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Abstract  
 
Proteins are indispensable players in virtually all biological events. The functions of 

proteins are determined by their three dimensional (3D) structure and coordinated 

through intricate networks of protein-protein interactions (PPIs). Hence, a deep 

comprehension of such networks turns out to be crucial for understanding the cellular 

biology. Computational approaches have become critical tools for analysing PPI 

networks. In silico methods take advantage of the existing PPI knowledge to both 

predict new interactions and predict the function of proteins. Regarding the task of 

predicting PPIs, several methods have been already developed. However, recent 

findings demonstrate that such methods could take advantage of the knowledge on non-

interacting protein pairs (NIPs). On the task of predicting the function of proteins,the 

Guilt-by-Association (GBA) principle can be exploited to extend the functional 

annotation of proteins over PPI networks. In this thesis, a new algorithm for PPI 

prediction and a protocol to complete cell signalling networks are presented. iLoops is a 

method that uses NIP data and structural information of proteins to predict the binding 

fate of protein pairs. A novel protocol for completing signalling networks –a task 

related to predicting the function of a protein, has also been developed. The protocol is 

based on the application of GBA principle in PPI networks. 
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Resum 
 

Les proteïnes tenen un paper indispensable en virtualment qualsevol procés bioloògic. 

Les funcions de les proteïnes estan determinades per la seva estructura tridimensional 

(3D) i són coordinades per mitjà d’una complexa xarxa d’interaccions protiques (en 

anglès, protein-protein interactions, PPIs). Axí doncs, una comprensió en profunditat 

d’aquestes xarxes és fonamental per entendre la biologia cel·lular. Per a l’anàlisi de les 

xarxes d’interacció de proteïnes, l’ús de tècniques computacionals ha esdevingut 

fonamental als darrers temps. Els mètodes in silico aprofiten el coneixement actual 

sobre les interaccions proteiques per fer prediccions de noves interaccions o de les 

funcions de les proteïnes. Actualment existeixen diferents mètodes per a la predicció de 

noves interaccions de proteines. De tota manera, resultats recents demostren que aquests 

mètodes poden beneficiar-se del coneixement sobre parelles de proteïnes no 

interaccionants (en anglès, non-interacting pairs, NIPs). Per a la tasca de predir la 

funció de les proteïnes, el principi de “culpable per associació” (en anglès, guilt by 

association, GBA) és usat per extendre l’anotació de proteïnes de funció coneguda a 

través de xarxes d’interacció de proteïnes. En aquesta tesi es presenta un nou mètode 

pre a la predicció d’interaccions proteiques i un nou protocol basat per a completar 

xarxes de senyalització cel·lular. iLoops és un mètode que utilitza dades de parells no 

interaccionants i coneixement de l’estructura 3D de les proteïnes per a predir 

interaccions de proteïnes. També s’ha desenvolupat un nou protocol per a completar 

xarxes de senyalització cel·lular, una tasca relacionada amb la predicció de les funcions 

de les proteïnes. Aquest protocol es basa en aplicar el principi GBA a xarxes 

d’interaccions proteiques. 
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Preface  
 
In 2001 the first draft of the human genome was disclosed, making the “book of life” 

available to the whole scientific community. Since then, lots of efforts have been done 

to understand how this vast succession of nucleotides translated into observable 

phenomena in living beings. However, very little of that book is currently understood, 

because of the countless layers of regulation it has. And despite of this, all what is 

needed to understand the genome is enclosed in it… 

In this regard, the regulatory role of non-coding nucleic acids has recently been 

unravelled. However, proteins play a prominent role in regulating the expression from 

genes. For instance, the positioning of nucleosomes determines which genomic regions 

can be read. It has bee shown that particular combinations of proteins enhance and 

silence the transcription of certain gene exons. Uppermost, transcription factors are the 

proteins that regulate the activation of genes.  

To perform all these functions proteins need to interact with others, either to form 

complexes or to recognize precise targets of their action. For instance, a particular 

transcription factor may activate one gene or other depending on which protein 

interactions it performs. Other cellular processes strongly rely in the formation of 

protein-protein interactions as well. The recognition and binding of particular elements 

in signalling pathways is crucial for the adaptation of the cell to its environment. Also, 

formidable protein complexes are assembled to constitute the basic cellular machinery.  

Since protein interactions are crucial for the cell survival, the ability of the proteins to 

interact with others and the particular partners they interact with are among the most 

important characteristics of a protein. In this context, the analysis and prediction of 

protein–protein interactions become central topics to achieve a better understanding of 

the cell and living organisms. 
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1.1 Networks and biological networks 

Live beings store the information required for developing themselves in form of 

deoxyribonucleic acid (DNA), a book of instructions that is carefully preserved in the 

nucleus of each of our cells. The exact duplication of this information from generation 

to generation assures the genetic continuity of species. The DNA is a sequence of 

nucleotides that are arranged in genes, the hereditary units that devise all identifiable 

traits of an organism. However, the main effectors of biological activities in the cell are 

not the genes but their products: different forms of ribonucleic acid (RNA) and proteins. 

By means of two differentiated processes, transcription and translation, the information 

encoded in genes is successively conveyed to RNA and proteins. During transcription, 

DNA is copied into messenger RNA (mRNA), which carries the instructions form DNA 

specifying the order of amino acids for protein biosynthesis. Then, starting the 

translation, the mRNA is read by the ribosome, a heterogeneous complex formed by 

several proteins and ribosomal RNA (rRNA). To read the mRNA and produce a protein, 

the ribosome recruits a third type of RNA molecule, the transference RNA (tRNA). This 

molecule is able to bind a particular mRNA triplet and to couple an amino acid specific 

to that triplet. To produce a protein, the ribosome “reads” the mRNA, and for each of its 

triplets it recruits a different tRNA, which in turn carries the particular amino acid 

encoded by the mRNA triplet. Hence, while reading the mRNA string, different amino 

acids are brought to the ribosome and become linked by means of peptide bonds, 

building the protein’s sequence or primary structure. 

The theoretical bases of this transfer of information were established decades ago (1,2), 

conforming the central dogma of biology1. Even though, transferring the information 

from the DNA to its products, RNAs and proteins, is not enough to make the cell work 

and organisms live (3). The process by which a gene is “turned on” to yield its specific 

product (RNA or protein) is referred as “gene expression”. Different genes have their 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 This idea was initially proposed by Francis Crick in 1956 in the letter “On protein synthesis”. It was 

finally published in 1958 under the same name, and later revised in 1970. 
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expression heavily controlled by a process known as “gene regulation”, in order to 

generate their products in a precise temporal pattern and thus coordinate their tasks (4). 

Once produced, most proteins need to acquire a particular three-dimensional (3D) 

conformation through a process named folding to perform their functions (5,6). After 

folding, proteins can associate to the impressive cell machinery, responsible of crucial 

functions in the cell (7,8). Indeed, the formation of such protein-protein interactions 

(PPIs) is closely related to the regulation of several cellular functions (9). Furthermore, 

in order to adapt themselves to the surrounding environment, cells respond to external 

stimuli by means of signalling pathways, intricate connections that convey 

environmental information from the cellular membrane to its nucleus. These pathways 

involve both PPIs and post-translational modifications of the proteins, including 

phosphorilation, metylation, and acetylation (10,11). The signal is propagated until a 

particular protein type, a transcription factor, is activated, allowing its translocation to 

the cell nucleus where it can regulate or activate a specific genetic program. Finally, to 

perform all these functions the cell needs to produce nucleotides, amino acids, lipids 

and oligosaccharides, to obtain energy, to store it, and to manage its consumption; in 

other words, keep their homeostasis. Enzymes, proteins capable of converting specific 

compounds (their substrates) into others (their products) during an enzymatic reaction, 

are responsible of the accomplishment of these tasks. Enzymatic reactions are chained 

forming metabolic pathways, functional units aimed to accomplish the conversion of 

one initial substrate to one final product (12). For instance, acetate derived from 

carbohydrates, lipids, and proteins, is oxidized during the citric acid cycle producing 

carbon dioxide and energy. Although classical biochemistry depicted metabolic 

pathways as separated functional units (13,14), there exists a huge pool of smaller 

metabolic units and chemical compounds that can be used by numerous metabolic 

pathways (15). Hence, different metabolic pathways are indeed interconnected, forming 

a complex system known as metabolic network.  

All these processes can be depicted as networks, where nodes represent biological 

entities (genes, amino acids, proteins, compounds), and edges the relationships 

established between them (regulation, contact, interaction, consumption). In silico tools 

are helpful instruments to study and analyze networks allowing the discovery of 

unravelled properties within them and the prediction of novel relationships between the 
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biological units represented in the networks. In summary, computational tools, which 

are used to study protein structure and biological networks, can also give new insights 

on how cells work and living organisms live. The scientific disciplines that study, 

develop and apply such tools are bioinformatics and computational biology. 

	
  

1.1.1 Definitions of bioinformatics and computational biology 

According to the USA National Institute of Health (NIH), bioinformatics and 

computational biology are defined (16) as follows: 

 

• Bioinformatics: Research, development, or application of computational 

tools and approaches for expanding the use of biological, medical, 

behavioural or health data, including those to acquire, store, organize, 

archive, analyze or visualize such data.  

• Computational Biology: The development and application of data-analytical 

and theoretical methods, mathematical modelling and computational 

simulation techniques to the study of biological, behavioural and social 

systems.   

The same defining committee stressed similarities and differences between the 

disciplines (16):  

“Bioinformatics applies principles of information sciences and technologies to make the 

vast, diverse, and complex life sciences data more understandable and useful. 

Computational biology uses mathematical and computational approaches to address 

theoretical and experimental questions in biology. Although bioinformatics and 

computational biology are distinct, there is also significant overlap and activity at their 

interface.”  

Due to this overlap, the terms bioinformatics and computational biology will be used 

indistinctively along this thesis to refer to the development and application of 

computational tools (including theoretical methods and mathematical models) for 

studying biological systems and data.  
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One of the fields that take more advantage of computational biology techniques is the 

study of biological networks. The following section is devoted to describe the 

mathematical description of a network and its properties, which are key for the 

exploitation of in silico approaches in the study of biological networks.   

	
  

1.1.2 Definitions of networks and their properties2 

The mathematical object that expresses the relationships among a series of objects is 

known as graph3. A simple graph can be defined as G=(V,E,I), where V and E are 

disjoint finite sets and I is an incidence relation such that every element of E is incident 

with exactly two distinct elements of V and no two elements of E are incident to the 

same pair of elements of V. In this context, V and E are called the vertex set4   and the 

edges set of G respectively. Recalling the image of a biological network, the vertices 

would represent the elements in such network (genes, amino acids, proteins, 

compounds) and the edges the relationships established among them (regulation, 

interaction, etc.).  

The edges and vertices of a graph can have specific values assigned, denoting their 

relative strength, importance, or any other property that permits to establish a ranking or 

classification among them. Such edges and vertices are known as labelled -or weighted 

if the labelling property is a countable measure. If vertices in a graph G are divided into 

two disjoint sets U and V (i.e. they are assigned one of two different labels) and every 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2This section is intended to provide a rough introduction to the mathematical representation of networks 

and their properties. All definitions herein presented were extracted from 17. Gross, J. and Yellen, J. 

(1999) Graph Theory and Its Applications. CRC Press, Boca Raton.  

3 In mathematical context, the English word graph is polysemous: it can denote a graph function (i.e. a 

plot) or a collection of dots and lines connecting some (possibly empty) subset of them.  In this section, 

the word graph will be used for the second meaning. 

4 The mathematical term for referring to a dot in a graph is vertex (plural vertices); however, in biology-

related disciplines such as computational biology vertices are also referred as nodes. Here, both terms will 

be used indistinctively. 
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edge in G connect a vertex in U to one in V, G is said to be bipartite. In addition, edges 

may be directed if denote directionality; in other words, a directed edge establishes a 

connection from node u to node v, but not from v to u (is incident to v but not to u). 

Note that a vertex is incident to its surrounding edges, but an edge may be incident to 

some of its surrounding nodes depending on its directionality. A graph is considered to 

be a directed graph if all its edges are directed. 

Two vertices in a graph are regarded as adjacent if they are incident to a common edge. 

The set of neighbours, NG(v), of a vertex v is the set of vertices which are adjacent to v. 

A walk is an alternating sequence of vertices and edges, with each edge being incident 

to the vertices immediately preceding and succeeding it in the sequence. Thus, a walk 

comprising directed edges is constrained by their directionality. The length l of a walk is 

the number of edges that it uses. For a non-closed walk, l = n–1, where n is the number 

of vertices visited (a vertex is counted each time it is visited). For a closed walk, l = n 

(the start/end vertex is listed twice, but is not counted twice). A walk with no repeated 

edges is called trail and it is known as a path if it has no repeated vertices. The distance 

from u to v, written dG(u,v), is the minimum length of any path from u to v. A walk is 

closed if the initial vertex is also the terminal vertex; a closed trail containing at least 

one edge is known as cycle. A graph is cyclic if it contains any cycles, and acyclic 

otherwise.  

A subgraph of a graph G is a graph whose vertex set is a subset of that of G, and whose 

adjacency relation is a subset of that of G restricted to this subset. A graph G is 

connected if, for every pair of vertices u and v, there exists a path from u to v; G is 

disconnected otherwise. A component of G is defined as a maximal connected subgraph 

of G. In other words, a connected subgraph H is a component of graph G if H is not a 

proper subgraph of any connected subgraph of G. Thus, the only component of a 

connected graph is the entire graph and, intuitively, the components of a non-connected 

graph are the "whole pieces" it comprises. A complete graph Kn of order n is a simple 

graph with n vertices in which every vertex is adjacent to every other. In a graph G, a 

clique is any subgraph H that is complete. A k-clique is a clique of order k. A maximal 

clique is a clique that is not a subset of any other clique. The clique number ω(G) of a 

graph G is the order of a largest clique in G. 
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Tables 1.1 and 1.2 summarize the principal metrics of nodes and graphs used in 

computational biology respectivelly.  

	
  

Table 1.1. Principal metrics of a node v in a graph G. 

Property Symbol Definition 
Degree dG(v) Number of adjacent nodes.  
Betweenness gG(v) Number of shortest paths between any pair of nodes (u, w) 

in G that pass through v. 
Eccentricity eG(v) Maximum value of distance to any other node u in G 
Wienner index WG(v) Sum of the distances to each other node u in G 
Clustering 
coefficient 

CG(v) Number of edges connecting any neighbour u of v over the 
total number of possible edges connecting any neighbour u 
(i.e. as if G was a complete graph).  

	
  

Table 1.2. Principal metrics of a graph G. 

Property Symbol Definition 
Radius rad(G) Minimum value e(v) for any node v in G 
Diameter dim(G) Maximum value e(v) for any node v in G 
Average degree d(G) Arithmetic mean of the degrees of all nodes v in G 
Connectivity κ(G) Minimum number of nodes v that need to be removed 

to disconnect G 
	
  

	
  

1.1.3 Topology of biological networks 

Due to the network-wise nature of most cellular processes, the study of networks has 

become a booming field in theoretical biology. Barabasi and Oltvai described the 

understanding of “the structure and the dynamics of the complex intracellular web of 

interactions that contribute to the structure and function of a living cell” as a “key 

challenge for biology in the twenty-first century” (18). Their work was crucial for the 

early development of systems biology, which “aims to map out, understand, and model 

in quantifiable terms the topological and dynamic properties of the biological networks” 

(18). Indeed, recent advances in biological data collection (high throughput data such as 
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DNA or RNA micro-chips, protein chips and yeast two-hybrid screens) and 

bioinformatics techniques allowed addressing such challenge. Particularly, the 

integration of different data sources such as protein sequence, gene expression and PPIs 

has prompted a quick development of the understanding of the cell. 	
  

Perhaps one of the most important findings the study of biological networks has 

revealed is that their architecture is not arbitrary. A random network comprises N nodes, 

which are pair-wise connected with a probability p (19). In such networks, the 

distribution of the degree of their nodes is normal (see Figure 1.1 A). However, 

biological networks do not follow such pattern; instead they approximate a scale-free 

topology, which is characterized by a power-law degree distribution. In such networks, 

the probability that a node has k links follows P(k) ~k-
γ, where γ is the degree exponent 

and, the probability that a node is highly connected (i.e. is a hub node) is statistically 

more significant than in a random graph (20) (see Figure 1.1 B). The first observations 

of the scale-free topology in biological networks were done on metabolic networks, 

where most metabolic compounds participate only in one or two reactions, but a few of 

them (such as pyruvate or coenzyme A) participate in a large number of reactions, 

becoming metabolic hubs (21,22). The same topology has been determined for protein 

interaction networks (23,24) (although it is currently being questioned (25,26)), 

regulatory networks (27-29), and signalling pathways (30). 

The analysis of high-throughput biological data has revealed a modular organisation of 

cellular functionality (31), defined as “separability of the design into units that perform 

independently, at least to a first approximation” (32). Furthermore, it has been shown 

that small sub-networks (also known as motifs) can be re-used as basic bricks to build 

larger ones (33,34).  However, enforcing a power-law degree distribution in theoretical 

models (scale-free networks) is not enough to reproduce the observed modular nature of 

biological networks. Scale-free networks are characterized by the presence of a small 

number of highly connected nodes (hubs) that, in large networks, generate a single 

integrated web in which the existence of fully separated modules is apparently 

impossible. Analyzing the metabolic network, Ravasz et al. pioneered a solution to this 

dilemma: the hierarchical network model (35). In short, this model consists in iterative 

replicas of a small and highly interconnected cluster of nodes (module). First level 
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replicas are loosely connected among them and to the original cluster, and together form 

a new unit –a larger module, that can be in turn replicated in the same manner. This 

model (Figure 1.1 Ca) is coherent with both the scale-free property of networks (Figure 

1.1 Cb), and the modularity of biological networks, denoted by a clustering coefficient 

dependant on the degree of the node (Figure 1.1 Cc). This model is compatible with 

other biological networks including protein-protein interaction and gene regulatory 

networks (18).  

	
  
Figure 1.1. Network models in computational biology (obtained from (18)). Random, scale-free, and 

hierarchical networks are respectively represented in first, second and third column of the first row. Note 

that hub nodes are in light-shaded while non-hub nodes are dark-shaded. The second and third row 

represent the degree (k) distribution ad the clustering coefficient (C(k))of their nodes. 
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1.1.4 Topology meets biology: uses of biological networks to extend 

functional annotation of genes and proteins. 

Computational biology has taken advantage of the architecture of biological networks in 

several ways. A major breakthrough in the field of biological network analysis was the 

establishment of the guilt-by-association (GBA) concept. GBA principle suggests that 

genes and gene products with related functions tend to share properties such as genetic 

or physical interactions (36), and is indirect relationship with the modular property of 

biological networks. In other words, nodes that are in close proximity to others in a 

network are more likely to share functions. The basic idea of GBA was early exploited 

to predict the function of unnanotated genes in regulatory networks (37-39) and 

unnanotated proteins in protein-protein interaction networks (interactomes) (40,41). 

Furthermore, the GBA principle still underlies in current methods for predicting the 

function of genes (42) and proteins (43).	
  

Regarding biological relevance of networks architecture, another significant milestone 

was reached when highly connected nodes (hubs) were related to cell survival in 

Saccharomyces cerevisiae (44). Hub proteins were quickly reported to be involved in 

human disease (45), and were also identified as key proteins in signalling pathways 

whose disregulation could prompt pathological conditions (46-48). Subsequent analyses 

revealed that the relationship between the degree of a node and its implication in 

pathology or cell death was actually more reflective of the number of distinct processes 

the node was involved in. For instance, Kim et al. showed that, in Saccharomyces 

cerevisiae interactome, highly connected proteins (i.e., hubs) with multiple binding 

interfaces were twice as likely to be essential as hubs with one or two interfaces (49).  

