional recordings. For laosheng role-type,
there are 67 amateur recordings and 51 professional recordings (see
Table 4.1).

The corpus also includes the two main shengqiang - xipi and
erhuang, and a few auxiliary ones, such as fanxipi, fanerhuang,
sipingdiao, nanbangzi.

In terms of banshi, the whole range of metered ones is repre-
sented in the dataset - yuanban, manban, kuaiban, erliu, liushui,
sanyan and its three variations — kuaisanyan, zhongsanyan and
mansanyan. Besides these metered banshi, there are a few un-
metered ones — sanban, daoban, yaoban and huilong, whose oc-
currence is very punctual in performance. A list of shengqgiang and
banshi included in the corpus for dan and laosheng role-types is
shown in Table 4.2.

Figure 4.1 represents the number of occurrence for each
phoneme for dan and laosheng role-types. We can see that the cor-
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Table 4.2: A list of shengqiang and banshi included in the corpus.

Role-type shengqiang banshi
yuanban, manban,
xipi, erhuang, kuaiban, liushui,
fanxipi, fanerhuang, erliu, kuaisanyan,
dan nanbangzi, sipingdiao, sanyan, pengban,
fansipingdiao, gaobozi, shuban, duoban,
handiao daoban, huilong,

yaoban, sanban
yuanban, manban,
kuaiban, liushui,
xipi, erhuang, erliu, kuaisanyan,
fanxipi, fanerhuang  zhongsanyan, sanyan,
daoban, huilong,
yaoban, sanban

laosheng

pus cover all the phoneme classes for both dan and laosheng role-

2 ¢

types, although some phonemes such as “@”, “yn” have tiny num-
ber of occurrence. In all the phoneme classes, “c”, a meta-phoneme
class which is merged by all the non-voiced consonants, has the
largest number of occurrence. An interesting observation is that
the semivowel “J” has a large number of occurrence because this
semivowel is used for both syllable initial and medial vowel. An-
other large number of occurrence phoneme “n” is also used for both
syllable initial and terminal consonants. Phoneme “AN” is pre-
sented much more in dan singing than in laosheng singing, which
indicates that it is preferable to use the syllables constituted with

this nasal final in dan singing than in laosheng singing.

Completeness

In the context of this dissertation, completeness of the corpus refers
to the completeness of the associated metadata and annotation for
each recording. As the metadata and annotations are important for
training and testing singing assessment machine learning models,
they should as complete as possible.

The corpus contains the metadata of each recording — the artist’s
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Figure 4.1: Number of occurrence for each phoneme of dan and laosheng
role-types.

Table 4.3: Metadata and annotations completeness. Table cell format:
#annotated recordings/total recordings; percentage.

Role-type \ Metadata Melodic line Syllable Phoneme

118/171; 110/171;  92/171;

69% 64.32% 53.8%
89/118; 89/118;  52/118;
75.42% 75.42%  44.06%

dan 100%

laosheng 100%

singing level, the name of the aria, the name of the play and the
name of the singing characters. The metadata is 100% annotated
for all recording in the corpus.

The annotations are done in a hierarchical way at melodic line,
syllable and phoneme levels. Due to time limits, not all record-
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Table 4.4: The number of annotated melodic line, syllable and phoneme
in the corpus.

Role-type ‘ #Melodic line #Syllable #Phoneme

dan 1213 9847 18671
laosheng 893 8239 13378

ings have been annotated. The annotation completeness for each
recording in different granularities is shown in Table 4.3. The num-
ber of annotated melodic line, syllable and phoneme are shown in
Table 4.4.

An important concern in computational research is the repro-
ducibility of the experiments, which requires a corpus openly ac-
cessible to the research community. All three parts of the corpus
which includes audio, metadata and annotations are stored in Zen-
odo.org!'®!'!>12. The metadata is also organized into releases in Mu-

sicBrainz!3.

Dataset analysis

In this section, we present a corpus-level statistic analysis towards
the durations of the melodic line, syllable and phoneme. The goal
is to draw musically meaningful insights from the analyses.

Table 4.5 shows a basic statistics of duration for melodic line,
syllable and phoneme. Some interesting insights can be drawn from
the table. Firstly, the mean and standard deviation of melodic line,
syllable and phoneme durations of dan role-type are all larger than
those of laosheng, which indicates that the length of dan singing
regarding melodic line, syllable and phoneme are longer and more
varying than that of laosheng. Secondly, the maximum duration
of dan melodic line and syllable are more than two times longer
than those of laosheng. However, the maximum duration of dan
phoneme is shorter than that of laosheng, which indicates that dan
role-type tends to prolong the singing syllables and to take more

Ohttps://doi.org/10.5281/zenodo . 780559

"https://doi.org/10.5281/zenodo . 842229

Phttps://doi.org/10.5281/zenodo. 1244732

Bhttps://musicbrainz.org/search?query=jingju&type=
release&method=indexed
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Table 4.5: Mean and standard deviation duration, minimum and maxi-
mum duration of melodic line, syllable and phoneme (second).

Role-type Melodic lil?e Syllable‘ Phonemg
Mean Min | Mean Min | Mean Min
Std Max Std  Max Std Max

dan 11.93 181 1.35  0.07 | 042 0.0047
13.85 119.69 | 2.66 52.66 | 0.75 11.08

laosheng 10.02  1.82 1.08 0.07 | 0.29 0.0025
8.86 5592 | 0.84 20.63 | 0.62 13.59

breaths such that a long syllable is split into several phoneme seg-
ments by short pauses. Lastly, compared with the mean < 250
ms and standard deviation < 50 ms of the duration of Mandarin
speech syllable (J. Wang, 1994), those of jingju singing voice are at
least four times longer and more varying. As we have mentioned in
Chapter 3, many singing skills such as ornamentation, breath con-
trol, are usually used in interpreting a prolonged syllable. Breath
control leads to silences within a syllable; ornamentation leads the
variation of the spectral pattern. Long syllable, silences within a
syllable and spectral pattern variation bring challenges in develop-
ing singing assessment methodologies.

Figure 4.2 shows the duration histograms of melodic line, syl-
lable and phoneme for dan and laosheng role-types. The general
shapes of the histogram distribution between dan and laosheng are
similar. Although there are prominent peaks on all the histograms,
the durations are varied, which can be observed by the extended
long-tails on each histogram. For example, the median melodic
line duration of dan is 5.93s. However, a significant amount of
melodic lines are longer than 10s; the median phoneme duration
of laosheng is 0.15s, whereas those phonemes whose durations are
more prolonged than 0.4s are not the minority.

Figure 4.3 and Figure 4.4 show the histograms of durations for
the individual phoneme. The phonemes which we are selected to
show are “c, 1, N, @n, i, a” in X-SAMPA format. ‘c’ is an ensemble
phoneme class of non-voiced consonants; ‘I’ is a voiced phoneme;
‘N’ is a terminal consonant; ‘@n’ is a diphthong used as the cen-
tral vowel in a syllable; ‘i’ and ‘a’ are single vowels also used as
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Figure 4.2: Dan and laosheng melodic line, syllable and phoneme dura-
tion histograms normalized to unit density. Vertical red dash lines indi-
cate the median duration.

the central vowel in a syllable. Again, the general shapes of the
histogram distribution between dan and laosheng are similar. The
median duration of the individual phoneme of dan is longer than
that of laosheng except for syllable initial consonants — ‘c’ and ‘1.
The duration of initial consonants does not vary much. However,
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Figure 4.3: Dan histograms normalized to the unit density of durations
for phonemes “c, I, N, @n, i, a”. Vertical red dash lines are the median
phoneme durations.

the central vowels show a large duration variation since which are
the primary part of a syllable sung by a singer in a prolonged way.
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Figure 4.4: Laosheng histograms normalized to the unit density of du-

rations for phonemes “c, I, N, @n, i, a”. Vertical red dash lines are the
median phoneme durations.

4.2 Test datasets

The test datasets are designed for special research tasks. There are
several test datasets built in CompMusic for different musical tra-
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ditions'*. We describe in this section only the test datasets for the
tasks of automatic assessment of jingju singing pronunciation.

4.2.1 Dataset for automatic syllable and
phoneme segmentation

Automatic syllable and phoneme segmentation task require the data
having syllable and phoneme time boundary and label annotations.
Thus, we select the recordings with associated annotations in the
corpus to form the test datasets. Two datasets are prepared — Au-
tomatic Syllable and Phoneme Segmentation dataset (ASPS), and
ASPS,. ASPS; will be used for setting the baseline syllable and
phoneme segmentation model, while ASPS, will be applied for
searching an efficient state of the art syllable segmentation model.
ASPS; is a subset of the jingju a cappella singing corpus. The
recordings in this dataset are selected from all three parts of the
corpus. ASPS; contains two jingju role-types: dan and laosheng.

Table 4.6: Statistics of the ASPS; test dataset.

\#Recordings #Melodic line #Syllables #Phonemes

Train 56 214 1965 5017
Test 39 216 1758 4651

The dataset contains 95 recordings split into train and test sets
(table 4.6). The recordings in the test set only include student imi-
tative singing. The corresponding teacher’s demonstrative record-
ings can be found in the train set, which guarantees that the coarse
syllable/phoneme duration and labels are available as a priori infor-
mation being used in model testing. Recordings are pre-segmented
into melodic line units. The syllable/phoneme ground truth bound-
aries (onsets/offsets) and phoneme labels are manually annotated.
29 phoneme categories are annotated, which include a silence cate-
gory and a non-identifiable phoneme category, e.g. throat-clearing
sound. The category table can be found in the Github page'®. The
dataset is publicly available!'.

“http://compmusic.upf.edu/datasets
Bhttps://github.com/ronggong/interspeech2018_submission01
"https://doi.org/10.5281/zenodo. 1185123
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Table 4.7: Statistics of the ASPS, test dataset.

\#Recordings #Melodic line #Syllables

Train 85 883 8368
Test 15 133 1203

ASPS, test dataset is also a subset of the jingju a cappella
singing corpus. It also includes recordings of dan and laosheng
role-types. ASPS, contains 100 recordings manually annotated
for each syllable onset. The syllable segmentation evaluation will
be conducted on each melodic line which has been pre-segmented
manually. The statistics and train-test sets split are shown in ta-
ble 4.7. It is worth to mention that the artists, recording rooms
and recording equipment used for the test set is completely dif-
ferent from the training set. This train-test split setup avoids the
artist/room/equipment filtering effects which might be happening
in the evaluation process (Flexer & Schnitzer, 2010). The musical
score is also included in this dataset, which provides the syllable du-
ration prior information for the evaluation. This dataset is openly
available!”.

As it has been mentioned in Section 3.2.2, pronunciation is a
subconcept of the timbre, and in a signal point of view, timbre
is related to the spectral envelope shape and the time variation of
spectral content. In the following of this section, we show sev-
eral spectrogram examples of various phoneme categories — sylla-
ble initial non-voiced consonant, voiced consonant, medial vowel,
central vowel and syllable terminal consonant, and the transition
between two phonemes such as from syllable initial non-voice con-
sonant to media vowel and from central vowel to syllable terminal
consonant.

Figure 4.5 show three Mel spectrograms of singing syllable se-
quence, each of which consists of three syllables. We focus the
analysis of the middle syllable of each sequence such that the tran-
sition between the first and second syllables and the transition be-
tween the second and third syllables can be visualized easily.

The pinyin of middle syllable in Figure 4.5a is “jie”, which con-
sists of three phonemes — non-voiced consonant “c”, medial vowel

https://doi.org/10.5281/zenodo. 1341070
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time (s)

(a) Mel spectrogram of syllables “hua, jie, shen”.

time (s)

(b) Mel spectrogram of syllables “lai, 1i, hua”.

ca c an n ' @n
dan

time (s)

(¢) Mel spectrogram of syllables “da, dan, ren”.

Figure 4.5: Three examples of syllablic Mel spectrogram. Vertical red
solid lines are syllable onsets; vertical black dash lines are phoneme on-
sets. On top of each subfigure, the first line is the phoneme transcription
in X-SAMPA format, the second line is the syllable transcription in pinyin
format.

“” and central vowel “E”. The spectrogram pattern of the non-
voiced consonant “c” can be distinguished easily from “j” and “E”
by the high-frequency noise-like content since the consonant “c”
is an affricate. The spectrogram pattern of the central vowel “E”
contains more regular harmonic pattern than the medial vowel “j”.
However, the difference between the patterns of “j”” and “E” is not
that obvious to discriminate.

The pinyin of the middle syllable in Figure 4.5b is “1i”, which
consists of two phonemes — syllable initial voiced consonant “I”
and the central vowel “i”. The difference of spectrogram pattern
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between these two phonemes can be hardly distinguished.
The pinyin of the middle syllable in Figure 4.5¢ is “dan”, which
consists of three phonemes — syllable initial non-voiced consonant

[IPb)

¢”, central vowel “an” and syllable terminal consonant “n”. The
consonant “c” is a short non-voiced stop which doesn’t contain
harmonics. Thus, it can be distinguished easily from the central
vowel “an”. The syllable terminal consonant “n” doesn’t contain
any higher harmonics. Therefore, it can be distinguished easily as
well from the central vowel “an”.

Given the analysis of the above three spectrogram examples,
we can design the methodologies for the syllable and phoneme seg-
mentation task in an intuitive way. Firstly, as most of the phoneme
categories can be distinguished between each other except for me-
dial vowel-central vowel and voiced consonant-central vowel, we
can develop the segmentation algorithm based on the discrimina-
tion between phonemes. Secondly, as there are usually obvious
spectrogram pattern transitions between phoneme segments, we
can also devise the algorithm based on the detection of these tran-
sitions. The segmentation algorithms development and evaluation
will be presented in detail in the next Chapter.

4.2.2 Dataset for mispronunciation detection

As we have mentioned in Section 3.4.3, we consider only two types
of mispronunciation in jingju singing — the mispronunciation of
special pronunciation and that of jianzi. The first type of mispro-
nunciation — special pronunciation, is that some written characters
in jingju singing pieces should be pronounced differently than in
Mandarin Chinese, however, the student doesn’t pronounce them
correctly as in teacher’s demonstrative singing. The second type of
mispronunciation — jianzi, is that certain rounded syllables (tuanzi)
in jingju singing pieces can be altered to pronounce as the pointed
sounds (jianzi), however, the student doesn’t pay attention and still
pronounce them as rounded syllables.

In the actual jingju teaching scenario, the teacher’s demonstra-
tive singing pieces are given, thus we can identify in advance those
special pronounced and jianzi written characters in the pieces. Af-
ter we obtain the student’s imitative singing pieces, the detection
process can be carried out only on those special pronounced and
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jianzi written characters. To this end, we need a model which either
can transcribe orthographically each singing syllables considering
the special pronunciations and jianzi, or can distinguish between
the standard Mandarin pronunciations and the special pronuncia-
tions/jianzi. Either way, we need a test dataset where the special
pronounced syllables and jianzi are annotated orthographically in
pinyin and in phoneme using X-SAMPA format.

Table 4.8: Statistics of the MD test dataset. Syl.: syllable; Phn.:
phoneme.

MMelodic g, #Special i 0 4phn,
line pronunciation
Train | 662 5797 463 41 15287
Test | 345 3106 356 13 7561

The Mispronunciation Detection dataset (MD) is annotated for
the above purpose. MD is a subset of the jingju a cappella singing
corpus. The recordings in this dataset are selected mainly from the
part 1 and 2 of the corpus. Table 4.8 shows the statistics of the
MD test dataset which are split into train and test parts, and the
test part contains only the recordings of amateur singings. As we
can see from the table, the occurrence of the special pronounced
syllables is much larger than jianzi. Most importantly, in the test
part of the MD dataset, according to the teacher’s demonstrative
recordings, there are in total 451 syllables of special pronunciation
and 50 syllables of jianzi should be pronounced correctly by the
students. However, in the actual recordings of the test part of the
MD dataset, there are 102 syllables of special pronunciation and 37
syllables of jianzi which have been mispronounced, and 349 sylla-
bles of special pronunciation and 13 syllables of jianzi which have
been pronounced correctly. These mispronounced syllables are la-
beled manually by comparing the annotation of the test recording
and that of the corresponding teacher’s demonstrative recording.
For example, if in the teacher’s recording, there is a special pro-
nunciation /ngo/ for the syllable “wo” , however, in the amateur’s
recording, the corresponding syllable is still pronounced as /wo/,
this syllable is labeled as a mispronunciation.
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Figure 4.6 shows the occurrence of each special pronounced
syllables in MD dataset. The most frequently occurred syllables
are /ngo, shen, qin, tin, bin, yin, chen, go, min, lin, xin, ho/. The
pronunciation /ngo/ is altered from /wo/ in standard Mandarin by
changing the semivowel /w/ to the nasal consonant /ng/. The syl-
lables /go/ and /ho/ are altered from /ge/ and /he/ in standard Man-
darin by changing the vowel /e/ to /o/. The other syllables men-
tioned above are the alteration from velar nasal to alveolar nasal,
for example, changing from /eng/ and /ing/ to /en/ and /in/. The
full table of the alteration from Mandarin pronunciation to the spe-
cial pronunciation appeared in the MD test dataset is presented in
Table B.1.

