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ABSTRACT 
Since the end of 80’s there has been great interest in the study of qualitative models to 

represent and to reason with spatial aspects. The present work is centred on the 

development and application of a model to reason about shape and about movement in a 

qualitative way, which means in a way similar to the human reasoning. The interest of 

this study originates from the necessity to find solutions for the recognition of objects 

and the description and reasoning about the movement in situations with high 

uncertainty, as it is the case of robotic applications, where robots only have limited and 

vague sensorial information. In these situations the use of a qualitative reasoning, that 

allows us to handle ambiguities and errors, will be the most suitable. 

The movement of an object can be considered as a shape whose topologic relation with 

its environment (considered as another shape) changes in time. On the other hand the 

shape of the objects is a spatial aspect in itself, and again for its study we have used 

topological concepts. The recognition of objects is important during the movement of a 

robot since for the accomplishment of certain tasks the robot must be able to recognize 

the objects which it comes across during its trajectory, since these objects can be 

landmarks or reference points that provide the robot with spatial information about its 

environment. 

Therefore this work will be centred on the study of three aspects of space: the shape of 

the objects, the topology and the movement. Several works exist about the shape of the 

objects [Jungert 94; Park and Gero 99, 00; Chase 96, 97; Shokoufandeh, Dickinson et 

al. 02], on topology [Cohn, Bennett ET al. 97; Renz & Nebel 98; Egenhofer & Franzosa 

91; Clementini & Di Felice 95] and on movement [Zimmermann and Freksa 93; Musto, 

Stein et al. 00; Musto et al. 99; Rajagopalan and Kuipers 94; Forbus 83; Muller 98a, 

98b], that will be studied in greater depth during the chapter 2, which describes a state-

of-the-art of each one of them. But, most of these works are theoretical and they have 

not been applied to robotics. 

This PhD thesis presents a motion model as a qualitative representational model for 

integrating qualitatively time and topological information for reasoning about dynamic 

worlds in which spatial relations between regions and between regions and objects may 

change with time. This qualitative integration of time and topology has been 

accomplished thanks to the definition of an approach with the following three steps: (1) 
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the definition of the algebra of the spatial aspect to be integrated, which will be time and 

topology. The representation of each aspect is seen as an instance of the Constraint 

Satisfaction Problem (CSP); (2) the definition of the Basic Step of the Inference Process 

(BSIP) for each spatial aspect to be integrated. In general, the BSIP consists of giving 

two relationships which relate three objects A, B, and C (one object is shared among the 

two relationships, for instance A is related with B and B is related with C), we will find 

the third relationship between objects A and C; and (3) the definition of the Full 

Inference Process (FIP) for each spatial aspect to be integrated which consists of 

repeating the BSIP as many times as possible with the initial information and the 

information provided by some BSIP, until no more information can be inferred. 

On the other hand, the theory for the recognition of shapes developed is able to describe 

several types of shapes, as they are regular and non-regular polygons, with or without 

holes, with or without curved segments and even completely curvilinear forms. The 

theory describes shapes considering qualitatively the angles, relative side length, 

concavities and convexities, and types of curvatures of their boundaries using only their 

relevant point s, which are defined as vertices, and the initial, final point and point of 

maximum curvature of the curves. To describe shapes with holes, topological and 

qualitative spatial orientation aspects have been considered in order to relate the hole 

with its container. Each object is described by a string which describes its qualitative 

distinguished features (symbolic representation), which is used to match an object 

against the others. This theory has been applied, in an industrial domain, for the 

automatic and intelligent assembly of ceramic mosaics. Mosaics are made of pieces of 

different shapes, colours and sizes, named tesseraes, which once they are assembled 

create a unique composition with high added value, due to its artistic and decorative 

value. Mosaics are usually made following a design describing the position of each 

tesserae in the final composition. The application developed in this dissertation, 

recognises individual tesseraes from pictures, which represent the tesserae coming over 

a conveyor, against a vectorial mosaic design. Therefore, the application returns the 

position of the tesserae in the mosaic together with the angle that a robot arm has to 

adopt when picking the tesserae up by its centroid in order to place it in the correct 

orientation inside the mosaic. On the other hand the simplest version of this theory, 

especifically the part that describes regular and non-regular polygonal objects, jointly 

with the developed theory of movement has been applied too for the simulated 

navigation of a real robot, namely the Khepera2 robot. This application consists of a 
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world formed by two rooms connected by a corridor. The robot first learns the 

topological map of the world. Then in each room there is an object and the robot has to 

decide if both objects represent the same object or not, for that purpose the robot uses 

the movement theory to plan its route and to detect possible deviations during its 

moving, and finally by using the qualitative theory for shape matching developed 

decides if the objects have the same shape or not. Both applications are described with 

greater detail in chapter 6.  
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RESUMEN 
1. Introducción 

Desde finales de los años 80 ha habido un gran interés en el estudio de modelos 

cualitativos para representar y razonar con aspectos espaciales. El presente trabajo se 

centra en el desarrollo y aplicación de un modelo para razonar acerca de la forma y del 

movimiento de un modo cualitativo, es decir de manera similar al razonamiento 

humano. El interés de dicho estudio se origina en la necesidad de soluciones para el 

reconocimiento de objetos y para la descripción y razonamiento acerca del movimiento 

en situaciones con elevada incertidumbre, como es el caso de aplicaciones robóticas, 

donde los robots disponen únicamente de información sensorial limitada e imprecisa. 

En estas situaciones el uso de un razonamiento cualitativo, que permite manejar 

ambigüedades y errores, será el más adecuado. 

El movimiento de un objeto puede considerarse como una forma cuya relación 

topológica con su entorno (considerado como otra forma) cambia en el tiempo. Por otro 

lado la forma de los objetos es un aspecto espacial en sí mismo, y de nuevo para su 

estudio hemos utilizado conceptos topológicos. El reconocimiento de objetos es 

importante durante el movimiento de un robot puesto que para la realización de 

determinadas tareas el robot debe ser capaz de reconocer los objetos con los que se 

encuentra durante su trayectoria, ya que dichos objetos pueden ser “landmarks” o 

puntos de referencia que proporcionan al robot información espacial de su entorno. 

Por tanto en este trabajo nos centraremos en el estudio de tres aspectos espaciales: la 

forma de los objetos, la topología y el movimiento. Existen diversos trabajos acerca de 

la forma de los objetos [Jungert 94; Park and Gero 99, 00; Chase 96, 97; Shokoufandeh, 

Dickinson et al. 02] , sobre topología [Cohn, Bennett et al. 97; Renz & Nebel 98; 

Egenhofer & Franzosa 91; Clementini & Di Felice 95] y sobre movimiento 

[Zimmermann and Freksa 93; Musto, Stein et al. 00; Musto et al. 99; Rajagopalan and 

Kuipers 94; Forbus 83; Muller 98a, 98b], que serán estudiados en mayor profundidad 

realizando un estado del arte de cada uno de ellos como se describe en la sección 2.1. de 

este resumen. La mayoría de estos trabajos son teóricos y no han sido aplicados a la 

robótica. 

Las teoría para el reconocimiento de formas desarrollada es capaz de describir diversos 

tipos de formas, como son polígonos regulares y no-regulares, con o sin agujeros, con o 
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sin segmentos curvos e incluso formas completamente curvilíneas. Esta teoría ha sido 

aplicada en dos vertientes distintas, en una vertiente industrial, para el ensamblaje 

automático e inteligente de mosaicos cerámicos. Mientras que la versión más simple de 

ésta teoría, en concreto la parte que describe objetos poligonales regulares y no-

regulares, conjuntamente con la teoría de movimiento desarrollada han sido aplicadas en 

una más académica para la navegación simulada de un robot real, en concreto del robot 

Khepera2. Ambas aplicaciones son descritas con mayor detalle en la sección 2.5 de este 

resumen. 

2. Tareas 

2.1 Estudio de los modelos de razonamiento espacial cualitativo existentes. 

Esta tarea consiste en la realización de tres estados del arte: 

1. Estado del arte en modelos sobre topología, dado que  la topología es un factor 

interesante tanto para el desarrollo de una teoría cualitativa de reconocimiento 

de formas como para el desarrollo de una teoría de movimiento vista como la 

integración de dos conceptos: espacio, representado con conceptos topológicos, 

y tiempo.  

2. Estado del arte en modelos sobre movimiento cualitativo, dado que pretendemos 

desarrollar una teoría del movimiento y aplicarla a la robótica. 

3. Estado del arte en modelos para el reconocimiento de formas cualitativo, dado 

nuestro objetivo de desarrollar una teoría cualitativa de reconocimiento de 

formas aplicado a la robótica.  

A continuación se presenta un breve resumen de los diversos estudios realizados. 

2.1.1.ESTADO DEL ARTE SOBRE MODELOS TOPOLÓGICOS. 

Hasta la actualidad se han desarrollado diversos trabajos sobre relaciones topológicas 

dentro del campo del razonamiento espacial cualitativo. Estos trabajos los podemos 

dividir en dos tendencias: los trabajos para los que la relación espacial básica es la 

“región espacial”, y los trabajos que consideran una región como un conjunto de puntos. 

En el primer grupo, como “región espacial” se entiende todas aquellas regiones 

espaciales regulares que no sean vacías, de ahí que los puntos, las líneas y las fronteras 

no pueden considerarse como regiones espaciales [Gotts 1996; Bennett 1994; Renz and 

Nebel 1998; Cohn, Bennett et al. 97]. Para estos trabajos la relación básica es C(x,y) (x 

conecta con y). C(x,y) aparece cuando la clausura topológica de x e y comparten al 
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menos un punto. Utilizando la relación C(x,y) se definen un conjunto de relaciones 

topológicas atómicas que son mutuamente exclusivas y es un conjunto completo, es 

decir, dadas dos regiones una y solo una de las relaciones topológicas atómicas puede 

aparecer entre ellas. Una teoría de gran importancia dentro de este grupo es la teoría 

Region Connection Calculus (RCC) desarrollada en [Randell et al. 92]. 

El segundo conjunto de trabajos, consideran una región como un conjunto de puntos, 

por ello se denominan “Teorías de Conjunto de Puntos”. Para estas teorías las entidades 

básicas son puntos, líneas y áreas y las relaciones topológicas entre estas entidades se 

definen en función de las intersecciones de los interiores y las fronteras de cada 

conjunto de puntos [Egenhofer and Franzosa 1991; Pullar and Egenhofer 1988; 

Egenhofer 1991; Clementini and Di Felice 1995]. Cada trabajo dentro de este grupo 

define su propio conjunto de relaciones topológicas atómicas.  

2.1.2 ESTADO DEL ARTE SOBRE MODELOS DE MOVIMIENTO CUALITATIVO 

Cohn and Harazika afirman en [Cohn and Hazarika 01] que en la actualidad se ha 

desarrollado poco trabajo sobre el movimiento bajo una perspectiva cualitativa. En 

[Freksa and Zimmermann 93], [Musto, Stein et al. 00] y [Musto et al. 99] se estudia el 

movimiento de manera cualitativa. Pero en la mayoría de estos trabajos el movimiento 

se modela como una secuencia de cambios de posiciones, considerando para ello el 

concepto de vecindad conceptual, pero sin integrar el concepto de tiempo en el mismo 

modelo. Un trabajo que si que integra el concepto de tiempo en el mismo modelo es el 

trabajo de [Escrig and Toledo 02] que introduce un álgebra cualitativa para representar 

y razonar con la velocidad.  

2.1.3 ESTADO DEL ARTE SOBRE MODELOS CUALITATIVOS PARA EL 
RECONOCIMIENTO DE FORMAS 

La mayoría de trabajos cualitativos para la descripción de formas se pueden clasificar en 

cinco grupos como se describe a continuación: 

• Representaciones axiales: estos trabajos se basan en la descripción de los ejes 

del objeto, describiendo la forma cualitativamente al reducirla a un “skeleton” o 

“axis”. El “axis” es el arco que refleja alguna simetría o regularidad local dentro de 

la forma. La forma se puede generar desde el “axis” mediante el desplazamiento de 

una figura geométrica (denominada “generator”) a lo largo del axis.  El “generator” 

es una forma constante que mantiene un punto específico (por ejemplo el centro) 
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pero que cambia su tamaño e inclinación con respecto al axis. [Leyton 88 y Brady 

83] son algunos de los trabajos dentro de este grupo.  

• Representaciones basadas en primitivas: en estos trabajos los objetos más 

complejos se describen como combinaciones de objetos más primitivos y simples. 

Dentro de este grupo se pueden distinguir dos tendencias: 

o Cilindros generalizados o representaciones basadas en “geones”, que 

describen un objeto como un conjunto de primitivas junto con un conjunto 

de relaciones espaciales de conectividad entre ellas. [Biederman, 1987; 

Flynn & Jain, 1991]. 

o Representaciones constructivas, que describen un objeto como la 

combinación Booleana de conjuntos de puntos primitivos [Park & Gero, 

1999; Brisson, 1989; Ferrucci & Paoluzzi, 1991]. 

• Representaciones basadas en proyecciones y en el ordenamiento de la 

información. Dentro de este grupo diversos aspectos de la forma de un objeto se 

representan bien observando el objeto de diferentes ángulos, bien proyectando el 

objeto a diferentes ejes [Jungert, 1994; Schlieder, 1996; Freeman & Chakravarty, 

1980; Park & Gero, 1999; Damski & Gero, 1996]. 

• Representaciones topológicas y basadas en la lógica. Los trabajos dentro de este 

grupo utilizan topología y lógica para representar las formas [Cohn, 1995; Randell 

& Cui & Cohn, 1992; Clementini & Di Felice, 1997].  

• Representaciones basadas en Recubrimientos. En estos trabajos la forma des 

objeto se describe recubriendo el objeto con figuras simples, como rectángulos y 

esferas [Del Pobil & Serna, 1995]. 

2.2 Desarrollo de un Álgebra sobre Relaciones Topológicas adecuado a nuestros 
intereses. 

Se trata de desarrollar un álgebra para razonar sobre relaciones topológicas que se pueda 

integrar con el trabajo realizado en [Escrig & Toledo 01], puesto que son las líneas 

seguidas por el grupo de investigación ya que se trata de uno de los pocos trabajos que 

integra diversos aspectos espaciales de manera cualitativa y permite no solo la 

representación de todos ellos bajo un mismo modelo sino razonar con ellos. El trabajo 

de [Escrig & Toledo 01] integra orientación 2D, distancia comparada y absoluta y 
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direcciones cardinales. Con esta tarea se integra en el mismo modelo la capacidad de 

representar y razonar acerca de relaciones topológicas. 

El trabajo dentro de esta tarea ha sido realizado desarrollando un álgebra adecuada para 

razonar acerca de relaciones topológicas entre entidades representadas como puntos, 

líneas y áreas. Se trata de un trabajo basado en restricciones inspirado en el trabajo 

desarrollado en el “Calculus Based Method” (CBM) de Clementini, Di Felice y 

Oosterom [Clementini & Di Felice, 1995; Clementini et al., 1993]. Para ello se ha 

desarrollado un álgebra basada en aquella para intervalos temporales de Allen (1983). 

Las relaciones del álgebra desarrollada son las 4 relaciones atómicas del cálculo CBM 

junto con otras 3 relaciones provenientes del refinamiento de la relación topológica in 

del CBM, puesto que habitualmente nos interesa conocer si una región esta 

completamente dentro de otra, si bien está tocando la segunda región desde dentro, o 

bien si ambas regiones son iguales. Además, dentro del trabajo desarrollado se calcula 

los resultados de aplicar dos operaciones: la inversa y la composición a cada una de las 

relaciones atómicas. Estos resultados componen la tabla de inversas y las tablas de 

composición que juegan un papel central en la propagación del conocimiento en el 

álgebra utilizando el algoritmo de propagación de restricciones, es decir a la hora de 

razonar [Museros 98; Isli, Museros et al. 00; Museros and Escrig 01a; Museros and 

Escrig 01b y Museros and Escrig 01c]. Con ello se definen las siguientes relaciones 

topológicas: 
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Relación Definición Ejemplo Gráfico 
touch (h1, touch, h2)   ↔   h°1 ∩ h°2 = ∅   ∧   h1 ∩ h2 ≠ ∅  

 
 

cross (h1,cross,h2)↔dim(h°1 ∩ h°2)= 
max(dim(h°1),dim(h°2)) – 1  ∧   h1 ∩ h2≠h1   ∧   
h1∩h2≠h2 

 
 
 

overlap (h1, overlap, h2)↔dim(h°1)= dim(h°2)= dim(h°1 ∩  
h°2) ∧     h1∩h2≠h1 ∧  h1∩h2≠h2 

 
 
 

disjoint (h1, disjoint, h2)   ↔    h1 ∩ h2 = ∅  
 
 

equal Dado (h1, in, h2) ↔  h1 ∩ h2 = h1  ∧   h°1 ∩ h°2 ≠ ∅: 

if (h2, in, h1) then (h1, equal, h2) 
 

 
 
 

completely-inside Dado (h1, in, h2) y not (h1, equal, h2): 
if h1 ∩ δh2 ≠ ∅ then (h1, touching-from-inside, h2) 

 
 
 
 

touching-from-
inside 

If (h1, in, h2), not (h1, equal, h2) and not (h1, touching-
from-inside, h2) then: (h1, completely -inside, h2) 

 

 

completely-insidei (h1, completely-insidei, h2) ↔ 
                                             (h2, completely-inside, 
h1) 

 
 
 
 

touching-from-
insidei 

(h1, touching-from-insidei, h2)   ↔   
                                      (h2, touching-from-inside, h1) 

 
 
 
 

Tabla i. Definición y representación gráfica de las relaciones topológicas definidas. 

2.3 Desarrollo de un Álgebra para el Movimiento: Integración de Topología y 
Tiempo. 

El movimiento puede verse como una forma de cambio espacio-temporal, es por ello 

que dentro de esta tarea se ha desarrollado un álgebra que permita representar y razonar 

sobre el movimiento del mismo modo al realizado en [Escrig & Toledo 01] integrando 

para ello 2 tipos de conceptos: topología (información espacial) y tiempo. De este modo 

se desarrolla un modelo de representación del movimiento que permite razonar en 

mundos dinámicos en los que las relaciones espaciales entre las regiones (considerando 

al robot como una región en si mismo) cambian con el tiempo.  

Esta tarea se ha llevado a cabo formalizando la noción de continuidad espacio-temporal 

en una teoría cualitativa del movimiento en diversos artículos como se detalla a 

continuación: en el informe técnico [Museros and Escrig 02a] se presenta el trabajo 

preliminar acerca de la teoría del movimiento desarrollada; [Museros and Escrig 02b] 

A1, A2 

A L 

A1 A2 

L A 

A1 

A2 

A1 
A2 

A2 

A1 

A2 
A1 

A1 A2 
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presenta la teoría de movimiento finalmente desarrollada; [Museros and Escrig 02c] 

explica la aplicación de la teoría de movimiento a un problema de robótica móvil; 

[Museros and Escrig 02d] desarrolla la integración de la teoría del movimiento con 

otros aspectos espaciales como orientación y distancia, y dada la calidad de este artículo 

se nos invito a extenderlo y publicarlos en la revista Journal of Universal Computer 

Science [Museros and Escrig 03]; [Museros and Escrig 02e]; [Museros and Escrig 02f] 

desarrollan la teoría de movimiento como un modelo de satisfacción de restricciones; y 

finalmente [Museros and Escrig 02g] se trata de una publicación en la revista 

Inteligencia Artificial de diversos modelos desarrollados en el grupo de investigación 

integrando espacio (2-D y 3-D) y tiempo, como son velocidad, y movimiento. 

Las bases para la integración de diferentes aspectos espaciales en el campo del 

razonamiento espacial se han inspirado en el trabajo realizado en el razonamiento 

temporal, donde se ha integrado con éxito el álgebra de puntos, el álgebra intervalar y la 

información métrica [Meiri 91]. Para llevar a cabo la misma tarea integrando diversos 

aspectos espaciales en el mismo modelo se definen 3 pasos a seguir [Escrig and Toledo 

00]:  

• La representación de cada aspecto espacial a ser integrado. 

• La definición del Paso Básico de Inferencia (BSIP). Este paso se define como 

dada la relación espacial entre los objetos A y B, y la relación espacial entre los 

objetos B y C, el BSIP consiste en obtener la relación espacial entre los objetos A y 

C.  

• La definición del Proceso de Inferencia Completo (FIP), que consiste en repetir 

el BSIP tantas veces como sea posible, con la información inicial y la información 

obtenida en previos pasos por el BSIP, hasta que no obtengamos más información.  

En el trabajo realizado, topología junto con información temporal se integran siguiendo 

esta idea. Para definir el movimiento como integración de espacio y tiempo, el cálculo 

topológico desarrollado en la tarea anterior se integra a un álgebra temporal que hemos 

definido. En el álgebra temporal definida las variables representas puntos en el tiempo, 

y con ello se definen 5 relaciones primitivas: ==, next, prev, >>, <<. Para completar el 

álgebra temporal se definen las operaciones inversa y composición de estas relaciones. 

Con todo ello se define el álgebra del movimiento cualitativo, en la cual las relaciones 

binarias entre 2 objetos que pueden ser puntos, líneas o áreas, denominados h1 y h2 en 
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un punto del tiempo t se definen como restricciones terciarias o proposiciones, donde la 

relación topológica r entre h1 y h2 en el punto del tiempo t se denota como (h1,r,h2)t. 

Para el álgebra dada, se construyen las tablas de composición y de inversas, un ejemplo 

de una de las tablas de composición creadas se muestra en las tabla ii). Con estas tablas 

se define tanto el BSIP como el FIP, lo cual permitirá razonar con el movimiento 

cualitativo.  

Relación Temporal →  

Relación Espacial ↓  
next o prev << o >> == 

Touch (T) {C,D,T} {T,TFI,CI} {T} 

Cross (C) {T,TFI,C} {C,D,CI} {C} 

Disjoint (D)  {T,D} {D,C,TFI,CI} {D} 

Touching- From-Inside 
(TFI) 

{C,CI,TFI} {TFI,T,D} {TFI} 

Completely-Inside (CI) {TFI,CI} {CI,T,C,D} {CI} 
 

Tabla ii). Tabla LAt-Tabla, que muestra la compasión de h1 = línea y h2 = área en el momento del 
tiempo t1 y t2 respectivamente. 

La teoría de movimiento desarrollada es útil para permitir a un robot razonar sobre la 

secuencia de situaciones topológicas que se encontrará durante su navegación de una 

región inicial a una región objetivo. De este modo, el robot será capaz de detectar 

situaciones en las cuales este perdiendo su dirección de movimiento. Por ejemplo, si 

tenemos como situación inicial la descrita en la figura i) en el momento del tiempo t0, y 

queremos que el robot navegue de la región 1 a la región 2, con el álgebra de 

movimiento desarrollada sabemos que la secuencia de relaciones topológicas entre el 

robot (interpretado como una región en sí mismo) y ambas regiones será la siguiente (la 

figura i) muestra esta secuencia gráficamente): 

(Robot,Completely-Insidei,Region1)t0 and 
(Robot,Disjoint,Region2)t0, 

(Robot,Touching-From-Insidei,Region1)t1 and 
(Robot,Touch,Region2)t1, 

(Robot,Overlap,Region1)t2 and (Robot,Overlap,Region2)t2, 

(Robot,Touch,Region1)t3 and (Robot,Touching-From-
Insidei,Region2)t3, 

(Robot,Disjoint,Region1)t4 and (Robot,Completely-
Insidei,Region2)t4 

donde t0 prev t1 prev t2 prev t3 prev t4. 
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Si en algún momento se encuentra con una situación topológica diferente a la esperada 

según la secuencia descrita, el robot está perdiendo su dirección del movimiento y 

podemos tomar las medidas oportunas para solventarlo. 

 
 

 

 

 

a. Situación Inicial 

 

 

 

 

b. Robot Touching-From-Insidei region1 y Touch region2. 

 

 

 

 

c. Robot Ovelap ambas regiones 

 

 

 

 

d. Robot Touching-From-Insidei region2 and Touch region1 

 

 

 

 

e. Situación Final 

Figura i). Representación Gráfica de la secuencia topológica seguida para que el robot navege de la 
región 1 a la región 2. 

2.4 Desarrollo de una Teoría Cualitativa para el Reconocimiento de Objetos. 

Finalmente se desarrollará una teoría de reconocimiento de formas, capaz de reconocer 

tanto polígonos regulares como no regulares, siempre y cuando sean cerrados, como 

objetos con segmentos curvos o completamente curvilíneos, ambos tipos con o sin 

agujeros. 

Esta tarea se ha llevado a cabo desarrollando un trabajo para la descripción cualitativa 

de formas considerando sus ángulos, longitud comparada de las aristas, concavidades y 

Robot 

Region1 

Region2 
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convexidades y tipos de curvatura de las fronteras de las formas junto con el área y 

color de los objetos ambos tratados cualitativamente. Para la descripción de formas con 

agujeros se utilizan dos conceptos para relacionar cada agujero con su contenedor: 

topología y orientación cualitativa espacial. Cada objeto se describe como un “string”  

que contiene las características cualitativas relevantes del objeto, y este “string” es el 

utilizado en el proceso de correspondencia del objeto frente a otros objetos. Un ejemplo 

del “string” resultante al aplicar la teoría desarrollada se muestra en la figura ii). 

 

Figura ii). Ejemplo de una figura y su descripción cualitativa (QualShape(S)) de la misma utilizando la 
teoria de reconocimiento de formas desarrollada. 

La teoría desarrollada ha sido presentada en diversos artículos como se describe a 

continuación: [Museros and Escrig 04a] describe la fase inicial de la teoría cualitativa, 

que permite la descripción y reconocimiento únicamente de objetos poligonales; 

[Museros and Escrig 04c] describe la teoría cualitativa ampliada para describir y 

reconocer objetos poligonales y con curvas y [Museros and Escrig 04d] describe la 

teoría cualitativa final capaz de reconocer objetos poligonales, con curvas y con uno o 

varios agujeros.  

2.5 Aplicación de las Teorías Desarrolladas. 

Se han implementado dos aplicaciones diferentes, una de ellas centrada en la robótica 

móvil y la otra en la industria cerámica. 

2.5.1. APLICACIÓN EN EL CAMPO DE LA ROBÓTICA MÓVIL. 

Por un lado tanto la teoría de movimiento que integra el álgebra topológica y tiempo, 

como la teoría para el reconocimiento de formas en su versión más simple 

(reconocimiento de formas poligonales no regulares) se han aplicado en un primer paso 

a la navegación simulada de un robot real, en concreto del robot Khepera2, utilizando 

como simulador el entorno Webots de Cyberbotics. Una vez simulado el software 

realizado se ha probado en el robot real. El mundo simulado se muestra en la siguiente 

figura, y esta compuesto por dos habitaciones conectadas por un pasillo en las cuales se 

QualShape(S)=[with-holes, with-curves, [[0,0,0], [right-
angle,convex,bigger], [curve, convex, acute], [right-angle, 
convex,bigger],  [right-angle, convex, smaller], [right-angle, 
convex,bigger]],CIi,C,[[right-angle, convex, smaller], [right-
angle, convex, bigger],[right-angle, convex, smaller], [right-
angle, convex, bigger]]]. 
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colocan 2 objetos que pueden ser iguales o no. El robot (figura iiib), que inicialmente no 

conoce el entorno, en primer lugar construye su mapa topológico del entorno, y a 

continuación busca el primer objeto en una de las habitaciones, lo recorre creando su 

descripción cualitativa y pasa a buscar el siguiente objeto utilizando el álgebra de 

movimiento para evitar perderse. Cuando encuentra el segundo objeto lo recorre y 

realiza su descripción cualitativa, que compara con la inicial de manera cíclica y 

determina si ambos objetos poseen la misma forma o no [Museros and Escrig 04e]. El 

mundo simulado se ha construido a escala para el robot real.  

   
a)                    b) 

Figura iii). a) Mundo simulado y b) robot utilizado. 

2.5.2. APLICACIÓN EN EL CAMPO DE LA INDUSTRIA CERÁMICA. 

Por otro lado, toda la teoría de reconocimiento de formas desarrollada se aplicará al 

reconocimiento de teselas individuales captadas a partir de un sistema de visión frente a 

un diseño gráfico de un mosaico cerámico. Esta aplicación puede ser utilizada en un 

futuro para su aplicación en un brazo manipulador real para el ensamblaje de mosaicos 

cerámicos. Esta tarea se ha completado creando un software que a partir de imágenes de 

teselas capturadas con una cámara digital, el software trata dichas imágenes de manera 

semi-cualitativa [Museros and Escrig 05] para obtener los puntos relevantes de dicha 

imagen y de ese modo poder crear la descripción cualitativa de las formas de dichas 

imágenes. Las imágenes se tratan semi-cualitativamente aplicando inicialmente el 

algoritmo cuantitativo de Canny [Canny 86] y posteriormente se tratan de manera 

cualitativa comparando las pendientes entre puntos consecutivos tomados en función de 

una granularidad, para obtener los puntos relevantes en coordenadas (x,y) absolutas 

respecto a la imagen y el tipo de segmento entre dos puntos relevantes, bien se trata de 

un segmento recto (denotado por el símbolo straight- line) o una curva (denotado por el 
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símbolo curve). Dada la imagen que se muestra en la figura iv)a, los puntos relevantes 

obtenidos son los siguientes:  

• Para la figura al Norte de la imagen, Figure1_v= [(164,87), curve, (249,113), 

curve, (317,81), curve, (351,167), curve, (322,229), curve, (241,200), curve, 

(167,233), curve, (131,152), curve]; 

• Para el rectángulo al este de la imagen, Figure2_v=[(487,94), straight- line, 

(497,315), straight-line, (418,315), straight- line, (410,94), straight- line]; 

• Para el octágono de la imagen, Figure3_v=[(210,297), straight- line, (327,291), 

straight- line, (384,351), straight- line, (389,457), straight- line, (342, 510), 

straight- line, (220, 513), straight-line, (170,467), straight-line, (164,347), 

straight- line]; 

• Para el rectángulo al sur-oeste de la imagen, Figure4_v=[(95,457), straight- line, 

(235,632), straight-line, (172, 683), straight- line, (32,506), straight- line]; 

• Finalmente para la figura en forma de hoja, Figure5_v=[(360,573), straight- line, 

(388,600), straight-line, (435,560), straight- line, (438,619), straight- line, 

(480,622), straight-line, (467,658), straight- line, (388,674), straight- line, 

(342,608), straight-line,]. 

 

 
 

a)     b) 

Figure iv). a)Ejemplo de fotografía, y b) del resultado gráfico obtenido tras tratar la imagen semi-
cualitativamente. 
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La figura iv)b muestra el resultado obtenido al tratar la imagen. El color de cada tesela 

también se calcula, utilizando las coordenadas RGB del píxel posicionado en el 

centroide de la tesela, en el caso de que en el centroide se encuentre un agujero, se 

calcula las coordenadas RGB del punto más próximo al centroide fuera del agujero. 

Por otro lado, la aplicación final desarrollada, recibe las imágenes, las trata y recibe por 

otro lado un diseño vectorial (formato .AI) del diseño de un mosaico cerámico. De este 

diseño también se construye la descripción cualitativa de todas sus teselas. La 

descripción de cada tesela en las imágenes se compara con la descripción de las teselas 

del mosaico y se determina si la tesela de la imagen aparece en el mosaico o no, y en 

caso de aparecer no solo se determina su posición sino también el ángulo que se debe 

rotar la tesela de la imagen (que esta situada sobre una cinta transportadora) para que en 

un futuro un brazo manipulador tomando la tesela por su centroide la coloque en la 

posición y orientación dada por el mosaico. La siguiente figura muestra una imagen de 

la aplicación desarrollada [Museros and Escrig 04b]. 

 

 
 

Figura v). Imagen de la aplicación para el reconocimiento de teselas frente a un mosaico. 
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CHAPTER 1 
INTRODUCTION 

The present PhD thesis is centred on the development and application of a model 

to reason about shape and about movement in a qualitative way, which means in a way 

similar to the human reasoning. The interest of this study originates from the necessity 

to find solutions for the recognition of objects and the description and reasoning about 

the movement in situations with high uncertainty, as it is the case of robotic 

applications, where robots only have limited and vague sensorial information. In these 

situations the use of a Qualitative Reasoning (QR), which allows the system to handle 

ambiguities and errors, will be the most suitable. Therefore, since this PhD thesis is 

developed within the QR frame, which is a subfield of Artificial Intelligence this 

chapter, especially section 1.1, represents an introduction to QR as a mature subfield of 

the Artificial Intelligence field.  

Since shape is itself a spatial feature and movement can be seen as an integration of 

space and time by describing it as an object whose spatial relation with its environment 

changes in time, then there are two subfields inside QR directly related to the work 

developed in this dissertation: Qualitative Temporal Reasoning and Qualitative Spatial 

Reasoning, which are presented in section 1.2 and 1.3 respectively.  

So, the movement of an object has been considered in this PhD thesis as a shape whose 

topologic relation with its environment (considered as another shape) changes in time. 

On the other hand the shape of the objects, which is a spatial aspect in itself, has also 

been studied using topological concepts. The recognition of objects is important during 

the movement of a robot since for the accomplishment of certain tasks, the robot must 

be able to recognize the objects which it comes across during its trajectory, since these 

objects can be landmarks or reference points that provide to the robot with spatial 
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information about its environment. Therefore this work will be centred on the study of 

three features of space: the shape of the objects, the topology, and the movement. 

Several approaches exist on the shape of objects, on topology and on movement and 

some of them will be studied in greater depth during chapter 2, which describes a state-

of-the-art of each one.  

1.1  INTRODUCTION TO QUALITATIVE REASONING. 

From its origins until now, Artificial Intelligence (AI) has been defined differently by 

several authors. For instance Stuart Russell in 1995 [Russell 95] defines AI as the 

branch of computer science concerned with making computers that can do tasks that up 

to the moment only human beings can do. But this definition implies that when the 

computer is able to do a human task, this task is not more a task inside AI. Therefore I 

would prefer to define AI as intelligence exhibited by an artificial entity (usually a 

computer). In order to understand this definition, we should explain what we consider as 

intelligence. 

Intelligence has been defined in a public statement named “Mainstream Science on 

Intelligence”, which was signed by 52 intelligence researchers in 1994, as a very 

general mental capability that, among other things, involves the ability to reason, plan, 

solve problems, think abstractly, comprehend complex ideas, learn quickly and learn 

from experience. It is not merely book learning, a narrow academic skill, or being smart 

at test-taking. Rather, it reflects a broader and deeper capability for comprehending our 

surroundings—"catching on", "making sense" of things, or "figuring out" what to do.  

But, since individuals differ from one to another in their ability to understand complex 

ideas, to adapt effectively to the environment, to learn from experience, to engage in 

various forms of reasoning, or to overcome obstacles by taking thought, we consider 

that this definition is not complete. Two individuals differ in solving problems due to 

emotional and personal aspects, such as creativity, personality, character or wisdom. So 

we consider that these aspects have to be included in the definition of intelligence. For 

us, intelligence is the mental capacity to reason, plan, solve problems, think abstractly, 

comprehend ideas and language, and learn using the individual mental capacities, as  

creativity, personality, character or wisdom. 
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Although AI has a strong science fiction connotation, it forms a vital branch of 

computer science, dealing with intelligent behavior, learning and adaptation in 

machines. Research in AI is concerned with producing machines to automate tasks 

requiring intelligent behavior. Examples include control, planning and scheduling, the 

ability to answer diagnostic and consumer questions, handwriting, speech, and facial 

recognition. As such, it has become a scientific discipline, focused on providing 

solutions to real life problems. AI systems are now in routine use in economics, 

medicine, engineering and the military, as well as being built into many common home 

computer software applications, traditional strategy games like computer chess and 

other video games. 

Therefore, Artificial Intelligence generates different methods allowing one to use 

computers for some typically human activities: theorem proving, diagnoses, commercial 

activities, scheduling, data interpretation, oral speaking and communication, making 

decisions, manufacturing, designing, predicting, etc.  

A human being relies on reasoning based on commonsense knowledge in everyday 

situations as well as in highly specialised domains. Commonsense is needed for both 

understanding natural language sentences and for predicting the results of certain 

actions in real world environment. It helps to restrict the number of considered cases in 

complex situations and to focus attention on crucial problems of the considered task. 

Modelling commonsense is vital for construction of autonomous robots, who have to 

reason about the results of their actions in order to avoid going anything unsafe. 

Commonsense reasoning relaxes the strongly mathematical formulation of physical 

laws in real numbers, and the quantitative obsession of classical physics. Instead, 

reasoning proceeds in qualitative notions so that heavy and light objects of those of very 

small, normal and large size may be distinguished. From this idea we can derive the 

definition of Qualitative Reasoning (QR) which is the reasoning related to a non-

numerical description of a system, preserving all its important behavioural properties 

and distinctions. Qualitative Models aim to capture the fundamental aspects of a system 

or mechanism, while suppressing much of the detail. Methods such as abstraction and 

approximation are often used to build models based on qualitative rather than numerical 

aspects of a system.  
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The principal goal of Qualitative Reasoning (QR) is to represent not only our everyday 

commonsense knowledge about physical world, but also the underlying abstractions 

used by engineers and scientists when creating quantitative models. So, QR generates 

representations for continuous aspects of the world, such as space and time, which 

support reasoning with very little information. As Forbus stated [Forbus 96] typically 

QR has focused on scientific and engineering domains, hence its first name Qualitative 

Physics. It is motivated by two observations: 

§ People draw useful conclusions about the physical world without differential 

equations. In our daily lives we figure out what is happening around us and how 

we can affect it, working with far less data, and less precise data, than would be 

required to use traditional, purely quantitative methods.  

§ Scientists and engineers appear to use qualitative reasoning when they 

understand a problem, when they set up more formal methods to solve particular 

problems, and when they interpret the results of quantitative simulations, 

calculations, or measurements.  

Qualitative Physics began with de Kleer’s investigation on how qualitative and 

quantitative knowledge interacted in solving a subset of simple textbook mechanism 

problems [de Kleer 77]. After roughly a decade of initial explorations, the potential for 

important industrial applications created a lot of high interest in the field in the mid-

1980s, and the area has been growing steadily with rapid progress. Given the strong 

potential that has been detected for industrial applications and its importance in 

understanding human cognition, work in qualitative modelling is likely to remain an 

important area in AI. 

Nowadays, QR has become more than just Qualitative Physics. Most of the work has 

dealt with reasoning about scalar quantities, whether for instance they denote the level 

of a liquid in a tank, or the amount of investment in an economical model. Using the 

knowledge captured by QR and appropriate reasoning methods, a computer could make 

predictions, diagnoses, and explain the behaviour of physical systems in a qualitative 

manner, even when a precise quantitative description is not available or is 

computationally intractable. The key to a qualitative representation is not simply that it 



 5 

is symbolic, and utilises discrete quantity steps, but that the distinctions made in these 

discretisations are relevant to the behaviour being modelled.  

As with many other representation issues, there is no single, universal “best” qualitative 

representation. Instead there exist several choices, each with their own advantages and 

disadvantages for particular tasks. What all of them have in common is that they 

provide notations for describing and reasoning about continuous properties of the 

physical world.  

Several qualitative representations have been developed for different aspects as quantity 

[Forbus 84; Abbot et al.  87; Paritosh 03; Paritosh 04], mathematical relationships 

[Forbus 84; Williams 91; Trave-Massuyes et al. 03], ontology [Alvarez-Bravo et al. 04; 

Bessa Machado and Bredeweg 03], causality [Kuipers 84; Bochman 03; Ferguson et al.  

00; Forbus, Ferguson and Usher 01], space, and time. Represent and reason about space 

and time are aspects directly related with the work developed in this PhD thesis, 

therefore the concepts of space, time and reasoning are dealt in sections 1.1.1, 1.1.2 and 

1.1.3 respectively. Sections 1.1.4, and 1.1.5 present two more concepts involved with 

the representation and reasoning about time and space, which are the concept of 

granularity and the concept of conceptual neighbourhood. 

1.1.1 Time 

Time has long been a major subject of philosophy, art, poetry, and science. There are 

widely divergent views about its meaning; hence it is difficult to provide an 

uncontroversial definition of time. 

The Oxford English Dictionary defines it as "the indefinite continued progress of 

existence and events in the past, present, and future, regarded as a whole." Another 

standard dictionary definition is "a nonspatial linear continuum wherein events occur in 

an apparently irreversible order." 

The measurement of time has also occupied scientists and technologists, and was a 

prime motivation in astronomy. Time is also a matter of significant social importance, 

having economic value ("time is money") as well as personal value, due to an awareness 

of the limited time in each day and in our lives. Units of time have been agreed upon to 
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quantify the duration of events (a significant occurrence point in time) and the intervals  

between them. Regularly recurring events and objects with apparent periodic motion 

have long served as standards for units of time. Examples are the apparent motion of the 

sun across the sky, the phases of the moon, and the swing of a pendulum. 

In fact, time is currently one of the few fundamental quantities (quantities which cannot 

be defined via other quantities because there is nothing more fundamental known at 

present). Thus, in common with other fundamental quantities (like space and mass), 

time is defined via measurement, defining as the standard unit for time second, from 

which larger units are defined like the minute, hour, and day. 

The seconds and minutes are expressed using a number consisting of two decimal digits 

and having modulo of 60. It is not to be confused with base-60 which refers to 

sexagesimal numerals. Hours are expressed using a number consisting of two decimal 

digits and having modulo of 24, but is commonly also expressed using the 12-hour 

clock. 

Another form of time measurement consists of studying the past. Events in the past can 

be ordered in a sequence (creating a chronology), and be put into chronological groups 

(periodization). One of the most important systems of periodization is Geologic time, 

which is a system of periodizing the events that shaped the Earth and its life. 

Chronology, periodization, and interpretation of the past are together known as the 

study of history. 

The use of time  is an important issue in understanding human behaviour, education, and 

travel behaviour. But, different people may judge identical lengths of time quite 

differently. Time can "fly"; that is, a long period of time can seem to go by very 

quickly. Likewise, time can seem to "drag," as in when one performs a boring task. 

Time appears to go fast when sleeping, or, to put it differently, time seems not to have 

passed while asleep. Time also appears to pass more quickly as one gets older. For 

example, a day for a child seems to last longer than a day for an adult. One possible 

reason for this is that with increasing age, each segment of time is an increasingly 

smaller percentage of the person's total experience. 
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In explaining his theory of relativity, Albert Einstein is often quoted as saying that 

although sitting next to a pretty girl for an hour feels like a minute, placing one's hand 

on a hot stove for a minute feels like an hour. This is intended to introduce the listener 

to the concept of the interval between two events being perceived differently by 

different observers. Due to this fact which reveals that time is perceived differently by 

different people and therefore it is subjective, the information we manage about time is 

incomplete, uncertain, and even inconsistent. So a good way to study time is using 

qualitative models which deal with uncertain information in a suitable way. 

1.1.2 Space 

The nature of space has also been a prime occupation for philosophers and scientists for 

much of human history, and hence it is difficult to provide an uncontroversial and clear 

definition outside of specific defined contexts. 

Space has a range of definitions: 

• One view of space is that it is part of the fundamental structure of the universe, a 

set of dimensions in which objects are separated and located, have size and 

shape, and through which they can move.  

• A contrasting view is that space is part of a fundamental abstract mathematical 

conceptual framework (together with time and number) within which we 

compare and quantify the distance between objects, their sizes, their shapes, and 

their speeds. In this view space does not refer to any kind of entity that is a 

"container" that objects "move through".  

The notion of space is also one of the few fundamental quantities in physics, meaning 

that it cannot be defined via other quantities because there is nothing more fundamental 

known at present. Therefore, similar to the definition of othe r fundamental quantities 

(like time), space is defined via measurement, defining as the standard unit for space the 

meter. 

Space is typically described as having three dimensions, and that three numbers are 

needed to specify the size of any object and/or its location with respect to another 

location. Modern physics (mainly relativistic physics) does not treat space and time as 
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independent dimensions, but treats both as features of spacetime – a conception that 

challenges intuitive notions of distance and time. 

In relativistic physics, spacetime is a model that combines 3-D space and 1-D time into 

a single construct called the space-time continuum (in which time plays the role of the 

4th dimension). According to Euclidean space perception, our universe has three 

dimensions of space, and one dimension of time. By combining the two concepts into a 

single manifold, physicists are able to significantly simplify the form of most physical 

laws, as well as to describe the workings of the universe in a more uniform way. 

Space-times are the arenas in which all physical events take place — for example, the 

motion of planets around the Sun may be described in a particular type of space-time, or 

the motion of light around a rotating star may be described in another type of space-

time. 

The use of space has also cognitive aspects associated. In fact, each individual has 

his/her cognitive space, resulting in a unique categorization of their ideas. The 

dimensions of this cognitive space depend on information, training and finally on a 

person's awareness. Subjective ideas about space will depend heavily on cultural 

background. Therefore, as in the case of time, the spatial information is obtained 

through perception and is subjective, and the information we manage about space is 

once more incomplete, uncertain, and even inconsistent. In other words, we only deal 

with partial information about space. So, the use of qualitative models to manage space 

concepts seems to be the most suitable in order to manage this uncertainty. 

1.1.3 Reasoning 

Reasoning is defined very differently depending on the context of the understanding of 

reason as a form of knowledge.  

The logical definition of reasoning is the act of using reason, to derive a conclusion 

from certain premises, using a given methodology.  In this definition we use the term 

reason to describe the concept of reasoning; therefore we should explain what means 

reason specifically. 
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Reason is a term used in philosophy and other human sciences to refer to the higher 

cognitive faculties of the human mind. It describes a type of thought or aspect of 

thought, especially abstract thought, and the ability to think abstractly, which is felt to 

be especially human.  