The potentiality of GBA and the study of hub proteins to associate genes and proteins 

with disease is vast. Several methods have been developed to identify candidate disease 

genes based on the proximity to other known disease genes (seeds) in regulatory 

networks or interactomes. Such proximity can be defined by direct neighbourhood 

((50,51)), shortest paths ((50,52)) or random walks ((50,53)) along the edges connecting 

a given seed with a disease candidate. The state of the art of this field has recently been 

reviewed in (54,55)), and associating genes and gene products to disease is still one of 

the main focuses of research in network biology (56,57). 
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1.1.5 Other applications of computational biology to biological networks 

Other uses of biological networks in computational biology are specific to the particular 

type of network studied. This section covers the principal applications of computational 

biology to the most important biological networks in the cell:  

i) gene regulatory networks, 

ii) protein interaction networks (or interactomes), 

iii) signalling networks, 

iv) metabolic networks, 

Reverse engineering allows the reconstruction of gene regulatory networks from time-

series expression data (58). Several methods have been developed based on this idea, 

including probabilistic methods (mainly Bayesian networks (59)), correlation-based 

methods (i.e. WGCNA (60)), partial-correlation-based methods (i.e. SPACE (61) or 

GenNet (62)), and information-theory-based methods (i.e. ARACNE (63)). All of them 

have been recently reviewed in (64). 

Besides functional annotation, interactomes have been applied to other objectives. Two 

inherent problems in the experimental detection of PPIs are incompleteness and noise 

(65) (see section 1.3.5). Bader et al. pioneered the study of protein interaction networks 

to estimate the reliability of interactions (66). Later on, Gavin et al. developed socio-

affinity scores on de novo identified protein complexes to quantify the propensity of 

proteins to form partnerships (9). Novel and more generic approaches for scoring the 

reliability of PPs have been recently developed (67). Protein interaction networks can 

be used to predict novel protein interactions if combined with further information such 

as genomic context (68) or structural knowledge of proteins (69). Further more, insight 

on the interacting region can be gained with this approach (70,71). Even in absence of 

contextual information, the topology of interactomes can reveal putative interactions 

(72) or interacting regions of highly connected proteins in the network (73). Other 

applications of protein interaction networks include:  
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i) the identification of domain-domain interactions (74,75);  

ii) the delineation of frequent interaction network motifs (76); and  

iii) the comparison between mode organisms and humans (77). 

Due to the fuzzy nature of cell signalling, the problem of completing signalling 

pathways has been classically addressed using PPI prediction approaches (78). 

However, most high-throughput experiments for protein interaction discovery result in 

little new knowledge regarding phosporilation events, a key process in cell signalling 

(79). This is because the transient nature of most PPIs in signalling pathways requires 

specific experimental approaches to pinpoint such interactions (80). The lack of high 

quality interaction data covering signalling proteins has been surpassed by the use of 

other functional association information (81). Nevertheless, recent advances in network 

biology have allowed approaching this problem from a network perspective (82). 

Computational biology has played a major role in the reconstruction of metabolic 

networks. The combination of human manual curation of metabolic data and automated 

aimed to discover missing elements in metabolic pathways has allowed the compilation 

of comprehensive repositories of metabolic information (83,84). Computational 

applications of reconstructed metabolic networks have been recently reviewed in (85) 

and include:  

i) contextualization of high-throughput data;  

ii) guidance of metabolic engineering; 

iii) directing hypothesis-driven discovery;  

iv) interrogation of multi-species relationships, and  

v) network property discovery,  

The computational applications for different biological networks previously detailed 

rely in accurate descriptions of such networks. However, the very nature of biological 

data makes the task of obtaining such high-quality networks very difficult. The 
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following section is devoted to describe in detail this problem and the different 

approaches taken to solve it.  

	
  

1.1.6 From genes to proteins: the problem of naming and identifying 

biological entities 

Since first enunciation of the central dogma of biology (2), the paradigm for protein 

production has shifted from the “one gene, one protein” concept to a more complex 

view where from a single gene several products can be obtained. The roots of this 

spread of information can be found in mutations in the DNA sequence (including single 

point mutations, insertions, and deletions), splicing variants in the RNA transcripts and 

other post-translational mutations (PTMs) in the final protein product. It is a 

challenging task to integrate that high amount of variability in networks –a simple form 

for representing the complexity of cellular processes. However, the main difficulty in 

univocally representing biological entities in a network is that different interfaces for 

accessing biological data provide different identifiers for equivalent biological entities, 

a problem of which scientific community has been aware since long time ago (86).   

In order to combine data from different sources and software applications, substantial 

effort has been spent. Regarding PPI data, the Human Proteome Organization (HUPO) 

(87) has developed PSI-MI (88) towards achieving standard formats to exchange data 

and well-defined protocols of PPIs. PSI-MI is an XML-based schema for the 

representation of molecular interactions. This schema represents PPIs and several 

associated attributes, such as their detection method, the role of each protein in the 

experiment, or the stoichiometry of the protein-partners of a complex. Other standards 

allow the gathering, storage and processing of other relationships among biomolecules. 

For instance, BioPax (89) focuses on biological pathways that include PPIs; and 

Systems Biology Markup Language (SBML) (90) is a XML based standard that 

represents computational models of any kind of biological network.  

Despite the development of such standards, several biological data resources still use 

distinct identifiers for genes (or proteins) encumbering a non-redundant unification, i.e. 

univocally identifying each independent biological unit in the network. This challenge 
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has been tackled by different initiatives. Some of them have built new datasets by 

combining and eliminating redundancies from several resources, such as PINA (91), 

BIANA (92), APID (93) or iRefIndex (94) (figure 1.2 A). Furthermore, PSICQUIC (95) 

is the result of a recent effort to standardize the access to molecular interaction 

databases programmatically by using a query language system. Organizations such as 

EBI offer PSICQUIC access to their network repositories (96). 

Another strategy to integrate data from different sources in a single network is to 

develop frameworks where the data is stored locally and the user the user sets the 

criteria for the unification rules. This is the case of BIANA (92) and ONDEX (97). For 

example, BIANA allows the users to choose the data and select the features (or 

identifiers) used for the unification (figure 1.2B). Thus, attributes trusted by the user 

(e.g., UniProt Accession Number) are used to merge and unify information across 

different databases. Although the use of this strategy is more time-consuming, it has the 

advantage that it is extensible to new data repositories, data types and attributes defined 

by the user. 
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Figure 1.2. (Obtained from (98)) A. Data warehouse system. Several databases are parsed and stored in a 

single database. Equivalent entries are fused and redundancies are eliminated. Database access can be 

done through direct access to the database, by an application or by a web-server. B. BIANA user-driven 

integration examples. External databases provide different identifiers for their entities (external entities). 

According to the identifiers selected by the user, the integrated database can have different unified entities 

(user entities). Entities can be different biological molecules, such as proteins or genes, while relations 

can include any type of relationships, such as PPIs or common biochemical pathway among others. 
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1.2 Proteins and protein structure 

Although the regulatory role of non-coding nucleic acids is currently being unravelled 

(99,100), proteins mediate most biological functions5. In fact, proteins are the bricks 

and mortar of cells. The work of proteins is structural and functional, as they are the 

principal element of the organization of the cell architecture, but they also play a 

relevant role in its metabolism and regulation. To perform all these functions, proteins 

need to adopt a particular three-dimensional (3D) structure (101-103). Thus, gaining 

knowledge about the 3D structure of proteins is crucial to understand their complex 

functions within the cell. 

	
  

1.2.1 Protein structure 

It is well-known that a protein’s function is determined by its three dimensional (3D) 

structure (Thornton and cols. reviewed this issue in detail in (104)), which in turn is 

mainly dictated by its sequence (105). Actually, the amino acidic sequence of a protein 

constitutes its primary structure. Amino acids in the polypeptidic chain adopt 

recognizable structural patterns in the space, namely alpha helices and beta sheets (106). 

These regular patterns along with the more disordered regions that connect them 

conform the secondary structure of a protein. Higher levels of structural organization 

include structural motifs and domains. Structural motifs are defined as “simple 

combinations of a few secondary structure elements with a specific geometric 

arrangement that have been found to occur frequently in protein structures” (107). 

Domains represent an even higher level of structural organization, and are characterized 

by their capability of autonomously acquiring a 3D conformation (108). Domains have 

also been described as basic units of protein function (109). The global 3D structure of a 

polypeptidic chain (i.e. a protein) is known as its tertiary structure. Regarding protein 

complexes, the quaternary structure describes how components relate to each other, 

including atomic details of the interacting interfaces. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 The word ‘protein’ derives from the ancient Greek word ‘protos’, meaning first 
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First 3D structures of proteins were solved 50 years ago (110). Giving insights into 

proteins function, 3D structures have influenced the work of scientists in many areas of 

life sciences. However, the structural characterization of proteins is costly and time 

consuming, rendering the solution of the solution of all proteins 3D structure an 

unfeasible task. In order to surmount this problem, rapidly after a critical number of 

protein structures were made available Chothia and Lesk quantitatively measured the 

impact of amino-acid changes in closely related protein sequence on their structure. 

They concluded that similar sequences -this is evolutionary related proteins, exhibit 

nearly identical structures, and even distantly related proteins share the same fold 

(111,112). This is the very basis for comparative modeling, which aims to build a 3D 

model for a protein of unknown structure (the target) on the basis of the sequence 

similarity to proteins of known structure, usually referred as templates. 

A final aspect to be considered about the structure of a protein is its plasticity. Structural 

elements in proteins are not static, but rather in permanent motion. This mobility is 

crucial to understand the protein function, especially if the protein binds small 

molecular ligands (113) (e.g. membrane receptors or enzymes) or other macromolecules 

such as proteins  (114). Even more, some proteins are characterized for being 

intrinsically disordered (intrinsically unstructured proteins, IUPs). Often, such proteins 

participate in molecular interactions and their unstructured regions only acquire their 

functional conformation upon the presence of their ligand (115,116).  

	
  

1.2.2 Protein structure determination 

There exist several experimental techniques to elucidate the 3D structure of proteins. 

The following sections succinctly describe such techniques.  

 

1.2.2.1 X-Ray crystallography 

X-ray crystallography is based on the fact that when X-rays collide with electrons in 

matter, the beam of light is spread into many specific directions. The spread produces a 

specific pattern of scattered X-rays that is experimentally observed as a characteristic 
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electron density map when	
   the	
   atoms	
   are	
   ordered	
   as	
   in	
   a	
   crystal. This pattern is 

characteristic the atoms of the matter in which the X-rays collided. Hence, if X-rays 

were directed to a biomolecule such as a protein, its atomic structure could be 

determined. The scattering of an individual protein is very weak. In order intensify the 

signal, several instances of the protein must be arranged in a regular geometric pattern, 

exhibiting long-range order and symmetry producing a diffraction pattern. Such spatial 

organization is geometrically obtained in a lattice (an array of points repeating 

periodically in three dimensions) and physically in a crystal. To obtain a protein crystal, 

high concentrations of the protein (or the biomolecular complex) along with the 

appropriate experimental conditions are required (117,118). However, techniques for 

the production of small crystals and yet useful for protein structure determination 

purposes have been recently described (119).  

Due to the mobile nature of proteins, not all crystals yield diffraction patterns suitable 

for the interpretation of the atomic details of the protein, even if crystallisation 

conditions are optimal. In such cases, the electron density maps obtained from the X-ray 

diffraction may not allow positioning the amino acid side chains although may suffice 

to trace the backbone of the protein or identify its fold (120). Furthermore, flexible 

regions such as loops may adopt different conformations in each cell of the lattice, 

causing an irregular dispersion of the colliding X-rays. As a result, the electron density 

map area corresponding to the flexible region of the protein appears blurred, 

phenomenon that may cause discontinuities in the final structural solution. Similar 

reasons hinder solving the structure of IUPs by X-ray. Additionally, it has to be noted 

that the functional conformation of a protein is not always the same conformation that 

the protein adopts in the crystal. Such conformational discrepancy may difficult the 

interpretation of the structural results. A similar problem appears with proteins that have 

several alternative conformations, which is a normal event in proteins that bind other 

molecules. In this case, all conformations could be present in the crystal, blurring the 

signal produced by the scattered X-rays. Despite all these drawbacks, X-ray 

crystallography has the unique advantage of being unrestricted by the protein size. 

Because of this, X-ray crystallography has been successfully used to determine the 3D 

structure of large macromolecular machines such as the proteasome (121) or the 

ribosome (122).   
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1.2.2.2 Nuclear Magnetic Resonance spectroscopy 

Difficulties associated to X-ray crystallography, including not only its timely cost but 

primarily its problems to solve flexible regions or IUPs, has prompted the necessity of 

alternative methods for experimentally determining the 3D structure of proteins. 

Nuclear Magnetic Resonance (NMR) spectroscopy has become the most important of 

such alternatives. To cope with the aforementioned problems, NMR is applied to 

molecules in solution, which represents a more natural environment for most globular 

proteins. The method takes advantage of the fact that some atomic nuclei (including 1H, 
13C, and 15N) possess a magnetic moment (nuclear spin), which gives rise to different 

energy levels and resonance frequencies in a magnetic field. In MNR the magnetic field 

is induced from short pulses of electromagnetic (radiofrequency) energy, which prompts 

the raise of the energetic level. Excited nuclei return to their equilibrium state emitting 

radiation and resonating in a frequency that is characteristic of the atomic environment 

of the excited nuclei, the so called chemical shift. Pulses of different radio frequencies 

may provide different data about the environment. Two of the ore frequently used types 

are COSE (correlation spectroscopy), which by detecting covalent links allows to 

determine adjacent residues, and NOSEY (nuclear Overhauser enhancement 

spectroscopy), which provides information of residues closer in the 3D space, regardless 

of their positioning in the protein sequence (120). 

NMR experiments yield spectra populated with numerous peaks, making the 

interpretation of the experiment results a hard task. Hence, it is not always possible to 

univocally assign a protein amino acid to a certain peak in the spectrum. Kurt Wüthrich 

and colleagues solved this problem in the early 1980 decade (123), and since then NMR 

has been successfully applied to solve the structure of proteins. However, the high 

complexity of the obtained spectra normally makes the technique only useful to 

relatively small sized proteins. Nevertheless, some complexes such as the GroEL-

CroES chaperone have been analyzed using NMR based techniques (124).  
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1.2.2.3 Other methods for the structure determination of proteins 

There also exist several other techniques for the determination of the 3D structure of 

proteins. These include cryo-electron tomography (125,126), small angle X-ray 

scattering (SAXS) (127), and solid-state NMR (128). Cryo-electron tomography is 

suited to the study of huge protein structures, such as the capsoids of virus (129) or the 

large macromolecular complexes that conform the cell machinery (i.e. the nuclear pore 

complex  (130) or the cytoskeleton (131)). SAXS is applied to proteins in solution, 

being an appropriate technique to study IUPs  (132). However, neither cryo-electron 

tomography nor SAXS can provide similar atomic details as X-ray crystallography or 

NMR do. Finally, solid-state NMR has become a useful tool to study the structure of 

membrane proteins at high-resolution rates (133).  

	
  

1.2.3 Protein structure prediction  

Despite the exponential increase of available sequences and 3D structures, the number 

of sequences highly exceeds that of 3D structures. This difference in numbers is 

proportional to the disparity of the costs for experimentally obtaining either the 

sequence or the structure of a protein. Therefore, covering the gap between sequence 

and structure becomes a compelling requirement to achieve a molecular understanding 

of the protein function. Theoretical methods can help to bridge this gap by inferring the 

3D structure from the sequence. These methods are classified into three different 

groups: comparative modelling, fold recognition and new fold or ab initio methods. 

	
  

1.2.3.1 Homology modelling 

Homology or comparative modelling techniques are those devoted to infer the 3D 

conformation of a protein of unknown structure (target) from homologue proteins of 

known structure (templates). These methods are based on the assumption that structural 

features in proteins are more conserved that its sequences. Thus, two proteins with 

enough sequence similarity will fold in a similar way and share the same conformation 

in space (111,112). The process through which a tertiary structure is assigned to a given 
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sequence is carried out in three steps, namely: template identification, template 

alignment, and model building. Finally, the produced model should be assessed (134). 

Figure 1.3 summarizes the process of homology modelling. 

Known 3D data of proteins is stored in the Protein Data Bank (PDB) (135). Thus, the 

identification of the template refers to the process of identifying the structure of the 

PDB whose sequence is the closest homolog of the target. Such sequence homology 

search can be performed using sequence alignment tools like BLAST and PSI-BLAST 

(136), or Hidden Markov Model (HMM) profile methods like HMMER (137), the two 

latter methods aiming to identify remote homologs of the target (138).  

 Once the template (or templates) has been selected, its sequence has to be aligned with 

that of the target. Depending on specific requirements, the alignments can be redone 

with other sequence alignment methods such as CLUSTALW (139) or T-COFFE (140). 

Additionally, some methods optimize the sequence alignment through a genetic 

algorithm protocol that iterates the alignment, model building and model evaluation in 

order to obtain the best possible alignment (141). 

Model building is the process by which the three-dimensional data of the template(s) is 

applied on the query sequence. MODELLER is one of the most used and 

comprehensive modelling software (143). The program fits the target sequence onto the 

template structure upon satisfying a set of spatial constraints: (1) homology-derived 

constraints, (2) stereochemical constraints such as bond angles, and (3) statistical 

preferences for dihedral angles and non-bonded interatomic distances. 
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Figure 1.3. (Obtained from (142))Flowchart for single protein modelling.  

	
  

1.2.3.2 Fold recognition 

While comparative modelling relies on sequence similarity to infer the 3D structure of 

proteins, structural features can be used to detect remote sequence similarity. The 

approach is based on two different principles a) the observation that protein fold is 

better conserved than its sequence (111) and b) the fact that the number of structural 

folds that proteins adopt is limited (144,145). These facts have promoted the emergence 

of structural classifications to capture evolutionary relationships (146,147). The 

increasing number of initiatives in structural genomics (148,149) greatly boosts the 

odds that there exists a solved 3D structure of a protein with the same fold that a given 

target protein. 

Early methods (150,151) recognized to which fold a protein belonged by “finding 

sequences that are most compatible with the environments of the residues in the 3D 

structures” (150), a technique that known as “threading”. The probabilistic and 
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energetic description of such environments will be covered in this section. Newer 

methods introduce further variables to describe the environment, but are still restricted 

to predict an already known fold for a target sequence.  

	
  

1.2.3.3 Ab initio methods 

Beyond comparative modelling and fold recognition (which have been jointly termed 

“template based modelling”) remains the challenge to predict an unknown fold for a 

protein sequence.  One approach is to reproduce the twists, contorts and stretches that 

drive an amino-acidic chain from a theoretical thread-like shape to the fold the protein 

really has: its native state (152). This tortuous trail is known as the folding path. 

Successfully reproducing this path requires lots of computational efforts. Nevertheless, 

the combination of several theoretical frameworks allows an approximation to the 

problem using molecular dynamics (153). This combination is basically composed of:  

i) the atomic or molecular degrees of freedom considered in the model,  

ii) the definition of the forces that govern the system (force field) as a function 

of the chosen degrees of freedom,  

iii) how these degrees of freedom are to be sampled and  

iv) the boundaries of the system and the external forces that apply.  

Applying molecular dynamics to the fold recognition problem is costly (and normally 

only applied to small peptides) due to the fact that the number of states in which a 

protein is unfolded is much greater than the number of folded states (154). Furthermore, 

using such ab initio approach holds the additional difficulty to recognize the native 

state, which does not necessarily correspond to the absolute energy minimum if relevant 

biomoloecular forces are not completely understood (155).  

Baker and cols. faced this problem with a completely different approach (156). 

Analogously to how sequences can be threaded into folds, fragments of sequences can 

be threaded into fragments of different known structures, which can blend to new folds. 

As Cozzetto and Tramontano stated (157), “this method was inspired by the observed 
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local sequence-structure correlation in possibly unrelated proteins at different 

hierarchical levels, from a few residues to supersecondary structure elements” 

(158,159). This approach has been successfully used to pose highly accurate 3D models 

for single domain proteins (160). Interestingly it is currently being combined into a 

single strategy with template-based modelling (161). Only recently, advances in multi-

domain proteins (a problem similar to the quaternary structure of proteins) have been 

reported (162).  

	
  

1.2.4 Flexible regions 

While most of regular structures in a protein maintain a semi-rigid pose that allows the 

identification of recognizable folds (146), flexible regions of proteins acquire ever-

changing conformations, which make solving their structure a problematical task. 

