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Abstract 

This work compares the coupling of different variable selection techniques to a Fuzzy ARTMAP 
neural network in order to enhance an Electronic Nose performance. Based on a matrix of twelve 
metal oxide gas sensors (TGS and FIS), we designed an instrument to identify and classify different 
fungi species (from Eurotium, Aspergillus, and  penecillium genres) that contaminate industrial 
bakery products. In this paper we present the classification results obtained for 7 fungal species using 
a Fuzzy Artmap paradigm coupled to different variable selection algorithms (DFA, PCA, Forward 
selection, intra-inter variance and Genetic Algorithms). Results show a boost in performance from a 
43% with 12 variables (when no variable selection techniques are used) to a 75% using the 
combination of DFA and Fuzzy ARTMAP with just 2 variables. 
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1. Introduction 
Many microbial problems in bakery products are produced by fungal infections. The growth of 

these micro-organisms during storage are especially important in three different genres: Eurotium, 
Aspergillus and Penicillium. Microbial spoilage is a problem since it can induce nutritional losses, 
off-flavors and formation of mycotoxins or potentially allergenic spores [1]. Therefore, besides being 
an economic problem, unwanted fungal growth can cause some serious health hazards that have to be 
monitored carefully. Moreover, there is a growing pressure from governments and consumers to 
reduce the use of preservatives in intermediate moisture backery products, particularly those based on 
organic acids.  

This is the reason why, nowadays, many researchers are looking for a method to conveniently 
assess the degree of fungal growth in bakery products at a very early stage and well in advance to 
becoming visible. The electronic nose (EN) promises to be one alternative for fungal detection in 
food products and that is why many studies have been reported on monitoring fungal contamination 
in bakery products [1-3] cereal grains [4-7], cheese [8], water [9], bread [10], meat [11] and milk 
[12].  

However, although there are many commercial electronic noses available and many research 
studies have been performed on this particular subject, practical industrial applications have not yet 
been implemented, mainly due to Electronic nose high prices, difficult calibration, little reliability, 
poor reproducibility and low accuracy. In part, these problems are due to sensor noise and drift, 
which degrade the results that can be obtained.  

For these reasons, it is very important to choose those variables (parameters and/or 
sensors) that contain the most useful and relevant information to the classification problem 



 

 

envisaged. It is even more important to eliminate those variables with noisy or meaningless 
information that generate erroneous answers [13]. If the error sources could be identified 
and eliminated, more reliable and cheaper systems could be built since fewer sensors would 
be incorporated in the final configuration. However, serious studies on this subject have not 
been reported yet. 

 There are several variable selection techniques that can improve the performance of an 
Electronic Nose. The goal of this paper is to improve the response of an EN, enhancing the 
performance in the classification of seven fungal species. To do so, we have coupled 
different variable selection algorithms to a pattern recognition algorithm. 

 

2. Theoretical background 
A traditional way to reduce dimensionality is through Principal Component Analysis 

(PCA). PCA [14] is a method that uses principal components based on the variance of each 
original parameter. Each measurement is then projected against the new axis, the principal 
components. They can be used to extract the most relevant information from the entire data 
set. A sensor that has loading values near zero for the retained principal components 
contributes little to the overall model and can be eliminated. If two sensors have similar 
loadings they are highly collinear and one can be removed. However, PCA is a linear 
method that does not work very well in non-linear conditions. 

 Another classical method is Discriminant Function Analysis (DFA) [15], which is used to 
discriminate a set of measurements using the coefficients of the model’s canonical variables. 
Like in PCA, the loadings (eigenvectors) are used to determine whether there are irrelevant 
or redundant sensors than can be removed. The main difference to PCA is that DFA is a 
supervised method that determines the variables to choose from the known classification of 
the training measurements of the application.  

GAs (Genetic Algorithms) are optimization methods inspired on natural evolution. They 
have proven to be a remarkable good method for variable selection [16-19]. When this 
algorithm is applied for variable selection, a population of n subsets or chromosomes is 
created, each containing a random combination of variables. Chromosomes are binary 
strings where the occurrence of a bit equal to 1 (or 0) in position i-th implies that variable i-
th is present (or absent). A cost function for each subset is then evaluated and, using 
techniques loosely based on biological genetics and evolution, a new population is then 
created. During the variable selection process, the cost function being optimized by the GA 
can be, for example, the prediction error of the fuzzy ARTMAP based classifier. In 
comparison to many other search techniques, GA’s are not constrained by initial 
assumptions about the search space such as continuity and smoothness and, therefore, 
apply generally. 

Another variable reduction method is through a ranking according to a figure of merit. 
The best option in this approach is to define a relationship between the average variance 
between measurements of the same category (internal variance, related to the repetitivity of 
the parameter) and the average distance between centroids of different categories (external 



 

    
     

variance, related to the selectivity of the parameter). The criterion is defined to select an 
optimal subset of parameters, i.e., those showing a small internal variance combined with a 
high external variance [20]. This translates into selecting those variables with the highest 
discrimination power in the categorization problem under study. Equation 1 shows this 
criterion, which somehow measures the resolution power of each variable related to the 
differentiation between the categories to be identified 

 

rianceInternalVa

rianceExternalVa
Vr =    (1) 

 
Heuristic algorithms such as forward selection are widely used in linear regression [21-

23]. Forward selection is quite simple and fast. Its main approach is to choose one variable 
at each iteration. Once the variable that gives the best prediction is selected, the process 
starts again trying to find the second variable that, combined with the first one, gives the 
best prediction ability to the system. The process ends when the prediction error increases 
adding any of the remaining variables. 

All of the methods described above were coupled to a Fuzzy Artmap neural network [24-
25]. This type of paradigm has been evaluated in electronic nose instruments for quite a few 
years now [26-27]. Theoretically, they have many advantages that make them very 
appealing to olfactory applications. Among their features, these networks require fewer 
samples to be trained (they learn very quickly), they are easy to program (they require less 
computational power than other paradigms), and they cope very well with drift situations 
(since they implement the stability-plasticity dilemma). Moreover, they do not need to be 
trained with a similar number of measurements of each category since they learn rare 
events very quickly. 

Our main problem was the size of the data set, since for many learning paradigms, 16 is a 
low number of measurements, specially if 12 parameters are used. That’s why this type of 
network was an ideal choice for the study. 

 

3. Experimental 
For the development of the Electronic Nose we used an array of 12 metal oxide sensors 

(SP series from FIS and 8-series from Figaro). A methacrylate chamber was designed to 
house these sensors. Table 1 describes each sensor used and its intended target vapours. 
Figures 1 and 2 show a couple of pictures of the Electronic Nose designed. 

 
A HeadSpace AutoSampler (Hewlett Packard model 7694) was used to deliver the 

sample to the sensor chamber, so that a good reproducibility could be obtained. All sensor 
responses were acquired using a PCI-NI6023E data acquisition card. The control of the 
hardware, sampling equipment, data acquisition and signal processing was executed by a 
written-in-house program developed under the Matlab 6.5 environment. This software 



 

 

allowed to monitor sensor output in real time and to obtain processed results very fast. The 
PARC algorithms used were PCA, DFA and the fuzzy ARTMAP neural network.  

After ten days of incubation, a total of 19 vials (20 ml volume) were prepared. 14 
contained 2 replicates of 7 fungal species and 2 contained empty cultivation mids. Finally, 3 
vials of ethanol were used whether sensor drift was relevant. Table 2 describes the different 
samples used and the number of replicates. It also classifies each specie with its genre. The 
acquisition time for each sample was 10 minutes. For sample delivery, the following 
parameters in the sampling system were introduced: oven temperature between 70oC-80oC, 
50 min vial heating time, 1 min vial pressurisation time, 1 min of loop fill time, 0.05 min of 
loop equilibration time, and 10 minutes of injection time. The carrier gas was regulated at a 
flow rate of 50 ml/min.  

One parameter was extracted from each of the twelve sensors, namely the maximum 
conductance increment (∆gmax=Gmax-Gmin). Figure 3 shows a typical response from the sensor 
array to a fungal sample. Values plotted are resistive. 