Within idealist philosophical contexts, reasoning is the mental process which informs 

our imagination, perceptions, thoughts, and feelings with whatever intelligibility these 

appear to contain; and thus links our experience with universal meaning. The specifics 

of the methods of reasoning are of interest to a lot of disciplines such as philosophy, 

logic, psychology, and artificial intelligence. 

There are two most commonly used explicit methods to reach a conclusion which are 

called deductive reasoning and inductive reasoning. But there are also other methods of 

reasoning, which are the abductive reasoning and analogy.  

In deductive reasoning, given true premises, the conclusion must follow and it cannot 

be false. This type of reasoning is non-ampliative - it does not increase one's knowledge 

base - since the conclusion is inherent to the premises. A classical example of deductive 

reasoning is syllogisms for example: 

• all humans are mortal,  

• Socrates is a man,  

• therefore, Socrates is mortal.  

In inductive reasoning, on the other hand, when the premises are true, then the 

conclusion follows with some degree of probability. This method of reasoning is 

ampliative, as it gives more information than what was contained in the premises 

themselves. A classical example would be “The sun rose to the east every morning up 

till now, therefore the sun will rise to the east also tomorrow”.  

A third method of reasoning is called abductive reasoning, or inference to the best 

explanation. This method is more complex in its structure and can involve both 

inductive and deductive arguments. The main characteristic of abduction is that it is an 

attempt to favor one conclusion above others by either attempting to falsify alternative 

explanations, or showing the likelihood of the favored conclusion given a set of more or 
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less disputable assumptions. In fact, we can define inference as the act or process of 

drawing a conclusion based solely on what one already knows. Suppose you see rain on 

your window — you can infer from that, quite trivially, that the sky is grey. Looking out 

the window would have yielded the same fact, but through a process of perception, not 

inference (note however that perception itself can be viewed as an inferential process). 

Finally, a fourth method of reasoning is analogy. Analogy is the cognitive process of 

transferring information from a particular subject (the analogue or source) to another 

particular subject (the target). In a narrower sense, analogy is an inference or an 

argument from a particular to another particular, as opposed to deduction, induction, 

and abduction, where at least one of the premises or the conclusion is general. The 

conclusion of an analogy is only plausible. Analogical reasoning is very frequent in 

common sense, science, philosophy and the humanities, but sometimes it is accepted 

only as an auxiliary method. 

1.1.4 Granularity 

Granularity is not a question of scale, it is a matter of the amount of information which 

is included in the representation. A coarse level of granularity will provide more 

abstracted information whereas a fine level of granularity will provide more detailed 

information. In a coarse level of granularity some of the fine details included in the fine 

level of granularity have been smoothed over or averaged out. 

In qualitative representations, in which some relations are established (for example, 

“close” or “far” in the determination of the distance between objects), coarser or finer 

descriptions can be defined by cascading relations, for instance by making fewer or 

more comparisons of the quality involved. In absence of a basic reference unit in the 

qualitative treatment, granularity becomes a relative concept: coarseness of a 

representation depends on the context of the concepts involved. For example, in the 

following sentences which determine the comparative distance between spatial object, 

the same qualitative relation, “close”, is used with different granularity: 

“The cinema is close to the city center.” 

“Segovia is close to Madrid.” 
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The distance involved in the second sentence is much bigger than in the first one, 

therefore we can say that the first sentence is given at a high (or fine) level of 

granularity. 

1.1.5 Conceptual Neighbourhood. 

Conceptual neighborhood was first defined for Qualitative Reasoning by Freksa [Freksa 

91] for temporal intervals as follows: 

“Two relations between pairs of events are conceptual neighbors if they can be directly 

transformed into another by continuous deformation (for instance shortening or 

lengthening) of the events.” 

Events are related with time, but this definition has been translated into qualitative 

spatial concepts, as object boundaries, or regions by [Escrig and Toledo 98] as follows: 

“Two qualitative regions, A and B, are conceptual neighbors if, and only if, in a 

continuous translation from a position of the qualitative region A to a position of the 

qualitative region B, there does not exist a position belonging to another qualitative 

region C”. 

Conceptual neighborhood is not a concept exclusively related to QR, but it is also useful 

in this field since conceptually neighboring relationships between events or regions 

have similar behavior [Freksa 91].  

Conceptual neighborhood is important since it intrinsically reflects the structure of the 

represented world with their operations. Such representations of properties of the 

represented domain allow us to implement reasoning strategies which are strongly 

predisposed towards the operations in the represented domain. They can be viewed as 

procedural models of this domain. In the case of representing the spatial domain, 

conceptual neighborhoods contribute to the implementation of imagery processes. An 

imagery process means the creation (or re-creation) of any experience in the mind. From 

a computational point of view they have the advantage of restricting the problem of 

space in such a way that only operations will be considered which are feasible in the 

specific domain. 
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1.2  QUALITATIVE TEMPORAL REPRESENTATION AND 
REASONING. 

Representing and manipulating knowledge about time and space is recognised as a 

crucially important part of commonsense reasoning, and therefore of QR. In this section 

we present an introduction about Qualitative Temporal Representation and Reasoning 

and section 1.3 presents an introduction to Qualitative Spatial Representation and 

Reasoning. 

Temporal reasoning arises when dealing with problems involving time; the ability to 

represent and manage temporal knowledge is innate in humans as well as in artificial 

agents. This explains why temporal reasoning appears in so many areas, including 

planning, discourse analysis, natural language understanding, etc. In any activity that 

involves change, time is an essential feature.  

The main goals of temporal reasoning are: 

• The formalisation of the notion of time. 

• The construction of a computational rule-based system to reason about time. 

A typical temporal reasoning problem must be able to represent and manage problems 

as next information presents: 

Joseph and Frank work together. Joseph takes less than 20 minutes to get to work and 

Frank 15-20 minutes. Today Joseph left home between 7:05-7:10 a.m., and Frank 

arrived at work between 7:50 and 7:55 a.m.  

If we want to represent and then reason qualitatively about such knowledge, for instance 

answering queries such as “who was the first to arrive to work?”, then it is necessary to 

represent qualitatively the information presented. To represent this information we need 

two types of temporal objects: points and intervals.  



 13 

1.2.1 Types of Temporal Objects. 

To represent time information we can chose between using intervals or points. 

Intervals correspond to time periods during which events occur or proposition hold. 

Points represent the beginning and ending points of some events, as well as neutral 

points of time. For example, in our story we have two meaningful events: “Joseph went 

to work” and “Frank went to work” respectively. These events are associated with the 

intervals J=[P1,P2] and F=[P3,P4]. The extreme points of these intervals P1, P2, P3 and 

P4 represent times at which Joseph and Frank left home and arrived to work. We can 

also introduce a neutral point P0 to represent the “beginning of the world” in our story. 

One possible choice for P0 is 7:00 a.m.  

1.2.2 Origins of Qualitative Temporal Reasoning. 

Based in the distinction between points and intervals to represent time, we can find in 

the literature two main temporal algebras. These two algebras which represent the 

origins of the Qualitative Temporal Reasoning (QTR) field are: 

• Allen’s interval algebra [Allen 83]. 

• Vilain and Kautz’s point algebra [Vilain and Kautz 89]. 

Allen’s interval algebra [Allen 83] has become an increasingly popular formalism for 

representing and reasoning about temporal relationships between time intervals. 

This algebra is based on 13 relations plus a set of operations defined over these relations 

which can be used when reasoning about time. The 13 relations defined by the Allen’s 

interval algebra correspond to the simple definite mutually exclusive relations that may 

exist between two intervals (Figure 1.1). The most general case allowing any arbitrary 

disjunction on relationships between temporal intervals that can be expressed in first-

order logic is too complex to be considered for most AI applications. Therefore, Allen 

takes vectors of simple relations that are interpreted as the disjunction of relations. For 

instance, the vector (I1 Before Meets Overlaps I2) means that the interval I1 either occurs 

before, meets or overlaps the interval I2. This is a way to represent uncertainty on the 
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interval temporal relation and allows us to express any possible relation between two 

intervals. 

A before  B B after A 

A meets B B met_by A 

A overlaps  B B overlapped_by A 

A starts B B started_by A 

A during B B contains  A 

A finishes B B finished_by A 

A equal B B equal A 

Figure 1.1. The 13 Allen’s relations between temporal intervals 

In Allen’s interval algebra two operations are introduced: Addition interpreted as the 

intersection of vectors (the least restrictive relation that the two vectors together admit) 

and Multiplication is the 3-elements transitivity, or composition operation: from [I1V1I2] 

and [I2V2I3], V1*V2 is the least restrictive relation between I1 and I3.  

Allen also introduces an algebra which defines the relations between a point and an 

interval, algebra that we have called Allen’s point -interval algebra. Figure 1.2 

represents graphically the five basic temporal relations between a point, named p, and 

an interval, named I. The figure shows the meaning of each relation. 
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p before  I 

p starts I 

p during I 

p finishes I 

p after I 

Figure 1.2 The basic temporal relations between a point p and an interval I as [Allen 83] describes. 

The Vilain and Kautz’s point algebra [Vilain and Kautz 89] defines three basic 

relations that can hold between two points, which are: < (which means precedes), = 

(which means equal), and > (which means follows). As in the interval algebra, we want 

to be able to represent indefinite information so they allow the relationship between two 

points to be a disjunction of the basic relations. Point Algebra is the algebraic structure 

with underlying set {<, =, =, >, =, ?, ?), unary operator converse, and binary operators 

intersection and composition. Note that =, for example, is an abbreviation of {<, =} and 

? means there is no constraint between two points, {<, =, >}. 

However, the notion of interval appears to be necessary in many cases. The idea of 

representing an interval as a pair of points is not new [McDermott 82], and it benefits 

from the computational advantages of the point algebra. But only a fragment of the 

interval algebra can be trans lated to the point algebra, and this fragment is called the 

restricted interval algebra [Vilain and Kautz 89]. The restricted interval algebra 

corresponds to the case where all constraints represent convex sets of intervals and, 

therefore, they can be expressed without the use of disjunctions between constraints on 

different pairs of endpoints. Figure 1.3 shows some examples. In this figure each 

interval is defined by its two endpoints as follows: A=[A-,A+] and B=[B-,B+]. 

I p 

I p 

I p 

I p 

I p 
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INTERVAL VECTOR  POINT TRANSLATION  FIGURE 

A(before meets overlaps)B   A- precedes B- 

A- precedes A+ 

   A+ precedes B+ 

     B- precedes B+ 

A(before after)B  No equivalent point algebra 

Figure 1.3 . Translating interval algebra to point algebra examples. 

Using the Allen’s point-interval algebra representation we can represent graphically the 

example given at the beginning of the section as figure 1.4 shows, where the point P0 

means the neutral point “beginning of the world”, the interval J0 means the interval of 

time when Joseph left home and the point J1 means the point of time in which Joseph 

got work, and F0 is the interval in which Frank left home and the interval F1 is the 

interval in which Frank got work.  

 

 

 

Figure 1.4 . Example representation following Allen’s interval algebra. 

But if we want to infer new information from the one represented we need to reason 

about the time represented. The next section explains how reasoning is carried out in 

Qualitative Temporal Reasoning (QTR). 

1.2.3 Reasoning in Qualitative Temporal Reasoning. 

QTR consists of formalizing the notion of time in a qualitative way- as humans beings 

manage temporal information- and providing means to represent and reason about 

temporal aspects of knowledge. It is notable how naturally and efficiently humans are 

able to manage time during everyday life when interacting with the environment. The 

QTR community tries to understand the principles that make possible these forms of 
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reasoning and then incorporate them into automatic reasoning systems. Moreover, the 

QTR community agrees that for several problems the representation of qualitative 

temporal relations and the reasoning about them is essential, as for natural language 

understanding [Allen 84; Song and Cohen 91; Beaumont, Sattar et al. 01], general 

planning [Allen 91; Song and Cohen 96; Clement and Durfee 99], diagnosis of technical 

systems [Dressler and Struss 03], and knowledge representation [Weida and Litman 92]. 

Following with the most renamed work inside the Qualitative Representation and 

Reasoning field, Allen’s work [Allen 83], Allen not only introduces an interval algebra 

of binary relation on intervals, for representing qualitative temporal information, but he 

also addresses the problem of reasoning about such information, with his Allen’s 

interval algebra.  

For reasoning, Allen gives a polynomial-time constraint propagation algorithm for 

computing the closure of a set of statements in the interval algebra. Nevertheless the 

algorithm is sound, in the sense that it never infers an invalid consequence of a set of 

statements, the algorithm is not complete, in the sense we can find an example in which 

the algorithm does not make all the inferences that follow from a set of statements. 

Completeness does not always have an affordable computational cost. Vilain and Kautz 

[Vilain and Kautz 89] prove that constraint consistency of statements (or determining 

their closure) in the interval algebra is NP-hard. They suggest several strategies to 

work in practical systems:  

1. To limit the number of statements. 

2. To accept the incompleteness of the polynomial algorithm (it can be acceptable for 

applications that do not require much inference from the temporal reasoner). 

3. Moving to a less expressive formalism, such as the point algebra. 

An additional problem of the Interval Algebra is that the less we know about 

relationships between two intervals, the longer the symbolic representation of that 

knowledge. Therefore, alternative sets of relations have been proposed for representing 

uncertainty between intervals. Matuszec et al. [Matuszec et al. 88] approach is based on 

the partial information about endpoints of the intervals, for instance X sbs Y means that 

X starts before starts Y. Freksa [Freksa 92] generalizes this approach with the concept 
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of semi- intervals. It is based on the concept of ne ighbourhood. The relation R is 

neighbour of another region S iff R can be transformed to S by a process of gradual, 

continuous change which does not involve passage through any third relation.  

Figure 1.5 shows how Allen’s relations are arranged according to it, following next 

notation: before (<) ,after (>), during (d), contains(di), overlaps (o), overlapped-by (oi), 

meets (m), met-by (mi), starts (s), started-by (si), finishes (f), finishes-by (fi), and equal 

(=). Freksa develops optimised transition tables for his neighbourhood primitives to 

perform coarse reasoning and the required computational effort decreases when 

knowledge is coarser.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Allen’s Interval temporal relations arranged according to Freksa’s conceptual 

neighbourhood [Freksa 92].  

1.3  QUALITATIVE SPATIAL REPRESENTATION AND 
REASONING. 

Space, which is a multidimensional and not adequately represented by single scalar 

quantities, has become a significant research area within the field of QR, generating the 

field called Qualitative Spatial Reasoning (QSR).  
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The challenge of QSR is to provide calculi which allow a machine to represent and 

reason with spatial entities without resorting to the traditional quantitative techniques.  

There are many different aspects to space and the refore to its representation. We have to 

decide, not only what kind of spatial entity we will admit but also we can consider 

developing different kinds of ways of describing the relationships between these kinds 

of spatial entities; for example we may cons ider just their topology, or the distance 

between them, their relative orientation or their shape.  

As QSR is a field which has defined itself over the last few years as researchers in a 

variety of subject areas have recognised the extent to which they have interests in 

common, there are many spatial aspects which qualitative spatial representation have 

been investigated, such as distance [Zimmermann 93], [Jong 94], [Clementini et al. 97], 

[Escrig & Toledo 01], and orientation [Guesgen 89], [Jungert 92], [Mukerjee & Joe 90], 

[Freksa 92b, Freksa & Zimmermann 96], [Hernández 94]. One approach integrating 

several spatial aspects, such as orientation, cardinal directions, and distances is the work 

by [Escrig & Toledo 98] which introduces a model for representing and reasoning with 

all the spatial aspects mentioned above using Constraint Logic Programming (CLP) 

extended with Constraint Handling Rules (CHRs). 

In all these areas, sophisticated automated reasoning about the spatial relations between 

physical objects or regions of space is of fundamental importance; and in all the cases of 

studying, this must be done without precise, quantitative information about these 

relations. 

For instance, typically, some knowledge of the topological relationships between the 

entities of interest may be available, along with incomplete and imprecise information 

about distances, directions and relative sizes; and from this partial information, useful 

conclusions must be drawn. Examples of the kind of question for which qualitative 

spatial reasoning is required could be:  

“Identify the islands in the lake and the largest one, or which parts of a network of 

corridors can the robot traverse without getting crashed into them?” 

These are all examples of the kind of problem human beings solve (and sometimes fail 

to solve) without making precise measurements; if we are to maximise the potential of 
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computer systems to help them, we must understand the principles that make possible 

these forms of reasoning. This is not to assume that computer systems will necessarily 

use the same methods as human beings; but the fact that people can answer such 

questions constitutes a form of proof that usable methods exist. The qualitative spatial 

reasoning community has set itself the task of finding them.  

As in the case of QTR first we have to define the qualitative representation of each 

spatial aspect considered and then to define the reasoning process using the defined 

representation. There are many different aspects to space and therefore to their 

representation; sections 1.3.1.1 to 1.3.1.4 give an introduction of same of them as: 

topology, orientation, distance, and shape. As topology and shape are matters of this 

PhD dissertation they will be studied deeply in section 2. Most of the approaches for 

each one of the spatial concepts (topology, orientation, distance, and shape) describe the 

basic relations and a set of operations between them, which means that they have 

concentrated on representational aspects. Some of them, as [Escrig and Toledo 98] have 

dealt also with the process of reasoning about these spatial aspects. Section 1.3.2 

explains briefly the most common reasoning techniques used in QSR. 

1.3.1 Spatial Aspects 

This section defines several spatial aspects which are topology, orientation, distance, 

and shape and gives a brief introduction of how these aspects are managed in QSR by 

explaining some of the most relevant works for the management of each concept inside 

the QSR field. 

1.3.1.1 Topology. 

Topology is one fundamental aspect of space and certainly one that has been studied 

extensively within the mathematical literature.  

Topology is a branch of mathematics concerned with spatial properties preserved under 

bicontinuous deformation (stretching without tearing or gluing); these are the 

topological invariants (properties of a topological space which is invariant under 

homeomorphisms).  
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Since topology can only make qualitative distinctions, it is clear that topology must 

form a fundamental aspect of QSR. So the question arises: can one simply import a 

traditiona l mathematical topological theory wholesale into a qualitative spatial 

representation? Although various qualitative spatial theories have been influenced by 

mathematical topology, there are a number of reasons why such a wholesale importation 

seems undesirable in general [Gotts et al. 96]; not only does traditional topology deal 

with much more abstract spaces than the ones to be found in the kinds of applications 

for QSR, but also we are interested in qualitative spatial reasoning not just 

representation, and this has been paid little attention in mathematics and indeed since 

typical formulations involve higher order logic, no reasonable computational 

mechanism would seem to be immediately obvious.  

One exception to the disregard of earlier topological theories by the QSR community is 

the work of Clarke [Clarke 81], that has built an axiomatic theory of space which are 

predominantly topological in nature, and which is based on taking regions rather than 

points as primitive. The work of Clarke has lead to the development of so called RCC 

systems [Gotts et al. 96; Bennett 94; Cui, Cohn and Randell 92; Randell and Cohn 92, 

Randell, Cui and Cohn 92; Randell and Cohn 89]. As RCC systems are studied deeply 

in section 2.1, bellow we only give some basic notions about them. 

Clarke took as a primitive notion the idea of two regions x and y being connected 

(sharing a point if we think on regions as sets of points): C(x,y). But in the RCC systems 

this interpretation is changed to the closures of the regions sharing a point, and this has 

the effect to collapsing the distinction between region, its closure and its interior, which, 

it is argued, has no relevance for the kinds of domain with which QSR is concerned, and 

it is another reason for abandoning traditional mathematical topology. This primitive is 

surprisingly powerful: it is possible to define many predicates and functions, capture 

interesting and useful topological distinctions and therefore relations (see section 2 for 

details).  
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1.3.1.2 Orientation 

If we want to specify the orientation of an object O, with respect to a reference object 

RO, then we need some kind of frame of reference FR. We can define three types of 

frame of reference: 

• An extrinsic frame of reference imposes an external, immutable orientation: a 

fixed coordinate system, or a third object (such as the North Pole, which 

represents an example of cardinal directions).  

• A deictic frame of reference is with respect to the “speaker” or some other 

internal observer. 

• An intrinsic frame of reference exploits some inherent property of the object O- 

many objects have a natural “front”, for instance humans or buildings.  

This classification can be used to classify the set of qualitative orientation models found 

in the literature. 

Some approaches presuppose and extrinsic frame of reference, for example using 

cardinal directions [Frank 92; Hernández 94].  

Of those with deictic triadic (using three elements to give an orientation) relations it is 

especially worth mentioning the work of Schlieder [Schlieder 93] who develops a 

spatial representation, called panorama, which describes the position of an object with 

respect to some reference points. The panorama is defined with reference points or 

landmarks P1, P2, …, Pn and a point S (position of the internal observer which can be 

for instance a robot) as the clockwise order of the lines (or vectors) SPi and PiS. With 

this representation the work presents restrictions of the way left(S, PiPj) which means 

that the robot S is at the left of the line between PiPj. 

Another important deictic triadic orientation calculus is that of [Freksa 92b], which 

represents the orientation of an object, c, with respect to the Reference System (RS) 

defined by two points, a and b. The vector from a to b and the perpendicular line by b 

define the coarse RS (figure 1.6a) which divides the space into 9 qualitative regions 

(straight- front (sf), right- front (rf), right (r), right-back-coarse (rbc), straight-back-coarse 
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(sbc), left-back-coarse (lbc), left (l), left- front (lf), identical- front (idf)). The vector from 

a to b and the two perpendicular lines between a and b define the fine RS (figure 1.6b) 

which divides the space into 15 qualitative regions(straight-front (sf), right- front (rf), 

right (r), right-middle (rm), identical-back-right (ibr), back-right (br), straight-back (sb), 

identical-back (ib), straight-middle (sm), identical- front (idf), left- front (lf), left (l), left-

middle (lm), identical-back-left(ibl), back- left (bl)). 

 

 

a)  

 

 

 

b)  

 

 

Figure 1.6. a) Freksa’s coarse orientation RS and b) Freksa’s fine orientation RS. 

1.3.1.3 Distance 

Distance is a way of describing how far apart two things lie. In physics or everyday 

discussion, distance may be a physical length, a period of time, or an estimation based 

on other criteria (e.g. “two countries over”).  

In day-to-day discussion, distance often refers to the length of a straight line between 

objects. Distance is sometimes expressed in terms of the time to cover it, for example 

walking or by car. Sometimes, these informal treatments do not meet the criterion for a 

metric. For example, if one measures distance by car and there are one-way streets, then 

that distance probably will not be symmetric. Measuring distance by time might also not 

be symmetric, as a road may be more crowded in one direction than in the other, for 

instance. Even in a given direction, though, time might not give a distinct distance. 
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Downtown might be an hour from home in good traffic and five hours in bad, and it can 

always increase by going slower. Therefore measurement of distance and its 

representation is a matter of study in the QSR field.  

The spatial representations of distance can be divided into two main groups: 

• those which measure on some “absolute” scale, called naming distances, 

• those which provide some kind of relative measurement, called comparing 

distances. 

For comparing distances, usually people uses the set of predicates <, =, >, which 

characterize the result of direct comparison.  

With respect to naming distances, the types of objects involved and the context in which 

they are embedded are decisive factors for establishing the set of relations to be used, 

which means that naming distances depend on granularity.  

Taking into account granularity, the first level of granularity that comes to mind 

distinguishes between close and far. Those two relations can subdivide the plane into 

two regions centred on the reference object, where the outer region goes to infinity. But, 

cognitive considerations suggest the need for systems of distance relations organized 

along various levels of granularity, for example with three distinctions close, medium, 

and far; or a level with four distinctions very close, close, far and  very far, and so on 

(see figure 1.7). 

 

 

 

 

 

 

Figure 1.7. Various levels of distance distinctions (granularity) 
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In order to understand better the way how distance is managed in QR here we present 

briefly how two models implement it. One of the most renamed qualitative named 

distance calculus is the framework for representing distances [Hernández, Clementini 

and Di Felice 95]. This qualitative framework needs three elements to establish a 

distance relation: the primary object (PO), the reference object (RO), and the frame of 

reference (FR). The distance between the reference object A and the primary object B is 

expressed by dAB=d(A,B). In general, at a given granularity level, space surrounding a 

reference object is partitioned according to a number of totally ordered distance 

distinctions Q={q0,  q1,  q2, …., qn}, where q0 is the distance closed to the reference 

object and qn is the one farthest away. Distance relations are organised in distance 

systems (D) consisting of: 

• a list of distance relations (the set of qualitative distinctions being made and 

their increasing distance order), which is based on the qualitative distance 

symbols in increasing order: 

Q={q0, q1,…, qn} 

• a set of structure relations describing how the distance relations in turn relate to 

each other (order-of-magnitude relations between the various named distance 

ranges). The structure relations are defined by intervals which define acceptance 

areas for each symbol (δ0 corresponds to the acceptance area of symbol q0 and 

so on). 

In order to describe distance relations it distinguishes between δ i being the “distance 

range i” (acceptance areas), and ∆i being the “distance range from the origin and 

including the distance range δ i” (figure 1.8). The distance symbol qi  labels all distances 

starting from the origin and falling in the range ∆i. 
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Figure 1.8. Distance ranges versus distance from origin. 

Based in this idea, [Escrig and Toledo 98] develop a representation of naming distances 

in which the acceptance areas overlap (figure 1.8). By cognitive considerations the 

acceptance areas in [Escrig and Toledo 98] have been chosen in increasing length, and 

due to the imprecision of human perception, this work argues that it is more difficult to 

reflect reality with sharply separated regions. In fact, people do not worry about the 

exact point or line which divides the “close” area from the “far” area. Instead of that, 

subjective considerations related to the culture or experience provides the distinction 

between regions. Thus overlapped acceptance areas seem to serve as a better model of 

human perception.  

 

 

 

 

 

Figure 1.9. [Escrig and Toledo 98] structure relations whose acceptance areas overlap. 

Finally it is important to remark that distance is closely related to the notion of 

orientation: for instance distances cannot usually be added unless they are in the same 

direction, or depending on the orientation. [Escrig and Toledo 98] combines concepts of 

distance and orientation for adding distances of the same orientation, of opposite 

orientation and of any orientation. 
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1.3.1.4 Shape 

In geometry, two sets have the same shape if one can be transformed to another by a 

combination of translations, rotations and uniform scaling. In other words, the shape of 

a set is all the geometrical information that is invariant to location, scale and rotation. 

Shapes of physical objects are equal if the subsets of space that these objects occupy 

satisfy the definition given above.  

Shape can also have a looser definition as the appearance of something, especially its 

outline. Such a definition agrees with the above, in that the shape does not depend on its 

position, size or orientation. However it does not always imply an exact mathematical 

transformation. For example it is common to talk of star-shaped objects even though the 

number of points of the star is undefined. Typically the shape of an object can be 

characterized by basic geometry such as points, line, curves, plane, and so on. 

Objects which are geometrically similar either have the same shape or one has the same 

shape as the other's mirror image (or both if they are themselves symmetric).  

One can think of theories of shape forming a hierarchy ordered expressiveness (in terms 

of the spatial distinctions made possible) with topology at the top and a fully 

metric/geometric theory at the bottom. Clearly in a purely topological theory of shape 

very limited statements can be made about the shape of a region: whether it has holes, 

or interior voids, or whether it is in one piece or not. However, if one’s application 

demands finer grained distinctions than these, then some kind of semi-metric 

information has to be introduced. There is a huge choice extending topology with some 

kind of shape primitives whilst still retaining a qualitative representation (which means 

not becoming fully metric). Depending on this extension we can found different types 

of approaches which will be studied in section 2.  

1.3.2 Reasoning in Qualitative Spatial Reasoning. 

For reasoning in QSR various computational paradigms have been investigated 

including constraint based reasoning [Hernández 94]. As [Cohn and Hazarika 01] 

stated, most of the reasoning techniques studied in QSR are based on the composition 
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table ([Egenhofer and Frenzosa 91], [Cohn 94], [Randell, Cui and Cohn 92], [Röhrig 

97], [Schlieder 95], [Escrig and Toledo 98]), which allows a compositional inference. 

A compositional inference is a deduction, from two relational facts of the form R1(a,b) 

and R2(a,b), of a relational fact of the form R3(a,c), involving only a and c. [Cohn and 

Hazarika 01] explains that the validity of compositional inferences does not depend in 

many cases on the constants involved but only on the logical properties of the relations. 

In such a case the composition of pairs of relations can be maintained for table look up 

when required. This technique is of particular significance when we are dealing with 

relational information involving a fixed set of relations. Given a set of n relations which 

are Jointly Exhaustive and Pair wise Disjoint (JEPD), one can store in a nxn 

composition table the relationships between x and z for a pair of relations R1(x,y) and 

R2(y,z). In general each entry of the table will be a disjunction because of the qualitative 

nature of the calculus.  

1.4  BASES FOR THE INTEGRATION OF SEVERAL SPATIAL 
ASPECTS. 

One objective of this dissertation is to integrate the models here developed with other 

spatial aspects, specifically we want to integrate the topological and movement models 

with the work by [Escrig and Toledo 98] which accomplishes the integration of several 

spatial aspects by considering them as instances of the Constraint Satisfaction Problem 

(CSP). This integration has been inspired by the temporal reasoning field, where the 

integration of point algebra, interval algebra and metric information has been 

successfully accomplished [Meiri 91]. In order to accomplish the integration of different 

spatial aspects (orientation, cardinal directions, and absolute and relative distances) in 

the same model, the next three steps are defined: 

• The representation of the spatial aspect to be integrated, which is seen as an instance 

of the Constraint Satisfaction Problem (CSP).  

• The definition of the Basic Step of the Inference Process (BSIP). It is defined such 

as: given the spatial relationship between objects A and B, and the spatial 

relationship between objects B and C, the BSIP consists of obtaining the spatial 
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relationship between A and C. This means that for each spatial aspect to be 

integrated to have to define its composition tables.  

• the definition of the Full Inference Process (FIP), that consists of repeating the BSIP 

as many times as possible, with the initial information and the information provided 

by previous steps of the BSIP, until no more information can be inferred. For 

computing the FIP it is considered as a CSP problem. 

A CSP for binary constraints can be formulated such that: given a set of variables 

{X1,….,Xn}, a discrete and finite domain for each variable {D1,…, Dn}, and a set of 

constraints {cij(Xi,Xj)}, which define the relationship between every couple of variables 

Xi, Xj (1≤ i < j ≤  n); the problem is to find an assignment of values <v1,…, vn>, vi ∈ Di  

to variables so that all constraints are satisfied, i.e. cij(Xi,Xj) is true for every i,j (1≤ i < j 

≤ n). Every different assignment of values that satisfies all the constraints is called a 

solution. 

The best solution known to the CSP problem doesn’t have polynomial temporal 

complexity; however, there exist algorithms which approximate the solution. These 

algorithms approximate the complete propagation process by local constraint 

propagation, as path consistency. If the constraint graph is complete (that is, there is a 

pair of arcs, one in each direction, between every pair of nodes) it suffices to repeatedly 

compute paths of two steps in length at most. This means that for each group of three 

nodes (i,k,j) we repeatedly compute the following operation until a fixed point is 

reached [Fruehwirth 94]: 

kjcikcijc:ijc ⊗⊕=    (1)  

This operation computes the composition of constraints (⊗) between nodes ik and kj, 

and the intersection (⊕) of the result with constraints between nodes ij. The complexity 

of this algorithm is O(n3) , where n is the number of nodes in the constraint graph (that 

is, the number of objects involved in the reasoning process) [Kumar 92]. 

Constraint Handling Rules (CHRs) are a tool which helps to write the above algorithm. 

They are an extension of the Constraint Logic Programming (CLP) which facilitates the 
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definition of constraint theories and algorithms which solve them. They facilitate the 

prototyping, extensions, specialization and combination of constraints. There exist 

mainly two types of CHRs: propagation and simplification. Propagation CHRs add new 

constraints which are logically redundant but may cause further simplification. A 

propagation CHR is of the form: 

0)k0,j0,(ikB,,1B|jG,,1GiH,,1H ≥≥>==> LLL       (2) 

The propagation from user-defined constraints, H’, means the addition of the set of 

constraints B to the initial set of constraints if H’ matches the head (H) of a propagation 

rule and the guard G is satisfied. This kind of rule is used to compute the part ‘⊗’ of 

formula (1). 

Simplification CHRs replace constraints by simpler constraints preserving logical 

equivalence. A simplification CHRs is of the form: 

0)k0,j0,(ikB,,1B|jG,,1GiH,,1H ≥≥><=> LLL
  (3) 

The multi-head (H1, …,Hi) is a conjunction of user-defined constraints and the guard 

(G1, …,Gi) is a conjunction of literals. To simplify the user-defined constraints H’ 

means to replace them by B if H’ matches the head (H) of a simplification rule and the 

guard G is satisfied. This kind of rule is used to compute the part ‘⊕’ of formula (1). 

In [Escrig and Toledo 98] CSP is used to compute the FIP by rewriting the formula (1) 

for each spatial aspect to be integrated. 

Finally, in [Escrig and Toledo 02] the concept of velocity has been also integrated in the 

same model by following the three steps mentioned above and considering the problem 

as an instance of the CSP.  

Chapter 3 and 4 presents how these three steps have been applied in order to get the 

integration of topology and motion in the same model. 

1.5   OBJECTIVES OF THIS PHD THESIS. 

This section presents the main objectives of our work together with the structure of the 

rest of the PhD thesis. 
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The first objective of our work is to make a comparative study of the existing 

approaches in QSR related with three spatial aspects: topology, movement and shape 

(chapter 2). These allow us to know the limitation of each approach in order to go a step 

further in the research work in QSR.  

From this study, our first new contribution arises, presenting a motion model as a 

qualitative representational model for integrating qualitatively time and topological 

information for reasoning about dynamic worlds in which spatial relations between 

regions and between regions and objects may change with time. Therefore we have first 

developed a topological algebra, presented in chapter 3 (section 3.2 to 3.4), which has 

been integrated to the time algebra developed and presented in chapter 4 (section 4.1) in 

order to obtain a motion model, which is described in chapter 4, sections 4.2 to 4.4.  

The topological algebra has been developed in a way which allows its integration with 

other spatial aspects such as orientation, distance, cardinal directions, velocity and so 

on. Moreover the integration of topology and time in order to obtain a motion model is 

also accomplished. The bases for these integrations have been inspired by the 

integration of several spatial aspects in the spatial reasoning field [Escrig and Toledo 

98], bases that have been explained in section 1.4. 

The second contribution of this thesis is the qualitative shape representation theory for 

non-regular polygonal object with or without holes and curves, and for completely 

curvilinear objects. This theory is described in detail in chapter 5. 

Chapter 6 describes the applications of both contributions. First the motion model 

together with the simplest version of the qualitative shape description theory defined for 

non-polygonal closed objects have been applied to robotics (section 6.1) and then the 

complete qualitative shape description theory has been applied to industry (section 6.2). 

Finally conclusions and ideas for future work are given in chapter 7.  
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CHAPTER 2 
RELATED STATE OF THE ART  

This chapter presents three studies of the state of the art: topological models, 

movement models and qualitative shape representations, which are the spatial aspects 

dealt in this PhD Thesis. They do not pretend to be an exhaustive overview of each one 

of them. What is intended in this chapter, is to introduce those approaches which have 

influenced our work, sometimes in a critical a comparative way.  

We have taken advantage of some research work which appears in the literature as it 

will be explained in the corresponding chapters. Moreover, the deficiencies of these 

approaches for our goal have motivated the work presented in this thesis. What is 

already done in the field and those deficiencies are summarised in the conclusions of 

this chapter. 

2.1. STATE OF THE ART ON TOPOLOGY 

As we are interested in model motion as a combination of topological aspects and 

temporal ones, the first matter of study are the topological relations. 

Topology is one fundamental aspect of space. Topology, which is closely related to 

geometry, is concerned only with those properties of geometric objects (such as number 

of holes, dimensionality, and boundaries) that remain unchanged when the objects are 

distorted in any way by such things as twisting, shrinking, or stretching. Because of this, 

topology is popularly known as rubber sheet geometry. For instance, if we used rubber 

sheets to write and draw on the picture in figure 2.1a, and if someone were to grab the 

right and left hand sides of this picture and pull (figure 2.1 b) then the image distorts 

from its original state. The same happens when someone were to squash the picture 

(figure 2.1c). And although the three images (figure 21.a to 2.1c) are different in many 

ways, the fact is that they are still a fish. This happens because there are some properties 
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or relations–named topological relations- that always remain invariant under topological 

transformations, such as rotation, translation and resizing. It is important to remark that 

cutting (tearing or breaking), gluing together, or inserting, removing or merging holes of 

the objects are not topological transformations. 

It is also interesting to differentiate the properties that are always preserved by the 

topological transformations such as connectivity, separation, intersection, order, and 

dimension, from the properties that are not always preserved by topological 

transformations, such as length, area, direction or shape.  

 

      
a)   b)    c) 

Figure 2.1. a) Original Image of a fish, b) Enlarged Image of a fish, c) Squeezed image of a fish. 

However topologically all of them are equal: a fish. 

Therefore, it is clear that topology must form a fundamental aspect of QSR since 

topology can only make qualitative distinctions. Although topology has been studied 

extensively within the mathematical literature, much of it is too abstract to be of 

relevance to those attempting to formalise common-sense spatial reasoning, then to 

QSR. Moreover, QSR is related to reasoning and not just representation, and this part 

has been paid little attention in mathematics. Of course, it might be possible to adapt the 

conventional mathematical formalisms, and indeed this strategy has been adopted 

[Egenghofer and Franzosa 91, 95]. 

Possibly topology contains the greatest body of research in spatial reasoning. It covers 

the work of [Egenhofer 91], [Ligozat 93], [Cohn et al. 93], [Hernández 94], [Mukerjee 

and Mittal 95], and others.  

Therefore a great variety of approaches related to topological relations have been 

proposed. In these approaches we can find two principal trends:  

1. Approaches studying the topological relations using as basic entity the spatial 

region, which are called Spatial Region Approaches. 
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2. Approaches studying the topological relations in terms of operations between sets of 

points, which are called Point-Set Approaches. 

2.1.1.  Spatial Region Approaches. 

In these approaches a spatial region is a non­empty region, therefore points, lines and 

boundaries cannot be spatial regions ([Clarke 81],[Ciu, Cohn & Randell 92], [Gotts 96], 

[Bennett  94], [Renz & Nebel 98], [Asher and Vieu 95]). The basic relation that they 

define is C(x,y), that means x connects with y. This relation appears when the 

topological neighbouring regions x, y share a point. Using the basic relation, the 

approaches define a set of basic topological relations, which are mutually exclusive and 

complete. These two characteristics mean that between any two regions there is one and 

only one of the basic topological relations.  

The primitive C(x,y) has been shown to be extremely powerful and has led to the 

development of a rich calculus of spatial predicates and relations, referred to as the RCC 

calculus. [Gotts et al. 96, Gotts 96] shows how the RCC calculus can describe and 

distinguish between complicated objects such as loops, and doughnuts with degenerate 

holes (Figure 2.2). However, this expressiveness is costly. And reasoning with the 

general RCC calculus is undecidable [Cohn et al. 97]. There has been some work on 

tractable subclasses. The best known is based on identifying a pair wise disjoint, jointly 

exhaustive set of eight spatial relations called RCC-8 calculus, which comes from Leeds 

(i.e.[Ciu et al. 93]). 

 

Figure 2.2. It is possible to distinguish these shapes using C(x,y) alone. 
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[Asher and Vieu 95] is also an example of a theory on tractable subclasses of the RCC 

calculus. It develops a topological theory which is shown to be consistent and complete 

with respect to a certain class of models, and which has at least the same expressive 

power as RCC8. The main difference between them is that RCC8 does not distinguish 

between open and closed regions, whereas Asher and Vieu’s theory does. This theory is 

built on a unique primitive: the relation connection C(x,y), interpreted here as 

connection between spatio-temporal regions, that it will be called sometimes 

“histories”. Using C(x,y) the following relations can be defined: part of (P), 

disconnection (DC), proper part of(PPO), overlap(O), partial overlap(PO), contact 

(EC), tangential part (TP), non tangential part (NTP), non tangential proper part 

(NTPP).  

Asher and Vieu’s theory, and the RCC-8 theory ([Ciu et al. 93]) are both based upon 

Clarke’s calculus ([Clarke 81, Clarke 85]) of individuals based on “connection”. The 

basic part of the theory assumes the relation: C(x,y). However Clarke’s interpretation of 

C(x,y) is that the two regions share at least one point whereas Asher and Vieu, and 

RCC-8 theories interpretation is that the topological closures of the two regions share at 

least one point. The topological closure of a region A is the smallest closed region 

containing A, therefore the closure of A will be the intersection of all closed sets 

containing A. 

RCC-8 makes an exact definition of what counts as a region. In their first interpretation 

[Randell and Cohn 89], the regions may be of arbitrary dimension, however finally they 

must all be the same dimension and must not be of mixed dimension (for example, a 

region with a lower dimensional spike missing or sticking out is not intended). Such 

regions are termed as regular. They consider 3D regions and 2D regions (as is usual in 

GIS applications). Within the RCC theory it is not possible to distinguish between 

regions that are open, closed or neither, because they have the same closure. Moreover, 

they argue tha t distinctions are not necessary for QSR because such regions occupy the 

same amount of space and, moreover, there seems to be no reason to believe that some 

physical objects occupy closed regions and others occupy open regions. Moreover, 

regions are really spatially extended, i.e. they rule out the possibility of a region being 

null. Other than these restrictions, they allow any kind of region, in particular the 

regions may be multi-piece regions, have interior holes and tunnels. 

Using C(x,y) a basic set of relations is defined. These relations describe different 

degrees of connection between regions from being disconnected, to being externally 
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connected, allowing partial overlap, one region being a tangential part of the other, or a 

non tangential part, and so on. All degrees of connection from being externally 

connected to sharing mutual parts and thus being identical are formally defined. To 

define the relations of RCC-8 ([Ciu et al. 93], [Cohn 94], [Cohn et al. 97]) first other 

relations are needed in terms of C(x,y) relation, these relations are described bellow: 

- DC(x,y) ↔ ¬C(x,y), which means that x and y are disconnected. 

- P(x,y) ↔ ∀z[C(x,z) à C(y,z)], which means that x is part of y. 

- PP(x,y) ↔ P(x,y) and ¬P(y,x), which means that x is proper part of y. 

- EQ(x,y) ↔ P(x,y) and P(y,x), which means that x and y are equal. 

- O(x,y) ↔ ∃z [P(z,x) and P(z,y)], which means that x and y overlap. 

- DR(x,y) ↔ ¬O(x,y), x and y are discrete. 

- PO(x,y) ↔ O(x,y) and ¬P(x,y) and ¬P(y,x), x and y partially overlap. 

- EC(x,y) ↔ C(x,y) and ¬O(x,y), x and y are externally connected. 

- TPP(x,y) ↔ PP(x,y) and ∃z [EC(z,y) and EC(z,x)], x is a tangential 

proper part of y. 

- NTPP(x,y) ↔ PP(x,y) and ¬TPP(x,y), x is a non tangential proper part of 

y. 

- Pi(x,y) ↔ P(y,x), Pi is the converse relation of P(x,y). 

- PPi(x,y) ↔ PP(y,x), PPi is the converse relation of PP(x,y). 

- TPPi(x,y) ↔ TPP(y,x), TPPi is the converse relation of TPP(x,y). 

- NTPPi(x,y) ↔ NTPP(y,x), NTPPi is the converse relation of 

NTPPi(x,y). 

From the relations before defined, RCC-8 reduces, by removing redundant relations, the 

set of relations to use to 8 topological relations which are jointly exhaustive pair wise 

disjoint, they are DC, EC, PO, TPP, NTPP, EQ, TPPi, NTPPi. Figure 2.3 shows graphic 

examples of these relations. 
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Figure 2.3 . Graphic representation of the RCC-8 relations. 

2.1.2. Point-Set Approaches. 

The approaches in this group are called point­set theories and consider set of points as 

entities, therefore points, lines and areas as the basic entities. Three sets of points are 

associated with every region- its interior, boundary and exterior. The topological 

relations are defined in terms of the intersections of the interiors and boundaries of the 

sets of points ([Egenhofer & Franzosa 91], [Pullar & Egenhofer 88], [Egenhofer 91], 

[Clementini & Di Felice 95]). Therefore relations are defined in terms of some 

properties of regions which are: the boundary, the interior, the exterior and the 

dimension of a set of points.  

The boundary of a feature h is denoted by δh; it is defined for each of the feature types 

as follows: 

δP: we consider the boundary of a point-like feature to be always empty. 

δL: the boundary of a linear feature is the empty set in the case of a circular line, 

and the two distinct endpoints otherwise. 

δA: the boundary of an area is the circular line consisting of all the accumulation 

points of the area. 

The interior of a feature h is denoted by h°. It is defined as h° = h - δh. Note that the 

interior of a point feature is equal to the feature itself.  

The exterior h- of a feature h is defined as: h-=ℜ2 – h. 

The function dim, which returns the dimension of a feature of either of the types we 

consider, or of the intersection of two or more such features, is defined as follows (the 

symbol ∅ represents the empty set): 
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If S?∅ then 

 

         dim(S)= 

0 if S contains at least a point and no lines and 

no areas 

1 if S contains at least a line and no areas 

2 if S contains at least an area 

 

else dim(S) is undefined. 