Among the flexible regions of the proteins, loops –defined as regions between two 

regular structures, are of particular interest for describing a proteins function. 

Particularly, loops have been found to participate in forming binding sites and enzyme-

active sites (107). It is noteworthy, that conformational differences between 

homologous proteins with different functions are known to occur often in the regions 

comprising turns and loops (163,164). Loops may occasionally be placed in the protein 

surface, and the model based on the Optimal Desolvation Area (ODA) (165) suggests 

that several regions of the protein, or even a high percentage of its surface, may be 

relevant for the molecular association of two proteins. It is in agreement with recent 

findings of Wass et al. who showed the use of docking experiments (see section 1.3.3.1) 

to identify the interacting partners of a protein as a consequence of implied restrictions 

in the protein surface conformation (166). Further more, it has been shown that loops 

are key elements to enable or disable the formation of PPIs (167). 

Despite the fact that loops where classically regarded as random structure regions in the 

protein, (107), certain structural and geometrical patterns can be observed among them, 

allowing for a classification of loops (168,169). Such classifications can be exploited to 

identify function-associated loops in enzymes (170) or to identify interaction signatures 

in PPIs (see section 4). 
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1.3 Protein-protein interactions 

The important role of proteins within the cell cannot be totally understood without 

grasping how they interact with other proteins and biomolecules (171). The molecular 

association of proteins is central for numerous cellular functions, including the 

formation of cell molecular machinery and the propagation of environmental signals. 

Hence, comprehending the complex network of protein interactions is a necessary 

means for understanding how do the cells work.  

 

1.3.1 Protein interaction detection 

Several methods have been developed identify physical interactions between two 

proteins. Protein Complementation Assays (PCA) (172) represent the group of most 

commonly used methods. In PCA protocols, the proteins of interest (bait and prey) are 

covalently linked at the genetic level to incomplete fragments of a third protein known 

as the reporter. Commonly, the reporter protein is a transcription factor that regulates a 

certain gene, which upon activation prompts an observable phenotype. The whole 

system is expressed in vivo. If bait and prey proteins interact, the reporter fragments are 

close enough to become functional, and consequently the reporter activity is detectable. 

Among PCA methods, the most widely used is the Yeast Two-Hybrid assay (Y2H), 

which has been widely used in low and high-throughput experiments (173).  

Other PCA methods offer additional interesting features. For instance, MAPPIT (174) is 

a membrane-based PCA that upon reporter protein complementation allows the 

reconstruction of a membrane STAT (Signal Transducer and Activator of Transcription) 

used for the study of modification-dependent PPIs in mammalian cells. TOXCAT (175) 

is an alternative membrane-based PCA method that measures the association strength 

between protein transmembrane helices in biological membranes. Other PCA methods 

are based on cytoplasmic reporters, such as the Protein Kinase A fused with 

complementary fragments of a bioluminescent reporter (i.e. Renilla luciferase) (176). 
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Such methods are used to study the dynamics protein complexes (association and 

dissociation).  

An other group of methods is aimed to detect weak and transient interactions an their 

location in living ells, and is based in fluorescence. Among these methods, the Green 

Fluorescence Protein complementation assay (GFP) (177) and the Bimolecular 

Fluorescence Complementation (BiFC) (178) are the most popular. Interestingly, these 

methods can be applied in high-throughput fashion while complemented with other 

techniques. Particularly, BiFC, which measures the interaction strength based on 

fluorescence intensity, can be combined with flow cytometry, providing a fast and 

highly sensitive method to validate weak protein interactions (179). 

Förster/fluorescence Resonance Energy Transfer (FRET) (180) is another widely used 

flourescence-based assay in which energy from a donor fluorophore can be transferred 

to an acceptor fluorophore if this is close enough and appropriately oriented. 

Bioluminescence Resonance Energy Transfer (BRET) (181) is even more sensitive than 

FRET; in this assay the the donor fluorophore is replaced by a luciferase.  

Traditional proximity-based methods like PCAs involve the creation of fusion proteins 

between the targets (prey and bait) and a partial reporter. As an undesired side effect, 

the fusion of the target and the partial construct of the reporter may affect the binding 

ability of the targets. Aimed to surmount this problem, in situ Proximity Ligation 

Assays (PLA) detects PPIs without generating fusion proteins with high selectivity and 

sensitivity. In PLA two modified antibodies are ligated against the two target proteins; 

when the targets are in close proximity, the antibodies can emit a signal (182). 

Furthermore, PLA is able to provide the subcellular localization of PPIs in situ at 

single-molecule resolution.  

A different family of methods for PPI detection is based on the array technology. These 

methods have several proteins are covalently attached to a planar support (probes), and 

their ability to interact specifically with other labelled proteins (samples) is measured 

(183). An interesting variation of array-based methods is the Surface Plasmon 

Resonance array (SPR) (184), in which the samples are non-labelled. Instead, an optical 

biosensor identifies the molecular binding events by detecting changes in the local 

refractive index, providing real-time affinity and kinetic data. 
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Finally, all the methods described in section 1.2.2 can be also used to detect PPIs, 

providing further information on the structural details of the interaction. Table 1.3 

summarizes the methods commonly used to detect PPIs.  

Table 1.3 (Adapted from (98)) Experimental methods commonly used to gather information related with 

protein protein interactions. The first column displays the name of the method, and the second the type of 

method. Third to fifth columns show if the method can detect binary interactions (Binary), multiple 

protein complexes (Complex) or if can be used in a high-throughput fashion (HT). 

Method Type Binary Complex H.T. 
Yeast Two Hybrid (Y2H) PCA.  	
   	
   	
  
Mammalian PPI trap 
(MAPPIT) 

PCA.  	
   	
   	
  

Tox-r dimerization assay 
(TOXCAT) 

PCA.  	
   	
   	
  

Bimolecular Fluorescence 
Complementation (BiFC) 

PCA. 
Fluorescence. 

	
   	
   	
  

Proximity Ligation Assay 
(PLA) 

PCA.  	
   	
   	
  

Förster/fluorescence resonance 
energy transfer (FRET) 

Fluorescence. 	
   	
   	
  

Bioluminescence Resonance 
Energy Transfer (BRET) 

Fluorescence.  	
   	
   	
  

Protein microarrays Array.  	
   	
   	
  
Surface Plasmon Resonance 
Array (SPR) 

Array. 	
   	
   	
  

Tandem Affinity Purification 
(TAP) 

PCA. 	
   	
   	
  

X-ray crystallography Other. 	
   	
   	
  
Nuclear Magnetic Resonance 
(NMR) spectroscopy 

Other. 	
   	
   	
  

Cryo-electron tomography Other. 	
   	
   	
  
 

 

1.3.2 Protein interaction prediction 

High-throughput methods have produced large amounts of PPI data, but their reliability 

and coverage has been questioned (185,186). Several computational methods have been 

developed in order to complement experimental techniques, and provide different levels 

of information detail. 
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1.3.2.1 Methods for predicting binary interactions 

The prediction of binary interactions is the task of recognizing interacting partners 

regardless of the regions implied in the molecular association or the atomic details of 

the interacting interface. Computational approaches can be used to infer new predictions 

but also to validate, corroborate, or explain the experiments. Such methods can be 

grouped according to the basic hypothesis used for the prediction:  

i) Genome based methods, such as domain fusion (187), gene neighborhood 

(188), or phylogenetic profiles (189); 

ii) Experimental knowledge-based approaches, such as interologs (190), 

domain profiles (191) or sequence signatures (69);  

iii) Methods based in evolution, such as correlated mutations (192) or 

phylogenetic mirror trees (193);  

iv) Methods based on chemical properties of the dynamics of the interaction, 

such as prediction of kinetic rates for molecular association (194); 

v) Docking techniques are normally employed to gain insight in the interacting 

region (see section 1.3.3.1), but have been used to infer protein partners in a 

pilot experiment(166). 

	
  

1.3.2.2 Methods for predicting the interaction region or interface 

The knowledge of the conformation of a binary complex formed by two proteins, at 

least in their interface, is essential to understand the molecular mechanisms involved in 

their docking (195). The first step in determining how a PPI is produced is to discover 

the regions involved in it. Computational methods aimed to solve this problem can be 

further divided into two categories, depending on whether they require knowledge of 

the interacting partners of the protein to be analysed or not.  



 

30	
  

The identification of interacting regions regardless of the protein partners is possible 

due to the fact that interface regions share specific features that distinguish them from 

the rest of the protein:  

i) Residues in interface regions are highly conserved due to evolutionary 

constraints (196).  

ii) PPI interfaces have shown to bear specific physico-chemical properties due 

to different amino-acid composition propensities (197-199).  

iii) Interacting regions present structural constraints that can be measured in 

terms of Optimal Desolvation Area (ODA) (165). 

iv) By combining different sources of information machine-learning methods 

can predict binding site (200,201). 

In addition, the information about the interacting partners of a protein can provide 

information to identify its interacting region. For instance, the binding residues of a PPI 

are subject to co-evolution constraints (202,203). Also, structural and sequence patterns 

extracted from complexes with known structure have been used to predict interaction 

interfaces (204). Not all the residues participating in the interaction are equally 

important; the ones contributing more significantly to the binding free energy have been 

defined as hot-spots (204). Hot-spots are characterized by stronger structural (205) and 

evolutionary (206) constraints when compared to the rest of the protein. Finally, 

network topology based methods have also been successfully used to identify the 

binding regions in PPIs (73) (see section 1.1.5). 

 

1.3.3 Details of the protein interaction interface 

Beyond the identification of the interacting surface, a more detailed level of knowledge 

can be obtained studying the structural details of the residues forming the interaction. 

Precise molecular details of the protein complexes are available in the Protein Data 

Bank (PDB) (135) or in derived databases, such as PROTCOM (207), 3did (71), iPfam 

(208) or PRISM (209). However, there is a large gap between the number of protein 
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complexes with known structure and the total amount of known interactions and 

complexes. Predictive computational methods are key to reduce this gap (195), and fall 

into two different categories depending on the strategy they follow to predict such 

molecular details of the interacting region:  

i) docking strategies, and  

ii) comparative modelling strategies.  

 

1.3.3.1 Docking approaches 

Protein docking approaches are aimed to elucidate the structures of binary bio-

molecules (e.g. two proteins) when experimental data regarding the structure of the 

complex is lacking but the structures of the interacting proteins are known. Docking 

methods sample the orientation of two unbound protein structures to produce several 

predictions about their interaction, followed by a scoring step to rank the predictions. 

These methods were introduced in 1978 (210). Since then, docking algorithms have 

substantially improved, with a breakthrough in algorithm speed given by the 

introduction of the Fast Fourier Transform (FFT) (211) (e.g. FTDock (212), ZDock 

(213), PIPER (214)), and by some other very successful geometry-based methods (e.g. 

FRODOCK (215), Hex (216), MolFit (211)). A docking procedure usually involves 

several steps (217). First, a rigid-docking search is performed by treating the two 

proteins as rigid bodies. One of the proteins, called the receptor, is kept fixed while the 

other protein, the ligand, is rotated and translated around the first. Next, further 

refinement of some structures takes place, allowing changes in conformation of the two 

unbound structures upon binding (114,218); this step may or may not be supported by 

experimental evidence. Docking algorithms return a large list of poses (bound 

conformations) that include many false interactions. Thus, the different docking poses 

need to be ranked by means of a scoring function. Two different types of scoring 

functions are used:  

i) energy functions based on physical and chemical characteristics of the 

binding interface, such as ZRANK (219); or  
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ii) based on knowledge-based properties of known PPIs stored in structural 

databases, also known as statistical potentials (220,221). 

 

1.3.3.2 Comparative modelling strategies 

Comparative modelling strategies are based on the principles described in section 

1.2.3.1. However, several automated pipelines to use comparative modeling to model 

the structure of macromolecular complexes in high-throughput have been developed. 

For example, the modelling automation provided by MODPIPE (222) and the resources 

of structural information provided in PIBASE (223), allowed Davis et al. (224) to apply 

homology modelling at a proteome scale. Also, Tuncbag et al. (209) has recently 

developed a protocol (based on PRISM (209)) for rigid-body structural comparisons, 

using the known structure of protein-protein interfaces and further flexible refinements. 

Fold-recognition based tools (see section 1.2.3.2) have been also developed for the 

prediction of the structure of protein complexes. Specifically, MULTIPROSPECTOR 

(225) and M-TASSER (226) are different methods that implement this multimeric 

threading. As a representative of ab initio techniques for protein structure prediction 

(see section 1.2.3.3), the Rosetta approach has been extended to solve the protein-

protein docking problem (227). Once the structure of a PPI complex has been modelled, 

methods that use an atomistic description of the PPI (i.e. statistical potentials) can be 

used to assess its reliability. InterPreTS (228), which evaluates the reliability of a PPI 

based on the known structure of a homologous interaction, is one of such approaches. 

Finally, a recently developed analytical framework, SAPIN (229), combines the use of 

comparative modelling strategies, interaction specific statistical potentials, and 

empirical force fields (see section 1.2.3.3) to predict binary interactions after gaining 

detailed insights on the interacting region. 

 

1.3.4 Unveiling the structure of large protein complexes 

Available methods for the determination of the structure of proteins (see section 1.2.2) 

or for gaining insight into the interacting region (see section1.3.3) may be useful to 
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elucidate the structure of small complexes. However, the assembly of large 

macromolecular complexes such as the nuclear pore complex (7), which contains more 

than 450 proteins, requires a different approach termed integrative modelling. Such 

approach is based on the integration of the different sources of structural information 

available for different parts of the complex and its components. The main idea of this 

methodology is to use particular characteristics of the complex that can be 

synergistically combined in order to restrict the possible solutions to only those 

consistent with the available structural information.  

Several low-resolution techniques for the structural determination of proteins, including 

cryo-electron tomography, SAXS (see section 1.2.2.3), or cryo-electron microscopy, 

can provide valuable information about the molecular shape of the complex. High-

resolution structural information of some of the complex components and knowledge 

about the binary PPIs within the complex impose further restrictions in the orientation 

and positioning of the complex subunits. Then, fitting all the information together is 

similar to assembling a puzzle (see Figure 1.4). Multifit (230) and DOMINO (Discrete 

Optimization of Multiple Interacting Objects) (231) are computational methods 

designed to automate this task. This approach has been successfully used to obtain the 

structural model of the nuclear pore complex (7), the chromatin (8), or the RNA 

polymerase (232). 
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Figure 1.4. (Obtained from (233)) Schematic representation of integrative modelling of the human RNA 

polymerase II (232). 

	
  

1.3.5 Protein interaction repositories 

Results from PPI detection experiments and predictions are deposited in public 

repositories of biological interactions, which enable a convenient access to the 

information available and facilitate its further analysis. Table 1.4 summarizes the 

principal resources providing information on PPIs. However, as previously stated (see 

section 1.1.6) the integration of such data in unified systems is still a challenging task. 
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As a result, a single PPI could be represented several times in repositories, hindering the 

performance of computational methods that rely on known PPIs to make their 

predictions. Furthermore, incompleteness (false negatives) and noisiness (false 

positives) of available PPI data complicates the interpretation of such data, for instance 

in terms of yielding estimates of the interactome size (234,235). Negative data (i.e. 

protein pairs known not to interact) could be used to surmount these problems.  

Table 1.4 (Adapted from (98)). Data repositories for PPI data. Databases are grouped according tot the 

nature of data they enclose. The level of detail each database provides is encoded in the third column 

according to the following legend: 1 binary PPIs; 2 interface region; 3 structural detail. 

Databases Information Level(s) 
of detail 

STRING  (68) Functional relations between proteins (not 
necessarily PPIs) inferred using genome-
based methods and literature text-mining 
(see section 1.3.2.1) 

1 

BIND (236), IntAct(237), 
DIP (238), BioGRID 
(239), HPRD (240), MINT 
(241), MPact (242), MIPS 
(243), HPID (244) 

Complex composition and protein binary 
pairs determined experimentally. 

1  

PIPs (245), OPHID (246), 
POINT (247) 

Predicted PPIs obtained with different 
methods 

1 

Domine (248), PSIbase 
(249) 

Domain-domain interaction pairs observed 
in PDB database 

1, 2  

PCRPi-DB (250), 
HotRegion (251), 
HotSprint (252), ASEdb 
(253) 

Residues found in the interface region 
accounting for the majority of the binding 
energy, also known as hot spots.  

2 

iPfam (208), 3DID (71), 
SCOPPI (254), SCOWLP 
(255), PIBASE (223), 
InterPare (256), PRINT 
(257). 

Structurally determined domain-domain 
interaction (DDI) interfaces.  

2, 3 

PDBSUM (258), 
PROTCOM  (207) 

Databases of protein complexes. 3 

Protein-protein docking 
benchmark (259) 

High-resolution structures that are non-
redundant at the family level and for which 
the structure of each unbound interacting 
partner is also known. 

3 

InterEvol (260) Evolution of protein complex interfaces. 2, 3 
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1.3.6 Negative protein-protein interaction data in the context of PPI 

prediction 

The use of negative sets (i.e. pairs of proteins which are known to not interact) in the 

development of interaction discovery or prediction techniques is clear: when testing the 

efficacy of any approach, having “gold standard” sets of both positives and negatives is 

critical (261). A common approach for defining negative PPI datasets, exploits the fact 

that proteins from different cellular locations are unlikely to interact (262). However, 

this approach leads to a bias on the estimation of the accuracy of predictive methods, 

since additional constraints related to localization render the prediction task easier 

(263). Another option widely used is to employ random datasets (261,264-266). This 

approach may lead the predictor to learning the pattern of missing values and, thus, 

cause an over-prediction of associations (267). Furthermore, current estimates indicate 

that for each 1000 protein pairs, only 1 of them actually interacts (65,234,268). While 

this rate implies a low risk for enclosing real interactions in randomly generated 

negative models, such risk may be unacceptable for certain tasks (e.g. the study of 

interaction specificity between two protein families), or can be increased by the 

imposition of functional restrictions in the random models (i.e. proteins with similar 

functional annotation) (269).  

On this context, the use of experimentally tested negative data would be the most 

convenient choice to construct a negative “gold standard”. Despite the fact that PCA 

methods for PPI detection (see section 1.3.1) may yield relevant data about non-

interacting pairs (270), very few data about actual non-interacting pairs (NIPs) has been 

compiled. The Negatome database (271) constitutes a recent effort to catalogue such 

information and contains about two thousand negative interactions, half of them derived 

from manual literature curation and the other half from the analysis of 3D structures of 

protein complexes. The main criticism to the Negatome database is centered in its scale 

limitation and its evident experimental bias. Only recently, a method to exploit the 

negative PPI information obtained from PCA methods for PPI detection has been 

developed (269). 
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1.4 Motivation of this thesis 

Proteins constitute the brick and mortar of living cells, being the main responsible for 

most biological activities of the cell. To fulfil this duty, most proteins associate with 

others, forming complexes that range from binary interactions to an impressive cell 

machinery. In other words, proteins rarely act alone; they rather constitute a mingled 

network of physical interactions and other types of relationships. In this context, 

understanding the function of a protein implies to recognize the members of its 

neighbourhood and to grasp how they associate, even at the atomic level. Unravelling 

these associations with experiments is expensive and time consuming. Hence, in silico 

predictions and network biology represent a convenient alternative to study protein-

protein interactions. 

Acknowledging the importance of the relationship between the sequence, the structure, 

and the function of a protein, the study and prediction of the structure of proteins arises 

as a crucial topic for understanding their molecular associations. Furthermore, the role 

of small local structures such as loops in the formation of protein-protein interactions 

has been widely hint, but not exploited yet for predictive purposes. In this scenario, the 

combination of structural information with the wide knowledge available about 

interacting proteins –the interactome, may hold unique prospects for the identification 

of new protein interactions.  

Besides the interactome itself, other biological networks crucial for the cell survival 

such as signalling networks, rely on interacting proteins to fulfil their functions. 

Characteristic properties of protein interaction networks such as centrality and 

modularity can be used to predict new members of signalling pathways. Several 

methods have been developed to exploit such properties with predictive purposes; 

however the incompleteness and noisiness of PPI data makes this task difficult. 

