

A SATISFIABILITY MODULO THEORIES APPROACH
TO CONSTRAINT PROGRAMMING

Josep SUY FRANCH

Dipòsit legal: GI. 150-2013
 http://hdl.handle.net/10803/98302

 A satisfiability modulo theories approach to constraint programming està
subjecte a una llicència de Reconeixement 3.0 No adaptada de Creative Commons

©2013, Josep Suy Franch

PHD THESIS

A Satisfiability Modulo Theories

Approach to Constraint Programming

Author:
Josep SUY FRANCH

2012

Programa de Doctorat en Tecnologia

Advisors:
Dr. Miquel BOFILL ARASA

Dr. Mateu VILLARET AUSELLE

Memòria presentada per optar al tı́tol de doctor per la Universitat de Girona

Abstract

Satisfiability Modulo Theories (SMT) is an active research area mainly focused on for-
mal verification of software and hardware. The SMT problem is the problem of deter-
mining the satisfiability of ground logical formulas with respect to background theories
expressed in classical first-order logic with equality. Examples of theories include linear
real or integer arithmetic, arrays, bit vectors, uninterpreted functions, etc., or combina-
tions of them. Modern SMT solvers integrate a Boolean satisfiability (SAT) solver with
specialized solvers for a set of literals belonging to each theory.

On the other hand, Constraint Programming (CP) is a programming paradigm de-
voted to solve Constraint Satisfaction Problems (CSP). In a CSP, relations between vari-
ables are stated in the form of constraints. Each constraint restricts the combination of
values that a set of variables may take simultaneously. The constraints are stated over
specific domains, typically: Booleans, integers, rationals, reals, finite domains, or com-
binations of them. The problem consists in finding an assignment to the variables that
satisfy all constraints. Many CP solving algorithms are based on systematic search, but
in the last years there have been many other successful approaches to solve CSPs: SAT,
Mixed Integer Linear Programming (MILP), Lazy Clause Generation (Lazy fd), genetic
algorithms, tabu search, . . .

In this thesis we focus on solving CSPs using SMT. Essentially, what we do is
reformulating CSPs into SMT. There are already promising results in this direction, but
there does not exist a generic approach and there are no available tools to extensively
explore the adequacy of this approach. We intend to fill this gap with a complete encoding
of an standard CP language. We provide extensive performance comparisons between
state-of-the-art SMT solvers and most of the available CP solvers on a large collection of
problems. The obtained results allow us to conclude that state-of-the-art SMT solvers are
a robust tool to solve CSPs.

We tackle not only decisional CSPs, but also Constraint Optimization Problems
(COP), where the objective is to find a solution that is optimal with respect to some
given objective function. We also address the Weighted Constraint Satisfiability Prob-
lem (WCSP), where there are constraints with an associated weight (cost) and where the
goal is to minimize the sum of the costs of the unsatisfied constraints. For solving COP

i

ii

and WCSP we have used SMT in conjunction with appropriated algorithms: search algo-
rithms and UNSAT core based algorithms borrowed from the MaxSAT area.

We have developed the fzn2smt system for encoding instances of the MINIZINC

standard (CSP and COP) specification language into SMT. With this system we have
obtained the golden medal in the par division and the silver medal in the free division of
the MINIZINC challenge 2010, and the silver medal in the same divisions of the MINIZINC

challenge 2011.

We have also developed a new specification language, called Simply, and its ex-
tension WSimply, for programming in the three CP paradigms (CSP, COP and WCSP),
and a compiler from this language to SMT. WSimply provides support for meta-constraints
that is, constraints on constraints. Meta-constraints can be very helpful in the modelling
process, since they allow us to abstract to a higher level, expressing, e.g., priorities be-
tween a set of soft constraints, different levels of preference (multi-objective optimiza-
tion), etc. As far as we know, WSimply is the first declarative CP language allowing to
model WCSP instances intensionally and supporting meta-constraints.

Once seen that SMT is a very good approximation for CP, we have tried to test
whether algorithms built on top of an SMT solver can have equal or better performance
than ad hoc programs designed specifically for a given problem, based on other ap-
proaches. We concentrate on scheduling problems. Scheduling problems consist in de-
ciding how to commit resources and time of execution to a set of activities. They are well
suited to SMT because have a strong Boolean component and also an important arith-
metic component. To test our approach we have chosen the resource-constrained project
scheduling problem (RCPSP), and its generalizations RPCPSP/max and MRCPSP, since
this is the most widely studied scheduling problem in the literature. We provide exten-
sive performance comparisons between our approach and state-of-the-art RCPSP solvers.
We remark that our system outperforms all other approaches described in the literature to
solve MRCPSP and it is competitive in RCPSP and RCPSP/max.

Resum

La Satisfactibilitat Mòdul Teories (SMT) és una àrea de recerca activa centrada principal-
ment en la verificació formal de programari i maquinari. Un problema SMT consisteix en
determinar la satisfactibilitat de fórmules lògiques sense quantificadors, respecte a teories
de fons expressades en lògica clàssica de primer ordre amb igualtat. Alguns exemples
d’aquestes teories són: l’aritmètica lineal real o entera, les matrius, els vectors de bits, les
funcions no interpretades, . . . , o combinacions d’elles. Els solucionadors SMT moderns
integren un solucionador de Satisfactibilitat Booleana (SAT) amb solucionadors especial-
itzats per al conjunt de literals que pertanyen a cada teoria.

D’altra banda, la Programació amb Restriccions (CP) és un paradigma de progra-
mació dedicat a resoldre els problemes de satisfacció de restriccions (CSP). En un CSP,
les relacions entre les variables s’expressen en forma de restriccions. Cada restricció
limita la combinació de valors que poden prendre a la vegada un conjunt de variables.
Les restriccions s’expressen a través de dominis especı́fics com ara: Booleans, enters,
racionals, reals, dominis finits, o combinacions d’aquests. Aquest problema consisteix en
trobar una assignació a les variables que satisfaci totes les restriccions. Molts algorismes
de resolució de CSPs es basen en la cerca sistemàtica, tot i que en els últims anys han
aparegut molts altres mètodes per resoldre CSPs amb èxit: SAT, Mixed Integer Linear
Programming (MILP), Lazy Clause Generation (Lazy fd), algorismes genètics, recerca
tabú, . . .

Aquesta tesi es centra en la resolució de CSPs utilitzant SMT. En esència, es re-
formulen els CSPs a fórmules SMT. Ja existeixen alguns resultats prometedors en aquest
sentit, però sense un enfocament genèric. Tampoc existeixen eines disponibles per explo-
rar exhaustivament la idoneı̈tat d’aquest enfocament. Es preten omplir aquest buit amb
una codificació completa d’un llenguatge estàndard de CP. També es proporcionen com-
paracions exhaustives de rendiment entre els millors solucionadors actuals d’SMT i la
majoria dels solucionadors de CP disponibles en una àmplia col·lecció de problemes. Els
resultats obtinguts permeten concloure que els millors solucionadors actuals d’SMT són
una eina sòlida per a resoldre CSPs.

No només s’aborden els CSP decisionals, sinó també problemes d’optimització de
restriccions (COP), on l’objectiu és trobar una solució que sigui òptima respecte a una

iii

iv

funció objectiu donada. També tractem el problema de restriccions de satisfacibilitat amb
pesos (WCSP), on hi ha restriccions amb un pes associat (cost) i on l’objectiu és minim-
itzar la suma dels costos de les restriccions insatisfetes. Per a resoldre COP i WCSP s’ha
utilitzat SMT juntament amb els algorismes apropiats: algorismes de cerca i algorismes
basats en nuclis d’insatisfactibilitat provinents de l’àrea de MaxSAT.

S’ha desenvolupat el sistema fzn2smt per a la codificació de les instàncies del
llenguatge d’especificació estandard MINIZINC a SMT. Amb aquest sistema s’ha obtingut
la medalla d’or en la divisió “par” i la medalla de plata en la divisió “free” de la MINIZINC

Challenge 2010, i la medalla de plata en les mateixes divisions de la MINIZINC Challenge
2011.

També s’ha desenvolupat un nou llenguatge d’especificació, anomenat Simply, i
la seva extensió WSimply, per a la programació dels tres paradigmes de CP (CSP, COP
i WCSP), i un compilador d’aquests llenguatges a SMT. WSimply dóna suport a meta-
restriccions, és a dir, restriccions sobre restriccions. Les meta-restriccions poden ser de
gran ajuda en el procés de modelatge, atès que ens permeten abstreure’ns a un nivell
superior, per expressar, per exemple, les prioritats entre un conjunt de restriccions amb
pes, diferents nivells de preferència (optimització multiobjectiu), etc. Pel que sabem,
WSimply és el primer llenguatge declaratiu de CP que permet modelar WCSPs inten-
sionalment i alhora donar suport a meta-restriccions.

Un cop comprovat que SMT és una molt bona aproximació per a CP, s’ha trac-
tat de comprovar si els algorismes basats en SMT (amb ajuda d’un solucionador SMT
directament o utilitzant-lo com un oracle) poden tenir un rendiment igual o millor que
els programes dissenyats especı́ficament per a un problema donat, desenvolupats so-
bre la base d’altres enfocaments. Ens concentrem en els problemes de programació
d’activitats (scheduling). Els problemes de programació d’activitats consisteixen en de-
cidir com assignar recursos i temps d’execució a un conjunt d’activitats. Aquest prob-
lemes s’adapten bé a SMT ja que tenen una forta component Booleana i també una compo-
nent aritmètica important. Per comprovar el nostre enfocament s’ha escollit el Problema
del Projecte de Programació amb Recursos Limitats (RCPSP), i les seves generalitzacions
RPCPSP/max i MRCPSP, atès que aquest és el problema de programació d’activitats més
àmpliament estudiat en la literatura. Es proporcionen comparacions exhaustives de rendi-
ment entre el nostre enfocament i les millors tècniques actuals per resoldre RCPSP. Cal
destacar que el nostre sistema supera tots els altres mètodes descrits a la literatura per
resoldre MRCPSP i és competitiu en RCPSP i RCPSP/max.

Acknowledgments

I would like to acknowledge the people who in some way have contributed to the success
of this work. First of all, I would like to express my sincere gratitude to my advisors,
Miquel Bofill and Mateu Villaret, whose support, encouragement and guidance during
this time enabled me to develop this thesis.

This thesis is dedicated to my wife Joana and my children Pau and Ferran, thank for
their infinite patience, help and unconditional support during these years of work. Thanks
also, to my mother Salvadora and a special memory for my father Francesc.

I would also like to express my gratitude to all the members of the Logic and Pro-
gramming Research Group (L ∧ P) of the Universitat de Girona : Miquel Palahı́, Joan
Espasa, Marc Massot, also to Carlos Ansótegui of the Universitat de Lleida; the students
who have worked with me these last years: David Moreno and Jordi Coma. I also appreci-
ate the help and comments of many colleagues in the department of IMAE-LSI, including:
Joan Surrell, Santi Thio, Josep Soler, and Imma Boada.

The work presented in this thesis was partially supported by by the Spanish Ministry
of Science and Innovation through the project TIN2008-04547.

v

vi

Contents

Abstract i

Resum iii

Acknowledgments v

Contents xi

List of Figures xiv

List of Tables xvi

List of Algorithms xvii

1 Introduction 1

1.1 Motivation and Objectives . 1

1.2 Contributions . 3

1.3 Publications . 5

1.4 Outline of the Thesis . 6

2 Constraint Programming 9

2.1 Constraint Satisfaction Problems . 9

2.2 Systematic Search . 10

2.2.1 Generate and Test . 11

2.2.2 Backtracking . 12

vii

viii CONTENTS

2.3 Consistency Techniques . 14

2.3.1 Node Consistency . 15

2.3.2 Arc Consistency . 15

2.3.3 Other Consistency Techniques 17

2.4 Constraint Propagation . 17

2.4.1 Forward Checking . 18

2.4.2 Look Ahead . 18

2.4.3 Propagators . 19

2.5 Constraint Optimization . 20

2.6 Global Constraints . 23

2.7 Other CSP Solving Methods . 23

2.8 MaxCSP and Weighted CSP . 25

3 Satisfiability 29

3.1 The SAT Problem . 30

3.2 Satisfiability Algorithms . 31

3.2.1 The Resolution Method . 31

3.2.2 The Davis-Putnam Procedure 32

3.2.3 The Davis-Logemann-Loveland Procedure 34

3.2.4 Abstract Davis-Putnam-Logemann-Loveland 38

3.3 MaxSAT and Weighted MaxSAT . 41

3.3.1 MaxSAT and Partial MaxSAT 41

3.3.2 Weighted MaxSAT and Weighted Partial MaxSAT 42

3.4 MaxSAT and Weighted MaxSAT Algorithms 43

3.4.1 UNSAT Core Based Algorithms 43

3.5 Encoding CSPs into SAT . 46

3.5.1 Variable Encodings . 46

3.5.2 Constraint Encodings . 48

3.5.3 Other Encodings . 49

CONTENTS ix

4 Satisfiability Modulo Theories 53

4.1 Preliminaries . 53

4.2 The Eager and Lazy SMT Approaches 54

4.3 Abstract DPLL Modulo Theories . 57

4.4 Theories and Logics . 59

4.4.1 Combination of Theories . 61

4.5 MaxSMT and Weighted SMT . 62

4.6 Lazy Clause Generation . 63

5 Encoding CSP into SMT 69

5.1 State-of-the-Art . 70

5.2 Simply . 71

5.2.1 Structure of Simply . 74

5.2.2 Constraints . 74

5.2.3 Examples and Benchmarks . 78

5.2.4 Simply Prototype Considerations 78

5.3 MINIZINC and FLATZINC . 80

5.4 fzn2smt . 82

5.4.1 Translation and Encoding . 84

5.4.2 Constant and Variable Declarations 85

5.4.3 Constraints . 87

5.4.4 Solve Goal . 91

5.5 Benchmarking . 93

5.5.1 fzn2smt with SMT Solvers . 94

5.5.2 Array Encodings . 94

5.5.3 Bounding Strategy . 98

5.5.4 Other FLATZINC Solvers . 99

5.5.5 Other FLATZINC Solvers with Global Constraints 100

5.6 Impact of the Boolean Component . 104

5.7 Summary . 107

x CONTENTS

6 Weighted CSP and Meta-Constraints 109

6.1 State-of-the-Art . 110

6.2 WSimply . 110

6.3 Meta-Constraints . 114

6.4 Modelling Example . 117

6.4.1 Soft Constraints . 118

6.5 Solving Process . 120

6.5.1 Reformulating WCSP with Meta-Constraints into WCSP (R1) . . 121

6.5.2 Reformulating WCSP into COP (R2) 124

6.5.3 Reformulating WCSP into WSMT (R3) 125

6.5.4 Reformulating COP into WSMT (R4) 125

6.5.5 Solving with SMT . 126

6.6 Benchmarking . 127

6.6.1 Nurse Rostering Problem . 128

6.6.2 Soft Balanced Academic Curriculum Problem 134

6.7 Extensional WCSP . 140

6.8 Summary . 141

7 Scheduling 143

7.1 State-of-the-Art in the RCPSP . 144

7.2 The Resource-Constrained Project Scheduling Problem 145

7.3 Preprocessing . 147

7.4 Solving . 150

7.5 Encodings . 152

7.5.1 Time Formulation . 152

7.5.2 Task Formulation . 154

7.5.3 Flow Formulation . 156

7.5.4 Event Formulation . 157

7.5.5 New Event Formulation . 159

7.6 Experiments . 161

CONTENTS xi

7.6.1 Initial and New Event-Based Formulation 161

7.6.2 Preprocessing and Optimization 162

7.6.3 Comparison with Others Solvers 164

7.6.4 System Improvements . 165

7.6.5 Closed Instances . 167

7.7 Summary . 168

8 Other Scheduling Problems 169

8.1 RCPSP/max . 169

8.1.1 Preprocessing . 170

8.1.2 Experiments . 172

8.2 Multimode RCPSP . 172

8.2.1 Preprocessing . 174

8.2.2 Encodings . 177

8.2.3 New Boolean Encoding . 180

8.2.4 Experiments . 181

8.3 Summary . 182

9 Conclusions and Future Work 187

9.1 Conclusions . 187

9.2 Future Work . 189

Bibliography 191

xii CONTENTS

List of Figures

2.1 Arc consistent CSP without solution. 17

3.1 Search tree for DLL. 36

3.2 Application of the WPM1 algorithm . 46

4.1 Old architecture of Lazy fd . 64

4.2 New architecture of Lazy fd . 66

5.1 A Simply encoding for the 8-Queens problem. 71

5.2 The architecture of Simply. 72

5.3 SMT problem resulting from the compilation to the 8-Queens instance. . . 73

5.4 The answer of Yices to the 8-Queens instance. 73

5.5 Simply syntax I. 75

5.6 Simply syntax II. 76

5.7 Simply syntax of data file. 76

5.8 The compiling and solving process of fzn2smt. 84

5.9 Number of solved instances and elapsed times. 102

5.10 Normalized difference of solved instances between fzn2smt and Gecode
with respect to the ratio of Boolean variables. 105

5.11 Normalized difference of solved instances between fzn2smt and Gecode
with respect to the ratio of disjunctions. 106

6.1 A Simply instance. 111

6.2 SMT instance. 112

xiii

xiv LIST OF FIGURES

6.3 Basic architecture and solving process of WSimply. 120

6.4 WSimply model for the NRP. 131

6.5 WSimply constraints to add to the NRP model in order to ask for homo-
geneity with factor F in the solutions. 132

6.6 WSimply model for the SBACP. 136

6.7 WSimply constraints to add to the model for the SBACP in order to ask
for homogeneity with factor F in the solutions. 138

6.8 Extension to minimize the maximum workload (amount of credits) of pe-
riods. 139

7.1 An example of RCPSP . 146

7.2 An example of active schedule. 167

8.1 An example of RCPSP/max and one of its possible solutions. 171

8.2 An example of MRCPSP with one renewable resource and one non-renewable
resource. 175

List of Tables

5.1 Benchmarks in Simply. 79

5.2 Comparison of SMT solver using fzn2smt. 95

5.3 Performance with Yices 2 using array decomposition vs uninterpreted
functions (UF). 96

5.4 Performance with Yices 2 using different optimization search strategies. . 99

5.5 Performance comparison between fzn2smt and some available FLATZINC

solvers. 101

5.6 Performance comparison of fzn2smt vs available FLATZINC solvers with
global constraints. 103

5.7 Paired t-test I. 107

5.8 Paired t-test II. 107

6.1 Results on 5113 instances from the N25 set 130

6.2 Results when adding the homogeneousAbsoluteWeight meta-constraint
with factor 5. 132

6.3 Results when adding the homogeneousAbsoluteWeight meta-constraint
with factor 10. 132

6.4 Results when adding the homogeneousPercentWeight meta-constraint with
factor 6. 133

6.5 Results when adding the homogeneousPercentWeight meta-constraint with
factor 11. 134

6.6 Results of the experiments on the SBACP instances without and with ho-
mogeneity. 137

6.7 Results when adding the multiLevel . 138

6.8 Comparison between WSMT and Toulbar. 141

xv

xvi LIST OF TABLES

7.1 Comparison of the initial event-based formulation and the new one, show-
ing the number of solved instances, and the mean and the median of the
solving times. 162

7.2 Comparison of the different proposed encoding with the different prepro-
cessing techniques. 163

7.3 Comparison of the different optimization methods. 164

7.4 Comparison between our best approach and Lazy fd. 164

7.5 Comparison between our approach and Lazy fd 165

7.6 New closed instances. 168

8.1 Comparison between our system rcpsp2smt and Lazy fd, showing the
number of solved instances, and the mean and median times. 172

8.2 Comparison with and without using the non-renewable resources demand
reduction preprocessing method. 181

8.3 Comparison between Time and TimeBool encoding. 183

8.4 Comparison between Task and TaskBool encoding. 184

8.5 Comparison between our approach and the PSPLib results. 185

List of Algorithms

1 Generate and test algorithm . 12
2 Backtracking algorithm . 13
3 AC-3 . 16
4 AC for Forward Checking . 18
5 AC-3 for Look Ahead . 19
6 Branch & Bound . 22
7 Resolution(φ): Resolution based SAT algorithm 32
8 Davis-Putnam(φ): DP procedure for SAT 33
9 Davis-Logemann-Loveland(φ): DLL procedure for SAT 35
10 Conflict-Driven Clause-Learning algorithm 38
11 PM1 Algorithm . 44
12 WPM1 Algorithm . 45
13 Bool+T . 55
14 Minimization in fzn2smt . 92
15 WPM1 Algorithm for SMT . 128

xvii

xviii LIST OF ALGORITHMS

Chapter 1

Introduction

1.1 Motivation and Objectives

Constraint Satisfaction Problems (CSPs) are decisional problems expressed with con-
straints. Typically, CSPs are computationally intractable (NP-hard) combinatorial prob-
lems. However, the techniques and algorithms developed in recent decades show that
many instances can be solved in a reasonable time, although there will always be in-
stances with very long solving time. Constraint Programming (CP) is the programming
paradigm devoted to solve CSPs.

There are a lot of approaches to solve CSPs. The classical approach is to use sys-
tematic search algorithms [DF98, Gas79, HE80] with consistency techniques [Kum92,
Mac77, MH86] and propagation (Forward Checking, Look Ahead). But there are many
other approaches including, among others, genetic algorithms, and Mixed Integer Linear
Programming (MILP), consisting in mapping a CSP to a mixed integer linear program
and applying local search techniques for moving from solution to solution in the space of
candidate solutions.

An approach that has achieved great results in the last years is reducing the CSP
into the Boolean Satisfiability Problem (SAT), and then finding a solution with an state-
of-the-art SAT solver [Wal00, CMP06, TTKB09]. Nowadays, this is considered one of
more powerful generic CSP solving approaches. It has proven to be highly competitive in
a variety of problems [MMZ+01, VB01, ZLS04, LMS06, Kau06, KSHK07]. However,
this approach is a bit unfriendly, since encoding domains of variables and constraints into
SAT is tedious and lengthy.

On the other hand, in recent years there have been important developments in Satis-
fiability Modulo Theory (SMT) solvers. An SMT formula is a generalization of a Boolean
formula in which some propositional variables have been replaced by predicates with pre-

1

2 CHAPTER 1. INTRODUCTION

defined interpretations from background theories, such as linear integer arithmetic, arrays,
bit vectors, uninterpreted functions, etc., or combinations of them. The goal of an SMT
solver is to check if the Boolean formula is satisfiable while the truth assignment cho-
sen for the predicates is consistent with respect to the background theory. Modern SMT
solvers integrate a SAT solver with specialized solvers for a set of literals belonging to
each theory. These solvers were originally developed for solving problems of software
and hardware verification, that typically are small but computationally hard. Although
most SMT solvers are restricted to decidable quantifier free fragments of their logics, this
suffices for many applications.

The objectives of the thesis are the following:

1. The first objective is to show that SMT can be a good generic solving approach for
CSP. In fact, there are already promising results in the direction of adapting SMT
techniques for solving some particular CSPs [NO06, NORCR07]. This approach
has the advantage of combining the power of SAT solvers and of theory solvers to
get the best of both worlds. Another aspect to consider is that, thanks to the use
of theories with high expressiveness, encodings can be simpler and more compact
than in plain SAT.

With the aim of bringing a bit more of SMT technology to CP, we have started by
developing a new language and system for modelling and solving CSPs with SMT,
called Simply. Then, we have developed fzn2smt, a systematic and general
encoding of the MINIZINC standard CSP specification language into SMT.

2. The second objective is to prove that using an SMT solver in conjunction with
appropriate algorithms can be a robust approach for optimization variants of CSP.

Constraint Optimization Problems (COP) are an optimization variant of CSP where
the objective is to find a solution that optimizes some given objective function.

Weighted CSP (WCSP) is another variant used for modelling over-constrained prob-
lems, in which (soft) constraints may have an associated weight (cost of falsifica-
tion) and the goal is to find a solution that minimizes the sum of costs of unsatisfied
constraints. The equivalent problem in SAT is called Weighted MaxSAT. One of
the most efficient solving techniques for this last problem is the use of UNSAT core
based algorithms. Therefore, we think that it is worthily to adapt those UNSAT
core based algorithms for SMT.

3. The third objective is to develop a system supporting meta-constraints, allowing the
user to model Weighted CSP intensionally, and to solve them using SMT.

This is motivated mainly by the aim of developing an efficient and at the same
time user friendly programming system. Although in over-constrained problems the
preferences on which constraints to violate can be modelled by attaching a weight

1.2. CONTRIBUTIONS 3

to each constraint, we may wish to go further at the specification level by allow-
ing the user to express her preferences more easily, or even to express more com-
plex preferences. In [PRB00], a set of constraints on soft constraints, called meta-
constraints, was introduced. Meta-constraints can be very helpful in the modelling
process, since they allow us to abstract to a higher level, expressing, e.g., priorities
between a set of soft constraints, different levels of preference (multi-objective op-
timization), etc. Hence, the inclusion of meta-constraints increases the capability
to easily model several real-world problems. Nevertheless, as far as we know, there
does not exist any system supporting the intensional modelling of Weighted CSP.

After having successfully accomplished the three previous objectives, and having seen
that SMT is competitive with generic CP tools, we wondered whether algorithms built
on top on an SMT solver could have equal or better performance than ad hoc programs
based on other approaches, at least for some families of problems. Since SMT exhibited
very good performance for scheduling problems, we considered this family. This led to
the following last objective.

4. The fourth objective is to provide an SMT based system being competitive with
state-of-the-art methods for scheduling problems.

Scheduling problems consist in deciding how to commit resources and time of ex-
ecution to a set of tasks. On the one hand, these type of problems have a very
important component of integer arithmetic: precedence delays between activities
and sums of resource consumptions to verify that the activities running at a cer-
tain time do not exceed the specified resource availability. On the other hand, they
have a strong Boolean component expressing incompatibilities and precedences be-
tween activities. Due to this combination of arithmetic and Boolean constraints, we
believe that scheduling problems are ideally suited to the characteristics of SMT
solvers.

To this end we consider the resource-constrained project scheduling problem (RCPSP),
which is the scheduling problem more widely discussed in the literature, and its
generalizations RPCPSP/max and MRCPSP.

The four objectives presented can be summarized in one conclusion: Satisfiability
Modulo Theories can be an efficient and competitive approach to Constraint Program-
ming.

1.2 Contributions

The contributions of this thesis can be summarized as follows:

4 CHAPTER 1. INTRODUCTION

1. Encoding CSP into SMT. We have developed some relatively general and system-
atic ways of translating CSPs into SMT. We have developed two systems:

• Simply, with its own language, which allows to model CSPs and to solve
them via translation to SMT, and

• fzn2smt, that solves instances of the MINIZINC standard CSP language using
also SMT.
We remark that we provide support no only for constraints on integer variables
but also for other MINIZINC supported constraints on reals and Booleans, and
on vectors and sets of basic types.

2. Solving COP with SMT. We have implemented a search procedure to deal with op-
timization in SMT. This procedure successively calls the SMT solver with slightly
modified versions of the instance to optimize. These modifications simply narrow
the domain of the variable to be optimized with the addition of constraints. We
have implemented three possible bounding strategies: linear, dichotomic and hy-
brid. Particular strategies following this line have already been applied with great
success on particular problems [NO06].

3. Study of the impact of the Boolean component. We have studied the impact of
the Boolean component of the instances in the performance of our encodings. We
have statistically concluded than the greater is the Boolean component, the better is
the performance of SMT with respect to other systems.

4. Empirical proof of the good performance of SMT for solving CSP and COP.
We have performed tests showing that the translation to SMT is a good approxi-
mation for solving CSP and COP. We have participated in the MiniZinc Challenge
2010 and MiniZinc Challenge 2011 international CSP competitions achieving al-
ways medal positions.

5. Solving intensional WCSP with SMT. The most friendly way of specifying WCSP
is using intensional representations of the constraints. For this reason, we have im-
plemented WSimply, a language and system supporting intensional WCSP specifi-
cations. We have developed an encoding of these problems in SMT, with the aim of
getting a user-friendly and efficient programming system. To solve these problems
we use several approaches, including UNSAT core-based algorithms.

6. Empirical proof of the good performance of SMT for solving WCSP. We have
performed tests showing that encoding WCSP instances in SMT is a robust approx-
imation for solving WCSP. For the sake of completeness we have also implemented
an algorithm to encode extensional WCSP in SMT and we have also tested its per-
formance.

1.3. PUBLICATIONS 5

7. Supporting meta-constraints. We have built a system that supports the meta-
constraints proposed in the literature and some other new ones. We solve the meta-
constraints by reformulation into SMT, achieving good performance.

8. Solving scheduling problems with SMT. We have tested the use of SMT for
scheduling, obtaining very good performance. We have developed ad hoc programs
for the RCPSP and its generalizations.

(a) Four formulations for the RCPSP. We have implemented four different en-
codings of the RCPSP in SMT. There exist four well-known formulations for
the RCPSP in MILP: time, task, flow and event based. We have translated,
modified and improved these formulations to work properly in SMT.

(b) New event based formulation. We have developed a completely new event-
based formulation for the RCPSP. This formulation allows us to obtain a much
better performance than the direct adaptation of the MILP event-based one.

(c) Preprocessing and solving improvements. We have found that a good pre-
processing and an appropriate algorithm on top of the SMT solver is very
important to obtain good performance on the RCPSP.

(d) RPCPS/max formulation. We propose an SMT encoding for the RCPSP/max
with good performance.

(e) MRCPSP formulation. We propose an SMT encoding for the MRCPSP, with
better performance than state-of-the-art solvers on this problem.

(f) Empirical proof of the good performance of SMT for solving scheduling
problems. We have performed tests showing that encoding the RCPSP in
SMT is a good solving approximation for this problem and its generalizations.

1.3 Publications

Most of the results presented in this thesis have already been published (or have been
accepted for publication) in journals and conference proceedings. The list of publications,
in chronological order, is the following:

• Miquel Bofill, Miquel Palahı́, Josep Suy, and Mateu Villaret, Simply: a Compiler
from a CSP Modeling Language to the SMT-LIB Format. Proceedings of the 8th
International Workshop on Constraint Modelling and Reformulation (ModRef), co-
located with CP 2009, Lisboa, Portugal, pages 30–44, 2009.

• Miquel Bofill, Josep Suy, and Mateu Villaret, A System for Solving Constraint Sat-
isfaction Problems with SMT. Proceedings of the 13th International Conference on

6 CHAPTER 1. INTRODUCTION

Theory and Applications of Satisfiability Testing (SAT 2010), Edinburgh, United
Kingdom, pages 300-305, Springer LNCS, vol. 6175, 2010.

• Carlos Ansótegui, Miquel Bofill, Miquel Palahı́, Josep Suy, and Mateu Villaret,
Satisfiability modulo theories: An efficient approach for the resource-constrained
project scheduling problem. Ninth Symposium on Abstraction Reformulation and
Approximation (SARA 2011), Cardona, Spain, pages 2-9, AAAI, 2011.

• Carlos Ansótegui, Miquel Bofill, Miquel Palahı́, Josep Suy, and Mateu Villaret,
A Proposal for Solving Weighted CSPs with SMT. Proceedings of the 10th Interna-
tional Workshop on Constraint Modelling and Reformulation (ModRef), co-located
with CP 2011, Perugia, Italy, pages 5-19, 2011

• Carlos Ansótegui, Miquel Bofill, Miquel Palahı́, Josep Suy, and Mateu Villaret, W-
MiniZinc: A Proposal for Modeling Weighted CSPs with MiniZinc. Proceedings of
the first Minizinc workshop (MZN), co-located with CP 2011, Perugia, Italy, 2011

• Miquel Bofill, Miquel Palahı́, Josep Suy, and Mateu Villaret, Solving constraint sat-
isfaction problems with SAT modulo theories. Constraints journal, vol. 17, number
3, pages 273-303, 2012.

• Carlos Ansótegui, Miquel Bofill, Miquel Palahı́, Josep Suy, and Mateu Villaret,
Solving Weighted CSPs with Meta-Constraints by Reformulation into Satisfiability
Modulo Theories. Constraints journal, accepted with minor changes.

1.4 Outline of the Thesis

This section briefly describes the contents of each chapter of the thesis.

Chapters 2, 3 and 4 provide the main required background.

• Chapter 2: Constraint Programming. We present the Constraint Satisfaction
Problem (CSP). First, we introduce some basic concepts commonly used in Con-
straint Programming (CP). Then we present the most widely used methods for solv-
ing CSPs: systematic search and consistency techniques, as well as the propagation
techniques integrated in search algorithms. Then, we provide a brief description of
the branch and bound algorithm used to solve constraint optimization problems. We
also review other solving approaches historically used to solve CSPs. Finally, we
describe over-constrained problems and their associated formalism called Weighted
CSP.

1.4. OUTLINE OF THE THESIS 7

• Chapter 3: Satisfiability. We provide an overview of the most relevant techniques
for solving SAT, the problem of deciding the satisfiability of Boolean formulas.
First, we introduce some basic concepts commonly used in SAT. Second, we present
the resolution method, which applies an inference rule that provides a refutation
complete inference system. Third, we describe the DP algorithm, the first effective
method for producing resolution refutations. Fourth, we present the DLL proce-
dure, implemented in the majority of state-of-the-art complete SAT algorithms. We
end the SAT solving part by introducing abstract DPLL.

Next, we introduce the MaxSAT and Weighted MaxSAT formalisms, and review
the main solving techniques that have proved to be useful in terms of performance
for these paradigms.

Finally, we present an overview of the existing encodings from CSP into SAT. We
review the different ways of encoding CSP variables into SAT and describe, among
others, the direct and the support encoding, which are the most frequently used
encodings for constraints.

• Chapter 4: Satisfiability Modulo Theories. We present the Satisfiability Modulo
Theories (SMT) problem. First, we introduce some basic concepts commonly used
in Satisfiability Modulo Theories, and describe the so called lazy approach for SMT.
We also present some of the more relevant theories (IDL, LIA, EUF, arrays, bit
vectors, . . .). Then we present the MaxSMT and Weighted SMT Problems and the
techniques used to solve these optimization variants. Finally, we introduce Lazy fd,
which is an approach for solving CSP very similar to that of SMT solvers.

Chapters 5, 6, 7 and 8 are the core of the thesis and contain all the contributions.

• Chapter 5: Encoding CSP into SMT. We begin by briefly describing the state-of-
the-art of encoding CSP into SAT and SMT. Then we describe the first language
and system that we have developed, called Simply, for modelling and solving
CSPs with SMT. Next we present MINIZINC, a high-level standard CSP specifica-
tion language, and FLATZINC, an “intermediate” specification language obtained af-
ter flattening MINIZINC. Then, we present a new and complete system for encoding
CSP into SMT, called fzn2smt, which essentially consists in encoding FLATZINC

instances into SMT. We also describe some solutions to solve optimization prob-
lems within this system. To conclude we provide extensive benchmarking and a
discussion of the impact of the Boolean component of the instances in the solving
performance when using SMT.

• Chapter 6: Weighted CSP and Meta-Constraints. In this chapter we introduce
a new language for modelling Weighted CSP and a system for encoding Weighted
CSP into Weighted SMT. We first introduce WSimply, a declarative intensional

8 CHAPTER 1. INTRODUCTION

Weighted CSP specification language with support for meta-constraints. We care-
fully specify the supported meta-constraints and illustrate their usefulness. Then
we show which solving strategies can be followed, either via optimization or via
specialized algorithms for Weighted SMT developed in our works for the first time.
Some of these algorithms are adaptations of core-based algorithms for MaxSAT.
Then, we provide a large number of experiments showing the possibilities of this
system. Finally, we describe how do we deal with extensional Weighted CSP and
the reasonably good results obtained.

• Chapter 7: Scheduling. In Chapters 5 and 6 we have shown that SMT is a good
choice for solving CSP. Moreover, SMT is really good in solving problems with a
strong Boolean component with integer arithmetic, such as scheduling problems.
In this chapter we present some encodings for the Resource Constrained Project
Scheduling Problem (RCPSP) into SMT. RCPSP is the scheduling problem more
widely discussed in the literature. First we describe the state-of-the-art in RCPSP,
where in recent years there have been a lot of approaches (CP, SAT, MILP, . . .) but
not SMT. Second, we formally present this problem. Then we present our approach
with preprocessing and four different encodings with many variants. Finally, we
provide a large number of experiments showing that SMT is not only competitive
with generic CP tools, but also that algorithms built on top of an SMT solver can
have equal or better performance than ad hoc programs based on other approaches.

• Chapter 8: Other Scheduling Problems. We present two generalizations of the
RCPSP with even more Boolean component. First we present a system (prepro-
cessing, encoding and solving) to solve the RCPSP/max obtaining good results.
Second we present a very good system to solve the multimode RCPSP (MRCPSP),
that outperforms all current existing approaches.

• Chapter 9: Conclusions and Future work. In this last chapter we summarize the
main contributions of the thesis, and propose future research directions to work on.

Chapter 2

Constraint Programming

Constraint Programming (CP) is a programming paradigm where the relations between
the variables are stated in the form of constraints. Each constraint restricts the combina-
tion of values that a set of variables may take simultaneously. Constraints are additive,
i.e., the order of the constraints does not matter, as all that matters is the conjunction of
all specified constraints. This makes constraint programming a kind of declarative pro-
gramming.

The constraints used in constraint programming are typically over specific domains.
Some domains for constraint programming are: Boolean, integer, rational, reals, finite
domains, mixed domains (involving two or more domains). Finite domains are one of the
most successful domains of constraint programming, in fact, constraint programming is
often identified with constraint programming over finite domains.

In this chapter we present constraint programming and Constraint Satisfaction Prob-
lems (CSP). We provide an overview of the solving techniques frequently used in the
classical CSP solvers: systematic search, consistency techniques, propagation and Con-
straint Optimization (COP). We also present global constraints, which are widely used to
improve the performance of CSP solvers. We also introduce other CSP solving methods,
some of which are described in more detail in subsequent chapters. Finally we describe
variants of CSP such as MaxCSP and Weighted CSP.

This chapter is partially based on [Bar05, RBW06].

2.1 Constraint Satisfaction Problems

Constraint programming is devoted to solve constraint satisfaction problems, which are
formally defined as follows:

9

10 CHAPTER 2. CONSTRAINT PROGRAMMING

Definition 2.1.1 A constraint satisfaction problem (CSP) is defined as a triple 〈X ,D, C〉,
where X = {X1, . . . , Xn} is a set of variables, D = {D(X1), . . . , D(Xn)} is a set of
domains containing the values that each variable may take, and C = {C1, . . . , Cm} is a
set of constraints. Each constraint Ci = 〈Si, Ri〉 is defined as a relation Ri over a subset
of variables Si = {Xi1 , . . . , Xik}, called the constraint scope. A relation Ri may be
represented intensionally, in terms of an expression that states the relationship that must
hold amongst the assignments to the variables it constrains, or it may be represented
extensionally, as a subset of the Cartesian product D(Xi1)×· · ·×D(Xik) (tuples) which
represents the allowed assignments (good tuples) or the disallowed assignments (no-good
tuples). Constraints of arity n are called n-ary.

Definition 2.1.2 A partial assignment v for a CSP 〈X ,D, C〉 is a mapping that assigns to
every variable Xi ∈ Y an element v(Xi) ∈ D(Xi), where Y ⊆ X is the domain of v,
denoted domain(v); when Y = X it is simply an assignment. A (partial) assignment v
satisfies a constraint 〈{Xi1 , . . . , Xik}, Ri〉 ∈ C if and only if 〈v(Xi1), . . . , v(Xik)〉 ∈ Ri

(assuming that Ri is intensional or represents good tuples).

A solution to a CSP is an assignment where every constraint is satisfied.

A (partial) assignment v is consistent iff satisfies all the constraints 〈Si, Ri〉 ∈ C
such that Si ⊆ domain(v). Otherwise we say that it is inconsistent or there is a conflict.

Definition 2.1.3 A label (X, val) is a variable-value pair which represents the assign-
ment of value val to variable X .

Example 1 Consider 〈X ,D, C〉whereX = {X1, X2, X3}, D(X1) = D(X2) = D(X3) =
{1, 2, 3, 4} and C = {X1 < X2, X2 < X3, C3(X1, X2, X3)} with C3(X1, X2, X3) =
{(1, 2, 3), (1, 3, 4), (2, 1, 2), (2, 3, 4)}. In this example we have two intensional constraints,
X1 < X2 and X2 < X3, and one extensional constraint C3 where the tuples are goods.
The first two constraints are binary (arity 2), and the third one is 3-ary. The set of la-
bels {(X1, 1), (X2, 2), (X3, 3)} denotes an assignment. This assignment satisfies all the
constraints. Therefore, it is consistent and constitutes a solution to the problem.

CSPs are combinatorial problems that can be solved by search but systematic search
is usually unfeasible in practice. So, one of the main research topics in the area of con-
straint satisfaction consists in finding efficient constraint solving algorithms.

2.2 Systematic Search

Many CSP solving algorithms do systematic search through the possible assignments.
Such algorithms are guaranteed to find a solution, if one exists, or to prove that the prob-
lem is insoluble. Thus systematic search algorithms are sound and complete. The main

2.2. SYSTEMATIC SEARCH 11

disadvantage of these algorithms is that they may take a very long time. There are two
main classes of systematic search algorithms:

1. Algorithms that search the space for complete assignments, i.e., assignments of all
variables, till they find a complete assignment that satisfies all the constraints.

2. Algorithms that extend a partial consistent assignment to a complete assignment
that satisfies all the constraints.

In general, the tasks posed in the constraint satisfaction problem paradigm and in
particular the systematic search are computationally intractable (NP-hard). However, the
techniques and algorithms developed in recent decades show that many instances can
be solved in a reasonable time, but we will always have instances with very high time
resolution.

In this section we present basic representatives of both classes: generate and test,
and backtracking. Although these algorithms are simple and inefficient, they are very
important because they make the foundation of other algorithms that exploit more sophis-
ticated techniques like propagation or local search.

2.2.1 Generate and Test

The generate and test (GT) algorithm generates some complete assignment and then it
tests whether this assignment satisfies all the constraints. If the test fails, then it considers
another complete assignment. The algorithm stops as soon as a complete assignment
satisfying all the constraints is found (it is a solution) or all complete assignments have
been generated without finding the solution (the problem is unsolvable).

Since the GT algorithm systematically searches the space of complete assignments,
i.e., it considers each possible combination of variable assignments, the number of com-
binations considered by this method is equal to the size of the Cartesian product of all
variable domains.

The pure generate-and-test approach is not efficient because it generates many wrong
assignments of values to variables which are rejected in the testing phase. In addition, the
generator ignores the reason of the inconsistency and it generates other assignments with
the same inconsistency.

In Section 2.7 we briefly describe the local search method, a more clever approxi-
mation to the search algorithms based on complete assignments.

12 CHAPTER 2. CONSTRAINT PROGRAMMING

Algorithm 1 Generate and test algorithm
Input: 〈X ,D, C〉 : CSP instance
Output: Existence of solution

for all v: assignment do
if consistent(v, C) then

return true
end if

end for
return false

2.2.2 Backtracking

The backtracking (BT) algorithm incrementally attempts to extend a partial assignment,
that specifies consistent values for some of the variables, towards a complete and con-
sistent assignment. This extension is done by repeatedly choosing a value for a not yet
assigned variable, until a consistent value is found according to the current partial assign-
ment. This algorithm is the most common algorithm for systematic search [DF98].

In the BT method, variables are instantiated sequentially and as soon as all the vari-
ables relevant to a constraint are instantiated, the validity of the constraint is checked.
If a partial assignment violates any of the constraints, a backtracking step is performed
by reconsidering the assignment to the most recently instantiated variable that still has
available alternatives. Clearly, whenever a partial assignment violates a constraint, back-
tracking is able to prune a subspace from the Cartesian product of all variable domains.
Consequently, backtracking is strictly better than generate-and-test. However, its running
time complexity for most nontrivial problems is still exponential.

The basic form of backtracking, called chronological backtracking, is shown in
Algorithm 2. If this algorithm discovers an inconsistency then it always backtracks to the
last (according to the chronological order) decision.

The backtracking algorithm has many drawbacks, among which we can highlight:

1. Thrashing. Backtracking does not necessarily identify the real reason of the con-
flict (inconsistency). Therefore, search in different parts of the search space keeps
failing for the same reason. Thrashing can be avoided with backjumping [Gas79].

2. Redundant work. Even if the conflict reasons are identified during backjumping,
they are not remembered for immediate detection of the same conflict in subsequent
computations. Backchecking and backmarking [HE80] solve this problem.

3. Late conflict detection. The backtracking algorithm still detects the conflict too
late as it is not able to do it before the conflict really occurs, i.e., after assign-

2.2. SYSTEMATIC SEARCH 13

Algorithm 2 Backtracking algorithm
Input: 〈X ,D, C〉 : CSP instance
Output: Existence of solution

Nonassign ← X
cur ← 1
v ← ∅
Xcur ← SelectVariable(Nonassign)
Dcur ← D(Xcur)
Nonassign ← Nonassign \ {Xcur}
while cur > 0 do

if Dcur 6= ∅ then
valcur = SelectValue(D

′
cur)

Dcur ← Dcur \ {valcur}
v ← v ∪ {(Xcur, valcur)}
if consistent(v, C) then

if Nonassign 6= ∅ then
cur ← cur + 1
Xcur ← SelectVariable(Nonassign)
Dcur ← D(Xcur)
Nonassign ← Nonassign \ {Xcur}

else
return true

end if
else
v ← v \ {(Xcur, valcur)}

end if
else

Nonassign ← Nonassign ∪ {Xcur}
cur ← cur − 1
if cur > 0 then
v ← v \ {(Xcur, valcur)}

end if
end if

end while
return false

14 CHAPTER 2. CONSTRAINT PROGRAMMING

ing the values to all the variables of the conflicting constraint. This drawback can
be avoided by applying consistency techniques to anticipate the possible conflicts.
These techniques are explained in the next section.

Backjumping

The control of backjumping is exactly the same as backtracking, except when the back-
track takes place. Both algorithms pick one variable at a time and look for a value for this
variable making sure that the new assignment is compatible with values committed to so
far. However, if backjumping finds an inconsistency and all the values in the domain are
explored, it analyses the situation in order to identify the source of inconsistency using
the violated constraints as a guidance to find out the conflicting variable. Once the analy-
sis is made the backjumping algorithm backtracks to the most recent conflicting variable.
Notice than the backtraking algorithm always return to the immediate past variable.

Backchecking and Backmarking

The backchecking and its descendent backmarking are useful algorithms for reducing the
number of compatibility checks. If backchecking finds that some label (Y, b) is incom-
patible with some recent label (X, a) then it remembers this incompatibility. As long as
(X, a) is still committed to, (Y, b) will not be considered again.

Backmarking is an improvement over backchecking that avoids some redundant
constraint checking by remembering for every label the incompatible recent labels. This
avoids the duplication of controls which have already been successfully done.

2.3 Consistency Techniques

Consistency techniques were introduced to improve the efficiency of the search algo-
rithms [Kum92]. The number of possible combinations that should be explored by these
search algorithms can be huge, while only very few assignments are consistent. Consis-
tency techniques effectively rule out many inconsistent assignments at a very early stage,
and thus cut short the search for consistent assignment. Typically this prunning is done
by removing values from the domain of the variables. Consistency techniques are sound,
in the sense that when the domain of a variable becomes empty, i.e., the consistency algo-
rithm fails achieving consistency, we can ensure that the CSP has no solution. However,
it is not complete, since even achieving consistency, the CSP does not necessarily have a
solution.

2.3. CONSISTENCY TECHNIQUES 15

Example 2 Consider the CSP instance 〈X ,D, C〉 withX = {A,B},D(A) = {4, . . . , 9},
D(B) = {1, . . . , 6} and C = {B > A}. The consistency techniques can make the
domains smaller according to the constraints: D(A) = {4, . . . , 5}, D(B) = {5, . . . , 6}.
Then, for each possible value in D(A), it is possible to find a consistent value for B in
D(B), and vice versa. Note however that this reduction does not remove all inconsistent
pairs of labels: for instance, {(A, 5), (B, 5)} is still a feasible assignment according to
the domains of the variables.

Every CSP can be converted into an equivalent binary CSP, where all constraints are
binary [Fre78, DP89, Dec90, RPD90]. Binary CSPs can be represented by a constraint
graph. In these graphs nodes are labeled with variables and edges connect pairs of vari-
ables being the scope of some constraint. Unary constraints can be represented by cyclic
edges. There are many techniques to look for consistency in the constraint graphs and
prune the search space.

2.3.1 Node Consistency

The simplest consistency technique is referred to as node consistency (NC).

Definition 2.3.1 The node representing a variable X in a constraint graph is node con-
sistent if, and only if, for every value x in the current domainD(X), each unary constraint
on X is satisfied. A CSP is node consistent if and only if all variables are node consistent,
i.e., for all variables, all values in their domain satisfy the constraints on that variable.

2.3.2 Arc Consistency

Since, in the constraint graph, arcs correspond to binary constraints, the consistency of
binary constraints is referred to as arc consistency.

Definition 2.3.2 An arc (X, Y) of the constraint graph is arc consistent if, and only if,
for every value x in the current domain D(X) satisfying the constraints on X , there is
some value y in the domain D(Y) such that the assignment {(X, x), (Y, y)} is permitted
by the binary constraint between X and Y . Note that the concept of arc-consistency is
directional, i.e., if an arc (X, Y) is consistent, then it does not automatically mean that
(Y,X) is also consistent. A CSP is arc consistent if and only if every arc in its constraint
graph is arc consistent.

An arc (X, Y) can be made consistent by simply deleting those values from the
domain D(X) for which there does not exist a corresponding value in the domain D(Y)

16 CHAPTER 2. CONSTRAINT PROGRAMMING

such that the binary constraint between X and Y is satisfied. This procedure does not
eliminate any solution of the original CSP.

To make a CSP arc consistent, i.e., to make every arc of the corresponding constraint
graph arc consistent, it is not sufficient to execute the consistency procedure for each arc
just once. One execution of the consistency procedure may reduce the domain of some
variableX; then each previously revised arc (Y,X) has to be revised again, because some
of the members of the domain D(Y) may no longer be compatible with any remaining
members of the pruned domain D(X). The easiest way to establish arc consistency is
to apply the consistecy procedure to all arcs repeatedly till no domain of any variable
changes. There are several well-known algorithms to achieve arc consistency:

1. AC-1 [Mac77]. This algorithm is not very efficient since it repeats the algorithm
of consistency on all arcs if there has been some domain change in the previous
iteration.

2. AC-3 [Mac77]. This algorithm is a variation of AC-1 where the consistency test is
repeated only for those arcs that are possibly affected by a previous revision (see
Algorithm 3).

Algorithm 3 AC-3
Input: 〈X ,D, C〉 : CSP instance, G : constraint graph
Output: Arc consistency of G
Q← {(Xi, Xj) ∈ G, i 6= j}
while not Q = ∅ do

(Xk, Xm) = SelectArcAndDelete(Q)
if Consistence(〈X ,D, C〉, (Xk, Xm)) then

for all (Xi, Xk) ∈ G, i 6= k do
Q← Q ∪ {(Xi, Xk)}

end for
end if

end while
return true

Consistence(〈X ,D, C〉, (Xk, Xm)) eliminates the values of the domain D(Xk) for which
there is no value for Xk in D(Xk) satisfying the constraint of the arc (Xk, Xm). In the
case of removing at least one value of the domain D(Xk), this procedure returns true,
otherwise it returns false.

3. AC-4 [MH86]. This algorithm works with individual pairs of values, using support
sets for each value. A value is supported if there exists a compatible value in the
domain of every other variable. When a value x is removed from D(X), it is not
always necessary to examine all the binary constraints (X, Y). More precisely, we

2.4. CONSTRAINT PROPAGATION 17

can ignore those values in the domain D(Y) whose support does not only rely on x.
In other words, we can ignore the cases where every value in the domain D(Y) is
compatible with some value in the domain D(X) other than x. In order to always
know the support sets for all variables, the AC-4 algorithm must maintain a complex
data structure.

Arc consistency does not guarantee the existence of a solution for arc consistent
CSP instances. Figure 2.1 illustrates a CSP instance where all constraints are arc consis-
tent but overall the problem has no solution. Therefore, arc consistency is not enough to
eliminate the need for backtracking.

Y

X

Z

X 6= Y X 6= Z

Y 6= Z{1, 2} {1, 2}

{1, 2}

Figure 2.1: Arc consistent CSP without solution.

2.3.3 Other Consistency Techniques

There are stronger consistency techniques that are more powerful than arc consistency
with respect to pruning but at the cost of having a higher complexity. It is a crucial issue
to find the appropriate compromise between the amount of search space pruned and the
time spent in pruning. Among others, there is path consistency, which considers triples of
variables instead of tuples, and the k-consistency generalization, that considers k-tuples.

2.4 Constraint Propagation

In this section we show the result of joining some of the concepts explained in the two
previous sections: systematic search (backtracking and backjumping) and consistency
techniques (arc consistency). As skeleton we use a simple backtracking algorithm that
incrementally instantiates variables, extending a partial assignment that specifies consis-
tent values for some of the variables, towards a complete assignment. In order to reduce
the search space, some consistency techniques are applied to the constraint graph after

18 CHAPTER 2. CONSTRAINT PROGRAMMING

assigning a value to a variable. Depending on the consistency technique applied, we get
different constraint satisfaction algorithms.

Notice that consistency techniques are polynomial, as opposed to systematic search,
which is non-polynomial. Thus polynomial computation is performed as soon as possible,
and search is used only when there is no more propagation to be done.

2.4.1 Forward Checking

Forward checking is the easiest way to prevent future conflicts. Instead of performing arc
consistency between instantiated variables, forward checking performs arc consistency
between pairs of a not-yet instantiated variable and an instantiated one. Therefore, it
maintains the invariant that for every uninstantiated variable there exists at least one value
in its domain which is compatible with the values of the already instantiated variables.

The forward checking algorithm is based on the following idea. When a value is
assigned to the current variable, any value in the domain of a “future” variable which
conflicts with this assignment is (temporarily) removed from the domain. If the domain
of a future variable becomes empty, then it is known immediately that the current partial
assignment is inconsistent. Consequently, forward checking allows branches of the search
tree that will lead to a failure to be pruned earlier than with chronological backtracking.
See Algorithm 4.

