
“tesis” — 2009/11/9 — 14:57 — page 1 — #1i
i

i
i

i
i

i
i

UNIVERSITAT JAUME I
Departament de Llenguatges i Sistemes Informàtics

Towards a Multiresolution
Model on GPU

Ph. D. dissertation
Oscar Enrique Ripollés Mateu

Advisor: Dr. Miguel Chover Sellés

Castellón, September 2009

“tesis” — 2009/11/9 — 14:57 — page 2 — #2i
i

i
i

i
i

i
i

2

“tesis” — 2009/11/9 — 14:57 — page I — #3i
i

i
i

i
i

i
i

Departament de Llenguatges i Sistemes Informàtics

Hacia un modelo multirresolución
en la tarjeta gráfica

Tesis doctoral
Oscar Enrique Ripollés Mateu

Director: Dr. Miguel Chover Sellés

Castellón, Septiembre 2009

El objetivo principal de esta tesis es presentar un conjunto de técnicas que
se han desarrollado para mejorar la visualización en tiempo real de mallas
poligonales. Se describen varias soluciones a la gestión del nivel de detalle, ha-
ciendo énfasis en la explotación del hardware gráfico actual. En consecuencia,
las contribuciones optimizan el coste de almacenamiento, reducen el tiempo de
extracción y minimizan los datos transferidos a través del BUS. Por último,
se presenta una solución que es capaz de gestionar el nivel de detalle com-
pletamente en la tarjeta gráfica, reduciendo al máximo el tráfico de datos y
ofreciendo tanto resoluciones uniformes como variables. Además, este último
método ofrece una fácil implementación en aplicaciones 3D que permiten la
aplicación de shaders a mallas poligonales.

“tesis” — 2009/11/9 — 14:57 — page II — #4i
i

i
i

i
i

i
i

II

Objeto y objetivos de la investigación

Uno de los principales problemas de las aplicaciones gráficas interactivas,
como los juegos por ordenador o los entornos de realidad virtual, es la comple-
jidad geométrica de las escenas que representan. La necesidad de escenas muy
realistas supone utilizar modelos formados por una gran cantidad de poĺıgonos,
lo que presenta dificultades para mantener un alto número de imágenes por se-
gundo.

Una de las posibles soluciones a este problema es el uso de técnicas multirreso-
lución, que representan un objeto a través de un conjunto de aproximaciones de
diferente nivel de detalle y permite recuperar cualquiera de ellas bajo demanda.
De esta manera, las técnicas de modelado multirresolución permiten adecuar el
nivel de representación a las necesidades de visualización, teniendo en cuenta
las caracteŕısticas de la aplicación y del hardware que le da soporte.

Los primeros modelos multirresolución sólo almacenaban un conjunto peque-
ño de niveles de detalle (generalmente entre 5 y 10) y se les denominó modelos
multirresolución discretos. Sin embargo, este conjunto de soluciones presen-
ta problemas en la transición entre dos niveles, donde se produce un efecto
perceptible de salto en la imagen. Por este motivo aparecieron los modelos
multirresolución continuos, capaces de albergar un amplio rango de niveles de
detalle, que habitualmente se diferencian en un vértice, una arista o un triángu-
lo, y que permiten transiciones suaves o interpoladas entre niveles de detalle
contiguos. Los modelos multirresolución continuos son capaces de resolver los
problemas de la visualización interactiva, la transmisión progresiva, la compre-
sión geométrica y la resolución variable.

El hardware gráfico ha mejorado considerablemente en los últimos años; su
rendimiento se multiplica cada seis meses mientras que los microprocesadores
solamente sufren un incremento del 40 % cada año. De esta forma, la posibilidad
de aprovechar al máximo su poder computacional, su tremendo ancho de ban-
da, la programación paralela y también la posibilidad de aligerar la carga de la
CPU, han aumentado el interés en utilizar el hardware gráfico como una solu-
ción computacional. Aśı, es posible explotar el hardware gráfico no solo para
tareas propias de los gráficos por ordenador sino también para la programación
de propósito general. Además, el desarrollo del bus de datos PCIExpress ha
mejorado notablemente el rendimiento del bus AGP, facilitando el tráfico de
información entre la CPU y la GPU en una aplicación en tiempo real.

Aśı, siguiendo con la evolución de los modelos multirresolución, las últimas
aportaciones se enfocan hacia el uso eficiente del hardware gráfico, dado que
su incréıble evolución augura grandes avances en el campo de los gráficos por
ordenador. Existen modelos que se han desarrollado con la intención de traba-
jar completamente en la GPU. Estos modelos, pese a sus buenos resultados,
presentan ciertas limitaciones y complejidades que los hacen dif́ıciles de inte-
grar en un motor de juegos o libreŕıas gráficas para su posterior utilización en
aplicaciones comerciales.

“tesis” — 2009/11/9 — 14:57 — page III — #5i
i

i
i

i
i

i
i

III

El trabajo presentado en esta tesis se ha orientado hacia el desarrollo de
técnicas de nivel de detalle adaptadas a las necesidades de las aplicaciones
gráficas con distintas configuraciones hardware. En este sentido, el objetivo
final es ofrecer soluciones que:

obtengan aproximaciones que sean visualmente satisfactorias al ojo hu-
mano

optimicen las necesidades de memoria de las estructuras de datos, tanto
en CPU como en GPU

reduzcan el coste temporal de los algoritmos de extracción

ofrezcan una fácil implementación en motores de juegos y aplicaciones
finales

Planteamiento y metodologı́a utilizados

Esta tesis tiene como objetivo fundamental el desarrollo de nuevas técni-
cas de modelado multirresolución que ofrezcan una solución definitiva para el
manejo del nivel de detalle en motores de juegos y aplicaciones interactivas.

Para ello, se propone realizar las tareas siguientes:

Estado del arte

Como paso previo al trabajo de la tesis, es necesario desarrollar un estudio
en profundidad de técnicas de modelado multirresolución. Se propone también
el análisis de las últimas aportaciones en la búsqueda de tiras y los métodos
de simplificación. Además, la problemática del modelado geométrico, la pro-
gramación de las tarjetas gráficas y las nuevas técnicas de explotación de las
capacidades del hardware también se estudiarán debido a su influencia sobre el
trabajo a desarrollar.

Modelado multirresolución

Como ya se ha comentado previamente, el objetivo fundamental de esta
tesis es la obtención de un modelo de nivel de detalle que cumpla con los
requisitos mencionados anteriormente. Aśı, se pretende desarrollar un modelo
que esté totalmente integrado en el hardware y que tenga en cuenta todas las
caracteŕısticas de los objetos de los motores de juegos, como pueden ser la
iluminación o el uso de texturas.

“tesis” — 2009/11/9 — 14:57 — page IV — #6i
i

i
i

i
i

i
i

IV

Integración en motores de juegos

La necesidad de obtener unos resultados aplicables obliga a estudiar las
posibilidades de integración de los modelos desarrollados en varios motores de
juegos, para poder comprobar su calidad en aplicaciones reales y mejorar los
aspectos que sean necesarios.

Evaluación y comparación del modelo desarrollado

La verificación y prueba de los resultados obtenidos se realizará sobre el
software de soporte a los proyectos de investigación en los que se enmarca el
trabajo de esta tesis. El rendimiento del modelo se podrá medir en las apli-
caciones desarrolladas en dichos proyectos y con datos de los mismos. Por
supuesto, se pretende demostrar la calidad de la solución propuesta frente a
otras soluciones continuas y discretas, tanto en pruebas de tiempo o de coste
espacial como en aplicaciones reales.

Aportaciones originales

Teniendo estos objetivos en mente, se han propuesto diferentes soluciones
adecuadas para motores de juegos y libreŕıas gráficas que habitualmente re-
curren a modelos discretos a la hora de elegir la técnica multirresolución más
adecuada.

Inicialmente, el Caṕıtulo 2 presenta el estado del arte en modelado por
nivel de detalle, aśı como un breve estudio de las técnicas de simplificación y
búsqueda de tiras. Dado que la tesis presentada está enfocada hacia el modelado
multirresolución, también se estudian las técnicas orientadas hacia la elección
del nivel de detalle más adecuado a las caracteŕısticas concretas de la aplicación,
de manera que se adapte la cantidad de geometŕıa visualizada a la capacidad
del hardware o del software que se utilice.

Para mejorar soluciones anteriores, el Caṕıtulo 3 describe Speed Strips, un
nuevo modelo multirresolución que realiza todas las operaciones necesarias para
modificar el nivel de detalle y eliminar triángulos degenerados al mismo tiem-
po, reduciendo el coste de extracción de soluciones previas. Además, tras un
estudio de las caracteŕısticas del bus PCI Express, se ha orientado el proceso
de actualización de datos en la tarjeta gráfica para maximizar la transmisión
de datos a través del BUS.

Continuando con la explotación del hardware gráfico, el Caṕıtulo 4 intro-
duce una solución diferente: Masking Strips. El principal objetivo de este méto-
do es la codificación de las operaciones para modificar el nivel de detalle en
máscaras de bits, dado que con el último hardware es posible ejecutar opera-
ciones a nivel de bit en la propia tarjeta gráfica. Además, el uso de máscaras
permite eliminar completamente todos los triángulos degenerados innecesarios,

“tesis” — 2009/11/9 — 14:57 — page V — #7i
i

i
i

i
i

i
i

V

mejorando soluciones anteriores que solamente eran capaces de eliminar cier-
tos patrones de triángulos degenerados. Masking Strips presenta también una
interesante solución para la transmisión progresiva de modelos 3D, ya que es
posible enviar inicialmente una aproximación con poco detalle e ir refinándola
mediante sucesivos paquetes de datos.

Por último, el Caṕıtulo 5 describe Interactive Meshes, cuyo objetivo es ofre-
cer un modelo multirresolución que funcione completamente en la tarjeta gráfi-
ca. Este método se basa en el uso de triángulos como primitiva de dibujado y
modifica la información de los vértices directamente en la tarjeta gráfica me-
diante la programación de shaders. Además, esta solución es capaz de mostrar
tanto resoluciones uniformes como resoluciones variables, pudiendo añadir más
detalle a aquellas zonas que lo necesiten como, por ejemplo, las siluetas. Por
último, este modelo permite mejorar la calidad visual final mediante procesos
como el geo-morphing.

Conclusiones obtenidas y futuras lı́neas de investi-
gación

Del estudio inicial planteado en el caṕıtulo del estado del arte podemos con-
cluir que, aunque existe una amplia investigación en este campo, todav́ıa existe
la necesidad de desarrollar técnicas eficientes. La mayoŕıa de las soluciones
basadas en la CPU suponen el uso de complejos procesos que no las hacen
adecuadas para aplicaciones gráficas, mientras que las técnicas más recientes,
basadas en la GPU, están generalmente enfocadas hacia la teselación de una
malla inicial.

De los experimentos realizados durante el desarrollo del modelo Speed Strips
podemos concluir que es mejor realizar varias operaciones que suponen poco
tráfico de datos en lugar de actualizar toda la información sobre las tiras en
una única vez. Además, el estudio de primitivas desarrollado en este caṕıtulo
con el hardware disponible demostró que las tiras obtenidas con el algoritmo
Stripe ofrecen el mejor rendimiento.

El modelo Masking Strips ofrece un tratamiento más avanzado de los triángu-
los degenerados, lo que permite reducir la cantidad de ı́ndices procesados en
las aproximaciones más burdas en un 40 %. Por otra parte, el coste espacial
se reduce considerablemente si comparamos esta técnica con otros modelos
desarrollados previamente. Por último, es importante mencionar que este mo-
delo se ha integrado en el motor gráfico Ogre, ofreciendo interesantes resultados
al compararlo con la solución discreta que este motor implementa.

Interactive Meshes es la solución más interesante de las introducidas en esta
tesis, ya que ofrece un modelo multirresolución simple y eficiente que además
está completamente integrado en la GPU utilizando shaders. Este modelo re-
duce el coste espacial de las estructuras de datos y el coste temporal de los
algoritmos de extracción respecto a las soluciones presentadas con anterioridad.

“tesis” — 2009/11/9 — 14:57 — page VI — #8i
i

i
i

i
i

i
i

VI

Además, es importante comentar que una de las ventajas más importantes de
una solución como esta es la posibilidad de incorporar un modelo multirresolu-
ción en cualquier aplicación que soporte el Shader Model 4.0, ya que dos shaders
y muy pocas ĺıneas de código son suficientes para poder recuperar las estruc-
turas de datos y realizar la selección y visualización de los distintos niveles de
detalle.

Trabajo futuro

En esta tesis hemos presentado diferentes técnicas multirresolución que son
adecuadas para distintas configuraciones de software y hardware. Sin embargo,
existen varios aspectos de estas técnicas que se pueden mejorar y también varios
campos de investigación que se pueden beneficiar de las soluciones propuestas.

En este sentido, seŕıa interesante aplicar las técnicas desarrolladas a la re-
presentación 3D de otros elementos como árboles o sistemas de part́ıculas, que
pueden llegar a ser útiles a la hora de representar fenómenos como el fuego o
la lluvia.

Por otra parte, hay que tener en cuenta que para incluir un modelo multirre-
solución en una aplicación gráfica no es suficiente con ofrecer los algoritmos de
manejo. Aśı, también seŕıa interesante considerar la necesidad de desarrollar un
conjunto de técnicas de gestión de los múltiples modelos 3D que puedan estar
incluidos en una escena. De esta manera, en este tipo de situaciones creemos que
es necesario mantener un equilibrio entre la cantidad de geometŕıa a visualizar
y el tiempo de proceso.

Tras analizar el desarrollo del hardware actual, se considera que la potencia
ofrecida por el hardware gráfico presenta nuevas posibilidades para mejorar los
modelos dependientes de la vista, como es el caso del último modelo presentado
en esta tesis (Interactive Meshes). Asimismo, creemos que nuestras propues-
tas se podŕıan aplicar para modelos masivos, cuyas necesidades de memoria
requieren rutinas espećıficas para su gestión tanto en la CPU como en la GPU.
Como consecuencia de ello, las técnicas propuestas se pueden combinar para
ofrecer una nueva solución al problema de la visualización de modelos masivos.

Desde una perspectiva diferente, es importante mencionar que uno de los
principales objetivos del trabajo presentado es el desarrollo de un modelo mul-
tirresolución que funcione completamente en la tarjeta gráfica. Aunque las solu-
ciones propuestas han demostrado ser satisfactorias, es interesante plantearse la
traducción de estas aportaciones a CUDA, esperando un aumento de rendimien-
to. CUDA (Compute Unified Device Architecture) es una tecnoloǵıa reciente
elaborada por nVidia con el objetivo de aprovechar la enorme capacidad de
procesamiento de las actuales tarjetas gráficas. De esta manera, en lugar de
emplear un gran número de ordenadores, es posible recurrir a los procesadores
gráficos para hacer cálculos matemáticos o resolver problemas con una alta
carga de trabajo computacional.

Siguiendo con esta ĺınea de trabajo sobre la GPU, cabe mencionar que la

“tesis” — 2009/11/9 — 14:57 — page VII — #9i
i

i
i

i
i

i
i

VII

inminente aparición de DirectX 11 implicará nuevos avances en los gráficos.
Entre las nuevas etapas de la pipeline gráfica destaca la unidad de teselación,
que será capaz de producir teselaciones semiregulares. Esta caracteŕıstica puede
ser utilizada directamente como técnica multirresolución y visualizar de una
manera sencilla aproximaciones dependientes de la vista. Por lo tanto, teniendo
en cuenta las caracteŕısticas de la futura versión de DirectX, creemos que esta
unidad será un elemento clave en la próxima generación de modelos multirreso-
lución.

“tesis” — 2009/11/9 — 14:57 — page VIII — #10i
i

i
i

i
i

i
i

“tesis” — 2009/11/9 — 14:57 — page IX — #11i
i

i
i

i
i

i
i

IX

The excitement is the feeling that we
experiment immediately after having a great

idea and right before we realize its drawbacks

Anonymous

“tesis” — 2009/11/9 — 14:57 — page X — #12i
i

i
i

i
i

i
i

X

“tesis” — 2009/11/9 — 14:57 — page XI — #13i
i

i
i

i
i

i
i

Preface

Abstract

The main aim of this dissertation is to present a set of techniques which
have been developed to improve the real-time visualization of polygonal meshes.
Several solutions to the management of the level of detail are described, empha-
sizing on the exploitation of current graphics hardware. As a consequence, the
contributions optimize the storing cost, reduce the extraction time and min-
imize the data transferred through the BUS. Finally, a solution is presented
which is capable of managing the level-of-detail completely on GPU, reducing
to the maximum the traffic of data between the CPU and the GPU, and offer-
ing continuous and view-dependent resolutions. Moreover, this latest approach
offers a very easy implementation in applications like FX Composer, which en-
ables the user to easily create, edit and visualize shaders applied to polygonal
meshes.

Keywords: multiresolution modeling, level-of-detail, graphics hardware

Funding

This research has been partially supported by the GameTools project from
the VIth Framework Program from the European Union (2001/SGR/00296),
by the project Mejora y Aplicación de la Tecnoloǵıa de Juegos en Realidad Vir-
tual y Contenidos Web from the Comisión Interministerial de Ciencia y Tec-
noloǵıa from the Spanish government (TIC2004-7451-C03-03), by the project
Geometŕıa Inteligente form Fundació Bancaixa (P1 1B2007-56) and by the
project Contenido Inteligente para Aplicaciones de Realidad Virtual: una Aprox-
imación Basada en Geometŕıa funded by the Ministerio de Educación y Ciencia
from the Spanish government (TIN2007-68066-C04-02).

“tesis” — 2009/11/9 — 14:57 — page XII — #14i
i

i
i

i
i

i
i

XII

Acknowledgements
This thesis is the result of many years of work in the field of Computer

Graphics which would not have been possible without the help of many people.
First of all, I would like to express my sincere gratitude to Miguel Chover,

who has been my supervisor since the beginning of my Ph.D. studies. He pro-
vided me with many helpful suggestions and constructive advices during the
course of this work.

I have been very lucky to make good friends at the Computer Graphics
group. The many discussions we had (most of them not research-related), were
often the occasion for new discoveries and always truly agreeable moments.

My experience at Limoges would not have been such a pleasurable one
without the presence of all the people working there. I would like to specially
thank Dimitri and Benôıt, who were incredibly helpful and kind throughout
the whole stay.

I would like to express my heartiest thanks to Anna, who helped me to
make the most of my life (and still does).

My special appreciation goes to my parents for their support and encour-
agement to do my best. I would like to finish by thanking my family and friends
for their help and for understanding my little availability.

Thank you very much to all of you.

“tesis” — 2009/11/9 — 14:57 — page XIII — #15i
i

i
i

i
i

i
i

Index

1. Introduction 1
1.1. Motivation . 3
1.2. Contributions . 5
1.3. Document organization . 6

2. Previous Work 9
2.1. Introduction . 9
2.2. Mesh simplification . 11
2.3. Rendering primitive optimization 13

2.3.1. Triangle strips . 14
2.3.2. Cache-optimized primitives 15

2.4. Multiresolution modeling . 16
2.4.1. Discrete models . 16
2.4.2. Continuous models . 18
2.4.3. View-dependent models 20
2.4.4. Other techniques . 21
2.4.5. Characterization . 22

2.5. LOD selection criteria . 23
2.6. Conclusions . 26

3. Optimizing the Management of Level-of-Detail Models 29
3.1. Introduction . 29
3.2. General Framework . 31

3.2.1. Simplification of the original mesh 32
3.2.2. Stripification of the original mesh 34
3.2.3. Construction process . 36

3.3. The Speed Strips model . 37
3.3.1. Data structures . 37
3.3.2. Extraction and visualization algorithms 41

3.4. A memory version . 43
3.5. Results . 45

XIII

“tesis” — 2009/11/9 — 14:57 — page XIV — #16i
i

i
i

i
i

i
i

XIV INDEX

3.5.1. Memory cost . 45
3.5.2. Rendering cost . 45
3.5.3. Rendering primitive . 47

3.6. Conclusions . 48

4. Rendering Continuous Level-of-Detail Meshes by Masking Strips 51
4.1. Introduction . 51
4.2. General Framework . 53

4.2.1. Simplification of the original mesh 54
4.2.2. Masking for LOD management 57

4.3. The Masking Strips model . 59
4.3.1. Data structures . 59
4.3.2. Extraction and visualization algorithms 61
4.3.3. Progressive transmission 61

4.4. Results . 64
4.4.1. Memory cost . 65
4.4.2. Rendering cost . 65

4.5. Conclusions . 70

5. Interactive Visualization of Meshes on the GPU 71
5.1. Introduction . 71
5.2. Continuous resolution framework 73

5.2.1. Pre-processing the original mesh 74
5.2.2. Data structures . 77
5.2.3. Extraction algorithms 79

5.3. View-dependent resolution framework 83
5.3.1. Implementation details 84

5.4. Integration into a real application 87
5.5. Results . 89

5.5.1. Storage and memory cost 89
5.5.2. Collapse list size study 90
5.5.3. Primitive study . 90
5.5.4. Rendering time . 91

5.6. Conclusions . 92

6. Conclusions and Future Work 95
6.1. Conclusions . 95
6.2. Future work . 97
6.3. Publications . 98

Bibliography 103

“tesis” — 2009/11/9 — 14:57 — page XV — #17i
i

i
i

i
i

i
i

List of Figures

1.1. Animated man model. From left to right: original (138,517 trian-
gles), 75 % (103,889 triangles), 50 % (69,261 triangles) and 25 %
(34,629 triangles) simplified versions. 2

1.2. Popping artifacts in Far Cry game by Crytek Labs (2004). . . . 3

2.1. Two levels of detail of an ogre model. 10
2.2. Example of edge collapses. From top to bottom: a full-edge col-

lapse and a half-edge collapse. 12
2.3. Stripified version of the phlegmatic dragon model. 14
2.4. Different multiresolution approaches for the Isis model: on the

left the original geometry, in the middle a continuous approxi-
mation and on the right a view-dependent approximation. . . . 17

2.5. Collapse of a strip. 19
2.6. Tessellation of a sample polygon. 22
2.7. Army of multiresolution ninjas in a game engine. 23

3.1. Color-coded LOD scene with many Speed Strips models inside
the Ogre rendering engine. 30

3.2. Pre-process diagram. 31
3.3. Example of simplification. Figure on the left is the original mod-

el. Figure in the middle represents the model simplified to 50 %.
Figure on the right is the model simplified to 25 %. 32

3.4. Example of stripification of a Toyota model: on the left the out-
put of the Stripe algorithm and on the right the result of the
cache-aware nVidia approach. 33

3.5. Degenerate triangles after several edge collapse operations. The
red-coloured numbers indicate positions that might be eliminat-
ed without altering the geometry. 35

3.6. Speed Strips data structures. 38
3.7. Data structure for the example given. 39
3.8. Example of change to LOD 2 (collapse v2 → v10). 42

XV

“tesis” — 2009/11/9 — 14:57 — page XVI — #18i
i

i
i

i
i

i
i

XVI LIST OF FIGURES

3.9. Frame rate obtained with triangles and strips when rendering
the bunny model at different LODs. 48

4.1. Space woman model. From left to right: original (4,130 trian-
gles), 60 % (2,478 triangles) and 20 % (826 triangles) approxi-
mations. 52

4.2. Basic framework of Masking Strips. 54
4.3. The edge collapse va → vb (true edge) forces the collapses vc →

vd (twin edge) and ve → vf (fake edge). 55
4.4. Three levels of detail of different 3D models. 56
4.5. Masking example. 57
4.6. Patterns used for constructing the filter masks. 59
4.7. Masking Strips data structures. 60
4.8. Progressive transmission data structures. 63
4.9. Indices rendered for the bunny model. 66
4.10. Comparison of the extraction and visualization times of the

phlegmatic dragon model. 66
4.11. Comparison of the triangles rendered for the space woman model

at different distances. 67
4.12. Space woman at different distances and levels of detail. On the

left we present the models rendered with a discrete solution,
while on the right we show the results of the Masking Strips
approach. 68

4.13. Scene rendering a crowd of models developed inside the Ogre
graphics engine. 68

4.14. Performance obtained in the crowded scenario using our mul-
tiresolution model, the discrete solution included in Ogre and
disabling any level-of-detail solution. 69

5.1. Approximations of a man model (136,410 triangles). From left
to right: original model and simplifications to 50 %, 25 % and
10 % respectively. 72

5.2. Construction of an Interactive Meshes model. 74
5.3. Example of the collapse hierarchy of a sample model. 75
5.4. Example of simplification and ordering of vertices following the

collapse order. 76
5.5. Data structures preparation and GPU storage. 78
5.6. Rendering pipeline for the continuous Interactive Meshes ap-

proach. 80
5.7. Example of the extraction process of four levels-of-detail. . . . 82
5.8. Bunny model with its right half simplified to 80 %. 84
5.9. Rendering pipeline for the view-dependent Interactive Meshes

approach. 85

“tesis” — 2009/11/9 — 14:57 — page XVII — #19i
i

i
i

i
i

i
i

LIST OF FIGURES XVII

5.10. Construction and rendering pipeline for the integration of our
proposal. 88

“tesis” — 2009/11/9 — 14:57 — page XVIII — #20i
i

i
i

i
i

i
i

XVIII LIST OF FIGURES

“tesis” — 2009/11/9 — 14:57 — page XIX — #21i
i

i
i

i
i

i
i

List of Tables

2.1. Characterization of GPU-based multiresolution models. 24

3.1. Models used in the experiments, with their storage cost (in bits/vertex.). 46
3.2. Average rendering time (extraction+visualization) (in ms.). . . 46
3.3. Average extraction time of hardware models (in ms.). 47
3.4. Average data traffic (in MB.). 47

4.1. Detailed information of the models used in the experiments. . . 64
4.2. Storage cost study (in bits/vertex). 65
4.3. Storage cost study of the progressive solutions (in bits/vertex). 65

5.1. Details of the models and storage cost study (in bits/vertex). . 90
5.2. Collapse list size information. 90
5.3. Performance comparison (in fps) among different primitives and

models at two levels of detail. 91
5.4. Comparison of average rendering time (extraction+visualization)

(in ms.). 92
5.5. Comparison of average extraction time (in ms.). 92

XIX

“tesis” — 2009/11/9 — 14:57 — page XX — #22i
i

i
i

i
i

i
i

XX LIST OF TABLES

“tesis” — 2009/11/9 — 14:57 — page XXI — #23i
i

i
i

i
i

i
i

List of Algorithms

1. Pseudocode of the Speed Strips algorithms. 43
2. Pseudocode of the memory version of Speed Strips. 44
3. Pseudocode of the memory version with hardware support of

Speed Strips. 44
4. Pseudocode of the Masking Strips algorithms. 62
5. Pseudocode of the extraction shader of the continuous version

of Interactive Meshes . 81
6. Pseudocode of the extraction shader of the view-dependent ver-

sion of Interactive Meshes. 86

XXI

“tesis” — 2009/11/9 — 14:57 — page XXII — #24i
i

i
i

i
i

i
i

XXII LIST OF ALGORITHMS

“tesis” — 2009/11/9 — 14:57 — page 1 — #25i
i

i
i

i
i

i
i

CHAPTER 1
Introduction

Nowadays, applications such as computer games, virtual reality environ-
ments or scientific simulations are increasing the detail of their scenarios with
the aim of offering more realism. This objective usually involves dealing with
larger scenes containing lots of objects which are more and more complex and
generally include submeshes, materials, textures, normal maps or skeletal ani-
mations.