 

4.  Results and discussion 
As mentioned earlier, measured data were processed coupling Fuzzy ARTMAP neural 

networks to different variable selection algorithms. In all cases, a leave-one-out approach 
was used to estimate the performance of the network in the classification of fungi species. 

This iterative validation approach generates N evaluation procedures (1 for each 
measurement). At each iteration, a different measurement is left out, while the remaining 
ones are used to build the model (PCA, DFA, etc) and train the network. The measurement 
not used for training is then projected onto the model and classified using the already 
trained network. This is repeated N times (one for each measurement) so that the final 
result is the average outcome of the entire iterative process (see figure 4).  

This approach is very convenient in cases were the experimental data set does not 
contain many measurements (like in our case). Another important point of this 
methodology is that the performance of the approach is what is evaluated, rather than a 
particular trained network since, in fact, N networks are created and evaluated using the 
same procedure. Moreover, since the measurement left out for evaluation is not used for 
training, there is no risk on getting unrealistic results due to over-fitting. 

 
4.1. Fuzzy ARTMAP classifier 

First, in order to compare the results, a fuzzy ARTMAP neural network was used alone 
to identify the samples from 7 fungi species using all the sensors (12 variables). The 
classification success rate into eight categories reached a 43 % using the leave-one-out 
approach (if the identification was made at random, a 12.5% should be expected).  

Once this classification rate was obtained, the goal was to couple different variable 
selection techniques to the fuzzy ARTMAP paradigm to see whether this approach 
improved results. 

 



 

    
     

4.2. Using DFA as a variable selection technique  
DFA can be used in supervised and in unsupervised mode. In unsupervised mode it can 

give interesting information about the clustering of the dataset. Anyway, for serious 
benchmarking, a supervised mode has to be used where the training measurements should 
be different from the test data set, which is the way we have performed our leave-one-out 
approach. 

At each iteration, a DFA model was built with the training measurements. Then, the 
coordinates of the training samples in the DFA projection were used to train a Fuzzy 
ARTMAP neural network. The evaluation measurement was projected onto the DFA model 
and its coordinates fed to the neural network. Eigenvectors were used to classify samples. A 
75% success rate was achieved using only 2 eigenvectors. These results were expected due 
to the clusters of fungal genres and species that the DFA graphics show in figures 5 and 6. It 
is important to remember that when using a leave-one-out cross-validation method, the 
over-fitting risk is eliminated since the evaluation measurement has not been used to build 
the DFA model.  

 
4.3. PCA used as a variable selection method coupled to fuzzy ARTMAP 

In the PCA projection on figure 7 it can be seen that using a mean centring pre-
processing most of the variance (more than 85%) relies on the first PC. Moreover it can be 
deduced that a 2 PC model captures more than 99% of the information, an indication that 
the number of variables with meaningful information can be greatly reduced.. In the figure 
it can be seen that there is overlapping between eurotium and penicillium genres and the 
cultivation mids. 

At each iteration, a PCA model was calculated with the training measurements and the 
scores were fed to a fuzzy ARTMAP for training purposes; then, with the PCs calculated 
and the weights from the Fuzzy ARTMAP, the validation measurement was projected and 
evaluated. Results with different number of principal components were tested. The best 
results were achieved with just 2 PC’s, where a classification rate of 63 % was achieved. 

 
4.4. Results coupling Genetic Algorithms and fuzzy ARTMAP: 

A genetic algorithm coupled to the fuzzy ARTMAP classifier selected 5 out of 12 
variables. The fitness was evaluated as the PER (Predictor Error Rate) and the cross-
validation of order one (leave-one-out) with 16 measurements was applied. The PER was 
0.3556 and the algorithm converged after 33 generations. The success rate was 63 %. 

 
4.5. Variable selection using the intra/inter variance criterion 

As mentioned in the previous section, a variance criterion was defined in order to reduce the 
number of variables.. A higher value for Vr meant a better discrimination capability for a given 
variable. Figure 8 shows the Vr values for each of the 12 sensors/variables. 

Fuzzy ARTMAP was applied to evaluate the variable subset selected. The best results where 
obtained when selecting the 7 variables (circled in the graphic) with the highest Vr.The success rate 
peaked at 63 %. 



 

 

          
4.6. Forward selection 
The forward selection algorithm used in linear regression was applied in our case to select a subset of 
the 12 original variables. In the end, only 2 variables were selected. Using these variables, the 
success rate achieved was 70 %. 
 

Table 3 summarises the results obtained, comparing the coupling of different variable selection 
techniques to a fuzzy ARTMAP classifier. We can observe that applying any of the variable selection 
methods leads to better results than using the Fuzzy ARTMAP alone.  

As it can be seen, the best results are achieved coupling Fuzzy Artmap algorithms with 
DFA, with a 75% success rate when classifying samples in 8 categories (seven fungi species 
and a control vial without fungal contamination). Moreover, it is interesting to note the 
performance of the forward selection method (70%), since it  gives very good results and the 
variables selected are sensors from the original array, giving a straightforward 
interpretation (sensor selection) that can be used to reduce the dimensionality of the array 
for a given application. That is why this method should be studied in greater detail for each 
application sought for an electronic nose. 

 

5. Conclusions 
Although the number of measurements is not enough to generalize the results obtained, 

the work performed in this experimental data set strongly suggests that coupling variable 
selection techniques (e.g., GA, DFA, PCA and heuristic algorithms) to a Fuzzy ARTMAP 
neuronal network can improve significantly the performance of an Electronic Nose classifier 
system for fungi  identification. Best results were obtained coupling DFA to a Fuzzy 
ARTMAP neural network using only 2 variables (factors) instead of 12. More interesting is 
the result obtained with Forward Selection,  whose results directly translate into a selection 
of the sensors that should be used in a real application. 

Although a more complete study should be performed to generalize these results, it is 
quite clear that the manufacture of electronic noses equipped with variables selection 
algorithms could increase the industrial interest of these instruments in food applications 
since their reliability and accuracy would increase and their price would drop due to a 
reduction on the sensor array dimensions. 
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Figure captions 
 

 
Figure 1. Exterior picture of the Electronic Nose designed 
 
Figure 2: Inner parts of the Electronic Nose 

 
Figure 3: Gas sensor response (resistance) as a function of time under the analysis of the headspace 
of a fungi vial. 
 
Figure 4: Block diagram of the cross-validation approach 
 
Figure 5: DFA clustering of fungal species 
 
Figure 6: DFA clustering of fungal genres 
 
Figure 7: Discrimination of Fungi species with a PCA 
 
Figure 8: Vr values for each sensor. Circled crosses are the selected variables 
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Figure 2 
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Figure 6 
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Figure 8 
 
 

 



 

 

 

Table captions 

Table 1. Sensors array description 

Table 2. Fungal Species measured 

Table 3. Variables selected.  

 



 

    
     

Table 1. Sensors array description 
Sensor Target vapours 

TGS 800 Air contaminants 
TGS 813 Combustible gas 
TGS 822 Alcohol, toluene, o-xylene, etc 
TGS 825 Hydrogen sulphide 
TGS 826 Ammonia 
TGS 831 R-21-R-22 
TGS 832 R-134a, R-22 
TGS 842 Methane, butane, propane 
TGS 880 Volatile species from food 

TGS 882 Alcohol vapours from food 
FIS SP-31-00 Organic solvents 
FIS SP-32-00 Alcohol 

 

Table 2. Fungal Species measured 
Genre/specie Replicates 

Eurotium Repens 2 
Eurotium Herbariorum 2 
Eurotium Amstelodami 2 

Eurotium  Rubrum 2 
Aspergillus flavus 2 
Aspergillus Niger 2 

Penicillium Corylophilum 2 
 
 

Table 3. Variables selected.  
Methods Results Subset selected 

Fuzzy ARTMAP alone 43% 12 
DFA+ Fuzzy ARTMAP 75% 7 
PCA+ Fuzzy ARTMAP 63% 7 
GA+ Fuzzy ARTMAP 63% 5 

Vr criteria 63% 7 
 Forward + Fuzzy ARTMAP  70% 2 
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Abstract—In this paper, a new method to enhance sensor selectivity is described. A flow modulation 

system driven by a PC-controlled peristaltic pump has been designed to feed a sensor chamber with 

different vapors. 45 measurements where performed comprising five different species (benzene, 

toluene, o-xylene, methanol and para-xylene) in three different concentrations (20, 200, 2000 ppm). 

