UNIVERSITAT DE BARCELONA

VARIEDADES DE PRYM DE CURVAS BIELIPTICAS

por
Juan Carlos Naranjo del Val
facultat de matematiques

13. The Main Theorem.

In this section we atate the central Theorem of Part III and we reduce the proof to three cases (cf. (13.14)).
(13.1).- Theorem. Let (\hat{C}, C) be a generic element of $\mathcal{R}_{B, p}$ and let $(\tilde{D}, D) \in \mathcal{R}_{g}$ auch that $P(\tilde{C}, C) \cong P(\tilde{D}, D)$. Then one (and only one) of the following two facts occurs:
i) (\dot{C}, C) and (\dot{D}, D) are tetragoaally related.
ii) $\left(C^{\boldsymbol{Z}}, C\right) \in \mathbb{R}_{\underline{E}, \mathrm{a}, 4}$ and (\tilde{D}, D) is obtained from (\dot{C}, C) as in the construction of 98.

The aim of this section is to prove Proposition (13.14) which is a first step in the proof of the theorem.

Let (\dot{C}, C) be a generic element of $R_{B, g}$. Let $(\dot{D}, D) \in \mathcal{R}_{g}$ be such that $P(\dot{D}, D) \cong$ $P(\dot{C}, C)$. In particular the theta divisor of $P(\tilde{D}, D)$ is singular in codimension 3 and $P(\tilde{D}, D)$ is not the Jacobian of a curve (cf. [Shl] and (3.2), (3.3)). Then, [Bel], Th. 3.4 implies theit $c_{e}(\tilde{D}, D)=0$. On the other hand in Th. (4.10) of loc. cit. there is a list of the coverings with $c_{8}=0$ and dimension of the singular locus of the theta divisor equal to g.5. Since $P(\dot{C}, C)$ is not a Jacobian and $g \geq 10$ this list becomes shorter: one has that the pair (\dot{D}, D) verifies at least one of the following possibilities:
(13.2)
a) D is a double cover of a stable curve of genas 1 ,
b) $(\dot{D}, D) \in \mathcal{H}_{f, 0}^{\prime}$,
c) $(\dot{D}, D) \in \mathcal{H}_{g, 1}^{\prime}$,
d) $(\tilde{D}, D) \in \mathcal{H}_{g, t}^{\prime}$ where $2 \leq t \leq\left[\frac{\varepsilon-1}{2}\right]$
(cf. (2.10) for definitions).
(13.3).- Remark. We shall use the notations

$$
\begin{aligned}
& \left.R_{B, g, t}^{\prime}=\left\{(\tilde{\Gamma}, \Gamma) \in \tilde{R}_{B, g, t} \mid \Gamma \text { verifies }(13.2 . a)\right\}, \quad t=0, \ldots, \left\lvert\, \frac{[-1}{3}\right.\right] \\
& \boldsymbol{R}_{B, g}^{\prime \prime}=\left(R_{B, g}^{\prime}\right)^{\prime}=\left\{(\tilde{\Gamma}, \Gamma) \in \mathcal{R}_{B, g}^{\prime} \mid \Gamma \text { verifies }(13.2 . a)\right\}
\end{aligned}
$$

The spaces $\mathcal{H}_{g, t}^{\prime}, \quad \mathcal{R}_{B, g}^{\prime}, t$ for $t=0, \ldots,\left[\frac{2-1}{2}\right]$ and $\mathcal{R}_{B, g}^{\prime \prime}$ are not closed in $\hat{\mathcal{R}}_{g}$. In fact all the inclusions

$$
\begin{aligned}
& \mathcal{K}_{g, t} \subset \mathcal{K}_{g, t}^{\prime} \subset \mathcal{H}_{g, t} \text { for } t=0, \ldots,\left(\frac{1-1}{\sim}\right) \\
& \mathcal{R}_{B, y, t} \subset \boldsymbol{R}_{B, g, t}^{\prime} \subset \boldsymbol{R}_{B, g, t} \text { for } t=0, \ldots,\left(\left.\frac{\alpha-1}{2} \right\rvert\,\right. \\
& \mathcal{R}_{B, g}^{\prime} \subset \boldsymbol{R}_{B, g}^{\prime \prime} \subset \mathcal{R}_{B, g}^{\prime}
\end{aligned}
$$

are strict ($\mathrm{Cf} .(\mathbf{2} 10)$ for the definition of $\boldsymbol{K}_{9, t}$ and $\mathcal{K}_{g, 0}$). In all three camen the firat apace in open dease in the third spece. Recell that the respective dimensions have been given in (2.2) and (2.10).

We first treat the ponibility (13.2.b).
(13.4).- Propoaition. Let (\dot{C}, C) be a generic clement of $\mathcal{R}_{\mathbf{B}, \mathrm{g}}$ Let $(\bar{D}, D) \in \mathcal{X}_{g, 0}$ be such that $P(\dot{D}, D) \cong P(\dot{C}, C)$. Then $(\dot{C}, C) \in R_{B, n, 0} \cup \mathcal{R}_{B, g}^{\prime}$, and (\dot{C}, C) and (\dot{D}, D) are tetragonally related.
Proor: Let H be a hyperelliptic curve such that D is constructed from H by identifying two pairs of points. If any of the pairs is hyperelliptic, then D is obtained from a hyperelliptic curve by identifying a pair of points. By (4.10) in [Bel] $P(\tilde{D}, D)$ is a Jecobian and we get a contradiction. Asoume first that H is irreducible. By (12.3), the tetragonal construction gives a cover $\left(\dot{C}^{\prime}, C^{\prime}\right) \in \boldsymbol{R}_{\boldsymbol{B}, \mathrm{g}, 0}$ tetragnally related with ($\left.\dot{D}, D\right)$. Then by (7.23) and (7.6) either $\left(\dot{C}^{\prime}, C^{\prime}\right)=(C, C)$ or (\dot{C}, C) is tetragonally related with $\left(\dot{C}^{\prime}, C^{\prime}\right)$ (and bence with ($\dot{D}, D)$). Now we wat to abow that the genericity of (\dot{C}, C) is enough to obviate other possiole cases. To see this, we prove previously a Lemma.
(13.5).- Lemma. The subspace

$$
\left\{\left(\tilde{D}_{0}, D_{0}\right) \in \mathcal{M}_{g, 0}^{\prime} \mid D_{0} \text { is reducible }\right\}
$$

has codimension ≥ 3 in $\mathrm{K}_{\mathrm{g}, \mathrm{O}}^{\prime}$.
Proof: Let (\dot{D}_{0}, D_{0}) be a generic element of an irreducible component of the set of the statement. Let H_{0} be a hyperelliptic curve such that D_{0} is constructed from H_{0} by identifying two pairs of points. By hypothesis H_{0} is reducible, bence it is obtained by identifying two copies of $\mathbf{P}^{\mathbf{1}}$ along $\mathrm{g} \cdot 1$ points. The points in the second copy are not arbitrary. Therefore the component has big codimension and we are done.
(13.6).- Now we end the proof of Proposition (13.4). Assume that the curve H is reducible. According to (13.5)

$$
\operatorname{dim} P\left(\left\{(\tilde{D}, D) \in \mathcal{M}_{g, 0}^{\prime} \mid D \text { is reducible }\right\}\right) \leq 2 g-4 .
$$

Since $\operatorname{dim} P\left(\mathcal{R}_{B, g, t}\right)=2 g-3$ when $t \geq 1$, and (\dot{C}, C) is general we get $(\dot{C}, C) \notin \mathcal{R}_{B, g, t}$ for $t \geq 1$. Analogously one has $\operatorname{dim} P\left(R_{B, f}\right)=\operatorname{dim} P\left(R_{B, g}^{\prime}\right)=2 g-2$. Hence (\dot{C}, C) $\boldsymbol{R}_{B, g, 0} \cup \boldsymbol{R}_{B, g}^{\prime}$ and we get a contradiction.

The following two facts will be very useful in the rest of the paper.
(13.7). Lemma. Let (\dot{C}, C) be a general element of $R_{B, \rho, t}$ with $t \geq 1$. Then $P(\dot{C}, C)$ is isogenous to a product of two simple abelian varieties of dimensions t and $g-t-1$. If (\tilde{C}, C) is a generic element of $\mathcal{R}_{E, 9,0} \cup \mathcal{R}_{B, g}^{\prime}$, then $P(\dot{C}, C)$ is simple.

Phoor: By (2.8) and (2.11) all we have to prove in cmplicity. This is a cosesequence of Proposition (4.7) in [C-G-T] where the following remelt is proved: bet Γ be a generic bi-elliptic curve, then \boldsymbol{J} is irogenous to a product of a elliptic curve by a simple abelian variety A verifying $\operatorname{End}(A) \cong \mathbf{2}$.
(13.8). Corollary. Let (Ć, C' be a generic element of $\boldsymbol{R}_{\mathrm{E}, \mathrm{g}}$ and let $(\dot{D}, \boldsymbol{D}) \in \mathcal{H}_{\mathrm{p}, \mathrm{l}}$ with $t \geq 1$ such that $P(\mathcal{C}, C) \cong P(\dot{D}, D)$. We write $D=D_{1} U_{4} D_{2}$ where $g\left(D_{1}\right)=t-1$ and $g\left(D_{2}\right)=g-t-2$. Then:
a) the curves D_{1} and D_{2} are irreducible,
b) $(\boldsymbol{C}, C) \in \mathcal{R}_{B, 0, t}$.