The need for very detailed 3D scenarios is growing faster than the capa-
bilities offered by graphics hardware. Despite the constant improvements in
performance and capabilities of GPUs, it is still difficult to render such com-
plex datasets and scenes as vertex throughput and memory bandwidth become
considerable bottlenecks when dealing with them. As a result, these environ-
ments cannot be interactively rendered by brute force methods, presenting a
set of problems for visualization, storage and compression.

It is possible to find plenty of works with the aim of managing these detailed
environments, which has led to the following specific research areas:

Mesh simplification. Simplification methods reduce the geometry of the
meshes to obtain a lighter version which preserves the original appearance
as possible [1]. There are many simplification methods available which
apply different simplification operations, like vertex clustering, vertex re-
moval, edge collapse, etc. Moreover, depending on the metric they apply,
they can be classified into geometry driven and viewpoint driven algo-
rithms.

Level-of-Detail or Multiresolution modeling. These techniques scale the
detail of the objects according to their importance within the scene [2].

1

“tesis” — 2009/11/9 — 14:57 — page 2 — #26i
i

i
i

i
i

i
i

2 Chapter 1 Introduction

Figure 1.1: Animated man model. From left to right: original (138,517
triangles), 75 % (103,889 triangles), 50 % (69,261 triangles) and 25 % (34,629
triangles) simplified versions.

Multiresolution models allow us to reduce the amount of geometry to
process, transfer and visualize, which results in an improvement in per-
formance and offers a perfect framework to adapt the complexity of the
3D models to the characteristics of the underlying hardware or to the
limitations of the application.

Mesh optimization. These techniques organize the geometry data in order
to send it to the graphics hardware in the most appropriate way. This can
be done by means of rendering primitives with implicit connectivity or
by re-organizing the polygons of the mesh to exploit the vertex cache [3].
Maintaining the data on the GPU allows for exploiting hardware while
avoiding bus traffic.

Mesh compression. Research in this field has produced a wealth of works.
In a general classification, they could be grouped into progressive com-
pression and single-rate techniques, depending on whether the model is
decompressed during the transmission or once the model has been com-
pletely received [4, 5, 6].

Among the solutions presented above, one of the most widely used is level-of-
detail (LOD) modeling. A level-of-detail or multiresolution model is a compact
description of multiple representations of a single object [7] that must be ca-
pable of extracting the appropriate representation in different contexts. Figure
1.1 presents an animated man model at four different levels of detail, each of
them reducing the geometry of the previous approximation in 25 %.

Multiresolution modeling has been successfully applied to solve problems in
many areas [8] and there is an important body of literature on the subject [2].
A comprehensive description of multiresolution models can be found in [9].

The first multiresolution models that were developed were based on a rel-
atively small number of approximations (usually between 5 and 10) [9], and
were known as discrete multiresolution models. These discrete models suffer

“tesis” — 2009/11/9 — 14:57 — page 3 — #27i
i

i
i

i
i

i
i

1.1 Motivation 3

Figure 1.2: Popping artifacts in Far Cry game by Crytek Labs (2004).

from popping artifacts that appear when switching between the different levels
of detail, causing noticeable and visually disturbing effects. Figure 1.2 presents
two images captured from the Far Cry videogame by Crytek Labs. These snap-
shots show two instants of the game which are very close in time, as the user
has made a very small change in its position. Nevertheless, the position change
has forced the rocks located in the middle of the scenario to swap to a highest
level of detail, causing a clearly noticeable popping effect.

Continuous multiresolution models appeared later with the aim of improv-
ing discrete models, offering a wide range of different approximations to repre-
sent the original object. These models are capable of solving the problems of
interactive visualization, progressive transmission and geometric compression.

A further improvement on continuous multiresolution models are those that
present view-dependent capabilities, which enable an object to include different
resolutions in different areas at the same time. These models, although they
offer better granularity, present important time limitations as their extraction
process is usually more complex and they need to obtain some extra information
of the scene conditions.

Nowadays, multiresolution modeling can be considered as a compulsory fea-
ture of libraries and game engines. In this sense, graphics libraries like Open-
Inventor or OSG, and game engines such as Torque or Ogre, introduce mul-
tiresolution models to easily alleviate the amount of geometry that must be
rendered in a scene, thus resulting in an improvement in performance.

1.1. Motivation
For more than a decade, researchers working on level-of-detail techniques

have oriented their efforts towards developing better frameworks. This research
field has been exploited for many years, and it is possible to find a wealth of

“tesis” — 2009/11/9 — 14:57 — page 4 — #28i
i

i
i

i
i

i
i

4 Chapter 1 Introduction

papers which present very different solutions.
The use of a multiresolution model in a graphics application entails increas-

ing the total time required to render the scene. This is due to the fact that, for
obtaining the desired approximation, the algorithms related to the multireso-
lution scheme must perform an extraction process, composed of different tasks
which are necessary to update the geometry according to the desired level-of-
detail. Usually, the overcost related to the extraction process is amortized by
the increase in performance obtained when reducing the geometry to visualize.
Thus, reducing the extraction time is key for developing efficient multiresolu-
tion schemes.

In this sense, it is important to say that, despite the better features shown by
continuous models, traditional solutions usually involve discrete multiresolution
models. The reasons behind this decision are quite simple: discrete models are
more easily integrated and they also offer an easier and more straightforward
level of detail update. Many authors consider that using continuous models is
not worth the effort, as in an interactive application the viewer keeps moving all
the time and this would involve updating the whole scene continuously, which
would lower overall performance. As a consequence, it is easier to discard one
model and use another one (which happens with discrete models) and accept
the popping artifacts.

From a different perspective, as we all know graphics hardware has improved
outstandingly over recent years. Performance is doubling every six months [10],
in contrast to microprocessors which grow by approximately 40 % every year
[11]. Thus, the possibility of taking maximum benefit from its computational
power, its tremendous memory bandwidth, the possibility of parallel program-
ming, as well as the alleviation of CPU load, has increased the interest in using
GPUs as a computational solution, not only for computer graphics, but al-
so for general-purpose routines. The development of Shader Model 4.0 was a
breakthrough in computer graphics as it offers a new range of functionalities,
like a Geometry Shader that enables the dynamic creation and elimination of
geometry and the Stream Output that stores the outputted geometry. Further-
more, the development of the PCI Express bus has boosted the performance if
compared with previous AGP buses, making the traffic of information between
the CPU and the GPU much more efficient.

Many of the works available in the literature were written in the early days
of the GPUs (or even in earlier times [12]) when it was advisable to spend some
CPU processing time to optimize the GPU rendering process. Nowadays, due to
the great scalability of the graphics cards, we must revise all that previous work
to provide an updated and practical viewpoint of that situation: overloading
the CPU is a delicate task that in most cases will cause it to be a bottleneck
for the graphics hardware. As a consequence, the main problem with existing
multiresolution models is that, even though these solutions provide interactive
rates, it proves very difficult to adapt them to the new GPU architectures due
to the complex data structures and algorithms they require. In this sense, it is

“tesis” — 2009/11/9 — 14:57 — page 5 — #29i
i

i
i

i
i

i
i

1.2 Contributions 5

possible to find in the literature very few models which have been developed to
work on the GPU. Thus, we believe there is still a gap for efficient yet simple
multiresolution models that fully exploit the potential of current GPUs.

1.2. Contributions

For addressing these problems and also for offering a complete, simple, and
efficient solution for applying continuous LOD modeling in real-time applica-
tions, we have developed different multiresolution approaches. The works pro-
posed in this dissertation are oriented towards the development of level-of-detail
techniques that exploit graphics hardware, but always from the perspective of
the graphics hardware that was available at the moment. Thus, the final aim
of the work of this Ph.D. thesis is to develop a multiresolution model which
works completely on GPU.

The different solutions presented offer continuous updates, so that updating
the level of detail is performed in a smooth manner, avoiding popping artifacts
which are often visually noticeable and disturbing. Moreover, it is our aim is
to reduce storage cost and to overcome the difficulties of integrating previous
solutions in final applications due to their complexity. Our intention is to pro-
vide competitive solutions in comparison with discrete models, describing the
integration of the proposed solutions into real applications and game engines.

With these objectives in mind, this dissertation presents three multiresolu-
tion frameworks. The first contribution of this thesis introduces a new level-of-
detail framework that improves on previously presented solutions by offering
an extraction process that maximizes the traffic through the BUS and applies
all the changes in one single pass. These changes include those operations that
are necessary to modify the level of detail and also the steps to eliminate de-
generate triangles. This model is based on triangle strips and its description
includes a primitive study to address the performance obtained with different
rendering primitives.

An important application for multiresolution models is progressive trans-
mission, as the transmission of a complex 3D model might take very long when
using low-bandwidth networks. Therefore, level-of-detail modeling can be suc-
cessful at this task by transmitting an initial coarse model and successively
refining it by sending and processing small data packages. Thus, the subse-
quent proposal is based on the codification of all the operations to modify the
triangle throughout the different levels of detail in masks of bits. This approach
reduces storage cost and offers a perfect solution for the progressive transmis-
sion of the model. Moreover, all unnecessary information that appears while
simplifying the original mesh is eliminated, in contrast to previous approaches
that were just capable of eliminating certain patterns of degenerate triangles.
This multiresolution model has been integrated into the Ogre game engine, and
results on the performance obtained are also offered.

“tesis” — 2009/11/9 — 14:57 — page 6 — #30i
i

i
i

i
i

i
i

6 Chapter 1 Introduction

Finally, our last approach offers a fully-GPU level-of-detail solution. This
triangle-based framework performs LOD calculations by modifying vertices in-
formation directly on the GPU using shaders. The use of the Vertex Shader to
perform the vertex update entails the necessity of developing an extraction al-
gorithm which is capable of applying changes on a vertex basis. The proposed
solution offered a perfect framework for extending the work and developing
an efficient variable resolution model which also considers geo-morphing for
maintaining visually satisfactory renders. This GPU model offers a very easy
implementation and, thus, could be integrated into applications like nVidia’s
FX Composer, which is a powerful tool that enables an easy creation and test-
ing of shaders. Thus, with this level-of-detail model we are capable of offering
the final user a complete solution with just two shaders and very little scripting.

1.3. Document organization
The Ph.D. thesis that is presented in this dissertation is organized as follows:

Chapter 2: Previous Work
We present the state-of-the-art on multiresolution modeling, stressing
those approaches which exploit graphics hardware. Moreover, we also
describe current and past techniques on mesh simplification, mesh strip-
ification and also primitive optimization.

Chapter 3: Optimizing the Management and Rendering of Level-of-Detail
Models
The multiresolution model Speed Strips is introduced in this chapter.
This technique is presented as an improvement over previous solutions,
reducing the extraction cost and enhancing BUS traffic. In addition, this
proposal is capable of applying the level-of-detail changes and eliminating
unnecessary information in one single pass.

Chapter 4: Rendering Continuous Level-of-Detail Meshes by Masking
Strips
We describe the characteristics of Masking Strips, a different level-of-
detail approach which codes the information in efficient bit-masks. This
feature enables us to improve on previous solutions by eliminating all
unnecessary information. Masking Strips is also capable of offering pro-
gressive transmission capabilities.

Chapter 5: Interactive Visualization of Meshes on the GPU
We propose Interactive Meshes, a new framework which uses triangles as
the rendering primitive and modifies vertices instead of indices. This solu-
tion has been completely integrated on GPU to offer both continuous and
view-dependent resolutions. Moreover, its integration into a final applica-
tion is described, showing that it is possible to manage this level-of-detail
solution by means of shaders and some scripting.

“tesis” — 2009/11/9 — 14:57 — page 7 — #31i
i

i
i

i
i

i
i

1.3 Document organization 7

Chapter 6: Conclusions and Future Work
Finally, this chapter summarizes the contributions and concludes the work
presented in this dissertation. Moreover, a list of the different publications
obtained while developing this thesis is presented, as well as other pub-
lications not directly related and a list of research projects that have
funded the work.

“tesis” — 2009/11/9 — 14:57 — page 8 — #32i
i

i
i

i
i

i
i

8 Chapter 1 Introduction

“tesis” — 2009/11/9 — 14:57 — page 9 — #33i
i

i
i

i
i

i
i

CHAPTER 2
Previous Work

Multiresolution modeling has been successfully applied to solve problems in
many areas, and there is an important amount of bibliography available. This
section includes a review of the most important techniques around this field
of research and also of the last tendencies in using multiresolution in real-time
rendering.

2.1. Introduction
The need for very detailed 3D models is growing faster than the capabilities

offered by graphics hardware. Meshes created with traditional modeling solu-
tions are usually composed of a high amount of geometry that needs specific
attributes. Applications like computer games or virtual reality environments
are including in their scenes more and more complex meshes, which generally
include submeshes, materials, textures, normal maps or skeletal animations.
As a consequence, they present a set of problems for visualization, storage and
compression.

In the previous chapter we introduced several techniques that can be ap-
plied to solve these problems, like mesh simplification, level-of-detail modeling,
mesh optimization or mesh compression. Among these techniques, the work
presented in this Ph.D. dissertation has been concentrated on multiresolution
modeling, as they offer acceleration capabilities that can be useful under many
circumstances. Multiresolution models allow us to reduce the amount of ge-
ometry to process, transfer and visualize, which results in an improvement in
performance and offer a perfect framework to adapt the complexity of the 3D
models to the characteristics of the underlying hardware or to the limitations

9

“tesis” — 2009/11/9 — 14:57 — page 10 — #34i
i

i
i

i
i

i
i

10 Chapter 2 Previous Work

Figure 2.1: Two levels of detail of an ogre model.

of the application while respecting visual fidelity. Figure 4.14 presents two ap-
proximations of an ogre model at different levels of detail.

This thesis is aimed at improving the multiresolution models that can be
found in the literature. In this chapter we offer a description of the works
previously carried out on this issue, making a special effort to describe the
GPU-oriented solutions. In this sense, tessellation techniques on the GPU will
also be considered, as they offer a solution to the management of the geometry
complexity which has received a lot of attention from researchers lately.

Even though the work presented in this dissertation is concentrated on
level-of-detail modeling, there are several polygonal techniques that are also
fundamental. When working with 3D meshes it is important to consider that
the input meshes are usually not available in the format we need or with the
most adequate amount of detail. Some techniques are necessary to prepare the
original meshes, like:

tessellation or triangulation, which is often necessary in order to split the
input geometry into more adequate primitives, like triangles or quadri-
laterals.

consolidation, which is useful to merge and link the polygonal data, as
well as inferring new information like normals.

optimization, which groups and orders the data so that the performance
is improved.

simplification, which attempts to reduce the polygonal complexity by
eliminating unnecessary geometry or imperceptible details.

In the specific case of the work presented in this thesis, we must assure that
some requirements are fulfilled so that the multiresolution models can work
properly. In this sense, two of these techniques are very important: simplifica-
tion and optimization.

“tesis” — 2009/11/9 — 14:57 — page 11 — #35i
i

i
i

i
i

i
i

2.2 Mesh simplification 11

In this sense, in order to give a complete overview of the solutions we are
presenting throughout this Ph.D. thesis, we will present the state-of-the-art on
simplification and also on improving rendering primitives. Both techniques are
basic for the multiresolution proposal of the thesis. Moreover, we consider also
interesting to outline the main ideas on level-of-detail management, understood
as the criterions used to decide which level-of-detail is more suitable for a
specific mesh depending on characteristics of the whole scene.

This chapter starts by describing general techniques on simplification, cov-
ering the different elements that define this set of techniques. After that, we
offer a study on primitive optimization, including stripification techniques and
cache-optimized primitives. Then, a comprehensive description of GPU-based
multiresolution model is offered, including a characterization of the main so-
lutions presented in recent years. Lastly, level-of-detail selection criteria are
analyzed as they are key when applying multiresolution techniques to graphics
applications. To finish this chapter, some brief conclusions are given to sum-
marize the previous work study.

2.2. Mesh simplification

The objective of the simplification is to reduce the complexity of the input
mesh to obtain a coarser approximation which meets some restriction estab-
lished as a fidelity value or a triangle-count limit [1]. This process usually
modifies the geometry and the connectivity of the original mesh; the geometry
refers to the vertices of the input mesh, while the connectivity is represented
by the edges or faces that connect the vertices. In the specific case of multires-
olution modeling, the simplification process is a key aspect as it gathers the
information that will be later used to retrieve the different levels of detail.

With this information, the multiresolution model is capable of offering a
hierarchy of meshes with varying number of polygons. Depending on the mul-
tiresolution framework, it will be possible to obtain several approximations of
the original model or a sequence of operations which enables the retrieval of a
continuous spectrum of approximations.

To characterize the simplification techniques, we must consider that the
simplification process depends on:

the operator applied, which will reduce the complexity of the mesh by
some small amount.

the error metric selected, used to guide the simplification process and to
measure the simplification quality.

By means of these elements, the simplification process will decide which
simplification operations to apply and the order in which they should be ap-
plied.

“tesis” — 2009/11/9 — 14:57 — page 12 — #36i
i

i
i

i
i

i
i

12 Chapter 2 Previous Work

Figure 2.2: Example of edge collapses. From top to bottom: a full-edge
collapse and a half-edge collapse.

Simplification operators
There are many different possible operators that a simplification method

can use. Among them, we highlight:

Vertex Removal [13]. The techniques that apply this operator basically
use an iterative vertex selection for removal. Once the vertex is removed,
all faces that share that vertex are also removed and the resulting hole is
triangulated. This type of algorithms is limited to manifold meshes due
to its retriangularization schemes.

Vertex Clustering [14, 15]. The basic idea is to group vertices which are
close. Basically, they partition the space in a grid so that all the vertices
contained in a single cell are mapped into a single vertex, modifying the
faces to reflect the changes. These methods tend to be really fast, but the
quality of the resulting simplified mesh is not visually satisfying.

Edge Collapse [16, 17, 18]. This operator was firstly introduced in [19]
and later widely used in multiresolution. At each step, the operator selects
a new edge (or vertex pair) and collapses its two vertices, which forces
the elimination of the unnecessary geometry. This operator enables us to
use geo-morphing, which offers soft transitions among the simplification
steps. There are two approaches when applying the edge collapse opera-
tor: a full-edge collapse, where the two vertices are collapsed to a newly
computed vertex, and the half-edge collapse, where one of the two vertices
collapses to the other one. This latter variant avoids adding new vertices,
which can be a compulsory restriction for some level-of-detail schemes.
Figure 2.2 depicts these two versions applied to the simplification of a
sample geometry.

“tesis” — 2009/11/9 — 14:57 — page 13 — #37i
i

i
i

i
i

i
i

2.3 Rendering primitive optimization 13

Vertex-Pair Collapse [20, 21]. The objective of this operator is to collapse
two unconnected vertices. This operator is more flexible than the edge
collapse and can be useful for closing holes and tunnels.

Simplification error metrics

When simplifying a mesh by using any of the operators presented above,
it is necessary to establish some criterion to decide the order in which the
elements of the geometry should be collapsed or eliminated.

Most common simplification methods use some technique based on a geo-
metric distance as a quality measure between the original mesh and the one ob-
tained from simplification. These geometric criterions usually take into account
the position of vertices, edges and faces. Lately, some methods incorporate sur-
face properties such as colour, normals or texture coordinates [22, 23, 24]. Some
authors also use mesh saliency as the metric to guide their simplification [25].
The most common way of incorporating such properties is to add some weight-
ed sum of deviations to the geometric distance. However, these weights are
arbitrarily chosen by the user.

On the other hand, one of the objectives of the image-based methods is to
manipulate in a natural way the different interactions between the properties
of a mesh in only one metric. The image-based simplifications try to carry out
a simplification guided by differences between images more than by geometric
distances [26, 27, 28, 29, 30]. The goal is to create simplified meshes that
appear similar to a human observer. An important improvement of image-based
methods is the possibility of obtaining meshes with a maximum simplification
in hidden zones.

A reduced number of applications require exact geometric tolerances with
regard to the original model. For this type of applications it would be better
to consider some simplification method based on a purely geometric measure.
Examples of such applications include collision detection and path planning.
From a different perspective, the applications that can be benefited by using
image-based simplification are those in which the main requirement is visual
similarity. Examples of such applications are video games, vehicle simulations,
building walk-throughs, etc.

2.3. Rendering primitive optimization

In computer graphics, 3D meshes are usually represented as polygonal mesh-
es, which are considered as a collection of vertices and polygons that connect
those vertices. In this sense, we can consider that vertices represent the geom-
etry of the mesh, while the polygons represent its connectivity.

The representation of a polygonal model is usually based on a list of indexed
triangles. This representation is based on two sets:

“tesis” — 2009/11/9 — 14:57 — page 14 — #38i
i

i
i

i
i

i
i

14 Chapter 2 Previous Work

Figure 2.3: Stripified version of the phlegmatic dragon model.

a list of vertices, describing the coordinates of the vertices.

a list of indices to these vertices, describing the connectivity of the mesh.

Traditionally, triangles have been the selected primitive for rendering 3D
models. Nevertheless, advances have been made in the use of new graphics
primitives which minimize the data transfer between the CPU and the GPU.
A standard way to increase graphics performance is to send groups of triangles
that share vertices to the graphics pipeline. This codification usually offers a
wise use of the connectivity information provided by a polygonal mesh. For this
purpose, graphics primitives with implicit connectivity, such as triangle strips
and triangle fans, have been developed. Figure 2.3 presents an image of the
dragon model using triangle strips as the rendering primitive. In this image,
each color represents a different triangle strip.

2.3.1. Triangle strips

The codification of a set of n triangles usually requires a list of indices
composed of 3 · n elements, as it is necessary to indicate the three vertices of
each triangle.

A triangle strip is a more compact representation which consists of a series
of n+2 vertices representing n triangles. In Figure 2.5, the sequence {6,5,4,7,0,
8,1,9,10} corresponds with triangles {6,5,4}, {5,4,7}, {4,7,0}, {7,0,8}, {0,8,1},
{8,1,9}, and {1,9,10}. With this codificatoin, the transmission cost of n trian-
gles is reduced in a factor of three, from 3 · n to n + 2 vertices.

The use of triangle strips in 3D models offers an important improvement,
since this primitive offers an implicit codification of the connectivity which has
many advantages, like lower storage necessities and faster rendering.

“tesis” — 2009/11/9 — 14:57 — page 15 — #39i
i

i
i

i
i

i
i

2.3 Rendering primitive optimization 15

Stripifying techniques

Although converting a triangularized mesh into an optimum set of strips is
an NP-complete problem [31], many papers have presented different solutions
to maximize the performance of the output strips [32, 33, 34, 35]. A complete
overview of stripification methods as well as a deep description and comparison
of the most used models can be found in [36].

A different approach is offered by those works that represent a mesh using a
single triangle strip [37, 38]. These works create an efficient triangle strip with
the addition of a small amount of faces that do not alter the original geometry.
Thus, they are capable of offering a faster rendering. Nevertheless, from the
perspective of a multiresolution scheme, these set of techniques are difficult
to apply as the update of the level of detail and also the management of the
degenerate triangles in a single strip is usually too expensive. It would not
be possible to exploit coherence and it would involve rearranging and moving
large sections of the strip. As a consequence, the initial increase of performance
would be easily lost.

Finally, mention should be made of algorithms like the one proposed by
Belmonte et al. [39], which considers the generation of strips following a sim-
plification criterion. In paper [40], the authors propose a different method for
strips generation which starts the stripification process from the mesh simpli-
fied to the minimum level of detail, and constructs the strips by following the
simplification information until the original geometry is obtained.

The suggested algorithms show differences in generation and rendering
speed, in the use of memory or in the number of strips generated, which make
them more suitable for a specific use.

2.3.2. Cache-optimized primitives

Following with the improvement of the rendering primitive, it is also impor-
tant to comment on the studies which make optimum use of the vertex cache
and from the spatial locality of vertex buffers. The vertex cache is a special
GPU memory where vertex data is stored. If a vertex is in the cache, then it
does not have to be transformed and lit again if we need to use it again. Then,
the objective of cache-aware optimizators is to reuse calculated vertices as much
as possible, considering that the size of the vertex cache is very limited.

Primitive optimization has been addressed by several authors in order to
increase the performance of their models [41, 42], ordering the indices in an
optimized way and obtaining a much faster rendering.

In the specific case of triangle strips, Hoppe proved that an efficient man-
agement of the vertex cache can reduce vertex processing time by a factor
of approximately 1.6 to 1.9 [3]. These stripification techniques often produce
shorter triangle strips, which frequently offer better performance as they lead
to a wiser use of coherence [35, 38, 43].

“tesis” — 2009/11/9 — 14:57 — page 16 — #40i
i

i
i

i
i

i
i

16 Chapter 2 Previous Work

Most of the cache-aware methods require knowing in advanced the cache
size of the targeted hardware, as input meshes ordered for a specific size may
offer a bad performance when rendered with different cache sizes. For those
cases when the cache size is unknown, it is possible to use cache-oblivious
algorithms which output triangle orderings that work well with different sizes.
This orderings are also known as universal index sequences [44, 45, 46].

2.4. Multiresolution modeling
Extensive research has been carried out in multiresolution models for more

than ten years. Evolution of graphics hardware has given rise to new techniques
that allow us to accelerate multiresolution models. A comprehensive character-
ization of multiresolution models can be found in [9].

Following the taxonomy presented in [2], we can basically distinguish be-
tween three approaches when referring to multiresolution models:

discrete models, which contain various representations of the same object
with different levels of detail (typically between five and ten).

continuous models, which represent a vast range of levels of detail where
two consecutive approximations only involve altering a few polygons.

view-dependent models, which are anisotropic models, capable of offering
different levels of detail for different areas of the same object at the same
time.

Figure 2.4 offers the Isis model under different circumstances. The left image
depicts the mesh at the highest level of detail, while the image on the middle
presents a simplified version. Finally, on the right it is shown a view-dependent
situation, where half the model is simplified.

Many of the works available in the literature were written in the early days
of the GPUs (or even in earlier times [12]) when it was advisable to spend some
CPU processing time to optimize the GPU rendering process. Nevertheless, in
recent years the authors have re-oriented their efforts towards the development
of new models which consider the possibilities offered by new graphics hard-
ware. Recent GPUs include different processors which have evolved from being
configurable to being programmable, allowing us to execute shader programs
in parallel. Thus, in this section we will mainly focus on the lines of work that
are currently active in the level-of-detail field which are oriented towards the
exploitation of GPUs.

2.4.1. Discrete models

For creating a discrete model, 3D designers create a set of accurate repre-
sentations of the same object with different geometrical complexities. Then, the

“tesis” — 2009/11/9 — 14:57 — page 17 — #41i
i

i
i

i
i

i
i

2.4 Multiresolution modeling 17

Figure 2.4: Different multiresolution approaches for the Isis model: on the
left the original geometry, in the middle a continuous approximation and
on the right a view-dependent approximation.

level-of-detail algorithms decide in real-time which representation of the mesh
is the most suitable one, depending on the scene requisites and the criterion
used. These multiresolution models are widely included in graphics libraries
such as OSG, in standards like VRML and in the majority of game engines due
to their simplicity.

The main problem of discrete models is the popping produced when chang-
ing among the pre-calculated levels of detail, as swapping between two ap-
proximations of the original model with different complexity can be visually
perceptible. These artifacts were shown in Figure 1.2, presented in the previ-
ous chapter. Moreover, discrete models have a high storage cost as they have to
store different copies of the connectivity data. Despite these problems, in prac-
tice this is a very used technique because switching between static geometry is
cheap and efficient.