Using frequency domain techniques and neural networks, the system was able to reach a 92% 

classification success rate when identifying all five vapors despite concentration was not constant and 

a single sensor was used. Moreover, when amplitude and variance information were removed from 

sensor transient signals, a 62% success rate was achieved, proving that the transient waveform has 

additional information that helps to enhance selectivity. 



 

 

Introduction  

 
In the last ten years, considerable efforts have been made to use sensor dynamics as a 

source of multivariate information leading to an enhancement in the discriminating ability 

of poorly-selective metal oxide gas sensor arrays. 

 Hand-held ‘sniffers’ make use of simple sample delivery units based on pumps rather than 

mass-flow controllers. Because it is well known that sensor dynamics can be of help to 

increase the selectivity of metal oxide sensors, there is a need for developing uncomplicated 

methods to use transient information in such analyzers. 

In fact, many authors have reported on strategies based on modulating either the sensor 

operating temperature [1] or the analyte concentration [2,3]. Here we introduce and 

demonstrate, for the first time, a simple method that combining simultaneously both effects 

has the potential of increasing the resolving power of metal oxide sensors. Furthermore, its 

simplicity makes it especially suited for low-cost applications.  

The new method presented here consists of applying a modulated control signal to the 

peristaltic pump of a sniffer, which results in the gas flow being modulated. The effect of 

this flow modulation is twofold: First, the concentration of analytes at the surface of sensors 

is modulated and second, fast periodical flow changes result in periodical cooling and 

heating of sensors’ surface. Therefore, specific response patterns, which are characteristic of 

the analytes present, develop. The method can be easily adapted to both static and dynamic 

headspace sampling strategies. Here we show that it is possible to easily discriminate 

among five different vapors (benzene, toluene, methanol, o-xylene and para-xylene) in a 

broad concentration range using a single sensor. 

Section 2 describes the experimental set-up, while section 3 describes the measurements 

performed and discusses the results obtained. Finally, section 4 outlines the conclusions and 

describes future work in this direction. 



 

    
     

EXPERIMENTAL SET-UP 

 
 To achieve a flow-modulation capable electronic nose, we designed a closed loop system, 

based on a PC controlled peristaltic pump. Figure 1 shows the configuration devised.   

 

The system has two operating modes. In the cleaning configuration, synthetic dry air enters 

the system through the first electro-valve and cleans the peristaltic pump, the sensor 

chamber and the evaporation chamber. Solid arrows mark the flow of clean air in this 

mode. 

In measuring mode, air re-circulates around a closed circuit. Once the modulation is 

initiated, a chromatographic syringe sprays a calculated quantity of liquid contaminants 

into the evaporation chamber. Clean air inside the circuit becomes contaminated when 

forced to re-circulate around the evaporation chamber thanks to the peristaltic pump. 

Dashed arrows show this circuit. 

A microcontroller commands the speed of the peristaltic pump which directly translates 

into different flow rates. A PC programmed with a written-in-house user friendly program 

communicates with the microcontroller so that the user can select the frequency and flow 

rate waveform that has to be applied. Through this program, the PC commands the 

microcontroller to open or close the electro-valves to change the configuration of the system 

depending upon the operating mode desired.  

Moreover, the PC records the sensor response (in terms of conductivity). Figure 2 shows the 

transient signals developed by the modulated sensors. It is important to remark that only a 

small section of the entire transient is used for the analysis. Specifically, the part used is 

from the time interval when the sensor modulated signals show a stable and periodic 

behaviour. Then, signal pre- and post-processing algorithms are applied to identify the 

vapor sample measured.  

Liquid quantities of the contaminants measured were calculated and sprayed into the 

contaminants chamber using a chromatographic syringe. A total of 45 measurements were 



 

 

performed. The measurements comprised five different vapors (benzene, toluene, 

methanol, o-xylene and para-xylene) at three different concentrations (20,200,2000 ppm) 

with three replicates for each type of measurement.  

Then, a periodic pulse modulation with a frequency of 10 mHz  and an amplitude of 250 

sscms was applied. Figure 3 shows a typical response from a sensor to five different 

contaminants when flow is pulsed as described above. 

Three different sensors were used for the measurements. Table 1 lists their designation and 

main applications. Their information was never combined to obtain better results, since the 

main goal of the experiment was to determine how selective each single sensor could get by 

itself using the flow modulation approach. 

An FFT was applied to the periodic response and its amplitude value was considered (see 

figure 4). Values for the fundamental and harmonic frequencies were used as output data 

from the sensors and fed to a Fuzzy Artmap pattern recognition algorithm. 

 

RESULTS AND DISCUSSION 

 
All results obtained and listed in Table 2 were performed using a cross-validation of order 1 

(the so-called leave-one-out approach). The goal was to classify measurements in five 

different categories, one for each contaminant , with the added difficulty of variable 

concentration (20, 200 and 2000 ppm). 

Different preprocessing strategies were used to determine how much the mean amplitude, 

variance and waveform from each sensor response contributed to the classification of the 45 

measurements.  

Figure 5 shows, for sensor TGS 823,  the different transient modulated signals for each 

measurement. Different colors (or gray scales) refer to the species measured, comprising all 

three concentrations.  

From the figures it can be derived that some of the classification success rate achieved 

without preprocessing of the transient signals (see figure 5a) is due to mean value (i.e. static 



 

    
     

parameters). Moreover, when mean value is removed (figure 5b) some information from the 

variance could be used for the classification of the five species. Finally, in figure 5c all mean 

and variance information is removed and if there is some kind of classification it will be due 

to waveform rather to any kind of amplitude information. 

From the results exposed in table 2 it is clear that best results are obtained when the 

evolution of sensor conductance through time is not preprocessed. 

Anyhow, considering that classifying samples into 5 categories at random would yield a 

20% success rate, it is clear that sensor response without mean value or even unbiased and 

scaled by its variance still retain useful information since classification rates never fail 

below a 53%. 

 

CONCLUSIONS 

 
A new modulation method has been tested to increase sensor selectivity. A wide range of 

concentrations and contaminants have been tested confirming that flow modulation allows 

for a reliable identification of different vapor species. 

Additional work has to be done to optimize the system and test the approach under 

tougher conditions like binary or tertiary vapor mixtures. 
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Figure 1: Schematic diagram of the flow modulation system 



 

    
     

 
 
Figure 2: Sensor transient signals with (right) and without (left) flow modulation 
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Figure 3: Typical responses to five different contaminants 



 

    
     

 
 
 
Figure 4: Harmonics selected from the FFT response of the transient signals from one sensor for different species and 
concentrations 
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Figure 5: Transient modulated responses from sensor 800. (a) non-processed; (b) mean-centered; (c) auto-scaled 
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Sensor Main application 

TGS 800 Air Quality control 
TGS 822 Alcohol detection 
TGS 823 Organic Dissolvent 

 
Table 1: Sensors used and their main applications 



 

 

 
Pre-
processing TGS 800 TGS 822 TGS 823 

None 

Learning  rate: 0.7
Harmonics: 10 
Succes rate: 84% 
 

Learning  rate: 1 
Harmonics: 17 
Succes rate: 93% 
 

Learning  rate: 1 
Harmonics 4 
Succes rate: 91% 
 

Mean 
centering 

Learning  rate: 0.9
Harmonics: 13 
Succes rate: 82% 
 

Learning  rate: 0.8 
Harmonics: 17 
Succes rate: 82% 
 

Learning  rate: 0 
Harmonics 7 
Succes rate: 80% 
 

Auto-
scaling 

Learning  rate: 0.1
Harmonics: 4 
Succes rate: 53% 
 

Learning  rate: 0.7 
Harmonics: 5 
Succes rate: 62% 
 

Learning  rate: 0 
Harmonics 15 
Succes rate: 55% 
 

 
Table 2: Classification rate for normalization strategy 
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Abstract: A new multisensor system including a thermal desorption unit has been designed to detect 

benzene traces in a CO2 flow. The system uses a carbopack unit that absorbs benzene traces and then 

releases them concentrated in a factor greater than 200. is capable of classifying benzene samples down to 

10 ppb’s in a CO2 flow with different volatile interferences. This is the first time that such a system has 

been designed.  