Proof: Recall that partial normalization at $\dot{D}_{1} \cap \dot{D}_{2}$ gives an isogeny

$$
P\left(\tilde{D}_{1}, D\right) \longrightarrow P\left(\dot{D}_{1}, D_{1}\right) \times P\left(\dot{D}_{2}, D_{2}\right)
$$

Suppose, for instance, that D_{1} is reducible. Then, normalization at the intersection of its components, gives an isogeny between $P\left(\dot{D}_{1}, D_{1}\right)$ and a product of at leest two noatrivial abelian varieties. This contradicts (11.8) and thence a) is proved. Moseover the dimensions of the abelian varieties that appear in the product above is an invariant of $P(\tilde{D}, D) \cong P(\dot{C}, C)$. Thus the dimensions of $P\left(\dot{D}_{1}, D_{1}\right)$ and $P\left(\dot{D}_{2}, D_{2}\right)$ coincide with the dimensions of $P\left(C_{1}, E\right)$ and $P\left(C_{2}, E\right)$. This implies b).
Next we ronsider the case (13.2.c).
(13.9). Proposition. Let (\dot{C}, C) be a generic element of $\mathcal{R}_{B, 0}$ and let $(\tilde{D}, D) \in \mathcal{H}_{p, 1}^{\prime}$ be such that $P(\dot{D}, D) \cong P(\dot{C}, C)$. Then $(\dot{C}, C) \in R_{B ., 1}$. Moreover either (\dot{D}, D) is tetregonally related with (\mathcal{C}, C) or is tetragonally related with an element of $\boldsymbol{R}_{B,,, 1}^{\prime}$ (i.e.: verifying (13.2.a)).
Proof: The first statement has been proved in (13.8.b). To see the second claim we write $D=P^{1} U_{4} D_{2}$ where D_{2} is a hyperelliptic curve (cf. (2.10)). By (13.8.a) D_{2} is irreducible. Then, (12.2) says that there exists an element $\left(\dot{C}^{\prime}, C^{\prime}\right) \in \mathcal{R}_{B, g, 1}^{\prime}$ tetragoually related with (\dot{D}, D). If this element belongs to $R_{B, g, 1}$ then Theorem (6.24) shows that (\dot{C}, C) and (\dot{D}, D) are tetragonally related.
(13.10).- Summarizing: given (C, C) and (\dot{D}, D) as in the statement of the Theorem (13.1), the second pair verifies at least one of the four conditions in (13.2). When condition b) bolds then the theorem is true. On the othes hand, if c) holds either the theorem is verified or we are lead to the case (13.2.a). We will consider the case a) in §14. Now we want to start the study of case d). This study will be completed in $\$ \$ 15$ and 16.
(13.11).- Remark. Let (\bar{C}, C) be a general clement of $\boldsymbol{R}_{\mathbf{B}, \boldsymbol{p}}$ and

$$
\begin{equation*}
(\tilde{D}, D) \in \mathcal{K}_{g, 1}^{*}-\left(\mathcal{K}_{8,0}^{\prime} \cup \mathcal{K}_{\theta, 1}^{*} \cup\left(\bigcup_{\theta=0}^{|\mathcal{c}|} R_{B, n, 0}^{\prime}\right) \cup R_{B, 0}^{\prime \prime}\right) \text { with } t \geq 2 \tag{13.12}
\end{equation*}
$$

(cf. (13.3) for definitions) such that $P(\mathcal{C}, C) \cong P(\tilde{D}, D)$. By (13.8.b) $(C, C) \in R_{B, \rho, v}$. We shall write $D=D_{1} U_{4} D_{2}$. By (13.8.a) D_{1} and D_{2} are both irreducible. Recall that $P(\dot{C}, C)$ is not a Jacobian and that $g \geq 10$. All these properties make it pomible to use the next Proposition, which is a particular case of (5.12) in [Sh2]:
(13.13).- Proposition. Let $q: \tilde{\Gamma} \longrightarrow \Gamma$ be an element of \boldsymbol{R}_{g} such that dim Sing $E=$ $g-5, g \geq 10, P(\tilde{\Gamma}, \Gamma)$ is not a Jacobian and Γ is either irreducible or has two irreducible components intersecting in ,at least, four points. Let X be an irreducible component of Sing \equiv such tha $\operatorname{dim} X=g-5$. Then we are in one of the cases a), b), c), d), e) below and X, thought in the natural model Ξ^{*}, is contained in the respective varieties $Z_{a}, Z_{h}, Z_{c} Z_{d}$, or $Z_{e}(\mathbf{c f} \oint 1$ for definitions $):$
a) Γ is obtained by identifying two pairs of points on a curve H. There exists a morphism $\gamma: H \longrightarrow \mathbf{P}^{\mathbf{1}}$ of degree $\mathbf{2}$ over the generic point of $\mathbf{P}^{\mathbf{1}}$. Let

be the partial desingularizations. Then

$$
Z_{e}=\text { closure of }\left\{\tilde{L} \in P(\tilde{\Gamma}, \Gamma)^{\bullet} \mid \tilde{h}^{0}(\tilde{L})=q_{i}^{*}\left(\vartheta^{\bullet}\left(\mathcal{O}_{\mathbf{P}^{1}}(1)\right)\right)(\tilde{A})\right.
$$

$$
\text { where } \dot{A} \text { is an effective divisor with non singular support }\}
$$

b) $\dot{\Gamma}=\dot{\Gamma}_{1} U_{4} \dot{\Gamma}_{2}$ a d $\Gamma=\Gamma_{1} U_{4} \Gamma_{2}$. If \dot{f} is the partial desingularization of $\dot{\Gamma}$ at $\dot{\Gamma}_{1} \cap \dot{\Gamma}_{2}$, then

$$
Z_{6}=\left(\tilde{f}^{0}\right)^{-1}\left(\Xi_{1}^{*} \times \Xi_{2}^{*}\right)
$$

In this case the codimensions of \bar{E}_{i}^{*} in $P\left(\tilde{\Gamma}_{1}, \Gamma_{1}\right)^{*}, \quad i=1,2$ are exactly 2 , that is to say $\operatorname{dim} Z_{b}=g-5$.
c) $\tilde{\Gamma}=\tilde{\Gamma}_{1} U_{4} \tilde{\Gamma}_{2}, \Gamma=\Gamma_{1} U_{4} \Gamma_{2}$ and, say, Γ_{1} is hyperelliptic with γ the attached (2:1) map. If \dot{f} is the partial desingularization of $\dot{\Gamma}$ at $\dot{\Gamma}_{1} \cap \dot{\Gamma}_{2}$, then

$$
Z_{c}=\left(f^{0}\right)^{-1}\left(e x_{i}^{*} \times P\left(\dot{\Gamma}_{2}, \Gamma_{2}\right)^{*}\right)
$$

where
$e x_{i}^{*}=$ clonure of $\left\{9^{\circ}\left(\gamma^{*}\left(O_{p}(1)\right)\right)^{*}(\tilde{A}) \in P\left(\Gamma_{1}, \Gamma_{1}\right) \mid\right.$
where \tilde{A} in en effective divisor with non singular support $\}.$
d) $\tilde{\Gamma}=\tilde{\Gamma}_{1} U_{4} \tilde{\Gamma}_{2}, \Gamma=\Gamma_{1} U_{4} \Gamma_{2}$ and Γ_{1} is a plane quartic. Writing $\Gamma_{1} \cap \Gamma_{2}=\left\{x_{1}+\cdots+x_{4}\right\}$, it is $O_{r_{1}}\left(x_{1}+\cdots+x_{4}\right)=\omega r_{1}$. One has

$$
\begin{aligned}
Z_{i}=\text { closure of }\{\dot{L} & =q^{\bullet}(M)(\tilde{A}) \in P(\tilde{\Gamma}, \Gamma)^{\bullet} \mid \tilde{A} \text { is an effective divisor with non singular } \\
& \text { support and } \left.M \in \operatorname{Pic}^{4}(\Gamma) \text { with } h^{\ominus}(M) \geq 2 \text { and } M_{i r_{1}}=\omega_{r_{1}}\right\} .
\end{aligned}
$$

e) There exists a morphism $\epsilon: \Gamma \longrightarrow E_{0}$ onto a curve E_{0} consisting of at most tw irreducible components; the genus of E_{0} is equal to 1 and the morphism ϵ has degree 2 over the generic points of E_{0}. We will not need the description of $Z_{\text {e }}$.

We shall call in each case $Z_{*}^{m}, Z_{b}^{m}, Z_{c}^{m}, Z_{i}^{m},\left(\Xi^{*}\right)^{m}$ and $\left(e x^{*}\right)^{m}$ the union of the components of maximal dimension.
(13.14).- Proposition. Let (\dot{C}, C) be a generic element of $\mathcal{R}_{B, g}$ and let $(\dot{D}, D) \in \dot{R}$, such that $P(\dot{C}, C) \cong P(\dot{D}, D)$. Then (\dot{C}, C) and (\dot{D}, D) are tetragonally related or at least one of the following facts occurs:
a)

$$
(\dot{D}, D) \in \bigcup_{t=0}^{\left|\frac{1-1}{2}\right|}\left(R_{B, g, t}^{\prime}\right) \cup R_{B, g}^{\prime \prime}
$$

(i.e. (\dot{D}, D) verifies (13.2.a); Cf ((13.3)).
b) $\tilde{D}=\dot{D}_{1} U_{4} \dot{D}_{2}, D=D_{1} U_{4} D_{2}$ and D_{1} is an irreducible plane quartic. Writing $D_{1} \cap D_{2}=\left\{x_{1}+\cdots+x_{4}\right\}$, it is $O_{D_{1}}\left(x_{1}+\cdots+x_{4}\right)=\omega D_{1}$. The curve D_{2} is irreducible and hyperelliptic of genus $g-5$. In this case $(\dot{C}, C) \in \boldsymbol{R}_{B, g, 4}$ and the isomorphism $P(\dot{D}, D) \cong P(\dot{C}, C)$ identifies Z_{b}^{m} with W_{0}, Z_{c}^{m} with W_{2} and $Z_{d}^{m}=Z_{d}$ with W_{-2} (see (13.13) above for notations).
c) $\dot{D}=\tilde{D}_{1} \cup_{4} \tilde{D}_{2}$ and $D=D_{1} \cup_{4} D_{2}$ with D_{1}, D_{2} irreducible hyperelliptic curves of genus $t-1$ and $g-t-2$ respectively, with $t \geq 2$. In particular $(\dot{D}, D) \in \mathcal{H}_{g, t}^{\prime}$. In this case $(\dot{C}, C) \in$ $\boldsymbol{R}_{B, g, t}$ and with the notations of (13.13), the isomorphism $P(\dot{D}, D) \cong P(\dot{C}, C)$ identifies Z_{i}^{m} with W_{0} and the two varieties of type Z_{c}^{m} corresponding to the two hyperelliptic components with W_{2} and W_{-2} (one of them is empty exactly when $W_{-2}=0$).

