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Chapter 1

Introduction

T
his thesis is devoted to the veri�cation and validation of knowledge-based program

supervision systems. In this chapter we �rst present the knowledge-based program

supervision techniques. Afterwards we justify the interest of the veri�cation and validation

of these systems. Then we introduce the framework for the design and implementation of

knowledge-based program supervision systems in our team, which has in�uenced our approach

to their veri�cation and validation. Finally we outline the structure of this thesis.

1.1 Program supervision

Research in many �elds �like scienti�c computing or image processing� provides us with

libraries of programs implementing up-to-date techniques. Although availability is a key issue

for a wide utilisation of these techniques, the ease of use is not less important. Potential

users may �nd that programs are di�cult to handle. The sources of di�culties reside in

characteristics inherent, not to the programs themselves, but to their application to a concrete

problem [Mili, 1995]. These characteristics range from �external� properties (e.g. in which

situations should we use this program?) to �internal� functioning details (e.g. how should we

initially set its parameters? or how sensible are the results to missing data?). Users �nd the

ad-hoc utilisation of two or more programs for solving a complex problem even more di�cult.

Generic on-line helps of programs, though valuable, are not su�cient because they cannot

replace the extensive expertise on the use of programs that is necessary to solve di�erent or

even new problems.

1



2 Chapter 1. INTRODUCTION

Di�erent streams of research arise with the purpose of giving support to unexperienced

users in the utilisation of program libraries. Some research focuses on documentation tech-

niques allowing users to assess the applicability of programs to the problem at hand, and

thus indirectly supporting program selection [Mili, 1995]. Other research concentrates on the

automation of this and other activities, e.g. tuning of program parameters. Several examples

of the latter in the �eld of image processing are presented in [Matsuyama, 1989].

We use the term program supervision (PS) to denote those techniques aiming at the au-

tomation of (some of) the activities involved in the skilled use of a program library. Given

an intended processing goal, PS systems have to deal with the selection of the appropriate

programs, their scheduling, and their execution, among other problems. PS systems di�er

in the number of activities they cover [Thonnat and Moisan, 1995]. Furthermore PS systems

di�er in their degree of automation, ranging from highly interactive systems to fully auto-

mated ones. In general, a high degree of automation can only be attained by narrowing the

application domain.

1.2 Knowledge-based program supervision systems

To accomplish their task, PS systems need the expertise involved in the use of programs.

Two alternatives exist for embodying this expertise, namely, its integration in the code of

programs or its separated explicit representation. The advantages of making this knowledge

explicit are numerous. For instance, it allows the separation of the programs themselves from

the control strategies that command their use. Programs designed in this way can therefore

accommodate a variety of control strategies [Crevier, 1993].

Knowledge-based techniques provide an appropriate ground for the implementation of PS

systems. On the one hand, they allow the explicit representation of knowledge. On the other,

they provide for this purpose a set of knowledge representation formalisms that are suitable

for the implementation of PS knowledge, e.g. production rules. Henceforth, when we name

PS systems we will refer to knowledge-based PS systems.

In the literature we �nd many implementations of PS systems with a knowledge-based

architecture, mainly in the �eld of image processing. These systems separate the programs

to supervise from the knowledge necessary to do it. This knowledge can be of di�erent types,

e.g. control strategies or speci�c objects manipulated. At the same time, these di�erent types

of knowledge are more or less speci�c to the application domain, e.g. manipulated objects
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are inherently domain-speci�c. Finally, most of the systems in the literature use planning

techniques to tackle the PS problem.

Early systems �reviewed in [Matsuyama, 1989]� comprise consultation systems for pro-

gram selection and parameter tuning, and composition systems for the combination of li-

brary programs into more complex ones. Several PS systems are dedicated to particu-

lar application domains. Examples are: MVP [Chien, 1994] which generates executable

scripts for the analysis of interplanetary images; VISIPLAN [Gong and Kulikowski, 1994],

[Gong and Kulikowski, 1995] which is devoted to the generation of processes for the segmen-

tation and recognition of biomedical magnetic resonance images; and VSDE [Bodington, 1995]

which automates the con�guration of image processing systems for the inspection of defects

in industrial products.

Other work searches to give more general PS support, i.e. reusable across di�erent

application domains. As examples we can cite OCAPI [Clément and Thonnat, 1993],

[Thonnat et al., 1994], BORG [Clouard et al., 1993], and SCARP [Willamowski et al., 1994].

All three examples are domain-independent shells or engines. The development of a PS

system for a particular application requires adding a domain-speci�c knowledge base.

1.3 Veri�cation and validation needs of program supervision

systems

As knowledge-based systems become a standard in software development, the interest in veri�-

cation and validation techniques adapted to their particularities has grown. Knowledge-based

systems cannot be veri�ed against a complete requirement speci�cation, as is the case of

traditional software, because of the problems that they solve. These problems are di�cult

or ill-de�ned, and usually lack such kind of speci�cations. Knowledge-based systems, at the

same time, represent and manipulate knowledge explicitly. This knowledge is often repre-

sented by means of rules which permit us to check the logical consistency and completeness

of the knowledge base implementation. The veri�cation and validation without requirement

speci�cation, on the one hand, and its focus on rule-based implementations, on the other,

characterise most of the existing work on the veri�cation and validation of knowledge-based

systems.

The development process of PS systems demands the utilisation of veri�cation and valida-

tion techniques in order to become reliable industrial applications. This is especially important
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in the case of applications where human interaction does not exist, i.e. in automated PS sys-

tems. An example is PLANETE [Shekhar et al., 1995], which is a real-time PS system for

the supervision of perception programs in the framework of an on-board guidance system.

All presented PS systems and shells are based on the di�erent types of knowledge necessary

to perform the PS related activities. These types of knowledge are implemented using spe-

cialised knowledge representation formalisms in addition to production rules. For instance, PS

knowledge usually includes descriptions of programs at di�erent levels of abstraction, which

are often implemented using object-oriented representations. PS knowledge often includes pro-

duction rules, e.g. to set the initial value of program parameters. The use of di�erent types of

knowledge implemented using multiple representation formalisms makes the construction and

maintenance of PS knowledge bases di�cult [Bodington, 1995], [Chien, 1996]. PS systems

need therefore veri�cation and validation techniques to deal with these characteristics.

While considerable research e�ort has focused on the veri�cation and validation of rule-

based systems, little work has concentrated on other representation formalisms. What is

more important, the veri�cation and validation of di�erent types of knowledge in the sense

explained above has not been considered either. In this thesis we deal with techniques adapted

to the veri�cation and validation of PS systems. The systems that have been the target of

our study are the PS systems developed within the ORION research team at INRIA�Sophia

Antipolis.

1.4 Framework for the veri�cation and validation of program

supervision systems

Herein we introduce the aspects that constitute the framework for the design and implemen-

tation of PS systems in our team. Our PS systems support all the activities involved in the

use of a program library, namely the selection of programs, their scheduling, their execution,

the evaluation of the execution results, and the consequent correction on the previously taken

decisions if the results are deemed unacceptable.

PS systems embody the expertise involved in the use of programs in a knowledge-based

architecture. The knowledge-based architecture of PS systems in our team consists of a

PS engine, a PS knowledge base encapsulating the expertise on the use of programs, and the

library itself. We shall consider that the PS knowledge base constitutes the domain-speci�c

part of the application and that the PS engine is the domain-independent one.
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From previous experiences in the development of PS systems in our team (mainly the

di�erent applications built from OCAPI engine), a conceptual model of PS has been

drawn. This conceptual model includes a series of knowledge concepts, which are interrelated

in a complex organisation, and a reasoning strategy. The knowledge concepts correspond to

the di�erent types of knowledge employed to perform the activities mentioned above and the

reasoning strategy comprises the steps necessary for doing it. Each step makes use of precise

knowledge concepts in performing its task. These knowledge concepts and reasoning strategy

are the most commonly used in PS according to our view. They serve as a basis for the

implementation of PS knowledge bases and engines.

In addition, as a result of the previous PS experiences, the interest of the adaptation of the

reasoning strategy in the conceptual model to the particularities of new applications has been

con�rmed. The Lama platform for knowledge-based system development is intended

to facilitate the adaptation of reasoning strategies, i.e. engines. Lama is at present devoted to

the development of PS systems. For this purpose it provides a library of components for the

construction of PS engines and knowledge bases. With the object of facilitating PS system

development, these components lie at a level of abstraction which is more or less close to the

PS conceptual model while hiding implementation details. The PS systems that are currently

being developed in our team are implemented under the Lama platform.

In the light of the previous aspects, we focus on the veri�cation and validation of PS

knowledge bases intended for new applications, and, to some extent, on the veri�cation and

validation of PS engines designed to meet particular reasoning strategies. In the veri�cation

and validation of knowledge bases, we exploit the PS conceptual model which re�ects the

necessary knowledge concepts, their interrelations, and the precise way in which they are used

to accomplish the PS activities. Finally, we search the integration of the adequate veri�cation

and validation techniques/methodologies in the development process of PS systems using

Lama.

1.5 Structure of the thesis

This thesis is structured as follows. In chapter 2 we review the state-of-the-art on the veri�-

cation and validation of knowledge-based systems.

In chapter 3 we describe in depth the framework for the design and implementation of

PS systems, especially the conceptual model of PS and the Lama development platform.
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Regarding the PS conceptual model, we give some examples of how it can be exploited in the

veri�cation and validation of PS knowledge bases. We present in chapter 4 the approach that

has been adopted to put our ideas into practice.

Our approach to the veri�cation and validation of PS knowledge bases, which exploits

the PS conceptual model, is structured around the realizations presented in the following two

chapters. In chapter 5 we present a knowledge modeling of di�erent PS systems which is

intended to enhance our understanding of the di�erent knowledge concepts and their use in

PS reasoning.

In chapter 6 we use the descriptions in the knowledge modeling to de�ne the properties

that PS knowledge bases should verify. Then we describe the new Lama module that we

have implemented to verify them, which uses currently available veri�cation and validation

techniques adequate to the target representation formalism in Lama.

Regarding the veri�cation and validation of PS engines, in chapter 7 we report on some

experiences to assess the feasibility of the use of software engineering veri�cation techniques

in the development of PS systems.

Finally in chapter 8 we summarise the main contributions of this thesis, discuss their

limitations, and outline some future prospects.

Several parts of this thesis have been published or accepted for publication:

� A summary of the state-of-the-art (in chapter 2) is published in:

Veri�cation and validation of knowledge-based program supervision systems.

M. Marcos, S. Moisan, and A. P. del Pobil

IEEE International Conference on Systems, Man and Cybernetics (SMC-95), October

1995, Vancouver, Canada.

� An overview on our approach to the veri�cation and validation of PS systems (in chap-

ter 4) is published in:

A Model-Based Approach to the Veri�cation of Program Supervision Systems.

M. Marcos, S. Moisan, and A. P. del Pobil

Fourth European Symposium on the Validation and Veri�cation of Knowledge Based

Systems (EUROVAV-97), June 1997, Leuven, Belgium.

� Part of the knowledge model of PS systems (in chapter 5) is published in:

Knowledge Modeling of Program Supervision Task.
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M. Marcos, S. Moisan, and A. P. del Pobil

Eleventh International Conference on Industrial and Engineering Applications of Arti-

�cial Intelligence and Expert Systems (IEA-98-AIE), June 1998, Benicàssim, Spain.

� Part of the knowledge model of PS systems and some considerations on the future

prospects of veri�cation and validation in the frame of Lama (chapters 5 and 8) are

published in:

Experiments in Building Program Supervision Engines from Reusable Components.

M. Crubézy, M. Marcos, and S. Moisan

Workshop on Applications of Ontologies and Problem-Solving Methods, Thirteenth Euro-

pean Conference on Arti�cial Intelligence (ECAI-98), August 1998, Brighton, England.

� The knowledge model of PS systems and its application to the veri�cation of PS knowl-

edge bases (chapters 5 and 6) has been accepted for publication in:

Knowledge Modeling of Program Supervision Task and its Application to Knowledge

Base Veri�cation.

M. Marcos, S. Moisan, and A. P. del Pobil

Applied Intelligence.



Chapter 2

State-of-the-art on Veri�cation and

Validation of Knowledge-Based

Systems

W
ith greater acceptance of knowledge-based systems, the interest in veri�-

cation and validation techniques adapted to their characteristics has grown. In

this chapter we aim at providing an overview on the �eld of veri�cation and validation of

knowledge-based systems.

The chapter is structured as follows. We �rst present the terminology in the �eld and

the characteristics of the existing work. Then we focus on the work on the veri�cation of

knowledge base anomalies. Finally we discuss the limitations of this approach and conclude.

2.1 Veri�cation and validation terminology

Under the name veri�cation and validation (V&V) we �nd a set of activities aiming at assuring

a certain degree of quality and reliability in knowledge-based systems. The terms veri�cation

and validation have sometimes been used without distinction in the knowledge-based system

�eld. Even more, there is no agreement on the precise activities that each involve. Without

the aim of being exhaustive, we present next di�erent points of view that can be found in the

literature.

9
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The generic term validation is used in [López et al., 1990]. It is mainly concerned with

the correct structure and adequate behaviour of the knowledge-based system, and comprises

the following activities:

� structural veri�cation, which consists in checking the knowledge base (KB) for a set of

anomalies which are tightly related to the knowledge representation formalism.

� functional veri�cation, which aims at assuring that the output of the knowledge-based

system complies with the semantics of the real world. This implies both the validation of

the inference engine and the validation of the KB contents with respect to the semantics

of the domain (knowledge re�nement).

� evaluation, which aims at measuring the performance of the knowledge-based system

based on structural and functional characteristics.

Validation is also used as generic term in [Laurent, 1992]. The distinction among the

di�erent validation activities is made according to the kind of speci�cations that they involve:

� objective validation or veri�cation, for those processes based on formal speci�cations.

� interpretative validation or evaluation, for processes based on semi-formal speci�cations.

[Gupta, 1993] follows the terminology in software engineering and distinguishes validation

from veri�cation. Validation is the process of determining whether the knowledge-based sys-

tem complies with the user's requirements, whereas veri�cation is the process by which the

requirement speci�cation, design and implementation are checked for consistency. Veri�ca-

tion includes the process of anomaly detection in the KB based on the logics of the knowledge

representation. [Batarekh et al., 1991] and [Meseguer and Preece, 1995] make a similar dis-

tinction regarding the main V&V issues.

Henceforth we will refer to the terms veri�cation, validation and test. In our view, veri�ca-

tion is concerned with the internal consistency of speci�cation, design and implementation, i.e.

correctness of the system at all levels, but also with the compliance of each stage with respect

to the others. Validation involves determining the compliance of the system with respect to

the (implicit or explicit) user's requirements. Finally testing, which is a widely acknowledged

method of doing validation, consists in checking the system correctness by executing it on

sample data sets.
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2.2 Veri�cation and validation of knowledge-based systems

One characteristic of knowledge-based systems, which distinguishes them from traditional

software, is that they solve di�cult or ill-de�ned problems for which no general e�cient,

algorithmic solution exists. In consequence knowledge-based systems lack a precise require-

ment speci�cation. Typically, development proceeds in an evolutionary manner �usually

via prototyping� until a system that satis�es the user's implicit requirements is produced

[Meseguer and Preece, 1995]. Although current development methods are much more struc-

tured, prototyping is often mentioned in the literature.

In the absence of a detailed requirement speci�cation, V&V originally involved compar-

isons of knowledge-based system performance against human expert's performance. For the

same reason, most of the early work concerns V&V techniques that do not depend on the

existence of a speci�cation of requirements [Meseguer and Preece, 1995]. An example is the

work done on the detection of implementation-dependent anomalies in the KB.

Veri�cation by detection of implementation-dependent anomalies in the KB

and testing are the major V&V techniques in many systems [Prerau et al., 1993],

[Meseguer and Preece, 1995]. One problem with testing is that it is not systematic

[Rousset, 1988]. Among other reasons, this is due to the di�culty of determining each path

through the system [Preece et al., 1992]. Moreover testing delays V&V until the end of

implementation. On the other hand, KB anomaly detection involves checking for certain

anomalies that may not be revealed through a test phase, and it is therefore unavoidable

[Cragun and Steudel, 1987], [Meseguer and Preece, 1994]. It is also important since it can

�and should� be performed before the system is fully functional.

Next we review some of the numerous bibliographical references on the analysis of KB

implementation-dependent anomalies and examine their salient characteristics.

2.3 Veri�cation by detection of implementation-dependent

anomalies in the knowledge base

As mentioned before, most of the past V&V work consists in veri�cation by checking the KB

for certain anomalies which could indicate errors in the construction of the system. Typical

anomalies are inconsistency, incompleteness and redundancy. These anomalies are de�ned
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in terms of the used knowledge representation formalism, mostly rule-based, and the target

deduction model. A formulation of the most common rule-based anomalies can be found in

appendix A.

It must be noticed that anomalies are not errors but rather symptoms of probable errors

in the KB [Preece and Shinghal, 1992]. For instance, the redundancy anomaly, which can be

detected in rule bases by checking for duplicate rules, may indicate a simple editing error or

a case in which one or both rules are incorrect.

The techniques below have been grouped according to how they approach the de�nition

of KB anomalies.

2.3.1 Rule syntax-based de�nitions

The following techniques de�ne KB anomalies using exclusively rule syntax. They check for
anomalies by means of pairwise comparisons of rules. For instance, to check for inconsistency
in propositional logic rules [Meseguer and Preece, 1994]:

Given the semantic constraint C(x; y) expressing two inconsistent facts,

and the rules ri and rj ,

with consequents conseq(ri) = x and conseq(rj) = y,

and antecedents antec(ri) and antec(rj),

If antec(ri) � antec(rj) then inconsistency.

The only semantic constraints that these techniques consider are those related to the

representation formalism, or logical constraints, e.g. a fact and its negation or two di�erent

values for a singled-valued attribute.

The completeness and consistency checker of the ONCOCIN KB [Suwa et al., 1982] is the

earliest work. The ONCOCIN system is an EMYCIN-like knowledge-based system. A rule in

ONCOCIN has an action part which concludes a value for some parameter from the values

of other parameters in the condition part. The rule also speci�es the context in which it

applies. The ONCOCIN's rule checker points out inconsistent, redundant, subsumed, and

missing rules.

CHECK [Nguyen et al., 1985] is the completeness and consistency checker for KBs in the

LES framework. Besides the problems indicated by the previous checker, CHECK signals
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circular rule chains, dead-end clauses and unreachable clauses. A further version of CHECK

[Nguyen et al., 1987] includes checks for unnecessary conditions and unreferenced and illegal

attribute values.

ARC [Nguyen, 1987] is the rule checker of the ART framework. In addition to CHECK,

ARC detects unnecessary conditions in antecedents and signals redundant, subsumed, and

con�icting rule chains.

2.3.2 Deduction-based de�nitions

The following techniques make use of de�nitions that take into account the whole set of de-

ductions in the KB. Except for the �rst reference, the rest are based on ATMS notions of

environment and label [de Kleer, 1986]. An environment for a fact x, Ei(x), is a minimal con-

junction of external facts, or initial fact base, supporting it. The label L(x) is the disjunction

of all the environments for x and thus it represents all the elemental ways to deduce the fact.

Then, a rule base is inconsistent if an integrity constraint can be deduced from some legal
input set. To check for inconsistency [Meseguer and Preece, 1994]:

Given the semantic constraint C(x; y) expressing two inconsistent facts,

and the environments Ei(x) and Ej(y),

If Ei(x) ^ Ej(y) then inconsistency.

Besides logical constraints, these techniques often consider domain-dependent ones, or

expert constraints, e.g. man(x) ^ pregnant(x). These constraints serve to introduce the

notion of semantic inconsistency of facts even when they are logically consistent.

The de�nition of consistency used in GCE [Beauvieux and Dague, 1988],

[Beauvieux and Dague, 1990] is based on both logical constraints and expert con-

straints, and considers propositional logic and Attribute-Object-Value (AOV) rules. The

consistency check is performed using the base models of the KB, which are the di�erent

maximal consistent fact bases of the KB. These base models are built along with the KB, and

are employed after each KB modi�cation (addition or retraction of a rule or a constraint) to

determine whether there is an inconsistency as a result.

COVADIS [Rousset, 1988] checks a KB for inconsistency. COVADIS is intended to be

applied to KBs written in the MORSE framework. MORSE rules are Attribute-Value (AV)
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rules. The idea is generating from the KB the speci�cation of all initial fact bases from which

an inconsistency can be deduced. This speci�cation will be submitted to the expert, who will

decide on whether they are meaningful or not. The procedure uses the notion of context of

a fact, which similarly to the label notion constitutes a speci�cation of all initial fact bases

justifying it.

KB-Reducer [Ginsberg, 1988] checks a KB for redundancy and inconsistency. KB-Reducer

builds from the KB all possible initial fact bases from which a fact can be deduced or labels.

It orders the rules into levels according to a �depends on� relation. Roughly speaking, a rule

ri depends on a rule rj if and only if rj asserts a literal that appears in the antecedents of ri.

Then, KB-Reducer treats rules in this order, updating the partial labels of their conclusions

consequently. Checks for redundancy and consistency are performed after processing every

rule by using the partial labels. For instance, to check for inconsistency, a subset/superset

test is made between the partial labels of the con�icting hypothesis involved.

[Meseguer, 1992] presents a similar procedure to check modular rule bases for redundancy,

inconsistency, circularity, and useless objects. Checks are performed by testing relations

among environments and labels. After every KB modi�cation, environments and labels of

KB objects are computed, and relations among them are tested. The procedure repeats only

the test of KB objects which labels change from the veri�ed KB to the new one.

[Loiseau, 1992] presents COCO which is a system to check the consistency of KBs written

in a restriction of �rst order logic (�rst order production rules without functional symbols).

It makes use of an explicit distinction between indisputable and revisable knowledge for the

de�nition of consistency. A KB is said to be inconsistent if and only if there exists one initial

meaningful fact base from which an inconsistency can be deduced. Initial meaningful fact

bases are those from which inconsistencies cannot be deduced by using only indisputable

knowledge. They are also modeled as labels.

2.3.3 Translation-based de�nitions

Di�erent techniques translate the KB into structures on which the anomalies are reinterpreted.

These techniques often exploit algorithms speci�c to the structures in the anomaly detection

procedures. Besides, the target structures usually enhance the readability of the KB, and

therefore are also useful for manual V&V by inspection.
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2.3.3.1 Decision table-based de�nitions

[Puuronen, 1987] presents a decision table-based technique to check ONCOCIN-like rule bases.

The KB is mapped onto modi�ed decision tables on which inconsistency, redundancy and

incompleteness are checked. The algorithms proposed for the di�erent checks are based on

the cardinal numbers of rules, which specify the di�erent cases that the rule covers.

ESC [Cragun and Steudel, 1987] implements another decision table-based technique deal-

ing with AV-like KBs. ESC maps the KB onto a master decision table and then splits it into

disjoint subtables, each of them corresponding to a set of context related rules that are checked

together. First ESC checks rules that cover non-disjoint cases and signals some redundancy

problems. Then it performs the completeness check numerically if all rules cover disjoint

cases; otherwise, the check is done by exhaustive enumeration. Numerical completeness check

considers the actual cases that a rule covers.

2.3.3.2 Petri net-based de�nitions

INDE [Pipard, 1988] is a Petri net-based system to check the consistency and completeness

of KBs in the MORSE framework. Starting from a Petri net representation of the KB, the

maximal sets of rules that �re simultaneously are obtained. Each set, more precisely its

corresponding net, is checked for inconsistency by studying the attributes that receive two

di�erent values.

In [Meseguer, 1990] propositional logic KBs are transformed into Petri nets in order to

translate the question about consistency into a reachability problem in nets. It is shown that

this problem is equivalent to solving a linear equation system.

2.3.4 Logical analysis

The technique in [Ligeza, 1997] is devoted to the logical analysis of completeness of single-

layered rule-bases, i.e. rule bases where rule consequents are actions and no chaining takes

place. Completeness analysis is based on the use of backward dual resolution (bd-resolution)

which is an inference method dual to classical resolution. For example, given two propositional

logic formulas  1 ^ ! and  2 ^ :!, where ! is a propositional symbol, the basic form of bd-

resolution is:
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 1 ^ !,  2 ^ :!

 1 ^  2

which means that the disjunction of the parent formulas is the consequence of their bd-

resolvent  1 ^  2. When it is applied to the premises of two rules, bd-resolution shows that

they constitute a complete set of rules for any situation satisfying the bd-resolvent. Indeed

in any such situation either ! or :! must hold and therefore one of the rules can be applied.

2.3.5 Summary

The previous techniques are intended for the veri�cation by detection of implementation-

dependent anomalies in the rule-based knowledge bases. Some important characteristics in-

clude the following:

� In general their �nal objective is providing automatic or semi-automatic methods.

� The anomalies that they consider are mainly inconsistency and incompleteness. The

techniques to check for incompleteness, with the exception of the work in [Ligeza, 1997],

are based on exhaustive enumeration of possible combinations of inputs.

� The rule-based representation formalisms that they assume are propositional logic or

slightly extended languages (e.g. AOV rules).

� The deduction model that they assume is monotonic and non-selective, i.e. without any

con�ict resolution strategy. Regarding this point, some authors surprisingly emphasise

that KB anomalies must be de�ned independently of the inference engine that will

use it [Ayel, 1988], [Mellis and Ruckert, 1989]. Many others, however, are aware of the

in�uence of the deduction model characteristics.

The table in �gure 2.1 summarises the presented techniques. Some work focuses on the

improvement of the computational complexity of the veri�cation process, particularly:

� Grouping of checks. In the COVER KB veri�cation tool [Preece and Shinghal, 1992],

[Preece et al., 1992] checks for anomalies are grouped into di�erent procedures according

to their theoretical computational complexity. For instance, checks based on pairwise

rule comparisons (named rule checks) and those considering all possible deductions (rule

extension checks) are performed separately. The idea is performing �rst the unexpensive

checks, which often indicate errors with a high likelihood.
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Approach System/Technique Anomalies Knowledge
representation

Rule syntax-
based de�ni-
tions

ONCOCIN rule checker
[Suwa et al., 1982]

inconsistent, redundant, sub-
sumed and missing rules !
(a)

ONCOCIN rules

CHECK
[Nguyen et al., 1985]

(a) + circular rule chains,
dead-end and unreachable
clauses ! (b)

LES rules

ARC [Nguyen, 1987] (b) + unnecessary condi-
tions, redundant, subsumed
and con�icting rule chains

ART rules

Deduction-
based de�ni-
tions

GCE
[Beauvieux and Dague, 1988]

inconsistency propositional
logic and AOV-
like rules

COVADIS [Rousset, 1988] inconsistency MORSE rules
KB-Reducer
[Ginsberg, 1988]

inconsistency and redun-
dancy

propositional
logic

COCO [Loiseau, 1992] inconsistency �rst order logic
[Meseguer, 1992] redundancy, inconsistency,

circularity, and useless
objects

modular rule
bases

Translation-
based de�ni-
tions

[Puuronen, 1987] inconsistency, redundancy
and incompleteness

ONCOCIN-like
rules

ESC
[Cragun and Steudel, 1987]

redundancy and incomplete-
ness

AV-like rules

INDE [Pipard, 1988] inconsistency and incom-
pleteness

MORSE rules

[Meseguer, 1990] inconsistency propositional
logic

Logical de�ni-
tions

[Ligeza, 1997] incompleteness �rst order logic,
single-layered
rule bases

Figure 2.1: Techniques for the veri�cation of knowledge-based systems by KB anomaly detection
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� Incremental nature of checks. Many checkers, after KB modi�cation repeat checks

on the whole KB ignoring the previous veri�cation results. The basic idea underlying

incremental veri�cation is to repeat only the tests on those parts for which previous re-

sults are not guaranteed to hold. As examples we can cite [Beauvieux and Dague, 1988],

[Meseguer, 1992], and [Loiseau, 1992].

2.4 Evolution of the �eld

An evolution can be observed in the �eld of V&V of knowledge-based systems

[Nazareth and Kennedy, 1993]. First checkers, like ONCOCIN rule checker, aim at

locating errors in particular knowledge-based systems by checking their KBs for anomalies

(stand-alone checkers). With the maturity of development environments, next checkers target

knowledge-based systems built in speci�c environments (environment-oriented checkers) or

with speci�c knowledge representation formalisms (representation-oriented checkers). Most

of the checkers that we have reviewed belong to these approaches.

Later work concentrates on tools to deal with di�erent V&V problems, like e.g. consistency

checks and test case generation. These tools are applicable to knowledge-based systems built

with di�erent environments, and are integrated into a single development veri�cation envi-

ronment. Examples are the EVA [Chang et al., 1990] and VALID [Meseguer and Plaza, 1992]

veri�cation environments. Both EVA and VALID environments follow a meta-level approach,

which means that the tools work on a representation of the knowledge-based system. For

instance, this representation includes in VALID structural and behavioural aspects of the

knowledge-based system, but also objects needed for V&V purposes like KB versions or traces.

2.5 Discussion

Numerous V&V techniques involve veri�cation by detection of KB anomalies de�ned in terms

of the representation formalism of the KB, mainly rule-based. Typical anomalies are incon-

sistency and incompleteness. This approach has several drawbacks.

Firstly, implementation-dependent anomalies, though a prerequisite for the adequate func-

tioning of the knowledge-based system, are not su�cient because they say little about the

actual task that the system is required to perform [Meseguer and Preece, 1995]. For instance,
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a consistent and complete rule base may perform badly because the task requires other prop-

erties that have nothing to do with rule base consistency and completeness.

Secondly, the veri�cation by detection of such anomalies addresses knowledge-based system

implementation. This approach dismisses the V&V activities that could take place earlier

in the development. An exception to V&V activities addressing the implementation is the

following recent work. In [Fensel et al., 1996], [Fensel and Schönegge, 1997] the V&V is based

on a formal speci�cation of the knowledge-based system task and is carried out by using a

tool for software veri�cation. The work in [Cornelissen et al., 1997] addresses also the V&V

based on formal speci�cations. Here the characteristics of the speci�cation framework, which

decomposes a task into subtasks and so on, serves to structure the V&V process. A di�erent

approach is the work in [van Harmelen and Ten Teije, 1997] which exploits a conceptual model

of the knowledge-based system task for V&V.

Third, the work on veri�cation by anomaly detection concentrates on rule-based formal

de�nitions for which automatic or semi-automatic methods can be implemented. This has

been fostered by the close connection between rule-based representation formalisms and logics.

Techniques to deal with systems implemented using other representation formalisms, e.g. hy-

brid representations including objects, have been disregarded. An exception to this is the work

on the rede�nition of rule subsumption anomalies in hybrid KBs in [Sunro and O'Keefe, 1993],

which is still in the line of previous formal anomaly de�nitions.

The theoretical de�nitions of anomalies and their associated veri�cation methods have

been extensively studied. However, techniques or methodologies to approach the V&V of

�real-world� knowledge-based systems have been disregarded, e.g. hybrid knowledge-based

systems which perform well-understood tasks like planning.

2.6 Conclusions

The main drawbacks of the use of implementation-dependent anomalies for V&V are their lack

of signi�cance in relation to the actual task of the system and their focus on implementation,

which delays V&V activities until late development phases.

To overcome the problem of the lack of signi�cance of implementation-dependent anoma-

lies, we must employ more precise information about the application domain and the task that

the knowledge-based system is required to perform [Meseguer and Preece, 1995]. This implies



20 Chapter 2. STATE-OF-THE-ART ON VERIFICATION AND VALIDATION OF KBS

KBS
implementation

informal
specification

verification

validation

Figure 2.2: V&V without any formal speci�cation

exploiting a conceptual model of the knowledge-based system which permits the de�nition of

more signi�cant V&V properties. To some degree this approach has already been advocated

in [Ayel, 1988], which proposes the utilisation of a model of the KB for the de�nition of the

consistency issues. Only recently this idea has started to win acceptance in the V&V �eld.

Conceptual models also allow to perform some V&V before the implementation phase since

they can act as informal or semi-formal speci�cations of the knowledge-based system.

