

QUANTIFIED REAL CONSTRAINT SOLVING
USING MODAL INTERVALS WITH

APPLICATIONS TO CONTROL

Pau HERRERO VIÑAS

ISBN: 978-84-690-4514-5
Dipòsit legal: GI-311-2007

Quantified Real Constraint

Solving Using Modal Intervals

with Applications to Control

Pau Herrero i Viñas

Departament d’Electrònica Informàtica i Automàtica

Universitat de Girona

Supervisors

Dr. Josep Veh́ı and Dr. Luc Jaulin

Doctoral Thesis

Girona, November 2006

Reviewers

Dr. Frédéric Benhamou and Dr. Stefan Ratschan

ThesisFigs/UdG.eps

2

Acknowledgements

This work has been supported by the FPI Research Grant BES-2004-

6337 subject to the Spanish CICYT Project DPI2003-07146-C02-02.

I would also like to thank certain people for their inestimable support

during these short years since, without their help, I would not have

been able to finish my work.

First of all, I want to mention my first supervisor, Josep Veh́ı. He is

the person who most encouraged me while working at the Modal In-

terval and Control Engineering Laboratory (MICELab). I also want

to thank him for all the resource material he provided for my work.

My most special gratitude to Luc Jaulin from ENSIETA: École Na-

tionale Supérieure d’Ingénieurs (France), my second but no less im-

portant supervisor. He has guided my steps through these years and I

have learnt so much from our interminable discussions. I also wish to

express my sincere appreciation to Miguel A. Sainz, without his sup-

port this thesis would not be possible. I am also thankful to Joaquim

Armengol for his clever advices along these years.

I am also grateful to the rest of the people from MICELab at the Uni-

versitat de Girona for their technical and ”less technical” support. In

the same way, I express my gratitude to the people from LISA labo-

ratory at the Université d’Angers and people from E3I2 laboratory at

the ENSIETA: École Nationale Supérieure d’Ingénieurs, where part

of this work was developed during different research stages.

And last but not least, many thanks to the researchers world-wide

with whom I have been enjoying many fruitful discussions and collab-

orations. Special thank goes to the ones who have helped me reviewing

this manuscript.

Finally, I would like to dedicate this achievement to my family and

my friends. They have always believed in me, a priceless motivation

which I truly appreciate. I hope that I have not disappointed them.

Résumé

Les contraintes réelles quantifiées (QRC) forment un formalisme math-

ématique utilisé pour modéliser un très grand nombre de problèmes

physiques dans lesquels interviennent des systèmes d’équations non

linéaires sur des variables réelles, certaines d’entre elles pouvant être

quantifiées. Les QRCs apparaissent dans nombreux contextes comme,

l’Automatique, le Génie Électrique, le Génie Mécanique, et la Biolo-

gie.

La résolution de QRCs est un domaine de recherche très actif pour

lequel deux approches radicalement différentes sont proposées: l’élim-

ination symbolique de quantificateurs et les méthodes approximatives.

Cependant, la résolution de problèmes de grandes dimensions et la

résolution du cas général, restent encore des problèmes ouverts.

Dans le but de contribuer à la résolution de QCRs, cette thèse pro-

pose une nouvelle méthodologie approximative basée sur l’Analyse

par Intervalles Modaux (MIA), une théorie mathématique développée

par des chercheurs de l’université de Barcelone et de l’université de

Girone. Cette théorie permet de résoudre d’une façon élégante une

grande classe de problèmes dans lesquels interviennent des quantifi-

cateurs logiques sur des variables réelles.

Parallèlement, ce travail a comme but de promouvoir l’utilisation de

l’Analyse par Intervalles Modaux pour résoudre des problèmes com-

plexes, comme sont les QRCs. La théorie de MIA est relativement

confidentielle du fait de sa complexité théorique relative et du fait

d’une formulation mathématique peu usuelle. Cette thèse essaie de

lever cette barrière en présentant la théorie d’une façon plus intu-

itive à travers des exemples et des analogies provenant de la théorie

classique de l’analyse par intervalles.

La méthodologie proposée a été implémentée informatiquement et

validée à travers la résolution de nombreux problèmes de la littérature,

et les résultats obtenus ont été comparés avec différentes techniques de

l’état de l’art. Enfin, il a été montré que l’approche présentée apporte

des améliorations en étendant la classe de QRCs qui peut être traité

et en améliorant les temps de calcul pour quelques cas particuliers.

Tous les algorithmes présentés dans ce travail sont basés sur un algo-

rithme développé dans le cadre de cette thèse et appelé f ∗ algorithme.

Cet algorithme permet la réalisation de calculs par intervalles modaux

de façon très simple, ce qui aide à l’utilisation de la théorie de MIA

et facilite sa diffusion. Dans le même but, un site Internet a été créé

afin de permettre l’utilisation de la plupart des algorithmes présentés

dans la thèse.

Finalement, deux applications à l’Automatique sont présentées. La

première application faite référence au problème de la détection de

défauts dans des systèmes dynamiques, laquelle a été validée sur des

systèmes réels. La deuxième application consiste en la réalisation

d’un régulateur pour un bateau à voile. Ce dernier a été validé sur

simulation.

Abstract

A Quantified Real Constraint (QRC) is a mathematical formalism

that is used to model many physical problems involving systems of

nonlinear equations linking real variables, some of them affected by

logical quantifiers. QRCs appear in numerous contexts, such as Con-

trol Engineering, Electrical Engineering, Mechanical Engineering, and

Biology.

QRC solving is an active research domain for which two radically

different approaches are proposed: the symbolic quantifier elimina-

tion and the approximate methods. However, solving large problems

within a reasonable computational time and solving the general case,

still remain open problems.

With the aim of contributing to the research on QRC solving, this the-

sis proposes a new approximate methodology based on Modal Interval

Analysis (MIA), a mathematical theory developed by researchers from

the University of Barcelona and from the University of Girona. This

methodology allows solving in an elegant way, problems involving log-

ical quantifiers over real variables.

Simultaneously, this work aims to promote the use of MIA for solv-

ing complex problems, such as QRCs. The MIA theory is relatively

confidential due to its theoretical complexity and due to its non-

conventional mathematical notation. This thesis tries to raise this

barrier by presenting the theory in a more intuitive way through ex-

amples and analogies from the classical Interval Analysis approach.

The proposed methodology has been implemented and validated by

resolving several problems from the literature, and comparing the ob-

tained results with different state-of-the-art techniques. Thus, it has

been shown that the presented approach extends the class of QCRs

that can be solved and improves the computation time in some par-

ticular cases.

All the presented algorithms in this work are based on an algorithm

developed in this thesis and called Fstar algorithm. This algorithm al-

lows the computation with Modal Intervals in an easy way, something

that helps to the utilization of MIA and facilitates its diffusion. With

this purpose, an Internet site has been created to allow the utilization

of most of the algorithms presented in this thesis.

Finally, two control engineering applications are presented. The first

application refers to the problem of fault detection in dynamic systems

and has been validated from experiments involving actual processes.

The second application consists of the realization of a controller for a

sailboat. This last one has been validated using simulation.

Resum

Les restriccions reals quantificades (QRC) formen un formalisme mat-

emàtic utilitzat per modelar un gran nombre de problemes f́ısics dins

els quals intervenen sistemes d’equacions no-lineals sobre variables

reals, algunes de les quals podent ésser quantificades. Els QRCs

apareixen en nombrosos contextos, com l’Enginyeria de Control, l’Eng-

inyeria Elèctrica, l’Enginyeria Mecànica, i la Biologia.

La resolució de QRCs és un domini de recerca molt actiu dins el

qual es proposen dos enfocaments radicalment diferents: l’eliminació

simbòlica de quantificadors i els mètodes aproximatius. Tot i això,

la resolució de problemes de grans dimensions i la resolució del cas

general, resten encara problemes oberts.

Amb la finalitat de contribuir a la resolució de QRCs, aquesta tesi

proposa una nova metodologia aproximativa basada en l’Anàlisi Inter-

valar Modal (MIA), una teoria matemàtica desenvolupada per inves-

tigadors de la Universitat de Barcelona i de la Universitat de Girona.

Aquesta teoria permet resoldre de manera elegant problemes en els

quals intervenen quantificadors lògics sobre variables reals.

Simultàniament, aquest treball pretén promoure la utilització de la

teoria de MIA per resoldre problemes complexes, com són els QRCs.

La teoria MIA és relativament confidencial degut a la seva complexitat

teòrica i a una notació matemàtica poc usual. Aquesta tesi pretén ele-

var aquesta barrera presentant la teoria d’una forma més intüıtiva mit-

jançant exemples i analogies provenint de la teoria clàssica de l’Anàlisi

Intervalar.

La metodologia proposta ha estat implementada informàticament i

validada mitjançant la resolució de nombrosos problemes de la lit-

eratura, i els resultats obtinguts han estat comparats amb diferents

tècniques de l’estat de l’art. D’aquesta manera, s’ha mostrat que

l’enfocament presentat aporta una sèrie de millores estenent la classe

de QRCs que poden ser tractats i millorant el temps de càlcul en

alguns casos particulars.

Tots el algoritmes presentats en aquest treball són basats en un al-

goritme desenvolupat en el marc d’aquesta tesi i que és anomenat

algoritme Fstar. Aquest algoritme permet realitzar càlculs amb In-

tervals Modals de forma molt simple, la qual cosa ajuda enormement

a la utilització de la teoria de MIA i facilita la seva difusió. Amb

el mateix objectiu, s’ha creat una pàgina d’Internet que permet la

utilització de la major part dels algoritmes presentats dins la tesi.

Finalment, dues aplicacions a l’Enginyeria de Control són presentades.

La primera aplicació fa referència al problema de detecció de fallades

en sistemes dinàmics i ha estat validada mitjançant experiments en

processos reals. La segona aplicació consisteix en la realització d’un

controlador per a un vaixell a vela. Aquesta última ha estat validada

mitjançant simulació.

NOTATION

• φ: Quantified real constraint.

• Σ: Solution set of a quantified real constraint φ.

• x: Real value.

• X: Modal interval.

• X ′: Real domain or classic interval.

• [a, a]: Modal Interval, where a is the lower bound and a is the upper bound.

• [a, a]′: Real domain or classic interval.

• x: Vector of real values.

• X: Vector of modal intervals (a box).

• X ′: Vector of real domains or classic intervals.

• A: Matrix of real values.

• IR: Set of classic intervals.

• I∗R: Set of modal intervals.

• f : Continuous function.

• f : Vector of continuous functions.

• f ∗: *-semantic extension of a continuous function f .

• fR: Rational modal interval extension of a continuous function f .

• InnR(fR): Inner rounding affecting to the interval operations for comput-

ing fR.

• OutR(fR) Outer rounding affecting to the interval operations for comput-

ing fR.

ix

• MIA: Modal Interval Analysis.

• QRC: Quantified real constraint.

Modal Interval Analysis notation

The notation used in this thesis concerning Modal Interval Analysis (MIA) is

slightly different from the original one. This change is motivated by the believe

that the original notation, despite of having a mathematical justification, is both

difficult to understand for non-expert readers and not strictly necessary from

a practical point of view. Therefore, a more standard notation is used. The

introduced change refers to the way of representing how a logic quantifier {∀, ∃}
affects a variable which ranges over a real domain. MIA represents this assertion

by

Q(x, X ′),

where Q is the modal quantifier Q ∈ {U, E}, x is the real variable and X ′ the

real domain. A justification of the use of this notation can be found in Gardeñes

et al. (2001). However, for a easier comprehension of the document, this thesis

uses a more standard notation. Therefore, the same statement is represented by

(Qx ∈ X ′),

where Q is the logic quantifier Q ∈ {∀, ∃}.

x

Contents

Nomenclature xix

1 Introduction 1

1.1 Motivation . 1

1.1.1 The importance of quantified real constraints 1

1.1.1.1 Example . 2

1.1.2 The potentiality of Modal Interval Analysis 3

1.2 Objectives . 5

1.3 Thesis organization . 6

2 Quantified Real Constraint Solving 8

2.1 Introduction . 8

2.2 Problem definition . 9

2.2.1 Solving a quantified real constraint 9

2.2.2 Specific problem definition 10

2.3 State-of-the-art . 12

2.3.1 Quantifier elimination methods 12

2.3.1.1 A short history of quantifier elimination methods 13

2.3.1.2 An overview of QE by CAD 14

2.3.2 Approximate methods . 16

2.3.2.1 Consistency of bounded quantified real constraint 17

2.3.2.2 Approximate solution set 21

2.3.2.3 Cylindrical Box Decomposition 26

2.3.2.4 Multivariate Bernstein Polynomials 27

2.3.2.5 Interval methods 27

xi

CONTENTS

2.3.2.6 Contractor methods 29

2.4 Conclusions . 31

3 Quantified Real Constraint Satisfaction Using Modal Intervals 32

3.1 Introduction . 32

3.2 Modal Interval Analysis . 35

3.2.1 Basic concepts . 35

3.2.1.1 Modal interval inclusion 36

3.2.1.2 Modal interval lattice operators 37

3.2.1.3 Modal interval arithmetic 38

3.2.1.4 *-Semantic extension 38

3.2.1.5 *-Semantic theorem 40

3.2.1.6 *-Semantic extension computation 41

3.2.1.7 Interpretable modal interval rational extension . 43

3.2.1.8 Modal interval inclusion test 47

3.3 f ∗ algorithm . 51

3.3.1 Key theorem . 51

3.3.2 Basic algorithm . 56

3.3.2.1 Bounding criteria 59

3.3.2.2 Stopping criteria 59

3.3.3 Improvements . 60

3.3.3.1 Selection strategy 60

3.3.3.2 Monotonicity study 61

3.3.3.3 Tree-optimality study 62

3.3.4 Step-by-step example . 64

3.3.5 Complexity, termination, soundness and completeness . . 66

3.4 Examples . 67

3.5 Conclusions . 69

4 Quantified Set Inversion Using Modal Intervals 71

4.1 Introduction . 71

4.1.1 Set Inversion Via Interval Analysis 71

4.2 Quantified Set Inversion algorithm 72

4.3 Application examples . 78

xii

CONTENTS

4.3.1 Robust Control . 78

4.3.2 Set projection . 83

4.3.2.1 Application to computer graphics 84

4.3.3 Bounded-error Parameter Identification 85

4.3.3.1 Comparisons . 88

4.3.4 Aircraft control . 90

4.4 Conclusions . 93

5 Continuous Minimax Optimization Using Modal Intervals 95

5.1 Introduction . 95

5.2 Minimax optimization using modal intervals 98

5.2.1 The monotonic case . 99

5.2.2 The non-monotonic case 101

5.3 Algorithm . 103

5.3.1 Unconstrained version . 103

5.3.1.1 Examples . 105

5.3.2 Constrained version . 107

5.3.2.1 Examples . 111

5.4 Conclusions . 113

6 Application to Fault Detection 114

6.1 Introduction . 114

6.2 Analytical redundancy . 115

6.2.1 Consistency test . 117

6.2.2 Window consistency . 118

6.2.3 Fault detection algorithm 120

6.2.4 Graphical output . 121

6.3 Applications . 122

6.3.1 PROCEL pilot plant . 123

6.3.1.1 Testing scenarios 123

6.3.1.2 Mass balance model 125

6.3.1.3 Energy balance model 125

6.3.1.4 Testing results 126

6.3.2 Steam Generator pilot plant 128

xiii

CONTENTS

6.3.2.1 Process description 128

6.3.2.2 Testing scenario 129

6.3.2.3 Process model 129

6.3.2.4 Testing results 130

6.3.3 Fluid Catalytic Cracking plant 132

6.3.3.1 Process description 132

6.3.3.2 Test scenario . 132

6.3.3.3 Process model 133

6.3.3.4 Test results . 134

6.4 Conclusions . 134

7 Application to Sailboat Control 136

7.1 Introduction . 136

7.2 Control strategy . 137

7.3 Sailboat control application . 139

7.4 Sailboat modelization . 140

7.5 Polar diagram of a sailboat . 141

7.5.1 Transformation of the problem 143

7.5.2 Resolution . 144

7.6 Feedback linearization control . 144

7.7 Pre-compensator module . 148

7.8 Simulation results . 151

7.9 Conclusions . 151

8 Implementation 153

8.1 Implementation philosophy . 153

8.2 Programming tools . 154

8.2.1 C++ language . 154

8.2.1.1 Code::Blocks and GCC compiler 154

8.2.2 Standard Template Library 155

8.2.3 Spirit Parser framework 155

8.2.3.1 Grammar definition 156

8.2.3.2 Matching procedure 157

8.2.3.3 Semantic actions 157

xiv

CONTENTS

8.2.4 wxWidgets framework . 158

8.3 FSTAR Solver . 158

8.3.1 Numeric implementation 159

8.3.1.1 Modal interval arithmetic library 159

8.3.1.2 The branch-and-bound algorithm 162

8.3.2 Symbolic implementation 162

8.3.2.1 The parser . 163

8.3.2.2 Symbolic differentiation 165

8.3.2.3 Tree-optimality study 166

8.4 QRCS Solver . 167

8.5 MINIMAX Solver . 169

8.6 QSI Solver . 170

8.7 SQUALTRACK Solver . 172

8.7.1 The parser . 175

8.7.2 Analytical Redundancy Relations construction 176

8.7.3 Communication Process Interface 177

8.7.3.1 Offline CPI . 178

8.7.3.2 Online CPI . 180

8.7.4 Numerical and graphical outputs 180

8.8 Generic user interface . 183

8.9 Modal Interval Remote Solver . 183

8.10 Conclusions . 186

9 Conclusions and Future Work 188

9.1 Conclusions . 188

9.1.1 Contributions . 189

9.2 Future work . 191

9.2.1 Combining approaches . 191

9.2.2 Modal interval constraint propagation 191

9.2.3 Solving the vectorial case 192

9.2.4 New applications . 192

9.3 Related publications . 192

9.3.1 Publications in journals 192

xv

CONTENTS

9.3.2 Publications in conferences 193

9.3.3 Publications in workshops 195

A Problem Definitions 196

A.1 FSTAR Solver problems . 196

A.2 QRCS Solver problems . 197

A.3 QSI Solver problems . 198

A.4 MINIMAX Solver problems . 204

A.5 SQUALTRACK Solver problems 208

References 223

xvi

List of Figures

1.1 The orientation of an aircraft with respect to the airflow. 3

2.1 Solution set of Example 2.2.1. 14

2.2 Box approximations for Σ of Example 2.2.1. 21

2.3 Branch-and-bound algorithm. 23

2.4 Paving for Σ of Example 2.2.1. 23

2.5 Branch-and-prune algorithm. 25

2.6 RSOLVER screenshot corresponding to Example 2.2.1. 30

2.7 Proj2D screenshot corresponding to Example 2.2.1. 31

3.1 Strip and Cell partitions. 52

3.2 f ∗ algorithm step-by-step example. 66

4.1 Graphical output for Example 4.2.1. 76

4.2 Graphical output for Example 4.2.2. 77

4.3 Approximation of Σ for robust closed-loop stability. 79

4.4 RSOLVER and Proj2D comparisons for robust closed-loop stability. 80

4.5 Uncertain linear time-invariant model 81

4.6 Approximation of Σc obtained with QSI algorithm. 81

4.7 Comparisons with Projection Algorithm, RSOLVER, AQCS solver. 82

4.8 Projection of Σ on the x-plane. 83

4.9 Projection of a paraboloid on the x1x2-plane. 84

4.10 Projection of a) crosscap, b) hiperbolic paraboloid and c) quartic

surfaces. 85

4.11 QSI output for the bounded-error parameter identification problem. 88

4.12 Extended-SIVIA, Proj2D and RSOLVER comparisons. 89

xvii

LIST OF FIGURES

4.13 QSI output for the aircraft equilibrium problem. 94

5.1 Feasibility region and partitions. 109

6.1 SQUALTRACK solver graphical output. 122

6.2 Flowsheet of PROCEL. 124

6.3 Additional input flow to reactor 1. 127

6.4 Reactor 1 leakage. 127

6.5 Reactor 1 heater shutdown. 128

6.6 Flowsheet of the Steam Generator. 129

6.7 Boiler Leakage. 131

6.8 Schematic of FCC process. 132

6.9 Faulty response of the air flow to a setpoint change. 134

7.1 Control diagram. 138

7.2 Sailboat control scheme. 139

7.3 Sailboat model. 142

7.4 Polar diagram obtained with the QSI solver. 144

7.5 Existence algorithm. 151

7.6 Manoeuver to moor the sailboat inside a harbor. 152

8.1 FSTAR solver architecture. 160

8.2 Binary tree representation. 163

8.3 Binary tree representation for example from Table 8.8. 165

8.4 Binary tree after its evaluation. 166

8.5 Derivatives binary trees. 166

8.6 Tree-optimality study representation. 167

8.7 QSI graphical output. 173

8.8 SQUALTRACK solver icon. 174

8.9 SQUALTRACK solver architecture. 176

8.10 First order model representation. 178

8.11 First order model representation for a window length of 5. 179

8.12 SQUALTRACK solver online version. 181

8.13 SQUALTRACK solver graphical output. 182

8.14 Modal Interval Solver graphical user interface. 184

xviii

LIST OF FIGURES

8.15 Modal Interval Remote Solver main page. 185

8.16 MIRS interface corresponding to the QSI solver. 186

8.17 MIRS graphical output for the QSI solver. 187

xix

Chapter 1

Introduction

This chapter describes the motivation leading to the presentation of this thesis.

The desired objectives and the methodology used are explained in brief. The

chapter ends with a description of the structure and contents of this thesis.

1.1 Motivation

This thesis is devoted to the resolution of Quantified Real Constraints (QRCs)

using Modal Interval Analysis (MIA). The realization of this thesis has been

mainly motivated by the importance of QRCs in many engineering domains and

the belief that MIA is a highly suitable tool for solving this type of problem.

1.1.1 The importance of quantified real constraints

A QRC is a mathematical formalism that allows for the representation of a wide

class of numerical problems involving systems of nonlinear equations (or inequa-

tions) linking variables involving real numbers, some of which can be affected by

logical quantifiers (∀, ∃). This formalism can be applied to model many real-life

problems whose variables are affected by physical uncertainties (e.g. noise and

perturbations) or that are subject to a regulation (e.g. control inputs). For exam-

ple, QRCs appear in numerous contexts, such as Control Engineering Abdallah

et al. (1996); Dorato (2000); Jaulin & Walter (1996); Jirstrand (1997), Electrical

1

1.1 Motivation

Engineering Sturm (2000), Mechanical Engineering Ioakimidis (1999) and Biol-

ogy Chauvin et al. (1994).

In general, the problem of solving QRCs is undecidable Tarski (1951), and is

very difficult in special cases Davenport & Heintz (1988). Nevertheless, different

approaches have been proposed to tackle this problem. The first approach, com-

ing from mathematical foundations, is referred to as Quantifier Elimination Tarski

(1951), and the second approach, coming from engineering research, is referred to

as Approximate Methods and is mainly based on validated numerical techniques

such as Interval Analysis Moore (1966) and Constraint Propagation Benhamou &

Older (1997); SamHaroud (1995). Both approaches have been implemented and

applied in different domains for solving small or mid-sized problems. However,

they are still far away from solving large real applications in a reasonable com-

putational time, due to the high complexity of the proposed algorithms. Other

limitations concerning the current QRC solving techniques refer to aspects such

as the class of QRCs that can be dealt with. For example, most of the existing

approaches are limited to inequality predicates, or are restricted to only one type

of quantification. Therefore, QRC solving is still an active research domain with

several open problems to be solved.

1.1.1.1 Example

An important question in advanced aircraft applications is to know what the

orientation (α, β) of an aircraft is with respect to the airflow, and this can be

controlled by the admissible control-surface configurations (u1, u2, u3) Jirstrand

(1997). See Figure 1.1.

The aerodynamic moments acting over the aircraft, TL, TM , and TN , are

nonlinear functions of (α, β), which are the angles of attack and sideslip, respec-

tively, the control-surface deflections, (u1, u2, u3), which are the aileron, elevator,

and rudder deflections, respectively, and a set of uncertain coefficients (q1, . . . , qn)

modeling the geometry and aerodynamics of the aircraft. The problem of finding

if, for a given orientation (α, β) and for each value of the uncertain coefficient

(q1, . . . , qn), there exists a control-surface configuration, (u1, u2, u3), for which the

2

1.1 Motivation

Figure 1.1: The orientation of an aircraft with respect to the airflow.

aerodynamic moments acting over the aircraft can be stabilized (TL = 0, TM = 0,

TN = 0), can be formulated as a QRC, which is mathematically represented as:

(∀q1 ∈ Q′
1) . . . (∀qn ∈ Q′

n)(∃u1 ∈ U ′
1)(∃u2 ∈ U ′

2)(∃u3 ∈ U ′
3)

((TL(α, β,q, u) = 0 ∧ TM(α, β,q, u) = 0 ∧ TN (α, β,q, u) = 0)}, (1.1)

where (Q′
1, . . . , Q

′
n) and (U ′

1, U
′
2, U

′
3) are the real domains in which the quantified

variables are supposed to range. Thus, the set of orientation points, (α, β), for

which the aircraft can be stabilized is:

Σ = {(α, β)|(∀q1 ∈ Q′
1) . . . (∀qn ∈ Q′

n)(∃u1 ∈ U ′
1)(∃u2 ∈ U ′

2)

(∃u3 ∈ U ′
3)(TL(α, β,q, u) = 0 ∧ TM (α, β,q, u) = 0 (1.2)

∧TN(α, β,q, u) = 0))},

which is the solution set of the corresponding QRC.

1.1.2 The potentiality of Modal Interval Analysis

In the previous decade, Interval Analysis (IA) Moore (1966) has become a suc-

cessful tool used to deal with numerical problems in a guaranteed way. For ex-

ample, problems such as solving systems of equations Neumaier (1990) or global

3

Figures/aircraft.eps

1.1 Motivation

optimization problems Hansen (1992) have been successfully tackled. IA was

originally conceived to control numerical errors arising from computer arithmetic

by encompassing real numbers with floating points intervals. It was quickly seen

that this paradigm could be applied to deal with the physical uncertainty coming

from the real world. Applications in different fields, such as electronics, eco-

nomics, robotics, and automation, have been widely implemented Jaulin et al.

(2001). By 1980, the theory of Modal Interval Analysis (MIA), developed by the

SIGLA/X Group Gardeñes et al. (2001), was proposed to fill some of the existing

gaps within IA theory. Some of these gaps were related to the algebraic struc-

ture of the existing theory, but the main contribution of MIA was its inherent

capability to deal with a more complex class of problems involving logical quan-

tifiers respecting an ordering (AE-quantification, where the universal quantifier

precedes the existential quantifier). For example, proving the satisfaction of the

QRC involved in the previous motivation example is beyond the scope of the

standard tools provided by classic IA theory. On the other hand, MIA theory is

able to deal with the same problem in a natural way. Thus, the belief that MIA is

a highly suitable tool for solving QRCs has motivated the realization of this thesis.

MIA is a mathematical tool that provides a strong theoretical background to

deal with problems involving uncertainty and logical quantifiers. Different works

involving the application of MIA have been proposed. More specifically, in his

thesis, Veh́ı Veh́ı (1998) proposed a methodology for designing robust controllers.

In Armengol (1999), Armengol proposed an original approach to deal with the

problem of robust fault detection involving dynamic systems. Finally, Calm pre-

sented an MIA approach to tackle the problem of simulation and control Calm

(2006). Despite these works, the inherent theoretical complexity of MIA com-

bined with a nonstandard mathematical notation, means that its use is not very

extensive. Another motivation for this thesis is to overcome this barrier and to

present MIA in a more practical way to spread its utilization and to show its

potential for solving complex problems such as QRCs.

4

1.2 Objectives

1.2 Objectives

The main objective of this thesis was to improve the limitations of the current

state-of-the art techniques using an intensive application of theorems and tools

provided by MIA.

The specific objectives of this thesis are as follows.

• To deal with QRCs involving AE-quantification (universal quantifier pre-

ceding the existential quantifier) and equality predicates. This class of

QRCs cannot be efficiently solved by most of the current state-of-the art

techniques Benhamou & Goualard (2000); Garloff (1993); Jaulin & Walter

(1993); Jaulin et al. (2002); Ratschan (2003b). On the other hand, MIA

can naturally solve this type of problem.

• To implement an efficient and numerically guaranteed algorithm for com-

puting using MIA. To date, any efficient algorithm that exists for such a

goal and the development of this type of algorithm is essential for the uti-

lization of MIA. This type of algorithm is the core for all the QRC solving

algorithms based on MIA and its efficiency is crucial for the performance

of these algorithms.

• To improve the performance of existing QRC solving state-of-the-art tech-

niques. These improvements must be verified by carrying out comparisons

with normalized benchmarks; the objective refers to computation time and

to the accuracy of the results. Nevertheless, we do not intend to improve

the computation time in all cases, but only those where MIA is particularly

well suited.

• To solve engineering applications to show the viability of the proposed ap-

proach for dealing with real engineering problems. The purpose of this

objective was to show that the proposed approach was not limited to aca-

demic problems.

• To present MIA in a more intuitive and practical way to facilitate its un-

derstanding. As mentioned above, MIA presents an inherent theoretical

5

1.3 Thesis organization

complexity combined with a nonstandard mathematical notation. Thus,

effort must expended to facilitate its understanding.

• To implement the proposed MIA-based algorithms, and to present them in

the form of solvers to allow their easy utilization. To spread the utilization

of MIA and its application to QRC solving, it is important to facilitate its

use by means of software applications that have user-friendly interfaces and

do not require a deep knowledge of the theory. With the same objective,

the aim was to create a Web page containing all the developed MIA-based

algorithms to spread their utilization.

1.3 Thesis organization

This document is structured into an introduction and eight chapters, with an

appendix and a bibliography section at the end.

• Chapter 1, is this Introduction section, and presents an outline of the work

and provides a justification for the work developed in this thesis.

• Chapter 2 formalizes the problem of QRS solving and surveys the different

existing state-of-the-art techniques used to solve it.

• Chapter 3 describes a new technique based on MIA for testing the consis-

tency of a class of QRC. This chapter provides a detailed description of an

original algorithm for computing modal interval extensions of continuous

functions. This algorithm is referred to as f ∗ algorithm and is one of the

main contributions of this thesis.

• Chapter 4 presents an algorithm for finding the inner and outer approxi-

mations of the solution set of a class of QRC and solves several examples,

comparing the results with some of the state-of-the-art techniques. This al-

gorithm is referred to as the Quantified Set Inversion (QSI) algorithm and

is another important contribution of this thesis.

6

1.3 Thesis organization

• In Chapter 5, an original algorithm for solving continuous minimax opti-

mization problems based on MIA is presented. This work discussed in this

chapter is not related to QRC solving and can be seen as a collateral result

of the f ∗ algorithm presented in Chapter 3.

• Chapter 6 presents an application of the proposed approach to the problem

of detecting faults in dynamic systems. Experimental tests involving actual

process data were carried out to validate the proposed approach.

• Chapter 7 explains an original application to the control of a sailboat. Sim-

ulation results were used to provide validation of the proposed approach.

• In Chapter 8, details on the implementation of the algorithms presented in

this thesis are provided. A Web page that allows for the utilization of these

algorithms through Internet access is also presented.

• Finally, Chapter 9 concludes this thesis by stating the main contributions

of this work and suggesting further work. A list of related publications is

included at the end of this chapter.

• In the Appendix A, the sources for introducing some of the examples pro-

vided in the thesis to the corresponding software implementation are pro-

vided.

7

Chapter 2

Quantified Real Constraint
Solving

This chapter provides a description of the problem we want to solve, as well as a

review of the existing techniques to deal with this type of problems.

2.1 Introduction

A quantified constraint is a first-order formula Ebbinghaus et al. (1984) that con-

tains logical quantifiers (∃, ∀), logical connectives (∧, ∨, ¬, ⇒), predicate symbols

(e.g.,=,<,≤), function symbols (e.g. +, −, ÷, ×), constants and variables rang-

ing over discrete domains (e.g. boolean or integer domains) Bordeaux & Monfroy

(2002); Gent & Walsh (1999) or over continuous domains (e.g. real domains)

Benhamou & Goualard (2000); Collins (1975); Ratschan (2003c). Many prob-

lems arising in Artificial Intelligence or Engineering can be modeled as a quanti-

fied constraint. For instance, Game Theory and Scheduling are typical problems

that can be stated as discrete quantified constraints, while Control Engineering

and Robotics are fields where continuous quantified constraints can usually be

applied. This thesis is focussed on the resolution of a particular class of con-

tinuous quantified constraints, denoted as Quantified Real Constraints (QRCs),

where variables range over the real numbers.

8

2.2 Problem definition

2.2 Problem definition

In this thesis, we are interested in developing theories, algorithms and software

for solving the following problem:

• GIVEN: A quantified real constraint φ,

• FIND: The truth-value of φ or the solution set of φ,

where a quantified real constraint (QRC) is a first-order formula Ebbinghaus

et al. (1984) which variables range over reals numbers. From the set of involved

variables, we can distinguish between quantified variables (p), also referred to as

parameters, and non-quantified variables (x), also referred to as free-variables.

Example 2.2.1. An example of QRC is

(∀p) p2 + x1p + x2 > 0, (2.1)

where p is a quantified variable and x1, x2 are free-variables.

�

2.2.1 Solving a quantified real constraint

Solving a QRC can be understood in two different ways: Firstly, we can ask

for its truth-value by asking the following question: Is a QRC true (or false) for

whatever the values of the free-variables? And secondly, we can ask for the set

of instantiations for the free-variables that make a QRC to be true. The second

question corresponds to the notion of solution set of a QRC and is defined by

Σ = {x ∈ Rn| (Qp) c(x, p) is true}, (2.2)

9

2.2 Problem definition

where Q is a vector of logical quantifiers (Qi ∈ {∀, ∃}) and c(x, p) is the vector

of real predicates, linked by means of logical connectives, and linking the vectors

of free-variables (x) and parameters under consideration (p).

Example 2.2.2. Consider the quantified real constraint from Example 2.2.1. It

is easy to prove that it is not true for whatever the values of the free-variables.

Nevertheless, it is possible to ask for its solution set, which is given by

Σ = {x ∈ R2|(∀p) p2 + x1p + x2 > 0}. (2.3)

�

The definition of solution set given by Equation 2.2 is not usually useful

from a practical point of view, because it is not easy to prove using standard

mathematics, that a point x belongs to the solution set Σ. Then, QRC solving

is aimed to obtain more useful representations of Σ. It is important to note that,

efficiently solving the most general definition of a QRC, remains an open problem

and, up to now, only particular instances have been solved. This thesis is not

focused on the resolution of the general problem, but on a special instance of

QRCs.

2.2.2 Specific problem definition

This thesis is concerned with the resolution of QRCs where:

• The universal logical quantifiers (∀) precede the existential (∃) quantifiers

(∀∃-quantification).

• The involved real predicates are expressed by a finite combination of ele-

mentary operators and functions such as +,−, ∗, sin, cos, . . . and relational

operators such as =, >,≥,

• In general, equality predicates must not share existentially quantified vari-

ables with other predicates. However, this limitation can be sometimes

overcome using symbolic transformations of the equality predicates to elim-

inate shared existentially quantified variables.

10

2.2 Problem definition

• The ranges of the involved variables need to be bounded by real domains.

Thus, the corresponding solution set for this kind of QRCs is defined by

Σ∀∃ = {x ∈ X ′ | (∀u ∈ U ′)(∃v ∈ V ′) c(x, u, v)}, (2.4)

where (u, v) corresponds to the split vector of parameters p = (u, v) into their

components respectively affected by the universal and existential quantifiers,

(X ′, U ′, V ′) are the vectors of associated real domains, c(x, u, v) is the vector of

real predicates, linked by means of logical connectives, and linking the vectors of

free-variables and parameters under consideration.

Remark 2.2.1. The restrictions concerning the quantifiers ordering, the nature

of the involved predicates and the bounding of the variables’ domains, are usual

restrictions of techniques based on approximate methods (see Section 2.3.2).

�

Example 2.2.3. An example of QRC intended to be solved in this thesis is

(∀u ∈ U ′)(∃v ∈ V ′) [u2 + x1u + x2v = 0 ∧ x1u + sin(x2) > 0]. (2.5)

An example of QRC beyond the scope of this thesis is

(∃v ∈ V ′)(∀u ∈ U ′)x + u + v > 0, (2.6)

because of the order of quantifiers. However, its negation

¬((∃v ∈ V ′)(∀u ∈ U ′)x + u + v > 0) ⇔ (∀v ∈ V ′)(∃u ∈ U ′)x + u + v ≤ 0, (2.7)

can be solved. Another example beyond the scope QRC is

(∃v1 ∈ V ′
1)(∃v2 ∈ V ′

2)[−x1 + x2v1 = 0 ∧ −x2 + (1 + x2
1)v1 + v3

2 = 0], (2.8)

because the existentially quantified variable v1 is shared by the two involved equality

predicates linked by a logical conjunction. However, by isolating v1 in the first

11

2.3 State-of-the-art

predicate and substituting it into the second predicate, the resulting equivalent

QRC is

(∃v2 ∈ V ′
2)[−x2 + (1 + x2

1)x1/x2 + v3
2 = 0], (2.9)

which can be tackled in this thesis.

�

Although the mentioned restrictions, a wide range of practical importance

problems can still be represented by this constrained formulation.

2.3 State-of-the-art

Until today, research on the problem of QRC solving has up to now mainly been

done from two different approaches:

• The first approach, Quantifier Elimination (QE) methods, coming from re-

search in the foundations of mathematics, provides a framework for solving

QRCs in an exact way. However, this approach is restricted to addition

and multiplication as function symbols and its double-exponential compu-

tational complexity limits it applicability to very simple problems.

• The second approach, Approximate Methods, coming from engineering re-

search, instead of obtaining the exact solution, try to approximate the so-

lution of a QRC by using techniques based on validated numerical methods

Benhamou & Older (1997); Garloff (1985); Moore (1966). Although these

algorithms can deal with more complex problems than the quantifier elimi-

nation approach, they are usually restricted to special cases (e.g. quantifiers

only occur once, only one type of quantifiers, linear constraints, inequality

constraints).

2.3.1 Quantifier elimination methods

The Quantifier Elimination (QE) problem for solving QRCs consists of:

12

2.3 State-of-the-art

• GIVEN: A quantified real constraint φ,

• FIND: A quantified real constraint φ in which no variable is quantified
such that φ ⇔ φ.

Remark 2.3.1. In QE theory, QRCs are referred to as first-order logic formulas

over the reals.

�

Example 2.3.1. An illustration of the purpose of QE can be found in the follow-

ing basic problem. Consider the QRC of Example 2.2.1

φ : (∀p) p2 + x1p + x2 > 0, (2.10)

It is easy to see that not all the values of x satisfy the above-mentioned formula.

QE eliminates the quantified parameter p and provides the following quantifier-

free equivalent formula

φ : x2
1 − 4x2 < 0. (2.11)

Figure 2.1 shows a graphical representation of the corresponding solution set,

where the red area corresponds to the solution set and the blue area to the com-

plementary set.

�

2.3.1.1 A short history of quantifier elimination methods

The quantifier elimination method finds its origin in a paper from Tarski pub-

lished in 1951: ”A decision method for elementary algebra and geometry” Tarski

(1951). Tarski’s purpose was to prove that the elementary theory for reals was

decidable and to give a method in order to decide whether a sentence of this

13

2.3 State-of-the-art

x1

x2

−10 0 10

−10

0

10

Figure 2.1: Solution set of Example 2.2.1.

theory was true or not. Tarski wanted to design a method such that one needs no

”intelligence” to apply it, that could be applied step-by-step following the rules

he gave. In his paper, Tarski presented a few examples of the application of his

method. He found the solutions rather due to his mathematical intuition than

by applying exactly his own method. The problem was that the method needed

too many computation steps in order to be actually efficient because of its inher-

ently doubly exponential complexity Davenport & Heintz (1988) in the number

of variables. Therefore, no efficient implementation seems to be available. One of

the first algorithms to solve the quantifier elimination-problem which is not only

theoretically of a lower complexity but also allows more efficient implementations

appeared only in 1975: in his paper ”Quantifier elimination for real closed fields

by cylindrical algebraic decomposition” Collins (1975), G. Collins presented an

algorithm serving Tarski’s purpose, which is based on a new method: the Cylin-

drical Algebraic Decomposition (CAD).

2.3.1.2 An overview of QE by CAD

The QE by CAD algorithm can be described as consisting of three phases:

14

Figures/exactSS.eps

2.3 State-of-the-art

1. Projection. One starts out with the set Pr of polynomials in r variables,

which is extracted from the input φ . In r − 1 projection steps there are

r − 1 further finite sets Pr−1, . . . , P1 of polynomials with one fewer variable

in each step generated.