Figure 4.7 shows the occurrence of each jianzi in MD dataset.
As we have mentioned in Section 2.2.3, the rule of this pronuncia-
tion alteration is /j, zh/ — /z/, /q, ch/ — /c/, /x, sh/ — /s/. For ex-
ample, the pronunciation /siang/ is altered from /xiang/, and /zeng/
is altered from /zheng/. The full table of rounded syllables to the
special pronunciation appeared in the MD test dataset is presented
in Table B.2.

4.2.3 Dataset for pronunciation and overall
quality similarity measures

The Pronunciation and Overall Quality Similarity Measures dataset
(POQSM) needs to have phoneme-level onset and offset time
boundary and label annotation. These recordings are also a sub-
set of the jingju a cappella singing corpus. The phoneme segments
of the dataset are randomly split into the train, validation and test
sets, except that we deliberately use the recordings of the amateurs
of jingju groups in community activity centers (see Section 4.1.2
for the information of the recording artists of the corpus) as the
amateur part of the test set. The purpose of using this special ama-
teur part of the test set is to avoid artist and room filtering effects by
checking if the trained assessment model overfits on certain singers
or the acoustic room conditions of the train and validation sets.
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Figure 4.6: The occurrence of each special pronounced syllable.
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Figure 4.7: The occurrence of each jianzi syllable.
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We consider the fact that, after dataset splitting, the train, val-
idation and test sets would contain both professional and amateur
phoneme segments. Additionally, the amateur part of the train and
validation sets mainly include the phoneme segments of the pri-
mary school students, while that of the test set contains exclusively
the segments of the adult singers recorded in a different room (see
the room iv in section 4.1.2). This special split of the test set would
verify the artist or room filtering effect of the assessment model
(Flexer & Schnitzer, 2010). Please check table 4.9 for the phoneme
numbers and the singers in each split. For the detailed informa-
tion on the phoneme numbers per phoneme class and recording file
names used for each split, please consult this link'®. The test dataset
can be download in this link'®.

An example of spectrogram visualization between teacher and
student singing melodic line has been presented already in Sec-
tion 3.2.1. In such an example, although the student does not com-
mit any mispronunciation, there still exists a significant pronunci-
ation quality and an overall quality gap between her singing and
the teacher singing. Building a pronunciation and overall quality
similarity model can help detect the relevant singing problems au-
tomatically apart from mispronunciation.

Bhttps://doi.org/10.5281/zenodo. 1287251
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Chapter 5 .

Automatic syllable and
phoneme segmentation

Automatic syllable and phoneme segmentation of singing voice
is an important MIR task. It provides preliminary syllable or
phoneme time boundary and label information to achieve a fine-
grained singing voice assessment.

Syllable and phoneme segmentation aim to time-align a piece of
singing voice audio recording with syllable or phoneme sequence.
It tags the recording with the time-aligned syllable or phoneme
boundary timestamps and labels. Within the context of jingju mu-
sic, syllable and phoneme segmentation aim to time-align a record-
ing with a syllable sequence in pinyin format or a phoneme se-
quence in X-SAMPA format.

This chapter aims to address the automatic syllable and
phoneme segmentation task within the context of jingju music, pre-
senting several methods and an evaluation of these methods. The
main aims of this chapter are:

1. To address automatic syllable and phoneme segmentation task
for jingju music. The problem is formulated in two ways
— duration-informed lyrics-to-audio alignment and duration-
informed syllable or phoneme onset detection. Several ap-
proaches are proposed to address the problem.

2. To present a detailed description of hidden semi-Markov model-

125
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based (HSMM) segmentation method and the proposed onset
detection-based method for syllable and phoneme segmentation.

3. To present an evaluation of HSMM-based alignment method
and the proposed onset detection-based method and explore var-
ious deep learning architectures to improve the onset detection-
based method.

5.1 Task description

We describe the automatic syllable and phoneme segmentation task
addressed in this dissertation. We will also describe how the set of
approaches described in this chapter can be adapted to this task,
making the task of syllable and phoneme segmentation flexible to
the available audio recordings and the related annotations. The task
description presented in this section is continued building on the
problem formulation presented in Section 3.4.2.

Given the singing audio recording pre-segmented into pieces
of melodic line level, and the prior coarse syllable or phoneme du-
ration information extracted from the musical score or the annota-
tion of teacher’s recording, the most relevant syllable and phoneme
segmentation tasks for jingju music are duration-informed lyrics-
to-audio alignment or duration-informed syllable or phoneme onset
detection. In the context of jingju music, lyrics-to-audio alignment
aims to time-align the a priori phoneme sequence in X-SAMPA for-
mat with the melodic line singing audio piece. The coarse phoneme
duration information can be incorporated into the alignment sys-
tem by using an HSMM-based model, which sets up the baseline
segmentation system stemmed from various HMM-based text-to-
speech alignment and lyrics-to-audio alignment methods presented
in Section 2.4.3 and Section 2.4.4. Syllable and phoneme onset
detection aim to find the onset timestamps for the syllables and
phonemes in a melodic line singing audio piece. The a priori syl-
lable and phoneme duration information can be used as a post-
processing step in the detection algorithm to help select the correct
onsets. In the context of this dissertation, because the a priori dura-
tion information is always accompanied with syllable or phoneme
label, the post-processing onset selection method using a priori du-
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ration information is equal to time-aligning the syllable or phoneme
sequence with the melodic line singing audio piece.

The two main tasks of this chapter are setting up the HSMM-
based baseline segmentation method and proposing the onset
detection-based segmentation method. As the third task of this
chapter, we explore various deep learning architectures for the syl-
lable onset detection and try to identify and explain the most effi-
cient architecture. The performance of all the three tasks will be
evaluated on ASPS, and ASPS, test datasets. The results and the
pros and cons of two segmentation methods and various deep learn-
ing architectures will be discussed in detail.

5.2 Prerequisite processing

In this section, we present two prerequisite processings that will be
used in the segmentation approaches — logarithmic Mel input repre-
sentation and a priori coarse duration model. The former converts
the singing voice audio waveform to a perceptual representation -
Mel spectrogram, which is then used as the input representation of
both HSMM-based and onset detection-based segmentation meth-
ods. The latter utilizes the coarse syllable or phoneme durations
extracted from the annotation of teacher’s recording to build the
duration model, as the teacher’s recording and its annotation is al-
ways prior information for an assessment system. The phoneme
duration model is then integrated into the HSMM-based segmen-
tation method as the state occupancy distribution, and the syllable
and phoneme duration models are both used in the onset detection-
based segmentation method to help select the correct syllable and
phoneme onsets.

5.2.1 Logarithmic Mel input representation

We use Madmom (Bock, Korzeniowski, Schliiter, Krebs, & Wid-
mer, 2016) Python package to calculate the log-mel spectrogram of
the singing voice audio. The frame size and hop size of the spectro-
gram are respectively 46.4ms (2048 samples) and 10ms (441 sam-
ples). The low and high frequency bounds of the log-mel calcula-
tion are 27.5Hz and 16kHz. We use log-mel input features with a
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overlapped context window of 15 frames and 80 bins as the input
to the networks. The classification acoustic model used in HSMM-
based segmentation task takes a categorical phoneme label for ev-
ery context window. While the onset detection model takes a bi-
nary onset/non-onset decision sequentially for every context win-
dow. This audio pre-processing configuration is almost the same as
in Schliiter and Bock’s work (Schluter & Bock, 2014) except that 3
input channels with respectively frame sizes 23ms, 46ms and 93ms
have been used in their work, whereas only 1 channel with frame
size 46.4ms input is used in this research.

5.2.2 Coarse duration and a priori duration
model

The syllable durations of the teacher’s singing phrase are stored
in an array M*® = p'---pu”---uV, where p” is the duration of
the nth syllable. The phoneme durations are stored in a nested ar-
ray M, = M)---M}--- MY, where M is the sub-array with
respect to the nth syllable and can be further expanded to M =
My e g e, where K, is the number of phonemes contained
in the nth syllable. The phoneme durations of the nth syllable sum
to its syllable duration: p" = ZkKjl py (figure 5.1). In both syl-
lable and phoneme duration sequences — M?*, M,,, the duration of
the silence is not treated separately and is merged with its previous
syllable or phoneme.

The a priori duration model is shaped with a Gaussian func-
tion N(d; i, 02). 1t provides the prior likelihood of an onset to
occur according to the syllable/phoneme duration of the teacher’s
singing. The mean p,, of the Gaussian represents the expected du-
ration of nth teacher’s syllable/phoneme. Its standard deviation o,,
is proportional to j,,: 0, = i, and 7y is heuristically set to 0.35
for the onset detection-based method. Figure 5.1 provides an in-
tuitive example of how the a priori duration model works. The a
priori phoneme duration model will be used as the state occupancy
distribution in the HSMM-based segmentation method, and the a
priori syllable and phoneme duration models will be incorporated
into a duration-informed HMM as the state transition probabilities
to inform that where syllable/phoneme onsets is likely to occur in
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Figure 5.1: Illustration of the syllable //* and phoneme M), coarse du-
ration sequences and their a priori duration models — N'$, NP. The blank
rectangulars in M), represent the phonemes.

student’s singing phrase.

5.3 HSMM-based segmentation
method

As a baseline, we develop an lyrics-to-audio alignment system
which also makes use of the prior phoneme duration informa-
tion. This lyrics-to-audio alignment system is a 1-state mono-
phone DNN/HSMM model. We use monophone model because
our small dataset doesn’t have enough phoneme instances for ex-
ploring the context-dependent triphones model, also Brognaux and
Drugman (Brognaux & Drugman, 2016) and Pakoci et al. (Pakoci
et al., 2016) argued that context-dependent model can not bring
significant alignment improvement. It is convenient to apply 1-
state model because each phoneme can be represented by a semi-
Markovian state carrying a state occupancy time distribution. The
audio preprocessing step is presented in Section 5.2.1.

5.3.1 Discriminative acoustic model

We use a CNN with softmax outputs as the discriminative acoustic
model. According to the work of Renals et al. (Renals, Morgan,
Bourlard, Cohen, & Franco, 1994), a neural network with softmax
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outputs trained for framewise phoneme classification outputs the
posterior probability p(q|x) (¢: state, x: observation), which can
be approximated as the acoustic model at the frame-level if we as-
sume equal phoneme class priors. In Pons et el.’s work (Pons, Sli-
zovskaia, et al., 2017), a one-layer CNN with multi-filter shapes has
been designed. It has been experimentally proved that this architec-
ture can successfully learn timbral characteristics and outperformed
some deeper CNN architectures in the phoneme classification task
for a small jingju singing dataset. The convoluational layer of the
architecture has 128 filters of sizes 50x 1 and 70x 1, 64 filters of
sizes 50xH and 70x5, and 32 filters of sizes 50x10 and 70x 10.
These filters are large in the frequency axis and narrow in temporal
axis, which are designed to capture timbral relevant time-frequency
spectrogram patterns. A max-pool layer of 2x N’ follows before
the 32-way softmax output layer with 30% dropout, where N’ is
the temporal dimension of the feature map. Max-pooling of 2x N’
was chosen to achieve time-invariant representations while keeping
the frequency resolution. The detailed model architecture is shown
in Table 5.1.

Table 5.1: One-layer CNN architecture of the acoustic model. N’ is the
temporal dimension of the feature map.

Layerl: Conv 128x 50x 1, 64x 50x5, 32x 50x5
128x 70x 1, 64x 70x5, 32x 70x 10

Layer2: Max-pooling 2x N’

Layer3: Dropout 0.3

Output layer: 29-way softmax

Model training

We use this one-layer CNN acoustic model for the baseline method.
The log-mel context window representation presented in Sec-
tion 5.2.1 is used as the model input. The target labels of the train-
ing set are prepared according to the ground truth annotations. We
set the label of a spectrogram context window to its categorical
phoneme class. The model predicts the phoneme class posterior
probability for each log-mel spectrogram context window.
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The model parameters are learned with mini-batch training
(batch size 256), adam (Kingma & Ba, 2014) update rule and early
stopping —if validation loss is not decreasing after 15 epochs. ELUs
activation functions and weight decay regularization are used in the
first convolutional layer.

5.3.2 Coarse duration and state occupancy dis-
tribution

The HSMM-based segmentation method receives the phoneme du-
rations of teacher’s singing phrase as the prior input. The phoneme
durations are stored in a collapsed version of the M? array (section
522): MP = pitpst---piy, oo pNps™ -, The silences
are treated separately and have their independent durations.

The state occupancy is the time duration of the phoneme state
of the student’s singing. It is expected in the best case to be the
same duration as that of the teacher’s singing. However, in the ac-
tual scenario, the phoneme duration of the student’s singing always
deviates from that of the teacher’s singing in varying degrees. We
build the state occupancy distribution as a Gaussian, which has the
same form N (d; i, 02) as in section 5.2.2, where y,, indicates in
this context the nth phoneme duration of the teacher’s singing. We
set v empirically to 0.2 as we found this value works well in our
preliminary experiment.

We construct an HSMM for phoneme segment inference. The
topology is a left-to-right semi-Markov chain, where the states rep-
resent sequentially the phonemes of the teacher’s singing phrase.
As we are dealing with the forced alignment, we constraint that the
inference can only be started by the leftmost state and terminated
to the rightmost state. The self-transition probabilities are set to
0 because the state occupancy depends on the predefined distribu-
tion. Other transitions — from current states to subsequent states are
set to 1. We use a one-layer CNN with multi-filter shapes as the
acoustic model (Pons, Slizovskaia, et al., 2017) and the Gaussian
N (d; pi,, 02) introduced in section 5.2.2 as the state occupancy dis-
tribution. The inference goal is to find best state sequence, and we
use Guédon’s HSMM Viterbi algorithm (Guédon, 2007) for this
purpose. The baseline details and code can be found in the Github



132 Automatic syllable and phoneme segmentation

page'®. Finally, the segments are labeled by the alignment path, and
the phoneme onsets are taken on the state transition time positions.

5.3.3 Experimental setup

We use ASPS; test dataset presented in Section 4.2.1 and two met-
rics to evaluate the algorithm performance — onset detection accu-
racy and percentage of correct segments, where we also consider
the phoneme label correctness in calculating onset detection ac-
curacy. These two metrics have been presented in Section 2.4.6.
We trained the CNN acoustic model 5 times with different random
seeds, and report the mean and the standard deviation score on the
testing part of the dataset.

5.3.4 Results and discussions

We only show the F1-measure of the results of the HSMM-based
method in Table 5.2. The full results including precision and recall
can be found in the Github page'®. The performance of the HSMM-
based method is mediocre in the sense that none of the onset detec-
tion accuracy and percentage of correct segments reaches an ideal
level. The low onset detection accuracy — 44.5% for phoneme de-
tection, 41% for syllable detection, means that the HSMM-based
method cannot maintain more than half of the detected onsets
within the 50ms tolerance window, which is crucial for the onset
detection or segmentation of the consonants since they usually have
a short duration. The low percentage of correct segments — 53.4%
for phoneme and 65.8% for syllable, means that many phoneme
boundaries including vowel boundaries are not detected correctly.
As a consequence, the segmentation error will propagate to the au-
tomatic assessment step and reduce the assessment accuracy.

Table 5.2: Evaluation results table. Table cell: mean score-standard
deviation score.

Onset F1-measure % Segmentation %
phoneme syllable phoneme  syllable

445+09 41.0+£1.0 53.4+0.9 65.840.7
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Figure 5.2 shows a result example for a singing phrase in the
testing part of the dataset. Notice that there are some extra or miss-
ing onsets in the detection. This is due to the inconsistency be-
tween the coarse duration input and the ground truth, for exam-
ple, students might sing extra or miss some phonemes in the actual
singing. We can also observe the deviations between the detected
and ground truth phoneme onsets. Some of the deviations are quite
large, for example, the first detected syllable onset after 2 seconds
in the 2nd row, which is an indication that the HSMM-based seg-
mentation method cannot meet the need of having a precise seg-
mentation, and it has to be improved or replaced by a better method.

The unsatisfactory performance of the HSMM-based segmen-
tation method might be due to the lack of a large training dataset.
The DNN acoustic model usually requires a certain amount of train-
ing dataset such that it can effectively learn the temporal-spectral
patterns of each phoneme class.

