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Chapter 1

Introduction

Recently the limitations of conventional computational methods, such as finite elements,

finite volumes or finite difference methods, became apparent. There are many problems of

industrial and academic interest which cannot be easily treated with these classical mesh-

based methods: for example, the simulation of manufacturing processes such as extrusion

and molding where it is necessary to deal with extremely large deformations of the mesh,

or simulations of failure where the modelization of the propagation of cracks with arbi-

trary and complex paths is needed. The underlying structure of the classical mesh-based

methods, which strongly depends on their reliance on a mesh, is not ideally suited for the

treatment of discontinuities that do not coincide with the original mesh edges. With a mesh-

based method, the most viable strategy for dealing with moving discontinuities is to remesh

whenever it is necessary in order to keep the mesh edges coincident with the discontinuities

throughout the evolution of the problem. The remeshing process, and projection of quan-

tities of interest between successive meshes, usually leads to degradation of accuracy and

complexity in the computer program, and often results in an excessive computational cost.

The objective of mesh-free methods is to eliminate at least part of this mesh dependent

structure by constructing the approximation entirely in terms of nodes (usually called parti-

cles in the context of mesh-free methods). Moving discontinuities or interfaces can usually

be treated without remeshing with minor costs and accuracy degradation, see for instance

(Belytschko and Organ 1997). Thus the range of problems that can be addressed by mesh-

free methods is much wider than mesh-based methods. Moreover, large deformations can

be handled more robustly with mesh-free methods because the interpolation is not based on

elements whose distortion may degrade the accuracy. This is useful in both fluid and solid

computations.

Moreover, one of the major drawbacks of mesh-based methods is the difficulty in en-
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2 Introduction

suring for any real geometry a smooth, painless and seamless integration with Computer

Aided Engineering (CAE), industrial Computer Aided Design (CAD) and Computer Aided

Manufacturing (CAM) tools. Mesh-free methods were design not to suffer from the same

problems. The freedom in the definition of the shape/interpolation functions is the key issue.

The advantages of mesh-free methods for 3D computations will become more apparent.

On the other hand, mesh-free methods present obvious advantages in adaptive pro-

cesses. There are a priori error estimates for most of the mesh-free methods, see for instance

(Liu, Li and Belytschko 1997). This allows the definition of adaptive refinement processes

as it is usual in finite element computations: an a posteriori error estimation is computed

and the solution is improved adding nodes/particles where it is needed, until the error be-

comes acceptable, see (Huerta, Rodrı́guez-Ferran, Dı́ez and Sarrate 1999) for details. With

a mesh-based method a new finite element mesh must be computed in order to include

the new nodes in the interpolation. The cost and difficulty of remeshing is not negligible.

In fact, it represents an important drawback in finite element 3D computations. However,

mesh-free methods allow refinement without any remeshing cost: the interpolation does not

depend on connectivities, and thus, particles can be added with total freedom.

Although mesh-free methods were originated about twenty-five years ago, the popula-

rization of these methods still requires further research. The aim of this thesis is to advance

in the development and understanding of these methods through some contributions in this

novel research line.

There are different mesh-free methods which are based on different developments and

with different properties. Although these methods have a lot of points in common, there is

a real need of classifying, ordering and comparing mesh-free methods. Thus, first of all an

introductory description of the most common mesh-free methods is presented in chapter2

with special attention on the differences and similarities between the different formulations.

Moreover, the behaviour of mesh-free methods and its comparison with finite elements

is still an open topic in many problems. It is well known that mesh-free methods, such as the

Element Free Galerkin (EFG) method, performs much better than standard finite elements

in some problems, see for instance (Bouillard and Suleau 1998) or (Askes, de Borst and

Heeres 1999). However, finite element methods are still more competitive in some other

problems. Thus, one objective of this work is to determine in which situations mesh-free

methods can be advantageous or not. For instance, chapter 3 is devoted to the study of

volumetric locking in the EFG method. As it is shown in the examples, volumetric locking

can drastically degrade the finite element solution in mechanical problems. The objective
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is to verify if, as it was originally claimed, mesh-free methods do not exhibit volumetric

locking. As will be seen, this is not true: although the EFG method can avoid or alleviate

locking in some particular problems, chapter 3 shows through modal analysis that the EFG

method is not free from locking. The modal analysis also justifies the better behaviour

of the EFG, compared with finite elements, in this kind of problems. Although all the

developments are done for the EFG method, all the results can be easily extended to other

particle methods.

Results in Chapter 3 show how in some situations mesh-free methods can perform much

better than mesh-based methods. However, from a practical point of view, the use of finite

elements presents several advantages: the computation and integration of the shape func-

tions are less costly, essential boundary conditions can be implemented in a more simple

way (see section 2.2.3 for essential boundary conditions in mesh-free methods), and, above

all, they are widely used and trusted by practitioners. In order to take advantage of both

methods, a mixed interpolation that combines the EFG interpolation and the finite element

interpolation is presented in chapter 4. Although several authors have already proposed to

use mixed finite elements and mesh-free interpolations, in chapter 4 a unified and general

formulation for mixed interpolations is presented. In particular, this formulation can be

applied in two useful situations: enrichment and coupling. The first one (enrichment) al-

lows increasing the order of the finite element interpolation just adding particles where it is

wanted. This is comparable to h-p refinement in finite elements. However, the presented

approach avoids remeshing and the computational difficulties of non-conforming finite ele-

ments. An a priori error estimate is presented and proved for this situation in appendix

A. In the second one (coupling) the domain is decomposed in one region where only fi-

nite elements are present, another region where only particles are present and a transition

region where both particles and elements are coupled in order to preserve consistency and

continuity in the interpolation. Thus, the finite element interpolation can be used in almost

all the domain, with less computational cost, and particles can be used only in the regions

where they are really advantageous. This philosophy can be useful, for instance, in adaptive

computations: a coarse finite element mesh can be used in the whole domain and, after an

error estimation, some nodes can be removed and replaced by a suitable quantity of particles

with no remeshing cost. The applicability of this mixed interpolation is shown in several

examples.

Moreover, the mixed interpolation presented in chapter4 can also be useful in the solu-

tion of convection dominated problems, such as the numerical simulation of flow in active
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carbon canisters presented in appendix A. In this problem, there is a moving front in the

solution that must be accurately interpolated. However, most of the realistic examples need

3D computations, and thus, the use of a uniform sufficiently dense mesh in the whole do-

main leads to a too large computational cost. If only finite elements are used, the mesh

must be adapted in order to capture the advancing front. This implies a degradation in the

solution (due to successive projections of the solution between meshes) and an increase in

the computational cost. In fact, in 3D it is not easy to find a good mesh generator, which

adapts the mesh to the prescribed densities of nodes. So, the mixed interpolation can be a

good choice: a fixed coarse finite element mesh can be used in the whole domain, with a

cloud of moving particles following the moving front in order to increase the spatial accu-

racy where it is needed. Thus, first of all it is important to study the behaviour of the EFG

interpolation in convection dominated problems. Section4.5.5, in chapter 4, shows how the

mixed interpolation is used in the resolution of the stationary convection diffusion equation:

the finite element solution can be easily improved using particles in the refinement process.

However, it is also necessary to carefully study the transient case. There are two im-

portant topics in the resolution of the transient convection-diffusion equation: (1) accurate

transport of the unknown quantity is necessary, and thus, high-order time stepping schemes

are needed, and (2) in the presence of boundary or internal layers, it is necessary to sta-

bilize the solution in order to avoid oscillations. In chapter 5 the behaviour of high-order

time stepping methods combined with mesh-free methods is studied. The EFG interpola-

tion allows to easily increase the order of consistency and, thus, to formulate high-order

schemes in space and time. Moreover, second derivatives of the EFG shape functions can

be constructed with a low extra cost and are well defined, even for linear interpolation.

Thus, consistent stabilization schemes can be considered without loss in the convergence

rates. So, the use of mixed interpolations combining finite elements and mesh-free methods

turns out to be a promising alternative in the resolution of transient convection dominated

problems, such as the simulation of advancing fronts in active carbon canisters.



Chapter 2

State of the art in mesh-free methods

Although mesh-free methods were originated about twenty-five years ago, the research ef-

fort devoted to them until the last decade was miniscule. The starting point that seems

to have the longest continuous history is the smooth particle hydrodynamic (SPH) method

(Lucy 1977), see section 2.1.1. It was used in the modelization of astrophysical phenomena

without boundaries such as exploding stars and dust clouds. Compared to other methods the

rate of publications was very modest for many years; this is mainly reflected in the papers of

Monaghan and coworkers (Monaghan 1982, Monaghan 1988). However, further research

was needed in the estimation of the accuracy of the method.

Recently, there has been substantial improvement in these methods. For instance, refe-

rences (Swengle, Hicks and Attaway 1995) and (Dyka 1994) have presented important ad-

vances in the study of its instabilities. In (Johnson and Beissel 1996) a method for improving

strain calculations is presented. Reference (Liu, Jun and Zhang 1995) has proposed a cor-

rection function for kernels in both the discrete and continuous case. In fact, this approach

can be seen as an extension of moving least-squares approximations (see section2.1.2) to

the continuous case. Reference (Nayroles, Touzot and Villon 1992) was evidently the first

to use moving least square approximations in a Galerkin method and called it the diffuse

element method (DEM). Reference (Belytschko, Lu and Gu 1994) refined and modified the

method and called it EFG, element-free Galerkin. This class of methods is consistent and, in

the forms proposed, quite stable, although substantially more expensive than SPH. Recently,

the work in (Duarte and Oden 1996) and (Babuška and Melenk 1995) recognizes that the

methods based on moving least squares are specific instances of partitions of unity. These

references and (Liu et al. 1997) were also among the first to prove convergence of this class

of methods. On a parallel path, reference (Vila 1999) has introduced a different mesh-free

approximation specially suited for conservation laws: the renormalized Meshless Deriva-

5
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tive (RMD) with turns out to give accurate approximation of derivatives in the framework of

collocation approaches. Two other paths in the evolution of mesh-free methods have been

the development of generalized finite difference methods, which can deal with arbitrary

arrangements of nodes, and particle-in-cell methods. One of the early contributors to the

former was (Perrone and Kao 1975), but (Liszka and Orkisz 1980) proposed a more robust

method. Recently these methods have taken a character which closely resembles moving

least squares and partitions of unity.

In recent papers the possibilities of mesh-free methods become apparent. The special

issue of CMAME (1996) shows the ability of mesh-free methods to handle complex situa-

tions, such as impact problems, crack simulations or fluid dynamics. Reference (Bouillard

and Suleau 1998) has applied a mesh-free formulation to acoustic problems with good re-

sults. In (Bonet and Lok 1999) a gradient correction is introduced in order to preserve

the linear and angular momentum with applications to fluid dynamics. Another paper,

(Bonet and Kulasegaram 2000), proposes the introduction of integration correction that

improves accuracy with applications to metal forming simulation. Reference (Oñate and

Idelsohn 1998) proposes a mesh-free method (finite point method) based on a weighted

least-squares interpolation with point collocation with applications to convective transport

and fluid flow. Moreover, recently several authors have proposed to use mixed interpolations

combining finite elements and mesh-free methods, in order to take profit of the advantages

of each method (see chapter 4).

This chapter is devoted to the description of the most common mesh-free methods and

to the analysis of the differences and similarities between the different formulations. This

chapter will also introduce the basic concepts and notation necessary for the developments

in the following chapters. It is organized as follows. Section 2.1 presents the most pop-

ular mesh-free interpolations: a small introduction to the original SPH interpolation and

its improved versions is presented in section 2.1.1, then section 2.1.2 describes the mesh-

free interpolations based on a moving least-squares development, in both its continuous

and discrete versions. Once the interpolation has been introduced, it can be used in the

discretization of a boundary value problem. So, some concepts of collocation techniques

and weak formulations are recalled in section2.2; with special attention on the Galerkin for-

mulation and, in particular, on the Element-Free Galerkin method. In fact, section2.2.4 is

devoted to the explanation of some implementation details of the EFG method, since all the

developments in the following chapters will be done with this mesh-free method. However,

as will be commented, generalization to other mesh-free methods is straightforward. Sec-
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tion 2.2 also includes some remarks on how to impose essential boundary conditions with

these methods, see section 2.2.3.

2.1 Interpolation in mesh-free methods

This section is devoted to describe the most common interpolations used in mesh-free

methods. There can be considered two important families: interpolations based on Smooth

Particle Hydrodynamic (SPH) and interpolations based on Moving Least Squares (MLS).

As will be commented in section 2.2 the SPH interpolations are usually combined with

collocation or point integration techniques, while the MLS interpolantions are mostly com-

bined with Galerkin formulations, and in some cases with collocation techniques.

2.1.1 Smooth Particle Hydrodynamic

The early SPH

The earliest mesh-free method is the SPH method (Lucy 1977). This method is based on a

simple property of the Dirac delta function Æ(x):

u(x) =

Z
Æ(x� y)u(y) dy;

where u(x) is the function to be interpolated. The basic idea is to approximate this equation

as

u(x) ' ~u�(x) :=

Z
C��

�
x� y

�

�
u(y) dy; (2.1.1)

where � is a positive, even and compact supported function, usually called window function

or weighting function, and � is the so-called dilation parameter. The dilation parameter

characterizes the support of �(x� ). C� is a normalization constant such thatZ
C��

�
x

�

�
dy = 1

and, therefore, C��(
x
� ) tends to Æ(x) as � goes to zero. That is,

lim
�!0

~u�(x) = u(x):

In order to define a discrete interpolation, a numerical quadrature must be applied in (2.1.1):

u(x) ' ~u�(x) ' u�(x) :=
X
i

C��

�
x� xi
�

�
u(xi)!i (2.1.2)
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where xi and !i are the points and weights of the numerical quadrature. Usually the quadra-

ture points are called particles. Finally, the SPH mesh-free interpolation can be defined as

u(x) ' u�(x) =
X
i

Ni(x)u(xi);

with the interpolation base

Ni(x) = C��

�
x� xi
�

�
!i:

Remark 2.1.1. Note that usually u�(xi) 6= u(xi). That is, the shape functions do not verify

the Kronecker delta property:

Nj(xi) 6= Æij :

This is common for all particle methods (see figure 2.5 for MLS interpolant) and thus, in

some cases, specific techniques are needed in order to impose essential boundary conditions

(see section 2.2).

Remark 2.1.2. The dilation parameter � characterizes the support of the interpolation func-

tions Ni(x). It plays a role similar to the element size in the finite element method. An

h-refinement in finite elements can be produced in mesh-free methods decreasing the value

of �, this usually implies an increase in the number of particles (see Remark2.1.3).

Remark 2.1.3. There is an optimal value for the ratio between the dilation parameter � and

the distance between particles h. Figure 2.1 shows that for a fixed distribution of parti-

cles, h constant, the dilation parameter must be large enough in order to avoid the aliasing

effect (high frequencies are present in the approximated solution). On the other hand, a

too large � will produce too large errors, due to the bad approximation of de Dirac delta

function in (2.1.1). Thus, in a refinement process it is usual to maintain dilation parameter

� proportional with the distance between particles h.

Window functions

The weighting function, or window function, may be defined in various manners. For 1D

the most common options are

Cubic spline:

�1D(x) = 2

8>>>>><>>>>>:
2
3 + 4(jxj � 1)x2 jxj � 0:5

4
3 (1� jxj)

3 0:5 � jxj � 1

0 1 � jxj;

(2.1.3)
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Figure 2.1: SPH interpolation functions and approximation of u(x) = 1 � x2 with cubic
spline window function, distance between particles h = 0:5 and quadrature weights !i = h,
for �=h = 1; 2; 4.
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Gaussian:

�1D(x) =

8><>:
e�9x

2
� e�9

1� e�9
jxj � 1

0 jxj � 1:

(2.1.4)

The definition of the window function can be easily extended to higher dimensions. For

example, in 2D the most common extensions are

Circular supported window function:

�(x) = �1D(kxk);

Rectangular supported window function:

�(x) = �1D(jx1j) �1D(jx2j)

where x = (x1; x2) and kxk =
p
x21 + x22.

Remark 2.1.4. For simplicity, in the following, x (without boldface) can denote a point in

R or in Rn , there is not an explicit distinction.

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

Cubic spline

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

Corrected cubic spline

Figure 2.2: Cubic spline and corrected window function for polynomials of degree 2.

Remark 2.1.5 (Design of the window function). In the context of the continuous SPH in-

terpolation (2.1.1), a window function � can be easily modified to exactly reproduce a

polynomial space P in R, i.e.

p(x) =

Z
C��

�
x� y

�

�
p(y) dy; 8 p 2 P:
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Figure 2.3: Modified cubic splines and particles, h = 0:5, and SPH discrete approximation
for u(x) = x with �=h = 2 in a “not bounded domain”.
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Figure 2.4: Modified cubic splines and particles, h = 0:5, and SPH discrete approximation
for u(x) = x with �=h = 2 in a bounded domain.

For example, the window function defined as

~�(x) =

�
27

17
�

120

17
x2
�
�(x); (2.1.5)

where �(x) is the cubic spline, reproduces the second degree polynomial base f1; x; x2g.

Figure 2.2 shows the cubic spline (2.1.3) and the corrected window function (2.1.5), see

(Liu, Chen, Jun, Chen, Belytschko, Pan, Uras and Chang 1996) for details. However, the

design of the window function is not so easy in the presence of boundaries or in the case of

a discrete interpolation with no uniform distribution of particles (see section2.1.2). Figure

2.3 shows the corrected cubic spline window functions associated to a uniform distribution

of particles, with distance h = 0:5 between particles and � = 2h, and the discrete SPH

approximation (2.1.2) of u(x) = x, for uniform weights !i = h. The particles out from
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[�1; 1] are also considered in the interpolation, as in a not bounded domain (the corres-

ponding translated window functions are depicted with green color). The linear monomial

u(x) = x is exactly interpolated. However, in a bounded domain, the interpolation is not

so good near the boundaries when only the particles in the domain ([�1; 1] in this example)

are considered, see Figure 2.4.

Remark 2.1.6 (Consistency). If the interpolation reproduces exactly a basis of the polynomi-

als of degree less or equal to m then the approximation is said to have m-order consistency.

Correcting the SPH method

The SPH interpolation can be used in the resolution of a PDE problem, usually through

a collocation technique or point integration approaches (see (Vila 1999), (Bonet and Lok

1999) and section 2.2.1). Thus, it is necessary to compute accurate approximations of the

derivatives. The original SPH method usually provides not so accurate approximations, and

thus, it is necessary to improve the interpolation, or its derivatives, in some way.

Vila proposes a new approximation for the derivatives of the interpolation: the Renor-

malized Meshless Derivative (RMD), see (Vila 1999). The derivatives of a function u can

be approximated as the derivatives of the SPH approximation (2.1.2)

ru(x) ' ru�(x) =
X
i

C�r

�
�

�
x� xi
�

��
u(xi)!i:

However, this approximation is not accurate enough. The basic idea of the RMD approxi-

mation is to define a corrected derivative

D�u(x) :=
X
i

BC�r

�
�

�
x� xi
�

��
u(xi)!i; (2.1.6)

where the correction matrix B is chosen such that ru(x) = D�u(x) for all linear polyno-

mials. In fact, in order to obtain a consistent and convergent method, this other symmetrized

approximation for the derivatives is defined

D�
Su(x) := D�u(x)� u(x)D�1(x); (2.1.7)

where, by definition (2.1.6),

D�1(x) =
X
i

B(x)C�r

�
�

�
x� xi
�

��
!i:

Note that (2.1.7) interpolates exactly the derivatives when u(x) is constant, and thus, the

consistency condition ru(x) = D�u(x) must be imposed only for linear monomials. This
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condition leads to

B(x) =

24X
j

xjr
T

�
�

�
x� xi
�

��
!j

35�1 :
If the ratio between the dilation parameter � and the distance between particles remains

constant, there are a priori error bounds for the RMD, D�
Su, similar to the linear finite

element ones, where � plays the role of the element size in finite elements.

There are many other possibilities for the correction of the SPH method. Bonet and

coworkers have presented corrected SPH methods in different situations. For each different

problem, the correction of the SPH method is designed in order to obtain nice properties

of the approximation. For example, in (Bonet and Lok 1999) a correction of the window

function, as in the RKPM method (see section 2.1.2), and a correction of the gradient are

combined in order to preserve angular momentum, with applications to free surface flow

problems. The approximation of the velocity u(x) is defined as

u�(x) =
X
i

u(xi)~�i(x)!i

where the kernel functions ~�i(x) can be defined to verify the 0-order consistency condition

(see remark 2.1.6), that is, to exactly interpolate constants,

~�i(x) =

�

�
x� xi
�

�
X
j

�

�
x� xj

�

� ;
where �(x) is the window function. This approximation can be seen as a particular case

of the RKPM interpolation (see section 2.1.2). In fact, in some applications the 1-order

consistent kernel function is also considered. The derivatives can be computed as usually

ru�(x) =
X
i

u(xi)r~�i(x)!i:

This approximation is able to preserve linear momentum, however, it usually fails to pre-

serve angular momentum. In order to overcome this shortcoming a corrected gradient is

defined:
~ru�(x) = L(x)ru�(x);

where the matrix L(x) is obtained after imposing preservation of angular momentum,

L(x) =

24X
j

xjr
T
h
~�i(x)

i
!j

35�1 :
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Note the similarities between the corrected gradient and the Renormalized Meshless Deriva-

tive. The definition of matrix L(x) coincides with the definition of matrix B(x), after sub-

stitution of the window function � by the kernel function ~�. The most important difference

is that in the RMD approach 0-order consistency is obtained through the definition of the

symmetrized gradient (2.1.6), and with the corrected gradient ~ru� the 0-order consistency

is obtained through the kernel function ~�.

In (Bonet and Kulasegaram 2000) a correction of the window function and a integration

corrected vector for the gradients is used in the resolution of problems of metal forming

simulations. The approximation is used to discretize a Galerkin weak form with particle

integration (see section 2.2.2), and thus, the gradient must be evaluated only at the particles.

However, usually the particle integration is not accurate enough and the approximation fails

to pass the patch test. In order to obtain a consistent approximation a corrected gradient is

defined. At every particle xk the corrected gradient is computed as

~ru�(xk) = ru�(xk) + k[u]k

where  = (k)k is the correction vector and where the bracket [u]k is defined as [u]k =

u(xk)�u�(xk): After imposing the patch test a linear system of equations for  is obtained,

with dimension equal to the number of particles. That is, a linear system of equations must

be solved to obtain the correction vector and define the derivatives of the approximation;

after that, the approximation of u and its derivatives are used to solve the boundary value

problem.

2.1.2 Moving Least Squares interpolants

As in the corrected SPH methods commented in the previous section, the interpolations

based on a Moving Least Squares (MLS) development can be considered as an improve-

ment of the SPH method. However, the MLS interpolations are usually used to discretize a

Galerkin formulation, and thus, accuracy and consistency in both the interpolation and its

derivatives are needed in all the domain.

Continuous Moving Least Squares

The objective of the Moving Least Squares (MLS) approach is to obtain an interpolation

similar to the SPH one (2.1.1), with high accuracy even in a bounded domain. Let us

consider a bounded, or unbounded, domain 
. The basic idea of the MLS approach is to

approximate u(x), at a given point x, through a polynomial least-squares fitting of u in a
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neighbourhood of x. That is, fixed x 2 
, for z near x, u(z) can be approximated with a

polynomical expression

u(z) ' ~u�x(z) = PT (z)c(x) (2.1.8)

where P(z) = fp0(z); p1(z); : : : ; pl(z)g
T is a complete polynomial basis, and the vector

c(x) is obtained through least-squares fitting, with the scalar product

< f; g >x=

Z


f(y)g(y)�

�
x� y

�

�
dy: (2.1.9)

Remark 2.1.7. Note that, with the weighting function �, the scalar product is centred at

the point x and scaled with the dilation parameter �. In fact, the integration is done in a

neighbourhood of radius � centred at x, that is, in the support of �
�
x��
�

�
.

Remark 2.1.8 (Polynomial space). In one dimension, it is usual that pi(x) coincides with

the monomials xi, and, in this particular case, l = m. For larger spatial dimensions two

types of polynomial spaces are usually chosen: the set of polynomials, Pm, of total degree

� m, and the set of polynomials, Qm, of degree � m in each variable. Both include a

complete basis of the subspace of polynomials of degree m. This, in fact, characterizes the

a priori convergence rate (Liu et al. 1997).