Algorithm 4 AC for Forward Checking
Input: 〈X ,D, C〉 : CSP instance, G : constraint graph, Xc:variable
Output: forward checking induced by the change in the domain D(Xc)
Q← {(Xi, Xc) ∈ G, i 6= c}
consistent← true
while not Q = ∅ ∧ consistent do

(Xk, Xm) = SelectArcAndDelete(Q)
if Consistence(〈X ,D, C〉, (Xk, Xm)) then
consistent← NotEmpty(D(Xk))

end if
end while
return consistent

2.4.2 Look Ahead

Forward checking performs only the checks of constraints between the current variable
and future variables. We can extend this consistency checking to even latter variables

2.4. CONSTRAINT PROPAGATION 19

that do not have a direct connection with already instantiated variables. In partial look
ahead, it is used directional arc consistency (arc consistency only into the arcs (Xi, Xj)
where i < j for a given total order on the variables X) to choose the arcs to check. When
considering non-directional arc consistency we talk about full look ahead.

Algorithm 5 AC-3 for Look Ahead
Input: 〈X ,D, C〉 : CSP instance, G : constraint graph, Xc:variable
Output: look ahead induced by the change in the domain D(Xc)
Q← {(Xi, Xc) ∈ G, i > c}
consistent← true
while not Q = ∅ ∧ consistent do

(Xk, Xm) = SelectArcAndDelete(Q)
if Consistence(〈X ,D, C〉, (Xk, Xm)) then
Q← Q ∪ {(Xi, Xk) ∈ G, i > c, i 6= m}
consistent← NotEmpty(D(Xk))

end if
end while
return consistent

2.4.3 Propagators

So far we have seen the classic propagation algorithms. We can define a more abstract
notion of propagator (see [Bes06]), so that it can be used by distinct search based (or
non-search based) algorithms.

Definition 2.4.1 A propagator f is a monotonically decreasing function from domains
to domains. That is, f (D) v D, and f (D1) v f (D2) whenever D1 v D2. If D1 =
{D1(X1), . . . , D1(Xn)} and D2 = {D2(X1), . . . , D2(Xn)}, the operator v means that
domain D1 is stronger than domain D2, i.e., ∀i ∈ {1 . . . n}, D1(Xi) ⊆ D2(Xi).

When a propagator f is associated to a constraint C = 〈S,R〉, it is noted fC and
acts as follows: if D = {D(X1), . . . , D(Xn)} then fC(D) = {D′(X1), . . . , D

′(Xn)},
where D′(Xj) = D(Xj) ∀Xj /∈ S and D′(Xj) ⊆ D(Xj) ∀Xj ∈ S.

Typically we are interested on “correct” propagators, i.e., propagators that preserve
all the consistent assignments. More formally, a propagator f is correct if for all consistent
assignments v of a CSP 〈X ,D, C〉, v is also a consistent assignment of 〈X , f (D), C〉.

Example 3 For the CSP 〈{X, Y, Z}, {D(X) = {1, 2, 3, 4}, D(Y) = {2, 3}, D(Z) =
{2, 3, 4}}, {C1 = (X = Y), C2 = (Y ≤ Z)}〉 we can provide the two following correct

20 CHAPTER 2. CONSTRAINT PROGRAMMING

propagators:

fC1(D) = D′ where


D′(X) = D(X) ∩D(Y)

D′(Y) = D(Y) ∩D(X)

D′(Z) = D(Z)

fC2(D) = D′ where


D′(X) = D(X)

D′(Y) = {d ∈ D(Y) | d ≤ max(D(Z))}
D′(Z) = {d ∈ D(Z) | d ≥ min(D(Y))}

Suppose that a search algorithm assigns the value 3 toX . This means thatD(X) =
{3}. Then, the propagator fC1 can be activated and set D(Y) = {3}. This, in turns,
activates the propagator fC2 reducing the domain of Z to D(Z) = {3, 4}. Propagators
are activated until a fix point is reached.

Consistency algorithms (arc consistency, path consistency, ...) can use propaga-
tors to maintain consistency. Depending on the filtering power of these, the propagator
can guarantee arc consistency or other type of consistency. It turns out that consistency
algorithms can also be considered as propagators.

2.5 Constraint Optimization

In many real-life applications, we do not want to find any solution but a good one. The
quality of solutions is usually measured by some application dependent function called
objective function. Then the goal is to find such an assignment that satisfies all the con-
straints and minimizes or maximizes the objective function. Such problems are called
Constraint Optimization Problems (COP).

A Constraint Optimization Problem (COP) is a CSP where we want to find an opti-
mal, or at least a good solution, given some objective function defined in terms of (some
of) the variables. More formally:

Definition 2.5.1 A Constraint Optimization Problem (COP) is defined as a tuple 〈X ,D, C,O〉,
where X , D and C represent, as in the case of a CSP, the variables, domains and con-
straints, respectively, and O is an objective function mapping every complete assignment
to an integer (or real) value. An optimal solution of a COP is an assignment that mini-
mizes (or maximizes)O and satisfies all the constraints. In some cases finding the optimal
solution is very expensive, and we will content ourselves with a suboptimal solution.

2.5. CONSTRAINT OPTIMIZATION 21

In order to find the optimal solution, we potentially need to explore all the solutions
of the CSP and compare their values using the optimization function. Therefore, tech-
niques for finding or generating all solutions are more relevant to COP than techniques
for finding a single solution. In general, as in the case of CSP, the COP are computation-
ally intractable (NP-hard). However, everyone tries to find techniques and algorithms that
are able to solve many instances in a reasonable time.

The most widely used technique for solving COP is branch-and-bound. This algo-
rithm consist in exploring a tree where each node represents a label and the branching
from the root to a node represents a partial assignment. During search, the algorithm
keeps the cost of the best solution found so far, which is an upper bound u of the problem
best solution. At each node, the algorithm computes a lower bound l of the best solution in
the subtree below. If l is higher than or equal to u, the algorithm prunes the subtree below
the current node, because the current best solution cannot be improved by extending the
current assignment. In this algorithm, the function f is the objective function, which maps
every solution (complete labeling of variables satisfying all the constraints) to a numerical
value. The task is to find such a solution that is optimal regarding the objective function,
i.e., it minimizes or maximizes respectively the objective function. The function h is a
heuristic, which maps (partial) assignments to a numeric value that is an estimate of the
objective function. More precisely, h applied to some partial assignment is an estimate
of best values of the objective function applied to all solutions (complete assignments)
that rise by extending this partial assignment. Naturally, the efficiency of the branch and
bound method is highly dependent on the availability of a good heuristic. In such a case,
the B&B algorithm can prune the search sub-trees where the current value of f exceeds
its best known value. Notice that the initial bound in the algorithm is infinity, as we are
minimizing. However, if we know the value of an approach to the optimum, then we can
set this value as the initial value. Consequently, the algorithm will prune more sub-trees
before and will be much more efficient.

There are other methods to get optimization. Some systems use a technique known
as Optimistic Partitioning, which is a binary search between the minimum and maximum
values of the objective function. The optimistic hypothesis is that these divisions will
allow faster convergence towards good solutions than the classical approach.

Another variant is the Russian Doll Search (RDS) method [VLS96, MS01], which
belongs to the area of scheduling. The idea is to successively solve growing nested sub-
problems. To do this we define an ordering for the problem variables. In the i-th subprob-
lem we consider from the n − i + 1-th variable to the last (hence, the first subproblem
involves only the last variable, while the n-th subproblem involves all variables). By
recording the solution of each subproblem, the bound on the objective function can be
usually improved faster than if considering the whole problem initially. This provides
noticeable punning at early search stages.

22 CHAPTER 2. CONSTRAINT PROGRAMMING

Algorithm 6 Branch & Bound
Input: 〈X ,D, C〉 : CSP instance
Output: Optimal solution

Nonassign ← X
cur ← 1
v ← ∅
Xcur ← SelectVariable(Nonassign)
Dcur ← D(Xcur)
Nonassign ← Nonassign \ {Xcur}
Bound← infinity
Best← ∅
while cur > 0 do

if Dcur 6= ∅ then
valcur = SelectValue(Dcur)
Dcur ← Dcur \ {valcur}
v ← v ∪ {(xcur, valcur)}
if consistent(v, C) ∧h(Nonassgin, v) < Bound then

if Nonassign 6= ∅ then
cur ← cur + 1
Xcur ← SelectVariable(Nonassign)
Dcur ← D(Xcur)
Nonassign ← Nonassign \ {Xcur}

else
Bound← f(v)
Best← v
v ← v \ {(Xcur, valcur)}

end if
else
v ← v \ {(Xcur, valcur)}

end if
else

Nonassign ← Nonassign ∪ {Xcur}
cur ← cur − 1
if cur > 0 then
v ← v \ {(Xcur, valcur)}

end if
end if

end while
return Best

2.6. GLOBAL CONSTRAINTS 23

2.6 Global Constraints

A global constraint is a constraint that captures a relation between a non-fixed number
of variables. An example is the alldifferent([X1, . . . , Xn]) constraint, which specifies
that the values assigned to the variables X1, . . . , Xn must be pairwise distinct. Typically,
a global constraint is semantically redundant in the sense that the same relation can be
expressed as the conjunction of several simpler constraints. We can define a global con-
straint as follow:

Definition 2.6.1 Let C = {C1, C2, . . . , Cn} be a set of constraints. The constraint CG =
C1 ∧ C2 ∧ . . . ∧ Cn, i.e., the conjuntion of all the constraints C1, C2, . . . , Cn is a global
constraint. The set of solutions of C is equal to the set of solutions of CG.

Global constraints are often defined from a set of variables and some prototypes
of non-decomposable constraints. For example, the alldifferent(LX) is defined as the
conjunction of the 6= constraints for each pair of variables in LX .

Global constraints have three main advantages:

• It is more convenient to define one constraint corresponding to a set of constraints
than to define independently each constraint of this set.

• Since a global constraint corresponds to a set of constraints, it is possible to deduce
some information from the simultaneous presence of constraints.

• Powerful consistency algorithms can be designed because the set of constraints can
be taken into account as a whole. Specific consistency algorithms allow one to use
Operations Research techniques or graph theory algorithms.

2.7 Other CSP Solving Methods

In recent years there has been a proliferation of alternative methods to traditional search
trying, with varying success, to solve CSPs. These new approaches include exact meth-
ods, methods that do not guarantee the best solution and even methods that do not guar-
antee any solution. Among them we can find:

• Mixed Integer Linear Programming (MILP). This method consists on mapping
a CSP to a mixed integer linear program:

min{cTx : Ax ≤ b, l ≤ x ≤ u, x ∈ Rn, xj ∈ Z ∀j ∈ I}

24 CHAPTER 2. CONSTRAINT PROGRAMMING

where A ∈ Qm∗n, c ∈ Qn, b ∈ Qm, l ∈ (Q ∪ {−∞})n, u ∈ (Q ∪ {∞})n and
I ⊆ N = {1, . . . , n}. Here cTx is the objective function, Ax ≤ b are the linear
constraints, l and u are the lower and upper bounds on the problem variables x, and
I is the subset of indices denoting the variables required to be integer. The method
uses the simplex algorithm to solve the linear program (LP) relaxation:

min{cTx : Ax ≤ b, l ≤ x ≤ u, x ∈ Rn}

Notice that it is the same problem but with the difference that the integer require-
ment on the x variables indexed by I has been dropped. The main reason for this
relaxation is that thanks to this, the relaxed problem turns to be polynomial.

Using the LP computation as a tool, MILP solvers integrate a variant of the branch-
and-bound and the cutting plane algorithms [Gom58] of the general branch-and-cut
scheme [PR91] to ensure that the variables indexed by I are integer.

• Satisfiability. It consists on encoding CSPs into Boolean satisfiability problems
(SAT). This approach is described in detail in Section 3.5.

• SMT. It consists on encoding CSPs into SAT modulo theories problems. This ap-
proach is part of this thesis contribution and is widely described in Chapters 5 and 6.

• Lazy Clause Generation. It is a hybrid technique between finite domain propaga-
tion and SAT solving that combines some of the strengths of both. This approach is
described in detail in Section 4.6.

• Local search. This technique consists on moving from solution to solution in the
space of candidate solutions (the search space) by applying local changes, until
a solution deemed optimal is found or a time bound is elapsed. A local search
algorithm starts from a solution and then iteratively moves to a neighbor solution.
This is only possible if a neighborhood relation is defined on the search space. As an
example, the neighborhood of a vertex cover is another vertex cover only differing
by one node. Despite the inherent incompleteness, these methods have shown great
ability to solve difficult problems.

One of the local search methods most used today is the tabu search [Glo89, Glo90].
Central to tabu search is a tabu list, which keeps a list of moves that may not be
performed. Thus, when generating a list of candidates from a current solution, some
neighboring solutions cannot be added to the list. The tabu list serves to ensure that
the moves in the list are not reversed thus preventing previous moves from being
repeated. Criteria for moves entering the tabu list can be defined in many ways, and
similar criteria exist for moves to be off the tabu list.

• Genetic algorithms [BFM97]. This approach is based on an analogy with the
evolution theory. In these algorithms, a state corresponds to a total assignment;

2.8. MAXCSP AND WEIGHTED CSP 25

one derives new states by recombining two parent states using a mating function
that produces a new state corresponding to a cross-over of the parent states. The
parent states are selected from a pool of states called population. The new states are
subjected to small random changes (mutations). This approach does not guarantee
that a solution is found although it exists.

2.8 MaxCSP and Weighted CSP

A Constraint Satisfaction Problem (CSP) is a decision problem where the objective is
to determine whether there exists an assignment of values to a set of variables which
satisfies a given set of constraints. However, many real world instances of CSPs are over-
constrained and therefore have no solution. There is a formalism that allows us to express
these problems, for which a solution must violate as few restrictions as possible, or min-
imize the costs or penalties associated with the violated constraints. These frameworks
are called MaxCSP and Weighted CSP, respectively. The Weighted CSP also is known as
a Cost Function Network (CFN).

Definition 2.8.1 The MaxCSP problem for a CSP is the problem of finding an assignment
that minimizes (maximizes) the number of violated (satisfied) constraints.

Definition 2.8.2 A Weighted CSP (WCSP) is a triple 〈X ,D, C〉, where X and D are
variables and domains, respectively, as in a CSP. A constraint Ci ∈ C is now defined as
a pair (Si, fi), where Si = {Xi1 , . . . , Xik} is the constraint scope and fi : D(Xi1) ×
· · ·×D(Xik)→ N is a cost (weight) function that maps tuples to its associated weight (a
natural number or infinity). The cost (weight) of a constraintCi induced by an assignment
v in which the variables of Si = {Xi1 , . . . , Xik} take values bi1 , . . . , bik is fi(bi1 , . . . , bik).

An optimal solution to a WCSP instance is a complete assignment in which the sum
of the costs of the constraints not satisfied is minimal.

We call hard those constraints whose associated cost is infinity, soft otherwise.

Note that in the particular case when all penalties are equal to one, weighted CSP
identical to MaxCSP.

Example 4 Consider 〈X ,D, C〉 where X = {X1, X2}, D(X1) = D(X2) = {1, 2, 3, 4}
and C = {(X1 = X2, 2), (X2 < X1, 3)}. A possible solution of this WCSP instance is the
assignment {(X1, 2), (X2, 2)}. This assignment satisfies only the constraint C1 and not
the constraint C2, but 2 is the best possible cost.

26 CHAPTER 2. CONSTRAINT PROGRAMMING

It is very common to talk about extensional WCSPs where such restrictions and
weights are defined extensionally (on tuples). In the literature [BMR+99, RL09] there is
another definition for (extensional) WCSP (CFN) based on a specific valuation structure
S(k).

S(k) is a triple ([0, . . . , k],⊕,≥) where:

• k ∈ [1, . . . ,∞] is either a strictly positive natural or infinity.

• [0, . . . , k] is the set of naturals less than or equal to k.

• ⊕ is the sum over the valuation structure defined as: a⊕ b = min{k, a+ b}.

• ≥ is the standard order among naturals.

A WCSP is defined by a valuation structure S(k), a set of variables (as for classical
CSPs) and a set of constraints. A domain is associated with each variable and a cost
function with each constraint. More precisely, for each constraint C and each tuple t
that can be built from the domains associated with the variables involved in C, a value in
[0, . . . , k] is assigned to t. When a constraint C assigns the cost k to a tuple t, it means
that C forbids t. Otherwise, t is permitted by C with the corresponding cost. The cost of
an instantiation of variables is the sum (using operator ⊕) over all constraints involving
instantiated variables. An instantiation is consistent if its cost is strictly less than k. The
goal of the WCSP is to find a full consistent assignment of variables with minimum cost.

Example 5 The following is an example of an extensional WCSP (4-Queens problem)
written in the XCSP 2.1 format (a CSP language described in [RL09]).

<instance>
<presentation name="4-Queens" maxConstraintArity="2" format="XCSP 2.1"
type="WCSP" >

This is the 4-Queens instance represented in extension WCSP.
</presentation>
<domains nbDomains="1">

<domain name="D0" nbValues="4">0..3</domain>
</domains>
<variables nbVariables="4">

<variable name="V0" domain="D0" />
<variable name="V1" domain="D0" />
<variable name="V2" domain="D0" />
<variable name="V3" domain="D0" />

</variables>
<relations nbRelations="6">

<relation name="R0" arity="2" nbTuples="10" semantics="soft"
defaultCost="0">

2.8. MAXCSP AND WEIGHTED CSP 27

5:0 0|0 1|1 0|1 1|1 2|2 1|2 2|2 3|3 2|3 3
</relation>
<relation name="R1" arity="2" nbTuples="8" semantics="soft"
defaultCost="0">

5:0 0|0 2|1 1|1 3|2 0|2 2|3 1|3 3
</relation>
<relation name="R2" arity="2" nbTuples="6" semantics="soft"
defaultCost="0">

5:0 0|0 3|1 1|2 2|3 0|3 3
</relation>
<relation name="R3" arity="1" nbTuples="2" semantics="soft"
defaultCost="0">

1:1|3
</relation>
<relation name="R4" arity="1" nbTuples="2" semantics="soft"
defaultCost="0">

1:1|2
</relation>
<relation name="R5" arity="1" nbTuples="2" semantics="soft"
defaultCost="0">

1:0|2
</relation>

</relations>
<constraints nbConstraints="10" maximalCost="5">

<constraint name="C0" arity="2" scope="V0 V1" reference="R0" />
<constraint name="C1" arity="2" scope="V0 V2" reference="R1" />
<constraint name="C2" arity="2" scope="V0 V3" reference="R2" />
<constraint name="C3" arity="2" scope="V1 V2" reference="R0" />
<constraint name="C4" arity="2" scope="V1 V3" reference="R1" />
<constraint name="C5" arity="2" scope="V2 V3" reference="R0" />
<constraint name="C6" arity="1" scope="V0" reference="R3" />
<constraint name="C7" arity="1" scope="V1" reference="R4" />
<constraint name="C8" arity="1" scope="V2" reference="R4" />
<constraint name="C9" arity="1" scope="V3" reference="R5" />

</constraints>
</instance>

In this example we can observe that the restrictions are declared referring to rela-
tions. In this case, the relations represent no-goods, since the weight of the listed tuples is
> 0 and the weight of not listed tuples is 0 (defaultCost). In this example k is 5 (maximal-
Cost). Hence, the tuples listed in relations R0, R1 and R2 cannot occur in the solution
because they have a weight of 5.

MaxCSP and WCSP are usually solved with branch and bound search [FW92,
Wal96]. In recent years there have been many proposals for solving MaxCSP and WCSP,
as semirings [BMR97] or maintaining arc consistency [LS04].

28 CHAPTER 2. CONSTRAINT PROGRAMMING

Chapter 3

Satisfiability

The Boolean satisfiability problem (SAT) is the problem of determining if the variables of
a given Boolean formula can be assigned in such a way as to make the formula evaluate
to true. Equally important is to determine whether no such assignment exists, which
would imply that the function expressed by the formula is identically false for all possible
variable assignments.

Although SAT was the first known example of an NP-complete problem, in the last
decades SAT solvers have spectacularly progressed in performance thanks to better im-
plementation techniques and conceptual enhancements, such as non-chronological back-
tracking and conflict-driven lemma learning, which in many instances of real problems
are able to reduce the size of the search space significantly. Thanks to those advances,
nowadays best SAT solvers can tackle problems with hundreds of thousands of variables
and millions of clauses. However, no current such methods can efficiently solve all SAT
instances.

SAT technology has traditionally been used in the industry for various tasks, soft-
ware verification and hardware design among them. Some recent examples could be:
Windows 7 device drivers are verified using SAT related technology [PdMB10] before
being released; also, the Intel R© CoreTM i7 processor was designed with the aid of SAT
technology [KGN+09].

In this chapter we define the SAT problem and present an overview of solving al-
gorithms frequently used in SAT. We also describe variants of the SAT problem such as
MaxSAT and Weighted MaxSAT. Finally we describe some techniques to encode CSPs
into SAT and its variants.

Sections 3.2, 3.3 and 3.5 are partially based on [Cab11].

29

30 CHAPTER 3. SATISFIABILITY

3.1 The SAT Problem

Definition 3.1.1 Let P = {x1, . . . , xn} be a finite set of propositional symbols (Boolean
variables). Propositional symbols xi ∈ P may take values false or true. A literal li is a
propositional symbol xi or its negation ¬xi. The complementary of a literal l, denoted by
¬l, is x if l = ¬x and is ¬x if l = x.

A clause (C) is a disjunction of literals l1 ∨ . . . ∨ ln and a CNF formula φ is a
conjunction of clauses C1 ∧ · · · ∧ Cm. A clause is often presented as a set of literals, and
a CNF formula as a set of clauses.

Definition 3.1.2 The size of a clause C, denoted by |C|, is the total number of literal
occurrences in the clause. A clause with one literal is called unit clause and a clause with
two literals is called binary clause. The special case of a clause with zero literals is the
empty clause. Empty clauses cannot be satisfied (see below). The size of a CNF formula
φ, denoted by |φ|, is the sum of the sizes of all its clauses.

Definition 3.1.3 A (partial) truth assignment M is a set of literals such that {l,¬l} 6⊆M
for any literal l and ¬l build with the propositional symbols of P . A literal l is true in M
if l ∈ M , it is false in M if ¬l ∈ M and l is undefined in M otherwise. M is total over
P if no literal build with the propositionals symbols of P is undefined in M . A clause
C is true in M if at least one of its literals is in M (hence, the empty clause cannot
be satisfied), it is false in M if all its literals are false in M , and it is undefined in M
otherwise.

Definition 3.1.4 A formula φ is satisfied by M (φ is true in M), denoted by M |= φ, if
all its clauses are true in M . In that case, M is called a model of φ. If φ has no models
then it is called unsatisfiable.

Definition 3.1.5 The Satisfiability Problem (SAT) for a CNF formula φ is the problem of
deciding if there exists a truth assignment M that satisfies all the clauses of φ.

Definition 3.1.6 If φ and φ′ are formulas, we write φ |= φ′ if φ′ is true in all models of φ.
Then we say that φ′ is entailed by φ, or is logical consequence of φ. If φ |= φ′ and φ′ |= φ,
we say that φ and φ′ are logically equivalent.

Example 6 Let us consider a CNF formula φ having three clauses c1, c2 and c3:

c1 : x1 ∨ ¬x2
c2 : x1 ∨ x3
c3 : ¬x1 ∨ x2 ∨ x3

3.2. SATISFIABILITY ALGORITHMS 31

Under the partial truth assignment {¬x1,¬x2}, clauses c1 and c3 are satisfied and clause
c2 is undefined (note that clause c2 becomes unit, since literal x1 can be deleted from it).
Therefore, the CNF formula φ is undefined.

Suppose now that this assignment is completed by adding the literal ¬x3. Then,
clause c2 becomes unsatisfied. Finally, if we consider the assignment {¬x1,¬x2, x3}, all
the clauses are satisfied.

We remark that we may use an alternative notion of truth assignment that is focussed
on variables instead that on literals. This alternative notion considers assignments as
functions from variables to truth values M : P → {true, false}. Then, formulas can
be logically evaluated according to them. When the evaluation, according to a given
assignment M , of a Boolean formula φ is true, we say that M |= φ.

3.2 Satisfiability Algorithms

In this section we review some solving techniques which are frequently used in SAT.
Namely, we describe some well-known complete algorithms. Complete algorithms per-
form a search through the space of all possible truth assignments, in a systematic manner,
to prove either a given formula is satisfiable (the algorithm finds a satisfying truth as-
signment) or unsatisfiable (the algorithm completely explores the search space without
finding any satisfying truth assignment). By contrast, local search algorithms usually do
not completely explore the search space, and a given truth assignment can be considered
more than once. We do not discuss the local search algorithms, since this topic is out
of the scope of this thesis. Some basic concepts on local search have been described in
Section 2.7.

We start by presenting the resolution method, which applies an inference rule that
provides a refutation complete inference system. Then, we describe the Davis-Putnam
(DP) procedure, the first known effective method for producing resolution refutations. Fi-
nally, we present the Davis-Logemann-Loveland (DLL) procedure, implemented in the
majority of state-of-the-art complete SAT algorithms, and review the main solving tech-
niques that have been incorporated in DLL in order to devise fast SAT solvers.

3.2.1 The Resolution Method

Resolution is one of the complete methods used to solve SAT. It is based on the resolution
rule, which provides a refutation complete inference system [Rob65]. Given two clauses
c1, c2, called parent clauses, r is a resolvent of c1 and c2 if there is one literal l ∈ c1 such

32 CHAPTER 3. SATISFIABILITY

that ¬l ∈ c2, and
r = (c1 \ {l}) ∪ (c2 \ {¬l})

The resolution step for a CNF formula φ, denoted by Res(φ), is defined as follows:

Res(φ) = φ ∪ {r | r is a resolvent of two clauses in φ}

The resolution procedure consists in computing resolution steps to a formula φ until the
empty clause is derived or a fix point is reached. If the empty clause is derived, φ is
unsatisfiable; otherwise, it is satisfiable. Algorithm 7 [Sch89] describes this procedure.

Algorithm 7 Resolution(φ): Resolution based SAT algorithm
Input: φ : CNF formula
Output: Satisfiability of φ

repeat
φ
′ ← φ
φ← Res(φ)

until � ∈ φ ∨ φ = φ
′

if � ∈ φ then
return false

else
return true

end if

3.2.2 The Davis-Putnam Procedure

The first effective method for producing resolution refutations was the Davis-Putnam pro-
cedure (DP) [DP60]. DP is based on iteratively simplifying the formula until the empty
clause is generated (proving unsatifisfiability) or until the formula is empty (proving sat-
isfiability). It consists of three rules:

• Unit Propagation (UP), also referred to as Boolean constraint propagation [ZM88],
is the iterated application of the Unit Clause (UC) rule (also referred to as the one-
literal rule) until an empty clause is derived or there are no unit clauses left. If a
clause is unit, then its single literal must be true under any satisfying assignment.
If {l} is a unit clause of a CNF formula φ, UC consists in deleting all the clauses
in φ with literal l, and removing all the occurrences of literal ¬l in the remaining
clauses.

• Pure Literal Rule (also referred to as monotone literal rule). A literal is pure if
its complementary literal does not occur in the CNF formula. The satisfiability of

3.2. SATISFIABILITY ALGORITHMS 33

a CNF formula is unaffected by satisfying its pure literals. Therefore, all clauses
containing a pure literal can be removed.

• Resolution is applied in order to iteratively eliminate each variable from the CNF
formula. In order to do so, DP applies a refinement (a restriction) of the resolution
method, known as variable elimination. Given the set of clauses Cl containing l
and the set of clauses C¬l containing ¬l, the method consists in generating all the
non-tautological resolvents using all clauses in Cl and all clauses in C¬l, and then
removing all clauses in Cl ∪ C¬l. After this step, the CNF formula contains neither
l nor ¬l.

Algorithm 8 Davis-Putnam(φ): DP procedure for SAT
Input: φ : CNF formula
Output: Satisfiability of φ
φ← UnitPropagation(φ)
φ← PureLiteralRule(φ)
if φ = ∅ then

return true
end if
if � ∈ φ then

return false
end if
l← literal in c ∈ φ having c the minimum length
<l ← all possible non-tautological resolvent clauses between all clauses in Cl and all
clauses in C¬l
return Davis-Putnam(φ ∪ <l \ (Cl ∪ C¬l))

The pseudo-code of the DP procedure is given in Algorithm 8. After applying Unit
Propagation and the Pure Literal rule, the algorithm selects a variable to be eliminated
among the shortest clauses. The procedure stops when the CNF formula is found to be
either satisfiable or unsatisfiable. It is declared to be unsatisfiable whenever a conflict
(the empty clause) occurs while applying unit propagation. If no conflict occurs, the CNF
formula becomes empty and is declared to be satisfiable.

The worst-case memory requirement for DP is exponential. In practice, DP can only
handle SAT instances with tens of variables because of this exponential blow-up [Urq87,
CS00].

Example 7 Given the following CNF formula, we demonstrate its satisfiability using the
DP algorithm:

(x1) ∧ (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (x3 ∨ x5) ∧ (¬x1 ∨ ¬x3 ∨ ¬x5)

34 CHAPTER 3. SATISFIABILITY

We show the steps applied by the DP algorithm. In the first column, the input
formula is displayed, with a different clause at each line. The second column represents
the result of applying the UC rule with clause x1. Removed clauses are marked with “−”
and modified clauses are displayed in bold.

φ x1
(x1) −
(x1 ∨ x2) −
(x2 ∨ x4) (x2 ∨ x4)
(¬x1 ∨ x3 ∨ ¬x4) (x3 ∨ ¬x4)
(x3 ∨ x5) (x3 ∨ x5)
(¬x1 ∨ ¬x3 ∨ ¬x5) (¬x3 ∨ ¬x5)

In a second step, DP applies the pure literal rule. The table below shows the appli-
cation of the rule to literal x2, and then to literal ¬x4.

φ x2 ¬x4
(x2 ∨ x4) −
(x3 ∨ ¬x4) (x3 ∨ ¬x4) −
(x3 ∨ x5) (x3 ∨ x5) (x3 ∨ x5)
(¬x3 ∨ ¬x5) (¬x3 ∨ ¬x5) (¬x3 ∨ ¬x5)

Finally, DP applies resolution. The table below shows the elimination of variable
x3. Observe that a tautological clause appears.

φ x3
(x3 ∨ x5) (x5 ∨ ¬x5)(¬x3 ∨ ¬x5)

The tautology is removed by the method and, since the CNF formula becomes empty,
the original CNF formula is satisfiable.

3.2.3 The Davis-Logemann-Loveland Procedure

The vast majority of state-of-the-art complete SAT algorithms are built upon the backtrack
search algorithm of Davis, Logemann and Loveland (DLL) [DLL62]. DLL replaces the
application of resolution in DP by the splitting of the CNF formula into two subproblems.
Given a literal l occurring in φ, the first subproblem (φ¬l) is the application of the UC rule
over φ with ¬l, and the second subproblem (φl) is the application of the UC rule over φ

3.2. SATISFIABILITY ALGORITHMS 35

Algorithm 9 Davis-Logemann-Loveland(φ): DLL procedure for SAT
Input: φ : CNF formula
Output: Satisfiability of φ
φ← UnitPropagation(φ)
φ← PureLiteralRule(φ)
if φ = ∅ then

return true
end if
if � ∈ φ then

return false
end if
l← literal in c ∈ φ having c the minimum length
return Davis-Logemann-Loveland(φl)∨ Davis-Logemann-Loveland(φ¬l)

with l. Then, φ is unsatisfiable if and only if φl and φ¬l are unsatisfiable. This method is
shown in Algorithm 9.

The DLL procedure essentially constructs a binary search tree in a depth-first man-
ner. The leaf nodes not containing empty clauses represent complete assignments (i.e.,
all variables are assigned) while internal nodes represent partial assignments (i.e., some
variables are assigned, the rest are free). The DLL procedure explores the search tree and
determines that there exists an assignment that satisfies the input formula if the empty
formula (that is, the formula contains no clauses) is derived, and that there exists no as-
signment that satisfies the input formula if all the branches of the search tree contain the
empty clause.

DLL incorporates Unit Propagation and the Pure Literal Rule in order to avoid the
explicit exponential enumeration of the whole search space. Using a variable selection
heuristic, the branching variables are selected to reach a dead-end as early as possible.

Example 8 In this example we show the search tree for the following CNF formula using
the DLL procedure.

Γ0 = φ : (x1 ∨ x5) ∧ (x1 ∨ ¬x6) ∧ (x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ x2 ∨ ¬x4) ∧
(¬x2 ∨ ¬x4 ∨ ¬x5) ∧ (x2 ∨ x4 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2) ∧ (x2 ∨ x3 ∨ x6)

The subproblems associated with each internal node are the following:

36 CHAPTER 3. SATISFIABILITY

Γ10 = Γ0(¬x1) : (x5) ∧ (¬x6) ∧ (¬x2 ∨ x4) ∧ (x2 ∨ ¬x4) ∧
(¬x2 ∨ ¬x4 ∨ ¬x5) ∧ (x2 ∨ x4 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x6)

Γ11 = Γ0(x1) : (¬x2 ∨ ¬x4 ∨ ¬x5) ∧ (x2 ∨ x4 ∨ ¬x3) ∧ (¬x2) ∧ (x2 ∨ x3 ∨ x6)

Γ20 = Γ10(x5) : (¬x6) ∧ (¬x2 ∨ x4) ∧ (x2 ∨ ¬x4) ∧ (x2 ∨ x4 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ x6)

Γ21 = Γ11(¬x2) : (x4 ∨ ¬x3) ∧ (x3 ∨ x6)

Γ30 = Γ20(¬x6) : (¬x2 ∨ x4) ∧ (x2 ∨ ¬x4) ∧ (x2 ∨ x4 ∨ ¬x3) ∧ (x2 ∨ x3)

Γ31 = Γ21(x4) : (x3 ∨ x6)

Γ40 = Γ30(¬x2) : (¬x4) ∧ (x4 ∨ ¬x3) ∧ (x3)

Γ41 = Γ30(x2) : (x4) ∧ (¬x4)

Γ50 = Γ40(x3) : (¬x4) ∧ (x4)

Γ0 = φ

Γ10 = Γ0(¬x1) Γ11 = Γ0(x1)

Γ20 = Γ10(x5)

Γ30 = Γ20(¬x6)

Γ21 = Γ11(¬x2)

Γ31 = Γ21(x4)

Γ40 = Γ30(¬x2) Γ41 = Γ30(x2)

Γ50 = Γ40(x3)

√

¬x1

¬x2

x5

¬x6

x3

x4

x2

x4

x1

¬x2

x4

x3

Figure 3.1: Search tree for DLL.

3.2. SATISFIABILITY ALGORITHMS 37

Figure 3.1 shows that the input CNF formula is satisfiable since the empty formula
has been reached after assigning all variables.

The authors of [DLL62] identified three advantages of DLL over DP:

1. DP increases the number and length of the clauses rather quickly. DLL never in-
creases the length of clauses.

2. Many redundant clauses may appear after resolution in DP, and seldom after split-
ting in DLL.

3. DLL often can yield new unit clauses, while DP not often will.

Modern DLL implementations are conflict-driven, that is, the original DLL algo-
rithm is augmented with learning and non-chronological backtracking to facilitate the
pruning of the search space. Algorithm 10 shows these so called Conflict-Driven Clause-
Learning (CDCL) algorithms.

The auxiliary functions of Algorithm 10 can be defined as follows:

• UnitPropagation iteratively applies the unit clause rule. If the empty clause is
found, then a conflict indication is returned.

• PickBranchingVariable guesses a label, i.e., it selects a variable to assign, and its
respective value. The variable selection heuristic is decisive for finding as quick
as possible a solution with the DLL procedure [Sil99]. A bad heuristic can lead to
explore the whole search space, whereas a good heuristic allows us to cut several
regions, and even not to traverse more than a single branch in the best case. The
variable is selected after applying unit propagation and the pure literal rule, and is
used to split the CNF formula into two subproblems. There are a lot of heuristic
methods for select the variable to assign [DPBC93, Pre93, Fre95, JW90].

• ConflictAnalysisAndLearning consists of analyzing the most recent conflict, and
learning a new clause from the conflict. During the conflict analysis process, the
information about the current conflict can be stored by means of redundancy [BS94,
BGS99]. These redundant clauses do not change the satisfiability of the original
formula, but they help to prune parts of the search space with conflicts that involve
variables of the learned conflict. This technique is called clause learning or conflict
driven clause learning (see Example 9).

• NonChronologicalBacktrack backtracks to the decision level computed by Con-
flictAnalysisAndLearning. The NonChronologicalBacktrack procedure detects the
reason of the conflict and often backtracks to a lower decision level than the previ-
ous.

38 CHAPTER 3. SATISFIABILITY

Algorithm 10 Conflict-Driven Clause-Learning algorithm
Input: φ : CNF formula
Output: Satisfiability of φ
dl← 0 {Decision level}
ν ← ∅ {Current assignment}
UnitPropagation(φ,ν)
if � ∈ φ then

return false
end if;
while not AllVariablesAssigned(φ,ν) do

(x, v)← PickBranchingVariable(φ, ν)
dl← dl + 1
ν ← ν ∪ {(x, v)}
UnitPropagation(φ,ν)
if � ∈ φ then
β ← ConflictAnalysisAndLearning(φ,ν)
if β = 0 then

return false
else

NonChronologicalBacktrack(φ,ν,β)
dl← β

end if
end if

end while
return true

• AllVariablesAssigned tests if all variables have been assigned, in which case the
algorithm terminates indicating a satisfiable result.

The performance of the DLL procedure critically depends upon the care taken in
the implementation. Solvers implementing DLL spend much of their time applying unit
propagation [Zha97, LMS05], and this has motivated the definition of several proposals
to reduce the cost of applying unit propagation. The most efficient in the state-of-the-art
is the unit propagation algorithm based on the called 2-literal watching scheme, first used
in Chaff [MMZ+01].

3.2.4 Abstract Davis-Putnam-Logemann-Loveland

The Davis-Putnam procedure was originally presented as a two-phase proof-procedure
for first-order logic. The unsatisfiability of a formula was to be proved by first generat-

3.2. SATISFIABILITY ALGORITHMS 39

ing a suitable set of ground instances which then, in the second phase, were shown to be
propositionally unsatisfiable. Subsequent improvements, such as the Davis-Logemann-
Loveland procedure, mostly focused on the propositional phase. What most authors
nowadays call the Davis-Putnam-Logemann-Loveland (DPLL) procedure is a satisfia-
bility procedure for propositional logic based on this propositional phase.

A DPLL procedure can be modelled by a transition relation over states [NOT06].
A state is either FailState or a pair M ‖ φ, where φ is a finite set of clauses and M is
a partial assignment (in the form of a sequence of literals). Some literals l in M will be
annotated as being decision literals; these are the ones added to M by the Decide rule,
and are written ld. The transition relation is defined by means of rules.

The classical DPLL transition system consists of the following five rules:

UnitPropagate :

M ‖ φ,C ∨ l =⇒ Ml ‖ φ,C ∨ l if

{
M |= ¬C and
l is undefined in M .

PureLiteral :

M ‖ φ =⇒ Ml ‖ φ if


l occurs in some clause of φ,
¬l occurs in no clause of φ and
l is undefined in M .

Dedide :

M ‖ φ =⇒ Mld ‖ φ if

{
l or ¬l occurs in some clause of φ and
l is undefined in M .

Fail :

M ‖ φ,C =⇒ FailState if

{
M |= ¬C and
M contains no decision literals.

Backtrack :

MldN ‖ φ,C =⇒ M¬l ‖ φ,C if

{
MldN |= ¬C and
N contains no decision literals.

The majority of modern DPLL algoritms only use the PureLiteral rule as a prepro-
cessing step, replace the Backtrack rule by the Backjump rule and add tree new rules:
the Learn rule which implements the conflict-driven clause-learning, the Forget rule for
forgetting learned clauses (usually for reasons of space), and the Restart rule that restarts
the algorithm but remembering what has been learned. Hopefully, these newly learned
lemmas will lead the heuristics for Decide to behave differently.

40 CHAPTER 3. SATISFIABILITY

Backjump :

MldN ‖ φ,C =⇒ Ml′ ‖ φ,C if



MldN |= ¬C and there is
some clause C ′ ∨ l′ such that:
φ,C |= C ′ ∨ l′ and M |= ¬C ′,
l′ is undefined in M , and
l′ or ¬l′ occurs in φ or in MldN .

Learn :

M ‖ φ =⇒ M ‖ φ,C if

{
all atoms of C occur in φ or in M and
φ |= C.

Forget :
M ‖ φ,C =⇒ M ‖ φ if φ |= C.

Restart :
M ‖ φ =⇒ ∅ ‖ φ.

Example 9 Aplication of the DPLL rules on the formula (¬x1∨x2)∧(¬x3∨x4)∧(¬x5∨
¬x6) ∧ (x6 ∨ ¬x5 ∨ ¬x2).

∅ ‖ ¬x1 ∨ x2,¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2 ⇒ Decide
xd
1 ‖ ¬x1 ∨ x2, ¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2 ⇒ UnitPropagate

xd
1 x2 ‖ ¬x1 ∨ x2,¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2 ⇒ Decide

xd
1 x2 xd

3 ‖ ¬x1 ∨ x2, ¬x3 ∨ x4, ¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2 ⇒ UnitPropagate
xd
1 x2 xd

3 x4 ‖ ¬x1 ∨ x2,¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2 ⇒ Decide
xd
1 x2 xd

3 x4 xd
5 ‖ ¬x1 ∨ x2,¬x3 ∨ x4, ¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2 ⇒ UnitPropagate

xd
1 x2 xd

3 x4 xd
5 ¬x6 ‖ ¬x1 ∨ x2,¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2 ⇒ Backjump & Learn

xd
1 x2 ¬x5 ‖ ¬x1 ∨ x2,¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2,¬x2 ∨ ¬x5 ⇒ Decide

xd
1 x2 ¬x5 xd

3 ‖ ¬x1 ∨ x2, ¬x3 ∨ x4, ¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2,¬x2 ∨ ¬x5 ⇒ UnitPropagate
xd
1 x2 ¬x5 xd

3 x4 ‖ ¬x1 ∨ x2,¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2,¬x2 ∨ ¬x5 ⇒ Decide
xd
1 x2 ¬x5 xd

3 x4 ¬xd
6 ‖ ¬x1 ∨ x2,¬x3 ∨ x4,¬x5 ∨ ¬x6, x6 ∨ ¬x5 ∨ ¬x2,¬x2 ∨ ¬x5 ⇒ Solution

We underline the clause causing the Backjump or UnitPropagation.

Note that, in the Backjump step, x6 ∨ ¬x5 ∨ ¬x2 is the conflicting clause C, since
all its literals are false under the partial assignment x1 x2 x3 x4 x5 ¬x6. Then, roughly,
since neither x3 nor x4 occur in the conflicting clause, the Backjump rule allows us to
Backjump to the state x1 x2 ¬x5 ‖ . . . Observe that, in this case, M = x1 x2, ld = x3,
N = x4 x5 ¬x6, C = x6 ∨ ¬x5 ∨ ¬x2, and l′ = ¬x5. We can take C ′ ∨ l′ = ¬x2 ∨ ¬x5.
Note that this clause can be obtained by resolution between ¬x5 ∨ ¬x6 (the clause that
has propagated ¬x6) and the conflicting clause x6 ∨ ¬x5 ∨ ¬x2:

3.3. MAXSAT AND WEIGHTED MAXSAT 41

¬x5 ∨ ¬x6 x6 ∨ ¬x5 ∨ ¬x2
¬x2 ∨ ¬x5

Note also that C ′∨ l′ becomes unit under assignment M (and hence l′ can be propagated).
Moreover, this clause can be learned according to the Learn rule, since resolution is sound
and hence it is a logical consequence of the original formula. Learning this clause will
prevent similar conflicts in the future.

On the other hand, the indiscriminate application of the restart rule could lead to
incompleteness. To avoid incompleteness, it suffices to perform restarts at increasing
periods of time (typically counting up to a certain number of conflicts). But many other
types of restart policies have been studied, such as arithmetic o geometric series over the
number of conflicts, or especial series such as the Luby series or Inner-Outer Geometric
series [Hua07, RS08].

Note that any of these rules can be executed whenever its precondition is met. The
particular order will be determined by the specific solver using these rules.

3.3 MaxSAT and Weighted MaxSAT

In this section we describe optimization variants of the SAT problem such as MaxSAT,
Partial MaxSAT, Weighted MaxSAT and Partial Weighted MaxSAT. These variants can
be used to obtain the best possible truth assignment for unsatisfiable formulas.

3.3.1 MaxSAT and Partial MaxSAT

Given a CNF formula, the maximum satisfiability (MaxSAT) problem is defined as the
problem of finding a solution that maximizes the number of satisfied clauses.

In the Partial MaxSAT problem there is a set of clauses that can be violated (soft
clauses) and a set of clauses that must be satisfied (hard clauses). The objective of the
problem is also the maximization of the number of satisfied clauses, or equivalently, the
minimization of the number of falsified clauses (cost), but ensuring the satisfaction of all
the hard clauses.

In SAT, a CNF formula is considered to be a set of clauses, while in (partial)
MaxSAT, a CNF formula is considered to be a multiset of clauses, because repeated
clauses cannot be collapsed into a unique clause. For instance, in {x1,¬x1,¬x1, x1 ∨
x2,¬x2}, where a clause is repeated, there is a minimum of two unsatisfied clauses. If we
consider the set {x1,¬x1, x1 ∨ x2,¬x2}, where repeated clauses are collapsed, then there
is a minimum of one unsatisfied clause.

42 CHAPTER 3. SATISFIABILITY

Example 10 Let us consider a Partial MaxSAT instance φ having the following clauses:

c1 : [x1 ∨ x2]
c2 : [¬x1]
c3 : [¬x1 ∨ ¬x2]
c4 : (¬x2 ∨ x3)
c5 : (x1 ∨ ¬x2)
c6 : (¬x3)
c7 : (x1 ∨ ¬x2 ∨ ¬x3)

Hard clauses are represented between square brackets, and soft clauses are repre-
sented between round brackets.

An optimal solution for φ is the assignment {¬x1, x2,¬x3}, which satisfies all the
hard clauses and maximizes the number of satisfied soft clauses. The number of falsified
soft clauses (cost) is 2, and the satisfied soft clauses are c6 and c7.

3.3.2 Weighted MaxSAT and Weighted Partial MaxSAT

A Weighted CNF clause is a pair (C,w), where C is a clause and w is its weight. The
weight w can be a natural number or infinity and its meaning is the penalty (cost) for fal-
sifying the clause C. A clause is hard if its corresponding weight is infinity, and soft oth-
erwise. When there are no hard clauses we speak of Weighted MaxSAT, and we speak of
Weighted Partial MaxSAT otherwise. A Weighted CNF formula is a multiset of weighted
clauses.

The Weighted MaxSAT problem consists of finding a truth assignment such that the
sum of the weights of the satisfied clauses is maximized, or equivalently, the total weight
of the falsified clauses is minimized.

Example 11 Let us consider a Weighted MaxSAT instance having the following clauses:

c1 : (x1 ∨ x2, 4)

c2 : (¬x1, 3)

c3 : (¬x1 ∨ ¬x2, 5)

c4 : (¬x2 ∨ x3, 3)

c5 : (x1 ∨ ¬x2, 2)

c6 : (¬x3, 1)

3.4. MAXSAT AND WEIGHTED MAXSAT ALGORITHMS 43

An optimal solution for this formula is the assignment {¬x1, x2, x3}. The sum of
weights of satisfied clauses is 15, and the sum of weights of falsified clauses is 3. This
assignment falsifies the clauses c5 and c6.

We remark that the MaxSAT problem can also be defined as Weighted MaxSAT
restricted to formulas whose clauses have weight 1, and as Partial MaxSAT in the case
that all the clauses are declared to be soft. The Partial MaxSAT problem is Weighted
Partial MaxSAT when the weights of the soft clauses are equal. Note also that the SAT
problem is equivalent to Partial MaxSAT when there are no soft clauses.

The notion of equivalence with respect to instances has some subtlety that we want
also to remark. In SAT, two formulas are equivalent if they are satisfied by the same set
of assignments. In MaxSAT, two formulas are equivalent if both have the same num-
ber of unsatisfied clauses for every assignment. In Weighted MaxSAT, two formulas are
equivalent if the sum of the weights of unsatisfied clauses coincides for every assignment.

3.4 MaxSAT and Weighted MaxSAT Algorithms

In recent years several methods have been described to solve MaxSAT and Weighted
MaxSAT.

A first approach could consist in reifying the soft clauses into Boolean variables.
These Boolean variables can be considered as pseudo-Boolean, i.e., {0, 1} integer vari-
ables, corresponding 0 to false and 1 to true. The objective function in the case of
MaxSAT is the sum of these pseudo-Boolean variables and in the case of Weighted
MaxSAT the sum of products of the pseudo-Boolean variable by the corresponding clause
weight. In both cases we must minimize the objective function.

Another possibility widely used in recent times (winning in several categories of
the last SAT competitions) is to achieve the optimal solution using unsatisfiability cores
(UNSAT cores). We look in some more detail to this kind of algorithms since the use of
these methods for SMT is one of the thesis contributions.

3.4.1 UNSAT Core Based Algorithms

Definition 3.4.1 An unsatisfiable core is an unsatisfiable subset of clauses φc of the orig-
inal CNF φ.

In the last few years, several algorithms for computing small [ZM03], minimal [DHN06]
or minimum [ZLS06] unsatisfiable cores of propositional formulas have been proposed.

44 CHAPTER 3. SATISFIABILITY

Currently there are a large number of UNSAT core based algorithms and numerous
variants of each. We describe some of them:

• PM1 was proposed by [FM06] for the Partial MaxSAT problem. This algorithm
consists in iteratively calling a SAT solver on a working formula φ (see Algo-
rithm 11). The SAT solver will say whether the formula is satisfiable or not, and in
case the formula is unsatisfiable, it will return us an unsatisfiable core (φc). At this
point the algorithm will create new variables (BV), called blocking variables, one
for each clause of the returned core. Then, the new working formula φ will consist
of the previous φ where the each new variable has been added to the corresponding
clause of the core. Moreover, a cardinality constraint saying that exactly one of
the new variables should be true {C|C ∈ CNF (

∑
b∈BV ite(b; 1; 0) = 1)} is also

added. Finally, it is increased by one the counter of falsified clauses (cost). This
procedure is applied until the SAT solver returns satisfiable.

Algorithm 11 PM1 Algorithm
Input: φ : CNF formula
Output: Cost of φ
cost← 0
while true do

(st, φc)← SAT ALGORITHM (φ)
if st = SAT then

return cost
else
BV ← ∅
for all C ∈ φc do

if isSoft(C) then
b← New variable()
φ← φ \ {C} ∪ {C ∨ b}
BV ← BV ∪ {b}

end if
end for
if BV = ∅ then

return UNSAT
end if
φ← φ ∪ {C|C ∈ CNF (

∑
b∈BV ite(b; 1; 0) = 1)}

cost← cost+ 1
end if

end while

3.4. MAXSAT AND WEIGHTED MAXSAT ALGORITHMS 45

• WPM1 was proposed by [ABL09] for the Weighted MaxSAT. This is the natural
extension of PM1 for Weighted MaxSAT (see Algorithm 12).

Algorithm 12 WPM1 Algorithm
Input: φ = {(C1, w1), . . . , (Cn, wn)} : CNF formula
Output: Cost of φ
cost← 0
while true do

(st, φc)← SAT ALGORITHM ({Ci | (Ci, wi) ∈ φ})
if st = SAT then

return cost
else
BV ← ∅
wmin ← min{wi |Ci ∈ φc ∧ isSoft(Ci)}
for all Ci ∈ φc do

if isSoft(Ci) then
b← New variable()
φ← φ \ {(Ci, wi)} ∪ {(Ci, wi − wmin)} ∪ {(Ci ∨ b, wmin)}
{when wi − wmin = 0 the clause (Ci, wi − wmin) is not added}
BV ← BV ∪ {b}

end if
end for
if BV = ∅ then

return UNSAT
end if
φ← φ ∪ {(C,∞)|C ∈ CNF (

∑
b∈BV ite(b; 1; 0) = 1)}

cost← cost+ wmin

end if
end while

Example 12 Let us consider a Weighted MaxSAT instance φ having the following
clauses: {(x, 1), (y, 2), (z, 3), (¬x ∨ ¬y,∞), (x ∨ ¬z,∞), (y ∨ ¬z,∞)}. We show
the application of the WPM1 algorithm on φ in Figure 3.2.

• PM2 was proposed by [ABL09] where a single blocking variable is added to each
soft clause.

46 CHAPTER 3. SATISFIABILITY

1st. iter. 2nd. iter. 3rd. iter. 4th. iter.
Clauses W. Clauses W. Clauses W. Clauses W.

x 1
y 2 y 2
z 3 z 2

x ∨ b1 1 x ∨ b1 1
z ∨ b2 1 z ∨ b2 1 z ∨ b2 1

y ∨ b3 2 y ∨ b3 1
z ∨ b4 2 z ∨ b4 1

x ∨ b1 ∨ b5 1
y ∨ b3 ∨ b6 1
z ∨ b4 ∨ b7 1

¬x ∨ ¬y ∞ ¬x ∨ ¬y ∞ ¬x ∨ ¬y ∞ ¬x ∨ ¬y ∞
x ∨ ¬z ∞ x ∨ ¬z ∞ x ∨ ¬z ∞ x ∨ ¬z ∞
y ∨ ¬z ∞ y ∨ ¬z ∞ y ∨ ¬z ∞ y ∨ ¬z ∞

CNF (b1 + b2 = 1) ∞ CNF (b1 + b2 = 1) ∞ CNF (b1 + b2 = 1) ∞
∞ CNF (b3 + b4 = 1) ∞ CNF (b3 + b4 = 1) ∞

CNF (b5 + b6 + b7 = 1) ∞
cost = 0 cost = 1 cost = 3 cost = 4

Figure 3.2: Application of the WPM1 algorithm
Application of the WPM1 algorithm on the Weighted CNF {(x, 1), (y, 2), (z, 3), (¬x ∨
¬y,∞), (x ∨ ¬z,∞), (y ∨ ¬z,∞)}. UNSAT cores of each stage are marked in bold and
underlined.