Pnoor: We alreedy mentioned that, with this hypothecis, ($\dot{D}, \boldsymbol{D})$ verifies at leat ooc of the four cases in (13.2). On the other hand two of theve cavea bave been treated in (13.4) and (13.9). Since (13.2.a) ecincidea with a) above it only remenine to prove:
(13.15).- II in eddition $(\tilde{D}, \boldsymbol{D})$ beloage to
then either (13.14.b) or (13.14.c) holds. We keep this hypothesis on ($\dot{D}, D)$ in the reat of the proof. In particular we can write $D=D_{1} U_{1} D_{2}$ with D_{1} and D_{2} irreducible (ef. (13.8.b)). Moreover (\dot{C}, C) belongs to $R_{B, g,}($ (ff. (13.3.a)). By applying (13.13) we find the possibie descriptions of the components of maximal dimension of SingE® ${ }^{\circ}$. Recall that $\operatorname{dim} Z_{5}^{m}=g-5$.
(13.16). Lemma. Let (\dot{C}, C) and ($\dot{D}, D)$ be as above. Then $Z_{0^{\prime \prime}}{ }^{-\pi}$ is irreducible and vis the isomorphism $P(\dot{D}, D) \cong P(\dot{C}, C)$ it corresponds to the component W_{0} of SingE* (ef. (2.7) and (13.13) for definitions and notations).

Proof: Indeed, let X_{1} and X_{2} be components of $\left(\bar{\Xi}_{i}\right)^{m}$ and $\left(\Xi_{i}\right)^{m}$ respectively. Then $\left(f^{0}\right)^{-1}\left(X_{1} \times X_{2}\right)$ is irreducible: suppose not, then different componenis of Sing ${ }^{-}$of d mension $g-5$ are exchanged by translations. From the definitions of $W_{1}, i=-2,0,2$ (cf. (2.6), (3.7)) it is easy to check this is not possible in $P(\tilde{C}, C)$ and we get a contradiction.

On the other hand

$$
\dot{f} \cdot\left(I\left(\left(f^{0}\right)^{-1}\left(X_{1} \times X_{2}\right)\right)=I\left(X_{1}\right) \times I\left(X_{2}\right) .\right.
$$

By (13.7) $P\left(\tilde{D}_{1}, D_{1}\right)$ and $P\left(\dot{D}_{2}, D_{2}\right)$ are simple. Thus, for $i=1.2$ either $I\left(X_{t}\right)$ is finite or $I\left(X_{i}\right)=P\left(\dot{D}_{1}, D_{i}\right)$. Let \dot{L}_{i} be a generic element of $X_{1}, i=1,2$. Then $h^{0}\left(\dot{L}_{i}\right)=1$ (recall that $\left.\operatorname{codim}_{P\left(D_{1}, D_{0}\right)} X_{1}=2\right)$. Now (cf. e.g. (3.14) of $\left.|S h 2|\right) h^{0}\left(\tilde{L}_{1}\left(\dot{x}_{1}-t^{\prime}\left(\dot{x}_{1}\right)\right)\right)=0$, where $\dot{x}_{\text {, }}$ is a generic point in $\dot{D}_{\text {, and }} \mathrm{a}^{\prime}$ is the natural involution. Therefore $\dot{x}_{1}-t^{\prime}\left(\dot{x}_{i}\right) \notin I\left(X_{1}\right)$. We conclude that $I\left(X_{1}\right), I\left(X_{2}\right)$ and $I\left(\left(f^{0}\right)^{-1}\left(X_{1} \times X_{2}\right)\right)$ are finite. Hence $\left(f^{0}\right)^{-1}\left(X_{1} \times X_{2}\right)$ is an irreducible component of Sing E^{\bullet} invariant only by a finite group. Only the component W_{0} verifies this property (cf. (5.12)), therefore $X_{1}=\left(E_{0}^{*}\right)^{m}$, for $i=1,2$ and Z_{6}^{m} is an irreducible component of Sing E^{\bullet} corresponding to W_{0}.

In the situation of (13.16), deg($\left.\dot{j}^{*}\right)=4$ (ef. [Be1], (3.6)), thus from the proof of (13.16) one also obtains that $I\left(\left(\Xi_{i}^{*}\right)^{m}\right)=0, i=1,2$ and $I\left(Z_{0}^{(m)}\right)=\operatorname{ker} f^{*}$.
(13.17).- Lemma. Assume that one of the components of D, say D_{1}, is hyperelliptic and that $\operatorname{dim} Z_{c}=g-5$ (cf. (13.13)). Then the corresponding variety Z_{c}^{m} is irreducible.

Pacor: Arguing as in Lemma (13.16), if X is a component of $\left(e z_{i}^{*}\right)^{m}$, then $\left(f^{j 0}\right)^{-1}(X \times$ $\left.P\left(\tilde{D}_{2}, D_{2}\right)^{*}\right)$ is irreducible. Suppose that Y is another composent of $\left(e x_{1}\right)^{m}$. Since Z_{6}^{m} is non empty and corresponds to W_{0}, then the isomorphism $P(\tilde{D}, D) \cong P(C, C)$ sends $\left(f^{0}\right)^{-1}\left(X \times P\left(\dot{D}_{2}, D_{2}\right)^{\bullet}\right) \cup\left(\tilde{f}^{0}\right)^{-1}\left(Y \times P\left(\hat{D}_{2}, D_{2}\right)\right)$ to $W_{-2} \cup W_{2}$. On the other hand

$$
\left.f^{\bullet}\left(I\left(\left(f^{\bullet}\right)^{-1}\left(X \times P\left(\dot{D}_{2}, D_{2}\right)^{\bullet}\right)\right)\right) \cap I\left(\left(f^{0}\right)^{-1}\left(Y \times P\left(\dot{D}_{2}, D_{2}\right)^{\bullet}\right)\right)\right) \supset\{0\} \times P\left(\tilde{D}_{2}, D_{2}\right)
$$

Hence we get a contradiction because

$$
I\left(W_{2}\right) \cap I\left(W_{-2}\right) \text { is finite. }
$$

Therefore ($\left.c x_{i}^{*}\right)^{m}$ and Z_{c}^{m} are irreducibles.
(13.18). Lemma. With our hypothesis (ef. (13.15)), if ($\dot{D}, D)$ verifies also the assumptions of (13.13.a), then $\operatorname{dim} Z_{a}^{m}<g-5$.

Proof: The unique configuration of the type of (13.13.a) compatible with $D=D_{1} \cup_{4} D_{2}$, D_{1} and D_{2} irreducible, and ($\left.\dot{D}, D\right) \notin \mathcal{H}_{g, 0}^{\prime}$ is the following one:

Normalizing D at two points of $D_{1} \cap D_{2}$ we obtain a curve H admiting a (2:1) map $\boldsymbol{\gamma}: \boldsymbol{H} \longrightarrow \mathbf{P}^{\mathbf{1}}$ which is constant on one of the curves, say D_{2}.

Assume that $\operatorname{dim} Z_{a}^{m}=g-5$. We call \dot{H} the curve obtained by normalizing \dot{D} at the two points corresponding to the above ones, and we write g_{1} for the double cover $\dot{H} \longrightarrow \boldsymbol{H}$. Let $\dot{d}_{1}, \dot{d}_{2} \in \dot{H}$ be the preimages of the remaining points in $\dot{D}_{1} \cap \dot{D}_{2}$. Let \dot{g} the partial desingularization of \dot{H} in \dot{d}_{1}, \dot{d}_{2}. One has the isogenies (cf. §1)

$$
P(\dot{D}, D)^{*} \xrightarrow{\dot{H}^{\circ}} P(\dot{H}, H)^{\bullet} \xrightarrow{\dot{j}^{\circ}} P\left(\dot{D}_{1}, D_{1}\right)^{*} \times P\left(\dot{D}_{2}, D_{2}\right)^{*}
$$

where \dot{h} is the desingularization of \dot{D} at $\dot{D}_{1} \cap \dot{D}_{2}$. Let \dot{L} be a general element of $Z_{\text {a }}$, then $\tilde{h}^{0}(\dot{L})=q_{i}\left(\gamma^{\bullet}\left(\mathcal{O}_{\mathbf{P}_{1}}(1)\right)\right)(\dot{A})$, with \tilde{A} an effective divisor with non singular support. Thus