Assessing the success of such methods in a controlled experiment may shed new light 

on the task of transferring the function of known participants in signalling networks to 

other candidate proteins yet unknown.   
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2 Objectives 
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The objectives of this thesis are: 

i) Exploit the functional relevance of loops in the protein binding process to 

develop a new method for protein-protein interaction prediction.  

ii) Study the potentiality of protein interaction networks as a tool to transfer 

functional annotation in a selected example of signalling networks: the 

apoptosis pathways. Particularly, this objective is focussed in exploiting the 

results from different methods used for functional annotation transferring in 

a controlled experiment to achieve more reliable predictions.  

The first objective has been accomplished by developing iLoops, a new method to 

predict protein-protein interactions. The method is based in the observation of 

characteristic loop signatures in known interacting and non-interacting protein pairs. In 

order to make the iLoops method available to the scientific community a web server 

tool has been done. The two manuscripts included in section 4 treat this objective and 

have been recently submitted to scientific journals. The second objective is considered 

in section 5 and has been tackled by using different methods to transfer annotation from 

53 well-studied members of the human apoptosis pathways (as known by 2005) to their 

protein interactors. The results obtained by the different methods were compared to the 

knowledge gained on the apoptosis pathways in the period 2005-2010. Taking 

advantage of this retrospective approach, a scoring function was developed to select the 

most reliable candidates for the apoptosis pathways. The results from this study were 

published during year 2012. Additionally, two review publications about the prediction 

of tertiary and quaternary structure of proteins were produced as a result of the research 

that lead to the accomplishment of the stated objectives. These publications are included 

in section 3.  
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3 Results 
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3.1  Prediction of 3D structure of proteins and protein 

complexes 
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3.1.1 Comparative modelling of protein structure and its impact on 

microbial cell factories 
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3.1.2 Structural Bioinformatics of Proteins: Predicting the Tertiary and 

Quaternary Structure of Proteins from Sequence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Planas-Iglesias, J., Bonet, J., Marín-López, M. A., Feliu, E., Gursoy, A. & 

Oliva, B. (2012). Structural Bioinformatics of Proteins: Predicting Tertiary 

and Quaternary Strucutre of Proteins from Sequence. In Protein-protein 

interactions. Computational and experimental tools. (Cai, W. & Hong, H., 

eds.). InTech, Rijeka. 

 

http://cdn.intechopen.com/pdfs/34350/InTech-Structural_bioinformatics_of_proteins_predicting_the_tertiary_and_quaternary_structure_of_proteins_from_sequence.pdf
http://cdn.intechopen.com/pdfs/34350/InTech-Structural_bioinformatics_of_proteins_predicting_the_tertiary_and_quaternary_structure_of_proteins_from_sequence.pdf


 

62	
  



 

87	
  

3.2 Prediction of protein interactions based on local 

structural features 
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3.2.1 Understanding protein-protein interactions using local structural 

features 
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Abstract 

Protein-protein interactions play a relevant role among the different functions of a 

cell. Identifying the protein-protein interaction network of a given organism 

(interactome) is useful to shed light on the key molecular mechanisms within a 

biological system. In this work, we show the role of structural features (loops and 

domains) to comprehend the molecular mechanisms of protein-protein 

interactions. A paradox in protein-protein binding is to explain how the unbound 

proteins recognize each other among a large population within a cell and how 

they find their best docking interface in a short time-scale. We use interacting 

and non-interacting protein pairs to classify the structural features that sustain 

the binding (or non-binding) behaviour. Our study indicates that not only the 

interacting region but also the rest of the protein surface is important for the 

interaction fate. The interpretation of this classification suggests that the balance 

between favouring and disfavouring structural features determines if a pair of 

proteins interacts or not. Our results are in agreement with previous works and 

support the funnel-like intermolecular energy landscape theory that explains 

protein-protein interactions. We have used these features to score the likelihood 

of the interaction between two proteins and to develop a method for the 

prediction of PPIs. We have tested our method on several sets with unbalanced 

ratios of interactions and non-interactions to simulate real conditions, obtaining 

accuracies higher than 25% in the most unfavourable circumstances.  

 

Introduction 

 

Protein-protein interactions (PPIs) are crucial to understand how proteins perform 

their cellular functions1. However, due to the limitations in the experimental 

methods for determining PPIs and the structure of protein complexes, there is a 

large gap between our knowledge on genome sequences and the discovery of 

PPIs. To diminish this gap, several techniques such as two-hybrid assays and 
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affinity purifications followed by mass spectrometry have afforded large-scale 

identification of PPIs, producing a vast amount of data during the last decade2; 3. 

Simultaneously, several repositories have stored PPIs (reviewed inTuncbag et 

al.4) and other tools have been developed to integrate this information in order to 

exploit all available relationships5. While the majority of these efforts provide long 

lists of interacting proteins, they still miss the molecular information on the 

interface regions involved in the interactions. Therefore, completing protein 

interactome maps and understanding how proteins interact are still milestone 

challenges in current biology6.  

 

Computational methods for PPI detection represent a feasible alternative to 

experimental methods. Genomic-based approaches such as sequence homology 

and phylogenetic profiling, co-evolution, and co-localisation may identify 

interacting pairs, but further structural knowledge is required to unveil the 

interface between two proteins7. Homology modelling techniques may address 

this issue If structural templates are available8. On the lack of templates, docking 

approaches (recently reviewed in Janin et al.9) are designed to predict the 

conformation of protein-protein interactions. Nevertheless, docking yields 

thousands of solutions that are challenging to rank10. Valencia and co-workers 

recently showed that sets of docking poses can be used to discern between 

interacting and non-interacting protein pairs, although the native conformation 

may be indistinguishable among the numerous docking solutions11. 

 

Sprinzak and Margalit pioneered the work that correlated pairs of domains with 

protein-protein interactions12. Being basic units of protein folding and function, 

protein-domains have been widely used to exploit PPIs since then, either to 

identify new interactions or to define the interaction region13. Nevertheless, 

remote homologues with identical structural domains (i.e. conserved fold 

structure) may have different protein functions. This functional diversity is often 

associated with variations in the protein surface that occasionally can take place 

in the loops (regions connecting two elements of secondary structure)14. Hence, 
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it is not surprising that protein loops are associated with protein functions and 

can be used to predict protein annotation or to enable and disable interactions 

between single-domain proteins15.  

 

It has been proposed that the variety of well-ranked docking poses may reveal 

the possibility of near-native solutions, whose further optimization can recover 

some of the loosened contacts16. This hypothesis supports the concept of the 

funnel-like intermolecular energy landscape used to describe PPIs17; 18. The 

principle behind this hypothesis is that when two proteins collide they recognize 

their potentiality to interact, even if the interface produced in this approach is not 

optimal. 

 

We have based our study in the characterisation of deterministic structural 

features of interacting and non-interacting pairs19. Using the Negatome 

database20 and integrating PPIs from several databases we have classified pairs 

of structural features (defined as interaction signatures) that are characteristic of 

PPIs or Non Interacting Pairs (NIPs). Our results strongly suggest that it is the 

balance between interacting and non-interacting structural features that 

determines if a pair of proteins will interact or not. Taking advantage of this result, 

we have developed a method to predict protein-protein interactions that may be 

really valuable for experimentalists. 

 

Results  

 

Assignment of classified loops and domains to proteins.  

We obtained two reference sets of pairs of proteins -one for PPIs and the other 

for NIPs- with some structure associated (pairs of proteins to which we could 

assign standardised loops or domains, see Methods). These sets were referred 

as the Positive Reference Set (PRS) and the Negative Reference Set (NRS), 

respectively. Local structural features, namely SCOP domains21 or loops 

classified in ArchDB22, were assigned to proteins in these sets (see 
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supplementary Table S1). We characterised the proteins from these sets with 

protein signatures, groups of up to three structural features: domains, loops, or 

loops belonging to the same domain, denoted as {L},  {D}, and {LD} respectively 

(see Methods).  

 

Pairs of protein signatures 

Protein signatures were used to define the interaction signatures of protein pairs. 

An interaction signature was defined as the combination of two protein signatures 

of the same type ({L},  {D}, or {LD}), one from each partner. Interaction signatures 

were denoted as positive if observed in the PRS and as negative if observed in 

the NRS (see Methods). We calculated the number of times an interaction 

signature appeared in protein-pairs of the PRS or the NRS (Figure 1). The total 

number of interaction signatures and protein signatures are summarized in 

supplementary Table S1.  

 

Overview of the classification of PPIs using local structures (interaction 

signatures)  

We expected that over-represented interaction signatures were characteristic of 

their reference set. Hence, we assigned to each interaction signature a p-value 

(equation (1) in Methods) corresponding to the probability of observing the 

interaction signature at least as often as the number of occurrences in the 

reference set. This probability follows a hypergeometric distribution (with values 

between 0 and 1). For the sake of comparison with the work of Sprinzak and 

Margalit12, we also used their log-odds based score and applied it to domain 

interaction signatures (see equation (2) in Methods).  

 

These scores aim to statistically evaluate the occurrence of one interaction 

signature. However, several interaction signatures (derived from the PRS, the 

NRS, or both) can be assigned to protein pairs. Taking this into account, we 

designed six different classifiers for each type of signature to classify the 
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interaction between two proteins (see details in Supplementary Note 1). These 

classifiers are: the lowest p-value among the positive and negative interaction 

signatures found in a protein pair (pV+ and pV- respectively), the total number of 

positive and negative interaction signatures in the pair (S+ and S- respectively), 

the logarithm of the ratio between the negative and positive lowest p-values 

(LpVR), and the logarithm of the ratio between the number of positive and 

negative signatures (LSR). In addition, we denoted by LO+ and LO- the log-odds 

scores (equation (2) in Methods) calculated with interaction signatures and 

protein signatures in the PRS and NRS, respectively. Similarly, we denoted by 

LOR the difference between LO+ and LO-.  

 

To analyse the ability of the above classifiers to discern between PPIs and NIPs, 

we used a five-fold cross-validation approach (see Methods and Supplementary 

Note 2). The score of an interaction signature was computed from its frequency 

in the training set. For each classifier, we built Receiver Operating Characteristic 

(ROC) curves for all test sets and averaged the Area Under the Curve (AUC) as 

a measure of their suitability and performance. We restricted the training and test 

sets to protein pairs with less than 40% sequence identity in order to avoid over-

training (see Supplementary Note 3).  

 

Finally, we designed separating functions combining the number of interaction 

signatures and the p-values to classify pairs of PPIs and NIPs. The separating 

functions combined S+ and pV+, S- and pV-, or LSR and LpVR  (see 

Supplementary Note 4).  

 

 

Performance of the classifiers derived from positive and negative interaction 

signatures 

The classifiers derived from the PRS and NRS were used to discern between 

PPIs and NIPs. The basic principle underlying the prediction of PPIs using pV+ or 

the prediction of NIPs using pV- was the presence of a highly specific signature 
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for one or the other. Nevertheless, the fact that a protein pair enclosed a large 

number of positive interaction signatures –regardless of their p-value, could also 

suggest a potential interaction. This was the rationale behind the application of 

the S+ classifier. The same rationale using negative signatures was applied for 

the S- classifier to predict NIPs. We have to note that the results presented in this 

and the following sections correspond to the analysis performed using non-

homologous reference sets (see Supplementary Note 3). The analyses of the 

results using all sequences are provided in Supplementary Notes 5 and 6. 

 

In Table 1 are shown the AUCs of these classifiers and in the supplementary 

Table S3 the associated errors. It was noteworthy that pV- and S- classifiers 

achieved better AUCs than pV+ and S+. This result shows the potential of 

negative interaction signatures to identify NIPs. Besides, using the 5-fold 

approach with non-homologous sequences of the PRS worsened the ability of 

pV+ and S+ classifiers to identify PPIs (see Supplementary Note 5, Table 1 and 

supplementary Table S2). This was not observed with the pV- and S- classifiers. 

We argue that homologs of a pair of interacting proteins have some probabilities 

to preserve the interaction, while homologs of non-interacting pairs have the 

same chances to interact (or not) as any other pair. 

 

We also observed that PPIs had a large number of positive signatures (S+) and 

one or more signatures with low pV+. Therefore, we designed hyperbolic 

separating functions of pV+ and S+ to discern between PPIs and NIPs (see 

Supplementary Note 4). With these functions we obtained a PPVPPI around 55% 

and PPVNIP around 75%. Similar trend was observed for NIPs using S- and pV- 

classifiers, obtaining 65% PPVPPI and above 95% PPVNIP (see supplementary 

Table S4 and Methods section for definitions).  

 

Analysis of log-ratio classifiers: LpVR and LSR 

The principle for the use of the log-ratio approach was to identify which type of 

signature (positive or negative) was more relevant in terms of p-value (LpVR) or 
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in the number of signatures (LSR), in order to decide if a pair of proteins could 

interact. For the sake of comparison, we also studied the log-odds classifier LOR 

(the difference between LO+ and LO-). We compared the results between all 

classifiers to guarantee the selection of the best criteria to distinguish PPIs and 

NIPs (see Table 1, Figure 2, and supplementary Table S3). 

 

We examined if separating functions of LpVR and LSR for each type of 

signatures could discern between pairs of PPIs and NIPs. We intuited from the 

plot of LpVR versus LSR that linear separating functions could suffice to separate 

PPIs and NIPs (see Figure 3 and Supplementary Note 7). The PPVPPI, and the 

NPVPPI (i.e. PPVNIP) were around 0.8 (see Table2 and refer to Methods for 

definitions of PPVPPI, and NPVPPI).  

 

Assessment of the prediction of PPIs. 

In the previous sections we proved the ability of some derived classifiers to 

distinguish between PPIs and NIPs on a one to one ratio. However, an 

experimentalist faces a different ratio when testing the interactions of a random 

selection of protein pairs of a proteome. Usually the number of NIPs is much 

larger than the number of PPIs and only the expertise of the user can help to 

reduce this difference. Therefore, to assess the predictive power of these 

classifiers in real conditions, we needed a new set of PPIs and NIPs where the 

number of NIPs was higher than the number of PPIs. We extended the sets of 

PPIs and NIPs and called the new sets Positive Evaluation Set (PES) and 

Negative Evaluation Set (NES), respectively. Details on the construction of these 

sets are shown in Methods.  

To evaluate each type of interaction signature ({L}, {LD}, and {D}) we split the 

PES and NES in three subsets: one to obtain interaction signatures, another to 

train a random forest classifier using the WEKA package23, and the last one to 

test the prediction. In order to avoid trivial predictions we removed protein pairs 

with more than 40% sequence identity before splitting into groups (see 
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Supplementary Notes 3 and 8 for details). We used a 1:1 ratio between PPIs and 

NIPs to obtain positive and negative interaction signatures and train a random 

forest classifier. However, we used unbalanced ratios between PPIs and NIPs to 

test the prediction (1:10, 1:20 and 1:50) in order to simulate the problem faced by 

an experimental biologist when predicting PPIs. In the last step of our approach, 

we penalized the errors due to false positive predictions from the random forest 

classifiers with different “relative costs” (Methods). The values of TPR were 

almost unaffected by these relative costs. Figure 4 and Table 3 show the 

average of PPV obtained with different “relative costs” and unbalanced ratios of 

PPIs over NIPs using {L} interaction signatures (results for {LD} and {D} 

interaction signatures are shown in supplementary Tables S5 and S6, 

respectively).  

We have to note that the set of co-localized proteins represents around 5% of all 

possible protein pairs in a human cell. Thus, the 1:50 ratio simulates the naturally 

occurring unbalance between PPIs and NIPs in the human proteome, which has 

been estimated to be about 1 PPI for 1000 NIPs24. Consequently, the ratios of 

our test represent different levels of expertise of a user that applies the prediction 

method: from an ideal expert, who is able to select pairs with a 50% probability to 

have an interaction, to a non-expert, who almost randomly selects any pair of 

proteins of the interactome with ordinary good judgement (see further in 

Supplementary Note 8).  

Comparison with previous works  

First, we assessed if the p-value (equation (1) from the main text) was equivalent 

to the log-odds score in equation (2). Similarly to the work of Sprinzak and 

Margalit12, we neglected sequence similarity and predicted PPIs using pV+ and 

LO+ using positive interaction signatures of domains {D}. We compared the ROC 

curves (see Figures 2C and 2D), their AUCs (supplementary Table S2) and the 

associated estimation of the error of AUC (see supplementary Table S3). The 

results using pV+ were comparable to those obtained with the log-odds score 

used by Sprinzak and Margalit12 to predict PPIs. 
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Also, we compared our predictive approach with other methods extracted from 

the literature. We compared the baseline hypothesis of each method and the 

construction of the benchmarks employed for each validation test (most 

differences arose from the construction of the set of NIPs). The majority of 

methods achieved recalls of more than 80% but neglected to report the ratio of 

success (PPV) considering that the number of NIPs should be larger than the 

number of PPIs. We wish to note that any of the compared methods were tested 

with similar realistic conditions to the ones applied in this study. Table 4 

summarises the principal features and results. 

 

Examples 

We illustrate positive interaction signatures using the interaction between tsunagi 

(RBM8A_DROME) and the mago nashi (MGN_DROME) proteins of Drosophilla 

melanogaster. The structure of this complex is given by the PDB code 1oo025 

(Figures 5A and 5B). These two proteins are components of the core of the Exon 

Junction Complex (EJC) that plays a key role in the localisation of “oskar mRNA”, 

thus being vital for the development of the fruit fly. The classifiers LpVR and LSR, 

where pV+ < pV- and S+ > S-, show that this as an example of a correctly 

predicted interaction.  

To illustrate negative interaction signatures we selected the complex of the Rab 

geranylgeranyltransferase (RabGGTase ! and " subunits) and their accessory 

Rab Escort Protein (REP) (PDB code 1ltx26). REP is vital for the recognition of 

proteins in the Rab family, and the post-transcriptional modifications generated 

by RabGGTase are crucial for the reversible membrane association that Rab 

requires to function. REP is recognised by !-RabGGTase, having no physical 

contact with "-RabGGTase (Figures 5C and 5D). The prediction by means of 

LpVR and LSR is that both proteins should not interact (pV+ > pV- and S+ < S-). 
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The prediction of the interactions in the human exosome is provided in 

Supplementary Note 9 and supplementary Figure S1 in order to show the limits 

of our approach. 

 

Discussion 

 

We have explored the capability of several structural features to explain the 

mechanism underlying the formation of protein-protein interactions. Besides 

structural domains, we used the classification of loops, defined as combinations 

of two contiguous secondary structures, with the same purpose. We developed a 

scoring method to score the likelihood of a protein-protein interaction using 

groups of loops and domains. These groups were defined as protein signatures 

for each protein. We characterised pairs of protein-signatures derived from PPIs 

as positive interaction signatures. Compared to previous scoring methods12, our 

score provided the probability of observing the interaction signature at least as 

often as the number of occurrences in a reference set. We corroborated recent 

findings about the crucial role of loops in the formation of PPIs13; 27, but also in 

preventing the formation of protein interaction complexes. We found that 

negative interaction signatures discerned between PPIs and NIPs, showing that 

relevant information was enclosed in NIPs.  

 

Scoring the likelihood of an interaction based on the p-values of positive and 

negative interaction signatures considered only one interface produced by a 

putative collision. Thus, we analysed whether the total number of signatures 

could be a good criterion of classification. Our results may be interpreted in the 

light of a recent study made by Wass et al.11. In their work, they studied the 

capability of docking algorithms (which are used to identify the best interface 

between a pair of proteins) to predict interacting partners regardless of their 

success in pinpointing the interacting region. Their study showed that although 

docking algorithms could fail to identify the native complex (and thus, the 
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interface), the distribution of docking scores discerned between interacting and 

non-interacting pairs. From their results, the authors suggested that protein 

surface morphology contained sufficient information to identify a bona fide 

interactor11. This concept implied that several regions of the protein were 

important for the molecular association between two proteins. Indeed, this 

described a model of the funnel-like intermolecular energy landscape in PPIs17; 

18. It is unclear how two interacting proteins can find each other within a large 

population of proteins and quickly form a binary complex. If the molecular 

association was the result of a quasi-infinite series of elastic collisions with a 

unique successful outcome (i.e. the final pose of the binary complex), the 

formation of PPIs would require an unaffordable time-scale (NP-problem) as in 

Levinthal’s paradox28. The solution of the problem is to assume that in the 

collision of two proteins they recognise if they have to interact or not, forming an 

intermediate complex that may (or may not) have the best docking interface. For 

a non-interacting pair, both proteins would be immediately released to interact 

with others, while if they had to interact they would stay together (or near each 

other) until finding the correct conformation. This model implies certain 

“stickiness” between the interacting proteins, which would allow the formation of 

the intermediate complexes.  