5.4 Onset detection-based segmenta-
tion method

The unsatisfactory performance of the HSMM-based segmentation
method motivates us to search for a more accurate segmentation
method. As we mentioned in Section 5.3.4, the lack of enough
training dataset might be the cause of the unsatisfactory perfor-
mance. In this section, we devise a coarse duration-informed syl-
lable and phoneme segmentation method based on syllable and
phoneme onset detection. As the onset detection is generally a bi-
nary detection problem — to classify the spectrogram of each frame
into onset or non-onset class, it can greatly reduce the amount of
the required training dataset. The coarse syllable and phoneme du-
rations extracted from the annotation of teacher’s recording can be
used in the algorithm to boost the segmentation performance.

In the proposed onset detection-based segmentation method,
the syllable and phoneme ODFs are jointly learned by a hard param-
eter sharing multi-task CNN model. The syllable/phoneme bound-
aries and labels are then inferred by an HMM using the a priori
duration model as the transition probabilities and the ODFs as the
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emission probabilities.

5.4.1 CNN onset detection function

We build a CNN for classifying each log-mel context and output
the syllable and phoneme ODFs. We extend the CNN architecture
presented in Schliiter’s work (Schluter & Bock, 2014) by using two
predicting objectives — syllable and phoneme (figure 5.3). The two
objectives share the same parameters, and both are using the sig-
moid activation function. Binary cross-entropy is used as the loss
function. The loss weighting coefficients for the two objectives are
set to equal since no significant effect has been found in the pre-
liminary experiment.

log-mel Schluter's — syllable sigmoid
onset detection
context architecture L phoneme sigmoid

Figure 5.3: Diagram of the multi-task CNN model.

Model training

The target labels of the training set are prepared according to the
ground truth annotations. We set the label of a certain contextto 1 if
an onset has been annotated for its corresponding frame, otherwise
0. To compensate the human annotation inaccuracy and to augment
the positive sample size, we also set the labels of the two neighbor
contexts to 1. However, the importance of the neighbor contexts
should not be equal to their center context, thus we compensate this
by setting the sample weights of the neighbor contexts to 0.25. A
similar sample weighting strategy has been presented in Schluter’s
paper (Schluter & Bock, 2014). Finally, for each log-mel context,
we have its syllable and phoneme labels. They will be used as the
training targets in the CNN model to predict the onset presence.
The model parameters are learned with mini-batch training
(batch size 256), adam (Kingma & Ba, 2014) update rule and early
stopping — if validation loss is not decreasing after 15 epochs. The
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ODFs output from the CNN model is used as the emission proba-
bilities for the syllable/phoneme boundary inference.

5.4.2 Phoneme boundaries and labels inference

The inference algorithm receives the syllable and phoneme dura-
tions and labels of teacher’s singing phrase as the prior input and
infers the syllable and phoneme boundaries and labels for the stu-
dent’s singing phrase.

We present an HMM configuration which makes use of the
coarse duration and label input (section 5.2.2) and can be applied
to inferring firstly (i) the syllable boundaries and labels on the ODF
for the whole singing phrase, then (ii) the phoneme boundaries and
labels on the ODF segment constrained by the inferred syllable
boundaries. To use the same inference formulation, we unify the
notations N, K, (both introduced in section 5.2.2) to N, and M?,
M;! to M. The unification of the notations has a practical meaning
because we use the same algorithm for both syllable and phoneme
inference. The HMM is characterized by the following:

1. The hidden state space is a set of 7" candidate onset positions
S1, 9, -+, Sr discretized by the hop size, where S7 is the off-
set position of the last syllable or the last phoneme within a syl-
lable.

2. The state transition probability at the time instant ¢ associated
with state changes is defined by a priori duration distribution
N (dyj; e, o), where d;; is the time distance between states S,
and S (j > 7). The length of the inferred state sequence is equal
to N.

3. The emission probability for the state .S; is represented by its
value in the ODF, which is denoted as p;.

The goal is to find the best onset state sequence ) =
4192 - - - qn—1 for a given duration sequence M and impose the cor-
responding segment label, where ¢; denotes the onset of the ¢ + 1th
inferred syllable/phoneme. The onset of the current segment is as-
signed as the offset of the previous segment. ¢y and gy are fixed
as 57 and St as we expect that the onset of the first syllable(or
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phoneme) is located at the beginning of the singing phrase(or syl-
lable) and the offset of the last syllable(or phoneme) is located at the
end of the phrase(or syllable). One can fulfill this assumption by
truncating the silences at both ends of the incoming audio. The best
onset sequence can be inferred by the logarithmic form of Viterbi
algorithm (Rabiner, 1989):

Algorithm 1 Logarithmic form of Viterbi algorithm using the a
priori duration model

0n(i) < max log Plqiqa- - qn, itz - - fin]

q1,92,""" ,4n

procedure LogFormViterbi(M, p)
Initialization:
01(i) <= log(N (dj; pur, 07)) + log(ps)
wl (Z) < Sl
Recursion:
tmp_var(i, j) < 6n-1(i) + log(N (dij; j1n, 02))
d,(j) « max tmp_var(i, j) + log(p;)

1<i<y
Un(j) < arg max tmp_var(i, j)
1<i<j -
Termination:
gn <—arg max. On—1(i) + log(N (dir; puw, 0%))

Finally, the state sequence () is obtained by the backtracking
step. The implementation of the algorithm can be found in the
Github link".

5.4.3 Experimental setup

We use ASPS; test dataset presented in Section 4.2.1 and two met-
rics to evaluate the algorithm performance — onset detection accu-
racy and percentage of correct segments, where we also consider
the phoneme label correctness in calculating onset detection accu-
racy. These two metrics have been presented in Section 2.4.6. We
trained the onset detection neural network model 5 times with dif-
ferent random seeds, and report the mean and the standard deviation
score on the testing part of the dataset.
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5.4.4 Results and discussions

We only show the F1-measure of the results of both HSMM-based
and onset detection-based methods in Table 5.3. The full results
including precision and recall can be found in the Github page'>.

Table 5.3: Evaluation results of HSMM-based and onset detection-based
methods. Table cell: mean score+standard deviation score.

Methods Onset F1-measure % Segmentation %
phoneme syllable phoneme syllable

HSMM-based | 44.5£0.9 41.0£1.0 53.4£0.9 65.8£0.7

Onset 752406 758404 607404 84.6+03
detection-based

On both metrics — onset detection and segmentation, the pro-
posed method outperforms the baseline. The proposed method uses
the ODF which provides the time “anchors” for the onset detec-
tion. Besides, the ODF calculation is a binary classification task.
Thus the training data for both positive and negative class is more
than abundant. Whereas, the phonetic classification is a harder task
because many singing interpretations of different phonemes have
the similar temporal-spectral patterns. Our relatively small train-
ing dataset might be not sufficient to train a proper discriminative
acoustic model with 29 phoneme categories. We believe that these
reasons lead to a better onset detection and segmentation perfor-
mance of the proposed method.

Fig 5.4 shows an result example for a singing phrase in the test-
ing part of the dataset. Notice that there are some extra or missing
onsets in the detection. This is due to the inconsistency between the
coarse duration input and the ground truth, for example, students
might sing extra or miss some phonemes in the actual singing. Also
notice that in the 3rd row, the two detected phoneme onsets within
the last syllable are not in the peak positions of the ODF. This is
due to that the onsets is inferred by taking into account both ODF
and the a priori duration model, and the latter partially constraints
the detected onsets.

The biggest advantage of the proposed method is the language-
independency, which means that the pre-trained CNN model can
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Figure 5.4: An illustration of the result for a singing phrase in the testing
part of the dataset. The red solid and black dash vertical lines are respec-
tively the syllable and phoneme onset positions. 1st row: ground truth,
2nd and 3rd rows: onset detection-based method, 4th row: HSMM-based
segmentation method. The blue curves in the 2nd and 3rd row are respec-
tively the syllable and phoneme ODFs. The staircase-shaped curve in the
2nd row is the alignment path.

be eventually applied to the singing voice of various languages
because they could share the similar temporal-spectral patterns of
phoneme transitions. Besides, the Viterbi decoding of the proposed
method (time complexity O(T'S?), T time, S: states) is much
faster than the HSMM counterpart (time complexity O(T'S? +
T2S)). To showcase the proposed algorithm, an interactive jupyter
notebook demo is provided for running in Google Colab'.

"https://goo.gl/BzajRy
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5.5 Improving the deep learning-based
onset detection model

In the last section, we devised an onset detection-based syllable and
phoneme segmentation method which firstly estimates the ODF by
using a deep learning classification model, then selects the correct
onsets on the ODF by using a duration-informed HMM model. It
is obvious that the accuracy of the onset selection step depends on
largely on the quality of the ODF. Thus, it is necessary to explore
an effective and efficient deep learning architecture for estimating
the ODF.

In this section, we experiment with seven deep learning archi-
tectures for estimating syllable onset detection functions to find the
most effective and efficient one for the onset detection task. The
seven deep learning models are compared and evaluated on a jingju
a cappella singing test dataset presented in Section 4.2.1.

5.5.1 Deep learning onset detection functions

We introduce the neural network setups and training strategies for
the experiment which aims to find the most efficient network archi-
tecture trained separately on a jingju singing test dataset for syllable
onset detection.

Searching for the most efficient neural network architecture

Following the terminology used in Pons et al.’s work(Pons, Gong,
& Serra, 2017), we regard a neural network architecture as two
parts — front-end and back-end. According to their work, the front-
end is the part of the architecture which processes the input features
and maps it into a learned representation. The back-end predicts
the output given the learned representation. In this research, we
don’t restrict the functionality of back-end to prediction. However,
we use it as terminology to differentiate from the front-end. We
present the front-ends in table 5.4 and back-ends in table 5.5. Conv
means convolutional layer. 10x 3 X 7 means 10 filters of which
each convolves on 3 frequency bins and 7 temporal frames. All the
Conv layers use ReLU activations. The first Conv layer in the front-
end B has 6 different filter shapes. Each Conv layer in back-end
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C and D follows by a batch normalization layer to accelerate the
training(loffe & Szegedy, 2015). BiLSTMs means bidirectional
RNN layers with LSTM units. In back-end B, both forward and
backward layers in BILSTMs have 30 units with Tanh activations.
The activation function type of Dense layer — ReLU or Sigmoid
used in back-end A depends on the architecture.

Table 5.4: Architecture front-ends

Front-end A ‘ Front-end B
Conv 24x 1x7, 12x 3x7, 6x X7
Conv 10X 3X7 1 e 1x12, 12x 3x12, 6% 5x 12
Max-pooling 3x1 Max-pooling 5x 1
Conv 20x 3x 3 Conv 20x 3x3
Max-pooling 3x 1 Max-pooling 3x 1
Dropout 0.5 Dropout 0.5

Table 5.5: Architecture back-ends

Back-end A ‘ Back-end B
Dense 256 units Flatten
Flatten BiLLSTMs 30 units
Dropout 0.5 Dropout 0.5
Back-end C \ Back-end D

Conv 40x 3x3 Conv 60x 3x3
Conv 40x 3% 3 Conv 60x 3x3
Conv 40x 3x3 Conv 60x 3x3
Conv 80x 3x3 Flatten
Conv 80x 3x3 Dropout 0.5
Conv 80x 3x3
Conv 135x 3x3
Flatten
Dropout 0.5

We present seven architectures which are the combination
pipelines of the front-ends and back-ends. All back-ends are con-
nected with a sigmoid unit to output the ODF for the input log-mel
contexts.
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Baseline: Front-end A + back-end A with sigmoid activations.
This architecture is the same as the one described in Schliiter and
Bock’s work (Schluter & Bock, 2014).

ReLU dense: Front-end A + back-end A with ReLU activations.
In Schliiter and Bock’s work (Schluter & Bock, 2014), using ReLU
activations in the back-end A caused a drop in performance when
evaluating on Bock dataset. However, ReLU activation function
has been shown to enable better training of deeper networks be-
cause it has several advantages compared with Sigmoid, such as
reducing the likelihood of vanishing gradient (Glorot, Bordes, &
Bengio, 2011). We want to (re-)test the performance of ReLU ac-
tivation on both Bock and jingju dataset.

No dense: Front-end A + Flatten layer. We use this architecture to
test the effect of removing the dense layer in the baseline.
Temporal: Front-end B + back-end A with sigmoid activations.
This one is similar to the “Temporal architecture” presented in Pons
et al.’s work (Pons, Gong, & Serra, 2017), and uses various filter
shapes in the first convolutional layer. In this work, we use 6 dif-
ferent filter shapes which are wide in temporal axis and narrow
in frequency axis. Such kind of filter shape design aims to capture
the onset spectral-temporal patterns on the spectrogram. It has been
shown experimentally that on a smaller jingju dataset, this architec-
ture outperformed the baseline by effectively learning the temporal
onset patterns.

BiLSTMs: Front-end A with time-distributed Conv layers + back-
end B. This one is similar to the Convolutional Recurrent Neural
Network (CRNN)s architectures presented in Vogl et al.’s work
(Vogl, Dorfer, Widmer, & Knees, 2017). We use the sequence of
the log-mel contexts as the architecture input and we experiment 3
different sequence lengths — 100, 200 and 400 frames. At the train-
ing phase, two consecutive input sequences are overlapped but their
starting points are distanced by 10 frames. At the testing phase, the
consecutive input sequences are not overlapped. We use this archi-
tecture to test the effect of replacing the dense layer in the baseline
by RNN layer.

9-layers CNN: Front-end A + back-end C. We use this architecture
to test the performance of deep CNN without using dense layer.
5-layers CNN: Front-end A + back-end D. As our datasets are rel-
atively small, the above 9-layers CNN could be overfitting. Thus,
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we test also this shallow architecture with 5 CNN layers.

Table 5.6: Total numbers of trainable parameters (TNoTP) of each ar-
chitecture.

Baseline  ReLU dense No dense Temporal
289,273 289,273 3,161 283,687
BiLSTMs 9-layers CNN 5-layers CNN

278,341 288,286 81,541

The Total numbers of trainable parameters (TNoTP) of each
architecture is shown in table 5.6. To keep a fair comparison, we
maintain a similar TNoTP between the baseline, ReLU dense, Tem-
poral, BiILSTMs and 9-layers CNN architectures. We reduce the
parameter numbers in No dense and 5-layers CNN architectures
to explore the model efficiency. Notice that 9-layers and 5-layers
CNN s are not fully-convolutional architectures (Long, Shelhamer,
& Darrell, 2015) since we don’t perform average pooling to the last
Conv layer.

Model training

We use the same target label preparing strategy been described in
Schliiter and bock’s work (Schluter & Bock, 2014). The target la-
bels of the training set are prepared according to the ground truth
annotations. We set the label of a certain context to 1 if an onset
has been annotated for its corresponding frame, otherwise 0. To
compensate the human annotation inaccuracy and to augment the
positive sample size, we also set the labels of the two neighbor con-
texts to 1. However, the importance of the neighbor contexts should
not be equal to their center context. Thus the sample weights of the
neighbor contexts are compensated by being set to 0.25. The la-
bels are used as the training targets in the deep learning models to
predict the onset presence.

Binary cross-entropy is used as the loss function. The model
parameters are learned with mini-batch training (batch size 256),
Adam (Kingma & Ba, 2014) update rule. 10% training data is sep-
arated in a stratified way for early stopping — if validation loss is
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not decreasing after 15 epochs. In all experiments, we use Keras?

with Tensorflow® backend to train the models.

5.5.2 Onset selection

The ODF output from the model is smoothed by convoluting with
a 5 frames Hamming window. Onsets are then selected on the
smoothed ODF. Two onset selection methods are evaluated. The
first is a peak picking method which has been used in many MOD
works (Bock, Krebs, & Schedl, 2012; Schluter & Bock, 2014; Vogl
et al., 2017). We use the OnsetPeakPickingProcessor module
implemented in Madmom (Bdck, Korzeniowski, et al., 2016) pack-
age. Please refer to our code for its detailed parameter setting. An-
other onset selection method is based on the score-informed HMM
presented in Section 5.4.2, which has been used to take advantage
of the prior syllable duration information of the musical score.

5.5.3 Experimental setup

We use ASPS, test dataset presented in Section 4.2.1 and the metric
—onset detection accuracy presented in Section 2.4.6 to evaluate the
performance of each algorithms. We report the evaluation results
for both peak-picking and score-informed HMM onset selection
methods on jingju dataset. The pick-peaking results are reported
by grid searching the best threshold on the test set, and the score-
informed HMM results are evaluated directly on the test set since
no optimization is needed.