2. Extension. Based on the trivial decomposition D0 of 0-space one succes-

sively constructs decompositions D1, . . . , Dr of higher-dimensional spaces.

For obtaining Di+1 there are sample points of Di plugged into the polyno-

mials of Pi+1. This yields univariate polynomials with real algebraic num-

bers as coefficients. Essentially, the roots of these polynomials and rational

points between these roots extend the sample point of the underlying cell

to give new sample points for cells in Di+1.

3. Solution formula construction. Truth values are computed for the leaf

cells of the tree, i.e. the cells in Dr. Depending on the quantifiers, these val-

ues are propagated down to cells in Dr, ..., Dk. Based on signs of projection

polynomials, a quantifier-free solution formula is constructed to describe

the subset of Pk which is comprised of true cells.

Several improvements of Collins’ algorithms have been found since then, and

considerable speed-ups could also be achieved by improvements in the implemen-

tations. One of the best implementations is the one by Hong, which is based

on his thesis Hong (1990). Hong’s quantifier-elimination-program is regularly

updated by Brown and is available from Brown (2004). This implementation is

quite usable for many small, as well as few mid-size problems. However it usually

cannot finish big-size problems.

Further problems that occur when trying to solve QRCs exactly, include:

• They cannot efficiently deal with inputs containing uncertain parameters

which are only known to be elements of an interval.

• Very often, the output consists of highly complicated algebraic expressions

useless for many applications and thus requiring further processing in order

to be useful.

15

2.3 State-of-the-art

• When they are interrupted before computing the total result, they do not

provide a partial information. This limitation can be an important draw-

back on real time applications.

Despite of the mentioned limitations, QE methods have been applied to an

important number of applications involving small and middle-size problems. For

instance, there are applications in fields like Control Engineering Abdallah et al.

(1999); Dorato et al. (1997); Jirstrand (1997) and Biology Chauvin & Müller

(1951). In the last years, research on more efficient symbolic methods has mainly

been concentrated on solving special cases Hong (1993); MacCallum (1988).

2.3.2 Approximate methods

Approximate methods try to avoid some of the deficiencies of QE methods by

restricting oneself to approximate instead of finding the exact solution. These

methods use validated numerical techniques, like Interval Analysis Moore (1966),

Interval Constraint Propagation Benhamou & Older (1997); Davis (1975); Sam-

Haroud (1995), Multivariate Bersnstein Polynomials Garloff (1985, 1993), or In-

terval Taylor Models Makino & Berz (2003) to provide approximate but guaran-

teed results. It should be noted that, in contrast to QE methods, Approximate

Methods require a priori bounds on the range of the variables.

Thus, the input/output specifications of the problem to be solved by approx-

imate methods are:

• GIVEN: A bounded quantified real constraint φ and ǫ ∈ R+,

• FIND: The truth-value of φ or an approximate solution set of φ with error
smaller than ǫ,

where a bounded quantified real constraint is a QRC which variables range

on bounded real domains, an approximate solution set can be understood as an

inner ΣInn or an outer ΣOut approximation of the solution set of φ, such that,

ΣInn ⊆ Σ ⊆ ΣOut, (2.12)

16

2.3 State-of-the-art

and ǫ is an error bound, provided by the user, for which the algorithm solves the

problem up to this error bound.

2.3.2.1 Consistency of bounded quantified real constraint

To obtain the consistency (truth-value) of a bounded QRC, two different ap-

proaches can be distinguished. The first approach groups these techniques which

allows to approximate the range of a function over its variables’ domain by

means of an inclusion function. Once this approximation is obtained, an in-

clusion test can be performed to define the consistency of the QRC. This first

approach includes methods based on validated numerical techniques like Mul-

tivariate Bersnstein Polynomials and Interval Analysis. The second approach,

which includes validated numerical techniques like Interval Constraint Propa-

gation, proves the consistency of a QRC by disproving its negation, using the

so-called notion of contractor or narrowing operator Benhamou et al. (1999),

applied to prune the search space from non solution parts.

The inclusion test approach:

Definition 2.3.1. Consider a function f from Rn to R. The function F from

IRn to IR is an inclusion function for f on a given box X ′ if and only if

(∀x ∈ X ′)f(x) ∈ F (X ′), (2.13)

where F can be obtained by means using different validated numerical techniques.

�

Example 2.3.2. To illustrate the notion of inclusion function, consider the func-

tion f from R3 to R,

f(p, x1, x2) = p2 + x1p + x2, (2.14)

with variables that vary within (p, x1, x2) ∈ [−10, 10]′3. An inclusion function for

f on [−10, 10]′3 can be obtained using Interval Arithmetic Moore (1966) by simply

17

2.3 State-of-the-art

replacing the real variables by their associated intervals and the real operators by

their interval counterparts. Thus,

F ([−10, 10]′, [−10, 10]′, [−10, 10]′) =

[−10, 10]′2 + [−10, 10]′ ∗ [−10, 10]′ + [−10, 10]′ = [−110, 210]′, (2.15)

is an outer approximation of the exact range of f on [−10, 10]′3, which is [−35, 210]′.

This overestimation of the result is due to the well known dependency problem

in Interval Analysis.

�

Consider a QRC of the form

(∀u ∈ U ′)f(x, u) ≥ 0, (2.16)

where u is a vector of universally quantified variables ranging over a box U ′, x

is a vector of free-variables ranging on a box X ′ and f is a continuous function.

Notice that proving the consistency of the previous QRC is equivalent to looking

for the truth-value of the next logical statement,

(∀x ∈ X ′)(∀u ∈ U ′)f(x, u) ≤ 0, (2.17)

something that can be easily done using the next inclusion test.

Definition 2.3.2. An inclusion test for Equation 2.17 is defined by,

T (X ′, U ′) =























true if F (X ′, U ′) ⊆ [0,∞)′,

false if F (X ′, U ′) ∩ [0,∞)′ = ∅,

undefined otherwise,

(2.18)

where F (X ′, U ′) is an inclusion function of f(x, u) on (X ′, U ′).

�

18

2.3 State-of-the-art

Example 2.3.3. To illustrate the notion of inclusion test, let us consider the

QRC from Example 2.2.1. For a given box (x1, x2) ∈ ([−0.5, 0.5]′, [9, 10]′) and an

interval bound for the involved quantified parameter p ∈ [−10, 10]′, the following

logical statement has to be tested to prove the truth-value of the corresponding

QRC,

(∀x1 ∈ [−0.5, 0.5]′)(∀x2 ∈ [9, 10]′)(∀p ∈ [−10, 10]′) p2 + x1p + x2 > 0. (2.19)

Then, an inclusion for the corresponding function computed using Interval Arith-

metic is

F ([−0.5, 0.5]′, [9, 10]′, [−10, 10]′) =

[−10, 10]′2 + [−0.5, 0.5]′ ∗ [−10, 10]′ + [9, 10]′ = [4, 115]′. (2.20)

As the obtained result is included in [0, inf)′, the inclusion test return true and

the QRC is satisfied.

�

The contractor approach: A contractor CΣ, or narrowing operator, Ben-

hamou et al. (1999) is any algorithm which allows to eliminate, in a guaranteed

way, parts of the search space X ′ which do not belong to the solution set Σ of a

QRC. Therefore, if the whole space of X ′ is eliminated, the solution set of QRC is

proven to be empty. By negating QRC, it is possible to build a contractor for its

complementary solution set ¬Σ, which eliminates parts belonging to the solution

set. Consequently, if the whole space of X ′ is eliminated by the C¬Σ, the QRC is

proven to be true on X ′.

Formally speaking, a contractor can be defined by

Definition 2.3.3. A contractor for the set Σ, is an operator CΣ : IRn → IRn

19

2.3 State-of-the-art

such that satisfies

∀X′ ∈ IRn,











CΣ(X′) ⊂ X′ (contractance),

CΣ(X′) ∩ Σ = X′ ∩ Σ (completeness).
(2.21)

CΣ is idempotent if for all X′, CΣ (CΣ(X′)) = CΣ(X′). It is thin if for any

singleton {x}, CΣ({x}) = {x} ∩ Σ. CΣ is said to be convergent if for almost any

point x, and for all sequences of nested boxes X (k) ,

X′(k) limx ⇒ CΣ(X′ (k)) lim{x} ∩ Σ. (2.22)

It is said to be minimal if

∀X′ ∈ IRn, CΣ(X′) = [X′ ∩ Σ] , (2.23)

where [X′ ∩ Σ] denotes the smallest box containing X′ ∩ Σ.

�

Thus, a consistency test for the QRC from Equation 2.16, is defined by

T (X ′) =







true if C¬Σ(X ′) = ∅,
false if CΣ(X ′) = ∅,

undefined otherwise.
(2.24)

Example 2.3.4. Given the QRC,

(∀p ∈ [2, 3]′)x + p ≥ 0, (2.25)

where x ∈ [−1, 2]′. By negating the previous QRC, the next QRC is obtained,

¬((∀p ∈ [2, 3]′)x + p ≥ 0) ⇔ (∃p ∈ [2, 3]′)x + p < 0, (2.26)

By applying a simple contractor over the negated QRC,

C¬Σ([−1, 2]′) = [−1, 2]′ ∩ ([−∞, 0]′ − [2, 3]′) = ∅, (2.27)

the empty set is obtained, which means that the original QRC is true.

20

2.3 State-of-the-art

Most of the contractors for solving QRCs are based on extended notions of

consistency techniques like 2B-Consistency/3B-Consistency Lhomme (1993) and

Box-Consistency Benhamou et al. (1999).

2.3.2.2 Approximate solution set

One way to approximate the solution set Σ of a bounded QRC consists of finding

a box (interval vector) which is guaranteed to include Σ. Then, this box is an

outer approximation of Σ. It is also possible to find a box which is guaranteed

to be included into Σ. Then, this box is an inner approximation of Σ. However,

this methodology can be especially inefficient depending on the topology of the

solution set, as the obtained approximations can be either very overestimated or

underestimated. This type of approximations can be efficiently achieved by means

of techniques which allow to prune the search space from non-solution/solution

parts like Interval Constraint Propagation. Figure 2.2 shows two boxes approxi-

mating the solution set of Example 2.2.1.

x1

x2

−10 0 10

−10

0

10

ΣOut

ΣInn

Figure 2.2: Box approximations for Σ of Example 2.2.1.

Another way to approximate a solution set is by means of a set of non-

overlapping boxes, also referred to as a paving, obtained using a branch-and-

bound algorithm. This last method provides better approximations of the solu-

21

Figures/exactSSbox.eps

2.3 State-of-the-art

tion set, although it suffers from a higher computational complexity limiting its

applicability. Basically, these algorithms repeatedly bisect the free-variable space

X ′ and test after each bisection, using a validated numerical technique, whether

the QRC holds or not on the resulting box . If the QRC holds everywhere on

the resulting box, it is not bisected anymore and thus denoted as a true box,

meaning that X ′ is contained in Σ. On the other hand, if the QRC does not hold

in any point of X ′, the box is not bisected anymore and denoted as a false box,

meaning that it is contained in complementary set ¬Σ. If none of the tests holds,

the box is denoted as undefined and it is bisected. This procedure is repeated

until a predefined error bound ǫ is reached. Here the error bound can describe

the fraction of the volume of the free-variable space for which the solution set

membership should be decided. However, other criterions can be used. Thus,

we can obtain an inner approximation of Σ (ΣInn) by means of the set of boxes

which have been classified as true and an outer approximation ΣOut by means of

the set of true boxes together with the set of undefined boxes. It is important

to remark that the use of branch-and-bound algorithms implies an exponential

running time if one wants to come arbitrarily close to an exact solution. This

exponential complexity is directly related to the number of free-variables to be

bisected.

Figure 2.3 graphically shows the branch-and-bound procedure on a generic

two dimensional problem and Algorithm 1 summarizes the main steps of this

algorithm in a pseudocode form. Figure 2.4 shows the graphical output of a

branch-and-bound based algorithm, which corresponds to the resolution of Ex-

ample 2.2.1, where red boxes are included to the solution set Σ, blue boxes are

included in the complementary set ¬Σ and green boxes are undefined.

If a contractor is used as validated numerical technique, not only it can test

the truth-value of a QRC on a given box X ′, but also can reduce the average run-

time of the branch-and-bound algorithms. This is done by replacing expensive

exhaustive search as much a possible, by methods for pruning elements from the

search space for which it is easy to show that they not contain solutions. For

this reason, algorithms based on branch-and-bound techniques and contractors

are commonly called branch-and-prune algorithms.

22

2.3 State-of-the-art

x1

x2

Σ

Bisection

X ′ ⊆ Σ X ′ ⊆ ¬Σ Undefined

Figure 2.3: Branch-and-bound algorithm.

x1

x2

−10 0 10

−10

0

10

Figure 2.4: Paving for Σ of Example 2.2.1.

23

Figures/QSIcolor.eps
Figures/ApproxSS.eps

2.3 State-of-the-art

Algorithm 1 Branch-and-Bound Algorithm

Input: A QRC (φ), X ′ and ǫ.

Output: ΣInn and ΣOut of the solution set of φ.

Enqueue X ′ to ListBox; ΣInn := ∅;

while ErrorBound > ǫ do

Dequeue X ′ from ListBox;

if φ(X ′) holds then

Enqueue X ′ to ΣInn;

else if φ(X ′) does not hold then

Do nothing;

else

Bisect X ′ and enqueue the resulting boxes to ListBox;

end if

end while

Enqueue ΣInn and ListBox to ΣOut;

return ΣInn and ΣOut;

where

• X ′: Box or interval vector.

• ListBox: List of boxes.

• ΣInn: List of boxes such that ΣInn ⊆ Σ.

• ΣOut: List of boxes such that Σ ⊆ ΣOut.

• Enqueue: The result of adding a box to a list.

• Dequeue: The result of extracting a box from a list.

• ErrorBound: Percentage of undefined search space respect the initial search

space.

• ǫ: A real value.

24

2.3 State-of-the-art

Moreover, negating the QRC, it is possible to build a contractor for the com-

plementary solution set ¬Σ, which eliminates parts belonging to the solution set.

Therefore, an inner contractor for Σ can also be obtained. Figure 2.5 graphically

shows the branch-and-prune algorithm on a two-dimensional example.

x1

x2

CΣ

CΣ
CΣ

CΣ

CΣ

C¬Σ

Σ

X ′

Bisection

X ′ ⊆ Σ X ′ ⊆ ¬Σ Undefined

Figure 2.5: Branch-and-prune algorithm.

Complexity analysis and termination: The complexity of a branch-and-

bound algorithm like Algorithm 1 is in general exponential in the problem dimen-

sion (number of free variables) Horowitz et al. (1997). However, it is not possible

to give a more precise complexity limit because it depends of lots of factors like

the shape, the length or the area of the solution set (Σ). On the other hand, the

complexity of an algorithm implementing a contractor using constraint propaga-

tion is polynomial in the problem dimension Bordeaux et al. (2001); Collavizza

et al. (1999). Therefore, using a contractor is efficient compared to expensive

exhaustive search and should be used as much as possible.

Concerning the termination of Algorithm 1, it is important to see that the

problem of computing truth-values/solution sets of QRCs can be numerically

ill-posed Ratschan (2001). An example is the QRC,

(∃x ∈ [−1, 1]′) − x2 = 0, (2.28)

25

Figures/BandP.eps

2.3 State-of-the-art

which is true, but becomes false under arbitrarily small positive perturbations of

the constant 0. As a consequence, it is not possible to design an algorithm based

on approximation that will always terminate (with a correct result). Note that

this situation is similar for most computational problems of continuous mathe-

matics (e.g., solving linear equations, solving differential equations). However, as

in these cases, most inputs are still numerically well-posed. One can even argue

that, philosophically speaking, the well-posed problems are exactly the problems

that model real-life problems in a meaningful way. It is beyond the scope of this

thesis to present all the formal details for characterizing well-posed QRCs.

Next sections review some of the existing approximate methods for solving

QRCs, highlighting their advantages and their limitations.

2.3.2.3 Cylindrical Box Decomposition

A singular approach, which combines QE methods with validated numerical tech-

niques is the Hong’s method Hong (1995). This approach provides a symbolic-

numeric algorithm called Cylindrical Box Decomposition, which is an extension

of the CAD algorithm Collins (1975) in combination with Interval Arithmetic

Moore (1966). The Hong’s method tries to deal with the more general problem,

however, it is still too slow to be useful, cannot guarantee termination, and is

too complicated to allow a thorough study of its properties. Some of these de-

ficiencies have been removed by Ratschan, by giving an exact classification of

the cases when the problem is numerically ill-posed Ratschan (2001), proposing

to deal with numerically ill-posed problems by approximate quantifiers Ratschan

(2003a), and providing a new algorithm Ratschan (2002b) with a quite efficient

implementation called AQCS Solver Ratschan (2002a). Despite of being theoret-

ically general, this methodology is only suitable for small-size problems and some

middle-size problems due to its complexity.

26

2.3 State-of-the-art

2.3.2.4 Multivariate Bernstein Polynomials

Multivariate Bernstein Polynomials (MBPs) Garloff (1993) can be used to esti-

mate the range of a polynomial function over a given domain. The idea behind

MBPs consists on finding the coefficients of the so-called Bernstein Polynomials

for a given polynomial function and the range of this last is obtained by means

of the combination of these coefficients.

The main advantage of MBPs methods is that they can be computationally

less expensive than other approximate methods (e.g. Interval Analysis) in some

special cases. However, MBPs methods are restricted to problems involving strict

polynomial inequalities and only accepts universal quantification over the vari-

ables.

Nevertheless, several applications in the Robust Control domain are found.

For example, in Malan et al. (1992), Bernstein branch-and-bound methods are

applied to robust performance analysis. In Zettler & Garloff (1998), improved

Bernstein branch-and-bound methods are used for robust stability analysis. In

Vicino et al. (1990) robust stability margin for multivariate polynomials systems

is computed.

When the QRC involves predicates which are not polynomial, other validated

numerical techniques, like Interval Analysis, are required.

2.3.2.5 Interval methods

Methods based on Interval Analysis can solve a more general class of QRCs than

MBPs methods do, but they still have some limitations on the form of the QRCs

(e.g. only one type of quantification, inequality predicates, linear predicates) and

inherit an important drawback from Interval Analysis, the overestimation phe-

nomenon due to the dependency and wrapping effects. Moreover, this approach

remains only applicable to middle-size problems because of its computational

complexity. Nevertheless, interval based methods have been widely applied to

solve QRCs in different fields like Robust Control Jaulin & Walter (1996); Malan

et al. (1997); Veh́ı et al. (1999, 2000) and Parameter Identification Jaulin & Wal-

ter (1993, 1999).

27

2.3 State-of-the-art

Several works have been proposed to overcome some of these limitations:

• Jaulin, with his well-known SIVIA (Set Inversion Via Interval Analysis)

algorithm Jaulin & Walter (1993, 1999), proposed a methodology for solving

a class of QRCs involving non-linear inequality constraints and only one

type of quantification (∀ or ∃) over the parameters. Several applications to

Robust Control and Parameter Identification are proposed in his work.

• In order to tackle with the overestimation problem, Veh́ı proposed in his the-

sis Veh́ı (1998) the use of Modal Interval Analysis Gardeñes et al. (2001) to

deal with the dependency effect. Applications to the problem of controllers

design are also proposed in his work.

• When only linear predicates are involved, Shary Shary (2002) proposed an

efficient technique, not based on bisection techniques, which allow to find an

inner and an outer approximation of the solution set of a QRC by means of

a single box. By using the so-called Kaucher Complete Interval Arithmetic

Kaucher (1980) combined with different existence theorems, this technique

extends the classical interval Gauss-Seidel algorithm Neumaier (1990) to

tackle with QRCs involving AE-quantification (universal quantifier precedes

the existential quantifier). A similar approach, based on Modal Interval

Analysis, was proposed by Sainz in Sainz et al. (2002a,b). A more recent

work by Goldsztejn Goldsztejn (2005), proposed some improvements to the

work proposed by Shary, in order to obtain better approximations of the

solution of the QRC by using parallelepiped boxes instead of square boxes.

• Goldsztejn proposed in Goldsztejn (2003) an algorithm which combines

interval branch-and-bound techniques with a parametric version of the Mi-

randa theorem Kearfott (2001). His approach allows to obtain inner and

outer approximations of the solution set of a class of quantified constraints

involving ∀∃-quantification and nonlinear equality predicates not sharing

existentially quantified variables.

28

2.3 State-of-the-art

2.3.2.6 Contractor methods

With the purpose of reducing the computational complexity of the interval branch-

and-bound approaches, several authors have proposed techniques based on con-

tractors for solving different instances of QRCs:

• In Benhamou & Goualard (2000), Benhamou et al. propose an algorithm,

based on an extended notion of the Box-Consistency technique to obtain

inner and outer approximations of the solution set of QRCs involving in-

equality nonlinear real predicates and only one universal quantified variable.

An interesting application of this technique to the problem of camera con-

trol is presented in Benhamou et al. (2004).

• A more general algorithm for solving QRCs involving inequality constraints

and only one type of quantification (∀ or ∃) is proposed by Braems et al. in

Jaulin et al. (2002) by means of an algorithm referred to as the Projection

Algorithm. This approach, based on Forward/Backward Propagation and

optimization techniques, has a practical implementation, called Proj2D and

available at Dao (2005). Applications based on this technique have been

proposed to solve different automation problems Dao et al. (2003); Jaulin

et al. (2002).

• More recently, Ratschan has proposed a more general framework Ratschan

(2002c, 2003b) which is based on a extended version of a consistency tech-

nique for first-order constraints. This technique can deal with AE-quantification

and theoretically accepts one equality and several inequalities. A practical

useful implementation, called RSOLVER, is available at Ratschan (2005).

• One of the most recent works is the one of Goldsztejn Goldsztejn & Jaulin

(2005), which proposes a bisection technique combined with a contrac-

tor based on a generalized interval parametric Hansen-Sengupta operator

Hansen & Sengupta (1981). This approach, partially solves a well known

open problem in set computation consisting on computing the inner approx-

imation of the range of vector-valued function. This problem is equivalent

to that of computing the inner approximation of the solution set of a QRC

29

2.3 State-of-the-art

with equality predicates sharing existentially quantified variables. However,

the methodology is restricted to problems with the same number of equal-

ity predicates than existentially quantified variables and does not guarantee

termination.

As mentioned before, contractors can notably reduce the average run-time of

the algorithms for solving QRCs. However, current implementations are still far

from being useful for solving big-size problems. Thus, further research in that

direction is still being done.

Figure 2.6 and 2.7 shows the screenshots of two current existing solvers based

on branch-and-prune techniques. These screenshots correspond to the graphical

output for the QRC from Example 2.2.1.

Figure 2.6: RSOLVER screenshot corresponding to Example 2.2.1.

30

Figures/RSOLVER.eps

2.4 Conclusions

Figure 2.7: Proj2D screenshot corresponding to Example 2.2.1.

2.4 Conclusions

This chapter states the class of quantified real constraint (QRC) to be solved in

this thesis and reviews the principal existing techniques for solving such a prob-

lem, highlighting their main advantages and drawbacks. Solving big-size problems

QRCs, still remains an open problem due to the computational complexity of the

current approaches. Research on new techniques for reducing this complexity and

for solving more general class of QRCs are the objectives of many research works.

Next chapter, presents a new approach based on Modal Interval Analysis which

intends to contribute on overcoming some of the existing limitations.

31

Figures/Proj2D.eps

Chapter 3

Quantified Real Constraint
Satisfaction Using Modal
Intervals

This chapter deals with the satisfaction of the class of quantified real constraints

(QRCs) stated in Section 2.2.2. An extended notion of the so-called interval

inclusion test in interval analysis is presented, which enlarges the class of QRCs

that can be dealt with respect to the classic Interval Analysis approach. This

new notion of inclusion test is based on the theory of Modal Interval Analysis

(MIA) and consequently it has been referred as to modal interval inclusion test.

This chapter also presents an efficient algorithm, based on branch-and-bound

techniques and MIA, to compute approximations of the semantic extensions of a

continuous function, the modal interval counterparts of the inclusion functions in

classic interval analysis, and the key tool for applying the modal interval inclusion

test.

3.1 Introduction

As already introduced in Section 2.3.2.1, one way of proving the satisfaction of

a QRC is by means of the interval analysis Moore (1966), and more specifically

through the notion of interval inclusion test.

Remark 3.1.1. Proving the consistency (truth-value) of a QRC (φ) is equivalent

32

3.1 Introduction

to answer the following question: Is φ true for whatever the values of the free-

variables x on a given box X ′?

�

Given a box X ′, an interval inclusion test can prove the consistency of a QRC

of the form

(∀u ∈ U ′)f(x, u) ≥ 0, (3.1)

where u is a vector of universally quantified parameters ranging on a box U ′,

and f is a continuous real function in Rn → R. However, it cannot prove, for

instance, a QRC of the form,

(∃v ∈ V ′)f(x, v) = 0, (3.2)

where v is a vector of existentially quantified parameters.

Modal Interval Analysis (MIA) Gardeñes et al. (2001), can tackle with the

previous logical statement and in general can deal with QRCs of the form,

(∀u ∈ U ′)(∃v ∈ V ′)f(x, u, v) = 0, (3.3)

where u and v are respectively vectors of parameters affected by the universal and

existential quantifiers, U ′ and V ′ are real intervals and f(x, u, v) is a continuous

real function.

Remark 3.1.2. Notice that any instance of the problem stated in Section 2.2.2,

can be expressed as Equation 3.3 or to multiple instances of the same problem.

For example:

• Inequality predicates can expressed as Equation 3.3 by simply introducing

slack variables. For instance, f(x, u, v) ≤ 0 ⇔ f(x, u, v) − a = 0, where

a ∈ [− inf, 0]′ is a slack variable.

33

3.1 Introduction

• Solving several predicates, not sharing existentially quantified variables, is

equivalent to solving multiple instances of Equation 3.3. For example,

(∀u ∈ U ′)(∃v1 ∈ V ′
1) . . . (∃vn ∈ V ′

n)

(g1(x, u, v1) = 0 ∧ . . . ∧ gn(x, u, vn) = 0)

⇔ (∀u ∈ U ′)(∃v1 ∈ V ′
1)g1(x, u, v1) = 0 ∧ . . .

∧(∀u ∈ U ′)(∃vn ∈ V ′
n)gn(x, u, vn) = 0. (3.4)

• Logical conjunctions of inequality predicates sharing existentially quantified

variables, can be reduced to a single predicate using the interval min (or

max) function defined by

min([a, a], [b, b]) := [min(a, b), min(a, b)]. (3.5)

For example, for inequality predicates of the form <, the next equivalence

can be used,

(∀u ∈ U ′)(∃v1 ∈ V ′
1) . . . (∃vn ∈ V ′

n)

(g1(x, u, v) < 0 ∧ . . . ∧ gn(x, u, v) < 0)

⇔ (∀u ∈ U ′)(∃v1 ∈ V ′
1) . . . (∃vn ∈ V ′

n)

min(g1(x, u, v), . . . , gn(x, u, v)) < 0. (3.6)

This way of solving inequality predicates sharing existentially quantified variables

is an original contribution of this thesis.

�

Notice that proving the satisfaction of Equation 3.3 on a given box X ′, is

equivalent to looking for the truth-value of the next first-order logic formula,

(∀x ∈ X ′)(∀u ∈ U ′)(∃v ∈ V ′)f(x, u, v) = 0, (3.7)

34

3.2 Modal Interval Analysis

something that can be naturally done by MIA. Next section is devoted to the

satisfaction of the previous logical formula using the theory of MIA, and more

specifically through the notion of the modal interval inclusions test.

3.2 Modal Interval Analysis

This Section presents some basic concepts and results about MIA for the under-

standing of thesis. For more details and proofs the reader can see Gardeñes et al.

(2001); SIGLA/X (1999). In a second part, the notion of modal interval inclusion

test is introduced, which provides the key tool for the resolution of the problem

stated in Equation 3.3.

3.2.1 Basic concepts

Unlike a classical interval A′ = [a, a]′, with a ≤ a, which is a set of real numbers

A′ = [a, a]′ := {x ∈ R | a ≤ x ≤ a}, (3.8)

a modal interval is a pair formed by a classical interval and a quantifier. Therefore

there exist two types of modal intervals: A := (A′, ∀) named improper intervals

and represented by A = [a, a], with a ≤ a , and B := (B′, ∃) named proper

intervals and represented by B = [b, b], with b ≥ b. Notice that proper intervals

are identifiable with intervals from the classic Interval Analysis theory. The set

of modal intervals is represented by I∗(R).

Remark 3.2.1. Notice that to distinguish a modal interval from a classic interval,

the classic interval has been noted with a prime mark (e.g. A′).

�

Example 3.2.1. For example, the modal interval [2, 5] is equal to ([2, 5]′, ∃), and

the modal interval [8, 4] is equal to ([4, 8]′, ∀).

�

35

3.2 Modal Interval Analysis

The bounds a and a are called the infimum, a = Inf([a, a]) and the supremum,

a = Sup([a, a]) of an interval. A point-wise interval [a, a], also represented as [a],

can be considered as proper or improper and it is identifiable with the real number

a.

For an interval A = [a, a], the operators Prop, Impr and Dual are defined as

Prop([a, a]) :=

{

[a, a] if a ≤ a
[a, a] if a > a.

(3.9)

Impr([a, a]) :=

{

[a, a] if a ≤ a
[a, a] if a > a.

(3.10)

Dual([a, a]) := [a, a]. (3.11)

Example 3.2.2.

Prop([5,−5]) = [−5, 5],

Impr([−5, 5]) = [5,−5],

Dual([−5, 5]) = [5,−5].

�

3.2.1.1 Modal interval inclusion

Let us identify a modal interval A := (A′, QA) with the set of real predicates

accepted by itself:

Pred((A′, QA)) := {P (.) ∈ Pred(R) | (QAx ∈ A′) P (x)}. (3.12)

Example 3.2.3. Given the modal interval A = ([−1, 1]′, ∃), the real predicate

P (.) = x > 0 is accepted by the interval A because, (∃x ∈ [−1, 1]′)x > 0 is true.

However, for the modal interval B = ([−1, 1]′, ∀), the same real predicate is not

accepted because (∀x ∈ [−1, 1]′)x > 0 is false.

�

36

3.2 Modal Interval Analysis

With the identification of a modal interval with the set of those real predicates

that it accepts (X ↔ P (X)), arises the inclusion of two intervals as the inclusion

of the set of predicates that they accept; that is, if A, B ∈ I∗(R)

A ⊆ B ⇔ Pred(A) ⊆ Pred(B). (3.13)

The inclusion between two modal interval maintains the same modus operandi

that its classic interval counterpart.

[a, a] ⊆ [b, b] ⇔ (a ≥ b ∧ a ≤ b). (3.14)

Example 3.2.4. Given two modal interval A = ([−1, 1]′, ∃) = [−1, 1] and B =

([−1, 1]′, ∀) = [1,−1], B is included in A because [1,−1] ⊆ [−1, 1] is true, which

means that the set of accepted predicates by B is included to the set accepted by

A.

�

3.2.1.2 Modal interval lattice operators

The interval lattice operators meet (∨) and join (∧) on I∗(R) for a bounded

family of modal intervals A(I) := {A(i) = [a1(i), a2(i)] ∈ I∗(R) | i ∈ I} (I is the

index’s domain) are defined as the ⊆-maximum interval contained in all A(i), for

the meet, and the ⊆-minimum interval that contains all A(i), for the join; i.e.,

∧

i∈I

A(i) = A ∈ I∗(R) is such that (∀i ∈ I) X ⊆ A(i) ⇔ X ⊆ A, (3.15)

∨

i∈I

A(i) = B ∈ I∗(R) is such that (∀i ∈ I) X ⊇ A(i) ⇔ X ⊇ B, (3.16)

denoted by A∧B and A∨B for the corresponding two-operands case. The result,

as a function of the interval bounds, is

∧

i∈I

A(i) = [max
i∈I

a1(i), min
i∈I

a2(i)] (3.17)

∨

i∈I

A(i) = [min
i∈I

a1(i), max
i∈I

a2(i)]. (3.18)

37

3.2 Modal Interval Analysis

Example 3.2.5. Given two modal interval A = [−1, 1] and B = [8, 6],

A ∧ B = [−1, 1] ∧ [8, 6] = [8, 1],

A ∨ B = [−1, 1] ∨ [8, 6] = [−1, 6].

�

3.2.1.3 Modal interval arithmetic

The modal interval arithmetic is a set of rational operations (e.g. +,−, /, ∗) which

are defined as a function of the lattice operators meet and join. For example, given

two interval A = [a, a] and B = [b, b], the basic operations + and − as a function

of the interval bounds are:

Sum : A + B = [a + b, a + b]. (3.19)

Rest : A − B = [a − b, a − b]. (3.20)

Example 3.2.6. Given two modal intervals A = [−1, 1] and B = [1,−1],

A + B = [−1 + 1, 1 + (−1)] = [0, 0].

A − B = [−1 − (−1), 1 − 1] = [0, 0].

�

The modal interval arithmetic coincides with the so-called Kaucher Complete

Interval Arithmetic Kaucher (1980). However, MIA not only extends the classic

interval arithmetic to the whole interval lattice but it provides a semantic of the

results related to the modality (e.g. proper or improper) of the involved intervals.

3.2.1.4 *-Semantic extension

A key concept in MIA is the *-semantic extension (f ∗) of a continuous function f

to a modal interval vector X ∈ I∗(Rn), which can be seen as the modal interval

38

3.2 Modal Interval Analysis

counterpart of the range (or interval united extension) of a continuous function

in classic Interval Analysis. f ∗ is defined by

f ∗(X) :=
∨

u∈U
′

∧

v∈V
′

[f(u, v), f(u, v)] =

= [min
u∈U

′

max
v∈V

′

f(u, v), max
u∈U

′

min
v∈V

′

f(u, v)], (3.21)

where x = (u, v) is the component-splitting corresponding to the proper and

improper components of X = (U , V).

Remark 3.2.2. Notice that if X has only proper components,

f ∗(X) :=
∨

x∈X
′

[f(x), f(x)] = [min
x∈X

′

f(x), max
x∈X

′

f(x)], (3.22)

it corresponds to the interval united extension Rf of the classic interval analysis

and is the range of f in the parameter space X ′.

�

Another semantic extension defined in MIA is the **-semantic extension,

which is the dual formulation of the *-semantic extension. It is defined by

f ∗∗(X) :=
∧

u∈U
′

∨

v∈V
′

[f(u, v), f(u, v)] =

= [max
u∈U

′

min
v∈V

′

f(u, v), min
u∈U

′

max
v∈V

′

f(u, v)]. (3.23)

The f ∗∗ can be easily obtained through the next relation

f ∗∗(X) = Dual(f ∗(Dual(X))), (3.24)

what makes the implementation of f ∗∗ unnecessary.

In the special case when f ∗(X) = f ∗∗(X), f is said to be JM-commutable

(Join Meet commutable) for X ∈ I∗(Rn). Important examples of JM-commutable

functions are the one-variable continuous functions and every two-variable con-

tinuous function f(x, y) that is partially monotonic in a domain (X ′, Y ′), like

the arithmetic operators x + y, x − y, x ∗ y, x/y and others like xy, max(x, y)

and min(x, y). Thus, their semantic extensions can be computed using simple

arithmetic computations with the interval bounds.

39

3.2 Modal Interval Analysis

3.2.1.5 *-Semantic theorem

A very important result about the *-semantic extension is the so-called *-semantic

theorem:

Theorem 3.2.1 (∗−semantic theorem). Let be Z ∈ I∗(R). Then

f ∗(U , V) ⊆ Z ⇔ (∀u ∈ U ′)(Qz ∈ Z ′)(∃v ∈ V ′)z = f(u, v), (3.25)

where Q = ∃ when Z is a proper interval and Q = ∀ when Z is an improper

interval.

�

Theorem 3.2.1 states an equivalence between a first-order logic formula, in-

volving equalities relating to a continuous real function, and an interval inclusion.

Moreover, Theorem 3.2.1 can be extended to the following implication when the

interval inclusion is fulfilled by an outer approximation of the *-semantic exten-

sion,

Outer(f ∗(U , V)) ⊆ Z ⇒ (∀u ∈ U ′)(Qz ∈ Z)(∃v ∈ V ′)z = f(u, v), (3.26)

where Outer(f ∗(U , V)) is an outer approximation of f ∗.

When the functional relation is f(u, v) = 0, it is enough to put Z = [0, 0] and

to omit the term (Qz ∈ Z ′), which exactly leads to the resolution of the problem

stated in Equation 3.7.

In the case of the ≥ or ≤ relations, the *-semantic theorem states the following

equivalences:

f ∗(U , V) ⊆ (−∞, 0] ⇔ (∀u ∈ U ′) (∃v ∈ V ′) f(u, v) ≤ 0, (3.27)

and

f ∗(U , V) ⊆ [0, +∞) ⇔ (∀u ∈ U ′) (∃v ∈ V ′) f(u, v) ≥ 0, (3.28)

40

3.2 Modal Interval Analysis

Remark 3.2.3. Notice that inequality predicates can also be expressed as equality

predicates by introducing slack variables, for example,

f(u, v) ≤ 0 ⇔ f(u, v) − a = 0, (3.29)

where a ∈ [− inf, 0] is a slack variable.

�

When the negation of the logical formula from Equation 3.7 is considered, in

accordance with the *-semantic theorem

f ∗(U , V) * [0, 0] ⇔ ¬((∀u ∈ U ′) (∃v ∈ V ′) f(u, v) = 0)

⇔ (∃u ∈ U ′) (∀v ∈ V ′) f(u, v) 6= 0

⇒ (∀v ∈ V ′) (∃u ∈ U ′) f(u, v) 6= 0. (3.30)

Therefore, the negation the logical formula stated in Equation 3.3 can be

verified proving a modal interval non-inclusion. If an inner approximation of f ∗

is considered, the following assertion is also verified

Inn(f ∗(U , V)) * [0, 0] ⇒ (∀v ∈ V ′) (∃u ∈ U ′) f(u, v) 6= 0. (3.31)

It has been shown how the satisfaction of the logical statement expressed in

Equation 3.3 can be done by means of an interval inclusion involving f ∗. In other

words, the problem has been transferred to the computation of the *-semantic

extension of a continuous function.

3.2.1.6 *-Semantic extension computation

Sometimes, under certain conditions, the computation of the *-semantic exten-

sion of a continuous function f can be easily done through simple modal interval

computations by simply replacing, in the syntactic tree of f , its real variables (x)

by modal interval variables (X) and the real arithmetic operators by their cor-

responding modal interval counterparts. This interval extension of a continuous

function f is referred as modal interval rational extension fR.

41

3.2 Modal Interval Analysis

However, the modal interval rational extension, which can be obtained by

doing these transformations, is in general not interpretable. This lack of inter-

pretability is equivalent to saying that the inclusion

f ∗(X) ⊆ fR(X). (3.32)

is not satisfied and consequently the *-semantic theorem cannot be applied.

Example 3.2.7. Let f(x1, x2) = x1 +x2 be a continuous function. Replacing the

real variables (x1, x2) by the intervals (X1, X2) = ([−5, 5], [6,−6]) and the real

operators by their intervals counterparts, the following result is obtained

f ∗(X) = [−5, 5] + [6,−6] = [1,−1]. (3.33)

According to Theorem 3.2.1, the semantic of the previous computation is,

(∀x1 ∈ [−5, 5])(∀z ∈ [−1, 1])(∃x2 ∈ [−6, 6]) x1 + x2 = z. (3.34)

However, the *-semantic extension of a function like f(x1, x2) = x1 ∗ x2 + x2
2,

cannot be obtained by simply replacing the interval variables and operators. Its

rational extension to the same interval X = ([−5, 5], [6,−6]) is

fR(X) = [−5, 5] ∗ [6,−6] + [6,−6]2 = [360, 0], (3.35)

but this result is not interpretable because f ∗(X) = [6, 0] * [360, 0].

�

Definition 3.2.1. A rational computation fR is called optimal on X when

f ∗(X) = fR(X) = f ∗∗(X), (3.36)

considering an exact interval arithmetic. However, this optimality is rarely sat-

isfied.

�

42

3.2 Modal Interval Analysis

3.2.1.7 Interpretable modal interval rational extension

MIA provides a bunch of results which allow to guarantee an inclusion of the kind

f ∗(X) ⊆ fR(X) and consequently to obtain the desired interpretability given by

the *-semantic theorem. Several theorems provide different results which allow

to obtain interpretable modal interval rational extensions. The next definitions

are required for a correct understanding of the following results (for a detailed

description of these theorems see Gardeñes et al. (2001)).