The vector c(x) is the solution of the linear system of equations

M(x)c(x) =< P; u >x (2.1.10)

with the Gram matrix

M(x) =

Z


P(y)PT (y)�

�
x� y

�

�
dy: (2.1.11)

After substitution of the solution of (2.1.10)

c(x) =M�1(x) < P; u >x

in (2.1.8), the least-squares approximation of u in a neighbourhood of x is obtained:

u(z) ' ~u�x(z) = PT (z)M�1(x)

Z


u(y)P(y)�

�
x� y

�

�
dy: (2.1.12)

Particularization of (2.1.12) at z = x leads to the MLS approximation of u(x)

u(x) ' ~u�(x) := ~u�x(x) =

Z


u(y)PT (x)M�1(x)P(y)�

�
x� y

�

�
dy: (2.1.13)

Equation (2.1.13) can be rewritten as

u(x) ' ~u�(x) =

Z


C�(x; y)�

�
x� y

�

�
u(y) dy;
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which is similar to the SPH approximation (2.1.1), with the scalar correction term

C�(x; y) := PT (x)M�1(x)P(y):

The function defined by the product of the correction and the window function �,

~�y(x) := C�(x; y)�

�
x� y

�

�
;

is usually called kernel function. The new correction term depends on the point x and

the integration variable y, and provides an accurate approximation even in the presence of

boundaries, see (Liu, Chen, Jun, Chen, Belytschko, Pan, Uras and Chang 1996) for more

details. In fact, the approximation verifies the following consistency property:

Proposition 2.1.1 (Consistency/reproduciblility property). The definition of the correc-

tion term allows the MLS interpolation to exactly reproduce all the polynomials in P. That

is,

P(x) = ~P�(x) :=

Z


P(y)

�
PT (x)M�1(x)

�
P(y)�

�
x� y

�

�
dy:

(Recall that if P contains a basis of the polynomials of degree less or equal to m then the

approximation is said to have m-order consistency)

proof: Rearranging terms, and taking into account definition (2.1.11),

~P�(x) =

�Z


P(y)PT (y)�

�
x� y

�

�
dy

�
| {z }

M(x)

M�1(x)P(x) = P(x)

�

Reproducing Kernel Particle Method interpolation

Application of a numerical quadrature in (2.1.13) leads to the RKPM interpolation

u(x) ' ~u�(x) ' u�(x) :=
X
i

u(xi)P
T (x)M�1(x)P(xi)�

�
x� xi
�

�
!i;

where xi and !i are integration points (particles) and weights, respectively. This interpola-

tion can be written as

u(x) ' u�(x) =
X
i

u(xi)Ni(x) (2.1.14)

where the basis of interpolation functions is defined by

Ni(x) = PT (x)M�1(x)P(xi)�

�
x� xi
�

�
!i: (2.1.15)
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Remark 2.1.9. In order to preserve the consistency/reproducibility property, the matrix M

defined in (2.1.11) must be computed with the same quadrature used for the discretization

of (2.1.13), see (Chen, Pan, Wu and Liu 1996) for details. That is, the matrix M(x) must

be computed as

M(x) =
X
j

P(xj)P
T (xj)�

�
x� xj

�

�
!i: (2.1.16)

Remark 2.1.10. The sums in (2.1.14) and (2.1.16) only involve the indices j such that

�(
x�xj
� ) 6= 0, that is, particles xj in a neighbouring of x. Thus, equations (2.1.14) and

(2.1.16) can be rewritten as

u(x) ' u�(x) =
X
i2I�x

u(xi)Ni(x)

and

M(x) =
X
j2I�x

P(xj)P
T (xj)�

�
x� xj

�

�
!i; (2.1.17)

where the set of neighbouring particles is defined by the indices in

I�x := fj such that jxj � xj � �g: (2.1.18)

Remark 2.1.11. The matrixM(x) in (2.1.17) must be regular at every point x in the domain.

In (Liu et al. 1997) there is a discussion of the necessary conditions. In fact, this matrix can

be viewed, see (Huerta and Fernández-Méndez 2000), as a Gram matrix defined with a

discrete scalar product

< f; g >x=
X
j2I�x

f(xj)g(xj)�

�
x� xj

�

�
!i:

If this scalar product is degenerated M(x) is singular. The regularity ofM(x) is ensured by

a sufficient amount of particles in the neighbourhood of every point x and located to avoid

degenerated patterns, that is,

(i) card I�x � l + 1.

(ii) @F 2< p0; p1; : : : ; pl > n f0g such that 8i 2 I�x; F (xi) = 0.

The second condition is easily verified. For instance, for m = 1 (linear interpolation) the

particles cannot lay in the same straight line or plane for, respectively, 2D and 3D. In 1D, for

any value of m, it suffices that different particles do not have the same position. Under these

conditions one can compute the vector PT (x)M�1(x) at each point and thus determine the

shape functions, Nj(x).
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Discrete Moving Least Squares: EFG interpolation

The MLS development can be performed with a discrete formulation. As in the continuous

case the idea is to approximate u(x), at a given point x, through a polynomial least-squares

fitting of u in a neighbourhood of x. That is, fixed x 2 
, for z near x, u(z) is approximated

with the polynomical expression

u(z) ' u�x(z) = PT (z)c(x): (2.1.19)

In the framework of the Element Free Galerkin method, the vector c(x) is obtained through

a least-squares fitting with the discrete scalar product

< f; g >x=
X
i2I�x

f(xi)g(xi)�

�
x� xi
�

�
: (2.1.20)

where, I�x is the set of indices of neighbouring particles defined in (2.1.18). That is, c(x) is

solution of the linear system of equations

M(x)c(x) =< P; u >x (2.1.21)

with the Gram matrix

M(x) =
X
j2I�x

P(xj)P
T (xj)�

�
x� xj

�

�
: (2.1.22)

After substitution of the solution of (2.1.21) in (2.1.19), the least-squares approximation of

u in a neighbourhood of x is obtained:

u(z) ' u�x(z) = PT (z)M�1(x)
X
i

u(xi)P(xi)�

�
x� xi
�

�
: (2.1.23)

Particularization of (2.1.23) at z = x leads to the discrete MLS approximation of u(x)

u(x) ' u�(x) := u�x(x) =
X
i

u(xi)P
T (x)M�1(x)P(xi)�

�
x� xi
�

�
: (2.1.24)

This interpolation can be written as

u(x) ' u�(x) =
X
i

u(xi)Ni(x)

where the basis of interpolation functions is defined by

Ni(x) = PT (x)M�1(x)P(xi)�

�
x� xi
�

�
: (2.1.25)

with the matrix M defined in (2.1.22).
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Figure 2.5: Interpolation functions with �=h ' 1 (similar to finite elements) and �=h = 2:6,
with cubic spline and linear consistency.

Remark 2.1.12. Note that the EFG interpolation functions defined by (2.1.25) and (2.1.22),

can be seen as a particular case of the RKPM interpolation functions defined by (2.1.15)

and (2.1.17), taking the weights of the numerical quadrature !i = 1 for all particles.

Remark 2.1.13. The interpolation is characterized by the order of consistency required, i.e.

the basis of polynomials employed P, and by the ratio between the dilation parameter and

the particle distance, �=h. In fact, the bandwidth of the stiffness matrix increases with the

ratio �=h (more particles lie inside the circle of radius �), see for instance Figure2.5. Note

that, for linear consistency, when �=h goes to 1, the linear finite element shape functions

are recovered.

Remark 2.1.14 (Convergence). Liu, Li and Belytschko (Liu et al. 1997) proved convergence

of the RKPM and, in particular, of EFG. The a priori error bound is very similar to the bound

in finite elements. The parameter � plays the role of h, and m (the order of consistency)

plays the role of the degree of the interpolation polynomials in the finite element mesh.

Convergence properties depend on m and �. They do not depend on the distance between

particles because usually this distance is proportional to �, i.e. the ratio between the particle

distance over the dilation parameter is of order one, see (Liu et al. 1997).

Remark 2.1.15 (Continuity). If the weight function � is Ck then the RKPM shape functions,

and in particular the EFG shape functions, are Ck, see (Liu et al. 1997). Thus, if the cubic

spline is used for the window function, as can be seen in figures 2.6 and 2.7, first and

second derivatives of the shape functions are well defined in all the domain, even with

linear consistency.

Consistency of the EFG interpolation

The expression of the EFG shape functions can be derived in a different way, which will

ensure the consistency properties of the approximation. Consider a set of particles xi and a
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Figure 2.6: Shape function and derivatives for linear finite elements and the EFG interpola-
tion.

complete polynomial base P(x). Let us assume an interpolation of the form

u(x) '
X
i

u(xi)Ni(x); (2.1.26)

with interpolation functions defined as

Ni(x) = �T (x) P(xi) �(
x� xi
�

): (2.1.27)

Now the vector �(x) in Rl+1 is determined imposing the reproducibility/consistency con-

dition. The reproducibility condition imposes that the interpolation proposed in (2.1.26) is

exact for all the polynomials in P, i.e.

P(x) =
X
j

P(xj)Nj(x): (2.1.28)

After substitution of (2.1.27) in (2.1.28), the linear system of equations that determines

�(x) is obtained:

M(x) �(x) = P(x): (2.1.29)
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Figure 2.7: Distribution of particles, EFG interpolation function and derivatives, with
�=h ' 2:2 with circular supported cubic spline and linear consistency.

That is,

�(x) =M�1(x)P(x); (2.1.30)

where M(x) is the same Gram matrix defined in (2.1.22). Finally, the approximation func-

tions Ni in (2.1.26) are defined by (2.1.27) with (2.1.30) and (2.1.22). Note that after sub-

stitution of (2.1.30) in (2.1.27) the expression (2.1.25) for the EFG interpolation functions

is recovered, and consistency is ensured by construction.

Section 2.2.4 is devoted to some implementation details of the EFG method: some

details on the computation of derivatives are recalled.

EFG centred and scaled approach

For computational purposes, it is usual and preferable to centre in xj and scale with �

also the polynomials involved in the definition of the EFG interpolation functions, see (Liu

et al. 1997) or (Huerta and Fernández-Méndez 2000). Thus, another expression for the EFG

shape functions is employed:

Ni(x) = �T (x) P(
x� xi
�

) �(
x� xi
�

); (2.1.31)
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which is similar to (2.1.27). The consistency condition becomes in this case:

P(0) =
X
i

P(
x� xi
�

)Ni(x); (2.1.32)

which is equivalent to condition (2.1.28) when � is constant everywhere (see Remark2.1.16

for non constant �). After substitution of (2.1.31) in (2.1.32) the linear system of equations

that determines �(x) is obtained:

M(x) �(x) = P(0); (2.1.33)

with

M(x) =
X
j

P(
x� xj

�
)PT (

x� xj
�

)�(
x� xj

�
): (2.1.34)

Remark 2.1.16. The consistency conditions (2.1.28) and (2.1.32) are equivalent if the di-

lation parameter � is constant. When the dilation parameter varies at each particle another

definition of the shape functions is recommended

Nj(x) = �T (x) P(
x� xj

�
) �(

x� xj
�j

);

where �j is the dilation parameter associated to particle xj , and a constant � is employed in

the scaling of the polynomials P. Note that expression (2.1.31) is not directly generalized.

The constant value � is typically chosen as the mean value of all the �j . The consistency

condition in this case is also (2.1.32). It also imposes the reproducibility of the polynomials

in P.

This centred expression for the EFG shape functions can also be obtained through a

discrete Moving Least-Squares development with the discrete centred scalar product

< f; g >x=
X
j2I�x

f(
x� xj

�
)g(

x� xj
�

)�(
x� xj

�
): (2.1.35)

The MLS development in this case is as follows: fixed x, for z near x, u is approximated as

u(z) ' u�x(x) = PT

�
z � x

�

�
c(x) (2.1.36)

where c is obtained, as usual, through a least-squares fitting with the discrete centred scalar

product (2.1.35).

Remark 2.1.17. With the centred MLS development and a proper definition of the poly-

nomial space, P , the coefficients in c(x) can be reinterpreted as approximations of u and
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its derivatives at the fixed point x. For example, in 1D with consistency of order two,

P(x) = f1; �x;
(�x)2

2
g and (2.1.36) can be written as

u(z) ' u�x(x) = c0(x) + c1(x)(z � x) + c2(x)(z � x)2: (2.1.37)

So, by derivation with respect to z and replacing z by x,

u(x) ' c0(x); u0(x) ' c1(x) and u00(x) ' c2(x):

In fact, this centred approach corresponds with the Diffuse Element Method interpolation

used, for instance, in (Breitkopf, Rassineux and Villon 2001). Moreover, the Generalized

Finite Difference interpolation or Meshless Finite Difference method, see (Orkisz 1998),

coincides also with this MLS development. The only one difference between the GFD

interpolation and the EFG centred interpolation is the definition of the set of neighbouring

particles I�x .

Partition of the unity methods

The set of MLS interpolation functions can be seen as a partition of unity: the interpo-

lation verifies, at least, the 0-order consistency condition (reproducibility of the constant

polynomial p(x) = 1) X
i

Ni � 1 = 1:

This viewpoint leads to several new approximations for mesh-free methods. Based on the

idea of the Partition of the Unity Finite Element Method in (Babuška and Melenk 1995),

Duarte and Oden (Duarte and Oden 1996) use the concept of partition of unity in a more

general manner by constructing it from the MLS interpolation functions with consistency

of order k � 1. They called their method h-p clouds. The proposed approximation was

u(x) ' u�(x) =
X
i

Ni(x)ui +
X
i

niX
I=1

biI [Ni(x)qiI(x)] ;

where Ni(x) are the MLS interpolation functions, qiI are ni polynomials of degree greater

than k associated to each particle xi, and ui, biI are coefficients to determine. Note that the

polynomials qiI(x) increase the order of the interpolation space. These polynomials can be

different from particle to particle, thus facilitating the hp-adaptivity.

Remark 2.1.18. As commented in (Belytschko, Krongauz, Organ, Fleming and Krysl1996),

the concept of an extrinsic base, qiI(x), is essential for obtaining p-adaptivity. In MLS ap-

proximations, the intrinsic base P cannot vary form particle to particle without introducing

a discontinuity.
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2.2 Implementation details

All the interpolation functions described in section 2.1 can be used in the resolution of

a PDE boundary value problem. Usually SPH methods are combined with a collocation

or point integration technique, while the interpolations based on a MLS development are

usually combined with a Galerkin formulation.

In the following sections some concepts of collocation techniques and Galerkin formu-

lations are recalled; with special attention on the Galerkin formulations and, in particular,

on the Element Free Galerkin method. The model boundary value problem

�u� u = �f in 
 (2.2.1)

u = uD on �D (2.2.2)
@u

@n
= qN on �N (2.2.3)

is considered, where � is the Laplace operator in 2D, � = @2

@x2 + @2

@y2 , n is the unitary

outward normal vector in @
, @
@n = n1

@
@x + n2

@
@ , ��D

S ��N = @
, and f , uD and qN are

known.

2.2.1 Collocation methods

Consider an approximation, based on a set of particles fxig, of the form

u(x) ' u�(x) =
X
i

uiNi(x):

The shape functions Ni(x) can be SPH shape functions (section 2.1.1), or MLS shape func-

tions (section 2.1.2), and ui are coefficients to be determined.

In collocation methods, see (Oñate and Idelsohn 1998), the PDE (2.2.1) is imposed at

each particle in the interior of the domain 
, the boundary conditions (2.2.2) and (2.2.3) are

imposed at each particle of the corresponding boundary. In the case of the model problem,

this leads to the linear system of equations for the coefficients ui:X
i

ui [�Ni(xJ)�Ni(xJ)] = �f(xJ) 8 xJ 2 
;X
i

ui Ni(xJ) = uD(xJ) 8xJ 2 �D;X
i

ui
@Ni

@n
(xJ) = qN (xJ) 8 xJ 2 �N :
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Note that, the shape functions must be C2, and thus, a C2 window function must be used.

In this case the solution at particle xJ is approximated by

u(xJ ) ' u�(xJ) =
X
i

uiNi(xJ );

which in general differs from the coefficient uJ (see remark 2.1.1). There are other pos-

sibilities. In the context of the RMD (Vila 1999), the coefficient uJ is considered as the

approximation at the particle xJ and only the derivative of the solution is approximated

through the Renormalized Meshless Derivative (2.1.7). Thus, the linear system to be solved

becomes X
i

ui �Ni(xJ )� uJ = �f(xJ) 8 xJ 2 
;

uJ = uD(xJ) 8xJ 2 �D;X
i

ui
@Ni

@n
(xJ) = qN(xJ ) 8 xJ 2 �N :

Both possibilities are slightly different from the SPH method by Monaghan (Monaghan

1988) or from SPH methods based on particle integration techniques (Bonet and Kulasegaram

2000).

2.2.2 Methods based on a Galerkin weak form

The mesh-free shape functions can also be used in the discretization of the weak integral

form of the boundary value problem.

In the case of the model problem (2.2.1), the typical weak form (used in the finite

element method) isZ


rvru d
+

Z


vu d
 =

Z


vf dv +

Z
�N

vqN d�; 8v;

where v vanishes at �D and u = uD at �D. However, this weak form can not be directly

discretized with a standard mesh-free interpolation. The shape functions do not verify the

Kronecker delta property (see remark 2.1.1) and thus, it is difficult to select v such that

v = 0 at �D and to impose that u� = uD at �D. Specific techniques are needed in order to

impose Dirichlet boundary conditions. Section2.2.3 is devoted to the treatment of essential

boundary conditions in mesh-free methods.

There are to other important topics in the implementation of a mesh-free method:

� how to evaluate the integrals in the weak form (there is not the concept of finite

element, with a numerical quadrature in each element), and
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� how to localize the neighbouring particles, that is, given a point x where the shape

functions must be computed, identify which particles have a non-zero shape func-

tion at this point (xi such that �(x�xi� ) 6= 0) and which particles are present in the

definition of the shape functions (usually the same particles).

In order to localize the neighbouring particles a regular mesh of squares or cubes (cells)

is usually used, see figure 2.8. The cells must cover all the computation domain 
. For every

cell, the indices of the particles inside the cell are stored. The regular structure of the cell

mesh allows to, given a point x, find the cell where x is located and find the neighbouring

particles just looking in the neighbouring cells.

Figure 2.8: Particle distribution (in blue) and two possible cell structures. The first one is
simpler; however, the second one is adapted to the geometry in a more efficient way.

Several possibilities can be considered to evaluate integrals in the weak form: (1) the in-

tegral can be evaluated taking the particles as integration points of the numerical quadrature

(particle integration), (2) a regular cell structure (that can be the same used for the local-

ization of particles) can be used with a numerical quadrature in each cell (cell integration,
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Figure 2.9: Particle distribution (in blue) and underground mesh.

see figure 2.8) or (3) a, not necessary regular, background mesh can be used to compute

integrals, see figure 2.9. The first possibility (particle integration) is the fastest one, but as

in collocation methods there can be instabilities in the solution and an accurate solution is

not ensured. Recently, many possibilities have been proposed in order to obtain accurate

and stable results with particle integration, see (Bonet and Kulasegaram 2000) for recent de-

velopments. The other two possibilities present the disadvantage that the resulting method

is not considered a truly mesh-free method by some authors (Oñate and Idelsohn 1998).

However, it is important to note that the cell structure, or the background mesh, does not

need to be compatible with the particle distribution, and can be easily generated. In fact,

a background cell structure is needed in all mesh-free methods, even with collocation or

particle integration methods, in order to localize the neighbouring particles. This same

cell structure may be used to compute integrals. However, in the presence of a complex

domain, the boundary of the domain will not coincide with the boundaries of the cells, and

a background finite element mesh will probably give more accurate results.

May be the best possibility is to use a background cell structure for the localization of

neighbouring particles, and to use a background finite element mesh for the computation

of integrals. Note that, the background element mesh can be as simple as you need and,

since it will only be used for the numerical quadrature, it can even include non conforming

elements. Moreover, in a refinement process, the background mesh can remain constant and

only the particle distribution must be refined.
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2.2.3 Essential boundary conditions

Many specific techniques have been developed in the recent years in order to impose es-

sential boundary conditions in mesh-free methods. Some possibilities are: (1) use La-

grange multipliers (Belytschko et al. 1994), (2) modified variational principles (Belytschko

et al. 1994), (3) penalty methods (Zhu and Atluri 1998) ,(4) perturbed Lagrangian (Chu

and Moran 1995), (5) coupling to finite elements (Belytschko, Organ and Krongauz 1995,

Huerta and Fernández-Méndez 2000, Wagner and Liu 2001), or (6) specially modified shape

functions (Gosz and Liu 1996, Günter and Liu 1998, Wagner and Liu 2000), among others.

The Lagrange multiplier method allows us to impose essential boundary conditions in

a simple and accurate way. This method will be commented in detail later. One possible

disadvantage of this method is that, in the resolution of a self-adjoint problem, the discrete

equations leads to a not positive-definite and not banded matrix. The variational principle

provides a banded matrix but with poor accuracy in the boundary conditions.

On the other hand, Liu and coworkers have developed other techniques based on a

suitable definition of the shape functions near the Dirichlet boundaries. The shape functions

can be enforced to conform at essential boundaries (Gosz and Liu 1996). That is,

Ni(xJ) = ÆiJ ; 8 xJ in �D;

and thus, essential boundary conditions can be easily imposed as in standard finite elements.

By introducing an extension of the dilation parameter at each particle xj near the essential

boundary, termed a dilation function �j(x), the shape functions associated to particles out

of �D are made to vanish at the essential boundary. However, the definition of the dilation

function can be difficult in the presence of complex domains, and the computation of the

derivatives of the shape functions becomes a little more difficult due to the dependence of

�j on x.

In (Günter and Liu 1998) the d’Alembert’s principle is developed for mesh-free methods

with both linear or non linear equations and boundary conditions. A mesh-free interpolation

is considered for the solution u (for instance displacements), and the virtual variables Æu

(virtual displacements),

u '
X
i

Ni(x)di = NTd; Æu '
X
i

Ni(x) Ædi = NT Æd;

where NT = fN1; N2 : : : g. In the linear case, the essential boundary conditions can be

written in terms of linear combination,

GTd = g; GT Æd = 0: (2.2.4)
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Orthogonality ofG is assumed and a Jacobian matrix J such that JTG = 0 and JTJ = I is

then considered in order to express d and Æd using generalized variables y and generalized

virtual variations Æy,

d = Jy +Gg; Æd = JÆy:

The constraints (2.2.4) are satisfied for all y and Æy. The approximation can then be written

as

u(x) ' [NJ ]Ty + [NG]Tg;

with NJ = JN and NG = GN. This can be interpreted as splitting the shape functions

N into the interior set NJ and the boundary set NG. The final interpolation resembles

the boundary condition treatment in finite elements. However, when G is obtained by

a collocation technique, an inconsistency of this method is pointed out in (Wagner and

Liu 2000) and a corrected collocation method must be considered.
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Figure 2.10: Mixed interpolation with linear finite element nodes near the boundary and
particles in the interior of the domain, with �=h = 3:2, cubic spline and linear consistency
in all the domain.

In the recent years, some authors have developed mixed interpolations that combine fi-

nite elements and mesh-free methods. This mixed interpolations can be useful for imposing

essential boundary conditions. The idea is to discretize the domain using finite elements

in a neighbourhood of the Dirichlet boundary and a mesh-free interpolation in the rest of

the domain. Thus, the essential boundary conditions can be imposed as in standard finite

elements. In (Belytschko et al. 1995) a mixed interpolation is defined in the transition area

(from the finite elements region to the particles region). This mixed interpolation requires

the substitution of finite element nodes by particles and the definition of ramp functions.

Thus, the transition is of the size of one element and the interpolation is linear. Following
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this idea, (Huerta and Fernández-Méndez 2000) proposes a more general mixed interpola-

tion, with any order of interpolation, supressing the ramp functions and with no substitution

of nodes by particles. This is done preserving consistency and continuity of the solution.

Figure 2.10 shows an example of this mixed interpolation in 1D: two finite element nodes

are considered at the boundary of the domain, with their corresponding shape functions

in blue, and the mesh-free shape functions are modified in order to preserve consistency,

in black. Chapter 4 is devoted to this mixed interpolation, its properties, and its appli-

cations in enrichment and refinement processes. Recently (Wagner and Liu 2001) have

developed a new mixed interpolation with many similarities with the approach in (Huerta

and Fernández-Méndez 2000).

Lagrange multipliers

The Lagrange multiplier method is one of the most accurate methods for imposing essential

boundary conditions. For the model problem defined by (2.2.1), (2.2.2) and (2.2.3) the weak

form can be written asZ


rvru d
+

Z


vu d
 +

Z
�D

v� =

Z


vf dv +

Z
�N

vqN d�; 8 v; (2.2.5)Z
�D

(u� uD) = 0 8 ; (2.2.6)

where �(x) is the Lagrange multiplier and (x) is the associated virtual variable. The

Lagrange multiplier must interpolated in the essential boundary �D. In order to interpolate

� many possibilities can be considered.