We report only F1-measure in this paper. For jingju dataset, to
average out the network random initialization effect, each model is
trained 5 times with different random seeds, then the average and
standard deviation results are reported. To measure the statistical
significance of the performance improvement or deterioration, we
calculate the Welch’s t-test on the 5 training times results for jingju
dataset. We report two tails p-value and reject the null hypothesis
if the p-value is smaller than 0.05.

’https://github.com/keras—team/keras
Shttps://github.com/tensorflow/tensorflow
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5.5.4 Results and discussions

In this section, we report and analyze the results for the most effi-
cient architecture searching experiments. In tables 5.7, the p-value
is calculated by comparing each model results with Baseline.

Table 5.7: Jingju dataset peak-picking (upper) and score-informed HMM
(bottom) results of different architectures.

| Fl-measure p-value

Baseline 76.17+0.77 —

ReLU dense 76.044+1.02  0.840
No dense 73.88+£0.44  0.002
Temporal 76.01+£0.61  0.749
BiLSTMs 100 | 78.24+0.83  0.006
BiLSTMs 200 | 77.82+0.68  0.013
BiLSTMs 400 | 76.93+0.68  0.178
9-layers CNN | 73.834+0.92  0.005
S-layers CNN | 76.68+1.04  0.457

Fl-measure p-value

Baseline 83.231+0.57 -

ReLU dense 82.49+0.28  0.057
No dense 82.19+0.44 0.021
Temporal 83.23+0.57 1

BiLSTMs 100 | 82.99+0.31 0.479
BiLSTMs 200 | 83.29+0.37  0.882
BiLSTMs 400 | 82.47+0.54  0.087
9-layers CNN | 80.90+0.67 0.001
5-layers CNN | 83.01£0.76  0.649

Observing table 5.7 — the results of jingju dataset, BILSTMs
100 and 200 outperform Baseline with peak-picking onset selection
method but not with score-informed HMM method. 9-layers CNN
overfits and significantly performs worse than Baseline, which
means this architecture is too “deep” and overfitted for this test
dataset (check the Github page* for its loss curve). Temporal ar-
chitecture has the p-value of 1 when evaluating by score-informed

“https://github.com/ronggong/musical-onset-efficient
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HMM method, and we confirm that it is a coincidence after hav-
ing checked its 5 training times F1-measures. No dense architec-
ture performs significantly worse than Baseline. However, con-
sidering its tiny TNoTP — 3,161, this performance is quite accept-
able. The similar case has been reported in Lacoste and Eck’s
work(Lacoste & Eck, 2007), where their 1 unit 1 hidden layer archi-
tecture achieved a remarkable result (only 4% F1-measure worse
than their best architecture). This means that if the state-of-the-art
performance is not required, one can use a quite small and efficient
architecture. The score-informed HMM onset selection method
outperform the peak-picking by a large margin. Also notice that
the score-informed HMM method is able to compensate both good
and bad performance of peak-picking, which can be seen by com-
paring upper and bottom results regarding No dense, BiLSTMs
100 and 200 models.

Finally, we choose 5-layers CNN as the most efficient archi-
tecture because it performs consistently equivalent to Baseline but
only contains 28.3% TNoTP. Although Temporal architecture per-
forms equally well, it is not selected because its equal TNoTP to
Baseline and the complex configuration of its front-end B. BiL-
STMs outperforms Baseline on jingju dataset, however, due to its
overfitting on Bock dataset and slow training, we don’t consider it
as an efficient architecture.

Experiment code and pre-trained models used in the experi-
ments are available in Github®*. A Jupyter notebook running in
Google Colab is prepared for showcasing the performance of dif-
ferent network architectures®.

5.6 Conclusions

We formulate the syllable and phoneme segmentation problem
within the context of jingju singing from two different perspectives
— lyrics-to-audio alignment and onset detection. After setting up
the baseline HSMM-based segmentation (alignment) method, we
proposed the duration-informed onset detection-based method for
tackling the segmentation problem. Finally, we explored various

Shttps://goo.gl/Y5KAFC


https://goo.gl/Y5KAFC

5.6 Conclusions 147

deep learning architectures for improving the syllable onset detec-
tion performance.

A detailed evaluation of HSMM-based segmentation method,
onset detection-based method and various deep learning onset de-
tection models was discussed for two jingju a cappella singing test
datasets. Jingju singing, with distinct musical characteristics, is an
ideal case to study the performance of novel methods for syllable
and phoneme segmentation.

The duration-informed onset detection-based method explic-
itly considered coarse syllable and phoneme duration informa-
tion for the segmentation. However, the algorithm is language-
independent, and thus can easily adapt to the singing voice of
various languages and even to instrumental playing. Since onset
detection-based method is a binary onset/non-onset classification
model, it requires a small amount of syllable or phoneme onset an-
notated training data.

The duration-informed onset detection-based method shows
significant promise in syllable and phoneme segmentation task. It
provides a significant improvement in both onset detection and seg-
mentation performance compared with the baseline HSMM-based
method for jingju a cappella singing. An exploration of various
deep learning syllable onset detection models showed that the ar-
chitecture of the deep learning model cannot affect significantly the
onset detection performance, however, one can design an efficient
architecture to reach the state of the art performance.

One main limitation of the onset detection-based method pre-
sented was the assumption that a similar duration of each syllable
or phoneme and the same syllable or phoneme sequence should be
sung in both teacher’s and student’s singing pieces. While this is a
fair and realistic assumption for jingju professional training since
the students can usually imitate the teacher’s singing very well, am-
ateur singers might imitate very badly because of a large deviation
of the syllable or phoneme duration and missing or extra syllable
or phoneme. A coarse syllable and phoneme duration correction
might be necessary there before applying the segmentation algo-
rithm. The syllable or phoneme recognition might be the method
used to tackle the problem of missing or extra syllable in student’s
singing.

The onset detection-based segmentation method utilized
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duration-informed HMM to select the correct onsets on the ODF.
A good quality ODF is essential to reach a desirable syllable or
phoneme onset detection/segmentation accuracy. Various deep
learning architectures were experimented to search for a most ef-
fective and efficient one which can lead to a superior syllable onset
detection performance. Although the experiment did not show an
improvement in onset detection accuracy, we witnessed thata CNN
architecture without dense connection reached the state of the art
performance, while it has much less trainable parameters than the
baseline architecture, which indicates that the segmentation model
efficiency can be improved by using this deep learning architecture.

The presented onset detection-based segmentation method can
be further improved to incorporate other linguistic information such
as the phoneme class of each time frame. This is in addition to the
ideas explored already — HSMM-based method utilized phoneme
class and duration information, while onset detection-based method
utilized syllable/phoneme onset and duration information. Such
a model which makes use of all of the three information — onset,
phoneme class and duration need to be further explored.

The automatic syllable and phoneme segmentation methods
discussed in the chapter are aligned with the goal to lead towards
an automatic pronunciation assessment system in a fine granularity
for jingju a cappella singing. Syllable and phoneme segmentation
is the first step towards this goal. The methods of mispronunciation
detection and pronunciation similarity measures are built based on
the results of the segmentation.



Chapter 6 .

Mispronunciation
detection

Mispronunciation detection is a popular speech assessment task,
and the developed system is used for Computer-aided language
learning (CALL). As we have discussed in Section 3.1, an accu-
rate pronunciation of each singing syllable is an essential aspect in
jingju performing, which is stressed by both teacher and student in
the actual jingju singing training scenario. A system which can de-
tect the mispronounced singing syllable automatically is a crucial
component of the automatic system for assessing the jingju singing
pronunciation.

Mispronunciation detection aims to detect automatically the
mispronounced syllables or phonemes in student’s singing. It tags
each syllable or phoneme in the singing recording as either mis-
pronunciation or correct pronunciation. Within the context of the
jingju singing, we constrain the detection to (1) syllable-level and
(2) two types of mispronunciation — jiantuanzi and special pronun-
ciation. We will explain in detail these two constraints in the next
section.

This chapter aims to address the automatic mispronunciation
detection task within the context of jingju singing, presenting sev-
eral methods and an evaluation of these methods. The main aims
of this chapter are:

1. To address automatic mispronunciation task for jingju singing.

149
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The problem is formulated as building discriminative machine
learning models to classify binarily the singing syllables into
mispronounced or correctly pronounced class. Several neural
network architectures are experimented to address this problem.

2. To present a description of the forced alignment-based baseline
method and the discriminative model-based method for mispro-
nunciation detection.

3. To present an evaluation of the forced alignment-based method
and the discriminative model-based method, and explore two
deep learning architectures intending to improve the discrimi-
native detection model.

The implementation code used in the experiments of this chap-
ter is openly available!.

6.1 Task description

We describe the automatic mispronunciation detection task in this
section. We will also describe how the approaches presented in
this chapter can be adapted to this task, making them flexible to
the available audio recordings and annotations. The task descrip-
tion presented in this section is continued building on the problem
formulation presented in Section 3.4.3.

Given the singing audio recording pre-segmented into pieces
of melodic line-level, the pronunciation dictionaries (lexicon), the
most relevant detection task is to detect the mispronunciations
of the special pronounced syllables or jiantuanzi syllables in the
melodic line. We constrain the detection at syllable-level because
it is the basic pronunciation unit in jingju singing teaching which
has semantic meaning (Section 2.2.1). We also constrain the detec-
tion task to two types of mispronunciation — jiantuanzi and special
pronunciation, since they are two main sources of mispronuncia-
tion in jingju singing training (Section 2.2.3 and Section 2.2.4). In
the context of jingju singing, forced alignment aims to time-align
a priori syllable sequence in pinyin format with the melodic line

"https://github.com/ronggong/mispronunciation-detection
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singing audio recording. The forced alignment method uses a dic-
tionary with multiple pronunciations for a particular syllable entry,
and then the pronunciation which matches best with the singing
acoustics will be decoded in the aligned syllable sequence. The
mispronunciation detection result can be obtained by comparing the
decoded syllable sequence with the teacher’s syllable sequence. A
mispronunciation discriminative model aims to classify a syllable
segment into either mispronounced or correctly pronounced class.
The onset detection based syllable segmentation method presented
in Section 5.4 will be used as the preliminary step to obtaining the
syllable segment from the melodic line. In the context of this thesis,
as the syllable sequence of the teacher’s demonstrative singing is
always available, the information of the syllable type in a melodic
line is known in advance, which is to say, we know which sylla-
bles in a melodic line are special pronunciation or jiantuanzi. Such
information is necessary for the algorithm evaluation step.

The two main tasks in this chapter are setting up the forced
alignment-based baseline detection method and proposing the dis-
criminative model-based method. As the third task of this chapter,
we explore two deep learning architectures intending to improve
the discriminative models. The performance of all the three tasks
will be evaluated on MD dataset (Section 4.2.2). The results and
the pros and cons of two misrponunciation detection methods will
be discussed in detail.

6.2 Forced alignment-based method

Forced alignment is a technique which time-align the syllable or
phoneme orthographic transcription with the speech or singing
voice audio. It is a preliminary step in a speech recognition system
for training the acoustic model. The baseline method for syllable
and phoneme segmentation presented in Section 5.3 also used the
forced alignment technique. In this section, we will build a forced
alignment system based on Kaldi toolkit (Section 2.5.3). This sys-
tem will make use a special pronunciation dictionary to decode the
syllable sequence of the jingju singing recording. The decoded syl-
lable sequence is intended to reflect the actual pronunciation by in-
specting the acoustics of the recording. Then the evaluation of the
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mispronunciation detection performance is done by comparing the
decoded syllable sequence with the teacher’s demonstrative sylla-
ble sequence.

6.2.1 Preparing lexicons for the forced align-
ment

Kaldi is a toolkit for constructing speech recognition system based
on Finite State Transducers (FSTs) (Mohri, Pereira, & Riley, 2002).
The advantage of using Kaldi to build a forced alignment system
is that many code recipes are provided for some speech datasets,
and only minimal effort is required to modify a certain recipe to
our singing voice dataset.

The principle idea of performing forced alignment for the mis-
pronunciation detection is that the system could make use of a pro-
nunciation dictionary (lexicon) with multiple pronunciations for
each syllable entry to decode the syllable sequence. The decoded
sequence can reflect the actual pronunciation of the singing record-
ing. The critical steps are preparing the pronunciation lexicons,
which are the dictionaries of the syllables and their corresponding
phoneme transcriptions. In the forced alignment system training
step, we provide the dictionary with the exact pronunciation be-
cause the phonetic level annotation of the training set is known in
advance. An example lexicon for the system training is:

HAOO x AU u

WANGO w AN

MINO m in

NGOO w O

JINO c in

ZAO00 ¢ AU" sil phone AU" u

HAOI x AU" sil phone AU”

WANG1 w AN sil phone AN sil phone AN N
MIN1 m in N

NGOl N O

Where the first column of each line is the syllable and the fol-
lowing characters are the phonetic pronunciation of this syllable in
X-SAMPA format (Appendix B, sil phone indicates the silence).
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Each syllable is postpended with numbers, which indicates differ-
ent pronunciations of this syllable. The Baum-Welch algorithm of
the system learns the monophone acoustic model by giving the lexi-
con and the syllabic level transcription of each singing melodic line.
We use the MFCCs with the energy as the feature representation of
the audio.

In testing phase, the exact pronunciation of the testing singing
melodic line is unknown. To make Kaldi choose the pronunciation
of a syllable which matches the best with the singing acoustics,
we merge the syllable pronunciation entries and remove the post-
pended numbers. For example, we merge the syllable “wo” and
its corresponding special pronounced syllable “ngo” to an identical
syllable entry “wo”, and merge the syllable “xiang” and its corre-
sponding jianzi syllable “siang” to an identical syllable entry “xi-
ang”. Then the above lexicon becomes:

WO x AU u

WANG w AN

MIN m in

WO w O

JIN c in

ZAO ¢ AU" sil phone AU" u

HAO x AU" sil phone AU"

WANG w AN il phone AN sil phone AN N
MIN m in N

NGO N O

The alignment decoding graph in Kaldi will contain the alter-
native pronunciations for a single syllable and decode the phoneme
sequence which matches the best with the acoustics. The syllable
sequence of the testing melodic line can be then inferred from the
decoded phoneme sequence.

6.2.2 Experimental setup

We use the MD test dataset presented in Section 4.2.2 and classi-
fication accuracy metric presented in Section 2.4.6 to evaluate the
performance of the forced alignment system. We only evaluate
the syllables that teacher pronounces as the special pronunciation
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or jianzi. If the student pronounces a syllable wrongly, the true
negative is that the decoded syllable is not equal to the teacher’s
syllable transcription. While the student pronounces a syllable cor-
rectly, the true positive is that the decoded syllable is equal to the
teacher’s syllable transcription. The detection accuracy is reported
separately for special pronunciation syllable type and jiantuanzi

type.

6.2.3 Results and discussions

The results are shown in Table 6.1. 69.08% of the special pronun-
ciation syllables and around half of the jianzi syllables in the testing
set are correctly detected.

Table 6.1: The evaluation result table of the forced alignment mispronun-
ciation detection method. #Correctly detected: number of correctly de-
tected syllables; #Total: number of total syllables; Accuracy: binary clas-
sification accuracy; Special: special pronunciation task; jianzi: jiantuanzi
task.

#Correctly detected special #Total special Accuracy special
324 469 69.08%

#Correctly detected jianzi  #Total jianzi  Accuracy jianzi
26 50 52%

To our surprise, the detection for the special pronunciation syl-
lable type reaches an average level detection accuracy — 69.08%,
as the true positive criterion is quite strict, which requires that the
decoded syllable be equal to the teacher’s syllable transcription.
While the detection accuracy for jianzi syllable type is undesirable.
The possible reason could be that the forced alignment system is
not able to decode the non-voiced consonants correctly. As we
have discussed in Section 4.2.2, the difference between the mis-
pronounced jianzi syllable and correctly pronounced jianzi sylla-
ble mainly lies on the different pronunciations of the non-voiced
consonant. In the next section, we will explore the discriminative
model-based detection method which intends to make the decision
based on a particular part of the syllable, for example, the non-
voiced consonant part.
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6.3 Discriminative model-based
method

The unsatisfactory performance of the forced alignment-based
model motivates to explore an alternative mispronunciation detec-
tion method. In this section, we devise a mispronunciation detec-
tion method based on the syllable segmentation and the discrimi-
native model. We use the same syllable segmentation method pre-
sented in Section 5.4 to segment automatically the jingju singing
melodic line into syllable segments. As the testing set contains
only the student’s recordings, we use the coarse syllabic durations
extracted from the corresponding teacher’s recordings to build the
a priori duration model. Although the segmentation algorithm will
inevitably cause the segmentation errors which can be propagated
to the mispronunciation detection step, we still adopt the automatic
segmentation rather than using the ground truth annotation of the
syllable boundary in order to perform a fair evaluation with the
baseline algorithm.