 

1. INTRODUCTION 

 

The safety and quality control of food products is becoming a priority issue in developed countries. This 

means that new and more restrictive legislation is being issued by governments to answer the public 

awareness of the situation. In the case of gaseous beverages such as sodas and beers, the quality of the 

CO2 used is of vital importance to comply with the recommendations of the ISBT (International Society 

of Beverage Technologists), [1]. 

 

To cope with newer legislation requirements, expensive instruments are being used to control CO2 quality 

at the production plant [2, 3]. Nevertheless, these instruments do not provide on-line analysis and they 

require specialized personnel to operate them. Moreover, they cannot be used in the transportation of the 

stage or in the customer plant, phases where the product can be contaminated by external sources. 

 

The work presented in this paper has been developed to address a real need by a CO2 production plant in 

Spain. The main goal of the application that will be described is devoted to the detection of benzene down 

to the values recommended by the ISBT (around 5-10 ppb’s) in a CO2 flow with a 99.95% purity level. 

Even at this purity value, many interfering volatiles can still be found, as described in table 1. These 

requirements should be achieved with a cheap and reliable system that could be easily installed, operated 

and maintained at the customer facilities or even embedded in the transportation system.  

 

To achieve such ambitious goals a carefully devised research and development effort has been planned. 

The first stage of such a plan is to design a prototype to evaluate the feasibility of the approach selected. 



 

    
     

For the first time, a prototype based on a semiconductor multisensor array coupled to a thermal desorption 

unit has been proposed to detect benzene under a CO2 flow. 

 

The coupling of thermal desorption units to multisensor systems based on semiconductor gas sensors to 

enhance their sensibility has been proposed before [4-7]. Anyhow, these systems have never been used 

under a CO2 atmosphere, since the general belief that tin oxide gas sensors need oxygen to interact have 

prevented their use in this type of applications. Nevertheless, recent publications prove that these type of 

sensors perform in a similar way under a CO2 atmosphere. Moreover, in the prototype designed a novel 

and simple made-in-house design has been proposed and tested for the thermal desorption unit. 

 

This paper has been organized in four different sections. The second chapter describes the prototype 

fabricated, including the design process followed until the definitive prototype has been completed. 

Section 3 describes the results obtained and discusses the suitability of the instrument designed to the 

application sought. Finally, section four outlines the conclusions of our work.  

 

2. SYSTEM DESIGN 

 

2.1 General configuration 

 

The system initially proposed consists of four different electro-valves, a platform with the thermal 

desorption unit, a sensor chamber, electronic circuitry  and a Personal Computer system to control de 

measurement process, acquire sensor signals and to process those signals into useful information. Figure 

1 shows the configuration proposed. 

The measurement process starts when electro-valves 1 and 4 redirect the CO2 flow to the adsorption 

system as the dashed line illustrates. In this configuration, benzene impurities are absorbed in the carbon 

powder during a predefined period of time. Once the concentration phase is finished, the thermal 

desorption phase can be activated using the same circuit or in the other direction, changing the position of 

electro-valves 2 and 3. Electro-valve 5 has been included to maintain the same flow in the sensor chamber 

no matter the measurement phase. 

 

The sensor chamber houses a minimum amount of sensors (4) in order to minimize the dead volume of 

the system and the energy consumption.  A software controls the measurement process in real-time so that 

the system completes each measurement in the same way in order to obtain a repetitive set of 

measurements. 

 

2.2 Sensor array design and optimisation 

 

Two different sensor chambers were designed for the system. The first chamber (seen in figure 2) was 

specifically designed to determine which sensors were going to be housed in the final prototype. With that 

goal on mind, the chamber was capable of housing up to 15 sensors at the same time.  



 

 

 

Using the first chamber, measurements were performed to determine the sensitivities of 21 different 

sensors against benzene. Table 2 describes the sensors tested. In order to be sure about which sensors 

were more sensitive to benzene, concentrations of 20, 7, 5 and 2 ppm’s were measured with all 22 

sensors. Table 3 describes the sensors chosen after determining the best sensitivities (defined as the 

normalized conductance increment). 

 

The final chamber housed the four most sensitive sensors against benzene. Figure 3 shows how the 

chamber was fabricated. The dead volume was minimized to 0.6 ml with external dimensions of 10x10x6 

mm.  

 

2.3 Design and fabrication of the thermal desorption unit 

 

The thermal desorption unit envisaged for the system had to comply with three different features: 

• High temperature heating, up to 350ºC, since carbon concentrators need a temperature higher 

than 300ºC to be activated and to be cleaned completely. 

• Low thermal inertia to be able to ramp up temperature as fast and accurate as possible 

• Easy coupling of temperature proves to accurately monitor heating temperature 

 

Different systems were proposed and carefully evaluated. Figure 4 shows a schematic diagram of the 

approach chosen in the end. Table 4 shows the temperatures and transient times achieved by this system. 

Figure 5 shows a real picture of the device constructed. The tube was filled with Carbopack B absorbent.  

Table 5 shows the characteristics of this material. Temperature was controlled using a k-type 

thermocouple. Figure 6 shows the electronic circuit connected to the thermocouple used. 

 

2.4  System automation 

 

In order to obtain repetitive results, the whole measurement process had to be automated. In fact, the 

automation of the equipment was one of the initial premises that had to be proved if the system ever 

becomes commercially available. A PC was in charge of the measuring process, controlling the following 

devices: 

• All the electro-valves 

• A current controlled source, with a maximum amperage of 4 amps. 

• The sensor chamber 

Figure 7 shows the final system configuration with the different subsystems. Different lines show the 

different pathways that could be used. One possibility is to use the solid line for both absortion and 

desorption. A second possibility is to use the dashed line for absorption and the solid line for desorption. 

 

 

 



 

    
     

3. RESULTS AND DISCUSSION 

 

3.1 Experimental design 

 

Figure 8 shows the chronogram of the measurements made with the prototype. Initially, synthetic dry air 

cleans the adsorbent during 20 minutes, to make sure there are no rests from previous measurements. 

After that, contaminated CO2 (with a given concentration of benzene) was directed through in the 

adsorption tube during 10 minutes. After those ten minutes, a flow of CO2 was applied during two 

minutes to stabilize the sensor response before applying the current to heat the adsorbent, which lasted ten 

additional minutes. After that, 8 additional minutes where used to cool the system. 

 

With this approach, 200ºC where reached during the desorption phase and 25ºC after the cooling period. 

In most of the cases a second desorption cycle was performed in order to assure the complete desorption 

of the benzene. Figure 9 shows the sensor array response to three consecutive desorptions. It can be seen 

that after the first desorption cycle, the second and third bear no sensor response, assuring that the first 

one desorbed completely the benzene concentrated. 

 

3.2 Measurements 

 

Measurements were performed with adsorption of 150, 70, 20 and 10 ppb’s of benzene under a CO2 flow. 

Tables 6, 7 and 8 shows the different mixtures measured with 10 ppb’s and 20 ppb´s of benzene and their 

codification, where it can be seen that clean CO2 and CO2 plus other interferences were also included in 

the measurement set to classification. 

 

3.3 Results 

 

Figure 10 shows a PCA graph were it can be seen the different clusters corresponding to different types of 

measurements. It is clear that the system devised is able to discriminate measurements with as low as 10 

ppb’s compared to pure CO2 or CO2 with other interfering species. 

 

A fuzzy artmap neural network was applied with a leave-one-out approach to see how well a neural 

network could distinguish between the different situations. Tables 9 and 10 show the results considering a 

classification comprising all the species, a categorization between 20 ppb, 10 ppb and no benzene samples 

and presence/absence of benzene. 

 

From the results it is clear that the system is capable of detection reliably up to 10 ppb’s of benzene 

despite the presence of other interfering species. 

 

 

 



 

 

4. CONCLUSIONS 

 

We have demonstrated how a multisensor system based on semiconductor gas sensors is able to detect 

down to 10 ppb’s of benzene under a CO2 atmosphere despite the presence of other contaminant species. 