To perform V&V before the implementation, the development process should include some

kind of speci�cations. When only informal descriptions are available as speci�cations, V&V

is limited to the veri�cation of the internal consistency of the implementation and of its ap-

proximate compliance with the informal speci�cations as �gure 2.2 shows. The introduction

of one or more levels of formal speci�cations provides support for additional V&V activi-

ties [Meseguer and Preece, 1995]. For instance, in the situation of �gure 2.3 we �nd formal

speci�cations with di�erent levels of detail. Validation would consist of the validation of

the highest-level speci�cation against the informal speci�cation plus the veri�cation of the

correspondences between the rest of the levels.

Finally, we believe that more attention has to be paid to techniques or methodologies that

support V&V even if not in an automatic way. In our view, only in this way we can aim at

the V&V of knowledge-based systems with the characteristics of PS systems.
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Figure 2.3: V&V with two levels of formal speci�cations



Chapter 3

Research Framework

D
ifferent aspects constitute the framework for the design and implementation

of PS systems in our team. The most important ones are the conceptual model of PS

and the Lama development platform. These aspects, especially the PS model, have in�uenced

our approach to the veri�cation and validation of PS systems.

In this chapter we �rst describe the activities involved in the PS task according to our

view and the architecture of our PS systems. Then we detail the conceptual model of PS, with

examples of how it can be exploited for the veri�cation and validation of PS knowledge bases,

and the development platform Lama. We �nish by summarising our focus for the veri�cation

and validation of PS systems.

3.1 Program supervision task

PS techniques arise to give support to unexperienced users in the utilisation of sophisticated

program libraries. The aim of the PS task is the automation of the activities involved in the

skilled use of a program library.

Our view of the PS task is the following. To solve a user's request consisting of an

intended processing goal and a set of data to operate on, the adequate programs must be

selected, scheduled and executed, and the execution results must be monitored in order to

ensure that the previously taken decisions were appropriate.

The PS task implies di�erent activities or subtasks:

23
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program
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Figure 3.1: Architecture of a PS system and reasoning strategy of the PS engine

� The selection of a set of programs that can solve the user's request, and the actual

scheduling of programs.

� The initial setting of program parameters, and the execution of programs.

� The evaluation of the results of program execution to ensure that the programs and/or

their tuning were appropriate.

� The correction of scheduled programs, or the adjustment of program parameters, if the

results are deemed unacceptable.

These activities demand a great deal of expertise on program utilisation. For instance, the

expertise for program selection may include the input and output arguments of the program,

the processing function that it performs, the situations in which it can be applied and/or its

side-e�ects. Program scheduling may be based on the previous expertise or may use knowledge

about typical combinations of programs.

3.2 Architecture of program supervision systems

PS systems embody the expertise involved in the skilled use of a program library in a

knowledge-based architecture. In our case, a PS system is composed of a PS inference engine,

a PS knowledge base encapsulating the expert's knowledge on the utilisation of the programs,

and the library itself (see �gure 3.1). The PS knowledge base includes e.g. the expertise for

program selection described before.
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In general, the PS knowledge base constitutes the domain-speci�c part of the PS system

and the PS engine is the domain-independent one. This is not always the case since the

knowledge base may include more or less generic knowledge, e.g. about the characteristics of

a certain type of image, and the engine may partly re�ect the reasoning process of the expert

when solving a processing problem for a particular application. Despite this, the PS engine

is in general intended to be reused across di�erent applications within a more or less wide

application domain.

V&V issues In this thesis we focus on the veri�cation of PS knowledge bases intended for

new applications. On the other hand, the V&V of PS engines is also considered since they

can be adapted to better suit the reasoning strategy of the expert.

The previous concerns are in contrast with the usual view in the �eld of V&V of knowledge-

based system, where the veri�cation of the knowledge base has traditionally been considered

the crucial issue for ensuring system reliability whereas the V&V of the inference engine is

usually assumed.

3.3 Conceptual model of program supervision

Many di�erent PS applications have been developed in our team, mainly from the

OCAPI engine. As examples we can cite applications for road scene image processing

[Thonnat et al., 1994], astrophysical image processing [Thonnat et al., 1995], and medical

image processing [Crubézy et al., 1997]. These experiences have been the basis for the

identi�cation of the knowledge concepts and the reasoning strategy most commonly used in

PS according to our view. These constitute a generic conceptual model of PS on which our

current implementations are grounded, that is, both knowledge bases and inference engines

more or less correspond to the patterns de�ned by the generic concepts and reasoning

strategy. They are generic in the sense that they are common to most of our PS systems,

although with variations in details.

V&V issues In the �eld of V&V of knowledge-based systems, a widely recognized approach

consists in checking the knowledge base for a set of implementation-dependent anomalies such

as inconsistency and incompleteness. As it has been highlighted in chapter 2, this approach

is insu�cient because such anomalies say little about the task that the system is intended to
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perform. Nevertheless this task is well-understood in our case. Our claim is that with the

help of our information about the task we can examine the knowledge base to determine its

adequacy to the performance of the PS task.

In this thesis we exploit the conceptual model of PS for the de�nition of the properties

which a knowledge base must be checked against. On the one hand, the knowledge concepts as

well as their interrelations provide a good characterisation of the organisation in the knowledge

base. On the other hand, the reasoning strategy of the inference engine provides information

on the knowledge utilisation that can help determine the properties that the knowledge base

should verify in order to adequately serve to perform the PS activities.

Next we present some details of the generic knowledge concepts and reasoning strategy,

together with examples on how they can help us with the de�nition of the properties for the

veri�cation of the knowledge base. It must be noticed that this is only a preliminary sketch

and that the full conceptual model will be presented later on.

3.3.1 Program supervision concepts

Many di�erent knowledge concepts are used to perform the PS task. The main ones are opera-

tors, corresponding either to programs or typical combinations of programs, input and output

arguments of the operators, and operator parameters, or tunable arguments. In PS systems

where a high degree of automation is required, several expert criteria permit the system to

perform automatically di�erent actions such as the initial setting of operator parameters (ini-

tialisation criteria), the evaluation of the results of program execution (evaluation criteria)

or the application of a corrective action in case of negative evaluation (repair criteria).

The operator concept is fundamental. An operator describes either an individual program

or a more or less complex combination of programs. According to this there exist two types of

operators, namely primitive and compound ones. Primitive operators describe individual pro-

grams. Compound operators constitute combinations of other operators, which can be in their

turn primitive or compound ones. Operator combinations can denote e.g. a sequence. The

execution of a sequential compound operator involves the ordered execution of the operators

in the sequence.

In the following we �nd some examples of how PS knowledge concepts and their interrela-

tions can help with the de�nition of properties useful for the veri�cation of knowledge bases.

Operators have at least one input argument and one output argument, and they may have
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or may not have any parameter. A simple property that the knowledge base should verify is

that operators with parameters have knowledge to initialise them, e.g. initialisation criteria.

Compound operators can be described at di�erent levels of abstraction since the opera-

tors in a sequence e.g. can be themselves primitive or compound ones. At some point this

description has to end with primitive operators; otherwise, the compound operator would not

constitute a combination of programs. This is an important property that the compound

operators in the knowledge base should verify.

Finally, it is important to note that the previous knowledge concepts are common to all our

PS systems, although with variations in details. For instance, a rich description of operators

may additionally include expertise about the processing function that they perform, and their

characteristics, applicability conditions and side-e�ects.

3.3.2 Program supervision reasoning

The reasoning strategy of a PS engine can be roughly divided into four steps as �gure 3.1

shows. First an initial planning step determines the best (partial) plan to reach the goals

de�ned by the user's request. Then the execution of the (partial) plan is triggered, i.e. the

individual programs in the plan are executed. Afterwards the results of program execution

are passed on to an evaluation step that assesses their quality. This evaluation can be done

either automatically by using the evaluation criteria in the knowledge base, or interactively by

the user. Finally if the assessment on results is negative, a repair step decides the appropriate

corrective action making use of the repair criteria in the knowledge base. Otherwise the

process continues with the planning step for the remaining (sub)goals, if there are any.

As an example of how the PS reasoning strategy can be of help for the veri�cation of the

knowledge base we can cite the property concerning the mutual dependence of the expertise

employed in the evaluation and repair steps, i.e. the evaluation and repair criteria. Actually,

as the repair step is performed if the evaluation one concludes a negative assessment on

the execution results, some repair criteria must exist whenever the evaluation criteria may

conclude a negative assessment.

Notice that, although the described behaviour is quite general, variations are possible

at di�erent levels. At a high level, for instance, planning and execution can be interleaved

because the planning step may depend on information only available after the execution of

previous programs in the plan. This is the case in OCAPI engine, which complies with the
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generic reasoning strategy that we have described. At a lower level, basic steps within the

mentioned ones can be performed in a more or less complex way. For instance, the planning

step makes use of a step for operator selection for which di�erent alternatives exist.

3.4 Lama platform for the development of program supervision

systems

The PS systems that are currently developed in our team are implemented under the Lama

platform. Lama is a software platform for the development of knowledge-based systems

which is at present devoted to the construction of PS systems, both to inference engine and

knowledge base design [Crubézy et al., 1998]. The rationale of Lama is to facilitate inference

engine (re)con�guration. This objective is sought by means of reusable, PS task-oriented

components for the con�guration of PS inference engines. Lama shares ideas with second

generation knowledge-based systems [David et al., 1993].

The primary Lama constituent is the Blocks library of components for inference en-

gine and knowledge base design. Blocks components are implemented on top of Le-Lisp

[Le-Lisp, 1991]. A more e�cient and portable version of the Blocks library, based on C++,

also exists. The Blocks library provides two types of components, namely data structures

and instructions [Vincent et al., 1996]. Some of the components are general-purpose ones (e.g.

stack or pop from a stack) whereas others are based on the conceptual model of PS, or PS

model-based (e.g. operator or execute-operator). Model-based components have been inspired

by the above conceptual model: model-based data structures correspond with PS knowledge

concepts, and model-based instructions are a set of small-grain sized functions intended for

the con�guration of PS inference engines.

All Blocks components are free of implementation details. Indeed model-based structures

can be implemented using alternative representation formalisms. What is more important,

Blocksmodel-based components lie at a level of abstraction which is close to PS. Particularly,

model-based instructions are closer to PS reasoning than ordinary programming languages,

in order to help engine designers in the con�guration of new engines and the adaptation of

existing ones.

Another important element of Lama is the Yakl language for expertise description. The

Yakl language supplies a set of syntactic constructs allowing to express the contents of PS

knowledge bases at a higher level of abstraction than Blocks PS structures.
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Figure 3.2: The di�erent layers of the Lama platform. The layer of Blocks components is the

interface used for the con�guration of inference engines. The Yakl language layer is the interface

used for knowledge base development. Each layer depends on the one immediately below: Blocks

components are implemented on top of Le-Lisp and Yakl constructs are high-level counterparts of

the Blocks PS structures.

Lama provides two di�erent interfaces for the con�guration of inference engines and the

development of knowledge bases, namely the Blocks library and the Yakl language. Fig-

ure 3.2 shows these two interfaces. To build a PS inference engine, the designer combines

Blocks instructions and structures in an algorithmic way. For knowledge base develop-

ment, the knowledge engineer and domain expert exclusively use the Yakl constructs. These

constructs are afterwards translated into the corresponding Blocks PS structures.

In addition to Blocks and Yakl layers, the Lama platform comprises di�erent modules.

Figure 3.3 shows the modules involved in the utilisation of a PS system by the end-user,

namely the communication module and the graphical user interface for the visualisation of

knowledge bases and the execution of PS sessions.

V&V issues The V&V issues we focus on are adequate to the needs of the Lama platform.

First, both the V&V of inference engines and knowledge bases are essential in the development

of PS systems that Lama fully supports. And second, the use of properties based on the

PS conceptual model for knowledge base veri�cation is in accordance with the model-based

nature of the Yakl language. Domain experts, who use the model-based Yakl constructs to

describe their expertise, will �nd such properties much more signi�cant than implementation-

dependent ones.
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Figure 3.3: The utilisation of a PS system in the Lama platform. The end-user interacts with

the Lama PS system through the Lama graphical user interface (GUI). The Lama communication

module is in charge of the communication between the GUI and the Lama PS system.

3.5 Conclusions

Summarising, our main focus in this thesis is the veri�cation of PS knowledge bases. The

veri�cation and validation of PS inference engines is also considered since they can be adapted

to meet the reasoning strategy of the expert.

For the veri�cation of PS knowledge bases, we have shown that the conceptual model of

PS can be helpful in the de�nition of certain properties that the knowledge base should verify.

These model-based properties are de�ned from the knowledge concepts and their interrela-

tions, and the information about their utilisation during PS reasoning. Such properties, espe-

cially those derived from knowledge utilisation, refer to the task that the system is intended to

perform and hence they are much more signi�cant than the implementation-dependent ones

traditionally used in the �eld of V&V of knowledge-based systems.

Finally, both the model-based veri�cation of PS knowledge bases and the V&V of PS

inference engines are adequate to the development process of PS systems with Lama. In

chapter 4 we present the approach that we have adopted to put these ideas into practice.



Chapter 4

Approach to the Veri�cation and

Validation of Program Supervision

Systems

T
he research framework that we have described in chapter 3, especially the concep-

tual model of PS, has in�uenced our focus for the veri�cation and validation of PS

systems, namely the veri�cation of knowledge bases using information on knowledge organi-

sation and utilisation, and the V&V of inference engines.

In this chapter we present how we approach the V&V of knowledge bases and inference

engines, and describe the work directions that have been undertaken accordingly, which corre-

spond to the next three chapters. We �nish with a comparison of our positioning with similar

work in the knowledge engineering area.

4.1 Veri�cation and validation of knowledge bases

The veri�cation of knowledge bases is crucial to ensure the reliability of PS systems. The

techniques presented in chapter 2 provide us with a variety of de�nitions for the veri�cation

of rule-based knowledge bases. These techniques do not suit our needs as they are for two rea-

sons. First, since they are based on the implementation they cannot capture the model-based

issues such as the interdependence of evaluation and repair knowledge that we mentioned
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Figure 4.1: Model-based veri�cation

in chapter 3. Second, they exclusively deal with rule-based representations which, though

fundamental in PS, are not the sole representation formalisms used in Lama.

To overcome the limitations of the use of these techniques we propose �rstly to exploit

the knowledge organisation and the knowledge utilisation during reasoning in order to

de�ne interesting properties for the veri�cation, similarly to the examples presented in chap-

ter 3. Next we propose to apply the implementation-dependent veri�cation techniques that

are appropriate according to the target representation formalism. Knowledge utilisation

especially determines the required knowledge, together with the roles that the knowledge

plays in reasoning [Marcos et al., 1995]. This can be exploited for the de�nition of properties

that serve to determine the adequacy of the knowledge base to the reasoning of the inference

engine.

In this way, given a knowledge base and the intended PS inference engine, our aim is not

only the veri�cation of implementation-dependent properties, e.g. non redundancy, but rather

the veri�cation of the adequacy of the embodied knowledge to the way in which it will be

used by the inference engine. We use the term model-based veri�cation to denote our approach

[Marcos et al., 1997].

Our model-based approach to the veri�cation of knowledge bases consists in the veri�cation

of properties de�ned at the conceptual model level, as it has been expressed in �gure 4.1. Such

properties refer to the PS task and use the terminology of the task, e.g. �initialisation criteria

x of operator y are adequate� instead of �rule base x of operator y is complete�. Thanks to

this, they are more interesting than the usual implementation-dependent properties, and much

more signi�cant for the domain expert. These properties can also be exploited prior to the

implementation of the knowledge base.
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With the purpose of understanding the knowledge utilisation by the PS inference engine,

a thorough analysis, free of implementation concerns, of its problem-solving behaviour is

required. A knowledge-level analysis1 of PS problem-solving suits our needs well. The notion

�knowledge-level� was introduced in [Newell, 1982] as a way to represent domain or problem-

solving descriptions independently of how they are implemented (opposed to �symbol-level�).

Knowledge-level descriptions are not only useful for enhancing human understanding but also

for their system engineering bene�ts [Uschold, 1998].

A number of knowledge engineering frameworks deal with problem-solving descriptions at

the knowledge-level. Next we detail the CommonKADS framework, which has been widely

used by the knowledge engineering community, and describe another interesting one in the

spirit of CommonKADS. In the light of the latter we reformulate the model-based veri�cation

of PS knowledge bases.

4.1.1 Knowledge-level frameworks for knowledge-based systems

Problem-solving descriptions at the knowledge-level are typically expressed in terms of prob-

lem types, tasks and problem-solving methods, and the relationships among these. The

existing knowledge-level frameworks di�er in the knowledge categories they use and in how

they are structured.

4.1.1.1 CommonKADS framework

CommonKADS [Schreiber et al., 1994] is a particularly important e�ort addressing

problem-solving descriptions. It provides a wide framework, encompassing all knowledge

pertinent to the development of knowledge-based systems. The CommonKADS model set

[de Hoog et al., 1994] provides models to capture the organizational context of the system

(organisation model), the tasks supported and the distribution of tasks over di�erent agents

(task model), the capabilities of agents (agent model), the communication between agents

(communication model), and the computational system design (design model). A central

model is the expertise model, which describes problem-solving behaviour of an agent in

terms of the knowledge that is applied to perform a task. It constitutes a problem-solving

description in a narrower sense.
1The terms knowledge-level analysis, knowledge-level modeling and knowledge modeling are indistinctively

used in this thesis.
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In the CommonKADS expertise model [Schreiber et al., 1994], [Wielinga et al., 1994], the

knowledge categories to describe a knowledge-based system are as follows:

� domain knowledge, which is a description of the knowledge relevant to the application,

independent of the role that it plays in reasoning.

� inference knowledge, that describes the basic reasoning steps that can be performed

using domain knowledge together with the roles that it plays, and the possible ways in

which inference steps can be combined.

� task knowledge, which describes the decomposition of the top-level reasoning task of

the system, and the control in this decomposition.

� problem-solving knowledge, including problem-solving methods which are descriptions

prescribing how a task can be achieved, including the main steps and the control over

them.

These knowledge categories are described independently to facilitate reuse, e.g. the reuse

of a problem-solving method for solving di�erent tasks.

4.1.1.2 A CommonKADS-based framework

Di�erent frameworks regard relationships between tasks and problem-solving methods,

like the CommonKADS expertise model. A common view is that a problem-

solving method can be applied to a task provided that some conditions are satis�ed

[Benjamins and Pierret-Golbreich, 1996]. These applicability conditions refer to problem-

solving method features and can be anything at all, including domain knowledge

requirements. The latter make the connection between the problem-solving method and the

domain knowledge explicit. They have been successfully exploited for knowledge engineering

purposes, e.g. to �nd out to which domains a certain problem-solving method is applicable, or

which problem-solving method is more suitable for a given domain [Benjamins et al., 1996b].

Applicability conditions have been designated in several ways, e.g. method on-

tologies [Gennari et al., 1994], suitability criteria [Benjamins, 1995], and assumptions

[Benjamins and Pierret-Golbreich, 1996], [Benjamins et al., 1996a], [Fensel et al., 1996].

In [Fensel et al., 1996] we �nd a framework for the speci�cation of knowledge-based sys-

tems that comprises di�erent types of assumptions. It has been developed in accordance

with the CommonKADS expertise model. In this framework three reusable elements are

distinguished in the speci�cation of a knowledge-based system:
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Figure 4.2: The elements in the speci�cation of a knowledge-based system and their assumptions

� task de�nition, which describes the problem that the system solves.

� problem-solving method, that describes the reasoning process of the system. It includes

a functional speci�cation de�ning the competence of the problem-solving method inde-

pendently of its realisation, and an operational speci�cation of how this competence is

achieved, i.e. reasoning steps and control over them.

� domain model, describing the domain knowledge structured as the task and problem-

solving method require for reasoning. It includes the domain knowledge and a charac-

terisation of its properties, e.g. its organisation.

Di�erent types of assumptions relate the elements of a knowledge-based system (see �g-

ure 4.2). On the one hand, the task de�nition imposes certain assumptions on domain knowl-

edge. On the other, the problem-solving method makes its own assumptions on domain knowl-

edge. Finally, additional assumptions are often needed to ensure that the problem-solving

method is able to solve the task. These assumptions either strengthen the problem-solving

method or weaken the task.

4.1.2 Model-based veri�cation of knowledge bases

In the light of the speci�cation framework above, our approach to the veri�cation of knowledge

bases is based on the organisation in the domain model and on the assumptions that the PS

task and, above all, the PS problem-solving method make on the domain knowledge (i.e.

knowledge base) for a particular application.

Some examples of properties de�ned from these elements follow. The organisation in

the domain model, which corresponds to an elaboration of the generic knowledge concepts
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presented in chapter 3, imposes several structural properties, e.g. operators must have at least

one input argument and one output argument. The PS task necessitates e.g. knowledge about

the use of a set of programs. The operator selection step in the PS problem-solving method

may use a heuristic based on operator side-e�ects and thus require that this knowledge be

available. Since the assumptions of the task are rather general we will concentrate on the

ones dealing with the problem-solving method.

A PS inference engine implements a particular PS problem-solving method (PS method

henceforth) which makes use of a PS domain model. First, the knowledge base must conform

to the knowledge organisation in the PS domain model. Second, the operational speci�cation

of the PS method imposes additional assumptions on the knowledge base, namely the required

knowledge and possibly the characteristics that it must ful�l so that the method can perform

properly. These elements constitute the de�nitions for knowledge base veri�cation that we

are searching for.

According to this, we have carried out a knowledge-level analysis of di�erent PS engines

that are currently used in our team. This analysis comprises the description of both the

knowledge organisation in the domain model and the knowledge utilisation by the PS methods.

From this knowledge model we have identi�ed the assumptions that PS methods make on

domain knowledge. These assumptions have been exploited in the design and implementation

of a module for the veri�cation of PS knowledge bases. The knowledge modeling of PS systems

is presented in chapter 5. The veri�cation module that has been developed accordingly is

presented in chapter 6.

4.2 Veri�cation and validation of inference engines

The V&V of PS engines is very important since they can be modi�ed according to the partic-

ular reasoning strategy of the domain expert. PS engines are software and as such they can

be veri�ed using formal techniques for traditional software.

Formal veri�cation is a di�cult job for which the support of an adequate tool is

fundamental. The KIV software veri�cation tool has been applied to the veri�cation

of knowledge-based systems using simple problem-solving methods [Fensel et al., 1996],

[Fensel and Schönegge, 1997]. Precisely, KIV is used for the veri�cation of the adequacy

of a problem-solving method to solve a task. An interesting aspect of KIV is that it is

also used to guide the detection process of the assumptions necessary to ensure that the

problem-solving method can solve the task.
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Inspired by the results obtained in the previous work, we have carried out some experi-

ments to assess the feasibility of the utilisation of KIV for the V&V of inference engines and

the detection of the assumptions that their PS methods impose on domain knowledge. Our

experiments consist in the speci�cation and veri�cation of one of the reasoning steps that

have been identi�ed in the knowledge model of chapter 5. In chapter 7 we report on these

experiences.

4.3 Discussion

For the V&V of knowledge bases, the �eld of knowledge-based systems has attained maturity

regarding the variety and quality of implementation-dependent techniques available at present.

We propose applying these techniques in combination with an idea that has already proven to

be useful in the knowledge acquisition area, namely the bene�ts of understanding knowledge

utilisation.

The interest in understanding knowledge utilisation in problem-solving is not new in

the knowledge acquisition area. Role-limiting methods [Marcus, 1988] and PROTÉGÉ

[Musen, 1989] are examples of special-purpose knowledge-based systems, each one with

its particular knowledge acquisition tool. Special-purpose problem-solvers present the

advantage of clarifying how knowledge is used, thus providing a set of expectations that

can guide the knowledge acquisition process [Musen, 1992], [David et al., 1993]. We share

with role-limiting methods and PROTÉGÉ the idea that a knowledge base can be examined

to judge its adequacy to perform the task for which it is intended. This can be exploited

not only for knowledge acquisition but also for the V&V of knowledge correctness and

completeness [Uschold, 1998].

The V&V of inference engines has been disregarded in the �eld of knowledge-based systems

because it is considered to be a software engineering concern. However, recent work has

demonstrated the utility of software veri�cation techniques to detect the domain knowledge

assumptions that are necessary to ensure that a problem-solving method can be applied to

solve a task. This research stems from the knowledge engineering �eld and is motivated

by the growing interest in developing knowledge-based systems from reusable components,

e.g. libraries of problem-solving methods [Fensel et al., 1996], [Fensel and Groenboom, 1997].

We propose the veri�cation of PS methods with the purpose of not only ensuring that they

are reliable and can solve the PS task, but also as a formal means for the detection of the
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Knowledge Modeling of Program

Supervision Systems

T
he verification of knowledge bases is crucial to ensure the reliability of PS sys-

tems. The model-based approach that we have chosen presupposes a thorough under-

standing of both the knowledge organisation that PS engines require and their problem-solving

behaviour, which determines their knowledge utilisation. With this purpose, a knowledge-level

analysis of di�erent PS engines has been carried out. We have analysed three PS engines that

have been implemented in our team: PEGASE, PULSAR, and MedIA.

This chapter is structured as follows. First we detail the elements of the CommonKADS

expertise model which we have used for knowledge modeling. Afterwards we present the three

PS engines and their knowledge model. We �nish with an enumeration of the bene�ts that

we have gained from it and with a comparison of our analysis with similar modeling work.

5.1 CommonKADS expertise model

We have used di�erent elements from the CommonKADS expertise model in our analysis.

In CommonKADS, the primary knowledge categories to describe an application are domain

knowledge, inference knowledge and task knowledge.

The domain knowledge contains a description of the domain knowledge relevant to the

application. It comprises the entities (concepts) and relationships between entities (relations)

needed to reason about the application.
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The inference knowledge describes the basic inferences (inference steps) that can be made

using the domain knowledge, and the roles that it plays in these inferences (knowledge roles).

Inference structures show the way in which inference steps can be combined through knowledge

roles, without de�ning the �ow of control.

The task knowledge describes how to decompose the top-level reasoning task of the system,

and how to impose control in this decomposition. A task is characterised by two parts: the

task de�nition, which is a declarative speci�cation of the task goal, and the task body, which

is a procedural program describing the activities to accomplish the task. The nature of the

task body allows us to distinguish three types of tasks: tasks that are further decomposed

into subtasks (composite tasks), tasks related to inferences (primitive tasks), and tasks of

interaction with the world (transfer tasks).

Tasks (and subtasks) can be represented as inference structures in which the inference

steps corresponding to composite tasks are further decomposed into new inference structures.

Besides, a hierarchical decomposition of the task (or task decomposition) can be used to

provide a global view of task knowledge.

5.2 Program supervision engines: PEGASE, PULSAR andMe-

dIA

The knowledge modeling that follows describes three PS engines implemented in our team:

PEGASE, PULSAR, and MedIA. All of them are successors of the former OCAPI PS engine

and improve it in di�erent directions. The three engines have been developed under the Lama

platform as explained in [Crubézy et al., 1998].

OCAPI [Thonnat et al., 1994] works on operators described at di�erent levels of abstrac-

tion. It performs a selection of operators to solve the initial problem and then searches for

a solution in the set of selected operators, that is, an operator that actually solves the prob-

lem after hierarchical re�nement. OCAPI thus combines operator-based planning (STRIPS-

like [Russel and Norvig, 1995]) and hierarchical planning. The latter performs an interleaved

planning and execution, like the generic strategy described in chapter 3, which is typically con-

venient for the supervision of image processing programs. OCAPI provides the re-execution

of primitive operators as the only repair mechanism.

A knowledge-level analysis of OCAPI and the di�erent experiences from its utilisation have

served to identify some de�ciencies [van den Elst, 1996]. In particular, the insu�cient repair
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capabilities and the lack of �exibility of the planning strategy has motivated the improvements

introduced by PEGASE, PULSAR and MedIA.

PEGASE [Vincent, 1997] incorporates richer repair mechanisms and some innovations for

sequential combinations of operators, namely the possibility of processing optional operators

on the basis of some expert criteria.

PULSAR (in concrete PULSAR-IU in [van den Elst, 1996]) tries to solve the lack of �ex-

ibility of OCAPI. It also combines operator-based and hierarchical planning but in a more

�exible way. It performs an operator-based planning step, then a hierarchical planning step,

and, if a solution has not been obtained after this, it continues in a loop with the operator-

based and hierarchical planning steps. PULSAR uses a subset of PEGASE repair mechanisms.

MedIA [Crubézy, 1999] also uses operator-based and hierarchical planning, improving the

lack of �exibility of OCAPI strategy in a di�erent manner. It incorporates abstract steps

within sequential combinations of operators, representing subproblems to be solved at run-

time. MedIA uses operator-based planning both to solve the original problem and the sub-

problems arising from abstract steps.

5.3 Knowledge modeling of PEGASE, PULSAR and MedIA

According to our objectives, the knowledge model of a PS engine should include descriptions

of the organisation that it enforces on the domain model and of its problem-solving behaviour.

For both purposes we have made use of part of the notions that the CommonKADS expertise

model supplies: we have used concepts and relations to describe the organisation in the

domain model, and inference structures and task de�nitions to describe the reasoning of the

PS method. As modeling software we have employed Kadstool [Kadstool, 1993].

In the description of the underlying organisation of the domain model, a single version is

presented which comprises the speci�cation of the concepts and relations required by the three

engines, together with an indication if they are speci�c to any of them. It has been referred

to as PS domain model; henceforth, when we use this term we will refer to a (meta)model

describing the organisation of the domain model as it is required by PS methods.

Next we present the PS domain model, the PS task and the di�erent PS methods that

PEGASE, PULSAR and MedIA implement, and their assumptions.
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5.3.1 Program supervision domain model

Herein we present the PS knowledge concepts structured as PS methods require for reasoning.

It must be noticed that we do not describe terms belonging to a particular application, such

as stereo-vision-matching or left-image, rather, we describe the corresponding ones that

PS methods use, i.e. operator or data.

The graphical notation used in Kadstool to describe domain knowledge follows the OMT

[Rumbaugh et al., 1991] object-oriented notation. In OMT boxes represent concepts (classes)

and contain the name of the concept. Lines between concepts represent relationships and are

labelled with the name of the relationship. N-ary relationships are indicated with diamonds.

Both concepts and relationships may have attributes. The multiplicity of a relationship, or

number (minimal and maximal) of concept occurrences that may be associated to a single

occurrence of the related class can be: one (line segments without any indication), one or more

(indicated with 1+), two or more (with 2+), zero or one (with �), or zero or more (with �).

A concept (class) can be related to one or more re�ned versions of it (subclasses) constituting

a hierarchy, which is represented with a triangle. Ovals indicate expressions making reference

to any other element.

The knowledge concepts taking part in PS reasoning not only include the basic ones

that have been presented in chapter 3 (operator, argument, etc.), but they also include the

concepts necessary to describe the PS task, such as the operator knowledge base, and the

problem speci�cation and problem solution.

5.3.1.1 Basic concepts

Data Programs operate on data and therefore the data concept is fundamental in PS. All

the important aspects of data should be represented. The following data subtypes leave

the speci�cation of what is important in every speci�c application open (see hierarchy in

�gure 5.1):

� simple data, to represent data with no additional structure. This concept has attributes

to de�ne an actual value (value), a default value (default), and a set of possible values

(range). Di�erent subtypes of simple data are prede�ned, such as integer or symbol.

� structured data, to describe data having di�erent subparts, which is modeled through a

relation between structured data and data (see relation in �gure 5.1).
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Figure 5.2: Hierarchy of concepts to describe data utilisation

The data subtypes argument, parameter and domain object serve to describe program argu-

ments and parameters, and the objects constituting the execution context in PS (see hierarchy

in �gure 5.2). Arguments and parameters include the extra attribute assessment to hold the

result of the PS evaluation subtask.

Di�erent expressions on data are used along the PS domain model. The most frequent

one is data reference, which represents a reference to any data attribute, including its value,

e.g. an expression of the form hdatai.hattributei. Additionally, a data relation represents a

comparison between data references, e.g. hdata referencei hrelationi hdata referencei.