 

Each theory inside this group gives a set of basic topological relations that can exist 

between two spatial regions. 

In this chapter we present some of the most relevant theories inside the point-set 

approaches. These approaches are presented ordered by expressiveness power, 

presenting first the less expressive approach and finally the more expressive one.  

In [Pullar & Egenhofer 88] the 4-Intersection method (4IM) for classifying 

topological relationships between one-dimensional intervals of ℜ1 is described. In 

[Egenhofer & Franzosa 91] the same method for classifying topological relationships 

between area features in ℜ2 is adopted. By considering also point and line features, we 

can distinguish among 6 major groups of binary relationships: area/area, line/area, 

point/area, line/line, point/line and point/point. In the 4IM, the classification of 

relationships is based on the intersection of the boundaries and interiors of two features 

h1 and h2 and b. Each intersection may be empty (∅) or non-empty (¬∅), resulting a 

total of 24=16 combinations. Each case is represented by a matrix of values: 










∩∂∩
∂∩∂∂∩∂

=
º
2

º
12

º
1

º
2121

hhhh
hhhh

M  

Such a matrix forms an equivalence class for topological relations, for instance the 

matrix 







ΦΦ¬
ΦΦ¬

, which means that the intersections h1º∩h2º and δh1∩h2º are the 

only ones non empty, represents all the topological relations depicted in figure 2.4, 

which means that has a geometric interpretation. The geometric interpretations 

presented in figure 2.5 are topologically equivalent because the resulting 4IM matrix of 

them is the same. 
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Figure 2.4. Geometrical Interpretation of the matrix 








ΦΦ¬
ΦΦ¬

 

It is possible to apply some simple geometric considerations to asses that not all 

combinations of values (∅ or ¬∅) of the matrix make sense for simple objects. These 

combinations are called the impossible cases. Removing the impossible cases, we get 

the valid matrices, which are shown together one possible geometrical interpretation 

which validates them are shown in figure 2.5.  

The model also points out the converse relationships, which correspond to pairs of 

matrices M1, M2, such that M1=M2
T . 

h2 

h1 

h2 

h1 

h2 
h1 

h2 

h1 
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Matrix Graphical Representation 
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Figure 2.5. Validity of the 4-Intersection Matrices. 

By not considering the impossible cases and considering just one case for each pair of 

converse relationships, the model arrives at the result shown in Table 1, where there are 

in total 37 distinct and mutually exclusive relationships between features. In detail, in 

the area/area group, as there are 8 impossible cases and 2 pairs of converse 

relationships, the number of different types of relationships is 6. Line/area cases are 11 

because there are 5 impossible cases; line/line cases are 12 because there are 14 pairs of 

h2 

h1

H 

h1 

h2 

h2 

h1 

h1 

h2 

h1 h2 

h1 

h2 

h1 

h2 

h1, h2 
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converse relationships. The possible cases are only 3 for the point/area and point/line 

groups and 2 for the point/point group. 

 

relationships groups  Num. of possible cases No. of real cases 
area/area 8 6 
line/area 11 11 
point/area 3 3 
line/line 16 12 
point/line 3 3 
point/point 2 2 

Total: 37 

Table 2.1 . A summary of the 4IM. The number of real cases is obtained from possible cases by 

considering pairs of converse relationships as a single case. 

Finally, the significance of the 4-Intersection Matrix rests on the following: when two 

configurations have different 4-intersections matrices then these configurations are 

topologically different. But, if two configurations have the same 4-Intersection matrices 

then these configurations are topologically similar. However they are not necessarily the 

same. Figure 2.6 shows an example of topological similarity. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Example of Topological Similarity. Bellow the graphical representation of the values for the 

4IM matrix are shown. 

The set of valid 4-Intersention matrices are complete in the sense that for any possible 

configuration of two regions, this set has always one topological relation that applies. 

And each matrix is mutually exclusive to other matrices because between two regions, 

exactly one of the matrices applies.  

h1 

h2 

h1 

h2 

¬∅ ¬∅ 
¬∅ ¬∅ 
 

¬∅ ¬∅ 
¬∅ ¬∅ 
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However the set is also redundant because some matrix situations can be expressed by 

means of other matrices. For instance, the case represented by the matrix 







ΦΦ¬
ΦΦ¬

 

between h1 and h2 represents the same situation as the matrix 







ΦΦ
Φ¬Φ¬

 between h2 

and h1.  

Moreover with the 4-Intersection method we miss a part which is the exterior of a 

feature, and this means that there will be cases which cannot be described, as the ones in 

figure 2.7. In this figure both line relations have associated the same 4-Intersection 

Matrix. However in figure 2.7 a) part of the blue line’s interior runs through the red 

line’s exterior, and in figure 2.7b) part of the blue line’s boundary is located in the red 

line’s exterior. Therefore, using the exterior feature these cases could be differentiated. 

This is the reason why the 9-Intersection Method (9IM) appears.  

 

 

 

 

 

 

 

 

Figure 2.7. Line relations that could be differentiated using the concept of exterior. 

To solve this type of problem, the 9IM method appears. The 9IM is an extension of the 

4IM based on considering also exterior of features, besides interior and boundary 

[Egenhofer and Herring 95]. Therefore, it is necessary to consider the following matrix 

of nine sets: 
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By considering the empty or non-empty content of such nine sets, the total is 29=512 

theoretical combinations. As with the 4IM, excluding the impossible cases, we have 68 

¬∅ ∅ 
∅ ¬∅ 
 

¬∅ ∅ 
∅ ¬∅ 
 

a) 

b) 
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possible cases. Considering also the converse relationship, we can exclude another 2 

cases for area/area group and 10 cases for line/line group, having a total of 56 real cases. 

 
relationships groups  No. of possible cases No. of real cases 

area/area 8 6 
line/area 19 19 
point/area 3 3 
line/line 33 23 
point/line 3 3 
point/point 2 2 

Total: 56 

Table 2.2 . A summary of the 9IM 

One can use this calculus to reason about regions, and about regions which have holes 

by classifying the relationship not only between each pair of regions, but also the 

relationship between each hole of each region and the other region and each of its holes 

[Egenhofer, Clementini and Di Felice 94].  

However, with the 9IM we still miss a part which is the dimension of a feature, and this 

means that there will be also cases which cannot be described. This is the point where 

the Dimension Extended Method (DEM) appears [Clementini et al. 93], which takes 

into account also the dimension of the intersection. The DEM can be considered as an 

extension of the 4IM, in which the dimension of the four intersection sets assume the 

values:-,0,1,2, meaning that the dimension is undefined (-), is set to 0 (dimension of 

points), 1 (dimension of lines) or 2 (dimens ion of areas). 

Theoretically, these 4 possibilities result into 44=256 different cases. However they 

adopted geometric criteria to reduce the number of cases by referring to specific groups 

of relationships. In the line/area group, only the following results are possible: 
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This is due to the fact that the dimension of the intersection cannot be higher than the 

lowest dimension of the two operands of the intersection: dim(∂A)=1, dim(Aº)=2, 

dim(∂L)=0, and dim(Lº)=1. Further, the definitions of line and area features exclude the 

option that dim(Aº∩Lº)=0. Following this discussion, the number of cases decreases 
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from 256 to 24. Other geometric considerations bring the number of possible cases to 

17. 

In the area/area group of relationships, the following results of the intersections are 

possible: 
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After a detailed analysis, it is possible to identify 12 impossible cases and 3 pairs of 

converse relationships, resulting in 9 real topological relationships. 

In the line/line group, the four sets may be equal to the following results: 
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It is possible to find 24 different cases and distinguish 6 pairs of converse relationships, 

resulting in 18 real cases. 

Finally, with regard to groups involving point features, since the result of the 

intersections may be empty or zero-dimensional, we do not have more cases than in the 

standard 4IM. Table 3 is a summary of the analysis for all the groups of topological 

relationships, totalling 52 real cases. 

 
relationships groups  No. of possible cases No. of real cases 

area/area 12 9 
line/area 17 17 
point/area 3 3 
line/line 24 18 
point/line 3 3 
point/point 2 2 

Total: 52 

Table 2.3. A summary of the DEM. 

However, the number of 52 relationships is still far too many for humans to use in a 

reasonable manner. It is better to have an overloaded set of just a few basic relationships 

which the user understands well. The DEM uses various results of feature intersections 

together with the boundary and interior operators to describe the required relationships. 

It may be clear that it is not a very user- friendly method, as the user is not interested in 

the intersections of the boundaries and the interior. Moreover, the concept of interior is 
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less understood than the concept of boundary, because it is based on the mathematical 

point-set theory (open/closed sets). Therefore Clementini, Di Felice and Oosterom in 

[Clementini et al. 93] developed the Calculus Based Method (CBM) taking into 

account the above considerations by making available to the users only the boundary 

operators together with five topological relationships: touch, in, cross, overlap, and 

disjoint (figure 2.8). These topological relations are general in the sense that they are 

applied to point, lines and areas. They stated that this is the smallest set of relationships 

capable of representing all cases of the DEM under the condition that only the 

additional boundary operators are available. Furthermore, the set of topological 

relationships is close to the normal human use of these concepts and still powerful 

enough to represent a wide variety of cases. They also prove that the relationships are 

mutually exclusive and they constitute a full covering of all topological situations. 

[Clementini & Di Felice 94] proves that CBM is even more expressive than the DEM, 

because we need to define a combination of the DEM and the 9IM in order to find an 

equivalent method which the same expressive power of the CBM. 

It is important to remark that the CBM is not sensitive to line orientation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Graphical representation of the topological relationships defined in CBM. 
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As we see in figure 2.8 there are several topological situations described under the 

relationship in. This has been one of the reasons why we have developed a new 

topological algebra with the same expressive power as the CBM but which is able to 

describe all the topological situations inside the in-relationship by using three more 

atomic relationships.  

Figure 2.8 also points out tha t all the relationships defined in CBM can not be applied to 

all types of features, for instance the relation cross cannot be applied between two areas. 

We have defined a 3x3 matrix showing all the possible topological relationships of the 

CBM that can exist between each pair of regions (points, lines and areas).  

The matrix is shown in the table 2.4. The regions (points, lines or areas) are situated in 

the first line and first column. In each entry we get the different topological relations 

that can hold between the entities that denote this entry.  

The symbol * denotes that the relations in the entry are the same as the relations in its 

symmetrical entry, i. e. the topological relationships between a linear entity and a 

point­like entity are the same as the topological relationships between a point­like entity 

and a linear entity. 

 Points Lines Areas 
Points In, Disjoint Touch, In, Disjoint Touch, In, Disjoint 
Lines * Touch, In, Cross, 

Overlap, Disjoint 
Touch, In, Cross, Disjoint 

Areas * * Touch, In, Overlap, 
Disjoint 

Table 2.4. 3x3 Matrix of possible topological relations between Points, Lines and Areas in the CBM. 

Finally, comparing all the point-set theories presented we can say that 9IM is potentially 

more expressive that 4IM, and as it considers the exterior of features, it considers the 

relationship between the region and its embedding space. However the more expressive 

method is the CBM calculus, which is more expressive than DEM or 9IM alone. CBM 

could be considered as the minimal set to represent all 9IM and DEM relations.  

The next table presents a summary of topological cases for all these methods, excluding 

the converse relations, which denotes the expressiveness of the methods, showing the 

above conclusion.  Each entry of the table shows the number of different topological 

relationships defined by each method.  
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 A/A L/A P/A L/L P/L P/P Total 

4IM 6 11 3 12 3 2 37 

9IM 6 19 3 23 3 2 56 

DEM 6 17 3 18 3 2 52 

DEM + 9IM or CBM 9 31 3 33 3 2 81 

Table 2.5. Comparison of all point-set methods. 

2.2. STATE OF THE ART ON QUALITATIVE MOTION 

Movement can be seen as a form of spatial change. For any quantity or quality that can 

be represented at an instant in time, we can also imagine it changing across time. 

Topological relations between entities can change as the entities move. The distance 

between two objects, the orientations of two lines, and the shape of two objects can all 

change with time.  

We are going to examine in this section various approaches towards the representation 

of motion. 

The Newtonian conception of space and time has exerted a strong influence on views 

about motion even outside physics. However, a lot of the approaches close to our 

concerns depart somewhat from the conception of motion as a continuous function from 

time (seen as the real line) to space. 

The different approaches can be distinguished with respect to a few key choices about 

the ontology of space, time, and thus motion: 

1. The choice of an absolute space (persisting through time and existing 

independently of the objects in it) versus a relative space, where only physical 

objects have an existence and are located with respect to one another. This leads 

to the distinction between Euclidean geometry (absolute location) and 

topological properties (relative position). 

2. The choice of extended regions as primitive objects versus the choice of 

dimensionless points, either for time, space or both (hybrid solutions are not 

uncommon in literature). 

3. The choice of expressing motion as relative to other entities or as absolute in a 

coordinate system. 
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4. The choice of a discrete or dense or continuous time and/or space; this leads to 

the distinction between measured time (absolute chronology) and ordered events 

(historical sequences). A fully, explicit, discrete model of motion is rare, but see 

a proposal in [Forrest 95].  

5. The choice of a primitive space-time versus two separate domains for space and 

time. 

Most of those choices can be done independently; therefore it is difficult to classify 

movement approaches in a clearly separated division. However, here we have made a 

classification, presenting two main groups of approaches: 

1. Approaches which have chosen to represent two separated domains for space 

and time.  

2. Approaches which have chosen to represent a primitive space-time domain.  

Inside each group, we will find approaches considering the other choices that have to be 

made. Therefore, in each group we can find approaches dealing with absolute 

movement, or relative movement, with absolute or relative space or time, and with 

point, extended objects or both types as primitive either for time, space or both. Table 

2.6 summarises all the approaches presented in both groups considering all the choices 

to be done.  

The classification has been stated in this way, because the decision of considering two 

separated domains for space and time, or to consider space-time as an homogeneous 

domain has been one of the most debated ones when developing our contribution. 

However, since modern physics does not treat space and time as independent 

dimensions, but combines the two concepts into a single manifold (space-time domain), 

physicists are able to significantly simplify the form of most physical laws, as well as to 

describe the workings of the universe in a more uniform way, for us it seems rather 

natural to consider a space-time domain.  

In fact, models which consider a space-time primitive domain combine three 

dimensions of space and one dimension of time into a single construction called the 

space-time continuum (in which time plays the role of the 4th dimension). This way to 

integrate space and time is made according to Euclidean space perception, in which our 

universe has three dimensions of space, and one dimension of time. 
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2.2.1. Movement Approaches with Separated Domains for Space and 
Time. 

As table 2.6 shows, this is the most extensive group of approaches. In fact, most of the 

approaches in motion modelled it as a sequence of changes of positions, taking into 

account conceptual neighbourhood ([Zimmermann and Freksa 93]), but without 

integrating the concept of time into the same model. They consider space and time 

independent and express motion as a relation between the two domains, space and time.  

Below we give a survey of the most relevant works in this group by showing if they 

deal with relative or absolute space, time, or movement, and if they deal with points or 

extended objects for space, time or both.  

Absolute, Euclidean space and a separate continuous time, form the basis of pre-

relativistic physics (the primitive objects being points in space and instants in time). 

This conception is also at work in robotics ([Stein and Musto 00]) and in studies 

grouped under the “qualitative physics” label ([Forbus 83], [Forbus 95], [Faltings 90], 

[Davis 88]). [Rajagopalan and Kuipers 94] can be classified inside the group of 

“qualitative physics” for extended objects using a Newtonian/Cartesian framework for 

representing motion.  

The relative nature of space is on the contrary advocated for in most cognitively 

oriented approaches, as in linguistics for instance ([Asher and Sablayrolles 95]).  

Finally, among the proponents of extended objects as primitives (either regions of space 

or intervals for time) can be found supporters of an absolute pre-existing space ([Galton 

97], [Borgo et al. 96]) or of a relative space ([Bennett, Cohn, Torrini and Hazarika 00a], 

[Cohn and Hazarika 01b], [Clarke 81], [Van de Weghe et al. 04]). Some of these are in 

fact hybrid as they admit also points as objects ([Galton 97], [Clarke 81]).  

The work of [Van de Weghe et al. 04] also expresses motion as relative because it 

expresses the motion of two objects that are moving towards each other or away from 

each other. 

2.2.2. Movement Approaches with a Homogeneous Primitive Space-
Time Domain. 

This group covers the approaches which incorporate the notion of time into spatial 

representations having a combination of spatial and temporal logics ([Muller 98a, 98b], 
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[Hayes 85], [Wolter and Zakharyaschev 00], [Claramunt et al. 97], [Hornsby and 

Egenhofer 02]). Since the work of [Muller 98a, 98b] has been the one which most 

influenced our work we will explain it in more detail.  

[Hornsby and Egenhofer 02] and [Claramunt et al. 97] propose extended objects as 

primitives (regions of space and intervals for time) in a relative space.  

[Hornsby and Egenhofer 02] considers objects as primitives and develops a changed-

based approach in the sense that it does not consider time and space as separate 

dimensions, and it concentrates on recording changes or facts that are valid at a certain 

time. 

The approach by [Claramunt et al.  97] is a hybrid approach in the sense that it admits 

also points as objects and in the sense that it develops a system to operate 

simultaneously on absolute and relative views of space and time. 

On the other hand, Wolter and Zakharyaschev [Wolter and Zakharyaschev 00] propose 

languages that are combinations of two well-known and well-understood formalism in 

temporal and spatial reasoning. The spatial component is the RCC-8. As temporal 

component they chose the point based prepositional temporal logic PTL with the binary 

operators “Since” (S) and “Until”(U) based on the flow of time. Thus, the problem of 

constructing effective spatio-temporal formalism is viewed as designing decidable two-

dimensional modal logics one dimension of which is a topological space and another 

one the flow of time. Therefore, RCC8 is temporalised using S and U, and other 

standard operators that are defined via S and U, as ?  (at the next moment), �+ (always 

in the future), ◊+ (some time in the future), etc. They stated that there are different ways 

of introducing a temporal dimension into the syntax of RCC8, ranging them from the 

less expressive one (or the simplest one, ST0) to the most expressive (ST2).  

For instance, ST0 is enough to express, for instance, the assumption that change is 

continuous, or the notion of conceptual neighbourhoods, as the next example illustrates: 

�+(DC(X,Y) à ? (DC(X,Y) ∨  EC(X,Y))), 

�+(EC(X,Y) à ? (DC(X,Y) ∨  EC(X,Y) ∨  PO(X,Y))), 

�+(PO(X,Y) à ? (EC(X,Y) ∨  PO(X,Y) ∨  TPP(X,Y) ∨  EQ(X,Y) ∨  (TPP-1(X,Y))), etc.  

The first of these formulas, for instance, says that if two regions are disconnected at 

some moment, then at the next moment they either will remain disconnected or will be 

externally connected, but will not overlap. 
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Moreover, they make all these languages still more expressive defining ST+
i. ST+

i make 

all the languages STi for i=0,1,2 more expressive by allowing applications of the 

Boolean operations to regions. Then it would be possible to write EQ(UK, 

Great_Britain U Northern_Ireland). Thus, the most expressive language is ST+
2, which 

makes it possible to form unions, intersections, and complementation of spatia l regions, 

and to apply temporal operators to both formulas and region terms (for instance, ? X 

denotes the state of region X “tomorrow”).  

With respect to the work of [Muller 98a, 98b], he presented a formal theory for 

reasoning about motion by enriching the topological concepts presented in [Asher and 

Vieu 95] to achieve a theory whose intended models are spatio-temporal entities. 

Therefore, the primitive objects of his theory are extended in space and time and 

knowledge about these entities is only expressed in terms of relations. However, the 

topological theory that Muller uses needs further structural specifications to be regarded 

as a proper spatio-temporal theory. Therefore, Muller selected an appropriate logic for 

temporal relations taking into account that his primitive objects are extended both in 

space and time. So, Muller develops a temporal theory, close to event logics which are 

quite close to interval-based temporal logics (as Allen’s ones) with the difference that 

two objects can be different and still be contemporaneous. Therefore, Muller introduces 

a primitive of temporal connection noted as >< , which has more or less the same 

behaviour as C (connection), only on a temporal level. With this temporal connection 

relation Muller defines next intuitive relations: temporal inclusion (⊆t),temporal 

overlap (σ) and temporal equivalence (≡t). 

The figure bellow (figure 2.9) illustrates the temporal relations between spatio-temporal 

entities. 

 

 

 

 

 

 

 

 

Figure 2.9. Examples of Temporal Relations under [Muller 98a, 98b] approaches. 
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Given the topological theory and the temporal relations defined, Muller links them by 

stating that two connected entities are also time-connected. 

Muller in [Muller 98a,b] gives a formal characterisation of the conceptual 

neighbourhood graph of RCC8 defining a continuity theory of motion using his theory, 

therefore using a unified framework. The continuity theory is close to intuition and can 

be defined without stating separately the possible transitions (as it is done when using 

separated domains for space and time). 

Finally, in order to summarise all the approaches presented in the whole section 2.2 the 

next table presents the classification of all of them. The next notation is followed: A.S, 

R.S, A.M, R.M, A.T. and R.T. means Absolute Space, Relative Space, Absolute 

Motion, Relative Motion, Absolute Time and Relative Time respectively.  



 54 

 

Approaches A.S. R.S Points Extended 

Regions 

A.M

. 

R.M. A. T. R. T. Space 

+Time 

Domain 

Separate 

Space 

+Time 

Domains 

[Musto and Stein 

00], [Forbus et al. 

87], [Forbus 95], 

[Faltings 90], 

[Davis 90]. 

X  X  X  X   X 

[Rajagopalan & 

Kuipers 94] 

X   X X  X   X 

[Asher and 

Sablayrolles 95] 

 X X  X  X   X 

[Galton 97] X  X X X  X   X 

[Borgo et al. 96] X   X X  X   X 

[Bennett, Cohn, 

Torrini and 

Hazarika 00a], 

[Cohn and 

Hazarika 01]  

 X  X X  X   X 

[Van de Weghe et 

al. 04] 

 X  X  X X   X 

[Clarke 81]  X X X X  X   X 

[Claramunt et al. 

97] 

X X X X X  X X X  

[Hornsby and 

Egenhofer 02] 

[Muller 98a, 98b], 

[Hayes 85], 

[Wolter and 

Zakharyaschev 00] 

 X  X X  X  X  

Table 2.6. Summary of the approaches classification 
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2.3. STATE OF THE ART ON QUALITATIVE SHAPE 
REPRESENTATION 

Human beings rely on qualitative descriptions of shape in many of their daily activities. 

Shape is an aspect of space that describes sets of points, in fact the shape of an object is 

the description of the properties of the boundary of the object. A single point has neither 

dimension nor shape. However a one-dimensional curve has a shape that can be 

described.  

Shapes can be described in many different ways, ranging from quantitative to 

qualitative representations. A purely quantitative representation is when figures are 

described as mathematical functions of space coordinates. For instance a 2 dimensional 

round disk can be described by the following mathematical function: 

 
x2+y2=r2. 

 

For more complex shapes, it is generally difficult to find a numerical function for the 

curve or surface describing the boundary of the figure. Piecewise interpolation methods 

are often used as a simplification. This means that the object to be described is 

approximated as consisting of many small parts, for instance straight lines or flat 

surfaces, for which it is possible to find numerical functions. The set of functions then 

makes up the quantitative description of the shape of the object. An alternative 

quantitative representation is to approximate the shape of the object by the pixels it 

occupies. Depending on the resolution, this gives a more or a less coarse result, since 

some pixels may be only partially filled. Furthermore, the description of the shape may 

be quite different if it is rotated or transfered within the grid.  

One field of AI in which shape description is an important issue is artificial vision. In 

the artificial vision field a high computational cost for image processing is necessary. 

Moreover, object recognition from image processing is an unsolved problem, i.e. it is 

not yet possible to distinguish the same chair from different points of view or partially 

hidden by using quantitative image processing.  

Since the recognition of an object is often possible only with partial information of its 

shape, as long as the key features of the object are available, we strongly believe that 

the use of qualitative techniques for object recognition would be very useful and could 

solve this problem. For example, in order to recognize a cat, it is often enough to see a 
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pair of pointed ears and a furry tail. Therefore, the use of a qualitative theory for shape 

description and recognition will increase the efficiency in vision recognition because the 

recognition of a shape or an environment will be carried out by looking only for the 

distinguish features and not analysing each pixel of the image.  

Moreover, it is strange to have two objects which represent the same object and which 

have the exact quantitative data. For instance, no two tiles are exactly identical. Due to 

the manufacturing process, they always have slight differences.  

Once more the use of a qualitative method which would be able to recognise and match 

objects using only relevant features and managing uncertainty seems to be the most 

suitable one.  

A purely qualitative representation may describe shapes by linguistic terms, such as 

“round”, “straight” and so on. For instance, the example of a 2 dimensional round disk 

can be described qualitatively by the word “round.” (figure 2.10)  

 
 
 
 
 

Figure 2.10. Examples of quantitative and qualitative representation of a round disk. 

Most of the qualitative approaches to shape description can be classified as follows: 

1. Axial representations: approaches based on a description of the axes of an 

object, representing the shape qualitatively by reducing it to a “skeleton” or 

“axis”. The “axis” is a planar arc reflecting some global or local symmetry or 

regularity within the shape.  

2. Primitive-based representations: approaches where complex objects are 

described as combinations of more primitive and simple objects.  

3. Orientation and Projection-based representations or reference points 

representations: in these approaches different aspects of the shape of an object 

are represented by either looking at it from different angles or by projecting it 

onto different axe. 

4. Topology and logic-based representations: these approaches rely on topology 

and/or logics representing shapes. 

Quantitative 
Representation: 

x2+y2=r2 

Qualitative 
Representation:  

round 
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5. Cover-based representations: in these approaches the shape of an object is 

described by covering it with simple figures, as rectangles or spheres. 

Next sections detail each one of these classes.  

2.3.1. Axial Representations. 

Axial representations  include approaches based on a description of the axes of an 

object ([Leyton 88], [Brady 83], [Galton and Meathrel 99], [Meathrel and Galton 00], 

[Meathrel and Galton 01]). A qualitative way of describing a shape is to reduce it to a 

“skeleton” also called “axis”. The axis is a 2 dimensional arc reflecting some global or 

local symmetry or regularity within the shape. The shape can be generated from the axis 

by letting a geometric figure, called the generator, move along the axis and sweep out 

the boundary of the shape. The generator is assumed to be of constant shape and to keep 

a specified point, for instance its centre, fixed to the axis as it moves. However, the 

generator can change both its size and its inclination with respect to the axis. Axial 

representations are qualitative since many different shapes can be generated from a 

given axis, using generators of different shape and varying sizes and angles. For two-

dimensional shapes generally either a circle or a straight line segment is used as a 

generator. Figure 2.11 illustrates this explanation. 

 

 

 

 

 

Figure 2.11. The axis of a 2D shape. 

One important type of approache that can be classified within Axial representations 

approaches, are the Curvature Extrema approaches [Hoffman and Richards 85], [Leyton 

88]. They are based on the idea which comes from the fact that when asked to indicate 

the most salient points of a contour many people choose the points of extrema 

curvature, which means the points where the curve bends the most. Curvature is a 

mathematical function that indicates how fast the tangent of the contour rotates with 

respect to arc length. Five qualitative points are selected as the interesting ones to 

indicate the extrema curvature points (figure 2.12). These five points are: the 
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maxima/minima of positive curvature (M+ and m+), the maxima / minima of negative 

curvature (M- and m-) and the zero crossing. These points correspond to 

psychologically salient points on the corresponding contour.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.12. Curvature as a function of arc length 

Then, in order to describe parts of a contour, Richards and Hoffman [Hoffman and 

Richards 85] define codons, which are line segments composed of two or three 

curvature extrema. Three types of curvature extrema are considered in their 

representation: minimal negative (m-), Maximal positive (M+) and zero curvature. 

Leyton [Leyton 88] carried further this idea by considering not only the sharpest points 

around a contour but also its flattest points. The latter correspond to points of minimal 

positive curvature (m+) and maximal negative curvature (M-).  

Meathrel and Galton in ([Galton and Meathrel 99], [Meathrel and Galton 00], [Meathrel 

and Galton 01]) follow this trend of axial representations, characterising the shape by 

means of a string of tokens, recording salient curvature-based features encountered 

during a traversal of the outline of the shape. By considering variations in curvature as a 

starting point, they derived two sets of atomic tokens for describing curves, and 

presented token ordering graphs for verifying the syntax of atomic curve descriptions. 

The atomic tokens are obtained combining discretisations of tangent bearing and 

curvature. For curvature they use the discrete quantity space {+,0,-,U}, since at any 

point along a curve the curvature may be positive, zero, negative, or undefined. For 

tangent bearing they use the space {D,U}, whether the tangent bearing is defined or 

undefined respectively. Points where tangent bearing is undefined correspond to angles 

and cusps. Therefore, at any point p along a curve, its curve state is being specified by 

the pair <bp,cp>, where bp,  cp are the qualitative values of the tangent bearing and 
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curvature at p, respectively. With this definition, they obtain the set of atomic tokens by 

considering for each valid pair <bp,cp>.   

2.3.2. Primitive-Based Approaches. 

Primitive-based approaches include approaches where complex objects are described 

as combinations of more primitive and simple objects. These approaches have some 

overlap with axial representations. Primitive-based approaches in 3D shape 

representation describe an object in terms of solid primitives covering its volume. 

Basically primitive-based schemes can be classified into: 

6. Generalized cylinder and geon-based representations, which describe an object 

as a set of primitives plus a set of spatial connectivity relations among them 

([Biederman 87], [Flynn & Jain 91]), [Shokoufandeh, Marsic and Dickinson 99], 

[Shokoufandeh, Dickinson et al. 02]). 

7. Constructive representations, which describe an object as the Boolean 

combination of primitive point sets ([Requicha 80], [Brisson 89], [Ferrucci & 

Paoluzzi 91]). 

These schemes basically differ in the type of description they provide and the 

application field in which they are used. Generalized cylinders provide a qualitative 

description of an object and then the information embedded in such models can be used 

to distinguish between different objects. However it cannot be used to generate 

synthetic images. And on the other hand, constructive representations have been used as 

quantitative description in CAD, where the primitives are specified in terms of 

numerical parameters, thus they can be used to generate a synthetic image of an object. 

Figure 2.13 shows examples of these two trends. 
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Figure 2.13. Examples of primitive based representations: a) Generalised Cylinders Example and b) 

Constructive Representations. 
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2.3.3. Orientation, projection-based and reference-points 
representations. 

Orientation and projection-based representations or reference-points 

representations  include approaches where different aspects of the shape of an object 

are represented either by looking at it from different angles or by projecting it onto 

different axis ([Jungert 94], [Schlieder 96], [Freeman & Chakravarty 80], [Chen & 

Freeman 90], [Park & Gero 99], [Damski & Gero 96]). Most of these approaches are 

suitable for object recognition in image understanding. In these types of representations 

a fundamental issue is whether to store the representations of objects in an object-

centred or in a viewer-centred coordinate. The problem is that, if the objects can be 

positioned in a scene with any possible orientation then descriptions of its surfaces from 

any viewpoint are required, in this case we have a viewer-centred description of the 

object. Then we have to consider multiview representations which describe objects 

through a finite set of viewer-centred descriptions, storing a set of projections or views 

of all admissible 3D objects in a scene. 

An important study within this group, is the work of Jungert [Jungert 94]. Jungert’s 

work is based on symbolic projections. One main aspect of symbolic projections is that 

the objects and the interrelations between them are formalized as strings. These 

symbolic projection strings of the description of objects and their relations are generated 

from projections of the objects down to the coordinate axis (figure 2.14). The string 

description of a shape represents qualitatively some feature of the vertices of the shape. 

These features are: if they are convex or concave vertices, their relative angles as acute, 

right-angled or obtuse, and in the case of being ended points if they are in the north, 

south, west or east.  

 

 

 

 

 

 

Figure 2.14. Example of Jungert’s slope projections of an object down to the coordinate axis. 
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Furthermore, curvatures of primitive sub-forms of the objects can be determined as 

well. Jungert uses slope projections and not perpendicular projections, in order to be 

able to determine whether a point is to the right or left of a line that is not perpendicular 

to the coordinate axes. Then, to determine the symbolic shape description of an object, 

Jungert projects all object sides down both to the x- and y- axes as figure 2.14 

illustrates. Reasoning about the vertices to determine their features is based on the 

incoming and outgoing lines of each vertex. Figure 2.15 illustrates the basic principles 

of this projection technique, where the incoming line is P1-P2 and the outgoing is P2-P3. 

Projection is made down to the x-axis along or parallel to P1-P2 and to the y-axis 

perpendicular to that line. The following projections can be identified from figure 2.15:  

U:x’
1x’

2<x’
3 

V:y’
3<y’

2<y’
1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 2.15. An incoming contour line P1-P2 and an outgoing P2-P3 and their projection lines. 

Therefore, for instance, the features for the point P2 can be determined from the 

following reasoning technique: since the inside of the object is to the right when the 

contour is traversed from P1 to P3, a left turn at P2 means that the object is convex. 

Furthermore, a right turn means a concave point, while a straight line cannot occur. 

Consequently, since P1 and P2 have projections in x (x’1 and x’2) with values less than 
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the value of x’3 of P3, this can be interpreted as P2 is convex. To determine the angle, 

Jungert studies the V string, if the value y’2 (P2) and the value y’3 (P3) are equal, a right-

angle can be inferred. If y’3 lies to the right of y’2, then the angle is obtuse, otherwise 

acute. To determine the extreme points Junge rt uses next definitions: 

north/south extreme points: 

Vp: y’j+1<y’j and y’j+1<y’j+2 à south 

Vp: y’j<y’j+1 and y’j+2<y’j+1 à north 

east/west extreme points: 

Up: x’j<x’j+1 and x’j+2<x’j+1 à east 

Up: x’j+1<x’j and x’j+1<x’j+2 à west 

By applying the above rules to all points in the object, it is possible to create a list of 

three different features which provide a qualitative description of the objects. Studying 

the concavities and convexities of objects, Jungert defines the primitive sub-forms. He 

states that there exist just two basic sub-contour types of which the first one is a curve 

that can be either convex or concave and the second is a zigzag contour. The simple 

sub-convexities and concavities can be combined, thus creating a class of sub-forms 

with twelve different instances. The simple contour parts can have a point that merges 

two parts so that the angle of that point is either obtuse (O), or acute (A) and in some 

cases also a right angle (R) as well.  This point is called a passage. Hence, if the R-

passage is excluded, the most common instances are depicted in figure 2.16.  
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Figure 2.16. Sub-contours of type convex to concave with O-passage (a) and (b), convex to concave with 

A-passage (c), convex to convex with O-passage (d), convex to convex with A-passage (e), concave to 

convex with O-passage (f) and (g), concave to convex with A-passage (h), concave to concave with O-

passage (i) and concave to concave with A-passage (j).  

 

2.3.4. Topology and Logic-based Approaches. 

Topology and logic-based approaches are that ones that rely on topology and/or logic 

in representing shapes ([Bennett 94], [Cohn 95], [Randell & Cui & Cohn 92], 

[Clementini & Di Felice 97], [Chase 96, 97]). Benett ([Bennett 94]) uses the concept of 

convex-hull of a region to describe shapes. By convex hull of a region he means the 

smallest convex region of which it is a part. If one were to stretch an elastic membrane 

round a region then the convex-hull would be the whole of the region enclosed as figure 

2.17 shows. By combining the 8 basic RCC relations with the convex hull operation we 

can specify 8 powered 4 relations of the form R1(X,Y) and R2(X, conv(Y)) and 

R3(Conv(X), Y) and R4(conv(X), conv(Y)), and these relations are used to describe the 

shape. He classifies shapes as similar (in the same class) if their convex hulls are 

similar. 

a) b) c) d) e) 

f) g) h) i) j) 
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Figure 2.17. Convex-hull in 2-dimensions. 

Scott C. Chase ([Chase 96, 97]), defines a method for describing designs by the 

combination of the paradigms of shape algebras and predicate logic representations. He 

models designs using spatial relations based upon a algebraic shape representation 

defined by him. This algebraic representation assumes that shapes are finite 

arrangements of basic geometric elements, which are points, lines, 2D regions and  3D 

solids. Each type of basic element has its own algebra by which it can be manipulated. 

For instance, in the case of lines, and shapes composed of lines, he states that in a shape 

all lines are maximal, which means that no line contains any parts which are part of 

another line. Therefore as shapes are simply finite sets of maximal lines, the subshape 

relation ≤ and the operations + (sum),- (difference) and • (product) are defined for 

shapes (figure 2.18). With this concept, he defines shape algebras and spatial relations. 

Therefore, shapes are composed of finite basic elements which are manipulated in 

algebras Uij indicating elements of dimension i in a space of dimension j. For example, 

U02 and U12 describe respectively points and lines in the plane. Each basic element in Uij 

is finite and can be distinguished by its boundary and descriptor. The boundary divides 

the design space between an element’s interior (finite) and its exterior (infinite). It 

consists of a set of elements in the algebra of the next lowest dimension, for example, 

point bound lines, line bound planes, and so forth. Whilst the descriptor provides 

additional information about an element, for example the infinite element in which it is 

embedded, which in the case of a line segment would be the equation of its infinite line 

and in the case of an arc would be the equation of its circle. The operators +, -, •, and 

the relation ≤  operate only on elements with equal descriptors. Using the basic 

definition of shape and shape operations Chase defines a large number of geometric 

relations, as for instance share_boundary(A,B) and surrounded_by(A,B). Two basic 

elements A and B share a boundary if the product of their boundaries is non empty, and 

A is surrounded by B if and only if A is a part of B and they do not share a boundary.  
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Figure 2.18. Shapes A,B, and C (represented as sets of maximal lines) and results of operations upon 

them. 

2.3.5. Cover-Based Approaches. 

Cover-based approaches are those approaches where the shape of an object is 

described by covering it with simple figures such as rectangles and spheres ([Del Pobil 

& Serna 95]). The sphere is the simplest of all geometric objects, and using only spheres 

they develop the next theory to describe a shape: 

1.  The elements that take part in the representation are only spheres, therefore any 

shape is reduced always to sets of spheres. 

2. The model is twofold, it is composed of two sets of spheres: the spheres in the 

first set, which is the exterior representation, and cover the outer surface of the 

object, while the spheres in the second set, which is the interior representation, 

and are contained in the object.  

3. A hierarchy of sets is defined for both representations so that the approximations 

for the object (for its outer bound and for its interior) are made better and better 

by using more spheres. Hierarchy is a rank of detail which means that the 

decomposition of the object and the approximation of its shape are obtained 

simultaneously and at different levels of detail which are used only when 

needed. 

4. Finally a quality measure is used that permits them to quantify and control the 

degree of accuracy of the representation, both locally and globally. This problem 

is a NP-complete problem then they use a heuristic approach to solve it using 

what they call a rule-based expert named the spherizer. A remarkable feature of 

the approach is its stability with respect to shape changes. 

A+B 

A B C 

C-A A-C A•C C≤A+B? Yes 
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Of course, there are some other representations that are not included in the above 

division and that are also interesting, for instance there are qualitative approaches that 

combine some of the techniques explained in the above characterisation, such as the 

work of Dugat, Gambarotto and Larvor [Dugat, Gambarotto and Larvor 02]. They 

provide a representation of shape of an object combining a notion of skeleton 

(describing the object’s “architecture”) and the thickness of the object over it, by a 

cover-based approach.  

2.4. CONCLUSIONS OF THE STATE OF THE ART. 

In this section we will comment on the approaches that have most influenced our work, 

showing the drawbacks we found in order to justify the development of our new 

theories for topology, movement and shape description. 

With respect to topology we are interested in developing a calculus suitable for 

reasoning about topological relations between points, lines and areas as basic entities, 

therefore we cannot follow the trend established by the Spatial Region Approaches 

since this trend does not consider points and lines as regions. However, we will follow 

the trend established by the Point-Set Approaches. Specifically our topological calculus 

has been inspired by the CBM calculus of Clemetini [Clementini et al. 93]. The objects 

(features) manipulated by the CBM calculus consist of points, lines and areas 

commonly used in geographic information systems (GIS); that means that all kinds of 

features consist of closed (contain all their accumulation points) and connected (do not 

consist of the union of two or more separated features) sets. The knowledge about such 

entities is represented in the calculus as facts describing topological relations on pairs of 

the entities. The relation of two entities could be disjoint, touch, overlap, cross, or in. 

When navigating using a map, it is often the case that one has to distinguish between a 

situation where a region is completely inside another region, the situation in which it 

touches it from inside, and the situation in which the two regions are equal. For 

instance, a driver might want to know whether Hamburg is strictly inside Germany or at 

(i.e., touches) the boundary of the country with the rest of the earth. The CBM calculus 

makes use of a boundary operator which, when combined with the in relation, allows 

for the distinction to be made. A close look at the calculus shows that, indeed, it is 

suited for conjunctive-fact queries of geographic databases (i.e. queries consisting of 

facts describing either of the five atomic relations or a boundary operator on a pair of 
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features). In our topological contribution, we provide an Allen style approach [Allen 83] 

to the calculus, which means that we provide a constraint-based approach to the CBM 

calculus. Specifically, we present an algebra which will have nine atomic relations 

resulting from the refinement of the “in” relation, together with the other four atomic 

relations of the CBM calculus. Our main motivation is that we can then benefit from 

Allen style reasoning in the following aspects: 

 

1. We can make use of Allen’s constraint propagation algorithm to reason about 

knowledge expressed in the algebra. This means that composition tables recording the 

composition of every pair of the atomic relations have to be provided for the algebra, 

as well as a converse table. Therefore the calculus will be suitable for integration with 

other spatial aspects in order to reason about all of them within the same model as it 

has been done in [Escrig and Toledo 98]. We have to remember that we have defined 

three steps (section 1.4) in order to accomplish the integration of several spatial 

aspects in the same model: 

§ The definition of the algebra of the spatial aspect to be integrated. 

§ The definition of the Basic Step of the Inference Process (BSIP) for each spatial 

aspect to be integrated. 

§ The definition of the Full Inference Process (FIP) for each spatial aspect to be 

integrated. 

In fact, the definition of the topological algebra as an instance of the Constraint 

Satisfaction Problem (CSP) represents the first step. The definition of the converse and 

composition operations allows the implementation of the second step, the BSIP, which 

given two relationships which relate three objects (A relationship B), and (B 

relationship C), defines how to find the third relationship between objects A and C. The 

topological algebra defines the composition tables needed to compute this operation 

(BSIP), and in order to reduce the number of composition tables needed, the converse 

operation is defined too (see chapter 3 for more details). 

2. The algebra will benefit from the incrementality of the propagation algorithm: 

knowledge may be added without having to revise all the processing steps achieved 

so far. 
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3. Disjunctive knowledge will be expressed in an elegant way, using subsets of the set 

of all nine atomic relations: such a disjunctive relation holds on a pair of features if 

and only if either of the atomic relations holds on the features. This is particularly 

important for expressing uncertain knowledge, which is closely related to the notion 

of conceptual neighbourhoods [Freksa 92]. 

Finally it should be remarked that the objects manipulated by our calculus are points, 

lines and areas; contrary to most constraint-based frameworks in the qualitative spatial 

and temporal reasoning literature, which deal with only one type of feature (for 

instance, intervals in [Allen 83] or regions [Cohn et al. 93]). 

In the perspective of the representation of movement, we should ask ourselves what 

structures we think relevant in the following list: absolute versus relative space, 

extended regions or points for space and time, absolute motion versus relative motion, 

absolute chronology versus historical sequences, and a primitive space-time versus two 

separate domains for space and time. We have made the following choices: 

• We want to represent knowledge with an axiomatic approach, by developing a 

constraint-based movement theory. Developing a constraint-based calculus of 

movement will allow us to integrate it with other spatial aspects following the three 

steps defined by [Escrig and Toledo 98] (section 1.4), as we do with topology.  

• As with the case of the topological algebra, we want to develop a movement theory 

suitable for reasoning about the movement of points, lines and areas.  

• As we consider that it seems rather natural to consider space-time as a homogeneous 

domain by considering regions of space-time, therefore the works of Muller and 

Wolter and Zakharyaschev have been the ones inspiring our movement theory. 

However these works consider as basic entities only regions, and we once more are 

interested in having a calculus powerful enough to manage also points and lines. 

Therefore, following these works, we have defined a constraint-based algebra for 

time suitable for integration with our topological algebra. In our movement calculus 

we represent topological information as a function of the point of the time in which 

it occurs as an instance of the Constraint Satisfaction Problem, obtaining the same 

advantages, mentioned above, for our topological calculus.  

So, the movement theory developed uses a relative space because it deals with 

topological properties, it manages points and extended regions, it models absolute 
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motion and absolute chronology, and finally it represents a primitive space-time instead 

of two separated domains. The resulting method can be applied to qualitative navigation 

of autonomous agents, for instance during the path planning task by describing the 

sequence of topological situations that the agent should find during its way to the target 

objective. 

Finally, with respect to the Qualitative Shape Description theory, this part of our work 

has been inspired by the work of [Jungert 94]. [Jungert 94] is one of the approaches 

within the Orientation and projection-based representations or reference-points 

representations group. Therefore our work can be classified inside this group because 

we classify different aspects of shape by analysing its reference-points, which in our 

case as in the case of Jungert are the vertices. Jungert’s work is based on symbolic 

projections which are generated from projections of the objects down to the coordinate 

axis. The use of an external reference system for describing a shape is not suitable for 

the recognition of shapes by an autonomous agent during its movement. In fact the use 

of external reference systems for describing the environment or the shape of objects 

seems to be not cognitive, since people do not project the features of objects to an 

exterior reference system when recognising them. Therefore we have developed a new 

theory inspired by Jungert’s theory but without using an external reference system. The 

description of the shape is made as a function of its vertices and the relations between 

them. Moreover, Jungert describes curves as a sequence of straight lines, and we 

describe the curves themselves by describing its point of maximum curvature. 