Collocation techniques correspond to the interpolation defined by

�(x) '
X
i2ID

Æ(x � xi)�i;

where ID is the set of indices of particles on the essential boundary, ID = fi n xi 2 �Dg,

Æ(x) is the Dirac delta function, and �i are the coefficients of the linear combination. With

this interpolation, the essential boundary conditions are exactly imposed at the particles in

�D. This is a very easy and popular approach, but can suffer from instabilities (Wagner and

Liu 2000).

The essential boundary conditions can also be imposed in weak form, with a continuous

interpolation of the Lagrange multiplier. Some possibilities are

(i) �(x) '
X
i2ID

Ni(x)�i, where Ni(x) are mesh-free shape functions associated to par-

ticles on the essential boundary,
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(ii) �(x) '
X
i2~ID

Ni(x)�i, where Ni(x) are mesh-free shape functions associated to par-

ticles whose supports intersect the essential boundary, ~ID = fi n supp(Ni)
T

�D 6=

?g,

(iii) �(x) '
X
i2~IFE

NFE
i (x)�i, where the multiplier is interpolated with finite element

shape functions, NFE
i (x), associated to a finite element mesh which discretizes only

the essential boundary.

The approximation in (i) is not consistent, in the sense that the approximation of the La-

grange multiplier in �D does not reproduce even a constant multiplier (0-order consistency).

In order to interpolate �(x) in a consistent way, all mesh-free shape functions must be

considered, even those associated with particles outside the boundary; this corresponds to

option (ii). However, usually this interpolation does not verify the LBB inf-sup condition by

Ladyzenskaya-Babuska-Brezzi and the resulting matrix of equations becomes singular. The

third possibility allows used to interpolate the Lagrange multiplier in a consistent and easy

way. Note that the construction of the finite element mesh in the essential boundary usually

does not represent a difficult problem: in 2D problems the FE mesh is a 1D finite element

mesh, and in 3D problems only a part of the 2D boundary must be discretized. In fact, in

most applications, all the boundary must be discretized in order to define the geometry and

the discretization of the essential boundary does not imply an increase in the computational

cost. However, there must be an agreement between the particle discretization in the inte-

rior of the domain and the finite element discretization of the essential boundary, in order

to satisfy the LLB inf-sup condition, avoiding singular matrices, and obtain an accurate

interpolation of the solution in the essential boundary.

2.2.4 EFG implementation details: computation of EFG interpolation func-
tions and derivatives

In order to compute the EFG shape functions and its derivatives in a efficient way, expres-

sions (2.1.27), (2.1.29) and (2.1.22) can be considered (see (Belytschko, Krongauz, Organ,

Fleming and Krysl 1996) and (Belytschko, Krongauz, Fleming, Organ, and Liu 1996)).

Let us assume x 2 R (for higher dimensions the same process can be performed for

each component of x). The derivative of the shape function (2.1.27) can be written as

dNi

dx
(x) = �T

x (x) P(xi) �(
x� xi
�

) +�T (x) P(xi)
1

�
�x(

x� xi
�

); (2.2.7)
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where �x is the derivative of the window function and vector �x is the derivative of vector

�. An expression for �x can be obtained by implicit derivation of (2.1.29),

Mx�+M�x = Px;

where Px in the derivative of vector P. That is, �x(x) is the solution of the linear system

of equations

M(x)�x(x) = Px(x)�Mx(x)�(x);

where matrix Mx is the derivative of matrix M,

Mx(x) =
X
j

P(xj)P
T (xj)

1

�
�x

�
x� xj

�

�
:

and the vector �(x) has been computed previously. Note that the product Mx(x)�(x) can

be computed in a efficient way as

Mx(x)�(x) =
1

�

X
j

P(xj)
�
PT (xj)�(x)

�
�x

�
x� xj

�

�
;

involving only vector operations. The same process can be done for higher order derivatives.

The same development can be done for the centred and scaled approach defined in the

previous section. The derivative of the shape function defined by (2.1.31), (2.1.33) and

(2.1.34), can be computed as

dNi

dx
(x) = 1

�P
T
x (

x�xi
� ) �(x) �(x�xi� ) +PT (x�xi� ) �x(x) �(

x�xi
� )

+PT (x�xi� ) �(x) 1
��x(

x�xi
� );

where vector �x can be obtained as the solution of the linear system of equations

M(x)�x(x) = �Mx(x)�(x):

The vector �(x) has been computed previously and the matrixMx is obtained by derivation

of (2.1.34),

Mx(x) =
X
j

1
�Px

�
x�xj
�

�
PT
�
x�xj
�

�
�
�
x�xj
�

�
+
X
j

P
�
x�xj
�

�
1
�P

T
x

�
x�xj
�

�
�
�
x�xj
�

�
+
X
j

P
�
x�xj
�

�
PT
�
x�xj
�

�
1
��x

�
x�xj
�

�
:

The expression for higher order derivatives of the shape functions can be obtained in a

similar way.



Chapter 3

Locking in the incompressible limit
for the Element Free Galerkin
method

3.1 Introduction

Locking in finite elements has been a major concern since its early developments. It appears

because poor numerical interpolation leads to an over-constrained system. This chapter

studies locking of the Element Free Galerkin (EFG) method near the incompressible limit,

i.e. the so-called volumetric locking. In particular, its behaviour is compared with standard

finite elements, bilinear and biquadratic, which are recalled in Sections3.2.2 and 3.2.3.

Locking of standard finite elements has been extensively studied. It is well known that

bilinear finite elements lock in some problems and that biquadratic elements have a bet-

ter behaviour (Hughes 1987, Armero 1999). Moreover, locking has also been studied for

increasing polynomial degrees in the context of an hp adaptive strategy, see (Suri 1996).

However, locking in mesh-free methods is still an open topic. Originally, see (Belytschko

et al. 1994, Zhu and Atluri 1998), it was claimed that the EFG method did not exhibit

volumetric locking. Now it is clear that this is not true. For instance, Dolbow and Be-

lytschko use the numerical inf-sup condition to analyze the EFG method. Moreover, some

authors (Askes et al. 1999, Dolbow and Belytschko 1999, Chen, Yoon, Wang and Liu 2000)

claim that increasing the dilation parameter locking phenomena in mesh-free methods can

be suppressed, or at least attenuated. Their argument is based on numerical examples

(Askes et al. 1999, Dolbow and Belytschko 1999) or on the heuristic constraint ratio (Chen

et al. 2000) proposed by Hughes (Hughes 1987). Finally they introduce new formulations

to remedy this problem in (Dolbow and Belytschko 1999, Chen et al. 2000).

33
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Here, a modal analysis (an eigenvector and eigenvalue analysis), see Section 3.3, is

performed in order to clarify this issue. That is, the influence of the dilation parameter on

the locking behaviour of EFG near the incompressible limit is determined studying the fun-

damental modes (base of the solution space) and their corresponding energy (eigenvalue).

Moreover, the influence of the order of the approximation is also analyzed. Finally standard

linear and nonlinear tests are performed in order to illustrate and confirm the conclusions of

the modal analysis.

3.2 Volumetric locking in standard finite elements

3.2.1 Preliminaries

Before going into the locking analysis of mesh-free methods some preliminary notions of

locking will be recalled in order to introduce the notation and the approach employed in

following sections. This approach is restricted to a very particular case.

Only small deformations are considered, namelyrsu, where u is the displacement and

r
s the symmetric gradient, i.e. rs = 1

2

�
r

T + r
�
. Moreover, linear elastic isotropic

materials under plane strain conditions are considered. Dirichlet boundary conditions are

imposed on �D, a traction h is prescribed along the Neumann boundary �N and there is

a body force f . Thus, the problem that needs to be solved may be stated as: solve for

u 2 [H1
�D

]2 such that

E

1 + �

Z


r

sv :rsud
+
E

(1 + �)(1� 2�)

Z


(r � v) (r � u) d


=

Z


f � vd
+

Z
�N

h � vd� 8v 2 [H1
0;�D ]

2: (3.2.1)

In this equation, the standard vector subspaces of H1 are employed for the solution u

[H1
�D

]2 :=
�
u 2 [H1]2 j u = uD on �D

	
(Dirichlet conditions, uD, are automatically satisfied) and for the test functions v

[H1
0;�D

]2 :=
�
v 2 [H1]2 j v = 0 on �D

	
(zero values are imposed along �D).

This equation, as discussed in (Suri 1996), shows the inherent difficulties of the incom-

pressible limit. The standard a priori error estimate emanating from (3.2.1) and based on
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the energy norm, which is induced by the LHS of (3.2.1), is

ku� uhk � inf
w2Sh

ku�wk � Cu;�;ph
f(p) (3.2.2)

where Sh is the finite dimensional subspace of [H1
�D

]2 in which the approximation uh is

sought, Cu;�;p is a constant independent of h (characteristic size of the mesh) and p (degree

of the polynomials used for the interpolation), and f(p) is a positive monotone function of

p. The subindices of the constant C indicate that it depends on the Poisson ratio, the order

of the interpolation and the exact solution itself.

From (3.2.1) one can observe the difficulties of the energy norm to produce a small

infimum in (3.2.2) for values of � close to 0:5. In fact, in order to have finite values of

the energy norm the divergence-free condition must be enforced in the continuum case, i.e.

r � u = 0 for u 2 [H1
�D

]2, and also in the finite dimensional space, i.e. r � uh = 0 for

uh 2 Sh � [H1
�D

]2. In fact, locking will occur when the approximation space Sh is not

rich enough for the approximation to verify the divergence-free condition.

Under these conditions, it is evident that locking may be studied from the LHS of

(3.2.1). This is the basis for the modal analysis of locking. The discrete eigenfunctions (the

eigenvectors) corresponding to the LHS of (3.2.1) are computed because they completely

describe, in the corresponding space, the behaviour of the bilinear operator induced by this

LHS.

In computational mechanics it is standard to write the strain, ", and the stress, �, tensors

in vector form. Moreover, under the assumptions already discussed, they are related as

" = Bd; � = C"; C =
E

(1 + �)(1� 2�)

0BBB@
1� � � 0

� 1� � 0

0 0 1�2�
2

1CCCA :

Where d is the vector of nodal displacements (the coefficients corresponding to the ap-

proximation uh in the base of Sh), and B is the standard matrix relating displacements and

strains. Then, the stiffness matrix can be computed as usual,

K =

Z


BTCB d
:

The modal analysis presented in the following is based on K, which is naturally related

to the energy norm in the finite dimensional interpolation space, Sh, defined by the finite

elements employed (and characterized by B).
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3.2.2 Bilinear finite elements (Q1)

The modal analysis of the bilinear (Q1) finite element is performed here. In particular, the

incompressible limit is studied by evaluating the eigenvalues associated to each mode as the

Poisson ratio, �, tends to 0:5, see (Armero 1999).

Figures 3.1, 3.2 and 3.3 present the modes of a bilinear element and the evolution of

the eigenvalues as � goes to 0:5. The logarithm of the eigenvalue is plotted as a function of

the logarithm of 0:5 � �. The three rigid body modes have not been plotted because they

do not have any interest in this study. One can easily recognize in these figures the shear,

the stretch, the volumetric and the two hourglass modes. They are classified, as usual,

see (Armero 1999), in three groups: (1) modes that do not present any locking behaviour,

(2) modes that do have physical locking —the eigenvalue goes to infinity because it is a

volumetric mode—, and (3) modes associated to non-physical locking —in this case, the

hourglass modes—.

The first group, Figure 3.1, presents modes with eigenvalues that do not present an

unbounded growth as � goes to 0:5. In the incompressible limit, � ' 0:5, the displacement

field determined by the eigenvalue can be obtained with a bounded force field. On other

hand, the modes that do present locking, see Figures 3.2 and 3.3, have eigenvalues that go

to infinity when � approaches 0:5. That is, in the incompressible limit, the force field must

be infinite in order to induce the displacements described by the eigenvector. However, such

a behaviour is only expected for the volumetric modes and for the others it is non-physical.

Figure 3.2 shows the second stretch mode (a volumetric mode), which presents the

expected physical locking. The displacement field of this mode does not conserve the area

and, consequently, in the incompressible limit it must have an infinite stiffness (infinite

eigenvalue). That is, if � = 0:5 the component of the solution associated to this mode must

be zero.

However, the hourglass modes shown in Figure 3.3 do conserve the total area but suf-

fer from non-physical locking. The interpolation space is not rich enough to ensure the

divergence-free condition. In fact the hourglass modes do verify thatZ
2

r � uh dx = 0;

but do not comply with the local divergence-free condition. This is clearly a non-physical

locking behaviour. Figure 3.4 shows the difference between a divergence-free displacement

field and its projection on the bilinear interpolation space. A larger approximation space,

for instance biquadratic, may verify the divergence-free condition.
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Figure 3.1: Non locking modes for one bilinear element (Q1)

5 10

0

5

10

−log
10

(0.5−nu)

lo
g 10

(e
ig

)

Figure 3.2: Physical locking mode for one bilinear element (Q1)
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Figure 3.3: Non-physical locking modes for one bilinear element (Q1)

Figure 3.4: Comparison between the hourglass mode and a divergence-free bending field
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Non locking Physical locking Non-physical locking

Figure 3.5: Modes for the Q2 element (9 nodes)

Non locking Physical locking Non-physical locking

Figure 3.6: Modes of four Q1 elements (9 nodes)

In the following section a richer space is chosen: biquadratic finite elements. One

expects that in this space the locking behavior is eliminated, or at least decreased, since

displacement fields closer to a correct one shown in Figure3.4 can be obtained.

3.2.3 Biquadratic finite elements (Q2)

Here the modes for the standard biquadratic element are shown. Moreover, these modes

are compared with those of the previous bilinear element with an equivalent distribution

of nodes. This comparison, standard in finite elements, will be extended to the mesh-free

method.
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Figure 3.5 shows the different modes (the rigid ones are again not shown) for the stan-

dard nine node element. Note that as expected, see (Suri 1996), there are still some non-

physical locking modes. That is, some nodal displacements, which induce global conser-

vation of area, are not able to reproduce a divergence-free field. Nevertheless, most of the

standard academic tests (Askes et al. 1999, Dolbow and Belytschko 1999, Chen et al. 2000)

do perform correctly with the biquadratic element. This simply indicates, and can easily

be verified, that the solution field has a zero (or almost zero) coefficient associated to those

non-physical locking modes.

Remark 3.2.1. In Figure 3.5, as well as in the following ones, the modes are ordered in

each group (non locking, physical locking and non-physical locking) from large to smaller

eigenvalue (left to right).

To further illustrate the importance of the interpolation space the modes of the Q2 ele-

ment are compared with those of four Q1 elements. Note that both approximation spaces

have the same dimension. Nevertheless, from Figures3.5 and 3.6 one can notice that one Q2

element has less non-physical locking modes that the four Q1 elements. Three of the nine

non-physical locking modes present in the Q1 elements (see Figure3.6) have now, with one

Q2, bounded eigenvalues as � goes to 0:5. Thus a richer space does not necessarily mean a

larger space, here both approximation spaces do have the same dimension.

This comparison suggests however two important issues that can influence the incom-

pressible limit locking. The first one is related to the bandwidth. For the same number of

nodes (the same space dimension) Q2 elements present a larger bandwidth. And the second

one is the obvious difference between Q1 and Q2 elements: the order of the polynomi-

als in the approximation space. Mesh-free methods allow to study these two phenomena

independently; this is the objective of the following section.

3.3 Volumetric locking in element free Galerkin methods

In the previous section two alternative procedures were suggested in order to enrich the

interpolation space: (i) increase the bandwidth or (ii) increase the order of the polynomial

base.

Meshfree methods, and in particular the EFG method, see section 2.1.2, are specially

suited for independently checking both alternatives: (i) the bandwidth can be increased

by simply increasing the dilation parameter, which defines the support of the interpolation

functions, keeping the consistency (order of the polynomial approximation) constant; (ii) for
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Non locking Physical locking Non-physical locking

Figure 3.7: Modes for a 3� 3 distribution of particles with Q1 and �=h = 1:2.

Non locking Physical locking Non-physical locking

Figure 3.8: Modes for a 3� 3 distribution of particles with Q1 and �=h = 2:2.

large values of the dilation parameter the consistency can be also increased independently.

In the following, the polynomial spaces introduced in remark 2.1.8, Pm and Qm, are

considered. The behaviour of the EFG interpolation generated by the Qm polynomial space

will be discussed in detail in order to compare with the finite element spaces presented

previously, see Sections 3.2.2 and 3.2.3. However, two tables summarizing the locking

properties are presented for the Pm space. For simplicity, a rectangular support is chosen

for the weighting function: �(x) = �1D(jx1j) �1D(jx2j) where �1D is the cubic spline in

one dimension. However similar results can be obtained with Gaussian weighting functions

or with circular supports.
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Figure 3.9: Evolution of the eigenvalue as � goes to 0:5 for the same non-physical locking
mode obtained with �=h = 1:2, and 2:2.

3.3.1 Locking for bilinear consistency

In order to compare the results of EFG with the previous ones obtained with finite elements,

see Sections 3.2.2 and 3.2.3, a distribution of 3 � 3 particles is employed. Bilinear consis-

tency corresponds to the polynomial spaceQ1, namelyP = f1; x; y; xygT . Figures 3.7 and

3.8 show the modes already classified for two different dilation parameters, �=h = 1:2 and

2:2.

As expected the case of �=h = 1:2 does coincide with the Q1 element, see Figure

3.6. Recall that at the Gauss points the shape functions of the Q1 finite element and the

interpolation functions for EFG with �=h = 1:2 are almost identical, see remark 2.1.13,

thus the eigenvalue analysis should give similar results.

By increasing �=h up to 2:2 with the same consistency requirement the bandwidth of the

matrix is increased. Nevertheless, the same number of non-physical locking modes is ob-

tained. Notice however that an increase of the dilation parameter improves the smoothness

of the approximation. The same modes are obtained but the interpolation of the displace-

ments is smoother. This clearly indicates that an increase of the dilation parameter does not

preclude locking. In fact the same modes will still present locking.

This conclusion does not contradict previous numerical experiments (Askes et al. 1999,

Dolbow and Belytschko 1999, Chen et al. 2000). In Figure 3.9 the evolution of eigenvalue

as � goes to 0:5 is plotted for the same non-physical locking mode obtained first with �=h =

1:2 and then with 2:2. As noticed before the shape of the mode is improved increasing the

dilation parameter. This is a clear indication that at a given point x more particles interact

and a better interpolation is obtained. This better approximation does not preclude locking
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Table 3.1: Mode classification for a distribution of 4� 4 particles/nodes

�=h = 2:2 �=h = 3:2 �=h = 2:2 �=h = 3:2 �=h = 3:2
Q1 Q2 Q1 Q1 Q2 Q2 Q3

Non locking 6 - 6 6 9 9 14
Physical locking 4 - 4 4 4 4 4
Non-physical locking 19 - 19 19 16 16 11

Table 3.2: Mode classification for a distribution of 5� 5 particles/nodes

�=h = 2:2 �=h = 3:2 �=h = 2:2 �=h = 3:2 �=h = 3:2
Q1 Q2 Q1 Q1 Q2 Q2 Q3

Non locking 8 16 8 8 11 11 16
Physical locking 6 6 6 6 6 6 6
Non-physical locking 33 25 33 33 30 30 25

but reduces its effect by decreasing the eigenvalue. As � goes to 0:5 the energy needed

grows unbounded but for a constant � as �=h increases the eigenvalue decreases. Thus

volumetric locking is not suppressed when the dilation parameter increases but, as noticed

in (Askes et al. 1999, Dolbow and Belytschko 1999, Chen et al. 2000) its effect is attenuated.

If the patch of particles is increased, in order to use larger dilation parameters, similar

conclusions are drawn:

1. The number of non-physical locking modes is independent of the ratio �=h.

2. An increase of the dilation parameter decreases the eigenvalue (amount of energy)

of the locking mode attenuating, but not suppressing, the volumetric locking (in the

incompressible limit the same problems will occur).

Figures 3.10, 3.11 and 3.12 show the modes for a 4 � 4 particle distribution. This patch

can be compared with nine Q1 elements. Bilinear consistency is still imposed, P =

f1; x; y; xygT , and the ratios studied correspond to �=h = 1:2, 2:2 and 3:2. Table 3.1

presents a summary of these results. Moreover, Figure 3.13 compares the evolution of the

eigenvalue associated to the same non-physical locking mode for the previously indicated

ratios.

The same conclusions are obtained with a larger number of particles, Table3.2 presents

a summary of the results.
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Non locking Physical locking Non-physical locking

Figure 3.10: Modes for a 4� 4 distribution of particles with Q1 and �=h = 1:2.

Non locking Physical locking Non-physical locking

Figure 3.11: Modes for a 4� 4 distribution of particles with Q1 and �=h = 2:2.

Non locking Physical locking Non-physical locking

Figure 3.12: Modes for a 4� 4 distribution of particles with Q1 and �=h = 3:2.
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Figure 3.13: Evolution of the eigenvalue as � goes to 0:5 for the same non-physical locking
mode obtained with �=h = 1:2, 2:2, and 3:2.

Remark 3.3.1. At this point it seems important to notice that although the modal analysis

suggests that increasing the dilation parameter locking is alleviated, in practice the dilation

parameter can not be taken arbitrarily large. Recall that the EFG method is based on a MLS

approximation. The local nature of such approximation will be lost for arbitrarily large

�. In fact, for large enough values of � a global least-squares approach is recovered. The

numerical examples shown in Section 3.4 corroborate this issue.

Remark 3.3.2. Non-physical or physical locking modes are determined depending on the

conservation or not of the area. In order to verify the conservation of area and to preclude

numerical errors two techniques are used: (1) numerical integration of the divergence of the

displacement and (2) computation of the displacement flux along the edges. Both methods

give the same results with a clear threshold (several orders of magnitude) between constant

or variable area.

3.3.2 Locking for biquadratic consistency

In finite elements when the order of consistency is increased volumetric locking is allevi-

ated, and in some cases suppressed (Suri 1996). As previously done for finite elements,

quadratic consistency is studied. First, the results previously obtained with the Q2 element

are reproduced with the EFG method. Thus a domain defined with a distribution of 3�3 par-

ticles is employed with consistency in Q2, i.e. P = f1; x; y; xy; x2; y2; x2y; xy2; x2y2gT .

Figure 3.14 shows the modes in this case, which, as expected, do coincide with the modes

of the Q2 element, see Figure 3.5. The ratio �=h is in this case 2:2. Every point in the
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Non locking Physical locking Non-physical locking

Figure 3.14: Modes for a 3� 3 distribution of particles with Q2 and �=h = 2:2.

Non locking Physical locking Non-physical locking

Figure 3.15: Modes for a 4� 4 distribution of particles with Q2 and �=h = 2:2.

Non locking Physical locking Non-physical locking

Figure 3.16: Modes for a 4� 4 distribution of particles with Q2 and �=h = 3:2.
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Table 3.3: Mode classification for a distribution of 4� 4 particles/nodes

P1 P2 P1 P2 P3

Non locking 11 - 6 8 11
Physical locking 6 - 4 4 3
Non-physical locking 12 - 19 17 15

Table 3.4: Mode classification for a distribution of 5� 5 particles/nodes

P1 P2 P4 P1 P2 P3 P4

Non locking 15 23 27 8 10 13 17
Physical locking 10 7 6 6 6 5 6
Non-physical locking 22 17 14 33 31 29 24

domain is under the influence of the nine particles. In fact, second order consistency can

not be obtained with �=h = 1:2 because the first necessary condition presented in Remark

2.1.11 is not satisfied.

This reduction in the number of non-physical locking modes is also observed when a

4 � 4 distribution of particles is used. See Figures 3.15 and 3.16 which should compare

with Figures 3.10, 3.11 and 3.12. A summary of these results is shown in Table 3.1. This

reduction of non-physical modes due to an increase in the order of consistency is not af-

fected when the dilation parameter is modified. These results can not be compared with the

Q2 element because it is not possible with biquadratic elements to obtain a distribution of

4� 4 nodes.

If a distribution of 5 � 5 particles is chosen, results may be compared between EFG,

Q1 and Q2 finite elements. The results are presented in Table 3.2. Again, the number

of non-physical modes is reduced compared with the linear order of consistency. However,

compared with the Q2 element, the EFG method has more non-physical locking modes than

the biquadratic finite element. Recall that in EFG all approximation functions are identical.

This is not the case for finite elements, midside nodes have different shape functions than

corner nodes.

Finally, for completeness, Tables 3.3 and 3.4 show, for the same 4�4 and 5�5 particle

distribution, a comparison between the complete set of polynomials Pm (degree � m), see

Remark 2.1.8, and their corresponding finite elements. Notice that similar conclusions can

be drawn.
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3.4 Numerical examples

In this section three standard academic examples are used to illustrate the previously ob-

tained results.

3.4.1 The cantilever beam

A beam with linear isotropic material, under plane strain conditions and with a parabolic

traction applied to the free end is considered, as shown in Figure 3.17. Displacements in

-

6

X

Y

?