In PULSAR possible dependences between data can be described from data references on

the basis of the relation in �gure 5.3.
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Figure 5.4: Goal and related elements

Goal A goal primarily represents a processing function that a PS system can perform (mod-

eled through a relation with functionality), transforming a set of input arguments into the de-

scribed output arguments (modeled, respectively, by the relations goal-has-in-arguments and

goal-has-out-arguments). It serves to establish a link between a processing function and the

operators that achieve it (relation goal-achieved-by). In this way goals permit the description

of operators at a higher level of abstraction. Figure 5.4 shows these elements and other related

ones.

Operator An operator describes either an individual library program, which we call prim-

itive operator, or a more or less complex combination of programs, which we refer to as

compound operator.

Within an operator we �nd knowledge about the function that it performs, to allow its

selection in the appropriate situations, and about the resolution process that it employs

[van den Elst, 1996]. Some knowledge is common whereas other is speci�c to either primitive

or compound operators. We �rst describe the common knowledge and continue afterwards

with the speci�cs of each type of operator.

Most of the common knowledge regards the function that the operator performs:
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Figure 5.5: Operator and related elements

� processing function that the operator performs, which is modeled by the relation op-

has-functionality.

� characteristics or typical properties of the operator.

� input and output arguments, modeled by the relations op-has-in-arguments and op-has-

out-arguments, respectively.

� parameters or tunable arguments, modeled through the relation op-has-parameters.

� preconditions or conjunction of logical formulas stating the applicability conditions of the

operator (relation op-has-preconditions). The formulas are expressions about the input

arguments or the domain objects belonging to the execution context (data relations).

� di�erent expressions representing the operator side-e�ects (relation op-has-e�ects). An

e�ect has the form hdata referencei := hdata referencei.

� postconditions or conjunction of logical formulas that must hold after execution (relation

op-has-postconditions). As in the case of preconditions, the formulas in postconditions

can be seen as data relations.

Figure 5.5 pictures most of the elements described above. Additionally, an operator con-

tains di�erent expert criteria necessary to perform important PS subtasks (see �gure 5.6):

� initialisation criteria, to initialise parameter values before execution (relation op-has-

init-criteria).

� evaluation criteria, to check execution results and detect and diagnose potential prob-

lems (relation op-has-eval-criteria). The diagnosis is usually expressed as an assessment
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Figure 5.6: Operator expert criteria

on the operator application and/or tuning, combined with an assessment on an argument

or parameter.

� repair criteria, to indicate how diagnosed problems have to be solved (relation op-has-

repa-criteria). The alternatives are a local repair of the operator, which implies the

adjustment of operator parameters and a further re-execution, or a non-local repair,

which implies transmitting the problem to a previously executed operator considered

responsible for the unacceptable results, or to a previous choice point. In case of operator

re-execution, the adjustment criteria serve to adjust parameter values (relation op-has-

adju-criteria).

Operators, in the same way as arguments and parameters, include an attribute assessment

to keep the result of the evaluation subtask.

Primitive operator A primitive operator describes a library program, so it additionally

includes information concerning the calling interface of the program or program call.

Compound operator A compound operator represents a combination of other operators,

or decomposition. The operators in a decomposition can be in turn primitive or compound

ones. By means of successive decompositions compound operators are described at di�erent

levels of abstraction, constituting a hierarchical operator.

The decomposition of a compound operator expresses how its function can be achieved

using the suboperators in the decomposition. There exist di�erent decomposition types to

express the diverse manners in which suboperators can be combined. For instance, PUL-

SAR admits unordered decompositions, which represent a set of suboperators to achieve the

operator function without imposing any order over them. We focus on the most frequent

decomposition types:

� sequential decomposition, expressing a sequence of suboperators that serves to perform

the operator function.
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Figure 5.7: Operator decomposition

� specialisation (or choice) decomposition, corresponding to alternative suboperators to

perform the operator function.

This is modeled by the concept decomposition and its subtypes (sequential decomposition

and choice decomposition). A compound operator must necessarily be associated to a de-

composition of one of these types describing how its function is achieved, as the relation

cop-has-decomposition in �gure 5.7 shows.

All decompositions are related to a suboperator set, but the complementary knowledge

varies depending on the semantics of the decomposition. Figures 5.8 and 5.9 picture the

relevant features of sequential and specialisation decompositions. They are related to two

or more operators and in the case of sequential decompositions the order is relevant (see

order attribute in �gure 5.8). Choice decompositions need speci�c expert criteria, called

choice criteria, allowing the selection of the candidates for the specialisation at execution

time (relation cho-dec-has-choice-criteria in �gure 5.9).

Engine speci�cs related to sequential decompositions are described next. PEGASE and

MedIA permit optional suboperators, of which the application is determined at execution time

on the basis of some expert criteria called applicability criteria. In addition to this, MedIA

allows for the inclusion of abstract steps representing a functionality to solve and not only

concrete suboperators. These speci�c characteristics, nevertheless, have not been included in

�gure 5.8.

To complement the knowledge on how its function is achieved, a compound operator must

additionally specify:

� data distribution or the way in which input arguments or parameters are connected

to the input of suboperators (and similarly, the way in which output arguments of

suboperators are connected to the output of the operator).
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� in sequential decompositions, data �ow or the connections among output and input

arguments of the suboperators in the sequence.

The speci�cation of the data distribution and �ow within a compound operator can be

seen as a set of expressions of the form hoperatorii.hargumentji ! hoperatorki.hargumentli.

The relations cop-has-dat-distribution and cop-has-dat-�ow in �gure 5.10 model this kind of

expressions.

compound
operator

argument -
parameterdist from

dist to flow from flow to

cop-has-dat-flow

cop-has-dat-distribution

Figure 5.10: Data distribution and data �ow
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Figure 5.11: Rule preconditions and actions

Criteria The di�erent criteria that have been mentioned so far can be represented by either

a rule base or a function. In case that criteria have a rule-based representation, they can be

seen as homogeneous sets of rules with a precise function with respect to the element which

they are attached to, e.g. initialisation rule base of an operator.

Rule A rule consists of (see �gure 5.11):

� preconditions or conjunction of logical formulas stating the conditions under which the

rule �res (relation rule-has-preconditions). The formulas are similar to those in operator

preconditions.

� actions which are performed when the rule is applied, which are modeled by the rule-has-

actions relation connecting action, action argument and data reference. Although not all

actions need an argument and/or a data reference, the former usually appears making

reference to either an operator, or an operator argument or parameter.

There exist as many types of rules as di�erent roles they play, i.e. initialisation, evaluation,

repair, adjustment, and choice. The main di�erences between rule types reside in the allowed

actions, which may vary from one engine to another, especially according to their repair

capabilities:

� initialisation action, by simple assignment (:=) or interactively by the user

(initialise-by-user).
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� evaluation action, for which the possibilities are assess-data, assess-parameter,

and assess-operator, and the same performed by the user (assess-data-by-user,

assess-parameter-by-user, and assess-operator-by-user).

� repair action, for which the possibilities are re-executing the operator (re-execute), or

transmitting the problem to a previous operator (with send-up, send-down or send-op)

or choice point (back-choice).

� adjustment action, by an increase or decrease in the previous value (+= or -=), or directly

by the user (adjust-by-user).

� choice action, with the options of using use-operator, refuse-operator,

use-operator-of-characteristic, or refuse-operator-of-characteristic.

5.3.1.2 Additional concepts

The concepts necessary to de�ne the PS task are presented next.

Operator knowledge base The operator knowledge base groups a set of operators, either

compound or primitive ones, and possibly a set of goals. The operators describe the programs

to be supervised, as well as the typical combinations of programs that serve to solve complex

problems. The goals de�ne the high-level processing functions that the operators can perform.

Problem speci�cation The problem speci�cation consists of the intended processing goal

(modeled through a relation with functionality), the input data and the type required for the

output data (relations ps-has-in-data and ps-has-out-data), the initial state or domain objects

constituting the problem context (relation ps-has-initial-state), and the constraints which must

hold in the solution state (relation ps-has-constraints). Figure 5.12 shows all these elements.

It is to note that PEGASE works on problems speci�ed by means of the intended processing

goal, whereas PULSAR is driven by the constraints describing the solution state to achieve.

Problem solution A problem solution consists of a plan, which is a set of operators solving

the problem speci�cation, plus the �nal state with the results of the execution of this plan.

Di�erent alternatives for plan representation are ordered, unordered or partially ordered sets

of operators.
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Figure 5.12: Problem speci�cation

State and state history The state concept describes the execution context at a certain

time. In PS the execution must be monitored to make sure that the plan has the expected

results. If this is not the case, the cause must be determined and repaired either locally to

the operator or by propagation of the problem to a previous point. This propagation implies

backtracking to a previous state, thus giving rise to the need of keeping track of all of them

in a state history.

5.3.2 Program supervision task and methods

Here we present the PS task and the methods that realise it in PEGASE, PULSAR and

MedIA. These methods describe how the PS task is decomposed into subtasks, and so on.

For the PS task, we show a top-level task decomposition which provides a global view of the

PS method. For PS subtasks, we explain the methods that realise them and elaborate on the

assumptions that they make on domain knowledge, if there are any. Complex methods are

clari�ed by providing the inference structure and an algorithmic description of the control

within it. The assumptions (labelled from (a) to (u)) are presented together with the method

from which they have been identi�ed.

In the graphical notation used in Kadstool to describe inference structures, ovals represent

inference steps and boxes represent knowledge roles. Thick boxes represent static roles, which

are knowledge roles that, without being modi�ed by inferences, are necessary to perform

them. Inference structures are networks showing how inference steps can be connected through

knowledge roles, without de�ning control. When an inference step is further decomposed into
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Figure 5.14: Top-level task decomposition in PEGASE

another inference structure, it is displayed as a double oval and its roles are marked in the

decomposition.

The PS task receives a problem speci�cation and the operator knowledge base as in-

put, and produces a plan, a �nal state, and a result description indicating if the plan was

successfully executed or not as output. Figure 5.13 depicts this.

The analysis of PEGASE and PULSAR methods, which has been carried out �rst, is

presented next. The latter modeling of MedIA, limited to the top-level decomposition of the

task, comes afterwards.
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5.3.2.1 PEGASE and PULSAR methods

Figures 5.14 and 5.15 respectively show the top-level task decompositions of PEGASE and

PULSAR PS methods. PS task is carried out by the sequential application of the steps

initialise and plan and execute. The initialise step simply extracts the necessary information

from the problem speci�cation and creates an empty plan to start with. The plan and execute

step is in charge of the main PS subtasks.

Next we concentrate on the methods for the plan and execute subtask and for the subtasks

within it. We focus on those methods which are relevant to the de�nition of assumptions.

The complete description of PEGASE and PULSAR subtasks can be found in appendix B.

Plan and execute This subtask constitutes the core of the operator-based planning. It

consists of the steps expand plan, select plan, and execute plan. PEG plan and execute (in

�gure 5.16) �rst performs a plan expansion guided by the intended processing fuctionality.

Then it searches for a plan that solves the problem, i.e. a plan that yields a successful execution

result (result evaluation is success):
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Figure 5.17: Inference structure of PUL plan and execute

PEG expand plan (plan+state+functionality+operator KB! expanded plans)
while result evaluation <> success and expanded plans <> ; do
select plan (expanded plans! expanded plan+expanded plans)
PEG execute plan (expanded plan+state+state history! result evaluation+executed
plan+�nal state+state history)

end while
if expanded plans = ; then
result evaluation all-plan-expansions-failed

end if

PUL plan and execute (in �gure 5.17) expands plans guided by the constraints in the prob-

lem speci�cation describing the solution state. Then it searches for a plan that is successfully

executed but, unlike PEGASE, it tries every additional plan expansion (recursive call to PUL

plan and execute) to make sure that no unsatis�ed constraints remain:
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if constraints 2 state then
executed plan plan
�nal state state
result evaluation success

else
PUL expand plan (plan+state+constraints+operator KB! expanded plans)
while result evaluation <> success and expanded plans <> ; do
select plan (expanded plans! expanded plan+expanded plans)
PUL execute plan (expanded plan+state+state history! result evaluation+executed
plan+�nal state+state history)
if result evaluation = success then
PUL plan and execute (executed plan+�nal state+state history+constraints+operator
KB! result evaluation+executed plan+�nal state)

end if
end while
if expanded plans = ; then
result evaluation all-plan-expansions-failed

end if
end if

PEGASE only performs one plan expansion, under the assumption that individual oper-

ators contain enough information to solve a problem, or what amounts to the same thing,

that the operator knowledge base describes the entire set of possible solutions (a). PEGASE

is therefore more suitable for knowledge bases containing only hierarchical operators since

such operators represent a set of prede�ned solutions. PULSAR makes no assumption on the

contents of the operator knowledge base, as it tries every possible operator combination.

Expand plan This subtask consists of the steps select and order operators and integrate

operators. According to some heuristics, it selects the candidate operators from the operator

knowledge base, orders them, and then integrates them in the current plan. The result is a set

of expanded plans. This task is similar in both engines. The di�erences reside in the heuristics

used for the select and order operators subtask and in the plan representation assumed by the

integrate operators subtask.

Select and order operators Di�erent heuristics can be used to determine the operators to

be incorporated in the current plan and to order them. These di�erences are made explicit in

the alternative methods that perform select operators and order operators. The used heuristics

impose assumptions.

In PEG select operators an operator is selected when it ful�ls the required processing

function and when the types of all its input and output arguments match the input and

output data types in the problem speci�cation. PEG order operators gives precedence to
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operators that use the maximum of inputs and outputs in the problem speci�cation, and

which are related to the goal solving the required function via the relation goal-achieved-by.

PEGASE needs that operators specify their functionality or else a goal de�nes it (b).

In PUL select operators the selection is based on a matching between operator e�ects and

problem speci�cation constraints which neither the current state nor the expected e�ects of

operators already in the plan have yet satis�ed. PUL order operators uses a complex heuristic:

maximum of outputs for which all e�ects can be achieved, maximum of inputs for which

all preconditions hold, and operators that are higher in the abstraction hierarchy. PULSAR

requires that operators contain knowledge about their side-e�ects (c).

Integrate operators The method to perform integrate operators depends on plan represen-

tation and hence makes assumptions on this aspect. In PEGASE a plan is a single (hierarchi-

cal) operator (d), whereas in PULSAR a plan is an unordered set of operators (e). Although

for di�erent reasons, PEG integrate operators and PUL integrate operators simply incorporate

the operator without any commitment on the order, so no more assumptions are made.

Select plan Once all possible plans have been expanded, one of them must be selected to

be executed. This subtask can be performed in a more or less intelligent way. However, the

method used in both engines simply consists in selecting the �rst plan. No assumptions are

made.

Execute plan This subtask corresponds to the selection of an operator from the plan and

its re�nement and execution, that is, select plan operator plus re�ne, execute and repair operator.

Since a plan is a single (hierarchical) operator, this process is repeated in PEGASE only once:
select �rst plan operator (plan+state! uni�ed operator)
PEG re�ne, execute and repair operator (uni�ed operator+plan+state+state history! result
evaluation+executed plan+�nal state+state history)

In PULSAR all the operators in the plan must be re�ned and executed. Therefore, PUL

execute plan proceeds along the operators in the plan, while the evaluation of the execution

results is positive (result evaluation is success):
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result evaluation success
select applicable plan operator (plan+state! uni�ed operator)
while uni�ed operator <> ; and result evaluation = success do
PUL re�ne, execute and repair operator (uni�ed operator+plan+state+state history! result
evaluation+executed plan+�nal state+state history)
plan executed plan
state �nal state
select applicable plan operator (plan+state! uni�ed operator)

end while

Select plan operator The method in PEGASE for this subtask is trivial, again due to the

kind of plans it deals with (select �rst plan operator), and thus makes no assumption. PULSAR

performs this selection based on a matching between operator preconditions and the current

state (select applicable plan operator). PULSAR assumes that the operator knowledge base

contains knowledge about preconditions (f).

Re�ne, execute and repair operator This subtask constitutes the core of the hierar-

chical planning. It performs either the hierarchical re�nement of compound operators or the

execution of primitive ones, with the subsequent evaluation and repair steps. In PEG re�ne,

execute and repair operator (see �gure 5.18) �rst the operator parameters are initialised and

then the operator is executed if it is a primitive one, specialised or decomposed otherwise. Af-

terwards the operator e�ects are used to update the state. After this, the results are evaluated

and, if necessary, the operator is repaired. This evaluation-repair loop is repeated while the

evaluation step yields an indication to repair (result evaluation is repair). The plan must be

updated after every operator execution to indicate that an actual program has been applied:
rule-based initialise parameters (operator+state! initialised operator)
if primitive operator then
PEG execute operator (initialised operator+state+state history! �nal state+state history)
update plan (plan+initialised operator! �nal plan)

else if specialisation then
PEG specialise operator (initialised operator+plan+state+state history! �nal plan+�nal
state+state history)

else if sequence then
PEG decompose sequence (initialised operator+plan+state+state history! �nal plan+�nal
state+state history)

end if
apply e�ects (initialised operator+�nal state! �nal state)
rule-based evaluate results (operator+�nal state! evaluated operator+result evaluation)
while result evaluation = repair do
PEG rule-based repair operator (evaluated operator+�nal state+state history! �nal
state+state history)
rule-based evaluate results (operator+�nal state! evaluated operator+result evaluation)

end while
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Figure 5.19: Inference structure for PUL re�ne, execute and repair operator

PUL re�ne, execute and repair operator (in �gure 5.19) is similar, except for the di�erent

realisations of the main steps and for the absence of the apply e�ects step.

Initialise parameters The parameters of an operator must be given a value whenever it

is going to be re�ned or executed. This is done by initialise parameters. For this step to be

successful, the knowledge used for initialisation must be adequate to the operator character-

istics. This means that the initialisation criteria of the operator must give means to initialise

all parameters without a pre-established value (by default value, data distribution, or data

�ow) (g).

The method used in both engines is rule-based initialise parameters, which consists in the

application of a simple forward chaining1 to the initialisation criteria. The �rst assumption

it makes is that the initialisation criteria follow a rule-based representation and that rules are

1In this forward chaining usually no chaining among the rules takes place. The working cycle proceeds

as follows: the current state is observed, then all rules matching the state are selected and their actions are

executed.
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single-layered, which means that their consequents correspond directly to initialisation actions

(h). It makes other assumptions to ensure that the contents of this rule base are suitable for

the initialisation role that it plays: that there is at least one rule for each parameter without

value (i), and that the rules initialising a parameter cover all possible situations (j).

Execute operator This subtask actually calls the program in the library and collects the

execution results. PEG execute operator and PUL execute operator present di�erences but these

are not relevant to the identi�cation of assumptions.

Specialise operator This subtask corresponds to the re�nement of specialisation decom-

positions. PEG specialise operator (in �gure 5.20) obtains the candidates for the specialisation

in the current state, and updates the state history indicating that a specialisation is going on.

Then it sorts the candidates based on the number of times a suboperator has been chosen,

and it treats the �rst one. To do this, the operator inputs corresponding to suboperator

inputs are distributed, i.e. the connections speci�ed in the data distribution are set (by dis-

tribute in arguments), and the suboperator is re�ned and executed. Afterwards the outputs

are distributed to the corresponding operator outputs and the process ends. Finally the state

history is updated:
rule-based choose suboperators (operator+state! suboperators)
update hist with spec (operator+state history! state history)
sort suboperators (suboperators! suboperators)
next (suboperators! suboperator)
distribute in arguments (operator+suboperator! suboperator)
PEG re�ne, execute and repair operator (suboperator+plan+state+state history! result eval-
uation+�nal plan+intermediate state+state history)
distribute out arguments (operator+intermediate state+�nal state! �nal state)
update hist with exec (�nal state+state history! state history)

PUL specialise operator (in �gure 5.21) di�ers. It obtains the candidates for the special-

isation given the current state, and updates the state history accordingly. Then it searches

for a suboperator that can be successfully re�ned and executed. Before this, the operator

inputs are distributed, and the suboperator preconditions are tested in order to detect run-

time incompatibilities between the current state and suboperator requirements. In such cases

the current suboperator is discarded and the next candidate is tried. In case of successful

execution of any of the suboperators, the outputs are distributed and the process ends. The

other end condition is that all suboperators have been tried without result. The state history

is updated at the end:
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rule-based choose suboperators (operator+state! suboperators)
update hist with spec (operator+state history! state history)
intermediate state ;
repeat
next (suboperators! suboperator)
distribute in arguments (operator+suboperator! suboperator)
test oper preconditions (suboperator+state! result)
if result = success then
PUL re�ne, execute and repair operator (suboperator+plan+state+state history! result
evaluation+�nal plan+intermediate state+state history)
if result evaluation = continue then
distribute out arguments (operator+intermediate state+�nal state! �nal state)

end if
end if

until result evaluation = continue or suboperators = ;
update hist with exec (�nal state+state history! state history)

PEGASE re�nes and executes the best candidate in terms of the number of times it has

been chosen. PULSAR, nevertheless, exhaustively searches for a suboperator that can be

successfully re�ned and executed in the set of candidates. PULSAR assumes that the choice

criteria may select several candidates (k), and thus it is more suitable for such kind of choice

criteria.

Choose suboperators The step choose suboperators selects the candidates for a speciali-

sation in the current situation. The knowledge used for this purpose should be adequate to

the specialisation. This means that the choice criteria associated to the specialisation should

permit the choice of every suboperator in the specialisation (l). The method used in both

engines is rule-based choose suboperators. As in the case of rule-based initialise parameters,

this method consists in the application of a simple forward chaining to the choice criteria.

Therefore it assumes that the choice criteria follow a single-layered rule-based representation

(m). Like rule-based initialise parameters, it makes other assumptions to ensure that the rule

base contents are adequate to its choice role. As they are studied in chapter 6 as properties

that PS knowledge bases should verify, they have been omitted here.

Decompose sequence This subtask corresponds to the re�nement of sequential decom-

positions. PEG decompose sequence is shown in �gure 5.22. First the suboperators in the

sequence are obtained and the state history is updated indicating that a sequential decompo-

sition is going on. Then every suboperator is sequentially treated. For this purpose, the inputs

of the operator or the outputs of previous suboperators needed as inputs are distributed (by

bind in arguments). If the suboperator is optional and its applicability criteria indicate that it
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must not be used, it is skipped. Otherwise, the suboperator is re�ned and executed, like the

operators that are not optional. Afterwards the outputs are distributed to the corresponding

operator outputs and the next suboperator is treated. The process ends when one execution

yields a negative result evaluation or when all suboperators have been treated. The state

history is then updated:
get oper suboperators (operator! suboperators)
update hist with dec (operator+state history! state history)
intermediate state ;
repeat
next (suboperators! suboperator)
bind in arguments (operator+suboperator+intermediate state! suboperator)
if optional then
test subop applicability (suboperator+state! result)

end if
if not optional or result = success then
PEG re�ne, execute and repair operator (suboperator+plan+state+state history! result
evaluation+�nal plan+intermediate state+state history)
distribute out arguments (operator+intermediate state+�nal state! �nal state)
state �nal state
plan �nal plan

end if
until result evaluation <> continue or suboperators = ;
update hist with exec (�nal state+state history! state history)
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PUL decompose sequence (in �gure 5.23) di�ers. First the suboperators are obtained and

the state history is updated. Then every suboperator is sequentially treated. For this purpose

the necessary inputs of the operator or outputs of previous suboperators are distributed. But

in PULSAR suboperator treatment only takes place if its preconditions hold, to detect any

run-time incompatibility. In that case the suboperator is re�ned and executed, and afterwards

the outputs are distributed. Next the intermediate results are evaluated (by rule-based evaluate

results), and if necessary the suboperator is repaired. Then the next suboperator is treated.

The process ends when the preconditions of one of the suboperators do not hold, when one

execution yields a negative intermediate result evaluation, or when all suboperators have been

treated. The state history is then updated:
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get oper suboperators (operator! suboperators)
update hist with dec (operator+state history! state history)
intermediate state ;
repeat
next (suboperators! suboperator)
bind in arguments (operator+suboperator+intermediate state! suboperator)
test oper preconditions (suboperator+state! result)
if result = success then
PUL re�ne, execute and repair operator (suboperator+plan+state+state history! result
evaluation+�nal plan+intermediate state+state history)
distribute out arguments (operator+intermediate state+�nal state! �nal state)
rule-based evaluate results (operator+�nal state! evaluated operator+intermediate result
evaluation)
while intermediate result evaluation = repair do
PUL rule-based repair operator (operator+�nal state+state history! �nal state+state
history)
rule-based evaluate results (operator+intermediate state! evaluated opera-
tor+intermediate result evaluation)

end while
state �nal state
plan �nal plan

end if
until result <> success or intermediate result evaluation <> continue or suboperators = ;
update hist with exec (�nal state+state history! state history)

PULSAR performs an intermediate evaluation-repair loop in the course of sequential de-

compositions and thus it assumes that the operator has knowledge about the required perfor-

mance of the individual suboperators in the sequence and about how to repair potential problems

in the sequence (n).

Evaluate results The step evaluate results checks the results of operator re�nement and

execution in order to detect and diagnose potential problems. For this purpose the evalua-

tion criteria should give means of determining whether the results are acceptable or not (o).

Both engines use rule-based evaluate results, which implies the application of a simple forward

chaining to the evaluation criteria of the operator. It assumes that the evaluation criteria

have a single-layered rule-based representation (p). Other assumptions are made on the rule

base contents related to its role are studied in chapter 6.

Repair operator The step repair operator is performed in case evaluate results detects a

problem. It �rst obtains a corrective action to solve the diagnosed problem. Then either a re-

execution (with the corresponding parameter adjustment) or the appropriate repair subtask

is activated depending on the obtained action. This repair subtask in general propagates
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the problem to another operator and forces its repair. Problem propagation implies that a

chaining of repair steps may take place.

PEGASE and PULSAR di�er in the repair subtasks that they incorporate. PEGASE

considers the local repair of primitive operators, which implies the adjustment of operator

parameters and a further execution, as well as the non-local repair, which consists in the

propagation of the problem to another point (any operator or a previous choice point) with

the activation of the repair of the corresponding operator. PULSAR considers the local repair

of primitive operators and the non-local repair through the propagation of the problem to any

of the suboperators.

Since repair operator treats the problems diagnosed by the step evaluate results, an im-

portant assumption is that the repair criteria of an operator must give means to solve the

problems diagnosed by the evaluation criteria of the operator (q). Moreover, the repair knowl-

edge of the operator must give means to solve any problem that it could receive from the repair

knowledge of any other operator (r). A di�erent assumption concerns the correctness of the

chaining of repair actions in case of problem propagation (s), e.g. it must end with an action

to solve the problem.

The repair of the operator is carried out in both engines by a rule-based method: PEG rule-

based repair operator and PUL rule-based repair operator. These methods perform an even more

simple forward chaining2 on the repair criteria of the operator. Both assume that the repair

criteria have a single-layered rule-based representation (t). They make other assumptions on

the rule base contents related to its role which are analysed in chapter 6.

Adjust parameters The step adjust parameters is performed whenever the local repair of

a primitive operator is required. Both engines use rule-based adjust parameters. As in rule-

based initialise parameters, it consists in the application of a simple forward chaining to the

adjustment criteria of the operator. It thus assumes that the adjustment criteria follow a

single-layered rule-based representation (u). It also makes other assumptions on the contents

of this rule base that are studied in chapter 6.
2In this forward chaining no chaining among the rules takes place either. The working cycle di�ers from

the previously explained: the current state is observed and then a single rule matching the state is selected

and executed.
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Figure 5.24: Top-level task decomposition in MedIA

5.3.2.2 MedIA methods

The top-level task decomposition of MedIA is presented in �gure 5.24. In MedIA, PS task is

also carried out by the steps initialise and plan and execute. Next we focus on the methods

that perform the planning-related subtasks, i.e. plan and execute and re�ne, execute and repair

operator subtasks.

Plan and execute The operator-based planning is similar to the one in PEGASE. Med

plan and execute performs a plan expansion and then it searches for a plan (a hierarchical

operator) that yields a successful execution result:
Med expand plan (plan+state+functionality+operator KB! expanded plans)
while result evaluation <> success and expanded plans <> ; do
select plan (expanded plans! expanded plan+expanded plans)
Med execute plan (expanded plan+state+state history! result evaluation+executed
plan+�nal state+state history)

end while
if expanded plans = ; then
result evaluation all-plan-expansions-failed

end if

Med expand plan is guided by speci�c attributes describing the data contents, in addition to

the intended processing functionality and the input and output data types that PEGASE uses.

Med select plan simply selects the �rst plan. Then, Med execute plan takes the only operator

in the plan and re�nes it and executes it. The latter corresponds to the next subtask.
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Re�ne, execute and repair operator MedIA integrates new capabilities concerning hier-

archical planning. It permits abstract steps within sequential decompositions representing an

abstract functionality to solve. Besides, it manages small run-time incompatibilities between

the current state and (sub)operator preconditions.

Med re�ne, execute and repair operator, if the current step is abstract, performs a new

operator-based planning step through a recursive call to Med plan and execute. Otherwise

operator preconditions are tested in order to detect small run-time incompatibilities. If nec-

essary, they are solved through a call to adaptation plan and execute, which performs an

operator-based planning step driven by the unful�lled preconditions. The rest of the steps

are similar to those in PEGASE:
if abstract step then
get oper functionality (operator! functionality)
Med plan and execute (plan+state+state history+functionality+operator KB! result eval-
uation+�nal plan+�nal state)

else
test oper preconditions (operator+state! result)
if result <> success then
get oper preconditions (operator! preconditions)
adaptation plan and execute (plan+state+state history+preconditions+operator KB!
result evaluation+plan+state)

end if
rule-based initialise parameters (operator+state! initialised operator)
if primitive operator then
PEG execute operator (initialised operator+state+state history! �nal state+state his-
tory)
update plan (plan+initialised operator! �nal plan)

else if specialisation then
PEG specialise operator (initialised operator+plan+state+state history! �nal plan+�nal
state+state history)

else if sequence then
PEG decompose sequence (initialised operator+plan+state+state history! �nal
plan+�nal state+state history)

end if
apply e�ects (initialised operator+�nal state! �nal state)
rule-based evaluate results (operator+�nal state! evaluated operator+result evaluation)
while result evaluation = repair do
Med rule-based repair operator (evaluated operator+�nal state+state history! �nal
state+state history)
rule-based evaluate results (operator+�nal state! evaluated operator+result evaluation)

end while
end if

Contrarily to PEGASE, MedIA does not assume that the entire set of possible solutions

has been described in the operator knowledge base, but rather that it may include solutions

which have not been completely described or which need to be adapted at run time.
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5.3.3 Assumptions of program supervision methods

The assumptions presented before, which are summarised in �gure 5.25, are typical knowledge

requirements of PS methods. Without the aim of being exhaustive, we have identi�ed a

collection of assumptions describing the knowledge that PS methods need, useful for V&V

purposes. Nevertheless, we are aware that the set of assumptions that a PS method makes is

potentially in�nite, and that they cannot completely be isolated.

The assumptions have been informally identi�ed from the information on the knowledge

utilisation provided by the di�erent (sub)task decomposition descriptions. Particularly:

� each (sub)task determines the precise role of the knowledge it uses and enforces general

assumptions.

� the detailed description of the method that performs the (sub)task often restates the

general assumptions of the (sub)task. It usually imposes additional assumptions. They

can make reference to any requirement so that the method works properly, e.g. to the

required knowledge or to the representation required for this knowledge. They can also

identify which characteristics are more suitable according to method functioning.

For example, initialise parameters assumes that the initialisation criteria give an initial

value to all operator parameters without a pre-established value (g). The method rule-based

initialise parameters requires that the initialisation criteria have a single-layered rule-based

representation (h), at the same time as it restates the general assumption taking into account

this representation, that is, (i) and (j).