$$
\begin{aligned}
& \tilde{\boldsymbol{g}}^{0}\left(\tilde{h}^{0}(\tilde{L})\right)=\tilde{\boldsymbol{g}}^{0}\left(\boldsymbol{q}_{\boldsymbol{i}}^{0}\left(\gamma^{0}\left(\mathcal{O}_{\mathbf{P}}(1)\right)\right)(\tilde{A})\right)= \\
& =\left(\boldsymbol{q}_{1}^{*}\left(\gamma^{*}\left(\mathcal{O}_{\mathbf{p}^{1}(1)}\right)\right)(\tilde{A})_{\mid \dot{D}_{1}}\left(-\dot{d}_{1}-\dot{d}_{2}\right), q_{1}^{*}\left(\gamma^{*}\left(\mathcal{O}_{\mathbf{P}_{1}}(1)\right)\right)(\tilde{A})_{\mid \dot{D}_{2}}\left(-\dot{d}_{1}-\dot{d}_{2}\right)\right)= \\
& =\left(O_{D_{1}}\left(2 \dot{d}_{1}+2 \dot{d}_{2}\right)\left(\dot{A}_{1}\right)\left(-\dot{d}_{1}-\tilde{d}_{2}\right), O_{D_{2}}\left(-\dot{d}_{1}-\dot{d}_{2}\right)\left(\dot{A}_{2}\right)\right)= \\
& =\left(\mathcal{O}_{\dot{D}_{1}}\left(\tilde{d}_{1}+\dot{d}_{2}\right)\left(\dot{A}_{1}\right), O_{\dot{D}_{2}}\left(-\tilde{d}_{1}-\tilde{d}_{2}\right)\left(\dot{A}_{2}\right)\right) \text {, }
\end{aligned}
$$

where $\mathcal{O}_{D}(\tilde{A})_{\mid D_{i}}=\mathcal{O}_{D_{i}}\left(\dot{A}_{i}\right), i=1,2$. Hence:
$\tilde{g}^{0} \tilde{h}^{0}\left(Z_{\mathrm{a}}\right) \subset\left\{\dot{L}_{1} \in \Xi_{1}^{*} \mid h^{0}\left(\tilde{L}_{1}\left(-\dot{d}_{1}-\tilde{d}_{2}\right)\right)>0\right\} \times\left\{\tilde{L}_{2} \in P\left(\tilde{D}_{2}, D_{2}\right)^{\bullet} \mid h^{0}\left(\dot{L}_{2}\left(\tilde{d}_{1}+\tilde{d}_{2}\right)\right)>0\right\}$.

It is eany to check that the dimemsions of the sets on the right hand side are leme than or equal to (a posterioci equal to) $\operatorname{dim} P\left(\tilde{D}_{1}, D_{1}\right)-3$ and $\operatorname{dim} P\left(\dot{D}_{2}, D_{2}\right)-1$ reepectively. Therefore, if X is a component of Z_{a}^{m}, there exist irreducible components X_{1} and X_{2} of the sets on the right hand side such that $\dot{g}^{e}\left(\tilde{h}^{0}(X)\right)=X_{1} \times X_{2}$. Arguing as in Lemma (13.16), we find that the elements of the form $\dot{\boldsymbol{x}}-d^{\prime}(\hat{i})$ do not belong to $I\left(X_{i}\right)$ if \dot{x} is general in \tilde{D} and ι^{\prime} in the involution. Therefore the simplicity of $P\left(\tilde{D}_{i}, D_{i}\right)$ (c. (11.8)) implies that $I\left(X_{i}\right)$ are finite for $i=1,2$. In particular $I(X)$ is finite. Hence X corresponds to W_{0} by the isomorphism $P(\dot{D}, D) \cong P(\dot{C}, C)$. Since the components Z_{c}^{m} and Z_{i}^{m} are different (take $f=g \circ h$ and compare $\dot{f}^{\circ}\left(Z_{6}\right)$ computed above with $\dot{f}^{\circ}\left(Z_{b}\right)=\Xi_{1}^{\prime \prime} \times \Xi_{2}^{\text {e }}$) ooe gets a contradiction with (13.16).
(13.19).- Lemma. Keeping our assumptions (ef.(13.15)), suppose that ($\tilde{D}, D)$ verifies (13.13.d) and that $\operatorname{dim} Z_{d}=g-5$. Then Z_{d} is irreducible (in particular $Z_{d}=Z_{d}^{\mathbf{m}}$).

Proof: Writing \tilde{f} for the partial normalization of \tilde{D} at $\dot{D}_{1} \cap \dot{D}_{2}$ ove easily checks that

$$
f^{0}\left(Z_{\alpha}\right) \subset\{i\} \times P\left(\dot{D}_{2}, D_{2}\right)^{\bullet}
$$

where \dot{I} is the ramification divisor of $\dot{D}_{1} \longrightarrow D_{1}$. Since $\left(\dot{f}^{0}\right)^{-1}\left(\{i\} \times P\left(\dot{D}_{2}, D_{2}\right)^{*}\right)$ is irreducible and has dimension $g-5$ the result follows.

Now we end the proof of Proposition (13.14). Since the element (\dot{D}, D) verifies the hypothesis given in (13.15) we can apply (13.13) in order to recognize the components of maximal dimensiou in Sing E^{\bullet}. By (13.16) the component W_{0} corresponds to Z_{6}^{m}. Since $t \geq 2$ other components of maximal dimension exist (cf.(2.7)). According to (16.18) case (13.13.a) does not provide any component. Let us consider case e). One obtains that the only configuration of type ($13.13 . e$) compatible with (13.15) is the following one:
$D_{1}, \quad D_{2}$ are two hyperelliptic curves and $D_{1} \cap D_{2}$ consists of two pairs of hyperelliptic points ior both curves.

This kind of elements parametrize a subspace of R, of dimension $\mathbf{2 g}-\mathbf{4}$. Therefore $P(\dot{D}, D) \cong P(\dot{C}, C)$ contradicts the genericity of (\dot{C}, C) (see (13.6) for a similar argument).

We conclude that the components W_{-2} (if non empty) and W_{2} come from the cases (13.13.c) and (13.13.d). By (13.17) and (13.19), the components of type $Z_{c}^{\text {m }}$ appear twice when $t \neq 4$ and (13.14.c) is verified. Moreover when $t=4$ we are lead to the possibilities b) and c) of the statement.
(13.20).- In the rest of Part III we shall prove the following results:

- If ($\tilde{D}, D)$ verifies (13.14.a), then (\dot{D}, D) is tetragonally related with $(\dot{C}, C)(\S 14)$.

- If (\tilde{D}, D) verifies (13.14.c), then ($\tilde{D}, D)$ is tetragonally related with (\tilde{C}, C) ($\mathbf{y} 16$).

Clearly (13.14) plus these three facts imply Theorem (13.1).

14. The case (13.14a).

The aim of this section is to prove the following result:
(14.1).- Proposition. Let (\dot{C}, C) be a general clement of $R_{B,}$ and let $(\dot{D}, D) \in \tilde{R}$, be such that D is a double cover of a stable curve E_{0} of gemus 1 and $P(\tilde{D}, D) \cong P(\tilde{C}, C)$. Then (\dot{C}, C) and (\dot{D}, D) are tetragonally related.
(14.2).- Remark. Notice that (14.1) finishes the proof of Theorem (13.1) in case (13.14.a) (or alternatively (13.2.a)).

Proor: If D is smooth, then the statement is a consequence of the results of Part 1 . Assume that D is singular. Observe that a stable curve of genus 1 is irreducible with, at most, one double point.

We first prove that D is irreducible: suppose not, then D consists in the union of two curves of genus ≤ 1 intersecting in, at most. $g+1$ points. This kind of elements parametrizes a subspace of high codimension (greater than 2) in $\mathcal{R}_{\text {B.g }}$. On the other hand the dimension of the generic fibre of $P_{\mathcal{R}_{\mathrm{E}}, \text {, }}$ is 1 if $t \geq 1$ and 0 if $t=0$ (cf. the summary in $\S 17$). Hence

$$
\operatorname{dim} P\left(R_{B, g, t}\right)= \begin{cases}2 g-2 & \text { for } t \geq 1 \\ 2 g-3 & \text { for } t=0\end{cases}
$$

and the genericity of (\dot{C}, C) allows to avoid this possibility (f. (13.6) for a similar argument). In fact by the same reason D is supposed to have either one singularity or two singularities with image a singularity of E_{0}. In the second case the element (\tilde{D}, D) belongs to $\mathcal{H}_{9,0}^{\prime}$ and by (13.4) the statement follows. In the rest of the proof we assume that D has one singularity.

If E_{0} is singular then D is obtained by identifying a pair of points in a hyperelliptice curve. By [Bel], (4.10) this implies that $P(\dot{D} . D)$ is the Jacobian of a curve and we get a contradiction with [Sh1]. Hence E_{0} is smooth.

We treat first the case $\mathrm{Gal}_{\Sigma_{0}}(\dot{D}) \cong \mathbf{Z} / \mathbf{Z Z} \times \mathbf{Z} / \mathbf{2 Z}$. There exist :wo involutions i_{1}^{\prime} and i_{2}^{\prime} on \dot{D} lifting the involution on D. By construction, i_{1}^{\prime} and i_{2}^{\prime} exchange the branches of the singularity of \tilde{D}. Then one obtains the following commutative diagram:

where $D_{i}:=\tilde{D} / i_{i}^{\prime}, i=1,2$ are smooth curves and the discriminant divisors of $D_{1} \longrightarrow E$ and $D_{2} \longrightarrow E_{0}$ intersect in a point (in particular $t \geq 1$). By (2.10) this eletnent is obtained
by applying the tetragonal conatruction to an element of $\boldsymbol{R}_{B_{, ~, ~}}$ for some t. By the remulte of Part I ($\dot{D}, D)$ and (C, C) are tetragonally related.

Finally asume that $\mathrm{Gal}_{\mathrm{E}}(\dot{D}) \cong \mathrm{Z} / 22$. Then $(\dot{D}, D) \in \boldsymbol{R}_{B, \boldsymbol{\prime}}^{\prime \prime}(\mathrm{Cf}$. (13.3)). The statement is a consequence of the following Lemma and the results of Part 1.
(14.3).- Lemma. With these assumptions, there exists an element $\left(\dot{C}^{\prime}, C^{\prime}\right) \in R_{B, f, 0}$ tetragonally related with ($\dot{D}, D)$.