Definition 3.2.2. An incidence is an occurrence of a variable inside a function.

For instance, given the interval function F (X) = X ∗ X, the variable X has two

incidences.

�

Definition 3.2.3. A variable is multi-incident when multiple incidences of itself

appear inside a function. For instance, given the interval function F (X) = X∗X,

the variable X is said to be multi-incident. Therefore, an uni-incident variable is

a variable that only occurs once.

�

Definition 3.2.4. The monotony sense of a real function f with respect to a

variable x (or an incidence) over a given domain X ′ is defined by

Monotony sense =























Increasingly monotonic if (∀x ∈ X ′) ∂f/∂x ≥ 0,

Decreasingly monotonic if (∀x ∈ X ′) ∂f/∂x ≤ 0,

Nonmonotonic otherwise.

(3.37)

This monotony-sense can be calculated by evaluating the *-semantic extension of

43

3.2 Modal Interval Analysis

dx = ∂f/∂x on X ′. Thus,

Monotony sense =























Increasingly monotonic if d∗
x(Prop(X)) ≥ [0, 0],

Decreasingly monotonic if d∗
x(Prop(X)) ≤ [0, 0],

Nonmonotonic otherwise.

(3.38)

�

Definition 3.2.5. A real function f is called totally monotonic with respect to a

multi-incident variable x ∈ X ′ if it is uniformly monotonic for this variable and

for each one of its incidences, considered as different variables.

�

Definition 3.2.6. A syntactic tree of a continuous function f is tree-optimal on

X if, for any of its non-uniformly monotonic operators (e.g. ∗, /) it is followed

downwards in the syntactic tree only by one-variable operators (e.g. pow, exp, sin)

and upwards by uniformly monotonic operators (e.g. +,−). For instance, the

continuous function

f(x, y, z, u) = x ∗ y + z ∗ u, (3.39)

which has a rational syntactic extension given by

fR(X, Y, Z, U) = X ∗ Y + Z ∗ U, (3.40)

is tree-optimal in any X = (X, Y, Z, U) ∈ I∗(R4) because the involved non-

uniformly monotonic operator ∗ is followed downward by variables. However,

the continuous function

f(x, y, z, u) = (x + y) ∗ (z + u), (3.41)

44

3.2 Modal Interval Analysis

which has rational syntactic extension given by

fR(X, Y, Z, U) = (X + Y) ∗ (Z + U), (3.42)

is not tree-optimal in all I∗(R4) because the non-uniformly monotonic operator ∗

is followed downward by the binary operator +. However, it can be optimal on a

given X. For instance, if 0 /∈ X ′, fR is optimal.

�

The main results for outer approximating f ∗(X) can mainly be summarized

by the next inclusion

f ∗(X) ⊆ OutR(fR(UD, V Dt)), (3.43)

where D is the interval transformation over every multi-incident interval variable

Xi such that, the continuous function f is totally monotonic with respect to

xi ∈ Xi, and consist of applying the duality operator over each incidence of Xi

such that the monotony-sense of f with respect the incidence is contrary to the

monotony-sense f with respect to the variable. t is the interval transformation

corresponding to transform the multi-incident improper intervals V that are not

totally monotonic into point-wise intervals defined for any of their points. OutR

is an outer rounding operator when floating-point operations Kahan (1996) are

involved. When uni-incident improper interval variables are involved in X, the t-

transformation is only applied on these variables if the rational syntactic extension

of f is not tree-optimal.

Example 3.2.8. Given the real function f(u, v, z) = 2uv − uv + cos(z). Let us

compute an outer approximation of the *-semantic extension f ∗([−1, 1], [2, 1], [10,−10])

by means of an interpretable rational interval function fR([−1, 1], [2, 1], [10,−10]).

This function can be written as f(u, v, z) = 2u1v1 − u2v2 + cos(z), where the

subindexes represent the different multi-incidences. First of all, the monotony

45

3.2 Modal Interval Analysis

of f with respect to each variable and with respect to each one of its incidences,

considered as different variables, needs to be computed.

∂f(u, v, z)/∂u = 2v − v = v = [1, 2] ≥ 0,

∂f(u, v, z)/∂u1 = 2v ∈ 2 ∗ [1, 2]′ = [2, 4]′ ≥ 0,

∂f(u, v, z)/∂u2 = −v ∈ −[1, 2]′ = [−2,−1] ≤ 0,

∂f(u, v, z)/∂v = 2u − u = u = [−1, 1] ⊇ 0,

∂f(u, v, z)/∂v1 = 2u ∈ 2 ∗ [−1, 1]′ = [−2, 2]′ ⊇ 0,

∂f(u, v, z)/∂v2 = −u ∈ −[−1, 1]′ = [−1, 1]′ ⊇ 0,

∂f(u, v, z)/∂z = −sin(z) ∈ −sin([−10, 10]′) = [−1, 1]′ ⊇ 0. (3.44)

Then, applying the corresponding D and t transformations, the next approxima-

tion is obtained

fR(UD, V t, Z) = (3.45)

2 ∗ U1 ∗ Point(V1) + Dual(U2) ∗ Point(V2) + cos(Z) =

2 ∗ [−1, 1] ∗ [1.5, 1.5] + [1,−1] ∗ [1.5, 1.5] + cos([10,−10]) = [−0.5, 0.5],

where Point is an operator returning a point-wise interval corresponding to any

point of an interval (e.g. the center). Notice that the obtained result is an outer

approximation of the exact result f ∗([−1, 1], [2, 1], [10,−10]) = [0, 0].

�

MIA also provides results for inner approximating of the *-semantic extension

of a continuous function, which can be mainly summarized by the next inclusion

InnR(fR(UDt, V D)) ⊆ f ∗(x), (3.46)

where InnR is an inner rounding operator when floating-point operations Kahan

(1996) are involved.

46

3.2 Modal Interval Analysis

Example 3.2.9. Consider the same problem of Example 3.2.8 but now, let us

compute an inner approximation of f ∗([−1, 1], [2, 1], [10,−10]),

fR(UD, V t, Z) =

2 ∗ U1 ∗ V1 + Dual(U2) ∗ V2 + cos(Z) =

2 ∗ [−1, 1] ∗ [2, 1] + [1,−1] ∗ [2, 1] + cos([10,−10]) = [1,−1], (3.47)

which is an inner approximation of f ∗([−1, 1], [2, 1], [10,−10]) = [0, 0].

�

By combining inner and outer approximations, it is possible to know the

quality of the results by calculating the distance between the inner approximation

and the outer approximation.

3.2.1.8 Modal interval inclusion test

Definition 3.2.7. From Theorem 3.2.1 and the notion of interpretable rational

interval function stated by Equation 3.43 and 3.46, a modal interval inclusion

test T ∗(X) for Equation 3.3 is defined by,

T ∗(X) =























true if OutR(fR(UD, V Dt)) ⊆ A,

false if InnR(fR(UDt, V D)) * A,

undefined otherwise,

(3.48)

where A is the auxiliary interval,

A =























[0, inf) if ⋄ is ≥,

(− inf, 0] if ⋄ is ≤,

[0, 0] if ⋄ is = .

(3.49)

�

47

3.2 Modal Interval Analysis

Remark 3.2.4. The definition of modal interval inclusion test is an original

contribution of this thesis.

�

Example 3.2.10. Given the logical statement

(∀u ∈ [0, 3]′)(∃v ∈ [2, 8]′)(∃z ∈ [−4, 9]′)f(u, v, z) = 0, (3.50)

where f(u, v, z) is the continuous function

f(u, v, z) = u2 + v2 + uv − 20u − 20 ∗ v + 100 − 10sin(z). (3.51)

This function can be written as

f(u, v, z) = u2
1 + v2

1 + u2v2 − 20u3 − 20 ∗ v3 + 100 − 10sin(z), (3.52)

where the subindexes represent the different multi-incidences. Let us approximate

the *-semantic extension f ∗([0, 3], [8, 2], [9,−4]) by means of an interpretable ra-

tional interval function fR([0, 1], [8, 2], [9,−4]). First of all, the monotony of f

with respect to each variable and with respect to each one of its incidences, con-

48

3.2 Modal Interval Analysis

sidered as different variables, has to be computed.

∂f(u, v, z)/∂u = 2u + v − 20 ∈ 2 ∗ [0, 3]′ + [2, 8]′ − 20 =

[−18,−6]′ ≤ 0,

∂f(u, v, z)/∂u1 = 2u ∈ 2 ∗ [0, 3]′ = [0, 6]′ ≥ 0,

∂f(u, v, z)/∂u2 = v ∈ [2, 8]′ = [2, 8]′ ≥ 0,

∂f(u, v, z)/∂u3 = −20 ≤ 0,

∂f(u, v, z)/∂v = 2v + u − 20 ∈ 2 ∗ [2, 8]′ + [0, 3]′ − 20 =

[−16,−1]′ ≤ 0,

∂f(u, v, z)/∂v1 = 2v ∈ 2 ∗ [2, 8]′ = [4, 16]′ ≥ 0,

∂f(u, v, z)/∂v2 = u ∈ [0, 3]′ ≥ 0,

∂f(u, v, z)/∂v3 = −20 ≤ 0,

∂f(u, v, z)/∂z = −10cos(z) ∈ −10 ∗ cos([9,−4]) = [−10, 10]′. (3.53)

Notice that for computing the monotony, only the domains of the variables are

taken into account and not the modality. Then, applying the corresponding D and

t transformations, the next approximation is obtained

fR(UD, V Dt) =

Dual(U1)
2 + Dual(V1)

2 + Dual(U2) ∗ Dual(V2) − 20 ∗ U3 −

20 ∗ V3 + 100 − 10 ∗ sin(Z) =

[3, 0]2 + [2, 8]2 + [3, 0] ∗ [2, 8] − 20 ∗ [0, 3] − 20 ∗ [8, 2] + 100 −

10 ∗ sin([9,−4]) = [290,−6], (3.54)

which is an interpretable calculus for f ∗. In accordance with Theorem 3.2.1, as

fR([0, 1], [8, 2], [9,−4]) = [29,−6] ⊆ [0, 0] is true, the logical formula is satisfied.

49

3.2 Modal Interval Analysis

�

Example 3.2.11. Consider again Example 3.2.10 but changing the interval U to

[0, 6]. In this case, f is not totally monotonic for none of its variables, therefore

the duality operator cannot be applied and instead of that, the t transformation is

applied on the variable V . Thus, by applying the corresponding transformations,

the following calculation is obtained,

fR(UD, V Dt) =

U2
1 + Point(V1)

2 + U2 ∗ Point(V2) − 20 ∗ U3 −

20 ∗ Center(V3) + 100 − 10 ∗ sin(z) =

[0, 6]2 + [5, 5]2 + [0, 6] ∗ [5, 5] − 20 ∗ [0, 6] −

20 ∗ [5, 5] + 100 − 10 ∗ sin([9,−4]) = [−850, 810]. (3.55)

Notice that the obtained result is a very over-estimated approximation of f ∗([0, 6], [8, 2], [9,−4]) =

[2,−6]. In spite of being the logical formula true, it cannot be verified with the

obtained approximation.

An inner approximation for the same example can be obtain through the fol-

lowing calculation

fR(UDt, V D) =

Point(U1)
2 + V 2

1 + Point(U2) ∗ V2 − 20 ∗ Center(U3) −

20 ∗ V3 + 100 − 10 ∗ sin(z) =

[3, 3]2 + [8, 2]2 + [3, 3] ∗ [8, 2] − 20 ∗ [3, 3] −

20 ∗ [8, 2] + 100 − 10 ∗ sin([9,−4]) = [107,−111]. (3.56)

50

3.3 f ∗ algorithm

As [107,−111] ⊆ [0, 0], the logical formula cannot be disproved.

�

It is important to remark that an alternative formulation to the MIA theory,

and referred to as generalized intervals, has been proposed by Goldsztejn in Gold-

sztejn et al. (2005). This new formulation presents MIA in a slightly different

way, but the main results are almost the same and the difference remains on the

proofs of the theorems.

3.3 f∗ algorithm

As shown in the previous section, computing the *-semantic extension (f ∗) of a

continuous function f by means of any interpretable rational extension can cause

an overestimation of the interval evaluation, due to possible multiple occurrences

of a variable. In this section, an algorithm based on MIA and branch-and-bound

techniques, which allows to approximate f ∗ by computing inner and outer ap-

proximations, is described.

Remark 3.3.1. The original idea of the f ∗ algorithm was proposed by Trepat in

his PhD thesis Trepat (1982). This initial algorithm was extremely inefficient and

could only solve very elemental problems. In this section, a much more efficient

algorithm, which introduces many theoretical and algorithmic improvements with

respect to the original algorithm, is presented. This new algorithm, together with

the associated theorem, are original contributions of this thesis and a paper pre-

senting them has been submitted for publication in a journal Sainz et al. (2006b).

�

3.3.1 Key theorem

Let X = (U , V) be a modal interval vector split into its proper (U) and improper

(V) components. Let {U 1, . . . , U r} be a partition of U and, for every j =

51

3.3 f ∗ algorithm

1, . . . , r, let {V 1j
, . . . , V sj

} be a partition of V . Each interval U j ×V kj
is called

a Cell, each V ∗j
-partition is called a Strip, and the U -partition is called the

StripSet.

Figure 3.1 shows a geometrical representation of an example of these parti-

tions, when X has only one proper component and one improper component.

Ú

strip 2
cell U × V

4 54

U

V

Figure 3.1: Strip and Cell partitions.

The algorithm we present is based on the following theorem.

Theorem 3.3.1. Given a Rn to R real continuous function f , then

∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}

[InnR(fR(ǔj, V kj
))] ⊆ f ∗(X) ⊆

∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}

[OutR(fR(U j, v̌kj
))], (3.57)

where ǔj is any element of U ′
j (j = 1, . . . , r) and v̌kj

is any element of V ′
kj

(kj = 1j, . . . , sj), for example the midpoints of the intervals.

�

52

Figures/Cfig4.eps

3.3 f ∗ algorithm

Proof. Concerning the outer approximation,

f ∗(X) :=
∨

u∈U′

∧

v∈V′

[f(u, v)]

=
∨

j∈{1,...,r}

∨

uj∈U′

j

∧

v∈V′

[f(uj, v)] (3.58)

=
∨

j∈{1,...,r}

∨

uj∈U′

j

∧

kj∈{1j ,...,sj}

∧

vkj
∈V′

kj

[f(uj, vkj
)] (3.59)

⊆
∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}

[f ∗(Uj , v̌kj
)] (3.60)

⊆
∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}

[OutR(fR(Uj, v̌kj
))], (3.61)

where v̌kj
is any fixed point of V′

kj
(kj = 1j , . . . , sj), for example the mid-points

or the bounds of the intervals, and fR is the modal rational interval extension of

the function f , because

• Equation 3.58 is true in accordance with the associativity of the join oper-

ator,

• Equation 3.59 is true in accordance with the associativity of the meet op-

erator.

• Equation 3.60 is true since [f(uj , vkj
)] = f ∗(uj, vkj

) ⊆ f ∗(Uj , vkj
) implies

∨

j∈{1,...,r}

∨

uj∈U′

j

∧

kj∈{1j ,...,sj}

∧

vkj
∈V′

kj

[f(uj, vkj
)] ⊆

⊆
∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}

f ∗(Uj, v̌kj
). (3.62)

• Equation 3.61 is true because

f ∗(Uj, v̌kj
) ⊆ Out(fR(Uj , v̌kj

)). (3.63)

53

3.3 f ∗ algorithm

The final relation Equation 3.61 is equivalent to

f ∗(X) ⊆
∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}

OutR(fR(Uj , v̌kj
)) (3.64)

for any partition of X . Moreover, the finer partition, the better approximations.

Concerning the inner approximation

f ∗(X) :=
∨

u∈U′

∧

v∈V′

[f(u, v)]

=
∨

j∈{1,...,r}

∨

uj∈U′

j

∧

v∈V′

[f(uj, v)] (3.65)

=
∨

j∈{1,...,r}

∨

uj∈U′

j

∧

kj∈{1j ,...,sj}

∧

vkj
∈V′

kj

[f(uj, vkj
)] (3.66)

⊇
∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}

[f ∗(ǔj ,Vkj
)]| (3.67)

⊇
∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}

[InnR(fR(ǔj ,Vkj
))], (3.68)

where ǔj is any fixed point of U′
j (j = 1, . . . , r), for example the mid-points or

the bounds of the intervals, and fR is the modal rational interval extension of

the function f , because

• Equation 3.65 is true in accordance with the associativity of the join oper-

ator,

• Equation 3.66 is true in accordance with the associativity of the meet op-

erator.

54

3.3 f ∗ algorithm

• Equation 3.67 is true since [f(uj , vkj
)] = f ∗(uj, vkj

) ⊇ f ∗(uj ,Vkj
) implies

∨

j∈{1,...,r}

∨

uj∈U′

j

∧

kj∈{1j ,...,sj}

∧

vkj
∈V′

kj

[f(uj , vkj
)] ⊇

⊇
∨

j∈{1,...,r}

∨

uj∈U′

j

∧

kj∈{1j ,...,sj}

f ∗(uj ,Vkj
)

⊇
∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}

f ∗(ǔj ,Vkj
) (3.69)

• Equation 3.68 is true because

f ∗(ǔj ,Vkj
) ⊇ Inn(fR(ǔj,Vkj

)) (3.70)

The final Equation 3.68 is equivalent to

f ∗(X) ⊇
∨

j∈{1,...,r}

∧

kj∈{1j ,...,sj}

InnR(fR(ǔj ,Vkj
)) (3.71)

for any partition of X . Moreover, the finer partition, the better approximations.

Example 3.3.1. Table 3.1 represents a possible bisection configuration over the

variables’ space of Example 3.2.11, where the columns represent the {U1, . . . , U3}

partition of U = [0, 6] and the rows are the corresponding {V1j
, . . . , V3j

} partitions

of V = [8, 2] for every Uj. Each cell contains the corresponding approximations.

The last row contains the approximations which result from applying the meet

operator over the cells of each columns and finally, the bottom-left cell contains

the approximations resulting from applying the join operator to the obtained ap-

proximations for each column. This last result is an approximation of f ∗(U, V).

It can be observed that the resulting approximation is better than the one ob-

tained in Example 3.2.11 (Out = [−850, 810], Inn = [107,−111]). However, it

55

3.3 f ∗ algorithm

Table 3.1: Illustrative example of Theorem 3.3.1.

(u, v) u = [0, 2] u = [2, 4] u = [4, 6]

v = [8, 6] Out = [−21, 17] Out = [−43, 3] Out = [−57,−3]

Inn = [43,−47] Inn = [27,−67] Inn = [19,−79]

v = [6, 4] Out = [−5, 29] Out = [−31, 11] Out = [−49, 1]

Inn = [17, 51] Inn = [−11, 27] Inn = [−31, 11]

v = [4, 2] Out = [19, 49] Out = [−11, 27] Out = [−33, 13]

Inn = [−9, 33] Inn = [−33, 13] Inn = [−49, 1]

Out = [−33, 17] Out = [19, 17] Out = [−11, 3] Out = [−33,−3]

Inn = [19,−47] Inn = [43,−47] Inn = [27,−67] Inn = [19,−79]

is still not good enough to decide for the truth value of the corresponding logical

formula and further bisections are required.

�

3.3.2 Basic algorithm

In accordance with Theorem 3.3.1, the necessary steps for the implementation of

an algorithm which computes an inner and an outer approximation of f ∗ is shown

in Algorithm 2. In order to simplify the algorithm presentation, the following

notation and concepts are introduced.

• Inn(Cell): Inner approximation of a Cell.

• Out(Cell): Outer approximation of a Cell.

• Inn(Strip): Inner approximation of a Strip.

• Out(Strip): Outer approximation of a Strip.

56

3.3 f ∗ algorithm

• Width(U): Function returning the size of the widest component of a U

partition.

• Tolerance(Inner, Outer): Function returning the distance between the in-

ner and the outer approximation and defined by

Tolerance(Inner, Outer) := (3.72)

max(|Inf(Outer) − Inf(Inner)|, |Sup(Outer)− Inf(Inner)|),

where Inf and Sup are the respectively the left and right bounds of the

corresponding approximations.

• Enqueue: The result of adding an element to a list.

• Dequeue: The result of extracting an element from a list.

• Compute inner and outer approximation of Cell, that is

Inn(Cell) := InnR(fR(ǔ, V)), (3.73)

Out(Cell) := OutR(fR(U , v̌)). (3.74)

• Compute inner and outer approximations of Strip, that is

Inn(Strip) :=
∧

{Cell in Strip}

Inn(Cell), (3.75)

Out(Strip) :=
∧

{Cell in Strip}

Out(Cell). (3.76)

• Compute global inner and outer approximations, that is

Inner :=
∨

{Strip in StripSet}

Inn(Strip), (3.77)

Outer :=
∨

{Strip in StripSet}

Out(Strip). (3.78)

57

3.3 f ∗ algorithm

Algorithm 2 f ∗ algorithm

Input: Continuous function f(u, v) with its associated vectors of proper and

improper intervals (U , V). Desired precision for the output (ϕ).

Output: Inner and Outer approximations of f ∗(U , V).

1: Create a Cell := (U , V) and compute its inner and outer approximations.

Create a Strip containing Cell. Compute the Strip approximations and

insert Strip into the StripSet. Compute Inner and Outer approximations.

2: while Tolerance(Inner, Outer) > ϕ do

3: Select the first Strip from the StripSet and the first Cell from the Strip.

4: if Width(V) > Width(U) from Cell then

5: Bisect V by the widest component, dequeue Cell, compute the ap-

proximations of the resulting cells and enqueue them to the Strip.

Compute inner and outer approximations of Strip.

6: else

7: Bisect U by the widest component and create two new strips, de-

queue Strip. Compute the cells’ approximations of the resulting

strips and the approximations of the strips. Add the resulting strips

to the StripSet.

8: end if

9: Compute global inner and outer approximations.

10: end while

11: return Inner and Outer.

58

3.3 f ∗ algorithm

3.3.2.1 Bounding criteria

As any branch-and-bound algorithm, bounding criterions are desired in order

to avoid the combinatorial blow-up. The following non-bisection criteria can be

considered to avoid useless bisections:

• a Cell is not bisected Inn(Cell) ⊇ Out(Strip), because no division of any

improper component V will improve the approximation.

Similarly,

• a Strip is not bisected when Out(Strip) ⊆ Inner, because no division

through any proper component U will improve the approximation. More-

over, this Strip can be eliminated from the StripSet.

3.3.2.2 Stopping criteria

Apart of the tolerance criterium, the algorithm stops when the width of all the

cell dimensions is smaller than a fixed precision (Width(X) ≤ ǫ). Moreover,

when a cell dimension reaches ǫ, this dimension is any more bisected.

When the f ∗ algorithm is used for proving first-order logic formulas, an extra

stopping criteria can be applied, which stops the algorithm when the correspond-

ing logical formula is satisfied or not. Notice that it is not necessary to achieve the

specified Tolerance(Inner, Outer) to prove the satisfaction of a logical formula.

Therefore, from the notion of modal interval inclusion test in Section 3.2.1.8, the

two following conditions can be introduced inside the While loop,

• If Outer ⊆ A Then Break,

• Else if Inner * A Then Break,

where A is the auxiliary interval (see Equation 3.48).

Test case 3.3.1. Consider the Example 3.2.11. By using the proposed basic

algorithm and after 600 seconds on a Pentium IV M, the following approximation

of f ∗ is achieved.

59

3.3 f ∗ algorithm

Inner [98,−67]

Outer [−12, 18]

Tolerance(Inner, Outer) 110

Number of bisections ≃ 2.000.000

Despite of the high computation time, it has not been possible to prove the

satisfaction of the logical formula expressed by Equation 3.50. It seems obvious

that the proposed algorithm is far from being useful. Next section introduces a set

of improvements which can drastically reduce the computation effort.

�

3.3.3 Improvements

In order to make the f ∗ algorithm suitable for practical application, a set of

strategies have been introduced. Basically, these strategies try to reduce as much

as possible the number of bisections and to obtain better local approximations

of the resulting partitions. Some of these improvements are simple algorithmic

tricks and others are based on important results of MIA.

From now on, Example 3.2.11 will be used to quantify the improvements pro-

voked by the different proposed strategies with respect to the basic algorithm.

Each strategy will be tested incrementally with respect to the others. The com-

parison criteria will be the computation time and the number of bisections re-

quired for proving the logical statement involved in Example 3.2.11.

3.3.3.1 Selection strategy

Instead of using a FIFO strategy (First In, First Out) for selecting a Strip and

a Cell from its respective containers, a more efficient strategy is proposed. It con-

sists of selecting the Strip and the Cell with the biggest Tolerance(Inn(.), Out(.)),

and which approximations match at least one of its bounds with one of the bounds

60

3.3 f ∗ algorithm

of the global approximation (Inner or Outer). Using this selection strategy, a

faster and more uniform convergence to the f ∗ value is achieved.

Test case 3.3.2. Using the new selection strategy, the result from Table 3.2 has

been obtained in 4 seconds. It can be observed that the reduction of computation

Table 3.2: Selection strategy improvement.

Inner [4.1848,−9.4659]

Outer [0.2163,−5.0535]

Tolerance(Inner, Outer) 4.4124

Number of bisections 2109

time is drastic. Moreover, it has been proven that the logical formula stated in

Example 3.2.11 is satisfied because Outer ⊆ [0, 0] is true.

�

3.3.3.2 Monotonicity study

A set of additional criteria, based on the study of the monotonicity of the objec-

tive function f have been derived. By computing the partial derivatives of the

objective function with regard to each variable and each of their incidences, it is

possible to improve the local approximations of the Cell as

Inn(Cell) := InnR(fR(UDt, V D)) (3.79)

and

Out(Cell) := OutR(fR(UD, V Dt)), (3.80)

where D and t represent, respectively, the D-transformation and t-transformation

(see Section 3.2.1.7).

Remark 3.3.2. In order to compute the inner approximation fR(UDt, V D), the

D-transformation over a variable of a U partition (Strip), requires the variable

61

3.3 f ∗ algorithm

to be totally monotonic along the U partition.

�

Moreover, it is possible to apply the following non-division criteria for a Cell

or a Strip:

• If the function is totally monotonic with regard to an improper component

of a Cell, then do not bisect the Cell through this improper component.

• If the function is totally monotonic with regard to a proper component along

the Strip, then do not bisect the Strip through this proper component.

Test case 3.3.3. Considering the previous criteria based on the monotony study

of the function, the result from Table 3.3 has been obtained in 0.01 seconds. It

Table 3.3: Monotonicity study improvement.

Inner [29,−6]

Outer [0.32,−4.9]

Tolerance(Inner, Outer) 29

Number of bisections 8

can be observed that the reduction of computation time is significant.

�

3.3.3.3 Tree-optimality study

Another important improvement is based on the tree-optimality study of the ra-

tional syntactic extension fR of the continuous function f (see Section 3.2.1.7).

If the vectors U and V are split into their uni-incident and multi-incident com-

ponents, (U (u), U (m)) and (V (u), V (m)). If f is tree-optimal over a Strip, it is

possible to introduce the improvement of computing the Cell approximations as

Inn(Cell) = InnR(fR(U (u), U (m)Dt, V D)), (3.81)

Out(Cell) = OutR(fR(UD, V (u), V (m)Dt)). (3.82)

62

3.3 f ∗ algorithm

Moreover, it is possible to apply the following non-division criterion:

• If the function is optimal with regard to a Strip, then do not bisect either

the uni-incident improper components (V (u)) of its Cells or the uni-incident

proper components (U (u)) of the Strip.

Test case 3.3.4. Considering the previous criteria based on the optimality study

of the function, the result from Table 3.4 has been obtained in less than 0.01

seconds. As the studied rational function is tree-optimal in all its domain, the

Table 3.4: Tree-optimality study improvement.

Inner [29.0,−6.0]

Outer [2.0,−6.0]

Tolerance(Inner, Outer) 27

Number of bisections 2

uni-incident improper interval variable Z is not bisected anymore. Therefore, the

bisection is carried out over 2 variables (u, v) instead of 3, which notably reduces

the computation effort.

�

Test case 3.3.5. Consider the same example but enlarging the interval U to

[0, 10]. The result from Table 3.5 is obtained in 0.01 seconds. In this case, it has

been proven that the logical formula stated in Example 3.2.11 with U = [0, 10] is

not satisfied because Inner * [0, 0] is true.

�

Remark 3.3.3. It can be observed that the computation time achieved by combin-

ing all the improving criterions is quite good with respect to the basic algorithm.

63

3.3 f ∗ algorithm

Table 3.5: Result for U = [0, 10].

Inner [−2.48,−45]

Outer [−24.43, 2.25]

Tolerance(Inner, Outer) 47

Number of bisections 9

However this improvement is subject to the kind of function which is considered.

For instance, if the studied function is strongly non-monotonic, the monotony

criterion will have a weaker effect.

�

3.3.4 Step-by-step example

Consider the logical statement from Example 3.2.11,

(∀u ∈ [0, 6]′)(∃v ∈ [2, 8]′)(∃z ∈ [−4, 9]′)f(u, v, z) = 0, (3.83)

where

f(u, v, z) = u2 + v2 + uv − 20u − 20v + 100 − 10sin(z), (3.84)

is a tree-optimal function. The f ∗ algorithm step-by-step execution for proving

that the previous logic statement is true, that is f ∗([0, 6], [8, 2], [9,−4]) ⊆ [0, 0],

is shown in Table 3.

64

3.3 f ∗ algorithm

Table 3 Step-by-step example of the f ∗ algorithm.
1: Initialization: Create Cell0([0, 6], [8, 2], [9,−4]);

2: Insert Cell0 into Strip0 and Strip0 into StripSet;

3: Inner = Inn(Strip0) = Inn(Cell0) = [107,−111];

4: Outer = Out(Strip0) = Out(Cell0) = [−85, 81];

5: Iteration 1: As Tolerance([107,−111], [−85, 81]) = 192 > 0.5;

6: Select Strip0 from StripSet and Cell0 from Strip0.

7: Bisect Cell0 into Cell1([0, 6], [8, 5], [9,−4]) and Cell2([0, 6], [5, 2], [9,−4]);

8: Inn(Cell1) = [47,−81] and Out(Cell1) = [−97.75, 77.25];

9: Inn(Cell2) = [29,−21] and Out(Cell2) = [2, 15];

10: Remove Cell0 from Strip0 and insert Cell1 and Cell2 into Strip0;

11: Inn(Strip0) = Meet([47,−81], [29,−21]) = [47,−81];

12: Out(Strip0) = Meet([−97.75, 77.25], [2, 15]) = [2, 15];

13: Inner = Join([47,−81]) = [47,−81];

14: Outer = Join([2, 15]) = [2, 15];

15: Iteration 2: As Tolerance([47,−81], [2, 15]) = 96 > 0.5, select Strip0 from StripSet.

16: As Tolerance(Cell1) = 158.25 > Tolerance(Cell2) = 36, select Cell1 from Strip0.

17: As Width([0, 6]) > Width([8, 5])

18: Bisect Strip0 into Strip1 = {Cell11([0, 3], [8, 5], [9,−4]), Cell12([0, 3], [5, 2], [9,−4])} and

Strip2 = {Cell21([3, 6], [8, 5], [9,−4]), Cell22([3, 6], [5, 2], [9,−4])};

19: Inn(Cell11) = [−1,−6] and Out(Cell11) = [−1,−6];

20: Inn(Cell12) = [29, 15] and Out(Cell12) = [29, 15];

21: Inn(Cell21) = [40.25,−92.25] and Out(Cell21) = [−69.25, 17.25];

22: Inn(Cell22) = [13.25,−32.25] and Out(Cell22) = [2,−21];

23: Inn(Strip1) = Meet([−1,−6], [29, 15]) = [29,−6];

24: Out(Strip1) = Meet([−1,−6], [29, 15]) = [29,−6];

25: Inn(Strip2) = Meet([20.25,−72.25], [−6.75,−12.25]) = [40.25,−92.25];

26: Out(Strip2) = Meet([−89.25, 37.25], [−18,−1]) = [2,−21];

27: Remove Strip0 from StripSet and insert Strip1 and Strip2 into StripSet;

28: Inner = Join([29,−6], [40.25,−92.25]) = [29,−6];

29: Outer = Join([29,−6], [2,−21]) = [2,−6];

30: As Outer = [2,−6] ⊆ [0, 0] stop execution.

65

3.3 f ∗ algorithm

Figure 3.2 shows a graphical representation of the step-by-step example from

Table 3.

Cell0

Cell1

Cell2

Cell11

Cell12

Cell21

Cell22

Strip0
Strip0

Strip1
Strip2

StripSet
StripSet

StripSet

Iteration 1 Iteration 2

Figure 3.2: f ∗ algorithm step-by-step example.

3.3.5 Complexity, termination, soundness and complete-

ness

Complexity Analysis provides a framework for understanding the cost of solving

computational problems. Due to its branch-and-bound nature, the f ∗ algorithm

presents an exponential complexity Horowitz et al. (1997). However, a serious

study of the complexity analysis of the f ∗ algorithm can not be done with existing

tools and therefore, it is beyond the scope of this thesis. Take for instance the

famous Hansen interval algorithm for Global Optimization Hansen (1992) and

notice that any complexity analysis of this algorithm is provided. The difficulty

of dealing with real number for a complexity analysis is clearly illustrated by the

scope of the conference CCA2006 ”Computability and Complexity in Analysis”

CCA2006 (2006).

Concerning the algorithm termination, for a given fixed precision ǫ represent-

ing the maximal bisected width dimension, the f ∗ algorithm finishes in less than

N iteration, where N =
∏n

i=1
Width(Xi)

ǫ
and n is the number of variables. For a

finite precision (e.g. 16 bits), the algorithm necessarily finishes because it can not

produce more that Nn
0 , where N0 is the total number of representable floating

66

Figures/fstar-steps.eps

3.4 Examples

point number by the machine. For example, for a 16 bits precision, N0 = 216.

The f ∗ algorithm can be considered sound because it provides an inner ap-

proximation of the *-semantic extension, or what is the same, all the point of the

inner approximations belongs to the solution.

The f ∗ algorithm is complete because it also provides an outer approximation

of the *-semantic extension, which guaranties that all the solution points are

included in the provided approximation.

3.4 Examples

The following examples try to give an idea of the different kind of problems which

can be tackled with the proposed methodology for solving QRCs. Moreover, some

comparisons with a state-of-the-art software Ratschan (2005) are carried out.

Example 3.4.1. Given the QRC,

(∀u ∈ [−3.1416, 3.1416]′)(∃v ∈ [−3.1416, 3.1416]′)

x2
1sin(x2)/exp(v) − cos(2v + u) = 0, (3.85)

where the free-variables are known to range on the interval x1 = [−1, 1]′ and

x2 = [−5, 5]′. Proving the satisfiaction of this QRC is equivalent to test the

truth-value of the next logical formula

(∀x1 ∈ [−1, 1]′)(∀x2 ∈ [−5, 5]′)(∀u ∈ [−3.1416, 3.1416]′)

(∃v ∈ [−3.1416, 3.1416]′) x2
1sin(x2)/exp(v) − cos(2v + u) = 0, (3.86)

which is proven to be true in less than 2 seconds on a Pentium IV 1.5 GHz. The

same QRC but with x1 = [−2, 2]′, is proven to be false in 14 seconds. It has not

67

3.4 Examples

been possible to do any comparison with the available software implementations

because they do not accept equality constraints.

�

Example 3.4.2. Given the QRC,

(∀u ∈ [−1, 1]′)(∃v ∈ [−2, 2]′)x1u − x2v
2sin(x1) > 0, (3.87)

where the free-variables are known to range on the interval x1 = [0.001, 1]′ and

x2 = [−0.3,−2]′. Proving that this QRC is true equivalent to test the truth-value

of the next logical formula

(∀x1 ∈ [0.001, 1]′)(∀x2 ∈ [−0.3,−2]′)(∀u ∈ [−1, 1]′)(∃v ∈ [−2, 2]′)

x1u − x2v
2sin(x1) > 0, (3.88)

which is proven to be true in 0.02 seconds on a Pentium IV 1.5 GHz. The same

problem is solved using RSOLVER in 2 seconds.

�

Example 3.4.3. Given the QRC,

(∃v ∈ [−0.5, 0.5]′)[−x1 + x2v + x2
1 > 0∧−x2 + (1 + pow(x1, 2))v + pow(v, 3) > 0],

(3.89)

where the free-variables are known to range on the intervals x1 = [−1,−0.5] and

x2 = [−1,−0.5]. This QRC can not be solved in its original form due to the

presence of shared existentially quantified variable (v) but, the equivalent QRC

(∃v ∈ [−0.5, 0.5]′)[min(−x1 +x2v +x2
1,−x2 +(1+ pow(x1, 2))v + pow(v, 3)) > 0],

(3.90)

68

3.5 Conclusions

can be tackled by the proposed approach. Thus, the following logical formula has

to be satisfied

(∀x1 ∈ [−1,−0.5]′)(∀x2 ∈ [−1,−0.5]′)(∃v ∈ [−0.5, 0.5]′)

min(−x1 + x2v + x2
1,−x2 + (1 + pow(x1, 2))v + pow(v, 3)) > 0, (3.91)

which is proven to be true in less than 0.01 seconds on a Pentium IV 1.5 GHz.

The same problem is solved using RSOLVER with a similar computation time.

�

Remark 3.4.1. Details on the software implementation of the f ∗ algorithm (FS-

TAR solver) and its application to the satisfaction of QRCs (QRCS solver) are

explained in Chapter 8. The sources for introducing the previous examples to the

corresponding solver are found in Appendix A.

�

3.5 Conclusions

In this chapter, a new approach for proving the satisfaction of a class of Quanti-

fied Real Constraints has been presented. The way to deal with this problem is by

means of the theory of Modal Interval Analysis (MIA), which allows to transform

the problem of verifying a first-order logic formula into the problem of proving

an interval inclusion involving modal interval computations. First, a summary of

the main concepts and results of MIA are briefly introduced, with particular em-

phasis on the *-semantic extensions of a continuous function and the *-semantic

theorem. From this two key concepts, the notion of modal interval inclusion test

is introduced, which could be seen as the modal interval counterpart of the so-

called interval inclusion test from the classic Interval Analysis theory. Second, an

algorithm for computing outer and inner approximations of the *-semantic exten-

sion of a continuous function is presented. This algorithm is the key tool for the

69

3.5 Conclusions

practical applicability of the proposed approach. Finally, some comparisons with

the available state-of-the-art software implementations shows that the proposed

approach can improve some aspects of the current techniques.

70

Chapter 4

Quantified Set Inversion Using
Modal Intervals

In this chapter, a new algorithm devoted to obtain inner and outer approximations

of the solution set of the class of quantified real constraints (QRCs) stated in

Section 2.2.2 is presented. This algorithm, based on Modal Interval Analysis and

branch-and-bound techniques, is referred to as the Quantified Set Inversion (QSI)

algorithm because, it is inspired by the well-known Set Inversion Via Interval

Analysis (SIVIA) algorithm.

4.1 Introduction

As already mentioned in Section 2.3.2, approximate methods can approximate

the solution set Σ of a QRC by means of an interval box containing (or contained

in) Σ or by means of a set of non-overlapping interval boxes, which can provide a

better approximation of Σ but, suffers from a higher computational complexity.

This section provides an algorithm based on the second approach.

4.1.1 Set Inversion Via Interval Analysis

The Set Inversion Via Interval Analysis algorithm (SIVIA) Jaulin & Walter (1993)

is an interval branch-and-bound algorithm devoted to approximate, in its original

71

4.2 Quantified Set Inversion algorithm

version, solution sets of the form

Σ = {x ∈ X ′ | f(x) ≤ 0}, (4.1)

where f is a continuous real functions from Rn to Rm. The SIVIA algorithm

combines a branch-and-bound algorithm, like the one presented in Section 2.3.2.2,

with the following two rules to determine if a box X ′ is contained in the solution

set Σ or if X ′ does not intersect with Σ.

Inside : (∀x ∈ X ′) f(x) ≤ 0 ⇔
X ′ ⊆ Σ.

(4.2)

Outside : (∀x ∈ X ′) f(x) > 0 ⇔
X ′ ∩ Σ = ∅. (4.3)

To proves the previous rules, the SIVIA algorithm uses the interval inclusion

test defined in Section 3.2.1.8. Notice that the basic SIVIA algorithm is not able

to deal with real constraints involving quantified variables like the one stated in

Section 2.2.2.

Next section presents an algorithm inspired on the SIVIA algorithm, which

uses the notion of modal interval inclusion test introduced in Section 3.2.1.8. This

algorithm is referred to as the Quantified Set Inversion (QSI) algorithm.