The use of a cheap made-in-house thermal desorption unit has the potential to boost sensitivity between 

100 to 500 times the one showed by the sensor system alone, making the detection of ppb traces of 

benzene possible in such application. 
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Figure 1: Plant of the prototype 
 



 

 

 
Figure 2: Sensor chamber, capacity 15 commercial sensors (FIS and taguchi TGS) 



 

    
     

 
Figure 3: Sensor chamber fabricated with dead volume  



 

 

 
Figure 4: Schematic diagram of the approach chosen in the end. 



 

    
     

 
 
Figura 5: Termal desortion unit constructed 
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Figura 6: Control circuit (Thermopar type k) 



 

    
     

 
 

Figure 7:  The final system configuration with the different subsystems 
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Figure 8: Chronogram of the measurements made with the prototype  
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Figure 9: Sensor array response to three consecutive desorptions 
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 Figure 10: PCA graph with different types of cluster (10 ppb, 20 ppb, interferences and CO2) 
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Pollutant Maximum concentration allowed 
Water 8 ppm 

Total aldehydes 200 ppb 
Ammonia 2 ppm 
Benzene 20 ppb 

Nitrogen dioxide 500 ppb 
Sulfide dioxide 2 ppm 

Heavy hydrocarbons 1 ppm 
Volatile hydrocarbons 20 ppm 

Methane 30 ppm 
Carbon monoxide 2 ppm 

Nitrogen 40 ppm 
Nitric oxide 2.5 ppm 

Oxygen 9 ppm 
 hydrogen Sulphide  500 ppb 

 
Tabla 1: Tipical contaminants with their maximum concentrations allowed in 99.95 % purity CO2 



 

 

 

Amount Type Application 
 Taguchi  (Series -8)  

1 TGS-800 Air quality, smoke, benzene 
2 TGS-821 hydrogen 
1 TGS-880 Nourishing product scents 
1 TGS-813 Combustible gas 
1 TGS-842 Methane, natural gas 
2 TGS-822 Organic dissolvents 
2 TGS-823 Organic dissolvents (benzene) 
2 TGS-826 Ammoniac 
 FIS (Series -SP)  

2 SP-MW0 General intention. Kitchen control. 
2 SP-11-00 General Purpose. Inflammable steam 
2 SP-53 Hydrocarbons 
2 SP-AQ2-00 Air quality, VOC’s 
2 SP-AQ3-00 Combustible gas 

 

Tabla 2:  Metal oxide sensors 



 

    
     

 

Sensor Normalized Conductance 
(Gmax-Gi)/Gi 

TGS 800 0.6011 
TGS 822 0.7648 
TGS 823 1.3995 

SP 31 1.4926 
 

Table 3: Sensors chosen after determining the best sensitivities (defined as the normalized conductance increment). 



 

 

 

# 
test Current (A) 100 oC 

(seconds) 
150 oC 

 (seconds) 
200 oC  

(seconds) 
250 oC  

(seconds) 
1 4,40 1,5 2,55 5,5 6,5 
2 4,43 1,5 2,5 5,2 6,3 
3 4,45 1,2 2,3 5 6 
4 4,45 1,2 2,2 5 6 
5 4,50 1 2 4 5 
6 4,55 1 2 4 5 

 
Tabla 4: Temperatures and transient times achieved by thermal desorption unit 



 

    
     

 

Adsorbent  Mesh Surface Area  (m2/g) Density 
(g/mL) 

Aplication 

Carbopack B 60/80 100 0.36 C5-C12 
 

Tabla 5: Characteristics of the material 

 
Compound Mixture 

20 ppb benzene (C6H6) + 5 ppm Methane (CH4) + 2 
ppm CH3OH (Methanol + CO2 

(A) 

20 ppb benzene + 25 ppm  Methane (CH4) + 10 ppm CO + CO2 (B) 

CO2 C-45 (C) 
20 ppb benzene (C6H6) + CO2 (D) 

0.1 ppm  SO2 + CO2 (E) 
(E) + 20 ppb benzene + CO2 (F) 

25 ppm Methane (CH4) + 10 ppm CO + CO2 (G) 
(G) + 20 ppb de benzene + CO2 (H) 

5 ppm of Methane + 2 ppm methanol + CO2 (I) 
(I) + 20 ppb de benzene + CO2 (J) 

4 ppm Methanol + CO2 (K) 
(K) + 20 ppb de benzene + CO2 (L) 

1.5 ppm (Argon + O2) + CO2 (M) 
(M) + 20 ppb benzene + CO2 (N) 

 

Table 6: Different mixtures measured with 20 ppb of benzene  

 

Compound Mixture 
CO2 C-45 (1) 
10 ppb  benzene + 4 ppm de methanol + CO2 (2) 

10 ppb  benzene + 5 ppm methane (CH4) y 2 ppm methanol + CO2 (3) 
10 ppb  benzene + 25 ppm methane (CH 4) + 10 ppm CO + CO 2 (4) 
10 ppb  benzene (C6H6) + 0.1 ppm de SO2 + CO2 (5) 
10 ppb benzene (C6H6) + CO2 (6) 
10 ppb  + 1.5 ppm de O2 + Argon +  CO2 (7) 

 
Table 7: Different mixtures measured with 10 ppb of benzene 
 

# measurement Compound Codification 
24  20 ppb of benzene + interferences + CO2 20 
18 10 ppb of benzene + interferences + CO2 10 

15 Interferences + CO2 IN 
8 CO2 C 

 
Table 8:  Different mixtures measured and their codification to classification 



 

 

Normalization method Success rate with the fuzzy ARTMAP 
Auto-escalado 89  % 

Centrado  84 % 
Normalización por matriz 89 % 
Normalización por sensor 87 % 

 
Table 9: Classification with 4 categories  (10 ppp, 20 ppb, interferences and CO2 pure) 
 

 
Normalization method Success rate with the fuzzy ARTMAP 

Auto-escalado 97 % 
Centrado  92 % 

Normalización por matriz 95 % 
Normalización por sensor 94 % 

 
Table 10: Classification with 3 categories  (10 ppb with 20 ppb, interferences and CO2 pure) 
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Abstract

Well-established methods to assess rancidity in potato crisps such as the Rancimat or the acid degree value are time-consuming and
labour-intensive. Here, we report on alternative methods, based on e-nose technology, to assess rancidity directly from potato crisps without
any previous oil extraction step. This simplifies sample preparation, avoids the use of solvents or high temperatures and significantly speeds
up the measurement process (from several hours down to 25 min). Two different e-noses were implemented. One was based on SPME
coupled to fingerprint MS and the other one was based on dynamic headspace sampling and an array of metal oxide gas sensors. The two
e-noses were used to classify crisps according to four stages of oxidative rancidity. While the MS e-nose reached a 100% success rate in
this classification, the success rate of the GS e-nose was 68%. These results show that e-nose technology can be a useful tool for the crisp
industry.

We show that it is possible to reliably assess rancidity in potato crisps by either a mass spectrometry or a gas sensor-based electronic
nose. The two approaches are presented and their performance compared in the framework of this application.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Metal oxide gas sensors; Mass spectrometry-based e-nose; Crisp rancidity

1. Introduction

Potato crisps are considered one of the most popular snack
products in the world. Usually, they are made by deep-frying
fresh potato slices in a vegetable oil bath. The reaction of
lipid components with oxygen in the presence of light and
heat is a major source of off-odours/flavours in food and,
particularly, in potato crisps. During the deep-frying pro-
cess, vegetable oil is under temperature stress and this can
induce onset of rancidity as a consequence of oxidative re-
actions of lipids present in the oil. From the standpoint of
food oxidation, the important lipids are the ones contain-
ing unsaturated fatty acids, particularly oleic acid (C18:1),
linoleic acid (C18:2) and linoleic acid (C18:3)[1]. Potato
crisps are fried in oils that contain a high amount of all
of these. Unsaturations are reactive centres liable to be af-
fected by oxidation. So, the greater the number of double
bonds, the higher the probability that the fatty acid will react
with oxygen to generate undesirable odours and flavours in

∗ Corresponding author. Tel.:+34 977 558502; fax:+34 977 559605.
E-mail address:ellobet@etse.urv.es (E. Llobet).

the product. The oxidation of lipids results in the formation
of primary and secondary decomposition products, includ-
ing hydroperoxides, carbonyls, alcohols, esters, carboxylic
acids and hydrocarbons[2], which generally have unpleas-
ant odour and may conduce to rancidity. Various factors can
influence the occurrence of rancidity in crisps, such as stor-
age conditions, presence of antioxidants, oil type, time of
deep-frying, heat, presence of pro-oxidant metals, oxygen
and moisture among other factors.