Proof: We extend the injection $j: \boldsymbol{R}_{B, g}^{\prime} \rightarrow \boldsymbol{R}_{B, n, 0}$ (commuting with the Prym map) given in \S_{7} to elements (\dot{D}, D) as above. To do this we replace in the definitiou of j the symmetric products $\dot{D}^{(2)}, D^{(2)}$ by the varieties of effective Cartier divisors of degree 2 $\operatorname{Div}^{2}(\dot{D}), \operatorname{Div}{ }^{2}(D)$. In other words, take the curve C_{2}^{\prime} given by the pull-back diagram

Then, local computations show that C_{2}^{\prime} is smooth. The involution on $\operatorname{Div}^{2}(\dot{D})$ restricts to an involution on C_{2}^{\prime}. Taking quotient we get an elliptic curve E^{\prime}. The fibre product of $C_{1}^{\prime} \longrightarrow E^{\prime}$ with the transposed morphism of $E^{\prime} \longrightarrow E_{0}$ gives a curve \dot{C}^{\prime}. The curve \dot{C}^{\prime} has two involutions attached to the projections; call $'$ ' the composition of these involutions. Then ($\left.\dot{C}^{\prime}, \dot{C}^{\prime} / \iota^{\prime}\right) \in R_{B, g .0}$. Since for all (\dot{D}, D), the elements (\dot{D}, D) and $j(\dot{D}, D)$ are tetragonally related (cf. $\$ 7$) we are done.

15. The case (13.14.b).

This section is devoted to prove the following

(15.1).- Proposition. Let (\dot{C}, C) be a generic elenent of $\boldsymbol{R}_{\mathrm{B}, \mathrm{g}}$ and let $(\dot{D}, \boldsymbol{D}) \in \mathcal{H}_{g, 0}^{\prime}$ be such that $P(\dot{D}, D) \cong P(\dot{C}, C), \dot{D}=\dot{D}_{1} U_{4} \dot{D}_{2}, D=D_{1} \cup_{4} D_{2}$ and D_{1} is an irreducible plane quartic. Suppose also that writing $D_{1} \cap D_{2}=\left\{x_{1}+\cdots+x_{4}\right\}$, it is $\mathcal{O}_{D_{1}}\left(x_{1}+\cdots+x_{4}\right)=\omega_{D_{1}}$, and that the curve D_{2} is irreducible and hyperelliptic of genus $g-5$.
Then (\dot{D}, D) is constructed from (\dot{C}, C) as in $\S \delta$.
Proor: Recall that in this case $(\dot{C}, C) \in \mathcal{R}_{B, g, 4}$ and the isomorphism $P(\dot{D}, D) \cong P(\dot{C}, C)$ identifies Z_{b}^{m} with W_{0}, Z_{c}^{m} with W_{2} and $Z_{d}^{m}=Z_{d}$ with W_{-2} (see (13.13) and (13.14.b)).
We shall use again the variety

$$
\Lambda_{2}=\left\{\check{a} \in P(\dot{C}, C) \mid \dot{a}+W_{0} \cap W_{2} \subset W_{0}\right\}
$$

defined in (5.5).
One has
(15.2). Lemma. With the hypothesis of (15.1) the following facts hold:
a) There exists a birational isomorphism betwera the curve $\mathrm{A}_{2} \cap 2 \mathrm{~A}_{2}$ and the curve \dot{B}_{2} obtained by the following pull-back diagram

where \dot{N}_{2} and N_{2} are the normalizations of \dot{D}_{2} and D_{2} respectively, and g_{2}^{1} is the linear series induced by the hyperelliptic structure of D_{2}.
b) The curve C_{2} (see (2.1)) is the normalization of \dot{B}_{2}.
c) The involution τ_{2} in C_{2} corresponds to the involution of \dot{B}_{2} given by the restriction of the natural involution of $\bar{N}_{2}^{(2)}$.
d) There exists a linear series $g_{2}^{\frac{1}{2}}$ on E such that one gets a pull-back diagram

Moreover the involution $\left(\tau_{2}^{(2)}\right)_{\mid D_{2}}$ coincides with the exchange of sheets on \tilde{D}_{2}.

Pnoor: We firat ace a). By uaing the identifications $W_{0}=\mathbf{Z}^{\mathbf{m}}$ and $W_{2}=\mathbf{Z}_{c}{ }^{\mathbf{m}}$, and the definitions of $\mathbf{2 F}^{\boldsymbol{m}}, \mathbf{Z}_{c}^{m}(\mathrm{cf} .(13.13))$ it in eary to sce that

$$
W_{0} \cap W_{2}=\left(\tilde{f}^{\bullet}\right)^{-1}\left(\left(\Xi_{1}^{*}\right)^{m} \times\left(\left(e x_{2}^{*}\right)^{m} \cap\left(E_{2}^{*}\right)^{m}\right)\right)
$$

where \tilde{f} is the normalization of \dot{D} at $\dot{D}_{1} \cap \dot{D}_{3}$. On the other hand, by (5.3) the dimension of this set is $g-7$. This forces to have $\left(e x_{i}^{*}\right)^{m} \subset\left(\Xi_{i}^{*}\right)^{m}$. Hence

$$
\begin{aligned}
& \Lambda_{2}=\left(\dot{f}^{*}\right)^{-1}\left(\left\{\left(\grave{a}_{1}, \grave{a}_{2}\right) \in P\left(\dot{D}_{1}, D_{1}\right) \times P\left(\dot{D}_{2}, D_{2}\right) \mid \grave{a}_{1}+\left(\Xi_{1}^{*}\right)^{m} \subset\left(\Xi_{1}^{*}\right)^{m}\right.\right. \\
&\left.\left.\dot{a}_{2}+\left(e x_{2}^{*}\right)^{m} \subset\left(\Xi_{2}^{*}\right)^{m}\right\}\right)
\end{aligned}
$$

In the proof of (13.16) we saw that $\left.l\left(\Xi_{i}\right)^{m}\right)=(0)$. Therefore

$$
\Lambda_{2}=\left(\dot{f}^{*}\right)^{-1}\left(\{0\} \times\left\{\grave{a}_{2} \in P\left(\dot{D}_{2}, D_{2}\right) \mid \dot{a}_{3}+\left(e x_{i}^{*}\right)^{m} \subset\left(\Xi_{2}^{*}\right)^{m}\right\}\right)
$$

Since ($\left.\Xi_{i}\right)^{m}$ is irreducible (cf. (13.16)) and Sing Ξ^{*} has not components of dimension g.6. it is not hard to see that $\left(\Xi_{\mathbf{2}}^{*}\right)^{m}$ is the slosure of the set of effective divisors with non-singular support \tilde{A} such that $\operatorname{Nm}(\tilde{A})=\omega_{D_{2}}$. By using this one checks the inclusion

$$
\left\{\dot{x}+\dot{y}-\dot{r}-\dot{s} \in P\left(\dot{D}_{2}, D_{2}\right) \mid \dot{x}, \tilde{y}, \tilde{r}, \dot{s} r_{-}\left(\dot{D}_{2}\right)_{\text {reg }} \quad N n(\tilde{x}+\dot{y}) \in g_{2}^{1}\right\}+e x_{2}^{*} \subset\left(\Xi_{i}^{*}\right)^{m} .
$$

Thus one has

$$
\begin{aligned}
&\left(\tilde{f}^{\bullet}\right)^{-1}\left(\{ 0 \} \times \text { closure } \left\{\dot{x}+\dot{y}-\dot{r}-\tilde{s} \in P\left(\dot{D}_{2}, D_{2}\right) \mid \dot{x}, \dot{y}, \dot{r}, \dot{s} \in\left(D_{2}\right)\right.\right. \text { reg } \\
&\left.\left.N m(x+y) \in g_{2}^{1}\right\}\right) \subset \Lambda_{2} .
\end{aligned}
$$

From this inclusion a straightforward computation gives

$$
\{0\} \times \text { closure }\left\{\dot{x}+\tilde{y}-\iota^{\prime}(\dot{x})-\iota^{\prime}(\tilde{y}) \in P\left(\dot{D}_{2}, D_{2}\right) \mid \tilde{x}, \tilde{y} \in\left(\tilde{D}_{2}\right)_{\text {reg }}\right.
$$

$$
\left.\operatorname{Nm}(\dot{x}+\dot{y}) \in g_{2}^{2}\right\} \subset \dot{f}^{*}\left(\Lambda_{2} \cap 2 \Lambda_{2}\right)
$$

where c ' is the natural involution on \dot{D}_{2}. Since the curve on the right hand side is irreducible (cf. (5.7)) one has an equality. By using the description of $\Lambda_{2} \cap 2 \Lambda_{2}$ in $P(\dot{C}, C)$ one obtains that $\Lambda_{2} \cap 2 \Lambda_{2}$ is birationally isomorphic with $\Lambda_{2} \cap 2 \Lambda_{2} / \pi^{*}\left(\varepsilon^{*}\left({ }_{2} J E\right)\right)=f^{*}\left(\Lambda_{2} \cap 2 \Lambda_{2}\right)$ (recall that $\left.\operatorname{Ker}\left(\dot{f}^{*}\right)=\pi^{*}\left(\varepsilon^{*}\left({ }_{2} J E\right)\right)\right)$. On the other hand there exists a natural map from the normalization of \dot{B}_{2} to the set of the left hand side in the inclusion above. Since C_{2} is the normalization of $\Lambda_{2} \cap 2 \Lambda_{2}$ we get a morphism from the normalization of \dot{B}_{2} to C_{2}. An elementary count says that $g\left(C_{2}\right)$ equals the genus of the normalization of \dot{B}_{2} (use (11.3)). Therefore C_{2} and \tilde{B}_{2} are isomorphic and a) is proved.