Remark 4.1.1. The QSI algorithm is an original contribution of the author of

this thesis and together with some applications, it has been presented in different

international conferences Calm et al. (2006); Flórez et al. (2005); Herrero et al.

(2004a,b, 2005a) and in a journal Herrero et al. (2005b).

�

4.2 Quantified Set Inversion algorithm

The QSI algorithm is devoted to approximate the solution set of the class of

QRCs stated in Section 2.2.2, which most general definition is expressed by

Σ = {x ∈ X ′ | (∀u ∈ U ′)(∃v ∈ U ′)f(x, u, v) = 0}, (4.4)

72

4.2 Quantified Set Inversion algorithm

where f is real function from Rn to R.

Remark 4.2.1. It is easy to see that any instance of the problem defined in

Section 2.2.2 can be reduced to Equation 4.4 (see Section 3.1).

�

The QSI algorithm is based on a branch-and-bound algorithm over the free-

variables vector (see Section 2.3.2.2), and the two following bounding rules, which

are used to determine if a resulting box from the bisection procedure is included

in the solution set X ′ ⊆ Σ (InsideQSI rule), or if X ′ does not intersect with the

solution set X ′ ∩ Σ = ∅ (OutsideQSI rule).

The first bounding rule is

InsideQSI : (∀x ∈ X ′)(∀u ∈ U ′)(∃v ∈ V ′) f(x, u, v) = 0 ⇔
X ′ ⊆ Σ.

(4.5)

where X ′ is any box resulting from the bisection procedure.

Notice that the InsideQSI rule is a first-order logic formula that can be tested

by means of the modal interval inclusion test introduced in Section 3.2. Thus,

Outer(f ∗(X, U , V)) ⊆ [0, 0] ⇒ f ∗(X , U , V) ⊆ [0, 0]

⇔ (∀x ∈ X ′)(∀u ∈ U ′)(∃v ∈ V ′) f(x, u, v) = 0

⇔ X ′ ⊆ Σ, (4.6)

where X, U are proper intervals, V in an improper interval, Outer(f ∗(X, U , V))

is an outer approximation of the *-semantic extension of the continuous function

f .

The second bounding rule is

OutsideQSI : X ′ ∩ Σ = ∅ ⇔
(∀x ∈ X ′)¬((∀u ∈ U ′)(∃v ∈ V ′) f(x, u, v) = 0)) ⇔
(∀x ∈ X ′)(∃u ∈ U ′)(∀v ∈ V ′) f(x, u, v) 6= 0). (4.7)

Again, the OutsideQSI rule is a first-order logic formula which can be proved

by means of the modal interval inclusion test through the following sequence of

73

4.2 Quantified Set Inversion algorithm

implications.

Inner(f ∗(X, U , V)) * [0, 0] ⇒ f ∗(X, U , V) * [0, 0]

⇔ ¬((∀u ∈ U ′)(∃v ∈ V ′)(∃x ∈ X ′) f(x, u, v) = 0)

⇔ (∃u ∈ U ′)(∀v ∈ V ′)(∀x ∈ X ′)f(x, u, v) 6= 0

⇒ (∀x ∈ X ′)(∃u ∈ U ′)(∀v ∈ V ′)f(x, u, v) 6= 0

⇔ X ′ ∩ Σ = ∅, (4.8)

with U a proper interval, X, V improper intervals, Inner(f ∗(X, U , V)) an inner

approximation of the the *-semantic extension of the continuous function f .

Finally, if any of the bounding rules is accomplished, the box X ′ is considered

as undefined and is bisected. Algorithm 4 shows the QSI algorithm in pseudocode

form.

74

4.2 Quantified Set Inversion algorithm

Algorithm 4 QSI algorithm
Input: φ and ǫ.

Output: ΣInn and ΣOut of the solution set of φ.

1: List:={X ′}; ΣInn := {∅}; △Σ := {∅};

2: while List not empty do

3: Dequeue X ′ from List;

4: if InsideQSI is true for X ′ then

5: Enqueue X ′ to ΣInn;

6: else if OutsideQSI is true for X ′ then

7: Do nothing;

8: else if Width(X ′) < ǫ then

9: Enqueue X ′ to △Σ;

10: else

11: Bisect X ′ and enqueue the resulting boxes to List;

12: end if

13: end while

14: Enqueue ΣInn and △Σ to ΣOut;

where

• List: List of boxes.

• ΣInn: List of boxes such that ΣInn ⊆ Σ.

• ΣOut: List of boxes such that Σ ⊆ ΣOut.

• Enqueue: The result of adding a box to a list.

• Dequeue: The result of extracting a box from a list.

• Width(X ′): Function returning the widest relative width of X ′ with respect to

the original box,

• ǫ: A real value representing the desired precision.

75

4.2 Quantified Set Inversion algorithm

Example 4.2.1. Given the QRC

(∀u ∈ [−1, 1]′)(∃v ∈ [−2, 2]′)[x1u − x2v
2sin(x1) > 0], (4.9)

where (x1, x2) are free-variables ranging over the domains ([−10, 10]′, [−10, 10]′).

Figure 4.1 shows a graphical representation of the solution provided by the QSI

algorithm for an ǫ = 0.05 in 40 seconds on a Pentium IV M 1.5 GHz, where, red

boxes are included in the solution set, blue boxes are outside of the solution set

and green boxes are undefined.

�

x1

x2

−10 0 10

−10

0

10

Figure 4.1: Graphical output for Example 4.2.1.

Example 4.2.2. Given the QRC,

(∃v ∈ [−0.5, 0.5]′)[−x1 + x2v + x2
1 > 0∧−x2 + (1 + pow(x1, 2))v + pow(v, 3) > 0],

(4.10)

which free-variables are known to range on the box (x1, x2) = ([−10, 10]′, [−10, 10]′).

This QRC can not be solved by the QSI algorithm in its original form due to the

76

Figures/qsi-example.eps

4.2 Quantified Set Inversion algorithm

presence of a shared existentially quantified variable (v) but, the equivalent QRC

(∃v ∈ [−0.5, 0.5]′)

[min(−x1 + x2v + x2
1,−x2 + (1 + pow(x1, 2))v + pow(v, 3)) > 0],(4.11)

can be tackled. Figure 4.2 shows a graphical representation of the solution provided

by the QSI algorithm for an ǫ = 0.05 in 49 seconds on a Pentium IV M 1.5 GHz.

�

x1

x2

−10 0 10

−10

0

10

Figure 4.2: Graphical output for Example 4.2.2.

Remark 4.2.2. The same complexity, termination, soundness and completeness

properties of the SIVIA algorithm Jaulin & Walter (1993), can be applied to the

QSI algorithm. Thus, the algorithm presents an exponential complexity because

of its branch-and-bound nature, it guaranties termination for non ill-posed prob-

lems and a finite precision, is sound because, it provides a continuous guaranteed

inner approximation the solution set and is complete because, it provides an outer

77

Figures/vectorial.eps

4.3 Application examples

approximation of the solution set.

�

4.3 Application examples

This section is devoted to present some application examples of the QSI algorithm.

In order to quantify the performance of the proposed algorithm, comparisons with

some state-of-the-art techniques are carried out. Two criterions have been taken

into account for the comparisons: the computation time and the volume of the

resulting undefined area. However, it is very difficult to carry out a reliable com-

parison and only an approximative information can be provided. For instance,

the computation time can be significantly different depending on the computer

performance and also on the formal expression of the involved predicates. Con-

cerning the undefined area criterion, most of the times the comparison can only

be done visually through the graphical output of the solvers.

4.3.1 Robust Control

Example 1: Consider the example from Dorato (2000). In particular, consider

the plant with the transfer function

G(s, p) =
s2 + s + (3 + 3p)

s3 + (1 + p)s2 + (1 + p)s + (0.5 + p2 + 3p)
(4.12)

and the compensator by

C(s, q) = q, (4.13)

where p is an uncertain plant parameter, p ∈ [0, 1]′, q is the design parameter. The

problem is to determine the admissible design parameter set Σ that guarantees

robust closed-loop stability. From the Liénard-Chipart stability test one can show

analytically that there is a circular instability region in the p-q space given by

(p − 0.5)2 + (q − 0.5) ≤ ρ2, (4.14)

where ρ = 1/4.

78

4.3 Application examples

The closed-loop characteristic polynomial for this system is given by

D(s, p, q) = s3 + (1 + p + q)s2 + (1 + p + q)s + (0.5 + ρ2 + 3p + 3q + 2pq). (4.15)

The Liénard-Chipart conditions applied to this polynomial require, with ρ = 1/4

and fractions cleared,

v1(p, q) = 9 + 48p + 48 ∗ q + 32 ∗ p ∗ q ≥ 0,

v2(p, q) = 1 + p + q ≥ 0,

v3(p, q) = −16p − 16q + 16p2 + 16q2 + 7 ≥ 0. (4.16)

The solution set Σ for robust closed-loop stability is then given by

Σ = {q ∈ [−3, 3]|(∀p ∈ [0, 1])[v1(p, q) ≥ 0 ∧ v2(p, q) ≥ 0 ∧ v3(p, q) ≥ 0}. (4.17)

The result obtained with the QSI algorithm for an ǫ = 0.02 in 0.4 seconds on a

Pentium IV M 1.5GHz is shown in Figure 4.3.

p

aux

−3 0 3

−1

0.5

1

Figure 4.3: Approximation of Σ for robust closed-loop stability.

Comparisons: The same problem is resolved by RSOLVER Ratschan (2005)

in 3 seconds and in 9 seconds by Proj2D solver Dao (2005) on a Pentium IV M

1.5GHz. In Figure 4.4, the graphical outputs of both solvers are shown.

79

Figures/Robust1SS.eps

4.3 Application examples

RSOLVER Proj2D solver

Figure 4.4: RSOLVER and Proj2D comparisons for robust closed-loop stability.

Remark 4.3.1. Notice that the obtained figure with the Proj2D solver is differ-

ent. The reason is that the Proj2D solver can not deal with universal quantified

parameters and it has to be dealt as a free-variable. Nevertheless, the solution for

the design parameter q (horizontal axis) is equivalent.

�

Example 2: Consider the example from Jaulin et al. (2002) consisting of char-

acterizing the set of all parameter vectors c of a parametric linear PI controller

Γ (c) that robustly stabilize an uncertain linear time-invariant model of the pro-

cess represented in Figure 4.5. This problem is equivalent to characterize the

following set

Σc = {c ∈ C′ | (∀p ∈ P′)f(c,p) < 0} , (4.18)

where f(c,p) is obtained by the Routh criterion,

f (c,p) , min

















p2 + y1

p2p3 + 1 + y2

p2p
2
3 + p3 −

p2(p2
3+c2p1p2

3)
p2p3+1

+ y3

p2
3 + c2p1p

2
3 −

(p2p3+1)2(c1p1p2
3)

(p2p2
3+p3)(p2p3+1)−p2(p2

3+c2p1p2
3)

+ y4

c1p1p
2
3 + y5

















(4.19)

80

Figures/Robust1comparisons.eps

4.3 Application examples

u y+

-

c s c2 1+

(s
2

p s p+ +3 3
2

p s2 + 1)()

p p1 3
2

s

Figure 4.5: Uncertain linear time-invariant model

For C′ = [0, 1]′2 and P′ = [0.9, 1.1]′3 and ǫ = 0.02, the result shown in Figure

4.6 is obtained by QSI algorithm in 45 seconds on a Pentium IV M 1.5GHz.

c1

c2

0 0.5 1

0

0.5

1

Figure 4.6: Approximation of Σc obtained with QSI algorithm.

Comparisons: Significant differences can be observed with the tested solvers

(Projection algorithm Jaulin et al. (2002), RSOLVER Ratschan (2005), AQCS

Ratschan (2002a)). Table 4.1 shows the computation times in seconds for each

solver and for the same ǫ = 0.02, together with the type of computer which have

been used to execute the test. In Figure 4.7, the graphical comparisons can be

observed. Notice that the solution provided by the QSI algorithm is clearly better

than the one provided by the other techniques.

81

Figures/robustPI.eps
Figures/RobustSS.eps

4.3 Application examples

Table 4.1: Computation time comparisons

Solver Time Computer

Projection Algorithm 470 Pentium III

RSOLVER > 300 Web Server (?)

AQCS > 100 Pentium IV 2GHz

QSI 45 Pentium IV M 1.5GHz

Projection Algorithm

RSOLVER

AQCS

QSI

Figure 4.7: Comparisons with Projection Algorithm, RSOLVER, AQCS solver.

82

Figures/comparisonsRobust.eps

4.3 Application examples

4.3.2 Set projection

The QSI algorithm can be used to characterize the projection of a set defined by

nonlinear real predicates satisfying certain conditions.

Let Σ be the subset of Rn defined by:

Σ = {(x, v) ∈ (X ′, V ′)|f(x, v) = 0}. (4.20)

The projection set of Σ over x is defined by

Σx = {x ∈ X ′|(∃v ∈ V ′)f (x, v) = 0}. (4.21)

Figure 4.8 is a graphical illustration of a generic projection of Σ on x.

x

v

Σ

Σx

Figure 4.8: Projection of Σ on the x-plane.

For example, consider the set representing a paraboloid

Σ = {(x1, x2, x3) ∈ [−2, 2]′3| x2
1 − x2

2 + x3 = 0}. (4.22)

The projection set on the x1x2-plane is defined by

Σx1x2 = {(x1, x2) ∈ [−2, 2]′2| (∃x3 ∈ [−1, 1]′)x2
1 − x2

2 + x3 = 0}. (4.23)

Figure 4.9 shows the approximated projection on the x1x2-plane obtained by the

QSI algorithm in 2.5 seconds on a Pentium 1.5 M GHz for an ǫ = 0.01. Where,

83

Figures/projection.eps

4.3 Application examples

x1

x2

−1 0 1

−1

0

1

Figure 4.9: Projection of a paraboloid on the x1x2-plane.

the red area corresponds to an inner approximation of the paraboloid projection,

the blue area is outside of the projection and the green area is undefined.

No comparisons have been carried out because the existing solvers do not

support equality predicates.

4.3.2.1 Application to computer graphics

From the notion of set projection, the QSI algorithm, together with other interval

based techniques like, geometric transformations (e.g. rotations, translation) and

ray tracing for giving realistic appearance, is currently being applied in the do-

main of Computer Graphics for the visualization of 3D surfaces given by implicit

functions. This work is currently being developed by Flórez in his PhD thesis

Flórez et al. (2005).

Example 4.3.1. Consider the 3 surfaces given by the following implicit functions.

• Crosscap: (4x2(x2 + y2 + z2 + z) + y2(y2 + z2 − 1) = 0,

• Hiperbolic paraboloid: x2 − y2 + z = 0,

84

Figures/paraboloid.eps

4.3 Application examples

• Quartic: (4(x4 + (y2 + z2)2) + 17x2(y2 + z2)− 20(x2 + y2 + z2) + 17) = 0,

where the variables x, y and z range in the domain [−1, 1]′3.

By applying the QSI based algorithm for a precision of ǫ = 1−3, the projections

of Figure 4.10 (see Flórez et al. (2005)) are obtained with a computation time of

33, 37 and 213 seconds respectively.

�

Figure 4.10: Projection of a) crosscap, b) hiperbolic paraboloid and c) quartic

surfaces.

It is important to remark that the obtained results are in general better, in

terms of the quality of the image (e.g. less aliasing effect) and in terms of the

computation time, with respect to other classical algorithms for implicit surface

visualization.

4.3.3 Bounded-error Parameter Identification

Bounded-error Parameter Identification consists of finding approximations of the

solution set for the parameters of a given model that are consistent with the

input/output observations. The parameter identification problem treated in this

section is a well known problem of the literature Jaulin & Walter (1999), which

can be defined by two main characteristics:

85

Figures/surfaces.eps

4.3 Application examples

i. The process model: A nonlinear process which depends on the variable t

and two parameters x1 and x2 is used. The theoretical model of the process

is,

f(x, t) = 20exp(−x1t) − 8exp(−x2t). (4.24)

ii. The restrictions to be satisfied: The restrictions imposed by the system

are,

(f(x, ti) ∈ Y ′
i), (ti ∈ T ′

i), (∀i ∈ 1, . . . , 10), (4.25)

where Y ′
i corresponds to the uncertainty associated to the measure yi and

T ′
i represents the uncertainty associated to the measurement time ti.

Table 4.2 shows the uncertainty associated to y and t represented by intervals.

The consistent parameter set is defined by

Σ = {x ∈ X ′ | (∃t1 ∈ T ′
1)(∃y1 ∈ Y ′

1)f(x, t1) − y1 = 0

, . ,

(∃t10 ∈ T ′
10)(∃y10 ∈ Y ′

10)f(x, t10) − y10 = 0}. (4.26)

Grouping the existential quantifiers and expressing it under a vectorial form

Σ = {x ∈ X ′|(∃t ∈ T′)(∃y ∈ Y′)f(x, t) − y = 0}, (4.27)

where f(x, t) = (f(x, t1), . . . , f(x, t10)), t = (t1, . . . , t10) and y = (y1, . . . , y10).

For one sample i (i = {1, . . . , 10}), the corresponding InsideQSI rule is

(∀x1 ∈ X ′
1)(∀x2 ∈ X ′

2)(∃ti ∈ T ′
i)(∃yi ∈ Y ′

i)f(x, ti) − yi = 0, (4.28)

which can be proven by the following inclusion test

Outer(f ∗
i (X1, X2, Ti, Yi)) ⊆ [0, 0], (4.29)

with X1 and X2 proper intervals and Ti and Yi improper intervals. And the

corresponding OutsideQSI rule is

(∀x1 ∈ X ′
1)(∀x2 ∈ X ′

2)(∀ti ∈ T ′
i)(∀yi ∈ Y ′

i)f(x, ti) − yi 6= 0, (4.30)

86

4.3 Application examples

Table 4.2: Uncertainty associated to t and y.

i Ti Yi

1 [-0.25,1.75]’ [2.7,12.1]’

2 [.5,2.5]’ [1.04,7.14]’

3 [1.25,3.25]’ [-0.13,3.61]’

4 [2,4]’ [-0.95,1.15]’

5 [5,7]’ [-4.85,-0.29]’

6 [8,10]’ [-5.06,-0.36]’

7 [12,14]’ [-4.1,-0.04]’

8 [16,18]’ [-3.16,0.3]’

9 [20,22]’ [-2.5,0.51]’

10 [24,26]’ [-2,0.67]’

87

4.3 Application examples

which is implied by the following exclusion test

Inner(f ∗
i (X1, X2, Ti, Yi)) * [0, 0], (4.31)

with X1, X2, Ti and Yi improper intervals. Then, Σ is obtained by intersecting

the resulting Σi for each sample time.

Σ = Σi ∩ · · · ∩ Σ10. (4.32)

For X = [0, 1.2]′ × [0, 0.5]′ and a precision of ǫ = 0.01, the QSI algorithm gener-

ates, in 40 seconds on a Pentium IV M 1.5GHz, the paving of Figure 4.11.

x1

x2

0 0.6 1.2

0

0.25

0.5

Figure 4.11: QSI output for the bounded-error parameter identification problem.

4.3.3.1 Comparisons

Comparisons with the algorithms Extended-SIVIA Jaulin & Walter (1999) and

Proj2D Dao (2005), show no significant differences in terms of computation time

and undefined area with respect to the QSI algorithm. However, with respect to

RSOLVER Ratschan (2005), the differences are important, and after 5 minutes of

computation, the resulting undefined area is much bigger than the one obtained

with the other solvers. Table 4.3 shows the computation times in seconds for each

88

Figures/IdentExists.eps

4.3 Application examples

solver together with the computer which have been used to carry out the test. In

Figure 4.12, the solver outputs can be graphically observed.

Table 4.3: Computation time comparisons.

Solver Time Computer

Extended-SIVIA 38 Pentium I 133MHz

Proj2D 30 Pentium IV M 1.5GHz

RSOLVER > 300 Web Server (?)

QSI 40 Pentium IV M 1.5GHz

Extended-SIVIA Proj2D

RSOLVER QSI

Figure 4.12: Extended-SIVIA, Proj2D and RSOLVER comparisons.

89

Figures/comparisons.eps

4.3 Application examples

Remark 4.3.2. Notice that the Extended-SIVIA, RSOLVER and Proj2D solvers,

cannot directly solve the problem from Equation 4.27 because of the presence of

equality predicates. However, in this special case, it is possible to use the fol-

lowing transformation in order to convert the equality predicates into inequality

predicates.

Σ = {x ∈ X ′|(∃t ∈ T′)(∃y ∈ Y′)y(x, t) − y = 0} ⇔

{x ∈ X ′|(∃t ∈ T′)(∃y ∈ Y′)y(x, t) = y} ⇔

{x ∈ X ′|(∃t ∈ T′)[y(x, t) ≥ Inf(Y′) ∧ y(x, t) ≤ Sup(Y′)]}. (4.33)

�

4.3.4 Aircraft control

Consider the motivation example from Section 1.1 referring to the equilibrium

of an aircraft. The aerodynamic moments acting over the aircraft TL, TM and

TN are usually given in tabular form together with some interpolation method.

In Stevens & Lewis (1993) these tables are listed for an F-16 aircraft and the

following are scaled polynomial approximations of the corresponding functions

90

4.3 Application examples

TL(α, β, u1, u3) = −q1β − q2αβ + q3a
2β + q4β

3 + u1(−q5 − q6α +

q7α
2 − q8α

3 + q9β
2 + q10αβ2) + u3(q11 − q12α +

q13α
2 − q14α

3 + q15α
4 − q16β

2 − q17αβ2 +

q18α
2β2 + q19β

4), (4.34)

TM(α, u2) = −q20 − q21u2 + u2
2 + q22u

3
2 + q23α − q24u2α +

q25u
2
2α − q26α

2 + q27α
2 + q28α

3, (4.35)

TN(α, β, u1, u3) = q29β − q30αβ − q31α
2β + q32α

3β − q33β
3 +

q34αβ3 + u1(−q35 + q36α − q37α
2 + q38β

2 +

q39α
3 − q40αβ2) + u3(−q41 + qα −

q42α
2 + q43β

2 + q44α
3 + q45αβ2 − q46α

4 −
q47α

2β2 − q48β
4), (4.36)

where {q1, · · · , q48} are polynomial coefficients, which in the present work are

considered uncertain in contrast with the original work.

Its solution is expressed by

Σ = {(α, β)|(∀q1 ∈ Q′
1) · · · (∀q48 ∈ Q′

48)(∃u1 ∈ U ′
1)(∃u2 ∈ U ′

2)(∃u3 ∈ U ′
3)

(TL(α, β, u1, u3, q1, · · · , q19) = 0 ∧ TM (α, u2, q20, · · · , q28) = 0 ∧
TN (α, β, u1, u3, q29, · · · , q48) = 0).} (4.37)

Consider the problem stated above of finding the admissible set of orienta-

tion (α, β) of a F-16 aircraft for which the control-surface system (u1, u2, u3) can

keep the aircraft stabilized. Let us suppose an initial search domain (α, β) ∈
([0, 1]′, [−1, 1]′) and the uncertain coefficients of Table 4.4.

Notice that the equality predicates TL and TN from Equation 4.37 share the

existential variables u1 and u3. However, doing some simple algebraic substitu-

tions, which consist of isolating u3 in TL and replacing it in TN , it is possible to

transform the two predicates into a single predicate, which yields the equivalent

expression

91

4.3 Application examples

Table 4.4: Aircraft uncertain coefficients

q1 q2 q3 q4 q5 q6 q7

38 ∓ 0.1 170 ∓ 0.1 148 ∓ 0.1 4 ∓ 0.1 52 ∓ 0.1 2 ∓ 0.1 114 ∓ 0.1

q8 q9 q10 q11 q12 q13 q14

79 ∓ 0.1 7 ∓ 0.1 14 ∓ 0.1 14 ∓ 0.1 10 ∓ 0.1 37 ∓ 0.1 48 ∓ 0.1

q15 q16 q17 q18 q19 q20 q21

8 ∓ 0.1 13 ∓ 0.1 13 ∓ 0.1 20 ∓ 0.1 11 ∓ 0.1 12 ∓ 0.1 125 ∓ 0.1

q22 q23 q24 q25 q26 q27 q28

6 ∓ 0.1 95 ∓ 0.1 21 ∓ 0.1 17 ∓ 0.1 20 ∓ 0.1 81 ∓ 0.1 139 ∓ 0.1

q29 q30 q31 q32 q33 q34 q34

139 ∓ 0.1 112 ∓ 0.1 388 ∓ 0.1 215 ∓ 0.1 38 ∓ 0.1 185 ∓ 0.1 11 ∓ 0.1

q35 q36 q37 q38 q39 q40 q41

35 ∓ 0.1 22 ∓ 0.1 5 ∓ 0.1 10 ∓ 0.1 17 ∓ 0.1 44 ∓ 0.1 3 ∓ 0.1

q42 q43 q44 q45 q46 q47 q48

63 ∓ 0.1 34 ∓ 0.1 142 ∓ 0.1 63 ∓ 0.1 54 ∓ 0.1 69 ∓ 0.1 26 ∓ 0.1

92

4.4 Conclusions

Σ = {α × β|(∀q1 ∈ Q′
1) · · · (∀q48 ∈ Q′

48)(∃u2 ∈ U ′
2)(∃u3 ∈ U ′

3)

(TS(α, β, u3, q1, · · · , q19) = 0 ∧ TM(α, u2, q20, · · · , q28) = 0}, (4.38)

where

TS(α, β, u1) = q29β − q30αβ − q31α
2β + q32α

3β − q33β
3 +

q34αβ3 + u1(−q35 + q36α − q37α
2 + q38β

2 +

q39α
3 − q40αβ2) + (−(−q1β − q2αβ + q3a

2β + q4β
3 +

u1(−q5 − q6α + q7α
2 − q8α

3 + q9β
2 + q10αβ2))

(q11 − q12α + q13α
2 − q14α

3 + q15α
4 − q16β

2 − q17αβ2 +

q18α
2β2 + q19β

4))(−q41 + qα − q42α
2 + q43β

2 + q44α
3 +

q45αβ2 − q46α
4 − q47α

2β2 − q48β
4). (4.39)

The QSI algorithm generates in 1 hour on a Pentium IV 1.5GHz, and ǫ = 0.1,

the paving of Figure 4.13, where the red area corresponds to an inner approxima-

tion of the solution set Σ, the blue region corresponds to an inner approximation

of the non solution set and the green region is undefined.

Remark 4.3.3. Details on the software implementation of the QSI algorithm

(QSI solver) are explained in Chapter 8. The sources for introducing the previous

examples to the QSI solver are found in Appendix A.

�

4.4 Conclusions

In this chapter, a new algorithm for computing inner and outer approximations

of the solution set of a class of QRCs is presented. This algorithm, referred

to as the QSI algorithm, is based on branch-and-bound techniques and Modal

Interval Analysis. Several examples are provided together with some comparisons

with the state-of-the-art techniques. From these comparisons, it is concluded

93

4.4 Conclusions

α

β

0 0.5 1

−1

0

1

Figure 4.13: QSI output for the aircraft equilibrium problem.

that the proposed approach improves some aspects of the existing solvers. For

example, the QSI algorithm can naturally deal with equality predicates while

the the other software implementations do not support this type of predicates.

Moreover, the obtained results shows that the proposed approach can improve

the computation time in some cases. This improvement is obviously related to the

nature of problem and it can not be said that the proposed approach is better

in general. For instance, with problems involving more than 3 free-variables,

methods based on contractors (e.g. Interval Constraint Propagation) can be more

efficient than the QSI algorithm. Thus, it can be concluded that the proposed

technique contributes to the resolution of QRCs but, it could be improved by

combining it with other techniques like Interval Constraint Propagation.

94

Figures/SolutionAircraft2.eps

Chapter 5

Continuous Minimax
Optimization Using Modal
Intervals

This chapter is not devoted to the resolution of quantified real constraints but to

the resolution of continuous minimax optimization problems using Modal Interval

Analysis. This chapter can be seen as a collateral result of the implementation of

the f ∗ algorithm presented in Section 3.3. More specifically, two versions of an

algorithm for solving continuous minimax optimization problems are presented:

One, which is devoted to solving unconstrained minimax optimization problems,

and another, devoted to solve constrained minimax optimization problems.

5.1 Introduction

Many problems of practical importance can be described by mathematical models

defining minimax values of certain functions. The Chebyshev Approximation

problem, finding optimal strategies in Game Theory and minimizing the effect of

tolerances in engineering design are classic examples. While Global Optimization

has received much attention from the interval community Basso (1985); Hansen

(1992); Nickel (1986) and Interval Methods are now known as a very powerful

approach to dealing with this problem, only a few research studies have addressed

minimax problems Jaulin (2001a); Jaulin et al. (2001); Sotiropoulos (2004); Zuche

95

5.1 Introduction

et al. (1997); Zuhe et al. (1990). The purpose of this chapter is to present a new

interval approach to solving the following continuous minimax problem Demyanov

& Malozemov (1990):

f(u∗, v∗) = min
u∈U

′

h(u), (5.1)

with

h(u) = max
v∈V

′

f(u, v) subject to g(u, v) ≤ 0.

where,

• f(u, v) is a Rn to R continuous function defined on the domain X ′ =

(U ′, V ′) ⊆ Rnu × Rnv ,

• (u∗, v∗) ∈ (U ′, V ′) is a minimax point,

• f(u∗, v∗) is the minimax value of the function on the minimax point,

• g(u, v) ≤ 0 is a set of inequality constraints involving (u, v).

Definition 5.1.1. Let f(x) be a Rn to R continuous function defined in an

interval X ′ = (U ′, V ′) ∈ I(Rn). A point x∗
minimax = (u∗, v∗) ∈ (U ′, V ′) is a

minimax point of the problem defined by Equation 5.1 iff

f(u∗, v∗) = min
u∈U

′

max
v∈V

′

f(u, v) (5.2)

and

g(u∗, v∗) ≤ 0. (5.3)

�

The problem of constrained minimax optimization consists on finding the

minimax point x∗
minimax together with the minimax value f(x∗

minimax) of f in X ′

such that the involved constraints are satisfied.

96

5.1 Introduction

Example 5.1.1. Given the constrained minimax optimization problem

min
u∈[−1,1]′

h(u), (5.4)

where

h(u) = max
u∈[−1,1]′

(v − 1)2 + u2, (5.5)

subject to the constraint u2 + v2 − 1 ≤ 0. Let us isolate v from the previous

constraint

v = −
√

1 − u2 (5.6)

then,

h(u) = (−
√

1 − u2 − 1)2 + u2, (5.7)

and

min
u∈[−1,1]′

(−
√

1 − u2 − 1)2 + u2. (5.8)

Thus, we have u∗ = 1 or u∗ = −1, which produces

f(u∗, v∗) = (−1)2 + 12 = 2, (5.9)

and consequently

v∗ = −
√

1 − u2 = 0. (5.10)

Obviously, not all the minimax optimization problems can be analytically solved

as easily as the previous problem.

�

The proposed approach for solving the stated problem in Equation 5.1 is the

theory of Modal Interval Analysis (MIA) Gardeñes et al. (2001). This selection

is motivated by the fact that the problem of finding the minimax value of a

continuous function is in the core of MIA.

97

5.2 Minimax optimization using modal intervals

Remark 5.1.1. The proposed approach to solve continuous minimax optimization

problems using Modal Interval Analysis is an original contributions of this thesis.

This work has been presented in an international conference Sainz et al. (2004)

and a related paper has been submitted for publication in a journal Sainz et al.

(2006a).

�

5.2 Minimax optimization using modal intervals

As already mentioned in Chapter 3, a key concept of MIA is the f ∗ extension of

a continuous function f to a modal interval vector X defined by

f ∗(X) :=
∨

u∈U
′

∧

v∈V
′

[f(u, v), f(u, v)] = (5.11)

= [min
u∈U

′

max
v∈V

′

f(u, v),max
u∈U

′

min
v∈V

′

f(u, v)]

where x = (u, v) is the component-splitting corresponding to the proper and

improper components of X = (U , V), and ∨ and ∧ indicate the interval lattice

operators meet and join.

From Equation 5.11, it can be observed that the f ∗ extension is defined as a

continuous minimax problem together with a maximin problem. This is the key

property which will be used to solve the problem stated in Equation 5.1.

The following assertion can be established,

f(u∗, v∗) = min
u∈U

′

max
v∈V

′

f(u, v) = Inf(f ∗(U , V)). (5.12)

where U is a proper interval, V is an improper interval and Inf is an interval

operator which returns the left bound of an interval.

Example 5.2.1. Given the continuous minimax optimization problem,

f(u∗, v∗) = min
u∈[−5,5]′

max
v∈[−6,6]′

f(u, v), (5.13)

98

5.2 Minimax optimization using modal intervals

where f(u, v) = u + v. Computing the f ∗ extension of f on X = ([−5, 5], [6,−6])

can be done by simply replacing the real variables by their associated intervals and

the real operators by their intervals counterparts,

f ∗(X) = [−5, 5] + [6,−6] = [1,−1]. (5.14)

Then, taking the left bound of the obtained result, the minimax value is obtained,

f(x∗
1, x

∗
2) = min

x1∈[−5,5]′
max

x2∈[−6,6]′
f(x1, x2) = Inf(f ∗(X)) = 1. (5.15)

Moreover, it is easy to see that the minimax value is achieved at the minimax

point (x∗
1, x

∗
2) = (−5, 6).

�

As mentioned in Section 3.2.1.6, the f ∗ extension is not attainable in general

by means of basic arithmetic modal interval computations and usually requires

more sophisticated techniques to compute it, or simply, to approximate it.

5.2.1 The monotonic case

When certain conditions of monotonicity are accomplished, the so-called D-

transformation (see Section 3.2.1.7) can be applied to exactly compute, with-

out considering the roundings, the f ∗ extension. More specifically, when all the

variables are totally monotonic, the following assertion can be established,

f(u∗, v∗) = min
u∈U

′

max
v∈V

′

f(u, v) = Inf(OutR(fR(UD, V D))). (5.16)

where fR is an interpretable rational interval extension (see Section 3.2.1.7) and

OutR is an outer rounding considering a floating-point arithmetic.

Moreover, the minimax points can be obtained by applying the following rule,

u∗
i =

{

Inf(U ′
i) if ∂f/∂ui ≥ 0,

Sup(U ′
i) if ∂f/∂ui ≤ 0,

(5.17)

99

5.2 Minimax optimization using modal intervals

and

v∗
i =

{

Sup(V ′
i) if ∂f/∂vi ≥ 0,

Inf(V ′
i) if ∂f/∂vi ≤ 0,

(5.18)

where Inf and Sup are the interval operators which respectively return the left

bound and the right bound of an interval, and i is the subindex of the variable

inside its corresponding vector u or v.

Example 5.2.2. Given the continuous minimax optimization problem,

f(u∗, v∗) = min
u∈[0,1]′

max
v∈[2,8]′

f(u, v), (5.19)

where,

f(u, v) = u2 + v2 + 2uv − 20u − 20v + 100, (5.20)

or

f(u, v) = u2
1 + v2

1 + 2u2v2 − 20u3 − 20v3 + 100, (5.21)

where the subindexes represent the different multi-incidences. Then, it is possi-

ble to approximate f ∗([0, 1], [8, 2]) by means of an interpretable rational interval

function fR([0, 1], [8, 2]). First of all, the monotony for each variable and for

each one of its incidences, considered as different variables, has to be computed:

∂f(u, v)/∂u = 2u + 2v − 20 ∈ 2 ∗ [0, 1]′ + 2 ∗ [2, 8]′ − 20 = [−16,−2]′ ≤ 0,

∂f(u, v)/∂u1 = 2u ∈ 2 ∗ [0, 1]′ = [0, 2]′ ≥ 0,

∂f(u, v)/∂u2 = 2v ∈ 2 ∗ [2, 8]′ = [4, 16]′ ≥ 0,

∂f(u, v)/∂u3 = −20 ≤ 0,

∂f(u, v)/∂v = 2v + 2u − 20 ∈ 2 ∗ [2, 8]′ + 2 ∗ [0, 1]′ − 20 = [−16,−2]′ ≤ 0,

∂f(u, v)/∂v1 = 2v ∈ [4, 16]′ ≥ 0,

∂f(u, v)/∂v2 = 2u ∈ [0, 2]′ ≥ 0,

∂f(u, v)/∂v3 = −20 ≤ 0. (5.22)

100

5.2 Minimax optimization using modal intervals

Notice that for computing the monotony, the range of the variables is taken

into account. As f is totally monotonic with respect to the multi-incident variables

(u, v), the D-transformation (see Section 3.2.1.7) can be applied. So,

fR(UD, V D) = (5.23)

Dual(U1)
2 + Dual(V1)

2 + 2 ∗ Dual(U2) ∗ Dual(V2) − 20 ∗ U3 −

20 ∗ V3 + 100 =

[1, 0]2 + [2, 8]2 + 2 ∗ [1, 0] ∗ [2, 8] − 20 ∗ [0, 1] − 20 ∗ [8, 2] + 100 = [49, 4],

which is an optimal calculus for f ∗(X). Therefore,

f(u∗, v∗) = min
u∈[0,1]′

max
v∈[2,8]′

f(u, v) = Inf(f ∗(X)) = 49, (5.24)

Thus, by applying Equation 5.17, the minimax point is (u∗, v∗) = (1, 2).

�

5.2.2 The non-monotonic case

When the monotonicity conditions are not fulfilled, only approximations of the

minimax value can be achieved with rational computations. Therefore, it can be

said that the minimax value is encompassed by,

Inf(InnR(fR(UDt, V D))) ≤ min
u∈U

′

max
v∈V

′

f(u, v) ≤ Inf(OutR(fR(UD, V Dt))),

(5.25)

where D and t are the corresponding D-transformation and t-transformation (see

Section 3.2.1.7) and InnR and OutR are respectively inner and outer roundings

of a digital scale. In this case, the rule for finding the minimax point stated in

Equation 5.17, can only be applied over the variables which are totally monotonic.

Example 5.2.3. Given the Example 5.2.2 but changing the interval U to [0, 6]. In

this case, none of the variables are totally monotonic, therefore the D-transformation

101

5.2 Minimax optimization using modal intervals

can not be applied and instead of that, the t-transformation is applied. Thus, it is

possible to obtain an outer approximation of f ∗ by applying the t-transformations

on the variable V . The following calculus is obtained,

fR(U , V t) =

U2
1 + Point(V1)

2 + 2 ∗ U2 ∗ Point(V2) − 20 ∗ U3 −

20 ∗ Point(V3) + 100 =

[0, 6]2 + [5, 5]2 + 2 ∗ [0, 6] ∗ [5, 5] − 20 ∗ [0, 6] −

20 ∗ [5, 5] + 100 = [−95, 121], (5.26)

where Point is an operator returning a point-wise interval (e.g. the center of

the interval). Notice that the obtained result is an overestimated outer approxi-

mation of the exact result f ∗(X) = [9, 4]. Then, it is possible obtain an inner

approximation for f ∗(X) by applying the t-transformation on the variable U .

fR(U t, V) =

Point(U1)
2 + V 2

1 + 2 ∗ Point(U2) ∗ V2 − 20 ∗ Point(U3) −

20 ∗ V3 + 100 =

[3, 3]2 + [8, 2]2 + 2 ∗ [3, 3] ∗ [8, 2] − 20 ∗ [3, 3] −

20 ∗ [8, 2] + 100 = [121,−95], (5.27)

which is an under-estimated approximation of the exact result f ∗(X) = [9, 4].

Thus, it can be said that the minimax value is encompassed between the left

bounds of the two obtained approximations,

−95 ≤ min
u∈[0,6]′

max
v∈[2,8]′

f(u, v) ≤ 121, (5.28)

102

5.3 Algorithm

and the minimax point lies on the box X ′ = ([0, 6]′, [2, 8]′), what is not very useful

from a practical point of view.

�

It has been shown that computing the minimax value of a continuous function

can be done through the computation of its f ∗ extension. However, good approx-

imations of the minimax value can only be achieved under certain conditions of

monotony. When these monotony conditions are not satisfied, an algorithm is

provided in the next section to reduce the overestimation phenomenon.

5.3 Algorithm

As mentioned before, computing the minimax value of a continuous function f

can be seen as computing (or approximating) its f ∗ extension. However, interval

evaluations can cause an important overestimation due to possible multiple oc-

currences of a variable. In this section, an extension of the f ∗ algorithm presented

in Section 3.3, which allows to approximate the minimax value of a continuous

function f , is described. Moreover, a minimax optimization problem normally

requires the minimax point, thus, the proposed algorithm also returns a list of

boxes (interval vectors) which are candidate to contain the minimax point(s).

Firstly, the unconstrained version of the minimax algorithm is presented and in

a second part, the constrained version is explained.