Two very important aspects for potato crisps pro-
ducers are the detection of rancidity and its associated
off-odours/flavours and the estimation of shelf-life. There
are basically two reasons why it is important to monitor to
what extent oil has undergone oxidation:

• Previous knowledge, i.e. an estimate, on the useful life of
frying oil contributes to reduce the cost of the deep-frying
process. There is an obvious economic advantage when
crisp producers can appropriately determine the useful
life of frying oils. Premature discarding of oils results in
economic loss and, on the other hand, overuse of frying
oil greatly affects the quality of fried products and causes
undesirable nutritional effects[3].

0925-4005/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.snb.2004.05.038
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• The second reason is an ever increasing consumer about
quality and safety of food products. According to Mar-
sili [4], the food industry needs the development of
equipment and techniques to trace the quality of raw ma-
terials and finished products, not only in the production
plant, but also during storage and vending. Monitoring
of off-odours/flavours during the different processing
steps should be conducted to ensure that the processes
are being operated correctly. Finished products should be
monitored too, ensuring that no off-flavours have devel-
oped. All these improvements would greatly contribute
to food quality and consumer satisfaction.

Nowadays, there are some 360 procedures to verify the
quality of oil either during the process of frying or in finished
products[1,5]. However, there is not a reliable, easy-to-use
and fast method to determine rancidity in potato crisps. The
most well-established methods for the evaluation of rancidity
are based on sensory evaluation or chemical analysis. Some
of these methods are revised below:

• Sensory analysis: Samples are evaluated by a panel of
experts. This is a slow and expensive method. It requires
the panel to be integrated by highly trained personnel and,
however, results can be somewhat subjective.

• Peroxide value (PV): This method determines all the sub-
stances, in terms of milliequivalents of peroxide per gram
of sample, which oxidise potassium iodine under the con-
ditions of the test. These substances are generally assumed
to be peroxides or other similar products of fat oxidation.
The higher the PV, the more oxidised the fat is and the
higher the likelihood of off-odours/flavours.

• Acid degree value (ADV): This is a titration method. It ob-
tains the amount of potassium hydroxide required to neu-
tralise the free fatty acids hydrolysed with 95% ethanol.
The higher the ADV, the higher the level of free fatty acids
present in the oil. Free fatty acids indicate undesirable hy-
drolysis, which results in flavour deterioration. Che Man
et al.[3] showed that ADV was an important indicator of
frying oil quality, and highly correlated with the shelf-life
of potato chips.

• Iodine value (IV): Indicates the number of double bonds
or degree of unsaturation in lipids. It can be used as an
estimate of the oxidation stability of a lipid.

• HPLC analysis: Determination of the fatty acid composi-
tion of oil. This method provides fatty acid profiles and
is more informative than IV.

• IR an UV band absorption of some oxidation by-products
like hexanal, pentanal and pentane.

• Methods based on the measurement of some physical
properties of oil, such as melting point, solid fat index and
refractive index.

• Rancimat test: Measures the susceptibility of oil to oxi-
dation. An oil sample is kept at 120◦C in a vessel where
air flows to extract volatiles from the headspace. These
volatiles are then collected in water. The conductivity
of water is monitored and results expressed as Rancimat

hours indicate the time at which oxidative rancidity oc-
curs. Rancidity triggers a sharp increase in water con-
ductivity. Since this test is very informative about the re-
silience to rancidity of oils, it has become a reference in
the crisp industry.

All the methods cited above can be used to assess ran-
cidity in potato crisps, provided that a process to extract
oil from the crisps is performed. Oil extraction is a very
time-consuming, complex and labour-intensive step for rou-
tine quality control applications. Furthermore, the solvents
or the methods used can induce oxidation and distort final
results. Since the crisp industry demands a large number of
samples to be analysed and high sample throughput, there is
a need for faster and simpler methods to assess crisp rancid-
ity and off-odours/flavours. In this context, the use of e-nose
technologies would be of help.

In the last decade, the use of e-nose technology in many
food-related applications has been studied. Electronic noses
are multisensor instruments that use a suitable pattern recog-
nition engine to classify complex odour patterns. According
to previous works, electronic noses based on metal oxide
gas sensors are suitable for the discrimination of different
stages of lipid oxidation in oils[6–8]. In the last few years,
mass spectrometry-based e-noses (MS e-noses) are becom-
ing an increasingly used alternative (or complement) to gas
sensor-based e-noses in food quality applications[4,9]. The
use of pre-concentration and extraction techniques such as
solid-phase micro-extraction (SPME) have improved the
sensitivity and reproducibility of MS e-noses[4,10].

In this work, we report, for the first time, on the design and
use of two e-noses to assess rancidity directly from potato
crisps, without any previous oil extraction step. This greatly
simplifies sample preparation, avoids unwanted artefacts de-
rived from oil extraction and speeds up the measurement pro-
cess. The two e-noses are based on SPME–MS and an array
of semiconductor gas sensors (GS e-nose), respectively. In
the next section, details on the e-nose architectures sample
preparation and measurements run are given. InSection 3,
the results are shown and the usefulness of the methods im-
plemented for the application considered is discussed.

2. Experimental

2.1. Experiment 1

2.1.1. Crisp samples
Four boxes (labelledA–D) with 200 g packs (12 packs

per category) of potato crisps were prepared by Frit Ravich,
S.L. These crisps belonged to the same frying batch of 50%
palm and 50% sunflower oil, but they underwent different
rancidity accelerating treatments:

• Crisps in boxA were stored during 28 days in a dry and
dark conservation chamber, where their temperature was
kept around 20◦C.
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• CrispsB–D were kept during 14, 21 and 28 days, respec-
tively, in a rancidity accelerating chamber. The chamber
was kept at high temperature (around 40◦C) and UV light
was used to promote oxidation. As soon as the samples
within a given category finished their ageing treatment,
they were removed from the rancidity chamber and stored
in the conservation chamber to maintain unchanged the
rancidity stage reached.

2.1.2. Measurement procedures
The content of each potato pack was split to perform con-

sistent measurements with an MS e-nose and a GS e-nose.

2.1.2.1. Metal oxide sensors-based electronic nose.The
electronic nose system was designed to measure volatiles
directly from the packs of the crisps. The system consisted
of a sensor chamber where seven TGS-type sensors and five
FIS sensors were housed, several electrovalves, tubing and
a pump (seeFig. 1a). A similar set-up is described else-
where[11]. The measurement procedure consisted of two
steps. In the first step, (measurement phase) the electrovalves

Fig. 1. Block diagram of the gas sensor-based e-nose used in experiment 1 (a) and experiment 2 (b).

were set to form a closed loop between the sensor cham-
ber and the pack containing the crisps under analysis. The
air flow (150 ml/min) was re-circulated, which caused a dy-
namic sampling of the crisps’ headspace. During this phase,
which lasted 10 min, the resistance of the sensors was ac-
quired and stored for later processing. Finally, in the second
step (cleaning phase), the crisp pack was removed and the
system was cleaned with dry air during 20 min before a new
measurement could start.

After a pack of crisps had been measured by the GS
e-nose, 4± 0.2 g of the crisps were crushed and put into a
20 ml vial that was immediately capped and sealed with a
Teflon septum. A subsequent analysis with the MS e-nose
system was run.

2.1.2.2. Mass spectrometry-based electronic nose.A Shi-
madzu QP 5000 gas chromatograph–mass spectrometer was
used to implement an MS e-nose. The separation column was
replaced by a 5 m deactivated fused silica column to co-elute
all volatile components achieving one single peak for all
the components in the headspace of crisps. The column
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was kept isothermal at 250◦C and the helium flow was
set to 1.4 ml/min. This implies that the components in
the headspace of crisps were directly analysed without
chromatographic separation. For a given measurement, the
resulting mass spectrum gives a fingerprint that is char-
acteristic of the volatiles present in the headspace of the
sample.