6
1

� 8 -

�D

6

P

Figure 3.17: Cantilever beam problem

both directions are prescribed at �D. The prescribed displacements and the applied traction

are such that the solution is known in closed form (Hughes 1987, Dolbow and Belytschko

1999):

ux = �
2E

1� �2
y

�
(48 � 3x)x+ (2 +

�

1� �
)(y2 � 0:25)

�
;

uy =
2E

1� �2

�
3

�

1� �
y2(8� x) + (4 + 5

�

1� �
)
x

4
+ (24� x)x2

�
�xx = �12y(8� x); �yy = 0; �xy = 6(0:25 � y2)

The problem is solved with uniform distributions of nodes, when FE are used, or particles,

when EFG is used.

Figure 3.18 shows the relative L2 error in displacements for � = 0:3; 0:4999 and

0:499999. Results are shown for 3-noded linear FE (P1), 4-noded bilinear FE (Q1), 6-noded

quadratic FE (P2) and 8-noded FE (Q2�). The typical convergence rates are obtained when

� = 0:3, but, as expected, results degrade as � gets closer to the incompressible limit 0.5.

All interpolations suffer from volumetric locking. However, the best results are obtained

with interpolations of order two, where locking effects are negligible when � = 0:4999 and

good results are still obtained when � = 0:499999.
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Figure 3.18: Relative L2 error with FE and � = 0:3, 0:4999, 0:499999
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Figure 3.19: Relative L2 error with EFG and � = 0:3, 0:4999, 0:499999
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Figure 3.20: Relative L2 error with Q1 and �=h = 1:6 (left), with Q1 and �=h = 3:2
(centre) and with Q2 and �=h = 3:2 (right).

Similar results are shown for EFG in Figures 3.19 and 3.20. The cubic spline weighting

function with circular support is used to define the EFG shape functions and Lagrange

multipliers are used in order to impose the prescribed displacements.

Interpolations with consistency of order one, P1 and Q1, are considered in Figure 3.19

with three different values of the ratio �=h. Note that, for a given �=h, similar behaviours

are obtained with the P1 and Q1 interpolations, as the modal analysis showed. Far from

the incompressible limit, when � = 0:3, the convergence is as expected or even better. The

best solutions are always obtained when �=h = 3:2. However, near the incompressible
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limit the solution suffers from locking for all values of �=h: the solution degrades as � gets

closer to the incompressible limit as can be seen in Figure3.20. Figure 3.20 also shows the

results obtained with a Q2 interpolation. In this example, with consistency imposed in Q2,

locking effects are small since the solution has an almost zero projection in the subspace of

non-physical locking modes.

3.4.2 The plate with a hole

The stress field of an infinite plate with a hole subject to a far-field unit traction in the x

direction is (Timoshenko and Goodier 1987, Dolbow and Belytschko 1999):

�xx = 1�
a2

r2

�
3

2
cos(2�) + cos(4�)

�
+

3a4

2r4
cos(4�)

�yy = �
a2

r2

�
1

2
cos(2�)� cos(4�)

�
�

3a4

2r4
cos(4�)

�xy = �
a2

r2

�
1

2
sin(2�) + sin(4�)

�
+

3a4

2r4
sin(4�)

where a = 1 is the hole radius, r =
p
x2 + y2 and � = arctan(y=x). The bounded

upper quadrant shown in Figure 3.21 is used to solve the problem. Symmetry conditions

are imposed in x = 0 and y = 0 and the tractions of the exact solution are considered in �.

-
X

6
Y

�
���
1

� 5 -

�

63  PARTICLES 221 PARTICLES

475 PARTICLES 825 PARTICLES

Figure 3.21: Problem statement for the plate with hole and discretizations.

Figure 3.22 shows the relative energy error with FE and � = 0:3, 0:4999. When � = 0:3

typical convergence results are obtained with all interpolations. However, all the FE inter-

polations, even the eight-noded FE (Q2�), suffer from locking when � = 0:4999. In this
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Figure 3.22: FE, � = 0:3 (left) and � = 0:4999 (right)
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Figure 3.23: EFG, � = 0:3 (left) and � = 0:4999 (right)

example, there is a non-negligible projection of the solution in the space of non-physical

locking modes, even for the Q2� FE. Similar results are obtained with EFG imposing con-

sistency with several polynomial spaces. Two values of �=h are considered for the Q1

consistency. Again, the behaviour is independent of �=h. Better results are obtained with

large �=h but locking effects are important in all cases. Near the incompressible limit, as in

FE, good results can not be obtained with any of the interpolations.

3.4.3 The Prandtl’s punch test

In this section a non-linear example is considered, the so-called Prandtl’s punch test (Askes

et al. 1999). A bilinear perfect elastoplastic material is considered and plane strain condi-
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tions are assumed. The domain is shown in Figure 3.24.
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Figure 3.24: Prandtl’s punch test: problem statement
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Figure 3.25: Load versus displacement with 9� 9 particles, m = 1 and � = 0:49.

It has one axis of symmetry and only a half of the domain is discretized. The prescribed

displacements are depicted in the same figure. The cubic spline is used for the weighting

functions with rectangular supports. Lagrange multipliers have been used to impose the

essential boundary conditions. Figures 3.25, 3.26, 3.27 and 3.28 show the evolution of the

reaction force against the imposed displacement. The reaction force is normalized by the

yield stress �Y and the area.
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Figure 3.26: Load versus displacement with 9�9 (up) and 17�17 (down) particles, m = 1
and � = 0:49.

Figure 3.25 shows the solution obtained with EFG, imposing consistency in Q1, with a

uniform distribution of 9�9 particles. As noted in (Askes et al. 1999), locking alleviates as

�=h increases. Locking effects drastically degrade the solution when �=h = 1:2 (similar to

Q1 FE), but a good solution can be obtained with �=h = 3:2. With these results, one could

conclude: (1) there are no locking effects when �=h is large enough, and (2) locking effects

decrease as �=h increases. Both conclusions would be false.

Figure 3.26 shows the results with several values of �=h. The best result is obtained

still with �=h = 3:2 but locking effects increase if the ratio �=h is increased further. Si-

milar results are obtained with a distribution of 17 � 17 particles. In both cases there are

particles with no interaction with the boundary. Note that the solution is enhanced with the

refinement due to the convergence of the interpolation. However, one can observe again an

optimal value for the dilation parameter at �=h = 3:2. A summary of these results is shown

in Table 3.5. Optimal values for �=h are emphasized with bold face.

Table 3.5 also includes the results obtained with a Poisson coefficient � = 0:49999.
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Table 3.5: Load at the final displacement for the Prandtl’s punch test.

9� 9 particles 17� 17 particles 9� 9 particles
� = 0:49 � = 0:49 � = 0:49999

�=h = 2:2 5.329 4.514 17.855
�=h = 3:2 5.087 4.385 16.078
�=h = 4:2 5.163 4.642 9.856
�=h = 5:2 5.558 4.638 9.348
�=h = 6:2 5.583 4.768 14.754
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Figure 3.27: Reaction force vs displacement with 9� 9 particles and � = 0:49999

The evolution of the reaction force versus the displacement close to the incompressible

limit is shown in Figure 3.27. Now the optimal value for the dilation parameter is in the

neighbourhood of �=h = 5:2. Nevertheless, the solution is excessively bad because of the

locking effects for all values of �. The discretization must be refined in order to obtain an

acceptable solution.

That is, an increase in the dilation parameter � can alleviate locking. However, it is

not advisable to arbitrary increase the dilation parameter. An increase in the ratio �=h

will induce a larger band-width with its corresponding increase in the computational cost.

Moreover, in the examples, there is an optimal value for �=h that gives the best result: the

solution degrades when �=h is larger than this optimal value. However, even at this optimal
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Figure 3.28: Load versus displacement with 9 � 9 (up) and 17 � 17 (down) particles, Q2
consistency and � = 0:49.

value the solution can be useless because of locking effects.

On the other hand, in this example, an increase in the order of consistency does not

improve enough the solution. The non-physical locking modes for the Q2 consistency have

an important component in the solution. Figure 3.28 shows the reaction force against the

displacement with � = 0:49 and several values of �=h. Again there is an optimal value for

the ratio �=h, now in the neighbourhood of �=h = 4:2.

3.5 Conclusions

A modal analysis has been used to study volumetric locking in EFG. The number of non-

physical locking modes has been compared with equivalent finite element formulations. The

influence of the ratio between the dilation parameter and the distance between particles, �=h

has been studied independently of the consistency required. Finally some numerical exam-
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ples have been used to corroborate the results of the modal analysis. The major conclusions

are:

1. The number of non-physical locking modes is independent of the ratio �=h.

2. An increase of the dilation parameter decreases the eigenvalue (amount of energy)

of the locking mode attenuating, but not suppressing, the volumetric locking (in the

incompressible limit the same problems will occur).

3. An increase in the order of consistency decreases the number of non-physical locking

modes.

4. The decrease in these non-physical locking modes is slower than in finite elements.

Thus EFG will not improve the properties of FEM (from a volumetric locking view-

point) when p or h-p refinement is enforced. However, for practical purposes and as

in finite elements, in EFG an hp strategy will also suppress locking. Moreover, note

that EFG incorporates an hp strategy in a simpler and more natural manner.
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Chapter 4

Enrichment and Coupling of the
Finite Element and Mesh-free
Methods

4.1 Introduction

Mesh-free or particle methods have nowadays proven their applicability in computational

mechanics, see Chapter 2 or (Liu, Belytschko and Oden 1996) for a general presentation.

They do not require to generate a mesh (a connectivity matrix) and thus, they are specially

suited for certain problems, for instance adaptive refinement computations or discontinuous

field problems, i.e. crack propagation problems (Belytschko and Tabbara 1996). Moreover,

the interpolation functions in mesh-free methods are particularly attractive in the presence

of high gradients, concentrated forces, and large deformations.

On the other hand, from a practical point of view, finite elements are less costly, im-

plement Dirichlet boundary conditions in a simple way (no need for Lagrange multipliers),

and, above all, they are widely used and trusted by practitioners. However, the relative cost

of the mesh generation process is, for some problems, very large. In particular, the cost of

remeshing in adaptive refinement problems is clearly not negligible.

Several authors have already proposed to use mixed finite elements and mesh-free inter-

polations. The objective is always to use the advantages of each method. Belytschko et al.

already show how to couple finite elements near the Dirichlet boundaries and element-free

Galerkin in the interior of the computational domain, see (Belytschko et al. 1995). This

simplifies considerably the prescription of essential boundary conditions. They do a mixed

interpolation in the transition region: area where both finite elements and particles have

an influence. This mixed interpolation requires the substitution of finite element nodes by

57
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particles and the definition of ramp functions. Thus the transition is of the size of one finite

element and the interpolation is linear. With the same objectives Hegen couples the finite

element domain and the mesh-free region with Lagrange multipliers, see (Hegen 1996).

Here a new formulation is proposed. It follows the ideas of Belytschko et al., generalizes

them for any order of interpolation, suppresses the ramp functions, and does not require the

substitution of nodes by particles. That is, as many particles as needed can be added where

they are needed independently of the adjacent finite element mesh. This is done preserving

the continuity of the solution and enforcing uniform consistency for the mixed interpolation.

Liu et al. propose a mixed interpolation with other goals and different formulations,

see (Liu, Uras and Chen 97). They suggest to enrich the finite element approximation with

particle methods. In fact, the following adaptive process seems attractive: (1) compute an

approximation with a coarse finite element mesh, (2) do an a posteriori error estimation, and

(3) improve the solution with particles without any remeshing process. Mesh-free methods

are ideal for such a procedure.

In this chapter a unified and general formulation for mixed interpolations in both cases

(coupling and enrichment) is presented. The formulation is developed for the EFG method.

However, its generalization to other particle methods is straightforward.

In the following sections the formulation is developed, the applicability conditions are

discussed and the convergence properties are presented. Finally several examples are pre-

sented to illustrate the advantages of such a mixed approximation.

4.2 A hierarchical mixed approximation: finite elements with

EFG

Suppose, as discussed in the introduction, that the interpolation of u(x) in 
, 
 � Rn , is

done with both finite elements and EFG. The domain must include a set of nodes fxigi2Ih

with their associated shape functions Nh
i (x), that are going to take care of the finite element

contribution, uh(x), to u(x), namely,

uh(x) =
X
i2Ih

u(xi)N
h
i (x): (4.2.1)

There is also a set of particles fxjgj2I� with their associated interpolation functions N�
j (x),

that are going to take care of the mesh-free contribution,

u�(x) =
X
j2I�

u(xj)N
�
j (x): (4.2.2)
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In the more general case, the domain 
 is the union of two non-disjoint subdomains,


 = 
h [ 
�, where 
h denotes the subdomain where the Nh
i have an influence in the

approximation,


h = fx 2 
 = 9 i 2 Ih Nh
i (x) 6= 0g;

and where 
� is the subdomain where at least one N�
j is non zero,


� = fx 2 
 = 9 j 2 I� N�
j (x) 6= 0g:

In the region where only finite elements are present, 
hn
�, a standard, and thus consistent,

finite element approximation is considered:

u(x) ' uh(x):

In the region where only particles have an influence, 
�n
h, the standard, and thus consis-

tent, EFG approximation is considered:

u(x) ' u�(x):

However, in the area where both interpolations have an influence, e
 := 
h \ 
�, a mixed

interpolation must be defined

u(x) ' uh(x) + u�(x): (4.2.3)

The objective now is to develop a mixed functional interpolation, such as (4.2.3), with

the desired consistency in e
, without any modification of the finite element shape functions

Nh
i and such that u�(x) is hierarchical. That is, an EFG contribution which should be zero

at the finite element nodes, must be added to the standard finite element interpolation. Ob-

viously, such a contribution must verify consistency conditions similar to those of standard

mesh-free methods see section 2.1.2

In the following sections this mixed interpolation is developed and discussed. In par-

ticular, the admissible particle distribution is detailed. Moreover, a priori convergence is

studied when the number of particles is increased, when the number of nodes is increased,

and when both particles and nodes are increased.

Moreover, two cases will be considered with the same formulation. The first one

(Coupled Finite Element and Element-Free Galerkin) requires that 
h 6= 
 and 
� 6=


. That is, in a region of 
 only finite elements will be used, in another region only EFG

are employed, and finally in a mixed area, e
, the solution is approximated using (4.2.3). In

the second case, 
 = 
h and e
 = 
�. That is, there is a complete finite element basis
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Figure 4.1: Coupled Finite Element and Element-Free Galerkin

Figure 4.2: Finite Element Enrichment with Element-Free Galerkin

all over 
. Only in a reduced area, e
, particles are added to improve the interpolation

(Finite Element Enrichment with Element-Free Galerkin). Both situations are depicted

in figures 4.1 and 4.2, and developed in sections 4.3 and 4.4.

4.2.1 Evaluation of the mesh-free shape functions N�
j

In e
 the expression of the interpolation function is obtained after substitution of (4.2.1) and

(4.2.2) into (4.2.3), namely

u(x) '
X
i2Ih

u(xi)N
h
i (x) +

X
j2I�

u(xj)N
�
j (x): (4.2.4)

Where N�(x) is defined, as in standard EFG:

N�
j (x) = �T (x) P(

x� xj
�

) �(
x� xj

�
); (4.2.5)

The vector of unknown functions, �(x), is determined using the consistency condition.

Now the reproducibility conditions impose that (4.2.4) must interpolate exactly a complete

basis of polynomials of order less or equal to m. That is,

P(0) =
X
j2I�

P(
x� xj

�
)N�

j (x) +
X
i2Ih

P(
x� xi
�

)Nh
i (x); (4.2.6)
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which is the natural extension of (2.1.32). Note that, if � is constant everywhere, equation

(4.2.6) can be rewritten as

P(x) =
X
j2I�

P(xj)N
�
j (x) +

X
i2Ih

P(xi)N
h
i (x); (4.2.7)

which shows more clearly the desired reproducibility condition. The linear system of equa-

tions that determines � is obtained once the definition of N�(x), equation (4.2.5), is substi-

tuted in (4.2.6).

M(x) �(x) = P(0) �
X
i2Ih

P(
x� xi
�

)Nh
i (x): (4.2.8)

The least squares matrix is identical to the matrix employed in the standard EFG method,

Eq. (2.1.34).

Remark 4.2.1. The particle shape functions N�
j are hierarchical. Note that at any node xk,

k 2 Ih, the right hand side of (4.2.8) is zero,

P(0) �
X
i2Ih

P(
xk � xi

�
)Nh

i (xk) = P(0) �
X
i2Ih

P(
xk � xi

�
)Æik = 0:

Thus, the solution of (4.2.8) is trivial, �(xk) = 0. And therefore, from the definition of

the particle shape functions, (4.2.5), it is easy to verify that the N�
j (x) are hierarchical, i.e.

N�
j (xk) = 0 8 j 2 I�; k 2 Ih.

Remark 4.2.2 (Admissible particle distributions). As in standard EFG, matrix M(x) must

be regular (invertible) everywhere, i.e. at each point x 2 e
. Only the right hand side of

(4.2.8) differs from the EFG system of equations, Eq. (2.1.33). Thus, as in EFG, the number

of particles, their position and their related dilation parameters can not be taken arbitrarily.

The restrictions presented in remark 2.1.11 for the particle distribution in EFG, are also

valid for possible distributions of particles in a mixed interpolation. For instance, in a one-

dimensional domain with an order one consistency (linear interpolation) a finite element

node can not be replaced by a single particle, see figure 4.3. Two particles, with dilation

parameters large enough, are needed in order to ensure that everywhere in e
 the scalar

product, (2.1.35), does not degenerate. Figures 4.3 and 4.4 depict these situations. For each

particle, its corresponding weighting function �(x�xi� ) is plotted. Figure 4.5 also shows a

non admissible distribution of particles. In the region where both particle and finite element

interpolations have an influence, e
, there are not enough particles (only one is present) to

ensure the regularity of M(x). An obvious solution for this problem, maintaining the same

particle distribution, is to chose a dilation parameter large enough, see figure4.6.
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Figure 4.3: Substitution of a finite element node by one particle. Non admissible distribu-
tion.

Figure 4.4: Substitution of a finite element node by two particles. Admissible distribution.

Figure 4.5: Non admissible distribution. e
 is under the influence of only one particle.

Remark 4.2.3. The shape functions N�
j are hierarchical. Thus, in one dimension, the

weighting functions �(x�xi� ) can be truncated outside 
� and continuity of N�
j (x) is pre-

served, see figures 4.4 and 4.6. This property can not be generalized to higher dimensions.

In fact sections 4.3 and 4.4 discuss this issue.

Remark 4.2.4. As previously indicated for EFG, in section 2.1.2, the interpolation functions

could be defined using (2.1.27) instead of (4.2.5). However, it is preferable to scale the

polynomials P(x) as done previously, because Gram matrices, such as M, are easily ill-

conditioned, specially with the trivial basis of polynomials. In general, with the translation

to x and the scaling with �, Gram matrices have lower condition numbers.
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Figure 4.6: Approximation functions before and after imposing the consistency condition
of order one.

4.3 Coupled Finite Element and Element-Free Galerkin

In this section, a new formulation, which generalizes the coupled formulation proposed

by Belytschko et al. (1995) is presented. This coupling between finite elements and EFG

maintains both continuity and consistency everywhere, in particular, in the transition area.

The major differences with the previously cited reference are: (1) there is no need to replace

nodes by particles, and (2) no ramp functions must be defined.

In fact, the generalization proposed here can be used for any order of consistency (it

can go beyond linear elements and order one consistency). Moreover, this method allows

to introduce as many particles as desired in the last element that defines the transition area,

see figures 4.7 and 4.8.

The computational domain 
 is divided in three non disjoint regions: one where fi-

nite elements have an influence, 
h, another where particles have an influence, 
�, and

finally, one region, e
, for the transition. In the latter, both particles and nodes define the

interpolation, see figure 4.1. Such a situation may be of interest if a computation with finite

elements of degree p needs to be refined in a region 
� without remeshing. The nodes of the

original finite element mesh are removed in 
� but as many particles as needed are added in

that region (see the crack propagation examples in the papers by Belytschko and coworkers

(Belytschko et al. 1995, Belytschko and Organ 1997, Belytschko and Tabbara 1996, Organ,

Fleming, Terry and Belytschko 1996)).
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Figure 4.7: Coupled approximation functions with consistency of order one and two parti-
cles in the transition region e
.

It is important to notice that the approximation uh + u� is continuous everywhere in 


if the following conditions are met. First, the same order of consistency is imposed all over


 (i.e. for both finite elements and particles), namely, m = p. And second, the domain

of influence of particles, 
�, coincides exactly with the region where finite elements do

not have a complete basis. That is, no particles are added in “complete” finite elements

(i.e. elements where no node has been suppressed). Moreover, weighting functions � are

chopped off in those “complete” finite elements, see figure 4.6. In other words, 
� is the

union of elements where at least one node has been removed.

The approximation uh + u� is continuous as long as the shape functions N�
j are con-

tinuous. In spite of chopping off the weighting functions outside 
� the approximation

maintains its regularity. This is due to the fact that N�
j (x) = 0 over 
h \ @
�, with

absolute independence of the fact that �(x�xj� ) 6= 0 over 
h \ @
�.

In 
hn
� the finite element interpolation is complete and of order m. In particular, over


h\@
� polynomials of degree less or equal to m are interpolated exactly. Thus, it is easy

to verify that

P(0) �
X
i2Ih

P(
x� xi
�

)Nh
i (x) = 0 over 
h \ @
�:

Recalling (4.2.8), the previous equation implies that �(x) = 0, and consequently, N�
j (x) =

0 for x 2 
h \ @
�, see equation (4.2.5). Note that the previous rationale is independent
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Figure 4.8: Coupled approximation functions with consistency of order two and two diffe-
rent distributions of particles.
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Figure 4.9: Convergence of FEM and coupled FEM-EFG for a distribution of elements and
particles shown in figure 4.6.

of the spatial dimensions. Thus, in 1D, 2D or 3D, the shape functions N�
j are continuous

independently of the truncation of the weighting functions �(x�xj� ), see figure 4.6.

Remark 4.3.1. In 
�n
h finite elements have no influence,

P(0)�
X
i2Ih

P(
x� xi
�

)Nh
i (x) = P(0):

In this region, shape functions N�
j are identical to the standard EFG ones.

Convergence analysis. It is easy to verify that the mixed interpolation proposed preserves

the convergence rate of FEM and EFG. Function

u(x) = x4 + 2 x3 is interpolated for x 2 
 = [�1; 1]:

The three regions of influence of finite elements, particles and the mixed interpolation are:


h = [�h; 1], 
� = [�1; 0] and e
 = [�h; 0], where h is the size of finite elements, see

figure 4.6.

Figure 4.9 shows the convergence rate —logarithm of the error in L2([�1; 1]) versus

the total number of degrees of freedom— in two cases: standard linear finite elements and a

coupled finite element–EFG approximation of order one. With this distribution of particles

and with consistency of order one, this approach gives the same results as the one proposed
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by Belytschko et al. (1995). Similar conclusions can be drawn with other distributions of

particles and order of consistency, see in the same figure the convergence results obtained

with m = 2 and a particle distribution of figure 4.8.

4.4 Finite Element enrichment with Element-Free Galerkin

A finite element approximation can be improved (enriched) without any need of remesh-

ing by adding particles. Particle methods have demonstrated their advantages in adaptive

computations and their suitability to capture large gradients, concentrated loads and large

deformations. Thus enrichment of finite elements with mesh-free methods of the desired

order seems a attractive option in these problems.

In this case, the region e
 where particles are added also maintains the original complete

finite element interpolation, see figure 4.2. In e
, the consistency of the mixed interpolation

m must be larger than the order of the finite element interpolation p. If consistency is set

equal to p, finite elements can reproduce exactly polynomials up to degree p, thus

P(0) �
X
i2Ih

P(
x� xi
�

)Nh
i (x) = 0 8x 2 e
;

and the solution of (4.2.8) is the trivial one, � = 0. Consequently, the interpolation func-

tions related to the particles N�
j are identically zero everywhere. Thus P(x) must include

at least one polynomial not reproducible by the finite element interpolation, i.e. m > p.

As previously seen in section 4.2 the shape functions N�
j are hierarchical. Thus the

interpolation is continuous in one dimensional problems irrespectively of the truncation of

the weighting functions, �(x) outside e
. In higher dimensions, continuity is not preserved

as soon as the order of consistency is not constant and uniform everywhere in 
. In fact, the

increase in consistency just mentioned in e
 will induce discontinuities in the approximation

along @e
: functions N�
j are hierarchical but do not go to zero everywhere on @e
. If the

approximation must be continuous a region surrounding e
 must be defined in which the

interpolation functions N�
j go to zero with continuity. However, if @e
 coincides with an

area where finite elements capture accurately the solution, those discontinuities due to the

enrichment are going to be small.