 

In this context, our results suggest a similar explanation for the formation of 

interacting protein-pairs. We proved that the number of interaction signatures is a 

good classifier of PPIs and NIPs, suggesting that not only one interacting region 

is important to decide whether a pair of proteins could interact. Hence, several 

protein regions could participate in the interaction process, allowing the formation 

of intermediates of the binary complex. In the framework of the funnel-like 

intermolecular energy landscape theory, proteins would explore their energetic 

landscape during the protein-protein collisions. We propose that this landscape is 

constrained by the composition of local structural features of both proteins 

(protein signatures). According to this model, positive and negative interaction 

signatures could represent energetic valleys and peaks respectively. Thus, the 
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pairing of protein signatures would encode the possibilities to accept or not the 

interaction, as illustrated in Figure 6. A large number of positive signatures would 

increase the probability to find a positive signature in the first collision, which in 

turn would help to maintain the partners close. With a similar argument, a large 

number of negative signatures would release both proteins unbound. Also, if the 

best positive-signature score were better than the best among the negative 

signatures, the probability to retain the interaction of the two proteins would be 

larger, and vice-versa. Finally, a protein-protein interaction is a state that results 

from the many occurring collisions between molecular pairs. Thus, two proteins 

interact or not depending on the balance between the log-ratio classifiers LpVR 

and LSR, which were used to predict their potential binding.  

 

Interestingly, the explanation is valid for all types of protein signatures, either 

loops or domains. This suggests two different scales in 3D space, one for large 

proteins formed by several domains, and another for small or single domain 

proteins. In the case of large proteins formed by several domains, a large 

number of positive (or negative) signatures imply several domains and groups of 

them favouring (or hindering) the interaction. For small proteins formed by few 

domains or single-domains, local structures formed by pairs of secondary 

structures, and/or groups of them, play this role. It is also noteworthy that 

classifications using {L} and {LD} signatures obtain similar results. This implies 

that {L} and {LD} signatures cannot be distinguished, suggesting that most loop 

signatures playing a role in the decision to accept or deny an interaction belong 

to the same domain. In short, domains would play the main role to decide if a pair 

of proteins interacts in a low resolution scale, while at higher resolution scale the 

best pair of interacting domains would be decided by the selection of loop 

interaction signatures ({L}). 

 

We proved the application of this approach to predict PPIs under different 

unbalanced ratios between the number of PPIs and NIPs, trying to simulate the 

conditions of real experiments. For a certain ratio, the system allows us to 
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address different putative questions, such as predicting the largest amount of 

real interactions or minimizing the number of failures. Therefore, our approach 

wraps up a unique framework for experimental biologists who want to predict 

PPIs and require prioritising sets of candidate pairs. Our approach provides 

probabilistic expectations for the set of proteins-pairs according to the knowledge 

of the user about them and his expertise to select the best candidates (around 

30% of success in very unfavourable conditions or more than 80% of recall in the 

best scenario). 

 

To summarise, we have shown that loops and domains appropriately describe 

the interactions between proteins and, once grouped into interaction signatures, 

they can be used to predict them. Furthermore, not only the likelihood of 

observing a particular interaction signature is important to determine whether two 

proteins will interact but also the total number of signatures plays a major role. 

Our findings clearly support the funnel-like intermolecular energy landscape 

theory for PPIs. Finally, we have constructed a method of prediction of PPIs 

under different conditions that may be worth for an experimentalist.  

!

Methods 

 

Experimental Datasets 

We used BIANA29 to integrate data of PPIs from several repositories (HPRD30, 

MINT31, BioGrid32, IntAct33, and MIPS34). Protein entries from different databases 

were unified if they shared a UniProt Accession Number, a GeneID or had the 

same protein sequence. Pull-down experiments were avoided and we studied 

only direct binary interactions. A total of 117970 PPIs conformed this set. 

  

A dataset of NIPs was obtained from the Negatome database20. We used the 

manual-stringent dataset, which contains 1162 NIPs extracted from individual 

experiments reported in scientific literature (high-throughput experiments were 

not considered). 
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Assignment of loops and domains. 

 

We assigned loops and domains to each protein in the PPI and NIP sets. Protein 

loops were defined as classified in ArchDB22 and protein domains were defined 

as classified in SCOP21. We annotated 2821 PPIs with domains and 632 PPIs 

with loops from ArchDB in the PRS. Due to the limited size of the NRS, we used 

sequence similarity to annotate loops and domains. First, we searched homologs 

in PDB using BLAST36. The hits used for the annotation had to satisfy a minimum 

percentage of identity according to the length of the alignment (above the 

twilight-zone curve, as described by Rost37). Second, we required a minimum 

sequence coverage of the structure (100% for loops and 75% for domains). We 

annotated structural features for 720 non-interacting protein pairs (699 with 

domains, 309 with loops and 288 with loops and domains). 

 

The sets of PPIs and NIPs contained pairs of proteins such that both partners 

had assigned structural features of the classification of ArchDB, SCOP, or both. 

These sets were named Positive Reference Set (PRS) for PPIs, and Negative 

Reference Set (NRS) for NIPs.  

 

Protein and interaction signatures 

We defined as protein signature any group of up to three local structural features. 

We considered three different types of local structural features. Groups of 

ArchDB loops were named loop signatures, which were denoted by {L}; groups of 

SCOP domains were named domain signatures, which were denoted by {D}; and 

groups of ArchDB loops located in the same SCOP domain were denoted by 

{LD}. For a pair of proteins (A,B), we defined an interaction signature as a pair of 

protein signatures of the same type, one from protein A and the other from 

protein B (see Supplementary Note 1). 
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Scoring Functions 

We defined the p-value of a protein signature pair as:  
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where i and j are protein signatures from two different proteins; (i,j) is the pair 

observed in both proteins (either in PPI or NIP); N and R are respectively the 

total number of proteins (or domains for {LD} signatures) and the total number of 

pairs in the reference set (either PRS or NRS); Pi and Pj, are the number of 

observed proteins (for {L} and {D} signatures) or domains (for {LD} signatures) 

with the signature i or j respectively; and Pij is the number of pairs with the 

interaction signature (i,j) in the reference set. The p-value is derived from the 

probability of observing the interaction signature in the reference set, which 

follows a hypergeometric distribution. 

 

We also used the score defined by Sprinzak and Margalit12 to associate pairs of 

domains with PPIs. This is calculated with the log-odds ratio between observed 

and expected frequencies of interaction signatures:  

! 

log2 Pij PiPj( )  (2) 

Where Pi, Pj and Pij are defined as above. 

 

Five-fold cross-validation 

We used a five-fold cross-validation approach to evaluate the capacity to 

distinguish between PPIs and NIPs with the classifiers defined in the text 

(Results section and Supplementary Note 1). The definition of True Positives 

(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) 

varied according to the goal of the prediction (predicting PPIs or NIPs). Positives 

are putative interacting pairs and negatives are putative non-interacting pairs 
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when predicting PPIs, and viceversa when predicting non-interactions (see 

Supplementary Note 2). To assess the prediction capacity of the classifiers we 

computed the True Positive Rate (TPR), the False Positive Rate (FPR), the 

Positive Predictive Value (PPV) and the Negative Predictive Value (NPV):  

! 

TPR = TP (TP + FN)

FPR = FP (FP +TN)

PPV = TP (TP + FP)

NPV = TN /(TN + FN)

      (3)  

 

We used the sub-index PPI and NIP to identify the set of positives (i.e. PPVPPI is 

the positive predictive value for predicting interactions and PPVNIP is the positive 

predictive value for predicting non-interactions, therefore PPVPPI = NPVNIP and 

PPVNIP = NPVPPI). 

 

We computed the ROC curves and the AUCs with the ROCR package38 five 

times, using different test sets. The difference between the extreme values of the 

AUCs and the AUC of the mean ROC curve was given as an estimation of the 

error of these averages. Average ROC curves and AUCs were obtained by 

averaging the results of the five tests.  

 

Construction of the Positive and Negative Evaluation Sets.  

The requirements of a good negative model for PPI predictions have been 

recently discussed39. On one hand, it is still nowadays difficult to identify non-

interacting protein pairs due to the lack of sensitivity of high-throughput 

experimental detection methods of PPIs24; 40. On the other hand, it was shown 

that random negative models introduced biases19; 41. We used the Negatome 

database20 as a negative reference set to derive the structural features 

preventing the interaction between two proteins. The Negatome data set had the 

advantage of taking into account co-expression and co-localization of the 

proteins forming a non-interaction pair. For instance, if two proteins are never co-
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expressed or co-localised, they certainly would not have a chance to interact in 

vivo. Evidently, these proteins would not require encoding information to avoid 

the interaction. Hence, it would not be expected to learn negative interaction 

signatures from such a pair of proteins. On the contrary, coexisting pairs of non-

interacting proteins might need to show repulsive features to be pulled apart. 

Therefore, it was worth to include them in the negative reference set. This 

rationale is an extension of previous findings of Ben-Hur and Noble41, who 

showed that excluding co-localised protein pairs from the negative reference set 

introduced a bias for PPI predictions. We further used this criterion to extend the 

set of NIPs for the evaluation of the classifiers on the prediction of PPIs. 

The Positive Evaluation Set (PES) was obtained by annotating loops from 

ArchDB and domains from SCOP in the set of curated PPIs by means of 

sequence similarity as described above. We were able to annotate domains and 

loops to 8207 and 7264 PPIs, respectively. To extend the set of NIPs we needed 

to define some conditions ensuring that a pair of proteins would not interact. 

First, we considered all proteins of the previous sets PRS and NRS and 

generated all possible pairs. Next, we removed all PPIs and any pair that could 

be predicted to interact by means of similarity using BIPS42 (Supplementary Note 

3) with a non-restrictive criteria (40%ID sequence similarity). We also ensured 

that the proteins of the pair were co-localized (sharing the same cellular 

component GO terms43). We obtained with this protocol 21155 pairs of proteins 

with unreported interactions. Finally, loops and domains were annotated for all 

the protein-pairs by means of sequence similarity (as described above) and pairs 

without structural features were removed. We were able to annotate domains of 

SCOP for 20229 protein-pairs and loops of ArchDB for 3361 pairs. This set was 

named Negative Evaluation Set (NES).  
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Figure Legends  

 

Figure 1. Protein and interaction signatures.  

A) Pairs of proteins (A,B). Domains are shown in big shapes and loops in small. 

A protein pair (A,B) is indicated with a connection symbol.  B) The number of 

domain interaction signatures {D} is presented in a table (as in Sprinzak and 

Margalit12) using protein-domain signatures. C) Table showing the number of 

loop interaction signatures {L} and {LD}. Protein signatures are formed by groups 

of 1, 2 and 3 loops from any domain, {L}, or from the same domain, {LD}. Each 

cell of the table contains the number of {L} interaction signatures (in white 

background) and, if available, the number of {LD} interaction signatures (in grey 

background).  When the number of {LD} and {L} interaction signatures is different, 

the value of {L} interaction signatures is highlighted in red.  

 

Figure 2. Performance of classifiers using a 5-fold cross-validation. 

Average ROC curves (TPR versus FPR) using interaction signatures {L} (in A 

and E), {LD} (in B and F), and {D} (in C, G and D). Figures 2A, 2B and 2C show 

the ROC curves using classifiers based in the p-value: pV+ (in blue), pV- (in red) 

and LpVR (in green). Figures 2E, 2F and 2G show the ROC curves using the 

classifiers in the number of interaction signatures: S+ (in blue), S- (in red) and 

LSR (in green). Figure 2D shows the ROC curves using the classifiers LO+ (dark 

blue), LO- (dark red), and LOR (dark green). Average ROC curves were obtained 

with protein pairs with sequence identity smaller than 99% (continuous line) and 

protein pairs with less than 40% sequence identity (dashed line).  

 

Figure 3. Classification of PPIs and NIPs using LpVR and LSR classifiers. 

Plot of LpVR versus LSR of PPIs (blue) and NIPs (red) calculated with interaction 

signatures {L} (A), {LD} (B), and {D} (C). The optimal line separating PPIs from 

NIPs is depicted in green.  
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Figure 4. Prediction of PPIs using random forests classifiers.  

Averaged PPV (blue lines) and TPR (yellow lines)* are shown as functions of the 

relative cost applied in WEKA package23 using interaction signatures {L} (A), {LD} 

(B), and {D} (C). Standard deviations are shown in error bars.  Unbalanced ratios 

of PPIs versus NIPs are shown in different hues of blue: 1:1 (dark), 1:10 (navy), 

1:20 (light), and 1:50 (cyan).  

*Note: TPR values were similar for all different unbalance ratios tested, and are 

shown only for the most unfavourable (1:50) since it encompass the largest error.  

 

Figure 5. Examples of interaction signatures in structures of protein pairs. 

Regions of loops involved in positive interaction signatures are shown in blue, 

while regions in negative interaction signatures are in red. The structure of the 

interaction between RBM8A_DROME (green) and MGN_DROME (wheat) is 

shown in figures A (positive interaction signatures) and B (negative interaction 

signatures). The complex between the RabGGTase (! subunit in black, " subunit 

in green) and REP protein (wheat) is shown in figures C and D. Loop interaction 

signatures of "# RabGGTase and REP are shown in C (positive) and D 

(negative).  

!

Figure 6. Schematic representation of protein signatures in protein pairs. 

Proteins (A, B, and C) are represented as polyhedra and grouped in pairs (A,B), 

(A,C), and (B,C). Depending on whether they interact or not, proteins in each pair 

are connected by a black straight line or a red cross respectively. Faces in the 

polyhedra represent protein signatures, coloured in blue or red depending on 

whether they favour the interaction or the non-interaction. The interaction 

signatures formed by pairs of protein signatures of each protein are considered 

favourable or unfavourable according to the ratio of the positive and negative 

scores. Protein A can interact with Protein B because both have favourable 

protein signatures for this interaction; on the contrary, the interaction A-C is 

highly unfavourable due to their protein signatures composition. However, the 
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same protein signatures in C that made the interaction A-C unlikely, favour the 

interaction between B and C.  

!
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Table Legends!
 

Table 1. AUCs of PPI classifiers.  

Columns 2 to 10 show the average AUCs obtained with a five-fold approach for 

different classifiers trained and tested with non-homologous protein pairs (less 

than 40% sequence identity). The first column shows the type of signature used 

for the classification (Sign.).  

Table 2. Classification of PPIs and NIPs. 

Ratios of correctly classified PPIs (TPRPPI), NIPs (TPRNIP), and positive 

predictive values for the classifcation of interactions (PPVPPI) and non-

interactions (PPVNIP) using linear separating functions of LpVR and LSR. The 

first column indicates the type of interaction signature of the classification.  

Table3. Performance of the prediction of PPIs. 

Averaged PPV and TPR of the prediction of PPIs using {L} interaction signatures 

and random forests classifiers (standard deviations are shown between 

parenthesis). Columns 2-6 indicate the results for different unbalanced ratios of 

PPIs versus NIPs and the first column indicates the relative-cost of false-

positives versus false-negatives applied in the random-forest classifier.  

*Note: TPR values were similar for all different unbalance ratios tested, and are 

shown only for the most unfavourable (1:50) since it encompasses the largest 

standard deviation.  

 

Table 4. Comparison of PPI prediction methods.  

We compare several approaches by method, validation sets and statistical 

results. The type of method and input are shown in columns 2 and 3. The 

database (or approach) employed to construct the training and test sets are 

shown in columns 4 to 7 (4 and 5 for PPIs and 6 and 7 for NIPs). In column 8 

(%ID) we indicate the maximum percentage of sequence identity between the 

sequences of the training and tests sets (99% means that this restriction is not 
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applicable and test and training sets contain very similar sequences). The 

balance ratio between PPIs and NIPs is shown in column 9 (Ratio). Statistical 

values for the comparison are shown in columns 10 to 16 (sensitivity, specificity, 

PPV, accuracy, F1 measure, and AUC). The symbol “-“ indicates that the values 

could not be collected from the original work. We compared our approach based 

in loop interaction signatures with 3 methods based on domain-domain 

interactions (rows 1-3), one method based on Gene Ontology (row 4) and 

methods based on the protein sequences (rows 5-7). References for these 

methods are indicated in column 1 (use them for further details on the 

methodology and benchmarking databases). For the description of methods: 

“Correlation” indicates methods based in the correlation between specific 

features (such as domains or loops) with PPIs; “MLE+Bayesian” indicates the 

Maximum Likelihood Estimation and Bayessian networks; “SVM” is for Support 

Vector Machines; “Shortest path” is the distance in the gene ontology tree; and 

“Net. Weight” is a network-weighted approach. For the description of databases 

we use the same names as in the main text or from the original works: “9DIN” 

stands for the integration of nine Domain Interaction Networks (see reference in 

the table); “Y2H&HPRD” is the integration of yeast-two-hybrid experiments and 

human interactions from HPRD (see reference in the table). Additional databases 

iPfam49, DOMINE50, PQS51, BIND52, HPRD30, and STRING53 were used to train 

and test the methods. The majority of methods used a random selection of pairs 

of proteins for the set of non-interactions (identified as “Random”), while we 

specifically selected the set of non-interactions for the evaluation (NES). 

*Note: results are given for an effective cost 1:20. 

 

!
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Figure 2 
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Figure 5 
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Table 1 

 

 

Table 2 

 

 

Table 3 

 

Table 1. AUCs of PPI classifiers.  

 AUC 

Sign.  pV+ pV- LpVR S+ S- LSR LO+ LO- LOR 

{L} 0.67 0.79 0.82 0.59 0.82 0.85 - - - 

{LD} 0.67 0.78 0.82 0.60 0.81 0.86 - - - 

{D} 0.61 0.70 0.86 0.56 0.73 0.89 0.66 0.62 0.93 

!

Table 1

Table 2. Classification of PPIs and NIPs using LpVR and LSR. 

Sign.  TPRPPI TPRNIP PPVPPI PPVNIP 

{L} 0.86 0.75 0.77 0.84 

{LD} 0.88 0.74 0.77 0.86 

{D} 0.92 0.78 0.81 0.91 

!

!

Table 2

Table 3. Performance of the prediction of PPIs. 

! Unbalance-Ratio!

 1:1 1:10 1:20 1:50 1:50!

Cost PPV  PPV  PPV  PPV  TPR
†
 !

1:1 0.74 (0.06) 0.23 (0.04) 0.13 (0.03) 0.05 (0.01) 0.82 (0.01)!

1:5 0.83 (0.07) 0.35 (0.09) 0.21 (0.06) 0.10 (0.03) 0.57 (0.17)!

1:10 0.87 (0.07) 0.43 (0.11) 0.27 (0.09) 0.13 (0.05) 0.42 (0.21)!

1:20 0.90 (0.06) 0.51 (0.14) 0.35 (0.13) 0.18 (0.09) 0.27 (0.21)!

1:30 0.92 (0.05) 0.55 (0.17) 0.39 (0.16) 0.22 (0.14) 0.21 (0.20)!

1:40 0.93 (0.05) 0.63 (0.20) 0.47 (0.22) 0.27 (0.22) 0.16 (0.18)!

1:50 0.93 (0.07) 0.65 (0.23) 0.50 (0.26) 0.29 (0.27) 0.14 (0.17)!

Table 3
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Supplementary Note 1: Details on PPI classifiers. 