3.5 Encoding CSPs into SAT

Recall that a CSP is defined as a triple 〈X ,D, C〉, where X = {X1, . . . , Xn} is a set
of variables, D = {D(X1), . . . , D(Xn)} is a set of domains containing the values the
variables may take, and C = {C1, . . . , Cm} is a set of constraints. Thus, to translate a
CSP instance into a SAT instance we must must first choose an encoding for the variables
and their values. Restrictions must be translated using these encoding in such a way that
they retain their meaning.

In this section we describe several well-known CSP to SAT encodings. For the sake
of simplicity, we assume that the domain of all variables is {1 . . . n}.

3.5.1 Variable Encodings

CSP instances contain variables whose domain size can be greater than 2 while the Boolean
variables can only be false or true. Given a CSP variable X , the most frequent way of
encoding X into SAT is associating a Boolean variable xi with each value i ∈ D(X)
in such a way that xi is true iff X = i. These variables are called normal or standard

3.5. ENCODING CSPS INTO SAT 47

variables. Moreover, since CSP assignments assign exactly one value of the domain to
each variable, we have to encode that exactly one of the Boolean variables {x1, . . . , xn}
takes the value true, and the other variables take the value false. This is the goal of the
Exactly-One constraint, which allows to maintain a one-to-one mapping between CSP
models and SAT models.

The Exactly-One constraint is commonly expressed as the conjunction of the ALO
(At-Least-One) constraint, and the AMO (At-Most-One) constraint. The ALO constraint
states that at least one of the variables is true, and the AMO constraint states that at
most one of the variables is true. There are different encodings of the ALO and AMO
constraints. The standard encoding of the ALO constraint is formed by the following
n-ary clause:

x1 ∨ . . . ∨ xn
And for the AMO constraint, the standard one is the pair-wise encoding, also called naive
encoding in the literature. The encoding is formed by the following n ∗ (n− 1)/2 binary
clauses:

n−1∧
i=1

n∧
j=i+1

¬xi ∨ ¬xj

Other encodings for the AMO constraint are the following:

• The Binary AMO, introduced in [FP01], introduces new variables b1, . . . , bdlog2ne.
It then associates with each xi a unique bit string si ∈ {1, 0}dlog2ne where the string
si is the binary representation of i. The binary AMO is:

n∧
i=1

dlog2ne∧
j=i

¬xi ∨ ψ(i, j)

where ψ(i, j) is a clause with bj if the jth bit of si is 1 and with ¬bj otherwise.

This encoding introduces dlog2ne extra variables and uses n ∗ dlog2ne clauses.

• The Sequential counter AMO, introduced in [Sin05], is based on a sequential
counter circuit, that consists in sequentially counting the number of xis that are
true. The Sequential counter AMO is:

(¬x1 ∨ s1)

i<n∧
i=2

((¬xi ∨ si) ∧ (¬si−1 ∨ si) ∧ (¬xi ∨ ¬si−1))

48 CHAPTER 3. SATISFIABILITY

(¬xn ∨ ¬sn−1)

where si, 1 ≤ i ≤ n− 1, are auxiliary variables.

This encoding requires 3n− 4 binary clauses and n− 1 auxiliary variables.

3.5.2 Constraint Encodings

There are also several possibilities for encoding the CSP constraints. The more relevant
ones are:

• The Direct Encoding is probably the most popular encoding from CSP into SAT.
In the standard direct encoding for each binary constraint with scope {X, Y } there
is a binary clause for every nogood. Such clauses are called conflict clauses.

Example 13 The conflict clauses in the standard direct encoding for the CSP de-
fined by 〈{X, Y }, {D(X) = {1, 2, 3}, D(Y) = {1, 2, 3}}, {X ≤ Y }〉 are the fol-
lowing:

(¬x2 ∨ ¬y1) (¬x3 ∨ ¬y1) (¬x3 ∨ ¬y2)

• The Support Encoding encodes into clauses the support for each possible value of
a variable across a constraint. The support for a value i of a CSP variable X across
a binary constraint with scope {X, Y } is the set of values of the variable Y which
allow X = i.

Example 14 The support clauses for the CSP of Example 13 are:

(¬x2 ∨ y2 ∨ y3) (¬x3 ∨ y3) (¬y1 ∨ x1) (¬y2 ∨ x1 ∨ x2)

The support clause for X = 1 is missing because it is subsumed by (y1 ∨ y2 ∨ y3),
and the support clause for Y = 3 is missing because it is subsumed by (x1∨x2∨x3).

• The Multivalued Encoding is a variant of the direct encoding in which the AMO
clauses can be omitted. In this case, each CSP variable can take more than one value
simultaneously. As pointed out in [BHvMW09], AMO clauses can be omitted in
the direct encoding from CSP into SAT in such a way that the CSP is satisfiable if
and only if the resulting SAT encoding is satisfiable.

3.5. ENCODING CSPS INTO SAT 49

3.5.3 Other Encodings

There are other encodings in which there is no direct relationship between each value
i ∈ D(X) and a Boolean variable xi, and encodings where in addition to the Boolean
variables xi some other Boolean variables are added. Some of these encodings are the
following:

• Log Encoding [IM94]. Given a CSP variable X with domain D(X), the log en-
coding requires dlog2|D(X)|e variables to encode each possible value for X . In
this encoding to facilitate the formulation we assume that the domains range from
0 to n.

In the log encoding, the assignment X = i is encoded by the clause li1 ∨ . . . ∨
lidlog2|D(X)|e, where li1, . . . , l

i
dlog2|D(X)|e are the literals associated with the binary rep-

resentation of the value i. The log encoding is formed by the conflict clause set,
which encodes the no-goods of the constraints, and the prohibited-value clauses if
there are domains whose size is not a power of 2. Moreover, in contrast to the direct
and support encoding, neither ALO nor AMO clauses are required.

Example 15 The log encoding for the CSP 〈{X, Y }, {D(X) = {0, 1, 2}, {D(Y) =
{1, 2, 3}, {X 6= Y }〉 goes as follows:

value domain (i) b1 b0 literals
associated with X = i

X = 0 0 0 ¬x1 ¬x0
X = 1 0 1 ¬x1 x0
X = 2 1 0 x1 ¬x0
X = 3 1 1 x1 x0

conflict values conflict clauses
X = 0, Y = 0 x0 ∨ x1 ∨ y0 ∨ y1
X = 1, Y = 1 ¬x0 ∨ x1 ∨ ¬y0 ∨ y1
X = 2, Y = 2 x0 ∨ ¬x1 ∨ y0¬ ∨ y1

prohibited values prohibited-value clauses
¬[X = 3] ¬x0 ∨ x1
¬[Y = 3] ¬y0 ∨ y1

In the first table we can observe the sets of literals associated with the possible
assignments of X (it is similar for the possible assignments of the CSP variable Y).

50 CHAPTER 3. SATISFIABILITY

In the second table there are the conflict clauses and in the last table the prohibited-
value clauses.

• The Order Encoding [CB94, BB03]. In this encoding, for every CSP variable X
and every value i ∈ D(X) except for the lower bound (the smallest value of the
domain, in our case 1) we associate a Boolean variable x≥i , in such a way that x≥i is
true iff X ≥ i. To encode the AMO and ALO constraints, it is sufficient that these
Boolean variables constitute a monotonic non-increasing sequence. To achieve this
property we must add the following clauses:

i>2∧
i=n

¬x≥i ∨ x
≥
i−1

The encoding of the constraints in this case is quite simple. For example to state
X 6= 2 we only need to encode the equality x≥2 = x≥3 and for the constraint X < 4
we only need the clause ¬x≥4 .

• The Regular Encoding [AM04, BHM01]. In this encoding, for every CSP variable
X and every value i ∈ D(X), we associate a variable xi, and a Boolean variable x≤i
called regular variable (for i equal to the upper bound of D(X) it is not necessary),
in such a way that x≤i is true iff X ≤ i. Regular encodings contain both standard
and regular variables. To achieve ALO and AMO constraints, and to achieve chan-
nelling between standard variables and regular variables we must add the following
clauses:

i<n−1∧
i=1

¬x≤i ∨ x
≤
i+1

i<n∧
i=1

¬xi ∨ x≤i

i≤n∧
i=2

¬xi ∨ ¬x≤i−1

x1 ∨ ¬x≤1
i<n∧
i=2

xi ∨ ¬x≤i ∨ x
≤
i−1

xn ∨ ¬x≤n−1

The first clause encodes the transitivity of the regular variables x≤d → x≤d+1 and
the other five encode the channeling between the standard and the regular variables

3.5. ENCODING CSPS INTO SAT 51

xd ↔ x≤d ∧ ¬x
≤
d−1. In this encoding neither ALO nor AMO clauses are required

because the clauses force that each variable has one and only one value of the do-
main.

Note that we could use x≥i instead of x≤i as in the case of the order encoding with
the corresponding changes in the clauses.

The encoding of the constraints in this case is quite simple, since they can use both
standard variables and regular variables.

52 CHAPTER 3. SATISFIABILITY

Chapter 4

Satisfiability Modulo Theories

An SMT formula is a generalization of a Boolean formula in which some propositional
variables have been replaced by predicates with predefined interpretations from back-
ground theories such as, e.g., linear integer arithmetic. For example, a formula can contain
clauses like p∨q∨(x+2 ≤ y)∨(x > y+z), where p and q are Boolean variables and x, y
and z are integer variables. Predicates over non-Boolean variables, such as linear integer
inequalities, are evaluated according to the rules of a background theory [NOT06, Seb07].
Examples of theories include linear real or integer arithmetic, arrays, bit vectors, uninter-
preted functions, etc., or combinations of them.

Leveraging the advances made in SAT solvers in the last decade, SMT solvers have
proved to be competitive with classical decision methods in many areas. Most modern
SMT solvers integrate a SAT solver with specialized solvers for a set of literals belonging
to each theory.

In this chapter we define the SMT problem and present the lazy SMT approach and
some of the most used background theories. We also present variants of the SMT problem
such as MaxSMT and Weighted SMT.1 Finally, we describe the Lazy Clause Generation
system for solving CSPs, which uses very similar techniques to the ones of SMT.

4.1 Preliminaries

Definition 4.1.1 A theory is a set of first-order formulas closed under logical conse-
quence. A theory T is said to be decidable if there is an effective method for determining
whether arbitrary formulas are included in T .

Definition 4.1.2 A formula ϕ is T -satisfiable or T -consistent if T ∪ {ϕ} is satisfiable in
1Also called Weighted MaxSMT in the literature.

53

54 CHAPTER 4. SATISFIABILITY MODULO THEORIES

the first-order sense. Otherwise, it is called T -unsatisfiable or T -inconsistent.

Definition 4.1.3 A (partial) truth assignment M (see Definition 3.1.3) can be seen either
as a set or as a conjunction of literals, and hence as a formula. If M is a T -consistent
partial truth assignment and ϕ is a formula such that M |= ϕ, i.e., M is a (propositional)
model of ϕ, then we say that M is a T -model of ϕ. Moreover, we write ϕ |=T ϕ′ as an
abbreviation for T ∪ {ϕ} |= ϕ′.

Definition 4.1.4 The SMT problem for a theory T is the problem of determining, given a
formula ϕ, whether ϕ is T -satisfiable, or, equivalently, whether ϕ has a T -model.

As usually done in SMT, here we only consider the SMT problem for ground (and
hence quantifier-free) CNF formulas. Such formulas may contain constants that are free
in T , which, as far as satisfiability is concerned, can equivalently be seen as existentially
quantified variables.

Moreover, we will only consider theories T for which the T -satisfiability of con-
junctions of such ground literals is decidable. A decision procedure for this problem is
called a T -solver.

4.2 The Eager and Lazy SMT Approaches

In the so-called eager approach to SMT, the input formula is translated in a single satisfi-
ability preserving step into a propositional CNF formula which is then checked by a SAT
solver for satisfiability. Sophisticated ad-hoc translations have been developed for several
theories, but still, on many practical problems the translation process or the SAT solver
run out of time or memory [dMR04].

Currently most successful SMT solvers are based on the integration of a SAT solver
and a T -solver, that is, a decision procedure for the given theory T . In this so-called lazy
approach, while the SAT solver is in charge of the Boolean component of reasoning, the
T -solver deals with sets of atomic constraints (literals) in T . The basic idea is to let the T -
solver analyze the partial truth assignment that the SAT solver is building, and warn about
conflicts with theory T (T -inconsistency). This way, we are hopefully getting the best of
both worlds: in particular, the efficiency of the SAT solver for the Boolean reasoning and
the efficiency of special-purpose algorithms inside the T -solver for the theory reasoning.
This approach is usually orders of magnitude faster than the eager approach. It is called
lazy because the theory information is only used from time to time, when checking the
consistency of the truth assignment with theory T .

4.2. THE EAGER AND LAZY SMT APPROACHES 55

Algorithm 13 shows a simplified version of an enumeration-based T -satisfiability
procedure (from [BCF+06]) where T -consistency is only checked for total Boolean as-
signments. We refer the reader to [Seb07] for a survey on the lazy SMT approach.

Algorithm 13 Bool+T
Input: ϕ : SMT formula
Output: Satisfiability of ϕ
Ap ← T2B(Atoms(ϕ));
ϕp ← T2B(ϕ);
while Bool -satisfiable(ϕp) do
µp ← pick total assignment(Ap, ϕp);
(ρ, π)← T -satisfiable(B2T (µp));
if ρ = sat then

return sat;
else
ϕp ← ϕp ∧ ¬T2B(π);

end if;
end while
return unsat;

The algorithm enumerates the Boolean models of the propositional abstraction of
the SMT formula ϕ and checks for their satisfiability in the theory T .

• The function Atoms takes a quantifier-free SMT formula ϕ and returns the set of
atoms which occur in ϕ.

• The function T2B maps propositional variables to themselves, and ground atoms
into fresh propositional variables, and is homomorphic with respect to Boolean
operators and set inclusion. ϕp is initialized to be the propositional abstraction of ϕ
using T2B.

• The function B2T is the inverse of T2B.

• µp denotes a propositional assignment as a set (conjunction) of propositional liter-
als.

• The function pick total assignment returns a total assignment to the propositional
variables in ϕp. In particular, it assigns a truth value to all variables in Ap.

• The function T -satisfiable checks if a set of conjuncts µ is T -satisfiable, i.e., if
there is a model for T ∪ µ, returning (sat,∅) in the positive case and (unsat,π)
otherwise, being π ⊆ µ a T -unsatisfiable set (the theory conflict set). Note that

56 CHAPTER 4. SATISFIABILITY MODULO THEORIES

the negation of the propositional abstraction of π is added to ϕp in case of unsat
(learning).

We illustrate Algorithm 13 with Example 16.

Example 16 Consider the following SMT formula, expressed as a set of clauses, where
T is assumed to be the theory of linear integer arithmetic:

ϕ = {¬(x > 0) ∨ a ∨ b,
¬a ∨ ¬b,
¬(x+ 1 < 0) ∨ a,
¬b ∨ ¬(y = 1)}

Then {x > 0, a, b, x+ 1 < 0, y = 1} is its set of atoms and

Ap = {p(x>0), a, b, p(x+1<0), p(y=1)}

is the Booleanization of this set, where p(x>0), p(x+1<0) and p(y=1) are three fresh propo-
sitional variables corresponding to the arithmetic atoms x > 0, x + 1 < 0 and y = 1,
respectively. The propositional abstraction of ϕ is then the following Boolean formula:

ϕp = {¬p(x>0) ∨ a ∨ b,
¬a ∨ ¬b,
¬p(x+1<0) ∨ a,
¬b ∨ ¬p(y=1)}

It is not hard to see thatϕp is satisfiable. Suppose that the function pick total assignment(Ap,ϕp)
returns us the following Boolean model for ϕp:

µp = {p(x>0), a,¬b, p(x+1<0),¬p(y=1)}

Now we need to check the T -satisfiability ofB2T (µp). Since we are interested in checking
the consistency of the current Boolean assignment with theory T , here we only need to
take into account the literals corresponding to the theory, i.e., we have to check the T -
satisfiability of {x > 0, x + 1 < 0,¬(y = 1)}. This is obviously T -unsatisfiable, so we
get a subset of T -inconsistent literals from the T -solver, e.g., π = {x > 0, x + 1 < 0},
and we extend ϕp with the learned clause, namely ¬p(x>0) ∨ ¬p(x+1<0). Then the search
starts again.

In practice, the enumeration of Boolean models is carried out by means of efficient
implementations of the DPLL algorithm [ZM02], where the partial assignments µp are

4.3. ABSTRACT DPLL MODULO THEORIES 57

incrementally built. These systems inherit the spectacular progress in performance from
SAT solvers in the last decade, achieved thanks to better implementation techniques and
conceptual enhancements, which have been partially described in Chapter 3. Adaptations
of SAT techniques to the SMT framework have been described in [SS06]. Unit propaga-
tion (see Section 3.2.2) is used extensively to perform all the assignments which derive
deterministically from the current partial truth assignment µp. This allows the system to
prune the search space and to backtrack as high as possible in the search tree (see Exam-
ple 9).

An important improvement consists on checking the T -satisfiability of partial as-
signments, in order to anticipate possible conflicts. Theory deduction can be used to
reduce the search space by explicitly returning truth values for unassigned literals, as well
as constructing and learning implications. The deduction capability is a very important
aspect of theory solvers, since getting short explanations (conflict sets) from the theory
solver is essential in order to keep the learned lemmas as short as possible. Apart from
saving memory space, shorter lemmas will allow for more pruning in general.

In the approach presented so far, the T -solver provides information only after a T -
inconsistent partial assignment has been generated. In this sense, the T -solver is used
only to validate the search a posteriori, not to guide it a priori. In order to overcome this
limitation, the T -solver can also be used in a given DPLL state M ‖ ϕ to detect literals
l occurring in ϕ such that M |=T l, allowing the DPLL procedure to move to the state
Ml ‖ ϕ. This is called theory propagation.

Finally, as it happens in SAT solving, in order to avoid getting stuck in hard portions
of the search space, most SMT systems periodically do restarts with the hope of exploring
easier successful branches.

4.3 Abstract DPLL Modulo Theories

In [NOT06] we can found the adaptation to SMT of the abstract DPLL procedure (see
Section 3.2.4) where the Learn, Forget and Backjump rules are slightly modified, such

58 CHAPTER 4. SATISFIABILITY MODULO THEORIES

that entailment between formulas now becomes entailment in T :

T -Backjump :

MldN ‖ ϕ,C =⇒ Ml′ ‖ ϕ,C if



MldN |= ¬C and there is
some clause C ′ ∨ l′ such that:
ϕ,C |=T C

′ ∨ l′ and M |= ¬C ′,
l′ is undefined in M , and
l′ or ¬l′ occurs in ϕ or in MldN .

T -Learn :

M ‖ ϕ =⇒ M ‖ ϕ,C if

{
all atoms of C occur in ϕ or in M and
ϕ |=T C.

T -Forget :
M ‖ ϕ,C =⇒ M ‖ ϕ if ϕ |=T C.

Example 17 Let us consider the following SMT formula ϕ:

x1 ∧ g(a) = c ∧ (f(g(a)) 6= f(c) ∨ g(a) = d) ∧ c 6= d

Here the theory involved is Equality and Uninterpreted Functions. In this theory functions
do not have any predefined interpretation. However, equality axioms state that, indepen-
dently from what is supposed to compute, a function always returns equal values for equal
arguments, i.e., a = b→ f(a) = f(b).

The first step is to purify the formula, i.e., mapping propositional variables to them-
selves, and ground atoms into fresh propositional variables:

x2 ↔ g(a) = c
x3 ↔ f(g(a)) 6= f(c)
x4 ↔ g(a) = d
x5 ↔ c 6= d

The resulting Boolean formula ϕp is:

x1 ∧ x2 ∧ (x3 ∨ x4) ∧ x5

A possible sequence of applications of the DPLL rules could be the following:

4.4. THEORIES AND LOGICS 59

∅ ‖ x1, x2, x3 ∨ x4, x5 ⇒ UnitPropagate
x1 ‖ x1, x2, x3 ∨ x4, x5 ⇒ UnitPropagate
x1x2 ‖ x1, x2, x3 ∨ x4, x5 ⇒ UnitPropagate
x1x2x5 ‖ x1, x2, x3 ∨ x4, x5 ⇒ Decide
x1x2x5x

d
3 ‖ x1, x2, x3 ∨ x4, x5 ⇒ T-Backjump (T-inconsistency)

x1x2x5¬x3 ‖ x1, x2, x3 ∨ x4, x5 ⇒ UnitPropagate
x1x2x5¬x3x4 ‖ x1, x2, x3 ∨ x4, x5 ⇒ Fail (T-inconsistency)

In order to model theory propagation we require the following rule:

TheoryPropagate :

M ‖ ϕ =⇒ Ml ‖ ϕ if


M |=T l,
l or ¬l occurs in ϕ, and
l is undefined in M .

Example 18 Evolution of Example 17 with theory propagation:

∅ ‖ x1, x2, x3 ∨ x4, x5 ⇒ UnitPropagate
x1 ‖ x1, x2, x3 ∨ x4, x5 ⇒ UnitPropagate
x1x2 ‖ x1, x2, x3 ∨ x4, x5 ⇒ TheoryPropagate
x1x2¬x3 ‖ x1, x2, x3 ∨ x4, x5 ⇒ UnitPropagate
x1x2¬x3x4 ‖ x1, x2, x3 ∨ x4, x5 ⇒ TheoryPropagate
x1x2¬x3x4¬x5 ‖ x1, x2, x3 ∨ x4, x5 ⇒ Fail

In this case, no backjumping has been necessary.

4.4 Theories and Logics

The Satisfiability Modulo Theories Library (SMT-LIB) [BST10a] has the goal of estab-
lishing a library of benchmarks for SMT, as well as to establish a common standard for
the specification of benchmarks and of background theories. The Satisfiability Modulo
Theories Competition (SMT-COMP) is an associated yearly competition for SMT solvers.
Among the logics considered in the SMT-LIB there are:

• QF UF: the quantifier-free fragment of first order logic with equality and no restric-
tions on the signature (hence the name UF for Uninterpreted Functions). The theory
of Equality and Uninterpreted Functions (EUF, or simply UF) is also known as the
empty theory, as far as we are concerned with first order logic with equality (i.e.,
with equality built-in). If Γ is a set of equalities and ∆ is a set of inequalities, then
the satisfiability of Γ ∪∆ in QF UF can be determined as follows [NO80]:

60 CHAPTER 4. SATISFIABILITY MODULO THEORIES

– Let τ be the set of terms appearing in Γ ∪∆.

– Let ∼ be the equivalence relation on τ induced by Γ i.e., its closure under
reflexivity, symmetry and transitivity.

– Let ∼∗ be the congruence closure of ∼, obtained by closing ∼ with respect
to the congruence axiom s = t → f(s) = f(t), where s and s are vectors of
symbols.

– Γ ∪∆ is satisfiable iff for each s 6= t ∈ ∆, s 6∼∗ t.

It is possible (and sometimes preferable) to eliminate all uninterpreted function
symbols by means of Ackermann’s reduction [Ack68]. In Ackermann’s reduction,
each application f(a) is replaced by a variable fa, and for each pair of applications
f(a), f(b) the formula a = b → fa = fb is added, i.e., the single theory axiom
x = y → f(x) = f(y) of the theory becomes instantiated as necessary.

• Linear Arithmetic over the integers (QF LIA) or the reals (QF LRA). Closed quantifier-
free formulas with Boolean combinations of inequations between linear polyno-
mials over integer (real) variables, e.g., (3x + 4y ≥ 7) → (z = 3) where x, y
and z are integer variables. These inequalities can be placed in a normal form
c0 +

∑n
i=1 ci ∗ xi ≤ 0, where each ci is a rational constant and the variables xi are

integer (real) variables. The most common approach for solving linear arithmetic
is the Simplex method for real variables and the MILP for integer variables (see
Subsection 2.7). A description of a QF LIA and a QF LRA solver can be found
in [DdM06a].

• Difference Logic over the integers (QF IDL) or the reals (QF RDL). Fragment of
linear arithmetic in which arithmetic atoms are restricted to have the form x−y ./ k,
where x and y are numeric (integer or real) variables, k is a numeric (integer or real)
constant and ./ ∈ {=, <,>,≤,≥}. In the usual solving method, first of all, the
atoms are rewritten in terms of ≤. Then, the resulting atoms can be represented as
a weighted directed graph with variables as vertices and edges from x to y labeled
with k for every atom x − y ≤ k. A formula is unsatisfiable iff there exists a path
x1

k1−→ x2 . . . xn
kn−→ x1 such that k1 + k2 + · · · + kn < 0. A description of a

QF RDL solver can be found in [NO05].

• Non-linear Arithmetic over the integers (QF NIA) or the reals (QF NRA). Quan-
tifier free integer or real arithmetic with no linearity restrictions, i.e., with clauses
like (3xy > 2 + z2) ∨ (3xy = 9) where x, y and z are variables. A possible tech-
nique to check the satisfiability of these formulas is to transform the problem into a
linear approximation [BLO+12].

• Arrays (QF AX). Closed quantifier-free formulas over the theory of arrays with
extensionality. The signature of this theory consists of two interpreted function

4.4. THEORIES AND LOGICS 61

symbols: read, used to retrieve the element stored at a certain index of the array,
and write, used to modify an array by updating the element stored at a certain
index. The axioms of the theory of arrays are:

∀a : Array, ∀i, j : Index,∀x : V alue
i = j ⇒ read(write(a, i, x), j) = x
i 6= j ⇒ read(write(a, i, x), j) = read(a, j)

Finally, the extensionality axiom states that two arrays that coincide on all indices
are indeed equal:

∀a, b : Array
(∀i : Index read(a, i) = read(b, i)) ⇒ a = b

A possible approach to decide the satisfiability of ground literals in this theory is
to transfer the atoms to the Equality and Uninterpreted Functions theory. Other ap-
proaches are based on a careful analysis of the problem that allows to infer, for each
array, which are the relevant indices and which values are stored at these indices of
the array [SBDL01, BNO+08a].

• Bit vectors (QF BV). Closed quantifier-free formulas over the theory of fixed-size
bit vectors. Bit vectors are normally used for representing memory contents. Com-
mon operations are: extraction of a sequence of bits, concatenation, arithmetic oper-
ations (+, −, ∗, . . .), bit-wise operations (and, or, not, . . .), etc. The state-of-the-art
methods for checking the satisfiability of a given bit vector formula are based on
reduction to SAT (bit-blasting). Each bit vector is encoded into a set of Boolean
variables and the operators are encoded into logical circuits [BKO+07].

• Other theories. In the literature we can find some other theories of interest not con-
sidered in the SMT-LIB, such as Alldifferent [BM10] and the teory of costs [CFG+10].

The expressivity of each of these logics has its corresponding computational price.
Checking consistency of a set of IDL constraints has polynomial time complexity whereas
checking consistency of a set of LIA constraints is NP-complete. The non-linear case is
in general (with no bounds on the domains of the variables) undecidable.

4.4.1 Combination of Theories

Many natural SMT problems contain atoms from multiple theories. When dealing with
two or more theories, a standard approach is to handle the integration of the different theo-
ries by performing some sort of search on the equalities between their shared (or interface)

62 CHAPTER 4. SATISFIABILITY MODULO THEORIES

variables. First of all, formulas are purified by replacing terms with fresh variables, so that
each literal only contains symbols belonging to one theory. For example,

a(1) = x+ 2

is translated into

a(v1) = v2

v1 = 1

v2 = x+ 2

where the first literal belongs to UF, and the last two to LIA. Variables v1 and v2 are then
called interface variables, as they appear in literals belonging to different theories. An
interface equality is an equality between two interface variables. All theory combination
schemata, e.g., Nelson-Oppen [NO79], Shostak [Sho84], or Delayed Theory Combination
(DTC) [BBC+06], rely to some point on checking equality between interface variables,
in order to ensure mutual consistency between theories. This may imply to assign a truth
value to all the interface equalities. Since the number of interface equalities is given by
|V| · (|V| − 1)/2, where |V| is the number of interface variables, the search space may be
enlarged in a quadratic factor in the number of interface variables.

In the case of combining UF with another theory T , an alternative approach is to
eliminate the uninterpreted function symbols by means of Ackermann’s reduction [Ack68],
and then solving the resulting SMT problem only with theory T . However, this has
the same disadvantage as theory combination since the number of additional literals is
quadratic in the size of the input and, in fact, as shown in [BCF+06], there is no clear
winner between DTC and Ackermannization.

4.5 MaxSMT and Weighted SMT

We can adapt the concept of MaxSAT and Weighted SAT for over-constrained SMT prob-
lems, i.e., SMT formulas such that it is not possible to satisfy all clauses at the same time.
A MaxSMT instance is an SMT instance where clauses may have an associated weight
(cost) of falsification.

Definition 4.5.1 Given an SMT formula, the maximum SMT (MaxSMT) problem consists
in finding a solution that maximizes the number of satisfied SMT clauses.

A Partial MaxSMT problem is a MaxSMT problem where there is a set of clauses
that can be violated (soft clauses) and a set of clauses that must be satisfied (hard clauses).

4.6. LAZY CLAUSE GENERATION 63

The objective is then to minimize the number of falsified clauses, while satisfying all hard
clauses.

As in SAT, an SMT formula is considered to be a set of clauses while, in (Partial)
MaxSMT, a CNF formula is considered to be a multiset of clauses, because repeated
clauses cannot be collapsed into a unique clause. More formally:

Definition 4.5.2 A Weighted SMT clause2 is a pair (C,w), where C is an SMT clause
and w is a natural number or infinity (indicating the penalty for violating C). A Weighted
(Partial) MaxSMT formula is a multiset of Weighted SMT clauses

ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}

where the first m clauses are soft and the last m′ clauses are hard.

If there are no hard clauses (clauses with infinite cost of falsification) we speak of
Weighted SMT, and if there are we talk about Weighted Partial SMT.

The optimal cost of a formula is the minimal cost of all its assignments. An optimal
assignment is an assignment with optimal cost.

Definition 4.5.3 The Weighted (Partial) SMT problem for a Weighted (Partial) SMT for-
mula is the problem of finding an optimal assignment for that formula.

4.6 Lazy Clause Generation

Many authors consider the Lazy Clause Generation (Lazy fd), see [OSC09, FS09], CSP
solving method as an SMT solver. In fact, in both of them a SAT solver and a Theory
Solver coexist. In the case of Lazy fd the theory solver always is a finite domain solver
with propagators.

But there exist many differences between SMT and Lazy fd. In the initial Lazy fd
approach [OSC09] (see the scheme in Figure 4.1) all integer variables X with initial
domain D(X) = {l, . . . , u} are encoded into SAT using a regular encoding (see Subsec-
tion 3.5.2). Each value i ∈ D(X) is encoded using two variables xi and x≤i (for i = u
this latter is not necessary). In order to prevent inconsistent assignments to these Boolean
variables (for example x3 and x≤2 to true) Lazy fd adds to the Boolean formula in the
SAT solver the clauses that define the conditions between them, as described in Subsec-
tion 3.5.2.

2In fact these could be general SMT formulas, not necessarily disjunctions of atoms.

64 CHAPTER 4. SATISFIABILITY MODULO THEORIES

SAT Engine

Search

Trail

Clauses Propagators

Domains

FD Engine

Figure 4.1: Old architecture of Lazy fd

In Lazy fd, the propagator functions (see Subsection 2.4.3) are implemented by
adding clauses to the Boolean formula, describing each propagation lazily. Instead of ap-
plying propagator f to domain D to obtain f (D), whenever f (D) ⊂ D we build a clause
that encodes the change in the domains. Similarly when f (D(X)) is empty the propagator
must create a clause that explains the failure. The explaining clauses of the propagation
are added to the Boolean formula in the SAT solver, on which unit propagation is per-
formed. Since the clauses will always have the form Ct → l, where Ct is a conjunction
of literals that are true in the current assignment, and l is a literal that is not true in the
current assignment, the newly added clause will always cause unit propagation, adding l
to the current assignment.

Note that in the presented lazy clause generation solver, the search is controlled by
the SAT engine. After making a decision, unit propagation is performed to reach a unit
propagation fix point. Every fixed literal is then translated into a domain change and the
appropriate propagators are woken up. An important aspect is that when a propagator
f such that f (D) 6= D is found, the propagator does not directly modify the domain D
but instead generates a set of clauses which explain the domain changes. Each clause is
passed to the SAT solver, starting a new round of unit propagations. This continues until
a fixed point is reached and a new SAT decision is made, or a contradiction is found and
a backjumping step is performed.

Example 19 Consider 〈X ,D, C〉 where X = {X, Y, Z}, D(X) = D(Y) = D(Z) =
{1, 2, 3} and C = {C1 = (X = Y), C2 = (Y < Z)}.

4.6. LAZY CLAUSE GENERATION 65

The propagators are:

fC1(D) = D′ where


D′(X) = D(X) ∩D(Y)

D′(Y) = D(Y) ∩D(X)

D′(Z) = D(Z)

fC2(D) = D′ where


D′(X) = D(X)

D′(Y) = {d ∈ D(Y) | d < max(D(Z))}
D′(Z) = {d ∈ D(Z) | d > min(D(Y))}

The initial clauses for the regular encoding of the domains are:

• Variables:

{x1, x2, x3, x≤1 , x
≤
2 , y1, y2, y3, y

≤
1 , y

≤
2 , z1, z2, z3, z

≤
1 , z

≤
2 }

• Clauses:

{¬x≤1 ∨ x
≤
2 ,¬x1 ∨ x

≤
1 ,¬x2 ∨ x

≤
2 ,¬x2 ∨ ¬x

≤
1 ,

¬x3 ∨ ¬x≤2 , x1 ∨ ¬x
≤
1 ,¬x

≤
2 ∨ x

≤
1 ∨ x2, x

≤
2 ∨ x3,

¬y≤1 ∨ y
≤
2 ,¬y1 ∨ y

≤
1 ,¬y2 ∨ y

≤
2 ,¬y2 ∨ ¬y

≤
1 ,

¬y3 ∨ ¬y≤2 , y1 ∨ ¬y
≤
1 ,¬y

≤
2 ∨ y

≤
1 ∨ y2, y

≤
2 ∨ y3,

¬z≤1 ∨ z
≤
2 ,¬z1 ∨ z

≤
1 ,¬z2 ∨ z

≤
2 ,¬z2 ∨ ¬z

≤
1 ,

¬z3 ∨ ¬z≤2 , z1 ∨ ¬z
≤
1 ,¬z

≤
2 ∨ z

≤
1 ∨ z2, z

≤
2 ∨ z3}

The process of the lazy clause generation solver start when the SAT solver takes a deci-
sion, for example adding x2 to the current truth assignment. At this moment, thanks to
unit propagation, the domain of variable X becomes {2}. This is handled by the finite
domain solver which activates the fC1 propagator, generating the clause ¬x2 ∨ y2. In
turns, unit propagation on this lastly added clause changes the domain of Y to {2}. This
is also captured by the finite domain solver, which activates the fC2 propagator, generat-
ing a new clause. As said, the process continues until a fixed point is reached and a new
SAT decision is made, or a contradiction is found and a backjumping step is performed.

There is a new version of Lazy fd [FS09] (see the scheme in Figure 4.2). In this
approach the SAT solver is not the core engine, and acts only as an oracle to control the
possible values of the variable domains. This framework is very different to the standard
SMT solvers’ scheme.

66 CHAPTER 4. SATISFIABILITY MODULO THEORIES

FD Engine

Search

Domains

Propagators Clauses

Trail

SAT Engine

Figure 4.2: New architecture of Lazy fd

The search is controlled by the finite domain solver. When a propagator f is exe-
cuted updating a variable domain (f (D) 6= D) or causing a failure (D is empty) it posts
an explanation clause to the SAT solver that explains the domain reduction or the failure.

This method does not initially need all the clauses of the regular encoding of the
variable domains. Instead, they can be lazily introduced. There are two possible ways of
doing this:

• Array Encoding. In this encoding there exist two arrays of Boolean variables:

– The array of inequality (regular) literals x≤i , i ∈ [l, u−1], which are generated
eagerly with the restrictions

∧i<n−1
i=1 ¬x≤i ∨ x

≤
i+1.

– The array of equality literals xi, i ∈ [l, u], which are generated lazily. When
an equality literal xi is necessary (occurs in a propagator or in a model), the
following clauses are posted:

¬xi ∨ x≤i
¬xi ∨ ¬x≤i−1

x≤i−1 ∨ ¬x
≤
i ∨ xi

• List Encoding. In this encoding the inequality and the equality literals are gener-
ated lazily when they are required for propagation or explanation.

When an inequality literal x≤i is introduced:

– The closest existing bounds for xi are determined:

l = max{j | x≤j exists, j < i}
u = min{j | x≤j exists, i < j}

4.6. LAZY CLAUSE GENERATION 67

– The following new domain clauses are posted:

¬x≤l ∨ x
≤
i

¬x≤i ∨ x≤u

When an equality literal xi is introduced, the introduction of the literals x≤i and x≤i−1
is required. Then the solver proceeds as in the case of array encoding.

The clauses generated by the propagators are equal to the ones of the initial Lazy fd
the propagators. However, this new scheme allows search flexibility, since it is the finite
domain and not the SAT solver that controls the search and uses less memory resources.

Example 20 Continuing with Example 19, the initial clauses for the array encoding
would be:

• Variables:
{x≤1 , x

≤
2 , y

≤
1 , y

≤
2 , z

≤
1 , z

≤
2 }

• Clauses:
{¬x≤1 ∨ x

≤
2 ,¬y

≤
1 ∨ y

≤
2 ,¬z

≤
1 ∨ z

≤
2 }

The process of the lazy clause generation solver starts when the search algorithm
tests a label, for exampleX with value 2. In this moment it has to generate the x2 equality
variable and the clauses ¬x2 ∨ x≤2 , ¬x2 ∨ ¬x≤1 , x≤1 ∨ ¬x

≤
2 ∨ x2. Then it activates the

fC1 propagator, which generates the clause ¬x2 ∨ y2. As y2 is not present in the Boolean
formula, it has to generate this equality variable and the associated clauses. This process
continues until a fixed point is reached. Then the search algorithm tests a new label or
does brackjumping.

Lazy fd is a highly competitive approach in general, and its last implementation is
one of the most competitive of state-of-the-art CSP solvers.

68 CHAPTER 4. SATISFIABILITY MODULO THEORIES

Chapter 5

Encoding CSP into SMT

In this chapter we begin with the contributions of the thesis. As we have said, one of the
main objectives of the thesis is to show the robustness of SMT solvers to solve CSPs, in
particular, by encoding CSPs into SMT formulas. This chapter will take into account the
concepts explained in previous chapters (CSP in Chapter 2, SAT in Chapter 3 and SMT in
Chapter 4) to get a correct, complete and efficient encoding. In the encodings we consider
several theories: difference logic, linear arithmetic, and equality and uninterpreted func-
tions. This chapter begins with the state-of-the-art of systems based on translation from
CSP into SAT and SMT. It continues with the two systems developed in the context of this
thesis, translating CSPs into SMT formulas: Simply and fzn2smt. In some sense, as
SMT can be seen as a natural evolution from SAT, the two systems presented can be seen
as a natural evolution from other systems based on encodings to SAT. In the description of
fzn2smt we make special emphasis on the solutions to optimization problems. We also
provide an extensive interpretation of the results obtained in our experiments and, in par-
ticular, we study the impact of the Boolean component of the instances in the performance
of fzn2smt.

The content of this chapter is part of our publications:

• Simply: a Compiler from a CSP Modeling Language to the SMT-LIB Format [BPSV09],

• A System for Solving Constraint Satisfaction Problems with SMT [BSV10], and

• Solving constraint satisfaction problems with SAT modulo theories [BPSV12].

The objectives of the thesis achieved in this chapter are the first one (to show that
SMT can be a good generic solving approach for CSP) and partially the second (to prove
that using an SMT solver in conjunction with appropriate algorithms can be a robust
approach for optimization variants of CSP). The contributions described in this chapter
range from the first to the fourth one.

69

70 CHAPTER 5. ENCODING CSP INTO SMT

5.1 State-of-the-Art

In the last decade there have been important advances in SAT solving techniques, to the
point that SAT solvers have become a viable engine for solving constraint satisfaction
problems [Wal00, CMP06, TTKB09]. On the other hand, SAT techniques have been
adapted for more expressive logics resulting in new techniques such as SMT. Although
most SMT solvers are restricted to decidable quantifier free fragments of their logics, this
suffices for many applications. In fact, there are already promising results in the direction
of adapting SMT techniques for solving CSPs, even in the case of combinatorial optimiza-
tion [NO06]. Fundamental challenges for SMT with respect to constraint programming
and optimization are suggested in [NORCR07].

In the literature there are many attempts, more or less generic, to translate CSP into
SAT. They are based on different encodings, some of them explained in Section 3.5. For
example we can

• SUGAR. This is a SAT-based constraint solver that uses the SAT-encoding method
named order encoding. Sugar became a winner in GLOBAL categories of 2008
and 2009 CSP Solver Competitions. It can solve COP and MaxCSP. See [TTKB09,
Sug11].

• CSP2SAT4J. This system is part of the Sat4j (the Boolean satisfaction and optimiza-
tion library for Java) and translates given CSPs in extension into SAT problems. It
uses direct encodings and support encoding. See [Sat05].

• FznTini. It solves constraint satisfaction and optimization problems written in
FLATZINC (not involving floating point numbers) via Booleanization and calls to
the Tinisat SAT solver. It uses the SAT-encoding method named Log Encoding.
See [Hua08, Fzn08]

• SPEC2SAT. Transforms problem specifications written in NP-SPEC [CIP+00] (a
logic-based specification language which allows us to specify combinatorial prob-
lems in a declarative way) into SAT instances. It uses the direct encoding. See [CS05,
Spe05].

• BEE. A compiler which enables to encode finite domain constraint problems to
CNF. During compilation, BEE applies optimizations such as equi-propagation,
partial-evaluation, and a careful selection of encoding techniques per constraint. It
basically uses the order encoding. See [MC12, Bee12].

Nevertheless, until the systems presented in this thesis, there has been no attempt
to make a generic translation of CSP into SMT. In this work we solve this gap, and we

5.2. SIMPLY 71

get two very efficient generic systems. Note that our systems use SMT solvers as black
boxes, hence we believe that there is much room for improvement with respect to CSP
solving via SMT.

Recently there has been another approach to make a generic translation of CSPs into
SMT formulas using an imperative style in constraints posting [MJ10]. Instead of using
linear integer arithmetic as we do, the system URBiVA uses Bit Vectors. This work,
and its results, are not easily comparable with ours because of the different nature of the
modelling languages.

5.2 Simply

To have the possibility of modelling CSPs and solving them via SMT we developed
Simply. Simply is intended to be a declarative programming system for easy mod-
elling and solving of CSPs. Although the richness of its input language does not reach
the level of ESSENCE [FHJ+08] or MINIZINC [Nic07, G1210], its simplicity makes it re-
ally practical. The input language of Simply (see Fig. 5.1) is similar to that of EaCL
[MTW+99] and MINIZINC, and its main implemented features are arrays, Forall sen-
tences, list comprehensions, and some global constraints. Simply works in the spirit
of SPEC2SAT, which transforms problem specifications written in NP-SPEC into SAT in-
stances. However, as said, the input language of Simply is similar to that of EaCL and,
most importantly, it generates SMT instances according to the standard SMT-LIB lan-
guage [RT06] instead of SAT instances. Then, the problem can be solved by using any
SMT solver supporting the required theories and the SMT-LIB 1.2 language.

Problem:queens_8
Data

n:=8;
Domains

Dom rows=[1..n];
Variables

IntVar q[n]::rows;
Constraints

AllDifferent([q[i] | i in [1..n]]);
Forall(i in [1..n-1]) {

Forall(j in [i+1..n]) {
q[i]-q[j]<>j-i;
q[j]-q[i]<>j-i;

}
}

Figure 5.1: A Simply encoding for the 8-Queens problem.

72 CHAPTER 5. ENCODING CSP INTO SMT

In Figure 5.1 we can see an example of a Simply instance for the n-Queens prob-
lem: given a number n of queens of the chess game, the problem is to find a position in
a board of size n × n, for each queen, such that no queen threatens any other (i.e., they
are not in the same column, row or diagonal). The array q contains n integer variables
where q[i], for i in 1..n, denotes the row where the queen of column i is placed. The
problem is solvable iff there exists an assignment for q, according to its domain, such that
all the posted constraints are satisfied. In this case we require first, that all the values of q
are different, i.e., no two queens are in the same row (constraint Alldifferent in the
instance) and second, that the distances between the indexes (columns) and values (rows)
of any two pair of elements of the array are distinct, i.e., no two queens are in the same
diagonal (constraint induced by the two Forall statements in the instance).

Simply
model

Compilation
& Encoding

Simply
data

SMT inst.
+ opt. var

Optimization SMT Solvers

Output
SMT

RecoverSimply
result

Figure 5.2: The architecture of Simply.

In Figure 5.2 we can see the architecture of Simply. Let the input of the compiler
be the files (model and data). In the compilation process all constants are replaced by
their associated value, and all variables are translated into SMT integer variables. Con-
straining a variable to its domain results in a disjunction of equalities when the domain is
an explicit enumeration of values, or into a conjunction of two inequality predicates when
the domain is described as a range. The translation of the constraints typically results into
a conjunction of QF LIA predicates and, in some occasions (as in this case for 8-Queens),
into a conjunction of QF IDL predicates. In the end, the compilation process produces an
SMT file (see Fig. 5.3) in the standard SMT-LIB format.

The generated SMT problem instance can then be solved by any of the SMT solvers
supporting the QF LIA logic (Yices, Z3, Barcelogic,. . .). Solving the SMT instance with
the desired SMT solver will result into a sat or unsat answer (notice that these solvers
are complete). In addition, some of them (e.g., Yices [DdM06b]) can return a model (in

5.2. SIMPLY 73

(benchmark queens_8.smt
:source {Generated by Simpl.y, ima.udg.edu (LaP)}
:category {testing}
:logic QF_IDL
:extrafuns ((q_1 Int) (q_8 Int))
:formula

(and
(and
(and (>= q_1 1) (<= q_1 8))
...

(and (>= q_8 1) (<= q_8 8))
)
(and
(distinct q_1 ... q_8)
(and

(and (distinct (- q_1 q_2) (- 2 1))
(distinct (- q_2 q_1) (- 2 1))
...

(distinct (- q_1 q_8) (- 8 1))
(distinct (- q_8 q_1) (- 8 1)))

(and (distinct (- q_2 q_3) (- 3 2))
(distinct (- q_3 q_2) (- 3 2))
...

(distinct (- q_2 q_8) (- 8 2))
(distinct (- q_8 q_2) (- 8 2)))

...
(and (distinct (- q_7 q_8) (- 8 7))

(distinct (- q_8 q_7) (- 8 7)))
)
)

)
)

Figure 5.3: SMT problem resulting from the compilation to the 8-Queens instance.

sat (= q_1 5)(= q_2 2)(= q_3 8)(= q_4 1)
(= q_5 4)(= q_6 7)(= q_7 3)(= q_8 6)

Figure 5.4: The answer of Yices to the 8-Queens instance.

particular, as shown in Fig. 5.4, the values of the SMT variables) when the problem is
satisfiable. In general the names of the variables are easy to interpret. However, we have
a recovering process from SMT solutions to values of the variables in the original file.

Optimization is not supported in the SMT-LIB language but Simply deals with
COPs by means of iterative calls performing a binary search on the domain of the variable

74 CHAPTER 5. ENCODING CSP INTO SMT

to optimize.

5.2.1 Structure of Simply

Since we are interested in modelling CSPs easily, one of the goals of our tool is sim-
plicity. For this reason, we have chosen the input language of Simply to be similar to
that of EaCL and MINIZINC. In Figures 5.5 and 5.6 we can see the syntax of our modelling
language and in Figure 5.7 the syntax of the data file. The tool, as well as a technical report
and other information are available at: http://ima.udg.edu/Recerca/lap/simply.

A CSP instance specification in our language has four parts:

1. Data definition. In this part is where the constants that will be used in the rest of
the specification are defined. These can be either integer or Boolean constants and
vectors of integers associated to a list. In all cases their associated expressions must
be valuable at compilation time.

2. Domains definition. A domain characterizes the set of possible values of a vari-
able. It can be defined by a list with ranges and individual values, or by a list
comprehension. The values of these lists must be valuable at compilation time.

3. Variables declaration. A variable can denote either an integer, a Boolean, or
a multidimensional array of integers or of Booleans. Integer variables (and ele-
ments of integer arrays) are in fact finite domain variables and, hence, they must be
constrained to some previously defined finite domain.

4. Constraints posting. In this part is where the problem is modeled by posting
the set of constraints that define the feasible solutions of the problem.

When the instance is given in two files (the model and the data files) the data file
overwrites the Data definition part of the model. Thanks to this duality of files, we can
model the problem once, in the model file, and easily create as many instances as we want
by simply setting the values of the instances in the data files.

5.2.2 Constraints

The input language deals with formulas, global constraints and the ite constraint.

• Formulas, or Boolean expressions, are basic constraints built up from integer and
Boolean variables and constants. The following operators are supported: =, <>, <,
=< and >= for integers and Not, And, Or, Xor, Implies and Iff for Booleans.

5.2. SIMPLY 75

〈simply program〉 ::= Problem:〈id〉 〈data〉 〈domains〉 〈variables〉
〈user defined functions〉? 〈constraints〉
〈optimitzation〉?

〈data〉 ::= Data 〈data def〉∗
〈data def〉 ::= int 〈id〉 = 〈arithm exp〉 ;

| bool 〈id〉 = 〈formula〉 ;
| (bool | int) 〈array id〉 = 〈list〉 ;

〈domains〉 ::= Domains 〈domain def〉∗
〈domain def〉 ::= Dom 〈id〉 = 〈list〉 ;
〈variables〉 ::= Variables 〈variable def〉∗
〈variable def〉 ::= IntVar 〈array id〉 (, 〈array id〉)∗ :: (〈id〉 | int) ;

| BoolVar 〈array id〉 (, 〈array id〉)∗ ;
〈array id〉 ::= 〈id〉

| 〈id〉[〈arithm exp〉 (, 〈arithm exp〉)∗]
〈user defined functions〉 ::= Functions 〈user defined functions def〉∗
〈user defined functions def〉 ::= 〈def constraint〉

| 〈def function〉 ;
〈def constraint〉 ::= DefConstraint 〈id〉 〈dfc params〉 { 〈sentence〉+ }
〈def function〉 ::= Function (int | bool) 〈id〉 〈dfc params〉 〈sentence〉
〈dfc params〉 ::= ((int | bool) 〈id〉 (, (int | bool) 〈id〉)∗)
〈constraints〉 ::= Constraints 〈sentence〉+
〈sentence〉 ::= 〈constraint〉 ;

| 〈list〉 ;
〈constraint〉 ::= 〈formula〉

| 〈global constraint〉
〈formula〉 ::= Not 〈formula〉

| 〈formula〉 〈bool operator〉 〈formula〉
| 〈arithm exp〉 〈relational operator〉 〈arithm exp〉
| 〈user defined references〉
| If Then Else (〈formula〉) { 〈sentence〉+} { 〈sentence〉+}
| 〈statement〉
| (〈formula〉)
| 〈array id〉
| True
| False

〈user defined references〉 ::= 〈id〉(〈list〉)
〈relational operator〉 ::= = | <> | < | > | =< | >=
〈bool operator〉 ::= And | Or | Xor | Iff | Implies
〈global constraint〉 ::= AllDifferent(〈list〉)

| Sum(〈list〉 , 〈arithm exp〉)
| Count(〈list〉 , (〈arithm exp〉|〈formula〉) , 〈arithm exp〉)

Figure 5.5: Simply syntax I.

• Currently the following global constraints are supported:

– Sum(List,Value). This constraint enforces equality between Value and
the sum of all elements of List. When List is empty, Value is enforced
to be zero.

76 CHAPTER 5. ENCODING CSP INTO SMT

〈arithm exp〉 ::= 〈numeral〉
| 〈array id〉
| 〈arithm exp〉 〈arithm operator〉 〈arithm exp〉
| (〈arithm exp〉)
| Abs(〈arithm exp〉)
| 〈user defined references〉
| length(〈arithm exp〉)

〈statement〉 ::= 〈if then else〉
| 〈forall〉

〈if then else〉 ::= If (〈formula〉) Then { 〈sentence〉+ }
| If (〈formula〉) Then { 〈sentence〉+ } Else { 〈sentence〉+ }

〈forall〉 ::= Forall((〈id〉 in 〈list〉)+) { 〈sentence〉+ }
〈arithm operator〉 ::= + | - | * | Div | Mod
〈list〉 ::= [〈list element〉 (, 〈list element〉)∗]

| [(〈arithm exp〉|〈formula〉) | 〈var restrict〉(, 〈var restrict〉)∗]
〈list element〉 ::= 〈arithm exp〉

| 〈range〉
〈var restrict〉 ::= 〈id〉 in 〈list〉

| 〈formula〉
〈range〉 ::= 〈arithm exp〉 .. 〈arithm exp〉
〈id〉 ::= non empty sequence of letters, digits and , not starting with digit
〈numeral〉 ::= non empty sequence of digits
〈comments〉 ::= % anything else until end of line

| \ * anything else * \
〈optimitzation〉 ::= Minimize 〈id〉 ;

| Maximize 〈id〉 ;

Figure 5.6: Simply syntax II.

〈data file〉 ::= 〈data file def〉∗
〈data file def〉 ::= 〈id〉 = 〈arithm exp〉 ;

| 〈id〉 = 〈formula〉 ;
| 〈id〉 = 〈list〉 ;

Figure 5.7: Simply syntax of data file.

– Count(List,Value,N). This constraint states equality between N and
the number of occurrences of Value in List. When List is empty, N is
enforced to be zero.

– AllDifferent(List). This constraint requires all the elements of List
to be different.

Let us remark that the elements of List, as well as the Value and N parameters,
are allowed to be arithmetic expressions containing integer variables.

• The If Then Else (φ) {C1} {C2} constraint states that, when the formula φ
is satisfied, then the constraints C1 must be satisfied and, when φ is not satisfied,

5.2. SIMPLY 77

then the constraints C2 must be satisfied. Let us remark that the formula φ does not
need to be evaluable at compilation time.

Constraints can be posted either (i) directly, (ii) through the If-Then-Else statement
(which has nothing to do with the If Then Else constraint), or (iii) through the Forall
statement or list comprehensions. These last two statements are processed at compilation
time. For instance, when the compiler finds an If-Then-Else statement, it evaluates the If
condition. If it is true, the constraints of the Then branch are posted and, otherwise, the
constraints of the Else branch are posted.