In fact, our approach consists of a reference-point information approach of the 

qualitative description of shapes considering qualitatively their angles, relative side 

length, concavities and convexities, and types of curvatures of the boundary. The shapes 

recognised are regular and non-regular closed polygons that can have curved segments 

and curvilinear shapes. Moreover, the shapes can contain holes. To describe shapes with 

holes, topological and qualitative spatial orientation aspects are considered in order to 

relate the hole with its container. The colour is also a feature which can be managed 

qualitatively with our theory. Managing objects with holes as well as the colour, is a 

further innovation of the theory with respect to the bibliography. 
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CHAPTER 3 
THE ALGEBRA ON TOPOLOGY: INTEGRATION WITH 
OTHER SPATIAL ASPECTS 

In this chapter we will develop a topological algebra to reason with regions that 

can be points, lines and areas which follows the Point-Set Approaches trend.  

As our purpose is to integrate this algebra with other spatial aspects, we are going to 

follow the three steps explained in section 1.4. Therefore the chapter is divided in 

several sections as follows: 

• The representation of topology, which means the algebra on topology we have 

developed is presented in section 3.1. 

• The definition of the Basic Step of the Inference Process (BSIP) for topology is 

presented in section 3.2. 

• And the definition of the Full Inference Process (FIP) for topology is defined in 

section 3.3. 

Finally section 3.4 presents an example of reasoning about topological relations 

following the model developed.  

3.1. THE REPRESENTATION OF TOPOLOGY: THE ALGEBRA 
DEVELOPED. 

For the representation of topology we need a formal data model for topological relations 

and methods to combine topological knowledge. Moreover, in order to reason about 

topological information we need to define the BSIP and the FIP.  

We have developed an algebra of the Calculus Based Method (CBM) calculus (see 

chapter 2 for details) as the one Allen ([Allen 83]) presented for temporal intervals. 
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Specifically, we present an algebra which will have nine atomic relations resulting 

from the combination of the five atomic relations and the boundary operator of the 

CBM calculus.  

Therefore, we have developed an algebra of which the atomic relations will be the three 

relations resulting from the refinement of the in relation, together with the other four 

atomic relations of the CBM calculus. We will provide the result of applying the 

converse and the composition operations to the atomic relations: this will be given as a 

converse table and composition tables. These tables in turn will play the central role in 

propagating knowledge expressed in the algebra using Allen’s constraint propagation 

algorithm ([Allen 83]). 

We will use the topological concepts of boundary, interior, and dimension of a (point-

like, linear or areal) feature defined in section 2.1.2.  

To define the topological relations of our algebra we use the original relations touch, 

overlap, cross and disjoint of the CBM calculus. As we cannot use the boundary 

operator which allows the CBM calculus to distinguish between the three subrelations 

equal, completely- inside, and touching-from-inside of the in relation (which are not 

explicitly present in the calculus) the three subrelations will replace the superrelation in 

the list of atomic relations. In addition, the new relations completely- inside and 

touching-from-inside being asymmetric, we need two other atomic relations 

corresponding to their respective converses, namely completely-insidei and touching-

from-insidei. The definitions of the relations are given below. The topological relation r 

between two features h1 and h2, denoted by (h1, r, h2), is defined on the right hand side 

of the equivalence sign in the form of a point-set expression. 

Definition 3.1. The touch relation: 

(h1, touch, h2)   ↔   h°
1 ∩ h°

2 = ∅  ∧   h1 ∩ h2 ?  ∅ 

The figure 3.1 shows graphical examples of the touch relation. The notation in this 

figure and in subsequent figures is as follows: the areas are denoted by a the letter “A”, 

the lines by a “L” and the points by a “P”, and in the case of having several entities of 

the same type (for instance two areas), then these letters are followed by a subindex to 

differentiate both entities.  
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 a) b) c) d) 

 
 
 
 e) f) g) h) 

Figure 3.1. Graphical examples of the touch relation between two areas (figures 3.1a) and 3.1b)), 

between two lines (figures 3.1 c) and 3.1 d)), between an area and a line (figures 3.1 e) and 3.1 f)) and 

between a point and an area (figures 3.1 g) and 3.1 h)). 

Definition 3.2. The cross relation: 

(h1, cross, h2)   ↔    

                         dim(h°
1 ∩ h°

2)=max(dim(h°
1), dim(h°

2)) - 1 ∧  h1 ∩ h2 ? h1 ∧  h1 ∩ h2 ? h2 

Figure 3.2 shows graphical examples of the cross relation. 
 
 
 
 
 
 a) b) c) d) 

Figure 3.2. Graphical examples of the cross relation between two lines (figure 3.2 a)), between an area 

and a line (figures 3.2 b), 3.2 c) and 3.2 d)). 

 
Definition 3.3. The overlap relation: 

(h1, overlap, h2)   ↔    

                                 dim(h°
1) = dim(h°

2) = dim(h°
1 ∩ h°

2) ∧  h1 ∩ h2 ? h1 ∧  h1 ∩ h2 ? h2 

Figure 3.3 shows graphical examples of this relation. 
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  a)   b) 

Figure 3.3. Graphical examples of the overlap relation between two areas(figure 3.3 a)) and between two 

lines (figure 3.3 b)). 

Definition 3.4. The disjoint relation: 

(h1, disjoint, h2)   ↔   h1 ∩ h2 = ∅ 

Figure 3.4 shows some graphic representations of the disjoint relation. 
 
 
 
 

 a) b) c) 

Figure 3.4. Graphical examples of the disjoint relation between two areas (figure 3.4 a)), between an 

area and a line (figure 3.4 b)), and between two points (figure 3.4 c)). 

Definition 3.5. We define the equal, completely-inside, and touching-from-inside 

relations using the formal definition of the in relation: 

(h1, in, h2)   ↔   h1 ∩ h2 = h1  ∧   h°
1 ∩ h°

2 ?  ∅ 

Given that (h1, in, h2) holds, the following algorithm distinguishes between the 

completely- inside, the touching-from-inside, and the equal relations: 

if (h2, in, h1) then (h1, equal, h2) 

else if h1 ∩ δh2 ?  ∅ then (h1, touching-from-inside, h2) 

else (h1, completely- inside, h2) 

Figure 3.5 shows graphic examples of the equal relation.  
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 a) b) c) 

Figure 3.5. Examples of the equal relation. Figure 3.5 a) represents two equal areas, figure 3.5 b) 

represents two equal lines, and figure 3.5 c) represents two equal points. 

Definition 3.6. The completely-insidei relation: 

(h1, completely- insidei, h2)   ↔   (h2, completely- inside, h1) 

Definition 3.7. The touching-from-insidei relation: 

(h1, touching-from-insidei, h2)   ↔   (h2, touching-from-inside, h1) 

Figure 3.6 shows graphic examples of the relations complete-inside and touching-from-

inside and their converse relations (completely-insidei and completely-insidei ). 

 

 
 
 
 
 

 a) b) c) d) e) 

Figure 3.6. Examples of the completely-inside, touching-from-inside and their converse relations 

situations: examples with two areas, figure 3.6 a) representing (A1, touching-from-inside, A2) and (A2, 

touching-from-insidei, A1), and figure 3.6 b) representing (A1, completely-inside, A2), and (A2, 

completely-insidei, A1). Examples of situations with a line and an area, figure 3.6 c) representing (L, 

completely-inside, A), and (A, completely-insidei, L),and d) and e) representing (L, touching-from-inside, 

A), and (A, touching-from-insidei, L)situations.  

At this point we have defined the atomic relations of the new calculus. Now, we will 

prove that these relations are mutually exclusive, that is, it cannot be the case that two 

different relations hold between two features. Furthermore, we will prove that they form 

a full covering of all possible topological situations, that is, given two features, the 
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relation between them must be one of the nine defined here. To prove these two 

characteristics we construct the topological relation decision tree depicted in figure 3.7. 

disjoint

equal

completely-
inside

touching-
from-inside

touch

completely-
insidei

touching-
from-insidei

cross overlap

h1 ∩ δh2 = φ

h1 ∩ h2 ∴ φ h1 ∩ h2 = h1

h1 ∩ h2 = h2

δh1 ∩ h2 = φ dim(h°1 ∩ h°2) =
max(dim(h°1), dim(h°2)) - 1

h°1 ∩ h°2  = φ

h1  ∩ h2 = h2

T                   F T                   F T                   F

T                   FT                   F

T                                         FT                   F

T                                       F

 

Figure 3.7. Topological relation decision tree 

Proof. Every internal node in this topological relation decision tree represents a 

Boolean predicate of a certain topological situation. If the predicate evaluates to true 

then the left branch is followed, otherwise the right branch is followed. This process is 

repeated until a leaf node is reached that will indicate which of the atomic topological 

relations this situation corresponds to. Two different relations cannot hold between two 

given features, because there is only one path to be taken in the topological relation 

decision tree to reach a particular topological relation. And there can be no cases outside 

the new calculus, because every internal node has two branches, so for every Boolean 

value of the predicate there is an appropriate path and every leaf node has a label that 

correspond to one of the atomic topological relations. 

Definition 3.8. A general relation of the calculus is any subset of the set of all atomic 

relations. Such a relation, named R, is defined as follows: 

(∀h1,h2) ((h1, R, h2)  ⇔  ∨   (h1, r, h2)) 

Given the original relationship (h1, r, h2), by permuting h1 and h2 we can obtain one 

relationship more, which is the converse operation. Below we give the formal definition 

of the converse operation. 

Definition 3.9. The converse of a general relation R is denoted as R∪. It is defined as: 

r ∈ R 
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(∀h1, h2 )  ((h1, R, h2) ⇔ (h2, R∪, h1)), where  

 

R∪    =   ∪ r∪, being r one of the atomic relationships. 

Table 3.1 provides the converse for the atomic relations of the algebra.  

r r∪  
Overlap Overlap 
Touch Touch 
Cross Cross 
Disjoint Disjoint 
Completely- inside Completely- insidei 
Touching-from-inside Touching-from-insidei 
Completely- insidei Completely- inside 
Touching-from-insidei  Touching-from-inside 
Equal Equal 

Table 3.1 . The converse table 

Finally, we denote the universal relation by XY-U, with the U denoting the term 

“universal”, and with X and Y belonging to {P, L, A} (we use P for a point, L for a 

line, and A for an area). The universal relation XY-U represents the set of all possible 

atomic relations, between a feature h1 of type X and a feature h2 of type Y. For instance, 

PP-U is the set of all possible topological relations between two points. These universal 

relations are as follows: 

PP-U = equal, disjoint 

PL-U = touch, disjoint, completely-inside 

PA-U = touch, disjoint, completely-inside 

LP-U = touch, disjoint, completely-insidei 

LL-U = touch, disjoint, overlap, cross, equal, touching-from-inside, 

  completely-inside, touching-from-insidei, completely-insidei 

LA-U = touch, cross, disjoint, touching-from-inside, completely-inside 

AP-U = touch, disjoint, completely-insidei 

AL-U = touch, cross, disjoint, touching-from-insidei, completely-insidei 

AA-U = touch, overlap, disjoint, equal, touching-from-inside, 

  completely- inside, touching-from-insidei, completely-insidei 

r∈R 



 78 

Note that the sets LP-U, AP-U, and AL-U are the converse sets of PL-U, PA-U, and 

LA-U, respectively. 

3.2. THE BASIC STEP OF THE INFERENCE PROCESS FOR 
TOPOLOGICAL RELATIONS. 

The Basic Step of the Inference Process (BSIP) for topological information consists of 

iven two topological relationships between three objects in the space, (h1, r1, h2) and 

(h2, r2, h3), we want to infer the relationship (h1, r3, h3)". To infer such relationship we 

need to define and then use the composition operation for two general relations R1 and 

R2.  

Definition 3.10. The composition R1 ⊗ R2 of two general relations R1 and R2 is the 

most specific relation R such that:  

(∀h1, h2, h3) ((h1, R1, h2) ∧  (h2, R2, h3) ⇒ (h1, R, h3)) , where 

R1 ⊗ R2 =   ∪ r1 ⊗ r2 , being r1 and r2 atomic relationships. 

 

 

Using this definition we have to construct the composition tables for each combination 

of the three types of features (points, lines, and areas) considered in the algebra. 

Therefore, if we consider all possibilities of three features named h1, h2, and h3 being a 

point- like feature, a linear feature, or an areal feature, we would need 27 (33) tables. 

However, we construct only 18 of these tables from which the other 9 can be obtained. 

The 18 tables to be constructed split into 6 for h2=point- like feature, 6 for h2=linear 

feature and 6 for h2=areal feature: when feature h1 is of type X, feature h2 of type Y, 

and feature h3 of type Z, with X, Y, and Z belonging to {P, L, A}, the corresponding 

composition table will be referred to as the XYZ table. In tables 3.2, 3.3, and 3.4 we 

show the tables constructed and their numbers of entries. 

r1∈R1 
r2∈R2 
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TABLE NUMBER OF ENTRIES 
PPP table |PP-U| x |PP-U|= 4  
PPL table |PP-U| x |PL-U|= 6 
PPA table |PP-U| x |PA-U|= 6 
LPL table |LP-U| x |PL-U|= 9 
LPA table |LP-U| x |PA-U|= 9 
APA table  |AP-U| x |PA-U|= 9 
TOTAL NUMBER OF ENTRIES:                              43 

Table 3.2. Number of entries of the constructed tables for h2=point-like entity 

TABLE NUMBER OF ENTRIES 
PLP table |PL-U| x |LP-U|= 9 
PLL table |PL-U| x |LL-U|= 27 
PLA table |PL-U| x |LA-U|= 15 
LLL table |LL-U| x |LL-U|= 81 
LLA table |LL-U| x |LA-U|=45 
ALA table |AL-U| x |LA-U|=25 

TOTAL NUMBER OF ENTRIES:                             202             

Table 3.3. Number of entries of the constructed tables for h2=linear entity 

TABLE NUMBER OF ENTRIES 
PAP table |PA-U| x |AP-U|= 9 
PAL table |PA-U| x |AL-U|=15 
PAA table |PA-U| x |AA-U|=24 
LAL table |LA-U| x |AL-U|=25 
LAA table |LA-U| x |AA-U|=40 
AAA table |AA-U| x |AA-U|=64   

TOTAL NUMBER OF ENTRIES:                              177 

Table 3.4 . Number of entries of the constructed tables for h2=areal entity 

Let us consider the case h2=linear entity. The six tables to be constructed for this case 

are the PLP, PLL, PLA, LLL, LLA, and ALA tables. From these six tables, we can get 

the other three, namely the LLP, ALP, and ALL tables. We illustrate this by showing 

how to get the r1⊗r2 entry of the LLP table from the PLL table. This means that we have 

to find the most specific relation R such that for any two linear features L1 and L2, and 

any point- like feature P, if (L1, r1, L2) and (L2, r2, P) then (L1, R, P). We can represent 

this as: 
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r1

r2

P

R

L1 L2

 
From the converse table we can get the converses r1∪ and r2∪ of r1 and r2, respectively. 

The converse R∪ of R is clearly the composition r2∪⊗r1
∪ of r2∪ and r1∪, which can be 

obtained from the PLL table: 

L2

r1∪

P

r2∪
R∪

L1

 
Now R is the converse of R∪ :  R = (R∪)∪. 

Below we present the composition tables, in which the relation touch is denoted by T, 

cross by C, overlap by O, disjoint by D, completely-inside by CI, touching-from-inside 

by TFI, equal by E, completely-insidei by CIi, and touching-from-insidei by TFIi. 

r2 
r1 

E D 

E E D 
D D E, D 

Table 3.5. The PPP composition table 

r2 
r1 

T D CI 

E T D CI 
D PL-U PL-U PL-U 

Table 3.6. The PPL composition table 

r2 
r1 

T D CI 

E T D CI 
D PA-U PA-U PA-U 

Table 3.7. The PPA composition table 
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r2 
r1 

T D CI 

T T, C, TFI T, C, D C, TFI, CI 
D LA-U LA-U LA-U 

CIi T, C T, C, D C, CI, TFI 

Table 3.8. The LPA composition table 

r2 
r1 

T D CI 

T T, O, C, E, TFI, TFIi T, D, O, C , TFIi, CIi T, O, C, TFI, CI 
D T, D, O, C, CI, TFI LL- U T, D, O, C, TFI, CI 

CIi T, O, C, TFIi, CIi  T, D, O, C, TFIi, CIi O, C, E, TFI, CI, TFIi, CIi 

Table 3.9. The LPL composition table 

r2 
r1 

T D CI 

T T, O, E, TFI, TFIi T, O, D, CIi, TFIi O, TFI, CI 
D T, O, D, TFI, CI AA-U T, O, D, CI, TFI 

CIi O, TFIi, CIi T, O, D, CIi, TFIi O, E, TFI, CI, TFIi, CIi 

Table 3.10. The APA composition table 

r2 
r1 

T D CIi 

T PP-U D D 
D D PP-U D 
CI D D PP-U 

Table 3.11. The PLP composition table 

r2 
r1 

T C D CI TFI 

T T, D PA-U D CI T, CI 
D PA-U PA-U PA-U PA-U PA-U 
CI T, D PA-U D CI T, CI 

Table 3.12. The PLA composition table 

r2 
r1 

T C O D E CI TFI CIi TFIi 

T PL-U PL-U PL-U D T CI T, D D T, D 
D PL-U PL-U PL-U PL-U D PL-U PL-U D D 
CI T, D PL-U PL-U D CI CI CI PL-U PL-U 

Table 3.13. The PLL composition table 
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r2 
r1 

T C D TFI CI 

T T, C, D, TFI LA-U T, C, D T, C, TFI, CI C, TFI, CI 
D LA-U LA-U LA-U LA-U LA-U 
O T, C, D LA-U T, C, D C, TFI, CI C, TFI, CI 
C T, C, D LA-U T, C, D C, TFI, CI C, TFI, CI 
E T C D TFI CI 

TFI T, D LA-U D TFI, CI CI 
CI T, D LA-U D TFI, CI CI 

TFIi T, C C T, C, D TFI, CI C, TFI, CI 
CIi T, C C T, C, D TFI, CI C, TFI, CI 

Table 3.14. The LLA composition table 

r2 
r1 

T C D CI TFI 

T AA-U\CI, CIi AA-U\E, CI, CIi AA-U\E, CI, 
TFI 

AA-U\T, D, E, 
CIi, TFIi 

AA-U\D, E, 
CIi, TFIi 

C AA-U\E, CI, 
CII 

AA-U AA-U\E, CI, 
TFI 

O, TFI, CI O, TFI, CI 

D AA-U\E, CIi, 
TFIi 

AA-U\E, CIi, TFIi AA-U AA-U\E, CIi, 
TFIi 

AA-U\E, CIi, 
TFIi 

CIi AA-U\T, D, E, 
CI, TFI 

O, TFIi, CIi AA-U\E, CI, 
TFI 

AA-U\T, D O,TFIi, CIi 

TFIi AA-U\D, E, CI, 
TFI 

O, TFIi, CIi AA-U\E, CI, 
TFI 

O, TFI, CI O, E, TFI, 
TFIi 

Table 3.15. The ALA composition table 

r2 
r1 

T C O D E CI TFI CIi TFIi 

T LL-U\ 
CIi 

T, C, O, 
D, TFI, 

CI 

T, C, O, 
D, TFI, 

CI 

T, C, O, 
D, TFIi, 

CIi 

T T, C, 
O, 

TFI, 
CI 

T, C, O, 
TFI, CI 

D T, D 

C T, C, O, 
D, TFIi, 

CIi 

LL-U LL-U\ 
E, CIi, 
TFIi 

LL-U\ 
E, CI, 
TFI 

C C, O, 
TFI, 
CI 

C, O, 
TFI, CI 

T, C, D T, C, D 

O T, C, O, 
D, TFIi, 

CIi 

LL-U\ 
E, CI, 
TFI 

LL-U LL-U\ 
E, CI, 
TFI 

O O, 
TFI, 
CI 

O, TFI, 
CI 

T, O, D, 
TFIi, CIi 

T, O, D, 
TFIi, CIi 

D T, C, O, 
D, TFI, 

CI 

LL-U\ 
E, CIi, 
TFIi 

LL-U\ 
E, CIi, 
TFIi 

LL-U D LL-U 
\E, 
CIi, 

TFIi 

LL-U 
\E, CIi, 
TFIi 

D D 

E T C O D E CI TFI CIi TFIi 
CI D T, C, 

D 
T, O, D, 
TFI, CI 

D CI CI CI LL-U 
\C 

T, O, D, 
TFI, CI 

TFI T, D T, C, 
D 

T, O, D, 
TFI, CI 

D TFI LL-U 
\C, 
E 

TFI, 
CI 

T, O, D, 
TFIi, CIi 

LL-U 
\C, CI, 

CIi 
CIi T, C, O, 

TFIi, CIi 
C, O, 
TFII, 
CIi 

O, TFIi, 
CIi 

LL-U\ 
E, CI, 
TFI 

CIi LL- 
U\ 

T, C, 
D 

O, TFII, 
CIi 

CIi CIi 

TFIi T, C, O, 
TFIi, CIi 

C, O, 
TFIi, 
CIi 

O, TFIi, 
CIi 

LL-U\ 
E, CI, 
TFI 

TFIi O, 
TFI, 
CI 

O, E, 
TFI, 
TFIi 

CIi CI, CIi 

Table 3.16. The LLL composition table 
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r2 
r1 

T D CIi 

T PP-U D D 
D D PP-U D 
CI D D PP-U 

Table 3.17. The PAP composition table 

r2 
r1 

T C D CIi TFIi 

T PL-U PL-U D D T, D 
D PL-U PL-U PL-U D D 
CI D PL-U D PL-U PL-U 

Table 3.18. The PAL composition table 

r2 
r1 

T O D E CI TFI CIi TFIi 

T T, D PA-U D T CI T, CI D T, D 
D PA-U PA-U PA-U D PA-U PA-U D D 
CI D PA-U D CI CI CI PA-U PA-U 

Table 3.19. The PAA composition table 

r2 
r1 

T C D CIi TFIi 

T LL-U T, D, C, O, TFI, 
CI 

T, D, C, O, TFIi, 
CIi 

D T, D, O 

C T, D, C, O, TFIi, 
CIi 

LL-U T, D, C, O, TFIi, 
CIi 

T, D, C, O, 
TFIi, CIi 

T, D, C, O, TFIi, 
CIi 

D T, D, C, O, TFI, 
CI 

T, D, C, O, TFI, 
CI 

LL-U D D 

CI D T, D, C, O, TFI, 
CI 

D LL-U T, D, C, O, TFI, 
CI 

TFI T, D, O T, D, C, O, TFI, 
CI 

D T, D, C, O, 
TFIi, CIi  

T, D, C, O, E, TFI, 
TFIi 

Table 3.20. The LAL composition table 

r2 
r1 

T O D E CI TFI CIi TFIi 

T T, D, C, TFI LA-U T, D, C T C, CI, TFI T, C, CI, 
TFI 

D T, D 

C T, D, C LA-U T, D, C C C, CI, TFI C, CI, 
TFI 

T, C, 
D 

T, C, D 

D LA-U LA-U LA-U D LA-U LA-U D D 
CI D LA-U D CI CI CI LA-U LA-U 
TFI T, D LA-U D TFI CI CI, TFI T, C, 

D 
C, T, D, 

TFI 

Table 3.21. The LAA composition table 
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r2 
r1 

T O D E CI TFI CIi TFIi 

T T, D, O, E, 
TFI, TFIi 

T, D, O, 
TFI, CI 

T, D, O, 
TFIi, CIi 

T O, CI, 
TFI 

O, T, 
CI, TFI 

D D, T 

O T, D, O, 
TFIi, CIi 

AA-U T, D, O, 
TFIi, CIi 

O O, CI, 
TFI 

O, TFI, 
CI 

T, D, O, 
TFIi, 
CIi 

T, D, O, 
TFIi, CIi 

D T, D, O, TFI, 
CI 

T, D, O, 
TFI, CI 

AA-U D T, D, O, 
TFI, CI 

T, D, O, 
TFI, CI 

D D 

E T O D E CI TFI CIi TFIi 
CI D T, D, O, 

TFI, CI 
D CI CI CI AA-U T, D, O, CI, 

TFI 
TFI T, D T, D, O, 

CI, TFI 
D TFI CI CI, 

TFI 
T, D, O, 

TFIi, 
CII 

T, D, O, E, 
TFIi, TFI 

CII O, CIi, TFIi O, CIi, 
TFIi 

T, D, O, 
CIi, TFIi 

CIi E, O, CI, 
TFI, CIi, 

TFIi 

O, TFIi, 
CIi 

CIi CIi 

TFIi T, O, CIi, 
TFIi 

O, CIi, 
TFII 

T, D, O, 
CIi, TFIi 

TFIi O, CI, 
TFI 

O, E, 
TFI, 
TFIi 

CIi TFIi, CIi 

Table 3.22. The AAA composition table 

Using these 27 composition tables plus the converse table defined in section 3.1, we can 

implement the BSIP. We have to realise that the composition tables proposed are 

complete, that is, we can infer the composition between any combination of point, line 

and area features. The result of the inference is always one of the topological relations 

or a disjunction of them.  

To implement the BSIP, the composition tables and converse table of the topological 

calculus are defined as facts of a PROLOG database, for example the fact 

composition_table_PLA(t,tfi,[t,ci]) means that being h1 a point, h2 a line and h3 an area, 

and knowing that (h1,touch,h2) and (h2,touch_form_inside,h3), then h1 and h3 can hold 

one of the relations given between brackets, i. e. (h1,touch,h3) or (h1,completely 

inside,h3). Figures 3.8 to 3.11 show the converse table and some examples of how the 

composition tables explicitly constructed have been implemented in our approach as 

facts of our PROLOG database. Figure 3.12 shows how the rest of tables not explicitly 

constructed are implemented in our PROLOG database.  
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conv(o,[o]). 
conv(t,[t]). 
conv(c,[c]). 
conv(d,[d]). 
conv(ci,[cii]). 
conv(tfi,[tfii]). 
conv(cii,[ci]). 
conv(tfii,[tfi]). 
conv(e,[e]). 

Figure 3.8. PPP-Table 

composition_table_PPL(e,t,[t]). 
composition_table_PPL(e,d,[d]). 

composition_table_PPL(e,ci,[ci]). 

composition_table_PPL(d,t,[t,d,ci]). 

composition_table_PPL(d,d,[t,d,ci]). 

composition_table_PPL(d,ci,[t,d,ci]). 

Figure 3.9. PPL-Table 

composition_table_PPA(e,t,[t]). 

composition_table_PPA(e,d,[d]). 

composition_table_PPA(e,ci,[ci]). 

composition_table_PPA(d,t,[t,d,ci]). 

composition_table_PPA(d,d,[t,d,ci]). 

composition_table_PPA(d,ci,[t,d,ci]). 

Figure 3.10. PPA-table. 

composition_table_LPA(t,t,[t,c,tfi]). 

composition_table_LPA(t,d,[t,c,d]). 

composition_table_LPA(t,ci,[c,tfi,ci]). 

composition_table_LPA(d,t,[t,c,d,tfi,ci]). 

composition_table_LPA(d,d,[t,c,d,tfi,ci]). 

composition_table_LPA(d,ci,[t,c,d,tfi,ci]). 

composition_table_LPA(cii,t,[t,c]). 
composition_table_LPA(cii,d,[t,c,d]). 

composition_table_LPA(cii,ci,[c,ci,tfi]). 

Figure 3.11. LPA-Table 
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/********* LPP composition table **************/ 

composition_table_LPP(R1,R2,Rsdo):- conv(R1,R11), 

conv(R2,R22), composition_table_PPL(R22,R11,Rconv), 
conv_op(Rconv,Rsdo). 
/********* APP composition table **************/ 

composition_table_APP(R1,R2,Rsdo):- conv(R1,R11), 

conv(R2,R22), composition_table_PPA(R22,R11,Rconv), 

conv_op(Rconv,Rsdo). 
/************* APL composition table ****************/ 

composition_table_APL(R1,R2,Rsdo):- conv(R1,R11), 

conv(R2,R22), composition_table_LPA(R22,R11,Rconv), 

conv_op(Rconv,Rsdo). 
/*********** LLP composition table *******************/ 

composition_table_LLP(R1,R2,Rsdo):- conv(R1,R11), 

conv(R2,R22), composition_table_PLL(R22,R11,Rconv), 
conv_op(Rconv,Rsdo). 
/*************** ALP composition table***************/ 

composition_table_ALP(R1,R2,Rsdo):- conv(R1,R11), 

conv(R2,R22), composition_table_PLA(R22,R11,Rconv), 

conv_op(Rconv,Rsdo). 
/*********** ALL composition table ******************/ 

composition_table_ALL(R1,R2,Rsdo):- conv(R1,R11), 

conv(R2,R22), composition_table_LLA(R22,R11,Rconv), 

conv_op(Rconv,Rsdo). 
/**************** LAP composition table ************/ 

composition_table_LAP(R1,R2,Rsdo):- conv(R1,R11), 

conv(R2,R22), composition_table_PAL(R22,R11,Rconv), 

conv_op(Rconv,Rsdo). 
/************* AAP composition table *************/ 

composition_table_AAP(R1,R2,Rsdo):- conv(R1,R11), 

conv(R2,R22), composition_table_PAA(R22,R11,Rconv), 

conv_op(Rconv,Rsdo). 
/********* AAL composition table ********************/ 

composition_table_AAL(R1,R2,Rsdo):- conv(R1,R11), 

conv(R2,R22), composition_table_LAA(R22,R11,Rconv), 

conv_op(Rconv,Rsdo). 

Figure 3.12. Part I. PROLOG Implementation of the tables not explicitly constructed. 
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/*******Auxiliar Prédicats *************/ 

conv_op(R1,R2):- conv_op(R1,[],R2). 

conv_op([],R,R). 

convoy([R1|R2],R3,R4):-   conv(R1,R11), append(R11,R3,R31), 

conv_op(R2,R31,R4). 

Figure 3.12. Part II. PROLOG Implementation of the tables not explicitly constructed. 

The definition of the BSIP is the second step defined in section 1.4 in order to allow 

reasoning about the topological information represented by the algebra developed. In 

fact, reasoning about knowledge expressed in the presented calculus can be done using a 

constraint propagation algorithm similar to the one in ([Allen 83]), guided by the 18 

composition tables and the converse table. Such an algorithm has the advantage of 

being incremental: knowledge may be added without having to revise the processing 

steps achieved so far. Moreover, this allows the integration of topology with other 

spatial aspects in the same model as it has been done with the concepts of orientation, 

cardinal directions, and absolute and relative distances, thanks to considering the 

representation and the reasoning process of each aspect as an instance of the Constraint 

Satisfaction Problem (CSP) as it has been done in [Escrig and Toledo 1998, 2001]. 

Therefore, the last step to allow reasoning about topological knowledge is to define the 

Full Inference Process (FIP). 

3.3. THE FULL INFERENCE PROCESS FOR TOPOLOGICAL 
RELATIONS.  

For computing the full inference process (FIP) of topological information we consider 

that:  

1. each topological relationship between two objects is seen as a constraint; 

2. the set of topological relationships forms a constraint graph, where the nodes are 

spatial objects (points, lines and areas) and the arcs are the binary constraints 

between objects. This constraint graph is not complete at the beginning, that is, 

all the nodes are not bi-directional connected, because there is no initial 

topological relationship between all the objects in the space; 
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3. the fact of propagating the constraints for making explicit the topological 

relationships between all the nodes in the graph, is seen as an instance of the 

CSP. 

The formula (1), defined in section 1.4, which approximated the solution for temporal 

objects, is rewritten for topological relations between spatial objects as follows: 

cb,cba,cca,c:ca,c ⊗⊕=  (2) 

In our approach, the constraint ca,b (which represents the topological relationship 

holding between objects a, b) is represented by the predicate 

ctr_comp_top(TB,TA,A,B,Rel), where A and B are the spatial objects which holds the 

set of atomic topological relationships included in the set Rel; TB and TA represents the 

types of the objects A and B, which can be point (p), line (l) or area (a).  

The intersection (‘⊕’) and composition (‘⊗’) parts of formula (2) are implemented with 

simplification and propagation CHRs (see section 1.4 for details), respectively. 

The part of the intersection (ca,b⊕....) is implemented by the following simplification 

CHR: 

ctr_comp_top(TB,TA,B,A,R1),ctr_comp_top(TB,TA,B,A,R2) <=> 

intersection(R1,R2,R3)|ctr_comp_top(TB,TA,B,A,R3). 

For supplying the lack of completeness of the constraint graph (because there is not a 

topological relation between every object in the graph), two CHRs more are defined, by 

applying the converse operation to the first and second constraints, respectively. 

ctr_comp_top(TB,TA,B,A,R1), ctr_comp_top(TA,TB,A,B,R2) <=> conv_op(R2,R22), 

intersection(R1,R22,R3) | ctr_comp_top(TB,TA,B,A,R3). 

ctr_comp_top(TA,TB,A,B,R1), ctr_comp_top(TB,TA,B,A,R2) <=> conv_op(R1,R11), 

intersection(R1,R11,R3) | ctr_comp_top(TB,TA,B,A,R3). 

The part of the basic operation (2) related with the composition (ca,b ⊗ cb,c) corresponds 

to the BSIP defined in the previous section. It is implemented by propagation CHRs: 

ctr_comp_top(TB,TA,B,A,R1), ctr_comp_top(TC,TB,C,B,R2) ==> 

composition(R1,R2,R3) | newctr_comp_top(TC,TA,C,A,R3). 
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where composition/3 refers to the set of facts of the PROLOG database which defines 

the composition operation between 3 spatial objects. 

As before, for the case in which the constraint  graph is not complete, two other CHRs 

are defined by applying the converse operation to the first and second constraints. 

ctr_comp_top(TA,TB,A,B,R1), ctr_comp_top(TC,TB,C,B,R2) ==> ( conv_op(R1,R11), 

composition(TA,TB,TC,R11,R2,R3) | ctr_comp_top(TC,TA,C,A,R3). 

ctr_comp_top(TB,TA,B,A,R1), ctr_comp_top(TB,TC,B,C,R2) ==> (conv_op(R2,R22), 

composition(TA,TB,TC,R1,R22,R3), | ctr_comp_top(TC,TA,C,A,R3). 

ctr_comp_top(TA,TB,A,B,R1), ctr_comp_top(TB,TC,B,C,R2) ==>(conv_op(R1,R11), 

conv_op(R2,R22), composition(TA,TB,TC,R11,R22,R3), | 

ctr_comp_top(TC,TA,C,A,R3). 

In order to test the integration of the topological relations with other spatial aspects in 

the same model, as has been done with the rest of spatial aspects, a PROLOG algorithm 

has been implemented to infer new spatial information from a given set of spatial 

relations. Therefore, as the BSIP, the FIP has been implemented in a PROLOG program 

that can work together the PROLOG program already defined in [Escrig and Toledo 

1998, 2001]. Bellow we show this algorithm (algorithm 3.1). 

% Constraint declarations and definitions 
(3.1a) constraints (ctr_comp_top)/5, (ctr_comp_top)/7. 
(3.1b) label_with ctr_comp_top(N,TB,TA,B,A,Rel,I) if N>1. 
(3.1c) ctr_comp_top(N,TB,TA,B,A,Rel,I):- 
member(R,Rel),ctr_comp_top(1,TB,TA,B,A,[R],I). 
 
%Initialize 
(3.2) ctr_comp_top(TB,TA,B,A,Rel) <=> 
length(Rel,N),ctr_comp_top(N,TB,TA,B,A,Rel,1). 
 
%Special cases 
(3.3a) ctr_comp_top(N,TB,TA,B,A,Rel,I) <=> empty(Rel) | false. 
(3.3b) ctr_comp_top(N,TA,TA,A,A,Rel,I) <=> true. 
(3.3c) ctr_comp_top(N,p,p,A,B,Rel,I) <=> N=2 | true. 
(3.3d) ctr_comp_top(N,p,l,A,B,Rel,I) <=> N=3 | true. 
(3.3e) ctr_comp_top(N,p,a,A,B,Rel,I) <=> N=3 | true. 
(3.3f) ctr_comp_top(N,l,p,A,B,Rel,I) <=> N=3 | true. 
(3.3g) ctr_comp_top(N,l,l,A,B,Rel,I) <=> N=9 | true. 
(3.3h) ctr_comp_top(N,l,a,A,B,Rel,I) <=> N=5 | true. 
(3.3i) ctr_comp_top(N,a,p,A,B,Rel,I) <=> N=3 | true. 
(3.3j) ctr_comp_top(N,a,l,A,B,Rel,I) <=> N=5 | true. 
(3.3k) ctr_comp_top(N,a,a,A,B,Rel,I) <=> N=8 | true. 

Algorithm 3.1. Part I. Path consistency algorithm to propagate compositions of disjunctive qualitative 
orientation relationships. 
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%Intersections 
(3.4a) ctr_comp_top(N1,TB,TA,B,A,R1,I), 
ctr_comp_top(N2,TB,TA,B,A,R2,J) <=> 
intersection(R1,R2,R3), length(R3,N3), K is min(I,J)+1 | 
ctr_comp_top(N3,TB,TA,B,A,R3,K). 
 

(3.4b) ctr_comp_top(N1,TB,TA,B,A,R1,I), 
ctr_comp_top(N2,TA,TB,A,B,R2,J) <=> 
conv_op(R2,R22), intersection(R1,R22,R3), length(R3,N3), K is 
min(I,J)+1 | 
ctr_comp_top(N3,TB,TA,B,A,R3,K). 
 

(3.4c) ctr_comp_top(N1,TA,TB,A,B,R1,I), 
ctr_comp_top(N2,TB,TA,B,A,R2,J) <=> 
conv_op(R1,R11), intersection(R1,R11,R3), length(R3,N3), K is 
min(I,J)+1 | 
ctr_comp_top(N3,TB,TA,B,A,R3,K). 
 

%Compositions 
(3.5a) ctr_comp_top(N1,TB,TA,B,A,R1,I), 
ctr_comp_top(N2,TC,TB,C,B,R2,J) ==> 
((I=1,J<6);(J=1;I<6)), composition_op(TA,TB,TC,R1,R2,R3), 
length(R3,N3), K is I+J | 
ctr_comp_top(N3,TC,TA,C,A,R3,K). 
 

(3.5b) ctr_comp_top(N1,TA,TB,A,B,R1,I), 
ctr_comp_top(N2,TC,TB,C,B,R2,J) ==> 
((I=1,J<6);(J=1,I<6)), singleton(R1), conv_op(R1,R11), 
composition_op(TA,TB,TC,R11,R2,R3), length(R3,N3), 
K is I+J | ctr_comp_top(N3,TC,TA,C,A,R3,K). 
 

(3.5c) ctr_comp_top(N1,TB,TA,B,A,R1,I), 
ctr_comp_top(N2,TB,TC,B,C,R2,J) ==> 
((I=1,J<6);(J=1,I<6)), singleton(R2), conv_op(R2,R22), 
composition_op(TA,TB,TC,R1,R22,R3), 
length(R3,N3), K is I+J | ctr_comp_top(N3,TC,TA,C,A,R3,K). 
 

(3.5d) ctr_comp_top(N1,T,ATB,A,B,R1,I), 
ctr_comp_top(N2,TB,TC,B,C,R2,J) ==> 
((I=1,J<6);(J=1,I<6)), singleton(R1), singleton(R2), 
conv_op(R1,R11), conv_op(R2,R22), 
composition_op(TA,TB,TC,R11,R22,R3), 
length(R3,N3), K is I+J | ctr_comp_top(N3,TC,TA,C,A,R3,K). 
%Auxiliary predicates 
singleton([_]). 
empty([]). 
choose([R],[R|_]). 
 

/***************************************************************
***      PREDICATES TO DO COMPOSITION OF DISJUNCTIVE 
RELATIONSHIPS      ********************************************/ 
composition_op(TA,TB,TC,R1,R2,R3):-  
(  (singleton(R1),singleton(R2)) -> 
    composition_simple(TA,TB,TC,R1,R2,R3); 
    composition1_op(TA,TB,TC,R1,R2,[],R3)). 
 

composition_simple(TA,TB,TC,[R1],[R2],R3):- 
composition(TA,TB,TC,R1,R2,R3). 

Algorithm 3.1. Part II. Path consistency algorithm to propagate compositions of disjunctive qualitative 
orientation relationships. 
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composition(p,p,p,R1,R2,R3):- composition_table_PPP(R1,R2,R3). 
composition(p,p,l,R1,R2,R3):- composition_table_PPL(R1,R2,R3). 
composition(p,p,a,R1,R2,R3):- composition_table_PPA(R1,R2,R3). 
composition(l,p,p,R1,R2,R3):- composition_table_LPP(R1,R2,R3). 
composition(l,p,l,R1,R2,R3):- composition_table_LPL(R1,R2,R3). 
composition(l,p,a,R1,R2,R3):- composition_table_LPA(R1,R2,R3). 
composition(a,p,p,R1,R2,R3):- composition_table_APP(R1,R2,R3). 
composition(a,p,l,R1,R2,R3):- composition_table_APL(R1,R2,R3). 
composition(a,p,a,R1,R2,R3):- composition_table_APA(R1,R2,R3). 
 
composition(p,l,p,R1,R2,R3):- composition_table_PLP(R1,R2,R3). 
composition(p,l,l,R1,R2,R3):- composition_table_PLL(R1,R2,R3). 
composition(p,l,a,R1,R2,R3):- composition_table_PLA(R1,R2,R3). 
composition(l,l,p,R1,R2,R3):- composition_table_LLP(R1,R2,R3). 
composition(l,l,l,R1,R2,R3):- composition_table_LLL(R1,R2,R3). 
composition(l,l,a,R1,R2,R3):- composition_table_LLA(R1,R2,R3). 
composition(a,l,p,R1,R2,R3):- composition_table_ALP(R1,R2,R3). 
composition(a,l,l,R1,R2,R3):- composition_table_ALL(R1,R2,R3). 
composition(a,l,a,R1,R2,R3):- composition_table_ALA(R1,R2,R3). 
 
composition(p,a,p,R1,R2,R3):- composition_table_PAP(R1,R2,R3). 
composition(p,a,l,R1,R2,R3):- composition_table_PAL(R1,R2,R3). 
composition(p,a,a,R1,R2,R3):- composition_table_PAA(R1,R2,R3). 
composition(l,a,p,R1,R2,R3):- composition_table_LAP(R1,R2,R3). 
composition(l,a,l,R1,R2,R3):- composition_table_LAL(R1,R2,R3). 
composition(l,a,a,R1,R2,R3):- composition_table_LAA(R1,R2,R3). 
composition(a,a,p,R1,R2,R3):- composition_table_AAP(R1,R2,R3). 
composition(a,a,l,R1,R2,R3):- composition_table_AAL(R1,R2,R3). 
composition(a,a,a,R1,R2,R3):- composition_table_AAA(R1,R2,R3). 
 
composition1_op(A,B,C,[],_,R3,R3). 
composition1_op(A,B,C,[R1|R11],R2,Raux,Rdo):- 
   composition1(A,B,C,R1,R2,R_parcial), 
   union(Raux,R_parcial,R), 
   composition1_op(A,B,C,R11,R2,R,Rdo). 
 
composition1(A,B,C,R1,R2,R):- 
   composition11(A,B,C,R1,R2,[],R). 
 
composition11(A,B,C,R1,[],Rdo,Rdo). 
composition11(A,B,C,R1,[R21|R22],Raux,Rdo):- 
   composition(A,B,C,R1,R21,R3),  
   union(Raux,R3,R), 
   composition11(A,B,C,R1,R22,R,Rdo). 
 
/* The following file contains the converse table for 
topological information as facts of the PROLOG database*/ 
:-['inversas.pl']. 
/* The following file contains the composition tables for 
topological information as facts of the PROLOG database*/ 
:-['composit.pl']. 
 

Algorithm 3.1. Part III. Path consistency algorithm to propagate compositions of disjunctive qualitative 
orientation relationships. 
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This algorithm is based on the algorithm developed in [Escrig and Toledo 98, 01] for 

integrating other spatial aspects such as orientation, cardinal and absolute directions and 

distances. Escrig and Toledo’s algorithm uses the optimisation introduced in the 

algorithm [Mackworth and Freuder 85] named PC-2. This optimisation is based on the 

idea that the constraint ca,b can be computed as the converse cb,a if it is needed (by 

applying the converse operation to the corresponding relationship), which saves half of 

the computation. Therefore, this optimisation is also included in our algorithm. In 

algorithm 3.1 no queue of modified constraints is needed because the new cons traint 

goal itself will trigger new applications of the propagation CHRs. 