Let (A,B) be a pair of proteins. Let PSA = {psA1, …, psAi} and PSB =  {psB1, …, 

psBj} be the sets of protein signatures of a certain type ({L},  {D}, or {LD}), 

where psXn represents a particular protein signature (X= A or B). We define an 

interaction signature as a pair of protein signatures of the same type (one 

from protein A and the other from protein B). There were three different types 

of interaction signatures formed by pairs of {L},  {D}, and {LD} protein 

signatures. They were labelled as {L},  {D}, and {LD} interaction signatures, 

respectively. Formally, the set of interaction signatures is defined as: IS(A,B) = 

{(psA1, psB1),(psA1, psB2),…, (psAi, psBj)}. Interestingly, even though an 

interaction signature (psAi, psBj) could be observed in the PRS and the NRS 

sets, most interaction signatures in the PRS were not in the NRS. These 

observations suggested that positive and negative interaction signatures 

could be exploited to characterise PPIs and NIPs. Hence, we defined the 

positive interaction signatures (IS(A,B)
+) and negative interaction signatures 

(IS(A,B)
-) as the subsets of the interaction signatures in IS(A,B)  that have non-

zero entry in the frequency table derived from the PRS or the NRS 

respectively. Using these definitions, we define the following classifiers:  

! 

S
+ = IS

(A ,B )+

S
" = IS

(A ,B )"

pV
+ =min

psA ,psB( )#IS
A ,B( )+

pvalue psA , psB( ){ }

pV
" =min

psA ,psB( )#IS
A ,B( )"

pvalue psA , psB( ){ }

LO
+ =max

psA ,psB( )#IS
A ,B( )+

logodds psA , psB( ){ }

LO
" =max

psA ,psB( )#IS
A ,B( )"

logodds psA , psB( ){ }
LSR = log2 S+

S
"( )

LpVR = "log2 pV
+
pV

"( )
LOR= LO+

" LO
"

 (SEq.1) 

This is, we define pV+ and pV- as the lowest p-value among those of the 

signatures in IS(A,B)
+ and IS(A,B)

- respectively. Similarly, we denote the highest 
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log-odds value of positive and negative signatures in IS(A,B)
+ and IS(A,B)

- as 

LO+ and LO- respectively.  

We emphasize that S+, pV+, and LO+ are meant to describe PPIs and are 

obtained from the frequency table built with the PRS. Conversely, S-, pV-, and 

LO- are expected to explain NIPs and are derived from the frequency table 

built with the NRS. Finally, the ratio-based classifiers (LSR, LpVR, and LOR) 

require both frequency tables and are intended to classify PPIs.  

Frequently, a protein interaction signature will be only included in the positive 

or the negative subset. In these cases, the ratio-based classifiers result in a 

zero-denominator division or a zero logarithm. To avoid such indeterminacies, 

the following pseudo-numbers are applied: the minimum number of signatures 

is 0+10-10; the worst (maximum) p-value is 1-10-10; and the best (minimum) p-

value is 10-99. For the computation of the potential PPI descriptors, any 

number beyond these limits is coerced into the described pseudo-numbers.  

 

Supplementary Note 2: Details on the five-fold cross-validation 

The goal of the five-fold cross-validation is to assess the ability of the potential 

PPI descriptors to classify the protein pairs in the test set as PPIs or NIPs. 

Protein pairs in the test set are classified as PPIs if the score for a potential 

PPI descriptor is above a threshold. On the contrary, protein pairs in the test 

set below this threshold are NIPs. Within this framework, a correctly classified 

PPI from the test set is considered a True Positive (TP) while a correctly 

classified NIP is a True Negative (TN). Conversely, a NIP in the test set 

reported as an interacting pair would be a False Positive (FP) and a PPI 

considered not to interact a False Negative (FN). These definitions apply to 

most of our potential PPI descriptors: S+, pV+, LSR, and LpVR. The other two 

descriptors, S- and pV-, are designed to classify in the opposite way, that is, to 

identify NIPs instead of PPIs. In these cases, NIPs and PPIs from the test set 

correctly classified are considered TPs and TNs respectively; PPIs predicted 

not to interact are FPs; and NIPs classified as interacting pairs are FNs. The 

True Positive Rate (TPR), False Positive Rate (FPR) and Positive Predictive 

Value (PPV) can be computed from these definitions (see Methods and 

equation 3 in the main text).  



 

132	
  

 

It has to be noted that the size of the PRS and the NRS differ. This is not a 

problem for the computation of TPR or FPR, since it involves the number of 

correctly and incorrectly classified protein pairs in only one of these sets. 

However, the PPV is a ratio between number of elements in the PRS and the 

NRS classified above a certain threshold; thus, its value depends on the 

relative sizes of these sets. The actual size of the interactome is still under 

discussion1; 2; 3; 4; 5; 6. Thus, determining the proper ratio of PRS and NRS 

sizes for the computation of PPV remains a challenge. Here, we chose to 

randomly sample ten times n elements of the larger set (where n is the size of 

the smallest set).  

The five-fold cross-validation procedure involved two steps. First, protein pairs 

in the PRS or the NRS were split randomly into 5 groups. Then, four of the 

groups from the PRS and the NRS were selected as the training set and used 

to derive scores for positive and negative interaction signatures. The 

remaining group was used as test set to evaluate the prediction in the test set. 

The process was repeated 5 times. 

To avoid sequence redundancy in the training process, we removed from the 

training set all protein pairs aligned with more than 99% of sequence identity 

with any protein pair in the test set. Then, to avoid biases by close homologs, 

we repeated the 5-fold cross validation removing from the training set all pairs 

aligned with more than 40% of sequence identity with any pair in the test set 

(see Supplementary Note 4).  

For each prediction, we computed the averaged PPV values with the ten 

samples. With this procedure we have the same number of positive and 

negative scores and the probability of having a positive prediction by random 

is 0.5. 

 

Supplementary Note 3: Non-redundant training sets. 

To avoid homology redundancy, we trim the training sets by removing protein 

pairs with more than 40% sequence identity to protein pairs in the test set. Let 

(A,B) and (A’,B’) be two protein pairs; let seqID(A,A’), seqID(A,B’), 

seqID(B,A’), and seqID(B,B’) be the percentage of sequence identity between 

the pairs (A,A’), (A,B’), (B,A’), and (B,B’) respectively. We consider the pair 

(A,B) homologous to (A’,B’) if: 
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i. seqID(A,A’) ! 40% and seqID(B,B’) ! 40%, and/or 

ii. seqID(A,B’) ! 40% and seqID(B,A’) ! 40 

To obtain the non-redundant training sets, first we identify all homologous 

regions from proteins in the PRS and the NRS by BLASTing 7 them all against 

all. Then, a protein pair (X,Z) is removed from the training set if there exists a 

pair (X’,Z’) in the test set homologous to (X,Z). 

 

Supplementary Note 4: Separating functions built from a combination of 

different PPI classifiers. 

Our PPI classifiers are based either on the number of interaction signatures 

from a protein pair (S+, S-, LSR) or their best p-values (pV+, pV-, LpVR). Three 

logical combinations can be made using these classifiers: S+ and pV+ (positive 

combination), S- and pV- (negative combination), and LSR and LpVR (ratio 

combination). We consider the plane defined by the variables involved in each 

combination: x for the variable in (S+, S-, LSR) and y for the variable in (pV+, 

pV-, LpVR). A separating function in this plane is expected to separate PPIs 

from NIPs. Note that in the positive and ratio combinations, PPIs are expected 

to have a high number of signatures (or signatures ratio) and low best p-

values (or p-value ratios), whereas in the negative combination the opposite 

holds. Hence, when representing S+ as a function of –log(pV+) or LSR as a 

function of LpVR, a good separating function should be placed above NIPs. 

On the contrary, if S- is represented as a function of –log(pV-), the separating 

function should be above PPIs. Supplementary Table S7 summarises the 

combinations used and what side of the separating function a correctly 

classified PPI or NIP should lie in. 

The distribution of the PPI and NIP scores in a plane are separated differently 

for each combination of descriptors (see Figure 3 in the main text and 

supplementary Figures S2, S3, and S4); thus, the shape of the separating 

function has to differ as well. For the positive and negative combination, the 

separating function that discerns PPIs from NIPs should be a concave curve 

derived from a negatively sloped line. Let A and B be the y-intercept and the 

x-intercept points of such a line respectively, such that the line function is:  

! ! ! !

! 

f x( ) = A "
A

B
x  (SEq.2)  
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The simplest polynomial function to describe the concave curve derived from 

this line is represented by:  

! 

f x( ) = K
1

+
K
2
x

K
3

+K
4
x "K

5( )
 (SEq.3) 

where the following restrictions must be applied:  

! 

1. f 0( ) = A

2.K
4

= 0" f x( ) = A #
A

B
x

3. f B( ) = 0

 (SEq.4) 

From restriction 1 we obtained that K1 = A; to fulfil restriction 2 we choose  

K2=-A and K3 = B; and to fulfil restriction 3 we have K5=B. With these 

equalities, equation (S3) becomes:  

! 

f x( ) = A "
Ax

B +K x " B( )
 (SEq.5) 

For 0 < K < 1, this equation provides the desired curve. The larger the K, the 

more concave the curve is. 

The separating function is optimised by testing several values for A, B, and K:  

A = {A’/3, (2*A’)/3, A’, (4*A’)/3, (5*A’)/3, 2*A’} 

B = {B’/10, B’/9, B’/8, B’/7, B’/6, B’/5, B’/4, B’/3, B’/2, B’} 

K = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.91, 0.92, 0.93, 0.94, 

0.95, 0.96, 0.97, 0.98, 0.99} 

where: A’ is the maximal S+ for the positive combination or the maximal S- for 

the negative combination; B’ is the maximal –log(pV+) or –log(pV-) for the 

positive and negative combinations respectively. For a protein pair with scores 

(x,y), y being larger or smaller than f(x) determines in which side of the curve 

the point (x,y) lies.  

An inspection of the distribution of the PPI and NIP scores in the ratio 

combination suggests that a negatively sloped line discriminates them 

appropriately. Such a line can be defined as:  

! 

f x( ) = "mx + n  (SEq.6) 

where -m is the slope of the line and n the y-intercept point. If ! is the angle of 

this line with the x-axis, then:  

! 

m = tan "( )  (SEq.7) 
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To optimise the separating function we use different values of ! increasing 

from 0º to 90º in a 2.5º step. We also test different n values: we use a zero-

centred distribution of 21 equally spread values of n in the interval [-a,a] with 

a=max(|v|, |V|)/3 where V and v are the maximum and minimum LpVR values 

in the five-fold cross-validation respectively.  

We considered as the optimum separating function the one that maximised 

the following optimisation criterion (OC):  

! 

OC =
TPR

PPI
"FPR

PPI
# FPR

NIP
"TPR

NIP( )

TPR
PPI

+ FPR
PPI( ) TPRNIP + FPR

NIP( ) TPRPPI
+ FPR

NIP( ) TPRNIP
+ FPR

PPI( )
 (SEq.8) 

 

Supplementary Note 5: Analysis of positive interaction classifiers. 

First, we assessed if the p-value (equation (1) from the main text) was 

equivalent to the log-odds score8 in equation (2) (from the main text). Similarly 

to the work of Sprinzak and Margalit8, we neglected sequence similarity and 

predicted PPIs using pV+ and LO+ using positive domain interaction 

signatures {D}. We compared the ROC curves (see Figures 2C and 2D in the 

main text), their AUCs (supplementary Table S2) and the associated 

estimation of the error of AUC (see supplementary Table S3). The AUC using 

pV+ 0.64, while the AUC using LO+ was 0.68. Therefore, we considered that 

the p-value measure was comparable to the log-odds score used by Sprinzak 

and Margalit8 to predict PPIs. 

 

Second, we extended the analysis to {L} and {LD} positive interaction 

signatures for the prediction of PPIs. Interestingly, the AUC obtained with the 

pV+ classifier when the similarity between pairs of proteins was not removed 

(99% ID) was larger than 0.85 for both types of interaction signatures. 

However, after removing pairs with more than 40% sequence identity in the 

PRS the results were similar to those obtained with domain interaction 

signatures (see Table 1 in the main text and supplementary Table S3). This 

suggested that the predictions based on loops encompassed a bias due to 

sequence similarities. Therefore, it could be argued that the capacity of the 

pV+ classifier to identify new PPIs using {L} or {LD} positive interaction 

signatures was limited (see average ROC curves in Figures 2A and 2B in the 
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main text), or at least as limited as predicting with domains. This also 

suggested that interaction signatures based on loops recapitulated the 

information of domains when used for predicting PPIs. In conclusion, the 

average AUC of the prediction using the pV+ classifier was not satisfactory to 

discern between new PPIs and NIPs.  

Next, we applied the S+ classifier. The analyses of ROC curves showed 

similar results as those obtained with pV+ (Figures 2E, 2F, and 2G in the main 

text). The average AUCs obtained in the 40%ID set were still similar to the 

results of a random classifier (see Table 1 in the main text), but with low 

associated errors (see supplementary Table S3).  

Although the success of pV+ and S+ classifiers to discriminate between PPIs 

or NIPs was poor, we also observed that NIPs tended to show either a high p-

value or a low number of signatures (see supplementary Figure S2). 

Exploiting this observation, we designed hyperbolic separating functions to 

better discern between PPIs and NIPs (see Supplementary Note 4). It has to 

be noted that this was a classification of all PPIs and NIPs, instead of 1/5 of 

the 5-fold approach. These hyperbolic separating functions correctly identified 

around 55% of PPIs with less than 32% of NIPs (supplementary Table S4) 

when using loop interaction signatures ({L} and {LD}) and proteins pairs with 

less than 40%ID. Interestingly, the percentage of correct predictions improved 

when the test included pairs with similar sequences (99%ID), proving the bias 

produced by homology. This improvement was mostly noticed when using 

loop signatures instead of domain signatures.  

 

Supplementary Note 6: Analysis of negative interaction classifiers. 

In the previous section we studied the correlation between pairs of interacting 

proteins and specific protein features involved in the interaction. We 

investigated how to use this correlation to classify and putatively predict PPIs. 

Analogously, some kind of correlation was suspected for structural features 

hindering the interaction between a pair of proteins. Therefore, we derived the 

classifiers pV- and S- with the objective of predicting pairs of non-interacting 

proteins, and we expected to identify NIPs with good scores. Additionally, we 

also applied the log-odds score (LO-), although this could not be compared 

with the original work of Sprinzak and Margalit8. The analysis of the average 
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ROC curves showed the success of the prediction when using the pV- 

classifier for all types of signatures (Figures 2A, 2B, and 2C in the main text, 

supplementary Table S2), while the LO- classifier was not much better for 

predicting NIPs than it was for predicting PPIs. It was noteworthy that 

removing pairs of similar sequences (>40%ID) did not affect the ROC curves. 

These trends were also observed in the averaged AUCs (Table 1 in the main 

text), with values larger than 0.7. Not surprisingly, a bias by sequence 

homology cannot take place between pairs of non-interacting proteins. We 

argue that homologs of a pair of interacting proteins have high probabilities to 

preserve the interaction, while homologs of non-interacting pairs have the 

same chances to interact (or not) as any other pair.  

As in the analysis of positive signatures, we also studied the number of 

negative signatures with similar justification: a protein pair with a large number 

of non-interaction signatures would rarely interact. The S- classifiers of loop 

interaction signatures {L} and {LD} were applied using a five-fold approach 

(Figures 2E and 2F in the main text show the average ROC curves; averaged 

AUCs are summarized in Table 1 in the main text and in supplementary Table 

S2). The results were similar to the previous results obtained with the pV- 

classifier and the same trend was observed when using domain signatures 

(see Table 1 and Figure 2G in the main text, and supplementary Table S2). 

Next, we used hyperbolic separating functions of pV- and S- as in the previous 

section to separate PPIs and NIPs (see Supplementary Note 4). Similarly to 

what we observed with the classifiers of positive signatures, NIPs tended to 

have either large number of negative signatures (S-) or low pV-, while PPIs 

had pV- values close to 1 and low S- (see supplementary Figure S3). For 

instance, using {L} negative interaction signatures and removing homology 

from the training sets, the separating function correctly identified more than 

50% of NIPs while only misclassifying less than 3% (see supplementary Table 

4).  

 

Supplementary Note 7: Extension of the analysis of log-ratio classifiers: 

LpVR, LSR, and LOR 

The results presented in the main text correspond to the classifiers trained 

with non-homologous protein pairs (maximum sequence identity = 40%). In 
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order to allow comparison of our results with previous works8, we include here 

the results of the analysis of the classifiers trained with homologous protein 

pairs for comparative purposes. 

The average ROC curves for LpVR showed that this classifier obtained better 

results than either of pV+ or pV- classifiers trained with homologous protein 

pairs (see supplementary Figures S1A, S1B, and S1C, and supplementary 

Table S8). Regarding the LSR classifier, the average ROC curves and AUCs 

for loop and domain signatures showed the same trends as for LpVR (see 

Table and Figures 2E, 2F and 2G in the main text). Predictions using this 

classifier were slightly better than using LpVR, although for all classifiers the 

errors associated with the AUCs were very small (see supplementary table 

S3). Moreover, the obtained averaged AUCs were larger than 0.95 for all 

types of signatures ({L}, {LD}, and {D}).  

Combining both classifiers, we designed a linear separating function to 

discern between PPIs and NIPs (see supplementary Note 4). We separated 

above 95% of PPIs with less than 15% misclassified NIPs using {L} or {LD} 

signatures, or up to 20% using {D} signatures (see supplementary Table 8, 

supplementary Figure S4). The separation was similarly good to distinguish 

NIPs from PPIs. Thus, the values of PPVPPI, calculated as the ratio of true 

PPIs among the total pairs classified as putative interactions, and NPVPPI (i.e. 

PPVNPI), calculated as the ratio of true NIPs over the pairs classified as non-

interacting, were close. For instance, for {L} signatures, the separating 

function achieved 0.89 PPVPPI and 0.97 PPVNPI (see supplementary Table 8). 

 

Supplementary Note 10: Details of the additional evaluation  

We designed an additional validation of our classifiers to test their predictive 

power. New sets of PPIs (Positive Evaluation Set, PES) and NIPs (Negative 

Evaluation Set, NES) were obtained as described in Methods section in the 

main text. Each of these sets was sub-divided into three groups: one for 

building frequency matrices, a second to train a random forest classifier9, and 

a third to test this classifier. Supplementary Table S9 summarises the sizes of 

the sets according to the type of signature used.  

We used the WEKA package10 to apply this strategy.  We considered the 

previously described classifiers (pV+, pV-, S+, S-, LpVR, and LSR), and we 

8: 
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included other parameters that could describe the distribution of p-values of 

the interaction signatures. First, we considered the 10 best (lower) p-values of 

positive and negative signatures. Next, we included as training parameters 

some values of the distribution of p-values of positive and negative interaction 

signatures, such as the minimum, the maximum, the mean, and the first, 

second, and third quartiles. Finally we considered the absolute number of 

residues covered by positive or negative interaction signatures as well as their 

relative coverage, this is the number of residues covered over the sum of the 

sequence length of the protein pair.  

We repeated the training several times (training replicas) including in each 

repetition a different combination of protein pairs from the NES and the PES. 

We used 55, 40, and 100 different training sets for {L}, {LD}, and {D} 

signatures respectively. To simulate natural unbalance between PPIs and 

NIPs (NIPs are much more frequent than PPIs)6; 11 we tested the classifier 

using all the NIPs available (see NES Evaluation row in supplementary Table 

S10) and different amounts of PPIs in the PES, obtaining evaluation sets with 

the following proportions between PPIs and NIPs: 1:10, 1:20 and 1:50. We 

refer to this proportion as unbalance ratio (UR), and supplementary Table S11 

details the number of PPIs used in each UR test (the corresponding number 

of NIPs is trivial).We performed an additional test to simulate an UR of 1:1 by 

means of a 10-fold cross-validation of the training data.  

We have to note that the set of co-localized proteins represents around 5% of 

all possible protein pairs in a human cell. Thus, the 1:50 ratio simulates the 

naturally occurring unbalance between PPIs and NIPs in the human proteome 

(which has been estimated to be about 1 PPI for 1000 NIPs6;11). 

Consequently, these ratios represent different levels of expertise of a user 

that applies the prediction method (from an ideal expert, who is able to select 

pairs with a 50% probability to have an interaction, to a non-expert, who 

almost randomly selects any pair of proteins of the interactome with ordinary 

good judgement). 