It is important to notice the difference between the If-Then-Else statement and the
If Then Else constraint, whose condition, as said, is not evaluated at compilation
time.

The semantics of a Forall statement is as usual and can be illustrated with the fol-
lowing example:

Forall(i in [2..4]) {m[i]<>m[i-1];}

The variables that define a Forall statement are variables that are evaluated at com-
pilation time.

The previous Forall statement results into the replication of m[i]<>m[i-1] with
the local variable i being replaced by the appropriate values:

m[2]<>m[1]; m[3]<>m[2]; m[4]<>m[3];

Lists can be extensional, by directly enumerating elements and ranges e.g., [1, x,
3..5, m[a]+3], or intensional via list comprehensions à la Haskell. This powerful
and expressive feature allows us to generate complicated lists easily. We illustrate its
usage with the following example:

[m[i,j] | i in [1..3], j in [1..3], i<>j]

that results into the following list:

[m[1,2], m[1,3], m[2,1], m[2,3], m[3,1], m[3,2]]

The first part of a list comprehension is the pattern, i.e., the expression that we want
to generate. Currently, patterns must be arithmetic expressions (in this example, the ele-
ments of the bidimensional array m). The rest of the list comprehension is formed by two
distinct kinds of expressions, namely, the generators (in the example, i in [1..3]
and j in [1..3], that expand the pattern) and the filters, that restrict these expan-
sions (e.g., i<>j).

78 CHAPTER 5. ENCODING CSP INTO SMT

5.2.3 Examples and Benchmarks

We have run the SMT solvers which participated in the QF LIA division of the Satis-
fiability Modulo Theories Competition1 (SMT-COMP) 2008, namely, Z3.2, MathSAT-
4.2, CVC3-1.5, Barcelogic 1.3 and Yices 1.0.10, against some benchmarks generated
with Simply in several known problems: Queens, BACP, Schur Lemma and Jop-shop.
We have also run some solvers of different nature on the same problems, namely, G12
MINIZINC 0.9, ECLiPSe 6.0, SICStus Prolog 4.0.7, SPEC2SAT 1.1 and Comet 1.2.

The same benchmarks, after a translation from the MINIZINC modelling language to
the FLATZINC low-level solver input language by using the MINIZINC to FLATZINC translator
mzn2fzn, have been used for G12 MINIZINC 0.9, ECLiPSe 6.0 and SICStus Prolog 4.0.7.
For SPEC2SAT and Comet, we have preserved as much as possible the modelling used in
Simply. In our tests, we have used SPEC2SAT together with zChaff 2007.3.12, and with
respect to Comet, only its constraint programming module has been tested. In order for
the comparison to be fair, we have avoided the use of any search strategy when dealing
with other solvers, as no search control is possible within SMT solvers.

Table 5.1 shows the time in seconds spent by each solver in each problem. The
benchmarks were executed on a 3.00 GHz Intel R© CoreTM 2 Duo machine with 2 Gb of
RAM running under GNU/Linux 2.6. The column labeled Simply refers to the Simply
compilation time. The following 5 columns contain the solving time spent by the differ-
ent SMT solvers on the generated SMT instances. The rest of columns detail the times
(including compilation and solving) spent by solvers of other nature. Time out (t.o.) was
set to 1800 seconds. Memory out is denoted by m.o.

Globally, it seems that most of the SMT solvers are good in all the problems con-
sidered. This is especially relevant if we take into account that those solvers come from
the verification arena and, therefore, have not been designed with those kind of constraint
problems in mind. Moreover, they seem to scale up very well with the size of the prob-
lems. Let us remark that these problems are just the first ones at hand that we have consid-
ered, i.e., we have not artificially chosen them. For this reason, SMT can be expected to
provide a nice compromise between expressivity and efficiency for solving CSPs in some
contexts. For more details see [BPSV09].

5.2.4 Simply Prototype Considerations

Simply is a tool (the first tool) for easy CSP modelling and solving, whose main novelty
is the generation of SMT problem instances in the standard SMT-LIB format as output.
Our aim is to take advantage from the improvements that take place from year to year in
SMT technology and methods, in order to solve CSPs.

1SMT-COMP: The SAT Modulo Theories Competition (http://www.smtcomp.org).

5.2. SIMPLY 79

Simply + SMT solver Other tools

Si
m

pl
y

Z
3.

2

M
at

hS
A

T-
4.

2

C
V

C
3-

1.
5

B
ar

ce
lo

gi
c

1.
3

Y
ic

es
1.

0.
10

G
12

M
IN

IZ
IN

C
0.

9

m
zn

2f
zn

+
E

C
L

iP
Se

6.
0

m
zn

2f
zn

+
SI

C
St

us
4.

0.
7

SP
E

C
2S

A
T

1.
1

C
om

et
1.

2

Queens 50 0.22 t.o. 53.00 m.o. 11.72 29.47 0.22 2.04 6.98 248.01 t.o.
Queens 100 0.72 t.o. t.o. m.o. 389.04 19.22 0.84 t.o. 28.51 t.o. t.o.
Queens 150 1.54 t.o. t.o. m.o. 995.94 t.o. 150.40 t.o. 256.18 t.o. t.o.

Bacp 12 6 0.17 0.55 2.53 t.o. 56.98 0.19 0.84 t.o. 3.8 m.o. 268.56
Bacp 12 7 0.18 t.o. t.o. t.o. t.o. t.o. t.o. t.o. t.o. m.o. t.o.
Bacp 12 8 0.22 t.o. t.o. t.o. t.o. t.o. t.o. t.o. t.o. m.o. t.o.
Bacp 12 9 0.21 0.27 10.86 t.o. 314.91 0.64 0.94 t.o. 5.3 m.o. 0.51
Bacp 12 10 0.24 0.24 14.97 t.o. 190.10 0.79 1.44 t.o. 6.02 m.o. 0.60
Bacp 12 11 0.24 0.27 13.60 t.o. 237.50 1.24 1.70 t.o. 7.97 m.o. 19.56
Bacp 12 12 0.26 0.48 13.24 t.o. 338.46 1.32 40.59 t.o. 11.32 m.o. t.o.

Schurl 12 3 0.06 0.01 0.08 7.91 0.03 0.02 t.o. t.o. 0.24 0.38 0.39
Schurl 13 3 0.08 0.04 0.07 14.30 0.05 0.05 t.o. t.o. 0.28 0.55 0.40
Schurl 14 3 0.09 0.23 0.50 18.24 0.12 0.16 t.o. t.o. 0.32 0.50 0.40
Schurl 15 3 0.10 0.35 0.79 29.15 0.15 0.18 t.o. t.o. 0.37 0.73 0.40

Jobshop 54 0.31 0.12 0.27 104.97 7.79 2.69 34.13 1.54 33.30 80.41 1.79
Jobshop 55 0.32 0.20 0.35 211.48 11.57 3.63 122.16 2.16 t.o. 80.03 11.65
Jobshop 56 0.30 0.12 0.46 358.53 12.08 4.37 396.03 3.13 t.o. 88.11 100.01
Jobshop 57 0.30 0.34 0.89 475.55 16.05 6.62 1115.09 1.13 t.o. 85.66 892.54
Jobshop 58 0.34 0.10 0.25 134.71 20.75 11.48 0.09 1.22 236.64 95.11 0.82

Table 5.1: Benchmarks in Simply.

In this tool we have made a special emphasis on the simplicity of the language and
on getting an easy translation to SMT. But there is some room for improvement:

• Encoding efficiency. The efficiency of the encoding could be improved either by
obtaining less naive translations of constraints or by introducing new theories and
logics. For instance, (unidimensional) arrays of integers in Simply programs can
be flattened into integer variables (as we currently do) or they can be directly trans-
lated into SMT array variables or uninterpreted functions. Nevertheless, since SMT
solvers highly differ in the treatment given to different theories and logics, more
experimentation has to be done in order to decide a suitable encoding for every
construct. From the aforementioned experimentation, we would like Simply to
be able to automatically determine a suitable logic for each problem. The compiler
can also be improved in order to obtain SMT formulas without unevaluated subex-
pressions that could be evaluated at compilation time. For instance (+ 3 (+ a
10)) should be (+ a 13).

80 CHAPTER 5. ENCODING CSP INTO SMT

• Simply language richness. The input language can be extended in several direc-
tions: more control structures (Exists), more global constraints (At Most, At Least,
. . .), etc.

• Comparison with others solvers. The efficiency of the system has been compared
with other solvers, but, this comparison has been made using different models for
each type of solver. Therefore, we do not know if the differences are due to the
efficiency of SMT or to the modelling. It would be convenient to use the same
modelling in our tool and in other solvers.

To compare our approach using SMT with other approaches in a more complete
and fair (same encoding) mode, we must implement a system that works over a stan-
dard language for CSPs. We have used the standard language for specifying CSPs called
MINIZINC [Nic07].

5.3 MINIZINC and FLATZINC

MINIZINC, developed as part of the G12 project, aims to be a standard language for spec-
ifying CSPs (with or without optimization) over Boolean, integers and floats numbers.
Arrays (one and multi dimensional) and sets of integers, floats or Booleans are also sup-
ported. MINIZINC is a mostly declarative constraint modelling language, although it also
provides some facilities such as annotations for specifying, e.g., search strategies, that
can be taken into account by the underlying solver. MINIZINC also supports user-defined
predicates, some overloading, and some automatic coercions.

Example 21 This is a MINIZINC toy instance of the well-known Job-shop problem. A Job-
shop has some machines, each performing a different operation. There are some jobs to
be performed and a job is a sequence of tasks. Each task involves processing by a single
machine for some duration and a machine can operate on at most one task at a time.
Tasks cannot be interrupted. The goal is, given a deadline, to schedule each job such that
its ending time does not exceed the deadline. We continue using this example later on to
illustrate the translation process of our tool.

5.3. MINIZINC AND FLATZINC 81

size = 2; d = [| 2,5 | 3,4 |];
int: size; % size of problem
array [1..size,1..size] of int: d; % task durations
int: total = sum(i,j in 1..size) (d[i,j]); % total duration
array [1..size,1..size] of var 0..total: s; % start times
var 0..total: end; % total end time

predicate no_overlap(var int:s1, int:d1, var int:s2, int:d2) =
s1 + d1 <= s2 \/ s2 + d2 <= s1;

constraint
forall(i in 1..size) (

forall(j in 1..size-1) (s[i,j] + d[i,j] <= s[i,j+1]) /\
s[i,size] + d[i,size] <= end /\
forall(j,k in 1..size where j < k) (

no_overlap(s[j,i], d[j,i], s[k,i], d[k,i])
)

);
solve minimize end;

One of the most appealing features of the language is that the specified problems can
be easily mapped onto different existing solvers, by previously compiling its model and
data files into FLATZINC instances. FLATZINC is a low-level solver input language, for which
there exist front-ends for several solvers, such as Gecode [SLT10], ECLiPSe [AW07],
SICStus Prolog [Sic10], JaCoP [Jac10] and SCIP [Sci10], apart from a number of solvers
developed by the G12 research team. FLATZINC supports Boolean, integers and floats
numbers, one dimensional arrays and sets of all basic types.

FLATZINC instances are simply a list of variable declarations and flat constraints,
plus (possibly) a variable to optimize. The MINIZINC to FLATZINC translation has two parts
(see [Nic07] for details):

• Flattening, where several reductions (built-ins evaluation, list comprehension un-
rolling, fixed array accesses replacement, etc.) are applied until a fix-point is
reached.

• Post-flattening, where some normalization is done. For example, for Boolean ex-
pressions that are not top-level conjunctions, each sub-expression is replaced by a
new Boolean variable, and constraints equating these new variables with the sub-
expressions they replaced are added. Similarly is done for non-linear numeric ex-
pressions.

Example 22 This is the FLATZINC instance resulting from translating the MINIZINC instance
of Example 21.

82 CHAPTER 5. ENCODING CSP INTO SMT

var bool: BOOL____1;
var bool: BOOL____2;
var bool: BOOL____3 = true;
var bool: BOOL____4;
var bool: BOOL____5;
var bool: BOOL____6 = true;
array [1..4] of int: d = [2, 5, 3, 4];
var 5..14: end;
array [1..4] of var 0..14: s;
constraint array_bool_or([BOOL____1, BOOL____2], BOOL____3);
constraint array_bool_or([BOOL____4, BOOL____5], BOOL____6);
constraint int_lin_le([-1, 1], [end, s[2]], -5);
constraint int_lin_le([-1, 1], [end, s[4]], -4);
constraint int_lin_le([1, -1], [s[1], s[2]], -2);
constraint int_lin_le([1, -1], [s[3], s[4]], -3);
constraint int_lin_le_reif([1, -1], [s[1], s[3]], -2, BOOL____1);
constraint int_lin_le_reif([-1, 1], [s[1], s[3]], -3, BOOL____2);
constraint int_lin_le_reif([1, -1], [s[2], s[4]], -5, BOOL____4);
constraint int_lin_le_reif([-1, 1], [s[2], s[4]], -4, BOOL____5);
solve minimize end;

Note that the arithmetic expressions have been encoded as linear constraints with the
int lin le constraint.

The G12 MINIZINC distribution [G1210] is accompanied with a comprehensive set of
benchmarks. Moreover, in the MINIZINC challenge [SBF10], which is run every year since
2008 with the aim of comparing different solving technologies on common benchmarks,
all entrants are encouraged to submit two models each with a suite of instances to be
considered for inclusion in the challenge.

5.4 fzn2smt

To really see that SMT is a good approach to deal with CSPs and COPs we decided to de-
velop an SMT-based FLATZINC solver. This tool should have the following characteristics:

• Complete FLATZINC support. To allow comparisons with other solvers (finite do-
main, MILP, . . .) it should support all FLATZINC specifications:

– Data types: integers, Booleans and floats.

– Data structures: One dimensional arrays and sets of all basic types.

– Constraints: constraints over integers, Booleans, floats, arrays and sets.

– Solve items: satisfaction or minimization/maximization of an integer variable.

5.4. FZN2SMT 83

• High performance. We want to get the best possible encodings. We will use the
most appropriate theories, include redundancy and use the type of clauses that give
us the best performance.

• Automatic determination of the theory. It should be able to determine an appro-
priate theory for each problem.

• Choosable optimization approach. It should support several bounding strategies:
linear, dichotomic and hybrid.

• Possibility of using different SMT solvers. It should be able to use different SMT
solvers such as Yices, Z3, . . . with or without APIs.

Our tool is diagrammatically represented in Fig. 5.8, through the process of com-
piling and solving FLATZINC instances. Shaded boxes (connected by dashed lines) denote
inputs and outputs, rounded corner boxes denote actions and diamond boxes denote con-
ditions.

The input of the compiler is a FLATZINC instance which we assume to come from the
translation of a MINIZINC one. Hence we are dealing with “safe” FLATZINC instances, e.g.,
we don’t care about out of bounds array accesses. We are also assuming that all global
constraints have been reformulated into FLATZINC constraints with the default encoding
provided by the MINIZINC distribution.

The input FLATZINC instance is translated into an SMT one (in the standard SMT-
LIB format v1.2) and fed into an SMT solver. As a by-product, fzn2smt generates
the corresponding SMT instance as an output file. Due to the large number of existing
SMT solvers, each one supporting different combinations of theories, the user can choose
which solver to use (default currently being Yices 2 Prototype2).

The FLATZINC language has three solving options, namely: solve satisfy,
solve minimize obj and solve maximize obj, where obj is either the name of
a variable v or a subscripted array variable v[i], where i is an integer literal. Since opti-
mization is supported neither in the SMT-LIB language nor by most SMT solvers, we have
naively implemented it by means of iterative calls successively restricting the domain of
the variable to be optimized (as explained in detail in Subsection 5.4.4). Notice from the
diagram of Fig. 5.8 that when, after restricting the domain, the SMT solver finds that the
problem is not satisfiable anymore, the last previously saved (and hence optimal) solution
is recovered. Moreover, since there is no standard output format currently supported by
SMT solvers3, we need a specialized recovery module for each solver in order to trans-
late its output to the FLATZINC output format. Currently, fzn2smt can recover the output

2http://yices.csl.sri.com/download-yices2.shtml
3There are even solvers that only return sat, unsat or unknown. A proposal of a standard format

for solutions has been recently proposed in the SMT-LIB Standard v2.0 [BST10b].

84 CHAPTER 5. ENCODING CSP INTO SMT

from Yices [DdM06b], Barcelogic [BNO+08b], Z3 [dMB08] and MathSat [BCF+08]
SMT solvers.

compile solve sat?
save

solution
opti-
mize?

restrict
domain

SMT
output

recoverFLATZINC

output

FLATZINC

instance

SMT
instance

no

yes

yes

no

Figure 5.8: The compiling and solving process of fzn2smt.

5.4.1 Translation and Encoding

Since we are encoding FLATZINC instances into SMT, we have to keep in mind two im-
portant considerations: on the one hand we have a much richer language than plain SAT,
thanks to the theories, and this will allow for more direct translations. On the other hand,
in order to take advantage of the SMT solving mechanisms, the more logical structure
the SMT formula has, the better. In particular, it is better to introduce clauses instead of
expressing disjunctions arithmetically.

A FLATZINC file consists of

1. a list of constant and (finite domain) variable declarations,

2. a list of flat constraints, and

3. a solve goal.

Here we describe the translation of these three basic ingredients.

5.4. FZN2SMT 85

5.4.2 Constant and Variable Declarations

FLATZINC has two categories of data: constants (also called parameters) and variables
(typically with an associated finite domain). Data can be of any of three scalar types:
Booleans, integers and floats, or of any of two compound types: sets of integers and one-
dimensional (1..n)-indexed arrays (multi-dimensional arrays are flattened to arrays of one
dimension in the translation from MINIZINC to FLATZINC). Scalar type domains are usually
specified by a range or a list of possible values. Our translation of FLATZINC constants and
variables is as follows:

• Scalar type constant names are always replaced by their corresponding value.

• Scalar type variable declarations are translated into their equivalent variable decla-
ration in SMT, plus some constraints on the possible values of the SMT variable in
order to fix the domain. For example, var 0..14: x is translated into the SMT
declaration of the integer variable x plus the constraints x ≥ 0, x ≤ 14, whereas
var {1,3,7}: x is translated into the SMT declaration of the integer variable x
plus the constraint x = 1 ∨ x = 3 ∨ x = 7.

Although SMT solvers are able to deal with arbitrarily large integers (as well as
with arbitrary precision real numbers), for unrestricted domain integer variables
we assume the G12 FLATZINC default domain range of -10000000..10000000,
i.e., we add the constraints x ≥ −10000000, x ≤ 10000000 for every unrestricted
integer variable x. This way, the results obtained by our system are consistent with
the ones obtained by other tools.

• The domain of a FLATZINC set of integers is specified either by a range or by a list of
integers. For this reason, we simply use an occurrence representation by introducing
a Boolean variable for every possible element, which indicates whether the element
belongs to the set or not. This allows for a simple translation into SMT of most of
the constraints involving sets (see Subsection 5.4.3).

However, in order to be able to translate the set cardinality constraint, which im-
plies counting the number of elements in a set, a 0/1 partner variable is needed for
each introduced Boolean variable. For example, given the declaration var set
of {2,5,6}:s, we introduce three Boolean variables s2, s5 and s6, three corre-
sponding integer variables si2 , si5 and si6 , the constraints restricting the domain of
the integer variables

0 ≤ si2 , si2 ≤ 1

0 ≤ si5 , si5 ≤ 1

0 ≤ si6 , si6 ≤ 1

86 CHAPTER 5. ENCODING CSP INTO SMT

and the constraints linking the Boolean variables with their integer counterpart

s2 → si2 = 1, ¬s2 → si2 = 0

s5 → si5 = 1, ¬s5 → si5 = 0

s6 → si6 = 1, ¬s6 → si6 = 0.

Hence, the number of SMT variables increases linearly with the size of the domain
of the set. Note also that all introduced clauses are either unary or binary, and hence
facilitate Boolean unit propagation.

For the case of constant sets no variables are introduced at all. Instead, the element
values of the constant set are directly used in the operations involving it, in order to
obtain a simpler encoding.

• For the translation of arrays, we provide two options (which can be chosen by a
command line option4):

– Using uninterpreted functions: each array is translated into an uninterpreted
function of the same name. For example, array[1..3] of var 1..5:a
is translated into a : int 7→ int. The domain of the elements of the array is
constrained as in the scalar case, that is, 1 ≤ a(1), a(1) ≤ 5, 1 ≤ a(2),
a(2) ≤ 5, 1 ≤ a(3), a(3) ≤ 5.

– Decomposing the array into as many base type variables as array elements.
For example, the previous array a would be decomposed into three integer
variables a1, a2 and a3, with the domain constrained analogously to before.

In the case of constant arrays, equality is used (instead of two inequalities restrict-
ing the domain) to state the value of each element. If, moreover, an access to a
constant array uses a constant index, we can simply replace that access with its cor-
responding value. And, if this is the case for all the accesses to an array, then there
is no need for introducing an uninterpreted function or a set of base type variables
to represent the array.

Regarding the two possible encodings, the use of uninterpreted functions seems to
be more natural, and allows for more compact encodings of array constraints. For
example, to express that some element of the previous array a is equal to 1, we
simply write

1 ≤ i, i ≤ 3

a(i) = 1

4Due to our encoding of the operations on sets, arrays of sets are always decomposed into a number of
sets.

5.4. FZN2SMT 87

where i is an integer variable, whereas in the decomposition approach the same
statement should be expressed as

1 ≤ i, i ≤ 3

i = 1→ a1 = 1

i = 2→ a2 = 1

i = 3→ a3 = 1.

On the other hand, we have ruled out using the SMT theory of arrays. This theory
involves read and write operations and, hence, is intended to be used for mod-
elling state change of imperative programs with arrays. But, since it makes no
sense thinking of write operations on arrays in the setting of CP, it suffices to trans-
late every expression of the form read(a, i) into a(i), where a is an uninterpreted
function. Moreover, deciding satisfiability of sets of atomic constraints involving
uninterpreted functions is far cheaper than using the arrays theory.

However, the uninterpreted functions approach still has the drawback of using more
than one theory, namely, uninterpreted functions (UF) and linear integer arithmetic
(LIA), and suffers from a non-negligible computational overhead due to theory
combination. In Section 5.2.3 a performance comparison of the two possible en-
codings for arrays is given.

5.4.3 Constraints

The second and main block of a FLATZINC file is the set of constraints that a solution must
satisfy. The arguments of these flat constraints can be literal values, constant or variable
names, or subscripted array constants or variables v[i] where i in an integer literal. A
literal value can be either a value of scalar type, an explicit set (e.g., {2,3,5}) or an
explicit array [y1, . . . , yk], where each array element yi is either a non-array literal, the
name of a non-array constant or variable, or a subscripted array constant or variable v[i],
where i in an integer literal (e.g., [x,a[1],3]).

We perform the following translation of constraint arguments prior to translating
the constraints. Constant names are replaced by their value. Scalar type variables are
replaced by their SMT counterpart. Finally, array accesses are translated depending on the
chosen array treatment (see the previous subsection): when using uninterpreted functions,
an array access v[i] is translated into v(i), where v is an uninterpreted function; when
decomposing the array into base type variables, v[i] is translated into vi (the corresponding
variable for that position of the array). We remark that, in all array accesses v[i], i can be
assumed to be an integer literal, i.e., i cannot be a variable, since all variable subscripted
array expressions are replaced by array element constraints during the translation

88 CHAPTER 5. ENCODING CSP INTO SMT

from MINIZINC to FLATZINC. Moreover, we don’t need to perform array bounds checks,
because this is already done by the MINIZINC to FLATZINC compiler.

In the following we describe the translation of the constraints, that we have catego-
rized into Boolean constraints, Integer constraints, Float constraints, Array constraints
and Set constraints.

• Boolean constraints are built with the common binary Boolean operators (and, or,
implies, . . .) and the relational operators (<, ≤, =, . . .) over Booleans. All of
them have their counterpart in the SMT-LIB language, and hence have a direct
translation.

There is also the bool2int(a,n) constraint, which maps a Boolean variable
into a 0/1 integer. We translate it into (a→ n = 1) ∧ (¬a→ n = 0).

• Integer constraints are built with the common relational constraints over integer ex-
pressions (hence they are straightforwardly translated into SMT). They also include
some named constraints. Here we give the translation of some representative ones.

The constraint
int lin eq([c1, . . . , cn], [v1, . . . , vn], r)

where c1, . . . , cn are integer constants and v1, . . . , vn are integer variables or con-
stants, means, and is translated as ∑

i∈1..n

civi = r.

The minimum constraint int min(a,b,c), meaningmin(a, b) = c, is translated
as

(a > b→ c = b) ∧ (a ≤ b→ c = a).

The absolute value constraint int abs(a,b), meaning |a| = b, is translated as

(a = b ∨ −a = b) ∧ b ≥ 0.

The constraint int times(a,b,c), that states a · b = c, can be translated into a
set of linear arithmetic constraints under certain circumstances: if either a or b are
(uninstantiated) finite domain variables, we linearize this constraint by condition-
ally instantiating the variable with the smallest domain, e.g.,

∧
i∈Dom(a)

(i = a→ i · b = c).

5.4. FZN2SMT 89

In fact, we do it better (i.e., we do not necessarily expand the expression for all the
values of Dom(a)) by considering the domain bounds of b and c, and narrowing
accordingly the domain of a.

Since it is better to use the simplest logic at hand, we use linear integer arithmetic
for the translation if possible, and non-linear integer arithmetic otherwise. Hence,
only in the case that a and b are unrestricted domain variables we translate the
previous constraint as a · b = c and label the SMT instance to require QF NIA
(non-linear integer arithmetic logic).

• Float constraints are essentially the same as the integer ones, but involving float
data. Hence, the translation goes in the same way as for the integers, except that the
inferred logic is QF LRA (linear real arithmetic).

• Array constraints. The main constraint dealing with arrays is element, which
restricts an element of the array to be equal to some variable. As an example,
array var int element(i, a, e) states i ∈ 1..n ∧ a[i] = e, where n is
the size of a. The translation varies depending on the representation chosen for
arrays (see the previous subsection):

– In the uninterpreted functions approach, the translation is

1 ≤ i ∧ i ≤ n ∧ a(i) = e,

where a is the uninterpreted function symbol representing the array a.

– In the decomposition approach, the translation is

1 ≤ i ∧ i ≤ n ∧

(∧
j∈1..n

i = j → aj = e

)
.

Constraints such as array bool and, array bool or or bool clause, deal-
ing with arrays of Boolean, are straightforwardly translated into SMT.

• Set constraints. These are the usual constraints over sets. We give the translation of
some of them.

The constraint set card(s,k), stating |s| = k, is translated by using the 0/1
variables introduced for each element (see previous subsection) as

∑
j∈Dom(s) sij =

k.

The constraint set in(e,s), stating e ∈ s, is translated depending on whether e
is instantiated or not. If e is instantiated then set in(e,s) is translated as se if e
is in the domain of s (recall that we are introducing a Boolean variable se for each

90 CHAPTER 5. ENCODING CSP INTO SMT

element e in the domain of s), and as false otherwise. If e is not instantiated, then
we translate the constraint as ∨

j∈Dom(s)

(e = j) ∧ sj .

For constraints involving more than one set, one of the difficulties in their transla-
tion is that the involved sets can have distinct domains. For example, the constraint
set eq(a,b), stating a = b, is translated as ∧

j∈Dom(a)∩Dom(b)

aj = bj


∧

 ∧
j∈Dom(a)\Dom(b)

¬aj

 ∧
 ∧

j∈Dom(b)\Dom(a)

¬bj

 .

And the constraint set diff(a,b,c), which states a \ b = c, is translated as ∧
j∈(Dom(a)\Dom(b))∩Dom(c)

aj = cj


∧

 ∧
j∈(Dom(a)\Dom(b))\Dom(c)

¬aj

 ∧
 ∧

j∈Dom(c)\Dom(a)

¬cj


∧

 ∧
j∈Dom(a)∩Dom(b)∩Dom(c)

¬cj


∧

 ∧
j∈(Dom(a)∩Dom(b))\Dom(c)

aj → bj

 .

Although the translation of the set constraints seem to be convoluted, note that we
are mainly introducing unit and binary clauses. We remark that when the sets are
already instantiated at compilation time, some simplifications are actually made.
Note also that the size of the SMT formula increases linearly on the size of the
domains of the sets.

Finally, let us mention that almost all FLATZINC constraints have a reified counter-
part. For example, in addition to the constraint int le(a,b), stating a ≤ b, there is a
constraint int le reif(a,b,r), stating a ≤ b ↔ r, where a and b are integer vari-
ables and r is a Boolean variable. In all these cases, given the translation of a constraint,
the translation of its reified version into SMT is direct.

5.4. FZN2SMT 91

5.4.4 Solve Goal

A FLATZINC file must end with a solve goal, which can be of one of the following forms:
solve satisfy, for checking satisfiability and providing a solution if possible, or
solve minimize obj or solve maximize obj, for looking for a solution that min-
imizes or maximizes, respectively, the value of obj, where obj is either a variable v or a
subscripted array variable v[i], where i is an integer literal. Although search annotations
can be used in the solve goal, they are currently ignored in our tool.

When the satisfy option is used, we just need to feed the selected SMT solver
with the SMT file resulting from the translation explained in the previous subsections (see
Example 23 to see a complete SMT-LIB instance generated by fzn2smt). Thereafter the
recovery module will translate the output of the SMT solver to the FLATZINC format.

Since most SMT solvers do not provide optimization facilities5, we have imple-
mented an ad hoc search procedure in order to deal with the minimize and maximize
options. This procedure successively calls the SMT solver with different problem in-
stances, by restricting the domain of the variable to be optimized with the addition of
constraints. We have implemented three possible bounding strategies: linear, dichotomic
and hybrid. The linear bounding strategy approaches the optimum from the satisfiable
side6, while the dichotomic strategy simply consists of binary search optimization. Fi-
nally, the hybrid strategy makes a preliminary approach to the optimum by means of
binary search and, when a (user definable) threshold on the possible domain of the vari-
able is reached, it turns into the linear approach, again from the satisfiable side. Both
the bounding strategy and the threshold for the hybrid case can be specified by the user
from the command line. Algorithm 14 describes our optimization procedure, taking into
account all the bounding strategies, for the minimization case.

The SMT solve function consists of a call to the SMT solver with an SMT in-
stance. The bound(SMT inst, var, inf, sup) function returns the SMT instance
resulting from adding the bounds var ≥ inf and var ≤ sup to the SMT instance
SMT inst.

In the current implementation we are not keeping learnt clauses from one iteration
of the SMT solver to the next since we are using the SMT solver as a black box. We
have also tested an implementation of these optimization algorithms using the Yices API,
which allows keeping the learnt clauses, without obtaining significantly better results.

5There are however some solvers, such as Yices and Z3, that already provide MaxSMT facilities. On
the other hand, the problem of optimization modulo theories has been recently addressed in [CFG+10], by
introducing a theory of costs.

6This allows us to eventually jump several values when we find a new solution. On the contrary, ap-
proaching from the unsatisfiable side is only possible by modifying the value of the variable to optimize in
one unit at each step.

92 CHAPTER 5. ENCODING CSP INTO SMT

Algorithm 14 Minimization in fzn2smt
Input: SMT inst : SMTinstance;
var : int; // variable to minimize

inf, sup : int; // bounds of the variable to minimize

t : int; // threshold for the hybrid strategy

bs : {linear, binary, hybrid}; // bounding strategy

Output: 〈int, sat|unsat〉
〈sol, status〉 := SMT solve(bound(SMT inst, var, inf , sup));
if status = unsat then

return 〈∞, unsat〉;
else
sup := sol − 1;
while inf ≤ sup do

if (sup− inf ≤ t ∧ bs = hybrid) then
bs := linear;

end if
if bs = linear then
med := sup;

else
med := d(inf + sup)/2e;

end if
〈new sol, status〉 := SMT solve(bound(SMT inst, var, inf , med));
if status = unsat then

if bs = linear then
return 〈sol, sat〉;

else
inf := med+ 1;

end if
else
sol := new sol;
sup := sol − 1;

end if
end while
return 〈sol, sat〉;

end if

5.5. BENCHMARKING 93

Example 23 Continuing Example 22, here follows the SMT-LIB instance produced by
fzn2smt. For the minimization process, we should add the appropriate bounds to the
objective variable end.

(benchmark jobshop.fzn.smt
:source { Generated by fzn2smt }
:logic QF_IDL
:extrapreds ((BOOL____4) (BOOL____2) (BOOL____1) (BOOL____5))
:extrafuns ((s_1_ Int) (s_2_ Int) (s_3_ Int) (s_4_ Int) (end Int))
:formula (and

(>= end 5)
(<= end 14)
(>= s_1_ 0)
(<= s_1_ 14)
(>= s_2_ 0)
(<= s_2_ 14)
(>= s_3_ 0)
(<= s_3_ 14)
(>= s_4_ 0)
(<= s_4_ 14)
(= (or BOOL____1 BOOL____2) true)
(= (or BOOL____4 BOOL____5) true)
(<= (+ (˜ end) s_2_) (˜ 5))
(<= (+ (˜ end) s_4_) (˜ 4))
(<= (+ s_1_ (˜ s_2_)) (˜ 2))
(<= (+ s_3_ (˜ s_4_)) (˜ 3))
(= (<= (+ s_1_ (˜ s_3_)) (˜ 2)) BOOL____1)
(= (<= (+ (˜ s_1_) s_3_) (˜ 3)) BOOL____2)
(= (<= (+ s_2_ (˜ s_4_)) (˜ 5)) BOOL____4)
(= (<= (+ (˜ s_2_) s_4_) (˜ 4)) BOOL____5)

)
)

5.5 Benchmarking

In this section we compare the performance of fzn2smt and that of several existing
FLATZINC solvers on FLATZINC instances, and provide some possible explanations about
the fzn2smt behavior. We first compare several SMT solvers within fzn2smt and,
then, use the one with the best results to compare against other existing FLATZINC solvers.

We perform the comparisons on the benchmarks of the three MINIZINC challenge
competitions (2008, 2009 and 2010), consisting of a total of 294 instances from 32 prob-
lems. These benchmarks consist of a mixture of puzzles, planning, scheduling and graph
problems. Half of the problems are optimization problems, whilst the other half are satis-
fiability ones.

94 CHAPTER 5. ENCODING CSP INTO SMT

We present several tables that, for each solver and problem, report the accumulated
time for the solved instances and the number of solved instances (within parenthesis).
The times are the sum of the translation time, when needed (e.g., fzn2smt translates
from FLATZINC to the SMT-LIB format), plus the solving time. We indicate in boldface
the cases with more solved instances, breaking ties by total time. The experiments have
been executed on an Intel R© CoreTM i5 CPU at 2.66 GHz, with 6GB of RAM, running
64-bit openSUSE 11.2 (kernel 2.6.31), with a time limit of 15 minutes per instance (the
same as in the competition).

5.5.1 fzn2smt with SMT Solvers

Here we compare the performance of several SMT solvers which are SMT-LIB 1.2 com-
pliant, working in cooperation with fzn2smt v2.0.1, on the MINIZINC challenge bench-
marks. We have selected the solvers that historically have had good performance in the
QF LIA division of the annual SMT competition. These are Barcelogic 1.3 [BNO+08b],
MathSAT 5 (successor of MathSAT 4 [BCF+08]; still work in progress), Yices 1.0.28
[DdM06b], Yices 2 Prototype (still work in progress), and Z3.2 [dMB08]. Linux binaries
of most of these solvers can be downloaded from http://www.smtcomp.org.

In the executions of this subsection we have used the default options for fzn2smt:
array expansion (see Subsection and binary search for optimization (see Subsection 5.4.4).

In Table 5.2 we can observe that Yices 1.0.28 and Yices 2 are able to solve, respec-
tively, 213 and 212 (out of 294) instances. We consider performance of Yices 2 the best
of those considered because it had the best performance on 19 of the problems, far more
than any of the other solvers.

5.5.2 Array Encodings

In Table 5.3 we compare the performance of using array decomposition versus uninter-
preted functions as array encodings. We only give the results for Yices 2 proto, which is
the solver with the best performance in the executions of Table 5.2 (where array decom-
position was used as default option).

As shown in Table 5.3, the decomposition approach clearly outperforms the unin-
terpreted functions approach on FLATZINC instances from the MINIZINC distribution. We
have also tested other SMT solvers than Yices, obtaining similar results. This apparently
strange behaviour is better understood when looking at how SMT solvers deal with un-
interpreted functions and, in particular, how this behaves on the instances generated by
our tool. Hence, first of all, let us see some possible treatments to uninterpreted functions
in the context of SMT. The reader can refer to [BCF+06] for a deeper discussion on this

5.5. BENCHMARKING 95
Ta

bl
e

5.
2:

C
om

pa
ri

so
n

of
SM

T
so

lv
er

us
in

g
fz

n2
sm

t.
Pr

ob
le

m
Ty

pe
#

B
ar

ce
lo

gi
c

1.
3

M
at

hS
A

T
5

Y
ic

es
1.

0.
28

Y
ic

es
2

pr
ot

o
Z

3.
2

de
br

ui
jn

-b
in

ar
y

s
11

0.
60

(1
)

0.
56

(1
)

0.
47

(1
)

0.
50

(1
)

0.
57

(1
)

nm
se

q
s

10
0.

00
(0

)
56

8.
35

(2
)

77
8.

07
(5

)
11

8.
74

(2
)

17
3.

84
(5

)
pe

nt
om

in
oe

s
s

7
0.

00
(0

)
29

1.
60

(1
)

50
.4

7
(2

)
16

8.
47

(2
)

31
4.

48
(1

)
qu

as
ig

ro
up

7
s

10
34

.1
6

(2
)

19
1.

83
(5

)
54

.9
4

(5
)

20
.0

3
(5

)
69

1.
32

(4
)

ra
di

at
io

n
o

9
34

2.
34

(1
)

22
02

.9
2

(9
)

37
3.

24
(9

)
10

47
.0

3
(9

)
24

73
.2

7
(9

)
rc

ps
p

o
10

0.
00

(0
)

31
5.

46
(2

)
92

0.
08

(8
)

99
3.

74
(9

)
17

91
.7

9
(8

)
se

ar
ch

-s
tr

es
s

s
3

0.
84

(2
)

1.
05

(2
)

0.
86

(2
)

0.
74

(2
)

0.
84

(2
)

sh
or

te
st

-p
at

h
o

10
10

9.
35

(9
)

48
4.

73
(8

)
65

8.
58

(9
)

14
19

.6
7

(7
)

79
0.

54
(8

)
sl

ow
-c

on
ve

rg
en

ce
s

10
40

5.
25

(7
)

42
6.

79
(7

)
26

9.
66

(7
)

24
7.

06
(7

)
29

1.
99

(7
)

tr
uc

ki
ng

o
10

25
4.

11
(5

)
31

.7
0

(4
)

9.
50

(5
)

47
.7

7
(5

)
10

84
.9

7
(4

)
bl

ac
k-

ho
le

s
10

51
1.

13
(1

)
29

.2
4

(1
)

38
57

.5
1

(9
)

89
2.

46
(8

)
76

5.
09

(1
)

fil
lo

m
in

o
s

10
93

.8
7

(1
0)

30
.2

8
(1

0)
20

.4
8

(1
0)

19
.9

9
(1

0)
21

.1
3

(1
0)

no
no

gr
am

s
10

0.
00

(0
)

0.
00

(0
)

16
56

.5
4

(1
0)

15
46

.5
6

(7
)

0.
00

(0
)

op
en

-s
ta

ck
s

o
10

17
72

.3
9

(5
)

0.
00

(0
)

70
2.

09
(6

)
70

7.
25

(7
)

77
6.

61
(6

)
p1

f
o

10
87

5.
54

(8
)

86
.9

0
(9

)
16

7.
84

(9
)

12
6.

01
(9

)
18

4.
22

(9
)

pr
op

-s
tr

es
s

s
10

31
5.

80
(7

)
33

0.
31

(7
)

26
6.

11
(7

)
27

4.
07

(7
)

28
9.

23
(7

)
re

ct
-p

ac
ki

ng
s

10
55

9.
50

(5
)

67
9.

62
(1

0)
10

4.
82

(1
0)

10
6.

66
(1

0)
12

2.
28

(1
0)

ro
st

er
-m

od
el

o
10

98
.4

1
(1

0)
51

.0
3

(1
0)

53
.8

9
(1

0)
50

.3
8

(1
0)

56
.0

4
(1

0)
se

ar
ch

-s
tr

es
s2

s
10

23
.1

9
(1

0)
14

.6
3

(1
0)

9.
43

(1
0)

7.
90

(1
0)

10
.5

5
(1

0)
st

ill
-l

if
e

o
4

30
.6

4
(3

)
13

2.
51

(4
)

12
8.

71
(4

)
62

.1
8

(4
)

17
3.

82
(4

)
vr

p
o

10
0.

00
(0

)
0.

00
(0

)
0.

00
(0

)
0.

00
(0

)
0.

00
(0

)
co

st
as

-a
rr

ay
s

5
0.

00
(0

)
0.

00
(0

)
67

5.
23

(1
)

66
4.

13
(2

)
62

8.
83

(1
)

de
po

t-
pl

ac
em

en
t

o
15

24
80

.7
4

(5
)

24
96

.6
9

(1
0)

61
3.

53
(1

5)
29

5.
78

(1
5)

20
73

.9
3

(1
5)

fil
te

r
o

10
24

.0
2

(6
)

38
.0

1
(6

)
24

.2
8

(6
)

17
.8

8
(6

)
22

.4
2

(6
)

gh
ou

lo
m

b
o

10
0.

00
(0

)
0.

00
(0

)
75

.8
7

(1
)

25
45

.0
2

(6
)

50
8.

19
(2

)
gr

id
C

ol
or

in
g

o
5

4.
82

(2
)

20
2.

18
(3

)
85

7.
74

(3
)

38
.1

5
(3

)
51

.9
4

(3
)

rc
ps

p-
m

ax
o

10
85

.0
4

(1
)

23
8.

34
(2

)
53

3.
87

(4
)

47
5.

14
(4

)
38

3.
73

(4
)

so
lb

at
s

15
0.

00
(0

)
17

21
.7

3
(1

5)
34

1.
04

(1
5)

14
1.

48
(1

5)
13

39
.7

5
(1

5)
su

gi
ya

m
a2

o
5

79
.3

8
(5

)
21

.3
1

(5
)

10
.2

6
(5

)
8.

64
(5

)
9.

56
(5

)
w

w
tp

-r
an

do
m

s
5

61
.0

8
(5

)
29

.7
2

(5
)

17
.7

1
(5

)
15

.2
1

(5
)

16
.5

6
(5

)
w

w
tp

-r
ea

l
s

5
10

7.
57

(5
)

39
.7

7
(5

)
17

.9
7

(5
)

14
.4

7
(5

)
17

.0
9

(5
)

ba
cp

o
15

17
53

.2
6

(1
4)

23
2.

22
(1

5)
75

.1
6

(1
5)

64
.1

7
(1

5)
97

.5
1

(1
5)

To
ta

l
29

4
10

02
3

(1
29

)
10

88
9

(1
68

)
13

32
5

(2
13

)
12

13
7

(2
12

)
15

16
2

(1
92

)
Pe

rf
or

m
an

ce
of

st
at

e-
of

-t
he

-a
rt

SM
T

so
lv

er
s

in
co

op
er

at
io

n
w

ith
f
z
n
2
s
m
t

on
th

e
M

IN
IZ

IN
C

ch
al

le
ng

e
be

nc
hm

ar
ks

.T
yp

e
’s

’
st

an
ds

fo
rs

at
is

fa
ct

io
n

an
d

’o
’f

or
op

tim
iz

at
io

n.
#

st
an

ds
fo

rt
he

nu
m

be
ro

fi
ns

ta
nc

es
.

96 CHAPTER 5. ENCODING CSP INTO SMT

Table 5.3: Performance with Yices 2 using array decomposition vs uninterpreted func-
tions (UF).

Problem Type # Decomposition UF
debruijn-binary s 11 0.50 (1) 0.74 (1)
nmseq s 10 118.74 (2) 83.51 (2)
pentominoes s 7 168.47 (2) 197.22 (1)
quasigroup7 s 10 20.03 (5) 336.59 (5)
radiation o 9 1047.03 (9) 2360.85 (9)
rcpsp o 10 993.74 (9) 695.84 (8)
search-stress s 3 0.74 (2) 0.84 (2)
shortest-path o 10 1419.67 (7) 1068.03 (4)
slow-convergence s 10 247.06 (7) 522.42 (3)
trucking o 10 47.77 (5) 39.67 (5)
black-hole s 10 892.46 (8) 0.00 (0)
fillomino s 10 19.99 (10) 19.21 (10)
nonogram s 10 1546.56 (7) 0.00 (0)
open-stacks o 10 707.25 (7) 1729.37 (5)
p1f o 10 126.01 (9) 25.49 (8)
prop-stress s 10 274.07 (7) 262.95 (7)
rect-packing s 10 106.66 (10) 112.10 (10)
roster-model o 10 50.38 (10) 51.01 (10)
search-stress2 s 10 7.90 (10) 9.74 (10)
still-life o 4 62.18 (4) 97.39 (4)
vrp o 10 0.00 (0) 0.00 (0)
costasArray s 5 664.13 (2) 151.60 (1)
depot-placement o 15 295.78 (15) 2651.71 (10)
filter o 10 17.88 (6) 23.12 (6)
ghoulomb o 10 2545.02 (6) 707.74 (2)
gridColoring o 5 38.15 (3) 335.10 (3)
rcpsp-max o 10 475.14 (4) 498.89 (4)
solbat s 15 141.48 (15) 567.69 (15)
sugiyama2 o 5 8.64 (5) 9.04 (5)
wwtp-random s 5 15.21 (5) 34.67 (5)
wwtp-real s 5 14.47 (5) 28.82 (5)
bacp o 15 64.17 (15) 77.85 (15)
Total 294 12137 (212) 12699 (175)

issue.

When dealing with two or more theories, a standard approach is to handle the in-

5.5. BENCHMARKING 97

tegration of the different theories by performing some sort of search on the equalities
between their shared (or interface) variables. First of all, formulas are purified by replac-
ing terms with fresh variables, so that each literal only contains symbols belonging to one
theory. For example,

a(1) = x+ 2

is translated into

a(v1) = v2

v1 = 1

v2 = x+ 2

where the first literal belongs to UF, and the rest belong to LIA. The variables v1, v2
are then called interface variables, as they appear in literals belonging to different the-
ories. An interface equality is an equality between two interface variables. All theory
combination schemata, e.g., Nelson-Oppen [NO79], Shostak [Sho84], or Delayed Theory
Combination (DTC) [BBC+06], rely to some point on checking equality between inter-
face variables, in order to ensure mutual consistency between theories. This may imply
to assign a truth value to up to all the interface equalities. Since the number of interface
equalities is given by |V| · (|V| − 1)/2, where |V| is the number of interface variables, the
search space may be enlarged in a quadratic factor in the number of interface variables.

In the case of combining UF with another theory T , an alternative approach is to
eliminate the uninterpreted function symbols by means of Ackermann’s reduction [Ack68],
and then solve the resulting SMT problem with only theory T . In Ackermann’s reduc-
tion, each application f(a) is replaced by a variable fa, and for each pair of applica-
tions f(a), f(b) the formula a = b → fa = fb is added, i.e., the single theory axiom
x = y → f(x) = f(y) of the UF theory becomes instantiated as necessary. This is the
approach taken by most state-of-the-art SMT solvers. However, this has the same disad-
vantage as theory combination in that the number of additional literals is quadratic in the
size of the input and, in fact, as shown in [BCF+06], there is no clear winner between
DTC and Ackermannization.

It is worth noting that current SMT solvers have been designed mainly to deal with
verification problems, where there are few parameters and almost all variable values are
undefined. In such problems, uninterpreted functions are typically used to abstract pieces
of code and, hence, their arguments are variables (or expressions using variables). More-
over, the number of such abstractions is limited. This makes Ackermannization feasible
in practice. On the contrary, in the instances we are considering, we have the opposite
situation: a lot of parameters and a few decision variables. In particular, most arrays
are parameters containing data. For example, in a scheduling problem, a FLATZINC array
containing durations of tasks, such as

array[1..100] of int: d = [2,5,...,4];

98 CHAPTER 5. ENCODING CSP INTO SMT

could be expressed using an SMT uninterpreted function as follows:

d(1) = 2

d(2) = 5

. . .

d(100) = 4.

Similarly, for an undefined array containing, e.g., starting times, such as

array[1..100] of var 0..3600: s;

we could use an uninterpreted function, and state its domain as follows:

0 ≤ s(1), s(1) ≤ 3600

0 ≤ s(2), s(2) ≤ 3600

. . .

0 ≤ s(100), s(100) ≤ 3600.

In any case, lots of distinct uninterpreted function applications appear, and Ackerman-
nization results in a quadratic number of formulas like 1 = 2 → f1 = f2, which are
trivially true since the antecedent is false. Although difficult to determine because we
are using each SMT solver as a black box, we conjecture that this is not checked in the
Ackermannization process since, as said before, uninterpreted functions are expected to
have variables in the arguments.

Finally, although the decomposition approach exhibits better performance than the
uninterpreted functions approach, we have decided to maintain both options in our sys-
tem. The main reason is that the uninterpreted functions approach allows for more com-
pact and natural representations and, hopefully, can lead to better results in the future if
Ackermannization is adapted accordingly.

5.5.3 Bounding Strategy

Here we test the performance of Yices 2 with the different bounding strategies described
in Subsection 5.4.4 for optimization problems. For the hybrid strategy we have used the
default threshold of 10 units for switching from the binary to the linear approximation
strategy. Experiments with larger threshold have not yielded better results.

Table 5.4 shows that the binary and hybrid strategies perform better than the linear
one in general. Both the binary and hybrid strategies are able to solve the same number of
instances, but the first one spends less time globally. Nevertheless, the hybrid strategy is

5.5. BENCHMARKING 99

Table 5.4: Performance with Yices 2 using different optimization search strategies.
Problem # Binary Hybrid Linear
radiation 9 1047.03 (9) 1304.59 (9) 2008.77 (9)
rcpsp 10 993.74 (9) 710.77 (8) 1180.11 (5)
shortest-path 10 1419.67 (7) 1381.92 (7) 1034.22 (8)
trucking 10 47.77 (5) 41.86 (5) 34.66 (5)
open-stacks 10 707.25 (7) 650.27 (7) 691.46 (7)
p1f 10 126.01 (9) 125.44 (9) 188.14 (9)
roster-model 10 50.38 (10) 50.29 (10) 50.16 (10)
still-life 4 62.18 (4) 118.54 (4) 119.39 (4)
vrp 10 0.00 (0) 0.00 (0) 0.00 (0)
depot-placement 15 295.78 (15) 248.19 (15) 263.61 (15)
filter 10 17.88 (6) 17.37 (6) 18.34 (6)
ghoulomb 10 2545.02 (6) 2825.16 (6) 1255. 42 (3)
gridColoring 5 38.15 (3) 17.43 (3) 17.81 (3)
rcpsp-max 10 475.14 (4) 460.08 (4) 1035.02 (4)
sugiyama2 5 8.64 (5) 8.37 (5) 9.25 (5)
bacp 15 64.17 (15) 58.03 (15) 64.98 (15)
Total 153 7898 (113) 8018 (113) 7971 (108)

faster than the binary in most of the problems. And, curiously, the linear strategy is better
in three problems.

We want to remark that the linear strategy approaches the optimum from the satisfi-
able side. We also tried the linear strategy approaching from the unsatisfiable side but the
results where a bit worse globally. This is probably due to the fact that this last strategy
can only make approximation steps of size one whilst the former can make bigger steps
when a solution is found. Moreover, the formula resulting from the translation of many
MINIZINC benchmarks has very simple Boolean structure (the formula is often trivially
satisfiable at the Boolean level), and hence it is likely that the SMT solver cannot substan-
tially profit from conflict-driven lemma learning on unsatisfiable instances. In fact, there
exist unsatisfiable instances that result in a few or no conflicts at all, and most of the work
is hence done by the theory solver.

5.5.4 Other FLATZINC Solvers

In this section we compare the performance of fzn2smt (using Yices 2) and the follow-
ing available FLATZINC solvers: Gecode (winner of all MINIZINC challenges), G12 and G12
Lazy fd (the solvers distributed with MINIZINC) and FZNTini (a SAT based solver).

Let us remark that fzn2smt with Yices 2 obtained (ex aequo with Gecode) the

100 CHAPTER 5. ENCODING CSP INTO SMT

golden medal in the par division and the silver medal in the free division of the MINIZINC

challenge 2010, and the silver medal in the same divisions of the MINIZINC challenge 2011.
It is also fair to notice that the solver with the best performance in the MINIZINC challenges
2010 and 2011 (in all categories) was Chuffed, implemented by the MINIZINC team and
not eligible for prizes.7

Table 5.5 shows the results of this comparison without using solver specific global
constraints, which means that global constraints are decomposed into conjunctions of
simpler constraints. However, search strategy annotations are enabled in all experiments
and, while fzn2smt ignores them, the other systems can profit from these annotations.

We can observe that fzn2smt is the solver which is able to solve the largest num-
ber of instances, closely followed by G12 Lazy fd and Gecode. Looking at the problems
separately, fzn2smt offers better performance in 12 cases, followed by G12 Lazy fd in
10 cases and Gecode in 9 cases.

We remark that G12 Lazy fd does not support instances with unbounded integer
variables: the ones of debruijn-binary, nmseq, open-stacks, p1f, wwtp-random. We have
tried to solve these instances by bounding those variables with the MINIZINC standard
default limits, i.e., by setting var -10000000..10000000 : x; for every unre-
stricted integer variable x (similarly as we have done for fzn2smt), but G12 Lazy fd
runs out of memory. This is probably due to its use of Boolean encodings for the domains
of the integer variables, as these encodings imply introducing a new Boolean variable for
each element of the domain (see [OSC09]).

The plot of Figure 5.9 shows the elapsed times, in logarithmic scale, for the solved
instances of Table 5.5. The instances have been ordered by its execution time in each
system. The overall best system (in terms of number of solved instances) is fzn2smt.
However fzn2smt is the worst system (in terms of execution time) within the first 50
solved instances and, moreover, Gecode is better along the 160 first instances, closely
followed by G12 Lazy fd. It must be taken into account that the fzn2smt compiler is
written in Java, and it generates an SMT file for each decision problem that is fed into the
chosen SMT solver. Hence this can cause an overhead in the runtime that can be more
sensible for the easier instances. Finally, note also that fzn2smt scales very well from
the 50 to the 150 first solved instances. This exhibits the SMT solvers robustness.