Two predicates, ctr_comp_top of arity 5 and 7, are declared in rule(3.1a). Predicates 

ctr_comp_top/5 are the kind of constraints introduced initially as topological 

information. The predicates of type ctr_comp_top/5 are translated into the predicates 

ctr_comp_top/7 by rule (3.2) where length (N) of the relationship is added as well as the 

length of the shortest path (I) from which the constraint is derived. A length of the 

shortest path (I) equal to 1 means that the constraint is direct, that is, it is user-defined, 

not obtained from derivation. Both arguments are included to increase efficiency. The 

first one will avoid compositions between constraints which do not give more 

information (rules 3.3c to 3.3k) because all the topological atomic relationships (they 

will form a different set of constraints depending on the types of the objects related) are 

included in the disjunction. The last argument is used to restrict the propagation CHRs 

to involve at least one direct constraint and to avoid that a new constraint exactly equal 

to other one already existent, will trigger again a composition rule causing an infinite 

execution. Therefore in order to guarantee the termination we use the last argument to 

involve at least one direct constraint and the other constraint has to be of a length of the 

shortest path (I) (path from which it has been derived) equal to a value that we specify 

in the algorithm. This value is established depending on the quantity of information we 

want to infer, when it is bigger, we can get more new information but the propagation 

will be longer. 

It should also be observed that termination is guaranteed because the simplification 

rules replace R1 and R2 by the result of intersecting R1 and R2 which is R3 (and R3 is 

the same as R1 or R2 or smaller), and because propagation CHRs are never repeated for 

the same constraint goals more than twice. 
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Following the explanation of the algorithm 3.1, the constraints will be treated by the 

CLP clause (3.1c) if the relation, Rel¸ represents a disjunction of primitive relationships. 

In predicate (3.1c), member(R,Rel) non-deterministically chooses one primitive 

constraint, R, from the disjunctive constraint Rel which implements the backtrack 

search part of the algorithm. Special cases are simplification CHRs. (3.3a) detects 

inconsistent constraints. When the constraints relate three spatial objects with an empty 

relationship, the constraint in substituted by the built- in predicate false and the full 

predicate fails. (3.3b) deletes constraints which contains only one region which is 

related with itself.  

Simplification CHRs (3.4a) to (3.4c) perform intersections which permit the 

simplification of redundant information. Rule (3.4a) implement s intersection in the 

same way as it is originally defined, that is, given two constraints that relate the same 

two spatial objects, the more restricted relationship between both constraints is 

calculated by the predicate intersection (R1,R2,R3) and these constraints are substituted 

by a new one which relates the same two objects with the new relationship R3 among 

them. 

By applying the converse operation to the first (rule 3.4b) or second constraint (rule 

3.4c) of the two which are in the head of the original intersection rule, it is possible to 

obtain the topological information among the same two objects. Therefore it is possible 

to calculate the intersection if the converse operation is applied to the relationship or 

disjunction of relationships in the guard part of the rules. This is possible because we 

have to notice that the application of the converse operation to a disjunction of 

relationships is equivalent to the application of these operations to each relationship 

included in the disjunction of relations as it has been shown in section 3.1 

Propagation CHRs (3.5a) to (3.5d) perform compositions. (3.5a) implements the 

composition as originally defined previously in this section. In a similar way to that 

which it happens to the simplification rule, the application of the converse operation to 

the first constraint, to the second one or to both constraints of the two which define the 

head of the original composition rule define the CHRs (3.5b) and (3.5d) respectively.  

In CHRs (3.5b) and (3.5d) another optimisation is introduced. It consists of restricting 

one of the two constraints involved in the propagation to be disjunction-free by adding 
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to the guard a check which guarantees that its corresponding relationship is singleton. 

This not only reduces the average size of the resulting constraint but also makes 

composition more efficient.  

Therefore, a total of 3 simplification rules and 4 propagation rules define the algorithm 

which solves the FIP for topological relations.  

3.4. EXAMPLE USING TOPOLOGICAL INFORMATION WITH 
CONSTRAINTS HANDLING RULES. 

The topological information between the entities involved in the example of figure 3.13 

might be expressed in natural language such that: 

“We are interested in knowing all the topological relations between five elements, 

which are a park, named Ribalta Park, a public building named Pergola, a shop, a 

track and the Bus Station. We know that the Pergola is in the middle of the Ribalta 

Park, that the track is disjoint of the Ribalta Park but that it touches the shop and 

crosses the Bus Station”. 

Depending on the granularity we choose we can represent each one of this objects as a 

point, a line or an area. We have chosen for this example the next distribution: the 

Ribalta Park and the Bus Station due its dimensions compared with the other elements 

are considered as areas, the track is considered as a line and the shop and the Pergola are 

considered as points.  

 

 
 
 
 
 
 
 
 

Figure 3.13. Graphic representation of the elements of this example. 

Therefore we can represent the relations that we know using the topological algebra 

developed by the next constraints:  

Ribalta Park .The Pergola 

Track  . 
Shop 

Bus Station 
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• ctr_comp_top(a,p,Ribalta,Pergola,[ci]), 

•  ctr_comp_top(a,l,Ribalta,Track,[d]),  

• ctr_comp_top(p,l,Shop,Track,[t]), 

• ctr_comp_top(l,a,Track,Buspark,[c]);  

In these constraints ci, d, t and c represents the topological relations completely 

inside, disjoint, touch and cross respectively and the symbols a, p and l represent the 

types of the elements in the constraints. If these constraints are provided as entry to 

the previous defined CSP for topological information, all the information which can 

be inferred from the original relationships has been obtained, which are related 

below. The information inferred is obtained with path length of limit equal to 3 for 

the inference process.  

1. ctr_comp_top(1,l,p,Track,Pergola,[d],6) 

2. ctr_comp_top(1,a,p,Ribalta,Shop,[d],6) 

3. ctr_comp_top(1,a,l,Ribalta,Track,[d],6) 

4. ctr_comp_top(1,p,p,Shop,Pergola,[d],4) 

The first argument of the predicate in the inferred constraints corresponds to the 

argument of primitive relationships in the disjunctive relations. The last number 

corresponds to the length of the shortest path from which the constraint was derived. 

This is a simple example to show that the algorithm obtains the desired results, and the 

results are consistent, that is, the results are correctly calculated. If we use a bigger limit 

of the path length for the inference process we will obtain more topological relations 

between the five entities of the example in figure 3.13.  
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CHAPTER 4 
INTEGRATION OF TOPOLOGY AND TIME: THE MOTION 
MODEL. 

Our aim in this chapter is to formalize the intuitive notion of spatio-temporal 

continuity for a qualitative theory of motion. Motion can be seen as a form of spatio-

temporal change, the chapter presents a qualitative representation model for integrating 

qualitative time and topological information for modelling motion and reasoning about 

dynamic worlds in which spatial relations between regions may change with time. 

Therefore, the integration of the concept of time will allow us to represent and reason 

about topological changes and not only about snapshots of a changing world. It is 

therefore important to develop a model which combines space and time in an integrated 

fashion.  

Assuming that change is continuous, as is the case in standard qualitative reasoning, it is 

important to know which qualitative values or relations, are neighbours in the sense that 

if a value or predicate holds at one time, then there is some continuous change possible 

such that the next value or predicate to hold will be a neighbour. Continuity networks 

defining such as neighbours are often called conceptual neighbourhoods in the literature 

following the use of the term defined by Freksa [Freksa 92] to describe the Allen’s 13 

JEPD (jointly exhaustive and pair wise disjoint) temporal relations [Allen 83] according 

to their conceptual closeness or closest topological distance (e.g. meets  is a neighbour 

of both overlaps and before) as it has been seen in chapter 1.2. Therefore, we are going 

to define the conceptual neighbourhoods of the topological algebra presented in chapter 

3 in section 4.3.  

Moreover, as we also want to integrate the motion model with other spatial aspects, we 

are going to follow once more the three steps defined in section 1.4 in order to allow the 

integration, which are; 
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• To define the representational model for the motion model (section 4.2), for 

which we need to define a suitable time algebra (section 4.1) ; 

• To define the BSIP for motion (section 4.3); 

• And to define the FIP (sections 4.4). 

To define the representational model, we have developed an algebra which integrates 

topological information and time. The topological information integrated is the one 

presented in chapter 3. But, we also have to develop a time algebra suitable for that 

integration. This time algebra is presented in section 4.1. 

4.1. TIME ALGEBRA. 

We define a time algebra in which variables represent time points. There are five 

primitive constraints: prev, next, <<, >>, ==. These primitive constraints are defined as 

follows: 

Definition 4.1. Given two time points, t and t’, t == t’ iff it has not occurred a 

topological change between t and t’ (or between t’ and t) on any relation. 

Definition 4.2. Given two time points, t and t’, t’ next t iff t’ > t and some topological 

relation or relations have changed to a neighbour relation between t and t’. 

Definition 4.3. Given two time points, t and t’, t’ prev t iff t’ < t and some topological 

relation or relations have changed to a neighbour relation between t and t’. 

Definition 4.4. Given two time points, t and t’, t’ >> t iff t’ > t and a topological relation 

has changed strictly more than once to a neighbour relation. 

Definition 4.5. Given two time points, t and t’, t’ << t iff t’ < t and a topological relation 

has changed strictly more than once to a neighbour relation. 

According to these definitions, time is represented by disjunctive binary constraints of 

the form X{r1, ..., rn}Y, where each ri is a relation that is applicable to X and Y. X{r1, ..., 

rn}Y is a disjunction of the way (X r1 Y) ∨  .... ∨ (X rn Y) and ri is also called primitive 

constraints. 
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We have chosen to represent time as time points because we are only interested in the 

point of time in which one region is transformed into its topological neighbourhood, and 

this will occur just in one point of time. 

Definition 4.6. A general relation R of the calculus is any subset of the set of all 

atomic relations. 

Given the original relationship (X r Y), by permuting X and Y we can obtain one 

relationship more, which is the converse operation. Below we give the formal definition 

of the converse operation. 

 

Definition 4.7. The converse of a general relation R, called R∪ is defined as:  

∀(X,Y) ((X,R,Y) ⇔ (Y,R∪,X))   (1) 

In this definition  R∪ is: 

   R∪  =   ∪ r∪ 

Table 4.1shows the converse operation for the time algebra. 

r r∪  

== == 

<< >> 

>> >> 

next prev 

prev next 

Table 4.1 The converse table for the time algebra. 

4.1.1 The Basic Step of the Inference Process for Time Relations. 

The Basic Step of the Inference Process (BSIP) for time information consists in "given 

two time relationships between three objects in the space, (h1, r1, h2) and (h2, r2, h3), we 

want to infer the relationship (h1, r3, h3)". To infer such relationship we need to define 

and then use the composition operation for two general relations R1 and R2.  

Definition 4.8. The composition R1 ⊗ R2 of two general relations R1 and R2 is the 

most specific relation R such that:  

r∈R1 
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∀ (h1,h2,h3) ((h1,R1,h2) ∧  (h2,R2,h3) ⇒  (h1,R,h3))  (2) 

Note that for general relations R1 and R2 we have: 

R1 ⊗ R2 =   ∪ r1 ⊗ r2 

 

The composition table for time relations is shown in table 4.2. 

    r1  
r2 << prev == next >> 

<< {<<} {<<} {<<} {prev,<<} {<<,prev,==,next,>>} 
prev {<<} {<<,prev} {prev} {==,prev,next} {next,>>} 
== {<<} {prev} {==} {next} {>>} 
next {<<,prev} {prev,==,next} {next} {>>,next} {>>} 
>> {<<,prev,==,next,>>} {>>,next} {>>} {>>} {>>} 

Table 4.2. The composition table for the time algebra. 

If we want to reason only about time information then we should define the FIP for time 

information, but since we want to reason about motion information as the integration of 

topology and time information we have only defined the aspects of the time algebra 

needed for this integration. Section 4.2 to 4.4 present s the motion model one more 

following the three steps defined in section 1.4:  the representational model, the BSIP 

and the FIP. 

4.2. THE REPRESENTATIONAL MODEL OF MOTION. 

The representational model of topology and qualitative time points follows the 

formalism used by Allen for temporal interval algebra [Allen 83]. The Allen style 

formalism will provide to our approach the possibility of reasoning about topology in 

dynamic worlds by applying the Allen’s constraint propagation algorithm.  

In the representational model for motion, binary relations between two objects, which 

can be points, lines or areas, called h1 and h2, in a point of time t are defined as tertiary 

constraints or propositions where the topological relation r between h1 and h2 in the 

point of time t is denoted by (h1,r,h2)t. That is, we define a general relation on motion 

and the corresponding converse operation such as: 

Definition 4.9. A general relation R of the algebra during time t is defined as: 

∀(h1,h2) ((h1,R,h2)t ⇔ ∪r∈R (h1,r,h2)t)  (3) 

r1∈R1 
r2∈R2 
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Definition 4.10. The converse of a general relation R in time t, denoted as R∪, is 

defined as follows: 

∀(h1,h2) ((h1,R,h2)t ⇔ (Y,R∪,X)t)  (4) 

From this definition we observe that the converse of the integration of topology and 

time algebra, which means the converse of the motion algebra is the same as the 

converse defined only for topological relations because the converse is calculated in the 

same point of time, that is, time does not affect the converse operation. Therefore the 

converse table is the same as the one explained in chapter 3.1. 

4.3. THE BASIC STEP OF THE INFERENCE PROCESS (BSIP) 
ON MOTION. 

The BSIP for motion consists of: "given three objects A, B, C, if the topological 

relationships in time t between A and B and B and C are known, it is possible to obtain 

the topological relationship in time between objects A and C”. To infer such topological 

relationship in time t we are going to define the composition operation for two general 

relations R1 and R2. 

We can distinguish four possible cases for solving the BSIP of the model which 

integrates topology and time: 

Definition 4.11. The resulting general relation R obtained from the composition (⊗) 

operation could be calculated such as: 

a) Composition of three regions in the same point of time : 

(A,R1,B)t0 ⊗ (B,R2,C)t0 ⇒ (A,R,C)t0 

b) Composition implementing Freksa’s conceptual neighbourhood : 

(A,R1,B)t0 ⊗ (t0, Reltime, t1) ⇒ (A,R,B)t1 

c) Composition of three regions in different points of time: 

(A,R1,B)t0 ⊗ (B,R2,C)t1 / (t0, Reltime, t1) ⇒ ((A,R1,B)t0 ⊗ (t0, Reltime, t1)) ⊗ 

(B,R2,C)t1 ⇒ (A,R’,B)t1 ⊗ (B,R2,C)t1 ⇒ (A,R,C)t1 

d) Composition between the same regions in the same point of time. 

(A,R1,B)t0 ⊗ (A,R1,B)t0 ⇒ (A,R1,B)t0 
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4.3.1 Composition of three regions in the same point of time. 

The composition of three regions in the same point of time, shown in definition 4.11.a is 

the composition of the topological relations between three regions A, B and C, in the 

same point of time, where A, B, C belong to {point, line, area} is the usual topological 

composition, where time has no effect. To calculate this composition we will use the 18 

composition tables and the converse table defined for the topological algebra in chapter 

3.  

4.3.2 Composition implementing Freksa’s conceptual neighbourhood. 

The second type of composition, in definition 4.11.b, is the composition which 

implements Freksa’s conceptual neighbourhood notion [Freksa 91]. It looks for the 

possible topological relations which will appear between two regions as time changes. 

To reason about this type we need to construct 6 composition tables that will be referred 

to as XYt–table where the regions X and Y belong to {point (P), line (L), area (A)} and 

t represents the time dimension of the algebra. We would need 9 composition tables if 

we consider all possibilities with X and Y being a point- like, a linear or an areal entity. 

However, we construct only 6 tables from which the other three tables can be obtained, 

by using the converse operation. We construct the AAt-table, LAt-table, PPt-table, LLt-

table, PLt-table and PAt-table. These tables are depicted in tables 4.3 to 4.8, 

respectively. We have depicted in the same column both “next” and “prev” cases, and 

“<<” and “>>” cases because the corresponding entries are the same.  
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Rtime 
RTop next or prev << or >> == 

T {D,O,T} {T,E,TFI,C,CIi,TFIi} {T} 

O {T,TFI,E,O,TFIi}  {O,D,CI,CIi}  {O} 
D {T,D} {D,O,E,TFI,CI,TFIi,CIi,TFIi}  {D} 

E {O,E} {E,T,D,TFI,CI, TFIi,CIi}  {E} 

TFI {O,CI,TFI} {TFI,T,D,E,CI, TFIi, CIi}  {TFI} 

CI {TFI,CI} {CI,T,O,D,E,TFIi,CIi}  {CI} 

TFIi {O,CIi,TFi} {TFIi,T,D,E,CI,TFI} {TFIi} 

CIi {TFIi,CIi}  {CIi,T,O,D,E,TFI,CI} {CIi} 

Table 4.3. AAt-table. 

Reltime 
Reltop next or prev << or >> == 

T {C,D,T} {T,TFI,CI} {T} 

C {T,TFI,C} {C,D,CI} {C} 

D {T,D} {D,C,TFI,CI} {D} 

TFI {C,CI,TFI} {TFI,T,D} {TFI} 

CI {TFI,CI} {CI,T,C,D} {CI} 
 

Table 4.4. LAt-table. 

Reltime 
Reltop next or prev << or >> == 

E {D,E} {E} {E} 

D {E,D} {D} {D} 
 

Table 4.5. PPt-table. 
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Reltime 
Reltop Next or prev << or >> == 

T {D,O,C,T, TFI, CI, 
TFIi,CIi} 

{T,E} {T} 

D {T,D} {D,C,O,E,TFI,CI, 
TFIi,CIi} 

{D} 

O {T,E,TFI, TFIi, O} {O,C,D,CI,CIi}  {O} 

C {T,C} {D,C,O,E,TFI,CI, 
TFIi, CIi} 

{C} 

E {O,E} {T,E,D,C,TFI,CI, 
TFIi,CIi} 

{E} 

TFI {CI,T,O,TFI} {C, D,TFI, E, 
TFIi,CIi} 

{TFI} 

CI {TFI, T,CI} {CI,C,D,O,E, 
TFIi,CIi} 

{CI} 

TFIi {T,O,CIi,TFi}  {TFIi,D,C,E, TFI,CI} {TFIi} 

CIi {C,TFIi,CIi} {CIi,T,D,O,E, 
TFI,CI} 

{CIi} 

 

Table 4.6. LLt-table. 

 

Reltime 
Reltop next or prev << or >> == 

T {D,CI,T} {T} {T} 

D {T,CI,D} {D} {D} 

CI {T,DCI} {CI} {CI} 
 

Table 4.7. PLt-table. 

Reltime 
Reltop next or prev << or >> == 

T {D,CI,T} {T} {T} 

D {T,D} {D,CI} {D} 

CI {T,CI} {CI,D} {CI} 
 

Table 4.8. PAt-table. 

Notice that the "=" time relation is the identity. 
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As a relation t prev t’ corresponds to a change of some topological relation to a 

neighbour relation, the tables always keep the possibility that a relation has not changed 

between time t and t’. This situation model the fact that the time changes from t to t’ 

because another topological relationship has changed and the relationship between X 

and Y (RelTop) has not changed.  

The other three tables which are not constructed can be obtained by applying the 

converse operation to the ones which are constructed. For example, the ALt-table can be 

obtained using the LAt-table and the converse operation. This means that we have to 

find the most specific relation R such that, if X and Y are an area and a linear entity 

respectively: 

(X, Reltop, Y)t0 ⊗ (t0, Reltime, t1) ⇒ (X, R, Y)t1  (5) 

From the LAt-table and using the converse operation we will get the relation R as 

follows: 

(Y, Reltop∪, X)t0 ⊗ (t1, Reltime∪,t0) ⇒ (Y, R’, X)t0 (6) 

Then the relation R that we are looking for is R=(R’)∪, which means that R is the 

converse of R’ relation.  

As we have already mentioned, these tables implement Freksa’s notion of conceptual 

neighbourhood. Therefore using them, we can obtain the conceptual neighbourhood 

graph for each Universal Set of the topological calculus (described in chapter 3), which 

are shown in figure 4.1, in which the relation touch is denoted by T, cross by C, overlap 

by O, disjoint by D, completely-inside by CI, touching-from-inside by TFI, equal by E, 

completely-insidei by CIi, and touching-from-insidei by TFIi. In these graphs each 

relation in a node is the conceptual neighbour of the nodes connected to it by arcs. Then, 

the topological neighbourhood of a region is that region to which the original region can 

be transformed to by a process of gradual, continuous change which does not involve 

passage through any third region.  
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a) PP-U Conceptual Neighbourhood. 
 
 
 
 
 

b) PA-U Conceptual Neighbourhood. 
 
 
 
 
 
 
 
 

c) PL-U Conceptual Neighbourhood. 
 
 
 
 

d) AP-U Conceptual Neighbourhood. 
 
 
 
 
 
 
 
 

e) LP-U Conceptual Neighbourhood. 
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f) AA-U Conceptual Neighbourhood. 
 
 
 
 

g) LA-U Conceptual Neighbourhood. 
 
 
 
 

h) AL-U Conceptual Neighbourhood. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

i) LL-U Conceptual Neighbourhood. 

Figure 4.1. Conceptual Neighbourhoods Graphs for each Universal set of topological relations. 

D T O 

TFI 

TFIi 

E 

CI 

CIi 

D T C TFI CI 

D T C TFIi CIi 

CIi 

D T O E 

TFIi 

TFI 

CI 

C 



 108 

4.3.3 Composition of three regions in different points of time. 

The third case of composition is the composition of three regions in different points of 

time defined in definition 4.11.c as: 

(A,R1,B)t0 ⊗ (B,R2,C)t1 / (t0, Reltime, t1) ⇒ ((A,R1,B)t0 ⊗ (t0, Reltime, t1)) ⊗ 

(B,R2,C)t1 ⇒ (A,R’,B)t1 ⊗ (B,R2,C)t1 ⇒ (A,R,C)t1 

In this case, we want to infer the composition R in time t1 between three regions, X, Y 

and Z having the topological relation in time t0 between X and Y, the topological 

relation in time t1 between Y and Z and the qualitative time relation between times t0 

and t1. In order to get the composition relation R, first of all we have to obtain the 

topological relations that can appear between X and Y in time t1 using the composition 

tables defined for the case of (4.11.b) above described. Therefore we have the general 

relation R’ which appears between X and Y in t1. This relation together with the general 

relation R2 between Y and Z in t1 corresponds to the case (4.11.a). 

4.3.4 Composition between the same regions in the same point of time. 

The last composition case is the composition between the same regions in the same 

point of time, shown in definition 4.11.d. It is the composition between the same two 

regions in the same point of time, sharing the relation R1, and the result is the relation 

R1 itself. We do not infer more information from this case. 

As we have done with the topological algebra presented in chapter 3, in order to test the 

integration of the motion algebra presented with other spatial aspects in the same model, 

a PROLOG algorithm has been implemented to infer new spatio-temporal information 

from a given set of spatio-temporal relations. Therefore the BSIP and the FIP have been 

implemented in a PROLOG program that can works together the PROLOG program 

already defined in [Escrig and Toledo 1998, 2001].  

4.3.5 The Implementation of the BSIP for the Qualitative Motion 
Model 

To implement the BSIP, the composition tables and converse table of the time algebra 

developed together with the converse and composition tables of the motion model are 

implemented as facts of our PROLOG database, for example the fact 
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composition_table_time(<<,next,[prev,<<]) means that having three points of time t1, t2 

and t3, and knowing that (t1,<<,t2) and (t2,next,t3) then t1 and t3 can hold one of the time 

relations given between brackets, i.e. (t1, prev, t3) or (t1,<<,t3). For the case of the 

motion algebra, the fact composition_table_AAt(t,next,[d,o,t]) means that being two 

entities h1 and h2 areal entities, and having two points of time t1 and t2, knowing that in 

the point of time t1 (h1,touch,h2)t1, and that (t1, next, t2), then in the point of time t2, h1 

and h2 can hold one of the topological relations given between brackets, i.e. (h1, disjoint, 

h2)t2, (h1, overlap, h2)t2, or (h1, touch, h2)t2.  

Figures 4.2 to 4.3 show the converse table and composition table respectively of the 

time algebra as they have been implemented in our PROLOG database.  

conv_time(==,[==]). 
conv_time(<<,[<<]). 
conv_time(>>,[>>]). 
conv_time(next,[next]). 
conv_time(prev,[prev]). 

Figure 4.2. Converse table for the Time algebra as PROLOG facts. 

composition_table_time(<<,<<,[<<]). 
composition_table_time(<<,prev,[<<]). 
composition_table_time(<<,==,[<<]). 
composition_table_time(<<,next,[prev,<<]). 
composition_table_time(<<,>>,[<<,prev,next,==,>>]). 
composition_table_time(prev,<<,[<<]). 
composition_table_time(prev,prev,[<<,prev]). 
composition_table_time(prev,==,[prev]). 
composition_table_time(prev,next,[==,next,prev]). 
composition_table_time(prev,>>,[next,>>]). 
composition_table_time(==,<<,[<<]). 
composition_table_time(==,prev,[prev]). 
composition_table_time(==,==,[==]). 
composition_table_time(==,next,[next]). 
composition_table_time(==,>>,[>>]). 
composition_table_time(next,<<,[<<,prev]). 
composition_table_time(next,prev,[next,==,prev]). 
composition_table_time(next,==,[next]). 
composition_table_time(next,next,[>>,next]). 
composition_table_time(next,>>,[>>]). 
composition_table_time(>>,<<,[<<,prev,==]). 
composition_table_time(>>,prev,[>>,next]). 
composition_table_time(>>,==,[>>]). 
composition_table_time(>>,next,[>>]). 
composition_table_time(>>,>>,[>>]). 

Figure 4.3. Composition table for the Time Algebra as PROLOG facts. 
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Figures 4.4, 4.5 and 4.6 shows some examples of how the composition tables explicitly 

constructed for the motion algebra have been implemented in our approach as facts of 

the PROLOG database. Figure 4.7 shows how the rest of tables not explicitly 

constructed are implemented in our PROLOG database. We use the same notation as in 

chapter 3. 

composition_table_AAt(t,next,[d,o,t]). 
composition_table_AAt(t,prev,[d,o,t]). 
composition_table_AAt(t,<<,[t,e,tfi,c,ci,tfii,cii]). 
composition_table_AAt(t,>>,[t,e,tfi,c,ci,tfii,cii]). 
composition_table_AAt(t,==,[t]). 
composition_table_AAt(o,next,[t,tfi,e,tfii,o]). 
composition_table_AAt(o,prev,[ t,tfi,e,tfii,o]). 
composition_table_AAt(o,<<,[o,d,ci,cii]). 
composition_table_AAt(o,>>,[o,d,ci,cii]). 
composition_table_AAt(o,==,[o]). 
composition_table_AAt(d,next,[t,d]). 
composition_table_AAt(d,prev,[t,d]). 
composition_table_AAt(d,<<,[d,o,e,tfi,ci,tfii,cii]). 
composition_table_AAt(d,>>,[d,o,e,tfi,ci,tfii,cii]). 
composition_table_AAt(d,==,[d]). 
composition_table_AAt(e,next,[o,e]). 
composition_table_AAt(e,prev,[o,e]). 
composition_table_AAt(e,<<,[e,t,d,tfi,ci,tfii,cii]). 
composition_table_AAt(e,>>,[e,t,d,tfi,ci,tfii,cii]). 
composition_table_AAt(e,==,[e]). 
composition_table_AAt(tfi,next,[o,ci,tfi]). 
composition_table_AAt(tfi,prev,[o,ci,tfi]). 
composition_table_AAt(tfi,<<,[tfi,t,d,e,ci,tfii,cii]). 
composition_table_AAt(tfi,>>,[tfi,t,d,e,ci,tfii,cii]). 
composition_table_AAt(tfi,==,[tfi]). 
composition_table_AAt(ci,next,[tfi,ci]). 
composition_table_AAt(ci,prev,[tfi,ci]). 
composition_table_AAt(ci,<<,[ci,t,o,d,e,tfii,cii]). 
composition_table_AAt(ci,>>,[ci,t,o,d,e,tfii,cii]). 
composition_table_AAt(ci,==,[ci]). 
composition_table_AAt(tfii,next,[o,cii,tfii]). 
composition_table_AAt(tfii,prev,[o,cii,tfii]). 
composition_table_AAt(tfii,<<,[tfii,t,d,e,ci,tfi]). 
composition_table_AAt(tfii,>>,[tfii,t,d,e,ci,tfi]). 
composition_table_AAt(tfii,==,[tfii]). 
composition_table_AAt(cii,next,[tfii,cii]). 
composition_table_AAt(cii,prev,[tfii,cii]). 
composition_table_AAt(cii,<<,[cii,t,o,d,e,tfi,ci]). 
composition_table_AAt(cii,>>,[cii,t,o,d,e,tfi,ci]). 
composition_table_AAt(cii,==,[cii]). 

Figure 4.4. AAt-Table. 
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composition_table_LAt(t,next,[c,d,t]). 
composition_table_LAt(t,prev,[c,d,t]). 
composition_table_LAt(t,<<,[t,tfi,ci]). 
composition_table_LAt(t,>>,[t,tfi,ci]). 
composition_table_LAt(t,==,[t]). 
composition_table_LAt(c,next,[t,tfi,c]). 
composition_table_LAt(c,prev,[t,tfi,c]). 
composition_table_LAt(c,<<,[c,d,ci]). 
composition_table_LAt(c,>>,[c,d,ci]). 
composition_table_LAt(c,==,[c]). 
composition_table_LAt(d,next,[t,d]). 
composition_table_LAt(d,prev,[t,d]). 
composition_table_LAt(d,<<,[d,c,tfi,ci]). 
composition_table_LAt(d,>>,[d,c,tfi,ci]). 
composition_table_LAt(d,==,[d]). 
composition_table_LAt(tfi,next,[c,ci,tfi]). 
composition_table_LAt(tfi,prev,[c,ci,tfi]). 
composition_table_LAt(tfi,<<,[tfi,t,d]). 
composition_table_LAt(tfi,>>,[tfi,t,d]). 
composition_table_LAt(tfi,==,[tfi]). 
composition_table_LAt(ci,next,[ci,tfi]). 
composition_table_LAt(ci,prev,[ci,tfi]). 
composition_table_LAt(ci,<<,[ci,t,c,d]). 
composition_table_LAt(ci,>>,[ci,t,c,d]). 
composition_table_LAt(ci,==,[ci]). 

Figure 4.5. LAt-table. 

composition_table_PAt(t,next,[d,ci,t]). 
composition_table_PAt(t,prev,[d,ci,t]). 
composition_table_PAt(t,<<,[t]). 
composition_table_PAt(t,>>,[t]). 
composition_table_PAt(t,==,[t]). 
composition_table_PAt(d,next,[t,d]). 
composition_table_PAt(d,prev,[t,d]). 
composition_table_PAt(d,<<,[d,ci]). 
composition_table_PAt(d,>>,[d.ci]). 
composition_table_PAt(d,==,[d]). 
composition_table_PAt(ci,next,[t,ci]). 
composition_table_PAt(ci,prev,[t,ci]). 
composition_table_PAt(ci,<<,[d,ci]). 
composition_table_PAt(ci,>>,[d,ci]). 
composition_table_PAt(ci,==,[ci]). 

Figure 4.6. PAt-table. 
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/********* ALt composition table **************/ 
composition_table_ALt(R1,R2,Rsdo):- conv(R1,R11), 
conv_time(R2,R22), composition_table_LAt(R11,R22,Rconv), 
conv_time_op(Rconv,Rsdo). 
 
/********* APt composition table **************/ 
composition_table_APt(R1,R2,Rsdo):- conv(R1,R11), 
conv_time(R2,R22), composition_table_PAt(R11,R22,Rconv), 
conv_time_op(Rconv,Rsdo). 
 
/************* LPt composition table ****************/ 
composition_table_LPt(R1,R2,Rsdo):- conv(R1,R11), 
conv_time(R2,R22), composition_table_PLt(R11,R22,Rconv), 
conv_time_op(Rconv,Rsdo). 
 
/*******Auxiliar Predicates *************/ 
conv_time_op(R1,R2):- conv_time_op(R1,[],R2). 
conv_time_op([],R,R). 
conv_time_op([R1|R2],R3,R4):- 
   conv(R1,R11), 
   append(R11,R3,R31), 
   conv_time_op(R2,R31,R4). 

Figure 4.7. PROLOG Implementation of the three tables not explicitly constructed. 

4.4. THE FULL INFERENCE PROCESS FOR MOTION. 

In order to define a straightforward algorithm to solve the FIP, the concept of topology 

integrated with time is seen in our approach as an instance of the CSP. 

The formula (1), defined in section 1.4, which approximated the solution for temporal 

objects, is rewritten for the motion model as follows:  

Case 1:  ca,c,t := ca,c,t  ⊕ ca,b,t  ⊗ cb,c,t   (7) 

Case 2:  ca,b,t1:= ca,b,t1 ⊕ ca,b,t0 ⊗ ct0,t1   (8)  

Case 3:  ca,b,t1:= ca,c,t0 ⊕ ca,b,t0 ⊗ cb,c,t1 /ct0,t1  (9) 

Topology plus time relationships (named as ca,b,t) are represented as tertiary constraints 

by the predicate ctr_comp_top_time(TB,TA,A,B,Rel,t), where A and B are the spatial 

objects which holds the set of atomic topological relationships included in the set Re l in 

the point of time t, TB and TA represents the types of the objects A and B, which can be 

point (p), line (l) or area (a). Time relationship (ct0,t1) between points of time t0 and t1, 

(t0, Rtime,t1), is represented by the predicated ctr_comp_time(t0,t1,Rtime). 

The path consistency algorithm is implemented with two kinds of CHRs as in the case 

of topological relations. The part of the intersection (ca,b,t⊕....) of formulas 7, 8, and 9 



 113 

are implemented by a simplification CHR and the part of the composition (ca,b,t ⊗ ) of 

formulas 7, 8, and 9 are implemented by propagation CHRs. Part of the FIP is presented 

in algorithm 4.1. Termination is guaranteed due to the simplification CHR and because 

propagation CHRs are never repeated for the same constraint goal. 

The algorithm 4.1 is based on the algorithm 3.1 for topological relations explained in 

section 3.3. It also includes the optimisation introduced in [Escrig and Toledo 98, 01] 

which allows a constraint to be computed as its converse when it is needed. It saves half 

of the computation.  

The simplification CHR used to implement the intersection of the three formulas (7), 

(8), and (9) is the next one: 

ctr_comp_top_time(TB,TA,B,A,R1,T), ctr_comp_top_time(TB,TA,B,A,R2,T)  <=> 

intersection(R1,R2,R3) | ctr_comp_top_time(TB,TA,B,A,R3,T). 

For supplying the lack of completeness of the constraint graph (because there is not a 

topological relation in a point of time t between every object in the graph), two more 

CHRs are defined by applying the converse operation to the first and second constraints 

of the initial CHR, respectively: 

ctr_comp_top_time(TB,TA,B,A,R1,T), ctr_comp_top_time(TA,TB,A,B,R2,T)   <=> 

conv_op(R2,R22), intersection(R1,R22,R3) | ctr_comp_top(N3,TB,TA,B,A,R3,T,K). 

ctr_comp_top_time(TA,TB,A,B,R1,T), ctr_comp_top_time(TB,TA,B,A,R2,T) <=> 

conv_op(R1,R11), intersection(R1,R11,R3) | ctr_comp_top(N3,TB,TA,B,A,R3,T,K). 

In the case of propagation CHRs, we would need three different propagation CHRs for 

each case, this means that we would have a propagation CHRs for the formula (7), 

another for the formula (8) and finally another different one for the formula (9), which 

are the following ones respectively: 

%CASE A: (Formula (7)) 

ctr_comp_top_time(TB,TA,B,A,R1,T), ctr_comp_top_time(TC,TB,C,B,R2,T) ==>, 

composition_op(TA,TB,TC,R1,R2,R3) | ctr_comp_top_time(TC,TA,C,A,R3,T). 

%CASE B: (Formula (8)) 
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ctr_comp_top_time(TB,TA,B,A,R1,T1), ctr_comp_time(T1,T2,R2) ==> 

composition_time_op(TA,TB,T1,T2,R1,R2,R3) | 

ctr_comp_top_time(TB,TA,B,A,R3,T2). 

%CASE C: (Formula (9)) 

ctr_comp_top_time(TB,TA,B,A,R1,T1), ctr_comp_top_time(TC,TB,C,B,R2,T2), 

ctr_comp_time(T1,T2,R3) ==>  composition_time_op(TA,TB,T1,T2,R1,R3,R4) | 

ctr_comp_top_time(TB,TA,B,A,R4,T2). 

For each case of propagation CHRs, we need to define more CHRs by applying the 

converse operation to the first and second constraints, respectively. In the case of the 

composition (propagation CHRs) we need a different number of CHRs for each case to 

implement (A, B and C). Therefore, for the CHRs implementing the case A of the 

composition we will need 4 CHRs, the initial one and three more CHRs defined using 

the converse operation. For the case B, we need only one CHR more, because the 

converse is applied only to the second constraint. And finally for the case C we would 

need 8 CHRs, defining the seven CHRs which are not original by applying the converse 

operation to the 3 constraints in the head. 

%CASE A: (Formula (7)) 

ctr_comp_top_time(TA,TB,A,B,R1,T), ctr_comp_top_time(TC,TB,C,B,R2,T) ==> 

conv_op(R1,R11), composition_op(TA,TB,TC,R11,R2,R3) | 

ctr_comp_top_time(TC,TA,C,A,R3,T). 

ctr_comp_top_time(TB,TA,B,A,R1,T), ctr_comp_top(TB,TC,B,C,R2,T) ==> 

conv_op(R2,R22), composition_op(TA,TB,TC,R1,R22,R3) | 

ctr_comp_top_time(TC,TA,C,A,R3,T). 

ctr_comp_top_time(TA,TB,A,B,R1,T), ctr_comp_top(TB,TC,B,C,R2,T) ==> 

conv_op(R1,R11), conv_op(R2,R22), composition_op(TA,TB,TC,R11,R22,R3) | 

ctr_comp_top_time(TC,TA,C,A,R3,T). 

%CASE B: (Formula (8)) 

ctr_comp_top_time(N1,TB,TA,B,A,R1,T1,I), ctr_comp_time(N2,T2,T1,R2,J) ==> 

conv_time_op(R2,R22), composition_time_op(TA,TB,T1,T2,R1,R22,R3) | 

ctr_comp_top_time(TC,TA,C,A,R3,T2), ctr_comp_time(T1,T2,R22). 
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%CASE C: (Formula (9)) 

ctr_comp_top_time(TB,TA,B,A,R1,T1), ctr_comp_top_time(TC,TB,C,B,R2,T2), 

ctr_comp_time(T2,T1,R3) ==> conv_time_op(R3,R33), 

composition_time_op(TA,TB,T1,T2,R1,R33,R4) | 

ctr_comp_top_time(,TB,TA,B,A,R4,T2), ctr_comp_time(T1,T2,R33). 

ctr_comp_top_time(TA,TB,A,B,R1,T1), ctr_comp_top_time(TC,TB,C,B,R2,T2), 

ctr_comp_time(T1,T2,R3) ==> conv_op(R1,R11), 

composition_time_op(TA,TB,T1,T2,R11,R3,R4) | 

ctr_comp_top_time(TB,TA,B,A,R4,T2).  

ctr_comp_top_time(TA,TB,A,B,R1,T1), ctr_comp_top_time(TC,TB,C,B,R2,T2), 

ctr_comp_time(T2,T1,R3) ==> conv_op(R1,R11), conv_time_op(R3,R33), 

composition_time_op(TA,TB,T1,T2,R11,R33,R4) | 

ctr_comp_top_time(TB,TA,B,A,R4,T2), ctr_comp_time(T1,T2,R33). 

ctr_comp_top_time(TB,TA,B,A,R1,T1), ctr_comp_top_time(TB,TC,B,C,R2,T2), 

ctr_comp_time(T1,T2,R3) ==> composition_time_op(TA,TB,T1,T2,R1,R3,R4) | 

ctr_comp_top_time(TB,TA,B,A,R4,T2). 

ctr_comp_top_time(TB,TA,B,A,R1,T1), ctr_comp_top_time(TB,TC,B,C,R2,T2), 

ctr_comp_time(T2,T1,R3) ==> conv_time_op(R3,R33), 

composition_time_op(TA,TB,T1,T2,R1,R33,R4) | 

ctr_comp_top_time(TB,TA,B,A,R4,T2), ctr_comp_time(T1,T2,R33). 

ctr_comp_top_time(TA,TB,A,B,R1,T1), ctr_comp_top_time(TB,TC,B,C,R2,T2), 

ctr_comp_time(T1,T2,R3) ==> conv_op(R1,R11), 

composition_time_op(TA,TB,T1,T2,R11,R3,R4) | 

ctr_comp_top_time(TB,TA,B,A,R4,T2). 

ctr_comp_top_time(TA,TB,A,B,R1,T1), ctr_comp_top_time(TB,TC,B,C,R2,T2), 

ctr_comp_time(T2,T1,R3) ==> conv_op(R1,R11), conv_time_op(R3,R33), 

composition_time_op(TA,TB,T1,T2,R11,R33,R4) | 

ctr_comp_top_time(TB,TA,B,A,R4,T2), ctr_comp_time(T1,T2,R33). 

But the eight propagation CHRs described for implementing the case C (formula 9) are 

not needed explicitly, because using the constraints implemented for solving the cases A 

and B (formulas 7 and 8 respectively) we obtain the desired result. For instance imaging 
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that we have the next three constraints: ctr_comp_top_time(TA,TB,A,B,R1,T1), 

ctr_comp_top_time(TC,TB,C,B,R2,T2), ctr_comp_time(T2,T1,R3), then the constraints 

ctr_comp_top_time(TA,TB,A,B,R1,T1),and ctr_comp_time(T2,T1,R3) will trigger the 

second propagation CHR defined for the case B, and we will obtain two new constraints 

which are: ctr_comp_top_time(TA,TB,A,B,R4,T2) and ctr_comp_time(T1,T2,R33).Then 

the constraints ctr_comp_top_time(TA,TB,A,B,R4,T2) (one of the new ones obtained) 

and ctr_comp_top_time(TC,TB,C,B,R2,T2) will trigger the second propagation CHR 

defined for the case A. Therefore, finally we obtain the relation we were looking for 

which is ctr_comp_top_time(TC,TA,C,A,R5,T). This is the reason why these eight CHRs 

are not implemented.  

% Constraint declarations and definitions 

(4.1a) constraints (ctr_comp_top_time)/6, (ctr_comp_top_time)/8. 

(4.1b) label_with ctr_comp_top_time(N,TB,TA,B,A,Rel,T,I) if N>1. 

(4.1c) ctr_comp_top_time(N,TB,TA,B,A,Rel,T,I):- 

member(R,Rel),ctr_comp_top_time(1,TB,TA,B,A,[R],T,I). 

(4.1d) constraints (ctr_comp_time)/3, (ctr_comp_time)/5. 

(4.1e) label_with ctr_comp_time(N,T1,T2,Rel,I) if N>1. 

(4.1f) ctr_comp_time(N,T1,T2,Rel,I):- 

member(R,Rel),ctr_comp_time(1,T1,T2,[R],I). 
%Initialize 

(4.2a) ctr_comp_top_time(TB,TA,B,A,Rel,T) <=> length(Rel,N), 

ctr_comp_top_time(N,TB,TA,B,A,Rel,T,1). 

(4.2b) ctr_comp_time(T1,T2,Rel) <=> length(Rel,N), 
ctr_comp_time(N,T1,T2,Rel,1). 
% Special cases 

(4.3a) ctr_comp_top_time(N,TB,TA,B,A,Rel,T,I) <=> 

empty(Rel)|false. 

(4.3b) ctr_comp_top_time(N,TA,TA,A,A,Rel,T,I) <=> true. 

(4.3c) ctr_comp_top_time(N,p,p,A,B,Rel,T,I) <=> N=2 | true. 

(4.3d) ctr_comp_top_time(N,p,l,A,B,Rel,T,I) <=> N=3 | true. 

(4.3e) ctr_comp_top_time(N,p,a,A,B,Rel,T,I) <=> N=3 | true. 

(4.3f) ctr_comp_top_time(N,l,p,A,B,Rel,T,I) <=> N=3 | true. 

(4.3g) ctr_comp_top_time(N,l,l,A,B,Rel,T,I) <=> N=9 | true. 

Algorithm 4.1 Part I. Path consistency algorithm to propagate compositions of disjunctive motion 

(topology + time) relationships. 
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(4.3h) ctr_comp_top_time(N,l,a,A,B,Rel,T,I) <=> N=5 | true. 

(4.3i) ctr_comp_top_time(N,a,p,A,B,Rel,T,I) <=> N=3 | true. 

(4.3j) ctr_comp_top_time(N,a,l,A,B,Rel,T,I) <=> N=5 | true. 

(4.3k) ctr_comp_top_time(N,a,a,A,B,Rel,T,I) <=> N=8 | true. 

(4.3l) ctr_comp_time(N,T1,T2,Rel,I) <=> empty(Rel) | false. 

(4.3m) ctr_comp_time(N,T1,T1,Rel,I) <=> true. 

(4.3n) ctr_comp_time(N,T1,T2,Rel,I) <=> N=5 | true. 
% Intersection 

%Intersections: The intersection is the same for all cases 

%CASE A,B,C: 

(4.4a) ctr_comp_top_time(N1,TB,TA,B,A,R1,T,I), 

ctr_comp_top_time(N2,TB,TA,B,A,R2,T,J) <=> 

 intersection(R1,R2,R3), length(R3,N3), K is min(I,J)+1 | 
 ctr_comp_top_time(N3,TB,TA,B,A,R3,T,K). 

(4.4b) ctr_comp_top_time(N1,TB,TA,B,A,R1,T,I),  

ctr_comp_top_time(N2,TA,TB,A,B,R2,T,J) <=> 

 conv_op(R2,R22), intersection(R1,R22,R3), length(R3,N3), K is 

min(I,J)+1 | ctr_comp_top(N3,TB,TA,B,A,R3,T,K). 