The vials that contained the samples to be measured were
placed inside a thermostatic bath (50◦C) to promote the pres-
ence of volatiles in the headspace. SPME was performed by
introducing a 75-�m Carboxen/PDMS fibre into the vial and
exposing it to the headspace of crisps for 20 min. Thermal
desorption of the volatiles trapped on the fibre was conducted
for 3 min in the chromatograph injection port at 300◦C. It
was equipped with a 0.75-mm i.d. liner to optimise SPME
desorption and sample delivery onto the column The split
valve was closed during desorption. The quadrupole mass
spectrometer acquired in scan mode, and the mass range
used wasm/z35 tom/z390 at 0.5 scan/s. To ensure the com-
plete cleaning of the fibre, it was left five additional minutes
in the injector port.

2.1.2.3. Rancimat, ADV and chromatographic profiles.
Rancimat and ADV tests were performed at the quality lab-
oratory of Frit Ravich, S.L. The chromatographic profiles
were obtained at the Gas Sensor Lab of the University Rovira
i Virgili, using a Shimadzu QP 5000 GC/MS. After sample
preparation (as described above), the SPME fibre was intro-
duced into the GC injection port and thermally desorbed for
5 min at 250◦C onto an Equity-5 poly (5%diphenyl/95%
dimethylsiloxane) (30 m× 0.25 mm× 0.25�m) capillary
column, purchased from Supelco Inc. The injector port was
also equipped with a 0.75-mm i.d. liner. The GC oven was
held at 45◦C during 1.5 min. Then, its temperature was
raised up to 250◦C at 6◦C/min rate. Helium at 1.2 ml/min
was used as carrier gas. Mass detector was operating in the
electron impact ionisation mode (70 eV) with a scan range
of 35 to 290 amu. The ion source temperature was kept at
250◦C.

2.2. Experiment 2

A new experiment was performed with an improved ver-
sion of the gas sensor-based electronic nose. The main differ-
ences with the previous system were the use of a 12-element
TGS-type sensor array (the seven TGS sensors already used
in the first experiment+ five TGS sensors added) and a new
sample delivery method.

2.2.1. Crisp samples
Four boxes (labelledA–D) with 200 g packs of crisps (12

packs per category) were prepared by Frit Ravich S.L. in a
similar way to the crisps used in experiment 1.

• Crisps in boxA were stored during 18 days in the same
conservation chamber used in experiment 1.

• CrispsB–D were kept during 6, 12 and 18 days, respec-
tively, in the rancidity accelerating chamber used in ex-
periment 1.

2.2.2. Improved gas sensor-based e-nose
The sample delivery system consisted of two temperature-

controlled stainless-steel vessels (seeFig. 1b): a sampling
vessel and a reference vessel. These chambers were identi-
cal and kept heated at 70◦C. To run a measurement, crisp
samples (60± 1 g) were placed into an aluminium tray and
inserted into the sampling vessel. An identical (but empty)
aluminium tray was also placed inside the reference vessel.
New aluminium trays were used at each new measurement
to avoid cross-contamination between samples. The mea-
surement procedure was as follows:

In the first step (concentration phase), the crisps were
heated at 70◦C for 30 min inside the sampling vessel, which
was kept closed by the electrovalves. This allowed the
volatiles from the crisps to concentrate in the headspace.
During this phase, clean air flowed at 150 ml/min through
the sensor chamber via the reference vessel.

In the second step (measurement phase), the electrovalves
were set to form a closed loop between the sensor cham-
ber and the sampling vessel. The air flow (150 ml/min)
was re-circulated, which caused a dynamic sampling of the
crisps’ headspace. During this phase, which lasted 10 min,
the resistance of the sensors was acquired and stored for
later processing. The use of identical sampling and refer-
ence vessels is essential to ensure that sensor responses
are solely due to the volatiles in the headspace of the
crisps.

Finally, in the third step (cleaning phase) the crisps were
removed from the sampling vessel and the system was
cleaned with dry air during 20 min, before the concentration
phase of a new measurement could start.

3. Results and discussion

3.1. Experiment 1

3.1.1. Rancimat, ADV and chromatographic profiles
Fig. 2(a)shows the Rancimat and ADV results for crisp

samplesA–D in experiment 1. The monotonous decrease
in Rancimat time combined with an increase in the ADV
for samplesA–D shows that these categories correspond to
crisps with increasing oxidative rancidity. Furthermore, the
clear differences in Rancimat time between categories sug-
gest that crisps in different categories are in significantly
different rancidity stages. While there is an important dif-
ference in Rancimat time between samplesA and B, they
share an almost identical ADV. This suggests that ADV may
not be suitable to assess the early stages of rancidity in
crisps.

Chromatographic profiles of the headspace of crisps
belonging to classA (fresh) and classD (rancid) were
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Fig. 2. Results of the Rancimat and ADV tests for potato crisps in
eperiment 1 (a) and experiment 2 (b).

measured. These profiles are shown inFig. 3. Different
volatile molecules appear or substantially increase their sig-
nal intensity as rancidity develops. These include acetone
(peak no. 1), acetic acid (2), pentanal (3), hexanal (5), hep-
tanal (6), hexanoic acid (9), 3-octen-2-one (10), 2-octenal
(11), 2,3-octanedione (12), 2,4-decadienal (14) and unde-
cane (15). Some of these components, such as acetic acid,
pentanal, hexanal, heptanal and hexanoic acid, have been
reported to be present in the chromatographic profiles of
rancid chips[12]. 2,4-decadienal[14], which is present in a
similar intensity in fresh and rancid crisps, has been identi-
fied by GC-olfactometry[13,14] as a predominant note in
deep-fried potato crisps.

Fig. 3. Chromatographic profiles identified by GC/MS (1) acetone, (2) acetic acid, (3) pentanal, (4) pentanol, (5) hexanal, (6) heptanal, (7) 2-heptenal,
(8) 1-octen-3-ol, (9) hexanoic acid, (10) 3-octen-2-one, (11) 2-octenal, (12) 2,3-octanedione, (13) 2-decenal, (14) 2,4-decadienal, (15) undecane.

3.1.2. Mass spectrometry-based e-nose
Nine replicate measurements per sample category were

performed. For each measurement, a response spectrum was
obtained by averaging mass spectra along the detected peak.
The variables selected were fromm/z 35 to m/z 120. The
components identified as indicators of rancidity in the cro-
matographic profiles have base peaks that lie in the range
selected. Therefore, the data matrix,R, consisted of 86
columns (variables) and 36 rows (measurements). A linear
discriminant analysis (LDA) was performed onR. This is a
supervised method (e.g. the classes to be discriminated are
known before this analysis is performed). Geometrically, the
rows of the response matrix,R, can be considered as points
in a multidimensional space. Discriminating axes are deter-
mined in this space in such a way that optimal separation
of the predefined classes is attained. Like PCA, LDA finds
new orthogonal axes (factors) as a linear combination of the
input variables. Unlike PCA, however, LDA computes the
factors as to minimise the variance within each class and
maximise the variance between classes. The first factor will
be the most powerful differentiating dimension, but later fac-
tors may also represent additional significant dimensions of
differentiation.

The data matrix was mean-centred before the LDA was
performed. If this scaling of the data is not performed, there
is a risk of LDA ignoring mass intensities with low mean
(but important for discriminating the four rancidity classes)
in front of mass intensities with high mean. The two first
factors accounted for more than 99% of the variance in the
data. LDA results are shown inFig. 4. Replicate samples of
a given category cluster together with low dispersion, which
shows the good repeatability of the MS e-nose.Fig. 4shows
that crisp samples with increasing rancidity appear ordered
from left to right along the first factor. While samples from
categoriesA (fresher) andD (more rancid) appear in clusters
well apart, the clusters of categoriesB andC are very near.
These results are in very good agreement with the Rancimat
tests (seeFig. 1a). For example, while there is a moderate
change in the Rancimat time between samples in categories
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Fig. 4. Results of a linear discriminant analysis for the measurements gathered with the mass spectrometry-based e-nose in experiment 1.

Band C, there is a dramatic change in this parameter between
samples in categoriesA and B and also between samples
in C and D. Therefore, MS e-nose results are in excellent
agreement with Rancimat results.