5.5.5 Other FLATZINC Solvers with Global Constraints

Some FLATZINC solvers provide specific algorithms for certain global constraints (such
as alldifferent, cumulative, etc.). Thus, the user can choose not to decompose
some global constraints during the translation from MINIZINC to FLATZINC, in order to profit

7See http://www.g12.csse.unimelb.edu.au/minizinc/challenge2011/results2011.html for details.

5.5. BENCHMARKING 101

Ta
bl

e
5.

5:
Pe

rf
or

m
an

ce
co

m
pa

ri
so

n
be

tw
ee

n
fz

n2
sm

ta
nd

so
m

e
av

ai
la

bl
e

FL
A

T
Z

IN
C

so
lv

er
s.

n
Pr

ob
le

m
Ty

pe
#

G
ec

od
e

FZ
N
Ti

ni
G

12
G

12
L

az
y

fd
f
z
n
2
s
m
t

1
de

br
ui

jn
-b

in
ar

y
s

11
4.

46
(6

)
0.

06
(1

)
31

.3
0

(6
)

0.
00

(0
)

0.
50

(1
)

2
nm

se
q

s
10

53
5.

62
(8

)
2.

64
(1

)
92

7.
42

(7
)

0.
00

(0
)

11
8.

74
(2

)
3

pe
nt

om
in

oe
s

s
7

60
1.

82
(7

)
89

.6
8

(1
)

84
8.

17
(4

)
46

6.
57

(5
)

16
8.

47
(2

)
4

qu
as

ig
ro

up
7

s
10

27
8.

73
(6

)
77

3.
28

(4
)

1.
72

(5
)

2.
85

(5
)

20
.3

0
(5

)
5

ra
di

at
io

n
o

9
11

12
.1

4
(9

)
42

60
.3

7
(7

)
13

02
.7

9
(9

)
3.

60
(9

)
10

47
.0

3
(9

)
6

rc
ps

p
o

10
12

.0
7

(5
)

0.
00

(0
)

97
.2

7
(5

)
82

.6
0

(8
)

99
3.

74
(9

)
7

se
ar

ch
-s

tr
es

s
s

3
11

.3
0

(2
)

39
1.

71
(3

)
14

.6
6

(2
)

0.
40

(3
)

0.
74

(2
)

8
sh

or
te

st
-p

at
h

o
10

44
2.

49
(1

0)
0.

00
(0

)
4.

27
(4

)
12

7.
77

(1
0)

14
19

.6
7

(7
)

9
sl

ow
-c

on
ve

rg
en

ce
s

10
8.

41
(1

0)
62

.6
2

(4
)

95
.4

2
(1

0)
15

4.
83

(1
0)

24
7.

06
(7

)
10

tr
uc

ki
ng

o
10

1.
01

(5
)

59
3.

23
(4

)
4.

12
(5

)
15

9.
84

(5
)

47
.7

7
(5

)
11

bl
ac

k-
ho

le
s

10
69

.6
8

(7
)

0.
00

(0
)

24
23

.4
8

(6
)

97
.6

9
(7

)
89

2.
46

(8
)

12
fil

lo
m

in
o

s
10

11
8.

62
(1

0)
4.

36
(1

0)
33

2.
56

(1
0)

2.
59

(1
0)

19
.9

9
(1

0)
13

no
no

gr
am

s
10

13
53

.6
3

(8
)

48
.1

3
(7

)
33

6.
93

(2
)

15
33

.0
7

(9
)

15
46

.5
6

(7
)

14
op

en
-s

ta
ck

s
o

10
16

9.
74

(8
)

13
25

.9
8

(4
)

29
9.

55
(8

)
0.

00
(0

)
70

7.
25

(7
)

15
p1

f
o

10
2.

57
(8

)
31

5.
65

(9
)

2.
40

(8
)

0.
00

(0
)

12
6.

01
(9

)
16

pr
op

-s
tr

es
s

s
10

60
0.

80
(4

)
22

3.
52

(2
)

88
3.

08
(3

)
22

1.
95

(9
)

27
4.

07
(7

)
17

re
ct

-p
ac

ki
ng

s
10

13
4.

36
(6

)
56

9.
57

(3
)

33
9.

80
(6

)
16

5.
58

(6
)

10
6.

66
(1

0)
18

ro
st

er
-m

od
el

o
10

1.
04

(1
0)

0.
00

(0
)

4.
46

(1
0)

18
.8

0
(7

)
50

.3
8

(1
0)

19
se

ar
ch

-s
tr

es
s2

s
10

29
6.

16
(9

)
9.

10
(1

0)
38

1.
82

(8
)

0.
08

(1
0)

7.
90

(1
0)

20
st

ill
-l

if
e

o
4

1.
01

(3
)

35
.5

0
(3

)
2.

56
(3

)
18

.5
5

(3
)

62
.1

8
(4

)
21

vr
p

o
10

0.
00

(0
)

0.
00

(0
)

0.
00

(0
)

0.
00

(0
)

0.
00

(0
)

22
co

st
as

-a
rr

ay
s

5
94

3.
75

(4
)

40
5.

28
(2

)
42

3.
09

(3
)

14
5.

54
(2

)
66

4.
13

(2
)

23
de

po
t-

pl
ac

em
en

t
o

15
12

05
.7

5
(1

2)
18

20
.5

7
(8

)
52

2.
81

(8
)

61
3.

51
(1

2)
29

5.
78

(1
5)

24
fil

te
r

o
10

30
.9

5
(1

)
62

.1
6

(7
)

27
8.

72
(1

)
2.

65
(7

)
17

.8
8

(6
)

25
gh

ou
lo

m
b

o
10

0.
00

(0
)

0.
00

(0
)

24
6.

67
(1

)
25

12
.9

2
(8

)
25

45
.0

2
(6

)
26

gr
id

C
ol

or
in

g
o

5
0.

48
(1

)
15

2.
71

(3
)

0.
51

(1
)

0.
10

(1
)

38
.1

5
(3

)
27

rc
ps

p-
m

ax
o

10
42

.1
1

(2
)

0.
00

(0
)

30
.0

0
(1

)
59

6.
41

(4
)

47
5.

14
(4

)
28

so
lb

at
s

15
74

6.
31

(1
0)

13
00

.5
4

(1
4)

15
40

.7
1

(1
0)

31
1.

92
(1

1)
14

1.
48

(1
5)

29
su

gi
ya

m
a2

o
5

30
8.

31
(5

)
37

.0
0

(5
)

51
0.

72
(5

)
52

0.
88

(5
)

8.
64

(5
)

30
w

w
tp

-r
an

do
m

s
5

0.
03

(1
)

32
2.

21
(3

)
2.

79
(2

)
0.

00
(0

)
15

.2
1

(5
)

31
w

w
tp

-r
ea

l
s

5
0.

08
(3

)
12

39
.4

5
(4

)
0.

31
(3

)
71

.8
3

(4
)

14
.4

7
(5

)
32

ba
cp

o
15

84
7.

78
(1

0)
11

70
.1

5
(5

)
97

6.
35

(1
0)

28
.5

4
(1

5)
64

.1
7

(1
5)

To
ta

l
29

4
98

81
(1

90
)

15
21

5
(1

24
)

12
86

6
(1

66
)

78
59

(1
85

)
12

13
7

(2
12

)

102 CHAPTER 5. ENCODING CSP INTO SMT

0 50 100 150 200

Number of solved instances

0.01

0.1

1

10

100

1000

10000

100000

C
P

U
tim

e
(s

)
G12

Gecode

G12 Lazy fd

Fzntini

Fzn2smt

Figure 5.9: Number of solved instances and elapsed times (referred to Table 5.5).

from specific algorithms provided by the solvers.

Table 5.6 shows the performance of two FLATZINC solvers with support for global
constraints compared to the performance of themselves, and that of fzn2smt, without
using that support, on problems where global constraints do occur. Note that fzn2smt
does not provide any specific support for global constraints. We have not included the re-
sults for G12 Lazy fd with global constraints, since it exhibited very similar performance.

Again we can see that fzn2smt overall offers a bit better performance than Gecode
and G12, even when they are using global constraints. This is even more significant if
we take into account that most of these problems are optimization ones, and we have
naively implemented a search procedure to supply the lack of support for optimization
of SMT solvers (see Subsection 5.4.4). However, Gecode is best in 9 problems, whereas
fzn2smt is best only in 8. We believe that unit propagation and conflict-driven lemma
learning at Boolean level, partially compensate for the lack of specialized algorithms for
global constraints in SMT solvers.

5.5. BENCHMARKING 103

Ta
bl

e
5.

6:
Pe

rf
or

m
an

ce
co

m
pa

ri
so

n
of

fz
n2

sm
tv

s
av

ai
la

bl
e

FL
A

T
Z

IN
C

so
lv

er
s

w
ith

gl
ob

al
co

ns
tr

ai
nt

s.
G

ec
od

e
G

12
f
z
n
2
s
m
t

Pr
ob

le
m

Ty
pe

#
+

gc
−

gc
+

gc
−

gc
de

br
ui

jn
-b

in
ar

y
s

11
4.

14
(7

)
4.

46
(6

)
35

.9
3

(7
)

31
.3

0
(6

)
0.

50
(1

)
pe

nt
om

in
oe

s
s

7
65

.8
2

(7
)

60
1.

82
(7

)
84

7.
11

(4
)

84
8.

17
(4

)
16

8.
47

(2
)

qu
as

ig
ro

up
7

s
10

25
0.

49
(6

)
27

8.
73

(6
)

1.
55

(5
)

1.
72

(5
)

20
.0

3
(5

)
rc

ps
p

o
10

10
.5

6
(5

)
12

.0
7

(5
)

0.
51

(4
)

97
.2

7
(5

)
99

3.
74

(9
)

bl
ac

k-
ho

le
s

10
20

.8
8

(7
)

69
.6

8
(7

)
24

05
.3

8
(6

)
24

23
.4

8
(6

)
89

2.
46

(8
)

no
no

gr
am

s
10

49
3.

61
(8

)
13

53
.6

3
(8

)
35

1.
35

(2
)

33
6.

93
(2

)
15

46
.5

6
(7

)
op

en
-s

ta
ck

s
o

10
16

8.
56

(8
)

16
9.

74
(8

)
28

3.
52

(8
)

29
9.

55
(8

)
70

7.
25

(7
)

p1
f

o
10

73
0.

60
(1

0)
2.

57
(8

)
1.

87
(8

)
2.

04
(8

)
12

6.
01

(9
)

re
ct

-p
ac

ki
ng

s
10

13
2.

44
(6

)
13

4.
36

(6
)

7.
71

(5
)

33
9.

80
(6

)
10

6.
66

(1
0)

ro
st

er
-m

od
el

o
10

0.
88

(1
0)

1.
04

(1
0)

4.
49

(1
0)

4.
46

(1
0)

50
.3

8
(1

0)
co

st
as

A
rr

ay
s

5
61

5.
51

(4
)

94
3.

75
(4

)
41

1.
82

(3
)

42
3.

09
(3

)
66

4.
13

(2
)

de
po

t-
pl

ac
em

en
t

o
15

10
35

.7
2

(1
2)

12
05

.7
5

(1
2)

51
9.

64
(8

)
52

2.
81

(8
)

29
5.

78
(1

5)
fil

te
r

o
10

31
.1

5
(1

)
30

.9
5

(1
)

28
0.

57
(1

)
27

8.
72

(1
)

17
.8

8
(6

)
gh

ou
lo

m
b

o
10

10
44

.2
5

(1
0)

0.
00

(0
)

59
8.

54
(3

)
24

6.
67

(1
)

25
45

.0
2

(6
)

rc
ps

p-
m

ax
o

10
5.

04
(2

)
42

.1
1

(2
)

11
6.

40
(2

)
30

.0
0

(1
)

47
5.

14
(4

)
su

gi
ya

m
a2

o
5

31
0.

94
(5

)
30

8.
31

(5
)

51
0.

84
(5

)
51

0.
72

(5
)

8.
64

(5
)

ba
cp

o
15

84
8.

88
(1

0)
84

7.
78

(1
0)

97
9.

85
(1

0)
97

6.
35

(1
0)

64
.1

7
(1

5)
To

ta
l

16
8

57
69

(1
18

)
60

06
(1

05
)

73
57

(9
1)

73
73

(8
9)

86
82

(1
21

)
+

gc
st

an
ds

fo
ru

si
ng

gl
ob

al
co

ns
tr

ai
nt

s,
an

d
−

gc
st

an
ds

fo
rn

ot
us

in
g

gl
ob

al
co

ns
tr

ai
nt

s.

104 CHAPTER 5. ENCODING CSP INTO SMT

5.6 Impact of the Boolean Component

In this section we check the impact of the Boolean component of the instances in the
performance of fzn2smt. We statistically compare the performance of fzn2smt with
the best of the other available FLATZINC solvers, that is Gecode. We compare the number of
solved instances by Gecode and fzn2smt, taking into account their Boolean component.
In particular, we consider the number of Boolean variables and the number of non-unary
clauses of the SMT instances resulting from the translation of each FLATZINC instance.
We first look at this relation graphically (figure 5.10 and 5.11) and propose the following
hypothesis: the more Boolean component the problem has, the better the performance
of fzn2smt is with respect to that of Gecode. This hypothesis seems quite reasonable,
because having a greater Boolean component, the SMT solver can better profit from built-
in techniques such as unit propagation, learning and backjumping. We provide statistical
tests to support this hypothesis.

First of all, we define the normalized difference of solved instances of each problem

dif =
#fzn2smt solved instances−#Gecode solved instances

#instances
.

This difference ranges from −1 to 1, where −1 means that Gecode has solved all the
instances and fzn2smt none, and 1 means the inverse.

We define the Boolean variables ratio rv of each problem as the average of the
number of Boolean variables divided by the number of variables of each SMT instance.

Similarly, we define the disjunctions ratio rd of each problem as the average of the
number of non-unary clauses divided by the number of constraints of each SMT instance.

In figure 5.10 we plot the differences with respect to the Boolean variables ratio,
and in figure 5.11 with respect to the disjunctions ratio. These figures show that, the more
Boolean variables and disjunctions the problem has, the better performance fzn2smt
has, compared to Gecode. In particular, when the Boolean variables ratio rv is above 0.2,
fzn2smt is able to solve more instances than Gecode (i.e., the difference is positive).
Only in two of those problems Gecode is able to solve more instances than fzn2smt,
namely in nmseq (problem #2) and open-stacks (problem #14). In these problems,
Boolean variables are mainly used in bool2int() constraints, hence these variables
provide little Boolean structure and the SMT solver cannot profit from their contribution.
When considering the disjunctions ratio, fzn2smt outperforms Gecode only when rd is
above 0.4. An exception to this fact is again on nmseq, where most disjunctions come
from bool2int().

Note that fzn2smt is able to solve more instances than Gecode in propagation
stress (problem #16), which has neither Boolean variables nor disjunctions. This is prob-
ably due to the fact that the linear constraints of the problem can be solved by the In-

5.6. IMPACT OF THE BOOLEAN COMPONENT 105

teger Difference Logic (IDL), a subset of LIA which is very efficiently implemented by
Yices [DdM06b].

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

rv

dif
0.2 0.4 0.6 0.8 1

1

2

11

12

14

15

18

19

20

24

25

26
28

29

30

31
32

3

4,13

6

8,9

16

17

22

23
27

7,5,10,21

Figure 5.10: Normalized difference of solved instances between fzn2smt and Gecode with
respect to the ratio of Boolean variables.

The numbers next to the points denote instance numbers (see Table 5.5).

We use a paired t-test in order to show that our method (fzn2smt with Yices)
solves significantly more instances than Gecode. For each problem i ∈ 1..n, being n the
number of considered problems, we takeXi as the normalized number of instances solved
by fzn2smt and Yi as the normalized number of instances solved by Gecode, and define
Di = Xi − Yi with null hypothesis

H0 : µD = µx − µy = 0

i.e., H0 : µx = µy. Then we calculate the t-value as

t =
Dn

S∗D/
√
n

106 CHAPTER 5. ENCODING CSP INTO SMT

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

rd

dif
0.2 0.4 0.6 0.8 1

1

2

3

5

11

12

1519

20
23

24

25

26

27

28

30

31
32

4,13,14

17,6

8,9

16

18

22

297,10,21

Figure 5.11: Normalized difference of solved instances between fzn2smt and Gecode with
respect to the ratio of disjunctions.

The numbers next to the points denote instance numbers (see Table 5.5).

where Dn is the sample mean of the Di and S∗D is the sample standard deviation of the
Di. This statistic follows a Student’s-t distribution with n− 1 degrees of freedom.

Table 5.7 shows that in the general case with all 32 problems there is no significant
difference between the means of the two solvers (the probability of the null hypothesis is
p = 0.2354). Therefore we cannot say that fzn2smt is statistically better than Gecode.
But, already for problems with Boolean variables ratio rv ≥ 0.1 we observe a signif-
icant difference (i.e., with p < 0.05 in all tests) in favor of fzn2smt. This confirms
our hypothesis: the higher the Boolean variables ratio is, the better the performance of
fzn2smt is with respect to that of Gecode. We also note that if we use the disjunctions
ratio rd for comparing the means, the results are similar: with rd >= 0.4 the difference
of means is significant in favor of fzn2smt.

Table 5.8 shows that the difference of means of fzn2smt and G12 Lazy fd is less
significant. We have not taken into account the problems not supported by G12 Lazy fd

5.7. SUMMARY 107

due to unbounded integer variables. These results suggest that the two approaches work
similarly well for the same kind of problems.

Table 5.7: Paired t-test I.
rv #problems p
≥ 0.0 32 0.2354
≥ 0.1 21 0.0150
≥ 0.2 19 0.0043
≥ 0.3 19 0.0043
≥ 0.4 17 0.0057
≥ 0.5 14 0.0001
≥ 0.6 13 0.0003

rd #problems p
≥ 0.0 32 0.2354
≥ 0.1 24 0.0472
≥ 0.2 24 0.0472
≥ 0.3 23 0.0540
≥ 0.4 17 0.0060
≥ 0.5 16 0.0056
≥ 0.6 11 0.0006

Paired t-test, with probability p of the null hypothesis, for the difference in mean of the
number of solved instances by fzn2smt and Gecode, for problems with different ratios

rv and rd.

Table 5.8: Paired t-test II.
rv #problems p
≥ 0.0 27 0.8929
≥ 0.1 16 0.0157
≥ 0.2 15 0.0152
≥ 0.3 15 0.0152
≥ 0.4 14 0.0147
≥ 0.5 13 0.0140
≥ 0.6 12 0.0028

rd #problems p
≥ 0.0 27 0.8929
≥ 0.1 20 0.1853
≥ 0.2 20 0.1853
≥ 0.3 19 0.1856
≥ 0.4 15 0.0279
≥ 0.5 14 0.0274
≥ 0.6 10 0.0633

Paired t-test, with probability p of the null hypothesis, for the difference in mean of the
number of solved instances by fzn2smt and G12 Lazy fd, for problems with different

ratios rv and rd.

5.7 Summary

This chapter provides one of the main contributions of this thesis. Thanks to the experi-
ments that we have conducted we have been able to prove that SMT is a very good general
approach to solve CSPs and COPs.

First we designed a new language, called Simply, to easily specify combinatorial
problems. This system translates Simply instances into SMT and solves them using
state-of-the-art SMT solvers, with very acceptable solving times.

108 CHAPTER 5. ENCODING CSP INTO SMT

Subsequently, to compare different solvers on the same models, we have developed
fzn2smt. In this case we have coded all types of variables (integers, floats, Booleans,
arrays and sets) and all FLATZINC (the low-level language of MINIZINC) constraints. The
performance of this approach is very competitive, equivalent or superior to the other ap-
proaches used in the experiment. We have also provided some arguments on why we have
chosen some theories instead of others and on the nature of the encodings used. We have
statistically shown that, the greater is the Boolean component of the problem, the better is
the performance of fzn2smt with respect to other solvers. Finally we have implemented
several strategies for dealing with optimization (linear and hybrid) with similar results to
those obtained using dichotomic search.

Chapter 6

Weighted CSP and Meta-Constraints

In this chapter we first introduce WSimply, an extension of Simply. WSimply is a
new framework for modelling and solving Weighted Constraint Satisfaction Problems
(WCSP) using SMT technology. In contrast to other well-known approaches designed for
extensional representation of goods or no-goods, and with no many declarative facilities,
our approach aims to follow an intensional and declarative syntax style. In addition, our
language has built-in support for some meta-constraints such as priority and homogeneity,
which allow the user to easily specify rich requirements on the desired solutions, such as
preferences and fairness.

Next, we present the system with their phases of preprocessing, compilation and
solving. There is a special emphasis on the solving process. We propose two alternative
strategies for solving these WCSP instances using SMT: by reformulating them into plain
SMT and solving them by means of search algorithms, or by reformulating them into
WSMT and solving them using UNSAT based algorithms.

Then, we provide the results of some experimentation showing the good perfor-
mance of solving WCSP with SMT, and finally we describe an encoding of extensional
WCSPs into SMT.

The content of this chapter is part of our publications:

• A Proposal for Solving Weighted CSPs with SMT [ABP+11a],

• W-MiniZinc: A Proposal for Modeling Weighted CSPs with MiniZinc [ABP+11c],
and

• Solving Weighted CSPs with Meta-Constraints by Reformulation into Satisfiability
Modulo Theories accepted with minor changes.

The objectives of the thesis achieved in this chapter are the second one (to prove

109

110 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

that using an SMT solver in conjunction with appropriate algorithms can be a robust ap-
proach for optimization variants of CSP) and specially the third one (to develop a system
supporting meta-constraints, allowing the user to model Weighted CSP intensionally, and
to solve them using SMT). The contributions described in this chapter range from the fifth
to the seventh.

6.1 State-of-the-Art

There exist several systems for specification and solving of extensional WCSPs (see
[DGSA]). Nevertheless, as far as we know, there does not exist any system support-
ing the intensional modelling of WCSPs, so we believe this thesis is the first work in
this direction. We present WSimply1 an extension of Simply for filling this gap, using
reformulation into SMT.

Our system supports meta-constraints [PRB00], i.e., constraints on (soft) constraints.
Meta-constraints can be very helpful in the modelling process, since they allow us to ab-
stract to a higher level, expressing, e.g., priorities between a set of soft constraints, dif-
ferent levels of preference (multi-objective optimization), etc. Hence, the inclusion of
meta-constraints increases the capability to easily model several real-world problems.

6.2 WSimply

Simply [BPSV09], as explained in the Section 5.2, is a declarative programming system
for easy modelling and solving of CSPs. Simply essentially translates CSP instances
(written in its own language) into SMT instances, which are fed into an SMT solver.
If the SMT solver is able to find a solution, then this solution is translated back to a
solution of the original CSP instance. Currently, Simply is integrated with the Yices
SMT solver [DdM06b], using its built-in API. However, it could be easily adapted to
work with other SMT solvers, either using external files or any other API. The language
has the useful declarative facility of list comprehension, which allows for concise and
elegant modelings.

Figure 24 shows how to model an instance of the NRP with Simply and the SMT
formula to which it is finally translated. As we can see, the SMT formula has no solution
due to the preferences of the nurses that we have defined. The typical approach is to
declare as soft constraints these preferences.

Example 24 Consider a simple instance of the NRP (details on the NRP are given in
1Simply and WSimply are available at http://ima.udg.edu/recerca/lap/simply/

http://ima.udg.edu/recerca/lap/simply/

6.2. WSIMPLY 111

Section 6.4) with two shifts per day and two available nurses. Each shift must be covered
with exactly one nurse. We also want to satisfy the preferences of the nurses. Say nurse
1 wants to work both days on shift 1, while nurse 2 wants to work the first day on shift 2
and the second day on shift 1.

This particular instance can be modelled with Simply as shown in Figure 6.1.
We can identify four sections in the Simply model: data, domains, variables and con-
straints. The data section allows us to define a particular instance of the problem. This
section can also defined in a separate file. The variables section declares a bidimensional
array of integer variables nd, where the size of the first dimension corresponds to the
number of nurses, and the size of the second dimension to the number of days. The do-
main of the integer variables of this array is restricted to the range specified by dshifts,
i.e., the possible shifts. In the constraints section, we first introduce the cover constraints:
for each day and shift, we have to meet the cover requirements (one nurse in this case). To
post this constraint we generate the list of nurses working every day d and shift st with
a list comprehension [nd[n, d] | n in [1..nurses]], and we use the global
constraint Count to restrict the number of nurses working that day and shift to be one.
Finally, we add the nurse preference constraints for each day, specifying which shift they
prefer.

Problem:nrp
Data

int nurses = 2;
int days = 2;
int shifts = 2;

Domains
Dom dshifts = [1..shifts];

Variables
IntVar nd[nurses, days] :: dshifts;

Constraints
% Covers
Forall(d in [1..days], st in [1..shifts]) {

Count([nd[n, d] | n in [1..nurses]], st, 1);
};
% Preferences
nd[1,1] = 1;
nd[1,2] = 1;
nd[2,1] = 2;
nd[2,2] = 1;

Figure 6.1: A Simply instance.

112 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

; The logic to be used
(set-logic QF_LIA)

; Variable declarations
(declare-fun nd_1_1 () Int)
(declare-fun nd_1_2 () Int)
(declare-fun nd_2_1 () Int)
(declare-fun nd_2_2 () Int)

; Bounds on the domain of the variables
(assert (and (<= nd_1_1 2) (>= nd_1_1 1)))
(assert (and (<= nd_1_2 2) (>= nd_1_2 1)))
(assert (and (<= nd_2_1 2) (>= nd_2_1 1)))
(assert (and (<= nd_2_2 2) (>= nd_2_2 1)))

; Cover constraints
(assert

(and
(= (+ (ite (= nd_1_1 1) 1 0) (ite (= nd_2_1 1) 1 0)) 1)
(= (+ (ite (= nd_1_1 2) 1 0) (ite (= nd_2_1 2) 1 0)) 1)
(= (+ (ite (= nd_1_2 1) 1 0) (ite (= nd_2_2 1) 1 0)) 1)
(= (+ (ite (= nd_1_2 2) 1 0) (ite (= nd_2_2 2) 1 0)) 1)

)
)

; Preference constraints
(assert (= nd_1_1 1))
(assert (= nd_1_2 1))
(assert (= nd_2_1 2))
(assert (= nd_2_2 1))

(check-sat)

Figure 6.2: SMT instance obtained from the Simply instance in Figure 6.1.

Simply translates the previous instance into the standard SMT-LIB v2 language
[BST10b] as shown in Figure 6.2. First of all we need to specify the background theory
to be used. In this example we use Linear Integer Arithmetic (LIA). Then, we define
the variables of the problem as integer. Next, we use the assert operator to post the
constraints, which are described in prefix notation. The first set of constraints bounds

6.2. WSIMPLY 113

the domain of the variables. The second set corresponds to the translation of the cover
constraints. Here, we use the operator ite (if-then-else, or conditional expression). For
example, the expression (ite (= nd 1 1 1) 1 0) evaluates to 1 when nd 1 1 is
equal to 1, and to 0 otherwise. Each of the four lines with the ite operator guarantee
that there is exactly one nurse per shift. Finally, we add the translation of the preference
constraints.

Here we detail the extensions introduced to Simply in order to allow for soft con-
straints. The new language and system is called WSimply. The basic type of soft con-
straint in WSimply is of the form:

(constraint) @ {expression};

where the value of expression is the weight (cost) of falsifying the associated
constraint. The parentheses around the constraint and the curly brackets around the
weight expression are optional. The expression must be a linear integer arithmetic ex-
pression.2 It can either be valuable at compile time, or contain decision variables. Weight
expressions should always evaluate to a non-negative integer, as they amount to a cost.
When negative, falsifying the constraint will be considered zero cost.

Example 25 The instance in Example 24 has no solution. Hence, we could wish to model
the preferences as soft constraints (and give, e.g., double importance to the preferences
of nurse 1). This could be modelled in WSimply by replacing the preference constraints
with the following:

% Preferences
(nd[1,1] = 1) @ 2;
(nd[1,2] = 1) @ 2;
(nd[2,1] = 2) @ 1;
(nd[2,2] = 1) @ 1;

Most, if not all, existing WCSP solving systems consider an extensional approach,
i.e., deal with instances consisting of an enumeration of good/no-good tuples for hard
constraints, and no-good tuples with an associated cost for soft constraints.

Our proposal follows the other direction and aims to allow the user to model soft
constraints in intension. Consider for instance two variables x and y, with domain {1, 2},
and the soft constraint x < y with falsification cost 1. In an extensional approach, we
would model this problem with the following soft no-good tuples: (x = 1, y = 1, 1), (x =

2We restrict to linear expressions, since we rely on SMT solvers and only a few of them incorporate
(some limited) support for non-linear expressions.

114 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

2, y = 1, 1) and (x = 2, y = 2, 1). In WSimply we would express this with the soft
constraint (x < y) @ {1};.

Degree of Violation

An interesting detail to remark is that by allowing the use of decision variables in the cost
expression we can encode the degree of violation of a constraint. For instance, for a nurse
working more than five turns in a week, the violation cost could be increased by one unit
for each extra worked turn:

(worked turns < 6) @ {base cost + worked turns− 5};

Labeled Constraints

Soft constraints can be labeled as follows (again, the parentheses around the constraint
and the curly brackets around the weight expression are optional):

#label : (constraint) @ {expression};

The labels can be used to refer to the respective constraints in other (either soft or hard)
constraints. For example:

#A: (a>b)@1;
#B: (a>c)@2;
#C: (a>d)@1;
(Not A And Not B) Implies C;

Labels are also used in meta-constraints, which we introduce in the next subsection.
Moreover, indexed labels are supported, as we show in Section 6.4.1. This allows for
convenient modellings in many cases.

6.3 Meta-Constraints

In order to provide a higher level of abstraction in the modelling of over-constrained prob-
lems, in [PRB00] several meta-constraints are proposed. By meta-constraint we refer to
a constraint on constraints. Meta-constraints allow us to go one step further in the spec-
ification of the preferences on the soft constraint violations. WSimply covers all meta-
constraints introduced in [PRB00], plus several variants and alternative meta-constraints,
that we group in the following three families:

6.3. META-CONSTRAINTS 115

1. Priority. The user may have some preferences which soft constraints to violate.
For instance, if there is an activity to perform and worker 1 doesn’t want to perform
it while worker 2 should not perform it, then it is better to violate the first constraint
than the second. It would be useful to free the user of deciding the exact value of
the weight of each constraint. To this end, we allow the use of undefined weights,
denoted by “ ”:

#label : (constraint) @ { };

The value of this undefined weight is computed at compile time according to the
priority meta-constraints that refer to the label. This simplifies the modelling of the
problem, since the user does not need to compute any concrete weight. WSimply
provides the following meta-constraints related to priority:

• samePriority(List), where List is a list of labels of soft constraints.
This meta-constraint gives the same priority, i.e., the same weight, to the con-
straints denoted by the labels in List.

• priority(List), where List is a list of labels of soft constraints. This
constraint orders the constraints denoted by the labels in List by decreasing
priority. In other words, it imposes decreasing weights.

• priority(label1,label2,n), with n > 1, defines how many times it is
worse to violate the constraint corresponding to label1 than to violate the con-
straint corresponding to label2. That is, if weight1 and weight2 denote the
weights associated with label1 and label2, respectively, it states weight1 ≥
weight2 ∗ n.

• multiLevel(ListOfLists), where ListOfLists is a list of lists of labels.
This meta-constraint states that the weight of each one of the constraints (de-
noted by the labels) in each list is greater than the aggregated weight of the
constraints in the following lists. For example,

multiLevel([[A,B,C],[D,E,F],[G,H,I]]);

states that the cost of falsifying each of the constraints (denoted by) A, B and
C is greater than the cost of falsifying D, E, F, G, H, and I together and, at the
same time, the cost of falsifying each of the constraints D, E and F is greater
than the cost of falsifying G, H, and I together.

2. Homogeneity. The user may wish that there is some homogeneity in the amount of
violation of disjoint groups of constraints. For instance, for the sake of fairness, the
number of violated preferences of nurses should be as homogeneous as possible.
WSimply provides the following meta-constraints related to homogeneity:

116 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

• atLeast(List,p), where List is a list of labels of soft constraints and p is
a positive integer in 1..100. This meta-constraint ensures that the percentage
of constraints denoted by the labels in List that are satisfied is at least p.

• homogeneousAbsoluteWeight(ListOfLists,v), where ListOfLists is
a list of lists of labels of soft constraints and v is a positive integer. This meta-
constraint ensures that, for each pair of lists in ListOfLists , the difference
between the cost of the violated constraints in the two lists is at most v. For
example, given

homogeneousAbsoluteWeight([[A,B,C],[D,E,F,G]],10);

if the weights of constraints A, B and C are 5, 10 and 15 respectively, and
constraints A and B are violated and constraint C is satisfied, then the cost of
the violated constraints in [D,E,F,G] must be between 5 and 25.

• homogeneousAbsoluteNumber(ListOfLists,v). Same as above, but
where the maximum difference v is between the number of violated con-
straints.

• homogeneousPercentWeight(ListOfLists,p), where ListOfLists is a
list of lists of labels of soft constraints and p is a positive integer in 1..100. This
meta-constraint is analogous to homogeneousAbsoluteWeight, but where
the maximum difference p is between the percentage in the cost of the violated
constraints (with respect to the cost of all the constraints) in each list.

• homogeneousPercentNumber(ListOfLists,p). Same as above, but where
the maximum difference p is between the percentage in the number of violated
constraints.
We remark that the meta-constraints homogeneousAbsoluteWeight and
homogeneousPercentWeight, are not allowed to refer to any constraint
with undefined weight. This is because, as said, constraints with undefined
weight are referenced by priority meta-constraints, and their weight is deter-
mined at compile time accordingly to those priority meta-constraints, indepen-
dently from other constraints. Hence, since the homogeneousAbsoluteWeight
and homogeneousPercentWeight meta-constraints also constrain the
weight of the referenced constraints, if they were allowed to reference con-
straints with undefined weights, this could lead to incompleteness.

3. Dependence. Particular configurations of violations may entail the necessity to
satisfy other constraints, that is, if a soft constraint is violated then another soft
constraint must not be violated, or a new constraint must be satisfied. For instance,
in the context of the NRP, we can imagine that working the first or the last turn
of the day is penalized and, if somebody works in the last turn of one day, then he
cannot work in the first turn the next day. This could be succinctly stated as follows:

6.4. MODELLING EXAMPLE 117

#A: not_last_turn_day_1@w1;
#B: not_first_turn_day_2@w2;
(Not A) Implies B;

stating that, if constraint A is violated, then constraint B becomes mandatory.

Although the priority meta-constraints are discussed in [PRB00], they are not re-
ally developed into detail, and the multilevel meta-constraint is not considered. Our
atLeast homogeneity meta-constraint subsumes the homogeneity meta-constraint de-
fined in [PRB00], while the homogeneousAbsoluteWeight, homogeneousAbsoluteNumber,
homogeneousPercentWeight and homogeneousPercentNumbermeta-constraints
are new. The dependence meta-constraints are the same as in [PRB00].

6.4 Modelling Example

In this section we illustrate the use of WSimply meta-constraints on a paradigmatic ex-
ample of over-constrained CSP: the Nurse Rostering Problem (NRP). In a NRP we have
to generate a roster assigning shifts to nurses over a period of time subject to a number of
constraints. These constraints, that can be hard or soft, are usually defined by regulations,
working practices and nurse preferences [MBL09].

We choose a simplified variant of the GPost NRP instance.3 In this example we
consider 4 weeks (28 days), 8 nurses (4 full-timers and 4 part-timers) and two shift types
(day and night). We define an array variable sh[8,28] with domain [0..2], where
sh[i,d] = 0 means that the i-th nurse does not work on day d, sh[i,d] = 1
means that the nurse works on the day shift of day d, and sh[i,d] = 2 means that the
nurse works on the night shift of day d. Nurses numbered from 1 to 4 are full-timers, and
from 5 to 8 are part-timers.

Full-timers work exactly 18 shifts in 4 weeks, while part-timers work only 10. We
can encode this as follows:

Forall(i in [1..8]) {
If (i<5) Then {Count([sh[i,d]>0|d in [1..28]],True,18);}
Else {Count([sh[i,d]>0|d in [1..28]],True,10);};
};

Each nurse works at most 4 night shifts, of which at most 3 are consecutive. In
order to refer to the number of night shifts per worker we have to introduce another array
variable tns[8] with domain [0..4]:

3http://www.cs.nott.ac.uk/˜tec/NRP/

http://www.cs.nott.ac.uk/~tec/NRP/

118 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

Forall(i in [1..8]) {
Count([sh[i,d]|d in [1..28]],2,tns[i]);
};
% restrict the number of consecutive night shifts
Forall(i in [1..8], d in [1..25]) {
((sh[i,d]>1) And (sh[i,d+1]>1) And (sh[i,d+2]>1))
Implies Not(sh[i,d+3]>1);
};

Note that the maximum number of night shifts is bounded by the domain of the
array tns. Moreover, since the domain of the integers in array sh is [0..2], we could
alternatively write, e.g., sh[i,d] = 2 instead of sh[i,d] > 1. However, we have
observed that using strict inequalities often results in better performance, possibly due to
the special treatment given to them by the linear integer arithmetic solver integrated with
Yices.

6.4.1 Soft Constraints

There is a penalty for a single night shift (for the sake of simplicity, we ignore the first
and last days of the roster):

Forall(i in [1..8], d in [1..26]) {
#NSP[i,d]: Not((sh[i,d]<2) And (sh[i,d+1]>1) And

(sh[i,d+2]<2))@{_};
};

Note that we can introduce arrays of labels in the Forall statement, which are
indexed according to the Forall variables. We leave the weights undefined, since we
just want all of them be the same. To this end, we only need to post the following meta-
constraint (which uses the indexed labels introduced in the Forall statement):

samePriority([NSP[i,d]|i in [1..8],d in [1..26]]);

Similarly, we want to penalize isolated free days (again, the first and last days of the
roster are ignored for the sake of simplicity):

Forall(i in [1..8], d in [1..26] {
#AFD[i,d]: Not((sh[i,d]>0) And (sh[i,d+1]<1) And

(sh[i,d+2]>0))@{_};
};
samePriority([AFD[i,d]|i in [1..8],d in [1..26]]);

6.4. MODELLING EXAMPLE 119

Since we consider that violating the AFD constraints is 10 times preferable than
violating the NSP constraints, we use the following meta-constraint:

priority(NSP[1,1],AFD[1,1],10);

Note that it is enough to state this priority between the first constraints of each
group, since all constraints of each group have the same priority.

A full-timer has to work 4 or 5 days per week. We want to consider the deviation
from this number as the violation degree of the constraint. This can be expressed as fol-
lows, by introducing an array variable tw[4,4], where tw[i,j] denotes the number
of working days for nurse i on week j:

Forall(i in [1..4]) {
Count([sh[i,d]> 0|d in [1..7]],True,tw[i,1]);
Count([sh[i,d]>0|d in [8..14]],True,tw[i,2]);
...
};
Forall(i in [1..4], w in [1..4]) {
Not(tw[i,w]>5) @ {tw[i,w]-5};
Not(tw[i,w]<4) @ {4-tw[i,w]};
};

Finally, we can use homogeneity meta-constraints in order to guarantee a minimum
satisfaction on the free days assigned to each nurse. This can be achieved as follows. We
first state, as a soft constraint of weight 1, each free day requested by each nurse being
free. We assume that each nurse has asked for five preferred free days, which are stored
in an input data array free[8,5].

Forall(i in [1..8], f in [1..5]) {
#PFD[i,f]:(sh[i,free[i,f]]<1)@1;
};

Then, the following meta-constraints can be used in order to guarantee that, globally, 40%
of the preferences of the nurses are satisfied and, at the same time, to homogeneously sat-
isfy the preferences among nurses (the difference in the percentage of violated preferences
for the different nurses is no more than 50):

atLeast([PFD[i,f]|i in [1..8],f in [1..5]],40);
homogeneousPercentNumber([[PFD[1,f]|f in [1..5]],

[PFD[2,f]|f in [1..5]],...],50);

120 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

WCSP inst.
+ meta.

WCSP inst.

COP inst.

WSMT inst.

Opt. SMT
Solving

WSMT
Solving

SMT Solver

R1

R2

R3

R4

S2

S1

Figure 6.3: Basic architecture and solving process of WSimply.

Finally, we impose that it is ten times better not to have an isolated free day than
resting one of the preferred days. This is also a requirement of the GPost instance:

priority(AFD[1,1],PFD[1,1],10);

It is worth noting that, at this point, the system is able to determine a concrete value
for the undefined weights of the AFD and NSP constraints.

6.5 Solving Process

Figure 6.3 shows the basic architecture and solving process of WSimply. WSimply
reformulates the input instance into the suitable format for the solving procedures. We
have four reformulations: (R1) from a WCSP instance with meta-constraints into a WCSP
instance (without meta-constraints), (R2) from a WCSP instance into a COP instance,
(R3) from a WCSP instance into a WSMT instance and (R4) from a COP instance into
a WSMT instance. We recall that the constraints in the previous instances (WCSP and
COP) are expressed into the WSimply.

Once the problem has been properly reformulated, we can apply two different solv-
ing approaches: WSMT Solving (S1) or Optimization SMT Solving (S2).

In the following subsections we describe the different reformulations and solving
procedures.

6.5. SOLVING PROCESS 121

6.5.1 Reformulating WCSP with Meta-Constraints into WCSP (R1)

We remove all the meta-constraints by reformulating them into hard and soft WSimply
constraints.

As we have showed in Section 6.2, meta-constraints use labels. Then, first of all,
we introduce a new reification variable for each labelled soft constraint, of the form:

#label : (constraint) @ {expression};

and we replace the constraint by:

blabel ⇔ constraint;
blabel @ {expression};

where blabel is a fresh (Boolean) reification variable.

In the following we show how WSimply reformulates the priority, homogeneity
and dependence meta-constraints.

Reformulation of Priority Meta-Constraints

To deal with the priority meta-constraints, we create a system of linear inequations on the
(probably undefined) weights of the referenced soft constraints. The inequations are of
the form w = w′, w > w′ or w ≥ n · w′, where w is a variable, w′ is either a variable or a
non-negative integer constant, and n is a positive integer constant. For example, given

#A:(a>b)@{3};
#B:(a>c)@{_};
#C:(a>d)@{_};
#D:(c=2-x)@{_};
priority([A,B,C]);
priority(D,B,2);

the following set of inequations is generated:

wA = 3, wB > 0, wC > 0, wD > 0,
wA > wB, wB > wC ,
wD ≥ 2 · wB

This set of inequations is fed into an SMT solver4 which acts as an oracle at com-
pile time, so that a model, i.e., a minimal value for the undefined weights satisfying the

4In fact, the set of inequations could be fed into any linear integer arithmetic solver.

122 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

inequations, can be found. Following the previous example, the SMT solver would return
us a model such as, e.g.:

wA = 3, wB = 2, wC = 1, wD = 4

This allows the reformulation of the original problem into an equivalent WCSP
without undefined weights:

#A:(a>b)@{3};
#B:(a>c)@{2};
#C:(a>d)@{1};
#D:(c=2-x)@{4};

Hence, with the meta-language, and thanks to this simple use of a solver as an oracle
at compile time, we free the user of the tedious task of thinking about concrete weights
for encoding priorities.

In the case of the multiLevel meta-constraint, given for example

#A:(a>b)@{_};
#B:(a>c)@{_};
#C:(a>d)@{_};
#D:(c=2-x)@{_};
multiLevel([[A,B][C,D]]);

the following set of inequations would be generated:

wA > 0, wB > 0, wC > 0, wD > 0,
wA > (wC + wD),
wB > (wC + wD),

and the SMT solver would return us a model such as, e.g.:

wA = 3, wB = 3, wC = 1, wD = 1

We remark that the weight expressions of the constraints referenced by a priority
meta-constraint must either be undefined or evaluable at compile time, i.e., they cannot
use any decision variable, since our aim is to compute all undefined weights at compile
time. Moreover, if the set of inequations turns out to be unsatisfiable, the user will be
warned about this fact during compilation.

6.5. SOLVING PROCESS 123

Reformulation of Homogeneity Meta-Constraints

We reformulate the homogeneity meta-constraints by reifying the referenced constraints
and constraining the number of satisfied constraints. For example, the meta-constraint
atLeast(List,p) is reformulated into:

Count(ListReif, True, n);
n >= val;

where ListReif is the list of Boolean variables resulting from reifying the constraints
referenced in List, and val is computed in compile time and is equal to dlength(List) ∗
p/100e. Count(l,e,n) is a Simply global constraint that is satisfied if and only if
there are exactly n occurrences of the element e in the list l.

The meta-constraint homogeneousPercentWeight(ListOfLists,p), is refor-
mulated into:

Sum([weight_label[1][j]|j in [1..len[1]],total_wei[1]);
Sum([If_Then_Else(ListOfLists[1][j])(0)(weight_label[1][j])

| j in [1..len[1]]], vio_wei[1]);
(vio_wei[1]*100 Div total_wei[1])>=min_homogen;
(vio_wei[1]*100 Div total_wei[1])=<max_homogen;

...

Sum([weight_label[n][j]|j in [1..len[n]],total_wei[n]);
Sum([If_Then_Else(ListOfLists[n][j])(0)(weight_label[n][j])

| j in [1..len[n]]], vio_wei[n]);
(vio_wei[n]*100) Div total_wei[n])>=min_homogen;
(vio_wei[n]*100) Div total_wei[n])=<max_homogen;
(max_homogen-min_homogen)<p;

where len[i] is the length of the i-th list in ListOfLists , weight label[i][j]
is the weight associated with the j-th label of the i-th list, total wei[i] is the ag-
gregated weight of the labels in the i-th list and n is the length of ListOfLists . Notice
that according to the Sum constraints, vio wei[i] denotes the aggregated weight of
the violated constraints in the i-th list. Finally, min homogen and max homogen are
fresh new variables.

Since we restrict to linear integer arithmetic, the total wei[i] expressions must
be evaluable at compile time. This requires the weights of the constraints referenced by
this meta-constraint to be evaluable at compile time.

124 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

The reformulation of homogeneousAbsoluteWeight(ListOfLists,v) is anal-
ogous to the previous one, but where instead of computing the percentage on vio wei[i],
we can directly state:

...
vio_wei[1]>=min_homogen;
vio_wei[1]=<max_homogen;
...
vio_wei[n]>=min_homogen;
vio_wei[n]=<max_homogen;
(max_homogen-min_homogen)=<v;

Our reformulation allows the meta-constraint homogeneousAbsoluteWeight to ref-
erence constraints whose weight expression uses decision variables and is not evaluable
at compile time. However, as pointed out in Section 6.3, it cannot reference constraints
with undefined (“ ”) weight.

The reformulations of the meta-constraints homogeneousAbsoluteNumber
and homogeneousPercentNumber are similar to the previous ones, but where we
count the number of violated constraints instead of summing their weights.

Reformulation of Dependence Meta-Constraints

The dependence meta-constraints are straightforwardly reformulated by applying the log-
ical operators between constraints directly supported by Simply on the corresponding
reification variables.

6.5.2 Reformulating WCSP into COP (R2)

In order to convert our WCSP instance into a COP instance, we firstly replace each soft
constraintCi @wi by the following constraints where we introduce a fresh integer variable
oi:

¬(wi > 0 ∧ ¬Ci) → oi = 0(6.1)
(wi > 0 ∧ ¬Ci) → oi = wi(6.2)

If the weight expression, wi, evaluates to a value less or equal than 0, then the cost
of falsifying Ci is 0, otherwise it is wi. Since we are defining a minimization problem we
could actually replace Equation (6.1) by oi ≥ 0.

6.5. SOLVING PROCESS 125

Secondly, we introduce another fresh integer variable O, which represents the sum
of the oi variables, i.e., the optimization variable of the COP to be minimized, and the
following constraint:

(6.3) O =
m∑
i=1

oi

Finally, we keep the original hard constraints with no modification.

6.5.3 Reformulating WCSP into WSMT (R3)

To the best of our knowledge, existing WSMT solvers only accept WSMT clauses whose
weights are constants. Therefore, we need to convert the WCSP instance into a WSMT
instance where all the WSMT clauses have a constant weight.

We apply the same strategy as in R2, i.e., we firstly replace each soft constraint
Ci @wi, where wi is not a constant (involves variables), by the constraints 6.1 and 6.2 in-
troducing a fresh integer variable oi. Secondly, we add the following set of soft constraints
over each possible value of each oi variable:

(6.4)
⋃

vj∈V (oi)

oi 6= vj @ vj

where V (oi) is the set of all possible positive values of oi. These values are determined
by evaluating the expression for all the possible values of the variables, and keeping only
the positive results. Notice that at this point we do have a WCSP instance where all the
soft constraints have a constant weight.

Finally, we replace each soft constraint Ci @wi, by the WSMT clause (C ′i, wi)
where C ′i is the translation of Ci into SMT as described in [BPSV09]. We also replace
each hard constraint by its equivalent hard SMT clause.

6.5.4 Reformulating COP into WSMT (R4)

Taking into account that the optimization variable O of the COP instance is the integer
variable that represents the objective function we only need to add the following set of
WSMT clauses:

⋃i=W
i=1 (O < i, 1), where W is the greatest value the objective variable

can be evaluated to. A more concise alternative could result from using the binary rep-
resentation of W , i.e., adding the set of WSMT clauses

⋃i<dlog2(W+1)e
i=0 (¬bi, 2i), and the

hard clause (
∑i<dlog2(W+1)e

i=0 2i · bi = O,∞).

126 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

We finally replace all the constraints of the COP instance with the equivalent hard
SMT clauses as described in [BPSV09].

6.5.5 Solving with SMT

From Figure 6.3 we see that currently we can apply two solving methods in WSimply:
WSMT solving which receives as input a WSMT instance and Optimization SMT solving
which receives as input a COP instance.

WSMT Solving (S1)

The SMT solver Yices [DdM06b] offers a non-exact algorithm5 to solve WSMT instances.
We refer to this solving method as yices. Since this is yet an immature research topic in
SMT, we have extended the Yices framework by incorporating other exact algorithms
from the MaxSAT field. There, we can find two main classes of algorithms: branch
and bound based and UNSAT core based algorithms. The solvers that implement the
latter clearly outperform branch and bound based solvers on industrial and some crafted
instances, and constitute an emerging technology.

In the following we describe the basic scheme of UNSAT core based algorithms. A
WSMT problem ϕ can be solved through the resolution of a sequence of SMT instances as
follows. Let ϕk be an SMT formula that is satisfiable if, and only if, ϕ has an assignment
with cost smaller than or equal to k (k plays the role of the bound that we impose on
the objective function). If the cost of the optimal assignment to ϕ is kopt, then the SMT
problems ϕk, for k ≥ kopt, are satisfiable, while for k < kopt are unsatisfiable. Note that
k may range from 0 to

∑m
i=1wi (the sum of the weights of the soft clauses). When the

weights are expressions rather than constants, we estimate an upper-bound. This is done
by evaluating the expression for all the possible values of the variables. The search for
the value kopt can be done following different strategies; searching from k = 0 to kopt
(increasing k while ϕk is unsatisfiable); from k =

∑m
i=1wi to some value smaller than

kopt (decreasing k while ϕk is satisfiable); or alternating unsatisfiable and satisfiable ϕk

until the algorithm converges to kopt (for instance, using a binary search scheme). The
key point to boost the efficiency of these approaches is to know whether we can exploit
any additional information from the execution of the SMT solver for the next runs.

Since WSimply is designed to use SMT solvers as a black box, UNSAT core based
algorithms can be easily integrated into WSimply.

In particular, we have implemented the WPM1 algorithm from [ABL09, MSP09],
which is based on the detection of unsatisfiable cores. These are UNSAT core based

5Non-exact algorithms do not guarantee optimality.

6.6. BENCHMARKING 127

algorithms, where the parameter k ranges from 0 to kopt. Then, for every UNSAT answer,
they analyze the core of unsatisfiability of the formula returned by the SMT solver. This
information is incorporated in the form of redundant clauses into the next call to the SMT
solver which help to boost the propagation. In our experiments, we refer to the method
which uses the WPM1 algorithm as core.

The pseudo-code of the WPM1 algorithm based on calls to an SMT solver is de-
scribed in Algorithm 15. This algorithm is the weighted version of the FuMalik algo-
rithm [ABL09, MSP09] for partial MaxSAT, see Algorithm 12. In those works, the un-
derlying solver was a SAT solver. This is the first time SMT technology is incorporated
in the implementation of Algorithm 15.

In Algorithm 15, we iteratively call an SMT solver with a weighted working formula
ϕ, but excluding the weights. The SMT solver will say whether the formula is satisfiable
or not (variable st) and in case the formula is unsatisfiable, it will give an unsatisfiable
core (ϕc). When the SMT solver returns an unsatisfiable core, we compute the minimum
weight of the clauses of the core (wmin in the algorithm). Then, we transform the working
formula by duplicating the clauses in the core. Then, in one of the copies we give to the
clauses their original weight minus the minimum weight. On the other copy, we extend
the clauses with the blocking variables (BV in the code) and we give them the minimum
weight. Finally, we add the cardinality constraint on the blocking variables using the
standard encoding of the exactly one Boolean constraint. Note that we could assert this
cardinality constraint using the Linear Integer Arithmetic theory, however, the Boolean
encoding has shown a better performance in our experiments. We finally add wmin to the
cost.

Optimization SMT Solving (S2)

The optimization solving approach is the one described in Subsection 5.4.4. Nevertheless,
currently WSimply only supports the binary bounding strategy of Algorithm 14. In fact,
this has been the approach that has exhibited the best performance (see Table 5.4). In the
following, we will refer to this solving method as dico.

6.6 Benchmarking

In order to show the usefulness of meta-constraints we have conducted several experi-
ments on a set of instances of the Nurse Rostering Problem (NRP) and on a variant of the
Balanced Academic Curriculum Problem (BACP).