5.3.1 Unconstrained version

The unconstrained version of the minimax is similar to the f ∗ algorithm presented

in Section 3.3. However, as only the minimax bound of the f ∗ computation is

required, some slight modifications are introduced to focus on the computation

of this bound. These modifications consist of the following criteria.

Stopping criteria: The stopping condition is substituted by the next one

While {Minimax(Inner, Outer) < ϕ}, (5.29)

103

5.3 Algorithm

where Minimax is a function defined by

Minimax(Inner, Outer) := |Inf(Outer) − Inf(Inner)|, (5.30)

where Inf is the left bound of the corresponding approximations.

Remark 5.3.1. The stopping condition concerning the satisfaction of the logical

formula is nonsense in the minimax optimization algorithm.

�

Bounding criteria: The bounding criteria is substituted by

• a Cell is not bisected Inf(Inn(Cell)) ≤ Inf(Out(Strip)), because no divi-

sion of any improper component V will improve the minimax approxima-

tion.

Similarly,

• a Strip is not bisected when Inf(Out(Strip)) ≥ Inf(Inner), because no

division through any proper component U will improve the minimax ap-

proximation. Moreover, this Strip can be eliminated from the StripSet.

Selection strategy: The selection strategy is slightly modified and consists

of selecting the Strip and the Cell with the biggest Minimax(Inn(.), Out(.)),

and which left bound approximations Inf(Inn(.)) and Inf(Out(.))) match at

least one of these bounds with one of the left bounds of the global approximation

Inf(Inner) or Inf(Outer).

Return value: Instead of returning the inner and outer approximations of the

f ∗, which is nonsense, the minimax optimization algorithm returns the minimax

value Minimax(Inner, Outer).

104

5.3 Algorithm

Minimax point selection: As mentioned before, a minimax optimization

problem normally requires the minimax point. Algorithm 5 takes the StripSet

resulting from applying the minimax algorithm and returns a list of boxes which

are candidate to contain the minimax point(s).

Algorithm 5 SelectMinimaxBoxes
Input: Minimax approximation (Minimax(Inner,Outer)) and StripSet.

Output: List of candidate boxes to contain the minimax point (MinimaxList).

1: for Cell in Strip in StripSet do

2: Compute Cell approximations

Inn(Cell) = InnR(fR(UDt, Prop(V)Dt)),

Out(Cell) = OutR(fR(UD,Prop(V)D)).

3: if Minimax(Cell) > Minimax(Inner,Outer) then

4: Eliminate Cell.

5: else

6: Enqueue Cell to MinimaxList.

7: end if

8: end for

9: return MinimaxList.

5.3.1.1 Examples

Several examples, some of them taken from the literature and others invented,

have been solved to show the viability of the proposed algorithm. All these tests

have been executed on a Pentium IV M 1.6 GHz. Notice that no comparison with

other techniques has been carried out. The reason of this lack of comparisons

is the absence of validated numerical software for solving continuous minimax

optimizations problems.

105

5.3 Algorithm

Example 5.3.1. Given the same minimax optimization problem from Example

5.2.3.

f(u∗, v∗) = min
u∈[0,1]′

max
v∈[2,8]′

f(u, v), (5.31)

where,

f(u, v) = u2 + v2 + 2uv − 20u − 20v + 100. (5.32)

Applying the proposed algorithm with ϕ = 10−6, an ǫ = 10−6, the following result

is obtained in 0.01 seconds.

• Minimax : [8.999999,9.000001]’.

• MinimaxList : {([4.999511, 5.000107]’,[1.999999, 2.000001]’);

([4.999877, 5.003174]’,[7.999999, 8.000000]’)}.

�

Example 5.3.2. Given the minimax optimization problem taken from Demyanov

& Malozemov (1990)

min
z∈[−π,π]′

max
y∈[−π,π]′)

f(y, z), (5.33)

where

f(y, z) = (cos y + Σm
k=1 cos((k + 1)y + zk))

2 (5.34)

For m = 1, ϕ = 10−3 and ǫ = 10−3, the following result is obtained in 0.8

seconds.

• Minimax : [3.098207, 3.098209]’.

• MinimaxList : {([-1.570800, -1.570800]’,[6.336914e-01, 6.367676e-01]’);

([-1.570794, -1.570794]’,[2.505542, 2.508618]’); ([1.570794, 1.570794]’,[-

2.508618, -2.505542]’);

106

5.3 Algorithm

([1.570800, 1.570800]’,[-6.367676e-01, -6.336914e-01]’)}.

�

Example 5.3.3. Given the minimax optimization problem inspired from Hansen

(1992)

min
x1∈[−1,2]′

max
(x2,x3)∈([−1,1]′,[−1,1]′))

f(x1, x2, x3), (5.35)

where,

f(x1, x2, x3) =

10
∑

k=1

(e−0.1kx1 − e−0.1kx2 − (e−0.1k − e−k)x3)
2 (5.36)

For ϕ = 10−3, ǫ = 10−3 and a computation time of 9.5 seconds, the following

result is obtained.

• Minimax : [13.800542,13.801386]’.

• MinimaxList : {([-0.343384, -0.343292]’,[-1,-0.999999]’,[0.999999,1]’);

([1.859375,2]’,[0.999999,1.]’[-0.375000,-0.335937]’)}.

�

5.3.2 Constrained version

The problem of finding the minimax values when, besides domain restrictions

of the interval bounds, there exist other restrictions defined by inequality con-

straints, cannot be solved with the already presented unconstrained minimax

optimization algorithm. However, by introducing some modifications to it, it is

possible to tackle with the constrained case. For this purpose, each cell of the

partition have to be evaluated with the involved restrictions, then, if the cell is

inconsistent, it must be eliminated, while in other cases, it must be kept until

subsequent divisions.

107

5.3 Algorithm

Let Σ be the feasible region and let (U ′
j, V

′
kj

) be a sub-box of the initial

interval domain X ′ = (U ′, V ′). The following propositions must be tested,

(∀u ∈ U ′
j)(∀v ∈ V ′

kj
) g(u, v) ≤ 0, (5.37)

using the following modal interval inclusions,

gR(U j , V kj
) ⊆ (−∞, 0], (5.38)

where g ∈ Rn → Rm is a vector of continuous real functions and U j and V kj

are proper intervals. If all the inclusions are true, the cell (U j, V kj
) is consistent

and belongs to the partition named Π (1). If one or more of the next inclusions

gRi(U j, V kj
) ⊆ [0,∞)(i = 1, . . . , n), (5.39)

is true, the cell is inconsistent, it belongs to the partition named Π (2) and must

be eliminated. Otherwise, the cell belongs to the partition named Π (3) and it is

kept.

Let ΣU be the projection of the feasible region Σ on U and let Σ ǔ be the

intersection of Σ with u = ǔ. For a partition Π l (with l = (1), (3)), let (Π l
pΠ

l
i)

be its split on its proper and improper components, let r(l) be the number of

elements of Π l
p and let s

(l)
j be the number of improper boxes corresponding to

the strip j in the partition Π l
i. Figure 5.1 illustrates the feasible region in two

dimensions.

Let us define f ∗(Σ) by

f ∗(Σ) = [min
u∈Σ ′

U

max
v∈Σ ′

u

f(u, v), max
u∈Σ ′

U

min
v∈Σ ′

u

f(u, v)]. (5.40)

As

min
u∈Π

(1)+(3)′

U

max
v∈Π

(1)′
u

f(u, v) ≤ min
u∈Σ ′

U

max
v∈Σ ′

u

f(u, v) ≤ min
u∈Π

(1)′

U

max
v∈Π

(1)+(3)′
u

f(u, v), (5.41)

max
u∈Π

(1)′

U

min
v∈Π

(1)+(3)′
u

f(u, v) ≤ max
u∈Σ ′

U

min
v∈Σ ′

u

f(u, v) ≤ max
u∈Π

(1)+(3)′

U

min
v∈Π

(1)′
u

f(u, v), (5.42)

108

5.3 Algorithm

(2)

(1)

(3)

V

U

Σ

Figure 5.1: Feasibility region and partitions.

then

f ∗(Σ) ⊇ f ∗(Π (1)
p ,Π

(1)+(3)
i) ⊇

∨

j∈{1(1),...,r(1)}

∧

kj∈{1
(1)+(3)
j ,...,s

(1)+(3)
j }

InnR(fR(ǔj, Vkj
) (5.43)

f ∗(Σ) ⊆ f ∗(Π (1)+(3)
p ,Π

(1)
i) ⊆

(
∨

j∈{1(1),...,r(1)}

∧

kj∈{1
(1))
j ,...,s

(1)
j }

OutR(fR(ǔj ,Vkj
))) ∨ E (5.44)

where

E =
∨

j∈{1(3),...,r(3)}−{1(1),...,r(1)}

∨

kj∈{1
(3)
j ,...,s

(3)
j }

OutR(fR(Ǔj, Dual(Vkj
))). (5.45)

In accordance with the previous reasoning, the necessary additional (or sub-

stitutive) steps for solving the constrained version of the minimax optimization

problem, with respect to the unconstrained version, are summarized with the

following steps.

• For each Cell, define its consistency, that is, if (Cell in Π (1)), (Cell in Π (2))

or (Cell in Π (3)).

109

Figures/Cfig6.eps

5.3 Algorithm

• Compute inner and outer approximations of the resulting Cell partitions,

as follows.

If (Cell ∈ Π (1)) then,

Inn(Cell(1)) = InnR(fR(UDt, V D)), (5.46)

Out(Cell(1)) = OutR(fR(UD, V Dt)). (5.47)

Else, if (Cell ∈ Π (3)) then,

Inn(Cell(3)) = InnR(fR(UDt, V D)), (5.48)

Out(Cell(3)) = OutR(fR(UD, Dual(V)D)). (5.49)

It is important to remark that, in order to compute the inner approxima-

tion InnR(fR(UDt, V D)), the D-transformation over a variable of a U

partition (Strip), requires the variable to be totally monotonic along the U

partition.

• Compute inner and outer approximations of Strip, that is

Inn(Strip) =
∧

{Cell(1,3) in Strip}

Inn(Cell(1,3)), (5.50)

Out(Strip) =
∧

{Cell(1) in Strip}

Out(Cell(1)). (5.51)

where Cell(1,3) is a Cell belonging to the partitions Π (1) or Π (3).

• Compute global inner and outer approximations, that is

Inner =
∨

{Strip(1) in StripSet}

Inn(Strip(1)), (5.52)

Outer =
∨

{Strip(1,3) in StripSet}

Out(Strip(1,3)). (5.53)

where Strip(1) is a Strip containing at leat one Cell(1) and Strip(3) is a

Strip not containing any Cell(1) and containing at leat one Cell(3).

• Concerning the bisection strategy, do not bisect a Cell or a Strip partition

only if the objective function is totally monotonic with respect to its com-

ponents (U , V) and it is consistent with respect to the involved constraints.

110

5.3 Algorithm

Remark 5.3.2. The complexity, completeness, termination and soundness prop-

erties of the minimax optimization algorithm (both versions) are the same than

for the f ∗ algorithm from Section 3.3.

�

5.3.2.1 Examples

Example 5.3.4. Consider the constrained minimax optimization problem from

Example 5.1.1. For ϕ = 10−5 and ǫ = 10−5, the following result is obtained in 10

seconds.

• Minimax : [1.997236e+00, 2.003907e+00]’.

• MinimaxList : {([-1.000977e+00, -9.999962e-01]’,[-1.956940e-03, 1.381874e-

03]’); ([9.999962e-01, 1.000977e+00]’,[-1.956940e-03, 1.381874e-03]’)}.

�

Example 5.3.5. Given the constrained minimax optimization problem

min
x1∈[0,6]′

h(x1), (5.54)

where

h(x1) = max
x2∈[2,8]′

x2
1 + x2

2 + 2x1x2 − 20x1 − 20x2 + 100, (5.55)

subject to the constraints

g1(x1, x2) = (x1 − 5)2 + (y − 3)2 − 4 ≥ 0, (5.56)

g2(x1, x2) = (x1 − 5)2 + (y − 3)2 − 16 ≤ 0. (5.57)

For ϕ = 10−5 and ǫ = 10−5, the following result is obtained in 0.17 seconds.

111

5.3 Algorithm

• Minimax : [1.10255, 1.10256]’.

• MinimaxList : {([4.14290, 4.14293]’,[4.80701, 4.80710]’);

([4.14290, 4.14293]’,[6.90709, 6.90714]’)}.

�

Example 5.3.6. Given the constrained continuous minimax optimization prob-

lem inspired from Demyanov & Malozemov (1990)

min
x∈[−3.14,3.14]′

h(x), (5.58)

where

h(x) = max
y∈[−3.14,3.14]′

(cos(y) + cos(2y + x))2, (5.59)

subject to the constraints

g1(x, y) = y − x(x + 6.28) ≤ 0, (5.60)

g2(x, y) = y − x(x − 6.28) ≤ 0 (5.61)

For ǫ = 10−6 and ϕ = 10−6, the following result is obtained in 0.3 seconds.

• Minimax : [8.586377e-03, 8.586666e-03]’.

• MinimaxList : {([-0.4370827,-0.4370812]’; [-2.553836;-2.553830]’);

([-0.4370827,-0.4370812]’; [-3.140000,-2.747500]’)}.

�

Remark 5.3.3. Details on the software implementation of the Minimax algorithm

(the MINIMAX solver) are explained in Chapter 8. The sources for introducing

the previous examples to the MINIMAX solver are found in Appendix A.

�

112

5.4 Conclusions

5.4 Conclusions

In this chapter, a new approach to deal with unconstrained and constrained con-

tinuous minimax optimization problems, and based on Modal Interval Analysis,

has been introduced. The proposed methodology is based on the computation

of the so-called *-semantic extension of a continuous function. Modal Interval

Analysis allows to compute this extension efficiently and to obtain guaranteed

results. In some simple cases, the results are obtained with simple modal interval

arithmetic computations. Nevertheless, in many cases, a branch-and-bound al-

gorithm is required to obtain tight results. This algorithm and some illustrative

examples have been presented.

113

Chapter 6

Application to Fault Detection

In this chapter, the problem of detecting faults in dynamic systems using Modal

Interval Analysis, originally presented in the thesis of Armengol Armengol (1999),

is stated as a Quantified Real Constraint (QRC) (see Chapter 2). This approach

is based on the principle of analytical redundancy and takes uncertainty into

account by means of interval parameters and interval measurements. For its res-

olution, techniques presented in Chapter 3 are applied. My main contribution in

fault detection have been: A new formulation of the original approach proposed

by Armengol, a complete software implementation of the fault detection tech-

nique and the validation of the approach with academic and industrial processes.

For instance, this tool has been applied to the detection of faults in different pro-

cesses in the context of the European project CHEM CHEM Consortium (2000).

Moreover, several papers presenting the obtained results have been published

in different conferences and journals Armengol et al. (2003, 2004); Sainz et al.

(2002c).

6.1 Introduction

A fault is a malfunction in a system and may have consequences like econom-

ical losses derived from lower efficiency of the system or danger for the people

or the environment. Many different techniques have been developed in the re-

cent years which intend to detect and diagnose faults. These techniques can be

classified in different ways Balakrishnan & Honavar (1998); Venkatasubramanian

114

6.2 Analytical redundancy

et al. (2003). For instance, one distinction can be made between model-based

techniques and techniques based on other kinds of knowledge like heuristic ap-

proaches, statistical approaches, learning systems, artificial neural networks, etc.

Two research communities work on model-based techniques: the FDI (Fault De-

tection and Isolation) community, formed by researchers with a background in

control systems engineering, and the DX (Principles of Diagnosis) community,

formed by researchers with a background in computer science and intelligent

systems. The collaboration between these two communities in order to develop

more powerful tools for fault detection and diagnosis has been one of the goals

of the European Network of Excellence on Model Based Systems and Qualita-

tive Reasoning (MONET) MONET (2006), particularly of the Bridge task group.

Among the techniques developed by the FDI research community, there are clas-

sical techniques like state observers, parity equations and parameter estimation

Blanke et al. (2003); Patton et al. (2000). A method to detect faults consists in

comparing the behaviour of an actual system and a reference system, given by

an analytical model. This principle is called analytical redundancy.

6.2 Analytical redundancy

Given a system model, representing an actual system or a part of it, described

by the following nonlinear discrete-time equation,

y(k) = f (y(k − 1), u(k − 1), p), (6.1)

where y(k) ∈ Rny and y(k − 1) ∈ Rny is the output of the system at instant k

and k − 1, f is a vector of continuous functions, u(k − 1) ∈ Rnu is a vector of

inputs at instant k − 1 and p ∈ Rnp is a vector of parameters.

An analytical redundancy relation (ARR) is an algebraic constraint deduced

from the system model which contains only measured variables. An ARR for

Equation 6.1 is

ym(k) = yr(k), (6.2)

where ym(k) is the measured output of the system at instant k and yr(k) is an

analytical output of the system at instant k and computed as

yr(k) := f (ym(k − 1), u(k − 1), p), (6.3)

115

6.2 Analytical redundancy

An ARR is used to check the consistency of the observations with respect to

the system model. Therefore, a fault is detected when

yr(k) 6= ym(k), (6.4)

or equivalently

r = yr(k) − ym(k) 6= 0, (6.5)

where r is called the residual of the ARR.

The main problem is that the measured output ym(k) and the computed

output yr(k) are seldom the same because the model is, by definition, inaccurate,

i.e. it is an approximate representation of the system. This is the consequence of

the uncertainties of the system and the procedure of systems’ modelling.

Therefore, the uncertainty of the system has to be considered. It can be taken

into account when the comparison between the behaviour of the actual system

and the one of its model is performed. In this case, a fault is indicated when the

difference is larger than a threshold:

r = |yr(k) − ym(k)| > ǫ, (6.6)

An important difficulty now is to determine the size of the threshold ǫ. If it

is too small, faults are indicated even when they do not exist. These are false

alarms. On the other side, if the threshold is too large, the amount of missed

alarms increases.

In order to overcome this problem, the uncertainties of the system can be

taken into account during the modelling procedure by means of interval param-

eters and interval measurements, which can be obtained by replacing the real

variables (measurements and parameters) and real arithmetic operators by its

interval counterparts. Then, applying the principle of analytical redundancy, but

taking into account the uncertainty, a fault is detected when

(∀ym(k) ∈ Y ′
m(k))(∀yr(k) ∈ Y ′

r(k))yr(k) − ym(k) 6= 0. (6.7)

On the other hand, meanwhile the previous logical statement is not true, nothing

can be assured.

116

6.2 Analytical redundancy

6.2.1 Consistency test

Firstly, consider the consistent case, which means that the output of the model

is coherent with the measured output. This assertion is expressed with the next

logical statement,

(∃ym(k) ∈ Y ′
m(k))(∃yr(k) ∈ Y ′

r(k))yr(k) − ym(k) = 0, (6.8)

or equivalently,

(∃ym(k) ∈ Y ′
m(k))(∃ym(k − 1) ∈ Y ′

m(k − 1))(∃um(k − 1) ∈ U ′
m(k − 1))

(∃p ∈ P ′)f(ym(k − 1), u(k − 1), p) − ym(k) = 0, (6.9)

which can be proved using the modal interval inclusion test defined in Section

3.2.1.8. Thus, the next implication is true

Outer(g∗(Y m(k), Y m(k − 1), Um(k − 1), P)) ⊆ [0, 0] ⇒
(∃ym(k) ∈ Y ′

m(k))(∃ym(k − 1) ∈ Y ′
m(k − 1))(∃um(k − 1) ∈ U ′

m(k − 1))

(∃p ∈ P ′)g(ym(k), ym(k − 1), um(k − 1), p) = 0, (6.10)

where Y m(k), Y m(k−1), Um(k−1) and P are improper intervals and Outer(g∗)

is an outer approximation of the *-semantic extension of the continuous function

g(ym(k), ym(k − 1), um(k − 1), p) = f(ym(k − 1), u(k − 1), p) − ym(k). (6.11)

Remark 6.2.1. Notice that proving that the previous consistency test is true does
not mean that any fault exists. The only information that can be extracted from
this test is that any fault can be detected with the considered uncertainty.
�

Referring to the inconsistent case, which means that the output of the model

is not coherent with the measured output. This assertion is through the next

logical statement,

¬((∃ym(k) ∈ Y ′
m(k))(∃yr(k) ∈ Y ′

r(k))yr(k) − ym(k) = 0) ⇔
(∀ym(k) ∈ Y ′

m(k))(∀yr(k) ∈ Y ′
r(k))yr(k) − ym(k) 6= 0, (6.12)

117

6.2 Analytical redundancy

which can also be proven using the modal interval inclusion test as follows,

[0, 0] * Outer(g∗(Y m(k), Y m(k − 1), Um(k − 1), P)) ⇒
(∀ym(k) ∈ Y ′

m(k))(∀ym(k − 1) ∈ Y ′
m(k − 1))(∀um(k − 1) ∈ U ′

m(k − 1))

(∀p ∈ P ′)g(ym(k), ym(k − 1), um(k − 1), p) 6= 0, (6.13)

where Y m(k), Y m(k − 1), Um(k − 1) and P are proper intervals.

Therefore, the problem of fault detection has been stated as a QRC satisfac-

tion problem, which can be solved using tools provided in Chapter 3.

Remark 6.2.2. Notice that the logic statement involved in Equation 6.13 only
involves the universal quantifier ∀. For this reason, it can be solved using the clas-
sic Interval Analysis theory Moore (1966) and the use of Modal Interval Analysis
is not strictly required. However, by using the proposed technique in Chapter 3, it
is to tackle with the dependency problem of the interval variables in an efficient
and elegant way. It is also interesting to remark that proving the consistency
test of Equation 6.12 could be done by means of interval constraint propagation
Benhamou & Older (1997) as proposed by Stancu in Stancu & Quevedo (2005).
�

6.2.2 Window consistency

The window consistency allows to determine the consistency of a set of system

measurements (inputs and output) between two sampling times with respect to

the reference behavior in the same time interval. The distance between the two

considered sampling times is called window length and is denoted by w. Then,

for a window length w, a system is faulty if

(∀ym(k) ∈ Y ′
m(k))(∀yr(k) ∈ Y ′

r(k|k − w)) yr(k|k − w) − ym(k) 6= 0, (6.14)

where,

yr(k|k − w) = f(ym(k − w), u(k − 1), . . . , u(k − w), p), (6.15)

is the corresponding reference behavior model for a window length of w.

Notice that, for different window lengths, it can happen that with w1 the fault

is not detected but with w2 the fault is detected. In this case, it can be assured

118

6.2 Analytical redundancy

that there is a fault because detecting with one window length is a sufficient

condition to do so. Consequently, there is a fault if

(∀ym(k) ∈ Y ′
m(k))(∀yr(k) ∈ Y ′

r(k)) yr(k) − ym(k) 6= 0 (6.16)

∨ . . . ∨
(∀ym(k) ∈ Y ′

m(k))(∀yr(k|k − w) ∈ Y ′
r(k|k − w)) yr(k|k − w) − ym(k) 6= 0.

The fault detection results obtained using several window lengths are obvi-

ously better, (i.e. there are less missed alarms), than the ones obtained using a

single window length, whatever is the length in the latter case. However, deciding

which is the best window length still remains an open problem. This choice not

only depends on the dynamics of the system but also on the type of fault to be

detected.

Example 6.2.1. Given the ARR corresponding to a discretized first-order model,

yr(k) = aym(k − 1) + bu(k − 1), (6.17)

where a and b are model parameters. The corresponding ARRs for the set of
window lengths w = {1, 2, 5},

Length = 1 : yr(k) = aym(k − 1) + bu(k − 1), (6.18)

Length = 2 : yr(k) = a(aym(k − 2) + bu(k − 2)) + bu(k − 1), (6.19)

Length = 5 : yr(k) = a(a(a(a(aym(k − 5) + bu(k − 5)) +

bu(k − 4)) + bu(k − 3)) + bu(k − 2)) + bu(k − 1). (6.20)

119

6.2 Analytical redundancy

Thus, the corresponding QRC is

Length = 1 : (∀ym(k) ∈ Y ′
m(k))(∀ym(k − 1) ∈ Y ′

m(k − 1)) (6.21)

(∀u(k − 1) ∈ U ′(k − 1))(∀a ∈ A′)(∀b ∈ B′)

aym(k − 1) + bu(k − 1) − ym(k) 6= 0

∨
Length = 2 : (∀ym(k) ∈ Y ′

m(k))(∀ym(k − 1) ∈ Y ′
m(k − 1)) (6.22)

(∀u(k − 1) ∈ U ′(k − 1))(∀u(k − 2) ∈ U ′(k − 2))(∀a ∈ A′)

(∀b ∈ B′) a(aym(k − 2) + bu(k − 2)) + bu(k − 1) − ym(k) 6= 0

∨
Length = 5 : (∀ym(k) ∈ Y ′

m(k))(∀ym(k − 1) ∈ Y ′
m(k − 1)) (6.23)

(∀u(k − 1) ∈ U ′(k − 1))(∀u(k − 2) ∈ U ′(k − 2)))

(∀u(k − 3) ∈ U ′(k − 3))(∀u(k − 4) ∈ U ′(k − 4)

(∀u(k − 5) ∈ U ′(k − 5))(∀a ∈ A′)(∀b ∈ B′)

a(a(a(a(aym(k − 5) + bu(k − 5)) + bu(k − 4)) +

bu(k − 3)) + bu(k − 2)) + bu(k − 1) − ym(k) 6= 0.

Therefore, proving that the previous QRC is true is equivalent to say that a fault
is detected.
�

6.2.3 Fault detection algorithm

The proposed fault detection algorithm requires from the user: a process model,

the process data, the uncertainty associated to the process model and process

data, the window lengths {w1, . . . wn} and a time (TimeOut) to limit the compu-

tations carried out between two sample times. First of all, the algorithm builds

the corresponding ARRs for each window length {gw1 = 0, . . . ,gwn
= 0}. As the

necessary computing effort to deal with a larger ARR gwn
= 0 is bigger than for

a shorter ARR gw1 = 0, when wn > w1, the algorithm starts, at each time point,

using the shortest window length and stops when a fault is detected, thus sav-

ing computing effort and minimizing the rate of missed alarms. For each ARR,

the f ∗ algorithm (see Section 3.3) is called to approximate the corresponding

*-extension (g∗
wi

). The f ∗ execution stops when [0, 0] * Outer(g∗
wi

), because a

fault is detected or when the ARR is consistent, that is [0, 0] ⊆ Inner(g∗
wi

). The

algorithm returns ”Faulty” if at least one of the ARRs is proven to be inconsistent

120

6.2 Analytical redundancy

and returns ”Perhaps” if none of the ARRs is proven to be inconsistent. This

algorithm is summarized in Algorithm 6.

Algorithm 6 Fault detection algorithm

Input: Process model, process data, uncertainties, window lengths {w1, . . . wn}
and Timeout.

Output: Faulty.
1: Fault=perhaps,
2: Build the ARRs for each window length {gw1 = 0, . . .gwn

= 0}.
3: while Available process data do
4: Read process data and assign it to the corresponding interval ARRs.
5: for i=1 to i=n do
6: Approximate g∗

wi
till [0, 0] * Outer(g∗

wi
) or [0, 0] ⊆ Inner(g∗

wi
) or Time-

out reached.
7: if [0, 0] * Outer(g∗

wi
) then

8: Faulty=true.
9: Break.

10: end if
11: end for
12: end while
13: return Faulty.

Remark 6.2.3. Notice that the Algorithm 6 does not report a fault when it is
inconclusive because the timeout is reached. This is because the proposed approach
prioritizes to avoid false alarms to missed alarms.
�

6.2.4 Graphical output

The proposed fault detection algorithm has been implemented under a software

tool called the SQUALTRACK solver (Semi-Qualitative Tracking) in the context

of the CHEM project CHEM Consortium (2000) and is currently being applied

to academic and actual processes Armengol et al. (2003, 2004). For more details

on its implementations see Chapter 8.

In order to provide a more friendly output to the final user, the SQUAL-

TRACK solver plots to the graphical user interface (GUI) the computed inner

and an outer approximations of the model output together with the measured

output of the system. As all these signals are represented by intervals, by simply

121

6.3 Applications

observing if the outer approximation intersects or not with the measured output,

it is possible to determine if the process is behaving normally or faulty.

Figure 6.1 shows the graphical output of the SQUALTRACK solver. The

upper graph shows the approximations (inner in green and outer in red) for the

output variable and the corresponding measurement (in black). Note that often

inner and outer approximations are not graphically distinguishable because they

are very close. The green bars graph in the middle indicates the longest window

length that has been used at each time step. Finally, the lower graph shows a

red bar when a fault is detected.

Figure 6.1: SQUALTRACK solver graphical output.

6.3 Applications

This section is devoted to describe some applications within the European project

CHEM CHEM Consortium (2000). The aim of this project was to develop and

implement an advanced Decision Support System (DSS) for process monitoring,

data and event analysis, and operation support in industrial processes. The sys-

tem was intended to be a synergistic integration of innovative software tools,

which would improve the safety, product quality and operation reliability as well

122

Figures/sqtgui.eps

6.3 Applications

as reduce the economic losses due to faulty states, mainly in chemical and petro-

chemical processes. Among these applications there are the flexible chemical

pilot plant PROCEL, owned by the Universitat Politècnica de Catalunya and sit-

uated in Barcelona (Catalonia, Spain), the steam generator pilot plant owned by

the Laboratoire d’Automatique et d’Informatique Industrielle de Lille (France)

and the FCC (Fluid Catalytic Cracking) plant owned by the French Institute of

Petroleum (IFP) and situated in Lyon (France).

6.3.1 PROCEL pilot plant

PROCEL is constituted by three tank reactors, three heat exchangers and the

necessary pumps and valves to allow changes in the configuration. The equipment

of PROCEL is fully connected and the associated instrumentation allows the

change of configuration by software. Figure 6.2 shows a flowsheet of PROCEL.

6.3.1.1 Testing scenarios

Three faulty scenarios that have been considered affect to reactor 1:

1. An additional input flow. The fault consists in opening the valve V E2

during a time period to simulate an additional input flow which is not

taken into account, i.e. a perturbation.

2. A leakage. Valve V E4 is opened during a time period.

3. Resistor 1 (R1) shutdown.

For scenarios 1 and 2 a model obtained from the mass balance of reactor 1

is enough. The monitored variable is the volume of reactor 1. For scenario 3

a model obtained from the energy balance is needed. The monitored variable

is the temperature of reactor 1. In both models, the values of the variables

(measurements and parameters) are considered uncertain and this uncertainty is

represented with intervals.

123

6.3 Applications

SS

S

S

S S

S

S

SSSSS
SSSS

Load

T1

F1

F2

S Cooling
water

L3

T2

T6 T8

T7

T5

T4

L2L1

T3

VE1

VE4

EV1

VE2

VE3

VE8 VE7

R1 Tank R2

VC1

VC2

VE15

VE5

VE16

VE12
VE11

VE13

VE14
VE9

VE10

B1
B2

VE6

Figure 6.2: Flowsheet of PROCEL.

124

Figures/procel.eps

6.3 Applications

6.3.1.2 Mass balance model

The volume variation inside the reactor 1 is:

dvR1

dt
= (f1 + f3) − f4 (6.24)

where dR1 is the volume of liquid in the reactor, f1 and f3 are the volumetric

input flows and f4 is the volumetric output flow. It is assumed that there is

a relative error of 3 % for vR1 and 5 % for f1, f3 and f4. The corresponding

discrete-time equation is

vR1(k) = vR1(k − 1) + (f1(k) + f3(k) − f4(k))ts, (6.25)

where ts is the sample time.

As vR1 is directly measurable, the analytical redundancy relation consists of

comparing the computed value of vR1 with its measurement.

vR1(k) − vR1m
(k) = 0, (6.26)

where vR1m
(k) is the measured volume.

6.3.1.3 Energy balance model

The temperature variation inside the reactor 1 is:

dtR1

dt
=

f1 (t1 − tR1)

vR1
+

f2 (t2 − tR1)

vR1
+ . . .

+
f3 (t3 − tR1)

vR1

+
pH − gR1 (tR1 − tamb)

ρR1cpR1vR1

(6.27)

where tR1 is the temperature of the liquid in the reactor, hence the output of

this subsystem. The inputs are the flows f1, f2 and f3, and the corresponding

temperatures t1, t2 and t3. It is assumed that there is a relative error of 5 % for

tR1, t1, t2 and t3.

The parameters of the model are: the volume of liquid vR1, the ambient tem-

perature tamb (tamb ∈ [18, 20]′ + 273.15 K), the heater power pH (with a relative

error of 10 %), the thermal conductance of the wall gR1 (around 0.01 W
K

), the

125

6.3 Applications

density of the liquid ρR1 (water) and its specific heat cpR1.

The corresponding discrete-time equation is:

tR1(k) = tR1(k − 1) + . . .

+ts

(

1

vR1(k)
(f1(k) (t1(k) − tR1(k − 1)) + . . .

+f2(k) (t2(k) − tR1(k − 1)) + . . .

+f3(k) (t3(k) − tR1(k − 1))) + . . .

+
pH(k) − gR1 (tR1(k − 1) − tamb)

ρR1cpR1vR1(k)

)

, (6.28)

where ts is the sampling time.

As tR1(k) is directly measurable, the analytical redundancy relation consists

on comparing the simulated value of tR1(k) with its measurement.

tR1(k) − tR1m
(k) = 0, (6.29)

where tR1m
(k) is the measured temperature.

6.3.1.4 Testing results

Figures 6.3, 6.4 and 6.5 show the graphical window of the fault detection software

when it is used to detect faults for each of the tested scenarios. Windows of lengths

5, 50, 75 and 100 samples are used for the first scenario, lengths of 10, 50, 100

and 200 for the second scenario and lengths of 10 and 25 for the third scenario.

In all the graphs, time is given in samples and the sample time is 3 s.

For scenario 1 (additional input flow), the fault begins at sample 55 and ends

at sample 73. It is detected from sample 77 until sample 93 and from 120 to 130.

See Figure 6.3.

For scenario 2 (leakage), the fault begins at sample 272 and ends at sample

343. It is intermittently detected from sample 326 until sample 441. See Figure

6.4.

For scenario 3 (resistor 1 shutdown), the fault begins at sample 581 and ends

at sample 617. It is detected from sample 610 until sample 630. See Figure 6.5.

126

6.3 Applications

Figure 6.3: Additional input flow to reactor 1.

Figure 6.4: Reactor 1 leakage.

127

Figures/additionalflow1.eps
Figures/procelleakage.eps

6.3 Applications

Figure 6.5: Reactor 1 heater shutdown.

6.3.2 Steam Generator pilot plant

6.3.2.1 Process description

The Steam Generator is a scale-model of a power plant. It is a complex non lin-

ear system which reproduces the same thermodynamic phenomena as the actual

industrial process. As shown in the flowsheet of Figure 6.6, this installation is

constituted of four main subsystems: a receiver with the feedwater supply system,

a boiler heated by a 60 kW resistor, a steam flow system and a complex condenser

coupled with a heat exchanger. The feed water flow (sensor F3) is circulated via

two feed pumps in parallel connection. Each pump is controlled by an on-off con-

troller to maintain a constant water level (sensor L8) in the steam generator. The

heat power (sensor Q4) depends on the pressure (sensor P7): when this pressure

drops below a minimum value the heat resistance delivers maximum power and

when the accumulator reaches a maximum pressure the electrical feed of the heat

resistance is cut off. The expansion of the generated steam is realized by three

valves in parallel connection. V4 is a manual bypass valve, simulating the pass

around of the steam flow to the condenser. V5 is a controlled position valve. V6

is automatically controlled to maintain proper pressure to the condenser (sensor

128

Figures/procelresistor.eps

6.3 Applications

P15). In an industrial plant, the steam flows to the turbine for generating power,

but at the test stand, the steam is condensed and stored in a receiver tank and

then returned to the steam generator.

P
ro

ce
ss

d
el

a
y

sy
st

e
m

FI

R1

0

PR
1

1

PI

R1

6

TR
1

7

PC
2

PR
1

4

PR
1

5

TR
3

8

PR
3

8

TR
2

9
PR
3

1

V1

V6

User

PR
1

3

PR
1

2

Z

C1

V2

V11

BOILER

LI

R9
LI

R8

L

G1

T

R5

PC
1

PI

R7

T

R6

Q
4

Thermal resistor

L

C1

V1

0

60k

W

FI

R3

P2

P1

V9

STORAGE TANK

TI

R2

LI

R1

L

G3

STEAM

FLOW

FEED WATER

CONDENSER HEAT-

EXCHANGER

V8

Condensate

V4

V5

L

G2

L

C2

Aero-refrigerator

TI

R2

6

Environment
FI

R2

3

FI

R2

4

TI

R2

7

TI

R2

1

Cooling water

P3

P4

TI

R2

2

T

C5

PR
2

7TI

R2

0

LI

R1

9

LI

R1

8

V3

TI

R2

5

P
ro

ce
ss

d
el

a
y

sy
st

e
m

FI

R1

0

PR
1

1

PI

R1

6

TR
1

7

PC
2

PR
1

4

PR
1

5

TR
3

8

PR
3

8

TR
2

9
PR
3

1

V1

V6

User

PR
1

3

PR
1

2

Z

C1

V2

V11

P
ro

ce
ss

d
el

a
y

sy
st

e
m

FI

R1

0

PR
1

1

PI

R1

6

TR
1

7

PC
2

PR
1

4

PR
1

5

TR
3

8

PR
3

8

TR
2

9
PR
3

1

V1

V6

User

PR
1

3

PR
1

2

Z

C1

V2

V11

P
ro

ce
ss

d
el

a
y

sy
st

e
m

FI

R1

0

FI

R1

0

FI

R1

0

PR
1

1

PR
1

1

PI

R1

6

PI

R1

6

TR
1

7

TR
1

7

TR
1

7

PC
2

PC
2

PR
1

4

PR
1

4

PR
1

4

PR
1

5

PR
1

5

TR
3

8

TR
3

8

TR
3

8

PR
3

8

PR
3

8

TR
2

9

TR
2

9

TR
2

9
PR
3

1

PR
3

1

V1

V6

User

PR
1

3

PR
1

3

PR
1

3

PR
1

2

PR
1

2

PR
1

2

Z

C1
Z

C1

V2

V11

BOILER

LI

R9
LI

R8

L

G1

T

R5

PC
1

PI

R7

T

R6

Q
4

Thermal resistor

L

C1

V1

0

60k

W

LI

R9
LI

R9
LI

R8

L

G1

T

R5

PC
1

PI

R7

T

R6

Q
4

Thermal resistor

L

C1

V1

0

60k

W

LI

R8
LI

R8

L

G1

T

R5

PC
1

PI

R7

T

R6

Q
4

Thermal resistor

L

C1

V1

0

60k

W

L

G1
L

G1

T

R5
T

R5
T

R5

PC
1

PC
1

PI

R7
PI

R7

T

R6
T

R6

Q
4
Q
4

Thermal resistor

L

C1
L

C1

V1

0

60k

W

FI

R3

P2

P1

V9

STORAGE TANK

TI

R2

LI

R1

L

G3

FI

R3
FI

R3
FI

R3

P2

P1

V9

STORAGE TANK

TI

R2

LI

R1

L

G3

P2

P1

V9

STORAGE TANK

TI

R2

LI

R1

L

G3

P1P1P1

V9

STORAGE TANK

TI

R2

LI

R1

L

G3

V9

STORAGE TANK

TI

R2
TI

R2

LI

R1
LI

R1

L

G3
L

G3

STEAM

FLOW

FEED WATER

CONDENSER HEAT-

EXCHANGER

V8

Condensate

V4

V5

L

G2

L

C2

Aero-refrigerator

TI

R2

6

Environment
FI

R2

3

FI

R2

4

TI

R2

7

TI

R2

1

Cooling water

P3

P4

TI

R2

2

T

C5

PR
2

7TI

R2

0

LI

R1

9

LI

R1

8

V3

TI

R2

5

V8

Condensate

V4

V5

L

G2

L

C2

Aero-refrigerator

TI

R2

6

TI

R2

6

Environment
FI

R2

3

FI

R2

3

FI

R2

4

FI

R2

4

FI

R2

4

TI

R2

7

TI

R2

7

TI

R2

1

TI

R2

1

Cooling water

P3

P4

TI

R2

2

TI

R2

2

T

C5
T

C5

PR
2

7

PR
2

7TI

R2

0

TI

R2

0

LI

R1

9

LI

R1

9

LI

R1

8

LI

R1

8

V3

TI

R2

5

TI

R2

5

TI

R2

5

Figure 6.6: Flowsheet of the Steam Generator.