Remark 4.4.1. Linear elements in 1D reproduce exactly polynomials of degree less or equal

to one. In this case the first two equations of the system of equations (4.2.8) are the consis-

tency conditions: X
j2I�

N�
j (x) = 0;

X
j2I�

xj N
�
j (x) = 0:
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Which correspond to the first two equations in (4.2.7). This implies that all the interpolation

functions N�
j must verify these relations and, thus, they are no longer linearly independent.

If every interpolation function is used in the resolution of the boundary value problem, the

“stiffness” matrix would be singular (two of its eigenvalues are zero). Thus, once the shape

functions are evaluated, i.e. after (4.2.8) is solved, two of those interpolation functions are

eliminated. Then, a linear set of interpolation functions is recovered and the “stiffness”

matrix remains regular. In general, it is necessary to suppress a N�
j (i.e. a particle) of the

interpolation set for each polynomial inP(x) that finite elements are able to capture exactly.

Convergence analysis. A parametric analysis of convergence rates for this proposed method

is shown next. The same function used previously is also used here,

u(x) = x4 + 2 x3 x 2 
 = [�1; 1]

with particles and finite elements everywhere. Finite elements are enriched everywhere

adding particles and increasing the order of consistency. As before, p is the degree of the

finite element interpolation, and m is the order of consistency obtained with the added

particles. The increment of consistency q is defined as

q := m� p:

The error is evaluated in the L2(
) norm. In figure 4.10 the logarithm of the error is

plotted against the logarithm of the number of degrees of freedom for different values of p

and q. Here, both finite element and mesh-free approximations are refined simultaneously

(maintaining h=� constant). Note that the order of the method is O(hm+1). It is the same

order that can be obtained with standard finite elements of degree m = p + q, or standard

EFG with consistency of order m.

Figure 4.11 shows convergence results when the number of particles is keep constant

but elements are refined. The order of the method isO(hp+1) (identical to the order of finite

elements alone) if the constant � is large (four particles in 
). However, when the number

of particles increases (256 particles in 
), i.e. small �, the order becomes O(hm+1). Thus,

if the density of particles is large, a refinement in finite elements of degree p induces an

order of convergence similar to finite elements of degree m = p+ q.

Finally, figure 4.12 shows the rate of convergence when refinement is only based on

particles. That is, the finite element mesh is kept constant. If the element size, h, is small,

the order observed is O(�q), but when the element size is large (four elements is 
) the

mixed approximation does not converge as � goes to zero.
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Figure 4.10: Convergence for a mesh and mesh-free refinement: constant h=� and h! 0
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Figure 4.11: Convergence for a mesh refinement: constant � and h! 0
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Figure 4.13: Function u(x) defined in (4.4.1)

Remark 4.4.2. Note that this convergence rates are also obtained with functions other than

polynomials. In particular, similar results are obtained with the following function

u(x) = sin(
7

6
�(x+ 1)) cos3(

35

6
�(x+ 1)) (4.4.1)

which is plotted in figure 4.13.

In fact, this convergence analysis can be further exploited. An a priori error estimate

can be obtained for the mixed approximation proposed in this section.

Theorem 4.4.1. Let m be the order of consistency of the mixed approximation uh + u�,

such that m = p + q, where p is the order of the finite element approximation, uh, and

q > 0 is the order increment due to u�. Suppose the following regularity conditions hold for

the exact solution, u, and the weighting function, �: u 2 Cm+1(
) and � 2 C0(
), where


 is bounded and @
 is smooth. Finally, assume that the element size is small enough, i.e.

h

�
� min

p+1�r�m

�
r

p+ 1

� �1
r�(p+1)

:

Then,

ku� (uh + u�)kL1 � hp+1 [C1h
q + C2�

q] jujWm+1
1

(4.4.2)

where C1 and C2 are independent of the finite element size, h, and the dilation parameter,

�, of the mesh-free approximation.

Note that on the left hand side of the inequality the standard infinite norm over 
 is

used, whereas on the right hand side the seminorm j�jWm+1
1

is employed. For the sake of
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clarity, multi-index notation is introduced: given the n-tuple � = (�1; �2; : : : ; �n) 2 Nn

and the non-negative integer j�j := �1 + �2 + : : :+ �n then, by definition,

jujWm+1
1

=
X

j�j=m+1

max
x2


����� @j�ju

@x�11 @x�22 : : : @x�nn

����� :
It is important to remark that the error bound in (4.4.2) coincides with the convergence

results shown in figures 4.10, 4.11 and 4.12. That is, when both h and � decrease simulta-

neously, the order of convergence is p+q+1 = m+1. When h goes to zero while � is kept

constant, the order is either p+1 if C1hq < C2�
q or m+1 when C1h

q � C2�
q. And finally,

convergence is ensured at a rate of q when � goes to zero provided that C1hq � C2�
q.

The previous theorem introduces a restriction on the element size which can be relaxed

at a prize of obtaining a new error bound not as sharp.

Theorem 4.4.2. Under the same assumptions of Theorem 4.4.1 but with no restriction on

the element size, the a priori error bound becomes:

ku� (uh + u�)kL1 � hp+1
�
C1h

q + C2�
1
�
jujWm+1

1

;

where C1 and C2 are independent of the finite element size, h, and the dilation parameter,

�, of the mesh-free approximation.

See appendix A for a detailed proof of the previous theorems. Moreover, following the

ideas exposed in (Liu et al. 1997) Theorem 4.4.1 can be extended to the standard form in

finite element analysis.

Theorem 4.4.3. Let m be the order of consistency of the mixed approximation uh+u�, such

that m = p+q, where p is the order of the finite element approximation, uh, and q > 0 is the

order increment due to u�. Given ` such that 0 � ` � p, suppose the following regularity

conditions hold for the exact solution, u, and the weighting function, �: u 2 Cm+1(
) and

� 2 C`(
), where 
 is bounded and @
 is smooth. Finally, assume that the element size is

small enough, i.e.

h=� � min
0�k�`

Qk

where

Qk :=

8>><>>:
1 for m = p+ 1;

min
r=p+2;:::;m

�
�k;p+1
�k;r

� 1
r�(p+1)

for m > p+ 1:
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and

�k; r :=
r!

(r � k)!

kX
l=maxfk�r+p+1;0g

�
k

l

��
r � k

p+ 1� l

�
:

Then, for k = 0; : : : ; `

ku� (uh + u�)kWk
1

� hp+1�k [C1h
q + C2�

q] jujWm+1
1

(4.4.3)

where C1 and C2 are independent of the finite element size, h, and the dilation parameter,

�, of the mesh-free approximation.

The standard definition of the norm k�kWk
1

is used, namely

kukWk
1

=
kX

s=0

jujWs
1

=
kX

s=0

X
j�j=s

max
x2


����� @j�ju

@x�11 @x�22 : : : @x�nn

����� :
4.5 Numerical examples

4.5.1 Coupled EFG-FEM

In this section a coupled FE-EFG approximation is employed with a simple example, the

interpolation of u(x) = sin(�x) in 
 = [�1; 1]. Linear elements are employed (p = 1) and

the nodes in 
� = [�1; 0) are replaced by particles. Consistency of order one is enforced

everywhere.

Figure 4.14 shows, on the left, the interpolation functions. The shape functions, N�,

associated to particles, denoted by asterisks, are plotted with a solid line. The finite element

interpolation functions, Nh, are depicted with dashed lines and the position of the nodes

by circles. The transition region e
 is [�0:25; 0]. Figure 4.14 also shows, on the right, the

result of such an interpolation. The approximation uh + u� is plotted with a solid line and

the error, u � (uh + u�), with a dashed line. It is important to notice the special profile

adopted by the shape function associated to the first particle (particle at x = �0:25): on the

left it is similar to the particle positioned at the boundary of the domain, while ine
 it looks

like a standard linear finite element interpolation function.

In this case the approximation is similar to the one proposed in (Belytschko et al. 1995).

However, here there is no need to define any ramp function. Moreover, the same formulation

can be employed with a particles distribution such that the transition region e
 includes

more than one particle. For instance, figure 4.15 shows both the shape functions and the

interpolation with its associated error for a different distribution of particles. In particular,
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Figure 4.14: Approximation functions —4 particles and 5 nodes— (left) and interpolation
result, u� + uh, with error distribution (right).
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Figure 4.15: Approximation functions —12 particles and 5 nodes— (left) and interpolation
result, u� + uh, with error distribution (right).

now the transition region includes 3 particles (one on its boundary and two in the interior

of e
). The larger number of particles (with their associated smaller dilation parameter)

induces a better approximation in 
� = [�1; 0].

4.5.2 Coupled and Enriched EFG-FEM

Coupling and enrichment can be employed together. In this case, particles are added and ele-

ment removed without any particular restriction. Function u(x) = sin(2�x) in 
 = [�1; 1]

is interpolated. As shown in figure 4.16 four different regions are present: in [�1;�0:5]

only particles have an influence, in [�0:5; 0] particles and a non complete basis of finite

elements are present, in [0; 0:5] both particles and complete finite elements are used, fi-
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Figure 4.16: Approximation functions: 6 particles and 5 nodes

[�1;�0:5] [�0:5; 0] [0; 0:5] [0:5; 1]

Error in L2 norm 0.059 0.098 0.073 0.107
Error in L1 norm 0.124 0.194 0.160 0.209
DOF EFG+FEM 2+0 2+1 2+3 0+3

Table 4.1: Measures of error for 6 particles and 5 nodes.

nally, in [0:5; 1] only finite elements have an influence. Consistency is not uniform in this

case, in 
n
� = [0:5; 1] the finite element interpolation controls the order of consistency,

m = p = 1. But in the mesh-free area of influence, i.e. 
� = [�1; 0:5], the order of

consistency required is m = 2.

Figure 4.17 shows the interpolation results obtained with the particle distribution of

figure 4.16. Six particles and five nodes have been used, their associated shape functions

are shown in figure 4.16. It is important to note that, as expected, the interpolation functions

are hierarchical. The error in each region can be found in Table4.1.

[�1;�0:5] [�0:5; 0] [0; 0:5] [0:5; 1]

Error in L2 norm 0.015 0.027 0.036 0.107
Error in L1 norm 0.048 0.052 0.088 0.209
DOF EFG+MEF 4+0 3+1 3+3 0+3

Table 4.2: Measures of error for 11 particles and 5 nodes.
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Figure 4.17: Mixed interpolation with 6 particles and 5 nodes
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Figure 4.18: Mixed interpolation with 11 particles and 5 nodes
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In [0:5; 1] linear finite elements induce the larger error. In [0; 0:5] the error is reduced

with an “h-p refinement”: particles are added and the order of consistency is increased.

In both regions the finite element interpolation is complete. The price, in the number of

degrees of freedom, is considerable. Similar results are obtained if the number of particles

is increased. Figure 4.18 shows the results with the same finite element mesh, the same

orders of consistency and 11 particles. The dilation parameter � is reduced by a half. The

error measures can be found in Table 4.2.

This example also shows the influence of a coarse finite element mesh when the num-

ber of particles is increased. This point was already discussed in the error analysis. In

[�1;�0:5] and in [0; 0:5] the distribution of particles is similar. In the former the precision

is higher albeit that the number of degrees of freedom is lower than in the other region. In

the latter the complete finite element interpolation introduces extra degrees of freedom but

the error does not decrease. As previously noted, see section4.4, if the finite element mesh

is too coarse an increase in the number of particles does not reduce the error.

If the finite element mesh is enriched with mesh-free approximations, the coefficients

associated to the finite element shape functions maintain their physical meaning. The mesh-

free shape functions are hierarchical. However, convergence can only be achieved on a

coarse mesh if the order of consistency is increased, i.e. adding more particles without any

increase in m does not suffices.

4.5.3 Finite element enrichment with EFG in a 2D Poisson problem

The Poisson equation with Neumann and Dirichlet boundary conditions is solved next. The

problem statement is 8>>>>><>>>>>:
4u = �f 
 = (0; 1) � (0; 1)

ru � n = q0 �n = 
 \ fy = 0g

u = u0 �d = @
n�n

where n is the outward unit normal vector. The source term, f , and the boundary conditions,

q0 and u0, are chosen such that u(x) = e�(6(x+y�1))
2

is the solution. Figure 4.19 depicts

this solution (left) and a cross section on the plane y = x. Essential boundary conditions

are imposed using Lagrange multipliers which are interpolated using the C0 finite element

interpolation functions along the boundary.

Figures 4.20 and 4.21 show the finite element mesh, the solution and the error distri-

bution. An 8 � 8 quadrilateral mesh with bilinear finite elements (Q1) has been used. The
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Figure 4.19: Analytical solution and section along y = x.

error is larger along the diagonal x + y = 1 and the error measure in the maximum norm

(L1 norm) is 0:1707.

In order improve the approximation, the finite element mesh is enriched adding particles

and imposing an order of consistency m = 2. Figure 4.22 shows the finite element mesh

and the distributions of particles. The error of the mixed approximation is also plotted in the

same figure and with the same scale used in figure4.20. In fact the measure in the maximum

norm is now: 0:0204.

Finally, figure 4.23 presents the mixed approximation. The finite element approxima-

tion, uh (top), is improved by a particle contribution, u� (center), which induces the final

mixed approximation, uh + u� (bottom).

4.5.4 Finite element enrichment with EFG in nonlinear computational me-
chanics

This example reproduces the finite element enrichment with EFG in a nonlinear computa-

tional problem. A rectangular specimen with an imperfection is loaded, see (Dı́ez, Arroyo

and Huerta 2000, Huerta and Dı́ez 2000). It has two axes of symmetry, a bilinear elastoplas-

tic material is considered, and plane strain conditions are assumed. Figure4.24 presents the

problem statement with the material properties.

This problem has been solved with standard eight noded quadrilateral elements. More-

over, an adaptive error analysis (Huerta and Dı́ez 2000, Huerta et al. 1999) has been con-

ducted up to convergence. The final mesh and its equivalent inelastic strain distribution is
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Figure 4.20: Finite element mesh and error distribution.
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Figure 4.21: Approximation with 8� 8 Q1 finite elements
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Figure 4.22: Finite element mesh enriched with particles and error distribution of the mixed
approximation.
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mation uh + u�.
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Figure 4.24: Problem statement: rectangular specimen with one centred imperfection.

shown in figure 4.25 (left). This mesh has 2022 dof and a relative error (measured in energy

norm) of 0.18%.

The same example has also been solved with element free Galerkin. In order to obtain

comparable results, the distribution of particles coincides with the distribution of nodes

in the previous finite element mesh; and consistency of order two is required. Thus, the

number of degrees of freedom (dof) is also 2022. Figure4.25 (right) shows the distribution

of particles and inelastic strains.

Results degrade drastically if a coarse mesh of quadrilateral bilinear finite elements (308

dof) is employed, see figure 4.26. However, when particles are added (308+906=1214 dof)

and the order of consistency is increased (m = 2), the correct distribution of inelastic strains

is recovered, see figure 4.26. Note that, the final finite element mesh in figure 4.25 (left)

was obtained after an iterative process which needed for each iteration the generation of a

new mesh. In this final example, figure 4.26, the original mesh is maintained and particles

are added where they are needed.

Finally, figure 4.27 shows the evolution of the inelastic strains along the direction (A-A0)

for every configuration studied. Section (A-A0) is plotted in figure 4.24.
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Figure 4.25: Final mesh with its corresponding equivalent inelastic strain for a standard
finite element (8 noded elements) computation (top) and distribution of particles with its
inelastic strain distribution for EFG (bottom).
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Figure 4.26: Coarse finite element mesh (Q1 elements) with its corresponding equivalent
inelastic strain (top) and mixed interpolation with its equivalent inelastic strain distribution
(bottom).
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Figure 4.27: Force versus displacement (left) and evolution of the equivalent inelastic strain
along (A-A0) for each approximation (right).

4.5.5 Adaptivity in 2D convection-diffusion and diffusion-reaction problems
coupling finite elements and particles

In this section a coupled FE-EFG formulation is used in order to take advantage of the

comfort of EFG in refinement processes. Even if a good mesh generator is not available,

the discretization can be easily refined suppressing some FE nodes and replacing them with

a proper distribution of particles.

Diffusion-reaction problem

The diffusion-reaction problem is solved, namely8<: ���u+ �u = 1 in 
 = (0; 1) � (0; 1)

u = 0 on @
:

This problem has double symmetry with respect to x = 0:5 and y = 0:5. Therefore, it

is solved in [0:5; 1] � [0:5; 1] with homogeneous Neumann conditions on the new bound-

aries (symmetry boundary conditions). For presentation purposes, in the following pictures

the solution is depicted over the whole domain, although only a quarter of the domain is

discretized.

The Galerkin FE solution obtained with 10 � 10 bilinear elements is shown in figure

4.28. The solution presents hight gradients that cannot be properly interpolated with the

coarse regular FE mesh. The interpolation needs to be enriched near the boundary.

The discretization can be easily enriched using particles. Thus some nodes are removed

near the boundary, particles are added (red �) and a mixed interpolation is considered. Fig-
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Figure 4.28: FE mesh (11x11=121 nodes) and Galerkin solution with � = 10�5, � = 1.
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Figure 4.29: Mixed distribution with 81 nodes (o) and 387 particles (�), and Galerkin
solution with � = 10�5, � = 1.

ure 4.29 shows a refined distribution with 81 nodes and 387 new particles and the obtained

solution. In each edge of the boundary there is a row of elements where the influence of

all nodes is totally eliminated: only an EFG interpolation is considered, u = u�. In the

second row only some nodes are removed and a mixed interpolation is used: u = uh + u�

in the transition region. Particles do not need conectivities and the refinement can be easily

performed. Rectangular supported weight functions, ��(x; y) = �1D(
x
�1
)�1D(

y
�2
), have

been used in order to avoid singular matrices M in the definition of the shape functions.

Finally, there is no need to enrich the solution in the interior of the domain and the FE

interpolation (with lower computational cost) can be preserved. The solution is obviously
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improved after refinement.

Stationary convection-diffusion problems

Two layers example:

The convection-diffusion problem described in figure 4.30 is solved. Figure 4.31 shows

the Galerkin solution for jaj = 1 and � = 0:0025 solved with a regular mesh of 20�20

quadrilateral bilinear finite elements. The Peclét number is Pe=jajh2� = 10 > 1 and therefore

the Galerkin numerical solution suffers of important oscillations.

�
���u+ a � ru = 1 in 
 = (0; 1) � (0; 1)

u = 0 on @


a = jaj (cos(�=3); sin(�=3))

a

-

6

x

y








�

Figure 4.30: Convection-diffusion problem statement.

First, the solution is improved with pure FE h-refinement. Figure 4.32 shows the

Galerkin solution obtained with a FE mesh of 80�80 elements. Note that most of the

oscillations have been eliminated but some of them persist. However, the refinement can

be done in a more efficient manner. Now the proposed mixed approximation (coupling FE

and particles) is used instead of the standard FE mesh refinement technique, see figure4.33.

Some nodes are removed and replaced by particles. It is worth mentioning that, there is no

restriction on the particles position because conectivities are not needed.

In figures 4.34 and 4.35 a problem with a large Péclet number is presented: a = 1,

� = 10�4. An SUPG stabilization technique (Brooks and Hugues 1982) is employed in

order to avoid instabilities, with two different values of the intrinsic time parameter � . The

20�20 FE solution is depicted in figure 4.34 with � = 0:025 and � = 0:005. A constant

parameter � is used all over 
. The first value for the parameter, � = 0:025, has been

computed with the standard 1D SUPG formula (Brooks and Hugues 1982) for the 20 � 20

mesh (h = 0:05). Thus, if � is reduced to � = 0:005 there is not enough artificial diffusion

and oscillations reappear. Oscillations are alleviated only if the artificial diffusion is large

enough. Figure 4.35 shows the mixed interpolation results. If the intrinsic time is kept
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Figure 4.31: FE mesh (21x21=441 nodes) and Galerkin solution for jaj = 1, � = 0:0025
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Figure 4.32: FE mesh (81x81=6561 nodes) and Galerkin solution for jaj = 1, � = 0:0025
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Figure 4.33: Discretization with 361 nodes and 289 particles and Galerkin solution for
jaj = 1, � = 0:0025
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Figure 4.34: FE mesh (21x21=441 nodes) and SUPG solution with � = 0:025 and � =
0:005, for jaj = 1, � = 10�4

constant � = 0:025, as for the coarse FE mesh, the solution does not oscillate, but obviously

it is over-diffusive. However, the refinement induced by the added particles allows using a

lower added diffusion (� = 0:005) and thus, a more realistic solution is obtained.

Remark 4.5.1. The consistent SUPG weak form for this problem can be written as: find u

such thatZ


rv � ru d
+

Z


v(a � ru) d
 +

X
e

Z

e

�(a � rv) [�� �u+ a � ru] d
 =Z


v d
 +

X
e

Z

e

�(a � rv) d
;

(4.5.1)

for all v, where it is assumed that v = 0 on @
 in order to clarify the notation. In (4.5.1)

one can observe the usual Galerkin terms, in black, and the extra SUPG stabilization terms,

in blue, integrated over the elements or integration cells, 
e. Note that there is one extra
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Figure 4.35: Discretization with 361 nodes (o) and 289 particles (x), and SUPG solution
with � = 0:025 and � = 0:005, for jaj = 1, � = 10�4.

term which includes second derivatives of the approximation,
X
e

Z

e

�(a � rv) � �u d
,

which can not be eliminated with integration by parts. As will be commented in chapter

5, when the EFG interpolation is used, second derivatives of the approximation are well

defined in the whole domain and thus, the consistent weak form (4.5.1) can be considered.

However, when linear finite elements are used, this term with second derivatives is usually

neglected or under-represented and this non-consistent weak form is actually usedR

rv � ru d
+

R

 v(a � ru) d
 +

X
e

Z

e

�(a � rv)(a � ru) d
 =R

 v d
 +

X
e

Z

e

�(a � rv) d
;
(4.5.2)

8 v. The lack of consistency due to this neglected term leads to errors in the numerical

scheme, see (Jansen, Collins, Whiting and Shakib 1999) for details. However, these errors

are almost negligible for the stationary case: there are not substantial differences between

the solution obtained with the mixed interpolation with the non-consistent weak form (4.5.2)
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and the solution obtained with the mixed interpolation with (4.5.2) in the FE region and

(4.5.1) in the EFG region. This is not the case in transient problems, where the errors due

to the lack of consistency can drastically degrade the accuracy and convergence in time, see

chapter 5.

Three layers example:

The convection diffusion problem described in figure 4.36 is considered. The boundary

conditions are chosen such that an internal layer is present in the solution.

8<:
���u+ a � ru = 0 in 
 = [0; 1] � [0; 1]

u = 1 in �1
u = 0 in @
n�1

a = jaj (cos(�=6); sin(�=6))

jaj = 1, � = 10�4

-

6

x

y

a
�
��3

0:2

�1

Figure 4.36: Convection-diffusion problem statement.

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2

x

y

u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.37: SUPG solution with 15 � 15 linear finite elements and � = 0:0333, and
detection of elements with kruk > 1

3h (in white)

Figure 4.37 shows the SUPG numerical solution with 15x15 linear finite elements and

� = 0:0333. The stabilization parameter has been computed with the standard 1D SUPG
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formula. There still remain some oscillation in the solution. A mixed interpolation com-

bining finite elements and particles is considered in order to improve the results: nodes are

removed and replaced by a denser distribution of particles in all the elements with high

gradients in the solution (see figure 4.37). There is no restriction on the particles position

since particles do not need conectivities. Figure4.38 shows the mixed distribution of nodes

and particles and its corresponding SUPG solution with � = 0:0333 and � = 0:015. The

refined mixed interpolation allows reducing the added diffusion (� = 0:015) and thus, a

more realistic solution is obtained. Figure 4.39 shows a section along x = 0:75 for the

finite element solution with � = 0:0333, and for the mixed interpolation solution with

� = 0:0333 and � = 0:015. After refinement the solution is clearly improved in both the

boundary layer and the internal layer. Similar results could be obtained with EFG in the

whole domain or FE and a good mesh generator.
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Figure 4.38: Mixed distribution with 210 nodes (o) and 211 particles (x), and corresponding
SUPG solution with � = 0:0333 (left) and � = 0:015 (right)
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Figure 4.39: Section along x = 0:75 for the finite element interpolation with � = 0:0333
and the mixed interpolation with � = 0:0333 and � = 0:015

4.6 Conclusions

This chapter develops a mixed interpolation, it is based on finite element and mesh-free

methods. In fact it is an extension of previous published papers by Liu, Belytschko and

coworkers (Liu et al. 97, Liu et al. 1997, Belytschko et al. 1995) with a unified formulation

generalizable to any spatial order (p or m) and with its corresponding convergence analy-

sis. Two different cases have been studied: coupled finite elements with EFG, p = m, or

enrichment of finite elements with EFG, m > p. For the sake of clarity, EFG has been used

as the mesh-free method. However, generalization to other methods based on a Moving

Least Squares development is straight forward.