128 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

Algorithm 15 WPM1 Algorithm for SMT
Input: ϕ = {(C1, w1), . . . , (Cn, wn)} : CNF formula
Output: Cost of ϕ
cost← 0
while true do

(st, ϕc)← SMT ALGORITHM ({Ci | (Ci, wi) ∈ ϕ})
if st = SAT then

return cost
else
BV ← ∅
wmin ← min{wi |Ci ∈ ϕc ∧ isSoft(Ci)}
for all Ci ∈ ϕc do

if isSoft(Ci) then
b← New variable()
ϕ← ϕ \ {(Ci, wi)} ∪ {(Ci, wi − wmin)} ∪ {(Ci ∨ b, wmin)}
{when wi − wmin = 0 the clause (Ci, wi − wmin) is not added}
BV ← BV ∪ {b}

end if
end for
if BV = ∅ then

return UNSAT
end if
ϕ← ϕ ∪ {(exactly one({b | b ∈ BV }),∞)}
cost← cost+ wmin

end if
end while

6.6.1 Nurse Rostering Problem

There exist many formalizations of the NRP [BCBL04]. In our experiments we have
considered the GPost instance (of which we have modelled a variant in Section 6.4) as
well as many instances from the Nurse Scheduling Problem Library (NSPLib) [VM07],
by conducting a precise study on the effects of the homogeneity meta-constraints on them.

GPost NRP

In Section 6.4 we have already presented how to model a variant of the GPost NRP with
WSimply including several meta-constraints. WSimply shows a reasonably good per-
formance solving the original GPost instance, compared to the results on the same prob-
lem reported in [MBL09]. The authors report 8 seconds (2.83GHz Intel R© CoreTM 2 Duo)

6.6. BENCHMARKING 129

for finding the optimal solution (cost 3) with an ad hoc search with CPLEX over a pre-
viously computed enumeration of all possible schedules for each nurse. They also report
234 seconds (2.8GHz Pentium IV) for finding a non optimal solution (cost 8) with their
generic local search method (VNS/LDS+CP) based on neighborhoods plus an exploration
of the search space with CP and soft global constraints.

With WSimply, we have been able to find the optimal solution with the three solv-
ing approaches6 (using a 2.6GHz Intel R© CoreTM i5) taking 12.27 seconds with the yices
solving approach, 31.21 seconds with the core solving approach, and 126.00 seconds
with the dico solving approach.

NSPLib Instances

In order to evaluate the effects of the homogeneity meta-constraints on the quality of
the solutions and the solving times, we have conducted an empirical study over some
instances from the NSPLib. The NSPLib is a repository of thousands of NRP instances,
grouped in different sets and generated using different complexity indicators: size of the
problem (number of nurses, days or shift types), shifts coverage (distributions over the
number of nurses needed) and nurse preferences (distributions of the preferences over the
shifts and days). Details can be found in [VM07].

In order to reduce the number of instances to work with, we have focused on the N25
set, which contains 7920 instances. Since the addition of homogeneity meta-constraints
in these particular instances significantly increases their solving time, we have ruled out
the instances taking more than 60 seconds to be solved with WSimply without the meta-
constraints. The final chosen set consists of 5113 instances. The N25 set has the following
settings:

• Number of nurses: 25

• Number of days: 7

• Number of shift types: 4 (including the free shift)

• Shift covers: minimum number of nurses required for each shift and day.

• Nurse preferences: a value between 1 and 4 (from most desirable to less desirable)
for each shift and day, for each nurse.

The NSPLib also has several complementary files with more precise information like min-
imum and maximum number of days that a nurse should work, minimum and maximum

6See Subsection 6.5.5.

130 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

number of consecutive days, etc. We have considered the most basic case (case 1) which
only constrains that

• the number of working days of each nurse must be exactly 5.

With the previous information we propose the NRP modelling of Figure 6.4, where we
have as hard constraints the shift covers and the number of nurse working days, and as
soft constraints the nurse preferences.

In the following we report the results of several experiments performed with WSimply
over the set of 5113 chosen instances of the NRP, using a cluster with nodes with CPU
speed 1GHz and 500 MB of RAM, and with a timeout of 600 seconds. We tested the three
solving approaches (dico, yices and core). The times appearing in the tables are for the
core approach, which was the one giving best results on this problem.

Table 6.1 shows the results for the chosen 5113 instances from the N25 set without
homogeneity meta-constraints.

µ σ Time Cost Abs. diff. Rel. diff.
Normal 9.67 1.83 6.46 241.63 7.71 9.42

Table 6.1: Results on 5113 instances from the N25 set, with soft constraints on nurse
preferences (without meta-constaints). µ: mean of means of costs of violated constraints
per nurse; σ: standard deviation of means of costs of violated constraints per nurse; Time:
mean solving time (in seconds); Cost: mean optimal cost; Abs. diff.: mean of differences
between maximal and minimal costs; Rel. diff.: mean of differences between relative
percentual maximal and minimal costs.

We can observe that if we only focus on minimizing the cost of the violated con-
straints, we can penalize some nurses much more than others. For instance, we could
assign the least preferred shifts to one nurse while assigning the most preferred shifts to
others. From the results in Table 6.1, we observe that the mean of absolute differences
is 7.71 while the mean cost per nurse is around 9.67, which shows that the assignments
are not really fair. In order to enforce fairness, we can extend the model of Figure 6.4 by
adding homogeneity meta-constraints over the soft constraints on nurse preferences, as
shown in Figure 6.5.

Table 6.2 shows the results after adding to the model of Figure 6.4 the meta-constraint
of Figure 6.5, with factor F = 5, while Table 6.3 shows the results for the same meta-
constraint with factor F = 10. Notice that this factor represents the maximal allowed
difference between the penalization of the most penalized nurse and the less penalized
nurse. From Table 6.1 we know that the mean of these differences among the chosen
NRP instances is 7.71. The first row (Absolute 5) shows the results for the solved in-
stances (2478 out of 5113) within the timeout. The second row shows the results without

6.6. BENCHMARKING 131

Problem:nrp
Data
int n_nurses;
int n_days;
int n_shift_types;
int covers[n_days, n_shift_types];
int prefs[n_nurses, n_days, n_shift_types];
int min_turns;
int max_turns;

Domains
Dom dshifts = [1..n_shift_types];
Dom dturns = [min_turns..max_turns];
Dom dnurses = [0..n_nurses];

Variables
IntVar nurse_day_shift[n_nurses, n_days]::dshifts;
IntVar nurse_working_turns[n_nurses]::dturns;
IntVar day_shift_nurses[n_days, n_shift_types]::dnurses;

Constraints
%%% Every nurse must work only one shift per day.
%%% This constraint is implicit in this modelling.

%%% The minimum number of nurses per shift and day
%%% must be covered. Variables day_shift_nurses[d,st]
%%% will contain the number of nurses working for
%%% every shift and day.
Forall(d in [1..n_days], st in [1..n_shift_types]) {
Count([nurse_day_shift[n,d]|n in [1..n_nurses]],st,

day_shift_nurses[d,st]);
};
[day_shift_nurses[d,st]>=covers[d,st]|d in [1..n_days],

st in [1..n_shift_types]];
%%% Nurse preferences are desirable but non-mandatory.
%%% Each preference is posted as a soft constraint with
%%% its label (#prefs[n,d,st]) and a violation cost
%%% according to prefs[n,d,st].
Forall(n in [1..n_nurses],d in [1..n_days],st in
[1..n_shift_types]) {
#prefs[n,d,st]:(Not(nurse_day_shift[n,d]=st))
@{prefs[n,d,st]};

};
%%% The minimum and maximum number of working days of
%%% each nurse must be between bounds (i.e. the domain
%%% of nurse_working_turns[n]).
Forall(n in [1..n_nurses]) {
Count([nurse_day_shift[n,d]<>n_shift_types

|d in [1..n_days]],
True, nurse_working_turns[n]);

};

Figure 6.4: WSimply model for the NRP.

the meta-constraint, for the solved instances (i.e., it is like Table 6.1 but restricted to these
2478 instances).

As we can observe, we reduce the absolute difference average from 4.81 to 4.32,
which is a bit more than 10%. In particular, we reduce the absolute difference between
the most penalized nurse and the less penalized nurse in 892 instances out of 2478. In

132 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

%%% Ask for homogeneity with factor F, over the lists of
%%% soft constraints on nurse preferences.
homogeneousAbsoluteWeight([[prefs[n,d,st]|d in [1..n_days],

st in [1..n_shift_types]]|n in [1..n_nurses]],F);

Figure 6.5: WSimply constraints to add to the NRP model in order to ask for homogeneity
with factor F in the solutions.

µ σ Time Cost Cost (TO) Abs. diff. #improved
Absolute 5 8.92 0.96 43.28 222.89 272.93 4.32 892

Normal 8.80 1.07 5.98 220.03 261.94 4.81 -

Table 6.2: Results when adding the homogeneousAbsoluteWeight meta-constraint with
factor 5.Statistics for the 2478 solved instances with a timeout of 600 seconds. µ: mean of
means of costs of violated constraints per nurse; σ: standard deviation of means of costs of
violated constraints per nurse; Time: mean solving time (in seconds); Cost: mean optimal
cost; Cost (TO): mean of best lower bounds for those instances that exceeded the timeout;
Abs. diff.: mean of differences between maximal and minimal costs; #improved: number
of instances with improved absolute difference.

contrast, the average penalization per nurse increases from 8.80 to 8.92, but this is just
1.36%. The average global cost also increases, but only from 220.03 to 222.89. Hence, it
seems reasonable to argue that it pays off to enforce homogeneity in this setting, at least
for some instances. However, when homogeneity is enforced the solving time increases,
since the instances become harder (there are 2635 instances which could not be solved
within the timeout).

The conclusion is that an homogeneity factor F = 5 may be too restrictive. There-
fore, we repeated the experiment but with a factor F = 10. The results are shown in
Table 6.3.

µ σ Time Cost Cost (TO) Abs. diff. #improved
Absolute 10 9.32 1.46 13.86 233.01 285.83 6.29 377

Normal 9.31 1.47 6.16 232.83 280.40 6.35 -

Table 6.3: Results when adding the homogeneousAbsoluteWeight meta-constraint with
factor 10. Statistics for the 4167 solved instances with a timeout of 600 seconds. µ: mean
of means of costs of violated constraints per nurse; σ: standard deviation of means of
costs of violated constraints per nurse; Time: mean solving time (in seconds); Cost: mean
optimal cost; Cost (TO): mean of best lower bounds for those instances that exceeded
the timeout; Abs. diff.: mean of differences between maximal and minimal costs; #im-
proved: number of instances with improved absolute difference.

6.6. BENCHMARKING 133

In this case only 946 out of 5113 could not be solved within the timeout. Although
fewer instances are improved (377) the difference in the solving time really decreases and
the mean of the best lower bounds for the unsolved instances is closer to the optimal value
of the original instances. This suggests that it is possible to find a reasonable balance
between the quality of the solutions and the required solving time with respect to the
original problem.

Depending on the preferences of the nurses, the absolute difference may not be a
good measure to enforce homogeneity. Nurse preferences are weighted with a value be-
tween 1 and 4 (from most desirable to less desirable shifts). Imagine a nurse who tends
to weight with lower values than another. Then, even if this nurse has many preferences
unsatisfied, her total penalization could be lower than the one of other nurses with less
unsatisfied preferences. Therefore, it seems more reasonable to compute the relative dif-
ference, as it allows to compare the relative degree of unsatisfied preferences.

Table 6.4 shows the results for the meta-constraint homogeneousPercentWeight
with factor 6, which means that the relative percentual difference between the most pe-
nalized nurse and the less penalized nurse must be less than or equal to 6. The first
row (Percent 6) shows the results for the solved instances (2109 out of 5113) within the
timeout. The second row shows the results without the meta-constraint for those solved
instances.

µ σ Time Cost Cost (TO) Rel. diff. #improved
Percent 6 9.39 1.10 89.47 234.72 263.06 5.26 1875
Normal 9.14 1.30 5.27 228.56 250.81 7.72 -

Table 6.4: Results when adding the homogeneousPercentWeight meta-constraint with
factor 6. Statistics for the 2109 solved instances with a timeout of 600 seconds. µ: mean
of means of costs of violated constraints per nurse; σ: standard deviation of means of
costs of violated constraints per nurse; Time: mean solving time (in seconds); Cost: mean
optimal cost; Cost (TO): mean of best lower bounds for those instances that exceeded the
timeout; Rel. diff.: mean of differences between relative percentual maximal and minimal
costs; #improved: number of instances with improved relative difference.

The mean of the percent differences is reduced from 7.76 to 5.26, which is almost
32%. In particular, we reduce the percent difference between the most penalized nurse
and the less penalized nurse in 1875 instances out of 2109. The average penalization per
nurse increases from 9.14 to 9.39, just 2.74%, and the average global cost only increases
from 228.56 to 234.72. However, the average solving time increases from 5.27 to 89.47
seconds for the solved instances. In fact, the solving time increases no doubt by much
more than this on average if considering the timed-out instances.

As we did with the experiments for the absolute difference, we have conducted
more experiments, in this case increasing the factor from 6 to 11. The results are re-

134 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

ported in Table 6.5. In this case, only 492 out of 5113 could not be solved within the
timeout. The number of improved instances decreases but the solving time improves.
Therefore, with the homogeneousPercentWeight meta-constraint we can also find
a reasonable balance between the quality of the solutions and the required solving time
with respect to the original problem.

µ σ Time Cost Cost (TO) Rel. diff. #improved
Percent 11 9.62 1.67 33.28 240.38 269.14 8.42 1592

Normal 9.57 1.71 5.51 239.23 264.20 9.04 -

Table 6.5: Results when adding the homogeneousPercentWeight meta-constraint with
factor 11. Statistics for the 4621 solved instances with a timeout of 600 seconds. µ: mean
of means of costs of violated constraints per nurse; σ: standard deviation of means of
costs of violated constraints per nurse; Time: mean solving time (in seconds); Cost: mean
optimal cost; Cost (TO): mean of best lower bounds for those instances that exceeded the
timeout; Rel. diff.: mean of differences between relative percentual maximal and minimal
costs; #improved: number of instances with improved relative difference.

6.6.2 Soft Balanced Academic Curriculum Problem

The Balanced Academic Curriculum Problem (BACP) consists in assigning courses to
academic periods satisfying prerequisite constraints between courses and balancing the
workload (in terms of credits) and the number of courses of each period [CM01, HKW02].
In particular, given

• a set of courses, each of them with an associated number of credits representing the
academic effort required to successfully follow it,

• a set of periods, with a minimum and maximum bound both on the number of
courses and number of credits assigned to each period,

• and a set of prerequisites between courses stating that, if a course c has as prereq-
uisite a course d, then d must be taught in a period previous to the one of c,

the goal of the BACP is to assign a period to every course satisfying the constraints on
the bounds of credits and courses per period, and the prerequisites between courses. In
the optimization version of the problem, the objective is to improve the balance of the
workload (amount of credits) assigned to each period. This is achieved by minimizing the
maximum workload of the periods.

There may be situations where the prerequisites make the instance unsatisfiable.
We propose to deal with unsatisfiable instances of the decision version of the BACP by

6.6. BENCHMARKING 135

relaxing the prerequisite constraints, i.e., by turning them into soft constraints. We allow
the solution to violate a prerequisite constraint between two courses but then, in order to
reduce the pedagogical impact of the violation, we introduce a new hard constraint, the
corequisite constraint, enforcing both courses to be assigned to the same period. We call
this new problem Soft Balanced Academic Curriculum Problem (SBACP).

The goal of the SBACP is to assign a period to every course minimizing the total
amount of prerequisite constraint violations and satisfying the conditionally introduced
corequisite constraints, and the constraints on the number of credits and courses per pe-
riod.

In Figure 6.6 we propose a modelling of the SBACP using WSimply. In order to
obtain instances of the SBACP, we have over-constrained the BACP instances from the
MiniZinc [NSB+07] repository, by reducing to four the number of periods, and propor-
tionally adapting the bounds on the workload and number of courses of each period. With
this reduction on the number of periods, we have been able to turn into unsatisfiable all
these instances.

In the following we present several experiments with WSimply over the obtained
SBACP instances, using a 2.6GHz Intel R© CoreTM i5, with a timeout of 600 seconds.

The best solving approach for this problem in our system is yices, closely followed
by dico. The core solving approach is not competitive for this problem. The performance
of the WPM1 algorithm strongly depends on the quality of the unsatisfiable cores the SMT
solver is able to return at every iteration. This quality has to do, among other details, with
the size of the core, the smaller the better, and the overlapping of the cores, the lower
the better. For the SBACP instances, the SMT solver tends to return cores which involve
almost all the soft clauses, i.e., they are as big as possible and they completely overlap.
This clearly degrades the performance of the WPM1 algorithm.

Columns two to five of Table 6.6 show the results obtained by WSimply on our 28
instances. The second column shows the required CPU time in seconds (with the yices
solving approach); the third column indicates the total amount of prerequisite violations,
and the fourth and fifth columns show the maximum and minimum number of prereq-
uisite constraint violations per course. This maximum and minimum exhibit the lack of
homogeneity of each instance. Column six shows the time obtained by CPLEX solving
the SBACP instances.

As we can observe, there exist instances which have courses with three, four, and
even five prerequisite constraint violations, as well as courses with zero violations. It
could be more egalitarian to obtain solutions where the difference in the number of pre-
requisite constraint violations between courses is smaller. Thanks to the meta-constraint
homogeneousAbsoluteNumber we can easily enforce this property of the solutions,
as shown in Figure 6.7.

136 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

Problem:sbacp
Data

int n_courses;
int n_periods;
int load_per_period_lb;
int load_per_period_ub;
int courses_per_period_lb;
int courses_per_period_ub;
int course_load[n_courses];
int n_prereqs;
int prereqs[n_prereqs,2];

Domains
Dom dperiods=[1..n_periods];
Dom dload=[load_per_period_lb..load_per_period_ub];
Dom dcourses=[courses_per_period_lb..courses_per_period_ub];

Variables
IntVar course_period[n_courses]::dperiods;
IntVar period_load[n_periods]::dload;
IntVar period_courses[n_periods]::dcourses;

Constraints
%%% Hard Cosntraints
%%%
%%% Every course must be assigned to exactly one period.
%%% This constraint is implicit in this modelling.
%%%
%%% The number of courses per period must be within bounds
%%% (i.e. the domain of period_courses[p]).

Forall(p in [1..n_periods]) {
Count([course_period[c]|c in [1..n_courses]],p,period_courses[p]);

};
%%% The workload in each period must be within bounds
%%% (i.e. the domain of period_load[p]).

Forall(p in [1..n_periods]) {
Sum([If_Then_Else(course_period[c]=p)(course_load[c])(0)

|c in [1..n_courses]],period_load[p]);
};

%%% If a prerequisite is violated then the corequisite constraint is mandatory.
Forall(np in [1..n_prereqs]) {
Not(pre[np])
Implies(course_period[prereqs[np,1]]=course_period[prereqs[np,2]]);

};
%%% Soft Constraints
%%%
%%% Prerequisites are desirable but non-mandatory.
%%% Each prerequisite (np) is posted as a soft constraint with
%%% its label (pre[np]) and a violation cost of 1.

Forall(np in [1..n_prereqs]) {
#pre[np]:(course_period[prereqs[np,1]]>course_period[prereqs[np,2]])@1;

};

Figure 6.6: WSimply model for the SBACP.

Also in Table 6.6, we show the results obtained by WSimply on these instances
with homogeneity factor F = 1 (second block of columns) and F = 2 (third block of
columns). The homogeneity factor bounds the difference in the violation of prerequisite
constraints between courses (1 and 2 in our experiments). For homogeneity with factor 1,
there are 5 unsolvable instances and 9 instances that achieve homogeneity by increasing

6.6. BENCHMARKING 137

Homogeneity factor 1 Homogeneity factor 2
N. Time Cost V. per c. CPLEX Time Cost V. per c. Time Cost V. per c.

Max Min Max Min Max Min
1 0.63 19 2 0 0.45 0.26 21 1 0 0.75 19 2 0
2 4.27 16 2 0 0.39 0.27 42 2 1 1.61 16 2 0
3 0.78 17 2 0 0.83 0.26 19 1 0 1.7 17 2 0
4 32.93 28 4 0 0.69 0.26 unsatisfiable 3.69 28 2 0
5 0.97 15 2 0 0.43 0.25 39 2 1 0.86 15 2 0
6 0.56 10 2 0 0.43 0.31 10 1 0 0.47 10 2 0
7 1.35 19 2 0 0.50 0.28 40 2 1 0.86 19 2 0
8 2.63 21 3 0 0.46 0.24 unsatisfiable 0.56 23 2 0
9 5.44 27 3 0 0.92 0.22 unsatisfiable 1.26 27 2 0

10 3.43 21 3 0 0.57 0.28 39 2 1 3.07 21 2 0
11 10.23 22 3 0 0.59 0.29 38 2 1 2.29 22 2 0
12 18.11 27 3 0 0.66 0.3 47 2 1 4.3 27 2 0
13 1.29 14 3 0 0.32 0.28 17 1 0 0.72 15 2 0
14 0.47 17 2 0 0.40 0.44 33 2 1 0.34 17 2 0
15 0.17 6 2 0 0.20 0.45 28 2 1 0.26 6 2 0
16 1.61 15 2 0 0.31 0.29 15 1 0 1.1 15 2 0
17 10.72 23 5 0 0.66 0.24 unsatisfiable 0.24 unsatisfiable
18 2.93 20 3 0 0.54 0.23 unsatisfiable 1.09 20 2 0
19 0.43 16 2 0 0.37 0.25 39 2 1 0.41 16 2 0
20 3.71 15 2 0 0.59 0.49 15 1 0 3.58 15 2 0
21 1.93 14 2 0 0.47 0.25 20 1 0 0.61 14 2 0
22 0.74 15 2 0 0.43 0.31 17 1 0 0.55 15 2 0
23 2.18 20 1 0 0.63 0.28 20 1 0 2.33 20 1 0
24 0.22 7 2 0 0.30 0.32 9 1 0 0.3 7 2 0
25 3.03 13 2 0 0.33 0.52 14 1 0 1.58 13 2 0
26 0.23 5 1 0 0.21 0.38 5 1 0 0.35 5 1 0
27 1.09 17 2 0 0.43 0.25 21 1 0 1.48 17 2 0
28 0.19 10 2 0 0.28 0.26 11 1 0 0.34 10 2 0
T. 1.48 451 0.44 0.28 209 0.86 3

Table 6.6: Results of the experiments on the SBACP instances without and with homo-
geneity. Numbers in boldface denote instance improvements maintaining the same cost.
The last row shows the median of CPU solving time and the sum of the costs found; in
the homogeneity cases we show the aggregated increment of the cost with respect to the
original instances.

the minimum number of violations per course (from 0 to 1) with, in addition, a dramatic
increase on the total number of violations (+209). Experiments with homogeneity factor
2 give different results on 9 instances, all of which, except one becoming unsatisfiable,
are effectively improved by reducing the maximum number of violations per course, and
slightly increasing the total number of violations (+3). Interestingly, the solving time has
been improved when adding homogeneity.

138 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

%%% We enforce homogeneity with factor F, over the lists of
%%% soft constraints on prerequisites for each course.
homogeneousAbsoluteNumber([[pre[np]|np in [1..n_prereqs],

prereqs[np,1]=c]|c in [1..n_courses]],F);

Figure 6.7: WSimply constraints to add to the model for the SBACP in order to ask for
homogeneity with factor F in the solutions.

By way of guidance a comparison between WSimply and CPLEX has been done
only over the basic SBACP instances since CPLEX doesn’t have any meta-constraint.
WSimply exhibits a reasonable good performance taking 1.48 seconds in median against
0.44 seconds of CPLEX.

Homogeneity factor 2 MLevel: prereq, workload MLevel: prereq, wl, courses
N. c./p. wl/p. c./p. wl/p. c./p. wl/p.

Time Min Max Min Max Time Min Max Min Max Time Min Max Min Max
1 0.75 11 14 51 87 23.6 12 14 65 66 32.68 12 13 65 66
2 1.61 12 13 68 77 11.06 11 15 70 71 9.33 12 13 70 71
3 1.7 12 14 62 72 23.59 11 15 67 68 17.00 11 14 66 68
4 3.69 11 17 52 112 16.09 11 15 74 77 5.29 12 13 72 77
5 0.86 11 15 41 81 6.2 9 16 59 63 8.67 9 15 58 63
6 0.47 11 15 49 86 2.35 12 13 59 60 2.93 12 13 59 60
7 0.86 6 17 32 104 9.73 11 14 65 66 59.32 10 14 65 66
8 0.56 9 16 43 86 1.92 10 16 58 66 2.66 12 13 61 66
9 1.26 8 16 39 109 15.28 12 13 74 77 5.00 12 13 74 77

10 3.07 8 15 33 79 26 11 16 58 66 12.19 12 14 57 66
11 2.29 10 15 46 88 12.26 11 14 68 68 45.67 12 13 68 68
12 4.3 6 16 37 100 97.92 10 17 69 70 195.52 10 17 69 70
13 0.72 6 18 44 98 10.16 10 15 71 72 16.06 11 13 71 72
14 0.34 9 18 40 106 1.18 10 16 65 69 1.79 10 16 65 69
15 0.26 5 16 46 92 13.05 11 16 72 72 46.65 11 13 72 72
16 1.1 9 17 50 79 61.86 11 14 61 63 108.07 12 13 61 63
17 0.24 unsatisfiable 0.59 unsatisfiable 0.67 unsatisfiable
18 1.09 10 15 62 92 15.25 12 13 74 75 19.96 12 13 74 75
19 0.41 8 19 51 99 8.65 11 14 67 68 15.94 11 13 67 68
20 3.58 10 16 54 112 53.86 10 14 70 75 38.8 10 14 70 75
21 0.61 9 18 42 94 2.27 11 14 65 65 2.51 12 13 65 65
22 0.55 10 16 57 105 2.18 11 14 75 77 1.76 12 13 75 77
23 2.33 20 25 25 128 103.47 11 15 67 68 173.60 11 13 67 68
24 0.3 12 14 57 81 0.71 12 13 63 78 2.65 12 13 64 78
25 1.58 9 16 44 87 31.86 12 14 70 70 26.15 12 13 70 70
26 0.35 5 18 24 102 9.28 11 14 51 78 8.01 10 14 61 78
27 1.48 10 15 57 96 8.19 11 15 81 81 23.60 11 14 81 81
28 0.34 9 15 42 101 2.3 11 15 69 70 4.28 11 14 68 70
T. 0.86 439 2553 10.61 -654 14.07 -27

Table 6.7: Results when adding the multiLevel Adding the multiLevel meta-constraint
to deal with the optimization version of the SBACP, minimizing the maximum workload
per period and the maximum number of courses per period. Numbers in boldface denote
improvements. Timeout is 600s. The last row shows the median of the solving time and
the improvements on the aggregated maximums of the workload and number of courses
per period thanks to the multiLevel meta-constraint.

6.6. BENCHMARKING 139

The first block of columns of Table 6.7 show the minimum and maximum number of
courses per period and the minimum and maximum workload per period, for each consid-
ered instance, when asking for homogeneity with factor 2 on the number of prerequisite
violations.7 As we can see, the obtained curricula are not balanced enough with respect
to the number of courses per period and the workload per period. Therefore, we propose
to consider the optimization version of SBACP by extending the initial modelling and
using the multiLevel meta-constraint in order to improve the balancing in the work-
load and the number of courses per period (recall that the homogeneity meta-constraint
on the number of violations introduced so far is hard). In Figure 6.8 we show how we
have implemented this extension for the workload (for the number of courses it can be
done analogously). We also must set to undefined the weights of the prerequisite soft
constraints to let the multiLevel meta-constraint to compute them.

int load_distance=load_per_period_ub-load_per_period_lb;
%%% load_bound is the upper bound of the load of all periods.
IntVar load_bound::dload;
Forall(p in [1..n_periods]) {
period_load[p]=<load_bound;
};
%%% We post as soft constraints each unit of distance
%%% between load_bound and load_per_period_lb.
Forall(d in [1..load_distance]) {
#bala[d]:(load_bound<(load_per_period_lb + d))@{_};
};
%%% We compose the new objective function with these two
%%% components, being more important the prerequisites
%%% than the minimization of the maximum load per period.
multiLevel([[pre[np]|np in [1..n_prereqs]],

[bala[d]|din [1..load_distance]]]);

Figure 6.8: Extension to minimize the maximum workload (amount of credits) of periods.

The idea of this encoding is to minimize the maximum workload per period using
soft constraints. Column eleven (wl/p. Max) shows the improvement on the maximum
workload per period obtained when introducing its minimization with the multiLevel
meta-constraint. Column fourteen (c./p. Max) shows the improvement on the the max-
imum number of courses per period obtained when adding its minimization as the next
level in the multiLevel meta-constraint.

7We have chosen homogeneity factor 2 to continue with the experiments since, with factor 1, the number
of violations increases in almost all instances.

140 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

6.7 Extensional WCSP

Most of the existing WCSP solvers are developed for solving extensional WCSPs where
the constraints are specified by means of tuples of variables values denoting goods or
no-goods. This is not the purpose of WSimply, designed to solve intensional WCSP.
Nevertheless, for the sake of completeness we have implemented a system to encode
extensional WCSPs into SMT. Thanks to this system we are able to compare the efficiency
of SMT with some WCSP solvers.

Basically our system deals with tuples of goods using a support encoding. We are
considering extensional WCSP instances described in XCSP.

Example 26 Let us consider the following relation R2 extensionally describing a soft
constraint with 6 no-goods tuples (in XCSP format):

<relation name="R2" arity="2" nbTuples="6" semantics="soft"
defaultCost="0">

5:0 0|0 3|1 1|2 2|3 0|3 3
</relation>

The encoding into WSMT, used in our system, of the constraint resulting of applying R2
on the two variables X0 and X1 with domain {0 . . . 3}, is the following:

domain encoding


(X0 ≥ 0,∞)

(X0 ≤ 3,∞)

(X1 ≥ 0,∞)

(X1 ≤ 3,∞)

goods encoding


(X0 6= 0 ∨X1 = 1 ∨X1 = 2, 5)

(X0 6= 1 ∨X1 = 0 ∨X1 = 2 ∨X1 = 3, 5)

(X0 6= 2 ∨X1 = 0 ∨X1 = 1 ∨X1 = 3, 5)

(X0 6= 3 ∨X1 = 1 ∨X1 = 2, 5)

As solving mechanism, we have used the same three approaches of WSimply.
We have run our experiments on machines with the following specifications. Operating
system: Rocks Cluster 5.2 Linux 2.6.18; processor: AMD Opteron 242 Processor 1.5
GHz; memory: 450 MB; cache: 1024 KB. The instances that we have used are from the
WCSP benchmarks of the http://www.cril.univ-artois.fr/˜lecoutre/
benchmarks.html repository. The instances are in XCSP 2.1 format (see [RL09]).

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

6.8. SUMMARY 141

Table 6.8 presents the percentage of solved instances for each of the 17 families
of instances with a timeout of 1 hour. toulbar [DGSA] is the best performing solver.
However our SMT approaches perform reasonably well. Overall, the average percentage
of instances solved by toulbar is 87%, while for the whole SMT approach is 79%. For the
celar and pedigree family we found that the extensional representation in SMT consumed
too much memory according to the restrictions of our system.

Instance set # toulbar yices dico core
academics 15 93 93 86 93
bwt 10 100 100 100 100
celar 15 93 0 0 0
coloring 22 77 45 40 63
depot 4 100 100 100 100
dimacs 25 92 100 100 100
driver 22 100 100 100 72
graphs 10 30 20 0 10
jnh 44 100 100 100 79
logistics 4 100 100 100 100
mprime 13 92 92 92 92
pedigree 19 100 73 63 73
rover 4 100 100 100 100
satellite 7 100 100 100 57
spot5 21 23 14 19 28
warehouse 55 85 0 0 67
zenotravel 8 100 100 100 100

Table 6.8: Comparison between WSMT and Toulbar, showing the number of instances
and the percentage of solved instances (timeout of 1h).

6.8 Summary

We have introduced a new framework, called WSimply, which fills the gap between
CSP and SMT regarding over-constrained problems. A new modelling language has
been introduced for the intensional description of over-constrained problems. Our sys-
tem supports some of the best-known meta-constraints from the literature and news ones.
Meta-constraints increase the capability to easily model several real-world problems.

The usage of SMT solvers in our solving strategies is a promising choice, since sev-
eral constraints, once described intensionally, can be potentially more efficiently handled.
We have incorporated adaptations of UNSAT core based algorithms from the MaxSAT

142 CHAPTER 6. WEIGHTED CSP AND META-CONSTRAINTS

community to our system.

We have provided the results of some experimentation showing the good perfor-
mance of solving WCSP with SMT and finally we have described an encoding of exten-
sional WCSPs into SMT.

Chapter 7

Scheduling

In Chapters 5 and 6 we have seen that SMT is a good approximation for solving CSP, COP
and WCSP. It is competitive with the best approaches (finite domain constraint program-
ming systems, MILP, SAT, lazy clause generation, . . .). Its performance is really good in
almost all types of problems, but especially in problems with a strong Boolean compo-
nent with integer arithmetic. Therefore, SMT is very well suited for scheduling problems.
In scheduling problems there is an important integer arithmetic component: precedence
delays between activities, sums to verify that activities running at a certain time do not
exceed an specified resource capacity, etc. Likewise, incompatibilities and precedences
between activities, as well as many other details, can be encoded with Boolean formu-
las (possibly using arithmetic predicates as atoms). Another factor that makes this type
of problem very suitable for SMT is that, when searching for a solution, many conflicts
arise, and hence many things can be learned in the form of lemmas: a certain activity
must necessarily go after another (due to a combination of precedence requirements and
resource consumptions), etc.

In this chapter we show that SMT is not only competitive with generic CP tools,
but also that algorithms built on top of an SMT solver can have equal or better perfor-
mance than other ad hoc programs based on other approaches and designed specifically
for a given problem. As an example we have chosen the resource-constrained project
scheduling problem (RCPSP), which is the scheduling problem more widely discussed in
the literature. We show that adequate encodings and algorithms built on top of an SMT
solver can result in an extraordinary approach.

Since the RCPSP is an optimization problem there exist at least two natural ap-
proaches for solving it with SMT: on the one hand, we can simply iteratively encode
the RCPSP instance into successive SMT instances that bound the optimal makespan; on
the other hand, we can encode the RCPSP into a Weighted SMT instance where the soft
clauses encode the objective function.

143

144 CHAPTER 7. SCHEDULING

We have built a tool, named rcpsp2smt,1 which is able to solve RCPSP instances
using the Yices (Weighted)SMT solver [DdM06b]. Apart from using the Yices default
algorithm for solving the Weighted SMT instances we have implemented, through the
Yices API, an algorithm based on unsatisfiable cores [ABL09, MSP09] presented in Sub-
section 6.5.

We first briefly review the state-of-the-art in RCPSP solving (Section 7.1) to then
formally introduce the problem and its notation (Section 7.2). Next we describe our tool
rcpsp2smt with special emphasis in the preprocessing (Section 7.3) and optimization
phases (Section 7.4). In Section 7.5 we describe the four different types of encodings
that we have implemented, with a large number of variants for each, as well as many
formulations of propagators and redundancy constraints. For each of the encodings we
widely discuss the advantages and disadvantages and try to reason why they improve
or worsen the efficiency of the SMT solver. In Section 7.5.5 we present a entirely new
event-based encoding for the RCPSP. Finally, we present an extensive interpretation of
the results obtained (Section 7.6) and include a summary of the contributions presented
in this chapter (Section 7.7).

The content of this chapter is part of our publication Satisfiability modulo theories:
An efficient approach for the resource-constrained project scheduling problem [ABP+11b].

This chapter corresponds to the fourth objective of the thesis (to provide an SMT
based system being competitive with state-of-the-art methods for scheduling problems)
and provides the eighth contribution.

7.1 State-of-the-Art in the RCPSP

The Resource Constrained Project Scheduling Problem (RCPSP) consists in scheduling a
set of non-preemptive activities with predefined durations and demands on each of a set
of renewable resources, subject to partial precedence constraints. Normally the goal is
to minimize the makespan. This is one of the most general scheduling problems that has
been extensively studied in the literature. Some surveys published in the last years include
[HRD98, BDM+99, KP01, HL05] and, more recently, [HB10, KALM11]. The RCPSP is
NP-hard in the strong sense [BMR88, BLK83]. However, many small instances (with up
to 50 activities) are usually tractable within a reasonable time.

Many approaches have been considered in order to solve the RCPSP: constraint
programming (CP) [LM08, Bap09], Boolean satisfiability (SAT) [Hor10], mixed integer
linear programming (MILP) [KALM11], branch and bound algorithms (BB) [DPPH00]
and others [DV07]. A hybrid approach using SAT and CP lazy clause generation technol-

1rcpsp2smt is available at http://ima.udg.edu/recerca/lap/rcpsp2smt/

http://ima.udg.edu/recerca/lap/rcpsp2smt/

7.2. THE RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM 145

ogy [SFSW09, SFSW10] (see Section 4.6) has shown very good results.

In the literature there are no RCPSP solvers based on SMT. This is the first attempt.
The only comparable approach is the new Lazy fd which, as mentioned in Section 4.6,
uses a SAT solver together with a finite domain solver, being the best known approach for
the RCPSP. We compare our results with the results of that approach.

We use instances from the web page http://129.187.106.231/psplib.
This page contains a library of different instance sets, as well as optimal and heuristic
solutions, for various types of resource constrained project scheduling problems. We also
compare our results with the best published results on this page.

7.2 The Resource-Constrained Project Scheduling Prob-
lem

The RCPSP2 is defined by a tuple (V, p, E,R,B, b) where:

• V = {A0, A1, . . . , An, An+1} is a set of activities. A0 and An+1 are dummy activi-
ties representing by convention, the starting and the finishing activities respectively.
The set of non-dummy activities is defined by A = {A1, . . . , An}.

• p ∈ Nn+2 is a vector of durations. pi denotes the duration of activity i, with p0 =
pn+1 = 0 and pi > 0, ∀i ∈ {1, . . . , n}.

• E is a set of pairs representing precedence relations, thus (Ai, Aj) ∈ E means
that the execution of activity Ai must precede that of activity Aj , i.e., activity Aj

must start after activity Ai has finished. We assume that we are given a precedence
activity-on-node graph G(V,E) that contains no cycles; otherwise the precedence
relation is inconsistent. Since the precedence is a transitive binary relation, the
existence of a path inG from the node i to node j means that activity imust precede
activity j. We assume that E is such that A0 is a predecessor of all other activities
and An+1 is a successor of all other activities.

• R = {R1, . . . , Rm} is a set of m renewable resources.

• B ∈ Nm is a vector of resource availabilities. Bk denotes the available amount of
each resource Rk.

• b ∈ N(n+2)×m is a matrix of the demands of the activities for resources. bi,k repre-
sents the amount of resourceRk used during the execution ofAi. Note that b0,k = 0,
bn+1,k = 0 and bi,k ≥ 0, ∀i ∈ {1, . . . , n}, ∀k ∈ {1, . . . ,m}.

2This problem is denoted as PS|prec|Cmax in [BDM+99] and m, 1|cpm|Cmax in [HL05].

http://129.187.106.231/psplib

146 CHAPTER 7. SCHEDULING

0

0, 0, 0

1

1, 3, 2

0

2

2, 1, 1

0

3

1, 1, 1

2

4

1, 2, 1
4

5

1, 2, 1

2

6

2, 1, 1

2

1

7

3, 2, 2

3

3

8

0, 0, 0

2

3

Task time duration

Demand on each resource

1
2

3

4

5
6

7
2
1
0 time

Resource 3, availability = 2

1
2

3

4

5

6
7

3

2
1
0 time

Resource 2, availability = 3

1
2

3

4

5

6
7

3

2
1
0 time

Resource 1, availability = 3

Figure 7.1: An example of RCPSP [LM08]

A schedule is a vector S = (S0, S1, . . . , Sn, Sn+1) where Si denotes the start time
of each activity Ai ∈ V . We assume that S0 = 0. A solution of the RCPSP problem
is a non-preemptive (an activity cannot be interrupted once it is started) schedule S of
minimal makespan Sn+1 subject to the precedence and resource constraints:

(7.1) minimize Sn+1

subject to:

Sj − Si ≥ pi ∀(Ai, Aj) ∈ E(7.2) ∑
Ai∈At

bi,k ≤ Bk ∀Bk ∈ B, ∀t ∈ H(7.3)

A schedule S is feasible if it satisfies the generalized precedence constraints (7.2) and the
resource constraints (7.3) where At = {Ai ∈ A | Si ≤ t < Si + pi} represents the set

7.3. PREPROCESSING 147

of non-dummy activities in process at time t, the set H = {0, . . . , T} is the scheduling
horizon, and T (the length of the scheduling horizon) is an upper bound for the makespan.

In the example of Figure 7.1, three resources and seven (non-dummy) activities are
considered. Each node is labeled with the number of the activity it represents. The dura-
tions of the activities are indicated in the on-going arcs, and the resource consumptions
are indicated in the labels next to the nodes. The upper part of the picture represents
therefore the instance to be solved, while the bottom part gives a feasible solution using
Gantt charts. For each resource, the horizontal axis represents the time and the vertical
axis represents the consumption.

In the following we describe the tool that we have developed, named rcpsp2smt,
to solve the RCPSP using an SMT solver.

7.3 Preprocessing

The input of rcpsp2smt is an RCPSP instance in rcp or sch format,3 which is pre-
processed in order to build a more suitable instance for our solving method. After the
preprocessing phase, rcpsp2smt searches for an optimal solution as described in Sec-
tion 7.4.

In the preprocessing phase we can compute an extended precedence set, lower and
upper bounds for the makespan,4 time windows for each activity and a matrix of incom-
patibilities between activities. The suitability of each preprocess calculation for each
encoding is discussed in Section 7.6.

Extended Precedence Set

Since a precedence is a transitive relation, we can compute the minimum precedence
between each pair of activities inE. For this calculation we use theO(n3) Floyd-Warshall
algorithm on the graph defined by the precedence relation E labeling each arc (Ai, Aj)
with the duration pi. This extended precedence set is namedE∗ and contains, for each pair
of activities Ai and Aj such that Ai precedes Aj , a tuple of the form (Ai, Aj, li,j) where
li,j is the length of the longest path from Ai to Aj . Note also that, if (Ai, Ai, li,i) ∈ E∗

for some Ai and li,i > 0, then there is a cycle in the precedence relation and therefore the
problem is inconsistent and has no solution.

3RCPSP formats from PSPLib [KS97].
4End time of the schedule.

148 CHAPTER 7. SCHEDULING

Lower Bound

A lower bound LB of the makespan is a known time at which the last activity An+1

cannot start before. There are different methods for computing lower bounds (see [KS99,
MMRB98]). We have implemented two of them:

• LB1: Critical path bound. This is the most obvious lower bound. To compute it,
we ignore the capacity restrictions. Then, the minimal project duration is the length
of the critical path in the project network. The critical path is the longest path
between the initial activity A0 and the final activity An+1 in the graph of prece-
dences. For instance, in Figure 7.1 the critical path is [A0, A2, A4, A6, A7, A8] and
has length 10. Note that we can easily know the length of this path if we have
already computed the extended precedence set since we only need to obtain l0,n+1

from (A0, An+1, l0,n+1) ∈ E∗.

• LB2: Capacity bound. To compute this bound, we ignore the precedence restric-
tions. Its value is the maximum of the division of the total requirement for each
resource, by the capacity of the resource (rounded up to the next integer). The addi-
tional cost to compute this lower bound isO(nm) (being n the number of activities
and m the number of resources). For instance, in the example of Figure 7.1 the
capacity bound of resource 3 is 11.

LB2 = max{d(
∑
Ai∈A

bi,k ∗ pi)/Bke | Bk ∈ B}

We set our computed lower bound to LB = max{LB1,LB2}.

Upper Bound

An upper bound UB of the makespan is a known time at which the last activity An+1 can
start. We have considered two possibilities for the UB .

• The trivial upper bound is simply the sum of the duration of all the activities:

UB =
∑
Ai∈A

pi

• The heuristic upper bound method consists in using a fast heuristic method to find a
(presumably not optimal) solution and using its makespan as the upper-bound. The
heuristic that we have used is the parallel scheduling generation scheme (parallel
SGS) algorithm proposed in [BB82] and described in [Kol96, HK00, KH06].

7.3. PREPROCESSING 149

The parallel method for n activities consists of at most n stages in each of which
a set of activities is scheduled. Each stage s is associated with a schedule time ts
(where tm ≤ ts for m ≤ s). There are three activity sets:

– Complete set C: activities scheduled, which are completed up at the schedule
time ts.

– Active set A: activities scheduled, but which are at the schedule time ts still
active.

– Decision set D: activities not scheduled which are available for scheduling
w.r.t. precedence and resource constraints.

Each stage consists of two steps:

– Determine the new ts: the earliest completion time of activities in the active
set A. The activities with a finish time equal to the new ts are removed from
A and put into C.

– One activity from D is selected with a priority rule (in our case the activity
with smallest label) and scheduled to start at the current schedule time. The
set D is recalculated. This step is repeated until D is empty.

The method terminates when all activities are scheduled.

For instance, in the example of Figure 7.1, the trivial upper bound is 22 and the one
obtained with the heuristic method is 13.

Time Windows

We can reduce the domain of each variable Si ∈ {S1, . . . , Sn, Sn+1} (start time of activity
Ai), that initially is {0 ..UB − pi}, by computing its time window. The time window of
activity Ai is [ESi, LSi], being ESi the earliest start time and LSi the latest start time. To
compute the time window we use the lower and upper bound and the extended precedence
set as follows:

For activities Ai, 1 ≤ i ≤ n,

ESi = l0,i (A0, Ai, l0,i) ∈ E∗
LSi = UB − li,n+1 (Ai, An+1, li,n+1) ∈ E∗

and, for activity An+1,
ESn+1 = LB LSn+1 = UB

For instance, in the example of Figure 7.1, activity A4 has time window [4, 16].

Note that, if E∗ has been successfully computed, then l0,i ≥ 0 for all (A0, Ai, l0,i) ∈
E∗ and li,n+1 ≥ pi for all (Ai, An+1, li,n+1) ∈ E∗.

150 CHAPTER 7. SCHEDULING

Incompatibility

We compute a matrix of Booleans I , where each element I[i, j] (noted as Ii,j) is true if
the activity Ai and the activity Aj cannot overlap in time. The incompatibility can occur
for two reasons:

• Precedence. There exists a precedence constraint between Ai and Aj , that is,
(Ai, Aj, li,j) ∈ E∗ or (Aj, Ai, lj,i) ∈ E∗.

• Resources. For some resource Rk, the sum of the demands of the two activities Ai

and Aj is greater than the resource capacity Bk: ∃Rk ∈ R s.t. bi,k + bj,k > Bk.

For instance, in the example of Figure 7.1, activityA4 is incompatible with activities
A0, A2, A6, A7 and A8 due to the precedences, and with activities A1, A5 and A7 due to
resource demands.

This matrix of incompatibilities is symmetric, and the additional cost for its com-
putation is O(n2m).

Note that we could compute incompatibilities due to resource demands between
subsets of activities in general (i.e., not restricted to only two activities). We have explored
this approximation for subsets of size bigger than two but the gain in efficiency has been
almost zero or even negative, in all encodings and solving methods.

7.4 Solving

We follow two approaches to solve the RCPSP with SMT solvers, similarly as we do in
Subsection 6.5.5. Both approaches share the constraints derived from the preprocessing
steps, and the ones from Equation (7.2) and (7.3) modelled as Section 7.5 describes. The
difference consists on how we treat the objective function.

On the one hand, we implement an ad hoc search procedure which calls the SMT
solver successively constraining the domain of the variable Sn+1, by adding a constraint
Sn+1 ≤ bound (where bound is a constant such that LB ≤ bound ≤ UB). The value of
bound at each call to the solver depends on the chosen strategy. In fact, this procedure
is almost the same than Algorithm 14 of Subsection 5.4.4. In our experiments we have
considered the following bounding strategies:

• dichotomic (dico): the value of bound is set to b(LB +UB)/2c. If, after adding the
constraint Sn+1 ≤ bound, the solver is able to find a model, UB is set to Sn+1 (note
that when we get a satisfiable answer, we can eventually improve our upper bound
since the value of Sn+1 can be strictly smaller than bound); otherwise LB is set to

7.4. SOLVING 151

bound+ 1. Then, we compute the new bound for the next call with the updated LB
or UB . The process ends when UB and LB converge to the same value.

• linear-down (linear): the value of bound is set to UB − 1. If, after adding the
constraint Sn+1 ≤ bound, the solver is able to find a model, UB is set to Sn+1 and
we compute the new bound for the next call with the updated UB ; otherwise the
process ends.

• hybrid (hybrid): this strategy consists in following the dichotomic one until a cer-
tain (parameterizable) threshold on the difference of UB and LB is reached; then
the system shifts to the linear-down strategy.

On the other hand, some SMT solvers, like Yices, can solve Weighted SMT in-
stances. Weighted SMT allows us to represent optimization problems. We just need to
transform the objective function into a set of soft constraints, and keep the rest of the
constraints as hard. In order to translate the objective function, we can simply enumer-
ate all its possible values. For example, taking into account the RCPSP in Figure 7.1,
where LB = 11 and UB = 22, we add the following set of soft constraints: {(Sn+1 ≤
11, 1), (Sn+1 ≤ 12, 1), . . . , (Sn+1 ≤ 22, 1)}. Each soft constraint is represented by a pair
(C,w) where C is a constraint and w the weight (or cost) of falsifying C. We can obtain a
more compact encoding by considering the binary representation of Sn+1. Following our
example, we would add a new hard constraint, 1 · b0 + 2 · b1 + 4 · b2 + 8 · b3 + LB = Sn+1,
where bi are integer variables, a new set of hard constraints {bi ≥ 0, bi ≤ 1 | 0 ≤ i ≤ 3}
and the set of soft constraints {(b0 = 0, 1), (b1 = 0, 2), (b2 = 0, 4), (b3 = 0, 8)}. The re-
sulting instance can be solved by any SMT solver supporting Weighted SMT like, as said,
Yices. However, since this is yet an immature research topic in SMT, we have extended
the Yices framework by incorporating Weighted MaxSAT algorithms. In particular, we
have implemented algorithms based on the detection of unsatisfiable cores. The perfor-
mance of these algorithms heavily depends on the quality of the cores.

In our experiments we have considered the following Weighted SMT solving meth-
ods:

• Yices (yices): this method is the one directly provided by Yices for Weighted SMT
instances.

• Weighted PM1 (wpm1): this method is an adaptation of the satisfiability test based
algorithm for MaxSAT described in [ABL09], using the enumeration of the possible
values of the objective function (see Subsection 6.5.5 and Algorithm 15).

• Weighted PM1 binary (wbo): this method is an adaptation of the satisfiability test
based algorithm for MaxSAT described in [MSP09], using the binary representation
of the objective function.

152 CHAPTER 7. SCHEDULING

7.5 Encodings

SAT modulo linear integer arithmetic allows us to directly express all the constraints of
the following encodings, since we can logically combine arithmetic predicates.5 The four
encodings we propose are inspired by existing ones, but conveniently adapted to SMT.
Moreover, some refinements are introduced considering time windows, incompatibilities,
and extended precedences. We also add redundant constraints for better propagation. Fi-
nally, we have completely reformulated the event-based modelling (see Subsection 7.5.5),
obtaining much better performance than with the original one (see Subsection 7.5.4).

Since a schedule is a vector S = (S0, S1, . . . , Sn, Sn+1) where Si denotes the start
time of each activity Ai ∈ V , in all encodings we use a set {S0, S1, . . . , Sn, Sn+1} of
integer variables. By S ′ we denote the set {S1, . . . , Sn}.

Also, in all encodings the objective function is (7.1), and we have the following
constraints:

S0 = 0(7.4)
Si ≥ ESi ∀Ai∈{A1, . . . , An+1}(7.5)
Si ≤ LSi ∀Ai∈{A1, . . . , An+1}(7.6)
Sj − Si ≥ li,j ∀(Ai, Aj, li,j) ∈ E∗(7.7)

where (7.5) and (7.6) are simple encodings of the time windows for each activity, and (7.7)
encodes the extended precedences. Hence, in each encoding, besides their own there are
1 + 2(n+ 1) + |E∗| constraints.

We also introduce additional constraints for the incompatibilities between activities
due to resource capacity constraints:

Si + pi ≤ Sj ∨ Sj + pj ≤ Si ∀Ii,j ∈ I s.t. Ii,j = true,

(Ai, Aj, li,j) /∈ E∗ and (Aj, Ai, lj,i) /∈ E∗
(7.8)

Notice that the incompatibilities between activities due to precedence constraints
are already encoded by Equation (7.7).

7.5.1 Time Formulation

The most natural encoding for the RCPSP in SMT is the Time formulation, very similar to
the MILP encoding proposed in [PW96] and referred in [KALM11] as Basic discrete-time
formulation and in [SFSW09, SFSW10] as Time-resource decomposition.

5Precedence constraints can be expressed in the theory of difference logic, but the restrictions on re-
sources can only be expressed in linear integer arithmetic.

7.5. ENCODINGS 153

The idea is that, for every time unit t and resource Rk, the sum of resource require-
ments of activities must be less than or equal to the resource availability.

ite((Si ≤ t) ∧ ¬(Si ≤ t− pi); xi,t = 1; xi,t = 0)

∀Si ∈ S ′, ∀t ∈ {ESi, . . . , LSi + pi − 1}
(7.9)

∑
Ai∈A

ite(t ∈ {ESi, . . . , LSi + pi − 1}; bi,k ∗ xi,t; 0) ≤ Bk

∀Bk ∈ B, ∀t ∈ H
(7.10)

where ite(c; e1; e2) is an if-then-else expression denoting e1 if c is true and e2 otherwise.
This is a typical SMT expression. Note that the condition t ∈ {ESi, . . . , LSi + pi − 1}
can be trivially encoded into ESi ≤ t ∧ t ≤ LSi + pi − 1.

Constraints (7.9) impose that xi,t = 1 if activity Ai is active at time t, and xi,t = 0
otherwise. Note also that we are restricting the possible time units, and the integer vari-
ables, by using the time windows. Constraints (7.10) are a reformulation of the resource
constraints (7.3) using the xi,t variables.