(4.4c) ctr_comp_top_time(N1,TA,TB,A,B,R1,T,I), 

ctr_comp_top_time(N2,TB,TA,B,A,R2,T,J) <=> 

  conv_op(R1,R11), intersection(R1,R11,R3), length(R3,N3), K is 

min(I,J)+1 | ctr_comp_top(N3,TB,TA,B,A,R3,T,K). 
%Compositions 

%CASE A: 

(4.5a) ctr_comp_top_time(N1,TB,TA,B,A,R1,T,I), 

ctr_comp_top_time(N2,TC,TB,C,B,R2,T,J) ==> 
((I=1,J<6);(J=1;I<6)), composition_op(TA,TB,TC,R1,R2,R3), 

length(R3,N3), K is I+J | 

ctr_comp_top_time(N3,TC,TA,C,A,R3,T,K). 

(4.5b) ctr_comp_top_time(N1,TA,TB,A,B,R1,T,I), 

ctr_comp_top_time(N2,TC,TB,C,B,R2,T,J) ==> 

((I=1,J<6);(J=1,I<6)), singleton(R1), conv_op(R1,R11), 

composition_op(TA,TB,TC,R11,R2,R3), length(R3,N3), K is I+J | 

ctr_comp_top_time(N3,TC,TA,C,A,R3,T,K). 

Algorithm 4.1 Part II. Path consistency algorithm to propagate compositions of disjunctive motion 

(topology + time) relationships. 
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(4.5c) ctr_comp_top_time(N1,TB,TA,B,A,R1,T,I), 

ctr_comp_top_time(N2,TB,TC,B,C,R2,T,J) ==> 

((I=1,J<6);(J=1,I<6)), singleton(R2), conv_op(R2,R22), 

composition_op(TA,TB,TC,R1,R22,R3), length(R3,N3), K is I+J | 

ctr_comp_top_time(N3,TC,TA,C,A,R3,T,K). 

(4.5d) ctr_comp_top_time(N1,TA,TB,A,B,R1,T,I), 

ctr_comp_top_time(N2,TB,TC,B,C,R2,T,J) ==> 

((I=1,J<6);(J=1,I<6)), singleton(R1), singleton(R2), 

conv_op(R1,R11), conv_op(R2,R22), 

composition_op(TA,TB,TC,R11,R22,R3), length(R3,N3), K is I+J 

| ctr_comp_top_time(N3,TC,TA,C,A,R3,T,K). 
%CASE B: 

(4.5e) ctr_comp_top_time(N1,TB,TA,B,A,R1,T1,I), 
ctr_comp_time(N2,T1,T2,R2,J) ==> ((I=1,J<6);(J=1;I<6)), 

composition_time_op(TA,TB,T1,T2,R1,R2,R3), length(R3,N3), K 

is I+J | ctr_comp_top_time(N3,TB,TA,B,A,R3,T2,K). 

(4.5f) ctr_comp_top_time(N1,TB,TA,B,A,R1,T1,I), 

ctr_comp_time(N2,T2,T1,R2,J) ==> ((I=1,J<6);(J=1,I<6)), 

singleton(R2), conv_time_op(R2,R22), 

composition_time_op(TA,TB,T1,T2,R1,R22,R3), length(R3,N3), K 

is I+J | ctr_comp_top_time(N3,TC,TA,C,A,R3,T2,K), 

ctr_comp_time(N2,T1,T2,R22,J). 
%CASE C:It is implemented with the constraints in CASE A and B 

%Auxiliary predicates 

singleton([_]). 

empty([]). 
choose([R],[R|_). 
/**PREDICATES TO DO COMPOSITION OF DISJUNCTIVE RELATIONS*******/ 

composition_time_op(TA,TB,T1,T2,R1,R2,R3):-  

(    (singleton(R1),singleton(R2)) -> 

    composition_time_simple(TA,TB,T1,T2,R1,R2,R3); 

    composition1_time_op(TA,TB,T1,T2,R1,R2,[],R3) ). 

composition_time_simple(TA,TB,T1,T2,[R1],[R2],R3):- 

composition_t(TA,TB,T1,T2,R1,R2,R3). 

Algorithm 4.1 Part III. Path consistency algorithm to propagate compositions of disjunctive motion 

(topology + time) relationships. 
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/***PREDICATES TO DO COMPOSITION OF DISJUNCTIVE RELATIONS.CONT.*/ 

composition_t(p,p,T1,T2,R1,R2,R3):- 

composition_table_PPt(R1,R2,R3). 

composition_t(a,a,T1,T2,R1,R2,R3):- 

composition_table_AAt(R1,R2,R3). 

composition_t(l,a,T1,T2,R1,R2,R3):- 

composition_table_LAt(R1,R2,R3). 

composition_t(p,a,T1,T2,R1,R2,R3):- 
composition_table_PAt(R1,R2,R3). 

composition_t(p,l,T1,T2,R1,R2,R3):- 

composition_table_PLt(R1,R2,R3). 

composition_t(l,l,T1,T2,R1,R2,R3):- 

composition_table_LLt(R1,R2,R3). 

composition_t(a,l,T1,T2,R1,R2,R3):- 

composition_table_ALt(R1,R2,R3). 

composition_t(a,p,T1,T2,R1,R2,R3):- 

composition_table_APt(R1,R2,R3). 

composition_t(l,p,T1,T2,R1,R2,R3):- 

composition_table_LPt(R1,R2,R3). 

composition1_time_op(A,B,C,D,[],_,R3,R3). 

composition1_time_op(A,B,C,D,[R1|R11],R2,Raux,Rdo):- 
   composition1_t(A,B,C,D,R1,R2,R_parcial), 

   union(Raux,R_parcial,R), 

   composition1_time_op(A,B,C,D,R11,R2,R,Rdo). 

composition1_t(A,B,C,D,R1,R2,R):- 

   composition11_t(A,B,C,D,R1,R2,[],R). 

composition11_t(A,B,C,D,R1,[],Rdo,Rdo). 

composition11_t(A,B,C,D,R1,[R21|R22],Raux,Rdo):- 

   composition_t(A,B,C,D,R1,R21,R3),  

   union(Raux,R3,R), 

   composition11_t(A,B,C,D,R1,R22,R,Rdo). 

Algorithm 4.1. Part IV. Path consistency algorithm to propagate compositions of disjunctive motion 

(topology + time) relationships. 
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/* The following files contain the converse table and 

composition tables of the topological information, the time 

information and the motion information*/ 

:-['inversas.pl']. 

:-['composit.pl']. 

 

:-['inversas_time.pl']. 

:-['composit_time.pl']. 

:-['composit_topo_time.pl']. 

Algorithm 4.1. Part V. Path consistency algorithm to propagate compositions of disjunctive motion 

(topology + time) relationships. 

In algorithm 4.1 the predicate ctr_comp_top_time/6 is the kind of constraint used to 

include to the topological information the time concept between two objects or regions. 

For example ctr_comp_top_time(A,A,Office1,Office2,[ci,tfi],T1) means that between 

two regions named Office1 and Office2 which are of the type area holds the set of 

topological relations [ci, tfi] in the moment of time T1, which means that at the moment 

of time T1, Oficce2 is completely- inside or touching from inside Office1. Whilst, the 

predicate ctr_comp_time/3 is the kind of constraint used to represent time information 

between two points of time, for instance ctr_comp_time(T1,T2,[prev]) means that 

between the two points of time T1 and T2 holds the time relation prev, which means that 

T1 is previous to T2.   

The constraints ctr_comp_top_time/6 and ctr_comp_time/3 are the ones introduced to 

the system and both types are translated into ctr_comp_top_time/8 and ctr_comp_time/5 

respectively by CHRs (4.2a) and (4.2b) where length (N) of the relationship is added as 

well as the length (I, which initially is 1) of the shortest path form which the constraint 

is derived in order to increase the efficiency of the algorithm as in the case of the 

algorithm 3.1 of section 3.3. Argument N avoids compositions between constraints 

which do not improve the motion information and argument I restricts one of the two 

constraints involved in the propagation to being a direct constraint, which means that it 

should not be derived from another propagation rule.  

Constraints will be treated by the CLP clauses (4.1c) and (4.1f) if the motion relation 

(Rel in 4.1c) and the time relation (Rel in 4.1f) are a disjunction of primitive motion 

relations (4.1b) and a disjunction of primitive time relations (4.1e) respectively. The 
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backtrack search part of the algorithm is implemented by the predicates (4.1c) and (4.1f) 

where member(R,Rel) chooses non-deterministically one primitive motion symbol (R in 

4.1c) and time symbol (R in 4.1f) from the disjunctive motion relation (Rel in 4.1c) and 

the disjunctive time relation (Rel in 4.1f) respectively. 

Special cases are simplification CHRs. (4.3a) and (4.3l) detect inconsistent constraints. 

Inconsistent constraints in this case provoke the failure of the algorithm. Another 

behaviour can be obtained be changing these rules. (4.3b) and (4.3m) delete constraints 

which contain equality. The CHR (4.3n) deletes constraints when the length of the time 

relations equals the length of the structure relations, which is equivalent to knowing 

nothing about the time information. The rest of special CHRs delete constraints when 

the length of each type of motion relations equals the length of its respective structure 

relations, as (4.3n) does for time relations.  

Simplification CHRs (4.4a), (4.4b) and (4.4c) implement the intersection part of the 

three formulas (7), (8), and (9). (4.4a) is the original intersection CHR and CHRs (4.4b) 

and (4.4c) defines intersection applying the converse operation to the second and first 

constraint respectively.  

Propagation CHRs perform composition of formulas (7), (8), and (9). (4.5a) implements 

composition as it is initially defined by the formula (7) for the case A for motion 

information. CHRs from (4.5b) to (4.5d) apply the converse operation to the first, the 

second or both constraints respectively for the formula (7) (case A). (4.5e) implements 

composition as it is initially defined by the formula (8) for the case B for motion 

information and (4.5f) applies the converse operation to the second constraint for the 

same formula (case B). Finally, no more propagation CHRs are implemented for the 

formula (9) (case C) because the propagation CHRs implemented also implement this 

case as it has been explained previously in this section.  

Therefore, the algorithm defines a total of 19 simplification rules, and 6 propagation 

rules.  
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CHAPTER 5 
QUALITATIVE THEORY FOR SHAPE REPRESENTATION 
AND MATCHING 

This section describes the qualitative theory for shape representation and 

matching that we have developed. Following the classification given in chapter 2.3.2 the 

theory proposed in this section can be classified as a reference points based 

representation due to the fact that the theory uses the vertices (reference points) of the 

objects to give its description, and it does not segment complex shapes in primitive 

shapes, on the contrary it gives a unique and complete description of each shape. This 

theory considers qualitatively the angles, relative side length, concavities and 

convexities, types of curvatures of the boundary of the objects. And as we will see later, 

it also considers qualitatively, the colour of the objects for some applications. These 

aspects have not been considered in other approaches. The shapes recognised are 

regular and non-regular closed polygons that can have curve segments and curvilinear 

shapes. Moreover the shapes can contain holes. To describe shapes with holes, 

topological and qualitative spatial orientation aspects are considered in order to relate 

the hole with its container. Each object is described by a string containing its qualitative 

distinguishing features (symbolic representation), which is used to match the object 

against others.  

Shape description using reference-points information will have to make use of some 

landmarks. As reference points (landmarks) we understand these points which 

completely specify the boundary. For polygonal boundaries we have chosen the vertices 

as reference points. For circular shapes and curvilinear segments in a shape we have 

chosen three points: the starting and the end point of each curve and its point of 

maximum curvature.  

The qualitative description of a reference point, named j, is determined using the 

previous reference point, named i, and the following reference point, named k. The 
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order of the reference points is given by the natural cyclic order of the vertices of closed 

objects. We only have to determine the sense in which we visit or describe each 

reference point, which should be the same for the description of all objects. We have 

chosen to visit the vertices in a counter-clockwise sense.  

5.1. THE REPRESENTATION OF SHAPES OF IRREGULAR 
POLYGONAL OBJECTS. 

The central idea of the qualitative shape representation consists of giving three reference 

points i, j, k, which are consecutive, the qualitative description of the reference point j is 

determined by positioning an oriented line from the point i to the point k as figure 5.1 

shows. In figure 5.1 i is the vertex 1, j is the vertex 2 and k is the vertex 3 and the 

oriented line is placed from 1 to 3. 

 

 

Figure 5.1. Example of a shape figure in which we are determining the qualitative description of vertex 2 

using vertex 1 and 3 by placing and oriented line between them. 

In the case of a polygonal non-regular shape all its segments are straight segments. 

Therefore, the description of each reference point is given by a set of three elements 

(triple) which is <Aj,Cj,Lj>, where Aj means the angle for the reference point j, Cj 

means the type of convexity of point j and Lj means the relative length of the edges 

associated to reference point j (edge formed by vertices i and j versus edge formed by 

vertices j and k), where:  

   Aj ∈{right-angled, acute, obtuse}; 

   Cj ∈ {convex, concave} and 

   Lj belongs to LRS, where LRS = {smaller, equal, bigger}. 
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5.1.1 Determining the Convexity 

The convexity of the point j is determined as follows: if the reference point j remains on 

the left of the oriented line from i to k then the point j is a convex vertex. Otherwise, if 

the point j remains on the right of the oriented line from i to k then the point j is 

concave. As we find a vertex when the orientation of the edge changes then it is not 

possible that the reference point j remains exactly above the oriented line from i to k. 

Formally, if Vj means vertex j, and Vj wrt ViVk  means the relation of the vertex j with 

respect to the oriented line from vertex i to vertex k, we can formulate: 

If Vj wrt ViVk ∈ left then Vj is convex. 

If Vj wrt ViVk ∈ right then Vj in concave. 

5.1.2 Determining the Angle 

The qualitative description of an angle is determined using a new concept and some 

topological concepts as boundary, interior and exterior of an entity, defined in chapter 2. 

The new concept consists of giving the two reference points joined by the oriented line, 

i and k, we place a circle of diameter ik between these two reference points.  

Therefore, the angle is determined as follows; if the reference point j remains exactly in 

the boundary of the circle of diameter ik, then the vertex j is right-angled. If j remains in 

the exterior of the circle then j is acute. And if j remains in the interior of the circle then 

the vertex j is obtuse. Formally, if the circle with a diameter of ViVk is denoted as Cik, 

then the angle of the Vertex j (Vj) is calculated using the following algorithm: 

If Vj ∩ δCik ≠ ∅ then Vj is right- angled, 

Else if Vj ∩ Cikº ≠ ∅ then Vj is obtuse 

Otherwise Vj is acute. 

The part of the “otherwise” of the above algorithm occurs when Vj ∩ Cik- ≠ ∅. 

The following figure shows an example in the form of a graph for each of these cases 

(figure 5.2). 
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a) Right-angled angle b) Obtuse Angle c) Acute Angle 

Figure 5.2. Examples of determination of the angle of vertex 2, using an oriented line from vertices 1 and 

3and a circle of diameter vertex1vertex3; a) for a right – angled angle; b) for an obtuse angle and c) for 

an acute angle. 

5.1.3 Determining the Length 

To determine the relative length of each edge of a rectilinear segment between three 

contiguous vertices (relative length of edges between the edge from vertex i to vertex j 

and the edge from vertex j to vertex k) a new length model has been developed which 

has been inspired in the model by [Hernández, Clementini, and Di Felice 95] and 

[Escrig and Toledo 98]. 

The length model developed compares lengths of two consecutive edges of the object. 

As we compare lengths, at least two lengths have to be available, and as a result we find 

that one length is bigger, smaller than or equal to the other.  

Therefore the reference system named Length Reference System (LRS) is defined by a 

set of qualitative length labels: 

LRS={smaller, equal, bigger}. 

 

 

 

 

Figure 5.3. Example of the lengths to compare. If we want to calculate the value for the compared length 

in vertex one, then we compare the length from vertex 4 to 1 with the length from vertex 1 to 2, and it is 

determined as bigger. 

1 2 

3 4 
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The length calculated in the reference point j is the length of the edge from the point i to 

the point j compared with the length of the edge from the point j to k (see figure 5.3 for 

an example) , using this LRS. Therefore it is inferred that: 

• First the length of each edge is calculated by using the Euclidean distance 

D(Vi,Vj) between two points: 

 D(Vi,Vj)=((Xvj-Xvi)2+(Yvj-Yvi)2)1/2, where Vi = (Xvi, Yvi) and Vj=(Xvj, Yvj). 

• Then, both lengths are compared and the corresponding label of the LRS is 

assigned as the value of the relative length to the vertex j. 

5.2. THE REPRESENTATION OF SHAPES OF OBJECTS WITH 
CURVES. 

In the case of a shapes with curvilinear segments, the description of each reference point 

is given by a set of three elements (triple) which is: 

• <Aj,Cj,Lj> for the case of its straight segments (described in section 5.1), or 

•  <Curve,Cj,TCj>, where the symbol Curve means that the node in the 

description string is describing a curve , Cj means the type of convexity of point 

j and TCj means the type of curvature of the curve associated to the point j, 

where:  

   Cj ∈ {convex, concave} and 

   TCj  ∈ {plane, semicircle, acute} 

If the shape contains only curvilinear segments all its triples for describing it will be of 

the form <Curve,Cj,TCj>. 

Therefore, for describing an object with curves we follow the following steps: 

1. First of all the symbol curve is fixed to indicate that the next node in the qualitative 

description of the object corresponds to the description of a curve. 

2. To describe qualitatively a curve, 3 points are used: the initial and final points of the 

curve and the point of maximum curvature of the curve (as depicted in figure 5.4a), 

which are obviously consecutive points. The description, however, is associated 

only to the node of maximum curvature.  
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Figure 5.4. a) The 3 points considered for the description of a curve and b) the placement of the oriented 

line between them. 

The central idea of the qualitative shape representation for curves consists of, given the 

three reference points, i, j, k, of the curve which are consecutive, the qualitative 

description of the reference point j (the one of maximum curvature) is determined by 

positioning an oriented line from the points i (the previous point) to the point k (the 

following point) as figure 5.4b) shows. In figure 5.4b) the point 1 is point i, the point 

number 2 is the point j and the point number 3 is the point k. 

5.2.1 Determining the Convexity 

The convexity (Cj) of the point j is determined by the oriented line from i to k as 

follows: if the reference point j remains on the left of the oriented line from i to k then 

the point j is a convex vertex. Otherwise if the point j remains on the right of the 

oriented line from i to k then the point j is concave. As j is the point of maximum 

curvature in a curve segment from i to k, then it is not possible that the reference point j 

remains exactly over the oriented line from i to k. Formally, if Vj means vertex j 

(reference point which belongs to the one of the maximum curvature), and wrt means 

the relation of the vertex j with respect to the oriented line from vertex i to vertex k, we 

can formulate: 

If Vj wrt ViVk ∈ left then Vj is convex. 

If Vj wrt ViVk ∈ right then Vj is concave 

5.2.2 Determining the Type of Curvature 

The type of curvature (TCj) of the point j is determined by calculating two distances and 

comparing them (figure 5.5). For calculating both distances the centre point of the line 

between i and k is calculated, named point ik (Pik). The first distance (da) calculated is 
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the distance between i and the new point, Pik, and the second distance (db) considered 

is the one between the point j and the new point (Pik). Then comparing both distances 

TCj is determined as follows: 

If da<db à TCj = acute 

If da=db à TCj = semicircle 

If da>db à TCj = plane 

Figure 5.6 shows examples of the 3 possible cases.  

 
 
 
 
 
 
 

Figure 5.5. Distances calculated for determining TC2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6. a) Point j has a TCj = plane, b) TCj = semicircle, and c) TCj = acute. 

5.3. THE REPRESENTATION OF SHAPES OF OBJECTS WITH 
HOLES. 

To describe objects with holes we use the topological concept of Completely Inside 

Inverse (CIi) defined in section 3, due to the fact that the hole is always Completely 

Inside (CI) the boundary of the closed objects. Moreover, the cardinal reference system 

by Frank (Frank, 1991) is used also in order to relate the position of the hole inside the 

object. 

Therefore, for describing an object with holes we follow the following steps: 
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1. The qualitative shape description of the exterior boundary of the object 

(container) is constructed following the steps described in previous sections. 

2. Then the qualitative shape description of the boundary of each hole is 

constructed. 

3. Each hole and the container are related by adding two types of information: 

a. The topological relation between the container and each hole is fixed. 

The holes in the case of closed objects are always Completely Inside 

Inverse (CIi defined in section 3) of the container.  

b. The orientation of each hole inside the container is determined (this is 

necessary because we can have objects with a hole in which the 

boundaries of containers are equal and boundaries of the holes too, but 

the hole is placed in another position of the container so that they are not 

the same object). The orientation is fixed using Frank’s Cardinal 

Reference System (CRF) [Frank 92], which divides space into eight or 

more cones (which allows working with different levels of granularity) 

as figure 5.7 shows. The CRF is defined by placing its origin into the 

centroid calculated with the definition of the centroid of a close non 

regular polygon given in [Steger 96]. In the case of curvilinear shapes or 

shapes which contain curve segments, these shapes are approximated to 

polygonal shapes in which the vertices are the reference points 

considered for the qua litative description of the shape and these vertices 

are joined by rectilinear segments. [Steger 96] calculates the centroid 

(α1,0 is the x coordinate and α0,1 is the y coordinate) in basis of the area 

(α) as: 
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We call centre (C ) to the orientation that occurs when the hole is placed around the 

centroid, and all orientations hold.  
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When several orientations hold for a given hole, then the orientation is fixed to a set of 

all the orientations (figure 5.7). 

Then once the CRF is placed in the object, the orientation of the hole with respect to the 

object is calculated. For instance, figure 5.6 calculates the orientation of the hole with 

respect to the container, obtaining that the hole is [NE,E,SE] oriented inside the 

container.  

 

Figure 5.7. Example of the Orientation Calculation of a hole with respect to its container.  

5.4. THE COMPLETE DESCRIPTION OF A SHAPE 

As the colour is a relevant characteristic in the case of some of the applications that we 

have developed, the colour of the shape is stored as RGB colour and then in the 

matching process the colour can be considered qualitatively using the Delta E distance 

between colours.  

Given a shape, its complete description is defined with the following tuple: [holes_type, 

curves_type, [Colour, [A1,C1,L1 | Curve, C1, TC1]…[An,Cn,Ln | Curve, Cn, 

TCn]],(CIi,Orientation,[curves_type,[AH1,CH1,LH1|Curve,CH1,TCH1]…[AHj,CHj,L

Hj |Curve,CHj,TCHj]])m], where n is the number of vertices (reference points) of the 

container and j is the number of vertices of the holes (reference points). The holes_type 

belongs to the set [without-holes, with-holes], the curves_type belongs to the set 

[without-curves, with-curves, only-curves], both symbols are introduced to speed up the 

matching process. Colour is the RGB colour of the piece described by a triple as the set 

[R,G,B] for the Red, Green and Blue coordinates. Each set , [A1,C1,L1 | Curve, C1, 

TC1] represents a node of the qualitative description which can be the description of a 

vertex of a rectilinear segment, and then A1,…,An, C1,…,Cn and L1,…,Ln are the 

qualitative angle, convexity type, and relative length of the vertices of rectilinear 

segments of the container respectively, or ( represented by the symbol | ) it can represent 

a node of the qualitative description of a curvilinear segment and then it is formed by 
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the symbol Curve to indicate that it is a curvilinear segment. C1, …, Cn, and TC1, …, 

TCn are the qualitative description of the convexity type and curvature type 

respectively. The same happens with the container of the hole: AH1,..AHj, CH1,…,CHj 

and LH1,…LHj, are respectively the qualitative angle, convexity type, and relative 

length of the vertices of rectilinear segments of the hole and CH1,…, CHj, and 

TCH1,…, TCHj are respectively the convexity type and curvature type of the 

curvilinear segments of the hole. The string CIi, Orientation, [[AH1,CH1,LH1]… 

[AHj,CHj,LHj]] is repeated for each hole inside the container. CIi is the topological 

relation relating the hole with its container. Finally, Orientation is the set of orientation 

relations given by the Frank’s Cardinal Reference System (CRF) in order to give the 

orientation of each hole in the container. 

Therefore, in order to describe completely a shape, first we have to repeat the process of 

giving the qualitative description of each vertex to describe the boundary of the 

container and the boundary of each hole (if they appear). Colour is stored as RGB 

coordinates. The orientation relations between the container and each hole are 

calculated using CRF. And the final set (string) with the characteristics of the shape is 

constructed.  

Figure 5.8 shows an example of a shape with a hole, rectilinear and curvilinear 

segments and its qualitative shape description, formally named QualShape(S), being S 

the reference to the object described.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.8. Example of a black (RGB = 0R,0G,0B) shape with a hole, curvilinear and rectilinear 

segments. 

QualShape(S)=[with-holes, with-curves, 

[[0,0,0], [right-angle,convex,bigger], 

[curve, convex, acute], [right-angle, 

convex,bigger], [right-angle, convex, 

smaller], [right-angle, 

convex,bigger]],CIi,C,[[right-angle, 

convex, smaller], [right-angle, convex, 

bigger],[right-angle, convex, smaller], 

[right-angle, convex, bigger]]]. 
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5.5. THE MATCHING PROCESS  

The matching process determines, in the case that there are two objects, if both have the 

same shape and colour. To do that, one of the objects is taken as reference and the other 

is considered the shape to be compared and matched. 

The matching process is made as follows, first the qua litative description of the object 

taken as reference is constructed, as defined in previous sections. Then the qualitative 

description of the other object is constructed but only up to the description of the 

container, it means that the holes are not yet described. With these two strings we 

compare if both strings are of the same type (with or without holes), same colour (in a 

qualitative way) and the containers are equal. For comparing the colour qualitatively, 

we considered that colours will be always solid colours, the Delta E distance between 

colours is used. The Delta E distance using RGB colour systems is calculated as: 

Given two colours in RGB, named C1 determined by (R1,G1,B1) and C2 determined by 

(R2,G2,B2), then the Delta E distance between colours is calculated as the Euclidian 

distance between the RGB coordinates of each colour as: 

Delta_E(C1,C2)=((R1-R2)2+(G1-G2)2+(B1-B2)2)1/2 

If the Delta_E is less than 0,2 it is because an experienced human eye in the recognising 

of colour fields cannot differentiate between the two colours. 

Due to implementation reasons, the vertices of containers and holes of each shape are 

numbered in a counter clockwise way, being the first vertex (number 1) the uppermost 

(left) vertex of the shape. 

To compare the containers, the algorithm ComparingVertices (algorithm 5.1) is applied, 

which is a cyclical ordering matching algorithm which given two set of vertices, returns 

if both strings are equal cyclically and the vertex in the second object which 

corresponds to the vertex number 1 in the first one. If both sets are not equal the vertex 

in the second set is not found, therefore a –1 value is assigned.  
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Algorithm ComparingVertices (INPUTS: SetVertices1, 
SetVertices2, OUTPUTS: vertex02, equal) 
{ 
  N=Calculus size SetVertices1 
  M=Calculus size SetVertices2 
  If N == M then  
{ 
 //Both sets have the same number of vertices 
 For (I=0;I<N-1;I++) 
         { 
     For (J=0;J<N-1;J++) 
             { //cyclic comparison 
//Compare Vertex1(0) of SetVertices1 with Vertex2(j) of 
//setVertices2 
         If Vertex1(0) == Vertex2(j)  
               { 
     Num=0 //Init a counter 
     For (K=1;K<N-1;K++) 
                { 
                    If (Vertex1(K)==Vertex2(J+1%N)) then  
                    { 
                 NUM++; 
                    } 
                    If (NUM==N) 
                   { 
                  Return equal=true; 
                              Return vertex02= j; 
                  Break 
                    } 
          } //For K 
       } // If Vertex1(0) ==Vertex2(j) 
    } //For J. 
 } //For I 
  If (NUM<>N) 
  { 
      Return equal=false; 
      Return vertex02= -1;} 
  } //If N==M 
 else  
 { 
      Return false; 
  } 
} //End Algorithm 
 

Algorithm 5.1. Cyclical ordering matching algorithm. 

If the objects have no holes the process finishes here. 

We decided to start the matching process in this way because the objects with holes that 

are found rotated with respect to the reference object will describe the holes in an 

orientation different from the one given by the reference object both being the same 
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object. This occurs if we consider an absolute and fixed orientation for the Frank’s 

Cardinal Reference System (CRF) as figure 5.9 shows. This happens because we do not 

know yet how we have to orientate the CRF with respect to the container. So, first of all 

we have to know how to orientate the CRF with respect to the container.  

                  

Figure 5.9. Two qualitative equal shapes, but with different orientations. Using an absolute and fixed 

CRF the holes will have different orientations and therefore both qualitative descriptions will be not 

equal. 

So once it can be demostrated that both objects are equal up to the container, and both 

contains holes, the string describing the holes of the second object (not the reference 

object already completely described) is constructed by using the following steps: 

1. Each hole in the object is numbered as being the vertex number 1 the vertex 

closest to the vertex which corresponds to the vertex 1 in the reference object, 

calculated when the cyclic comparison has been made.  

2. Include the string CIi in the qualitative description of the object for the first hole 

and calculate the orientation of the first hole with respect to the container 

placing the NW of the CRF oriented to the vertex which corresponds to the 

vertex 1 in the reference object, and include it in the qualitative description of 

the object. 

3. Calculate the qualitative description of the boundary of the first hole 

([[AH1,CH1,LH1]…[AHj,CHj,LHj]]) and include this description in the 

qualitative description of the object. 

4. Repeat steps 2,3, and 4 for each hole inside the object. 

Once the qualitative description of the second object is completed, first we compare the 

number of holes, if both objects have the same number of holes we continue comparing 

using the following steps: 

1. Choose one hole of the figure to compare. 
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2. Compare the orientation of this hole with the orientation of each hole of the 

reference figure. If there is not a hole with the same orientation, the matching 

process finishes answering that the figures are not equal, otherwise the next step 

is performed. 

3. Compare the qualitative description of both holes by doing a non cyclic 

comparison. A cyclic comparison for figures with holes like the ones in figure 

5.10 would return that they are equal.  

4. Repeat steps 1,2 and 3 for the rest of holes of the figure to compare. 

If all the holes in the figure to be compared have a matching hole in the reference object 

both objects are equal.  

 
 
 
 
 
 

Figure 5.10. Two different objects with identical holes in different positions. 

Moreover, if in an application the size of the objects is an important feature (for instance 

two squares of very different size are not the same piece, and in a specific application 

this is an important consideration), then the area of the shapes is considered. The area is 

also needed for the calculation of the centroid of shapes, therefore we do not add more 

computational cost. The area once more is compared in a qualitative way. The limit to 

determine two shapes as the same is given by the application itself. For instance in 

chapter 6 we will see how this theory has been applied to the recognition of tiles which 

form a mosaic design, then in this application, size is important and the limit is given by 

the joint between tiles (space left between two tiles when they are assembled). As the 

joint differs from one type of design to another it is given by the user of the application. 

Then if the difference between the areas of the tiles is less than the joint size, the shapes 

represent the same object, otherwise they do not represent the same object. 

5.5.1 Computational Cost of the Qualitative Theory of Shape 
Description and Matching. 

To conclude this chapter we can say that we have defined a straightforward qualitative 

theory of shape description. It will allow us to reason about shape in a qualitative way 
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as human beings do. The theory proposed here provides a simple example for 

representing shapes without and with holes and without and with curves. The interest of 

this qualitative shape description relies in the fact that it is less constrained than metrical 

information but more constrained than topological information, since our qualitative 

theory of shape description will allow us to determine the convexity or concavity of the 

shape, the length of edges, and the angle types. Moreover, another advantage of our 

theory is that it has a lineal computational cost: 

• The temporal computational cost for the worst case need for the construction of 

a qualitative description of the figures is of the order O(N+M*K), where N is the 

number of vertices of the container, M is the number of vertices of the holes and 

K is the number of holes.  

• The temporal computational cost for the worst case need for the matching 

algorithm between 2 shapes is of the order O(n2+k2*(N-1)+2*M), being N the 

number of vertices of the containers, K the number of vertices of the holes and 

K the number of holes.  
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CHAPTER 6 
APPLICATIONS 

In this chapter we will show two different applications developed to implement 

the theories presented in previous chapters.  

Although the topological calculus and motion theory have been implemented using 

PROLOG as a CLP problem, the algorithms developed have been used to test the 

correctness of the calculus with several examples. But the motion model presented in 

chapter 4 has been implemented too in an application for the navigation of a real 

Khepera2 robot as we will show in section 6.1. The robot has the goal of navigating in 

its environment and describing two objects that it will find during its navigation using 

the qualitative shape description theory presented in section 5 and answering if both 

objects are of the same shape or not.  

Section 6.2 explains another application (application number 2) of the qualitative shape 

representation and matching theory presented in chapter 5. It is an industrial application 

whose main objective is the automatic and intelligent recognition of mosaic tiles to be 

matched against a mosaic design, in order to be able to assembly them automatically for 

creating mosaics of different designs.  

6.1. APPLICATION NUMBER 1: ROBOTICS APPLICATION 

The application developed consists of the robot navigation of a Khepera2 robot from K-

Team (figure 6.1a) which: 

1. First it constructs the topological map of its environment. 

2. Then using the movement theory presented in chapter 4 it plans its path from the 

origin to the goal region in function of the different topological situations that 

the robot as a region has to hold with the other regions of its environment during 

its movement. After the robot uses the plan in order to avoid losing the correct 



 140 

path. The plan will be based in the position of two objects. The two objects will 

be in two separated rooms (figure 6.1d), one of them will be the initial region 

and the other will be the goal region.  

3. When the robot is in the initial region, it looks for the object in the room, it 

approaches the object and following the boundary of the object (using its 

infrared sensors) it constructs a qualitative description of it. 

4. Next, it goes to the goal region comparing the plan defined in point 2 with each 

topological region holding between the robot and the region of the environment 

in which the robot is. If the result of the comparison is that both situations are 

equal the robot continues its navigation. Finally, when it is in the goal region, it 

looks for the second object, and approaches it. Then, as before, it follows the 

boundary of the object and it constructs its qualitative description. 

5. Finally, it returns whether the objects are equal or not. If the objects are 

qualitatively equal the robot turns itself around, otherwise it stops.  

The Khepera2 robot (figure 6.1a) is a miniature desktop robot with eight infra-red 

proximity sensors which are placed around the robot and are positioned and numbered 

as shown in figure 6.1b). For the application the robot is provided with a K6300 Vision 

Turret, which is a colour matrix vision sensor with an image resolution of 160x120 

pixels RG/GB 8-bit pixels, designed to provide the Khepera2 robot autonomous 

embedded image processing (figure 6.1c). It is necessary to use this turret because the 

infra-red proximity sensors of the robot have a very short reach and using the turret the 

task of moving the robot close to the object is easier and faster. Moreover, in order to 

make the creation of the topological map easier, colours are used to distinguish different 

regions and the camera is used to recognise the colours. When the robot is close of the 

object, the infra-red sensors are used to follow its boundary.  
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 a)  b)  c)  d) 

Figure 6.1. a) Snapshot of the Khepera2 robot; b) position of the infra-red sensors; c) K6300 Vision 

Turret and d) snapshot of the world of the robot in the simulated environment.  

All the concepts introduced here are going to be presented in more details in the 

following sections. 

6.1.1 Learning the topological Map of its Environment 

The robot constructs the topological map of its environment while it is moving around 

this environment. The topological map is made of several regions, each region contains: 

• Its name which is a numerical identifier.  

• Its colour. 

• The approximate coordinates of the corners that compose the region.  

The topological map is made up using a map of colours and a map of points. The 

following sections describe the process by which these maps are created. 

6.1.1.1 Creation of the Map of Colours  

Khepera2 can distinguish all the colours of its environment using the k6300 vision 

turret. For the Map of Colours useful for the construction of the topological map, the 

relevant colours are: red and blue (because room walls of its environment are depicted 

in these colours) and black because it is the colour that will indicate the start and end 

point of the robot travel across the environment.  
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The camera takes pictures of its environment and then: 

1. The robot is in a red room when the four pixels of the four corners of the picture 

are red. This situation occurs when the robot is in one of the four corners in one 

of the rooms (figure 6.2).  

 

Figure 6.2. At the left there is the picture taken by the camera when the robot is in the situation of the 

right.  

2. The robot is in a corridor (a blue region) when the central pixel and the two 

pixels in the upper-right and upper- left corners are blue. This situation happens 

when the robot turns a corner of the corridor (figure 6.3).  

 

Figure 6.3. At the left there is the picture taken by the camera when the robot is in the situation of the 

right.  

When the robot detects the change from one colour to another (it goes from a room to 

the corridor or vice versa), the first colour is stored in the map of colours. The robot 

detects the change of colour because the robot remembers the last colour detected, then 
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it will avoid detecting several times the same room or corridor, which would cause the 

robot to obtain an erroneous map of colours.  

Finally, the robot detects the starting point of the environment (in order to start the  

construction of it) and later the ending point of the environment (then the map is 

finished) when it detects the black colour. This colour is determined if the colour of the 

pixel in the centre of the image is black (figure 6.4).  

 

Figure 6.4. At the left there is the picture taken by the camera when the robot is in the situation of the 

right.  

Using the colours detected and exploiting the characteristics of semi-structured, close 

and symmetric respect the X axis environments (in this case made of rooms connected 

by corridors, figure 6.5) the process followed to obtain the final map is as follows:  

• We store the room colour that the robot visits during its movement following the 

wall of the environment.  

• Then, at the end of the movement we have a string of reversible number (due to 

the symmetry of the world) and the final map of colours will be just the first half 

of this string plus the central colour of it.  

Figure 6.5 shows a virtual world made of four rooms connected by three corridors. 

After the movement of the robot through all the environment the string would be 

RBRBRBRBRBRBR (where R = red and B=blue), and the final map of colours would 

be the first half of this string plus the central element, that is RBRBRBR. This map of 

colours indicates to the robot the structure of the world, meaning that the world has four 

red rooms and three blue corridors. 
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Figure 6.5. Virtual World and colours detected by the robot during its movement following the wall of the 

environment. 

Finally, applying this process to the simulated world used in Webots for the Khepera2 

(figure 6.3) the resulting string is RBRBR, and the final map of colours is RBR, which 

means two red rooms connected by a blue corridor. 

6.1.1.2 Creation of the Map of Points. 

At the same time that the robot follows the wall and constructs the map of colours it 

also constructs the map of points. The robot determines if its movement is in a positive 

or negative direction respect to the X axis. To determine this direction the robot sees 

which sensors are close of the wall, if they are the right sensors then the robot follows a 

positive direction, otherwise (left sensors are the ones close to the wall) it follows a 

negative direction. Figure 6.6 shows the sketch of turns that the robot makes when it 

starts the process of following the wall in a positive direction. The direction of the turns 

will be the opposite one of the figure 6.6 if the robot follows the wall in a negative 

direction. From this sketch, we observe that each time that the robot is in a corner of a 

room its frontal sensors are close to a wall too and the robot must turn 90º in a positive 

direction. But when the robot goes following the wall from a room to a corridor, or vice 

versa, the robot turns 90º in a negative direction.  

R R R R 

R R R 

B B B 

B B B 
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Figure 6.6. Sketch of robot turns through the environment when following the wall in a positive direction 

(right sensors close of the wall).  

On the other hand, robot encoders measures the movement of the robot during its route, 

then if the encoder value is reset after each turn made we obtain the distance, in the 

encoder unit, between one corner of the world and the next one. Figure 6.7 shows the 

values of the right encoders and left encoders during an execution.  

 

Figure 6.7. Right and Left Encoders Values. In the khepera sensors window this values are the one in the 

darker green.  

Finally, considering the angles of turning, the direction of turning, and the distance 

calculated by the encoder between two rooms the coordinates of corners of each region 

are calculated as follows: 

+90º 

+90º 

+90º +90º +90º 

+90º +90º +90º 

-90º 

-90º 
-90º 

-90º 
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where: 

To calculate these coordinates with the above formula, the robot must remember the 

coordinate of the last corner that it visited and the total angle that it has turned from the 

start of its movement.  

Another important aspect is the detection of corners which are boundaries between two 

regions. This is the case of corners connecting rooms with corridors. In this case, the 

robot has to store the calculated coordinate and to indicate that it is a boundary 

coordinate. Later this information will be used to construct a final topological map 

coherent with the world.  

The points are stored in a vector of registers, and each register stores a Point2D 

structure (figure 6.8), which is composed of the x and y coordinates calculated, plus one 

attribute to indicate if the point is a boundary point or not.  
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Figure 6.8. Attributes and methods of the structure of data defined for the topological map. 

6.1.1.3 Creating the final Topological Map: Joining the Map of Colours and the 
Map of Points. 

Once we have the map of colours and the map of points, joining both maps the robot 

will have the final topological map of its environment. The final topological map is 

created with a register vector where each register contains a structure called Region 

Point2D createPoint2D(double 
ix, double iy, int boundary); 
double module(Point2D p); 
Point2D minus(Point2D a, 
Point2D b); 
Point2D plus(Poin2D a, 
Point2D b); 
Point2D escalarProduct 
(Point2D, double pto); 
Point2D unitaryVector 
(Point2D p); 
Point2D setX(Point2D p, 
double x); 
Point2D setY(Point2D p, 
double y); 
Point2D setBoundary (Puoint2D 
p, int boundary); 
double getX(Point2D p); 
double getY(Point2D p); 
int getBoundary(Point2D p); 
void writePt(Point2D p); 
int similarPoints(Point2D p1, 
Point2D p2); 
void writePtFile(FILE *f, 
Point2D p); 

double x;  
double y; 
int boundary; 

Point2D 
Region createEmptyRegion (); 
Region createRegion(int id, 
char colour, int quantPts, 
Point2D v[]); 
Region addPtRegion(Region r, 
double x, double y, int 
boundary); 
Region setIdRegion (Region r, 
int id); 
Region setColourRegion(Region 
r, char colour); 
Region 
IncQuantPtsRegion(Region r); 
Region setPtRegion(Region r, 
int id, double x, double y, 
int boundary); 
int getIdRegion(Region r); 
char getColourRegion(Region 
r); 
Point2D getPtRegion(Region r, 
int id); 
double getXPtRegion(Region r, 
int id); 
double getYPtRegion(Region r, 
int id); 
int 
getBoundaryPtRegion(Region r, 
int id); 
int getQuantPtsRegion(Region 
r); 
void writeRegion(Region r); 
void writeRegionFile(FILE *f, 
Region r); 

int id;  
char colour; 
int quantityPts; 
Point2D v[6]; 

Region 
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(figure 6.8). A Region is made of a region identifier, the colour of the region and a 

Point2D structure. The last structure stores the coordinates of the corners of the region.  

In order to join the two maps that have been constructed, we know that the map of 

colours stores the correlative colours of the regions that make the final topological map, 

but the points in the map of points are not correlative because they have been stored 

while the robot was moving. An example of a virtual world and the stored coordinates 

in the map of points is shown in figure 6.9.  

 

Figure 6.9. Virtual World covered by the robot and map of points obtained (B means that the point is a 

boundary point). 

Studying figure 6.9 we can classify the coordinates of the map of points in the 

corresponding regions such as:  

1. Corridors (blue region B1 and B2) are made only by boundary points, and these 

points delimitate also rooms (red regions). Therefore, when we read the map of 

points and we find a boundary point, we know that a corridor starts, and the next 

boundary point will indicate that the corridor has finished and a new region 

starts, which is a room.  

2. As the world is symmetric with respect to the X axis, the map of points obtained, 

is also symmetric and the points of which the regions are composed, are placed 

in symmetric positions with respect to the centre of the vector.  

R1 

0    1    2 
            B 

3    4    5    6 
B                B 

7    8    9    10    11    12      
B                       B 

13   14   15   16 
B                    B 

17   18   19 
 B            B 

  B1 
R2 

  B1  B2 
  R3 

 B2 
R2 R1 

11 10 

9 5 

3 

13 16 

1 4 8 

19 15 14 18 

2 6 

12 17 

0 

7 
R1   A1   A2 R2 R3 
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3. Then, using the information of points 1 and 2, the following algorithm stores the 

points in their corresponding regions of the final topological map (algorithm 

6.1). The algorithm reads half of the map of points, and it stores the points of the 

initial region of the topological map and it increases the identifier of the region 

each time it finds a boundary point. Finally it reads the rest of points in the map 

of points (from the middle to the end). It stores the points that we find as final 

region and it decreases the region identifier each time it finds a boundary point.  

Algortihm 6.1. Algorithm for joining the map of colours and the map of points and obtaining the final 

topological map. 

Procedure construct_map(Region mapReg, int size_region_map, 
Point2D mapPts, int size_points_map, string mapColours) 
{ 
 int i; /*Index to visit the map of points */ 
 int indexRegions=0; /* Index to visit the topological Map*/ 
 mapReg[indexRegions] ß store region identifier (value 
of indexRegions); 
 mapReg[indexRegions] ß store colour of the region (from 
map of colours); 

for (iß0; i<( size_points_map /2); ißi+1) 
 { 
     mapReg[indexRegions] ß store point (x,y, boundary 
attribute); 
     If (point.boundary = true) // It is a boundary point 
     { 
  indexRegions ß indexRegions +1; 
  mapReg[indexRegions] ß store region identifier 
(value indexRegions); 
  mapReg[indexRegions] ß store colour of the region 
(from mapColours); 
  mapReg[indexRegions] ß store point (x,y,boundary 
attribute) from mapPts; 
     } 
 } 
 for (iß( size_points_map /2); i< size_points_map;   

ißi+1) 
 { 
          mapReg[indexRegions] ßstore point 
(x,y,boundary attribute) from mapPts; 
     If (point.boundary = true) // It is a boundary point 
     { 
  indexRegions ß indiceRegiones-1; 
  mapReg[indexRegions] ß  store point (x,y,boundary 
attribute) from mapPts; 
     } 
 } 
} 



 150 

To conclude, the topological map for the virtual world of the figure 6.9 would be the 

one in figure 6.10. 