As the input representation for the discriminative model, we
use the same logarithmic Mel (log-mel) representation presented
in Section 5.2.1, except that no overlapped context window will
be used. Thus the input to the model is variable-length syllable
segments which are represented by two dimensional log-mel spec-
trogram.

We construct two discriminative models respectively for the
mispronunciation detection of the special pronunciation syllable
and the jiantuanzi. We present various deep learning techniques
in the next section for building the model.

6.3.1 Discriminative deep learning models

As mentioned in Section 2.5.1, RNNs are the natural choice to
model acoustic sequential data. Thus our initial model is a bidirec-
tional RNNs with LSTM units. We also explore three deep learn-
ing techniques — using additional convolutional layers to learn the
local connectivity of the input representation, using feed-forward
attention mechanism to allow the model to make the decision by
weighting the most important syllable part, and using dropout to
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overcome the overfitting.

Bidirectional LSTMs

Due to the small size of the training data (Section 6.3.2), we ex-
periment with a one-layer BILSTM recurrent model, which has 8
LSTM units in each direction. The output layer has one sigmoid
unit for the binary classification.

Additional convolutional layers

Convolutional layer uses the receptive field to capture the local con-
nectivity of the input representation and can extract music mean-
ingful features by designing the kernel shape (Pons, Slizovskaia,
et al., 2017). We stack a 2-layers CNN between the input and the
RNN layer.

Table 6.2: 6-layers CNN, “8x 1 x 3 ReLU” means 8 kernels of which
each convolves on 1 frequency bins and 3 temporal frames, using ReLU
activation function.

Conv 8x 1x3 ReLU
Max-pooling 1x3
Conv 16x 1x3 ReLU
Max-pooling 1x3

Table 6.2 shows the CNN architecture. It does convolution and
max-pooling only in frequency axis because we only want to cap-
ture the frequential local connectivity and maintain the temporal
resolution.

Feed-forward attention mechanism

In the initial BILSTM network, the output sigmoid layer takes the
last time stamp hidden state of the RNN as the input. Attention
mechanism provides a way to capture the global sequence infor-
mation rather than only to classify based on the last hidden state.
The original attention has been proposed in the context of sequence-
to-sequence model for the machine translation purpose (Bahdanau,
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Cho, & Bengio, 2014). Then this mechanism or its variants are ap-
plied for image caption generation, video clip description, machine
reading comprehension and speech recognition (Cho, Courville, &
Bengio, 2015; Xu et al., 2015; Hermann et al., 2015). In this work,
we use the feed-forward attention proposed by C. Raffel and D. P.
W Ellis (Raffel & Ellis, 2015) because it is suitable for the classi-
fication task. This mechanism can be seen as producing a fixed-
length embedding of the input sequence by computing an adaptive
weighted average of the entire state sequence.

Dropout

To prevent our model from overfitting on the small size training
set, we experiment 0.5 rate dropout for both input and output of the
RNN.

Models training

The target labels of the training set are prepared according to the
ground truth annotation. We set the label of the mispronunced syl-
lable to 1, and the correctly pronounced syllable to 0. The model
parameters are learned with mini-batch training (batch size 1 due
to the variable-length of each training sample), adam update rule
(Kingma & Ba, 2014), and early stopping — if validation loss is not
decreasing after 15 epochs.

6.3.2 Experimental setup

The experimental setup is similar to the one mentioned in Sec-
tion 6.2.2. We also use the MD test dataset and classification accu-
racy metric the performance of the discriminative model. The task
aims to discriminate between the mispronounced syllable and the
correctly pronounced syllable. Thus we subsample from the MD
dataset the special pronunciation syllables, jianzi syllables as the
positive samples and their standard pronunciation syllables as the
negative samples. Table 6.3 shows the numbers of the special pro-
nunciation and jiantuanzi syllables in the entire training set. The
average syllable duration is 86.09 frames (2.15 s) and the standard
deviation duration is 119.89 frames (3.0 s).
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Table 6.3: Numbers of the special pronunciation (special) and jiantuanzi
syllables in the training set.

#special #special #jiantuanzi #jiantuanzi
positive negative  positive negative

463 1083 41 242

We use 5-folds cross-validation to report the classification ac-
curacy for the model architecture selection. In each fold, 75% sam-
ples of the entire training set is split as the train set, and another
25% samples is reserved for the validation set. The Mean Valida-
tion Loss (MVL) is reported separately for models of special pro-
nunciation and jiantuanzi tasks. In the testing phase, the best archi-
tectures which have the minimum MVL is chosen to train on the
entire training set once, and then the trained models are evaluated
on the test set. We also report the results for the automatic syllable
segmentation evaluation. The evaluation metrics for the segmenta-
tion — onset detection F1-measure and segmentation accuracy, are
described in Section 2.4.6.

6.3.3 Results and discussions

We show in Table 6.4 the F1-measure onset detection and segmen-
tation accuracy results which indicate the automatic syllable seg-
mentation performance. We can observe a high segmentation ac-
curacy 95.19% and an average onset detection F1-measure 78.74%,
which means that a certain amount of the detected onsets do not lie
within the 50 ms tolerance window constrained by the ground truth
onsets. Asthe non-voiced consonants usually have a short duration,
those onset detection errors might cause an inaccurate segmenta-
tion of the non-voiced consonants and can be propagated into the
mispronunciation detection step.

Table 6.5 shows the number of parameter of each model archi-
tecture and MVL results of the model architecture selection step for
each special pronunciation and jiantuanzi models. All of the addi-
tional deep learning techniques — CNN, attention and dropout, help
improve the model performance of the vanilla BILSTM. For the
detection task of the special pronunciation syllables, the result of
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Table 6.4: Evaluation results of the preliminary automatic syllable seg-
mentation step. Onset detection F1-measure and segmentation accuracy
are reported.

Onset Fl-measure Segmentation accuracy

78.74% 95.19%

the dropout technique reaches the minimum MVL — 0.6152, which
means that this technique to avoid overfitting is crucial for such a
small training set. While for the task of the jiantuanzi syllables,
the combination of all the techniques reaches the minimum MVL
—0.3457.

Table 6.5: The number of parameters of each model architecture and the
MVL results of the special pronunciation (special) and jiantuanzi mod-
els. CNN: additional convolutional layers, Att.: feed-forward attention
mechanism, Comb.: combine BiILSTM, CNN, attention and dropout ar-
chitectures.

BiLSTM CNN Att.  Dropout Comb.

MV.L 0.7488  0.6600 0.6560 0.6152 0.6574
special
..MVL. 0.5046  0.3523 0.3892 0.3754 0.3457
Jlantuanzi

#params 5713 9217 5730 5713 9234

We use these two architectures to train respectively the final
special pronunciation and jiantuanzi models on the entire training
set. Then we evaluate the trained models on the test dataset.

Table 6.6 shows the mispronunciation detection results for both
special pronunciation syllables and jiantuanzi syllables. We can
observe that the discriminative model degrades the detection per-
formance for special pronunciation syllables compared with the
baseline forced alignment results — from 69.08% to 64.68%, which
might due to that the discriminative model training only accessed a
subset of the MD dataset, while the baseline model training utilised
the entire MD dataset. On the other hand, the detection accuracy
for the jiantuanzi task is improved significantly. To illustrate the
effect of the attention mechanism, we visualize the logarithmic Mel
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Table 6.6: The evaluation result table of the discriminative model-based
mispronunciation detection method. #Correctly detected: number of cor-
rectly detected syllables; #Total: number of total syllables; Accuracy: bi-
nary classification accuracy; Special: special pronunciation task; jianzi:
jiantuanzi task.

#Correctly detected special #Total special Accuracy special
304 469 64.68%

#Correctly detected jianzi  #Total jianzi  Accuracy jianzi
34 50 68%

spectrogram and the attention vector output from the model decod-
ing process in Figure 6.1.

We can notice from Figure 6.1 that the attention vectors have
a relatively high value towards the non-voiced consonant part of
the syllable (the noise-like spectrogram at the syllable beginning),
which means that the attention mechanism allows the model to
make the decision mainly on the non-voiced consonant part of the
syllable, which is the segment to discriminate a mispronounced and
a correctly pronounced jiantuanzi syllable.

6.4 Improving the discriminative mis-
pronunciation detection models

In the last section, we devised a discriminative model-based mis-
pronunciation detection method. The discriminative model is
based on deep learning architecture which classifies the input sylla-
ble segment binarily into mispronounced or correctly pronounced
class. The classification accuracy largely depends on the deep
learning architecture, the size and quality of training dataset. To
collect more training data would involve the participation of multi-
party, e.g., artists, recording engineers, which is more difficult in
coordination and more time-consuming than experimenting new
deep learning architectures.

In this section, we experiment with two new deep learning ar-
chitectures and intend to improve the mispronunciation accuracy.
These two architectures have been proposed recently for the se-
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(g) Jiantuanzi 7 (h) Jiantuanzi 8

Figure 6.1: The visualization of the logarithmic Mel spectrogram and the
attention vector output from the model decoding process for jiantuanzi
syllables.

quential data modelling.

6.4.1 Temporal convolutional networks

Temporal Convolutional Networks (TCNs) is a deep learning archi-
tecture proposed by Bai et al. (Bai, Kolter, & Koltun, 2018). TCNs
adopt three novel deep learning techniques — causal convolutions,
dilated convolutions and residual connections to perform sequential
modelling rather than using RNN-related architectures. The author
evaluated TCNs along with several traditional sequential modelling
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architectures, such as LSTM, GRU and RNN, on various sequen-
tial modelling tasks, such as polyphonic music modelling, word-
and character-level language modelling. The experiment shows
that TCNs outperformed those architectures in most of the tasks.
The main component of the TCNs is a 1D Fully-Convolutional Net-
work (FCN). The causal convolutions restrict that there can be no
leakage of information from the future into the past. The dilated
convolutions can achieve a large history size while maintaining a
relatively small layer number (not too deep) and filter size (not too
large). Residual connections can stabilize a large and deep network
by only learning the modifications to the identity mapping. The
memory retention analysis shows that TCNs exhibit substantially
longer memory than the LSTMs and GRUs of the same size.

TCNs hold several hyperparameters which need to be tuned
when applying the model to the mispronunciation detection task.
The most important factor for choosing hyperparameters is to make
sure the TCN has a sufficiently large receptive field to cover the
amount of the sequential context. The relevant hyperparameters
are the number of stacks n of the FCN, dilation factor d and fil-
ter size k. The receptive field size which is equal to d X k X n
needs to be adapted to the average syllable length of our training
dataset — 86.09 frames. We experiment with three hyperparameter
configurations:

Table 6.7: Configurations of three TCNs. n: number of stacks, k: filter
size, d: dilation factor.

Rejceptlve field k d for each stack
size (frames)
TCNsl1 8192 4 8 [2,4,16,256]
TCNs2 128 4 8 [1,2,4,16]
TCNSs3 96 4 8 [1,2,8,32]

6.4.2 Self-attention mechanism

The feed-forward attention mechanism presented in Section 6.3.1
aims to learn a fixed-length embedding vector by weighted sum-
ming the RNN hidden states of all timestamps. The attention vector
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is learned by a MLP network, which allows the model to empha-
size certain hidden states. Lin et al. (Z. Lin et al., 2017) proposed a
structured self-attention mechanism which learns a 2D embedding
matrix rather than a vector. Applying for the natural language sen-
tence embedding task, they claim that each row of the matrix can
attend on a different part of the sentence.

They argue that the feed-forward attention mechanism using
an embedding vector usually focus on a specific component (time
region) of the input sequence. To allow the model to attend to mul-
tiple components, they proposed to use multiple attention vectors,
which forms an embedding matrix. Consequently, to compute the
embedding matrix is to learn a weighting matrix of which each row
is the weighting vector of the hidden state sequence. In the imple-
mentation, we use a 2-layer MLP without bias to learn this weight-
ing matrix.

The theoretical framework of the self-attention mechanism is
compelling, and also has practical meaning when applying to the
mispronunciation detection. For example, when a student mispro-
nounces a syllable, she/he might commit errors on multiple parts of
the syllable. E.g., the mispronunciation of “sian” could be “xiang”,
where the student made the errors on both non-voiced consonant
“s” — “x” and the terminal consonant “n” — “ng”.

In this work, we experiment with the self-attention mechanism
with the BiILSTM architecture presented in Section 6.3.1. To pre-
vent overfitting, we restrict the number of parameters in the archi-
tecture and use 16 hidden units for each layer of the MLP.

6.4.3 Experimental setup

The experimental setup is the same as it has been mentioned in
Section 6.3.2.

6.4.4 Results and discussions

Table 6.8 shows the MVL results of three TCNs hyperparameter
configurations. For special pronunciation task, the TCNs3 with the
smallest receptive field size performs the best. While for jiantuanzi
task, the TCNs1 with the largest receptive field size performs the
best. The possible reason is that the model needs a large receptive
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field to retain the long history in order to detect the mispronun-
ciation of a jianzi syllable, of which the mispronunciation usually
happens at the non-voiced consonant part which is also the begin-
ning of the syllable. While for special pronunciation task, the mis-
pronunciation usually happens at the syllable belly or tail position,
which doesn’t require the model to have a large receptive field to
retain the long history. However, the best results among the three
configurations still lag behind those of the previous experimented
BiLSTM models (Section 6.5), that we need a further study to un-
derstand the poor results of the TCNs. An assumption could be that
TCNs requires more training data to work properly. However, our
current training dataset is too small.

Table 6.8: Mean validation loss (MVL) of three TCN hyperparameter
configurations for special pronunciation and jiantuanzi detection tasks.

TCNsl TCNs2 TCNs3

MV.L 1.2831 1.1702 1.0787
special
..MVL. 0.8877 0.9986 1.2243
Jilantuanzi

#params 14609 7505 8097

Table 6.9 shows the MVL results of self-attention and feed-
forward attention mechanism. We can observe an improvement by
adopting self-attention, which means that using the self-attention
mechanism individually with BiLSTM leads to a better perfor-
mance than using feed-forward attention. However, while combin-
ing self-attention with other deep learning techniques mentioned in
Section 6.3.1, the performance for the special pronunciation task
does not surpass the best result reported in Table 6.5, and the per-
formance for the jiantuanzi task is worse than using self-attention
individually.

Because of the inferior results of TCNs and self-attention mech-
anism, we would not include them in the final models for the mis-
pronunciation detection tasks. Consider that the relatively small
training data size might be the bottleneck of improving the deep
learning-based detection models, it is more reasonable to collect
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Table 6.9: Mean validation loss (MVL) of self-attention and feed-
forward attention architectures for special pronunciation and jiantuanzi
detection tasks. Self-att.: self-attention, Feed-forward: feed-forward at-
tention, Comb.: combine BiLSTM, CNN, self-attention and dropout.

Self-att. Feed-forward Comb.

MV.L 0.6458 0.6560 0.6313
special
" MVL . 0.3512 0.3892 0.3943
Jlantuanzi
#params 6257 5730 9761

more training data firstly, then study the performance of different
deep learning architectures.

6.5 Conclusions

This chapter presented a detailed formulation of the task of mis-
pronunciation detection in jingju singing voice. The approaches
utilized the automatic syllable segmentation algorithm presented
in the last chapter and a deep learning-based discriminative model
to perform the detection on two types of jingju singing syllables.
Evaluation on an amateur jingju singing dataset showed the possi-
bility of this approach and its limitations. The goal of developing
such model was to present a methodology for mispronunciation de-
tection in automatic singing voice assessment system of jingju mu-
sic. The work presented in this chapter was preliminary and not
comprehensive, with a great possibility for further study and im-
provement. However, the basic idea of using a deep learning-based
discriminative model to achieve the mispronunciation detection is
valid.

We mainly addressed the problem of the detection of two types
of mispronounced syllables in jingju singing recordings — special
pronunciation and jiantuanzi. The presented method firstly used the
onset detection-based automatic syllable segmentation algorithm
to obtain the segment of each syllable, then classified each syllable
segment to mispronounced or correctly pronounced class by using a
deep learning-based discriminative model. Compared to a baseline
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forced alignment method, we showed that the proposed method is
more advantageous in detecting the mispronunciation of the jiantu-
anzi syllable type. By illustrating the attention vector, we found
that the attention mechanism is useful in putting more weights in
the non-voiced consonant part of, and thus to help the model to
make a better detection of the jiantuanzi mispronunciation. Ad-
ditionally, intending to improve the detection accuracy of the dis-
criminative model, we adopted two newly developed deep learning
techniques for sequential modelling to our mispronunciation detec-
tion task. However, the results showed that their performance was
not ideal, and inferior to our initial discriminative model.