In this encoding we are adding
∑

i∈1...n(LSi + pi − ESi) new integer variables
and

∑
i∈1...n(LSi + pi − ESi) + (T + 1) · m new constraints to the fixed ones of (7.4)

to (7.8), i.e., the number of new variables is O(nT) and the number of new constraints is
O(T (n+m)).6

Constraints (7.9) can be replaced with the following, by introducing new O(nT)
Boolean variables yi,t:

yi,t ↔ (Si ≤ t) ∧ ¬(Si ≤ t− pi)
∀Si ∈ S ′,∀t ∈ {ESi, . . . , LSi + pi − 1}

(7.11)

ite(yi,t; xi,t = 1; xi,t = 0)

∀Si ∈ S ′,∀t ∈ {ESi, . . . , LSi + pi − 1}
(7.12)

The addition of these new variables yi,t allows us to consider additional constraints
to improve propagation:

(Si = t)→ yi,t′ ∀Si ∈ S ′,∀t ∈ {ESi, . . . , LSi + pi − 1},
∀t′ ∈ {t, . . . , t+ pi − 1}

(7.13)

6Recall that T is the length of the scheduling horizon, n is the number of activities and m is the number
of resources.

154 CHAPTER 7. SCHEDULING

(Si = t)→ ¬yi,t′ ∀Si ∈ S ′,∀t ∈ {ESi, . . . , LSi + pi − 1},
∀t′ ∈ {ESi, . . . , LSi + pi − 1} \ {t, . . . , t+ pi − 1}

(7.14)

We have observed that for small problem instances this formulation gives better
performance results than the previous. However, for big instances (with more than 50
activities) the addition of the new variables yi,t usually makes the problem intractable by
our system.

The following redundant constraints help improving the search time in all instances.
This is probably due to the fact that they are unit clauses, and hence they are restricting
the domain of xi,t from the beginning:

xi,t ≥ 0 ∀Si ∈ S ′,∀t ∈ {ESi, . . . , LSi + pi − 1}(7.15)
xi,t ≤ 1 ∀Si ∈ S ′,∀t ∈ {ESi, . . . , LSi + pi − 1}(7.16)

7.5.2 Task Formulation

In this formulation we use variables indexed by activities instead of by time. The key
idea is that checking only that there is no overload at the beginning (end) of each activity
is sufficient to ensure that there is no overload at every time unit (in the non-preemptive
case). In this formulation, the number of variables and constraints is independent of
the length T of the scheduling horizon. This formulation is similar to the Task-resource
decomposition of and it is inspired by the encoding proposed in [OEK99] for temporal
and resource reasoning in planning.

The constraints are the following, where the Boolean variables z1i,j denote if activity
Ai starts not after Aj . The Boolean variables z2i,j denote if activity Aj starts before Ai

ends. The integer variables zi,j are 1 if activity Ai is active when activity Aj starts, and 0
otherwise.

z1i,j ∀(Ai, Aj, li,j) ∈ E∗(7.17)

¬z1j,i ∀(Ai, Aj, li,j) ∈ E∗(7.18)

z1i,j ↔ Si ≤ Sj ∀Ai, Aj ∈ A,
(Ai, Aj, li,j) /∈ E∗, (Aj, Ai, lj,i) /∈ E∗,
i 6= j

(7.19)

7.5. ENCODINGS 155

¬z2i,j ∀(Ai, Aj, li,j) ∈ E∗(7.20)

z2j,i ∀(Ai, Aj, li,j) ∈ E∗(7.21)

z2i,j ↔ Sj < Si + pi ∀Ai, Aj ∈ A,
(Ai, Aj, li,j) /∈ E∗, (Aj, Ai, lj,i) /∈ E∗,
i 6= j

(7.22)

zi,j = 0 ∀Ii,j ∈ I s.t. Ii,j = true(7.23)
ite(z1i,j ∧ z2i,j; zi,j = 1; zi,j = 0) ∀Ii,j ∈ I s.t. Ii,j = false, i 6= j(7.24) ∑
Ai∈A\{Aj}

bi,k ∗ zi,j ≤ Bk − bj,k ∀Aj ∈ A,∀Bk ∈ B(7.25)

The last constraints (7.25) state that, for every activity Aj and resource Rk, the sum
of the resource demands bi,k for Rk, from the activities Ai that overlap with Aj at its start
time, should not exceed the capacity Bk of Rk less the demand bj,k for Rk from Aj .

This encoding involves 2n(n − 1) Boolean variables, n(n − 1) integer variables
and 3n(n − 1) + nm (non unary)7 constraints, i.e., the number of variables to add –to
the ones present in the fixed constraints from (7.4) to (7.8)– is O(n2) and the number of
constraints to add isO(n2 +nm). Hence, this formulation is not sensitive to the length T
of the scheduling horizon.

If we use end time variables Ei = Si + pi, we can generate a symmetric model to
the one defined above.

In order to improve propagation, we have the following redundant constraints en-
coding anti-symmetry and transitivity of the precedence relation:

z1i,j ∨ z1j,i ∀Ai, Aj ∈ A, i 6= j(7.26)

(z1i,j ∧ z1j,k)→ z1i,k ∀Ai, Aj, Ak ∈ A, i 6= j, j 6= k, i 6= k(7.27)

The following redundant constraints have shown to slightly improve propagation in
this encoding:

z1i,j ∨ z2i,j ∀Ai, Aj ∈ A, i 6= j(7.28)

z2i,j ∨ z2j,i ∀Ai, Aj ∈ A, i 6= j(7.29)

¬z1i,j ∨ z2j,i ∀Ai, Aj ∈ A, i 6= j(7.30)

7The simple unary constraints (7.17), (7.18), (7.20), (7.21) and (7.23) (and similar constraints in other
formulations as well) are not posted by our system. Instead, every occurrence of their variables is replaced
by its (known) value in all expressions.

156 CHAPTER 7. SCHEDULING

7.5.3 Flow Formulation

This formulation is inspired by the formulations of [AMR03, KALM11] named Flow-
based continuous-time formulation. It models the flow of resources between finishing
activities and starting activities. Once an activity finishes it transfers to some forthcom-
ing starting activities the amount of resource it was using, and one activity must receive
enough resources, according to its requirements, from finishing activities.

The Boolean variables yi,j denote if activity Aj starts after the completion of Ai.
The integer variables fi,j,k denote the quantity of resource Rk that is transferred from Ai

(when finished) to Aj (at the start of its processing). Note that in this formulation we are
considering the whole set of activities V = {A0, A1, . . . , An, An+1}, i.e., we include the
dummy activities A0 and An+1.

yi,j ∀(Ai, Aj, li,j) ∈ E∗(7.31)
¬yj,i ∀(Ai, Aj, li,j) ∈ E∗(7.32)

yi,j ↔ Sj ≥ Si + pi ∀Ai, Aj ∈ V,
(Ai, Aj, li,j) /∈ E∗, (Aj, Ai, lj,i) /∈ E∗,
i 6= j

(7.33)

fi,j,k ≥ 0 ∀Ai, Aj ∈ V,Rk ∈ R, i 6= j(7.34)
fi,j,k ≤ min(bei,k, b

e
j,k) ∀Ai, Aj ∈ V,Rk ∈ R, i 6= j(7.35)

yi,j ∨ (fi,j,k = 0) ∀Ai, Aj ∈ V,Rk ∈ R, i 6= j(7.36)

∑
Aj∈A∪{An+1}

fi,j,k = bi,k ∀Ai ∈ A ∪ {A0}, ∀Rk ∈ R, i 6= j(7.37)

∑
Ai∈A∪{A0}

fi,j,k = bj,k ∀Aj ∈ A ∪ {An+1},∀Rk ∈ R, i 6= j(7.38)

Constraints (7.34) and (7.35) fix the range of variables fi,j,k. In (7.35), beq,k denotes
bq,k for all q such that Aq ∈ A, and Bk for q = 0 and q = n + 1. Constraints (7.36)
state that, if Aj does not start after the completion of Ai, then the flow from activity Ai

to activity Aj must be 0 for all resources Rk. Constraints (7.37) and (7.38) state that,
for each activity and resource, the sum of the flows transferred and the sum of the flows
received by the activity must be equal to its demand for the resource. Recall that b0,k = 0
and bn+1,k = 0 for all k. Hence, no flow enters activityA0 and no flow exits activityAn+1.

7.5. ENCODINGS 157

The constraints (7.8) for the incompatibilities are reformulated as follows:

yi,j ∨ yj,i ∀Ii,j ∈ I s.t. Ii,j = true,

(Ai, Aj, li,j) /∈ E∗, (Aj, Ai, lj,i) /∈ E∗
(7.39)

This encoding involves (n+ 2)(n+ 1) Boolean variables, (n+ 2)(n+ 1)m integer
variables, and (n + 2)(n + 1) + 3(n + 2)(n + 1)m + 2(n + 1)nm + 2(n + 1)m (non
trivial) constraints, i.e., the number of variables and constraints to add –to the ones already
in (7.4) to (7.7)– is O(n2m). Like the Task formulation, this formulation is not sensitive
to the length T of the scheduling horizon.

Similarly to the Task formulation, we have the following constraints for anti-symmetry
and transitivity of the precedences:

¬yi,j ∨ ¬yj,i ∀Ai, Aj ∈ A, i 6= j(7.40)
(yi,j ∧ yj,k)→ yi,k ∀Ai, Aj, Ak ∈ A, i 6= j, j 6= k, i 6= k(7.41)

7.5.4 Event Formulation

In this formulation, some variables are indexed by events denoting, e.g., the time when
such event occurs. In the RCPSP, events usually correspond to the start or to the end of an
activity. In an event-based encoding there must be at least one event for each activity, but
one could also consider some additional events. It can also be the case that two or more
events take place at the same time.

We consider both the start and the end of an activity Ai ∈ A as an event. We can
restrict the number of events to the number n of activities plus one, because we can always
enforce an activity to begin at end of another activity. Moreover, since start (end) times
of different activities can coincide, the number of events can be considered to be strictly
less than n + 1 (for example, two starts of activities taking place at the same time can
be considered to be the same event, instead of two different events occurring at the same
time). We take ε = {0, 1, . . . , n} as the index set of the events (since there will be at most
n+ 1 distinct start/end events).

In this encoding, like in the previous two, the number of variables and constraints
is independent of the length T of the scheduling horizon. Several event-based encodings
have been proposed in [ZHR08] and [KALM11]. Ours follows the spirit of this last one.

The integer variables te denote the time unit at which event e occurs. The Boolean
variables xe,i denote if the start of activity Ai ∈ A corresponds to event e. The Boolean
variables ye,i denote if the end of activity Ai ∈ A corresponds to event e. The integer
variables re,k denote the amount of resource k used at time unit te by all activities running
at that moment.

158 CHAPTER 7. SCHEDULING

t0 = 0(7.42)
te+1 > te ∀e 6= n ∈ ε(7.43)

∨
e∈ε

xe,i ∀Ai ∈ A(7.44) ∧
e∈ε

∧
f>e∈ε

¬xe,i ∨ ¬xf,i ∀Ai ∈ A(7.45) ∨
e∈ε

ye,i ∀Ai ∈ A(7.46) ∧
e∈ε

∧
f>e∈ε

¬ye,i ∨ ¬yf,i ∀Ai ∈ A(7.47)

xe,i ↔ te = Si ∀Ai ∈ A,∀e 6= n ∈ ε(7.48)
ye,i ↔ te = Si + pi ∀Ai ∈ A,∀e 6= 0 ∈ ε(7.49)

r0,k =
∑
Ai∈A

bi,k ∗ ite(x0,i, 1, 0) ∀Bk ∈ B(7.50)

re,k = re−1,k +
∑
Ai∈A

bi,k ∗ ite(xe,i, 1, 0)−
∑
Ai∈A

bi,k ∗ ite(ye,i, 1, 0)

∀Bk ∈ B, ∀e ∈ ε, 0 < e < n

(7.51)

re,k ≤Bk ∀Bk ∈ B, ∀e ∈ ε, 0 ≤ e < n(7.52)

Constraints (7.42) and (7.43) order chronologically the events. An important differ-
ence with previously known event-based encodings is the strict inequality in (7.43). Since
different activities can start or end at the same time, these constraints are implicitly stating
that different starts or ends of activities are considered to be the same event. Hence, if the
number of distinct start/end times turns out to be less than n + 1, in our encoding there
will be “extra” events that can take place at any time (i.e., the variable te is free to get any
value) and do not correspond neither to the start nor the end of any activity in A.

Constraints (7.44), (7.45), (7.46) and (7.47) are exactly-one constraints for the xe,i
and ye,i variables. Constraints (7.48) and (7.49) relate the xe,i and ye,i variables with the
time of the corresponding events. Finally, constraints (7.50), (7.51) and (7.52) encode the
resource constraints (7.3) at each event using the xe,i and ye,i variables.

7.5. ENCODINGS 159

This encoding involves 2(n + 2)n Boolean variables, (n + 1)m integer variables,
and 1 + n+ 2(n+ n(n− 1)) + 2n2 + 2nm constraints, i.e., the number of variables and
constraints to add –to the ones already in (7.4) to (7.7)– is O(n2 + nm).

The performance of this encoding has been really disappointing (see Section 7.6.2),
so we have developed a completely new encoding also based on events but exploiting in a
better way the characteristics of SMT solvers. This new encoding is described in the next
subsection.

7.5.5 New Event Formulation

In our new event-based encoding, we only take into account the start time of the activities,
and we restrict the number of events to the number n of activities, being ε = {0, 1, . . . , n−
1} the index set of the events. We recall from Section 7.5.2 that checking only that there
is no overload at the beginning (end) of each activity is sufficient to ensure that there is
no overload at every time unit. Therefore, in this formulation an event can be seen as
a resource check, i.e., checking that the amount of resources required by all activities
running at a certain time does not exceed resource availability.

For this formulation we introduce a new preprocessing, to reduce the window of
events in which an activity can start, which initially is [0, n−1]. This preprocessing gives
us an event window of the form [ESEi, LSEi] for each activity Ai ∈ A, being ESEi the
earliest possible event for the start of Ai and LSEi the latest possible one. To compute
the event windows we use the extended event set EE∗. This set is similar to E∗ (see
Section 7.3) but for events. Since the precedence between events is a transitive relation,
we can compute the minimum number of events between each pair of activities. For this
calculation we use the Floyd-Warshall algorithm on the graph defined by the precedence
relation E labeling each arc (Ai, Aj) with 1. This extended event set is named EE∗ and
contains, for each pair of activities Ai and Aj such that Ai precedes Aj , a tuple of the
form (Ai, Aj, li,j) where li,j is the length of the longest path of events from Ai to Aj (note
that here we are also considering the dummy activities A0 and An+1). Once computed
the extended event set we can calculate the event window [ESEi, LSEi] for the activities
Ai, 1 ≤ i ≤ n, taking:

ESEi = l0,i − 1 (A0, Ai, l0,i) ∈ EE∗
LSEi = n− li,n+1 (Ai, An+1, li,n+1) ∈ EE∗

Note that afterEE∗ has been computed, both (A0, Ai, l0,i) and (Ai, An+1, li,n+1) are
in EE∗ for all Ai. Following the example of Figure 7.1, activity A4 has the event window
[1, 4].

Now we present our encoding, based on the previously computed event windows.
As before, the integer variables te denote the time unit at which event e occurs. The

160 CHAPTER 7. SCHEDULING

Boolean variables z1e,i denote if activity Ai starts at or before event e. The Boolean vari-
ables z2e,i denote if activity Ai ends before event e. The integer variables ze,i are 1 if
activity Ai is active at event e, and 0 otherwise.

t0 = 0(7.53)
te+1 > te ∀e 6= n− 1 ∈ ε(7.54)

z1LSEi,i
∀Ai ∈ A(7.55)

(Si = tESEi
)↔ z1ESEi,i

∀Ai ∈ A(7.56)

(Si = te)↔ (z1e,i ∧ ¬z1e−1,i) ∀Ai ∈ A, ∀e ∈ {ESEi + 1, . . . , LSEi}(7.57)

(te ≥ Si + pi)↔ z2e,i ∀Ai ∈ A,∀e ∈ {ESEi, . . . , LSEi}(7.58)

ite(z1e,i ∧ ¬z2e,i; ze,i = 1; ze,i = 0) ∀Ai ∈ A,∀e ∈ {ESEi, . . . , LSEi}(7.59)  ∑
Ai∈A,e∈{ESEi,...,LSEi}

bi,k ∗ ze,i

 ≤ Bk ∀Bk ∈ B(7.60)

Constraints (7.53) and (7.54) order chronologically the events. As before, the strict
inequality in (7.54) can force some events (in this case, resource checks) to take place
not necessarily at the start of an existing activity. Constraints (7.55), (7.56) and (7.57)
define the z1e,i variables and state that each start of an activity corresponds to an event.
Constraints 7.58 define the z2e,i variables, while constraints (7.59) define the ze,i variables.
Finally, constraints (7.60) encode the resource constraints (7.3) at each event using the
ze,i variables.

This encoding involves 2
∑

i∈1..n(LSEi−ESEi+1) Boolean variables, n+
∑

i∈1..n(LSEi−
ESEi + 1) integer variables, and (n+ 1) + n+ 3

∑
i∈1..n(LSEi −ESEi + 1) +m con-

straints, i.e., the number of variables and constraints to add –to the ones already in (7.4)
to (7.7)– is O(n2) and O(n2 +m), respectively.

Moreover, in order to improve propagation, we add the following redundant con-
straints:

(te ≥ Si)↔ z1e,i ∀Ai ∈ A,∀e ∈ {ESEi, . . . , LSEi}(7.61)

(te = Si)→ (ze,i = 1) ∀Ai ∈ A,∀e ∈ {ESEi, . . . , LSEi}(7.62)
¬z2ESEi,i

∀Ai ∈ A(7.63)

z2e,i → z2e+1,i ∀Ai ∈ A, ∀e ∈ {ESEi, . . . , LSEi − 1}(7.64)

z1e,i → z1e+1,i ∀Ai ∈ A, ∀e ∈ {ESEi, . . . , LSEi − 1}(7.65)

z1e,i → z2e+pi−1,i ∀Ai ∈ A,∀e ∈ {ESEi, . . . , LSEi − pi + 1}(7.66)

7.6. EXPERIMENTS 161

Redundant constraints, in particular the ones of (7.61), have significantly improved
the performance of our solver in this formulation.

7.6 Experiments

In this section we discuss the results of our experiments.

• First, we check the performance of the initial and the new event-based formulation.

• Second, we check the effect of adding the different preprocesses proposed in Sec-
tion 7.3 in all the presented encodings. We make these experiments considering all
the optimization methods of Section 7.4.

• Third, we compare the efficiency of our best solving configuration (i.e., the best
combination of encoding, preprocesses and optimization methods) with the best
(exact) system currently known, Lazy fd [SFSW09]. Additionally we check the
robustness of both systems when incrementing the timeout to 3600 seconds.

• Fourth, we check the effect of adding several improvements in our system rcpsp2smt
and compare again its performance with the one of Lazy fd. We also check the ro-
bustness of these improvements when incrementing the timeout to 3600 seconds.

We have run the experiments on an Intel R© CoreTM i5 CPU at 2.66 GHz, with 6GB
of RAM, running 64-bit openSUSE 11.2 (kernel 2.6.31). We have used Yices 1.0.34 as
the core SMT solver. The timeout was set to 500 seconds for all experiments, except for
large timeout tests in which we mention the timeout explicitly. The instances we have
used are from the PSPLib and from [KALM11] and [CN03]. The solving times that we
report for our tool include the preprocessing and encoding time.

7.6.1 Initial and New Event-Based Formulation

In Table 7.1 we present the results of the experiments to compare the first event-based
encoding and the new one. In this experiments we have used the j60 package from the
PSPLib without any kind of preprocessing. We can see that the performance of the new
encoding is much better than the one of the initial encoding. Using the initial encod-
ing only 81 instances were solved within the timeout, while using the new encoding the
number of solved instances raised up to 348 of 480.

In the remaining comparisons of the section, by event formulation we refer to the
new event-based formulation.

162 CHAPTER 7. SCHEDULING

Initial Formulation New Formulation
#Solved 81 348
Mean 275.55 30.95
Median 259.18 19.76

Table 7.1: Comparison of the initial event-based formulation and the new one, showing
the number of solved instances, and the mean and the median of the solving times (cutoff
500 seconds).

7.6.2 Preprocessing and Optimization

Table 7.2 presents the results of the experiments using the four formulations presented in
the encodings section (Section 7.5): time, task, flow and event. In this experiments we
have used the j60 package from the PSPLib. We consider that this package is quite repre-
sentative, since it contains instances of different levels of difficulty. For each formulation,
we have considered all the possible combinations of the three different preprocessing
techniques (Section 7.3):

• using the heuristic method or the trivial one for computing the upper bound,

• using or not the extended precedence set, and

• using or not the incompatibility matrix.

The use of the heuristic computation of the upper bound is better than using the
trivial upper bound. In all encodings, a better upper bound reduces the domains of the
start variables (Si), and in the case of the time encoding it also considerably reduces the
number of ti variables (see Subsection 7.5.1). The benefit of using the other techniques is
not always clear, in fact, in some cases it turns to be counterproductive. Nevertheless, it
seems that the use of the three preprocessing techniques together, is the best configuration
for all encodings.

We can also see that the best encoding is always the time one, followed by the task
and event ones, and far away by the flow encoding.

In Table 7.3 we present the results of the experiments made to check all the opti-
mization methods that we have implemented (see Section 7.4). We have considered the
same set of instances as before. In these experiments we have only considered the best
encoding and configuration of preprocesses from the previous experiments: the Time for-
mulation with extended precedences, incompatibility matrix and heuristic upper bound.

As we can see, there is no much difference between the different tested types of
optimization, since all of them solve the same number of instances (430). However, it

7.6. EXPERIMENTS 163

Time
Heuristic U.B. Trivial U.B.

Ext. Prec. Not Ext. Prec. Ext. Prec. Not Ext. Prec.
Inc. N. Inc. Inc. N. Inc. Inc. N. Inc. Inc. N. Inc.

#Solved 430 430 429 429 430 429 429 430
Mean 4.53 5.52 6.30 3.60 11.89 15.03 11.08 10.36
Median 0.20 0.21 0.69 0.19 5.03 5.75 5.65 3.95

Task
Heuristic U.B. Trivial U.B.

Ext. Prec. Not Ext. Prec. Ext. Prec. Not Ext. Prec.
Inc. N. Inc. Inc. N. Inc. Inc. N. Inc. Inc. N. Inc.

#Solved 398 396 397 396 398 396 398 397
Mean 13.91 13.16 10.86 11.44 27.53 28.64 20.99 34.66
Median 4.58 5.5 3.45 4.66 18.1 23.04 12.01 26.54

Flow
Heuristic U.B. Trivial U.B.

Ext. Prec. Not Ext. Prec. Ext. Prec. Not Ext. Prec.
Inc. N. Inc. Inc. N. Inc. Inc. N. Inc. Inc. N. Inc.

#Solved 272 261 239 263 152 138 118 148
Mean 38.58 32.66 21.88 29.87 83.26 78.02 25.55 86.13
Median 0.01 0.01 0.01 0.01 14.85 23.42 17.45 19.21

Event
Heuristic U.B. Trivial U.B.

Ext. Prec. Not Ext. Prec. Ext. Prec. Not Ext. Prec.
Inc. N. Inc Inc N. Inc. Inc. N. Inc. Inc. N. Inc

#Solved 349 349 348 348 349 348 348 348
Mean 21.55 17.87 15.90 14.74 37.02 48.75 30.09 30.95
Median 7.22 5.79 4.87 4.57 25.39 35.24 19.81 19.76

Table 7.2: Comparison of the different proposed encoding with the different preprocess-
ing techniques (cutoff 500 seconds).

seems that the search procedures (dico, hybrid, linear) are slightly better than the ones of
Weighted SMT (yices, wpm1, wbo).

164 CHAPTER 7. SCHEDULING

dico hybrid linear yices wpm1 wbo
#Solved 430 430 430 430 430 430
Mean 5.01 4.53 4.34 6.68 7.25 6.26
Median 0.18 0.20 0.19 0.18 0.21 0.27

Table 7.3: Comparison of the different optimization methods (cutoff 500 seconds).

7.6.3 Comparison with Others Solvers

We focus this experiment on 7 families of RCPSP instances: j30, j60, j90 and j120 (from
the PSPLib), KS15 d and Pack d from [KALM11], and Pack from [CN03].

j30 j60 j90 j120
(480 inst.) (480 inst.) (480 inst.) (600 inst.)

Time Lazy fd Time Lazy fd Time Lazy fd Time Lazy fd
#Solved 480 480 430 430 395 396 274 277
Mean 0.65 0.21 4.53 3.92 5.14 4.17 12.68 9.30
Median 0.08 0.01 0.20 0.03 0.39 0.06 1.98 0.20

KS15 d Pack d Pack Total
(479 inst.) (55 inst.) (55 inst.) (2629 inst.)

Task Lazy fd Task Lazy fd Time Lazy fd rcpsp2smt Lazy fd
#Solved 479 479 28 37 39 16 2125 2115
Mean 0.03 0.01 61.04 36.15 23.44 107.34 4.89 4.29
Median 0.02 0.01 0.72 3.34 1.07 66.88 0.10 0.03

Table 7.4: Comparison between our best approach and Lazy fd (cutoff 500 seconds).

In Table 7.4 we can see the summary of the comparison between our best approach
and one of the best current approaches: the one of the Lazy fd solver from [SFSW09].

Note that we always use the Time encoding, except in KS15 d and Pack d sets,
where the Task encoding obtained the best results. This may be due to the structure
of this set with long duration activities, which makes the scheduling horizon to be very
large, so that the number of variables in the Time formulation is very high in contrast to
the encoding Task which always uses O(n2) variables. The same complexity applies to
the number of constraints.

It can be seen that the two approaches have similar performance: both solve the
same number of instances in the j30 and j60 sets, and Lazy fd solves one more instance
in the j90 set and three more instances in the j120 set. The KSD 15 set turns out to be
very easy for the two approaches. The Pack and Pack d sets contain the same instances,

7.6. EXPERIMENTS 165

differing only on the durations of activities, that in Pack d are much larger. We see that
Lazy fd performs better with longer durations. However, rcpsp2smt performs better
in the case of the whole pack with very few precedences and small durations. To sum up,
with our approach we solve ten more instances than Lazy fd, mainly due to the Pack set.
In general, Lazy fd always gets a smaller mean and median time in all sets. It is worth
noting that we have chosen our best encoding (either Time or Task formulation) for each
set, instead of a fixed one. This can be considered unfair, but we think that it illustrates
better the strengths and weaknesses of each approach.

j30 j60 j90 j120
(480 inst.) (480 inst.) (480 inst.) (600 inst.)

Time Lazy fd Time Lazy fd Time Lazy fd Time Lazy fd
#Solved 480 480 437 432 404 402 285 283
Mean 0.65 0.21 28.63 9.06 41.72 30.97 48.21 21.38
Median 0.08 0.01 0.21 0.03 0.39 0.06 1.86 0.20

KS15 d Pack d Pack Total
(479 inst.) (55 inst.) (55 inst.) (2629 inst.)

Task Lazy fd Time Lazy fd Time Lazy fd rcpsp2smt Lazy fd
#Solved 479 479 38 38 41 18 2164 2132
Mean 0.03 0.01 394.86 89.99 60.52 332.49 28.15 14.97
Median 0.02 0.01 50.55 4.05 1.81 84.80 0.11 0.03

Table 7.5: Comparison between our approach and Lazy fd (cutoff 3600 seconds).

In Table 7.5 we can see the comparison with a bigger time-out (one hour). In this
case the Time encoding is better than Task encoding for the Pack d set. In the j90 and
j120 sets, where Lazy fd solved 1 and 3 more instances, respectively, with a cutoff of 500
seconds, now rcpsp2smt turns out to be the best approach, with 2 more solved instances
than Lazy fd in each set. The Pack d set is now balanced, with 38 solved instances by the
two approaches and, finally, rcpsp2smt keeps the advantage over Lazy fd in the Pack
set with 23 more solved instances. However, Lazy fd continues having better mean and
median times than rcpsp2smt.

7.6.4 System Improvements

Once seen that preprocessing is useful and that the best way to achieve optimization is
using iterative search methods, we have tried to improve the performance of our system
by introducing some additional improvements in this two issues. First, we have added a
new preprocessing step and, second, we have modified the search algorithm in such a way

166 CHAPTER 7. SCHEDULING

that when it founds a solution, it tries to improve the time windows of activities before
the next step of the search algorithm is executed.

The preprocessing step is the following:

• No holes. We have observed that many solutions contain holes. Holes occur when
the start of an activity does not immediately follow the end of another activity.
Obtaining solutions without these holes can result in better makespans. In order to
obtain such solutions we have added the following constraints:∨

Aj ∈ A ∪ {A0} \ {Ai}
(Ai, Aj , li,j) /∈ E∗

(Aj , Ai, lj,i) /∈ E∗ ∨ (Aj , Ai) ∈ E

Si = Sj + pj ∀Ai ∈ A ∪ {An+1}

The results obtained with these new restrictions are not much better than the ones
obtained without them. The only constraints that seem to improve the performance
of the system are the ones related to A0. Therefore, we finally decided to add only
the following constraint: ∨

(A0,Ai)∈E

Si = 0 ∀Ai ∈ A ∪ {An+1}

The improvements on the time windows of activities come from the following two com-
putations:

• Active schedule search. We have observed that most of the solutions found in
the intermediate steps of the search algorithm are not active. A schedule is ac-
tive [SKD95, ADN07] if it admits no feasible activity global left shift. A global
left shift operator GLS(S,Ai,∆) transforms schedule S into an schedule S ′ , where
the start of activity Ai has been left shifted ∆ units of time, i.e., S ′i = Si −∆ with
∆ > 0. Sometimes, by turning a solution into active, we can improve the makespan.

To obtain active solutions from intermediate solutions, we iteratively apply the
global left shift operator. We begin with the activities with the smallest start time.
If a lower makespan is found, then we use this as the new upper bound.

In the Figure 7.2 we can see some non-active schedules and their equivalent active
schedules (the RCPSP instance is the same of Figure 7.1). By sequentially apply-
ing the GLS operator to activities 5, 3, 6 and 7 with ∆ equal to 5, 3, 3 and 3,
respectively, the makespan decreases in 3 units.

• Time windows adequacy. When using search algorithms for optimization, we are
able to find a new upper bound at each execution of the decision procedure. In

7.6. EXPERIMENTS 167

1
2

3

4 5 6
7

2
1
0 time

Non-active schedule

1
2

3

4 5
6

7

3

2
1
0 time

1
2

3

4 5
6

7

3

2
1
0 time

1
2

3

4

5
6

7
2
1
0 time

Equivalent active schedule

1
2

3

4

5

6
7

3

2
1
0 time

1
2

3

4

5

6
7

3

2
1
0 time

Figure 7.2: An example of active schedule.

addition to narrowing the search thanks to better upper bounds, we can redefine
all time windows. Thus, we also reduce the domains of the start variables Si. For
activities Ai ∈ A, we have

newLS i = newUB − li,n+1

where (Ai, An+1, li,n+1) ∈ E∗. For activity An+1,

newLSn+1 = newUB

The constraints added in each step are:

Si ≤ newLSi ∀Ai ∈ A ∪ {An+1}

Note that in the Time formulation, when we reduce the time windows of activities,
many variables can be set to 0. To this end, we add the following constraints:

xi,t = 0 ∀Ai ∈ A ∪ {An+1},∀t ∈ {LSi + pi, . . . , prevLSi + pi − 1}

where prevLSi is the latest start time of Ai, computed in the previous step of the
search algorithm.

7.6.5 Closed Instances

With the changes outlined in subsection 7.6.4 we have been able to close the PSPLib
instances enumerated in Table 7.6.

168 CHAPTER 7. SCHEDULING

Instance Makespan Encoding Solver Time

j60

9 3 100 Time hybrid 1365.20
9 8 96 Time linear 2019.23
9 9 99 Time hybrid 668.60

25 4 108 Time hybrid 2501.72
25 5 98 Time hybrid 460.19

25 10 108 Time hybrid 1033.83
30 2 70 Time hybrid 832.13

j90

5 4 102 Time hybrid 2574.40
5 6 86 Time hybrid 2340.54
5 9 115 Time hybrid 2701.99

21 1 110 Time hybrid 1948.87
26 5 85 Time hybrid 642.93
37 2 115 Time hybrid 2329.42
46 4 93 Time hybrid 1933.28

j120

1 1 105 Time hybrid 1803.32
8 3 95 Time hybrid 235.95
8 6 85 Time hybrid 1983.62(*)

48 5 110 Time hybrid 684.62
49 2 109 Time hybrid 2339.06(*)

Table 7.6: New closed instances (cutoff 3600 seconds). (*) Solutions obtained without
the improvements of Section 7.6.4.

7.7 Summary

This chapter contains one of the main objectives of this thesis. It shows that SMT is a com-
petitive approach for solving CSP and COP in front of ad hoc algorithms. We have tested
this very good performance on the well-known resource-constrained project scheduling
problem. Using an algorithm with preprocessing, an iterative process of minimization,
etc., and using an SMT solver as the core solving engine, we have obtained performances
that are similar, or even better, than those of best state-of-the-art algorithms.

We have described the four different encodings implemented, with a a number of
variants for each of them. After many tests we have reached the conclusion that the best
coding in general is the classical Time formulation, closely followed by the Task formu-
lation. In fact, the Task formulation is the best in some types of instances, concretely, the
ones with a larger scheduling horizon. We have also provided a whole new event-based
formulation.

Chapter 8

Other Scheduling Problems

As we have seen in Chapter 7, we have obtained very good results when using SMT to
solve the RCPSP. There exist many variations of the RCPSP. In this chapter we study
the performance of SMT when dealing with several of those variants. Namely, we work
on the Resource-Constrained Project Scheduling Problem with minimum and maximum
time lags (RCPSP/max), and the Multi-Mode Resource-Constrained Project Scheduling
Problem (MRCPSP). This last variant consists in the selection of a single activity mode,
from a set of available modes, in order to construct a precedence, and a resource feasible
project schedule with a minimal makespan. Contrarily to RCPSP, MRCPSP considers
renewable and non-renewable resources.

This chapter corresponds to the fourth objective of the thesis (to provide an SMT
based system being competitive with state-of-the-art methods for scheduling problems)
and provides the eight contribution.

8.1 RCPSP/max

The Resource Constrained Project Scheduling Problem with minimum and maximum
time lags (RCPSP/max)1 is a generalization of the RCPSP where the precedence graph
G(V,E) becomes G(V,E, g), being g an edge labeling function, valuating each edge
(Ai, Aj) ∈ E with an integer time lag gi,j . Non-negative lags gi,j ≥ 0 correspond to a
minimum delay in the start of activity Aj with respect to the start of activity Ai. The case
gi,j < 0 corresponds to a maximum delay of −gi,j units in the start of activity Ai with
respect to the start of activity Aj (see Figure 8.1). Note that the standard RCPSP can be
seen as the particular case of RCPSP/max where only minimum time lags are considered,
taking gi,j = pi ∀(Ai, Aj) ∈ E.

1This problem is denoted as PS|temp|Cmax in [BDM+99] and m, 1|gpr |Cmax in [HL05].

169

170 CHAPTER 8. OTHER SCHEDULING PROBLEMS

Regardless of minimizing the makespan, deciding if there exits a resource-feasible
schedule that respects the minimum and maximum lags is NP-complete [BMR88], and
the optimization problem is NP-hard in the general case.

The treatment that we propose for this problem is very similar to the one proposed
for RCPSP. We only consider the Time and Task encodings, since these are the ones which
have shown best performance in the standard RCPSP. For RCPSP/max these encodings
are almost the same as the ones proposed in Section 7.5. We simply need to replace
the constraints (7.2) by the following constraints, where we consider time lags instead of
durations:

Sj − Si ≥ gi,j ∀(Ai, Aj) ∈ E(8.1)

The preprocessing is almost the same but with some changes in the computation of the
upper and lower bounds for the makespan, as we explained in the next subsection. The
solving process is identical.

8.1.1 Preprocessing

A RCPSP/max instance is unsatisfiable if and only if there is a cycle of positive length
in the precedence graph. This is checked by calculating the extended precedence set E∗

(which takes into account only the positive edges in the precedence graph) and checking
two conditions:

1. There is no cycle: @(Ai, Ai, li,i) ∈ E∗ s.t. li,i > 0.

2. There is no inconsistency between the maximum and the minimum time lags be-
tween activities: for every negative edge gji < 0 and (Ai, Aj, li,j) ∈ E∗, it must be
satisfied that |gji| >= li,j .

Since finding a resource-feasible schedule in RCPSP/max is NP-complete, we do
not use a heuristic to calculate the upper bound of the makespan. The upper bound that
we consider is the trivial upper bound:

UB =
∑
Ai∈A

max(pi, max
(Ai,Aj)∈E

(|gi,j|))

The lower bound, the time windows and the incompatibilities between activities are
calculated as in the RCPSP.

8.1. RCPSP/MAX 171

0

0; 0, 0, 0

1

2; 1, 3, 2

2

4; 2, 1, 1

3

2; 1, 1, 1

4

1; 1, 2, 1

5

3; 1, 2, 1

6

3; 2, 1, 1

7

2; 3, 2, 2

8

0; 0, 0, 0

0

0

1

3

4

2

1

-7

3

2

5

-3
2

Time lag between activities

Activity duration; Demand on each resource

1
2

3

4

5
6

7
2
1
0 time

Resource 3, availability = 2

1
2

3
4

5

6
7

3

2
1
0 time

Resource 2, availability = 3

1
2

3

4

5

6
7

3

2
1
0 time

Resource 1, availability = 3

Figure 8.1: An example of RCPSP/max and one of its possible solutions.

172 CHAPTER 8. OTHER SCHEDULING PROBLEMS

8.1.2 Experiments

We have performed experiments on the RCPSP/max instances from the PSPLib, testsets
j10, j20, j30. The experiments have been run on an Intel R© CoreTM i5 CPU at 2.66 GHz,
with 6GB of RAM, running 64-bit openSUSE 11.2 (kernel 2.6.31). We have used Yices
1.0.34 as the core SMT solver. The timeout was set to 3600 seconds.

Table 8.1 shows a comparison between our approach with the Time formulation and
the currently best known approach, the one Lazy fd. We can observe that our system is
really competitive in all sets of instances. For RCPSP/max we have not considered the
system improvements presented in Subsection 7.6.4.

j10 j20 j30
(270 inst.) (270 inst.) (270 inst.)

Time Lazy fd Time Lazy fd Time Lazy fd
#Solved 270 270 270 270 265 265
Mean 0.12 0.0 1.92 0.16 32.84 23.91
Median 0.10 0.0 0.78 0.01 2.75 0.03

Table 8.1: Comparison between our system rcpsp2smt and Lazy fd, showing the number
of solved instances, and the mean and median times (cutoff 3600 seconds).

8.2 Multimode RCPSP

The Multi-Mode Resource-Constrained Project Scheduling Problem (MRCPSP)2 is an
extension of the RCPSP. In this extension every activity has a number, greater or equal to
1, of execution modes. An activity mode is described with a pair formed by the duration
of the activity and a vector with the resource demands of the activity for this mode. In the
MRCPSP one distinguishes between renewable resources and non-renewable resources:
renewable resources are replenished at each time unit, while for the non-renewable ones,
resource usage is accumulated across the entire project. For example, a renewable re-
source could be man-hours per day, or the capacity of a machine, while a non-renewable
resource could be a budget, or some kind of stock.

Thus, the objective of the MRCPSP is to find a mode and a start time for each ac-
tivity such that the makespan is minimized and the schedule is feasible with respect to
the precedence and renewable and non-renewable resource constraints, minimizing the
makespan. The MRCPSP is NP-hard. Several exact and heuristic approaches to solve the

2This problem is denoted as MPS|prec|Cmax in [BDM+99] and m, 1T |cpm, disc.mu|Cmax in
[HL05].

8.2. MULTIMODE RCPSP 173

MRCPSP have been proposed in the last years. The most common exact approaches for
solving this problem are based on branch-and-bound [SD98, ZBY06] and linear program-
ming. There are some algorithms that use SAT [CV11], but none using SMT.

More formally, the MRCPSP is defined by a tuple (V,M, p, E,R,B, b) where3:

• V = {A0, A1, . . . , An, An+1} is a set of activities. Activity A0 represents by con-
vention the start of the schedule and activity An+1 represents the end of the sched-
ule. The set of non-dummy activities is defined by A = {A1, . . . , An}.

• M ∈ Nn+2 is a vector of naturals, being Mi the number of modes that activity i can
execute, with M0 = Mn+1 = 1 and Mi ≥ 1,∀Ai ∈ A.

• p is a vector of vectors of durations. pi,o denotes the duration of activity i using
mode o, with 1 ≤ o ≤ Mi. For the dummy activities, p0,1 = pn+1,1 = 0, and
pi,o > 0 ∀Ai ∈ A, 1 ≤ o ≤Mi .

• E is a set of pairs representing precedence relations. Thus, (Ai, Aj) ∈ E means
that the execution of activity Ai must precede that of activity Aj , i.e., activity Aj

must start after activity Ai has finished. We assume that we are given a precedence
activity-on-node graph G(V,E) that contains no cycles; otherwise the precedence
relation is inconsistent. Since the precedence is a transitive binary relation, the
existence of a path inG from the node i to node j means that activity imust precede
activity j. We assume that E is such that A0 is a predecessor of all other activities
and An+1 is a successor of all other activities.

• R = {R1, . . . , Rv−1, Rv, Rv+1, . . . , Rq} is a set of q resources. The first v resources
are renewable, and the last q − v resources are non-renewable.

• B ∈ Nq is a vector of resource availabilities. Bk denotes the available amount of
each resource Rk. The first v resource availabilities are the available amounts of
the renewable resources, while the last q − v ones are the available amounts of the
non-renewable resources.

• b is a matrix of resource demands of the activities per mode. bi,k,o represents the
amount of resourceRk used during the execution ofAi in mode o. Note that b0,k,1 =
0 and bn+1,k,1 = 0 ∀k ∈ {1, . . . , q}.

A schedule is a vector S = (S0, S1, . . . , Sn, Sn+1) where Si denotes the start time
of each activity Ai ∈ V . We assume that S0 = 0. A schedule of modes is a vector
SM = (SM0, SM1, . . . , SMn, SMn+1) where SMi, satisfying 1 ≤ SMi ≤ Mi, denotes
the mode of each activity Ai ∈ V . A solution of the MRCPSP problem is a schedule

3Although V and E are the same that in standard RCPSP, we reproduce their definitions.

174 CHAPTER 8. OTHER SCHEDULING PROBLEMS

of modes SM and a schedule S of minimal makespan Sn+1, subject to the following
precedence and resource constraints:

(8.2) minimize Sn+1

subject to:

SMi = o→ Sj − Si ≥ pi,o ∀(Ai, Aj) ∈ E,∀o ∈ {1, . . . ,Mi}(8.3) ∑
Ai∈A, o∈{1,...,Mi}

ite(SMi = o; bi,k,o; 0) ≤ Bk ∀Rk ∈ {Rv+1, . . . , Rq}(8.4)

∑
Ai∈A, o∈{1,...,Mi}

ite(SMi = o ∧ Si ≤ t < Si + pi,o; bi,k,o; 0) ≤ Bk

∀Rk ∈ {R1, . . . , Rv},∀t ∈ H
(8.5)

where the setH = {0, . . . , T} is the scheduling horizon, and T (the length of the schedul-
ing horizon) is an upper bound for the makespan.

A schedule S is feasible if it satisfies the generalized precedence constraints (8.3),
the non-renewable resource constraints (8.4) and the renewable resource constraints (8.5).
An example is shown in Figure 8.2.

The treatment that we propose for this problem is similar to the one that we have
presented for the RCPSP. However, there are many changes in the preprocessing phase
and in the two encodings considered (Time and Task). The solving process is the same as
in the RCPSP.

8.2.1 Preprocessing

We apply all the preprocessing methods described for the RCPSP, with appropriate mod-
ifications, except for the calculation of incompatibilities. We have also implemented an
additional preprocessing method to reduce the demand of non-renewable resources.

Extended Precedence Set

In the MRCPSP, if there is a precedence between two activities, we can only ensure that
the distance between the start of Ai and the start of Aj will be greater than or equal to the
minimum duration of the different modes ofAi. Since a precedence is a transitive relation
we can compute the minimum precedence between each pair of activities.

8.2. MULTIMODE RCPSP 175

0

0; 0, 0

1

2; 3, 1|4; 1, 3

2

4; 1, 1|1; 3, 0

3

3; 1, 1|1; 2, 1

4

1; 2, 1|1; 1, 2

5

3; 2, 1|1; 0, 4

6

3; 1, 1|2; 0, 2

7

2; 2, 2|1; 3, 0

8

0; 0, 0

Activity duration and demands for mode

1 2
3

4

5
7

3

2
1
0 time

Renewable resource 1, availability = 3

Non-renewable resource 2, availability = 8

1 + 0 + 1 + 2 + 1 + 2 + 0 ≤ 8

SM = (1, 1, 2, 2, 2, 1, 2, 2, 1)

Figure 8.2: An example of MRCPSP with one renewable resource and one non-renewable
resource.

Similarly to the RCPSP, to calculate the extended precedence set, we use the Floyd-
Warshall algorithm on the graph defined by the precedence relation E, where each arc
(Ai, Aj) is labeled with the duration mino∈{1,...,Mi}(pi,o). This extended precedence set is
named E∗ and contains, for each pair of activities Ai and Aj such that Ai precedes Aj , a
tuple of the form (Ai, Aj, li,j) where li,j is the length of the longest path from Ai to Aj .
Notice also that, if (Ai, Ai, li,i) ∈ E∗ for some Ai and li,i > 0, then there is a cycle in the
precedence relation and therefore the problem is inconsistent and has no solution.

Lower Bound

We have only implemented the critical path bound on the graph defined by the prece-
dence relation E where each arc (Ai, Aj) is labeled with the duration mino∈{1,...,Mi}(pi,o).
Notice that we can easily know the length of this path if we have already computed the
precedence set, since we only need to obtain l0,n+1 from (A0, An+1, l0,n+1) ∈ E∗.

For instance, in Figure 8.2 the critical path is [A0, A1, A3, A6, A7, A8] with modes

176 CHAPTER 8. OTHER SCHEDULING PROBLEMS

1, 1, 2, 2, 2, 1 respectively, and its length is 6.

Upper Bound

We calculate the trivial upper bound, i.e., the sum of the maximum duration for all activ-
ities:

UB =
∑
Ai∈A

max
o∈{1,...,Mi}

(pi,o)

For instance, in the example of Figure 8.2 the upper bound is 20.

Time Windows

This preprocessing is the same as in the standard RCPSP.

Non-Renewable Resource Demand Reduction

This preprocessing reduces the demand of non-renewable resources for each activity. This
allows us to save SMT literals in the non-renewable resource constraints.

For instance, in the example of Figure 8.2, the non-renewable resource R2 has 8
units available and activity A6 has two modes: mode 1 requires 1 unit of resource R2,
while mode 2 requires 2 units of the same resource. This problem can be transformed
into an equivalent one, where the availability of resource R2 is 7, and activity A6 has a
demand of 0 units of resource R2 in mode 1, and of 1 unit in mode 2. Since in mode 1
the demand is of 0 units, it is not necessary to add any literal considering this mode into
the non-renewable resource constraints. Roughly, following the example, what is done is
to substract the minimum amount of resource R2 that A6 will need, from the availability
of the resource and from the different demands of the activity in each mode. Clearly, this
transformation is sound in the sense that it preserves the set of solutions.

In order to perform this preprocess, we construct a new vector B′ of resource avail-
abilities and a new matrix b′ of resource demands of activities, where:

• B′k and b′i,k,o are identical to Bk and bi,k,o ∀Ai ∈ V, ∀o ∈ {1, . . . ,Mi},∀k ∈
{1, . . . , v}.

• For each non-renewable resourceRk and activityAi, we find the demand value with
more occurrences for the resource Rk in the different modes of this activity; we call

8.2. MULTIMODE RCPSP 177

this value maxk,i. Then we state:

b′i,k,o = bi,k,o −maxk,i ∀Ai ∈ A,∀o ∈ {1, . . . ,Mi}

B′k = Bk −
∑
Ai∈A

maxk,i ∀Rk ∈ {Rv+1, . . . , Rq}

In Subsection 8.2.4 we show the good performance of this preprocessing method.

8.2.2 Encodings

In all encodings We use the set of integer variables {S0, S1, . . . , Sn, Sn+1} to encode the
schedule. By S ′ we denote the set {S1, . . . , Sn}. We also use the set of integer variables
{SM0, SM1, . . . , SMn, SMn+1} to encode the schedule of modes. The objective function
is always (8.2), and we have the following constraints:

S0 = 0(8.6)
Si ≥ ESi ∀Ai∈{A1, . . . , An+1}(8.7)
Si ≤ LSi ∀Ai∈{A1, . . . , An+1}(8.8)
Sj − Si ≥ li,j ∀(Ai, Aj, li,j) ∈ E∗(8.9)
SM0 = 1(8.10)
SMn+1 = 1(8.11)
SMi ≥ 1 ∀Ai∈A(8.12)
SMi ≤Mi ∀Ai∈A(8.13)

where (8.7) and (8.8) are simple encodings of the time windows for each activity, (8.9)
encodes the extended precedences and (8.10), (8.11),(8.12) and (8.13) encode the possible
modes for each activity.

We also have the non-renewable resource constraints using the values resulting from
the non-renewable resource demand reduction preprocessing:∑

Ai∈A,o∈{1,...,Mi}

ite(SMi = o; b′i,k,o; 0) ≤ B′k ∀Rk ∈ {Rv+1, . . . , Rq}(8.14)

Hence, in each encoding, besides their own, there are 1 + 2(n+ 1) + |E∗|+ 2 + 2n
–i.e. O(n2)– constraints.

Time Formulation

Recall that for every time unit and renewable resource, the sum of all resource require-
ments for the activities in their current modes must be less than or equal to the resource
availability. We use the following equations to encode these constraints:

178 CHAPTER 8. OTHER SCHEDULING PROBLEMS

ite((Si ≤ t) ∧ ¬(Si ≤ t− pi,o) ∧ (SMi = o); xi,t = 1; xi,t = 0)

∀Si ∈ S ′,∀o ∈ {1, . . . ,Mi},∀t ∈ {ESi, . . . , LSi + max
o′∈{1,...,Mi}

(pi,o′)− 1}(8.15)

∑
Ai∈A,o∈{1,...,Mi}

ite(t ∈ {ESi, . . . , LSi + pi,o − 1} ∧ (SMi = o); b′i,r,o ∗ xi,t; 0) ≤ B′r

∀Rr ∈ {R1, . . . , Rv},∀t ∈ H

(8.16)

We remark that (8.15) imposes that xi,t = 1 if activity Ai is active at time t with
mode o, and xi,t = 0 otherwise. We restrict the possible time units to check by using the
time windows. Constraints (8.16) encode the renewable resource constraints (8.5) using
these xi,t variables.

This encoding involves
∑

Ai∈A(LSi+maxo∈{1,...,Mi}(pi,o)−ESi) –i.e. O(nT)– new
integer variables. It also involves

∑
Ai∈A(LSi+maxo∈{1,...,Mi}(pi,o)−ESi)Mi+(T +1)v

–i.e. O(T (nMmax + v))– new constraints, where Mmax = maxAi∈A(Mi).

We can slightly change this previous formulation by introducing O(nT) Boolean
variables yi,t encoding the 0/1 xi,t variables, by replacing the constraints (8.15) with the
following constraints:

yi,t ↔ (Si ≤ t) ∧ ¬(Si ≤ t− pi,0) ∧ (SMi = o)

∀Si ∈ S ′,∀o ∈ {1, . . . ,Mi},∀t ∈ {ESi, . . . , LSi + max
o′∈{1,...,Mi}

(pi,o′)− 1}(8.17)

ite(yi,t; xi,t = 1; xi,t = 0)

∀Si ∈ S ′, ∀t ∈ {ESi, . . . , LSi + max
o∈{1,...,Mi}

(pi,o)− 1}(8.18)

We have observed that for small problem instances this last formulation exhibits
better performance than the previous one. However, for big instances (with more than 50
activities) the addition of the new variables yi,t usually makes the problem intractable by
our system.

Task Formulation

Similarly as in Subsection 7.5.2, in this formulation we use variables indexed by activities
instead of by time. The key idea is that checking only that there is no overload at the

8.2. MULTIMODE RCPSP 179

beginning (end) of each activity is sufficient to ensure that there is no overload at every
time (for the non-preemptive case). In this formulation, the number of variables and
constraints is independent of the length of the scheduling horizon T .

The constraints are the following, where the Boolean variables z1i,j denote if activity
Ai starts not after Aj . The Boolean variables z2i,j denote if activity Aj starts before Ai

ends. The integer variables zi,j are 1 if activity Ai is active when activity Aj starts, and 0
otherwise.

z1i,j ∀(Ai, Aj, li,j) ∈ E∗(8.19)

¬z1j,i ∀(Ai, Aj, li,j) ∈ E∗(8.20)

z1i,j ↔ Si ≤ Sj ∀Ai, Aj ∈ A,
(Ai, Aj, li,j) /∈ E∗, (Aj, Ai, lj,i) /∈ E∗,
i 6= j

(8.21)

¬z2i,j ∀(Ai, Aj, li,j) ∈ E∗(8.22)

z2j,i ∀(Ai, Aj, li,j) ∈ E∗(8.23)

SMi = o→ (z2i,j ↔ Sj < Si + pi,o) ∀Ai, Aj ∈ A,∀o ∈ {1, . . . ,Mi},
(Ai, Aj, li,j) /∈ E∗, (Aj, Ai, lj,i) /∈ E∗,
i 6= j

(8.24)

ite(z1i,j ∧ z2i,j; zi,j = 1; zi,j = 0) ∀Ai, Aj ∈ A,
i 6= j

(8.25)

SMj = o′ →
∑

Ai∈A\{Aj},o∈{1,...,Mi}

ite(SMi = o; b′i,k,o ∗ zi,j; 0) ≤ B′k − b′j,k,o′

∀Aj ∈ A,∀o′ ∈ {1, . . . ,Mj},∀Rk ∈ {R1, . . . , Rv}
(8.26)

The last constraints (8.26) state that, for every activity Aj with mode o′, and for
every resource Rk, the sum of the resource demands b′i,k,o for Rk from the activities Ai

180 CHAPTER 8. OTHER SCHEDULING PROBLEMS

with mode o that overlap with Aj , should not exceed the capacity of Rk less the demand
b′j,k,o′ for R′k from Aj .