The results with a 1:1 ratio of PPIs versus NIPs were similar to those obtained 

for the classification with the sets PRS and NRS. Nevertheless, testing the 

classifier with an increasing proportion of NIPs over PPIs produced the 

decrease of PPV. Therefore, increasing the relative cost of accepting 
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incorrectly predicted PPIs showed a remarkable improvement that we think 

can be very interesting for an experimentalist. In the worst scenario of the 

1:50 ratio, the increase of relative-cost from 1:1 to 1:20 increased the PPV 

from 0.05 to 0.18 at the expense of decreasing the TPR from 0.82 to 0.27. 

Table 3 in the main text summarizes the PPV and TPR when using {L} 

interactions signatures at different URs and relative costs; supplementary 

Table S5 shows the results for {LD} interaction signatures, and supplementary 

Table S6 for {D} interaction signatures. Figure 6 in the main text shows the 

averaged PPV (and the associated error) for different ratios and relative-costs 

to penalize false positives when predicting PPIs using {L}, {LD} and {D} 

interaction signatures. 

We wish to note that our tests tried to simulate the problem of experimental 

biologists who want to use prediction methods of PPIs: first, because they 

would rarely test a pair of proteins known to be compartmentalised apart in 

the cell; second, because they usually have some intuition on the putative 

protein partners; and third, because they may wish to select the best 

conditions either to obtain the largest number of real interactions (highest 

recall) or to ensure with few experiments the minimum number of failures 

(highest PPV). 

 

Supplementary Note 9: Prediction of the interactions in the human exosome 

One particular case to distinguish between NIPs and PPIs is the exosome 

complex. Predicting the interactions between homolog proteins in the same 

structural complex can be complicated. The human RNA core exosome is 

composed by one ring of six proteins (the complex structure is found in the 

PDB with code 2nn612). The six proteins are split in two groups of three close 

homologs, while the sequence similarity between any pair of proteins of each 

group is low (remote homologs), and all proteins of the core exosome have 

the same fold. As a first approach we assumed that all proteins with the same 

fold interacted, but we failed to form the exosome complex (the specificity of 

such prediction is null). Then, in a second approach, we tried to predict PPIs 

using the linear separating classifier with loop interaction signatures {L}. This 

example showed the difficulty to distinguish the interacting and non-interacting 

pairs (these being too close to the separating line). Nevertheless, this second 
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approach improved the previous prediction based on fold similarity (the 

specificity increased to 0.89) (see supplementary Figure S1).  
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Supplementary Figures  

Figure S1. Representation of the analysis in the eukaryotic RNA exosome.  

 

 

The top left corner represents the interacting relations between the 6 proteins 

of the exosome ring. Blue lines represent PPIs while red lines represent NIPs. 

The left table represents the analysis for each putative interacting pair. Those 

with blue background represent the actual PPIs while those with red 

background represent NIPs. For each line, the values of S+, S-, pV+ and pV- 

classifiers are given. Predictions according to the random forest classifier are 

in the last column. The blue tick represents a PPI prediction and the cross in 

red a NIP prediction. Contingency tables for the analysis with iLoops and with 

domains are displayed in the left. The statistical analyses of both predictions 

are compared in the bottom left corner by means of the PPV, the specificity 
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(1-FPR), the TPR, the applicability (App) and the Mathews Correlation 

Coefficient (MCC). The analysis shows that the iLoops can identify some 

correct relationships. Assuming that all proteins with the same fold interact 

yields null specificity and 40% PPV, while iLoops prediction using random 

forest and 1:1 relative cost produces 66%PPV and 89% specificity. 

 
Figure S2. Separating functions to discern between PPIs and NIPs using pV+ 

and S+ classifiers. 

 

Distribution of pV+ versus S+ of PPIs (blue) and NIPs (red) are shown for {L} 

(A and D), {LD} (B and E), and {D} (C and F) interaction signatures. Upper 

panels (A-C) show the results obtained with homology redundant pairs in the 

training sets, while lower panels (D-F) correspond to predictions made 

removing such homologous pairs from the training sets. 

 



 

144	
  

 

 
Figure S3. Separating functions to discern between PPIs and NIPs using pV- 

and S- classifiers. 

 

Distribution of pV+ versus S+ of PPIs (blue) and NIPs (red) are shown for {L} 

(A and D), {LD} (B and E), and {D} (C and F) interaction signatures. Upper 

panels (A-C) show the results obtained with homology redundant pairs in the 

training sets, while lower panels (D-F) correspond to predictions made 

removing such homologous pairs from the training sets.  
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Figure S4. Linear separating functions separating PPIs and NIPs.  

 

Distribution of LpVR versus LSR of PPIs (blue) and NIPs (red) are shown for 

interaction signatures {L} (panels A and D), {LD} (panels B and E), and {D} 

(panels C and F). The plots show the distribution of protein pairs with 

sequence identity smaller than 99% (panels A-C) and protein pairs with less 

than 40% sequence identity (panels D-F). Optimised line separating PPIs 

from NIPs are depicted in green.  
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Supplementary Tables 

Table S1. Number of protein pairs, protein signatures, and interaction 

signatures.  

Number of protein pairs, protein signatures and number of interaction 

signatures in the PRS and the NRS for different types of signatures (TS). 

 
#protein pairs #protein signatures #interaction signatures 

TS PRS NRS PRS NRS PRS NRS 

{D} 2821 699 1522 998 7546 3904 

{L} 632 309 89120 96142 16584271 10847908 

{LD} 632 288 60575 55546 9411279 3692270 

 

 
Table S2. AUCs of PPI classifiers.  

The AUCs for different classifiers trained containing homologous protein pairs 

(99% maximum sequence identity) are given in columns 2 to 10. First column 

shows the type of signature used in the classifier (Sign.). 

 AUC 

Sign.  pV+ pV- LpVR S+ S- LSR LO+ LO- LOR 

{L} 0.86 0.83 0.93 0.86 0.84 0.96 - - - 

{LD} 0.89 0.83 0.93 0.86 0.84 0.96 - - - 

{D} 0.63 0.71 0.87 0.58 0.74 0.95 0.68 0.61 0.93 

 
 
Table S3. Error associated to AUCs of PPI classifiers.  

Errors associated to the AUCs for different classifiers are given according to 

the maximum sequence identity (Max ID) allowed in the training set and the 

type of signature used (Sign.) in the classifier. These numbers correspond to 

the difference between the extreme values of the AUCs obtained at each 

round of the five-fold cross-validation and the AUC of the mean ROC curve. 

  
±AUC associated error 

Max ID Sign.  pV+ pV- LpVR S+ S- LSR LO+ LO- LOR 

99 % {L} 0.044 0.062 0.025 0.066 0.040 0.038 - - - 

99 % {LD} 0.050 0.041 0.041 0.038 0.040 0.023 - - - 

99 % {D} 0.063 0.024 0.025 0.080 0.024 0.013 0.057 0.023 0.005 

40 % {L} 0.089 0.069 0.061 0.084 0.051 0.075 - - - 

40 % {LD} 0.086 0.082 0.053 0.075 0.059 0.038 - - - 

40 % {D} 0.030 0.049 0.041 0.053 0.036 0.023 0.065 0.032 0.015 

!
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Table S4. Classification of PPIs and NIPs using hyperbolic separating 

functions of pV+ and S+ (for positive signatures) and pV- and S- (for negative 

signatures).  

Coverage of PPIs (TPRPPI), coverage of NIPs (TPRNIP), precision of the 

classification of interactions (PPVPPI), and precision of the classification of 

non-interactions (PPVNPI) are shown in columns 4, 5, and 6 (see methods 

section).  Columns 1-2 indicate the type of interaction signatures used for the 

classification (column 2) and if the classifiers were aimed at classify PPIs 

(positive interaction signatures) or NIPs (negative interaction signatures). 

Column 3 indicates the maximum sequence identity (Max ID) allowed 

between the training set and the test set. 

+/- Sign. Sign.  Max ID TPRPPI TPRNIP PPVPPI PPVNIP 

Positive {L} 99 % 0.86 0.77 0.91 0.71 

Positive {LD} 99 % 0.89 0.78 0.92 0.70 

Positive {D} 99 % 0.92 0.31 0.62 0.63 

Positive {L} 40 % 0.56 0.71 0.75 0.54 

Positive {LD} 40 % 0.55 0.68 0.74 0.53 

Positive {D} 40 % 0.56 0.69 0.59 0.59 

Negative {L} 99 % 0.97 0.46 0.64 0.95 

Negative {LD} 99 % 0.97 0.55 0.68 0.95 

Negative {D} 99 % 0.74 0.74 0.74 0.74 

Negative {L} 40 % 0.97 0.51 0.66 0.95 

Negative {LD} 40 % 0.98 0.44 0.63 0.96 

Negative {D} 40 % 0.82 0.68 0.72 0.79 

 
 
Table S5. Averaged PPV and TPR of the prediction of PPIs using {LD} 

interaction signatures and random forests classifiers (standard deviations are 

shown between parenthesis). Columns 2-6 indicate the results for different 

unbalanced ratios of PPIs versus NIPs and the first column indicates the 

relative-cost of false-positives versus false-negatives applied in the random-

forest classifier. 

 Unbalance Ratio 

 1:1 1:10 1:20 1:50 1:50 

Cost PPV (sd) PPV (sd) PPV (sd) PPV (sd) TPR (sd) 

1:1 0.79 (0.07) 0.30 (0.17) 0.18 (0.16) 0.08 (0.10) 0.74 (0.25) 

1:5 0.86 (0.01) 0.37 (0.03) 0.23 (0.03) 0.10 (0.02) 0.48 (0.19) 

1:10 0.89 (0.02) 0.45 (0.06) 0.29 (0.06) 0.14 (0.05) 0.32 (0.14) 

1:20 0.93 (0.02) 0.59 (0.09) 0.43 (0.10) 0.22 (0.09) 0.18 (0.10) 

1:30 0.96 (0.02) 0.72 (0.13) 0.57 (0.19) 0.36 (0.23) 0.12 (0.08) 

1:40 0.97 (0.02) 0.79 (0.13) 0.67 (0.19) 0.44 (0.26) 0.10 (0.07) 

1:50 0.98 (0.02) 0.80 (0.14) 0.67 (0.22) 0.47 (0.28) 0.08 (0.06) 
 



 

148	
  

 

 

 
Table S6. Averaged PPV and TPR of the prediction of PPIs using {D} 

interaction signatures and random forests classifiers (standard deviations are 

shown between parenthesis). Columns 2-6 indicate the results for different 

unbalanced ratios of PPIs versus NIPs and the first column indicates the 

relative-cost of false-positives versus false-negatives applied in the random-

forest classifier. 

 Unbalance Ratio 

 1:1 1:10 1:20 1:50 1:50 

Cost PPV (sd) PPV (sd) PPV (sd) PPV (sd) TPR (sd) 

1:1 0.83 (0.05) 0.35 (0.10) 0.22 (0.08) 0.10 (0.05) 0.70 (0.22) 

1:5 0.91 (0.03) 0.51 (0.13) 0.35 (0.15) 0.18 (0.14) 0.52 (0.25) 

1:10 0.92 (0.02) 0.56 (0.10) 0.39 (0.12) 0.21 (0.12) 0.42 (0.21) 

1:20 0.94 (0.02) 0.61 (0.07) 0.49 (0.10) 0.25 (0.10) 0.29 (0.16) 

1:30 0.95 (0.02) 0.66 (0.07) 0.49 (0.09) 0.28 (0.08) 0.22 (0.12) 

1:40 0.95 (0.02) 0.67 (0.06) 0.51 (0.07) 0.29 (0.06) 0.17 (0.10) 

 
 
Table S7. Separating PPIs and NIPs with functions.  

The first and second columns show the combination of input descriptors used 

in the separating function. Third and fourth columns indicate the positions of 

correctly classified PPIs and NIPs in relation to the separating line. 

Combination Descriptors PPI  NPI  

Positive combination (S+,pV+) Above the line Below the line 

Negative combination (S-,pV-) Below the line Above the line 

Ratio combination (LSR,LpVR) Above the line Below the line 
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Table S8. Classification of PPIs and NIPs using linear separating functions of 

LpVR and LSR. 

Ratios of correctly classified PPIs (TPRPPI), NIPs (TPRNIP), and positive 

predictive values for the classifcation of interactions (PPVPPI) and non-

interactions (PPVNIP) using linear separating functions of LpVR and LSR. The 

results shown correspond to classifiers trained with homologous protein pairs 

(99% maximum sequence identity). The first column indicates the interaction 

signature applied for the classification.  

Sign.  TPRPPI TPRNIP PPVPPI PPVNIP 

{L} 0.97 0.88 0.89 0.97 

{LD} 0.94 0.87 0.87 0.96 

{D} 0.99 0.80 0.83 0.99 
  

Table S9. Sizes of the Evaluation Sets (PES and NES).  

The PES and NES have different sizes for each type of signature under study  

({L}, {LD} and {D}, shown in columns). The PES and NES were split in six 

training and evaluation subsets: two to obtain interaction signatures (PES 

signatures and NES signatures), two for training a random forest classifier 

(PES training and NES training), and two to test the prediction (PES 

evaluation and NES evaluation). 

Signature {L} {LD} {D} 

PES Signatures 1000 1000 4000 

PES Training 500 500 500 

PES Evaluation 5241 4277 3114 

NES Signatures 1000 1000 4000 

NES Training 500 500 500 

NES Evaluation 1861 1478 14200 
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Table S10. Sizes of the subsets of pairs selected from the PES to test the 

random forest classifier. 

The unbalanced ratio of PPIs and NIPs is shown in the first column. Columns 

2-4 show the number of pairs randomly selected from the PES-Evaluation 

subset for testing interaction signatures {L}, {L}, and {D}. The size of the NES-

Evaluation subset is trivial. 

 Type of signature 

UR {L} {LD} {D} 

1:10 185 147 1420 

1:20 93 74 710 

1:50 37 29 284 
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3.2.2 iLoops: A protein-protein interaction prediction server based on local 

structural features 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iLoops web server manuscript:  

Planas-Iglesias, J., Bonet, J., Marín-López, M. A. & Oliva, B. (2012). 

iLoops: A protein-protein interaction prediction server based on local 

structural features Submitted to Bioinformatics. 
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Protein-protein interactions play a critical role in many biological processes. Despite that, the number 

of servers that provide an easy and comprehensive method to predict them is still limited. The iLoops 

server predicts if a pair of proteins can interact by exploring the relationships of its structural features 

(loops and domains). As a source of loop features the server uses ArchDB’s hierarchy of loops and 

SCOP classification of domains. The input of the server are the sequences of the query proteins 

to be tested. Loops and domains are assigned to the query proteins by sequence similarity. The 

prediction algorithm uses information from known protein-protein interactions and confirmed non-

interacting proteins. Known interactions were extracted from several databases of yeast-two-

hybrid experiments. The Negatome database was used to obtain pairs of non-interacting 

proteins. Pairs of structural features (formed by loops or domains) were classified according to its 

likelihood to favour or disfavour a protein-protein interaction. The server uses the relationship 

between the protein-features assigned to a pair of query proteins to predict their interaction. The 

iLoops server is freely accessible at http://sbi.imim.es/iLoops.php 

INTRODUCTION 

Interactions between proteins mediate almost all the processes in a living cell. Thus, the discovery of 

new protein-protein interactions (PPI) is key to understand the complexity of the biological systems. 

Due to the biological relevance of PPIs, several experimental methods have been developed to 

identify new PPIs. Yeast two hybrid (Y2H) and tandem affinity purification (TAP) are among the most 

used methods for high throughput identification of new interacting proteins +'$. However, these 

methods are still economically and timely costly, they lack reproducibility and yield a high amount of 

false negative interactions +'9#$. 

Mirroring the experimental techniques, computational methods have also been developed to 

identify new PPIs. These computational methods can be divided into three main approaches, 

depending on the contextual properties they exploit: structural, genomic or biological +*$. Structural 

context methods such as InterPreTS +($, PIPE +:$ or Struct2Net +;$ extrapolate structural information 

of a protein directly from its sequence and predict or score PPIs based on the molecular composition 

and structural conformation of the partners. On the contrary, genomic context methods like STRING 
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!"# or Predictome !$%# provide predictions of putative in vivo PPIs based on gene fusion, gene co-

localization and phylogenetic profiles. Finally, biological context methods (e.g. GeneCensus !$$#) 

integrate several experimental high-throughput datasets and use bayesian networks to produce more 

reliable interactions. PPI evidences and predictions provided by these methods are compiled in 

BIANA !$&#. To properly assess the success of any PPI prediction method, a reference set of non-

interacting protein pairs (NIPs) is required !$$'$()$*#. The Negatome database !$+# is a set of known 

non-interacting proteins (NIP). Specifically, it gathers pairs of proteins that are unlikely to engage in 

physical direct interactions through manually curated literature and crystallographic data.  

Here we present the iLoops web-server, a web implementation of the iLoops structural context 

method !$,# that exploits ArchDB classification of loops !$-# and SCOP domains !$"# to predict PPI. 

Briefly, the method assigned structural features (either loops or domains) to a pair of protein 

sequences. It described each protein pair with two sets of protein signatures (combinations of up to 

three structural features, loops or domains) defined as interaction signatures. The number of 

favouring and disfavouring interaction signatures, the likelihood of the best signatures favouring or 

disfavouring the interaction and the ratios between them were used to train a random forest approach 

(ref) and generate a predictor model. Finally, in order to apply the method on sets with a large number 

of non-interactions, the predictor model was trained under different relative-costs that penalized the 

errors of false positive predictions. .The server uses sequence similarity to assign structural features 

(either loops or domains) to each pair of query sequences of the input. Then, the server obtains the 

set of interaction signatures to describe the pair of proteins been tested. The server classifies the 

interaction features as favouring or disfavouring the interaction and it applies the previously trained 

random forest model using the relative-cost selected by the user. 

METHODS AND IMPLEMENTATION 

Assignment of protein signatures. Structural features are annotated over the sequences by means of 

sequence similarity using BLAST !&%#. Structural features are assigned to a query protein when the 

percentage of identities (loops) or similarities (domains) of the sequence alignment is above the 

twilight zone !&$# and the coverage of the structural feature is high enough (100% for loops, 75% for 

domains). Protein signatures of each query sequence are built with all possible combinations of up to 

three structural features of the same type (see Figure 1.a). 

Evaluation of interaction signatures. Interaction signatures between two query proteins are obtained 

with the combinations of protein signatures from both. All possible interaction signatures assigned to 

the pair are examined in previously tabulated scoring matrices. These matrices contain the 

probabilities of observing each signature in PPIs (favouring matrix, M+) or NIPs (disfavouring matrix, 

M-) !$,#. Then, interaction signatures are denoted as favouring if scored in M+ or disfavouring if 

scored in M- (see Figure 1b).  
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Predicting a PPI. The server applies a random forest model, previously trained !"#$ using the WEKA 

package !%%$&'to test the protein pair (see Figure 1c). Several random forest classifiers were obtained 

using different relative costs to penalize the ratio of false positive predictions !"#$.  Each relative cost 

is associated to a certain expectation of success according to the expected unbalance between PPIs 

and NIPs in the query data, Thus, the user can select in the input the best relative-cost for the set of 

proteins in the input. 

 

RESULTS: SERVER USAGE 

The input for the iLoops web server is a set of FASTA formatted sequences including the title with a 

protein identifier (PID) and a list of pairs of proteins (two PIDs separated by a double column “::”) to 

test. Data can be provided through a text area or uploading a file. Finally, the user must select the 

type of structural features to use for the prediction (loop by default) and the relative cost of false 

positive predictions. Each submission is limited to 25 protein-pairs. The server will provide a job 

identification code that can be used either to retrieve the predictions through the results-page or as a 

bookmark.  

The predictions can be browsed through the web interface or downloaded in compressed text files. 

The predictions are provided as a boolean decision for each queried pair from the input list, along with 

the final score given by the random forest classifier. Details of each prediction can be displayed in a 

brief summary with the parameters used for the classification, the structural features assigned to each 

query protein and a list of favouring (positive) and disfavouring (negative) interaction signatures 

sorted by their p-value.  