 

 

 

 

Id. Region: 1 Id. Region: 2 Id. Region: 3 Id. Region: 4 Id. Region: 5 
Colour: Red Colour: Blue Colour: Red Colour: Blue Colour: Red 
Points:  (x0,y0,f0) 

(x1,y1,f1) 
(x2,y2,f2) 
(x17,y17,f17) 
(x18,y18,f18) 
(x19,y19,f19) 

Points: (x2,y2,f2) 
(x3,y3,f3) 
(x16,y16,f16) 
(x17,y17,f17) 

Points: (x3,y3,f3) 
(x4,y4,f4) 
(x5,y5,f5) 
(x6,y6,f6) 
(x13,y13,f13) 
(x14,y14,f14) 
(x15,y15,f15) 
(x16,y16,f16) 

Points: (x6,y6,f6) 
(x7,y7,f7) 
(x12,y12,f12) 
(x13,y13,f13) 
 

Points: (x7,y7,f7) 
(x8,y8,f8) 
(x9,y9,f9) 
(x10,y10,f10) 
(x11,y11,f11) 
(x12,y12,f12) 

Figure 6.10. Sketch of the final topological map for the virtual World in figure 6.9, where (xi, yi) means 

the coordinates x and y of each point in the map, and fi represents the Boolean value indicating if the 

point is a boundary point between regions or not. In this example this coordinate will be true only for the 

points number 2, 3, 6, 7, 12, 13, 16, and 17. 

The topological map is written in a text file as the one in the example of the figure 6.11.  

 

 

 

 
 
 
 
 
 
 

 

 

Figure 6.11. Example of the File with the topological map. 

 (Region,0,R,6) 
(0.000000,0.000000,0)  
(66.220000,0.000000,0)  
(66.220000,85.440000,1)  
(65.660000,130.770000,1)  
(65.660000,173.600000,0)  
(-4.190000,173.600000,0)  
(Region,1,B,4) 
(66.220000,85.440000,1)  
(148.270000,85.440000,1)  
(147.710000,130.770000,1)  
(65.660000,130.770000,1)  
(Region,2,R,6) 
(148.270000,85.440000,1)  
(148.270000,46.200000,0)  
(218.040000,46.200000,0)  
(218.040000,213.390000,0)  
(147.710000,213.390000,0)  
(147.710000,130.770000,1) 

11 10 

9 5 

3 

13 16 

1 4 8 

19 15 14 18 

2 6 

12 17 

0 

7 
R1   A1   A2 R2 R3 

(x0, y0, f0) (x1, y1, f1) 

(x2, y2, f2) 

(x18, y18, f18) 

(x17, y17, f17) 

(x19, y19, f19) 

(x3, y3, f3) 

(x4, y4, f4) (x5, y5, f5) 

(x6, y6, f6) (x7, y7, f7) 

(x8, y8, f8) (x9, y9, f9) 

(x10, y10, f10) (x11, y11, f11) (x14, y14, f14) (x15, y15, f15) 

(x12, y12, f12) (x13, y13, f13) (x16, y16, f16) 
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The information of the topological map is stored in the file following the next format 

(figure 6.11):  

• Each line of the file starts and finishes with a bracket and it contains several 

elements separated by commas. 

• The start point of a region is when we find the symbol Region. After this symbol 

the identifier and the colour of the region appear (R means red and B means 

blue). The last element is the number of points which are part of the region. 

• After this line, there are several lines, as much as the number of points that the 

region has. Each one of these lines contains the coordinate x and y and the 

Boolean value indicating if the point is a boundary point or not (1 means true). 

6.1.2 Planning the movement 

In this section we apply the qualitative movement theory presented in chapter 5.  

First we infer the sequence of topological relations between the robot (seen as a region) 

and each region of its environment in order to navigate from one initial region to the 

goal one. In this application all the regions involved are considered areas. In order to 

plan the movement we will centre our attention to the time relation next because we 

consider that the time progresses when the topological situation between the robot and 

its environment changes.  

The information we need to plan the movement is the relation between the robot, 

considered as an area region, and the initial region of the environment; and the relation 

between the robot and the next region of the environment that the robot will find up to 

the moment that the robot finishes its goal and is in the topological situation that is our 

goal.  

We know also that the topological relation between the regions of the simulated world 

where the robot is sutiated, is always Touch or Disjoint.  

With all this information we start the inference process. An example of this process is 

shown in figure 6.12. This example is the one that the Khepera2 robot will perform to 

get the sequence of topological situations to go from the region 1 (the red room more at 
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the left) to the region 3 (the red room more to the right) in the environment of figure 

6.1d.  

Figure 6.12. Example of an Inference process. 

In the figure 6.12, each arrow means the process of inference, that is, the composition of 

the relations before each arrow applying the composition table indicated above each 

arrow. From this figure, the sequence of topological situations between the robot and its 

environment results: 

 
Initial Situation: Robot CI R1 

Robot CI R1 & R1 T R2  
AAA 

 Robot D R2 

Inference 1:  Robot CI R1 
Next 

 Robot TFI R1 

  Robot TFI R1 & R1 T R2 
AAA 

 Robot {T, D} R2  à  Robot T R2 

Inference 2:  Robot TFI R1 
Next 

 Robot {O,CI} R2 à Robot O R1 

  Robot O R1 & R1 T R2 
AAA 

 Robot {T, D, O, TFIi, CIi} R2  à  Robot O R2 

Inference 3:  Robot O R1 
Next 

 Robot {T,TFI} R1 à Robot T R1 

  Robot T R1 & R1 T R2 
AAA 

 Robot {T, D,O,E,TFI,TFIi} R2 à Robot TFI R2 

         R1 T R2 à R2 T R3 
 

Inference 4:  Robot TFI R2 
Next 

 Robot {O,CI} R2  à  Robot CI R2 

  Robot CI R2 & R2 T R3 
AAA 

 Robot  D R3 

Inference 5:  Robot CI R2 
Next 

 Robot TFI R2 

  Robot TFI R2 & R2 T R3 
AAA 

 Robot {T, D} R3  à  Robot T R3 

Inference 6:  Robot TFI R2 
Next 

 Robot {O,CI} R2 à Robot O R2 

  Robot O R2 & R2 T R3 
AAA 

 Robot {T, D,O,TFIi, CFIi} R2  à Robot O R3 

Inference 7:  Robot O R2 
Next 

 Robot {T,TFI} R2 à Robot T R2 

  Robot T R2 & R2 T R3 
AAA 

 Robot {T, D,O,E,TFI,TFIi} R2  à  Robot TFI R3 

Inference 8:  Robot TFI R3 
Next 

 Robot CI R3 
   
Final Situation: Robot CI R3 
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1. Initially we know that the robot is Completely Inside (CI) of the region 1, region 1 is 

Touching (T) the region 2, so using the composition table AAA-table we obtain the 

relation between the robot and region 2 initially, which is Disjoint (D). 

2.  Inference 1 uses the information obtained in the step number 1 and we deduce the 

situation of the robot with respect the region 1 in the next moment of time. This 

means to apply the composition movement table AAt-table and we obtain that the 

robot will be Touching From Inside (TFI) region 1. Using the new information and 

all the information we already know, we deduce the relation between the robot and 

region 2 in the next moment of time too. This is made once more using the 

composition table AAA-table, and we obtain that the robot will be Disjoint (D) or 

Touching (T) of the region 2. And as we also know that a new point of time appears 

when the topological relation between the robot and its environment changes, we 

can rule out the relation Disjoint, which is the same situation between the robot and 

region 2 in the step 1. Therefore the robot and the region 2 are Touching (T). 

3. During the inference 2 and doing the process described in above steps we infer that 

the robot is Completely Inside (CI) or Overlapping (O) the region 1. As CI is the 

topological relation obtained in step 1 it will mean that the robot is coming back to 

its initial situation. Therefore we rule it out and the inferred relation between the 

robot and region 1 is O. With respect with the region 2, we initially infer that the 

robot can be T, D, O, TFIi, CIi the region 2. TFIi and CIi are ruled out because it is 

not possible that there are regions in which the robot can move that are inside the 

robot. T and D are also ruled out because they correspond to previous situations and 

then the robot would be coming back to the initial situation. Thus, the relation 

between the robot and region 2 is O. 

4. In the inference 3, the relation between the robot and the region 1 could be TFI or T. 

TFI is ruled out because it is the relation if the inference 1. So, the robot is Touching 

(T) the region 1. The relation between the robot and the region 2 can be T, D, O, E, 

TFI, or TFIi. The relations T, D, O are ruled out because they belong to previous 

situations, TFIi is ruled out because it cannot be a region inside the robot. The 

relation Equal (E) is also ruled out because the robot cannot be equal to a region 

through which the robot has to move. Therefore, the topological relation between 

the robot and region 2 is TFI. At this moment, as the robot is already inside region 2, 
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to follow with the inference process we have to consider that the region 2 is 

Touching region 3.  

5. In the inference 4, we start the inference process with the region 2, and not with the 

region 1 because the robot has left it. Then we infer that the robot can be in CI or O 

region 2. O is ruled out. And the relation between the robot and region 3 is Disjoint 

(D). 

From this point, the inferences are the same as the above one but with the region 2 and 3 

and not the region 1 and 2. Therefore, the process is cyclic and we can define an 

automatic algorithm for the inference process (algorithm 6.2), useful for any region and 

for any initial and final region. This algorithm does not finish until the robot is in the 

final situation.  

On the other hand, the resulting topological relations are written in a file as the one 

given in figure 6.13, which corresponds to the inference process of figure 6.13. This file 

will be useful to extract the sequence of topological relation for the planned movement 

and compare them with the real topological relations in each moment.  
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Procedure inference_process (num_initial_region, 
initialSituation, num_final_region, finalSituation, exitNEXT, 
exitAAA) 
{ 
     inputNEXT ß initialSituation;  
     while (num_initial_region ≠ num_final_region) or 
(initialSituation ≠ finalSituation) 
     { 
 inference_table_Next(inputNEXT, setExitNEXT); 
 if (quantity_components(setExitNEXT) > 1) 
      select_relation_NEXT(setExitNEXT, lastInputNEXT, 
exitNEXT); 
 else 
      obtain_component(setExitNEXT, 1, exitNEXT); 
 
 inference_table_AAA(exitNEXT, setExitAAA); 
 if (quantity_components(setExitAAA) > 1) 
      select_relation_AAA(setExitAAA, lastExitAAA, 
beforeLastExitAAA,  

     exitAAA); 
 else 
      obtenain_component(setExitAAA, 1, exitAAA); 
 
 write_inferences_file(exitNext, exitAAA, 
num_initial_region, num_initial_region+1); 
 
        /*Store last input value of NEXT table*/ 
 lastInputNEXT ß inputNEXT; 
 /* New input for NEXT table = exitNEXT always that we have 
not find a new room (exitAAA != TFI*/ 
 if (exitAAA == "TFI") 
      inputNEXT ß "TFI"; 
      num_initial_region ß num_initial_region +1; 
 else 
      inputNEXT ß exitNEXT; 
 
 /* Store last results of  table AAA*/ 
 beforeLastExitAAA ß lastExitAAA; 
 lastExitAAA ß exitAAA; 
     } 
} 

Algorithm 6.2. Algorithm for the Inference Process 
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Figure 6.13. Example of the file created with the movement plan. 

6.1.3 Autonomous Robot Navigation using the Plan of Movements 
created. 

In this section we explain the movement of the robot from one room to the other by 

using the planning constructed in previous sections. During its navigation the robot 

checks its movement by comparing its real topological relation in a moment of time T 

with the corresponding topological relation between the robot and its environment 

during the same moment of time T stored in the movement plan. We also will show 

examples of correct navigation with respect to the plan and of erroneous navigation.  

Let’s start by explaining how the robot compares its topological situation with the one 

in the plan.  

The topological relations of the robot with its environment are given by a qualitative 

symbol representing the topological situation and the numerical identifier of the region 

with which the robot shares this situation.  

• To determine the numerical identifier of the room while the robot is moving we 

follow the next process:  

1. First the numerical identifier is initialised to 0. 

2. The identifier is increased after each turn from a room to a corridor or from a 

corridor to a room (figure 6.14), and this is done while the identifier is lower of 

the total number of regions minus 1 (because the identifier starts in 0).  

3. If the numerical identifier is the identifier of the last room of the environment, 

that means it is equal to the total number of regions minus 1, the robot starts the 

way back to the initial room again. Therefore the identifier is not incremented 

((R,CI,0)) 
((R,TFI,0),(R,T,1)) 
((R,O,0),(R,O,1)) 
((R,T,0),(R,TFI,1)) 
((R,CI,1),(R,D,2)) 
((R,TFI,1),(R,T,2)) 
((R,O,1),(R,O,2)) 
((R,T,1),(R,TFI,2)) 
((R,CI,2)) 
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but it is decremented when the robot turns from a room to a corridor or vice 

versa, up to the moment it is equal to 0 again, in which we start with the first 

step again (it is a cyclical process). 

1 2 

4 3 
Region 0 Region 1 Region 2 

 

Figure 6.14. Turns of the robot when navigating from a room to a corridor or vice versa following the 

wall of the world. 

In order to avoid the robot turning around and going back to the same room due to an 

obstacle whilst it acts as if it were in a new room, we use the coordinates of each region 

stored in the topological map as follows: 

In each situation in which the robot is moving from a room to a corridor (figure 6.14) 

we compare: 

1. The coordinates obtained in the turns numbered 1 and 2 of figure 6.14 are 

compared with the coordinates of the initial point of regions 1 and 2 stored in the 

topological map respectively. 

2. The coordinates obtained in the turns 3 and 4 of the figure 6.14 with the 

coordinates of the last point of the regions 2 and 1 stored in the topological map 

respectively. 

In order to avoid the robot turning around and going back to the same room due to an 

obstacle, whilst it believes that it is in a new room, the robot compares the coordinates 

that it is calculating during its movement with the coordinates of each region stored in 

the topological map as follows:  

o For the turns number 1 and 2 of figure 6.14, the robot compares the obtained 

coordinates with the stored ones of the initial point of the regions 1 and 2 

respectively.  
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o For the turns number 3 and 4 of figure 6.14, the robot compares the obtained 

coordinates with the stored ones of the last point of the regions 2 and 1 

respectively.  

• To detect the different topological relations between the robot and the region where 

it has its current position and the adjacent region (figure 6.15) we follow the next 

process: 

 

 

 

 

Figure 6.15. Topological situations that the robot finds between it and the region in which it is and the 

next region.  

1. The topological relation CI between the robot and the region in which it is and 

the topological relation D between the robot and the next region that it will visit 

are determined once the robot has finished one of the turns described in figure 

6.14 and in the first corner in which the robot detects red.  

2. The topological relation TFI between the robot and the current region and T 

between the robot and next region are determined when the robot starts one of 

the turns of figure 6.14, which is determined when in these situations the robot 

has made 5 turns. 

3. The topological relations O between the robot and the current and next regions 

are determined when the robot follows the turning movement in the situations of 

figure 6.14 (it has done more that seven turns).  

4. Finally, the topological relation T between the robot and the current region and 

TFI between the robot and the next region is determined when the robot finishes 

the turning (one of them which are depicted in figure 6.14).  

 

 CI – D   CI – D  

T – TFI 

TFI–T  T–TFI  

O–O  O–O  CI – D 
TFI–T  
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Then, each time that the robot reaches a new topological region, it compares the new 

situation with the corresponding one in the plan. For this comparison, the robot obtains 

the corresponding topological situation from the file created during the inference 

process. If both topological situations are equal, the robot follows its movement which 

is correct, otherwise it gets lost and it stops.  

6.1.4 Examples of navigation using the Movement Plan 

Once the robot has constructed its topological map, it knows that first of all it has to 

find the first object in the region 0, then the robot has to be always completely inside of 

the region 0, which means (R, CI, 0), and then it has to construct the qualitative 

description of the object. After the robot comes back to the initial point (black point) 

and knowing that CI is the region 0 and that CI has to be the region 2, because in this 

region it will find the second object for which the robot has to construct its qualitative 

description, it uses the topological map in order to deduce the movement plan as 

described in above section. Once it has the movement plan it should navigate from the 

region 0 to the region 2, detect its topological situation with respect to its environment 

and comparing the resulting situation with the corresponding one in the movement plan. 

In this section we are going to show two examples of this navigation from one region to 

the final one, the first one shows a correct navigation and the second one shows how the 

robot detects that it has moved in the wrong direction. 

Finally, it should be remarked that when the robot has made both descriptions then it 

compares them and determines if the objects are equal or not, as we will see in section 

6.1.5. 

During the correct navigation of the robot from region 0 to region 2 the robot follows 

the following steps: 

1. Figure 6.16 shows the initial situation of the robot, which is CI of the region 0, 

and shows also the topological map created.  
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Figure 6.16. Initial situation and creation of the topological map. 

Using the topological map and the initial relation between the robot and the region 0 

(R,CI,0), and the final situation between the robot and region 2, the inference process 

described above determines the next movement plan:  

• First the robot is CI region 0, which is represented by the string ((R,CI,0)). 

• In the following change of time (when the topological situation between the 

robot and some region changes) we should have the relations ((R,TFI,0), 

(R,T,1)) between the robot and the region 0 and 1 respectively.  

• In the next moment of time the relations should be ((R,O,0), (R,O,1)) meaning 

that the robot overlaps the region 0 and 1.  

• Then, in the next moment the robot will share next relations with the region 0 

and 1: ((R, T, 0), (R, CI, 1)). 

• After the above situation the robot will be completely inside region 1 ((R,CI, 1)). 
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• At the next time change the topological situations will be ((R,TFI,1), (R,T,2)). 

• Then, after the above situation the new situation during a correct navigation of 

the robot from region 0 to region 2 will be ((R,O,1), (R,O,2)). 

• The robot is already in part of the region 2, therefore the next situation should be 

((R,T,1), (R,TFI,2). 

• Finally the robot will get the final topological situation, which was our goal, and 

it is (R,CI,2). 

The above inference is stored in a file (inference.txt) and during the movement of the 

robot, when it detects a new topological situation, the file is used in order to compare 

the topological situation obtained with the corresponding one in this file. Therefore the 

rest of the steps are concerned with the detection of the new topological situations and 

the comparison described. 

2. First the robot has to check if it is in the correct initial situation, which means 

(R,CI,0) (figure 6.17). 

 

Figure 6.17. Correct checking, the robot is really (R,CI,0). 
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3. Then, when the robot is in a new topological situation, the robot detects which is 

its new situation and compares it with the situations in the file in the next 

moment of time. In this case it is correct and the robot continues its movement 

(figure 6.18) and after few steps the robot is (R,O,0) and (R,O,1). 

 

Figure 6.18. Correct checking, in this new moment of time the robot should be (R,TFI,0), (R,T,1) and 

after the next time, which it will be after few steps, it should be (R,O,0) and (R,O,1). 

4. The next figure (figure 6.19) shows the sequence of correct topological 

comparisons, therefore correct navigation up to the goal which in this case is 

that the robot is (R,CI,2). 
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a) The robot is (R,T,0) and (R,TFI,1) and after few steps it is (R,CI,1). 

 

b) The robot is (R,TFI,1) and (R,T,2) and after few steps the robot is (R,O,1) and 

(R,O,2). 

 

c) Finally, the robot is (R,T,1) and (R,TFI,2) and few steps later the robot detects 

(R,CI,2) which was our goal. 

Figure 6.19. Sequence of correct topological situation up to our goal. 
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Let us to examine an example of the same navigation, that uses the same initial and goal 

situations with the same inference file, but with a big obstacle that makes the robot gets 

lost. The robot will detect this situation because the comparison of a new topological 

situation between the robot and some region with the corresponding one in the inference 

file is not true. Figure 6.20 shows the world with the big obstacle in region 1, this figure 

also shows how the robot checks if it is CI region 0.  

 

Figure 6.20. Environment of the robot with a big obstacle, and correct checking: the robot is CI region 0. 

As the first checking is correct the robot continues its movement and it makes the 

following comparisons: 
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Figure 6.21. Correct situation: next time the robot is (R,TFI,0) and (R,T,1) and after few steps the robot 

is (R,O,0) and (R,O,1). 

 

Figure 6.22. The robot detects a new correct situation, the robot is (R,T,0) and (R,TFI,1). After few steps 

the robot is (R,CI,1) which is also correct. 

Finally, when the robot finds the obstacle, it has to turn, this is the situation that makes 

the robot check if its topological relations with the environment have changed. As it is 

seeing blue, then it determines that it is still inside the region 1. Then it calculates the 

approximate coordinates of its current position and it compares them with the 

corresponding ones in the topological map. The comparison does not return true which 

means that the robot is not changing to the region 2, and it should be doing this  

movement. Therefore the situation is not the correct one and it determines that it has 

gone in the wrong direction. 



 166 

 

Figure 6.23. The robot has lost its direction of movement. 

6.1.5 Matching of Objects 

This section explains how the robot describes the object qualitatively. In this application 

the objects will be always regular or non regular polygons, the object will not contain 

curves or holes. The case of holes has no sense in this application because the robot will 

be not able to detect the holes inside an object. The case of curves is an extension.  

In order to facilitate the process of describing the objects, one of the corners of the 

object is marked with a green strip. When the robot, using the turret, detects a green 

strip then it knows that this is the first vertex of an object. The next step to take is to 

find all the vertices of the object, which has been made knowing that the robot has to 

turn at each corner, knowing this fact, the robots detects that it has found another vertex. 

The robot gives to the first vertex the (0,0) coordinates and using the relative distance of 

the displacement of the robot and the degrees of the rotation then the next (x,y) 

coordinates are calculated. With all the vertices of the object, the robot, by applying the 

qualitative theory described in section 5, constructs the qualitative description of the 

object. Next, the robot looks for the other object in the other room and repeats the 

process. When the robot has described both objects qualitatively, the matching 

algorithm is executed and the robot returns whether both objects are qualitatively equal 

or not. As the robot is running in a standalone mode to indicate that both objects are 

equal it revolves around itself. 
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6.2. APPLICATION NUMBER 2: INDUSTRIAL MOSAIC 
APPLICATION. 

The goal of this application is the recognition of tiles in a mosaic design in order to 

allow the automatic and intelligent assembling of mosaics in the ceramic industry.  

A mosaic is a form of decorative art in which small tiles (called tesseraes) are used to 

create a picture. Mosaics were used from the ancient times for domestic interior 

decoration. Mosaics are particularly associated with Roman dwellings, for example on 

floors, but the craft has continued through the ages, and many modern examples exist. 

There are two main methods of creating mosaics. They are commonly referred to as the 

direct method of mosaics construction and the indirect method of mosaic construction.  

The direct method of mosaic construction involves directly placing (gluing) the 

individual tesserae onto the supporting surface. This method is well suited to surfaces 

which have a 3 dimensional quality such as vases.  

But, the direct method suits small projects which are transportable. Another advantage 

of the direct method is that the resulting mosaic is progressively visible allowing for any 

adjustments to tile placing or colours to be done immediately. The disadvantages of the 

direct method are that the artist must work directly on the chosen surface which is often 

not practical for long periods of time. It is unsuitable for large-scale projects. Also, it is 

difficult to control the evenness of the finished surface. This is of particular importance 

when creating a functional surface such as a floor or a tabletop. If such qualities are 

important in the finished mosaic surface, then indirect method of mosaic construction 

may be more useful.  

The indirect method of mosaic construction involves pre-assembling and arranging the 

tesseraes in several grids that later will be placed onto the supporting surface following 

a plan to create the final picture or pattern (figure 6.24). The individual tesseraes are 

placed on the grid according to a design for each grid, which will create the intended 

picture. 
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Figure 6.24. Plan to place the different grids to create a mosaic. Each square number represents a grid 

to be assembled. 

The application has been developed with the aim of being applied in a complete system 

to automate in an intelligent way the indirect method of mosaic construction, which 

means the process of pre-assembling the tesseraes and creating the different grids which 

have to be placed in the construction place. Therefore, the application consists of a 

software that recognise the tessereas and determines not only their position in a mosaic 

design but also the rotational angle that a robot arm has to make when picking up the 

tesserea from its centre (using suckers) to place the tesserea in the correct orientation. 

This software implements the qualitative theory for shape representation and matching 

presented in chapter 5. For this application a qualitative approach is the most suitable 

one because no two manufactured tiles or tesseraes are exactly identical, and working 

qualitatively we can manage the uncertainty.  

Examples of different types of mosaics that we want to assemble automatically, can be 

seen in figure 6.25. The figure 6.25a) is a mosaic composed by a huge number of grids 

(b)) and c) represents a border mosaic made of one unique grid. These figures also show 

that a mosaic can be done with different types of tesseraes. 
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a) Example of a big mosaic for a promenade, left part of the image is the design itself and right part is a 

virtual image of the final promenade. This design has been made with different types of tesseraes, which 

are: 

 

b) shapes of the different tesseraes used for the above design.  

 

c) Real border mosaic example, made of tesseraes of 4 different shapes. 

Figure 6.25. Examples of real mosaics.  

Given its final goal, the application has to interact with a vision system to obtain the 

images of the tesseraes to place, and a robot arm which will be the one in charge of 

placing that tesseraes in their correct position in each grid. Figure 6.26 shows a diagram 

of the final system in which the application will work.  
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Figure 6.26. Diagram of the full system in which the application will be integrated. 
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The application here presented has two entries, the vectorial design of a mosaic (figure 

6.27 is an example) and a picture of one or more tesseraes which comes from the vision 

system (figure 6.28 is an example). The application requires the whole theory described 

in section 5, because it has to be able to recognise objects with holes, straight and curve 

segments in the same model, including also the information about the colour and the 

area of the objects to recognise. We are going to explain in these sections not only the 

matching software implemented but also how the pictures are processed to obtain the 

qualitative information that we need.  

 

Figure 6.27. Example of a mosaic design. 

 

Figure 6.28. Example of a picture of several tessereas to be recognised. 

The application has been developed in four phases:  

1. Development of a first application for the matching of polygonal regular and non-

regular tesseraes, which are composed of straight lines and without holes.  

2. Improvement of this first application adding the capability of recognising and 

matching of tesseraes including only one hole. 

3. New improvement of the application including the matching of tesseraes with 

curves of completely curvilinear tesseraes in their boundaries and their holes’s 

boundaries. 

4. Improvement of the application for matching of tesseraes with several holes. 
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6.2.1 Constructing the Qualitative Description of a Mosaic Design.  

In order to construct the qualitative description of each figure we need its relevant 

points. As we have stated in section 5, in the case of straight segments we need the 

vertices as relevant points, and in the case of curve segments we need the starting and 

final points of the curve and the point of maximum curvature. For the case of figures 

with holes we find the relevant points of the container and of the boundary of each hole 

in the figure. 

Due to implementation reasons, we have numbered the relevant points always in the 

same way. The first point is the one in the upper- left hand corner of the object. The rest 

of points are numbered following a counter-clockwise order. 

We have to extract the relevant points from two types of entries: the pictures of figures 

taken by a vision system and the design of the mosaic to be assembled. 

We will explain the process to obtain the relevant points from pictures given by a vision 

system in subsection 6.2.2. 

In the case of the design of the mosaic, it consists of a file with .AI extension (Adobe 

Illustrator file). These types of files are obtained when designing a mosaic with any 

vectorial design tool, as it could be Macromedia Freehand MX, the one used in the 

project. In a .AI file we have each object of the design defined by a series of points and 

indicating if the points belong to a curve or a straight line. Figure 6.29 shows an 

example of the part of a .AI file giving the vectorial description of a mosaic designed. 

(Primer plano) Ln //Starting point of the vectorial design 
of the objects 

300 Ar 
1 XR //Starting point of the description for the first figure 

0.8078 0.5765 0.3765 Xa //Colour of the figure in RGB format 
252.3002 489.3314 m  //First point of the figure, 
indicated by the symbol “m” at the end of the line 

363.8649 489.7667 L  //Lines finishing by the symbol “L” 
//represent straight segments which the starting point is the 
//one before this line and the end point is the one before the 
//symbol “L”. 

328.8179 319.5903 L  

Figure 6.29. Part I. Example of the part of a .AI file with the vectorial description of the mosaic design. 
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251.8649 358.7197 L 

216.8179 423.155 L 

252.3002 489.3314 L //As they are closed polygons the first 
//and the last points are always the same.  

f    //Ending point of the first figure. 

1 XR           //Starting point of the second figure 
0.216 w 

3.863678 M 
[ ] 0 d //This line indicates that the following is a 
boundary. 

259.5871 386.3039 m  //Boundary points, and as later we 
have the same points  

//for the figure itself we not consider these points, because 
//they are the same as the ones describing the figure itself. 

279.1211 379.5986 295.0553 386.1536 307.3886 405.9683 C  

318.1631 425.8567 315.6703 445.9215 307.3399 465.7956 C   
292.797 442.5224 L 

294.4936 435.9872 293.6803 429.0534 290.3574 421.7218 C  

283.535 410.8038 277.1242 407.163 271.1069 407.8114 C 
259.5871 386.3039 L 

f  //Ending point of the description of the boundary of the 
//second figure, and the following are the description of the 
//figure itself 

1 XR  
1 0 0.6 Xa  //Colour of the second figure in RGB format 

259.5871 386.3039 m  //First point of the second figure 
279.1211 379.5986 295.0553 386.1536 307.3886 405.9683 C //If 
//the line finishes with the symbol “C” then we are studying a 
//curve segment, and the curve is given as a Bezier cubic curve, 
//with its control points, and the end point, remember that the 
//first point is always the one in the line above the actual one 
//in the file. 
318.1631 425.8567 315.6703 445.9215 307.3399 465.7956 C  

292.797 442.5224 L 
294.4936 435.9872 293.6803 429.0534 290.3574 421.7218 C  

283.535 410.8038 277.1242 407.163 271.1069 407.8114 C 

259.5871 386.3039 L 
f    //Ending point of the second figure.   

LB //End of the vectorial description of figures.   

Figure 6.29. Part II. Example of the part of a .AI file with the vectorial description of the mosaic design. 
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To obtain the relevant points from the .AI file, first we have to consider only the part of 

the file describing the vectorial objects of the design, as the one shown in figure 6.29. In 

figure 6.29 we can observe the following: 

• The starting point of the description of a figure is indicated by the symbol “XR”,  

and the ending point is indicated by the symbol “f”. 

• The colour of each figure is given in RGB format and it is indicated in a line 

finishing by the symbol “Xa”. 

• The first point (x, y coordinates) of each figure is always indicated by a line in 

the .AI file finishing by the symbol “m”. 

• The rest of points (x,y coordinates) of the figure are written down in consecutive 

lines, indicated in separate lines of the file, each line finishing with the symbol 

“L” if the points belong to a straight segment or by the symbol “C” if the points 

belongs to a curved segment. In the case of curved segments the points written 

down are the control points and the end point of a cubic Bezier curve.  

• In the case that the design of each figure is drawn with an additional boundary 

around it, the vectorial description of the boundary is written down before the 

vectorial description of the figure itself (the interior), and both descriptions have 

the same points, the only difference is that the boundary description starts with 

the line “[] 0 d”. So, in order to avoid obtaining two descriptions of the same 

figure, we ignore the description of the boundary and we consider only the 

description of the figure itself (the interior). 

The process to obtain the relevant points in straight segments is simple because they are 

the points given by the .AI file itself, but this process is not so easy in the case of curved 

segments. As we have stated in the case of curved segments the .AI file represents the 

initial point of the curve, its control points and the end point, representing the curve as a 

cubic Bezier curve. But the relevant points needed to obtain the qualitative description 

of the figure are the initial and final points of the curve, which are given in the .AI file, 

and the point of maximum curvature of the curve. In order to obtain the point of 

maximum curvature we proceed as follows: 
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1. First we calculate the equation of the straight line passing through the 

first and last points of the curve, using the director vector joining both 

points. 

2. Then, we calculate the distance in perpendicular between each point of 

the curve to the straight line calculated. The point whose distance to the 

straight line is bigger than the others is the point of maximum curvature. 

Each point of the curve is calculated with the equation of the cubic 

Bezier curve given by the four points in the file, as: 

x = (1-u)3 xi + 3u (1-u)2 xc1 + 3u2 (1-u) xc2 + u3 xf 

y = (1-u)3 yi + 3u (1-u)2 yc1 + 3u2 (1-u) yc2 + u3 yf 

where,  

u = 0, 0.2, 0.4, ..1  
(xc1, yc1) y (xc1, xc2) are the control points given in the .AI file 

(xi, yi) is the initial point given in the .AI file 
(xf, yf) is the final point given in the .AI file 

In graph form, figure 6.30 shows an example of three points of the curve and its 

distances to the straight line joining the starting and the ending point of the curve. In 

this figure the point of maximum curvature would be the one called PM. 

 

 

 

Figure 6.30. Graphical example of the calculus of the point of maximum curvature. 

Once we obtain the relevant points, we can construct the qualitative description of the 

figures in the mosaic, according to the theory described in section 8, proceeding with 

the following steps: 

• The angle of each vertex is classified as acute, right-angled or obtuse. To determine 

the angle we calculate the distance between the vertex and the centre of the circle 

passing through the anterior and posterior vertices of the one we are calculating the 

angle for, as figure 6.31 indicates. 

 d1 

PM 
P2 

Ps Pf 

P1 
 dM  d2 
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Figure 6.31. Calculus of the angle of the vertex P1, where d is the distance and r is the radius of the 

circle passing through P5 and P2 (anterior and posterior vertices of P1 respectively).  

According to the comparison between the distance (d) calculated and the radius of 

the circle we determine the angle as follows: 

If d>radius then angle = acute 

Else if d<radius then angle = obtuse 

Otherwise angle= right-angled 

• The edge between two consecutive vertices is classified as concave or convex. To 

determine the type of convexity associated with the vertex (x,y) we use the 

following equation, which calculates where the vertex is with respect to the straight 

line passing through the anterior (x0,y0) and posterior (x1,y1) vertices: 

f(x,y) = (x-x0)(y1-y0) - (y-y0)(x1-x0)  (6.1) 

Si f(x,y)> 0à concave 

Sino f(x,y)<0 à convex. 

• The relative length of an edge would be the result of the comparison of its length 

and the length of the following edge. Both lengths are calculated using the 

Euclidean distance between two vertices. The result of the comparison will be one 

of the symbols in the set [less, equal, bigger]. 

The above steps are used when we are giving the qualitative description of the straight 

segments, but for the case of curve segments we need to calculate the type of convexity 

and the type of curvature of the curve. These features are calculated as follows: 

•  The type of convexity of the curve is determined as we have described for 

the case of straight segments but the reference points used in the equation 

(9.1) are the initial and final point of the curve. The qualitative 

representation is always associated only with the point of maximum 

curvature. 

r 

P1 

P2 

P3 
P4 

P5 d 
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• The type of curvature ([acute, semicircle, plane]) is determined by 

calculating two distances: da (distance between the initial point of the curve 

and the point Pik, which is the one in the middle of the straight line joining 

the initial and the final point of the curve) and db (distance between the point 

of maximum curvature and Pik) as we have explained in section 5 (see figure 

5.4 to remember). The point Pik is calculated simply by doing the next 

operation, where (xi,yi) is the initial point of the curve and (xf,yf) is the final 

point of the curve:  

  )
2

iyfy,
2

ixfx()iky,ik(xikP
−−

=  

Distances da and db are the Euclidean distances between the initial point and Pik 

and between the point of maximum curvature and Pik respectively. Then we 

compare both distances and determine the type of curvature as follows: 

If da=db then type_curvature=semicircle 

Else If da<db then type_curvature=acute 

Otherwise type_curvature=plane. 

Each figure also stores its colour, obtained as RGB coordinates from the .AI file, and 

two symbols to indicate if the figure has holes and/or curves. The symbols are chosen 

from the sets [without-holes, with-holes], and [without-curves, with-curves, only-

curves] respectively as soon as we detect that the figure has holes or curves. These 

symbols are introduced to speed up the matching process.  

In the case that a figure contains holes, we repeat the above steps for each hole of the 

figure and we relate each hole with the container using the topological relation CIi and 

we calculate the relative orientation set of each hole with respect to its container as 

follows: 

• First of all, as Frank’s Reference System is placed at the centroid of the 

container with the NW orientated to the first vertex of the figure, we 

calculate the straight line through the centroid and the upper- left vertex of 

the container, which has been the one considered as the first vertex. This 

straight line will be the bisection line of the NW region. As each region 

covers 45º, for example, the bisection line plus 22,5º limits the starting line 
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of the N region, and the bisection line minus 22,5º limits the starting line of 

the W region. 

• Then, we calculate the straight lines between the centroid of the container an 

each vertex of the boundary of the hole.  

• Finally we calculate the angle between the first straight line and each 

straight- line through the vertices of the hole, and in function of the value 

obtained for each angle (αi) we determine the orientation as follows: 

§ If αi ∈ [0º, 22,5º] or [337,5º,360º] à NW 

§ Else if αi ∈ (22,5º,67,5º] à N 

§ Else if αi ∈ (67,5º,112,5º] à NE 

§ Else if αi ∈ (112,5º,157,5º] à E 

§ Else if αi ∈ (157,5º,202,5º] à SE 

§ Else if αi ∈ (202,5º,247,5º)àS 

§ Else if αi ∈ (247,5º,292,5º] à SW 

§ Else if αi ∈ (292,5º,337,5º] àW 

The set of regions obtained with each αi angle (with i=1, …,k being k the number of 

vertices of the hole) represents the set of orientations that holds between the hole and 

the container.  

Repeating the process described above we can obtain the qualitative description of all 

figures in the design, but as the .AI file does not have the points in a counter-clockwise 

order, the order of the points of each figure are the one followed by the designers when 

they make the mosaic design, what we do is to reorder the description of the vertices 

taking as the first vertex the one in the upper- left corner of each figure, using the (x,y) 

coordinate of each point that we still have and then we have the final qualitative 

description (a string) of all the figures in the mosaic design. 
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6.2.2 Constructing the Qualitative Description of the Figures in a 
Picture.  

We have developed a hybrid (quantitative plus qualitative) method in order to extract 

the relevant features of the objects in an image, this is needed in order to use them to 

create the qualitative description of the objects following the qualitative description 

theory presented in section 5.  

The development of a new method is obviously needed because we need to extract only 

the points defined by the theory as relevant points. This section shows how this task has 

been done. We classify the method developed as hybrid because initially we use an 

ordinary quantitative method to extract all the points in the boundary of each object in 

the image, and then these points are managed qualitatively in order to extract only the 

approximated relevant points. The quantitative algorithm chosen for the detection of the 

points of the boundary of a given image is the Canny algorithm [Canny 86]. 

6.2.5.1 Quantitative Extraction of the Points of the Boundary of an Image. 

Edges characterize boundaries and therefore their detection is a problem of fundamental 

importance in image processing. Edges in images are areas with strong intensity 

contrasts – a jump in intensity from one pixel to the next. Edge detecting significantly 

reduces the amount of data and filters out useless information, while preserving the 

important structural properties in an image.  

The Canny edge detection algorithm [Canny 86] is known as the optimal edge detector.  

Canny’s algorithm receives a colour .jpg image file and it translates the colour image 

received to a grey-scale image, then it obtains the edges which are all the points 

belonging to the boundary of the objects in the image using a threshold. 

First, the canny edge detector smoothes the image to eliminate noise. Then it finds the 

image gradient to highlight regions with high spatial derivatives. The algorithm then 

tracks along these regions and suppresses any pixel that is not at the maximum (method 

called non-maximum suppression). The gradient array is now further reduced by 

hysteresis which is used as a means of eliminating streaking. Streaking is the breaking 

up of an edge contour caused by the operator output fluctuating above and below the 

threshold. If a single threshold, T1 is applied to an image, and an edge has an average 
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strength equal to T1, then due to noise, there will be instances where the edge dips 

below the threshold. Equally it will also extend the threshold making an edge look like a 

dashed line. To avoid this, hysteresis uses 2 thresholds, a high and a low. Any pixel in 

the image that has a value greater than T1 is presumed to be an edge pixel, and is 

marked as such immediately. Then, any pixels that are connected to this edge pixel and 

that have a value greater than T2 are also selected as edge pixels. If you think about 

following an edge, you need a gradient of T2 to start but you don't stop till you hit a 

gradient below T1. 

But this algorithm obtains too many points and we need to create an additional filter for 

them. This filter consists of extracting the continuous line of points creating real 

boundaries and eliminating the ones that do not belong to this line by using the 8-

neighbourhood pixel concept (figure 6.32). From the first pixel (point) resulting using 

the Canny algorithm we store only the points which are neighbours of the given pixel, 

until the same pixel is reached. Then the pixels which are not in the continuous line 

creating the boundary are eliminated and also all the pixels which do not define a closed 

polygon. If from the first point selected we do not reach itself again we start with the 

next point in the file to be analysed. 

NW N NE 

W * E 

SW S SE 

Figure 6.32. The centre pixel marked with the symbol * and its 8 neighbours pixels. 

6.2.5.2 Qualitative Management of Boundary Points to Obtain Relevant Points.  

Once we have obtained all the points of the boundaries of the objects in the image being 

analysed, the next step is to manage them in a qualitative way in order to obtain only the 

qualitative relevant points according to the qualitative shape matching theory explained 

in section 5. This means that we are going to determine: 

• for each segment of the image if it is a straight segment or a curved segment, 

• the vertices in the case of straight segments, 

• the initial point, final point and point of maximum curvatura in the case of 

curves. 
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To determine the relevant points of a boundary we calculate the slope between two 

points Pi and Pj, called sj and the slope between the first point Pi and other consecutive 

point Pk, called sk. 

We have to notice that given a boundary of n points, the points chosen for the calculus 

of the slopes depend on the granularity (see section 1.1.4 for its definition) chosen. For 

instance, if the granularity is set to a value of 20, the first point (Pi) will be the point P0 

of the set of points of the boundary, the point Pj will the point P19, Pk will be the point 

P39 and so on. The granularity is determined in function of the length of the edges of the 

object being analysed, the large the edge the bigger the value for their granularity. As 

we are managing tessereas, we have tested different granularities and we have set it at 

20.  

We obtain the slopes sj and sk by using next expression: 
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= ,  being Pi=(xi,yi), Pj=(xj,yj) and Pk=(xk,yk.  

Once we obtain the slopes, we compare both and we can find the following situations: 

1. If sj == sk then we have a straight line; 

2. If sj != sk then we have a curved segment. 

We repeat this process for a new point Pl, calculating the slope between Pi and Pl and 

comparing the resulting slope with the first slope sj.  

Slopes comparison is not an exact equality, we left a margin because of the noise we 

find when obtaining the points. The margin set for our application is 0,5, which means 

that if the slopes differ in less than 0,5 then we consider both slopes as equal.  

To determine the relevant points, the process followed consists of calculating slopes 

between the first point and the rest of points (chosen using the granularity), and 

comparing slopes we know if the points belong to a straight line or a curve, then: 

1. If we are in a straight line, in which the slope is constant, the new relevant 

point will be the one that the slope is not constant anymore.  

2. If we are in a curved segment, when we find a slope whose sign changes 

then we have found the next relevant point, which will be the point of 

maximum curvature.  
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Then the process starts again with the new relevant point founded. 

Although usually the first point of the set of points of the boundary will be a relevant 

point, we are not sure of that, therefore first of all we have to find the first relevant 

point. To detect the first relevant point we not only compare slopes from the initial point 

to the points after it, but we compare the slopes between the 10 points before the initial 

point of the set of points and the slopes between the 10 points after this initial point, 

refining the granularity to 5 only for this case. Then: 

1. If the comparison between the slopes before the initial point of the set and 

after the initial point turns out to be equal (the slope is constant), the points 

before the initial point belong to the same straight segment as the initial 

point, therefore it is not the relevant first point and we follow the calculus of 

slopes until we find a point in which the slope calculated is not constant (the 

difference is bigger of 0,5), which will be the first relevant point.  

2. If slopes are not constants with respect to the points before the first one, it 

could be that we are in a curved segment or it could be that it is the first 

relevant point of the file. Therefore we consider it as the first relevant point 

and we look for the second relevant point. If the second relevant point is 

determined because the sign of the slope changes we determine the segment 

as a curve, otherwise we determine the segment as a straight segment.  

All the relevant points are stored in a vector with the next information: coordinates of 

each relevant point (determined as absolute coordinates respect to the image) followed 

by a string determining if the following segment is a straight segment or a curve 

segment. For instance the resulting vector of relevant points, v, for the figure 6.33 is 

v=[(257,102), curve, (237,145),curve, (256,199), straight-line, (117,197), curve, 

(138,154), curve, (119,99), straight- line], where the points are depicted over the image.  
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a)   b) 

Figure 6.33. a) Example of an image to extract its relevant points in which we have added the points 

obtained applying the method and b) graphical result obtained. 

At this point of the method, we have to check if we really have determined the type of 

segment correctly, because, as the points are chosen in function of granularity, 

sometimes we can determine that the relevant point belongs to a curve when it really 

belongs to a straight segment or vice versa. Therefore, if the final vector of relevant 

points has m elements, to check the type of segment we take the follwing steps: 

1. The calculus of the straight line passing through two consecutive points in 

the vector, named Pi =(xi,yi) and Pi+2=(xj,yj), for i=0,…,m-2. 