A fuzzy ARTMAP neural network was used to classify
the samples within the four categories of rancidity (A–D).
Because of the limited number of measurements avail-
able (36), the network was tested using the leave-one-out
cross-validation method. Givenn measurements, the net-
work was trainedn times usingn − 1 training vectors. The
vector left out during the training phase (i.e. unseen by
the network) was then used for testing. Performance was
estimated as the averaged performance over then tests. For
each iteration of the cross-validation process, a different
row from the data was left out. The remaining 35 rows con-
formed the restricted data matrix. A pre-processing step was
performed on the restricted data matrix, which consisted of
computing a 4-class LDA and retaining the two first factors.
The scores of the 35 measurements conformed the new
data matrix. Therefore, this new matrix had 35 rows and
2 columns. The matrix was then normalised because the
fuzzy ARTMAP network needs that its input data lie in the
range [0, 1]. Once the data matrix had been pre-processed,
it was used to train the neural network model. After the
training phase, the network was validated using the vector
that had been left out (i.e. validation vector). The procedure
was as follows:

Because a LDA had been used as pre-processing, then the
scores of the validation vector were calculated by projecting
its components onto the space of factors. In the second step,

the validation vector was normalised. Finally, the validation
vector was input into the neural network model, which pro-
duced a classification result. The fact that the validation vec-
tor had been left out before any pre-processing of the data
ensured that this vector was completely ‘new’ for the neural
network.

The number of inputs to the network was set to 2 (the
scores on the two first factors). The number of outputs was
set to 4 because a 1-of-4 code was used for the different
classes (A: 0001,B: 0010,C: 0100 andD: 1000). For ex-
ample, the activation of the first output neurone (i.e. out-
put pattern 0001), implies that an input vector is recog-
nised as belonging to classA (fresh crisps). This approach
aimed at identifying rancidity in a semi-quantitative way.
The baseline vigilance parameter was set to 0. This is the
recommended value for the vigilance since it allows for very
coarse categories and the match tracking system will only
refine these categories if necessary. The re-code rate was
set to 0.5. This value allows the established categories to
be modified if there is a persistent attempt to do so (slow
recode). The value of the choice parameter was set to 0.1.
The Fuzzy ARTMAP network could learn the training set in
just one iteration. The number of committed nodes, which
play a similar role as hidden neurones in multilayer percep-
tron networks, ranged between 4 and 6 after the network
had been trained. Under these conditions, the success rate
reached in rancidity classification was 100%. This shows
that the SPME–MS e-nose was able to assess crisp ran-
cidity from the volatiles present in the headspace of the
crisps.
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3.1.3. Gas sensor-based e-nose
The responses of the 12 metal oxide gas sensors to the

different crisp samples were obtained. The feature extracted
from each sensor response was the conductance change, de-
fined as�G = Gmax − Go, whereGmax is the maximum
value of the sensor electrical conductance in the presence
of the volatiles from the headspace of the crisps, andGo is
the sensor conductance in the presence of air (i.e. the base-
line conductance). The responses of the FIS sensors were
very weak compared with the responses of the TGS sen-
sors. Therefore, only the responses of the seven TGS sen-
sors were used for further analysis. A LDA was performed
on the mean-centred response matrix. The two first discrim-
inant factors accounted for more than 99% of variance in the
data. LDA results are shown inFig. 5. While measurements
that correspond to fresh crisps (classA) cluster together, the
clusters of measurements corresponding to the remaining
three classes appear clearly overlapped along the first and
second discriminant factors. A fuzzy ARTMAP was used to
classify the samples according to their rancidity stage. The
same training and validation techniques employed with the
MS e-nose were implemented. The neural network had seven
inputs (seven TGS sensors) and four outputs. The number of
committed nodes during the repeated training and validation
processes varied between 8 and 12. Under these conditions,
the success rate reached in rancidity classification was 56%.
The samples misclassified belonged to categoriesB–D.

According to these results, the GS e-nose showed lower
repeatability and discriminating power than the MS e-nose.
However, an important difference between the two e-nose
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Fig. 5. Results of a linear discriminant analysis for the measurements gathered with the gas sensor-based e-nose in experiment 1.

methods lies in sample preparation. While for the GS e-nose
volatiles were sampled from the headspace of the crisps at
room temperature, the MS e-nose made use of a SPME from
the headspace of crisps heated at 50◦C. Therefore, the differ-
ences in classification success rate between the two e-noses
could be due to significant differences in the headspaces
sampled. This is why a new experiment was designed.

3.2. Experiment 2

3.2.1. Rancimat and ADV results
Fig. 2b shows the Rancimat and ADV results for crisp

samplesA–D in experiment 2. The oil used to deep-fry the
crisps in experiment 2 had the same composition than the one
used in the previous experiment. However its initial stage
(classA) was, according to the Rancimat test, more evolved
towards rancidity. The results of the Rancimat test showed
that the classification of samples in four rancidity categories
was going to be more challenging here, because samples in
classesC andD had very similar Rancimat and ADV results.

3.2.2. Gas sensor-based e-nose
The GS e-nose with a re-designed sample delivery system

was used. The responses of the 12 TGS-type metal oxide
gas sensors to the different crisp samples in experiment 2
were obtained. The feature extracted from each sensor re-
sponse was, once again, the conductance change. Since 12
replicate measurements per category were gathered, the re-
sponse matrix had 48 rows and 12 columns. A LDA was
performed on the mean-centred data matrix. The two first
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Fig. 6. Results of a linear discriminant analysis for the measurements gathered with the gas sensor-based e-nose in experiment 2.

factors accounted for more than 99% of variance in the data.
LDA results are shown inFig. 6. This figure shows that
crisp samples with increasing rancidity appear ordered (with
some overlapping) from left to right along the first factor.
Overlapping occurs between samples in categoriesC andD,
which is in good agreement with the very similar Rancimat
times found for these categories. These results suggest that
it is necessary to heat the crisps for a headspace that is rep-
resentative of their rancidity stage to develop.

A fuzzy ARTMAP was, once again, used to classify the
samples according to their rancidity stage. The same training
and validation techniques employed in experiment 1 were
implemented. The neural network had 12 inputs (12 TGS
sensors) and 4 outputs. The number of committed nodes
during the repeated training and validation processes var-
ied between 7 and 10. Under these conditions, the success
rate reached in rancidity classification was 68%. Consider-
ing that the classification problem envisaged in experiment

Table 1
Confusion matrix for the classification of crisps samples in four categories
of rancidity (A–D) in experiment 2, using a fuzzy ARTMAP neural
network

Actual

A B C D

Predicted as
A 9 2 0 0
B 3 8 2 2
C 0 2 8 2
D 0 0 2 8

2 was more challenging, a 68% rate of successful classifica-
tions compares very favourably with the 56% success rate
reached in experiment 1.Table 1shows the confusion matrix
for experiment 2. It can be seen that most confusions oc-
cur between consecutive rancidity categories (only two sam-
ples belonging to classD were misclassified as belonging to
classB).

These promising results show that the GS e-nose with
improved sample delivery system is able to perform a
semi-quantitative classification of crisp rancidity.

4. Conclusions

In this work, we have reported on the design and use of
two e-noses to assess rancidity directly from potato crisps,
without any previous oil extraction step. This simplifies sam-
ple preparation, avoids the use of solvents to extract oil and
speeds up the measurement process. The two e-noses were
based on fingerprint mass spectrometry and an array of metal
oxide gas sensors, respectively. While a single measurement
using either the Rancimat or the ADV test takes typically
some hours to complete, a measurement with the MS e-nose
or the GS e-nose takes 25 and 40 min, respectively.

Sample conditioning plays a very important role. A
mild heating of the crisps (up to 70◦C) is necessary for a
headspace that is representative of their rancidity stage to
develop. Under these conditions, the MS e-nose and the GS
e-nose have been found sensitive enough and suitable for
semi-quantitatively assessing rancidity in potato crisps. The
results obtained by both e-nose instruments are in very good
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agreement with the Rancimat test. Therefore, the assessment
of crisp rancidity using e-nose technology could become a
routine test in the quality laboratories of crisp producers.

Further work is in progress to analyse the shelf-life of
potato crisps.
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