Part b) is a corollary of a). To see e) it suffices to recall that the multiplication by (-1) induces on C_{2} the involution r_{2}. Note that in this context this multiplication coincides on $\dot{B}_{\mathbf{2}}$ with the restriction of the involution on $\tilde{\mathbf{N}}_{\mathbf{2}}^{(\mathbf{2})}$.

Finally, we prove d). We first observe that c) implies that E is the normalization of $\dot{B}_{\mathbf{2}} /$ (involution). Since this last curve has an obvious hyperelliptic structure given by

As a consequence (\tilde{D}_{2}, D_{2}) is obtained from $\left(\left(C_{2}, E\right), g_{2}^{1}\right)$ as in the Step 2 of $\$ 8$.
Next we concentrate in the rejation between $\left(C_{1}, E\right)$ and (\dot{D}_{1}, D_{1}). We shall consider as above the surface

$$
\Lambda_{-2}=\left\{\dot{a} \in P(\dot{C}, C) \mid \dot{a}+W_{0} \cap W_{-2} \subset W_{0}\right\}
$$

defined in (5.5). From the descriptions of Z_{6}^{m} and $Z_{d}(c f$. (13.13)) one gets

$$
\Lambda_{-2}=\left(f^{0}\right)^{-1}\left(\left(\left(\Xi_{i}\right)^{m}-\{i\}\right) \times\{0\}\right)
$$

where \bar{l} is the ramification divisor of $\dot{D}_{1} \longrightarrow D_{1}$. We call S the surface $\left(\left(\Xi_{i}\right)^{m}-\{i\} \times\{0\}\right.$.) That is to say the group

$$
\operatorname{Ker} \tilde{f}^{\bullet}=I\left(W_{0}\right)=\pi^{\bullet}\left(\epsilon^{\bullet}\left({ }_{2} J E\right)\right)
$$

acts on Λ_{-2} and the quotient is S. We stidy first this surface in the more transparent context of $P(\tilde{C}, C)$.
(15.4).- Proposition. The surface S is exactly singular at the origin and the minimal resolution of the singularity is

$$
C_{1}^{(2)} \rightarrow S
$$

Proof: We borrow from (5.6) the equality

$$
\Lambda_{-2}=\left\{\pi_{1}^{*}\left(\varepsilon_{1}^{*}(\tilde{r})-r-s\right) \mid r \in E, \quad r, s \in C_{1}, \quad 2 \bar{r} \equiv \varepsilon_{1}(r)+\varepsilon_{1}(s)\right\} .
$$

Let $X \subset C_{1}^{(2)} \times E$ be the preimage of Λ_{-2} by the morphism

$$
\begin{aligned}
& C_{1}^{(2)} \times E \longrightarrow J \dot{C} \\
& (r+s, x) \longrightarrow \pi_{i}\left(r+x-\varepsilon_{i}^{0}(x)\right)
\end{aligned}
$$

Then X is an unramified covering of degree 4 of $C_{1}^{(2)}$. One obtains the commutative diagram

The morphism $C_{1}^{(2)} \longrightarrow S$ is an isomorphism away from the origin 0 and the preimage of 0 is the irreducible curve $\varepsilon_{i}^{\prime}(E)$, of positive genus. Thus S is exactly singular in the origin and $C_{t}^{(2)}$ is the minimal resolution of the singularity.

We shall consider the plane quintic given by the union of D_{1} and the line r containing the discriminant points of $\tilde{D}_{1} \longrightarrow D_{1}$. We call E^{\prime} the elliptic curve which obtained as the double cover of r with discriminant divisor $r \cap D_{1}$. By identifying in the natural way the ramification points of $\dot{D}_{1} \longrightarrow D_{1}$ and $E^{\prime} \longrightarrow r$ ove constructs an allowable double cover of the plane quintic mentioned above. By [Be3] (Proposition (6.23)), there exists a smooth non hyperelliptic curve Γ of genus 5 such that

Now to prove that (\dot{D}_{1}, D_{1}) is constructed from C_{1} as in Step 1 of $\S 8$ it suffices to show that $\Gamma \cong C_{1}$.
(15.5)- Proposition. The surfaces S and $\Gamma^{(2)}$ are birationally equivalent.

Proof: The description of S as a subset of $P\left(\dot{D}_{1}, D_{1}\right) \times P\left(\dot{D}_{2}, D_{2}\right)(c f .(13.13))$ gives the isomorphism $S \cong\left(\Xi_{i}\right)^{m}$. The general element of $\left(\Xi_{i}\right)^{m}$ is an effective divisor of degree 4 with non-singular support. Its norm is a divisor on D_{1} consisting of 4 points on a line. By construction the general point of \dot{D}_{1} corresponds to a linear series g_{4}^{1} on Γ that does not come from linear series on E^{\prime}.

Let x, y be general points of Γ. To contain the hur $\overline{S y}$ is a linear condition for a quadric containing the canonical image of Γ in P^{4}. The intersection of the pencil of quadrics so obtained with D_{1} provides four singular quadrics containing $\overline{x y}$. Consequently there exist exactly four linear series g_{4}^{1} on Γ passing through the divisor $x+y$. These four linear series define an effective divisor of degree 4 on \dot{D}_{1} and the image in D_{1} are four collinear points. We obtain a generically injective rational map from $\Gamma^{(2)}$ to $\left(E_{i}\right)^{m}$ and we are done.
(15.6). Corollary. The curves C_{1} and Γ are isomorphic.

Proof: By (15.4) and (15.5) it follows that $C_{1}^{(2)}$ and $\Gamma^{(2)}$ are birationally equivalent. Now the result is a consequence of a Theorem of Martens ($[\mathrm{M}]$).

Having established that (\dot{D}_{1}, D_{i}) are obtained from $\left(C_{i}, E\right), i=1,2$ as in Part II we end the proof of (15.1) showing that (\dot{D}, D) comes from $\left(\dot{D}_{1}, D_{1}\right)$ and ($\left.\dot{D}_{2}, D_{2}\right)$ as in the Step

3 of §8. Note first that the results just obtained make posible to use all the parts of (9.1) except the part iv). In fact the isogenies g_{i}, h_{i} and the fact $P(\tilde{D}, D) \cong P\left(C^{\dot{C}}, C^{\prime}\right.$ yrovine the tools to prove the property (9.1.iv). (By (9.14) this property is equivaleut to the property required in Step 3 of the construction of ($\dot{D}, D)$). In conclusion all 5 gave to do to end the proof of (15.1) is to show that (9.1.iv) holds. Keeping this s-ategy in mind one construct a commutative diagram

where \dot{f} is the normalization of \dot{D} at $\tilde{D}_{1} \cap \dot{D}_{2}(\mathrm{cf} .(2.8)$ for the definition of φ and cf . (13.16) and (5.12) for the upperrightcorner). Since $\operatorname{End} P\left(\tilde{D}_{1}, D_{1}\right) \cong Z(c f .[C-G-T], ~(4.7)$ or proof of (13.8) above $), \delta=(\pm \mathrm{Id})+(\pm \mathrm{Id})$. Hence

$$
\begin{equation*}
\dot{f}^{*}\left({ }_{2} P(\dot{D}, D)\right)=\left(h_{1} \times h_{2}\right)\left(v^{-1}\left({ }_{2} P(\tilde{C}, C)\right)\right) \tag{15.7}
\end{equation*}
$$

In (10.14) we saw that

$$
\tilde{f}^{*}\left({ }_{2} P(\tilde{D}, D)\right)=\left\{\left(\dot{\alpha}_{1}, \tilde{\alpha}_{2}\right) \epsilon_{2} P\left(\dot{D}_{1}, D_{1}\right) \times_{2} P\left(\dot{D}_{2}, D_{2} ; v_{1}\left(\dot{\alpha}_{1}\right)=v_{2}\left(\dot{\alpha}_{2}\right)\right\}\right.
$$

(cf. $\$ \$ 4$ and 9 for definitions). On the other hand is is rasy to check that

$$
\begin{aligned}
& \varphi^{-1}\left({ }_{2} P(\dot{C}, C)\right)=\left\{\left(\dot{\alpha}_{1}, \dot{\alpha}_{2}\right) \epsilon_{2} P\left(C_{1}, E\right) \times_{2} P\left(C_{2}, E\right)\right. \\
&\left.\exists \dot{\rho} \in_{2} J E \text { such that } 2 \dot{\alpha}_{1}=\varepsilon_{1}^{*}(\tilde{\rho}), 2 \dot{\alpha}_{2}=\varepsilon_{2}^{*}(\tilde{\rho})\right\}
\end{aligned}
$$

Thus by applying $g_{1} \times g_{2}$ to (15.7) one has

$$
\begin{align*}
g_{1} \times g_{2}\left(\left\{\left(\dot{\alpha}_{1}, \tilde{\alpha}_{2}\right) \in_{2} P\left(\tilde{D}_{1}, D_{1}\right) \times P\left(\dot{D}_{2}, D_{2}\right) \mid\right.\right. & \left.\left.v_{1}\left(\dot{\alpha}_{1}\right)=v_{2}\left(\dot{\alpha}_{2}\right)\right\}\right)= \\
& =\left\{\left(\varepsilon_{1}^{*}(\tilde{\rho}), \varepsilon_{2}^{*}(\tilde{\rho})\right) \mid \tilde{\rho} \in_{2} J E\right\} \tag{15.8}
\end{align*}
$$