6.3.2.2 Testing scenario

The faulty scenario that has been considered consists of turning off the resistor

R1 during a time period to simulate a shutdown. This affects the steam flow

subsystem.

6.3.2.3 Process model

A model of the boiler is obtained through the next mass balance.

dm

dt
= f3 − f10 (6.30)

129

Figures/steamgenerator.eps

6.3 Applications

where m is the mass inside the boiler, f10 is the mass output flow and f3 is the

mass input flow.

Its corresponding difference equation is

m(k) = m(k − 1) + (f3(k − 1) − f10(k − 1)) ∗ ts, (6.31)

where ts is the sampling time.

As the monitored variable m is not directly measurable, it is estimated (me)

through the next equation.

me = vsteam ∗ ρsteam + vliquid ∗ ρliquid (6.32)

where vliquid is the volume of liquid (sensor L8), ρliquid is the liquid water density,

which is a function of the pressure inside the boiler p7 (sensor P7) and obtained

using tables about the steam properties, vsteam is the volume of steam (given by

vsteam = vboiler − vliquid) and ρsteam is the steam density (also given by the steam

tables).

Therefore, the analytical redundancy relation is

m(k) − me(k) = 0. (6.33)

Table 6.1 shows the uncertainty associated to each measurement. The relative

error er corresponds to the sensor precision and the absolute error ea corresponds

to the error introduced by the truncations of the used digital scale. In order to

obtain the domain X ′ associated to a measurement x, the following formula is

used.

X ′ = [x ∗ (1 − er), x ∗ (1 + er)] + [−ea, ea]. (6.34)

6.3.2.4 Testing results

Figure 6.7 shows the main window of the online version of the fault detection

tool for the tested scenario. In this case the sample time is 1 s and the used

time window lengths are 10, 50, 100 and 200 s. Notice that in this version of

the software, the measured output is plotted in yellow, the graph in the middle

130

6.3 Applications

Sensor Relative error Absolute error
f3 1.6e-002 1.085e-004
f10 0.01 0.0244
l8 0.027 0.000073
p7 0.005 0.0039

Table 6.1: Measurements uncertainty.

shows the faults and the one in the bottom indicates the window length. In this

scenario, the fault begins at 240 s and ends at 360 s. The SQUALTRACK solver

detects it from 353 s until 670 s.

Remark 6.3.1. Notice that in this scenario there is a long period of false detec-
tions. It is due to the use of window length because, the faulty data is still used
once the fault has disappeared.
�

Figure 6.7: Boiler Leakage.

131

Figures/boilerleakage.eps

6.3 Applications

6.3.3 Fluid Catalytic Cracking plant

6.3.3.1 Process description

The FCC process consists of cracking heavy products in the presence of a cat-

alyst. Heavy products come from atmospheric distillation and cracking allows

lighter products with more value, mainly benzene, to be obtained. This process

includes many devices: two regenerators, one reactor, one separation column,

pipes, valves, etc. One difficulty in this process is the catalyst circulation loop.

A global schematic of the process is shown in Figure 6.8.� �
� �� � � �� �

� �� �� � � � 	� � � ��
 � ��� �	
� �

�
 ��� ��
� ��
� �

�

�	

Figure 6.8: Schematic of FCC process.

6.3.3.2 Test scenario

The fault scenario that was considered was a fault in the first regenerator (R1)

such that the air flow was abnormal.

132

Figures/process01.eps

6.3 Applications

6.3.3.3 Process model

In this case the model is a first-order transfer function obtained from a simpli-

fication of the FCC model. It models the dynamic relationship between the air

flow entering to the regenerator R1 and its setpoint. The transfer function in the

Laplace domain is
y(s)

u(s)
=

k

1 + τs
, (6.35)

where ks is the static gain and τ is the time constant.

The discrete-time model is then:

yp (k) =

(

1 − ts
τ

)

ym (k − 1) + ks

Ts

τ
um (k − 1) , (6.36)

where

• ts is the sampling time,

• yp(k) is the output of the model at sample time k,

• ym(k − 1) is the measurement of the output at time k − 1 and

• um(k − 1) is the measurement of the input at time k − 1.

The discrete-time equation for a window of length w is:

yp(k|w) =

(

1 − ts
τ

)w

ym(k − w) + . . .

+

n=w−1
∑

n=0

[(

1 − ts
τ

)n

ks

ts
τ

um(k + (w − n − 1))

]

. (6.37)

The interval values of the parameters of the model to express their uncertain-

ties have been obtained from process experts. They are:

• ts
τ
∈ [0.97, 0.999]′ and

• K ts
τ
∈ [0.00095, 0.0315]′.

Therefore, the analytical redundancy relation is

yp(k|w) − ym(k) = 0. (6.38)

133

6.4 Conclusions

6.3.3.4 Test results

The test was performed using actual data from a scenario where the setpoint

changed at time t = 142 s from 0 to 1, 5 and windows of lengths 2, 5, 10 and 15.

Figure 6.9 shows that the fault was detected at different times from sample 285

to sample 353.

Figure 6.9: Faulty response of the air flow to a setpoint change.

Remark 6.3.2. Details about the software implementation of the previous fault
detection algorithm (SQUALTRACK solver) are explained in Chapter 8. The
sources for introducing the previous examples to the SQUALTRACK solver are
found in Appendix A.
�

6.4 Conclusions

In this chapter, it has been shown how the problem of robust fault detection

in dynamic processes can be stated as a problem of satisfying a quantified real

constraint. The proposed technique is based on the principle of analytical redun-

dancy and takes uncertainty into account by means of interval parameters and

134

Figures/fccfault.eps

6.4 Conclusions

interval measurements. It also uses multiple time window lengths to maximize the

detection of faults minimizing the computations. The modal interval inclusion

test from Section 3.2.1.8, is used for the resolution of the resulting quantified real

constraint. One of the contribution of the presented work consists of the imple-

mentation of a software tool called SQUALTRACK solver which has been applied

to the detection of faults in different actual processes used in the European project

CHEM. One important characteristic to distinguish of the SQUALTRACK solver

is its extremely easy use. In the future, it is expected to extend this technique

not to only detect but to diagnose faults. In this direction, some research has

already been proposed by Calderón-Espinoza in Calderón-Espinoza et al. (2004).

135

Chapter 7

Application to Sailboat Control

This Chapter presents an application of the Quantified Set Inversion (QSI) algo-

rithm explained in Chapter 4 to the sailboat control. More specifically, the QSI

algorithm is used to find the polar speed diagram of a sailboat and then, feedback

linearization techniques are applied to build a controller for the sailboat. Finally,

simulation results are provided to demonstrate the viability of the method.

7.1 Introduction

In sailing, the sailor disposes of two actuators to control the speed and the orien-

tation of a boat: the sail adjustment and the rudder adjustment. However, these

actuators are not intuitive at all, specially when a precis control of the speed is

desired, and requires a training period before acquiring a good handling of the

boat. Automatically controlling the speed and the orientation of a sailboat has

a practical interest. For example,

• During the mooring manoeuvre inside a harbor, where the speed of the

sailboat has to be controlled not to surpass the speed limit.

• As a support system when crossing the oceans in solo (e.g. sleeping periods).

• For completely autonomous sailing (e.g. ecologic surveillance missions).

A proof of this interest are the two recent sailing competitions: the Microtransat

Challenge Cup Microtransat (2006) held in Toulouse (France), which aims at

136

7.2 Control strategy

building sailboats able to cross the Atlantic ocean in an autonomous way, and

the Sailbot Sailbot (2006), another robotic sailboat competition held in Ontario

(Canada).

Some previous works have already been proposed to tackle with the problem

of the control of a sailboat Elkaim & Kelbley (2006); Elkaim et al. (2006). But,

to our knowledge, this is the first approach which combines set computation

techniques and feedback linearization for the control of a sailboat. This work has

been partially presented in an international conference Herrero et al. (2005a) and

a more complete paper has been submitted for publication in a journal Herrero

et al. (2006).

7.2 Control strategy

In feedback linearization for control, the control output vector is usually foisted

by the structure of the system to make the method working. This often implies

that the control output vector does not coincide with the output desired by the

user. In this section, a non-linear control schema based on Quantified Set Inver-

sion (see Chapter 4) and feedback linearization, which allows to overcome this

drawback in most of the cases, is proposed.

Consider the system described by the nonlinear differential equation:

ẋ = f(x,u), (7.1)

where x and u are respectively the state vector and the input vector.

For some rather large condition on the system and for specific output vector

y = g(x), feedback linearization methods Fliess et al. (1995) make it possible to

find a controller of the form

u = Ru(x, ȳ), (7.2)

such that the output y converges to ȳ. The vectors y and ȳ are called control

output vector and the desired control output vector. Now, in many cases, the user

wants to choose its own output w = h(x) and not to have an output vector y

137

7.2 Control strategy

foisted by the structure of the system to make the feedback linearization method

working.

In this chapter, the problem of interest is to find a controller

u = Rw(x, w̄) (7.3)

such that the user output vector w converges to the desired user output vector

w̄.

Define the set of all feasible user output vectors by

Σw = {w ∈ Rm|(∃x ∈ Rn)(∃u ∈ Rm)(f(x,u) = 0 ∧w = h(x))}. (7.4)

Since Σw is defined by n + m equations for m + 2n variables, except for atypical

situations, the set Σw has a nonempty volume.

Firstly, the QSI algorithm presented in Chapter 4 is used to characterize the

inner and an outer approximations of Σw. Then, the user will be allowed to choose

any point w̄ inside Σw. From w̄, we will then compute some corresponding x̄ and

ū such that f(x̄, ū) = 0, w̄ = h(x̄). Note the solution pair (x̄, ū) may be not

unique. From x̄, we shall compute ȳ = g(x̄). Then the controller Ru(x, ȳ) will

compute u such that y converges to ȳ. As a consequence, x will tend to x̄ and

w to w̄. Figure 7.1 graphically represents the proposed control schema.

f(x̄, ū) = 0

w̄ = h(x̄)

ȳ = g(x̄)

Σw

Figure 7.1: Control diagram.

138

Figures/ControlChaine.eps

7.3 Sailboat control application

7.3 Sailboat control application

The proposed control scheme can be divided into two parts: A first part, which

is executed off-line and explained in Section 7.5, and consists of characterizing an

inner and an outer approximation of the set of admissible set-points which can be

chosen by the user. This set corresponds to a well known sailing diagram called

polar diagram, which is the set of all pairs (v, θ) that can be reached by the boat,

in a cruising behavior. For this purpose, the Quantified Set Inversion (QSI) algo-

rithm, explained in Chapter 4, is used. A second part, which is executed online

and explained in Section 7.6, corresponds to a particular feedback linearization

controller.

However, the designed feedback linearization controller does not accept (v, θ)

as linearizing control output vector due to the amount of singularities that gen-

erates the linearization procedure. For this reason, the pre-compensator module,

explained in Section 7.7, is included to transform the set-point chosen by the user

(v̄, θ̄) into a suitable control output vector for the controller, which corresponds to

the sail adjustment and the orientation of the boat (δ̄s, θ̄). Finally, the controller

will compute the necessary sail and rudder adjustments (δ̄s, δ̄r) such that (v, θ, δs)

tends to (v̄, θ̄, δ̄s). Figure 7.2 graphically shows the proposed control scheme.

Pre-compensator

Feedback
liniarisation
control

v̄

θ̄θ̄

δ̄sδ̄s

δ̄r

x̄

Section 3.1

Section 3.2

Section 3.3
Section 3.4

On-line Off-line

Figure 7.2: Sailboat control scheme.

139

Figures/scheme2.eps

7.4 Sailboat modelization

7.4 Sailboat modelization

The sailboat represented on Figure 7.3 (taken from Jaulin (2001b)) is described

by the following state equations



























































ẋ = v cos θ, (i)
ẏ = v sin θ − βvw, (ii)

θ̇ = ω, (iii)

δ̇s = u1, (iv)

δ̇r = u2, (v)

v̇ =
fs sin δs−fr sin δr−αf v

m
, (vi)

ω̇ = (ℓ−rs cos δs)fs−rr cos δrfr−αθω

J
, (vii)

fs = αs (vw cos (θ + δs) − v sin δs) , (viii)
fr = αrv sin δr, (ix)

(7.5)

where ẋ, ẏ, . . . represents the derivatives of x, y, . . . with respect to the time t.

The state vector x = (x, y, θ, δs, δr, v, ω)T ∈ R7 is composed by

• the coordinates x, y of the inertial center G of the boat

• the orientation θ,

• the sail angle δs

• the rudder angle δr

• the tangential speed v of G

• the angular velocity ω of the boat around G.

The intermediate variables are

• the thrust force fs of the wind on the sail,

• the force fr of the water on the rudder.

The parameters (that are assumed to be known) are

• the speed vw of the wind,

• the distance rr between the rudder and G,

140

7.5 Polar diagram of a sailboat

• the distance rs between the mast and G,

• the rudder lift αr,

• the sail lift αs,

• the tangential friction αf of the boat with respect to the water,

• the angular friction αθ of the boat with respect to the water,

• the angular inertia J of the boat,

• the distance ℓ between the mast and the thrust center of the sail,

• and the drift coefficient β.

The parameters values are chosen as

β = 0.05, rs = 1, rr = 2, ℓ = 1, vw = 10,

m = 1000, J = 2000, αf = 60,

αθ ∈ 500, αs = 500, αr = 300. (7.6)

The inputs u1 and u2 of the system are the derivatives of the angles δs and δr.

7.5 Polar diagram of a sailboat

The polar diagram of the sailboat is defined by the set S of all pairs (θ, v) that

can be potentially reached by the boat, in a cruising behavior.

During a cruising behavior of the boat, the speed of the boat, its course, its

angular velocity, . . . are supposed constant, i.e.,

θ̇ = 0, δ̇s = 0, δ̇r = 0, v̇ = 0, ω̇ = 0. (7.7)

From Equation 7.5, we get















0 =
fs sin δs−fr sin δr−αf v

m
,

0 = (ℓ−rs cos δs)fs−rr cos δrfr

J
,

fs = αs (vw cos (θ + δs) − v sin δs) ,
fr = αrv sin δr.

(7.8)

141

7.5 Polar diagram of a sailboat

Wind

vw

Figure 7.3: Sailboat model.

which is equivalent to















αs (vw cos (θ + δs) − v sin δs) sin δs−
αrv sin2 δr − αfv = 0,

(ℓ − rs cos δs) αs (vw cos (θ + δs) − v sin δs)−
rrαrv sin δr cos δr = 0.

(7.9)

The polar diagram is the set Σ of all feasible vectors (v, θ) in a cruising regime,

i.e.,

Σ = {(v, θ) | ∃δr, ∃δs, f (v, θ, δr, δs) = 0} , (7.10)

142

Figures/bateauavoile1.ps

7.5 Polar diagram of a sailboat

where

f (v, θ, δr, δs) =








αs (vw cos (θ + δs) − v sin δs) sin δs−
αrv sin2 δr − αfv

(ℓ − rs cos δs) αs (vw cos (θ + δs) − v sin δs)−
rrαrv sin δr cos δr









. (7.11)

7.5.1 Transformation of the problem

Characterizing an inner approximation for the set Σ given by Equation 7.10

cannot be done using the QSI algorithm. The reason for that is that the dimension

nf of f is equal to 2. In this section, we shall eliminate the variable δr using

symbolic calculus to cast into the case where nf = 1.

Since

sin2 δr =
1 − cos (2δr)

2
and sin δr cos δr =

sin(2δr)

2
, (7.12)

and since sin2(2δr) + cos2(2δr) − 1 = 0, we get that

(

−1 + 2
αrv

(αs (vw cos (θ + δs) − v sin δs) sin δs − αfv)
)2

+
(

2αs

rrαrv
(ℓ − rs cos δs) (vw cos (θ + δs) − v sin δs)

)2

−1 = 0,

(7.13)

i.e.,
(

(αr + 2αf) v − 2αsvw cos (θ + δs) sin δs + 2αsv sin2 δs

)2

+
(

2αs

rr
(ℓ − rs cos δs) (vw cos (θ + δs) − v sin δs)

)2

−α2
rv

2 = 0.

(7.14)

The polar diagram can thus be written as

Σ =
{

(θ, v)|(∃δs ∈ [−π

2
,
π

2
]) | f1(θ, v, δs) = 0

}

, (7.15)

where f1(θ, v, δs) is given by

f1(θ, v, δs) =
(

(αr + 2αf) v − 2αsvw cos (θ + δs) sin δs + 2αsv sin2 δs

)2

+
(

2αs

rr
(ℓ − rs cos δs) (vw cos (θ + δs) − v sin δs)

)2

− α2
rv

2.

(7.16)

143

7.6 Feedback linearization control

Now, the problem stated by Equation 7.15 can be solved by QSI algorithm.

Notice that other existing solvers, like Dao (2005); Ratschan (2002a, 2005), can

not find an inner approximation of Equation 7.15 due to the presence of the

equality predicate.

7.5.2 Resolution

By using the QSI algorithm with a precision of ǫ = 0.02, in less than 60 seconds

on a Pentium IV M 1.5 GHz, the result expressed in polar coordinates and showed

in Figure 7.4 is obtained, where the white area corresponds to the set of points

(θ, v) which can be potentially reached by the sailboat, the grey area corresponds

to the set of non feasible points and the black area is undefined.

Figure 7.4: Polar diagram obtained with the QSI solver.

7.6 Feedback linearization control

To apply the feedback linearization method it is necessary to differentiate the

state variables, one or more times with respect to time till the inputs u1 or u2

144

Figures/polar.eps

7.6 Feedback linearization control

appear.

In Equations 7.5, only δ̇s and δ̇g are algebraically related to u, the others are

related to u, but indirectly ,i.e., differentially. It is only necessary to differentiate

these equations which are no related to u, i.e., ẋ, ẏ, θ̇, v̇ and ω̇. We get







































ẍ = v̇ cos θ − vθ̇ sin θ,

ÿ = v̇ sin θ + vθ̇ cos θ,

θ̈ = ω̇,

v̈ =
ḟs sin δs+fsu1 cos δs−ḟr sin δr−fru2 cos δr−αf v̇

m
,

ω̈ = u1rs sin δsfs+(ℓ−rs cos δs)ḟs

J

+
rr(u2 sin δrfr−cos δr ḟr)−αθ ω̇

J
.

(7.17)

with






ḟs = −αsvw (ω + u1) sin (θ + δs) − αsv̇ sin δs−
αsvu1 cos δs,

ḟr = αr (v̇ sin δr + vu2 cos δr) .

(7.18)

Notice that, as v̇, θ̇, ω̇ are analytic functions of the state (see Equation 7.5), it

is possible to consider that we have an analytic function of ẍ, ÿ, θ̈, v̈, ω̈ depending

on the state and inputs. It is necessary to differentiate again all these quantities

which do not algebraically depend on u, which means ẍ, ÿ et θ̈. Then we get







...
x = v̈ cos θ − 2v̇θ̇ sin θ − vθ̈ sin θ − vθ̇2 cos θ,
...
y = v̈ sin θ + 2v̇θ̇ cos θ + vθ̈ cos θ − vθ̇2 sin θ,...
θ = ω̈.

(7.19)

As all these quantities algebraically dependent on u, it is not necessary to

differentiate more. Notice again, that the Equations 7.19 can be interpreted (via

Equations 7.5 and 7.17) as analytic expressions of
...
x ,

...
y ,

...
θ depending on de state

and inputs.

As the system has two inputs, it is necessary to choose two outputs in order to

do the feedback linearization. A first possibility consists on choosing as outputs,

the speed y1 = v and the orientation y2 = θ. This choice can be justified because

y is a flat output for the sub-system described by the (i-vii) relations of Equation

7.5 (for more information about about flat outputs see Fliess et al. (1995)). A brief

demonstration can be done by the algorithm of the dynamic extension Fliess et al.

145

7.6 Feedback linearization control

(1995). This demonstration is a direct consequence of the next calculus which

tries to determine the linearizing loop. We have

(

ÿ1...
y 2

)

=

(

v̈...
θ

)

(7.20)

= A1(x)

(

u1

u2

)

+ A2(x)

(

ḟs

ḟr

)

+ b1(x),

with

A1(x) =

(

1
m

fs cos δs − 1
m

fr cos δr
rs

J
fs sin δs

rr

J
fr sin δr

)

,

A2(x) =

(

1
m

sin δs − 1
m

sin δr
ℓ
J
− rs

J
cos δs −rr

J
cos δr

)

, (7.21)

b1(x) =

(

−αf

m
v̇

−αθ

J
ω̇

)

.

and
(

ḟs

ḟr

)

= A3(x)

(

u1

u2

)

+ b2(x), (7.22)

with

A3(x) =

(

−αs (vw sin (θ + δs) + v cos δs) 0
0 αrv cos δr

)

, (7.23)

b2(x) =

(

−αs (vwω sin (θ + δs) + v̇ sin δs)
αrv̇ sin δr

)

. (7.24)

Which leads to a relation of the form
(

ÿ1...
y 2

)

= A1u + A2 (A3u + b2) + b1

= (A1+A2A3)u + A2b2 + b1 (7.25)

= A(x)u + b(x).

For imposing the quantities (ÿ1,
...
y 2) to a given set-point

v = (v1, v2)
T , (7.26)

it is necessary to take as inputs

u = A−1(x) (v − b(x)) . (7.27)

146

7.6 Feedback linearization control

The equations of the looped system are
{

ÿ1 = v1,...
y 2 = v2.

(7.28)

The looped system has dimension 5 instead of dimension 7 for the initial

system. The loss of control over two state variables: x an y, has been produced.

The singularities of the resulting linearizing control are solutions of the equation

detA (x) = 0, (7.29)

which has many solutions. For this reason, we have decided to choose another

output which generates less singularities. Let us choose now as outputs the sail

adjustment y1 = δs and the orientation y2 = θ. We have

(

ẏ1...
y 2

)

=

(

δ̇s...
θ

)

(7.30)

= A1(x)

(

u1

u2

)

+ A2(x)

(

ḟs

ḟr

)

+ b1(x),

with

A1(x) =

(

1 0
rsfs sin δs

J

rrfr sin δr

J

)

,

A2(x) =

(

0 0
ℓ−rs cos δs

J
−rr cos δr

J

)

, (7.31)

b1(x) =

(

0
−αθ ω̇

J

)

,

where ḟs et ḟr are given by the Equation 7.22. Then, we have a relation of the

form
(

ẏ1...
y 2

)

= A1u + A2 (A3u + b2) + b1,

= (A1+A2A3)u + A2b2 + b1, (7.32)

= A(x)u + b(x).

In order to impose (ẏ1,
...
y 2) to a given set-point v = (v1, v2), it is necessary to

take

u = A−1(x) (v − b(x)) . (7.33)

147

7.7 Pre-compensator module

The looped system is governed by the differential equations

{

ẏ1 = v1,...
y 2 = v2.

(7.34)

which are linear and decoupled. The linear system is of 4th order instead of

7th. We have lost the control over 3 variables which are x, y and v. The loss

of control over x and y was predictable (it is desired that the sailboat advances

and it is natural that it corresponds to an instability for the variables x and y).

Referring to the loss of control over v, it does not have any consequence because

the associated zero dynamic is stable. How can be conceived that the sailboat

could maintain a sail and a rudder adjustments avoiding the speed to converge

to an infinity value?

Let us determine the singularities of the linearizing loop. We can easily prove

that

det (A(x)) =
rr

J

(

fr sin δr − vαr cos2 δr

)

, (7.35)

is null if

v
(

2 sin2 δr − 1
)

= 0, (7.36)

i.e. if

v = 0 or δr =
π

4
+ k

π

2
. (7.37)

Such configuration corresponds to a singularity which should be avoided.

7.7 Pre-compensator module

As shown in Section 7.6, it has not been possible to choose the speed v and the

orientation θ of the sailboat as linearizing outputs for the feedback linearization

controller because of the amount of singularities that are provoked. Instead of

that, the sail adjustment δs and the orientation of the sailboat θ have been chosen.

As we want to control v and θ, it is necessary to introduce a pre-compensator

which allows to transform the set-point chosen by the user (v̄,θ̄) to an admissible

set-point by the controller (δ̄s,θ̄).

148

7.7 Pre-compensator module

Fixed (v̄,θ̄) chosen by the user from the polar diagram, a numerically validated

local search algorithm, based on branch-and-bound techniques and Modal Interval

Analysis, is applied for finding δ̄s. The algorithm proceeds as follows; Given an

initial range for the sail adjustment ∆s, it is bisected into two subintervals ∆
(1)
s

and ∆
(2)
s , then, the next existence test is carried out over the resulting intervals

(∃δs ∈ ∆′
s)f1(θ̄, v̄, δs) = 0, (7.38)

where f1(θ, v, δs) is expressed by Equation 7.16.

This test is easily done using Modal Interval Analysis, which transforms the

logical statement of Equation 7.38 into an interval inclusion test by means of the

modal interval inclusion test presented in Section 3.2.1.8. If the test is not verified

for one of the subintervals it is eliminated, if both subintervals are eliminated, it

means that no solution exists. Finally, if the test is positive for both subintervals,

one of them is arbitrarily chosen and the other subinterval is rejected. Notice

that multiple solutions could exist and the one given by our algorithm is not

necessarily the optimal solution in terms of sailing. This bisection procedure

is recursively repeated till an small enough interval is achieved for δs. As the

controller requires a punctual value as input, the center of the resulting interval

is chosen. Algorithm 7 shows the proposed algorithm and Figure 7.5 shows a

graphical example of the same algorithm.

149

7.7 Pre-compensator module

Algorithm 7 Existence Algorithm

Input: f1(θ̄, v̄, δs), ∆
′
s and ǫ.

Output: δ̄s.

1: Enqueue ∆′
s to List;

2: while List not empty do

3: Dequeue ∆′
s from List;

4: if (∃δs ∈ ∆′
s)f1(θ̄, v̄, δs) = 0 then

5: if Width(∆′
s) < ǫ then

6: return Center(∆′
s);

7: else

8: Bisect ∆′
s and enqueue the resulting intervals to List;

9: end if

10: end if

11: end while

• List: List of intervals.

• Enqueue: The result of adding an interval to List.

• Dequeue: The result of extracting an interval from List.

• Width(∆′
s): Function returning the size of the interval ∆′

s,

• Center(∆′
s): Function returning the center of the interval ∆′

s,

• ǫ: A real value representing the desired precision.

150

7.8 Simulation results

f1

f1 = 0

δs

0

Resulting ∆s

Bisection

Figure 7.5: Existence algorithm.

7.8 Simulation results

The presented control schema has been informatically implemented in order to

show its viability. An available demonstration software is available at the follow-

ing URL Herrero & Jaulin (2006). Its use consists of selecting from the polar

diagram the sequence of desired set-points by clicking with the mouse over it.

Initial conditions like position x, y, orientation θ and speed v can also be chosen.

Figure 7.6 shows a simulation sequence consisting on the required manoeuver to

moor the sailboat inside a harbor.

7.9 Conclusions

A frequent drawback in feedback linearization control is the amount of singu-

larities on the resulting controller. For this reason, sometimes the choice of the

control output is foisted by the control law and not by the user requirements.

An original control schema based on Quantified Set Inversion techniques and

feedback linearization has been presented to overcome this drawback in most of

the cases. A sailing boat control application has been solved to illustrate the

151

Figures/branching1.eps

7.9 Conclusions

Figure 7.6: Manoeuver to moor the sailboat inside a harbor.

methodology.

152

Figures/case2.eps

Chapter 8

Implementation

This chapter describes in a high-level way the implementation work, carried out

by the author of this thesis, of the different algorithms which have been presented

in the previous chapters. The idea of this chapter is not to enter into low level

implementation details but to show the architecture of the developed software

and to give an idea about the programming effort which has been carried out.

8.1 Implementation philosophy

The philosophy which has been followed for the implementation of the set of

algorithms developed in this thesis is based on the following principles:

• Reliability: All the implemented algorithms are intended to be numerically

guaranteed, which means that they must not provide false results due to

numerical errors.

• Maintainability: The sources are intended to be as clear as possible in

order to facilitate its understanding and to allow easy modifications.

• Performance: The implemented algorithms have a high computational

complexity, then, efficient executable binaries are desired.

• Portability: The sources are desired to be as portable as possible between

different operating systems and platforms.

153

8.2 Programming tools

• Open source: All the used programming tools are intended to be freely

distributed and open source.

• Easy use: The resulting solvers have to be easy to use for the final user.

These principles have conditioned the selection of the programming tools,

which are briefly described in the next section.

8.2 Programming tools

This section describes the set of programming tools which have been used for the

implementation of the algorithms presented in the previous chapters.

8.2.1 C++ language

C++ Eckel (2000) is an object oriented programming language which implements

data abstraction using a concept called classes, along with other features to al-

low object-oriented programming (OOP). Parts of the C++ program are easily

reusable and extensible without having to do big modifications of the source.

C++ adds a concept called operator overloading not seen in the earlier OOP

languages and it makes the creation of libraries much cleaner.

C++ maintains aspects of the C programming language, yet has features

which simplify memory management. Additionally, some of the features of C++

allow low-level access to memory but also contain high level features.

Therefore, C++ programming language offers an interesting ratio between

the different implementation principles presented in Section 8.1.

8.2.1.1 Code::Blocks and GCC compiler

Code::Blocks Code::Blocks (2006) is Interface Development Environment (IDE)

which has been chosen for the implementation of the algorithms presented in the

previous chapters. Code::Blocks is an open source, cross platform free C++

IDE, which was designed, right from the start, to be extensible and config-

urable. Code::Blocks supports multiple compiler like: GCC (MingW / Linux

GCC), MSVC++, Digital Mars, Borland C++ 5.5 and Open Watcom. From the

154

8.2 Programming tools

supported compilers, the GCC compiler GCC (2006) has been selected because

it strictly follows the ANSI C++ standard. GCC is the compiler system of the

GNU environment (GNU is a recursive acronym for ”GNU’s Not UNIX”) GNU

(2006). GNU is a UNIX-compatible operating system, being developed by the

Free Software Foundation FSF (2006), and distributed under the GNU Public

License (GPL).

8.2.2 Standard Template Library

Many of the developed algorithm in this thesis are based on branch-and-bound

techniques. For their implementation, the use of container classes like lists and

vectors are intensely used. With the purpose of facilitating the programming task

and obtaining a clear, robust and portable code, the so-called Standard Template

Library (STL) STL (2006) has been employed.

The STL is a collection of container classes (e.g. list, vector,...), generic

algorithms and related components that can greatly simplify many programming

tasks in C++. STL comes with most of the existing C++ compilers (e.g. MS

Visual C++, Borland Builder, GCC).

8.2.3 Spirit Parser framework

In order to provide solvers with friendly user interfaces, which allow to introduce

the problems in an easy way, the use of a parser has been considered suitable.

In computer science, parsing is the process of analyzing an input sequence

(read from a file or a keyboard, for example) in order to determine its grammatical

structure with respect to a given formal grammar. It is formally named syntax

analysis. A parser is a computer program that carries out this task. A parser

can be implemented with native C++ language, however, there exist already

developed frameworks which enormously facilitate this task (e.g. Lex/Yacc LEX-

YACC (2006), Spirit de Guzman (2006)).

From the set of existing parser frameworks, the Spirit framework has been

selected because it fulfills most of the principles of the implementation philosophy

presented in Section 8.1.

155

8.2 Programming tools

Spirit is an object oriented recursive descent parser framework implemented

using template meta-programming techniques. Expression templates allow to

approximate the syntax of Extended Backus Normal Form (EBNF) EBNF (2003)

completely in C++. Parser objects are composed through operator overloading

and the result is a backtracking, top down parser that is capable of parsing rather

ambiguous grammars.

The Spirit framework enables a target grammar to be written exclusively

in C++. Inline EBNF grammar specifications can mix freely with other C++

code and, thanks to the generative power of C++ templates, are immediately

executable.

The Spirit framework is part of the Boost C++ Libraries framework BOOST

(2006), which consists on a set of free peer-reviewed portable and standard C++

source libraries. Boost libraries are intended to be widely useful, and usable

across a broad spectrum of applications.

The functioning of a parser can be divided in three main steps: The grammar

definition, the matching procedure and the semantic actions.

8.2.3.1 Grammar definition

The grammar definition consists on writing a set of rules for interpreting a set

of character strings conforming the source code which wants to be interpreted.

For instance, using the Spirit Parser framework, the corresponding C++ code for

interpreting the following interval variable assignment

”name=[real_number,real_number];”

is presented in Table 8.1.

Table 8.1: Spirit grammar rule example.
rule<> assignment = name >> ’=’ >> interval >> ’;’ ;

rule<> name = alpha_p >> *(alnum_p | ’_’);

rule<> interval = ’[’ >> real_p >> ’,’ >> real_p >> ’]’;

Where rule<> is the Spirit type for defining a rule, assignment, name and

interval are rule variables, >> is the sequencing operator to indicate that ”some-

thing” precedes ”something”, alpha_p, alnum_p and real_p are predefined Spirit

156

8.2 Programming tools

rules (primitives) corresponding to an alphabetic character, alphanumeric char-

acter and a real numeric value. Finally, characters between ”” represents strings

of characters and the Kleene star * indicates zero or more instances of ”some-

thing”. For example, the name rule can be read as: an alphabetic character

followed or not by a sequence of alphanumeric characters with the ’_’ character

(e.g. ”x123 4c”).

8.2.3.2 Matching procedure

The matching procedure consists on scanning the set of defined rules in order to

see if one of them matches with a given command from the source code to be

interpreted. For instance, given the following string,

”x=[1.5,7.8]”;

it matches with the assignment rule. Therefore, the matching procedure is said

to be successful. On the other hand, the string

”x=(1.5,7.8)”;

does not match with the defined rules and the matching is failed.

8.2.3.3 Semantic actions

A semantic action is an action carried out when a matching is successful, being

an action any implementable algorithm. In the Spirit Parser framework, seman-

tic actions are placed after the corresponding rule and between brackets. For

instance, a set of semantic rules for the already defined assignment rule is shown

in Table 8.2.

Table 8.2: Semantic actions.
rule<> declaration = name >> ’=’ >> interval >> ’;’[make_declaration] ;

rule<> name = alpha_p >> *(alnum_p | ’_’)[store_alnum];

rule<> interval = ’[’ >> real_p[store_real] >> ’,’ >>

real_p[store_real] >> ’]’;

Where store_real, store_alnum and make_declaration are semantic ac-

tions. For instance, the following sequence of actions could be performed:

157

8.3 FSTAR Solver

• [store_real]: The two real values corresponding to the lower and upper

bounds of the interval are stored in a stack.

• [store_alnum]: The alphanumeric string ”x” is stored in a stack.

• [make_declaration]: The real values are recovered from the stack and an

interval is created with them. The alphanumeric string is recovered from

the stack. A new variable is created with the recovered character string and

the interval. The stacks are cleared.

8.2.4 wxWidgets framework

With the purpose of creating a friendly windows based user interface, which at

the same time respects the portability and open source criterions stated in Section

8.1, the wxWidgets framework wxWidgets (2006) has been chosen.

wxWidgets is an open source C++ Graphical User Interface (GUI) framework

to make cross-platform programming. It allows to use one single source code on

many different operative systems and platforms with very little (if any at all)

code modifications, making the code and application portability as easy as it can

get. Moreover, wxWidgets framework comes from with the Code::Blocks IDE.

8.3 FSTAR Solver

To implement the f ∗ algorithm presented in Chapter 3, numerical and symbolical

programming techniques have been used. Concerning the numerical techniques,

they have mainly been employed for implementing the modal interval arithmetic

and the involved branch-and-bound algorithm. Concerning the symbolical tech-

niques, they have been used for implementing the parser, and the algorithms for

studying the monotony and optimality of the objective function.

The functioning of the FSTAR solver is summarized by the following steps:

1. The user writes the source code defining the problem in a text file using a

predefined grammar.

158

8.3 FSTAR Solver

2. A parser interprets the source code and executes the corresponding actions.

Among other outputs, it generates a binary tree representing the objective

function.

3. A symbolic differentiation algorithm differentiates the binary tree with re-

spect to each incidence of the involved variables.

4. A symbolic algorithm studies the optimality of the objective function rep-

resented by the binary tree.

5. The binary trees are passed as parameters to the branch-and-bound algo-

rithm and it is launched. The branch-and-bound algorithm uses the modal

interval arithmetic library to evaluate the binary trees.

6. The obtained results are provided in a text file containing the computation

time, the number of bisections carried out by the branch-and-bound algo-

rithm and the achieved inner an outer approximations of the f ∗ extension

with its corresponding tolerance.

Figure 8.1 shows in a graphical way, the implementation architecture of the

FSTAR solver.

8.3.1 Numeric implementation

As mentioned before, two different modules can be distinguished concerning the

numeric implementation of the f ∗ algorithm: The modal interval arithmetic li-

brary and the branch-and-bound algorithm.

8.3.1.1 Modal interval arithmetic library

IvalDb (Interval Value Double) is a C++ library which implements a set of

modal interval arithmetic operators like +,−, log, sin, etc taking advantage of

the C++ operator overloading concept. The corresponding C++ class for its

implementation has been named ivalDb. IvalDb library is inspired on an already

existing single floating point precision modal interval library Garćıa Reyero &

Mart́ınez (1999), which control the numerical errors using floating point emula-

tion . IvalDb doubles the floating point precision and uses a much more simple

159

8.3 FSTAR Solver

Input File

Output File

Parser

Evaluation

Evaluation

Branch-and-Bound

Optimality Study

Parameters

Symbolic Differentiation

Binary Tree

Derivative Binary Trees

Figure 8.1: FSTAR solver architecture.

strategy to control the numerical errors. IvalDb library is an original contribution

of this thesis and is currently being extensively used.

IvalDb assures the numeric guaranty thanks to the use of FDLIBM Microsys-

tems. (1996), a C library developed by Sun Microsystems. FDLIBM is a math C

library which assures for an IEEE754 Kahan (1996) machine, in the worst case,

an ULP (Units of the Last Place) of error for all the given functions. Moreover,

it assures multi-platform compatibility between IEEE754 machines. FDLIBM

provides a function which allows to do upper and lower rounding of a floating

point number. Then, knowing that the maximal error that can be committed by

an FDLIBM function is one ULP, it is easy to implement a guaranteed interval

function by adding an ULP to the upper bound of the solution interval and by

160

Figures/fstar_modules.eps

8.3 FSTAR Solver

Table 8.3: Modal interval arithmetic implementation example.
ivalDb exp(ivalDb &x)

{

double Inf=FDLIBM::exp(x.Infimum); // FDLIBM evaluation

double Inf=FDLIBM::exp(x.Supremum);

ivalDb Result.SetBounds(Inf,Sup);

if(x.IsImproper()) return Dual(Round(Dual(Result)));

else return Round(Result);

}

Table 8.4: Round function implementation.
ivalDb Round(ivalDb &x)

{

FDLIBM::nextafter(x.Infimum,-1e-300); //Rest ULP

FDLIBM::nextafter(x.Supremum,1e-300); //Add ULP

}

resting and ULP to the lower bound of the solution interval. This method may

be numerically conservative respect other interval libraries but it is more efficient

in terms of time consuming because it does not change the rounding mode of the

processor as other libraries usually do.

An example of implementation of a modal interval function using the FDLIBM

library is shown is Table 8.3. Where, FDLIBM:: is a name-space for the FDLIBM

functions and Round is the function represented in Table 8.4.

An example of the ivalDb library utilization can be found in Table 8.5.

Table 8.5: IvalDb utilization example.
ivalDb x,y,z,r; //Variables declaration

x=ivalDb(-5,5); //variable assignment

y=ivalDb(10,-10);

z=ivalDb(6.5,15.3);

r=sin(x*exp(y))/z; //Function evaluation

161

8.3 FSTAR Solver

8.3.1.2 The branch-and-bound algorithm

For the implementation of the branch-and-bound algorithm involved in the f ∗

algorithm, six C++ classes have been created. Table 8.6 shows the list of C++

classes with a short description of their functionality and main attributes.

Table 8.6: Branch-and-bound algorithm C++ classes.
Class Description
twin It has two ivalDb attributes for representing the inner and

outer approximations.
incidence It has two ivalDb attributes representing the interval value and the

monotony of the function with respect to the incidence.
variable It contains a STL vector of incidence objects representing the

incidences of the variable in the objective function. It also contains
an ivalDb attributes representing the monotony of the function with
respect to the variable.

cell It contains two STL vectors of variable objects representing the
involved proper variables and improper variables. It also contains a
twin object representing the local inner and outer approximations of f ∗.

strip It contains a STL list of cell objects. It also contains a STL vector
of variable objects representing the proper variables and a twin

object representing the local inner and outer approximations of f ∗.
fstar Is the main class and contains a STL list of strip and a twin object

representing the global inner and outer approximation of f ∗.
It also contains an attribute of the type model which contains the
objective function and its derivatives.