For future work, we aim to improve the discriminative model
performance by collecting more training dataset. Deep learning
techniques are known to be data-consuming. However, our cur-
rent dataset is too small to train a proper deep-learning based dis-
criminative model and to outperform the forced alignment-based
model which usually requires much less training data. The next
steps would be performing an extensive hyperparameter tuning for
the deep learning models since the performance of such models
can be optimized by considering the coordinative effect between
the hyperparameters and the size of the training data.



Chapter 7 .

Pronunciation and
overall quality
similarity measures

Pronunciation and overall quality similarities measurement is a
subtask in singing voice assessment. which is useful in the on-
line singing training scenario to assess the pronunciation quality
and the overall quality of the student’s singing. In the last chapter,
we have discussed the possibility of using computational models to
detect the mispronunciation syllables in jingju singing. However,
as we have mentioned in Section 3.2.1, in some cases, although the
student does not commit any mispronunciation, there still exists a
clear gap on pronunciation and overall quality between the singing
of teacher and student. The rigour of the jingju singing training
and the learning by imitation training method require the student,
especially the professional one, to imitate the timbre quality of the
jingju master. Thus, a system which can measure the pronunciation
and overall quality similarities between the singing of teacher and
student is a useful component of the automatic system for jingju
singing assessment.

In the context of this dissertation, pronunciation and overall
quality similarities measurement aims to measure the pronunciation
and overall quality similarities between the teacher and student’s
corresponding phoneme segments. This chapter aims to address the

167
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pronunciation and overall quality similarities measurement task in
the context of jingju singing training, presenting several methods
and an evaluation of these methods. The main goal of this chapter
are:

1. To address the similarity measure problem for jingju singing.
The problem is formulated as building machine learning mod-
els to perform phoneme embedding regarding pronunciation and
overall quality aspects. Several neural network architectures are
experimented to address this problem.

2. To present a description of the classification model for phoneme
embedding, and to explore the siamese network model for the
same purpose.

3. To present an evaluation of the classification model and the
siamese model.

7.1 Task description

Task description of the pronunciation and overall quality similari-
ties measurement in this section is continued building on the prob-
lem formulation presented in Section 3.4.4.

Given the singing audio recording pre-segmented into
phoneme-level, the most relevant task is to develop the com-
putational models which can measure the pronunciation and
overall quality similarities between phoneme segments. We con-
strain the granularity at phoneme-level because it is the smallest
pronunciation unit in jingju singing teacher, and it is also the
basic component to constitute the high-level singing unit, such
as syllable and phrase. In the context of this thesis, we mainly
consider using phoneme embedding to distill the pronunciation
and overall quality information of the phoneme segment, then
apply distance measures to define the similarity between two
segments. The advantages of using phoneme embedding rather
than the traditional sequential alignment method for the similarity
measures have been discussed in Section 3.4.4. We adopt deep
learning-based methods for generating phoneme embeddings from
variable-length phoneme segments. The deep learning-based
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classification model aims to classify the phoneme segment into
phoneme and overall quality categories. The output of the
second last layer of the classification model will be used as the
embedding. As an exploration, we also experiment the siamese
network architecture for phoneme embedding learning task since
this architecture was designed for measuring similarity between
multiple inputs. Then, the similarity between two phoneme
segments can be obtained by calculating the distance measure
of their phoneme embeddings. Differ from the last chapter, we
will evaluate the model performance directly on the manually
pre-segmented phoneme segments rather than involving any
automatic phoneme segmentation step into the pipeline. Thus, we
leave the joint evaluation of phoneme segmentation and similarity
measure for future work.

The two main tasks in this chapter are setting up the classifica-
tion phoneme embedding model, proposing several improvements,
and explore the siamese phoneme embedding model. The perfor-
mance of these two tasks will be evaluated on POQSM test dataset.
The results of the two models will be discussed in detail.

7.2 Baseline phoneme embedding net-
works

We introduce a phoneme embedding neural network as the baseline
model, which is able to convert variable-length phoneme segments
into fixed-length vectors. We use the logarithmic Mel (log-mel)
spectrogram of the phoneme segment as the input. The frame size
and hop size of the spectrogram are respectively 46.4ms (2048 sam-
ples) and 10ms (441 samples). The low and high-frequency bounds
of the Mel bank filters are 27.5Hz and 16kHz. This input represen-
tation is similar as we have been mentioned in Section 6.3.

7.2.1 Fully-supervised classification network

We call this network the fully-supervised classification network,
because we use fully-supervised training method and provide to the
network the phoneme class label for the pronunciation classifica-
tion, or the professional/amateur binary label for the overall quality
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classification. Figure 7.1 shows a diagram of this network. The
main part of the network is a single or multi recurrent layers. The
optimal layer number will be decided in the Section 7.2.4. The last
layer of the network use softmax units for the categorical classifica-
tion. We take the output vector from the last layer as the embedding
- either a 27 dimensional vector for the pronunciation embedding
(figure 7.1 left part) or a 2 dimensional vector for the overall quality
embedding (figure 7.1 right part). We use categorical cross-entropy
loss during the network training. The embeddings learned by this
network are expected to capture either the pronunciation or overall
quality characteristics of the phoneme segment. We also experi-
mented sharing the weights between the left and right branches of
the architecture, so that we could use one network to learn both
pronunciation and overall quality embeddings, which is the idea
of multi-task learning (Ruder, 2017). However, our experiment
shows that it doesn’t work better than individual task learning.

Phoneme log-mel segment

e

RNN RNN
0OO0O0.. 0O
Pronunciation embedding: Overall quality embedding:

27 phoneme classes softmax 2 classes teacher/student softmax

Figure 7.1: Fully-supervised classification phoneme embedding network
for learning pronunciation (left part) or overall quality (right part) embed-
dings. RNN: recurrent network network.

7.2.2 Model training

The weights of the network are learned with mini-batch training
(batch size 64), adam (Kingma & Ba, 2014) update rule and early
stopping of 15 epochs. To accelerate the network training, we
bucket the training phoneme segments which have a similar frame
length into the same mini-batch. The segments are then zero-
padded so that they have the same length as the longest segment
of the mini-batch.
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7.2.3 Experimental setup

We use POQSM test dataset presented in Section 4.2.3 for the eval-
uation purpose. The train, validation and test split of this dataset
can be consulted in Table 4.9.

For the pronunciation aspect, we measure the cosine similarity
for every phoneme embedding pair in the test set. The ground truth
label of an embedding pair is 1 if they belong to the same phoneme
class, or 0 vice versa. For overall quality aspect, we only measure
the cosine similarity of the phoneme embedding pairs of the same
phoneme class. The ground truth label is 1 if two embeddings be-
long to the same overall quality class — professional or amateur, 0
vice versa. We report the AP between the cosine similarities and
the ground truth as the evaluation metric. The AP is used previ-
ously to evaluate speech word acoustic embedding (Kamper et al.,
2016; Settle & Livescu, 2016). It is also suggested as the metric for
imbalanced test set (Davis & Goadrich, 2006), which is the case of
the pronunciation aspect evaluation.

We experiment 9 RNN architectures of BILSTM recurrent layer
and fully-connected layer combinations and report their AP on the
validation set. Each recurrent layer is bidirectional with 32 DNN
units in each direction (BiLSTM). Each fully-connected layer has
64 ReLU activation units and followed by a dropout layer with 0.5
dropout rate. We train each model 5 times with different random
seeds, and take the mean value of the average precisions. Two opti-
mal architectures are decided separately for pronunciation embed-
ding and overall quality embedding. Finally, we evaluate the per-
formance of the optimal architectures on the test set.

7.2.4 Results and discussion of the baseline

Table 7.1 shows the AP results on the validation set for 9 differ-
ent architectures. We observe that fully-connected layer doesn’t
help increase the AP. The pronunciation and overall quality aspects
reach their highest AP respectively by using 2 BiLSTM layers and
1 BiLSTM layer.

Table 7.2 shows the evaluation results for the baseline classifi-
cation network with the optimal architectures on the test set. We
observe that the classification network test AP is much worse than
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Table 7.1: Mean value of average precision on the validation set over 5
runs, using classification network embedding. R: # recurrent layers, F: #
fully-connected layers.

R F Pronunciation AP Overall quality AP
1 0 0.690 0.934
1 1 0.694 0.926
2 0 0.695 0.915
2 1 0.694 0.928
2 2 0.689 0.927
3 0 0.691 0.924
3 1 0.695 0.920
3 2 0.684 0.924
3 3 0.673 0.920

Table 7.2: Average precision on the test set over 5 runs, using optimal
network architectures.

Pronunciation AP  Overall quality AP
0.645 0.632

the validation AP — a 0.302 difference. We have two assumptions
to explain this observation:

Assumption i: the test set amateur phoneme segments are very
different from those of amateur train and validation sets, and similar
to the professional segments.

Assumption ii: the model is heavily overfitted on the train and
validation sets.

We have the assumption i1 because the amateur part of the test
set is special, which is recorded by the adult singers. However,
the amateur segments in the train and validation sets are recorded
mostly by primary school students. To show that the learned over-
all quality embeddings are not able to discriminate between profes-
sional and test set amateur phoneme segments for some phoneme
classes, we use T-distributed Stochastic Neighbor Embedding (t-
SNE) technique (Van Der Maaten & Hinton, 2008) to project the
embeddings of three different groups — professional embeddings,
amateur train and validation embeddings and amateur test embed-



7.2 Baseline phoneme embedding networks

® nvc Professional

nvc Amateur
train val

nvc Amateur
* test

® O Professional

0 Amateur
train val

173

0 Amateur

15 Fabd O °
o0 X .oloﬁo
N 9, Feo s Rad
- s - £
5 ,-'..:?,,_,\‘Q,.}ga M : " *
® ‘* LY, € #+“‘o .;.‘ 0 w % 3
RE TS L AL o) 4 % #
o sQIF HILT =4 °
BE S D ]
iy ) ) *% e -
el %
-10 '0“‘ .d:.ﬁ‘-to .0.‘ 0~ v -20 : : o. it
LA “'.-l’ (L ’ [) Ao‘ 4 go ‘w’
» Q ‘. f'?‘ ..:. 0.. . o. g :".:
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class
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Figure 7.2: t-SNE projection of classification network phoneme embed-
dings for overall quality aspect. nvc: non-voiced consonant; Blue dots:
phoneme embeddings of the professional singers; Green triangles: train-
ing and validation sets phoneme embeddings of the amateur singers; Red
plus: test set phoneme embeddings of the amateur singers.

dings into a 2-dimensional space.

Figure 7.2 shows two examples of t-SNE projection for two
phoneme classes —non-voiced consonant and phoneme O, of which
the test set APs are 0.626 and 0.677. For the non-voiced consonant
class, we can’t observe three separated groups of phoneme embed-
dings on figure 7.2a. For the phoneme O class of figure 7.2b, we
can observe a clear separation between the professional phoneme
segments (blue dots) and the amateur train and validation sets seg-
ments (green triangles). However, many amateur test set segments
(red plus) are mixed up within the professional cluster.

The mixing up of the test set amateur segments with the pro-
fessional ones doesn’t necessarily mean that these amateur test set
phoneme segments have reached the professional singing quality,
but perhaps we haven’t learned a suitable phoneme embedding to
distinguish them. To check if the amateur test segments can be dis-
criminated from the professional segments by using acoustic fea-
tures, we conduct a feature analysis. We first extract 151 features
for the segments of the three groups using Essentia FreesoundEx-
tractor!. The feature name list can be checked online'®. Then we

'http://essentia.upf.edu/documentation/freesound
_extractor.html


http://essentia.upf.edu/documentation/freesound_extractor.html
http://essentia.upf.edu/documentation/freesound_extractor.html
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Figure 7.3: Value distributions of the most discriminative features for
non-voiced consonant phoneme segments. For the definition of each fea-
ture, please consult online!.

compute Analysis of variance (ANOVA) F-value for each feature,
and sort the F-values to select the best individual features which
are capable to separate between the three groups (Stoller & Dixon,
n.d.). We use f_classif function in scikit-learn python package
to compute the ANOVA F-value. Figure 7.3 and figure 7.4 shows
the value distributions of individual feature for phoneme classes —
non-voiced consonant and O.

Figure 7.3 shows that, for the non-voiced phoneme class, no
individual feature can separate the amateur test segments from the
professional segments. Figure 7.4 indicates that, for the phoneme
O class, all these four features can effectively separate the amateur
test segments from the professional segments. However, its low
test set AP (0.667) indicates that the learned phoneme embeddings
are far from discriminative. So it is possible that for such phoneme
classes, the learned embeddings are overfitted on the train and val-
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Figure 7.4: Value distributions of the most discriminative features for
“O” phoneme segments. For the definition of each feature, please consult
online!.

idation sets, and not discriminative for the test sets. In the next
section, we are going to explore four experiments to overcome the
overfitting and to improve the phoneme embedding discriminabil-

1ty.

7.2.5 Techniques to improve the baseline model

We explore four experiments to improve the phoneme embedding:

1. adding attention mechanism in the network architecture.
2. using 32 embedding dimensionality.

3. stacking convolutional layers CNN before the RNN layers.
4. adding RNN input and output dropout.



176 Pronunciation and overall quality similarity measures

Attention: The attention mechanism used in this experiment is
the same as it has been presented in Section 6.3.1.

32 embedding: We consider that the embedding dimension, es-
pecially for the overall quality aspect (2-dimensional embedding)
is too few to capture sufficient information. To address this prob-
lem, we insert an intermediate fully-connected layer with 32 linear
activation units between the RNN and the output softmax layers.
Then we take the 32-dimensional output of this intermediate layer
as the embedding.

CNN: The architecture of the convolutional layers is similar as
it has been presented in Section 6.3.1. We stack a 6-layers CNN
between the input and the RNN layer. Table 7.3 shows the CNN
architecture.

Table 7.3: 6-layers CNN, “8x 1 x 3 ReLU” means 8 kernels of which
each convolves on 1 frequency bins and 3 temporal frames, using ReLU
activation function.

3 Conv 8x 1x3 ReLU
Max-pooling 1x3

3 Conv 16x 1x3 ReLU
Max-pooling 1x3

Dropout: To overcome the overfitting, we experiment 0.5 rate
dropout for both input and output of the RNN.

7.2.6 Results and discussion of the improved
model

Figure 7.5 shows the results of the four experiments. For the pro-
nunciation aspect, the attention, CNN or dropout improves the AP.
32 embedding performs worse than the original 29 dimensions,
which indicates that increasing the embedding dimensionality can-
not always bring the improvement. By combing attention, CNN
and dropout, we obtain the best AP 0.753 on the test set (best com-
bination). For the overall quality aspect, the 32 embedding and
CNN improves the AP. However, combine these two architectures
cannot bring improvement than using only 32 embedding. Another
observation is that dropout failed in improving the overall quality
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embedding. Thus it probably doesn’t help improve the generaliza-
tion ability of this embedding.
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Figure 7.5: Average precision on the test set over 5 runs, using optimal
classification networks (baseline), and four architectures to improve the
baseline. The best combination of pronunciation aspect is to combine
attention, CNN and dropout; that of overall quality aspect is to combine
32 embedding and CNN.

Figure 7.6 shows the t-SNE projection of the 32-dimensional
overall quality embeddings. For non-voiced consonant phoneme
class, we can observe clearly two separated professional and ama-
teur clusters, and many test set amateur segments are distributed in
the train and validation sets amateur cluster.

We can also notice that, for phoneme O class, most of the test
set amateur segments are no longer mixed up within the profes-
sional cluster, although some segments lie on the border between
the professional and the amateur clusters. It worth to notice that the
amateur segments in the train and validation sets are entirely com-
posed by the singing samples of the primary school students, while
the professional segments are entirely composed by the recordings
of the adult singers. The segregation between the amateur test seg-
ments and the professional segments means that the model is not
overfitted by the age of the singers. Additionally, compared to fig-
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Figure 7.6: t-SNE projection of classification network 32 dimensional
phoneme embeddings for overall quality. nvc: non-voiced consonant;
Blue dots: phoneme embeddings of the professional singers; Green tri-
angles: training and validation sets phoneme embeddings of the amateur
singers; Red plus: test set phoneme embeddings of the amateur singers.

ure 7.2, 32 dimensional embedding presents a remarkable improve-
ment in separating professional and amateur groups for these two
phoneme classes.
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Figure 7.7 shows the similarity measurement results by using
the phoneme embeddings to grade the amateur singing at phoneme-
level. We measure the cosine similarity between the professional
and amateur corresponding phoneme embeddings, and ignore the
extra or missing phonemes, e.g., the third phoneme “N” in the pro-
fessional singing. The pronunciation and overall quality similarity
of each phoneme segment are indicated in the third row of the fig-
ure. The similarity measures have a potential application for the
automatic assessment of jingju singing voice in online education
scenario, where the visualization feedback of the pronunciation and
overall quality similarities could be an effective guidance for the
students to improve their singing.