Finally we show that (15.8) implies

$$
v_{1}\left(\tilde{\alpha}_{1}\right)=v_{2}\left(\tilde{\alpha}_{2}\right) \text { iff } \exists \bar{\rho} \epsilon_{2} J E \text { such that } g_{1}\left(\tilde{\alpha}_{1}\right)=\varepsilon_{1}^{*}(\bar{\rho})
$$

for all $\tilde{\boldsymbol{a}}_{1} \in_{2} P\left(\tilde{D}_{1}\right)$ and $\tilde{\alpha}_{2} \in_{2} P\left(\dot{D}, D_{2}\right)$. The part \Rightarrow is clear. Suppose that $g_{1}\left(\tilde{\alpha}_{1}\right)=$ $\boldsymbol{c}_{1}^{\prime}(\bar{p})$ and $g_{2}\left(\dot{\alpha}_{2}\right)=\epsilon_{2}^{*}(\bar{p})$ for $\tilde{\rho} \epsilon_{2} J E$. Then by (15.8) there exist $\left(\tilde{\alpha}_{1}^{\prime}, \tilde{\alpha}_{2}^{\prime}\right)$ auch that $v_{1}\left(\tilde{\alpha}_{1}^{\prime}\right)=v_{2}\left(\tilde{\alpha}_{2}^{\prime}\right)$ and $g_{1}\left(\tilde{\alpha}_{1}\right)=g_{1}\left(\dot{\alpha}_{1}^{\prime}\right), \quad g_{2}\left(\dot{\alpha}_{2}\right)=g_{2}\left(\tilde{\alpha}_{2}^{\prime}\right)$. Since Kerg $=p_{i}^{\prime}\left({ }_{2} J D_{i}\right), i=1,2$ (cf. (9.1.i)) and these elements do not change the value of v_{i} the part \Leftarrow follows. This finishes the proof of (15.1).

16. The cave (13.14.c).

In this section we ead the proof of Theorem (13.1). Recall that (13.14) reduced the proof to three cases. In (14.1) and (15.1) we have treated the first and the second respectively. So, to finish the proof of Theorem it suffices to prove the following
(16.1).- Preposition. Let (\mathcal{C}, C) be a general element of $\mathcal{R}_{B, g}$ and let $(\dot{D}, D) \in \mathcal{H}_{8,0}^{\prime}$, $t \geq 2$ such that $P(\dot{C}, C) \cong P(\dot{D}, D)$. We write $D=D_{1} U_{4} D_{2}$. Assume that D_{1}, D_{2} are irreducible hyperelliptic curves of genus $t-1$ and $g-t-2$ respectively. Then (\tilde{C}, C) and ($\tilde{D}, D)$ are tetragonally related.
(16.2).- Remark. Recall that in this case $(\dot{C}, C) \in \boldsymbol{R}_{B, g, t}$ and with the notations of (13.13), the isomorphism $P(\dot{D}, D) \cong P(\dot{C}, C)$ identifies Z_{0}^{m} with W_{0} and the two varieties of type Z_{c}^{m} corresponding to the two hyperelliptic components with W_{2} and W_{-2} (one of them is empty exactly when $W_{-2}=0$).
Proof: If we are able to prove that (\dot{D}, D) verifies he hypothesis of the construction given in (12.2), then there will exist elements of $\mathcal{R}_{B, g,}^{\prime}$ tetragonally related with ($\left.\tilde{D}, D\right)$. Then, by (14.1), these elements will be tetragonally related with elements of $\boldsymbol{R}_{B, g, t}$ and (\dot{C}, C) and (\dot{D}, D) will be tetragonally related. Essentially we only have to prove that D is tetragonal. Therefore the Proposition is a consequence of the following fact.
(16.3). Proposition. There exists a finite morphism of degree four, $\gamma: D \longrightarrow \mathbf{P}^{\mathbf{1}}$, whose restrictions to D_{1} and D_{2} coincide with the respective hyperelliptic morphism and such that $\gamma\left(D_{1} \cap D_{2}\right)$ consists of four different points.
Proof: What we have to do is to glue the hyperelliptic morphisms $\boldsymbol{\gamma}_{\boldsymbol{i}}: D_{\boldsymbol{i}} \longrightarrow \mathbf{P}^{\mathbf{1}}$. Let $D_{1} \cap D_{2}=\left\{d_{1}, \ldots, d_{4}\right\}$. It suffices to prove the equality of cross ratios

$$
\begin{equation*}
\left|\gamma_{1}\left(d_{1}\right): \gamma_{1}\left(d_{2}\right): \gamma_{1}\left(d_{3}\right): \gamma_{1}\left(d_{4}\right)\right|=\left|\gamma_{2}\left(d_{1}\right): \gamma_{2}\left(d_{2}\right): \gamma_{2}\left(d_{3}\right): \gamma_{2}\left(d_{4}\right)\right| . \tag{16.4}
\end{equation*}
$$

Recall that we obtained in (15.2) that the irreducible curve $\Lambda_{2} \cap 2 \Lambda_{2}$ (cf. (5.5) and (5.7)) is birationally equivalent to the curve \dot{B}_{2} given by the pull-back diagram

where \tilde{N}_{2} and N_{2} are the normalizations of \dot{D}_{2} and D_{2} respectively. Moreover the involution on $\Lambda_{2} \cap 2 \Lambda_{2}$ attached to the multiplication by -1 equals the involution on \tilde{B}_{2} inhereted
from the involution of $\hat{N}_{2}^{(2)}$. According to (5.7) we have that C_{2} is the normalination of \dot{B}_{2} and therefore E is the normalization of $\dot{B}_{2} /($ involution). Then from the analysis of the diagram (16.5) we get that the croes ratio $\left|\boldsymbol{\gamma}_{1}\left(d_{1}\right): \boldsymbol{\gamma}_{1}\left(d_{2}\right): \boldsymbol{\gamma}_{1}\left(d_{3}\right): \boldsymbol{\gamma}_{1}\left(d_{4}\right)\right|$ coincides with the crose ratio of the four discriminant points of the obvious two-to-one covering $E \longrightarrow P^{1}$. In particular the points $\gamma\left(d_{i}\right), i=1, \ldots$, ine all different.
On the other side when $t \geq 4$ the aame argument works when replacing $\Lambda_{\mathbf{2}} \cap \mathbf{2 \Lambda}_{\mathbf{2}}$ by $\Lambda_{-2} \cap 2 \Lambda_{-2}$ and \tilde{B}_{2} by the curve \tilde{B}_{1} given by the pull-back diagram analogous to (16.5). So the cross ratio at the right hand side in (16.4) also equals the croes ratio of the four discriminant points of certain two-to-one morphism from E to a projective line. This clearly implies the equality (16.4).

To conclude the proof we only need to consider the cases $t=3,2$. In the first case we imitate the procedure of Part I (cf. proof of (5.16)) in order to recover the set of data (C_{1}, E).

Assume first $t=3$. We denote by \hat{f} the desingularization of \dot{D} at $\dot{D}_{1} \cap \dot{D}_{2}$. We call π_{1} and π_{2} to the ramified double covers $\dot{D}_{i} \longrightarrow D_{i}, i=1,2$ induced by the partial desingularization. One has (compare with (5.12.i) and (5.13)):
(16.6).- Lemma. The following equalities hold (cf. (13.3) for definitions):
a) $I\left(Z_{c}^{m}\right)=\left(f^{\bullet}\right)^{-1}\left(P\left(\dot{D}_{1}, D_{1}\right) \times\{0\}\right)$ (this is true for $\left.t \geq 1\right)$.
b)

$$
\bigcup_{L \in Z^{m}}\left(\left(Z_{b}^{m}\right)_{-L} \cap I\left(Z_{c}^{m}\right)\right)=\left(\tilde{j}^{\bullet}\right)^{-1}\left(\left\{\dot{L}-\dot{M} \in P\left(\dot{D}_{1}, D_{1}\right) \mid \dot{L}, \dot{M} \in\left(\Xi_{1}^{*}\right)^{m}\right\} \times\{0\}\right)
$$

Proof: We first see a). According to (5.12.i) and (16.2) one has that $I\left(Z_{c}^{m}\right)$ is an abelian variety of dimension t containing $I\left(W_{0}\right)=I\left(Z_{b}^{m}\right)=\operatorname{Ker}\left(f^{*}\right)$ (see (13.16)). On the other hand the very definitions imply that $f^{\bullet}\left(I\left(Z_{f}^{m}\right)\right) \supset P\left(\dot{D}_{1}, D_{1}\right) \times\{0\}$. Hence

$$
I\left(Z_{c}^{m}\right) \supset\left(\dot{f}^{*}\right)^{-1}\left(P\left(\dot{D}_{1}, D_{1}\right) \times\{0\}\right)
$$

The equality of dimensions concludes the proof of a).
In part b) we only show the inclusion of the left hand side member in the right hand side member. The opposite inclusion is left to the reader. Fix $\dot{L} \in Z_{0}^{m}$. By definition $f^{0}(\dot{L})=\left(\dot{L}_{1}, \dot{L}_{2}\right) \in\left(\Xi_{i}^{*}\right)^{m} \times\left(\Xi_{2}^{*}\right)^{m}$. Then

$$
\begin{aligned}
\left(Z_{b}^{m}\right)_{-L} \cap I\left(Z_{c}^{m}\right) & =\left\{\dot{\alpha} \in P(\dot{D}, D) \mid \tilde{f}^{*}(\dot{\alpha})=\left(\dot{\alpha}_{1}, 0\right) \text { and } \dot{\alpha}+\dot{L} \in Z_{b}^{m}\right\}= \\
& =\left\{\dot{\alpha} \in P(\dot{D}, D) \mid \tilde{f}^{*}(\dot{\alpha})=\left(\dot{\alpha}_{1}, 0\right) \text { and } \tilde{\alpha}_{1}+\dot{L}_{1} \in\left(\Xi_{1}^{*}\right)^{m}\right\}
\end{aligned}
$$

and we are done.
Let us denote by Λ_{-2} the 2 -dimensional variety obtained in (16.6.b) (observe that $\left.\operatorname{dim}\left(\Xi_{1}^{*}\right)^{m}=\operatorname{dim} P\left(\tilde{D}_{1}, D_{1}\right)-2=t-2=1\right)$.
(16.7).- Lemma. One has the equality:

$$
\tilde{f}^{*}\left(\Lambda_{-2} \cap 2 \Lambda_{-2}\right)=\left\{\mathcal{L}_{-i} ;(\dot{L}) \in P\left(\tilde{D}_{1}, D_{1}\right)^{*} \mid \dot{L} \leq\left(E_{i}\right)^{-*}, N m_{m_{1}}(\dot{L})=\gamma_{1}^{*}\left(O_{p_{1}}(1)\right)\right\} \times\{0\} .
$$