The conceptual organisation for assumptions in [Benjamins and Pierret-Golbreich, 1996]

distinguishes epistemological, pragmatic and teleological assumptions. The assumptions that

we have identi�ed correspond to epistemological ones. These are further divided into availabil-

ity and property assumptions. In addition, in [Marcos et al., 1997] we proposed to distinguish

the assumptions that are critical for the proper functioning of the method (compulsory) from

those that are only advisable (desirable). Besides, the property assumptions can make refer-

ence to the knowledge structure or to the knowledge role imposed by the method.

In PS methods we �nd mainly:

� assumptions on availability of knowledge to perform certain subtasks (availability as-

sumptions). Examples related to the use of selection/ordering heuristics are (b), (c) and



70 Chapter 5. KNOWLEDGE MODELING OF PS SYSTEMS

(a) the operator knowledge base describes the set of possible solutions
(b) operators specify their functionality or a goal de�nes it
(c) operators specify their side-e�ects
(d) plans are single (hierarchical) operators
(e) plans are unordered sets of operators
(f) operators specify their preconditions
(g) initialisation criteria give means to initialise all parameters without value
(h) initialisation criteria are single-layered rule bases
(i) initialisation rule bases contain at least one rule for each parameter without

value
(j) rules initialising a parameter cover all possible situations
(k) choice criteria may select several candidates
(l) choice criteria permit the choice of every suboperator in the specialisation
(m) choice criteria are single-layered rule bases
(n) sequential compound operators have evaluation and repair criteria concerning

the suboperators in the sequence
(o) evaluation criteria give means of determining whether the results are acceptable

or not
(p) evaluation criteria are single-layered rule bases
(q) repair criteria give means to solve the problems diagnosed by the evaluation

criteria of the same operator
(r) repair criteria give means to solve any problem transmission that could be

received from the repair criteria of any other operator
(s) chains of repair actions are continuous and end with an action that can solve

the problem
(t) repair criteria are single-layered rule bases
(u) adjustment criteria are single-layered rule bases

Figure 5.25: Assumptions of program supervision methods
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(f). A di�erent example is (n), which concerns the availability of knowledge to perform

an intermediate evaluation-repair loop within sequential decompositions.

� assumptions about the required knowledge representation (property assumptions). See

(d) and (e) as examples related to plan representation and (h) as example concerning

criteria representation.

� assumptions on other knowledge characteristics, critical or not (compulsory or desirable

property assumptions). An example of compulsory property is (g), which describes the

required characteristics of the initialisation criteria according to their role. An example

of desirable property is (a), which states that the method is suitable for hierarchical

operators.

5.4 Additional bene�ts of knowledge modeling

The initial motivation of our knowledge modeling was studying the organisation of the knowl-

edge that the PS methods require, and how they use this knowledge to solve the PS task.

This analysis is the key to determining the assumptions that PS methods make on domain

knowledge. Indeed, the assumptions of a PS method specify what it needs to operate and thus

constitute important properties that the knowledge base should verify [Marcos et al., 1997].

Our knowledge modeling has other interesting outcomes [Marcos et al., 1998a], particularly

derived from di�erent utilisations of the descriptions of PS methods and their assumptions.

5.4.1 Bene�ts from the description of program supervision methods

The task decompositions corresponding to PEGASE, PULSAR and MedIA methods consti-

tute high-level functional speci�cations and thus can be used to support the manual V&V of

PS engines by inspection.

In addition to this, PEGASE, PULSAR and MedIA task decompositions can be of help

for the design of new PS engines. Indeed the design of MedIA has been carried out by

comparison with PEGASE and PULSAR task decompositions, reusing part of their methods

[Crubézy et al., 1998].

Figure 5.26 synthesizes the top-level PS methods using a task-method decomposition struc-

ture similar to the one used in [Orsvärn, 1996], where a method consists of subtasks, and a
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(sub)task can be realised by alternative methods. The PEGASE (and MedIA) and PULSAR

methods for plan and execute are di�erent: PUL plan and execute is recursive whilst PEG/Med

plan and execute is not. Di�erences can be found in methods for other subtasks at a lower

level. The PS task-method decomposition can be seen as a high-level speci�cation of di�erent

PS methods that could be used to con�gurate new PS engines, e.g. by changing the control

of a given method or by incorporating new steps.

Finally, PEGASE, PULSAR and MedIA task decompositions have served to identify typ-

ical methods that perform certain subtasks. For instance, the methods for specialise operator

and decompose sequence in MedIA are similar to the equivalent ones in PEGASE. This has

put forward the interest of including in the Blocks library other usable components corre-

sponding to such typical methods. These new Blocks components, di�erent from the current

small-grain sized ones, would allow a more e�cient reuse for less-skilled engine designers.



5.5. Related work 73

5.4.2 Bene�ts from the description of assumptions

The obtained assumptions provide a characterisation of the studied PS engines in terms of

their knowledge requirements. They can be used to determine the adequacy of a PS engine

to a target domain, as in [Benjamins et al., 1996b]. For instance, the assumption (a) of

PEG plan and execute implicitly states that PEGASE handles hierarchical operators so it

is suitable for domains in which operator functions are naturally seen as combinations of

actions. This is an important issue for engineering new applications, because the success

of the �nal application will often depend more on the adequacy of the selected engine to

the features of the domain rather than on the e�ciency of the algorithms that implement it

[Nunes de Barros et al., 1996].

In addition, we have obtained not only a description of the assumptions of the methods

that PEGASE, PULSAR and MedIA implement, but also of the di�erent methods that they

use to perform the PS subtasks at di�erent levels. Jointly with the previous task-method

decomposition for PS, they could be used to de�ne the knowledge base veri�cation issues for

new PS engines.

5.5 Related work

For the description of the PS methods in this chapter, we have used the perspective of the

knowledge modeling of PULSAR in [van den Elst, 1996] as starting point. Here the objective

is obtaining a functional speci�cation to be used as a basis for the implementation of the PUL-

SAR engine. On the other hand, our analysis goes further into the details about knowledge

utilisation by the engine. We have also made an e�ort to integrate the descriptions of PUL-

SAR, PEGASE and MedIA engines under the same modeling perspective. This integrated

view has several bene�ts, not only for V&V purposes but also for knowledge acquisition ones,

as we have shown in the previous section. Next we cite some work which is closer to our

purposes.

In [Valente, 1994] we �nd a knowledge-level analysis of classical planning systems in terms

of the types of knowledge they use and how they are structured. The aim is to provide a

framework for classifying methods in order to facilitate their selection for a particular appli-

cation. This work is complemented in [Nunes de Barros et al., 1996] with an analysis of the

planning subtasks and the use that they make of the di�erent types of knowledge. Although

with a di�erent initial motivation, our knowledge analysis comprises most of these aspects.
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A study of the assumptions of a group of problem-solving methods for model-based diag-

nosis is presented in [Fensel and Benjamins, 1996]. Assumptions are viewed here as a charac-

terisation of problem-solving methods and as guidelines for the acquisition process of domain

knowledge. Our study of assumptions is along this line but with V&V purposes.



Chapter 6

Veri�cation of Program Supervision

Knowledge Bases

T
he knowledge modeling of PEGASE, PULSAR, and MedIA engines provides us with

a description of the PS domain model and methods (including the methods for PS sub-

tasks), and of some assumptions that methods make. We have used these elements to de�ne

the properties that a PS knowledge base should verify to adequately serve the reasoning of

the intended engine. Taking into account these properties and the target knowledge repre-

sentation, we have implemented a new Lama module for the model-based veri�cation PS

knowledge bases.

In this chapter we �rst present the model-based veri�cation properties that we have de�ned

from the PS model and methods. Then we describe the knowledge representation in Lama,

and the implementation-dependent techniques that have been chosen accordingly. We next

describe the issues for the integration of knowledge base veri�cation in Lama and present

the veri�cation modules that have been implemented in this light. Finally we report on some

experiences in the application of the veri�cation modules to two di�erent real-world knowledge

bases and end with some conclusions.

6.1 Knowledge base veri�cation properties

We have used the descriptions in chapter 5 to de�ne typical properties that a PS knowledge

base should verify according to the knowledge requirements of PEGASE, PULSAR and Me-

75
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dIA. These properties correspond to the knowledge characterisation given by the PS domain

model and to the information on the knowledge utilisation provided by the description of the

PS methods of these engines. First, the PS domain model de�nes the necessary concepts in

the knowledge base, and their structure, and establishes the necessary interrelations. Sec-

ond, PS subtasks, especially the most knowledge demanding ones, precisely determine the

role of the knowledge they use and consequently impose general assumptions. Third, the

description of the method that performs the subtasks (inference structure plus control over

the steps) makes clear the knowledge requirements so that the method works properly, or

which knowledge characteristics, though not critical, are more appropriate. It often re�nes

the role assumptions. In this section we describe the former properties and revise the latter

ones, which have been addressed in chapter 5 as the assumptions of PS methods.

The veri�cation properties can be classi�ed according to di�erent points of view. Many

of them are characteristics common to all PS methods or general characteristics, but there

also exist method-speci�c ones which arise when we consider the behaviour of a particular

PS method. As assumptions, they can make reference to the knowledge structure or to the

knowledge role imposed by the PS method. The latter are derived from the role that each piece

of knowledge plays in the reasoning of PS. Finally, the properties can be critical (compulsory)

or not (desirable).

Roughly speaking, we can say that the properties concerning the knowledge structure

correspond to general characteristics, whereas the properties concerning the knowledge role

are method-speci�c ones. However, there are properties related to the knowledge structure

which are imposed by the functioning of a particular method.

In the following we present the properties a knowledge base for PS must comply with. We

have grouped them in accordance with their degree of generality with respect to PS methods

(general characteristics versus method-speci�c ones).

6.1.1 General properties of program supervision methods

General properties comprise structural properties derived from the PS domain model as well

as role properties enforced by the main PS subtasks. Since role properties are re�ned by the

description of the particular method that performs the subtask, they are treated in subsec-

tion 6.1.2.

Regarding structural properties, their de�nition needs a detailed study of the PS domain

model in order to describe the syntactic properties of basic concepts in the knowledge base
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like operators and goals, and also of more complex elements such as the operator knowledge

base. Other properties are derived from the semantics of certain relationships.

6.1.1.1 Structural properties

Goal Goals must have a functionality, and at least one input argument and one output

argument. They may have a set of constraints describing the expected �nal state.

A goal is related to the operators that achieve its functionality. To be adequately associ-

ated, these operators must use all the input arguments of the goal to produce (at least) the

required output arguments. The compatibility in the number and data type of arguments

between the goal and the related operators is necessary:

� the number of input arguments should be equal to the number of input arguments in

the goal.

� the number of output arguments should be equal or greater than the number of output

arguments in the goal.

� the data type of input (output) arguments should be the same as the corresponding goal

argument, or a subtype.

Operator Operators must have at least one input argument and one output argument,

but they may have or may not have any parameter. The functionality and characteristics of

operators are not compulsory in principle. Operators may have one or more preconditions

and one or more e�ects, and possibly one or more postconditions.

Operators with parameters need knowledge to initialise them, either through default val-

ues, data distribution, data �ow, or initialisation criteria. Knowledge about how to evaluate

their execution results and detect and diagnose problems, and about how to repair the possible

problems is optional in principle.

Primitive operator Primitive operators should contain information about the calling syn-

tax of the library program they represent.
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Compound operator Compound operators have to be associated to a decomposition con-

sisting of two or more suboperators. Choice decompositions need some choice criteria to select

the candidate(s) for the specialisation at execution time.

Compound operators must also specify data distribution. Data �ow speci�cation is manda-

tory in sequential decompositions. The speci�cation of data distribution describes how oper-

ator input arguments and parameters are connected to the input of suboperators, and how

suboperator output arguments are connected to the output of the operator. The speci�cation

of data �ow describes how output arguments of suboperators are connected to the input of

other suboperators in the sequence.

In expressions of the form hoperatorii.hargumentji ! hoperatorki.hargumentli, which

are used for the speci�cation of data distribution and data �ow, the permitted references

vary with the intended use. For instance, in the speci�cation of input distribution, the term

hoperatorii.hargumentji can be either an input argument or a parameter of the operator,

and hoperatorki.hargumentli must be a compatible input of any of the suboperators. This

compatibility is established in terms of the kind and data type of inputs:

� the kind of inputs (argument or parameter) must be the same.

� the data type of inputs must be the same, or a subtype.

In the speci�cation of data �ow, both hoperatorii and hoperatorki must be suboperators

belonging to the decomposition, and hargumentji and hargumentli must be compatible ar-

guments, output and input, respectively, of hoperatorii and hoperatorki.

A compound operator is related to a combination of other operators that serves to perform

its functionality, transforming its input arguments into the speci�ed output arguments. In

general, in the speci�cation of data distribution, all operator inputs must be used and all

operator outputs must receive a value. Otherwise either the operator speci�es more inputs

than necessary or the suboperators do not provide enough outputs for the operator. On the

other hand, not necessarily all suboperator outputs must be used by the operator, since they

may include some needed to perform other processing functions.

In specialisation decompositions (data distribution correctness in specialisations):

� all operator inputs must be used by at least one suboperator.

� all operator outputs must receive one value from each suboperator.
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� all suboperator inputs must receive one value.

In sequential decompositions (data distribution correctness in sequences):

� all operator inputs must be used by at least one suboperator.

� all operator outputs must receive one value at most.

Notice that not all suboperator inputs must receive a value through data distribution, since

it can be established by means of data �ow as explained below.

In sequential decompositions, the speci�cation of data �ow must provide a value to all

suboperator inputs that are not considered in data distribution (data �ow correctness):

� all suboperator inputs which do not correspond to any operator input (i.e. which do

not appear in data distribution) must receive one value from the output of any other

suboperator.

Hierarchical operator A compound operator is described at di�erent levels of abstrac-

tion by means of decompositions, constituting a hierarchical operator. At some point the

decompositions should end with primitive operators, otherwise the compound operator would

not describe a combination of library programs. Therefore hierarchical operators must form

a cycle-free tree structure where the leaves correspond to primitive operators (hierarchical

operator correctness).

Operator knowledge base Operators are grouped into an operator knowledge base in

which there may be included a set of goals describing the operators at the most abstract

level. If such is the case, the goal set should cover all the functionalities of the operators

in the knowledge base at the highest level of abstraction (completeness of the goal set with

respect to the abstract functionalities in the operator knowledge base). This may vary from the

functionality of hierarchical operators to the functionality of primitive operators when they

do not appear in any hierarchy.
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Criteria Most of the times criteria are ful�lled by rule bases with a particular role with

respect to the element which they are attached to (operator, decomposition or operator within

a decomposition).

Rule bases should be free of potential sources of errors such as redundancy. The analysis

of critical errors that can prevent rule bases from adequately performing their role is more

important. Examples are con�icting rules i.e. rules concluding con�icting actions in the same

situation, or gaps i.e. situations that are not covered by any rule. However this analysis

takes a better place in the context of the role played by the rule base because this precisely

determines the necessary contents.

Rule Rules are typed according to their role (initialisation, evaluation, repair, adjustment,

and choice) and this determines the action types allowed, and also the elements that can be

referenced. In general, preconditions and actions cannot make reference to elements other

than the associated operator, its arguments and parameters, and domain objects constituting

the execution context. Regarding preconditions:

� repair preconditions are the only ones allowed to inquiry about the assessment of the

operator.

Concerning actions, we may �nd assignments to arguments or domain objects in any type

of actions. Other characteristics speci�c to the di�erent action types follow:

� initialisation and adjustment actions are the only ones permitted to assign a value to

operator parameters.

� choice actions should only make reference to suboperators in the decomposition.

� evaluation actions are allowed to assess either the operator itself or one of its parameters

or output arguments.

� repair actions determine the operators that can be referenced: the superoperator (with

send-up), one of the suboperators (with send-down), or any other operator (with

send-op).

6.1.2 Speci�c properties of program supervision methods

In this part we present the properties speci�c to particular PS methods (including methods

for PS subtasks). For this purpose we revise the methods that, according to our knowledge
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model, most frequently realise the main PS subtasks, and their assumptions. In this regard

we distinguish: the speci�c knowledge that methods require, the role properties that they

clarify, and other non-critical properties, i.e. those more appropriate to their functioning.

6.1.2.1 Structural properties

Di�erent method-speci�c structural properties have been identi�ed. Some of them correspond

to certain engine speci�cs, whilst others refer mainly to the use of complex heuristics in certain

subtasks.

To illustrate the former we cite a characteristic of PEGASE and MedIA, which allow

optional steps in sequential decompositions. In this case, the optional suboperator must be

associated to some criteria to determine its applicability in the decomposition or applicability

criteria. The possibility of optional suboperators also relaxes the requirement for data distri-

bution correctness as it has been described before, since operator outputs may receive a value

from more than one suboperator (data distribution correctness in sequences (with optional

operators)).

As examples of the latter, smart selection or ordering mechanisms use heuristics that

usually demand additional knowledge, e.g. the functionality of operators, which becomes a

knowledge requirement. This is true for all steps involving selection or ordering as select

operators, order operators, or sort suboperators.

6.1.2.2 Role properties

For the method-speci�c role properties we focus on the step re�ne, execute and repair operator

in our knowledge model because it is the most knowledge demanding subtask�up to that level

the subtasks consist mainly in heuristic search. In particular, the used knowledge concerns

parameter initialisation, suboperator choice within a specialisation, result evaluation, and

operator repair.

Initialisation knowledge The initial setting of operator parameters is in general performed

by the method rule-based initialise parameters. This method uses the initialisation rule base

of the operator to initialise all parameters without an established value. For this purpose

the rule base must contain at least one rule for each parameter without value (adequacy of
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the initialisation rule base to the unvalued parameters in the operator). Moreover, the rules

serving to initialise a parameter should cover all possible situations in the application context

of the rule base (completeness of the rule set initialising a parameter). Finally, there should

not be two rules concluding di�erent values for the same parameter in the same situation

(con�ict-freeness of the rule set initialising a parameter).

Choice knowledge In general the method rule-based choose suboperators is used to select

the candidate(s) for a specialisation in a given situation. It uses the choice rule base attached

to the operator decomposition for this purpose. The rule base should permit choosing every

suboperator in the decomposition, i.e. it should contain at least one rule choosing each sub-

operator (adequacy of the choice rule base to the suboperators in the specialisation), and cover

all possible situations (completeness of the choice rule base). Notice that there is no con�ict in

choosing two di�erent suboperators in the same situation if the step specialise operator deals

with this.

Evaluation knowledge The detection and diagnosis of possible problems after operator

re�nement or execution is usually carried out by the method rule-based evaluate results. Prob-

lems are signalled with an explicit indication to repair, and the corresponding diagnosis is

expressed as a negative assessment on the operator application and/or tuning. The evalua-

tion rule base of the operator should permit determining if a repair is necessary or not. For

this purpose the rule base should cover all possible situations (completeness of the evaluation

rule base). Additionally it should not derive con�icting conclusions, i.e. repair is necessary

and repair is not necessary, in the same situation (con�ict-freeness of the evaluation rule base).

Repair knowledge In general, a rule-based method is used to apply a corrective action to

solve the problems diagnosed by rule-based evaluate results.

With a local repair, the repair rule base should treat all the problems diagnosed by the

evaluation rule base (adequacy of the repair rule base to the problems diagnosed by the evalu-

ation rule base).

With a non-local repair, the repair of operatorj may be triggered by the repair rule base

of operatori by means of a repair rule with an action send-op(operatorj, problemp). In this

case, the repair rule base of operatorj must also treat the diagnosis implicit in the transmission

from operatori, i.e. problemp (adequacy of the repair rule base to the problems diagnosed by
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the evaluation rule base, and to the problems transmitted by any other operator). For instance

a repair rule with the action send-op(operatorj, problemp) in operatori needs at least one

rule in the repair rule base of operatorj treating the problem problemp.

A non-local repair also requires that the overall repair path gives means to solve the

problem, i.e. that the chaining of repair actions is continuous and ends with an action that

can solve the problem (repair path correctness). For instance, if the action send-op(operatorj,

problemp) is included in the repair rule base of operatori, in operatorj there should be at

least one repair rule to treat problemp with either a re-execute or a problem transmission

to another operator which in turn complies with this. Besides, the chaining of repair actions

must end and thus it is not advisable to transmit a problem to an operator that already takes

part in the repair mechanism.

Additionally, the rules treating a diagnosed problem should cover all possible situations

(completeness of the rule set treating a problem), and there should not be two rules conclud-

ing di�erent repair actions in the same situation (con�ict-freeness of the rule set treating a

problem).

The adjustment of operator parameters is performed whenever the re-execution is required

by the repair rule base of the operator. Therefore rule-based adjust parameters requires an

adjustment rule base whenever the re-execution is used to repair the operator (adequacy of

the adjustment rule base to the treatments in the repair rule base). In addition, this rule base

should cover all situations in the application context (completeness of the adjustment rule

base) and should not derive di�erent values for the same parameter in the same situation

(con�ict-freeness of the adjustment rule base).

6.1.2.3 Desirable properties

Examples of knowledge characteristics more appropriate to the functioning of the analysed

engines follow. They correspond to methods using di�erent search strategies in performing

their tasks.

In the search for solutions, PEG plan and execute only tries individual operators, under

the assumption that they contain enough information to solve a problem. This means that

PEGASE is suitable for knowledge bases containing hierarchical operators, and inversely, that

non-hierarchical operator knowledge bases should not be used in combination with PEGASE.

The exhaustive search of PUL plan and execute makes PULSAR more adequate to knowledge
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bases containing non-hierarchical operators. Finally, the characteristics of the search for

solutions in MedIA, make it suitable for managing hierarchical operators that need to be

adapted at run-time.

The strategy in the search for a candidate in a specialisation decomposition has some

implications on the characteristics of the choice criteria. In PUL specialise operator, the search

in the set of candidates is exhaustive. An exhaustive search is more suitable for choice criteria

selecting multiple suboperators since they are all considered as potential candidates.

6.2 Knowledge representation in Lama

The implementation in Lama of the PS concepts follows a hybrid knowledge representation

scheme. In this scheme the knowledge concepts like operators or goals are represented by

structured objects, whereas the di�erent expert criteria are in general represented by rule

bases. Figure 6.1 shows an example1 of compound operator in the Yakl language2. The

rule-based representation for criteria in Lama is detailed next.

6.2.1 Rule-based representation

Lama allows for the writing of rules using in preconditions mathematical relation

expressions (with =, <, >, <=, >=, and 6=). The use of mathematical relations is

limited to expressions having, on the left-hand side, a constant or a functional expression

and, on the right-hand one, either a constant or an arithmetic expression (with +, �,

=, and �). Constants represent speci�c elements of the knowledge base, e.g. constant

values, operators, domain objects, arguments, parameters, or (sub)attributes of domain

objects/arguments/parameters (e.g. argumentl.attributem.attributen). Variables can

be declared and used within expressions as any other constant. Functional expressions

often denote typical attributes of knowledge base elements, e.g. operator assessments

have the form assess-operator?(operatorj). There exist few basic functions, namely

type-of(argumentl), assess-operator?(operatorj), assess-parameter?(parameterk),

assess-data?(argumentl), and nb-previous-assess(operatorj, problemp). Preconditions

are related through the connective AND. Regarding rule actions, they can be either constant
1The examples in this chapter have been extracted from the Cerveau knowledge base [Thonnat et al., 1999].
2To increase readability, someYakl keywords have been replaced with the terms employed in our knowledge

modeling.
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Compound Operator { name : segm-morpho-bin
: : :

Functionality : segmentation
Characteristics : math-morpho, binary
Input Data

MedicalImage name : mri-im
Input Parameters

symbol name : computation-precision
range : [minimal, sharp, medium, coarse, maximal]

Output Data
MedicalImage name : segmented-im

Preconditions
valid mri-im,
mri-im.physical-process = mri,
mri-im.physical-space = 3D
mri-im.intensity-coding = levels,
mri-im.form-situation = connected

Postconditions
valid segmented-im,
segmented-im.intensity-coding = binary,
segmented-im.form-situation = alone

Initialisation criteria
: : :

Evaluation criteria
: : :

Repair criteria
: : :

Decomposition
isolate-info-zone - extract-info - reconstruct-info

: : :

Distribution
segm-morpho-bin.mri-im ! isolate-info-zone.init-im
reconstruct-info.complete-im ! segm-morpho-bin.segmented-im

Flow
isolate-info-zone.isolated-info-im! extract-info.connected-info-im
isolate-info-zone.isolated-info-im! reconstruct-info.reference-im
extract-info.extracted-info-im ! reconstruct-info.incomplete-im

}

Figure 6.1: Example of Lama compound operator in Yakl. The segm-morpho-bin operator serves

to perform a binary segmentation on a 3D magnetic resonance image. It accepts as input a magnetic

resonance image and produces a segmented one. The data type of the input and output images is the

user-de�ned type MedicalImage, with attributes like physical-process, physical-space, intensity-coding

and form-situation. The functionality of the segm-morpho-bin compound operator is achieved by the

sequential application of the operators isolate-info-zone, extract-info and reconstruct-info.
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Rule name init-computation-precision-1
Let ?c a Context
If ?c.required-precision = sharp
Then computation-precision := sharp

Rule name eval-segm-morpho-bin-1
If assess-data?(segmented-im) = regular-rounded-form
Then assess-operator good-quality continue

Rule name eval-segm-morpho-bin-2
If assess-data?(segmented-im) = irregular-form
Then assess-operator pb-medium-quality repair

Rule name rep-segm-morpho-bin-1
If assess-operator?(segm-morpho-bin) = pb-presence-connexions,

nb-previous-assess(segm-morpho-bin, pb-presence-connexions) = 1
Then send-down reconstruct-info pb-too-many-details

Figure 6.2: Examples of Lama rules in Yakl. All rules are attached to the segm-morpho-bin

operator. The init-computation-precision-1 rule simply sets the parameter computation-precision to

the value sharp if such is the required precision of the execution context (variable ?c of user-de�ned

type Context). The rules eval-segm-morpho-bin-1 and eval-segm-morpho-bin-2 are evaluation rules

indicating respectively continue and repair on the basis of the assessment of the argument segmented-

im. Rule eval-segm-morpho-bin-2 diagnoses the problem simply as medium quality results. Finally,

rep-segm-morpho-bin-1 repair rule indicates that if segm-morpho-bin operator has been diagnosed with

pb-presence-connexions for the second time, it is likely that reconstruct-info suboperator is responsible

due to an excess of details in its processing.

assignments the PS speci�c actions which have been described in chapter 5 (see page 49).

Figure 6.2 shows examples of the di�erent types of rules in Yakl.

Rules are grouped in rule bases with a particular role with respect to the element which

they are attached to. This means that e.g. for the initialisation of the parameters of the

segm-morpho-bin operator in �gure 6.1, only the initialisation rules de�ned in the scope of

this operator will be used (one of them appears in �gure 6.2).

6.3 Knowledge base veri�cation techniques

We have described in section 6.1 typical properties that a PS knowledge base should verify

according to our knowledge model of di�erent PS engines. These model-based properties are

formulated using the terminology of the PS task and hence they are more signi�cant than

implementation-dependent ones.
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The veri�cation of the model-based properties needs di�erent types of checks. Some

properties only require referential checks between di�erent objects in the knowledge base

(many of those derived from the de�nitions in the PS domain model). Other properties

require more complex structural checks involving several objects. Finally, rule base properties

related to traditional rule-based anomalies require the application of speci�c techniques.

Referential checks The properties that can be veri�ed by simple referential checks:

1. General, structural properties. We refer to syntactic-like properties derived from the

concepts and relations in the PS domain model, and their semantics. For instance,

compound operators must specify data distribution, and the arguments related through

data distribution must be compatible.

2. Method-speci�c, structural properties. We refer to those properties corresponding to the

knowledge requirements of the particular PS method. For instance, PEGASE requires

that the functionality of operators is speci�ed.

Structural checks The properties that require more complex structural checks:

3. General, structural properties:

� Correctness of data distribution in specialisations.

� Correctness of data distribution in sequences.

� Correctness of data �ow.

� Correctness of hierarchical operators.

� Completeness of the goal set with respect to the abstract functionalities in the

operator knowledge base.

4. Method-speci�c, structural properties:

� Correctness of data distribution in sequences (with optional operators).

5. Method-speci�c, role properties:

� Adequacy of the initialisation rule base to the unvalued parameters in the operator.

� Adequacy of the choice rule base to the suboperators in the specialisation.

� Adequacy of the repair rule base to the problems diagnosed by the evaluation rule

base, and to the problems transmitted by any other operator.
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� Correctness of repair paths.

� Adequacy of the adjustment rule base to the treatments in the repair rule base.

6. Method-speci�c, desirable properties:

� Adequacy of the operator knowledge base to the search strategy of plan and execute.

� Adequacy of the choice rule base to the search strategy of specialise operator.

Rule base checks Finally, rule base properties requiring speci�c techniques:

7. General, structural properties:

� Redundancy-freeness of rule bases.

8. Method-speci�c, role properties:

� Completeness of rule bases:

� Initialisation rule base: completeness of the rule set initialising a parameter.

� Choice rule base: completeness of the rule base.

� Evaluation rule base: completeness of the rule base.

� Repair rule base: completeness of the rule set treating a problem.

� Adjustment rule base: completeness of the rule base.

� Con�ict-freeness of rule bases:

� Initialisation rule base: con�ict-freeness of the rule set initialising a parameter.

� Evaluation rule base: con�ict-freeness of the rule base.

� Repair rule base: con�ict-freeness of the rule set treating a problem.

� Adjustment rule base: con�ict-freeness of the rule base.

The rule base properties above are related to rule-based anomalies that have been exten-

sively studied in the �eld of V&V of knowledge-based systems. Next we present the rule-based

techniques that we have chosen according to the Lama representation.

6.3.1 Rule base veri�cation techniques

Numerous techniques reviewed in chapter 2 involve veri�cation of rule base implementation

anomalies. They provide us with di�erent de�nitions of consistency, redundancy and com-

pleteness anomalies, and their associated veri�cation procedures. These techniques assume in

general propositional logic or AOV-like rules.
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For the consistency and redundancy checks there exist two main approaches, namely checks

consistsing in pairwise rule comparisons and those considering all possible deductions, referred

to as rule checks and rule extension checks respectively in [Preece and Shinghal, 1994]. Rule

extension checks make no sense given the usual deduction models in PS rule-based methods,

in which usually no rule chaining takes place as explained in chapter 5 (see pages 59 and 65).

These deduction models are in tight relation with the rule-based representation in Lama, in

which rules conclude an action which directly constitutes an output. In our case rule checks

are therefore su�cient. Various rule check algorithms can be found in [Suwa et al., 1982],

[Puuronen, 1987] and [Cragun and Steudel, 1987].

For the completeness check, the usual approach consists in the exhaustive enumeration

and examination of possible combinations of input variables. An exception to this approach

is the logical de�nition for the completeness analysis of single-layered reactive rule bases in

[Ligeza, 1997].

In preconditions of Lama rules we usually �nd comparisons of constants or functional

expressions against constant values (see �gure 6.2). In order to apply de�nitions for AOV-

like rules, this has been assumed for our implementations. Next we sketch the consistency,

redundancy and completeness checks that we perform.

6.3.1.1 Consistency and redundancy checks

To check consistency and redundancy we use the notion of absolute logical uniqueness in

[Cragun and Steudel, 1987]. Two rules have absolute logical uniqueness in their preconditions

when a precondition making reference to an element (constant or functional expression) in

one rule requires a di�erent value in the other rule. This notion, which serves to ensure that

two rules cannot �re simultaneously, is equivalent to the de�nition of mutually exclusive rules

in [Pipard, 1988].

Then, if two rules have not mutually exclusive preconditions we perform additional checks

to determine if their preconditions are exactly the same, or one subsumes the other. This

helps us to detect redundant, subsumed and con�icting rules, depending on the results of the

comparisons between rule actions.
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6.3.1.2 Completeness check

If all the rules in the rule base are mutually exclusive, which means that there are

not two rules that �re simultaneously, completeness can be checked numerically as in

[Cragun and Steudel, 1987]. This also requires that preconditions only include equality

comparisons. Otherwise completeness can be ensured by checking the non-existence

of missing rules, by exhaustive enumeration of possible combinations of elements in

preconditions.