The evolution of graphics hardware has encouraged the development of new
discrete models which upload the different approximations to the GPU and per-
form smooth transitions between them by means of geo-morphing or blending
[47, 48], reducing the noticeable popping artifacts. An important drawback is
the fact that they do not work properly with meshes that include different sets
of attributes per-vertex [47].

“tesis” — 2009/11/9 — 14:57 — page 18 — #42i
i

i
i

i
i

i
i

18 Chapter 2 Previous Work

2.4.2. Continuous models

In the beginning, discrete models were employed in graphics applications,
mainly due to the low implementation complexity they showed, which is the
reason why they are still used in applications with no great graphics require-
ments. Nevertheless, the increase in realism in graphics applications compels
the use of multiresolution models which are more exact in their approximations,
which do not require high storage costs and which offer faster visualization. This
has given way to continuous models where two consecutive levels of detail only
differ in a few polygons, and where duplicated information is avoided, which
considerably improves memory cost. By using these models it is possible to ob-
tain a continuous spectrum of approximations. In addition, continuous models
are able to avoid the visually disturbing popping artifacts.

It is possible to find in the literature continuous algorithms aimed at render-
ing common meshes by exploiting GPUs. An approach to improve traditional
level-of-detail techniques was the use of primitives with implicit connectivity,
like triangle strips, which offer a faster processing on the GPU and also reduce
BUS traffic. Using this idea, one of the most used continuous models is Progres-
sive Meshes [16, 49]. It is included in Microsoft Corporation’s graphics library
DirectX since the 5.0 version. Afterwards, many extensions were developed to
improve this model from different perspectives [50, 51]. Following with the ideas
introduced in Progressive Meshes, El-Sana et al. [52] presented later the Skip
Strips model, which was the first model to maintain a data structure to store
the strips that avoided the need to calculate them in real time. The MTS model
[53] used triangle strips both as the storage and the visualization primitive. It
consisted of a set of multiresolution strips, each of which represents a triangle
strip and all its levels of detail; only the ones that are modified when changing
the level of detail are updated before being rendered. More recently, the Lod-
Strips model was developed [54]. This continuous model was entirely based on
optimized hardware primitives, triangle strips, and dealt with the apparition
of degenerate triangles by applying pre-calculated filters.

A simple way to harness the power of GPUs is to exploit the complex memo-
ry hierarchy of modern graphics platforms. In this sense, many authors develop
”GPU-friendly”vertex and index buffers. The idea of these buffers (known as
Vertex Buffer Objects in OpenGl and simply Vertex Buffers in DirectX) is to
store the model data in contiguous chunks of memory on the graphics card,
which offers a faster rendering. Moreover, this approach allows us to minimize
data transfers between CPU and GPU. The LodStrips model was reconsid-
ered in [18] to offer a GPU-oriented solution, by storing the mesh information
in Vertex Buffer Objects, which offer a faster rendering. Their algorithms were
adapted in order to update the information in the memory of the graphics hard-
ware, although their extraction process was still costly. The work presented by
Turchyn [55] combines the Progressive Meshes works [16, 49] with a sliding
window algorithm. This proposal minimizes data transfers between CPU and

“tesis” — 2009/11/9 — 14:57 — page 19 — #43i
i

i
i

i
i

i
i

2.4 Multiresolution modeling 19

Figure 2.5: Collapse of a strip.

GPU by storing mesh data in static buffers on the GPU. The problem is that
it builds a complex hierarchical data structure that derives in great memory
requirements and, moreover, it changes the mesh connectivity trying to reduce
memory costs.

The tendency in recent years has been to harness the potential of GPUs to
perform the level-of-detail extraction completely on graphics hardware. Ji et
al. [56] suggest a method to select and visualize several levels of detail by using
the GPU. In particular, they encode the geometry in a quadtree based on a
LOD atlas texture. The main problem of this method is the costly process that
the CPU must execute in every change of level of detail. Moreover, if the mesh
is too complex, the representation with quadtrees can be not very efficient and
even the size of the video memory can be an important restriction. Besides, the
authors point out that this solution has problems with the data-transmitting
rate of graphics bus.

Degenerate triangles

Multiresolution models based on strips present a limitation that arises when,
starting from a set of strips representing the initial mesh at maximum detail
and applying the successive simplifications, the strips start to include a large
quantity of degenerated triangles, repeated vertices and unnecessary edges. An
example of these strips can be observed in Figure 2.5, where the strip in the
middle is collapsed after two simplification steps. This strip, coloured in red,
is initially formed by indices {6, 11, 4, 3, 0, 2, 1, 16, 10}. After collapsing edges
{0, 3} and {1, 2}, this strip is represented with indices {6, 11, 4, 3, 3, 2, 2, 16, 10},
where it is possible to find four degenerate triangles ({4, 3, 3}, {3, 3, 2}, {3, 2, 2}
and {2, 2, 16}) that do not add any geometric information but involve a higher
processing time.

One possible way to overcome this problem is to use strips which are dy-
namically generated for each level of detail. Research has been conducted on

“tesis” — 2009/11/9 — 14:57 — page 20 — #44i
i

i
i

i
i

i
i

20 Chapter 2 Previous Work

this approach, and it is possible to find methods of building and maintaining
a good set of triangle strips [57], and also multiresolution models based on
dynamic strips [58].

Static stripification involves filtering the degenerate information every time
there is a change in the level of detail. Some authors apply a filtering process in
visualization time to avoid sending those vertices at the moment of rendering
[52]. Others detect the degenerate triangles in a pre-process step in order to
collect the information that will be used for their elimination at the moment
of rendering [18, 54].

Depending on the targeted multiresolution scheme, both solutions can be
more or less adequate. The additional cost involved in generating the strips for
every level of detail is high, and can be inefficient for interactive visualization.
Therefore, the use of static strips can turn out to be more suitable. Nevertheless,
the application of filters is only able to eliminate degenerate triangles to a
limited extent, as these models still present a noticeable amount of degenerate
triangles in the final rendered geometry.

2.4.3. View-dependent models

A different improvement in multiresolution models was the introduction
of view-dependent techniques. These methods introduce more accurate rep-
resentations, presenting a higher detail in those areas of the object where it
is necessary. Among the wide range of existing algorithms, it is important to
mention the works presented in [17, 58, 52, 59, 60, 61].

Despite their better granularity, these methods require a higher extraction
time as they have to calculate the viewing conditions and extract the detail
according to these conditions. Therefore, the data structures are usually more
complex and the overall process is costly for a final application. Some years
ago, when using pre-3D-hardware PCs, it was encouraged the use of significant
CPU time to alleviate some geometry rendering. Nowadays, graphics hardware
is very powerful and therefore we will only spend CPU time if we can discard a
lot of triangles or if it can save other costly processes. As a consequence, view-
dependent techniques are aimed at specific applications, like rendering terrain
or massive models.

The appearance of massive models, which can be considered as gigabyte-
sized polygon models that cannot be completely loaded into the main memory,
led to the development of new view-dependent techniques. In order to process
this enormous amount of information, authors resort to out-of-core algorithms.
The basic idea is to arrange the mesh so that it does not need to be kept in
memory in its entirety, and adapt its computations to operate mainly on the
loaded parts. Many works appeared as the use of massive models became more
and more common. Among them, the reader is referred to [62, 63, 64] or more
recently [65]. However, these models are more suitable for CAD or cultural
heritage applications where highly-detailed models are needed [66].

“tesis” — 2009/11/9 — 14:57 — page 21 — #45i
i

i
i

i
i

i
i

2.4 Multiresolution modeling 21

Many of the GPU-based continuous models are aimed at view-dependent
rendering of massive models. Many researchers have recently proposed meth-
ods for moving the granularity of the representation from triangles to triangle
patches in order to offer view-dependent capabilities for rendering out-of-core
models [67, 68, 69, 70]. These works have adapted their data structures so that
CPU/GPU communication can be optimized to fully exploit the complex mem-
ory hierarchy of modern graphics platforms. The initial Multi Triangulation
framework (MT) was improved in [69] to offer a new out-of-core multiresolu-
tion model which was redesigned in a GPU friendly fashion. Following the same
idea, it is also possible to find the Progressive Buffers [70] model, which was
developed as a view-dependent algorithm for massive models that do not fit
inside the GPU.

With a similar objective but with a further GPU exploitation, the GoLD
method [48] introduced a hierarchy of geometric patches for very detailed mesh-
es with high resolution textures. The maintenance of boundaries was assured
by means of geo-morphing performed on the GPU. Niski et al. [71] offered a
multi-grained hierarchical solution which avoids the appearance of cracks in
the borders of nodes at different levels of detail by applying a border-stitching
technique directly on the GPU. Later, the work presented in [72] introduced a
GPU-based adaptive model for non-photorealistic rendering. They proposed a
hierarchical multiresolution model and used the GPU to refine the areas around
the silhouettes. More recently, Hu et al. [73] presented a fully-GPU implemen-
tation of Progressive Meshes [59]. They offered view-dependent capabilities at
the expense of a high memory cost and an extraction process which consists in
three rendering passes.

2.4.4. Other techniques

It is possible to find in the literature many approaches which aim at reducing
the mesh complexity to offer real-time adaptive techniques. This set of methods
provides a solution to the geometry management on the GPU and suppose a
line of investigation which is currently very active.

In the field of computer graphics, tessellation techniques are often used
to divide a surface in a set of polygons. Thus, we can tessellate a polygon
and convert it into a set of triangles (see Figure 2.6), or we can tessellate a
curved surface. These approaches are typically used to amplify coarse geometry,
while multiresolution frameworks are usually designed to exactly reproduce an
originally detailed mesh.

Following this idea, it is possible to find solutions which propose sending
to the GPU a mesh at minimum level of detail and applying later a refining
pattern to every face of the model [74, 75, 76]. Other researchers have proposed
frameworks for calculating silhouettes on the GPU and tessellating afterwards
those areas that need further detail [72, 77], although the process for calcu-
lating the silhouettes is complicated. Programmable graphics hardware has

“tesis” — 2009/11/9 — 14:57 — page 22 — #46i
i

i
i

i
i

i
i

22 Chapter 2 Previous Work

Figure 2.6: Tessellation of a sample polygon.

allowed many surface tessellation approaches to migrate to the GPU, including
isosurface extraction [78], subdivison surfaces [79], NURBS patches [80], and
procedural detail [81, 82]. These models offer very interesting results although
they are not completely aimed at rendering meshes in real-time applications
due to the load suffered by the GPU when a model maintains its level of detail,
as a pass must be made for each face that the coarser model has. Moreover,
these solutions are not capable of retrieving the original mesh geometry, and
some of them still suffer from popping artifacts.

From a different perspective, DeCoro et al. [83] present a scheme for sim-
plifying arbitrary meshes using octree-based vertex clustering. This clustering
strategy avoids precomputation and storage of a vertex hierarchy, but the re-
sulting approximating meshes are less accurate.

Some models introduce surfaces with a completely regular structure called
geometry image [84]. They capture geometry as a simple 2D array of quantized
points. Surface signals like normals and colors are stored in similar 2D ar-
rays using the same implicit surface parameterization. The problem with this
representation is aliasing [85] and the complex construction process of these
representations [86].

2.4.5. Characterization

In Table 2.1 we can observe a description of the multiresolution models that
take advantage of current GPUs that have been considered in this section. The
description takes into account the following aspects:

Model: this information identifies the research article, indicating the au-
thors, the year of publication and the reference.

Type: it indicates whether the model is discrete, continuous or view-
dependent.

Primitive: this field includes the type of primitive that the model uses in
visualization.

“tesis” — 2009/11/9 — 14:57 — page 23 — #47i
i

i
i

i
i

i
i

2.5 LOD selection criteria 23

Figure 2.7: Army of multiresolution ninjas in a game engine.

GPU usage: whether the scheme uses vertex buffers or shaders, indicating,
if it is applicable, which type or shaders are used.

Others: this aspect offers further features that characterize each of the
solutions.

2.5. LOD selection criteria
The necessity of highly realistic scenarios often involves including many

polygonal meshes made up of a high number of triangles, which poses a problem
for maintaining interactivity. Figure 2.7 presents a scene containing hundreds of
animated ninjas where each of them adapts its geometry to the distance to the
camera at the same time. In these applications, it is important to guarantee
stable frame rates while reducing perceived lag [87]. The lag, which is the
delay between performing an action and seeing the result of that action, is as
important as the frame rate to perceive interactivity in an application.

Multiresolution modeling offers a perfect framework to assure a minimum
frame-rate that offers interactivity to the final user. A problem that must be
considered is the criterion used to select the proper level of detail of the mesh-
es included in the rendered scenario. Thus, the multiresolution scheme must
increase or decrease the complexity of each model to maintain the frame-rate
and, as a consequence, needs a criterion to decide which is the most adequate
level-of-detail for each mesh.

Many authors have addressed the need of investigating how the human
perception system works. In [88] the author considers the necessity of including
an analysis of the human visual system to understand how it works and to offer
more adequate results, extending his results in his subsequent publications.

“tesis” — 2009/11/9 — 14:57 — page 24 — #48i
i

i
i

i
i

i
i

24 Chapter 2 Previous Work

M
odel

T
ype

P
rim

itive
G

P
U

usage
O

thers
Southern

et
al.,

2003
[47]

D
iscrete

T
riangles

V
ertex

Shaders
G

eo-M
orphing

L
osasso

et
al.,

2003
[86]

D
iscrete

T
riangles

V
ertex

and
P

ixel
Shaders

G
eom

etry
Im

ages
C

ignoni
et

al.,
2004

[67]
V

iew
-dependent

Strips
V

ertex
B

uffers
M

assive
M

odels
Y

oon
et

al.,
2004

[68]
V

iew
-dependent

T
riangles

V
ertex

and
P

ixel
Shaders

M
assive

M
odels

Sander
et

al,
2005

[70]
V

iew
-dependent

T
riangles

V
ertex

and
P

ixel
Shaders

M
assive

M
odels

C
ignoni

et
al.,

2005
[69]

V
iew

-dependent
Strips

V
ertex

B
uffers

M
assive

M
odels

B
orgeat

et
al.,

2005
[48]

V
iew

-dependent
T

riangles
V

ertex
and

P
ixel

Shaders
B

oubekeur
et

al.,
2005

[81]
V

iew
-dependent

T
riangles

V
ertex

and
P

ixel
Shaders

T
essellation

Ji
et

al.,
2006

[56]
V

iew
-dependent

Fans
V

ertex
and

P
ixel

Shaders
Fully-G

P
U

R
am

os
et

al.,
2006

[18]
C

ontinuous
Strips

V
ertex

B
uffers

T
urchyn,

2007
[55]

C
ontinuous

T
riangles

V
ertex

B
uffers

C
ache-O

ptim
ization

N
iski

et
al.,

2007
[71]

V
iew

-dependent
Strips

V
ertex

and
P

ixel
Shaders

M
assive

M
odels

D
eC

oro
et

al.,
2007

[83]
V

iew
-dependent

T
riangles

V
ertex,

P
ixel

and
G

eom
etry

Shaders
R

eal-tim
e

Sim
plification

L
ivny

et
al.,

2008
[72]

V
iew

-dependent
T

riangles
V

ertex
and

P
ixel

Shaders
Silhouette

P
reserving

B
oubekeur

et
al.,

2008
[74]

V
iew

-dependent
T

riangles
V

ertex,
P

ixel
and

G
eom

etry
Shaders

D
yken

et
al.,

2008
[77]

V
iew

-dependent
T

riangles
V

ertex
and

P
ixel

Shaders
Silhouette

P
reserving

L
orenz

et
al.,

2008
[75]

V
iew

-dependent
T

riangles
V

ertex,
P

ixel
and

G
eom

etry
Shaders

R
efinem

ent
P

atterns
Schw

arz
et

al.,
2009

[76]
V

iew
-dependent

T
riangles

V
ertex,

P
ixel

and
G

eom
etry

Shaders
T

essellation
H

u
et

al.,
2009

[73]
V

iew
-dependent

T
riangles

V
ertex,

P
ixel

and
G

eom
etry

Shaders
Fully-G

P
U

T
a
b
le

2
.1

:
C

h
a
ra

cteriza
tio

n
o
f

G
P

U
-b

a
sed

m
u
ltireso

lu
tio

n
m

o
d
els.

“tesis” — 2009/11/9 — 14:57 — page 25 — #49i
i

i
i

i
i

i
i

2.5 LOD selection criteria 25

In this sense, several authors have included biometrics into their heuristics,
considering spatiotemporal sensitivity [89] or developing frameworks with eye
tracking as the basis [90].

Most multiresolution models use static heuristics, like the distance, the
speed or the position in the screen, as the metric to select the suitable level of
detail. The approach presented in [91] uses a multiresolution hierarchy based on
bounding spheres and perform the LOD selection based on the projected size
in the screen. They also gradually refine the model when the viewpoint is not
moved for a period of time. Other works like [92] add a static heuristic based on
the occlusion information to obtain a tighter estimation of the contribution of
each object to the scene. These set of heuristics, despite improving frame rates,
are usually not enough. They cannot guarantee a stable performance and often
present jerky frame rates, as they are not adaptive and cannot work correctly
in scenarios where objects are moving in and out of the scene or where the
objects become bigger or smaller quickly.

In order to improve the results of the static heuristics, some authors have
introduced the use of feedback algorithms, which take into account the past
rendering times. These algorithms, even though are more adapted to the ren-
dering conditions, also suffer from oscillation and unavoidable overshoot when
rendering discontinuous environments. They present a good alternative for sce-
narios where there is a large amount of coherence between frames, as it happens
with flight simulators. This is the case of the solution presented in [93], which
provides temporal coherence through the runtime creation of geomorphs to
control de level of detail.

Funkhouser and Séquin [12] demonstrated that it is necessary to use a pre-
dictive selection scheme, based mainly on the complexity of the current frame,
rather than a reactive framework, based on the feedback obtained. They formu-
lated this problem as an optimization task which is equivalent to a constrained
version of the Multiple Choice Knapsack Problem. Even though this problem
is NP-complete, some authors like [12] or [94] obtained several techniques that
could only guarantee a solution that is at least half as good as the optimum
one. Wimmer et al. [95] reconsidered this problem for the special case of con-
tinuous multiresolution models, obtaining a non-iterative closed form solution
which was cheap to evaluate for every frame.

This way, the problem of the time-critical multiresolution rendering can be
presented as an optimization problem for finding the LOD that maximizes the
scene quality under timing constraints. The work in [96] extended the use of
predictive techniques with more precise heuristics for the cost and the benefit of
the resolution of the objects. It also considers temporal coherence to minimize
sudden changes, although the authors did not include it in their tests. These
optimizations are very accurate but costly, and as they assign one variable for
each object, rendering scenes with a large number of objects tends to be a slow
solution.

Different researchers have presented architectures to solve this problem, like

“tesis” — 2009/11/9 — 14:57 — page 26 — #50i
i

i
i

i
i

i
i

26 Chapter 2 Previous Work

[97], which uses a distributed rendering architecture to obtain a stable frame-
rate, or [98], which proposes a parallel architecture combined with levels-of-
detail and occlusion culling techniques. The most novel aspect of [99] is the
concept of interruptible rendering, which finds a rational compromise between
spatial and temporal detail. They produce a complete image in the back buffer
almost immediately and then incrementally refine it so that the refinement
can be interrupted at any time. Zach [100] presents a solution based on geo-
morphing where the LOD management is achieved by distributing the LOD
selection and calculation between several frames, reusing the old resolution
until the new one is ready. As the new LODs will appear in future frames, they
need a path prediction process to obtain future viewpoints and directions. They
also use cost and benefits computation, but include some feedback strategy to
compensate for some assumptions they make. These authors extended their
work in [101], presenting an approach for discrete and continuous models where
the time spent for LOD selection is amortized over several frames.

2.6. Conclusions

This chapter has presented the state-of-the-art on multiresolution modeling,
mainly focusing on the exploitation of GPUs.

In general, we can say that discrete models are easier to be implemented
in GPUs. In this sense, Southern and Gain [47] implemented a discrete model
manager which puts blending into practice by using vertex shaders. Neverthe-
less, these models still present noticeable popping artifacts.

By contrast, continuous models offers a better granularity and avoid that
problem, but their memory requirements are high and some of them even need
several rendering passes to change the level of detail. It is worth mentioning
that the latest research on multiresolution modeling is aimed at developing
view-dependent techniques. Thus, the computational power of current GPUs
can be exploited to offer more accurate approximations and manage massive
models. GPU programming has also been applied to tessellate an initial coarse
mesh, by means of the recent Geometry Shader which is capable of creating
and eliminating geometry directly on the GPU.

Moreover, in this study of the previous work we have also analyzed simpli-
fication techniques, primitive optimization and LOD selection criteria. These
techniques are fundamental for offering a successful level-of-detail model. Re-
searchers must select the most proper techniques. The simplification algorithm
affects not only the visual quality of the 3D model throughout the different
levels of detail, but also the related extraction process and data structures as
the selected simplification operation may require more complex implementa-
tions. Regarding the primitive selection, we have shown that it is possible to
orient the multiresolution models towards using cache-aware orderings and also
primitives with implicit connectivity. Nevertheless, when this type of rendering

“tesis” — 2009/11/9 — 14:57 — page 27 — #51i
i

i
i

i
i

i
i

2.6 Conclusions 27

primitive is selected the multiresolution model must perform an extra process
to assure that the degenerate information is treated correctly. Finally, it is
worth mentioning that selecting the most adequate level-of-detail for a specific
scenario is not an arbitrary task. Although in most cases the distance to the
camera is the selected criterion, it is possible to apply more accurate heuristics
that balance the perceived visual quality and the extraction time that the mul-
tiresolution model needs. Moreover, it is also interesting to consider that those
scenarios in which many multiresolution models are managed at the same time
need a more complex level-of-detail management as the total time required by
the different models may become a bottleneck for the graphics application.

“tesis” — 2009/11/9 — 14:57 — page 28 — #52i
i

i
i

i
i

i
i

28 Chapter 2 Previous Work

“tesis” — 2009/11/9 — 14:57 — page 29 — #53i
i

i
i

i
i

i
i

CHAPTER 3
Optimizing the Management of

Level-of-Detail Models

In this chapter we present Speed Strips, a new continuous multiresolution
framework which has been developed in view of the outstanding evolution of
hardware. Our interest not only focuses on exploiting GPUs possibilities, but
also on making the best possible use of the capabilities offered by new bus
technologies. The results section shows that our model improves the efficiency
of previously existing solutions.

3.1. Introduction
Graphics hardware has improved outstandingly over recent years, although

the need for very detailed 3D models is growing faster than the capabilities
offered by graphics hardware. Thus, since hardware was improving and new
technologies were presented, we decided to develop a new continuous multires-
olution framework to improve the performance of previous solutions by taking
advantage of the features of the latest hardware.

The solution presented in this chapter has been devised from the experience
obtained after analyzing different multiresolution approaches, and in a more
precise way, after the implementation of LodStrips [18, 102]. This continuous
model was entirely based on optimized hardware primitives, triangle strips, and
dealt with the creation of degenerate triangles applying pre-calculated filters.
Nevertheless, this multiresolution model presented important limitations. The
main drawback was the extraction process, which entailed updating the strips
by performing costly random insertions and resizes.

29

“tesis” — 2009/11/9 — 14:57 — page 30 — #54i
i

i
i

i
i

i
i

30 Chapter 3 Optimizing the Management of Level-of-Detail Models

Figure 3.1: Color-coded LOD scene with many Speed Strips models inside
the Ogre rendering engine.

Our main objective was to develop a level-of-detail update routine which
maximized the efficiency of the extraction process and minimized the data
traffic through the bus. The approach presented, Speed Strips, exploits the
new hardware capabilities in two ways. On the one hand, the possibility of
storing geometry information in the graphics hardware by means of vertex
buffer objects vastly improves the visualization time. On the other hand, the
PCI Express bus supports isochronous data transfers and different QoS levels,
which guarantees that the data arrive at their destination in a given time. The
use of multiple isochronous virtual channels per lane presents a perfect solution
for applications which require real-time data transfer [103]. With these two
features in mind, we have developed a triangle strips updating routine which
modifies the strips in one single step by working directly with the information
stored in the GPU and sending the minimum amount of information in the
most appropriate way.

Speed Strips presents the following features:

low memory cost, if compared with discrete models which involve having
to store different approximations of the same model.

short extraction time, as it is capable of applying the level-of-detail changes
and eliminating unnecessary information in one single pass.

based on triangle strips, which not only offer a more compact represen-
tation of the connectivity existing in a triangle mesh but also a faster
rendering.

Figure 3.1 presents a scene of the Ogre rendering engine where our multires-
olution model has been integrated. To adjust the detail, we have considered the
distance to the viewer criterion. We have also color-coded the different models
to represent the level of detail at which they are rendered.

This chapter starts by proposing the general framework in which this model
has been developed. After that, thorough details of the proposed method are

“tesis” — 2009/11/9 — 14:57 — page 31 — #55i
i

i
i

i
i

i
i

3.2 General Framework 31

Figure 3.2: Pre-process diagram.

presented. Then, we describe different versions of the original method which
have been developed for testing purposes. Afterwards, a comparative study of
our algorithm against previous discrete and continuous solutions is introduced.
Lastly, we conclude this chapter by commenting on the results obtained and
outlining briefly future lines of work.

3.2. General Framework

Multiresolution models usually perform a pre-process step where the nec-
essary data is gathered. Figure 3.2 describes the different tasks that must be
carried out to prepare a Speed Strips model.

“tesis” — 2009/11/9 — 14:57 — page 32 — #56i
i

i
i

i
i

i
i

32 Chapter 3 Optimizing the Management of Level-of-Detail Models

Figure 3.3: Example of simplification. Figure on the left is the original
model. Figure in the middle represents the model simplified to 50 %. Figure
on the right is the model simplified to 25 %.

In order to construct a Speed Strips model we need to meet two initial
requirements:

the simplification of the original mesh, which will allow us to iteratively
reduce the geometrical complexity of the mesh.

the stripification of the initial mesh, which will offer a more compact
representation of the geometry.

With both sets of information, the construction process will output the
necessary data structures and, in addition, a re-ordered mesh which is directly
renderable, as its information is not altered.

In the rest of this section we will present the algorithms chosen for sim-
plifying and stripifying the original meshes, addressing the reasons behind the
selection of these techniques. We will also describe the tasks that are included
in the construction process. It is worth mentioning that the selected simplifica-
tion and stripification techniques will also be used in the other multiresolution
approaches presented in the subsequent chapters.

3.2.1. Simplification of the original mesh
The objective of the simplification is to reduce the complexity of the input

mesh to obtain a coarser approximation. In the specific case of level-of-detail
modeling, the simplification process is a key aspect as it gathers the information
that will be later used to retrieve the different levels of detail.

Between the possible simplification operators, throughout the different mul-
tiresolution models that we have developed we will apply the edge collapse,
which was firstly introduced in [19] and later widely used in multiresolution.
More precisely, for our framework we will choose a simplifications process based
on a half-edge collapse [2] (see Figure 2.2). With this approach, the vertex to
which the edge collapses to is one of its end points and, as a consequence, it
will not be necessary to add any new vertex to the original mesh. The selection

“tesis” — 2009/11/9 — 14:57 — page 33 — #57i
i

i
i

i
i

i
i

3.2 General Framework 33

Figure 3.4: Example of stripification of a Toyota model: on the left the
output of the Stripe algorithm and on the right the result of the cache-aware
nVidia approach.

of this type of edge-collapse simplifies the data structures of our model and
still offers very accurate simplifications. Nevertheless, our approaches are not
restricted to use half-edge collapses where we do not add new vertices. The only
restriction is to pre-calculate the vertices so that we can store them properly
before starting to use our multiresolution model.