Pnoof: One has $\tilde{f}^{*}\left(\Lambda_{-2} \cap 2 \Lambda_{-2}\right)=\tilde{f}^{*}\left(\Lambda_{-2}\right) \cap f_{j}{ }^{*}\left(\Lambda_{-2}\right)$. According to (5.16) this get is an irreducible curve. Since both sets in the equality of the statement have dimension 1 , we only have to prove the inclusion of the right hand side member in the left hand side member and this is straightforward.
Obeerve that the normalization of the curve \dot{B}. given by the pull-back diagram

has a natural morphism onto $\left\{\dot{L}-i_{i}(\dot{L}) \mid \dot{L} \in\left(\Xi_{i}\right)^{m}, \mathrm{Nm}_{\boldsymbol{v}_{1}}(\dot{L})=\gamma_{i}^{0}\left(\mathcal{O}_{\mathbf{p}_{1}}(1)\right)\right\}$. Since C_{1} is
 (use the explicit description of $\Lambda_{-2} \cap 2 \Lambda_{-2}$ in $P(C, C)$ and that Ker $f^{*}=\pi^{0}\left(\varepsilon^{\bullet}\left({ }_{2} J E\right)\right.$)) we obtain a morphism from the normalization of \dot{B}. to C_{1}. By comparing genera one gets that C_{1} is also the desingularization of \tilde{B}_{1}. The proof of (16.3) follows as in the case $t \geq 4$.

Finally we observe that in case $t=2$ the curve D is always tetragonal. Indeed, in this case the genus of D_{1} is 1 . To simplify assume it is smooth. Then the cross ratio of the images of the four points $D_{1} \cap D_{2}$ by the tworto-me morphisms $D_{1} \longrightarrow P^{1}$ induced by the linear series $g_{2}^{\frac{1}{2}}$ on D_{1} is not constant. Hence with a suitable such morphism we construct a four-to-one morphism $D \longrightarrow \mathbf{P}^{\mathbf{1}}$. This concludes the proof of (16.3) and therefore of Theorem (13.1).

17. Deacription of the fibre.

As a consequence of the description (2.10), the construction of 58 and Theorems (5.11), (5.16), (6.11), (6.24), (7.23) and (13.1) we obtain the following facts (we keep the notations of §2):
a) Let (\bar{C}, C) be a generic element of $R_{B, g, t}$ with $t \neq 0,1,4$. Then $\bar{P}^{-1}(P(\bar{C}, C))$ consints of:

- two elliptic curves isomorphic to E contained in $\boldsymbol{R}_{B, g, 1}^{\prime}$ (note that $\operatorname{Aut}(E) \cong$ $\mathbf{Z} / 2 Z \times E$ acts on this part of the fibre),
\bullet an irreducible surface contained in $\mathcal{K}_{p, 1}^{\prime}$. If $t \neq 2$ it is isomorphic to $E \times E$.
b) Let (\dot{C}, C) be a generic element of $\boldsymbol{R}_{B, g, 4}$. Then $\bar{P}^{-1}(P(\dot{C}, C)$) consists of:
- two elliptic curves isomorphic to E contained in $\boldsymbol{R}_{B, g, 4}^{\prime}$,
- a surface isomorphic to $E \times E$ contained in $\boldsymbol{H}_{g .4}^{\prime}$.
- a subvariety of dimension one contained in $\mathcal{H}_{g, 4}^{\prime}$ (these are the unique elements of the fibre not obtained in a tetragonal way).
c) Let (\dot{C}, C) be a generic element of $\mathcal{R}_{B, g, 1}$. Then $\bar{P}^{-1}(P(\dot{C}, C))$ consists of:
- two elliptic curves isomorphic to E contained in $\boldsymbol{R}_{B, 9,1}^{\prime}$,
- an irreducible curve contained in $\mathcal{H}_{g, 1}^{\prime}$.
d) Let (\dot{C}, C) be a generic element of $\mathcal{R}_{B, y, 0} \cup \mathcal{R}_{B, g}^{\prime}$. Then $\tilde{P}^{-1}(P(\dot{C}, C)$) consists of:
- a single point in each component $\boldsymbol{R}_{B,, 0}$ and $\boldsymbol{R}_{B, g}^{\prime}$,
- an elliptic curve isoniorphic to E coutained in $\mathcal{H}_{f, 0}^{\prime}$.

Referencian.

[A]. A.Andreotti, On \& Theorem of Torell, Amer. J. of Math. 80 (1958), 801-828.
[A-C-G-H]. E.Arbarello-M.Cornalba-P.A.Griffths-J.Harris, Geometry of Algebreic Cwives, vol.1, Grundlehren der math. Wiss. 267, Springer Verlag, Berlin 1985.
[Bel]. A.Beauville, Prym varieties and the Schottky problem, Invent. Math. 41 (1977). 149-196.
[Be2]. A.Beauville, Sous-variétés spéciales des variétés de Prym, Compos. Math. 45 (1982), 357-383.
[Be3]. A.Beauville, Variétes de Prym et Jacobiennes Interonédieires, Ann. Sci. E.N.S. 10 (1977), 304-392.
[C-G]. H.Clemens-P.Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. 95 (1972), 281-356.
[C-G-T]. C.Ciliberto-G.v.Geer-M.Teixidor, On the number of parameters of curves whose Jacobians possess non-trivial endomorphisms, Preprint, University of Amsterdam, 1989.
[Del]. O.Debarre, Sur le problème de Torelli pour les variétés de Prym, Amer. J. of Math. 111 (1989), 111-134.
[De2]. O.Debarre, Sur les variétés de Prym des courses tétragonales, Ann. Sci. E.N.S. 31 (1988), 545-559.
[De3]. O.Debarre, Sur les variétés abéliennes dont le diviseur thêta est singulier en codimension 9, Duke Math. J. 57 (1988), 221-273.
[De4]. O.Debarre, Sur la démonstration de A. Weil du Théorème de Torelli pour les courbes, Compos. Math. 38 (1986), 3-11.
[De5]. O.Debarre, Variétés de Prym, conjecture de la trisécante et ensembles d'Andreotti et Mayer, Thèse, Université Paris Sud, Centre d'Orsay, 1986.
[Do]. R.Donagi, The tetragonal construction. Bull. Amer. Math. Soc. 4 (1981), 181-185.
[Do2]. R.Donagi, The Schottky problem, LNM 1337, 84-137.
[D-S]. R.Donagi-R.Smith, The structure of the Prym map, Acta Math. 146 (1981), 25-102.
[F-S]. R.Friedman-R.Smith, The generic Torelli Theorem for the Prym map, Invent. Math. 67 (1982), 473-490.
[G]. A.Grothendieck, Technique de descente et Théorèmes d'existence en Géométrie Algé. brique I, Sem. Bourbaki 190 (1959-1960).
[Ge]. B.vna Geemen, Siegel modular forme memialing on the maduli space of curves, Invent. Math. 78 (1984), 329-349.
[K]. V.Kanev, The global Torelli theorem for Prym varieties at a generic point, Math. USSR Izvectija 20 (1983), 235-258.
[K-K]. V.Kanev-L.Katsarkov, Universel propertics of Prym varieties of aingular curves, C. R. Aced. Bulgare Sci. 41 (1988), 25-27.
[M]. H.H.Martens, An extended Torelli Theorem, Amer. J. of Math. 87 (1965), 257-260.
[Ma]. L.Mesiewicki, Universal properties of Prym verieties with en epplication to algebraic curves of g-nus five, Trans. Amer. Math. Soc. 222 (1976), 221-240.
[Mu1]. D.Mumford, Prym verieties I, in Contributions to Analysis, Acad. Press, New York, 1974, 325-340.
[Mu2]. D.Mumford, Alvian varieties, Oxford Un. Press, London, 1970.
$[\mathrm{R}]$. S.Recillas, Jacobians of curves with g_{4}^{1} 's are the Prym's of trigone!' curves. Bol. Soc. Mat. Mexicana 19 (1974), 9-13.
[Sh1]. V.V.Shokurov, Distinguishing Prymians from Jecobians, Invent. Math 65 (1981), 209-219.
[Sh2]. V.V.Shokurov, Prym verieties: Theory and applications, Math. USSR Izvestija 23 (1984), 83-147.
[Te]. M.Teixidor, For which Jacobi varietics is Sing日 reducible?, Crelle's J. 354 (1984), 141-149.
[To]. R.Torelli, Sulle varietè di Jacobs, Rendiconti R. Acead. Lincei Cl. Sci. Fis. Mat. Nat.(5) 22 (1913), 98-103.
[Wel]. G.Welters, Recovering the curve data from a general Prym variety, Awer. J. of Math. 109 (1987; 160-182.
[We2]. G. Welters, The surface C-C on Jacobi varietzes and 2nd. order theta functions, Acta Math. 157 (1986). 1-22.
[We3]. G.Welters, Abel-Jccobi isogenies for certain types of Fano threefolds, MC Tract 141, CWI, Amsterdam 1981.
[Wij. W.Wirtinger, Untersuchungen über Thetafunctionen, Teubser, Berlin (1895).