8.3.2 Symbolic implementation

Modal Interval Analysis provides a bunch of theorems which are based on the

monotony of the objective function and on the study of the optimality of its

syntactic tree. Then, for a general implementation of the f ∗ algorithm, it is

necessary to dispose of tools which allow to symbolically manipulate algebraic

expressions. In computer science, one way to represent an algebraic expression is

by means of a data structure called binary tree. For example, given the algebraic

expression

f := x1 ∗ u − x2 ∗ pow(v, 2) ∗ sin(x1), (8.1)

162

8.3 FSTAR Solver

its binary tree is graphically represented in Figure 8.2, where the intermediate

nodes of the tree represent the unary and binary operators and the terminal nodes

(the leaves of the tree) represent the variables.-*
x1 u

**
x2 pow2

v

sin
x1

1

Figure 8.2: Binary tree representation.

Three main routines conforms the symbolic implementation:

• A parser, based on the Spirit framework, which provides a specific grammar

to introduce the problem definition. As output, it generates a binary tree

representing the objective function.

• A symbolic differentiation routine, which takes as input the binary tree and

computes its derivatives with respect to each incidence of the variables.

• A routine to study the optimality of the objective function, which is also

based on the study of the binary tree.

8.3.2.1 The parser

The specific grammar for introducing a problem in the FSTAR solver is conformed

by the set of commands from Table 8.7

For example, a problem definition using the grammar from Table 8.7 is shown

in Table 8.8 and its corresponding output file in Table 8.9.

As mentioned before, the output of the parser is a binary tree representing

the objective function. For the implementation of the binary tree, the three C++

classes described in Table 8.10 have been created.

163

Figures/binary-tree.eps

8.3 FSTAR Solver

Table 8.7: FSTAR solver grammar.
Command Description
Algorithm=FSTAR; Select the Logic Solver.
%Commentaries Commentaries started with %.
Tolerance=real_number; Desired precision for the approximation of f ∗.
Epsilon=real_number; Interval size from which the bisection procedure does

not bisect a variable.
var_name = [lb,hb]; Variable declaration and interval assignment.
f:=f(var_name); Objective function definition where, f is a non-linear

function involving the declared variables and the
function symbols: +, -, *, /, exp, log, cos, sin, tan,
acos, asin, atan, pow(x,n), sqrt, min, max, abs.

Table 8.8: FSTAR solver grammar example.
Algorithm=FSTAR;

Tolerance=1e-3;

Epsilon=1e-3;

x = [0,6];

y = [8,2];

f:=pow(x,2)+pow(y,2)+2*x*y-20*x-20*y+100;

Table 8.9: FSTAR solver output.
Computation Time (s):0.15

Number of bisections: 43

Inner Approximation:[9.0007324e+000, 4.0000000e+000]

Outer Approximation:[8.9985352e+000, 4.0000000e+000]

Tol: 2.1972209e-003

For the example of Table 8.8, a graphical representation of the resulting binary

tree, where the subindexes represent the different incidences of the variables, can

be observed in Figure 8.3.

The algebraic expression represented by the resulting binary tree can be easily

evaluated by means of a simple recursive procedure which crosses over the tree and

stores the partial results in the intermediate nodes. Figure 8.4 shows the same

binary tree after its evaluation to obtain an outer approximation of f ∗(X, Y)

where X = [0, 6] and Y = [8, 2]. Notice the t transformation applied over the Y

variable.

164

8.3 FSTAR Solver

Table 8.10: Binary tree C++ classes.
Class Description
node Represents a node in the binary tree. It contains two pointers to two

different node objects and an ivalDb object used for the tree evaluation.
tree Represents the binary tree. Contains a node pointer to the root of the

binary tree and a list of node pointers to the root of the binary trees
representing the derivatives. It also contains a vector of node
objects corresponding to the terminal nodes of the tree.

model It contains a tree object, a cell object and a vector of variable
pointers to the cell object to be evaluated.

�

�

�

�

�

pow2

x0

pow2

y0

�

�

��� �℄ x1

y1

�

���� ��℄ x2

�

���� ��℄ y2

����� ���℄

�

Figure 8.3: Binary tree representation for example from Table 8.8.

8.3.2.2 Symbolic differentiation

As mentioned in Chapter 3, the f ∗ algorithm requires from the monotony of the

objective function to apply the corresponding modal interval theorems. Then, a

differentiation algorithm, which is based on the chain rule, has been developed

for this purpose. This algorithms is a recursive procedure which crosses over the

binary tree and applies the corresponding differentiation rule to each node. As

output, it produces a set of binary trees representing each one of the derivatives

of the objective function with respect to the incidences of each variable. A sim-

plification routine is also provided in order to simplify the resulting trees from the

differentiation routine. This simplification is important because it can notably re-

duce the size of the binary trees and consequently reduces the computation time.

For instance, for the problem of Table 8.8, the resulting binary trees representing

165

Figures/basic-tree.eps

8.3 FSTAR Solver+ :[-95, 121℄- :[-195, 21℄- :[-95, 121℄+ :[25, 121℄+ :[25, 61℄
pow2 :[0, 36℄

x0[0, 6℄ pow2 :[25, 25℄
y0[8, 2℄ * :[0, 60℄* :[0, 12℄[2, 2℄ x1[0, 6℄ y1[8, 2℄ * :[0, 120℄[20, 20℄ x2[0, 6℄ * :[100, 100℄[20, 20℄ y2[8, 2℄[100, 100℄

1

Figure 8.4: Binary tree after its evaluation.

the corresponding derivatives are observed in Figure 8.5.

∂f/x0 : ∂f/x1 : ∂f/x2 :*[2, 2℄ x0

*[2, 2℄ y1

minus[20, 20℄
∂f/y0 : ∂f/y1 : ∂f/y3 :*[2, 2℄ y0

*[2, 2℄ x1

minus[20, 20℄

1

Figure 8.5: Derivatives binary trees.

Then, evaluating the derivative trees, the monotony of the function with re-

spect to each incidence and the variables can be obtained.

8.3.2.3 Tree-optimality study

In order to study the tree-optimality of the objective function, a recursive al-

gorithm has been implemented. This algorithm crosses over the binary tree and

looks for the non-uniformly monotonic operators (e.g. ∗,/). If the branches which

are followed downwards in the syntactic tree only involve one-variable operators,

the syntactic tree is optimal, if not, these branches are evaluated and if they are

both positive or negative, the syntactic tree is also optimal. If the branches are

none monotonic, nothing can be assured and the tree is considered non-optimal.

166

Figures/eval-tree.eps
Figures/diff-tree.eps

8.4 QRCS Solver

For example, given the continuous function f(x, y, z, u) = (x + y) ∗ (z + u),

it is not tree optimal because it has a non-uniformly monotonic operator (∗)
which is followed downwards by binary operators (+). However, for the domains

x ∈ [2, 6]′, y ∈ [2, 10]′, z ∈ [1, 5]′ and u ∈ [2, 4]′, the evaluation of the downwards

branches is positive, as can be observed in Figure 8.6. Then, the function is

tree-optimal. * :[12, 144℄+ :[4, 16℄
x0[2, 6℄ y0[2, 10℄ + :[3, 9℄

z0[1, 5℄ u0[2, 4℄

1

Figure 8.6: Tree-optimality study representation.

8.4 QRCS Solver

The Quantified Real Constraint Satisfaction (QRCS) solver is the software im-

plementation of the modal interval inclusion test defined in Section 3.2.1.8, for

proving the satisfiability of a class of quantified real constraints. QRCS solver has

the same implementation architecture than the FSTAR solver presented in Sec-

tion 8.3. It also takes as input a text file with the problem definition and provides

as output another text file with the computation time, the number of carried out

bisections by branch-and-bound algorithm, the consistency of the logical formula

and the inner and outer approximations of the corresponding f ∗ computation.

The specific grammar for introducing the problem definitions to the QRCS

solver is defined by the set of commands presented in Table 8.11.

For example, a problem definition using the grammar from Table 8.11 is shown

in Table 8.12 and its corresponding output file in Table 8.13.

167

Figures/opt-tree.eps

8.4 QRCS Solver

Table 8.11: QRCS solver grammar.
Command Description
Algorithm=QRCS; Select the Logic Solver.
%Commentaries Commentaries started with %.
Tolerance=real_number; Desired precision for the approximation of f ∗.
Epsilon=real_number; Interval size from which the bisection procedure

does not bisect a variable.
U(var_name,[lb,hb]); Universally quantified variable with its associated

interval.
E(var_name,[lb,hb]); Existentially quantified variable with its associated

interval.
lf:=f(var_name)op 0; Logical formula definition where, f is any non-linear

function involving the declared variables and the
function symbols: +, -, *, /,exp, log, cos, sin, tan,
acos, asin, atan, pow(x,n), sqrt, min, max, abs, and
op is the relational operators =, >, <, ≥ or ≤.

Table 8.12: QRCS solver grammar example.
Algorithm=QRCS;

Epsilon=0.01;

Tolerance=0.01;

% Variables

U(x,[0,6]);

U(z,[5,8]);

E(y,[2,8]);

% Constraint

lf:=pow(x,2)+pow(y,2)+2*x*y-20*x-20*y+100-z=0;

Table 8.13: QRCS solver output.
Computation Time (s):0.03

Number of bisections: 13

Consistency: True

Inner Approximation:[2.9726562e+000, -1.0000000e+000]

Outer Approximation:[2.6562500e-001, -1.0000000e+000]

Tol: 2.7070313e+000

168

8.5 MINIMAX Solver

8.5 MINIMAX Solver

The MINIMAX solver is the software implementation of the continuous minimax

optimization algorithm presented in Chapter 3. It uses almost the same imple-

mentation architecture as the FSTAR solver presented in Section 8.3. Only some

small modifications have been introduced to adapt it.

Concerning the solver input, it also consists on a text file containing a set of

commands defining the minimax optimization problem to be solved. As output,

the MINIMAX solver produces a text file with the computation time, the number

of bisections carried out by branch-and-bound algorithm, an interval containing

the minimax value with its corresponding tolerance and a list of cells which are

candidates to contain the minimax points.

The specific grammar for introducing a problem into the MINIMAX solver is

conformed by the set of commands given in Table 8.14.

Table 8.14: MINIMAX solver grammar.
Command Description
Algorithm=MINIMAX; Select the MINIMAX Solver.
%Parameters Commentaries started with %.
Tolerance=real_number; Desired precision for the approximation of f ∗.
Epsilon=real_number; Interval size from which the bisection procedure does

not bisect a variable.
MIN(var_name,[lb,hb]); Variable to minimize with its associated interval.
MAX(var_name,[lb,hb]); Variable to minimize with its associated interval.
f:=f(var_name); Objective function definition where, f is any non-linear

function involving the declared variables and the
function symbols: +, -, *, /,exp, log, cos, sin, tan,
acos, asin, atan, pow(x,n), sqrt, min, max, abs.

c:=f(var_name)op 0; Constraint definition where, op
is the relational operators >, <, ≥ or ≤.

For example, a minimax optimization problem definition using the grammar

from Table 8.14 is shown in Table 8.15 and its corresponding output file in Table

8.16.

169

8.6 QSI Solver

Table 8.15: MINIMAX grammar example.
Algorithm=MINIMAX;

Epsilon=1e-3;

Tolerance=1e-3;

MIN(x,[-3.1416,3.1416]);

MAX(y,[-3.1416,3.1416]);

f:=pow(cos(y)+cos(2*y+x),2);

c:=y-x*(x+2*3.1416)<0;

c:=y-x*(x-2*3.1416)<0;

Table 8.16: MINIMAX solver output.
Computation Time (s):1.733

Number of bisections: 289

MinMax Approximation:[-1.5186201e-001, -1.4563311e-001]

Tol: 6.2288993e-003

Minimax List: (Number of Boxes: 16)

box---

x=[-5.5223438e-001, -5.3996250e-001]

y=[-3.1416000e+000, -3.1170563e+000]

Minimax:[-1.4865319e-001,,-1.3288647e-001]

---box

...

8.6 QSI Solver

The QSI solver is the software implementation of the Quantified Set Inversion

(QSI) algorithm presented in Chapter 4. Two different modules can be mainly dif-

ferentiated in its implementation: a branch-and-bound algorithm and the modal

interval inclusion test, which corresponds to the QRCS solver presented in Section

8.4.

The sequence of actions carried out by the QSI solver is summarized in the

following steps:

1. The user introduces the problem definition in a text file using the grammar

from Table 8.18.

2. A parser interprets the text file and generates a binary tree for each one of

the involved constrains.

170

8.6 QSI Solver

3. A symbolic differentiation algorithm differentiates the binary trees with

respect to each incidence of the involved variables.

4. A symbolic algorithm studies the optimality of the involved constrains rep-

resented by the binary trees.

5. The branch-and-bound algorithm is launched. For each one of the resulting

boxes, the QRCS solver is used to test their consistency.

6. The obtained result is provided in a text file containing the computation

time, the number of bisections, a box containing the solution set and de-

noted by Hull, and three lists of boxes, one of solution boxes, another of

non-solution boxes and a last one of undefined boxes. QSI solver also pro-

vides a graphical output consisting on a two dimensional projections of the

generated solution.

For its implementation, the three extra C++ classes from Table 8.17 have

been created.

Table 8.17: QSI solver C++ classes.
Class Description
box Vector of ivalDb objects which represents a vector of free-variables (a box)
csp Vector of fstar objects representing the involved constraints.
qsi Main class containing a csp object and a STL list of box objects.

Table 8.18 shows the corresponding grammar for introducing a problem into

the QSI solver.

Table 8.19 shows an example of a QSI problem definition using the grammar

from Table 8.18 and Table 8.20 shows its corresponding output file.

For the problem of Table 8.19, the corresponding graphical output can be

observed in Figure 8.7. Where red boxes are boxes contained in the solution set,

blue boxes are outside of the solution set and green boxes are undefined boxes.

171

8.7 SQUALTRACK Solver

Table 8.18: QSI solver grammar.
Command Description
Algorithm=QSI; Select the QSI Solver.
%Parameters Commentaries started with %.
QSIEps=real_number; Interval size from which the bisection procedure of

the QSI algorithm does not bisect a variable.
Tolerance=real_number; Desired precision for the approximation of f ∗.
Epsilon=real_number; Interval size from which the bisection procedure of

the f ∗ algorithm does not bisect a variable.
PlotX=x; Allows to select the free variable to be plotted on

the x axis (graphical output).
PlotY=y; Allows to select the free variable to be plotted on

the y axis (graphical output).
F(var_name,[lb,hb]); Free variable with its associated interval.
U(var_name,[lb,hb]); Universally quantified variable with its associated

interval.
E(var_name,[lb,hb]); Existentially quantified variable with its associated

interval.
c:=f(var_name)op 0; Constraint definition where, f(var_name) is a continuous function and

operators >, <, ≥ or ≤.

Table 8.19: QSI solver grammar example.
Algorithm=QSI;

Epsilon=1e-2;

Tolerance=1e-2;

CSPEps=0.01;

PlotX=x;

PlotY=y;

% Variables

F(x,[-2,2]);

F(y,[-2,2]);

E(z,[-2,2]);

% Constraints

c:=pow(x,2)+pow(y,2)+pow(z,2)-1=0;

8.7 SQUALTRACK Solver

The SQUALTRACK solver is the software implementation of the fault detection

algorithm presented in Chapter 6 and developed in the context of the European

172

8.7 SQUALTRACK Solver

Table 8.20: QSI solver output.
Solution File:

Computation Time(s):1.763

Bisections:707

Hull:

x=[-0.9688, 0.9688]

y=[-0.9688, 0.9688]

Solution Boxes:

Box:

x=[-0.5, 0]

y=[-0.5, 0]

...

Non Solution Boxes:

Box:

x=[-2, -1]

y=[-2, -1]

...

Undefined Boxes:

Box:

x=[-0.03125, 0]

y=[-1.031, -1]

...

Figure 8.7: QSI graphical output.

173

Figures/sphere_simple.eps

8.7 SQUALTRACK Solver

CHEM project CHEM Consortium (2000). Figure 8.7 shows the icon of the

developed software for the CHEM project.

Figure 8.8: SQUALTRACK solver icon.

The SQUALTRACK solver can be decomposed into the following modules:

• A parser based on the Spirit framework (see Section 8.2.3.

• A symbolic algorithm, which builds the Analytical redundancy Relations

(ARRs) for each window length.

• A Communication Process Interface (CPI) which can read data from a text

file or from a real process.

• The QRCS solver presented in Section 8.4.

• The fault detection algorithm sketched in Section 6.2.3.

For its implementation, the three C++ classes from Table 8.17 have been

created.

The sequence of actions carried out by the SQUALTRACK solver is summa-

rized by the following steps:

1. The user introduces the problem definition in a text file using the grammar

from Table 8.22.

174

Figures/squaltrack-icon.eps

8.7 SQUALTRACK Solver

Table 8.21: SQUALTRACK solver C++ classes.
Class Description
data Vector of string, double and ivalDb objects which represents

the process data.
squaltrack Main class containing the fault detection routine.
sqtchart Class for representing the graphical output based on the

wxWidgets framework.

2. A parser interprets the input text file and generates, among other structures,

a binary tree representing the analytical redundancy relation (ARR) for a

time window length of 1.

3. A symbolic routine builds the analytical redundancy relations (ARRs) for

each one of the selected time window lengths.

4. A symbolic differentiation routine differentiates the ARRs with respect to

each incidence of the involved variables.

5. A symbolic routine studies the optimality of the resulting ARRs.

6. The fault detection routine is launched. For each sample time, the process

data is read and assigned to the corresponding ARRs. The ARRs are

evaluated using the QRCS solver.

7. The obtained result is provided in a numerical and graphical way through

the user interface.

Figure 8.9 graphically shows the SQUALTRACK solver architecture.

8.7.1 The parser

A parser, based on the Spirit framework, provides the set of commands given in

Table 8.22.

An example of a SQUALTRACK problem definition using the grammar from

Table 8.22 is shown in Table 8.23.

175

8.7 SQUALTRACK Solver

Parser

ARRs Generation
f∗ Algorithm

Parameters

ARRw=1

ARRs

CPI

Process Data

Graphical Output

Numerical Output

Input File

FD Algorithm

Figure 8.9: SQUALTRACK solver architecture.

8.7.2 Analytical Redundancy Relations construction

The output of the parser produces a binary tree corresponding to the function

model of length 1, then, it is necessary to automatically generate the binary tree

for the analytical redundancy relations (ARRs) corresponding to each one of the

introduced window lengths. This task is carried out through the manipulation

of the binary tree obtained with the parser. The implemented algorithm crosses

over the binary tree and looks for the different occurrences of the output variable.

Then, it recursively substitutes these occurrences by the same binary tree but with

the corresponding indexes for the new introduced variables and occurrences. For

example, given the following generic first order model

Y (k) = A ∗ Y (k − 1) + B ∗ U(k − 1), (8.2)

where Y (k) and Y (k − 1) are the output variable at time instants k and k − 1,

U(k−1) is the input variable and, A and B are model parameters. The graphical

176

Figures/sqt-modules.eps

8.7 SQUALTRACK Solver

Table 8.22: SQUALTRACK solver grammar.
Algorithm=SQT; Select the SQUALTRACK Solver.
InFile=input_file_name; Is the input file name from where the

process data is read. The data must be
organized by columns and the first row
must contain the name of the variables.

OutFile=output_file_name; Is the output file name where the
numerical results are written.

SampleTime=ts; Is the maximum available computing time
between two samples.

Windows={w1,w2,...,wn}; Is the set of window lengths.
Parameter(name,interval); Is a model parameter declaration where

name is the parameters name and interval

is the corresponding interval.
Measurement(name,r_noise,a_noise); Is a measured model input declaration

where, name is the name of the
measurements which must correspond
with the one of the input file, r_noise is
the relative noise expressed in percentage
and a_noise is the absolute noise.

State(name,r_noise,a_noise); Is the measured model output declaration
where name is the name of the
measurements which must correspond
with the one of the input file.

f:=F(Parameter,Measurements,State); Is any non-linear function involving the
declared parameters, measurements and
the state.

representation of the binary tree corresponding to the right part of the model

equation is represented in Figure 8.10.

where the subindexes represents the occurrences of the variables. Then, the

corresponding binary tree for a window length of 5 is represented in Figure 8.11.

8.7.3 Communication Process Interface

SQUALTRACK solver is presented in two different versions, one for working with

offline data and another for working with online data. Then, the communication

process interface (CPI) is different for each one of these versions.

177

8.7 SQUALTRACK Solver

Table 8.23: SQUALTRACK grammar example.
Algorithm=SQT;

%Parameters

InFile=input_file_name;

OutFile=output_file_name;

SampleTime=1;

Windows={1,5,25,50};

%Model parameters

Parameter(A,[1,2]);

Parameter(B,[3,4]);

%Measurements

Measurement(U,0.05,0);

%State variable

State(Y,0.05,0);

%Function model

f:=A*Y+B*U;

8.7.3.1 Offline CPI

The off-line version of the SQUALTRACK solver obtains the required process

data from a text file. For this purpose, standard C++ tools for reading/writing

on text files and manipulating character strings have been used. The unique

restriction about the data file provided by the user the ordering of the information.

The data has to be ordered by columns and separated by space characters. In

the first row of the file, the names of the variables, which must correspond with+*
A0 Y (k − 1)0

*
B0 U(k − 1)0

1

Figure 8.10: First order model representation.

178

Figures/sqt-model.eps

8.7 SQUALTRACK Solver+*
A0 +*

A1 +*
A2 +*

A3 Y (k − 1)0

*
B3 U(k − 4)0

*
B2 U(k − 3)0

*
B1 U(k − 2)0

*
B0 U(k − 1)0

1

Figure 8.11: First order model representation for a window length of 5.

the names of the variables declared in the problem definition, must be provided.

Finally, the file must have a ”.txt” extension. Table 8.24 shows an example of

the corresponding data file for the problem example of Table 8.23.

Table 8.24: SQUALTRACK data input file.
Y U

1.514855214 1.5

1.514563286 1.5

1.514563286 1.5

1.514563286 1.5

1.513979551 1.5

1.514855214 1.5

1.514855214 1.5

...

179

Figures/sqt-w-model.eps

8.7 SQUALTRACK Solver

8.7.3.2 Online CPI

In the context of the CHEM project CHEM Consortium (2000), an online version

of the SQUALTRACK solver has been implemented. This version of the solver

is provided with a communication process interface, developed by the CHEM

project, which allows to communicate with the process and with other software

tools devoted to solve other supervision tasks (e.g. diagnosis, re-scheduling). This

version of the solver has been implemented using Borland C++ Builder Builder

(2006) for compatibility reasons with the provided CPI. Figure 8.12 shows some

snapshots of the online version of the SQUALTRACK solver developed for The

Steam Pilot Plant at the Laboratoire d’Automatique et d’Informatique Industrielle

de Lille (France). This version of the SQUALTRACK solver allows to simultane-

ously supervise various subsystems of the process. By introducing a percentage, it

is possible to assign the computation time dedicated to each subsystem. A main

windows representing the whole process allows to easily visualize if any of the

subsystems is behaving faulty or not. It is also possible to visualize the envelopes

generated for each subsystem. A configuration window is also provided, which

allows to introduce the required parameters for the communication interface and

other configuration parameters concerning the execution.

8.7.4 Numerical and graphical outputs

The SQUALTRACK solver generates a numerical and a graphical output. The

numerical output consists on a text file containing the time step (Step), the

output variable (Xc), the inner (Inn) and outer (Out) approximations of the f ∗

computation, a boolean variable (Fault) representing the fault and the biggest

used window length (Window) for each time step. Table 8.25 shows an example

of this numerical output.

In order to provide a more friendly output to the final user, the SQUAL-

TRACK solver plots to the graphical user interface (GUI) the computed inner

and an outer approximations of the model output together with the measured out-

put of the system. As all these signals are represented by intervals, it is easy to

see if the outer approximation intersects or not with the measured output. Then,

180

8.7 SQUALTRACK Solver

Figure 8.12: SQUALTRACK solver online version.

181

Figures/online-sqt.eps

8.7 SQUALTRACK Solver

Table 8.25: SQUALTRACK numerical output.
Step Xc.Inf Xc.Sup Inn.Inf Inn.Sup Out.Inf Out.Sup Fault Window

2 1.43911 1.5906 1.39729 1.63865 1.39729 1.63865 0 2

3 1.43884 1.59029 1.39729 1.63865 1.39729 1.63865 0 2

4 1.43884 1.59029 1.39702 1.63835 1.39702 1.63835 0 2

5 1.43884 1.59029 1.27921 1.78252 1.27921 1.78252 0 5

6 1.43884 1.59029 1.27921 1.78252 1.27921 1.78252 0 5

7 1.43884 1.59029 1.27896 1.78222 1.27896 1.78222 0 5

...

it is possible to determine in a visual way if the process is behaving normally or

faulty.

Figure 8.13 shows the graphical output of the SQUALTRACK solver. The

upper graph shows the approximations (inner in green and outer in red) for the

output variable and the corresponding measurement (in black). Note that often

inner and outer approximations are not graphically distinguishable because they

are very close. The graph in the middle indicates the longest window length that

has been used at each time step by means of green bars. Finally, the lower graph

shows a red bar when a fault is detected.

Figure 8.13: SQUALTRACK solver graphical output.

182

Figures/sqtgui.eps

8.8 Generic user interface

8.8 Generic user interface

All the solvers presented in this chapter have been centralized into a unique user

interface, completely developed using the wxWidgets framework and which has

been referred as Modal Interval Solver (MISO). This GUI allows to introduce

the problems and to obtain the corresponding numerical and graphical outputs.

A problem definition can be directly introduced by taping the commands in the

main window using the corresponding grammar or by loading it from a text file

using the window menu option File->Open. It is also possible to save the realized

changes by selecting File->Save or to save the problem to a text file with a dif-

ferent name selecting File->Save as. To quit the application, the File->Quit

option has to be selected. Once the problem definition has been introduced, it

can be executed by selecting Execution->Run. During the execution it can be

paused (Execution->Pause) or interrupted (Execution->Break). Once the exe-

cution is terminated, the output file automatically appears in the main window.

It is possible to switch between the input file and the output file using the options

(View->Output/View->Input). Solvers which dispose of a graphical output au-

tomatically show it during the execution. Figure 8.14 shows different snapshots

of the MISO user interface.

8.9 Modal Interval Remote Solver

With the purpose of spreading the use of MIA based solvers, a web page allowing

to remotely use them from a PC with an Internet connection, has been created.

The main advantage of using a centralized system is that it guaranties that all the

users are using the last updated version. Another interesting property is the infor-

mation feedback obtained from the users, which allows to continuously improve

the solvers. The web application has been developed by Flórez from MiceLab lab-

oratory, using the Common Gateway Interface (CGI) standard (CGI), HTML

language HTML (2006) and the PERL programming language Perl (2006).

The functioning of the Modal Interval Remote Solver(MIRS) is summarized

in the following steps.

183

8.9 Modal Interval Remote Solver

Input File

Numerical Output File

QSI Graphical Output

SQUALTRACK Graphical Output

Figure 8.14: Modal Interval Solver graphical user interface.

1. The user access from a web browser to the following URL MiceLab (2005)

and chooses from the main page which solver he wants to use. This main

page provides a short description of the available solvers. Figure 8.15 shows

the main page of the MIRS.

2. Once the solver has been selected, the user can introduce the problem in

the available text boxes. Instructions about how to introduce the problems

are provided in the same web page by clicking the Help button. It is also

possible to load a previously defined problem from a stored text file by

clicking the Browse button. The user can also select different examples

from a combo box. Figure 8.16 a snapshot of the MIRS corresponding to

the QSI solver.

184

Figures/miso_snapshots.eps

8.9 Modal Interval Remote Solver

Figure 8.15: Modal Interval Remote Solver main page.

3. Once the problem has been introduced, the user can submit it by clicking

the Submit button. Then, the server recovers the data from the text boxes

and generates a text file with the suitable syntax for the corresponding

solver. For this purpose, a PERL parser has been employed.

4. The server executes the MISO with the generated text file as a parame-

ter. The server accepts five simultaneous users. Each solver has a limited

computation time in order to avoid too long computations.

5. The MISO generates a solution text file and the server processes it by means

of a PERL parser. Then, it shows the results to the web page. The QSI

solver provides a graphical output which is possible to visualize by clicking

the link Click here to see Interactive Image.

185

Figures/mirs-main.eps

8.10 Conclusions

Figure 8.16: MIRS interface corresponding to the QSI solver.

8.10 Conclusions

This chapter has overview the implementation of the different algorithms pre-

sented in this thesis. A high-level explanation has been given without entering

into low-level details of the implementation. A web page allowing to remotely use

the implemented algorithms in Internet, has also been presented. These solvers

are still under development, therefore, they can contain some bugs and they are

subject to modifications.

186

Figures/mirs-qsi.eps

8.10 Conclusions

Figure 8.17: MIRS graphical output for the QSI solver.

187

Figures/mirs-graph.eps

Chapter 9

Conclusions and Future Work

This chapter summarizes the principal contributions of this thesis. Suggestions

for further work in some of the subjects encompassed by the research contained

in this thesis are also included. At the end of the chapter, a list of related

publications is provided.

9.1 Conclusions

This thesis has focused on the resolution of quantified real constraints (QRCs).

In particular, a new methodology, based on Modal Interval Analysis (MIA), has

been proposed for solving QRCs in an approximated, but guaranteed way.

Two main motivations have lead to the realization of this thesis. The first

and most important motivation consists of making a contribution to the research

being carried out on solving QRCs by improving some aspects of existing meth-

ods. The second motivation was the aim of exploiting the potential of MIA to

solve problems that are considered to be difficult.

The methodology developed was validated by solving several problems from

the literature, along with original problems. Comparisons with the state-of-the-

art techniques on quantified real constraint solving were carried out, and the

results obtained regarding the contribution of the proposed technique are con-

vincing. The different algorithms presented in this thesis have been implemented

188

9.1 Conclusions

in the form of solvers, which allows for easy use by a user.

The proposed methodology was also successfully applied to the resolution of

real engineering problems formulated as QRCs. In the context of the European

project, CHEM CHEM Consortium (2000), a software tool devoted to the de-

tection of faults in dynamic systems was developed. This software tool, known

as the SQUALTRACK solver, was applied to different industrial processes, and

its utility was demonstrated. Another original application to the control of a

sailboat was also implemented. This application combined the proposed method-

ology for solving QRCs with feedback linearization techniques. The viability of

the proposed approach was proved from simulation results.

9.1.1 Contributions

The main contribution of this thesis can been seen from two different points of

view. From the first viewpoint, this thesis exploits the full potential of MIA,

something that has not been done before by previous works based on MIA. This

was carried out by means of the resolution of QRCs, which are considered to be

difficult problems. Moreover, this thesis identifies the main advantages and the

principal drawbacks of using MIA approach with respect to the other existing

approaches used for solving QRCs.

From the second viewpoint, the realization of this thesis represents a step

forward in research into quantified real constraint solving. The proposed MIA-

based approach, solves QRCs in a natural and elegant way. Moreover, using

a comparison with some state-of-the-art techniques, it was proved that the pro-

posed methodology was computationally more efficient in some cases, and it could

solve problems that were out of the scope of current software implementations.

The more detailed contributions of this thesis are summarized as follows.

• Chapter 2 gave a precise problem definition and a detailed survey of the

existing techniques used for solving QRCs, highlighting their advantages

and limitations.

189

9.1 Conclusions

• Chapter 3 gave an intuitive introduction to MIA, providing several exam-

ples and a more standard mathematical notation. An efficient algorithm, f ∗

algorithm, used for the computation of modal interval extensions of a con-

tinuous function was presented. Different examples and comparisons with

some state-of-the-art techniques were provided, which proved the efficiency

of the proposed algorithm. An algorithm for proving the consistency of a

class of QRCs was also presented. This algorithm was a direct application

of the f ∗ algorithm to the resolution of QRCs.

• Chapter 4 gave a new algorithm for computing the inner an outer of the so-

lution set for a class of QRCs. This algorithm was based on the f ∗ algorithm

and branch-and-bound techniques, and is referred to as the “Quantified Set

Inversion (QSI) algorithm”. Several examples and a comparison with some

state-of-the-art techniques showed the viability of the proposed approach.

• Chapter 5 gave an original continuous minimax optimization algorithm

based on the f ∗ algorithm architecture. This work can be seen as a collateral

result of the development of the f ∗ algorithm and represents an important

and original application of MIA.

• Chapter 6 gave a formulation of the problem of robust fault detection in

dynamic systems as a QRC. The implementation and validation in actual

processes of a fault detection tool for dynamic systems was provided.

• Chapter 7 gave an original application of the presented QRC approach to

the control of a sailboat. This combined the QSI algorithm with feedback

linearization techniques. The approach was validated using simulation re-

sults.

• Chapter 8 provided the implementation of the presented algorithms in the

thesis to facilitate and spread their utilization. A Web page that allowed for

the online utilization of the algorithms was developed. All the solvers were

provided, along with several examples and a corresponding user manual.

• Finally, the methodology developed in this thesis is currently being applied

in other work. For example, work involving Computer Graphics Flórez

190

9.2 Future work

et al. (2005), Structural Assessment Casas et al. (2005), and Fault Diagnosis

Calderón-Espinoza et al. (2004) is using algorithms developed in this thesis.

9.2 Future work

This thesis represents a small contribution to the field of quantified real constraint

solving. Therefore, future research is certainly needed. Some subjects where

the research discussed in this thesis can continue are described in the following

subsections.

9.2.1 Combining approaches

One of the main limitations of the existing approaches for solving QRCs is the

computational complexity. Methods based on pruning techniques (e.g. Interval

Constraint Propagation Benhamou & Older (1997)) try to reduce the exponential

complexity of branch-and-bound algorithms by replacing expensive exhaustive

searches using methods for pruning elements from the search space where it is easy

to show that they do not contain solutions. However, in practice, it is observed

that these techniques are inefficient when equality predicates are involved and the

inner approximation of the solution set is required. In particular, the technique

proposed in this thesis has been shown to be efficient in this case. Thus, an

interesting area for future work consists of combining the present methodology

with other existing approaches to take advantage of each of them.

9.2.2 Modal interval constraint propagation

Interval Constraint Propagation has been shown to be a successful approach for

solving QRCs. However, it is limited with respect to the form of the QRCs

that it can deal with, and there are many aspects concerning the computational

complexity that can be improved on. An interesting line of research line is a

study of the possible combination of Constraint Propagation techniques with

191

9.3 Related publications

MIA. Some studies have already been carried out in that direction, but there are

still some important theoretical aspects to be solved.

9.2.3 Solving the vectorial case

Solving QRCs with equality predicates sharing existentially quantified variables

remains an open problem. Recent work by Goldsztejn Goldsztejn & Jaulin (2005)

proposes an original method to tackle this problem. However, this approach is still

not general enough, because it requires strong conditions in the form of involved

constraints, and does not guarantee termination. Therefore, research into a more

general approach for solving this problem should be considered for future work.

9.2.4 New applications

We envisage the possibility to apply the proposed approach for solving QRCs to

modal predictive control and to path planning and collision avoidance. Finally,

we are aware of recent application of MIA to mechanical design Wang (2006).

9.3 Related publications

The development of this thesis has generated a set of publications in different

international journals, conferences, and workshops.

9.3.1 Publications in journals

• Quantified Set Inversion algorithm with applications to control.

Pau Herrero, Miguel A. Sainz, Josep Vehi, Luc Jaulin.

Reliable Computing, 2005, vol. 11-5, pag. 369 - 382.

• Detección de fallos en procesos reales basada en modelos inter-

valares y múltiples ventanas temporales deslizantes.

Joaquim Armengol, Josep Veh́ı, Miguel Ángel Sainz, Pau Herrero.

Computación y Sistemas, 2002, vol. 6-2, pag. 94 - 102.

192

9.3 Related publications

• Combining set computation and feedback linearization for control.

Pau Herrero, Luc Jaulin, Josep Veh́ı, Miguel A. Sainz.

Automatica, Elsevier Science, Oxford, UK (Submitted).

• An extended interval inclusion test for proving first-order logic

formulas over the reals.

Miguel A. Sainz, Pau Herrero, Luc Jaulin, Joaquim Armengol.

Journal of Applied Mathematics and Computation, Elsevier Science, Ox-

ford, UK (Submitted).

• Continuous minimax optimization using modal intervals.

Miguel A. Sainz, Pau Herrero, Josep Veh́ı, Joaquim Armengol.

Journal of Mathematical Analysis and Applications, Elsevier Science, Ox-

ford, UK (Submitted).

9.3.2 Publications in conferences

• Parameter identification with quantifiers.

Remei Calm, Miguel A. Sainz, Pau Herrero, Josep Vehi, Joaquim Armen-

gol.

5th IFAC Symposiumon Robust Control Design (ROCOND06), 2006.

• Detección de fallos en procesos reales (Proyecto CHEM).

Joaquim Armengol, Pau Herrero, Miguel Ángel Sainz.

El análisis de intervalos en España: desarrollos, herramientas y aplicaciones,

2005, pag. 229 - 238.

• Bridge nonitoring and assessment under uncertainty via Interval

Analysis.

J. R. Casas, J. C. Matos, J.A. Figueiras, J. Veh́ı, O. Garćıa and P. Herrero.

Proceedings of the 9th International Conference On Structural Safety And

Reliability - ICOSSAR 2005 9th International Conference On Structural

Safety And Reliability - ICOSSAR2005, pag. 487 - 494.

193

9.3 Related publications

• Inner and outer approximation of the polar diagram of a sailboat.

Pau Herrero, Luc Jaulin, Josep Veh́ı, Miguel A. Sainz.

Interval analysis, constraint propagation, applications (IntCP05), 2005.

• Visualization of Implicit Surfaces using Quantified Set Inversion.

Jorge Flórez, Pau Herrero, Miguel A. Sainz and Josep Vehi.

Proceedings IntCP 2005 Interval Analysis, Constraint Propagation, Appli-

cations, 2005.

• Combining interval and qualitative reasoning for fault diagnosis.

Gabriela Calderón-Espinoza, Joaquim Armengol, Miguel Ángel Sainz, Pau

Herrero.

Proceedings of IFAC World Congress 16th IFAC World Congress, 2005.

• Application of interval models to the detection of faults in indus-

trial processes.

Joaquim Armengol, Josep Veh́ı, Miguel Ángel Sainz, Pau Herrero.

World Automation Congress 2004 (WAC 2004), 2004.

• Industrial application of a fault detection tool based on interval

models.

Joaquim Armengol, Josep Veh́ı, Miguel Ángel Sainz, Pau Herrero.

International Conference on Integrated Modeling and Analysis in Applied

Control and Automation 2004 (IMAACA 2004) (part of International Mediter-

ranean Modeling Multiconference, I3M 2004), 2004.

• Quantified Set Inversion with applications to control.

Pau Herrero, Miguel A. Sainz, Josep Veh́ı and Luc Jaulin.

Proceedings 2004 IEEE CCA/ISIC/CACSD, 2004.

• Fault detection in a pilot plant using interval models and multiple

sliding time windows.

Joaquim Armengol, Josep Veh́ı, Miguel Ángel Sainz, Pau Herrero.

Preprints SAFEPROCESS 2003 5th IFAC Symposium on Fault Detection,

Supervision and Safety for Technical Processes (SAFEPROCESS 2003),

2003, pag. 162 2002.

194

9.3 Related publications

9.3.3 Publications in workshops

• Solving problems on minimax optimization.

Miguel A. Sainz, Pau Herrero, Josep Vehi, Joaquim Armengol.

PARA’04 Workshop on State-of-Art in Scientific Computing, 2004.

• Quantified Set Inversion algorithm.

Pau Herrero, Miguel A. Sainz, Josep Veh́ı and Luc Jaulin.

Proceedings 2nd International Workshop on Interval Mathematics and Con-

straint Programming IMCP-2004, 2004, pag. 272 - 279.

195

Appendix A

Problem Definitions

This appendix provides the sources for a set of problems solved along the thesis,

to be introduced to the corresponding solvers presented in Chapter 8.