7.3 Siamese phoneme embedding net-
works

Siamese network is a network architecture which receives multiple
inputs, and shares the same weights. It uses a contrastive loss to
learn the similarity between multiple inputs. This network architec-
ture is more complicated than the classification network. However,
it outperforms the classification network in learning speech word
acoustic embeddings (Settle & Livescu, 2016). Additionally, the
siamese network and the contrastive loss have been initially pro-
posed to learn the similarity between multiple inputs, such as the
similarity between images or sounds, which is coherent with the
task we are dealing with — to model the pronunciation and over-
all quality similarities between phonemes. Thus in this section, we
explore the performance of the siamese network on singing voice
phoneme embedding.

7.3.1 Semi-supervised Siamese network

Figure 7.8 illustrates an example of the siamese network experi-
mented in this work for learning the overall quality embedding.
The network receives three inputs — anchor, same and differ-
ent. For instance, we can feed a teacher phoneme class A sample
into the anchor input, another feacher phoneme class A sample
into the same input, and a student phoneme class A sample into the



7.3 Siamese phoneme embedding networks 181

Anchor phoneme segment Same phoneme segment Different phoneme segment
e.g. Teacher phone A e.g. Teacher phone A e.g. Student phone A
+ share $ share +
weights weights
RNN - > RNN - > RNN
Anchor sample Same sample Different sample
embedding embedding embedding

v

- Constrastive triplet loss -

Figure 7.8: Semi-supervised siamese phoneme embedding network ex-
ample for learning overall quality aspect.

different input. We disclose the teacher or student labels in this ex-
ample only for clarifying the network training process. However,
in the actual case, we don’t need to know the exact labels of these
samples, but instead the fact that the anchor and same samples be-
longing to the same class and the anchor and different samples
belonging to different classes, which is also why we name it the
semi-supervised network.

The network outputs are the embeddings for the three input
samples — z,, x5 and x,. Then we use contrastive triplet loss (also
known as cos-hinge triplet loss) to minimize the cosine distance
between the anchor =, and same =, embeddings, and maximize
the cosine distance between the anchor z, and different x,; em-
beddings. The formula of the contrastive triplet loss is:

[ = max{0,m — deos(Ta, Ts) — deos(Ta, Ta)} (7.1)

where d.,s (71, x2) is the cosine distance between z; and x5, and
m is margin parameter that will be optimized by using the valida-
tion set.

To learn the pronunciation embeddings, we only need to feed
the network different training samples. For example, a valid train-
ing sample combination could be a phoneme of class A for the an-
chor input, another phoneme of class A for the same input, and a
phoneme of class B for the different input.
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7.3.2 Model training

We use NV anchor samples, where N is the sample number of the
training set, then randomly choose another N examples which each
match the word of a corresponding anchor sample, then choose an-
other 5N random samples for different class to their correspond-
ing anchor samples. This training data sampling strategy leads to
N training sample buckets, each includes 5 triplet combinations,
where each anchor and same sample pair are repeated 5 times to
match with the 5 different samples. Then we calculate the con-
trastive triplet loss for each 5 samples combination, and choose the
one with the maximum loss to update the network weights. By do-
ing this, we choose the most similar different sample for each an-
chor sample. This sampling strategy is recommended by S. Settle
(Settle & Livescu, 2016) through a personal communication. It has
been provided by him that this strategy improved the performance
of training speech word acoustic embedding.

7.3.3 Experimental setup

We train two phoneme embedding models respectively for pronun-
ciation and overall quality similarities. The optimal architectures
are used directly for the evaluation of the siamese network — a 2
layers BILSTM architecture for pronunciation similarity and a sin-
gle layer BILSTM architecture for overall quality similarity. The
evaluation procedure and metrics are the same as they have been
mentioned in Section 7.2.3. To find the best-performed margin pa-
rameter m for the network, we grid search 5 different values of m.
Additionally, to test if the network learns useful information, we
give the results of the model with randomly initialized weights.

7.3.4 Results and discussion

Table 7.4 shows a much inferior performance on the validation set
compared with the classification network embeddings (Table 7.1),
and the best-performed margin parameter m = 0.15.

Then we show in the Figure 7.1 the results of the siamese net-
work model on the test dataset, along with the baseline classifica-
tion model and the siamese network model with random weights.
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Table 7.4: Mean value of average precision on the validation set over 5
runs, using siamese network with the optimal architectures. m: margin
parameter.

m Pronunciation AP Overall quality AP

0 0.275 0.507
0.15 0.354 0.511
0.3 0.332 0.508
0.45 0.323 0.510
0.6 0.279 0.510

We can observe that (1) the classification embedding outperforms
the siamese embedding in a large margin; (2) the siamese network
with random weights performs equally than the trained siamese net-
work for the overall quality aspect.
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Figure 7.9: Average precision on the test set over 5 runs, using optimal
network architectures and margin parameter m = 0.15.

The observation (1) is contradicted by the results in paper
(Kamper et al., 2016; Settle & Livescu, 2016), where they found
that siamese network consistently works better than the classifica-
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tion network in learning speech word embedding. A possible rea-
son could be singing voice, especially jingju, is quite different from
the speech in terms of the pitch range, spectral variation, syllable
or phoneme duration, etc. Another possible reason could be that
the training set used for training siamese word embedding (100k
word segment pairs) is much larger than our jingju phoneme seg-
ment training set (12.5k phoneme segment pairs). We have tried
to increase the training set by creating more phoneme segment
pairs, however, this makes the training too long to iterate one train-
validation loop, which also indicated that siamese network is much
hard to train to obtain the equal performance than the classification
network. The observation (2) shows that the trained siamese net-
work doesn’t learn any useful information for overall embedding.
This is contra-intuitive such that we thought that there should have
mistakes in the network training, e.g., mistakenly selected same
or different samples. However, for the pronunciation aspect, the
trained siamese embedding works better than the random weights
one, and they use the same experiment pipeline except for the train-
ing data preparation step. We examined the data preparation step,
and confirmed that in both pronunciation and overall quality as-
pects, we fed to the network the correct samples and ground truth
labels. Thus, the application of learning a siamese network-based
phoneme embedding model needs further study.

7.4 Conclusions

This chapter presented a detailed formulation of the task of pronun-
ciation and overall quality similarities measure in jingju singing
voice. The approaches utilized the deep learning-based classifi-
cation and siamese network models to generate phoneme embed-
dings, and then calculated the similarity measure for jingju singing
phonemes. The evaluation of the specific testing dataset showed
the possibility of this approach and its limitations. The work pre-
sented in this chapter is evaluated on the manually pre-segmented
phoneme segments. Thus a future study needs to be carried out for
the joint phoneme segmentation and similarity measure.

We mainly addressed the problem of similarity measurement by
using fixed-length phoneme embeddings. The presented method
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firstly used a recurrent neural network with the classification ob-
jectives to obtain the phoneme embeddings, then calculated the co-
sine distance between two embeddings as the similarity measure.
Additionally, we experimented with several deep learning tech-
niques aiming to improve the model generalization. As the results,
the combination of all the techniques was effective in improving
the model performance regarding the pronunciation aspect. While
expanding the embedding dimension improved the model perfor-
mance regarding the overall quality aspect prominently. As an ex-
ploration, we also tested the siamese phoneme embedding network
since it has been designed for the similarity measurement of mul-
tiple inputs. However, the performance was much inferior to the
classification model, which requires further study.

For future work, to have an overall assessment of the system
pipeline, we will evaluate the similarity measure performance by
jointly performing automatic phoneme segmentation and similarity
measurement models. The next steps would be investigating deeply
in the training data preparation, training speed optimization aspects
for the siamese network.






Chapter 8 .

Applications, Summary
and Conclusions

This chapter aims to present a concrete application of the singing
voice pronunciation assessment and results presented in the previ-
ous chapters. The application section is followed by a summary of
the work presented in the thesis, along with some key results and
conclusions. The last section opens up some open problems and
directions for future work.

8.1 Applications

There are quite a few applications for the research work presented
in the thesis. Some of these applications have been identified in
Chapter 1. This section aims to present concrete examples of such
applications and further propose other applications that might be
built from the thesis work. This section also describes in detail one
application that has resulted from the work in MusicCritic! project.
Possible future applications are also discussed briefly.

The primary objective and application of the methodologies re-
lated to automatic singing voice assessment — syllable and phoneme
segmentation, mispronunciation detection and pronunciation and
overall similarity measures, is to use them for online or classroom

"https://musiccritic.upf.edu/
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singing voice training. Additionally, there are many ways to use the
methodologies developed in this thesis for various applications.

Jingju singing exercises can be organized into melodic lines
in an online jingju singing teaching course. The teacher’s singing
recordings are provided in the exercise as the demonstrative singing
example. The students who take this exercise are required to im-
itate the teacher’s singing. To automatically assess the imitative
singing of the students, the assessment tools can segment the stu-
dent’s recording into syllable and phoneme units, detect the mis-
pronunciation for special pronunciation and jiantuanzi syllables,
and measure the pronunciation and overall quality similarities be-
tween teacher’s and student’s singing phonemes. The assessment
results can serve as initial guidance for the students to improve their
singing skills in the absence of a singing instructor.

The methods developed in this thesis also have the potential to
be applied in the classroom jingju singing training scenario. As
it has been mentioned in Section 3.1, jingju singing is taught be-
tween teacher and student by using the oral teaching and face-
to-face methods. The students need to understand the teacher’s
verbal or singing feedbacks firstly, assimilate them, then do a lot
of singing practice to improve their singing skills. However, the
teacher’s verbal feedback is usually mixed with many personal
comments (please check the teacher’s feedbacks in correction oc-
currence in Section 3.1.1), and thus cannot describe the student’s
singing problems in an objective and precise way. The syllable and
phoneme segmentation method developed in our thesis can auto-
matically segment and label the teacher’s singing melodic line into
syllable or phoneme units. With the help of some singing voice or
speech visualization technologies, such as pitch, loudness tracking,
formant frequency tracking, the students could better assimilate the
teacher’s verbal feedback by benefiting from the visual cues of their
singing voice segmented into syllable and phoneme units.

Automatic singing voice assessment technologies find their ap-
plication in helping navigate through jingju singing voice record-
ings and in content-based music retrieval. Applications such as
search by pronunciation traits can be conceived, such as query by
mispronunciation rate, query by pronunciation similarity. Addi-
tionally, the automatic syllable and phoneme segmentation method
applied on the jingju singing recordings allows a clear visualiza-
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tion of the syllable/phoneme boundaries and labels, which could
be applied to a semantic exploration of the singing corpus.

Musicologists working with jingju pronunciation would bene-
fit from the corpora and tools developed in this thesis. The jingju a
cappella singing voice datasets are representative and well-curated
with useful metadata, annotations, and can be used to derive mu-
sicological findings. Automatic syllable and phoneme segmenta-
tion tool can lead to a precise segmentation of the singing sylla-
ble/phoneme units and hence to analyze large corpora of record-
ings, which would be otherwise time-consuming if done manually.
The mispronunciation detection tool is useful to annotate automati-
cally the pronunciation correctness of the singing recordings at syl-
lable level, which could be interesting to the musicologists who
study the pronunciation trait of the jingju singing.

To conclude, one specific application built with MusicCritic
project is described below — sofeége assessment. This application
is the collaborative effort of the MusicCritic team. A brief intro-
duction to the application is provided, and then we put stress on
how the pronunciation assessment methods developed in this the-
sis applied and integrated into this application.

8.1.1 MusicCritic solfege assessment

MusicCritic is a music performance technology with which to eval-
uate musical exercises sung or played by students, giving mean-
ingful feedback. It is a service that uses the Basic LTI stan-
dard? and can be easily integrated into online applications or ed-
ucation platforms, such as Coursera® and Kadenze*. It contains
four sub-technologies — solfége, melodic imitation, chord playing
and improvisation assessment, developed collaboratively by the
researchers and developers in MTG. The solfége assessment tool
stems from the automatic singing voice segmentation and assess-
ment methods conceived in this thesis.

MusicCritic solfége assessment tool can receive the student’s

solfége singing recording, then return the pitch, rhythm and pro-

2http://www.imsglobal.org/activity/learning-tools
—-interoperability

Shttps://www.coursera.org/

“https://www.kadenze.com/
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nunciation feedback visually and automatically. It also generates
the pitch and pronunciation assessment scores for the student’s
recording. With the help of the MusicCritic LTI standard integra-
tion, the solfege assessment tool can be easily integrated into online
applications or education platforms that support this standard.

The research results from this thesis on singing voice assess-
ment are partly integrated into MusicCritic solfége assessment tool.
A Kaldi-based syllable recognition system extended from the mis-
pronunciation detection baseline presented in Section 6.2 is used to
recognize the solfége syllable and detect its boundaries. The pitch,
rhythm and pronunciation accuracy visualization is done based on
the recognition results.
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Figure 8.1 shows a recording interface of the solfége assess-
ment tool, where the student can listen to the demonstrative singing
recording, then record and submit their singing voice to the assess-
ment tool. Figure 8.2 shows the assessment result visualization au-
tomatically generated by the tool on which the singing quality of
three aspects — pitch, note onset and pronunciation, are visualized
by the color system.

8.2 Contributions

A summary of the specific contributions from the work presented
in the thesis is listed below.

8.2.1 Contributions to creating research cor-
pora and datasets

Building research corpora for MIR is one of the primary tasks of
CompMusic project. Significant efforts have been put into build-
ing research corpora and datasets. The relevant datasets are listed
below. The link to access all these datasets are provided in Ap-
pendix D.

+ Automatic syllable and phoneme segmentation (ASPS) dataset
(Section 4.2.1): This dataset has two sub-datasets (ASPS; and
ASPS;) which contain in total 197 jingju singing recordings.
Each recording in ASPS; is annotated with syllable and phoneme
boundaries and labels. While the recordings in ASPS, are anno-
tated at syllable-level. The annotation is done by the author with
the support of Rafeal Caro Repetto and Yile Yang.

» Mispronunciation detection (MD) dataset (Section 4.2.2): Spe-
cial pronunciation, jiantuanzi syllables and the mispronunciation
labels for these two types of the syllable are annotated for 1007
jingju singing melodic lines in this dataset.

* Pronunciation and overall quality similarity measures (POQSM)
dataset (Section 4.2.3): This dataset contains 19911 jingju
singing phoneme segments recorded by both professional and
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amateur singers. These segments are split deliberately to build
pronunciation and overall quality similarity models.

8.2.2 Technical and scientific contributions

* Identification of the critical role of pronunciation in jingju
singing training (Section 3.1).

* Identification of challenges, opportunities and applications of au-
tomatic singing voice pronunciation assessment of jingju music
(Section 3.2).

+ Identification of four problems which are the most relevant to au-
tomatic singing voice pronunciation assessment of jingju music,
along with a review of the state-of-the-art methods (Section 3.3).

* Formulation the problems of automatic syllable and phoneme
segmentation, mispronunciation detection, and pronunciation
and overall quality similarity measures in jingju music (Sec-
tion 3.4).

* An evaluation of the jingju a cappella singing corpus based on
the methodology by Serra (Serra, 2014) (Section 4.1).

* A demonstration of the utility of corpus for musicological analy-
sis — melodic line, syllable and phoneme duration analysis (Sec-
tion 4.1.2).

¢ Duration-informed syllable and phoneme segmentation for jingju
singing. Developing approaches that combine the feature learn-
ing power of the deep learning models and the inference of the
syllable or phoneme onset positions by using the coarse duration
information explicitly. New onset selection HMM model is pro-
posed, which shows improvement in both syllable or phoneme
onset detection and segmentation (Chapter 5).

* Demonstration of the validity of applying deep learning-based
classification models in mispronunciation detection of jingju
singing syllables (Chapter 6).



8.3 Summary and conclusions 195

* Phoneme embedding-based approaches for measuring pronun-
ciation and overall quality similarities at phoneme-level (Chap-
ter 7).

8.3 Summary and conclusions

In this section, we present a summary, conclusions and the key re-
sults from the thesis, organized based on the chapters of the thesis.
Broadly, the thesis aimed to build culture-specific data-driven MIR
approaches using deep learning and probabilistic models for auto-
matic pronunciation assessment in jingju music, focusing mainly
on the tasks of syllable and phoneme segmentation, mispronuncia-
tion detection and pronunciation and overall quality similarity mea-
sures. Such approaches would lead to tools and technologies that
can improve our experience of jingju singing training, within the
context of jingju music culture. The applications lie in computer-
aided jingju singing training, music navigation, content-based mu-
sic retrieval and musicology, and as pre-processing steps for MIR
tasks extracting semantic information such as singing syllable and
phoneme.