The first case allows to implement Dirichlet boundary conditions in a standard finite

element context. In fact, this was proposed by Belytschko et al. (1995) and here a simple

generalization avoids the use of any ramp function and the need of substituting nodes per

particles. That is, particles can be added arbitrarily in the region of the computational

domain where the finite element interpolation is not complete. This ensures continuity of

the solution (no coupling via Lagrange multipliers is imposed) and also enforces a uniform

order of consistency (and thus of convergence) everywhere in the computational domain.

The coupled FE-EFG formulation can also be employed in order to take advantage of

the comfort of EFG in refinement processes. In absence of a good mesh generator, the

discretization can be easily refined just taking off some nodes and replacing them with a

suitable distribution of particles. The convergence properties of the mixed approximation
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are similar to those of the finite element method or element-free Galerkin.

The second case, enrichment of finite elements with EFG, also allows to improve the

accuracy of finite elements where needed in an adaptive process without any remeshing. The

a priori error bounds of this formulation are illustrated with numerical examples and stated

in a formal setting. They indicate that both the element size, h, and the dilation parameter,

�, influence the convergence, as well as the order of the finite element interpolation, p, and

the increase of order of consistency, q, due to the added particles. Moreover, the a priori

bound shows that h, h-p or �-q refinements will induce convergence but � refinement on

its own will fail to decrease arbitrarily the error of the approximation. That is, convergence

can not be attained by simply adding particles and thus reducing the dilation parameter, an

increase in the order of consistency is needed.

Both cases are illustrated with several examples. They show the applicability of the

proposed formulation in standard linear and nonlinear boundary value problems.



Chapter 5

Time accurate consistently stabilized
mesh-free methods for convection
dominated problems

5.1 Introduction

A great deal of effort has been devoted in the recent years to the development of finite

element methods for the numerical approximation of transient convection-diffusion prob-

lems. It is well known that the standard Galerkin is not ideally suited to deal with the

spatial discretization of convection dominated problems. Thus, other spatial discretization

techniques are necessary to introduce the suitable amount of numerical dissipation in the

presence of internal and boundary layers. In truly transient problems, another equally im-

portant aspect is to ensure an adequate coupling between the spatial approximation and the

time integration scheme. Now, it is also well known that the combination of a standard

Galerkin spatial discretization with classical second order accurate time stepping schemes,

such as Lax-Wendroff and Crank-Nicolson methods, fails to produce satisfactory numerical

results when convection dominates the transport process (no internal or boundary layers

being present), see (Donéa, Quartapelle and Selmin 1987) or (Morton 1996). In conclu-

sion, transient convection-diffusion problems need stabilization because of the internal and

boundary layers, and high-order time stepping schemes for accuracy in convection domi-

nated problems. Note that in real engineering problems the relative weight of the convective

and diffusive term may vary in space and time, see for instance appendixB. This effect is

usually accentuated by a non uniform mesh due to geometrical considerations. In order to

overcome some of these difficulties, in (Donéa, Roig and Huerta 2000) a unified approach

for high-order implicit time stepping is presented. Then, in (Huerta and Donéa 2001) and

93
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(Huerta, Roig and Donéa 2001) these methods are combined with classical stabilization

techniques in the framework of the finite element method.

However, finite element methods are usually non consistently stabilized. The second

derivatives needed in the stabilization term are usually neglected. This implies a loss of

convergence, which is more dramatic in high-order time accurate methods as it will be

shown here. Several solutions are apparent and some of them have been explored. For

instance, the stabilization parameter (i.e. the intrinsic time � ) could be modified for each

integration scheme in order to ensure high-order time convergence rates, even if second

derivatives are still not computed. Another alternative in order to preclude the computation

of second derivatives is to take into account flux jumps across element boundaries (Tezduyar

and Osawa 2000). Finally, second derivatives can be approximated (Jansen et al. 1999).

This implies a global reconstruction for linear elements (a global least-squares problem).

For high order elements, a local (element by element) reconstruction or the usual compu-

tation of the second derivatives can be envisioned. As claimed in (Jansen et al. 1999) both

alternatives have similar computational cost and ensure the theoretical convergence rates.

In mesh-free methods, see section 2.2.4 or reference (Belytschko, Krongauz, Fleming,

Organ, and Liu 1996), second derivatives are computed at a reduced extra cost, that is an

extra cost considerably lower than in finite elements. Moreover the mesh-free interpolation

space is a subset ofH2(
) and thus, the standard stabilization techniques can be formulated

naturally in H2(
). Second order space derivatives of the interpolation are well defined in

the whole domain even with linear consistency. There are not neglected terms in the weak

form and the convergence rates of the high-order time integration schemes are preserved.

Moreover, the moving least-squares (MLS) interpolation allows increasing the order of the

spatial discretization in a simple manner. With a mesh-free interpolation, space and time

high-order consistent stabilized formulations are easily defined and implemented.

This chapter extends the time accurate schemes with classical stabilization techniques

presented in (Huerta and Donéa 2001) to mesh-free methods, and compares the perfor-

mance of such consistently stabilized methods with finite element results. It is organized

as follows. In section 5.2 the Galerkin formulation, the stabilized least-squares (Donéa,

Roig and Huerta n.d.) formulation and the Streamline-Upwind Petrov-Galerkin (Shakib

and Hughes 1991, Tezduyar and Osawa 2000) formulation are considered in combination

with two different time stepping multi-stage implicit methods, with second and fourth order

respectively. In fact, all formulations are fist recalled in the framework of finite elements in

section 5.2.2. Then, section 5.2.3 is devoted to the particularization of these formulations
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for the mesh-free interpolation. In section 4.4, a 1D numerical example allows analyzing

the converge in time for the recalled formulations. The numerical experiments agree with

the conclusions derived in the previous sections. Finally, numerical examples with mesh-

free interpolation are shown in section 5.4 in order to illustrate the importance of time

accurate computations and the need of stabilized formulations in the resolution of transient

convection-diffusion problems.

5.2 Time and space discretization for the transient convection-
diffusion equation

We are concerned with an accurate solution of the following transient convection-diffusion

boundary value problem with constant coefficients: “Given the velocity field a(x), the

constant diffusion coefficient � and the source term s(x; t), find u(x; t) such that verifies

ut + a � ru� �r2u = s in 
� (0; T ); (5.2.1)

the initial conditions,

u(x; 0) = u0(x) in 
;

and the boundary conditions,

u = uD in �;

ru � n = f in @
n�;

where n is the unitary outward normal vector”. Symbolically the partial differential equa-

tion (5.2.1) may be rewritten as

ut + L(u) = s; (5.2.2)

where the spatial differential operator is defined as

L := a � r � �r2: (5.2.3)

The numerical solution of such a problem clearly involves a double discretization process,

that is, time discretization and space discretization. In this paper, the methodology proposed

in (Huerta and Donéa 2001) is considered: (1) multi-stage time stepping schemes of high

accuracy are used and (2) standard stabilization techniques are implemented. The objective

is to adapt the standard stabilization techniques, well known in stationary problems, to

transient problems in combination with multi-stage time stepping schemes. Consequently,

in the following, time discretization precedes spatial discretization.
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5.2.1 Time discretization

For illustration proposes, only two implicit multi-stage methods are presented. A more

complete presentation can be found in (Donéa et al. 2000). These schemes can be written

in incremental form as
�u

�t
�W�ut = wunt ; (5.2.4)

where the unknown �u 2 Rnstg is a vector whose dimension is the number of stages, nstg.

The vector �ut is the partial derivative of �u with respect to time. The time derivatives in

(5.2.4) are replaced by spatial derivatives using the original differential equation (5.2.2):

�u

�t
+WL(�u) = w [sn �L(un)] +W�s (5.2.5)

The precise definition of �u, �s, w and W depends on each particular method:

Second order Padé approximation: R11 (Crank-Nicolson)

�u = un+1 � un; �s = sn+1 � sn;

W = 1
2 w = 1:

(5.2.6)

Note that in this case nstg = 1 and the vectors and matrix in (5.2.4) become scalars. In fact,

this scheme corresponds to the well known Crank-Nicolson method.

Fourth order Padé approximation: R22

�u =

8<: un+
1
2 � un

un+1 � un+
1
2

9=; ; �s =

8<: sn+
1
2 � sn

sn+1 � sn+
1
2

9=; ;

W = 1
24

24 7 �1

13 5

35 ; w = 1
2

8<: 1

1

9=; :

(5.2.7)

The R11 and R22 schemes are in fact implicit Runge-Kutta methods based on the Lobatto

IIIA quadrature. For this methods the truncation error induced by (5.2.4) is precisely

O(�t2nstg). However, it is important to note that the methodology proposed here is in-

dependent of these two particular schemes and can be implemented with any multi-stage

algorithm.

Note that equations (5.2.4) and (5.2.5), with the corresponding initial and boundary

conditions, define a problem in strong form which must be solved at each time step n.
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That is, at each time step, the solution at time tn, un, is assumed to be known and the partial

differential equation (5.2.5), which only involves spatial derivatives, must be solved in order

to obtain �u. Then, the solution at time tn+1, un+1, is computed from un and �u.

Once the time discretization has been performed, both the mesh-free EFG interpolation

or the finite element interpolation can be used in the discretization of the resulting partial

differential equation, (5.2.4) or (5.2.5), at each time step. In the following section, the

Galerkin formulation and the standard stabilization techniques are recalled in the context of

the finite element interpolation. However, section 5.2.3 is devoted to the particularization

these formulations for a mesh-free interpolation.

5.2.2 Spatial discretization. (I) Galerkin and stabilized formulations for the
FE method

Application of the Galerkin formulation to the time stepping scheme (5.2.4) results in the

following weak form

(v;
�u

�t
)
 � (v;W�ut)
 = (v;wunt )
 8 v 2 [Vh0 ]

nstg ; (5.2.8)

with Vh0 subset of the usual functional space H1
0 = fvjv 2 H1; v = 0 on @
n�g and the

vector scalar product (v;u)
 =
R

 u � vd
.

Note that the right-hand side of (5.2.8) is known, and that the second term of the left-

hand side (i.e. �ut) includes the Laplace operator, which is integrated by parts (see (Donéa

et al. 2000) for extended details).

In order to stabilize the convective term in a consistent manner (ensuring that the solu-

tion of the differential equation is also solution of the weak form), Hughes and coworkers

have proposed several techniques (Hughes 1987, Shakib and Hughes 1991). An extra term

weighted over the element interiors is added to the Galerkin weak form. This added term

is a function of the residual of the differential equation to ensure consistency. These me-

thods are designed for the steady convection-diffusion equation and subsequently extended

to transient problems with second order time schemes and to space-time formulations. In

(Huerta and Donéa 2001) and (Huerta, Roig and Donéa 2001) standard stabilization tech-

niques are implemented with finite elements and high order time stepping schemes such

as (5.2.4). The considered stabilization techniques are steamline-upwind Petrov-Galerkin

(SUPG), Galerkin least-squares (GLS), sub-grid scale (SGS) and a least-squares (LS) type

stabilization. Here, only the LS and the SUPG formulation are considered. However, gene-

ralization to other formulations is straightforward.
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In order to have a consistent stabilization a residual must be defined. The residual in

this case is chosen after time discretization. Thus, from (5.2.4) the residual is defined as

R(�u) :=
�u

�t
�W�ut �wu

n
t (5.2.9)

and the consistently stabilized weak form is

(v;
�u

�t
)
 � (v;W�ut)
 +

X
e

(�P(v);R(�u))
e = (v;wunt )
: (5.2.10)

Note that the stabilization term is added to the Galerkin weak form. In the stabilization term

a free parameter � appears (the intrinsic time scale, see (Shakib and Hughes 1991, Tezduyar

and Osawa 2000)), and the operator P characterizes the stabilization technique (see for

instance (Codina 2000) for a general presentation). The truncation errors are not explicitly

indicated: a term O(�t2nstg) can be added to (5.2.9) and (5.2.10). If the truncation error is

neglected, the precision in time is characterized by the order of this error, depending on the

particular scheme chosen.

The SUPG stabilization is defined by taking

P(v) :=W(a � r)v: (5.2.11)

Note that the matrix W, which affects the convection term, induces a non scalar stabi-

lization (each equation is affected by different coefficients). The weak form for the SUPG

method is obtained after substitution of (5.2.11) in equation (5.2.10).

Remark 5.2.1. The stabilization term involves the residual, which includes the second-order

term r2u. When linear finite elements are used this term vanishes or is largely under-

represented, with the corresponding degradation in the consistency of the stabilized formu-

lation. The lack of consistency leads to errors of order O(�), i.e. the order of the neglected

terms, added to the errors of the time integration scheme.

Remark 5.2.2. In order to keep the convergence rates in time, several possibilities can

be useful. The stabilization parameter � can be defined to be asymptotically of order

O(�t2nstg). That is, a specific intrinsic time � should be designed for each one of the

time integration schemes. Other possibility is to include flux jump terms across the ele-

ment boundaries in the stabilized formulation to take into account the neglected terms (see

(Tezduyar and Osawa 2000) for details). In fact, reference (Jansen et al. 1999) shows that

when linear finite elements are used the lack of consistency due to the neglected terms

leads also to reduced convergence in space. For linear finite elements, it proposes a global

reconstruction of second derivatives. This method recovers the ability to approximate the
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residual in the stabilization term yielding a better consistency, through an iterative process.

However, the increase in the computational cost is not negligible: a system of equations

with global mass matrix must be solved at each iteration.

Remark 5.2.3. The use of high-order finite elements, such as quadratic elements, allows

including second derivatives of the approximation in the residual in the stabilization term,

and thus, consistent stabilized formulations can be defined. However, the computational

cost and the implementation difficulties are highly increased due to the computation of

second derivatives of the element mapping (Jansen et al. 1999).

To implement a least-squares (LS) formulation one uses directly the spatial strong form

to construct the integral equation. Here, since time discretization is already performed,

equations (5.2.4) and (5.2.5) are used. Consequently, one gets

(
v

�t
+WL(v);R(�u))
 = 0: (5.2.12)

The correct implementation of a standard least-squares formulation requires to work in

H2 unless a mixed least-squares formulation is used, see (Carey, Pehlivanov, Shen, Bose

and Wang 1998), and thus, v and u should be in subspaces of [H2(
)]nstg . However, an

equivalent form which follows the same rationale as for standard stabilized methods, see

equation (5.2.10), can be devised. It is equivalent in the sense that its unique solution is also

the unique solution of (5.2.4) or (5.2.12). The first argument in (5.2.12) is split by linearity

and the term containing L(v) is only evaluated in the element interiors, namely

(v;R(u))
 +
X
e

(�tWL(v);R(�u))
e = 0: (5.2.13)

Note that in (5.2.13) the interpolation and tests functions can be taken in a subspace of

[H1+]nstg , where H1 ( H1+ := fw 2 H1(
) = wj
e 2 H2(
e) for all element 
eg (

H2. The final formulation is still symmetric (note that this is not the case for other stabi-

lization techniques such as SUPG, GLS or SGS), and now C0 finite elements can be used.

This approach can also be cast in the form of a standard stabilization technique with the

following definition of the operator P and the intrinsic time �

�P(v) := �tWL(v): (5.2.14)

Remark 5.2.4. As in the standard stabilization techniques, some terms with second-order

derivatives are neglected or under-represented when finite elements are considered to dis-

cretize the least-squares formulation. This leads to errors of orderO(�t) added to the errors

of the time integration scheme.
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5.2.3 Spatial discretization. (II) Galerkin and stabilized formulations for the

EFG method

The EFG interpolation, see section 2.1.2, can also be considered in the spatial discretiza-

tion of the Galerkin weak form (5.2.8). However, in the presence of internal or boundary

layers the typical instabilities of the Galerkin formulation will soon appear. In fact, all the

considered stabilized formulations (5.2.10) can be discretized with the mesh-free interpola-

tion. Moreover, with a mesh-free method, the interpolation space is a subset of H2(
) (see

remark 2.1.15), and thus, this other equivalent expression for the stabilized formulations

(5.2.10) can be considered

(v;
�u

�t
)
 � (v;W�ut)
 + (�P(v);R(�u))
 = (v;wunt )
: (5.2.15)

Note that, since the interpolation is performed in H2(
), the integration of the stabilization

term can be done in the whole domain 
. Moreover, the natural expression of the least-

squares formulation (5.2.12) in H2(
) can be performed.

Remark 5.2.5. Note that, with the EFG interpolation space, second-order derivatives are

well represented (see remark 2.1.15), and thus, consistent stabilized formulations can be

easily implemented. In fact, there are two possible advantages of the mesh-free interpolation

in the resolution of the transient convection-diffusion equation: (1) the order of consistency

can be easily increased, and thus, high-order (in both space and time) formulations can be

implemented in a simple way, and (2) the smoothness of the interpolant allows the definition

of consistent stabilized formulations. There are no neglected terms and thus the convergence

rates of the time integration schemes are preserved.

Remark 5.2.6 (Computation of derivatives). Belytschko and coworkers proposed in

(Belytschko, Krongauz, Fleming, Organ, and Liu 1996) an efficient computation of the

derivatives of the shape functions, see section 2.2.4. It is based on implicit derivation of

(2.1.29). For example, in 1D the first and second derivatives of the shape function (2.1.27)

can be expressed as

dNi

dx
= PT (xi)

�
�x(x) �(

x� xi
�

) +�(x)
1

�
�x(

x� xi
�

)

�
;

d2Ni

dx2
= PT (xi)

�
�xx(x) �(

x� xi
�

) + 2�x(x)
1

�
�x(

x� xi
�

) +�(x)
1

�2
�xx(

x� xi
�

)

�
;

where �x denotes de derivative d�
dx . Vectors �x and �xx can be obtained solving two small

linear system of equations

M �x = Px �Mx�; M �xx = Pxx �Mxx�� 2Mx�x;
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which are easily deduced by implicit derivation of (2.1.29). Note that matrix

M 2 R(l+1)�(l+1) and its factorization has been computed previously in order to obtain

vector �, so computation of first and second derivatives only involves the resolution of

two small systems of equations through two backward and forward substitutions. Second

derivatives of the shape functions can be easily computed in EFG with negligible extra

computational cost.

5.3 Convergence of the Galerkin approach and the stabilized
formulations

In this section, a numerical example is considered in order to analyze the convergence in

time of the presented formulations and corroborate the conclusions derived in from section

5.2. The 1D convection-diffusion equation with constant coefficients is solved,

ut + aux = �uxx; x in (0; 2); t in (0; 1);

with homogeneous Dirichlet boundary conditions. The initial condition, at t = 0, is chosen

such that the analytical solution is known

u(x; t) =
�0
�
e�

(x�(x0+at))
2

2�2 ; �2 = �20 + 2�t:
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Figure 5.1: Finite elements convergence results with h = 0:001 and a = 1.

Both finite elements and particle results are studied. Figure5.1 shows the evolution of

the error against the time step for linear finite elements, with element size h = 0:001, and

for two different values of the diffusion parameter �. In all figures the error is evaluated
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Figure 5.2: EFG convergence results with h = 0:01 (distance between particles), �=h =
3:2, P = f1; xgT and a = 1.

in the L2(
) norm. In each plot, results are shown for the Galerkin and the Least-squares

formulation with two different Padé time stepping schemes: R11 and R22 with order two

and four respectively. The convergence rates are as expected when a Galerkin formulation is

used. However, when the least-squares formulation (5.2.13) is used, the lack of consistency

due to the neglected terms leads to errors of order O(�t), with the corresponding degra-

dation in the convergence rates. When the truncation error of the time integration scheme

is small enough, the error is only O(�t), instead of O(�t2) or O(�t4). In all figures

ILS denotes the incomplete least-squares formulation, that is, the particularization of the

least-squares formulation (5.2.13) for linear finite elements, and thus, with some neglected

terms.

Figure 5.2 shows the convergence results for the EFG interpolation with linear con-

sistency, distante between particles h = 0:01 and �=h = 3:2. Results are depicted for

the Galerkin formulation, the consistent least-squares formulation (5.2.12) and the non-

consistent ILS formulation. Once again, the ILS formulation corresponds to the weak form

with the same O(�t) neglected terms as with linear finite elements in figure 5.1. The

convergence rates of the time stepping schemes are preserved when a consistent weak form

is used. In fact, the convergence curves coincide with the Galerkin convergence curves. In

this case convergence is as expected with both formulations: Galerkin and least-squares.

Moreover, convergence degrades, as in the finite elements results, if the non consistent

formulation ILS is used.

In order to preserve the high-order convergence rates of the time stepping schemes, a
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consistent formulation must be used. With a mesh-free method, such as EFG, second order

derivatives of the interpolation are well defined in the whole domain, and thus, consistent

stabilized formulations, without neglected terms, can be easy defined and implemented.

Remark 5.3.1. Note that the spatial discretization limits the precision. That can be observed

in the Galerkin case with the R22 scheme and � = 10�2. Moreover, note that with the mesh-

free interpolation it is enough to discretize the domain with 201 particles in order to obtain

an accuracy in space similar to the accuracy with 2000 finite elements, more or less 10�5.

That is, a number of degrees of freedom ten times smaller in EFG than in finite elements.

Recall that that with linear consistency the finite element shape functions can be recovered

from the EFG shape functions when �=h ' 1 (see figure 2.5) and, in most of the problems,

the EFG interpolation with big enough ratio, for example �=h = 3:2, performs better than

the finite element interpolation. In fact, for each problem an optimal value for the ratio �=h

can be found (see for instance the numerical examples in chapter3).

Similar results are obtained for the SUPG stabilized formulation, see figures5.3 and 5.4.

When finite elements are used, the intrinsic time � is computed using the formula proposed

in (Shakib and Hughes 1991), see (Tezduyar and Osawa 2000) for an interesting review,

that is

� = �FE :=
�t

2

 
1 +

�
a�t

h

�2

+ 36

�
��t

h2

�2
!� 1

2

: (5.3.1)

Note that h can be interpreted as a mesure of the radius of the support of the FE shape

functions, equivalent to the dilation parameter � in EFG. So, when the EFG interpolation

is considered the intrinsic time is computed with the same expression (5.3.1) just replacing

the element size h by the dilation parameter �, that is,

� = �EFG :=
�t

2

 
1 +

�
a�t

�

�2

+ 36

�
��t

�2

�2
!� 1

2

: (5.3.2)

Once again, when particles are used, the consistent SUPG formulation in H2(
) (5.2.15)

preserves the convergence rates of the time integration scheme (see figure5.4). On the other

hand, when linear finite elements are used, results can be degraded due to the neglected

O(�) terms in (5.2.10) (see figure 5.3). For, � = 10�2 the intrinsic time � is small enough

so that the effect of this O(�) error is negligible in comparison with the truncation errors

of the R11 time stepping scheme and almost negligible with the R22 scheme. However,

for the more convective problem with � = 10�4, the error O(�) reduces drastically the

convergence rates: the error is of order O(�) when the truncation errors of the time stepping

schemes are small enough.
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Figure 5.3: Finite elements convergence results with h = 0:001 and a = 1.
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Figure 5.4: EFG convergence results with h = 0:01, �=h = 3:2, P = f1; xgT and a = 1.

5.4 Numerical examples

There are two important topics in the resolution of the transient convection-diffusion equa-

tion: (1) accurate transport of the unknown quantity u is necessary, and thus, high-order

time stepping schemes are needed, and (2) in the presence of boundary or internal layers,

it is necessary to stabilize the solution in order to avoid oscillations. Sections5.2.3 and

5.3 already discussed how the smoothness of the EFG interpolation allows to easily define

stabilized formulations in a consistent manner and preserve the convergence rates of the

high-order time stepping schemes. In this section, some numerical examples are shown

in order to see the influence of the different stabilization techniques and the time stepping
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schemes in the numerical solution with EFG.

The first example is a 1D example whose solution tends to a stationary convection domi-

nated solution. Therefore, the same problems of the stationary equation, that is boundary

layers, are present in the transient solution and thus stabilized formulations are needed.

The second example is a 2D example where both problems of the transient convection-

diffusion equation are present: (1) accurate transport of the unknown is needed and (2)

boundary layers appear in the solution due to the Dirichlet boundary conditions. Therefore,

high-order time stepping schemes and stabilized formulations are needed in order to obtain

an accurate solution.
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Figure 5.5: R11 solution at t = 1 for a = 1, � = 10�3, �=h = 3:2 with c = 1

5.4.1 1D example

The transient convection-diffusion equation, ut + aux = �uxx + s; is solved in [0; 1] with

velocity a = 1, diffusion � = 10�3, initial condition u(x; 0) = 0, homogeneous Dirichlet

boundary conditions and source term s(x) = 5e�(10(x�
1
8
))2 :

The time step �t is chosen such that the Courant number c := a�t=h is c = 1 for the

R11 scheme and c = 2 for the R22 scheme, where h is the distance between particles.