2. For the corresponding segment in the image we have to extract 3 points: the 

one at the middle and 2 more points close to Pi and Pi+1 respectively. These 

points are extracted depending on the positions in the initial complete set of 

points of object Pi and Pi+1. If the position (index of the point in the complete 

set of points of the boundary of the object) of Pi is t and the position of Pi+1 is 

g, then the positions of the points that we are looking for are calculated as: 

 
 
 
 
 
 
 

 

 

where Central_Pos means the position of the point in the middle of the real segment 

between Pi and Pi+1 of the image (for this reason it is divided by 2), Close_Pi_Pos 

4

s)Central_Po(g
g1_PosClosePi

t
4

t)os(Central_P
sClosePi_Po

t
2

t)(g
sCentral_Po

−
−=+

+
−

=

+
−

=

 

   



 184 

means the position of the point close (in order to be close we divide by 4) to Pi in the 

real segment between Pi and Pi+1 of the image and finally ClosePi+1_Pos means the 

position of the point close to Pi+1 in the real segment between Pi and Pi+1 of the image. 

Then, the points in the complete set of boundary points of the object obtained using 

Canny Algorithm at the positions calculated are extracted, named as Pcen, Pclosei, Pclosei+1 . 

3. With these three points we calculate 3 distances, the first one is the distance 

between Pcen and the calculated straight line through Pi and Pi+1 calculated in 

the step 1 (dc), the second one the distance between Pclosei and the same 

straight line (d1), and finally the third distance is the distance between 

Pclosei+1  and the same straight line (figure 6.34). These distances are 

calculated with the formulas bellow, where for instance iip 1+
r  is the vector 

between Pi+1 and Pi, the symbol x means the vectorial product and the 

symbols | | indicates the absolute value of the result of the operation between 

them: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.34. Example of the three distances calculated.  

4. Then we compare the three distances calculated, if d1 or d2 are bigger than dc 

then we are in a straight segment, otherwise, as we can find straight 

segments with steps, this means that the straight segment has not been 

perfectly obtained, so, we study the differences dif1=|d1-dc| and dif2=|d2-dc|. If 
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dif1 or dif2 are less than a threshold (which in our application is set to 0,5), 

then we have a straight segment with steps, this means that we find aliasing 

effects. In all the other cases we have a curve segment. 

If some type of segment changes then it is updated in the vector of relevant points and 

we obtain the final correct vector of relevant points together with the type of segment 

that follows each relevant point.  

Finally, the colour of each object found in the image is stored as RGB coordinated. As 

the tessereas are coloured with one colour only it is calculated by getting the centroid of 

each object and storing the RGB colour.  

Being an image of a number of pixels high * width, k the number of points (pixels) 

forming the boundaries of the figures in the image, and d the number of relevant points 

in the image, the computational cost of the hybrid method developed is of the order 

O(high * width +k +d). Since, obviously k and d will be much smaller than high * 

width, the maximum cost is generated by this product which is the computational cost of 

the Canny Algorithm itself. Therefore we have not added a relevant computational cost 

to the most used quantitative method (Canny method), and at the end of the process we 

only have the relevant points of the figures in the image, together with information of 

the type of segments of each figure. This information will be the one needed to 

construct the qualitative string describing each object in the image as the qualitative 

shape matching theory describes, in the same way as described in section 6.2.1. 

Moreover, the boundaries obtained are more exact than the one obtained using only the 

Canny Algorithm, removing noise from the image. Figure 6.35a) shows in graphic form 

the boundaries obtained for the image in figure 6.28 using only the Canny method, and 

figure 6.35b) shows the result using the hybrid method here described for the same 

image.  

The resulting vectors for each object in figure 6.35 are: 

• For the figure at the north of the image, Figure1_v= [(164,87), curve, (249,113), 

curve, (317,81), curve, (351,167), curve, (322,229), curve, (241,200), curve, 

(167,233), curve, (131,152), curve]; 

• For the rectangle the east of the image, Figure2_v=[(487,94), straight- line, 

(497,315), straight-line, (418,315), straight- line, (410,94), straight- line]; 
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• For the octagon of the image, Figure3_v=[(210,297), straight- line, (327,291), 

straight- line, (384,351), straight- line, (389,457), straight- line, (342, 510), straight-

line, (220, 513), straight-line, (170,467), straight- line, (164,347), straight- line]; 

• For the rectangle at the south-west of the image, Figure4_v=[(95,457), straight- line, 

(235,632), straight-line, (172, 683), straight- line, (32,506), straight- line]; 

• And finally for the figure at the south-east of the image, like a leaf, 

Figure5_v=[(360,573), straight- line, (388,600), straight- line, (435,560), straight-

line, (438,619), straight- line, (480,622), straight- line, (467,658), straight- line, 

(388,674), straight-line, (342,608), straight- line,]. 

               

a) b) c) 

Figure 6.35. Graphical representation of the boundaries obtained using only Canny Algorithm (a) and 

the hybrid method we have developed (b) for figure 6.30. 

Figure 6.36 shows an example when two pieces are so close, that they nearly share 

boundaries and we can see that the algorithm works correctly too. Figure 6.36 a) is the 

picture and figure 6.36b) shows the graphical result.  

 

 
 
 
 
 
 
 

Figure 6.36. Example of relevant points extraction with 2 close objects. 

We have to notice that the images are captured without any control of light conditions, 

distance between the camera and the objects captured and resolution. With these 

conditions we have captured up to 100 images and we have tested the extracting feature 

    
a)            b) 
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algorithm with them. The images can contain only one or several tessereas. The tests 

have been successful with 90 of the 100 images. Of the 10 images not successfully 

processed, from 8 of them a correct boundary was obtained but some relevant points are 

not well calculated, due to aliasing results, and then we obtain that the segment is a 

curve whilst it is a straight segment or vice versa. From the other 2 we cannot obtain the 

points of the boundary of part of the object or of one of the objects in the image, due to 

errors in the Canny method itself.  

6.2.3 The matching process. 

The matching process defined in section 5.5 is implemented in order to know if a 

tesserea belongs to a mosaic design.  

The only relevant points for this implementation are described below.  

In the case of objects with holes, section 5.5 establishes that the description of the object 

to match has to be made taking as first vertex the one which corresponds with the vertex 

taken as the first one when describing the reference object. Moreover, the description of 

the boundaries of the holes is also made in function of this vertex, because the first 

vertex considered for describing the boundary of the holes is the one closer to the first 

vertex of the description of the boundary of the container. The process to calculate the 

first vertex in the object to be matched with respect to the first vertex of the reference 

object (the one in the design) depends on the type of tesseraes that we are considering. 

If the tesserae is symmetric the process is more complex. Then we can differentiate 

between the following cases: 

1. No symmetric figures with holes. As the figure is not symmetric, it is simple 

to find which vertex of the figure to be matched corresponds with the first 

vertex in the description of the reference figure. This vertex is calculated 

during the cyclic comparison of the boundaries of the figures.  

2. Symmetric figures with holes. In this case, as there are several vertices that 

can be the first vertex of the figure to be matched that corresponds with the 

considered first vertex of the reference figure, the process is more complex. 

For instance, in a figure as a square the four vertices are equal; therefore we 

cannot determine a priori which vertex is the one taken as the first one in the 

reference figure. What we know is that in the case of the figures being equal 
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the orientation of their holes should be the same. Therefore, we choose two 

holes with cyclical identical boundary, one from the reference figure and the 

other from the figure to be matched. Then we calculate the orientation of the 

chosen hole in the object to match taking as first vertex all the candidate 

vertices to be the one considered the first one in the reference figure, this 

means that the NW of Frank’s cardinal direction reference system will be 

oriented to each candidate vertex. Then we compare each obtained set of 

orientations with the set of orientation of the hole in the reference object. 

The one that is equal determines which vertex is the one that has to be 

considered as first vertex in the figure to be matched to carry on with the 

matching process. In the case that there is no set of orientations equal to the 

one in the reference figure, we look for another hole with the same cyclical 

boundary description as the one in the reference object, and we repeat the 

process with this new hole. If finally we do not find a cyclically identical 

hole to the one in the reference figure with a set of orientations equal, then 

we determine that the figures are not equal. Figure 6.37 shows in graphic 

form the calculus of the set of orientations for each candidate vertex (in the 

case of a rectangle there are two candidates): 

 

 

 

 

    

 

 a) b) c) 

Figure 6.37. Example of finding the initial vertex of the object to be matched in symmetric figures; a) 

Reference figure b) Figure to match, orienting Frank Reference System to the first candidate vertex, and 

c) to the second candidate vertex. The correct one is the case b) in which the obtained set of orientations 

for the hole is the same as the set of figure a). 
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Next we present the algorithm implemented for the matching process. 

Function VerticesCyclicalComparison (SetVertices1, 
SetVertices2){ 
     N=Calculus length SetVertices1 
     M= Calculus length SetVertices2 
     If N == M then { 
 //Both sets have the same number of vertices 
 For (i=0;i<N-1;i++) { 
     For (j=0;j<N-1;j++){ //cyclic comparison of the 
//containers 

   //Compare Vertex1(0) from SetVertices1 with Vertex2(j) 
//from setVertices2 

       If Vertice1(0) == Vertice2(j) 
      { 

  Num=0 //Init a counter 
  For (k=1;k<N-1;k++) 
                           { 

  If (Vertice1(k)==Vertice2(j+i%N)) then  
 { 

        Num++; 
                            } 

 If (Num==N) 
{ 

     Return true 
     Return j 
     Break 
                          } 
          } //For K 
       } // Si Vertice1(0) ==Vertice2(j) 
    } //For j. 
 } //For i 
If (Num<>N)  
{ 
    Return false  
              } 
      } //Si N==M 
   Else 
    { 
       Return false; 
    }  
} //End function 
 
 

Algorithm 6.3. Part I. Description of the algorithm for the matching process. 
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Function OrientationComparison(OrientS1, OrientS2) 
{ 
 If (length.OrientS1 <> length.OrientS2) 
 { 
  Return false 
 } 
 Else 
 { 
  For(i=0; i++; i<lenght.OrientS1) 
  { 
   If (OrientS1[I] NO in OrientS2) then 
   { 
    Return false 
    Break 
   } 
  } 
  Return true 
 } 
}//End function 
 
Function NonCyclicalComparison(holeS1, holeS2) 
{ 
 If (length.holeS1<> length.holeS2) then 
 { 
  Return false 
 } 
 Else 
 { 
  equal = true 
  i=0 
  while (equal && i<length.holeS1) 
  { 
   If (holeS1[i]<>holeS2[i] 
   { 
    equal = false 
   } 
   i++ 
  } 
  Return equal 
 } 
}//End function 
 

Algorithm 6.3. Part II. Description of the algorithm for the matching process. 
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Function  Symmetry (Vector iv) 
  { //This function determines if the vector iv describes a 
//symmetric figure 
     length_iv = Calculus length iv; 
     symmetry=false; 
    If ((length_iv % 2) == 0) then 
    { 
      length_ss = length_iv / 2; 
      a=0; 
     while ((a< length_ss) && ! symmetry) 
      { 
         Vector  iv1, iv2; 
          for( k=a; k<length_ss+a; k++) 
          { 
              iv1.add(iv[k]); 
          } 
          for ( h=long_ss+a; h<long_iv+a;h++) 
          { 
            If (h<length_iv) then 
            { 
              iv2.add(iv[h]); 
            } 
            Else 
            { 
              iv2.add(iv[h%long_iv]); 
            } 
          } 
          If  (iv1 ==  iv2) then 
            symmetry =true; 
        a++; 
      } 
    } 
   Else 
    { //Number odd of vertices// odd vector length  
      length_ss = length_iv / 2; 
       a=0; 
      while ((a<length_ss+1) && ! symmetry) 
      { 
         for(int k=a; k<length_ss+a; k++) 
        { 
            iv1.add(iv[k]); 
        } 
        for (int h=length_ss+a; h<length_iv+a-1;h++) 
       { 
            If(h<length_iv) then 
            { 
              iv2.add(iv[h]); 
            } 
            Else 
            { 
              iv2.add(iv[h%long_iv]); 
            } 
         } 

Algorithm 6.3. Part III. Description of the algorithm for the matching process.  
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        If (iv1 ==iv2) then 
            symmetry =true; 
       If (!symmetry) then 
       { 
           for (int h=length_ss+a+1; h<length_iv+a;h++) 
          { 
              If (h<length_iv) then 
              { 
                iv2.add(iv[h]); 
              } 
              Else 
              { 
                iv2.add(iv[h%length_iv]); 
              } 
          } 
          If  (iv1 ==iv2) then 
              symmetry =true; 
      } 
      a++; 
     } 
   } 
   Return symmetry; 
  }//End function 
Algorithm FigureComparison (figure(S1), figure(S2)) 
If (Type_holes.S1 <> Type_holes.S2)  then  
 { 
      Return false  
 } 
Else { //Both same type_holes (or without-holes or with holes) 
    If (Type_curve.S1 <> Type_curve.S2)  then 
  { 
      Return false 
  }  
  Else { //both same type_curve (or only_curves, with_curves or 
without_curveS) 
      Calculus Delta_E(C1,C2) //C1 and C2 colours of the figures 
      If (Delta_E => 0,2) then 
     { 
 Return false 
     } 
   Else //Same colour  
   { 
        Extract containers characteristics (up to CIi). 
        Value1=VerticesCyclicalComparison 
(ContainerS1,ContainerS2) 
        If (Value1==false) then 
      { 
 Return false;  
      } 
     Else {//Equal containers, if there are holes, compare them. 

If (Type_holes.S1==without-holes ) then 
{ 
 Return true 

} 

Algorithm 6.3. Part IV. Description of the algorithm for the matching process.  
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Else  
{//they have holes 
    Calculus num_holes.S1 and num_holes.S2 
    If num_holes.S1 <> num_holes.S2 then 
 Return false 
    Else 
   {  
    If (( num_holes.S1 == 1) && (!Symmetry (S1))) then 
   { 
     Value2= OrientationComparison (Orient_hole_S1[i], 
Orient_hole_ S2[j]) 
     If (Value2==false) then 
    { 
 Return false 
    } 
    Else 
   { 

Extract qualitative characteristics hole_S1[i] & 
hole_S2[j] 

Valor2= NonCyclicalComparison (hole_S1[i], 
hole_S2[j]) 

If (Value==true) then 
{ 
    Return true 
} 
Else 
{ 
   Return false 
} 

   }//Value1 = true 
}//num_hole1 and not symmetry 
Else 
{ //One hole and symmetric figure 
  If(( num_holes.S1 == 1) && (Symmetry(S1))) 
  { 
    boolean find_vertex =false; 
    int i=0; 
    while( i< Length_ContainerS1-1 && ! find_vertex) 
   { 
      vector_dir =ContainerS1[i]; 
      Value3= OrientationComparison(Orient_hole_S1[i], 
Orient_hole_ S2[j], vector_dir) 
     If (Value3==false) then 
     { 
 i++; 
     } 
    Else 
    { 

  find_vertex = true; 
    } 
   }//while !find_vertex 

} 
Algorithm 6.3. Part V. Description of the algorithm for the matching process. 
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If (Value3== false) then 
    Return false 
Else 
{//found the vertex which returns the same orientation 
 Corresponding_vertex = i; 

Extract qualitative characteristics hole_S1[i] & 
hole_S2[j] 

Value4= NonCyclicalComparison (hole_S1[i], 
hole_S2[j]) 

If (Value4==true) then 
{ 
    Return true 
} 
Else 
{ 
   Return false 

}//equal orientation 
       }//num_holes=1 and symmetry 
    Else  
    { //More than 1 hole and NOT symmetry. 
 If ( (num_hole.S1 >1) && (!Symmetry(S1)) then 
 { 

  For (i=0; i++; i<num_holes) 
   { 
 counter = 0 
 j = 0 
 find = false 
 while (!find &&  j<num_holes) 
 { 
     Value5= OrientationComparison(Orient_hole_S1[i], 

Orient_hole_ S2[j]) 
     If (Value5==true) then  

   { 
Extract qualitative description hole _S1[i] & 

hole_S2[j] 
Value6= NonCyclicalComparison (agujero_S1[i], 

agujero_S2[j]) 
If (Value6==true) then 
{ 
     find=true 
    counter++ 
} 

} 
     j++ 

}  
 } 
If (counter != num_holes) then 
 { 
 Return false 
 } 
Else 
{ 
 Return true 
 } 

Algorithm 6.3. Part VI. Description of the algorithm for the matching process. 
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}//num_holes >1 and not symmetry 
Else  
{ //num_holes >1 and Symmetry 
    If ((num_holes.S1>1) && Symmetry(S1)) then 
    { 
 For (i=0; i++; i<num_holes) 
    { 
      counter = 0 
      j = 0 
     find = false 
     while (!find &&  j<num_holes) 
     { 

         boolean find_vertex =false; 
         int i=0; 
        while( i< Length_ContainerS1-1 && 

!find_vertex) 
       { 

vector_dir =ContainerS1[i]; 
Value7=OrientationComparison(Orient_hole_S1[i], 

Orient_hole_ S2[j], vector_dir) 
If (Value7==false) then 
{ 
      i++; 
} 
Else  
{ 

      find_vertex = true; 
   } 
       }//while !find_vertex 

     If (Value7==false) then 
    { 
 Return false 
    } 
   Else 
  { // Found the corresponding vertex 
         Corresponding_vertex = i; 
         Extract qualitative description hole_S1[i] & 
hole_S2[j] 
         Value8= NonCyclicalComparison (hole_S1[i], 

hole_S2[j]) 
         If (Value8==true) then 
         { 

 find=true 
 counter++ 

          } 
      } 

           j++ 
     } 

 }//end while  
        }//end for 

}//end while  
        }//end for 

Algorithm 6.3. Part VII. Description of the most important function for the matching process.  
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       If (counter != num_holes) then 
      { 
 Return false 
      } 
      Else 
     { 
 Return true 
     } 

   }//num_holes >1 and  symmetry 
           } 
      } 
}End Algorithm 

Algorithm 6.3. Part VIII. Description of the most important function for the matching process.  

6.2.4 Calculus of the rotation angle. 

The application not only returns which tesserae from an image belongs to which 

tesserae in a mosaic design but it also calculates the rotation angle that a robot arm has 

to make when picking up the tesserae by its centroid in order to place it in the correct 

orientation given by the design. 

This rotation angle is calculated as follows (figure 6.38): 

1. First we calculate the straight- line, called A, between the centroid and the first 

vertex of the reference figure (vertex number 1 in figure 6.38a)).  

2. Secondly we calculate the straight- line, called B, between the centroid and the 

corresponding vertex (the one which is the first vertex in the reference figure) of 

the figure to match (vertex number 2 in figure 6.38b)).  

The centroids of both figures in figure 6.38 are depicted with a black dot.  

 
 
 
 
 
 

 a) Reference Figure b) Figure to match 

Figure 6.38. Straight-lines calculated for the calculus of the rotation angle. 
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3. Then we calculate the director vector in the X axis direction (taking as centre of 

coordinates the centroids of the figures) in both figures (figure 6.38, depicted in 

green). 

4. Then we calculate two angles: α, which is the angle between straight- line A and 

the director vector in the reference figure, and angle β , which is the angle 

between the straight-line B and the director vector in the figure to match. Both 

angles are calculated using the following formulae: 

 

( ) ( )
vu

vu
vu,cosßcos

∗

×
==  , where u and v are director vectors 

and × means the scalar product.  

This formulae returns the smaller angle between the 4 angles that appear when 

two straight- lines cross (figure 6.39). As one of the straight- lines is determined 

always by the director vector (1,0), to select the angle which we are looking for, 

we have to consider the position of the other straight- line crossing the director 

vector. If this straight- line is in the third or fourth quadrant of a coordinate 

system centred in the centroid of the figure, then the angle that we are looking 

for is not the angle that the above formula returns but it is its supplementary 

angle, that is 360º - angle returned by the formula.  

 

 

 

 

Figure 6.39. The 4 angles between 2 crossing straight-lines.  

5. Finally, we calculate the difference between both angles, and this (as a positive 

value) is the rotation angle to give to the figure to match in order to get the same 

orientation as the reference figure. 

In the case that the figure contains holes, we do the same calculus described above but 

we do it not only with the container of the figure but also with the boundary of one of 

the holes of the figure. We select only one of the holes, because we calculate the angle 
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α2 

β1 
β2 
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when we already know that the figures are equal, then it is enough to consider only one 

hole which should be the same one in both figures. This is made in this way because 

rotating the figure with respect to one hole is sufficient since the other holes will rotate 

equally. Then we have two angles for each figure, one referent to the container and the 

other referent to the selected hole (figure 6.40), named α1 and α2 respectively. Then we 

compare the 4 angles as follows: 

1. The angles calculated (α1 and β1) from the containers of both figures are 

compared between them. The comparison consists of the difference between the 

angles as before. 

2. The angles calculated (α2 and β2) from the selected hole of both figures are also 

compared (calculus of the difference).  

3. Therefore we have two possible angles of rotation, the one determined by the 

holes and the other determined by the containers. If the angle determined by the 

holes is bigger than the angle determined by the containers, the first one is the 

final angle of rotation. Otherwise, the angle will be the one determined by the 

containers.  

 

Figure 6.40. Angles calculated in figure with holes. 

6.2.5 Tests 

In this section we present the results of the application with mosaics design defined first 

with polygonal figures, secondly with holes and finally with curvilinear figures and 

holes. 

First of all, when executing the application we should select the mosaic design (.AI file) 

that we want, clicking over the “Open Design” button (figure 6.41). When clicking the 

button a pop-up menu appears in which we look for the desired design. The user can 

only open files with Adobe Illustrator format.    

α2 

α1 
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Figure 6.41. Picture of the application when selecting the mosaic design. 

Once the design is selected, the application asks the joint size (figure 6.42), because this 

data is used for comparing the size of the tesseraes in a qualitative way. This means that 

if two tesseraes differ more than the joint size they are not equal. The joint is the space 

left when placing the tesseraes side by side. There is default value which is established 

at 10 mm.  

 

Figure 6.42. Pop-up menu asking for the joint size. 
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The next section shows the results with different mosaic designs.  

6.2.5.1 Tests with Polygonal Tesseraes without Holes. 

The individual tesseraes coming from the vision system are showed in the 8 small 

squares in the superior part of the application. As we can see in figure 6.43, all these 

tesseraes are depicted initially with its real colour but the tesseraes of the mosaic design 

are depicted using a lower intensity in order to indicate visually tha t the tesseraes in the 

mosaic are not yet placed. When one of the tesseraes coming from the vision system is 

matched against a tesserae of the mosaic design, the original image of the tesserae is 

depicted in a lower intensity and the corresponding one in the mosaic is depicted with 

its real colour. This shows visually that the tesserae in the mosaic has been matched 

against the one with lower intensity from the images (figure 6.44).  

The design opened in figure 6.43 is a big mosaic with more than 300 tesseraes and the 

matching process is made very quickly. Most time in the application is consumed when 

drawing the figures again. But this time is not important because the real goal of the 

application is to interact with the robot arm, therefore it will be not necessary to redraw 

the figures. Now it is done in order to see if the application works correctly.  

 

Figure 6.43. Mosaic with only polygons without holes. 
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The matching process is launched clicking the button Calculate. When the matching 

process finishes, at the right part of the interface of the application shows which 

tesseraes of the images corresponds to tesseraes of the mosaic. In this section each 

tesserae of an image is identified by the number of the upper image to which it belongs 

and the number of polygon inside this image, and each tesserae of the mosaic design is 

identified by its polygon number. The angle of rotation for the tesserae in the image in 

order to be in the same orientation as the one in the mosaic is shown below the 

matching information of each pair of tesseraes. 

 

Figure 6.44. Result of the matching process.  

As we can see in figure 6.44, the Image 7, polygon 0 does not belong to the mosaic due 

to its colour.  

6.2.5.2 Tests with Polygonal Tesseraes with Holes. 

Figure 6.45 shows an example of a mosaic design which contains two pieces with holes, 

one of them contains only one hole but the other one contains two holes.  



 202 

 

Figure 6.45. Example of a mosaic design with pieces containing holes.  

Figure 6.46 shows the result of the matching process for this example. The result 

indicates that the piece in the image 5 does not belong to the mosaic design because it 

has three holes. And the piece in the image 4 does not belong to the mosaic because 

there is no designed piece like the one in this image.  
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Figure 6.46. Result of the matching process in the case of pieces with holes. 

6.2.5.3 Tests with Curvilinear Tessereas with Holes. 

In order to see if the theory has been completely and correctly implemented we have 

still to check if it works in the case of figures with curves or completely curved. Figure 

6.47 is an example of this case, which shows also the result. The result indicates that the 

Image2, polygon 0 does not belong to the design due to its colour, and that the polygon 

in Image 4 does not belong to the design due to its shape. With this example we also 

show that the curvilinear figures with holes are also correctly matched.  
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Figure 6.47. Example of a design mosaic with curvilinear pieces with holes, some of them are symmetric 

too.  

This example shows how the theory is precise enough to distinguish between quite 

similar curved figures such as a circle and an ellipse.  

Finally, it should be pointed out that the time for the matching process is negligible with 

respect to the time of drawing the design or the images in the application.  
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CHAPTER 7 
CONCLUSIONS AND FUTURE WORK  

7.1. CONCLUSIONS 

To reason about space in a human-like way is he most important aim of QSR. In fact, 

from the end of 80’s there has been a great interest in the study of qualitative models to 

represent and reason about features of space due to the fact that qualitative models are 

suitable to model the imprecision provided by human perception in the reasoning 

process. But, although different qualitative models have been developed for different 

aspects of space in recent years, there is still the need for having solutions for 

recognising objects and for describing and reasoning about the movement in situations 

with high imprecision and uncertainty. An example of these situations is the case of 

robotic applications where the robots have only sensorial information which is limited 

and imprecise. However, there are other applications where uncertainty is also present, 

for instance in order to know if two objects are equal or of the same quality within an 

industrial application.  

Taking into account these open problems in QSR, the main contribution of this 

dissertation is that it develops and applies a model to reason about shape and about 

movement in a qualitative way. In depth, the contributions of this dissertation are the 

following: 

• We have defined an approach for integrating topological aspects with other 

spatial aspects (orientation, cardinal directions and named distance) in the same 

model. To make the integration possible it is necessary to define: 

1. Its representation; 

2. The basic step of the inference process;  

3. The full inference process.  
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A uniformity of implementation of these three parts for each spatial aspect 

allows the integration. As shown in [Escrig and Toledo 98] this uniformity is 

achieved by using constraint logic programming extended with constraint 

handling rules (CLP + CHR) as a tool. The paradigm CLP+CHR is used to 

implement a constraint solver which solves in a straightforward way the 

complete inference process for each aspect of space to be integrated. Therefore 

CLP+CHR provide a suitable tool for the integration. 

For the representation of topology, we have defined a constraint-based approach 

to the CBM calculus by [Clementini et al. 93]. What we have obtained is a 

calculus consisting of atomic relations and of the algebraic operations of 

converse and composition. As such, the calculus is an algebra in the same style 

as the one provided by Allen (1983) for temporal intervals. The objects 

manipulated by the calculus are point- like, linear and area features, contrary to 

most constraint-based frameworks in the qualitative spatial and temporal 

reasoning literature, which deal with only one type of feature (for instance, 

intervals in [Allen 83]). One problem raised by this was that the calculus had 27 

composition tables, fortunately of moderate sizes. We have shown in this work 

that the use of 18 of these tables is sufficient, as from these 18 we can derive the 

other nine. Therefore, reasoning about knowledge expressed in this topological 

calculus can be done using a cons traint propagation algorithm alike to the one in 

[Allen 83], guided by the 18 composition tables and the converse table. Such an 

algorithm has the advantage of being incremental: knowledge may be added 

without having to revise the processing steps achieved so far. 

• The second main contribution of this dissertation is the definition of a new 

approach to reasoning about movement. In this PhD thesis, the movement of an 

object is seen as a shape whose topological relation with its environment 

(considered as other shape) changes through time.  

We have proposed an approach for movement as the integration of topological 

aspects together with time. The approach allows the integration of movement 

with other spatial aspects too (as orientation, distances, cardinal directions, 

topology, and so on) by following the three steps defined in [Escrig and Toledo 

98], as we have done with the topological approach.  
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The movement theory, seen as a spatio-temporal representation model, has been 

implemented in a way that helps to reason about the sequence of topological 

situations that an autonomous robot should find during its way from a starting 

region to a target objective. It also helps to detect situations in which the robot is 

loosing its way. Then the robot could rectify its direction of movement to avoid 

getting lost.  

On the other hand, the movement theory is also a constraint-based approach for 

modelling motion. What we have obtained is a calculus consisting of atomic 

topological relations changing with time and the algebraic operations of 

converse and composition. As such, the calculus is an algebra in the same style 

as the one provided by Allen [Allen 83] for temporal intervals. The objects 

manipulated by the calculus are point- like, linear and area entities, contrary to 

most of the constraint-based frameworks in the qualitative spatial and temporal 

reasoning literature, which deal only with one type of entities. Reasoning about 

knowledge expressed in the presented calculus can be achieved by using a 

constraint propagation algorithm like the one in [Allen 83], guided by the 

composition and converse tables presented in this dissertation. As before with 

topological information, such an algorithm has the advantage of being 

incremental: knowledge may be added without having to revise the processing 

step achieved so far. 

• A third main contribution of this dissertation is the definition of a 

straightforward Qualitative Theory of Shape description. It will allow us to 

reason about shape in a qualitative way as human beings do. Moreover, most of 

the qualitative approaches developed nowadays are used for reasoning about 

object position, and the theory presented here allows us to use the same method 

to reason about position and shape. The theory proposed here is similar to the 

ordering information approaches but it is more cognitive in the sense that it does 

not need an external reference system to describe shapes, so it  would not be 

suitable to apply it to the reasoning process of a robot. Nevertheless, the interest 

of ordering information for shape description relies in the fact that it is less 

constrained than metrical information but more constrained than topological 

information, which will not allow us to determine the convexity or concavity of 

the shape, or the length of edges, or the angle types. 
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The shape theory developed is a powerful theory which is able to recognise 

regular o non-regular polygons, shapes including curvilinear segments or being 

completely curvilinear, and all the types of shapes can contain one or more 

holes.  

Moreover, the shape of an object, which is a spatial feature, has been also 

studied using topological concepts. The task of recognising objects during the 

movement of the robot is a very important task because for the development of 

very different tasks, the robot has to be able to recognise the objects that it finds 

during its movement. This is due to the fact that the objects can be landmarks 

which give spatial information to the robot about its environment.  

• From the study of the next three spatial aspects: shape of the objects, topology 

and movement, we have shown that there are several works about these aspects, 

but most of them are theorical works and they have not been applied to robotics. 

Therefore, another main contribution of this dissertation is the development of 

theories for qualitative shape and movement descriptions applied to robotics in 

two ways: 

1. The qualitative movement and shape theories have been applied to a 

simulated robot navigation of a real robot, the Khepera2 robot. In this 

application the robot has to distinguish if two objects that it finds during 

its navigation are equal or not. 

2. The qualitative shape description and matching theory has been applied 

to an industrial application which is the automatic and intelligent 

recognition of tesseraes (tiles) against a mosaic design. This application 

is developed in order to allow the automatic and intelligent assembly of 

mosaics in the ceramic industry. A qualitative theory for this application 

presents several advantages against the use of a quantitative theory, such 

as the managing of uncertainty associated with the fact that no two tiles 

or tesseraes manufactured are identical.  

• Finally, we have also developed a solution to extract from an image the relevant 

points of shapes needed for creating the qualitative description of shapes. This 

solution is called hybrid because, first we manage the data quantitatively and 

finally in a qualitative way by comparing the changes of slopes. This hybrid 

method has also been applied to the recognition of tiles creating a mosaic design 
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in order to allow us an automatic and intelligent assembly of mosaic borders in 

the ceramic industry. We have also shown that this method works better than 

using only the Canny algorithm and it does not add any relevant computational 

cost.  

7.2. FUTURE WORK 

For future work we can identify several tasks that we summarize in this section.  

• To develop a hierarchical study of different levels of granularity and integrate this 

treatment to the topological and movement concepts into our approach. The bigger 

the real physical space considered in the reasoning process is, the fewer details 

humans use to manage with it. For instance is we want to travel from Castellón to 

Paris by car, first of all we will look for the most important cities which will be 

close to the shortest path from the start to the goal city. Then we start to look for the 

best main roads which go from one place to another. Then, if we are already in Paris 

and we want to visit its interesting places nearby we will be interested in the city 

map of Paris, and so on. In the same way if we want to recognise landmarks during 

our visit to Paris in order to go to a specific place probably we will need to 

recognise buildings, but if we visit a museum the landmarks to be recognised will be 

probably rooms, columns or other architectural elements. Therefore, it is possible to 

distinguish between different levels of knowledge. The top level contains less 

information. It is an abstraction of the knowledge which appears in the lower levels. 

The lower levels will contain more details of a given part of the working space. 

Furthermore, no lower level can contain contradictory information with respect to 

the upper levels.  

• The integration of the reasoning process with a learning process, more closely 

simulating human behaviour. The applications shown in this dissertation do not 

include any learning process. However, the use of learning techniques in both 

applications can improve the results.  

• The extension of the autonomous robot navigation application to more complex 

environments and tasks and its transference to real robots and real environments and 

tasks. 
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• The application of multiagent technology in order to create a multiagent system to 

learn the structure of any structured environment which will accelerate the task of 

learning an environment. 

• Extension of the Qualitative Shape Representation Theory by defining the 

operations needed to construct new shapes from a set of given shapes, that is, we 

should define operations such as union, intersection and difference of shapes. The 

idea is to define these operations in a topological way using the concepts of 

boundary, interior, exterior and dimension of the shapes. We can also develop a way 

to describe some relevant properties of the shapes which could help us during the 

matching task. These properties could be properties such as symmetry, alternation or 

iteration of some parts of the shape inside the shape itself.  

• The software for the recognition of tiles against a mosaic design will be applied in 

the future to a robot arm which physically places the tiles in the correct position to 

create the final ceramic mosaic strip designed. Moreover, this application could be 

extended to the recognition and matching of objects of any other vectorial design, 

such as architectural sketches. This application has a high added industrial value, 

because its strategic goal is to reduce the costs associated with mosaics, which are 

products of high added value, that actually have associated high manufacturing costs 

because they are hand manufactured. Therefore, the application is a first step to 

getting a fully automatic and intelligent assembling process of a mosaic made of 

different tesseraes of different shapes and colours, a process which up to now is a 

quite slow and laborious. Thus, the application will reduce manufacturing costs and 

delivery time of the mosaics by using qualitative reasoning techniques. 

• The application of the qualitative recognition theory to solve the problem of 

classification of objects, and then it could be used for the recognition and matching 

of objects partially occluded in the scene using the matching process for the visible 

part and the colour and texture of the objects. 

• Improvement of the hybrid method to extract the relevant points from an image. It 

can be improved by: 

1.  Establishing the best physical conditions (light, resolution, position of the 

camera, and so on) to capture the images which will improve the quality of the 

images captured.  
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2. As some problems in the image processing come because we find aliasing in 

the boundaries describing the shapes, and then we classify erroneously the 

type of edges, we can apply several techniques, as anti-aliasing techniques or 

filter techniques in order to solve this type of problem.  

3. The thresholds used in the method have been established by testing several 

and fixing the one which obtains the best results. But as future work we could 

study the use of several methods, such as learning methods in order to adjust 

the thresholds better. 

• Development of a more cognitive segmentation process for images, which would be 

more qualitative from its initial steps. 
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ARTICLES DERIVED FROM THIS PHD DISSERTATION 

From 1998 to 2001 

During this period of time, we have done the following tasks of this PhD thesis: 

1. Development of the State of the Art on Topological Models. 

2. Development of the Topological Algebra, suitable for the integration with other 

features of space thanks to follow the three steps defined in the thesis: 

a. The representation of topology; 

b. The definition of the BSIP; 

c. The definition of the FIP. 

From this work 5 articles have appeared: 

[Museros 98]  Museros, L. “Conceptualizing Regions on the basis of Cartographic Entities”, 
Wotkshop Working Notes of the WokShop on Spatial Inference. Designing the 
interface between mental and computational approaches to spatial problem solving , 
1998 

This work presents a preliminary state of the art on topological models.  

[Isli, Museros et al. 00]  Isli A., Museros L., Barkosky T., Reinhard M., “A Topological Calculus for 
Cartographic Entities. Conceptualizang New Regions“, Lecture Notes in Artificial 
Intelligence 1849. Spatial Cognition II. Integrating Abstract Theories, Empirical 
Studies, Formal Methods and Practical Applications. Springer-Verlag , ISBN : 3-540-
67584-1, pgs. 225-238, 2000 

This paper presents the topological algebra developed to accomplish the first step of 

the integration with other spatial aspect, which is the representation of the spatial 

aspect to be integrated.  

[Museros and Escrig 01a] Museros L., Escrig M.T., “Enhancing Topological Information with other 
Qualitative Spatial Aspects “, Diagnosis, Razonamiento Cualitativo y Sistemas 
Socioeconómicos. Carlos Alonso y Juan Antonio Ortega Eds. ISBN : 84- 95499- 35- 5, 
pgs. 113-123, Julio 2001. 

This paper presents the first steps towards the implementation of the BSIP and the 

FIP for the topological algebra we have developed.  

[Museros and Escrig 01b] Museros L., Escrig M.T. “The integration of topological information, qualitative 
orientation and positional information using constraint logic programming for robot 
navigation”, Proccedings of the IJCAI -2001 Workshop on Spatial and Temporal 
Reasoning with « Agents » Focus . Rita Rodriguez (Eds.), pgs. 21-27, Agosto 2001. 

Taking into account the comments received from the presentation of the article 

[Museros and Escrig 01a] from the ARCA collective, this paper presents the final 
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solution of the implementation of the BSIP and the FIP for the topological algebra 

we have developed.  

[Museros and Escrig 01c] Museros L., Escrig M.T., “ Qualitative Spatial Reasoning using orientation, 
distances and topology applied to mobile robot navigation”,  Boletín del ACIA núm. 25, 
pgs. 24-32, Octuber 2001.  

Finally, this paper presents an application of the topological algebra developed and 

integrated with orientation and distances to mobile robot navigation.  

From 2002 to 2003 

During this period of time, we have done the following tasks of this PhD thesis: 

1. Development of the State of the Art on Qualitative Movement Models.  

2. Development of the Qualitative Movement Theory as the Integration of 

Topology and Time.  

From these tasks the following papers have appeared: 

[Museros and Escrig 02a] Museros L., Escrig M.T., “Modeling Motion Qualitatively: The Integration of 
Topology and Time”, Technical Report ICC 2002-01-1, January 2002 

Technical Report which presents the preliminary work of the development of the 

qualitative theory of movement.  

[Museros and Escrig 02b] Museros L., Escrig M.T., “Integrating Qualitatively Time and Topology for 
Spatial Reasoning”, Proccedings of the QR2002. 16th International WorkShop on 
Qualitative Reasoning. Editors: Nuria Agell and Juan A. Ortega. ISBN: 84-95499-60-6, 
pgs. 105-112, Junio 2002 

This paper presents the final qualitative theory of movement integrating topology and 

time. Specifically, it represents the first steps towards integrating the movement theory 

with other spatial aspects, which is the representation of the feature of space, which in 

this case it is the representation of movement. 

[Museros and Escrig 02c] Museros L., Escrig M.T., “Applying qualitative spatial reasoning combining 
space and time to mobile robot navigation”, Sistemas Cualitativos y Diagnosis. 
Automatización del Razonamiento Cualitativo y Aplicaciones.  Eds. Juan Antonio 
Ortega, Xavier Parra y Belarmino Pulido. ISBN : 84-95499-62-2.,pgs. 63-72, Junio 
2002 

This paper explains the movement theory applied to a robotic problem. 

[Museros and Escrig 02d] Museros L., Escrig M.T. “Combining Qualitative Spatial Information : The 
Integration of Topology, Time, Orientation and Distances for Spatial Reasoning”, 
Proccedings of Spatial and Temporal Reasoning ECAI-2002 WorkShop. Editor: Rita 
V. Rodríguez., Julio 2002.  

This work presents the integration of the movement theory with other features of space 

such as orientation and distance by defining the BSIP and the FIP.  
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[Museros and Escrig 02e] Museros L., Escrig M.T., “Modeling Motion Qualitatively : Integrating Space and 
Time”, Lecture Notes in Artificial Intligence num. 2504 Topics in Artificial Intelligence. 
5th Catalonian Conference on AI, CCIA 2002. Eds. M. Teresa Escrig, Francisco 
Toledo and Elisabet Golobardes. Springer. ISBN: 3-540-00011-9, pgs. 64-74, Octubre 
2002 

This paper is a first step towards the development of the qualitative movement theory as 

a CSP model, and the refined and final version of this work is presented in: 

[Museros and Escrig 02f] Museros L., Escrig M.T., “Modeling Motion Qualitatively: Integrating Space and 
Time”, Boletín del ACIA núm.28. ISSN : 1577-1989, pgs. 115-120, Octubre 2002. 

The next paper presents in a journal, specifically the journal “Inteligencia Artificial. 

Revista IberoAmericana de Inteligencia Artificial”, the integration of several qualitative 

spatial models integrating space (2-D and 3-D) and time, including the qualitative 

movement model, developed by the research group C4R2 (Cognition for Robotics 

Researc) of the UJI, to whom we belong. 

[Escrig, Museros et al. 02g] M. Teresa Escrig, Lledó Museros, Julio Pacheco y Francisco Toledo, “Several 
Models on Qualitative Motion as instances of the CSP”, Inteligencia Artificial. Revista 
IberoAmericana de Inteligencia Artificial Número 17/Otoño 2002. ISSN: 1137-3601, 
pgs. 55 –71, Noviembre 2002 

Finally, given the quality of the article [Museros and Escrig 02d] we were invited to 

extend the paper and to publish it in a journal, specifically in the “Journal of Universal 

Computer Science”. The result of this extension is the next article: 

[Museros and Escrig 03] Museros L., Escrig M.T., ”Modeling Motion by the Integration of Topology and 
Time”, Journal of Universal Computer Science. September Issue . Vol. 9, No. 9, 
Volumen :9, pgs.1096-1122, 2003 

From 2004 to 2005 

During this period of time, we have corried out the following tasks of this PhD thesis: 

1. Development of the State of the Art on Qualitative Shape Representation 

Theories.  

2. Development of the Qualitative Shape Representation and Matching Theory.  

3. Development of the Applications presented in this thesis. 

From these tasks the following papers have appeared: 

[Museros and Escrig 04a] Museros L. , Escrig M.T., “A Qualitative Theory for Shape Description”, 
Inteligencia Artificial. Revista IberoAmericana de Inteligencia Artificial  num. 23, 
Volumen 8, 2004. ISSN: 1137-3601, 2004 

This paper describes the initial Qualitative Shape Representation and Matching Theory, 

which is only able to describe and match shapes of polygonal non-regular objects.  



 226 

[Museros and Escrig 04c] Museros L., Escrig M. T., “A Qualitative Theory for Shape Representation and 
Matching”, Proceedings QR 2004, Edited by Johan de Kleer and Keneth D. Forbus., 
pgs. 3-10, 2004. 

This paper describes the Qualitative Shape Representation and Matching Theory 

extended to be able to represent and match shapes of polygonal non-regular objects, and 

objects with curves or completely curvilinear objects.  

[Museros and Escrig 04d] Museros L., Escrig M. T., “Qualitative Recognition of objects without holes, with 
holes and curves”, WorkShop Notes del en Spatial and Temporal Reasoning 
WorkShop, en el ECAI 2004, 16th European Conference on Artificial Intelligence 
2004, 2004. 

This paper describes the Qualitative Shape Representation and Matching Theory 

extended to be able to represent and match shapes of polygonal non-regular objects, 

objects with curves or completely curvilinear objects, and with one or several holes. 

Finally there are several papers which describe the applications developed in this thesis: 
[Museros and Escrig 04b] Museros L., Escrig M. T., “A Qualitative Theory for Shape Representation and 

Matching for Design”, Proceedings ECAI 2004, IOS Press ISSN 0922-6389, pgs. 858-
862, 2004.  

This paper presents the application of the complete Qualitative Shape Representation 

and Matching Theory for an industrial application, which is to achieve the automatic 

and intelligent assembly of mural ceramic mosaics. 

[Museros and Escrig 04e] Museros L., Escrig M. T., “A Qualitative Theory for Shape Matching applied to 
Autonomous Robot Navigation.”, Frontiers in Artificial Intelligence and Applications. 
Recent Advances in Artificial Intelligence Research and Development. ISBN 1 58603 
466 9, 2004. 

This paper presents the application of the initial Qualitative Shape Representation and 

Matching Theory for polygonal non-regular objects together with the Movement Theory 

for the autonomous robot navigation of a Khepera2 robot.  

[Museros and Escrig 05] Museros L., Escrig M. T., “Extracting Relevant Features of an Image for 
Qualitative Shape Matching.”, Proceedings VII Jornadas de Trabajo ARCA, 
JARCA’05, 2005  

This paper presents how we process the images coming from a vision system in order to 

obtain the reference points to create the qualitative description of the objects in the 

image. This process has been applied to the management of pictures of tesseraes for the 

industrial application developed. 
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All this work can be represented in a graphic form by the following diagram: 
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