Whenever completeness is not veri�ed, bd-resolution [Ligeza, 1997] can serve to obtain

an expression with respect to which the rule base is complete, which can help the expert to

identify the missing rules. The basic form of bd-resolution is:

 1 ^ !,  2 ^ :!

 1 ^  2

When it is applied to the preconditions of two rules the obtained bd-resolvent describes the

situations that they cover. For instance, if the two preconditions are  1 ^ ! and  2 ^ :!, in

any situation satisfying  1 ^  2 either ! or :! holds and thus one of the rules can be �red.

The extension of bd-resolution to the AOV formalism in [Ligeza, 1997] states that the

condition to �glue� a set of formulas is that an element takes all its possible values. If the

element ei has as set of possible values Vei = fv1; v2; : : : vmg, this can be:

 1 ^ ei = v1,  2 ^ ei = v2, : : :  n ^ ei = vm

 1 ^  2 ^ : : :  2

Notice that these completeness checks need the de�nition of the set of possible values of

precondition elements. This is speci�ed in the case of domain objects/parameters/arguments

by means of the corresponding range attributes. In the case of the assessments on opera-

tors/arguments/parameters, this is implicitly speci�ed through the actions in the correspond-

ing evaluation rule base. For instance, the rule eval-segm-morpho-bin-2 in �gure 6.2 results

in a new value pb-medium-quality in the domain of the assessment attribute of operator

segm-morpho-bin.
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6.4 Knowledge base veri�cation within Lama

The Lama platform for PS system development has been presented as part of our research

framework. Here we describe the issues for the integration of the necessary Lama modules

for the model-based veri�cation PS knowledge bases.

The Yakl language for expertise de�nition is the interface that the knowledge engineer

and the domain expert use for knowledge base development. The properties that require

simple referential checks can be veri�ed without a signi�cant overload during the necessary

parsing step of the input Yakl knowledge base into the Lama constructs. This will allow the

knowledge engineer and the domain expert to concentrate on knowledge elicitation early in

the implementation stage. The veri�cation of more complex properties, or more exhaustive

veri�cations, can be performed once the knowledge base is deemed nearly �nished, before

operating with it in Lama.

Therefore the referential checks will be performed by the Lama Yakl parser. The veri�-

cation of the rest of the properties will be performed by the Lama knowledge base examiner,

by using the structural information obtained from the parsing step. Figure 6.3 depicts these

new Lama modules and the way in which the knowledge engineer and the domain expert will

interact with the platform during the development of a PS knowledge base.

Although the rationale of Lama is to facilitate PS engine recon�guration, no module

serves to support this activity at present. For the development of a new engine, the designer

implicitly or explicitly uses a semi-formal speci�cation of the expert's reasoning process. This

speci�cation is then operationalised by combining Blocks instructions and structures in an

algorithmic way. Once this Lama engine has been validated with the help of the expert,

the appropriate Lama modules (the Yakl parser and the knowledge base examiner) have

to be developed based on the characteristics of the PS method that the new Lama engine

implements.

In this light we have implemented a version of the Yakl parser and the knowledge base

examiner to verify important knowledge requirements of both PEGASE and MedIA engines,

which are used in the current applications in our team. For the implementation of the knowl-

edge base examiner, we have emphasised the development of a veri�cation library containing

procedures to check typical model-based properties that PS knowledge bases have to verify.

The idea behind this is to facilitate the con�guration of future versions of the knowledge base

examiner module adapted to the particular needs of new Lama engines.
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LAMA KB
edition env.

YAKL KB

LAMA
YAKL parser

OK?

LAMA KB OK?

LAMA
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Figure 6.3: The development of PS knowledge bases in the Lama platform. The knowledge engineer

and the domain expert use a dedicated edition environment to enter the Yakl knowledge base. At any

moment they can request the parsing of the evolving knowledge base, which will help them �x syntax

errors or invalid references. Once the parsing step is successfully completed, the Lama knowledge

base examiner can be run to verify more complex properties.
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6.5 Modules for knowledge base veri�cation

6.5.1 Yakl parser

Besides Yakl syntax compliance, the Yakl parser performs many other important veri�ca-

tions. It veri�es that the knowledge base complies with the general, structural properties that

need simple referential checks. It also performs type checks, which are fundamental to ensure

that object attributes are adequately referenced throughout the knowledge base.

The Yakl parser also veri�es part of the general, structural properties requiring more

complex structural checks, e.g. ensuring that an argument does not receive two values by

means of data distribution. It even warns the expert about the gaps in the evolving knowledge

base, e.g. highlighting that a parameter lacks initialisation means. These gaps, which will be

pointed out as errors by the Lama knowledge base examiner later on, are considered minor

problems by the Yakl parser.

6.5.2 Knowledge base examiner

The module that has been implemented serves to verify the adequacy of the contents of

a knowledge base to the most important knowledge requirements of PEGASE and MedIA

engines. It is based on a veri�cation library which at present contains procedures to check:

1. data distribution correctness in specialisation decompositions.

2. data distribution correctness in sequential decompositions (with optional operators).

3. data �ow correctness.

4. hierarchical operator correctness.

5. adequacy of the initialisation rule base to the unvalued parameters in the operator.

6. adequacy of the choice rule base to the suboperators in the specialisation.

7. adequacy of the repair rule base to the problems diagnosed by the evaluation rule base.

8. repair path correctness.

9. adequacy of the adjustment rule base to the treatments in the repair rule base.

10. redundancy- and con�ict-freeness of rule bases.

11. completeness of rule bases.
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The basic procedures for rule base veri�cation are applied di�erently according to the role

of the rule base. For example, initialisation rule bases are split into as many rule sets as

parameters they initialise, which are veri�ed independently.

The algorithms of these procedures can be found in appendix C. Next we detail the

procedures that perform the rule base checks.

6.5.2.1 Redundancy and con�ict freeness of rule bases

A description of the algorithm to check a rule base for redundancy and con�icts comes next (see

details in appendix C). Every rule is compared against every other rule. If their preconditions

have absolute logical uniqueness they are marked as exclusive, which means that they do not

need further checks. If preconditions have no absolute logical uniqueness and all refer to the

same elements (constants or functional expressions), which means that all elements appear

in both rules making reference to the same value, they are marked as equivalent. Else, if

preconditions have no absolute logical uniqueness and all the elements in the preconditions of

one rule are included in the preconditions of the other, they are marked as subsumed, which

means that the former �res whenever the latter does it; otherwise as non exclusive.

A pair of rules with exclusive preconditions will never �re simultaneously and therefore

they are marked as mutually exclusive rules. This is important for later completeness

checks. Before checking a rule base for redundancy and con�icts all rules are considered non

mutually exclusive, then any absolute logical uniqueness is looked for to show the contrary.

Redundant, subsumed and con�icting rules. Rules with equivalent preconditions

always �re simultaneously whereas rules with subsumed preconditions will �re simultaneously

in some situations. They are all further studied by determining whether their actions are

equivalent, con�icting or merely di�erent. Rule actions are deemed con�icting according to

their semantics.

Then, two rules are considered redundant when both their preconditions and actions are

equivalent. The rules are considered subsumed when their preconditions are subsumed and

their actions are equivalent. Finally, the rules are considered con�icting if their preconditions

are equivalent or subsumed and their actions are con�icting.

For example, in the rule base fragment in �gure 6.4, the rules init-computation-precision-1

and init-computation-precision-2 do not have absolute logical uniqueness. As the precondi-
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Rule name init-computation-precision-1
Let ?c a Context
If ?c.required-precision = sharp
Then computation-precision := sharp

Rule name init-computation-precision-2
Let ?c a Context
If ?c.required-precision = sharp,

mri-im.form-connexions = weak
Then computation-precision := minimal

Rule name init-computation-precision-3
Let ?c a Context
If ?c.required-precision = sharp

mri-im.spot-presence 6= no
Then computation-precision := minimal

Figure 6.4: Subset of initialisation rule base of operator segm-morpho-bin

tions of init-computation-precision-1 are included in the preconditions of init-computation-

precision-2, they are marked as subsumed. Finally, since initialisation actions assigning dif-

ferent values are in con�ict, the rule pair is considered as con�icting.

Finally, there exist rules which preconditions do not have absolute logical uniqueness,

are not equivalent nor subsumed. These rules remain as non mutually exclusive rules.

They might �re simultaneously, and therefore the expert should be aware of their potential

interactions. In consequence the preconditions of the two rules are used to describe the

situations in which they can both �re. This expression can help the expert to determine the

correct form of the rules if necessary.

For example, the rules init-computation-precision-2 and init-computation-precision-3 in

�gure 6.4 are non mutually exclusive. Then the expression describing the situation in which

they both �re (?c.required-precision = sharp ^mri-im.form-connexions = weak ^mri-im.spot-

presence 6= no) will be presented to the expert.

6.5.2.2 Completeness of rule bases

A description of the di�erent algorithms to check a rule base for completeness follows (see

details in appendix C).

Numerical completeness check If all rules in the rule base are mutually exclusive and

provided that preconditions only include equality comparisons, completeness can be checked
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Rule name init-parameters-1
If amplitude = minimal
Then iterations := 1

Rule name init-parameters-2
If amplitude = sharp,

isotropy = yes
Then iterations := 2

Rule name init-parameters-3
If amplitude = sharp,

isotropy = quasi
Then iterations := 1

Figure 6.5: Subset of initialisation rule base of operator dilatation

by summing the disjoint cases covered over the di�erent rules, and comparing the result

against the number of combinations of possible values of precondition elements.

For example, given the fragment of rule base in �gure 6.5, where the sets

of possible values of amplitude and isotropy are respectively Vamplitude =

fminimal; sharp;medium; coarse;maximalg and Visotropy = fyes; quasi; nog, it can

be seen that rule init-parameters-1 covers three cases, and init-parameters-2 and

init-parameters-3 cover one case each. Notice that init-parameters-1 does not indicate any

value for isotropy and thus covers as many cases as di�erent values isotropy may take, i.e.

card(Visotropy). Since the number of combinations card(Vamplitude) � card(Visotropy) is 15,

which is greater than the 5 cases covered, we can say that the rule base fragment is not

complete.

Enumeration completeness check When the rule base contains redundancy or ambigu-

ity, or precondition relations other than equality, completeness has to be checked by other

means. Completeness check by enumeration consists in trying to �nd a �reable rule for every

combination of values of precondition elements. In general not all value combinations are to

be tried. For instance, in the rule base in �gure 6.5, once init-parameters-1 rule has been

identi�ed as �reable with famplitude = minimalg no more combinations with this value are

tried (e.g. famplitude = minimal; isotropy = yesg).

Completeness characterisation with bd-resolution To obtain an expression with re-

spect to which the rule base is complete, we search for a bd-resolvent for the preconditions of

every rule pair. Inconsistent bd-resolvents are rejected, e.g. including ej = v1 and ej 6= v1. If
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Rule name adj-computation-precision-1
If assess-parameter?(computation-precision) = too-sharp,

nb-previous-assess(reconstruct-info, pb-missing-details) = 1
Then computation-precision +=

Rule name adj-computation-precision-2
If assess-parameter?(computation-precision) = too-coarse
Then computation-precision �=

Figure 6.6: Adjustment rule base of operator reconstruct-info. The rule adj-computation-precision-2

is �reable when the assessment of the parameter computation-precision is too-coarse, whichever the

value of nb-previous-assess(reconstruct-info, pb-missing-details) is.

a bd-resolvent is found for the preconditions of two rules, it will be kept. The process ends

when all possible rule pairs have been explored. Then, the disjunction of the obtained bd-

resolvents and of the preconditions of rules for which no resolvent was found will provide an

expression with respect to which the rule base is complete. A simpli�cation of this expression

is performed in order to obtain a more concise form to characterise rule base completeness.

We also take into account that a rule that does not indicate any value for an attribute

is shorthand for di�erent rules. For instance, the incomplete rule base in �gure 6.6 can

be unfolded into the one in �gure 6.7. Then, considering that the possible assessments of

computation-precision are too-sharp and too-coarse, we proceed as follows. The precondi-

tions of adj-computation-precision-1 and adj-computation-precision-21 can be �glued� on the

basis of assess-parameter?(computation-precision), resulting in the bd-resolvent (nb-previous-

assess(reconstruct-info, pb-missing-details) = 1). The same happens with adj-computation-

precision-21 and adj-computation-precision-22, resulting in (assess-parameter?(computation-

precision) = too-coarse). The obtained expression is:

((nb-previous-assess(reconstruct-info, pb-missing-details) = 1)

_ (assess-parameter?(computation-precision) = too-coarse))

which means that, e.g., the following situation is not covered:

((nb-previous-assess(reconstruct-info, pb-missing-details) 6= 1)

^ (assess-parameter?(computation-precision) = too-sharp))



98 Chapter 6. VERIFICATION OF PS KNOWLEDGE BASES

Rule name adj-computation-precision-1
If assess-parameter?(computation-precision) = too-sharp,

nb-previous-assess(reconstruct-info, pb-missing-details) = 1
Then computation-precision +=

Rule name adj-computation-precision-21
If assess-parameter?(computation-precision) = too-coarse,

nb-previous-assess(reconstruct-info, pb-missing-details) = 1
Then computation-precision �=

Rule name adj-computation-precision-22
If assess-parameter?(computation-precision) = too-coarse,

nb-previous-assess(reconstruct-info, pb-missing-details) 6= 1
Then computation-precision �=

Figure 6.7: Adjustment rule base of operator reconstruct-info after unfolding.

6.6 Application of the modules for knowledge base veri�cation

The Lama Yakl parser has been developed using bison3. The di�erent veri�cations that

it performs are implemented in C++, as semantical actions attached to syntax rules. The

Lama knowledge base examiner has been implemented in GNU C++. It is based on a GNU

C++ library implementing the di�erent knowledge base veri�cation procedures that we have

described in subsection 6.5.2.

The implemented Yakl parser and knowledge base examiner have been tested with two

knowledge bases for the supervision of image processing programs in di�erent application

domains: Cerveau and Progal. Both have been intended to work with PEGASE engine.

Cerveau [Thonnat et al., 1999] is a knowledge base to perform brain segmentation on 3D

magnetic resonance images. Cerveau consists of 37 operators, where 16 of them are compound

ones. It contains 57 rule bases of a size varying from 1 to 16 rules.

Progal knowledge base [Thonnat et al., 1999] has as objective the description of the mor-

phology of galaxy images in terms of pertinent numerical parameters. Progal consists of 92

operators, where 30 of them are compound ones. It contains 40 relatively small rule bases (of

a size from 1 to 6 rules).

In the development of these knowledge bases, the simple veri�cations performed by the

Yakl parser have been shown to be very useful early in the implementation. Given the

complex organisation of PS knowledge bases, domain experts are prone to make mistakes and
3Bison is the GNU Project parser generator (yacc replacement).
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therefore the checks that the parser performs are crucial. In addition to this, the veri�cations

carried out by the Lama knowledge base examiner are essential. Most of the properties that

are checked can hardly be veri�ed by hand, due to the complex veri�cations that they need,

and could go unnoticed. Among the most frequent errors detected in Cerveau and Progal by

the Lama knowledge base examiner we can cite:

� data distribution incorrectness.

� inadequacy of the initialisation rule base to the unvalued parameters in the operator: a

parameter lacks initialisation means.

� inadequacy of the adjustment rule base to the treatments in the repair rule base: either

the re-execution is required in the repair rule base and no adjustment rule base exists

or, inversely, an adjustment rule base exists and the re-execution is not required.

� inadequacy of the repair rule base to the problems diagnosed by the evaluation rule

base: e.g. the evaluation rule base is able to diagnose problems but there is not a repair

rule base to solve them.

� repair path incorrectness.

� rule base inconsistency, usually derived from rules with subsumed preconditions.

� rule base incompleteness.

Our experiences in the veri�cation of Cerveau and Progal knowledge bases have con�rmed

that errors occur very often [Marcos et al., 1998b]. Many of them concern data distribution

and repair paths, which is not surprising since the speci�cation of the necessary knowledge is

a di�cult task. For instance, the design of a correct repair mechanism implies keeping track

of di�erent repair paths across several operators. In addition, numerous errors are related to

the inadequacy of the contents of rule bases to their intended role. Finally, many rule-based

anomalies occur despite the small size of rule bases.

6.7 Conclusions

The model-based veri�cation properties that we have de�ned in this chapter correspond to

typical properties that a PS knowledge base should verify according to the requirements

of di�erent engines. These model-based properties are more signi�cant than the usual

implementation-dependent ones. They can be exploited not only for the veri�cation of

implemented knowledge bases but also prior to the implementation stage.
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We have exploited the model-based veri�cation properties described above in the design

and implementation of the necessary knowledge base veri�cation modules. The Yakl parser

and the Lama knowledge base examiner implemented in this light have shown to be a valuable

help in the development of correct PS knowledge bases. What is more, they serve to verify the

adequacy of the knowledge base contents to the main knowledge requirements of PEGASE

and MedIA engines.

The Yakl parser and the Lama knowledge base examiner carry out di�erent types of

checks. Regarding the rule base checks, the simple techniques that we have employed, i.e. rule

checks for consistency and redundancy veri�cation and enumeration check for completeness

veri�cation, seem to be su�cient for PS knowledge bases. A negative aspect to mention is

related to our algorithm for completeness characterisation by bd-resolution. In general it fails

to �nd a concise expression due to the pairwise rule comparisons on which it is based. With

the exception of few cases, as the example from Cerveau in page 97, in general it results in a

useless expression. An improvement in this direction is necessary in order to use bd-resolution

for the characterisation or even the check of completeness.

Finally, in addition to the implemented veri�cation modules useful for PEGASE and Me-

dIA knowledge bases, we have sought the development of a veri�cation library with procedures

to check typical model-based properties. We expect that these veri�cation procedures will be

useful in the implementation of future veri�cation modules in the framework of the Lama

platform.



Chapter 7

Veri�cation and Validation of

Program Supervision Engines

T
he verification and validation of inference engines comes to relevance in

frameworks supporting the (re)con�guration of engines, as is the case of Lama.

Inference engines are software and as such the application of software engineering veri�cation

techniques is necessary to ensure their reliability. With the purpose of assessing the feasibility

of the use of these techniques in the development of PS systems, we have carried out some

experiments directed towards the V&V of PS engines.

The structure of this chapter is the following. We �rst detail the objectives of our experi-

ments on the V&V of PS engines. Then we introduce KIV, which is the veri�cation tool that

we have used, and justify its adequacy to the planned objectives. Afterwards we describe our

experiences and �nish with some conclusions on the use of KIV and the V&V of PS engines.

7.1 Experimental objectives

The application of software veri�cation techniques in the development of PS engines is fun-

damental to ensure a certain degree of reliability. In Lama, PS engines are implemented by

combining Blocks instructions in an algorithmic way. There are di�erent V&V concerns

in connection with the reliability of PS engines constructed in this way. First, the imple-

mentation of the instructions in the Blocks library must be reliable, i.e. it must be ensured

101
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that they terminate and that they correspond to their speci�ed competence. Second, when

con�guring a PS engine from Blocks instructions, it must be assured that the algorithmic

composition of instructions is correct, and that it is adequate to solve the PS task. The

former regards the V&V of Blocks instructions and the latter is the V&V of compositions

of instructions.

The V&V of Blocks instructions is unavoidable because they are reused several times

and this increases the cost of errors [Fensel et al., 1998]. Also for reusability reasons these

instructions have a well-de�ned competence. In some cases this competence is close to their

implementation. Such is the case of the Blocks counterparts of the steps execute-operator,

test-preconditions or apply-e�ects in our knowledge model. Considering these characteristics,

we have chosen to focus our experiments on the V&V of an instruction implemented from

elementary instructions as the previously mentioned, which are assumed to be reliable. This

has allowed us to assess the feasibility of the use of software engineering veri�cation techniques

for the V&V of PS engines, and also as a formal means for the detection of assumptions.

7.2 KIV

KIV (Karlsruhe Interactive Veri�er) [Reif, 1995] is an advanced tool for the veri�cation of

modular software systems. It has been applied to the veri�cation of di�erent applications

up to a size of several thousand lines [Stenzel, 1993], [Fuchÿ 1994], [Fuchÿ et al., 1995]. KIV

supports the entire development process, that is, the speci�cation, the implementation and

the veri�cation of software systems.

Speci�cation For the speci�cation, descriptions in the style of abstract data types

[Ehrig and Mahr, 1985] are used. They are based on signatures with sort and operation

symbols, on variable declarations, and on a set of �rst-order axioms describing the sorts and

operations.

Structuring operations can be used to break a speci�cation down into more tractable

components. Examples of structuring operations are union, enrichment, and actualization of

speci�cations. A union speci�cation, SPEC1 + SPEC2, describes the union of the elements

in SPEC1 and SPEC2. An enrichment speci�cation, enrich SPEC with �, is used to add

the new elements in � to the speci�cation SPEC, i.e. new sorts and operations, and new

axioms describing them. Parameterized speci�cations serve to de�ne generic data types, e.g.



7.2. KIV 103

string of data, and include for this purpose a formal parameter speci�cation, e.g. data. A

speci�cation actualize SPEC1 with SPEC2 by morphism h actualizes a parameterized

speci�cation SPEC1, replacing its formal parameter by the actual speci�cation SPEC2. It

includes a morphism h describing the renamings and/or identi�cations of sort and operation

symbols.

Implementation The di�erent speci�cations within a system can be re�ned or implemented

by independent modules. A module implements the operations in an export speci�cation on

the basis of the elements in an import speci�cation. It therefore consists of the export speci�-

cation, the import speci�cation, and the implementation de�ning the collection of procedures

for the operations in the export speci�cation. Procedures are written in a Pascal-like syn-

tax. Since di�erent speci�cations are re�ned separately, KIV enforces the modularisation of

software designs.

Veri�cation The correctness of modular systems in KIV is reduced to the correctness of

single modules by imposing restrictions on the re�nement of speci�cations into modules (see

[Reif, 1995] for details). The proof obligations that are necessary and su�cient for the correct-

ness of single modules are generated automatically by KIV. These proof obligations, expressed

as sequents in dynamic logic1, ensure that modules terminate and that they terminate in a

state that complies with the axioms in the export speci�cation. The next step consists in

actually proving these obligations.

For the veri�cation, KIV theorem prover o�ers a variety of proof engineering facilities that

eases the organisation of proof sessions. Particularly, proof trees are visualised and can be

manipulated (browsed, pruned, replayed, etc.) with the help of a graphical user interface.

Besides, KIV implements a number of heuristics that automate proofs to a large extent.

Nevertheless, as complex proofs cannot in general be automated, KIV integrates automated

reasoning and user's proof expertise. The user constructs proofs interactively by selecting a

proof step (e.g. symbolic execution) from the menu that is proposed by the system. Other

examples of user interaction are the input of a lemma or an induction hypothesis, the selection

of di�erent heuristics when the system gets stuck, or the decision to backtrack.
1Dynamic logic extends ordinary predicate logic by formulas [�]' and h�i', where � is a program and ' is

again a dynamic logic formula. The intuitive meaning of [�]' is: �if � terminates, ' holds after the execution

of ��. The formula h�i' is understood as: �� terminates and ' holds after the execution of ��. A program

� is a pair (decl j �), i.e. a declaration plus a command �. If the declaration can be understood from the

context, it will be omitted. A dynamic logic sequent � ` �, where � and � are lists of formulas, holds if the

conjunction of the formulas of � implies the disjunction of the formulas of �.
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7.3 Adequacy of KIV to our experimental objectives

We target the speci�cation and veri�cation of big-grain sized instructions implemented on the

basis of the speci�cation of simple Blocks instructions. This veri�cation is closely related

to the detection of the hidden assumptions that are made in the implementation.

KIV allows the structuring of speci�cations and fosters the modularisation of software. The

structuring of speci�cations makes it suitable for the speci�cation of both the competence of

Blocks instructions and of algorithmic compositions of these, based on the former. On the

other hand, software modularisation allows the reduction of the overall V&V e�ort thanks to

the principle on modular system correctness. This is fundamental when facing the V&V of

PS engines.

In addition, the interactive nature of proofs with KIV makes it also suitable for searching

for assumptions by analysis of failed proofs. This has been called inverse veri�cation in

[Fensel and Schönegge, 1998]. KIV returns an open goal when it fails to �nish a proof, which

can be used as the starting point in the process of constructing assumptions.

Finally, KIV uses dynamic logic, which has been proven to be useful in the speci�cation of

knowledge-based systems [Fensel et al., 1998], [Fensel and Schönegge, 1998]. The advantages

of dynamic logic are that it is quite expressive and that programs take part in formulas,

resulting in more readable formulas and proofs.

7.4 Veri�cation and validation of Blocks-based instructions

Our aim is to assess the feasibility of the utilisation of KIV for the speci�cation and veri�cation

of instructions implemented on the basis of the speci�cation of simple Blocks instructions,

and for the detection of the assumptions that are made in their implementation. Next we

describe the steps that we follow in our experiment.

We will �rst specify the competence of the necessary Blocks instructions. As they are

assumed to be reliable, they will not be further re�ned. This requires the speci�cation of the

elementary data types used, e.g. the operator data type. The speci�cations of these Blocks

instructions will then be used via the KIV structuring operations (e.g. sum or enrichment) for

the speci�cation of the bigger instruction which we target at (speci�cation). All instructions

will be speci�ed functionally by using axioms that describe their competence independently

of how they are implemented.
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Then, the speci�cation of the target instruction will be re�ned by a module implementing

it on the basis of the speci�cations of the necessary Blocks instructions (implementation).

The procedures to implement the required instruction will approximately re�ect the usual

control in PS engines, except for the details.

Finally, the proof of the module correctness (veri�cation) will ensure the termination of

the implementation and the competence as de�ned in the speci�cation, and might serve to

identify the assumptions necessary to provide this competence, if there were any.

Our work is inspired by the KIV utilisation in [Fensel and Schönegge, 1997] and

[Fensel et al., 1998]. KIV is used in these references in the veri�cation of di�erent proof

obligations necessary to relate the elements in the speci�cation of a knowledge-based system

according to the framework described in [Fensel et al., 1996]. Given a task de�nition and the

description of a problem-solving method to solve it, KIV is used to prove the termination and

correctness of the operational speci�cation of the problem-solving method, and to prove that

its competence can solve the de�ned task. The latter serves to detect the assumptions that

are necessary to close the gap between the competence of the problem-solving method and

the requirements of the task. We target the veri�cation of the termination and correctness of

algorithmic compositions of Blocks instructions, which is in the line of the former proofs.

7.5 Veri�cation and validation of the decompose-sequence instruc-

tion

As a �rst experience we have speci�ed, implemented and veri�ed a simpli�ed version of the

decompose-sequence step in our knowledge model. This step performs the hierarchical re�ne-

ment or the execution of the suboperators within a sequential decomposition. In order to

reduce the complexity of the implementation, and consequently the di�culty of proofs, we

have considered the following simpli�cations:

� the elementary data types, i.e. state and operator, have been simpli�ed. For instance,

the operator data type comprises only sequential decompositions and does not include

initialisation, evaluation nor repair knowledge.

� in relation to the decomposition characteristics, the hierarchical re�nement is limited to

sequential decompositions.
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� in connection with the absence of initialisation, evaluation and repair knowledge, the hi-

erarchical re�nement and execution steps are performed without parameter initialisation

and evaluation-repair loop.

These simpli�cations have allowed us to focus on the veri�cation of the hierarchical re�ne-

ment of sequential decompositions and the structural properties that it may require, which

we have deemed convenient as �rst experience. The instructions for parameter initialisation,

result evaluation and operator repair could have been speci�ed as we do with simple Blocks

instructions, without any implementation, and used as such after the hierarchical re�nement

and execution steps. However, this would not have signi�cantly contributed to the termination

of the hierarchical re�nement or the structural properties that it assumes.

The development graph in �gure 7.1 shows how we have speci�ed and implemented in

KIV the decompose-sequence instruction. It consists of the speci�cation of the competence of

this instruction (decompose-sequence-competence), the module decompose-sequence-module

implementing it, and the numerous speci�cations on which this implementation is based.

The most important ones are those corresponding to the state and operator data types

(state and operator), and to the competence of the execute-operator basic instruction

(execute-operator-competence). Part of the elements in the KIV library of speci�cations,

which includes speci�cations and veri�ed implementations of common data types, has

been used (e.g. set). A complete listing of the speci�cations in �gure 7.1 can be found in

appendix D.

Next we introduce the speci�cations state, operator, execute-operator-competence and

decompose-sequence-competence. Then we present the module decompose-sequence-module

and �nally the proofs that we have carried out in KIV to ensure its correctness.

7.5.1 Speci�cation

State speci�cation Regarding the state data type, we have considered that its contents

are organised as unique identi�ers with an associated value. The valued-item speci�cation in

�gure 7.2 introduces the sort vitem describing pairs identi�er-value. Such pairs are generated

by the constructor mkvitem. The selectors .vitid and .vitval are post�x functions returning

the corresponding arguments of an object of sort vitem.

In KIV it is possible to de�ne functions and predicates to be used as post�x or pre�x if

they have one parameter, and as in�x if they have two. This is indicated by a dot at one or
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Figure 7.1: Development graph of the decompose-sequence instruction. Speci�cations are repre-

sented by rectangles and modules by diamonds. Various types of arrows indicate the di�erent de-

pendences between elements. For instance, the module decompose-sequence-module has the import

execute-operator-competence and the export decompose-sequence-competence.
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valued-item =
generic data speci�cation

parameter par-valued-item
vitem = mkvitem (. .vitid : ident, . .vitval : value);
variables vi: vitem;

end generic data speci�cation

Figure 7.2: The valued-item speci�cation

basic-state actualize set with valued-item by morphism
set! state, elem! vitem, @! @st, insert! insertst, n ! nst, select! selectst,
# ! #st, 2 ! 2st, � ! �st, s ! st, s' ! st', s0 ! st0, s1 ! st1, s2 ! st2, e
! vi, e0 ! vi0, e1 ! vi1, e2 ! vi2

end actualize

Figure 7.3: The basic-state speci�cation

both sides of the operation symbol: : func_or_pred for a post�x operation, func_or_pred :

for pre�x, and : func_or_pred : for in�x.

The basic-state speci�cation in �gure 7.3 de�nes a sort for sets of vitem objects as an

actualization of the KIV set speci�cation with valued-item. The morphism identi�es, among

other elements, the empty state as @st, the function inserting an element in a state as insertst,

and the membership relation as 2st.

Finally, the state speci�cation in �gure 7.4 enriches basic-state by introducing the predi-

cate is-item-in-state. This predicate, which determines whether a given identi�er appears in

the identi�er-value pairs in a state, has been used to de�ne the competence of the decompose-

sequence and execute-operator instructions. The speci�cation also includes an axiom to ensure

the uniqueness of identi�ers in a state, and two others to describe the new predicate.

Operator speci�cation Regarding the operator data type, input and output arguments

are speci�ed as sets of identi�ers, likewise parameters. As we have referred to before, only

sequential decompositions are considered for compound operators. Within decompositions,

no speci�cation of data distribution nor �ow is handled. It is assumed instead that the

connections between operator arguments/parameters and suboperator ones are established

on the basis of their identi�ers. The speci�cation of the operator data type is split over

several ones.

The ident-set speci�cation in �gure 7.5 de�nes the sort identset for sets of identi�ers by

means of an actualization of set with the basic speci�cation ident. Operator arguments and
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state =
enrich basic-state with

predicates is-item-in-state : state � ident;
variables st: state;

axioms

8 vi, vi0.vi 2st st ^ vi0 2st st ^ vi 6= vi0 ! vi.vitid 6= vi0.vitid,
: is-item-in-state(@st, id0),

is-item-in-state(insertst(vi0, st), id0)
$ id0 = vi0.vitid _ is-item-in-state(st, id0)

end enrich

Figure 7.4: The state speci�cation

ident-set actualize set with ident by morphism
set ! identset, elem ! ident, @ ! @ids, insert ! insertids, n ! nids, select !
selectids, # ! #ids, 2 ! 2ids, � ! �ids, s ! ids, s' ! ids', s0 ! ids0, s1 !
ids1, s2 ! ids2, e ! id, e0 ! id0, e1 ! id1, e2 ! id2

end actualize

Figure 7.5: The ident-set speci�cation

parameters are speci�ed on the basis of this sort.