Figures 5.5 and 5.6 show the solution at t = 1 obtained with the R11 and the R22 time

stepping schemes. The Galerkin solution suffers from the typical oscillations in the presence
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Figure 5.6: R22 solution at t = 1 for a = 1, � = 10�3, �=h = 3:2 with c = 2

of boundary layers and stabilization techniques are necessary to improve the solution. As

can be seen from the results, the diffusion added with the least-squares stabilization is larger

than with the SUPG technique: it is easy to see that �SUPG � �LS = �t when formula (5.3.2)

is used to compute �SUPG. The best result is obtained with the high-order time integration

scheme R22 and the least-squares stabilization.

5.4.2 2D example

The 2D problem described in figure 5.7 is solved with small diffusion, � = 10�5. The

source term and the velocity field are defined as follows:

a = (�(y�0:5); (x�0:5)) s = e�t
10

8><>:
cos(�=2

p
x2 + y2) if

p
x2 + y2 � 1

0 otherwise

Figures 5.8 and 5.9 show the numerical solution obtained at t = 15:9 for the Galerkin

and the least-squares formulations, with a 21 � 21 distribution of particles, �=h = 3:2 and

linear consistency. The R11 and R22 time integration schemes have been used with Courant

1 and 3 respectively. Different sections of the obtained numerical solutions at t = 15:9 are

depicted in figures ?? and ??.
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Figure 5.7: Problem statement for the 2D example
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Figure 5.8: Galerkin solution and contour plot at t = 15:9 for � = 10�5, h = 0:05,
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Figure 5.9: Least-squares solution and contour plot at t = 15:9 for � = 10�5, h = 0:05,
�=h = 3:2 with c = 1 for R11 and c = 3 for R22

Boundary layers are present in the solution due to the convective character of the equa-

tion and the homogeneous Dirichlet boundary conditions. Thus, the typical instabilities of

the Galerkin formulation soon appear. The numerical solution is clearly improved for the

stabilized least-squares formulation: oscillations are alleviated and almost suppressed in

the whole domain. However, important phase and amplitude errors can be observed in the

numerical solution obtained for the R11 time stepping scheme. In figure ??, it is easy to

see that the R11 solution presents negative values, with no physical sense. Obviously, the

high-order R22 scheme provides a much better solution.

5.5 Concluding remarks

In this chapter, the formulation proposed in (Huerta and Donéa 2001) for transient convec-

tion-diffusion problems is used in the context of mesh-free methods. By performing the

time discretization before the spatial one, standard stabilization techniques can be adapted

to high-order time stepping schemes. However, with linear finite elements the lack of con-
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sistency due to neglected terms (terms with second order spatial derivatives) may degrade

the convergence rates of the time integration scheme. In order to keep the high-order con-

vergence rates the intrinsic time � should be adapted to each time integration scheme or

second derivatives should be globally reconstructed, with the corresponding increase in the

computational cost.

This chapter proposes to perform the spatial discretization using mesh-free interpolation

functions. With the EFG method, second derivatives of the approximation can be computed

with negligible extra computational cost. The mesh-free interpolation space is a subset of

H2(
) and thus, the standard stabilization techniques can be particularized for the EFG

interpolation in H2(
). There are not neglected terms and the convergence rates of the

high-order time integration schemes are preserved. Moreover, in EFG the order of the space

discretization can be increased in a simple way. With a mesh-free interpolation, space and

time high-order consistent stabilized formulations are easily defined and implemented.
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Chapter 6

Summary and future developments

As noted in the introduction, although mesh-free methods are advantageous in many inte-

resting situations, the popularization of these methods still requires further research. This

thesis deals with the numerical analysis of mesh-free methods and, in particular, with the

study of possible advantages and interesting applications of the EFG method.

The most relevant contributions of this thesis are the following.

1. Many mesh-free methods can be found in the literature which can be based on diffe-

rent ideas and with different properties. There is a real need of classifying, ordering

and comparing these methods: in fact, the same or almost the same method can be

found with different names in the literature. So, first of all, this thesis dedicates one

chapter to the state of the art of mesh-free methods, with special emphasis on the

EFG method and its properties and implementation. Although a good state of the art

can be found in (Belytschko, Krongauz, Organ, Fleming and Krysl 1996), chapter 2

completes it including other mesh-free methods, such as the family of improved SPH

methods, and comparing all of them. In fact, two families of mesh-free methods can

be considered: the SPH method and its improved versions and the methods based on

moving least-squares developments. In each one of this families several similarities

can be found between different methods.

2. The behaviour of mesh-free methods and its comparison with the classical finite ele-

ment method is still an open topic in many situations. In this thesis this comparison is

performed in the framework of two relevant problems, with interesting conclusions.

. Chapter 3 is devoted to the study of volumetric locking in the EFG method.

As can be found in the literature, volumetric locking can drastically degrade the
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finite element solution in mechanical computations. Although it was originally

claimed that the EFG method does not suffer from locking, chapter 3 demon-

strates that it is not true. A modal analysis has been used to study volumetric

locking in the EFG method and some numerical examples have been used to

corroborate the conclusions. Basically, the EFG method with linear consistency

presents the same volumetric locking modes as linear finite elements. Although

locking alleviates when the support of the shape functions increases, the same

problems will occur in the incompressible limit. The influence of the order of

consistency is also studied: for practical purposes in EFG an hp strategy can be

implemented in a very simple way and, as in finite elements, will also suppress

locking.

. The behaviour of mesh-free methods has also been studied in the context of

convection dominated problems, with special emphasis on the transient case.

In chapter 5 the formulation proposed in (Huerta and Donéa 2001) for transient

convection-diffusion problems is used in the context of mesh-free methods. The

advantages of the EFG method in comparison with the finite element method are

studied in this context. With linear finite elements the lack of consistency due

to neglected terms (terms with second order spatial derivatives) may degrade

the convergence rates of the time integration scheme, unless specific techniques

are considered with the corresponding increase in the computational cost and

implementation difficulty. However, with the EFG method, second derivatives

of the approximation can be computed with negligible extra computational cost.

This allows the definition of space and time high-order consistent stabilized

formulations, preserving the high order convergence rates. Some examples can

also be found for the stationary case in section4.5.5.

3. Although, this thesis shows how mesh-free methods perform much better than mesh-

based methods in some situations, the finite element method is still more competitive

in many other situations. In order to take advantage of the good properties of both

methods, a mixed interpolation combining the EFG method and the finite ele-

ment method is developed in chapter 4. Several authors have proposed to use this

kind of mixed interpolations, however, in this thesis a unified and general formulation

is presented. This formulation can be applied in two useful situations: enrichment and

coupling. An a priori error estimate for the first one is proved in appendix A. As

it was commented in the introduction, both applications can be useful in adaptive
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processes: a coarse finite element mesh can be used in the whole domain and, after

the use of an error estimator or indicator, some particles can be added freely where

it is needed, with no remeshing cost. The applicability of this mixed interpolation is

shown in several examples.

However, mesh-free methods are still novel methods, and thus, there are many topics

about mesh-free methods that still require further research. Here some interesting research

topics are proposed.

1. As noted in the introduction, at this moment one of the most important objectives is to

take advantage of the ability of mesh-free methods in adaptivity processes. In particu-

lar, mesh-free methods present several good properties in convection dominated prob-

lems (see chapter 5), and thus, the application of the mixed interpolation presented

in chapter 4 in the simulation of active carbon canisters seems very promising. The

basic idea is to use a fixed coarse finite element mesh in the whole domain, with a

cloud of moving particles following the moving front in order to increase the spatial

accuracy where it is needed.

2. Imposing essential boundary conditions in a efficient and accurate way is other

interesting topic. Section 2.2.3 recalls the most important techniques. However, there

is not a comparison between them in terms of accuracy, computational cost and im-

plementation difficulty. For instance, for the Lagrange multipliers method it is not

easy to choose the optimal number of Lagrange multipliers: the boundary conditions

are imposed in a not enough accurate way if too few multipliers are used and, on the

other hand, the total system of equations becomes singular if too many multipliers

are considered. So, it can be interesting to compare and study the different existing

techniques. On the other hand, the idea of the mixed interpolation combining finite

elements in the essential boundaries and particles in the rest of the domain could be

applied, and may be improved, for this purpose.

3. Mesh-free methods presents obvious advantages in adaptive processes. So, it is also

important to work in this research field.

. In order to define an adaptive refinement strategy, as it is commented in (Huerta

et al. 1999), an a priori error estimator and an a posteriori error estimator or

error indicator are needed. Although there are a priori error estimates for most

of the mesh-free methods, see for instance (Liu et al. 1997), there are not good a
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posteriori error estimators. So, it necessary to investigate on this topic in order

to define efficient adaptive strategies and ensure the accuracy of the calculations.

. Adaptive computations in transient problems can be easily done following the

idea of Moving Finite Elements (MFE), see (Baines 1994). The basic idea of

MFE is to adapt the finite element mesh at each time step in order to minimize

the residual of the partial boundary value problem. The topology of the mesh is

kept fixed and the position of the nodes are considered variables, (as well as the

value of the solution at this nodes) in the minimization of the residual. However,

in 2D and 3D computations the minimization usually leads to distorted elements

or not well defined meshes. In this situation, specific techniques must be used

in order to maintain a well defined mesh, with the corresponding increase in the

implementation difficulty. Particle methods do not require connectivities, and

thus there are no problems with distorted or badly defined meshes. So, may be

MFE should evolve towards the ”Moving Particles” method.

4. Other interesting research topic is the development of new mixed interpolations com-

bining finite elements and mesh-free methods. The convergence results in the enrich-

ment of finite elements with particles are not as good as it was originally expected,

see section 4.4: when a coarse finite element mesh is fixed the error does not go to

zero if only the number of particles is increased. May be the consistency condition

4.2.6 is too restrictive and other possibilities should be considered. On the other hand,

the consistency condition can be imposed to reproduce non-polinomial functions. The

finite element contribution in (4.2.3) can take care of the consistency while the mesh-

free enrichment takes care of the reproducibility of more suitable functions in each

particular problem, for instance trigonometric functions or logarithmic functions.

5. Moreover, it is also necessary to compare finite elements with mesh-free methods in

other problems, in order to determine other situations where mesh-free methods can

be advantageous and explore all the possibilities of these methods.



Appendix A

Convergence of finite elements
enriched with mesh-free methods

Here the convergence of the mixed interpolation presented in chapter4 is analysed for the

second case, that is, h-p enrichment of finite elements with particles (see section4.4). This

method allows to enrich the FE discretization everywhere adding particles and increasing

the order of consistency. Recall that p is the degree of the finite element interpolation, and

m is the order of consistency obtained with the added particles. Thus, the increment of

consistency q is such that

q := m� p:

First, two results of EFG (Lemma A.1.1 and Lemma A.1.2), which are also valid for the

proposed interpolation, are recalled. A proof of Lemma A.1.1 can be found in (Liu et al.

1997). Although a result similar to Lemma A.1.2 may also be found in (Liu et al. 1997),

here a proof of Lemma A.1.2 is presented. Second, some properties of the FE basis are

proved. Finally, a theorem that shows an a priori error estimate for such a mixed method is

presented. This error estimate is proved under certain assumptions on the size of the finite

elements (Theorem A.3.4). If this assumptions are not fulfilled, a less sharp error estimate

is also found. This kind of error estimates are required to both study the convergence of the

mixed method and design proper adaptive strategies.
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A.1 Previous results

Lemma A.1.1 (Generalized consistency condition). Let some functions Ni 2 C` verify

the m-order consistency condition

X
i

(x� xi)
rNi(x) =

8<: 0 0 < r � m

1 r = 0;

then for every r, 0 � r � m, the functions Ni verify

X
i

(x� xi)
r d

kNi

dxk
(x) =

8<: 0 r 6= k

r! r = k;

for all k such that 0 � k � `.

In the remainder of the paper the following hypothesis for the particle distribution is

assumed to hold.

Hypothesis A.1.1. In the refinement process, that is as � goes to 0, the particle distribu-

tion is homothetically densified. This is done ensuring that the particles belonging to a

neighbourhood of x of radius � keep the same pattern during the refinement. Moreover, this

pattern is such that matrix M is regular (see remark2.1.11).

In order to clarify this hypothesis the following notation is introduced. Let I�x be, for

every x 2 
, the set of indices of the particles in the support of the window function centred

in x, i.e.

I�x := fj 2 I� such that jxj � xj � �g:

The pattern of normalized neighbour particles is defined to be

��
x := fzj :=

x� xj
�

for j 2 I�xg:

Thus, Hypothesis A.1.1 is equivalent to assume that, passing from � = �̂ to � = ~�, for every

~x 2 
 it exists x̂ 2 
 such that �~�
~x = ��̂

x̂. Consequently, M(x̂)j�=�̂ = M(~x)j�=~� and the

properties of M are independent of �.

Lemma A.1.2. Let 
 be an open bounded domain and � 2 C`(
), ` � m. Then, for all

x 2 
, every element of matrix M�1(x), the inverse of M(x), see (2.1.34), is bounded by

a constant independent of x and �. Moreover, the k-th derivative (k � `) of every element

of M is O(��k).
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Proof. The first part of the Lemma, i.e. M�1(x) is bounded, is a direct consequence of

Hypothesis A.1.1. The k-th derivative of M(x) is rearranged using the normalized variable

z:

dk

dxk
M(x) =

X
j2I�

dk

dxk

�
P(

x� xj
�

)PT (
x� xj

�
)�(

x� xj
�

)

�

= ��k
X
j2I�x

dk

dzk
�
P(z)PT (z)�(z)

���
z=(x�xj)=�

Under the assumption of Hypothesis A.1.1 the termX
j2I�x

dk

dzk
�
P(z)PT (z)�(z)

�����
z=(x�xj)=�

is independent of � and therefore the Lemma is proved.

Remark A.1.1. In what follows, k�k1 stands for both the maximum norm of a vector and

the subordinate matrix norm (“max row sum”). Note that the standard norm denoted by

k�kL1, associated with the linear space L1, is also used later.

Corollary A.1.3. Under the assumptions of Lemma A.1.2, constants CM and CMk (k =

0; : : : ; `) independent of x and �, exist and are such that

kM�1(x)k1 � CM; and k
dkM

dxk
k1 � CMk ��k; k = 0; : : : ; `:

Proof. Trivial given the definition of the matrix norm subordinate to the maximum vector

norm.

A.2 FE element properties

Definition A.2.1. Let R(k)
` (x), 0 � k � p, be the k-th derivative of the remainder (point-

wise error) in the finite element interpolation of the monomial x̀ :

R
(k)
` (x) :=

dk

dxk

24x` �X
i2Ih

x`iN
h
i (x)

35 =
dk(x`)

dxk
�
X
i2Ih

x`i
dkNh

i

dxk
(x):

In order to simplify the notation, the explicit dependence of R(k)` on x is omitted. If

finite elements of order p are used, in each element R(k)` can be rewritten (Isaacson and

Keller 1966) as:

R
(k)
` =

8><>:
0 0 � ` � p

`! Lk(x) �`�(p+1)

(`�(p+1))! (p+1�k)! p < ` � m;

(A.2.1)



118 Convergence of finite elements enriched with mesh-free methods

where � = �(x) is an unknown point inside the finite element where x is located, where

Lk(x) =

p�kY
j=0

(x� �j); (A.2.2)

and the p+ 1� k distinct and unknown points, �j , lie inside the finite element.

Lemma A.2.1. For k = 0; : : : ; p, the p-order finite element basis verifiesX
i2Ih

(x� xi)
r d

kNh
i

dxk
(x) = 0; for r = 1; : : : ; p and r > k; (A.2.3)

and

j
X
i2Ih

(x� xi)
r d

kNh
i

dxk
(x)j � �r;k h

r�k; for r � p+ 1 > k; (A.2.4)

where

�r;k :=
r!

(r � (p+ 1))! (p+ 1� k)!
:

Proof. The l.h.s. of (A.2.3) is rearranged using the Newton’s binomial expression:

P
i2Ih

(x� xi)
r d

kNh
i

dxk
(x) =

P
i2Ih

24 rP̀
=0

(�1)`

0@r
`

1Ax`i x
r�`

35 dkNh
i

dxk
(x)

=
rP̀
=0

(�1)`

0@r
`

1Axr�`

" P
i2Ih

x`i
dkNh

i

dxk
(x)

#

=
rP̀
=0

(�1)`

0@r
`

1Axr�`
�
dk

dxk
�
x`
�
�R

(k)
`

�
:

(A.2.5)

Moreover,

dk

dxk

�
x`
�
=

8><>:
0 if ` < k

`!
(`�k)!x

`�k if ` � k,
(A.2.6)

and therefore xr�` dk

dxk

�
x`
�

is either 0 for ` < k, or xr�k `!
(`�k)! for ` � k. Thus, using

(A.2.1), (A.2.5) is expressed as

X
i2Ih

(x�xi)
r d

kNh
i

dxk
(x) = xr�k

rX
`=k

0@r
`

1A (�1)``!

(`� k)!
�

rX
`=p+1

(�1)`

0@r
`

1Axr�`R
(k)
` : (A.2.7)

Note that the first sum of the r.h.s. term of (A.2.7) cancels because, for r > k,

rX
`=k

(�1)`

0@r
`

1A `!

(`� k)!
= (�1)k

r!

(r � k)!

24r�kX
j=0

(�1)j

0@r � k

j

1A35 = 0; (A.2.8)
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and consequently

X
i2Ih

(x� xi)
r d

kNh
i

dxk
(x) =

rX
`=p+1

(�1)`+1

0@r
`

1Axr�`R
(k)
` : (A.2.9)

If r � p, obviously ` cannot range between p+ 1 and r, thus,X
i2Ih

(x� xi)
r d

kNh
i

dxk
(x) = 0; r � p:

which does coincide with (A.2.3). For r > p, using (A.2.1), (A.2.9) becomesX
i2Ih

(x� xi)
r d

kNh
i

dxk
(x) =

Lk(x) r!

(p+ 1� k)!

rX
`=p+1

(�1)`+1 xr�` �`�(p+1)

(`� (p+ 1))! (r � `)!
: (A.2.10)

A new mute index j := `� (p+ 1) and a new parameter s := r � (p+ 1) are defined and

thus, (A.2.10) can be rewritten as

P
i2Ih

(x� xi)
r d

kNh
i

dxk
(x) = (�1)p

Lk(x) r!

(p+ 1� k)! s!

sP
j=0

0@s
j

1Axs�j(��)j

= (�1)p
Lk(x) r!

(p+ 1� k)! s!
(x� �)s:

(A.2.11)

Since jLk(x)j � hp+1�k, when jx� �j � h, (A.2.11) can be bounded, namely,

j
X
i2Ih

(x� xi)
r d

kNh
i

dxk
(x)j �

r!

(p+ 1� k)! s!
hr�k; (A.2.12)

which is precisely the inequality (A.2.4).

Remark A.2.1. The term that cancels according to (A.2.8), that is the first sum of the r.h.s.

term of (A.2.7), is a rearranged expression of

rX
`=0

(�1)`

0@r
`

1Axr�`
dk

dxk

�
x`
�

for r > k, see (A.2.5). However, for k > r, this term is obviously also zero because

dk(x`)=dxk = 0 for ` = 0; : : : ; r. This term is not zero for k = r. In this case, the cited

term takes the value of (�1)rr!. Nevertheless, Lemma A.2.1 is restricted to r > k because

it is the only case needed in the rest of the paper.

In order to prove the convergence results (error bound theorems) several lemmas and

a theorem are needed. Their goal is to bound the shape function, N�
j , and its derivatives.

Hence, a bound on the r.h.s. of (4.2.8) and then a bound for � are needed.
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Lemma A.2.2. Let qr(x) := xr. Then, for k = 0; : : : ; p,

dk

dxk

24qr(0) �X
i2Ih

qr(
x� xi
�

)Nh
i (x)

35 = 0; r = 0; : : : ; p; (A.2.13)

and

j
dk

dxk

24qr(0)�X
i2Ih

qr(
x� xi
�

)Nh
i (x)

35j � �k;r
hr�k

�r
; r � p+ 1; (A.2.14)

where �k;r are the following constants independent of x, � and h:

�k;r :=
r!

(r � k)!

kX
`=maxfk�r+p+1;0g

0@k
`

1A0@ r � k

p+ 1� `

1A : (A.2.15)

Proof. In order to simplify the notation

tr(x) := qr(0)�
X
i2Ih

qr(
x� xi
�

)Nh
i (x) (A.2.16)

is defined. Three cases are considered: r = 0, 1 � r � p and p < r. In the first case,

for r = 0, q0(x) = 1 and t0(x) = 1 �
P
i2Ih

Nh
i (x) = 1 � 1 = 0. In the second case, for

r = 1; : : : ; p, Lemma A.2.1 gives, for k = 0,

tr(x) = �
1

�r

24X
i2Ih

(x� xi)
rNh

i (x)

35 = 0:

Hence, dk
�
tr(x)

�
=dxk = 0 for every k and, consequently, (A.2.13) is proved. For the last

case, r > p,

dktr
dxk

(x) = �
1

�r

X
i2Ih

dk

dxk

h
(x� xi)

rNh
i (x)

i

= �
1

�r

X
i2Ih

8<:
kX

`=0

0@k
`

1A dk�`

dxk�`
[(x� xi)

r]
d`Nh

i

dx`
(x)

9=; :

Using (A.2.6) and changing the order of the sums, the previous formula is expressed as

dktr
dxk

(x) = �
1

�r

kX
`=0

0@k
`

1A r!

(r � k + `)!

24X
i2Ih

(x� xi)
r�k+` d

`Nh
i

dx`
(x)

35 :
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Note that r � k + ` > ` because r > p � k. Then, Lemma A.2.1 applies and the sum with

index i is zero if `+ r� k � p. Therefore, the sum in ` begins with ` = maxfk� r+ (p+

1); 0g. Using now Lemma A.2.1 for the remaining terms, the bound (A.2.14) is proved:

j
dktr
dxk

(x)j �
1

�r

24 kX
`=maxfk�r+p+1;0g

0@k
`

1A r!

(r � k + `)!
�r�k+`;`

35hr�k:

A.3 Convergence of FE enriched with EFG

Lemma A.3.1. Let k be such that 0 � k � p. Suppose h � Qk �, where the following

definition Qk stands for given p and m:

Qk :=

8>><>>:
1 for m = p+ 1;

min
r=p+2;:::;m

�
�k;p+1
�k;r

� 1
r�(p+1)

for m > p+ 1:
(A.3.1)

and �k;r are the constants defined in (A.2.15). Then, the derivatives of the r.h.s. of equation

(4.2.8) verify the following inequality:

k
dk

dxk

24P(0) �X
i2Ih

P(
x� xi
�

)Nh
i (x)

35k1 � �k;p+1
hp+1�k

�p+1
: (A.3.2)

Proof. Since h � Qk �, by definition (A.3.1), then for r = p+ 2; : : : ;m

�k;r

�
h

�

�r�(p+1)
� �k;p+1:

Using now Lemma A.2.2 for every component, tr(x), of the r.h.s. in (4.2.8) one gets

dktr
dxk

= 0 for r = 0; : : : ; p;

dktr
dxk

= �k;p+1
hp+1�k

�p+1
for r = p+ 1;

and

j
dktr
dxk

(x)j � �k;r

�
h

�

�r�(p+1) hp+1�k
�p+1

� �k;p+1
hp+1�k

�p+1
for r = p+ 2; : : : ;m:
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Lemma A.3.2. Let k be such that 0 � k � p. Suppose h=� � min
0�s�k

Qs, where Qs is the

constant defined in (A.3.1). Then, it exists a constant C?
k , independent of �, h and x, such

that the solution, �, of the linear system of equations (4.2.8) verifies

k
dk�

dxk
k1 � C?

k

hp+1�k

�p+1
: (A.3.3)

Proof. The r.h.s. of (4.2.8) is defined as T = T(x) := P(0) �
P
i2Ih

P(
x� xi
�

)Nh
i (x).