There are several mesh simplification methods [1, 20] which could be used
for our purposes. For constructing a Speed Strips model we decided to use the
method based on viewpoint entropy presented in [29]. After the simplification
process, it will be necessary that the algorithm outputs an ordered sequence of
the collapses that have been applied. It is possible to collect all this informa-
tion during the simplification of the original model with the algorithm we are
presenting. We will consider that each collapse operation entails a change in
the level of detail. Thus, we will have as many levels of detail as edge collapses
have been recorded during the simplification process. Figure 3.3 offers some
results of this algorithm. The original model is shown on the left, which is com-
posed of several submeshes. In the center, we present the simplified model to
50 %. Finally, we can observe the same object simplified to 25 % on the right.
This simplification preserves the original shape to a large extent, avoiding the
appearance of artifacts and holes and offering a high visual quality.

“tesis” — 2009/11/9 — 14:57 — page 34 — #58i
i

i
i

i
i

i
i

34 Chapter 3 Optimizing the Management of Level-of-Detail Models

3.2.2. Stripification of the original mesh

The use of triangle strips in 3D models offers an important improvement,
since this primitive offers an implicit codification of the connectivity which has
many advantages, like lower storage necessities and faster rendering. Moreover,
the data structures of a strip-based multiresolution model also present a lower
memory cost.

In the work we are presenting we have decided to use the Stripe algorithm
[32], which is one of the mostly used stripification techniques. Despite the better
performance of the cache-aware techniques [35], their triangle strips are less
adequate for our objectives. Figure 3.4 presents the stripification of a Toyota
model using both algorithms and shows how Stripe outputs fewer strips and, in
addition, these strips tend to be longer. These characteristics reduce the storage
cost of the strips and make it easier for our filtering approach to find and erase
degenerate triangles. Nevertheless, in the results section we will address more
thoroughly the reasons behind the selection of this algorithm and also behind
choosing triangle strips as rendering primitive.

Dealing with degenerate triangles

Following the information obtained during the simplification process, the
multiresolution model will be able to perform the collapses in order to obtain
the desired level of detail. As previously commented, the simplification method
we are using is based on iterative edge contractions, and therefore the basic
operation of our model will be the edge collapse. These collapses are reflected
in the geometry by updating the indices of the triangle strips. An example of
the simplification process can be seen in Figure 3.5, where two triangle strips
are depicted throughout three simplification steps. The first step entails vertex
v0 collapsing to vertex v2. For our extraction process, this collapse involves
locating all the indices referencing vertex v0 in all the strips of the mesh and
replacing them by vertex v2.

Subsequent collapses of a triangle strip poses an important difficulty: the
appearance of degenerate triangles. A small percentage of these degenerate
triangles will be necessary to avoid discontinuities inside the strips, although
most of them are unnecessary and involve processing zero-area triangles that
will not influence the final rendered geometry but involve a higher processing
time. As a consequence, when applying collapses to triangle strips it will be
possible to find a wide range of degenerate triangles. In the example provided in
Figure 3.5 we can observe two different kinds of repetitions creating degenerate
triangles. After three simplification steps, strip number one presents an edge
repetition and strip number two a vertex repetition. These repetitions follow the
patterns ab(ab)+ and aa(a)+ respectively, where a, b are indices of the triangle
strips. The pattern aa(a)+ can be replaced by aa and ab(ab)+ by ab without
altering the final geometry.

To avoid this unnecessary geometry, some authors re-stripify the mesh after

“tesis” — 2009/11/9 — 14:57 — page 35 — #59i
i

i
i

i
i

i
i

3.2 General Framework 35

Figure 3.5: Degenerate triangles after several edge collapse operations. The
red-coloured numbers indicate positions that might be eliminated without
altering the geometry.

“tesis” — 2009/11/9 — 14:57 — page 36 — #60i
i

i
i

i
i

i
i

36 Chapter 3 Optimizing the Management of Level-of-Detail Models

the LOD update. This dynamic strategy would force us to create and destroy
strips on the GPU, which would make our model considerably less competi-
tive. In our case we decided to maintain a static set of triangle strips and solve
the problem by applying filters to eliminate degenerate triangles. It could also
be possible to adopt an intermediate solution, maintaining an original strip-
ification but merging strips when possible. Nevertheless, this solution would
entail a more complex extraction process which would also include copying and
rearranging strips in GPU memory.

Regarding the filtering process, some authors apply the filters in visual-
ization time to avoid sending those vertices at the moment of rendering [52].
Others detect the degenerate triangles in a pre-process step in order to collect
the information that will be used for their elimination at the moment of ren-
dering [18, 54]. Since we are developing our multiresolution model with modern
GPU architectures in mind, this second option will be the one we will use for
our model, as our main objective is to reduce the extraction time as much as
possible.

Our tests have proven that most degenerate triangles follow the two pat-
terns presented above. Applying those filters allows us to reduce the amount
of degenerate triangles by around 75 %. It would be possible to eliminate more
degenerate triangles adding more patterns, but the amount of information that
we would have to store, the wide range of combinations that should be consid-
ered and the time required to apply those filters have led us to accept these
degenerate triangles. Moreover, if we applied all the filters to eliminate de-
generate triangles as much as possible, the performance when rendering would
slightly increase, which we considered is not worth the effort as it would not
compensate for the extra time that the extraction process would needed to
prepare the triangle strips.

3.2.3. Construction process

Before describing the construction process, it is worth reminding that we
will use a simplification algorithm which uses half-edge collapses. In this op-
eration two vertices are necessary: the vertex that disappears and the vertex
that is maintained. In order to reduce storage needs, we will initially reorder
the vertices according to their simplification order. As, by definition, each edge
collapse supposes a change in the level of detail, with this order we can assume
that vertex vi will disappear when changing from lodi to lodi+1. In the example
given in Figure 3.5 we presented three simplification steps. The vertices had
been previously ordered, and as a consequence, in LOD 1 vertex v0 disappears,
in LOD 2 vertex v1 is eliminated, and so on. Thus, we will only need to store the
vertex that is maintained after the collapse happens. Finally, it is important to
comment that through all the examples we have considered that vertices and
indexes arrays start at position 0.

Preparing the necessary data for the Speed Strips model entails consider-

“tesis” — 2009/11/9 — 14:57 — page 37 — #61i
i

i
i

i
i

i
i

3.3 The Speed Strips model 37

ing which indices change when applying a collapse and where can be found
degenerate triangles that might be removed. Thus, for each collapse of the
simplification sequence we will:

locate which strips contain the vertex that will disappear and in which
position. This information must be stored and the strips must be updated
to reflect the simplification step.

locate repetitions that might be removed in the modified strips. Once
again, this information must be stored in the data structures and the
strips must be consequently updated.

As we have already mentioned, one of the most important advantages of this
multiresolution model is the possibility of performing all changes in one single
pass. These changes include, on the one hand, updating the triangle strips to
reflect the level-of-detail change and, on the other, eliminating the unnecessary
geometry. Performing both types of changes at the same time requires all the
operations to be in the correct order. Thus, after locating the elements to change
and the degenerate triangles to remove in a level of detail, we will order the
operations before storing the information in the data structures. This process
is repeated until we obtain the coarsest approximation.

3.3. The Speed Strips model
The solution we are presenting has been developed taking LodStrips [18,

102] as a basis. LodStrips presented a level-of-detail extraction process which
entailed rearrangements of memory when making insertions or deletions in the
triangle strips which were too costly.

In the previous section we have commented on the selected algorithms for
simplifying and stripifying the meshes, which are more adequate than the ones
LodStrips used. On top of that, we have also considered more thoroughly the
treatment of the degenerate triangles. But the main improvements of Speed
Strips appear in the extraction process, as it applies all changes in one step
and updates the level-of-detail directly in the GPU, reducing bus traffic to
a high extent as the CPU is only needed during the filtering process. As a
consequence, new algorithms and data structures have been developed for the
correct performance of the model.

3.3.1. Data structures
The final data structure will be composed of three major elements. Figure

3.6 contains these data structures in a c-like notation. The information about
the vertex that is preserved after the collapse and how many strips should
be updated is stored in an array called LODInfo. The strips that must be
updated and the information about the number of changes that must be applied

“tesis” — 2009/11/9 — 14:57 — page 38 — #62i
i

i
i

i
i

i
i

38 Chapter 3 Optimizing the Management of Level-of-Detail Models

will be stored in a data structure called StripInfo. This number of changes
includes both operations: edge collapses and repetitions removal. Finally, we
have an UpdateInfo array which includes all the information about collapses and
unnecessary degenerate triangles in an ordered and interleaved manner. This
array contains the position where the collapses and the repetitions are found
and, with respect to the repetitions, it also includes the type of repetition and
the number of elements to eliminate.

struct LodInfo
{

unsigned int vertex

char strips affected

}

struct StripInfo
{

unsigned int strip number

char num ops

}

int* UpdateInfo

Figure 3.6: Speed Strips data structures.

Following the example shown in Figure 3.5, where we presented three levels
of detail, the stored information would be that shown in Figure 3.7. As an
example, the first change in the level of detail (LOD 1) involves vertex v0

collapsing to vertex v2. Thus, the first register of LODInfo array will indicate
that we are collapsing to vertex v2 and that this collapse affects two strips.
The first two registers of StripInfo indicate that we must update strip number
one with one change and strips number two with another change. Finally, the
first position of the UpdateInfo array shows that we must update position 4 in
strip number one, while the second position indicates that we must also update
position 4 of strip number two.

The UpdateInfo array needs a more detailed explanation, as it will store
in a condensed and interleaved manner all the information about the changes.
The positive values in the UpdateInfo array indicate positions where an edge
collapse occurs. A negative value indicates a position where some degenerates
are found, and the next value indicates how many elements should be removed.
If this value is positive, we are facing a vertex repetition (aa(a)+); if it is
negative, it is an edge repetition (ab(ab)+). This distinction is necessary for
being able to return to higher levels of detail and retrieve the original geometry.
We will explain in more detail this process in the following section, where the

“tesis” — 2009/11/9 — 14:57 — page 39 — #63i
i

i
i

i
i

i
i

3.3 The Speed Strips model 39

Figure 3.7: Data structure for the example given.

algorithm and a thorough example will be presented.
The objective of maintaining all the information about the changes in only

one structure is to avoid having to calculate the order of the different operations
in real time, which results in a better performance. Even though we need some
operations to distinguish between the different operations that may be applied,
this approach increases performance, as the results of the calculations related
to what should be done first are obtained in a pre-process.

These data structures are the only information stored in the CPU. Infor-
mation about the model (vertices, normals, texture coordinates, triangle strips,
skeletal animations, etc.) is stored directly on the GPU and only the triangle
strips will be modified during the LOD update.

Storage cost

For analyzing the memory requirements of Speed Strips, it would be possible
to make an estimation of its storage cost. For this estimations we assume that
the cost of an integer and a float is a word (4 bytes), while a char can be
coded in a single byte. Nevertheless, before addressing the storage needs of the
data structures we start by calculating the cost of the original mesh both in
triangles and triangle strips.

For storing a triangulated mesh, we need 3 words for the spatial coordinates
of the vertices and 3 more to code the indices of each face:

3 · v + 3 · f (3.1)

where v and f are, respectively, the numbers of vertices and faces in the tri-
angulated mesh. The Euler’s formula assures that, for any convex polyhedron,
the number of vertices and faces together is exactly two more than the number
of edges:

“tesis” — 2009/11/9 — 14:57 — page 40 — #64i
i

i
i

i
i

i
i

40 Chapter 3 Optimizing the Management of Level-of-Detail Models

v − e + f = 2 (3.2)

where e is the numbers of edges in the given polyhedron [104]. In a triangu-
lated mesh displaying manifold topology, every edge is shared by exactly two
triangles, and every triangle shares an edge with exactly three neighbouring
triangles [2]. Thus, we can assume that the number of edges is:

e =
3 · f

2
(3.3)

By using Equations 3.2 and 3.3, we can say that:

v − 3 · f
2

+ f = 2 (3.4)

v − f

2
= 2 (3.5)

f = 2 · (v − 2) ∼= 2 · v (3.6)

As a consequence, we can conclude that in this kind of meshes the number
of faces is approximately twice the number of vertices.

Following with the cost of a triangulated mesh, from equation 3.7 we can
conclude that the storage cost in words of a triangularized mesh is 9 · v, which
represents 288 bits/vertex.

3 · v + 3 · f ∼= 3 · v + 3(2v) = 9 · v (3.7)

Triangle strips are capable of coding n triangles with n + 2 indices. Thus,
simplifying the stripification process as if only one strip was output to code the
whole geometry of a mesh, we could assume that the storage cost in triangle
strips is that presented in Equation 3.8, amounting to 5 · v (160 bits/vertex).

3 · v + (f + 2) ∼= 3 · v + (2 · v + 2) ∼= 3 · v + 2 · v = 5 · v (3.8)

Regarding the data structures of the Speed Strips model, each component
of the LODInfo and StripInfo array involves a cost of 1,25 words, while each
element of the UpdateInfo array only requires 1 word. We will need as many
LODInfo elements as levels of detail are available. Our tests have proven that,
on average, two strips are modified for each level-of-detail update. As a conse-
quence, we will need two times more StripInfo elements than LODs available.
Finally, each strip that needs update involves, on average, an edge-collapse op-
eration and a repetition elimination, which suppose 3 components of the Up-
dateInfo array for each operation. Summing up, Equations 3.9 to 3.11 present

“tesis” — 2009/11/9 — 14:57 — page 41 — #65i
i

i
i

i
i

i
i

3.3 The Speed Strips model 41

the cost in words of each of the data structures, considering that a char only
needs 0.25 words.

LODInfo→ 1,25 · v (3.9)
StripInfo→ 2 · (1,25 · v) (3.10)

UpdateInfo→ 3 · 2 · v (3.11)

Thus, the total storing cost of a Speed Strips mesh is 14,5·v, which represents
472 bits/vertex.

3 · v + 2 · v + 1,25 · v + 2,5 · v + 6 · v = 14,75 · v (3.12)

3.3.2. Extraction and visualization algorithms
An important advantage of this multiresolution model is the fact that we

do not need to store the strips information in the CPU, as they are only stored
on the GPU. Furthermore, the indices of the strips will be the only information
modified, as the vertices information remains unaltered throughout the different
levels of detail. As a consequence, when a change in the level of detail is needed,
most changes will be applied directly and sequentially to the triangle strips
stored in the GPU. If we have to deal with the problem of repetitions while
moving to either higher or lower levels of detail, we will have to modify the
triangle strip length. In such cases, we download the minimum information from
the GPU, apply the modifications, and then upload it again to the GPU. This
LOD traversing approach enables us to minimize the use of CPU memory and
to make an optimum use of the PCI Express bus. Nevertheless, our experiments
have proven that, on average, just 40 % of the level-of-detail updates will entail
dealing with degenerate triangles.

In Figure 3.8 we offer a diagram of how the last change in the level of
detail presented in Figure 3.5 is performed. This figure presents the CPU and
GPU memory on the left and the data structures on the right. The cells of
the strips shaded in green reflect a strip position that must be modified, while
those shaded in red refer to positions that must be eliminated as they contain
vertices and edges repetitions. In this example, the LODInfo structure shows
that we will be collapsing to vertex v10. As we are changing to LOD 2, we can
say that we are changing vertex v2 to vertex v10. In addition, the LODInfo
structure also indicates that this change will affect two triangle strips. In the
StripInfo structure we can observe that we have to apply one change to strip
number one. As the value associated in the UpdateInfo array is positive, this
strip will only need an index change, and therefore we will not download any
information to the CPU. We will simply upload the new vertex to the correct
position, minimizing data traffic through the bus. Figure 3.8(b) presents the
update of strip number two. The next StripInfo element shows that we must

“tesis” — 2009/11/9 — 14:57 — page 42 — #66i
i

i
i

i
i

i
i

42 Chapter 3 Optimizing the Management of Level-of-Detail Models

(a) Updating Strip 1.

(b) Updating Strip 2.

Figure 3.8: Example of change to LOD 2 (collapse v2 → v10).

apply three changes to this strip. We can apply the first collapse presented in
the UpdateInfo array. Before we apply the second one, the algorithm realizes
that this position is to be eliminated and avoids the unnecessary change. At
that moment, we will start downloading the rest of the triangle strip to the
CPU while avoiding the elements that should be eliminated. Therefore, once
we have the triangle strip completely downloaded to the CPU, we have also
processed all the changes and the strip is ready to be uploaded to the GPU
again, taking into account the position where the first vertex or edge repetition
was found. Thus, we benefit from the coherence as much as possible, as the
unmodified triangle strips remain unaltered on the GPU, and we also maintain
the maximum information of the strips needed to be updated.

Following the idea presented before, the algorithm for LOD extraction and
visualization of the geometry would be similar to the pseudocode presented in
Algorithm 1.

“tesis” — 2009/11/9 — 14:57 — page 43 — #67i
i

i
i

i
i

i
i

3.4 A memory version 43

Algorithm 1 Pseudocode of the Speed Strips algorithms.
// LOD Extraction algorithm.
for LOD = currentLOD to demandedLOD do

for all Strip in StripsAffected(LOD) do
// Updating indices directly on the GPU.
while changes left && index change do

UploadToGPU(vertex);
end while
// If there is at least one repetition removal.
if changes left then

auxStrip=0; // Variable for storing the strip temporally in CPU.
// Updating indices and eliminating degenerates.
while changes left && index change do

auxStrip+=DownloadAndChangeFromGPU();
end while
auxStrip+=DownloadRestFromGPU();
UploadToGPU(auxStrip); // Copy the updated part of the strip.

end if
end for

end for

// Visualization algorithm.
for all Strip in Strips() do

glDrawElements (Strip);
end for

3.4. A memory version

With the intention of testing our approach, we have developed two revisions
of the original Speed Strips model presented above. These revisions affect only
a minor part of the model, but are interesting for our research purposes and
also for the final GPU integration.

As many existing models do not include support for hardware extensions,
we have developed a limited memory version which functions on an immediate
mode and does not exploit hardware characteristics, but which still presents
better results. This way, before resorting to vertex buffer objects, we will be
able to prove that our approach is faster than previously existing models. The
data structure remains the same and only the algorithms are slightly modified.
Instead of directly using the GPU buffers, we will use a fast CPU array to
update the strips and also to visualize them. We show the algorithms of this
memory version in Algorithm 2.

In order to prove in more detail the performance of our method, we have
also extended the memory version to work with vertex buffer objects. We will

“tesis” — 2009/11/9 — 14:57 — page 44 — #68i
i

i
i

i
i

i
i

44 Chapter 3 Optimizing the Management of Level-of-Detail Models

Algorithm 2 Pseudocode of the memory version of Speed Strips.
// LOD Extraction algorithm.
for LOD = currentLOD to demandedLOD do

for all Strip in StripsAffected(LOD) do
// Updating indices directly in the CPU.
while changes left && index change do

CopyToCPU(vertex);
end while
// If there is at least one repetition removal.
if changes left then

auxStrip=0; // Variable for storing the strip temporally in CPU.
// Updating indices and eliminating degenerates.
while changes left && index change do

auxStrip+=CopyAndChangeFromCPU();
end while
auxStrip+=CopyRestFromCPU();
CopyToCPU(auxStrip); // Copy the updated part of the strip.

end if
end for

end for

// Visualization algorithm.
for all Strip in Strips() do

if Strip changed(Strip) then
for i = 0 to SubMesh sizeofstrip(Strip) do

glVertex3f ();
end for

end if
end for

Algorithm 3 Pseudocode of the memory version with hardware support of
Speed Strips.

// Visualization algorithm.
for all Strip in Strips() do

if Strip changed(Strip) then
UploadToGPU(Strip);

end if
glDrawElements (Strip);

end for

“tesis” — 2009/11/9 — 14:57 — page 45 — #69i
i

i
i

i
i

i
i

3.5 Results 45

still apply the changes to the data located in the CPU, but we will upload them
to the GPU to take advantage of its higher rendering speed. In Algorithm 3,
we also present the visualization algorithm of this new version. The intention
of developing this second version is to prove that it is faster to download and
upload less information, but more frequently, rather than simply uploading the
strips at the end. This is owing to the PCI Express bus characteristics.

3.5. Results
To test the performance of our multiresolution model we will compare its

memory cost and rendering time against two models: the Progressive Meshes
first introduced in [16] and the memory efficient version of LodStrips with
hardware orientation described in [18]. We will also present a small study of the
degenerate triangles and stripifying techniques, with the intention of explaining
why we selected the previously presented approaches.

The experiments were carried out using Windows XP on a Dell PC with a
processor at 2.8 Ghz, 2 GB RAM and an nVidia GeForce 7800 graphics card
with 256MB RAM.

3.5.1. Memory cost

Table 3.1 summarizes the characteristics of the polygonal models used in
the experiments. In these results the storing cost includes the geometry, but
it does not include textures or normals. We have assumed that integers and
floats are represented with 4 bytes. This table also presents the storing cost of
the different multiresolution approaches studied. The depicted discrete model
is based on triangles and will offer 5 different levels of detail, each one reducing
the geometry in 25 %. As shown, discrete models offer a very high storage
cost as they are obliged to store the geometry of different approximations,
increasing the original memory cost in more than 3 times. Regarding the strip-
based solutions that are included in this comparison, our model offers more
than 40 % improvement over Progressive Meshes and even 5 % over LodStrips
with its efficient version, which offered the best memory cost.

It is worth mentioning that the calculations we made for the theoretical
memory cost were quite accurate, although the size in triangle strips is slightly
higher due to the fact that we are not working with a single-strip stripifier.

3.5.2. Rendering cost

To evaluate the presented model and its variations, we have conducted
several linear tests to measure the model performance when a linear sequence
of LODs is required [105]. The scene containing the models will lack any kind
of illumination or texturing and will just render the mesh. We must consider
two important aspects in these tests: the increasing and decreasing order and

“tesis” — 2009/11/9 — 14:57 — page 46 — #70i
i

i
i

i
i

i
i

46 Chapter 3 Optimizing the Management of Level-of-Detail Models

Model Cow Bunny Phone Isis Buddha
Vertices 2,904 34,834 83,044 187,644 543,644
Faces 5,804 69,451 165,963 375,283 1,085,634
Original (triangles) 289 282 287 288 288
Original (strips) 177 172 175 178 180
Discrete Model 882 860 875 878 878
Progressive Meshes 780 766 794 770 791
LodStrips 496 531 513 522 547
Speed Strips 462 483 475 496 546

Table 3.1: Models used in the experiments, with their storage cost (in
bits/vertex.).

Model Cow Bunny Phone Isis Buddha
Immediate mode
Progressive Meshes 0.18 8.44 13.29 29.72 85.56
LodStrips 0.22 3.45 8.66 23.71 77.56
Speed Strips (memory) 0.17 2.13 5.38 15.28 53.24
Hardware acceleration
LodStrips 0.046 0.31 0.42 1.55 10.04
Speed Strips (memory) 0.037 0.23 0.36 1.45 9.89
Speed Strips 0.036 0.21 0.29 1.21 7.22

Table 3.2: Average rendering time (extraction+visualization) (in ms.).

the difference between the LODs that are consecutive in the sequence (the
step). The order of the sequence could lead to different test results, due to
the fact that some models do not have the same behaviour when refining than
when decimating. Therefore, we will consider both approaches in our tests,
coarsening the model to the maximum and refining it to retrieve the original
geometry. With respect to the step used, we decided to use 0.1 % of the number
of available LODs, as this percentage is sufficient to test the performance of
the level-of-detail models.

The results of these tests are shown in Table 3.2, where we present results
for both with and without applying hardware acceleration techniques. When
analyzing the table we can observe how, in its memory version, the Speed Strips
model offers an increase of performance of nearly 200 % in relation to the best
performance of the previous models. Note that the Progressive Meshes mod-
el was not tested with hardware acceleration, as its immediate mode already
showed the lowest performance. Among the models presented in the hardware
section of the table, both versions of the Speed Strips model improve the ren-
dering time of other solutions. Nevertheless, the memory version only offers

“tesis” — 2009/11/9 — 14:57 — page 47 — #71i
i

i
i

i
i

i
i

3.5 Results 47

Model Cow Bunny Phone Isis Buddha
LodStrips 0.024 0.122 0.146 0.145 0.940
Speed Strips (memory) 0.017 0.072 0.092 0.087 0.530
Speed Strips 0.015 0.041 0.025 0.026 0.132

Table 3.3: Average extraction time of hardware models (in ms.).

Model Cow Bunny Phone Isis Buddha
Speed Strips (memory) 2.53 66.64 284.69 317.42 389.57
Speed Strips 0.90 30.04 113.05 145.19 187.61

Table 3.4: Average data traffic (in MB.).

an improvement of 5 % while the version that works directly with the GPU
reduces the total time in 30 %.

Due to the fact that the hardware implementations of Speed Strips are
based on similar rendering algorithms, Table 3.3 offers the average extraction
time only, to show which is the most appropriate way of updating the geometry.
To calculate the extraction time we have also included the time spent on up-
dating the data to the GPU. In this table we are also presenting the extraction
time of the efficient version of LodStrips, which is much higher than the time
needed by both versions of Speed Strips. The results prove that the traversal
algorithm which works directly with the GPU is much better than maintaining
the strips in the CPU and uploading the affected strips after all changes have
been performed. Consequently, on average, we can obtain a 70 % decrease of
the extraction time.

With the intention of understanding why the extraction time is reduced,
Table 3.4 presents the average data traffic produced when updating the detail
in our tests. These data are related to the strip information that is sent to
and from the GPU. As the table shows, even though our selected extraction
algorithm implies downloading and uploading data to the GPU, the total bus
traffic is reduced by nearly 40 % as the coherence is more adequately considered.

3.5.3. Rendering primitive

As we stated before, it is very important for a level-of-detail model to cor-
rectly select which will be the final drawing primitive. Different works have
considered the rendering speed of different triangle sequences. Bogomjakov and
Gotsman [44] proved that cache-optimized triangles considerably improve tri-
angle strips. Later, the work presented in [106] conducted similar tests using
different PCs and graphics cards to obtain a more comprehensive analysis.
These tests proved that using strips instead of optimized triangles with new

“tesis” — 2009/11/9 — 14:57 — page 48 — #72i
i

i
i

i
i

i
i

48 Chapter 3 Optimizing the Management of Level-of-Detail Models

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 0.2 0.4 0.6 0.8 1

F
P
S

Level of Detail

nVidia optimized triangles
nVidia optimized strips

Stripe strips

Figure 3.9: Frame rate obtained with triangles and strips when rendering
the bunny model at different LODs.

architectures improves performance by at least 100 %. In addition, the memory
requirements of strips are also around 30 % lower than in the case of trian-
gles. For these reasons, the model has been oriented towards a strip-based
multiresolution model. Nevertheless, in these analyses the authors considered
a full-detailed geometry. Thus, it is also important to test the performance of
these primitives in a level-of-detail scheme.