This encoding involves 2n(n− 1) n(n− 1) –i.e. O(n2)– new Boolean and integer
variables, respectively, and 3n(n − 1) +

∑
Ai∈A vMi –i.e. O(n2 + nvMmax), where

Mmax = maxAi∈A(Mi)– new constraints.

As in the standard RCPSP, we have the following redundant constraints encoding
anti-symmetry and transitivity of the precedence relation:

z1i,j ∨ z1j,i ∀Ai, Aj ∈ A, i 6= j(8.27)

(z1i,j ∧ z1j,k)→ z1i,k ∀Ai, Aj, Ak ∈ A, i 6= j, j 6= k, i 6= k(8.28)

The following constraints have also shown to slightly improve propagation in this
encoding:

z1i,j ∨ z2i,j ∀Ai, Aj ∈ A, i 6= j(8.29)

z2i,j ∨ z2j,i ∀Ai, Aj ∈ A, i 6= j(8.30)

z1i,j → z2j,i ∀Ai, Aj ∈ A, i 6= j(8.31)

8.2.3 New Boolean Encoding

We have implemented an additional encoding for the MRCPSP. In this encoding a sched-
ule of modes is a vector m of vectors of Booleans, where mi,o is true if activity Ai acts
in mode o and false otherwise. Obviously, there must be one, and only one, true value
in each vector mi. This property of the vectors is the Exactly-One constraint. This con-
straint is commonly expressed as the conjunction of the ALO (At-Least-One), and the
AMO (At-Most-One) constraints. We have used the standard encoding of the ALO and
AMO constraints described in Subsection 3.5.1. The resulting formulation is:

m0,1 ∧mn+1,1(8.32)
mi,1 ∨ . . . ∨mi,Mi

∀Ai ∈ A(8.33)
Mi∧
o=1

Mi∧
j=o+1

¬mi,o ∨ ¬mi,j ∀Ai ∈ A(8.34)

In this new encoding, constraints (8.12) and (8.13) disappear, and SMi = o must
be replaced by mi,o in the remaining constraints. We have called TimeBool and TaskBool
the two new formulations resulting from applying this encoding in the Time and Task
formulations, respectively.

8.2. MULTIMODE RCPSP 181

8.2.4 Experiments

The first experiment in the MRCPSP is to check if the new preprocessing method, called
non-renewable resource demand reduction, improves the performance of the system. We
consider the multimode j20 testset from the PSPLib. The comparison is made with and
without this new method in the Time and Task formulations. We have run the experiments
on an Intel R© CoreTM i5 CPU at 2.66 GHz, with 6GB of RAM, running 64-bit openSUSE
11.2 (kernel 2.6.31), using Yices 1.0.29. The timeout was set to 500 seconds for all
experiments. In Table 8.2 we can see that the non-renewable resource demand reduction
allows us to obtain much better results in the Task formulation; with this configuration
the system solves the same number of instances than when not using this preprocess,
but spending 22% less time. In the Time formulation, it also solves the same number of
instances but the time saved is not as significant, only 12%.

j20 - 554 inst.
Time Task

With Without With Without
Solution 551 551 554 554
Average 28.75 32.23 3.44 4.20
Median 7.79 8.09 0.58 0.69

Table 8.2: Comparison with and without using the non-renewable resources demand re-
duction preprocessing method (cutoff 500 seconds).

The second experiment is the comparison of the new TimeBool and TaskBool en-
codings. The experiments are performed on the following MRCPSP testsets from the
PSPLib: c15, c21, j10, j12, j14, j16, j18, j20, j30, m1, m2, m4, m5, n0, n1, n3, r1, r3, r4
and r5. We have run the experiments on an Intel R© CoreTM i5 CPU at 2.66 GHz, with 6GB
of RAM, running 64-bit openSUSE 11.2 (kernel 2.6.31), using Yices 1.0.29. The timeout
was set to 500 seconds for all experiments.

In Tables 8.3 and 8.4 we can see that the task based encodings perform better than
the time based encondings. The first solve 48 instances more, and the instances are solved
in almost an order of magnitude less time. We also can see that the new Boolean encodings
perform slightly better than the ones using integer variables. The Task formulation solves
the same number of instances than the TaskBool formulation in almost equal time. But
the TimeBool formulation solves 3 instances more that the Time formulation in practically
identical time.

We cannot compare our approach with another solver because we have not found
any one available. We have compared it with existing results in the PSPLib. The time
of the j30 testsets is not available in the PSPLib. The results of the j18 and j20 testsets

182 CHAPTER 8. OTHER SCHEDULING PROBLEMS

seems to be wrong since they are identical, therefore we have not considered them either.
In Table 8.5 we can see that our system gives better times than the ones in the PSPLib. In
many testsets our system is an order of magnitude faster.

8.3 Summary

In this chapter we have shown that SMT is a competitive approach for other scheduling
problems, namely the RCPSP/max and the MRCPCP . Using an algorithm with prepro-
cessing and an appropriate encoding (the new Boolean encoding) the performances ob-
tained were similar, and in some cases better, than the ones of the best state-of-the-art
solvers. We remark that we have obtained very good performance in the MRCPCP. How-
ever, we have not been able to compare our system with other solvers. We have made our
comparisons using the results in the PSPLib.

8.3. SUMMARY 183

Formulation Set #Instances #Solved #Non Sol. Mean Median
c15 551 551 0 8.92 2.75
c21 552 552 0 9.53 3.04
j10 536 536 0 0.98 0.44
j12 547 547 0 2.08 0.90
j14 551 551 0 4.17 1.60
j16 550 550 0 8.43 2.95
j18 552 552 0 16.04 4.98
j20 554 551 3 28.73 7.79
j30 640 640 78 71.44 34.83

Time m1 640 462 0 0.31 0.29
m2 481 481 0 2.43 1.06
m4 555 555 0 20.69 5.98
m5 558 540 18 40.31 13.19
n0 470 470 0 10.23 2.25
n1 637 637 0 8.15 2.27
n3 600 600 0 7.78 2.61
r1 553 553 0 2.42 0.99
r3 557 557 0 15.50 4.80
r4 552 552 0 23.16 7.77
r5 546 546 0 32.75 12.85

Tot. 11182 11083 99 15.66 3.04
c15 551 551 0 9.19 3.00
c21 552 552 0 9.86 3.31
j10 536 536 0 1.01 0.46
j12 547 547 0 2.14 0.89
j14 551 551 0 4.69 1.88
j16 550 550 0 8.93 3.17
j18 552 552 0 16.94 5.19
j20 554 552 2 29.01 7.97
j30 640 563 77 68.41 32.12

TimeBool m1 640 640 0 0.33 0.31
m2 481 481 0 2.54 1.11
m4 555 555 0 21.76 6.14
m5 558 541 17 42.30 13.70
n0 470 470 0 9.91 2.03
n1 637 637 0 8.67 2.75
n3 600 600 0 8.37 2.78
r1 553 553 0 2.51 0.92
r3 557 557 0 15.75 5.32
r4 552 552 0 23.20 7.88
r5 546 546 0 38.85 12.74

Tot. 11182 11086 96 15.98 3.12

Table 8.3: Comparison between Time and TimeBool encoding (cutoff 500 seconds).

184 CHAPTER 8. OTHER SCHEDULING PROBLEMS

Formulation Set #Instances #Solved #Non Sol. Mean Median
c15 551 551 0 1.15 0.26
c21 552 552 0 0.29 0.13
j10 536 536 0 0.05 0.04
j12 547 547 0 0.08 0.06
j14 551 551 0 0.19 0.11
j16 550 550 0 0.41 0.18
j18 552 552 0 1.06 0.34
j20 554 554 0 3.44 0.58
j30 640 595 45 17.62 6.31

Task m1 640 640 0 0.06 0.04
m2 481 481 0 0.16 0.10
m4 555 555 0 1.04 0.35
m5 558 555 3 5.06 0.69
n0 470 470 0 0.76 0.14
n1 637 637 0 0.40 0.18
n3 600 600 0 0.44 0.18
r1 553 553 0 0.22 0.12
r3 557 557 0 0.61 0.24
r4 552 552 0 1.12 0.31
r5 546 546 0 1.63 0.38

Tot. 11182 11134 48 1.84 0.20
c15 551 551 0 0.93 0.25
c21 552 552 0 0.29 0.13
j10 536 536 0 0.05 0.04
j12 547 547 0 0.08 0.05
j14 551 551 0 0.19 0.10
j16 550 550 0 0.40 0.19
j18 552 552 0 1.08 0.33
j20 554 554 0 3.12 0.61
j30 640 595 45 15.96 6.07

TaskBool m1 640 640 0 0.06 0.05
m2 481 481 0 0.18 0.11
m4 555 555 0 1.20 0.34
m5 558 555 3 6.82 0.59
n0 470 470 0 0.79 0.15
n1 637 637 0 0.41 0.18
n3 600 600 0 0.43 0.19
r1 553 553 0 0.23 0.13
r3 557 557 0 0.60 0.25
r4 552 552 0 1.09 0.31
r5 546 546 0 1.53 0.38

Tot. 11182 11134 48 1.82 0.20

Table 8.4: Comparison between Task and TaskBool encoding (cutoff 500 seconds).

8.3. SUMMARY 185

TaskBool PSPLib
Set Mean Median Mean Median
c15 0.93 0.25 25.32 1.74
c21 0.29 0.13 3.20 0.56
j10 0.05 0.04 0.12 0.06
j12 0.08 0.05 0.32 0.07
j14 0.19 0.10 1.62 0.22
j16 0.40 0.19 6.37 0.38
m1 0.06 0.05 0.05 0.03
m2 0.18 0.11 1.02 0.22
m4 1.20 0.34 46.10 2.51
m5 6.82 0.59 254.90 5.47
n0 0.79 0.15 1.98 0.06
n1 0.41 0.18 3.53 0.47
n3 0.43 0.19 16.81 1.39
r1 0.23 0.13 4.84 0.72
r3 0.60 0.25 10.79 1.47
r4 1.09 0.31 10.97 1.58
r5 1.53 0.38 14.70 1.83

Table 8.5: Comparison between our approach and the PSPLib results. The number of
instances in the PSPLib files and the number of results is not always consistent, so this
table should only be considered as indicative.

186 CHAPTER 8. OTHER SCHEDULING PROBLEMS

Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis, we have achieved the four objectives proposed in the introduction:

• To show that SMT can be a good generic solving approach for CSP. We have
developed fzn2smt, a tool for encoding all FLATZINC instances into SMT. The
good results obtained by fzn2smt on the MINIZINC benchmarks suggest that the
SMT technology can be effectively used for solving CSPs in a broad sense. We
think that fzn2smt can help getting a picture of the suitability of SMT solvers for
solving CSPs. We also remark that the fzn2smt system has obtained very good
results in the MINIZINC Challenges of 2010 and 2011 (a gold medal and 3 silver
medals).

• To prove that using an SMT solver in conjunction with appropriate algorithms
can be a robust approach for optimization variants of CSP. fzn2smt is able
to solve not only decision problems, but optimization ones. In spite of the lack
of support for optimization of most SMT solvers, surprisingly good results have
been obtained on many optimization problems by means of successive calls to the
decision procedure, performing either linear, binary or hybrid search. We have also
introduced a new system, called WSimply, which fills the gap between CSP and
SMT regarding over-constrained problems.

• To develop a system supporting meta-constraints, allowing the user to model
Weighted CSP intensionally, and to solve them using SMT. The system WSimply
allows intensional modelling of WCSP. It also supports some of the best-known
meta-constraints from the literature and other ones that allow the user to specify
richer models. In particular, we have applied these meta-constraints on two well-

187

188 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

known problems, the NRP and a variant of the BACP, showing how to improve
the quality of the solutions and even the solving time for some cases. The usage
of SMT solvers in our solving strategies is a promising choice, since several con-
straints, once described intensionally, can be potentially more efficiently handled.
We have also implemented the SMT adaptation of the WPM1 algorithm, obtaining
good performance.

• To provide an SMT based system being competitive with state-of-the-art meth-
ods for scheduling problems. We have implemented efficient preprocessing and
solving algorithms that, together with different encodings for the RCPSP, the RCPSP/max
and the MRCPSP, achieve performances comparable with the ones of the best ex-
isting approaches.

The contributions of this thesis are outlined in the introduction, but we want to high-
light the encoding of the main variants of the CP paradigm (CSP, COP and WCSP) into
SMT and the good performances obtained. We have developed the first relatively general
and systematic system translating CSPs into SMT. We have developed the first system
for specification and solving of intensional WCSPs with meta-constraints. We have per-
formed tests showing that encoding the RCPSP in SMT is a good solving approximation
for this problem and its generalizations. We have created a new formulation of the event
encoding of the RCPSP. In the case of MRCSP we have obtained the best known perfor-
mance.

On the other hand, we also want to remark some intuitive ideas confirmed during
the development of this thesis:

• The higher is the Boolean component of the problems to solve, the better is the
performance of SMT solvers with respect to the performance of other state-of-the-
art solvers.

• The usage of SMT solvers as black-boxes to solve CSPs turns into almost unpre-
dictable the impact of adding propagation constraints to the models.

• The usage of meta-constraints in over-constrained problems allows us to obtain
better, e.g., more fair, solutions.

• Borrowing UNSAT core based optimization algorithms from the MaxSAT field to
solve WSMT seems to be a promising option.

• The SMT language is very well suited for specifying scheduling problems, where
there are lots of Boolean constraints. Moreover, SMT solvers and Lazy fd, using
SAT based approaches, are the best systems for solving the RCPSP and its general-
izations.

9.2. FUTURE WORK 189

9.2 Future Work

The efficiency of a solver is strongly dependent on its predefined strategies. Hence chang-
ing these heuristics could dramatically affect the SMT solver performance in other prob-
lem domains. We believe that there is much room for improvement in solving CSPs with
SMT. For instance, apart from the possibility of controlling the solver strategies, we think
that developing theory solvers for global constraints is also a promising research line. In
fact, there exist already some interesting results in this direction. On the other hand, we
think that better results could be obtained if directly translating from the MINIZINC lan-
guage to SMT and avoiding some of the flattening. In doing so, most clever translations
for the SMT solvers could be possible and probably less variables could be generated.
For instance, MINIZINC disjunctions of arithmetic constraints are translated into FLATZINC

constraints by reifying them with auxiliary Boolean variables. In our approach this step
is not needed since it is already done by the SMT solver.

A better approach to optimization in SMT is also a pending issue. So we might try
to use the theory of costs or new decision based algorithms appeared in the last year for
the SAT setting.

With respect to WSimply we also plan to extend our framework with support for
Integer Programming techniques, which may be more suitable for some problems where
the Boolean structure is less important than the arithmetic expressions. We want to remark
that we have also proposed a similar extension to deal with weighted CSPs in MINIZINC,
to which we could easily provide a solving mechanism based on SMT and MaxSMT as is
done for WSimply.

Finally, for the scheduling problems, we plan to develop new encodings based on
events, and study the channeling of different encodings to achieve greater propagation.
We also want to solve, using SMT, other scheduling problems such as: Job-shop, Multi-
Mode Resource Constrained Project Scheduling Problem with Minimal and Maximal
Time Lags (MRCPSP/max), Multi-Skill Project Scheduling Problem (MSPSP), Resource
Investment Problem with Minimal and Maximal Time Lags (RIP/max), etc.

190 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Bibliography

[ABL09] Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy, Solving (Weighted)
Partial MaxSAT through Satisfiability Testing, Proceedings of the 12th In-
ternational Conference on Theory and Applications of Satisfiability Test-
ing, LNCS, vol. 5584, Springer, 2009, pp. 427–440.

[ABP+11a] Carlos Ansótegui, Miquel Bofill, Miquel Palahı́, Josep Suy, and Mateu Vil-
laret, A Proposal for Solving Weighted CSPs with SMT, Proceedings of the
10th International Workshop on Constraint Modelling and Reformulation
(ModRef 2011), 2011, pp. 5–19.

[ABP+11b] Carlos Ansótegui, Miquel Bofill, Miquel Palahı́, Josep Suy, and Mateu
Villaret, Satisfiability Modulo Theories: An Efficient Approach for the
Resource-Constrained Project Scheduling Problem, SARA (Michael R.
Genesereth and Peter Z. Revesz, eds.), AAAI, 2011, pp. 2–9.

[ABP+11c] Carlos Ansótegui, Miquel Bofill, Miquel Palahı́, Josep Suy, and Mateu Vil-
laret, W-MiniZinc: A Proposal for Modeling Weighted CSPs with MiniZ-
inc, Proceedings of the first Minizinc workshop (MZN-2011), 2011.

[Ack68] W. Ackermann, Solvable cases of the decision problem, Studies in logic
and the foundations of mathematics, North-Holland, 1968.

[ADN07] Christian Artigues, Sophie Demassey, and Emmanuel Neron, Resource-
constrained project scheduling: Models, algorithms, extensions and appli-
cations, ISTE, 2007.

[AM04] Carlos Ansótegui and Felip Manyà, Mapping Problems with Finite-
Domain Variables to Problems with Boolean Variables, SAT (Selected Pa-
pers (Holger H. Hoos and David G. Mitchell, eds.), Lecture Notes in Com-
puter Science, vol. 3542, Springer, 2004, pp. 1–15.

[AMR03] Christian Artigues, Philippe Michelon, and Stephane Reusser, Insertion
Techniques for Static and Dynamic Resource-Constrained Project Schedul-
ing, European Journal of Operational Research 149 (2003), no. 2, 249–267.

191

192 BIBLIOGRAPHY

[AW07] Krzysztof R. Apt and Mark Wallace, Constraint Logic Programming using
Eclipse, Cambridge University Press, New York, NY, USA, 2007.

[Bap09] Philippe Baptiste, Constraint-Based Schedulers, Do They Really Work?,
Proceedings of the 15th International Conference on Principles and Prac-
tice of Constraint Programming, LNCS, vol. 5732, Springer, 2009, pp. 1–1.

[Bar05] Roman Barták, Constraint propagation and backtracking-based search,
First international summer school on CP, Maratea, Italy, 2005.

[BB82] D.D. Bedworth and J.E. Bailey, Integrated production control systems:
management, analysis, design, Wiley, 1982.

[BB03] Olivier Bailleux and Yacine Boufkhad, Efficient CNF Encoding of Boolean
Cardinality Constraints, Principles and Practice of Constraint Program-
ming, CP 2003 (Francesca Rossi, ed.), Lecture Notes in Computer Science,
vol. 2833, Springer Berlin / Heidelberg, 2003, pp. 108–122.

[BBC+06] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi A.
Junttila, Silvio Ranise, Peter van Rossum, and Roberto Sebastiani, Effi-
cient Theory Combination via Boolean Search, Information and Computa-
tion 204 (2006), no. 10, 1493–1525.

[BCBL04] Edmund K. Burke, Patrick De Causmaecker, Greet Vanden Berghe, and
Hendrik Van Landeghem, The State of the Art of Nurse Rostering, J.
Scheduling 7 (2004), no. 6, 441–499.

[BCF+06] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Grig-
gio, Alessandro Santuari, and Roberto Sebastiani, To Ackermann-ize or Not
to Ackermann-ize? On Efficiently Handling Uninterpreted Function Sym-
bols in SMT (EUF ∪ T), in Hermann and Voronkov [HV06], pp. 557–
571.

[BCF+08] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Grig-
gio, and Roberto Sebastiani, The MathSAT 4 SMT Solver, in CAV [DBL08],
pp. 299–303.

[BDM+99] Peter Brucker, Andreas Drexl, Rolf Möhring, Klaus Neumann, and Er-
win Pesch, Resource-Constrained Project Scheduling: Notation, Classifi-
cation, Models, and Methods, European Journal of Operational Research
112 (1999), no. 1, 3 – 41.

[Bee12] BEE: Equi-Propagation Encoder, http://amit.metodi.me/research/bee/,
2012.

BIBLIOGRAPHY 193

[Bes06] Christian Bessiere, Constraint propagation, Tech. report, In, 2006.

[BFM97] Thomas Back, David B. Fogel, and Zbigniew Michalewicz (eds.), Hand-
book of Evolutionary Computation, 1st ed., IOP Publishing Ltd., Bristol,
UK, UK, 1997.

[BG06] Armin Biere and Carla P. Gomes (eds.), Theory and Applications of Sat-
isfiability Testing - SAT 2006, 9th International Conference, Seattle, WA,
USA, August 12-15, 2006, Proceedings, Lecture Notes in Computer Sci-
ence, vol. 4121, Springer, 2006.

[BGS99] Laure Brisoux, Éric Grégoire, and Lakhdar Sais, Improving Backtrack
Search for SAT by Means of Redundancy, ISMIS (Zbigniew W. Ras and
Andrzej Skowron, eds.), Lecture Notes in Computer Science, vol. 1609,
Springer, 1999, pp. 301–309.

[BHM01] Ramón Béjar, Reiner Hähnle, and Felip Manyà, A Modular Reduction of
Regular Logic to Classical Logic, ISMVL, 2001, pp. 221–226.

[BHvMW09] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh (eds.),
Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applica-
tions, vol. 185, IOS Press, 2009.

[BKO+07] Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer
Strichman, and Bryan A. Brady, Deciding Bit-Vector Arithmetic with Ab-
straction, TACAS (Orna Grumberg and Michael Huth, eds.), Lecture Notes
in Computer Science, vol. 4424, Springer, 2007, pp. 358–372.

[BLK83] J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan, Scheduling Subject
to Resource Constraints: Classification and Complexity, Discrete Applied
Mathematics 5 (1983), no. 1, 11 – 24.

[BLO+12] Cristina Borralleras, Salvador Lucas, Albert Oliveras, Enric Rodrı́guez-
Carbonell, and Albert Rubio, SAT Modulo Linear Arithmetic for Solving
Polynomial Constraints, J. Autom. Reasoning 48 (2012), no. 1, 107–131.

[BM10] Milan Bankovic and Filip Maric, An Alldifferent Constraint Solver in SMT,
Proceedings of the 2010 SMT Workshop, 2010.

[BMR88] M. Bartusch, R. H. Mohring, and F. J. Radermacher, Scheduling Project
Networks with Resource Constraints and Time Windows, Annals of Oper-
ations Research 16 (1988), 201–240.

194 BIBLIOGRAPHY

[BMR97] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi, Semiring-based
constraint satisfaction and optimization, J. ACM 44 (1997), no. 2, 201–
236.

[BMR+99] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and
H. Fargier, Semiring-Based CSPs and valued CSPs: Frameworks, Prop-
erties, and Comparison, Constraints 4 (1999), no. 3, 199–240.

[BNO+08a] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodrı́guez-
Carbonell, and Albert Rubio, A Write-Based Solver for SAT Modulo the
Theory of Arrays, FMCAD (Alessandro Cimatti and Robert B. Jones, eds.),
IEEE, 2008, pp. 1–8.

[BNO+08b] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodrı́guez-
Carbonell, and Albert Rubio, The Barcelogic SMT Solver, in CAV
[DBL08], pp. 294–298.

[BPSV09] Miquel Bofill, Miquel Palahı́, Josep Suy, and Mateu Villaret, SIMPLY: a
Compiler from a CSP Modeling Language to the SMT-LIB Format, Pro-
ceedings of the 8th International Workshop on Constraint Modelling and
Reformulation, 2009, pp. 30–44.

[BPSV12] Miquel Bofill, Miquel Palahı́, Josep Suy, and Mateu Villaret, Solving con-
straint satisfaction problems with SAT modulo theories, Constraints 17
(2012), no. 3, 273–303.

[BS94] Belaid Benhamou and Lakhdar Sais, Tractability Through Symmetries in
Propositional Calculus, J. Autom. Reasoning 12 (1994), no. 1, 89–102.

[BST10a] Clark Barrett, Aaron Stump, and Cesare Tinelli, The Satisfiability Modulo
Theories Library (SMT-LIB), http://www.SMT-LIB.org, 2010.

[BST10b] Clark Barrett, Aaron Stump, and Cesare Tinelli, The SMT-LIB Standard:
Version 2.0, Proceedings of the 8th International Workshop on Satisfiabil-
ity Modulo Theories (Edinburgh, UK) (A. Gupta and D. Kroening, eds.),
2010.

[BSV10] Miquel Bofill, Josep Suy, and Mateu Villaret, A System for Solving Con-
straint Satisfaction Problems with SMT, Proceedings of the 13th Interna-
tional Conference on Theory and Applications of Satisfiability Testing,
LNCS, vol. 6175, Springer, 2010, pp. 300–305.

[Cab11] Alba Cabiscol, Encodings and Benchmarks for MaxSAT Solving, Univer-
sitat de Lleida, Departament d’Informàtica i Enginyeria Industrial, Lleida,
Spain, 2011.

BIBLIOGRAPHY 195

[CB94] James M. Crawford and Andrew B. Baker, Experimental Results on the Ap-
plication of Satisfiability Algorithms to Scheduling Problems, In Proceed-
ings of the Twelfth National Conference on Artificial Intelligence, 1994,
pp. 1092–1097.

[CFG+10] Alessandro Cimatti, Anders Franzén, Alberto Griggio, Roberto Sebastiani,
and Cristian Stenico, Satisfiability Modulo the Theory of Costs: Founda-
tions and Applications, TACAS, LNCS, vol. 6015, 2010, pp. 99–113.

[CIP+00] Marco Cadoli, Giovambattista Ianni, Luigi Palopoli, Andrea Schaerf, and
Domenico Vasile, NP-SPEC: an executable specification language for
solving all problems in NP, Computer Languages 26 (2000), no. 2–4, 165–
195.

[CM01] Carlos Castro and Sebastian Manzano, Variable and Value Ordering When
Solving Balanced Academic Curriculum Problems, 6th Annual Workshop
of the ERCIM Working Group on Constraints, 2001.

[CMP06] Marco Cadoli, Toni Mancini, and Fabio Patrizi, SAT as an Effective Solv-
ing Technology for Constraint Problems, Proceedings of the 16th Inter-
national Symposium on Foundations of Intelligent Systems, LNCS, vol.
4203, Springer, 2006, pp. 540–549.

[CN03] Jacques Carlier and Emmanuel Néron, On Linear Lower Bounds for the
Resource Constrained Project Scheduling Problem, European Journal of
Operational Research 149 (2003), no. 2, 314–324.

[CS00] Philippe Chatalic and Laurent Simon, ZRes: The old Davis-Putnam proce-
dure meets ZBDD, In 17th Intl. Conf. on Automated Deduction (CADE17),
volume 1831 of LNAI, Springer-Verlag, 2000, pp. 449–454.

[CS05] Marco Cadoli and Andrea Schaerf, Compiling Problem Specifications into
SAT, Artificial Intelligence 162 (2005), no. 1–2, 89–120.

[CV11] José Coelho and Mario Vanhoucke, Multi-mode resource-constrained
project scheduling using RCPSP and SAT solvers., European Journal of
Operational Research 213 (2011), no. 1, 73–82.

[DBL01] Proceedings of the 38th Design Automation Conference, DAC 2001, Las
Vegas, NV, USA, June 18-22, 2001, ACM, 2001.

[DBL08] Computer Aided Verification, 20th International Conference, CAV 2008,
Princeton, NJ, USA, July 7-14, 2008, Proceedings, LNCS, vol. 5123, 2008.

196 BIBLIOGRAPHY

[DBL09] Principles and practice of constraint programming - cp 2009, 15th inter-
national conference, cp 2009, lisbon, portugal, september 20-24, 2009,
proceedings, LNCS, vol. 5732, Springer, 2009.

[DdM06a] Bruno Dutertre and Leonardo Mendonça de Moura, A Fast Linear-
Arithmetic Solver for DPLL(T), CAV (Thomas Ball and Robert B. Jones,
eds.), Lecture Notes in Computer Science, vol. 4144, Springer, 2006,
pp. 81–94.

[DdM06b] Bruno Dutertre and Leonardo Mendonça de Moura, The Yices SMT solver,
Tool paper at http://yices.csl.sri.com/tool-paper.pdf, August 2006.

[Dec90] Rina Dechter, On the expressiveness of networks with hidden variables,
Proceedings of the eighth National conference on Artificial intelligence -
Volume 1, AAAI’90, AAAI Press, 1990, pp. 556–562.

[DF98] Rina Dechter and Daniel Frost, Backtracking algorithms for constraint sat-
isfaction problems - a tutorial survey, Tech. report, 1998.

[DGSA] Simon De Givry, Thomas Schiex, and David Allouche, Toulbar2,
http://mulcyber.toulouse.inra.fr/projects/toulbar2/.

[DHN06] Nachum Dershowitz, Ziyad Hanna, and Er Nadel, A scalable algorithm for
minimal unsatisfiable core extraction, In Proc. SAT06, Springer, 2006.

[DLL62] Martin Davis, George Logemann, and Donald Loveland, A machine pro-
gram for theorem-proving, Communications of the ACM 5 (1962), no. 7,
394–397.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner, Z3: An Efficient SMT
Solver, TACAS, LNCS, vol. 4963, 2008, pp. 337–340.

[dMR04] L. de Moura and H. Ruess, An Experimental Evaluation of Ground Deci-
sion Procedures, 16th International Conference on Computer Aided Veri-
fication, CAV’04 (R. Alur and D. Peled, eds.), Lecture Notes in Computer
Science, vol. 3114, Springer, 2004, pp. 162–174.

[DP60] Martin Davis and Hilary Putnam, A Computing Procedure for Quantifica-
tion Theory, Journal of the ACM 7 (1960), 201–215.

[DP89] Rina Dechter and Judea Pearl, Tree clustering for constraint networks (re-
search note), Artif. Intell. 38 (1989), no. 3, 353–366.

[DPBC93] Olivier Dubois, André Pascal, Yacine Boufkhad, and Jaques Carlier, Can
a very simple algorithm be eficient for solving SAT problem?, Proc. of the
DIMACS Challenge II Workshop, 1993.

BIBLIOGRAPHY 197

[DPPH00] U. Dorndorf, E. Pesch, and T. Phan-Huy, A Branch-and-Bound Algorithm
for the Resource-Constrained Project Scheduling Problem, Mathematical
Methods of Operations Research 52 (2000), 413–439.

[DV07] Dieter Debels and Mario Vanhoucke, A Decomposition-Based Genetic Al-
gorithm for the Resource-Constrained Project-Scheduling Problem, Oper-
ations Research 55 (2007), no. 3, 457–469.

[FHJ+08] A. Frisch, W. Harvey, C. Jefferson, B. Martı́nez-Hernández, and I. Miguel,
Essence: A Constraint Language for Specifying Combinatorial Problems,
Constraints 13 (2008), no. 3, 268–306.

[FM06] Zhaohui Fu and Sharad Malik, On Solving the Partial MAX-SAT Problem,
in Biere and Gomes [BG06], pp. 252–265.

[FP01] Alan M. Frisch and Timothy J. Peugniez, Solving Non-Boolean Satisfiabil-
ity Problems with Stochastic Local Search, IJCAI (Bernhard Nebel, ed.),
Morgan Kaufmann, 2001, pp. 282–290.

[Fre78] Eugene C. Freuder, Synthesizing constraint expressions, Commun. ACM
21 (1978), no. 11, 958–966.

[Fre95] Jon William Freeman, Improvements To Propositional Satisfiability Search
Algorithms, 1995.

[FS09] Thibaut Feydy and Peter J. Stuckey, Lazy Clause Generation Reengi-
neered, in Proceedings of the 15th International Conference on Principles
and Practice of Constraint Programming [DBL09], pp. 352–366.

[FW92] Eugene C. Freuder and Richard J. Wallace, Partial Constraint Satisfaction,
Artif. Intell. 58 (1992), no. 1-3, 21–70.

[Fzn08] FznTini, http://www.sat4j.org/howto.php, 2008.

[G1210] Minizinc + Flatzinc, http://www.g12.csse.unimelb.edu.au/minizinc/, 2010.

[Gas79] J. Gaschnig, Performance Measurement and Analysis of Certain Search
Algorithms, Ph.D. thesis, Carnegie-Mellon University, 1979.

[Glo89] Fred Glover, Tabu Search - Part I, INFORMS Journal on Computing 1
(1989), no. 3, 190–206.

[Glo90] Fred Glover, Tabu Search - Part II, INFORMS Journal on Computing 2
(1990), no. 1, 4–32.

198 BIBLIOGRAPHY

[Gom58] R. E. Gomory, Outline of an Algorithm for Integer Solutions to Linear
Programs, Bulletin of the American Society 64 (1958), 275–278.

[HB10] Sönke Hartmann and Dirk Briskorn, A Survey of Variants and Extensions of
the Resource-Constrained Project Scheduling Problem, European Journal
of Operational Research 207 (2010), no. 1, 1 – 14.

[HE80] R. Haralick and G. Elliot, Increasing Tree Search Efficiency for Constraint
Satisfaction Problems, Artificial Intelligence 14 (1980), no. 3, 263–313.

[HK00] Sönke Hartmann and Rainer Kolisch, Experimental evaluation of state-of-
the-art heuristics for the resource-constrained project scheduling problem,
European Journal of Operational Research 127 (2000), no. 2, 394–407.

[HKW02] Brahim Hnich, Zeynep Kiziltan, and Toby Walsh, Modelling a Balanced
Academic Curriculum Problem, Proceedings of the Fourth International
Workshop on Integration of AI and OR techniques in Constraint Program-
ming for Combinatorial Optimisation Problems (CPAIOR 2002), 2002,
pp. 121–131.

[HL05] Willy Herroelen and Roel Leus, Project Scheduling under Uncertainty:
Survey and Research Potentials, European Journal of Operational Research
165 (2005), no. 2, 289–306.

[Hor10] Andrei Horbach, A Boolean Satisfiability Approach to the Resource-
Constrained Project Scheduling Problem, Annals of Operations Research
181 (2010), 89–107.

[HRD98] Willy Herroelen, Bert De Reyck, and Erik Demeulemeester, Resource-
Constrained Project Scheduling: A Survey of Recent Developments, Com-
puters and Operations Research 25 (1998), no. 4, 279 – 302.

[Hua07] Jinbo Huang, The Effect of Restarts on the Efficiency of Clause Learning,
IJCAI (Manuela M. Veloso, ed.), 2007, pp. 2318–2323.

[Hua08] Jinbo Huang, Universal Booleanization of Constraint Models, CP (Peter J.
Stuckey, ed.), Lecture Notes in Computer Science, vol. 5202, Springer,
2008, pp. 144–158.

[HV06] Miki Hermann and Andrei Voronkov (eds.), Logic for programming, arti-
ficial intelligence, and reasoning, Lecture Notes in Computer Science, vol.
4246, Springer, 2006.

BIBLIOGRAPHY 199

[IM94] Kazuo Iwama and Shuichi Miyazaki, SAT-Variable Complexity of Hard
Combinatorial Problems, Proceedings of the world computer congres of
the IFIP, Elsevier Science Inc., 1994, pp. 253–258.

[Jac10] JaCoP Java Constraint Programming Solver, http://jacop.osolpro.com,
2010.

[JW90] Robert G. Jeroslow and Jinchang Wang, Solving Propositional Satisfiabil-
ity Problems, Ann. Math. Artif. Intell. 1 (1990), 167–187.

[KALM11] Oumar Koné, Christian Artigues, Pierre Lopez, and Marcel Mongeau,
Event-Based MILP Models for Resource-Constrained Project Scheduling
Problems, Computers & Operations Research 38 (2011), 3–13.

[Kau06] Henry A. Kautz, Deconstructing Planning as Satisfiability, Proceedings of
the Twenty-first Conference on Artificial Intelligence, AAAI Press, 2006,
pp. 1524–1526.

[KGN+09] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse
Whittemore, Sudhindra Pandav, Anna Slobodová, Christopher Taylor,
Vladimir Frolov, Erik Reeber, and Armaghan Naik, Replacing Testing with
Formal Verification in Intel CoreTM i7 Processor Execution Engine Vali-
dation, CAV (Ahmed Bouajjani and Oded Maler, eds.), Lecture Notes in
Computer Science, vol. 5643, Springer, 2009, pp. 414–429.

[KH06] Rainer Kolisch and Sönke Hartmann, Experimental investigation of heuris-
tics for resource-constrained project scheduling: An update, European
Journal of Operational Research 174 (2006), no. 1, 23–37.

[Kol96] Rainer Kolisch, Serial and parallel resource-constrained project schedul-
ing methods revisited: Theory and computation, European Journal of Op-
erational Research 90 (1996), no. 2, 320–333.

[KP01] R. Kolisch and R. Padman, An Integrated Survey of Deterministic Project
Scheduling, Omega 29 (2001), no. 3, 249–272.

[KS97] Rainer Kolisch and Arno Sprecher, PSPLIB - A Project Scheduling Prob-
lem Library, European Journal of Operational Research 96 (1997), no. 1,
205–216.

[KS99] Robert Klein and Armin Scholl, Computing Lower Bounds by Destructive
Improvement: An Application to Resource-Constrained Project Schedul-
ing, European Journal of Operational Research 112 (1999), no. 2, 322–
346.

200 BIBLIOGRAPHY

[KSHK07] Daher Kaiss, Marcelo Skaba, Ziyad Hanna, and Zurab Khasidashvili, In-
dustrial Strength SAT-based Alignability Algorithm for Hardware Equiva-
lence Verification, FMCAD, IEEE Computer Society, 2007, pp. 20–26.

[Kum92] Vipin Kumar, Algorithms for Constraint Satisfaction Problems: A Survey,
AI Magazine 13 (1992), no. 1, 32–44.

[LM08] Olivier Liess and Philippe Michelon, A Constraint Programming Approach
for the Resource-Constrained Project Scheduling Problem, Annals of Op-
erations Research 157 (2008), 25–36.

[LMS05] Inês Lynce and João Marques-Silva, Efficient Data Structures for Back-
track Search SAT Solvers, Annals of Mathematics and Artificial Intelli-
gence 43 (2005), no. 1-4, 137–152.

[LMS06] Inês Lynce and João Marques-Silva, Efficient Haplotype Inference with
Boolean Satisfiability, AAAI, AAAI Press, 2006, pp. 104–109.

[LS04] Javier Larrosa and Thomas Schiex, Solving weighted CSP by maintaining
arc consistency, Artif. Intell. 159 (2004), no. 1-2, 1–26.

[Mac77] Alan Mackworth, Consistency in Networks of Relations, Artificial Intelli-
gence 8 (1977), no. 1, 99–118.

[MBL09] Jean-Philippe Métivier, Patrice Boizumault, and Samir Loudni, Solv-
ing Nurse Rostering Problems Using Soft Global Constraints, CP 2009,
LNCS, vol. 5732, 2009, pp. 73–87.

[MC12] Amit Metodi and Michael Codish, Compiling Finite Domain Constraints
to SAT with BEE, CoRR abs/1206.3883 (2012).

[MH86] Roger Mohr and Thomas C. Henderson, Arc and Path Consistency Revis-
ited, Artif. Intell. 28 (1986), no. 2, 225–233.

[MJ10] Filip Maric and Predrag Janicic, URBiVA: Uniform Reduction to Bit-Vector
Arithmetic, IJCAR (Jürgen Giesl and Reiner Hähnle, eds.), Lecture Notes
in Computer Science, vol. 6173, Springer, 2010, pp. 346–352.

[MMRB98] Aristide Mingozzi, Vittorio Maniezzo, Salvatore Ricciardelli, and Lu-
cio Bianco, An Exact Algorithm for the Resource-Constrained Project
Scheduling Problem Based on a New Mathematical Formulation, Manage-
ment Science 44 (1998), 714–729.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik, Chaff: Engineering an Efficient SAT Solver, in DAC
[DBL01], pp. 530–535.

BIBLIOGRAPHY 201

[MS01] Pedro Meseguer and Martı́ Sánchez, Specializing Russian Doll Search, In
Proceedings of CP, Springer Verlag, 2001, pp. 464–478.

[MSP09] Vasco M. Manquinho, João P. Marques Silva, and Jordi Planes, Algorithms
for Weighted Boolean Optimization, Proceedings of the 12th International
Conference on Theory and Applications of Satisfiability Testing, LNCS,
vol. 5584, Springer, 2009, pp. 495–508.

[MTW+99] Patrick Mills, Edward Tsang, Richard Williams, John Ford, James Borrett,
and Wivenhoe Park, EaCL 1.5: An Easy Constraint optimisation Program-
ming Language, Tech. Report CSM-324, University of Essex, Colchester,
U.K., 1999.

[Nic07] Nicholas Nethercote and Peter J. Stuckey and Ralph Becket and Sebastian
Brand and Gregory J. Duck and Guido Tack, MiniZinc: Towards a Stan-
dard CP Modelling Language, CP, LNCS, vol. 4741, 2007, pp. 529–543.

[NO79] G. Nelson and D. C. Oppen, Simplification by Cooperating Decision Pro-
cedures, ACM Transactions on Programming Languages and Systems,
TOPLAS 1 (1979), no. 2, 245–257.

[NO80] Greg Nelson and Derek C. Oppen, Fast decision procedures based on con-
gruence closure, J. ACM 27 (1980), no. 2, 356–364.

[NO05] Robert Nieuwenhuis and Albert Oliveras, DPLL(T) with exhaustive the-
ory propagation and its application to difference logic, In CAV’05 LNCS
3576, Springer, 2005, pp. 321–334.

[NO06] Robert Nieuwenhuis and Albert Oliveras, On SAT Modulo Theories and
Optimization Problems, in Biere and Gomes [BG06], pp. 156–169.

[NORCR07] Robert Nieuwenhuis, Albert Oliveras, Enric Rodrı́guez-Carbonell, and Al-
bert Rubio, Challenges in Satisfiability Modulo Theories, Proceedings of
the 18th International Conference on Term Rewriting and Applications,
LNCS, vol. 4533, Springer, 2007, pp. 2–18.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli, Solving SAT
and SAT Modulo Theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL(T), Journal of the ACM 53 (2006), no. 6,
937–977.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack, MiniZinc: Towards a Standard CP Mod-
elling Language, CP 2007, LNCS, vol. 4741, 2007, pp. 529–543.

202 BIBLIOGRAPHY

[OEK99] A. O. El-Kholy, Resource Feasibility in Planning, Ph.D. thesis, Imperial
College, University of London, 1999.

[OSC09] Olga Ohrimenko, Peter J. Stuckey, and Michael Codish, Propagation via
lazy clause generation, Constraints 14 (2009), no. 3, 357–391.

[PdMB10] R. Piskac, Leonardo Mendonça de Moura, and N. Bjørner, Deciding Ef-
fectively Propositional Logic using DPLL and substitution sets, Journal of
Automated Reasoning 44 (2010), no. 4, 401–424.

[PR91] Manfred Padberg and Giovanni Rinaldi, A branch-and-cut algorithm
for the resolution of large-scale symmetric traveling salesman problems,
SIAM Rev. 33 (1991), no. 1, 60–100.

[PRB00] T. Petit, J. C. Regin, and C. Bessiere, Meta-constraints on violations for
over constrained problems, ICTAI 2000, Proceedings of the 12th IEEE In-
ternational Conference on Tools with Artificial Intelligence, 2000, pp. 358–
365.

[Pre93] Daniele Pretolani, Efficiency and stability of hypergraph SAT algorithms,
Proc. of the DIMACS Challenge II Workshop, 1993.

[PW96] Lawrence J. Watters Pritsker, A. Alan B. and Philip S. Wolfe, Multiproject
Scheduling with Limited Resources: A Zero-One Programming Approach,
Management Science 16 (1996), 93–108.

[RBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, Handbook of constraint
programming (foundations of artificial intelligence), Elsevier Science Inc.,
New York, NY, USA, 2006.

[RL09] Olivier Roussel and Christophe Lecoutre, XML Representation of Con-
straint Networks: Format XCSP 2.1, CoRR abs/0902.2362 (2009).

[Rob65] J. A. Robinson, A machine-oriented logic based on the resolution principle,
J. ACM 12 (1965), no. 1, 23–41.

[RPD90] Francesca Rossi, Charles Petrie, and Vasant Dhar, On the equivalence of
constraint satisfaction problems, In Proceedings of the 9th European Con-
ference on Artificial Intelligence, 1990, pp. 550–556.

[RS08] Vadim Ryvchin and Ofer Strichman, Local restarts, SAT (Hans Kleine
Büning and Xishun Zhao, eds.), Lecture Notes in Computer Science, vol.
4996, Springer, 2008, pp. 271–276.

BIBLIOGRAPHY 203

[RT06] S. Ranise and C. Tinelli, The SMT-LIB Standard: Version 1.2, Tech. re-
port, Dept. of Comp. Science, University of Iowa, 2006, http://www.SMT-
LIB.org.

[Sat05] Sat4j: the Boolean satisfaction and optimization library for Java,
http://users.cecs.anu.edu.au/ jinbo/fzntini/, 2005.

[SBDL01] A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt, A Decision Procedure
for an Extensional Theory of Arrays, 16th Annual Symposium on Logic in
Computer Science, IEEE Computer Society, 2001, pp. 29–37.

[SBF10] Peter J. Stuckey, Ralph Becket, and Julien Fischer, Philosophy of the
MiniZinc challenge, Constraints 15 (2010), 307–316.

[Sch89] Uwe Schöning, Logic for computer scientists, volume 8 of progress in com-
puter science and applied logic, Birkhäuser, 1989.

[Sci10] SCIP, Solving constraint integer programs, http://scip.zib.de/scip.shtml,
2010.

[SD98] Arno Sprecher and Andreas Drexl, Multi-mode resource-constrained
project scheduling by a simple, general and powerful sequencing algo-
rithm, European Journal of Operational Research 107 (1998), no. 2, 431 –
450.

[Seb07] Roberto Sebastiani, Lazy Satisability Modulo Theories, Journal on Satisfi-
ability, Boolean Modeling and Computation 3 (2007), no. 3-4, 141–224.

[SFSW09] Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark Wallace, Why
Cumulative Decomposition Is Not as Bad as It Sounds, in Proceedings of
the 15th International Conference on Principles and Practice of Constraint
Programming [DBL09], pp. 746–761.

[SFSW10] Andreas Schutt, Thibaut Feydy, Peter Stuckey, and Mark Wallace, Explain-
ing the Cumulative Propagator, Constraints (2010), 1–33.

[Sho84] Robert E. Shostak, Deciding Combinations of Theories, J. ACM 31 (1984),
no. 1, 1–12.

[Sic10] SICStus Prolog, http://www.sics.se/sisctus, 2010.

[Sil99] João P. Marques Silva, The Impact of Branching Heuristics in Proposi-
tional Satisfiability Algorithms, Proceedings of the 9th Portuguese Confer-
ence on Artificial Intelligence: Progress in Artificial Intelligence (London,
UK, UK), EPIA ’99, Springer-Verlag, 1999, pp. 62–74.

204 BIBLIOGRAPHY

[Sin05] Carsten Sinz, Towards an optimal cnf encoding of boolean cardinality con-
straints, In Proc. of the 11th Intl. Conf. on Principles and Practice of Con-
straint Programming (CP 2005, 2005, pp. 827–831.

[SKD95] Arno Sprecher, Rainer Kolisch, and Andreas Drexl, Semi-active, active,
and non-delay schedules for the resource-constrained project scheduling
problem, European Journal of Operational Research 80 (1995), no. 1, 94 –
102.

[SLT10] C. Schulte, M. Lagerkvist, and G. Tack, Gecode, http://www.gecode.org,
2010.

[Spe05] NP-SPEC Project (Spec2SAT version), http://www.dis.uniroma1.it/cadoli/
research/projects/NP-SPEC/code/spec2SAT/, 2005.

[SS06] Hossein M. Sheini and Karem A. Sakallah, From Propositional Satisfiabil-
ity to Satisfiability Modulo Theories, in Biere and Gomes [BG06], pp. 1–9.

[Sug11] Sugar: A SAT-based Constraint Solver, http://bach.istc.kobe-
u.ac.jp/sugar/, 2011.

[TTKB09] Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara,
Compiling Finite Linear CSP into SAT, Constraints 14 (2009), no. 2, 254–
272.

[Urq87] Alasdair Urquhart, Hard examples for resolution, J. ACM 34 (1987), no. 1,
209–219.

[VB01] Miroslav N. Velev and Randal E. Bryant, Effective Use of Boolean Satis-
fiability Procedures in the Formal Verification of Superscalar and VLIW
Microprocessors, in DAC [DBL01], pp. 226–231.

[VLS96] Gérard Verfaillie, Michel Lemaı̂tre, and Thomas Schiex, Russian Doll
Search for Solving Constraint Optimization Problems, AAAI/IAAI, Vol.
1 (William J. Clancey and Daniel S. Weld, eds.), AAAI Press / The MIT
Press, 1996, pp. 181–187.

[VM07] M Vanhoucke and B Maenhout, NSPLIB - a nurse scheduling problem
library: A tool to evaluate (meta-) heuristic procedures, Operational Re-
search for Health Policy Making Better Decisions (2007), 151–165.

[Wal96] Richard J. Wallace, Enhancements of Branch and Bound Methods for
the Maximal Constraint Satisfaction Problem, Proc. of AAAI-96, 1996,
pp. 188–195.

BIBLIOGRAPHY 205

[Wal00] Toby Walsh, SAT v CSP, Proceedings of the 6th International Conference
on Principles and Practice of Constraint Programming, LNCS, vol. 1894,
Springer, 2000, pp. 441–456.

[ZBY06] Guidong Zhu, Jonathan F. Bard, and Gang Yu, A Branch-and-Cut Proce-
dure for the Multimode Resource-Constrained Project-Scheduling Prob-
lem, INFORMS J. on Computing 18 (2006), no. 3, 377–390.

[Zha97] Hantao Zhang, SATO: An Efficient Propositional Prover, CADE (William
McCune, ed.), Lecture Notes in Computer Science, vol. 1249, Springer,
1997, pp. 272–275.

[ZHR08] Juan Camilo Zapata, Bri Mathias Hodge, and Gintaras V. Reklaitis, The
multimode resource constrained multiproject scheduling problem: Alter-
native formulations, AIChE Journal 54 (2008), no. 8, 2101–2119.

[ZLS04] Hantao Zhang, Dapeng Li, and Haiou Shen, A SAT Based Scheduler for
Tournament Schedules, Theory and Applications of Satisfiability Testing,
7th International Conference, SAT’04, Online Proceedings, 2004, pp. 191–
196.

[ZLS06] Jianmin Zhang, Sikun Li, and Shengyu Shen, Extracting minimum unsatis-
fiable cores with a greedy genetic algorithm, Proceedings of the 19th Aus-
tralian joint conference on Artificial Intelligence: advances in Artificial
Intelligence (Berlin, Heidelberg), AI’06, Springer-Verlag, 2006, pp. 847–
856.

[ZM88] Ramin Zabih and David A. McAllester, A rearrangement search strategy
for determining propositional satisfiability, In Proceedings of teh National
Conference on Artificial Intelligence AAAI, 1988, pp. 155–160.

[ZM02] Lintao Zhang and Sharad Malik, The Quest for Efficient Boolean Satisfia-
bility Solvers, CAV, LNCS, vol. 2404, Springer, 2002, pp. 17–36.

[ZM03] Lintao Zhang and Sharad Malik, Cache Performance of SAT Solvers:
a Case Study for Efficient Implementation of Algorithms, SAT (Enrico
Giunchiglia and Armando Tacchella, eds.), Lecture Notes in Computer
Science, vol. 2919, Springer, 2003, pp. 287–298.

	Abstract
	Resum
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation and Objectives
	Contributions
	Publications
	Outline of the Thesis

	Constraint Programming
	Constraint Satisfaction Problems
	Systematic Search
	Generate and Test
	Backtracking

	Consistency Techniques
	Node Consistency
	Arc Consistency
	Other Consistency Techniques

	Constraint Propagation
	Forward Checking
	Look Ahead
	Propagators

	Constraint Optimization
	Global Constraints
	Other CSP Solving Methods
	MaxCSP and Weighted CSP

	Satisfiability
	The SAT Problem
	Satisfiability Algorithms
	The Resolution Method
	The Davis-Putnam Procedure
	The Davis-Logemann-Loveland Procedure
	Abstract Davis-Putnam-Logemann-Loveland

	MaxSAT and Weighted MaxSAT
	MaxSAT and Partial MaxSAT
	Weighted MaxSAT and Weighted Partial MaxSAT

	MaxSAT and Weighted MaxSAT Algorithms
	UNSAT Core Based Algorithms

	Encoding CSPs into SAT
	Variable Encodings
	Constraint Encodings
	Other Encodings

	Satisfiability Modulo Theories
	Preliminaries
	The Eager and Lazy SMT Approaches
	Abstract DPLL Modulo Theories
	Theories and Logics
	Combination of Theories

	MaxSMT and Weighted SMT
	Lazy Clause Generation

	Encoding CSP into SMT
	State-of-the-Art
	Simply
	Structure of Simply
	Constraints
	Examples and Benchmarks
	Simply Prototype Considerations

	MINIZINC and FLATZINC
	fzn2smt
	Translation and Encoding
	Constant and Variable Declarations
	Constraints
	Solve Goal

	Benchmarking
	fzn2smt with SMT Solvers
	Array Encodings
	Bounding Strategy
	Other FLATZINC Solvers
	Other FLATZINC Solvers with Global Constraints

	Impact of the Boolean Component
	Summary

	Weighted CSP and Meta-Constraints
	State-of-the-Art
	WSimply
	Meta-Constraints
	Modelling Example
	Soft Constraints

	Solving Process
	Reformulating WCSP with Meta-Constraints into WCSP (R1)
	Reformulating WCSP into COP (R2)
	Reformulating WCSP into WSMT (R3)
	Reformulating COP into WSMT (R4)
	Solving with SMT

	Benchmarking
	Nurse Rostering Problem
	Soft Balanced Academic Curriculum Problem

	Extensional WCSP
	Summary

	Scheduling
	State-of-the-Art in the RCPSP
	The Resource-Constrained Project Scheduling Problem
	Preprocessing
	Solving
	Encodings
	Time Formulation
	Task Formulation
	Flow Formulation
	Event Formulation
	New Event Formulation

	Experiments
	Initial and New Event-Based Formulation
	Preprocessing and Optimization
	Comparison with Others Solvers
	System Improvements
	Closed Instances

	Summary

	Other Scheduling Problems
	RCPSP/max
	Preprocessing
	Experiments

	Multimode RCPSP
	Preprocessing
	Encodings
	New Boolean Encoding
	Experiments

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