The information common to primitive and compound operators, i.e. identi�er, functional-

ity, set of input and output arguments, and set of parameters, is de�ned in the sort opinf of

the operator-inf speci�cation (see �gure 7.6). The sort opinf is generated by the constructor

mkopinf. The selectors .operid, .operfunc, .operinput, .operoutput and .operparam return

the corresponding arguments of an opinf.

The sorts operator and decomposition, which are recursively de�ned one in terms of the

other, are presented in the basic-operator speci�cation in �gure 7.7. These sorts allow to

construct compound operators with arbitrary levels of abstraction as the example in �gure 7.8

operator-inf =
generic data speci�cation

parameter par-operator-inf
opinf = mkopinf (. .operid : ident, . .operfunc : ident,
. .operinput : identset, . .operoutput : identset, . .operparam : identset);
variables opi: opinf;

end generic data speci�cation

Figure 7.6: The operator-inf speci�cation
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basic-operator =
data speci�cation

using operator-inf
operator = mkprimop (. .priminf : opinf) with isprimop

j mkcompop (. .compinf : opinf, . .dec : decomposition) with iscompop
;

decomposition = nildec
j . seq . (carseq : operator, cdrseq : decomposition) with isdecseq
;

variables op: operator; dec: decomposition;
end data speci�cation

Figure 7.7: The basic-operator speci�cation

shows. In addition to constructors and the corresponding selectors, the speci�cation includes

the predicates isprimop, iscompop and isdecseq. The �rst two predicates respectively test

whether an operator has been generated by mkprimop or mkcompop. Similarly, isdecseq tests

whether a decomposition has been generated by the application of seq.

Finally, the operator speci�cation in �gure 7.9 enriches the sorts operator and

decomposition with the predicate indec and the axioms that describe it. This predicate,

which serves to determine whether an operator, primitive or compound, appears within a

decomposition, has been used in proofs by structural induction on operator.

Speci�cation of execute-operator competence The execute-operator step basically calls the

program associated to the primitive operator on which it is applied, modifying the current

state with the results of program execution. The partial-ps-requirements speci�cation,

which merely consists in the union of state and operator ones, is the basis for the speci�cation

of the competence of execute-operator.

The speci�cation execute-operator-competence in �gure 7.10 introduces the function

execute-operator and de�nes its competence. The sole competence that can be attributed is

that it changes the value of operator outputs if they already exist in the state, or generates

a new value otherwise. Again, in order to reduce the complexity of proofs, we have chosen

to simplify this competence. Then, the �rst axiom simply states that after the execution of

a primitive operator all its outputs appear in the �nal state. The second axiom, which states

that all the elements in the initial state persist in the �nal state after operator execution, has

been added in the course of veri�cation.
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op0

op1

Legend:

seq

mkcompop

mkprimop

opi0

op2

op3 =  nildec

opi3

opi2

opi1

dec3

dec0

...

Figure 7.8: Example of compound operator construction. A compound operator op0 describing a se-

quence of two primitive operators (op1, op2) plus a compound one (op3), is constructed through the ex-

pression mkcompop(opi0, mkprimop(opi1) seq mkprimop(opi2) seq mkcompop(opi3,dec3) seq nildec).

operator =
enrich basic-operator with

predicates indec : operator � decomposition;

axioms

: indec(op, nildec),
isprimop(op

0
)

! (indec(op, op
0
seq dec) $ op = op

0
_ indec(op, dec)),

iscompop(op
0
)

! (indec(op, op
0
seq dec) $ op = op

0
_ indec(op, op

0
.dec) _ indec(op, dec))

end enrich

Figure 7.9: The operator speci�cation
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execute-operator-competence =
enrich partial-ps-requirements with

functions execute-operator : operator � state ! state ;
variables primitive: operator; ini-state: state;

axioms

isprimop(primitive)
! (8 id. id 2ids primitive.priminf.operoutput

! is-item-in-state(execute-operator(primitive, ini-state), id)),
isprimop(primitive)

! (8 id. is-item-in-state(ini-state, id)
! is-item-in-state(execute-operator(primitive, ini-state), id))

end enrich

Figure 7.10: The execute-operator-competence speci�cation

decompose-sequence-competence =
enrich execute-operator-competence with

functions decompose-sequence : operator � state ! state ;
variables sequence: operator; �n-state, ini-state: state;

axioms

iscompop(sequence)
! ( decompose-sequence(sequence, ini-state) = �n-state
! (8 id.id 2ids sequence.compinf.operoutput ! is-item-in-state(�n-state, id)))

end enrich

Figure 7.11: The decompose-sequence-competence speci�cation

Speci�cation of decompose-sequence competence The speci�cation in �gure 7.11 de-

scribes the decompose-sequence instruction. It enriches execute-operator-competence by in-

troducing the function decompose-sequence and de�ning its competence. The only axiom

states that after the decomposition of a compound operator all its outputs appear in the �nal

state, analogously to execute-operator.

From the data speci�cations, KIV automatically generates a set of axioms which include:

� Test predicates for constructors, e.g. :

` isprimop(mkprimop(opi))

� Injectivity of constructors, e.g. :

` mkprimop(opi) = mkprimop(opi0) $ opi = opi0
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� Uniqueness of constructors, e.g. :

` mkprimop(opi) 6= mkcompop(opi0,dec)

� Case distinction of constructors, e.g. :

` op = mkprimop(op .priminf) _ op = mkcompop(op .compinf, op .dec)

7.5.2 Implementation

The module decompose-sequence-module implements the function decompose-sequence in the

export speci�cation decompose-sequence-competence on the basis of the elements in the im-

port speci�cation execute-operator-competence. For this purpose it provides the procedure

decompose-sequence#, which accepts an operator and an input state, and directly returns the

input state if it is called with a primitive operator; otherwise, it calls the procedure control#.

The latter is a recursive procedure that accepts a decomposition and an input state and re-

turns the state resulting from the successive decompositions or executions of the operators in

the sequence:

decompose-sequence =
module

export decompose-sequence-competence
refinement

representation of operations
decompose-sequence# implements decompose-sequence;

import execute-operator-competence

procedures control#(decomposition, state) : state;

variables out: state;

implementation

decompose-sequence#(op, st0; var out)
begin
if isprimop(op) then out := st0 else var dec = op.dec in
control#(dec, st0;out)

end
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control#(dec, st0; var out)
begin
if dec = nildec then out := st0 else
var op = carseq(dec), st = @st in
begin
if isprimop(op) then st := execute-operator(op, st0) else control#(op.dec, st0;st);
control#(cdrseq(dec), st;out)

end
end

7.5.3 Veri�cation

From the previous implementation and the export speci�cation decompose-sequence-competence

that it re�nes, KIV automatically generates the following proof obligations:

i-1 Termination of decompose-sequence#:

` hdecompose-sequence#(op, st0;out)i true

iii-1 Right behaviour of decompose-sequence#, i.e. the state resulting from the execution

of decompose-sequence# complies with the axiom that describes the function

decompose-sequence:

`

iscompop(sequence)

! ( hdecompose-sequence#(sequence, ini-state;out0)iout0 = �n-state

! (8 id.id 2ids sequence.compinf.operoutput ! is-item-in-state(�n-state, id)))

The proofs of these obligations will ensure that decompose-sequence# is a correct imple-

mentation and that it satis�es the speci�cation of decompose-sequence.

Both i-1 and iii-1 proofs have been carried out in KIV, by structural induction on operator.

Structural induction makes direct use of the recursively described structure of data types.

According to the basic form of structural induction, in order to prove that a property p is

true for all de�ned terms we have to demonstrate that [Ehrig and Mahr, 1985]:

(1) the property p is true for all constant symbols.

(2) for each term N(t1; t2; : : : tn) that can be constructed from the terms t1; t2; : : : tn, if

p(t1); p(t2); : : : p(tn) are true then also p(N(t1; t2; : : : tn)) is true.
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In the proofs of i-1 and iii-1 we have used two lemmas establishing analogous obligations

on control# procedure, i.e. the termination and the right behaviour of control#:

i-1-control Termination of control#:

` hcontrol#(dec, st0;out)i true

iii-1-control Right behaviour of control#:

`

isprimop(op)

_ ( hcontrol#(op.dec, ini-state;out)iout = �n-state

! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id)))

The proofs of i-1-control and iii-1-control have also been carried out by structural

induction. The proof of iii-1-control turned out to be particularly di�cult. The proof tree

in �gure 7.12 serves to get an idea of the complexity of this proof. The details of the di�erent

steps can also be found in appendix D. The proof is based on several lemmas as the graph of

lemma dependences in �gure 7.13 depicts. Next we describe the most important ones.

The following lemma states that all the outputs of a compound operator must be included

among the outputs of some suboperator in its decomposition. This lemma has been used

twice in iii-1-control proof (in steps 4 and 43):

compop-output-is-in-dec Operator outputs are anywhere in its decomposition:

`

isprimop(op)

_ (8 id. id 2ids op.compinf.operoutput

! (9 op
0
. indec(op

0
, op.dec)

^ ( iscompop(op
0
) ^ id 2ids op

0
.compinf.operoutput

_ isprimop(op
0
) ^ id 2ids op

0
.priminf.operoutput)))

A sequential decomposition is re�ned by control# in terms of the re�nement or execution

of the operators within it. This is reduced at the end to operator execution, the competence

of which ensures that all the outputs appear in the resulting state. Then, in order to prove

that after the termination of control# all the outputs of the compound operator appear in

the �nal state it must be assured that they are all included in the outputs of some operator

within the decomposition.
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Figure 7.12: Proof tree of iii-1-control. Circles indicate proof steps; hollow circles mark the steps

where an axiom or lemma has been inserted to close an open goal either directly (e.g. in step 23) or

indirectly.
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In our simpli�ed operator speci�cation, data distribution is assumed to be established

via argument/parameter identi�ers. Therefore, the lemma compop-output-is-in-dec can

be understood as a formalisation of a property related to the correctness of operator data

distribution that we have identi�ed in chapter 6. More speci�cally, it refers to the completeness

of operator output distribution. This property cannot be proved from the speci�cations and

therefore it must be ensured by other means. This is the kind of knowledge base property

that an external veri�cation procedure has to check.

The following lemmas state that after the termination of control# all the outputs of the

suboperators in the decomposition are included in the �nal state. They have also been used

in the proof of iii-1-control (e.g. in steps 12 and 18):

control-results-1 After the termination of control#, for all primitive operators in the de-

composition it holds that all their outputs are included in the �nal state:

`

hcontrol#(dec, ini-state;out)iout = �n-state

! (8 op. indec(op, dec) ^ isprimop(op)

! (8 id.id 2ids op.priminf.operoutput ! is-item-in-state(�n-state, id)))

control-results-2 After the termination of control#, for all compound operators in the de-

composition it holds that all their outputs are included in the �nal state:

`

hcontrol#(dec, ini-state;out)iout = �n-state

! (8 op. indec(op, dec) ^ iscompop(op)

! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id)))

The proofs of control-results-1 and control-results-2 are based on the following lemma

(see �gure 7.13):

control-input-in-output After the termination of control#, all the elements in the initial

state persist in the �nal state:

`

hcontrol#(dec, ini-state;out0)iout0 = �n-state

! (8 id.is-item-in-state(ini-state, id) ! is-item-in-state(�n-state, id))

The re�nement of a sequential decomposition is performed by the re�nement or execution

of its operators. For operator execution, a speci�cation axiom ensures that all the operator
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outputs appear in the resulting state. In order to prove that after re�nement all the outputs

of the operators in the decomposition are included in the �nal state, it must be ensured that

operator re�nement does not eliminate any item in the initial state.

A complete proof exists for control-input-in-output. In this proof we needed to ensure

that execute-operator complies with an analogous property, for which purpose the corre-

sponding axiom has been included in the speci�cation execute-operator-competence. This

persistence axiom concerns a property that the programs to be supervised should comply

with. Although we are more interested in properties describing the knowledge base contents,

this example illustrates the fact that the set of assumptions that a PS engine makes cannot

completely be isolated, as we observed in chapter 5.

Finally, the following lemmas, which can easily be proved from the speci�cation lemmas

of basic-operator, have been included and repeatedly reused in proofs:

isprimop-or-iscompop An operator is either primitive or compound:

` isprimop(op) _ iscompop(op)

not-isprimop-i�-iscompop An operator is compound if and only if it is not primitive:

` : isprimop(op) $ iscompop(op)

7.6 Conclusions

The application of software veri�cation techniques is imperative to ensure the reliability of PS

engines. We have presented a �rst experience in this direction which consists in the speci�ca-

tion and veri�cation of one of the subtasks identi�ed in our knowledge model, implemented

on the basis of other elementary instructions. This approach is well suited to the development

process of PS engines within Lama.

Our experiences in the speci�cation and veri�cation of compositions of instructions in the

style of Blocks ones has demonstrated the utility of the application of software veri�cation

techniques for both the V&V of PS engines and the detection of the assumptions that they

make. Indeed, the veri�cation of the instruction in our experiments has required the intro-

duction of a lemma expressing one of the properties that has been informally identi�ed in

chapter 6. Even limiting our experiments to simpli�ed versions of data types and instruc-

tions, the time required to complete the speci�cation, implementation and veri�cation phases

has been substantial2. In spite of this we believe that both the V&V of Blocks instructions
2Aproximately one month of work for a novice user, excluding training period.
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and PS engines must be carried out in a principled way and not only by means of tests, as it is

currently the case in Lama. This formal veri�cation has the additional bene�t of supporting

the process of detection of implementation assumptions.

The formal veri�cation is a di�cult job for which the support of an adequate tool is

fundamental. Our assessment on KIV is very positive concerning the proof facilities that it

integrates. In addition to this, the structuring of speci�cations and modularisation of software

that KIV enforces, and their veri�cation implications, are fundamental to tackle the V&V of

PS engines. A negative aspect is that the KIV library of speci�cations lacks data types close

to the structures that knowledge-based systems use to represent knowledge, e.g. rule bases.



Chapter 8

Conclusions

P
rogram supervision systems have proven to be a very useful support in the utilisation

of program libraries by unexperienced users. In order to become reliable industrial

applications, PS systems demand the application of V&V techniques. In this thesis we have

presented our work on the veri�cation and validation of PS systems, of both the PS knowledge

bases and inference engines.

8.1 Contributions of the thesis

We have addressed di�erent aspects of the veri�cation and validation of PS systems by com-

bining previous research results in several disciplines. Signi�cant contributions of this thesis

correspond to cross-fertilisations between the �eld of V&V of knowledge-based systems and

other �elds:

1. Use of knowledge engineering techniques as basis for the V&V of knowledge

bases. In particular, the use of a knowledge-level analysis to understand knowledge

utilisation by the inference engine, mainly the role that each piece of knowledge plays

during reasoning. Exploiting this information to guide the knowledge acquisition pro-

cess has proven to be a very powerful technique in the knowledge engineering �eld

[David et al., 1993]. On the contrary, in the �eld of V&V of knowledge-based systems

the emphasis has been traditionally put on symbol-level issues. We have shown that

121



122 Chapter 8. CONCLUSIONS

exploiting the information on knowledge utilisation results in de�nitions of V&V is-

sues which are much more meaningful since they use the terminology of the expert

[Marcos et al., 1997].

2. Use of existing knowledge base V&V techniques in the context de�ned above.

The �eld of V&V of knowledge-based systems provides us with a variety of symbol-

level veri�cation techniques. The V&V issues de�ned after a knowledge-level analysis

have been reinterpreted into the corresponding symbol-level ones, and the appropriate

techniques have been used in the implementation of our library of veri�cation procedures.

Thereby existing symbol-level techniques are used for the veri�cation of knowledge-level

issues.

3. Use of a software veri�cation tool for the V&V of inference engines and

the identi�cation of knowledge assumptions. In the �eld of V&V of knowledge-

based systems the inference engine is usually assumed to be correct. Recent work in

the knowledge engineering area has demonstrated the utility of the V&V of problem-

solving methods for the identi�cation of the assumptions that they implicitly make on

knowledge [Fensel and Schönegge, 1997]. In this line we have shown in our experiments

with the KIV veri�cation tool that the V&V of Blocks-based instructions can be used

to formally identify the assumptions that they make on domain knowledge, which are

the knowledge-level V&V issues that we emphasise in this thesis.

4. Consider the V&V of knowledge-based systems in compositional develop-

ment frameworks. The V&V of PS knowledge bases and inference engines is viewed

within the framework of the Lama platform. Within Lama inference engines can be

modi�ed (or even con�gured from scratch) to better suit the characteristics of an ap-

plication domain. Although there exist many knowledge engineering frameworks in this

line, this is not the usual hypothesis for the V&V of knowledge-based systems. Regard-

ing the V&V of knowledge bases this has led us to analyse di�erent methods for the PS

subtasks, rather than a �xed monolithic PS method. According to the assumptions of

the most frequent methods, a veri�cation library has been implemented.

The previous contributions are partial aspects of our original approach to the V&V of PS

systems. The main contributions of this thesis, related to the �eld of program supervision,

are the methodologies for the V&V of PS knowledge bases and inference engines.

Based on our model-based approach, the proposed methodology to the V&V of knowledge

bases consists in:

� exploiting the knowledge model of the target PS inference engine to �nd out the prop-
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erties that knowledge bases have to verify.

� generating the veri�cation module adapted to these properties, from the veri�cation

library that we have implemented.

Additionally, we have sketched a methodology for the V&V of inference engines which

consists in:

� specifying and verifying the Blocks components from which the PS inference engines

are built.

� verifying that the PS inference engine con�gured by combining these components is

correct, i.e. that it terminates and that it is adequate to solve the PS task.

The di�culty of the development of PS knowledge bases stems from the di�erent types

of knowledge used and from the multiple representations employed. Despite this, little e�ort

has been dedicated to the development of V&V tools or methodologies adapted to the par-

ticularities of PS systems. An exception is the work for the syntactic veri�cation of MVP

knowledge bases in [Chien, 1996]. In this thesis we have shown that the V&V of PS systems

can be tackled by the joint application of techniques in the �elds of V&V of knowledge-based

systems, knowledge engineering and software engineering. This approach is not constrained

to the V&V of PS systems but it can be useful for other knowledge-based systems with similar

characteristics.

8.1.1 Additional bene�ts

Our approach to the V&V of PS knowledge bases presupposes a phase of knowledge model-

ing. We have con�rmed that the knowledge modeling that we have carried out has other

interesting applications, besides serving as basis for the V&V of knowledge bases:

1. to guide the knowledge acquisition of PS applications. Our knowledge model

provides us with a characterisation of PS engines in terms of the assumptions that they

make on domain knowledge. This characterisation can be exploited to determine the

adequacy of a PS engine to a target domain, which is very important when engineering

new PS applications [Nunes de Barros et al., 1996].
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2. to guide the knowledge acquisition of PS inference engines. Our knowledge

model can guide the knowledge acquisition process necessary for the design of new PS

inference engines. It has been exploited in this way for the design of MedIA engine, which

was built by comparison with PEGASE and PULSAR, leading to reuse of parts of their

methods and integration of speci�c features [Crubézy et al., 1998]. Thereby MedIA

design resulted in an increased/re�ned knowledge model integrating new knowledge

concepts and methods.

3. to identify other usable and reusable Blocks components. The Blocks library

provides a set of small-grain sized components so that skilled designers are able to �ne-

tune the behaviour of an engine. On the other hand, big-grain components would allow

for an e�cient reuse for less-skilled designers [Crubézy et al., 1998]. Our knowledge

model has helped identify typical methods that could be reused in new engines, and

therefore constitute good candidates for other Blocks components.

In addition to the bene�ts speci�c to our modeling work, we acknowledge that in general

a knowledge model can be used to support the V&V of inference engines by the expert

since it constitutes a functional speci�cation that uses terms closer to the expert's discourse

than implementation [David et al., 1993].

8.2 Limitations of the results

8.2.1 Limitations of the model-based veri�cation of knowledge bases

According to the methodology that we propose, the veri�cation modules adapted to new PS

engines are con�gured after a knowledge-level analysis, by using the veri�cation library that

we have implemented. Besides, these veri�cation modules are built manually.

Two main drawbacks are inherent to this approach:

� Incompleteness of our veri�cation library. Engines implying important modi�cations on

the PS domain model and/or methods studied in this thesis have to be reconsidered, i.e.

analysed in order to implement the necessary veri�cation procedures. It can be argued

that assuming that our veri�cation library can be complete is unrealistic. However, we

believe that given the specialised task we focus on, after various passages by knowledge

modeling-re�nement of the model steps, our veri�cation library will include most of the

necessary veri�cation procedures.
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� Manual work. Both the knowledge-level analysis of PS engines, with the subsequent

identi�cation of the model-based V&V issues, and the con�guration of the appropriate

veri�cation modules imply considerable manual work. The former, which is fundamental

to our approach, can be partially supported by the utilisation of software veri�cation

techniques.

8.2.2 Limitations of the veri�cation and validation of inference engines

We propose using a traditional software veri�cation tool for the V&V of inference engines. The

KIV veri�cation tool, which we have used in our experiments, can be used for the speci�cation

and veri�cation of the components in the Blocks library. KIV can be used as well for the

V&V of new engines, by proving the correctness of algorithmic compositions of Blocks

components.

The disadvantages of the proposed approach are:

� The di�culty of the speci�cation and veri�cation of realistic versions of Blocks com-

ponents. Indeed our experiences have been limited to e.g. simpli�ed data types for this

reason.

� The interactive nature of proofs in KIV. This can be seen as a disadvantage, but we

believe that it is unavoidable, especially if we intend to support the process of assumption

detection with software V&V.

Formal software veri�cation is a di�cult task, but it is imperative to ensure the reliabil-

ity of PS engines. It has the additional bene�t of supporting the detection process of the

assumptions that the PS engine makes on domain knowledge, which are fundamental in our

approach to the V&V of PS knowledge bases.

Finally, it is important to mention the problem of the operationalisation of veri�ed imple-

mentations. In order to ensure the reliability of veri�ed (compositions of) components, their

operationalisation in Lama should preserve the structure of their implementation in KIV.

8.3 Perspectives

The work in this thesis has revealed other interesting work perspectives. The information

on knowledge utilisation during reasoning dictates exactly what knowledge is necessary. The
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model-based V&V issues that we have exploited in this thesis consider knowledge utilisation

and therefore constitute the precise properties that the knowledge base should verify rather

than the traditionally used symbol-level ones. The same principle is applicable to other

important development activities, e.g. knowledge acquisition and knowledge re�nement. In

addition, signi�cantly di�erent work is necessary in order to improve the con�guration of

model-based V&V tools. According to this we have identi�ed the following work directions:

1. Model-based knowledge acquisition. The information on knowledge utilisation

can be directly applied to guide the knowledge acquisition process. Many sys-

tems/frameworks have demonstrated that model-based knowledge acquisition results

in tools much easier to use than tools at the symbol-level. Role-limiting methods

[Marcus, 1988] and PROTÉGÉ [Musen, 1989] are (single-method) knowledge-based

systems with dedicated knowledge acquisition tools. PROTÉGÉ-II [Puerta et al., 1992]

and DIDS [Runkel and Birmingham, 1995] are multiple-method frameworks for the

generation of knowledge acquisition tools. Par-KAP [Nunes de Barros et al., 1997] is

a framework that supports knowledge acquisition in planning in a di�erent manner:

it helps �nd the knowledge requirements of a particular method or the applicable

methods given a domain speci�cation.

2. Model-based knowledge re�nement. When a knowledge base prevents the system

from �nding a (correct) solution to a problem that the expert estimates solvable, the

faulty piece of knowledge must be identi�ed. In this case, tracking the problem-solving

tasks that are performed appears to be much more e�cient than using debugging facili-

ties at the symbol level [David et al., 1993]. An example is the completion analysis tool

of MVP [Chien, 1996] implicitly makes use of the employed planning representations

and tasks to facilitate the process of isolating bugs.

3. Automatic con�guration of model-based V&V/knowledge acquisition tools.

The generation of model-based tools adapted to a particular method can be automated.

This usually implies the explicit representation of domain models and methods, and of

their corresponding veri�cation/knowledge acquisition implications. The PROTÉGÉ-II

and DIDS frameworks automatically generate knowledge acquisition tools from methods

con�gured using small-grain sized components. Di�erent models exist for the automatic

generation of knowledge acquisition tools [Eriksson and Musen, 1993]. For instance, a

set of strategies that provide a global view of knowledge acquisition is used in DIDS

[Runkel and Birmingham, 1993].
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De�nitions of Rule-Based Anomalies

Traditional anomalies for knowledge-based systems concern properties such as redundant,

contradictory or de�cient knowledge. The formulation of the most common anomalies

for rule bases that follows has been extracted from [Preece and Shinghal, 1994] and

[van Harmelen and Aben, 1995]. We next introduce the terminology and notation used in

the formulations:

� A rule Ri is formula of the form l1 ^ � � � ^ ln ! m where each li and m are �rst order

literals.

� For each rule Ri = l1^� � �^ln ! m; we write antec(R) = l1^� � �^ln and conseq(R) = m:

� A rule set R is a set of rules.

� The goal-literals G is the set of all ground literals that could possibly be output from

the rule set.

� The input-literals I is the set of all ground literals that constitute all possible inputs to

the rule set.

� A semantic constraint is a set of literals fl1; : : : ; lng such that their conjunction l1^� � �^ln
is regarded as a semantic inconsistency (e.g. the set fmale(x); pregnant(x)g). We write

C for the set of all semantic constraints for a rule set.

� An enviroment is a subset of I that does not imply any semantic constraint. We write

E for the set of all such environments. Formally, e 6` c for all e 2 E and all c 2 C.
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The formulation of rule-based anomalies follows:

Unsatis�able rule. A rule R is unsatis�able i� there is no way of deducing R's antecedent

from any legal input:

:(9e 2 E ;9� : R [ e ` � � antec(R)):

(we write � � � for the application of a substitution � to a formula �).

Unusable rule. A rule R is unusable i� the consequent of R subsumes neither a goal

literal noy any antecedent literal in the rule set:

8� : (� � conseq(R) =2 G ^

:9R0 2 R n fRg : � � conseq(R) 2 antec(R0)):

Subsumed rule. A rule R is subsumed i� there exists a more general rule:

9R0 2 R n fRg;9� : R0 ! � � R:

Redundant rule. A rule R is redundant in a rule set R i� R is not essential for the

computation of any literal from any environment:

8e 2 E ;8h : if R[ e ` h then R n fRg [ e ` h:

Inconsistent rule pair. Rules R and R0 are an inconsistent pair i� R and R0 are both

applicable and derive a semantic constraint:

9e 2 E ;9�;9�0 : R[ e ` � � conseq(R) ^

R [ e ` �0 � conseq(R0) ^

f� � conseq(R); �0 � conseq(R0)g 2 C:

Inconsistent rule set. A rule set R is inconsistent i� from some legal input it is possible

to derive a semantic constraint from R:

9e 2 E ;9c 2 C : R[ e ` c:
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Circular rule set. A rule set R is circular i� antec(R) cannot be derived from any

environment, except by adding R's consequent:

9R 2 R : 8e 2 E : R[ e 6` antec(R) ^

9e 2 E : R[ e [ conseq(R) ` antec(R):

Unused input. An input literal i 2 I is unused i� any result that can be computed from

any environment can also be computed from that environment minus i:

8e 2 E 8g 2 G : if R[ e ` g then R[ e n fig ` g:

Incomplete rule set. A rule set R is incomplete i� there exists some output that cannot

be computed from any environment:

9e 2 E : 8g 2 G : R[ e 6` g:



Appendix B

Task Knowledge of PEGASE and

PULSAR

Here we present a complete description of PEGASE and PULSAR task knowledge. In this

description we use the cml (the CommonKADS Conceptual Modelling Language) textual

notation [Wielinga et al., 1994]. The cml description of a task has two parts: a task de�nition

and a task body. The task de�nition has the following subparts:

� goal, or textual description of the goal that can be achieved through the application of

the task.

� input and output, which is a de�nition of the roles that the task manipulates.

The task body consists of:

� task type (composite or primitive).

� decomposition, or subtasks that the task decomposes into.

� additional roles, which are additional data stores that are introduced by the decompo-

sition.