Figure 3.9 presents a comparison of the frame rate obtained through all the
levels of detail using different approaches. We considered triangles and triangle
strips optimized for the cache with the nVidia technique [35], and the strips
outputted by Stripe [32].

This graph shows that the resulting performance is always higher if we
use Stripe, even though more degenerate triangles are sent. The stripification
technique offered by nVidia initially performs better than Stripe, although this
optimization is lost after applying a few LOD changes. Moreover, the optimized
triangles outperform optimized nVidia strips in nearly half of the levels of detail.

3.6. Conclusions

In this chapter we have presented a new multiresolution model called Speed
Strips. It is our intention to use this model as a sound option against traditional

“tesis” — 2009/11/9 — 14:57 — page 49 — #73i
i

i
i

i
i

i
i

3.6 Conclusions 49

discrete models. Results obtained have shown that our model improves to a
great extent previously existing continuous models and presents the desirable
characteristics of a multiresolution model: low memory cost, short extraction
time and a high frame rate. We have also demonstrated that the approach for
deleting degenerate triangles is efficient and sufficient for fast rendering of 3D
objects.

The model has been devised with hardware in mind, but always consider-
ing that this model must work with consumer hardware. In addition, we have
developed different approaches in order to find the best way to work with the
current graphics hardware in order to create the most GPU-friendly multires-
olution model possible.

The main line for future work is oriented towards being able to maintain
our multiresolution model completely on the GPU. Nevertheless, we must re-
consider our framework to contemplate the emergence of the Shader Model
4.0, which offers new opportunities for multiresolution modeling. Other lines of
future research include data compression and instancing, which we consider as
very important features.

“tesis” — 2009/11/9 — 14:57 — page 50 — #74i
i

i
i

i
i

i
i

50 Chapter 3 Optimizing the Management of Level-of-Detail Models

“tesis” — 2009/11/9 — 14:57 — page 51 — #75i
i

i
i

i
i

i
i

CHAPTER 4
Rendering Continuous

Level-of-Detail Meshes by
Masking Strips

This chapter presents Masking Strips, a different multiresolution approach
which has been developed for the exploitation of the bit-wise operations intro-
duced in the Shader Model 4.0. The use of masks of bits enables us to code
the extraction information in an efficient and compact manner. Moreover, this
implementation supposes as step forward in the implementation of a level-of-
detail model on the GPU, as its extraction process fits more adequately the
way graphics hardware works.

4.1. Introduction
The aim of the different solutions presented in this thesis is to develop a

level-of-detail model which exploits graphics hardware as much as possible. The
model introduced in the previous chapter presented some interesting improve-
ments over previous solutions, as it included an study of the most suitable way
of dealing with data traffic through the PCI bus. Nevertheless, there is still
room for improvement as the final objective is the development of a level-of-
detail model which works completely on the GPU and totally avoids CPU-GPU
traffic, which is one of the bottlenecks of current multiresolution models. This
traffic is part of the extraction process, which must be minimized in order to
develop a competitive multiresolution model.

51

“tesis” — 2009/11/9 — 14:57 — page 52 — #76i
i

i
i

i
i

i
i

52 Chapter 4 Rendering Continuous Level-of-Detail Meshes by Masking Strips

Figure 4.1: Space woman model. From left to right: original (4,130 trian-
gles), 60 % (2,478 triangles) and 20 % (826 triangles) approximations.

The main problem with existing multiresolution models is that, although
they are well designed and some of them make use of hardware buffers, it
proves very difficult to adapt them to the new GPU architectures due to their
complex processes. The model we present in this chapter has been developed as
an improvement over previous strip-based models. The main motivation behind
its development is the possibility of performing bit-wise operations on the GPU,
which has been possible with the appearance of the Shader Model 4.0. The use
of masks of bits allows us to code the extraction information in an efficient and
compact manner. In addition, the limitation of previous solutions related to
the treatment of degenerate triangles is overcome, and our proposal is capable
of eliminating all unnecessary degenerate information. These solutions were
not capable of eliminating all the unnecessary information and, in addition,
they were obliged to use complex data structures and extraction algorithms to
manage them, involving higher spatial and temporal costs.

This multiresolution model has been designed to consider meshes produced
by CAD applications with several submeshes and different vertex attributes
like normals, texture coordinates and bones for skeletal animations. Figure 4.1
presents an example of a space woman model rendered at three levels of detail
using our algorithm.

It is our objective to improve on our previous solution by developing a new
multiresolution model which presents the following features:

Hardware optimization. The model is rendered using primitives with im-
plicit connectivity, triangle strips, which, in addition, are optimized for
the vertex cache. Mesh data is stored statically in the GPU, and only
when it is necessary to update the LOD these data are modified. More-
over, only the affected strips are updated and sent to the GPU, main-
taining coherence.

“tesis” — 2009/11/9 — 14:57 — page 53 — #77i
i

i
i

i
i

i
i

4.2 General Framework 53

Masking for LOD management. The use of masks of bits allows for a
reduction of the memory cost and for a more adequate hardware orien-
tation.

Complete degenerate removal. A new strategy for eliminating all the un-
necessary degenerate triangles of the triangle strips is introduced.

Progressive transmission. Even though the model has been developed for
its interactive visualization, it includes a progressive transmission scheme
that allows us to reduce the storage cost and enables a progressive loading
of the mesh.

This chapter is organized as follows. First, we introduce the main char-
acteristics of the model and we provide its general framework. At this point,
further details of the proposed method are presented, including data structures,
algorithms and the progressive transmission details. Then, a study of storing
and rendering costs is detailed, including a comparison of our solution against
previous level-of-detail models. To conclude, we briefly comment on the results
obtained.

4.2. General Framework
When introducing the model presented in the previous chapter, we described

a set of tasks that were necessary to prepare the multiresolution model. Thus,
as it happened with Speed Strips, for constructing a Masking Strips model it
is necessary to apply a simplification process to the original mesh and also to
obtain an adequate set of triangle strips. Both sets of data will be combined in
the construction process to prepare the necessary data structures. These three
different processes are executed in a pre-process step.

On the one hand, as the simplification algorithm we use the one that will be
described in the following sub-section, which deals correctly with the existence
of submeshes in the original 3D model and preserves the original shape to a
large extent, avoiding the appearance of artifacts and holes and offering a high
visual quality.

On the other hand, among the existing stripifiers, the short triangle strips
that can be obtained with the cache-aware approaches are more suitable for
our masking model. Furthermore, we use a static stripification combined with
a correct degenerates treatment, avoiding the need to re-stripify the mesh each
time we change the level of detail. This approach allows us to obtain a higher
performance, as we will show in the following sections.

In Figure 4.2 we present a diagram of the basic operation of our model.
The information for managing the level-of-detail is stored in CPU memory.
The CPU maintains also a copy of the strips at the level of detail that we are
rendering. On the GPU side we store the vertices, normals, textures, and any
other attribute. The GPU memory stores also a filtered version of the strips,

“tesis” — 2009/11/9 — 14:57 — page 54 — #78i
i

i
i

i
i

i
i

54 Chapter 4 Rendering Continuous Level-of-Detail Meshes by Masking Strips

Figure 4.2: Basic framework of Masking Strips.

obtained after the removal of all unnecessary degenerate triangles. Thus, the
CPU keeps an updated and full-sized version of the strips, while the GPU stores
the filtered strips for fast rendering.

4.2.1. Simplification of the original mesh
The simplification algorithms presented in the state of the art in Section 2

offer very accurate simplifications. The main issue is the fact that they are not
completely aimed at working with the meshes that final applications actually
use. As it has been mentioned in the introduction, meshes are often composed
of multiple attributes per vertex, as for example the different normals that are
necessary for modeling surface discontinuities (sharp edges). This happens also
with meshes composed of different submeshes, where border vertices share the
same location in space but need different attributes.

A convenient way to manage these multiple per-vertex attributes is to as-
sign them to a wedge [49]. A wedge is a set of vertex-adjacent corners whose
attributes are the same. However, this representation is not adequate to be
optimally implemented on the graphics hardware. The necessity of offering a
simple and hardware-oriented vertex structure forces us to repeat each vertex
for each different combination of attributes. This technique is commonly used
in the area of computer games, because it is the most optimal for the under-
lying hardware. Nevertheless, this kind of representation introduces invisible
holes in the mesh due to the vertex separation, posing a problem for many
simplification methods.

The simplification algorithm selected for our proposed multiresolution mod-
el is the one presented in [24]. We could use any kind of metric to determine

“tesis” — 2009/11/9 — 14:57 — page 55 — #79i
i

i
i

i
i

i
i

4.2 General Framework 55

Figure 4.3: The edge collapse va → vb (true edge) forces the collapses
vc → vd (twin edge) and ve → vf (fake edge).

which edges should be collapsed, although we decided to apply the image-based
metric presented in [29]. For explaining the basic ideas behind this simplifica-
tion strategy, Figure 4.3 represents a simplification step in a border among three
different submeshes. Each of these submeshs has a different material (depicted
as a different color) and, as a consequence, some vertices have been originally
duplicated to allow a correct rendering of the geometry. For example, vertices
va, vc, ve represent the same spatial coordinates but different attributes.

This proposed simplification strategy uses the concept of true edge, twin
edge and fake edge. The true edge refers to the collapsed edge, while the twin
edge is the one composed of vertices with the same spatial location that the
vertices of the true edge. Thus, in the example we are presenting, the edge va, vb

is chosen for a collapse (it is the true edge). The simplifier decides that edge
vc, vd is a twin edge of a different submesh, and that it must be collapsed in
order to avoid a hole.

Contracting a true edge and its twin edge is not always sufficient to avoid
holes in these meshes. The second image presented in Figure 4.3 shows how,
after contracting the edges, there is still a visible hole. The simplification algo-
rithm may decide to collapse the isolate vertex ve with any of the vertices used
in the other collapses (vb or vd). Nevertheless, although this collapse would fill
the hole, it would not allow vertex ve to maintain its appropriate attributes.
This is the reason why the isolate vertex (ve) must be connected to a new
vertex (fake vertex) creating a fake edge. This fake vertex will be used as a
collapse destination to avoid cracks in the mesh while maintaining the proper
set of attributes. When adding the new fake vertex, its location coordinates and
its bone assignments are cloned from the proper vertex of the true edge. Other
vertex attributes, like texture coordinates and normals, can be calculated as
desired to improve the quality of the simplified model.

Once the simplification process is finished, the output will be composed of
a list of edge collapses that can be used by any multiresolution model based on
edge-collapses to obtain the desired level of detail. It is important to note that
in order to avoid holes in the run time of the LOD algorithm, it is necessary to
apply all the simplification steps related to an edge collapse at the same time,

“tesis” — 2009/11/9 — 14:57 — page 56 — #80i
i

i
i

i
i

i
i

56 Chapter 4 Rendering Continuous Level-of-Detail Meshes by Masking Strips

(a) Ogre model. From left to right: original (1,960 triangles), 66 % (1,292 triangles)
and 33 % (646 triangles) version.

(b) Buggy model. From left to right: original (91,949 triangles), 66 % (60,686 triangles)
and 33 % (30,356 triangles) version.

(c) Racing car model. From left to right: original (8,345 triangles), 66 % (5506 triangles)
and 33 % (2,753 triangles) version.

(d) Phlegmatic Dragon. From left to right: original (480,044 triangles), 66 % (284,822
triangles) and 33 % (146,386 triangles) version.

Figure 4.4: Three levels of detail of different 3D models.

which include the true edge, its twin edge and any fake edge that might appear.

Figure 4.4 presents several levels of detail of different meshes. These images
show the visual quality obtained with the simplification method described.
Thus, when applied to our multiresolution model, this simplification technique
respects textures to a high extent avoiding cracks and holes.

“tesis” — 2009/11/9 — 14:57 — page 57 — #81i
i

i
i

i
i

i
i

4.2 General Framework 57

Figure 4.5: Masking example.

4.2.2. Masking for LOD management

The third basic aspect of this multiresolution scheme is the use of masks for
codifying the positions where edge collapses happens and also where degenerate
triangles are located. The fact that the selected stripifier usually outputs small
triangle strips makes this masking approach efficient for storage and processing.
Our model calculates these masks during the construction time and stores them
in an efficient data structure.

The method we propose is based on the use of two types of masks: posi-
tion and filter masks. An example of these masks is introduced in Figure 4.5,
presenting an original triangle strip on top and its evolution after three edge
collapses. For each simplification of the initial strip, the figure includes the
resulting strip, the masks and the indices of the strip that are stored both in
the CPU and in the GPU. The position masks indicate which indices of the
strip must be updated to reflect the changes in geometry. These changes are
applied to the indices stored in the CPU. Once the indices have been correctly
modified, the filter mask indicates which positions must be rendered. These
filters are considered when uploading the modified strip to the GPU. Thus,
the copy in the CPU maintains the full updated geometry without eliminating
degenerate information. This approach allows us to return to higher levels of

“tesis” — 2009/11/9 — 14:57 — page 58 — #82i
i

i
i

i
i

i
i

58 Chapter 4 Rendering Continuous Level-of-Detail Meshes by Masking Strips

detail with the same position and filters masks. A further benefit of our mask-
ing approach is the fact that there is no dependency between filter masks. As
a consequence, we can apply several position masks but it is only necessary to
apply the last filter mask to eliminate the corresponding degenerate triangles.
Following with the given example, if we wanted to traverse the three levels-of-
detail at a time, we would need to apply the three position masks but only the
last filter mask, which would be sufficient for obtaining the correct and filtered
geometry.

Eliminating degenerate triangles

A complete level-of-detail method should include an efficient treatment of
degenerate triangles. Among the different possibilities for solving this problem,
authors usually resort to the application of filters following different simple
patterns. As we commented in the previous chapter, some authors prefer to
calculate the filters on-the-fly [52] while other works calculate the filters in a
preprocess [18].

Nevertheless, the above-mentioned models still present some unnecessary
information in the final rendered geometry as they apply simple filters. Our
experiments have proven that these approaches can eliminate up to a 75 %
of the total number of degenerate triangles. This is due to the fact that some
degenerate triangles are difficult to eliminate, and processing them would entail
storing a high amount of information to be able to return to higher levels of
detail.

In the approach we are presenting we are able to remove all the unneeded
degenerate triangles. The main difference is that we do not look for specific
patterns of degenerate triangles. By contrast, we try to connect two meaningful
triangles while removing all the unnecessary information between them. More
precisely, we look for a significant triangle, locate the next significant one, and
connect them in the most appropriate way.

Figure 4.6 presents the main patterns that we follow. Each pattern presents
two correct triangles which are separated by degenerate ones. For example, the
first pattern is related to a triangle strip where two triangles that share an edge
(abc and bcd) are separated by several degenerate triangles. In this case, we
would be able to eliminate all those degenerate triangles to obtain the correct
geometry (abcd). Obviously, this is the best case, as we are able to render 2
triangles with just 4 indices. The patterns have been ordered according to their
importance, as the first ones involve rendering fewer indices than the last ones.
Moreover, all degenerate triangles located before the first meaningful triangle
and after the last one are also eliminated.

It is important to note that the feature that allows us to return to higher
levels of detail is the fact that on the CPU we store the triangle strips without
eliminating degenerate triangles. This way, the filtering process is only applied
when copying the updated strips to the GPU. Thus, the data structures and

“tesis” — 2009/11/9 — 14:57 — page 59 — #83i
i

i
i

i
i

i
i

4.3 The Masking Strips model 59

Figure 4.6: Patterns used for constructing the filter masks.

the extraction process can be consequently simplified.

4.3. The Masking Strips model

An important advantage of our Masking Strips is the way the information
for updating the level of detail is stored. As we have coded all the information
in masks of bits, every strip that must be updated only needs a mask with the
position changes and another one with the degenerate triangles to eliminate.
The vertices that are not modified and can therefore be uploaded to the most
optimal data location.

4.3.1. Data structures

The information for modifying the detail of the polygonal model is stored
in two data structures: InfoUpdate and InfoStrip. We consider that every edge
collapse operation supposes a change in the level of detail. Thus, we offer as
many levels of detail as edge collapses have been recorded in the simplification
process. Figure 4.7 contains these data structures in a c-like notation.

“tesis” — 2009/11/9 — 14:57 — page 60 — #84i
i

i
i

i
i

i
i

60 Chapter 4 Rendering Continuous Level-of-Detail Meshes by Masking Strips

The structure InfoUpdate indicates how an edge collapse operation is re-
flected in the triangle strips. This data structure includes which vertex is in-
volved in the collapse and also how many strips are affected by this update.
For optimizing this data structure, we re-order the vertices so that the vertex
that disappears coincides with the number of LOD we are changing to. With
this ordering, only the vertex that survives is stored. Moreover, InfoUpdate
also contains a field called next update, which is necessary for preserving the
correctness of the mesh. As we stated in a previous section, true edges, twin
edges and fake edges must be collapsed together to assure that all the vertices
related to the same spatial position are simplified in the same way and at the
same time. The value stored in next update indicates whether we must apply
the operations of the next InfoUpdate register.

Once InfoUpdate has exactly indicated which strips are affected, we must
know how to modify each of them. This information includes which strip is
affected and the two masks for updating the strip. The field for the submesh is
not necessary, as all the strips of the mesh have been numerated in a correlative
manner. For storing the arrays of bits, we use chars, and adjust the number of
chars to the size of the triangle strip. The data structure InfoStrip contains all
these necessary data.

struct InfoUpdate
{

unsigned int vertex number

char strips affected

bool next update

}

struct InfoStrip
{

unsigned int strip number

char* position mask

char* filter mask

}

Figure 4.7: Masking Strips data structures.

It would be interesting to make an estimation of the storing cost of these
data structures. Let us suppose that the cost of an integer and a float is a
word (4 bytes). In these estimations we just consider spatial positions for each
vertex. For storing a mesh in triangles we would need 3 words for each vertex
and 3 more for each face. As we showed in the previous chapter, we can assume
that the number of faces is approximately twice the number of vertices and, as
a consequence, we can conclude that the cost in words of a triangularized mesh

“tesis” — 2009/11/9 — 14:57 — page 61 — #85i
i

i
i

i
i

i
i

4.3 The Masking Strips model 61

is 9 · v. In addition, we also studied the cost of a mesh in triangle strips, which
suppose 5 · v words, which is 55 % of the cost in triangles.

For approximating the cost of storing the different data structures presented
before, we consider that the number of edge collapses is of the same order
of the number of vertices. Furthermore, our tests have proven that one edge
collapse affects an average number of three strips. With all this information we
can assume that we need as many InfoUpdate registers as collapses, and three
times more InfoStrip registers. Equations 4.1 and 4.2 present the memory cost
of the data structures, considering that a word is enough for storing the masks
and that we only need 1 byte (0.25 words) for a char.

InfoUpdate→ 1,25 · v (4.1)
InfoStrip→ 3 · (2 · v) = 2 · v (4.2)

The total size in words of our model, both the stripified mesh and the data
structures, is 12,25 · v, which is 392 bits/vertex (Eq. 4.3).

5 · v + 1,25 · v + 6 · v = 12,25 · v (4.3)

This value is just 35 % higher than the size in triangles, which was 9 ·v (288
bits/vertex). If we consider normals in this estimation, the storage cost of the
mesh in triangles and strips would be, respectively, 12 ·v (384 bits/vertex) and
8 ·v (256 bits/vertex). In this case, the cost of the Masking Strips model would
be 15,25 · v (488 bits/vertex), which suppose only a 20 % increase if compared
with the triangularized mesh with normals.

4.3.2. Extraction and visualization algorithms

The algorithms presented in Algorithm 4 provide a simplified but complete
version of the extraction and visualization process. It is important to note the
existence of aux strip, which is useful to construct the filtered version of the
strips in the CPU. This version is the one uploaded to the GPU and also the
one that is finally rendered. Besides, the UseStrip method is introduced for
indicating when a strip is no longer necessary. As we reduce the level of detail,
it is possible that all the edges of a strip collapse. For that reason, UseStrip is
necessary to indicate if a strip is useful in a precise LOD. Finally, for obtaining
the correct results, we must consider the existence of submeshes when uploading
and rendering the triangle strips.

4.3.3. Progressive transmission

The design of our multiresolution model allows us to perform a progressive
representation of the meshes. This feature can be exploited for transmitting

“tesis” — 2009/11/9 — 14:57 — page 62 — #86i
i

i
i

i
i

i
i

62 Chapter 4 Rendering Continuous Level-of-Detail Meshes by Masking Strips

Algorithm 4 Pseudocode of the Masking Strips algorithms.
// LOD Extraction algorithm.
for LOD = currentLOD to demandedLOD do

for all Strip in StripsAffected(LOD) do
if UseStrip(Strip, LOD) then

Strip=apply mask(position mask,Strip);
end if

end for
end for
for all Strip in ModifiedStrip() do

if UseStrip(Strip, LOD) then
aux strip=apply mask(filter mask,Strip);
UploadToGPU(aux strip);

end if
end for

// Visualization algorithm.
for all SubMesh in SubMeshes() do

for all Strip in SubMesh do
if UseStrip(Strip, LOD) then

glDrawElements (Strip);
end if

end for
end for

geometry, but also for a smart storing of the model in the hard drive. Our
progressive transmission approach is composed of only three types of pack-
ages, presented in Figure 4.8: the InitialPackage, the UpdatePackage and the
StripPackage.

The InitialPackage stores all the information that is necessary for allocating
memory and for the further refinement of the model. It includes the number
of strips, the number of vertices, an array with the sizes of the strips, and also
the initial vertex. This package allows us to construct the data structures and
offers the coarsest approximation.

Every UpdatePackage refines the previous approximation. This package in-
cludes the new vertex, the number of strips that are affected by this geometry
change and the next update field which is necessary to indicate whether it
should be applied the next simplification step.

Each of the strips that must be updated for a level of detail change needs a
StripPackage. This package includes the arrays of bits for positions. The triangle
strip to modify can be found out with the contents of the masks. Furthermore,
due to the small size of the strips we work with, we can consider that the filter
calculation can be performed when receiving the mesh, saving storage needs.

“tesis” — 2009/11/9 — 14:57 — page 63 — #87i
i

i
i

i
i

i
i

4.3 The Masking Strips model 63

struct InitialPackage
{

unsigned int vertex number

unsigned int strips number

unsigned int* strips size

vertex initial vertex

}

struct UpdatePackage
{

vertex new vertex

char strips affected

bool next update

}

struct StripPackage
{

char* position mask

}

Figure 4.8: Progressive transmission data structures.

With these three data structures, the process of reconstructing the original
mesh involves:

processing the InitialPackage to create the arrays that will contain the
information on vertices and indices for the triangle strips. The information
about the initial vertex will be replicated throughout the arrays as if the
mesh was composed of a single vertex.

processing each UpdatePackage adds a new vertex and indicates the num-
ber of StripPackages to use. These latter packages contain the position
masks that are needed to indicate which position should be updated with
the new vertex.

By repeating the last step the process will expand in memory the geometry
of the original mesh. During this process, it will be necessary to calculate the
filter masks that will be necessary for the correct performance of the multires-
olution model.

These data structures allow us to obtain a reduction in the memory cost. As
we did in the previous section, Equations 4.4 to 4.6 present an approximation to
the total storing needs of the different packages, considering again only spatial
coordinates for the vertices. The cost of the InitialPackage is simplified to the

“tesis” — 2009/11/9 — 14:57 — page 64 — #88i
i

i
i

i
i

i
i

64 Chapter 4 Rendering Continuous Level-of-Detail Meshes by Masking Strips

cost of the array of strip sizes. Estimating the number of triangle strips is not
simple and, as a consequence, we have simply considered that we will have
v strips. We will have as many UpdatePackages as levels-of-detail available.
Moreover, regarding the cost of all the StripPackages, we have considered again
that three strips are affected on average in a simplification step.

InitialPackage→ 5 + v ∼= v (4.4)
UpdatePackage→ 3,25 · v (4.5)

StripPackage→ 3 · v (4.6)
v + 3,25 · v + 3 · v = 7,25 · v (4.7)

Thus, Equation 4.7 presents the total cost in words of a progressive version
of our Masking Strips, which is 7,25v (232 bits/vertex). This value reduces
the storage cost of Masking Strips without progressive transmission to 70 %.
In addition, this progressive version has a storage cost that is lower than the
original cost in triangles and supposes only 45 % increase with respect to the
cost of the original model in triangle strips.

If we wanted to analyze the cost with normals, the progressive version of
Masking Strips would have a cost in words of 10,25 · v (328 bits/vertex), sup-
posing only two times the cost of the original model in strips.

4.4. Results
To test the performance of our multiresolution model, we have studied the

spatial cost and also the rendering time. The experiments were carried out
using Windows XP on a Dell PC with a processor at 2.8 Ghz, 2 GB RAM and
an nVidia GeForce 7800 graphics card with 256MB RAM. Table 4.1 offers a
description of the models used in the different experiments performed.

It is important to mention that, in these examples, we use the triangle
strips obtained with the method included in the NVTriStrip library, devised
by nVidia [35]. These short triangle strips are more adequate for our proposal
and offer a fast rendering.

Model Ogre Racing Cessna Bunny Dragon Buddha
Vertices 1,645 5,195 6,795 34,834 240,028 543,644
Faces 1,960 8,345 13,546 69,451 480,044 1,085,634
Submeshes 3 2 1 1 1 1
Textures yes yes no no no no
Bones yes no no no no no

Table 4.1: Detailed information of the models used in the experiments.

“tesis” — 2009/11/9 — 14:57 — page 65 — #89i
i

i
i

i
i

i
i

4.4 Results 65

Model Ogre Racing Cessna Bunny Dragon Buddha
Original (triangles) 306 364 384 384 384 383
Original (strips) 251 264 289 268 284 276
Progressive Meshes 1,106 1,060 1,124 959 955 961
LodStrips 567 643 788 611 618 643
Speed Strips 497 506 608 594 613 613
Masking Strips 465 460 486 502 500 497

Table 4.2: Storage cost study (in bits/vertex).

Model Ogre Racing Cessna Bunny Dragon Buddha
Progressive Meshes 543 510 517 448 446 449
Masking Strips 299 301 324 328 321 331

Table 4.3: Storage cost study of the progressive solutions (in bits/vertex).

4.4.1. Memory cost
For analyzing the memory cost of Masking Strips, Table 4.2 summarizes the

costs of the different models. We have also calculated the cost of the meshes in
triangles and strips. In addition, we compare our solution against three mod-
els: Progressive Meshes (PM), firstly introduced in [16], the LodStrips model
presented in [18] and the Speed Strips model presented in the previous chapter.
It is important to note that, in these results, all the costs have been calculated
without textures or bones information, in order to assure that the different
solutions are compared on equal terms.

In this table it can be seen how LodStrips improved on Progressive Meshes,
and also how our model reduces the cost of Speed Strips to less than 85 %. With
the estimations of the storage needs we made in previous sections, we obtained
that the cost was 488 bits/vertex for Masking Strips and 328 bits/vertex for its
progressive structures. The results in Table 4.2 show how the experimental costs
are very similar to the costs calculated in previous sections. The deviations in
the first two models are due to the fact that our simplification scheme needed
to add some extra vertices.

From a different perspective, in Table 4.3 it is presented the cost for the
progressive transmission version. Once again, our model offers an important
improvement, reducing the needs of Progressive Meshes in nearly a 30 %.