This thesis focused on automatic singing voice pronunciation
assessment tasks within the scope of CompMusic project, which is
limited to developing data collections and computational models
for singing voice pronunciation assessment in jingju music.

An introduction to singing in jingju art music was presented in
Chapter 2 with the concentration on jingju singing pronunciation
concepts. The introduction provided a background to music con-
cepts encountered in this thesis. A comparison of the pronunciation
characteristics between jingju singing and Western opera singing
showed the contrasting differences between two singing genres. A
review of state of the art in automatic singing voice pronunciation
assessment-related tasks provided a basis for understanding rele-
vant methodologies in jingju singing.

Chapter 3 identified the critical role of pronunciation in jingju
singing training, and thus justified the pronunciation assessment as
the main focus of this thesis. Additionally, this chapter identified
some of the challenges and opportunities of jingju singing pronun-
ciation assessment. Important and relevant research problems in
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the assessment of singing voice pronunciation of jingju music were
identified and described, which will be useful to a researcher who
is looking to solve relevant problems in this area of research.

Four core research problems — building data corpus, syllable
and phoneme segmentation, mispronunciation detection, and pro-
nunciation and overall quality similarity measures, are formulated.

The problem of creating research corpora and datasets for data-
driven MIR research, addressed in Chapter 4 shows that significant
efforts to build relevant datasets for automatic singing voice assess-
ment research. The corpora and datasets are built and evaluated ac-
cording to a set of corpus design criteria and methodologies. Fur-
thermore, both corpus-level and dataset-level data analysis and vi-
sualization were conducted to draw some musicological inferences.
To promote the idea of open data and reproducible research, the
presented corpus, test datasets including audio recordings, meta-
data and annotations are openly available through Zenodo.org.

Automatic syllable and phoneme segmentation were one of the
main problems addressed in this thesis. Chapter 5 presented a com-
prehensive methodology of syllable/phoneme onset detection and
segmentation for jingju singing voice. The experiment on the base-
line HSMM-based method showed an unideal performance on syl-
lable/phoneme onset detection or segmentation tasks, indicating
the need for a better method that can use the a priori coarse syl-
lable/phoneme duration information. The duration-informed syl-
lable/phoneme detection-based segmentation method that allows
incorporating the coarse durations into the syllable and phoneme
decoding process.

An evaluation of the duration-informed onset detection-based
segmentation method clearly showed the improvement in both on-
set detection and segmentation tasks, compared with HSMM-based
method. Additionally, the HMM onset selection model used in the
proposed method allows a faster inference than the HSMM-based
method. The segmentation performance depends on the goodness
of the onset detection function. An exploration of various onset de-
tection functions generated by different deep learning architectures
showed that the onset detection function outputted from a basic
convolutional architecture can achieve the state of the art segmen-
tation accuracy, and is more efficient than other more complicated
architectures. Lastly, the proposed segmentation model is capable
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of generalizing to other singing voice in languages different from
Mandarin Chinese since its language-independency.

The mispronunciation detection problem for jingju singing was
addressed in Chapter 6. The task scope was constrained to the
syllable-level special pronunciation and jiantuanzi mispronuncia-
tion detection because they are the primary source of the mispro-
nounced syllables in jingju singing training. A forced-alignment
baseline method and the proposed discriminative model-based
method were experimented to tackle this problem.

The baseline method used a pronunciation dictionary with mul-
tiple pronunciations for each syllable entry. The mispronunciation
detection worked as that the model decoding algorithm select the
pronunciation which is matched best to the acoustics of the singing.
The experiment on the baseline method showed a mediocre per-
formance on special pronunciation syllable mispronunciation de-
tection, and an unsatisfactory performance on jiantuanzi syllable
mispronunciation detection.

The proposed method used firstly the syllable segmentation
method presented in Chapter 5 to segment the singing recording
into the syllable units, then used deep learning-based discriminative
models to classify binarily the syllable units into mispronunciation
or correct pronunciation class. Several deep learning techniques
and two new architectures were experimented to augment the clas-
sification and generalization abilities. The results showed that the
discriminative model-based method improved the mispronuncia-
tion detection accuracy on jiantuanzi syllables. The additional vi-
sualization of the attention vector showed that the attention mech-
anism worked well in making the classification decision based on
certain essential time regions of a syllable.

A framework for measuring pronunciation and overall quality
similarities for jingju singing phoneme, along with an exploratory
experiment was the subject matter of Chapter 7. Utilizing the
phoneme embedding allows us to convert the variable-length sylla-
ble segments into fixed-length embedding vectors. The similarity
measure can then be obtained by calculating the distance metric
between two phoneme embeddings.

An RNN-based classification model was proposed to generate
the phoneme embedding. The model predicted the input phoneme
segment into (1) different phonetic categories and (2) professional
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or amateur singing categories. The penultimate layer output was
taken as the phoneme embedding as it was expected to embed the
(1) phonetic and (2) overall quality information of the phoneme
segment. Various deep learning techniques were experimented to
improve the quality of the similarity measure and the generaliza-
tion ability of the model. As an exploratory experiment, a siamese
network which is designed originally for measuring the similarity
between multiple inputs was tested. However, the performance was
much worse than the classification model, and further experiments
is needed to suggest improvements.

8.4 Future directions

There are several directions for future work based on the thesis.
One of the goal of the thesis was to present relevant research prob-
lems in pronunciation assessment of jingju singing voice. Some of
these problems presented in Section 3.3 are a good start to extend
the work presented in the thesis. Several tasks for jingju singing
voice pronunciation assessment were proposed, while only a part
of them was addressed in this thesis. The problems such as ban-
shi (metrical structure) segmentation, melodic line segmentation,
and automatic intonation or rhythm assessment have received little
attention from the research community so far.

Automatic singing voice assessment of jingju music is a very
board topic, and the assessment can be done in several musical di-
mensions, such as intonation, rhythm, loudness and pronunciation.
The musical dimension which has been addressed extensively is
pronunciation. The automatic assessment methods of the other mu-
sical dimensions related to jingju singing are worth to be explored
in furture. Besides, the work in the thesis used mainly audio record-
ings along with syllable/phoneme duration and pronunciation anno-
tations to develop computational models for the assessment. How-
ever, using additional information such as score, editorial metadata
may lead to better automatic assessment models.

The curated a cappella jingju singing voice corpus and test data
provide an opportunity to be used for a variety of research problems
in future, such as jingju Query-by-singing, jingju singing transcrip-
tion and jingju singing synthesis. The research corpus evolves. Im-
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proving the research corpus and building additional datasets for au-
tomatic jingju singing assessment are important tasks for the future.
The use of the corpus and the datasets for musicological research
was hinted in the thesis. However, a rigorous study of the suitabil-
ity of the corpus and datasets for musicology, and comprehensive
musicological research using the corpus is one direction to pursue
in future.

Syllable and phoneme segmentation task was addressed in de-
tail in the thesis. However, several open questions still need more
exploration. The presented onset detection-based segmentation
method can be extended by incorporating more side information
other than duration, such as linguistic information. While the per-
formance of the baseline lyrics-to-audio alignment method can be
improved by including syllable/phoneme duration or onset infor-
mation. The current onset detection-based segmentation method
can not deal with the situation that missing or extra syllables are
sung in the recording. To develop a recognition-based method for
the segmentation is a path to explore in future.

The mispronunciation detection task was addressed in the thesis
with a preliminary result presented on a small dataset. The discrim-
inative model-based detection method used deep learning architec-
tures which require a large of training data to outperform the forced
alignment-based method. To expand the amount of the training set
by collecting more singing recordings, and reevaluate these two
methods is a work to be done in future.

The tasks of phoneme segmentation and pronunciation similar-
ity measure were addressed as independent tasks in the thesis. An
overall assessment of the similarity measurement pipeline requires
to combine these two tasks. Additionally, the experiment results of
using the siamese network in similarity measure are very prelim-
inary. Extensive experiments to study this architecture including
accelerating the model training, studying different data preparation
methods need to be done in future.

Integration of these algorithms into practical applications re-
quires additional effort. The evaluation of the validity of the inte-
grated applications needs to be conducted in the real jingju singing
training scenario. In the future, an integration of all the described
singing voice pronunciation assessment approaches into one appli-
cation is necessary and it helps to improve the algorithms through
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user feedback.



Appendix A .

The sounds in
Mandarin Chinese

pinyin spelling [.P.A symbols X-SAMPA symbols

b p p
d t t

z ts ts

] t¢ t s\
zh ts ts¢

k k

Ig3 p" _h
t th t h
c ts" ts_ h
q tgh t s\ h
ch ts" ts h
k k" k h
f f f

] S S

X ¢ s\
sh S s

r 1 r\‘

Table A.1: Initial consonants
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The sounds in Mandarin Chinese

pinyin spelling [.P.A symbols

X-SAMPA symbols

h

m
n
1

X

m
n
1

— B B

Table A.1: Initial consonants (continued)

pinyin spelling I.P.A symbols

X-SAMPA symbols

n
ng

n
1)

n
N

Table A.2: Terminal consonants (nasal finals)

pinyin spelling 1.P.A symbols X-SAMPA symbols
a a a "
ia ja ja "
ua wa wa "
an an an
1an jen JEn
uan wan wan
uan yen yEn
en an @n
in in in
uen (un) won w@n
un yn yn
ang an AN
iang jag JAN
uang warmg wAN
eng Ely) EN’

Table A.3: Final vowels
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pinyin spelling I[.P.A symbols X-SAMPA symbols

ong (0] UN
ing in iIN
iong jun JUN
ueng WoI) wEN
e Y 7
0 2 O
uo wd wO
ai ai al ~*
uai wai wal "
a0 av AU N
iao jau JAU N
ou oU oU **
iou (iu) jou jou ~*
i i i
i y y
zhi tsqf ts‘l
chi ts™' ts* hl
shi §ﬂ' s‘1
ri W r\‘l
zi tsf tsM
ci tshg ts hM
si s1f sM
u u w
e € E
ie je jE
ue ye yE
ei ei el ~
uei (ui) wei wel A

Table A.3: Final vowels (continued)

*The X-SAMPA symbols a ”, I *~ and U " are annotated respec-
tively as a”, ["and U”in the phonetic annotation of the dataset used
in this dissertation for the simplicity.

*The X-SAMPA symbol En is annotated as 7N in the phonetic an-
notation of the datasets used in this dissertation.

tThese are not final vowels, since they consist of both an initial
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consonant and a vowel. However, the vowels ] and J occur in Man-
darin Chinese only when preceded by these consonants.
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Special pronunciations
and jianzi

Mandarin pronunciation Special pronunciation

bei be
bai be
zel ze
mai me
feng fong
meng mong
peng pong
peng pen
sheng shen
bing bin
ting tin
qing qin
ping pin
jing jin
ling lin
ming min

Table B.1: Mandarin pronunciations and their special pronunciations in
pinyin format in MD test dataset Section 4.2.2.
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Mandarin pronunciation Special pronunciation

ning nin
ding din
ying yin
xing Xin
zeng zen
ceng cen
cheng chen
zheng zhen
neng nen
meng men
chang chan
zhang zhan
deng den
zhuang zhuan
hai huan
yuan ywan
yuan yoan
quan qwan
chun chiin
zheng zhang
zhan zhang
Ji jin
ai ngai
an ngan
e ngo
WO ngo
wu ngo
luo nuo
zhao zhuo
ge guo
na nuo

Table B.1: Mandarin pronunciations and their special pronunciations in
pinyin format in MD test dataset Section 4.2.2. (continued)



Special pronunciations and jianzi

Mandarin pronunciation Special pronunciation

ke
que
ge
he
me
nei
jie
hai
Xie
lei
zhu
zhi
shi

chu
chu
zhu
zhu
shu
chu
mao
li
WO
zhe
shuo
lai
fei
i

ko
quo
go
ho
mo
nuei
jiai
xiai
xiai
luei
zhi
zhri
shri
ri
chi
chrii
zhii
zhru
shru
chru
miou
Iu
ngou
zhre
shiie
nai
fi
ri \i\

207

Table B.1: Mandarin pronunciations and their special pronunciations in

pinyin format in MD test dataset Section 4.2.2. (continued)
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Mandarin pronunciation Special pronunciation

Ji zZi
jue zue
qian cian
qiu ciu
qing cing

qie cie

X1 st
xiao siao
xian sian
xiang siang

Xiu siu

Xin sin
zheng zen
zheng zeng

chu cu

Table B.2: Mandarin pronunciations and their jianzi in pinyin format in
MD test dataset Section 4.2.2.
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Appendix D .

Resources

This appendix is a compendium of links to resources and additional
material related to the work presented in the thesis. An up-to-date
set of links is also listed and maintained on the companion webpage
http://compmusic.upf.edu/phd-thesis-rgong.

Some of the results not reported in the dissertation are presented
on the companion webpage. The companion webpage will also be
updated with any additional resources and material that will be built
in the future.

Corpora and datasets

Access to the corpora and datasets will be through the Zenodo.org
and MusicBrainz.org

Research corpus

Jingju a cappella singing voice dataset part 1
https://doi.org/10.5281/zenodo. 780559

Jingju a cappella singing voice dataset part 2
https://doi.org/10.5281/zenodo.842229

Jingju a cappella singing voice dataset part 2
https://doi.org/10.5281/zenodo. 1244732
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Jingju a cappella singing voice dataset metadata on MusicBrainz

https://musicbrainz.org/
search?query=MTG-UPF&type=release&method=indexed

Test dataset

Automatic syllable and phoneme segmentation test dataset part 1 —
ASPS,

https://doi.org/10.5281/zenodo.1185123

Automatic syllable and phoneme segmentation test dataset part 2 —
ASPS,

https://doi.org/10.5281/zenodo. 1341070

Pronunciation and overall quality similarity measures test dataset
- POQSM
https://doi.org/10.5281/zenodo. 1287251

Code

The links to code related to the thesis are listed. Up-to-date links
to code (including future releases) will be available on: https://
github.com/ronggong

Automatic syllable and phoneme segmentation baseline code
https://github.com/ronggong/interspeech2018
_submissionO1

Automatic syllable and phoneme segmentation onset detection
function improvement code
https://github.com/ronggong/musical-onset
-efficient

Mispronunciation detection code
https://github.com/ronggong/mispronunciation
—-detection


https://musicbrainz.org/search?query=MTG-UPF&type=release&method=indexed
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https://github.com/ronggong/musical-onset-efficient
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Pronunciation and overall quality similarity measures code
https://github.com/ronggong/DLfM2018
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Appendix E .

Glossary

E.1 Beijing opera (Jingju)

banshi Rhythmic frameworks of jingju

dan Role-type of woman characters

jiantuanzi Pointed and rounded characters in jingju singing
jianzi Pointed characters in jingju singing

jinghu The melodic accompaniment used in jingju
laosheng Role-type of old man characters

NACTA National Academy of Chinese Theatre Arts
shangkouzi Easily pronunced characters in jingju singing
sheng Role-type of man characters

shengqiang Melodic frameworks of jingju

tuanzi Rounded characters in jingju singing

E.2 Acronyms

ANOVA Analysis of variance

AP Average Precision

ASPS Automatic Syllable and Phoneme Segmentation dataset
ASR Automatic Speech Recognition

BIiLSTM Bidirectional Long Short-Term Memory

CNN Convolutional Neural Network

Conv Convolutional Layer
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CRNN Convolutional Recurrent Neural Network

DNN Deep Neural Network

DTW Dynamic Time Warping

ELU Exponential Linear Unit

FCN Fully-Convolutional Network

GMM Gaussian Mixture Model

GOP Goodness of Pronunciation

GRU Gated Recurrent Unit

HMM Hidden Markov Model

HSMM Hidden Semi-Markov Model

HTK Hidden Markov model Toolkit

ICT Information and Communication Technologies

LSTM Long Short-Term Memory

MD Mispronunciation Detection dataset

MFCC Mel-Frequency Cepstral Co-efficients

MIR Music Information Research

MLP Multilayer Perceptron

MOD Musical Onset Detection

MVL Mean Validation Loss

ODF Onset Detection Function

POQSM Pronunciation and Overall Quality Similarity Measures
dataset

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SVM Support Vector Machine

SVR Support Vector Regression

t-SNE T-distributed Stochastic Neighbor Embedding

TCNs Temporal Convolutional Networks

X-SAMPA Extended Speech Assessment Methods Phonetic Al-
phabet
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