A.1 FSTAR Solver problems

Source 8 Program source for example 3.2.11.
% Parameters

Algorithm=FSTAR;

Epsilon=1e-4;

Tolerance=1e-4;

% Variables

u=[0,6];

v=[8,2];

z=[9,-4];

% Function

f:=pow(u,2)+pow(v,2)+2*u*v-20*u-20*v+100-10*sin(z);

196

A.2 QRCS Solver problems

A.2 QRCS Solver problems

Source 9 Program source for example 3.2.11.
% Parameters

Algorithm=QRCS;

Epsilon=1e-4;

Tolerance=1e-4;

% Variables

U(u,[0,6]);

E(v,[2,8]);

E(z,[-4,9]);

% Predicate

qc:=pow(u,2)+pow(v,2)+2*u*v-20*u-20*v+100-10*sin(z)=0;

Source 10 Program source for example 3.4.2.
% Parameters

Algorithm=QRCS;

Epsilon=0.0001;

Tolerance=0.0001;

% Variables

U(x1,[0.001,1]);

U(x2,[-0.3,-2]);

U(u,[-1,1]);

E(v,[-2,2]);

% Predicate

qc:=x1*u-x2*pow(v,2)*sin(x1)>0;

197

A.3 QSI Solver problems

Source 11 Program source for example 3.4.3.
% Parameters

Algorithm=QRCS;

Epsilon=1e-1;

Tolerance=1e-1;

% Variables

U(x1,[-1,-0.5]);

U(x2,[-1,-0.5]);

E(u,[-0.5,0.5]);

% Predicate

qc:=min(-x1+x2*u+pow(x1,2),-x2+(1+pow(x1,2))*u+pow(u,3))>0;

A.3 QSI Solver problems

Source 12 Program source for example 4.2.1.
% Parameters

Algorithm=QSI;

Epsilon=1e-2;

Tolerance=1e-2;

CSPEps=0.05;

PlotX=x1;

PlotY=x2;

% Free Variables

F(x1,[-10,10]);

F(x2,[-10,10]);

% Quantified Variables

U(u,[-1,1]);

E(v,[-2,2]);

c:=x1*u-x2*pow(v,2)*sin(x1)>0;

198

A.3 QSI Solver problems

Source 13 Program source for example 4.2.2.
% Parameters

Algorithm=QSI;

Epsilon=1e-2;

Tolerance=1e-2;

CSPEps=0.05;

PlotX=x1;

PlotY=x2;

% Free Variables

F(x1,[-1,1]);

F(x2,[-1,1]);

E(u,[-0.5,0.5]);

% Constraints

c:=min(-x1+x2*u+pow(x1,2),-x2+(1+pow(x1,2))*u+pow(u,3))>0;

Source 14 Program source for example 1 of Section 4.3.1.
Algorithm=QSI;

Epsilon=1e-3;

Tolerance=1e-3;

CSPEps=0.01;

PlotX=b;

PlotY=c;

% Variables

F(q,[-3,3]);

U(p1,[0, 1]);

% Constraints

c:=9+48*p1+48*q+32*p1*q>=0;

c:=1+p1+q>=0;

c:=-16*p1-16*q+16*pow(p1,2)+16*pow(q,2)+7>=0;

199

A.3 QSI Solver problems

Source 15 Program source for example 2 of Section 4.3.1.
% Parameters

Algorithm=QSI;

Epsilon=1e-2;

Tolerance=1e-2;

CSPEps=0.1;

PlotX=c1;

PlotY=c2;

% Free variables

F(c1,[0.1,1]);

F(c2,[0.1,1]);

% Quantified variables

U(p1,[0.9,1.1]);

U(p2,[0.9,1.1]);

U(p3,[0.9,1.1]);

% Constraints

c:=(1+c2*p1)*((p2*pow(p3,2)+p3)*(p2*p3+1)-p2*(pow(p3,2)+

c2*p1*pow(p3,2)))-pow(p2*p3+1,2)*(c1*p1) > 0;

c:=pow(p2*p3+1,2) - p2*(p3+c2*p1*p3) > 0;

c:=c1*p1*pow(p3,2) > 0;

200

A.3 QSI Solver problems

Source 16 Program source for example of Section 4.3.2.
% Parameters

Algorithm=QSI;

Epsilon=1e-2;

Tolerance=1e-2;

CSPEps=0.01;

PlotX=x1;

PlotY=x2;

% Variables

F(x1,[-2,2]);

F(x2,[-2,2]);

E(x3,[-1,1]);

% Constraints

c:=pow(x1,2)+pow(x2,2)-x3=0;

201

A.3 QSI Solver problems

Source 17 Program source for example of Section 4.3.3.
% Parameters

Algorithm=QSI;

Epsilon=1e-2;

Tolerance=1e-2;

CSPEps=0.01;

PlotX=p1;

PlotY=p2;

% Free variables

F(p1,[0,1.2]);

F(p2,[0,0.5]);

%Quantified variables

E(t1,[-0.25,1.75]);

E(t2,[0.5,2.5]);

E(t3,[1.25,3.25]);

E(t4,[2,4]);

E(t5,[5,7]);

E(t6,[8,10]);

E(t7,[12,14]);

E(t8,[16,18]);

E(t9,[20,22]);

E(t10,[24,26]);

E(c1,[2.7,12.1]);

E(c2,[1.04,7.14]);

E(c3,[-0.13,3.61]);

E(c4,[-0.95,1.15]);

E(c5,[-4.85,-0.29]);

E(c6,[-5.06,-0.36]);

E(c7,[-4.1,-0.04]);

E(c8,[-3.16,0.3]);

E(c9,[-2.5,0.51]);

E(c10,[-2,0.67]);

%Constraints

c:=20*exp(-p1*t1)-8*exp(-p2*t1)-c1=0;

c:=20*exp(-p1*t2)-8*exp(-p2*t2)-c2=0;

c:=20*exp(-p1*t3)-8*exp(-p2*t3)-c3=0;

c:=20*exp(-p1*t4)-8*exp(-p2*t4)-c4=0;

c:=20*exp(-p1*t5)-8*exp(-p2*t5)-c5=0;

c:=20*exp(-p1*t6)-8*exp(-p2*t6)-c6=0;

c:=20*exp(-p1*t7)-8*exp(-p2*t7)-c7=0;

c:=20*exp(-p1*t8)-8*exp(-p2*t8)-c8=0;

c:=20*exp(-p1*t9)-8*exp(-p2*t9)-c9=0;

c:=20*exp(-p1*t10)-8*exp(-p2*t10)-c10=0;

202

A.3 QSI Solver problems

Source 18 Program source for example of Section 4.3.4.
% Parameters

Algorithm=QSI;

Epsilon=1e-2;

Tolerance=1e-2;

CSPEps=0.1;

PlotX=x;

PlotY=y;

% Free variables

F(x,[0,1]);

F(y,[-1,1]);

% Quantified variables

E(u3,[-1,1]);

% Constraints

c:=139*y-112*x*y-388*pow(x,2)*y+215*pow(x,3)*y-38*pow(y,3)+

185*x*pow(y,3)-(-38*y-170*x*y+148*pow(x,2)*y+4*pow(y,3)+

u3*(14-10*x+37*pow(x,2)-48*pow(x,3)+8*pow(x,4)-13*pow(y,2)-

13*x*pow(y,2)+20*pow(x,2)*pow(y,2)+11*pow(y,4)))/

(-52-2*x+114*pow(x,2)-79*pow(x,3)+7*pow(y,2)+14*x*pow(y,2))

*(-11+35*x-22*pow(x,2)+5*pow(x,2)+10*pow(x,3)-17*x*pow(y,2))+

u3*(-44+3*x-63*pow(x,2)+34*pow(y,2)+142*pow(x,3)+63*x*pow(y,2)-

54*pow(x,4)-69*pow(x,2)*pow(y,2)-26*pow(y,4))=0;

203

A.4 MINIMAX Solver problems

A.4 MINIMAX Solver problems

Source 19 Program source for example 5.3.1.
% Parameters

Algorithm=MINIMAX;

Epsilon=1e-6;

Tolerance=1e-6;

Optim=1;

Solution=1;

% Variables

MIN(x1,[0,6]);

MAX(x2,[2,8]);

% Function

f:=pow(x1,2)+pow(x2,2)+2*x1*x2-20*x1-20*x2+100;

Source 20 Program source for example 5.3.2.
% Parameters

Algorithm=MINIMAX;

Epsilon=1e-3;

Tolerance=1e-3;

Optim=1;

Solution=1;

% Variables

MIN(x,[-3.14, 3.14]);

MAX(y,[-3.14, 3.14]);

% Function

f:=pow(cos(y)+cos(2*y+x),2);

204

A.4 MINIMAX Solver problems

Source 21 Program source for example 5.3.3.
% Parameters

Algorithm=MINIMAX;

Epsilon=1e-3;

Tolerance=1e-2;

Optim=1;

Solution=1;

% Variables

MIN(x1,[-1, 2]);

MAX(x2,[-1, 1]);

MAX(x3,[-1, 1]);

% Function

f:=pow(exp(-0.1*x1)-exp(-0.1*x2)-(exp(-0.1)-exp(-1))*x3,2)+

pow(exp(-0.2*x1)-exp(-0.2*x2)-(exp(-0.2)-exp(-2))*x3,2)+

pow(exp(-0.3*x1)-exp(-0.3*x2)-(exp(-0.3)-exp(-3))*x3,2)+

pow(exp(-0.4*x1)-exp(-0.4*x2)-(exp(-0.4)-exp(-4))*x3,2)+

pow(exp(-0.5*x1)-exp(-0.5*x2)-(exp(-0.5)-exp(-5))*x3,2)+

pow(exp(-0.6*x1)-exp(-0.6*x2)-(exp(-0.6)-exp(-6))*x3,2)+

pow(exp(-0.7*x1)-exp(-0.7*x2)-(exp(-0.7)-exp(-7))*x3,2)+

pow(exp(-0.8*x1)-exp(-0.8*x2)-(exp(-0.8)-exp(-8))*x3,2)+

pow(exp(-0.9*x1)-exp(-0.9*x2)-(exp(-0.9)-exp(-9))*x3,2)+

pow(exp(-x1)-exp(-x2)-(exp(-1)-exp(-10))*x3,2);

205

A.4 MINIMAX Solver problems

Source 22 Program source for example 5.3.5.
% Parameters

Algorithm=MINIMAX;

Epsilon=1e-3;

Tolerance=1e-3;

Optim=1;

Solution=1;

% Variables

MIN(x1,[0,6]);

MAX(x2,[2,8]);

% Function

f:=pow(x1,2)+pow(x2,2)+2*x1*x2-20*x1-20*x2+100;

% Constraints

c:=pow(x1-5,2)+pow(x2-3,2)-4>0;

c:=pow(x1-5,2)+pow(x2-3,2)-16<0;

206

A.4 MINIMAX Solver problems

Source 23 Program source for example 5.3.6.
% Parameters

Algorithm=MINIMAX;

Epsilon=1e-3;

Tolerance=1e-3;

Optim=1;

Solution=1;

% Variables

MIN(x1,[0,6]);

MAX(x2,[2,8]);

% Function

MIN(x,[-3.14, 3.14]);

MAX(y,[-3.14, 3.14]);

f:=pow(cos(y)+cos(2*y+x),2);

% Constraints

c:=y-x*(x+2*3.14)<0;

c:=y-x*(x-2*3.14)<0;

207

A.5 SQUALTRACK Solver problems

A.5 SQUALTRACK Solver problems

Source 24 Program source for example of Section 6.3.1.
Algorithm=SQT;

%Parameters

InFile=reactor_leakage;

OutFile=Solution;

SampleTime=3;

Windows={5,50,75,100};

%Measurements

Measurement(F1,0.03,0);

Measurement(F3,0.03,0);

%State variable

State(LT1,0.05,0);

%Function model

f:=LT1+((F3+20)/3600-F1/3600);

208

A.5 SQUALTRACK Solver problems

Source 25 Program source for example of Section 6.3.2.
Algorithm=SQT;

%Parameters

InFile=resistor_shutdown;

OutFile=Solution;

SampleTime=3;

WindowGraph=1000;

Windows={10,25};

%Measurements

Measurement(LT1,0.03,0);

Measurement(F3,0.05,0);

Measurement(R1,0,0);

%Model parameters

Parameter(Loss,[0.01,0.02]);

Parameter(Ts,[3,3]);

Parameter(Tenv,[18,19]);

Parameter(Ro,[999,1001]);

Parameter(Ce,[4185,4187]);

%State variable

State(T1,0.03,0);

%Function model

f:=(1-Ts/(LT1/1000)*(F3/3600000+Loss/(Ro*Ce)))*T1+(Ts/(LT1/1000))*

(F3*[18,20]/3600000+(R1*[24,30]-Loss*Tenv)/(Ro*Ce));

209

A.5 SQUALTRACK Solver problems

Source 26 Program source for example of Section 6.3.3.
Algorithm=SQT;

%Parameters

InFile=esc31;

OutFile=Solution;

SampleTime=3;

Windows={2,5,10,15};

%Model parameters

Parameter(A,[0.97,0.999]);

Parameter(B,[0.00095,0.0315]);

%Measurements

Measurement(U,0.05,0.001);

%State variable

State(Y,0.05,0);

%Function model

f:=A*Y+B*U;

210

References

Abdallah, C., Dorato, P., Yang, W., Liska, R. & Steinberg, S. (1996).

Applications of quantifier elimination theory to control system design. 4th IEEE

Mediterranean Symposium on Control and Automation, Crete, Greece.. 1

Abdallah, C., Dorato, P., Famularo, D. & Yang, W. (1999). Robust

nonlinear feedback design via quantifier elimination theory. International Jour-

nal of Robust and Non-Linear Control , 9, 817–822. 16

Armengol, J. (1999). Application of Modal Interval Analysis to the Simula-

tion of The Behaviour of Dynamic Systems with Uncertain Parameters . Ph.D.

thesis, Universitat de Girona. Catalonia, Spain. 4, 114

Armengol, J., Veh́ı, J., Sainz, M.Á. & Herrero, P. (2003). Fault detec-

tion in a pilot plant using interval models and multiple sliding time windows. In

5th IFAC Symposium on Fault Detection, Supervision and Safety for Technical

Processes SAFEPROCESS 2003. Washington, D.C., U.S.A.. 114, 121

Armengol, J., Veh́ı, J., Sainz, M.Á. & Herrero, P. (2004). Industrial

application of a fault detection tool based on interval models. In International

Conference on Integrated Modeling and Analysis in Applied Control and Au-

tomation 2004 (IMAACA 2004) (part of International Mediterranean Modeling

Multiconference, I3M 2004). 114, 121

Balakrishnan, K. & Honavar, V. (1998). Intelligent diagnosis systems. Jour-

nal of Intelligent Systems, 8 (3), 239–290. 114

211

REFERENCES

Basso, P. (1985). Optimal search for the global maximum of functions with

bounded seminorm. SIAM J. Numer. Anal., 9, 888–903. 95

Benhamou, F. & Goualard, F. (2000). Universally quantified interval con-

straints. 5, 8, 29

Benhamou, F. & Older, W. (1997). Applying interval arithmetic to real,

integer, and boolean constraints. Journal of Logic Programming , 32, 1–24. 2,

12, 16, 118, 191

Benhamou, F., Goualard, F., Granvilliers, L. & Puget, J.F. (1999).

Revising hull and box consistency. In Proc. Sixteenth Int. Conf. on Logic Pro-

gramming (ICLP’99), the MIT Press. 17, 19, 21

Benhamou, F., Goualard, F., Languenou, E. & Christie, M. (2004). In-

terval constraint solving for camera control and motion planning. ACM Trans.

Comput. Logic, 5, 732–767. 29

Blanke, M., Kinnaert, M., Lunze, J. & Staroswiecki, M. (2003). Diag-

nosis and fault-tolerant control. Springer . 115

BOOST (2006). Boost C++ Libraries. http://www.boost.org/. 156

Bordeaux, L. & Monfroy, E. (2002). Beyond np: Arc-consistency for quan-

tified constraints. In Proceedings CP-2002 , Ithaca, NY. 8

Bordeaux, L., Monfroy, E. & Benhamou, F. (2001). Improved bounds

on the complexity of kb-consistency. Proceedings of 17th Int. Joint Conf. on

Artificial Intelligence. 25

Brown, C. (2004). Quantifier Elimination by Partial Cylindrical Algebraic De-

composition. http://www.cs.usna.edu/∼qepcad/B/QEPCAD.html. 15

Builder, C. (2006). Borland C++ Builder .

http://www.borland.com/us/products/cbuilder/index.html. 180

212

REFERENCES

Calderón-Espinoza, G., Armengol, J., Sainz, M.Á. & Herrero, P.

(2004). Combining interval and qualitative reasoning for fault diagnosis. In

Proceedings of the 16th IFAC World Congress. 135, 191

Calm, R. (2006). Análisis intervalar modal: su construcción teórica, imple-

mentación y posibilidades de aplicación a la simulación y al control . Ph.D.

thesis, Universitat de Girona. Catalonia, Spain. 4

Calm, R., Sainz, M., Herrero, P., Vehi, J. & Armengol, J. (2006). Pa-

rameter identification with quantifiers. 5th IFAC Symposiumon Robust Control

Design (ROCOND06). 72

Casas, J.R., Matos, J.C., Figueiras, J.A., Veh́ı, J., Garćıa, O. &

Herrero, P. (2005). Bridge nonitoring and assessment under uncertainty via

interval analysis. Proceedings of the 9th International Conference On Structural

Safety And Reliability - ICOSSAR 2005 9th. 191

CCA2006 (2006). Computability and Complexity in Analysis. http://cca-

net.de/cca2006/. 66

(CGI) (2006). Common Gateway Interface. http://hoohoo.ncsa.uiuc.edu/cgi/.

183

Chauvin, C. & Müller, M. (1951). An application of quantifier elimination

to mathematical biology. 16

Chauvin, C., Muller, M. & Weber, A. (1994). An application of quanti-

fier elimination to mathematical biology. In Computer Algebra in Science and

Engineering.World Scientific, 287–296. 2

CHEM Consortium (2000). Advanced decision support system for chemi-

cal/petrochemical manufacturing processes. 114, 121, 122, 174, 180, 189

Code::Blocks (2006). The open source, cross platform Free C++ IDE..

http://www.codeblocks.org/. 154

Collavizza, H., Delobel, F. & Rueher, M. (1999). Comparing partial

consistencies. Reliable Computing , 5, 1–16. 25

213

REFERENCES

Collins, G.E. (1975). Quantifier elimination for real closed fields by cylindri-

cal algebraic decomposition. In 2nd GI Conf. Automata Theory and Formal

Languages, vol. 33, 134–189, Springer. 8, 14, 26

Dao, M. (2005). Proj2D Solver . http://www.istia.univ-angers.fr/∼dao/. 29, 79,

88, 144

Dao, M., Baguenard, X. & Jaulin, L. (2003). Projection d’ensembles pour

l’estimation de parameters, la conception de robot et la commande robuste.

Journées Doctorale d’Automatique - Valenciennes. 29

Davenport, J.H. & Heintz, J. (1988). Real quantifier elimination is doubly

exponential. Journal of Symbolic Computation, 5, 29–35. 2, 14

Davis, E. (1975). Understanding line drawings of scenes with shadows. In Win-

ston, P. H., editor, The Psychology of Computer Vision. McGraw-Hill, New

York.. 16

de Guzman, J. (2006). Spirit Framework . http://spirit.sourceforge.net/. 155

Demyanov, V.F. & Malozemov, V.N. (1990). Introduction to minimax.

Dover Publications Inc., New York USA. 96, 106, 112

Dorato, P. (2000). Quantified multivariate polynomial inequalities. IEEE Con-

trol Systems Magazine, 20(5), 48–58. 1, 78

Dorato, P., Yang, P. & Abdallah, C. (1997). Robust multi-objective feed-

back design by quantifier elimination. J. Symbolic Computation, 24(2), 153–

159–58. 16

Ebbinghaus, H.D., Flum, J. & Thomas, W. (1984). Mathematical logic.

Springer Verlang . 8, 9

EBNF (2003). Extended Backus Normal Form.

http://www.garshol.priv.no/download/text/bnf.html/. 156

Eckel, B. (2000). Thinking in C++. PlanetPDF.com. 154

214

REFERENCES

Elkaim, G. & Kelbley, R. (2006). Control architecture for segmented tra-

jectory following of a wind-propelled autonomous catamaran. Proceedings of

the AIAA Guidance, Navigation, and Control Conference, AIAA GNC2006,

Keystone, CO . 137

Elkaim, G., Woodley, B. & Kelbley, R. (2006). Model free subspace h-

infinity control for an autonomous catamaran. Proceedings of the ION/IEEE

Position, Location, and Navigation Symposium, ION/IEEE PLANS2006, San

Diego, CA. 137

Fliess, M., Lévine, J., Martin, P. & Rouchon, P. (1995). Flatness and

defect of non-linear systems: Introductory theory and examples. International

Journal of Control , 61(6), 1327–1361. 137, 145

Flórez, J., Herrero, P., Sainz, M.A. & Vehi, J. (2005). Visualization of

implicit surfaces using quantified set inversion. Proceedings IntCP 2005 . 72,

84, 85, 190

FSF (2006). The Free Software Foundation. http://www.fsf.org/. 155

Garćıa Reyero, S. & Mart́ınez, J.L. (1999). Modal intervalar arithmetic

implementation using floating point emulation. Workshop on Applications of

Interval Analysis to Systems and Control with special emphasis on recent ad-

vances in Modal Interval Analysis (MISC 99). Girona, Catalonia, Spain, 211–

223. 159

Gardeñes, E., Sainz, M.Á., Jorba, L., Calm, R., Estela, R., Mielgo,

H. & Trepat, A. (2001). Modal intervals. Reliable Computing , 7, 77–111. x,

4, 28, 33, 35, 43, 97

Garloff, J. (1985). Convergent bounds for the range of multivariate polyno-

mials. Interval Mathematics 1985 , 37–56. 12, 16

Garloff, J. (1993). The bernstein algorithm. Interval Computations, 2, 154–

168. 5, 16, 27

GCC (2006). GCC compiler . http://gcc.gnu.org/. 155

215

REFERENCES

Gent, I. & Walsh, T. (1999). Beyong NP: The QSAT phase transition. In

Proceedings of ECAI , 599–603. 8

GNU (2006). GNU enviorenment . http://www.gnu.org/. 155

Goldsztejn, A. (2003). Verified projection of the solution set of parametric

real systems. Proc of 2nd International Workshop on Global Constrained Op-

timization and Constraint Satisfaction (COCOS’03), Lausanne, Switzerland..

28

Goldsztejn, A. (2005). A right-preconditioning process for the formal-algebraic

approach to inner and outer estimation of AE-solution set. Reliable Computing ,

11(6), 443–478. 28

Goldsztejn, A. & Jaulin, L. (2005). Inner approximation of the range of

vector-valued functions. Reliable Computing (Submitted for publication). 29,

192

Goldsztejn, A., Daney, D., Rueher, M. & Taillibert, P. (2005). Modal

intervals revisited: A mean-value extension to generalized intervals. First In-

ternational Workshop on Quantification in Constraint Programming, Sitges,

Spain, 2005 (QCP 2005). 51

Hansen, E. (1992). Global Optimization Using Interval Analysis. Marcel Dekker.

4, 66, 95, 107

Hansen, E. & Sengupta, S. (1981). Bounding solutions of systems of equations

using interval analysis. BIT , 21, 203211. 29

Herrero, P. & Jaulin, L. (2006). Modal Control of a SailBoat .

http://eia.udg.es/∼pherrero/software.htm. 151

Herrero, P., Jaulin, L., Sainz, M. & Vehi, J. (2004a). Quantified set in-

version algorithm. Proceedings 2nd International Workshop on Interval Math-

ematics and Constraint Programming IMCP-2004 , 272 – 279. 72

216

REFERENCES

Herrero, P., Jaulin, L., Sainz, M. & Vehi, J. (2004b). Quantified set inver-

sion with applications to control. Proceedings 2004 IEEE CCA/ISIC/CACSD .

72

Herrero, P., Jaulin, L., Sainz, M. & Vehi, J. (2005a). Inner and outer

approximation of the polar diagram of a sailboat. Interval analysis, constraint

propagation, applications (IntCP05). 72, 137

Herrero, P., Veh́ı, J., Sainz, M.Á. & Jaulin, L. (2005b). Quantified set

inversion algorithm. Reliable Computing , 11, 369 – 382. 72

Herrero, P., Jaulin, L., Sainz, M. & Vehi, J. (2006). Sailboat control

using set computation and feedback linearization. Automatica (submited). 137

Hong, H. (1990). Improvements in CAD-based quantifier elimination. PhD thesis

- Ohio State University, Columbus, Ohio. 15

Hong, H. (1993). Quantifier elimination for formulas constrained by quadratic

equations via slope resultants. The Computer Journal , 36, 440–449. 16

Hong, H. (1995). Symbolic-numeric methods for quantified constraint solving.

International Symposium on Scientific Computating, Computed Arithmetic and

Validated Numerics SCAN-95 . 26

Horowitz, E., Sahni, S. & Rajasekaran, S. (1997). Computer Algorithms

- C++. W. H. Freeman Press. 25, 66

HTML (2006). HyperText Markup Language. http://www.w3.org/MarkUp/. 183

Ioakimidis, N.I. (1999). REDLOG-aided derivation of feasibility conditions

in applied mechanics and engineering problems under simple inequality con-

straints. Journal of Mechanical Engineering (Strojńıcky Casopis), 50(1), 58–

69. 2

Jaulin, L. (2001a). Reliable minimax parameter estimation. Applied Mathemat-

ics and Computation, 7(3), 231–246. 95

217

REFERENCES

Jaulin, L. (2001b). Représentation d’État Pour la Modélisation et la Command

des Systèmes. Hermes. 140

Jaulin, L. & Walter, E. (1993). Set inversion via interval analysis for non-

linear bounded-error estimation. Automatica, 32(8), 1053–1064. 5, 27, 28, 71,

77

Jaulin, L. & Walter, É. (1996). Guaranteed tuning, with application to ro-

bust control and motion planning. Automatica, 32(8), 1217–1221. 1, 27

Jaulin, L. & Walter, E. (1999). Guaranteed bounded-error parameter esti-

mation for nonlinear models with uncertain experimental factors. Automatica,

35, 849–856. 27, 28, 85, 88

Jaulin, L., Kieffer, M., Didrit, O. & Walter, É. (2001). Applied Interval

Analysis: With Examples in Parameter and State Estimation, Robust Control

and Robotics . Springer, London. 4, 95

Jaulin, L., Braems, I. & Walter, E. (2002). Interval methods for nonlin-

ear identification and robust control. CDC2002 - Conference on Decision and

Control - La Vegas. 5, 29, 80, 81

Jirstrand, M. (1997). Nonlinear control system design by quantifier elimina-

tion. Journal of Symbolic Computation, 24(2), 137–152. 1, 2, 16

Kahan, W. (1996). Lecture notes on the status of IEEE standard 754 for binary

floating point arithmetic. 45, 46, 160

Kaucher, E.W. (1980). Interval analysis in the extended interval space IR.

Computing (Suppl.), 2, 3349. 28, 38

Kearfott, R.B. (2001). Interval analysis: Interval fixed point theory. Opti-

mization, 3, 4851. 28

LEX-YACC (2006). Lex and Yacc. http://dinosaur.compilertools.net/. 155

Lhomme, O. (1993). Consistency techniques for numerical CSPs. In Internation

Joint Conference on Artificial Intelligence (IJCAI), 1, 232–238. 21

218

REFERENCES

MacCallum, S. (1988). Solving polynomial strict inequalities using cylindrical

algebraic decomposition. The Computer Journal , 36, 432–438. 16

Makino, K. & Berz, M. (2003). Taylor models and other validated functional

inclusion methods. International Journal of Pure and Applied Mathematics, 4,

379–456. 16

Malan, S., Milanese, M. & Taragna, M. (1992). b3 algorithm for robust

performance analysis in presence of mixed parametric and dynamic perturba-

tions. Proc. 31st IEEE Conf. Decisison and Control, Tucston, AZ., 128–133.

27

Malan, S., Milanese, M. & Taragna, M. (1997). Robust analysis and

design of control systems using interval arithmetic. Automatica, 33(7), 1363–

1372. 27

MiceLab (2005). Fstar Remote System. http://mice.udg.es/fstar. 184

Microsystems., S. (1996). FDLIBM: Freely distributable LIBM. 160

Microtransat (2006). Microtransat Challenge Cup.

http://www.ensica.fr/microtransat. 136

MONET (2006). European network of excellence on model based systems and

qualitative reasoning . http://monet.aber.ac.uk:8080/monet/index.html. 115

Moore, R.E. (1966). Interval Analysis. Prentice-Hall. 2, 3, 12, 16, 17, 26, 32,

118

Neumaier, A. (1990). Interval Methods for Systems of Equations. Unv. Press,

Cambridge. 3, 28

Nickel, K. (1986). Optimization using interval mathematics. 95

Patton, R.J., Frank, P.M. & Clark, R.N. (2000). Issues of fault diagnosis

for dynamic systems. Springer . 115

Perl (2006). Perl Language. http://www.perl.com/. 183

219

REFERENCES

Ratschan, S. (2001). Quantified constraints under perturbation. Journal of

Symbolic Computation, 33, 493–505. 25, 26

Ratschan, S. (2002a). Approximate Quantified Constraint Solving .

http://www.mpi-sb.mpg.de/∼ratschan/AQCS/AQCS.html. 26, 81, 144

Ratschan, S. (2002b). Approximate quantified constraint solving by cylindrical

box decomposition. Reliable Computing , 8, 21–42. 26

Ratschan, S. (2002c). Continuous first-order constraint satisfaction with equal-

ity and disequality constraints. In P. van Hentenryck, ed., Proc. 8th Interna-

tional Conference on Principles and Practice of Constraint Programming , no.

2470 in LNCS, 680–685, Springer. 29

Ratschan, S. (2003a). Convergent approximate solving of first-order constraints

by approximate quantifiers. ACM Transactions on Computational Logic. 26

Ratschan, S. (2003b). Efficient solving of quantified inequality constraints over

the real numbers. ACM Transactions on Computational Logic. 5, 29

Ratschan, S. (2003c). Solving existentially quantified constraints with one

equality and arbitrarily many inequalities. In F. Rossi, ed., Proceedings of the

Ninth International Conference on Principles and Practice of Constraint Pro-

gramming , no. 2833 in LNCS, 615–633, Springer. 8

Ratschan, S. (2005). RSOLVER. http://rsolver.sourceforge.net/. 29, 67, 79,

81, 88, 144

Sailbot (2006). Autonomous Sailboat Competition.

http://engsoc.queensu.ca/sailboat/competition/index.htm. 137

Sainz, M., Gardeñes, E. & Jorba, L. (2002a). Formal solutions to systems

of linear or non-linear equations. Reliable Computing , 8, 189–211. 28

Sainz, M., Gardeñes, E. & Jorba, L. (2002b). Interval estimations of so-

lution sets to real-valued systems of linear or non-linear equations. Reliable

Computing , 8, 283–305. 28

220

REFERENCES

Sainz, M., Herrero, P., Vehi, J. & Armengol, J. (2004). Solving problems

on minimax optimization. PARA’04 Workshop on State-of-Art in Scientific

Computing . 98

Sainz, M., Herrero, P., Vehi, J. & Armengol, J. (2006a). Continuous

minimax optimization using modal intervals. Journal of Mathematical Analysis

and Applications, Elsevier Science, Oxford, UK (Submitted). 98

Sainz, M., Herrero, P., Vehi, J. & Armengol, J. (2006b). An extended

interval inclusion test for proving first-order logic formulas over the reals. Jour-

nal of Applied Mathematics and Computation, Elsevier Science, Oxford, UK

(Submitted). 51

Sainz, M.Á., Armengol, J., Veh́ı, J. & Herrero, P. (2002c). Detección de

fallos en procesos reales basada en modelos intervalares y múltiples ventanas

temporales deslizantes. Computación y Systemas, 6, 94–102. 114

SamHaroud, D. (1995). Constraint consistency techniques for continuous do-

mains. PhD dissertation 1423, Swiss Federal Institude of Technology in Lau-

sanne, Switzerland.. 2, 16

Shary, S.P. (2002). A new technique in systems analysis under interval uncer-

tainty and ambiguity. Reliable Computing , 8, 321–418. 28

SIGLA/X (1999). Applications of Interval Analysis to Systems and Control ,

chap. Modal Intervals, 157–227. Universitat de Girona. 35

Sotiropoulos, D.G. (2004). Solving discrete minimax problems using interval

arithmetic. International Conference on Optimization: Techniques and Appli-

cations (ICOTA). 95

Stancu, V., A. Puig & Quevedo, J. (2005). Model-based robust fault detec-

tion using a forward backward test. Interval Analysis and Constraint Propa-

gation for Applications IntCP 2003 . 118

Stevens, B.L. & Lewis, F. (1993). Aircraft control and simulation. Wiley . 90

STL (2006). Standard Template Library . http://www.sgi.com/tech/stl/. 155

221

REFERENCES

Sturm, T. (2000). Reasoning over networks by symbolic methods. Applicable

Algebra in Engineering Communication and Computing , 10(1), 79–96. 2

Tarski, A. (1951). A decision method for elementary algebra and geometry.

Univ. of California Press, Berkeley . 2, 13

Trepat, A. (1982). Completacion reticular del espacio de intervalos. Tesina de

Licenciatura. 51

Veh́ı, J. (1998). Anàlisi i Disseny de Controladors Robustos Mitjançant Intervals

Modals. Ph.D. thesis, Universitat de Girona. Catalonia, Spain. 4, 28

Veh́ı, J., Rodellar, J., Sainz, M.Á. & Armengol, J. (1999). Necessary

and sufficient conditions for robust stability using modal intervals. 42nd IEEE

Midwest Symposium on Circuits and Systems, 2, 673 – 676. 27

Veh́ı, J., Rodellar, J., Sainz, M.Á. & Armengol, J. (2000). Analysis of

the robustness of predictive controllers via modal intervals. Reliable Computing ,

6, 281–301. 27

Venkatasubramanian, V., Rengaswamy, R., Yin, K. & Kavuri, S.N.

(2003). IA review of process fault detection and diagnosis: Part I: Quantitative

model-based methods. Computers and Chemical Engineering , 27, 293–311. 114

Vicino, A., Tesi, A. & Milanese, M. (1990). Computation of nonconser-

vative stability perturbation bounds for systems with nonlineary correlated

uncertainty. IEEE Trans. Automat. Contr., 35, 835–841. 27

Wang, Y. (2006). Semantic tolerance modeling based on modal interval analysis.

Proceedings of NSF Workshop on Reliable Engineering Computing (REC’06).

192

wxWidgets (2006). A cross-platform GUI library . http://www.wxwidgets.org/.

158

Zettler, M. & Garloff, J. (1998). Robustness analysis of polynomial pa-

rameter dependency using bernstein expansion. IEEE Trans. Automat. Contr.,

43, 425–431. 27

222

REFERENCES

Zuche, S., Huang, Z. & Wolfe., M.A. (1997). An interval maximum entropy

method for a discrete minimax problem. Applied Mathematics and Computa-

tion, 87, 49–68. 95

Zuhe, S., Neumaier, A. & Eiermann, M. (1990). Solving minimax problems

by interval methods. BIT , 30, 742–751. 96

223

	Nomenclature
	1 Introduction
	1.1 Motivation
	1.1.1 The importance of quantified real constraints
	1.1.1.1 Example

	1.1.2 The potentiality of Modal Interval Analysis

	1.2 Objectives
	1.3 Thesis organization

	2 Quantified Real Constraint Solving
	2.1 Introduction
	2.2 Problem definition
	2.2.1 Solving a quantified real constraint
	2.2.2 Specific problem definition

	2.3 State-of-the-art
	2.3.1 Quantifier elimination methods
	2.3.1.1 A short history of quantifier elimination methods
	2.3.1.2 An overview of QE by CAD

	2.3.2 Approximate methods
	2.3.2.1 Consistency of bounded quantified real constraint
	2.3.2.2 Approximate solution set
	2.3.2.3 Cylindrical Box Decomposition
	2.3.2.4 Multivariate Bernstein Polynomials
	2.3.2.5 Interval methods
	2.3.2.6 Contractor methods

	2.4 Conclusions

	3 Quantified Real Constraint Satisfaction Using Modal Intervals
	3.1 Introduction
	3.2 Modal Interval Analysis
	3.2.1 Basic concepts
	3.2.1.1 Modal interval inclusion
	3.2.1.2 Modal interval lattice operators
	3.2.1.3 Modal interval arithmetic
	3.2.1.4 *-Semantic extension
	3.2.1.5 *-Semantic theorem
	3.2.1.6 *-Semantic extension computation
	3.2.1.7 Interpretable modal interval rational extension
	3.2.1.8 Modal interval inclusion test

	3.3 f* algorithm
	3.3.1 Key theorem
	3.3.2 Basic algorithm
	3.3.2.1 Bounding criteria
	3.3.2.2 Stopping criteria

	3.3.3 Improvements
	3.3.3.1 Selection strategy
	3.3.3.2 Monotonicity study
	3.3.3.3 Tree-optimality study

	3.3.4 Step-by-step example
	3.3.5 Complexity, termination, soundness and completeness

	3.4 Examples
	3.5 Conclusions

	4 Quantified Set Inversion Using Modal Intervals
	4.1 Introduction
	4.1.1 Set Inversion Via Interval Analysis

	4.2 Quantified Set Inversion algorithm
	4.3 Application examples
	4.3.1 Robust Control
	4.3.2 Set projection
	4.3.2.1 Application to computer graphics

	4.3.3 Bounded-error Parameter Identification
	4.3.3.1 Comparisons

	4.3.4 Aircraft control

	4.4 Conclusions

	5 Continuous Minimax Optimization Using Modal Intervals
	5.1 Introduction
	5.2 Minimax optimization using modal intervals
	5.2.1 The monotonic case
	5.2.2 The non-monotonic case

	5.3 Algorithm
	5.3.1 Unconstrained version
	5.3.1.1 Examples

	5.3.2 Constrained version
	5.3.2.1 Examples

	5.4 Conclusions

	6 Application to Fault Detection
	6.1 Introduction
	6.2 Analytical redundancy
	6.2.1 Consistency test
	6.2.2 Window consistency
	6.2.3 Fault detection algorithm
	6.2.4 Graphical output

	6.3 Applications
	6.3.1 PROCEL pilot plant
	6.3.1.1 Testing scenarios
	6.3.1.2 Mass balance model
	6.3.1.3 Energy balance model
	6.3.1.4 Testing results

	6.3.2 Steam Generator pilot plant
	6.3.2.1 Process description
	6.3.2.2 Testing scenario
	6.3.2.3 Process model
	6.3.2.4 Testing results

	6.3.3 Fluid Catalytic Cracking plant
	6.3.3.1 Process description
	6.3.3.2 Test scenario
	6.3.3.3 Process model
	6.3.3.4 Test results

	6.4 Conclusions

	7 Application to Sailboat Control
	7.1 Introduction
	7.2 Control strategy
	7.3 Sailboat control application
	7.4 Sailboat modelization
	7.5 Polar diagram of a sailboat
	7.5.1 Transformation of the problem
	7.5.2 Resolution

	7.6 Feedback linearization control
	7.7 Pre-compensator module
	7.8 Simulation results
	7.9 Conclusions

	8 Implementation
	8.1 Implementation philosophy
	8.2 Programming tools
	8.2.1 C++ language
	8.2.1.1 Code::Blocks and GCC compiler

	8.2.2 Standard Template Library
	8.2.3 Spirit Parser framework
	8.2.3.1 Grammar definition
	8.2.3.2 Matching procedure
	8.2.3.3 Semantic actions

	8.2.4 wxWidgets framework

	8.3 FSTAR Solver
	8.3.1 Numeric implementation
	8.3.1.1 Modal interval arithmetic library
	8.3.1.2 The branch-and-bound algorithm

	8.3.2 Symbolic implementation
	8.3.2.1 The parser
	8.3.2.2 Symbolic differentiation
	8.3.2.3 Tree-optimality study

	8.4 QRCS Solver
	8.5 MINIMAX Solver
	8.6 QSI Solver
	8.7 SQUALTRACK Solver
	8.7.1 The parser
	8.7.2 Analytical Redundancy Relations construction
	8.7.3 Communication Process Interface
	8.7.3.1 Offline CPI
	8.7.3.2 Online CPI

	8.7.4 Numerical and graphical outputs

	8.8 Generic user interface
	8.9 Modal Interval Remote Solver
	8.10 Conclusions

	9 Conclusions and Future Work
	9.1 Conclusions
	9.1.1 Contributions

	9.2 Future work
	9.2.1 Combining approaches
	9.2.2 Modal interval constraint propagation
	9.2.3 Solving the vectorial case
	9.2.4 New applications

	9.3 Related publications
	9.3.1 Publications in journals
	9.3.2 Publications in conferences
	9.3.3 Publications in workshops

	A Problem Definitions
	A.1 FSTAR Solver problems
	A.2 QRCS Solver problems
	A.3 QSI Solver problems
	A.4 MINIMAX Solver problems
	A.5 SQUALTRACK Solver problems

	References