 

DISCUSSION AND CONCLUSION 

In this work we have presented a server to predict new protein-protein interactions through the 

identification of structural features. The iLoops server provides a user-friendly interface and a 

comprehensive results-page. All the results can be traced back to the original databases to provide 

means to understand how the prediction was carried out. Such traceability allows the user to 

comprehend the results and devise new experiments that could be relevant for a particular interaction. 

Additionally, the iLoops server offers to interested researchers the possibility to select the relative cost 

for false positive discoveries in their required predictions, becoming a unique framework to associate 

the knowledge on the interacting candidates to fair expectations of prediction success.  
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Figures 

Figure 1: Pipeline of the iLoops server procedure 

 

 

 

Figures 

Figure 1: Pipeline of the iLoops server procedure.  
 

 
 

The pipeline of the iLoops server can be summarized in three steps applied to each pair of proteins 

of the input list:  

a) The assignment of structural features through BLAST similarity search. Protein 

signatures are defined as groups of up to three structural features.  

b) Scores obtained from M+ and M- matrices extracted from sets of PPIs and NIPs are 

assigned to all interaction signatures (pairs of protein signatures) of a protein-pair. 

c) A random forest classifier evaluates a set of parameters that describe the interaction 

signatures, and provides a final prediction for the queried protein pair. 
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3.3 Extending signalling pathways: application to apoptosis 

pathways 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Planas-Iglesias, J., Guney, E., Garcia-Garcia, J., Robertson, K. A., Raza, S., 

Freeman, T. C., Ghazal, P. & Oliva, B. (2012). Extending signaling 

pathways with protein-interaction networks. Application to apoptosis. 

OMICS 16, 245-56. 

http://online.liebertpub.com/doi/abs/10.1089/omi.2011.0130
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4 Discussion 
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4.1 Overview 

In this thesis I have adressed the objectives of developing two new methods to predict 

protein-protein interactions and new members of signalling pathways. Despite the 

apparent disparity of the objectives, several commonalities among them are worthwhile 

to be noted.  

In first place, the two developed algorithms strongly rely on previous knowledge of 

protein-protein interactions. Hence, the importance of counting with reference protein 

interaction networks as complete and accurate as possible is emphasized (see sections 

1.1.6 and 1.3.5). To this extent, it is imperative the use of tools for integrating low- and 

high-throughput experimental data into meaningful biological networks. In this thesis, 

PIANA (272) and BIANA (92) frameworks for the integration and analysis of 

biological networks were entrusted such task.  

In second term, both methods take advantage of the integration of contextual 

information to attain accurate predictions. On one hand, results from section 3.2 

demonstrate the importance of the structural knowledge of proteins (in the form of local 

structural features or loops (168)) to improve the performance of current methods for 

PPI prediction. On the other hand, it is shown in section 3.3 that besides real PPIs, 

protein functional association information such as that enclosed in STRING database 

(68) (see table 1.4) is crucial to successfully transfer functional annotation from known 

apoptosis-related proteins to meaningful new candidates. 

Third, the results of both research pieces stress out the necessity of appropriate negative 

PPI models for PPI prediction. Regarding the prediction of PPIs based on local 

structural features, the knowledge of real non-interacting pairs is crucial to extract 

characteristic loop signatures that denote negative interactions (i.e. protein pairs that do 

not interact). Such information could not be obtained from simulated negative models. 

In the case of extending the apoptosis pathways, the different methods used transferred 

an apoptosis score from known apoptosis proteins to their interacting partners, either in 

the real PPI network or in other random ones used as negative reference. Then, an 

unanotated protein is considered as apoptosis candidate if there exist significant 

differences between the score obtained in the real network and that obtained in the 



 

188	
  

random ones. The results presented in section 3.3 show that all methods yielded such a 

large number of candidates that the obtained predictions are without biological sense. 

These results suggest that the simulated negative models do not enclose enough 

information to differentiate between biologically meaningful candidates and the rest of 

them. 

Within the following sections, the main results from the research on PPI prediction 

based on local structural features (sections 4.2, 4.3, and 4.4), and from the study on the 

completion of signalling pathways (section 4.6) are further discussed. Besides, the 

stated necessity for good negative models in network-based protein interaction 

predictions is argued in the context of the results obtained from both research objectives 

(section 4.5). Finally, future directions for the research presented in this thesis are 

discussed in section 4.7. 

 

4.2 Relevance of small local structural features upon the 

establishment of protein binding 

The iLoops algorithm presented in section 3.2 explores the capability of protein loops 

(as classified in (168)) to explain the mechanism underlying the formation of protein-

protein interactions. The algorithm scores the likelihood of a protein-protein interaction 

by considering the different groups of loops within a protein a footprint of its interacting 

potential (protein signature). Then, it obtains characteristic interaction signatures as 

combinations of pairs of protein signatures, where each member of the interaction 

signature represents one of the proteins in the evaluated protein pair. The score provided 

by the method corresponds to the probability of observing the interaction signature at 

least as often as the number of occurrences in a reference set. Depending on whether the 

reference set is formed by PPIs or experimentally determined non-interacting pairs 

(NIPs) (271) the signature and its score can be regarded as positive or negative. 

Although a particular signature can be observed both in PPIs and NIPs, it is observed in 

the different sets with different frequencies, thus obtaining different positive and 

negative scores. 
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The results obtained show that, PPIs and NIPs are characterised by different types of 

signatures. Both positive and negative signatures are to some extent able to discern 

between reference sets of PPIs and NIPs. Interestingly, when the ratio between the 

scores of positive and negative signatures is considered, the differentiation between the 

reference sets is maximal. These results corroborate recent findings about the crucial 

role of loops in the formation of PPIs (70,167,273), but also in preventing the formation 

of protein interaction complexes. Furthermore, the fact that negative interaction 

signatures are able to discern between PPIs and NIPs shows that relevant information 

was enclosed in NIPs.  

Scoring the likelihood of an interaction based on the scores of positive and negative 

interaction signatures considered only one interface produced by a putative collision. 

However, many of such interfaces could potentially occur upon the encounter of two 

proteins. Hence, the analysis on whether the total number of signatures could be a good 

criterion of classification was done, achieving a considerably better performance than 

the interaction signatures scores. These results may be interpreted in the light of a recent 

study made by Wass et al. (166). In their work, they studied the capability of docking 

algorithms (which are used to identify the best interface between a pair of proteins) to 

predict interacting partners regardless of their success in pinpointing the interacting 

region. Their study showed that although docking algorithms could fail to identify the 

native complex (and thus, the interface), the distribution of docking scores discerned 

between interacting and non-interacting pairs. From their results, the authors suggested 

that protein surface morphology contained sufficient information to identify a bona fide 

interactor (166). This concept implied that several regions of the protein were important 

for the molecular association between two proteins. Indeed, this described a model of 

the funnel-like intermolecular energy landscape in PPIs (274,275).  

 

4.3 The funnel-like intermolecular energy landscape 

framework  

It is unclear how two interacting proteins can find each other within a large population 

of proteins and quickly form a binary complex. If the molecular association was the 
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result of a quasi-infinite series of elastic collisions with a unique successful outcome 

(i.e. the final pose of the binary complex), the formation of PPIs would require an 

unaffordable time-scale as in Levinthal’s paradox (276,277). The solution of the 

problem is to assume that in the collision of two proteins they recognise if they have to 

interact or not, forming an intermediate complex that may (or may not) have the best 

docking interface. For a non-interacting pair, both proteins would be immediately 

released to interact with others, while if they had to interact they would stay together (or 

near each other) until finding the correct conformation. This model implies certain 

“stickiness” between the interacting proteins, which would allow the formation of the 

intermediate complexes.  

In this context, the obtained results suggest a similar explanation for the formation of 

interacting protein-pairs. Being the number of interaction signatures a good classifier of 

PPIs and NIPs, it can be inferred that not only one interacting region is important to 

decide whether a pair of proteins could interact. Hence, several protein regions could 

participate in the interaction process, allowing the formation of intermediates of the 

binary complex. In the framework of the funnel-like intermolecular energy landscape 

theory, proteins would explore their energetic landscape during the protein-protein 

collisions. From the work herein presented, it can be proposed that this landscape is 

constrained by the composition of local structural features of both proteins (protein 

signatures). According to this model, positive and negative interaction signatures could 

represent energetic valleys and peaks respectively. Thus, the pairing of protein 

signatures would encode the possibilities to accept or not the interaction, allowing to 

use such signatures to predict the potential interaction between two proteins. 

 

4.4 Use of local structural features for protein interaction 

prediction 

The aim of predicting PPIs is to help the researcher who wants to test interactions from 

a random selection of protein pairs of a proteome. Current estimates of the interactome 

size in human and other model organisms (65,266,268) indicate that the number of non-

interacting pairs largely exceeds the number of existing PPIs. This unbalance has a vast 
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impact on the performance of predictive methods (278,279), but can be mitigated by the 

expertise of the researcher who asks for the predictions. For instance, protein pairs that 

are compartmentalised apart in the cell (95% of all protein pairs in the human proteome) 

would rarely make a suitable set of candidates for protein-protein interaction. Regarding 

this issue, an independent validation of the iLoops method showed that the decrease of 

performance associated to an increased unbalance between PPIs and NIPs could be to 

some extent compensated by penalising the errors produced by false positive predictions 

(the relative cost of the predictions). Compared to other available methods for the 

prediction of protein interactions (264,265,280-282), iLoops offers to interested 

researchers the possibility to fix the relative cost of the required predictions, becoming a 

unique framework to associate the knowledge on the interacting candidates to fair 

expectations of prediction success. Furthermore, the availability of an easy-to-use web 

server implementation of iLoops (http://sbi.imim.es/iLoops.php) should permit the 

scientific community an extensive use of the method. 

 

4.5 Negative protein interaction models: random networks 

and experimental negative data 

One of the key features in iLoops algorithm is the use of the Negatome database (271) 

as a negative model for PPIs. However, regarding PPI prediction the requirements of a 

good negative model are still under discussion (283). On one hand, it is still nowadays 

difficult to identify non-interacting protein pairs due to the lack of sensitivity of high-

throughput experimental methods for PPI detection (65,234). On the other hand, it has 

been demonstrated that random negative models may introduce several biases, 

depending upon their required topology, the unbalance with respect to the number of 

PPIs assumed, or the compartmentalisation of the protein pairs the negative model 

encloses (263,278). Despite the experimental bias of the Negatome database (284), the 

obtained results show that non-interacting pairs in the Negatome database contain 

relevant structural information for discerning between PPIs and NIPs. How can this 

apparent contradiction be solved? It has been shown that binding residues of a PPI are 

subject to co-evolution constraints (202) imposed by the needs of the interacting 
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partners to “tell” each other they have to interact. Several methods have taken 

advantage of such constraints to predict PPIs (196,203). If non-interacting pairs had 

analogous requirements (i.e. to expose signals that prevented their interaction), similar 

constraints would apply to NIPs and could be exploited for their prediction. According 

to the funnel-like intermolecular energy landscape theory (see section 4.3), this should 

be the case. 

Interestingly, results from the study on extending apoptosis signalling pathways also 

hinted the limitations of simulated negative interaction data. Such random networks 

lead different methods for functional annotation transfer to yield an outsized and 

biologically meaningless number of predictions. In this case, the results can be 

understood at the light of a topological explanation. Random networks can be designed 

to preserve centrality and modularity properties similar to the ones a real interactome 

has (284). However, functional annotation transfer methods rely not only in the overall 

topology of the network, but also in the fact that important proteins for the studied 

system or phenotype are central (i.e. hubs) in the real network (44,45,284). Random 

networks cannot grant both the same centrality degree of such proteins and being 

different enough to actual data at the same time. Since differentiation from real 

interactions takes precedence in the construction of negative models, the centrality of 

key proteins is to some extent diminished. Thus, random networks artificially enlarge 

differences between the negative and the real models. Due to the lack of negative data, 

simulated negative models have been the only feasible alternative to exploit functional 

annotation transfer methods during long time. However, recently developed methods for 

extracting negative data from high-throughput experiments (269) may help to surmount 

this problem. 

All together, it can be deduced from both research pieces that the disposal of an 

appropriate negative model is crucial to obtain accurate PPI predictions.  
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4.6 Functional annotation transfer: lessons from a controlled 

retrospective experiment 

The negative impact of using randomly generated networks as a negative model in 

annotation transfer methods can be measured with a retrospective experiment. Section 

3.3 describes how different scoring methods were used to transfer annotation from 53 

well-studied members of the human apoptosis pathways (as known by 2005) to their 

protein interactors. The selected scoring methods base their predictions in different 

proximity measures, either direct neighbourhood (285) or shortest paths (50,52) (see 

section 1.1.4). All scoring methods produced significant predictions (compared to a 

random negative model), but its number was too large to be useful (see previous 

section). To approximate the overestimation of score produced by the use of random 

networks as negative models, the results of the different methods analysed were 

compared to a validation set conformed by the proteins newly related to the apoptosis 

pathways in the period 2005-2010. Based on the different methods reporting a given 

prediction and the overlap between predictions and the validation set, a method was 

developed to score the reliability of predictions not present in the validation set, which 

potentially could be relevant in the apoptosis pathways. 

 

To better understand the applicability of functional annotation methods to signalling 

pathways, four different reference networks were used to extend the apoptosis 

annotation. These networks enclosed incremental amounts of information:  

i)  experimentally determined PPIs obtained from PIANA (272);  

ii)  functional associations from STRING database (68); 

iii and iv) interology predictions (190) over the two preceding networks. 

Comparing the results of different functional annotation methods applied to the 

described reference networks, the relevance of functional associations for pinpointing 

typical elements from signalling pathways such as phosphorilation events was observed. 

These results are consistent with previously reported ones (81), and are in consonance 
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with observations from Valente et al. who reported that high-throughput methods for 

PPI detection contribute little new knowledge about phosphorilation events and 

interactions (79). Furthermore, these findings are in direct agreement with recent 

experiments by Breitkreutz et al., who showed that specific experimental approaches 

are required to pinpoint the transient nature of most PPIs in signalling pathways (80).  

Finally, the previously described approach for scoring the reliability of predictions was 

applied to the results obtained when using the reference networks. From the 53 well-

studied members of the human apoptosis pathways, the total number of predictions 

yielded by the scoring methods using the interaction data as known by 2005 was in the 

scale of thousands. To measure the impact of using random networks as negative 

models in the prediction scores, these predictions were compared to a validation set 

conformed by the proteins newly related to the apoptosis pathways in the period 2005-

2010. From the initial set of predictions, only 273 matched reliability criteria to be 

selected as relevant candidates for the apoptosis pathways. These results indicate that 

methods for functional annotation transfer overestimate their scores due to the use of 

random negative data, leading to oversized and biologically meaningless predictions. 

Although most of the selected candidates were totally unannotated, a functional trend 

enrichment analysis (286) revealed that the functional annotation of the few remaining 

candidates was compatible with their potential role as apoptosis-related proteins. 

 

4.7 Further directions 

Different perspectives arise for the two methods presented in this thesis. From the 

development point of view, the study on the extension of signalling pathways is self-

enclosed. The method can be applied to nay other cell process or phenotype provided 

the availability of time-labelled data: PPI networks obtained from earlier data and 

validation sets representing the present knowledge of the studied cell process or 

phenotype. However, there is a great scope for further experimental analyses on the 

proposed candidates.  

Regarding iLoops method for protein interactions prediction, there is larger space for 

improvement. First, the method strongly relies in the structural classification of loops 
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(168), which is slightly out of date. The current classification is under revision and a 

prompt update is already scheduled. Second, iLoops users could take benefit from the 

possibility of applying a wider variety of structural features, including Pfam (287) and 

CATH (147) definitions of domains. Such improvement is also being implemented. 

Third, the evidences found hinting the specific and important role of loops in the protein 

binding process in the framework of the funnel-like intermolecular energy landscape 

theory open space for new research perspectives. Can loop interaction signatures (their 

number or their scores) recapitulate the funnel-like energy landscape on the surface of 

the interacting proteins? If so, can loop interaction signatures be used to identify 

binding interfaces? Two different experiments have been designed to answer these 

questions. Using either PRISM defined interfaces (288) or docking poses from binding 

and non-binding partners (166) as reference for the definition of the interacting region, 

the role of loops and loop interaction signatures in the molecular association of proteins 

can be further investigated. 
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5 Conclusions 
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The main contributions or this thesis can be summarized as follows:  

i) The relevance of local structural features such as protein loops on the protein 

binding process has been statistically assessed. For a given combination of 

loop groups in a protein pair (interaction signature) the exact probability of 

observing such signature in reference sets of interacting and non-interacting 

pairs was computed. 

ii) Protein-protein interactions and non-interacting pairs are characterised by 

different types of interaction signatures. The two different scores obtained 

from PPIs and NIPs reference sets can discern between interacting and non-

interacting pairs. Considering both scores altogether, the differentiation 

between PPIs and NIPs is maximized. 

iii) Each interaction signature considers one interface produced by a putative 

protein-protein collision. Depending upon the origin of the signature (PPIs 

or NIPs reference sets), it can be considered that the interface favours or 

hampers the binding process. The number of such interfaces, defined by the 

number of interaction signatures, is also a good PPI predictor. 

iv) These observations strongly support the funnel-like intermolecular energy 

landscape theory, which imply that binding proteins explore each other 

surface, early recognising their interacting potential prior to reaching the 

final docking state. 

v) Based on the stated observations, iLoops, a new method for predicting 

protein-protein interactions, has been developed. Considering the natural 

unbalance between PPIs and NIPs, and applying different false discovery 

costs to the predictions, the method provides a unique framework to 

researchers for associating their knowledge of on the interacting candidates 

to fair expectations of prediction success. 

vi) Methods for functional annotation transfer overestimate their scores due to 

the use of random negative data, leading to oversized and biologically 

meaningless predictions. These results are in agreement with recent findings 
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by Trabuco et al. (269). In the framework of a retrospective controlled 

experiment, a new method for quantifying such overestimate has been 

developed.  

vii) The method was applied to the prediction of new members of the human 

apoptosis pathways, allowing the selection of 273 reliable candidates over 

thousands of predictions yielded by different functional annotation transfer 

methods. 

viii) Among different types of methods for functional annotation transfer, direct 

neighbourhood based methods can be applied to small PPI networks; 

however an accurate annotation transfer in larger networks requires other 

approaches such as those based in shortest paths definitions for node 

proximity in the network. 

ix) Further insight on the nature of signalling networks was gained by appliying 

functional annotation transfer methods to different reference PPI networks, 

which included experimentally PPIs, functional associations, and interology 

predictions. The obtained results confirmed that classical high-throughput 

techniques for PPI detection contribute little new knowledge about the 

phosphorilation events and interactions characteristic of signalling pathways. 
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6.1 Overview 

In this appendix, contributions I made in other pieces of research unrelated ot this thesis 

are presented. Briefly, I participated in two additional publications: 

i) Biana: A software framework for compiling biological interactions and 

analyzing networks 

ii) Networks of Protein-Protein Interactions: From Uncertainty to Molecular 

Details 

In the first paper, I collaborated in the design of the protocol that BIANA uses for 

unifying biological entity identifiers, a central tool for integrating biological data from 

different sources. The protocol allows the user to indicate a set of identifiers to be used 

for the unification of different records from external databases. In this paper, I also 

contributed the presented example on the reconstruction of metabolic networks. The 

reconstruction was obtained by chaining reactions between enzymes A and B whenever 

there is at least one chemical compound in the intersection, this is acting at the same 

time as product of enzyme A and substrate of enzyme B. Then, chained reactions were 

scored according to the plausibility of observing chemical compounds in the 

intersection, taking into account their own frequency and the frequency of other 

products of enzyme A and other substrates of enzyme B that did not contribute to the 

intersection.	
  

The second publication is an extensive review on protein-protein interactions, the 

different levels of detail at which PPIs can be studied, methods to detect and predict 

them, repositories for PPI data, and functional relationships between the different detail 

levels in protein-protein interactions. My contribution was centered in designing the 

structure of the paper contents, the literature review, and the critical assessment of the 

final manuscript. 
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