� control structure, or description of the control over the subtasks to achieve the task. A

usual way of describing the control structure is procedural pseudo-code.
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PEGASE

task PEG supervise;
task-de�nition
goal: �Perform program supervision�;
input: problem speci�cation;

operator KB;
output: result evaluation;

�nal plan;
�nal state;

task-body
type: composite;
sub-tasks: initialise state, initialise plan, initialise functionality, PEG plan and execute;
additional-roles: initial state;

initial state history;
initial plan;
initial functionality;

control-structure:

initialise state (problem speci�cation! initial state+initial state history)
initialise plan (problem speci�cation! initial plan)
initialise functionality (problem speci�cation! initial functionality)
PEG plan and execute (initial plan+initial state+initial state history+initial functional-
ity+operator KB! result evaluation+�nal plan+�nal state)

task PEG plan and execute;
task-de�nition
goal: �Perform operator-based planning�;
input: plan;

state;
state history;
functionality;
operator KB;

output: result evaluation;
executed plan;
�nal state;

task-body
type: composite;
sub-tasks: PEG expand plan, select plan, PEG execute plan;
additional-roles: expanded plans;

expanded plan;
control-structure:

PEG expand plan (plan+state+functionality+operator KB! expanded plans)
while result evaluation <> success and expanded plans <> ; do
select plan (expanded plans! expanded plan+expanded plans)
PEG execute plan (expanded plan+state+state history! result evaluation+executed plan+�nal
state+state history)

end while
if expanded plans = ; then
result evaluation all-plan-expansions-failed

end if
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task PEG expand plan;
task-de�nition
goal: �Expand a plan�;
input: plan;

state;
functionality;
operator KB;

output: expanded plans;
task-body
type: composite;
sub-tasks: PEG select and order operators, PEG integrate operators;
additional-roles: ordered selected operators;
control-structure:

PEG select and order operators (state+functionality+operator KB! ordered selected operators)
PEG integrate operators (plan+ordered selected operators! expanded plans)

task PEG select and order operators;
task-de�nition
goal: �Select operators from the operator KB and order them�;
input: state;

functionality;
operator KB;

output: ordered selected operators;
task-body
type: composite;
sub-tasks: PEG select operators, PEG order operators;
additional-roles: selected operators;
control-structure:

PEG select operators (state+functionality+operator KB! selected operators)
PEG order operators (state+selected operators! ordered selected operators)

task PEG execute plan;
task-de�nition
goal: �Execute operators in a plan�;
input: plan;

state;
state history;

output: result evaluation;
executed plan;
�nal state;
state history;

task-body
type: composite;
sub-tasks: select �rst plan operator, PEG re�ne, execute and repair operator;
additional-roles: uni�ed operator;
control-structure:

select �rst plan operator (plan+state! uni�ed operator)
PEG re�ne, execute and repair operator (uni�ed operator+plan+state+state history! result
evaluation+executed plan+�nal state+state history)
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task select �rst plan operator;
task-de�nition
goal: �Select an operator from a plan�;
input: plan;

state;
output: uni�ed operator;
task-body
type: composite;
sub-tasks: get plan operators, next, unify arguments;
additional-roles: operators;
control-structure:

get plan operators (plan! operators)
next (operators! uni�ed operator)
unify arguments (uni�ed operator+state! uni�ed operator)
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task PEG re�ne, execute and repair operator;
task-de�nition
goal: �Perform hierarchical planning�;
input: operator;

plan;
state;
state history;

output: result evaluation;
�nal plan;
�nal state;
state history;

task-body
type: composite;
sub-tasks: rule-based initialise parameters, PEG execute operator, update plan,

PEG specialise operator, PEG decompose sequence, apply e�ects,
rule-based evaluate results, PEG rule-based repair operator;

additional-roles: initialised operator;
evaluated operator;

control-structure:

rule-based initialise parameters (operator+state! initialised operator)
if primitive operator then
PEG execute operator (initialised operator+state+state history! �nal state+state history)
update plan (plan+initialised operator! �nal plan)

else if specialisation then
PEG specialise operator (initialised operator+plan+state+state history! �nal plan+�nal
state+state history)

else if sequence then
PEG decompose sequence (initialised operator+plan+state+state history! �nal plan+�nal
state+state history)

end if
apply e�ects (initialised operator+�nal state! �nal state)
rule-based evaluate results (operator+�nal state! evaluated operator+result evaluation)
while result evaluation = repair do
PEG rule-based repair operator (evaluated operator+�nal state+state history! �nal
state+state history)
rule-based evaluate results (operator+�nal state! evaluated operator+result evaluation)

end while
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task rule-based initialise parameters;
task-de�nition
goal: �Initialise operator parameters�;
input: operator;

state;
output: initialised operator;
task-body
type: composite;
sub-tasks: get oper initialisation RB, get RB next rule, test rule preconditions,

initialise par with action;
additional-roles: initialisation RB;

initialisation rule;
result;

control-structure:

get oper initialisation RB (operator! initialisation RB)
get RB next rule (initialisation RB! initialisation rule)
initialised operator operator
while initialisation rule <> ; do
test rule preconditions (initialisation rule+state! result)
if result = success then
initialise par with action (initialised operator+initialisation rule+state! initialised operator)

end if
get RB next rule (initialisation RB! initialisation rule)

end while
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task PEG execute operator;
task-de�nition
goal: �Execute primitive operator�;
input: operator;

state;
state history;

output: �nal state;
state history;

task-body
type: composite;
sub-tasks: prepare arguments, test oper preconditions, make program call,

call program, test oper postconditions, update hist with exec;
additional-roles: prepared operator;

result;
program call;

control-structure:

prepare arguments (operator! prepared operator)
test oper preconditions (prepared operator+state! result)
if result <> success then
warn ("invalid preconditions")

end if
make program call (prepared operator! program call)
call program (program call)
test oper postconditions (prepared operator+state! result)
if result <> success then
warn ("invalid postconditions")

end if
update hist with exec (prepared operator+�nal state+state history! state history)
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task PEG specialise operator;
task-de�nition
goal: �Perform hierarchical re�nement of a specialisation�;
input: operator;

plan;
state;
state history;

output: �nal plan;
�nal state;
state history;

task-body
type: composite;
sub-tasks: rule-based choose suboperators, update hist with spec, sort suboperators,

next, distribute in arguments, PEG re�ne, execute and repair operator,
distribute out arguments, update hist with exec;

additional-roles: suboperators;
suboperator;
result evaluation;
intermediate state;

control-structure:

rule-based choose suboperators (operator+state! suboperators)
update hist with spec (operator+state history! state history)
sort suboperators (suboperators! suboperators)
next (suboperators! suboperator)
distribute in arguments (operator+suboperator! suboperator)
PEG re�ne, execute and repair operator (suboperator+plan+state+state history! result evalua-
tion+�nal plan+intermediate state+state history)
distribute out arguments (operator+intermediate state+�nal state! �nal state)
update hist with exec (�nal state+state history! state history)
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task rule-based choose suboperators;
task-de�nition
goal: �Choose suboperators�;
input: operator;

state;
output: suboperators;
task-body
type: composite;
sub-tasks: get oper choice RB, get RB next rule, test rule preconditions,

choose suboper with action;
additional-roles: choice RB;

choice rule;
result;

control-structure:

get oper choice RB (operator! choice RB)
get RB next rule (choice RB! choice rule)
suboperators ;
while choice rule <> ; do
test rule preconditions (choice rule+state! result)
if result = success then
choose suboper with action (choice rule+suboperators! suboperators)

end if
get RB next rule (choice RB! choice rule)

end while
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task PEG decompose sequence;
task-de�nition
goal: �Perform hierarchical re�nement of a sequence�;
input: operator;

plan;
state;
state history;

output: �nal plan;
�nal state;
state history;

task-body
type: composite;
sub-tasks: get oper suboperators, update hist with dec, next, bind in arguments,

test subop applicability, PEG re�ne, execute and repair operator,
distribute out arguments, update hist with exec;

additional-roles: suboperators;
suboperator;
result evaluation;
intermediate state;

control-structure:

get oper suboperators (operator! suboperators)
update hist with dec (operator+state history! state history)
intermediate state ;
repeat
next (suboperators! suboperator)
bind in arguments (operator+suboperator+intermediate state! suboperator)
if optional then
test subop applicability (suboperator+state! result)

end if
if not optional or result = success then
PEG re�ne, execute and repair operator (suboperator+plan+state+state history! result
evaluation+�nal plan+intermediate state+state history)
distribute out arguments (operator+intermediate state+�nal state! �nal state)
state �nal state
plan �nal plan

end if
until result evaluation <> continue or suboperators = ;
update hist with exec (�nal state+state history! state history)
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task rule-based evaluate results;
task-de�nition
goal: �Evaluate results�;
input: operator;

state;
output: evaluated operator;

result evaluation;
task-body
type: composite;
sub-tasks: get oper evaluation RB, get RB next rule, test rule preconditions,

evaluate oper with action;
additional-roles: evaluation RB;

evaluation rule;
result;

control-structure:

get oper evaluation RB (operator! evaluation RB)
get RB next rule (evaluation RB! evaluation rule)
evaluated operator operator
while evaluation rule <> ; do
test rule preconditions (evaluation rule+state! result)
if result = success then
evaluate oper with action (evaluated operator+evaluation rule! evaluated operator)

end if
get RB next rule (evaluation RB! evaluation rule)

end while
get oper result evaluation (evaluated operator! result evaluation)
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task PEG rule-based repair operator;
task-de�nition
goal: �Repair operator�;
input: operator;

state;
state history;

output: �nal state;
state history;

task-body
type: composite;
sub-tasks: get oper repair RB, get RB next rule, test rule preconditions,

PEG repair oper with action;
additional-roles: repair RB;

repair rule;
result;

control-structure:

get oper repair RB (operator! repair RB)
get RB next rule (repair RB! repair rule)
result failure
while result <> success and repair rule <> ; do
test rule preconditions (repair rule+state! result)
if result = success then
PEG repair oper with action (operator+repair rule+state+state history! �nal state+state
history)

end if
get RB next rule (repair RB! repair rule)

end while
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task PEG repair operator with action;
task-de�nition
goal: �Repair operator with repair action�;
input: operator;

repair rule;
state;
state history;

output: �nal state;
state history;

task-body
type: composite;
sub-tasks: get rule action, rule-based adjust parameters, PEG execute operator,

repair with send, repair with sendup, repair with backchoice;
additional-roles: action;

action argument;
error arguments;
adjusted operator;

control-structure:

get rule action (repair rule! action+action argument+error arguments)
if action = re-execute then
rule-based adjust parameters (operator+state! adjusted operator)
PEG execute operator (adjusted operator+state+state history! �nal state+state history)

else if action = send-down or action = send-op then
repair with send (action argument+error arguments+state history! �nal state+state history)

else if action = send-up then
repair with sendup (operator+error arguments+state history! �nal state+state history)

else if action = back-choice then
repair with backchoice (operator+error arguments+state history! �nal state+state history)

end if
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task rule-based adjust parameters;
task-de�nition
goal: �Adjust operator parameters�;
input: operator;

state;
output: adjusted operator;
task-body
type: composite;
sub-tasks: get oper adjustment RB, get RB next rule, test rule preconditions,

adjust par with action;
additional-roles: adjust RB;

adjustment rule;
result;

control-structure:

get oper adjustment RB (operator! adjustment RB)
get RB next rule (adjustment RB! adjustment rule)
adjusted operator operator
while adjustment rule <> ; do
test rule preconditions (adjustment rule+state! result)
if result = success then
adjust par with action (adjusted operator+adjustment rule! adjusted operator)

end if
get RB next rule (adjustment RB! adjustment rule)

end while

task repair with send;
task-de�nition
goal: �Repair operator with send�;
input: action argument;

error arguments;
state history;

output: �nal state;
state history;

task-body
type: composite;
sub-tasks: change context, modify oper assessment, PEG rule-based repair operator;
additional-roles: target operator;

target state;
control-structure:

change context (action argument+state history! target operator+target state+state history)
modify oper assessment (target operator+error arguments! target operator)
PEG rule-based repair operator (target operator+target state+state history! �nal state+state
history)
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task repair with sendup;
task-de�nition
goal: �Repair operator with sendup�;
input: operator;

error arguments;
state history;

output: �nal state;
state history;

task-body
type: composite;
sub-tasks: get hist father, change context, modify oper assessment,

PEG rule-based repair operator;
additional-roles: action argument;

target operator;
target state;

control-structure:

get hist father (operator+state history! action argument)
change context (action argument+state history! target operator+target state+state history)
modify oper assessment (target operator+error arguments! target operator)
PEG rule-based repair operator (target operator+target state+state history! �nal state+state
history)

task repair with backchoice;
task-de�nition
goal: �Repair operator with backchoice;
input: operator;

error arguments;
state history;

output: �nal state;
state history;

task-body
type: composite;
sub-tasks: get hist last choice, change context, modify oper assessment,

PEG rule-based repair operator;
additional-roles: action argument;

target operator;
target state;

control-structure:

get hist last choice (operator+state history! action argument)
change context (action argument+state history! target operator+target state+state history)
modify oper assessment (target operator+error arguments! target operator)
PEG rule-based repair operator (target operator+target state+state history! �nal state+state
history)
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PULSAR

task PUL supervise;
task-de�nition
goal: �Perform program supervision�;
input: problem speci�cation;

operator KB;
output: result evaluation;

�nal plan;
�nal state;

task-body
type: composite;
sub-tasks: initialise state, initialise plan, initialise constraints, PUL plan and execute;
additional-roles: initial state history;

initial state;
initial plan;
initial constraints;

control-structure:

initialise state (problem speci�cation! initial state+initial state history)
initialise plan (problem speci�cation! initial plan)
initialise constraints (problem speci�cation! initial constraints)
PUL plan and execute (initial plan+initial state+initial state history+initial constraints+operator
KB! result evaluation+�nal plan+�nal state)
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task PUL plan and execute;
task-de�nition
goal: �Perform operator-based planning�;
input: plan;

state;
state history;
constraints;
operator KB;

output: result evaluation;
executed plan;
�nal state;

task-body
type: composite;
sub-tasks: PUL expand plan, select plan, PUL execute plan, PUL plan and execute;
additional-roles: expanded plans;

expanded plan;
control-structure:

if constraints 2 state then
executed plan plan
�nal state state
result evaluation success

else
PUL expand plan (plan+state+constraints+operator KB! expanded plans)
while result evaluation <> success and expanded plans <> ; do
select plan (expanded plans! expanded plan+expanded plans)
PUL execute plan (expanded plan+state+state history! result evaluation+executed
plan+�nal state+state history)
if result evaluation = success then
PUL plan and execute (executed plan+�nal state+state history+constraints+operator
KB! result evaluation+executed plan+�nal state)

end if
end while
if expanded plans = ; then
result evaluation all-plan-expansions-failed

end if
end if
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task PUL expand plan;
task-de�nition
goal: �Expand a plan�;
input: plan;

state;
constraints;
operator KB;

output: expanded plans;
task-body
type: composite;
sub-tasks: PUL select and order operators, PUL integrate operators;
additional-roles: ordered selected operators;
control-structure:

PUL select and order operators (plan+state+constraints+operator KB! ordered selected opera-
tors)
PUL integrate operators (plan+ordered selected operators! expanded plans)

task PUL select and order operators;
task-de�nition
goal: �Select operators from the operator KB and order them�;
input: plan;

state;
constraints;
operator KB;

output: ordered selected operators;
task-body
type: composite;
sub-tasks: PUL select operators, PUL order operators;
additional-roles: selected operators;
control-structure:

PUL select operators (plan+state+constraints+operator KB! selected operators)
PUL order operators (plan+state+selected operators! ordered selected operators)
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task PUL execute plan;
task-de�nition
goal: �Execute operators in a plan�;
input: plan;

state;
state history;

output: result evaluation;
executed plan;
�nal state;
state history;

task-body
type: composite;
sub-tasks: select applicable plan operator, PUL re�ne, execute and repair operator;
additional-roles: uni�ed operator;
control-structure:

result evaluation success
select applicable plan operator (plan+state! uni�ed operator)
while uni�ed operator <> ; and result evaluation = success do
PUL re�ne, execute and repair operator (uni�ed operator+plan+state+state history! result
evaluation+executed plan+�nal state+state history)
plan executed plan
state �nal state
select applicable plan operator (plan+state! uni�ed operator)

end while

task select applicable plan operator;
task-de�nition
goal: �Select an operator from a plan�;
input: plan;

state;
output: uni�ed operator;
task-body
type: composite;
sub-tasks: get plan operators, next, test oper preconditions, unify arguments;
additional-roles: operators;

result;
control-structure:

get plan operators (plan! operators)
next (operators! uni�ed operator)
test oper preconditions (uni�ed operator+state! result)
while result <> success do
next (operators! uni�ed operator)
test oper preconditions (uni�ed operator+state! result)

end while
unify arguments (uni�ed operator+state! uni�ed operator)
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task PUL re�ne, execute and repair operator;
task-de�nition
goal: �Perform hierarchical planning�;
input: operator;

plan;
state;
state history;

output: result evaluation;
�nal plan;
�nal state;
state history;

task-body
type: composite;
sub-tasks: rule-based initialise parameters, PUL execute operator, update plan,

PUL specialise operator, PUL decompose sequence,
rule-based evaluate results, PUL rule-based repair operator;

additional-roles: initialised operator;
evaluated operator;

control-structure:

rule-based initialise parameters (operator+state! initialised operator)
if primitive operator then
PUL execute operator (initialised operator+state+state history! �nal state+state history)
update plan (plan+initialised operator! �nal plan)

else if specialisation then
PUL specialise operator (initialised operator+plan+state+state history! �nal plan+�nal
state+state history)

else if sequence then
PUL decompose sequence (initialised operator+plan+state+state history! �nal plan+�nal
state+state history)

end if
rule-based evaluate results (operator+�nal state! evaluated operator+result evaluation)
while result evaluation = repair do
PUL rule-based repair operator (evaluated operator+�nal state+state history! �nal
state+state history)
rule-based evaluate results (operator+�nal state! evaluated operator+result evaluation)

end while
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task PUL execute operator;
task-de�nition
goal: �Execute primitive operator�;
input: operator;

state;
state history;

output: �nal state;
state history;

task-body
type: composite;
sub-tasks: prepare arguments, make program call,

call program, apply e�ects, apply data dependences, update hist with exec;
additional-roles: prepared operator;

program call;
control-structure:

prepare arguments (operator! prepared operator)
make program call (prepared operator! program call)
call program (program call)
apply e�ects (prepared operator+�nal state! �nal state)
apply data dependences (�nal state! �nal state)
update hist with exec (prepared operator+�nal state+state history! state history)
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task PUL specialise operator;
task-de�nition
goal: �Perform hierarchical re�nement of a specialisation�;
input: operator;

plan;
state;
state history;

output: �nal plan;
�nal state;
state history;

task-body
type: composite;
sub-tasks: rule-based choose suboperators, update hist with spec, next,

distribute in arguments, PUL re�ne, execute and repair operator,
distribute out arguments, update hist with exec;

additional-roles: suboperators;
suboperator;
result;
result evaluation;
intermediate state;

control-structure:

rule-based choose suboperators (operator+state! suboperators)
update hist with spec (operator+state history! state history)
intermediate state ;
repeat
next (suboperators! suboperator)
distribute in arguments (operator+suboperator! suboperator)
test oper preconditions (suboperator+state! result)
if result = success then
PUL re�ne, execute and repair operator (suboperator+plan+state+state history! result
evaluation+�nal plan+intermediate state+state history)
if result evaluation = continue then
distribute out arguments (operator+intermediate state+�nal state! �nal state)

end if
end if

until result evaluation = continue or suboperators = ;
update hist with exec (�nal state+state history! state history)
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task PUL decompose sequence;
task-de�nition
goal: �Perform hierarchical re�nement of a sequence�;
input: operator;

plan;
state;
state history;

output: �nal plan;
�nal state;
state history;

task-body
type: composite;
sub-tasks: get oper suboperators, update hist with dec, next, bind in arguments,

test oper preconditions, PUL re�ne, execute and repair operator,
distribute out arguments, rule-based evaluate results,
PUL rule-based repair operator, update hist with exec;

additional-roles: suboperators;
intermediate state;
suboperator;
result;
intermediate result evaluation;
result evaluation;

control-structure:

get oper suboperators (operator! suboperators)
update hist with dec (operator+state history! state history)
intermediate state ;
repeat
next (suboperators! suboperator)
bind in arguments (operator+suboperator+intermediate state! suboperator)
test oper preconditions (suboperator+state! result)
if result = success then
PUL re�ne, execute and repair operator (suboperator+plan+state+state history! result
evaluation+�nal plan+intermediate state+state history)
distribute out arguments (operator+intermediate state+�nal state! �nal state)
rule-based evaluate results (operator+�nal state! evaluated operator+intermediate result
evaluation)
while intermediate result evaluation = repair do
PUL rule-based repair operator (operator+�nal state+state history! �nal state+state
history)
rule-based evaluate results (operator+intermediate state! evaluated opera-
tor+intermediate result evaluation)

end while
state �nal state
plan �nal plan

end if
until result <> success or intermediate result evaluation <> continue or suboperators = ;
update hist with exec (�nal state+state history! state history)
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task PUL rule-based repair operator;
task-de�nition
goal: �Repair operator�;
input: operator;

state;
state history;

output: �nal state;
state history;

task-body
type: composite;
sub-tasks: get oper repair RB, get RB next rule, test rule preconditions,

PUL repair oper with action;
additional-roles: repair RB;

repair rule;
result;

control-structure:

get oper repair RB (operator! repair RB)
get RB next rule (repair RB! repair rule)
result failure
while result <> success and repair rule <> ; do
test rule preconditions (repair rule+state! result)
if result = success then
PUL repair oper with action (operator+repair rule+state+state history! �nal state+state
history)

end if
get RB next rule (repair RB! repair rule)

end while
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task PUL repair operator with action;
task-de�nition
goal: �Repair operator with repair action�;
input: operator;

repair rule;
state;
state history;

output: �nal state;
state history;

task-body
type: composite;
sub-tasks: get rule action, rule-based adjust parameters, PUL execute operator,

repair with senddown;
additional-roles: action;

action argument;
error arguments;
adjusted operator;

control-structure:

get rule action (repair rule! action+action argument+error arguments)
if action = re-execute then
rule-based adjust parameters (operator+state! adjusted operator)
PUL execute operator (adjusted operator+state+state history! �nal state+state history)

else if action = send-down then
repair with senddown (action argument+error arguments+state history! �nal state+state his-
tory)

end if

task repair with senddown;
task-de�nition
goal: �Repair operator with send-down�;
input: action argument;

error arguments;
state history;

output: �nal state;
state history;

task-body
type: composite;
sub-tasks: change context, modify oper assessment, PEG rule-based repair operator;
additional-roles: target operator;

target state;
control-structure:

change context (action argument+state history! target operator+target state+state history)
modify oper assessment (target operator+error arguments! target operator)
PUL rule-based repair operator (target operator+target state+state history! �nal state+state
history)



Appendix C

Algorithms for the Veri�cation of

Program Supervision Knowledge

Bases

In the following we present the algorithms of the procedures for checking PS knowledge bases

for important model-based properties. In the description of the algorithms we use a procedural

notation including the most common programming constructs (if-then-else construct, for loop,

etc). Except when we employ the italic font, the algorithms corresponding to the di�erent

calls are always described next to the procedure where they appear. The calls in italic font

usually make reference to simple procedures which do not need any further explanation.
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Data distribution correctness in specialisation decompositions

verify-specialisation-dist-correctness(op! result):
begin
all-op-inputs-distributed(op! aux-result1)
if not aux-result1 then
result  false

else
all-op-outputs-receive-dist-1-value-per-subop(op! aux-result2)
if not aux-result2 then
result  false

else
all-subops-inputs-receive-dist-value(op! aux-result3)
if not aux-result3 then
result  false

else
result  true

end if
end if

end if
end

all-op-inputs-distributed(op! result):
op-input-arguments(op! in-args)
for all in-arg such that in-arg2in-args do
distributes-in(in-arg! aux-result)
if not aux-result then
error(�No distribution of input of operator�)
result  false
exit

end if
end for
result  true
end

all-op-outputs-receive-dist-1-value-per-subop(op! result):
begin
op-output-arguments(op! out-args)
for all out-arg such that out-arg2out-args do
op-output-receives-dist(op+out-arg! aux-result)
if not aux-result then
result  false
exit

end if
end for
result  true
end
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op-output-receives-dist(op+out-arg! result):
begin
subop-list(op! subops)
for all subop such that subop2subops do
receives-out-dist-from(out-arg+subop! aux-result)
if not aux-result then
error(�No distribution for output from suboperator�)
result  false
exit

end if
end for
result  true
end

all-subops-inputs-receive-dist-value(op! result):
begin
subop-list(op! subops)
for all subop such that subop2subops do
all-subop-inputs-receive-dist(subop! aux-result)
if not aux-result then
result  false
exit

end if
end for
result  true
end

all-subop-inputs-receive-dist(subop! result):
begin
op-input-arguments(subop! in-args)
for all in-arg such that in-arg2in-args do
receives-in-dist(in-arg! aux-result)
if not aux-result then
error(�No distribution for input of suboperator�)
result  false
exit

end if
end for
result  true
end
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Data distribution correctness in sequential decompositions (with
optional operators)

verify-dist-correctness(op! result):
begin
has-optional-subops(op! aux-result1)
if not aux-result1 then {there are not optional suboperators}
all-op-inputs-distributed(op! aux-result2)
if not aux-result2 then
result  false

else
all-op-outputs-receive-dist-1-value(op! aux-result3)
if not aux-result3 then
result  false

else
result  true

end if
end if

else {there are optional suboperators}
all-op-inputs-distributed(op! aux-result2)
if not aux-result2 then
result  false

else
all-op-outputs-receive-dist-value(op! aux-result3)
if not aux-result3 then
result  false

else
result  true

end if
end if

end if
end
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all-op-outputs-receive-dist-1-value(op! result):
begin
op-output-arguments(op! out-args)
for all out-arg such that out-arg2out-args do
receives-out-dist(out-arg! aux-result)
length(aux-result! n)
if n 6=1 then
if n=0 then
error(�No distribution for output of operator�)

else {n>1}
error(�Multiple distributions for output of operator�)

end if
result  false
exit

end if
end for
result  true
end

all-op-outputs-receive-dist-value(op! result):
begin
op-output-arguments(op! out-args)
for all out-arg such that out-arg2out-args do
receives-out-dist(out-arg! aux-result)
length(aux-result! n)
if n=0 then
error(�No distribution for output of operator�)
result  false
exit

end if
end for
result  true
end

Data �ow correctness

verify-�ow-correctness(op! result):
begin
all-subops-inputs-receive-value(op! result)
end
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all-subops-inputs-receive-value(op! result):
begin
subop-list(op! subops)
for all subop such that subop2subops do
all-subop-inputs-receive(subop! aux-result)
if not aux-result then
result  false
exit

end if
end for
result  true
end

all-subop-inputs-receive(subop! result):
begin
op-input-arguments(subop! in-args)
for all in-arg such that in-arg2in-args do
receives-in-dist(in-arg! aux-result1)
receives-in-�ow(in-arg! aux-result2)
if not aux-result1 and not aux-result2 then
error(�No distribution nor �ow for input of suboperator�)
result  false
exit

end if
end for
result  true
end

Hierarchical operator correctness

verify-compound-op-correctness (op! result):
begin
ops  ;
compound-op-correct(op+ops! result)
end

compound-op-correct (op+ops! result):
begin
has-decomposition(op! aux-result)
if aux-result then
all-subops-correct(op+ops! result)

else
result  true

end if
end
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all-subops-correct (op+ops! result):
begin
subop-list(op! subops)
for all subop such that subop2subops do
if subop2ops then
error(�Suboperator appears already in current de�nition�)
result  false
exit

else
ops  ops [ subop
compound-op-correct(subop+ops! aux-result)
if not aux-result then
error(�Incorrect de�nition of suboperator�)
result  false
exit

end if
end if

end for
end

Adequacy of the initialisation rule base to the unvalued param-
eters in the operator

verify-param-init (op! result):
begin
has-init-rb(op! aux-result)
if aux-result then
verify-init-unvalued-param-completeness(op! result)

else
verify-valued-params(op! result)

end if
end

verify-init-unvalued-param-completeness (op! result):
begin
op-init-rb(op! rb)
treats-params(rb! treated-params)
op-parameters(op! params)
for all param such that param2params do
init(param! aux-result)
if aux-result=None and param62treated-params then
error(�No initialisation rule for unvalued parameter of operator�)
result  false
exit

end if
end for
result  true
end
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verify-valued-params (op! result):
begin
op-parameters(op! params)
for all param such that param2params do
init(param! aux-result)
if aux-result=None then
error(�Unvalued parameter exists but no initialisation RB in operator�)
result  false
exit

end if
end for
result  true
end

Adequacy of the choice rule base to the suboperators in the
specialisation

verify-subops-choice (op! result):
begin
has-choice-rb(op! aux-result)
if aux-result then
verify-choice-subop-completeness(op! result)

else
error(�Specialisation but no choice RB in operator�)
result  false

end if
end

verify-choice-subop-completeness(op! result):
begin
op-choice-rb(op! rb)
treats-subops(rb! treated-subops)
subop-list(op! subops)
for all subop such that subop2subops do
if subop62treated-subops then
error(�No choice rule for suboperator in operator�)
result  false
exit

end if
end for
result  true
end
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Adequacy of the repair rule base to the problems diagnosed by
the evaluation rule base

verify-assess-repair (op! result):
begin
has-assess-rb(op! aux-result1)
has-repair-rb(op! aux-result2)
if aux-result1 then
if aux-result2 then
verify-repair-assess-completeness(op! result)

else {there exists an assessment RB but no repair RB}
verify-assess-continues(op! result) {OK if repair is not needed}

end if
else
if aux-result2 then {there is no assessment RB but there exists a repair RB}
warning(�Repair and no assessment implies non-local repair in operator�)
result  true

end if
end if
end

verify-repair-assess-completeness (op! result):
begin
all-failures-are-repaired(op! result)
end

all-failures-are-repaired (op! result):
begin
op-assess-rb(op! rb1)
op-repair-rb(op! rb2)
diagnoses-failures(rb1! diagnosed-failures)
treats-failures(rb2! treated-failures)
for all diagnosed-failure such that diagnosed-failure2diagnosed-failures do
if diagnosed-failure62treated-failures then
error(�Diagnosed failure exists but no corresponding repair rule in operator�)
result  false
exit

end if
end for
end
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verify-assess-continues (op! result):
begin
op-assess-rb(op! rb)
diagnoses-failures(rb1! diagnosed-failures)
if diagnosed-failures<>; then
error(�Diagnosed failures exist but no repair RB in operator�)
result  false

else
result  true

end if
end

Repair path correctness

verify-repair-path-correctness (op! result):
begin
op-repair-rb(op! rb)
treats-failures(rb! failures)
ops  ;
ops  cup op
for all failure such that failure2failures do
repair-paths-correct(op+failure+ops! aux-result)
if not aux-result then
result  false
exit

end if
end for
result  true
end
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repair-paths-correct (op+failure+ops! result):
begin
has-repair-rb(op! aux-result)
if not aux-result then
error(�Failure might be received but no repair RB in operator�)
result  false
exit

end if
op-repair-rb(op! rb)
translates-failure(rb+failure! translations)
if translations=; then
error(�Failure might be received but no repair rule for it in operator�)
result  false
exit

end if
for all translation such that translation2translations do
repair-path-correct(op+translation+ops! aux-result)
if not aux-result then
result  false
exit

end if
end for
result  true
end

repair-path-correct (op+failure-translation+ops! result):
begin
if failure-translation=re-execute then {failure is solved}
result  true

else {failure is not solved}
all-op-paths-correct(op+failure-translation+ops! result)

end if
end
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all-op-paths-correct (op+failure-translation+ops! result):
begin
op-repair-rb(op! rb)
transmits-failure(rb+failure-translation! target-ops)
if target-ops=; then
error(�Failure is not solved nor transmitted by operator�)
result  false
exit

end if
for all target-op such that target-op2target-ops do
if target-op2ops then
warning(�Operator appears already in current repair path�)

end if
ops-copy  ops
ops-copy  ops-copy [ target-op
repair-paths-correct(target-op+failure-translation+ops-copy! aux-result)
if not aux-result then
error(�Incorrect repair path from operator�)
result  false
exit

end if
end for
result  true
end

Adequacy of the adjustment rule base to the treatments in the
repair rule base

verify-repair-adjust (op! result):
begin
has-repair-rb(op! aux-result1)
has-adjust-rb(op! aux-result2)
if aux-result1 then {there exists a repair RB}
repair-rb-requires-reexecution(op! aux-result3)
if not aux-result2 and aux-result3 then
error(�Re-execution required but no adjustment RB in operator�)
result  false

else if aux-result2 and not aux-result3 then
warning(�Adjustment RB exists and re-execution not required in operator�)

end if
else {there is no repair RB}
if aux-result2 then
warning(�Adjustment RB exists and no repair RB in operator�)

end if
end if
end
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Redundancy- and con�ict-freeness of rule bases

verify-rb-redundancy-and-con�icts (rb! result):
begin
�ll-rb-precondition-and-action-tables(rb! rb)
check-rb-for-redundancy-and-con�icts(rb! result)
end
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�ll-rb-precondition-and-action-tables (rb! rb):
begin
rule-list(rb! rules)
length(rules! n)
for all i such that 1 � i < n do
for all j such that i+ 1 � i � n do
nth(rules+i! ri)
nth(rules+j! rj)
precs-have-logical-uniqueness(ri+rj! aux-result1)
if aux-result1 then
pr-tab[i, j]  Exclusive

else {no logical uniqueness}
precs-have-same-terms(ri+rj! aux-result2)
if aux-result2 then {no logical uniqueness and all terms are common}
pr-tab[i, j]  Equivalent
acts-are-equivalent(ri+rj! aux-result3)
if aux-result3 then
ac-tab[i, j]  Equivalent

else
acts-are-con�icting(ri+rj! aux-result4)
if aux-result4 then
ac-tab[i, j]  Con�icting

else
ac-tab[i, j]  Di�erent

end if
end if

else {no logical uniqueness and not all terms are common}
precs-has-same-term-as(ri+rj! aux-result2)
precs-has-same-term-as(ri+rj! aux-result3)
if aux-result2 or aux-result3 then
pr-tab[i, j]  Subsumed
acts-are-equivalent(ri+rj! aux-result4)
if aux-result4 then
ac-tab[i, j]  Equivalent

else
acts-are-con�icting(ri+rj! aux-result5)
if aux-result5 then
ac-tab[i, j]  Con�icting

else
ac-tab[i, j]  Di�erent

end if
end if

else
pr-tab[i, j]  NonExclusive

end if
end if

end if
end for

end for
set-precondition-table(rb+pr-tab! rb)
set-action-table(rb+ac-tab! rb)
end
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check-rb-for-redundancy-and-con�icts (rb ! result):
begin
�ll-rb-rule-table(rb! rb)
check-rb-table-for-redundancy-and-con�icts(rb! result)
end