4.4.2. Rendering cost
The performance of our model has been analyzed from two different per-

spectives. On the one hand, Figure 4.9 presents a study of the indices rendered
throughout the different levels of detail. The strips we render always involve

“tesis” — 2009/11/9 — 14:57 — page 66 — #90i
i

i
i

i
i

i
i

66 Chapter 4 Rendering Continuous Level-of-Detail Meshes by Masking Strips

 0

 50000

 100000

 150000

 200000

 250000

 1 0.8 0.6 0.4 0.2 0

I
n
d
i
c
e
s

LOD

Masking Strips
LodStrips

Progressive Meshes

Figure 4.9: Indices rendered for the bunny model.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1 0.8 0.6 0.4 0.2 0

m
s
.

LOD

Extraction+Visualization
Visualization

Extraction

Figure 4.10: Comparison of the extraction and visualization times of the
phlegmatic dragon model.

“tesis” — 2009/11/9 — 14:57 — page 67 — #91i
i

i
i

i
i

i
i

4.4 Results 67

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.2 0.4 0.6 0.8 1

T
r
i
a
n
g
l
e
s

Distance

Masking Strips
Discrete Model

Figure 4.11: Comparison of the triangles rendered for the space woman
model at different distances.

less indices than a triangle-based approach like Progressive Meshes. This is due
to the fact that we eliminate all the unnecessary information, improving on
previous multiresolution models like LodStrips which offered bad results in low
levels of detail. Thus, in the coarsest approximation we can reduce the indices
processed by LodStrips or Speed Strips in more than 40 %. Furthermore, we
want to underline that the indices we send when updating the level of detail
supposes always a very small percentage of the total rendered, as we only up-
load the modified strips and the rest are kept unaltered in the GPU. This is
an important advantage against models which have to upload all the geometry
when performing a level-of-detail update, like those models which re-stripify
the mesh.

On the other hand, Figure 4.10 includes the extraction and visualization
time of the phlegmatic dragon model. This figure shows how the extraction
process of our model is very fast, supposing less than a 5 % of the total time.
This is a compulsory feature for developing a competitive multiresolution mod-
el, and is due to the way we update and upload the strips, sending the minimum
information through the bus.

In order to test more thoroughly the performance of our multiresolution
model, we have prepared a real scenario with a crowd of animated models.
This scenario has been built using Ogre [107], an open source graphics engine.
Consequently, our level-of-detail approach has been implemented in this engine
to test it against the discrete model offered by the engine. The discrete models
created for this test are rendered using triangle strips and offer 5 different

“tesis” — 2009/11/9 — 14:57 — page 68 — #92i
i

i
i

i
i

i
i

68 Chapter 4 Rendering Continuous Level-of-Detail Meshes by Masking Strips

Figure 4.12: Space woman at different distances and levels of detail. On
the left we present the models rendered with a discrete solution, while on
the right we show the results of the Masking Strips approach.

Figure 4.13: Scene rendering a crowd of models developed inside the Ogre
graphics engine.

approximations, each of them reducing the geometry in 25 %. The criterion
used to change the level of detail has been the distance to the viewer, and the
values used for both models have been the same ones. Figure 4.11 shows the
number of polygons rendered at different distances, considering 0 as the closest
point and 1 the farthest one. The distance values used to select the level of
detail have been adjusted so that at those distances where the discrete model
changes to a different level-of-detail, our multiresolution model extracts a level-
of-detail with a similar polygonal complexity. Figure 4.12 visually compares
both multiresolution models at similar distances to show how, throughout the
different levels of detail, our model is able to reduce the rendered geometry
while maintaining the visual quality.

The scene rendered is depicted in Figure 4.13. This scene is composed of

“tesis” — 2009/11/9 — 14:57 — page 69 — #93i
i

i
i

i
i

i
i

4.4 Results 69

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40 45 50

F
P
S

Animation Time (sec.)

Masking Strips
Discrete Model
LOD disabled

Figure 4.14: Performance obtained in the crowded scenario using our mul-
tiresolution model, the discrete solution included in Ogre and disabling any
level-of-detail solution.

250 animated space woman models, amounting to a total number of 1,032,500
triangles. The test consisted in traversing the same random path during 50 sec-
onds. Along this path, the number of models that are visualized and the level
of detail at which they are rendered varies. As a consequence, the frame rate
fluctuates in accordance to the final amount of geometry that is visualized. The
results of this test are shown in Figure 4.14, where we include the frame-rate
obtained for our model, for the discrete solution and also the performance that
we could obtain when no level-of-detail method is applied. Both multiresolu-
tion models considerably increase the performance obtained when the whole
geometry is rendered. Moreover, our model improves the results obtained with
the discrete model, reducing the rendering time in 30 %. These results are pos-
sible due to the fact that the time required for the extraction process is very
low. Moreover, our multiresolution model extracts less geometry, which also
diminishes the skinning and the shadowing calculations. In addition to a better
performance, our continuous model is capable of offering a higher visual quality
as the model decreases and increases the detail of the models smoothly.

“tesis” — 2009/11/9 — 14:57 — page 70 — #94i
i

i
i

i
i

i
i

70 Chapter 4 Rendering Continuous Level-of-Detail Meshes by Masking Strips

4.5. Conclusions
This chapter introduces Masking Strips, a multiresolution framework for

interactive visualization which presents the use of masks for storing the data
reducing storing needs and, combined with our filtering approach, enabling a
fast and efficient extraction process. In addition, the data structures presented
allow for a progressive representation of the model.

Our experiments have proven that the model offers interesting results in
storing cost and also in extraction and rendering times. It is important to
note that it is possible to find more advanced techniques, like the patch-based
ones [67]. Nevertheless, our main aim is to offer an easy-to-integrate solution
which is suitable to any kind of architecture where it is necessary to minimize
data traffic. In addition, we also offer an interactive visualization, better costs,
coherence exploitation and a very short extraction time, which are key for the
use of continuous multiresolution models in computer games and other real-
time applications.

As commented in the introduction, it is our interest to develop a model
which is fully integrated in the GPU. Thus, the data structure based in mask
of bits fits perfectly inside the possibilities offered with the recent Shader Model
4.0, and encourages us to adapt this level-of-detail framework to work directly
in the graphics hardware.

“tesis” — 2009/11/9 — 14:57 — page 71 — #95i
i

i
i

i
i

i
i

CHAPTER 5
Interactive Visualization of

Meshes on the GPU

The multiresolution approaches presented in previous sections have been
oriented towards the exploitation of graphics hardware. Nevertheless, although
they present very good results, they are still based on complex data structures
and algorithms which are difficult to adapt to the graphics pipeline to perform
the level-of-detail extraction process completely on the GPU.

In this chapter we present a new level-of-detail scheme based on triangles
which is simple and efficient. In this approach the extraction process updates
indices instead of vertices. This feature provides a perfect framework for adapt-
ing the algorithms to work on GPU shaders. One of the key aspects of our
proposal is the need for only a single rendering pass to obtain the desired ge-
ometry. Moreover, coherence among the different approximations is maximized
by means of a symmetric extraction algorithm, which performs the same pro-
cess both when refining and coarsening the mesh. We also introduce different
uses of the scheme to offer both continuous and view-dependent resolution.
Lastly, we propose the integration of our scheme into a commercial application
to show how our solution is easy to integrate and how it minimizes the tasks
that the user needs to perform in order to prepare and use the multiresolution
model.

5.1. Introduction
The development of Shader Model 4.0 was a breakthrough in computer

graphics as it offers a new range of functionalities [108]. The main contribu-

71

“tesis” — 2009/11/9 — 14:57 — page 72 — #96i
i

i
i

i
i

i
i

72 Chapter 5 Interactive Visualization of Meshes on the GPU

Figure 5.1: Approximations of a man model (136,410 triangles). From
left to right: original model and simplifications to 50 %, 25 % and 10 %
respectively.

tion is the geometry shader, which establishes a new stage inside the graphics
pipeline enabling the dynamic creation and elimination of geometry in the
GPU. Furthermore, it also offers the possibility of modifying the flow of infor-
mation by means of the technique known as Transform Feedback in OpenGL
and Stream Output in DirectX.

We decided to exploit these features in order to offer a fully-GPU imple-
mentation of the multiresolution model we are presenting. The main objective
of this chapter is to describe a new multiresolution framework for real-time ren-
dering of arbitrary meshes which contributes to diminish the existing distance
between a multiresolution GPU-based solution and its implementation in any
3D application.

In this chapter we present Interactive Meshes, a multiresolution scheme
whose simplicity enables us to perform the level-of-detail management com-
pletely on the GPU. Moreover, coherence among extracted levels of detail is
maintained, reusing the information and improving the final performance. The
memory cost is optimized as we need very little information to perform the
LOD extraction, which is based on half-edge collapses.

The proposed model offers a wide range of new possibilities as the model is
completely integrated in the GPU and no CPU/GPU communication is needed
once all the information is correctly loaded in hardware memory. The frame-
work we are presenting offers a very promising extraction process which can be
combined with different solutions to enhance the results. Thus, given the pos-
sibilities offered by the aforementioned framework, we present two approaches.
On the one hand, we describe a continuous resolution implementation to in-
troduce the basics of this framework. On the other, we improve this solution
to offer view-dependent resolution, being the GPU on charge of selecting the
optimal level-of-detail to be extracted for the particular viewing conditions.
Figure 5.1 presents different visualizations of a man model at different levels of

“tesis” — 2009/11/9 — 14:57 — page 73 — #97i
i

i
i

i
i

i
i

5.2 Continuous resolution framework 73

detail using a silhouette-based extraction algorithm.
More precisely, our new approach includes the following main features:

a simple data structure based on vertex hierarchies adapted to the GPU
architecture. The vertex hierarchy is given through the edge contraction
operations of the simplification process [20]. This data structure permits
offering a storage cost with very low memory requirements.

an extraction process based on the update of vertex coordinates to reflect
LOD changes, in contrast to traditional models which have always updat-
ed the information related to the indices. This approach integrates well
with other pixel-based methods like sub-surface scattering or parallax
occlusion mapping. In addition, this extraction algorithm is symmetric,
being capable of increasing or decreasing the detail of the mesh with the
same process.

representations are stored and processed entirely in the GPU avoiding
the typical bottleneck in the CPU-GPU bound and thus obtaining a
great performance by exploiting the implicit parallelism existing in cur-
rent GPUs. The extraction process exploits the features offered by Shader
Model 4.0, as we will see throughout the different sections.

view-dependent capabilities, which are possible by means of a slight mod-
ification of the continuous resolution algorithms but with the same data
structures.

only one pipeline pass is required to adapt the geometry to the needs of
the application. Moreover, this pass is able to maintain coherence among
the extracted approximations when refining and coarsening the mesh.

ease of integration of the whole solution, which can be described with two
shaders and very little scripting.

This chapter has the following structure. Section 2 presents the approach
for continuous resolutions, describing the basics of our extraction process that
will also be applied for the view-dependent model. Section 3 provides thorough
details of the implementation of the view-dependent model, making a special
effort to describe the differences between them. In Section 4 we outline the
integration of Interactive Meshes in a real application. Section 5 includes a
comparative study of spatial costs and rendering times. Lastly, Section 6 con-
cludes this chapter by commenting on the results obtained and outlining future
lines of work.

5.2. Continuous resolution framework
As we have already commented, the main idea of our framework is to offer a

fast and efficient extraction process, modifying the level-of-detail directly in the

“tesis” — 2009/11/9 — 14:57 — page 74 — #98i
i

i
i

i
i

i
i

74 Chapter 5 Interactive Visualization of Meshes on the GPU

Figure 5.2: Construction of an Interactive Meshes model.

GPU. In our case, we decided to update the contents of the vertices list instead
of the indices one. The reason behind this decision is the fact that applying
LOD changes in a vertex basis suits perfectly the graphics pipeline, as we will
be able to update the vertices information in a vertex shader. Nevertheless,
the extraction algorithm that we are presenting would be equally suitable for
modifying a list of indices.

The use of the vertex shader to perform the vertex update entails the neces-
sity of developing an extraction algorithm which is capable of applying changes
on a vertex basis. Thus, each vertex will be processed individually and there
will be no shared memory once the process has started; all the information
must be arranged before the extraction process starts. Moreover, as we aimed
at keeping the framework simple, we wanted to avoid multiple passes for updat-
ing the level of detail. As a consequence, we must develop a framework which
can update a vertex in a single pass no matter which is the difference between
the old and the new level of detail.

The update of vertices offers an efficient extraction of the different levels
of detail of an original mesh. Nevertheless, as it happened with the models
presented in previous sections, we must consider the appearance of degenerate
triangles. As we will see, a possible solution is to order indices so that we can
apply a sliding-window approach to the level-of-detail extraction process.

5.2.1. Pre-processing the original mesh
In order to use Interactive Meshes, the user must perform an initial prepa-

ration task so that the input mesh meets certain requirements and the sim-
plification information is made available. Figure 5.2 presents the construction
process of our model, showing that the pre-process is based on two aspects:

a simplification process, which also involves the storage of the collapse
information.

a re-ordering step of vertices and indices.

“tesis” — 2009/11/9 — 14:57 — page 75 — #99i
i

i
i

i
i

i
i

5.2 Continuous resolution framework 75

Figure 5.3: Example of the collapse hierarchy of a sample model.

Storing the collapses information
The construction process of Interactive Meshes includes outputting, for each

vertex, the different vertices it collapses to throughout the levels of detail. In
our proposed scheme, collapsing vertex vi to vertex vj would mean that the
coordinates values of vertex vi will be replaced with the values of vertex vj .
The simplification step can be used to collect the collapse information involved
in the whole simplification process.

The collapse information of a vertex will be composed of a list of references
to the vertices that it collapses to. Figure 5.3 presents the collapse hierarchy of
a section of a mesh. The collapse list of each vertex can be understood as the
branch of this tree that links it with the root node. Thus, for example, vertex
v18 would have a list of indices to vertices composed of values (v38, v49).

Ordering vertices and indices
On the other hand, the collapse information is also used to order the ge-

ometry of the original mesh. As we did in the models we previously presented,
vertices are ordered following the collapse order. The vertex that first collapses
will become vertex v0, the second one will be vertex v1, and so on.

As the vertices have been ordered following the collapse order, the collapse
list will let us know in which LOD a particular vertex must change and, in
addition, which change should be performed. More precisely, we can assure
that the collapse list of vertex vi satisfies that we must use the contents of its
j-th element while:

ei,j ≤ demandedLOD (5.1)

where e represent the elements of the collapse list. More precisely, we can
assume that vertex vi will change when swapping from lodi to lodi+1. Thus,
following on with the example offered in Figure 5.3, we can say that we must
perform the collapse v18 → v38 when changing to LOD 19, and that we must
apply collapse v38 → v49 when swapping to LOD 39. It is worth remembering

“tesis” — 2009/11/9 — 14:57 — page 76 — #100i
i

i
i

i
i

i
i

76 Chapter 5 Interactive Visualization of Meshes on the GPU

(a) Simplification of a section of a polygonal model.

(b) Initial ordering (top) and re-order of triangles and vertices (bottom).

Figure 5.4: Example of simplification and ordering of vertices following
the collapse order.

that, in our proposed scheme, collapsing vertex vi to vertex vj would mean
that the contents of vertex vi will be replaced with the values of vertex vj .
As a consequence, the contents of vertex 18 will be replaced by the contents
of vertex 38 when changing to LOD 19, and will be modified to contain the
information of vertex 49 when changing to LOD 39.

From a different perspective, the update of vertices we are proposing offers
an efficient extraction of the different levels of detail of an original mesh, but we
must consider the appearance of degenerate information. A possible solution is
to process the triangles in a geometry shader in order to eliminate the unnec-
essary geometry. However, in our continuous framework we decided to order
the triangles by their elimination order, so that the last triangle in the triangle
list will be the first one to disappear. Thus, as each simplification step involves
eliminating two triangles, when modifying the level of detail we will easily be
able to discard unnecessary degenerate triangles by modifying the number of
indices sent to render.

To clarify this process, an example of the ordering step can be observed
in Figure 5.4. Figure 5.4(a) depicts a section of a polygonal mesh which is

“tesis” — 2009/11/9 — 14:57 — page 77 — #101i
i

i
i

i
i

i
i

5.2 Continuous resolution framework 77

simplified with two edge-collapse operations. This image offers the resulting
geometry after vertex v4 collapsed to vertex v0 and vertex v0 collapsed to
v5. Figure 5.4(b) depicts the changes that are necessary to meet the ordering
requirement. On top we present the original contents of the triangle lists. At the
bottom, we offer the list obtained after the re-ordering. Thus, we can see how
vertex v4 is now vertex v0 and vertex v0 is now vertex v1, following the order
of vertex collapses. Moreover, it can be seen how triangles t5 and t4 become t0
and t1, as they will be the last ones to disappear.

5.2.2. Data structures

Once this pre-process step is finished, the collapse information and the re-
ordered mesh are obtained. Interactive Meshes has very low memory require-
ments. The only extra information that we will need to store is the information
about the collapse list of each vertex. Nevertheless, it will not be necessary
to store the whole list for each vertex. Following with the example shown in
Figure 5.3, the list of vertex v18 will be (v38, v49), while the list of vertex v38

will be (v49). As a consequence, we will only need to store, for each vertex,
the vertex it collapses to, as we will be able to recover the whole hierarchy of
collapses afterwards.

For offering an estimation of the storing cost of the model we are presenting,
let us suppose that the cost of an integer and a float is a word (4 bytes). In
these estimations we will just consider spatial coordinates for each vertex. As
we showed in previous chapters, a mesh in triangles requires 6 ·v for indices and
3 · v words for vertices, supposing 9 · v words. The only extra information that
we need is the value of the vertex to collapse to, as the complete list of collapses
will be obtained every time we decide to use this multiresolution model. As a
consequence, the total size in words of our model will be 10v (Eq. 5.2), which
is 320 bits/vertex and just 10 % higher than the size in triangles.

9 · v + v = 10 · v (5.2)

Storing the data structures on GPU

A key aspect of our proposed framework is the adequate storage of the
necessary information in the GPU. Thus, starting from the information stored
in main memory, it will be necessary to create the data structures on GPU
memory.

Figure 5.5 depicts the information that is initially stored in CPU and af-
terwards uploaded to GPU memory. It is necessary to distinguish between two
kinds of data: static data, which will not be altered, and dynamic data, which
is updated in each extraction step.

On the one hand, the static data contains the index buffer and two textures:

“tesis” — 2009/11/9 — 14:57 — page 78 — #102i
i

i
i

i
i

i
i

78 Chapter 5 Interactive Visualization of Meshes on the GPU

Figure 5.5: Data structures preparation and GPU storage.

the information of the original mesh (vertex coordinates, texture infor-
mation, normals and so on) will be stored in floating point textures. This
information will be accessed in the vertex shader if the contents of a
vertex must be modified when changing the level of detail.

the collapse information will be stored in another texture. In the pre-
process step we stored the collapse information, indicating for each ver-
tex the vertex it collapses to. Nevertheless, in the run-time of our ex-
traction algorithm we will need the complete collapse list of each vertex.
The collapse list reflects the different vertices an original one collapses to
throughout the levels of detail, and is key information for our proposal.

On the other hand, the dynamic data is composed of two vertex buffers con-
taining the information of the latest extracted approximation that is currently
used for rendering. These two buffers store:

the current information of the vertices, including spatial coordinates, nor-
mals and so on.

the current element of the collapse list that the vertex is using, which can
be seen as a pointer to traverse this list.

Once these data has been properly stored, the only information that the
CPU must send to the GPU is the new LOD value. It is important to mention
that the different vertex and index buffers can be easily created, while the two
textures require a small process. It is worth mentioning that Shader Model
4.0 enables us to define and use non-squared textures, which do not have the
restriction of having a size power of two and thus, offer more cost-effective
information storage.

“tesis” — 2009/11/9 — 14:57 — page 79 — #103i
i

i
i

i
i

i
i

5.2 Continuous resolution framework 79

Storage cost

For analyzing the multiresolution framework we present, it is necessary to
address its memory cost in the GPU. The memory cost of the three elements
of the static information is presented in Equations 5.3 to 5.5. Equations 5.3
to 5.4 present the storage of a mesh in triangles, which require 6 · v words for
indices and 3 · v words for vertices. Regarding the storage cost of the collapse
list, our tests have proven that, on average, the collapse list of each vertex has
a maximum size of 13 elements, although the average is 3 elements. If we see
the collapse hierarchy as a tree, in the levels close the root nearly all vertices
are collapsed, which means that when retrieving very coarse levels of detail we
must change a lot of vertices. Nevertheless, by simply limiting the maximum
LOD extraction to 95 % of the total possible levels of detail, the maximum
collapse list size is reduced to 5 and its cost is 5 · v (see Equation 5.5).

IndicesInformation→ 6 · v (5.3)
V erticesInformation→ 3 · v (5.4)

V erticesCollapses→ 5 · v (5.5)

The dynamic information consists of two elements: the current vertices
buffer and also the current collapse for each vertex.

CurrentV erticesInformation→ 3 · v (5.6)
CurrentV erticesCollapse→ v (5.7)

Both dynamic structures must be duplicated for ping pong, as we cannot
read and write to the same buffer with the current 3D API. Thus, with the
presented equations we can conclude that the total memory cost is 22 · v (see
Equation 5.8) or 704 bits/vertex, which represent 2.4 times the original model.
If we wanted to apply normal mapping and textures, the original size would
increase to 13 · v (416 bits/vertex), and our approach would have a memory
cost of 34 · v (1088 bits/vertex), which represents 2.6 times the original cost.

3 · v + 6 · v + 5 · v + (3 · v + v) · 2 = 22 · v (5.8)

5.2.3. Extraction algorithms

In the previous sub-section we introduced the information that our mul-
tiresolution model will use to extract and render the different approximations.
Once the data is correctly stored, the only information that the CPU must send
to the GPU is the new LOD value. The extraction process has been carefully
adapted to work using shaders. We will consider that each collapse operation

“tesis” — 2009/11/9 — 14:57 — page 80 — #104i
i

i
i

i
i

i
i

80 Chapter 5 Interactive Visualization of Meshes on the GPU

Figure 5.6: Rendering pipeline for the continuous Interactive Meshes
approach.

entails a change in the level of detail. Thus, we will have as many levels of
detail as edge collapses recorded during the simplification process.

Figure 5.6 depicts how the rendering pipeline is used in this approach. The
Stream Output possibilities of the current Shader Model enables storing the
updated vertices information to be used in subsequent renders. This feature
is very interesting when the level-of-detail remains stable. Moreover, it also
assures that coherence among extracted levels of detail is maintained, both
when refining and coarsening the mesh.

We will describe separately the vertices and indices update. The vertices up-
dating process will be similarly used in the following section when describing
the features of the view-dependent model, as both multiresolution implemen-
tations are based on the same extraction process.

Vertices update
Each time we change to a different LOD, the pipeline shown in Figure 5.6

is activated so that each vertex is processed in a specifically designed vertex
shader. Nevertheless, due to the order we have chosen for the vertices, it will
only be necessary to check vertices from 0 to demandedLOD−1. It is important
to say that, among the vertices to check when changing to a new level of detail,

“tesis” — 2009/11/9 — 14:57 — page 81 — #105i
i

i
i

i
i

i
i

5.2 Continuous resolution framework 81

Algorithm 5 Pseudocode of the extraction shader of the continuous version
of Interactive Meshes

// Vertex shader.
float CurrentID;
float3 NewVertexInfo,OldVertexInfo;

CurrentID = getCollapseInfoFromTex(VertexID,CurrentCollapse);
if CurrentID < DemandedLOD then

CurrentCollapse+=1;
NewID=getCollapseInfoFromTex(VertexID,CurrentCollapse);
NewVertexInfo = getVertexInfoFromTex(newID);

else
NewVertexInfo = OldVertexInfo;

end if
Output(NewVertexInfo,CurrentCollapse);

we will not have to update all of them, as just a small percentage must be
modified. The size of the collapse list of each vertex is usually small. Our
experiments have shown that the collapse list of the vertices of most models
have an average size of 2 (see Table 5.2) and, thus, each vertex will be updated
on average two times. Obviously, the bigger the difference between the current
LOD and the demanded LOD, the greater the number of vertices that will be
updated.

Algorithm 5 presents a pseudocode that describes the extraction shader for
the vertices. The proposed shader receives as input the CurrentCollapse of the
current vertex (V ertexID). This value can be understood as a pointer to the
collapse list that the algorithm moves to increase or decrease the level of detail.
With this value, we access the texture containing the collapse list of the vertex
to find out which vertex we are currently using. If, according to the CurrentID
of the vertex its contents must change, we increase the CurrentCollapse value
and we retrieve the following value of the collapse list. Then, we fetch the
adequate vertices coordinates to update the contents of the vertex buffer. The
vertices coordinates and CurrentCollapse value are outputted by means of
the Stream Output so that they can be input to the following execution of
the extraction shader. This information represents the dynamic data of our
approach (see Figure 5.5).

This extraction process assures that we will update only those vertices that
need to be modified from the latest extracted approximation. Thus, the pro-
cess is capable of re-using the latest calculated approximation. The proposed
algorithm can be easily modified to return to more detailed approximations, by
changing the comparison used and reducing the CurrentCollapse value when
necessary.

“tesis” — 2009/11/9 — 14:57 — page 82 — #106i
i

i
i

i
i

i
i

82 Chapter 5 Interactive Visualization of Meshes on the GPU

Figure 5.7: Example of the extraction process of four levels-of-detail.

Indices update

As we commented above, the triangle list has been ordered in an elimination
fashion. Thus, once we have updated the necessary vertices, the triangle count
must be increased or reduced appropriately in order to render the proper num-
ber of indices for the level-of-detail extracted.

As an example of how the whole algorithm works, Figure 5.7 presents a
sample mesh during three edge collapses using our model. This figure includes,
for each level of detail, the array of triangles and vertices and, for each vertex, its
collapse list. The array of triangles is shaded in accordance to the geometry that
is currently being rendered. With respect to the collapse lists, the shaded cell

“tesis” — 2009/11/9 — 14:57 — page 83 — #107i
i

i
i

i
i

i
i

5.3 View-dependent resolution framework 83

reflects the current contents of the vertices. Following the algorithm introduced
in Algorithm 5, let’s suppose we change from LOD 0 to LOD 1. We would
decrease the triangle count in two and, in this case, we would only modify
vertex v0 so that its coordinates are updated with the contents of vertex v2.
For the second LOD change, vertex v1 must be updated, and according to the
contents of its collapse list, it must change its values for vertex v5. The next
level-of-detail change implies updating vertices v0 and v2, as both must collapse
to vertex v5.

5.3. View-dependent resolution framework
The modification of the vertices to perform the level-of-detail updates intro-

duced above offers a perfect framework for enhancing the extraction process.
What we propose now is a revision of this continuous model. The main con-
tribution is to develop a view-dependent model that preserves appearance and
avoids popping artifacts while offering high performance:

the use of triangles as rendering primitive limits performance, compared
to triangle strips. This limitation can be overcome with the use of primi-
tives optimized for the vertices cache [41, 46], which orders the indices in
an optimized way which renders much faster than the triangles ordered
in an elimination fashion. In the results section we will present a small
study which shows how indexed primitives offer the fastest rendering. In
our case we apply the method presented in [109] which is based on one
of the latest methods [42].

the pre-ordered list of triangles assured that no degenerate triangle was
rendered. In this new solution, we control the appearance of degenerate
information directly in the geometry shader.

we have extended the original algorithms to offer view-dependent resolu-
tions. Among the criterions that can be applied to select the refinement
level, we have chosen a simple yet efficient silhouette method. Figure 5.1
presents several visualizations of a model of a man at different levels of
detail using a silhouette-preserving extraction algorithm.

to enhance the visual quality, we will perform geo-morphing between the
collapsed vertices in order to avoid disturbing effects like discontinuities
or popping artifacts.