Thus, equation (4.2.8) is rewritten as

M� = T: (A.3.4)

Using Lemma A.3.1 and Corollary A.1.3, the previous equation implies:

k�k1 � kM�1k1kTk1 � CM �0;p+1| {z }
C?
0

hp+1

�p+1
:

Once (A.3.3) is proved for k = 0, we proceed by induction on k, that is, assume

k
ds�

dxs
k1 � C?

s

hp+1�s

�p+1
for s = 0; : : : ; k � 1: (A.3.5)

Differentiating (A.3.4) yields24k�1X
s=0

0@k
s

1A dk�sM

dxk�s
ds�

dxs

35+M
dk�

dxk
=

dkT

dxk
:

Rearranging terms, the following expression for the k-th derivative of � is found:

dk�

dxk
=M�1

24dkT
dxk

�
k�1X
s=0

0@k
s

1A dk�sM

dxk�s
ds�

dxs

35 :
Since �=h � Qk, using Lemma A.3.1, Corollary A.1.3 and the induction hypothesis (A.3.5),

the following inequality is obtained:

k
dk�

dxk
k1 � kM�1k1

24kdkT
dxk

k1+

k�1X
s=0

0@k
s

1A kdk�sM
dxk�s

k1k
ds�
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35
� CM

24�k;p+1 hp+1�k

�p+1
+

k�1X
s=0

0@k
s

1ACMk�s �
s�k C?

s

hp+1�s

�p+1

35
� bC hp+1�k

�p+1
+

k�1X
s=0

bCs
hp+1�s

�p+1+k�s
:
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When k > 0, assuming h=� � Qs for s = 0; : : : ; k � 1, it follows that

hp+1�s

�p+1+k�s
� (Qs)

k�s hp+1�k

�p+1
: (A.3.6)

Consequently,

k
dk�

dxk
k1 � C?

k

hp+1�k

�p+1
:

Theorem A.3.3 (Shape function’s bound). Let m be the order of consistency of the mixed

approximation uh + u�, such that m = p + q, where p is the order of the finite element

approximation, uh, and q > 0 is the order increment due to u�. Let ` such that 0 � ` � p.

Assume the following regularity conditions for the exact solution, u, and the weighting

function, �: u 2 Cm+1(�
) and � 2 C`(�
), where 
 is bounded and @
 is smooth. Finally,

assume that h=� � min
0�k�`

Qk where Qk is the constant defined in (A.3.1). Then, for k =

0; : : : ; `, the following inequality holds:

k
dkN�

j

dxk
kL1 � C??

k

hp+1�k

�p+1
;

where C??
k is a constant independent of x, � and h.

Proof. Using the Newton’s binomial expression in (4.2.5), the k-th derivative of the shape

function N�
j is

dkN�
j

dxk
(x) =

kX
s=0

0@k
s

1A�ds�
dxs

(x)

�T 1

�k�s
dk�s[P(z)�(z)]

dzk�s

����
z=(x�xi)=�

; (A.3.7)

Note that �(z) = 0 if jzj > 1. Therefore, by Lemma A.3.2,

j
dkN�

j

dxk
(x)j �

kX
s=0

0@k
s

1AC?
s

hp+1�s

�p+1+k�s

�
max
jzj�1

k
dk�s[P(z)�(z)]

dzk�s
k1

�

Note that the term in braces is a constant independent of h and �. Moreover, with the

assumption h=� � min
0�k�`

Qk, see equation (A.3.6), it follows that

j
dkN�

j

dxk
(x)j �

24 kX
s=0
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s

1AC?
s (Qs)

k�s

�
max
jzj�1

k
dk�s[P(z)�(z)]

dzk�s
k1

�35
| {z }
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k

hp+1�k

�p+1
:
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Theorem A.3.4 (Error bound). Under the same assumptions of Theorem A.3.3,

ju� (uh + u�)jWk
1

� hp+1�k [C1h
q + C2�

q] jujWm+1
1

k = 0; : : : ; `: (A.3.8)

where C1 and C2 are independent of the finite element size, h, and the dilation parameter,

�, of the mesh-free approximation.

Proof. Let x be a point in 
 and let xi be either a node of the finite element where x is

located, i.e. jx� xij < h, or a particle such that N�
i (x) 6= 0, i.e. jx� xij < �. Consider the

m-order Taylor expansion of u around x

u(xi) = u(x) + (xi � x)
du

dx
(x) +

(xi � x)2

2

d2u

dx2
(x) + � � �

+
(xi � x)m

m!

dmu

dxm
(x) +

(xi � x)m+1

(m+ 1)!

dm+1u

dxm+1
(�);

(A.3.9)

where � = �x + (1 � �)xi, for some � such that 0 � � � 1. The point � lies in 
 if the

finite elements are convex and � is small enough near the smooth boundary. Let us define

Ni(x) :=

8><>:
Nh
i (x) i 2 Ih;

N�
i (x) i 2 I�:

The derivative of the approximation of u yields

dku

dxk
(x) '

dk(uh + u�)

dxk
(x) =

X
i2Ih[I�

u(xi)
dkNi

dxk
(x): (A.3.10)

The shape functions N�
j are derived in order to achieve m-order consistency. Thus, the com-

plete set of functions Ni (including the finite element basis) has m-order consistency. Then,

replacing (A.3.9) in (A.3.10), and applying Lemma A.1.1, a new expression is obtained:

dk(uh + u�)

dxk
(x) = u(x)

X
i2Ih[I�

dkNi

dxk
(x)| {z }

0

+
du

dx
(x)

X
i2Ih[I�
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dxk
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+
1

k!
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dxk
(x)

X
i2Ih[I�
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dkNi

dxk
(x)

| {z }
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+ � � �

+
1
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dxm
(x)

X
i2Ih[I�
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dkNi

dxk
(x)| {z }

0

+
1

(m+ 1)!

dm+1u

dxm+1
(�)

X
i2Ih[I�

(xi � x)m+1 d
kNi

dxk
(x):
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The previous expression can be rewritten as:

dk[u� (uh + u�)]

dxk
(x) =

�1

(m+ 1)!

dm+1u

dxm+1
(�)

� P
i2Ih

(xi � x)m+1 d
kNh

i

dxk
(x)

+
X
j2I�

(xj � x)m+1
dkN�

j

dxk
(x)

�
:

(A.3.11)

For a given x the first sum in the r.h.s. of (A.3.11) may be restricted to the p + 1 nodes of

the finite element where x is located and which verify jx � xij � h. Similarly, the second

sum in the r.h.s. of (A.3.11) is circumscribed to the particles xj such that x is included in

the support of N�
j (x), i.e. particles such that jx�xj j � �. Let us denote by n the maximum

number of particles verifying jx � xj j � �. Hence, from (A.3.11) the following bound is

obtained

j
dk(u� + uh)

dxk
(x)j �

1

(m+ 1)!
j
dm+1u

dxm+1
(�)j

�
(p+ 1)hm+1 max

i2Ih
j
dkNh

i

dxk
j

+n�m+1max
j2I�

j
dkN�

j

dxk
j

#
:

On one hand, the k-th derivative (k < p) of the finite element shape functions is O(h�k).

On the other, Theorem A.3.3 bounds the shape functions N�
j and their derivatives. Conse-

quently,

k
dku

dxk
�

dk(u� + uh)

dxk
kL1 �

�
C1h

m+1�k + C2
hp+1�k

�p+1
�m+1

�
k
dkum+1

dxk
kL1

� hp+1�k [C1h
q + C2�

q] k
dkum+1

dxk
kL1;

which is precisely (A.3.8).

Corollary A.3.5. Let m be the order of consistency of the mixed approximation uh + u�,

such that m = p+q, where p is the order of the finite element approximation, uh, and q > 0

is the order increment due to u�. Suppose that the following regularity conditions hold for

the exact solution, u, and the weighting function, �: u 2 Cm+1(�
) and � 2 C0(�
), where


 is bounded and @
 is smooth. Finally, assume that the element size h is small enough

with respect to the dilation parameter �, i.e.

h

�
� min

r=p+1;:::;m

0@ r

p+ 1

1A
�1

r�(p+1)

:

Then,

ku� (uh + u�)kL1 � hp+1 [C1h
q + C2�

q] jujWm+1
1

(A.3.12)
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where C1 and C2 are independent of the finite element size, h, and the dilation parameter,

�, of the mesh-free approximation.

Remark A.3.1. The error bound given in (A.3.12) allows to predict the convergence be-

haviour of the mixed finite element-particle interpolation. That is, when both h and � de-

crease simultaneously, the order of convergence is p + q + 1 = m + 1. When h goes to

zero while � is kept constant, the order is either p + 1 if C1hq < C2�
q or m + 1 when

C1h
q � C2�

q. And finally, convergence is ensured at a rate of q when � goes to zero

provided that C1h
q � C2�

q. But, if h is kept constant as � goes to zero, it is necessary

to increase the order of consistency in order to achieve asymptotic convergence. Numerical

examples of these situations are shown in (Huerta and Fernández-Méndez 2000).

If the restriction on the mesh size, h=� � min
0�k�`

Qk, is omitted, Lemma A.3.1 must be

rewritten, the previous results are no longer valid and must be replaced by less sharp error

bounds.

Lemma A.3.6. With no restriction on the element size, the independent term in equation

(4.2.8) verifies

k
dk

dxk

24P(0)�X
i2Ih

P(
x� xi
�

)Nh
i (x)

35k1 � �k;p+1
hp+1�k

�m
; k = 0; : : : ; p:

Proof. Trivial from Lemma A.2.2.

Reproducing the proof of the previous lemmas, the following less accurate error bound

is easily proved:

Theorem A.3.7 (Error bound). Under the same assumptions of Theorem A.3.4 but with

no restriction on the element size, the error bound is

ju� (uh + u�)jWk
1

� hp+1�k
�
C1h

q + C2�
1
�
jujWm+1

1

;

where C1 and C2 are independent of the finite element size, h, and the dilation parameter,

�, of the mesh-free approximation.

Corollary A.3.8. Under the same assumptions of CorollaryA.3.5 but with no restriction on

the element size, the following inequality holds:

ku� (uh + u�)kL1 � hp+1
�
C1h

q + C2�
1
�
jujWm+1

1

;

where C1 and C2 are independent of the finite element size, h, and the dilation parameter,

�, of the mesh-free approximation.
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A.4 Concluding remarks

In this appendix the enrichment of finite elements with particles is analysed. From the

expression of the obtained error bounds it is deduced that, in order to ensure asymptotic

convergence, the enrichment of the finite element solution must be donde either (1) increas-

ing at the same time the number of particles and the order of consistency, or (2) keeping

constant the ratio h
� , and thus increasing simultaneously the number of particles and the

number of nodes. However, if h and m are kept constant no convergence is achieved al-

though � goes to zero. In any case, there is an important improvement of the solution when

particles are added to a finite element mesh.
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Appendix B

Numerical simulation of active
carbon canisters

Active carbon canisters are used in the automotive industry to control the pollutant emission.

The canister is located between the fuel tank and the atmosphere, see figuresB.1 and B.2.

It is a receptacle containing active carbon, a material specially designed in order to capture

and store hydrocarbon (HC) particles (adsorption), see figureB.3. During periods with high

temperatures, in the loading process, the fuel in the tank evaporates leaving contaminant

HC. The goal is to avoid that the HC goes freely into the atmosphere. When the vehicle

starts, in the purge process, the combustion air goes into the motor through the canister,

cleaning the active carbon (desorption). The HC particles from the active carbon are added

to the fuel coming from the fuel tank in the combustion.

Industrial canister design is a lengthy task, involving the testing of prototypes, due to

various factors:

(1) the canisters typically have a rather complex 3D geometry, because they must occupy

the space left after other components have already been placed during the design

process (see figure B.3)

(2) they are subject to very strict emission regulations in the American and European mar-

kets regarding several design parameters (working capacity, purge, refuelling, etc.)

(3) different materials (active carbon of various types, air chambers, foams, etc.) are

required to meet these regulations.

The ultimate goal is the (at least partial) replacement of prototype testing by finite element

simulations, thus shortening the design cycle, see for instance (Hossain and Yonge 1992)

and (Huerta, Rodrı́guez-Ferran, Sarrate, Dı́ez and Fernández-Méndez 2001). The goal is

129
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CANISTER
TANK

Figure B.1: Canister location

to model, for instance, the complete evolution of a clean canister up to breakthrough (the

canister is full enough so that some HC goes out to the atmosphere).

The dominant physical phenomenon in a canister is the transport of HC. In (Huerta,

Rodrı́guez-Ferran, Sarrate, Dı́ez and Fernández-Méndez 2001) transport is modelled by

means of a convection-diffusion-reaction equation:

ut + v � ru� ��u+ �(u)u = f(u)

where u is the concentration of HC in air, v is the air velocity field inside the canister, which

is previously computed solving a potential flow problem, and � is the diffusion coefficient.

The reaction term �(u)u and the source term f(u), which are highly nonlinear, model

the adsorption (under loading conditions) or desorption (during the purge) of HC. This

adsorption/desorption process involves complex mass transfer processes on the surface and

in the pores of the active carbon particles. The mass transfer process depends on the HC

concentration in air, u, and on the HC in carbon, usually modelled by extra variables.

However, during the loading process, the air convection velocity v is usually small

enough so that the mass transfer process between air and active carbon can be considered

instantaneous. That is, the convected ”dirty” air (u > 0) transfers all the HC mass to

the active carbon, and becomes ”clean” air (u = 0) almost instantaneously, and until the

active carbon becomes saturated. Thus, the HC front becomes sharp and advances with

slower velocity in the carbon regions, due to this fast mass transfer phenomena. Under
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ENGINE

TANK

ATMOSPHERE

Figure B.2: Canister

this conditions, the problem can be modelled by a simple transient convection-diffusion

equation in the whole domain,

ut + ~v � ru� ��u = 0

where ~v represents the HC front velocity, which is computed from the air velocity v just

multiplying with a factor �:

~v = �v:

The factor � depends on the material properties. For example, is is equal to 1 at the air

cambers or foams, where there is not adsorption process and the HC is convected with

the air velocity, and more or less 10�2 at the active carbon regions, where the front of

HC becomes slower than the air velocity due to the carbon adsorption effect. Under this

conditions, the problem can be modelled by a simple linear transient convection-diffusion

equation. All the examples in this appendix have been computed with this simplified model.

However, most of the problems in the numerical resolution of the more general nonlinear

case are also present in the simplified problem.

Various numerical challenges can be identified. Due to the complex 3D geometry of

most canisters, the flow is highly non-uniform. In fact, recent canister designs typically

incorporate air chambers to smooth air flow. The transport problem is convection-dominated

and inherently transient. In the nonlinear case the problem involves multi-physics at two

very different length scales (the small or local scale of the active carbon pellets (mm) and
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Figure B.3: Active carbon and several canisters

the large or global scale of the canister (dm)). This problem is avoided in the simplified

loading problem. However, high variations in the front convection velocity field are present

in both cases, due to the treatment of different materials: the front velocity is more or less

100 times greater in the air chambers than in the carbon regions.

To tackle these difficulties, a proper combination of sophisticated numerical algorithms

is required:

. Unstructured 3D finite element meshes are employed.

. High-order time-stepping schemes in combination with a least-squares stabilized for-

mulation are considered in order to obtain an accurate solution and avoid oscillations,

see chapter 5 for details.

. A least-squares stabilization technique has been chosen in order to obtain symmetric

linear systems of equations. This enables the efficient resolution of large and sparse

systems of equations arising in 3D computations, with a preconditioned conjugated

gradient solver and compact row storage.

. Shock-capturing techniques, see (Tezduyar and Park 1986) or (Codina 1993), are also

needed in some cases due to the presence of sharp fronts in the HC concentration.

. In the nonlinear case, the non-linearity of the reaction term is fully accounted for at

the local (i.e. active carbon particle) level, so the global problem is linear.
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Some numerical results are shown in section B.1. All this work has been developed

in a contract between the LaCàN group (Laboratory de Càlcul Numèric at the Universi-

tat Politècnica de Catalunya) and Expert Components S.A., a leading European canister

manufacturer. Although they are not included in this appendix, nonlinear and unloading

simulations have also been done. However, there are many topics that still need further

research.

B.1 Numerical examples

The objective of this section is to illustrate some topics of interest in the design of active

carbon canisters.

The following 2D example shows the influence of the air chambers in the canister

behaviour and its importance in order to obtain an optimal design. The inclusion of air

chambers in the canister design presents two possible advantages:

(i) as noted in the introduction, recent canister designs typically incorporate air chambers

to smooth air flow,

(ii) the active carbon mass needed in the canister production is smaller due to the air

chambers, and thus, the canister cost becomes cheaper.

Canister A Canister B Canister C

Figure B.4: Three 2D canister models with active carbon (in green) and air cambers (in
yellow)

Figure B.4 shows three 2D simplified models for an active carbon canister. Recall that

usually the external geometry of the canister is fixed, since it must occupy the space left

after other components have already been placed during the design process. Canister A

corresponds to a classical canister, it is totally filled with active carbon. Canisters B and
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C incorporates two air chambers (in yellow). However, the air chamber in canister C is

smaller that in canister B in order to compare the effect. The objective of this experiment

is to corroborate (ii) and to investigate about the possible influence of the shape of the air

chambers.

Canister A Canister B Canister C

Figure B.5: Evolution of the concentration at five different time steps for the three canisters
described in figure B.4

The solution at different time steps is shown in figure B.5. As is was expected the flow

becomes smoother in the active carbon regions and the HC front advances almost orthogonal
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to the faces of canisters B and C, due to the presence of air cambers. However, canister C

corresponds to the most attractive design, since its breakthrough will happen later than in

the other prototypes. Moreover, when comparing canister C with canister A, the quantity

of active carbon needed in the production of canister C is much smaller than in canister A,

with the corresponding savings in the canister cost. So, the conclusion is that, a good design

of the interior of the canister, including the design of the air chambers, can provide efficient

and cheaper canisters.

Figure B.6 shows a 3D simulation of a more realistic canister. Interior chambers with

air, foam, fleece and different types of active carbon are included in the model. Although,

there are many topics that still require further research, numerical methods can be a powerful

tool in canister design.

Figure B.6: Concentration in a 3D canister and orthogonal cut.

B.2 Conclusions and remarks

As it has been shown in the examples, numerical methods can be a powerful tool in the

design of smart canisters, including for instance the design of air chambers. However, there

are still many problems to overcome in order to attain an efficient numerical simulation of

active carbon canisters. Active carbon canisters are subject to very strict emission regu-
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lations in the American and European markets. It is necessary to obtain a very accurate

solution in order to determine if one canister verifies or not one test. For instance, it is

important to determine the quantity of HC that goes out from the canister with a very high

precision, and thus, the shape and the position of the advancing front must be interpolated

in a very accurate way.

These are some concrete topics to work in:

. About the spatial discretization, most of the realistic examples need 3D computations,

and thus, the use of a dense enough mesh in the whole domain usually leads to a too

large computational cost. In fact, the situation becomes terrible for the nonlinear

model, which must be used at least in the unloading process. If only finite elements

are used, the mesh should be adapted in order to capture the advancing front. This

implies a degradation in the solution (due to successive projections of the solution

between meshes) and an increase in the computational cost. In fact, in 3D it is not so

easy to find a good mesh generator, which adapts the mesh to the prescribed densities

of nodes. So, the mixed interpolation that combines finite elements and mesh-free

methods presented in chapter 4 can be a good choice: a fixed coarse finite element

mesh can be used in the whole domain, with a cloud of moving particles following

the moving front in order to increase the spatial accuracy where it is needed.

. On the other hand, it is also necessary to discretize the problem with enough accuracy

in time. So, high order time stepping schemes must be considered. Chapter5 shows

the capabilities of mesh-free methods in combination with high-order time stepping

schemes and stabilization techniques. So, the use of mixed interpolations combin-

ing finite elements and mesh-free methods turns out to be hopeful in the numerical

simulation of active carbon canisters.

. In the nonlinear case the problem involves multi-physics with two different time

scales: local problem associated to the active carbon pellets usually requires a time

step much smaller than the global problem. In order to maintain a not too small time

step in the global problem, with the corresponding saving in the computational cost,

sub-stepping techniques can be considered to solve the local problem in a enough

accurate way.

. Although some problems are avoided in the simplified loading problem, high varia-

tions in the front convection velocity field are present in both cases due to the treat-

ment of different materials: the front velocity is more or less 100 times greater in
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the air chambers than in the carbon regions. So, it can be attractive to use multi-time-

stepping algorithms, see (Belytschko and Mullen 1977) and (Gravouil and Combescure

2001), in order to adapt the time step to each region and calculate with a proper and

almost uniform Curant number.

However, it is important to note that qualitative results can be easily obtained and, al-

though this results can be useless in the verification of particular tests, they are useful to

improve the canister design.
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Oñate, E. and Idelsohn, S. (1998), ‘A mesh-free finite point method for advective-diffusive
transport and fluid flow problems’, Computational Mechanics 21, 283–292.

Organ, D., Fleming, M., Terry, T. and Belytschko, T. (1996), ‘Continuous meshless ap-
proximations for nonconvex bodies by diffraction and transparency’, Computational
Mechanics 18, 225–235.

Orkisz, J. (1998), Meshless finite diference method. i basic approach, in ‘Proc. of the IACM-
Fourth Word Congress in Computational Mechanics’, CIMNE.

Perrone, N. and Kao, R. (1975), ‘A general finite difference method for arbitrary meshes’,
Computers and Structures 5, 45–58.

Shakib, F. and Hughes, T. J. R. (1991), ‘A new finite element formulation for computational
fluid dynamics: Ix. fourier analysis of space-time galerkin/least-squares algorithms’,
Computer Methods in Applied Mechanics and Engineering 87, 35–58.

Suri, M. (1996), ‘Analytical and computational assessment of locking in the hp finite ele-
ment method’, Computer Methods in Applied Mechanics and Engineering 133, 347–
371.

Swengle, J. W., Hicks, D. L. and Attaway, S. W. (1995), ‘Smoothed particle hydrodynamics
stability analysis’, Journal of Computational Physics 116, 123–134.

Tezduyar, T. E. and Park, Y. (1986), ‘Discontinuity-capturing finite element formulations
for nonlinear convection-diffusion-reaction equations’, Computer Methods in Applied
Mechanics and Engineering 59, 307–325.

Tezduyar, T. and Osawa, Y. (2000), ‘Finite element stabilization parameters computed from
element matrices and vectors’, Computer Methods in Applied Mechanics and Engi-
neering 190, 411–430.

Timoshenko, S. and Goodier, J. (1987), Theory of elasticity (3rd edn), McGraw-Hill: New
York.

Vila, J. P. (1999), ‘On particle weighted method and smooth particle hydrodynamics’, Math-
ematical Models and Methods in Applied Sciences 9, 161–209.

Wagner, G. J. . and Liu, W. K. (2001), ‘Hierarchical enrichment for bridging scales and
mesh-free boundary conditions’, International Journal for Numerical Methods in En-
gineering 50, 507–524.



144 Bibliography

Wagner, G. J. and Liu, W. K. (2000), ‘Application of essential boundary conditions in mesh-
free methods: a corrected collocation method’, International Journal for Numerical
Methods in Engineering 47, 1367–1379.

Zhu, T. and Atluri, S. (1998), ‘A modified collocation method and a penalty formulation
for enforcing the essential boundary conditions in the element free galerkin method’,
Computational Mechanics 21, 211–222.


	Title
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	State of the art in mesh-free methods
	Interpolation in mesh-free methods
	Smooth Particle Hydrodynamic
	Moving Least Squares interpolants

	Implementation details
	Collocation methods
	Methods based on a Galerkin weak form 
	Essential boundary conditions
	EFG implementation details: computation of EFG interpolation functions and derivatives


	Locking in the incompressible limit for the Element Free Galerkin method
	Introduction
	Volumetric locking in standard finite elements
	Preliminaries
	Bilinear finite elements (Q1)
	Biquadratic finite elements (Q2)

	Volumetric locking in element free Galerkin methods
	Locking for bilinear consistency
	Locking for biquadratic consistency

	Numerical examples
	The cantilever beam
	The plate with a hole
	The Prandtl's punch test

	Conclusions

	Enrichment and Coupling of the Finite Element and Mesh-free Methods
	Introduction
	A hierarchical mixed approximation: finite elements with EFG
	Evaluation of the mesh-free shape functions Nj

	Coupled Finite Element and Element-Free Galerkin
	Finite Element enrichment with Element-Free Galerkin
	Numerical examples
	Coupled EFG-FEM
	Coupled and Enriched EFG-FEM
	Finite element enrichment with EFG in a 2D Poisson problem
	Finite element enrichment with EFG in nonlinear computational mechanics
	Adaptivity in 2D convection-diffusion and diffusion-reaction problems coupling finite elements and particles

	Conclusions

	Time accurate consistently stabilized mesh-free methods for convection dominated problems
	Introduction
	Time and space discretization for the transient convection-diffusion equation
	Time discretization
	Spatial discretization. (I) Galerkin and stabilized formulations for the FE method
	Spatial discretization. (II) Galerkin and stabilized formulations for the EFG method 

	Convergence of the Galerkin approach and the stabilized formulations 
	Numerical examples 
	1D example
	2D example

	Concluding remarks

	Summary and future developments
	Convergence of finite elements enriched with mesh-free methods
	Previous results
	FE element properties
	Convergence of FE enriched with EFG
	Concluding remarks

	Numerical simulation of active carbon canisters
	Numerical examples
	Conclusions and remarks

	Bibliography