�ll-rb-rule-table (rb ! rb):
begin
precondition-table (rb! pr-tab)
action-table (rb! ac-tab)
rule-list(rb! rules)
length(rules! n)
for all i such that 1 � i < n do
for all j such that i+ 1 � i � n do
r-tab[i, j]  NonMutuallyExclusive

end for
end for
for all i such that 1 � i < n do
for all j such that i+ 1 � i � n do
if pr-tab[i, j]=Exclusive then
r-tab[i, j]  MutuallyExclusive

else if pr-tab[i, j]=Equivalent then
if ac-tab[i, j]=Equivalent then
r-tab[i, j]  Redundant

else if ac-tab[i, j]=Con�icting then
r-tab[i, j]  Con�icting

end if
else if pr-tab[i, j]=Subsumed then
if ac-tab[i, j]=Equivalent then
r-tab[i, j]  Subsumed

else if ac-tab[i, j]=Con�icting then
r-tab[i, j]  Con�icting

end if
end if

end for
end for
set-rule-table(rb+r-tab! rb)
end
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check-rb-table-for-redundancy-and-con�icts (rb ! result):
begin
r-table (rb! r-tab)
rule-list(rb! rules)
length(rules! n)
for all i such that 1 � i < n do
for all j such that i+ 1 � i � n do
if r-tab[i, j]=Redundant then
error(�Redundant rule pair detected in RB�)
result  false
exit

else if r-tab[i, j]=Con�icting then
error(�Con�icting rule pair detected in RB�)
result  false
exit

else if r-tab[i, j]=Subsumed then
error(�Subsumed rule pair detected in RB�)
result  false
exit

else {NonMutuallyExclusive rules}
warning(�Ambiguous rule pair detected in RB�)
nth(rules+i! ri)
nth(rules+j! rj)
search-for-ambiguous-cases(ri+rj! expression)
print-expression(expression)

end if
end for

end for
result  true
end

search-for-ambiguous-cases (rule1+rule2! conjunct):
begin
is-�reable-rule(rule1! aux-result1)
is-�reable-rule(rule2! aux-result2)
if aux-result1 or aux-result2 then
conjunct  TRUE

else
conjunct  ;
precondition-list(rule1! precs1)
precondition-list(rule2! precs2)
add-conjunct(conjunct+precs1! conjunct)
add-conjunct(conjunct+precs2! conjunct)

end if
end
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Completeness of rule bases

verify-rb-completeness (rb! result):
begin
check-rb-for-completeness(rb! aux-result)
if not aux-result then
rule-list(rb! rules)
length(rules! n)
if n=1 then
print-uncovered-cases(rb)

else {n>1}
search-for-completeness-description(rb! expression)
print-expression(expression)

end if
result  false

else
result  true

end if
end

check-rb-for-completeness (rb! result):
begin
exist-rb-non-mutually-exclusive-rules(rb! aux-result1)
rb-only-has-equality(rb! aux-result2)
rb-has-domains(rb! aux-result3)
if not aux-result1 and aux-result2 and aux-result3 then
check-rb-completeness-numerically(rb! result)

else if aux-result3 then {RB domains are de�ned}
check-rb-completeness-by-enumeration(rb! result)

else
rb-has-�reable-rule(rb! aux-result4)
if aux-result4 then
result  true

else
warning(�Completeness could not be checked (no domains, no �reable rule)�)
result  false

end if
end if
end
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exist-rb-non-mutually-exclusive-rules (rb! result):
begin
rule-list (rb! rules)
rule-table (rb! r-tab)
length(rules! n)
for all i such that 1 � i < n do
for all j such that i+ 1 � i � n do
if r-tab[i, j] <> MutuallyExclusive then
result  true
exit

end if
end for

end for
result  false
end

Numerical completeness check

check-rb-completeness-numerically (rb! result):
begin
rule-list (rb! rules)
length(rules! n)
domain-list (rb! domains)
count  0
for all i such that 1 � i � n do
nth(rules+i! ri)
count-rule-covered-cases(ri+domains! aux-result)
count  count + aux-result

end for
get-combinations(domains! aux-result)
if count=aux-result then
result  true

else {count�aux-result}
error(�Domain value combinations exist which are not covered by the RB cases�)
result  false

end if
end

Enumeration completeness check

check-rb-completeness-by-enumeration (rb! result):
begin
domain-list(rb! domains)
combination  ;
check-rb-completeness(rb+combination+domains! result)
end
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check-rb-completeness (rb+combination+domains! result):
begin
�rst(domains! domain)
is-enum-domain(domain! aux-result)
domain-element(domain! elem)
if aux-result then {di�erent values are speci�ed in the domain}
enum-domain-values(domain! values)
check-enum-completeness(rb+elem+values+combination+domains! result)

else {lower and upper values are speci�ed in the domain}
interval-domain-values(domain! lower-value+upper-value)
check-interval-completeness(rb+elem+lower-value+upper-value+combination+domains! re-
sult)

end if
end

check-enum-completeness (rb+elem+values+combination+domains! result):
begin
for all val such that val2values do
new-combination  combination [ (elem, val)
check-completeness-along-domains(rb+new-combination+domains! aux-result)
if not aux-result then
result  false
exit

end if
end for
result  true
end

check-completeness-along-domains (rb+combination+domains! result):
begin
rb-has-�reable-rule-for(rb+combination! aux-result)
if aux-result then
result  true
exit

else
rest(domains! domains) {removes the �rst domain}
if domains=; then
error(�Incompleteness detected in RB�)
result  false
exit

else
check-rb-completeness(rb+combination+domains! result)

end if
end if
end
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check-interval-completeness (rb+elem+lower-value+upper-value+combination+domains! re-
sult):
begin
for all val such that lower-value � val � upper-value do
new-combination  combination
new-combination  new-combination [ (elem, val)
check-completeness-along-domains(rb+new-combination+domains! aux-result)
if not aux-result then
result  false
exit

end if
end for
result  true
end

Completeness characterisation with bd-resolution

search-for-completeness-description (rb! expression):
begin
rule-list(rb! rules)
rb-has-domains(rb! aux-result)
if aux-result then
domain-list(rb! domains)
unfold-rules(rules+domains! rules)
search-for-covered-cases(rules+domains! expression)

else
domains  ;
search-for-covered-cases(rules+domains! expression)

end if
end
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search-for-covered-cases (rules+domains! expression):
begin
implied-rules  ;
dnf-expression  ;
length(rules! n)
for all i such that 1 � i < n do
for all j such that i+ 1 � i � n do
nth(rules+i! ri)
nth(rules+j! rj)
obtain-bd-resolvent(ri+rj+domains! conjunct)
if conjunct<>; then
add-dnf-disjunctor(dnf-expression+conjunct! dnf-expression)
if ri62implied-rules then
implied-rules  implied-rules [ ri

end if
if rj62implied-rules then
implied-rules  implied-rules [ rj

end if
end if

end for
end for
length(implied-rules! m)
if m=0 then
expression  ;
exit

else if m6=n then {0<m<n}
for all i such that 1 � i � n do
nth(rules+i! ri)
if ri62implied-rules then
precondition-list(ri! conjunct)
add-dnf-disjunct(dnf-expression+conjunct! dnf-expression)

end if
end for

end if
factorise(dnf-expression! expression)
end
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obtain-bd-resolvent (rule1+rule2+domains! conjunct):
begin
precondition-list(rule1! precs1)
precondition-list(rule2! precs2)
aux-conjunct  ;
precs1-copy  precs1
precs2-copy  precs2
length(precs1! n)
for all i such that 1 � i � n do
nth(precs1+i! termi)
term-appears-negated-in-position(termi! m)
if m6=0 then
delete(precs1-copy+termi! precs1-copy)
delete(precs2-copy+termi! precs2-copy)
add-conjunct(aux-conjunct+precs1-copy! aux-conjunct)
add-conjunct(aux-conjunct+precs2-copy! aux-conjunct)
if aux-conjunct=; then
conjunct  TRUE

else
contains-contradiction(aux-conjunct! aux-result)
if not aux-result then
conjunct  aux-conjunct
exit

else
aux-conjunct  ;

end if
end if
precs1-copy  precs1
precs2-copy  precs2

end if
end for
end



Appendix D

Speci�cation, Implementation and

Veri�cation of a Blocks-based

Instruction

Speci�cation

KIV library speci�cations

elem =
speci�cation

sorts elem;
variables e2, e1, e0, e: elem;

end speci�cation

nat =
data speci�cation

nat = 0
j . +1 (. -1 : nat)
;

variables n: nat;
order predicates . < . : nat � nat;

end data speci�cation

set =
generic speci�cation

parameter elem using nat target
sorts set;
constants @ : set;
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functions
insert : elem � set ! set ;
. n . : set � elem ! set ;
select : set ! elem ;
# : set ! nat ;

predicates
. 2 . : elem � set;
. � . : set � set;

variables s2, s1, s0, s', s: set;

axioms

set generated by @, insert;
: e0 2 @,
e0 2 insert(e1, s) $ e0 = e1 _ e0 2 s,
s1 � s2 $ (8 e0.e0 2 s1 ! e0 2 s2),
s1 = s2 $ s1 � s2 ^ s2 � s1,
e0 2 s n e1 $ e0 2 s ^ e0 6= e1,
s 6= @ ! select(s) 2 s,
#(@) = 0,
: e0 2 s ! #(insert(e0, s)) = #(s)+1

end generic speci�cation

Basic speci�cations

ident =
speci�cation

sorts ident;
variables id: ident;

end speci�cation

value =
speci�cation

sorts value;
constants errorvalue : value;
variables va: value;

end speci�cation

par-valued-item = ident, value

par-operator-inf = ident, ident-set

State speci�cation

valued-item =
generic data speci�cation

parameter par-valued-item
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vitem = mkvitem (. .vitid : ident, . .vitval : value);
variables vi: vitem;

end generic data speci�cation

basic-state =
actualize set with valued-item by morphism

set! state, elem! vitem, @! @st, insert! insertst, n ! nst, select! selectst,
# ! #st, 2 ! 2st, � ! �st, s ! st, s' ! st', s0 ! st0, s1 ! st1, s2 ! st2, e
! vi, e0 ! vi0, e1 ! vi1, e2 ! vi2

end actualize

state =
enrich basic-state with

predicates is-item-in-state : state � ident;
variables st: state;

axioms

8 vi, vi0.vi 2st st ^ vi0 2st st ^ vi 6= vi0 ! vi.vitid 6= vi0.vitid,
: is-item-in-state(@st, id0),

is-item-in-state(insertst(vi0, st), id0)
$ id0 = vi0.vitid _ is-item-in-state(st, id0)

end enrich

Operator speci�cation

ident-set =
actualize set with ident by morphism

set ! identset, elem ! ident, @ ! @ids, insert ! insertids, n ! nids, select !
selectids, # ! #ids, 2 ! 2ids, � ! �ids, s ! ids, s' ! ids', s0 ! ids0, s1 !
ids1, s2 ! ids2, e ! id, e0 ! id0, e1 ! id1, e2 ! id2

end actualize

operator-inf =
generic data speci�cation

parameter par-operator-inf
opinf = mkopinf (. .operid : ident, . .operfunc : ident, . .operinput : identset,
. .operoutput : identset, . .operparam : identset);
variables opi: opinf;

end generic data speci�cation

basic-operator =
data speci�cation

using operator-inf
operator = mkprimop (. .priminf : opinf) with isprimop

j mkcompop (. .compinf : opinf, . .dec : decomposition) with iscompop
;

decomposition = nildec
j . seq . (carseq : operator, cdrseq : decomposition) with isdecseq
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;
variables op: operator; dec: decomposition;

end data speci�cation

operator =
enrich basic-operator with

predicates indec : operator � decomposition;

axioms

: indec(op, nildec),
isprimop(op

0
) ! (indec(op, op

0
seq dec) $ op = op

0
_ indec(op, dec)),

iscompop(op
0
)

! (indec(op, op
0
seq dec) $ op = op

0
_ indec(op, op

0
.dec) _ indec(op, dec))

end enrich

Speci�cation of program supervision requirements

partial-ps-requirements = state, operator

Speci�cation of execute-operator competence

execute-operator-competence =
enrich partial-ps-requirements with

functions execute-operator : operator � state ! state ;
variables primitive: operator; ini-state: state;

axioms

isprimop(primitive)
! (8 id. id 2ids primitive.priminf.operoutput

! is-item-in-state(execute-operator(primitive, ini-state), id)),
isprimop(primitive)

! (8 id. is-item-in-state(ini-state, id)
! is-item-in-state(execute-operator(primitive, ini-state), id))

end enrich

Speci�cation of decompose-sequence competence

decompose-sequence-competence =
enrich execute-operator-competence with

functions decompose-sequence : operator � state ! state ;
variables sequence: operator; �n-state, ini-state: state;

axioms

iscompop(sequence)
! ( decompose-sequence(sequence, ini-state) = �n-state
! (8 id.id 2ids sequence.compinf.operoutput ! is-item-in-state(�n-state, id)))

end enrich
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Implementation

Module decompose-sequence-module

decompose-sequence =
module

export decompose-sequence-competence
refinement

representation of operations
decompose-sequence# implements decompose-sequence;

import execute-operator-competence

procedures control#(decomposition, state) : state;

variables out: state;

implementation

decompose-sequence#(op, st0; var out)
begin
if isprimop(op) then out := st0 else var dec = op.dec in
control#(dec, st0;out)

end

control#(dec, st0; var out)
begin
if dec = nildec then out := st0 else
var op = carseq(dec), st = @st in
begin
if isprimop(op) then st := execute-operator(op, st0) else control#(op.dec, st0;st);
control#(cdrseq(dec), st;out)

end
end
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Veri�cation

Proof of control-iii-1
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The goal to prove is:

`

isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout = �n-state ! (8 id.id 2ids
op.compinf.operoutput ! is-item-in-state(�n-state, id)))
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Some statistics:

� the tree has 53 nodes

� there were 37 user-interactions

� automation: 30.1 %

� 4 lemmas were used

� There remain no �rst-order veri�cation conditions

� There remain no other goals

The following lemmas were used:

` isprimop(op) _ iscompop(op)

`

hcontrol#(dec, ini-state;out)iout = �n-state ! (8 op.indec(op, dec) ^ isprimop(op) ! (8 id.id 2ids

op.priminf.operoutput ! is-item-in-state(�n-state, id)))

`

hcontrol#(dec, ini-state;out)iout = �n-state ! (8 op.indec(op, dec) ^ iscompop(op) ! (8 id.id 2ids
op.compinf.operoutput ! is-item-in-state(�n-state, id)))

`

isprimop(op) _ (8 id.id 2ids op.compinf.operoutput ! (9 op
0
.indec(op

0
, op.dec) ^ (iscompop(op

0
)

^ id 2ids op
0
.compinf.operoutput _ isprimop(op

0
) ^ id 2ids op

0
.priminf.operoutput)))

The following simpli�er rules were used: isprimop(mkprimop(opi))
: isprimop(mkcompop(opi, dec))
mkcompop(opi, dec).compinf = opi
mkcompop(opi, dec).dec = dec

1) Interactive: Applied structural induction on the following goal

`

isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout = �n-state ! (8 id.id 2ids

op.compinf.operoutput ! is-item-in-state(�n-state, id)))

and got three premises.

2) Applied simpli�er on the goal

3) Interactive: Applied insert lemma compop-output-is-in-dec with the substitution: � = {op  
mkcompop(opi, dec0)} on the goal
and got two premises.
The �rst premise is :
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`

isprimop(op) _ (8 id.id 2ids op.compinf.operoutput ! (9 op
0
.indec(op

0
, op.dec) ^ (iscompop(op

0
)

^ id 2ids op
0
.compinf.operoutput _ isprimop(op

0
) ^ id 2ids op

0
.priminf.operoutput)))

The second premise is :

8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(dec0,
ini-state0;out)i out = �n-state0,
id 2ids opi.operoutput, : is-item-in-state(�n-state0, id), isprimop(mkcompop(opi, dec0)) _ (8 id.id
2ids mkcompop(opi, dec0).compinf.operoutput ! (9 op

0
.indec(op

0
, mkcompop(opi, dec0).dec)

^ (iscompop(op
0
) ^ id 2ids op

0
.compinf.operoutput _ isprimop(op

0
) ^ id 2ids

op
0
.priminf.operoutput)))

`

5) Applied pl simpli�er on the following goal

8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(dec0,
ini-state0;out)i out = �n-state0,
id 2ids opi.operoutput, : is-item-in-state(�n-state0, id), isprimop(mkcompop(opi, dec0)) _ (8 id.id
2ids mkcompop(opi, dec0).compinf.operoutput ! (9 op

0
.indec(op

0
, mkcompop(opi, dec0).dec)

^ (iscompop(op
0
) ^ id 2ids op

0
.compinf.operoutput _ isprimop(op

0
) ^ id 2ids

op
0
.priminf.operoutput)))

`

6) Interactive: Applied all left on the goal

7) Applied pl simpli�er on the goal

8) Interactive: Applied weakening formulas on the goal

9) Interactive: Applied case distinction on the goal
and got two premises.

10) Applied simpli�er on the goal

11) Interactive: Applied insert lemma control-results-2 with the substitution: � = {ini-state  
ini-state0, dec  dec0, �n-state  �n-state0} on the goal
and got two premises.
The �rst premise is :

`

hcontrol#(dec, ini-state;out)iout = �n-state ! (8 op.indec(op, dec) ^ iscompop(op) ! (8 id.id 2ids
op.compinf.operoutput ! is-item-in-state(�n-state, id)))
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The second premise is :

8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(dec0,
ini-state0;out)i out = �n-state0,
indec(op, dec0), id 2ids opi.operoutput, iscompop(op), id 2ids op.compinf.operoutput,
: is-item-in-state(�n-state0, id), 8 op.indec(op, dec0) ^ iscompop(op) ! (8 id.id 2ids
op.compinf.operoutput ! is-item-in-state(�n-state0, id))

`

13) Interactive: Applied all left on the following goal

8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(dec0,
ini-state0;out)i out = �n-state0,
indec(op, dec0), id 2ids opi.operoutput, iscompop(op), id 2ids op.compinf.operoutput,
: is-item-in-state(�n-state0, id), 8 op.indec(op, dec0) ^ iscompop(op) ! (8 id.id 2ids
op.compinf.operoutput ! is-item-in-state(�n-state0, id))

`

14) Applied simpli�er on the goal

15) Applied all left on the goal and closed it!

16) Applied simpli�er on the following goal (from 9)

8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(dec0,
ini-state0;out)i out = �n-state0,
indec(op, dec0), id 2ids opi.operoutput, : is-item-in-state(�n-state0, id), isprimop(op) ^ id 2ids
op.priminf.operoutput

`

17) Interactive: Applied insert lemma control-results-1 with the substitution: � = {ini-state  
ini-state0, dec  dec0, �n-state  �n-state0} on the goal
and got two premises.
The �rst premise is :

`

hcontrol#(dec, ini-state;out)iout = �n-state ! (8 op.indec(op, dec) ^ isprimop(op) ! (8 id.id 2ids

op.priminf.operoutput ! is-item-in-state(�n-state, id)))

The second premise is :
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8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(dec0,
ini-state0;out)i out = �n-state0,
indec(op, dec0), id 2ids opi.operoutput, isprimop(op), id 2ids op.priminf.operoutput,
: is-item-in-state(�n-state0, id), 8 op.indec(op, dec0) ^ isprimop(op) ! (8 id.id 2ids

op.priminf.operoutput ! is-item-in-state(�n-state0, id))

`

19) Interactive: Applied all left on the following goal

8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(dec0,
ini-state0;out)i out = �n-state0,
indec(op, dec0), id 2ids opi.operoutput, isprimop(op), id 2ids op.priminf.operoutput,
: is-item-in-state(�n-state0, id), 8 op.indec(op, dec0) ^ isprimop(op) ! (8 id.id 2ids

op.priminf.operoutput ! is-item-in-state(�n-state0, id))

`

20) Applied simpli�er on the goal

21) Applied all left on the goal and closed it!

22) Interactive: Applied insert spec-lemma on the following goal (from 1)

hcontrol#(op
0
.dec, ini-state0;out)i out = �n-state0,

indec(op
0
, nildec), : isprimop(op

0
), : 8 id.id 2ids op

0
.compinf.operoutput

! is-item-in-state(�n-state0, id)

`

24) Applied simpli�er on the following goal (from 1)

8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), indec(op

1
, op

0
seq

dec0), : isprimop(op
1
), : 8 id.id 2ids op

1
.compinf.operoutput ! is-item-in-state(�n-state0, id)

`

25) Interactive: Applied insert lemma isprimop-or-iscompop with the substitution: � = {op  
op

0
} on the goal

and got two premises.
The �rst premise is :
` isprimop(op) _ iscompop(op)

The second premise is :
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8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), indec(op

1
, op

0
seq

dec0), id 2ids op
1
.compinf.operoutput, : isprimop(op

1
), : is-item-in-state(�n-state0, id),

isprimop(op
0
) _ iscompop(op

0
)

`

27) Interactive: Applied case distinction on the following goal

8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), indec(op

1
, op

0
seq

dec0), id 2ids op
1
.compinf.operoutput, : isprimop(op

1
), : is-item-in-state(�n-state0, id),

isprimop(op
0
) _ iscompop(op

0
)

`

and got two premises.

28) Interactive: Applied insert spec-lemma on the goal
and got two premises.

30) Applied simpli�er on the following goal

8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), indec(op

1
, op

0
seq

dec0), id 2ids op
1
.compinf.operoutput, : isprimop(op

1
), : is-item-in-state(�n-state0, id),

isprimop(op
0
), isprimop(op

0
) ! (indec(op

1
, op

0
seq dec0) $ op

1
= op

0
_ indec(op

1
, dec0))

`

31) Interactive: Applied all left on the goal

32) Applied simpli�er on the goal

33) Applied all left on the goal and closed it!

34) Interactive: Applied insert spec-lemma on the following goal (from 27)
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8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), indec(op

1
, op

0
seq

dec0), id 2ids op
1
.compinf.operoutput, : isprimop(op

1
), : is-item-in-state(�n-state0, id),

iscompop(op
0
)

`

and got two premises.

36) Applied pl simpli�er on the following goal

8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), indec(op

1
, op

0
seq

dec0), id 2ids op
1
.compinf.operoutput, : isprimop(op

1
), : is-item-in-state(�n-state0, id),

iscompop(op
0
), iscompop(op

0
) ! (indec(op

1
, op

0
seq dec0) $ op

1
= op

0
_ indec(op

1
, op

0
.dec)

_ indec(op
1
, dec0))

`

37) Interactive: Applied case distinction on the goal
and got three premises.

38) Applied simpli�er on the goal

39) Interactive: Applied all left on the goal

40) Applied simpli�er on the goal

41) Applied all left on the goal and closed it!

42) Interactive: Applied insert lemma compop-output-is-in-dec with the substitution: � = {op
 op

1
} on the following goal (from 37)

8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), indec(op

1
, op

0
seq

dec0), id 2ids op
1
.compinf.operoutput, iscompop(op

0
), : is-item-in-state(�n-state0, id),

: isprimop(op
1
), indec(op

1
, op

0
.dec)

`
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and got two premises.
The �rst premise is :

`

isprimop(op) _ (8 id.id 2ids op.compinf.operoutput ! (9 op
0
.indec(op

0
, op.dec) ^ (iscompop(op

0
)

^ id 2ids op
0
.compinf.operoutput _ isprimop(op

0
) ^ id 2ids op

0
.priminf.operoutput)))

The second premise is :

8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), indec(op

1
, op

0
seq

dec0), id 2ids op
1
.compinf.operoutput, iscompop(op

0
), : is-item-in-state(�n-state0, id),

: isprimop(op
1
), indec(op

1
, op

0
.dec), isprimop(op

1
) _ (8 id.id 2ids op

1
.compinf.operoutput

! (9 op
0
.indec(op

0
, op

1
.dec) ^ (iscompop(op

0
) ^ id 2ids op

0
.compinf.operoutput _ isprimop(op

0
)

^ id 2ids op
0
.priminf.operoutput)))

`

44) Applied pl simpli�er on the following goal

8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), indec(op

1
, op

0
seq

dec0), id 2ids op
1
.compinf.operoutput, iscompop(op

0
), : is-item-in-state(�n-state0, id),

: isprimop(op
1
), indec(op

1
, op

0
.dec), isprimop(op

1
) _ (8 id.id 2ids op

1
.compinf.operoutput

! (9 op
0
.indec(op

0
, op

1
.dec) ^ (iscompop(op

0
) ^ id 2ids op

0
.compinf.operoutput _ isprimop(op

0
)

^ id 2ids op
0
.priminf.operoutput)))

`

45) Interactive: Applied all left on the goal

46) Applied pl simpli�er on the goal

47) Interactive: Applied weakening formulas on the goal

48) Interactive: Applied case distinction on the goal
and got two premises.

49) Applied pl simpli�er on the goal
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50) Interactive: Applied insert lemma control-results-2 with the substitution: � = {ini-state  
ini-state0, dec  op

1
.dec, �n-state  �n-state0} on the goal

and got two premises.
The �rst premise is :

`

hcontrol#(dec, ini-state;out)iout = �n-state ! (8 op.indec(op, dec) ^ iscompop(op) ! (8 id.id 2ids
op.compinf.operoutput ! is-item-in-state(�n-state, id)))

The second premise is :

8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), iscompop(op), id
2ids op.compinf.operoutput, indec(op, op

1
.dec), indec(op

1
, op

0
seq dec0), id 2ids

op
1
.compinf.operoutput, iscompop(op

0
), indec(op

1
, op

0
.dec), : isprimop(op

1
),

: is-item-in-state(�n-state0, id), 8 op.indec(op, op1.dec) ^ iscompop(op) ! (8 id.id 2ids
op.compinf.operoutput ! is-item-in-state(�n-state0, id))

`

52) Interactive: Applied all left on the following goal

8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), iscompop(op), id
2ids op.compinf.operoutput, indec(op, op

1
.dec), indec(op

1
, op

0
seq dec0), id 2ids

op
1
.compinf.operoutput, iscompop(op

0
), indec(op

1
, op

0
.dec), : isprimop(op

1
),

: is-item-in-state(�n-state0, id), 8 op.indec(op, op1.dec) ^ iscompop(op) ! (8 id.id 2ids
op.compinf.operoutput ! is-item-in-state(�n-state0, id))

`

53) Applied simpli�er on the goal

54) Applied all left on the goal and closed it!

55) Applied simpli�er on the following goal (from 48)

8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
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8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), indec(op,
op

1
.dec), indec(op

1
, op

0
seq dec0), id 2ids op

1
.compinf.operoutput, iscompop(op

0
), indec(op

1
,

op
0
.dec), : is-item-in-state(�n-state0, id), : isprimop(op

1
), isprimop(op) ^ id 2ids

op.priminf.operoutput

`

56) Interactive: Applied insert lemma control-results-1 with the substitution: � = {ini-state  
ini-state0, dec  op

1
.dec, �n-state  �n-state0} on the goal

and got two premises.
The �rst premise is :

`

hcontrol#(dec, ini-state;out)iout = �n-state ! (8 op.indec(op, dec) ^ isprimop(op) ! (8 id.id 2ids

op.priminf.operoutput ! is-item-in-state(�n-state, id)))

The second premise is :

8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), indec(op,
op

1
.dec), indec(op

1
, op

0
seq dec0), id 2ids op

1
.compinf.operoutput, iscompop(op

0
), indec(op

1
,

op
0
.dec), isprimop(op), id 2ids op.priminf.operoutput, : is-item-in-state(�n-state0, id),

: isprimop(op
1
), 8 op.indec(op, op

1
.dec) ^ isprimop(op) ! (8 id.id 2ids op.priminf.operoutput

! is-item-in-state(�n-state0, id))

`

58) Interactive: Applied all left on the following goal

8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), indec(op,
op

1
.dec), indec(op

1
, op

0
seq dec0), id 2ids op

1
.compinf.operoutput, iscompop(op

0
), indec(op

1
,

op
0
.dec), isprimop(op), id 2ids op.priminf.operoutput, : is-item-in-state(�n-state0, id),

: isprimop(op
1
), 8 op.indec(op, op

1
.dec) ^ isprimop(op) ! (8 id.id 2ids op.priminf.operoutput

! is-item-in-state(�n-state0, id))

`

59) Applied simpli�er on the goal
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60) Applied all left on the goal and closed it!

61) Interactive: Applied all left on the following goal (from 37)

8 ini-state, �n-state.isprimop(op
0
) _ ( hcontrol#(op

0
.dec, ini-state;out)iout = �n-state ! (8 id.id

2ids op
0
.compinf.operoutput ! is-item-in-state(�n-state, id))), hcontrol#(op

1
.dec, ini-state0;out)i

out = �n-state0,
8 op, ini-state, �n-state.indec(op, dec0) ! isprimop(op) _ ( hcontrol#(op.dec, ini-state;out)iout =
�n-state ! (8 id.id 2ids op.compinf.operoutput ! is-item-in-state(�n-state, id))), indec(op

1
, op

0
seq

dec0), id 2ids op
1
.compinf.operoutput, iscompop(op

0
), : is-item-in-state(�n-state0, id),

: isprimop(op
1
), indec(op

1
, dec0)

`

62) Applied simpli�er on the goal

63) Applied all left on the goal and closed it!
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Veri�cation and Validation of Knowledge-Based
Program Supervision Systems

The aim of program supervision is the automation of the di�erent activities involved in the skilled
utilisation of a library of programs. To accomplish this task, program supervision systems need a great
deal of knowledge on program utilisation, including the situations in which they can be applied, the
combinations of programs typically used, etc. Program supervision systems incorporate this expertise
in a knowledge-based architecture. Their distinctive characteristics are the variety of knowledge they
employ and its representation, which usually includes structured objects and production rules. Despite
of its growing importance, little research has concentrated on the veri�cation and validation of systems
with the above characteristics. In this thesis we approach the veri�cation and validation of program
supervision systems based on knowledge modeling, exploiting the information about the knowledge
they require, its organisation, and the precise way in which they use this knowledge during reasoning.
This information allows us to identify the properties that knowledge bases should verify in order to
adequately serve for program supervision, properties beyond the consistency and completeness of their
implementation. In this thesis we present the tools for knowledge base veri�cation developed according
to this approach, as well as some experiments in the application of techniques of software veri�cation
to program supervision engines with the purpose of identifying the properties we are interested in.

Keywords: Arti�cial intelligence, knowledge-based systems, program supervision, veri�cation and
validation of knowledge-based systems, knowledge modeling.

Veri�cación y Validación de Sistemas de
Supervisión de Programas Basados en el Conocimiento

La supervisión de programas tiene como objetivo la automatización de las distintas actividades im-
plicadas en la utilización especializada de una librería de programas. Para llevar a cabo esta tarea,
los sistemas de supervisión de programas necesitan una gran cantidad de conocimiento sobre la uti-
lización de los programas, incluyendo las situaciones en que pueden ser aplicados, las combinaciones
de programas habitualmente utilizadas, etc. Los sistemas de supervisión de programas incorporan
esta experiencia en una arquitectura basada en el conocimiento. Sus características distintivas son
la variedad de conocimiento que emplean y su representación, la cual normalmente incluye obje-
tos estructurados y reglas de producción. A pesar de su importancia creciente, poca investigación
se ha dedicado a la veri�cación y validación de sistemas con las características anteriores. En esta
tesis acometemos la veri�cación y validación de sistemas de supervisión de programas a partir de
un modelado del conocimiento, explotando la información sobre el conocimiento que requieren, su
organización y la manera precisa en que utilizan este conocimiento durante el razonamiento. Esta
información nos permite identi�car las propiedades que las bases de conocimiento deben veri�car
para servir adecuadamente a la supervisión de programas, propiedades mas allá de la consistencia
y completitud de su implementación. En esta tesis presentamos las herramientas de veri�cación de
bases de conocimiento desarrolladas de acuerdo con este enfoque, así como algunos experimentos en
la aplicación de técnicas de veri�cación de programas a motores de supervisión de programas con el
�n de identi�car las propiedades que nos interesan.

Palabras clave: Inteligencia arti�cial, sistemas basados en el conocimiento, supervisión de pro-
gramas, veri�cación y validación de sistemas basados en el conocimiento, modelado del conocimiento.
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