It is important to comment that the extraction approach based on collapse
lists offers a truly selective refinement, where we can apply any collapse without
applying further collapses or other requisites. As the simplifications are applied
in a vertex-basis, all the triangles sharing that vertex will be modified in the
same way. Figure 5.8 shows an image of the Stanford bunny model simplified

“tesis” — 2009/11/9 — 14:57 — page 84 — #108i
i

i
i

i
i

i
i

84 Chapter 5 Interactive Visualization of Meshes on the GPU

Figure 5.8: Bunny model with its right half simplified to 80 %.

with this method, where the detail of half of the model is reduced 80 %. It can
be seen how no crack or other disturbing effect is produced, even though there
is a severe change of resolution between the two halves of the model.

5.3.1. Implementation details

Our aim is to extend the previously presented approach to offer a fully-GPU
view-dependent model. As a consequence, in this section we will address the
modifications of the previous continuous resolution model that are necessaries
to develop the view-dependent approximation.

The pre-process step and the data structures presented before can be equally
used for this view-dependent resolution approach. The only difference is that
the indices information becomes part of the dynamic data, as the degenerate
elimination takes also place on the GPU.

Figure 5.9 shows a diagram of the different processes that will take place
at each rendering stage. The extraction process is similar to that presented
in the previous section. Nevertheless, we have modified the criterion to select
the appropriate level of detail, which will depend on a silhouette criterion. In
the geometry shader we will mainly perform the degenerate triangles elimi-
nation. The different shaders will be commented separately in the following
sub-sections.

Vertex shader

The vertex shader will be responsible of calculating the appropriate LOD,
updating vertices information and performing geo-morphing. In Algorithm 6
we present a detailed description of the implemented shader using pseudocode.

“tesis” — 2009/11/9 — 14:57 — page 85 — #109i
i

i
i

i
i

i
i

5.3 View-dependent resolution framework 85

Figure 5.9: Rendering pipeline for the view-dependent Interactive Meshes
approach.

We want to develop a model that will not need any information from the
CPU once the model is correctly loaded into GPU memory. With that aim,
we want to calculate the appropriate LOD according to the scene conditions
inside the GPU. Knowing the angle between the vector that points towards
the camera and the normal of the vertex will allow us to easily perform a
silhouette-based extraction process. In those cases where the vectors are nearly
perpendicular, we will need to render highly-detailed geometry to obtain the
visual perception of the silhouette. In those cases where the vectors are nearly
parallel, we will simplify the vertices as they do not contribute to the silhouette.
In the rest of cases, we will perform a linear interpolation so that the geometry
refines progressively towards the areas of the silhouette.

The first instructions of the vertex shader will calculate the angle between
the view vector and the normal of the vertex. The vertex shader has full access
to the ModelView matrix. As a consequence, we can easily calculate the dot
product between the vertex normal and the view direction.

After this step, we are able to extract the correct geometry for the Calcu-
latedLod. As we explained in the previous section, we will consult the collapse
information to know which vertex information must be used, recovering all the
information from the previously-defined textures. This process is very similar

“tesis” — 2009/11/9 — 14:57 — page 86 — #110i
i

i
i

i
i

i
i

86 Chapter 5 Interactive Visualization of Meshes on the GPU

Algorithm 6 Pseudocode of the extraction shader of the view-dependent ver-
sion of Interactive Meshes.

// Vertex shader.
float CalculatedLod;
float Angle;
float NewID,NextID;
float3 NewVertexInfo,NextVertexInfo,FinalVertexInfo;

Angle=calculateAngle(view,normal);
CalculatedLod=interpolate(DemandedLOD,Angle);
NewVertexInfo= getNewCoordinates(VertexID,CalculatedLod);
NextVertexInfo = getNextCoordinates(VertexID,CalculatedLod);
NewID=getNewID(VertexID,CalculatedLod);
NextID=getNextID(VertexID,CalculatedLod);
FinalVertexInfo = geomorph(NewVertexInfo,NextVertexInfo,newID);

to the extraction process presented in the first sections, as this model is also
based in the correct ordering of vertices and in the search of the appropriate
value through the collapse list. As a consequence, the extraction process has
been summarized as getNewCoordinates so that the reader can focus on the
new parts of the algorithm.

It is important to note that we will recover the information of the vertex
that we currently need and the following one. With the two extracted vertices
we can make some simple calculations to assure a progressive transition among
LODs. The way that the collapse information is stored will assure that a vertex
will collapse to its j-th element of the collapse list once we reach LOD j. Our
proposal is to geo-morph between vertices stored in the positions j and j + 1
while the LOD value is contained between the ids of vertices stored in positions
j and j + 1 of the collapse list. Thus, once we reach LOD j the vertex will
be completely changed to vertex j, ensuring that the collapse information is
correctly applied. With this approach the continuity of the mesh is ensured, as
all the vertices will be collapsed in the same way.

Geometry shader

The development of the geometry shader has made it possible to work di-
rectly with triangles in a new stage. This feature is very powerful but the
geometry shader is not a stage that must be activated. Consequently, the use
of geometry shaders involves slowing down the whole rendering process. Never-
theless, it is worth activating this rendering stage when we are able to discard a
considerable amount of geometry or when we need to create geometry on-the-
fly. In our case, we can expect that the coarser the approximation that we want
to render, the greater the number of degenerate triangles that will be obtained.

“tesis” — 2009/11/9 — 14:57 — page 87 — #111i
i

i
i

i
i

i
i

5.4 Integration into a real application 87

Thus, we decided to use the geometry shader to filter the degenerate triangles
in real time. As a consequence, we will perform a simple test to discard those
triangles which have repeated vertices.

5.4. Integration into a real application

The simplicity of our proposal enables the user to integrate our model into
any application, being able to code the whole process in shaders only. A further
improvement is the fact that the extraction process has been designed so that it
requires a single rendering pass, in contrast to previous solutions that require
several. Thus, our algorithm only requires the user to perform a very small
number of tasks to prepare the multiresolution model and to use it afterwards.

Figure 5.10 depicts the different steps that the user should follow to use
our proposal. Firstly, in a pre-process step, the original mesh is re-ordered and
the simplification information is stored, based on edge-collapses. The output
mesh is directly renderable, as its information is not altered. This task is only
performed once.

Then, with this information and the appropriate shaders, the user will be
able to prepare the data structures and extract the desired approximation.
Thus, each time the user wants to apply our multiresolution technique it will
be necessary to execute two shaders:

The construction shader only need to be executed once to process the
original information and output, to GPU memory, all the information
needed to correctly run the extraction algorithm. As we had seen in pre-
vious sections, this information is composed of a set of static data and a
set of dynamic data which is altered continuously.

The LOD update shader is used in the run-time of the algorithm, process-
ing the level-of-detail extraction in one single rendering pass and updating
the contents of the dynamic data structures.

To show how we could implement our solution in a real application, we
have decided to propose an adequate framework for its use with nVidia’s FX
Composer. FX Composer is a powerful tool that enables easy creation and
testing of shaders. It includes advanced features such as render to texture,
Direct3D FX file support and a pipeline that is configurable via scripting.

Our objective is to define a single scripting file which is capable of preparing
and managing the level of detail. Thus, the FX Composer only requires the
original mesh, the basic collapse information and the script containing the
shaders.

In the construction pass, the aim is to generate a texture out of the vertex
information located in vertex buffers, so that the LOD shader can access it
afterwards. Moreover, in the same pass we generate the collapse lists texture,

“tesis” — 2009/11/9 — 14:57 — page 88 — #112i
i

i
i

i
i

i
i

88 Chapter 5 Interactive Visualization of Meshes on the GPU

Figure 5.10: Construction and rendering pipeline for the integration of
our proposal.

which will be obtained with the information on collapses. Thus, for each vertex,
we would consult the basic collapse information as many times as necessary to
build to the complete collapse list.

To create these textures, we configure different color buffers to store the
required information, such as vertex positions, normals and texture coordinates.
In order to generate these textures efficiently, we use Multiple Render Targets
(MRT), which are supported on modern graphics hardware and enable us to
write to different color buffers at a time in the pixel shader.

Once the necessary data has been made available, the LOD update shader
would need two sets of vertex buffers to be used as ping-pong buffers in order
to store data for each frame. FX Composer enables us to define these ping-
pong buffers by setting two global variables inside our FX file to define which
of the buffers are going to be used as input and as output for the render. At
each frame, one of these buffers is configured as data source input, whereas the
other one is assigned as the location for the Stream Output to store the output
data. Then, after the execution of this shader, the geometry would be ready to

“tesis” — 2009/11/9 — 14:57 — page 89 — #113i
i

i
i

i
i

i
i

5.5 Results 89

be rendered.

5.5. Results

In this section we present some tests that analyze the rendering perfor-
mance of Interactive Meshes in its both implementations: continuous and view-
dependent. Moreover, we also describe the results obtained in some tests that
have helped us to select the most appropriate techniques when developing the
current multiresolution framework. Table 5.1 characterizes the polygonal mod-
els that have been used throughout the different experiments. We show their
vertices and faces numbers, which are useful to understand their polygonal
complexity.

The experiments were carried out using Windows XP on a PC with a 2.8
GHz processor, 2 GB RAM and an nVidia GeForce 9800 GT graphics card
with 512MB RAM. The different implementations have been done in C++,
OpenGL and GLSL. Finally, it is important to note that we have used the
GL TIME ELAPSED EXT extension, which provides a query mechanism to
determine the amount of time used for completing a set of GL tasks without
stalling the rendering pipeline. This approach offers more accurate timing cal-
culations and a better control over the time required by each of the stages that
compose the multiresolution techniques.

5.5.1. Storage and memory cost

The memory needed by a multiresolution model is a key feature, considering
both the storage cost and the memory cost once the model is loaded into main
or GPU memory. In previous sections we performed some small studies to
estimate these costs, concluding that we need 320 bits/vertex for storing the
model and 704 bits/vertex of GPU memory.

Table 5.1 shows a comparison of spatial costs among previous continu-
ous resolution models: Progressive Meshes [16], a triangle-based approach, and
Speed Strips and Masking Strips, which are based in triangle strips and have
been presented in previous chapters. The storing costs of both versions of Inter-
active Meshes are the same. As it can be observed, the presented model offers
the best spatial cost, improving on the results offered by Masking Strips in
more than 20 %. On average, our approach fits in 1.1 times the original mesh in
triangles, in contrast to Speed Strips and Masking Strips which fit in 1.7 and
1.4 times respectively. This is due to the fact that the only extra information
that we store is the collapse information of the vertices.

On the other hand, the GPU memory that is necessary for the proper
performance of our model supposes 2.6 times the original model size. This cost
is low when compared with the GPU solution introduced in [73], whose memory
needs can be more than 3 times the original mesh. It is worth mentioning that

“tesis” — 2009/11/9 — 14:57 — page 90 — #114i
i

i
i

i
i

i
i

90 Chapter 5 Interactive Visualization of Meshes on the GPU

Model Cow Bunny Phone Isis
Vertices 2,904 34,834 83,044 187,644
Faces 5,804 69,451 165,963 375,283
Original (triangles) 289 282 287 288
Progressive Meshes 780 766 794 770
Speed Strips 462 483 475 496
Masking Strips 391 416 402 422
Interactive Meshes 318 320 320 320

Table 5.1: Details of the models and storage cost study (in bits/vertex).

Model Cow Bunny Phone Isis
Average size 5 2 2 2
Maximum size 11 6 13 13

Table 5.2: Collapse list size information.

these results are helpful to prove that the estimations performed in previous
sections for storage and memory costs are correct.

5.5.2. Collapse list size study
One of the main aims of our proposal is reducing the extraction time. In this

sense, it would me important to know how many vertices are processed each
time we change to a different level of detail. Table 5.2 presents a small study
on the size of the collapse list of the different meshes used in our experiments.
It is important to note that the size of each collapse list is usually small. Our
experiments have shown that the collapse list of the vertices of most models
have a maximum number of 12 elements and an average of 2, despite being
meshes composed of thousands of vertices. Thus, most vertices will just be
updated twice when traversing all the levels of detail.

5.5.3. Primitive study
The decision of using primitives optimized for the cache in the view-dependent

version has been taken after testing the performance of different rendering prim-
itives. In Table 5.3 we present the frame rate obtained with different models at
two levels of detail. It is important to say that for the low levels of detail we
have eliminated all the degenerate information possible. It can be seen how op-
timized triangles are the fastest primitive (40 % faster if compared with regular
triangles) even in coarse approximations where the optimization has not been
re-calculated. Triangle strips have a similar performance, while the optimized
strips are not very efficient.

“tesis” — 2009/11/9 — 14:57 — page 91 — #115i
i

i
i

i
i

i
i

5.5 Results 91

Model Cow Bunny Isis
Approximation 100 % 20 % 100 % 20 % 100 % 20 %
Triangles 4,850 5,320 1,212 3,210 289 2,035
Optimized Triangles 5,210 5,048 2,419 4,750 758 3,520
Strips 5180 5,450 2,022 3,160 650 1,678
Optimized Strips 3,620 4,250 1,015 1,427 151 192

Table 5.3: Performance comparison (in fps) among different primitives and
models at two levels of detail.

These tests prove that optimized triangles offer the fastest rendering. Thus,
these results have encouraged us to develop the view-dependent model with
cache-optimized triangles.

5.5.4. Rendering time

In this chapter we have presented a new multiresolution framework and two
different implementations, one that offers continuous resolutions and one which
is capable of offering view-dependent resolutions.

To evaluate the continuous model, we have conducted several linear tests
to measure the model performance when a linear sequence of LODs is required
[105]. The scene containing the models is illuminated but it lacks any kind of
texturing. For the difference between LODs that are consecutive in the sequence
(the step), we decided again to use 0.1 % of the number of available LODs. In
these cases we analyze the average performance obtained when reducing the
level-of-detail to the minimum and recovering the highest one.

We have also tested our proposed solution against Speed Strips, the continu-
ous solution introduced in Chapter 3. Table 5.4 presents the average rendering
time, including both the extraction and visualization times. It can be seen
how, on average, the continuous approach we are presenting offers a rendering
time which is about 15 % higher in comparison. Nevertheless, it is important
to note that the performance comparison among different primitives presented
in Table 5.3 shows that triangles strips are much faster than regular triangles.
Thus, it could be expected that Speed Strips, which is based on triangle strips,
rendered faster that our proposed triangle-based framework. Regarding the
view-dependent model, the results prove that the model entails a performance
which is about 40 % slower if compared with its continuous approximation.

Seeing the differences in performance of the different rendering primitives,
we have considered that it would be interesting to analyze the extraction pro-
cess individually. As a consequence, Table 5.5 presents the temporal costs ob-
tained when the visualization part is omitted. In this case, the Interactive Mesh-
es model involves an extraction time which is, on average, 25 % lower. This is
due to the fact that processing LOD information on shaders offers a very effi-

“tesis” — 2009/11/9 — 14:57 — page 92 — #116i
i

i
i

i
i

i
i

92 Chapter 5 Interactive Visualization of Meshes on the GPU

Model Cow Bunny Phone Isis
Speed Strips 0.62 0.98 1.46 3.11
Continuous Interactive Meshes 0.64 1.15 1.77 3.12
View-dependent Interactive Meshes 0.98 1.76 2.60 4.07

Table 5.4: Comparison of average rendering time (extrac-
tion+visualization) (in ms.).

Model Cow Bunny Phone Isis
Speed Strips 0.59 0.85 1.10 1.96
Continuous Int. Meshes 0.62 0.72 0.96 1.35
View-dep. Int. Meshes (no Degenerate Filter) 0.62 0.74 1.02 1.39
View-dep. Int. Meshes 0.94 1.51 2.18 2.84

Table 5.5: Comparison of average extraction time (in ms.).

cient framework. Regarding the view-dependent model, the table presents two
different rows, as we are also including the extraction time when no degenerate
elimination is performed. This row is interesting as it shows that, despite includ-
ing the silhouette extraction mechanism, the view-dependent solution without
degenerate treatment is capable of offering similar extraction times, proving
that the view-dependent algorithm does not affect much the final performance.
It is the elimination of the degenerate information which considerably increas-
es the final rendering time. As we commented before, enabling the geometry
shader diminishes the overall performance, although in our case it is necessary
to eliminate the unnecessary information.

5.6. Conclusions
In this chapter we have presented a new multiresolution framework which

combines the power of current GPUs with traditional techniques to offer a
fully-GPU solution, benefiting from the parallelism of graphics hardware. This
scheme offers low storing cost, easy implementation and a fast extraction pro-
cess which make it suitable for any rendering engine. Moreover, it has the
interesting feature of, once the LOD approximation is created, being able to
render it as an ordinary indexed triangle list.

Updating vertices instead of indices allows us to perform geo-morphing
among the different levels of detail to offer smooth transitions, improving on
the final visual quality. The framework also allows for view-dependent resolu-
tions, which can be oriented towards applying silhouette-based visualizations
that better preserve the appearance of the model. This method is suitable for
combining with other techniques, such as normal mapping, hardware skinning,

“tesis” — 2009/11/9 — 14:57 — page 93 — #117i
i

i
i

i
i

i
i

5.6 Conclusions 93

and other pixel-based approaches.
From the results obtained we can conclude that performing the LOD ex-

tractions directly on GPU reduces the temporal cost. As the results section
shown, the view-dependent model entails a considerably increase in the extrac-
tion time, as the geometry shader is not capable of performing the geometry
elimination very fast, increasing the final rendering time by 25 %. Nonethe-
less, the level-of-detail extraction would be much more costly if it was applied
in a CPU-based way. Furthermore, the extra cost that our model introduces
is compensated by the number of calculations performed and the final visual
quality.

As we have described, Interactive Meshes offers a perfect solution for incor-
porating a LOD approach into any application, as it only requires the input
information and two shaders, one for constructing the GPU information and
the other one for processing the level-of-detail. Moreover, the tasks that need
to be performed to enable the extraction, such as indicating the input vertex
buffers or performing ping-pong, can be incorporated into the effects file of
applications like nVidia’s FX Composer.

“tesis” — 2009/11/9 — 14:57 — page 94 — #118i
i

i
i

i
i

i
i

94 Chapter 5 Interactive Visualization of Meshes on the GPU

“tesis” — 2009/11/9 — 14:57 — page 95 — #119i
i

i
i

i
i

i
i

CHAPTER 6
Conclusions and Future Work

The work presented in this Ph.D. thesis has been oriented towards the
development of level-of-detail techniques which suit the necessities of graphics
applications with different hardware configurations. In this sense, the final aim
is to offer level-of-detail solutions which:

obtain approximations which are visually satisfying

optimize the memory needs of the data structures

reduce the temporal cost of the extraction algorithms

offer an easy-to-implement solution

With these objectives in mind, we have proposed different models to develop
a solution which is suitable for game engines and graphics libraries which often
resort to discrete models when it comes to selecting a multiresolution technique.

This chapter is organized as follows. First, we conclude on the contribu-
tions offered by the different proposals. Then, we outline ideas for future work.
Finally, we list the publications related to the presented dissertation and the
research projects that have enabled the development of this thesis work.

6.1. Conclusions
Before analyzing the contributions of each proposal, it is important to com-

ment that each of them has been studied from the perspective of the graphics
hardware that was available at the moment. Thus, it is possible that some of the
techniques have become old-fashioned due to the graphics hardware evolution.

95

“tesis” — 2009/11/9 — 14:57 — page 96 — #120i
i

i
i

i
i

i
i

96 Chapter 6 Conclusions and Future Work

Nevertheless, these techniques are still interesting as there are platforms like
gaming consols, PDAs or mobile phones which include hardware with similar
architectures to those analyzed in the different chapters.

Chapter 2 presented the state-of-the-art on multiresolution modeling, as
well as a brief study on simplification, primitive optimization and LOD selection
criteria. From this initial study we concluded that, although there is a wealth
of research on this issue, there is still a gap for efficient level-of-detail tech-
niques. Most CPU-based solutions entail complex processes that make them
not adequate for graphics applications, while recent GPU-based approaches
are more aimed at tesselating an initial coarse mesh than at retrieving the
original geometry.

For improving on previous solutions, Chapter 3 described Speed Strips, a
multiresolution model which simplifies the extraction process by performing all
changes in only one pass, reducing the temporal cost of previous solutions. The
extraction process has been devised to optimize the use of the PCI Express
bus, studying its features. From this study we concluded that it is better to
perform several operations that involve small traffic instead of uploading all
the information at the same time once the approximation is extracted. In ad-
dition, in this chapter a primitive study to address the performance obtained
with different rendering primitives showed that, with the hardware available,
the strips obtained with Stripe offered the best performance. With all these
considerations, Speed Strips offered in the results section a 5 % reduction in
storage cost in comparison with LodStrips and reduced its total temporal cost
in 30 %, while the extraction time was reduced to just 70 %.

Following with the exploitation of graphics hardware, in Chapter 4 a differ-
ent level-of-detail scheme was presented: Masking Strips. The main objective of
this solution was to code the operations to modify the level-of-detail in masks
of bits, as an extraction process based on bit-wise operations is feasible to be
ported and executed on the GPU with the Shader Model 4.0. Moreover, the use
of masks of bits offers a perfect framework for eliminating all the unnecessary
degenerate triangles, in contrast to previous approaches that were just capable
of eliminating degenerate triangles of certain types. Consequently, in the coars-
est approximations we can reduce the indices processed in 40 %. Moreover, this
approach reduces considerably storage cost, this reduction being up to 15 %
if compared with LodStrips. Masking Strips offers a perfect solution for the
progressive transmission of 3D models, as it is possible to refine an initially
sent coarse model with successive data packages. This multiresolution model
has been integrated into the Ogre game engine, offering very interesting results
if compared with the discrete solution that this game engine includes.

Finally, Chapter 5 thoroughly describes Interactive Meshes, an approach to
offer a multiresolution model which works completely on graphics hardware,
as very few models have been presented to offer level-of-detail modeling on
GPU. This triangle-based framework performs LOD calculations by modifying
vertices information using shaders. Moreover, the proposed solution is capable

“tesis” — 2009/11/9 — 14:57 — page 97 — #121i
i

i
i

i
i

i
i

6.2 Future work 97

of displaying continuous and view-dependent approximations while enhancing
the final visual quality with further processes like geo-morphing. This scheme
can be easily incorporated in any application supporting Shader Model 4.0,
as two shaders and very little scripting are sufficient for expanding the data
structures on GPU and performing the LOD selection and extraction. From
the results obtained we can highlight that the storage cost is reduced in more
than 20 % if compared with Masking Strips and that, when extracting uniform
approximations, the extraction process is capable of outperforming previous
solutions in 35 %.

6.2. Future work

In this dissertation we have presented different multiresolution techniques
that are suitable for different software and hardware characteristics. Neverthe-
less, there are different aspects of these techniques that can be improved and
also several research areas where these techniques can be of benefit.

In this sense, it would be interesting to apply the developed techniques to
the representation of other 3D elements like trees or particle systems that can
become useful when representing fuzzy phenomena like fire or rain. Moreover,
for including a multiresolution model in a graphics application, it is not suf-
ficient to offer the management algorithms. It is also necessary to develop a
set of techniques that manage the multiple 3D models that are included in a
scene, so that a balance in the rendered geometry is obtained and sharing of
geometry is considered.

After analyzing graphics hardware while developing the different multires-
olution models, we concluded that the power offered by present graphics hard-
ware opens new possibilities to improve on view-dependent models. The last
model presented (Interactive Meshes) was able to offer view-dependent ap-
proximations. Thus, we believe that our proposal could be applied to render
out-of-core models, whose memory needs require specific routines for their man-
agement both in CPU and GPU. As a consequence, the proposed techniques
can be combined to offer a new solution to the problem of rendering massive
models.

From a different perspective, it is worth mentioning that one of the main
objectives of the presented work was the development of a multiresolution mod-
el on GPU. Although the proposed solutions have proven to be satisfactory, it
is our interest to port our code to CUDA, expecting an increase of perfor-
mance. CUDA (Compute Unified Device Architecture) is a recent technology
devised by nVidia with the final aim of making the most of the huge processing
capabilities of current graphics cards [110]. This way, instead of employing a
large number of computers, it is possible to resort to graphics processors to
make mathematical calculations. CUDA has been designed with the objective
of making the most of the great processing capacity of the current graphics

“tesis” — 2009/11/9 — 14:57 — page 98 — #122i
i

i
i

i
i

i
i

98 Chapter 6 Conclusions and Future Work

cards to solve problems with a high computational load [110].
The problems presented by graphic applications do not generally require a

very high processing capacity, contrary to the problems that have been tradi-
tionally solved through GPGPU techniques. Even though, the use of CUDA
in a graphics application is very interesting because of the way in which infor-
mation can be accessed and shared between the different processes running in
parallel. In CUDA, a thread has its own processor, variables (registers), pro-
cessor states, etc. A block of threads is represented as a virtual multiprocessor.
The blocks can be run in any order in a concurrent or sequential way. The
memory is shared between the threads; in a similar way, there is shared memo-
ry between the blocks of a kernel. This means that it is possible to work on the
same data in different threads and in different blocks, besides being able to do
it in an asynchronous way with the CPU. This supposes a great advantage with
respect to the previous architecture. Moreover, it also offers promising possi-
bilities for the development of new solutions or the improvement of previous
level-of-detail methods.

Following with this line of work on the GPU, it is worth mentioning that the
appearance of Directx 11 will involve further advances in graphics. Among the
new stages that the rendering pipeline will include, we highlight the tessellation
unit, which will be able to produce semi-regular tessellations [111]. This feature
can be directly used as a multiresolution technique to offer view-dependent
levels of detail very easily. Thus, we believe that this unit will be key in the
next generation of multiresolution techniques.

6.3. Publications

For assessing the work presented throughout this Ph.D. dissertation, this
section lists the different publications obtained while developing the thesis, as
well as other publications not directly related and a list of research projects
that have funded the development.

Regarding the publications related to this dissertation, we highlight:

Journal Publications:

• Interactive Visualization of Meshes on the GPU
O. Ripollés, M. Chover, F. Ramos
The Visual Computer, Under Review. Impact factor (JCR 2008):
1.061.

• Rendering continuous level-of-detail meshes by Masking
Strips
O. Ripollés, M. Chover, J. Gumbau, F. Ramos, A. Puig-Centelles
Graphical Models, vol. 71 (5), pp. 169-196, 2009. Impact factor (JCR

“tesis” — 2009/11/9 — 14:57 — page 99 — #123i
i

i
i

i
i

i
i

6.3 Publications 99

2008): 0.913.

• Optimizing the management of continuous level-of-detail
models on GPU
O. Ripollés, M. Chover
Computers & Graphics-UK, vol. 32 (3), pp. 307-319, 2008. Impact
factor (JCR 2008): 0.731.

Book Chapters:

• Sliding-Tris: A Sliding Window Level-of-Detail Scheme
O. Ripollés, M. Chover, F. Ramos
ICCS 2008. Lecture Notes in Computer Science 5102, pp. 5-14, 2008.

• Vertex Buffer Objects: almacenamiento de geometŕıa en la
memoria de la tarjeta gráfica
O. Ripollés
OpenGL en fichas II: Aspectos Avanzados, 2008.

• Continuous Level of Detail on Graphics Hardware
F. Ramos, M. Chover, O. Ripollés, C. Granell
DGCI 2006. Lecture Notes in Computer Science 4245, pp. 460-469,
2006.

• Implementación eficiente de LodStrips
F. Ramos, M. Chover, O. Ripollés, C. Granell
Métodos Informáticos Avanzados. Publicaciones Universitat Jaume
I, p. 213, 2007.

Conferences:

• View-Dependent Multiresolution Modeling on the GPU
O. Ripollés, J. Gumbau, M. Chover, F. Ramos, A. Puig-Centelles
17th Winter School of Computer Graphics (WSCG), pp. 121-126,
2009.

• Multiresolution Modeling: A Technique for Efficient Geom-
etry Processing in Real-Time Applications
F. Ramos, M. Chover, O. Ripollés
Visualization, Imaging and Image Processing (VIIP), pp. 125-130,
2008.

“tesis” — 2009/11/9 — 14:57 — page 100 — #124i
i

i
i

i
i

i
i

100 Chapter 6 Conclusions and Future Work

• LODManager: a framework for rendering multiresolution
models in real-time applications
J. Gumbau, O. Ripollés, M. Chover
15th Winter School of Computer Graphics (WSCG), pp. 39-46, 2007.

• Efficient Implementation of LodStrips
F. Ramos, M. Chover, O. Ripollés, C. Granell
Visualization, Imaging and Image Processing (VIIP), pp. 365-370,
2006.

• Búsqueda de tiras para modelos multirresolución estáticos
O. Ripollés, M. Chover
Congreso Español de Informática Gráfica (CEIG), pp. 117-123, 2005.

• Quality Strips for Models with Level of Detail
O. Ripollés, M. Chover, F. Ramos
Visualization, Imaging and Image Processing (VIIP), pp. 268-273,
2005.

Other publications on multiresolution which are not directly related have
been:

Journal Publications:

• Creation and Control of Rain in Virtual Environments
A. Puig-Centelles, O. Ripollés, M. Chover
The Visual Computer. Accepted Manuscript. Impact factor (JCR
2008): 1.061.

• A Tool for the Creation and management of level-of-detail
models 3D applications
O. Ripollés, F. Ramos, M. Chover, J. Gumbau, R. Quiros
WSEAS Transactions on Computers, vol. 7 (7), pp. 1020-1029, 2008.

• A Clustering Framework for Real-Time Rendering of Tree
Foliage
C. Rebollo, I. Remolar, M. Chover, J. Gumbau, O. Ripollés
Journal of Computers, vol. 2 (4), pp. 57-67, 2007.

Conferences:

• Simulación de Lluvia sobre Escenas Dinámicas
N. Sunyer, A. Puig-Centelles, O. Ripollés, M. Chover, M. Sbert

“tesis” — 2009/11/9 — 14:57 — page 101 — #125i
i

i
i

i
i

i
i

6.3 Publications 101

Congreso Español de Informática Gráfica (CEIG), 2009.

• Optimizing the Management and Rendering of Rain
A. Puig-Centelles, O. Ripollés, M. Chover
Int. Conf. on Computer Graphics Theory and Applications (GRAPP),
pp. 373-378, 2009.

• Automatic Terrain Generation with a Sketching Interface
A. Puig-Centelles, P. A. C. Varely, O. Ripollés, M. Chover
15th Winter School of Computer Graphics (WSCG), pp. 39-46, 2009.

• Multiresolution Techniques for Rain Rendering in virtual
Environments
A. Puig-Centelles, O. Ripollés, M. Chover
Int. Symp. on Computer and Information Sciences (ISCIS), pp. 1-4,
2008.

• Técnicas para visualización de lluvia en entornos virtuales
A. Puig-Centelles, O. Ripollés, M. Chover
Congreso Español de Informática Gráfica (CEIG), pp. 159-167, 2008.

• Educational instant messaging in a 3D environment
A. Puig-Centelles, O. Ripollés, M. Chover, P. Prades
Int. Conf. on Cognition and Exploratory Learning in Digital Age
(CELDA), pp. 49-56, 2007.

• Fast Rendering of Leaves
C. Rebollo, J. Gumbau, O. Ripollés, M. Chover, I. Remolar
Computer Graphics and Imaging (CGIM), pp. 46-53, 2007.

• An efficient continuous level of detail model for foliage
C. Rebollo, I. Remolar, M. Chover, O. Ripollés
14th Winter School of Computer Graphics (WSCG), pp. 335-342,
2006.

Finally, it is worth mentioning that the work presented in this dissertation
is embedded within several research projects:

Contenido Inteligente para Aplicaciones de Realidad Virtual:
una Aproximación Basada en Geometŕıa
Ministerio de Educación y Ciencia, (TIN2007-68066-C04-02), 2007 - 2010.

“tesis” — 2009/11/9 — 14:57 — page 102 — #126i
i

i
i

i
i

i
i

102 Chapter 6 Conclusions and Future Work

Geometŕıa Inteligente
Fundació Caixa Castelló-Bancaixa (P1 1B2007-56), 2007 - 2010.

GAMETOOLS - Advanced Tools for Developing Highly Realis-
tic Computer Games
Unión Europea (IST-2-004363), 2004 - 2007.

Técnicas de aceleración en gráficos por ordenador y su apli-
cación a la visualización de especies vegetales
Fundació Caixa Castelló-Bancaixa (P1 1B2002-12), 2002 - 2004.

“tesis” — 2009/11/9 — 14:57 — page 103 — #127i
i

i
i

i
i

i
i

Bibliography

[1] D. Luebke. A developer’s survey of polygonal simplification algorithms.
IEEE Computer Graphics Application, 21(3):24–35, 2001.

[2] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R. Huebner.
Level of Detail for 3D Graphics. Morgan-Kaufmann, Inc., 2003.

[3] H. Hoppe. Optimization of mesh locality for transparent vertex caching.
In SIGGRAPH ’99: Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques, pages 269–276, 1999.

[4] P. Alliez and C. Gotsman. Recent advances in compression of 3d mesh-
es. In Proceedings of the Symposium on Multiresolution in Geometric
Modeling, pages 3–26. Springer-Verlag, 2003.

[5] Z. Karni, A. Bogomjakov, and C. Gotsman. Efficient compression and
rendering of multi-resolution meshes. In Proceedings of the conference on
Visualization ’02, pages 347–354, 2002.

[6] J. Kim, S. Choe, and S. Lee. Multiresolution random accessible mesh
compression. Computer Graphics Forum (Eurographics 2006), 25(3):323–
332, 2006.

[7] J. Clark. Hierarchical geometric models for visible surface algorithms.
Communications of the ACM, 10(19):547–554, 1976.

[8] E. Puppo and R. Scopigno. Simplification, lod and multiresolution - prin-
ciples and applications. In Eurographics Tutorial Notes, volume 16(3).
Eurographics, 1997.

[9] J. Ribelles, A. López, O. Belmonte, I. Remolar, and M. Chover. Mul-
tiresolution modeling of arbitrary polygonal surfaces: a characterization.
Computers & Graphics, 26(3):449–462, 2002.

103

“tesis” — 2009/11/9 — 14:57 — page 104 — #128i
i

i
i

i
i

i
i

104 BIBLIOGRAPHY

[10] J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn,
and T. Purcell. A survey of general-purpose computation on graphics
hardware. In Eurographics 2005, State of the Art Reports, pages 21–51,
2005.

[11] M. Ekman, F. Warg, and J. Nilsson. An in-depth look at computer
performance growth. Technical Report 04-9, Department of Computer
Science and Engineering, Chalmers University of Technology, 2004.

[12] T. Funkhouser and C. Séquin. Adaptive display algorithm for interac-
tive frame rates during visualization of complex virtual environments.
Computers & Graphics, 27(Annual Conference Series):247–254, 1993.

[13] A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno. Multiresolution
decimation based on global error. Technical report, Centre National de
la Recherche Scientifique, Paris, France, 1996.

[14] K. Low and T. Tan. Model simplification using vertex-clustering. In SI3D
’97: Proceedings of the 1997 symposium on Interactive 3D graphics, pages
75–81, 1997.

[15] J. Rossignac and P. Borrel. Multi-resolution 3d approximations for ren-
dering complex scenes. In B. Falcidieno and T. Kunii, editors, Modeling in
Computer Graphics: Methods and Applications, pages 455–465. Springer-
Verlag, 1993.

[16] H. Hoppe. Progressive meshes. In SIGGRAPH ’96: Proceedings of the
23rd annual conference on Computer graphics and interactive techniques,
pages 99–108, 1996.

[17] J. Xia, J. El-Sana, and A. Varshney. Adaptive real-time level-of-detail-
based rendering for polygonal models. IEEE Transactions on Visualiza-
tion and Computer Graphics, 3(2):171–183, 1997.

[18] F. Ramos, M. Chover, O. Ripollés, and C. Granell. Continuous level of de-
tail on graphics hardware. In Discrete Geometry for Computer Imagery,
volume 4245, pages 460–469, 2006.

[19] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh
optimization. Computers & Graphics, 27(Annual Conference Series):19–
26, 1993.

[20] M. Garland and P. Heckbert. Surface simplification using quadric error
metrics. In SIGGRAPH ’97: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques, pages 209–216, 1997.

[21] W. J. Schroeder. A topology modifying progressive decimation algorithm.
In VIS ’97: Proceedings of the 8th conference on Visualization ’97, pages
205–212, 1997.

“tesis” — 2009/11/9 — 14:57 — page 105 — #129i
i

i
i

i
i

i
i

BIBLIOGRAPHY 105

[22] J. Cohen, M. Olano, and D. Manocha. Appearance-preserving simplifi-
cation. In SIGGRAPH ’98, pages 115–122, 1998.

[23] M. Garland and P. Heckbert. Simplifying surfaces with color and texture
using quadric error metrics. In IEEE Visualization’98: Proceedings of the
conference on Visualization, pages 263–269, 1998.

[24] C. Gonzalez, J. Gumbau, M. Chover, and P. Castelló. Mesh simplification
for interactive applications. In Proc. of 16th International Conference
in Central Europe on Computer Graphics, Visualization and Computer
Vision (WSCG 2008), pages 87–91, 2008.

[25] C. Ha Lee, A. Varshney, and D. Jacobs. Mesh saliency. ACM Transactions
on Graphics, 24(3):659–666, 2005.

[26] P. Lindstrom and G. Turk. Image-driven simplification. ACM Transac-
tions on Graphics, 19(3):204–241, 2000.

[27] D. Luebke and B. Hallen. Perceptually-driven simplification for inter-
active rendering. In 12th Eurographics Workshop on Rendering, pages
223–234, 2001.

[28] N. Williams, D. Luebke, J. D. Cohen, M. Kelley, and B. Schubert. Percep-
tually guided simplification of lit, textured meshes. In I3D ’03: Proceed-
ings of the 2003 symposium on Interactive 3D graphics, pages 113–121,
2003.

[29] P. Castelló, M. Sbert, M. Chover, and M. Feixas. Viewpoint entropy-
driven simplification. In Proc. of 15th International Conference in Cen-
tral Europe on Computer Graphics, Visualization and Computer Vision
(WSCG 2007), pages 249–256, 2007.

[30] P. Castelló, M. Chover, M. Sbert, and M. Feixas. Applications of infor-
mation theory to computer graphics (part 7). In Eurographics Tutorial
Notes, volume 2, pages 891–902. Eurographics, 2007.

[31] M. B. Dillencourt. Finding hamiltonian cycles in delaunay triangulations
is np-complete. Discrete Applied Mathematics, 64(3):207–217, 1996.

[32] F. Evans, S. Skiena, and A. Varshney. Optimizing triangle strips for fast
rendering. In IEEE Visualization, pages 319–326, 1996.

[33] K. Akeley, P. Haeberli, and D. Burns. tomesh.c: C program on sgi devel-
oper’s toolbox cd, 1990.

[34] X. Xiang, M. Held, and J. Mitchell. Fast and effective stripification of
polygonal surface models. In I3D ’99: Proceedings of the 1999 symposium
on Interactive 3D graphics, pages 71–78, 1999.

“tesis” — 2009/11/9 — 14:57 — page 106 — #130i
i

i
i

i
i

i
i

106 BIBLIOGRAPHY

[35] C. Beeson and J. Demer. Nvtristrip, library version 1.1.
http://developer.nvidia.com, 2003.

[36] P. Vanecek and I. Kolingerova. Technical section: Comparison of triangle
strips algorithms. Computers & Graphics, 31(1):100–118, 2007.

[37] D. Eppstein and M. Gopi. Single-strip triangulation of manifolds with
arbitrary topology. In SCG ’04: Proceedings of the twentieth annual sym-
posium on Computational geometry, pages 455–456. ACM, 2004.

[38] P. Diaz-Gutierrez, A. Bhushan, M. Gopi, and R. Pajarola. Single-strips
for fast interactive rendering. The Visual Computer, 22(6):372–386, 2006.

[39] O. Belmonte, J. Ribelles, I. Remolar, and M. Chover. Búsqueda de tiras
de triángulos guiadas por un criterio de simplificación. In Actas del X
Congreso Español de Informática Gráfica (CEIG 2000), pages 51–64,
2000.

[40] O. Ripollés, M. Chover, and F. Ramos. Quality strips for models with
level of detail. In Proceedings of Visualization, Imaging and Image Pro-
cessing (VIIP), pages 268–273, 2005.

[41] J. Chhugani and S. Kumar. Geometry engine optimization: cache friendly
compressed representation of geometry. In I3D ’07: Proceedings of the
2007 symposium on Interactive 3D graphics and games, pages 9–16, 2007.

[42] P. Sander, D. Nehab, and J. Barczak. Fast triangle reordering for vertex
locality and reduced overdraw. ACM Transactions on Graphics (Proc.
SIGGRAPH), 26(3):89, 2007.

[43] T. Fautré. Tri stripper algorithm. http://users.pandora.be/tfautre/
softdev/tristripper/, 2002.

[44] A. Bogomjakov and C. Gotsman. Universal rendering sequences for trans-
parent vertex caching of progressive meshes. In GRIN’01: No description
on Graphics interface 2001, pages 81–90, 2001.

[45] S. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha. Cache-oblivious
mesh layouts. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages
886–893, 2005.

[46] G. Lin and T. Yu. An improved vertex caching scheme for 3d mesh render-
ing. Transactions on Visualization and Computer Graphics, 12(4):640–
648, 2006.

[47] R. Southern and J. Gain. Creation and control of real-time continuous
level of detail on programmable graphics hardware. Computer Graphics
Forum, 22(1):35–48, 2003.

“tesis” — 2009/11/9 — 14:57 — page 107 — #131i
i

i
i

i
i

i
i

BIBLIOGRAPHY 107

[48] L. Borgeat, G. Godin, F. Blais, P. Massicotte, and C. Lahanier. Gold: in-
teractive display of huge colored and textured models. ACM Transactions
on Graphics, 24(3):869–877, 2005.

[49] H. Hoppe. Efficient implementation of progressive meshes. Computers &
Graphics, 22(1):27–36, 1998.

[50] P. Sander, J. Snyder, S. Gortler, and H. Hoppe. Texture mapping pro-
gressive meshes. In SIGGRAPH 2001, pages 409–416, 2001.

[51] C. C. Chen and J. H. Chuang. Texture adaptation for progressive meshes.
Computer Graphics Forum (Eurographics 2006), 25(3):343–350, 2006.

[52] J. El-Sana, E. Azanli, and A. Varshney. Skip strips: maintaining trian-
gle strips for view-dependent rendering. In VIS’99: Proceedings of the
conference on Visualization’99, pages 131–138, 1999.

[53] O. Belmonte, I. Remolar, J. Ribelles, M. Chover, and M. Fernández.
Efficiently using connectivity information between triangles in a mesh
for real-time rendering. Future Generation Computer Systems, Special
issue on Computer Graphics and Geometric Modeling, 20(8):1263–1273,
2004.

[54] F. Ramos and M. Chover. Lodstrips: Level of detail strips. In Interna-
tional Conference on Computational Science, pages 107–114, 2004.

[55] P. Turchyn. Memory-efficient sliding window progressive meshes. In
Proc. of 15-th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision (WSCG 2007), pages 33–
40, 2007.

[56] J. Ji, E. Wu, S. Li, and X. Liu. Dynamic lod on GPU. In Computer
Graphics International, pages 108–114, 2005.

[57] A. J. Stewart. Tunneling for triangle strips in continuous level-of-detail
meshes. In GRIN’01: Graphics interface 2001, pages 91–100, 2001.

[58] M. Shafae and R. Pajarola. Dstrips: Dynamic triangle strips for real-time
mesh simplification and rendering. In Proceedings Pacific Graphics 2003,
pages 271–280, 2003.

[59] H. Hoppe. View-dependent refinement of progressive meshes. Computers
& Graphics, 31(Annual Conference Series):189–198, 1997.

[60] L. De Floriani, P. Magillo, and E. Puppo. Efficient implementation of
multi-triangulations. In VIS’98: Proceedings of the conference on Visu-
alization’98, pages 43–50, 1998.

“tesis” — 2009/11/9 — 14:57 — page 108 — #132i
i

i
i

i
i

i
i

108 BIBLIOGRAPHY

[61] R. Pajarola. Fastmesh: Efficient view-dependent meshing. In PG ’01:
Proceedings of the 9th Pacific Conference on Computer Graphics and
Applications, page 22. IEEE Computer Society, 2001.

[62] J. El-Sana and Y. Chiang. External memory view-dependent simplifica-
tion. Computer Graphics Forum, 19(3):139–150, 2000.

[63] C. Decoro and R. Pajarola. Xfastmesh: Fast view-dependent meshing
from external memory. In IEEE Visualization, pages 363 – 370, 2002.

[64] P. Lindstrom. Out-of-core construction and visualization of multiresolu-
tion surfaces. In SI3D’03: Proceedings of the 2003 symposium on Inter-
active 3D graphics, pages 93–102, 2003.

[65] H. Birkholz. Out of core continuous lod-hierarchies for large triangle
meshes. In Proc. of 14-th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision (WSCG 2006),
pages 95–100, 2006.

[66] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk.
The digital michelangelo project: 3D scanning of large statues. In Sig-
graph 2000, Computer Graphics Proceedings, pages 131–144, 2000.

[67] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and
R. Scopigno. Adaptive tetrapuzzles: efficient out-of-core construction
and visualization of gigantic multiresolution polygonal models. In SIG-
GRAPH, pages 796–803, 2004.

[68] S. Yoon, B. Salomon, R. Gayle, and D. Manocha. Quick-vdr: Interactive
view-dependent rendering of massive models. In VIS ’04: Proceedings
of the conference on Visualization ’04, pages 131–138. IEEE Computer
Society, 2004.

[69] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and
R. Scopigno. Batched multi triangulation. In IEEE Visualization, pages
207–214, 2005.

[70] P. Sander and J. Mitchell. Progressive buffers: view-dependent geometry
and texture lod rendering. In SGP ’05: Proceedings of the third Euro-
graphics symposium on Geometry processing, page 129, 2005.

[71] K. Niski, B. Purnomo, and J. Cohen. Multi-grained level of detail using
a hierarchical seamless texture atlas. In Proceedings of I3D’07:, pages
153–160, 2007.

[72] Y. Livny, M. Press, and J. El-Sana. Interactive GPU-based adaptive
cartoon-style rendering. The Visual Computer, 24(4):239–247, 2008.

“tesis” — 2009/11/9 — 14:57 — page 109 — #133i
i

i
i

i
i

i
i

BIBLIOGRAPHY 109

[73] L. Hu, P. Sander, and H. Hoppe. Parallel view-dependent refinement of
progressive meshes. In I3D ’09: Proceedings of the 2009 symposium on
Interactive 3D graphics and games, pages 169–176, New York, NY, USA,
2009.

[74] T. Boubekeur and C. Schlick. A flexible kernel for adaptive mesh refine-
ment on GPU. Computer Graphics Forum, 27(1):102–114, 2008.

[75] H. Lorenz and J. Döllner. Dynamic mesh refinement on GPU using ge-
ometry shaders. In Proc. of 16th International Conference in Central Eu-
rope on Computer Graphics, Visualization and Computer Vision (WSCG
2008), pages 97–104, 2008.

[76] M. Schwarz and M. Stamminger. Fast GPU-based adaptive tessellation
with CUDA. Computer Graphics Forum, 28(2):365–374, 2009.

[77] C. Dyken, M. Reimers, and J. Seland. Real-time GPU silhouette re-
finement using adaptively blended bézier patches. Computer Graphics
Forum, 27(1):1–12, 2008.

[78] L. Buatois, G. Caumon, and B. Lévy. GPU accelerated isosurface extrac-
tion on tetrahedral grids. In International Symposium on Visual Com-
puting, pages 383–392, 2006.

[79] L. Shiue, I. Jones, and J. Peters. A real-time GPU subdivision kernel.
ACM Transactions on Graphics, 24(3):1010–1015, 2005.

[80] M. Guthe, A. Balázs, and R. Klein. GPU-based trimming and tessel-
lation of nurbs and t-spline surfaces. ACM Transactions on Graphics,
24(3):1016–1023, 2005.

[81] T. Boubekeur and C. Schlick. Generic mesh refinement on GPU. In
Graphics Hardware, pages 99–104, 2005.

[82] M. Bokeloh and M. Wand. Hardware accelerated multi-resolution ge-
ometry synthesis. In I3D ’06: Proceedings of the 2006 symposium on
Interactive 3D graphics and games, pages 191–198, New York, NY, USA,
2006. ACM.

[83] C. DeCoro and N. Tatarchuk. Real-time mesh simplification using the
GPU. In I3D ’07: Proceedings of the 2007 symposium on Interactive 3D
graphics and games, pages 161–166, 2007.

[84] X. Gu, S. Gortler, and H. Hoppe. Geometry images. In Proceedings of
SIGGRAPH’02, pages 355–361, 2002.

[85] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. Multi-
chart geometry images. In SGP ’03: Proceedings of the 2003 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing, pages 146–
155, 2003.

“tesis” — 2009/11/9 — 14:57 — page 110 — #134i
i

i
i

i
i

i
i

110 BIBLIOGRAPHY

[86] F. Losasso, H. Hoppe, S. Schaefer, and J. Warren. Smooth geometry
images. In SGP ’03: Proceedings of the 2003 Eurographics/ACM SIG-
GRAPH symposium on Geometry processing, pages 138–145, 2003.

[87] M. Wloka. Lag in multiprocessor virtual reality. Presence, 4(1):50–63,
1995.

[88] M. Reddy. Reducing lags in virtual reality systems using motion-sensitive
level of detail. In Proceedings of the second UK VR-SIG Conference, pages
25–31, 1994.

[89] H. Yee, S. Pattanaik, and D. Greenberg. Spatiotemporal sensitivity and
visual attention for efficient rendering of dynamic environments. In ACM
Transactions on Graphics, pages 39–65. 2001.

[90] R. Danforth, A. Duchowski, R. Geist, and E. McAliley. A platform for
gaze-contingent virtual environments. In Smart Graphics (Papers from
the 2000 AAAI Spring Symposium, Technical Report SS-00-04), pages
66–70, 2000.

[91] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering
system for large meshes. In Siggraph 2000, Computer Graphics Proceed-
ings, pages 343–352, 2000.

[92] C. Andújar, C. Saona-Vázquez, I. Navazo, and P. Brunet. Integrating oc-
clusion culling with levels of detail through hardly-visible sets. Computer
Graphics Forum (Proceedings of Eurographics’00), 3:499–506, 2000.

[93] H. Hoppe. Smooth view-dependent level-of-detail control and its appli-
cation to terrain rendering. In VIS ’98: Proceedings of the conference on
Visualization ’98, pages 35–42, 1998.

[94] A. Mason and E. Blake. A graphical representation of the state spaces
of hierarchical level-of-detail scene descriptions. IEEE Transactions on
Visualization and Computer Graphics, 7(1):70–75, 2001.

[95] M. Wimmer and D. Schmalstieg. Load balancing for smooth lods. Tech-
nical Report TR-186-2-98-31, Institute of Computer Graphics and Algo-
rithms, Vienna University of Technology, 1998.

[96] E. Gobbetti and E. Bouvier. Time-critical multiresolution scene render-
ing. In Proceedings IEEE Visualization, pages 123–130, 1999.

[97] J. Swan II, J. Arango, and B. Nakshatrala. Interactive distributed
hardware-accelerated lod-sprite terrain rendering with stable frame rates.
In Proceedings SPIE, Visualization and Data Analysis 2002, volume 4665,
pages 177–188, 2002.

“tesis” — 2009/11/9 — 14:57 — page 111 — #135i
i

i
i

i
i

i
i

BIBLIOGRAPHY 111

[98] W. Baxter III, A. Sud, N. Govindaraju, and D. Manocha. Gigawalk:
interactive walkthrough of complex environments. In EGRW ’02: Pro-
ceedings of the 13th Eurographics workshop on Rendering, pages 203–214,
2002.

[99] C. Woolley, D. Luebke, B. Watson, and A. Dayal. Interruptible render-
ing. In SI3D ’03: Proceedings of the 2003 symposium on Interactive 3D
graphics, pages 143–151, 2003.

[100] C. Zach. Integration of geomorphing into level of detail management
for realtime rendering. In SCCG ’02: Proceedings of the 18th Spring
Cdukonference on Computer graphics, pages 115–122, 2002.

[101] C. Zach, S. Mantler, and K. Karner. Time-critical rendering of discrete
and continuous levels of detail. In VRST ’02: Proceedings of the ACM
symposium on Virtual reality software and technology, pages 1–8, 2002.

[102] F. Ramos, M. Chover, O. Ripollés, and C. Granell. Efficient implementa-
tion of lodstrips. In Visualization, Imaging, and Image Processing, pages
365–370, 2006.

[103] J. Brewer and J. Sekel. PCI express technology. DELL Technology White
Paper, http://www.dell.com/downloads/global/vectors/
2004 pciexpress.pdf, 2004.

[104] R. Wilson. Introduction to graph theory. Academic Press, New York,
1972.

[105] J. Ribelles, M. Chover, A. López, and J. Huerta. A first step to evaluate
and compare multiresolution models. In Short Papers and Demos of
Eurographics’99, pages 230–232, 1999.

[106] P. Castelló, F. Ramos, and M. Chover. A comparative study of accelera-
tion techniques for geometric visualization. In International Conference
on Computational Science (2), pages 240–247, 2005.

[107] G. Junker. Pro OGRE 3D Programming (Pro). Apress, Berkely, CA,
USA, 2006.

[108] D. Blythe. The Direct3D 10 system. ACM Transactions on Graphics,
25(3):724–734, 2006.

[109] B. Purnomo. Amd tootle ver 2.0. http://ati.amd.com/developer/
tootle.html, 2008.

[110] nVidia CUDA compute unified device architecture - programming guide
version 2.0. http://developer.download.nvidia.com/compute/
cuda/2 0/docs/NVIDIA CUDA Programming Guide 2.0.pdf, 2007.

“tesis” — 2009/11/9 — 14:57 — page 112 — #136i
i

i
i

i
i

i
i

112 BIBLIOGRAPHY

[111] S. Tariq. D3D11 tesselation. Game Developers Confer-
ence. Session: Advanced Visual Effects with Direct3D for PC,
http://developer.download.nvidia.com/presentations/2009/GDC/
GDC09 D3D11Tessellation.pdf, 2009.

